2865600000000000 q001 1791/625 2865600002525124 s004 Continued Fraction of A179251 2865600002525124 s004 Continued fraction of A179251 2865600013873554 m001 (Sarnak-Weierstrass)/(3^(1/3)-FeigenbaumKappa) 2865600023557438 m001 (2^(1/3))^Zeta(3)-ErdosBorwein 2865600052473679 a003 sin(Pi*16/119)*sin(Pi*17/69) 2865600056748169 r005 Re(z^2+c),c=17/78+34/63*I,n=25 2865600065134937 m001 LaplaceLimit/(cos(1)+Pi^(1/2)) 2865600067898778 m001 1/OneNinth^2*ln(Cahen)^2/BesselJ(0,1)^2 2865600075561193 m001 (3^(1/3)-BesselI(0,2)*Sarnak)/Sarnak 2865600093612829 b008 3-InverseGudermannian[Pi/8]/3 2865600111529289 b008 Cosh[1/13]/35 2865600114535335 a008 Real Root of (1+2*x-4*x^2+5*x^3+4*x^4+4*x^5) 2865600128960549 r005 Im(z^2+c),c=-63/106+1/26*I,n=17 2865600132097331 a003 sin(Pi*8/111)/cos(Pi*19/89) 2865600132411010 r005 Re(z^2+c),c=25/86+37/62*I,n=12 2865600145776845 r009 Re(z^3+c),c=-47/106+15/34*I,n=62 2865600147455833 h001 (-exp(2)-6)/(-7*exp(2)+5) 2865600147991621 m001 1/FeigenbaumKappa^2/ln(FeigenbaumB)^2*sqrt(Pi) 2865600165615479 m006 (3/5*ln(Pi)+4)/(3/4*exp(Pi)-1) 2865600167122447 r002 44th iterates of z^2 + 2865600174395226 a003 cos(Pi*37/109)-cos(Pi*52/119) 2865600175459187 r005 Im(z^2+c),c=-97/78+2/49*I,n=32 2865600181180837 s002 sum(A191160[n]/(n^3*pi^n+1),n=1..infinity) 2865600187511837 r009 Re(z^3+c),c=-47/114+17/44*I,n=46 2865600190083298 m001 exp(1/2)+GAMMA(19/24)^GAMMA(3/4) 2865600194646965 r005 Re(z^2+c),c=-1/20+20/29*I,n=43 2865600195410792 a007 Real Root Of 292*x^4+930*x^3+462*x^2+799*x+690 2865600208650478 s002 sum(A073692[n]/(n^3*pi^n+1),n=1..infinity) 2865600209100597 m001 1/DuboisRaymond^2/ln(Artin)/Zeta(1,2) 2865600210712093 m001 (LandauRamanujan-Porter)/(GAMMA(2/3)+ln(3)) 2865600222045016 r009 Re(z^3+c),c=-81/122+29/50*I,n=2 2865600225737106 r005 Im(z^2+c),c=-7/48+21/53*I,n=29 2865600228904203 m005 (4/5*Pi-2/5)/(1/2*Pi-5/6) 2865600228904203 m006 (2/5/Pi-4/5)/(5/6/Pi-1/2) 2865600228904203 m008 (4/5*Pi-2/5)/(1/2*Pi-5/6) 2865600251363298 b008 28+PolyLog[3,3/5] 2865600251368604 r009 Im(z^3+c),c=-41/90+5/48*I,n=11 2865600256378270 r009 Re(z^3+c),c=-67/122+27/50*I,n=6 2865600257735331 m009 (32*Catalan+4*Pi^2-1/5)/(1/6*Psi(1,2/3)-3/4) 2865600264683301 a007 Real Root Of -340*x^4-664*x^3+685*x^2-797*x-607 2865600265312864 a003 cos(Pi*22/59)-cos(Pi*43/92) 2865600271197873 r005 Im(z^2+c),c=-29/66+19/45*I,n=11 2865600293717587 r009 Re(z^3+c),c=-11/27+23/61*I,n=22 2865600300042744 m005 (1/3*2^(1/2)-2/7)/(3/11*gamma-2/9) 2865600303239228 r009 Re(z^3+c),c=-13/36+17/58*I,n=23 2865600305250872 m001 GAMMA(3/4)^2*TreeGrowth2nd*ln(cosh(1)) 2865600308970741 m001 (Pi*ln(2)/ln(10)-ln(2))/ln(2^(1/2)+1) 2865600321118041 r005 Im(z^2+c),c=-11/106+14/37*I,n=23 2865600332771417 a008 Real Root of x^4-2*x^3-27*x^2-43*x-16 2865600333802005 a001 5702887/521*76^(2/9) 2865600337447806 r002 24th iterates of z^2 + 2865600344564622 r005 Re(z^2+c),c=-35/114+25/64*I,n=45 2865600362298340 r002 9th iterates of z^2 + 2865600366457799 r005 Im(z^2+c),c=-45/86+2/39*I,n=22 2865600374451343 r005 Re(z^2+c),c=-39/50+3/62*I,n=56 2865600382506000 r005 Re(z^2+c),c=-29/114+26/49*I,n=54 2865600402611407 m008 (3/5*Pi^3-1/6)/(2/3*Pi^4-3/5) 2865600404309771 m001 (Pi*2^(1/2)/GAMMA(3/4))^Chi(1)-ZetaP(4) 2865600413622497 r005 Re(z^2+c),c=-41/118+14/61*I,n=19 2865600416664788 m001 BesselK(0,1)/exp(Backhouse)*cos(1)^2 2865600421895084 r005 Im(z^2+c),c=39/106+5/23*I,n=31 2865600426301424 r009 Re(z^3+c),c=-11/23+12/29*I,n=22 2865600440748281 r009 Im(z^3+c),c=-23/66+36/55*I,n=10 2865600443125238 a007 Real Root Of -360*x^4-931*x^3+77*x^2-310*x+847 2865600443965078 m001 Cahen+FeigenbaumD^cos(1/5*Pi) 2865600449043840 b008 -3*Pi^2+Csch[Catalan] 2865600465217881 s002 sum(A189929[n]/(n^3*pi^n+1),n=1..infinity) 2865600465245585 s002 sum(A047391[n]/(n^3*pi^n+1),n=1..infinity) 2865600470587958 h001 (-7*exp(7)-9)/(-9*exp(8)+9) 2865600471612151 s002 sum(A090846[n]/(n^3*pi^n+1),n=1..infinity) 2865600479511711 a007 Real Root Of -156*x^4-144*x^3+681*x^2-330*x+593 2865600480271529 r002 3th iterates of z^2 + 2865600480868058 a001 75025/3*2^(11/56) 2865600483745526 a007 Real Root Of 94*x^4+27*x^3-672*x^2-223*x-824 2865600485491798 a009 7^(1/4)*(12^(3/4)-5^(3/4))^(1/2) 2865600517102591 m001 (-Conway+ErdosBorwein)/(cos(1)+polylog(4,1/2)) 2865600524296061 m001 (Bloch-PlouffeB)/(cos(1/12*Pi)-BesselI(0,2)) 2865600524831594 m001 Catalan/(GAMMA(1/3)+polylog(4,1/2)) 2865600532629805 m001 (GAMMA(2/3)+ln(Pi))/(GAMMA(11/12)-Tetranacci) 2865600538686550 m001 (BesselK(1,1)+1)/(-OneNinth+2/3) 2865600545859122 a007 Real Root Of -395*x^4-904*x^3+391*x^2-511*x+688 2865600549144614 m001 5^(1/2)*CopelandErdos/Tribonacci 2865600554796482 r005 Im(z^2+c),c=-7/18+17/35*I,n=60 2865600558226466 r005 Im(z^2+c),c=21/74+4/27*I,n=7 2865600560665530 a005 (1/cos(13/215*Pi))^58 2865600567500277 p003 LerchPhi(1/100,4,501/206) 2865600570133396 m001 Robbin^2/Lehmer*exp(FeigenbaumKappa) 2865600578807629 l006 ln(495/8692) 2865600585937500 r005 Re(z^2+c),c=-21/16+45/128*I,n=2 2865600619342049 m005 (1/2*Pi-3/7)/(1/6*Pi-1/8) 2865600620870411 m001 1/Zeta(1/2)^2/Rabbit*ln(cosh(1)) 2865600632119384 m005 (1/3*Catalan+2/11)/(7/12*2^(1/2)+7/8) 2865600636818919 a007 Real Root Of -60*x^4+508*x^3-612*x^2-718*x-825 2865600643188333 p004 log(31379/1787) 2865600644586755 r005 Im(z^2+c),c=-19/60+18/31*I,n=11 2865600658506134 a007 Real Root Of -821*x^4+240*x^3+184*x^2+518*x-15 2865600671392927 m002 -2/Pi^6-Pi^3+Pi^5+Sinh[Pi] 2865600680183517 r005 Re(z^2+c),c=-119/86+1/15*I,n=10 2865600683658594 r009 Re(z^3+c),c=-11/29+17/52*I,n=38 2865600683720788 r009 Re(z^3+c),c=-11/29+17/52*I,n=37 2865600693627092 a007 Real Root Of 393*x^4-862*x^3-455*x^2-848*x+298 2865600697825277 r005 Im(z^2+c),c=-41/118+17/36*I,n=50 2865600702921710 r002 59th iterates of z^2 + 2865600709996298 r009 Re(z^3+c),c=-5/12+30/53*I,n=40 2865600712852750 r002 11th iterates of z^2 + 2865600722031817 m005 (1/2*Pi-5/12)/(4/7*5^(1/2)-7/8) 2865600724222984 r002 5th iterates of z^2 + 2865600731039963 r005 Im(z^2+c),c=-16/29+2/39*I,n=35 2865600745409429 r009 Re(z^3+c),c=-1/74+11/13*I,n=42 2865600755169926 r009 Re(z^3+c),c=-11/29+17/52*I,n=41 2865600772177119 r005 Re(z^2+c),c=-35/114+25/64*I,n=51 2865600772194208 m005 (1/3*Pi-2/11)/(5/7*gamma-5/7) 2865600774490478 r002 30th iterates of z^2 + 2865600775657261 a007 Real Root Of -66*x^4-346*x^3-613*x^2-332*x+391 2865600775889001 a007 Real Root Of -201*x^4+472*x^3+171*x^2+751*x-239 2865600784170779 m001 (MinimumGamma+Tribonacci)/(2^(1/3)-ln(Pi)) 2865600787502954 a007 Real Root Of 234*x^4+353*x^3-816*x^2-72*x-978 2865600790985906 r009 Re(z^3+c),c=-11/29+17/52*I,n=44 2865600793479966 r009 Re(z^3+c),c=-11/29+17/52*I,n=45 2865600795075073 r005 Im(z^2+c),c=-13/10+52/103*I,n=3 2865600796156682 r009 Re(z^3+c),c=-11/29+17/52*I,n=48 2865600797884339 r009 Re(z^3+c),c=-11/29+17/52*I,n=51 2865600798131581 r009 Re(z^3+c),c=-11/29+17/52*I,n=52 2865600798216836 r009 Re(z^3+c),c=-11/29+17/52*I,n=55 2865600798297879 r009 Re(z^3+c),c=-11/29+17/52*I,n=58 2865600798316098 r009 Re(z^3+c),c=-11/29+17/52*I,n=59 2865600798317809 r009 Re(z^3+c),c=-11/29+17/52*I,n=62 2865600798321664 r009 Re(z^3+c),c=-11/29+17/52*I,n=61 2865600798324336 r009 Re(z^3+c),c=-11/29+17/52*I,n=64 2865600798324984 r009 Re(z^3+c),c=-11/29+17/52*I,n=63 2865600798325295 r009 Re(z^3+c),c=-11/29+17/52*I,n=54 2865600798335645 r009 Re(z^3+c),c=-11/29+17/52*I,n=60 2865600798355637 r009 Re(z^3+c),c=-11/29+17/52*I,n=56 2865600798357503 r009 Re(z^3+c),c=-11/29+17/52*I,n=57 2865600798570352 r009 Re(z^3+c),c=-11/29+17/52*I,n=53 2865600798770238 r009 Re(z^3+c),c=-11/29+17/52*I,n=49 2865600798895082 r009 Re(z^3+c),c=-11/29+17/52*I,n=47 2865600799101441 r009 Re(z^3+c),c=-11/29+17/52*I,n=50 2865600801212444 r009 Re(z^3+c),c=-11/29+17/52*I,n=35 2865600801692829 m005 (1/2*2^(1/2)-1/9)/(1/2*Catalan-1/4) 2865600802912012 r009 Re(z^3+c),c=-11/29+17/52*I,n=42 2865600802987368 r009 Re(z^3+c),c=-11/29+17/52*I,n=46 2865600815211581 r009 Re(z^3+c),c=-11/29+17/52*I,n=43 2865600819887457 r009 Re(z^3+c),c=-11/29+17/52*I,n=40 2865600824577179 a007 Real Root Of 987*x^4-94*x^3-226*x^2-648*x-176 2865600833869987 m002 -E^Pi+Pi^5+Pi^3*Csch[Pi]+Tanh[Pi] 2865600855430850 a007 Real Root Of -446*x^4+752*x^3-631*x^2+738*x+284 2865600857091882 h003 exp(Pi*(6^(2/3)/(3^(1/3)-11)^(1/2))) 2865600875029862 h001 (-7*exp(5)-3)/(-9*exp(6)-5) 2865600875628311 p001 sum((-1)^n/(350*n+333)/(10^n),n=0..infinity) 2865600876629218 r005 Re(z^2+c),c=-11/42+32/57*I,n=39 2865600883623630 r009 Re(z^3+c),c=-11/29+17/52*I,n=39 2865600884557055 r005 Re(z^2+c),c=-9/46+13/20*I,n=36 2865600886563462 a007 Real Root Of -224*x^4-510*x^3+192*x^2-357*x+504 2865600899680226 r005 Re(z^2+c),c=-37/102+4/33*I,n=20 2865600899883157 b008 10+7*2^Sqrt[2] 2865600915621366 l006 ln(7499/7717) 2865600915621366 p004 log(7717/7499) 2865600923785022 m001 ln(MinimumGamma)^2*LaplaceLimit/gamma^2 2865600928244497 r005 Im(z^2+c),c=-11/19+7/17*I,n=45 2865600930350056 a003 cos(Pi*16/41)/cos(Pi*43/93) 2865600947306098 q001 484/1689 2865600958294300 h001 (2/7*exp(2)+1/3)/(1/6*exp(1)+2/5) 2865600959762260 l006 ln(302/5303) 2865600961129324 s002 sum(A052241[n]/(n^2*exp(n)-1),n=1..infinity) 2865600966703313 m008 (3/5*Pi^5+1/6)/(2/3*Pi^6+2/5) 2865600966979843 a007 Real Root Of 372*x^4+726*x^3-786*x^2+585*x+130 2865600969688956 m001 ln(Riemann2ndZero)^2*Artin^2/GAMMA(5/12)^2 2865600971049833 r005 Im(z^2+c),c=-11/27+23/50*I,n=14 2865600976962696 m005 (1/2*Catalan+3/11)/(6/7*Pi-1/7) 2865600978258357 r009 Im(z^3+c),c=-13/58+16/57*I,n=10 2865600990496909 m001 (-5^(1/2)+1/3)/(GAMMA(13/24)+5) 2865601014988393 m005 (1/2*Catalan-7/10)/(9/10*3^(1/2)-5/7) 2865601019739552 a001 89/2*199^(19/54) 2865601028955775 m005 (1/2*5^(1/2)+2/9)/(3/4*5^(1/2)+3) 2865601031301923 b008 3-(3*Tanh[1])/17 2865601039051608 m005 (1/3*Zeta(3)+1/9)/(4/5*Pi-8/11) 2865601040558985 r005 Im(z^2+c),c=-19/106+25/61*I,n=42 2865601046955346 p004 log(34147/25639) 2865601052075567 s001 sum(exp(-Pi/3)^(n-1)*A165700[n],n=1..infinity) 2865601054691571 a007 Real Root Of -429*x^4-858*x^3+887*x^2-324*x+526 2865601072895382 b008 3+ArcCoth[1-6*Sqrt[2]] 2865601073018050 r005 Re(z^2+c),c=-31/90+12/49*I,n=26 2865601075446467 b008 -2+Pi*(1/3+3*Pi) 2865601076236933 p004 log(28429/1619) 2865601076955723 m005 (1/2*exp(1)+1/12)/(7/12*gamma+1/6) 2865601080025711 m001 exp(Zeta(5))/Niven/gamma 2865601088094957 r009 Im(z^3+c),c=-29/36+4/41*I,n=2 2865601088613542 r005 Re(z^2+c),c=-7/26+31/63*I,n=32 2865601090871550 r005 Im(z^2+c),c=-11/122+4/11*I,n=5 2865601092407629 a001 199/514229*832040^(6/19) 2865601092410051 a001 199/9227465*7778742049^(6/19) 2865601115110054 m001 (-GAMMA(23/24)+Riemann3rdZero)/(2^(1/2)-gamma) 2865601116446120 m001 (2^(1/3)+TreeGrowth2nd*ZetaQ(4))/TreeGrowth2nd 2865601118722006 r009 Im(z^3+c),c=-33/58+3/10*I,n=13 2865601127786402 a007 Real Root Of 8*x^4-538*x^3+320*x^2-456*x+117 2865601136188071 m001 Riemann3rdZero*(BesselI(1,2)-Niven) 2865601138664450 m001 Champernowne^Zeta(1/2)/(Trott^Zeta(1/2)) 2865601140045062 r005 Re(z^2+c),c=-9/23+8/13*I,n=3 2865601142181151 m001 (Otter-ZetaQ(4))/(GAMMA(3/4)-DuboisRaymond) 2865601148570989 a007 Real Root Of -268*x^4-465*x^3+778*x^2+14*x+781 2865601153870979 r009 Re(z^3+c),c=-11/29+17/52*I,n=36 2865601161518622 r005 Im(z^2+c),c=-5/8+1/194*I,n=45 2865601190711875 r005 Im(z^2+c),c=-17/30+52/127*I,n=27 2865601199990303 r005 Re(z^2+c),c=-35/118+8/19*I,n=28 2865601202102540 r005 Im(z^2+c),c=-11/10+7/211*I,n=10 2865601221891396 r002 3th iterates of z^2 + 2865601236126692 r005 Im(z^2+c),c=-19/106+25/61*I,n=40 2865601243356688 r005 Re(z^2+c),c=13/46+30/59*I,n=33 2865601265828499 m001 (BesselI(1,2)*Sarnak+Magata)/BesselI(1,2) 2865601268711047 r008 a(0)=3,K{-n^6,-31+64*n-24*n^2-4*n^3} 2865601273566371 a007 Real Root Of 678*x^4-725*x^3-480*x^2-589*x-151 2865601274235937 a007 Real Root Of -529*x^4+492*x^3+816*x^2+851*x+192 2865601274309877 a001 15127/8*21^(25/28) 2865601277352288 a007 Real Root Of 530*x^4-42*x^3+297*x^2-227*x-94 2865601306457884 r009 Re(z^3+c),c=-1/74+11/13*I,n=64 2865601309404726 a007 Real Root Of -94*x^4+166*x^3-450*x^2+431*x+165 2865601312837133 r009 Re(z^3+c),c=-1/74+11/13*I,n=62 2865601324294415 r009 Re(z^3+c),c=-1/74+11/13*I,n=60 2865601329832461 r009 Re(z^3+c),c=-47/114+17/44*I,n=44 2865601330197163 m001 1/ln(cosh(1))*GAMMA(1/3)^2*sqrt(3) 2865601330937477 m001 2*Pi/GAMMA(5/6)*CareFree-GAMMA(11/12) 2865601331314631 a001 11/144*2584^(43/57) 2865601332339126 r009 Im(z^3+c),c=-15/26+13/45*I,n=37 2865601333646353 r005 Im(z^2+c),c=-2/3+101/210*I,n=8 2865601344323915 r009 Re(z^3+c),c=-1/74+11/13*I,n=58 2865601353186580 m001 (2^(1/3))^2/FeigenbaumKappa/ln(Ei(1))^2 2865601368069023 a007 Real Root Of 556*x^4-907*x^3-987*x^2-591*x+268 2865601368380473 a007 Real Root Of -265*x^4-588*x^3+523*x^2+381*x+830 2865601369314537 m001 (MasserGramain-Stephens)/(GAMMA(2/3)+ln(3)) 2865601378223083 r009 Re(z^3+c),c=-1/74+11/13*I,n=56 2865601384190662 r005 Re(z^2+c),c=-11/52+24/41*I,n=45 2865601412261083 r002 29th iterates of z^2 + 2865601418576038 l006 ln(411/7217) 2865601420000270 r009 Re(z^3+c),c=-11/29+17/52*I,n=33 2865601429817591 m001 (cos(1/5*Pi)*arctan(1/3)+Robbin)/arctan(1/3) 2865601433260606 r009 Re(z^3+c),c=-1/74+11/13*I,n=54 2865601439768104 m001 (Conway+Gompertz)/(PisotVijayaraghavan-Robbin) 2865601453658974 a007 Real Root Of 90*x^4-158*x^3-789*x^2+887*x-766 2865601462428104 r005 Re(z^2+c),c=9/28+3/53*I,n=51 2865601475780179 m001 Chi(1)*MasserGramain-Magata 2865601503356608 a001 843/17711*1346269^(37/60) 2865601516303906 a007 Real Root Of 496*x^4-502*x^3+580*x^2-423*x-184 2865601517569870 r009 Re(z^3+c),c=-1/74+11/13*I,n=52 2865601523914074 m001 1/exp(DuboisRaymond)*Champernowne^2/Robbin^2 2865601534515158 a007 Real Root Of -264*x^4-819*x^3-228*x^2-320*x-515 2865601537646765 r009 Re(z^3+c),c=-47/114+17/44*I,n=47 2865601539994711 m001 HeathBrownMoroz^(Ei(1)/Sarnak) 2865601540085841 r002 17th iterates of z^2 + 2865601549188306 m001 ln(CopelandErdos)^2/Backhouse*Riemann1stZero^2 2865601552731840 a005 (1/sin(62/151*Pi))^1812 2865601564166770 a001 2139295485799/5*365435296162^(1/14) 2865601564166770 a001 3461452808002/5*433494437^(1/14) 2865601564166925 a001 5600748293801/5*514229^(1/14) 2865601569890644 m002 -30+Log[Pi]+Tanh[Pi]/5 2865601572550120 r005 Im(z^2+c),c=-35/58+2/43*I,n=25 2865601580736727 a001 18/377*75025^(31/40) 2865601608030524 m005 (1/2*Catalan-6/11)/(1/11*gamma+3) 2865601608316602 m001 (3^(1/3)-Si(Pi))/(HardyLittlewoodC3+Kolakoski) 2865601608919594 s002 sum(A243616[n]/(n^2*10^n+1),n=1..infinity) 2865601610521458 r005 Im(z^2+c),c=-25/122+21/50*I,n=39 2865601617743236 m001 (GAMMA(23/24)+ArtinRank2)/(Lehmer+ZetaQ(3)) 2865601625647033 a007 Real Root Of 343*x^4+610*x^3-915*x^2+497*x+163 2865601632807485 m001 GlaisherKinkelin*Lehmer-Pi*2^(1/2)/GAMMA(3/4) 2865601635346373 r009 Re(z^3+c),c=-1/74+11/13*I,n=50 2865601648334190 m004 (5*Cos[Sqrt[5]*Pi])/Pi+30*Tan[Sqrt[5]*Pi] 2865601657823297 m001 (BesselI(0,1)-ln(5))/(BesselK(1,1)+Gompertz) 2865601658600119 a007 Real Root Of 332*x^4+574*x^3-712*x^2+792*x-764 2865601658829708 a007 Real Root Of -769*x^4+141*x^3+376*x^2+947*x+249 2865601664523729 s002 sum(A262246[n]/((pi^n-1)/n),n=1..infinity) 2865601666979310 s002 sum(A287236[n]/(n^3*pi^n+1),n=1..infinity) 2865601669966424 a001 3571/55*832040^(41/43) 2865601674183430 a001 9062201101803/5*610^(1/14) 2865601676954971 r009 Re(z^3+c),c=-7/19+7/12*I,n=4 2865601685040867 l006 ln(520/9131) 2865601696639455 r009 Re(z^3+c),c=-1/74+11/13*I,n=44 2865601710367522 m001 (GAMMA(5/6)+Salem)/(BesselK(0,1)-GAMMA(3/4)) 2865601718015853 a007 Real Root Of 59*x^4-28*x^3-598*x^2-214*x-340 2865601722671908 m004 6-Cos[Sqrt[5]*Pi]+12*Log[Sqrt[5]*Pi] 2865601729385074 m001 (Shi(1)-ln(2)/ln(10))/(MertensB3+Mills) 2865601755907939 h001 (6/11*exp(1)+2/3)/(11/12*exp(2)+8/11) 2865601757689871 a009 7*(12^(2/3)-22)^(1/2) 2865601758699212 a007 Real Root Of -268*x^4-721*x^3+139*x^2+105*x+265 2865601767007629 m001 (GAMMA(11/12)+FeigenbaumMu)/(gamma+Zeta(5)) 2865601767503947 m001 PisotVijayaraghavan/Niven^2*ln(GAMMA(17/24))^2 2865601772718296 r009 Re(z^3+c),c=-1/74+11/13*I,n=48 2865601776122059 a001 29/10946*121393^(12/59) 2865601779606115 a007 Real Root Of -234*x^4-879*x^3-910*x^2-822*x+212 2865601781279098 r002 18th iterates of z^2 + 2865601789775770 r005 Im(z^2+c),c=-19/106+25/61*I,n=45 2865601795132623 h005 exp(cos(Pi*1/46)/cos(Pi*3/29)) 2865601795551197 h001 (1/4*exp(2)+1/4)/(11/12*exp(2)+6/11) 2865601798901487 h001 (1/2*exp(2)+1/12)/(2/9*exp(1)+5/7) 2865601807214770 m005 (1/2*Zeta(3)+1/4)/(3*Zeta(3)-7/11) 2865601855989543 r009 Im(z^3+c),c=-27/56+5/42*I,n=61 2865601861835934 r009 Re(z^3+c),c=-1/74+11/13*I,n=46 2865601868385994 a007 Real Root Of -341*x^4-903*x^3+89*x^2-41*x+897 2865601873054223 m006 (3/5*Pi+4/5)/(Pi^2-1/2) 2865601873054223 m008 (3/5*Pi+4/5)/(Pi^2-1/2) 2865601877254519 m001 Riemann1stZero^(Backhouse*Porter) 2865601883178193 r005 Im(z^2+c),c=-35/94+25/52*I,n=58 2865601883700024 a001 8/7*3^(41/49) 2865601890598298 r009 Re(z^3+c),c=-7/15+7/16*I,n=31 2865601903849986 m001 (Khinchin+TravellingSalesman)/KhinchinLevy 2865601908728935 m009 (48*Catalan+6*Pi^2-5/6)/(3/4*Psi(1,1/3)-4) 2865601939499116 r005 Im(z^2+c),c=-11/56+5/12*I,n=39 2865601942754019 s002 sum(A013713[n]/(10^n+1),n=1..infinity) 2865601942798540 s002 sum(A013713[n]/(10^n-1),n=1..infinity) 2865601956217679 m001 MasserGramainDelta+GAMMA(19/24)^MertensB1 2865601956341807 m001 (GaussAGM-HeathBrownMoroz)/(Porter-Salem) 2865601972945156 a001 199/233*4807526976^(6/23) 2865601990644977 a005 (1/cos(1/65*Pi))^901 2865601998907760 r005 Im(z^2+c),c=-3/25+7/20*I,n=4 2865602007712853 r005 Im(z^2+c),c=-7/17+24/49*I,n=37 2865602009924728 a001 5/710647*199^(13/49) 2865602010142799 a001 1/55*28657^(33/46) 2865602019496960 p002 log(13^(11/12)+6^(12/11)) 2865602019962204 r005 Im(z^2+c),c=-29/22+1/32*I,n=9 2865602027195395 a009 1/15*(5-15*6^(1/4))^(1/2) 2865602037221432 a007 Real Root Of -233*x^4-563*x^3+289*x^2-110*x-225 2865602046375436 a003 sin(Pi*18/59)/cos(Pi*27/55) 2865602046388171 r009 Re(z^3+c),c=-51/122+23/58*I,n=41 2865602049696193 m005 (1/2*Zeta(3)+7/8)/(2*exp(1)-2/7) 2865602070345363 m001 (Artin-sqrt(3)*GAMMA(7/24))/sqrt(3) 2865602074820273 a007 Real Root Of 52*x^4-40*x^3-165*x^2+902*x-508 2865602077806824 a007 Real Root Of 800*x^4-325*x^3+964*x^2-830*x+23 2865602079199425 p001 sum((-1)^n/(473*n+70)/n/(64^n),n=1..infinity) 2865602088446378 r005 Re(z^2+c),c=-27/86+21/58*I,n=17 2865602091892214 a001 1/2214*(1/2*5^(1/2)+1/2)^29*18^(13/22) 2865602099211308 r005 Re(z^2+c),c=-13/46+29/63*I,n=34 2865602100293390 m001 (Grothendieck+Niven)/(ln(2)/ln(10)+Catalan) 2865602100957703 m005 (1/2*gamma+7/11)/(gamma-9/10) 2865602125664758 a001 1/233802911*1836311903^(14/19) 2865602125676531 a001 3/832040*196418^(14/19) 2865602127821133 m001 1/exp(LambertW(1))*MertensB1^2*exp(1)^2 2865602130951295 a007 Real Root Of -134*x^4-675*x^3-797*x^2+423*x+909 2865602131907368 r009 Re(z^3+c),c=-21/86+28/39*I,n=41 2865602133626761 m001 (Stephens-ZetaQ(3))/(ln(Pi)+GaussAGM) 2865602136270240 m002 -6+3/Pi^5+3*Sinh[Pi] 2865602143251250 m005 (1/3*exp(1)+2/11)/(2/9*Catalan-4) 2865602155825943 r005 Im(z^2+c),c=-19/106+25/61*I,n=48 2865602161874832 r005 Re(z^2+c),c=-7/40+25/43*I,n=25 2865602164374485 m001 1/exp(RenyiParking)^2*Champernowne/cos(Pi/12) 2865602164751036 r005 Re(z^2+c),c=-5/16+22/59*I,n=36 2865602165960236 a001 47/144*121393^(11/19) 2865602175544689 r002 8th iterates of z^2 + 2865602180822861 r005 Im(z^2+c),c=-1/26+15/43*I,n=12 2865602195253588 h001 (3/8*exp(1)+3/8)/(7/12*exp(2)+5/9) 2865602198990248 m003 3+24*Cos[1/2+Sqrt[5]/2]+Sin[1/2+Sqrt[5]/2] 2865602209614745 r005 Re(z^2+c),c=-27/94+22/49*I,n=29 2865602211361666 r005 Re(z^2+c),c=-29/122+24/41*I,n=59 2865602213415398 r005 Im(z^2+c),c=-117/98+1/29*I,n=26 2865602219379106 m005 (1/2*Catalan-1/7)/(5/9*Zeta(3)-7/9) 2865602225497071 m001 (Chi(1)+Zeta(3))/(HardyLittlewoodC3+ZetaP(4)) 2865602229754307 r009 Re(z^3+c),c=-7/16+14/31*I,n=14 2865602236766610 a009 18+10^(1/3)*11^(2/3) 2865602253372391 r009 Re(z^3+c),c=-29/70+23/57*I,n=10 2865602255528781 p001 sum(1/(389*n+293)/n/(512^n),n=1..infinity) 2865602262227374 m001 (ln(5)+BesselI(0,2))/(PlouffeB+QuadraticClass) 2865602268386254 m001 (gamma*MasserGramainDelta+BesselK(1,1))/gamma 2865602272737648 m001 (Ei(1)-GaussAGM)/(Kac-LaplaceLimit) 2865602273120639 r001 55i'th iterates of 2*x^2-1 of 2865602273280549 a007 Real Root Of 850*x^4-73*x^3+936*x^2-477*x-221 2865602293330323 m001 HardyLittlewoodC5^TreeGrowth2nd/CopelandErdos 2865602303139006 r009 Re(z^3+c),c=-11/29+17/52*I,n=32 2865602306423127 r005 Im(z^2+c),c=-19/106+25/61*I,n=51 2865602312907552 m001 CopelandErdos*(GAMMA(3/4)+gamma(2)) 2865602313939750 m001 (exp(1)+exp(-1/2*Pi))/(-GAMMA(5/6)+OneNinth) 2865602316717550 a007 Real Root Of -330*x^4-702*x^3+344*x^2-896*x+341 2865602323730937 r005 Im(z^2+c),c=-33/118+13/29*I,n=51 2865602330640697 r005 Im(z^2+c),c=3/14+12/61*I,n=20 2865602335127226 a001 55/3*5600748293801^(22/23) 2865602346459763 m006 (1/4*Pi^2+2/5)/(2/5*exp(Pi)+3/4) 2865602351639325 m001 (5^(1/2)-Landau)^2 2865602353630297 a005 (1/sin(77/194*Pi))^796 2865602354110030 r009 Re(z^3+c),c=-3/7+22/53*I,n=44 2865602354854056 m005 (1/2*5^(1/2)+2/5)/(-3/7+3/7*5^(1/2)) 2865602360551006 r005 Im(z^2+c),c=-19/106+25/61*I,n=54 2865602367341844 m001 (2^(1/3)+arctan(1/3))/(-GolombDickman+Salem) 2865602369526670 r005 Re(z^2+c),c=-29/110+27/53*I,n=45 2865602374099782 r005 Im(z^2+c),c=-19/106+25/61*I,n=56 2865602375188061 r005 Im(z^2+c),c=-19/106+25/61*I,n=53 2865602377428460 r005 Im(z^2+c),c=-19/106+25/61*I,n=57 2865602377445526 r005 Im(z^2+c),c=-19/106+25/61*I,n=59 2865602379896773 r005 Im(z^2+c),c=-19/106+25/61*I,n=62 2865602381719880 r005 Im(z^2+c),c=-19/106+25/61*I,n=60 2865602382389287 r005 Im(z^2+c),c=-19/106+25/61*I,n=63 2865602382548940 r005 Im(z^2+c),c=-19/106+25/61*I,n=64 2865602384196087 r005 Im(z^2+c),c=-19/106+25/61*I,n=43 2865602384383681 r005 Im(z^2+c),c=-19/106+25/61*I,n=61 2865602386276251 r005 Re(z^2+c),c=15/98+29/53*I,n=56 2865602389119126 m001 sin(1/5*Pi)/(Conway+RenyiParking) 2865602389794094 r005 Im(z^2+c),c=-19/106+25/61*I,n=58 2865602403756308 r005 Im(z^2+c),c=-19/106+25/61*I,n=55 2865602405426908 r005 Im(z^2+c),c=-19/106+25/61*I,n=50 2865602406804362 a008 Real Root of x^4-x^3-3*x^2+5*x-52 2865602416557420 m006 (3*Pi+3/4)/(1/6*Pi^2-2) 2865602416557420 m008 (3*Pi+3/4)/(1/6*Pi^2-2) 2865602418747699 m005 (1/2*3^(1/2)-4/11)/(3/11*exp(1)-11/12) 2865602422371418 m001 (Pi-Catalan)/(BesselK(1,1)+ZetaP(3)) 2865602430920085 r009 Im(z^3+c),c=-47/74+7/22*I,n=35 2865602434798419 r005 Im(z^2+c),c=-19/106+25/61*I,n=52 2865602458577964 a007 Real Root Of -981*x^4-796*x^3-87*x^2+736*x-21 2865602461471244 r005 Im(z^2+c),c=-12/31+14/29*I,n=47 2865602468020328 a007 Real Root Of 740*x^4+177*x^3-992*x^2-484*x+211 2865602469211904 a007 Real Root Of 397*x^4+948*x^3-437*x^2+416*x+318 2865602471678681 q001 1113/3884 2865602478360597 r005 Im(z^2+c),c=-25/102+25/54*I,n=11 2865602479716542 m005 (1/3*exp(1)-2/7)/(2/7*gamma+2) 2865602488624387 a001 11/377*317811^(21/58) 2865602489538693 r005 Im(z^2+c),c=-19/106+25/61*I,n=49 2865602495680122 r005 Re(z^2+c),c=-29/82+6/31*I,n=16 2865602519140052 r005 Im(z^2+c),c=-3/8+29/60*I,n=51 2865602531049297 r005 Im(z^2+c),c=-117/86+2/47*I,n=18 2865602538656458 r005 Im(z^2+c),c=-19/106+25/61*I,n=46 2865602546898419 m001 (BesselK(0,1)+ln(2))/(-ln(3)+Rabbit) 2865602551145265 r005 Im(z^2+c),c=-19/106+25/61*I,n=47 2865602555285820 m001 (RenyiParking-Trott)/(3^(1/3)+GAMMA(5/6)) 2865602565944051 r002 11th iterates of z^2 + 2865602567150029 r005 Re(z^2+c),c=-39/34+4/19*I,n=4 2865602585001722 m001 exp(GAMMA(1/12))*FeigenbaumAlpha^2*arctan(1/2) 2865602602680453 r005 Im(z^2+c),c=-59/60+8/29*I,n=37 2865602602857570 m001 BesselI(0,2)^(exp(1)/GAMMA(5/12)) 2865602611857983 r009 Im(z^3+c),c=-13/60+11/39*I,n=5 2865602624410726 a001 1/203*(1/2*5^(1/2)+1/2)^20*29^(2/5) 2865602640065263 r009 Im(z^3+c),c=-1/56+9/29*I,n=4 2865602640149052 a007 Real Root Of -231*x^4-902*x^3-779*x^2-236*x+72 2865602649608935 a007 Real Root Of 324*x^4+840*x^3-325*x^2-139*x+189 2865602653440755 r009 Re(z^3+c),c=-27/70+20/59*I,n=18 2865602682557627 a005 (1/sin(63/145*Pi))^589 2865602684203788 l006 ln(7327/7540) 2865602689783755 l006 ln(109/1914) 2865602692014670 r009 Im(z^3+c),c=-14/31+7/45*I,n=25 2865602694915564 a007 Real Root Of 696*x^4-482*x^3-112*x^2-360*x-110 2865602703855903 a007 Real Root Of -282*x^4-654*x^3+771*x^2+863*x-232 2865602707603620 r005 Re(z^2+c),c=-35/114+25/64*I,n=48 2865602718698861 m008 (3/4*Pi^4+1/4)/(5/6*Pi^5+4/5) 2865602719044456 r008 a(0)=3,K{-n^6,59-7*n-42*n^2-3*n^3} 2865602722131737 m001 GlaisherKinkelin*Conway^2*ln(Zeta(5))^2 2865602732121462 r005 Im(z^2+c),c=3/14+12/61*I,n=22 2865602756604141 a007 Real Root Of -58*x^4+619*x^3-850*x^2-960*x-924 2865602758639312 m001 Salem*exp(Conway)^2/GAMMA(1/6) 2865602776563573 m001 1/exp(Salem)*PrimesInBinary^2*cos(1) 2865602785040309 a003 sin(Pi*3/113)-sin(Pi*1/28) 2865602791797496 h001 (1/11*exp(2)+1/3)/(5/12*exp(2)+3/7) 2865602802818189 r009 Im(z^3+c),c=-1/18+43/51*I,n=46 2865602803483592 r005 Im(z^2+c),c=-33/118+13/29*I,n=50 2865602805115149 r009 Re(z^3+c),c=-1/82+44/61*I,n=40 2865602812367495 a001 20633239/3*233^(13/19) 2865602825519481 a003 cos(Pi*17/60)*cos(Pi*36/103) 2865602828349353 s001 sum(1/10^(n-1)*A043499[n]/n!,n=1..infinity) 2865602835588086 m005 (1/2*3^(1/2)-1/8)/(2*Zeta(3)+2/11) 2865602837650071 a001 123/2*365435296162^(3/13) 2865602854744276 a007 Real Root Of 777*x^4-732*x^3+908*x^2-813*x-330 2865602857238925 m005 (1/2*5^(1/2)+5/7)/(-109/132+1/12*5^(1/2)) 2865602860398723 r005 Re(z^2+c),c=-7/46+23/37*I,n=34 2865602873310612 r009 Re(z^3+c),c=-73/118+25/47*I,n=27 2865602883241010 m001 Bloch-FeigenbaumDelta*TravellingSalesman 2865602884314893 a007 Real Root Of -297*x^4-937*x^3-532*x^2-730*x+255 2865602896181554 m001 1/gamma/ArtinRank2^2*ln(sqrt(5)) 2865602913717073 m001 (Gompertz+ZetaP(3))/(AlladiGrinstead-cos(1)) 2865602914235506 r005 Im(z^2+c),c=-145/122+12/49*I,n=32 2865602916615166 a007 Real Root Of -373*x^4-892*x^3+799*x^2+877*x+114 2865602920285362 s002 sum(A191039[n]/(exp(n)+1),n=1..infinity) 2865602930350017 r005 Im(z^2+c),c=-121/114+15/56*I,n=42 2865602933415076 r002 17th iterates of z^2 + 2865602934349816 r009 Im(z^3+c),c=-3/7+8/45*I,n=29 2865602939701140 m005 (1/2*Pi-5/8)/(1/4*Zeta(3)+3) 2865602945483198 m001 (FeigenbaumB+ZetaP(2))/(2^(1/2)-cos(1/12*Pi)) 2865602947631038 a005 (1/cos(16/217*Pi))^209 2865602957962312 m004 -5+E^(Sqrt[5]*Pi)+500*Pi+25*Sqrt[5]*Pi 2865602962122197 r005 Re(z^2+c),c=-23/42+15/22*I,n=7 2865602973316136 m001 exp(cos(1))^2/GAMMA(2/3)*log(2+sqrt(3)) 2865602975590440 a007 Real Root Of -176*x^4-799*x^3-809*x^2+213*x+320 2865602981450331 a003 cos(Pi*13/115)/cos(Pi*47/96) 2865602982710826 b008 1/2+2^Sqrt[Cosh[1]] 2865602994792064 m001 (GAMMA(3/4)+gamma(1))/(FeigenbaumMu+ZetaP(2)) 2865603012300252 a007 Real Root Of 823*x^4-819*x^3+260*x^2-303*x-133 2865603022576819 m001 1/GAMMA(11/24)^2*GAMMA(1/24)/ln(GAMMA(5/24))^2 2865603022996332 m001 1/ln(Catalan)^2/MertensB1/sqrt(3) 2865603026208478 m001 (Trott2nd+ZetaQ(3))/(1+MertensB1) 2865603027708158 m001 1/LaplaceLimit^2/CareFree^2*exp(Catalan)^2 2865603028339321 r005 Re(z^2+c),c=-35/114+25/64*I,n=46 2865603036006398 r005 Re(z^2+c),c=-13/46+6/13*I,n=54 2865603045219611 m001 (2^(1/3)-Catalan)/(GolombDickman+Stephens) 2865603047396185 m001 (3^(1/3)-CareFree)/(FeigenbaumB-Magata) 2865603047460604 a007 Real Root Of 27*x^4+757*x^3-503*x^2-677*x+371 2865603048414481 r002 12th iterates of z^2 + 2865603058930753 m001 Pi^(1/2)*HardyLittlewoodC5-TreeGrowth2nd 2865603068787221 r005 Im(z^2+c),c=-19/106+25/61*I,n=44 2865603078122642 a001 161/17*1346269^(17/42) 2865603123525905 r005 Im(z^2+c),c=-27/98+27/55*I,n=13 2865603131705505 a003 cos(Pi*20/69)*cos(Pi*29/84) 2865603131867361 m001 1/Salem*Backhouse^2*exp(arctan(1/2)) 2865603136009855 m001 (KhinchinLevy+Trott)/(exp(-1/2*Pi)-Kac) 2865603145628983 r005 Im(z^2+c),c=1/98+15/46*I,n=10 2865603172337770 s002 sum(A219588[n]/(n^2*pi^n+1),n=1..infinity) 2865603172356408 a007 Real Root Of 249*x^4-190*x^3+547*x^2-764*x-270 2865603175391154 p003 LerchPhi(1/32,2,331/176) 2865603189334893 s002 sum(A006942[n]/(exp(n)),n=1..infinity) 2865603192241315 b008 Sqrt[ExpIntegralEi[E]] 2865603192734618 a007 Real Root Of -156*x^4-174*x^3+353*x^2-981*x+715 2865603202359140 p001 sum(1/(429*n+424)/(3^n),n=0..infinity) 2865603209475594 q001 3/10469 2865603210803911 r005 Im(z^2+c),c=17/62+4/29*I,n=43 2865603212273046 s002 sum(A235664[n]/(n*2^n-1),n=1..infinity) 2865603230602946 r005 Im(z^2+c),c=-5/28+25/61*I,n=20 2865603234368261 m001 Trott2nd*(BesselK(0,1)-Porter) 2865603236291040 m001 (FeigenbaumDelta+Totient)/(Ei(1,1)+gamma(2)) 2865603256200899 a001 224056801/3*20365011074^(13/24) 2865603256208945 a001 817138163596/21*196418^(13/24) 2865603260935546 r005 Re(z^2+c),c=-19/14+73/164*I,n=2 2865603267174402 r005 Im(z^2+c),c=-7/13+13/37*I,n=10 2865603270628192 m001 (BesselK(1,1)+FellerTornier)/FellerTornier 2865603285993348 b008 EllipticNomeQ[(-3*E)/14] 2865603294886924 a003 sin(Pi*1/14)/cos(Pi*23/106) 2865603295197348 r005 Re(z^2+c),c=13/122+37/58*I,n=46 2865603314803584 s002 sum(A161911[n]/(n^3*exp(n)+1),n=1..infinity) 2865603318806521 a007 Real Root Of -757*x^4-372*x^3-892*x^2+305*x+157 2865603319699490 a007 Real Root Of 943*x^4-866*x^3+630*x^2-288*x-161 2865603330209099 r005 Im(z^2+c),c=-19/70+23/50*I,n=11 2865603334191159 a007 Real Root Of 401*x^4+534*x^3-557*x^2-965*x+307 2865603339705864 r005 Im(z^2+c),c=-23/18+3/248*I,n=50 2865603343082033 r005 Re(z^2+c),c=-19/54+10/49*I,n=23 2865603350150883 r005 Im(z^2+c),c=7/34+11/54*I,n=17 2865603356841691 m001 Salem^2/KhintchineHarmonic*exp(GAMMA(17/24)) 2865603357141365 m001 (CopelandErdos+Mills)/ZetaQ(2) 2865603359723494 a007 Real Root Of 189*x^4-580*x^3-668*x^2-575*x+232 2865603363978120 m001 (FellerTornier-gamma(3))^ln(3) 2865603370802859 m001 gamma/GAMMA(7/12)/HeathBrownMoroz 2865603372674300 r009 Im(z^3+c),c=-9/106+51/61*I,n=58 2865603386660896 m001 MadelungNaCl-ln(5)+ZetaR(2) 2865603390416675 m005 (1/2*gamma+2/11)/(5/7*exp(1)-3/10) 2865603440455378 r005 Im(z^2+c),c=-101/106+8/37*I,n=6 2865603452342735 m005 (1/3*3^(1/2)+1/3)/(-29/42+1/6*5^(1/2)) 2865603452879505 m005 (1/2*Zeta(3)-5/6)/(5/9*Zeta(3)+1/7) 2865603462065068 r009 Re(z^3+c),c=-53/122+20/47*I,n=63 2865603496421391 m009 (8/5*Catalan+1/5*Pi^2-6)/(1/6*Psi(1,2/3)-3/5) 2865603499466099 a007 Real Root Of -370*x^4-263*x^3+41*x^2+747*x+207 2865603514311635 r005 Im(z^2+c),c=-9/28+13/27*I,n=7 2865603526209382 r005 Im(z^2+c),c=-23/52+25/49*I,n=52 2865603546154989 m001 (ln(5)+Kolakoski)/(2^(1/3)-BesselK(0,1)) 2865603548645736 a007 Real Root Of 985*x^4-418*x^3-584*x^2-160*x+97 2865603550712974 a007 Real Root Of 81*x^4+7*x^3-600*x^2-39*x-482 2865603566506179 m009 (1/3*Psi(1,2/3)-3)/(3/4*Psi(1,1/3)-2/3) 2865603579620867 r005 Re(z^2+c),c=-29/56+21/40*I,n=43 2865603588965701 h001 (1/2*exp(2)+10/11)/(1/6*exp(2)+3/8) 2865603606390422 l006 ln(570/10009) 2865603619738114 r005 Im(z^2+c),c=-7/23+16/35*I,n=43 2865603621220777 r009 Im(z^3+c),c=-67/114+11/38*I,n=37 2865603634721394 r009 Re(z^3+c),c=-15/86+29/33*I,n=64 2865603644646924 q001 1258/439 2865603646670574 r005 Im(z^2+c),c=-37/94+31/59*I,n=38 2865603647577677 p001 sum((-1)^n/(606*n+347)/(64^n),n=0..infinity) 2865603649569294 r002 10th iterates of z^2 + 2865603651817084 m001 1/KhintchineHarmonic*ln(Bloch)/GAMMA(3/4)^2 2865603666734927 m001 (3^(1/3))^2*ln(DuboisRaymond)*sin(1) 2865603673425808 l006 ln(223/297) 2865603675321837 r005 Re(z^2+c),c=-4/13+11/28*I,n=18 2865603687044066 a007 Real Root Of 373*x^4+915*x^3-582*x^2-488*x-240 2865603720193175 a001 15251/5*24157817^(17/18) 2865603744753728 r005 Re(z^2+c),c=-35/114+23/60*I,n=14 2865603750067990 m001 (Si(Pi)+gamma)/(-FeigenbaumB+RenyiParking) 2865603751259362 a001 599074578/55*4181^(17/18) 2865603761136396 r002 44th iterates of z^2 + 2865603767277468 m005 (1/3*2^(1/2)+1/8)/(4/9*exp(1)-1) 2865603783146543 a007 Real Root Of -90*x^4-136*x^3-574*x^2+204*x+103 2865603785849095 r005 Im(z^2+c),c=-13/18+20/99*I,n=5 2865603786929860 p003 LerchPhi(1/125,1,57/163) 2865603787518570 m001 ln(2+3^(1/2))^cos(1)+Niven 2865603787666506 m005 (1/2*5^(1/2)-4/11)/(7/12*Pi+4/5) 2865603787800932 h005 exp(sin(Pi*3/47)+sin(Pi*14/43)) 2865603796907942 r005 Re(z^2+c),c=-35/114+25/64*I,n=41 2865603820402742 r005 Re(z^2+c),c=-33/118+23/49*I,n=54 2865603823115086 l006 ln(461/8095) 2865603851793370 m001 1/GAMMA(17/24)*exp(Conway) 2865603851793370 m001 exp(1)^Conway/GAMMA(17/24) 2865603854451360 r005 Re(z^2+c),c=3/11+7/64*I,n=17 2865603885816542 m001 GAMMA(2/3)+ln(2+3^(1/2))+DuboisRaymond 2865603885853730 m001 GAMMA(1/4)/ln(Si(Pi))^2/gamma^2 2865603886694851 m005 (1/2*gamma-1)/(2/7*gamma+1/12) 2865603894054923 a008 Real Root of (1+3*x-2*x^2-2*x^3-2*x^4+5*x^5) 2865603898747321 a001 322/13*89^(6/11) 2865603904430213 r009 Re(z^3+c),c=-13/31+20/53*I,n=10 2865603916374941 r009 Im(z^3+c),c=-67/114+11/38*I,n=25 2865603928405816 m001 (StronglyCareFree+Trott)/(1+KhinchinHarmonic) 2865603930923083 m001 1/exp(Catalan)*Bloch^2*LambertW(1)^2 2865603938521088 r005 Re(z^2+c),c=-27/98+31/54*I,n=33 2865603940049992 m001 BesselK(1,1)^2*Magata*exp(Zeta(1/2)) 2865603940375598 r009 Re(z^3+c),c=-12/31+15/44*I,n=20 2865603942051563 m005 (1/2*2^(1/2)+3)/(1/5*exp(1)+3/4) 2865603943644680 a007 Real Root Of -164*x^4-238*x^3+658*x^2+164*x+525 2865603946666954 a007 Real Root Of 153*x^4-345*x^3+262*x^2-734*x-241 2865603952761574 m001 log(gamma)-GAMMA(5/24)^LambertW(1) 2865603955660696 m001 GAMMA(7/12)^FeigenbaumAlpha-Trott2nd 2865603959494904 r009 Re(z^3+c),c=-9/31+7/50*I,n=7 2865603969243384 r009 Im(z^3+c),c=-31/118+1/46*I,n=5 2865603987861500 a007 Real Root Of 285*x^4+786*x^3-105*x^2+200*x+713 2865603994001400 s001 sum(exp(-Pi/4)^(n-1)*A275557[n],n=1..infinity) 2865604002125847 h001 (-8*exp(-1)-1)/(-7*exp(3)+3) 2865604003216098 r005 Im(z^2+c),c=-11/56+5/12*I,n=34 2865604015054676 a005 (1/cos(9/106*Pi))^349 2865604024499179 m001 GAMMA(7/12)^FeigenbaumAlpha/Psi(1,1/3) 2865604042203875 r005 Im(z^2+c),c=-17/122+24/31*I,n=9 2865604056127410 m001 DuboisRaymond^ln(5)/FeigenbaumAlpha 2865604072228095 m001 (2*Pi/GAMMA(5/6)+Trott2nd)/(gamma+exp(1/Pi)) 2865604074356192 m001 Landau*Trott-ZetaQ(3) 2865604116568357 r005 Re(z^2+c),c=-5/19+21/41*I,n=42 2865604121853109 a007 Real Root Of -604*x^4-226*x^3-877*x^2+608*x+245 2865604123721893 a001 1346269/521*15127^(30/31) 2865604127478679 r005 Re(z^2+c),c=47/122+48/53*I,n=2 2865604131325432 r005 Re(z^2+c),c=-7/24+15/34*I,n=22 2865604132522799 m005 (1/2*exp(1)+6/7)/(4/7*Catalan+1/4) 2865604134762874 r005 Im(z^2+c),c=-4/13+20/33*I,n=21 2865604137594950 a003 sin(Pi*14/53)/cos(Pi*30/61) 2865604152999930 m001 GAMMA(2/3)*exp(FeigenbaumAlpha)*sqrt(3) 2865604159171649 r005 Im(z^2+c),c=-35/114+31/57*I,n=10 2865604169910874 m001 (sin(1/12*Pi)-FeigenbaumB)/(Robbin+Totient) 2865604174061176 l006 ln(352/6181) 2865604184086246 m001 (Zeta(1/2)+PlouffeB)/(ln(3)-3^(1/3)) 2865604193595994 a007 Real Root Of 733*x^4+22*x^3+667*x^2-950*x+212 2865604218322791 a007 Real Root Of 581*x^4+92*x^3-92*x^2-610*x-169 2865604222984144 m001 (2^(1/3)-Zeta(1,-1))/(FellerTornier+ZetaP(3)) 2865604225997245 a007 Real Root Of 550*x^4-508*x^3+395*x^2-901*x+234 2865604228337856 r009 Re(z^3+c),c=-9/19+21/46*I,n=25 2865604231079023 r005 Im(z^2+c),c=13/102+7/27*I,n=15 2865604261488286 m001 (BesselI(0,2)+ArtinRank2)/(3^(1/2)-ln(2)) 2865604262798945 r005 Im(z^2+c),c=-7/19+12/25*I,n=56 2865604265452744 m008 (2*Pi^5-1/2)/(1/4*Pi^2-1/3) 2865604274383918 m001 (2^(1/2)-ArtinRank2)/Riemann3rdZero 2865604311425410 m005 (1/2*exp(1)+3/11)/(5/8*Zeta(3)-2/11) 2865604317969862 a007 Real Root Of 293*x^4+777*x^3+101*x^2+469*x-959 2865604324221882 r005 Re(z^2+c),c=-15/44+16/61*I,n=22 2865604329321218 m005 (1/2*Catalan+1/8)/(2/5*Pi+7/9) 2865604354596469 m005 (1/3*2^(1/2)-3/4)/(4*5^(1/2)+7/9) 2865604361069616 r005 Re(z^2+c),c=-7/25+22/47*I,n=42 2865604377051318 m001 (Zeta(1,2)+KhinchinLevy)/(Lehmer-MinimumGamma) 2865604378402712 p001 sum((-1)^n/(483*n+178)/n/(5^n),n=1..infinity) 2865604384248518 r009 Im(z^3+c),c=-7/15+2/37*I,n=37 2865604385221522 a003 cos(Pi*8/61)/cos(Pi*44/111) 2865604385468089 m001 (Shi(1)-ln(5))/(-FeigenbaumAlpha+Stephens) 2865604388608939 m003 -23/5+E^(1/2+Sqrt[5]/2)+Sinh[1/2+Sqrt[5]/2] 2865604393379136 r005 Im(z^2+c),c=-1/6+17/42*I,n=33 2865604395426939 a007 Real Root Of 20*x^4+559*x^3-380*x^2+696*x-296 2865604395916012 r009 Re(z^3+c),c=-13/29+8/15*I,n=62 2865604402608290 a007 Real Root Of -261*x^4-571*x^3+647*x^2+709*x+882 2865604409072953 r005 Im(z^2+c),c=-17/82+12/29*I,n=12 2865604426928339 a009 1/2*(5^(1/3)-2^(1/4)*7^(3/4))*2^(3/4) 2865604430383251 a007 Real Root Of 293*x^4+732*x^3-245*x^2+464*x+809 2865604441833502 s002 sum(A082713[n]/(n^2*10^n+1),n=1..infinity) 2865604458633336 a003 cos(Pi*1/113)-cos(Pi*23/93) 2865604467407049 a001 377/39603*29^(18/55) 2865604471885908 r005 Re(z^2+c),c=-31/110+19/41*I,n=36 2865604475854007 r005 Im(z^2+c),c=-119/122+13/55*I,n=6 2865604484198247 a007 Real Root Of 57*x^4-625*x^3+975*x^2+929*x+195 2865604512761995 p004 log(25163/1433) 2865604522328646 r005 Re(z^2+c),c=-31/70+23/43*I,n=31 2865604529605627 m001 (ln(Pi)-Cahen)/(MertensB2+TravellingSalesman) 2865604537816555 l006 ln(7155/7363) 2865604563624146 m003 -7/2+(5*Sqrt[5])/8-2*Sech[1/2+Sqrt[5]/2] 2865604573417313 a001 1/144*6765^(9/56) 2865604575163398 r002 2th iterates of z^2 + 2865604578009188 b008 Erf[(3+Csch[1])^(-1)] 2865604579943556 a007 Real Root Of 205*x^4+720*x^3+547*x^2+620*x+404 2865604590163378 r009 Im(z^3+c),c=-31/90+11/47*I,n=13 2865604594792924 m001 exp(exp(1))/Catalan*sqrt(3) 2865604607793031 a007 Real Root Of 224*x^4+601*x^3+104*x^2+868*x+671 2865604609130312 r002 23th iterates of z^2 + 2865604614114615 m001 (exp(Pi)*MertensB1+3^(1/3))/MertensB1 2865604621738037 p003 LerchPhi(1/125,3,50/153) 2865604624822647 r005 Im(z^2+c),c=-19/106+25/61*I,n=41 2865604625762080 m001 BesselJ(0,1)*(MertensB2-TwinPrimes) 2865604627631268 m001 1/Ei(1)*Tribonacci/ln(Zeta(3))^2 2865604628794254 r009 Im(z^3+c),c=-15/26+13/45*I,n=33 2865604629558781 m001 1/Riemann3rdZero^2*Magata^2/ln(sqrt(5))^2 2865604650683597 m001 (Magata+Weierstrass)/(5^(1/2)-ln(2^(1/2)+1)) 2865604670912599 m005 (1/2*3^(1/2)-2/3)/(2/9*Zeta(3)+3/7) 2865604672161198 m001 (GAMMA(13/24)-cos(1))/(Otter+QuadraticClass) 2865604676077534 r004 Re(z^2+c),c=-11/30+1/15*I,z(0)=-1,n=11 2865604679749465 h001 (1/5*exp(2)+1/4)/(7/10*exp(2)+6/7) 2865604683169425 r005 Re(z^2+c),c=1/29+7/36*I,n=9 2865604697183180 m005 (1/2*gamma+6/7)/(5/6*Zeta(3)-5) 2865604699921124 r009 Im(z^3+c),c=-15/26+13/45*I,n=49 2865604714003374 m001 (-CareFree+Totient)/(gamma+GAMMA(13/24)) 2865604726169193 r005 Im(z^2+c),c=-15/62+10/23*I,n=21 2865604732839728 r008 a(0)=3,K{-n^6,13+6*n^3-92*n^2+80*n} 2865604735248835 m001 (GAMMA(17/24)-Bloch)/(cos(1/12*Pi)+Zeta(1,2)) 2865604739205058 m006 (1/3*exp(2*Pi)+1/2)/(2/3*Pi^2-1/3) 2865604740736876 m001 Pi^sinh(1)/Totient 2865604744578953 a001 64079/144*6765^(11/15) 2865604753495966 a001 322/28657*12586269025^(11/15) 2865604769006339 r005 Re(z^2+c),c=-29/94+17/45*I,n=17 2865604771502063 r005 Re(z^2+c),c=-21/74+9/20*I,n=23 2865604772762324 m005 (1/3*2^(1/2)-1/7)/(5/9*exp(1)-4/11) 2865604779702643 r005 Im(z^2+c),c=-33/86+16/35*I,n=19 2865604796866339 a007 Real Root Of -624*x^4+972*x^3+809*x^2+729*x-294 2865604799741135 m005 (1/3*2^(1/2)-1/10)/(7/12*3^(1/2)+2/7) 2865604805085374 r009 Re(z^3+c),c=-45/98+13/28*I,n=64 2865604807409771 r005 Re(z^2+c),c=-17/94+27/47*I,n=13 2865604809245183 a007 Real Root Of -167*x^4-346*x^3+52*x^2-601*x+970 2865604815908856 a007 Real Root Of 218*x^4+833*x^3+929*x^2+721*x-661 2865604819925164 r002 30th iterates of z^2 + 2865604839847451 l006 ln(243/4267) 2865604842248109 m001 (Chi(1)+BesselI(0,1))/(-GAMMA(7/12)+Kolakoski) 2865604843695057 r009 Re(z^3+c),c=-19/82+43/60*I,n=6 2865604844011896 a003 cos(Pi*2/21)-sin(Pi*37/98) 2865604863291238 r009 Im(z^3+c),c=-15/26+13/45*I,n=61 2865604869968681 r009 Im(z^3+c),c=-15/26+13/45*I,n=53 2865604871343022 r009 Re(z^3+c),c=-5/28+39/44*I,n=46 2865604889830583 r009 Im(z^3+c),c=-15/26+13/45*I,n=57 2865604890135459 r009 Im(z^3+c),c=-3/25+36/43*I,n=2 2865604909684171 m006 (2/3/Pi+5)/(3/4*exp(Pi)+5/6) 2865604915085888 b008 19*Sqrt[Pi]*Csch[1] 2865604915650773 s002 sum(A161274[n]/(pi^n+1),n=1..infinity) 2865604918606853 r005 Re(z^2+c),c=-15/46+17/55*I,n=7 2865604923420723 a007 Real Root Of -165*x^4-116*x^3+737*x^2-948*x-372 2865604926558777 a007 Real Root Of -719*x^4+31*x^3+521*x^2+580*x+129 2865604932988143 a007 Real Root Of -14*x^4+184*x^3+436*x^2-435*x+447 2865604934915804 m009 (4*Psi(1,3/4)-1/4)/(3*Pi^2+5) 2865604936241003 h002 exp(1/11*(2+19^(1/2))*11^(1/4)) 2865604941843338 s002 sum(A161274[n]/(pi^n),n=1..infinity) 2865604951148380 a007 Real Root Of 26*x^4+747*x^3+56*x^2-25*x-987 2865604952855449 m005 (1/2*exp(1)+8/9)/(4*3^(1/2)+11/12) 2865604957536731 m001 (Conway-ReciprocalLucas)/(Zeta(3)+ln(3)) 2865604968035902 s002 sum(A161274[n]/(pi^n-1),n=1..infinity) 2865604971550455 r005 Im(z^2+c),c=-5/6+37/207*I,n=7 2865604971669069 r005 Re(z^2+c),c=-17/70+31/55*I,n=54 2865604981691062 a001 103682/3*1346269^(10/21) 2865604995117874 m005 (1/18+1/6*5^(1/2))/(4/5*Catalan-7/12) 2865605006377475 m001 GAMMA(17/24)/(GaussKuzminWirsing-sin(1/12*Pi)) 2865605006377475 m001 GAMMA(17/24)/(sin(Pi/12)-GaussKuzminWirsing) 2865605024928017 r002 25th iterates of z^2 + 2865605048756089 m005 (1/2*3^(1/2)+3/8)/(1/8*Zeta(3)-7/12) 2865605061352194 a007 Real Root Of 141*x^4-11*x^3-872*x^2+929*x+56 2865605070220178 a003 cos(Pi*27/119)-cos(Pi*19/79) 2865605076877446 r005 Im(z^2+c),c=-15/74+15/22*I,n=14 2865605089071211 a007 Real Root Of 142*x^4-646*x^3-566*x^2-835*x+300 2865605100676219 a007 Real Root Of -585*x^4+743*x^3+411*x^2+840*x-288 2865605105107141 m002 (5*E^Pi*Pi^2)/4+ProductLog[Pi] 2865605106002122 r005 Im(z^2+c),c=-19/14+11/180*I,n=12 2865605122801534 m001 (GAMMA(2/3)+Riemann3rdZero)^arctan(1/3) 2865605134376570 m001 (PlouffeB-ReciprocalLucas)/(ln(Pi)-Kac) 2865605144758101 r009 Im(z^3+c),c=-15/26+13/45*I,n=45 2865605149790788 m001 1/exp(log(1+sqrt(2)))*Salem^2*sqrt(5)^2 2865605150489462 a007 Real Root Of -399*x^4-750*x^3+835*x^2-789*x+139 2865605155904975 p004 log(26041/1483) 2865605159708731 m001 BesselI(1,2)*GAMMA(11/24)-exp(-1/2*Pi) 2865605164410582 a007 Real Root Of 473*x^4+156*x^3-481*x^2-820*x-195 2865605170429809 l006 ln(5227/5242) 2865605171204143 r005 Im(z^2+c),c=7/23+2/21*I,n=49 2865605178660501 r002 20th iterates of z^2 + 2865605183031524 r002 2th iterates of z^2 + 2865605184038871 a009 1/10*(5^(1/3)-10^(1/3)*7^(2/3))*10^(2/3) 2865605185690860 m001 3^(1/2)/(cos(1)-ln(Pi)) 2865605185690860 m001 sqrt(3)/(cos(1)-ln(Pi)) 2865605195891684 m008 (3/4*Pi^4+5)/(1/5*Pi^2+3/4) 2865605202996104 m005 (1/2*Zeta(3)+8/11)/(5/9*gamma+1/7) 2865605208642255 m005 (1/2*3^(1/2)-9/10)/(1/11*Pi+9/10) 2865605211388662 r005 Re(z^2+c),c=23/126+13/30*I,n=25 2865605214380715 m001 KhinchinHarmonic/GlaisherKinkelin/Weierstrass 2865605218734652 a007 Real Root Of -200*x^4+848*x^3+148*x^2+622*x-209 2865605231625310 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]-2*Csch[Sqrt[5]*Pi] 2865605231653464 m004 -3-4/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865605231681618 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]-2*Sech[Sqrt[5]*Pi] 2865605241620659 m009 (2*Psi(1,3/4)+3/4)/(2*Psi(1,1/3)+1/6) 2865605252277417 s002 sum(A026508[n]/(2^n-1),n=1..infinity) 2865605254644451 m001 Psi(2,1/3)^FeigenbaumB-sin(1/5*Pi) 2865605259984857 m001 1/GAMMA(7/24)^2*ln(BesselJ(0,1))*Zeta(7)^2 2865605276820576 a007 Real Root Of 33*x^4-277*x^3-676*x^2-566*x+224 2865605278539765 a007 Real Root Of -421*x^4+624*x^3+963*x^2+597*x-262 2865605282632913 a001 105937/41*123^(1/2) 2865605294339317 r002 15th iterates of z^2 + 2865605300141071 m001 Zeta(5)^2/exp(TwinPrimes)^2/Zeta(9) 2865605314348486 r002 20th iterates of z^2 + 2865605319036874 m001 exp(-1/2*Pi)+GAMMA(23/24)*ZetaP(4) 2865605320576763 m006 (3*Pi+5/6)/(2/3*Pi^2-3) 2865605320576763 m008 (3*Pi+5/6)/(2/3*Pi^2-3) 2865605322484092 a001 47/2*2504730781961^(15/23) 2865605323436465 h001 (-exp(3)+2)/(-8*exp(2)-4) 2865605324936758 m005 (1/3*2^(1/2)-1/4)/(3*exp(1)-3/7) 2865605331358756 q001 774/2701 2865605333503470 a007 Real Root Of 371*x^4+960*x^3-377*x^2-582*x-999 2865605337600020 a001 29/13*6765^(11/38) 2865605340323591 r002 7th iterates of z^2 + 2865605349947084 a007 Real Root Of 586*x^4+304*x^3+674*x^2-673*x-245 2865605353230845 r005 Re(z^2+c),c=-39/106+1/24*I,n=13 2865605354101781 a007 Real Root Of 288*x^4+433*x^3-850*x^2+511*x-787 2865605357938225 a005 (1/sin(50/131*Pi))^731 2865605378081247 a003 cos(Pi*11/70)*cos(Pi*43/109) 2865605379156768 r005 Im(z^2+c),c=29/78+11/52*I,n=36 2865605402333124 r002 15th iterates of z^2 + 2865605408241271 r009 Re(z^3+c),c=-6/17+5/18*I,n=12 2865605411862224 r005 Im(z^2+c),c=-19/74+15/29*I,n=3 2865605423386518 m002 -42+Pi^5*ProductLog[Pi] 2865605460122321 r004 Re(z^2+c),c=-3/8+1/3*I,z(0)=exp(3/8*I*Pi),n=2 2865605461071022 m005 (1/2*2^(1/2)-1/9)/(7/9*Pi-4/11) 2865605461483043 l006 ln(377/6620) 2865605463519855 r005 Re(z^2+c),c=2/9+3/53*I,n=12 2865605476135724 r005 Re(z^2+c),c=-19/56+17/63*I,n=20 2865605491946491 r005 Im(z^2+c),c=-19/14+10/179*I,n=44 2865605511181060 m001 (cos(1)+DuboisRaymond)/(Niven+Thue) 2865605512300963 a007 Real Root Of -242*x^4-300*x^3+784*x^2-959*x+73 2865605514289115 r008 a(0)=3,K{-n^6,-60-65*n^3+85*n^2+47*n} 2865605515070657 a003 -cos(1/7*Pi)-cos(1/9*Pi)-3^(1/2)+1/2*2^(1/2) 2865605518563368 s001 sum(exp(-3*Pi/5)^n*A056093[n],n=1..infinity) 2865605530278851 a007 Real Root Of -868*x^4+459*x^3-8*x^2+983*x+299 2865605535559580 p003 LerchPhi(1/10,6,133/50) 2865605536174288 m001 (Landau+Magata)/(PisotVijayaraghavan+ZetaQ(2)) 2865605541151581 r002 9th iterates of z^2 + 2865605543859096 a007 Real Root Of -331*x^4+641*x^3-409*x^2+454*x+181 2865605553454347 m001 GAMMA(3/4)/ln((2^(1/3)))*cos(1) 2865605555275581 r005 Re(z^2+c),c=-139/122+5/23*I,n=4 2865605555963520 m004 -(Pi/Sqrt[5])+(6*Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 2865605562109247 m009 (1/6*Pi^2+4/5)/(40*Catalan+5*Pi^2-2/3) 2865605566500443 m005 (1/2*2^(1/2)-5/12)/(1/2*Catalan+5/9) 2865605575198533 r009 Re(z^3+c),c=-13/34+11/16*I,n=35 2865605579424518 m001 (GAMMA(23/24)+Niven)/(BesselI(1,1)-Psi(1,1/3)) 2865605587713049 m001 (BesselI(1,1)-Kolakoski)/(Sarnak+ZetaP(4)) 2865605592115637 p001 sum(1/(387*n+295)/n/(512^n),n=1..infinity) 2865605599196223 r009 Im(z^3+c),c=-9/26+11/46*I,n=5 2865605600462901 r002 63th iterates of z^2 + 2865605610331961 r009 Re(z^3+c),c=-53/118+10/23*I,n=28 2865605618408744 r005 Re(z^2+c),c=-37/106+13/59*I,n=25 2865605660247835 r008 a(0)=3,K{-n^6,53+8*n-54*n^2} 2865605665088090 r005 Re(z^2+c),c=-15/62+31/41*I,n=43 2865605684523064 r005 Im(z^2+c),c=-21/62+23/49*I,n=29 2865605685613800 r002 3th iterates of z^2 + 2865605686394449 r005 Re(z^2+c),c=-9/46+37/62*I,n=37 2865605688905863 r009 Im(z^3+c),c=-15/26+13/45*I,n=41 2865605718287278 r005 Im(z^2+c),c=11/56+32/59*I,n=26 2865605725312918 a007 Real Root Of 297*x^4+552*x^3-562*x^2+938*x+265 2865605729635098 s002 sum(A024778[n]/((2*n)!),n=1..infinity) 2865605731908714 a007 Real Root Of -70*x^4+433*x^3-34*x^2+815*x+247 2865605732013579 a007 Real Root Of 292*x^4+929*x^3+636*x^2-955*x-306 2865605744025333 r005 Re(z^2+c),c=-151/114+2/57*I,n=56 2865605750704767 m001 1/GAMMA(17/24)/ln(Conway)^2*sin(Pi/12) 2865605752635019 a007 Real Root Of -53*x^4+539*x^3+113*x^2+804*x-252 2865605757094353 l006 ln(511/8973) 2865605764052303 r009 Im(z^3+c),c=-19/58+8/33*I,n=15 2865605772509930 m005 (1/2*Catalan-4/9)/(5/7*Catalan-2/11) 2865605780450278 r005 Im(z^2+c),c=-39/98+27/55*I,n=22 2865605785155883 m001 1/Niven^2/ln(CareFree)*cos(1)^2 2865605790696663 m005 (1/3*3^(1/2)+2/9)/(9/10*5^(1/2)+7/9) 2865605798248483 r009 Re(z^3+c),c=-39/86+20/43*I,n=37 2865605804916956 r005 Re(z^2+c),c=-11/14+3/61*I,n=36 2865605807636531 m002 -E^Pi+3*Pi^6+4*Log[Pi] 2865605818879226 m001 (Riemann1stZero+ZetaP(3))/(Pi+Si(Pi)) 2865605828206120 r002 20th iterates of z^2 + 2865605835345462 m005 (1/2*2^(1/2)-9/11)/(3/11*5^(1/2)-2/9) 2865605838048348 a007 Real Root Of -657*x^4+463*x^3+35*x^2+986*x+295 2865605845278532 r002 7th iterates of z^2 + 2865605863136530 m007 (-1/4*gamma-1/2*ln(2)-2/5)/(-4*gamma-4/5) 2865605869342009 a003 cos(Pi*5/19)-sin(Pi*41/99) 2865605880118111 a007 Real Root Of -765*x^4-618*x^3+711*x^2+542*x-194 2865605880381203 r005 Im(z^2+c),c=7/102+5/17*I,n=14 2865605903629857 a003 sin(Pi*3/43)/cos(Pi*7/31) 2865605906287075 a007 Real Root Of 372*x^4+981*x^3+86*x^2+651*x-841 2865605923861469 m001 (FeigenbaumB-Psi(2,1/3))/(MasserGramain+Mills) 2865605928355757 p003 LerchPhi(1/125,5,113/88) 2865605934834358 r005 Re(z^2+c),c=39/110+11/36*I,n=18 2865605938887724 m001 (KhinchinHarmonic+Riemann2ndZero)/Kolakoski 2865605962855816 m001 exp(1/exp(1))*Champernowne*ErdosBorwein 2865605963425816 m001 BesselJ(0,1)^Si(Pi)-FellerTornier 2865605978039540 r009 Im(z^3+c),c=-31/94+7/29*I,n=13 2865605983357133 m001 BesselI(1,2)*Salem^(Pi*2^(1/2)/GAMMA(3/4)) 2865605984553694 a007 Real Root Of -55*x^4+154*x^3+921*x^2+347*x+764 2865605998210848 a007 Real Root Of -188*x^4-199*x^3+685*x^2-912*x-244 2865606009078076 m007 (-2/3*gamma-2*ln(2)+1/3*Pi+3/4)/(-gamma-1/3) 2865606014973978 m002 6-E^Pi+Pi^5-Cosh[Pi]/5 2865606017289932 r005 Im(z^2+c),c=3/19+17/38*I,n=4 2865606023170160 m001 exp(Bloch)^2/Conway^2*Ei(1) 2865606023187887 a001 123/89*610^(26/55) 2865606031546105 v002 sum(1/(5^n+(5/2*n^2+95/2*n+6)),n=1..infinity) 2865606035022849 m001 1/Magata^2*exp(KhintchineHarmonic)^2/Paris 2865606039981000 r005 Re(z^2+c),c=-5/18+25/52*I,n=27 2865606058884510 a007 Real Root Of 296*x^4-206*x^3-505*x^2-634*x+226 2865606060017003 m001 (arctan(1/2)-sin(1/12*Pi))/TravellingSalesman 2865606064353406 m002 -17/3+3*Pi^4 2865606084580740 r002 63th iterates of z^2 + 2865606086334312 m001 FeigenbaumDelta*arctan(1/2)^HardyLittlewoodC3 2865606092864541 h001 (3/8*exp(2)+3/4)/(1/8*exp(1)+8/9) 2865606095277962 a007 Real Root Of -163*x^4+195*x^3+649*x^2+885*x+206 2865606133787788 m001 exp(Riemann3rdZero)^2*LaplaceLimit/GAMMA(3/4) 2865606140116112 a007 Real Root Of -379*x^4-933*x^3+226*x^2-945*x-962 2865606148819668 r004 Im(z^2+c),c=-7/38+7/17*I,z(0)=I,n=42 2865606151158968 m001 ln(GAMMA(3/4))^2/FeigenbaumB*gamma 2865606164374362 m005 (1/3*exp(1)+2/11)/(3/11*gamma+2/9) 2865606166658509 r005 Re(z^2+c),c=-9/28+19/56*I,n=11 2865606174743220 r009 Re(z^3+c),c=-37/110+13/53*I,n=10 2865606189911464 s002 sum(A079408[n]/(n^3*exp(n)+1),n=1..infinity) 2865606190277049 m001 Kolakoski*(Robbin-ln(2)/ln(10)) 2865606190795420 a007 Real Root Of 339*x^4+866*x^3-539*x^2-566*x+323 2865606196034364 a007 Real Root Of 270*x^4-92*x^3+624*x^2-722*x+156 2865606197018479 m005 (1/2*Zeta(3)-2/9)/(5/9*Zeta(3)-4/5) 2865606199672418 m001 Catalan^2/BesselJ(1,1)/exp(Ei(1)) 2865606200263480 r005 Re(z^2+c),c=-5/16+22/59*I,n=24 2865606201108435 m001 1/exp(GAMMA(19/24))^2/Bloch*sqrt(2) 2865606208235179 r005 Im(z^2+c),c=-33/118+13/29*I,n=56 2865606212220317 r005 Im(z^2+c),c=-67/106+3/52*I,n=34 2865606214347770 m001 (BesselJ(0,1)-sin(1))/(Sierpinski+ZetaP(4)) 2865606218882499 m001 (GAMMA(7/12)+Kac)/(MinimumGamma-Rabbit) 2865606271257150 r005 Re(z^2+c),c=-29/86+12/43*I,n=29 2865606275443381 a001 199/317811*4181^(36/49) 2865606289068606 r009 Im(z^3+c),c=-1/18+43/51*I,n=48 2865606289708004 b008 Pi-59*Erfc[2] 2865606289783277 r005 Re(z^2+c),c=3/118+29/52*I,n=6 2865606295447412 m001 1/exp(GAMMA(1/3))*Magata*GAMMA(3/4) 2865606297699377 a007 Real Root Of 284*x^4+955*x^3+204*x^2-657*x-236 2865606303188416 a007 Real Root Of 62*x^4-461*x^3+680*x^2+50*x+940 2865606311793940 r005 Re(z^2+c),c=13/86+21/64*I,n=11 2865606324517127 m001 (1+BesselJ(0,1))/(-OneNinth+Sarnak) 2865606325648951 r005 Im(z^2+c),c=-43/114+14/29*I,n=35 2865606338992539 a009 22+5^(1/3)+11^(2/3) 2865606341966568 r005 Im(z^2+c),c=-11/30+19/40*I,n=37 2865606345040612 m005 (39/44+1/4*5^(1/2))/(4/11*gamma-5/7) 2865606353037659 r005 Im(z^2+c),c=-29/54+17/30*I,n=52 2865606357324464 m001 Zeta(1/2)^2/ln(Catalan)^2/cos(Pi/12) 2865606362495853 a007 Real Root Of -291*x^4-412*x^3+847*x^2-979*x+167 2865606375615218 m001 (cos(1/5*Pi)-ln(2))/(FeigenbaumDelta-Kac) 2865606376146691 m001 ln(Zeta(5))^2/GAMMA(5/12)*arctan(1/2) 2865606379498873 m002 E^Pi+Pi+Log[Pi]+Log[Pi]*ProductLog[Pi] 2865606381438141 s002 sum(A058352[n]/(n!^2),n=1..infinity) 2865606400172646 m001 TwinPrimes*exp(FeigenbaumC)^2*GAMMA(11/12)^2 2865606403633842 a003 sin(Pi*8/87)/sin(Pi*27/58) 2865606405398438 a003 -cos(1/5*Pi)-3^(1/2)-cos(3/8*Pi)+cos(13/27*Pi) 2865606406193247 r005 Re(z^2+c),c=-83/102+4/19*I,n=6 2865606417004676 m001 1/ln(log(2+sqrt(3)))^2*ErdosBorwein^2*sin(1) 2865606417928852 r005 Re(z^2+c),c=-19/30+8/21*I,n=28 2865606427106637 r005 Im(z^2+c),c=1/30+17/55*I,n=6 2865606427223291 h002 exp(1/6*(10^(2/3)-7^(1/3)*6^(1/4))*6^(3/4)) 2865606434611677 a007 Real Root Of -381*x^4-960*x^3+699*x^2+799*x-349 2865606445500872 s002 sum(A051682[n]/(exp(pi*n)+1),n=1..infinity) 2865606453107804 a001 521/89*75025^(16/29) 2865606471399516 r009 Re(z^3+c),c=-51/110+11/29*I,n=13 2865606472607693 r005 Im(z^2+c),c=-9/8+27/100*I,n=28 2865606474091470 r005 Re(z^2+c),c=13/40+1/13*I,n=19 2865606482742874 l006 ln(6983/7186) 2865606485812285 q001 919/3207 2865606492024252 a007 Real Root Of 395*x^4+888*x^3-610*x^2+435*x+516 2865606508626458 m001 (arctan(1/3)+Paris)^(3^(1/3)) 2865606513186860 a005 (1/sin(69/223*Pi))^126 2865606513251070 r005 Re(z^2+c),c=23/86+3/28*I,n=43 2865606527541908 a007 Real Root Of 39*x^4-170*x^3-708*x^2+578*x+840 2865606546494324 r005 Im(z^2+c),c=23/74+5/51*I,n=27 2865606549376729 m005 (1/2*2^(1/2)-4/9)/(1/11*Catalan+5/6) 2865606556869911 a001 1364*(1/2*5^(1/2)+1/2)^18*47^(14/15) 2865606569936152 m001 (ErdosBorwein+Kolakoski)/(Cahen+DuboisRaymond) 2865606571940544 m001 (MertensB3+TwinPrimes)/(Pi-Psi(1,1/3)) 2865606578473056 a001 75025/322*199^(10/11) 2865606585755986 r002 16th iterates of z^2 + 2865606588776451 l006 ln(134/2353) 2865606589816943 r005 Im(z^2+c),c=-1/7+25/47*I,n=6 2865606627026402 r002 19th iterates of z^2 + 2865606648857530 a001 7/89*86267571272^(3/5) 2865606662390219 r005 Im(z^2+c),c=-7/6+47/245*I,n=18 2865606686658072 m005 (2/3*2^(1/2)-3)/(1/5*gamma-5/6) 2865606688808786 r005 Im(z^2+c),c=-27/26+33/127*I,n=20 2865606693910938 m001 (Artin+MertensB3*Sierpinski)/MertensB3 2865606694624360 m001 BesselK(1,1)^(RenyiParking/GaussKuzminWirsing) 2865606704892184 r005 Im(z^2+c),c=-11/52+23/52*I,n=11 2865606730456559 m001 (Sarnak-ZetaQ(4))/(ln(Pi)+exp(1/Pi)) 2865606735616069 p003 LerchPhi(1/6,2,365/188) 2865606749486350 a007 Real Root Of 295*x^4+774*x^3-300*x^2-525*x-720 2865606754663761 r009 Re(z^3+c),c=-25/126+21/29*I,n=14 2865606763146083 m001 (Pi+2^(1/2))/(5^(1/2)-MasserGramain) 2865606770043710 r005 Re(z^2+c),c=-29/114+28/53*I,n=46 2865606772521856 a007 Real Root Of 284*x^4+584*x^3-640*x^2+366*x+896 2865606794422919 m005 (1/3*3^(1/2)+1/2)/(1/5*Zeta(3)-4) 2865606799502971 m005 (1/2*5^(1/2)+5/11)/(1/10*Zeta(3)+3/7) 2865606800746663 m001 DuboisRaymond*(Gompertz+Riemann1stZero) 2865606802596902 h001 (-9*exp(2)-4)/(-12*exp(3)-5) 2865606803477790 r005 Im(z^2+c),c=-35/82+11/28*I,n=8 2865606822663183 m002 -4+E^Pi+Pi^(-1)-Pi^5 2865606834447839 a007 Real Root Of 127*x^4+313*x^3-341*x^2-300*x+742 2865606843959526 r009 Re(z^3+c),c=-55/122+24/53*I,n=58 2865606844233219 a005 (1/cos(2/125*Pi))^833 2865606847761821 r005 Re(z^2+c),c=-35/78+26/43*I,n=13 2865606854578174 a009 24+3^(1/2)+5^(2/3) 2865606860802091 a008 Real Root of x^4-x^3-6*x^2-40*x-11 2865606872454385 a007 Real Root Of 330*x^4+941*x^3+349*x^2+712*x-935 2865606890520554 a007 Real Root Of -459*x^4-572*x^3-965*x^2+988*x+352 2865606910816817 r005 Re(z^2+c),c=35/102+7/20*I,n=12 2865606915586248 r004 Im(z^2+c),c=1/5+5/24*I,z(0)=exp(3/8*I*Pi),n=22 2865606916795585 m001 GAMMA(7/12)-Zeta(1/2)-Champernowne 2865606917433463 r005 Im(z^2+c),c=3/74+13/42*I,n=15 2865606926841504 m001 Riemann1stZero*exp(Kolakoski)*Catalan 2865606930368926 a007 Real Root Of 60*x^4-78*x^3-406*x^2+726*x-467 2865606931382992 a007 Real Root Of 300*x^4+651*x^3-858*x^2-595*x+430 2865606932619174 p001 sum((-1)^n/(571*n+334)/(8^n),n=0..infinity) 2865606936416184 q001 1983/692 2865606951670738 a008 Real Root of x^4-6*x^2-36*x+85 2865606963178815 r002 8th iterates of z^2 + 2865606974380776 a007 Real Root Of 383*x^4+943*x^3-641*x^2-406*x+464 2865606985207038 a001 3/55*1346269^(16/57) 2865606990151932 p001 sum(1/(521*n+477)/(2^n),n=0..infinity) 2865606990839853 m001 1/GAMMA(5/12)^2*Bloch^2/exp(cos(1)) 2865607006700215 a007 Real Root Of -401*x^4+26*x^3-236*x^2+895*x-235 2865607016719877 s002 sum(A289338[n]/(64^n),n=1..infinity) 2865607018740242 b008 Sqrt[3]+ArcCosh[12/7] 2865607025603643 a001 1346269/199*76^(1/3) 2865607034915134 m001 (exp(1)-Stephens)/RenyiParking 2865607036328381 m001 (FeigenbaumMu-Lehmer)/(Zeta(5)+gamma(3)) 2865607037739711 h001 (7/11*exp(2)+10/11)/(4/9*exp(1)+3/4) 2865607055448489 a007 Real Root Of -242*x^4-832*x^3-386*x^2-7*x-110 2865607080027357 m001 (KhinchinHarmonic+Salem)/(FeigenbaumB-Si(Pi)) 2865607081981487 m005 (1/3*Catalan+2/11)/(7/11*2^(1/2)+4/5) 2865607084262661 a001 370248451/233*832040^(11/20) 2865607084263944 a001 1860498/233*12586269025^(11/20) 2865607093985185 r009 Re(z^3+c),c=-43/90+17/37*I,n=55 2865607097285309 m003 3/2+(3*Sqrt[5])/64+E^(1/2+Sqrt[5]/2)/4 2865607099673571 m002 -Pi^3+3*Pi^6+Cosh[Pi]*ProductLog[Pi] 2865607101429365 p004 log(14557/829) 2865607113910433 r005 Im(z^2+c),c=-1/23+13/37*I,n=16 2865607130967835 h001 (1/9*exp(1)+5/11)/(3/11*exp(2)+5/8) 2865607136142973 b008 (E^2+EulerGamma^(-1))*Pi 2865607136520595 r005 Im(z^2+c),c=-4/27+25/64*I,n=10 2865607141360723 m001 1/exp(OneNinth)^2/TwinPrimes*GAMMA(1/24) 2865607144530923 m001 1/ErdosBorwein*ln(Artin)/MinimumGamma^2 2865607147405733 m001 (ArtinRank2-CopelandErdos)/(ln(5)+gamma(3)) 2865607150880031 r005 Im(z^2+c),c=-37/114+2/59*I,n=3 2865607151285009 r005 Im(z^2+c),c=-7/6+30/139*I,n=19 2865607163120098 p003 LerchPhi(1/2,3,376/237) 2865607168789980 r009 Im(z^3+c),c=-35/78+7/44*I,n=31 2865607170766801 a007 Real Root Of 921*x^4-786*x^3-535*x^2-924*x+321 2865607172254536 r009 Im(z^3+c),c=-29/98+1/52*I,n=10 2865607177049464 a007 Real Root Of 104*x^4-472*x^3-361*x^2-785*x+265 2865607180994188 h001 (5/7*exp(2)+2/9)/(3/8*exp(1)+9/10) 2865607185171969 m001 GAMMA(17/24)-sin(1)^ZetaQ(3) 2865607198996542 r005 Re(z^2+c),c=-20/27+8/43*I,n=44 2865607220012755 r005 Re(z^2+c),c=-2/7+29/64*I,n=54 2865607221545935 a007 Real Root Of -789*x^4+406*x^3+414*x^2+482*x+119 2865607242270920 p004 log(34259/1951) 2865607245076679 r005 Re(z^2+c),c=-127/102+26/45*I,n=2 2865607262755249 b008 3^(1/3)*ArcCsch[5] 2865607268937844 m001 (Zeta(1/2)+Ei(1,1))/(exp(1/Pi)+Otter) 2865607274697755 m001 (Grothendieck-Salem)/(Ei(1)+Ei(1,1)) 2865607287021231 m001 (Porter+Sierpinski)/(Mills+OneNinth) 2865607290525045 m001 GAMMA(17/24)^MasserGramainDelta/Psi(2,1/3) 2865607293004193 r002 61th iterates of z^2 + 2865607298608697 r005 Im(z^2+c),c=-47/114+20/43*I,n=26 2865607302006571 m001 Zeta(5)/ln(Artin)*exp(1) 2865607313265242 a001 11/1346269*610^(9/46) 2865607314009256 r005 Re(z^2+c),c=21/122+9/26*I,n=12 2865607316170234 m005 (1/2*Zeta(3)-7/11)/(4/11*Catalan+9/10) 2865607316261646 m001 1/KhintchineLevy^2*ln(ErdosBorwein)/Trott^2 2865607325612712 q001 1064/3713 2865607328944858 a001 47/28657*317811^(33/56) 2865607346332982 l006 ln(561/9851) 2865607357322148 r005 Re(z^2+c),c=-33/106+21/59*I,n=12 2865607358564385 r002 8th iterates of z^2 + 2865607359487444 m005 (1/3*Catalan+1/8)/(9/11*Zeta(3)-5/6) 2865607369447973 r005 Re(z^2+c),c=-41/122+17/59*I,n=15 2865607374332925 a001 29/17711*3^(27/53) 2865607377824041 m001 (5^(1/2)+BesselI(0,2))/(-FeigenbaumC+Magata) 2865607389394812 a007 Real Root Of 312*x^4+876*x^3-203*x^2-277*x+448 2865607407566253 r005 Re(z^2+c),c=-7/10+23/234*I,n=4 2865607411541827 r009 Im(z^3+c),c=-25/64+11/53*I,n=9 2865607423686389 r009 Re(z^3+c),c=-1/27+16/47*I,n=6 2865607426118495 a009 12^(3/4)/(15^(1/2)+2^(1/4))^(1/2) 2865607428363115 m005 (1/3*3^(1/2)-3/7)/(4/7*2^(1/2)-6) 2865607429644536 m005 (1/2*Catalan-3/11)/(1/5*2^(1/2)+4/11) 2865607436401552 m001 ln(ArtinRank2)/Conway*Zeta(5) 2865607437972017 m001 arctan(1/2)*Salem-sin(1/12*Pi) 2865607438662983 r002 11th iterates of z^2 + 2865607443864878 h001 (1/5*exp(2)+7/12)/(7/8*exp(2)+8/11) 2865607447287300 r005 Im(z^2+c),c=-31/94+19/41*I,n=24 2865607452659935 r005 Im(z^2+c),c=-23/36+19/60*I,n=11 2865607463666326 a003 sin(Pi*12/65)-sin(Pi*11/35) 2865607476380648 m001 (-Ei(1,1)+PolyaRandomWalk3D)/(1-gamma) 2865607485793162 r005 Im(z^2+c),c=-5/122+7/20*I,n=15 2865607497474098 a007 Real Root Of -404*x^4-960*x^3+727*x^2+189*x-776 2865607506345278 a007 Real Root Of 13*x^4-95*x^3-149*x^2+911*x+722 2865607515551729 a007 Real Root Of -735*x^4+834*x^3-939*x^2-477*x-35 2865607522525270 m001 (MertensB3+Salem)/ZetaQ(3) 2865607526022648 m005 (1/3*gamma+3/4)/(1/6*3^(1/2)+3) 2865607531821194 r005 Im(z^2+c),c=-19/106+25/61*I,n=33 2865607535065363 r009 Re(z^3+c),c=-19/102+33/35*I,n=30 2865607537972356 m005 (1/2*3^(1/2)-3/4)/(2/11*Catalan-4/7) 2865607538505995 m001 (-ln(2^(1/2)+1)+gamma(3))/(1-ln(2)) 2865607541641209 m001 (Si(Pi)-ln(5))/(Paris+RenyiParking) 2865607542229935 m001 1/5*(ErdosBorwein-cos(1/12*Pi))*5^(1/2) 2865607545866935 m001 (TreeGrowth2nd+ThueMorse)/(Zeta(3)+Pi^(1/2)) 2865607553394385 m005 (2*Catalan+1/4)/(5/6*exp(1)+5) 2865607556437497 m002 -4-E^Pi+Pi-5/ProductLog[Pi] 2865607565764548 m001 (5^(1/2)-Catalan)/(-Artin+GaussAGM) 2865607569244568 m001 (ThueMorse-ZetaP(4))/(gamma(3)-GAMMA(19/24)) 2865607572088166 m001 (TreeGrowth2nd+ZetaP(3))/(sin(1)+Conway) 2865607584067232 l006 ln(427/7498) 2865607586248396 r005 Re(z^2+c),c=-31/114+23/47*I,n=57 2865607591752753 a009 1/2*(13*2^(1/3)-5^(3/4))^(1/2)*2^(2/3) 2865607597638995 m001 1/exp(arctan(1/2))/Backhouse^2*cos(Pi/12) 2865607599933047 a007 Real Root Of -318*x^4-520*x^3+906*x^2-363*x+727 2865607606002516 a001 24476*13^(47/49) 2865607632035334 r005 Im(z^2+c),c=-53/122+23/48*I,n=28 2865607640936973 r005 Re(z^2+c),c=-11/36+17/43*I,n=34 2865607646791078 r005 Im(z^2+c),c=-1+33/130*I,n=3 2865607650525903 p001 sum(1/(329*n+124)/n/(8^n),n=1..infinity) 2865607658151537 a007 Real Root Of 240*x^4+908*x^3+470*x^2-741*x-800 2865607664554382 m001 (-Totient+ThueMorse)/(5^(1/2)+1) 2865607676022288 r009 Re(z^3+c),c=-5/28+52/55*I,n=46 2865607684307691 r002 10th iterates of z^2 + 2865607684815684 m005 (1/3*5^(1/2)+1/11)/(exp(1)+1/5) 2865607686865793 r005 Im(z^2+c),c=-11/12+7/31*I,n=4 2865607699904463 r005 Re(z^2+c),c=-17/98+35/58*I,n=23 2865607703313489 m006 (1/6*exp(2*Pi)-1)/(1/4/Pi+3) 2865607730642985 b008 ArcCsc[3+2/(1+E)] 2865607735757869 r005 Re(z^2+c),c=-7/25+13/35*I,n=7 2865607747071285 a007 Real Root Of -374*x^4-972*x^3+174*x^2+x+921 2865607760640663 h001 (1/12*exp(2)+4/5)/(1/10*exp(1)+2/9) 2865607773927009 m001 ZetaQ(2)^FibonacciFactorial+sin(1/12*Pi) 2865607775323564 a009 231+21*7^(1/2) 2865607788945178 m001 exp(cos(Pi/5))*FeigenbaumD^2*sqrt(Pi) 2865607814942390 p004 log(30431/1733) 2865607828946132 r005 Im(z^2+c),c=-35/94+12/25*I,n=39 2865607835928034 a007 Real Root Of -35*x^4+22*x^3+390*x^2-13*x-362 2865607851690157 r005 Im(z^2+c),c=-13/58+21/40*I,n=11 2865607862993220 r005 Im(z^2+c),c=13/42+4/53*I,n=28 2865607865100702 a007 Real Root Of 826*x^4-965*x^3-768*x^2-931*x-232 2865607872389471 a001 3571*(1/2*5^(1/2)+1/2)^16*47^(14/15) 2865607873164475 m005 (1/2*2^(1/2)-1/7)/(2/9*5^(1/2)-3/10) 2865607879472649 r005 Re(z^2+c),c=23/86+3/28*I,n=42 2865607890468734 a003 cos(Pi*4/47)-sin(Pi*23/97) 2865607895047842 r005 Im(z^2+c),c=-25/21+1/36*I,n=5 2865607897110399 r005 Re(z^2+c),c=-27/82+5/16*I,n=17 2865607899162255 a005 (1/sin(104/217*Pi))^1580 2865607907225475 m001 1/Zeta(1/2)^2*ln(Si(Pi))/Zeta(7) 2865607910504693 r009 Re(z^3+c),c=-23/78+7/46*I,n=15 2865607912134385 r002 55th iterates of z^2 + 2865607913042978 a001 21/2206*29^(18/55) 2865607916913172 m001 (Robbin-ZetaQ(2))/(GAMMA(7/12)+Lehmer) 2865607917900308 a007 Real Root Of -812*x^4-244*x^3-945*x^2+955*x+351 2865607920764004 m001 (Kac+PolyaRandomWalk3D)/(3^(1/2)+GAMMA(13/24)) 2865607938729397 r005 Im(z^2+c),c=-15/31+13/33*I,n=6 2865607941084300 a007 Real Root Of -223*x^4-476*x^3+242*x^2-825*x-515 2865607943225569 m001 (ln(2)-3^(1/3))/(ln(2+3^(1/2))-GAMMA(11/12)) 2865607948950847 a007 Real Root Of 213*x^4+435*x^3-628*x^2-200*x+457 2865607993387508 a007 Real Root Of -370*x^4-769*x^3+587*x^2-559*x+432 2865607999678772 a001 3/832040*987^(33/52) 2865608002484132 a001 3/3010349*4^(16/21) 2865608003123097 a007 Real Root Of 173*x^4+125*x^3-921*x^2+310*x-273 2865608005518185 m001 1/GAMMA(7/24)*Champernowne^2/ln(sin(1)) 2865608013747848 r002 12th iterates of z^2 + 2865608015440904 b008 2^(1/3)+Zeta[1/3] 2865608021820345 r009 Re(z^3+c),c=-23/78+7/46*I,n=16 2865608023852953 a003 cos(Pi*21/82)*cos(Pi*37/76) 2865608024107280 r005 Re(z^2+c),c=-31/94+9/29*I,n=22 2865608026259032 a007 Real Root Of 811*x^4+72*x^3-72*x^2-838*x-238 2865608028567566 r005 Re(z^2+c),c=-33/98+16/57*I,n=18 2865608028920423 a001 199/196418*8^(1/2) 2865608029949350 b008 2/7+7*Erfc[E] 2865608039251082 l006 ln(293/5145) 2865608045921636 m001 Zeta(3)*Grothendieck/RenyiParking 2865608049150260 r005 Re(z^2+c),c=-31/90+12/49*I,n=21 2865608056294872 r005 Re(z^2+c),c=-7/20+2/9*I,n=12 2865608059087891 m001 (Pi+LambertW(1))/(KhinchinLevy+OneNinth) 2865608064321188 a001 9349*(1/2*5^(1/2)+1/2)^14*47^(14/15) 2865608074166292 r005 Im(z^2+c),c=-13/46+22/49*I,n=30 2865608085619243 r009 Re(z^3+c),c=-11/29+17/52*I,n=29 2865608091239534 r009 Re(z^3+c),c=-23/78+7/46*I,n=20 2865608091468368 r009 Re(z^3+c),c=-23/78+7/46*I,n=21 2865608091899623 r009 Re(z^3+c),c=-23/78+7/46*I,n=22 2865608091934569 r009 Re(z^3+c),c=-23/78+7/46*I,n=26 2865608091935870 r009 Re(z^3+c),c=-23/78+7/46*I,n=25 2865608091936731 r009 Re(z^3+c),c=-23/78+7/46*I,n=27 2865608091937272 r009 Re(z^3+c),c=-23/78+7/46*I,n=31 2865608091937281 r009 Re(z^3+c),c=-23/78+7/46*I,n=32 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=36 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=37 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=38 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=42 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=41 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=43 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=47 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=48 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=52 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=53 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=54 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=58 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=57 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=59 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=63 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=64 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=62 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=61 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=60 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=56 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=55 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=51 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=49 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=50 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=46 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=45 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=44 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=40 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=39 2865608091937285 r009 Re(z^3+c),c=-23/78+7/46*I,n=35 2865608091937286 r009 Re(z^3+c),c=-23/78+7/46*I,n=33 2865608091937286 r009 Re(z^3+c),c=-23/78+7/46*I,n=34 2865608091937294 r009 Re(z^3+c),c=-23/78+7/46*I,n=30 2865608091937409 r009 Re(z^3+c),c=-23/78+7/46*I,n=29 2865608091937483 r009 Re(z^3+c),c=-23/78+7/46*I,n=28 2865608091955549 r009 Re(z^3+c),c=-23/78+7/46*I,n=24 2865608091987020 r009 Re(z^3+c),c=-23/78+7/46*I,n=23 2865608092323648 a001 24476*(1/2*5^(1/2)+1/2)^12*47^(14/15) 2865608094130036 r009 Re(z^3+c),c=-23/78+7/46*I,n=19 2865608096157669 r009 Re(z^3+c),c=-23/78+7/46*I,n=17 2865608096409152 a001 64079*(1/2*5^(1/2)+1/2)^10*47^(14/15) 2865608098934132 a001 39603*(1/2*5^(1/2)+1/2)^11*47^(14/15) 2865608102038669 r009 Re(z^3+c),c=-23/78+7/46*I,n=18 2865608109630120 a001 15127*(1/2*5^(1/2)+1/2)^13*47^(14/15) 2865608113821927 m001 BesselI(0,1)^MadelungNaCl/(ln(2)^MadelungNaCl) 2865608117287921 r009 Im(z^3+c),c=-1/18+43/51*I,n=64 2865608133906214 m001 1/GAMMA(1/3)*ln(DuboisRaymond)/Zeta(1/2)^2 2865608136205268 r009 Im(z^3+c),c=-1/18+43/51*I,n=62 2865608140339305 m001 (ln(2)*ZetaP(2)-ln(5))/ZetaP(2) 2865608162076314 m001 (gamma(3)+MasserGramain)/(Zeta(5)+GAMMA(3/4)) 2865608168207941 m001 Si(Pi)+BesselJ(0,1)*PisotVijayaraghavan 2865608174845912 r009 Im(z^3+c),c=-1/18+43/51*I,n=50 2865608175389540 a001 5/47*3^(46/51) 2865608182941513 a001 5778*(1/2*5^(1/2)+1/2)^15*47^(14/15) 2865608196173028 m005 (1/2*5^(1/2)+6/7)/(2/9*2^(1/2)+3/8) 2865608210301143 r009 Im(z^3+c),c=-1/18+43/51*I,n=60 2865608214299265 a001 2/1970299*7^(8/15) 2865608221022329 b008 1+(3*E^E^2)/17 2865608221447141 m001 (ln(2)+ln(Pi))/(gamma(3)-Cahen) 2865608246914802 l006 ln(7362/9805) 2865608248784156 m006 (1/4*Pi^2-4)/(exp(2*Pi)-2/3) 2865608253096281 a007 Real Root Of 343*x^4+837*x^3-485*x^2-496*x-872 2865608255897593 r005 Re(z^2+c),c=-23/90+9/29*I,n=2 2865608256635885 r009 Re(z^3+c),c=-23/78+7/46*I,n=14 2865608257744500 r005 Re(z^2+c),c=-23/74+17/45*I,n=25 2865608273419050 m005 (1/2*3^(1/2)+8/11)/(9/11*gamma-5/12) 2865608285693734 m001 1/exp(BesselJ(0,1))*TwinPrimes*cos(Pi/12)^2 2865608287643948 h001 (7/12*exp(2)+5/8)/(1/7*exp(2)+2/3) 2865608294304440 b008 ArcCot[3*E*Cos[2]] 2865608311288513 a007 Real Root Of -248*x^4+296*x^3-937*x^2+832*x+324 2865608328914525 a003 cos(Pi*22/61)-cos(Pi*26/57) 2865608331334849 r009 Im(z^3+c),c=-45/98+4/27*I,n=53 2865608341108138 k001 Champernowne real with 274*n+12 2865608342951755 r005 Re(z^2+c),c=-63/58+11/39*I,n=10 2865608347941582 s002 sum(A182878[n]/((exp(n)+1)*n),n=1..infinity) 2865608361526845 m001 (Salem+Sarnak)/(PisotVijayaraghavan-Robbin) 2865608367582328 r009 Im(z^3+c),c=-1/18+43/51*I,n=58 2865608374181815 m001 Ei(1)+(1/2)^exp(-Pi) 2865608385863304 r009 Re(z^3+c),c=-5/74+5/7*I,n=35 2865608389776240 l006 ln(7139/9508) 2865608390871460 r009 Im(z^3+c),c=-3/26+44/53*I,n=34 2865608397023971 m001 (1-BesselI(1,2))/(-GolombDickman+Khinchin) 2865608408433546 h001 (10/11*exp(1)+3/5)/(1/11*exp(2)+2/5) 2865608408845436 a003 sin(Pi*11/97)*sin(Pi*31/101) 2865608412968885 m001 1/Niven^2/exp(Champernowne)^2/Zeta(1,2) 2865608415754485 a001 2584/271443*29^(18/55) 2865608415858850 m005 (1/2*Pi-3)/(1/7*5^(1/2)-9/11) 2865608425436739 a007 Real Root Of -308*x^4-737*x^3+289*x^2-646*x-798 2865608426859337 r005 Im(z^2+c),c=-17/90+31/52*I,n=14 2865608427211973 m001 (MertensB3+Mills)/(exp(-1/2*Pi)-GAMMA(5/6)) 2865608434720630 m001 HardyLittlewoodC5+MadelungNaCl^ln(5) 2865608440585104 m005 (1/2*3^(1/2)-1/3)/(-43/99+1/9*5^(1/2)) 2865608440593495 r004 Im(z^2+c),c=1/7+1/4*I,z(0)=exp(5/12*I*Pi),n=17 2865608442106579 m001 ln(Pi)/FeigenbaumB^2*log(2+sqrt(3))^2 2865608465608465 q001 2708/945 2865608469258644 l006 ln(452/7937) 2865608482749194 r005 Re(z^2+c),c=23/122+26/47*I,n=28 2865608489099106 a001 6765/710647*29^(18/55) 2865608493695276 a007 Real Root Of -364*x^4-875*x^3+535*x^2-45*x-567 2865608499799941 a001 17711/1860498*29^(18/55) 2865608501361172 a001 46368/4870847*29^(18/55) 2865608502326066 a001 28657/3010349*29^(18/55) 2865608506413422 a001 10946/1149851*29^(18/55) 2865608509919489 m008 (3*Pi^4+4/5)/(1/3*Pi^5+1/4) 2865608510688499 m001 BesselJ(1,1)/MertensB1^2/exp(cos(Pi/5)) 2865608513190215 r009 Im(z^3+c),c=-9/32+16/61*I,n=7 2865608516027874 g001 abs(GAMMA(41/12+I*7/12)) 2865608517540588 r005 Im(z^2+c),c=-65/118+19/50*I,n=15 2865608522548529 a007 Real Root Of -216*x^4-24*x^3-682*x^2+967*x+334 2865608525900639 l006 ln(6811/7009) 2865608532891485 m005 (1/2*Zeta(3)-1/5)/(7/11*Zeta(3)-5/8) 2865608534428574 a001 4181/439204*29^(18/55) 2865608540914096 r005 Re(z^2+c),c=-29/106+25/53*I,n=21 2865608541850544 l006 ln(6916/9211) 2865608551749189 m001 (-TreeGrowth2nd+ThueMorse)/(Paris-Shi(1)) 2865608553324371 a007 Real Root Of -745*x^4+530*x^3+850*x^2+528*x+99 2865608559930133 m005 (1/2*2^(1/2)+1/11)/(1/8*gamma-1/10) 2865608576270980 a007 Real Root Of 301*x^4+649*x^3-598*x^2+331*x+834 2865608576303469 a003 sin(Pi*5/73)/sin(Pi*19/71) 2865608583283726 m005 (5/6*gamma+5)/(2/5*exp(1)-3) 2865608584257793 p003 LerchPhi(1/25,4,163/212) 2865608584426400 r005 Im(z^2+c),c=-51/44+1/31*I,n=9 2865608593423438 r005 Re(z^2+c),c=-15/46+12/37*I,n=21 2865608599500015 r005 Im(z^2+c),c=-11/56+5/12*I,n=42 2865608605930837 a007 Real Root Of 407*x^4+894*x^3-658*x^2+64*x-821 2865608606085042 r009 Im(z^3+c),c=-1/18+43/51*I,n=56 2865608620726145 a007 Real Root Of 434*x^4+329*x^3-191*x^2-759*x-197 2865608620908349 m001 sin(Pi/5)^(1/2)*sin(Pi/5)^Si(Pi) 2865608621099903 r005 Re(z^2+c),c=17/66+6/61*I,n=27 2865608624047769 r002 14th iterates of z^2 + 2865608628329737 m001 (arctan(1/2)-Magata)/(Porter-TreeGrowth2nd) 2865608633974568 m001 (2^(1/3)-cos(1/5*Pi))/(GAMMA(2/3)+Ei(1,1)) 2865608650535400 r009 Re(z^3+c),c=-11/26+16/35*I,n=16 2865608655930424 a003 cos(Pi*2/111)-cos(Pi*29/117) 2865608661106292 h001 (1/7*exp(1)+7/11)/(4/11*exp(2)+8/9) 2865608663111330 h001 (2/9*exp(2)+7/10)/(1/10*exp(1)+6/11) 2865608685425272 a001 2207*(1/2*5^(1/2)+1/2)^17*47^(14/15) 2865608686400222 a007 Real Root Of -299*x^4-692*x^3+135*x^2-738*x+655 2865608692021591 m001 ln(GAMMA(1/3))/KhintchineHarmonic^2/GAMMA(5/6) 2865608695993448 r005 Re(z^2+c),c=-41/34+27/127*I,n=8 2865608704058589 l006 ln(6693/8914) 2865608714416565 r005 Im(z^2+c),c=-19/106+25/61*I,n=38 2865608726447283 a001 1597/167761*29^(18/55) 2865608736629738 r009 Re(z^3+c),c=-41/86+30/61*I,n=44 2865608736838121 a007 Real Root Of -372*x^4-723*x^3+632*x^2-687*x+913 2865608738565302 a007 Real Root Of 329*x^4+965*x^3-219*x^2-587*x+639 2865608743750330 m008 (1/5*Pi^5-1/4)/(2/3*Pi^3+3/5) 2865608744332850 r009 Im(z^3+c),c=-7/78+11/36*I,n=6 2865608745066868 m001 (1+Ei(1,1))/(PrimesInBinary+Trott) 2865608765522919 m001 1/CopelandErdos*exp(Champernowne)^2/Ei(1) 2865608772691563 m001 1/exp(Robbin)^2*FeigenbaumC*sin(Pi/5) 2865608777495887 m001 2*Pi/GAMMA(5/6)*CareFree^Ei(1) 2865608780414281 a007 Real Root Of -26*x^4+130*x^3+404*x^2-433*x+254 2865608788401515 m001 Niven*GlaisherKinkelin*ln(Pi)^2 2865608796426203 a003 cos(Pi*11/62)-cos(Pi*31/100) 2865608797501838 b008 3-25*E^Sqrt[6] 2865608799763203 r005 Im(z^2+c),c=17/62+4/29*I,n=42 2865608819375170 r005 Im(z^2+c),c=-7/10+34/197*I,n=11 2865608820733142 h001 (3/8*exp(1)+7/11)/(5/7*exp(2)+1/2) 2865608829573757 a005 (1/cos(11/130*Pi))^931 2865608833645061 s002 sum(A026281[n]/(2^n-1),n=1..infinity) 2865608837214882 r002 11th iterates of z^2 + 2865608840199418 r009 Im(z^3+c),c=-1/18+43/51*I,n=52 2865608841549396 r009 Im(z^3+c),c=-1/18+43/51*I,n=54 2865608853910222 r002 42i'th iterates of 2*x/(1-x^2) of 2865608868971513 m003 13/4+Sqrt[5]/16-Cosh[1/2+Sqrt[5]/2]/5 2865608873669663 a007 Real Root Of 22*x^4+615*x^3-431*x^2+305*x-520 2865608874357806 r002 14th iterates of z^2 + 2865608877448205 l006 ln(6470/8617) 2865608878232536 a007 Real Root Of -896*x^4-831*x^3-281*x^2+962*x-227 2865608878313614 r005 Im(z^2+c),c=-11/28+31/64*I,n=31 2865608885827018 a007 Real Root Of 93*x^4-148*x^3-977*x^2+543*x-175 2865608889920266 r005 Im(z^2+c),c=-10/29+26/59*I,n=14 2865608912391379 m001 (Chi(1)-Pi^(1/2))/(-Backhouse+Grothendieck) 2865608922679397 p004 log(34171/25657) 2865608930804915 r005 Im(z^2+c),c=-53/82+10/21*I,n=17 2865608937281516 h001 (1/7*exp(1)+4/5)/(1/10*exp(1)+1/7) 2865608939561971 r005 Im(z^2+c),c=-32/23+5/28*I,n=5 2865608948868224 r005 Im(z^2+c),c=-13/50+37/59*I,n=30 2865608955725535 r009 Re(z^3+c),c=-23/52+11/27*I,n=16 2865608971887829 m001 GAMMA(2/3)^2*exp(Artin)*Zeta(5)^2 2865608977846618 m001 HeathBrownMoroz-Zeta(1/2)+OrthogonalArrays 2865608979407537 r008 a(0)=3,K{-n^6,-42-57*n^3+70*n^2+36*n} 2865608981527242 m005 (3/4*gamma-4/5)/(5/6*gamma+4/5) 2865608981527242 m007 (-3/4*gamma+4/5)/(-5/6*gamma-4/5) 2865608989801087 r002 55th iterates of z^2 + 2865608997835384 r005 Re(z^2+c),c=17/36+11/42*I,n=4 2865608998637927 a001 199/1597*2504730781961^(4/21) 2865609011866744 m005 (1/3*2^(1/2)+2/3)/(8/11*2^(1/2)-5) 2865609012717383 r002 16th iterates of z^2 + 2865609013229901 r009 Re(z^3+c),c=-49/102+27/62*I,n=18 2865609013813111 a001 281*32951280099^(10/21) 2865609037682386 m001 (RenyiParking+Riemann2ndZero)/(cos(1)+Ei(1,1)) 2865609037918394 r005 Re(z^2+c),c=-37/30+3/86*I,n=2 2865609047861501 m005 (1/3*exp(1)+1/2)/(1/10*5^(1/2)-5/7) 2865609050511214 r009 Re(z^3+c),c=-47/110+31/58*I,n=29 2865609063216843 l006 ln(6247/8320) 2865609064840655 s002 sum(A065984[n]/(n^2*exp(n)+1),n=1..infinity) 2865609081971688 r009 Im(z^3+c),c=-27/56+4/7*I,n=42 2865609088992959 a007 Real Root Of 457*x^4-246*x^3+23*x^2-622*x-189 2865609096961054 m005 (1/2*Zeta(3)-11/12)/(7/8*Catalan+3/10) 2865609112316136 s002 sum(A274670[n]/(16^n),n=1..infinity) 2865609113134470 a007 Real Root Of 97*x^4-29*x^3-552*x^2+934*x-14 2865609120322190 m001 GAMMA(5/24)*ln(Lehmer)^2*cosh(1)^2 2865609121406925 m001 (exp(Pi)+2^(1/2))/(-sin(1/5*Pi)+exp(1/exp(1))) 2865609127773479 m001 1/exp((3^(1/3)))/Kolakoski^2*BesselJ(0,1) 2865609131755677 m001 RenyiParking^(ErdosBorwein/Artin) 2865609135462066 m009 (1/6*Psi(1,1/3)+3)/(1/4*Pi^2-5/6) 2865609135723997 a001 521/21*10946^(24/47) 2865609153949742 m005 (1/3*Zeta(3)-1/10)/(4/15+7/20*5^(1/2)) 2865609154379334 m001 MadelungNaCl^TwinPrimes/(Trott^TwinPrimes) 2865609173287657 r005 Im(z^2+c),c=-95/102+15/61*I,n=55 2865609176690414 r005 Re(z^2+c),c=-27/98+21/46*I,n=18 2865609179257243 m005 (1/2*exp(1)+2/5)/(5/3+2*5^(1/2)) 2865609188001593 m005 (1/2*5^(1/2)-3/4)/(7/12*Catalan+3/4) 2865609201000495 r005 Re(z^2+c),c=-53/94+26/61*I,n=26 2865609201283876 m005 (1/2*Catalan+1/3)/(2/3*2^(1/2)-2/3) 2865609229714565 m001 (Landau*Porter+Magata)/Porter 2865609231197521 b008 10*E^(4*Sqrt[2])+Pi 2865609248365853 m008 (2*Pi^5-1/6)/(1/4*Pi^4-3) 2865609252624858 m001 BesselI(0,2)/(Stephens^PrimesInBinary) 2865609260650582 r009 Im(z^3+c),c=-17/60+8/33*I,n=2 2865609261662031 l006 ln(159/2792) 2865609262739264 l006 ln(6024/8023) 2865609266245264 m001 Psi(2,1/3)^(1/2*2^(1/2)*FransenRobinson) 2865609274899387 r005 Re(z^2+c),c=-9/58+8/13*I,n=31 2865609281693567 a007 Real Root Of -862*x^4+779*x^3-530*x^2+848*x-212 2865609286367284 a007 Real Root Of 444*x^4+969*x^3-67*x^2-685*x+176 2865609308530336 r005 Re(z^2+c),c=-27/34+1/90*I,n=34 2865609317675286 m009 (2*Pi^2-3/5)/(32*Catalan+4*Pi^2-2) 2865609320064731 r005 Im(z^2+c),c=-41/114+29/61*I,n=42 2865609329697059 r009 Im(z^3+c),c=-8/15+9/41*I,n=13 2865609338551446 a007 Real Root Of -364*x^4+189*x^3+306*x^2+701*x-228 2865609346465380 r002 11th iterates of z^2 + 2865609350017526 a007 Real Root Of 192*x^4+386*x^3+511*x^2-678*x+19 2865609358177272 m001 (Bloch+DuboisRaymond)/(Grothendieck+Landau) 2865609358299997 r005 Re(z^2+c),c=-17/74+6/11*I,n=22 2865609364372794 m001 (ZetaP(2)+ZetaQ(3))/(2^(1/2)+DuboisRaymond) 2865609394281968 b008 111/4+E/3 2865609398935541 m009 (4/5*Psi(1,1/3)-1/3)/(3/4*Psi(1,2/3)-5) 2865609413183598 a001 3/233*2178309^(10/27) 2865609414717936 m001 (2^(1/3)-GAMMA(11/12))/(CareFree+ZetaQ(3)) 2865609421487287 m005 (1/2*exp(1)-1/9)/(3/5*Zeta(3)-2/7) 2865609421640067 m001 GAMMA(19/24)^Cahen*Sierpinski 2865609422243315 m001 MertensB2*(Khinchin+Riemann3rdZero) 2865609426337182 r008 a(0)=3,K{-n^6,30+22*n^3-n^2-43*n} 2865609428371523 r009 Im(z^3+c),c=-45/98+4/27*I,n=48 2865609431466122 a007 Real Root Of -771*x^4+763*x^3-882*x^2-180*x+44 2865609435223839 g006 1/2*Pi^2-Psi(1,6/11)-Psi(1,1/5)-Psi(1,2/3) 2865609435905090 m001 (-cos(1/5*Pi)+MertensB3)/(2^(1/3)+LambertW(1)) 2865609437198155 m001 FellerTornier^GaussAGM/((3^(1/3))^GaussAGM) 2865609439124158 a007 Real Root Of 224*x^4+462*x^3-272*x^2+888*x+545 2865609441658434 m005 (1/2*Pi-8/11)/(3/4*gamma-8/11) 2865609451877707 m005 (1/2*Zeta(3)+7/9)/(2*exp(1)-5/8) 2865609455194127 a007 Real Root Of 216*x^4+493*x^3-340*x^2+258*x+567 2865609458364909 m001 (BesselI(1,2)-Khinchin)/(Kolakoski-ThueMorse) 2865609471645940 m001 GAMMA(23/24)*(GAMMA(11/24)-sqrt(1+sqrt(3))) 2865609477601622 l006 ln(5801/7726) 2865609488026998 m001 (Kac+MasserGramainDelta)/(sin(1/5*Pi)-3^(1/3)) 2865609488165589 m005 (1/2*Zeta(3)-6/11)/(3/4*2^(1/2)-3) 2865609491946310 m001 3^(1/3)+Paris+PisotVijayaraghavan 2865609505112104 q001 1/3489659 2865609510289723 m001 exp(1/exp(1))^Chi(1)/Weierstrass 2865609512835872 a001 47/1346269*514229^(37/43) 2865609514693666 m001 (Artin-Trott2nd)/(Zeta(1,-1)+exp(1/Pi)) 2865609519220618 r005 Im(z^2+c),c=-13/62+27/64*I,n=33 2865609520436512 r005 Im(z^2+c),c=-25/42+7/27*I,n=5 2865609531163120 m001 HardyLittlewoodC4^(GAMMA(13/24)*MasserGramain) 2865609540871268 a007 Real Root Of 798*x^4-977*x^3-76*x^2-352*x-123 2865609551642573 m001 (-MinimumGamma+ZetaP(3))/(exp(1)+Pi^(1/2)) 2865609567583147 m002 -Pi^3+Pi^5-Log[Pi]/Pi^6+Sinh[Pi] 2865609567743884 a001 123/514229*377^(18/43) 2865609582758325 a007 Real Root Of 37*x^4-264*x^3+398*x^2-673*x-232 2865609583996231 m001 (Zeta(1/2)-MertensB2)/(QuadraticClass-Trott) 2865609587698815 m006 (3*exp(2*Pi)+3)/(2*Pi-2/3) 2865609621091799 p003 LerchPhi(1/25,2,109/184) 2865609622220349 a007 Real Root Of 721*x^4-516*x^3-321*x^2-926*x-256 2865609627099548 p001 sum(1/(599*n+351)/(64^n),n=0..infinity) 2865609631092718 h001 (9/11*exp(2)+6/11)/(3/10*exp(2)+1/12) 2865609633469645 a007 Real Root Of 330*x^4+973*x^3+229*x^2+767*x+961 2865609637715584 m005 (1/2*gamma-8/11)/(2/5*5^(1/2)+7/11) 2865609652125884 m005 (1/3*exp(1)+1/4)/(5*Catalan-6/11) 2865609656483831 m001 (3^(1/2)+ln(gamma))/(-BesselJ(1,1)+Trott2nd) 2865609666120835 m002 -6-1/(6*E^Pi)+Pi 2865609669357131 r005 Im(z^2+c),c=17/58+6/53*I,n=59 2865609671007135 m004 -3+25*Pi*Csch[Sqrt[5]*Pi]-3*Sech[Sqrt[5]*Pi] 2865609675230281 m004 -3-6/E^(Sqrt[5]*Pi)+25*Pi*Csch[Sqrt[5]*Pi] 2865609675966225 a007 Real Root Of -66*x^4+167*x^3+723*x^2-787*x+188 2865609679453433 m004 -3-3*Csch[Sqrt[5]*Pi]+25*Pi*Csch[Sqrt[5]*Pi] 2865609682609724 m001 1/exp(Zeta(3))^2*FeigenbaumC*sqrt(3) 2865609683424303 h001 (-9*exp(4)+8)/(-8*exp(3)-8) 2865609683908319 b008 (7*EulerGamma)/141 2865609683953990 m001 1/ln(Robbin)^2*PisotVijayaraghavan^2/Ei(1)^2 2865609691427666 m005 (1/2*2^(1/2)-7/8)/(6/7*Zeta(3)-4/9) 2865609703496149 m001 (MertensB2-Niven)/(Tetranacci+ThueMorse) 2865609709643719 l006 ln(5578/7429) 2865609714810603 m001 1/GAMMA(1/6)/Champernowne^2/exp(sqrt(2)) 2865609720774072 s002 sum(A127822[n]/((exp(n)+1)*n),n=1..infinity) 2865609729146740 m001 GAMMA(5/24)*Magata^2/exp(gamma) 2865609731840685 r005 Re(z^2+c),c=-9/29+19/50*I,n=34 2865609738749598 m001 (GAMMA(17/24)-RenyiParking)/(Pi-BesselI(0,1)) 2865609740553706 a007 Real Root Of 330*x^4+764*x^3-661*x^2-436*x-96 2865609745049453 r005 Im(z^2+c),c=-47/110+24/49*I,n=54 2865609757641650 m001 1/Zeta(1/2)/GaussAGM(1,1/sqrt(2))/exp(Zeta(5)) 2865609758610328 g005 1/Pi^3/csc(1/8*Pi)^3*GAMMA(7/8)^3*GAMMA(3/4) 2865609774008938 m001 BesselJ(0,1)+Conway-Grothendieck 2865609779782390 s002 sum(A160690[n]/(n^3*pi^n+1),n=1..infinity) 2865609780425965 m001 cos(1/5*Pi)/GAMMA(5/6)/Riemann3rdZero 2865609802634175 r005 Re(z^2+c),c=-13/42+21/55*I,n=25 2865609803103654 m001 (-ln(2^(1/2)+1)+arctan(1/3))/(Catalan+Zeta(5)) 2865609805178794 h001 (-11*exp(4)-2)/(-7*exp(1)-2) 2865609812435658 a007 Real Root Of 293*x^4+961*x^3+410*x^2+226*x+137 2865609836813149 a007 Real Root Of -365*x^4-979*x^3+154*x^2-210*x-291 2865609848355449 r005 Im(z^2+c),c=-31/38+10/59*I,n=47 2865609854288108 r005 Re(z^2+c),c=-7/9+1/12*I,n=52 2865609860349665 r009 Re(z^3+c),c=-23/78+7/46*I,n=13 2865609869299196 m001 Psi(2,1/3)*HeathBrownMoroz^Paris 2865609872476947 m005 (1/3*5^(1/2)+3/4)/(1/10*exp(1)+1/4) 2865609873459115 r005 Re(z^2+c),c=-33/26+38/123*I,n=7 2865609892130711 m004 -3-3*Sech[Sqrt[5]*Pi]+25*Pi*Sech[Sqrt[5]*Pi] 2865609892954828 a007 Real Root Of -174*x^4-640*x^3-452*x^2-337*x-581 2865609893105674 a001 89/103682*4^(20/23) 2865609894097256 a007 Real Root Of -295*x^4-952*x^3-651*x^2-913*x+220 2865609896070211 h001 (2/3*exp(1)+2/5)/(1/12*exp(1)+6/11) 2865609896353857 m004 -3-6/E^(Sqrt[5]*Pi)+25*Pi*Sech[Sqrt[5]*Pi] 2865609900577010 m004 -3-3*Csch[Sqrt[5]*Pi]+25*Pi*Sech[Sqrt[5]*Pi] 2865609902442382 r005 Im(z^2+c),c=-17/30+6/67*I,n=6 2865609907690100 m001 GAMMA(23/24)^2/ln(TreeGrowth2nd)*sqrt(5) 2865609922563345 r005 Re(z^2+c),c=-79/64+1/9*I,n=22 2865609931160819 r005 Re(z^2+c),c=-13/38+10/39*I,n=25 2865609935451466 r008 a(0)=0,K{-n^6,20-18*n+31*n^2-30*n^3} 2865609940541271 a007 Real Root Of 980*x^4-494*x^3+343*x^2-852*x+221 2865609957386595 m001 (-Conway+StronglyCareFree)/(1+sin(1)) 2865609961011818 l006 ln(5355/7132) 2865609966607151 g002 2*Psi(7/8)-Psi(5/11)-Psi(4/9) 2865609975140241 l006 ln(502/8815) 2865609989513752 a001 7/317811*28657^(1/39) 2865610008451618 r009 Im(z^3+c),c=-3/5+7/29*I,n=61 2865610014747783 m001 (Zeta(5)-ArtinRank2)/(Landau-Robbin) 2865610016262128 r008 a(0)=0,K{-n^6,-26+31*n^3-37*n^2+29*n} 2865610021593224 r009 Im(z^3+c),c=-7/17+9/47*I,n=20 2865610025467004 a007 Real Root Of -481*x^4-981*x^3+824*x^2-930*x-81 2865610042563096 a001 610/64079*29^(18/55) 2865610062352268 a007 Real Root Of 749*x^4-594*x^3-503*x^2-664*x-168 2865610063832219 p003 LerchPhi(1/16,5,53/26) 2865610064135696 r009 Re(z^3+c),c=-23/86+1/18*I,n=4 2865610068722622 r005 Re(z^2+c),c=-17/46+9/53*I,n=5 2865610076813494 h002 exp(1/5*(5*21^(1/2)+23^(1/2))^(1/2)) 2865610078641877 m001 Lehmer^(2/3)/(Lehmer^GAMMA(1/3)) 2865610086038094 a007 Real Root Of 890*x^4-460*x^3+216*x^2-347*x-134 2865610090889488 m004 (-6*Sqrt[5])/Pi+(Pi*Coth[Sqrt[5]*Pi])/Sqrt[5] 2865610094713662 p004 log(13967/10487) 2865610099640456 a007 Real Root Of 325*x^4+672*x^3-960*x^2-603*x+53 2865610100137227 r002 35th iterates of z^2 + 2865610107817864 m005 (1/2*Pi+3/8)/(1/9*Zeta(3)+6/11) 2865610114703373 r002 5th iterates of z^2 + 2865610117231341 r005 Im(z^2+c),c=-7/26+4/9*I,n=34 2865610126793878 m004 -15-5*Pi+4/Log[Sqrt[5]*Pi] 2865610164908499 s001 sum(exp(-Pi/2)^(n-1)*A255604[n],n=1..infinity) 2865610179908752 r005 Re(z^2+c),c=-15/26+22/45*I,n=24 2865610181781747 r005 Im(z^2+c),c=-13/36+21/44*I,n=64 2865610188700150 a007 Real Root Of -800*x^4-3*x^3+944*x^2+443*x-199 2865610188854146 r005 Re(z^2+c),c=-11/46+20/33*I,n=59 2865610200795190 a007 Real Root Of 28*x^4-149*x^3+173*x^2-454*x-148 2865610203187955 a003 sin(Pi*5/119)/sin(Pi*12/79) 2865610207752593 r005 Re(z^2+c),c=-27/34+2/121*I,n=64 2865610219653928 m001 exp(Robbin)^2*Lehmer/log(1+sqrt(2))^2 2865610223227869 a007 Real Root Of -102*x^4-427*x^3-320*x^2+438*x+713 2865610226337665 m001 (-Magata+MertensB1)/(Psi(1,1/3)+ln(2^(1/2)+1)) 2865610234225228 l006 ln(5132/6835) 2865610237227344 b008 -4/11+ArcCoth[13] 2865610238979603 m002 -Pi^5+(2*Pi^2)/ProductLog[Pi]+ProductLog[Pi] 2865610246329337 m001 LandauRamanujan^ln(5)*BesselK(1,1)^ln(5) 2865610253078956 m004 2+Cos[Sqrt[5]*Pi]+1/(4*Log[Sqrt[5]*Pi]) 2865610262152484 r005 Re(z^2+c),c=27/82+8/53*I,n=54 2865610274363473 r005 Re(z^2+c),c=-11/38+27/46*I,n=30 2865610289217332 m001 Si(Pi)^2*FeigenbaumDelta*exp((3^(1/3)))^2 2865610289502442 r005 Im(z^2+c),c=-3/56+21/59*I,n=25 2865610295971930 m001 Trott^2*exp(Paris)/GAMMA(5/12)^2 2865610297704964 h002 exp(3/(3^(2/3)+11^(3/4))^(1/2)) 2865610305159590 a007 Real Root Of 9*x^4+253*x^3-128*x^2+373*x+378 2865610305877781 l006 ln(343/6023) 2865610306843496 m002 -Pi^3+Pi^5-ProductLog[Pi]/Pi^6+Sinh[Pi] 2865610311311244 r009 Im(z^3+c),c=-25/102+14/51*I,n=9 2865610312061004 a007 Real Root Of -143*x^4-293*x^3+529*x^2+447*x-315 2865610312480777 m001 (BesselI(1,1)-Zeta(1,2))^Sierpinski 2865610322905111 r005 Im(z^2+c),c=-7/26+4/9*I,n=45 2865610331302483 m001 1/CareFree^2*GolombDickman^2/exp(Zeta(7)) 2865610343071695 r009 Re(z^3+c),c=-37/94+6/17*I,n=31 2865610345101781 a007 Real Root Of -974*x^4-685*x^3+847*x^2+967*x+198 2865610350031881 p002 log(18/(3^(1/4)-4)^(1/2)) 2865610351197987 r005 Im(z^2+c),c=-7/10+1/252*I,n=12 2865610371278153 r005 Im(z^2+c),c=7/29+9/52*I,n=15 2865610375272892 a007 Real Root Of 376*x^4+831*x^3-315*x^2+825*x-849 2865610376849851 r005 Im(z^2+c),c=-107/106+2/7*I,n=26 2865610389063364 r005 Im(z^2+c),c=-61/82+8/59*I,n=52 2865610392093610 h005 exp(cos(Pi*9/44)/cos(Pi*9/40)) 2865610393933069 a007 Real Root Of -669*x^4+7*x^3-381*x^2+719*x+242 2865610415613077 r005 Im(z^2+c),c=-1/11+14/19*I,n=27 2865610431782554 m001 1/ln(BesselJ(0,1))*Si(Pi)^2*sqrt(5) 2865610465923043 a007 Real Root Of -241*x^4-507*x^3+306*x^2-663*x-92 2865610470294842 m005 (1/2*5^(1/2)-1/10)/(5/8*3^(1/2)-8/11) 2865610475380796 p001 sum(1/(468*n+35)/(24^n),n=0..infinity) 2865610487196146 m001 Backhouse-ln(5)+TreeGrowth2nd 2865610514692640 m001 1/Sierpinski/FeigenbaumC^2/ln(Zeta(9))^2 2865610517500574 a007 Real Root Of -33*x^4-936*x^3+245*x^2-915*x-293 2865610522198070 a007 Real Root Of 171*x^4+309*x^3-285*x^2+377*x-839 2865610532261034 l006 ln(4909/6538) 2865610533553678 a001 13/64079*29^(4/39) 2865610545997461 r009 Re(z^3+c),c=-23/78+7/46*I,n=12 2865610552767400 r005 Re(z^2+c),c=29/110+5/51*I,n=10 2865610588001341 m001 (Zeta(3)+GAMMA(3/4))/(Champernowne+Sarnak) 2865610590542837 a007 Real Root Of 336*x^4+555*x^3-969*x^2+483*x-256 2865610606385833 m009 (5/12*Pi^2-1/5)/(1/2*Psi(1,2/3)-1/6) 2865610609040996 a003 sin(Pi*7/102)/cos(Pi*19/82) 2865610618507754 a007 Real Root Of 140*x^4+267*x^3-339*x^2+418*x+824 2865610620925582 l006 ln(527/9254) 2865610623178873 r005 Im(z^2+c),c=-13/38+8/17*I,n=64 2865610641371953 a008 Real Root of (2+5*x-5*x^2+6*x^3-2*x^4+x^5) 2865610649336091 a001 521/28657*34^(4/31) 2865610650419384 m001 (ln(2)-sin(1))/(-gamma(3)+ZetaQ(2)) 2865610651171079 a008 Real Root of x^3-x^2-139*x+383 2865610664444708 a007 Real Root Of -202*x^4-874*x^3-806*x^2+40*x-212 2865610664992538 r005 Im(z^2+c),c=-13/40+19/41*I,n=35 2865610668601272 a007 Real Root Of 482*x^4-236*x^3-275*x^2-582*x-153 2865610669631024 s002 sum(A224280[n]/(exp(2*pi*n)-1),n=1..infinity) 2865610674924644 l006 ln(6639/6832) 2865610680246583 m001 sin(1)/(Zeta(1/2)+GAMMA(5/24)) 2865610683780482 a003 sin(Pi*14/89)-sin(Pi*30/109) 2865610694803490 b008 Pi+13*CoshIntegral[8] 2865610704208213 a007 Real Root Of -980*x^4-655*x^3-211*x^2+902*x+267 2865610728412160 m005 (1/2*Catalan-1/8)/(5/9*Pi-7/12) 2865610742061764 m001 (Artin*HeathBrownMoroz-OneNinth)/Artin 2865610742697489 m005 (1/3*2^(1/2)+1/10)/(2/3*exp(1)+2/11) 2865610757495469 h001 (5/11*exp(1)+1/7)/(7/12*exp(2)+1/2) 2865610760573479 m001 exp(BesselJ(0,1))^2/PrimesInBinary^2/Zeta(1,2) 2865610761725801 r005 Im(z^2+c),c=-37/42+7/32*I,n=51 2865610762210561 r009 Re(z^3+c),c=-1/38+59/64*I,n=3 2865610771677184 m005 (1/2*gamma-5/7)/(43/44+5/22*5^(1/2)) 2865610776014198 r005 Re(z^2+c),c=-23/74+14/37*I,n=35 2865610812023858 a007 Real Root Of -353*x^4-804*x^3+622*x^2+324*x+705 2865610813068997 m005 1/6*5^(1/2)/(5/6*3^(1/2)-1/7) 2865610823880430 h001 (6/11*exp(1)+1/5)/(7/9*exp(2)+1/8) 2865610828187299 m005 (1/3*exp(1)+3/7)/(4/9*Zeta(3)-1) 2865610828576203 m001 Zeta(5)-Rabbit^Chi(1) 2865610831900472 m001 (-arctan(1/2)+1/2)/(BesselK(1,1)+2/3) 2865610843456552 r005 Im(z^2+c),c=-1/86+22/27*I,n=15 2865610850724364 m001 (gamma(1)-Artin)/(Backhouse+Riemann1stZero) 2865610858307983 a007 Real Root Of -649*x^4+924*x^3-458*x^2+151*x+107 2865610858663020 l006 ln(4686/6241) 2865610859817569 m005 (1/2*exp(1)-3/8)/(2/5*2^(1/2)-4) 2865610861109209 m002 -6-6/Pi+Pi^5-Sinh[Pi] 2865610869815328 a007 Real Root Of -80*x^4+195*x^3+863*x^2-941*x+200 2865610871198213 r005 Re(z^2+c),c=-10/31+21/64*I,n=14 2865610875931821 h001 (4/9*exp(1)+9/10)/(11/12*exp(2)+7/12) 2865610876238905 r009 Im(z^3+c),c=-17/42+12/61*I,n=19 2865610876600070 a007 Real Root Of 983*x^4-947*x^3-579*x^2-774*x+285 2865610877114436 m001 (KhinchinLevy+OneNinth)/(Pi+exp(1/Pi)) 2865610879450692 r009 Im(z^3+c),c=-21/40+6/55*I,n=7 2865610881798209 r009 Im(z^3+c),c=-63/122+17/40*I,n=56 2865610882310106 a007 Real Root Of -697*x^4-548*x^3-591*x^2+278*x+120 2865610895467726 m001 1/(GAMMA(23/24)-exp(1/Pi)) 2865610895467726 m001 1/(exp(1/Pi)-GAMMA(23/24)) 2865610897433465 m001 (Bloch+MinimumGamma)/(gamma(1)-BesselK(1,1)) 2865610905760228 m001 (Gompertz+MinimumGamma)/(Ei(1,1)+Zeta(1,2)) 2865610908222227 m005 (1/3*2^(1/2)+1/3)/(Pi-1/3) 2865610918299291 m001 (Mills+ZetaQ(4))/(exp(1/Pi)-FeigenbaumC) 2865610920029201 m001 (1/2)^(3/2*Zeta(3)) 2865610920330650 m001 1/GAMMA(5/12)*ln(CopelandErdos)^2*cos(1)^2 2865610920683858 r005 Re(z^2+c),c=-27/52+10/23*I,n=17 2865610930935090 a007 Real Root Of 345*x^4-857*x^3+382*x^2-838*x-294 2865610941620058 r005 Re(z^2+c),c=-19/62+18/31*I,n=44 2865610944243698 m005 (19/20+1/4*5^(1/2))/(7/12*5^(1/2)-7/9) 2865610946580675 m001 ln(FeigenbaumD)*MadelungNaCl/BesselK(1,1) 2865610952490027 m001 (sin(1/12*Pi)+Artin)/(Otter-RenyiParking) 2865610966869053 m001 (Gompertz+Weierstrass)/(gamma(1)-ln(2)/ln(10)) 2865610973021619 a001 521/4181*4807526976^(19/22) 2865610977702761 r005 Re(z^2+c),c=-11/15+5/32*I,n=44 2865610982047440 m005 (1/2*5^(1/2)-2)/(2/7*gamma+1/7) 2865610985380351 a007 Real Root Of -217*x^4-324*x^3+950*x^2+182*x-271 2865610991479071 a001 1364/89*75025^(6/23) 2865610993750890 m005 (1/2*Catalan+1/8)/(2/3*exp(1)+2/9) 2865610994323504 p004 log(25409/1447) 2865611001154672 a001 521/987*233^(9/29) 2865611001212141 a007 Real Root Of -215*x^4-433*x^3+708*x^2+334*x-548 2865611005851699 a001 271443/233*121393^(19/22) 2865611008865190 a007 Real Root Of 169*x^4+334*x^3-263*x^2+403*x-222 2865611013480390 b008 63*ArcCoth[22] 2865611017417853 r005 Re(z^2+c),c=19/60+1/7*I,n=57 2865611039950318 r005 Re(z^2+c),c=-2/7+11/24*I,n=24 2865611041971483 r005 Im(z^2+c),c=19/60+3/38*I,n=47 2865611073007660 m002 -Pi^(-6)-Pi^3+Pi^5+Sinh[Pi] 2865611078759400 r005 Re(z^2+c),c=-7/22+13/58*I,n=4 2865611095575753 m001 (CopelandErdos+Porter)/(Catalan-arctan(1/3)) 2865611098223435 m001 (GAMMA(3/4)-GAMMA(19/24))/(Landau-Sarnak) 2865611101188527 m006 (exp(Pi)+2)/(2/5/Pi+3/4) 2865611105055697 m001 (gamma+Magata)/(-Porter+ZetaP(4)) 2865611106230710 a009 1/7*(24+10^(1/2)*7^(1/3))^(1/2)*7^(2/3) 2865611109248831 m001 StolarskyHarborth^Porter-ZetaQ(2) 2865611110048568 a007 Real Root Of -450*x^4+834*x^3+430*x^2+960*x-327 2865611111111656 k006 concat of cont frac of 2865611111784087 m002 -Pi^3+Pi^5+Sinh[Pi]-Tanh[Pi]/Pi^6 2865611119641180 s002 sum(A216181[n]/(n^2*10^n+1),n=1..infinity) 2865611128164759 m001 FeigenbaumAlpha/Champernowne*Riemann1stZero 2865611129935638 m001 gamma(1)^Zeta(5)*gamma(1)^Otter 2865611143583674 r009 Re(z^3+c),c=-37/86+23/55*I,n=49 2865611154445250 h001 (7/8*exp(1)+3/7)/(1/4*exp(1)+3/10) 2865611155318705 a007 Real Root Of 93*x^4+2*x^3-793*x^2-993*x+349 2865611160923487 r005 Re(z^2+c),c=-5/23+51/64*I,n=6 2865611163146193 m001 (Pi+gamma(3))/(GAMMA(19/24)-ZetaP(4)) 2865611169560848 a005 (1/cos(38/185*Pi))^97 2865611179798531 m001 exp(Magata)^2/GlaisherKinkelin^2/GAMMA(11/24) 2865611184456587 b008 Pi+13*SinhIntegral[8] 2865611192684122 r005 Im(z^2+c),c=-11/56+5/12*I,n=45 2865611200522400 m001 ln(5)+Psi(1,1/3)^Paris 2865611208215512 l006 ln(184/3231) 2865611217683251 l006 ln(4463/5944) 2865611218119125 r002 20th iterates of z^2 + 2865611218978658 r005 Im(z^2+c),c=-5/8+83/232*I,n=53 2865611226922392 p001 sum(1/(249*n+206)/n/(8^n),n=1..infinity) 2865611228973856 r005 Im(z^2+c),c=-21/62+15/32*I,n=37 2865611235533532 h001 (1/2*exp(1)+5/12)/(4/5*exp(2)+2/7) 2865611245039741 a007 Real Root Of -397*x^4-956*x^3+445*x^2-147*x+199 2865611246962411 m001 (Niven-PlouffeB)/(TreeGrowth2nd-Trott) 2865611249946601 r005 Re(z^2+c),c=-9/8+100/153*I,n=2 2865611272184079 r005 Im(z^2+c),c=-65/58+13/48*I,n=49 2865611273210083 m005 (1/2*Pi-7/8)/(2/3*2^(1/2)-7/10) 2865611275923966 p001 sum(1/(484*n+365)/(10^n),n=0..infinity) 2865611281294798 m009 (2/3*Psi(1,2/3)-1/4)/(4*Psi(1,2/3)-6) 2865611283475329 m001 1/ln(GAMMA(11/12))*Salem*log(2+sqrt(3)) 2865611287712489 s002 sum(A237154[n]/(exp(2*pi*n)-1),n=1..infinity) 2865611309188535 r009 Im(z^3+c),c=-39/98+12/61*I,n=8 2865611317117221 m001 LandauRamanujan/TreeGrowth2nd*ZetaQ(4) 2865611321062710 a007 Real Root Of 251*x^4+419*x^3-755*x^2+112*x-545 2865611341398441 m001 (MertensB1-OneNinth)/(FeigenbaumD+Khinchin) 2865611346390577 r009 Re(z^3+c),c=-11/26+37/64*I,n=47 2865611362410228 m005 (4*exp(1)-1/4)/(1/2*2^(1/2)+3) 2865611388987171 m001 ZetaQ(4)*(PisotVijayaraghavan+ThueMorse) 2865611393418073 p001 sum(1/(577*n+350)/(128^n),n=0..infinity) 2865611400820066 a007 Real Root Of 78*x^4+379*x^3+865*x^2+890*x-894 2865611403449543 m001 (Salem-Sarnak)/(Backhouse+Champernowne) 2865611408416482 a007 Real Root Of -29*x^4-809*x^3+640*x^2+255*x+95 2865611415208228 r005 Im(z^2+c),c=-25/44+23/60*I,n=24 2865611415709737 m005 (1/2*gamma-2/9)/(5/7*exp(1)+3/8) 2865611436058159 r005 Im(z^2+c),c=-25/122+21/50*I,n=42 2865611436773070 r005 Im(z^2+c),c=3/56+13/43*I,n=13 2865611455753393 m005 (3/20+1/4*5^(1/2))/(7/10*exp(1)+4/7) 2865611466146986 h001 (2/5*exp(1)+1/4)/(4/7*exp(2)+4/9) 2865611509694278 a007 Real Root Of 150*x^4+174*x^3-494*x^2+969*x+813 2865611522049893 m001 (MertensB1+Weierstrass)/(1-FeigenbaumMu) 2865611522387346 r005 Im(z^2+c),c=21/62+3/61*I,n=51 2865611537084438 m001 (ln(gamma)+Cahen)/(FeigenbaumD+Lehmer) 2865611540532972 r005 Re(z^2+c),c=-7/34+26/45*I,n=33 2865611543717535 m005 (2*exp(1)+3/5)/(-7/12+1/6*5^(1/2)) 2865611545174388 b008 3*ArcCosh[2^EulerGamma] 2865611546300197 m005 (43/44+1/4*5^(1/2))/(2/7*5^(1/2)-6) 2865611570247933 r005 Re(z^2+c),c=-13/44+7/25*I,n=2 2865611574355077 m001 1/ln(BesselJ(0,1))^2*MertensB1^2/gamma^2 2865611576331260 a007 Real Root Of 317*x^4+802*x^3+35*x^2+996*x+63 2865611577059797 r009 Im(z^3+c),c=-19/44+7/39*I,n=10 2865611583542115 b008 1+21*ArcCosh[2] 2865611600259846 r009 Re(z^3+c),c=-11/62+30/31*I,n=42 2865611602996090 m005 (1/2*Pi+6/7)/(9/11*gamma+3/8) 2865611603366774 r005 Re(z^2+c),c=-11/46+31/59*I,n=24 2865611605545894 b008 JacobiCS[1/3,-2/5] 2865611609133709 r005 Im(z^2+c),c=-11/56+5/12*I,n=47 2865611610326294 m001 (FeigenbaumAlpha-exp(Pi))/(-MertensB3+Totient) 2865611612832169 r005 Im(z^2+c),c=-11/56+5/12*I,n=44 2865611614468332 l006 ln(4240/5647) 2865611628419640 m005 (1/2*Pi+7/11)/(4/7*Zeta(3)+1/12) 2865611636966365 h001 (7/11*exp(2)+7/10)/(5/9*exp(1)+3/8) 2865611641421585 m005 (1/2*gamma-2/9)/(6/7*5^(1/2)+2/5) 2865611641449521 r005 Re(z^2+c),c=-15/13+8/39*I,n=4 2865611642580907 r009 Re(z^3+c),c=-21/34+40/51*I,n=2 2865611649343991 g006 Psi(1,6/7)+Psi(1,4/5)-2*Psi(1,1/12) 2865611651243886 m009 (1/2*Pi^2-1)/(20/3*Catalan+5/6*Pi^2-3/5) 2865611656395828 r005 Im(z^2+c),c=-13/36+21/44*I,n=56 2865611665685364 a007 Real Root Of -441*x^4-918*x^3+815*x^2-371*x+380 2865611683787253 r005 Im(z^2+c),c=-17/15+11/48*I,n=44 2865611697490803 a001 1/6624*2178309^(15/29) 2865611700287261 m004 (5*Sqrt[5]*Pi)/6+6*Log[Sqrt[5]*Pi]^2 2865611704031569 m001 GAMMA(2/3)^(GAMMA(5/24)/BesselI(0,1)) 2865611711658942 p003 LerchPhi(1/25,4,385/158) 2865611719711965 m009 (2*Catalan+1/4*Pi^2-3/5)/(5*Psi(1,3/4)+1/5) 2865611722367272 m001 exp(LaplaceLimit)/LandauRamanujan*GAMMA(5/6) 2865611725228992 s002 sum(A111847[n]/(n*exp(pi*n)+1),n=1..infinity) 2865611725228992 s002 sum(A111847[n]/(n*exp(pi*n)-1),n=1..infinity) 2865611734993344 a007 Real Root Of -718*x^4+989*x^3+718*x^2+550*x-235 2865611758301353 m005 (1/3*Pi+1/2)/(2/7*gamma+3/8) 2865611763609610 m008 (3/4*Pi^2-2/3)/(3/4*Pi^3+1/4) 2865611766721325 m001 Si(Pi)*GaussKuzminWirsing^2*exp(sin(Pi/12))^2 2865611770728609 r005 Im(z^2+c),c=-6/29+18/41*I,n=11 2865611778038304 m001 1/ln(Ei(1))*Catalan*sqrt(2)^2 2865611779143654 a007 Real Root Of 457*x^4+706*x^3+838*x^2-341*x-153 2865611779317919 a007 Real Root Of -246*x^4-533*x^3+172*x^2+597*x-171 2865611785232164 r005 Im(z^2+c),c=-13/12+28/67*I,n=5 2865611793303145 m001 1/Zeta(5)^2*ln(Si(Pi))*sqrt(5)^2 2865611801086946 a007 Real Root Of 714*x^4+933*x^3-9*x^2-701*x-183 2865611809343449 r009 Re(z^3+c),c=-1/32+10/17*I,n=5 2865611830313923 a007 Real Root Of 404*x^4+733*x^3-945*x^2+536*x-698 2865611839627744 r002 36th iterates of z^2 + 2865611844329759 r005 Im(z^2+c),c=-11/56+5/12*I,n=50 2865611859901520 m001 1/Riemann1stZero^2/Rabbit^2/ln(cos(Pi/12)) 2865611898108906 a003 sin(Pi*3/49)-sin(Pi*13/82) 2865611899619993 r005 Im(z^2+c),c=15/64+14/27*I,n=35 2865611899677588 r005 Re(z^2+c),c=13/46+31/61*I,n=13 2865611908321312 r009 Re(z^3+c),c=-47/126+17/54*I,n=13 2865611910469809 m001 ln(GAMMA(5/6))^2*BesselJ(1,1)^2*Zeta(7) 2865611918298370 a008 Real Root of (1+5*x+3*x^2-2*x^3+2*x^4+x^5) 2865611924487114 a001 18/165580141*4807526976^(1/23) 2865611924491542 a001 6/34111385*75025^(1/23) 2865611940884699 m001 1/log(1+sqrt(2))*ln(Khintchine)^2*sin(Pi/12) 2865611943559352 a007 Real Root Of -61*x^4+650*x^2+467*x+114 2865611945658410 a009 42-6*11^(1/3) 2865611950909758 m005 (1/3*exp(1)+2/9)/(7/12+3/2*5^(1/2)) 2865611959021762 a007 Real Root Of -244*x^4+768*x^3+771*x^2+871*x+206 2865611984389958 m001 (Zeta(1/2)-KomornikLoreti)/(MertensB2+Paris) 2865611995751340 l006 ln(393/6901) 2865611998591199 m002 -4+Log[Pi]/(6*Pi)+ProductLog[Pi] 2865612001467144 r005 Im(z^2+c),c=-37/90+23/47*I,n=54 2865612006015314 r005 Im(z^2+c),c=-25/122+21/50*I,n=41 2865612009273360 a009 12^(3/4)*(10^(1/3)-5^(1/3)) 2865612010059030 r005 Im(z^2+c),c=-11/56+5/12*I,n=48 2865612011322881 r005 Im(z^2+c),c=-11/56+5/12*I,n=53 2865612012353232 m005 (1/2*exp(1)+7/11)/(11/12*2^(1/2)-3/5) 2865612013520495 a007 Real Root Of -28*x^4+176*x^3+906*x^2+743*x+719 2865612034257150 r002 11th iterates of z^2 + 2865612037201529 m001 (cos(1/12*Pi)-Conway)/(DuboisRaymond-ZetaP(4)) 2865612055307700 l006 ln(4017/5350) 2865612058787828 m001 1/Porter^2*ln(HardHexagonsEntropy)/cos(1) 2865612075121591 a007 Real Root Of 128*x^4+184*x^3-619*x^2-331*x-167 2865612087199458 m009 (2*Psi(1,3/4)+4/5)/(5/6*Psi(1,2/3)-1/2) 2865612087808337 a001 16692641/17*12586269025^(17/23) 2865612087819315 a001 119218851371/34*196418^(17/23) 2865612093553340 r005 Im(z^2+c),c=-11/56+5/12*I,n=56 2865612093985140 s002 sum(A047522[n]/((10^n-1)/n),n=1..infinity) 2865612094281383 r009 Im(z^3+c),c=-9/98+5/6*I,n=28 2865612097803223 r005 Re(z^2+c),c=-8/23+14/61*I,n=14 2865612114945945 m009 (3/4*Psi(1,3/4)+1/4)/(3/5*Psi(1,3/4)+6) 2865612122582531 m001 arctan(1/2)^(ReciprocalLucas/ZetaP(4)) 2865612123996318 r005 Re(z^2+c),c=-25/56+31/58*I,n=43 2865612126225451 r005 Im(z^2+c),c=-11/56+5/12*I,n=59 2865612129500193 a001 843*(1/2*5^(1/2)+1/2)^19*47^(14/15) 2865612132482732 r005 Im(z^2+c),c=-11/56+5/12*I,n=61 2865612133333396 r005 Im(z^2+c),c=-11/56+5/12*I,n=58 2865612133753048 s002 sum(A202957[n]/(n^3*pi^n+1),n=1..infinity) 2865612135130127 r005 Im(z^2+c),c=-11/56+5/12*I,n=64 2865612136780488 r005 Im(z^2+c),c=-11/56+5/12*I,n=62 2865612143819344 r005 Im(z^2+c),c=-11/56+5/12*I,n=63 2865612152949038 r005 Im(z^2+c),c=-11/56+5/12*I,n=60 2865612153264100 a005 (1/cos(2/159*Pi))^1348 2865612154599717 r005 Im(z^2+c),c=-11/56+5/12*I,n=55 2865612171247722 r005 Im(z^2+c),c=-11/56+5/12*I,n=57 2865612175224127 m001 (Psi(2,1/3)-Zeta(3))/(Kac+Totient) 2865612191561352 m001 (Robbin-Tetranacci)/(MinimumGamma+Otter) 2865612192225685 r005 Im(z^2+c),c=-11/56+5/12*I,n=51 2865612196240508 r005 Im(z^2+c),c=-11/56+5/12*I,n=54 2865612202979778 m001 (Gompertz-Lehmer)/(OneNinth-OrthogonalArrays) 2865612204816725 g006 Psi(1,2/11)-Psi(1,5/8)-Psi(1,3/7)-Psi(1,1/7) 2865612209050352 m001 (2^(1/3)+Zeta(5))^BesselI(0,1) 2865612209050352 m001 (Zeta(5)+(2^(1/3)))^BesselI(0,1) 2865612213383907 r005 Im(z^2+c),c=-27/86+23/50*I,n=35 2865612214988258 m001 (FeigenbaumDelta-GaussAGM)/(Totient-ZetaQ(4)) 2865612220168814 m001 (-GAMMA(23/24)+Niven)/(exp(Pi)+LambertW(1)) 2865612221081003 m003 -5+(65*Sqrt[5])/128+Sin[1/2+Sqrt[5]/2] 2865612225035703 r005 Im(z^2+c),c=-15/38+13/27*I,n=32 2865612226691407 m001 (KomornikLoreti-LandauRamanujan)/FeigenbaumMu 2865612244047583 m001 1/Porter^2*MertensB1^2*ln(Sierpinski)^2 2865612246162914 r009 Re(z^3+c),c=-49/114+19/45*I,n=26 2865612247520961 r005 Im(z^2+c),c=-11/56+5/12*I,n=52 2865612252221767 m005 (1/2*Zeta(3)-3/11)/(1/4*Catalan+11/12) 2865612270032536 m001 gamma^2*ln(Khintchine)^2*log(1+sqrt(2)) 2865612274147857 a007 Real Root Of -32*x^4-947*x^3-850*x^2+271*x-282 2865612276142918 r005 Re(z^2+c),c=1/90+37/57*I,n=52 2865612278097710 r005 Im(z^2+c),c=-25/122+21/50*I,n=44 2865612279466285 r005 Im(z^2+c),c=-10/29+25/53*I,n=47 2865612280793300 r005 Re(z^2+c),c=-7/19+1/62*I,n=13 2865612282822087 m001 (HardyLittlewoodC5+ZetaQ(4))/(ln(gamma)+ln(2)) 2865612286961488 m005 (1/2*gamma+1/7)/(13/22+9/22*5^(1/2)) 2865612299316778 r009 Im(z^3+c),c=-11/122+11/36*I,n=10 2865612300506002 m001 Ei(1,1)/(MasserGramainDelta-Shi(1)) 2865612302909548 p001 sum(1/(383*n+299)/n/(512^n),n=1..infinity) 2865612303461879 s002 sum(A002643[n]/(n^3*2^n+1),n=1..infinity) 2865612315897810 m001 (BesselI(1,2)-Shi(1))/(-Sarnak+Sierpinski) 2865612330899186 m004 -1+15*Pi*Csch[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 2865612343587156 r002 43th iterates of z^2 + 2865612384129000 m008 (2/3*Pi+3/5)/(2/5*Pi^3-3) 2865612388634007 r002 43th iterates of z^2 + 2865612389113957 r005 Re(z^2+c),c=23/86+3/28*I,n=44 2865612397236312 m004 -1+(30*Pi)/E^(Sqrt[5]*Pi)-Log[Sqrt[5]*Pi] 2865612421617904 r005 Re(z^2+c),c=37/102+23/63*I,n=10 2865612431330387 m001 (Landau+Niven)/(StronglyCareFree+ZetaQ(3)) 2865612447495071 s002 sum(A143439[n]/(n*pi^n+1),n=1..infinity) 2865612452715066 r002 59th iterates of z^2 + 2865612459521236 h001 (7/8*exp(2)+1/11)/(5/9*exp(1)+7/9) 2865612459713233 g007 Psi(2,4/5)-Psi(2,8/9)-Psi(2,4/9)-Psi(2,5/7) 2865612463573332 m004 -1-Log[Sqrt[5]*Pi]+15*Pi*Sech[Sqrt[5]*Pi] 2865612471895470 h001 (1/6*exp(2)+1/9)/(7/12*exp(2)+3/8) 2865612472446192 m001 (Sarnak-StronglyCareFree)/MasserGramainDelta 2865612481865228 m001 cos(1)*(Chi(1)-HardyLittlewoodC4) 2865612483575164 m001 (ln(3)-Zeta(1,2))/(ZetaQ(3)-ZetaQ(4)) 2865612485960345 m001 GAMMA(1/4)*ln(Bloch)*GAMMA(23/24)^2 2865612503929373 m001 (DuboisRaymond+MertensB3)/(Mills-Tribonacci) 2865612507481063 r002 36th iterates of z^2 + 2865612510308859 r002 7th iterates of z^2 + 2865612510537169 m001 (gamma(1)-FeigenbaumB)/(FeigenbaumD+PlouffeB) 2865612511417764 a007 Real Root Of 27*x^4+798*x^3+689*x^2-187*x+310 2865612515382119 a007 Real Root Of -69*x^4-17*x^3+763*x^2+560*x-408 2865612530377692 r009 Re(z^3+c),c=-39/86+29/62*I,n=50 2865612532024798 a007 Real Root Of -213*x^4-133*x^3+994*x^2-789*x+810 2865612538674094 r005 Im(z^2+c),c=-11/56+5/12*I,n=49 2865612547969490 l006 ln(3794/5053) 2865612565102717 m001 1/ln(cosh(1))^2/LambertW(1)^2*log(2+sqrt(3))^2 2865612574166923 r009 Re(z^3+c),c=-35/118+9/55*I,n=3 2865612575457054 a007 Real Root Of 324*x^4+588*x^3+149*x^2-472*x+107 2865612579673911 m008 (2/3*Pi^3+1/3)/(2/3*Pi^2+3/4) 2865612579736886 b008 ArcTan[4*CosIntegral[Pi]] 2865612591150944 m001 exp(GAMMA(1/4))*Rabbit*Zeta(5)^2 2865612596256445 a007 Real Root Of -545*x^4+984*x^3+537*x^2+315*x+73 2865612597266579 m001 (MertensB3+ZetaQ(3))/(ln(gamma)+Gompertz) 2865612609995025 r009 Re(z^3+c),c=-4/11+14/47*I,n=19 2865612612868936 r005 Re(z^2+c),c=-31/110+5/11*I,n=23 2865612614675874 a007 Real Root Of 537*x^4+23*x^3+955*x^2-588*x-250 2865612616163813 m001 (exp(1)-ln(5))/(-arctan(1/2)+ZetaP(4)) 2865612616165048 a007 Real Root Of -832*x^4-84*x^3+266*x^2+922*x+246 2865612648221343 q001 145/506 2865612648221343 r002 2th iterates of z^2 + 2865612648221343 r002 2th iterates of z^2 + 2865612648221343 r002 2th iterates of z^2 + 2865612648221343 r005 Im(z^2+c),c=-21/44+29/46*I,n=2 2865612650662220 b008 Erfc[1/8]/3 2865612650697882 a007 Real Root Of 96*x^4+21*x^3-939*x^2-897*x-839 2865612657724682 r005 Re(z^2+c),c=-41/118+11/48*I,n=28 2865612668197821 r009 Re(z^3+c),c=-7/22+11/54*I,n=3 2865612683709428 m001 exp(BesselK(1,1))*CopelandErdos/GAMMA(3/4)^2 2865612685503721 r002 12th iterates of z^2 + 2865612689083804 l006 ln(209/3670) 2865612690970072 m002 Cosh[Pi]/Pi^5+25*Log[Pi] 2865612691426633 m005 (1/2*2^(1/2)+4/11)/(9/10*Pi+10/11) 2865612711998786 m001 1/exp(GAMMA(1/24))/MinimumGamma^2/GAMMA(11/12) 2865612748336830 r008 a(0)=0,K{-n^6,49-73*n^3-31*n^2+20*n} 2865612758736674 a007 Real Root Of 533*x^4-283*x^3+480*x^2-727*x-258 2865612759071788 a001 1/305*121393^(5/27) 2865612759513163 a007 Real Root Of -347*x^4-755*x^3+907*x^2+511*x-351 2865612766742988 r005 Re(z^2+c),c=-25/98+26/49*I,n=64 2865612773175044 a007 Real Root Of 51*x^4-530*x^3+769*x^2+611*x+967 2865612782637387 a007 Real Root Of 269*x^4+520*x^3-697*x^2+191*x+368 2865612784796458 r005 Im(z^2+c),c=-19/70+19/30*I,n=3 2865612786442244 m001 (1-2^(1/3))/(-arctan(1/3)+ThueMorse) 2865612789297895 m001 (Salem+ZetaP(3))/(ln(Pi)+FeigenbaumMu) 2865612791612981 m001 (Lehmer+ZetaP(3))/(Pi-arctan(1/2)) 2865612801907305 a007 Real Root Of -425*x^4-974*x^3+840*x^2+351*x-153 2865612816675849 l006 ln(7365/9809) 2865612820679159 r002 29th iterates of z^2 + 2865612821403040 a007 Real Root Of 695*x^4+514*x^3+502*x^2-894*x-290 2865612832997341 a001 121393/11*76^(13/59) 2865612858192280 r005 Im(z^2+c),c=-23/90+17/40*I,n=12 2865612860302142 r008 a(0)=0,K{-n^6,45+44*n-60*n^2-64*n^3} 2865612860613379 r005 Re(z^2+c),c=-53/70+6/59*I,n=6 2865612861592158 m001 (-Zeta(1,2)+Kolakoski)/(cos(1)-ln(Pi)) 2865612875310573 r005 Im(z^2+c),c=-35/74+22/45*I,n=46 2865612938261922 l006 ln(6467/6655) 2865612939866735 a008 Real Root of x^4-x^3-28*x^2+37*x+80 2865612981447869 r005 Re(z^2+c),c=-9/32+20/43*I,n=53 2865612985773210 a007 Real Root Of -152*x^4-153*x^3+608*x^2-367*x+605 2865612987256413 r004 Im(z^2+c),c=2/15*I,z(0)=exp(23/24*I*Pi),n=6 2865612998641289 r009 Im(z^3+c),c=-11/122+11/36*I,n=12 2865613000395511 a001 377/123*5778^(8/31) 2865613000973866 r005 Im(z^2+c),c=-15/22+24/103*I,n=20 2865613008290431 m001 ErdosBorwein*(BesselI(0,1)+polylog(4,1/2)) 2865613016373701 r005 Re(z^2+c),c=-21/86+24/29*I,n=12 2865613016969872 r005 Re(z^2+c),c=-11/14+8/173*I,n=40 2865613029116151 m005 (1/2*5^(1/2)-6)/(11/12*2^(1/2)-3) 2865613029883140 a007 Real Root Of 110*x^4+296*x^3-183*x^2-636*x-772 2865613031954021 m005 (1/5*gamma+5)/(5/6*2^(1/2)-1) 2865613032719182 r005 Im(z^2+c),c=-11/28+17/33*I,n=31 2865613064026087 m005 (1/2*exp(1)+9/11)/(2/3*gamma+3/8) 2865613076681977 m001 (Zeta(1/2)+RenyiParking)/(exp(Pi)+3^(1/2)) 2865613076977556 s002 sum(A221971[n]/((exp(n)+1)*n),n=1..infinity) 2865613077935523 a007 Real Root Of -651*x^4+577*x^3-216*x^2+986*x-274 2865613085945269 r005 Re(z^2+c),c=-31/90+12/49*I,n=29 2865613091354795 r005 Re(z^2+c),c=9/86+30/47*I,n=38 2865613092318812 m002 -Pi+(6*Pi^5*Csch[Pi])/5 2865613095953087 m001 (-BesselJ(0,1)+1/3)/(GAMMA(19/24)+1/3) 2865613099383810 r005 Im(z^2+c),c=-8/21+31/64*I,n=49 2865613102162240 l006 ln(3571/4756) 2865613104902041 r009 Im(z^3+c),c=-11/122+11/36*I,n=14 2865613109283843 r009 Im(z^3+c),c=-11/122+11/36*I,n=17 2865613109378946 r009 Im(z^3+c),c=-11/122+11/36*I,n=19 2865613109387826 r009 Im(z^3+c),c=-11/122+11/36*I,n=21 2865613109387981 r009 Im(z^3+c),c=-11/122+11/36*I,n=22 2865613109388004 r009 Im(z^3+c),c=-11/122+11/36*I,n=24 2865613109388014 r009 Im(z^3+c),c=-11/122+11/36*I,n=26 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=29 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=31 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=33 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=36 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=38 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=40 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=41 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=43 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=45 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=48 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=50 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=52 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=55 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=57 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=59 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=60 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=62 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=64 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=63 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=61 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=58 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=56 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=54 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=53 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=51 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=47 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=49 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=46 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=44 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=42 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=39 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=37 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=35 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=34 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=32 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=28 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=30 2865613109388015 r009 Im(z^3+c),c=-11/122+11/36*I,n=27 2865613109388018 r009 Im(z^3+c),c=-11/122+11/36*I,n=25 2865613109388044 r009 Im(z^3+c),c=-11/122+11/36*I,n=23 2865613109389776 r009 Im(z^3+c),c=-11/122+11/36*I,n=20 2865613109423218 r009 Im(z^3+c),c=-11/122+11/36*I,n=18 2865613109574571 r009 Im(z^3+c),c=-11/122+11/36*I,n=16 2865613109652240 r009 Im(z^3+c),c=-11/122+11/36*I,n=15 2865613110641216 r005 Re(z^2+c),c=-29/86+12/43*I,n=32 2865613117655798 p003 LerchPhi(1/100,6,73/87) 2865613120603668 m001 (ErdosBorwein+GaussAGM)/(1-Si(Pi)) 2865613121863524 m005 (1/2*Zeta(3)+1/12)/(1/8*gamma+1/6) 2865613135630810 r009 Im(z^3+c),c=-11/122+11/36*I,n=13 2865613137436130 m001 (Pi-LambertW(1))/(Zeta(3)-GaussKuzminWirsing) 2865613139869122 a007 Real Root Of 787*x^4-867*x^3+599*x^2-290*x-158 2865613147983749 m001 Shi(1)^FeigenbaumKappa+KomornikLoreti 2865613149046988 a001 377/123*2207^(9/31) 2865613149978534 m005 (1/2*2^(1/2)-2/7)/(3/10*3^(1/2)-2/3) 2865613156452112 a001 121393/322*199^(9/11) 2865613156993650 p004 log(30677/1747) 2865613157888532 m001 1/Zeta(3)/ln(RenyiParking)*Zeta(9) 2865613163268638 r005 Re(z^2+c),c=39/106+13/59*I,n=63 2865613165173196 m001 KhinchinHarmonic^(Zeta(5)*MasserGramainDelta) 2865613167912061 r005 Re(z^2+c),c=-23/62+1/37*I,n=8 2865613169275670 r005 Im(z^2+c),c=-11/56+5/12*I,n=41 2865613171495559 r005 Im(z^2+c),c=-5/54+33/64*I,n=6 2865613179787656 s002 sum(A061197[n]/((exp(n)+1)*n),n=1..infinity) 2865613181805601 m005 (1/2*exp(1)-6/7)/(7/8*Zeta(3)+7/10) 2865613188254316 s002 sum(A157044[n]/((exp(n)+1)*n),n=1..infinity) 2865613189233514 r005 Re(z^2+c),c=-117/122+2/19*I,n=10 2865613226676783 b008 ArcCsc[3+ArcCsch[Sqrt[Pi]]] 2865613228095222 m005 (1/2*5^(1/2)-5/9)/(5/11*exp(1)+8/11) 2865613241657054 r009 Re(z^3+c),c=-13/27+31/58*I,n=18 2865613243194515 m001 (Magata+Thue)/(sin(1/12*Pi)-MadelungNaCl) 2865613254898507 g005 GAMMA(10/11)*GAMMA(1/11)*GAMMA(2/7)/GAMMA(3/4) 2865613266321371 r005 Im(z^2+c),c=23/86+10/59*I,n=8 2865613269430080 r009 Re(z^3+c),c=-69/118+25/44*I,n=27 2865613278740398 p003 LerchPhi(1/25,2,228/121) 2865613278911363 r005 Im(z^2+c),c=-11/56+5/12*I,n=46 2865613284096448 r005 Re(z^2+c),c=29/94+4/9*I,n=61 2865613286587278 a007 Real Root Of -25*x^4-708*x^3+215*x^2-716*x+674 2865613289437037 r005 Re(z^2+c),c=5/22+2/31*I,n=20 2865613290892358 r009 Im(z^3+c),c=-11/122+11/36*I,n=9 2865613304161638 l006 ln(443/7779) 2865613325069568 r008 a(0)=3,K{-n^6,51+5*n^3-70*n^2+21*n} 2865613330250082 h001 (2/7*exp(1)+1/8)/(9/10*exp(1)+7/10) 2865613339421064 a007 Real Root Of 26*x^4-293*x^3-809*x^2+508*x-549 2865613341851097 r005 Im(z^2+c),c=-5/36+9/23*I,n=13 2865613342262399 a007 Real Root Of 264*x^4-615*x^3+818*x^2-567*x+108 2865613345805113 m005 (1/3*Zeta(3)-1/11)/(5/6*gamma+3/5) 2865613370354644 m001 (Totient+ZetaQ(4))/(exp(1)+ReciprocalLucas) 2865613372548387 a007 Real Root Of -230*x^4-824*x^3-118*x^2+762*x-728 2865613380251125 r005 Re(z^2+c),c=-5/44+21/34*I,n=35 2865613381147321 r009 Re(z^3+c),c=-47/114+17/44*I,n=43 2865613392299891 m001 Paris/(Trott^CopelandErdos) 2865613396247601 r005 Im(z^2+c),c=-25/122+21/50*I,n=47 2865613397047857 r005 Re(z^2+c),c=-5/9-46/87*I,n=47 2865613399892466 m001 (cos(1)+sin(1/12*Pi))/(Backhouse+MertensB3) 2865613406051125 l006 ln(6919/9215) 2865613408288726 a001 34/47*11^(31/54) 2865613413480688 r002 31th iterates of z^2 + 2865613414223537 r009 Im(z^3+c),c=-15/122+19/63*I,n=7 2865613422983173 h001 (9/10*exp(2)+1/6)/(3/11*exp(2)+4/11) 2865613431367507 m001 (Sarnak+ZetaP(4))/(Zeta(1/2)-MertensB3) 2865613434073598 r002 30th iterates of z^2 + 2865613440963431 r005 Re(z^2+c),c=5/19+3/29*I,n=29 2865613441902173 a007 Real Root Of -33*x^4-953*x^3-238*x^2-797*x-300 2865613458876330 r002 23th iterates of z^2 + 2865613460086636 r005 Im(z^2+c),c=-55/102+17/38*I,n=61 2865613470384245 r009 Im(z^3+c),c=-11/122+11/36*I,n=11 2865613491491098 r005 Im(z^2+c),c=15/62+11/64*I,n=18 2865613492992912 m001 1/(2^(1/3))*ln(TreeGrowth2nd)*GAMMA(5/24) 2865613494545957 a007 Real Root Of 345*x^4+825*x^3-570*x^2-208*x+234 2865613494647135 a007 Real Root Of 865*x^4+98*x^3-376*x^2-479*x+160 2865613505703579 r002 21th iterates of z^2 + 2865613506698881 r009 Im(z^3+c),c=-11/98+53/64*I,n=62 2865613543921862 r009 Im(z^3+c),c=-11/32+15/64*I,n=16 2865613551751615 m005 (1/2*3^(1/2)+1/10)/(-3/11+3/11*5^(1/2)) 2865613562044130 a001 3/199*18^(2/9) 2865613562243918 h001 (2/11*exp(2)+4/11)/(8/11*exp(2)+7/12) 2865613564283888 r009 Re(z^3+c),c=-17/98+47/49*I,n=20 2865613565824897 a001 7*(1/2*5^(1/2)+1/2)^15*11^(11/24) 2865613574621324 m001 (BesselI(0,1)-Chi(1))/(HardyLittlewoodC3+Thue) 2865613587023868 m002 -Pi^5+2*Cosh[Pi]-4/ProductLog[Pi] 2865613589094201 m001 (Ei(1,1)-GAMMA(17/24))/(Pi+gamma) 2865613603938237 a007 Real Root Of 692*x^4-301*x^3+609*x^2-116*x-95 2865613612974258 m001 Weierstrass/(DuboisRaymond-Si(Pi)) 2865613619893528 r002 3th iterates of z^2 + 2865613631063685 a007 Real Root Of -99*x^4-72*x^3+848*x^2+506*x-532 2865613637145967 a007 Real Root Of -482*x^4-987*x^3+932*x^2-458*x+311 2865613638521089 a003 cos(Pi*5/31)-cos(Pi*3/10) 2865613640641645 a007 Real Root Of 686*x^4+116*x^3+386*x^2-744*x+21 2865613641745277 a001 3/2207*(1/2*5^(1/2)+1/2)^6*2207^(13/21) 2865613658542146 a007 Real Root Of -356*x^4-724*x^3+753*x^2-382*x-309 2865613659256476 m001 ln(GAMMA(2/3))^2/CopelandErdos^2/gamma 2865613668968410 r009 Re(z^3+c),c=-55/122+9/20*I,n=36 2865613671975406 a007 Real Root Of 429*x^4+901*x^3-724*x^2+489*x-380 2865613675023261 r005 Im(z^2+c),c=1/5+5/24*I,n=16 2865613676614016 r009 Re(z^3+c),c=-23/54+24/31*I,n=4 2865613681620367 a007 Real Root Of 718*x^4-594*x^3+599*x^2-834*x-307 2865613688157141 r002 10th iterates of z^2 + 2865613689019436 b008 11*Pi*ArcCot[Catalan] 2865613691733809 h001 (5/7*exp(2)+1/3)/(4/9*exp(1)+3/4) 2865613696745424 r005 Im(z^2+c),c=33/98+16/57*I,n=5 2865613701373654 m001 (-GolombDickman+Trott)/(3^(1/2)-exp(Pi)) 2865613705688771 a007 Real Root Of 30*x^4+876*x^3+447*x^2-595*x-175 2865613711013630 m005 (1/2*2^(1/2)+1/10)/(5/12*Catalan-1/10) 2865613730181107 l006 ln(3348/4459) 2865613766673763 m001 (gamma*gamma(3)+(1+3^(1/2))^(1/2))/gamma 2865613769249075 m001 1/exp(Salem)/CareFree*cos(Pi/5)^2 2865613770407311 r005 Re(z^2+c),c=-8/31+23/44*I,n=48 2865613780032285 a001 1/1926*6643838879^(8/21) 2865613782038051 r005 Re(z^2+c),c=-25/114+37/57*I,n=27 2865613795691686 r005 Im(z^2+c),c=-93/106+11/52*I,n=31 2865613801550589 r009 Re(z^3+c),c=-11/25+27/62*I,n=57 2865613804260127 a007 Real Root Of -771*x^4+965*x^3+592*x^2+24*x-73 2865613806053081 m001 (Lehmer+ZetaQ(2))/(LandauRamanujan2nd-exp(Pi)) 2865613810626446 s001 sum(exp(-4*Pi)^(n-1)*A179251[n],n=1..infinity) 2865613811884921 r005 Re(z^2+c),c=-4/17+31/53*I,n=59 2865613815040365 a001 29/75025*10946^(25/54) 2865613830306552 h002 exp(3/(5^(2/3)+9^(3/4))^(1/2)) 2865613830704077 r005 Im(z^2+c),c=-15/26+23/52*I,n=31 2865613852937211 h001 (4/7*exp(1)+9/11)/(2/11*exp(1)+1/3) 2865613853343822 a001 3/15127*87403803^(11/21) 2865613853525708 l006 ln(234/4109) 2865613854161185 r005 Im(z^2+c),c=-33/58+9/16*I,n=14 2865613854536499 a001 3/15127*(1/2*5^(1/2)+1/2)^18*15127^(2/21) 2865613854996909 a001 3/15127*39603^(19/21) 2865613860280101 a001 15127/5*75025^(15/37) 2865613863375176 a001 1/13201*64079^(20/21) 2865613864039832 a001 1/13201*4106118243^(10/21) 2865613865692919 a001 1/13201*(1/2*5^(1/2)+1/2)^2*39603^(19/21) 2865613865828050 a001 1/90481*12752043^(16/21) 2865613865828134 a001 1/90481*4870847^(17/21) 2865613865866926 a001 3/33385282*1322157322203^(13/21) 2865613865866928 a001 1/199691526*312119004989^(16/21) 2865613865866928 a001 1/199691526*1568397607^(20/21) 2865613865866928 a001 1/440719107401*23725150497407^(19/21) 2865613865866928 a001 3/969323029*119218851371^(17/21) 2865613865866928 a001 3/141422324*969323029^(19/21) 2865613865867244 a001 3/3010349*2139295485799^(11/21) 2865613865900161 a001 3/64079*(1/2*5^(1/2)+1/2)*64079^(20/21) 2865613866564816 a001 3/64079*54018521^(13/21) 2865613867025034 r002 7th iterates of z^2 + 2865613867880224 a007 Real Root Of 883*x^4-55*x^3-758*x^2-580*x-16 2865613867960612 m001 Lehmer/(KhinchinLevy+QuadraticClass) 2865613868164564 s002 sum(A085494[n]/(n^3*pi^n+1),n=1..infinity) 2865613870143994 r005 Re(z^2+c),c=-45/122+45/58*I,n=3 2865613881755078 b008 1-(10*ArcCoth[E])/3 2865613897091612 a001 3/9349*(1/2*5^(1/2)+1/2)^18*9349^(1/21) 2865613900648726 r005 Im(z^2+c),c=-19/46+3/64*I,n=16 2865613901346073 r002 12th iterates of z^2 + 2865613905226793 a007 Real Root Of 446*x^4+917*x^3-990*x^2-140*x-768 2865613907108370 r009 Im(z^3+c),c=-5/106+4/13*I,n=3 2865613908197253 r005 Re(z^2+c),c=-19/25+2/45*I,n=8 2865613911812828 s002 sum(A210290[n]/((2*n+1)!),n=1..infinity) 2865613918491250 a007 Real Root Of 309*x^4+118*x^3+538*x^2-438*x-169 2865613922673301 m001 sin(1/12*Pi)*BesselI(1,2)^Ei(1,1) 2865613924744786 m005 (1/2*Catalan+7/10)/(1/6*exp(1)-6/7) 2865613926325947 m001 (1+3^(1/2))^(1/2)-GAMMA(7/12)*Otter 2865613929063384 m001 Magata*ThueMorse-Zeta(1/2) 2865613932153513 m001 cos(1)^2/GlaisherKinkelin^2*ln(sinh(1)) 2865613938168181 m001 (Kac-KomornikLoreti)/(Zeta(5)-3^(1/3)) 2865613938296781 m001 (ArtinRank2+Grothendieck)/(3^(1/3)-Psi(1,1/3)) 2865613943117862 m005 (1/2*5^(1/2)-7/8)/(2/3*gamma-3/10) 2865613948520791 a007 Real Root Of 228*x^4+481*x^3-322*x^2+374*x-340 2865613952950979 m005 (1/2*Catalan-1/7)/(1/4*3^(1/2)+2/3) 2865613953237920 a007 Real Root Of -377*x^4-968*x^3+508*x^2+349*x-528 2865613957734053 r009 Im(z^3+c),c=-67/114+11/38*I,n=29 2865613958681436 r005 Im(z^2+c),c=-5/8+111/254*I,n=55 2865613962960498 r002 5th iterates of z^2 + 2865613972875516 a001 3/3571*(1/2*5^(1/2)+1/2)^8*3571^(11/21) 2865613973574447 r005 Im(z^2+c),c=-33/118+13/29*I,n=61 2865613981027645 a007 Real Root Of -148*x^4+153*x^3+337*x^2+932*x+244 2865613985646970 r009 Im(z^3+c),c=-4/23+48/55*I,n=12 2865613999043604 m001 Zeta(3)*FeigenbaumD^2/ln(gamma)^2 2865614001747358 m005 (1/3*Pi-2/9)/(1/8*2^(1/2)+1/9) 2865614007083083 m005 (1/2*Catalan-1/11)/(2/9*5^(1/2)-5/8) 2865614007143205 m001 (GAMMA(23/24)+Porter)/(Trott+Thue) 2865614011092593 r005 Im(z^2+c),c=-25/106+19/44*I,n=28 2865614019473738 r002 3th iterates of z^2 + 2865614039820787 m001 ln(gamma)^(ReciprocalFibonacci/ln(5)) 2865614042197575 m001 (cos(1/5*Pi)-polylog(4,1/2))/(Artin+Cahen) 2865614045809711 a008 Real Root of x^2-x-82404 2865614049247634 b008 3+28*Log[5/2] 2865614060334008 r005 Im(z^2+c),c=-83/106+3/28*I,n=24 2865614071973672 m006 (2*Pi^2+1/4)/(3*exp(Pi)+1/3) 2865614076644148 l006 ln(6473/8621) 2865614078320064 p003 LerchPhi(1/16,4,35/144) 2865614091889012 m001 (3^(1/3)+arctan(1/3))/(GolombDickman-ZetaQ(3)) 2865614097403411 a003 cos(Pi*10/97)-cos(Pi*13/101) 2865614100046521 r002 5th iterates of z^2 + 2865614107329858 r005 Re(z^2+c),c=11/52+1/49*I,n=4 2865614113421087 r005 Re(z^2+c),c=37/94+17/62*I,n=29 2865614116891129 r005 Re(z^2+c),c=-37/118+14/37*I,n=16 2865614122122868 m005 (1/2*exp(1)-1/8)/(1/6*Catalan-7/12) 2865614126976535 m004 -3-3/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865614132496043 r005 Im(z^2+c),c=-19/54+9/19*I,n=43 2865614133028146 h001 (2/5*exp(1)+1/4)/(6/11*exp(2)+7/11) 2865614133250914 a007 Real Root Of 374*x^4+908*x^3-299*x^2+798*x+889 2865614134114103 m001 (LambertW(1)+ln(5))/(gamma(1)+FeigenbaumB) 2865614137065847 r005 Re(z^2+c),c=-35/114+25/64*I,n=43 2865614137542913 r009 Re(z^3+c),c=-43/110+15/46*I,n=7 2865614146220679 m001 (GAMMA(5/6)+Porter)/(Psi(1,1/3)-Zeta(5)) 2865614152479655 r005 Im(z^2+c),c=-25/122+21/50*I,n=50 2865614155594429 a003 cos(Pi*6/41)*cos(Pi*44/111) 2865614156700986 a001 64079/3*34^(1/12) 2865614168679034 r002 16th iterates of z^2 + 2865614169096120 m001 ThueMorse^ln(2)/(FeigenbaumAlpha^ln(2)) 2865614188110329 b008 31*Sqrt[2]*Cos[4] 2865614191613587 a007 Real Root Of 219*x^4+541*x^3-375*x^2-370*x-18 2865614202874211 a007 Real Root Of 270*x^4+499*x^3-743*x^2+378*x+720 2865614204469373 a005 (1/cos(15/127*Pi))^701 2865614221538446 m001 (Psi(2,1/3)+Zeta(3))^sin(1) 2865614227350960 r005 Im(z^2+c),c=-47/106+27/52*I,n=42 2865614232402280 p003 LerchPhi(1/3,4,107/43) 2865614245013425 m001 (cos(1/5*Pi)-GAMMA(3/4))/(3^(1/3)+Trott) 2865614246858651 p001 sum((-1)^n/(586*n+345)/(32^n),n=0..infinity) 2865614260663394 a005 (1/cos(15/191*Pi))^184 2865614265150116 h001 (6/7*exp(2)+2/3)/(7/12*exp(1)+6/7) 2865614276624935 a009 1/12*(7^(1/2)+5^(1/3)*12^(1/3))*12^(2/3) 2865614277510235 h001 (-3*exp(2)+9)/(-4*exp(1/2)+2) 2865614280888839 a007 Real Root Of 149*x^4+121*x^3-815*x^2+405*x+653 2865614291857686 r009 Re(z^3+c),c=-5/11+28/57*I,n=52 2865614303065851 b008 5/3+ArcCoth[6/5] 2865614304635043 a007 Real Root Of 261*x^4+659*x^3+143*x^2+909*x-662 2865614305733265 a007 Real Root Of 195*x^4+669*x^3+481*x^2+316*x-451 2865614311580925 r009 Im(z^3+c),c=-11/32+15/64*I,n=21 2865614325385594 r005 Re(z^2+c),c=-11/40+12/25*I,n=37 2865614347173083 l006 ln(493/8657) 2865614347301981 r002 6th iterates of z^2 + 2865614356658258 m002 2+E^Pi+Pi+Cosh[Pi]/Pi^3 2865614358762595 r005 Im(z^2+c),c=-25/62+26/53*I,n=60 2865614361753148 a009 7^(1/2)/(6^(1/2)-6^(2/3))^(1/2) 2865614366778832 m001 (LaplaceLimit+OneNinth)/(Catalan+Pi^(1/2)) 2865614367024027 p001 sum(1/(599*n+350)/(125^n),n=0..infinity) 2865614367599013 m001 exp(CareFree)^2*MertensB1/GAMMA(11/24)^2 2865614372066127 r005 Im(z^2+c),c=4/29+11/41*I,n=4 2865614375684726 r009 Re(z^3+c),c=-13/29+20/53*I,n=10 2865614377834962 m001 (gamma*Zeta(5)+GAMMA(11/12))/gamma 2865614381422398 h001 (1/5*exp(2)+2/3)/(9/10*exp(2)+5/6) 2865614383916481 r009 Re(z^3+c),c=-17/40+13/32*I,n=18 2865614386515535 m001 (Psi(1,1/3)-HardyLittlewoodC5)^arctan(1/2) 2865614386537643 r005 Re(z^2+c),c=-17/62+29/60*I,n=48 2865614403966472 a007 Real Root Of -316*x^4-852*x^3+234*x^2+381*x+430 2865614404410034 r005 Im(z^2+c),c=-33/118+13/29*I,n=59 2865614423298249 r002 12th iterates of z^2 + 2865614426154549 r005 Im(z^2+c),c=-77/90+11/48*I,n=3 2865614438287439 r002 4th iterates of z^2 + 2865614443928267 a007 Real Root Of -204*x^4-415*x^3+717*x^2+579*x-238 2865614446944506 r005 Re(z^2+c),c=7/114+15/26*I,n=3 2865614447830778 l006 ln(3125/4162) 2865614452602886 m002 3+3*Pi^6-E^Pi/ProductLog[Pi] 2865614452815799 a008 Real Root of x^3-x^2+114*x-342 2865614463337833 m001 Zeta(5)*BesselI(1,1)+BesselI(0,2) 2865614477387147 r005 Re(z^2+c),c=-95/98+5/27*I,n=8 2865614479151543 r005 Im(z^2+c),c=-25/122+21/50*I,n=45 2865614486459021 a007 Real Root Of -378*x^4-861*x^3+794*x^2+764*x+898 2865614487341344 a007 Real Root Of 176*x^4+509*x^3-333*x^2-655*x+967 2865614488833246 b008 -1/9+BesselI[1,Khinchin] 2865614506041077 m001 sin(Pi/5)/exp(TreeGrowth2nd)^2*sinh(1) 2865614506509323 s001 sum(exp(-2*Pi/5)^n*A259294[n],n=1..infinity) 2865614506509323 s002 sum(A259294[n]/(exp(2/5*pi*n)),n=1..infinity) 2865614512468893 r005 Im(z^2+c),c=-25/122+21/50*I,n=53 2865614516211848 a001 34/39603*47^(41/45) 2865614517204232 m001 HardHexagonsEntropy*Trott2nd^BesselJ(1,1) 2865614524932278 r005 Im(z^2+c),c=5/23+12/59*I,n=7 2865614528458203 a007 Real Root Of 280*x^4+564*x^3-473*x^2+877*x+788 2865614528959849 p003 LerchPhi(1/3,4,214/155) 2865614537696826 m004 (-6*Sqrt[5])/Pi+(Pi*Tanh[Sqrt[5]*Pi])/Sqrt[5] 2865614539744240 m001 (Mills+MinimumGamma)/(CareFree+MertensB1) 2865614569054788 m001 Conway^2*ln(Cahen)/MertensB1 2865614572543061 m001 exp(1/Pi)-ln(2+3^(1/2))+FransenRobinson 2865614573404994 r009 Re(z^3+c),c=-61/118+1/2*I,n=38 2865614574514315 a005 (1/sin(67/171*Pi))^956 2865614584655695 r009 Im(z^3+c),c=-11/29+13/62*I,n=4 2865614587631737 r005 Re(z^2+c),c=4/17+11/25*I,n=35 2865614588058311 m005 (1/2*5^(1/2)+5/7)/(6*Zeta(3)-9/11) 2865614593639545 m001 1/ln(GAMMA(1/24))^2*Si(Pi)^2/Zeta(3) 2865614608275112 m001 BesselJ(1,1)/(GaussKuzminWirsing-Tribonacci) 2865614609114385 a001 2/55*55^(17/33) 2865614612296561 m001 Porter/(FibonacciFactorial-TravellingSalesman) 2865614614510414 a007 Real Root Of -4*x^4+69*x^3-558*x^2+623*x+226 2865614625644791 m001 (BesselK(1,1)+Backhouse)/(Ei(1,1)+Zeta(1,2)) 2865614626095667 m001 1/ln(RenyiParking)/Rabbit^2/cosh(1)^2 2865614628949784 r009 Re(z^3+c),c=-5/12+13/33*I,n=32 2865614630209442 m001 (3^(1/3))*CareFree*exp(Zeta(5)) 2865614631862883 r005 Im(z^2+c),c=-25/122+21/50*I,n=55 2865614635089753 r005 Re(z^2+c),c=17/46+10/43*I,n=24 2865614635486939 m001 exp(CareFree)*Backhouse^2*Sierpinski^2 2865614645817646 r005 Im(z^2+c),c=-25/122+21/50*I,n=58 2865614647519839 r005 Im(z^2+c),c=-25/122+21/50*I,n=56 2865614656602347 b008 1/15-5*Sqrt[33] 2865614656863398 m001 GAMMA(3/4)*BesselI(0,2)*GAMMA(23/24) 2865614665236673 r005 Im(z^2+c),c=-25/122+21/50*I,n=61 2865614665974801 p001 sum(1/(243*n+107)/n/(100^n),n=1..infinity) 2865614675186396 r005 Re(z^2+c),c=-41/118+11/48*I,n=31 2865614676873689 r005 Im(z^2+c),c=-25/122+21/50*I,n=64 2865614683994921 r005 Im(z^2+c),c=-5/46+1/29*I,n=4 2865614684357763 r009 Re(z^3+c),c=-3/16+49/50*I,n=26 2865614685814730 r005 Im(z^2+c),c=-25/122+21/50*I,n=59 2865614688034254 r005 Im(z^2+c),c=-25/122+21/50*I,n=63 2865614690022038 r005 Im(z^2+c),c=-25/122+21/50*I,n=52 2865614691327064 r005 Im(z^2+c),c=-25/122+21/50*I,n=62 2865614696731955 r005 Re(z^2+c),c=-37/78+23/34*I,n=8 2865614698076976 r009 Im(z^3+c),c=-13/24+10/39*I,n=42 2865614700402387 a007 Real Root Of -224*x^4-503*x^3+152*x^2-779*x-212 2865614701200702 r005 Im(z^2+c),c=47/122+7/54*I,n=9 2865614703757203 r005 Im(z^2+c),c=-25/122+21/50*I,n=60 2865614718082066 a007 Real Root Of 888*x^4+389*x^3+415*x^2-440*x-157 2865614721222533 r005 Re(z^2+c),c=-9/14+58/243*I,n=2 2865614725145214 m001 1/sin(Pi/12)^2/log(1+sqrt(2))*exp(sqrt(2))^2 2865614730291434 m005 (-1/8+1/4*5^(1/2))/(5/11*3^(1/2)+8/11) 2865614736960253 m005 (1/2*3^(1/2)+1/6)/(4/9*Pi-5) 2865614746759784 r009 Im(z^3+c),c=-37/94+9/44*I,n=17 2865614747031135 r005 Im(z^2+c),c=-25/122+21/50*I,n=57 2865614764621750 m001 (HardyLittlewoodC4-Mills)/(Ei(1)+BesselI(1,2)) 2865614770043368 a003 cos(Pi*9/67)-sin(Pi*17/79) 2865614771218593 h005 exp(cos(Pi*4/55)/cos(Pi*13/32)) 2865614775926310 r002 59th iterates of z^2 + 2865614777681796 r005 Im(z^2+c),c=-23/74+17/37*I,n=46 2865614780827021 m001 (FeigenbaumMu-KhinchinLevy)/(Bloch-Conway) 2865614789977196 a001 123/89*317811^(8/19) 2865614793170888 l006 ln(259/4548) 2865614801068359 s002 sum(A041676[n]/(64^n),n=1..infinity) 2865614801558089 r005 Im(z^2+c),c=-11/56+5/12*I,n=43 2865614825768712 m001 (Chi(1)+LambertW(1))/(-cos(1/12*Pi)+PlouffeB) 2865614826487427 r005 Re(z^2+c),c=-33/34+3/80*I,n=8 2865614826779619 a001 103361/8*2584^(11/16) 2865614827948727 m001 (Magata+PlouffeB)/(BesselI(1,2)-CopelandErdos) 2865614829533348 r005 Re(z^2+c),c=-45/122+1/63*I,n=12 2865614830238455 a007 Real Root Of 311*x^4-379*x^3-900*x^2-828*x+318 2865614841090796 r005 Im(z^2+c),c=-25/122+21/50*I,n=54 2865614846485327 l006 ln(6027/8027) 2865614849214555 m005 (13/42+1/6*5^(1/2))/(11/12*exp(1)-1/9) 2865614853004191 a001 9349/144*5702887^(11/16) 2865614878736498 a007 Real Root Of 961*x^4-347*x^3+780*x^2-863*x-326 2865614884170767 r005 Im(z^2+c),c=-17/44+8/19*I,n=11 2865614887398043 m001 (Otter+Thue)/(Artin-Niven) 2865614888815955 a007 Real Root Of -439*x^4-952*x^3+998*x^2+26*x-920 2865614895823012 a003 sin(Pi*12/85)*sin(Pi*27/116) 2865614902709449 b008 -1/2+(-1/7+Sqrt[2])^(-1) 2865614903773290 a001 123/433494437*121393^(13/22) 2865614903796272 a001 41/75283811239*4807526976^(13/22) 2865614904370802 a007 Real Root Of 592*x^4-780*x^3-367*x^2-759*x+262 2865614910274240 a001 11/1597*121393^(17/33) 2865614933951757 a001 5/11*123^(31/36) 2865614943913264 a007 Real Root Of -273*x^4-425*x^3+397*x^2+622*x-199 2865614951489879 m001 (ln(2)+FeigenbaumKappa)/(Sarnak-ZetaQ(3)) 2865614953141599 m002 -6-Csch[Pi]+3*ProductLog[Pi] 2865614953574892 a001 11/46368*34^(3/56) 2865614953882625 a003 sin(Pi*1/112)/cos(Pi*5/76) 2865614959651705 r002 33th iterates of z^2 + 2865614960724671 s002 sum(A204378[n]/(64^n),n=1..infinity) 2865614961689746 a008 Real Root of x^4-x^3-35*x^2-19*x+142 2865614986352986 m005 (1/3*gamma-2/9)/(7/10*gamma-3/10) 2865614989424381 r005 Im(z^2+c),c=-25/122+21/50*I,n=51 2865614999451239 r005 Re(z^2+c),c=7/20+6/25*I,n=9 2865615001776466 m001 1/Kolakoski^2/GlaisherKinkelin*exp(sin(1)) 2865615008115636 m005 (1/2*gamma-4/7)/(8/11*3^(1/2)-3/11) 2865615010843459 m008 (1/6*Pi^5-4)/(2/5*Pi^3+4) 2865615023673812 a007 Real Root Of 810*x^4+691*x^3+195*x^2-868*x+211 2865615023857916 r002 16th iterates of z^2 + 2865615032817000 r005 Im(z^2+c),c=-25/122+21/50*I,n=49 2865615034648981 m009 (48*Catalan+6*Pi^2+4/5)/(3*Psi(1,1/3)+6) 2865615035196782 r005 Re(z^2+c),c=-15/14+33/157*I,n=8 2865615057867087 a007 Real Root Of -334*x^4-949*x^3-x^2+46*x+331 2865615058546519 r009 Im(z^3+c),c=-14/31+5/32*I,n=32 2865615059359727 m002 E^Pi*Cosh[Pi]+16*Log[Pi] 2865615063756907 a001 3/4*76^(13/42) 2865615064137760 r005 Im(z^2+c),c=-25/122+21/50*I,n=48 2865615070306432 h005 exp(sin(Pi*1/59)+sin(Pi*26/53)) 2865615077798919 r002 6th iterates of z^2 + 2865615078045352 r001 52i'th iterates of 2*x^2-1 of 2865615080962600 a001 2/3*6765^(11/16) 2865615086580589 r005 Re(z^2+c),c=-33/118+23/49*I,n=51 2865615100940611 a007 Real Root Of -990*x^4-98*x^3-883*x^2-195*x+21 2865615106999660 a003 sin(Pi*1/13)/sin(Pi*28/89) 2865615107188547 a007 Real Root Of 9*x^4-658*x^3+655*x^2-598*x+133 2865615117398368 m001 1/exp(BesselK(1,1))/Trott*LambertW(1) 2865615118829620 a007 Real Root Of -757*x^4-17*x^3+298*x^2+377*x-127 2865615122727204 a007 Real Root Of -394*x^4-886*x^3+788*x^2+488*x+647 2865615126342832 a005 (1/cos(3/104*Pi))^1376 2865615126555413 m001 exp(-1/2*Pi)*(Totient-exp(1)) 2865615139904618 r005 Re(z^2+c),c=-7/19+1/43*I,n=15 2865615158858355 r005 Im(z^2+c),c=-6/17+17/36*I,n=37 2865615160760604 r009 Im(z^3+c),c=-1/13+28/33*I,n=6 2865615161942947 m005 (-1/18+1/6*5^(1/2))/(3*gamma-5/8) 2865615177340911 r005 Re(z^2+c),c=-16/19+10/49*I,n=28 2865615183559910 a003 cos(Pi*1/95)/sin(Pi*11/97) 2865615188412227 h003 exp(Pi*(14^(1/2)*2^(3/4)+7^(3/4))) 2865615197436584 a007 Real Root Of 379*x^4+758*x^3-503*x^2+986*x-764 2865615198100584 l006 ln(543/9535) 2865615210413751 m001 GAMMA(1/4)*ErdosBorwein/ln(GAMMA(3/4)) 2865615221629364 a003 cos(Pi*28/69)*sin(Pi*37/84) 2865615224582190 v002 sum(1/(2^n*(19*n^2-24*n+27)),n=1..infinity) 2865615224985598 m001 Grothendieck+ln(Pi)^Lehmer 2865615244651082 s002 sum(A238237[n]/(pi^n-1),n=1..infinity) 2865615245758012 r005 Im(z^2+c),c=-23/70+26/57*I,n=12 2865615264552104 r002 60th iterates of z^2 + 2865615266784842 r005 Im(z^2+c),c=-33/118+13/29*I,n=58 2865615274902580 m001 (Ei(1)+Lehmer)/(2^(1/2)-Psi(1,1/3)) 2865615275773891 l006 ln(2902/3865) 2865615283216308 r005 Re(z^2+c),c=-21/50+28/51*I,n=41 2865615287062477 a003 cos(Pi*2/31)-sin(Pi*29/119) 2865615293882638 m006 (2*exp(2*Pi)-3/4)/(5/6/Pi-4) 2865615294911388 g006 Psi(1,1/4)-Psi(1,5/12)-Psi(1,7/11)-Psi(1,6/11) 2865615297094926 a001 103682/21*89^(19/21) 2865615307985524 r009 Im(z^3+c),c=-11/32+15/64*I,n=18 2865615312773038 r005 Im(z^2+c),c=17/56+5/58*I,n=26 2865615316237090 r009 Im(z^3+c),c=-11/32+15/64*I,n=22 2865615316256940 r005 Re(z^2+c),c=-31/90+12/49*I,n=31 2865615325282706 l006 ln(6295/6478) 2865615328555146 r009 Im(z^3+c),c=-11/32+15/64*I,n=25 2865615328712841 a005 (1/cos(4/235*Pi))^736 2865615332174162 a007 Real Root Of 13*x^4-327*x^3+999*x^2-608*x+357 2865615336978653 r005 Re(z^2+c),c=-3/26+14/25*I,n=11 2865615338682625 r005 Re(z^2+c),c=-5/48+36/55*I,n=54 2865615338905653 m002 -Pi^5-Pi*Log[Pi]+E^Pi*Tanh[Pi] 2865615340074095 r005 Re(z^2+c),c=-13/74+18/31*I,n=25 2865615341007749 m001 (ln(2)+Ei(1))/(FeigenbaumKappa-ZetaP(2)) 2865615344893469 m001 (Chi(1)+exp(1/exp(1)))/(-Landau+Totient) 2865615357701476 m005 (1/2*exp(1)-1/9)/(-25/42+1/14*5^(1/2)) 2865615368071653 r005 Im(z^2+c),c=17/64+31/53*I,n=40 2865615373634503 a007 Real Root Of -357*x^4-831*x^3+534*x^2+250*x+850 2865615385038667 r005 Im(z^2+c),c=-33/118+13/29*I,n=64 2865615385177153 r005 Im(z^2+c),c=-59/94+17/48*I,n=42 2865615389705247 r009 Im(z^3+c),c=-11/32+15/64*I,n=26 2865615392575935 r005 Im(z^2+c),c=-1/16+18/47*I,n=6 2865615392594362 a007 Real Root Of -78*x^4-11*x^3+937*x^2+986*x+132 2865615395965349 r009 Im(z^3+c),c=-11/32+15/64*I,n=29 2865615399555356 r009 Im(z^3+c),c=-11/32+15/64*I,n=30 2865615400341021 r009 Im(z^3+c),c=-11/32+15/64*I,n=33 2865615400541767 r009 Im(z^3+c),c=-11/32+15/64*I,n=34 2865615400618598 r009 Im(z^3+c),c=-11/32+15/64*I,n=37 2865615400629035 r009 Im(z^3+c),c=-11/32+15/64*I,n=38 2865615400635747 r009 Im(z^3+c),c=-11/32+15/64*I,n=41 2865615400636224 r009 Im(z^3+c),c=-11/32+15/64*I,n=42 2865615400636773 r009 Im(z^3+c),c=-11/32+15/64*I,n=45 2865615400636789 r009 Im(z^3+c),c=-11/32+15/64*I,n=46 2865615400636832 r009 Im(z^3+c),c=-11/32+15/64*I,n=50 2865615400636832 r009 Im(z^3+c),c=-11/32+15/64*I,n=49 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=54 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=53 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=58 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=57 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=62 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=61 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=63 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=64 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=59 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=60 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=55 2865615400636835 r009 Im(z^3+c),c=-11/32+15/64*I,n=56 2865615400636836 r009 Im(z^3+c),c=-11/32+15/64*I,n=51 2865615400636836 r009 Im(z^3+c),c=-11/32+15/64*I,n=52 2865615400636848 r009 Im(z^3+c),c=-11/32+15/64*I,n=48 2865615400636850 r009 Im(z^3+c),c=-11/32+15/64*I,n=47 2865615400637004 r009 Im(z^3+c),c=-11/32+15/64*I,n=44 2865615400637097 r009 Im(z^3+c),c=-11/32+15/64*I,n=43 2865615400639029 r009 Im(z^3+c),c=-11/32+15/64*I,n=40 2865615400641311 r009 Im(z^3+c),c=-11/32+15/64*I,n=39 2865615400664255 r009 Im(z^3+c),c=-11/32+15/64*I,n=36 2865615400710553 r009 Im(z^3+c),c=-11/32+15/64*I,n=35 2865615400960933 r009 Im(z^3+c),c=-11/32+15/64*I,n=32 2865615401815999 r009 Im(z^3+c),c=-11/32+15/64*I,n=31 2865615404144565 r009 Im(z^3+c),c=-11/32+15/64*I,n=28 2865615407357100 r005 Re(z^2+c),c=31/90+5/32*I,n=56 2865615413375988 m001 (Tribonacci+Trott2nd)/(TwinPrimes-ZetaQ(3)) 2865615419037299 r009 Im(z^3+c),c=-11/32+15/64*I,n=27 2865615419478734 r005 Re(z^2+c),c=-5/66+41/64*I,n=52 2865615429425024 r005 Im(z^2+c),c=17/126+15/59*I,n=12 2865615432682962 r009 Im(z^3+c),c=-11/32+15/64*I,n=24 2865615435089258 m001 HardyLittlewoodC5^(BesselJ(0,1)*FeigenbaumC) 2865615441442419 m001 ln(BesselK(0,1))^2/CopelandErdos^2*GAMMA(5/12) 2865615442383475 m001 (Bloch-PisotVijayaraghavan)/(Pi+Zeta(1,-1)) 2865615464705019 r005 Re(z^2+c),c=-41/118+11/48*I,n=33 2865615468646095 a007 Real Root Of -640*x^4+545*x^3-890*x^2+746*x+304 2865615473843309 a001 46/141*12586269025^(11/16) 2865615475822099 m004 3-(5*Sin[Sqrt[5]*Pi])/(8*Pi) 2865615479528050 m001 exp(1/Pi)^HardHexagonsEntropy+Mills 2865615487525003 r005 Im(z^2+c),c=-29/46+13/51*I,n=7 2865615516609976 a007 Real Root Of -186*x^4-261*x^3+550*x^2-757*x-285 2865615518808651 r005 Im(z^2+c),c=-49/94+19/35*I,n=4 2865615536984684 a007 Real Root Of -21*x^4-596*x^3+170*x^2+149*x+666 2865615555239678 r002 28th iterates of z^2 + 2865615555379586 r005 Im(z^2+c),c=31/122+11/59*I,n=7 2865615557910357 m001 Pi/(Psi(2,1/3)-ln(5))*polylog(4,1/2) 2865615567384916 l006 ln(284/4987) 2865615570789885 r002 10th iterates of z^2 + 2865615575016940 r009 Im(z^3+c),c=-11/32+15/64*I,n=20 2865615579379421 a007 Real Root Of 479*x^4+252*x^3-18*x^2-716*x-201 2865615588235081 a007 Real Root Of -92*x^4-101*x^3+255*x^2-453*x+435 2865615599044549 a007 Real Root Of 30*x^4-979*x^3-240*x^2-33*x+52 2865615604445385 a007 Real Root Of 195*x^4+508*x^3-74*x^2+293*x+252 2865615606177601 m005 (1/2*2^(1/2)-1/12)/(15/11+4/11*5^(1/2)) 2865615607343162 m001 (-Cahen+Trott)/(BesselJ(0,1)+3^(1/3)) 2865615619035708 r009 Re(z^3+c),c=-11/62+62/63*I,n=36 2865615620730741 a007 Real Root Of 140*x^4+520*x^3+568*x^2+652*x 2865615639335580 m001 (Zeta(1/2)+Niven)/(sin(1/5*Pi)-3^(1/3)) 2865615641813322 m005 (1/2*Zeta(3)+5/9)/(3/5*2^(1/2)-8/9) 2865615664541631 h001 (1/9*exp(1)+2/11)/(4/11*exp(1)+7/10) 2865615667490258 m009 (20/3*Catalan+5/6*Pi^2+2/3)/(1/8*Pi^2+4) 2865615668072762 m001 (GAMMA(7/12)-Sarnak)/(Zeta(5)+Pi^(1/2)) 2865615675990755 r005 Im(z^2+c),c=-25/94+29/63*I,n=10 2865615677258304 p001 sum(1/(381*n+301)/n/(512^n),n=1..infinity) 2865615681530362 r009 Im(z^3+c),c=-11/32+15/64*I,n=23 2865615688291990 m001 2^(1/3)+sin(1)+LandauRamanujan 2865615688291990 m001 sin(1)+(2^(1/3))+LandauRamanujan 2865615698308383 r009 Re(z^3+c),c=-25/58+13/33*I,n=13 2865615727575733 a007 Real Root Of 281*x^4+838*x^3+93*x^2-13*x-30 2865615738000976 r009 Im(z^3+c),c=-19/78+11/40*I,n=10 2865615739368599 l006 ln(5581/7433) 2865615739368599 p004 log(7433/5581) 2865615745066246 m001 ReciprocalLucas^Mills+ZetaP(2) 2865615748332067 p001 sum(1/(398*n+381)/(6^n),n=0..infinity) 2865615753719822 m001 (sin(1/5*Pi)-ln(2^(1/2)+1))/(Zeta(1,-1)-Thue) 2865615757129615 r005 Im(z^2+c),c=-19/26+21/76*I,n=36 2865615761201864 r005 Re(z^2+c),c=-41/78+13/25*I,n=49 2865615766476317 r005 Re(z^2+c),c=7/36+27/62*I,n=50 2865615770739431 m001 ThueMorse^Ei(1)+2/3*Pi*3^(1/2)/GAMMA(2/3) 2865615770739431 m001 ThueMorse^Ei(1)+GAMMA(1/3) 2865615773046710 m001 (Champernowne-DuboisRaymond)/(Otter-PlouffeB) 2865615773224016 m001 (-Artin+Sierpinski)/(Chi(1)-ln(5)) 2865615774847421 r005 Im(z^2+c),c=23/106+7/36*I,n=21 2865615778133186 r009 Re(z^3+c),c=-5/28+24/25*I,n=54 2865615779268435 m001 exp(KhintchineHarmonic)^2*Bloch/cos(1) 2865615783257570 m001 5^(1/2)*(Zeta(1,2)+AlladiGrinstead) 2865615785096762 r009 Im(z^3+c),c=-15/64+5/18*I,n=10 2865615806048293 a007 Real Root Of -184*x^4-608*x^3-555*x^2-998*x-202 2865615808857597 h002 exp(1/5*(5*5^(3/4)-9^(2/3))^(1/2)*5^(1/4)) 2865615812727338 r009 Im(z^3+c),c=-39/82+7/54*I,n=25 2865615823755304 r005 Im(z^2+c),c=-31/98+6/13*I,n=55 2865615826149052 a005 (1/cos(15/43*Pi))^19 2865615828561409 r005 Re(z^2+c),c=-29/102+29/44*I,n=14 2865615832138705 r005 Im(z^2+c),c=5/114+4/13*I,n=17 2865615843849363 m001 (3^(1/3))/(GAMMA(1/3)^GAMMA(13/24)) 2865615845813943 r005 Im(z^2+c),c=9/56+35/62*I,n=4 2865615845931243 p003 LerchPhi(1/6,5,91/178) 2865615849635168 m001 (polylog(4,1/2)+GAMMA(7/12))/(Kac-Totient) 2865615858647633 r005 Re(z^2+c),c=17/90+29/53*I,n=63 2865615869931621 r009 Im(z^3+c),c=-61/102+23/49*I,n=12 2865615878526091 r009 Re(z^3+c),c=-29/74+7/20*I,n=21 2865615891239646 m001 cos(Pi/5)*cos(Pi/12)/exp(sqrt(1+sqrt(3)))^2 2865615946964117 h005 exp(sin(Pi*4/45)+sin(Pi*17/60)) 2865615958096693 m005 (1/2*Zeta(3)-2/9)/(1/4*3^(1/2)+8/9) 2865615962904253 m001 (Zeta(3)*BesselI(0,2)+CareFree)/Zeta(3) 2865615966419501 m005 (1/3*3^(1/2)+3/4)/(3/10*gamma-7/11) 2865615970220512 m001 (MertensB1+MinimumGamma*OneNinth)/MinimumGamma 2865615973824778 r005 Re(z^2+c),c=-19/66+21/47*I,n=25 2865615987662556 s002 sum(A213061[n]/((exp(n)+1)*n),n=1..infinity) 2865615989836557 m001 ZetaQ(3)^Si(Pi)*HardHexagonsEntropy^Si(Pi) 2865616005380994 r005 Re(z^2+c),c=-29/86+12/43*I,n=34 2865616010140409 m005 (1/2*Zeta(3)-3)/(6/11*Catalan-7/12) 2865616014444511 a001 1/9*(1/2*5^(1/2)+1/2)^21*3^(1/21) 2865616035681756 m001 1/GAMMA(7/24)*Trott^2*exp(Zeta(7))^2 2865616075627213 m001 (Zeta(3)+ln(3))/(HardHexagonsEntropy-Lehmer) 2865616077388867 r005 Re(z^2+c),c=-63/52+16/63*I,n=6 2865616079391512 r005 Re(z^2+c),c=-61/78+5/44*I,n=64 2865616087355574 m001 (2^(1/2)+Chi(1))/(-Zeta(5)+MasserGramainDelta) 2865616099611147 r005 Re(z^2+c),c=-17/60+18/43*I,n=12 2865616100959830 a001 969323029/610*832040^(11/20) 2865616100960406 a001 4870847/610*12586269025^(11/20) 2865616102444330 m001 (FeigenbaumB-LaplaceLimit)^CareFree 2865616103294912 m002 -Cosh[Pi]/4+Coth[Pi]/Pi^3 2865616104855893 m008 (5*Pi+5/6)/(3/5*Pi^6+2/5) 2865616109613438 r005 Re(z^2+c),c=-13/50+30/53*I,n=42 2865616129122192 m002 -Log[Pi]/2+(4*ProductLog[Pi])/5 2865616131555610 r005 Im(z^2+c),c=17/58+6/53*I,n=60 2865616133187719 m001 1/exp(Porter)^3*GAMMA(7/12)^2 2865616134634442 a007 Real Root Of 431*x^4+453*x^3+673*x^2-745*x-261 2865616143254203 r005 Re(z^2+c),c=-41/118+11/48*I,n=35 2865616146034094 s001 sum(1/10^(n-1)*A009746[n]/n!,n=1..infinity) 2865616148562604 m001 1/CareFree*MertensB1/exp(sin(Pi/12)) 2865616151949563 m001 (-FeigenbaumDelta+Weierstrass)/(1+arctan(1/2)) 2865616155259292 r005 Im(z^2+c),c=-31/29+13/46*I,n=3 2865616159674080 r005 Re(z^2+c),c=-11/29+11/52*I,n=5 2865616172889563 r005 Re(z^2+c),c=-19/54+13/64*I,n=10 2865616180377588 r005 Re(z^2+c),c=-41/118+11/48*I,n=38 2865616187351100 r005 Im(z^2+c),c=-25/122+21/50*I,n=46 2865616192180554 m001 (Ei(1)-Otter*Riemann2ndZero)/Riemann2ndZero 2865616194633185 r005 Im(z^2+c),c=-13/32+2/43*I,n=18 2865616205497920 a007 Real Root Of -973*x^4+52*x^3-315*x^2+748*x+248 2865616212254528 h002 exp(1/6*(2^(2/3)-10^(3/4))*6^(1/4)) 2865616212829689 h001 (-3*exp(-3)+3)/(-exp(2/3)-8) 2865616213234391 m001 cos(1/5*Pi)^GAMMA(23/24)/FransenRobinson 2865616216321131 l006 ln(309/5426) 2865616222740750 a007 Real Root Of -383*x^4-874*x^3+567*x^2-119*x+263 2865616224489795 r005 Im(z^2+c),c=-29/56+7/25*I,n=3 2865616225741362 r005 Re(z^2+c),c=-41/118+11/48*I,n=40 2865616232952603 r005 Re(z^2+c),c=-41/118+11/48*I,n=36 2865616239583938 r005 Re(z^2+c),c=-13/56+19/36*I,n=19 2865616241552912 l006 ln(2679/3568) 2865616242484692 a001 3/1346269*610^(2/51) 2865616248906635 r005 Im(z^2+c),c=17/62+17/50*I,n=5 2865616254954421 b008 Gamma[(E+ArcCsch[2])^(-1)] 2865616255836264 m001 (-exp(-1/2*Pi)+1)/(LandauRamanujan+2) 2865616255997711 r005 Re(z^2+c),c=-41/118+11/48*I,n=45 2865616256191488 a007 Real Root Of 210*x^4-629*x^3-771*x^2-618*x-130 2865616256824298 r005 Re(z^2+c),c=-41/118+11/48*I,n=42 2865616257171428 r005 Re(z^2+c),c=-41/118+11/48*I,n=43 2865616258266150 r005 Re(z^2+c),c=-13/38+17/60*I,n=7 2865616258442950 r005 Re(z^2+c),c=-41/118+11/48*I,n=47 2865616259680955 r005 Re(z^2+c),c=-41/118+11/48*I,n=50 2865616259683974 r005 Re(z^2+c),c=-41/118+11/48*I,n=52 2865616259809993 r005 Re(z^2+c),c=-41/118+11/48*I,n=54 2865616259834738 r005 Re(z^2+c),c=-41/118+11/48*I,n=49 2865616259856345 r005 Re(z^2+c),c=-41/118+11/48*I,n=57 2865616259859036 r005 Re(z^2+c),c=-41/118+11/48*I,n=59 2865616259865310 r005 Re(z^2+c),c=-41/118+11/48*I,n=61 2865616259866919 r005 Re(z^2+c),c=-41/118+11/48*I,n=64 2865616259867906 r005 Re(z^2+c),c=-41/118+11/48*I,n=63 2865616259868024 r005 Re(z^2+c),c=-41/118+11/48*I,n=62 2865616259870869 r005 Re(z^2+c),c=-41/118+11/48*I,n=56 2865616259872551 r005 Re(z^2+c),c=-41/118+11/48*I,n=60 2865616259878994 r005 Re(z^2+c),c=-41/118+11/48*I,n=58 2865616259885387 r005 Re(z^2+c),c=-41/118+11/48*I,n=55 2865616259983941 r005 Re(z^2+c),c=-41/118+11/48*I,n=53 2865616260094970 r005 Re(z^2+c),c=-41/118+11/48*I,n=51 2865616260409887 r005 Re(z^2+c),c=-41/118+11/48*I,n=48 2865616261092124 r002 11th iterates of z^2 + 2865616262505897 r005 Re(z^2+c),c=-41/118+11/48*I,n=46 2865616264215891 r005 Re(z^2+c),c=-41/118+11/48*I,n=44 2865616274828998 r005 Re(z^2+c),c=-41/118+11/48*I,n=41 2865616280336685 a007 Real Root Of 90*x^4+44*x^3-343*x^2+886*x+322 2865616282276855 r009 Re(z^3+c),c=-49/122+18/49*I,n=33 2865616295493821 m001 (ln(2)-ln(2+3^(1/2)))/(Porter+Rabbit) 2865616297860549 r005 Re(z^2+c),c=-1/4+26/49*I,n=30 2865616305851405 a001 4*(1/2*5^(1/2)+1/2)^27*4^(6/17) 2865616306788293 a007 Real Root Of 407*x^4+961*x^3-549*x^2+365*x+723 2865616317173951 m001 (Psi(1,1/3)+GAMMA(11/12))/(Mills+Sierpinski) 2865616318305115 r005 Re(z^2+c),c=-41/118+11/48*I,n=39 2865616322896229 a007 Real Root Of 322*x^4+944*x^3+209*x^2+285*x-399 2865616338921582 r005 Re(z^2+c),c=-41/118+11/48*I,n=37 2865616345326398 a007 Real Root Of -225*x^4+328*x^3-150*x^2+190*x+76 2865616348955669 a007 Real Root Of 192*x^4+490*x^3-270*x^2-442*x-466 2865616352386502 a007 Real Root Of 293*x^4+469*x^3-821*x^2+494*x-564 2865616354169861 r002 51th iterates of z^2 + 2865616355345343 r005 Im(z^2+c),c=5/12+9/37*I,n=8 2865616357388410 a007 Real Root Of -442*x^4-987*x^3+688*x^2-656*x-950 2865616361896755 m006 (5/Pi+4)/(4/5*exp(Pi)+1) 2865616363754687 m001 (5^(1/2)+Gompertz)/(Stephens+ThueMorse) 2865616363958838 m001 (Pi-MadelungNaCl)/(PlouffeB+Trott) 2865616373524407 r009 Re(z^3+c),c=-41/86+5/14*I,n=6 2865616379435418 a001 3/521*(1/2*5^(1/2)+1/2)^3*521^(16/21) 2865616389362601 r005 Re(z^2+c),c=-27/94+22/49*I,n=48 2865616393503582 a007 Real Root Of 194*x^4+839*x^3+548*x^2-922*x-481 2865616395395038 r005 Re(z^2+c),c=-41/118+11/48*I,n=29 2865616397281450 r009 Im(z^3+c),c=-25/106+12/43*I,n=4 2865616404208114 m001 (StronglyCareFree-Trott)/(Pi-Bloch) 2865616404716071 a003 sin(Pi*5/58)/cos(Pi*7/60) 2865616408643300 r005 Re(z^2+c),c=-31/118+22/43*I,n=54 2865616432787408 r008 a(0)=3,K{-n^6,-5+49*n-46*n^2+7*n^3} 2865616439153968 a003 cos(Pi*20/119)-sin(Pi*19/97) 2865616439182198 m002 -12*E^Pi-Pi^2+Tanh[Pi] 2865616439407309 r005 Im(z^2+c),c=-39/38+5/19*I,n=3 2865616448259586 m001 RenyiParking^2/ln(Niven)^2*Zeta(1/2) 2865616487083678 m005 (-1/2+1/4*5^(1/2))/(6/7*5^(1/2)+1/7) 2865616494460448 p001 sum((-1)^n/(441*n+337)/(12^n),n=0..infinity) 2865616499669096 m001 BesselJZeros(0,1)*GAMMA(11/24)-exp(gamma) 2865616503728428 a007 Real Root Of -301*x^4-695*x^3+141*x^2-730*x+693 2865616512749905 m001 (Zeta(1,-1)-Cahen)/(FeigenbaumKappa+Porter) 2865616515227492 r005 Re(z^2+c),c=35/102+8/23*I,n=40 2865616523693682 r005 Im(z^2+c),c=29/94+1/21*I,n=64 2865616528408117 m001 1/Lehmer*ln(Si(Pi))^2/sqrt(5) 2865616550303218 a007 Real Root Of -311*x^4-670*x^3+540*x^2-223*x+132 2865616570037352 a007 Real Root Of -384*x^4+178*x^3+74*x^2+521*x+150 2865616576723953 g007 Psi(2,11/12)+Psi(2,4/9)+Psi(2,5/7)-Psi(2,9/11) 2865616582647282 s002 sum(A114607[n]/((exp(n)+1)*n),n=1..infinity) 2865616582647282 s002 sum(A123110[n]/((exp(n)+1)*n),n=1..infinity) 2865616607894712 a001 55/843*843^(28/31) 2865616612722523 r005 Im(z^2+c),c=-41/118+7/12*I,n=58 2865616631214099 p001 sum(1/(151*n+35)/(64^n),n=0..infinity) 2865616631679085 m005 (1/2*2^(1/2)-5/9)/(1/2*gamma+5) 2865616633018560 a007 Real Root Of -164*x^4-496*x^3-517*x^2-947*x+919 2865616645085236 m005 (1/3*2^(1/2)+1/9)/(1/7*Zeta(3)-3/8) 2865616648351954 r005 Re(z^2+c),c=-41/118+11/48*I,n=34 2865616662546346 r005 Im(z^2+c),c=-25/36+4/43*I,n=49 2865616666249655 a007 Real Root Of -25*x^4-717*x^3-46*x^2-849*x-576 2865616690159772 a007 Real Root Of -321*x^4-646*x^3+923*x^2+402*x+17 2865616693605101 m001 (BesselK(1,1)+ZetaP(4))/(exp(Pi)+cos(1)) 2865616705272109 m009 (1/3*Psi(1,2/3)-1/3)/(5/2*Pi^2-2/3) 2865616706015964 r009 Re(z^3+c),c=-11/29+17/52*I,n=26 2865616708541880 m001 HardyLittlewoodC3^DuboisRaymond-Zeta(3) 2865616715396990 a007 Real Root Of -509*x^4+418*x^3-600*x^2+881*x+315 2865616716269914 a007 Real Root Of 326*x^4-439*x^3-903*x^2-676*x+276 2865616721465771 m008 (3*Pi^3+3/5)/(1/3*Pi^4+1/5) 2865616736094861 a003 cos(Pi*42/103)/sin(Pi*39/82) 2865616737159657 r002 10th iterates of z^2 + 2865616741998650 a007 Real Root Of 170*x^4+604*x^3+719*x^2+873*x-653 2865616743687644 m004 -6-100*Pi+5*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 2865616746857030 m001 ln(TwinPrimes)*FeigenbaumB^2/Zeta(9)^2 2865616755286032 a007 Real Root Of 814*x^4+884*x^3+762*x^2-704*x-249 2865616755803711 a007 Real Root Of -324*x^4-566*x^3+640*x^2-835*x+881 2865616762323905 m001 ln(GAMMA(11/12))/(2^(1/3))^2*sin(1) 2865616765156836 r005 Re(z^2+c),c=23/70+19/47*I,n=31 2865616768110875 l006 ln(334/5865) 2865616769301078 m001 (Bloch+HeathBrownMoroz)/(Salem+Weierstrass) 2865616783945986 b008 ArcCsch[E+Csch[1]^2] 2865616787354374 l006 ln(5135/6839) 2865616794603605 m001 3^(1/2)-Pi-Backhouse 2865616794603605 m001 Pi-sqrt(3)+Backhouse 2865616794993482 h002 exp(6^(7/4)-12^(12/11)) 2865616794993482 h007 exp(6^(7/4)-12^(12/11)) 2865616814390480 m006 (5*exp(Pi)-2/5)/(3/4*exp(2*Pi)+3/4) 2865616821493338 r005 Re(z^2+c),c=-35/114+25/64*I,n=40 2865616854990628 r002 2th iterates of z^2 + 2865616854990628 r002 2th iterates of z^2 + 2865616860850259 r005 Im(z^2+c),c=-7/26+4/9*I,n=48 2865616869083650 a007 Real Root Of 252*x^4+990*x^3+774*x^2+338*x+916 2865616871895870 m001 (3^(1/2)-sin(1/12*Pi))/(Bloch+FeigenbaumDelta) 2865616872002867 s002 sum(A255896[n]/((10^n+1)/n),n=1..infinity) 2865616893388592 p004 log(23899/1361) 2865616895677216 q001 2/69793 2865616908101511 a001 5/11*11^(43/56) 2865616925219569 a001 2584/123*15127^(1/31) 2865616941881675 r005 Im(z^2+c),c=-11/26+11/25*I,n=16 2865616958093699 m001 5^(1/2)*FibonacciFactorial^Psi(2,1/3) 2865616967008735 a007 Real Root Of -777*x^4+823*x^3+549*x^2+225*x+44 2865616971737985 m001 (Salem+StolarskyHarborth)/(FeigenbaumD+Niven) 2865616972497112 a007 Real Root Of -230*x^4-660*x^3-154*x^2-214*x+630 2865616979440317 s002 sum(A255754[n]/((pi^n-1)/n),n=1..infinity) 2865616979864110 a007 Real Root Of 345*x^4+670*x^3-666*x^2+498*x-602 2865616981241410 s002 sum(A022769[n]/(n^3*pi^n+1),n=1..infinity) 2865616984076222 p001 sum(1/(559*n+543)/n/(32^n),n=1..infinity) 2865616988517990 r009 Re(z^3+c),c=-11/64+55/62*I,n=60 2865616995346732 r005 Im(z^2+c),c=-25/118+4/5*I,n=45 2865616998435825 a001 55/24476*24476^(29/31) 2865617004207021 a001 64079/5*13^(16/51) 2865617005402915 a007 Real Root Of 187*x^4+234*x^3-764*x^2+359*x+199 2865617007520103 r009 Im(z^3+c),c=-9/31+15/58*I,n=15 2865617008532557 r005 Im(z^2+c),c=-11/56+5/12*I,n=40 2865617014826236 r009 Re(z^3+c),c=-53/122+20/47*I,n=60 2865617019183152 p004 log(33601/25229) 2865617025093428 m001 MasserGramainDelta^BesselI(1,1)+MinimumGamma 2865617033078985 r005 Re(z^2+c),c=13/86+22/63*I,n=9 2865617036397736 a005 (1/cos(17/206*Pi))^1860 2865617040395556 a001 161/133957148*86267571272^(5/23) 2865617040395624 a001 322/24157817*1346269^(5/23) 2865617050045527 a001 123/4181*121393^(7/36) 2865617058868199 a007 Real Root Of -336*x^4-876*x^3+316*x^2+147*x-130 2865617065675248 a007 Real Root Of 216*x^4+605*x^3+308*x^2+662*x-961 2865617074747887 a007 Real Root Of 300*x^4+112*x^3-432*x^2-946*x-235 2865617079499688 m001 (5^(1/2)+CareFree*MertensB2)/MertensB2 2865617080299592 a001 521/196418*514229^(52/59) 2865617096819694 m002 -4-Pi^2+Pi^5-6/ProductLog[Pi] 2865617112799766 m001 exp(KhintchineLevy)*Artin^2*Riemann3rdZero^2 2865617113985156 a007 Real Root Of 302*x^4+809*x^3-375*x^2-857*x-704 2865617128130689 m001 (FransenRobinson+PlouffeB)/(ln(5)-arctan(1/2)) 2865617130079173 a007 Real Root Of -631*x^4-696*x^3+178*x^2+862*x-241 2865617145575638 r004 Re(z^2+c),c=-7/20+4/19*I,z(0)=-1,n=17 2865617182379098 m003 -Cosh[1/2+Sqrt[5]/2]/20+3*Sin[1/2+Sqrt[5]/2] 2865617183546141 s002 sum(A103631[n]/((exp(n)+1)*n),n=1..infinity) 2865617186516548 s002 sum(A198062[n]/((exp(n)+1)*n),n=1..infinity) 2865617190384882 h001 (-7*exp(5)-1)/(-9*exp(6)+2) 2865617190481924 p001 sum((-1)^n/(472*n+297)/(2^n),n=0..infinity) 2865617203728173 r005 Im(z^2+c),c=-109/114+13/53*I,n=39 2865617206153458 a007 Real Root Of -336*x^4-928*x^3+227*x^2+461*x+277 2865617212433052 r002 35th iterates of z^2 + 2865617212778202 m001 LambertW(1)/Paris/ln(Zeta(9)) 2865617213621674 a001 1597/123*3571^(3/31) 2865617224457626 a007 Real Root Of 163*x^4-889*x^3+866*x^2+664*x+914 2865617239280438 m001 cos(1/12*Pi)/(Landau^Grothendieck) 2865617240142612 r005 Im(z^2+c),c=-61/110+3/64*I,n=19 2865617243049436 l006 ln(359/6304) 2865617244164471 m006 (2*ln(Pi)+1/4)/(1/4*ln(Pi)+3/5) 2865617249043123 a001 5702887/322*76^(1/9) 2865617264056269 r005 Im(z^2+c),c=-11/56+5/12*I,n=37 2865617278888915 a001 21/29*7^(41/58) 2865617287812027 r005 Re(z^2+c),c=13/64+21/43*I,n=54 2865617289923675 r008 a(0)=3,K{-n^6,18-11*n-28*n^2+29*n^3} 2865617299147516 a007 Real Root Of -388*x^4-695*x^3+845*x^2-919*x+237 2865617353053173 m001 (exp(1)+GAMMA(5/6))/(-Rabbit+Riemann1stZero) 2865617382713508 l006 ln(2456/3271) 2865617416482961 a001 2537720636/1597*832040^(11/20) 2865617416483434 a001 12752043/1597*12586269025^(11/20) 2865617422007371 r002 10th iterates of z^2 + 2865617432187551 m005 (1/2*2^(1/2)-4)/(5/6*5^(1/2)-5/7) 2865617433414043 q001 2367/826 2865617447225352 m001 1/exp(GAMMA(1/12))/Riemann3rdZero/sqrt(2) 2865617462407410 a001 322*(1/2*5^(1/2)+1/2)^12*4^(11/15) 2865617468247006 r005 Re(z^2+c),c=-31/114+23/47*I,n=60 2865617469403047 b008 1/225+Tan[6] 2865617470616696 a007 Real Root Of -445*x^4-901*x^3+966*x^2-171*x+383 2865617476365626 a007 Real Root Of -347*x^4-816*x^3+420*x^2-250*x+32 2865617485288458 m001 1/GAMMA(5/12)*PrimesInBinary^2/exp(Zeta(5)) 2865617492318887 r002 30th iterates of z^2 + 2865617503902729 r002 8th iterates of z^2 + 2865617505936879 r005 Re(z^2+c),c=-11/14+11/174*I,n=26 2865617506794364 m001 (-Ei(1,1)+RenyiParking)/(gamma+BesselI(0,1)) 2865617508331663 p004 log(32413/24337) 2865617511683022 r005 Re(z^2+c),c=-7/31+34/59*I,n=4 2865617525041041 r005 Re(z^2+c),c=-41/118+11/48*I,n=32 2865617547317535 m001 (Mills+Totient)/(BesselI(0,1)-GAMMA(19/24)) 2865617547395169 m001 ArtinRank2^(GAMMA(19/24)*Otter) 2865617551825267 r009 Im(z^3+c),c=-35/58+12/43*I,n=17 2865617559746938 m005 (3/4*gamma-2)/(-7/24+3/8*5^(1/2)) 2865617566034806 r005 Re(z^2+c),c=-19/70+26/53*I,n=62 2865617569992919 r002 6th iterates of z^2 + 2865617579205461 r009 Re(z^3+c),c=-25/54+19/41*I,n=37 2865617587409617 a007 Real Root Of 248*x^4+635*x^3+10*x^2+723*x+209 2865617593491575 r005 Re(z^2+c),c=-41/118+11/48*I,n=30 2865617603023393 m001 (FransenRobinson*Niven+Paris)/Niven 2865617606207268 a007 Real Root Of 84*x^4-182*x^3-905*x^2+971*x+267 2865617608415300 a001 6643838879/4181*832040^(11/20) 2865617608415758 a001 33385282/4181*12586269025^(11/20) 2865617609667498 a007 Real Root Of -237*x^4+714*x^3+243*x^2-18*x-30 2865617624601776 m001 (gamma+ln(Pi))/(FeigenbaumDelta+Totient) 2865617634626347 h001 (2/7*exp(2)+5/11)/(1/8*exp(1)+5/9) 2865617636417853 a001 17393796001/10946*832040^(11/20) 2865617636418309 a001 87403803/10946*12586269025^(11/20) 2865617640503371 a001 45537549124/28657*832040^(11/20) 2865617640503826 a001 228826127/28657*12586269025^(11/20) 2865617641099440 a001 119218851371/75025*832040^(11/20) 2865617641099895 a001 599074578/75025*12586269025^(11/20) 2865617641186405 a001 312119004989/196418*832040^(11/20) 2865617641186860 a001 1568397607/196418*12586269025^(11/20) 2865617641199093 a001 817138163596/514229*832040^(11/20) 2865617641199548 a001 4106118243/514229*12586269025^(11/20) 2865617641200944 a001 2139295485799/1346269*832040^(11/20) 2865617641201214 a001 5600748293801/3524578*832040^(11/20) 2865617641201254 a001 14662949395604/9227465*832040^(11/20) 2865617641201263 a001 23725150497407/14930352*832040^(11/20) 2865617641201278 a001 9062201101803/5702887*832040^(11/20) 2865617641201381 a001 494493258286/311187*832040^(11/20) 2865617641201400 a001 10749957122/1346269*12586269025^(11/20) 2865617641201670 a001 28143753123/3524578*12586269025^(11/20) 2865617641201709 a001 73681302247/9227465*12586269025^(11/20) 2865617641201715 a001 192900153618/24157817*12586269025^(11/20) 2865617641201716 a001 505019158607/63245986*12586269025^(11/20) 2865617641201716 a001 1322157322203/165580141*12586269025^(11/20) 2865617641201716 a001 3461452808002/433494437*12586269025^(11/20) 2865617641201716 a001 9062201101803/1134903170*12586269025^(11/20) 2865617641201716 a001 23725150497407/2971215073*12586269025^(11/20) 2865617641201716 a001 14662949395604/1836311903*12586269025^(11/20) 2865617641201716 a001 5600748293801/701408733*12586269025^(11/20) 2865617641201716 a001 2139295485799/267914296*12586269025^(11/20) 2865617641201716 a001 817138163596/102334155*12586269025^(11/20) 2865617641201716 a001 312119004989/39088169*12586269025^(11/20) 2865617641201718 a001 119218851371/14930352*12586269025^(11/20) 2865617641201733 a001 12752044/1597*12586269025^(11/20) 2865617641201837 a001 17393796001/2178309*12586269025^(11/20) 2865617641202088 a001 1322157322203/832040*832040^(11/20) 2865617641202544 a001 6643838879/832040*12586269025^(11/20) 2865617641206935 a001 505019158607/317811*832040^(11/20) 2865617641207390 a001 2537720636/317811*12586269025^(11/20) 2865617641240153 a001 192900153618/121393*832040^(11/20) 2865617641240608 a001 969323029/121393*12586269025^(11/20) 2865617641467831 a001 10525900321/6624*832040^(11/20) 2865617641468286 a001 370248451/46368*12586269025^(11/20) 2865617642956403 b008 Sech[Sqrt[3+Log[2]]] 2865617643028359 a001 28143753123/17711*832040^(11/20) 2865617643028815 a001 141422324/17711*12586269025^(11/20) 2865617644079753 m001 (BesselK(1,1)+Artin)/(Magata-ZetaQ(4)) 2865617650314629 m001 (5^(1/2))^(GolombDickman*Riemann3rdZero) 2865617652551896 b008 E+2*CosIntegral[Pi] 2865617653584811 r005 Im(z^2+c),c=-3/56+21/59*I,n=26 2865617653724383 a001 10749957122/6765*832040^(11/20) 2865617653724837 a001 54018521/6765*12586269025^(11/20) 2865617655794761 a007 Real Root Of -342*x^4-36*x^3+650*x^2+411*x-168 2865617656146855 l006 ln(384/6743) 2865617658589741 a007 Real Root Of 709*x^4-904*x^3+545*x^2-901*x-329 2865617665698231 m002 -Pi^3+4*Csch[Pi]+E^Pi*Csch[Pi] 2865617670596263 l005 263/44/(exp(263/88)+1) 2865617671201976 a007 Real Root Of 572*x^4-767*x^3-656*x^2-771*x+289 2865617677806072 m001 (Robbin+ZetaQ(3))/(Shi(1)+GlaisherKinkelin) 2865617678430165 m001 CopelandErdos/(GolombDickman^PrimesInBinary) 2865617679640487 r005 Im(z^2+c),c=-10/9+28/121*I,n=32 2865617680566638 r005 Im(z^2+c),c=-65/58+17/54*I,n=3 2865617683624093 r009 Re(z^3+c),c=-23/56+23/62*I,n=13 2865617690139427 a007 Real Root Of -747*x^4+533*x^3+601*x^2+575*x+133 2865617697321420 a001 89/167761*9349^(47/50) 2865617700758256 r005 Im(z^2+c),c=-25/122+21/50*I,n=38 2865617714455283 m005 (1/2*2^(1/2)-5)/(5*Pi-8/11) 2865617715469308 a007 Real Root Of -921*x^4+917*x^3-503*x^2+900*x+327 2865617715597699 r005 Im(z^2+c),c=-39/32+7/53*I,n=34 2865617716853471 q001 1/3489649 2865617727036022 a001 4106118243/2584*832040^(11/20) 2865617727036471 a001 20633239/2584*12586269025^(11/20) 2865617727325849 m001 FeigenbaumC^2/Paris^2*ln(Zeta(7)) 2865617727427242 a001 89/271443*64079^(41/50) 2865617729664762 a001 89/24476*24476^(33/50) 2865617731042854 r005 Re(z^2+c),c=-21/62+17/54*I,n=10 2865617735564426 m001 1/exp((2^(1/3)))^2/ArtinRank2^2/gamma 2865617745679649 q001 1111/3877 2865617770656921 m001 1/OneNinth/GlaisherKinkelin/exp(arctan(1/2))^2 2865617779605156 a007 Real Root Of -401*x^4-255*x^3-901*x^2+777*x+23 2865617783096885 m001 BesselJ(1,1)-DuboisRaymond^ln(Pi) 2865617787825503 m001 Lehmer^2/ln(Si(Pi))^2*GAMMA(1/6)^2 2865617807558817 m001 StronglyCareFree*(exp(-1/2*Pi)-gamma) 2865617810588805 l006 ln(7145/9516) 2865617817216722 m001 Niven/ln(Khintchine)^2*GAMMA(13/24) 2865617822420105 a001 89/3571*3571^(29/50) 2865617823117780 r005 Im(z^2+c),c=-35/34+2/65*I,n=4 2865617842720423 m006 (1/Pi+3)/(2/3*Pi^2+5) 2865617846410100 l006 ln(6123/6301) 2865617851117516 a007 Real Root Of -307*x^4-709*x^3+569*x^2+539*x+890 2865617852248319 r009 Re(z^3+c),c=-5/52+25/33*I,n=40 2865617853458273 a001 46/141*987^(37/57) 2865617859071697 r004 Re(z^2+c),c=1/8+6/17*I,z(0)=exp(7/8*I*Pi),n=35 2865617864135753 r005 Re(z^2+c),c=-27/82+14/45*I,n=19 2865617865570057 m009 (3*Psi(1,1/3)+4)/(16/3*Catalan+2/3*Pi^2+1/2) 2865617868824017 m001 (Zeta(3)+2*Pi/GAMMA(5/6))/(GAMMA(11/12)+Mills) 2865617871018318 r005 Re(z^2+c),c=-29/86+12/43*I,n=37 2865617883701555 r005 Re(z^2+c),c=-23/29+1/46*I,n=60 2865617884271341 a003 cos(Pi*9/107)-cos(Pi*9/79) 2865617889014722 a005 (1/cos(24/233*Pi))^927 2865617891201940 r009 Re(z^3+c),c=-41/122+11/45*I,n=14 2865617894733497 m005 (1/2*3^(1/2)+9/10)/(2/11*gamma-1/9) 2865617916402341 r005 Re(z^2+c),c=-2/7+29/64*I,n=49 2865617917437796 h003 exp(Pi*(1/23*6^(1/4)+1)) 2865617923850755 r002 63i'th iterates of 2*x/(1-x^2) of 2865617926267162 a003 cos(Pi*16/95)/cos(Pi*31/77) 2865617937061696 r002 58th iterates of z^2 + 2865617938982830 r009 Im(z^3+c),c=-17/36+2/15*I,n=46 2865617939281150 m001 (Zeta(3)+ErdosBorwein)/(Paris+QuadraticClass) 2865617940722104 r009 Re(z^3+c),c=-51/106+3/43*I,n=40 2865617942397941 a003 cos(Pi*1/76)-cos(Pi*25/101) 2865617951177234 r005 Re(z^2+c),c=-31/90+12/49*I,n=33 2865617968979437 r005 Im(z^2+c),c=-27/94+22/49*I,n=25 2865617969984665 r002 19th iterates of z^2 + 2865617988616838 a007 Real Root Of -233*x^4-725*x^3-103*x^2+46*x-371 2865617997877220 m005 (1/3*gamma+2/7)/(6*exp(1)+3/8) 2865618002471266 a007 Real Root Of 967*x^4-720*x^3+325*x^2-495*x-192 2865618008436732 r005 Re(z^2+c),c=-29/86+12/43*I,n=39 2865618008696278 r002 27th iterates of z^2 + 2865618016392123 a005 (1/sin(102/211*Pi))^775 2865618018703085 r005 Im(z^2+c),c=-19/106+25/61*I,n=35 2865618018743226 l006 ln(409/7182) 2865618023090825 m001 (OneNinth+Weierstrass)/(ln(2)/ln(10)+3^(1/2)) 2865618032077402 r005 Re(z^2+c),c=-43/50+17/54*I,n=4 2865618032328598 s002 sum(A266379[n]/(n^3*exp(n)+1),n=1..infinity) 2865618032328598 s002 sum(A266323[n]/(n^3*exp(n)+1),n=1..infinity) 2865618032328598 s002 sum(A266217[n]/(n^3*exp(n)+1),n=1..infinity) 2865618032328598 s002 sum(A266301[n]/(n^3*exp(n)+1),n=1..infinity) 2865618032328598 s002 sum(A266435[n]/(n^3*exp(n)+1),n=1..infinity) 2865618032330089 s002 sum(A266379[n]/(n^3*exp(n)-1),n=1..infinity) 2865618032330089 s002 sum(A266323[n]/(n^3*exp(n)-1),n=1..infinity) 2865618032330089 s002 sum(A266217[n]/(n^3*exp(n)-1),n=1..infinity) 2865618032330089 s002 sum(A266301[n]/(n^3*exp(n)-1),n=1..infinity) 2865618032330089 s002 sum(A266435[n]/(n^3*exp(n)-1),n=1..infinity) 2865618034700917 l006 ln(4689/6245) 2865618046782490 r009 Im(z^3+c),c=-1/18+43/51*I,n=38 2865618050428106 r005 Im(z^2+c),c=-23/34+13/40*I,n=36 2865618054688330 m001 (Tetranacci+ZetaP(4))/(Champernowne+Stephens) 2865618056546867 a007 Real Root Of 281*x^4+442*x^3-611*x^2+891*x-977 2865618069882333 g006 Psi(1,2/11)+Psi(1,7/9)-Psi(1,3/10)-Psi(1,1/7) 2865618071273464 a007 Real Root Of -219*x^4-612*x^3-109*x^2-495*x-157 2865618083407471 r005 Re(z^2+c),c=-31/90+12/49*I,n=36 2865618087028431 r005 Re(z^2+c),c=-41/52+1/28*I,n=60 2865618090839593 h001 (5/12*exp(1)+5/8)/(4/5*exp(2)+2/9) 2865618091422148 a007 Real Root Of -173*x^4-145*x^3+735*x^2-981*x-593 2865618092465143 m005 (1/2*Catalan-4)/(7/9*3^(1/2)-1/9) 2865618108927275 m001 (gamma+arctan(1/2))/(-TreeGrowth2nd+ZetaP(4)) 2865618109676361 a007 Real Root Of -422*x^4-926*x^3+770*x^2+203*x+925 2865618118202627 a008 Real Root of (-5+4*x-4*x^2-5*x^4-2*x^5) 2865618122310081 h001 (1/7*exp(2)+2/5)/(4/7*exp(2)+6/7) 2865618124614976 r009 Im(z^3+c),c=-35/66+5/23*I,n=36 2865618128472698 a007 Real Root Of 329*x^4+947*x^3+396*x^2+999*x-290 2865618137168076 a007 Real Root Of -442*x^4-999*x^3+482*x^2-721*x+273 2865618154730923 m002 -Cosh[Pi]/4+(E^Pi*Tanh[Pi])/4 2865618161481368 m001 gamma/(GAMMA(2/3)+TwinPrimes) 2865618162013750 r005 Im(z^2+c),c=-33/118+13/29*I,n=62 2865618168155861 m008 (1/5*Pi^3+5/6)/(4/5*Pi^5+2/3) 2865618175562330 r005 Im(z^2+c),c=-39/106+25/51*I,n=26 2865618176378595 m001 1/ln(FeigenbaumB)/Cahen*Tribonacci^2 2865618180285609 a007 Real Root Of -143*x^4-133*x^3+595*x^2-311*x+736 2865618180728833 m005 (1/2*Zeta(3)+3)/(2/3*exp(1)-5/9) 2865618181375103 r009 Im(z^3+c),c=-43/90+5/54*I,n=29 2865618185660929 r009 Im(z^3+c),c=-13/82+13/45*I,n=2 2865618210032712 m001 (-CareFree+Porter)/(Si(Pi)+AlladiGrinstead) 2865618229521573 a001 224056801/141*832040^(11/20) 2865618229521982 a001 7881196/987*12586269025^(11/20) 2865618244937732 r005 Im(z^2+c),c=-3/56+21/59*I,n=28 2865618254647791 m001 exp(GAMMA(3/4))^2/ArtinRank2^2*Zeta(3) 2865618259811332 r002 46th iterates of z^2 + 2865618266033047 l006 ln(6922/9219) 2865618276281417 r005 Im(z^2+c),c=-13/18+5/77*I,n=63 2865618277780705 m001 (exp(Pi)+Zeta(5))/(Ei(1,1)+GolombDickman) 2865618288874228 r005 Re(z^2+c),c=-31/90+12/49*I,n=38 2865618288905962 m005 (1/2*5^(1/2)+8/9)/(7/12*gamma+4/11) 2865618296953224 r005 Im(z^2+c),c=-51/86+9/35*I,n=3 2865618300272993 r005 Re(z^2+c),c=-31/90+12/49*I,n=34 2865618305433176 m002 E^(-Pi)-(Cosh[Pi]*Coth[Pi])/4 2865618307905242 m001 (cos(Pi/12)+exp(sqrt(2)))/sqrt(Pi) 2865618308399814 s002 sum(A232539[n]/((exp(n)+1)*n),n=1..infinity) 2865618317605002 m001 exp(GAMMA(2/3))^2*Sierpinski*exp(1)^2 2865618324809565 r005 Re(z^2+c),c=-51/40+11/63*I,n=11 2865618327293318 s002 sum(A096651[n]/((exp(n)+1)*n),n=1..infinity) 2865618332812761 s002 sum(A069713[n]/((exp(n)+1)*n),n=1..infinity) 2865618332812792 s002 sum(A072233[n]/((exp(n)+1)*n),n=1..infinity) 2865618332828537 s002 sum(A244925[n]/((exp(n)+1)*n),n=1..infinity) 2865618332828537 s002 sum(A068914[n]/((exp(n)+1)*n),n=1..infinity) 2865618339565712 l006 ln(434/7621) 2865618339679736 r005 Re(z^2+c),c=-29/86+12/43*I,n=44 2865618344230279 s002 sum(A228128[n]/((exp(n)+1)*n),n=1..infinity) 2865618344296223 s002 sum(A077042[n]/((exp(n)+1)*n),n=1..infinity) 2865618345180409 r005 Re(z^2+c),c=-29/86+12/43*I,n=41 2865618349824937 s002 sum(A108934[n]/((exp(n)+1)*n),n=1..infinity) 2865618349856508 s002 sum(A108947[n]/((exp(n)+1)*n),n=1..infinity) 2865618350357111 m005 (1/2*exp(1)-8/11)/(2/3*5^(1/2)+5/7) 2865618355804921 r005 Re(z^2+c),c=-27/86+37/63*I,n=36 2865618360074004 r005 Re(z^2+c),c=-29/86+12/43*I,n=42 2865618361111138 k001 Champernowne real with 275*n+11 2865618368106246 a007 Real Root Of -259*x^4-565*x^3+505*x^2+296*x+871 2865618368108186 m005 (1/2*2^(1/2)+1/11)/(8/11*Pi+1/2) 2865618378434917 r005 Re(z^2+c),c=-29/86+12/43*I,n=46 2865618386841057 r005 Re(z^2+c),c=-29/86+12/43*I,n=49 2865618390376417 r005 Re(z^2+c),c=-29/86+12/43*I,n=51 2865618392664008 r005 Re(z^2+c),c=-29/86+12/43*I,n=54 2865618392830909 r005 Re(z^2+c),c=-29/86+12/43*I,n=56 2865618393236543 r005 Re(z^2+c),c=-29/86+12/43*I,n=61 2865618393242962 r005 Re(z^2+c),c=-29/86+12/43*I,n=58 2865618393261691 r005 Re(z^2+c),c=-29/86+12/43*I,n=59 2865618393283933 r005 Re(z^2+c),c=-29/86+12/43*I,n=63 2865618393304022 r005 Re(z^2+c),c=-29/86+12/43*I,n=64 2865618393344087 r005 Re(z^2+c),c=-29/86+12/43*I,n=62 2865618393375463 r005 Re(z^2+c),c=-29/86+12/43*I,n=60 2865618393450515 r005 Re(z^2+c),c=-29/86+12/43*I,n=53 2865618393540617 r005 Re(z^2+c),c=-29/86+12/43*I,n=57 2865618393966253 r005 Re(z^2+c),c=-29/86+12/43*I,n=55 2865618394332461 r005 Re(z^2+c),c=-29/86+12/43*I,n=52 2865618394793380 r005 Re(z^2+c),c=-29/86+12/43*I,n=47 2865618395652898 r005 Im(z^2+c),c=-25/62+22/43*I,n=46 2865618398347828 r005 Re(z^2+c),c=-29/86+12/43*I,n=48 2865618398415694 r005 Re(z^2+c),c=-29/86+12/43*I,n=50 2865618402486073 a007 Real Root Of 264*x^4-125*x^3+915*x^2-503*x-224 2865618403681108 r005 Re(z^2+c),c=-31/90+12/49*I,n=41 2865618405485182 r005 Re(z^2+c),c=-31/90+12/49*I,n=43 2865618408556562 h001 (7/10*exp(2)+7/10)/(1/5*exp(2)+4/7) 2865618419301542 r005 Re(z^2+c),c=-31/90+12/49*I,n=45 2865618422639696 r005 Re(z^2+c),c=-31/90+12/49*I,n=48 2865618423264976 r005 Re(z^2+c),c=-31/90+12/49*I,n=40 2865618423357217 r005 Re(z^2+c),c=-31/90+12/49*I,n=50 2865618424050133 a007 Real Root Of -237*x^4-434*x^3+629*x^2-330*x-342 2865618424146358 r005 Re(z^2+c),c=-31/90+12/49*I,n=52 2865618424172708 r005 Re(z^2+c),c=-31/90+12/49*I,n=55 2865618424230706 r005 Re(z^2+c),c=-31/90+12/49*I,n=53 2865618424236047 r005 Re(z^2+c),c=-31/90+12/49*I,n=57 2865618424269071 r005 Re(z^2+c),c=-31/90+12/49*I,n=60 2865618424269949 r005 Re(z^2+c),c=-31/90+12/49*I,n=62 2865618424274133 r005 Re(z^2+c),c=-31/90+12/49*I,n=64 2865618424275873 r005 Re(z^2+c),c=-31/90+12/49*I,n=59 2865618424278876 r005 Re(z^2+c),c=-31/90+12/49*I,n=63 2865618424282852 r005 Re(z^2+c),c=-31/90+12/49*I,n=61 2865618424289940 r005 Re(z^2+c),c=-31/90+12/49*I,n=58 2865618424348192 r005 Re(z^2+c),c=-31/90+12/49*I,n=56 2865618424381925 r005 Re(z^2+c),c=-31/90+12/49*I,n=54 2865618424729094 r005 Re(z^2+c),c=-31/90+12/49*I,n=51 2865618425164273 r005 Re(z^2+c),c=-31/90+12/49*I,n=46 2865618425372865 r005 Re(z^2+c),c=-31/90+12/49*I,n=47 2865618425683846 r005 Re(z^2+c),c=-31/90+12/49*I,n=49 2865618426591433 m001 GaussAGM(1,1/sqrt(2))*exp(GAMMA(19/24))^3 2865618427527494 r005 Re(z^2+c),c=-29/86+12/43*I,n=45 2865618435588686 r005 Re(z^2+c),c=-31/90+12/49*I,n=44 2865618448311798 r005 Re(z^2+c),c=-31/90+12/49*I,n=42 2865618453254063 r005 Re(z^2+c),c=-29/86+12/43*I,n=43 2865618456075549 m001 BesselI(1,2)/Artin/ZetaR(2) 2865618461283457 r005 Im(z^2+c),c=1/58+8/25*I,n=9 2865618462236594 a007 Real Root Of -168*x^4-402*x^3+41*x^2-727*x-551 2865618470181031 r002 25th iterates of z^2 + 2865618472623834 r005 Re(z^2+c),c=-37/102+4/33*I,n=22 2865618475409201 r005 Re(z^2+c),c=-31/90+12/49*I,n=39 2865618476358204 a001 1322157322203/233*225851433717^(5/21) 2865618476358206 a001 14662949395604/233*9227465^(5/21) 2865618483474462 m001 (sqrt(5)+Zeta(1/2)*GAMMA(5/24))/Zeta(1/2) 2865618490250394 m001 FransenRobinson*MertensB2*Paris 2865618508665821 m001 (gamma+5)/(-BesselI(0,2)+1/3) 2865618510827647 q001 966/3371 2865618514715058 s002 sum(A143052[n]/(n^2*10^n-1),n=1..infinity) 2865618516293939 r005 Re(z^2+c),c=-29/86+12/43*I,n=36 2865618535477220 a005 (1/cos(2/115*Pi))^705 2865618542205147 m001 Zeta(1,-1)/(BesselK(0,1)^HardyLittlewoodC3) 2865618550324498 m002 -3+Pi^2-Pi^5+Cosh[Pi]+Tanh[Pi] 2865618560344825 a003 cos(Pi*46/113)*sin(Pi*8/17) 2865618562562158 r002 23th iterates of z^2 + 2865618562821593 m006 (2/Pi-4)/(1/2*exp(Pi)+1/6) 2865618580815147 a001 18/89*55^(2/23) 2865618584919015 r002 33th iterates of z^2 + 2865618587837833 r005 Re(z^2+c),c=-29/86+12/43*I,n=40 2865618588299180 m005 (1/2*exp(1)+5/11)/(6*Catalan+5/6) 2865618591085112 r005 Re(z^2+c),c=-33/118+9/20*I,n=18 2865618596990108 a007 Real Root Of -291*x^4+201*x^3+75*x^2+382*x+110 2865618601236297 m009 (Psi(1,3/4)+3)/(2*Pi^2-2/5) 2865618603263644 r005 Im(z^2+c),c=-35/86+21/43*I,n=52 2865618606376879 r005 Im(z^2+c),c=-3/56+21/59*I,n=29 2865618615680631 r009 Re(z^3+c),c=-41/114+9/31*I,n=17 2865618618765156 a007 Real Root Of 37*x^4+118*x^3-68*x^2-974*x-271 2865618625440128 l006 ln(459/8060) 2865618625862565 m006 (1/6*Pi-2/5)/(3/5*ln(Pi)-5) 2865618633583217 a005 (1/cos(1/28*Pi))^897 2865618636789738 p001 sum(1/(447*n+35)/(25^n),n=0..infinity) 2865618637128017 m005 (1/3*5^(1/2)-1/12)/(7/10*Pi+1/9) 2865618640561882 a007 Real Root Of 193*x^4-346*x^3+378*x^2-573*x+140 2865618647774414 r005 Re(z^2+c),c=-7/30+24/41*I,n=63 2865618649955804 r005 Re(z^2+c),c=-17/54+23/63*I,n=35 2865618651934726 a007 Real Root Of -235*x^4-987*x^3-850*x^2+297*x+452 2865618668397390 r005 Im(z^2+c),c=-55/98+1/34*I,n=7 2865618668908953 r005 Re(z^2+c),c=-31/90+12/49*I,n=37 2865618670496115 m005 (1/5*Catalan-4)/(2*Catalan-1/2) 2865618684794492 r001 54i'th iterates of 2*x^2-1 of 2865618685375418 r005 Im(z^2+c),c=-33/118+13/29*I,n=63 2865618687500972 m001 (StolarskyHarborth+ZetaQ(2))/(Magata+Mills) 2865618689013122 m002 -4+E^Pi-Pi^5+Tanh[Pi]/Pi 2865618689818678 m002 -Pi^2+Pi^5-Cosh[Pi]+E^Pi*Csch[Pi] 2865618699996327 r008 a(0)=3,K{-n^6,-41+27*n+18*n^2+4*n^3} 2865618705192942 r009 Re(z^3+c),c=-13/36+17/58*I,n=20 2865618716322717 m001 sqrt(3)/exp(FibonacciFactorial)/sqrt(Pi) 2865618718842639 r005 Re(z^2+c),c=-13/42+23/60*I,n=26 2865618731603754 r002 50th iterates of z^2 + 2865618737413312 r005 Re(z^2+c),c=-13/38+20/37*I,n=24 2865618751799425 l006 ln(2233/2974) 2865618767674564 r005 Re(z^2+c),c=-31/90+12/49*I,n=35 2865618769090642 m001 (Grothendieck-MinimumGamma)^ln(3) 2865618774688709 m005 (2/5*gamma+1)/(1/6*gamma+1/3) 2865618774688709 m007 (-2/5*gamma-1)/(-1/6*gamma-1/3) 2865618781593155 r005 Re(z^2+c),c=35/114+4/29*I,n=32 2865618786231071 m006 (Pi-2/3)/(1/5/Pi+4/5) 2865618789487364 r005 Re(z^2+c),c=-89/94+7/37*I,n=8 2865618793894406 r009 Im(z^3+c),c=-10/31+12/49*I,n=9 2865618810387091 a001 3/233*4181^(16/43) 2865618825098762 a007 Real Root Of 146*x^4+480*x^3+184*x^2-74*x-273 2865618831076486 m003 -5/2+Sqrt[5]/2+(5*Csc[1/2+Sqrt[5]/2])/3 2865618837366272 a001 5/710647*521^(11/49) 2865618841368655 m002 -7+3*Pi^6-Sinh[Pi] 2865618850703285 m001 ZetaQ(4)^(ReciprocalFibonacci/BesselI(1,1)) 2865618855427962 r002 49th iterates of z^2 + 2865618881781994 l006 ln(484/8499) 2865618882885726 a007 Real Root Of 373*x^4+822*x^3-491*x^2+711*x+260 2865618894971209 p004 log(31151/30271) 2865618901567811 m001 (1+3^(1/2))^(1/2)*(3^(1/2)+ZetaQ(4)) 2865618929859247 m001 (exp(1)+Chi(1))/(Zeta(1/2)+Ei(1,1)) 2865618933685686 r002 5th iterates of z^2 + 2865618933715591 s002 sum(A172101[n]/((exp(n)+1)*n),n=1..infinity) 2865618936087257 r005 Re(z^2+c),c=-29/86+12/43*I,n=38 2865618944495311 a001 2/17711*6765^(11/30) 2865618949426532 p001 sum(1/(597*n+374)/(6^n),n=0..infinity) 2865618949607029 r005 Re(z^2+c),c=-19/58+20/63*I,n=19 2865618964616844 r002 51th iterates of z^2 + 2865618970409775 a001 2207/55*17711^(24/55) 2865618972059841 m001 GAMMA(13/24)+Otter*PrimesInBinary 2865618972483772 v002 sum(1/(3^n*(16*n^2-18*n+15)),n=1..infinity) 2865618973134101 a007 Real Root Of -334*x^4-742*x^3-82*x^2+666*x-19 2865618991864987 m001 (-FeigenbaumD+ZetaP(4))/(1-Psi(1,1/3)) 2865618992618673 r005 Im(z^2+c),c=-65/102+23/59*I,n=27 2865618996953681 m006 (1/3*exp(2*Pi)+3/4)/(3/5*Pi^2+1/3) 2865618998933362 m001 (Sarnak-ZetaQ(2))/(Zeta(1,-1)+FeigenbaumAlpha) 2865619000464203 m001 (FeigenbaumB-OneNinth)/(GAMMA(3/4)+Conway) 2865619006881843 r005 Im(z^2+c),c=-2/11+27/64*I,n=11 2865619015041937 r005 Re(z^2+c),c=-8/29+23/48*I,n=50 2865619024219690 m001 ZetaP(3)*(5^(1/2)-Gompertz) 2865619026611431 r005 Re(z^2+c),c=-23/86+17/29*I,n=53 2865619039121612 m001 (Magata+Niven)/(Zeta(3)+LandauRamanujan2nd) 2865619047467727 m001 Ei(1,1)^Si(Pi)*PlouffeB 2865619060640038 m002 -3+Pi^3-4*Csch[Pi]+Tanh[Pi] 2865619063355093 a001 233/24476*29^(18/55) 2865619064336951 p001 sum(1/(379*n+303)/n/(512^n),n=1..infinity) 2865619066325643 a003 sin(Pi*41/109)/cos(Pi*17/43) 2865619072637009 m004 -(Pi/Sqrt[5])+(6*Sqrt[5]*Coth[Sqrt[5]*Pi])/Pi 2865619079943902 p001 sum(1/(137*n+10)/n/(24^n),n=0..infinity) 2865619102173569 m009 (5*Psi(1,2/3)-3/4)/(24*Catalan+3*Pi^2-3/4) 2865619112942874 l006 ln(509/8938) 2865619114279285 a007 Real Root Of -198*x^4-406*x^3+422*x^2-294*x-510 2865619114676152 m001 1/ln(cos(Pi/5))*GaussKuzminWirsing*sqrt(2)^2 2865619121626118 h001 (-7*exp(1)-1)/(-10*exp(2)+4) 2865619122132110 k006 concat of cont frac of 2865619126809539 r002 37th iterates of z^2 + 2865619129146104 r005 Re(z^2+c),c=3/32+10/27*I,n=18 2865619154825645 r005 Im(z^2+c),c=-2/5+23/47*I,n=60 2865619155989647 r005 Im(z^2+c),c=-3/5+37/105*I,n=17 2865619164716514 m006 (1/6/Pi-2/3)/(4*exp(2*Pi)-2/3) 2865619164764312 m001 (Conway+HardyLittlewoodC4)/(Psi(2,1/3)-ln(3)) 2865619169777950 r005 Im(z^2+c),c=-25/122+21/50*I,n=43 2865619174851149 r005 Im(z^2+c),c=-101/122+1/60*I,n=19 2865619176296556 m001 exp(GAMMA(5/12))/ArtinRank2*cosh(1)^2 2865619180291016 a007 Real Root Of 201*x^4+707*x^3+349*x^2+134*x+601 2865619181890577 m001 (-sin(1/12*Pi)+MertensB3)/(Si(Pi)+Ei(1)) 2865619183304123 m003 -17/5+Sqrt[5]/64+Sin[1/2+Sqrt[5]/2]/2 2865619190653488 m001 BesselK(1,1)/Sierpinski/StolarskyHarborth 2865619193568179 a007 Real Root Of -90*x^4-14*x^3+457*x^2-798*x-300 2865619194668965 r005 Im(z^2+c),c=-5/8+20/151*I,n=6 2865619196520690 r005 Re(z^2+c),c=-3/4+79/251*I,n=2 2865619200189447 m001 exp(GAMMA(1/6))/FeigenbaumB^2/log(2+sqrt(3)) 2865619200450544 m005 (1/2*2^(1/2)-1)/(81/88+1/22*5^(1/2)) 2865619210804065 r005 Re(z^2+c),c=-21/74+21/38*I,n=20 2865619232531077 r005 Re(z^2+c),c=-29/86+12/43*I,n=35 2865619262663634 r009 Re(z^3+c),c=-29/64+28/61*I,n=63 2865619271020347 l006 ln(6476/8625) 2865619288233110 m001 GAMMA(5/12)*FeigenbaumAlpha*exp(sin(1))^2 2865619288529198 a007 Real Root Of -970*x^4-460*x^3-826*x^2+722*x-20 2865619301415953 r009 Im(z^3+c),c=-15/94+49/58*I,n=36 2865619322459430 l006 ln(534/9377) 2865619323272816 m005 (1/2*3^(1/2)+6/11)/(3/7*Catalan+1/10) 2865619325469382 r005 Im(z^2+c),c=-3/56+21/59*I,n=32 2865619326960717 m001 FeigenbaumD^GolombDickman/MasserGramain 2865619327257355 m001 1/Trott*ln(CopelandErdos)*arctan(1/2)^2 2865619339424450 a007 Real Root Of 221*x^4-720*x^3-779*x^2-850*x+323 2865619339656590 h001 (-3*exp(3)+9)/(-6*exp(8)-1) 2865619341210153 r002 29th iterates of z^2 + 2865619342974030 a007 Real Root Of -523*x^4+342*x^3-288*x^2+489*x-121 2865619344053676 m002 E^Pi+(3*Pi^2)/(5*ProductLog[Pi]) 2865619349315851 a007 Real Root Of -289*x^4-672*x^3+414*x^2-304*x-596 2865619349609274 m001 Ei(1,1)-StolarskyHarborth+ZetaR(2) 2865619361390978 h002 exp(1/6*(14+12^(1/3))^(1/2)*6^(1/4)) 2865619366354229 m002 -(E^Pi/Pi^6)+Pi^4/5-Pi^5 2865619370096743 r005 Im(z^2+c),c=-10/31+19/41*I,n=40 2865619374181404 m001 Pi/(Psi(1,1/3)-gamma+exp(1/exp(1))) 2865619383628885 s002 sum(A217826[n]/((pi^n-1)/n),n=1..infinity) 2865619393350145 r005 Re(z^2+c),c=7/19+13/45*I,n=61 2865619400971738 r009 Im(z^3+c),c=-31/64+4/35*I,n=62 2865619404526164 r009 Re(z^3+c),c=-57/122+29/64*I,n=25 2865619411520438 r009 Re(z^3+c),c=-17/42+13/35*I,n=19 2865619450451521 r009 Im(z^3+c),c=-11/98+10/33*I,n=8 2865619453403998 a007 Real Root Of -32*x^4-891*x^3+775*x^2+864*x+132 2865619453792814 r005 Re(z^2+c),c=-13/48+24/49*I,n=37 2865619454944114 g001 Psi(5/9,61/116) 2865619457814631 b008 -33+Log[77] 2865619462875049 m005 (1/2*gamma-8/11)/(7/11*3^(1/2)+3/7) 2865619464038693 r002 59th iterates of z^2 + 2865619464690807 h001 (6/11*exp(2)+9/10)/(3/7*exp(1)+5/9) 2865619466519215 s002 sum(A024353[n]/(n^2*exp(n)-1),n=1..infinity) 2865619466628032 s002 sum(A024354[n]/(n^2*exp(n)-1),n=1..infinity) 2865619466628032 s002 sum(A020883[n]/(n^2*exp(n)-1),n=1..infinity) 2865619468513231 a007 Real Root Of 16*x^4-22*x^3-38*x^2+524*x+217 2865619477715792 m002 -E^Pi+E^Pi/(2*Pi)+Pi^5 2865619478850510 r009 Re(z^3+c),c=-49/106+27/58*I,n=61 2865619478967585 h001 (3/11*exp(1)+5/11)/(6/11*exp(2)+1/7) 2865619487510447 a007 Real Root Of 360*x^4+948*x^3-376*x^2-485*x-270 2865619493021248 m001 Zeta(3)*exp(FeigenbaumDelta)*sqrt(5) 2865619494013084 h001 (7/9*exp(2)+7/9)/(8/11*exp(1)+3/10) 2865619494027767 m001 (gamma(2)-BesselI(1,1))/(FeigenbaumC+ZetaP(3)) 2865619506458264 r005 Re(z^2+c),c=-13/46+20/43*I,n=25 2865619509721534 r009 Im(z^3+c),c=-35/64+10/37*I,n=52 2865619509894396 a007 Real Root Of 3*x^4+862*x^3+663*x^2-45*x-866 2865619510411016 m005 (1/2*5^(1/2)-2/3)/(19/22+7/22*5^(1/2)) 2865619513235648 l006 ln(559/9816) 2865619515416366 a001 341/646*233^(9/29) 2865619524688661 r005 Im(z^2+c),c=17/54+6/59*I,n=17 2865619527226373 a003 sin(Pi*8/97)/cos(Pi*17/115) 2865619531772528 m001 ArtinRank2^GAMMA(23/24)*PrimesInBinary 2865619539859648 m001 ln(GAMMA(11/24))/MertensB1/Zeta(1,2)^2 2865619544275184 l006 ln(4243/5651) 2865619544275184 p004 log(5651/4243) 2865619546247818 q001 1642/573 2865619549386539 r005 Re(z^2+c),c=-1/4+19/35*I,n=64 2865619552003317 r005 Im(z^2+c),c=-29/90+12/25*I,n=21 2865619587432019 a007 Real Root Of -901*x^4+117*x^3+647*x^2+901*x-308 2865619590350460 r005 Im(z^2+c),c=-3/56+21/59*I,n=31 2865619592200598 r005 Re(z^2+c),c=-29/86+12/43*I,n=30 2865619592885280 r005 Im(z^2+c),c=-3/56+21/59*I,n=35 2865619597365527 m001 (cos(1)+Zeta(1,-1))/(-ln(2+3^(1/2))+ZetaQ(3)) 2865619598737790 p001 sum((-1)^n/(379*n+336)/(12^n),n=0..infinity) 2865619602063047 r009 Im(z^3+c),c=-11/32+15/64*I,n=19 2865619605667782 m001 (-exp(1/exp(1))+2/3)/(-GAMMA(17/24)+4) 2865619643020972 r002 7th iterates of z^2 + 2865619643288735 m001 3^(1/2)+Bloch+Robbin 2865619655915915 m001 GAMMA(23/24)+Porter^BesselI(1,2) 2865619657621737 h001 (5/7*exp(1)+2/9)/(11/12*exp(2)+7/9) 2865619660840255 m004 -2+5*Csc[Sqrt[5]*Pi]+5*Pi*Csc[Sqrt[5]*Pi] 2865619666678611 a001 1364/75025*34^(4/31) 2865619671177804 r005 Im(z^2+c),c=-3/56+21/59*I,n=38 2865619681500095 r005 Re(z^2+c),c=-17/74+22/39*I,n=11 2865619687315806 h001 (7/10*exp(2)+1/7)/(7/11*exp(1)+1/8) 2865619690800963 r005 Im(z^2+c),c=-3/56+21/59*I,n=41 2865619693631408 r005 Im(z^2+c),c=-45/86+24/49*I,n=29 2865619695065843 r005 Im(z^2+c),c=-3/56+21/59*I,n=44 2865619695313950 r005 Im(z^2+c),c=-3/56+21/59*I,n=42 2865619695468032 r005 Im(z^2+c),c=-3/56+21/59*I,n=45 2865619695760320 r005 Im(z^2+c),c=-3/56+21/59*I,n=48 2865619695841573 r005 Im(z^2+c),c=-3/56+21/59*I,n=47 2865619695882540 r005 Im(z^2+c),c=-3/56+21/59*I,n=51 2865619695920432 r005 Im(z^2+c),c=-3/56+21/59*I,n=54 2865619695930347 r005 Im(z^2+c),c=-3/56+21/59*I,n=57 2865619695932599 r005 Im(z^2+c),c=-3/56+21/59*I,n=60 2865619695932910 r005 Im(z^2+c),c=-3/56+21/59*I,n=61 2865619695932997 r005 Im(z^2+c),c=-3/56+21/59*I,n=58 2865619695933020 r005 Im(z^2+c),c=-3/56+21/59*I,n=64 2865619695933034 r005 Im(z^2+c),c=-3/56+21/59*I,n=63 2865619695933384 r005 Im(z^2+c),c=-3/56+21/59*I,n=62 2865619695934213 r005 Im(z^2+c),c=-3/56+21/59*I,n=59 2865619695935575 r005 Im(z^2+c),c=-3/56+21/59*I,n=55 2865619695936803 r005 Im(z^2+c),c=-3/56+21/59*I,n=56 2865619695942324 r005 Im(z^2+c),c=-3/56+21/59*I,n=50 2865619695942546 r005 Im(z^2+c),c=-3/56+21/59*I,n=53 2865619695954006 r005 Im(z^2+c),c=-3/56+21/59*I,n=52 2865619696052178 r005 Im(z^2+c),c=-3/56+21/59*I,n=49 2865619696493955 r005 Im(z^2+c),c=-3/56+21/59*I,n=46 2865619698219372 r005 Im(z^2+c),c=-3/56+21/59*I,n=43 2865619699161798 r005 Im(z^2+c),c=-3/56+21/59*I,n=39 2865619700465635 r005 Im(z^2+c),c=-11/34+14/29*I,n=15 2865619703952004 r005 Im(z^2+c),c=-3/56+21/59*I,n=40 2865619704812408 b008 ArcCosh[2*(Pi+ArcTan[Pi])] 2865619708462370 m005 (1/2*2^(1/2)+1/3)/(2*3^(1/2)+1/6) 2865619711064224 a007 Real Root Of 919*x^4-326*x^3+949*x^2-238*x-160 2865619717361962 a008 Real Root of (2+x-18*x^2+10*x^3) 2865619717432325 p003 LerchPhi(1/125,2,436/233) 2865619718556002 r005 Im(z^2+c),c=-3/56+21/59*I,n=37 2865619720688561 h001 (-7*exp(4)+2)/(-9*exp(5)+9) 2865619724302161 m001 1/Catalan^2*exp(BesselK(1,1))*log(2+sqrt(3)) 2865619731591263 r005 Im(z^2+c),c=-3/56+21/59*I,n=36 2865619732703910 r005 Im(z^2+c),c=-3/56+21/59*I,n=34 2865619734640729 a001 98209/161*199^(8/11) 2865619740374487 r005 Im(z^2+c),c=-19/106+9/22*I,n=18 2865619740431517 r005 Im(z^2+c),c=-13/54+22/53*I,n=7 2865619775936809 m001 1/BesselJ(0,1)/Trott^2*ln(BesselK(1,1))^2 2865619787736004 m001 1/Sierpinski*Bloch^2*exp(Zeta(3)) 2865619804601521 a007 Real Root Of -235*x^4-282*x^3+64*x^2+970*x-275 2865619823554579 m001 (-PrimesInBinary+ZetaQ(2))/(Lehmer-Si(Pi)) 2865619827275068 l006 ln(6253/8328) 2865619832255521 r004 Re(z^2+c),c=-9/26+4/19*I,z(0)=-1,n=12 2865619846021534 m001 ln(2)/ln(10)/(GAMMA(19/24)^HardyLittlewoodC4) 2865619850411500 a001 1/87*(1/2*5^(1/2)+1/2)^25*29^(2/17) 2865619859439184 a007 Real Root Of 710*x^4-335*x^3-193*x^2-740*x+231 2865619867534422 m001 FeigenbaumMu-cos(1)*Conway 2865619868478704 r005 Re(z^2+c),c=8/29+5/44*I,n=24 2865619875253193 m001 (ZetaQ(2)+ZetaQ(3))/(Mills-exp(Pi)) 2865619885059752 m001 (CopelandErdos+Tribonacci)^(3^(1/3)) 2865619886211516 m001 1/Paris^2*Backhouse/exp(sqrt(1+sqrt(3))) 2865619891342338 s002 sum(A199651[n]/(n*10^n+1),n=1..infinity) 2865619891693958 s002 sum(A199651[n]/(n*10^n-1),n=1..infinity) 2865619898085775 r002 32th iterates of z^2 + 2865619906020134 r002 5th iterates of z^2 + 2865619913964137 a007 Real Root Of 621*x^4+669*x^3+690*x^2-886*x-299 2865619916163195 r005 Im(z^2+c),c=-3/56+21/59*I,n=33 2865619917066469 r005 Re(z^2+c),c=-43/82+13/38*I,n=7 2865619917301750 r005 Re(z^2+c),c=23/86+3/28*I,n=45 2865619925969234 a007 Real Root Of -188*x^4+352*x^3-903*x^2+350*x+184 2865619926444910 m001 (MertensB2+Robbin)/(cos(1/12*Pi)-Artin) 2865619930794414 s002 sum(A037200[n]/((2^n+1)/n),n=1..infinity) 2865619934383377 a007 Real Root Of 334*x^4+894*x^3-175*x^2+192*x+502 2865619935970154 a007 Real Root Of 116*x^4+86*x^3-747*x^2-248*x-375 2865619944629306 m001 (Psi(2,1/3)+BesselI(1,2))^2 2865619947043862 a007 Real Root Of 355*x^4+899*x^3-414*x^2-469*x-728 2865619954402986 r005 Im(z^2+c),c=-13/74+13/32*I,n=12 2865619964170202 a007 Real Root Of 22*x^4-172*x^3-604*x^2-90*x-829 2865619964707394 r005 Im(z^2+c),c=-37/78+21/41*I,n=14 2865619969700670 m005 (1/2*gamma+1/12)/(1/10*Zeta(3)-1/4) 2865619990502263 r005 Re(z^2+c),c=-31/90+12/49*I,n=32 2865619991100412 s002 sum(A153070[n]/(n^2*exp(n)-1),n=1..infinity) 2865619997522498 m001 (2*Pi/GAMMA(5/6)+Grothendieck)/(Pi-gamma) 2865620010362694 a003 cos(Pi*8/67)/cos(Pi*15/38) 2865620013700502 m001 (5^(1/2)-Psi(2,1/3))/(Ei(1,1)+Grothendieck) 2865620014636950 a007 Real Root Of 502*x^4-841*x^3+399*x^2-256*x+57 2865620017771665 a001 682/5473*4807526976^(19/22) 2865620018498314 m001 (Si(Pi)+Shi(1))/(-Zeta(3)+Conway) 2865620022197338 m005 (1/2*Catalan+7/8)/(-67/12+5/12*5^(1/2)) 2865620022527989 a001 710647/610*121393^(19/22) 2865620027118725 m001 GAMMA(1/4)^2*exp(FeigenbaumAlpha)^2*Zeta(1/2) 2865620048609195 r005 Im(z^2+c),c=17/58+6/53*I,n=53 2865620049089622 m001 Stephens^(Riemann3rdZero/Kolakoski) 2865620050797239 m005 (1/2*5^(1/2)+5/12)/(1/8*Pi+1/7) 2865620052380168 m001 (Backhouse+Champernowne)/(Psi(2,1/3)+gamma(3)) 2865620074640886 a007 Real Root Of -306*x^4-946*x^3-372*x^2-266*x+666 2865620091507991 s002 sum(A244657[n]/((exp(n)+1)*n),n=1..infinity) 2865620100300013 a007 Real Root Of 961*x^4-761*x^3-99*x^2-354*x+121 2865620129034605 r005 Re(z^2+c),c=-16/25+22/57*I,n=5 2865620142437845 m001 (GaussAGM+ZetaP(2))/(exp(1)+Pi^(1/2)) 2865620144322607 r005 Im(z^2+c),c=-19/106+25/61*I,n=26 2865620162794332 a003 cos(Pi*2/95)/cos(Pi*41/106) 2865620165938380 m001 GAMMA(1/6)^2*ln(FeigenbaumC)*GAMMA(7/12) 2865620168016712 r005 Re(z^2+c),c=-31/90+13/53*I,n=19 2865620173444066 a007 Real Root Of 388*x^4-387*x^3-893*x^2-716*x+285 2865620201387551 m001 (3^(1/3))^Catalan+Porter 2865620208484661 m001 (-ln(2)+GolombDickman)/(Si(Pi)-ln(gamma)) 2865620217318707 a007 Real Root Of 536*x^4+527*x^3+629*x^2-496*x-185 2865620224073542 r005 Re(z^2+c),c=-147/118+7/50*I,n=2 2865620232555797 m001 (-Trott+ZetaP(4))/(Chi(1)-Zeta(1/2)) 2865620232723739 r008 a(0)=3,K{-n^6,-51+6*n^3+7*n^2+46*n} 2865620240864562 p004 log(27067/20323) 2865620253163947 a007 Real Root Of -887*x^4+798*x^3-545*x^2+792*x-195 2865620269168930 r009 Re(z^3+c),c=-23/122+41/45*I,n=16 2865620277015086 r009 Re(z^3+c),c=-39/106+11/35*I,n=8 2865620286124857 m009 (2/5*Psi(1,3/4)-1/6)/(4/5*Psi(1,3/4)-5) 2865620292468088 m001 exp(1/Pi)*(ln(5)+Weierstrass) 2865620297414355 m005 1/6*5^(1/2)/(1/4*Zeta(3)+1) 2865620299961678 r002 15th iterates of z^2 + 2865620299961678 r002 15th iterates of z^2 + 2865620302269762 r005 Re(z^2+c),c=-27/34+2/125*I,n=40 2865620305396971 r005 Im(z^2+c),c=1/34+21/47*I,n=3 2865620323326404 a003 2^(1/2)-cos(1/8*Pi)-cos(1/18*Pi)+cos(13/30*Pi) 2865620328712849 r005 Re(z^2+c),c=-9/16+17/44*I,n=12 2865620353271590 r005 Im(z^2+c),c=-11/56+5/12*I,n=38 2865620387996868 r005 Im(z^2+c),c=-7/27+26/59*I,n=33 2865620391658389 m008 (4/5*Pi^6+3)/(2/3*Pi+3/5) 2865620396231359 a007 Real Root Of -334*x^4-978*x^3-233*x^2-700*x-584 2865620417590224 m001 Catalan+Zeta(3)+RenyiParking 2865620424672310 l006 ln(2010/2677) 2865620428388825 a003 cos(Pi*1/57)-sin(Pi*29/115) 2865620429709783 m001 FeigenbaumC^GAMMA(17/24)*ln(2+3^(1/2)) 2865620441888664 h005 exp(cos(Pi*1/37)/sin(Pi*17/43)) 2865620443705684 r005 Re(z^2+c),c=23/86+3/28*I,n=51 2865620446233080 a001 3/34*832040^(14/33) 2865620471745745 h001 (4/5*exp(2)+11/12)/(6/11*exp(1)+9/10) 2865620473587136 a007 Real Root Of 533*x^4-249*x^3+535*x^2-892*x-309 2865620479599935 m001 1/exp(GAMMA(19/24))*Conway^2/GAMMA(2/3)^2 2865620505184910 a003 cos(Pi*7/51)*cos(Pi*37/93) 2865620512445846 r009 Re(z^3+c),c=-15/34+17/60*I,n=3 2865620513272230 l006 ln(5951/6124) 2865620529015230 m001 Zeta(1/2)*exp(Champernowne)*log(2+sqrt(3))^2 2865620540522362 a007 Real Root Of -404*x^4-872*x^3+699*x^2-638*x-845 2865620544809329 r005 Im(z^2+c),c=35/122+5/41*I,n=35 2865620545212870 r005 Re(z^2+c),c=23/86+3/28*I,n=52 2865620545905568 r005 Re(z^2+c),c=1/25+17/61*I,n=18 2865620551590699 a007 Real Root Of -892*x^4-54*x^3-397*x^2+941*x+307 2865620552796204 r005 Im(z^2+c),c=-11/34+8/19*I,n=9 2865620554213487 a007 Real Root Of -496*x^4-447*x^3-827*x^2+535*x+16 2865620558480557 p004 log(37181/27917) 2865620566317864 b008 -1+Gamma[4/17] 2865620573555709 b008 1/4+Sqrt[6+Sin[1]] 2865620573665525 r005 Im(z^2+c),c=-69/62+14/59*I,n=8 2865620587325302 m001 MadelungNaCl^2/Conway^2*ln(log(1+sqrt(2)))^2 2865620600255274 r009 Im(z^3+c),c=-9/31+15/58*I,n=18 2865620603840356 m001 GAMMA(5/12)/(polylog(4,1/2)-(2^(1/3))) 2865620615549249 m001 Pi-(Psi(1,1/3)-cos(1))/BesselI(1,2) 2865620622642711 r009 Im(z^3+c),c=-9/31+15/58*I,n=19 2865620627045527 r005 Re(z^2+c),c=-11/14+4/211*I,n=16 2865620635499666 p001 sum((-1)^n/(607*n+347)/(64^n),n=0..infinity) 2865620636264258 r005 Im(z^2+c),c=-2/5+22/45*I,n=54 2865620648487037 a007 Real Root Of 159*x^4+433*x^3-203*x^2-466*x-201 2865620656940933 r009 Re(z^3+c),c=-7/16+25/59*I,n=21 2865620657976250 h001 (1/11*exp(2)+6/11)/(5/11*exp(2)+8/9) 2865620658225895 m001 Pi-1/(Pi*2^(1/2)/GAMMA(3/4)-gamma(3)) 2865620660946938 a007 Real Root Of -293*x^4-486*x^3+638*x^2-786*x+830 2865620666341478 h001 (1/8*exp(1)+5/8)/(11/12*exp(1)+7/8) 2865620673034816 m001 ln(Bloch)/Champernowne^2/PrimesInBinary^2 2865620687678888 a008 Real Root of (1+18*x-15*x^2+3*x^3) 2865620691287326 m001 (Chi(1)-Zeta(5))/(-3^(1/3)+RenyiParking) 2865620691625061 r009 Re(z^3+c),c=-59/106+26/57*I,n=11 2865620692236414 m002 1+Pi^5/ProductLog[Pi]+ProductLog[Pi]/2 2865620693908683 r002 33i'th iterates of 2*x/(1-x^2) of 2865620695753796 a007 Real Root Of 214*x^4+797*x^3+582*x^2+468*x+886 2865620699431140 r005 Re(z^2+c),c=-5/14+3/19*I,n=10 2865620700108595 r005 Re(z^2+c),c=23/86+3/28*I,n=41 2865620708439642 a007 Real Root Of 372*x^4+586*x^3+749*x^2-240*x-119 2865620715289353 r009 Im(z^3+c),c=-9/31+15/58*I,n=22 2865620720039723 m001 (BesselJ(0,1)+MertensB3)/(1-3^(1/2)) 2865620722255470 r009 Im(z^3+c),c=-9/31+15/58*I,n=23 2865620723293103 r009 Im(z^3+c),c=-9/31+15/58*I,n=26 2865620723588296 r009 Im(z^3+c),c=-9/31+15/58*I,n=29 2865620723594523 r009 Im(z^3+c),c=-9/31+15/58*I,n=30 2865620723601207 r009 Im(z^3+c),c=-9/31+15/58*I,n=33 2865620723601894 r009 Im(z^3+c),c=-9/31+15/58*I,n=34 2865620723601930 r009 Im(z^3+c),c=-9/31+15/58*I,n=37 2865620723601947 r009 Im(z^3+c),c=-9/31+15/58*I,n=36 2865620723601954 r009 Im(z^3+c),c=-9/31+15/58*I,n=40 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=41 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=44 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=48 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=47 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=45 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=51 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=52 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=55 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=58 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=59 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=62 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=63 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=64 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=61 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=60 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=56 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=57 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=54 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=53 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=50 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=49 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=46 2865620723601955 r009 Im(z^3+c),c=-9/31+15/58*I,n=43 2865620723601956 r009 Im(z^3+c),c=-9/31+15/58*I,n=42 2865620723601959 r009 Im(z^3+c),c=-9/31+15/58*I,n=39 2865620723601960 r009 Im(z^3+c),c=-9/31+15/58*I,n=38 2865620723602099 r009 Im(z^3+c),c=-9/31+15/58*I,n=35 2865620723602841 r009 Im(z^3+c),c=-9/31+15/58*I,n=32 2865620723605426 r009 Im(z^3+c),c=-9/31+15/58*I,n=31 2865620723620993 r009 Im(z^3+c),c=-9/31+15/58*I,n=25 2865620723639720 r009 Im(z^3+c),c=-9/31+15/58*I,n=27 2865620723652958 r009 Im(z^3+c),c=-9/31+15/58*I,n=28 2865620725172102 h001 (-8*exp(1)+3)/(-12*exp(4)+1) 2865620725290031 r009 Im(z^3+c),c=-9/31+15/58*I,n=24 2865620728148716 m001 Bloch-Kolakoski^Zeta(3) 2865620731818838 m005 (1/2*Zeta(3)+5/9)/(5^(1/2)+9/5) 2865620737136280 r009 Im(z^3+c),c=-9/31+15/58*I,n=21 2865620742273817 m001 Landau^BesselI(1,1)*Landau^Psi(2,1/3) 2865620750615128 a009 1/17*(22+3^(1/2))^(1/2) 2865620757630156 a001 3571/6765*233^(9/29) 2865620759458025 r009 Im(z^3+c),c=-9/31+15/58*I,n=20 2865620766107726 g006 Psi(1,5/7)-Psi(1,7/10)-Psi(1,4/5)-Psi(1,1/5) 2865620768209997 m001 GAMMA(5/6)^GlaisherKinkelin-QuadraticClass 2865620779469077 a007 Real Root Of -495*x^4+396*x^3-362*x^2+222*x+106 2865620779675604 m001 Backhouse^gamma(2)-Rabbit 2865620785088082 r005 Im(z^2+c),c=-3/56+21/59*I,n=30 2865620794325444 r005 Im(z^2+c),c=-103/126+9/58*I,n=10 2865620802709129 r005 Im(z^2+c),c=11/36+4/43*I,n=52 2865620803791753 m001 exp(OneNinth)^2*Conway*sqrt(Pi) 2865620805559748 m001 (2^(1/3)+BesselK(1,1))/(Weierstrass+ZetaP(3)) 2865620808182077 g007 Psi(2,7/12)+Psi(2,3/8)-Psi(2,1/11)-Psi(2,1/5) 2865620814102048 m001 (-Backhouse+RenyiParking)/(gamma+Ei(1)) 2865620819366307 a007 Real Root Of -8*x^4+846*x^3+56*x^2+414*x+134 2865620841101692 m003 37/2+Sqrt[5]/32+2*E^(1/2+Sqrt[5]/2) 2865620852060718 s002 sum(A167189[n]/(pi^n+1),n=1..infinity) 2865620860223817 r009 Re(z^3+c),c=-13/36+17/58*I,n=15 2865620861515481 m005 (1/2*3^(1/2)+7/11)/(2/3*gamma-10/11) 2865620863731737 h001 (2/9*exp(2)+6/7)/(1/11*exp(1)+5/8) 2865620864710021 a007 Real Root Of 226*x^4+915*x^3+516*x^2-741*x-69 2865620873288762 m001 (Khinchin+QuadraticClass)/(cos(1)+CareFree) 2865620874928089 a007 Real Root Of 253*x^4+958*x^3+398*x^2-844*x-204 2865620875026728 r005 Im(z^2+c),c=-8/29+31/63*I,n=13 2865620895245400 s002 sum(A217472[n]/(pi^n-1),n=1..infinity) 2865620910133433 a003 cos(Pi*7/55)/cos(Pi*19/48) 2865620925848407 a001 3571/5*514229^(52/53) 2865620927419604 r009 Im(z^3+c),c=-9/31+15/58*I,n=16 2865620937895221 r005 Im(z^2+c),c=15/52+3/25*I,n=34 2865620938866700 a001 9349/17711*233^(9/29) 2865620945451164 m001 (ln(3)+Ei(1))/(GAMMA(11/12)-Trott) 2865620948197427 r005 Re(z^2+c),c=-4/5+17/106*I,n=10 2865620952530161 r005 Im(z^2+c),c=5/114+4/13*I,n=16 2865620953589351 m001 TwinPrimes^2/exp(Cahen)^2*cosh(1)^2 2865620959782329 h001 (4/9*exp(2)+7/11)/(1/8*exp(2)+4/9) 2865620965308756 a001 6119/11592*233^(9/29) 2865620969166600 a001 64079/121393*233^(9/29) 2865620971550878 a001 39603/75025*233^(9/29) 2865620974768876 m001 1/MertensB1*ln(ArtinRank2)*(3^(1/3))^2 2865620981650845 a001 15127/28657*233^(9/29) 2865620982291155 a001 3571/196418*34^(4/31) 2865620993709087 r005 Re(z^2+c),c=-7/40+34/55*I,n=26 2865621009001423 a009 1/10*(17^(1/2)-6^(2/3))^(1/2)*10^(1/2) 2865621009697577 r005 Im(z^2+c),c=-13/44+29/48*I,n=57 2865621009926250 a007 Real Root Of 259*x^4+401*x^3-627*x^2+780*x-645 2865621019446467 r009 Re(z^3+c),c=-19/66+7/41*I,n=2 2865621023246507 r005 Im(z^2+c),c=-11/54+13/31*I,n=23 2865621025858414 q001 676/2359 2865621047632250 r005 Re(z^2+c),c=29/122+23/52*I,n=51 2865621049555675 a007 Real Root Of 108*x^4+170*x^3-259*x^2+569*x+475 2865621049835907 r009 Re(z^3+c),c=-13/106+20/31*I,n=2 2865621050877044 a001 2889/5473*233^(9/29) 2865621057482892 m001 (GAMMA(17/24)-Rabbit)/(3^(1/3)+BesselI(1,1)) 2865621060710775 a007 Real Root Of 347*x^4+951*x^3+82*x^2+298*x-840 2865621067951925 l006 ln(5807/7734) 2865621076983958 m001 (Ei(1)-BesselI(1,1))/(Trott-Weierstrass) 2865621100536847 m005 (1/2*exp(1)-7/12)/(2/9*exp(1)-1/3) 2865621111377933 a001 2207/55*75025^(24/41) 2865621111512525 k009 concat of cont frac of 2865621112972424 a001 5/271443*1364^(3/49) 2865621118591669 m005 (1/2*gamma+5/9)/(1/6*Pi-9/11) 2865621134800036 r005 Im(z^2+c),c=31/114+2/15*I,n=12 2865621140845237 m008 (1/5*Pi^4-3)/(1/4*Pi^3-2) 2865621150191905 m001 (Ei(1)*ThueMorse-PisotVijayaraghavan)/Ei(1) 2865621157640737 m001 (BesselK(1,1)+Paris)/(1+exp(1/exp(1))) 2865621165209582 m001 Gompertz^FeigenbaumMu/Psi(2,1/3) 2865621165678114 r005 Im(z^2+c),c=-13/28+25/61*I,n=13 2865621167641987 b008 Pi-8*ArcCoth[29] 2865621174236438 a001 9349/514229*34^(4/31) 2865621177450566 m001 ((2^(1/3))*(3^(1/3))-Backhouse)/(2^(1/3)) 2865621177450566 m001 1/2*(2^(1/3)*3^(1/3)-Backhouse)*2^(2/3) 2865621180130701 r005 Re(z^2+c),c=23/86+3/28*I,n=53 2865621189509758 h002 exp(1/4*(4*5^(3/4)+19^(1/2))^(1/2)) 2865621191310443 r009 Re(z^3+c),c=-17/32+11/56*I,n=41 2865621195220813 a007 Real Root Of -228*x^4-760*x^3-643*x^2-850*x+335 2865621198909820 r005 Re(z^2+c),c=-11/14+12/235*I,n=34 2865621202240878 a001 24476/1346269*34^(4/31) 2865621202770084 r009 Re(z^3+c),c=-19/32+29/53*I,n=44 2865621205099167 m005 (1/2*Zeta(3)-4/9)/(1/12*2^(1/2)+3/7) 2865621208851829 a001 13201/726103*34^(4/31) 2865621211998004 m001 LambertW(1)/(Pi^Gompertz) 2865621219548573 a001 15127/832040*34^(4/31) 2865621234097683 m001 1/GAMMA(17/24)/exp(BesselJ(0,1))^2/sin(Pi/5) 2865621236311126 m001 1/exp(Zeta(7))^2*OneNinth*sqrt(2)^2 2865621243646215 m001 (Si(Pi)-Totient)/KomornikLoreti 2865621251615151 k006 concat of cont frac of 2865621268167833 m001 (BesselJ(1,1)-KhinchinLevy)/(ln(Pi)-Zeta(1/2)) 2865621276591044 h001 (9/10*exp(1)+5/8)/(1/10*exp(1)+4/5) 2865621292865147 a001 1926/105937*34^(4/31) 2865621293742426 m005 (1/2*3^(1/2)-5/9)/(4/11*Zeta(3)-6/11) 2865621304152978 r005 Im(z^2+c),c=-43/66+3/55*I,n=51 2865621309661788 a007 Real Root Of 571*x^4-40*x^3+573*x^2-688*x-249 2865621316516842 m001 (Champernowne+Lehmer)/(Ei(1,1)-exp(1)) 2865621323522603 m001 (GAMMA(11/12)+Porter)/(Zeta(3)-arctan(1/3)) 2865621323629635 m008 (2/3*Pi^3+1/5)/(2*Pi+1) 2865621326241244 r005 Re(z^2+c),c=-23/74+14/37*I,n=32 2865621328895396 m005 (1/2*2^(1/2)-5/8)/(5/6*exp(1)+3/5) 2865621332527125 p003 LerchPhi(1/10,4,570/233) 2865621337072973 r005 Re(z^2+c),c=23/86+3/28*I,n=50 2865621337382927 a001 3571/28657*4807526976^(19/22) 2865621338048074 a001 1860498/1597*121393^(19/22) 2865621339717449 a007 Real Root Of -257*x^4-446*x^3+553*x^2-900*x-285 2865621346548553 r005 Im(z^2+c),c=15/98+13/28*I,n=4 2865621351392753 a001 5/1149851*2207^(12/49) 2865621361049585 m008 (1/4*Pi^5-4)/(5/6*Pi^5-2) 2865621362201663 r005 Re(z^2+c),c=19/56+3/17*I,n=21 2865621370706348 r009 Im(z^3+c),c=-9/31+15/58*I,n=17 2865621371952407 m005 (-17/44+1/4*5^(1/2))/(1/3*5^(1/2)-1/7) 2865621373444189 a007 Real Root Of 357*x^4-312*x^3+946*x^2+5*x-86 2865621395437721 r009 Re(z^3+c),c=-25/58+15/26*I,n=21 2865621408481807 l006 ln(3797/5057) 2865621411232201 r005 Re(z^2+c),c=-19/62+23/58*I,n=21 2865621435970166 h003 exp(Pi*(1/15*(10-7*15^(1/2))^(1/2)*15^(1/2))) 2865621443082206 a007 Real Root Of -465*x^4-856*x^3-458*x^2+469*x+155 2865621445190074 r005 Im(z^2+c),c=-25/78+25/54*I,n=41 2865621455985510 m001 (1+Shi(1))/(-LambertW(1)+GAMMA(17/24)) 2865621458510401 r005 Re(z^2+c),c=-57/74+6/47*I,n=6 2865621465864486 m001 Rabbit^LandauRamanujan/Khinchin 2865621469032402 h002 exp(1/4*(2^(1/2)+10^(3/4))^(1/2)*4^(1/3)) 2865621474622393 m002 -E^(-Pi)-Pi^3+Pi^5+Cosh[Pi] 2865621484961963 a007 Real Root Of -449*x^4-931*x^3+683*x^2-902*x+176 2865621491029226 m001 1/Rabbit/ln(FeigenbaumB)^2/Zeta(1/2) 2865621500559910 q001 2559/893 2865621511609836 r005 Im(z^2+c),c=-27/20+4/51*I,n=18 2865621512566551 r008 a(0)=3,K{-n^6,6-9*n^3+9*n} 2865621522025412 r005 Im(z^2+c),c=-23/40+21/52*I,n=38 2865621525360468 a001 2207/4181*233^(9/29) 2865621529911616 a001 9349/75025*4807526976^(19/22) 2865621529979969 a001 4870847/4181*121393^(19/22) 2865621536588580 r005 Re(z^2+c),c=-19/56+17/63*I,n=19 2865621537865695 a005 (1/cos(4/51*Pi))^1611 2865621541671892 m001 DuboisRaymond*BesselI(1,2)^GaussAGM 2865621546307170 r009 Re(z^3+c),c=-31/70+21/44*I,n=31 2865621557982457 a001 12752043/10946*121393^(19/22) 2865621558001173 a001 12238/98209*4807526976^(19/22) 2865621562067965 a001 33385282/28657*121393^(19/22) 2865621562099384 a001 64079/514229*4807526976^(19/22) 2865621562664033 a001 87403803/75025*121393^(19/22) 2865621562697305 a001 167761/1346269*4807526976^(19/22) 2865621562750998 a001 228826127/196418*121393^(19/22) 2865621562763686 a001 599074578/514229*121393^(19/22) 2865621562765537 a001 1568397607/1346269*121393^(19/22) 2865621562765807 a001 4106118243/3524578*121393^(19/22) 2865621562765847 a001 10749957122/9227465*121393^(19/22) 2865621562765852 a001 28143753123/24157817*121393^(19/22) 2865621562765853 a001 73681302247/63245986*121393^(19/22) 2865621562765853 a001 192900153618/165580141*121393^(19/22) 2865621562765853 a001 505019158607/433494437*121393^(19/22) 2865621562765853 a001 1322157322203/1134903170*121393^(19/22) 2865621562765853 a001 3461452808002/2971215073*121393^(19/22) 2865621562765853 a001 9062201101803/7778742049*121393^(19/22) 2865621562765853 a001 23725150497407/20365011074*121393^(19/22) 2865621562765853 a001 14662949395604/12586269025*121393^(19/22) 2865621562765853 a001 5600748293801/4807526976*121393^(19/22) 2865621562765853 a001 2139295485799/1836311903*121393^(19/22) 2865621562765853 a001 817138163596/701408733*121393^(19/22) 2865621562765853 a001 312119004989/267914296*121393^(19/22) 2865621562765853 a001 119218851371/102334155*121393^(19/22) 2865621562765854 a001 45537549124/39088169*121393^(19/22) 2865621562765856 a001 17393796001/14930352*121393^(19/22) 2865621562765871 a001 6643838879/5702887*121393^(19/22) 2865621562765974 a001 2537720636/2178309*121393^(19/22) 2865621562766681 a001 969323029/832040*121393^(19/22) 2865621562771528 a001 370248451/317811*121393^(19/22) 2865621562784540 a001 219602/1762289*4807526976^(19/22) 2865621562797268 a001 1149851/9227465*4807526976^(19/22) 2865621562799125 a001 3010349/24157817*4807526976^(19/22) 2865621562799396 a001 3940598/31622993*4807526976^(19/22) 2865621562799435 a001 20633239/165580141*4807526976^(19/22) 2865621562799441 a001 54018521/433494437*4807526976^(19/22) 2865621562799442 a001 70711162/567451585*4807526976^(19/22) 2865621562799442 a001 370248451/2971215073*4807526976^(19/22) 2865621562799442 a001 969323029/7778742049*4807526976^(19/22) 2865621562799442 a001 1268860318/10182505537*4807526976^(19/22) 2865621562799442 a001 6643838879/53316291173*4807526976^(19/22) 2865621562799442 a001 17393796001/139583862445*4807526976^(19/22) 2865621562799442 a001 22768774562/182717648081*4807526976^(19/22) 2865621562799442 a001 119218851371/956722026041*4807526976^(19/22) 2865621562799442 a001 312119004989/2504730781961*4807526976^(19/22) 2865621562799442 a001 408569081798/3278735159921*4807526976^(19/22) 2865621562799442 a001 505019158607/4052739537881*4807526976^(19/22) 2865621562799442 a001 10716675201/86000486440*4807526976^(19/22) 2865621562799442 a001 73681302247/591286729879*4807526976^(19/22) 2865621562799442 a001 9381251041/75283811239*4807526976^(19/22) 2865621562799442 a001 5374978561/43133785636*4807526976^(19/22) 2865621562799442 a001 1368706081/10983760033*4807526976^(19/22) 2865621562799442 a001 1568397607/12586269025*4807526976^(19/22) 2865621562799442 a001 33281921/267084832*4807526976^(19/22) 2865621562799442 a001 228826127/1836311903*4807526976^(19/22) 2865621562799442 a001 29134601/233802911*4807526976^(19/22) 2865621562799445 a001 16692641/133957148*4807526976^(19/22) 2865621562799460 a001 4250681/34111385*4807526976^(19/22) 2865621562799563 a001 4870847/39088169*4807526976^(19/22) 2865621562800272 a001 103361/829464*4807526976^(19/22) 2865621562804745 a001 271444/233*121393^(19/22) 2865621562805134 a001 710647/5702887*4807526976^(19/22) 2865621562838455 a001 90481/726103*4807526976^(19/22) 2865621563032423 a001 54018521/46368*121393^(19/22) 2865621563066840 a001 51841/416020*4807526976^(19/22) 2865621564592948 a001 20633239/17711*121393^(19/22) 2865621564632218 a001 13201/105937*4807526976^(19/22) 2865621575288947 a001 7881196/6765*121393^(19/22) 2865621575361474 a001 15127/121393*4807526976^(19/22) 2865621580076410 r005 Im(z^2+c),c=-35/31+17/62*I,n=4 2865621587842562 a007 Real Root Of -763*x^4-62*x^3-404*x^2-174*x-13 2865621588499763 m005 (1/2*Zeta(3)+5/6)/(5/8*2^(1/2)-8/9) 2865621594949414 a007 Real Root Of 986*x^4+571*x^3-127*x^2-606*x+164 2865621596445273 a007 Real Root Of 358*x^4+773*x^3-576*x^2+275*x-433 2865621609391653 m001 1/ln(GAMMA(11/12))*FeigenbaumD/sqrt(3) 2865621610311462 a007 Real Root Of -364*x^4-993*x^3-40*x^2-483*x+123 2865621627629569 a007 Real Root Of -136*x^4-534*x^3-797*x^2-776*x+926 2865621631587139 m001 exp(-Pi)^(exp(Pi)*cos(1/5*Pi)) 2865621631587139 m001 exp(-Pi)^(exp(Pi)*cos(Pi/5)) 2865621636085717 a007 Real Root Of -355*x^4+555*x^3-790*x^2+962*x+356 2865621648600416 a001 3010349/2584*121393^(19/22) 2865621648900889 a001 321/2576*4807526976^(19/22) 2865621650620265 a001 7/196418*2584^(13/49) 2865621663930606 a007 Real Root Of -323*x^4-483*x^3+980*x^2-487*x+972 2865621673613518 a001 599074578/377*832040^(11/20) 2865621673613657 a001 3010349/377*12586269025^(11/20) 2865621683059658 h001 (-7*exp(6)-6)/(-9*exp(7)-6) 2865621691372005 r005 Im(z^2+c),c=-43/110+21/62*I,n=3 2865621696232572 r005 Re(z^2+c),c=-31/94+9/29*I,n=23 2865621696239353 m001 Weierstrass*(ZetaQ(2)-ln(gamma)) 2865621716933979 a001 521/233*3^(7/31) 2865621730500071 m001 (BesselK(1,1)-Shi(1))/(-BesselI(1,2)+ZetaQ(4)) 2865621733869549 r005 Re(z^2+c),c=23/86+3/28*I,n=60 2865621753023300 r005 Im(z^2+c),c=-9/82+8/21*I,n=17 2865621761330890 r005 Re(z^2+c),c=23/86+3/28*I,n=61 2865621762610917 l006 ln(5584/7437) 2865621777145927 r005 Re(z^2+c),c=-31/90+12/49*I,n=28 2865621784568951 r002 6th iterates of z^2 + 2865621784576326 r005 Re(z^2+c),c=-2/7+29/64*I,n=56 2865621784964403 r009 Re(z^3+c),c=-5/98+34/53*I,n=39 2865621787666953 m005 (7/8+1/4*5^(1/2))/(7/12*2^(1/2)-7/8) 2865621789695718 r005 Re(z^2+c),c=23/86+3/28*I,n=59 2865621795384423 a001 2207/121393*34^(4/31) 2865621800000605 a007 Real Root Of -352*x^4-733*x^3+474*x^2-965*x-170 2865621801222668 m005 (1/2*Catalan-3/4)/(10/11*3^(1/2)-5/9) 2865621825213373 r005 Re(z^2+c),c=23/86+3/28*I,n=62 2865621828620925 r005 Re(z^2+c),c=-7/24+22/45*I,n=9 2865621833962211 m001 Zeta(5)/(LaplaceLimit+Otter) 2865621835140623 p004 log(24691/18539) 2865621835670054 r005 Im(z^2+c),c=-33/98+15/32*I,n=60 2865621848983041 r005 Re(z^2+c),c=23/86+3/28*I,n=54 2865621855592644 m001 (Porter+Sarnak)/(GAMMA(7/12)-LandauRamanujan) 2865621866577461 r005 Im(z^2+c),c=-9/16+38/65*I,n=4 2865621881260584 r005 Im(z^2+c),c=-87/122+1/41*I,n=3 2865621882498328 r005 Re(z^2+c),c=23/86+3/28*I,n=63 2865621888436081 a001 2/28657*8^(36/53) 2865621889378302 s002 sum(A233354[n]/((10^n+1)/n),n=1..infinity) 2865621900043800 r002 6th iterates of z^2 + 2865621902898593 r005 Im(z^2+c),c=-33/62+2/37*I,n=18 2865621910268429 s002 sum(A135302[n]/((exp(n)+1)*n),n=1..infinity) 2865621911079796 r005 Re(z^2+c),c=23/86+3/28*I,n=64 2865621932340613 r005 Re(z^2+c),c=-29/86+13/46*I,n=15 2865621933498263 m001 (Thue-ThueMorse)/(sin(1/12*Pi)-PrimesInBinary) 2865621938840363 r005 Re(z^2+c),c=-31/90+12/49*I,n=27 2865621942306593 m001 (-Ei(1)+ZetaQ(3))/(GAMMA(3/4)-LambertW(1)) 2865621944670067 m001 (GAMMA(17/24)+Salem)/(ln(gamma)+arctan(1/2)) 2865621945032325 l006 ln(7371/9817) 2865621947246162 r005 Re(z^2+c),c=23/86+3/28*I,n=58 2865621952471657 a007 Real Root Of 739*x^4-828*x^3+105*x^2-817*x+240 2865621952937526 a007 Real Root Of 227*x^4-394*x^3+781*x^2-412*x-193 2865621956663980 m001 Porter*(exp(-1/2*Pi)+KhinchinHarmonic) 2865621959532758 r009 Re(z^3+c),c=-33/82+17/46*I,n=17 2865621972575734 a003 sin(Pi*36/107)/cos(Pi*47/117) 2865621975211117 r005 Im(z^2+c),c=23/78+10/23*I,n=22 2865621977207808 a007 Real Root Of -610*x^4+398*x^3-147*x^2+966*x-270 2865621981166747 r002 8th iterates of z^2 + 2865621982376373 m005 (1/3*gamma+1/5)/(1/3*3^(1/2)-5/7) 2865621999570971 a003 cos(Pi*43/97)+cos(Pi*20/43) 2865622002314213 r005 Re(z^2+c),c=-6/23+38/61*I,n=64 2865622015183130 m001 (gamma(1)+GAMMA(5/6))/(Landau-ZetaP(3)) 2865622036462019 a008 Real Root of x^4-32*x^2-10*x+224 2865622041868744 r005 Im(z^2+c),c=-19/48+25/51*I,n=58 2865622056942384 m001 (Psi(1,1/3)+Pi^(1/2))/(Backhouse+Khinchin) 2865622068610281 r005 Re(z^2+c),c=-29/110+25/49*I,n=52 2865622073507684 m001 (Pi+exp(Pi))*cos(1/12*Pi)*GAMMA(5/6) 2865622078977228 m001 Weierstrass/(Zeta(1,-1)+MasserGramainDelta) 2865622082633316 r002 6th iterates of z^2 + 2865622085551638 m001 1/BesselJ(0,1)^2/(3^(1/3))/ln(GAMMA(3/4))^2 2865622089778261 r005 Im(z^2+c),c=-33/118+13/29*I,n=60 2865622090238995 r005 Re(z^2+c),c=-11/82+24/41*I,n=20 2865622092541924 a007 Real Root Of 177*x^4+208*x^3-854*x^2+229*x+628 2865622109905485 r005 Im(z^2+c),c=-23/62+14/29*I,n=46 2865622145910867 a007 Real Root Of 309*x^4+624*x^3-696*x^2-109*x-750 2865622151084804 a001 1149851/987*121393^(19/22) 2865622152947541 a001 2207/17711*4807526976^(19/22) 2865622153980122 m005 (1/2*Catalan+4)/(-23/154+3/22*5^(1/2)) 2865622156455785 m001 (FeigenbaumD-FeigenbaumDelta)/(Zeta(3)-Ei(1)) 2865622160619852 r005 Re(z^2+c),c=-13/48+31/63*I,n=54 2865622162188504 r005 Re(z^2+c),c=23/86+3/28*I,n=57 2865622169147102 m001 ZetaP(2)*ZetaQ(2)^(3^(1/2)) 2865622181001367 m001 (Artin+ErdosBorwein*ZetaQ(2))/ErdosBorwein 2865622185317503 r005 Im(z^2+c),c=-25/74+34/57*I,n=27 2865622193473470 r002 15th iterates of z^2 + 2865622203071932 h002 exp(1/9*(12^(3/4)-7*9^(3/4))^(1/2)*9^(1/4)) 2865622207001946 m005 (1/3*Zeta(3)+2/9)/(9/10*exp(1)-3/11) 2865622209546378 r009 Re(z^3+c),c=-47/106+11/27*I,n=16 2865622212545310 m006 (5/6*ln(Pi)-1)/(3*exp(2*Pi)+4/5) 2865622223142294 r008 a(0)=0,K{-n^6,35-39*n+21*n^2-21*n^3} 2865622226483254 r002 55th iterates of z^2 + 2865622226698901 a007 Real Root Of 313*x^4-152*x^3+937*x^2-434*x-207 2865622233735293 m004 -1+(75*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi])/2 2865622236038954 m005 (1/3*2^(1/2)-1/6)/(10/11*2^(1/2)-2/9) 2865622238245779 r005 Re(z^2+c),c=-19/110+36/61*I,n=16 2865622247108676 r005 Re(z^2+c),c=23/86+3/28*I,n=55 2865622252153766 r005 Re(z^2+c),c=-21/58+5/39*I,n=15 2865622254437344 r005 Im(z^2+c),c=-73/82+5/23*I,n=29 2865622258675363 m001 1/Zeta(1/2)^2*GAMMA(1/12)/ln(cosh(1))^2 2865622265537964 m001 (GolombDickman+Niven)/(gamma+CopelandErdos) 2865622287407526 b008 3*E^(4/Sqrt[Pi]) 2865622296708253 m001 (-CareFree+MertensB3)/(Chi(1)+GAMMA(2/3)) 2865622298846064 a007 Real Root Of 644*x^4-646*x^3+593*x^2-896*x-325 2865622312927111 k009 concat of cont frac of 2865622313280048 a007 Real Root Of 124*x^4+42*x^3-924*x^2+203*x+796 2865622315216593 r005 Re(z^2+c),c=23/86+3/28*I,n=56 2865622322038880 m001 Zeta(7)*GAMMA(1/3)^2/ln(sqrt(1+sqrt(3)))^2 2865622333543388 r009 Im(z^3+c),c=-9/31+15/58*I,n=14 2865622334620713 a007 Real Root Of -372*x^4+153*x^3+863*x^2+890*x-327 2865622342789366 a007 Real Root Of -220*x^4-345*x^3+510*x^2-775*x+308 2865622350360055 m001 (Conway+Gompertz)/(Salem-Tribonacci) 2865622359679836 a001 47/89*6765^(39/40) 2865622360833298 m001 Sierpinski*Champernowne/exp(OneNinth) 2865622386077839 g005 GAMMA(1/11)*GAMMA(3/7)*GAMMA(3/5)/GAMMA(5/6) 2865622390776857 a001 23725150497407/89*144^(16/17) 2865622393663336 r009 Im(z^3+c),c=-31/58+23/59*I,n=23 2865622396322993 a007 Real Root Of 700*x^4-924*x^3-172*x^2-837*x+271 2865622414626254 a007 Real Root Of -256*x^4-815*x^3-520*x^2-747*x+214 2865622414846739 a007 Real Root Of 100*x^4+307*x^3+122*x^2+224*x+121 2865622433200669 s001 sum(exp(-Pi/2)^(n-1)*A047596[n],n=1..infinity) 2865622439572260 b008 9-40*E^2 2865622441819633 m001 1/Conway*ln(ErdosBorwein)^2/BesselK(1,1) 2865622454991865 s002 sum(A006978[n]/(n*2^n+1),n=1..infinity) 2865622464217686 p001 sum(1/(377*n+305)/n/(512^n),n=1..infinity) 2865622467047796 h001 (7/9*exp(1)+7/12)/(3/11*exp(1)+1/5) 2865622472907532 r005 Re(z^2+c),c=-2/7+29/64*I,n=59 2865622481283951 r005 Im(z^2+c),c=-19/16+1/26*I,n=34 2865622481996522 a007 Real Root Of 297*x^4+850*x^3-45*x^2-239*x-341 2865622494326442 r005 Re(z^2+c),c=-10/29+11/45*I,n=14 2865622495690327 r005 Im(z^2+c),c=-23/34+53/119*I,n=23 2865622506750844 r009 Im(z^3+c),c=-3/64+49/58*I,n=18 2865622515060923 l006 ln(1787/2380) 2865622515980131 m005 (1/2*gamma-10/11)/(2*Catalan+1/3) 2865622526750168 r005 Re(z^2+c),c=-29/86+12/43*I,n=31 2865622535530420 r008 a(0)=3,K{-n^6,6+7*n^3-4*n^2} 2865622536942352 a007 Real Root Of -334*x^4-974*x^3+74*x^2+313*x-108 2865622537294971 g002 2*Psi(7/11)+Psi(6/7)-Psi(7/8) 2865622538810435 r005 Im(z^2+c),c=-23/60+19/39*I,n=51 2865622548198120 m005 (1/2*Pi+7/11)/(1/4*2^(1/2)+5/12) 2865622551147182 r009 Im(z^3+c),c=-47/98+4/33*I,n=45 2865622559079978 m001 (ZetaQ(2)-ZetaQ(4))/(GAMMA(23/24)+Kolakoski) 2865622569292434 m002 -6+3*Pi^6-Sinh[Pi]-Tanh[Pi] 2865622570502956 r005 Re(z^2+c),c=-29/86+12/43*I,n=33 2865622571658589 m005 (1/2*Zeta(3)-5/9)/(4/11*Pi+4/9) 2865622584576824 b008 E*(2+ArcSec[Pi])^2 2865622590105585 r005 Re(z^2+c),c=-19/86+29/56*I,n=16 2865622592376528 m001 (Zeta(1,2)+TwinPrimes)/(cos(1/12*Pi)+gamma(3)) 2865622609139709 m001 (-Otter+Trott)/(2^(1/2)-OrthogonalArrays) 2865622613762751 r009 Im(z^3+c),c=-25/56+9/59*I,n=5 2865622621651884 a007 Real Root Of -737*x^4+711*x^3+18*x^2+411*x+138 2865622628980747 r005 Re(z^2+c),c=1/21+41/62*I,n=5 2865622635373212 m005 (1/2*3^(1/2)-10/11)/(5/12*5^(1/2)-11/12) 2865622636046220 m001 (Shi(1)-cos(1))/(ln(5)+DuboisRaymond) 2865622660057939 r005 Im(z^2+c),c=-11/52+27/46*I,n=17 2865622674632394 r005 Re(z^2+c),c=-43/118+1/28*I,n=7 2865622681046032 r005 Im(z^2+c),c=-3/56+21/59*I,n=23 2865622693842162 m001 (gamma+gamma(3))/(-FeigenbaumD+Robbin) 2865622709986004 b008 ArcCot[ArcSinh[5+Pi^2]] 2865622711946603 h001 (-7*exp(2)-10)/(-4*exp(4)+3) 2865622728136571 m001 (FeigenbaumD+TreeGrowth2nd)/(cos(1)-ln(gamma)) 2865622735034408 r005 Im(z^2+c),c=-5/8+5/204*I,n=10 2865622740000166 m001 (GAMMA(17/24)-GAMMA(3/4))^(2^(1/3)) 2865622740000166 m001 (GAMMA(3/4)-GAMMA(17/24))^(2^(1/3)) 2865622748595604 a007 Real Root Of -307*x^4+928*x^3-619*x^2+308*x+163 2865622752709384 r005 Re(z^2+c),c=-9/74+36/61*I,n=20 2865622759533997 m001 GAMMA(7/12)^2*ln(Salem)^2/arctan(1/2)^2 2865622760839301 m005 (1/12+1/6*5^(1/2))/(5/7*gamma-4/7) 2865622763823906 m001 ZetaR(2)^(BesselI(0,1)*polylog(4,1/2)) 2865622771798717 m001 Riemann2ndZero^BesselI(0,1)/ZetaQ(4) 2865622773219083 a007 Real Root Of 260*x^4+329*x^3-904*x^2+638*x-539 2865622798389267 m001 FeigenbaumD*exp(LaplaceLimit)*GAMMA(1/24)^2 2865622839262423 m001 Gompertz-ln(2)/ln(10)-ZetaQ(3) 2865622849292316 a007 Real Root Of 27*x^4+127*x^3+403*x^2+919*x+492 2865622849581530 m005 (1/2*exp(1)+5/11)/(3/4*gamma+1/5) 2865622856898056 p002 log(3^(12/11)-3^(6/7)) 2865622865083665 r005 Im(z^2+c),c=-37/60+1/19*I,n=39 2865622866325036 a007 Real Root Of -237*x^4-717*x^3-367*x^2-855*x-327 2865622880688121 a007 Real Root Of -329*x^4-695*x^3+975*x^2+450*x-886 2865622888394068 r005 Re(z^2+c),c=-13/9+19/91*I,n=4 2865622891102645 r002 24th iterates of z^2 + 2865622893713034 m001 (FeigenbaumAlpha-Psi(2,1/3))/(GaussAGM+Salem) 2865622910186560 m005 (1/2*5^(1/2)-3/8)/(7/8*5^(1/2)+7/11) 2865622936618299 r005 Re(z^2+c),c=-10/23+7/16*I,n=10 2865622944007495 r005 Im(z^2+c),c=-33/118+13/29*I,n=54 2865622955013619 m001 FransenRobinson-gamma(1)*Kolakoski 2865622958179874 a007 Real Root Of 221*x^4+522*x^3-280*x^2+388*x+792 2865622960056917 a007 Real Root Of -373*x^4-768*x^3+842*x^2-172*x-327 2865622962498196 s002 sum(A256741[n]/(exp(2*pi*n)+1),n=1..infinity) 2865622966376047 m005 (1/2*3^(1/2)-1/7)/(1/6*Pi+2) 2865622966584170 m005 (1/2*exp(1)+5/7)/(3/8*Pi-5/11) 2865622979147445 a007 Real Root Of 327*x^4+895*x^3-124*x^2+71*x+232 2865622987641298 a007 Real Root Of 482*x^4-154*x^3+13*x^2-911*x-269 2865622993445793 m001 (ln(2)*TwinPrimes+GAMMA(7/12))/ln(2) 2865623022285528 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]-Csch[Sqrt[5]*Pi] 2865623022299605 m004 -3-2/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865623022313683 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]-Sech[Sqrt[5]*Pi] 2865623032155415 a007 Real Root Of 360*x^4+661*x^3-845*x^2+450*x-493 2865623033129007 m005 (-5/12+1/4*5^(1/2))/(4/5*3^(1/2)-8/9) 2865623065423630 m005 (1/2*Pi-7/11)/(7/9*5^(1/2)-5) 2865623075337313 a007 Real Root Of -187*x^4-470*x^3+14*x^2-654*x-439 2865623076245339 m001 1/FeigenbaumD^2/GolombDickman*ln(GAMMA(1/4)) 2865623085604328 m002 -Pi^3+Pi^5+Cosh[Pi]-Tanh[Pi]/E^Pi 2865623098415653 a007 Real Root Of -560*x^4-369*x^3+251*x^2+780*x+198 2865623116982754 r005 Re(z^2+c),c=-31/90+12/49*I,n=30 2865623118520703 m005 (1/2*2^(1/2)-1/6)/(7/12*2^(1/2)-7/11) 2865623121801796 l006 ln(6925/9223) 2865623152352184 m001 (gamma(1)+ZetaQ(3))/(GAMMA(2/3)+ln(2^(1/2)+1)) 2865623186023341 r005 Im(z^2+c),c=-19/32+4/37*I,n=12 2865623195216277 m001 1/BesselK(0,1)/Khintchine*exp(sin(Pi/5))^2 2865623197606086 m005 (1/3*Catalan+3/4)/(7/11*gamma-4/11) 2865623208397458 a007 Real Root Of 464*x^4+653*x^3+103*x^2-582*x-163 2865623217867612 m001 (Pi+LandauRamanujan)/(MinimumGamma-Paris) 2865623219818367 m001 (gamma+5)/(-GAMMA(1/24)+4) 2865623220281325 a007 Real Root Of -248*x^4+745*x^3+251*x^2+818*x+233 2865623244937813 a001 76/55*121393^(45/53) 2865623258535111 m001 (Cahen+Magata)/Riemann1stZero 2865623260801829 r009 Im(z^3+c),c=-43/102+9/47*I,n=2 2865623265673608 r005 Re(z^2+c),c=-3/11+19/39*I,n=53 2865623272459739 m001 (MertensB1+Sarnak)/(Zeta(5)-ln(2)) 2865623273196118 r005 Im(z^2+c),c=-25/98+18/41*I,n=26 2865623276093422 r005 Re(z^2+c),c=23/86+3/28*I,n=49 2865623289111963 r005 Re(z^2+c),c=-13/66+29/49*I,n=36 2865623296738055 a007 Real Root Of 576*x^4+708*x^3+946*x^2+59*x-48 2865623304451965 r005 Im(z^2+c),c=-63/118+29/53*I,n=64 2865623306239976 r005 Re(z^2+c),c=-11/40+24/41*I,n=47 2865623308143273 m001 exp(BesselJ(0,1))^2*Bloch*GAMMA(1/4)^2 2865623313061068 a007 Real Root Of 247*x^4+880*x^3+604*x^2+313*x-11 2865623313545601 q001 531/1853 2865623316651529 m005 (1/2*2^(1/2)+9/10)/(4*Zeta(3)+4/5) 2865623316835793 r005 Re(z^2+c),c=-23/118+31/46*I,n=31 2865623330789110 a003 sin(Pi*4/55)/cos(Pi*17/81) 2865623332098535 r009 Re(z^3+c),c=-17/38+23/48*I,n=37 2865623332826688 l006 ln(5138/6843) 2865623338881570 l006 ln(5779/5947) 2865623341703518 r005 Im(z^2+c),c=-31/74+17/31*I,n=31 2865623349494543 s002 sum(A281056[n]/(n^3*pi^n+1),n=1..infinity) 2865623361495196 m001 BesselJ(0,1)^2*ln(Kolakoski)*GAMMA(5/12) 2865623369782322 r005 Im(z^2+c),c=-67/122+13/30*I,n=51 2865623377481359 m005 (1/2*Pi-5/7)/(7/9*Pi+6/11) 2865623381904497 a007 Real Root Of -262*x^4+778*x^3-673*x^2-64*x+57 2865623393566311 r005 Re(z^2+c),c=19/56+4/33*I,n=38 2865623395099192 r005 Im(z^2+c),c=-23/26+23/107*I,n=52 2865623399688461 a007 Real Root Of -424*x^4+477*x^3+739*x^2+614*x-245 2865623417819170 p001 sum(1/(454*n+359)/(16^n),n=0..infinity) 2865623426595558 m001 (BesselJ(1,1)-ArtinRank2)/(Sarnak+ZetaP(3)) 2865623433395644 r009 Im(z^3+c),c=-4/7+6/41*I,n=2 2865623434242223 m001 ZetaR(2)^(Pi*KhinchinHarmonic) 2865623440065798 p004 log(18149/13627) 2865623453063300 s002 sum(A282750[n]/((exp(n)+1)*n),n=1..infinity) 2865623464064300 m001 GAMMA(1/24)^2*FeigenbaumB^2*exp(Zeta(7))^2 2865623471756559 s002 sum(A026723[n]/((exp(n)-1)/n),n=1..infinity) 2865623472266832 a008 Real Root of x^4-x^3-9*x^2+7*x+3 2865623472839454 a007 Real Root Of 408*x^4+885*x^3-984*x^2-281*x+588 2865623477415947 s002 sum(A061198[n]/((exp(n)+1)*n),n=1..infinity) 2865623485032804 m008 (1/2*Pi^3-2/5)/(1/2*Pi^4+4) 2865623497262239 a007 Real Root Of 411*x^4+520*x^3+770*x^2-950*x-326 2865623498798264 a007 Real Root Of 427*x^4+874*x^3-859*x^2+72*x-967 2865623501436154 a007 Real Root Of 268*x^4+689*x^3+157*x^2+923*x-503 2865623503475425 m001 1/ln(Khintchine)^2*Bloch*Lehmer 2865623504712600 r009 Im(z^3+c),c=-10/19+9/58*I,n=32 2865623510400784 s002 sum(A105821[n]/((exp(n)+1)*n),n=1..infinity) 2865623510679470 r005 Im(z^2+c),c=-5/8+66/245*I,n=7 2865623511151526 a007 Real Root Of -167*x^4+422*x^3+623*x^2+548*x-217 2865623514247993 a007 Real Root Of -593*x^4+526*x^3+290*x^2+446*x-160 2865623515577233 a008 Real Root of x^5-2*x^4-35*x^3-74*x^2-36*x+9 2865623521032505 r002 19th iterates of z^2 + 2865623522304960 r005 Im(z^2+c),c=-33/106+17/36*I,n=21 2865623522952067 r005 Im(z^2+c),c=-33/26+38/105*I,n=4 2865623527193891 r005 Re(z^2+c),c=-7/10+57/206*I,n=2 2865623530576672 m001 (GAMMA(2/3)-3^(1/3))/(CopelandErdos-Landau) 2865623539220755 h005 exp(sin(Pi*1/43)+sin(Pi*17/39)) 2865623541413517 r005 Re(z^2+c),c=-19/122+31/44*I,n=36 2865623546411452 a007 Real Root Of 874*x^4-591*x^3-385*x^2-118*x-22 2865623588206970 l006 ln(25/439) 2865623595505617 a001 2550405/89 2865623599030592 m005 (1/3*gamma-2/9)/(5/12*gamma+4/5) 2865623599181141 r009 Re(z^3+c),c=-21/50+8/21*I,n=10 2865623606373329 p003 LerchPhi(1/125,3,169/240) 2865623609015241 r002 6th iterates of z^2 + 2865623614125699 m001 (gamma(2)-CareFree)/(FeigenbaumAlpha-Trott) 2865623624770635 a008 Real Root of (1+3*x-x^2+x^3-6*x^4-3*x^5) 2865623636292211 m001 GAMMA(11/12)/exp(GAMMA(1/12))/GAMMA(11/24)^2 2865623646468053 m005 (1/2*Pi+7/12)/(5/6*Zeta(3)-1/4) 2865623646531277 r005 Im(z^2+c),c=-19/78+13/17*I,n=17 2865623647128660 m001 (Conway-Niven)/(ln(5)-exp(-1/2*Pi)) 2865623676486299 r009 Im(z^3+c),c=-11/122+11/36*I,n=8 2865623676979827 a001 377/123*322^(12/31) 2865623679101546 b008 1-54*ArcSinh[EulerGamma] 2865623698964045 r009 Im(z^3+c),c=-35/74+7/60*I,n=21 2865623701999670 m001 (exp(Pi)+ln(2))/(-Bloch+Conway) 2865623704594082 a007 Real Root Of 259*x^4+906*x^3+466*x^2+44*x+154 2865623707560065 m001 ln(3)^KhinchinLevy+MadelungNaCl 2865623709501526 r005 Re(z^2+c),c=-13/48+31/63*I,n=61 2865623721049495 a007 Real Root Of -17*x^4-503*x^3-434*x^2+544*x-858 2865623721321257 a007 Real Root Of 164*x^4+583*x^3+184*x^2-744*x-983 2865623723923909 r005 Im(z^2+c),c=-35/74+3/7*I,n=18 2865623731609096 m005 (1/2*Catalan-5/11)/(1/5*2^(1/2)+11/12) 2865623739578620 a005 (1/sin(26/205*Pi))^23 2865623757838637 m001 (Gompertz+Paris)/(BesselI(1,2)+GaussAGM) 2865623765999633 m005 (1/3*5^(1/2)-1/5)/(2/3*exp(1)+1/11) 2865623768919595 l006 ln(3351/4463) 2865623773756163 r005 Re(z^2+c),c=15/52+6/11*I,n=9 2865623775599792 s002 sum(A268877[n]/(pi^n+1),n=1..infinity) 2865623789004334 m001 (Pi+arctan(1/3))/(Artin+GaussAGM) 2865623796005851 h003 exp(Pi*(3^(3/10)+5^(1/12))) 2865623796005851 h008 exp(Pi*(3^(3/10)+5^(1/12))) 2865623796465515 m001 (Ei(1,1)+exp(-1/2*Pi))/(Bloch-ReciprocalLucas) 2865623808402496 r005 Im(z^2+c),c=-31/98+6/13*I,n=45 2865623808754712 r002 31th iterates of z^2 + 2865623824788257 m001 (Otter-ZetaQ(3))/(cos(1/5*Pi)+Ei(1,1)) 2865623841330191 a008 Real Root of x^2-82118 2865623846430094 m005 (1/3*Pi-1/3)/(5/9*Catalan-3) 2865623853555808 m001 (-GaussAGM+ThueMorse)/(3^(1/2)-sin(1/12*Pi)) 2865623858031706 m008 (1/6*Pi^3+1/4)/(2*Pi^2-5/6) 2865623858576000 m001 Stephens/(ln(gamma)+Zeta(1/2)) 2865623858916397 m005 (1/2*2^(1/2)-3/7)/(1/3*Catalan+2/3) 2865623865676140 a007 Real Root Of 100*x^4+443*x^3+728*x^2+916*x+328 2865623879952731 s001 sum(exp(-Pi/4)^n*A210633[n],n=1..infinity) 2865623881606237 a007 Real Root Of 320*x^4+975*x^3+518*x^2+909*x-284 2865623888511253 m005 (1/2*Pi-5/12)/(4*Catalan+4/11) 2865623906639988 a007 Real Root Of 24*x^4+698*x^3+262*x^2-898*x+326 2865623917882377 r005 Im(z^2+c),c=-19/78+31/49*I,n=19 2865623928209270 a007 Real Root Of -15*x^4-427*x^3+107*x^2+756*x+713 2865623941467093 a001 199/28657*89^(6/19) 2865623942042767 p003 LerchPhi(1/10,5,402/197) 2865623946796276 a007 Real Root Of 295*x^4+947*x^3+6*x^2-636*x+520 2865623948972675 b008 CosIntegral[-2+Sqrt[17/2]] 2865623952530412 r005 Im(z^2+c),c=-23/56+23/47*I,n=54 2865623974243446 m001 1/ln(MinimumGamma)^2*CareFree^2/Zeta(3) 2865623990165456 a003 cos(Pi*41/100)/sin(Pi*32/75) 2865624005136726 r005 Im(z^2+c),c=-7/30+25/58*I,n=25 2865624022140455 m005 (1/2*3^(1/2)-1/6)/(3/5*Pi+5/9) 2865624027092022 r005 Im(z^2+c),c=3/82+19/61*I,n=12 2865624035054816 r005 Im(z^2+c),c=-19/82+25/58*I,n=22 2865624035100139 a007 Real Root Of 223*x^4+370*x^3-930*x^2-498*x-121 2865624035478665 m001 (Paris-Rabbit)/(Sierpinski-ZetaP(2)) 2865624038041316 r005 Re(z^2+c),c=-87/110+1/61*I,n=22 2865624050106111 b008 (19*ArcCsch[6])/11 2865624062247313 h001 (7/11*exp(1)+2/7)/(6/7*exp(2)+7/10) 2865624068475830 m001 (Salem+ZetaQ(2))/(ln(5)+FeigenbaumD) 2865624070141992 m001 (Robbin-Sierpinski)/(Pi+FeigenbaumMu) 2865624072542865 h001 (-3*exp(2)+8)/(-9*exp(4)-3) 2865624075152230 r005 Im(z^2+c),c=-33/118+13/29*I,n=55 2865624075407296 a007 Real Root Of -410*x^4-976*x^3+367*x^2-343*x+684 2865624084594095 a001 6*12586269025^(23/24) 2865624096315457 r002 59th iterates of z^2 + 2865624102266283 r005 Im(z^2+c),c=-41/106+27/55*I,n=46 2865624105182126 r005 Im(z^2+c),c=-43/102+33/53*I,n=10 2865624111682763 r009 Re(z^3+c),c=-49/122+18/49*I,n=32 2865624123876868 r009 Re(z^3+c),c=-41/106+20/59*I,n=9 2865624125392445 r005 Im(z^2+c),c=41/98+20/59*I,n=41 2865624125480424 m001 Catalan^2/Bloch^2/ln(Zeta(5))^2 2865624131530929 m005 (1/2*gamma+3/4)/(7/8*2^(1/2)-7/8) 2865624135131043 m001 1/RenyiParking^2/ln(Si(Pi))*Pi^2 2865624148285077 m001 GAMMA(23/24)*(ln(Pi)+exp(1/2)) 2865624153736146 m001 (ln(2)/ln(10)-ln(Pi))/(-FeigenbaumMu+Kac) 2865624156386444 a009 2^(1/4)/(10^(1/4)-19)^(1/2) 2865624163921449 r005 Im(z^2+c),c=-22/21+14/59*I,n=18 2865624191870009 m006 (5*exp(Pi)-1/2)/(3/4*exp(2*Pi)+2/5) 2865624199061922 m001 (-Khinchin+Robbin)/(3^(1/2)-GAMMA(23/24)) 2865624206048829 a007 Real Root Of -457*x^4-933*x^3+757*x^2-993*x-200 2865624224798588 l006 ln(4915/6546) 2865624225735695 a001 196418/123*123^(3/5) 2865624233515419 m005 (1/2*exp(1)+1/2)/(5*2^(1/2)-7/12) 2865624241833495 r005 Im(z^2+c),c=-10/27+23/48*I,n=35 2865624247190088 m005 (53/60+1/12*5^(1/2))/(4/5*Catalan+3) 2865624256837098 r002 2th iterates of z^2 + 2865624281211072 a001 76/6765*5^(32/55) 2865624281755710 m005 (1/3*Catalan+2/11)/(7/9*2^(1/2)+3/5) 2865624285246955 r002 10th iterates of z^2 + 2865624294547070 r005 Re(z^2+c),c=-4/5+11/63*I,n=46 2865624301375004 a001 4/377*196418^(36/43) 2865624304547767 a001 1346269/29*29^(20/37) 2865624311632983 a007 Real Root Of -92*x^4-142*x^3-9*x^2-891*x+383 2865624323066234 r009 Re(z^3+c),c=-11/86+22/35*I,n=6 2865624325717014 r005 Im(z^2+c),c=-3/56+21/59*I,n=27 2865624327372609 m001 ln(5)^KhinchinLevy/(LaplaceLimit^KhinchinLevy) 2865624329477873 r005 Re(z^2+c),c=-17/14+105/142*I,n=2 2865624343416169 a001 610/199*76^(16/31) 2865624345982581 m001 (Chi(1)+ln(3))/(BesselJ(1,1)+CopelandErdos) 2865624349306749 r002 46th iterates of z^2 + 2865624355983310 r005 Im(z^2+c),c=9/25+13/55*I,n=7 2865624388065309 m001 (HardyLittlewoodC4+RenyiParking)/(Pi+cos(1)) 2865624402590933 a001 4/55*75025^(18/55) 2865624406998211 a007 Real Root Of 324*x^4+939*x^3+242*x^2+623*x+46 2865624408320316 m001 (-FeigenbaumB+Niven)/(CopelandErdos-cos(1)) 2865624425771030 r002 33th iterates of z^2 + 2865624440749162 a007 Real Root Of -10*x^4-258*x^3+851*x^2+900*x-904 2865624441606037 m002 -12/Pi^4+3*Tanh[Pi] 2865624448837917 p003 LerchPhi(1/8,4,495/202) 2865624451019220 r009 Re(z^3+c),c=-43/126+14/55*I,n=11 2865624452774052 m001 (Rabbit+Salem)/(arctan(1/2)+DuboisRaymond) 2865624452955191 m001 (exp(1/Pi)-exp(Pi))/(gamma(1)+FeigenbaumB) 2865624460583502 l006 ln(6479/8629) 2865624461159132 m001 ln(2)/ln(10)*PrimesInBinary*UniversalParabolic 2865624469392999 r005 Re(z^2+c),c=-11/74+37/59*I,n=40 2865624471956298 a007 Real Root Of -300*x^4-826*x^3+260*x^2+697*x+655 2865624475770442 a007 Real Root Of 269*x^4+597*x^3-212*x^2+579*x-691 2865624476452062 a001 2/21*6765^(11/17) 2865624478629383 m001 Si(Pi)^exp(sqrt(2))/(Si(Pi)^BesselJZeros(0,1)) 2865624509714028 m005 (1/2*5^(1/2)-7/8)/(1/12*gamma+4/5) 2865624520698456 r005 Im(z^2+c),c=-33/50+2/37*I,n=49 2865624531762887 s001 sum(exp(-2*Pi/5)^n*A022150[n],n=1..infinity) 2865624531762887 s002 sum(A022150[n]/(exp(2/5*pi*n)),n=1..infinity) 2865624543615394 m001 exp(Riemann2ndZero)^2*Bloch^2*sin(1)^2 2865624572025494 r009 Re(z^3+c),c=-10/19+1/3*I,n=22 2865624573345783 h001 (2/5*exp(2)+1/5)/(3/10*exp(1)+2/7) 2865624595016738 a007 Real Root Of -342*x^4-857*x^3+225*x^2-128*x+681 2865624601181856 r009 Re(z^3+c),c=-49/118+9/20*I,n=13 2865624608254608 m001 Paris/FeigenbaumB/exp(Rabbit)^2 2865624630708050 b008 2+E^(-1/4*EulerGamma) 2865624641689195 m001 BesselI(1,1)/(MertensB2-Zeta(1,2)) 2865624645347242 m002 E^Pi*Log[Pi]+Sinh[Pi]/Pi^2+Tanh[Pi] 2865624648838780 m001 1/FeigenbaumKappa/exp(RenyiParking)^2/gamma 2865624649995198 m003 -239/48+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/2 2865624651359682 m001 GAMMA(1/24)^2/CareFree/exp(sqrt(1+sqrt(3)))^2 2865624655507578 m001 (CareFree-MertensB1)/(Ei(1,1)-Artin) 2865624657576982 m001 1/FeigenbaumD^2*ln(Conway)/GAMMA(17/24) 2865624660245015 s002 sum(A018921[n]/(pi^n+1),n=1..infinity) 2865624677443500 a007 Real Root Of 176*x^4+517*x^3+217*x^2+370*x-424 2865624682703633 m001 (BesselJ(0,1)-gamma)/(-Rabbit+ZetaQ(2)) 2865624698572060 m001 AlladiGrinstead+MertensB3+Sarnak 2865624699674106 r005 Re(z^2+c),c=-6/25+25/44*I,n=57 2865624712507243 a007 Real Root Of 419*x^4+506*x^3+943*x^2-86*x-93 2865624716652830 a007 Real Root Of 391*x^4+855*x^3-738*x^2+324*x+742 2865624720656724 b008 21*Sqrt[LogIntegral[Khinchin]] 2865624722226570 l006 ln(9757/9785) 2865624726329239 h005 exp(cos(Pi*1/43)/sin(Pi*21/53)) 2865624727856201 m001 (QuadraticClass-Thue)/(exp(1/Pi)-Lehmer) 2865624744650385 m002 -Pi^5+(E^Pi*ProductLog[Pi])/Pi+Sinh[Pi] 2865624749036209 r005 Im(z^2+c),c=-13/44+30/41*I,n=3 2865624751403539 a007 Real Root Of -3*x^4-862*x^3-666*x^2-946*x+140 2865624751925756 a003 sin(Pi*5/54)*sin(Pi*56/115) 2865624760003941 r005 Im(z^2+c),c=-21/74+22/49*I,n=28 2865624774309459 m005 (1/2*Pi+8/9)/(3*exp(1)+3/7) 2865624777517989 a001 843/1597*233^(9/29) 2865624786728008 a003 sin(Pi*19/108)-sin(Pi*22/73) 2865624796828962 a003 sin(Pi*14/67)-sin(Pi*17/48) 2865624803195487 r005 Re(z^2+c),c=29/114+16/31*I,n=58 2865624804053079 r002 54th iterates of z^2 + 2865624804754816 h001 (11/12*exp(2)+1/10)/(3/10*exp(2)+2/11) 2865624808927048 a007 Real Root Of 252*x^4+460*x^3-981*x^2-728*x-199 2865624809938746 m001 (ArtinRank2+Backhouse)/(ln(2)-exp(1/exp(1))) 2865624821331985 m005 (15/28+1/4*5^(1/2))/(-71/18+1/18*5^(1/2)) 2865624824588908 m001 1/Robbin*exp(DuboisRaymond)^2*GAMMA(17/24) 2865624829647674 m001 1/ln(Salem)/ArtinRank2/GAMMA(7/24) 2865624841131804 h001 (3/4*exp(1)+1/11)/(10/11*exp(2)+5/7) 2865624848645631 h002 exp(1/20*(440+5^(3/4))^(1/2)) 2865624850155775 a007 Real Root Of 190*x^4+575*x^3+471*x^2+928*x-490 2865624880961743 m001 1/ln(HardHexagonsEntropy)*Si(Pi)^2/Ei(1)^2 2865624907581061 r008 a(0)=3,K{-n^6,18-4*n+25*n^2-32*n^3} 2865624932519745 h001 (7/8*exp(2)+1/11)/(3/11*exp(2)+3/11) 2865624935310919 m001 (ln(5)+exp(1/Pi))/(Backhouse-PrimesInBinary) 2865624939374796 m006 (3*Pi^2+1/5)/(3/4*Pi^2+3) 2865624939374796 m008 (3*Pi^2+1/5)/(3/4*Pi^2+3) 2865624942447542 m006 (1/2*exp(Pi)-1/5)/(4*Pi^2+1/5) 2865624953199278 a007 Real Root Of -992*x^4+356*x^3+983*x^2+864*x-330 2865624956655557 r005 Im(z^2+c),c=29/118+8/45*I,n=6 2865624956784158 m001 (Ei(1)+Backhouse)/(KhinchinHarmonic-Stephens) 2865624958224527 a003 cos(Pi*5/61)*cos(Pi*26/53) 2865624969282154 m005 (2*exp(1)-4/5)/(5/6*Pi-1) 2865624973841815 r005 Im(z^2+c),c=-11/23+17/37*I,n=30 2865624984617272 h005 exp(sin(Pi*1/34)+sin(Pi*16/39)) 2865624991341923 r009 Im(z^3+c),c=-45/98+4/27*I,n=52 2865625021810370 m001 TwinPrimes/RenyiParking/GAMMA(7/24) 2865625034446845 m001 3^(1/3)*Zeta(1,2)/Bloch 2865625039610674 m001 (FeigenbaumDelta-Sarnak)/(exp(1/Pi)+gamma(3)) 2865625044327407 m002 -Pi^3+Pi^5*Coth[Pi]-Log[Pi]+Sinh[Pi] 2865625047874509 m001 (Paris+Stephens)/(1+GAMMA(2/3)) 2865625048373676 m001 Sierpinski^3*ln(GAMMA(1/4))^2 2865625059851130 r009 Re(z^3+c),c=-31/70+15/34*I,n=44 2865625077126459 m001 1/Catalan^2*LaplaceLimit^2/ln(sin(Pi/12))^2 2865625083359664 m001 (Kac-ZetaQ(2))/(GAMMA(3/4)-GAMMA(23/24)) 2865625090461793 r005 Re(z^2+c),c=-7/10+63/187*I,n=14 2865625093495721 m001 AlladiGrinstead^MadelungNaCl*PrimesInBinary 2865625115373186 m007 (-4*gamma-3/5)/(-5*gamma-10*ln(2)-1/3) 2865625120005812 a001 322/6765*1346269^(37/60) 2865625121815556 m001 (BesselI(1,2)+Salem)/(BesselJ(1,1)-Psi(1,1/3)) 2865625129321022 m002 -Pi/5+ProductLog[Pi]/Pi 2865625132471879 r009 Re(z^3+c),c=-9/19+28/57*I,n=56 2865625135754592 r005 Re(z^2+c),c=23/86+3/28*I,n=46 2865625136336495 m001 1/exp(Khintchine)/HardHexagonsEntropy/Niven 2865625140915948 m005 (1/2*exp(1)-10/11)/(5/7*3^(1/2)+1/3) 2865625144965784 p001 sum((-1)^n/(519*n+325)/(5^n),n=0..infinity) 2865625148466895 r005 Im(z^2+c),c=-7/66+59/63*I,n=29 2865625155218797 m001 (-Bloch+Tetranacci)/(cos(1/5*Pi)-ln(2)/ln(10)) 2865625156852511 a007 Real Root Of -161*x^4-388*x^3+284*x^2+17*x-557 2865625159229228 h001 (5/6*exp(2)+5/11)/(9/11*exp(1)+1/12) 2865625161463237 a007 Real Root Of -866*x^4+991*x^3-463*x^2+966*x+344 2865625166769296 m001 MertensB1/(ln(2)+Ei(1,1)) 2865625175505523 m001 (BesselJ(0,1)+GAMMA(23/24))/(-Paris+Sarnak) 2865625176363060 h001 (1/11*exp(2)+1/6)/(10/11*exp(1)+5/11) 2865625183269301 r009 Re(z^3+c),c=-7/17+21/52*I,n=14 2865625188352491 r005 Re(z^2+c),c=-65/106+17/62*I,n=9 2865625194522271 m001 BesselI(1,1)/((Pi^(1/2))^KhinchinLevy) 2865625197585025 r005 Re(z^2+c),c=-17/70+6/11*I,n=33 2865625201557156 l006 ln(1564/2083) 2865625215012776 r005 Im(z^2+c),c=-25/122+21/50*I,n=40 2865625224435232 r005 Im(z^2+c),c=31/110+7/59*I,n=14 2865625226758994 a007 Real Root Of -111*x^4-409*x^3-342*x^2-305*x-205 2865625239702779 a001 281/15456*34^(4/31) 2865625252708523 h001 (11/12*exp(2)+1/12)/(1/4*exp(2)+6/11) 2865625254189050 b008 5-Sqrt[41]/3 2865625261585331 m001 Bloch^2*exp(CopelandErdos)*Zeta(7)^2 2865625262573940 r005 Re(z^2+c),c=-17/50+13/28*I,n=6 2865625283504081 r009 Re(z^3+c),c=-49/122+18/49*I,n=30 2865625317150673 m001 GAMMA(5/12)/Magata/exp(GAMMA(7/24)) 2865625317950275 m001 sin(1)^Lehmer+ReciprocalLucas 2865625321922250 r009 Im(z^3+c),c=-11/98+10/33*I,n=7 2865625322049255 h002 exp(1/7*(13-12^(2/3))^(1/2)*7^(1/2)) 2865625336278401 m001 (CareFree+Lehmer)/(Salem-Sarnak) 2865625337747182 a003 sin(Pi*2/109)+sin(Pi*5/68) 2865625340369639 a007 Real Root Of -28*x^4-827*x^3-687*x^2+526*x-248 2865625363379867 a007 Real Root Of -446*x^4-842*x^3+900*x^2-834*x+481 2865625370434892 m005 (1/3*exp(1)-2/5)/(7/8*Zeta(3)+5/7) 2865625371334077 m005 (1/3*Zeta(3)+1/2)/(-73/154+1/14*5^(1/2)) 2865625372620512 m006 (3/4/Pi+2/5)/(1/5*ln(Pi)+2) 2865625372737422 b008 13*ArcCsch[9/2] 2865625382396682 r002 36i'th iterates of 2*x/(1-x^2) of 2865625382738021 s002 sum(A026226[n]/((10^n+1)/n),n=1..infinity) 2865625398813027 a007 Real Root Of -946*x^4+76*x^3-498*x^2+600*x+221 2865625404285624 m001 (2*Pi/GAMMA(5/6)+Conway)/(FeigenbaumB-Lehmer) 2865625406666879 r005 Re(z^2+c),c=-9/31+11/25*I,n=36 2865625408131223 r005 Re(z^2+c),c=-13/48+31/63*I,n=62 2865625413533398 r005 Im(z^2+c),c=-47/70+3/43*I,n=34 2865625425212529 r005 Im(z^2+c),c=-7/15+3/38*I,n=6 2865625432547286 r009 Re(z^3+c),c=-8/15+11/45*I,n=25 2865625439511800 m001 sin(1/5*Pi)/GAMMA(19/24)/MadelungNaCl 2865625439511800 m001 sin(Pi/5)/MadelungNaCl/GAMMA(19/24) 2865625440225652 m002 1/5+(E^Pi*Log[Pi])/Pi^5 2865625449821600 m001 TravellingSalesman^BesselJ(1,1)/ln(2)*ln(10) 2865625457400737 p001 sum((-1)^n/(475*n+68)/n/(64^n),n=1..infinity) 2865625470270989 m001 (Artin+GAMMA(11/24))^(2^(1/3)) 2865625474153302 m001 (DuboisRaymond+Lehmer)/(Magata-TwinPrimes) 2865625474851853 a007 Real Root Of 565*x^4+682*x^3+639*x^2-397*x-154 2865625495817577 m001 ln(GAMMA(7/12))^2/GAMMA(11/12)^2*sqrt(Pi) 2865625515435451 m001 (GAMMA(2/3)+Gompertz)/(Kac-Mills) 2865625520067417 s002 sum(A138871[n]/(10^n-1),n=1..infinity) 2865625520708079 h005 exp(sin(Pi*19/55)/cos(Pi*22/53)) 2865625538141838 r009 Re(z^3+c),c=-35/74+21/40*I,n=15 2865625538338445 r009 Re(z^3+c),c=-53/122+20/47*I,n=49 2865625540712094 m001 (Shi(1)-cos(1))/(Zeta(3)+BesselK(1,1)) 2865625542966526 m005 (1/2*Catalan-4/5)/(7/11*Zeta(3)+3/7) 2865625543280176 m006 (5/6*Pi^2+1/5)/(2/5/Pi+1/6) 2865625555848560 s002 sum(A144998[n]/(exp(n)+1),n=1..infinity) 2865625558299203 r005 Re(z^2+c),c=19/122+19/42*I,n=34 2865625566048315 r005 Re(z^2+c),c=23/86+3/28*I,n=48 2865625570755816 r005 Im(z^2+c),c=-23/82+13/29*I,n=33 2865625580606304 m005 (1/2*Zeta(3)+1/10)/(3^(1/2)+5/7) 2865625581296602 a007 Real Root Of -143*x^4-266*x^3+497*x^2+188*x-159 2865625582684573 a001 3/119218851371*2^(3/16) 2865625583628399 m001 (Zeta(3)+Paris)/(ZetaP(2)+ZetaQ(4)) 2865625591218284 a007 Real Root Of -322*x^4-777*x^3+663*x^2+818*x+329 2865625595168774 a001 439204/377*121393^(19/22) 2865625607734701 a001 281/2255*4807526976^(19/22) 2865625611420432 a001 1/75640*34^(41/47) 2865625613392709 r002 8th iterates of z^2 + 2865625619557396 a007 Real Root Of -306*x^4-828*x^3+477*x^2+746*x-629 2865625621127481 m001 ln(1+sqrt(2))/(GolombDickman^FeigenbaumAlpha) 2865625621127481 m001 ln(2^(1/2)+1)/(GolombDickman^FeigenbaumAlpha) 2865625623460723 a005 (1/cos(1/55*Pi))^645 2865625628626412 r002 6th iterates of z^2 + 2865625630608143 a007 Real Root Of -545*x^4-762*x^3-103*x^2+876*x-25 2865625636608123 a008 Real Root of x^3-x^2-54*x-123 2865625641957576 r005 Im(z^2+c),c=-33/118+13/29*I,n=57 2865625657746800 r005 Im(z^2+c),c=-17/66+29/50*I,n=22 2865625662321614 r005 Im(z^2+c),c=21/118+9/40*I,n=18 2865625675366148 r009 Re(z^3+c),c=-61/118+1/2*I,n=41 2865625691234862 r009 Im(z^3+c),c=-23/86+4/15*I,n=6 2865625700543393 g006 Psi(1,10/11)+Psi(1,3/7)-Psi(1,5/8)-Psi(1,6/7) 2865625704444570 m005 (1/2*Catalan-3/11)/(1/7*2^(1/2)+4/9) 2865625706255601 m001 Porter/(sin(1/5*Pi)^(2^(1/3))) 2865625725116332 r009 Re(z^3+c),c=-53/110+31/57*I,n=18 2865625726083482 m001 ln(PisotVijayaraghavan)^2*Conway^2*Zeta(1/2)^2 2865625757701289 r005 Im(z^2+c),c=-19/42+3/28*I,n=4 2865625770818138 m001 (MadelungNaCl+Mills)/(AlladiGrinstead-Catalan) 2865625775944070 g001 Re(GAMMA(49/10+I*19/20)) 2865625789311424 m001 BesselI(1,2)*Backhouse-ln(gamma) 2865625789311424 m001 BesselI(1,2)*Backhouse-log(gamma) 2865625792672513 r005 Im(z^2+c),c=-17/90+12/29*I,n=25 2865625796342374 p003 LerchPhi(1/32,6,393/148) 2865625799137783 m008 (2/3*Pi^5-4)/(2/3*Pi^2+2/5) 2865625813775448 r004 Im(z^2+c),c=-11/30+1/23*I,z(0)=-1,n=11 2865625816665148 a007 Real Root Of -718*x^4-759*x^3+431*x^2+654*x+139 2865625836696171 r005 Im(z^2+c),c=9/25+11/53*I,n=25 2865625853709980 m001 (cos(1)+ln(3))/(-Kac+ZetaQ(2)) 2865625861897993 m001 (3^(1/2)-FellerTornier*Landau)/Landau 2865625876320642 m006 (1/3*ln(Pi)-1/4)/(5/Pi+3) 2865625876907159 m001 BesselI(0,1)+MadelungNaCl^sin(1) 2865625876973250 p001 sum(1/(375*n+307)/n/(512^n),n=1..infinity) 2865625878513761 s002 sum(A110540[n]/((exp(n)+1)*n),n=1..infinity) 2865625881874961 r005 Re(z^2+c),c=-25/106+27/61*I,n=7 2865625911078717 r005 Im(z^2+c),c=-7/40+13/14*I,n=3 2865625911660698 r005 Im(z^2+c),c=-7/27+26/59*I,n=36 2865625914632633 r009 Re(z^3+c),c=-53/126+9/16*I,n=59 2865625920807908 r005 Re(z^2+c),c=-41/118+11/48*I,n=27 2865625923605975 a007 Real Root Of -116*x^4+732*x^3-843*x^2-584*x-807 2865625931465493 a007 Real Root Of 232*x^4+417*x^3-623*x^2+135*x-329 2865625931519843 r009 Re(z^3+c),c=-1/40+37/55*I,n=3 2865625932197201 a007 Real Root Of 175*x^4+341*x^3-580*x^2-578*x-670 2865625940935348 m005 (1/2*Zeta(3)-5/6)/(3/4*2^(1/2)-1/4) 2865625946098940 r008 a(0)=3,K{-n^6,-14+58*n-12*n^2-25*n^3} 2865625952340570 m001 cosh(1)^2/exp(Khintchine)^2*sin(Pi/12) 2865625959161753 m001 LambertW(1)^Backhouse*LambertW(1)^RenyiParking 2865625959161753 m001 LambertW(1)^RenyiParking*LambertW(1)^Backhouse 2865625968252597 m005 (1/2*exp(1)+3/8)/(1/7*5^(1/2)+2/7) 2865625968426554 a007 Real Root Of 40*x^4-253*x^3-816*x^2+922*x+692 2865625970599508 r009 Re(z^3+c),c=-19/106+16/17*I,n=54 2865625977196595 p004 log(33487/1907) 2865625994079356 r005 Im(z^2+c),c=-9/10+51/230*I,n=27 2865625997308512 l006 ln(6033/8035) 2865626006800517 r005 Im(z^2+c),c=-71/98+7/30*I,n=3 2865626016992437 m001 (BesselJ(0,1)+Sarnak*Trott2nd)/Trott2nd 2865626020192554 a007 Real Root Of -90*x^4+503*x^3-648*x^2+485*x-97 2865626028354942 a007 Real Root Of 42*x^4-437*x^3+824*x^2-784*x+167 2865626030808474 r005 Im(z^2+c),c=-17/16+31/111*I,n=3 2865626033401662 r005 Im(z^2+c),c=-1/11+14/19*I,n=33 2865626039492222 a007 Real Root Of -412*x^4+704*x^3+971*x^2+560*x-254 2865626041555495 r005 Im(z^2+c),c=-35/94+13/27*I,n=59 2865626043119903 m005 (1/2*3^(1/2)-4/9)/(10/11*exp(1)-1) 2865626056846697 a007 Real Root Of -206*x^4-511*x^3+325*x^2+154*x-361 2865626061745586 r005 Im(z^2+c),c=-23/60+31/63*I,n=31 2865626062633195 p001 sum(1/(596*n+367)/(8^n),n=0..infinity) 2865626066637537 r005 Im(z^2+c),c=-59/94+1/41*I,n=7 2865626070197823 a007 Real Root Of 278*x^4+427*x^3-980*x^2+306*x+226 2865626073058569 h001 (10/11*exp(1)+5/8)/(1/11*exp(1)+5/6) 2865626091607444 r005 Re(z^2+c),c=21/106+26/53*I,n=54 2865626097078967 a001 1364/514229*514229^(52/59) 2865626113953115 a007 Real Root Of -426*x^4-936*x^3+560*x^2-824*x-259 2865626119982248 r002 3th iterates of z^2 + 2865626121469923 r009 Im(z^3+c),c=-51/122+8/45*I,n=8 2865626142644206 r008 a(0)=3,K{-n^6,-70-16*n^3+65*n^2+29*n} 2865626145909313 m001 1/ln(GAMMA(3/4))/GAMMA(1/12)*sin(Pi/12)^2 2865626147930040 r009 Re(z^3+c),c=-11/29+17/52*I,n=25 2865626156546345 m001 (-Ei(1)+Sarnak)/(5^(1/2)+Si(Pi)) 2865626172340899 b008 -1/10*Pi+ArcSinh[12] 2865626172340899 b008 Pi-10*ArcSinh[12] 2865626174576641 a003 cos(Pi*23/99)-cos(Pi*31/89) 2865626176963663 a007 Real Root Of 144*x^4-24*x^3+206*x^2-309*x-107 2865626209640597 m002 -E^Pi+3*Sech[Pi]-Sinh[Pi]/2 2865626220348326 a007 Real Root Of 754*x^4-473*x^3+804*x^2-500*x-15 2865626226159962 a007 Real Root Of 422*x^4+53*x^3+768*x^2-563*x-226 2865626239024552 m006 (4*ln(Pi)+2/5)/(1/2*Pi+1/6) 2865626249150706 p003 LerchPhi(1/32,5,222/109) 2865626249207545 a001 8/843*18^(13/34) 2865626255997611 r005 Im(z^2+c),c=-27/98+21/47*I,n=40 2865626260296309 r005 Re(z^2+c),c=-5/17+16/33*I,n=19 2865626264776815 m001 1/Riemann3rdZero*FeigenbaumC^2/exp(cosh(1)) 2865626266168464 r005 Im(z^2+c),c=-7/48+21/53*I,n=32 2865626271405458 a005 (1/cos(12/97*Pi))^73 2865626272375680 r005 Im(z^2+c),c=-13/50+26/45*I,n=14 2865626272808366 r005 Im(z^2+c),c=-13/18+22/95*I,n=25 2865626275794762 l006 ln(4469/5952) 2865626303123384 m005 (1/2*gamma-8/9)/(3/8*Pi+11/12) 2865626307192461 r005 Re(z^2+c),c=-1/5+28/31*I,n=7 2865626312770168 a001 317811/322*199^(7/11) 2865626325357460 r002 10th iterates of z^2 + 2865626337847271 l006 ln(5607/5770) 2865626341266144 r005 Im(z^2+c),c=-23/56+2/43*I,n=17 2865626351887695 a005 (1/cos(23/163*Pi))^554 2865626355505829 r005 Im(z^2+c),c=-109/122+9/47*I,n=8 2865626355677837 a001 1/9338*(1/2*5^(1/2)+1/2)^7*322^(5/13) 2865626362829661 r005 Im(z^2+c),c=-5/13+27/55*I,n=31 2865626364382211 r009 Re(z^3+c),c=-21/118+51/55*I,n=44 2865626365836831 a001 1/2576*89^(23/24) 2865626382726783 a005 (1/sin(98/213*Pi))^1887 2865626394028680 m001 1/BesselK(1,1)^2*Kolakoski*exp(GAMMA(17/24))^2 2865626411856680 m001 (ln(2)*Sierpinski+DuboisRaymond)/ln(2) 2865626413304821 m001 (HardHexagonsEntropy+Paris)/(gamma-ln(3)) 2865626413313280 r005 Im(z^2+c),c=-9/22+27/55*I,n=41 2865626423180336 p004 log(28219/1607) 2865626424258596 r008 a(0)=0,K{-n^6,64-82*n^3+4*n^2-21*n} 2865626425239222 a007 Real Root Of 335*x^4+929*x^3-113*x^2+192*x+749 2865626459972444 m001 (3^(1/2)+5^(1/2))/(sin(1)+Landau) 2865626472855245 a001 89/2*9349^(11/54) 2865626475099023 r009 Re(z^3+c),c=-7/15+26/55*I,n=52 2865626495663976 a007 Real Root Of -227*x^4-369*x^3+757*x^2-83*x+170 2865626500187102 m001 (Shi(1)-sin(1/5*Pi))/(-GAMMA(13/24)+ZetaQ(4)) 2865626503163018 m001 ln(cos(1))/(2^(1/3))^2*exp(1)^2 2865626503636844 l006 ln(7374/9821) 2865626503856336 r005 Im(z^2+c),c=-23/90+2/49*I,n=10 2865626506328105 r008 a(0)=0,K{-n^6,48-73*n^3-31*n^2+21*n} 2865626520181923 m001 (-Conway+Rabbit)/(arctan(1/3)-ln(2)/ln(10)) 2865626526737695 m001 (ln(2+3^(1/2))+Cahen*Lehmer)/Lehmer 2865626526737695 m001 (ln(2+sqrt(3))+Lehmer*Cahen)/Lehmer 2865626533028892 m005 (1/3*Zeta(3)-1/10)/(5/12*exp(1)-1/12) 2865626542045424 a007 Real Root Of 316*x^4+682*x^3-437*x^2+322*x-749 2865626554229418 m001 1/ln((3^(1/3)))/Trott/Zeta(1,2)^2 2865626557013269 b008 E+Cosh[1/4]/7 2865626561858406 r009 Re(z^3+c),c=-41/114+9/31*I,n=15 2865626575245036 m005 (1/3*3^(1/2)-1/10)/(11/16+7/16*5^(1/2)) 2865626579757873 r005 Re(z^2+c),c=-6/23+16/31*I,n=49 2865626580711071 h001 (1/8*exp(2)+4/11)/(7/12*exp(2)+2/11) 2865626597944577 a001 76/3*28657^(13/55) 2865626605255271 r009 Im(z^3+c),c=-14/29+3/25*I,n=64 2865626619857334 r009 Im(z^3+c),c=-13/22+15/52*I,n=17 2865626626620054 g006 2*Psi(1,1/12)+Psi(1,7/9)-Psi(1,5/12) 2865626636670217 m002 2+Pi^2*Csch[Pi]+ProductLog[Pi]/Pi^4 2865626642035811 r008 a(0)=0,K{-n^6,30-60*n^3-79*n^2+74*n} 2865626643433098 m001 (Paris-Totient)/(GAMMA(2/3)-KomornikLoreti) 2865626645489436 m005 (1/3*Zeta(3)-1/12)/(2/11*Zeta(3)+8/9) 2865626646363991 a007 Real Root Of 157*x^4+72*x^3-920*x^2+752*x+817 2865626649271255 r005 Re(z^2+c),c=-11/30+3/44*I,n=9 2865626651072854 r002 35th iterates of z^2 + 2865626651350651 r008 a(0)=0,K{-n^6,-58+64*n^3+53*n^2-24*n} 2865626654641801 r005 Im(z^2+c),c=-57/86+13/59*I,n=5 2865626656883168 a007 Real Root Of -157*x^4-594*x^3-688*x^2-723*x+187 2865626658710660 a007 Real Root Of 593*x^4-250*x^3-179*x^2-795*x-223 2865626661478470 m001 (-Artin+FeigenbaumMu)/(Psi(1,1/3)+Shi(1)) 2865626665994297 a007 Real Root Of 124*x^4+279*x^3-323*x^2-156*x+409 2865626669535841 m001 (Porter+ZetaQ(4))/(2^(1/3)-Pi^(1/2)) 2865626669915066 a001 4/3*3^(39/56) 2865626670091265 r005 Re(z^2+c),c=-7/23+15/38*I,n=20 2865626680245762 a007 Real Root Of 356*x^4+803*x^3-584*x^2+18*x-263 2865626686397801 r005 Re(z^2+c),c=35/102+6/31*I,n=27 2865626720606557 m005 (1/3*5^(1/2)-1/2)/(7/10*Catalan-5/9) 2865626722256671 s002 sum(A253735[n]/(2^n-1),n=1..infinity) 2865626730173404 a007 Real Root Of 23*x^4+626*x^3-938*x^2+308*x+323 2865626746518900 a007 Real Root Of -80*x^4+186*x^3+923*x^2-423*x+980 2865626747590435 r005 Re(z^2+c),c=23/86+3/28*I,n=47 2865626752195915 m008 (1/6*Pi^4+4/5)/(3/5*Pi^4+1) 2865626768679305 a007 Real Root Of 67*x^4-583*x^3+709*x^2-379*x-181 2865626770866904 m001 FransenRobinson/(Weierstrass^Trott2nd) 2865626779208547 a007 Real Root Of 427*x^4+946*x^3-977*x^2-261*x+742 2865626790862846 r008 a(0)=3,K{-n^6,24-9*n+22*n^2-30*n^3} 2865626801948031 r005 Re(z^2+c),c=-13/40+19/58*I,n=17 2865626806831147 r005 Re(z^2+c),c=11/60+20/41*I,n=52 2865626807190774 m001 TwinPrimes/(Chi(1)-Pi) 2865626810414357 a001 11/4181*377^(34/43) 2865626826335087 m001 Pi/(Psi(1,1/3)+Chi(1)/cos(1/12*Pi)) 2865626844041238 m001 (ln(5)+FeigenbaumAlpha)/(Stephens+Thue) 2865626854145013 l006 ln(2905/3869) 2865626861133376 m001 (Niven-ZetaR(2))/Landau 2865626863241201 m008 (5/6*Pi^2+1/6)/(3*Pi^4+3/5) 2865626875161497 m001 (Gompertz-Magata)/(MertensB2-ZetaQ(2)) 2865626879377934 a007 Real Root Of 254*x^4+505*x^3-713*x^2-257*x-126 2865626889346752 m001 (Shi(1)+BesselK(0,1))/(-Landau+Trott2nd) 2865626911180726 r002 16th iterates of z^2 + 2865626929555969 m005 (1/2*5^(1/2)+2/9)/(3/8*3^(1/2)-2/11) 2865626943352195 m005 (1/2*gamma-2/9)/(2/3*Pi+2/9) 2865626966292134 a001 2550408/89 2865626969385606 a007 Real Root Of -694*x^4-235*x^3-28*x^2+937*x-256 2865626974121593 m001 BesselK(0,1)/ArtinRank2^2/ln(gamma)^2 2865626976807647 m001 1/MinimumGamma^2/ln(Champernowne)^2*GAMMA(1/3) 2865626984007763 r005 Im(z^2+c),c=-9/25+19/39*I,n=31 2865626989554630 r005 Im(z^2+c),c=-17/44+29/57*I,n=31 2865626990732865 r002 5th iterates of z^2 + 2865626994267804 r009 Re(z^3+c),c=-31/78+23/64*I,n=20 2865626999883600 m001 FeigenbaumC/(Rabbit^Mills) 2865627002673894 r005 Im(z^2+c),c=-55/114+19/31*I,n=10 2865627003562799 m005 (1/3*2^(1/2)+1/10)/(5/7*Pi-1/4) 2865627005649173 m009 (2*Psi(1,1/3)-2/5)/(3/4*Psi(1,3/4)+5) 2865627010367557 m001 (Kac-ZetaQ(3))/(GAMMA(7/12)+GolombDickman) 2865627012705710 m001 1/Niven/exp(LaplaceLimit)^2*Tribonacci 2865627028403148 r009 Im(z^3+c),c=-13/58+16/57*I,n=9 2865627059571680 r005 Re(z^2+c),c=-2/3+44/195*I,n=13 2865627071841879 p001 sum(1/(145*n+64)/n/(2^n),n=0..infinity) 2865627075771852 a007 Real Root Of 179*x^4+205*x^3-991*x^2-422*x-318 2865627097036443 m001 (FeigenbaumB+StronglyCareFree)/(1-Psi(2,1/3)) 2865627128490413 r002 32i'th iterates of 2*x/(1-x^2) of 2865627128586154 a001 29/1346269*2^(7/17) 2865627138098733 a007 Real Root Of 873*x^4-636*x^3+526*x^2+56*x-48 2865627138510786 m001 1/GAMMA(1/6)^2*Bloch*ln(cosh(1))^2 2865627143792266 r005 Im(z^2+c),c=-59/70+7/34*I,n=62 2865627157713246 r005 Re(z^2+c),c=-17/74+19/33*I,n=55 2865627159663223 m009 (1/3*Psi(1,2/3)-1/2)/(1/5*Psi(1,1/3)-1/5) 2865627160793994 r009 Re(z^3+c),c=-29/90+24/37*I,n=18 2865627161721712 s001 sum(exp(-Pi)^(n-1)*A258728[n],n=1..infinity) 2865627166985372 r008 a(0)=0,K{-n^6,-27+25*n-46*n^2+12*n^3} 2865627178279869 m001 1/BesselJ(0,1)/CareFree^2/ln(GAMMA(2/3))^2 2865627178674934 m001 (3^(1/2)+Zeta(5))/(Kac+PolyaRandomWalk3D) 2865627178867967 r005 Re(z^2+c),c=13/44+4/31*I,n=35 2865627193716684 r005 Im(z^2+c),c=-5/106+6/17*I,n=18 2865627205827472 b008 LogIntegral[(-1+E)/4] 2865627215583574 l006 ln(7151/9524) 2865627228990186 a007 Real Root Of -450*x^4+23*x^3-852*x^2+710*x+277 2865627241077217 a007 Real Root Of 197*x^4+363*x^3-394*x^2+209*x-908 2865627242784012 a007 Real Root Of -27*x^4-762*x^3+337*x^2+37*x+102 2865627251588005 m001 (2^(1/2)-Mills)/(-Paris+Weierstrass) 2865627258871801 h001 (8/11*exp(1)+1/9)/(9/10*exp(2)+7/11) 2865627269121067 m001 LandauRamanujan*BesselK(1,1)^GAMMA(11/24) 2865627277696793 r009 Re(z^3+c),c=-33/56+15/28*I,n=2 2865627301398816 m001 1/GAMMA(1/3)/ln(BesselJ(1,1))^2/GAMMA(5/24)^2 2865627301648573 h001 (7/11*exp(2)+1/5)/(7/12*exp(1)+1/8) 2865627308268893 r005 Im(z^2+c),c=-29/114+13/29*I,n=10 2865627313963655 m006 (1/6*Pi^2-5)/(5*Pi-4) 2865627313963655 m008 (1/6*Pi^2-5)/(5*Pi-4) 2865627319970304 q001 386/1347 2865627322395905 m005 (3/4*Catalan+5/6)/(1/3*Catalan+5) 2865627322684962 r005 Im(z^2+c),c=-35/122+29/64*I,n=24 2865627332416474 a007 Real Root Of 430*x^4+336*x^3+133*x^2-269*x-83 2865627337372749 a001 4/17711*2584^(1/33) 2865627341786285 a007 Real Root Of 380*x^4+841*x^3-887*x^2-198*x+882 2865627346397395 m005 (1/2*2^(1/2)+2/5)/(6/11*5^(1/2)-5/6) 2865627346957005 a001 312119004989/233*121393^(11/24) 2865627346974831 a001 1568397607/233*12586269025^(11/24) 2865627356517045 p001 sum(1/(467*n+35)/(24^n),n=0..infinity) 2865627361032826 a007 Real Root Of 130*x^4+129*x^3-383*x^2+903*x+2 2865627373959409 p004 log(26489/19889) 2865627375531842 m005 (1/2*gamma-5/7)/(1/5*Pi+6/7) 2865627388215156 r009 Re(z^3+c),c=-15/34+26/51*I,n=39 2865627389407263 r005 Re(z^2+c),c=-9/122+34/55*I,n=15 2865627396634690 r005 Im(z^2+c),c=-11/14+7/58*I,n=19 2865627400058077 m005 (1/3*Catalan+1/5)/(5/6*5^(1/2)-1/10) 2865627408149290 m001 (Bloch+StronglyCareFree)/(ln(2)-ArtinRank2) 2865627412609348 a001 3571/1346269*514229^(52/59) 2865627440727546 m004 4+75/Pi+ProductLog[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 2865627462870194 l006 ln(4246/5655) 2865627467046726 p003 LerchPhi(1/3,6,621/232) 2865627487604548 m005 (1/3*Pi-3/4)/(4/11*Zeta(3)+3/5) 2865627493091219 a001 1730726404001/305*225851433717^(5/21) 2865627494977869 a008 Real Root of x^4-2*x^3+2*x^2+58*x-203 2865627502713109 m005 (-8/15+3/10*5^(1/2))/(1/4*2^(1/2)-5/6) 2865627504972406 a007 Real Root Of -853*x^4-241*x^3+75*x^2+597*x+165 2865627512652747 a001 123/75025*34^(43/53) 2865627515294768 m001 1/MinimumGamma*DuboisRaymond^2*exp(Zeta(3))^2 2865627526726481 a003 sin(Pi*4/31)*sin(Pi*29/112) 2865627535046542 a001 55/521*9349^(19/31) 2865627544036422 a007 Real Root Of 238*x^4+553*x^3-148*x^2+895*x+744 2865627544255640 m001 FeigenbaumMu-LandauRamanujan^Conway 2865627549409905 m001 (GaussAGM+Weierstrass)/(1+FeigenbaumMu) 2865627552662015 m005 (1/3*5^(1/2)-2/3)/(10/11*Zeta(3)-9/11) 2865627559622229 m005 (1/2*Zeta(3)-5/8)/(5/11*Catalan-1/2) 2865627560275693 a007 Real Root Of 168*x^4+471*x^3+36*x^2+298*x+313 2865627560848736 h001 (5/8*exp(2)+4/11)/(4/11*exp(1)+3/4) 2865627594914392 r005 Re(z^2+c),c=-13/48+31/63*I,n=50 2865627599888984 a007 Real Root Of -268*x^4-540*x^3+195*x^2-977*x+964 2865627612764822 l006 ln(566/9939) 2865627625118899 a007 Real Root Of 278*x^4+388*x^3-745*x^2+875*x-991 2865627640449420 a001 2/89*(1/2+1/2*5^(1/2))^34 2865627640449438 a001 12752043/89*8^(1/3) 2865627643515172 r005 Re(z^2+c),c=-19/54+10/49*I,n=26 2865627648646439 a001 3/199*(1/2*5^(1/2)+1/2)^2*199^(17/21) 2865627661126983 a007 Real Root Of -286*x^4-778*x^3-176*x^2-614*x+664 2865627663842070 m001 (Niven+Sierpinski)/(Ei(1)-KhinchinHarmonic) 2865627672817810 h001 (-8*exp(1/3)-3)/(-8*exp(-1)-2) 2865627697204468 h001 (-7*exp(6)-4)/(-9*exp(7)+1) 2865627703348454 a003 cos(Pi*26/97)-cos(Pi*41/109) 2865627706954801 m001 ln(2)/(ln(5)+AlladiGrinstead) 2865627723163945 a001 1926/726103*514229^(52/59) 2865627724162458 m001 (ln(gamma)-Otter)/(PlouffeB+RenyiParking) 2865627744382159 a007 Real Root Of -185*x^4+664*x^3+611*x^2+692*x+165 2865627757220407 p003 LerchPhi(1/100,4,283/207) 2865627759074336 p001 sum((-1)^n/(455*n+296)/(2^n),n=0..infinity) 2865627772379344 m001 1/GAMMA(17/24)*exp(Zeta(3))^3 2865627774754548 r005 Im(z^2+c),c=-1/66+11/17*I,n=12 2865627776067112 r005 Im(z^2+c),c=-11/50+23/54*I,n=30 2865627779381124 l006 ln(5587/7441) 2865627786945889 m001 (MasserGramain+TravellingSalesman)/Weierstrass 2865627798119700 m006 (1/6*ln(Pi)+5)/(ln(Pi)+2/3) 2865627798742150 l006 ln(541/9500) 2865627801178320 m001 FeigenbaumC+GAMMA(23/24)^PisotVijayaraghavan 2865627803932450 m001 (GAMMA(11/12)+Bloch)/(Kolakoski-MertensB1) 2865627807466247 m001 (ln(Pi)-HardyLittlewoodC5)/(Pi-gamma) 2865627818443343 r002 57th iterates of z^2 + 2865627819603729 a001 521*(1/2*5^(1/2)+1/2)^31*4^(10/23) 2865627828444014 r005 Re(z^2+c),c=-15/11+1/10*I,n=4 2865627844044734 r005 Re(z^2+c),c=-35/114+31/48*I,n=14 2865627852815293 m005 (1/2*gamma-3/5)/(4/5*Zeta(3)+1/8) 2865627855699240 a007 Real Root Of 427*x^4+203*x^3+918*x^2-773*x-295 2865627856378914 m004 -3/5+5*Sqrt[5]*Pi-(25*Cos[Sqrt[5]*Pi])/Pi 2865627862095711 s002 sum(A083600[n]/((3*n)!),n=1..infinity) 2865627872642758 m001 1/GAMMA(1/12)^2*ln(FeigenbaumC)^2/cos(Pi/12) 2865627874251055 m001 (1+Magata)^Rabbit 2865627880917952 m001 gamma(3)/cos(1/5*Pi)*GAMMA(5/6) 2865627895211543 r005 Re(z^2+c),c=-39/122+16/41*I,n=6 2865627904957747 m001 GAMMA(13/24)^2/exp(Conway)^2*Zeta(3)^2 2865627905249586 m001 (FeigenbaumD+Mills)/(ln(2)-FeigenbaumB) 2865627905426647 a007 Real Root Of -546*x^4+431*x^3-46*x^2+542*x-158 2865627919871742 a007 Real Root Of -285*x^4-601*x^3+361*x^2-882*x-416 2865627920086820 r009 Im(z^3+c),c=-41/66+13/55*I,n=5 2865627920714375 r005 Im(z^2+c),c=-17/58+19/42*I,n=28 2865627924055277 a007 Real Root Of -602*x^4-434*x^3-839*x^2+807*x+294 2865627924413104 r005 Im(z^2+c),c=-33/82+11/21*I,n=51 2865627924622206 a003 -2*cos(1/15*Pi)-2*cos(4/21*Pi)+cos(7/30*Pi) 2865627927153321 m001 Weierstrass*(Stephens+Trott2nd) 2865627939707314 a007 Real Root Of -466*x^4+617*x^3+237*x^2+695*x-230 2865627944644485 r005 Im(z^2+c),c=-3/28+19/50*I,n=18 2865627949909910 p004 log(36683/2089) 2865627950274730 m001 BesselK(0,1)/ln(Cahen)/gamma^2 2865627971184801 m008 (2*Pi+1/2)/(2/3*Pi^3+3) 2865627973362847 l006 ln(6928/9227) 2865627976015372 a007 Real Root Of -500*x^4-149*x^3-638*x^2+34*x+62 2865627979277703 a008 Real Root of x^4-x^3+3*x^2+4*x-80 2865627997326579 a007 Real Root Of 66*x^4-32*x^3-500*x^2+359*x-69 2865628001265041 r005 Re(z^2+c),c=-29/98+14/33*I,n=30 2865628002740497 l006 ln(516/9061) 2865628007659279 m001 exp(log(2+sqrt(3)))/Tribonacci/sin(1)^2 2865628013669217 a007 Real Root Of 333*x^4+625*x^3-809*x^2+77*x-884 2865628015167604 m001 Mills+Otter^HardyLittlewoodC5 2865628015606558 r002 60i'th iterates of 2*x/(1-x^2) of 2865628035245270 r005 Re(z^2+c),c=23/64+13/51*I,n=29 2865628036590427 a007 Real Root Of 3*x^4-312*x^3-309*x^2-863*x+280 2865628042843232 q001 2943/1027 2865628053027566 a008 Real Root of x^4-x^3-4*x^2+14*x-18 2865628060607319 r005 Im(z^2+c),c=-31/110+13/29*I,n=28 2865628076836781 m001 (PrimesInBinary-Rabbit)/(Landau-MasserGramain) 2865628085558226 m001 Sierpinski*ln(Si(Pi))^2*cos(1)^2 2865628086424546 a007 Real Root Of -139*x^4-497*x^3-597*x^2+191*x+93 2865628089887640 a001 2550409/89 2865628093027597 a007 Real Root Of 406*x^4-216*x^3+277*x^2-305*x+67 2865628093679337 a007 Real Root Of -879*x^4+456*x^3+159*x^2+975*x+283 2865628100616761 r005 Re(z^2+c),c=-8/23+5/22*I,n=21 2865628100903206 a007 Real Root Of 783*x^4-308*x^3+593*x^2-690*x+151 2865628115310032 a007 Real Root Of -80*x^4-85*x^3+606*x^2+388*x-470 2865628116198547 a007 Real Root Of 330*x^4-530*x^3+761*x^2-282*x-158 2865628120717805 m001 (FransenRobinson+Landau)/(ln(5)-BesselJ(1,1)) 2865628137321887 a007 Real Root Of 597*x^4+94*x^3+267*x^2-866*x+220 2865628140673754 m004 -900/Pi+Tan[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 2865628156135600 h001 (1/8*exp(1)+6/7)/(5/11*exp(2)+9/11) 2865628156499096 m004 -1-900/Pi+Tan[Sqrt[5]*Pi] 2865628161258459 m001 1/ln(arctan(1/2))*GAMMA(5/12)/cos(Pi/12) 2865628173461031 b008 E^(17/3)*Tanh[E] 2865628178635884 a007 Real Root Of -336*x^4-550*x^3+793*x^2-787*x+948 2865628181193564 r005 Re(z^2+c),c=-13/46+6/13*I,n=48 2865628193680830 a007 Real Root Of 339*x^4+797*x^3-371*x^2+197*x-494 2865628208233203 s002 sum(A007102[n]/(n^3*2^n+1),n=1..infinity) 2865628211590300 a007 Real Root Of -355*x^4-750*x^3+556*x^2-489*x+323 2865628215898184 m001 (ln(3)-ln(Pi))/(cos(1/12*Pi)+Cahen) 2865628218860997 m001 BesselK(1,1)^2*Magata^2/ln(GAMMA(5/6))^2 2865628225651837 a001 2207/832040*514229^(52/59) 2865628227512559 l006 ln(491/8622) 2865628241387419 m001 (Landau+ZetaP(3))/(Zeta(3)+Conway) 2865628262329072 a009 1/11*12^(1/3)*11^(3/4)*3^(3/4) 2865628262924062 m001 (PlouffeB+PrimesInBinary)/(3^(1/2)+exp(1/Pi)) 2865628268732214 m001 QuadraticClass/(((1+3^(1/2))^(1/2))^(5^(1/2))) 2865628278466333 m005 (1/2*gamma-2)/(3/2+2*5^(1/2)) 2865628283331271 m001 (1-cos(1))/(arctan(1/3)+GlaisherKinkelin) 2865628284276830 a007 Real Root Of 84*x^4+364*x^3+577*x^2+491*x-430 2865628285541431 r005 Re(z^2+c),c=-83/126+14/43*I,n=43 2865628297378916 a007 Real Root Of 192*x^4+427*x^3-383*x^2-417*x-949 2865628314338947 m001 (CareFree+GaussAGM)/(Psi(2,1/3)+2^(1/2)) 2865628329411706 a007 Real Root Of -129*x^4-258*x^3+229*x^2-43*x+624 2865628335764208 s002 sum(A007102[n]/(n^3*2^n-1),n=1..infinity) 2865628338468734 a003 cos(Pi*31/108)/cos(Pi*31/72) 2865628347830072 m001 (sqrt(5)*GAMMA(17/24)+cos(Pi/5))/GAMMA(17/24) 2865628355201938 r009 Im(z^3+c),c=-2/17+13/43*I,n=8 2865628361736371 m001 (exp(1)*Chi(1)+Champernowne)/Chi(1) 2865628372188824 r005 Im(z^2+c),c=-9/50+25/61*I,n=21 2865628379061001 r009 Im(z^3+c),c=-4/7+17/46*I,n=21 2865628381114139 k001 Champernowne real with 276*n+10 2865628384850507 a007 Real Root Of -71*x^4-226*x^3-412*x^2+513*x+176 2865628391133005 m003 17/6+(Sqrt[5]*Tanh[1/2+Sqrt[5]/2])/64 2865628393481509 m001 (-MertensB1+Totient)/(2^(1/3)+FeigenbaumAlpha) 2865628404842412 r008 a(0)=3,K{-n^6,-4+2*n^3+7*n^2+4*n} 2865628419344004 r005 Re(z^2+c),c=-19/54+10/49*I,n=28 2865628441987033 m005 (1/2*Catalan-5/6)/(3/11*5^(1/2)+7/10) 2865628444727210 h001 (1/12*exp(1)+1/9)/(2/5*exp(1)+1/11) 2865628452219104 a007 Real Root Of 998*x^4-455*x^3+64*x^2-699*x-223 2865628453524644 r005 Re(z^2+c),c=-2/7+29/64*I,n=62 2865628456895837 r002 13th iterates of z^2 + 2865628466726187 m001 GAMMA(11/24)*MertensB1*ln(LambertW(1)) 2865628476401735 l006 ln(466/8183) 2865628493563097 a007 Real Root Of -362*x^4-327*x^3+765*x^2+877*x-304 2865628498458562 a003 sin(Pi*16/103)*sin(Pi*9/43) 2865628510803930 m001 (-BesselJ(0,1)+DuboisRaymond)/(2^(1/2)+gamma) 2865628512005401 m001 MertensB1^2*Cahen^2/ln(Khintchine) 2865628518968099 a007 Real Root Of -333*x^4-300*x^3+84*x^2+334*x+84 2865628536643970 m001 1/GAMMA(3/4)/Rabbit^2/exp(sqrt(3)) 2865628553994949 m005 (1/2*Pi+9/11)/(3*exp(1)+2/11) 2865628559722396 r005 Im(z^2+c),c=-95/64+4/51*I,n=5 2865628564895137 m005 (1/2*Pi+11/12)/(-1/4+1/2*5^(1/2)) 2865628566503802 r008 a(0)=3,K{-n^6,10+22*n-25*n^3} 2865628567380868 a007 Real Root Of -415*x^4-754*x^3+971*x^2-861*x-199 2865628569179636 r009 Re(z^3+c),c=-59/106+17/46*I,n=63 2865628574503166 p004 log(36017/27043) 2865628582511445 m009 (5/6*Psi(1,2/3)+3/4)/(1/3*Psi(1,3/4)-2) 2865628592902803 m001 1/ln(cos(Pi/5))*GAMMA(5/24)^2*sqrt(Pi)^2 2865628608445049 r009 Im(z^3+c),c=-6/31+35/39*I,n=24 2865628611625519 m001 (GAMMA(11/12)-MertensB3)/(OneNinth+Thue) 2865628617706911 r005 Re(z^2+c),c=-41/106+32/57*I,n=50 2865628630045922 r009 Re(z^3+c),c=-23/102+41/52*I,n=4 2865628636005695 m009 (2/3*Psi(1,2/3)-3/4)/(1/6*Psi(1,2/3)+4) 2865628637079335 m005 (1/3*3^(1/2)+2/11)/(5/8*Zeta(3)-7/9) 2865628638345135 m001 (Salem-ZetaP(4))/(ln(2^(1/2)+1)+Otter) 2865628642009409 a007 Real Root Of 225*x^4+875*x^3+714*x^2-107*x-752 2865628644167323 m001 (gamma(1)-OneNinth)/(Stephens+ZetaQ(2)) 2865628655093298 s002 sum(A155033[n]/((exp(n)+1)*n),n=1..infinity) 2865628655404495 r005 Re(z^2+c),c=-13/17+11/59*I,n=4 2865628661277753 a007 Real Root Of 99*x^4+15*x^3-763*x^2+27*x+20 2865628664112625 l005 357604/6889/(exp(598/83)^2-1) 2865628672766912 r005 Im(z^2+c),c=-67/82+7/40*I,n=40 2865628673948416 r005 Re(z^2+c),c=29/94+19/45*I,n=8 2865628692349728 r005 Im(z^2+c),c=3/40+37/56*I,n=6 2865628698691548 m001 (-MadelungNaCl+Niven)/(Artin-Si(Pi)) 2865628700469960 m006 (4*ln(Pi)+3/5)/(1/5*Pi^2-1/6) 2865628703181694 a007 Real Root Of -279*x^4-369*x^3+923*x^2-891*x-2 2865628712715306 s002 sum(A283417[n]/((exp(n)+1)*n),n=1..infinity) 2865628726062715 m001 Psi(1,1/3)^Landau/GAMMA(3/4) 2865628734071530 m001 1/BesselJ(1,1)^2/Paris/ln(sin(Pi/12))^2 2865628735298796 r005 Im(z^2+c),c=-59/58+23/56*I,n=5 2865628737943801 a007 Real Root Of -289*x^4-729*x^3+272*x^2-149*x-327 2865628753509566 l006 ln(441/7744) 2865628762121953 r005 Re(z^2+c),c=1/118+9/47*I,n=3 2865628764778097 r005 Im(z^2+c),c=-73/74+13/47*I,n=9 2865628776674542 r005 Re(z^2+c),c=2/29+38/63*I,n=45 2865628781547658 l006 ln(1341/1786) 2865628783844826 r002 8th iterates of z^2 + 2865628800123151 r009 Im(z^3+c),c=-13/58+16/57*I,n=13 2865628808619579 a001 9062201101803/1597*225851433717^(5/21) 2865628821415397 r009 Im(z^3+c),c=-29/48+17/61*I,n=61 2865628844860890 m001 (Pi+gamma(1))/(AlladiGrinstead+MertensB1) 2865628849009100 m001 (GAMMA(1/3)*exp(-Pi)-GAMMA(2/3))/exp(-Pi) 2865628849009100 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-exp(Pi)*GAMMA(2/3) 2865628849009100 m001 GAMMA(1/3)-exp(Pi)*GAMMA(2/3) 2865628895776834 m001 BesselJ(0,1)^GAMMA(5/6)-GAMMA(23/24) 2865628911969063 r005 Re(z^2+c),c=-37/102+4/33*I,n=24 2865628930706643 r005 Re(z^2+c),c=-19/56+5/18*I,n=12 2865628934631710 a007 Real Root Of 237*x^4+274*x^3-902*x^2+863*x+346 2865628945136876 m001 1/Lehmer^2*Cahen^2/exp(sqrt(2)) 2865628953238413 m005 (1/2*exp(1)+4/5)/(35/18+5/2*5^(1/2)) 2865628953653307 m005 (1/2*Zeta(3)-6/11)/(10/11*Pi-11/12) 2865628958836426 a001 1/4976784*144^(1/14) 2865628991856593 r005 Im(z^2+c),c=-7/50+13/33*I,n=20 2865628992064035 p004 log(35423/26597) 2865629000552682 a001 23725150497407/4181*225851433717^(5/21) 2865629008091999 m001 (1+AlladiGrinstead)/(-OrthogonalArrays+Porter) 2865629011628609 a001 76/514229*46368^(31/44) 2865629030661088 m001 1/RenyiParking*FeigenbaumB^2/exp(GAMMA(19/24)) 2865629032798279 m001 (1-Chi(1))/(-cos(1/5*Pi)+exp(1/Pi)) 2865629037245422 a007 Real Root Of -327*x^4+923*x^3-942*x^2+6*x+103 2865629040742945 a007 Real Root Of 578*x^4-278*x^3+73*x^2-330*x-111 2865629048175800 a007 Real Root Of 357*x^4-584*x^3-641*x^2-705*x+266 2865629058716869 r009 Re(z^3+c),c=-1/64+17/22*I,n=11 2865629063923536 l006 ln(416/7305) 2865629097801241 a007 Real Root Of 353*x^4-491*x^3+369*x^2-824*x+215 2865629106967257 m001 sqrt(1+sqrt(3))^Lehmer*GAMMA(5/12) 2865629119173875 a001 192933544679/34*225851433717^(5/21) 2865629122394950 m005 (1/3*3^(1/2)-2/11)/(6/11*Pi-1/3) 2865629130044876 p001 sum((-1)^n/(374*n+339)/(16^n),n=0..infinity) 2865629139669725 r009 Im(z^3+c),c=-43/102+9/49*I,n=26 2865629143701372 m009 (24*Catalan+3*Pi^2-5/6)/(1/3*Psi(1,2/3)+3/4) 2865629146194305 a001 2584/123*123^(2/31) 2865629153255578 a007 Real Root Of -309*x^4-424*x^3+983*x^2-965*x+22 2865629155353369 m001 (BesselI(1,2)-gamma)/(FeigenbaumC+Niven) 2865629163587970 m008 (4/5*Pi^3+3)/(Pi^2-1/6) 2865629184445032 a007 Real Root Of -172*x^4-371*x^3+302*x^2-474*x-970 2865629188383729 r009 Re(z^3+c),c=-41/106+35/58*I,n=51 2865629192176798 a007 Real Root Of 28*x^4+783*x^3-550*x^2+132*x-528 2865629192601580 m001 MertensB2^Stephens-Mills 2865629200721936 r005 Im(z^2+c),c=-117/110+11/45*I,n=16 2865629203040033 a007 Real Root Of -390*x^4-991*x^3+111*x^2-703*x+53 2865629207023756 r005 Re(z^2+c),c=1/48+22/27*I,n=3 2865629213483146 a001 2550410/89 2865629215759666 a007 Real Root Of 793*x^4-429*x^3-469*x^2-925*x-242 2865629228332424 r005 Re(z^2+c),c=7/20+17/48*I,n=49 2865629234980687 a007 Real Root Of -203*x^4-284*x^3+644*x^2-375*x+643 2865629235512702 m001 ln(2)^ArtinRank2/(ln(2)^FeigenbaumMu) 2865629241385697 m001 KhintchineLevy^2/ln(Cahen)/GAMMA(11/12)^2 2865629243955834 m001 (Ei(1,1)+ln(2+3^(1/2)))/(Lehmer-MasserGramain) 2865629264910663 a007 Real Root Of -343*x^4-666*x^3+802*x^2-568*x-756 2865629265918541 m001 (BesselJ(1,1)+Landau)/(Otter+PlouffeB) 2865629266904555 r008 a(0)=3,K{-n^6,24+37*n^3-49*n^2-4*n} 2865629271853172 m001 (Landau+Sarnak)/(gamma(3)+BesselJ(1,1)) 2865629272363845 m005 (1/2*5^(1/2)+8/9)/(1/6*Zeta(3)+1/2) 2865629273253275 r005 Im(z^2+c),c=-23/48+12/25*I,n=31 2865629291478279 a007 Real Root Of -22*x^4-603*x^3+762*x^2-705*x-261 2865629300346518 m001 (-gamma(3)+BesselJ(1,1))/(cos(1)-ln(2)) 2865629302676939 p001 sum(1/(373*n+309)/n/(512^n),n=1..infinity) 2865629318976404 m001 GAMMA(5/24)/CareFree^2/exp(GAMMA(5/6)) 2865629350512331 m001 FibonacciFactorial+OrthogonalArrays^Backhouse 2865629352712483 a007 Real Root Of -525*x^4+131*x^3+408*x^2+450*x-162 2865629370539779 r005 Im(z^2+c),c=17/58+6/53*I,n=58 2865629374350159 m005 (1/2*5^(1/2)-2/7)/(9/11*gamma-2/11) 2865629378366411 r005 Im(z^2+c),c=-59/82+8/49*I,n=32 2865629400444562 r002 8th iterates of z^2 + 2865629405273064 m001 1/Tribonacci^2*ln(Riemann2ndZero)/Pi 2865629407708824 m001 BesselI(0,2)+LaplaceLimit-ZetaP(4) 2865629408163737 a007 Real Root Of -566*x^4+639*x^3+80*x^2+170*x+61 2865629408375077 r005 Im(z^2+c),c=-31/86+13/23*I,n=15 2865629414032271 l006 ln(391/6866) 2865629419362714 m005 (1/2*gamma-3/8)/(2/3*gamma-1/12) 2865629420084865 q001 1013/3535 2865629458174330 a007 Real Root Of -551*x^4+654*x^3-221*x^2+711*x+241 2865629476587667 m001 exp(GAMMA(17/24))*BesselK(0,1)^2/sqrt(5) 2865629487581504 m005 (1/3*5^(1/2)-2/7)/(1/4*Pi-5/8) 2865629494792142 a007 Real Root Of 318*x^4+886*x^3+44*x^2+469*x+388 2865629507347075 m002 E^Pi+E^Pi*Pi^2*Cosh[Pi]*ProductLog[Pi] 2865629511087799 m005 (1/2*2^(1/2)-5/6)/(3/10*exp(1)-3/8) 2865629513594443 r005 Im(z^2+c),c=-115/98+1/26*I,n=19 2865629520683144 m001 (GAMMA(7/12)+Artin)/(Gompertz-LaplaceLimit) 2865629526627815 l006 ln(5435/5593) 2865629531672295 m001 (-exp(1/Pi)+GAMMA(7/12))/(Psi(2,1/3)+2^(1/2)) 2865629539796290 r005 Im(z^2+c),c=-29/110+29/61*I,n=3 2865629547646787 a005 (1/cos(4/215*Pi))^616 2865629550776238 r009 Re(z^3+c),c=-41/90+26/59*I,n=31 2865629551379935 m001 (Zeta(1,2)-GAMMA(19/24))/(RenyiParking-Trott) 2865629568585755 m001 LambertW(1)*arctan(1/3)+FeigenbaumD 2865629572626622 m001 Zeta(3)*exp(Riemann1stZero)/gamma 2865629592264511 m005 (1/2*Catalan-3/11)/(5/8*gamma+2/7) 2865629594375735 m001 (Robbin-StronglyCareFree)/(ZetaP(2)-ZetaQ(2)) 2865629595477048 m001 Pi^exp(1/2)*Pi^GlaisherKinkelin 2865629601360027 m005 (1/3*2^(1/2)+2/11)/(1/8*5^(1/2)+2) 2865629614423171 m001 cosh(1)*ln(Zeta(5))^2/sin(1)^2 2865629621661424 a001 5600748293801/987*225851433717^(5/21) 2865629628383613 r002 15th iterates of z^2 + 2865629636297491 m001 (Khinchin+StronglyCareFree)/(1+exp(-1/2*Pi)) 2865629645340299 l006 ln(6482/8633) 2865629647648334 m001 (Totient-ZetaP(4))/(FeigenbaumDelta-MertensB1) 2865629664801333 m001 Artin+CareFree+KomornikLoreti 2865629665172076 r005 Re(z^2+c),c=-19/70+27/55*I,n=39 2865629668690221 r005 Re(z^2+c),c=-19/102+15/26*I,n=28 2865629673728257 a007 Real Root Of -298*x^4-962*x^3-531*x^2-878*x-698 2865629676234708 m001 (sin(1)+cos(1/5*Pi))/Stephens 2865629681200470 h005 exp(cos(Pi*5/47)+cos(Pi*27/58)) 2865629681290483 m001 (1-Psi(2,1/3))/(DuboisRaymond+HeathBrownMoroz) 2865629718272601 r005 Im(z^2+c),c=-97/122+7/53*I,n=60 2865629724703634 r002 11th iterates of z^2 + 2865629736461489 m001 (2^(1/3)-ln(2))/(-Zeta(1/2)+polylog(4,1/2)) 2865629737938599 r005 Re(z^2+c),c=-2/25+32/53*I,n=14 2865629739911140 r005 Re(z^2+c),c=-19/82+31/53*I,n=59 2865629748937106 m005 (1/3*Zeta(3)-1/12)/(5/12*2^(1/2)-7/10) 2865629749253958 a007 Real Root Of -318*x^4-866*x^3+106*x^2-403*x-960 2865629769719284 r005 Re(z^2+c),c=-8/25+8/23*I,n=23 2865629774151589 r005 Im(z^2+c),c=37/102+5/37*I,n=14 2865629776773315 m001 1/Trott/CopelandErdos^2*ln(sin(1)) 2865629781281913 m001 1/exp(PrimesInBinary)/Bloch^2*cos(Pi/12) 2865629784713386 a007 Real Root Of 869*x^4+96*x^3-905*x^2-945*x+337 2865629793748752 r009 Im(z^3+c),c=-37/62+2/7*I,n=21 2865629810461196 r009 Re(z^3+c),c=-1/70+36/47*I,n=22 2865629811969919 l006 ln(366/6427) 2865629826650109 m001 (Zeta(5)-arctan(1/2))/(exp(1/Pi)+Kac) 2865629831640466 a007 Real Root Of 893*x^4-724*x^3+414*x^2-820*x+212 2865629833531020 r002 17th iterates of z^2 + 2865629841822676 r005 Re(z^2+c),c=-7/29+31/54*I,n=59 2865629844369022 r005 Re(z^2+c),c=7/32+3/52*I,n=6 2865629847511788 a009 32-5^(3/4) 2865629847511788 b008 -32+5^(3/4) 2865629859384667 r005 Re(z^2+c),c=-5/16+22/59*I,n=39 2865629870655582 l006 ln(5141/6847) 2865629870911868 r005 Im(z^2+c),c=-55/102+17/52*I,n=5 2865629876789103 r005 Re(z^2+c),c=-9/29+23/61*I,n=15 2865629877438647 m005 (1/3*2^(1/2)+1/12)/(25/21+1/3*5^(1/2)) 2865629887854326 r004 Im(z^2+c),c=-1/12-1/8*I,z(0)=-1,n=6 2865629891637264 a005 (1/cos(8/177*Pi))^787 2865629892872560 r009 Im(z^3+c),c=-35/74+7/51*I,n=24 2865629916568662 m001 BesselI(0,2)*(2^(1/2))^TwinPrimes 2865629916568662 m001 sqrt(2)^TwinPrimes*BesselI(0,2) 2865629923704079 r005 Im(z^2+c),c=-7/86+7/19*I,n=17 2865629925071920 m001 (arctan(1/3)-Bloch)/(FeigenbaumC+Magata) 2865629930489581 a007 Real Root Of 234*x^4-238*x^3+426*x^2-860*x-25 2865629976216252 r005 Im(z^2+c),c=25/82+5/53*I,n=52 2865629987263598 p001 sum(1/(491*n+362)/(12^n),n=0..infinity) 2865629991829851 r005 Im(z^2+c),c=41/118+5/37*I,n=30 2865629999635231 m002 -2+E^Pi+7*ProductLog[Pi] 2865630000796798 a005 (1/sin(106/217*Pi))^1607 2865630019924047 r009 Re(z^3+c),c=-61/126+11/53*I,n=4 2865630021709907 m009 (1/6*Psi(1,3/4)+3/4)/(Psi(1,1/3)-6) 2865630022900360 h001 (8/11*exp(2)+2/11)/(5/9*exp(1)+3/7) 2865630029389057 m001 (Cahen*Kolakoski+MertensB3)/Cahen 2865630030496811 a001 5778/13*144^(3/8) 2865630051390796 r005 Im(z^2+c),c=-69/110+21/59*I,n=8 2865630057299470 m001 Bloch^2*Cahen^2*exp(LambertW(1))^2 2865630069343094 m001 BesselI(0,2)+Artin^Landau 2865630069667344 a007 Real Root Of 375*x^4+979*x^3-309*x^2+56*x+448 2865630095827258 r005 Re(z^2+c),c=-33/52+11/32*I,n=23 2865630099572273 a003 sin(Pi*4/119)-sin(Pi*5/39) 2865630104057434 a007 Real Root Of 204*x^4-651*x^3+27*x^2-419*x+12 2865630106491535 r009 Im(z^3+c),c=-13/58+16/57*I,n=16 2865630118823697 a008 Real Root of x^4-4*x^2-116*x-367 2865630142353579 m001 Rabbit-TravellingSalesman^Trott 2865630146614241 m005 (17/20+1/10*5^(1/2))/(5*Catalan-5/6) 2865630153639822 m001 (2^(1/2)-HeathBrownMoroz)/(-Trott2nd+ZetaP(4)) 2865630157857514 p004 log(27091/20341) 2865630162428024 r009 Im(z^3+c),c=-13/58+16/57*I,n=19 2865630162564774 m001 ln(Backhouse)*Artin^2/GAMMA(2/3)^2 2865630164615443 r009 Im(z^3+c),c=-13/58+16/57*I,n=22 2865630164683519 r009 Im(z^3+c),c=-13/58+16/57*I,n=23 2865630164688692 r009 Im(z^3+c),c=-13/58+16/57*I,n=20 2865630164692230 r009 Im(z^3+c),c=-13/58+16/57*I,n=25 2865630164693681 r009 Im(z^3+c),c=-13/58+16/57*I,n=26 2865630164694516 r009 Im(z^3+c),c=-13/58+16/57*I,n=29 2865630164694521 r009 Im(z^3+c),c=-13/58+16/57*I,n=28 2865630164694566 r009 Im(z^3+c),c=-13/58+16/57*I,n=32 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=35 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=38 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=41 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=42 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=44 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=45 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=47 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=48 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=51 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=50 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=54 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=57 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=60 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=63 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=64 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=61 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=62 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=59 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=58 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=56 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=55 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=53 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=52 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=49 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=46 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=43 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=39 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=40 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=37 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=36 2865630164694568 r009 Im(z^3+c),c=-13/58+16/57*I,n=34 2865630164694569 r009 Im(z^3+c),c=-13/58+16/57*I,n=31 2865630164694569 r009 Im(z^3+c),c=-13/58+16/57*I,n=33 2865630164694589 r009 Im(z^3+c),c=-13/58+16/57*I,n=30 2865630164695108 r009 Im(z^3+c),c=-13/58+16/57*I,n=27 2865630164707379 r009 Im(z^3+c),c=-13/58+16/57*I,n=24 2865630164972210 r009 Im(z^3+c),c=-13/58+16/57*I,n=21 2865630170096263 r009 Im(z^3+c),c=-13/58+16/57*I,n=18 2865630170552462 r009 Im(z^3+c),c=-13/58+16/57*I,n=17 2865630176386110 r002 10th iterates of z^2 + 2865630182651390 p003 LerchPhi(1/3,1,62/159) 2865630184381050 a001 196418/843*199^(10/11) 2865630199558441 r005 Im(z^2+c),c=-37/31+1/26*I,n=33 2865630211006620 r005 Re(z^2+c),c=-2/7+29/64*I,n=57 2865630223844788 m001 ln(TwinPrimes)*GaussKuzminWirsing/BesselJ(1,1) 2865630227535267 a001 7881196/5*514229^(1/22) 2865630227535336 a001 4870847/5*20365011074^(1/22) 2865630232120872 a001 5/1149851*322^(16/49) 2865630241528456 m001 (PlouffeB+PolyaRandomWalk3D)/(OneNinth-Otter) 2865630246525713 m001 (Zeta(3)-ln(2))/(GAMMA(5/6)-Mills) 2865630248778180 m005 (25/4+1/4*5^(1/2))/(9/10*5^(1/2)+4/11) 2865630254052409 r009 Im(z^3+c),c=-13/58+16/57*I,n=15 2865630254996008 l006 ln(3800/5061) 2865630268256002 l006 ln(341/5988) 2865630273496099 r005 Re(z^2+c),c=-41/52+3/37*I,n=14 2865630295452389 m003 1/10+Sqrt[5]/64+ProductLog[1/2+Sqrt[5]/2]/5 2865630305981761 s002 sum(A117913[n]/(n^3*pi^n+1),n=1..infinity) 2865630319103168 v002 sum(1/(2^n*(n^2+37*n-16)),n=1..infinity) 2865630323226389 b008 2/17+ProductLog[1/5] 2865630333006304 r005 Re(z^2+c),c=-3/5+11/34*I,n=9 2865630338413998 a001 1/4*(1/2*5^(1/2)+1/2)^28*47^(13/18) 2865630340472016 r005 Im(z^2+c),c=-17/18+6/235*I,n=5 2865630358573366 a001 11/121393*75025^(4/39) 2865630368436842 m007 (-1/4*gamma+4)/(-1/3*gamma-2/3*ln(2)+2) 2865630391028580 s002 sum(A176736[n]/(n^3*10^n-1),n=1..infinity) 2865630391422277 r005 Re(z^2+c),c=13/58+3/43*I,n=3 2865630395149474 a007 Real Root Of 312*x^4+745*x^3-713*x^2-752*x+192 2865630401169565 m001 Riemann2ndZero^2*ln(FeigenbaumC)/cos(Pi/12)^2 2865630402676185 g002 Psi(2/5)-Psi(8/9)-Psi(2/7)-Psi(4/5) 2865630411345172 m005 (1/2*Pi+5/11)/(4/11*gamma-11/12) 2865630414822602 m001 (AlladiGrinstead+ArtinRank2*Niven)/ArtinRank2 2865630416902372 m005 (1/3*3^(1/2)+3/4)/(-23/40+1/20*5^(1/2)) 2865630417148034 r005 Re(z^2+c),c=-7/19+1/61*I,n=13 2865630431690122 r009 Im(z^3+c),c=-13/58+16/57*I,n=14 2865630441365729 b008 3+46*Sqrt[38] 2865630453523047 p003 LerchPhi(1/32,4,316/231) 2865630453939076 r005 Re(z^2+c),c=-39/122+7/22*I,n=7 2865630454038072 a007 Real Root Of -194*x^4-628*x^3-270*x^2+856*x+254 2865630473558857 a001 199/233*6765^(7/51) 2865630490763421 r002 32th iterates of z^2 + 2865630499799573 m001 (ln(2+3^(1/2))+FeigenbaumC)/ln(3) 2865630511617121 r002 10th iterates of z^2 + 2865630512773497 m001 Backhouse-FeigenbaumC^sin(1/12*Pi) 2865630521762221 m001 (Bloch-exp(Pi))/(Rabbit+StolarskyHarborth) 2865630526353196 a007 Real Root Of 269*x^4+509*x^3-915*x^2-150*x+922 2865630535255229 b008 (47+Sqrt[7])*EulerGamma 2865630542749634 a001 2207/5*610^(7/24) 2865630555584865 m001 1/FeigenbaumKappa^2*Niven/exp(sinh(1)) 2865630570684466 l006 ln(6259/8336) 2865630571691781 a007 Real Root Of 270*x^4+759*x^3-61*x^2-331*x-794 2865630574253712 r002 32th iterates of z^2 + 2865630581113956 a005 (1/cos(10/189*Pi))^1569 2865630588964631 a007 Real Root Of -234*x^4-938*x^3-678*x^2+269*x+45 2865630596824868 r005 Im(z^2+c),c=-31/22+9/80*I,n=7 2865630597480906 h001 (6/11*exp(2)+5/7)/(3/8*exp(1)+7/11) 2865630604090418 g005 GAMMA(5/11)*GAMMA(5/8)/GAMMA(9/11)/GAMMA(1/9) 2865630617046035 m001 Artin/(ZetaP(2)-arctan(1/3)) 2865630617426170 s001 sum(1/10^(n-1)*A212871[n]/n!^2,n=1..infinity) 2865630617886206 r005 Re(z^2+c),c=-7/30+27/58*I,n=4 2865630629304024 m001 (3^(1/3)-cos(1/12*Pi))/(KhinchinLevy+PlouffeB) 2865630637230263 a007 Real Root Of -225*x^4-857*x^3-881*x^2-444*x+968 2865630646177730 m001 CareFree^2/GlaisherKinkelin^2*ln(Sierpinski) 2865630654019072 m001 (Riemann3rdZero+Stephens)/(BesselK(0,1)+Bloch) 2865630677079574 a003 cos(Pi*13/97)/cos(Pi*25/63) 2865630685626835 m001 Khinchin+Lehmer-ThueMorse 2865630692751659 m001 exp(Pi)*Champernowne+ZetaQ(3) 2865630712979890 q001 627/2188 2865630714054279 m001 (GAMMA(13/24)+GaussAGM)/(Psi(1,1/3)+Zeta(1/2)) 2865630728556424 r002 63th iterates of z^2 + 2865630747819305 a003 cos(Pi*30/107)*cos(Pi*13/37) 2865630756186727 m001 BesselK(0,1)/(Si(Pi)^GolombDickman) 2865630766030170 r009 Re(z^3+c),c=-41/94+3/7*I,n=62 2865630781435103 r009 Im(z^3+c),c=-45/94+6/47*I,n=34 2865630785127932 m001 TreeGrowth2nd*FeigenbaumKappa^2/exp(Zeta(5)) 2865630789590609 r009 Re(z^3+c),c=-49/122+17/44*I,n=2 2865630796738989 l006 ln(316/5549) 2865630801184427 m002 -Pi^5+Cosh[Pi]+6*Log[Pi]+Tanh[Pi] 2865630817748755 m001 ln(RenyiParking)/Artin^2*GAMMA(19/24)^2 2865630819695442 m001 cos(1/12*Pi)/(ReciprocalFibonacci+Trott) 2865630831551905 r009 Re(z^3+c),c=-37/82+5/13*I,n=10 2865630837904971 a007 Real Root Of 198*x^4+269*x^3-781*x^2+503*x+833 2865630839942631 a007 Real Root Of -692*x^4+775*x^3+549*x^2+716*x+183 2865630841041126 m001 (ln(Pi)+GAMMA(11/12))/(OneNinth+TwinPrimes) 2865630841899929 m005 (1/2*exp(1)-8/9)/(7/10*3^(1/2)+3/7) 2865630843280770 m001 Psi(2,1/3)^Sarnak/HardyLittlewoodC3 2865630858141392 h005 exp(cos(Pi*3/20)+cos(Pi*13/29)) 2865630865120258 m002 -3*Coth[Pi]+1/(6*Log[Pi]) 2865630869815731 m005 (1/2*3^(1/2)+5/8)/(1/9*exp(1)-1/4) 2865630891563026 m005 (1/2*exp(1)+3/7)/(-16/55+9/22*5^(1/2)) 2865630893951116 r008 a(0)=3,K{-n^6,4-n^3-3*n^2+2*n} 2865630896182721 m005 (1/2*Catalan-9/10)/(3/10*Pi+3/5) 2865630911596286 r005 Re(z^2+c),c=-11/10+25/93*I,n=4 2865630913892685 r005 Re(z^2+c),c=-7/19+1/39*I,n=18 2865630929989131 m001 1/GAMMA(7/12)^2/ln(GAMMA(5/24))/Zeta(7) 2865630933032063 a001 3/24157817*121393^(1/14) 2865630933034842 a001 3/63245986*86267571272^(1/14) 2865630933034843 a001 3/39088169*102334155^(1/14) 2865630940272392 s002 sum(A004593[n]/((exp(n)+1)*n),n=1..infinity) 2865630945680174 a007 Real Root Of 915*x^4+49*x^3+91*x^2-96*x-40 2865630949461297 a007 Real Root Of -458*x^4+984*x^3+202*x^2+668*x+19 2865630950509406 a007 Real Root Of -584*x^4-880*x^3-x^2+690*x-173 2865630951954847 a007 Real Root Of 41*x^4-545*x^3+862*x^2-974*x-363 2865630973796386 r009 Im(z^3+c),c=-11/32+15/64*I,n=14 2865630981182649 a007 Real Root Of -464*x^4-812*x^3-30*x^2+944*x+257 2865630983211844 a007 Real Root Of 228*x^4+662*x^3-238*x^2-665*x+252 2865630991912859 m001 1/exp(FeigenbaumB)/Champernowne^2*Zeta(9)^2 2865630994412082 r005 Im(z^2+c),c=-9/14+11/204*I,n=56 2865630998810547 m001 (cos(1/12*Pi)+Kac)/(BesselK(0,1)-Psi(2,1/3)) 2865631000872007 r005 Re(z^2+c),c=-19/54+10/49*I,n=30 2865631017184540 m005 (1/2*Zeta(3)+6/11)/(7/11*Pi-6) 2865631030638302 a005 (1/cos(2/141*Pi))^1060 2865631034448800 m001 (exp(1)+Backhouse)/(FeigenbaumB+GolombDickman) 2865631036869511 m001 (3^(1/2)+GolombDickman)/(Paris+Sarnak) 2865631053233281 m005 (1/2*Zeta(3)+10/11)/(5/8*3^(1/2)-5/9) 2865631058531597 l006 ln(2459/3275) 2865631064358034 m001 1/(3^(1/3))^2/Trott/exp(GAMMA(1/24)) 2865631065495391 r005 Im(z^2+c),c=-5/27+38/63*I,n=17 2865631069879077 a007 Real Root Of 602*x^4-920*x^3-360*x^2-830*x+285 2865631077270365 a007 Real Root Of -312*x^4-990*x^3+70*x^2+803*x-531 2865631105809670 r005 Re(z^2+c),c=-5/34+5/8*I,n=52 2865631106507662 r005 Im(z^2+c),c=-10/19+8/21*I,n=5 2865631116233838 m001 (-ln(2^(1/2)+1)+Mills)/(Catalan+LambertW(1)) 2865631119412305 m004 (5*Sqrt[5])/(2*Pi)+(125*Sin[Sqrt[5]*Pi])/Pi 2865631131505089 m001 1/5*Pi*2^(1/2)*5^(1/2)*3^(1/3) 2865631138531043 m001 (HeathBrownMoroz+Paris)/(Catalan-LambertW(1)) 2865631141250184 r005 Re(z^2+c),c=-7/13+25/56*I,n=29 2865631151890494 r009 Re(z^3+c),c=-17/90+35/38*I,n=46 2865631159255530 m005 (1/2*Catalan-1/2)/(3/5*Catalan+11/12) 2865631174523570 a001 521/5*5^(22/35) 2865631181414150 a001 76/121393*377^(10/39) 2865631184762065 a007 Real Root Of 296*x^4+854*x^3-111*x^2-94*x+778 2865631189134308 r005 Re(z^2+c),c=-29/114+9/17*I,n=41 2865631192149281 p001 sum((-1)^n/(353*n+342)/(24^n),n=0..infinity) 2865631194749686 r009 Im(z^3+c),c=-13/58+16/57*I,n=12 2865631197971437 a007 Real Root Of 372*x^4+896*x^3-770*x^2-794*x+47 2865631212541622 r002 33th iterates of z^2 + 2865631217358586 r005 Im(z^2+c),c=5/86+3/10*I,n=16 2865631217924065 a001 76/514229*28657^(2/31) 2865631218698336 m001 ln(GAMMA(19/24))*Sierpinski/Zeta(3)^2 2865631227413317 m001 GAMMA(1/24)*ln(Sierpinski)^2*GAMMA(2/3) 2865631228431171 a007 Real Root Of -352*x^4-939*x^3+524*x^2+999*x+200 2865631239227347 a009 7^(1/2)/(21^(1/2)-7^(2/3)) 2865631267855752 m005 (-11/4+1/4*5^(1/2))/(37/18+5/2*5^(1/2)) 2865631271224915 m006 (3/5*exp(Pi)+1/3)/(1/5*exp(Pi)+1/3) 2865631296246619 p003 LerchPhi(1/16,5,221/172) 2865631310510804 m005 (1/3*5^(1/2)+3/7)/(-53/180+3/20*5^(1/2)) 2865631312634684 m001 1/Zeta(1,2)^2*Salem^2/ln(sqrt(3)) 2865631323042663 h001 (1/12*exp(1)+7/11)/(2/7*exp(2)+9/10) 2865631328615086 m001 exp(Paris)/Backhouse^2*GAMMA(1/24)^2 2865631339764385 r009 Re(z^3+c),c=-1/78+43/56*I,n=26 2865631346342642 r005 Im(z^2+c),c=-41/102+19/39*I,n=52 2865631346430009 a001 41/48*139583862445^(17/18) 2865631352799635 h005 exp(cos(Pi*1/40)/cos(Pi*5/48)) 2865631357179307 p001 sum(1/(309*n+239)/n/(64^n),n=1..infinity) 2865631360563410 r005 Re(z^2+c),c=-2/7+29/64*I,n=64 2865631366522824 m001 polylog(4,1/2)^BesselI(1,1)/BesselJZeros(0,1) 2865631372861375 r009 Im(z^3+c),c=-49/102+6/49*I,n=57 2865631378353485 r008 a(0)=0,K{-n^6,116*n^3+174*n^2+58*n+1} 2865631379294990 m001 (-Cahen+GlaisherKinkelin)/(2^(1/3)-Zeta(5)) 2865631381037632 b008 ArcCsc[5+11*E] 2865631387123381 r005 Re(z^2+c),c=-31/102+27/47*I,n=41 2865631391001951 s001 sum(1/10^(n-1)*A055004[n]/n!^2,n=1..infinity) 2865631409897920 a001 8/3*312119004989^(11/14) 2865631416026257 l006 ln(291/5110) 2865631416094109 m001 (Ei(1,1)*TravellingSalesman+Bloch)/Ei(1,1) 2865631433029594 m001 Salem*exp(Paris)^2*sqrt(2)^2 2865631438509294 r005 Im(z^2+c),c=45/122+16/61*I,n=55 2865631439042445 a001 29/233*2178309^(2/35) 2865631443280752 h001 (6/11*exp(2)+9/11)/(5/9*exp(1)+2/11) 2865631444325783 m001 cos(1/5*Pi)^Zeta(5)*FeigenbaumMu 2865631463633045 a008 Real Root of x^2-x-82405 2865631470689938 r009 Im(z^3+c),c=-17/94+53/61*I,n=46 2865631473303660 a009 (3^(1/2)-3^(3/4))^(1/2)*15^(1/2) 2865631476889708 r005 Im(z^2+c),c=-13/14+29/122*I,n=23 2865631480181926 r002 27th iterates of z^2 + 2865631481462927 p002 log(6^(1/12)-2^(1/7)) 2865631486716508 a001 38/17*317811^(1/51) 2865631494427768 a007 Real Root Of 370*x^4+444*x^3+842*x^2-617*x-238 2865631504136953 m005 (1/3*Catalan-1/10)/(3/7*exp(1)+6) 2865631507110975 r005 Im(z^2+c),c=-83/118+6/17*I,n=21 2865631513353567 m001 (ln(2)-GolombDickman)/(Kolakoski-MertensB2) 2865631514320188 r002 8th iterates of z^2 + 2865631533275514 a007 Real Root Of 97*x^4+59*x^3-433*x^2+826*x+770 2865631535899382 r005 Im(z^2+c),c=-1+48/169*I,n=62 2865631539142410 m001 (-gamma(1)+Trott)/(sin(1)+ln(gamma)) 2865631542927872 m001 (Totient+ZetaQ(2))/(Backhouse+Magata) 2865631558956872 r005 Im(z^2+c),c=-27/62+19/40*I,n=36 2865631564402213 l006 ln(6036/8039) 2865631565791317 m001 (Pi+GAMMA(2/3))/(BesselJ(1,1)+GAMMA(5/6)) 2865631570128708 m003 (17*Sqrt[5])/16-2*Cosh[1/2+Sqrt[5]/2] 2865631571269781 m001 Catalan/FeigenbaumD*exp(GAMMA(5/12)) 2865631575182641 a007 Real Root Of 89*x^4-280*x^3+634*x^2-376*x-167 2865631579825290 r005 Im(z^2+c),c=-11/28+21/43*I,n=59 2865631581124864 m001 (3^(1/3)*GAMMA(5/6)+ErdosBorwein)/GAMMA(5/6) 2865631591939004 r005 Im(z^2+c),c=4/21+11/51*I,n=20 2865631597843908 m005 (1/2*exp(1)-10/11)/(8/11*Pi-5/7) 2865631605387999 r009 Im(z^3+c),c=-51/94+11/53*I,n=33 2865631610482102 r009 Re(z^3+c),c=-3/74+10/23*I,n=7 2865631611949908 a007 Real Root Of 347*x^4+968*x^3-289*x^2-725*x-325 2865631616715175 a001 3/228826127*521^(1/8) 2865631618175614 a001 5702887/18*18^(16/21) 2865631619486660 m001 1/ln(GAMMA(19/24))^2*RenyiParking/Zeta(7)^2 2865631623446081 r009 Re(z^3+c),c=-35/82+13/31*I,n=23 2865631630074722 m001 1/GAMMA(5/12)/exp(GAMMA(3/4))^2/sqrt(2) 2865631632054083 m005 (1/2*3^(1/2)+1/4)/(1/7*exp(1)-7/9) 2865631645354792 m001 2^(1/3)*ln(5)+Chi(1) 2865631646393854 m001 ZetaP(4)*(Shi(1)+2/3*Pi*3^(1/2)/GAMMA(2/3)) 2865631647437230 m002 Pi^(-2)+2*ProductLog[Pi]*Sech[Pi] 2865631648051773 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi]^2 2865631648873271 m001 (GAMMA(5/6)+Khinchin)/(Totient-ZetaQ(3)) 2865631655632461 a003 sin(Pi*5/33)*sin(Pi*20/93) 2865631655747269 m001 (Psi(2,1/3)-exp(1))/(-Chi(1)+Riemann2ndZero) 2865631668239492 m001 (sin(1/5*Pi)+gamma(3)*Artin)/gamma(3) 2865631669755089 a001 1/377*514229^(52/59) 2865631673156647 r005 Re(z^2+c),c=6/17+16/45*I,n=14 2865631695849465 r005 Re(z^2+c),c=-25/62+33/61*I,n=31 2865631696830398 p003 LerchPhi(1/256,5,405/199) 2865631697854857 a007 Real Root Of -82*x^4-247*x^3+70*x^2+345*x+131 2865631709070101 a003 cos(Pi*17/42)*sin(Pi*48/113) 2865631729059745 a008 Real Root of x^4+9*x^2-57*x+22 2865631731212594 m006 (3*exp(Pi)+1/6)/(5/6*exp(Pi)+5) 2865631734180257 a007 Real Root Of -368*x^4-860*x^3+749*x^2+220*x-942 2865631736116012 a005 (1/cos(29/206*Pi))^716 2865631767363208 l006 ln(557/9781) 2865631767363208 p004 log(9781/557) 2865631775198972 m001 (OneNinth-Tetranacci)/(ArtinRank2-MertensB3) 2865631775401152 a007 Real Root Of -333*x^4-696*x^3+874*x^2+269*x-329 2865631791779891 r005 Re(z^2+c),c=7/29+5/61*I,n=20 2865631792342284 m002 -2/Pi^2+Pi^3-2*ProductLog[Pi] 2865631792475682 a007 Real Root Of -565*x^4+542*x^3+252*x^2+489*x+136 2865631797362471 r005 Im(z^2+c),c=41/102+13/55*I,n=20 2865631798418325 a007 Real Root Of -556*x^4+51*x^3-904*x^2+624*x+258 2865631809953578 m001 1/exp((2^(1/3)))/CopelandErdos*cosh(1)^2 2865631810479892 a007 Real Root Of 249*x^4+510*x^3-893*x^2-585*x+867 2865631825202735 r005 Im(z^2+c),c=11/36+4/43*I,n=40 2865631828911791 h001 (6/7*exp(1)+5/12)/(2/7*exp(1)+2/11) 2865631829057467 r002 6th iterates of z^2 + 2865631837460699 m002 -Pi^3+Pi^5+Sinh[Pi]+Tanh[Pi]/Pi^6 2865631845335690 a001 3/17393796001*1364^(17/24) 2865631846723902 r009 Re(z^3+c),c=-3/58+27/40*I,n=27 2865631852041314 a007 Real Root Of 119*x^4+288*x^3-108*x^2+100*x-74 2865631866248030 h003 exp(Pi*(1/2*(3-2^(1/4))^(1/2)*2^(2/3))) 2865631870638548 m001 (KhinchinLevy+Trott)/(Pi+Zeta(5)) 2865631876237126 m002 -Pi^(-6)+Pi^3-Pi^5-Sinh[Pi] 2865631879518250 m001 (-Cahen+MertensB1)/(2^(1/3)-gamma(1)) 2865631881741855 h001 (-4*exp(-2)+8)/(-7*exp(1)-7) 2865631885518613 m002 -16*Log[Pi]+Pi^5*Tanh[Pi] 2865631890919840 m001 (Lehmer+GAMMA(7/24))^cos(Pi/5) 2865631891574902 r005 Re(z^2+c),c=41/122+21/52*I,n=4 2865631898708503 r005 Im(z^2+c),c=-37/102+11/23*I,n=39 2865631901713281 r005 Re(z^2+c),c=-19/70+26/53*I,n=61 2865631903911112 m005 (1/3*Zeta(3)+1/11)/(3/10*exp(1)+9/10) 2865631908319676 a003 cos(Pi*32/77)-cos(Pi*17/40) 2865631912161729 l006 ln(3577/4764) 2865631913903966 r002 3th iterates of z^2 + 2865631923746685 m001 (FellerTornier+MertensB3)/(Stephens+ZetaQ(4)) 2865631923871876 m005 (1/2*gamma+3)/(2/9*2^(1/2)+5/6) 2865631930858784 m001 1/TwinPrimes*ln(Salem)^2*GAMMA(1/3)^2 2865631932061437 m005 (1/2*Catalan-2/7)/(4*3^(1/2)-11/12) 2865631959455889 a007 Real Root Of -330*x^4-39*x^3-831*x^2-309*x-19 2865631960766023 a007 Real Root Of 259*x^4+303*x^3-982*x^2+921*x+368 2865631969953172 a007 Real Root Of -17*x^4+163*x^3+486*x^2-356*x-29 2865631974455064 s001 sum(1/10^(n-1)*A163250[n]/n!^2,n=1..infinity) 2865631983062397 m001 2^(1/3)*(AlladiGrinstead-LandauRamanujan2nd) 2865631983279363 m001 1/Salem^2*exp(Bloch)^2*cosh(1) 2865632003280748 m005 (23/66+1/6*5^(1/2))/(Pi-5/8) 2865632010528746 r005 Re(z^2+c),c=-29/118+35/64*I,n=52 2865632021283717 a007 Real Root Of -271*x^4-999*x^3-773*x^2-172*x+621 2865632022260117 a007 Real Root Of -3*x^4+654*x^3-329*x^2+843*x+284 2865632026006498 m002 2/Pi^6-Cosh[Pi]/3+Tanh[Pi] 2865632038808518 r005 Re(z^2+c),c=-33/122+14/29*I,n=23 2865632050149329 a001 521/6765*832040^(13/49) 2865632077481294 m001 Shi(1)*(ReciprocalLucas+RenyiParking) 2865632093411715 m001 1/FeigenbaumC*ln(Kolakoski)^2/Zeta(7) 2865632107325243 r005 Im(z^2+c),c=19/56+32/63*I,n=35 2865632123776439 m001 (Ei(1)+Robbin*ZetaQ(4))/Robbin 2865632133709674 m001 ZetaP(3)^Thue*GlaisherKinkelin 2865632144577750 m001 (FibonacciFactorial+Kac)/(Lehmer+ZetaQ(2)) 2865632148755943 m001 HardyLittlewoodC4*TravellingSalesman/ZetaP(4) 2865632151685476 r005 Im(z^2+c),c=-7/22+10/21*I,n=15 2865632151720408 l006 ln(266/4671) 2865632154305971 r005 Re(z^2+c),c=-19/54+10/49*I,n=35 2865632159032035 r005 Im(z^2+c),c=-31/70+7/15*I,n=28 2865632160788905 m001 (FeigenbaumMu+GolombDickman)/(1+arctan(1/2)) 2865632164684106 r009 Re(z^3+c),c=-53/118+24/53*I,n=53 2865632165580348 s002 sum(A103524[n]/((exp(n)+1)*n),n=1..infinity) 2865632166550705 a007 Real Root Of 269*x^4+949*x^3+640*x^2+659*x+825 2865632170796047 r005 Im(z^2+c),c=-5/13+9/17*I,n=41 2865632174426760 r002 7th iterates of z^2 + 2865632175970441 r005 Re(z^2+c),c=-19/54+10/49*I,n=33 2865632177384499 r005 Re(z^2+c),c=-17/62+16/33*I,n=36 2865632181832232 m001 BesselJ(1,1)*PrimesInBinary+FeigenbaumD 2865632183480864 m001 (Si(Pi)+3)/(ln(2)+1) 2865632188474508 r005 Re(z^2+c),c=29/90+7/55*I,n=16 2865632195329840 m001 ln(Pi)/(3^(1/2)-MertensB3) 2865632204954132 m001 HeathBrownMoroz-sin(1)*Magata 2865632221662203 m001 BesselJ(1,1)^Lehmer/(GAMMA(1/4)^Lehmer) 2865632221855397 q001 868/3029 2865632226461109 g003 Re(GAMMA(-24/5+I*(-3/10))) 2865632227690137 r005 Re(z^2+c),c=-19/54+10/49*I,n=32 2865632241654469 r005 Re(z^2+c),c=-19/54+10/49*I,n=37 2865632244786559 m001 GAMMA(3/4)/MasserGramain/Robbin 2865632248239025 m001 (Trott+Thue)/(1-Conway) 2865632250972245 m001 2^(1/2)/FeigenbaumD/Tribonacci 2865632267339079 a007 Real Root Of -253*x^4+64*x^3-485*x^2+963*x+319 2865632269687304 a005 (1/cos(7/174*Pi))^419 2865632271297053 a007 Real Root Of -168*x^4-146*x^3+984*x^2+36*x-84 2865632272465286 m001 (GAMMA(2/3)-sin(1))/(GAMMA(5/6)+TwinPrimes) 2865632278239173 p001 sum(1/(597*n+350)/(125^n),n=0..infinity) 2865632290671163 r005 Re(z^2+c),c=-19/54+10/49*I,n=39 2865632292248994 r005 Re(z^2+c),c=-19/54+10/49*I,n=42 2865632295041981 r005 Re(z^2+c),c=-19/54+10/49*I,n=44 2865632295096381 r005 Re(z^2+c),c=-19/54+10/49*I,n=40 2865632296946833 r005 Re(z^2+c),c=-19/54+10/49*I,n=46 2865632297179892 r005 Re(z^2+c),c=-19/54+10/49*I,n=49 2865632297261889 r005 Re(z^2+c),c=-19/54+10/49*I,n=51 2865632297333874 r005 Re(z^2+c),c=-19/54+10/49*I,n=53 2865632297349406 r005 Re(z^2+c),c=-19/54+10/49*I,n=56 2865632297351465 r005 Re(z^2+c),c=-19/54+10/49*I,n=58 2865632297354106 r005 Re(z^2+c),c=-19/54+10/49*I,n=60 2865632297354946 r005 Re(z^2+c),c=-19/54+10/49*I,n=63 2865632297355162 r005 Re(z^2+c),c=-19/54+10/49*I,n=62 2865632297355300 r005 Re(z^2+c),c=-19/54+10/49*I,n=64 2865632297355431 r005 Re(z^2+c),c=-19/54+10/49*I,n=61 2865632297357265 r005 Re(z^2+c),c=-19/54+10/49*I,n=59 2865632297358627 r005 Re(z^2+c),c=-19/54+10/49*I,n=55 2865632297359394 r005 Re(z^2+c),c=-19/54+10/49*I,n=54 2865632297360280 r005 Re(z^2+c),c=-19/54+10/49*I,n=57 2865632297366015 r005 Re(z^2+c),c=-19/54+10/49*I,n=47 2865632297405845 r005 Re(z^2+c),c=-19/54+10/49*I,n=52 2865632297496958 r005 Re(z^2+c),c=-19/54+10/49*I,n=50 2865632297504226 r005 Re(z^2+c),c=-19/54+10/49*I,n=48 2865632298510022 r005 Re(z^2+c),c=-19/54+10/49*I,n=45 2865632301136230 r005 Re(z^2+c),c=-19/54+10/49*I,n=43 2865632302589670 r005 Re(z^2+c),c=-19/54+10/49*I,n=41 2865632316641742 m002 -4+Cosh[Pi]/2+ProductLog[Pi]*Tanh[Pi] 2865632322419313 r005 Re(z^2+c),c=-19/54+10/49*I,n=38 2865632324550744 s001 sum(exp(-Pi/3)^(n-1)*A274487[n],n=1..infinity) 2865632327903250 m001 (2^(1/2)+1)/(-ErdosBorwein+LandauRamanujan) 2865632355272427 m001 BesselK(1,1)-OneNinth-ReciprocalFibonacci 2865632355796063 r002 2th iterates of z^2 + 2865632358752505 a001 3/1568397607*1364^(3/8) 2865632359249346 l006 ln(4695/6253) 2865632360187348 r002 4th iterates of z^2 + 2865632363081729 r005 Im(z^2+c),c=-55/122+31/59*I,n=33 2865632378805583 a007 Real Root Of -924*x^4+897*x^3+736*x^2+805*x-306 2865632382030644 a007 Real Root Of 190*x^4+143*x^3-890*x^2+864*x+337 2865632385715233 a007 Real Root Of 193*x^4-832*x^3+324*x^2-773*x-269 2865632390543655 r009 Re(z^3+c),c=-19/44+27/64*I,n=27 2865632391085728 h001 (-exp(2)-5)/(-5*exp(-2)+5) 2865632392862027 a001 161/72*9227465^(11/15) 2865632395342705 r005 Re(z^2+c),c=-19/54+10/49*I,n=36 2865632395342938 r005 Im(z^2+c),c=-31/94+17/35*I,n=21 2865632410661538 m005 (1/2*gamma+1/9)/(2/7*3^(1/2)+9/10) 2865632415979321 p003 LerchPhi(1/5,1,10/27) 2865632416734227 r005 Im(z^2+c),c=-15/62+23/53*I,n=26 2865632431504566 r005 Im(z^2+c),c=-89/126+11/31*I,n=25 2865632432071342 m001 ReciprocalFibonacci^FeigenbaumB+Champernowne 2865632433554818 r005 Im(z^2+c),c=13/46+6/47*I,n=33 2865632456200231 a007 Real Root Of 330*x^4+719*x^3-190*x^2+986*x-948 2865632461746771 a007 Real Root Of 144*x^4+477*x^3+592*x^2+825*x-983 2865632464065632 r005 Re(z^2+c),c=-19/54+10/49*I,n=34 2865632470340252 r005 Re(z^2+c),c=-35/58+35/51*I,n=14 2865632479421594 r009 Im(z^3+c),c=-15/26+13/45*I,n=29 2865632487484048 m001 BesselI(0,1)*OneNinth/PlouffeB 2865632492226533 a008 Real Root of x^3-x^2-206*x+575 2865632496851561 m001 (FeigenbaumMu+MinimumGamma)/(ln(gamma)+Artin) 2865632517364750 r005 Re(z^2+c),c=5/126+11/52*I,n=5 2865632522926716 p003 LerchPhi(1/10,5,171/211) 2865632527135889 a003 cos(Pi*6/91)*cos(Pi*15/37) 2865632539083520 m005 (1/2*Zeta(3)+1/7)/(2*Zeta(3)-5) 2865632539401123 r005 Im(z^2+c),c=-71/126+3/58*I,n=42 2865632565833201 a001 11/1346269*5^(46/59) 2865632565923277 m001 1/GAMMA(1/4)/Kolakoski/ln(GAMMA(5/6)) 2865632570734127 r005 Re(z^2+c),c=-83/82+15/56*I,n=54 2865632573982488 l006 ln(507/8903) 2865632574069943 m001 1/Catalan*BesselJ(1,1)*ln(GAMMA(1/12))^2 2865632583185072 m001 GAMMA(1/4)/ln((3^(1/3)))/sin(Pi/5)^2 2865632598692767 h001 (6/7*exp(2)+7/12)/(3/4*exp(1)+3/8) 2865632606815449 r005 Im(z^2+c),c=-17/118+23/58*I,n=12 2865632606900052 h001 (5/11*exp(2)+7/9)/(2/11*exp(2)+1/10) 2865632616445300 m001 Khinchin^(ln(2^(1/2)+1)*Riemann3rdZero) 2865632621566394 r002 31th iterates of z^2 + 2865632623015234 m001 Pi-(ln(2)/ln(10)+BesselJ(0,1))*sin(1/12*Pi) 2865632623866608 a007 Real Root Of -464*x^4+291*x^3-661*x^2+875*x+315 2865632634362428 l006 ln(5813/7742) 2865632637417302 m001 1/Robbin/exp(FeigenbaumB)^2*Zeta(9) 2865632639426385 a007 Real Root Of 269*x^4-819*x^3-604*x^2-436*x+192 2865632642401290 m002 -Pi^3+Pi^5+ProductLog[Pi]/Pi^6+Sinh[Pi] 2865632642438867 r009 Re(z^3+c),c=-41/94+1/2*I,n=22 2865632646161318 r005 Im(z^2+c),c=15/56+9/62*I,n=26 2865632653249426 m001 (FellerTornier*Totient+Magata)/Totient 2865632670282836 a007 Real Root Of 664*x^4-620*x^3-320*x^2-550*x+194 2865632670597082 r005 Re(z^2+c),c=3/74+30/49*I,n=42 2865632672807194 a001 1/54*(1/2*5^(1/2)+1/2)^9*3^(11/17) 2865632700446027 r005 Im(z^2+c),c=-11/29+29/60*I,n=62 2865632704883634 m001 1/exp(Lehmer)^2*FeigenbaumAlpha^2/Sierpinski^2 2865632710865428 a007 Real Root Of -677*x^4+47*x^3+414*x^2+881*x-283 2865632722898364 r002 7th iterates of z^2 + 2865632723973000 r005 Im(z^2+c),c=7/94+16/55*I,n=17 2865632741402605 p001 sum(1/(371*n+311)/n/(512^n),n=1..infinity) 2865632741856620 m001 Riemann2ndZero*ln(MinimumGamma)*Ei(1)^2 2865632755601239 m001 MertensB1/exp(Backhouse)/GAMMA(5/12) 2865632758699083 r005 Im(z^2+c),c=-61/94+2/59*I,n=25 2865632782882651 s002 sum(A243945[n]/(10^n+1),n=1..infinity) 2865632788599547 m001 Psi(2,1/3)^Catalan*gamma(1) 2865632795896832 a001 3/17393796001*3571^(5/8) 2865632805720140 r005 Im(z^2+c),c=-37/62+8/31*I,n=5 2865632805798198 r005 Re(z^2+c),c=-19/54+10/49*I,n=31 2865632813761232 h001 (9/10*exp(2)+4/11)/(7/9*exp(1)+1/3) 2865632820721668 l006 ln(6931/9231) 2865632829408148 m001 BesselJ(1,1)*exp(LandauRamanujan)^2/sin(1)^2 2865632831171629 r005 Im(z^2+c),c=-41/122+26/55*I,n=31 2865632832377576 r005 Im(z^2+c),c=-25/122+21/50*I,n=34 2865632832913801 m001 (MertensB1-Robbin)/(Zeta(3)+DuboisRaymond) 2865632848217578 m001 TwinPrimes/ln(Artin)^2/cosh(1)^2 2865632859049431 a007 Real Root Of 336*x^4+793*x^3-123*x^2+767*x-789 2865632861292876 r009 Im(z^3+c),c=-11/98+10/33*I,n=10 2865632861484722 a005 (1/cos(1/30*Pi))^1030 2865632861819293 m001 ln(MinimumGamma)*Lehmer^2*arctan(1/2)^2 2865632867094310 m001 (Si(Pi)+Zeta(5))/(Zeta(1/2)+ZetaP(2)) 2865632872169413 a001 3/141422324*1364^(1/24) 2865632878183550 r005 Im(z^2+c),c=-19/60+6/13*I,n=46 2865632882946426 a008 Real Root of (-6+4*x+4*x^2+6*x^3-x^4-x^5) 2865632883997341 r005 Re(z^2+c),c=-29/26+28/117*I,n=52 2865632890943079 a001 514229/322*199^(6/11) 2865632907658664 a001 3/312119004989*9349^(7/8) 2865632912718016 m001 (ln(2)/ln(10)+5^(1/2))/(-BesselK(0,1)+Mills) 2865632914803586 p004 log(30671/23029) 2865632919914597 m008 (1/4*Pi^3-2)/(2/3*Pi^3-3/5) 2865632923833196 l006 ln(5263/5416) 2865632932025378 m001 exp(Pi)/GAMMA(2/3)/Gompertz 2865632932559648 a001 3/312119004989*24476^(19/24) 2865632934154126 a001 3/10749957122*24476^(11/24) 2865632935748603 a001 3/370248451*24476^(1/8) 2865632936084822 a001 3/6643838879*64079^(3/8) 2865632936282894 a001 1/64300051206*167761^(5/8) 2865632936333534 a001 1/3020733700601*439204^(7/8) 2865632936338485 a001 3/119218851371*439204^(13/24) 2865632936343437 a001 3/1568397607*439204^(5/24) 2865632936346261 a001 1/199691526*1149851^(1/8) 2865632936346414 a001 1/9381251041*3010349^(3/8) 2865632936346503 a001 3/2139295485799*7881196^(5/8) 2865632936346519 a001 3/10749957122*7881196^(7/24) 2865632936346532 a001 3/969323029*54018521^(1/8) 2865632936346532 a001 3/228826127*141422324^(1/24) 2865632936346532 a001 3/119218851371*141422324^(3/8) 2865632936346532 a001 3/23725150497407*370248451^(5/8) 2865632936346532 a001 1/199691526*1322157322203^(1/16) 2865632936346532 a001 3/1568397607*2537720636^(1/8) 2865632936346532 a001 3/2139295485799*2537720636^(11/24) 2865632936346532 a001 1/1368706081*5600748293801^(1/8) 2865632936346532 a001 3/505019158607*6643838879^(3/8) 2865632936346532 a001 1/9381251041*9062201101803^(3/16) 2865632936346532 a001 3/2139295485799*312119004989^(3/8) 2865632936346532 a001 1/3020733700601*14662949395604^(3/8) 2865632936346532 a001 3/312119004989*817138163596^(7/24) 2865632936346532 a001 1/3020733700601*192900153618^(7/16) 2865632936346532 a001 1/64300051206*28143753123^(5/16) 2865632936346532 a001 3/17393796001*45537549124^(5/24) 2865632936346532 a001 3/6643838879*4106118243^(3/16) 2865632936346532 a001 3/2537720636*119218851371^(1/8) 2865632936346532 a001 1/3020733700601*599074578^(9/16) 2865632936346532 a001 3/370248451*14662949395604^(1/24) 2865632936346532 a001 3/370248451*599074578^(1/16) 2865632936346532 a001 3/312119004989*87403803^(7/16) 2865632936346538 a001 3/17393796001*12752043^(5/16) 2865632936346687 a001 3/1568397607*1860498^(3/16) 2865632936347101 a001 3/2139295485799*1860498^(11/16) 2865632936348963 a001 3/228826127*271443^(1/16) 2865632936368409 a001 3/119218851371*271443^(9/16) 2865632937145892 a001 3/10749957122*39603^(7/16) 2865632937978710 r005 Im(z^2+c),c=-10/29+23/50*I,n=16 2865632938059447 a001 3/2139295485799*39603^(15/16) 2865632946086695 p001 sum((-1)^n/(499*n+34)/(2^n),n=0..infinity) 2865632953761313 r005 Re(z^2+c),c=-13/38+10/39*I,n=20 2865632956456287 m003 5-E^(1/2+Sqrt[5]/2)/4-Cosh[1/2+Sqrt[5]/2]/3 2865632962223270 r005 Re(z^2+c),c=-11/28+9/19*I,n=13 2865632963170037 a001 3/1568397607*5778^(5/16) 2865632969022127 m005 (1/2*Pi-3/10)/(7/9*Pi-2) 2865632991016746 r005 Re(z^2+c),c=-5/66+51/61*I,n=21 2865632998698757 m001 (OneNinth+Riemann3rdZero)/(1-Champernowne) 2865633001866014 a007 Real Root Of 975*x^4-872*x^3-401*x^2-310*x-83 2865633006087646 a001 3/119218851371*5778^(13/16) 2865633009475711 r005 Im(z^2+c),c=1/23+4/13*I,n=10 2865633012009396 m005 (1/2*Catalan-6)/(6/11*5^(1/2)+5/7) 2865633033121992 r005 Im(z^2+c),c=-15/34+15/34*I,n=18 2865633038296274 s002 sum(A260002[n]/(n^3*exp(n)+1),n=1..infinity) 2865633040047480 l006 ln(241/4232) 2865633041720920 a007 Real Root Of 142*x^4+441*x^3-128*x^2-617*x+85 2865633065767060 a001 2139295485799/377*225851433717^(5/21) 2865633065767062 a001 23725150497407/377*9227465^(5/21) 2865633067284676 a007 Real Root Of -413*x^4+585*x^3-698*x^2+734*x-164 2865633069961370 r005 Re(z^2+c),c=-23/48+19/39*I,n=8 2865633074646458 m001 (Conway+Lehmer)/Robbin 2865633074935400 q001 1109/387 2865633078557309 m005 (1/2*gamma+1/8)/(4/9*Zeta(3)+10/11) 2865633086023799 g006 -2*Psi(1,4/11)-Psi(1,5/9)-Psi(1,2/5) 2865633087877519 m001 (ln(3)-Ei(1))/(DuboisRaymond+Sierpinski) 2865633094133754 r005 Re(z^2+c),c=-37/102+4/33*I,n=26 2865633101885284 r005 Re(z^2+c),c=-5/19+16/31*I,n=30 2865633104675988 a007 Real Root Of -122*x^4-90*x^3+709*x^2-276*x-504 2865633108765750 a007 Real Root Of -851*x^4+986*x^3-309*x^2+736*x-203 2865633119430635 h001 (1/9*exp(1)+1/6)/(5/11*exp(1)+2/5) 2865633131116627 m005 (4/5*gamma+1/3)/(4/5*exp(1)+3/5) 2865633149117940 m001 ZetaQ(3)^(1/2*2^(1/2)*MadelungNaCl) 2865633153034278 r005 Im(z^2+c),c=-73/98+1/58*I,n=11 2865633167375185 r005 Re(z^2+c),c=-19/54+10/49*I,n=25 2865633173025656 r005 Re(z^2+c),c=-29/94+21/58*I,n=12 2865633182001822 r005 Re(z^2+c),c=-15/46+13/40*I,n=23 2865633194813933 m005 (1/2*3^(1/2)-4/7)/(5*5^(1/2)-9/10) 2865633195113545 b008 Sinh[1-6*Sin[1]] 2865633215127798 m006 (1/4*exp(2*Pi)+3/4)/(2/5*Pi^2+3/4) 2865633222075827 r005 Re(z^2+c),c=-19/34+41/78*I,n=10 2865633225189198 a001 521/2584*28657^(29/41) 2865633232211817 m001 (ln(5)-CareFree)/(FeigenbaumD+Weierstrass) 2865633232304055 a003 sin(Pi*1/79)/cos(Pi*36/79) 2865633232399664 m001 (GAMMA(3/4)-Psi(2,1/3))/(Conway+LaplaceLimit) 2865633266158130 r009 Re(z^3+c),c=-51/122+17/44*I,n=16 2865633269396711 m001 (Zeta(5)+PolyaRandomWalk3D)/(Totient-Thue) 2865633270400553 m001 (Kolakoski+RenyiParking)/ZetaQ(2) 2865633274626945 m001 GAMMA(19/24)^2*FransenRobinson^2/ln(cos(1))^2 2865633287608596 r005 Im(z^2+c),c=-4/15+11/18*I,n=3 2865633303969732 r005 Im(z^2+c),c=-13/40+26/57*I,n=22 2865633308122792 s002 sum(A019244[n]/(pi^n-1),n=1..infinity) 2865633315140504 a007 Real Root Of 297*x^4+929*x^3+653*x^2-950*x-306 2865633336782477 m001 (Shi(1)-cos(1))/(-BesselI(0,2)+PlouffeB) 2865633352326262 a007 Real Root Of -380*x^4-897*x^3+438*x^2-335*x-40 2865633352402880 b008 Pi-35*ArcTan[Glaisher] 2865633355403041 a007 Real Root Of 249*x^4+590*x^3-329*x^2-123*x-558 2865633362713006 m001 exp(Niven)^2*DuboisRaymond^2*Riemann3rdZero 2865633374007359 m001 1/Riemann1stZero*Lehmer/exp(FeigenbaumD) 2865633381661639 m002 -Pi^3+Pi^5+Log[Pi]/Pi^6+Sinh[Pi] 2865633384802943 a007 Real Root Of -407*x^4-985*x^3+242*x^2-503*x+838 2865633387005357 m001 gamma(3)/(2^(1/2)-ArtinRank2) 2865633388733826 a003 sin(Pi*6/65)-sin(Pi*13/67) 2865633398813958 m001 Trott*ln(Riemann1stZero)/Zeta(9) 2865633404343791 m001 (Totient-ZetaP(2))/(Zeta(3)+Ei(1)) 2865633431348707 a001 13/1364*29^(17/52) 2865633438904024 m001 ZetaP(2)^Trott2nd/(ZetaP(2)^GAMMA(2/3)) 2865633446562933 r005 Re(z^2+c),c=-11/18+23/104*I,n=2 2865633451090752 m005 (1/2*5^(1/2)+3/7)/(1/7*Pi+1/11) 2865633452202693 m001 1/GAMMA(23/24)*TwinPrimes/exp(cos(Pi/5)) 2865633459345470 r005 Im(z^2+c),c=-47/70+1/47*I,n=11 2865633469874902 p003 LerchPhi(1/12,5,463/227) 2865633482516458 m009 (Psi(1,1/3)-3)/(1/4*Psi(1,1/3)-5) 2865633482639045 m001 1/ln(GAMMA(11/24))*Ei(1)/Zeta(9)^2 2865633485277032 m001 (Riemann3rdZero+ZetaQ(4))/(FeigenbaumB-Niven) 2865633487177680 a007 Real Root Of 235*x^4+844*x^3+88*x^2-920*x+655 2865633491064918 a007 Real Root Of -197*x^4-511*x^3+481*x^2+616*x-925 2865633497484154 s001 sum(exp(-Pi/2)^(n-1)*A217732[n],n=1..infinity) 2865633502368483 m009 (40*Catalan+5*Pi^2-1/3)/(3/8*Pi^2-4) 2865633507641161 r005 Im(z^2+c),c=-25/122+21/50*I,n=37 2865633509175164 h001 (1/3*exp(1)+9/10)/(7/9*exp(2)+5/9) 2865633513136076 m001 1/Riemann1stZero/ln(Champernowne)^2*sqrt(Pi) 2865633515662347 m001 (Ei(1,1)-Shi(1))/(MadelungNaCl+Salem) 2865633515662347 m001 Chi(1)/(MadelungNaCl+Salem) 2865633522209046 m001 1/FeigenbaumKappa*Si(Pi)/exp(GAMMA(11/24))^2 2865633528201815 a003 cos(Pi*7/100)-sin(Pi*23/95) 2865633528423828 s002 sum(A220173[n]/(n*10^n+1),n=1..infinity) 2865633538872569 m005 (1/2*exp(1)+1/9)/(3/7*Pi-5/6) 2865633555217082 a007 Real Root Of -791*x^4+980*x^3-815*x^2-43*x+83 2865633557104011 l006 ln(457/8025) 2865633559201515 a007 Real Root Of 867*x^4-669*x^3+929*x^2-817*x-332 2865633561841788 r005 Re(z^2+c),c=-3/32+27/29*I,n=14 2865633563545055 a007 Real Root Of -193*x^4-561*x^3-415*x^2-988*x+390 2865633568805571 h001 (-7*exp(5)+1)/(-9*exp(6)+9) 2865633569221945 r005 Re(z^2+c),c=-7/10+58/211*I,n=24 2865633573476206 a007 Real Root Of 283*x^4+956*x^3+444*x^2+102*x+59 2865633579388746 m005 (1/2*2^(1/2)+5/12)/(8/11*2^(1/2)-7/11) 2865633579757366 r002 16th iterates of z^2 + 2865633584500542 a007 Real Root Of -367*x^4-969*x^3+403*x^2+554*x+224 2865633602193288 m001 (-OneNinth+RenyiParking)/(cos(1/5*Pi)-exp(Pi)) 2865633618304793 r009 Re(z^3+c),c=-29/64+27/58*I,n=37 2865633627885932 a007 Real Root Of -276*x^4-808*x^3+181*x^2+972*x+897 2865633628469121 a001 514229/2207*199^(10/11) 2865633631231888 r002 49i'th iterates of 2*x/(1-x^2) of 2865633661096374 r002 17th iterates of z^2 + 2865633668742980 s002 sum(A075153[n]/(2^n+1),n=1..infinity) 2865633671059613 a008 Real Root of x^2-x-81832 2865633672057437 m003 1/12+Sqrt[5]/8+(5*Csc[1/2+Sqrt[5]/2])/2 2865633682779894 a007 Real Root Of -371*x^4-681*x^3+953*x^2-462*x-157 2865633689799657 r005 Im(z^2+c),c=-9/14+13/241*I,n=62 2865633692426370 a001 3/370248451*843^(3/16) 2865633698674080 m001 (GAMMA(2/3)*Grothendieck+Porter)/GAMMA(2/3) 2865633710254357 r008 a(0)=3,K{-n^6,52-25*n^3+21*n^2-41*n} 2865633719887161 h001 (-7*exp(6)-2)/(-9*exp(7)+8) 2865633721804373 a001 1597/11*521^(5/46) 2865633733788273 m001 (MertensB2-Riemann3rdZero)/(gamma(3)+GaussAGM) 2865633737280842 m001 (BesselK(1,1)+Paris)/(ln(gamma)-Ei(1)) 2865633743287987 r002 60th iterates of z^2 + 2865633760459194 m001 Weierstrass/(QuadraticClass+StronglyCareFree) 2865633782208232 a007 Real Root Of -152*x^4+132*x^3-60*x^2+436*x+134 2865633789689645 l006 ln(1118/1489) 2865633789905265 m001 GAMMA(1/4)/exp(Conway)^2/cos(Pi/12)^2 2865633791339357 r002 62th iterates of z^2 + 2865633792974486 a001 7/144*4181^(10/47) 2865633796277658 r005 Re(z^2+c),c=17/54+1/7*I,n=40 2865633796478778 a007 Real Root Of 977*x^4-156*x^3+502*x^2-609*x-226 2865633804706932 r009 Im(z^3+c),c=-2/5+29/48*I,n=32 2865633805037773 a007 Real Root Of -7*x^4+324*x^3-877*x^2+49*x-91 2865633806605195 m005 (1/2*gamma+3)/(1/8*exp(1)-5/11) 2865633807389631 r005 Re(z^2+c),c=-9/32+25/54*I,n=31 2865633810996051 m001 1/PisotVijayaraghavan^2/Artin*exp(Porter)^2 2865633816938349 r005 Re(z^2+c),c=-71/74+11/39*I,n=8 2865633822332043 a007 Real Root Of 65*x^4+167*x^3+105*x^2+561*x+292 2865633827798594 r005 Im(z^2+c),c=-9/82+8/21*I,n=22 2865633838559830 m005 (1/3*Catalan+1/11)/(6/11*exp(1)-1/10) 2865633838692468 a007 Real Root Of -244*x^4-553*x^3+290*x^2-474*x-299 2865633860143314 r004 Re(z^2+c),c=-13/10+1/10*I,z(0)=-1,n=13 2865633869620403 m005 (4*Pi-5/6)/(2/3*Pi+2) 2865633869620403 m006 (5/6/Pi-4)/(2/Pi+2/3) 2865633869620403 m008 (4*Pi-5/6)/(2/3*Pi+2) 2865633881435404 a007 Real Root Of -814*x^4-341*x^3-554*x^2+787*x+23 2865633895660430 r005 Im(z^2+c),c=2/11+2/9*I,n=17 2865633903405962 m001 (Pi-BesselI(0,2))/(FellerTornier+Khinchin) 2865633907220266 a007 Real Root Of 457*x^4-787*x^3+360*x^2-816*x-285 2865633912333040 r009 Im(z^3+c),c=-53/122+42/61*I,n=3 2865633913096014 a007 Real Root Of -438*x^4+488*x^3+733*x^2+158*x-114 2865633934425944 p004 log(23197/1321) 2865633943113625 r009 Re(z^3+c),c=-14/25+31/60*I,n=17 2865633943714311 r005 Re(z^2+c),c=-13/56+35/61*I,n=64 2865633955075725 m001 Totient^Otter*Totient^Cahen 2865633955319726 r005 Re(z^2+c),c=-13/50+11/21*I,n=19 2865633962553472 r009 Re(z^3+c),c=-5/28+34/35*I,n=32 2865633967775614 r009 Im(z^3+c),c=-31/110+11/42*I,n=12 2865633970911386 v002 sum(1/(2^n+(3/2*n^3+1/2*n^2+n)),n=1..infinity) 2865634000083174 r005 Re(z^2+c),c=19/60+3/32*I,n=17 2865634000431664 b008 3+(49*Pi)/6 2865634007588854 a007 Real Root Of 80*x^4-151*x^3+714*x^2-828*x-300 2865634011721952 r005 Im(z^2+c),c=-23/94+39/61*I,n=50 2865634011907371 a007 Real Root Of 582*x^4-160*x^3+328*x^2-777*x+22 2865634014812507 r005 Im(z^2+c),c=-23/58+31/63*I,n=36 2865634021466584 m001 Salem^2*exp(Khintchine)/sin(1)^2 2865634032540715 m005 (1/3*2^(1/2)+1/8)/(43/40+9/20*5^(1/2)) 2865634042103650 m001 (ln(2)/ln(10)+exp(1))/(DuboisRaymond+Thue) 2865634045743394 a003 sin(Pi*4/113)/sin(Pi*10/79) 2865634057713891 m001 (Khinchin-MadelungNaCl)/(GAMMA(5/6)-Backhouse) 2865634074024630 r005 Im(z^2+c),c=-13/110+5/13*I,n=20 2865634076911282 m001 (Khinchin+Stephens)/(ln(2)-FeigenbaumC) 2865634077030103 m001 (Zeta(1,-1)+QuadraticClass)/(Ei(1,1)-exp(1)) 2865634095186908 r009 Re(z^3+c),c=-17/38+24/49*I,n=37 2865634101788898 r005 Im(z^2+c),c=8/27+21/53*I,n=5 2865634107749408 m003 11/6+Sqrt[5]/32+2*Log[1/2+Sqrt[5]/2] 2865634112103467 m001 (BesselJ(0,1)+3^(1/3))/(-gamma(1)+ArtinRank2) 2865634114040030 m001 (Landau+MasserGramain)/(3^(1/2)-ln(2+3^(1/2))) 2865634128521597 a001 199/89*514229^(1/53) 2865634130955491 a001 1346269/5778*199^(10/11) 2865634134004733 l006 ln(216/3793) 2865634134125908 m001 1/GAMMA(11/12)*ln(BesselK(1,1))^2*GAMMA(19/24) 2865634141595631 r002 6th iterates of z^2 + 2865634143737107 m001 (FeigenbaumD-Psi(1,1/3))/(-GaussAGM+Stephens) 2865634152340520 a007 Real Root Of 5*x^4+160*x^3+471*x^2-255*x-668 2865634160545759 a005 (1/sin(43/100*Pi))^421 2865634166787747 m001 GAMMA(2/3)*(Backhouse+TwinPrimes) 2865634166787747 m001 GAMMA(2/3)*(TwinPrimes+Backhouse) 2865634169267651 a007 Real Root Of -337*x^4-639*x^3-89*x^2+728*x-184 2865634181898835 m005 (1/2*2^(1/2)-3/5)/(5/11*gamma-4) 2865634188910638 s002 sum(A268877[n]/(pi^n),n=1..infinity) 2865634190942393 m001 1/ln(Paris)*Si(Pi)^2*TreeGrowth2nd^2 2865634199940131 r005 Im(z^2+c),c=-13/20+14/45*I,n=34 2865634202198581 m005 (1/2*5^(1/2)+7/9)/(8/11*Catalan-3/5) 2865634204267279 a001 3524578/15127*199^(10/11) 2865634214963325 a001 9227465/39603*199^(10/11) 2865634216523857 a001 24157817/103682*199^(10/11) 2865634216705184 r009 Re(z^3+c),c=-21/74+36/53*I,n=20 2865634216751536 a001 63245986/271443*199^(10/11) 2865634216784754 a001 165580141/710647*199^(10/11) 2865634216789600 a001 433494437/1860498*199^(10/11) 2865634216790307 a001 1134903170/4870847*199^(10/11) 2865634216790410 a001 2971215073/12752043*199^(10/11) 2865634216790425 a001 7778742049/33385282*199^(10/11) 2865634216790427 a001 20365011074/87403803*199^(10/11) 2865634216790428 a001 53316291173/228826127*199^(10/11) 2865634216790428 a001 139583862445/599074578*199^(10/11) 2865634216790428 a001 365435296162/1568397607*199^(10/11) 2865634216790428 a001 956722026041/4106118243*199^(10/11) 2865634216790428 a001 2504730781961/10749957122*199^(10/11) 2865634216790428 a001 6557470319842/28143753123*199^(10/11) 2865634216790428 a001 10610209857723/45537549124*199^(10/11) 2865634216790428 a001 4052739537881/17393796001*199^(10/11) 2865634216790428 a001 1548008755920/6643838879*199^(10/11) 2865634216790428 a001 591286729879/2537720636*199^(10/11) 2865634216790428 a001 225851433717/969323029*199^(10/11) 2865634216790428 a001 86267571272/370248451*199^(10/11) 2865634216790428 a001 63246219/271444*199^(10/11) 2865634216790429 a001 12586269025/54018521*199^(10/11) 2865634216790435 a001 4807526976/20633239*199^(10/11) 2865634216790474 a001 1836311903/7881196*199^(10/11) 2865634216790744 a001 701408733/3010349*199^(10/11) 2865634216792595 a001 267914296/1149851*199^(10/11) 2865634216805283 a001 102334155/439204*199^(10/11) 2865634216892249 a001 39088169/167761*199^(10/11) 2865634217163007 r005 Im(z^2+c),c=17/60+9/61*I,n=7 2865634217488319 a001 14930352/64079*199^(10/11) 2865634218787423 r005 Re(z^2+c),c=-17/62+16/33*I,n=38 2865634219607198 m001 (Gompertz+KomornikLoreti)/(sin(1)+gamma(2)) 2865634221573845 a001 5702887/24476*199^(10/11) 2865634226209333 m005 (1/2*2^(1/2)-6/7)/(1/6*2^(1/2)+5) 2865634227925845 a001 13/15127*18^(5/12) 2865634229192002 r008 a(0)=3,K{-n^6,50+37*n^3-36*n^2-43*n} 2865634231923792 p003 LerchPhi(1/64,4,562/231) 2865634234857536 r005 Re(z^2+c),c=-95/98+7/31*I,n=50 2865634235514163 r005 Im(z^2+c),c=-7/48+21/53*I,n=35 2865634239432160 r009 Im(z^3+c),c=-53/98+17/27*I,n=33 2865634249189305 a001 5778/89*34^(8/19) 2865634249576458 a001 2178309/9349*199^(10/11) 2865634253456928 m001 (Cahen+Landau)/(ThueMorse+ZetaQ(4)) 2865634256851671 m005 (4*gamma-1/6)/(2^(1/2)-2/3) 2865634260967053 r005 Re(z^2+c),c=-35/106+17/55*I,n=17 2865634263679175 m001 (Thue-gamma*Otter)/Otter 2865634263805959 a007 Real Root Of -318*x^4-622*x^3+904*x^2+72*x-410 2865634266520270 r005 Im(z^2+c),c=-103/114+11/48*I,n=4 2865634268457001 m001 (BesselK(1,1)+Bloch)/(Si(Pi)+Ei(1)) 2865634281444034 m001 1/Rabbit/exp(DuboisRaymond)^2/gamma^2 2865634326024443 m001 (Psi(1,1/3)-ln(2+3^(1/2)))/(OneNinth+Otter) 2865634331985962 r002 2i'th iterates of 2*x/(1-x^2) of 2865634338822971 a003 sin(Pi*20/69)/cos(Pi*37/90) 2865634346705890 m001 (ln(3)-BesselI(1,2))/(GAMMA(19/24)+Landau) 2865634347856301 r005 Re(z^2+c),c=-37/102+4/33*I,n=28 2865634353131827 r009 Re(z^3+c),c=-29/110+1/50*I,n=7 2865634360944302 r005 Re(z^2+c),c=-17/58+16/37*I,n=34 2865634371343336 m005 (1/2*gamma-1/10)/(5*Zeta(3)+4/7) 2865634374022353 r009 Im(z^3+c),c=-35/58+25/47*I,n=57 2865634380100457 m001 (Shi(1)-exp(-1/2*Pi))/(-FeigenbaumDelta+Niven) 2865634380154014 m001 (gamma-StolarskyHarborth)^Grothendieck 2865634388763798 m001 2^(1/3)-Zeta(3)+FransenRobinson 2865634393512976 r009 Im(z^3+c),c=-7/58+16/53*I,n=6 2865634402623524 p004 log(14593/10957) 2865634428997905 r005 Re(z^2+c),c=-37/106+13/59*I,n=22 2865634430220705 m005 (1/2*3^(1/2)+5/7)/(7/8*Catalan-1/4) 2865634436427648 m001 Paris^Psi(1,1/3)*BesselI(0,2)^Psi(1,1/3) 2865634441509234 a001 832040/3571*199^(10/11) 2865634443806076 r005 Re(z^2+c),c=-37/102+4/33*I,n=31 2865634454455294 h001 (1/9*exp(2)+9/10)/(7/10*exp(2)+5/6) 2865634456585798 r002 31th iterates of z^2 + 2865634470886461 a003 cos(Pi*30/83)/cos(Pi*53/117) 2865634471244553 r009 Im(z^3+c),c=-19/48+11/54*I,n=9 2865634473541533 m005 (1/2*gamma-3)/(1/8*5^(1/2)+2/3) 2865634475444117 r005 Re(z^2+c),c=-37/102+4/33*I,n=33 2865634488837327 m001 (-FeigenbaumC+KhinchinLevy)/(Cahen-exp(Pi)) 2865634501594762 m001 (PrimesInBinary-Salem)/(GAMMA(2/3)+Conway) 2865634502272040 m005 (1/2*exp(1)+11/12)/(5/11*5^(1/2)-2/9) 2865634503417804 r005 Re(z^2+c),c=-37/102+4/33*I,n=35 2865634506227720 m001 1/GAMMA(5/24)^2/exp(Lehmer)*Zeta(9) 2865634510538062 a007 Real Root Of -200*x^4+39*x^3+769*x^2+500*x-206 2865634512762953 a001 76/1346269*8^(25/32) 2865634513866889 r005 Re(z^2+c),c=-37/102+4/33*I,n=29 2865634514234316 r009 Im(z^3+c),c=-10/27+9/41*I,n=19 2865634516541423 r005 Re(z^2+c),c=-37/102+4/33*I,n=37 2865634521069223 r005 Re(z^2+c),c=-37/102+4/33*I,n=39 2865634522035863 r005 Re(z^2+c),c=-37/102+4/33*I,n=42 2865634522051100 r005 Re(z^2+c),c=-37/102+4/33*I,n=44 2865634522117346 r005 Re(z^2+c),c=-37/102+4/33*I,n=46 2865634522155830 r005 Re(z^2+c),c=-37/102+4/33*I,n=48 2865634522171065 r005 Re(z^2+c),c=-37/102+4/33*I,n=50 2865634522175576 r005 Re(z^2+c),c=-37/102+4/33*I,n=52 2865634522175863 r005 Re(z^2+c),c=-37/102+4/33*I,n=55 2865634522175986 r005 Re(z^2+c),c=-37/102+4/33*I,n=57 2865634522176090 r005 Re(z^2+c),c=-37/102+4/33*I,n=59 2865634522176095 r005 Re(z^2+c),c=-37/102+4/33*I,n=53 2865634522176138 r005 Re(z^2+c),c=-37/102+4/33*I,n=61 2865634522176155 r005 Re(z^2+c),c=-37/102+4/33*I,n=63 2865634522176159 r005 Re(z^2+c),c=-37/102+4/33*I,n=64 2865634522176168 r005 Re(z^2+c),c=-37/102+4/33*I,n=62 2865634522176197 r005 Re(z^2+c),c=-37/102+4/33*I,n=60 2865634522176271 r005 Re(z^2+c),c=-37/102+4/33*I,n=58 2865634522176399 r005 Re(z^2+c),c=-37/102+4/33*I,n=56 2865634522176436 r005 Re(z^2+c),c=-37/102+4/33*I,n=54 2865634522178231 r005 Re(z^2+c),c=-37/102+4/33*I,n=51 2865634522186848 r005 Re(z^2+c),c=-37/102+4/33*I,n=49 2865634522200582 r005 Re(z^2+c),c=-37/102+4/33*I,n=41 2865634522211965 r005 Re(z^2+c),c=-37/102+4/33*I,n=47 2865634522265894 r005 Re(z^2+c),c=-37/102+4/33*I,n=45 2865634522328370 r005 Re(z^2+c),c=-37/102+4/33*I,n=43 2865634522494992 r005 Re(z^2+c),c=-37/102+4/33*I,n=40 2865634524873305 r005 Re(z^2+c),c=-37/102+4/33*I,n=38 2865634532856032 r005 Re(z^2+c),c=-37/102+4/33*I,n=36 2865634545786496 r005 Im(z^2+c),c=-1/11+14/19*I,n=42 2865634552900961 r005 Re(z^2+c),c=-37/102+4/33*I,n=34 2865634558043048 a001 2584/11*9349^(1/46) 2865634579123708 m001 (Ei(1,1)-LambertW(1))/(-Kac+Tribonacci) 2865634587027183 r005 Re(z^2+c),c=-37/102+4/33*I,n=32 2865634591488649 m001 Backhouse^HardHexagonsEntropy+Salem 2865634593100074 r005 Re(z^2+c),c=-37/102+4/33*I,n=30 2865634605472273 a007 Real Root Of 926*x^4+45*x^3-129*x^2-312*x-84 2865634605864712 m002 Pi^3+Pi^3/E^Pi-Cosh[Pi]/Pi 2865634610169063 a003 cos(Pi*18/71)*cos(Pi*34/93) 2865634615652389 a007 Real Root Of -402*x^4-775*x^3+843*x^2-367*x+897 2865634615914444 a001 18/13*233^(45/46) 2865634629710078 m001 OrthogonalArrays/(FeigenbaumAlpha^(3^(1/2))) 2865634633324291 r005 Im(z^2+c),c=3/14+11/56*I,n=15 2865634635647936 m001 (-Bloch+Paris)/(BesselK(0,1)+ln(2^(1/2)+1)) 2865634660217391 m005 (1/2*5^(1/2)-5/8)/(1/3*exp(1)-8/9) 2865634664903316 m001 1/FeigenbaumD/ln(FeigenbaumC)/arctan(1/2)^2 2865634665432098 r002 3th iterates of z^2 + 2865634679315543 r005 Re(z^2+c),c=-7/10+45/157*I,n=24 2865634685202299 m005 (1/3*2^(1/2)+1/8)/(3*Catalan-2/3) 2865634691220465 m001 2^(1/2)+GAMMA(5/6)+FellerTornier 2865634692811170 r009 Re(z^3+c),c=-14/25+31/60*I,n=26 2865634694449365 r009 Re(z^3+c),c=-14/25+31/60*I,n=35 2865634694450917 r009 Re(z^3+c),c=-14/25+31/60*I,n=32 2865634694452686 r009 Re(z^3+c),c=-14/25+31/60*I,n=41 2865634694452702 r009 Re(z^3+c),c=-14/25+31/60*I,n=44 2865634694452708 r009 Re(z^3+c),c=-14/25+31/60*I,n=50 2865634694452708 r009 Re(z^3+c),c=-14/25+31/60*I,n=53 2865634694452708 r009 Re(z^3+c),c=-14/25+31/60*I,n=59 2865634694452708 r009 Re(z^3+c),c=-14/25+31/60*I,n=62 2865634694452708 r009 Re(z^3+c),c=-14/25+31/60*I,n=56 2865634694452709 r009 Re(z^3+c),c=-14/25+31/60*I,n=47 2865634694453244 r009 Re(z^3+c),c=-14/25+31/60*I,n=38 2865634694656879 r009 Re(z^3+c),c=-14/25+31/60*I,n=29 2865634695904370 r005 Re(z^2+c),c=5/118+7/34*I,n=4 2865634696926915 r009 Re(z^3+c),c=-14/25+31/60*I,n=23 2865634702719320 a007 Real Root Of 160*x^4+476*x^3+119*x^2+354*x+449 2865634711861286 r005 Im(z^2+c),c=-23/44+19/35*I,n=64 2865634719614596 a001 86267571272/7*4^(14/23) 2865634721766176 m001 (ln(3)-Pi^(1/2))/(MasserGramain+Niven) 2865634734900648 r005 Re(z^2+c),c=-39/106+1/32*I,n=11 2865634736506339 m001 (Magata+Paris)/(GAMMA(3/4)-gamma(3)) 2865634765288297 r005 Re(z^2+c),c=19/58+25/64*I,n=56 2865634766095299 r009 Re(z^3+c),c=-14/25+31/60*I,n=20 2865634767467098 r005 Re(z^2+c),c=-19/54+10/49*I,n=29 2865634768291823 m005 (1/2*Catalan-7/9)/(Catalan+1/5) 2865634781777383 l006 ln(407/7147) 2865634785531142 a007 Real Root Of -305*x^4-453*x^3+913*x^2-714*x+364 2865634786487364 r005 Re(z^2+c),c=-27/70+32/57*I,n=50 2865634800706191 r005 Im(z^2+c),c=-7/44+29/45*I,n=29 2865634800944917 r005 Re(z^2+c),c=21/62+13/31*I,n=28 2865634820979986 r005 Re(z^2+c),c=-2/3+1/43*I,n=4 2865634825297413 l006 ln(6485/8637) 2865634842756304 m001 (exp(1/Pi)+Landau)/(Lehmer+ZetaP(4)) 2865634845845887 a007 Real Root Of -319*x^4-789*x^3+563*x^2+532*x-154 2865634846926465 m001 ln(KhintchineLevy)*Conway*GAMMA(17/24) 2865634846987997 r005 Re(z^2+c),c=-7/32+22/29*I,n=54 2865634847011995 m001 (Psi(1,1/3)-gamma(1))/(Lehmer+Otter) 2865634848784812 m001 (2^(1/3))*exp(Riemann1stZero)*sqrt(1+sqrt(3)) 2865634853888076 a007 Real Root Of -301*x^4-583*x^3+551*x^2-872*x-445 2865634854205459 r009 Im(z^3+c),c=-31/110+11/42*I,n=15 2865634878486407 r005 Re(z^2+c),c=-43/98+16/31*I,n=28 2865634885863084 a007 Real Root Of -421*x^4-845*x^3+837*x^2-871*x-864 2865634892737447 m001 1/ln(log(2+sqrt(3)))*Artin^2/sqrt(Pi) 2865634893338932 r005 Im(z^2+c),c=-33/98+23/48*I,n=26 2865634896449967 r002 26th iterates of z^2 + 2865634915311920 r002 12th iterates of z^2 + 2865634919795256 r009 Im(z^3+c),c=-19/58+8/33*I,n=14 2865634920241739 r005 Im(z^2+c),c=-11/26+23/43*I,n=40 2865634923452213 m001 (cos(1)+Cahen)/(Magata+Sarnak) 2865634923942013 r005 Im(z^2+c),c=-39/34+6/119*I,n=8 2865634929057028 m001 Robbin/exp(Magata)/BesselJ(0,1) 2865634929799311 r005 Im(z^2+c),c=-1/11+14/19*I,n=45 2865634956952005 a007 Real Root Of -45*x^4-43*x^3-38*x^2-910*x-273 2865634983522504 a007 Real Root Of 368*x^4+943*x^3-323*x^2-5*x+13 2865635010111921 m001 (StronglyCareFree+ZetaP(4))/(ln(Pi)-3^(1/3)) 2865635011052336 m001 1/cosh(1)/exp(Cahen)*sin(1) 2865635022941468 a003 cos(Pi*31/110)-cos(Pi*43/111) 2865635035296378 s001 sum(exp(-Pi/3)^(n-1)*A088494[n],n=1..infinity) 2865635040610370 a007 Real Root Of 160*x^4-72*x^3-4*x^2-822*x-238 2865635041024898 l006 ln(5367/7148) 2865635043883080 r005 Re(z^2+c),c=-2/7+29/64*I,n=61 2865635052912632 h001 (-6*exp(1)-7)/(-4*exp(3)-1) 2865635059360279 m001 (Zeta(1,-1)+ThueMorse)/(cos(1)+arctan(1/3)) 2865635078431617 a007 Real Root Of -737*x^4+491*x^3-945*x^2+862*x-176 2865635078883114 m001 GAMMA(1/24)*Robbin^2*exp(GAMMA(23/24)) 2865635081289959 r009 Im(z^3+c),c=-11/98+10/33*I,n=12 2865635086524111 a001 15127/13*4181^(35/53) 2865635088755834 r009 Im(z^3+c),c=-11/98+10/33*I,n=13 2865635097713795 r009 Re(z^3+c),c=-55/122+23/45*I,n=57 2865635105207641 r009 Im(z^3+c),c=-11/98+10/33*I,n=15 2865635106003942 a003 -1/2-cos(1/5*Pi)-2*cos(11/30*Pi)-cos(7/30*Pi) 2865635108471607 r009 Im(z^3+c),c=-11/98+10/33*I,n=17 2865635108505915 r009 Im(z^3+c),c=-11/98+10/33*I,n=18 2865635108525210 r009 Im(z^3+c),c=-11/98+10/33*I,n=20 2865635108529980 r009 Im(z^3+c),c=-11/98+10/33*I,n=22 2865635108530064 r009 Im(z^3+c),c=-11/98+10/33*I,n=23 2865635108530085 r009 Im(z^3+c),c=-11/98+10/33*I,n=25 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=27 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=28 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=30 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=32 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=33 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=35 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=37 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=40 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=38 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=42 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=45 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=47 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=50 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=52 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=55 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=57 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=60 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=62 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=64 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=63 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=61 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=59 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=58 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=56 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=54 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=53 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=51 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=48 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=49 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=43 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=46 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=44 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=41 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=39 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=36 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=34 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=31 2865635108530092 r009 Im(z^3+c),c=-11/98+10/33*I,n=29 2865635108530094 r009 Im(z^3+c),c=-11/98+10/33*I,n=26 2865635108530113 r009 Im(z^3+c),c=-11/98+10/33*I,n=24 2865635108531154 r009 Im(z^3+c),c=-11/98+10/33*I,n=21 2865635108545108 r009 Im(z^3+c),c=-11/98+10/33*I,n=19 2865635109212342 r009 Im(z^3+c),c=-11/98+10/33*I,n=16 2865635112125376 a003 cos(Pi*29/67)*cos(Pi*47/103) 2865635112935916 a009 6*(13^(1/2)-6^(3/4))^(1/2) 2865635113064733 r005 Re(z^2+c),c=-37/102+4/33*I,n=27 2865635119298724 r009 Im(z^3+c),c=-11/98+10/33*I,n=14 2865635124854311 m001 (3^(1/3)-GAMMA(17/24))/(Stephens-Trott2nd) 2865635129975435 r005 Im(z^2+c),c=-19/106+25/61*I,n=32 2865635158209685 r005 Im(z^2+c),c=-5/4+49/122*I,n=6 2865635160316350 m001 (2^(1/2)+GAMMA(2/3))/(Cahen+FellerTornier) 2865635172060751 m002 -2*Pi^2-Cosh[Pi]+Pi^3*Sech[Pi] 2865635188525892 a007 Real Root Of -331*x^4-918*x^3-106*x^2-597*x-122 2865635193678281 h002 exp(1/10*(15+7^(1/3)*10^(2/3))^(1/2)*10^(1/3)) 2865635199043316 a007 Real Root Of 244*x^4+623*x^3-515*x^2-643*x+593 2865635202560853 r009 Re(z^3+c),c=-3/11+1/12*I,n=4 2865635215369017 r005 Re(z^2+c),c=-41/118+11/48*I,n=22 2865635216206324 r005 Im(z^2+c),c=-17/48+31/63*I,n=26 2865635225316649 a007 Real Root Of 572*x^4-855*x^3+649*x^2-184*x-130 2865635225617407 r005 Re(z^2+c),c=31/98+15/43*I,n=6 2865635228913854 r005 Im(z^2+c),c=-13/27+2/41*I,n=21 2865635246240883 r005 Re(z^2+c),c=-17/58+16/37*I,n=44 2865635259723801 p004 log(20563/1171) 2865635265497723 m001 (-Bloch+Paris)/(Si(Pi)+ln(gamma)) 2865635271078791 m001 MasserGramainDelta-exp(1)*BesselI(1,1) 2865635272872800 r005 Re(z^2+c),c=13/110+17/60*I,n=17 2865635277943779 h001 (6/11*exp(1)+1/6)/(7/10*exp(2)+7/12) 2865635278521496 a005 (1/cos(23/158*Pi))^307 2865635279274771 r009 Re(z^3+c),c=-31/64+25/54*I,n=2 2865635290336100 r005 Re(z^2+c),c=-21/82+19/43*I,n=10 2865635295240063 r005 Im(z^2+c),c=-25/74+19/39*I,n=23 2865635297477571 m001 1/OneNinth*ln(FransenRobinson)^2/sin(Pi/5)^2 2865635301001870 r009 Im(z^3+c),c=-7/16+9/53*I,n=20 2865635306769057 r002 9th iterates of z^2 + 2865635313572035 m001 (BesselK(1,1)+Porter)/(Sarnak-ZetaQ(4)) 2865635313755085 r005 Re(z^2+c),c=-3/26+24/41*I,n=17 2865635314445844 m001 gamma^BesselJ(0,1)/(Otter^BesselJ(0,1)) 2865635322352306 p004 log(27271/1553) 2865635330369806 r005 Im(z^2+c),c=-1/11+14/19*I,n=57 2865635332797379 r009 Im(z^3+c),c=-31/110+11/42*I,n=14 2865635335358752 r005 Im(z^2+c),c=-1/11+14/19*I,n=60 2865635335459822 m005 (1/2*2^(1/2)-7/8)/(5/7*Zeta(3)-3/11) 2865635337175033 r005 Im(z^2+c),c=-1/11+14/19*I,n=63 2865635337613189 m005 (1/3*5^(1/2)+2/9)/(9/10*gamma-6/7) 2865635339574378 r005 Im(z^2+c),c=-1/11+14/19*I,n=54 2865635347596915 a001 75025/3*18^(27/32) 2865635353041108 r005 Im(z^2+c),c=-127/106+5/62*I,n=3 2865635370277122 l006 ln(4249/5659) 2865635375401773 r005 Im(z^2+c),c=-1/11+14/19*I,n=48 2865635385776517 a007 Real Root Of 260*x^4+412*x^3-519*x^2+902*x-991 2865635390111824 a007 Real Root Of 22*x^4+616*x^3-413*x^2-6*x-822 2865635390179251 r005 Re(z^2+c),c=3/14+3/64*I,n=6 2865635391368416 r005 Im(z^2+c),c=-1/11+14/19*I,n=51 2865635406104422 m001 ln(2)+FeigenbaumC^GlaisherKinkelin 2865635407267099 m001 1/GAMMA(11/12)^2/exp(GAMMA(1/3))/arctan(1/2)^2 2865635440146116 m005 (4*gamma-3/5)/(3/5*gamma+1/4) 2865635440146116 m007 (-4*gamma+3/5)/(-3/5*gamma-1/4) 2865635464088062 r009 Re(z^3+c),c=-29/82+39/61*I,n=14 2865635466235212 a007 Real Root Of 31*x^4+903*x^3+440*x^2+604*x+804 2865635477697538 m005 (1/2*gamma+10/11)/(5/8*Zeta(3)-1/3) 2865635480110481 a001 3/64079*7^(27/29) 2865635489377482 r005 Re(z^2+c),c=23/66+5/31*I,n=25 2865635490290935 a007 Real Root Of -277*x^4-795*x^3-106*x^2-91*x+581 2865635490357436 r005 Re(z^2+c),c=-27/94+22/49*I,n=51 2865635497173311 m009 (5*Psi(1,1/3)+1/3)/(1/6*Psi(1,2/3)-1/3) 2865635507305614 m001 (-ArtinRank2+Landau)/(cos(1)-gamma(3)) 2865635514336524 l006 ln(191/3354) 2865635514408998 m002 -Pi^4+(Pi^2*Cosh[Pi])/2+Sinh[Pi] 2865635519419538 m001 (Zeta(3)+Zeta(1,-1))/(Otter+Robbin) 2865635521264039 m001 1/ln(FeigenbaumDelta)/Artin*GAMMA(17/24)^2 2865635526859895 a007 Real Root Of 766*x^4-981*x^3-949*x^2-681*x+291 2865635534554086 r005 Re(z^2+c),c=-11/40+13/27*I,n=64 2865635542209097 r009 Im(z^3+c),c=-11/98+10/33*I,n=11 2865635563304384 b008 Zeta[(5*EulerGamma)/2] 2865635570172578 a007 Real Root Of -377*x^4+693*x^3-681*x^2+772*x+296 2865635572260604 r002 27th iterates of z^2 + 2865635574998790 r005 Im(z^2+c),c=-33/94+26/49*I,n=23 2865635580192107 r005 Re(z^2+c),c=-45/122+27/56*I,n=13 2865635582809278 a003 sin(Pi*9/115)/cos(Pi*20/113) 2865635585741187 m005 (1/2*2^(1/2)+2/5)/(5/6*5^(1/2)+2) 2865635599041629 r008 a(0)=0,K{-n^6,114*n^3+171*n^2+57*n+7} 2865635600530697 r005 Re(z^2+c),c=-11/18+60/101*I,n=9 2865635606121494 r005 Re(z^2+c),c=-11/40+27/61*I,n=12 2865635609721111 l006 ln(7380/9829) 2865635611675733 a003 cos(Pi*13/29)+cos(Pi*52/113) 2865635611908890 p001 sum(1/(421*n+380)/(6^n),n=0..infinity) 2865635657574691 m001 (Magata-ln(2^(1/2)+1))/ln(2^(1/2)+1) 2865635661847162 m005 (1/3*Pi-1/9)/(Pi+1/8) 2865635664841852 m001 (Shi(1)-sin(1))/(PolyaRandomWalk3D+ThueMorse) 2865635665043306 a007 Real Root Of -143*x^4-563*x^3-484*x^2-379*x-717 2865635669126015 r009 Re(z^3+c),c=-31/70+26/59*I,n=36 2865635678168749 m005 (1/2*3^(1/2)+7/12)/(1/10*gamma+5) 2865635681166138 r005 Im(z^2+c),c=-5/13+32/63*I,n=36 2865635684243864 m005 (1/2*exp(1)+5/12)/(1/9*gamma+5/9) 2865635693859775 r005 Re(z^2+c),c=1/7+23/55*I,n=10 2865635695418860 m005 (1/2*Catalan-5/8)/(1/7*Zeta(3)-6) 2865635698554889 m001 GaussKuzminWirsing^ErdosBorwein+exp(1) 2865635699251984 a001 8/123*2139295485799^(2/15) 2865635708640246 a001 3/10749957122*843^(11/16) 2865635711358274 a007 Real Root Of -173*x^4-254*x^3+343*x^2-749*x+726 2865635735540879 a001 322*(1/2*5^(1/2)+1/2)^21*47^(14/15) 2865635740418824 a001 34/54018521*76^(7/20) 2865635757036749 a001 317811/1364*199^(10/11) 2865635773719149 m001 Khinchin^ArtinRank2-Niven 2865635778154405 m001 GAMMA(1/24)^ThueMorse-cos(Pi/5) 2865635781318538 m001 1/sin(Pi/5)/exp(gamma)*sqrt(3)^2 2865635784195840 m001 (Catalan+BesselK(0,1))/(-Landau+ZetaP(4)) 2865635794739921 a007 Real Root Of -935*x^4+846*x^3+822*x^2+886*x-335 2865635801051256 r009 Re(z^3+c),c=-35/82+20/51*I,n=12 2865635807959465 p001 sum((-1)^n/(590*n+337)/(10^n),n=0..infinity) 2865635808030988 m005 (1/2*5^(1/2)+5/11)/(5/6*Catalan-9/11) 2865635816123214 p001 sum(1/(523*n+355)/(24^n),n=0..infinity) 2865635816915268 m001 HardyLittlewoodC5*polylog(4,1/2)^Landau 2865635817579499 r005 Im(z^2+c),c=-19/48+22/45*I,n=22 2865635821956394 a007 Real Root Of -446*x^4-982*x^3+788*x^2+114*x+823 2865635837619265 a007 Real Root Of -545*x^4+518*x^3+442*x^2+559*x-205 2865635841623362 r005 Im(z^2+c),c=7/110+8/27*I,n=10 2865635844439986 r009 Im(z^3+c),c=-29/74+38/63*I,n=16 2865635859406707 r005 Re(z^2+c),c=11/26+20/63*I,n=4 2865635860197289 r002 8th iterates of z^2 + 2865635874838605 a007 Real Root Of 144*x^4+276*x^3-318*x^2+57*x-441 2865635878932446 m004 -2-5*Pi+(5*E^(Sqrt[5]*Pi))/Log[Sqrt[5]*Pi] 2865635895373555 m001 (ZetaP(3)+ZetaQ(3))/(BesselK(0,1)+Ei(1,1)) 2865635901023431 m001 (-gamma(1)+TwinPrimes)/(5^(1/2)+arctan(1/3)) 2865635902342876 m001 (2^(1/3)-ln(5))/(-BesselJ(1,1)+ZetaP(2)) 2865635922527235 a001 123/89*9227465^(10/21) 2865635934664414 l006 ln(3131/4170) 2865635947143343 m005 (1/2*3^(1/2)-3/8)/(5/8*Pi-1/4) 2865635953567476 r005 Im(z^2+c),c=-25/62+19/39*I,n=36 2865635969080935 m001 (3^(1/3))^2/ln(Cahen)^2*GAMMA(1/3) 2865635988859956 r002 7th iterates of z^2 + 2865635994624097 r005 Re(z^2+c),c=-41/118+11/48*I,n=23 2865636004916270 m001 (Chi(1)+Zeta(3))/(gamma(3)+Rabbit) 2865636018583462 r002 6th iterates of z^2 + 2865636021476716 r009 Re(z^3+c),c=-37/86+23/55*I,n=48 2865636034428619 m001 (Zeta(1/2)+1/2)/(-exp(1/2)+5) 2865636037150043 r005 Re(z^2+c),c=19/60+1/7*I,n=58 2865636058408385 l006 ln(548/9623) 2865636060532760 r009 Im(z^3+c),c=-7/24+8/31*I,n=10 2865636061623974 r005 Re(z^2+c),c=-31/86+7/59*I,n=8 2865636070524383 a007 Real Root Of 25*x^4-89*x^3-508*x^2-332*x-560 2865636071962450 a001 5/271443*199^(41/43) 2865636079946027 r009 Im(z^3+c),c=-29/60+3/29*I,n=46 2865636080539626 m001 (Shi(1)-gamma(1))/(PolyaRandomWalk3D+ZetaQ(2)) 2865636084576654 m001 (ZetaQ(2)+ZetaQ(4))/(ReciprocalLucas-Trott2nd) 2865636097742495 r009 Re(z^3+c),c=-49/122+18/49*I,n=36 2865636103821305 r002 33th iterates of z^2 + 2865636109408584 r009 Im(z^3+c),c=-11/19+11/38*I,n=21 2865636110676709 a009 3^(3/4)+1/11*12^(3/4) 2865636112999119 r002 31th iterates of z^2 + 2865636114503358 r005 Re(z^2+c),c=-43/106+1/26*I,n=4 2865636125046516 r009 Re(z^3+c),c=-19/46+19/49*I,n=33 2865636144195670 m001 Zeta(5)/(FeigenbaumC+KomornikLoreti) 2865636146173152 a007 Real Root Of 294*x^4+701*x^3-356*x^2-47*x-541 2865636147343207 r005 Im(z^2+c),c=-6/5+1/26*I,n=64 2865636147443519 q001 241/841 2865636147443519 r005 Re(z^2+c),c=-43/29+19/29*I,n=2 2865636159672975 m001 (ln(2)-Niven)/(Otter+Stephens) 2865636171590163 m001 (-BesselJ(1,1)+HeathBrownMoroz)/(Chi(1)+ln(2)) 2865636172040452 a005 (1/cos(13/146*Pi))^1827 2865636180068822 m001 (Kac+ZetaP(4))/(Gompertz-sin(1)) 2865636180322254 m001 (Totient+Thue)/(Zeta(1,-1)-BesselK(1,1)) 2865636186421219 a007 Real Root Of 655*x^4+707*x^3-447*x^2-577*x+181 2865636192236814 m001 (Psi(2,1/3)-Zeta(3))^FeigenbaumB 2865636193224663 p001 sum(1/(369*n+313)/n/(512^n),n=1..infinity) 2865636194006188 m004 -125*Pi+15*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi]/2 2865636207879589 a001 1/54*(1/2*5^(1/2)+1/2)^28*3^(17/24) 2865636208804760 m001 (5^(1/2)-Chi(1))/(-GlaisherKinkelin+Kolakoski) 2865636210849477 a007 Real Root Of -348*x^4-584*x^3+960*x^2-617*x+73 2865636222117715 r005 Re(z^2+c),c=-13/46+17/37*I,n=31 2865636230495134 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2865636231973740 r005 Im(z^2+c),c=-2/25+16/25*I,n=58 2865636243108774 r005 Im(z^2+c),c=23/106+33/64*I,n=27 2865636244377205 m009 (6*Psi(1,1/3)+1/2)/(3/4*Psi(1,2/3)-1/6) 2865636245096886 a007 Real Root Of 281*x^4-816*x^3+33*x^2-768*x+22 2865636246694295 r005 Re(z^2+c),c=-29/94+22/57*I,n=34 2865636260421941 r005 Im(z^2+c),c=-10/29+26/55*I,n=39 2865636260940079 r005 Re(z^2+c),c=-11/40+13/27*I,n=58 2865636267248061 m005 (1/2*Catalan+1/6)/(11/12*Pi-7/10) 2865636271982786 p001 sum(1/(446*n+35)/(25^n),n=0..infinity) 2865636276387211 a007 Real Root Of -900*x^4+594*x^3-699*x^2+986*x+360 2865636284300785 r009 Re(z^3+c),c=-13/32+19/52*I,n=13 2865636291997076 p001 sum((-1)^n/(472*n+343)/(24^n),n=0..infinity) 2865636296896842 a007 Real Root Of -294*x^4+468*x^3-318*x^2+939*x-252 2865636308552366 a007 Real Root Of 25*x^4-801*x^3-865*x^2-842*x+331 2865636308994440 m001 (Pi+2)/(-GAMMA(5/12)+1/3) 2865636327447244 m001 ln(GAMMA(5/6))^2/GAMMA(1/6)^2/sqrt(1+sqrt(3)) 2865636336928051 r009 Im(z^3+c),c=-17/42+12/61*I,n=16 2865636337084337 m005 (1/2*Catalan-6/11)/(6/7*gamma-4/5) 2865636348783243 m002 5+E^Pi+6*Sech[Pi]*Tanh[Pi] 2865636349494329 l006 ln(357/6269) 2865636363717931 a001 408569081798/305*121393^(11/24) 2865636363735757 a001 4106118243/610*12586269025^(11/24) 2865636367089495 p001 sum((-1)^n/(512*n+333)/(8^n),n=0..infinity) 2865636371177773 m001 (gamma(1)-BesselJ(1,1))/(FellerTornier+Porter) 2865636383099813 a007 Real Root Of -33*x^4-947*x^3-65*x^2-765*x-78 2865636383172377 m005 (1/3*Catalan+1/6)/(3/5*Catalan-5/7) 2865636383963963 m001 (ln(2+3^(1/2))+Niven)/(Porter-ThueMorse) 2865636393826244 m001 (-MinimumGamma+Otter)/(gamma-ln(3)) 2865636399953952 a007 Real Root Of 56*x^4-32*x^3-281*x^2+537*x-683 2865636400854437 l006 ln(5144/6851) 2865636407885390 a007 Real Root Of 253*x^4-589*x^3-445*x^2-813*x-212 2865636418490525 a001 199/317811*28657^(19/51) 2865636420163023 m001 FeigenbaumD*(CareFree-Pi^(1/2)) 2865636421106937 a007 Real Root Of 586*x^4-837*x^3-770*x^2-28*x+87 2865636423525146 a007 Real Root Of 98*x^4-284*x^3+415*x^2-679*x-236 2865636446861340 s002 sum(A195847[n]/(16^n),n=1..infinity) 2865636447503945 r005 Re(z^2+c),c=-13/46+6/13*I,n=57 2865636453921490 a007 Real Root Of -66*x^4+27*x^3+885*x^2+741*x-58 2865636462057650 m005 (1/4*5^(1/2)+3/4)/(3/11*Pi-2/5) 2865636475137518 r005 Im(z^2+c),c=-29/78+9/19*I,n=32 2865636479030198 a007 Real Root Of -322*x^4-783*x^3+583*x^2+668*x+415 2865636499232835 m001 (-LaplaceLimit+Trott2nd)/(gamma+GAMMA(13/24)) 2865636503825492 r005 Re(z^2+c),c=-17/62+15/31*I,n=20 2865636527233994 r005 Re(z^2+c),c=-19/54+13/62*I,n=12 2865636531414676 r005 Re(z^2+c),c=-37/102+4/33*I,n=17 2865636533590289 a005 (1/sin(52/157*Pi))^163 2865636542925509 r005 Re(z^2+c),c=-39/74+14/29*I,n=20 2865636545740025 h001 (3/5*exp(2)+9/11)/(5/12*exp(1)+7/10) 2865636549146775 m001 Ei(1)*ln(3)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 2865636549146775 m001 Ei(1)*ln(3)^GAMMA(5/24) 2865636550588371 l006 ln(5091/5239) 2865636558421823 a007 Real Root Of -51*x^4+20*x^3+414*x^2-349*x-490 2865636563436080 r005 Im(z^2+c),c=-7/48+21/53*I,n=38 2865636568674766 h001 (1/11*exp(1)+4/9)/(6/7*exp(1)+1/12) 2865636570136740 r009 Re(z^3+c),c=-15/19+35/54*I,n=2 2865636572346467 m001 (-Artin+Champernowne)/(GAMMA(2/3)-Psi(1,1/3)) 2865636579330320 b008 -Sqrt[6]+Cos[2] 2865636604800352 l006 ln(7157/9532) 2865636605300213 m001 exp(FeigenbaumKappa)*Paris^2/log(2+sqrt(3)) 2865636621795575 a007 Real Root Of 14*x^4+23*x^3+7*x^2+392*x+663 2865636629125598 r005 Im(z^2+c),c=25/94+9/61*I,n=24 2865636630294320 r005 Im(z^2+c),c=-7/48+21/53*I,n=34 2865636630342170 a007 Real Root Of 109*x^4-671*x^3+620*x^2-338*x+61 2865636654494424 l006 ln(523/9184) 2865636675541643 r005 Re(z^2+c),c=-13/42+31/61*I,n=19 2865636686481243 r005 Im(z^2+c),c=-5/118+11/12*I,n=5 2865636686636568 r005 Im(z^2+c),c=-3/17+31/39*I,n=12 2865636693684554 a007 Real Root Of 160*x^4+357*x^3-285*x^2-113*x-372 2865636700424564 a007 Real Root Of 323*x^4+997*x^3-113*x^2-587*x+926 2865636705839252 m005 (1/2*Pi-2/7)/(7/8*3^(1/2)-6) 2865636711003821 m001 GAMMA(7/12)^2/exp(Paris)/exp(1)^2 2865636713029429 r005 Im(z^2+c),c=-7/10+54/209*I,n=49 2865636714063184 m001 (-FeigenbaumB+Kac)/(2^(1/2)-ln(2)) 2865636722261680 m001 Psi(1,1/3)^Niven/(ZetaQ(4)^Niven) 2865636736883021 m001 1/2-polylog(4,1/2)*ThueMorse 2865636737994868 r005 Im(z^2+c),c=-3/56+21/59*I,n=24 2865636749880975 m001 1/exp(GAMMA(5/12))*Backhouse^2/log(1+sqrt(2)) 2865636759435703 p004 log(27107/20353) 2865636762534477 a001 377*199^(9/11) 2865636764584562 m005 (1/2*5^(1/2)-1/4)/(2*Zeta(3)+5/8) 2865636765644164 m005 (1/2*2^(1/2)+2/11)/(11/12*Pi+2/9) 2865636772567313 r005 Im(z^2+c),c=-7/48+21/53*I,n=37 2865636774408613 r005 Im(z^2+c),c=-7/5+7/57*I,n=19 2865636778740154 r009 Im(z^3+c),c=-51/106+3/26*I,n=45 2865636788490673 r002 54th iterates of z^2 + 2865636818309858 a007 Real Root Of 270*x^4+637*x^3-15*x^2+780*x-859 2865636819750588 r005 Im(z^2+c),c=-7/26+4/9*I,n=51 2865636820339976 a007 Real Root Of 139*x^4+232*x^3-233*x^2+777*x+226 2865636836404206 a001 1364*(1/2*5^(1/2)+1/2)^29*4^(10/23) 2865636837947399 m005 (1/2*Zeta(3)-1/4)/(7/12*2^(1/2)+2/5) 2865636841571920 m001 1/Magata^2/ln(Kolakoski)*BesselJ(0,1) 2865636848280526 r005 Im(z^2+c),c=6/23+8/53*I,n=13 2865636849929744 a003 cos(Pi*15/83)*cos(Pi*30/77) 2865636864285102 r009 Im(z^3+c),c=-31/110+11/42*I,n=18 2865636866839010 r004 Im(z^2+c),c=-3/46+5/14*I,z(0)=I,n=12 2865636879556610 m001 Zeta(7)^2/ln(Magata)*sin(Pi/5)^2 2865636879637184 a007 Real Root Of 260*x^4+664*x^3-310*x^2-558*x-961 2865636880144021 a007 Real Root Of -421*x^4-984*x^3+720*x^2+326*x+256 2865636883745015 r005 Im(z^2+c),c=-11/8+37/215*I,n=5 2865636890213349 m001 (AlladiGrinstead-LambertW(1))^QuadraticClass 2865636906231624 s002 sum(A278357[n]/((pi^n-1)/n),n=1..infinity) 2865636927441314 p001 sum(1/(583*n+467)/(2^n),n=0..infinity) 2865636939753717 r002 20th iterates of z^2 + 2865636950844826 m005 (1/2*Zeta(3)-1/5)/(4/5*Catalan+2/3) 2865636954279921 a007 Real Root Of 9*x^4-292*x^3+599*x^2-530*x-208 2865636957186513 m001 (2^(1/3)+GAMMA(3/4))/(-GAMMA(5/6)+MertensB1) 2865636959423025 r009 Re(z^3+c),c=-23/52+11/25*I,n=44 2865636968041762 r005 Im(z^2+c),c=2/27+16/55*I,n=9 2865636974430761 p004 log(17929/1021) 2865636979459779 r005 Re(z^2+c),c=-7/19+1/38*I,n=16 2865636990775738 h002 exp(6^(1/4)*(12^(2/3)+3^(1/4))) 2865636991300161 r009 Im(z^3+c),c=-31/110+11/42*I,n=19 2865637004219342 r009 Re(z^3+c),c=-19/26+12/17*I,n=2 2865637007148653 a007 Real Root Of 425*x^4+929*x^3-856*x^2-67*x+39 2865637008927052 m005 (1/2*exp(1)+5/11)/(7/12*gamma-2/5) 2865637009744467 r009 Im(z^3+c),c=-31/110+11/42*I,n=22 2865637014133212 r009 Im(z^3+c),c=-31/110+11/42*I,n=21 2865637014459927 r009 Im(z^3+c),c=-31/110+11/42*I,n=25 2865637014641241 r009 Im(z^3+c),c=-31/110+11/42*I,n=26 2865637014712629 r009 Im(z^3+c),c=-31/110+11/42*I,n=29 2865637014722992 r009 Im(z^3+c),c=-31/110+11/42*I,n=32 2865637014723171 r009 Im(z^3+c),c=-31/110+11/42*I,n=33 2865637014723381 r009 Im(z^3+c),c=-31/110+11/42*I,n=36 2865637014723402 r009 Im(z^3+c),c=-31/110+11/42*I,n=40 2865637014723402 r009 Im(z^3+c),c=-31/110+11/42*I,n=37 2865637014723402 r009 Im(z^3+c),c=-31/110+11/42*I,n=39 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=43 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=44 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=47 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=46 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=50 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=51 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=54 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=57 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=58 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=61 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=64 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=62 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=63 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=60 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=59 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=55 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=56 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=53 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=52 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=49 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=48 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=45 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=42 2865637014723403 r009 Im(z^3+c),c=-31/110+11/42*I,n=41 2865637014723407 r009 Im(z^3+c),c=-31/110+11/42*I,n=38 2865637014723426 r009 Im(z^3+c),c=-31/110+11/42*I,n=35 2865637014723510 r009 Im(z^3+c),c=-31/110+11/42*I,n=34 2865637014724223 r009 Im(z^3+c),c=-31/110+11/42*I,n=30 2865637014725126 r009 Im(z^3+c),c=-31/110+11/42*I,n=31 2865637014728432 r009 Im(z^3+c),c=-31/110+11/42*I,n=28 2865637014781524 r009 Im(z^3+c),c=-31/110+11/42*I,n=27 2865637014819763 r005 Re(z^2+c),c=-43/60+10/51*I,n=34 2865637015441333 r009 Im(z^3+c),c=-31/110+11/42*I,n=24 2865637015603393 r009 Im(z^3+c),c=-31/110+11/42*I,n=23 2865637020825546 r009 Im(z^3+c),c=-3/98+46/55*I,n=4 2865637035618631 h005 exp(sin(Pi*1/44)+sin(Pi*25/57)) 2865637037021174 a007 Real Root Of -287*x^4-635*x^3+615*x^2+257*x+97 2865637044236210 r009 Im(z^3+c),c=-31/110+11/42*I,n=20 2865637057978217 r005 Re(z^2+c),c=-77/58+1/64*I,n=24 2865637059290661 r009 Re(z^3+c),c=-14/25+31/60*I,n=14 2865637072516464 r008 a(0)=3,K{-n^6,48-34*n-46*n^2+40*n^3} 2865637072920896 r002 19th iterates of z^2 + 2865637082357116 r005 Im(z^2+c),c=-7/48+21/53*I,n=40 2865637082925755 a007 Real Root Of 42*x^4-187*x^3-652*x^2+918*x+752 2865637089566904 m001 (Ei(1)+Kac)/(LandauRamanujan2nd-MinimumGamma) 2865637094753791 r005 Im(z^2+c),c=7/122+10/33*I,n=7 2865637107320487 r009 Im(z^3+c),c=-10/27+9/41*I,n=22 2865637111178598 g004 Re(GAMMA(-43/20+I*271/60)) 2865637112208419 p001 sum((-1)^n/(476*n+67)/n/(64^n),n=1..infinity) 2865637116297692 m001 (Zeta(3)-sin(1/5*Pi)*exp(1/Pi))/exp(1/Pi) 2865637116297692 m001 (Zeta(3)-sin(Pi/5)*exp(1/Pi))/exp(1/Pi) 2865637125961678 l006 ln(2013/2681) 2865637129654196 m001 GAMMA(13/24)/(ln(5)+exp(sqrt(2))) 2865637137518872 a007 Real Root Of -169*x^4+415*x^3+473*x^2+794*x-275 2865637140347136 p004 log(35419/2017) 2865637151977585 r009 Re(z^3+c),c=-3/58+21/32*I,n=52 2865637163901472 m001 (Landau+RenyiParking)/(1+ln(gamma)) 2865637166301017 a007 Real Root Of 891*x^4+338*x^3-387*x^2-854*x-211 2865637170739353 a003 cos(Pi*31/118)-sin(Pi*27/65) 2865637180739005 r009 Re(z^3+c),c=-21/118+32/33*I,n=54 2865637190300502 h002 exp(11^(2/3)/(6^(2/3)-8)) 2865637204592527 r005 Im(z^2+c),c=-7/48+21/53*I,n=41 2865637218534839 a007 Real Root Of -694*x^4-387*x^3+145*x^2+898*x+241 2865637219716629 r009 Re(z^3+c),c=-23/122+17/23*I,n=61 2865637233596334 m001 (Zeta(3)+Landau)/(LaplaceLimit-Sarnak) 2865637236725140 b008 ArcCosh[1/2+4/E^2] 2865637243285189 m001 TwinPrimes^BesselI(0,2)/GAMMA(2/3) 2865637246497147 r002 7th iterates of z^2 + 2865637257403106 a007 Real Root Of -398*x^4+987*x^3-166*x^2+946*x-278 2865637266040584 r005 Im(z^2+c),c=-7/48+21/53*I,n=43 2865637278799642 p001 sum((-1)^n/(440*n+343)/(25^n),n=0..infinity) 2865637286747551 s002 sum(A057866[n]/(exp(pi*n)+1),n=1..infinity) 2865637286747563 s002 sum(A057866[n]/(exp(pi*n)),n=1..infinity) 2865637286747577 s002 sum(A057866[n]/(exp(pi*n)-1),n=1..infinity) 2865637287505781 r005 Re(z^2+c),c=-19/54+10/49*I,n=27 2865637287944169 r009 Im(z^3+c),c=-31/110+11/42*I,n=17 2865637293450893 r005 Im(z^2+c),c=-7/18+19/39*I,n=64 2865637308527760 m001 1/GAMMA(1/4)^2*MinimumGamma^2*exp(LambertW(1)) 2865637310428049 l006 ln(166/2915) 2865637312650614 m001 exp(Pi)/FeigenbaumAlpha/FellerTornier 2865637325756898 r005 Re(z^2+c),c=11/102+11/40*I,n=6 2865637326245238 r002 42th iterates of z^2 + 2865637327943818 a001 5600748293801/55*5^(9/14) 2865637346153116 a007 Real Root Of -104*x^4+347*x^3-933*x^2+944*x+356 2865637350804175 r005 Im(z^2+c),c=-7/48+21/53*I,n=46 2865637351537992 r009 Re(z^3+c),c=-19/106+37/40*I,n=32 2865637361803988 r009 Re(z^3+c),c=-13/36+17/58*I,n=19 2865637366932626 r005 Im(z^2+c),c=-7/48+21/53*I,n=44 2865637385557156 r005 Im(z^2+c),c=-7/48+21/53*I,n=49 2865637388742345 r002 3th iterates of z^2 + 2865637398793195 r005 Im(z^2+c),c=-7/48+21/53*I,n=52 2865637402495820 r005 Im(z^2+c),c=-7/48+21/53*I,n=47 2865637402887092 m001 (BesselI(0,2)+5)/(cos(1)+2) 2865637403569712 r005 Im(z^2+c),c=-7/48+21/53*I,n=55 2865637405219013 r005 Im(z^2+c),c=-7/48+21/53*I,n=58 2865637405382466 m005 (1/4*Pi-1/6)/(1/2*exp(1)+4/5) 2865637405766419 r005 Im(z^2+c),c=-7/48+21/53*I,n=61 2865637405941252 r005 Im(z^2+c),c=-7/48+21/53*I,n=64 2865637406026066 r005 Im(z^2+c),c=-7/48+21/53*I,n=63 2865637406119371 r005 Im(z^2+c),c=-7/48+21/53*I,n=60 2865637406158614 r005 Im(z^2+c),c=-7/48+21/53*I,n=62 2865637406376381 r005 Im(z^2+c),c=-7/48+21/53*I,n=59 2865637406543017 r005 Im(z^2+c),c=-7/48+21/53*I,n=57 2865637406846275 r005 Im(z^2+c),c=-7/48+21/53*I,n=56 2865637407630129 r005 Im(z^2+c),c=-7/48+21/53*I,n=53 2865637407942280 r005 Im(z^2+c),c=-7/48+21/53*I,n=50 2865637408211549 r005 Im(z^2+c),c=-7/48+21/53*I,n=54 2865637414258704 r005 Im(z^2+c),c=-7/48+21/53*I,n=51 2865637414752117 r005 Re(z^2+c),c=-19/52+5/58*I,n=12 2865637421746943 m005 (1/2*gamma+2/3)/(3*2^(1/2)-10/11) 2865637425224773 q001 8/27917 2865637425260738 r009 Re(z^3+c),c=-49/90+28/55*I,n=11 2865637432697501 h001 (10/11*exp(2)+5/9)/(5/6*exp(1)+3/11) 2865637434932121 r005 Im(z^2+c),c=-7/48+21/53*I,n=48 2865637446222517 h001 (6/11*exp(1)+3/8)/(4/5*exp(2)+4/7) 2865637453899482 a003 cos(Pi*5/98)*sin(Pi*3/32) 2865637456214815 g006 -2*Psi(1,3/10)-Psi(1,7/8)-Psi(1,5/6) 2865637459094579 a007 Real Root Of -83*x^4-49*x^3+688*x^2+240*x-518 2865637460311245 a007 Real Root Of -195*x^4-167*x^3+853*x^2-460*x+897 2865637469217417 a007 Real Root Of 288*x^4+989*x^3+111*x^2-814*x+608 2865637470845860 m002 -4+Pi^5-(4*Cosh[Pi])/3 2865637490856858 a007 Real Root Of -40*x^4+905*x^3-897*x^2+910*x+356 2865637491919860 r005 Re(z^2+c),c=-37/102+4/33*I,n=25 2865637502406836 r005 Im(z^2+c),c=-7/48+21/53*I,n=45 2865637506143376 r004 Re(z^2+c),c=-17/46-1/20*I,z(0)=-1,n=10 2865637516936708 m001 exp(cosh(1))^2/GAMMA(2/3)*sqrt(Pi) 2865637539099292 a008 Real Root of (-6+5*x+6*x^2+2*x^3+6*x^4+2*x^5) 2865637545985086 r005 Re(z^2+c),c=-1/32+32/51*I,n=43 2865637557945197 m005 (1/2*Catalan+1/10)/(7/9*3^(1/2)+3/5) 2865637558391658 r009 Re(z^3+c),c=-10/31+31/47*I,n=38 2865637562283663 h001 (7/11*exp(1)+1/11)/(1/9*exp(1)+1/3) 2865637586319661 m001 (1-BesselK(0,1))/(-FeigenbaumD+LaplaceLimit) 2865637587936532 p001 sum((-1)^n/(608*n+347)/(64^n),n=0..infinity) 2865637599239063 a007 Real Root Of 332*x^4+688*x^3-975*x^2-734*x-295 2865637622041340 a007 Real Root Of 253*x^4+489*x^3-539*x^2+167*x-649 2865637631125315 r005 Im(z^2+c),c=17/58+6/53*I,n=61 2865637639946112 m001 1/Porter*exp(Lehmer)^2*GAMMA(17/24) 2865637641579932 r009 Im(z^3+c),c=-31/110+11/42*I,n=16 2865637651994433 m001 PrimesInBinary^2/FransenRobinson*exp(cosh(1)) 2865637655627134 r005 Im(z^2+c),c=-2/5+6/13*I,n=19 2865637655743613 m001 PrimesInBinary*(CareFree-HardHexagonsEntropy) 2865637662667589 a005 (1/cos(17/163*Pi))^1325 2865637663883715 l006 ln(6934/9235) 2865637679250364 a001 2139295485799/1597*121393^(11/24) 2865637679268190 a001 10749957122/1597*12586269025^(11/24) 2865637680400210 m001 (-ln(gamma)+FeigenbaumD)/(cos(1)+sin(1/5*Pi)) 2865637681240754 a001 9*10946^(16/43) 2865637689616244 m005 (1/3*5^(1/2)+2/3)/(5/11*Catalan-10/11) 2865637698037106 a007 Real Root Of 160*x^4+293*x^3-409*x^2+149*x-109 2865637701560498 m001 GAMMA(17/24)*ln(CopelandErdos)*cosh(1) 2865637701930008 h001 (1/8*exp(1)+5/8)/(3/7*exp(2)+1/5) 2865637708380484 m001 (arctan(1/3)-FeigenbaumMu*Otter)/FeigenbaumMu 2865637713891000 r005 Im(z^2+c),c=-7/48+21/53*I,n=42 2865637714681816 m001 (Ei(1)+GlaisherKinkelin)/(exp(1)-ln(5)) 2865637716576339 r005 Re(z^2+c),c=-17/18+35/223*I,n=58 2865637719557161 r005 Im(z^2+c),c=-7/90+23/58*I,n=6 2865637725933536 r005 Re(z^2+c),c=-29/102+16/33*I,n=16 2865637731553557 m001 (-HardyLittlewoodC4+Robbin)/(1-5^(1/2)) 2865637731553557 m001 cos(1/5*Pi)*(HardyLittlewoodC4-Robbin) 2865637732999948 r005 Im(z^2+c),c=-39/70+8/19*I,n=24 2865637738391819 a001 47*121393^(16/17) 2865637742707310 a008 Real Root of x^5-x^4-11*x^3+6*x^2+19*x+7 2865637765454805 a007 Real Root Of -552*x^4-58*x^3+296*x^2+582*x-186 2865637776086058 r005 Im(z^2+c),c=-1/11+14/19*I,n=39 2865637786915539 m004 -E^(Sqrt[5]*Pi)+150/Pi-(5*E^(Sqrt[5]*Pi))/Pi 2865637790304726 r002 63th iterates of z^2 + 2865637790410358 g006 Psi(1,10/11)+Psi(1,2/3)-Psi(1,2/11)-Psi(1,6/7) 2865637791790779 a007 Real Root Of -491*x^4-163*x^3+588*x^2+509*x-187 2865637834907188 r005 Re(z^2+c),c=31/98+9/64*I,n=23 2865637853800944 r005 Im(z^2+c),c=-11/54+25/59*I,n=14 2865637860123835 r005 Re(z^2+c),c=-11/40+29/55*I,n=20 2865637869730788 m005 (1/2*Pi-8/9)/(2/3*5^(1/2)+8/9) 2865637871184061 a001 5600748293801/4181*121393^(11/24) 2865637871201886 a001 28143753123/4181*12586269025^(11/24) 2865637883927816 l006 ln(4921/6554) 2865637888147834 m001 1/TwinPrimes^2/ln(Backhouse)^2/LambertW(1) 2865637889798458 r009 Re(z^3+c),c=-23/126+34/37*I,n=54 2865637893582762 m002 Pi-Log[Pi]/4+Tanh[Pi]/Pi^4 2865637899186812 a001 7331474697802/5473*121393^(11/24) 2865637899204637 a001 73681302247/10946*12586269025^(11/24) 2865637900821909 a007 Real Root Of -379*x^4+273*x^3-688*x^2+951*x+338 2865637903290184 a001 192900153618/28657*12586269025^(11/24) 2865637903886257 a001 505019158607/75025*12586269025^(11/24) 2865637903973223 a001 1322157322203/196418*12586269025^(11/24) 2865637903985911 a001 3461452808002/514229*12586269025^(11/24) 2865637903987762 a001 9062201101803/1346269*12586269025^(11/24) 2865637903988032 a001 23725150497407/3524578*12586269025^(11/24) 2865637903988199 a001 14662949395604/2178309*12586269025^(11/24) 2865637903988906 a001 5600748293801/832040*12586269025^(11/24) 2865637903993753 a001 2139295485799/317811*12586269025^(11/24) 2865637904026971 a001 817138163596/121393*12586269025^(11/24) 2865637904254650 a001 312119004989/46368*12586269025^(11/24) 2865637905797365 a001 23725150497407/17711*121393^(11/24) 2865637905805788 m001 Riemann2ndZero*Kolakoski/exp(log(1+sqrt(2)))^2 2865637905815190 a001 119218851371/17711*12586269025^(11/24) 2865637911807201 b008 -5+ArcCsch[6/25] 2865637915733869 r009 Im(z^3+c),c=-33/62+16/61*I,n=17 2865637916077441 m001 (2^(1/3)-ln(2^(1/2)+1))/(-exp(1/Pi)+ZetaQ(2)) 2865637916493464 a001 3020733700601/2255*121393^(11/24) 2865637916511290 a001 45537549124/6765*12586269025^(11/24) 2865637943127492 m005 (1/3*gamma-3/4)/(1/2*Pi+3/8) 2865637950696415 a003 cos(Pi*31/99)*cos(Pi*17/52) 2865637952040283 r008 a(0)=0,K{-n^6,8+26*n^3-5*n^2-32*n} 2865637984695786 r009 Re(z^3+c),c=-3/17+63/64*I,n=52 2865637989805622 a001 1730726404001/1292*121393^(11/24) 2865637989823447 a001 17393796001/2584*12586269025^(11/24) 2865637994590697 s002 sum(A163242[n]/((2*n+1)!),n=1..infinity) 2865638021269442 s002 sum(A229599[n]/(n^2*pi^n+1),n=1..infinity) 2865638021308880 r009 Re(z^3+c),c=-12/29+21/41*I,n=15 2865638035698765 l006 ln(473/8306) 2865638037552957 r005 Re(z^2+c),c=-33/118+23/49*I,n=57 2865638039373700 h001 (1/2*exp(2)+1/3)/(1/10*exp(2)+2/3) 2865638043275256 r005 Im(z^2+c),c=5/26+3/14*I,n=20 2865638047742654 m001 (BesselJ(1,1)+Mills)/(1-ln(5)) 2865638050884134 r009 Re(z^3+c),c=-5/28+39/41*I,n=40 2865638064341823 s002 sum(A229599[n]/(n^2*pi^n-1),n=1..infinity) 2865638070847380 p004 log(25841/25111) 2865638076345113 m001 BesselI(0,2)^GAMMA(1/3)*GAMMA(1/4)^GAMMA(1/3) 2865638078816789 p004 log(10427/7829) 2865638079610952 r005 Re(z^2+c),c=-11/40+13/27*I,n=59 2865638090997915 s001 sum(exp(-2*Pi)^n*A157375[n],n=1..infinity) 2865638103844929 m008 (2/3*Pi+1/5)/(5/6*Pi^6-1/2) 2865638113107780 m002 1-E^Pi+Pi^5+Pi^3*Csch[Pi] 2865638130655818 a007 Real Root Of 242*x^4+763*x^3+521*x^2+651*x-777 2865638135828976 a008 Real Root of (5+12*x-15*x^2+14*x^3) 2865638137884249 m001 (ln(2+3^(1/2))-gamma(1))/(Lehmer-OneNinth) 2865638138117173 r004 Im(z^2+c),c=-2/3-2/5*I,z(0)=exp(1/8*I*Pi),n=14 2865638148686111 a005 (1/cos(12/187*Pi))^1627 2865638149011005 r009 Re(z^3+c),c=-13/94+46/55*I,n=10 2865638151937667 a001 3571*(1/2*5^(1/2)+1/2)^27*4^(10/23) 2865638178561445 a007 Real Root Of -103*x^4-471*x^3-582*x^2-503*x-800 2865638179199105 a007 Real Root Of 358*x^4+867*x^3-333*x^2+434*x+239 2865638180744644 r005 Im(z^2+c),c=1/42+4/13*I,n=5 2865638195555354 r005 Im(z^2+c),c=17/98+1/54*I,n=3 2865638198550847 h001 (3/4*exp(2)+7/8)/(7/9*exp(1)+1/8) 2865638198623471 b008 27+LogGamma[3/17] 2865638202247191 a001 2550418/89 2865638213045096 m001 (MadelungNaCl*Sarnak-Shi(1))/Sarnak 2865638225014482 m001 (Si(Pi)+Zeta(5))/(CareFree+GaussKuzminWirsing) 2865638228543312 r009 Re(z^3+c),c=-13/74+21/23*I,n=40 2865638234711501 r005 Im(z^2+c),c=-73/110+17/60*I,n=8 2865638235035714 r005 Re(z^2+c),c=-35/106+10/33*I,n=7 2865638250110743 r005 Im(z^2+c),c=-23/94+17/42*I,n=6 2865638268307369 m001 (Catalan+ln(2))/(-Paris+TwinPrimes) 2865638271399823 m001 Conway*FransenRobinson-Kolakoski 2865638284153262 a005 (1/cos(4/205*Pi))^560 2865638288190792 a007 Real Root Of -638*x^4-59*x^3+499*x^2+579*x-17 2865638291975169 m005 (1/2*5^(1/2)+4)/(4/5*Pi-8/11) 2865638296923876 m001 Niven^2/MertensB1*ln(BesselK(1,1))^2 2865638304016287 a007 Real Root Of -467*x^4+766*x^3-215*x^2+917*x-260 2865638307501171 m008 (4/5*Pi^5+3/4)/(1/6*Pi+1/3) 2865638332717952 r005 Re(z^2+c),c=-2/7+29/64*I,n=63 2865638341252428 m008 (1/2*Pi^6-4)/(1/6*Pi^4+2/5) 2865638343871412 a001 9349*(1/2*5^(1/2)+1/2)^25*4^(10/23) 2865638351734121 r005 Im(z^2+c),c=-7/48+21/53*I,n=39 2865638370324761 m008 (2/5*Pi^2+4/5)/(1/6*Pi^4+1/3) 2865638371874168 a001 24476*(1/2*5^(1/2)+1/2)^23*4^(10/23) 2865638375959715 a001 64079*(1/2*5^(1/2)+1/2)^21*4^(10/23) 2865638376657610 a001 1568397607*2^(20/23) 2865638378484722 a001 39603*(1/2*5^(1/2)+1/2)^22*4^(10/23) 2865638389180823 a001 15127*(1/2*5^(1/2)+1/2)^24*4^(10/23) 2865638396777991 r005 Re(z^2+c),c=-13/40+15/43*I,n=13 2865638401117139 k001 Champernowne real with 277*n+9 2865638405339917 r005 Im(z^2+c),c=-39/106+21/44*I,n=42 2865638408613422 l006 ln(2908/3873) 2865638408643377 p001 sum(1/(339*n+35)/(32^n),n=0..infinity) 2865638409529516 r009 Re(z^3+c),c=-43/118+12/35*I,n=4 2865638427864471 l006 ln(307/5391) 2865638435075279 a007 Real Root Of -184*x^4-209*x^3+923*x^2-296*x-938 2865638442358819 m001 (ArtinRank2-cos(1))/(-Stephens+Trott2nd) 2865638461232068 a003 sin(Pi*13/115)*sin(Pi*37/120) 2865638462492990 a001 5778*(1/2*5^(1/2)+1/2)^26*4^(10/23) 2865638473265937 r009 Im(z^3+c),c=-9/16+11/53*I,n=6 2865638474690259 a007 Real Root Of 998*x^4-853*x^3+298*x^2-854*x-296 2865638481559763 r005 Re(z^2+c),c=33/118+23/40*I,n=53 2865638489865518 r005 Im(z^2+c),c=-6/5+16/83*I,n=29 2865638492294725 a001 440719107401/329*121393^(11/24) 2865638492312551 a001 6643838879/987*12586269025^(11/24) 2865638506631455 m005 (1/3*Zeta(3)+1/2)/(3/11*2^(1/2)-7/10) 2865638518366650 s002 sum(A183785[n]/(n^3*pi^n+1),n=1..infinity) 2865638520308592 a001 7/2*144^(11/26) 2865638529321324 a003 cos(Pi*14/31)*cos(Pi*41/83) 2865638530606701 a007 Real Root Of 167*x^4+331*x^3-570*x^2-87*x+959 2865638548725612 r009 Re(z^3+c),c=-1/56+20/31*I,n=4 2865638553325478 m001 (FeigenbaumC+Salem)/(AlladiGrinstead-CareFree) 2865638562897589 a007 Real Root Of -196*x^4-464*x^3+585*x^2+583*x-835 2865638564729521 r005 Re(z^2+c),c=-2/7+29/64*I,n=60 2865638580388705 a001 521/6557470319842*4181^(2/13) 2865638585904126 r005 Im(z^2+c),c=27/118+7/38*I,n=31 2865638586217106 m005 (3*Catalan-2/5)/(1/6*Catalan+2/3) 2865638587770194 a007 Real Root Of 183*x^4+269*x^3-536*x^2+723*x+463 2865638601427808 r005 Re(z^2+c),c=-5/16+22/59*I,n=41 2865638616952259 m002 -Pi^4/6+Pi^5-3*ProductLog[Pi] 2865638617108892 a001 3/199*76^(17/25) 2865638620178682 a001 29/10946*2^(6/53) 2865638624847792 m001 (cos(Pi/12)*Zeta(1,2)-exp(gamma))/Zeta(1,2) 2865638628387981 r009 Re(z^3+c),c=-49/106+7/15*I,n=64 2865638629746062 a001 89/199*7^(21/22) 2865638631274522 a007 Real Root Of 28*x^4+770*x^3-940*x^2-325*x+656 2865638639596973 m001 (gamma+GaussKuzminWirsing)/(5^(1/2)+Chi(1)) 2865638649089592 h001 (2/11*exp(2)+1/10)/(2/3*exp(2)+1/9) 2865638651980404 a007 Real Root Of 424*x^4+896*x^3-680*x^2+994*x+925 2865638658586711 h001 (5/9*exp(1)+1/2)/(5/6*exp(2)+6/7) 2865638664920030 a007 Real Root Of 214*x^4+256*x^3-821*x^2+574*x-20 2865638669486347 r005 Im(z^2+c),c=-7/48+21/53*I,n=31 2865638680889389 a001 21/9349*2^(13/37) 2865638685583550 r005 Im(z^2+c),c=-1/10+37/43*I,n=27 2865638706490739 a007 Real Root Of -223*x^4-855*x^3-685*x^2+45*x+672 2865638724564820 a001 199/28657*2178309^(13/51) 2865638725030887 m001 (arctan(1/3)-GAMMA(23/24))/(FeigenbaumC+Kac) 2865638725695984 m005 (1/3*Catalan-1/4)/(5/7*5^(1/2)+1/3) 2865638728850405 a001 11/28657*196418^(30/41) 2865638748689209 m001 exp(Trott)*Porter*GAMMA(11/24) 2865638748795636 a009 6*(24-2^(1/4))^(1/2) 2865638752818135 a007 Real Root Of 33*x^4+972*x^3+759*x^2+102*x-537 2865638764271470 a001 1364/13*6765^(3/8) 2865638766519823 q001 1301/454 2865638768452874 a001 1/46347*987^(39/55) 2865638772901783 m001 (gamma(2)+Kac)/(PlouffeB+Riemann2ndZero) 2865638773005491 r004 Im(z^2+c),c=-13/22+1/19*I,z(0)=-1,n=46 2865638775516968 a007 Real Root Of 25*x^4-180*x^3+257*x^2-145*x+855 2865638777171524 m001 1/sin(Pi/5)/ln(Rabbit)/sqrt(3) 2865638784339705 m001 (gamma(1)-HeathBrownMoroz)/(ln(Pi)+3^(1/3)) 2865638788994743 m001 exp(1)^2/exp(GolombDickman)/sinh(1)^2 2865638793351575 l006 ln(6711/8938) 2865638796260198 a007 Real Root Of -124*x^4-76*x^3+643*x^2-534*x-237 2865638801637639 b008 (11*Coth[1/13])/5 2865638809934132 s002 sum(A191552[n]/(n^2*10^n+1),n=1..infinity) 2865638809934537 s002 sum(A191552[n]/(n^2*10^n-1),n=1..infinity) 2865638813010603 s002 sum(A152053[n]/(n^3*2^n-1),n=1..infinity) 2865638815344829 m001 AlladiGrinstead/(ZetaR(2)^LaplaceLimit) 2865638817870100 m001 1/GAMMA(11/24)^2*FeigenbaumB^2/ln(sqrt(5))^2 2865638821770258 b008 3*(-2+ArcCoth[Glaisher]) 2865638823453478 r005 Im(z^2+c),c=-5/13+20/41*I,n=51 2865638827943169 m001 (exp(1)-gamma)/(-Lehmer+Totient) 2865638841914257 l006 ln(448/7867) 2865638863092373 m001 (BesselI(1,2)-MasserGramain*Niven)/Niven 2865638866302211 m008 (4*Pi^4-1)/(3/4*Pi-1) 2865638866862368 h001 (9/11*exp(2)+1/8)/(4/7*exp(1)+3/5) 2865638875945977 r005 Re(z^2+c),c=-67/54+7/48*I,n=16 2865638878285362 m006 (4*Pi+1/4)/(5/6*exp(2*Pi)+1) 2865638889912797 a007 Real Root Of -156*x^4-214*x^3+446*x^2-592*x+125 2865638910935918 m001 1/sinh(1)/MadelungNaCl*exp(sqrt(Pi)) 2865638913977312 r005 Re(z^2+c),c=19/54+18/59*I,n=33 2865638938795723 a007 Real Root Of 64*x^4-22*x^3-373*x^2+465*x-438 2865638939716073 r009 Im(z^3+c),c=-13/58+16/57*I,n=11 2865638946141613 m005 (1/2*5^(1/2)+5/8)/(5/8*3^(1/2)+5) 2865638946518488 s002 sum(A211704[n]/(n^3*pi^n+1),n=1..infinity) 2865638951422213 r005 Im(z^2+c),c=-43/50+1/52*I,n=17 2865638956746810 m001 3^(1/2)*BesselJ(1,1)-PlouffeB 2865638964108732 a007 Real Root Of -326*x^4+931*x^3-741*x^2+555*x+244 2865638964982059 a001 2207*(1/2*5^(1/2)+1/2)^28*4^(10/23) 2865638975339769 m008 (3*Pi^5+3/4)/(1/3*Pi^6+1/6) 2865638978926695 h005 exp(cos(Pi*1/28)/cos(Pi*3/28)) 2865638981278082 r005 Im(z^2+c),c=-41/110+14/29*I,n=43 2865638986822049 m001 (Zeta(1,2)+FeigenbaumKappa)/(2^(1/3)-exp(1)) 2865639001146016 m004 -4*Cos[Sqrt[5]*Pi]+15*Pi*Csch[Sqrt[5]*Pi] 2865639004163769 a007 Real Root Of -195*x^4-160*x^3+949*x^2-591*x-102 2865639011844297 a007 Real Root Of 221*x^4+429*x^3-495*x^2+410*x+432 2865639019716345 s002 sum(A183785[n]/(n^3*pi^n-1),n=1..infinity) 2865639023416882 a007 Real Root Of 369*x^4+751*x^3-897*x^2+203*x+737 2865639023551828 a007 Real Root Of -170*x^4-580*x^3-372*x^2-275*x+82 2865639028400318 r005 Re(z^2+c),c=-19/74+20/39*I,n=29 2865639033690760 m008 (2/3*Pi^6+1/4)/(1/2*Pi+2/3) 2865639045454105 a007 Real Root Of -526*x^4+725*x^3+110*x^2+197*x-79 2865639049054007 m001 ln(2+3^(1/2))+Si(Pi)^Rabbit 2865639055720104 m001 1/Si(Pi)*Artin/exp(GAMMA(5/12))^2 2865639056447586 a007 Real Root Of -708*x^4+239*x^3+922*x^2+682*x-272 2865639067483141 m004 (-30*Pi)/E^(Sqrt[5]*Pi)+4*Cos[Sqrt[5]*Pi] 2865639078129187 r005 Im(z^2+c),c=39/106+19/60*I,n=16 2865639078952532 m001 polylog(4,1/2)^(ReciprocalLucas/MertensB2) 2865639087545240 l006 ln(3803/5065) 2865639103365265 m006 (1/5*exp(Pi)-4)/(2/5*exp(2*Pi)+5) 2865639106261400 r008 a(0)=3,K{-n^6,48-30*n-52*n^2+42*n^3} 2865639121044901 m001 1/cos(Pi/5)^2*Salem*ln(log(1+sqrt(2)))^2 2865639125085430 a007 Real Root Of -29*x^4-808*x^3+628*x^2-913*x+205 2865639126868013 r005 Im(z^2+c),c=27/118+7/38*I,n=32 2865639127291801 r005 Im(z^2+c),c=31/94+13/46*I,n=5 2865639128234853 a007 Real Root Of 248*x^4+638*x^3-157*x^2+104*x-123 2865639129795952 m001 GAMMA(19/24)/HardHexagonsEntropy*Magata 2865639133820162 m004 -4*Cos[Sqrt[5]*Pi]+15*Pi*Sech[Sqrt[5]*Pi] 2865639138899944 m006 (5/6*Pi^2-2/3)/(1/2*exp(2*Pi)-4) 2865639143179550 a003 cos(Pi*38/93)/sin(Pi*37/82) 2865639162771325 r009 Re(z^3+c),c=-5/98+12/19*I,n=22 2865639164882074 m001 (-BesselJ(1,1)+ZetaP(2))/(cos(1)-cos(1/12*Pi)) 2865639170590293 m001 ln(GAMMA(1/4))^2*CopelandErdos^2/LambertW(1)^2 2865639174179312 m002 E^Pi/Pi^3+(Pi^2*ProductLog[Pi])/5 2865639184593185 r005 Re(z^2+c),c=-35/102+31/59*I,n=19 2865639207169100 a007 Real Root Of 274*x^4+630*x^3-454*x^2+129*x+446 2865639213396305 a007 Real Root Of 181*x^4+179*x^3-617*x^2+776*x-703 2865639220954423 m001 exp(Kolakoski)*FeigenbaumAlpha/GAMMA(5/24)^2 2865639227871814 r005 Im(z^2+c),c=27/98+3/22*I,n=46 2865639272572216 r005 Re(z^2+c),c=4/13+8/45*I,n=4 2865639282715407 a003 cos(Pi*11/118)/sin(Pi*9/83) 2865639283658403 r009 Im(z^3+c),c=-10/27+9/41*I,n=23 2865639286318734 a007 Real Root Of -24*x^4-702*x^3-374*x^2+963*x-534 2865639291141140 r009 Im(z^3+c),c=-9/106+13/42*I,n=2 2865639310548110 a007 Real Root Of -351*x^4-744*x^3+437*x^2-885*x+37 2865639336016254 r005 Re(z^2+c),c=5/27+22/51*I,n=16 2865639345378231 m001 (Artin-HeathBrownMoroz)^BesselI(0,1) 2865639345493154 m001 1/Catalan/ln(TwinPrimes)^2*GAMMA(5/12)^2 2865639352410701 a007 Real Root Of -793*x^4+866*x^3-169*x^2+324*x-94 2865639361989726 q001 106/3699 2865639383202659 m001 (2^(1/3)-BesselK(0,1))/(-Zeta(1/2)+Porter) 2865639397728267 r005 Im(z^2+c),c=-25/62+25/49*I,n=41 2865639399766677 a007 Real Root Of -31*x^4-871*x^3+501*x^2+93*x-507 2865639402851962 a007 Real Root Of -306*x^4-801*x^3+194*x^2+57*x+356 2865639405793530 m001 (KhinchinLevy+Niven)/(Artin+HardyLittlewoodC3) 2865639433760704 m001 exp(GAMMA(3/4))/GAMMA(11/24)^2*Pi 2865639461895223 a001 19/11592*46368^(41/59) 2865639462183247 a007 Real Root Of 337*x^4+723*x^3-458*x^2+977*x+849 2865639469120254 a001 416020/161*199^(5/11) 2865639471434391 r005 Im(z^2+c),c=-17/20+11/59*I,n=36 2865639475543542 r005 Re(z^2+c),c=-33/106+3/8*I,n=22 2865639496582287 h005 exp(sin(Pi*5/46)+sin(Pi*13/51)) 2865639503878945 s002 sum(A049802[n]/(2^n-1),n=1..infinity) 2865639505145688 a007 Real Root Of -952*x^4-926*x^3-918*x^2+656*x+248 2865639507795053 l006 ln(4698/6257) 2865639512802652 a007 Real Root Of 42*x^4-167*x^3-617*x^2+354*x-681 2865639517497937 r005 Im(z^2+c),c=-41/64+5/17*I,n=12 2865639545439726 r009 Re(z^3+c),c=-13/29+28/61*I,n=41 2865639575298689 m001 (ZetaQ(3)-Pi*csc(11/24*Pi)/GAMMA(13/24))^ln(5) 2865639575743571 r005 Re(z^2+c),c=51/118+59/62*I,n=2 2865639587804520 r005 Re(z^2+c),c=-11/14+3/158*I,n=16 2865639593780438 r009 Im(z^3+c),c=-27/70+8/45*I,n=3 2865639595718136 m005 (1/2*Zeta(3)+1/11)/(8/9*3^(1/2)+7/8) 2865639601287573 r005 Re(z^2+c),c=-5/19+31/42*I,n=4 2865639602437834 s003 concatenated sequence A179251 2865639610147038 r002 50th iterates of z^2 + 2865639614055141 m001 (Backhouse+Salem)/(Zeta(5)-GAMMA(5/6)) 2865639615675020 m004 3*Sec[Sqrt[5]*Pi]^2+Sinh[Sqrt[5]*Pi]/2 2865639638507921 r009 Re(z^3+c),c=-23/62+7/23*I,n=6 2865639646460732 m001 (FeigenbaumKappa-Riemann1stZero)^ln(2+3^(1/2)) 2865639658218098 p001 sum(1/(367*n+315)/n/(512^n),n=1..infinity) 2865639668254273 m001 (exp(1/Pi)-gamma)/(-KhinchinHarmonic+Porter) 2865639681474962 a007 Real Root Of 688*x^4+179*x^3-422*x^2-737*x+237 2865639683468706 p003 LerchPhi(1/2,1,94/221) 2865639692148458 r009 Re(z^3+c),c=-47/106+19/41*I,n=28 2865639694017986 m001 1/Khintchine*ln(Champernowne)/exp(1) 2865639694215423 a007 Real Root Of -180*x^4-344*x^3+458*x^2-36*x+179 2865639702322722 r005 Im(z^2+c),c=-19/56+28/57*I,n=21 2865639705279612 a007 Real Root Of 343*x^4+437*x^3-847*x^2-890*x+312 2865639725280238 r009 Re(z^3+c),c=-31/70+15/34*I,n=48 2865639733150627 m001 1/ln(PrimesInBinary)^2/Conway/sin(Pi/5)^2 2865639735819197 r005 Re(z^2+c),c=-25/86+18/41*I,n=33 2865639743426318 l006 ln(141/2476) 2865639746052339 r009 Im(z^3+c),c=-25/94+15/56*I,n=7 2865639750486838 a001 682/305*3^(7/31) 2865639766756014 r005 Re(z^2+c),c=-37/118+16/49*I,n=7 2865639774862478 m004 (75*Sqrt[5])/(2*Pi)+3/ProductLog[Sqrt[5]*Pi] 2865639780555178 m001 Paris/Backhouse^2/ln(Salem) 2865639783088703 r005 Im(z^2+c),c=-61/50+3/26*I,n=28 2865639788025408 a001 1/90481*76^(11/50) 2865639790962519 m001 (exp(1/Pi)-GAMMA(23/24))/(Rabbit-Tetranacci) 2865639793546883 l006 ln(5593/7449) 2865639798440430 m004 -2/5+20/(Pi*Log[Sqrt[5]*Pi]) 2865639811567755 a007 Real Root Of -244*x^4-581*x^3+709*x^2+846*x-616 2865639812041368 a007 Real Root Of 311*x^4+634*x^3-651*x^2+291*x+127 2865639836623309 b008 5+89*Sech[2] 2865639836899017 m001 (gamma-ln(2))/(FeigenbaumMu+PlouffeB) 2865639846498952 m001 (FeigenbaumB-FeigenbaumC)/(Ei(1)+BesselI(1,2)) 2865639857080364 b008 Csch[3+3^(1/5)] 2865639874056133 m001 (Si(Pi)-ln(3))/(3^(1/3)+KhinchinLevy) 2865639875299466 m005 (-11/20+1/4*5^(1/2))/(2/9*Catalan+1/9) 2865639876362868 m003 -30+(3*Sqrt[5])/16+Tanh[1/2+Sqrt[5]/2] 2865639881400199 m001 (Gompertz+Paris)/(BesselI(1,1)-FellerTornier) 2865639887532031 r009 Re(z^3+c),c=-1/29+9/29*I,n=3 2865639890659200 b008 1/4+ExpIntegralE[3,1]/3 2865639891216839 a007 Real Root Of -232*x^4+993*x^3-703*x^2+586*x-132 2865639904899966 m001 GAMMA(2/3)^((1+3^(1/2))^(1/2))/Stephens 2865639940488004 m001 (3^(1/3))/ln(Cahen)^2/sin(Pi/12) 2865639941949345 a007 Real Root Of 832*x^4-352*x^3-66*x^2-787*x-234 2865639954008830 a001 76/591286729879*6765^(1/11) 2865639955147304 a001 19/387002188980*267914296^(1/11) 2865639955147304 a001 76/4052739537881*10610209857723^(1/11) 2865639955147304 a001 76/2504730781961*53316291173^(1/11) 2865639955147333 a001 76/956722026041*1346269^(1/11) 2865639976529197 a009 3^(1/4)*(6^(1/3)+5^(2/3))^(1/2) 2865639980537714 a007 Real Root Of -547*x^4+826*x^3+315*x^2+704*x+199 2865639992198863 a007 Real Root Of 292*x^4+893*x^3+482*x^2+939*x+56 2865639995237411 b008 JacobiNC[1,-5*Sqrt[2]] 2865640000461504 l006 ln(6488/8641) 2865640000953257 m005 (1/2*gamma-1/4)/(9/11*gamma+7/8) 2865640003928543 a007 Real Root Of 686*x^4-730*x^3+709*x^2-977*x-360 2865640005329164 r002 5th iterates of z^2 + 2865640018626596 r009 Im(z^3+c),c=-9/31+15/58*I,n=13 2865640035366349 r005 Im(z^2+c),c=-19/23+10/51*I,n=5 2865640041148848 m005 (1/2*Catalan+4)/(6/11*Zeta(3)+9/10) 2865640049887398 r009 Im(z^3+c),c=-21/62+14/59*I,n=9 2865640051625582 s001 sum(1/10^(n-1)*A190981[n]/n^n,n=1..infinity) 2865640061645929 a007 Real Root Of -761*x^4+113*x^3+648*x^2+978*x-331 2865640066696236 m001 (BesselI(1,2)-Zeta(5))/GAMMA(11/24) 2865640069732257 r005 Im(z^2+c),c=-15/14+61/241*I,n=63 2865640072195785 m001 Khintchine/exp(FeigenbaumDelta)/Zeta(1,2)^2 2865640082840681 r005 Im(z^2+c),c=27/118+7/38*I,n=27 2865640086547515 m001 1/ln(GAMMA(5/12))/Riemann3rdZero^2/exp(1)^2 2865640103146173 m006 (2/3*exp(Pi)-3/4)/(3/5*Pi^2-4/5) 2865640107924953 m005 (-17/28+1/4*5^(1/2))/(3/11*5^(1/2)-7/9) 2865640118297854 m001 (Chi(1)+ln(Pi))/(-Backhouse+LandauRamanujan) 2865640131503414 r005 Im(z^2+c),c=37/126+3/31*I,n=16 2865640137245973 m002 3+Pi^4/6+Pi^5/Log[Pi] 2865640147806019 m001 (BesselI(1,1)+Gompertz)/(Zeta(5)-3^(1/3)) 2865640157209906 l006 ln(7383/9833) 2865640169038168 r005 Re(z^2+c),c=11/36+3/23*I,n=23 2865640177601220 r009 Re(z^3+c),c=-7/15+24/53*I,n=25 2865640178742420 a007 Real Root Of 647*x^4+966*x^3+779*x^2-469*x-180 2865640184694314 m009 (4*Psi(1,2/3)-1/4)/(8/5*Catalan+1/5*Pi^2+3/4) 2865640185377549 a003 sin(Pi*3/35)/cos(Pi*4/33) 2865640201008868 r005 Im(z^2+c),c=-7/48+21/53*I,n=36 2865640206647989 a001 832040/2207*199^(9/11) 2865640226623543 r008 a(0)=0,K{-n^6,-9+73*n^3+50*n^2-79*n} 2865640235470274 a009 1/13*(22*13^(1/2)+24)*13^(1/2) 2865640246335842 m001 (BesselJ(1,1)+QuadraticClass)/(ln(3)-ln(Pi)) 2865640282680615 m001 LaplaceLimit/(BesselI(1,1)+MadelungNaCl) 2865640286730041 r005 Re(z^2+c),c=-15/74+31/59*I,n=13 2865640290271535 r005 Re(z^2+c),c=-41/86+21/40*I,n=58 2865640292498410 a007 Real Root Of 207*x^4+455*x^3-221*x^2+409*x-265 2865640300493148 m001 (GAMMA(23/24)+Sierpinski)/(LambertW(1)-ln(2)) 2865640307907627 q001 819/2858 2865640309222118 a001 1/13*1548008755920^(3/8) 2865640317168893 r008 a(0)=0,K{-n^6,57-47*n+57*n^2-33*n^3} 2865640318398680 r002 7th iterates of z^2 + 2865640329492850 m001 exp(BesselK(1,1))/Rabbit*GAMMA(11/12)^2 2865640344161340 m005 (1/2*5^(1/2)+3/11)/(2*exp(1)-7/12) 2865640348778557 r009 Re(z^3+c),c=-5/29+38/41*I,n=16 2865640351264846 m004 (-125*Pi)/12+3*Sec[Sqrt[5]*Pi] 2865640354455264 m001 (Grothendieck+MasserGramain)^KhinchinLevy 2865640357249912 r005 Im(z^2+c),c=7/46+23/49*I,n=4 2865640364571764 r005 Im(z^2+c),c=11/118+31/52*I,n=45 2865640370663461 m008 (1/3*Pi^2-5)/(1/6*Pi^3+4/5) 2865640373234664 m002 -Pi^2+(Pi^5*Sinh[Pi])/(Log[Pi]*ProductLog[Pi]) 2865640380430178 r009 Re(z^3+c),c=-47/106+15/34*I,n=53 2865640389841953 m005 (1/3*5^(1/2)+1/8)/(11/12*exp(1)+6/11) 2865640396374258 m001 1/Porter^2*exp(LandauRamanujan)^2/RenyiParking 2865640398873172 r002 30th iterates of z^2 + 2865640400546357 r005 Im(z^2+c),c=-51/86+1/19*I,n=50 2865640403055438 r005 Im(z^2+c),c=7/62+11/41*I,n=15 2865640410469158 a007 Real Root Of 340*x^4+689*x^3-656*x^2+594*x+375 2865640411340498 m001 (ln(2)/ln(10))^StronglyCareFree/exp(1/Pi) 2865640416445672 m001 (1-exp(1/Pi))/(-GAMMA(11/12)+Riemann1stZero) 2865640421237497 r009 Im(z^3+c),c=-17/46+11/50*I,n=18 2865640429512264 r005 Re(z^2+c),c=-2/7+19/42*I,n=34 2865640430972955 l006 ln(4919/5062) 2865640431263263 m001 1/exp(GAMMA(1/3))^2*Bloch^2*sqrt(1+sqrt(3))^2 2865640436302578 m001 1/Zeta(1/2)^2/ln(Cahen)^2/sin(1) 2865640437626069 b008 Zeta[3/2,8/9] 2865640442507437 r005 Im(z^2+c),c=-157/114+5/49*I,n=4 2865640473739577 r009 Im(z^3+c),c=-10/27+9/41*I,n=17 2865640474022176 m001 (-ErdosBorwein+Trott)/(LambertW(1)-Psi(2,1/3)) 2865640476381344 m001 Pi*(2^(1/3)-LambertW(1)+Ei(1,1)) 2865640486489664 r009 Re(z^3+c),c=-47/106+31/57*I,n=33 2865640486859682 p001 sum((-1)^n/(421*n+238)/n/(5^n),n=1..infinity) 2865640492734426 l006 ln(539/9465) 2865640492933198 a007 Real Root Of 224*x^4+805*x^3+455*x^2-360*x-930 2865640499348531 a009 9^(2/3)/(10^(3/4)-5^(3/4))^(1/2) 2865640508098900 a007 Real Root Of 666*x^4-99*x^3+120*x^2-691*x+186 2865640520563372 r009 Re(z^3+c),c=-21/58+3/11*I,n=4 2865640524676432 m001 Sarnak/(ReciprocalFibonacci-GaussAGM) 2865640546486177 m001 1/GAMMA(5/24)*ln(Kolakoski)^2*cosh(1)^2 2865640566312427 m001 (FeigenbaumD-LambertW(1))/(Robbin+ZetaP(4)) 2865640580642096 m005 (1/2*exp(1)+1/3)/(1/3*exp(1)+5) 2865640580864351 m005 (1/3*Zeta(3)+1/5)/(10/11*exp(1)-3/8) 2865640584629879 r009 Re(z^3+c),c=-23/52+23/51*I,n=32 2865640611526508 m009 (4*Catalan+1/2*Pi^2+2)/(1/3*Psi(1,1/3)+1/3) 2865640616073559 r002 64th iterates of z^2 + 2865640617380044 m001 (TreeGrowth2nd+ZetaQ(3))/(Paris+Porter) 2865640622719452 r005 Im(z^2+c),c=-39/110+13/28*I,n=22 2865640626229435 m001 (Otter-Salem)/(2*Pi/GAMMA(5/6)+Cahen) 2865640626325437 r009 Re(z^3+c),c=-39/98+22/61*I,n=26 2865640627173867 m005 (1/3*3^(1/2)-2/7)/(1/8*Pi+5/8) 2865640646217307 r005 Im(z^2+c),c=-9/14+12/221*I,n=51 2865640647191762 r009 Re(z^3+c),c=-7/13+7/24*I,n=42 2865640650026435 r002 3th iterates of z^2 + 2865640655671035 m001 (ln(Pi)+Kolakoski)/(Pi+Pi*2^(1/2)/GAMMA(3/4)) 2865640668612846 m001 (sin(1/12*Pi)+PlouffeB)/(Sarnak+Tribonacci) 2865640672398545 r008 a(0)=0,K{-n^6,27+9*n^3-83*n^2+50*n} 2865640701008602 a001 7/610*5^(29/51) 2865640701089030 m001 (2^(1/2)+1)/(-cos(1/12*Pi)+Champernowne) 2865640706616568 m001 1/GAMMA(11/24)*exp(CareFree)^2/exp(1)^2 2865640709138070 a001 726103/1926*199^(9/11) 2865640715978268 a007 Real Root Of 154*x^4+505*x^3+234*x^2-43*x-546 2865640717993469 m004 -125*Pi*Cos[Sqrt[5]*Pi]+3*Coth[Sqrt[5]*Pi]^2 2865640717993545 m004 -3-125*Pi*Cos[Sqrt[5]*Pi]+6*Coth[Sqrt[5]*Pi] 2865640722287253 r005 Im(z^2+c),c=-17/98+22/51*I,n=8 2865640722799196 b008 95*Pi*Cos[6] 2865640726544592 r005 Re(z^2+c),c=-2/7+29/64*I,n=53 2865640727259417 a007 Real Root Of -26*x^4+112*x^3+550*x^2+256*x+606 2865640733818912 m004 -2-125*Pi*Cos[Sqrt[5]*Pi]+5*Coth[Sqrt[5]*Pi] 2865640733886654 a007 Real Root Of 91*x^4-785*x^3-289*x^2-689*x+20 2865640749644279 m004 -1-125*Pi*Cos[Sqrt[5]*Pi]+4*Coth[Sqrt[5]*Pi] 2865640758192691 l006 ln(398/6989) 2865640765469646 m004 -125*Pi*Cos[Sqrt[5]*Pi]+3*Coth[Sqrt[5]*Pi] 2865640765469721 m004 -6+125*Pi*Cos[Sqrt[5]*Pi]+3*Tanh[Sqrt[5]*Pi] 2865640774228105 a007 Real Root Of -57*x^4-100*x^3+204*x^2+144*x+228 2865640776707737 m001 1/exp(Riemann1stZero)/FeigenbaumAlpha*Pi^2 2865640776735578 m001 FellerTornier-GAMMA(3/4)-ReciprocalLucas 2865640777806446 r002 40th iterates of z^2 + 2865640781295013 m004 -1+125*Pi*Cos[Sqrt[5]*Pi]-2*Coth[Sqrt[5]*Pi] 2865640781295063 m004 -5+125*Pi*Cos[Sqrt[5]*Pi]+2*Tanh[Sqrt[5]*Pi] 2865640781295088 m004 -4+125*Pi*Cos[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]^2 2865640782450400 a001 5702887/15127*199^(9/11) 2865640793146525 a001 4976784/13201*199^(9/11) 2865640794707069 a001 39088169/103682*199^(9/11) 2865640794934749 a001 34111385/90481*199^(9/11) 2865640794967967 a001 267914296/710647*199^(9/11) 2865640794972814 a001 233802911/620166*199^(9/11) 2865640794973521 a001 1836311903/4870847*199^(9/11) 2865640794973624 a001 1602508992/4250681*199^(9/11) 2865640794973639 a001 12586269025/33385282*199^(9/11) 2865640794973641 a001 10983760033/29134601*199^(9/11) 2865640794973641 a001 86267571272/228826127*199^(9/11) 2865640794973641 a001 267913919/710646*199^(9/11) 2865640794973641 a001 591286729879/1568397607*199^(9/11) 2865640794973641 a001 516002918640/1368706081*199^(9/11) 2865640794973641 a001 4052739537881/10749957122*199^(9/11) 2865640794973641 a001 3536736619241/9381251041*199^(9/11) 2865640794973641 a001 6557470319842/17393796001*199^(9/11) 2865640794973641 a001 2504730781961/6643838879*199^(9/11) 2865640794973641 a001 956722026041/2537720636*199^(9/11) 2865640794973641 a001 365435296162/969323029*199^(9/11) 2865640794973641 a001 139583862445/370248451*199^(9/11) 2865640794973642 a001 53316291173/141422324*199^(9/11) 2865640794973642 a001 20365011074/54018521*199^(9/11) 2865640794973648 a001 7778742049/20633239*199^(9/11) 2865640794973688 a001 2971215073/7881196*199^(9/11) 2865640794973958 a001 1134903170/3010349*199^(9/11) 2865640794975809 a001 433494437/1149851*199^(9/11) 2865640794988497 a001 165580141/439204*199^(9/11) 2865640795075463 a001 63245986/167761*199^(9/11) 2865640795671538 a001 24157817/64079*199^(9/11) 2865640797120405 m004 -4+125*Pi*Cos[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2865640799332130 h002 exp(12^(1/3)/(6^(1/2)+3^(3/4))^(1/2)) 2865640799757094 a001 9227465/24476*199^(9/11) 2865640812945747 m004 -3+125*Pi*Cos[Sqrt[5]*Pi] 2865640821686986 a005 (1/cos(15/163*Pi))^1057 2865640826431559 r002 18th iterates of z^2 + 2865640827759913 a001 3524578/9349*199^(9/11) 2865640828771114 m004 -4+125*Pi*Cos[Sqrt[5]*Pi]+Coth[Sqrt[5]*Pi] 2865640834523267 a007 Real Root Of -509*x^4-170*x^3-678*x^2+888*x+26 2865640837544997 r005 Re(z^2+c),c=-37/106+4/21*I,n=8 2865640844596406 m004 -2+125*Pi*Cos[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi]^2 2865640844596431 m004 -1+125*Pi*Cos[Sqrt[5]*Pi]-2*Tanh[Sqrt[5]*Pi] 2865640844596481 m004 -5+125*Pi*Cos[Sqrt[5]*Pi]+2*Coth[Sqrt[5]*Pi] 2865640849497383 r005 Im(z^2+c),c=17/58+6/53*I,n=45 2865640853055020 m001 1/Zeta(9)/ln(Trott)^2*sin(Pi/5) 2865640855125998 a001 4976784/281*76^(1/9) 2865640860421773 m004 -125*Pi*Cos[Sqrt[5]*Pi]+3*Tanh[Sqrt[5]*Pi] 2865640860421848 m004 -6+125*Pi*Cos[Sqrt[5]*Pi]+3*Coth[Sqrt[5]*Pi] 2865640876247115 m004 -1-125*Pi*Cos[Sqrt[5]*Pi]+4*Tanh[Sqrt[5]*Pi] 2865640883949133 m005 (1/3*5^(1/2)-1/9)/(4/5*Pi-3/10) 2865640892072457 m004 -2-125*Pi*Cos[Sqrt[5]*Pi]+5*Tanh[Sqrt[5]*Pi] 2865640895917544 s002 sum(A269112[n]/(n^2*10^n+1),n=1..infinity) 2865640896639226 r009 Im(z^3+c),c=-10/27+9/41*I,n=27 2865640903545507 m001 (GAMMA(17/24)-CareFree)/(ln(Pi)+ln(2^(1/2)+1)) 2865640907897723 m004 -125*Pi*Cos[Sqrt[5]*Pi]+3*Tanh[Sqrt[5]*Pi]^2 2865640907897799 m004 -3-125*Pi*Cos[Sqrt[5]*Pi]+6*Tanh[Sqrt[5]*Pi] 2865640927992469 p003 LerchPhi(1/25,5,158/123) 2865640940045759 r009 Im(z^3+c),c=-10/27+9/41*I,n=26 2865640952131266 a008 Real Root of x^5-2*x^4+x^3-9*x^2-8 2865640952999617 m001 (Pi+LambertW(1))/(Zeta(1,-1)-GAMMA(5/6)) 2865640971750544 r009 Re(z^3+c),c=-13/34+22/37*I,n=30 2865640990107249 r005 Im(z^2+c),c=31/106+4/35*I,n=36 2865641003536887 r005 Im(z^2+c),c=27/98+3/22*I,n=47 2865641007577183 p004 log(35257/34261) 2865641019694108 a001 1346269/3571*199^(9/11) 2865641025641025 q001 2794/975 2865641031399356 m001 1/exp(Salem)/ErdosBorwein/sin(Pi/12)^2 2865641035373105 a007 Real Root Of -408*x^4-954*x^3+657*x^2+108*x-22 2865641035551380 m005 (1/2*Pi-3/10)/(4/9*gamma-7/10) 2865641036568242 m005 (1/2*exp(1)+1)/(1/2*Zeta(3)+2/9) 2865641042759445 r005 Re(z^2+c),c=-8/29+22/45*I,n=16 2865641044518294 h001 (1/10*exp(1)+1/2)/(10/11*exp(1)+2/9) 2865641049157897 m001 Riemann2ndZero*exp(CareFree)^2*gamma^2 2865641056267007 a001 1364/17711*832040^(13/49) 2865641065313010 m005 (1/2*2^(1/2)-3/8)/(5/9*5^(1/2)-1/12) 2865641076062966 a007 Real Root Of -388*x^4+146*x^3+35*x^2+631*x+184 2865641076218183 m001 exp((3^(1/3)))^2*Magata/GAMMA(5/12) 2865641077384600 r005 Re(z^2+c),c=9/40+20/43*I,n=31 2865641104692822 a007 Real Root Of -29*x^4-797*x^3+964*x^2-360*x-998 2865641113078491 m001 Zeta(1/2)/exp(FeigenbaumB)^2*Zeta(5) 2865641118634780 r005 Im(z^2+c),c=25/126+23/44*I,n=15 2865641120256461 r002 45th iterates of z^2 + 2865641121993927 r005 Im(z^2+c),c=-16/27+22/57*I,n=22 2865641124170410 r005 Re(z^2+c),c=-29/90+20/59*I,n=16 2865641132627029 r009 Im(z^3+c),c=-10/27+9/41*I,n=31 2865641136325230 m001 (GAMMA(3/4)-cos(1/12*Pi))/(Pi-5^(1/2)) 2865641138282189 r005 Re(z^2+c),c=-13/48+31/63*I,n=64 2865641147075881 r005 Im(z^2+c),c=29/106+1/63*I,n=15 2865641150519982 m001 (-Gompertz+Porter)/(BesselI(0,1)+Pi^(1/2)) 2865641155759068 r009 Im(z^3+c),c=-10/27+9/41*I,n=32 2865641157985839 r009 Im(z^3+c),c=-10/27+9/41*I,n=35 2865641159085884 r009 Im(z^3+c),c=-10/27+9/41*I,n=36 2865641160044987 r009 Im(z^3+c),c=-10/27+9/41*I,n=40 2865641160083178 r009 Im(z^3+c),c=-10/27+9/41*I,n=39 2865641160180393 r009 Im(z^3+c),c=-10/27+9/41*I,n=44 2865641160192922 r009 Im(z^3+c),c=-10/27+9/41*I,n=45 2865641160194606 r009 Im(z^3+c),c=-10/27+9/41*I,n=48 2865641160195154 r009 Im(z^3+c),c=-10/27+9/41*I,n=49 2865641160195721 r009 Im(z^3+c),c=-10/27+9/41*I,n=53 2865641160195751 r009 Im(z^3+c),c=-10/27+9/41*I,n=52 2865641160195799 r009 Im(z^3+c),c=-10/27+9/41*I,n=57 2865641160195806 r009 Im(z^3+c),c=-10/27+9/41*I,n=58 2865641160195807 r009 Im(z^3+c),c=-10/27+9/41*I,n=61 2865641160195807 r009 Im(z^3+c),c=-10/27+9/41*I,n=62 2865641160195808 r009 Im(z^3+c),c=-10/27+9/41*I,n=64 2865641160195808 r009 Im(z^3+c),c=-10/27+9/41*I,n=63 2865641160195808 r009 Im(z^3+c),c=-10/27+9/41*I,n=60 2865641160195809 r009 Im(z^3+c),c=-10/27+9/41*I,n=56 2865641160195810 r009 Im(z^3+c),c=-10/27+9/41*I,n=59 2865641160195813 r009 Im(z^3+c),c=-10/27+9/41*I,n=54 2865641160195835 r009 Im(z^3+c),c=-10/27+9/41*I,n=55 2865641160196055 r009 Im(z^3+c),c=-10/27+9/41*I,n=51 2865641160196096 r009 Im(z^3+c),c=-10/27+9/41*I,n=50 2865641160197344 r009 Im(z^3+c),c=-10/27+9/41*I,n=47 2865641160198131 r009 Im(z^3+c),c=-10/27+9/41*I,n=43 2865641160200282 r009 Im(z^3+c),c=-10/27+9/41*I,n=46 2865641160210400 r009 Im(z^3+c),c=-10/27+9/41*I,n=41 2865641160245557 r009 Im(z^3+c),c=-10/27+9/41*I,n=42 2865641160622877 r009 Im(z^3+c),c=-10/27+9/41*I,n=38 2865641160740131 r009 Im(z^3+c),c=-10/27+9/41*I,n=37 2865641162063970 r009 Im(z^3+c),c=-10/27+9/41*I,n=30 2865641162729739 r009 Im(z^3+c),c=-10/27+9/41*I,n=34 2865641166068333 a001 1/5473*121393^(19/44) 2865641166436409 r009 Re(z^3+c),c=-3/16+40/43*I,n=38 2865641167402607 a007 Real Root Of 722*x^4+322*x^3+707*x^2-93*x-82 2865641167542960 a007 Real Root Of -354*x^4-739*x^3+520*x^2-949*x-508 2865641168298649 r009 Im(z^3+c),c=-10/27+9/41*I,n=33 2865641192645034 a001 11/610*121393^(17/27) 2865641193078199 r009 Im(z^3+c),c=-10/27+9/41*I,n=28 2865641200040735 a005 (1/cos(7/227*Pi))^224 2865641212669717 a007 Real Root Of 276*x^4-713*x^3+770*x^2-706*x+154 2865641222385144 r005 Re(z^2+c),c=-103/86+34/47*I,n=2 2865641228821255 r005 Im(z^2+c),c=-35/82+28/57*I,n=51 2865641248162358 r009 Im(z^3+c),c=-10/27+9/41*I,n=29 2865641264840472 m001 exp(1)^exp(1/exp(1))-exp(1/Pi) 2865641272016312 r009 Im(z^3+c),c=-49/86+25/54*I,n=12 2865641282570562 m001 sin(Pi/12)^2/FransenRobinson*ln(sqrt(2))^2 2865641289484781 a008 Real Root of x^2-82119 2865641293504396 l006 ln(895/1192) 2865641308149217 a007 Real Root Of -365*x^4-861*x^3+517*x^2+37*x+213 2865641313444428 m001 (3^(1/3)+GAMMA(7/12))/(FeigenbaumC-Kolakoski) 2865641314931781 l006 ln(257/4513) 2865641314931781 p004 log(4513/257) 2865641342128231 r005 Im(z^2+c),c=-7/26+4/9*I,n=38 2865641348306287 r005 Im(z^2+c),c=-9/82+15/43*I,n=4 2865641370728828 r005 Im(z^2+c),c=-113/98+7/25*I,n=25 2865641373062398 a001 2/13*28657^(2/33) 2865641379310880 r008 a(0)=3,K{-n^6,50+44*n^3-57*n^2-29*n} 2865641382562120 r009 Re(z^3+c),c=-12/29+7/18*I,n=32 2865641389499833 r005 Im(z^2+c),c=33/106+1/12*I,n=46 2865641432007009 a005 (1/sin(85/189*Pi))^268 2865641465863153 r002 22th iterates of z^2 + 2865641471968839 m002 -4-Pi^4+Pi^5/5+Sinh[Pi] 2865641473070597 r005 Im(z^2+c),c=-11/30+25/52*I,n=46 2865641490815012 h001 (-exp(8)+1)/(-7*exp(5)-1) 2865641495834310 h001 (5/9*exp(1)+3/7)/(7/8*exp(2)+3/10) 2865641496375583 r009 Im(z^3+c),c=-17/42+12/61*I,n=20 2865641497815695 m005 (1/3*3^(1/2)+3/7)/(1/2*Zeta(3)-1/4) 2865641502113165 s001 sum(exp(-Pi/3)^(n-1)*A162935[n],n=1..infinity) 2865641510750330 m005 (1/2*5^(1/2)+11/12)/(3/7*Pi-7/11) 2865641520782552 m006 (5/6*exp(2*Pi)-1/6)/(4*Pi+3) 2865641524919328 s002 sum(A077795[n]/(n^3*10^n+1),n=1..infinity) 2865641536060609 r005 Re(z^2+c),c=-19/54+10/49*I,n=24 2865641549840640 a003 sin(Pi*1/25)+sin(Pi*5/97) 2865641570766299 r005 Re(z^2+c),c=-45/122+1/62*I,n=12 2865641599081822 a007 Real Root Of 383*x^4+745*x^3-726*x^2+705*x-314 2865641603543670 r009 Re(z^3+c),c=-15/34+11/25*I,n=38 2865641611812967 r009 Re(z^3+c),c=-35/122+40/51*I,n=6 2865641613148491 m005 (1/2*Zeta(3)+2/7)/(2/3*Pi+1) 2865641627629752 h001 (5/9*exp(1)+6/11)/(11/12*exp(2)+2/5) 2865641640473470 r002 24th iterates of z^2 + 2865641657159158 r002 41th iterates of z^2 + 2865641664004937 r005 Re(z^2+c),c=-13/46+6/13*I,n=59 2865641668815386 r005 Im(z^2+c),c=-1/6+17/42*I,n=30 2865641669756928 r005 Re(z^2+c),c=-127/110+11/51*I,n=48 2865641686795462 p003 LerchPhi(1/5,5,148/115) 2865641692481305 p001 sum((-1)^n/(203*n+81)/n/(12^n),n=1..infinity) 2865641697163225 m001 cos(1)^ln(Pi)-ReciprocalFibonacci 2865641710026484 r005 Re(z^2+c),c=-19/70+26/53*I,n=64 2865641723092487 m005 (1/3*Pi+3/7)/(5/9*5^(1/2)-8/11) 2865641742977019 r005 Im(z^2+c),c=-20/21+1/37*I,n=4 2865641748044684 a007 Real Root Of 136*x^4+87*x^3-845*x^2+98*x+96 2865641748845725 r009 Re(z^3+c),c=-17/62+5/57*I,n=5 2865641749432339 m001 (Pi+2^(1/2))/cos(1)-2*Pi/GAMMA(5/6) 2865641753626300 r005 Re(z^2+c),c=-65/82+1/39*I,n=32 2865641760404524 m001 (1+3^(1/2))^(1/2)/(Robbin^MertensB3) 2865641772801965 a005 (1/cos(17/129*Pi))^638 2865641778689390 a007 Real Root Of -252*x^4-585*x^3+475*x^2+146*x-255 2865641788171169 a007 Real Root Of 597*x^4+904*x^3+962*x^2-629*x-242 2865641803497949 r005 Re(z^2+c),c=13/46+25/52*I,n=9 2865641804940843 a007 Real Root Of -319*x^4-940*x^3-286*x^2-796*x-541 2865641807864200 r005 Im(z^2+c),c=-39/86+3/59*I,n=12 2865641808396199 r009 Im(z^3+c),c=-59/86+23/41*I,n=4 2865641811577881 a009 21/(7^(1/2)-7^(1/3)) 2865641813083619 a001 1/24447*(1/2*5^(1/2)+1/2)^5*843^(8/13) 2865641819352280 m001 (Zeta(5)-cos(1))/(-DuboisRaymond+Tetranacci) 2865641825339078 r005 Re(z^2+c),c=9/52+29/59*I,n=43 2865641827969783 a007 Real Root Of -63*x^4-106*x^3+365*x^2+310*x-355 2865641838660113 r005 Re(z^2+c),c=-5/16+22/59*I,n=33 2865641839505788 m004 E^(Sqrt[5]*Pi)/4+3*Sec[Sqrt[5]*Pi]^2 2865641845160043 a007 Real Root Of -306*x^4-500*x^3+854*x^2-781*x-382 2865641861031998 a007 Real Root Of 291*x^4+507*x^3-556*x^2+953*x-396 2865641870621499 a007 Real Root Of 226*x^4+670*x^3+418*x^2+772*x-694 2865641871875654 m001 FeigenbaumB/GolombDickman*exp(BesselJ(0,1)) 2865641880414644 r005 Im(z^2+c),c=-13/29+21/43*I,n=56 2865641883152372 r002 21th iterates of z^2 + 2865641884350395 r002 10th iterates of z^2 + 2865641885272794 r002 12th iterates of z^2 + 2865641889104590 m005 (1/2*gamma-1/8)/(2*exp(1)+3/11) 2865641893080016 m001 (FransenRobinson+Magata)/(exp(1)+ln(gamma)) 2865641896206489 r009 Im(z^3+c),c=-10/27+9/41*I,n=25 2865641900467311 m001 (Chi(1)+Backhouse)/(Kac+ZetaP(3)) 2865641908985482 l006 ln(373/6550) 2865641914458696 s002 sum(A166108[n]/(n^2*10^n-1),n=1..infinity) 2865641915057820 a007 Real Root Of -276*x^4-900*x^3-422*x^2-86*x+652 2865641915528718 m008 (3/4*Pi^6-2/3)/(4/5*Pi^3+1/3) 2865641920729692 m003 5+Sqrt[5]/32+9*Cosh[1/2+Sqrt[5]/2] 2865641924813584 b008 49*Sqrt[Sin[Pi/9]] 2865641929460964 m005 (1/5*2^(1/2)-1/6)/(7/10+3/2*5^(1/2)) 2865641936411024 a001 505019158607/377*121393^(11/24) 2865641936428849 a001 2537720636/377*12586269025^(11/24) 2865641938293124 a007 Real Root Of 420*x^4+787*x^3-923*x^2+437*x-971 2865641944681388 r009 Im(z^3+c),c=-9/20+5/32*I,n=20 2865641945307656 r005 Im(z^2+c),c=-13/40+23/45*I,n=16 2865641949960497 r009 Re(z^3+c),c=-69/122+4/13*I,n=20 2865641955341422 a001 7881196/13*317811^(7/23) 2865641955382087 a001 271443/13*20365011074^(7/23) 2865641975162901 a007 Real Root Of -366*x^4-763*x^3+509*x^2-571*x+910 2865642002315347 m001 (exp(Pi)-sin(1))/(-GAMMA(2/3)+Stephens) 2865642008815086 a007 Real Root Of -572*x^4+531*x^3+398*x^2+798*x-270 2865642010775709 r005 Re(z^2+c),c=-13/66+34/53*I,n=59 2865642019945832 r002 30th iterates of z^2 + 2865642037781028 h002 exp(1/12*(156+13^(1/2))^(1/2)) 2865642042637580 q001 578/2017 2865642065437948 h001 (-7*exp(2)+10)/(-7*exp(3)-5) 2865642092986051 m001 BesselI(1,1)-BesselK(0,1)*Robbin 2865642099161302 m001 (LaplaceLimit-ZetaQ(4))/(Pi-GaussAGM) 2865642104889467 m001 exp(Paris)^2/Backhouse/cos(1)^2 2865642105689461 m001 1/exp(Zeta(3))*GAMMA(7/24)^2*Zeta(9)^2 2865642110239560 r005 Im(z^2+c),c=-23/62+15/32*I,n=21 2865642116503638 a007 Real Root Of -249*x^4-57*x^3-594*x^2+31*x+58 2865642116735508 r005 Im(z^2+c),c=-79/86+4/17*I,n=3 2865642119069344 m001 (Pi-Ei(1,1))/(cos(1/12*Pi)+ZetaQ(2)) 2865642130417542 r005 Im(z^2+c),c=-49/118+25/48*I,n=41 2865642141026291 a007 Real Root Of -380*x^4-781*x^3+569*x^2-766*x+379 2865642148123166 r005 Im(z^2+c),c=-23/30+1/74*I,n=30 2865642154655887 a001 521/3*14930352^(8/11) 2865642162093112 r005 Re(z^2+c),c=9/40+3/49*I,n=19 2865642164245965 r005 Im(z^2+c),c=-7/26+4/9*I,n=46 2865642168694418 a001 124/615*28657^(29/41) 2865642169013785 r002 5th iterates of z^2 + 2865642180605426 r009 Im(z^3+c),c=-10/27+9/41*I,n=24 2865642183766411 m001 1/2*exp(sqrt(2))+cos(Pi/5) 2865642190974001 m001 (LambertW(1)+BesselJ(1,1))/(Magata+OneNinth) 2865642192601460 a007 Real Root Of -150*x^4+365*x^3-735*x^2+49*x+84 2865642210523461 a007 Real Root Of -233*x^4-667*x^3+26*x^2+36*x-94 2865642217242275 r005 Im(z^2+c),c=-51/44+15/49*I,n=48 2865642219774117 r005 Re(z^2+c),c=-5/16+22/59*I,n=44 2865642221197612 l006 ln(489/8587) 2865642235317679 a001 3/1597*317811^(1/30) 2865642237643741 m005 (1/2*gamma+3/11)/(9/10*3^(1/2)+2/5) 2865642265361585 m001 (MertensB3-ZetaQ(3))/(ln(Pi)-ErdosBorwein) 2865642266927374 m001 (-Rabbit+Totient)/(Catalan+GlaisherKinkelin) 2865642269138645 m005 (1/2*Zeta(3)-3/11)/(4*exp(1)+7/12) 2865642277108637 h001 (4/9*exp(1)+7/11)/(1/5*exp(1)+1/10) 2865642277851859 m002 -2/Pi^6+Pi^3-Pi^5-Sinh[Pi] 2865642283615835 m001 (exp(Pi)+exp(1))/(-GAMMA(23/24)+Champernowne) 2865642288542861 r005 Re(z^2+c),c=-33/98+13/46*I,n=17 2865642302911980 r005 Re(z^2+c),c=-25/54+31/61*I,n=25 2865642310324915 m001 1/2*FransenRobinson^FeigenbaumKappa*2^(1/2) 2865642312677608 r005 Im(z^2+c),c=-37/122+16/35*I,n=37 2865642334315977 r005 Im(z^2+c),c=-19/18+8/29*I,n=3 2865642335231340 a001 514229/1364*199^(9/11) 2865642338355482 r009 Im(z^3+c),c=-31/56+8/29*I,n=9 2865642357078061 m001 1/GAMMA(1/6)^2*(3^(1/3))*ln(cos(1)) 2865642363181393 m005 (1/3*5^(1/2)+3/7)/(Catalan-7/8) 2865642370241863 a001 3571/46368*832040^(13/49) 2865642373543727 r005 Im(z^2+c),c=-13/40+19/49*I,n=6 2865642377384419 a001 5/123*18^(25/37) 2865642381556228 a001 3571/1597*3^(7/31) 2865642385085858 m005 (1/10+3/10*5^(1/2))/(5/6*gamma-3/4) 2865642390737967 a007 Real Root Of 264*x^4+624*x^3-390*x^2-157*x-366 2865642399853823 a007 Real Root Of 578*x^4-524*x^3+170*x^2-452*x+124 2865642400249377 r005 Re(z^2+c),c=37/106+8/47*I,n=57 2865642401949994 m001 (BesselK(1,1)-Conway)/(Kac+MasserGramainDelta) 2865642409093371 a001 843*(1/2*5^(1/2)+1/2)^30*4^(10/23) 2865642420234780 b008 10+17*Sin[4] 2865642423434286 r005 Re(z^2+c),c=-33/118+23/49*I,n=52 2865642427255305 b008 E^4*EulerGamma*Sin[2] 2865642430625382 r005 Im(z^2+c),c=27/86+4/55*I,n=38 2865642442797273 m009 (1/3*Psi(1,1/3)+5/6)/(6*Psi(1,3/4)-3/5) 2865642452052451 m001 (Conway+Porter)/(3^(1/2)-BesselJ(0,1)) 2865642456352998 a007 Real Root Of 9*x^4+258*x^3-11*x^2-395*x-117 2865642464038924 r005 Im(z^2+c),c=-17/18+23/94*I,n=49 2865642464111056 a007 Real Root Of 166*x^4+152*x^3-925*x^2+57*x+142 2865642469392936 m001 (5^(1/2)+Mills)^FeigenbaumB 2865642474738456 l006 ln(9666/9947) 2865642502854438 l006 ln(6937/9239) 2865642511817366 m005 (1/3*Zeta(3)-3/4)/(4/5*3^(1/2)-1/6) 2865642517589334 r009 Re(z^3+c),c=-9/52+45/46*I,n=18 2865642517931011 r005 Re(z^2+c),c=-23/44+11/23*I,n=49 2865642523699491 m001 1/GAMMA(1/6)^2/Niven^2/exp(GAMMA(2/3)) 2865642548572637 a007 Real Root Of -205*x^4-693*x^3-409*x^2-536*x-661 2865642551448385 m001 PisotVijayaraghavan*Lehmer^2/ln(Salem) 2865642561948210 a001 9349/121393*832040^(13/49) 2865642562537954 h001 (-3*exp(1/3)-9)/(-8*exp(-3)+5) 2865642575500680 m005 (1/2*exp(1)+5/6)/(79/264+5/24*5^(1/2)) 2865642579345327 m001 GAMMA(13/24)*Mills/RenyiParking 2865642589917789 a001 844/10959*832040^(13/49) 2865642591923611 r005 Re(z^2+c),c=-17/62+27/55*I,n=30 2865642596520511 a001 39603/514229*832040^(13/49) 2865642607203940 a001 15127/196418*832040^(13/49) 2865642607755658 m005 (1/2*gamma-3/11)/(1/10*5^(1/2)-7/9) 2865642610346536 r005 Re(z^2+c),c=-53/86+19/41*I,n=18 2865642611779496 r005 Im(z^2+c),c=-7/66+11/29*I,n=19 2865642650048806 r008 a(0)=3,K{-n^6,46-10*n-15*n^2-14*n^3} 2865642657223953 a007 Real Root Of 255*x^4+779*x^3-174*x^2-874*x+60 2865642658218706 m001 (MertensB1+Weierstrass)/(3^(1/2)+Chi(1)) 2865642660410688 a003 cos(Pi*41/101)*sin(Pi*35/79) 2865642662782603 a001 55/710647*47^(17/50) 2865642679389990 a007 Real Root Of -174*x^4-429*x^3+173*x^2-285*x-599 2865642680429249 a001 5778/75025*832040^(13/49) 2865642681995155 l006 ln(6042/8047) 2865642683217101 m001 Sierpinski^Rabbit*Zeta(1/2) 2865642683288655 a007 Real Root Of 380*x^4+992*x^3-311*x^2-286*x-547 2865642685512217 m001 (Pi-FeigenbaumMu)/(GaussAGM+TwinPrimes) 2865642685816803 a007 Real Root Of -345*x^4-839*x^3+503*x^2+543*x+947 2865642704158678 a007 Real Root Of -334*x^4-659*x^3+767*x^2-208*x+121 2865642708652107 a007 Real Root Of -627*x^4+991*x^3-973*x^2-26*x+100 2865642716601829 a007 Real Root Of 218*x^4+412*x^3-701*x^2-30*x+665 2865642726813441 a007 Real Root Of 407*x^4-21*x^3+702*x^2-974*x-340 2865642734735225 m001 (Zeta(1,2)+Backhouse)/(2^(1/3)-ln(gamma)) 2865642739974746 a007 Real Root Of -170*x^4-423*x^3+210*x^2-273*x-997 2865642743922570 p001 sum((-1)^n/(397*n+344)/(32^n),n=0..infinity) 2865642754514386 m001 (FeigenbaumD-GAMMA(17/24))^Pi 2865642765424280 a001 9349/4181*3^(7/31) 2865642770434588 r009 Im(z^3+c),c=-11/98+10/33*I,n=9 2865642781883070 m001 1/Zeta(1/2)^2/exp(Pi)*sqrt(2) 2865642821429879 a001 12238/5473*3^(7/31) 2865642826523490 a007 Real Root Of -429*x^4-450*x^3-490*x^2+512*x-93 2865642829600985 a001 64079/28657*3^(7/31) 2865642834651007 a001 39603/17711*3^(7/31) 2865642849972796 r009 Re(z^3+c),c=-61/118+1/2*I,n=35 2865642856043243 a001 15127/6765*3^(7/31) 2865642864238157 r005 Im(z^2+c),c=-57/122+26/51*I,n=34 2865642865678422 r005 Re(z^2+c),c=-91/122+6/37*I,n=4 2865642885730540 r009 Re(z^3+c),c=-11/74+7/11*I,n=2 2865642887687074 m001 ln(RenyiParking)^2*CareFree/(3^(1/3))^2 2865642889349164 m001 ln(HardHexagonsEntropy)^2*Si(Pi)/GAMMA(1/3)^2 2865642892386403 r002 19th iterates of z^2 + 2865642898781476 r005 Im(z^2+c),c=23/74+1/17*I,n=50 2865642914682204 m001 1/Pi^2/exp(FransenRobinson)^2*log(1+sqrt(2))^2 2865642923436602 l006 ln(5147/6855) 2865642933726858 a005 (1/cos(21/172*Pi))^75 2865642938038095 r005 Re(z^2+c),c=-27/74+3/46*I,n=7 2865642941529521 m001 BesselI(1,2)/(FeigenbaumDelta+QuadraticClass) 2865642948427546 m008 (3/4*Pi^5-4)/(Pi^2-2) 2865642952614095 m001 (Rabbit-RenyiParking)/(ln(2)+Kac) 2865642960033727 m001 exp(Rabbit)/GaussKuzminWirsing/GAMMA(7/12)^2 2865642965269753 m001 Ei(1)*FeigenbaumC*exp(GAMMA(11/12))^2 2865642974514844 m002 -4/Pi^4-Pi^3+Pi^5+Cosh[Pi] 2865642984536342 a001 322/13*13^(21/22) 2865642994241842 q001 1493/521 2865642996185398 m001 ZetaQ(2)^(Zeta(5)*ThueMorse) 2865643002667810 a001 2889/1292*3^(7/31) 2865643012068464 r005 Re(z^2+c),c=-41/118+11/48*I,n=25 2865643012918873 m001 (sin(1/12*Pi)-LaplaceLimit)/(Pi-3^(1/2)) 2865643029671629 m005 (1/3*exp(1)-1/2)/(7/11*Catalan-2) 2865643042471318 r005 Im(z^2+c),c=-63/86+14/37*I,n=6 2865643042596708 a007 Real Root Of -803*x^4+880*x^3+946*x^2+698*x-293 2865643043571928 m007 (-1/4*gamma+4)/(-2*gamma-6*ln(2)-Pi-5) 2865643047433399 m001 (ln(3)+2*Pi/GAMMA(5/6))/(Bloch-CareFree) 2865643047481362 r009 Im(z^3+c),c=-11/23+1/8*I,n=60 2865643052045045 r005 Re(z^2+c),c=-17/18+44/193*I,n=50 2865643074859571 a001 47/121393*987^(9/31) 2865643076117282 r005 Re(z^2+c),c=23/94+30/59*I,n=50 2865643077676851 a001 18*(1/2*5^(1/2)+1/2)^26*7^(10/11) 2865643092486846 a001 1/64003*(1/2*5^(1/2)+1/2)^7*2207^(7/13) 2865643092575195 r005 Re(z^2+c),c=-7/30+15/32*I,n=10 2865643103750436 m001 (-Conway+MertensB3)/(cos(1)+Bloch) 2865643106097561 m001 ln(2+3^(1/2))/(GAMMA(13/24)+Otter) 2865643108942322 m001 Ei(1)^2/ln(Artin)/GAMMA(5/6)^2 2865643116705410 m001 (Paris-Weierstrass)/(Ei(1)-LandauRamanujan2nd) 2865643136458467 p001 sum(1/(365*n+317)/n/(512^n),n=1..infinity) 2865643155989862 a001 53316291173/3*521^(4/9) 2865643157471287 a005 (1/cos(1/50*Pi))^533 2865643160498977 r005 Im(z^2+c),c=-23/118+36/55*I,n=23 2865643168889423 a001 121393/123*123^(7/10) 2865643176767238 s002 sum(A107545[n]/(n^2*pi^n+1),n=1..infinity) 2865643182322983 a001 2207/28657*832040^(13/49) 2865643184140516 s002 sum(A107545[n]/(n^2*pi^n-1),n=1..infinity) 2865643196749125 m005 (1/2*Catalan-1/10)/(8/11*Zeta(3)+3/8) 2865643199401519 m001 (cos(1/5*Pi)-Bloch)/(LaplaceLimit-Tribonacci) 2865643202050055 a007 Real Root Of -249*x^4-449*x^3+666*x^2-601*x-966 2865643210474372 m001 (Artin-Bloch)/(GaussAGM-Salem) 2865643216443551 m001 exp((2^(1/3)))^2*FeigenbaumKappa/sin(Pi/5) 2865643221769855 a007 Real Root Of -412*x^4-273*x^3+772*x^2+781*x-278 2865643223612515 r005 Re(z^2+c),c=43/126+8/57*I,n=27 2865643225120441 l006 ln(116/2037) 2865643225877383 a007 Real Root Of -913*x^4+482*x^3-573*x^2+525*x+215 2865643227289386 r005 Re(z^2+c),c=-11/42+19/37*I,n=54 2865643232395494 m001 BesselK(1,1)^FeigenbaumAlpha+Sierpinski 2865643250010233 r005 Re(z^2+c),c=-37/122+24/61*I,n=10 2865643250398228 m005 (1/2*2^(1/2)-5)/(3/5*Zeta(3)-4/7) 2865643260551996 r002 14th iterates of z^2 + 2865643263526788 m001 1/GAMMA(1/24)^2/ln(FeigenbaumB)/sin(Pi/5)^2 2865643263753468 m005 (1/2*2^(1/2)+1/2)/(6*Zeta(3)-3) 2865643266519664 l006 ln(4252/5663) 2865643273957403 m008 (4/5*Pi^2+1/2)/(3*Pi^4+3/4) 2865643278302969 m005 (1/3*Catalan+1/2)/(8/11*exp(1)+5/6) 2865643279743701 r009 Im(z^3+c),c=-29/62+5/36*I,n=35 2865643280402950 a003 sin(Pi*6/53)*sin(Pi*4/13) 2865643282503899 r005 Im(z^2+c),c=-17/52+31/51*I,n=64 2865643286720131 m005 (1/2*gamma+1/11)/(9/10*Catalan+1/2) 2865643311186089 r002 7th iterates of z^2 + 2865643311519788 r009 Im(z^3+c),c=-4/9+8/49*I,n=30 2865643315739058 r009 Re(z^3+c),c=-57/122+19/44*I,n=28 2865643316299106 m001 (Stephens+ZetaP(4))/(gamma(3)-BesselI(0,2)) 2865643335426086 r009 Re(z^3+c),c=-19/46+19/49*I,n=31 2865643340731376 a001 514229/843*199^(8/11) 2865643350507661 m002 -5/Pi^6-E^Pi/Pi^2+Pi^3 2865643352080594 a007 Real Root Of 343*x^4+737*x^3-724*x^2+100*x+445 2865643354388381 a001 1/438683*(1/2*5^(1/2)+1/2)^15*15127^(3/13) 2865643355553687 m005 (21/4+1/4*5^(1/2))/(1/2*5^(1/2)+10/11) 2865643357418906 a001 1/167562*(1/2*5^(1/2)+1/2)*5778^(12/13) 2865643358198371 m001 ln(2)/ln(10)/(Zeta(1/2)+HardyLittlewoodC5) 2865643362497816 p003 LerchPhi(1/100,2,395/211) 2865643363740544 a001 1/1148487*(1/2*5^(1/2)+1/2)^3*39603^(11/13) 2865643364397429 a001 1/1858291*(1/2*5^(1/2)+1/2)^12*64079^(6/13) 2865643365274813 r002 3th iterates of z^2 + 2865643366233133 m001 (3^(1/3)-GAMMA(5/6))/(FeigenbaumB+MertensB1) 2865643368437132 a001 1/709804*(1/2*5^(1/2)+1/2)^19*24476^(1/13) 2865643370130515 m001 (ArtinRank2+Khinchin)/(5^(1/2)-GAMMA(11/12)) 2865643371587698 a001 1/271121*(1/2*5^(1/2)+1/2)^4*9349^(10/13) 2865643388906720 a007 Real Root Of 409*x^4+909*x^3-795*x^2-20*x+281 2865643391372089 a007 Real Root Of 302*x^4+921*x^3+334*x^2+767*x+763 2865643392656534 p001 sum(1/(241*n+109)/n/(100^n),n=1..infinity) 2865643406686447 r009 Re(z^3+c),c=-3/64+39/64*I,n=15 2865643418519798 m005 (1/2*3^(1/2)+7/10)/(5*Zeta(3)-6/11) 2865643423080752 r005 Im(z^2+c),c=-9/52+11/27*I,n=25 2865643431651615 r005 Re(z^2+c),c=-7/23+19/54*I,n=9 2865643433021361 r009 Re(z^3+c),c=-5/11+15/31*I,n=52 2865643433178537 r009 Im(z^3+c),c=-55/126+6/35*I,n=17 2865643437124855 r005 Im(z^2+c),c=-11/56+5/12*I,n=35 2865643456487937 a007 Real Root Of -x^4-287*x^3-126*x^2-334*x-701 2865643473534207 a001 3571/17711*28657^(29/41) 2865643476163878 r009 Re(z^3+c),c=-39/86+29/59*I,n=49 2865643480200321 m001 FransenRobinson^FellerTornier*gamma(3) 2865643485954874 r005 Im(z^2+c),c=-4/17+11/24*I,n=11 2865643487014124 m001 FeigenbaumC+KhinchinHarmonic*Lehmer 2865643491260855 m001 ln(GAMMA(11/24))^2/Catalan/sqrt(1+sqrt(3)) 2865643495763621 m001 ln(Pi)/gamma(1)*MasserGramainDelta 2865643497230887 s002 sum(A056841[n]/(n^2*pi^n+1),n=1..infinity) 2865643508325403 r009 Re(z^3+c),c=-9/23+15/43*I,n=22 2865643510521202 r005 Im(z^2+c),c=-7/46+17/26*I,n=21 2865643513765294 m001 LambertW(1)/GAMMA(1/3)^2*ln(Zeta(5)) 2865643516775616 m001 (Pi+Psi(2,1/3)-Shi(1))*cos(1) 2865643521341326 r005 Re(z^2+c),c=-27/106+29/53*I,n=42 2865643525398085 m001 (exp(1/exp(1))-Zeta(1,2))/(OneNinth+Sarnak) 2865643554169628 a001 1/103559*(1/2*5^(1/2)+1/2)^14*3571^(2/13) 2865643555061090 h002 exp(6^(3/4)/(12+2^(1/3))^(1/2)) 2865643559105161 m001 (Catalan+BesselK(1,1))/(-CareFree+ZetaP(3)) 2865643562566430 r005 Im(z^2+c),c=-27/20+1/63*I,n=47 2865643570131931 r005 Im(z^2+c),c=-31/90+1/2*I,n=21 2865643584140003 m001 Tribonacci/Paris/ln(GAMMA(23/24))^2 2865643595364860 q001 915/3193 2865643606270891 h001 (6/11*exp(2)+1/10)/(3/11*exp(1)+7/10) 2865643617128155 m005 (1/2*5^(1/2)-2/9)/(2/9*exp(1)-11/12) 2865643619784702 a007 Real Root Of -330*x^4-994*x^3-206*x^2+150*x+984 2865643623962460 r005 Im(z^2+c),c=-15/22+31/88*I,n=40 2865643639345734 p001 sum(1/(430*n+21)/n/(8^n),n=1..infinity) 2865643648134029 a001 312119004989/2*2584^(22/23) 2865643652647863 r009 Im(z^3+c),c=-63/122+16/33*I,n=45 2865643654167234 r002 9th iterates of z^2 + 2865643663170301 a001 7/13*610^(46/47) 2865643663308530 r005 Re(z^2+c),c=23/86+3/28*I,n=40 2865643663907765 a001 9349/46368*28657^(29/41) 2865643667473457 m001 GAMMA(1/12)*Ei(1)*ln(Zeta(5))^2 2865643670700592 r005 Re(z^2+c),c=-39/94+9/43*I,n=2 2865643684316452 m009 (1/6*Psi(1,1/3)+1)/(Psi(1,2/3)-4) 2865643684381047 a007 Real Root Of -109*x^4-130*x^3+368*x^2+808*x+199 2865643689559190 r005 Im(z^2+c),c=-35/36+13/48*I,n=5 2865643691682893 a001 24476/121393*28657^(29/41) 2865643698239711 a001 39603/196418*28657^(29/41) 2865643705064851 m001 (-GaussAGM+OneNinth)/(sin(1)-sin(1/5*Pi)) 2865643705800640 m005 (1/2*Pi+4)/(5/7*Pi-3/10) 2865643708848866 a001 15127/75025*28657^(29/41) 2865643714658419 a007 Real Root Of 318*x^4+801*x^3-494*x^2-598*x-252 2865643717453653 m001 (arctan(1/3)+Kac)/(Porter+Tribonacci) 2865643724042415 r009 Im(z^3+c),c=-57/110+9/49*I,n=29 2865643730237543 a001 3940598*165580141^(22/23) 2865643732563219 r005 Im(z^2+c),c=3/20+19/31*I,n=52 2865643734000065 m005 (1/4*Catalan+5/6)/(1/2*2^(1/2)+3) 2865643743954821 r002 3th iterates of z^2 + 2865643770560876 r005 Im(z^2+c),c=27/118+7/38*I,n=33 2865643772059220 m001 (FeigenbaumDelta+ZetaQ(2))/(ln(gamma)-ln(3)) 2865643775675944 r005 Im(z^2+c),c=9/56+14/59*I,n=20 2865643775731876 r002 2th iterates of z^2 + 2865643781565095 a001 5778/28657*28657^(29/41) 2865643783971549 r009 Im(z^3+c),c=-9/106+51/61*I,n=56 2865643787637001 r005 Im(z^2+c),c=-33/118+13/29*I,n=52 2865643792539457 l006 ln(3357/4471) 2865643803124430 r009 Re(z^3+c),c=-51/122+17/43*I,n=25 2865643815585029 a001 377/3*9062201101803^(13/18) 2865643824744398 r009 Im(z^3+c),c=-14/29+1/8*I,n=41 2865643829602124 m001 (Salem+TwinPrimes)^(3^(1/2)) 2865643831950945 m001 1/ln(ArtinRank2)^2/Bloch*PisotVijayaraghavan^2 2865643836059166 m001 1/GAMMA(13/24)*exp(GAMMA(1/4))^2/sqrt(3)^2 2865643838196534 m005 (1/2*5^(1/2)-3/8)/(4/9*Catalan-3) 2865643841533627 r002 10th iterates of z^2 + 2865643844655423 r009 Re(z^3+c),c=-17/29+9/19*I,n=6 2865643852519335 r005 Im(z^2+c),c=-7/6+33/200*I,n=10 2865643858413444 r009 Im(z^3+c),c=-31/64+3/49*I,n=32 2865643861270606 m001 (exp(1/exp(1))-Landau)/(Magata-MertensB1) 2865643870618793 m001 (GAMMA(11/12)-Pi^(1/2))/(MertensB2+Porter) 2865643870726712 m001 (Magata+RenyiParking)/(Pi^(1/2)-FellerTornier) 2865643895427207 a007 Real Root Of -597*x^4+314*x^3+278*x^2+319*x+80 2865643909380128 r009 Re(z^3+c),c=-61/118+1/2*I,n=44 2865643911900578 m001 1/GAMMA(1/3)/ln(Cahen)^2/sin(Pi/12)^2 2865643933902972 a001 2207/89*1597^(1/51) 2865643934044358 s002 sum(A216004[n]/((2*n+1)!),n=1..infinity) 2865643946086028 a003 sin(Pi*41/115)/cos(Pi*49/100) 2865643956285479 r005 Re(z^2+c),c=-23/78+13/37*I,n=7 2865643970247319 m001 (-ln(2^(1/2)+1)+cos(1/12*Pi))/(Si(Pi)+ln(3)) 2865643985297385 m005 (1/3*Catalan+2/9)/(7/11*exp(1)+1/9) 2865643987034717 a001 5473/2*11^(1/52) 2865643988496822 r009 Im(z^3+c),c=-33/122+10/37*I,n=4 2865643994742116 q001 1/3489617 2865644006964747 m001 (-Sarnak+Totient)/(GAMMA(13/24)-exp(Pi)) 2865644007647745 a001 2207/987*3^(7/31) 2865644009423003 r005 Im(z^2+c),c=-5/32+22/51*I,n=6 2865644010137177 h001 (6/7*exp(2)+4/9)/(5/6*exp(1)+1/10) 2865644010428664 b008 Pi/3+ArcSinh[3] 2865644023962350 m001 cosh(1)^2*GolombDickman^2/exp(sinh(1)) 2865644028910974 r009 Re(z^3+c),c=-47/118+13/36*I,n=23 2865644033606635 a007 Real Root Of -191*x^4-125*x^3-313*x^2+707*x-20 2865644037564602 r005 Re(z^2+c),c=-1/4+25/46*I,n=59 2865644063336555 m004 Cosh[Sqrt[5]*Pi]/2+3*Sec[Sqrt[5]*Pi]^2 2865644102187577 m002 -2-Pi^5+Pi^2*Coth[Pi]+Sinh[Pi] 2865644102246452 r002 18th iterates of z^2 + 2865644103020056 r005 Re(z^2+c),c=33/98+27/56*I,n=4 2865644109657016 l006 ln(555/9746) 2865644109909395 m001 1/Kolakoski/ln(GlaisherKinkelin)^2/Rabbit 2865644110181565 r005 Im(z^2+c),c=-145/114+2/17*I,n=14 2865644112000330 b008 27+BesselK[1,1/2] 2865644113257774 m001 (BesselJ(0,1)-ln(5))/(gamma(2)+Otter) 2865644122781629 m001 HardyLittlewoodC5*(ArtinRank2+ZetaQ(4)) 2865644127218496 m005 (-24/5+1/5*5^(1/2))/(2/3*gamma-2/5) 2865644133046050 a007 Real Root Of -9*x^4+278*x^3+470*x^2-846*x+865 2865644135618723 r005 Re(z^2+c),c=-17/26+51/113*I,n=12 2865644137266887 s001 sum(exp(-3*Pi/5)^n*A234869[n],n=1..infinity) 2865644138752582 r005 Re(z^2+c),c=-7/18+2/23*I,n=4 2865644142524230 l003 AiryAi(29/108) 2865644158381301 a007 Real Root Of -32*x^4-933*x^3-485*x^2-750*x+411 2865644172498857 a007 Real Root Of -982*x^4-794*x^3-861*x^2+85*x+83 2865644176907227 l006 ln(5819/7750) 2865644178280178 p003 LerchPhi(1/2,2,395/183) 2865644191654803 r002 31th iterates of z^2 + 2865644198042862 r009 Re(z^3+c),c=-47/114+17/44*I,n=40 2865644214193706 a007 Real Root Of -357*x^4-990*x^3-322*x^2-948*x+705 2865644226079143 a007 Real Root Of 359*x^4+685*x^3-726*x^2+582*x-460 2865644231253601 r005 Re(z^2+c),c=19/94+9/23*I,n=28 2865644231967665 m001 Niven*Kolakoski^2/exp(Robbin)^2 2865644253090865 r002 9th iterates of z^2 + 2865644253634648 m001 1/exp(TwinPrimes)*Bloch*sinh(1) 2865644279969541 a001 2207/10946*28657^(29/41) 2865644291006078 r005 Im(z^2+c),c=-45/106+29/59*I,n=59 2865644292901102 m005 (1/2*5^(1/2)-1/12)/(8/9*Pi+9/11) 2865644299239584 a001 39088169/2207*76^(1/9) 2865644305098504 p001 sum(1/(466*n+35)/(24^n),n=0..infinity) 2865644306898210 r005 Re(z^2+c),c=-5/36+27/43*I,n=59 2865644312703815 m005 (1/3*2^(1/2)-3/4)/(5/7*5^(1/2)-5/8) 2865644322421924 r005 Im(z^2+c),c=-7/54+7/18*I,n=16 2865644328619886 s001 sum(exp(-Pi/2)^n*A257143[n],n=1..infinity) 2865644339734100 a007 Real Root Of -5*x^4+391*x^3-173*x^2+993*x+308 2865644340605099 m001 (FellerTornier+Magata)/(gamma(3)-Conway) 2865644342335499 m001 GaussKuzminWirsing/(CareFree^Zeta(1,-1)) 2865644343384090 l006 ln(439/7709) 2865644348268786 r005 Re(z^2+c),c=-37/102+4/33*I,n=23 2865644351427374 r005 Im(z^2+c),c=-27/122+13/23*I,n=14 2865644359303793 h001 (1/6*exp(1)+2/7)/(5/7*exp(1)+7/11) 2865644366838622 a001 39603/8*10946^(24/55) 2865644377371920 m005 (1/2*5^(1/2)-5/7)/(5/9*5^(1/2)+1/6) 2865644382265350 m005 (1/2*Pi-9/11)/(2*Zeta(3)+2/9) 2865644384080238 m001 OneNinth*Lehmer*ln(cos(Pi/5))^2 2865644390804441 r005 Im(z^2+c),c=-10/27+25/52*I,n=59 2865644416891561 r005 Re(z^2+c),c=-17/18+35/223*I,n=60 2865644422282525 m005 (1/3*Zeta(3)+2/11)/(11/12*Catalan-7/11) 2865644430353259 a001 1/39556*(1/2*5^(1/2)+1/2)^10*1364^(4/13) 2865644431363262 m001 ErdosBorwein/(FeigenbaumDelta-Zeta(1,2)) 2865644432340621 r005 Re(z^2+c),c=-19/70+28/51*I,n=12 2865644433798419 b008 13+71*E^6 2865644433906483 a007 Real Root Of 461*x^4-302*x^3+48*x^2-942*x+270 2865644445775280 a007 Real Root Of 361*x^4+43*x^3+425*x^2-292*x-120 2865644445869126 r005 Im(z^2+c),c=-7/15+28/45*I,n=22 2865644467945666 a007 Real Root Of -224*x^4-762*x^3-726*x^2-806*x+826 2865644476603628 r005 Im(z^2+c),c=27/118+7/38*I,n=38 2865644483718321 r005 Re(z^2+c),c=-1/118+40/63*I,n=35 2865644488794627 r002 41th iterates of z^2 + 2865644517114994 r005 Im(z^2+c),c=-25/122+21/50*I,n=35 2865644517615553 a001 124*(1/2*5^(1/2)+1/2)^31*11^(17/20) 2865644521940201 r005 Re(z^2+c),c=-33/94+9/43*I,n=16 2865644523292369 m001 1/ErdosBorwein^2/Artin/exp(GAMMA(17/24)) 2865644532394884 m001 (ln(3)+gamma(1))/(gamma(2)-FeigenbaumMu) 2865644563811439 m001 1/GAMMA(13/24)/ln(LaplaceLimit)*GAMMA(5/24)^2 2865644568711239 p004 log(30703/23053) 2865644569491004 m001 (-exp(gamma)+4)/(OneNinth+2/3) 2865644571624759 h001 (4/9*exp(1)+5/7)/(6/7*exp(2)+3/8) 2865644574288662 r005 Im(z^2+c),c=27/118+7/38*I,n=37 2865644576320912 a007 Real Root Of -693*x^4+419*x^3+887*x^2+977*x-358 2865644576458688 m005 (1/2*Catalan-1/2)/(1/3*3^(1/2)+8/9) 2865644578322856 m002 -6+3*Sinh[Pi]+Tanh[Pi]/Pi^4 2865644586073948 a007 Real Root Of -553*x^4+57*x^3+301*x^2+620*x-200 2865644589665840 m001 (exp(1/exp(1))+2)/Zeta(3) 2865644592556507 l006 ln(4747/4885) 2865644602311531 s002 sum(A268877[n]/(pi^n-1),n=1..infinity) 2865644611262171 a007 Real Root Of -182*x^4-400*x^3+192*x^2-375*x+209 2865644620205973 a007 Real Root Of 25*x^4-327*x^3+810*x^2-421*x+564 2865644624021588 a001 47/75025*28657^(4/27) 2865644644955806 m006 (2/Pi-3/4)/(1/3*Pi^2+2/3) 2865644647678120 r009 Re(z^3+c),c=-29/110+1/50*I,n=8 2865644652603448 a007 Real Root Of -255*x^4-629*x^3+297*x^2-95*x-317 2865644657663298 m001 GAMMA(2/3)/exp(-1/2*Pi)*TreeGrowth2nd 2865644659691462 r002 4th iterates of z^2 + 2865644679830227 a005 (1/cos(31/209*Pi))^234 2865644681209425 r005 Im(z^2+c),c=-1/11+14/19*I,n=36 2865644683527489 m001 (Zeta(1/2)-Landau)/(StronglyCareFree-ZetaP(4)) 2865644689363337 a007 Real Root Of -367*x^4+857*x^3+91*x^2+809*x+247 2865644690977216 m005 (1/2*gamma+3)/(2/7*Pi+1/4) 2865644692249013 r009 Im(z^3+c),c=-23/64+29/45*I,n=13 2865644701002494 l006 ln(2462/3279) 2865644701548945 a007 Real Root Of 214*x^4-798*x^3-533*x^2-644*x-161 2865644717015524 m001 FibonacciFactorial*(GAMMA(3/4)-Zeta(3)) 2865644721042283 h001 (1/12*exp(2)+1/7)/(1/4*exp(2)+4/5) 2865644721194790 a001 72/161*(1/2+1/2*5^(1/2))^23 2865644721194790 a001 72/161*4106118243^(1/2) 2865644721450256 a001 72/161*103682^(23/24) 2865644728024251 h002 exp(1/12*(20+12*12^(5/12))*12^(1/3)) 2865644744989306 l006 ln(323/5672) 2865644759714981 a007 Real Root Of 189*x^4+177*x^3-669*x^2+995*x-235 2865644763280711 r005 Im(z^2+c),c=-17/44+16/33*I,n=57 2865644771987963 r009 Re(z^3+c),c=-59/126+34/59*I,n=3 2865644773828984 a001 233*199^(10/11) 2865644775872518 a001 3/141422324*123^(1/16) 2865644781273784 r005 Im(z^2+c),c=-10/9+1/29*I,n=26 2865644798508851 m001 1/Catalan^2/exp(TreeGrowth2nd)/GAMMA(1/3) 2865644798872211 r005 Re(z^2+c),c=-27/106+31/39*I,n=9 2865644801729677 a001 34111385/1926*76^(1/9) 2865644813361026 m001 (ln(2)-GaussAGM)/(StolarskyHarborth+ThueMorse) 2865644814810000 m001 Paris^(TravellingSalesman/PisotVijayaraghavan) 2865644823874946 s002 sum(A068258[n]/((pi^n-1)/n),n=1..infinity) 2865644824042089 m001 1/GAMMA(11/12)^2/ln(LaplaceLimit)^2*cos(1) 2865644833570786 r009 Re(z^3+c),c=-1/19+29/41*I,n=34 2865644841789428 r005 Re(z^2+c),c=1/60+15/23*I,n=62 2865644844695566 a007 Real Root Of 132*x^4+86*x^3-670*x^2+724*x+699 2865644853156171 r005 Re(z^2+c),c=-17/52+9/28*I,n=29 2865644860144748 r005 Im(z^2+c),c=-6/19+6/13*I,n=28 2865644861148201 r005 Im(z^2+c),c=27/118+7/38*I,n=39 2865644875042008 a001 267914296/15127*76^(1/9) 2865644878967049 m005 (1/3*Pi-2/5)/(25/18+7/18*5^(1/2)) 2865644880590054 r009 Re(z^3+c),c=-41/90+28/57*I,n=55 2865644885738133 a001 17711*76^(1/9) 2865644887298677 a001 1836311903/103682*76^(1/9) 2865644887526357 a001 1602508992/90481*76^(1/9) 2865644887559575 a001 12586269025/710647*76^(1/9) 2865644887564422 a001 10983760033/620166*76^(1/9) 2865644887565129 a001 86267571272/4870847*76^(1/9) 2865644887565232 a001 75283811239/4250681*76^(1/9) 2865644887565247 a001 591286729879/33385282*76^(1/9) 2865644887565249 a001 516002918640/29134601*76^(1/9) 2865644887565250 a001 4052739537881/228826127*76^(1/9) 2865644887565250 a001 3536736619241/199691526*76^(1/9) 2865644887565250 a001 6557470319842/370248451*76^(1/9) 2865644887565250 a001 2504730781961/141422324*76^(1/9) 2865644887565251 a001 956722026041/54018521*76^(1/9) 2865644887565256 a001 365435296162/20633239*76^(1/9) 2865644887565296 a001 139583862445/7881196*76^(1/9) 2865644887565566 a001 53316291173/3010349*76^(1/9) 2865644887567417 a001 20365011074/1149851*76^(1/9) 2865644887580105 a001 7778742049/439204*76^(1/9) 2865644887667071 a001 2971215073/167761*76^(1/9) 2865644888263146 a001 1134903170/64079*76^(1/9) 2865644892348702 a001 433494437/24476*76^(1/9) 2865644896010954 s002 sum(A213834[n]/((pi^n+1)/n),n=1..infinity) 2865644896182131 a009 1/19*(19*7^(1/4)-2^(1/3))^(1/2) 2865644903516576 a007 Real Root Of 181*x^4+524*x^3-21*x^2+198*x+865 2865644906470161 a007 Real Root Of 171*x^4+684*x^3+929*x^2+743*x-935 2865644909543443 a007 Real Root Of -156*x^4-308*x^3+155*x^2-602*x+274 2865644919428571 a007 Real Root Of 737*x^4-485*x^3-12*x^2-672*x+200 2865644920351522 a001 165580141/9349*76^(1/9) 2865644926342775 r005 Im(z^2+c),c=-10/23+10/19*I,n=56 2865644931670419 m001 1/PisotVijayaraghavan*Si(Pi)^2*exp(Zeta(3))^2 2865644932032602 m005 (1/2*gamma-10/11)/(7/10*5^(1/2)+3/5) 2865644932910735 a008 Real Root of (2+5*x-6*x^2+3*x^3+2*x^5) 2865644933510722 m006 (4/5*Pi+3)/(2*Pi^2-1/2) 2865644933510722 m008 (4/5*Pi+3)/(2*Pi^2-1/2) 2865644949388788 m001 1/Lehmer/exp(CopelandErdos)*arctan(1/2)^2 2865644964791457 r005 Re(z^2+c),c=-7/18+35/53*I,n=17 2865644976197581 r005 Re(z^2+c),c=11/106+22/57*I,n=35 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=26 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=27 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=28 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=29 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=30 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=31 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=32 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=33 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=34 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=35 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=36 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=37 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=38 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=39 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=40 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=41 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=42 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=60 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=61 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=62 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=63 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=64 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=59 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=58 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=57 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=56 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=55 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=54 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=53 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=52 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=51 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=50 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=49 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=48 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=47 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=46 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=45 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=44 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=43 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=25 2865644998981608 r009 Re(z^3+c),c=-29/110+1/50*I,n=24 2865644998981612 r009 Re(z^3+c),c=-29/110+1/50*I,n=23 2865644998981632 r009 Re(z^3+c),c=-29/110+1/50*I,n=22 2865644998981728 r009 Re(z^3+c),c=-29/110+1/50*I,n=21 2865644998982175 r009 Re(z^3+c),c=-29/110+1/50*I,n=20 2865644998984147 r009 Re(z^3+c),c=-29/110+1/50*I,n=19 2865644998992515 r009 Re(z^3+c),c=-29/110+1/50*I,n=18 2865644999026784 r009 Re(z^3+c),c=-29/110+1/50*I,n=17 2865644999162407 r009 Re(z^3+c),c=-29/110+1/50*I,n=16 2865644999680451 r009 Re(z^3+c),c=-29/110+1/50*I,n=15 2865645000955588 r005 Im(z^2+c),c=27/118+7/38*I,n=44 2865645001582778 r009 Re(z^3+c),c=-29/110+1/50*I,n=14 2865645005029376 g006 2*Psi(1,1/12)+Psi(1,6/11)-Psi(1,4/11) 2865645008244043 r009 Re(z^3+c),c=-29/110+1/50*I,n=13 2865645009638961 m001 ln(gamma)^ln(2^(1/2)+1)+Magata 2865645023975713 r005 Im(z^2+c),c=27/118+7/38*I,n=43 2865645030138801 r009 Re(z^3+c),c=-29/110+1/50*I,n=12 2865645030639643 r005 Im(z^2+c),c=27/118+7/38*I,n=45 2865645034924774 r009 Im(z^3+c),c=-19/46+8/15*I,n=3 2865645037067102 m005 (1/3*5^(1/2)-3/5)/(5/12*Catalan-8/9) 2865645040173433 a007 Real Root Of 235*x^4+488*x^3-191*x^2+915*x-173 2865645050268735 r005 Im(z^2+c),c=27/118+7/38*I,n=50 2865645052325448 r005 Im(z^2+c),c=27/118+7/38*I,n=51 2865645053667846 r005 Im(z^2+c),c=27/118+7/38*I,n=49 2865645054401059 m001 (-Thue+Weierstrass)/(1+PolyaRandomWalk3D) 2865645054715423 r005 Im(z^2+c),c=27/118+7/38*I,n=56 2865645054830575 r005 Im(z^2+c),c=27/118+7/38*I,n=57 2865645055098119 r005 Im(z^2+c),c=27/118+7/38*I,n=62 2865645055101015 r005 Im(z^2+c),c=27/118+7/38*I,n=63 2865645055106459 r005 Im(z^2+c),c=27/118+7/38*I,n=58 2865645055125119 r005 Im(z^2+c),c=27/118+7/38*I,n=64 2865645055139993 r005 Im(z^2+c),c=27/118+7/38*I,n=55 2865645055146439 r005 Im(z^2+c),c=27/118+7/38*I,n=61 2865645055228474 r005 Im(z^2+c),c=27/118+7/38*I,n=60 2865645055251023 r005 Im(z^2+c),c=27/118+7/38*I,n=59 2865645055344836 r005 Im(z^2+c),c=27/118+7/38*I,n=52 2865645056057529 r005 Im(z^2+c),c=27/118+7/38*I,n=54 2865645056203111 m001 (Zeta(3)-sin(1))/(ln(2)+BesselI(1,1)) 2865645056483198 a007 Real Root Of -579*x^4-87*x^3-291*x^2+830*x-208 2865645056563775 r005 Im(z^2+c),c=27/118+7/38*I,n=53 2865645057988229 a001 4/21*28657^(14/53) 2865645062342874 r005 Im(z^2+c),c=27/118+7/38*I,n=46 2865645063501987 r005 Im(z^2+c),c=27/118+7/38*I,n=48 2865645063919613 r002 19th iterates of z^2 + 2865645071452684 r005 Im(z^2+c),c=27/118+7/38*I,n=47 2865645073921466 r005 Re(z^2+c),c=-2/7+29/64*I,n=58 2865645077321173 m001 (1+Si(Pi))/(-Bloch+Porter) 2865645077639542 l006 ln(530/9307) 2865645080897640 r002 51th iterates of z^2 + 2865645081253669 m001 1/Trott^2*exp(Cahen)^2/Zeta(5)^2 2865645094055363 m001 (Lehmer+ZetaQ(3))/(1+ln(3)) 2865645094789624 r005 Re(z^2+c),c=-3/70+31/43*I,n=61 2865645095486401 r009 Re(z^3+c),c=-29/110+1/50*I,n=11 2865645110376855 m001 BesselJ(0,1)/MinimumGamma/ln(sin(Pi/12))^2 2865645112285721 a001 63245986/3571*76^(1/9) 2865645119209999 r005 Re(z^2+c),c=-28/29+1/13*I,n=12 2865645125123327 r005 Im(z^2+c),c=27/118+7/38*I,n=42 2865645136998646 m001 Tribonacci+Sierpinski^Trott2nd 2865645144847271 m001 (Kolakoski-KomornikLoreti)/(Pi+FellerTornier) 2865645152136662 a007 Real Root Of -294*x^4-937*x^3-99*x^2+805*x+896 2865645156740142 r005 Re(z^2+c),c=-13/46+6/13*I,n=62 2865645170839223 l006 ln(6491/8645) 2865645180397823 r005 Im(z^2+c),c=27/118+7/38*I,n=40 2865645196305064 m001 (Catalan+OrthogonalArrays)^exp(Pi) 2865645199859221 s002 sum(A196892[n]/((2^n-1)/n),n=1..infinity) 2865645207088120 r005 Re(z^2+c),c=-21/34+51/94*I,n=5 2865645211138465 m002 E^Pi+(Pi^4*ProductLog[Pi])/E^Pi+Tanh[Pi] 2865645214997026 m001 (sin(1/12*Pi)-Bloch)/(Gompertz-Totient) 2865645220788983 m001 FeigenbaumB*Landau^MadelungNaCl 2865645233082343 r005 Im(z^2+c),c=27/118+7/38*I,n=41 2865645234945872 m001 1/ln(Magata)^2/Kolakoski^2*exp(1) 2865645235964627 m001 (-Cahen+GlaisherKinkelin)/(exp(Pi)-sin(1)) 2865645236339697 a007 Real Root Of 16*x^4-203*x^3-381*x^2+995*x+124 2865645238748427 a008 Real Root of x^4-59*x^2-260*x-328 2865645241748595 m005 (1/2*Zeta(3)-1/6)/(7/8*Catalan+5/7) 2865645252852782 a007 Real Root Of 942*x^4-581*x^3-250*x^2-930*x-266 2865645257911344 r009 Re(z^3+c),c=-29/110+1/50*I,n=10 2865645267469065 r005 Re(z^2+c),c=-3/110+25/41*I,n=21 2865645275601157 r009 Re(z^3+c),c=-41/114+9/31*I,n=21 2865645279992012 a001 1149851/144*12586269025^(11/20) 2865645279993725 a001 228826127/144*832040^(11/20) 2865645281977608 r005 Re(z^2+c),c=-29/102+34/57*I,n=55 2865645293678258 r009 Im(z^3+c),c=-9/106+51/61*I,n=54 2865645304756817 r009 Im(z^3+c),c=-10/27+9/41*I,n=21 2865645307997400 r005 Im(z^2+c),c=-97/114+12/61*I,n=33 2865645310030404 m008 (3/4*Pi^5-1/5)/(3/4*Pi^2+3/5) 2865645313125375 r005 Im(z^2+c),c=-93/82+8/35*I,n=38 2865645327215960 m001 (GAMMA(1/4)+GAMMA(3/4))^(2/3) 2865645332002270 r005 Im(z^2+c),c=-7/48+21/53*I,n=33 2865645334585118 r005 Im(z^2+c),c=-23/102+21/31*I,n=6 2865645335987429 m005 (1/3*3^(1/2)+3/5)/(2*5^(1/2)-4/11) 2865645337352033 m001 (GAMMA(3/4)+ZetaQ(4))/(BesselI(0,1)-Chi(1)) 2865645345618301 r005 Im(z^2+c),c=-9/106+14/27*I,n=6 2865645348392837 r002 10th iterates of z^2 + 2865645348392837 r002 10th iterates of z^2 + 2865645348549097 m002 4/(3*E^Pi)+Log[Pi]/5 2865645351362895 m001 (Sarnak-ZetaP(4))/(Zeta(3)+GAMMA(11/12)) 2865645362074575 m001 1/exp(RenyiParking)/Champernowne^2/Trott 2865645363066296 m001 GAMMA(1/3)^(GAMMA(19/24)/ln(3)) 2865645363704292 r005 Re(z^2+c),c=-17/66+19/52*I,n=4 2865645364243274 r005 Im(z^2+c),c=-19/46+19/37*I,n=40 2865645365847398 m005 (2^(1/2)-3/5)/(4/5*exp(1)+2/3) 2865645371596592 r005 Im(z^2+c),c=17/46+5/48*I,n=23 2865645373428283 m005 (-7/12+1/4*5^(1/2))/(6/7*2^(1/2)-4/11) 2865645377157612 r005 Im(z^2+c),c=-25/74+9/19*I,n=31 2865645381836134 r005 Im(z^2+c),c=-4/25+20/49*I,n=11 2865645390158635 a007 Real Root Of 532*x^4+807*x^3+818*x^2-102*x-81 2865645395403611 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 2865645404125965 a007 Real Root Of 293*x^4+652*x^3-415*x^2+316*x-102 2865645406704638 r005 Im(z^2+c),c=-7/10+49/166*I,n=21 2865645406739079 r002 22th iterates of z^2 + 2865645412023224 r005 Im(z^2+c),c=31/118+8/53*I,n=27 2865645423888967 a007 Real Root Of -412*x^4+142*x^3-907*x^2+804*x+311 2865645426142282 m001 (Paris-Rabbit)/(GAMMA(17/24)-Mills) 2865645427202576 a003 cos(Pi*22/89)-sin(Pi*51/103) 2865645440905041 a007 Real Root Of -686*x^4+79*x^3+176*x^2+972*x-28 2865645443406987 m001 (Ei(1,1)+ln(2+3^(1/2)))/(CareFree-Rabbit) 2865645444958268 m005 (1/2*2^(1/2)+5/7)/(2/9*3^(1/2)+1/9) 2865645450264271 m005 (1/3*gamma-1/8)/(3/5*gamma-1/9) 2865645457942221 l006 ln(4029/5366) 2865645459161084 a007 Real Root Of 247*x^4+568*x^3-253*x^2+234*x-542 2865645459553780 m001 (Ei(1,1)+Zeta(1,2))/(Landau+ReciprocalLucas) 2865645475936421 m001 (sin(1/5*Pi)+ln(gamma))/(gamma(3)+MertensB3) 2865645478214464 a001 47/28657*10946^(3/50) 2865645478682696 m001 (cos(1/12*Pi)-Pi^(1/2))/(GAMMA(2/3)-Zeta(1/2)) 2865645484632372 r009 Re(z^3+c),c=-29/110+1/50*I,n=9 2865645488914022 r005 Re(z^2+c),c=-5/16+22/59*I,n=46 2865645492857448 a007 Real Root Of -807*x^4+280*x^3+764*x^2+974*x-343 2865645526593003 r005 Im(z^2+c),c=-4/3+5/238*I,n=30 2865645530339779 p004 log(34283/25741) 2865645533203607 r009 Re(z^3+c),c=-1/26+19/54*I,n=4 2865645539909298 r005 Re(z^2+c),c=-4/11+27/41*I,n=55 2865645545929282 a007 Real Root Of -162*x^4-245*x^3+400*x^2-496*x+453 2865645548728523 a003 cos(Pi*1/77)*sin(Pi*5/54) 2865645565389681 r005 Im(z^2+c),c=-45/122+29/60*I,n=38 2865645568787938 m001 (2^(1/3)+2^(1/2))/(Lehmer+PolyaRandomWalk3D) 2865645570505475 r005 Im(z^2+c),c=27/118+7/38*I,n=36 2865645575118837 r005 Re(z^2+c),c=-39/122+15/43*I,n=20 2865645582099504 h001 (-5*exp(-1)+7)/(-4*exp(-3)+2) 2865645596702250 l006 ln(207/3635) 2865645613303468 r005 Re(z^2+c),c=-41/106+21/37*I,n=58 2865645620758116 r005 Re(z^2+c),c=-5/16+22/59*I,n=49 2865645626387462 m001 exp(Riemann3rdZero)^2*Magata*(2^(1/3))^2 2865645627608046 r005 Im(z^2+c),c=-9/13+11/39*I,n=23 2865645632678176 a007 Real Root Of -286*x^4-771*x^3-106*x^2-837*x-385 2865645645893943 a007 Real Root Of -391*x^4-959*x^3+374*x^2-391*x-392 2865645662713024 r005 Im(z^2+c),c=-25/18+41/231*I,n=5 2865645665343805 r005 Im(z^2+c),c=-7/10+2/101*I,n=9 2865645677412969 a007 Real Root Of -298*x^4-520*x^3+617*x^2-847*x+365 2865645681868450 a007 Real Root Of -299*x^4-506*x^3+546*x^2-974*x+981 2865645681926966 m001 cos(Pi/12)^2*RenyiParking^2*ln(gamma) 2865645692298506 a007 Real Root Of 456*x^4+880*x^3-836*x^2+968*x-403 2865645721529083 a007 Real Root Of -205*x^4-148*x^3+961*x^2-924*x-198 2865645724352227 m001 (Bloch+CopelandErdos)/(BesselK(1,1)-gamma) 2865645727350892 r005 Im(z^2+c),c=-57/46+17/45*I,n=8 2865645733131945 r005 Im(z^2+c),c=-25/22+29/128*I,n=8 2865645749548028 a007 Real Root Of 282*x^4+888*x^3+255*x^2+312*x+680 2865645760877563 r009 Re(z^3+c),c=-3/106+34/35*I,n=7 2865645780721878 m003 -Csch[1/2+Sqrt[5]/2]+12*Sinh[1/2+Sqrt[5]/2] 2865645780956832 h001 (1/9*exp(2)+8/11)/(5/7*exp(2)+1/8) 2865645782793354 m001 (3^(1/3)-BesselI(0,1))/(BesselJ(1,1)+ZetaP(3)) 2865645786597010 m001 (GAMMA(7/12)+ArtinRank2)/(ln(3)-arctan(1/3)) 2865645790963220 l006 ln(5596/7453) 2865645791069177 m005 (1/2*3^(1/2)+1/9)/(1/4*5^(1/2)-9/10) 2865645794016688 r005 Re(z^2+c),c=-13/56+35/62*I,n=47 2865645798654530 v002 sum(1/(5^n+(19*n^2-8*n+45)),n=1..infinity) 2865645802553662 r005 Re(z^2+c),c=23/86+3/28*I,n=37 2865645803724764 m001 Landau^(Riemann1stZero/Shi(1)) 2865645808052508 m005 (1/2*gamma-1/7)/(2/5*Catalan-7/8) 2865645810062842 m001 (OneNinth-Weierstrass)/(ln(gamma)+FeigenbaumC) 2865645818224177 p001 sum((-1)^n/(509*n+49)/n/(6^n),n=1..infinity) 2865645833152539 a001 3571/11*(1/2*5^(1/2)+1/2)^29*11^(17/20) 2865645839694422 r009 Im(z^3+c),c=-69/118+7/23*I,n=49 2865645847528238 m001 HardyLittlewoodC5^gamma(1)*Khinchin 2865645871281916 r009 Im(z^3+c),c=-29/48+11/47*I,n=61 2865645873590448 r005 Im(z^2+c),c=-11/50+9/13*I,n=9 2865645878450982 m002 -Log[Pi]-Cosh[Pi]*Log[Pi]+Sinh[Pi] 2865645880099403 a007 Real Root Of -390*x^4+95*x^3+759*x^2+711*x-21 2865645882137346 r009 Re(z^3+c),c=-25/122+53/60*I,n=13 2865645889252855 a007 Real Root Of -413*x^4-986*x^3+781*x^2+874*x+739 2865645898312263 b008 LogGamma[(-2+E^3)^(-1)] 2865645909852387 a005 (1/cos(2/95*Pi))^1533 2865645916586437 r009 Re(z^3+c),c=-53/114+13/28*I,n=37 2865645922480116 m001 1/cos(Pi/5)/GAMMA(17/24)*ln(sin(1))^2 2865645928666860 a008 Real Root of x^4-x^3-25*x^2+62*x+292 2865645946329790 r005 Im(z^2+c),c=-35/66+24/55*I,n=39 2865645948291282 m001 Porter/Champernowne/PrimesInBinary 2865645967392501 b008 Pi-ProductLog[4/11] 2865645967982162 a007 Real Root Of -542*x^4+894*x^3-303*x^2+923*x-257 2865645978200195 r009 Re(z^3+c),c=-37/86+13/31*I,n=27 2865645978278809 l006 ln(7163/9540) 2865645978538847 m001 (Chi(1)+sin(1/5*Pi))/(Zeta(1,2)+BesselJ(1,1)) 2865645984266085 a001 4052739537881/11*123^(19/21) 2865645986309143 m001 Pi*ln(2)/ln(10)*exp(gamma)/sin(1/5*Pi) 2865645999956315 r009 Re(z^3+c),c=-17/56+4/23*I,n=8 2865646010650160 m001 (arctan(1/3)+FeigenbaumD)/(Gompertz+ZetaP(2)) 2865646025086799 a001 9349/11*(1/2*5^(1/2)+1/2)^27*11^(17/20) 2865646043597869 r005 Im(z^2+c),c=19/74+7/43*I,n=9 2865646047316669 a001 1346269/322*199^(4/11) 2865646048150249 m005 (1/2*gamma+1/10)/(3/7*2^(1/2)+3/4) 2865646051168489 m001 ln(2)/ln(10)*polylog(4,1/2)^FeigenbaumMu 2865646053089630 a001 24476/11*(1/2*5^(1/2)+1/2)^25*11^(17/20) 2865646055334934 m005 (1/2*3^(1/2)+5/9)/(3/5*3^(1/2)-6) 2865646057175188 a001 64079/11*(1/2*5^(1/2)+1/2)^23*11^(17/20) 2865646059700202 a001 39603/11*(1/2*5^(1/2)+1/2)^24*11^(17/20) 2865646070396332 a001 15127/11*(1/2*5^(1/2)+1/2)^26*11^(17/20) 2865646073508300 r005 Im(z^2+c),c=-10/9+1/29*I,n=21 2865646078708666 r005 Im(z^2+c),c=-13/28+3/8*I,n=8 2865646085842797 r005 Im(z^2+c),c=1/11+28/51*I,n=3 2865646091159518 m001 (GAMMA(3/4)+FibonacciFactorial)^GAMMA(19/24) 2865646101698120 h001 (10/11*exp(2)+5/8)/(2/3*exp(1)+3/4) 2865646107867965 m001 CareFree^2*Artin/ln(sqrt(5))^2 2865646121519501 h001 (8/9*exp(2)+4/5)/(10/11*exp(1)+1/10) 2865646122904765 r005 Im(z^2+c),c=-41/50+4/25*I,n=46 2865646127254695 m001 Shi(1)^cos(1/5*Pi)*Trott2nd 2865646141460842 l006 ln(505/8868) 2865646143708695 a001 5778/11*(1/2*5^(1/2)+1/2)^28*11^(17/20) 2865646149529138 m001 PrimesInBinary^sin(1)/(FeigenbaumC^sin(1)) 2865646163688102 a005 (1/cos(13/194*Pi))^666 2865646168778246 r009 Im(z^3+c),c=-55/102+5/18*I,n=36 2865646195074524 s002 sum(A142705[n]/(n*exp(pi*n)+1),n=1..infinity) 2865646199268963 h001 (6/7*exp(2)+1/12)/(7/9*exp(1)+1/8) 2865646200931485 a003 cos(Pi*24/109)*cos(Pi*39/103) 2865646201548218 p003 LerchPhi(1/64,6,576/217) 2865646223299908 m005 (1/2*Pi+4)/(9/11*gamma-2/3) 2865646225206387 r009 Re(z^3+c),c=-12/29+29/56*I,n=18 2865646229064228 m001 (GAMMA(2/3)-Ei(1,1))/(exp(1/Pi)+Sierpinski) 2865646232284403 r005 Re(z^2+c),c=-3/11+17/35*I,n=31 2865646240690841 a001 1/416020*610^(41/55) 2865646242503362 r009 Re(z^3+c),c=-9/25+13/25*I,n=4 2865646243387753 a007 Real Root Of 300*x^4+765*x^3-584*x^2-734*x+464 2865646258073489 m001 (PlouffeB-Thue)/(Champernowne-MinimumGamma) 2865646258503401 q001 1685/588 2865646262366564 p003 LerchPhi(1/32,1,19/54) 2865646262831482 m001 1/TwinPrimes*exp(MadelungNaCl)^3 2865646264862858 m005 (1/2*Catalan-1/12)/(9/11*exp(1)-11/12) 2865646266588167 m001 ln(cosh(1))^2*Cahen^2/exp(1) 2865646267423493 a005 (1/cos(21/205*Pi))^719 2865646272467242 r005 Im(z^2+c),c=-1/3+21/43*I,n=21 2865646280942640 r005 Re(z^2+c),c=-5/16+22/59*I,n=47 2865646292110371 r005 Re(z^2+c),c=-53/118+18/37*I,n=13 2865646293341301 a001 47/1597*2178309^(16/51) 2865646294536304 p001 sum(1/(162*n+137)/n/(12^n),n=0..infinity) 2865646306546970 r005 Re(z^2+c),c=37/126+29/59*I,n=7 2865646308611326 r005 Re(z^2+c),c=-39/106+2/31*I,n=8 2865646326625587 a007 Real Root Of -232*x^4-842*x^3-366*x^2+635*x+656 2865646332119472 a007 Real Root Of -216*x^4-445*x^3+388*x^2-447*x-373 2865646334395195 r005 Im(z^2+c),c=-2/11+23/59*I,n=7 2865646336230479 r005 Re(z^2+c),c=-29/86+12/43*I,n=28 2865646359986623 m005 (1/2*5^(1/2)+1/12)/(1/7*3^(1/2)-2/3) 2865646362504386 r005 Im(z^2+c),c=-5/34+29/44*I,n=42 2865646367991544 a007 Real Root Of 259*x^4+635*x^3-504*x^2-647*x-238 2865646399789696 m001 LambertW(1)/(polylog(4,1/2)+MinimumGamma) 2865646412702286 r005 Re(z^2+c),c=19/82+7/15*I,n=24 2865646413862697 r009 Im(z^3+c),c=-11/102+34/41*I,n=64 2865646420309080 a007 Real Root Of 629*x^4-459*x^3-17*x^2-919*x-277 2865646427822982 a001 24157817/1364*76^(1/9) 2865646428860452 m001 Landau/(cos(1)+FeigenbaumKappa) 2865646449050816 r002 52i'th iterates of 2*x/(1-x^2) of 2865646453025337 r005 Re(z^2+c),c=-5/16+22/59*I,n=54 2865646453458820 s002 sum(A123618[n]/(n^2*2^n+1),n=1..infinity) 2865646462635689 r005 Re(z^2+c),c=-5/16+22/59*I,n=52 2865646463573883 a007 Real Root Of -455*x^4-889*x^3+813*x^2-911*x+476 2865646465715805 m001 (ln(5)+ZetaQ(4))/(Psi(2,1/3)-ln(3)) 2865646488147196 m001 (GAMMA(3/4)+GAMMA(5/6))/(FeigenbaumB-Trott) 2865646489950874 r009 Re(z^3+c),c=-3/118+23/35*I,n=8 2865646494253459 r009 Re(z^3+c),c=-9/50+55/59*I,n=44 2865646519866803 l006 ln(298/5233) 2865646541677975 s002 sum(A123618[n]/(n^2*2^n-1),n=1..infinity) 2865646546183089 a005 (1/cos(12/197*Pi))^1057 2865646559935101 r005 Im(z^2+c),c=7/114+17/57*I,n=15 2865646564886795 m001 (Mills+ZetaQ(4))/(HardHexagonsEntropy-Si(Pi)) 2865646570175081 a001 199/28657*13^(21/38) 2865646583419968 r005 Re(z^2+c),c=-5/16+22/59*I,n=51 2865646586083843 r002 52th iterates of z^2 + 2865646595212527 r002 26th iterates of z^2 + 2865646598193394 p003 LerchPhi(1/256,1,51/146) 2865646607151726 r005 Re(z^2+c),c=-5/16+22/59*I,n=57 2865646622353805 a001 843/10946*832040^(13/49) 2865646624119010 m001 (ThueMorse+ZetaP(2))/(ln(3)-GAMMA(5/6)) 2865646637198145 r005 Re(z^2+c),c=-5/16+22/59*I,n=59 2865646644395764 r009 Re(z^3+c),c=-27/98+32/43*I,n=28 2865646644653326 s001 sum(exp(-Pi/2)^(n-1)*A221948[n],n=1..infinity) 2865646645589848 m004 -6-5*Sqrt[5]*Pi+625*Pi*Csc[Sqrt[5]*Pi] 2865646646199111 a001 2207/11*(1/2*5^(1/2)+1/2)^30*11^(17/20) 2865646647211799 l006 ln(1567/2087) 2865646647211799 p004 log(2087/1567) 2865646649301801 s001 sum(exp(-Pi/3)^(n-1)*A254934[n],n=1..infinity) 2865646658827396 m001 Khintchine^2*exp(Champernowne)*Lehmer^2 2865646660317090 r005 Re(z^2+c),c=-5/16+22/59*I,n=62 2865646664882688 m001 1/GAMMA(3/4)/Catalan*ln(LambertW(1))^2 2865646671630945 r005 Im(z^2+c),c=-53/46+2/55*I,n=36 2865646671731750 m005 (1/2*Zeta(3)-3/11)/(7/12*Zeta(3)+4/9) 2865646673540564 r005 Im(z^2+c),c=-11/52+19/45*I,n=21 2865646673826093 r005 Re(z^2+c),c=-5/16+22/59*I,n=64 2865646680037732 r005 Im(z^2+c),c=-11/16+15/71*I,n=5 2865646684654687 a001 29/10946*3^(1/14) 2865646689822265 m009 (2*Catalan+1/4*Pi^2+1/6)/(6*Psi(1,3/4)+1/3) 2865646690281502 m009 (5/2*Pi^2-4/5)/(20/3*Catalan+5/6*Pi^2-6) 2865646690308335 r005 Re(z^2+c),c=-5/16+22/59*I,n=60 2865646694478959 r005 Re(z^2+c),c=-5/16+22/59*I,n=61 2865646695309698 a001 55/322*76^(28/43) 2865646697168185 r005 Re(z^2+c),c=-5/16+22/59*I,n=63 2865646700494682 r005 Re(z^2+c),c=-5/16+22/59*I,n=56 2865646709411080 r009 Re(z^3+c),c=-11/24+19/41*I,n=64 2865646715331562 a007 Real Root Of -272*x^4-279*x^3+28*x^2+876*x+244 2865646745922125 r005 Re(z^2+c),c=-21/86+19/34*I,n=62 2865646754574713 m001 (FeigenbaumC+Tribonacci)/(cos(1/5*Pi)+Bloch) 2865646754781468 r005 Re(z^2+c),c=-5/16+22/59*I,n=58 2865646764207478 a007 Real Root Of 231*x^4-948*x^3+669*x^2-566*x-241 2865646769028096 m001 1/3*Porter/Otter*3^(1/2) 2865646769438011 a007 Real Root Of -190*x^4-632*x^3-551*x^2-677*x+525 2865646771795150 r005 Re(z^2+c),c=-23/122+29/52*I,n=19 2865646771824074 r005 Re(z^2+c),c=-141/98+5/41*I,n=7 2865646773946605 r005 Re(z^2+c),c=-5/16+22/59*I,n=55 2865646784846097 a001 1346269/2207*199^(8/11) 2865646786772472 r008 a(0)=0,K{-n^6,23+20*n^3+22*n^2-99*n} 2865646788526132 l006 ln(9322/9593) 2865646790542567 r005 Re(z^2+c),c=27/82+21/38*I,n=61 2865646820465599 r009 Im(z^3+c),c=-15/29+7/32*I,n=10 2865646829324013 a007 Real Root Of 202*x^4+743*x^3+529*x^2+160*x-23 2865646840669375 p003 LerchPhi(1/512,1,81/232) 2865646841087685 r005 Im(z^2+c),c=27/118+7/38*I,n=34 2865646841597655 a007 Real Root Of -5*x^4-114*x^3+833*x^2-161*x+419 2865646889784624 r005 Im(z^2+c),c=-32/29+19/49*I,n=5 2865646916765628 r005 Im(z^2+c),c=27/118+7/38*I,n=35 2865646925364397 a005 (1/cos(23/169*Pi))^597 2865646929953021 m005 (1/2*Pi+7/12)/(3/10*3^(1/2)-4/9) 2865646937063112 r005 Im(z^2+c),c=23/74+13/49*I,n=6 2865646941671891 a007 Real Root Of 176*x^4-550*x^3+642*x^2+160*x-21 2865646955581757 m001 1/Sierpinski*KhintchineLevy/ln(GAMMA(19/24)) 2865646963112587 m001 -GAMMA(1/4)/(BesselJ(0,1)+1/2) 2865646963112587 m001 GAMMA(1/4)/(BesselJ(0,1)+1/2) 2865646968014672 r005 Im(z^2+c),c=27/118+7/38*I,n=24 2865646971458176 m001 1/GAMMA(19/24)^2*CareFree^2*exp(Zeta(5))^2 2865646971989348 r002 23th iterates of z^2 + 2865646985201522 r005 Re(z^2+c),c=-5/16+22/59*I,n=53 2865646985938713 a007 Real Root Of 431*x^4+964*x^3-817*x^2-360*x-702 2865647008081625 a007 Real Root Of -584*x^4+739*x^3-731*x^2-85*x+57 2865647011113403 l006 ln(389/6831) 2865647020223776 r005 Im(z^2+c),c=-41/122+25/51*I,n=21 2865647024368213 r005 Im(z^2+c),c=-17/66+19/43*I,n=21 2865647024473502 a007 Real Root Of -82*x^4-66*x^3+318*x^2-393*x+239 2865647068125518 a001 161/305*233^(9/29) 2865647070468460 m001 (MertensB3+Tetranacci)/(gamma(2)+Champernowne) 2865647073764183 m001 Pi+Psi(2,1/3)*sin(1/5*Pi)+BesselK(1,1) 2865647074856718 r002 16th iterates of z^2 + 2865647075518635 a007 Real Root Of 197*x^4+298*x^3-911*x^2-626*x-585 2865647092387323 m001 1/LandauRamanujan/exp(Artin)/Pi 2865647096046341 r005 Re(z^2+c),c=-19/20+8/57*I,n=36 2865647102908605 m001 Ei(1)^ln(3)+GaussAGM(1,1/sqrt(2)) 2865647112235749 b008 1/2+ArcSinh[9]^Pi 2865647120011255 m006 (2/3/Pi+1/5)/(3/5*exp(Pi)+1/2) 2865647124702630 p001 sum((-1)^n/(189*n+83)/n/(128^n),n=1..infinity) 2865647134829458 r002 26th iterates of z^2 + 2865647135198339 r005 Re(z^2+c),c=-7/19+1/40*I,n=17 2865647138669891 a007 Real Root Of 186*x^4-216*x^3+467*x^2-200*x-102 2865647146616658 m001 GAMMA(5/6)/ln(2)*ln(10)*LandauRamanujan 2865647173686829 r005 Re(z^2+c),c=19/90+1/27*I,n=7 2865647182560390 a001 76/55*832040^(35/48) 2865647184730253 r009 Re(z^3+c),c=-27/58+11/24*I,n=49 2865647186096650 p002 log(12^(2/3)*(13^(1/2)-8)^(1/2)) 2865647189840300 m001 Si(Pi)/exp(FibonacciFactorial)/Ei(1) 2865647207831570 m001 BesselJ(1,1)^Psi(2,1/3)*BesselJ(1,1)^Landau 2865647209804915 m001 (Catalan+Ei(1))/(-ErdosBorwein+Kac) 2865647227508316 r005 Re(z^2+c),c=-23/86+22/39*I,n=36 2865647244765827 a001 13/7*123^(29/51) 2865647253410115 a007 Real Root Of -305*x^4-754*x^3+546*x^2+437*x-407 2865647258448657 a007 Real Root Of 69*x^4+48*x^3-29*x^2+816*x-947 2865647259707725 a001 329*312119004989^(7/9) 2865647260390300 s002 sum(A039345[n]/(n!^3),n=1..infinity) 2865647260922256 a007 Real Root Of -671*x^4-593*x^3-448*x^2+585*x+195 2865647271411542 m001 GAMMA(17/24)*exp(Khintchine)^2*Zeta(5) 2865647274082647 r002 28th iterates of z^2 + 2865647277755930 r005 Re(z^2+c),c=-5/16+22/59*I,n=50 2865647279512083 q001 1/3489613 2865647282323595 l006 ln(4530/4543) 2865647284373383 r009 Re(z^3+c),c=-3/106+34/35*I,n=9 2865647287336354 a001 1762289/2889*199^(8/11) 2865647316095545 l006 ln(480/8429) 2865647318434334 r005 Im(z^2+c),c=7/27+8/51*I,n=15 2865647319190886 r002 6th iterates of z^2 + 2865647320238318 m001 (GaussAGM-QuadraticClass)/(BesselI(0,2)-Cahen) 2865647325083297 a007 Real Root Of 205*x^4+33*x^3+123*x^2-849*x-254 2865647326941103 m005 (1/2*3^(1/2)-5/9)/(1/5*5^(1/2)-5/9) 2865647328896215 s001 sum(exp(-Pi/3)^(n-1)*A146197[n],n=1..infinity) 2865647330558762 a001 17*3571^(3/47) 2865647337639274 l006 ln(6940/9243) 2865647338567280 r005 Im(z^2+c),c=-19/106+25/61*I,n=30 2865647338771240 a007 Real Root Of 334*x^4+848*x^3+9*x^2+797*x-358 2865647348263924 r005 Re(z^2+c),c=11/126+21/34*I,n=2 2865647351073123 r009 Im(z^3+c),c=-14/29+7/57*I,n=47 2865647359762323 a007 Real Root Of -356*x^4-714*x^3+881*x^2+240*x+658 2865647360648710 a001 9227465/15127*199^(8/11) 2865647367332420 s001 sum(exp(-Pi/3)^(n-1)*A124478[n],n=1..infinity) 2865647371344838 a001 24157817/39603*199^(8/11) 2865647372905383 a001 31622993/51841*199^(8/11) 2865647373133063 a001 165580141/271443*199^(8/11) 2865647373166281 a001 433494437/710647*199^(8/11) 2865647373171128 a001 567451585/930249*199^(8/11) 2865647373171835 a001 2971215073/4870847*199^(8/11) 2865647373171938 a001 7778742049/12752043*199^(8/11) 2865647373171953 a001 10182505537/16692641*199^(8/11) 2865647373171955 a001 53316291173/87403803*199^(8/11) 2865647373171955 a001 139583862445/228826127*199^(8/11) 2865647373171955 a001 182717648081/299537289*199^(8/11) 2865647373171955 a001 956722026041/1568397607*199^(8/11) 2865647373171955 a001 2504730781961/4106118243*199^(8/11) 2865647373171955 a001 3278735159921/5374978561*199^(8/11) 2865647373171955 a001 10610209857723/17393796001*199^(8/11) 2865647373171955 a001 4052739537881/6643838879*199^(8/11) 2865647373171955 a001 1134903780/1860499*199^(8/11) 2865647373171955 a001 591286729879/969323029*199^(8/11) 2865647373171955 a001 225851433717/370248451*199^(8/11) 2865647373171956 a001 21566892818/35355581*199^(8/11) 2865647373171956 a001 32951280099/54018521*199^(8/11) 2865647373171962 a001 1144206275/1875749*199^(8/11) 2865647373172002 a001 1201881744/1970299*199^(8/11) 2865647373172272 a001 1836311903/3010349*199^(8/11) 2865647373174123 a001 701408733/1149851*199^(8/11) 2865647373186811 a001 66978574/109801*199^(8/11) 2865647373273777 a001 9303105/15251*199^(8/11) 2865647373869852 a001 39088169/64079*199^(8/11) 2865647377955410 a001 3732588/6119*199^(8/11) 2865647405958239 a001 5702887/9349*199^(8/11) 2865647416057463 r009 Im(z^3+c),c=-15/26+13/45*I,n=13 2865647417184739 h005 exp(cos(Pi*7/45)/cos(Pi*11/60)) 2865647421679172 g007 -14*Zeta(3)-Psi(2,7/12)-Psi(2,5/12)-Psi(2,5/7) 2865647426495238 m001 (FeigenbaumC+Kolakoski)/(ln(2)-ln(5)) 2865647444342921 m008 (4/5*Pi-3)/(1/6*Pi^4+3/4) 2865647467683145 a005 (1/cos(9/163*Pi))^1897 2865647472779607 a007 Real Root Of -188*x^4-222*x^3+754*x^2-462*x-62 2865647493791063 s002 sum(A161675[n]/((2*n)!),n=1..infinity) 2865647495771540 a007 Real Root Of -148*x^4-262*x^3+514*x^2-74*x-618 2865647498604804 s002 sum(A143618[n]/(n*pi^n-1),n=1..infinity) 2865647508210061 m005 (1/2*Zeta(3)-3/4)/(7/8*Catalan-6) 2865647512045840 m001 1/exp(Ei(1))^2*MadelungNaCl/GAMMA(19/24)^2 2865647523867915 l006 ln(571/10027) 2865647534953377 r005 Im(z^2+c),c=-33/98+15/32*I,n=55 2865647537306244 r005 Im(z^2+c),c=-5/19+27/53*I,n=11 2865647538997883 l006 ln(5373/7156) 2865647551544662 r005 Re(z^2+c),c=-5/16+22/59*I,n=42 2865647562387707 a005 (1/cos(7/169*Pi))^124 2865647582654464 r009 Re(z^3+c),c=-3/106+34/35*I,n=17 2865647582656338 r009 Re(z^3+c),c=-3/106+34/35*I,n=19 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=25 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=27 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=33 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=35 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=43 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=45 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=51 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=53 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=59 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=61 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=63 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=57 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=55 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=49 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=47 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=41 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=39 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=37 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=31 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=29 2865647582656380 r009 Re(z^3+c),c=-3/106+34/35*I,n=23 2865647582656384 r009 Re(z^3+c),c=-3/106+34/35*I,n=21 2865647582663388 r009 Re(z^3+c),c=-3/106+34/35*I,n=15 2865647583010063 a007 Real Root Of 213*x^4+501*x^3-133*x^2+522*x+14 2865647583435501 r009 Re(z^3+c),c=-3/106+34/35*I,n=13 2865647583664323 r009 Re(z^3+c),c=-3/106+34/35*I,n=11 2865647590790529 m001 FeigenbaumAlpha*(Khinchin-Riemann1stZero) 2865647597892501 a001 2178309/3571*199^(8/11) 2865647603248258 r005 Im(z^2+c),c=-47/42+7/27*I,n=64 2865647617451890 a001 11/610*34^(40/51) 2865647622316437 h001 (-2*exp(-2)-7)/(-7*exp(3/2)+6) 2865647633611015 r005 Im(z^2+c),c=-8/23+8/17*I,n=29 2865647640211375 b008 -1/2+(2+Sqrt[2])*E*Pi 2865647651291194 p001 sum(1/(487*n+355)/(25^n),n=0..infinity) 2865647657490712 a007 Real Root Of 185*x^4+414*x^3-397*x^2+156*x+974 2865647669129305 a003 cos(Pi*1/96)/sin(Pi*11/97) 2865647672675495 m005 (1/2*Catalan+2/3)/(23/7+2/7*5^(1/2)) 2865647682491426 a007 Real Root Of -275*x^4-566*x^3+612*x^2+95*x+472 2865647682499910 m001 (BesselI(0,2)+GaussAGM)/(BesselJ(0,1)-Si(Pi)) 2865647683096435 r005 Im(z^2+c),c=-3/5+39/97*I,n=16 2865647696084394 a001 843/4181*28657^(29/41) 2865647701956431 r009 Im(z^3+c),c=-19/62+36/55*I,n=5 2865647728001095 a007 Real Root Of 336*x^4-942*x^3-883*x^2-522*x+242 2865647739258604 a007 Real Root Of 238*x^4+846*x^3+693*x^2+483*x-448 2865647753499781 r009 Re(z^3+c),c=-1/64+53/58*I,n=10 2865647768279339 a003 cos(Pi*6/73)-cos(Pi*9/80) 2865647778188389 a007 Real Root Of 109*x^4+175*x^3-560*x^2-496*x-55 2865647784843694 m001 HardHexagonsEntropy^exp(1)*GAMMA(11/12)^exp(1) 2865647795982140 m001 (BesselI(0,2)+Khinchin)/(Niven+Trott2nd) 2865647798096187 a001 139583862445/3*3571^(2/9) 2865647798964103 r005 Re(z^2+c),c=-5/16+22/59*I,n=48 2865647811798502 m005 (1/3*gamma-1/5)/(5/12*5^(1/2)-2/3) 2865647812234958 m001 Ei(1)*exp(Riemann2ndZero)^2/Zeta(3) 2865647822533658 a001 233802911*9349^(7/9) 2865647824126547 r005 Im(z^2+c),c=-13/30+22/47*I,n=4 2865647826791632 r005 Re(z^2+c),c=-25/18+71/141*I,n=2 2865647838840448 m001 (-ZetaP(2)+ZetaP(3))/(Psi(1,1/3)-ThueMorse) 2865647847646398 a001 1836311903/3*64079^(5/9) 2865647847995226 a001 121393/3*2139295485799^(5/9) 2865647848022805 a001 75283811239*167761^(1/9) 2865647848032238 a001 3524578/3*1149851^(8/9) 2865647848033290 a001 832040/3*54018521^(7/9) 2865647848033978 a001 1134903170/3*3010349^(4/9) 2865647848034116 a001 4976784*370248451^(5/9) 2865647848034117 a001 20365011074/3*20633239^(2/9) 2865647848034119 a001 86267571272/3*969323029^(1/9) 2865647848034119 a001 1836311903/3*4106118243^(5/18) 2865647848034119 a001 10983760033*5600748293801^(1/9) 2865647848034119 a001 75283811239*28143753123^(1/18) 2865647848034119 a001 53316291173/3*73681302247^(1/9) 2865647848034119 a001 2971215073/3*119218851371^(2/9) 2865647848034119 a001 7778742049/3*1568397607^(2/9) 2865647848034119 a001 1134903170/3*9062201101803^(2/9) 2865647848034119 a001 165580141/3*23725150497407^(5/18) 2865647848034119 a001 165580141/3*228826127^(4/9) 2865647848034119 a001 233802911*87403803^(7/18) 2865647848034120 a001 24157817/3*17393796001^(4/9) 2865647848034120 a001 24157817/3*505019158607^(7/18) 2865647848034121 a001 139583862445/3*12752043^(1/9) 2865647848034125 a001 365435296162/3*4870847^(1/18) 2865647848034129 a001 39088169/3*12752043^(11/18) 2865647848034165 a001 3524578/3*1322157322203^(4/9) 2865647848034186 a001 165580141/3*4870847^(5/9) 2865647848034435 a001 1346269/3*28143753123^(5/9) 2865647848035695 a001 20365011074/3*710647^(5/18) 2865647848038533 a001 24157817/3*710647^(7/9) 2865647848042762 a001 53316291173/3*271443^(2/9) 2865647848048974 a001 196418/3*73681302247^(11/18) 2865647848048974 a001 196418/3*1568397607^(13/18) 2865647848062208 a001 34111385*271443^(13/18) 2865647848135941 a001 75025/3*87403803^(8/9) 2865647848732016 a001 28657/3*4106118243^(7/9) 2865647848846171 a001 7778742049/3*39603^(4/9) 2865647849759730 a001 39088169/3*39603^(17/18) 2865647850972482 v003 sum((12*n^2-16*n+9)/(n!+1),n=1..infinity) 2865647851466609 a007 Real Root Of 256*x^4+846*x^3+248*x^2-42*x+488 2865647852559764 a007 Real Root Of 192*x^4+552*x^3+277*x^2+473*x-877 2865647852817576 a001 10946/3*228826127^(17/18) 2865647852904273 a001 20365011074/3*15127^(7/18) 2865647856087960 r005 Re(z^2+c),c=19/60+5/54*I,n=17 2865647856510874 r005 Im(z^2+c),c=-7/26+4/9*I,n=56 2865647856702728 m001 (Bloch+PlouffeB)/(Porter+Tribonacci) 2865647859165901 a001 165580141/3*15127^(8/9) 2865647868352278 r005 Im(z^2+c),c=7/32+11/57*I,n=24 2865647869228317 m001 (GAMMA(17/24)+Totient)/Catalan 2865647875365682 m001 Psi(1,1/3)^ln(gamma)+Sierpinski 2865647906162545 l006 ln(3806/5069) 2865647913403712 a001 365435296162/3*2207^(1/9) 2865647918068923 r005 Re(z^2+c),c=-9/98+49/51*I,n=5 2865647920986220 r005 Im(z^2+c),c=27/118+7/38*I,n=30 2865647921993394 m001 1/MertensB1^2*Cahen*ln(Riemann2ndZero) 2865647932617770 m001 Weierstrass^MasserGramain*arctan(1/2) 2865647940886526 m005 (1/2*2^(1/2)+1/11)/(3/4*Pi+3/7) 2865647957233565 a005 (1/cos(14/193*Pi))^216 2865647961758573 a001 832040/3*199^(15/34) 2865647972165773 a001 521/53316291173*317811^(4/15) 2865647972167286 a001 521/2504730781961*591286729879^(4/15) 2865647972167286 a001 521/365435296162*433494437^(4/15) 2865647994010989 a007 Real Root Of 34*x^4+996*x^3+611*x^2-273*x+605 2865648001400034 a007 Real Root Of -381*x^4-785*x^3+891*x^2-110*x-412 2865648019678176 m001 (Ei(1,1)-Backhouse)/(CareFree-RenyiParking) 2865648029072528 a001 48/41*3^(22/27) 2865648034193983 m005 (1/2*Zeta(3)+3/7)/(4/9*Catalan-4) 2865648038480657 m001 (2^(1/2))^Chi(1)+GAMMA(7/12) 2865648044950421 a007 Real Root Of -937*x^4+284*x^3+762*x^2+911*x-324 2865648062935604 r008 a(0)=3,K{-n^6,4-2*n^3-72*n^2+77*n} 2865648070082818 r005 Im(z^2+c),c=-17/14+24/239*I,n=3 2865648072058919 a001 591286729879/3*843^(1/18) 2865648072754805 a001 1597/3*6643838879^(8/9) 2865648090322706 a001 322/3*317811^(7/27) 2865648098244147 m008 (3*Pi^6+1/2)/(2/5*Pi-1/4) 2865648107031557 m001 (Cahen-Conway)/(Pi-Chi(1)) 2865648119542680 r005 Im(z^2+c),c=41/126+1/15*I,n=62 2865648122996436 m005 (1/3*2^(1/2)+1/8)/(4/7*2^(1/2)-3/5) 2865648131964430 h001 (1/7*exp(2)+9/10)/(5/6*exp(2)+2/3) 2865648134731021 m005 (1/3*2^(1/2)+1/5)/(-19/48+3/16*5^(1/2)) 2865648134951270 p001 sum(1/(573*n+350)/(128^n),n=0..infinity) 2865648142826285 r005 Im(z^2+c),c=-7/26+4/9*I,n=53 2865648149899927 r005 Re(z^2+c),c=-15/22+106/117*I,n=3 2865648152521914 a007 Real Root Of 4*x^4+124*x^3+299*x^2+852*x-526 2865648152642889 m001 Magata*FeigenbaumDelta*ln(GAMMA(7/12))^2 2865648155253857 s002 sum(A195853[n]/(16^n-1),n=1..infinity) 2865648166328926 r005 Re(z^2+c),c=-1/52+36/61*I,n=15 2865648168177602 m001 exp(GAMMA(1/6))/KhintchineLevy^2*cosh(1) 2865648173765005 h001 (4/11*exp(1)+7/12)/(8/11*exp(2)+1/9) 2865648176680135 a007 Real Root Of -85*x^4+299*x^3+640*x^2+649*x-245 2865648185899495 r005 Re(z^2+c),c=-11/31+1/5*I,n=9 2865648195469309 s002 sum(A043168[n]/(n!^3),n=1..infinity) 2865648197344737 s002 sum(A043948[n]/(n!^3),n=1..infinity) 2865648207566900 a001 7778742049/3*2207^(11/18) 2865648215708638 r005 Im(z^2+c),c=-3/34+17/45*I,n=9 2865648217525442 a007 Real Root Of 179*x^4-487*x^3-285*x^2-235*x+101 2865648221897723 h001 (1/7*exp(1)+3/8)/(3/4*exp(1)+5/8) 2865648223770316 a007 Real Root Of -347*x^4-701*x^3+708*x^2-276*x+299 2865648225650146 m001 (Pi+ln(2))/(Champernowne-MinimumGamma) 2865648225651559 a007 Real Root Of -14*x^4-409*x^3-234*x^2-326*x-954 2865648229231580 m001 cos(1)-ln(gamma)^Si(Pi) 2865648229231580 m001 cos(1)-log(gamma)^Si(Pi) 2865648232510876 l006 ln(6045/8051) 2865648234222801 m001 BesselK(0,1)^GaussKuzminWirsing-GAMMA(11/12) 2865648260263981 m001 Shi(1)*Ei(1,1)/AlladiGrinstead 2865648286984073 m001 Zeta(3)^2/PisotVijayaraghavan*exp(cos(Pi/12)) 2865648296526664 m001 1/Salem^2*ln(Conway)^2/BesselK(0,1)^2 2865648297064931 r005 Im(z^2+c),c=-30/23+1/60*I,n=6 2865648343657434 r009 Im(z^3+c),c=-17/106+13/44*I,n=5 2865648351918363 m005 (1/2*gamma-1/8)/(5/7*Catalan-1/12) 2865648365345552 r002 21th iterates of z^2 + 2865648389309296 m001 GAMMA(3/4)*Si(Pi)*ln(log(1+sqrt(2))) 2865648403793856 a001 4870847/89*1836311903^(16/17) 2865648403795775 a001 10749957122/89*514229^(16/17) 2865648405402792 m002 -6+Pi^(-4)+3*Sinh[Pi] 2865648421120139 k001 Champernowne real with 278*n+8 2865648422165072 r005 Im(z^2+c),c=7/102+5/17*I,n=13 2865648434457433 m001 exp(Tribonacci)^2*FeigenbaumB/GAMMA(1/12) 2865648453444224 r009 Re(z^3+c),c=-15/46+13/58*I,n=10 2865648456453305 a007 Real Root Of 150*x^4-403*x^3+221*x^2-755*x-245 2865648459746311 q001 1107/3863 2865648462053166 r005 Im(z^2+c),c=-35/66+2/39*I,n=24 2865648466773372 m005 (1/2*2^(1/2)+1/10)/(3/4*exp(1)+7/9) 2865648467065368 a007 Real Root Of -30*x^4-872*x^3-340*x^2+391*x+832 2865648482299068 m001 GAMMA(7/24)/FeigenbaumAlpha^2/exp(cos(1)) 2865648482373032 a008 Real Root of (1+4*x+x^2+2*x^3-5*x^4-2*x^5) 2865648486999951 m001 (-cos(1)+Zeta(3))/(3^(1/2)+gamma) 2865648498357864 r005 Im(z^2+c),c=-43/102+23/47*I,n=46 2865648500791490 m005 (1/2*exp(1)+1/5)/(1/5*Catalan-8/11) 2865648507269691 a003 sin(Pi*22/103)/cos(Pi*34/79) 2865648507812821 r005 Re(z^2+c),c=2/23+35/64*I,n=6 2865648508286511 m001 (Otter+TravellingSalesman)/(cos(1/5*Pi)+Bloch) 2865648508618549 a007 Real Root Of -890*x^4+673*x^3-709*x^2+935*x+348 2865648513470473 r005 Im(z^2+c),c=-5/6+7/38*I,n=41 2865648516904583 r005 Im(z^2+c),c=7/25+41/55*I,n=3 2865648525648319 m001 1/exp(sinh(1))/Ei(1)^2/sqrt(3)^2 2865648534079250 m005 (1/2*exp(1)+7/12)/(1/8*gamma-3/4) 2865648540462704 r009 Re(z^3+c),c=-47/118+16/47*I,n=7 2865648555995073 m006 (5/6*ln(Pi)-2/3)/(3*Pi+3/5) 2865648567262539 r005 Im(z^2+c),c=-5/7+4/115*I,n=10 2865648575806555 a007 Real Root Of -283*x^4+882*x^3+51*x^2+616*x+195 2865648578828094 r005 Re(z^2+c),c=-43/106+7/13*I,n=11 2865648589779410 m006 (ln(Pi)+3/5)/(3/5*Pi^2+1/6) 2865648597344224 m001 (BesselJ(1,1)+Mills)/(PlouffeB-PrimesInBinary) 2865648601960414 m001 1/exp(LambertW(1))^2/GAMMA(23/24)^2*Zeta(1,2) 2865648605776393 m001 (3^(1/3))^2*ln(FeigenbaumD)^2*sqrt(2) 2865648606239916 m005 (1/2*Zeta(3)+8/11)/(-3/8+3/8*5^(1/2)) 2865648613062250 m005 (1/2*Catalan-5/12)/(2/5*Zeta(3)-5/8) 2865648619401917 m005 (1/2*2^(1/2)-1/9)/(11/12*Pi-4/5) 2865648619809369 l006 ln(91/1598) 2865648642325118 r005 Im(z^2+c),c=-19/74+1/24*I,n=6 2865648644570685 m001 (Magata-OneNinth)/(sin(1/12*Pi)-Artin) 2865648644738540 a007 Real Root Of -203*x^4-121*x^3+919*x^2-824*x+934 2865648647281241 p004 log(31907/23957) 2865648655575490 m005 (1/2*Catalan+7/11)/(10/11*gamma-1/7) 2865648694028339 s001 sum(exp(-Pi/4)^n*A228381[n],n=1..infinity) 2865648710770928 m001 GAMMA(11/12)^BesselK(0,1)/FeigenbaumMu 2865648712615833 a007 Real Root Of 323*x^4+783*x^3-552*x^2-185*x+647 2865648714818820 a007 Real Root Of 589*x^4-776*x^3+286*x^2+6*x-44 2865648725142505 r002 38th iterates of z^2 + 2865648730353227 r005 Im(z^2+c),c=-29/110+5/11*I,n=16 2865648736157940 a007 Real Root Of 80*x^4-320*x^3-862*x^2-765*x+297 2865648737739737 r002 5th iterates of z^2 + 2865648754048516 r005 Re(z^2+c),c=-2/3+52/205*I,n=2 2865648766362975 r005 Re(z^2+c),c=-19/34+26/59*I,n=10 2865648772961094 a007 Real Root Of 86*x^4+169*x^3-142*x^2-740*x-197 2865648787259289 l006 ln(2239/2982) 2865648805850254 p003 LerchPhi(1/10,3,81/53) 2865648824886246 m005 (1/42+1/6*5^(1/2))/(4/9*Catalan-6/11) 2865648829025203 r005 Re(z^2+c),c=-23/110+25/43*I,n=42 2865648847412009 a001 322/17711*34^(4/31) 2865648849134837 a007 Real Root Of -107*x^4+388*x^3-602*x^2+669*x+251 2865648849408858 r002 11th iterates of z^2 + 2865648854818102 a007 Real Root Of -558*x^4+383*x^3+431*x^2+755*x-257 2865648854961832 q001 1877/655 2865648857411214 r005 Im(z^2+c),c=-31/74+13/25*I,n=58 2865648874927526 a007 Real Root Of 284*x^4+845*x^3-105*x^2-235*x+922 2865648876795913 m001 1/MadelungNaCl*ln(MertensB1)*GAMMA(11/24)^2 2865648881238663 r005 Re(z^2+c),c=33/106+8/55*I,n=24 2865648886411271 a007 Real Root Of -3*x^4-860*x^3-90*x^2-720*x-866 2865648889488355 a007 Real Root Of x^4-230*x^3-555*x^2+236*x-246 2865648890174864 a007 Real Root Of -22*x^4-620*x^3+302*x^2+93*x+409 2865648897203570 r002 7th iterates of z^2 + 2865648898405284 a007 Real Root Of -242*x^4-223*x^3+974*x^2-794*x+798 2865648901121367 m007 (-2/5*gamma-1/4)/(-3/5*gamma-6/5*ln(2)-1/2) 2865648904159056 m001 1/Pi^2/Riemann3rdZero^2/exp(sqrt(3)) 2865648913430194 a001 610*199^(8/11) 2865648928101610 m001 1/Niven*Artin*exp(GAMMA(17/24))^2 2865648938341364 a009 11^(2/3)/(16+2^(1/3)) 2865648955630489 a003 cos(Pi*5/112)*sin(Pi*10/107) 2865648960518861 r005 Re(z^2+c),c=-5/17+19/43*I,n=13 2865648966593189 m001 (Chi(1)+arctan(1/3))/(MinimumGamma+Sierpinski) 2865648975059149 r005 Re(z^2+c),c=-25/54+24/43*I,n=35 2865648978877473 a007 Real Root Of -250*x^4+414*x^3+991*x^2+494*x-231 2865648979393097 m001 (ln(gamma)*KomornikLoreti-Lehmer)/ln(gamma) 2865648988782007 a001 13/123*2139295485799^(12/23) 2865648992120243 a001 2207/89*6557470319842^(16/17) 2865648997592261 r005 Re(z^2+c),c=-47/32+9/59*I,n=4 2865649005462209 a007 Real Root Of 893*x^4+793*x^3+925*x^2-798*x-292 2865649007221359 r005 Re(z^2+c),c=-57/118+21/50*I,n=10 2865649045021578 r009 Re(z^3+c),c=-41/94+25/56*I,n=23 2865649054537572 a003 sin(Pi*3/53)/sin(Pi*18/85) 2865649059688705 r002 30th iterates of z^2 + 2865649065025654 r009 Re(z^3+c),c=-13/29+19/40*I,n=37 2865649067054564 l006 ln(4575/4708) 2865649077861151 a007 Real Root Of -204*x^4-566*x^3+186*x^2+693*x+896 2865649078586762 m008 (3/5*Pi-4)/(3/4*Pi^4+3/4) 2865649099943482 a007 Real Root Of -358*x^4-812*x^3+216*x^2-961*x+506 2865649106320707 m005 (1/2*3^(1/2)-2/9)/(6/7*exp(1)-1/12) 2865649112407844 a007 Real Root Of 174*x^4+484*x^3+65*x^2+172*x-385 2865649114468518 r005 Im(z^2+c),c=-37/90+28/59*I,n=31 2865649123465292 m001 (Bloch-KhinchinHarmonic)/(PrimesInBinary-Thue) 2865649123778736 a001 1/15456*4181^(19/26) 2865649139840256 p001 sum(1/(358*n+257)/n/(6^n),n=1..infinity) 2865649152164025 a007 Real Root Of -x^4-287*x^3-124*x^2+193*x-537 2865649161209402 a003 cos(Pi*5/72)*sin(Pi*11/116) 2865649167185915 r009 Im(z^3+c),c=-31/58+17/43*I,n=20 2865649178633939 a005 (1/cos(10/127*Pi))^332 2865649184457567 m001 1/2*ln(2)/ln(10)*2^(1/2)*GAMMA(3/4)*ln(3) 2865649185884522 r002 43th iterates of z^2 + 2865649187596733 m005 (1/2*5^(1/2)-1)/(1/9*Zeta(3)-6/11) 2865649201494319 a001 167761/144*121393^(19/22) 2865649208000924 r005 Re(z^2+c),c=-7/6+43/62*I,n=2 2865649210178425 h001 (7/10*exp(1)+5/9)/(2/11*exp(1)+4/11) 2865649217170432 a007 Real Root Of 177*x^4+804*x^3+508*x^2-794*x+537 2865649217668379 a001 2889/17*2178309^(56/57) 2865649219071147 m001 (GAMMA(3/4)+BesselI(1,1))/(Zeta(3)-gamma) 2865649219833321 m001 (Niven+Robbin)/(LambertW(1)+sin(1/12*Pi)) 2865649222655578 a005 (1/sin(76/185*Pi))^258 2865649222943950 a007 Real Root Of -925*x^4+545*x^3-810*x^2+326*x+179 2865649223079468 m001 (-Robbin+ZetaQ(2))/(Chi(1)-Kac) 2865649241103379 l006 ln(7389/9841) 2865649246099229 r005 Im(z^2+c),c=-3/22+29/45*I,n=24 2865649247564008 m001 RenyiParking^BesselI(1,2)+5^(1/2) 2865649247564008 m001 sqrt(5)+RenyiParking^BesselI(1,2) 2865649259560417 a007 Real Root Of -521*x^4+670*x^3+101*x^2+532*x-173 2865649259821545 r002 17th iterates of z^2 + 2865649267439586 m001 exp(GAMMA(7/12))*GAMMA(1/12)*cos(1) 2865649270145765 a007 Real Root Of 452*x^4+235*x^3-73*x^2-686*x+194 2865649272100294 r005 Im(z^2+c),c=-27/74+17/35*I,n=25 2865649277422942 m001 1/(3^(1/3))*Robbin*exp(Catalan)^2 2865649279983876 r005 Im(z^2+c),c=-29/114+18/41*I,n=30 2865649287198864 a001 161/1292*4807526976^(19/22) 2865649290917723 m001 1/exp(cos(1))/GAMMA(19/24)/sqrt(3) 2865649295579793 m005 (10/3+1/3*5^(1/2))/(2/5*Pi+1/6) 2865649298343597 r002 24th iterates of z^2 + 2865649299010379 m005 (1/2*Zeta(3)-8/9)/(1/12*5^(1/2)+9/11) 2865649305285759 m001 ZetaQ(4)^2/Pi^2/csc(7/24*Pi)^2*GAMMA(17/24)^2 2865649313753923 r005 Re(z^2+c),c=-17/48+7/37*I,n=17 2865649332270575 r005 Im(z^2+c),c=-21/62+28/57*I,n=21 2865649332716714 a007 Real Root Of 523*x^4+203*x^3+573*x^2-566*x-208 2865649333817366 a007 Real Root Of 392*x^4+949*x^3-382*x^2+353*x+46 2865649335287176 a007 Real Root Of -154*x^4-319*x^3+286*x^2-278*x-267 2865649346820758 r009 Im(z^3+c),c=-51/106+7/58*I,n=62 2865649354724510 r009 Im(z^3+c),c=-43/98+12/53*I,n=5 2865649366558401 r005 Re(z^2+c),c=-23/78+23/54*I,n=28 2865649380622871 m001 GAMMA(23/24)^Pi+Grothendieck 2865649382894708 p001 sum(1/(85*n+36)/(10^n),n=0..infinity) 2865649395293337 r005 Im(z^2+c),c=27/98+3/22*I,n=48 2865649401835386 s002 sum(A145140[n]/((exp(n)+1)*n),n=1..infinity) 2865649405866960 m001 Pi+exp(Pi)+Shi(1)+ln(2+3^(1/2)) 2865649410602291 g002 Psi(6/11)-Psi(7/11)-Psi(6/7)-Psi(3/7) 2865649412756857 m002 -6+Pi^5-Cosh[Pi]-2/ProductLog[Pi] 2865649417031654 a009 1/2*(15*2^(3/4)-2)^(1/2)*2^(1/4) 2865649423148492 q001 77/2687 2865649431689150 r005 Im(z^2+c),c=-33/98+26/53*I,n=21 2865649432545728 m001 Lehmer^2*ln(GolombDickman)*sqrt(3) 2865649434508969 p001 sum((-1)^n/(587*n+345)/(32^n),n=0..infinity) 2865649438415395 l006 ln(5150/6859) 2865649439678490 r009 Im(z^3+c),c=-2/17+13/43*I,n=10 2865649449099745 m001 (GolombDickman-StolarskyHarborth)/Ei(1) 2865649450691789 r005 Re(z^2+c),c=-8/25+23/51*I,n=5 2865649457469919 m001 (sin(1)+GAMMA(1/6))/sqrt(5) 2865649457469919 m001 1/5*5^(1/2)*(sin(1)+2*Pi/GAMMA(5/6)) 2865649458848760 s002 sum(A072485[n]/(pi^n),n=1..infinity) 2865649462906927 r005 Im(z^2+c),c=-47/110+31/61*I,n=32 2865649470809952 r005 Re(z^2+c),c=-7/19+1/60*I,n=13 2865649474157936 a007 Real Root Of -156*x^4-143*x^3+964*x^2+86*x-515 2865649476315441 m001 Chi(1)+FransenRobinson+Riemann3rdZero 2865649520517237 m001 (StronglyCareFree+Trott)/(Magata-Robbin) 2865649522088790 m005 (1/2*2^(1/2)-8/9)/(3/8*Catalan+6) 2865649532004124 m001 1/3*RenyiParking*GAMMA(1/12) 2865649546197766 m001 LandauRamanujan/Kolakoski*ln(sin(1))^2 2865649547110250 a007 Real Root Of -627*x^4+308*x^3-298*x^2+867*x-227 2865649555689272 r005 Re(z^2+c),c=-27/98+30/53*I,n=12 2865649567844157 m001 Paris/ln(KhintchineLevy)^2/Salem 2865649567897603 r005 Im(z^2+c),c=-29/44+8/25*I,n=57 2865649572870433 m001 exp(Pi)^(ThueMorse/ZetaQ(2)) 2865649585724832 m001 (FeigenbaumD+Otter)/(3^(1/2)+CopelandErdos) 2865649595734586 h003 exp(Pi*(3/(3^(1/3)+12^(3/4))^(1/2))) 2865649599484611 m001 1/ErdosBorwein^2/exp(Artin)*Zeta(5)^2 2865649608922292 m009 (2/3*Psi(1,2/3)+2/5)/(40*Catalan+5*Pi^2-3/4) 2865649613289988 m001 BesselK(0,1)^2*ln(Conway)/GAMMA(13/24) 2865649625152854 r009 Im(z^3+c),c=-55/122+7/45*I,n=5 2865649627307391 a005 (1/sin(45/181*Pi))^3 2865649631558912 r005 Im(z^2+c),c=-83/118+1/8*I,n=43 2865649636214034 m001 GAMMA(1/12)^2*FeigenbaumC^2/exp(GAMMA(1/24)) 2865649653517217 r005 Im(z^2+c),c=-73/66+12/47*I,n=18 2865649659552585 m005 (1/2*2^(1/2)+7/10)/(1/2*3^(1/2)-3/8) 2865649661206614 a007 Real Root Of 285*x^4+549*x^3-809*x^2-368*x-711 2865649680564188 m001 (exp(1)+ZetaP(3))/Psi(1,1/3) 2865649700494656 m001 Ei(1,1)^(5^(1/2))*Ei(1,1)^Pi 2865649701373306 m001 BesselI(0,1)^(3^(1/3))-Zeta(1/2) 2865649709006595 m005 (1/2*5^(1/2)+7/12)/(1/9*Zeta(3)-8/11) 2865649711389160 m001 ln(KhintchineLevy)*GolombDickman*FeigenbaumD 2865649714131003 m001 1/Zeta(5)^2/GaussKuzminWirsing*exp(sqrt(5)) 2865649720589726 r009 Im(z^3+c),c=-19/122+8/27*I,n=7 2865649753206344 r005 Im(z^2+c),c=-29/118+32/45*I,n=6 2865649754373737 r005 Im(z^2+c),c=-29/74+24/53*I,n=14 2865649755109467 m001 (Rabbit-Thue)/(GAMMA(13/24)+FeigenbaumMu) 2865649770454855 r005 Im(z^2+c),c=19/98+19/46*I,n=4 2865649774633174 r005 Im(z^2+c),c=3/110+17/54*I,n=9 2865649776827924 r009 Im(z^3+c),c=-29/64+7/46*I,n=20 2865649779064626 a001 1149851/3*377^(8/11) 2865649784606855 r002 8th iterates of z^2 + 2865649786576324 r002 35i'th iterates of 2*x/(1-x^2) of 2865649788191221 r009 Re(z^3+c),c=-9/16+15/47*I,n=7 2865649790194315 m001 BesselI(0,1)^GAMMA(11/12)*BesselI(0,1)^Magata 2865649792244918 r002 28th iterates of z^2 + 2865649793242250 r005 Re(z^2+c),c=-51/118+33/53*I,n=5 2865649814070608 r005 Re(z^2+c),c=-15/19+9/64*I,n=28 2865649817581465 m005 (1/3*Zeta(3)+1/10)/(1/3*Pi+7/10) 2865649820878797 a001 1/41*2^(10/43) 2865649820926168 l006 ln(521/9149) 2865649822613977 r009 Re(z^3+c),c=-13/30+25/59*I,n=48 2865649825245081 r002 44th iterates of z^2 + 2865649825307719 m001 Landau^(FeigenbaumDelta/BesselI(0,2)) 2865649841069649 m005 (1/3*Catalan-1/6)/(3/8*5^(1/2)+4) 2865649850204134 r005 Re(z^2+c),c=13/102+4/11*I,n=10 2865649858712268 a005 (1/cos(4/17*Pi))^72 2865649864998227 r002 64th iterates of z^2 + 2865649874005657 r005 Re(z^2+c),c=-5/16+22/59*I,n=45 2865649874032818 a007 Real Root Of 143*x^4+37*x^3-974*x^2+177*x-267 2865649875420015 m001 PisotVijayaraghavan*Paris*ln(GAMMA(5/24))^2 2865649894054176 m001 (FeigenbaumAlpha-Riemann2ndZero)/MasserGramain 2865649894770322 m001 1/GAMMA(7/24)^2*OneNinth*exp(arctan(1/2))^2 2865649899411745 r005 Im(z^2+c),c=-99/106+9/37*I,n=59 2865649901660885 m006 (4/5*Pi-1/2)/(3*exp(Pi)+5/6) 2865649901729754 a007 Real Root Of 952*x^4-758*x^3+630*x^2-848*x-319 2865649904140008 r009 Re(z^3+c),c=-17/64+1/24*I,n=6 2865649906237932 m005 (17/36+1/4*5^(1/2))/(3/8*Zeta(3)-1/11) 2865649918932539 a001 832040/843*199^(7/11) 2865649927759989 r005 Im(z^2+c),c=-19/86+26/61*I,n=36 2865649931198344 m001 (ln(2+3^(1/2))+GAMMA(23/24))/(Zeta(5)-Ei(1,1)) 2865649933275482 r005 Re(z^2+c),c=-73/114+3/10*I,n=18 2865649939253059 l006 ln(2911/3877) 2865649940090333 m008 (4/5*Pi-2/3)/(2/3*Pi^4-1/2) 2865649968116754 r005 Im(z^2+c),c=-41/118+23/48*I,n=31 2865649971275632 a007 Real Root Of 896*x^4-896*x^3+80*x^2-692*x-232 2865649977868728 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi]^2 2865649979219512 p004 log(24251/1381) 2865649982486304 m001 MadelungNaCl^HardyLittlewoodC5*BesselI(0,2) 2865650005627283 m005 (1/2*3^(1/2)+7/8)/(1/9*3^(1/2)-4/5) 2865650009249600 m005 (1/2*Pi-1/5)/(3/8*gamma-5) 2865650013400042 a007 Real Root Of 61*x^4-78*x^3-458*x^2+848*x+242 2865650020514443 a007 Real Root Of -425*x^4-939*x^3+418*x^2-784*x+884 2865650020811826 r005 Im(z^2+c),c=-5/27+23/56*I,n=13 2865650024146384 m001 (ln(2+3^(1/2))+Tribonacci)^Catalan 2865650027335207 a007 Real Root Of 65*x^4-612*x^3-778*x^2-845*x+320 2865650034657189 a007 Real Root Of 261*x^4+259*x^3+546*x^2-417*x-160 2865650035305541 a007 Real Root Of -57*x^4-122*x^3-260*x^2+831*x+257 2865650048184561 m001 Trott2nd-exp(1)-ZetaP(3) 2865650054048796 r005 Im(z^2+c),c=27/98+3/22*I,n=45 2865650056571311 m001 (FeigenbaumMu-KhinchinLevy)/(Trott2nd-Thue) 2865650059723817 a007 Real Root Of -280*x^4-952*x^3-474*x^2+34*x+469 2865650064348510 r005 Im(z^2+c),c=5/12+14/59*I,n=8 2865650065276025 m001 StronglyCareFree*(Champernowne+FeigenbaumMu) 2865650075115817 l006 ln(430/7551) 2865650088282912 a001 20365011074/3*843^(5/9) 2865650090319655 a001 843/11*(1/2*5^(1/2)+1/2)^32*11^(17/20) 2865650110246718 r005 Im(z^2+c),c=-47/86+22/51*I,n=41 2865650113370219 m005 (1/36+1/4*5^(1/2))/(1/11*2^(1/2)-1/3) 2865650127003986 m001 (AlladiGrinstead-Zeta(1/2)*Stephens)/Stephens 2865650132985140 p001 sum(1/(361*n+321)/n/(512^n),n=1..infinity) 2865650133043396 a001 843/2*832040^(13/42) 2865650135588208 a003 sin(Pi*11/111)/cos(Pi*41/88) 2865650144766750 a007 Real Root Of -414*x^4-998*x^3+493*x^2+153*x+823 2865650146896050 m005 (7/18+1/6*5^(1/2))/(11/12*Pi-2/9) 2865650152773854 r005 Re(z^2+c),c=-5/16+22/59*I,n=43 2865650165745012 r005 Im(z^2+c),c=-7/26+4/9*I,n=54 2865650178225568 m001 1/FeigenbaumD/exp(Cahen)^2/Ei(1)^2 2865650182146622 r005 Re(z^2+c),c=-22/31+7/62*I,n=4 2865650189154975 a007 Real Root Of -15*x^4-397*x^3+935*x^2-167*x+384 2865650193418030 m002 4+E^Pi+6*Csch[Pi]+Tanh[Pi] 2865650203791609 m005 (1/2*3^(1/2)-2/11)/(8/9*5^(1/2)+2/5) 2865650218047885 r005 Re(z^2+c),c=-29/98+37/47*I,n=3 2865650223998249 m001 GAMMA(1/12)^(Lehmer/exp(1/Pi)) 2865650225405569 a001 514229/18*11^(25/26) 2865650240372025 r005 Im(z^2+c),c=-91/94+9/41*I,n=4 2865650249511676 b008 14/95+E 2865650264235717 m001 ln(2)^Niven/((2*Pi/GAMMA(5/6))^Niven) 2865650266767259 a007 Real Root Of -147*x^4-689*x^3-588*x^2+780*x+763 2865650276053337 r005 Re(z^2+c),c=-11/19+3/10*I,n=7 2865650279398429 a007 Real Root Of 502*x^4+338*x^3+551*x^2-713*x-245 2865650287078238 m005 (1/3*3^(1/2)-1/3)/(7/11*5^(1/2)-4/7) 2865650297071101 r005 Re(z^2+c),c=39/106+13/43*I,n=24 2865650303118443 g006 Psi(1,7/8)+Psi(1,1/7)-Psi(1,9/11)-Psi(1,2/9) 2865650307448772 m001 (ln(Pi)+Otter)/(BesselK(0,1)-Si(Pi)) 2865650315315765 m005 (1/2*exp(1)+1)/(-18/11+4/11*5^(1/2)) 2865650317287225 r005 Re(z^2+c),c=-13/70+35/58*I,n=51 2865650317985192 g006 Psi(1,1/12)+Psi(1,7/8)+Psi(1,3/5)-Psi(1,1/11) 2865650319930544 m008 (4*Pi^4+1/5)/(3/5*Pi^3-5) 2865650327597477 r001 13i'th iterates of 2*x^2-1 of 2865650329364921 m005 (1/2*2^(1/2)+8/9)/(1/10*5^(1/2)+1/3) 2865650333132057 m001 1/exp(CopelandErdos)/Cahen^2*GAMMA(3/4)^2 2865650336437206 l006 ln(6494/8649) 2865650351315050 r009 Im(z^3+c),c=-7/15+4/29*I,n=25 2865650366399431 r008 a(0)=3,K{-n^6,-1-29*n+32*n^2+6*n^3} 2865650374407008 r005 Im(z^2+c),c=-5/36+19/36*I,n=6 2865650378578611 m001 GAMMA(1/3)*BesselJ(0,1)^2*ln(sin(Pi/12))^2 2865650378957584 r009 Re(z^3+c),c=-49/122+18/49*I,n=39 2865650389728805 r005 Im(z^2+c),c=-5/13+18/25*I,n=5 2865650395527310 r009 Re(z^3+c),c=-33/98+14/57*I,n=11 2865650399309910 r005 Re(z^2+c),c=-11/40+13/27*I,n=61 2865650399448372 r005 Im(z^2+c),c=-23/82+13/29*I,n=30 2865650400375976 a001 199/317811*832040^(37/47) 2865650401442426 m005 (1/2*gamma-3/8)/(8/9*Pi+2/9) 2865650410831302 h001 (8/9*exp(2)+5/7)/(8/9*exp(1)+1/8) 2865650412674879 a007 Real Root Of 450*x^4-910*x^3+679*x^2+245*x-10 2865650426481777 m001 Kolakoski^2/exp(DuboisRaymond)^2*sin(Pi/12)^2 2865650427490855 r005 Re(z^2+c),c=-71/90+3/35*I,n=14 2865650433059470 r009 Re(z^3+c),c=-10/29+5/19*I,n=9 2865650433179509 r005 Re(z^2+c),c=-11/42+35/61*I,n=36 2865650435326793 r005 Im(z^2+c),c=-75/62+7/64*I,n=4 2865650444293809 p003 LerchPhi(1/512,3,223/147) 2865650447905637 m005 (1/2*exp(1)-7/8)/(1/2*5^(1/2)+4/7) 2865650464553496 r002 35th iterates of z^2 + 2865650465772939 l006 ln(339/5953) 2865650467481377 r005 Re(z^2+c),c=15/56+7/62*I,n=11 2865650469419493 r005 Re(z^2+c),c=-33/118+23/49*I,n=36 2865650494201453 r005 Im(z^2+c),c=-27/34+1/82*I,n=63 2865650495570231 r005 Im(z^2+c),c=3/106+11/35*I,n=9 2865650508648975 r005 Im(z^2+c),c=-7/6+1/215*I,n=16 2865650514272867 p001 sum((-1)^n/(281*n+67)/n/(100^n),n=1..infinity) 2865650527234610 r009 Im(z^3+c),c=-39/82+7/64*I,n=28 2865650527420991 a001 15127/8*196418^(46/47) 2865650534498773 r005 Im(z^2+c),c=-51/122+17/35*I,n=41 2865650544960272 r005 Re(z^2+c),c=-2/5+6/23*I,n=5 2865650554376828 m005 (1/2*2^(1/2)+1/8)/(9/11*Pi+1/3) 2865650561433431 r005 Im(z^2+c),c=-7/26+4/9*I,n=59 2865650561579761 a007 Real Root Of 329*x^4+555*x^3-885*x^2+325*x-927 2865650562236328 m001 ln(Ei(1))^2/FeigenbaumDelta^2*GAMMA(7/12) 2865650572202368 m001 Magata^2/ln(Champernowne)/BesselJ(1,1)^2 2865650572697618 h005 exp(cos(Pi*15/56)/cos(Pi*24/55)) 2865650578564473 m005 (1/2*Catalan+8/11)/(1/2*gamma+1/8) 2865650593782167 r005 Im(z^2+c),c=17/56+5/59*I,n=14 2865650624135604 h001 (-6*exp(2)+6)/(-9*exp(5)-2) 2865650640055032 m001 Magata/(GAMMA(23/24)-ln(Pi)) 2865650645025357 m001 gamma^GlaisherKinkelin-ReciprocalFibonacci 2865650654583612 h001 (4/9*exp(1)+1/9)/(1/2*exp(2)+10/11) 2865650659128529 l006 ln(3583/4772) 2865650675016765 g007 Psi(2,2/11)-Psi(2,7/8)-Psi(2,3/8)-Psi(2,3/4) 2865650681295487 r002 38th iterates of z^2 + 2865650684655622 m001 Artin/BesselK(0,1)*FellerTornier 2865650710841279 a001 599074578/89*1836311903^(14/17) 2865650710843064 a001 505019158607/89*514229^(14/17) 2865650710846954 a001 710647/89*6557470319842^(14/17) 2865650716829648 p001 sum((-1)^n/(388*n+325)/(6^n),n=0..infinity) 2865650746890610 r005 Im(z^2+c),c=-9/14+63/172*I,n=7 2865650753957388 r005 Re(z^2+c),c=-3/16+29/47*I,n=39 2865650764528746 h001 (11/12*exp(1)+4/9)/(1/10*exp(2)+2/7) 2865650769085995 a003 sin(Pi*3/101)+sin(Pi*7/113) 2865650784789141 r005 Im(z^2+c),c=-19/78+5/12*I,n=7 2865650787387278 a001 521/7778742049*233^(4/15) 2865650791319897 s002 sum(A093328[n]/(n^2*10^n+1),n=1..infinity) 2865650793135924 a007 Real Root Of 277*x^4+783*x^3+111*x^2+526*x+342 2865650794428109 m001 Si(Pi)^Shi(1)*MinimumGamma^Shi(1) 2865650796209113 r002 3th iterates of z^2 + 2865650800295123 a007 Real Root Of -277*x^4-416*x^3+966*x^2-145*x+542 2865650804067848 r005 Re(z^2+c),c=7/122+7/23*I,n=7 2865650805249041 s002 sum(A194536[n]/(16^n),n=1..infinity) 2865650805290757 s002 sum(A194536[n]/(16^n-1),n=1..infinity) 2865650819767109 m001 1/ln(Ei(1))^2/FeigenbaumB/GAMMA(23/24) 2865650828639761 m006 (3/5/Pi+2)/(4/5*Pi^2-1/4) 2865650838433158 a007 Real Root Of -365*x^4+735*x^3-411*x^2+745*x+267 2865650838490792 m001 sin(1)/ln(TwinPrimes)*sqrt(2) 2865650845799520 m001 PrimesInBinary*GolombDickman*exp(Zeta(3))^2 2865650845800732 a009 285+6^(1/4) 2865650865424610 m001 Tribonacci+OrthogonalArrays^ZetaP(4) 2865650875793530 m001 gamma(3)*(Pi^(1/2))^LandauRamanujan2nd 2865650875861178 m005 (43/44+1/4*5^(1/2))/(5/11*Zeta(3)-3/5) 2865650880340481 r005 Re(z^2+c),c=-17/32+39/64*I,n=60 2865650884197513 r009 Im(z^3+c),c=-55/118+1/35*I,n=8 2865650892316552 r005 Im(z^2+c),c=-73/64+16/51*I,n=7 2865650895892185 a001 843/377*3^(7/31) 2865650910266413 m002 -13/6-E^Pi*Log[Pi] 2865650944101886 m005 (2/5*gamma+5)/(4/5*exp(1)-4) 2865650951787042 a007 Real Root Of 281*x^4-918*x^3-220*x^2-836*x-245 2865650952371100 r005 Re(z^2+c),c=15/46+3/19*I,n=30 2865650954000931 r005 Re(z^2+c),c=-19/58+15/47*I,n=23 2865650958649396 r005 Re(z^2+c),c=-25/86+20/49*I,n=9 2865650969529085 q001 2069/722 2865650970920239 a007 Real Root Of -540*x^4+741*x^3+50*x^2+283*x-99 2865650973867292 m001 exp(-1/2*Pi)/(FeigenbaumDelta+Sierpinski) 2865650980603024 m005 (-3/4+1/4*5^(1/2))/(1/6*Pi+1/7) 2865650990383230 a007 Real Root Of -833*x^4-812*x^3-834*x^2-164*x+8 2865650995899122 r005 Im(z^2+c),c=-1/66+47/57*I,n=3 2865651001108465 r005 Im(z^2+c),c=-51/98+34/61*I,n=10 2865651007535458 r005 Im(z^2+c),c=-33/118+13/29*I,n=47 2865651012218713 b008 29*Pi^2+ArcCoth[3] 2865651012717855 m002 ProductLog[Pi]+(Pi^6*Sech[Pi])/(2*E^Pi) 2865651027545282 m001 (Grothendieck-Kac)/(BesselI(0,2)-FeigenbaumD) 2865651050168952 r005 Re(z^2+c),c=3/74+15/16*I,n=3 2865651074435129 a001 76/514229*4181^(16/45) 2865651078959457 m001 Conway^BesselK(0,1)+MadelungNaCl 2865651099978100 a001 5/15127*47^(23/41) 2865651116055330 r005 Im(z^2+c),c=-27/82+31/61*I,n=21 2865651118815622 r009 Im(z^3+c),c=-31/110+11/42*I,n=13 2865651124071983 a007 Real Root Of -136*x^4-40*x^3+845*x^2-276*x+500 2865651128476214 m001 -OneNinth/(-GolombDickman+1) 2865651128476214 m001 OneNinth/(GolombDickman-1) 2865651143121620 l006 ln(248/4355) 2865651147208426 m001 Pi/Shi(1)/Zeta(5) 2865651149651072 a008 Real Root of x^2-x-81833 2865651151621447 l006 ln(4255/5667) 2865651166117713 m001 Sierpinski^2*MertensB1^2/ln(log(1+sqrt(2)))^2 2865651169890343 m001 Paris/CopelandErdos/Zeta(1/2) 2865651170300468 m005 (-1/2+1/6*5^(1/2))/(1/4*gamma+3/10) 2865651178575841 r005 Re(z^2+c),c=-31/98+23/63*I,n=16 2865651178631396 m001 (Psi(1,1/3)+KhinchinHarmonic)/(Otter+Salem) 2865651187989219 m001 (TreeGrowth2nd-Trott)/(exp(-1/2*Pi)-Niven) 2865651197748891 a007 Real Root Of 703*x^4-833*x^3-107*x^2-689*x-213 2865651203808644 a007 Real Root Of 396*x^4+829*x^3-762*x^2+352*x+70 2865651209856949 m001 (Kolakoski+Robbin)/(ln(Pi)-(1+3^(1/2))^(1/2)) 2865651212103730 m005 (1/2*exp(1)-1/10)/(3/7*2^(1/2)-5) 2865651224712192 r005 Im(z^2+c),c=-5/21+19/51*I,n=4 2865651233233766 r005 Im(z^2+c),c=-15/22+23/85*I,n=60 2865651248916361 r009 Re(z^3+c),c=-37/118+12/61*I,n=8 2865651261985982 h001 (-7*exp(2)+9)/(-5*exp(8)-4) 2865651264435471 m009 (5*Psi(1,3/4)-1/4)/(2/5*Pi^2+2/5) 2865651270373204 m005 (1/3*3^(1/2)-1/3)/(1/12*exp(1)+5/8) 2865651271852935 m001 (KhinchinLevy+Mills)/(Trott+Thue) 2865651277912493 b008 11*InverseJacobiNS[4,E] 2865651278726944 r005 Im(z^2+c),c=-7/110+22/61*I,n=16 2865651283690264 a007 Real Root Of -244*x^4-314*x^3+808*x^2-581*x+765 2865651291832181 m008 (3/5*Pi^6-4/5)/(2/3*Pi^5-3) 2865651301618390 r005 Re(z^2+c),c=-27/34+1/60*I,n=44 2865651303639748 m001 1/FeigenbaumKappa/Cahen*exp(Catalan) 2865651310389505 m005 (1/3*Catalan+2/11)/(2^(1/2)+2/7) 2865651317042051 a007 Real Root Of 204*x^4+406*x^3-927*x^2-858*x+951 2865651327990282 a001 1/10959*10946^(34/55) 2865651328911007 a007 Real Root Of 210*x^4+485*x^3-322*x^2-112*x-425 2865651331450323 r009 Im(z^3+c),c=-1/64+28/33*I,n=58 2865651331582541 r009 Im(z^3+c),c=-1/64+28/33*I,n=60 2865651331630318 r009 Im(z^3+c),c=-1/64+28/33*I,n=56 2865651331762763 r009 Im(z^3+c),c=-1/64+28/33*I,n=62 2865651331909779 r009 Im(z^3+c),c=-1/64+28/33*I,n=64 2865651332830512 r009 Im(z^3+c),c=-1/64+28/33*I,n=54 2865651336769665 r009 Im(z^3+c),c=-1/64+28/33*I,n=52 2865651341351229 a005 (1/cos(27/227*Pi))^852 2865651347365580 r009 Im(z^3+c),c=-1/64+28/33*I,n=50 2865651352090180 a001 196418/521*199^(9/11) 2865651366863603 m005 (1/2*3^(1/2)+1/8)/(5^(1/2)+11/9) 2865651371534720 r009 Re(z^3+c),c=-1/56+23/28*I,n=6 2865651372546096 m008 (1/2*Pi^2-5)/(3/4*Pi^5-2) 2865651373146873 r009 Im(z^3+c),c=-1/64+28/33*I,n=48 2865651385057747 h001 (4/9*exp(2)+9/11)/(1/6*exp(2)+1/5) 2865651392432073 m001 LambertW(1)+cos(1/12*Pi)+MertensB3 2865651393753786 r005 Re(z^2+c),c=-35/34+1/116*I,n=8 2865651402174577 a007 Real Root Of -207*x^4-378*x^3+789*x^2+601*x+307 2865651403809408 r005 Im(z^2+c),c=-8/31+13/28*I,n=11 2865651405772187 b008 5^(1/13+EulerGamma) 2865651406821356 r009 Im(z^3+c),c=-1/17+16/19*I,n=18 2865651426959638 m005 (1/2*2^(1/2)+2/9)/(5/6*Pi+5/8) 2865651428095410 r002 6th iterates of z^2 + 2865651432004743 r009 Im(z^3+c),c=-1/64+28/33*I,n=46 2865651432886771 l006 ln(8978/9239) 2865651461302637 r005 Im(z^2+c),c=-17/44+17/35*I,n=40 2865651476164437 m001 1/Riemann1stZero^2*exp(Paris)^2/GAMMA(5/12) 2865651494761873 p004 log(11467/653) 2865651509770838 l006 ln(4927/6562) 2865651512297776 a007 Real Root Of 502*x^4-975*x^3-561*x^2-605*x+239 2865651528996982 m006 (2*Pi-1/5)/(2*ln(Pi)-1/6) 2865651533745136 m001 1/FeigenbaumKappa^2/Robbin^2/ln(cosh(1)) 2865651541123920 a007 Real Root Of -264*x^4-598*x^3+688*x^2+438*x-664 2865651541690583 r005 Re(z^2+c),c=21/118+29/64*I,n=10 2865651558362136 m009 (24*Catalan+3*Pi^2-2/5)/(8*Catalan+Pi^2+2/3) 2865651560284765 r009 Im(z^3+c),c=-1/64+28/33*I,n=44 2865651570944997 m008 (1/4*Pi^2-2/5)/(3/4*Pi^6+2/5) 2865651574190905 s001 sum(1/10^(n-1)*A139912[n]/n!,n=1..infinity) 2865651574887800 m001 GAMMA(17/24)^(1/2)+sqrt(3) 2865651575208417 m009 (1/8*Pi^2+1/4)/(1/12*Pi^2-6) 2865651580036484 a007 Real Root Of -103*x^4+46*x^3+863*x^2-346*x-50 2865651580061289 a007 Real Root Of 281*x^4+972*x^3+320*x^2-117*x+961 2865651589591754 a007 Real Root Of 237*x^4+305*x^3-990*x^2+483*x+709 2865651600268842 a007 Real Root Of -995*x^4-271*x^3+385*x^2+218*x-81 2865651609448708 a007 Real Root Of -61*x^4+6*x^3-993*x^2+893*x+338 2865651612458074 a007 Real Root Of -404*x^4-718*x^3+939*x^2-649*x+777 2865651615974904 m001 Lehmer^2/DuboisRaymond^2/exp(sinh(1)) 2865651620655654 a007 Real Root Of 787*x^4+204*x^3+338*x^2-680*x+157 2865651621627933 r009 Re(z^3+c),c=-31/70+11/27*I,n=16 2865651631511153 a001 76*317811^(13/20) 2865651631954863 m001 GAMMA(5/6)+((1+3^(1/2))^(1/2))^ln(3) 2865651631954863 m001 GAMMA(5/6)+sqrt(1+sqrt(3))^ln(3) 2865651634447903 r009 Im(z^3+c),c=-2/17+13/43*I,n=13 2865651636763072 m004 (5*Pi)/3+Sinh[Sqrt[5]*Pi]/24 2865651641692991 m001 (Mills-Rabbit)/(Backhouse+Kac) 2865651646722229 b008 1/4+Root[1+#1+3*#1^3&,1,0] 2865651663679130 m005 (1/2*Catalan+1/6)/(37/18+1/18*5^(1/2)) 2865651669048819 r009 Im(z^3+c),c=-2/17+13/43*I,n=15 2865651672286932 r009 Im(z^3+c),c=-2/17+13/43*I,n=18 2865651672343249 r009 Im(z^3+c),c=-2/17+13/43*I,n=20 2865651672348001 r009 Im(z^3+c),c=-2/17+13/43*I,n=23 2865651672348092 r009 Im(z^3+c),c=-2/17+13/43*I,n=25 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=28 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=30 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=33 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=35 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=38 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=40 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=43 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=45 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=48 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=50 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=53 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=51 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=55 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=56 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=58 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=60 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=61 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=63 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=64 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=62 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=59 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=57 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=54 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=52 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=46 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=49 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=47 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=44 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=41 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=42 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=39 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=37 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=36 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=34 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=32 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=31 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=29 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=27 2865651672348099 r009 Im(z^3+c),c=-2/17+13/43*I,n=26 2865651672348132 r009 Im(z^3+c),c=-2/17+13/43*I,n=24 2865651672348234 r009 Im(z^3+c),c=-2/17+13/43*I,n=22 2865651672348618 r009 Im(z^3+c),c=-2/17+13/43*I,n=21 2865651672369593 r009 Im(z^3+c),c=-2/17+13/43*I,n=19 2865651672419306 r009 Im(z^3+c),c=-2/17+13/43*I,n=17 2865651672748470 r009 Im(z^3+c),c=-2/17+13/43*I,n=16 2865651674768162 r005 Im(z^2+c),c=-37/50+11/38*I,n=14 2865651679145852 a007 Real Root Of -367*x^4-822*x^3+779*x^2+448*x+292 2865651679778852 r009 Re(z^3+c),c=-11/17+28/53*I,n=6 2865651686337307 r009 Im(z^3+c),c=-2/17+13/43*I,n=14 2865651690135290 h005 exp(cos(Pi*3/47)/sin(Pi*5/53)) 2865651699793224 m001 Ei(1)/FeigenbaumB/Kolakoski 2865651704003628 a007 Real Root Of -3*x^4-95*x^3-244*x^2+433*x+270 2865651707499478 r009 Im(z^3+c),c=-2/17+13/43*I,n=12 2865651710087201 l006 ln(405/7112) 2865651716181074 r005 Re(z^2+c),c=-11/94+16/27*I,n=20 2865651725549698 m005 (1/2*Pi+7/11)/(3/5*5^(1/2)-4/7) 2865651729297237 m001 GAMMA(17/24)^2/ln(BesselK(1,1))^2/sqrt(5) 2865651737743939 r009 Re(z^3+c),c=-15/38+13/38*I,n=10 2865651748075422 r005 Re(z^2+c),c=-4/7+41/100*I,n=26 2865651753551245 r005 Re(z^2+c),c=15/62+29/59*I,n=3 2865651758873177 a007 Real Root Of -241*x^4-697*x^3+15*x^2-2*x-279 2865651759278401 a001 11/13*514229^(15/56) 2865651764274966 b008 5*(56+Coth[1]) 2865651777188178 a007 Real Root Of -366*x^4-716*x^3+914*x^2-70*x+126 2865651777613902 r005 Re(z^2+c),c=-13/14+67/159*I,n=4 2865651780719207 m001 (-ln(2)+HeathBrownMoroz)/(2^(1/2)+1) 2865651781949015 l006 ln(5599/7457) 2865651787520042 m005 (1/2*3^(1/2)-3/7)/(3/4*Zeta(3)+5/8) 2865651793484779 r009 Im(z^3+c),c=-3/58+27/32*I,n=20 2865651796516265 m001 (-Mills+Tribonacci)/(gamma+GlaisherKinkelin) 2865651804689104 m001 Backhouse^ln(2+3^(1/2))+GAMMA(3/4) 2865651804689104 m001 Backhouse^ln(2+sqrt(3))+GAMMA(3/4) 2865651815713837 m004 -3+10*Pi-Sin[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2865651817236167 m001 (1/2)^Lehmer/exp(Pi) 2865651817236167 m001 exp(-Pi)*(1/2)^Lehmer 2865651819234558 a007 Real Root Of 273*x^4+838*x^3+106*x^2-106*x+136 2865651829657560 r009 Im(z^3+c),c=-1/64+28/33*I,n=42 2865651832307326 r004 Re(z^2+c),c=1/8+7/16*I,z(0)=exp(5/8*I*Pi),n=3 2865651834920061 a007 Real Root Of -507*x^4+572*x^3-900*x^2+218*x+7 2865651836433159 m001 1/GAMMA(5/12)*exp(FransenRobinson)/exp(1) 2865651840295782 r009 Im(z^3+c),c=-11/42+1/46*I,n=9 2865651847560059 m005 (1/2*2^(1/2)+6)/(8/11*5^(1/2)+5/7) 2865651848956190 a001 199/13*28657^(26/51) 2865651851304013 m001 GAMMA(1/24)/ln(CareFree)/GAMMA(7/12)^2 2865651854264116 r005 Im(z^2+c),c=-14/15+11/38*I,n=13 2865651855493006 p004 log(16981/967) 2865651859072522 r009 Re(z^3+c),c=-11/32+5/19*I,n=6 2865651862239546 m001 (LandauRamanujan-Salem)/(Cahen+Kolakoski) 2865651875474522 m001 1/sqrt(1+sqrt(3))^2*exp(Conway)^2/sqrt(3) 2865651877676298 r005 Im(z^2+c),c=-23/50+23/59*I,n=6 2865651886168100 q001 433/1511 2865651887274395 r005 Re(z^2+c),c=-9/26+9/38*I,n=17 2865651887572891 m001 ln(PrimesInBinary)/FeigenbaumC^2/Catalan 2865651890727119 m005 (1/2*5^(1/2)-3/11)/(4/5*Zeta(3)-2/3) 2865651903843410 m001 exp(1/exp(1))*Backhouse^MasserGramainDelta 2865651907630519 r005 Im(z^2+c),c=27/98+3/22*I,n=54 2865651926808193 a007 Real Root Of -235*x^4-586*x^3+296*x^2+139*x+25 2865651929684445 b008 8/3+3^(2+Pi) 2865651932435688 a007 Real Root Of 190*x^4+685*x^3+256*x^2-769*x-999 2865651940669320 m001 (1+sin(1/5*Pi))/(Otter+Sierpinski) 2865651941677008 r005 Re(z^2+c),c=-7/24+17/61*I,n=4 2865651945707269 r005 Im(z^2+c),c=5/86+3/10*I,n=19 2865651952490701 m005 (1/2*Pi-2)/(1/4*exp(1)+9/11) 2865651955406306 a007 Real Root Of 130*x^4+551*x^3+861*x^2+910*x-263 2865651960278316 l006 ln(562/9869) 2865651963225927 m001 (arctan(1/3)-Cahen)/(Salem-ZetaQ(2)) 2865651973013092 r009 Im(z^3+c),c=-2/17+13/43*I,n=11 2865651976001564 m001 (BesselJ(1,1)+Artin)/(Pi-ln(2)/ln(10)) 2865651985103914 r005 Im(z^2+c),c=-29/62+28/59*I,n=31 2865651985474787 m001 GAMMA(1/6)/exp(Riemann1stZero)^2/GAMMA(23/24) 2865651995793991 l006 ln(6271/8352) 2865651999688612 a007 Real Root Of -55*x^4+683*x^3-841*x^2+916*x+348 2865652000203767 h001 (3/10*exp(1)+3/5)/(6/11*exp(2)+10/11) 2865652006295438 h003 exp(Pi*(15^(5/7)-19^(3/5))) 2865652006295438 h008 exp(Pi*(15^(5/7)-19^(3/5))) 2865652027336014 r005 Re(z^2+c),c=7/58+25/61*I,n=32 2865652028907883 m001 (Tribonacci-ln(Pi)*GAMMA(17/24))/GAMMA(17/24) 2865652031745442 r004 Re(z^2+c),c=5/14+1/6*I,z(0)=exp(3/8*I*Pi),n=32 2865652031981233 a008 Real Root of x^4-x^2-24*x-128 2865652036990272 r005 Im(z^2+c),c=-43/46+11/46*I,n=15 2865652037251447 m001 Trott^2/exp(Rabbit)^2*Zeta(7) 2865652042366421 m001 (2^(1/3)-CareFree)/(Tetranacci+Trott) 2865652055010228 m001 1/Magata*CopelandErdos/exp(log(1+sqrt(2))) 2865652055931377 r005 Re(z^2+c),c=-79/102+1/14*I,n=54 2865652060107294 r005 Re(z^2+c),c=-31/102+2/5*I,n=30 2865652062900118 m001 (OneNinth+Paris)/(BesselI(1,1)-GAMMA(17/24)) 2865652070800860 a007 Real Root Of 984*x^4+796*x^3+573*x^2-49*x-49 2865652099168595 m005 (1/3*Catalan-3/4)/(65/88+4/11*5^(1/2)) 2865652118326265 m001 (FeigenbaumKappa+Riemann3rdZero)^arctan(1/3) 2865652124949116 a007 Real Root Of -31*x^4+123*x^3+378*x^2-410*x+706 2865652137515656 r005 Im(z^2+c),c=-25/94+26/63*I,n=9 2865652138172602 g001 abs(GAMMA(-107/60+I*1/15)) 2865652146057210 r005 Im(z^2+c),c=-7/8+11/49*I,n=34 2865652148622555 m001 (Mills+Porter)/(3^(1/2)-LandauRamanujan) 2865652149191764 m006 (1/5*exp(Pi)+4)/(3*Pi^2+1/2) 2865652150948229 m001 (OneNinth-ZetaQ(3))/(Cahen+FransenRobinson) 2865652151999957 m002 -Pi-Pi^5+2*Pi^2*Log[Pi] 2865652156269324 r009 Im(z^3+c),c=-25/52+1/11*I,n=16 2865652168243652 l006 ln(6943/9247) 2865652194054269 a007 Real Root Of -878*x^4+838*x^3+785*x^2+631*x+142 2865652194482665 m001 1/Porter/exp(Si(Pi))*GAMMA(1/3) 2865652200735056 p003 LerchPhi(1/100,6,218/177) 2865652221791172 r005 Im(z^2+c),c=-7/48+21/53*I,n=28 2865652227145118 r002 34th iterates of z^2 + 2865652232868011 s002 sum(A203271[n]/(64^n),n=1..infinity) 2865652236170481 r009 Re(z^3+c),c=-19/106+56/59*I,n=56 2865652263976391 r005 Im(z^2+c),c=-12/29+23/52*I,n=13 2865652272219872 m006 (3*exp(Pi)+1/3)/(3*ln(Pi)-1) 2865652277583337 r005 Im(z^2+c),c=-13/32+30/61*I,n=60 2865652278804153 m001 (GAMMA(3/4)-Lehmer)/(Otter-RenyiParking) 2865652284937779 m001 2*Pi/GAMMA(5/6)*TwinPrimes-cos(1/5*Pi) 2865652284937779 m001 TwinPrimes*GAMMA(1/6)-cos(Pi/5) 2865652296061464 m001 Riemann3rdZero^2/HardHexagonsEntropy*ln(Ei(1)) 2865652300536465 m001 Pi/Ei(1)^2*ln(sqrt(Pi))^2 2865652301274462 r002 3th iterates of z^2 + 2865652310255626 m001 sin(1/12*Pi)*FransenRobinson^Paris 2865652318491688 m001 ln(Catalan)^2*OneNinth*sin(Pi/5)^2 2865652318685379 r005 Im(z^2+c),c=-21/62+16/35*I,n=17 2865652329275840 m001 1/FeigenbaumC*CopelandErdos/ln(cos(Pi/5))^2 2865652339313171 m001 1/(Riemann1stZero^Bloch) 2865652343114176 r005 Im(z^2+c),c=29/110+7/41*I,n=8 2865652344678949 m001 (Zeta(1,2)*HeathBrownMoroz-Khinchin)/Zeta(1,2) 2865652360020248 h005 exp(cos(Pi*4/39)/cos(Pi*1/7)) 2865652375936118 s002 sum(A085225[n]/(n^3*pi^n+1),n=1..infinity) 2865652377373282 r009 Im(z^3+c),c=-1/64+28/33*I,n=40 2865652383660421 r004 Re(z^2+c),c=5/46+13/20*I,z(0)=I,n=11 2865652392255222 m001 Pi+(ln(2)/ln(10)-LambertW(1))*Zeta(5) 2865652406401433 m001 GAMMA(7/24)-gamma*Artin 2865652406401433 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)-gamma*Artin 2865652413764347 m001 (Catalan-Psi(2,1/3))^MertensB1 2865652415882913 s002 sum(A175540[n]/(n^3*pi^n+1),n=1..infinity) 2865652418574546 m001 (Cahen+Trott2nd)/(2^(1/3)-GAMMA(23/24)) 2865652422946789 m001 (FeigenbaumC+Weierstrass)^(2^(1/3)) 2865652431471229 s001 sum(exp(-4*Pi/5)^n*A065677[n],n=1..infinity) 2865652432940905 r005 Re(z^2+c),c=17/56+5/37*I,n=20 2865652445429051 r009 Im(z^3+c),c=-1/36+50/59*I,n=34 2865652451840200 r005 Re(z^2+c),c=17/54+7/54*I,n=16 2865652458529516 m001 1/2+RenyiParking-exp(sqrt(2)) 2865652461430798 m001 StolarskyHarborth^Kolakoski/Weierstrass 2865652461440412 r002 36th iterates of z^2 + 2865652472902703 a007 Real Root Of 243*x^4+530*x^3-400*x^2+179*x-117 2865652474650937 r009 Im(z^3+c),c=-7/15+6/43*I,n=43 2865652476038228 m001 GAMMA(17/24)^(ln(2)/ln(10))+KomornikLoreti 2865652481559204 m001 RenyiParking*GaussAGM(1,1/sqrt(2))*ln(Trott) 2865652485153239 r009 Re(z^3+c),c=-27/62+5/12*I,n=18 2865652509633517 m008 (2/5*Pi^5+1/3)/(2*Pi-2) 2865652521154040 p002 log(10^(10/9)+6^(6/7)) 2865652533945839 r005 Re(z^2+c),c=-27/94+22/49*I,n=37 2865652544782908 m001 (Backhouse-PisotVijayaraghavan)/(Pi+3^(1/3)) 2865652548339200 a007 Real Root Of -10*x^4+369*x^3+737*x^2+509*x-215 2865652553370050 a001 123/514229*832040^(13/25) 2865652561703894 a007 Real Root Of 124*x^4+421*x^3+265*x^2+290*x+200 2865652570341191 a001 8/3571*199^(2/43) 2865652575109813 m001 KomornikLoreti/GaussKuzminWirsing/gamma(3) 2865652582529642 r005 Im(z^2+c),c=-7/26+4/9*I,n=64 2865652588430402 r002 38th iterates of z^2 + 2865652595094990 a007 Real Root Of 390*x^4+812*x^3-857*x^2+171*x+336 2865652598353622 a007 Real Root Of 325*x^4-985*x^3+983*x^2-983*x-29 2865652599846037 m005 (1/2*2^(1/2)+4/7)/(5/6*Zeta(3)-5/9) 2865652600654819 r005 Re(z^2+c),c=-9/29+19/50*I,n=28 2865652605675488 l006 ln(157/2757) 2865652617021283 a007 Real Root Of -685*x^4+443*x^3+709*x^2+806*x-295 2865652625518516 m001 CareFree/FransenRobinson/ZetaQ(3) 2865652625526603 a001 311187/46*199^(3/11) 2865652629642416 m001 (ln(2^(1/2)+1)+Sierpinski)/(Catalan-Zeta(5)) 2865652632858289 a005 (1/cos(3/211*Pi))^1055 2865652633913779 r009 Re(z^3+c),c=-13/62+38/49*I,n=3 2865652635833126 a008 Real Root of (2+5*x-5*x^2+6*x^3-4*x^4-6*x^5) 2865652649341053 r005 Im(z^2+c),c=27/98+3/22*I,n=53 2865652649829764 r009 Re(z^3+c),c=-19/64+42/43*I,n=11 2865652659475474 m001 (-Backhouse+Sarnak)/(Catalan+GAMMA(13/24)) 2865652660819539 r002 45i'th iterates of 2*x/(1-x^2) of 2865652663684492 m001 1/GAMMA(7/24)^2*Kolakoski^2/exp(sin(1)) 2865652666116213 r005 Im(z^2+c),c=-7/26+4/9*I,n=62 2865652679466592 m002 -3/Pi^6+Pi^3-Pi^5-Sinh[Pi] 2865652686911689 a007 Real Root Of -278*x^4-715*x^3-174*x^2-898*x+777 2865652697666009 a007 Real Root Of 283*x^4+474*x^3-28*x^2-473*x-124 2865652699755051 m001 (Rabbit+Thue)/(ln(gamma)+gamma(3)) 2865652707053167 a001 24476/3*75025^(8/11) 2865652714304993 m005 (1/2*exp(1)-7/8)/(1/11*Pi-5/11) 2865652717912028 a005 (1/cos(31/214*Pi))^589 2865652719443415 a001 7/3*832040^(49/57) 2865652724941386 r008 a(0)=3,K{-n^6,-90+2*n^3+96*n} 2865652724968314 q001 2261/789 2865652730053212 r005 Im(z^2+c),c=27/98+3/22*I,n=55 2865652733588997 r004 Im(z^2+c),c=-6/7+4/19*I,z(0)=-1,n=54 2865652749983123 a001 144/710647*2^(1/2) 2865652757466895 a007 Real Root Of 252*x^4+846*x^3+721*x^2+743*x-877 2865652764188253 m001 (3^(1/3))^2/FeigenbaumC^2*exp(BesselJ(0,1))^2 2865652768364178 m005 (1/2*gamma-1/11)/(113/18+5/18*5^(1/2)) 2865652772226347 r005 Re(z^2+c),c=-11/34+13/40*I,n=14 2865652775044246 r005 Im(z^2+c),c=-41/48+5/26*I,n=21 2865652799781797 r005 Im(z^2+c),c=-8/21+26/53*I,n=41 2865652801882562 a007 Real Root Of -270*x^4-608*x^3+588*x^2+665*x+977 2865652802225033 r002 4th iterates of z^2 + 2865652802647874 r009 Re(z^3+c),c=-53/118+8/21*I,n=10 2865652815085133 m005 (1/2*Pi+6/11)/(-11/63+1/9*5^(1/2)) 2865652821020566 r005 Re(z^2+c),c=-9/25+5/13*I,n=8 2865652822873727 h001 (-9*exp(2/3)+5)/(-7*exp(2)+8) 2865652833820773 r005 Im(z^2+c),c=-93/82+8/35*I,n=44 2865652836086845 r005 Im(z^2+c),c=11/40+8/59*I,n=20 2865652839189504 r005 Im(z^2+c),c=-7/26+4/9*I,n=61 2865652849775779 m001 GAMMA(1/12)^2/Backhouse*ln(GAMMA(1/24)) 2865652852117947 r009 Im(z^3+c),c=-19/90+29/39*I,n=45 2865652877146856 m001 Pi*2^(1/2)-cos(1)-Zeta(5) 2865652881554820 m005 (1/2*Pi+1/8)/(5/12*Zeta(3)+1/11) 2865652902274154 r005 Re(z^2+c),c=-8/23+12/53*I,n=15 2865652924404192 m002 -Pi^5+Cosh[Pi]+6*Log[Pi]^2 2865652924590875 r009 Im(z^3+c),c=-47/114+9/47*I,n=15 2865652940280364 a007 Real Root Of -295*x^4-639*x^3+831*x^2+426*x-747 2865652946371699 a001 47/8*1346269^(25/57) 2865652960509050 a007 Real Root Of 197*x^4+278*x^3-471*x^2+863*x-402 2865652966039974 m001 (Pi+Psi(1,1/3)*ln(2)/ln(10))*arctan(1/2) 2865652969892535 a008 Real Root of x^4-2*x^3-24*x^2+17*x+128 2865652973531597 a003 cos(Pi*11/85)/cos(Pi*24/49) 2865652986701648 r009 Re(z^3+c),c=-41/90+7/15*I,n=40 2865652995022455 m001 (BesselI(0,1)-Ei(1))/(-exp(1/Pi)+FeigenbaumMu) 2865652996800732 a007 Real Root Of -596*x^4-348*x^3-458*x^2+993*x+318 2865653008643785 m006 (4/5*exp(2*Pi)+1/4)/(5*Pi-3/4) 2865653008715099 a001 55/29*817138163596^(10/23) 2865653008715099 a001 55/29*87403803^(15/23) 2865653008715783 a001 55/29*1860498^(19/23) 2865653017890680 a001 73681302247/89*1836311903^(12/17) 2865653017890680 a001 228826127/89*6557470319842^(12/17) 2865653017892210 a001 23725150497407/89*514229^(12/17) 2865653043181624 m001 (Pi-Zeta(5))/(sin(1/12*Pi)+PlouffeB) 2865653048602783 r005 Re(z^2+c),c=7/34+1/62*I,n=11 2865653073662694 a007 Real Root Of 384*x^4+818*x^3-526*x^2+481*x-948 2865653081415381 m001 ln(GAMMA(11/24))^2*MertensB1^2*cos(Pi/12) 2865653090700448 r005 Im(z^2+c),c=-3/29+18/29*I,n=18 2865653101138223 m001 (Shi(1)+GAMMA(3/4))/(gamma(3)+Kolakoski) 2865653128934291 m008 (1/3*Pi^4-4)/(1/2*Pi^2+5) 2865653139339481 r005 Im(z^2+c),c=-2/3+57/223*I,n=16 2865653144391221 m006 (3/4*Pi^2+4)/(4*ln(Pi)-3/5) 2865653155435454 a003 sin(Pi*7/40)*sin(Pi*17/92) 2865653159030164 m001 TwinPrimes^Otter*TwinPrimes^ZetaQ(2) 2865653160271572 p001 sum((-1)^n/(339*n+317)/n/(5^n),n=1..infinity) 2865653169933133 a001 281/3536736619241*4181^(2/13) 2865653174806819 a007 Real Root Of 917*x^4+358*x^3+998*x^2-671*x-272 2865653183866814 s001 sum(exp(-4*Pi/5)^n*A114082[n],n=1..infinity) 2865653186708117 m005 (1/2*Pi+7/10)/(-53/84+2/7*5^(1/2)) 2865653188940621 b008 -1+Coth[3]^EulerGamma 2865653194973599 p004 log(21617/1231) 2865653203087912 a007 Real Root Of 347*x^4+617*x^3-994*x^2+498*x+709 2865653208500890 r005 Re(z^2+c),c=-7/23+17/43*I,n=14 2865653211603119 r005 Re(z^2+c),c=27/82+9/52*I,n=23 2865653220849877 a007 Real Root Of -199*x^4+359*x^3-554*x^2+505*x+200 2865653221369578 a007 Real Root Of 479*x^4+977*x^3-891*x^2+545*x-432 2865653221977179 m005 (1/2*gamma+1/10)/(3/4*Zeta(3)+5/11) 2865653236276039 a007 Real Root Of -425*x^4-944*x^3+829*x^2+461*x+959 2865653243923064 m009 (1/5*Psi(1,1/3)-1/5)/(1/3*Psi(1,1/3)-4) 2865653260415173 m001 (ln(2)-arctan(1/3))/(Landau-Tribonacci) 2865653269403651 p001 sum(1/(557*n+545)/n/(32^n),n=1..infinity) 2865653281118638 l006 ln(537/9430) 2865653286691275 a005 (1/cos(17/159*Pi))^699 2865653293221421 p004 log(30727/23071) 2865653293986698 m002 Pi^3*Csch[Pi]-Log[Pi]+Pi^5/ProductLog[Pi] 2865653303229032 m001 (Pi-HardyLittlewoodC4)/(OneNinth-ZetaQ(3)) 2865653313811113 a003 cos(Pi*16/63)*cos(Pi*19/52) 2865653325119726 m001 Paris*MadelungNaCl^2/exp(Salem)^2 2865653335492586 r009 Re(z^3+c),c=-9/20+28/61*I,n=47 2865653343204559 r005 Im(z^2+c),c=7/94+16/55*I,n=18 2865653361073292 r005 Im(z^2+c),c=-13/38+8/17*I,n=63 2865653363057724 a001 987*199^(7/11) 2865653365268060 p004 log(36097/27103) 2865653377851889 a001 4/317811*1597^(25/59) 2865653382381295 a007 Real Root Of -226*x^4-549*x^3-2*x^2-628*x+538 2865653387701019 m005 (1/2*2^(1/2)-3/4)/(11/12*3^(1/2)-1/11) 2865653404829348 m001 1/BesselK(0,1)*LaplaceLimit/ln(sqrt(3)) 2865653404835430 a007 Real Root Of -715*x^4+221*x^3-349*x^2+877*x+290 2865653407763651 r009 Im(z^3+c),c=-1/36+50/59*I,n=36 2865653408108115 m001 exp(GAMMA(1/12))^2/BesselK(1,1)^2/Zeta(1,2) 2865653417808655 m001 exp(GAMMA(5/12))^2*BesselK(0,1)*cos(Pi/12) 2865653432019805 r005 Im(z^2+c),c=-19/106+25/61*I,n=29 2865653435833913 b008 2+Erfc[CosIntegral[3]] 2865653451335040 r002 5th iterates of z^2 + 2865653453761400 r005 Re(z^2+c),c=-11/36+19/49*I,n=15 2865653456187764 m001 (-Kac+Lehmer)/(Psi(1,1/3)+Backhouse) 2865653458350260 r009 Im(z^3+c),c=-1/64+28/33*I,n=38 2865653466030186 m001 (FeigenbaumAlpha+MertensB3)/(Rabbit-Stephens) 2865653469634492 r005 Im(z^2+c),c=-161/118+1/17*I,n=16 2865653484794875 r005 Re(z^2+c),c=-5/17+28/61*I,n=19 2865653502326184 r004 Im(z^2+c),c=2/11+2/9*I,z(0)=exp(3/8*I*Pi),n=25 2865653504322994 m005 (-1/5+3/10*5^(1/2))/(1/6*2^(1/2)-2/5) 2865653516321529 m005 (1/2*2^(1/2)+2/5)/(3/8*2^(1/2)-11/12) 2865653520850705 r005 Re(z^2+c),c=31/110+5/42*I,n=27 2865653525473988 b008 3-E^2/55 2865653536820969 a007 Real Root Of 267*x^4+469*x^3-494*x^2+722*x-843 2865653541450143 a007 Real Root Of 327*x^4+670*x^3+152*x^2-597*x-170 2865653559990787 a001 89/7*4^(17/29) 2865653560183175 l006 ln(380/6673) 2865653571156925 r009 Re(z^3+c),c=-11/64+39/44*I,n=46 2865653571351059 a007 Real Root Of 538*x^4-940*x^3-403*x^2-989*x+335 2865653583718164 g007 Psi(2,1/3)+14*Zeta(3)-Psi(2,9/10)-Psi(2,7/10) 2865653588447849 m001 (Trott2nd+ThueMorse)/(Pi-ErdosBorwein) 2865653592927240 h001 (1/9*exp(1)+1/2)/(5/7*exp(1)+6/7) 2865653600741071 a001 1/64079*3^(26/47) 2865653604389295 r005 Re(z^2+c),c=-35/114+25/64*I,n=38 2865653607707565 a003 cos(Pi*37/118)-sin(Pi*13/41) 2865653625251342 m005 (1/2*5^(1/2)-1/3)/(2/7*Catalan-3) 2865653634609754 m003 -3+(5*Sqrt[5])/8+6*E^(1/2+Sqrt[5]/2) 2865653651425479 p001 sum(1/(359*n+323)/n/(512^n),n=1..infinity) 2865653662877143 m001 (GaussAGM+ZetaP(4))/(Ei(1)+GAMMA(17/24)) 2865653678586993 a007 Real Root Of -852*x^4-168*x^3+725*x^2+700*x+2 2865653680485183 m002 3*Pi+Pi^5-Pi^3/ProductLog[Pi] 2865653691888660 r009 Im(z^3+c),c=-3/7+8/45*I,n=28 2865653700566247 r005 Re(z^2+c),c=-13/46+6/13*I,n=56 2865653703050484 a007 Real Root Of 474*x^4-624*x^3-888*x^2-693*x+283 2865653703943028 a007 Real Root Of 351*x^4+838*x^3-287*x^2+469*x-249 2865653733586977 r005 Re(z^2+c),c=7/24+23/63*I,n=8 2865653734206808 r005 Re(z^2+c),c=-25/32+2/41*I,n=64 2865653744666054 r005 Im(z^2+c),c=-4/15+7/16*I,n=14 2865653744883317 r005 Im(z^2+c),c=-7/29+23/53*I,n=25 2865653757009341 r002 63th iterates of z^2 + 2865653758281718 a007 Real Root Of -250*x^4-733*x^3-230*x^2-302*x+633 2865653758314626 a007 Real Root Of 171*x^4+408*x^3+105*x^2+889*x-245 2865653769049130 m005 (1/5*Pi+2/3)/(5/6*gamma-5) 2865653777442233 r005 Im(z^2+c),c=25/98+8/43*I,n=7 2865653777517058 l006 ln(672/895) 2865653778476936 r009 Im(z^3+c),c=-16/27+17/59*I,n=13 2865653786129220 m001 (2*Pi/GAMMA(5/6))^(GAMMA(13/24)*Artin) 2865653786129220 m001 GAMMA(1/6)^(Artin*GAMMA(13/24)) 2865653789884957 a007 Real Root Of -227*x^4+261*x^3+197*x^2+416*x-140 2865653795375150 m002 -E^Pi+5/Pi^2-6*Coth[Pi] 2865653805330871 r002 22th iterates of z^2 + 2865653808194051 m005 (-11/42+1/6*5^(1/2))/(3/11*Catalan-7/11) 2865653809626074 s002 sum(A133115[n]/(2^n-1),n=1..infinity) 2865653813552369 r005 Re(z^2+c),c=-45/122+1/18*I,n=8 2865653815497975 m001 (Zeta(3)+3^(1/3))/(exp(1/Pi)-Porter) 2865653818496288 a007 Real Root Of 184*x^4+736*x^3+425*x^2-747*x-719 2865653825385983 m001 (GolombDickman*Niven-Stephens)/Niven 2865653831555221 m001 (-Ei(1,1)+PlouffeB)/(3^(1/2)-Chi(1)) 2865653846034896 m001 1/Riemann3rdZero^2/ln(Artin)/LambertW(1) 2865653848734814 m005 (1/2*Catalan-7/11)/(-109/132+1/11*5^(1/2)) 2865653852258988 a007 Real Root Of 533*x^4-740*x^3-386*x^2-902*x+304 2865653857610962 q001 962/3357 2865653865549508 a001 5702887/5778*199^(7/11) 2865653871061171 m001 Khinchin*(ln(2)+Artin) 2865653873949822 m001 (LambertW(1)-gamma(1))/(-Khinchin+ZetaP(2)) 2865653884835600 r005 Im(z^2+c),c=27/98+3/22*I,n=61 2865653887151276 m001 (3^(1/3)-exp(Pi))/(-CareFree+MinimumGamma) 2865653887358432 r009 Re(z^3+c),c=-17/60+5/33*I,n=2 2865653890577294 r005 Im(z^2+c),c=27/98+3/22*I,n=62 2865653891138436 l006 ln(4403/4531) 2865653904575901 s002 sum(A206573[n]/(pi^n+1),n=1..infinity) 2865653918171406 r005 Re(z^2+c),c=29/98+32/57*I,n=25 2865653919216207 r009 Re(z^3+c),c=-5/28+49/51*I,n=50 2865653928015593 r005 Re(z^2+c),c=-33/94+31/55*I,n=35 2865653932068688 a007 Real Root Of 4*x^4-823*x^3+120*x^2-547*x-186 2865653938862086 a001 14930352/15127*199^(7/11) 2865653940191821 h001 (5/12*exp(2)+1/11)/(1/3*exp(1)+1/5) 2865653940462887 m001 Catalan^2*OneNinth^2*ln(GAMMA(1/6))^2 2865653947330330 m001 (exp(1/Pi)+Riemann1stZero)/(1+Psi(2,1/3)) 2865653949558248 a001 39088169/39603*199^(7/11) 2865653951118796 a001 102334155/103682*199^(7/11) 2865653951346477 a001 267914296/271443*199^(7/11) 2865653951379696 a001 701408733/710647*199^(7/11) 2865653951384542 a001 1836311903/1860498*199^(7/11) 2865653951385249 a001 4807526976/4870847*199^(7/11) 2865653951385352 a001 12586269025/12752043*199^(7/11) 2865653951385367 a001 32951280099/33385282*199^(7/11) 2865653951385370 a001 86267571272/87403803*199^(7/11) 2865653951385370 a001 225851433717/228826127*199^(7/11) 2865653951385370 a001 591286729879/599074578*199^(7/11) 2865653951385370 a001 1548008755920/1568397607*199^(7/11) 2865653951385370 a001 4052739537881/4106118243*199^(7/11) 2865653951385370 a001 4807525989/4870846*199^(7/11) 2865653951385370 a001 6557470319842/6643838879*199^(7/11) 2865653951385370 a001 2504730781961/2537720636*199^(7/11) 2865653951385370 a001 956722026041/969323029*199^(7/11) 2865653951385370 a001 365435296162/370248451*199^(7/11) 2865653951385370 a001 139583862445/141422324*199^(7/11) 2865653951385371 a001 53316291173/54018521*199^(7/11) 2865653951385377 a001 20365011074/20633239*199^(7/11) 2865653951385416 a001 7778742049/7881196*199^(7/11) 2865653951385686 a001 2971215073/3010349*199^(7/11) 2865653951387537 a001 1134903170/1149851*199^(7/11) 2865653951400226 a001 433494437/439204*199^(7/11) 2865653951487192 a001 165580141/167761*199^(7/11) 2865653952083269 a001 63245986/64079*199^(7/11) 2865653952868530 m005 (1/2*Pi+6)/(3/4*Pi+2/7) 2865653956168839 a001 24157817/24476*199^(7/11) 2865653965450595 a007 Real Root Of 819*x^4-113*x^3+814*x^2-471*x-210 2865653971379521 a007 Real Root Of -173*x^4-236*x^3+594*x^2-239*x+550 2865653975620339 a005 (1/cos(17/231*Pi))^1149 2865653979423351 m001 Robbin^2*RenyiParking*exp(sqrt(5))^2 2865653980193370 s002 sum(A257762[n]/(n^3*pi^n+1),n=1..infinity) 2865653984171753 a001 9227465/9349*199^(7/11) 2865653985582074 a008 Real Root of (2+6*x-4*x^2-4*x^3-6*x^4+3*x^5) 2865653986111522 m001 (Lehmer-MinimumGamma)/(Otter+ZetaP(4)) 2865653986358848 m001 Zeta(7)^2*ln(Robbin)^2*sqrt(1+sqrt(3)) 2865654006955952 m001 cos(1)^Zeta(1,-1)*sin(1/12*Pi) 2865654010247897 m001 GAMMA(23/24)^GAMMA(19/24)-ln(2+3^(1/2)) 2865654010247897 m001 GAMMA(23/24)^GAMMA(19/24)-ln(2+sqrt(3)) 2865654010468916 m001 Pi/(GAMMA(3/4)^ZetaP(2)) 2865654030439086 m002 -Pi^3+Pi^5+Sinh[Pi]+Tanh[Pi]/Pi^5 2865654039594476 r005 Im(z^2+c),c=27/98+3/22*I,n=56 2865654040320111 h001 (1/3*exp(1)+3/5)/(7/10*exp(2)+1/12) 2865654046175902 m001 GAMMA(1/12)*exp(Rabbit)*GAMMA(3/4) 2865654055656296 a007 Real Root Of -246*x^4-653*x^3+161*x^2-116*x-432 2865654063497097 r005 Im(z^2+c),c=27/98+3/22*I,n=63 2865654064232988 a007 Real Root Of -410*x^4-971*x^3+455*x^2-370*x+2 2865654066629370 m001 1/LaplaceLimit^2*ln(Khintchine)*GAMMA(5/6)^2 2865654075733129 r005 Re(z^2+c),c=11/64+19/40*I,n=62 2865654097985582 a005 (1/cos(2/95*Pi))^481 2865654098289493 r005 Im(z^2+c),c=-91/94+12/49*I,n=3 2865654104265440 r002 19th iterates of z^2 + 2865654111762164 a001 34/123*7^(1/54) 2865654118611512 m005 (1/2*3^(1/2)-6/7)/(6*gamma-4/11) 2865654118973239 r005 Re(z^2+c),c=-5/16+22/59*I,n=38 2865654119864096 m001 (FeigenbaumKappa+QuadraticClass)/(1-Ei(1,1)) 2865654120640128 a007 Real Root Of -169*x^4-732*x^3-766*x^2-43*x+338 2865654125000923 r005 Re(z^2+c),c=-19/70+26/53*I,n=35 2865654129083259 m001 1/Tribonacci^2/ln(Magata)/sin(1) 2865654135758214 r009 Re(z^3+c),c=-9/34+1/30*I,n=16 2865654135791355 r009 Re(z^3+c),c=-9/34+1/30*I,n=17 2865654135812637 r009 Re(z^3+c),c=-9/34+1/30*I,n=18 2865654135820767 r009 Re(z^3+c),c=-9/34+1/30*I,n=19 2865654135823324 r009 Re(z^3+c),c=-9/34+1/30*I,n=20 2865654135824037 r009 Re(z^3+c),c=-9/34+1/30*I,n=21 2865654135824217 r009 Re(z^3+c),c=-9/34+1/30*I,n=22 2865654135824259 r009 Re(z^3+c),c=-9/34+1/30*I,n=23 2865654135824267 r009 Re(z^3+c),c=-9/34+1/30*I,n=24 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=25 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=36 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=37 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=38 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=39 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=40 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=41 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=42 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=43 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=44 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=45 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=57 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=58 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=59 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=60 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=61 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=62 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=63 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=64 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=56 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=55 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=54 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=53 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=52 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=51 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=50 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=49 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=46 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=48 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=47 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=35 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=34 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=33 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=32 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=31 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=30 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=29 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=28 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=27 2865654135824269 r009 Re(z^3+c),c=-9/34+1/30*I,n=26 2865654135842172 r009 Re(z^3+c),c=-9/34+1/30*I,n=15 2865654136998206 r009 Re(z^3+c),c=-9/34+1/30*I,n=14 2865654138282626 m001 (LaplaceLimit+PlouffeB)/(cos(1)+Zeta(1,2)) 2865654143561138 r008 a(0)=0,K{-n^6,-76+79*n^3-2*n^2+34*n} 2865654144421386 r009 Re(z^3+c),c=-9/34+1/30*I,n=13 2865654152258824 m002 -Pi^(-5)+Pi^3-Pi^5-Sinh[Pi] 2865654155953683 a007 Real Root Of -390*x^4-984*x^3+362*x^2-377*x-909 2865654161303427 r008 a(0)=0,K{-n^6,48-73*n^3-30*n^2+20*n} 2865654161524948 r005 Im(z^2+c),c=27/98+3/22*I,n=60 2865654176106598 a001 3524578/3571*199^(7/11) 2865654178010199 m001 (Otter+ReciprocalFibonacci)/(3^(1/2)+Bloch) 2865654182388033 r009 Re(z^3+c),c=-9/34+1/30*I,n=12 2865654204131705 a007 Real Root Of 23*x^4+646*x^3-341*x^2+979*x-206 2865654205607476 q001 2453/856 2865654210358972 m001 OneNinth*ln(ArtinRank2)*exp(1)^2 2865654219985785 r009 Im(z^3+c),c=-41/98+8/43*I,n=18 2865654221729916 a007 Real Root Of 826*x^4+259*x^3+900*x^2-557*x-233 2865654232190282 l006 ln(223/3916) 2865654235607436 a005 (1/cos(18/175*Pi))^1233 2865654241303714 r005 Im(z^2+c),c=27/98+3/22*I,n=64 2865654258558481 m005 (1/2*exp(1)-5/12)/(4*Catalan-3/8) 2865654272103321 a007 Real Root Of -160*x^4-304*x^3+605*x^2+459*x-17 2865654281553851 m001 (ErdosBorwein-ThueMorse)/(Pi+GAMMA(23/24)) 2865654288587484 r002 37th iterates of z^2 + 2865654297282011 m001 (FeigenbaumMu+Trott2nd)/(ln(2^(1/2)+1)+Artin) 2865654297727799 r005 Im(z^2+c),c=-5/6+49/212*I,n=29 2865654298381523 a007 Real Root Of 182*x^4-30*x^3+970*x^2-818*x-316 2865654304003373 r009 Re(z^3+c),c=-23/50+7/15*I,n=57 2865654308109214 r008 a(0)=0,K{-n^6,-58+64*n^3+52*n^2-23*n} 2865654309177136 a001 505019158607/3*32951280099^(11/16) 2865654314556103 b008 -1+Pi+Csch[1]^2 2865654326625711 m001 (BesselK(0,1)+BesselK(1,1))/(2^(1/2)-Shi(1)) 2865654332374099 r002 3th iterates of z^2 + 2865654334986289 a007 Real Root Of 210*x^4-689*x^3+153*x^2-275*x-109 2865654346477958 m001 (OneNinth-RenyiParking)/(GAMMA(7/12)+CareFree) 2865654350629876 m001 (Catalan-MadelungNaCl)/(-Otter+ZetaQ(2)) 2865654352823612 r009 Re(z^3+c),c=-9/34+1/30*I,n=11 2865654356542249 m001 1/GAMMA(2/3)*FeigenbaumAlpha^2/ln(sinh(1)) 2865654356601676 r005 Re(z^2+c),c=-65/126+30/61*I,n=47 2865654357697751 m001 FeigenbaumC/exp(GlaisherKinkelin)/sqrt(Pi) 2865654358805453 r005 Re(z^2+c),c=-43/42+5/63*I,n=10 2865654371695058 a001 21/4*843^(29/31) 2865654378452034 p004 log(24763/18593) 2865654380069166 a007 Real Root Of -338*x^4-611*x^3+999*x^2+181*x+730 2865654380540509 r005 Re(z^2+c),c=13/54+31/61*I,n=11 2865654386233596 a007 Real Root Of -329*x^4-613*x^3+637*x^2-997*x-327 2865654389143321 p004 log(28571/1627) 2865654395191773 a007 Real Root Of 152*x^4+595*x^3+640*x^2+193*x-951 2865654397811960 a001 4/2889*521^(5/43) 2865654419600306 m001 (Psi(2,1/3)-Zeta(5))/(3^(1/3)+polylog(4,1/2)) 2865654419784271 r009 Re(z^3+c),c=-27/82+3/14*I,n=4 2865654428344777 m001 MadelungNaCl^BesselI(0,1)*Riemann1stZero 2865654428965545 m001 1/ln(GAMMA(5/12))*Khintchine^2*sqrt(3)^2 2865654449246207 r008 a(0)=0,K{-n^6,68-56*n^3-71*n^2+24*n} 2865654451747058 m001 exp(GAMMA(19/24))^2*DuboisRaymond^2/sinh(1)^2 2865654457631567 r005 Re(z^2+c),c=11/48+1/15*I,n=13 2865654459353765 m001 (GAMMA(13/24)-exp(1))/(-Paris+Weierstrass) 2865654475994232 r005 Re(z^2+c),c=-5/19+23/45*I,n=63 2865654485554646 m001 (Zeta(5)*Backhouse+MinimumGamma)/Zeta(5) 2865654487732404 b008 ArcSec[4]+ArcSec[43] 2865654488232693 r009 Re(z^3+c),c=-53/122+20/47*I,n=57 2865654496906298 r009 Im(z^3+c),c=-7/15+1/13*I,n=18 2865654499784286 r005 Im(z^2+c),c=-33/98+22/51*I,n=11 2865654504999281 p001 sum((-1)^n/(609*n+347)/(64^n),n=0..infinity) 2865654505361376 r005 Im(z^2+c),c=27/98+3/22*I,n=41 2865654509884954 r008 a(0)=0,K{-n^6,47-30*n+49*n^2-32*n^3} 2865654515531301 a007 Real Root Of 355*x^3+783*x^2-468*x+583 2865654527259300 m001 exp(1)+OneNinth^Thue 2865654529153813 a001 8/710647*1364^(33/43) 2865654541886771 r009 Re(z^3+c),c=-41/114+9/31*I,n=22 2865654554563800 a007 Real Root Of 355*x^4-596*x^3+354*x^2-568*x+16 2865654555430385 s002 sum(A210241[n]/(n^3*pi^n+1),n=1..infinity) 2865654557309716 r005 Im(z^2+c),c=9/46+10/47*I,n=11 2865654558889633 m001 (Zeta(3)+Bloch)/(FellerTornier+MertensB1) 2865654558926634 r005 Im(z^2+c),c=19/70+15/32*I,n=54 2865654559529556 m001 (gamma(1)+Backhouse)/(Bloch+Trott) 2865654560366021 r005 Im(z^2+c),c=-7/26+4/9*I,n=63 2865654574766808 r009 Im(z^3+c),c=-35/106+7/29*I,n=9 2865654582532961 r009 Re(z^3+c),c=-43/74+13/42*I,n=47 2865654589257637 r005 Im(z^2+c),c=-11/9+7/39*I,n=6 2865654598571363 r009 Re(z^3+c),c=-25/54+8/17*I,n=63 2865654607434785 r005 Re(z^2+c),c=-39/106+1/23*I,n=17 2865654608605997 m001 HardyLittlewoodC3-QuadraticClass^MasserGramain 2865654610258431 r009 Im(z^3+c),c=-3/46+4/13*I,n=4 2865654615379568 m005 (1/2*3^(1/2)-1/2)/(3/10*Zeta(3)+11/12) 2865654621534915 a001 1/11*(1/2*5^(1/2)+1/2)^24*7^(4/7) 2865654622579948 r002 6i'th iterates of 2*x/(1-x^2) of 2865654625020323 m001 (Pi+arctan(1/3))/(BesselI(1,1)+Cahen) 2865654626959191 m001 Pi-2^(1/3)+5^(1/2)*BesselJ(1,1) 2865654629314579 m001 GAMMA(5/6)^2/RenyiParking^2/exp(Zeta(5))^2 2865654638125557 r005 Re(z^2+c),c=-13/44+37/64*I,n=44 2865654638662393 r002 33th iterates of z^2 + 2865654651891262 r005 Im(z^2+c),c=27/98+3/22*I,n=59 2865654652317099 r005 Im(z^2+c),c=-9/19+2/41*I,n=31 2865654661026071 a007 Real Root Of -619*x^4+563*x^3-583*x^2+320*x+157 2865654673695498 m005 (1/2*gamma+8/9)/(2/11*exp(1)-1/12) 2865654675720810 r009 Im(z^3+c),c=-35/74+5/39*I,n=32 2865654676095443 r005 Re(z^2+c),c=-13/36+3/22*I,n=14 2865654680976652 a007 Real Root Of -410*x^4+230*x^3-694*x^2+809*x+297 2865654682307309 a007 Real Root Of 144*x^4+466*x^3+89*x^2-294*x-318 2865654683206379 r002 15th iterates of z^2 + 2865654698172461 m001 2^(1/3)*exp(1/exp(1))/HardyLittlewoodC3 2865654705942478 r002 45i'th iterates of 2*x/(1-x^2) of 2865654723683288 p001 sum((-1)^n/(601*n+344)/(25^n),n=0..infinity) 2865654729892728 g005 GAMMA(9/11)/GAMMA(5/9)^2/GAMMA(4/7) 2865654730945265 l006 ln(512/8991) 2865654735748333 m001 (MertensB1-Salem)/(exp(1/exp(1))+MadelungNaCl) 2865654748993773 a007 Real Root Of -19*x^4-522*x^3+664*x^2+582*x+286 2865654754001355 m001 (Si(Pi)-ln(2)/ln(10))/(-gamma(3)+Landau) 2865654763078033 m001 KhinchinLevy^GAMMA(2/3)/TreeGrowth2nd 2865654788312339 a007 Real Root Of 666*x^4-751*x^3-19*x^2-633*x-202 2865654805873333 m001 1/exp(LambertW(1))*GAMMA(11/24)^2/exp(1)^2 2865654806395034 r005 Im(z^2+c),c=11/98+11/41*I,n=11 2865654815896653 m001 1/ln(GAMMA(1/12))^2*BesselJ(0,1)^2*cos(1)^2 2865654840962661 a007 Real Root Of 322*x^4-275*x^3-668*x^2-488*x+199 2865654841756879 r009 Im(z^3+c),c=-1/36+50/59*I,n=32 2865654849985420 m001 (Mills+MinimumGamma)/cos(1/12*Pi) 2865654881270088 a001 196418/7*18^(41/51) 2865654885342071 r005 Im(z^2+c),c=-7/8+19/82*I,n=51 2865654893165686 m001 (Pi+LaplaceLimit)/(Riemann1stZero-Thue) 2865654894566797 a007 Real Root Of -562*x^4+595*x^3-749*x^2+655*x+267 2865654906574935 r005 Re(z^2+c),c=13/98+23/62*I,n=21 2865654912272603 r002 35th iterates of z^2 + 2865654916282889 r005 Im(z^2+c),c=27/98+3/22*I,n=57 2865654921442290 r009 Im(z^3+c),c=-3/22+1/37*I,n=4 2865654923068365 m001 1/Riemann2ndZero^3/exp(Robbin)^2 2865654928241683 m005 (1/3*Zeta(3)+1/6)/(Zeta(3)+7/9) 2865654943429648 m001 exp(-1/2*Pi)/(Kolakoski^HardHexagonsEntropy) 2865654950746561 r009 Re(z^3+c),c=-13/29+22/47*I,n=34 2865654963841976 m001 Ei(1,1)^Paris-FeigenbaumB 2865654967040771 r005 Im(z^2+c),c=-7/26+4/9*I,n=58 2865654968601426 p001 sum((-1)^n/(139*n+33)/(3^n),n=0..infinity) 2865654972032171 h001 (7/10*exp(1)+7/12)/(2/7*exp(1)+1/11) 2865654973874862 r009 Re(z^3+c),c=-17/94+16/17*I,n=30 2865655026619689 m002 (-4*E^Pi)/5+3*Pi^6 2865655044197933 r009 Im(z^3+c),c=-1/36+50/59*I,n=38 2865655044919258 r009 Re(z^3+c),c=-9/34+1/30*I,n=10 2865655045382332 r005 Im(z^2+c),c=27/98+3/22*I,n=58 2865655049418842 a005 (1/sin(89/235*Pi))^664 2865655053066049 m001 (Lehmer-PisotVijayaraghavan)/(ln(3)+Backhouse) 2865655066379766 a007 Real Root Of -401*x^4+556*x^3-367*x^2+590*x+215 2865655078254725 a005 (1/sin(85/207*Pi))^84 2865655079679647 s001 sum(exp(-Pi/4)^n*A211436[n],n=1..infinity) 2865655087765021 h001 (3/5*exp(1)+3/7)/(1/9*exp(1)+5/12) 2865655092569826 m005 (1/2*Zeta(3)+1/12)/(7/12*Pi+5/9) 2865655100828433 r005 Im(z^2+c),c=-85/118+1/64*I,n=21 2865655105095557 m001 (Pi-Catalan)/(cos(1)-ln(2+3^(1/2))) 2865655115797555 l006 ln(289/5075) 2865655135155623 m001 (ln(Pi)-exp(-1/2*Pi))/(Mills+ReciprocalLucas) 2865655150446327 a007 Real Root Of -461*x^4+320*x^3-745*x^2+381*x+181 2865655154994706 r005 Im(z^2+c),c=-7/26+4/9*I,n=57 2865655155801037 r005 Re(z^2+c),c=-61/46+1/37*I,n=36 2865655161503606 r009 Re(z^3+c),c=-43/98+19/44*I,n=40 2865655170612490 a007 Real Root Of 142*x^4+533*x^3+160*x^2-908*x-949 2865655174997406 r005 Im(z^2+c),c=-33/118+13/29*I,n=46 2865655177833321 r005 Im(z^2+c),c=-7/40+20/49*I,n=28 2865655182029158 a001 4/121393*832040^(19/58) 2865655184884946 a007 Real Root Of -172*x^4-301*x^3+541*x^2-126*x-288 2865655191197527 a007 Real Root Of 397*x^4+715*x^3-786*x^2+887*x-950 2865655195165810 m005 (-7/36+1/4*5^(1/2))/(33/40+1/5*5^(1/2)) 2865655220364776 a001 4/2504730781961*144^(2/17) 2865655238668441 a001 47/5*4807526976^(1/20) 2865655243403657 a007 Real Root Of -660*x^4+291*x^3-616*x^2+639*x+245 2865655250863986 m008 (3*Pi^5-1/5)/(1/3*Pi^6-1/6) 2865655262402784 m001 (BesselJ(1,1)+Magata)/(Rabbit-Riemann1stZero) 2865655275989961 a001 322/121393*514229^(52/59) 2865655282566025 m001 (BesselK(0,1)-Thue)/GAMMA(7/12) 2865655299492188 a007 Real Root Of -141*x^4-81*x^3+770*x^2-274*x+494 2865655301751777 r005 Im(z^2+c),c=27/98+3/22*I,n=52 2865655315817457 a007 Real Root Of -232*x^4-770*x^3-206*x^2+311*x+108 2865655321234446 a007 Real Root Of -32*x^4+281*x^3-930*x^2+977*x-210 2865655324941939 a001 9062201101803/89*1836311903^(10/17) 2865655324941939 a001 73681302247/89*6557470319842^(10/17) 2865655335975299 a003 sin(Pi*1/110)/cos(Pi*2/75) 2865655336058484 l006 ln(7169/9548) 2865655343147684 m004 (5*Pi)/3+Cosh[Sqrt[5]*Pi]/24 2865655359972787 a007 Real Root Of -867*x^4-196*x^3+463*x^2+682*x-223 2865655370144519 m001 MertensB2*(2^(1/2)+FeigenbaumKappa) 2865655401145810 r005 Im(z^2+c),c=-5/34+16/41*I,n=10 2865655401812683 m001 (2^(1/2)-3^(1/2))/(-Zeta(5)+GAMMA(23/24)) 2865655405956387 r008 a(0)=3,K{-n^6,-15+13*n^2+10*n^3} 2865655429872278 r005 Im(z^2+c),c=-11/102+54/61*I,n=45 2865655432948107 m001 (Zeta(1,-1)-Kac)/(Magata-MasserGramain) 2865655439296618 a007 Real Root Of -599*x^4-589*x^3+57*x^2+929*x-253 2865655444442137 a007 Real Root Of 452*x^4+217*x^3-194*x^2-827*x-219 2865655444682016 a001 9227465/521*76^(1/9) 2865655447904492 r005 Im(z^2+c),c=-23/58+29/57*I,n=41 2865655451862177 m001 (ErdosBorwein+MadelungNaCl)/(Psi(1,1/3)+ln(5)) 2865655460954259 r002 10th iterates of z^2 + 2865655471289274 q001 2645/923 2865655477291474 a001 7*76^(6/7) 2865655491648289 a001 1346269/1364*199^(7/11) 2865655491995306 m001 (exp(-1/2*Pi)-MertensB3)/(Sierpinski+Totient) 2865655494334063 r002 3th iterates of z^2 + 2865655495444314 a007 Real Root Of 398*x^4+892*x^3-690*x^2+325*x+749 2865655496741720 a007 Real Root Of -449*x^4-104*x^3-31*x^2+523*x+153 2865655497262078 l006 ln(6497/8653) 2865655503255579 m005 (1/2*Zeta(3)+1/10)/(1/9*Catalan+1/7) 2865655509842183 r002 60th iterates of z^2 + 2865655514806623 m001 ErdosBorwein^Zeta(1,-1)/FellerTornier 2865655529236780 a001 2/75025*144^(16/17) 2865655530229151 r009 Im(z^3+c),c=-1/64+28/33*I,n=36 2865655533423012 r005 Re(z^2+c),c=-45/122+1/29*I,n=10 2865655534634272 r005 Im(z^2+c),c=-7/26+4/9*I,n=60 2865655553631557 a007 Real Root Of -133*x^4+923*x^3+221*x^2+288*x+87 2865655557735352 r005 Re(z^2+c),c=-7/19+1/39*I,n=20 2865655570345430 a007 Real Root Of -571*x^4+726*x^3-341*x^2+576*x+214 2865655570964925 h002 exp(1/19*19^(1/2)*4^(2/3)*11^(1/4)) 2865655576989573 p004 log(30011/1709) 2865655585233491 m005 (1/3*2^(1/2)-1/5)/(93/110+1/22*5^(1/2)) 2865655588568795 a007 Real Root Of -197*x^4-678*x^3-115*x^2+612*x+28 2865655610177922 a007 Real Root Of 454*x^4+943*x^3-830*x^2+581*x+56 2865655611659614 a001 4/51841*3571^(19/43) 2865655641817023 m001 log(gamma)^(exp(1/2)/Zeta(1,2)) 2865655653401787 a003 sin(Pi*32/87)/cos(Pi*23/58) 2865655670851866 l006 ln(355/6234) 2865655672538200 m001 (-Bloch+Landau)/(BesselI(0,1)+GAMMA(3/4)) 2865655675943254 a003 sin(Pi*11/72)*sin(Pi*13/61) 2865655676898758 r002 3th iterates of z^2 + 2865655678502410 m001 Riemann3rdZero/DuboisRaymond*ln(OneNinth) 2865655688090119 m001 (Landau+OneNinth)/(Catalan+FeigenbaumKappa) 2865655695660111 l006 ln(5825/7758) 2865655697993012 a001 4/51841*9349^(17/43) 2865655710750852 a001 8/4870847*64079^(29/43) 2865655715996898 a001 8/64079*15127^(14/43) 2865655719730548 a007 Real Root Of -24*x^4-673*x^3+449*x^2+728*x-575 2865655723409755 m001 (Magata+ZetaQ(2))/(Bloch-Lehmer) 2865655727072841 a007 Real Root Of 480*x^4+952*x^3-903*x^2+826*x-184 2865655727595699 m001 BesselI(0,2)+GaussAGM^Otter 2865655736159436 a001 521/2584*3^(8/25) 2865655736882955 m008 (5*Pi^3-1/4)/(1/5*Pi^3-4/5) 2865655743391175 a001 10749957122/55*591286729879^(11/21) 2865655743391175 a001 2139295485799/55*24157817^(11/21) 2865655750728654 a001 55/271443*199^(29/31) 2865655751342292 r002 5th iterates of z^2 + 2865655755985148 a001 8/9349*5778^(6/43) 2865655770037783 a007 Real Root Of 9*x^4-136*x^3-582*x^2-335*x+12 2865655774116038 a007 Real Root Of 757*x^4+384*x^3-29*x^2-725*x+196 2865655783730747 a007 Real Root Of 600*x^4-231*x^3-137*x^2-926*x+278 2865655790031792 r005 Im(z^2+c),c=-137/126+8/31*I,n=24 2865655797829360 m008 (1/4*Pi^3-5)/(3*Pi^3+3) 2865655798443348 r009 Im(z^3+c),c=-10/27+9/41*I,n=20 2865655809410759 a007 Real Root Of 687*x^4-988*x^3+886*x^2+250*x-29 2865655815881025 r005 Re(z^2+c),c=37/102+9/41*I,n=49 2865655849944969 m001 (exp(1)-ln(2)/ln(10))/(sin(1)+gamma(3)) 2865655855884411 r005 Re(z^2+c),c=-23/74+28/57*I,n=14 2865655859036352 m001 (2^(1/3)-Zeta(5))/(-GAMMA(2/3)+Stephens) 2865655873908625 m006 (2/5*ln(Pi)+1/3)/(2/3*Pi+2/3) 2865655873973305 a007 Real Root Of 920*x^4-975*x^3+370*x^2-421*x+107 2865655877263654 m001 (Otter-Totient)/(gamma(1)-2*Pi/GAMMA(5/6)) 2865655886798102 r005 Im(z^2+c),c=-19/22+3/17*I,n=8 2865655889818980 m001 Backhouse^2*ln(sin(Pi/12)) 2865655895815592 m001 (5^(1/2))^Landau/cos(1) 2865655909051971 a007 Real Root Of 638*x^4-622*x^3-391*x^2-702*x-188 2865655912346729 a007 Real Root Of -292*x^4-511*x^3+707*x^2-972*x-925 2865655914355761 a007 Real Root Of -75*x^4+253*x^3-x^2+874*x+257 2865655919700070 r005 Im(z^2+c),c=-4/27+16/37*I,n=6 2865655926437482 m005 (3/44+1/4*5^(1/2))/(1/3*Zeta(3)-2/11) 2865655930459382 a005 (1/cos(4/75*Pi))^891 2865655934551537 m001 (HeathBrownMoroz-Magata)^Thue 2865655935985460 a001 8/3571*39603^(1/43) 2865655945804103 l006 ln(5153/6863) 2865655945804103 p004 log(6863/5153) 2865655946163197 a003 cos(Pi*5/89)*sin(Pi*11/117) 2865655963303662 a001 199/832040*2178309^(17/35) 2865655970647586 r002 13th iterates of z^2 + 2865655984725422 a007 Real Root Of x^4+287*x^3+125*x^2+145*x-778 2865655990082708 a003 cos(Pi*32/103)*cos(Pi*26/79) 2865656005830030 m001 CareFree/ln(FransenRobinson)/cosh(1)^2 2865656009454398 m001 (PlouffeB-Salem)/(Zeta(1,-1)-BesselI(0,2)) 2865656024372892 a003 cos(Pi*7/71)/sin(Pi*11/102) 2865656031398619 r008 a(0)=0,K{-n^6,25-13*n+31*n^2-7*n^3} 2865656031487322 h001 (11/12*exp(2)+4/7)/(1/3*exp(2)+1/10) 2865656037022295 r002 22th iterates of z^2 + 2865656040674970 m005 (1/2*Zeta(3)+11/12)/(3*3^(1/2)+1/10) 2865656050583828 m001 ln(Zeta(5))^2/Paris*arctan(1/2)^2 2865656051874718 l006 ln(421/7393) 2865656051874718 p004 log(7393/421) 2865656060192212 r005 Re(z^2+c),c=25/78+8/55*I,n=48 2865656067056382 a007 Real Root Of 468*x^4+911*x^3+531*x^2-627*x-205 2865656087221334 m001 (Shi(1)+Ei(1))/((1+3^(1/2))^(1/2)-FeigenbaumD) 2865656089645642 a001 2/233*144^(12/17) 2865656101093553 r005 Im(z^2+c),c=-19/14+18/227*I,n=7 2865656104312978 m001 1/Si(Pi)^2/FeigenbaumDelta/exp(GAMMA(7/24)) 2865656108550652 m002 -Pi^2+Pi^5-Cosh[Pi]+2*Coth[Pi] 2865656147682878 m002 -Pi^5+Cosh[Pi]+9/Log[Pi] 2865656156140510 r009 Re(z^3+c),c=-23/52+18/41*I,n=52 2865656183455555 a003 cos(Pi*13/59)-cos(Pi*37/109) 2865656187117738 a001 76/1346269*317811^(33/49) 2865656193380573 r005 Im(z^2+c),c=-41/106+31/57*I,n=8 2865656207524473 m005 (1/2*exp(1)-1/7)/(8/11*Zeta(3)-11/12) 2865656208004388 v002 sum(1/(2^n*(20*n^2-48*n+53)),n=1..infinity) 2865656208588057 r005 Re(z^2+c),c=21/62+18/53*I,n=21 2865656209553110 m001 (cos(1/5*Pi)+Magata)/(RenyiParking+Sarnak) 2865656211381876 a007 Real Root Of 283*x^4+796*x^3+176*x^2+284*x-984 2865656213536420 a007 Real Root Of -971*x^4-548*x^3-90*x^2+645*x-158 2865656222248854 r002 25th iterates of z^2 + 2865656243163897 m001 exp(CopelandErdos)^2/Artin^2*Riemann3rdZero 2865656244821781 a001 8/3010349*2207^(39/43) 2865656248137804 a007 Real Root Of -202*x^4-377*x^3+679*x^2+368*x+229 2865656255274479 r005 Im(z^2+c),c=-5/98+16/47*I,n=5 2865656255397267 m001 1/Pi^2/Champernowne^2/exp(sin(1)) 2865656257088846 r009 Im(z^3+c),c=-12/23+4/25*I,n=2 2865656262868645 a007 Real Root Of -486*x^4+890*x^3+880*x^2+555*x+111 2865656263090533 r005 Re(z^2+c),c=-1/4+33/61*I,n=63 2865656269832371 m001 (GlaisherKinkelin-OrthogonalArrays)/(Pi+ln(3)) 2865656270974537 l006 ln(4481/5968) 2865656271058618 r005 Re(z^2+c),c=-13/46+6/13*I,n=64 2865656274395639 a001 24476/3*13^(24/49) 2865656282143777 r005 Re(z^2+c),c=-37/102+14/23*I,n=3 2865656283998447 m001 ln(2+3^(1/2))+(Pi^(1/2))^LandauRamanujan 2865656283998447 m001 sqrt(Pi)^LandauRamanujan+ln(2+sqrt(3)) 2865656292257577 m001 (StronglyCareFree+ThueMorse)/PrimesInBinary 2865656300231331 a007 Real Root Of -918*x^4+261*x^3-586*x^2+808*x+292 2865656300322764 m001 (-HeathBrownMoroz+Rabbit)/(gamma+Ei(1)) 2865656307293214 a005 (1/sin(105/236*Pi))^1600 2865656313157262 a007 Real Root Of 407*x^4+810*x^3-740*x^2+697*x-311 2865656314799010 r005 Re(z^2+c),c=-41/114+3/20*I,n=16 2865656327036805 m001 (exp(1)+BesselI(0,1))/(-Porter+ZetaP(4)) 2865656329622291 l006 ln(487/8552) 2865656341152610 r005 Re(z^2+c),c=-7/22+16/47*I,n=12 2865656346185805 p001 sum(1/(433*n+314)/n/(5^n),n=1..infinity) 2865656349161858 r002 26th iterates of z^2 + 2865656370386104 m002 -Pi^5+ProductLog[Pi]+(5*Sinh[Pi])/Pi 2865656373397887 r005 Re(z^2+c),c=-13/46+6/13*I,n=60 2865656375366273 m001 (Otter-Sierpinski)/(gamma(2)+Conway) 2865656375947253 m001 (ZetaP(3)-ZetaQ(2))/(Conway-QuadraticClass) 2865656386364103 a007 Real Root Of -311*x^4-728*x^3+388*x^2-322*x-268 2865656396426751 m001 Khinchin^BesselJ(1,1)/(Khinchin^Niven) 2865656408802790 r005 Im(z^2+c),c=-3/17+24/59*I,n=13 2865656412346230 m001 1/FeigenbaumB*ln(Kolakoski)*Zeta(5) 2865656420420529 a007 Real Root Of 500*x^4-624*x^3+971*x^2-409*x-215 2865656425757932 m001 (Conway+Salem)/(2^(1/2)-BesselI(0,2)) 2865656426175817 r009 Im(z^3+c),c=-1/36+50/59*I,n=40 2865656430985552 m001 (Ei(1)+Ei(1,1))/(BesselK(1,1)-Totient) 2865656435737068 a007 Real Root Of -919*x^4-309*x^3-201*x^2+642*x-154 2865656447332889 l006 ln(8634/8885) 2865656458567312 r005 Re(z^2+c),c=-31/118+15/29*I,n=39 2865656467333215 m001 (BesselI(0,2)+GAMMA(7/12))/(Totient-Trott) 2865656497152941 a001 1346269/843*199^(6/11) 2865656503294871 m001 1/PisotVijayaraghavan/Paris*exp(TwinPrimes)^2 2865656504277505 r005 Re(z^2+c),c=3/22+17/28*I,n=47 2865656507951383 g006 Psi(1,1/5)-Psi(1,10/11)-Psi(1,2/11)-Psi(1,2/9) 2865656509176230 m001 MinimumGamma^2/Si(Pi)/ln(Zeta(9))^2 2865656511032424 a007 Real Root Of -290*x^4-907*x^3-460*x^2-551*x+411 2865656530599394 m005 (-13/30+1/6*5^(1/2))/(6/7*5^(1/2)+1/5) 2865656535248158 m001 (2^(1/3)-gamma)/(Zeta(1,-1)+gamma(1)) 2865656541072019 l006 ln(553/9711) 2865656547819773 m001 1/Ei(1,1)/BesselI(1,2) 2865656547819773 m001 exp(1)/BesselI(1,2)/Gompertz 2865656559234534 m002 -Pi^3+Pi^5+ProductLog[Pi]/Pi^5+Sinh[Pi] 2865656563408602 r002 12th iterates of z^2 + 2865656565656565 q001 2837/990 2865656569684255 a007 Real Root Of 31*x^4+917*x^3+787*x^2-966*x+164 2865656572297820 r005 Im(z^2+c),c=-43/114+2/43*I,n=10 2865656579129494 s002 sum(A261093[n]/(exp(n)+1),n=1..infinity) 2865656589678957 r002 60th iterates of z^2 + 2865656593105927 r005 Im(z^2+c),c=-45/34+11/81*I,n=7 2865656597125688 a007 Real Root Of 193*x^4+237*x^3-845*x^2+492*x+911 2865656605256602 m001 cos(1)+ln(3)+FibonacciFactorial 2865656605763604 m001 (-Gompertz+LaplaceLimit)/(1+ln(2+3^(1/2))) 2865656633953598 m001 (2^(1/3)+GAMMA(3/4))/(-cos(1/12*Pi)+Paris) 2865656637623864 r005 Re(z^2+c),c=-9/40+26/49*I,n=19 2865656638111292 r004 Re(z^2+c),c=-4/11+5/23*I,z(0)=-1,n=11 2865656670730599 a007 Real Root Of 209*x^4+636*x^3+381*x^2+832*x+128 2865656672241113 a001 204284540899/36*225851433717^(5/21) 2865656672241115 a001 3020733700601/48*9227465^(5/21) 2865656685603843 m005 (1/3*2^(1/2)+1/11)/(5/9*3^(1/2)+1) 2865656685626157 m001 exp(1/2)^Psi(1,1/3)/Landau 2865656690010134 r009 Re(z^3+c),c=-49/122+18/49*I,n=42 2865656695735095 m001 Ei(1)^2/Tribonacci*ln(GAMMA(5/6))^2 2865656702411678 m005 (1/2*exp(1)-7/8)/(9/10*2^(1/2)+5/12) 2865656705150249 r005 Re(z^2+c),c=29/98+8/51*I,n=9 2865656710880859 l006 ln(3809/5073) 2865656711898529 r005 Im(z^2+c),c=-1/40+12/35*I,n=13 2865656715929877 r002 62th iterates of z^2 + 2865656721733430 m001 (GaussAGM-Mills)/(Zeta(5)-FeigenbaumD) 2865656736557407 m001 (GaussAGM+Gompertz)/(Pi+Si(Pi)) 2865656738444883 r005 Im(z^2+c),c=17/58+3/26*I,n=26 2865656740099682 a007 Real Root Of 210*x^4+407*x^3-780*x^2-339*x+850 2865656750450545 m008 (1/3*Pi^4+3)/(4*Pi^3-1/4) 2865656761706245 m001 (Porter-ReciprocalLucas)/(Zeta(5)+ln(2)) 2865656762586807 m001 1/3/(OneNinth+GAMMA(11/12)) 2865656766014870 a007 Real Root Of -425*x^4-863*x^3+952*x^2-409*x-638 2865656773344754 a007 Real Root Of 896*x^4-406*x^3+110*x^2-780*x+218 2865656778987064 r009 Im(z^3+c),c=-27/50+4/13*I,n=35 2865656794086612 s002 sum(A140424[n]/((2*n)!),n=1..infinity) 2865656808627327 p003 LerchPhi(1/12,4,137/100) 2865656816488701 q001 1154/4027 2865656818524199 m005 (1/2*Catalan-5/8)/(8/11*Catalan-1/12) 2865656821280563 a007 Real Root Of 643*x^4-515*x^3+106*x^2-579*x+165 2865656843344479 m004 -5*Pi*Log[Sqrt[5]*Pi]+3/ProductLog[Sqrt[5]*Pi] 2865656846297626 m001 Zeta(1/2)/(Cahen^GAMMA(7/12)) 2865656848099559 m001 Sarnak^Totient/(Tribonacci^Totient) 2865656848224706 r009 Re(z^3+c),c=-14/25+37/60*I,n=15 2865656850244797 m005 (1/3*5^(1/2)+1/9)/(-59/16+5/16*5^(1/2)) 2865656856044229 a001 843/2*89^(47/50) 2865656859505573 m005 (1/2*Catalan-1/5)/(1/8*Zeta(3)+3/4) 2865656873792820 h001 (1/7*exp(1)+4/11)/(9/11*exp(1)+2/5) 2865656882730508 m005 (1/3*3^(1/2)-1/6)/(4/7*2^(1/2)+5/8) 2865656885520115 r005 Re(z^2+c),c=-6/23+31/60*I,n=45 2865656889546113 a007 Real Root Of 701*x^4-230*x^3+967*x^2-361*x-193 2865656902521069 a007 Real Root Of -733*x^4+842*x^3-103*x^2+753*x+249 2865656908886118 r005 Im(z^2+c),c=-5/14+26/45*I,n=39 2865656910543267 m001 1/exp(cos(Pi/12))^2*LandauRamanujan*sin(Pi/12) 2865656914509227 r005 Re(z^2+c),c=-31/90+12/49*I,n=25 2865656916069003 s002 sum(A229026[n]/(16^n-1),n=1..infinity) 2865656947821855 m001 (Ei(1)-Pi^(1/2))/(Otter+PisotVijayaraghavan) 2865656967466749 r009 Re(z^3+c),c=-14/25+31/60*I,n=11 2865656983690845 a007 Real Root Of -186*x^4-172*x^3+623*x^2-919*x+746 2865656989029661 a001 1364/139583862445*317811^(4/15) 2865656989031174 a001 682/3278735159921*591286729879^(4/15) 2865656989031174 a001 1364/956722026041*433494437^(4/15) 2865656994672992 l006 ln(6946/9251) 2865656997262734 m005 (1/2*2^(1/2)+8/11)/(5/8*2^(1/2)-8/9) 2865656997390722 a007 Real Root Of -211*x^4-423*x^3+664*x^2+179*x-665 2865656997636251 a007 Real Root Of -882*x^4+901*x^3+964*x^2+515*x-242 2865657003876529 m001 (2^(1/2)-Catalan)/(-FeigenbaumC+FeigenbaumMu) 2865657011915104 m001 GAMMA(1/6)^cos(1)*GAMMA(1/6)^sqrt(2) 2865657014143258 m005 (1/2*Pi-2/5)/(1/12*5^(1/2)+2/9) 2865657014790783 m001 exp(Trott)^2*Niven^2/Zeta(5) 2865657019753823 m001 1/PrimesInBinary*Niven^2*ln(Ei(1))^2 2865657022740316 m001 TreeGrowth2nd^2/ln(Khintchine)^2*Zeta(3)^2 2865657027549692 a001 29/1346269*21^(3/32) 2865657031757620 m005 (1/8+1/4*5^(1/2))/(7/9*exp(1)+3/11) 2865657043355312 a007 Real Root Of -199*x^4-429*x^3+267*x^2-426*x-89 2865657049623134 m001 TwinPrimes/(Riemann2ndZero^(2*Pi/GAMMA(5/6))) 2865657055113150 m001 1/ln(BesselJ(0,1))^2*TwinPrimes/LambertW(1)^2 2865657062183591 m005 (1/2*5^(1/2)-1/9)/(2/11*exp(1)-1/7) 2865657072208696 r005 Re(z^2+c),c=-17/46+32/63*I,n=5 2865657083798685 m001 (MertensB3+TreeGrowth2nd)^Tribonacci 2865657108610764 m001 (exp(Pi)+arctan(1/2))/(-Niven+QuadraticClass) 2865657117190609 r005 Im(z^2+c),c=-19/90+17/41*I,n=12 2865657121210694 r005 Im(z^2+c),c=27/98+3/22*I,n=49 2865657129528072 r009 Re(z^3+c),c=-11/62+45/46*I,n=48 2865657130124173 a007 Real Root Of 749*x^4-839*x^3+843*x^2-813*x-327 2865657136818824 m001 (2^(1/3)-exp(1))/(-Zeta(3)+ln(2)) 2865657137012270 m005 (1/3*gamma-3/7)/(1/11*3^(1/2)+2/3) 2865657144957857 r005 Im(z^2+c),c=-49/106+3/62*I,n=27 2865657154498001 r005 Im(z^2+c),c=43/118+2/7*I,n=54 2865657169736481 m005 (1/3*exp(1)-2/11)/(9/10*Pi-3/10) 2865657183420831 p001 sum(1/(357*n+325)/n/(512^n),n=1..infinity) 2865657183670230 m009 (1/10*Pi^2-1/4)/(3/4*Psi(1,1/3)-5) 2865657185958811 m001 (ln(3)+DuboisRaymond)/(Sierpinski+Tetranacci) 2865657188574482 r009 Re(z^3+c),c=-49/122+18/49*I,n=43 2865657215976013 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)*Paris+ZetaP(4) 2865657216977352 m001 (-BesselK(1,1)+Salem)/(2^(1/3)+Zeta(1/2)) 2865657221424465 r005 Im(z^2+c),c=9/70+25/38*I,n=38 2865657246382318 a007 Real Root Of 526*x^4+351*x^3+886*x^2-450*x-197 2865657255477882 r005 Re(z^2+c),c=13/38+14/37*I,n=59 2865657263735209 r005 Im(z^2+c),c=-2/3+9/173*I,n=47 2865657274040831 m001 (ln(Pi)*ThueMorse+Rabbit)/ThueMorse 2865657277889722 r005 Im(z^2+c),c=-23/26+13/58*I,n=15 2865657282024667 m003 -37/6+Sqrt[5]/2+6/ProductLog[1/2+Sqrt[5]/2] 2865657282727136 m001 Trott^2*FeigenbaumDelta*exp(sqrt(1+sqrt(3))) 2865657286988616 r002 11th iterates of z^2 + 2865657301043425 m001 ln(CareFree)/Si(Pi)/TwinPrimes 2865657315140360 a007 Real Root Of 281*x^4+604*x^3-236*x^2+730*x-706 2865657315765520 a007 Real Root Of -29*x^4+50*x^3+183*x^2-815*x-706 2865657323555830 r005 Re(z^2+c),c=-19/60+19/53*I,n=24 2865657333508732 m001 (ln(2)/ln(10)+exp(1))/(-sin(1/5*Pi)+ln(2)) 2865657337578852 a007 Real Root Of 3*x^4+859*x^3-203*x^2-919*x-77 2865657339258329 l006 ln(3137/4178) 2865657345168869 r005 Re(z^2+c),c=-21/38+17/49*I,n=5 2865657364200211 r009 Im(z^3+c),c=-1/36+50/59*I,n=42 2865657370079508 r005 Re(z^2+c),c=8/21+10/47*I,n=64 2865657379359133 m001 (GAMMA(2/3)-ln(Pi))/(sin(1/12*Pi)+Bloch) 2865657393716526 m009 (2*Psi(1,2/3)-1/4)/(4/5*Psi(1,2/3)-2/5) 2865657401124014 r005 Im(z^2+c),c=-19/36+17/37*I,n=56 2865657410522736 r009 Re(z^3+c),c=-63/118+15/61*I,n=29 2865657416507430 m001 MadelungNaCl/(LandauRamanujan^Tribonacci) 2865657419458019 a007 Real Root Of 933*x^4-119*x^3+290*x^2-863*x+220 2865657430333854 m001 -exp(-1/2*Pi)/(-GAMMA(3/4)+1/2) 2865657430333854 m001 exp(-1/2*Pi)/(GAMMA(3/4)-1/2) 2865657449814852 r005 Im(z^2+c),c=-11/26+24/43*I,n=49 2865657453838162 m001 (2^(1/3))/Lehmer/exp(Zeta(9))^2 2865657460405878 a007 Real Root Of -284*x^4-901*x^3-362*x^2-478*x-448 2865657465107939 a007 Real Root Of 84*x^4-554*x^3+498*x^2-588*x-223 2865657465757349 m005 (1/2*5^(1/2)-2/3)/(11/12*exp(1)-11/12) 2865657477339844 a005 (1/sin(58/139*Pi))^233 2865657484251580 a007 Real Root Of -260*x^4-573*x^3+100*x^2+869*x-242 2865657486930412 a001 7/18*(1/2*5^(1/2)+1/2)^8*18^(20/21) 2865657488002749 m002 -Pi^3+Pi^5+Pi^5/(E^Pi*Log[Pi]) 2865657497942329 r005 Im(z^2+c),c=-12/31+17/35*I,n=49 2865657498882515 m002 (5*Cosh[Pi])/3+E^Pi*Sinh[Pi] 2865657513589680 r005 Re(z^2+c),c=23/102+4/57*I,n=6 2865657533388474 r005 Re(z^2+c),c=-11/38+13/29*I,n=24 2865657549161662 r009 Im(z^3+c),c=-35/82+9/53*I,n=9 2865657553928466 r005 Re(z^2+c),c=-47/98+5/26*I,n=2 2865657559150459 a007 Real Root Of -114*x^4-31*x^3+957*x^2+204*x-316 2865657577889238 r005 Im(z^2+c),c=-23/58+26/53*I,n=58 2865657587042562 m001 1/exp(KhintchineLevy)/Champernowne*OneNinth^2 2865657587481705 a001 8/64079*843^(20/43) 2865657599655783 r009 Re(z^3+c),c=-9/34+1/30*I,n=9 2865657600719686 a007 Real Root Of -803*x^4+561*x^3+591*x^2+128*x-93 2865657619518536 m001 Paris/Gompertz/gamma 2865657626862706 m009 (24*Catalan+3*Pi^2+3/5)/(1/3*Psi(1,2/3)+4/5) 2865657628245892 m006 (5/6*Pi^2+5/6)/(3*Pi^2+2) 2865657628245892 m008 (5/6*Pi^2+5/6)/(3*Pi^2+2) 2865657631995055 a001 23725150497407/89*6557470319842^(8/17) 2865657637915264 r009 Re(z^3+c),c=-13/48+31/45*I,n=17 2865657641994922 a007 Real Root Of 21*x^4-193*x^3-693*x^2+312*x+627 2865657649032360 r002 10th iterates of z^2 + 2865657654366715 r005 Re(z^2+c),c=-17/70+31/55*I,n=62 2865657668658930 a007 Real Root Of 72*x^4+36*x^3-280*x^2+745*x+426 2865657679228179 m001 (Catalan-ln(5))/(-GaussAGM+Lehmer) 2865657682299589 r005 Re(z^2+c),c=-15/16+25/99*I,n=18 2865657714504408 r009 Re(z^3+c),c=-61/118+1/2*I,n=47 2865657723700722 p001 sum(1/(562*n+375)/(6^n),n=0..infinity) 2865657737288657 r005 Im(z^2+c),c=-11/31+28/59*I,n=50 2865657741945018 r005 Im(z^2+c),c=-47/54+7/34*I,n=31 2865657744977377 m001 log(gamma)^(2/3)+Pi 2865657745447647 h002 exp(5^(3/4)/(7^(1/3)-12)^(1/2)) 2865657747428540 m005 (1/2*Catalan+8/11)/(5^(1/2)+19/10) 2865657756522923 r005 Im(z^2+c),c=9/52+8/35*I,n=21 2865657756603468 m008 (3/4*Pi^3+1/4)/(3/4*Pi^2+4/5) 2865657761573249 r009 Re(z^3+c),c=-49/122+18/49*I,n=46 2865657766514605 l006 ln(5602/7461) 2865657766979079 r005 Re(z^2+c),c=-127/126+9/58*I,n=44 2865657767139598 m001 1/ln(Zeta(5))/CopelandErdos^2/sqrt(3) 2865657775093667 m005 (1/2*gamma+1/8)/(6/11*Zeta(3)-4/5) 2865657775670075 r005 Im(z^2+c),c=-5/8+65/193*I,n=30 2865657793887644 m001 ln(5)/((Pi*2^(1/2)/GAMMA(3/4))^Totient) 2865657795667812 m001 (2^(1/2)+cos(1))/(-GolombDickman+Mills) 2865657795716637 m005 (1/2*5^(1/2)-5/8)/(1/8*5^(1/2)-2) 2865657797422712 r005 Re(z^2+c),c=-47/60+7/46*I,n=6 2865657802865683 m005 (1/2*3^(1/2)+2/11)/(2/7*Zeta(3)-4) 2865657808637339 a007 Real Root Of 310*x^4+825*x^3-398*x^2-845*x-644 2865657810193236 a007 Real Root Of 371*x^4+671*x^3-875*x^2+900*x+536 2865657814339054 m001 1/exp(PrimesInBinary)^2*Conway*Rabbit^2 2865657827623881 r005 Im(z^2+c),c=19/82+8/45*I,n=10 2865657829239024 p001 sum(1/(24*n+11)/n/(100^n),,n=0..infinity) 2865657838154300 a001 4181/4*47^(43/50) 2865657850389538 m001 gamma+Backhouse+FeigenbaumB 2865657859606221 m001 Magata-sin(1)*Cahen 2865657863358981 m001 HardyLittlewoodC5^(3^(1/2)*cos(1/5*Pi)) 2865657870022539 r009 Im(z^3+c),c=-1/40+7/22*I,n=2 2865657895022855 m001 ln(2)+exp(1)^StronglyCareFree 2865657898776405 r005 Re(z^2+c),c=-49/62+1/29*I,n=42 2865657898976507 a007 Real Root Of 332*x^4+852*x^3-72*x^2+671*x+175 2865657925462264 r009 Im(z^3+c),c=-1/36+50/59*I,n=44 2865657927854034 m002 -Pi+Pi^2+Cosh[Pi]+E^Pi*Cosh[Pi] 2865657930292198 a001 317811/521*199^(8/11) 2865657949949628 m001 (Ei(1,1)-exp(1))/(-GAMMA(11/12)+Tetranacci) 2865657955066483 q001 1/34896 2865657955066483 q001 625/2181 2865657958712382 g001 abs(GAMMA(-107/60+I*7/4)) 2865657963957275 a003 sin(Pi*17/108)*sin(Pi*13/63) 2865657967438527 a007 Real Root Of 169*x^4+345*x^3-545*x^2-748*x-946 2865657970732295 m005 (1/2*Pi+5/8)/(3/4*gamma+1/3) 2865657971177451 r002 2th iterates of z^2 + 2865657980647124 r009 Re(z^3+c),c=-23/54+16/39*I,n=35 2865657987964137 a007 Real Root Of -393*x^4+693*x^3-594*x^2+308*x+156 2865657999836697 s001 sum(exp(-Pi/4)^(n-1)*A181417[n],n=1..infinity) 2865658012923467 m001 (Zeta(3)*FeigenbaumD+Ei(1,1))/Zeta(3) 2865658013506295 r009 Im(z^3+c),c=-15/64+5/18*I,n=13 2865658030253445 m001 gamma(3)/(ReciprocalLucas^Psi(2,1/3)) 2865658031951407 m001 1/ln(LaplaceLimit)/Khintchine^2/Salem 2865658033579133 a007 Real Root Of 261*x^4+437*x^3-523*x^2+995*x-171 2865658056035219 m001 1/sin(Pi/5)*FeigenbaumKappa/ln(sqrt(5)) 2865658056665079 a001 47/2584*75025^(14/57) 2865658073427526 s002 sum(A069949[n]/((exp(n)-1)/n),n=1..infinity) 2865658074086999 r002 8th iterates of z^2 + 2865658087331112 r005 Re(z^2+c),c=-29/98+3/7*I,n=24 2865658088247647 m001 MasserGramain-Riemann2ndZero^ThueMorse 2865658101313326 l006 ln(66/1159) 2865658102164084 r005 Re(z^2+c),c=-45/56+9/38*I,n=4 2865658111125240 m001 (FransenRobinson+OneNinth)/(Artin+Cahen) 2865658118801941 m001 Lehmer^Tribonacci/(Lehmer^ln(gamma)) 2865658123095233 a007 Real Root Of -15*x^4+387*x^3-812*x^2-242*x-734 2865658133043803 a007 Real Root Of 257*x^4+431*x^3-891*x^2-296*x-720 2865658133118909 r009 Re(z^3+c),c=-53/122+20/47*I,n=64 2865658139205839 r005 Im(z^2+c),c=-9/19+13/27*I,n=45 2865658148413044 r005 Re(z^2+c),c=17/66+6/61*I,n=26 2865658149752366 m001 Ei(1,1)/HardHexagonsEntropy*MasserGramainDelta 2865658153723245 m001 2^(1/2)*MasserGramainDelta^Salem 2865658159354449 r005 Im(z^2+c),c=-17/78+17/40*I,n=29 2865658162858472 m005 (1/3*5^(1/2)+2/11)/(7/10*3^(1/2)-8/9) 2865658177714396 a007 Real Root Of -323*x^4-808*x^3+108*x^2-657*x-2 2865658179120049 h001 (-3*exp(3/2)-3)/(-5*exp(2/3)+4) 2865658191694043 a007 Real Root Of 389*x^4+984*x^3-693*x^2-713*x+571 2865658194695905 r005 Re(z^2+c),c=-19/58+19/60*I,n=16 2865658209581602 r005 Re(z^2+c),c=-45/34+35/93*I,n=2 2865658214186307 m001 (Artin+MertensB1)/(cos(1/12*Pi)-exp(Pi)) 2865658214862926 m001 Champernowne-GaussKuzminWirsing-Khinchin 2865658219357934 a007 Real Root Of -333*x^4-883*x^3+52*x^2-707*x-776 2865658221518486 a003 cos(Pi*3/19)-sin(Pi*20/99) 2865658222011301 m001 (1+BesselI(0,2))/(-FellerTornier+Porter) 2865658229340817 b008 -4+ArcCoth[16/13] 2865658230388410 r009 Im(z^3+c),c=-1/36+50/59*I,n=46 2865658238494697 a001 89/11*199^(31/46) 2865658250005280 a007 Real Root Of -502*x^4-918*x^3-655*x^2+504*x+180 2865658257949905 m005 (1/2*3^(1/2)+11/12)/(7/11*Zeta(3)-1/7) 2865658263096859 m001 (Landau+ZetaQ(2))/(BesselK(1,1)-Khinchin) 2865658267327929 a007 Real Root Of 319*x^4+709*x^3-231*x^2+866*x-449 2865658271277824 a007 Real Root Of 373*x^4+929*x^3-437*x^2+228*x+950 2865658272529713 r005 Re(z^2+c),c=23/82+45/56*I,n=2 2865658281944436 r009 Re(z^3+c),c=-41/114+9/31*I,n=25 2865658284873597 m001 cosh(1)/Rabbit^2*exp(sqrt(5)) 2865658291498032 m001 Chi(1)*CareFree-GaussKuzminWirsing 2865658293730327 a007 Real Root Of -374*x^4-964*x^3+289*x^2-130*x-210 2865658296409288 m001 Zeta(1/2)^(Khinchin/cos(1/12*Pi)) 2865658296409288 m001 Zeta(1/2)^(Khinchin/cos(Pi/12)) 2865658304572373 a001 3571/365435296162*317811^(4/15) 2865658304573886 a001 3571/2504730781961*433494437^(4/15) 2865658310248021 l006 ln(2465/3283) 2865658310387525 r009 Re(z^3+c),c=-49/122+18/49*I,n=49 2865658316227015 r002 10th iterates of z^2 + 2865658318122221 a007 Real Root Of 237*x^4+871*x^3+704*x^2+322*x-344 2865658319749590 r005 Im(z^2+c),c=31/66+4/51*I,n=3 2865658329933790 a007 Real Root Of -61*x^4+66*x^3+889*x^2+412*x-453 2865658339345126 r005 Re(z^2+c),c=-21/74+11/24*I,n=50 2865658340944737 r005 Re(z^2+c),c=-29/90+21/62*I,n=24 2865658343610739 a007 Real Root Of -230*x^4-331*x^3+913*x^2+183*x+748 2865658345791246 r008 a(0)=3,K{-n^6,58-6*n-42*n^2-3*n^3} 2865658346164603 r009 Re(z^3+c),c=-49/122+18/49*I,n=40 2865658347313593 m005 (-11/42+1/6*5^(1/2))/(5*Catalan-5/7) 2865658354410600 r005 Re(z^2+c),c=-5/4+1/49*I,n=10 2865658355759967 a007 Real Root Of 736*x^4-476*x^3-109*x^2-952*x+288 2865658364808174 r005 Im(z^2+c),c=1/17+22/35*I,n=26 2865658370503621 r009 Re(z^3+c),c=-4/17+32/45*I,n=26 2865658372970897 a005 (1/cos(11/227*Pi))^1674 2865658377162327 s002 sum(A171379[n]/(n^2*10^n-1),n=1..infinity) 2865658381688676 r009 Im(z^3+c),c=-1/36+50/59*I,n=48 2865658400492290 a005 (1/cos(13/211*Pi))^178 2865658410573652 r005 Re(z^2+c),c=-9/29+19/51*I,n=17 2865658413995928 r005 Im(z^2+c),c=-7/23+25/52*I,n=16 2865658424749270 r005 Re(z^2+c),c=-11/42+9/16*I,n=34 2865658428649951 r005 Re(z^2+c),c=-29/90+20/59*I,n=27 2865658429279296 m002 -Sinh[Pi]/4+(Sinh[Pi]*Tanh[Pi])/2 2865658432163630 b008 -29+FresnelS[2] 2865658432875564 r009 Im(z^3+c),c=-31/114+33/46*I,n=49 2865658441123140 k001 Champernowne real with 279*n+7 2865658449344297 r005 Im(z^2+c),c=-23/94+19/45*I,n=12 2865658449410496 r009 Im(z^3+c),c=-1/36+50/59*I,n=50 2865658466629113 m001 (ThueMorse-Weierstrass)/(Niven+PlouffeB) 2865658466705973 m001 Tribonacci^2*Riemann3rdZero*ln(Zeta(3))^2 2865658472016479 a001 2/3278735159921*514229^(2/17) 2865658474359143 m009 (1/2*Psi(1,1/3)+2/3)/(2*Psi(1,1/3)-1/4) 2865658474444960 m005 (1/2*Pi-1/11)/(1/10*2^(1/2)+3/8) 2865658475602656 r009 Im(z^3+c),c=-1/36+50/59*I,n=52 2865658477622579 r009 Im(z^3+c),c=-1/36+50/59*I,n=64 2865658478507607 r009 Im(z^3+c),c=-1/36+50/59*I,n=62 2865658479900229 r009 Im(z^3+c),c=-1/36+50/59*I,n=60 2865658480962963 a007 Real Root Of -467*x^4+250*x^3-965*x^2+512*x+235 2865658481765830 r009 Im(z^3+c),c=-1/36+50/59*I,n=58 2865658483173039 r009 Im(z^3+c),c=-1/36+50/59*I,n=54 2865658483520647 r009 Im(z^3+c),c=-1/36+50/59*I,n=56 2865658483819141 h001 (9/11*exp(2)+3/10)/(5/7*exp(1)+3/11) 2865658494019296 r009 Im(z^3+c),c=-13/27+4/33*I,n=54 2865658496507468 a001 9349/956722026041*317811^(4/15) 2865658496508981 a001 9349/6557470319842*433494437^(4/15) 2865658498674488 a007 Real Root Of 22*x^4+618*x^3-385*x^2-808*x+145 2865658500442001 a007 Real Root Of 379*x^4-289*x^3-312*x^2-814*x-217 2865658517825307 m009 (2/3*Psi(1,2/3)+1/6)/(5*Psi(1,3/4)-5) 2865658524510421 a001 24476/2504730781961*317811^(4/15) 2865658528461232 a005 (1/sin(48/133*Pi))^594 2865658528595997 a001 64079/6557470319842*317811^(4/15) 2865658529560471 a001 2206/225749145909*317811^(4/15) 2865658531121022 a001 39603/4052739537881*317811^(4/15) 2865658538299821 s002 sum(A267076[n]/(n^3*exp(n)+1),n=1..infinity) 2865658541817198 a001 15127/1548008755920*317811^(4/15) 2865658541818711 a001 2161/1515744265389*433494437^(4/15) 2865658548785383 r005 Re(z^2+c),c=-1/4+20/37*I,n=40 2865658550985485 r008 a(0)=3,K{-n^6,1-7*n^3+10*n^2+8*n} 2865658554866101 r005 Re(z^2+c),c=19/48+1/3*I,n=19 2865658566305562 r005 Re(z^2+c),c=6/25+5/62*I,n=17 2865658566602896 r009 Re(z^3+c),c=-47/126+13/50*I,n=3 2865658571804207 r002 4th iterates of z^2 + 2865658581450964 r009 Re(z^3+c),c=-49/122+18/49*I,n=52 2865658587454188 a007 Real Root Of 753*x^4-923*x^3-91*x^2-281*x-8 2865658598351351 a007 Real Root Of -930*x^4+688*x^3-485*x^2+900*x-228 2865658603577811 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]+Sech[Sqrt[5]*Pi] 2865658603591888 m004 -3+2/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865658603605965 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]+Csch[Sqrt[5]*Pi] 2865658605120854 m002 -Pi^3+3/Log[Pi]-Pi*Sech[Pi] 2865658614811263 r005 Im(z^2+c),c=3/110+25/57*I,n=3 2865658615129881 a001 5778/591286729879*317811^(4/15) 2865658615131394 a001 5778/4052739537881*433494437^(4/15) 2865658615745678 m006 (1/2*exp(2*Pi)-1/5)/(4*exp(Pi)+4/5) 2865658618074075 a007 Real Root Of 250*x^4+951*x^3+439*x^2-682*x-39 2865658619943483 r005 Im(z^2+c),c=15/58+3/25*I,n=5 2865658624178335 a001 55*29^(25/51) 2865658630883796 a007 Real Root Of -284*x^4-676*x^3+456*x^2-13*x-538 2865658637536859 m001 (-BesselI(0,2)+Otter)/(BesselK(1,1)-Chi(1)) 2865658638188768 r009 Re(z^3+c),c=-49/122+18/49*I,n=53 2865658639811644 m008 (Pi^3+4)/(2/5*Pi^5-1/4) 2865658640506848 r005 Re(z^2+c),c=-5/52+47/50*I,n=7 2865658642636277 r009 Re(z^3+c),c=-49/122+18/49*I,n=45 2865658650123185 r009 Re(z^3+c),c=-49/122+18/49*I,n=56 2865658670240155 r009 Re(z^3+c),c=-49/122+18/49*I,n=59 2865658675092388 r009 Re(z^3+c),c=-49/122+18/49*I,n=55 2865658681548989 r009 Re(z^3+c),c=-49/122+18/49*I,n=62 2865658681656820 r005 Im(z^2+c),c=27/98+3/22*I,n=51 2865658682334011 m001 (Thue-ZetaP(4))/(exp(1/Pi)+FeigenbaumKappa) 2865658685436786 r009 Re(z^3+c),c=-49/122+18/49*I,n=63 2865658690204214 r009 Re(z^3+c),c=-49/122+18/49*I,n=60 2865658690217865 r009 Re(z^3+c),c=-49/122+18/49*I,n=64 2865658693982192 r009 Re(z^3+c),c=-49/122+18/49*I,n=61 2865658695108364 r009 Re(z^3+c),c=-49/122+18/49*I,n=58 2865658710420236 r009 Re(z^3+c),c=-49/122+18/49*I,n=57 2865658717455979 m005 (5/3+2*5^(1/2))/(4*gamma-1/6) 2865658719677868 r009 Re(z^3+c),c=-49/122+18/49*I,n=50 2865658723579403 a007 Real Root Of 58*x^4-26*x^3-432*x^2+55*x-818 2865658731685656 r005 Re(z^2+c),c=29/86+15/37*I,n=2 2865658737639762 r005 Im(z^2+c),c=-33/98+15/32*I,n=62 2865658739394083 a007 Real Root Of -448*x^4-953*x^3+801*x^2-274*x+422 2865658753860186 m002 -1+Pi^3-Pi^5-Sinh[Pi]+Tanh[Pi] 2865658756261259 r004 Im(z^2+c),c=-7/38+7/17*I,z(0)=I,n=33 2865658763318741 l006 ln(6723/8954) 2865658765991818 r009 Re(z^3+c),c=-49/122+18/49*I,n=54 2865658773312886 m001 (GolombDickman+1/2)/(-OneNinth+1/2) 2865658779399200 m005 (1/2*gamma-1/3)/(2/11*Pi-8/11) 2865658780300768 a001 2207/55*317811^(9/58) 2865658784852305 m001 (Landau-ThueMorse)/(exp(1/Pi)-FeigenbaumC) 2865658786664245 s001 sum(exp(-Pi/3)^n*A030654[n],n=1..infinity) 2865658792576591 a007 Real Root Of -152*x^4-308*x^3+378*x^2+113*x+222 2865658796308218 r009 Re(z^3+c),c=-47/122+12/35*I,n=11 2865658809123984 m001 1/GAMMA(1/3)^2/LandauRamanujan^2*ln(sqrt(2))^2 2865658816321305 r005 Re(z^2+c),c=-31/118+19/37*I,n=42 2865658816709655 r009 Re(z^3+c),c=-5/29+23/26*I,n=62 2865658821614639 m005 (1/2*5^(1/2)+5)/(exp(1)-7/12) 2865658826127110 r005 Im(z^2+c),c=-7/48+21/53*I,n=30 2865658839159481 a001 73681302247*2971215073^(16/23) 2865658846092502 r009 Re(z^3+c),c=-43/118+33/59*I,n=9 2865658855474749 r005 Re(z^2+c),c=-37/102+4/33*I,n=21 2865658860316615 a007 Real Root Of 387*x^4-699*x^3-30*x^2-698*x-2 2865658871779425 r009 Re(z^3+c),c=-49/122+18/49*I,n=51 2865658872942070 a007 Real Root Of -141*x^4-129*x^3+726*x^2-164*x+41 2865658875624236 m001 Pi+Psi(1,1/3)*Zeta(1/2)/arctan(1/2) 2865658881689414 m002 -Pi^3+Pi^5+Log[Pi]/Pi^5+Sinh[Pi] 2865658897736838 m001 (Shi(1)+GAMMA(2/3))/sin(1) 2865658908977500 r005 Im(z^2+c),c=-25/22+29/128*I,n=38 2865658919261996 r005 Re(z^2+c),c=-2/7+29/64*I,n=55 2865658922586050 m001 (BesselJ(0,1)-exp(Pi))/(-GAMMA(13/24)+Thue) 2865658938548571 r009 Re(z^3+c),c=-33/74+25/57*I,n=27 2865658956285295 r005 Im(z^2+c),c=21/94+15/32*I,n=8 2865658960282741 r009 Re(z^3+c),c=-49/122+18/49*I,n=48 2865658965787893 m001 (ln(3)-Artin)/(ArtinRank2+FeigenbaumC) 2865658977853780 m001 (exp(Pi)+ln(2))/(-Trott2nd+Thue) 2865659012958211 m001 1/cos(1)/Trott^2/ln(gamma) 2865659016278886 r005 Re(z^2+c),c=-13/50+13/25*I,n=50 2865659021038622 r005 Re(z^2+c),c=-17/48+11/58*I,n=18 2865659025606032 l006 ln(4258/5671) 2865659028953410 m001 (exp(1/exp(1))-BesselJ(1,1))/(Magata+Paris) 2865659030748767 m002 -4*E^Pi*Pi^3+5/Log[Pi] 2865659036084275 m001 Salem^2*ln(KhintchineHarmonic)/GAMMA(13/24)^2 2865659038883404 a001 29/46368*75025^(8/59) 2865659043520160 r005 Re(z^2+c),c=5/66+9/13*I,n=5 2865659049806500 m001 1/LambertW(1)^2*BesselK(0,1)*exp(cosh(1))^2 2865659060251557 m001 (3^(1/3)-GAMMA(17/24))/(Bloch+ZetaP(4)) 2865659073552107 m001 1/Rabbit^2*FeigenbaumDelta/exp(GAMMA(19/24)) 2865659090174600 a001 20633239/21*53316291173^(15/17) 2865659090174604 a001 9381251041/7*14930352^(15/17) 2865659100751646 r005 Im(z^2+c),c=19/54+23/42*I,n=14 2865659107442527 l006 ln(4231/4354) 2865659117622483 a001 2207/225851433717*317811^(4/15) 2865659117623996 a001 1/4807525989*591286729879^(4/15) 2865659117623996 a001 2207/1548008755920*433494437^(4/15) 2865659118369828 r005 Im(z^2+c),c=-27/44+11/30*I,n=49 2865659124008624 r005 Im(z^2+c),c=-33/118+30/31*I,n=3 2865659128920257 r005 Re(z^2+c),c=-21/58+8/63*I,n=14 2865659130792015 r001 28i'th iterates of 2*x^2-1 of 2865659147558449 r005 Im(z^2+c),c=-9/14+48/205*I,n=7 2865659147716232 a007 Real Root Of 275*x^4+863*x^3+504*x^2+847*x+52 2865659149459999 r009 Re(z^3+c),c=-49/122+18/49*I,n=47 2865659152833256 r002 9th iterates of z^2 + 2865659156010220 r005 Im(z^2+c),c=17/58+6/53*I,n=62 2865659166862898 a007 Real Root Of 335*x^4+596*x^3-799*x^2+942*x+695 2865659179637906 a007 Real Root Of 169*x^4+578*x^3+62*x^2-499*x+266 2865659198749338 m005 (1/3*exp(1)-1/7)/(5/6*5^(1/2)+4/5) 2865659203752241 a001 1762289/161*199^(2/11) 2865659209398626 r005 Re(z^2+c),c=-35/102+15/53*I,n=10 2865659234827352 a007 Real Root Of -383*x^4-939*x^3+483*x^2-196*x-797 2865659235931322 r005 Im(z^2+c),c=-9/32+7/15*I,n=16 2865659250651144 m001 OneNinth^(3^(1/3))/(OneNinth^QuadraticClass) 2865659254257212 r005 Im(z^2+c),c=-4/17+36/53*I,n=5 2865659262402990 m003 -5-(5*Csc[1/2+Sqrt[5]/2])/2+Tan[1/2+Sqrt[5]/2] 2865659268403211 a007 Real Root Of -372*x^4-742*x^3+576*x^2-885*x+359 2865659273964003 m001 FeigenbaumC/ln(Champernowne)^2/Zeta(1/2) 2865659276547478 a007 Real Root Of -192*x^4-610*x^3-303*x^2-334*x+124 2865659294174961 m001 exp(1/2)+exp(-Pi)+GAMMA(19/24) 2865659304018168 m001 (cos(1/5*Pi)-Pi^(1/2))/(FeigenbaumAlpha+Thue) 2865659314768421 r005 Re(z^2+c),c=-15/19+2/57*I,n=48 2865659317021898 l006 ln(6051/8059) 2865659317072356 a007 Real Root Of 83*x^4-205*x^3-416*x^2-965*x+28 2865659320748370 a007 Real Root Of 22*x^4+2*x^3+10*x^2+263*x-765 2865659321876937 a007 Real Root Of 730*x^4-965*x^3-383*x^2-795*x-224 2865659324470381 m002 -E^Pi+Pi^6/3-Sinh[Pi]/ProductLog[Pi] 2865659324485168 a007 Real Root Of -32*x^4+335*x^3+884*x^2-997*x-75 2865659349864354 r002 20th iterates of z^2 + 2865659350993556 m005 (1/2*Pi+1/7)/(-13/18+1/18*5^(1/2)) 2865659353140404 m001 (3^(1/2)-exp(1/Pi))/(-Lehmer+Tribonacci) 2865659355785608 a003 cos(Pi*34/109)-sin(Pi*31/97) 2865659363198636 r005 Im(z^2+c),c=-17/14+11/191*I,n=15 2865659367557465 r005 Im(z^2+c),c=-15/44+17/36*I,n=36 2865659369045321 r005 Im(z^2+c),c=-17/24+2/49*I,n=63 2865659375599056 r005 Im(z^2+c),c=-5/54+10/27*I,n=8 2865659381971064 r009 Im(z^3+c),c=-1/64+28/33*I,n=34 2865659389077881 m005 (1/3*gamma-1/12)/(3*Zeta(3)+1/5) 2865659393597026 m001 ThueMorse/(FeigenbaumC^BesselK(1,1)) 2865659412090593 r009 Im(z^3+c),c=-63/122+10/53*I,n=24 2865659414386693 m001 (FellerTornier+PlouffeB)/(5^(1/2)-ln(gamma)) 2865659416121680 a007 Real Root Of -891*x^4-944*x^3+99*x^2+898*x+233 2865659417588104 r005 Im(z^2+c),c=-5/8+53/158*I,n=28 2865659421489905 r005 Im(z^2+c),c=-3/5+5/111*I,n=23 2865659428904784 a007 Real Root Of x^4+288*x^3+413*x^2+588*x+313 2865659429429598 a007 Real Root Of -145*x^4-501*x^3-634*x^2-820*x+845 2865659433016998 r002 3th iterates of z^2 + 2865659440904707 s002 sum(A054680[n]/(n*10^n+1),n=1..infinity) 2865659441083571 a005 (1/sin(71/188*Pi))^713 2865659444066490 m001 (Psi(2,1/3)+gamma(2))/(RenyiParking+Salem) 2865659460587572 m001 Mills+Niven^FeigenbaumB 2865659464353581 a007 Real Root Of 30*x^4+870*x^3+289*x^2-181*x-75 2865659466622537 m001 (Totient-ZetaP(4))/(Pi+BesselI(0,1)) 2865659475523920 m001 (BesselK(0,1)-ln(2))/(-polylog(4,1/2)+Porter) 2865659504618259 m001 (Psi(2,1/3)+Zeta(1,-1))/(Conway+Kac) 2865659521991645 m001 Gompertz^FeigenbaumC/GAMMA(2/3) 2865659529272994 r005 Im(z^2+c),c=-67/102+3/50*I,n=38 2865659560894641 a009 1/11*3^(1/3)+1/11*5^(1/3) 2865659569065975 h001 (1/2*exp(2)+2/11)/(3/8*exp(1)+1/3) 2865659594665448 a007 Real Root Of 468*x^4-995*x^3-549*x^2-602*x-154 2865659602446050 m001 (Psi(1,1/3)-ln(2)/ln(10))/(Magata+Trott) 2865659607096946 r009 Im(z^3+c),c=-45/98+4/27*I,n=46 2865659610990563 m001 Psi(1,1/3)^(3^(1/2)*Chi(1)) 2865659614431757 p003 LerchPhi(1/10,1,80/223) 2865659617679082 l006 ln(569/9992) 2865659617964021 r008 a(0)=3,K{-n^6,-84+2*n^3+3*n^2+87*n} 2865659624863293 a007 Real Root Of 440*x^4+973*x^3-705*x^2-3*x-994 2865659638368584 h001 (1/2*exp(1)+3/11)/(5/7*exp(2)+5/12) 2865659645716787 a008 Real Root of x^3-x^2-121*x-315 2865659651396997 m006 (2/5/Pi+4/5)/(1/6*Pi-1/5) 2865659662611122 a003 -1+cos(5/21*Pi)+2*cos(7/18*Pi)-cos(11/24*Pi) 2865659668369244 a007 Real Root Of 234*x^4+605*x^3-375*x^2-740*x-584 2865659668416851 m001 (Si(Pi)-Tribonacci)^Totient 2865659669069159 h001 (10/11*exp(2)+7/12)/(3/5*exp(1)+11/12) 2865659671051125 r005 Re(z^2+c),c=-19/14+16/141*I,n=10 2865659709809825 r005 Im(z^2+c),c=-7/26+4/9*I,n=50 2865659709834983 r005 Re(z^2+c),c=-15/46+16/63*I,n=6 2865659714028671 a007 Real Root Of 701*x^4-14*x^3+847*x^2-455*x-205 2865659777424483 q001 721/2516 2865659777424483 r002 2th iterates of z^2 + 2865659780609067 a007 Real Root Of 349*x^4+955*x^3+182*x^2+787*x-301 2865659783041814 a009 1/7*(7^(1/3)*10^(1/4)+3^(2/3))*7^(2/3) 2865659785468090 m005 (1/3*Catalan+2/7)/(17/18+1/2*5^(1/2)) 2865659790643088 a007 Real Root Of -246*x^4-688*x^3-165*x^2-745*x-381 2865659800603621 a007 Real Root Of -356*x^4-894*x^3+641*x^2+948*x+422 2865659804260025 a001 682/10182505537*233^(4/15) 2865659805899415 r009 Im(z^3+c),c=-15/64+5/18*I,n=16 2865659809759327 m001 (1-Catalan)/(-Pi*2^(1/2)/GAMMA(3/4)+ln(2)) 2865659815752103 m001 (Shi(1)-ln(2))/(GolombDickman+MasserGramain) 2865659816645393 l006 ln(503/8833) 2865659829161153 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)/(Pi^Artin) 2865659829914198 r009 Im(z^3+c),c=-15/64+5/18*I,n=14 2865659843331895 h001 (8/11*exp(2)+1/10)/(5/9*exp(1)+2/5) 2865659843808875 r005 Im(z^2+c),c=15/44+5/37*I,n=23 2865659851956742 r009 Im(z^3+c),c=-15/64+5/18*I,n=17 2865659866377109 r009 Im(z^3+c),c=-15/64+5/18*I,n=20 2865659866392115 r009 Im(z^3+c),c=-15/64+5/18*I,n=19 2865659867545580 r009 Im(z^3+c),c=-15/64+5/18*I,n=23 2865659867613147 r009 Im(z^3+c),c=-15/64+5/18*I,n=26 2865659867616336 r009 Im(z^3+c),c=-15/64+5/18*I,n=29 2865659867616450 r009 Im(z^3+c),c=-15/64+5/18*I,n=30 2865659867616460 r009 Im(z^3+c),c=-15/64+5/18*I,n=32 2865659867616462 r009 Im(z^3+c),c=-15/64+5/18*I,n=33 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=36 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=35 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=39 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=42 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=45 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=46 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=48 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=49 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=52 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=55 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=58 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=59 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=61 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=62 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=64 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=63 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=60 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=56 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=57 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=54 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=53 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=51 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=50 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=43 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=47 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=44 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=41 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=40 2865659867616463 r009 Im(z^3+c),c=-15/64+5/18*I,n=38 2865659867616464 r009 Im(z^3+c),c=-15/64+5/18*I,n=37 2865659867616464 r009 Im(z^3+c),c=-15/64+5/18*I,n=34 2865659867616483 r009 Im(z^3+c),c=-15/64+5/18*I,n=31 2865659867616693 r009 Im(z^3+c),c=-15/64+5/18*I,n=27 2865659867616830 r009 Im(z^3+c),c=-15/64+5/18*I,n=28 2865659867621555 r009 Im(z^3+c),c=-15/64+5/18*I,n=25 2865659867631630 r009 Im(z^3+c),c=-15/64+5/18*I,n=24 2865659867645686 r009 Im(z^3+c),c=-15/64+5/18*I,n=22 2865659868105477 r009 Im(z^3+c),c=-15/64+5/18*I,n=21 2865659869114374 m001 1/ln(Salem)/CopelandErdos^2*Sierpinski 2865659873464820 r009 Im(z^3+c),c=-13/54+8/29*I,n=9 2865659879760585 r009 Im(z^3+c),c=-15/64+5/18*I,n=18 2865659895917293 m005 (1/2*Pi-2/9)/(2/5*3^(1/2)-2/9) 2865659911092666 m001 1/OneNinth^2/Paris*ln(sqrt(Pi))^2 2865659932647616 a007 Real Root Of -954*x^4+433*x^3+862*x^2+368*x-180 2865659941285055 a001 3524578/2207*199^(6/11) 2865659946585925 m001 (BesselJ(1,1)+Paris)/(BesselJ(0,1)-gamma) 2865659950402847 a007 Real Root Of -200*x^4+916*x^3+862*x^2+677*x-285 2865659961995675 h001 (-8*exp(3)+1)/(-7*exp(2)-4) 2865659978273116 m005 (1/2*3^(1/2)-3/8)/(7/11*Pi-2/7) 2865659984727322 m005 (1/2*Catalan-5/11)/(4*Pi-4/7) 2865660002089590 a007 Real Root Of 512*x^4-719*x^3-738*x^2-251*x+146 2865660009073598 l006 ln(1793/2388) 2865660017158039 r005 Re(z^2+c),c=-29/110+28/55*I,n=48 2865660021793006 r009 Re(z^3+c),c=-43/106+1/2*I,n=10 2865660021867262 r009 Im(z^3+c),c=-1/64+28/33*I,n=18 2865660022532480 r005 Re(z^2+c),c=-15/62+25/44*I,n=56 2865660028830975 m001 1/exp(Riemann1stZero)^2*Bloch*GAMMA(1/12) 2865660037640105 r002 62th iterates of z^2 + 2865660037976370 r005 Im(z^2+c),c=-59/70+1/57*I,n=39 2865660052416489 r002 11th iterates of z^2 + 2865660055097001 r005 Im(z^2+c),c=-13/122+53/56*I,n=24 2865660067674167 a003 cos(Pi*12/95)-cos(Pi*16/57) 2865660070821642 m001 (2^(1/2))^(BesselI(0,2)*MertensB3) 2865660072534903 m005 (1/2*Pi+5/11)/(23/80+3/16*5^(1/2)) 2865660073983180 p001 sum(1/(541*n+358)/(16^n),n=0..infinity) 2865660075711307 l006 ln(437/7674) 2865660081608935 m001 (-BesselI(0,2)+Niven)/(2^(1/3)+Zeta(1/2)) 2865660083066667 a007 Real Root Of -213*x^4-842*x^3-574*x^2+217*x-115 2865660084868512 r005 Re(z^2+c),c=-39/106+1/23*I,n=19 2865660099714791 r005 Im(z^2+c),c=-31/74+11/25*I,n=16 2865660116844421 r009 Im(z^3+c),c=-15/64+5/18*I,n=15 2865660121018646 s002 sum(A229808[n]/(2^n+1),n=1..infinity) 2865660140508135 r005 Im(z^2+c),c=-71/114+27/62*I,n=62 2865660146079913 m001 (GAMMA(2/3)+ln(2))/(CareFree-StronglyCareFree) 2865660150644588 r009 Im(z^3+c),c=-1/11+18/59*I,n=4 2865660158272096 r005 Im(z^2+c),c=27/98+3/22*I,n=50 2865660158907078 a007 Real Root Of 232*x^4+425*x^3-731*x^2-305*x-515 2865660171942144 a007 Real Root Of -33*x^4-958*x^3-347*x^2+217*x+965 2865660174875488 m001 exp(Pi)*sinh(1)+MinimumGamma 2865660188872152 r009 Re(z^3+c),c=-51/122+23/58*I,n=45 2865660189026300 m001 1/ln(GAMMA(7/12))*Conway*cos(Pi/12)^2 2865660207804258 a007 Real Root Of 338*x^4+741*x^3-974*x^2-941*x-54 2865660212219955 r009 Re(z^3+c),c=-29/66+10/23*I,n=48 2865660212423895 r004 Im(z^2+c),c=2/11-4/21*I,z(0)=exp(5/8*I*Pi),n=5 2865660224348693 m005 (-1/44+1/4*5^(1/2))/(1/11*2^(1/2)-2) 2865660226744601 m004 -5+(12*Sqrt[5])/Pi-Sin[Sqrt[5]*Pi] 2865660228883825 p004 log(25373/19051) 2865660232105942 a007 Real Root Of -201*x^4-324*x^3+731*x^2+106*x+231 2865660235096870 h001 (3/7*exp(1)+5/6)/(11/12*exp(2)+1/5) 2865660244685492 a007 Real Root Of -723*x^4+515*x^3-186*x^2+690*x+230 2865660254133860 a005 (1/cos(4/185*Pi))^456 2865660264160720 r004 Im(z^2+c),c=1/5+5/24*I,z(0)=exp(5/8*I*Pi),n=20 2865660267716682 g006 Psi(1,3/11)+Psi(1,4/9)+Psi(1,2/3)+1/2*Pi^2 2865660278260520 a007 Real Root Of -852*x^4+583*x^3-287*x^2+799*x+272 2865660283603317 r005 Im(z^2+c),c=-7/26+4/9*I,n=55 2865660294723529 m001 (-ln(3)+2)/(-Khinchin+3) 2865660301113371 a005 (1/cos(5/177*Pi))^267 2865660301846164 b005 Number DB table 2865660317464562 m001 (-Bloch+Khinchin)/(1-Pi^(1/2)) 2865660332475789 p003 LerchPhi(1/125,4,552/227) 2865660341482207 m001 (ln(2)-ln(3))/(ln(5)-DuboisRaymond) 2865660347321325 s001 sum(exp(-Pi)^(n-1)*A183516[n],n=1..infinity) 2865660349813494 p003 LerchPhi(1/125,5,230/113) 2865660351221111 l004 Shi(46/21) 2865660352467058 m001 (exp(-1/2*Pi)-Conway)/(Trott+Trott2nd) 2865660353572110 p001 sum((-1)^n/(478*n+65)/n/(64^n),n=1..infinity) 2865660354490974 m005 (1/2*gamma+3/5)/(2/9*gamma+2/11) 2865660356195217 r005 Re(z^2+c),c=1/70+17/20*I,n=23 2865660366992493 r005 Im(z^2+c),c=-29/60+23/45*I,n=45 2865660369310298 r009 Re(z^3+c),c=-41/114+9/31*I,n=29 2865660382510108 m001 GAMMA(5/6)^2*exp(TreeGrowth2nd)^2*cos(Pi/12)^2 2865660382922318 m001 (BesselK(0,1)-ln(5))/(Khinchin+MinimumGamma) 2865660393379112 m001 sqrt(5)*ln(LandauRamanujan)^2*sqrt(Pi) 2865660395244230 a007 Real Root Of -182*x^4-344*x^3+611*x^2+385*x+264 2865660400400876 a007 Real Root Of 112*x^4+126*x^3-759*x^2-699*x-358 2865660405113294 m006 (2/5*Pi^2-5/6)/(3/5*ln(Pi)+2/5) 2865660422276423 r009 Re(z^3+c),c=-41/114+9/31*I,n=28 2865660425195267 r005 Re(z^2+c),c=9/32+7/55*I,n=12 2865660426951510 l006 ln(371/6515) 2865660443777851 a001 9227465/5778*199^(6/11) 2865660448490926 r002 8th iterates of z^2 + 2865660453112923 b008 ArcCot[1/13+Sqrt[11]] 2865660462098047 r009 Re(z^3+c),c=-49/122+18/49*I,n=44 2865660466120923 r002 10th iterates of z^2 + 2865660469346029 r009 Re(z^3+c),c=-53/122+17/40*I,n=40 2865660469775800 a007 Real Root Of 564*x^4+532*x^3-229*x^2-780*x-196 2865660471531389 m001 (Gompertz+PrimesInBinary)/(CareFree-Shi(1)) 2865660479509420 a007 Real Root Of -569*x^4+207*x^3+649*x^2+522*x+105 2865660486864143 h001 (-12*exp(2)+7)/(-5*exp(4)-12) 2865660491043601 m001 (exp(1/exp(1))-HeathBrownMoroz)/(Pi+Ei(1)) 2865660496259114 r005 Im(z^2+c),c=17/62+5/46*I,n=7 2865660498948645 m001 (exp(Pi)-gamma)/(-Zeta(3)+PrimesInBinary) 2865660508049368 r005 Re(z^2+c),c=9/62+40/61*I,n=18 2865660517090576 a001 24157817/15127*199^(6/11) 2865660521001611 m001 (BesselI(0,1)+GAMMA(13/24))/(Chi(1)-Si(Pi)) 2865660521631759 a001 47/10946*55^(9/19) 2865660527786759 a001 63245986/39603*199^(6/11) 2865660529347311 a001 165580141/103682*199^(6/11) 2865660529574992 a001 433494437/271443*199^(6/11) 2865660529608211 a001 1134903170/710647*199^(6/11) 2865660529613057 a001 2971215073/1860498*199^(6/11) 2865660529613764 a001 7778742049/4870847*199^(6/11) 2865660529613868 a001 20365011074/12752043*199^(6/11) 2865660529613883 a001 53316291173/33385282*199^(6/11) 2865660529613885 a001 139583862445/87403803*199^(6/11) 2865660529613885 a001 365435296162/228826127*199^(6/11) 2865660529613885 a001 956722026041/599074578*199^(6/11) 2865660529613885 a001 2504730781961/1568397607*199^(6/11) 2865660529613885 a001 6557470319842/4106118243*199^(6/11) 2865660529613885 a001 10610209857723/6643838879*199^(6/11) 2865660529613885 a001 4052739537881/2537720636*199^(6/11) 2865660529613885 a001 1548008755920/969323029*199^(6/11) 2865660529613885 a001 591286729879/370248451*199^(6/11) 2865660529613885 a001 225851433717/141422324*199^(6/11) 2865660529613886 a001 86267571272/54018521*199^(6/11) 2865660529613892 a001 32951280099/20633239*199^(6/11) 2865660529613931 a001 12586269025/7881196*199^(6/11) 2865660529614201 a001 4807526976/3010349*199^(6/11) 2865660529616053 a001 1836311903/1149851*199^(6/11) 2865660529628741 a001 701408733/439204*199^(6/11) 2865660529715707 a001 267914296/167761*199^(6/11) 2865660530311785 a001 102334155/64079*199^(6/11) 2865660534397364 a001 39088169/24476*199^(6/11) 2865660535066939 m001 ln(FeigenbaumB)^2/LaplaceLimit/BesselK(0,1)^2 2865660544189038 m005 (1/3*Pi+2/7)/(1/3*gamma+3/11) 2865660552565572 h001 (5/11*exp(1)+9/11)/(6/7*exp(2)+5/6) 2865660553536911 r009 Re(z^3+c),c=-41/114+9/31*I,n=32 2865660555215530 m001 1/exp(OneNinth)*Khintchine/sin(1) 2865660562400334 a001 14930352/9349*199^(6/11) 2865660570658329 a008 Real Root of x^4-x^3+2*x^2-5*x-46 2865660576885861 m001 1/BesselK(1,1)^2/BesselK(0,1)^2*ln(Zeta(3)) 2865660577185748 a007 Real Root Of 362*x^4+677*x^3-804*x^2+811*x+446 2865660582964691 m001 cos(1)/Zeta(9)/ln(cosh(1))^2 2865660587020148 r009 Re(z^3+c),c=-41/114+9/31*I,n=33 2865660591418742 r009 Re(z^3+c),c=-9/34+41/59*I,n=29 2865660591447994 r005 Re(z^2+c),c=-11/40+14/29*I,n=38 2865660592882591 m002 -Pi^3+Log[Pi]+Sinh[Pi]+Pi^5*Tanh[Pi] 2865660592896943 r009 Re(z^3+c),c=-41/114+9/31*I,n=36 2865660594428409 m001 (gamma(2)-gamma(3))/(polylog(4,1/2)-OneNinth) 2865660598451194 r009 Re(z^3+c),c=-41/114+9/31*I,n=39 2865660598534170 r009 Re(z^3+c),c=-41/114+9/31*I,n=40 2865660598954418 r009 Re(z^3+c),c=-41/114+9/31*I,n=43 2865660599065215 r009 Re(z^3+c),c=-41/114+9/31*I,n=44 2865660599069592 r009 Re(z^3+c),c=-41/114+9/31*I,n=47 2865660599083670 r009 Re(z^3+c),c=-41/114+9/31*I,n=50 2865660599083960 r009 Re(z^3+c),c=-41/114+9/31*I,n=46 2865660599084486 r009 Re(z^3+c),c=-41/114+9/31*I,n=51 2865660599085393 r009 Re(z^3+c),c=-41/114+9/31*I,n=54 2865660599085720 r009 Re(z^3+c),c=-41/114+9/31*I,n=58 2865660599085739 r009 Re(z^3+c),c=-41/114+9/31*I,n=55 2865660599085746 r009 Re(z^3+c),c=-41/114+9/31*I,n=57 2865660599085755 r009 Re(z^3+c),c=-41/114+9/31*I,n=61 2865660599085759 r009 Re(z^3+c),c=-41/114+9/31*I,n=62 2865660599085762 r009 Re(z^3+c),c=-41/114+9/31*I,n=64 2865660599085764 r009 Re(z^3+c),c=-41/114+9/31*I,n=63 2865660599085773 r009 Re(z^3+c),c=-41/114+9/31*I,n=60 2865660599085775 r009 Re(z^3+c),c=-41/114+9/31*I,n=59 2865660599085891 r009 Re(z^3+c),c=-41/114+9/31*I,n=56 2865660599086025 r009 Re(z^3+c),c=-41/114+9/31*I,n=53 2865660599086705 r009 Re(z^3+c),c=-41/114+9/31*I,n=52 2865660599089311 r009 Re(z^3+c),c=-41/114+9/31*I,n=48 2865660599090623 r009 Re(z^3+c),c=-41/114+9/31*I,n=49 2865660599134213 r009 Re(z^3+c),c=-41/114+9/31*I,n=45 2865660599216151 r009 Re(z^3+c),c=-41/114+9/31*I,n=42 2865660599401981 r009 Re(z^3+c),c=-41/114+9/31*I,n=41 2865660599905047 r009 Re(z^3+c),c=-41/114+9/31*I,n=37 2865660599980025 r009 Re(z^3+c),c=-41/114+9/31*I,n=35 2865660600638000 r002 52i'th iterates of 2*x/(1-x^2) of 2865660601044195 r009 Re(z^3+c),c=-41/114+9/31*I,n=38 2865660607100629 m001 (ErdosBorwein-GaussAGM)/(Khinchin+ZetaQ(3)) 2865660610109688 m001 GAMMA(19/24)^2*(2^(1/3))^2*ln(Pi)^2 2865660616785337 r009 Re(z^3+c),c=-41/114+9/31*I,n=34 2865660627018523 r005 Im(z^2+c),c=-29/98+5/11*I,n=32 2865660644897391 m001 (Pi+ln(2^(1/2)+1))/(Lehmer-ZetaP(2)) 2865660645477495 g005 GAMMA(3/11)*Pi*csc(1/10*Pi)*GAMMA(1/9) 2865660651818237 h001 (4/5*exp(2)+5/8)/(7/9*exp(1)+1/6) 2865660653320452 l006 ln(6500/8657) 2865660655894569 r002 21th iterates of z^2 + 2865660658813498 r009 Re(z^3+c),c=-41/114+9/31*I,n=31 2865660660095014 m001 Porter*ln(Lehmer)*GAMMA(11/24)^2 2865660668194019 r005 Re(z^2+c),c=-33/106+22/53*I,n=13 2865660690073458 r005 Re(z^2+c),c=29/98+4/27*I,n=11 2865660692214700 r005 Re(z^2+c),c=17/44+16/27*I,n=7 2865660695198661 r005 Re(z^2+c),c=19/60+7/53*I,n=21 2865660701009410 r009 Re(z^3+c),c=-41/114+9/31*I,n=30 2865660708191100 r009 Re(z^3+c),c=-41/114+9/31*I,n=26 2865660714518460 m001 1/Catalan/exp(BesselJ(0,1))/sqrt(Pi) 2865660728829404 m003 37/12+Sqrt[5]/16+E^(1+Sqrt[5]) 2865660729049708 p001 sum(1/(355*n+327)/n/(512^n),n=1..infinity) 2865660732943431 a007 Real Root Of 197*x^4+474*x^3-481*x^2-436*x+570 2865660741536965 r009 Im(z^3+c),c=-2/17+13/43*I,n=9 2865660754335565 a001 1597*199^(6/11) 2865660754934282 m001 (Magata-sin(1/12*Pi))/ln(3) 2865660755040538 m005 (1/2*Catalan-2)/(1/11*2^(1/2)-2/3) 2865660768956688 m001 (MertensB1-ZetaP(3))/(FeigenbaumMu-Landau) 2865660775637251 b008 ArcSec[4]+ArcTan[43] 2865660779071874 a001 2/139583862445*8^(1/3) 2865660779071874 a001 2/182717648081*(1/2+1/2*5^(1/2))^2 2865660779071874 a001 4/956722026041*(1/2+1/2*5^(1/2))^4 2865660779071874 a001 4/2504730781961*(1/2+1/2*5^(1/2))^6 2865660779071874 a001 2/3278735159921*(1/2+1/2*5^(1/2))^8 2865660779071874 a001 4/10610209857723*(1/2+1/2*5^(1/2))^9 2865660779071874 a001 1/387002188980*(1/2+1/2*5^(1/2))^5 2865660779071874 a001 2/225851433717+2/225851433717*5^(1/2) 2865660793428764 h002 exp(1/3*(17^(1/2)-3^(11/12))*3^(3/4)) 2865660800864699 m001 (1+Psi(2,1/3))/(-FeigenbaumD+Kolakoski) 2865660802216706 a007 Real Root Of 769*x^4+263*x^3+669*x^2-747*x-268 2865660830199591 m001 (5^(1/2)+LambertW(1))/(-GAMMA(13/24)+Robbin) 2865660840874457 a001 322/3*5^(36/59) 2865660852588954 s002 sum(A094971[n]/((exp(n)+1)*n),n=1..infinity) 2865660855821679 r005 Re(z^2+c),c=-2/7+29/64*I,n=52 2865660865747025 r005 Im(z^2+c),c=-7/86+13/19*I,n=60 2865660872936928 a007 Real Root Of 175*x^4+453*x^3+148*x^2+629*x-554 2865660874421331 a007 Real Root Of 686*x^4+744*x^3+35*x^2-848*x-233 2865660886926188 m006 (2/3*exp(2*Pi)-5)/(1/5*Pi+3/5) 2865660888377867 r005 Re(z^2+c),c=-29/110+35/59*I,n=26 2865660893669613 m005 (1/2*2^(1/2)+5/12)/(2/3*Catalan-4/7) 2865660898308528 a001 21/1149851*199^(4/47) 2865660898728262 l006 ln(4707/6269) 2865660905006747 r009 Re(z^3+c),c=-51/118+19/45*I,n=39 2865660908315952 h005 exp(cos(Pi*2/51)+cos(Pi*25/52)) 2865660919079595 a009 1/6*(11^(1/2)+6^(2/3)*12^(1/4))*6^(1/3) 2865660921102580 m005 (1/2*5^(1/2)+3/8)/(1/4*Catalan-3/4) 2865660922526147 a007 Real Root Of 315*x^4+969*x^3+464*x^2+977*x+550 2865660930203651 l006 ln(305/5356) 2865660944584884 m002 -Pi+(3*Log[Pi]*Sech[Pi])/ProductLog[Pi] 2865660948216535 m006 (3/5*exp(2*Pi)-1/6)/(5/6*ln(Pi)+1/6) 2865660949008598 r009 Re(z^3+c),c=-7/15+26/55*I,n=63 2865660971740919 h001 (-12*exp(4)-4)/(-12*exp(3)+11) 2865660972676196 a009 15*(10^(1/3)+5^(1/4))^(1/2) 2865660986291629 a007 Real Root Of 51*x^4-668*x^3+578*x^2-888*x-318 2865660987312483 m005 (1/2*Zeta(3)+7/9)/(9/28+1/14*5^(1/2)) 2865661007816896 r005 Re(z^2+c),c=2/11+7/17*I,n=13 2865661010984964 r005 Re(z^2+c),c=-3/10+19/46*I,n=29 2865661021550862 r005 Re(z^2+c),c=-9/8+17/69*I,n=24 2865661021810915 p003 LerchPhi(1/1024,4,93/121) 2865661041369491 m001 (KomornikLoreti+TwinPrimes)^Salem 2865661051703195 r002 51th iterates of z^2 + 2865661055259842 a001 2/4181*144^(14/17) 2865661056202690 a003 cos(Pi*43/103)+cos(Pi*51/104) 2865661058172455 p004 log(25621/1459) 2865661077359300 r009 Re(z^3+c),c=-35/86+22/39*I,n=26 2865661084240422 a007 Real Root Of 562*x^4-691*x^3+210*x^2-826*x-274 2865661088949613 a007 Real Root Of -120*x^4-96*x^3+313*x^2-849*x+830 2865661099751188 a007 Real Root Of 968*x^4-349*x^3+737*x^2-697*x-275 2865661099926428 m001 1/GAMMA(1/3)^2*exp(Si(Pi))/GAMMA(1/6)^2 2865661110707056 h001 (-7*exp(-1)+6)/(-6*exp(3)+1) 2865661119804029 a001 3571/53316291173*233^(4/15) 2865661125702475 r009 Re(z^3+c),c=-45/106+9/22*I,n=30 2865661131294357 r005 Im(z^2+c),c=17/46+12/61*I,n=45 2865661151186920 p003 LerchPhi(1/12,6,292/237) 2865661155172279 h001 (3/11*exp(1)+10/11)/(2/3*exp(2)+5/6) 2865661165976042 m001 1/GAMMA(23/24)/ln(OneNinth)^2*Zeta(1/2) 2865661171518765 q001 817/2851 2865661175779900 m001 (ReciprocalFibonacci+ZetaP(3))/(cos(1)+ln(2)) 2865661185831890 b008 1+Zeta[Pi/5,Pi] 2865661200148883 m001 1/RenyiParking^2*Magata/exp(GAMMA(7/12))^2 2865661200363530 m005 (-21/44+1/4*5^(1/2))/(4/11*Pi-6/7) 2865661203530043 p001 sum(1/(338*n+35)/(32^n),n=0..infinity) 2865661205201734 m001 FeigenbaumB*exp(CareFree)^2*sin(1) 2865661214552268 a007 Real Root Of -376*x^4-813*x^3+459*x^2-872*x-44 2865661226337955 r005 Im(z^2+c),c=-41/78+24/53*I,n=22 2865661227582151 r002 3th iterates of z^2 + 2865661231539369 r009 Re(z^3+c),c=-37/82+24/53*I,n=55 2865661239495029 a007 Real Root Of -32*x^4-111*x^3-181*x^2-579*x-627 2865661241161071 m001 Riemann2ndZero*CareFree*exp(TwinPrimes) 2865661247396600 m001 (MadelungNaCl+Salem)/(Zeta(1/2)+BesselJ(1,1)) 2865661263266733 m002 E^Pi*Pi^2+5*Cosh[Pi]*Coth[Pi] 2865661272602522 r009 Re(z^3+c),c=-33/74+24/59*I,n=16 2865661273414065 l006 ln(544/9553) 2865661282038298 a007 Real Root Of -248*x^4-843*x^3-45*x^2+631*x-936 2865661298657376 m001 1/GAMMA(5/12)*GAMMA(23/24)^2/ln(sin(1)) 2865661311739313 a001 9349/139583862445*233^(4/15) 2865661319787566 a007 Real Root Of -202*x^4-679*x^3-288*x^2-234*x-662 2865661321691240 r002 55th iterates of z^2 + 2865661323242886 a005 (1/cos(13/139*Pi))^1496 2865661339742293 a001 12238/182717648081*233^(4/15) 2865661340725784 r004 Im(z^2+c),c=1/5+5/24*I,z(0)=exp(3/8*I*Pi),n=27 2865661342656776 m001 (GAMMA(11/12)-Porter)/(ln(gamma)+ln(2)) 2865661343827873 a001 64079/956722026041*233^(4/15) 2865661344423951 a001 167761/2504730781961*233^(4/15) 2865661344510918 a001 219602/3278735159921*233^(4/15) 2865661344531448 a001 101521/1515744265389*233^(4/15) 2865661344564666 a001 271443/4052739537881*233^(4/15) 2865661344792348 a001 51841/774004377960*233^(4/15) 2865661346352900 a001 39603/591286729879*233^(4/15) 2865661346703201 r002 7th iterates of z^2 + 2865661349108303 m005 (1/2*2^(1/2)+7/11)/(1/7*exp(1)-6/7) 2865661357049087 a001 2161/32264490531*233^(4/15) 2865661366942404 r005 Re(z^2+c),c=41/114+13/55*I,n=30 2865661368225677 r009 Re(z^3+c),c=-41/114+9/31*I,n=27 2865661373961178 a003 cos(Pi*14/113)-cos(Pi*13/89) 2865661380208129 m002 -E^Pi+Pi^5+3*Log[Pi]*ProductLog[Pi] 2865661394103471 m005 (1/2*3^(1/2)-2/11)/(181/132+5/11*5^(1/2)) 2865661397230754 a001 199691526/7*591286729879^(13/17) 2865661397230754 a001 312119004989/21*165580141^(13/17) 2865661414868715 r005 Im(z^2+c),c=-23/16+22/85*I,n=3 2865661423479888 m001 ln(Riemann1stZero)^2*Porter/Ei(1)^2 2865661425483320 r009 Re(z^3+c),c=-17/118+31/45*I,n=6 2865661429433895 r005 Im(z^2+c),c=-5/27+31/41*I,n=30 2865661429775862 r002 42th iterates of z^2 + 2865661430361842 a001 2889/43133785636*233^(4/15) 2865661430756638 m008 (2*Pi-1)/(3/5*Pi^5+3/4) 2865661432170402 g005 GAMMA(4/9)*GAMMA(1/9)*GAMMA(3/7)/GAMMA(3/4) 2865661437644853 p003 LerchPhi(1/100,6,629/237) 2865661446137561 l006 ln(2914/3881) 2865661458658272 r009 Im(z^3+c),c=-1/15+4/13*I,n=5 2865661472204923 m005 (1/2*Zeta(3)+3)/(8/11*gamma-6/11) 2865661475132920 p004 log(29947/29101) 2865661478394790 r005 Re(z^2+c),c=-7/27+25/48*I,n=55 2865661488011013 r008 a(0)=0,K{-n^6,-39+16*n-42*n^2+31*n^3} 2865661488577320 r005 Im(z^2+c),c=-7/32+30/53*I,n=14 2865661514014599 r009 Re(z^3+c),c=-5/11+4/7*I,n=3 2865661514377374 r009 Re(z^3+c),c=-41/114+9/31*I,n=24 2865661528870650 a001 8/9349*322^(9/43) 2865661553941346 m001 (Lehmer-Mills)/(ln(2+3^(1/2))+GAMMA(19/24)) 2865661560804468 a007 Real Root Of -28*x^4+424*x^3+542*x^2+905*x+225 2865661568559070 m001 (gamma(1)+Otter)/(GAMMA(3/4)-Ei(1,1)) 2865661575404436 m001 PisotVijayaraghavan-gamma(3)^ln(gamma) 2865661578430471 m001 (LambertW(1)+BesselI(0,1))/(-Ei(1,1)+Thue) 2865661580613305 r002 21th iterates of z^2 + 2865661608570944 m001 Paris^2*exp(Bloch)*FeigenbaumKappa^2 2865661615543187 m001 CareFree^2*Backhouse^2*exp(Zeta(9)) 2865661624327388 r005 Im(z^2+c),c=-31/82+14/29*I,n=63 2865661634828588 r009 Re(z^3+c),c=-19/42+29/63*I,n=56 2865661641957267 m001 GAMMA(1/3)*BesselK(1,1)^2/ln(Zeta(3))^2 2865661643232268 m001 (ArtinRank2-Thue)/(gamma(1)-2*Pi/GAMMA(5/6)) 2865661660602288 h001 (2/3*exp(1)+7/10)/(2/7*exp(1)+1/10) 2865661662315906 r005 Re(z^2+c),c=-17/90+33/40*I,n=27 2865661665414015 m001 GAMMA(23/24)^ln(2+3^(1/2))-RenyiParking 2865661665414015 m001 GAMMA(23/24)^ln(2+sqrt(3))-RenyiParking 2865661673944958 m001 1/ln(GAMMA(23/24))^2*OneNinth*sqrt(3) 2865661676594866 r005 Re(z^2+c),c=-5/16+22/59*I,n=37 2865661694867477 r005 Im(z^2+c),c=3/25+29/44*I,n=31 2865661709550832 r002 22th iterates of z^2 + 2865661711402080 l006 ln(239/4197) 2865661712649863 m001 (Grothendieck+Salem)/(Chi(1)+DuboisRaymond) 2865661719179457 m001 LambertW(1)^2/ln(Cahen)^2/gamma 2865661731673872 r001 5i'th iterates of 2*x^2-1 of 2865661770942173 m001 (Magata-Salem)/(exp(1/Pi)-Gompertz) 2865661776227549 m005 (1/2*gamma-10/11)/(5/6*exp(1)-1/10) 2865661779079103 a007 Real Root Of 243*x^4+592*x^3-307*x^2-35*x-35 2865661780296285 m009 (48*Catalan+6*Pi^2+1/3)/(5/12*Pi^2-1/2) 2865661788032980 m005 (1/2*3^(1/2)+5/8)/(3/4*Catalan-1/6) 2865661795208639 r002 52th iterates of z^2 + 2865661797273786 m001 (Bloch-ThueMorse)/(ln(5)+arctan(1/2)) 2865661802575107 a001 6676992/233 2865661802991326 r005 Re(z^2+c),c=13/38+5/12*I,n=38 2865661805076987 h001 (-5*exp(-1)+2)/(-exp(1/3)+7) 2865661807053832 a007 Real Root Of -130*x^4-69*x^3+779*x^2+44*x+872 2865661808385652 m005 (1/2*Catalan+5/6)/(3*Zeta(3)+9/10) 2865661816932705 l006 ln(6949/9255) 2865661820456359 m002 -6+Pi^5*Log[Pi]-5*Sinh[Pi] 2865661831676966 r005 Re(z^2+c),c=-103/90+10/47*I,n=4 2865661836519491 r005 Re(z^2+c),c=-87/110+1/62*I,n=22 2865661836628467 r005 Re(z^2+c),c=-9/29+19/50*I,n=36 2865661839967764 m001 ArtinRank2+LandauRamanujan+OrthogonalArrays 2865661843390263 h001 (7/9*exp(2)+1/4)/(5/11*exp(1)+6/7) 2865661848095879 r005 Re(z^2+c),c=-5/16+22/59*I,n=40 2865661865807893 r005 Im(z^2+c),c=-31/86+29/61*I,n=21 2865661867453370 a007 Real Root Of -353*x^4-907*x^3+144*x^2-294*x+436 2865661877425248 r009 Im(z^3+c),c=-12/25+10/63*I,n=12 2865661877652438 a007 Real Root Of -397*x^4-824*x^3+537*x^2-881*x+447 2865661877935409 l006 ln(8290/8531) 2865661879222746 a007 Real Root Of -528*x^4-689*x^3-96*x^2+233*x+62 2865661888683459 a007 Real Root Of -192*x^4-799*x^3-495*x^2+403*x-635 2865661927430901 m001 1/Rabbit*FibonacciFactorial^2*ln(sin(Pi/12)) 2865661932854938 a001 2207/32951280099*233^(4/15) 2865661935760885 r009 Re(z^3+c),c=-15/98+56/57*I,n=2 2865661947054502 r005 Re(z^2+c),c=-29/102+17/37*I,n=30 2865661949416284 r005 Im(z^2+c),c=27/106+7/44*I,n=19 2865661951690267 m001 Zeta(1,2)^2/exp(FransenRobinson)*cos(1) 2865661957667529 m001 Si(Pi)^2/GaussKuzminWirsing^2*ln(Catalan)^2 2865661962123133 r009 Im(z^3+c),c=-53/110+3/25*I,n=57 2865661967635839 r005 Re(z^2+c),c=17/90+31/64*I,n=49 2865661968014429 a007 Real Root Of 115*x^4+260*x^3-449*x^2-406*x+887 2865661977284830 m006 (1/3*Pi+4)/(3/4/Pi-2) 2865662009578315 a001 47*(1/2*5^(1/2)+1/2)^24*76^(9/22) 2865662031765756 r009 Re(z^3+c),c=-7/24+37/54*I,n=54 2865662032677878 r005 Im(z^2+c),c=-3/52+19/53*I,n=10 2865662036825848 r004 Im(z^2+c),c=2/11+2/9*I,z(0)=exp(5/8*I*Pi),n=21 2865662046320212 a001 18/1346269*514229^(20/49) 2865662053235063 r005 Re(z^2+c),c=-17/56+25/63*I,n=20 2865662057319819 r002 15th iterates of z^2 + 2865662069417241 r005 Re(z^2+c),c=8/27+7/54*I,n=35 2865662069879903 a001 2178309/1364*199^(6/11) 2865662074244763 p001 sum(1/(559*n+361)/(12^n),n=0..infinity) 2865662078039780 r009 Re(z^3+c),c=-25/54+21/46*I,n=46 2865662084713873 l006 ln(4035/5374) 2865662088244285 r005 Im(z^2+c),c=-21/94+39/64*I,n=28 2865662089647670 r005 Re(z^2+c),c=4/21+11/29*I,n=28 2865662092542290 a001 3571/55*89^(27/32) 2865662105766925 m005 (1/3*Zeta(3)+3/4)/(3/4*Zeta(3)-1/2) 2865662108102218 r005 Re(z^2+c),c=-5/106+26/31*I,n=14 2865662110899876 s002 sum(A185039[n]/(n^2*exp(n)+1),n=1..infinity) 2865662112362837 a001 75025/123*123^(4/5) 2865662120910295 r002 18th iterates of z^2 + 2865662121023360 r005 Re(z^2+c),c=-7/19+1/39*I,n=22 2865662122260515 r002 39th iterates of z^2 + 2865662124191534 m001 (LaplaceLimit+RenyiParking)/(5^(1/2)+Khinchin) 2865662136611890 a001 2178309/199*76^(2/9) 2865662139291116 g005 GAMMA(3/5)/GAMMA(9/11)/GAMMA(2/9)/GAMMA(6/7) 2865662147363356 r005 Im(z^2+c),c=-55/106+32/59*I,n=34 2865662149309125 m001 1/GAMMA(1/24)^2*ln(GAMMA(17/24))^3 2865662152110699 m006 (3/5*Pi-1/5)/(4/5/Pi+1/3) 2865662153776648 m001 1/LaplaceLimit/ln(GlaisherKinkelin)^2*sinh(1) 2865662155437474 r002 52th iterates of z^2 + 2865662179327505 a001 1597/123*29^(34/37) 2865662192043761 a007 Real Root Of -732*x^4-9*x^3-40*x^2+492*x+149 2865662192711457 m001 Backhouse^(ln(2+sqrt(3))*GAMMA(5/12)) 2865662202040385 r005 Re(z^2+c),c=-1/38+41/64*I,n=46 2865662207741166 r005 Re(z^2+c),c=-9/28+13/38*I,n=25 2865662221166765 m005 (1/2*Catalan+6/7)/(5/12*2^(1/2)+4) 2865662222529347 m001 (Catalan-sin(1))/(Ei(1)+CareFree) 2865662226714566 h001 (-exp(3)+5)/(-2*exp(-1)+6) 2865662226795190 r009 Re(z^3+c),c=-10/23+23/54*I,n=44 2865662239574646 a007 Real Root Of -24*x^4-655*x^3+962*x^2+698*x+918 2865662244440537 r009 Im(z^3+c),c=-7/86+19/62*I,n=3 2865662272441933 q001 913/3186 2865662280508049 b008 1/11+4*Sqrt[51] 2865662288283436 r005 Re(z^2+c),c=-13/46+6/13*I,n=63 2865662288719857 r005 Im(z^2+c),c=-57/98+17/44*I,n=22 2865662289716057 l006 ln(412/7235) 2865662294397103 m005 (1/2*Zeta(3)-5/6)/(7/10*Zeta(3)-5/6) 2865662323771314 r005 Im(z^2+c),c=9/52+8/35*I,n=20 2865662326454790 a003 sin(Pi*1/65)-sin(Pi*5/46) 2865662327531918 a003 sin(Pi*3/31)*sin(Pi*37/91) 2865662338377928 r005 Im(z^2+c),c=-35/66+3/59*I,n=28 2865662348961161 a003 sin(Pi*1/44)*sin(Pi*5/38) 2865662350924389 m001 1/exp(GAMMA(1/4))*(3^(1/3))^2/GAMMA(5/24)^2 2865662351142115 p001 sum(1/(596*n+351)/(64^n),n=0..infinity) 2865662366710356 g007 Psi(2,2/11)+Psi(2,1/11)-Psi(2,9/10)-Psi(2,1/4) 2865662377783776 m001 (ArtinRank2-cos(1))/(Bloch+ZetaP(4)) 2865662379215940 r005 Im(z^2+c),c=-73/114+21/58*I,n=7 2865662382185995 a007 Real Root Of 277*x^4+550*x^3-533*x^2+759*x+815 2865662386296474 m005 (1/3*Pi-1/7)/(2/11*5^(1/2)-3/8) 2865662401708909 m005 (1/2*Pi+5/8)/(4/11*exp(1)-2/9) 2865662405637252 m001 1/ln(BesselJ(0,1))/GlaisherKinkelin/Zeta(7)^2 2865662424760817 a007 Real Root Of -196*x^4-710*x^3-152*x^2+987*x+586 2865662426135185 m005 (1/2*Catalan+7/12)/(10/11*Pi+7/9) 2865662428324065 r009 Re(z^3+c),c=-49/118+9/23*I,n=26 2865662435383249 m001 (ln(5)+GAMMA(5/6))/(Psi(1,1/3)-cos(1)) 2865662445615983 l006 ln(5156/6867) 2865662449729549 a005 (1/cos(42/181*Pi))^35 2865662460902051 r009 Re(z^3+c),c=-5/122+40/63*I,n=13 2865662465785941 a007 Real Root Of -622*x^4-796*x^3+464*x^2+966*x-292 2865662482445007 a001 1/1858291*(1/2*5^(1/2)+1/2)^12*64079^(1/22) 2865662492084019 m001 (Grothendieck+Kac)/(GolombDickman-cos(1)) 2865662494130981 a007 Real Root Of -161*x^4-123*x^3+895*x^2-364*x-430 2865662495882515 r005 Re(z^2+c),c=-9/14+32/85*I,n=41 2865662496727720 r005 Im(z^2+c),c=-4/11+21/44*I,n=50 2865662504133243 a001 1/271121*(1/2*5^(1/2)+1/2)^3*9349^(7/22) 2865662504798910 m008 (2/3*Pi^3-3/4)/(1/4*Pi^3-4/5) 2865662510688254 m001 1/GAMMA(5/24)*Khintchine^2/ln(sqrt(Pi)) 2865662516539091 a007 Real Root Of -924*x^4+987*x^3+165*x^2+946*x+287 2865662527325851 m001 ln(Zeta(7))^2/Magata/sin(1)^2 2865662535431040 r004 Re(z^2+c),c=-11/30+1/13*I,z(0)=-1,n=13 2865662543362328 r005 Im(z^2+c),c=37/126+7/62*I,n=34 2865662561758016 a001 843/86267571272*317811^(4/15) 2865662561759530 a001 843/4052739537881*591286729879^(4/15) 2865662561759530 a001 843/591286729879*433494437^(4/15) 2865662575651400 m008 (3/5*Pi^5+1/3)/(2/3*Pi^4-3/4) 2865662577786997 s002 sum(A108455[n]/((exp(n)+1)*n),n=1..infinity) 2865662583725007 r004 Re(z^2+c),c=5/24-1/22*I,z(0)=exp(3/8*I*Pi),n=4 2865662585231371 m001 ln(GAMMA(17/24))^2/Backhouse^2*cos(Pi/12) 2865662591215941 r005 Re(z^2+c),c=-17/14+31/242*I,n=42 2865662594330003 h001 (5/9*exp(1)+1/10)/(7/11*exp(2)+11/12) 2865662615856581 a001 28657/322*521^(12/13) 2865662616964357 m005 (1/2*5^(1/2)-9/11)/(11/12*2^(1/2)-1/4) 2865662633617233 a007 Real Root Of -221*x^4-294*x^3+830*x^2-134*x+785 2865662647573120 a007 Real Root Of -951*x^4+974*x^3+917*x^2+53*x-107 2865662649166684 r005 Im(z^2+c),c=-127/110+18/61*I,n=4 2865662651691347 r005 Im(z^2+c),c=-3/10+16/35*I,n=29 2865662673479189 m001 (Rabbit-Trott2nd)/(Niven-Porter) 2865662673973067 r002 9th iterates of z^2 + 2865662677612155 l006 ln(6277/8360) 2865662680983692 r005 Im(z^2+c),c=-19/58+27/58*I,n=63 2865662702218924 m006 (1/6*Pi+1/2)/(2/3*exp(2*Pi)+1/5) 2865662703601108 r002 5th iterates of z^2 + 2865662708885852 r005 Re(z^2+c),c=-27/106+21/38*I,n=42 2865662711181265 r009 Im(z^3+c),c=-55/118+8/57*I,n=56 2865662718128047 h001 (-11*exp(4)-6)/(-3*exp(2)+1) 2865662719049714 r005 Re(z^2+c),c=3/23+11/23*I,n=16 2865662719471215 r005 Im(z^2+c),c=-25/86+18/35*I,n=16 2865662719486599 m001 GAMMA(5/12)/exp(GAMMA(11/24))/Zeta(5)^2 2865662727350638 m001 (Psi(2,1/3)+Si(Pi))/(Grothendieck+ZetaP(4)) 2865662732469149 m005 (1/2*2^(1/2)-7/8)/(2/7*2^(1/2)+2/11) 2865662742103363 r009 Im(z^3+c),c=-9/34+11/41*I,n=7 2865662747460460 b008 19+6*Log[5] 2865662748323174 s002 sum(A141787[n]/(n^3*2^n-1),n=1..infinity) 2865662759959583 m001 (Magata-QuadraticClass)/(GAMMA(2/3)-3^(1/3)) 2865662760195277 r005 Re(z^2+c),c=-37/106+1/6*I,n=3 2865662774926144 h001 (3/8*exp(1)+7/8)/(1/7*exp(1)+3/11) 2865662786153826 m001 Riemann2ndZero^DuboisRaymond+Shi(1) 2865662788379756 m001 1/Tribonacci^2*ln(Artin)^2*Zeta(9) 2865662790636635 a009 11^(2/3)*(10^(1/2)-14^(1/2)) 2865662792076089 r005 Im(z^2+c),c=-13/30+29/60*I,n=28 2865662797032078 m001 1/GAMMA(19/24)^2*exp(OneNinth)^2/Pi 2865662800756175 a001 33385282/55*433494437^(17/22) 2865662804414370 r009 Re(z^3+c),c=-51/122+23/58*I,n=42 2865662804452500 a001 119218851371/55*10946^(17/22) 2865662812373986 a007 Real Root Of 444*x^4+959*x^3-967*x^2-105*x+266 2865662816454675 r005 Re(z^2+c),c=-7/27+22/43*I,n=27 2865662825480247 r005 Im(z^2+c),c=-5/27+9/19*I,n=5 2865662838649867 m001 ln(BesselK(0,1))^2*Niven^2*log(2+sqrt(3)) 2865662839300752 l006 ln(7398/9853) 2865662840167957 m001 cos(1)/GolombDickman/ln(gamma)^2 2865662849659333 a007 Real Root Of -350*x^4-791*x^3+429*x^2-673*x-463 2865662849841815 m001 ReciprocalFibonacci^BesselI(1,1)*exp(1/exp(1)) 2865662858402553 a008 Real Root of (3+11*x+3*x^2+4*x^3) 2865662862016300 r005 Re(z^2+c),c=-37/102+3/25*I,n=14 2865662866465341 a007 Real Root Of -316*x^4-643*x^3+670*x^2-41*x+559 2865662887383653 r005 Im(z^2+c),c=-8/21+15/31*I,n=58 2865662891450309 r005 Im(z^2+c),c=-11/26+13/24*I,n=59 2865662895235829 a001 521/1346269*832040^(6/19) 2865662895236406 a001 521/24157817*7778742049^(6/19) 2865662902296099 m001 cos(1/5*Pi)-ln(2+3^(1/2))+Kolakoski 2865662913953651 p003 LerchPhi(1/12,6,38/21) 2865662918769900 r005 Re(z^2+c),c=-25/98+10/19*I,n=40 2865662941624861 m002 -(Log[Pi]/Pi)+E^Pi*ProductLog[Pi]*Sinh[Pi] 2865662955819788 r005 Im(z^2+c),c=-49/94+23/63*I,n=10 2865662961614893 a007 Real Root Of 341*x^4-570*x^3+439*x^2-764*x+194 2865662965092482 a009 1/11*(12^(2/3)*11^(1/4)-9^(2/3))*11^(3/4) 2865662965268375 a007 Real Root Of 654*x^4-350*x^3+387*x^2-672*x-237 2865662976550919 a007 Real Root Of 167*x^4+602*x^3+420*x^2-84*x-785 2865662986902223 m002 5/Pi^3+(Pi^2*Sinh[Pi])/4 2865662987168000 r009 Re(z^3+c),c=-49/122+18/49*I,n=35 2865662989074478 r005 Im(z^2+c),c=-11/31+19/40*I,n=60 2865662994744487 r005 Im(z^2+c),c=-9/40+23/56*I,n=9 2865663002556942 r005 Re(z^2+c),c=-9/28+13/38*I,n=28 2865663004388331 m005 (-1/28+1/4*5^(1/2))/(5/8*5^(1/2)+3/7) 2865663017806638 r005 Im(z^2+c),c=-1/98+18/53*I,n=6 2865663022097470 r005 Im(z^2+c),c=-23/118+5/12*I,n=19 2865663028201412 m005 (1/3*gamma+1/8)/(4/7*gamma+7/9) 2865663041412742 m001 (-arctan(1/2)+ZetaP(2))/(2^(1/3)+exp(1)) 2865663046477590 m001 1/Lehmer^2*Cahen/ln(Ei(1)) 2865663047749520 r005 Im(z^2+c),c=-3/118+21/61*I,n=10 2865663073416900 r005 Re(z^2+c),c=1/122+34/55*I,n=5 2865663075386863 a001 726103/281*199^(5/11) 2865663077561424 a007 Real Root Of 286*x^4+538*x^3-719*x^2+194*x-166 2865663081081325 m002 -4/Pi^6+Pi^3-Pi^5-Sinh[Pi] 2865663088657939 l006 ln(173/3038) 2865663091957432 m001 Psi(1,1/3)^Shi(1)/(Psi(1,1/3)^BesselK(1,1)) 2865663106193317 a001 29*(1/2*5^(1/2)+1/2)^11*7^(14/17) 2865663118945726 a007 Real Root Of -121*x^4-26*x^3+722*x^2-283*x+808 2865663136256746 m001 GAMMA(2/3)+Ei(1)^MasserGramain 2865663138021860 m008 (3*Pi+5)/(1/6*Pi^5-2/3) 2865663161924690 a001 9/567451585*3^(7/13) 2865663163132841 a003 sin(Pi*1/80)+sin(Pi*7/88) 2865663163873899 q001 1009/3521 2865663164923297 m006 (2*exp(Pi)-1/4)/(3*exp(2*Pi)-1/6) 2865663176120380 m001 (exp(Pi)+ZetaQ(2))/AlladiGrinstead 2865663188423572 a007 Real Root Of 502*x^4+311*x^3-733*x^2-988*x-219 2865663190276706 m005 (1/2*5^(1/2)+5/9)/(5/9*2^(1/2)-8/11) 2865663204922741 m001 Pi^(1/2)+MasserGramainDelta^ZetaR(2) 2865663224644492 a003 cos(Pi*17/58)-sin(Pi*34/97) 2865663230861265 r005 Im(z^2+c),c=-99/86+2/55*I,n=34 2865663240728099 r009 Im(z^3+c),c=-1/18+43/51*I,n=36 2865663248310409 r005 Im(z^2+c),c=-51/86+1/19*I,n=52 2865663252440092 m001 (Conway+FeigenbaumMu)/(Shi(1)+Cahen) 2865663275896358 r005 Im(z^2+c),c=-10/31+23/51*I,n=17 2865663276186607 r009 Re(z^3+c),c=-49/122+18/49*I,n=41 2865663279213169 r005 Im(z^2+c),c=-67/102+2/37*I,n=64 2865663281068977 m001 (BesselI(1,2)-Riemann2ndZero)/(Robbin-Totient) 2865663287582165 m001 KhinchinHarmonic+ln(2+3^(1/2))^ThueMorse 2865663295288280 a007 Real Root Of -944*x^4-327*x^3-894*x^2-269*x-5 2865663296730259 a001 11/2*34^(22/47) 2865663310102741 m001 (polylog(4,1/2)*ZetaQ(4)+Bloch)/ZetaQ(4) 2865663311093756 a007 Real Root Of -313*x^4-668*x^3+751*x^2+154*x-338 2865663325022664 a008 Real Root of (1+2*x-5*x^2+2*x^3+6*x^4+5*x^5) 2865663343474356 h001 (6/7*exp(2)+10/11)/(8/9*exp(1)+1/9) 2865663369442933 r005 Im(z^2+c),c=-15/44+23/50*I,n=22 2865663374840266 r005 Im(z^2+c),c=-9/29+17/37*I,n=47 2865663382087637 m005 (1/2*Zeta(3)-3)/(1/8*Pi+4/9) 2865663384009478 s002 sum(A253830[n]/((exp(n)+1)*n),n=1..infinity) 2865663385430473 m004 -5/6-(5*Sqrt[5])/Pi+ProductLog[Sqrt[5]*Pi] 2865663394770431 m001 MertensB2^LandauRamanujan+Tribonacci 2865663399955236 r009 Re(z^3+c),c=-51/122+23/58*I,n=44 2865663402526321 r002 27th iterates of z^2 + 2865663404700058 b008 9*(9-13*Pi) 2865663410039693 r005 Im(z^2+c),c=-17/22+8/41*I,n=5 2865663426981653 a001 144*521^(11/13) 2865663433286645 m001 TwinPrimes*FibonacciFactorial^2/ln(cos(Pi/12)) 2865663437269109 m001 1/gamma^2/ln(cos(1))*sin(Pi/5) 2865663441259211 a007 Real Root Of 272*x^4+944*x^3+414*x^2+114*x+799 2865663445618730 r005 Re(z^2+c),c=-7/24+19/43*I,n=24 2865663476735280 r009 Im(z^3+c),c=-6/17+14/61*I,n=10 2865663484752851 a007 Real Root Of 645*x^4+298*x^3-738*x^2-554*x+208 2865663493012100 a007 Real Root Of -243*x^4-492*x^3+542*x^2-222*x-278 2865663493275452 a001 1/416020*3^(4/25) 2865663497071881 m001 (exp(1/Pi)-Zeta(1,2))/(Porter-TwinPrimes) 2865663505639004 r005 Im(z^2+c),c=-17/98+12/31*I,n=7 2865663509762853 m001 (-Trott+ZetaQ(2))/(Chi(1)+Robbin) 2865663517729160 h001 (-3*exp(-3)+5)/(-4*exp(3/2)+1) 2865663529241829 a007 Real Root Of -87*x^4+33*x^3+816*x^2-241*x-748 2865663532930075 m001 (Zeta(1,2)+Artin)/(MertensB1+Niven) 2865663534247702 a007 Real Root Of 154*x^4+316*x^3+191*x^2-669*x-201 2865663534634634 m002 8*Pi^3*Sinh[Pi]+Tanh[Pi] 2865663547857642 a007 Real Root Of -184*x^4+844*x^3-121*x^2+457*x+162 2865663548391039 r002 5th iterates of z^2 + 2865663551031365 a007 Real Root Of -234*x^4-240*x^3+859*x^2-876*x+568 2865663552329854 p002 log(10^(6/5)+6^(3/10)) 2865663553359376 h001 (7/12*exp(2)+7/9)/(4/7*exp(1)+2/9) 2865663561240782 r005 Re(z^2+c),c=-19/118+38/63*I,n=28 2865663561391134 r005 Re(z^2+c),c=8/21+10/47*I,n=40 2865663564351888 a007 Real Root Of 28*x^4-274*x^3+795*x^2-91*x-98 2865663564990154 s002 sum(A229808[n]/(2^n-1),n=1..infinity) 2865663568631375 r005 Re(z^2+c),c=-71/90+3/52*I,n=22 2865663585047148 r005 Re(z^2+c),c=-7/10+126/253*I,n=5 2865663601913205 r005 Im(z^2+c),c=-141/118+19/60*I,n=6 2865663609831268 m001 ln(GAMMA(1/6))/GaussAGM(1,1/sqrt(2))*sqrt(2) 2865663612558862 a007 Real Root Of -869*x^4-917*x^3-439*x^2+114*x+53 2865663617221159 r005 Im(z^2+c),c=-25/66+45/59*I,n=5 2865663624190171 a007 Real Root Of 201*x^4+505*x^3-230*x^2-298*x-636 2865663634689407 r005 Re(z^2+c),c=-37/78+1/2*I,n=13 2865663650235042 m005 (1/3*2^(1/2)+1/7)/(8/9*exp(1)-3/11) 2865663659199833 m001 exp(Pi)^2/Backhouse^2/log(1+sqrt(2)) 2865663668967467 r005 Im(z^2+c),c=-27/86+20/43*I,n=23 2865663670627400 r005 Re(z^2+c),c=27/94+23/43*I,n=5 2865663690375267 m006 (ln(Pi)+1/3)/(4/5*ln(Pi)-2/5) 2865663698539902 r005 Re(z^2+c),c=21/86+4/47*I,n=26 2865663703474875 q001 1/3489593 2865663704288758 a001 505019158607/21*86267571272^(11/17) 2865663713489471 r005 Im(z^2+c),c=-49/122+11/23*I,n=13 2865663725884918 r005 Im(z^2+c),c=-151/122+1/46*I,n=45 2865663729423771 r005 Im(z^2+c),c=27/118+7/38*I,n=29 2865663734306781 m001 (Rabbit+Stephens)/(TreeGrowth2nd+ZetaQ(3)) 2865663738183588 r005 Re(z^2+c),c=9/23+7/55*I,n=11 2865663742600178 r005 Re(z^2+c),c=-7/19+1/39*I,n=24 2865663743974091 r005 Re(z^2+c),c=-7/24+29/51*I,n=36 2865663744432876 m001 BesselI(1,2)^(GAMMA(23/24)/ZetaP(2)) 2865663744670304 l006 ln(1121/1493) 2865663753231412 a008 Real Root of x^4-2*x^3-18*x^2-20*x-24 2865663754997284 m001 exp(1/Pi)^ErdosBorwein/LandauRamanujan2nd 2865663757534506 a007 Real Root Of -422*x^4-931*x^3+546*x^2-851*x-373 2865663758884286 r005 Im(z^2+c),c=-7/32+31/51*I,n=5 2865663761411269 r009 Im(z^3+c),c=-21/46+8/53*I,n=36 2865663762030458 s002 sum(A014736[n]/(pi^n-1),n=1..infinity) 2865663762634627 m001 (BesselK(0,1)+ln(5))/(-Ei(1)+KhinchinLevy) 2865663764839768 r009 Im(z^3+c),c=-11/70+50/59*I,n=42 2865663765859366 a007 Real Root Of -223*x^4-358*x^3+516*x^2-511*x+912 2865663773279176 a003 cos(Pi*31/77)-cos(Pi*53/107) 2865663774563334 m005 (1/2*Pi+7/9)/(1/5*Catalan+7/11) 2865663783148287 r009 Re(z^3+c),c=-49/66+45/56*I,n=2 2865663791050469 r005 Re(z^2+c),c=9/25+16/59*I,n=30 2865663793705981 a007 Real Root Of 348*x^4+562*x^3-952*x^2+991*x+415 2865663802516401 a005 (1/cos(3/112*Pi))^297 2865663804587995 r005 Im(z^2+c),c=-5/12+25/48*I,n=40 2865663810463312 b008 Pi*Hyperfactorial[4/15] 2865663812009533 a001 1/39556*(1/2*5^(1/2)+1/2)^3*1364^(3/22) 2865663813835187 a007 Real Root Of -152*x^4-184*x^3+897*x^2+374*x-374 2865663815288853 l006 ln(453/7955) 2865663819719376 m001 GolombDickman/(GAMMA(2/3)-exp(Pi)) 2865663826274235 a007 Real Root Of 91*x^4+302*x^3-207*x^2-640*x+836 2865663831943132 h001 (8/11*exp(2)+7/8)/(1/4*exp(2)+1/3) 2865663843696084 r005 Re(z^2+c),c=-17/56+25/62*I,n=24 2865663846171182 r009 Re(z^3+c),c=-19/46+19/49*I,n=34 2865663849319621 a007 Real Root Of -804*x^4-285*x^3+814*x^2+835*x-294 2865663850036135 m001 (sin(1)*FeigenbaumMu-Lehmer)/sin(1) 2865663851770489 a003 sin(Pi*11/92)-sin(Pi*17/75) 2865663854111325 h001 (-7*exp(1)-9)/(-5*exp(1/3)+6) 2865663878335330 m005 (4/5*gamma+1/2)/(3/4*Pi+1) 2865663879349484 r002 29th iterates of z^2 + 2865663887679311 m001 (exp(Pi)+3^(1/3))/(Gompertz+MertensB1) 2865663900414937 q001 1105/3856 2865663902582500 m001 (FellerTornier+Magata)/(Chi(1)+arctan(1/2)) 2865663910096772 a003 sin(Pi*31/107)/cos(Pi*28/57) 2865663922015173 r002 33th iterates of z^2 + 2865663922016902 a007 Real Root Of 457*x^4-365*x^3-161*x^2-821*x+254 2865663930655203 r009 Im(z^3+c),c=-10/21+5/39*I,n=51 2865663930944673 r005 Im(z^2+c),c=1/102+13/40*I,n=12 2865663940951847 h005 exp(sin(Pi*1/6)+sin(Pi*11/59)) 2865663955251508 h001 (2/9*exp(1)+5/12)/(4/11*exp(2)+7/8) 2865663962312538 h001 (1/12*exp(2)+7/8)/(7/11*exp(2)+1/2) 2865663978833543 a007 Real Root Of 205*x^4+198*x^3-960*x^2+524*x+220 2865663999973640 r009 Im(z^3+c),c=-15/64+5/18*I,n=12 2865664026132769 a007 Real Root Of -929*x^4+399*x^3-353*x^2+952*x-27 2865664040574522 a007 Real Root Of -117*x^4-377*x^3-449*x^2-793*x+433 2865664042161413 m001 1/Lehmer*exp(FeigenbaumAlpha)^2/Zeta(1,2)^2 2865664042451329 s002 sum(A206573[n]/(pi^n),n=1..infinity) 2865664051012500 a001 29/144*1597^(9/25) 2865664052920182 r005 Im(z^2+c),c=-25/86+19/42*I,n=31 2865664054648308 m002 -Pi^3/4+3*Pi^6*Tanh[Pi] 2865664063476586 p004 log(17789/1013) 2865664066616832 a007 Real Root Of -344*x^4-841*x^3+349*x^2-303*x-327 2865664069960190 r005 Im(z^2+c),c=-5/102+41/48*I,n=13 2865664074419371 m001 HardyLittlewoodC3/(BesselI(0,2)^cos(1/12*Pi)) 2865664082648854 b008 (1+3*Sqrt[3])^EulerGamma 2865664086609140 a007 Real Root Of -505*x^4+160*x^3+305*x^2+529*x-177 2865664088551968 m005 (1/2*Catalan+1/4)/(6/7*Pi-2/9) 2865664091699851 r005 Re(z^2+c),c=-7/19+1/39*I,n=26 2865664103330215 r005 Re(z^2+c),c=-7/19+1/39*I,n=29 2865664105740725 r002 48th iterates of z^2 + 2865664111337599 r005 Re(z^2+c),c=-7/19+1/39*I,n=31 2865664114614705 a007 Real Root Of -56*x^4+707*x^3+382*x^2+919*x+249 2865664115342594 r005 Re(z^2+c),c=-7/19+1/39*I,n=27 2865664117885666 r005 Re(z^2+c),c=-7/19+1/39*I,n=33 2865664119159345 m008 (1/4*Pi^3-1/2)/(4/5*Pi^3+1/2) 2865664121303987 r005 Re(z^2+c),c=-7/19+1/39*I,n=35 2865664122831316 r005 Re(z^2+c),c=-7/19+1/39*I,n=37 2865664123460241 r005 Re(z^2+c),c=-7/19+1/39*I,n=39 2865664123706217 r005 Re(z^2+c),c=-7/19+1/39*I,n=41 2865664123798991 r005 Re(z^2+c),c=-7/19+1/39*I,n=43 2865664123833030 r005 Re(z^2+c),c=-7/19+1/39*I,n=45 2865664123845245 r005 Re(z^2+c),c=-7/19+1/39*I,n=47 2865664123849547 r005 Re(z^2+c),c=-7/19+1/39*I,n=49 2865664123851038 r005 Re(z^2+c),c=-7/19+1/39*I,n=51 2865664123851547 r005 Re(z^2+c),c=-7/19+1/39*I,n=53 2865664123851718 r005 Re(z^2+c),c=-7/19+1/39*I,n=55 2865664123851775 r005 Re(z^2+c),c=-7/19+1/39*I,n=57 2865664123851794 r005 Re(z^2+c),c=-7/19+1/39*I,n=59 2865664123851800 r005 Re(z^2+c),c=-7/19+1/39*I,n=61 2865664123851802 r005 Re(z^2+c),c=-7/19+1/39*I,n=63 2865664123851803 r005 Re(z^2+c),c=-7/19+1/39*I,n=64 2865664123851804 r005 Re(z^2+c),c=-7/19+1/39*I,n=62 2865664123851808 r005 Re(z^2+c),c=-7/19+1/39*I,n=60 2865664123851818 r005 Re(z^2+c),c=-7/19+1/39*I,n=58 2865664123851851 r005 Re(z^2+c),c=-7/19+1/39*I,n=56 2865664123851950 r005 Re(z^2+c),c=-7/19+1/39*I,n=54 2865664123852246 r005 Re(z^2+c),c=-7/19+1/39*I,n=52 2865664123853118 r005 Re(z^2+c),c=-7/19+1/39*I,n=50 2865664123855656 r005 Re(z^2+c),c=-7/19+1/39*I,n=48 2865664123862920 r005 Re(z^2+c),c=-7/19+1/39*I,n=46 2865664123883362 r005 Re(z^2+c),c=-7/19+1/39*I,n=44 2865664123939730 r005 Re(z^2+c),c=-7/19+1/39*I,n=42 2865664124091382 r005 Re(z^2+c),c=-7/19+1/39*I,n=40 2865664124486784 r005 Re(z^2+c),c=-7/19+1/39*I,n=38 2865664125474554 r005 Re(z^2+c),c=-7/19+1/39*I,n=36 2865664127789738 r005 Re(z^2+c),c=-7/19+1/39*I,n=34 2865664132654401 r005 Re(z^2+c),c=-7/19+1/39*I,n=32 2865664134499498 r005 Re(z^2+c),c=-31/114+23/47*I,n=63 2865664134548265 m001 1/BesselK(0,1)^2*Kolakoski^2*ln(sqrt(5)) 2865664140668995 r005 Re(z^2+c),c=-7/19+1/39*I,n=30 2865664144201157 r005 Re(z^2+c),c=-7/19+1/39*I,n=28 2865664147248589 r009 Im(z^3+c),c=-19/64+10/39*I,n=5 2865664153120943 a007 Real Root Of -334*x^4-794*x^3+316*x^2-432*x+6 2865664155644021 a003 sin(Pi*5/69)/sin(Pi*28/97) 2865664167019304 m005 (1/2*2^(1/2)+3/4)/(-13/36+7/18*5^(1/2)) 2865664210945233 m001 1/ln(TreeGrowth2nd)^2*Magata*LambertW(1) 2865664229115132 m005 (1/3*2^(1/2)-2/3)/(3/5*2^(1/2)-11/12) 2865664239439828 a001 75025/322*521^(10/13) 2865664245893272 m005 (43/44+1/4*5^(1/2))/(2*5^(1/2)+8/9) 2865664256643272 m006 (4/5*ln(Pi)+2/5)/(5/Pi+3) 2865664257213678 a005 (1/sin(95/207*Pi))^1230 2865664258729637 a007 Real Root Of 285*x^4+441*x^3-826*x^2+480*x-683 2865664259077742 m001 ln(1+sqrt(2))^BesselJZeros(0,1)+GAMMA(5/12) 2865664261508937 r005 Re(z^2+c),c=-7/19+1/39*I,n=25 2865664262691862 m001 (-QuadraticClass+Tetranacci)/(2^(1/2)+5^(1/2)) 2865664262735807 r005 Im(z^2+c),c=-35/106+15/32*I,n=16 2865664264242689 l006 ln(280/4917) 2865664269067933 m001 (3^(1/2)+LambertW(1))/(-Artin+Salem) 2865664270144131 r005 Re(z^2+c),c=17/78+3/53*I,n=4 2865664270401770 a007 Real Root Of 233*x^4+690*x^3+405*x^2+848*x-371 2865664272620368 s002 sum(A186150[n]/(n^3*pi^n+1),n=1..infinity) 2865664280712567 r005 Im(z^2+c),c=-31/118+36/61*I,n=3 2865664288391228 p001 sum(1/(353*n+329)/n/(512^n),n=1..infinity) 2865664291037139 r005 Re(z^2+c),c=-15/14+85/246*I,n=4 2865664293857697 a008 Real Root of x^4-x^3+24*x^2+74*x-76 2865664320753450 m005 (1/2*exp(1)-3/7)/(1/6*exp(1)-7/9) 2865664327070004 r009 Im(z^3+c),c=-53/118+10/63*I,n=33 2865664327621920 m001 HardyLittlewoodC4/(GAMMA(19/24)^BesselJ(1,1)) 2865664335507804 g007 Psi(2,5/11)+Psi(2,4/9)+Psi(2,1/5)-Psi(2,7/12) 2865664337785028 r005 Im(z^2+c),c=-11/106+14/37*I,n=22 2865664343929681 m009 (1/2*Psi(1,2/3)-4)/(2/3*Psi(1,3/4)-5/6) 2865664344713790 m001 1/Rabbit^2/ln(GlaisherKinkelin)*Ei(1)^2 2865664346988131 r005 Re(z^2+c),c=-23/22+28/111*I,n=20 2865664353383890 m001 (GAMMA(5/6)+Otter)/(2^(1/3)-Zeta(1,-1)) 2865664359098467 r005 Im(z^2+c),c=-17/58+19/40*I,n=16 2865664363288416 a007 Real Root Of -246*x^4+574*x^3+31*x^2+878*x-266 2865664363980224 m005 (1/3*3^(1/2)+1/12)/(10/11*5^(1/2)+3/11) 2865664381269973 r009 Im(z^3+c),c=-17/70+44/47*I,n=17 2865664391537539 r005 Im(z^2+c),c=-65/98+1/40*I,n=3 2865664396455308 m006 (1/2*Pi^2-1/3)/(3*exp(2*Pi)-3/4) 2865664397230582 a007 Real Root Of 857*x^4+872*x^3+757*x^2+162*x-1 2865664431903830 r005 Re(z^2+c),c=-65/86+7/40*I,n=4 2865664457837176 r002 26th iterates of z^2 + 2865664464782550 r005 Re(z^2+c),c=-11/40+13/27*I,n=51 2865664467308293 a007 Real Root Of -310*x^4-983*x^3-594*x^2-702*x+639 2865664471455224 a008 Real Root of x^4-x^3-37*x-197 2865664471496298 r009 Im(z^3+c),c=-9/82+17/56*I,n=2 2865664485857876 a007 Real Root Of -390*x^4-852*x^3+417*x^2-721*x+760 2865664486974756 a001 41/48*1597^(41/52) 2865664507641504 r005 Im(z^2+c),c=-11/48+5/11*I,n=11 2865664508537689 a001 514229/521*199^(7/11) 2865664517946689 m001 (Otter-Porter)/(GAMMA(2/3)-GaussAGM) 2865664518840086 r008 a(0)=3,K{-n^6,-1-19*n+17*n^2+11*n^3} 2865664521901572 r005 Im(z^2+c),c=7/122+41/45*I,n=5 2865664531346365 m001 (exp(1/exp(1))-Rabbit)/(Pi-gamma) 2865664533912393 r005 Re(z^2+c),c=-3/17+26/45*I,n=17 2865664537878082 a001 29*(1/2*5^(1/2)+1/2)^3*76^(8/11) 2865664544027050 s002 sum(A251381[n]/(n^2*2^n+1),n=1..infinity) 2865664544206542 h001 (8/9*exp(1)+7/12)/(1/11*exp(2)+3/8) 2865664547985673 b008 ArcCos[-1+(2+Pi)^(-2)] 2865664550679231 a001 29/6765*121393^(14/39) 2865664558010647 a007 Real Root Of 281*x^4+681*x^3-646*x^2-633*x+567 2865664564509373 r009 Im(z^3+c),c=-6/13+9/62*I,n=16 2865664584934100 m001 1/Paris^2*exp(FeigenbaumB)^2/Ei(1) 2865664587121390 m001 (5^(1/2))^Ei(1,1)/((5^(1/2))^(Pi^(1/2))) 2865664587475187 m008 (3*Pi^5+2)/(1/3*Pi^6+3/5) 2865664600708179 r002 63th iterates of z^2 + 2865664614503828 r005 Re(z^2+c),c=-1/3+19/64*I,n=17 2865664619588192 m001 1/Riemann2ndZero*ln(Niven)*GAMMA(5/6) 2865664625618598 m005 (1/2*5^(1/2)+3/8)/(6*Catalan-2/7) 2865664631842215 a001 38/567451585*2971215073^(5/18) 2865664631842817 a001 76/102334155*514229^(5/18) 2865664636747181 m001 Pi+exp(Pi)+BesselK(1,1)+Pi^(1/2) 2865664643336708 a007 Real Root Of 255*x^4+597*x^3-686*x^2-677*x+546 2865664648762342 m001 (3^(1/3)-GAMMA(7/12)*Kolakoski)/Kolakoski 2865664649501976 m001 (2^(1/2)+GAMMA(5/6))/(ThueMorse+Weierstrass) 2865664651845508 m001 (Shi(1)-gamma)/(-Cahen+TwinPrimes) 2865664654847158 r005 Re(z^2+c),c=-4/11+3/13*I,n=3 2865664660518491 m001 Zeta(3)^MasserGramainDelta+Porter 2865664661248675 r009 Re(z^3+c),c=-59/114+34/57*I,n=3 2865664661472888 r002 3th iterates of z^2 + 2865664678178782 l006 ln(7175/9556) 2865664679734912 a001 124/615*3^(8/25) 2865664680258635 r002 8th iterates of z^2 + 2865664712702906 l005 sech(221/115) 2865664719194161 r005 Im(z^2+c),c=-67/74+11/45*I,n=7 2865664719622309 a007 Real Root Of 388*x^4+835*x^3-757*x^2-240*x-987 2865664734747288 m001 (Kolakoski+ZetaP(2))/(Chi(1)-ln(2^(1/2)+1)) 2865664738373407 r005 Im(z^2+c),c=-31/78+30/59*I,n=41 2865664754686458 m001 GAMMA(1/24)^2*ErdosBorwein*exp(sin(Pi/5))^2 2865664757245987 r002 3th iterates of z^2 + 2865664757511460 m001 (ErdosBorwein-Niven)/(Zeta(5)-ln(2)) 2865664762623792 m001 (StolarskyHarborth-Trott2nd)/(Conway+Stephens) 2865664763665773 r005 Im(z^2+c),c=17/62+7/62*I,n=7 2865664765827760 l006 ln(4059/4177) 2865664780209085 r005 Re(z^2+c),c=-10/29+10/41*I,n=17 2865664789368661 r009 Re(z^3+c),c=-10/29+29/52*I,n=6 2865664789762040 l006 ln(387/6796) 2865664792056835 r005 Im(z^2+c),c=4/13+3/32*I,n=37 2865664795624962 m001 GolombDickman*(FransenRobinson+Grothendieck) 2865664803942854 m001 (CopelandErdos-Gompertz)^GAMMA(3/4) 2865664804499615 a007 Real Root Of 359*x^4+795*x^3-849*x^2-829*x-905 2865664808718028 r005 Im(z^2+c),c=-41/110+11/23*I,n=42 2865664816172717 s002 sum(A162138[n]/(n^3*exp(n)+1),n=1..infinity) 2865664828371947 m005 (1/2*2^(1/2)-9/10)/(1/8*exp(1)+1/3) 2865664831100186 m001 (Khinchin+Salem)/(arctan(1/3)+GAMMA(23/24)) 2865664833191245 r005 Re(z^2+c),c=-37/90+13/47*I,n=5 2865664844387331 m005 (1/2*Pi+10/11)/(1/3*Pi-2/11) 2865664846191547 r005 Im(z^2+c),c=21/86+7/50*I,n=5 2865664851033580 l006 ln(6054/8063) 2865664881043104 r005 Im(z^2+c),c=-47/82+13/33*I,n=29 2865664881638287 r009 Re(z^3+c),c=-31/98+13/64*I,n=10 2865664891324376 r009 Re(z^3+c),c=-17/106+61/63*I,n=2 2865664897036013 h001 (1/12*exp(2)+1/3)/(4/11*exp(2)+5/8) 2865664909462580 m005 (-1/6+1/6*5^(1/2))/(5/8*3^(1/2)-4/11) 2865664944114263 r005 Im(z^2+c),c=-19/54+25/51*I,n=26 2865664944885092 m001 (Landau-Lehmer)/(ln(3)+GolombDickman) 2865664945883520 b008 3+Sqrt[2]*Csc[Pi^2] 2865664963915455 p004 log(14633/10987) 2865664977419059 a003 sin(Pi*1/45)+sin(Pi*8/115) 2865664979068445 r005 Im(z^2+c),c=7/34+8/45*I,n=4 2865664980635118 a007 Real Root Of 11*x^4+348*x^3+904*x^2-988*x+655 2865664988163987 r005 Im(z^2+c),c=-59/122+5/56*I,n=6 2865664998091898 r005 Re(z^2+c),c=-13/46+6/13*I,n=52 2865665004807533 r009 Re(z^3+c),c=-31/94+14/59*I,n=5 2865665015859761 m001 cos(1/12*Pi)+DuboisRaymond+Niven 2865665018946438 a007 Real Root Of 757*x^4-812*x^3+53*x^2-912*x+271 2865665019559858 a007 Real Root Of 259*x^4+683*x^3-359*x^2-865*x-924 2865665025651352 m001 1/RenyiParking/Bloch*exp(Trott) 2865665026308073 m009 (3*Psi(1,3/4)-5)/(2*Psi(1,3/4)-6) 2865665030429581 r002 36th iterates of z^2 + 2865665031470825 r008 a(0)=3,K{-n^6,-49+52*n+58*n^2-54*n^3} 2865665032259074 r005 Re(z^2+c),c=-7/19+1/39*I,n=23 2865665035425643 m001 ln(GAMMA(7/12))/(2^(1/3))^2/cos(Pi/12)^2 2865665040184345 m005 (1/2*Catalan-6/7)/(4/9*3^(1/2)-10/11) 2865665051389121 a001 121393/322*521^(9/13) 2865665055821398 r005 Re(z^2+c),c=-23/90+27/50*I,n=42 2865665055841812 p001 sum(1/(307*n+241)/n/(64^n),n=1..infinity) 2865665061043368 m001 (GAMMA(19/24)+Sierpinski)/(Si(Pi)-cos(1)) 2865665062633877 m005 (1/2*exp(1)+7/11)/(5/8*Pi+5) 2865665064468457 r002 52th iterates of z^2 + 2865665067507736 m001 (PrimesInBinary+Sierpinski)/(BesselK(0,1)+Kac) 2865665070171980 r005 Re(z^2+c),c=-25/58+11/21*I,n=28 2865665073576224 a007 Real Root Of -157*x^4+889*x^3-17*x^2+459*x-150 2865665080737386 m005 (1/2*exp(1)-9/10)/(7/11*3^(1/2)+1/2) 2865665087342282 a007 Real Root Of -13*x^4+367*x^3+756*x^2-819*x+958 2865665087627137 l006 ln(494/8675) 2865665091321198 r005 Re(z^2+c),c=-7/30+37/63*I,n=63 2865665094547076 r005 Re(z^2+c),c=43/122+19/62*I,n=11 2865665102449179 l006 ln(4933/6570) 2865665108030180 m005 (1/3*3^(1/2)+2/11)/(2/7*gamma+1/10) 2865665128065597 r005 Im(z^2+c),c=23/94+10/59*I,n=27 2865665129778362 a007 Real Root Of -13*x^4+161*x^3+152*x^2-869*x+927 2865665134675280 m001 (Chi(1)*Pi^(1/2)+Catalan)/Chi(1) 2865665158396961 r005 Im(z^2+c),c=-79/64+1/40*I,n=41 2865665165275052 m001 1/exp(Trott)*GaussKuzminWirsing^2*Pi 2865665172062489 r005 Im(z^2+c),c=-19/86+20/47*I,n=20 2865665174461661 m001 (3^(1/3)+GaussKuzminWirsing)/(Khinchin+Magata) 2865665180043858 m001 (GAMMA(2/3)-GAMMA(7/12))/(Khinchin+Magata) 2865665189186252 m007 (-5*gamma+3/4)/(-4*gamma-8*ln(2)+2/5) 2865665213431483 g006 Psi(1,4/9)+Psi(1,2/9)+1/2*Pi^2-Psi(1,7/12) 2865665220029499 b008 Csch[7^ArcCoth[3]] 2865665224481880 m001 GAMMA(5/24)^2/exp(LandauRamanujan)/Pi 2865665230653270 r005 Im(z^2+c),c=-4/9+23/60*I,n=8 2865665231990319 m001 Artin^Bloch/Ei(1,1) 2865665232079226 r005 Im(z^2+c),c=13/70+4/21*I,n=3 2865665233704061 m005 (1/2*3^(1/2)+7/12)/(2/11*exp(1)-1) 2865665241308810 a007 Real Root Of -286*x^4+950*x^3+232*x^2+397*x+119 2865665249320222 p003 LerchPhi(1/100,4,103/134) 2865665264605135 r005 Im(z^2+c),c=-5/14+32/59*I,n=31 2865665275004109 a001 55/4*64079^(29/42) 2865665289028914 m005 (1/2*Pi-1/10)/(1/198+5/22*5^(1/2)) 2865665301168259 r009 Re(z^3+c),c=-4/13+7/30*I,n=2 2865665315058316 m008 (5/6*Pi^4+2/5)/(4/5*Pi+1/3) 2865665325961791 m001 1/Bloch/exp(Conway)^2*GAMMA(2/3)^2 2865665336792546 s002 sum(A214568[n]/((exp(n)+1)*n),n=1..infinity) 2865665345326673 h001 (-2*exp(1/2)-5)/(-2*exp(2/3)+1) 2865665349012736 a007 Real Root Of 822*x^4-657*x^3-144*x^2-125*x-45 2865665361221871 s002 sum(A077472[n]/(n^3*pi^n+1),n=1..infinity) 2865665365789885 a007 Real Root Of -784*x^4+901*x^3-474*x^2+686*x+262 2865665369052434 r009 Re(z^3+c),c=-11/25+17/39*I,n=41 2865665376993855 a001 843/12586269025*233^(4/15) 2865665380928418 m001 exp(1)*Zeta(5)^Backhouse 2865665385618254 m002 -Pi-Pi^2+Pi^5-6*ProductLog[Pi] 2865665389602629 a007 Real Root Of 403*x^4+859*x^3-832*x^2+215*x+486 2865665390808759 r008 a(0)=3,K{-n^6,-55-52*n^3+49*n^2+65*n} 2865665398235174 m001 (-ln(gamma)+Zeta(1/2))/(2^(1/2)-3^(1/2)) 2865665400943115 r005 Re(z^2+c),c=-13/46+6/13*I,n=61 2865665407564223 m001 FeigenbaumC*ArtinRank2^2*ln(LambertW(1))^2 2865665408429146 r009 Re(z^3+c),c=-61/118+1/2*I,n=50 2865665417661898 a005 (1/cos(23/208*Pi))^690 2865665421375963 m005 (1/2*gamma-7/11)/(3/8*5^(1/2)+3/8) 2865665427468751 m001 GAMMA(17/24)^2*GAMMA(1/24)^2/exp(gamma)^2 2865665428740738 m005 (1/3*3^(1/2)-1/11)/(1/11*gamma-2/9) 2865665438421230 r009 Re(z^3+c),c=-8/13+25/39*I,n=3 2865665460157130 m005 (1/2*Zeta(3)+5)/(113/99+4/11*5^(1/2)) 2865665465579779 r009 Re(z^3+c),c=-23/54+23/56*I,n=39 2865665477816041 m008 (1/4*Pi-3/4)/(4*Pi^3-1/2) 2865665478640839 r009 Re(z^3+c),c=-11/122+32/43*I,n=56 2865665479132133 a007 Real Root Of -32*x^4-43*x^3-126*x^2-597*x+470 2865665484316224 a001 7/620166*521^(7/47) 2865665501733015 l006 ln(3812/5077) 2865665503239272 a007 Real Root Of 358*x^4+911*x^3-333*x^2+78*x+254 2865665503803859 r005 Im(z^2+c),c=3/70+34/55*I,n=60 2865665516454707 r002 54th iterates of z^2 + 2865665542958151 a001 10716675201/8*121393^(11/24) 2865665542975976 a001 969323029/144*12586269025^(11/24) 2865665549063605 m002 3*Pi^2+Pi^2*ProductLog[Pi]-Sinh[Pi] 2865665551755549 m001 (GAMMA(2/3)*ZetaQ(4)-Weierstrass)/ZetaQ(4) 2865665552319791 a007 Real Root Of -316*x^4-443*x^3-793*x^2+873*x+307 2865665552690406 s002 sum(A267838[n]/(n^2*10^n+1),n=1..infinity) 2865665557252449 s002 sum(A238794[n]/((exp(n)+1)*n),n=1..infinity) 2865665566199943 a007 Real Root Of -3*x^4+32*x^3-668*x^2-236*x-12 2865665575677621 m005 (1/2*3^(1/2)+5/6)/(8/11*3^(1/2)-2/3) 2865665585402702 a005 (1/sin(78/223*Pi))^208 2865665586780934 m001 FeigenbaumB*exp(Lehmer)^2*GAMMA(23/24)^2 2865665588120686 a001 2/11*521^(4/55) 2865665594097097 h002 exp(1/11*(15+6^(1/2)*11^(2/3))^(1/2)*11^(1/3)) 2865665596056617 r005 Im(z^2+c),c=-35/118+5/11*I,n=42 2865665596611438 m002 -3-Pi^3+2*Pi^3*Sech[Pi] 2865665601619819 s002 sum(A267838[n]/(n^2*10^n-1),n=1..infinity) 2865665602063418 r005 Im(z^2+c),c=-43/62+4/17*I,n=10 2865665606377186 m001 exp(Pi)/Rabbit*Zeta(1,2)^2 2865665619387107 p004 log(34261/1951) 2865665628773755 a001 1/5771*(1/2*5^(1/2)+1/2)^3*199^(9/13) 2865665629251267 r002 24th iterates of z^2 + 2865665644605249 a007 Real Root Of -352*x^4-957*x^3+258*x^2+151*x-469 2865665657501583 a007 Real Root Of -170*x^4-199*x^3+617*x^2-629*x-88 2865665664393250 a007 Real Root Of 257*x^4+422*x^3-948*x^2-339*x-587 2865665669456451 m001 BesselK(1,1)*Niven+Tribonacci 2865665671042038 a007 Real Root Of 214*x^4+368*x^3-930*x^2-985*x-957 2865665679070452 r005 Im(z^2+c),c=-39/106+25/44*I,n=63 2865665683467365 r009 Im(z^3+c),c=-15/64+5/18*I,n=11 2865665701762481 m005 (1/3*3^(1/2)-3/7)/(2/5*Zeta(3)-1) 2865665706429340 a007 Real Root Of -415*x^4-894*x^3+958*x^2+402*x+233 2865665741938345 m001 1/Riemann3rdZero^2*Niven*exp(Salem)^2 2865665744555877 r005 Im(z^2+c),c=-7/8+50/217*I,n=3 2865665747199238 a007 Real Root Of 204*x^4-993*x^3+478*x^2-841*x-305 2865665767128553 m004 (-375*Pi)/4+(25*Tanh[Sqrt[5]*Pi])/Pi 2865665776512287 m005 (1/2*3^(1/2)-7/10)/(5/8*5^(1/2)-9/11) 2865665777407018 a009 12^(1/3)-2^(1/3)-3^(1/4) 2865665781992750 a001 5702887/322*199^(1/11) 2865665785244180 m005 (1/2*2^(1/2)-1/8)/(1/9*exp(1)-3/10) 2865665796164439 m001 (Otter+Sierpinski)/(Bloch+MinimumGamma) 2865665802740853 m001 Ei(1)^MertensB1/ThueMorse 2865665804618929 l006 ln(6503/8661) 2865665819876511 m001 (-Zeta(1,2)+GAMMA(5/6))/(2^(1/2)-ln(2)) 2865665823472012 r005 Re(z^2+c),c=-27/94+22/49*I,n=54 2865665825457682 m001 (Sarnak-ZetaQ(2))/(ln(2^(1/2)+1)+Backhouse) 2865665832716305 p002 log(13^(5/7)+2^(7/2)) 2865665834890757 r005 Im(z^2+c),c=-11/60+22/53*I,n=14 2865665837242126 m001 Ei(1)^2/Paris^2/ln(GAMMA(1/4)) 2865665837256542 m005 (1/2*2^(1/2)-2/11)/(7/8*exp(1)-6/11) 2865665844233516 r005 Im(z^2+c),c=-21/110+27/64*I,n=6 2865665854212684 a001 4/6765*121393^(47/51) 2865665863533107 a001 98209/161*521^(8/13) 2865665868570387 m005 (1/2*Pi-1/12)/(2/9*2^(1/2)-5/6) 2865665879956468 r005 Im(z^2+c),c=23/74+4/47*I,n=57 2865665891191732 m001 (2^(1/2)-ln(3))/(-MadelungNaCl+MasserGramain) 2865665891344346 a007 Real Root Of -84*x^4-497*x^3-915*x^2-373*x+414 2865665909699098 m005 (1/2*Zeta(3)+5/8)/(3/11*Zeta(3)+1/10) 2865665916326711 b008 -83/3+Cos[3] 2865665920097617 m001 FransenRobinson^Lehmer/Cahen 2865665926615470 a001 514229/199*15127^(30/31) 2865665929769443 m001 (ln(3)*Kolakoski+OrthogonalArrays)/Kolakoski 2865665936668191 m001 ((1+3^(1/2))^(1/2)+Magata)/(cos(1)+GAMMA(3/4)) 2865665939274467 m001 (GAMMA(5/6)+MertensB3)/(ln(gamma)+arctan(1/2)) 2865665948440505 r005 Re(z^2+c),c=-29/44+17/37*I,n=16 2865665953799405 a007 Real Root Of -155*x^4-475*x^3-53*x^2-23*x-356 2865665958524600 s002 sum(A104521[n]/(pi^n+1),n=1..infinity) 2865665970957410 a003 cos(Pi*13/77)-sin(Pi*17/87) 2865665971529344 m001 FeigenbaumDelta^arctan(1/3)*KhinchinHarmonic 2865665972054212 a007 Real Root Of 912*x^4-391*x^3+28*x^2-577*x-183 2865665974776318 a005 (1/cos(23/240*Pi))^223 2865665982493327 m005 (1/2*exp(1)+7/10)/(2/11*Zeta(3)+1/2) 2865665984584950 a001 3571/17711*3^(8/25) 2865666002699703 a007 Real Root Of 159*x^4+347*x^3-647*x^2-718*x+699 2865666005578250 m001 (BesselJ(0,1)-exp(Pi))/(-GaussAGM+ZetaQ(2)) 2865666005808902 m001 (-Kolakoski+MertensB2)/(BesselJ(0,1)-gamma(1)) 2865666008669565 m005 (1/2*2^(1/2)-4/5)/(Pi+1/10) 2865666014184793 a007 Real Root Of 390*x^4+973*x^3-543*x^2-491*x-351 2865666015383492 a001 322*(1/2*5^(1/2)+1/2)^32*4^(10/23) 2865666016179036 m001 (GlaisherKinkelin+MertensB3)/(ln(2)+Ei(1,1)) 2865666019080181 a007 Real Root Of -363*x^4-843*x^3+320*x^2-553*x+429 2865666027740442 a009 1/13*23^(1/2)*13^(1/2)*10^(1/3) 2865666028223908 m001 (exp(Pi)*FellerTornier-GaussAGM)/exp(Pi) 2865666030565241 m001 1/exp(arctan(1/2))/FeigenbaumC^2/cos(Pi/5)^2 2865666039249617 r009 Im(z^3+c),c=-27/64+39/59*I,n=3 2865666040007407 r009 Re(z^3+c),c=-9/34+1/30*I,n=8 2865666045980956 r005 Re(z^2+c),c=-8/25+17/49*I,n=27 2865666046723295 r005 Im(z^2+c),c=3/34+15/53*I,n=15 2865666055677548 a007 Real Root Of -247*x^4-879*x^3-463*x^2-143*x-636 2865666059579513 r005 Im(z^2+c),c=-33/118+13/29*I,n=49 2865666061763669 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)-Thue^Psi(1,1/3) 2865666063364583 m001 (GAMMA(2/3)+MertensB3)/Zeta(1,2) 2865666064499766 m001 (PrimesInBinary-Stephens)/(Bloch-MertensB2) 2865666064839441 m001 GaussKuzminWirsing/Bloch/exp(cos(Pi/5)) 2865666065626922 s002 sum(A193944[n]/(n*exp(n)-1),n=1..infinity) 2865666075304550 a003 cos(Pi*11/78)*cos(Pi*29/73) 2865666078355302 r009 Re(z^3+c),c=-11/52+53/58*I,n=13 2865666090201680 a003 cos(Pi*9/77)-sin(Pi*15/67) 2865666099380918 r002 11th iterates of z^2 + 2865666102094477 a007 Real Root Of 164*x^4+96*x^3-956*x^2+105*x-649 2865666109273145 r005 Im(z^2+c),c=-15/118+20/57*I,n=4 2865666116724197 r005 Im(z^2+c),c=1/25+1/38*I,n=4 2865666121549590 r005 Re(z^2+c),c=-3/122+2/27*I,n=4 2865666126687514 m005 (1/2*gamma-1/12)/(1/6*Zeta(3)-11/12) 2865666128825377 a007 Real Root Of -773*x^4+252*x^3-696*x^2+990*x+352 2865666133377300 a009 5^(1/3)*(12^(2/3)-22) 2865666136901004 l002 Ei(3,29/88) 2865666136901004 l003 Ei(3,29/88) 2865666164951559 l006 ln(107/1879) 2865666164951559 p004 log(1879/107) 2865666170749603 m004 75/(4*Pi)-(5*Log[Sqrt[5]*Pi])/Pi 2865666171364484 m005 (1/3*gamma+3/4)/(1/2*gamma+3) 2865666171364484 m007 (-1/3*gamma-3/4)/(-1/2*gamma-3) 2865666174960004 a001 9349/46368*3^(8/25) 2865666176834479 a007 Real Root Of 768*x^4+437*x^3+827*x^2+111*x-31 2865666181405820 m001 1/Trott/ln(HardHexagonsEntropy)/cos(Pi/12) 2865666191844591 a001 4/13*196418^(46/49) 2865666194588487 r005 Im(z^2+c),c=-5/44+8/21*I,n=5 2865666202735350 a001 24476/121393*3^(8/25) 2865666206787719 a001 64079/317811*3^(8/25) 2865666208108093 b008 -1/36+ArcSinh[9] 2865666209292220 a001 39603/196418*3^(8/25) 2865666216237716 m001 Salem/(CopelandErdos+ZetaP(3)) 2865666218497610 m005 (1/3*2^(1/2)-1/12)/(8/9*Zeta(3)+2/7) 2865666219901458 a001 15127/75025*3^(8/25) 2865666220479137 a007 Real Root Of -542*x^4-156*x^3+17*x^2+873*x+25 2865666227942292 a007 Real Root Of 795*x^4-657*x^3-546*x^2-576*x+220 2865666229240057 r005 Im(z^2+c),c=-3/7+11/21*I,n=51 2865666233248946 m001 1/cosh(1)/ln(GAMMA(19/24))^2/log(1+sqrt(2)) 2865666233679152 l006 ln(2691/3584) 2865666236697544 h001 (5/6*exp(2)+1/12)/(1/5*exp(2)+7/10) 2865666253037810 m001 Riemann1stZero^2/Si(Pi)^2/ln(GAMMA(3/4)) 2865666258495191 r005 Im(z^2+c),c=-69/70+3/10*I,n=19 2865666277654809 v002 sum(1/(2^n+(47/2*n^2-53/2*n+5)),n=1..infinity) 2865666281116775 m002 Cosh[Pi]+(Pi^5*Coth[Pi])/18 2865666292618258 a001 5778/28657*3^(8/25) 2865666296780313 m001 Trott^2/ln(Cahen)*Zeta(5)^2 2865666298962664 a008 Real Root of x^2-x-82407 2865666304187398 r009 Im(z^3+c),c=-1/64+28/33*I,n=32 2865666318952681 m001 1/Tribonacci*ln(GolombDickman)^2/BesselK(0,1) 2865666337103066 a007 Real Root Of 208*x^4-167*x^3+311*x^2-988*x-314 2865666341119185 s001 sum(exp(-3*Pi)^n*A036182[n],n=1..infinity) 2865666347219508 r005 Re(z^2+c),c=-93/74+1/57*I,n=34 2865666348003657 a001 1/76*7^(2/5) 2865666367692478 r005 Im(z^2+c),c=-123/110+5/22*I,n=6 2865666368788868 m001 exp((3^(1/3)))/TwinPrimes/sqrt(5) 2865666370405695 p004 log(27179/20407) 2865666374746537 b008 2+Csch[Pi^2/10] 2865666379157963 r002 21th iterates of z^2 + 2865666379157963 r002 21th iterates of z^2 + 2865666381720738 m001 (TreeGrowth2nd+ZetaQ(2))/(ln(3)+GolombDickman) 2865666382137505 g006 Psi(1,7/10)-Psi(1,1/12)-Psi(1,1/11)-Psi(1,2/9) 2865666404767320 m005 (1/2*5^(1/2)+2)/(5/7*Catalan-6/11) 2865666417512603 r005 Re(z^2+c),c=9/29+5/36*I,n=42 2865666442068219 m005 (3*exp(1)+1/3)/(1/6*gamma+1/5) 2865666451141626 m001 (Catalan+BesselJ(0,1))/(gamma(2)+Gompertz) 2865666465544086 b008 1/4+3*Erfc[Sqrt[Pi]] 2865666469193711 m001 (Kac-ZetaQ(3))/(arctan(1/3)+FeigenbaumC) 2865666471958624 m001 (MertensB3+ZetaP(4))/(Zeta(5)-GAMMA(7/12)) 2865666473246579 m001 Chi(1)/Pi^(1/2)/ZetaQ(4) 2865666481731676 a007 Real Root Of -264*x^4-646*x^3+666*x^2+752*x-713 2865666482521032 r005 Im(z^2+c),c=3/22+9/16*I,n=14 2865666486585003 m009 (4/5*Psi(1,3/4)-4)/(32*Catalan+4*Pi^2-1/6) 2865666488830659 m005 (1/2*3^(1/2)+5/12)/(-149/198+3/22*5^(1/2)) 2865666498388174 r005 Im(z^2+c),c=-11/48+18/43*I,n=12 2865666511032180 m001 (Shi(1)-cos(1))/(-GAMMA(2/3)+GAMMA(19/24)) 2865666512139523 a007 Real Root Of 321*x^4+904*x^3+118*x^2+233*x-675 2865666515717739 p003 LerchPhi(1/12,3,29/19) 2865666519432102 a007 Real Root Of -493*x^4-941*x^3+963*x^2-893*x+635 2865666519527257 a001 5702887/2207*199^(5/11) 2865666524546023 m005 (1/2*5^(1/2)+6/7)/(5/12*2^(1/2)+1/10) 2865666525645655 a007 Real Root Of 338*x^4+744*x^3-472*x^2+355*x-392 2865666527289653 a001 9/1292*55^(6/17) 2865666533545575 a007 Real Root Of 317*x^4+567*x^3-939*x^2-100*x-610 2865666533556956 a007 Real Root Of 373*x^4+856*x^3-572*x^2-132*x-691 2865666556170937 r002 36th iterates of z^2 + 2865666561430993 r005 Im(z^2+c),c=-11/27+31/63*I,n=41 2865666584545650 m002 -2*Pi^2+Pi^5+Log[Pi]/4 2865666596449617 g007 Psi(2,1/12)+Psi(2,7/11)+Psi(2,2/7)-Psi(2,1/7) 2865666601922396 a009 1/11*(20*11^(1/2)+24)^(1/2)*11^(1/2) 2865666606905129 m001 Shi(1)+ln(3)+Rabbit 2865666618478406 a007 Real Root Of 407*x^4-166*x^3-856*x^2-302*x+158 2865666625564435 p001 sum(1/(571*n+350)/(128^n),n=0..infinity) 2865666632319599 a007 Real Root Of 308*x^4+993*x^3+34*x^2-564*x+702 2865666635028191 l006 ln(6952/9259) 2865666635842444 r005 Im(z^2+c),c=-11/40+23/47*I,n=13 2865666643194345 r009 Re(z^3+c),c=-21/46+25/54*I,n=37 2865666644770493 m001 BesselI(0,1)*(ln(gamma)+StronglyCareFree) 2865666663731525 m001 (Ei(1,1)+Artin)/(OneNinth+ReciprocalLucas) 2865666672733417 r005 Re(z^2+c),c=-31/90+15/61*I,n=17 2865666673931257 r009 Im(z^3+c),c=-23/90+16/59*I,n=10 2865666675603045 a001 317811/322*521^(7/13) 2865666682959830 m001 (Si(Pi)+Magata)/(ZetaP(3)+ZetaQ(3)) 2865666683727637 r009 Re(z^3+c),c=-6/13+27/59*I,n=31 2865666685630709 m001 ln(GAMMA(5/6))^2/DuboisRaymond^2*exp(1)^2 2865666693003551 a007 Real Root Of 843*x^4+861*x^3-663*x^2-923*x+293 2865666694659931 r005 Re(z^2+c),c=-31/122+50/59*I,n=13 2865666695184702 r005 Re(z^2+c),c=-55/82+2/51*I,n=4 2865666715941223 a007 Real Root Of -401*x^4-869*x^3+746*x^2+98*x+747 2865666723645847 a007 Real Root Of -331*x^4-834*x^3+307*x^2+2*x+180 2865666724657282 r009 Re(z^3+c),c=-49/122+18/49*I,n=38 2865666725152076 m001 ZetaR(2)^(ln(3)*Gompertz) 2865666730525491 a007 Real Root Of -518*x^4+167*x^3+405*x^2+645*x+159 2865666730602386 r005 Im(z^2+c),c=-11/32+21/41*I,n=7 2865666734526139 m004 -Cos[Sqrt[5]*Pi]/6+10*Pi*Tan[Sqrt[5]*Pi] 2865666740768102 a005 (1/sin(77/163*Pi))^891 2865666756439016 p004 log(35543/26687) 2865666756601396 r005 Re(z^2+c),c=23/86+3/28*I,n=32 2865666768387155 m001 (Landau-gamma)/(OneNinth+Trott) 2865666780539920 r005 Im(z^2+c),c=-15/22+19/87*I,n=10 2865666791026619 a001 2207/10946*3^(8/25) 2865666798265138 m001 (Shi(1)-cos(1))/(-Khinchin+QuadraticClass) 2865666803283387 m001 (-Robbin+StronglyCareFree)/(gamma+Magata) 2865666808559791 r005 Im(z^2+c),c=-13/114+18/47*I,n=18 2865666809393055 r005 Re(z^2+c),c=-7/27+14/17*I,n=10 2865666815055838 h001 (7/10*exp(1)+1/6)/(9/10*exp(2)+4/7) 2865666821597287 a007 Real Root Of 278*x^4+596*x^3-562*x^2+16*x-61 2865666826966760 a007 Real Root Of 118*x^4+450*x^3+709*x^2+855*x-740 2865666838848987 r005 Im(z^2+c),c=-1/38+12/35*I,n=12 2865666840659425 a007 Real Root Of 81*x^4+156*x^3-235*x^2+123*x+491 2865666844631728 m001 (Zeta(5)+DuboisRaymond)/(Trott-ZetaQ(2)) 2865666865790650 m005 (1/3*gamma+1/10)/(7/9*gamma+4/7) 2865666868408744 a007 Real Root Of -215*x^4-722*x^3-514*x^2-586*x+50 2865666871265776 r005 Im(z^2+c),c=19/64+4/37*I,n=34 2865666871401241 m001 1/exp(sin(Pi/12))^2/BesselK(1,1)/sin(Pi/5)^2 2865666875984792 m001 (Bloch-gamma)/(-FibonacciFactorial+Thue) 2865666883043799 r005 Re(z^2+c),c=-37/50+2/33*I,n=6 2865666888496913 l006 ln(4261/5675) 2865666913208270 m008 (3*Pi^4+2)/(1/3*Pi^5+2/3) 2865666916371933 r009 Re(z^3+c),c=-41/114+9/31*I,n=23 2865666916498114 r005 Re(z^2+c),c=-31/86+1/7*I,n=18 2865666922104495 r005 Re(z^2+c),c=23/86+3/28*I,n=39 2865666934466425 a001 76*(1/2*5^(1/2)+1/2)^2*4^(5/19) 2865666941294155 a003 sin(Pi*10/109)/sin(Pi*17/37) 2865666950611608 a003 sin(Pi*15/61)/cos(Pi*35/83) 2865666953991873 a007 Real Root Of 177*x^4-290*x^3-793*x^2-458*x+202 2865666964266390 r005 Im(z^2+c),c=-1/7+21/53*I,n=14 2865666965945347 m001 1/ln(cos(1))/Porter*sin(Pi/12) 2865666970561356 m005 (1/12+1/6*5^(1/2))/(4/5*exp(1)-7/12) 2865666971413724 m001 Paris^2*GlaisherKinkelin*exp(exp(1))^2 2865666974033241 a007 Real Root Of 684*x^4+38*x^3+994*x^2+71*x-65 2865666981104652 r005 Im(z^2+c),c=7/32+11/57*I,n=25 2865666988290024 q001 1/3489589 2865666988972740 r009 Im(z^3+c),c=-1/36+50/59*I,n=30 2865666997913254 r002 55th iterates of z^2 + 2865666998955625 g004 Im(Psi(-21/8+I*2/3)) 2865667010380872 p004 log(22109/1259) 2865667012202407 r005 Im(z^2+c),c=-25/102+27/62*I,n=35 2865667021568417 a007 Real Root Of 636*x^4-896*x^3-24*x^2-314*x-9 2865667022021260 a001 2584*199^(5/11) 2865667022991033 a001 9349*832040^(21/50) 2865667023427115 m001 1/GAMMA(19/24)^2/ln(GAMMA(13/24))^2*cos(Pi/12) 2865667032684301 m001 StolarskyHarborth^(Khinchin*Riemann2ndZero) 2865667038238271 r009 Im(z^3+c),c=-9/20+3/19*I,n=32 2865667040774863 m001 2^(1/3)+Landau*Otter 2865667044539480 a007 Real Root Of -483*x^4+922*x^3+78*x^2+26*x+26 2865667045524326 a007 Real Root Of 390*x^4+217*x^3-233*x^2-707*x+214 2865667056573649 a001 21/3010349*64079^(6/47) 2865667056742345 a001 21/1149851*39603^(2/47) 2865667063210598 h001 (1/11*exp(1)+1/11)/(1/4*exp(1)+1/2) 2865667063522306 h002 exp(1/2*(11^(1/2)*2^(1/4)-9^(3/4))*2^(3/4)) 2865667068639377 m006 (1/4*exp(2*Pi)+4/5)/(2/Pi-1/6) 2865667083691586 a007 Real Root Of 31*x^4-34*x^3-301*x^2+135*x-32 2865667095334162 a001 39088169/15127*199^(5/11) 2865667099497751 r005 Re(z^2+c),c=-7/23+13/30*I,n=16 2865667106030370 a001 34111385/13201*199^(5/11) 2865667107590926 a001 133957148/51841*199^(5/11) 2865667107818608 a001 233802911/90481*199^(5/11) 2865667107851826 a001 1836311903/710647*199^(5/11) 2865667107856673 a001 267084832/103361*199^(5/11) 2865667107857380 a001 12586269025/4870847*199^(5/11) 2865667107857483 a001 10983760033/4250681*199^(5/11) 2865667107857498 a001 43133785636/16692641*199^(5/11) 2865667107857500 a001 75283811239/29134601*199^(5/11) 2865667107857501 a001 591286729879/228826127*199^(5/11) 2865667107857501 a001 86000486440/33281921*199^(5/11) 2865667107857501 a001 4052739537881/1568397607*199^(5/11) 2865667107857501 a001 3536736619241/1368706081*199^(5/11) 2865667107857501 a001 3278735159921/1268860318*199^(5/11) 2865667107857501 a001 2504730781961/969323029*199^(5/11) 2865667107857501 a001 956722026041/370248451*199^(5/11) 2865667107857501 a001 182717648081/70711162*199^(5/11) 2865667107857502 a001 139583862445/54018521*199^(5/11) 2865667107857508 a001 53316291173/20633239*199^(5/11) 2865667107857547 a001 10182505537/3940598*199^(5/11) 2865667107857817 a001 7778742049/3010349*199^(5/11) 2865667107859668 a001 2971215073/1149851*199^(5/11) 2865667107872357 a001 567451585/219602*199^(5/11) 2865667107959323 a001 433494437/167761*199^(5/11) 2865667108555403 a001 165580141/64079*199^(5/11) 2865667108780474 r005 Im(z^2+c),c=-29/86+28/61*I,n=22 2865667112640991 a001 31622993/12238*199^(5/11) 2865667116591619 r009 Re(z^3+c),c=-49/122+18/49*I,n=37 2865667116725189 r009 Im(z^3+c),c=-2/17+13/43*I,n=7 2865667118266903 m001 (gamma(2)+Cahen)/(FransenRobinson-Gompertz) 2865667122776104 r002 33th iterates of z^2 + 2865667131799780 b008 3+BarnesG[-1/6] 2865667132789492 r005 Re(z^2+c),c=7/90+13/38*I,n=10 2865667140046181 r002 3th iterates of z^2 + 2865667140644029 a001 24157817/9349*199^(5/11) 2865667142482667 m001 GlaisherKinkelin^2*FransenRobinson^2/ln(Trott) 2865667152155822 m005 (1/2*gamma-7/8)/(2/3*5^(1/2)+5/9) 2865667177476423 r005 Re(z^2+c),c=-1+49/177*I,n=54 2865667179082739 m001 (Paris+Weierstrass)/(Ei(1,1)+Grothendieck) 2865667190694566 l006 ln(5831/7766) 2865667195892617 a005 (1/cos(17/83*Pi))^46 2865667231934340 r005 Re(z^2+c),c=-2/7+29/64*I,n=45 2865667236105320 m002 E^Pi+Pi^4*Sech[Pi]-Sinh[Pi]/4 2865667238431835 a001 34/2207*76^(27/40) 2865667241822318 m005 (1/2*3^(1/2)-4/7)/(3/7*3^(1/2)+2/7) 2865667242364874 a007 Real Root Of 961*x^4-994*x^3-886*x^2-872*x-207 2865667262558413 m002 1+8*Pi^3*Sinh[Pi] 2865667262921807 r005 Im(z^2+c),c=-34/27+1/34*I,n=4 2865667263273311 r005 Re(z^2+c),c=-3/11+15/31*I,n=24 2865667265476598 m005 (1/2*Pi-9/11)/(1/7*Zeta(3)+1/11) 2865667266581705 a007 Real Root Of 126*x^4-831*x^3-679*x^2-794*x+302 2865667273256833 b008 1+EulerGamma-Sqrt[2]*Pi 2865667273673257 r005 Re(z^2+c),c=-11/62+3/8*I,n=2 2865667277409126 m001 (Zeta(3)+ln(Pi))/(exp(1/exp(1))-Kac) 2865667279725999 r009 Re(z^3+c),c=-1/16+34/45*I,n=59 2865667291009118 r005 Re(z^2+c),c=-9/44+15/26*I,n=14 2865667299701400 l006 ln(469/8236) 2865667314531528 r005 Im(z^2+c),c=23/58+23/59*I,n=6 2865667322317966 m001 Rabbit*(GAMMA(2/3)+FeigenbaumD) 2865667323165544 a007 Real Root Of -132*x^4-90*x^3+962*x^2+222*x-480 2865667324327212 a007 Real Root Of 215*x^4+434*x^3-560*x^2-447*x-968 2865667325594690 a007 Real Root Of -816*x^4+20*x^3+98*x^2+925*x+263 2865667332579721 a001 9227465/3571*199^(5/11) 2865667364679725 l006 ln(7401/9857) 2865667366316574 m001 ln(MertensB1)^2/FransenRobinson/sqrt(5) 2865667376972401 a007 Real Root Of -353*x^4+183*x^3+90*x^2+969*x-287 2865667378426136 m003 1/2+(3*Sqrt[5])/16+(11*E^(1/2+Sqrt[5]/2))/2 2865667378888260 m006 (4*Pi-1)/(3/4*exp(2*Pi)+2) 2865667399161829 r005 Re(z^2+c),c=-39/106+1/23*I,n=21 2865667407892250 a007 Real Root Of -656*x^4+978*x^3+627*x^2+743*x-283 2865667408223218 m001 exp(Sierpinski)^2/MinimumGamma*cosh(1)^2 2865667410118874 m001 1/Rabbit^2*exp(PrimesInBinary)^2/(2^(1/3))^2 2865667430934170 r005 Re(z^2+c),c=-29/86+12/43*I,n=26 2865667443113510 r009 Im(z^3+c),c=-21/46+7/46*I,n=13 2865667444178012 a007 Real Root Of -288*x^4-845*x^3-125*x^2-73*x+354 2865667444644781 r005 Re(z^2+c),c=-11/46+36/53*I,n=4 2865667446140358 r009 Im(z^3+c),c=-19/78+11/40*I,n=13 2865667456926824 a001 199/13*17711^(23/43) 2865667463025997 l002 exp(polylog(3,83/92)) 2865667466906880 m001 (cos(1/12*Pi)+FeigenbaumB*Niven)/FeigenbaumB 2865667476518929 a007 Real Root Of 477*x^4+880*x^3-964*x^2+980*x-734 2865667480319054 m001 StronglyCareFree/(Conway+OrthogonalArrays) 2865667486776068 r002 12th iterates of z^2 + 2865667487701585 a001 514229/322*521^(6/13) 2865667488391019 m001 (Zeta(1/2)-arctan(1/2))/(gamma(2)-Robbin) 2865667489501806 r005 Re(z^2+c),c=-17/50+15/56*I,n=17 2865667493301449 m001 Ei(1)^2/exp(FransenRobinson)*GAMMA(1/12)^2 2865667498914959 m004 -3+3/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865667510461831 r009 Re(z^3+c),c=-43/106+3/8*I,n=24 2865667517687069 r005 Im(z^2+c),c=-7/25+13/29*I,n=31 2865667518306622 m001 1/BesselJ(0,1)^2/PrimesInBinary^2/ln(sqrt(2)) 2865667526256769 m001 (Zeta(1/2)-Artin)/(DuboisRaymond-GaussAGM) 2865667539517707 p001 sum(1/(83*n+35)/(100^n),n=0..infinity) 2865667540701346 a007 Real Root Of -307*x^4+730*x^3-536*x^2+861*x+310 2865667559033759 a001 24476/13*3^(13/34) 2865667564932178 m001 (exp(Pi)*FransenRobinson+Totient)/exp(Pi) 2865667578086592 m001 DuboisRaymond^(ThueMorse/cos(1)) 2865667584001160 r009 Im(z^3+c),c=-19/78+11/40*I,n=11 2865667601842434 m001 1/exp(Tribonacci)^2/Magata^2*log(2+sqrt(3)) 2865667608648796 m001 (5^(1/2)+Catalan)/(ln(3)+HeathBrownMoroz) 2865667608802170 r005 Re(z^2+c),c=-33/118+23/49*I,n=62 2865667615826908 r008 a(0)=0,K{-n^6,25+97*n^3-6*n^2-81*n} 2865667624518194 r005 Im(z^2+c),c=-3/14+25/59*I,n=27 2865667635110637 l006 ln(362/6357) 2865667641307476 m005 (1/3*Pi-3/7)/(8/11*exp(1)+2/11) 2865667653143838 m001 (GAMMA(19/24)+RenyiParking)/(Robbin+ZetaQ(3)) 2865667664359770 m008 (1/4*Pi^5-5)/(1/4*Pi^4+3/5) 2865667672838631 a007 Real Root Of 135*x^4+152*x^3-471*x^2+393*x-533 2865667673131776 r005 Re(z^2+c),c=-41/106+2/9*I,n=2 2865667675564343 a007 Real Root Of 208*x^4+223*x^3-913*x^2+405*x-121 2865667678223010 r002 27th iterates of z^2 + 2865667678714063 r005 Im(z^2+c),c=-7/26+4/9*I,n=52 2865667688425696 m001 1/exp(sinh(1))^2*Zeta(9)*sqrt(3)^2 2865667691281945 r009 Re(z^3+c),c=-11/28+17/49*I,n=13 2865667705470566 m001 (Zeta(1/2)-Thue)/AlladiGrinstead 2865667712202400 m001 ln(MertensB1)^2/DuboisRaymond*GAMMA(1/6)^2 2865667720058544 a007 Real Root Of -274*x^4-464*x^3+732*x^2-585*x-129 2865667737649119 g005 GAMMA(7/9)*GAMMA(1/9)*GAMMA(5/8)/GAMMA(2/11) 2865667755237305 m001 BesselJ(0,1)*ZetaQ(4)+Trott2nd 2865667769658049 r008 a(0)=3,K{-n^6,1+4*n^3+3*n^2+n} 2865667772939424 a001 3/196418*46368^(19/39) 2865667773636040 a007 Real Root Of -307*x^4-850*x^3-110*x^2-866*x-878 2865667778743300 l006 ln(7946/8177) 2865667782723123 a001 76/121393*196418^(16/51) 2865667783547115 r005 Re(z^2+c),c=-9/16+11/36*I,n=7 2865667799005403 a005 (1/cos(13/148*Pi))^87 2865667799047616 r009 Re(z^3+c),c=-65/118+21/41*I,n=5 2865667810597132 a007 Real Root Of 225*x^4-204*x^3+97*x^2-505*x-159 2865667813667924 m001 (3^(1/2)-cos(1/12*Pi))/(gamma(2)+FeigenbaumD) 2865667816540941 m001 1/RenyiParking^2/Si(Pi)^2*ln(sqrt(3)) 2865667823905176 a001 76/21*832040^(27/41) 2865667835154984 a007 Real Root Of -361*x^4-823*x^3+382*x^2-362*x+803 2865667859756112 m001 FibonacciFactorial/Cahen/exp(Ei(1)) 2865667861525123 p001 sum(1/(351*n+331)/n/(512^n),n=1..infinity) 2865667880654413 r005 Im(z^2+c),c=-17/90+26/63*I,n=18 2865667884458572 r009 Re(z^3+c),c=-4/11+21/62*I,n=2 2865667888691290 r002 10th iterates of z^2 + 2865667909272103 m001 (-Backhouse+FeigenbaumD)/(BesselI(0,1)-Chi(1)) 2865667910128303 a007 Real Root Of -96*x^4+99*x^3+995*x^2-61*x+458 2865667923169195 m005 (1/3*Catalan-1/6)/(1/9*exp(1)+2/11) 2865667927262681 m001 (Zeta(5)+Ei(1,1))/(BesselJ(1,1)-ZetaQ(4)) 2865667947159996 m001 (GAMMA(2/3)-Psi(2,1/3))/(Kolakoski+Salem) 2865667947964512 a001 322/13*317811^(3/8) 2865667954088909 r005 Im(z^2+c),c=-5/22+23/55*I,n=12 2865667963082515 r002 32th iterates of z^2 + 2865667977007043 r005 Im(z^2+c),c=-19/58+27/58*I,n=62 2865667979318797 m005 (-1/6+1/4*5^(1/2))/(5*exp(1)+1/10) 2865668005600231 r008 a(0)=0,K{-n^6,73-81*n^3+7*n^2-34*n} 2865668007440534 m009 (Pi^2-3)/(Psi(1,2/3)-2/3) 2865668010862798 l006 ln(1570/2091) 2865668018885585 m001 (-Porter+Riemann3rdZero)/(2^(1/2)-Lehmer) 2865668022049503 r005 Im(z^2+c),c=27/118+7/38*I,n=28 2865668034827998 r005 Re(z^2+c),c=17/98+8/15*I,n=45 2865668046120530 r005 Re(z^2+c),c=9/40+3/49*I,n=18 2865668063705440 m006 (1/2*ln(Pi)+3/4)/(2/5*Pi^2+2/3) 2865668069439088 m001 (3^(1/3)+Zeta(1,-1))/(Pi^(1/2)+FeigenbaumD) 2865668074206862 r005 Re(z^2+c),c=-2/7+26/55*I,n=22 2865668076944950 r005 Im(z^2+c),c=-4/27+24/59*I,n=8 2865668078376666 a001 521/832040*4181^(36/49) 2865668084338978 s001 sum(exp(-Pi)^(n-1)*A042344[n],n=1..infinity) 2865668086883294 m001 (Catalan-FransenRobinson)/TwinPrimes 2865668102118525 a003 cos(Pi*26/101)-sin(Pi*41/95) 2865668104765453 v003 sum((11/2*n^2-9/2*n+22)/(n!+2),n=1..infinity) 2865668120868843 m001 1/GAMMA(1/12)*FeigenbaumKappa/exp(sqrt(2)) 2865668135668849 s002 sum(A004807[n]/((10^n+1)/n),n=1..infinity) 2865668138973666 r009 Re(z^3+c),c=-37/126+7/47*I,n=10 2865668141935104 a007 Real Root Of 427*x^4-437*x^3-887*x^2-627*x-120 2865668151259888 m005 (1/2*exp(1)+11/12)/(5/7*exp(1)+6) 2865668153011194 m005 (1/2*Catalan+1/9)/(4/9*exp(1)+7/9) 2865668172378148 a009 17^(1/2)*(23^(1/2)+10^(1/3)) 2865668173503711 h001 (5/9*exp(1)+1/6)/(2/11*exp(1)+1/11) 2865668188177859 r005 Re(z^2+c),c=7/20+19/59*I,n=37 2865668201871496 r008 a(0)=0,K{-n^6,-57+64*n^3+52*n^2-24*n} 2865668213788207 r005 Im(z^2+c),c=-39/32+1/56*I,n=22 2865668218495934 m005 (1/2*2^(1/2)+5/9)/(3*Zeta(3)+4/5) 2865668222204154 r004 Im(z^2+c),c=-12/11+7/23*I,z(0)=-1,n=13 2865668230287059 r002 34th iterates of z^2 + 2865668232769711 g006 Psi(1,5/11)+Psi(1,1/3)-Psi(1,9/11)-Psi(1,2/7) 2865668252000273 l006 ln(255/4478) 2865668270156593 a001 17/38*45537549124^(5/14) 2865668278275418 m001 Robbin/FeigenbaumB^2/exp(BesselK(1,1))^2 2865668281561781 a001 17/38*15127^(51/56) 2865668284093219 m001 Zeta(1/2)/(ln(2)^Tribonacci) 2865668299789518 a001 416020/161*521^(5/13) 2865668314230202 r009 Im(z^3+c),c=-10/19+11/64*I,n=50 2865668316628182 a007 Real Root Of 638*x^4+672*x^3-114*x^2-718*x+195 2865668318758154 p001 sum(1/(390*n+359)/n/(5^n),n=1..infinity) 2865668327127643 a001 377/322*64079^(21/23) 2865668327503952 a001 48/281*20633239^(5/7) 2865668327503957 a001 48/281*2537720636^(5/9) 2865668327503957 a001 48/281*312119004989^(5/11) 2865668327503957 a001 48/281*(1/2+1/2*5^(1/2))^25 2865668327503957 a001 48/281*3461452808002^(5/12) 2865668327503957 a001 48/281*28143753123^(1/2) 2865668327503957 a001 48/281*228826127^(5/8) 2865668327504647 a001 48/281*1860498^(5/6) 2865668327753303 a001 377/322*439204^(7/9) 2865668327764828 a001 377/322*7881196^(7/11) 2865668327764854 a001 377/322*20633239^(3/5) 2865668327764858 a001 377/322*141422324^(7/13) 2865668327764858 a001 377/322*2537720636^(7/15) 2865668327764858 a001 377/322*17393796001^(3/7) 2865668327764858 a001 377/322*45537549124^(7/17) 2865668327764858 a001 377/322*14662949395604^(1/3) 2865668327764858 a001 377/322*(1/2+1/2*5^(1/2))^21 2865668327764858 a001 377/322*192900153618^(7/18) 2865668327764858 a001 377/322*10749957122^(7/16) 2865668327764858 a001 377/322*599074578^(1/2) 2865668327764859 a001 377/322*33385282^(7/12) 2865668327765437 a001 377/322*1860498^(7/10) 2865668327769114 a001 377/322*710647^(3/4) 2865668327998111 a001 377/322*103682^(7/8) 2865668328909244 p001 sum(1/(593*n+350)/(125^n),n=0..infinity) 2865668329508938 a001 377/322*39603^(21/22) 2865668333848832 r005 Re(z^2+c),c=-7/19+1/39*I,n=21 2865668338143678 a003 cos(Pi*13/115)-cos(Pi*31/113) 2865668339146543 m001 FeigenbaumDelta^2/Champernowne/ln(Si(Pi)) 2865668346624925 r005 Im(z^2+c),c=-5/32+19/47*I,n=9 2865668349152432 r009 Im(z^3+c),c=-9/32+38/53*I,n=5 2865668349393946 a001 7/196418*10946^(25/53) 2865668366785642 m001 (Champernowne+Stephens)/(exp(Pi)+BesselI(0,1)) 2865668376675306 r009 Re(z^3+c),c=-16/27+35/64*I,n=8 2865668387002811 m003 7/12+(33*Sqrt[5])/32+Cos[1/2+Sqrt[5]/2]/2 2865668393316007 r005 Im(z^2+c),c=-7/110+22/61*I,n=15 2865668395137850 m002 1+2/Pi+Log[Pi]*ProductLog[Pi] 2865668405897466 r005 Re(z^2+c),c=-9/14+59/231*I,n=9 2865668408932081 p004 log(24989/1423) 2865668411583878 m001 1/ln(BesselJ(0,1))*RenyiParking*GAMMA(23/24) 2865668423718734 m001 (ln(3)+FeigenbaumMu)/(GaussAGM+Kolakoski) 2865668424871567 a003 sin(Pi*34/115)/cos(Pi*25/61) 2865668425402980 a007 Real Root Of -278*x^4-691*x^3+711*x^2+965*x-587 2865668447214853 m001 ((1+3^(1/2))^(1/2)+Kolakoski)^Salem 2865668447395449 s001 sum(exp(-Pi/4)^n*A208933[n],n=1..infinity) 2865668455825050 m005 (1/2*Catalan-9/10)/(1/3*exp(1)+7/11) 2865668461126140 k001 Champernowne real with 280*n+6 2865668462436755 a008 Real Root of x^4-x^3-3*x^2+2*x-25 2865668463604427 r005 Im(z^2+c),c=-27/70+38/63*I,n=7 2865668467229418 r005 Im(z^2+c),c=-97/78+7/50*I,n=6 2865668469453772 r002 5th iterates of z^2 + 2865668484555637 a007 Real Root Of 314*x^4+882*x^3+250*x^2+898*x+101 2865668485068512 r005 Im(z^2+c),c=-43/122+13/27*I,n=21 2865668487191053 m005 (1/2*Catalan+2/7)/(4/7*Pi+4/5) 2865668507237159 r009 Im(z^3+c),c=-19/78+11/40*I,n=14 2865668510584087 r009 Im(z^3+c),c=-11/114+51/61*I,n=20 2865668521134612 m001 ln(Pi)^Zeta(1/2)/(Psi(2,1/3)^Zeta(1/2)) 2865668521627403 m008 (3/4*Pi-3/5)/(2*Pi^5+4/5) 2865668542713088 h001 (6/11*exp(2)+10/11)/(2/5*exp(1)+7/11) 2865668553278906 r002 29th iterates of z^2 + 2865668554693094 r009 Im(z^3+c),c=-59/114+9/64*I,n=5 2865668567045563 m001 Catalan^TwinPrimes*GaussKuzminWirsing 2865668567045563 m001 GaussKuzminWirsing*Catalan^TwinPrimes 2865668567315475 r009 Im(z^3+c),c=-1/40+39/46*I,n=18 2865668574538676 r005 Im(z^2+c),c=-3/86+12/35*I,n=8 2865668576497973 a007 Real Root Of 713*x^4-915*x^3-67*x^2-524*x-171 2865668578088206 s002 sum(A098732[n]/((2^n-1)/n),n=1..infinity) 2865668585839599 r009 Im(z^3+c),c=-11/28+8/39*I,n=20 2865668591105117 s003 concatenated sequence A290543 2865668613195627 s002 sum(A168166[n]/(pi^n+1),n=1..infinity) 2865668616801226 m005 (1/2*2^(1/2)-8/9)/(2/7*Zeta(3)+6) 2865668620793312 m001 (LambertW(1)+gamma(2))/DuboisRaymond 2865668628135737 a008 Real Root of x^2-x-81834 2865668629166431 r005 Im(z^2+c),c=-7/26+4/9*I,n=49 2865668630700423 q001 1/3489587 2865668642257252 a007 Real Root Of 359*x^4+778*x^3-560*x^2+188*x-764 2865668644982488 r005 Re(z^2+c),c=-3/13+37/62*I,n=62 2865668648127221 a001 1762289/682*199^(5/11) 2865668653146064 a007 Real Root Of 123*x^4-888*x^3+21*x^2-557*x-16 2865668654362207 r005 Im(z^2+c),c=-13/29+11/23*I,n=38 2865668656097995 a007 Real Root Of -324*x^4+884*x^3-290*x^2+566*x+209 2865668658243146 m006 (4/5*ln(Pi)+3/5)/(2*ln(Pi)+3) 2865668658373193 s002 sum(A266847[n]/(n^3*exp(n)+1),n=1..infinity) 2865668672422071 r005 Im(z^2+c),c=-11/14+31/136*I,n=6 2865668673943710 r009 Re(z^3+c),c=-61/118+1/2*I,n=53 2865668682818738 m001 2*Pi/GAMMA(5/6)*HeathBrownMoroz^Kolakoski 2865668684060289 a007 Real Root Of -875*x^4-233*x^3-416*x^2+407*x+12 2865668687252720 m001 exp(Tribonacci)*TreeGrowth2nd/cos(Pi/12) 2865668703260558 a007 Real Root Of -294*x^4-457*x^3+854*x^2-424*x+844 2865668712509159 r009 Re(z^3+c),c=-1/5+29/41*I,n=5 2865668720944060 s001 sum(exp(-Pi/2)^n*A101533[n],n=1..infinity) 2865668721577703 l006 ln(6729/8962) 2865668738080736 r009 Im(z^3+c),c=-5/42+13/43*I,n=5 2865668748976774 m001 (gamma(3)+Kac)/(Porter+Sarnak) 2865668765909838 m001 FeigenbaumKappa*(Zeta(1,-1)+BesselI(0,2)) 2865668766619838 r005 Im(z^2+c),c=17/58+6/53*I,n=64 2865668768840895 r005 Im(z^2+c),c=-9/31+19/42*I,n=37 2865668773466282 m001 (Cahen-Otter)/(Porter-TwinPrimes) 2865668775786202 m005 (1+1/4*5^(1/2))/(4/7*Zeta(3)-1/7) 2865668776262998 m005 (1/2*3^(1/2)-2/3)/(7/11*5^(1/2)-8/11) 2865668783499704 g005 Pi^(3/2)*csc(1/8*Pi)/GAMMA(2/11) 2865668799132600 r005 Re(z^2+c),c=-65/122+18/55*I,n=7 2865668804214683 r009 Im(z^3+c),c=-29/70+43/63*I,n=41 2865668805726398 m001 (CareFree+Trott2nd)/(Pi-sin(1/5*Pi)) 2865668806129101 l006 ln(403/7077) 2865668831465406 a007 Real Root Of -459*x^4+785*x^3+951*x^2+281*x-174 2865668865425759 a001 15127/8*75025^(1/27) 2865668873563055 p001 sum((-1)^n/(559*n+341)/(16^n),n=0..infinity) 2865668879706716 r009 Re(z^3+c),c=-5/54+25/34*I,n=18 2865668883049395 m001 (GAMMA(11/12)+FeigenbaumKappa)/(Kac-Porter) 2865668887811959 a009 1/10*(6^(1/2)*10^(1/2)+3^(1/4))*10^(1/2) 2865668888353518 a007 Real Root Of 784*x^4-597*x^3-701*x^2-955*x+340 2865668891120287 m001 (Porter+Tribonacci)/(Psi(1,1/3)+3^(1/3)) 2865668891973719 p001 sum(1/(369*n+356)/(25^n),n=0..infinity) 2865668895742369 r005 Im(z^2+c),c=-11/17+22/59*I,n=7 2865668909164492 a001 6765/4*3^(12/25) 2865668915663860 m001 (Salem+ZetaP(3))/(GAMMA(7/12)-Shi(1)) 2865668918908969 a001 2584/123*3^(13/46) 2865668937864260 l006 ln(5159/6871) 2865668945329839 a007 Real Root Of -485*x^4+559*x^3-688*x^2+721*x-160 2865668948530973 m005 (1/2*Catalan-10/11)/(133/120+5/24*5^(1/2)) 2865668962160449 a007 Real Root Of -294*x^4-624*x^3+901*x^2+797*x+27 2865668964223881 r009 Re(z^3+c),c=-33/86+2/3*I,n=9 2865668990855246 r005 Re(z^2+c),c=-29/110+27/53*I,n=38 2865668995337062 h003 exp(Pi*(1/7*(7^(5/6)+5^(2/3))^(1/2)*7^(1/2))) 2865668998588691 a007 Real Root Of 599*x^4-785*x^3+259*x^2-423*x-165 2865669005108304 r005 Re(z^2+c),c=6/29+11/27*I,n=26 2865669008372142 b008 1+100*Sqrt[3*E] 2865669010224200 r005 Im(z^2+c),c=-71/122+1/23*I,n=19 2865669013611155 h001 (1/9*exp(1)+5/12)/(4/5*exp(1)+1/3) 2865669020392087 m001 (Pi+FeigenbaumKappa)/(MinimumGamma+OneNinth) 2865669028889812 a001 377/123*11^(55/59) 2865669038489063 a009 1/17*(17^(1/2)*11^(1/3)+7^(1/2))*17^(1/2) 2865669046137494 g007 Psi(2,6/7)+Psi(2,1/5)+Psi(2,1/3)-Psi(2,4/9) 2865669054256163 a007 Real Root Of 217*x^4+321*x^3-917*x^2+138*x+846 2865669062577003 l006 ln(551/9676) 2865669072432058 r005 Re(z^2+c),c=-37/102+4/27*I,n=9 2865669078942119 r009 Re(z^3+c),c=-11/62+51/52*I,n=42 2865669080665270 m001 cos(1/12*Pi)*CopelandErdos/Kolakoski 2865669080680582 r009 Im(z^3+c),c=-19/78+11/40*I,n=17 2865669081073251 a007 Real Root Of -11*x^4+265*x^3+534*x^2-634*x+776 2865669083369832 m003 1/2+Sqrt[5]/64+(7*Sin[1/2+Sqrt[5]/2])/3 2865669084052058 m001 Salem/MasserGramain/HardyLittlewoodC3 2865669091836910 r009 Re(z^3+c),c=-61/118+1/2*I,n=62 2865669111881821 a001 1346269/322*521^(4/13) 2865669119960950 p004 log(31627/1801) 2865669120070977 r009 Im(z^3+c),c=-19/78+11/40*I,n=16 2865669127620975 r009 Im(z^3+c),c=-19/78+11/40*I,n=20 2865669130209710 r009 Im(z^3+c),c=-19/78+11/40*I,n=23 2865669130299894 r009 Im(z^3+c),c=-19/78+11/40*I,n=24 2865669130313912 r009 Im(z^3+c),c=-19/78+11/40*I,n=26 2865669130314342 r009 Im(z^3+c),c=-19/78+11/40*I,n=27 2865669130316155 r009 Im(z^3+c),c=-19/78+11/40*I,n=30 2865669130316275 r009 Im(z^3+c),c=-19/78+11/40*I,n=33 2865669130316280 r009 Im(z^3+c),c=-19/78+11/40*I,n=36 2865669130316280 r009 Im(z^3+c),c=-19/78+11/40*I,n=34 2865669130316280 r009 Im(z^3+c),c=-19/78+11/40*I,n=37 2865669130316280 r009 Im(z^3+c),c=-19/78+11/40*I,n=40 2865669130316280 r009 Im(z^3+c),c=-19/78+11/40*I,n=39 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=43 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=46 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=47 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=49 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=50 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=53 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=56 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=59 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=60 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=57 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=63 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=62 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=64 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=61 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=58 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=55 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=54 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=52 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=51 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=48 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=44 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=45 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=42 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=41 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=38 2865669130316281 r009 Im(z^3+c),c=-19/78+11/40*I,n=35 2865669130316292 r009 Im(z^3+c),c=-19/78+11/40*I,n=32 2865669130316303 r009 Im(z^3+c),c=-19/78+11/40*I,n=31 2865669130316345 r009 Im(z^3+c),c=-19/78+11/40*I,n=29 2865669130317083 r009 Im(z^3+c),c=-19/78+11/40*I,n=28 2865669130334839 r009 Im(z^3+c),c=-19/78+11/40*I,n=25 2865669130526839 r009 Im(z^3+c),c=-19/78+11/40*I,n=21 2865669130630803 r009 Im(z^3+c),c=-19/78+11/40*I,n=22 2865669133676996 r009 Im(z^3+c),c=-19/78+11/40*I,n=19 2865669141293496 r005 Im(z^2+c),c=-27/106+18/41*I,n=39 2865669142868026 r005 Im(z^2+c),c=-29/114+11/25*I,n=24 2865669144007616 r009 Im(z^3+c),c=-19/78+11/40*I,n=18 2865669154686004 h001 (5/7*exp(2)+11/12)/(2/11*exp(2)+9/11) 2865669185293880 b008 E+EulerGamma*Tan[1/4] 2865669187093832 r009 Re(z^3+c),c=-51/122+23/58*I,n=48 2865669188561306 r005 Im(z^2+c),c=-19/86+26/61*I,n=38 2865669206273421 r008 a(0)=3,K{-n^6,50+5*n^3-70*n^2+22*n} 2865669214432595 m001 sin(1)+3^(1/3)+LandauRamanujan2nd 2865669220438884 r004 Re(z^2+c),c=-1/3-5/17*I,z(0)=-1,n=13 2865669225046867 r005 Im(z^2+c),c=-33/82+26/53*I,n=55 2865669238152807 m001 1/exp(GAMMA(11/24))^2*BesselK(0,1)/GAMMA(7/24) 2865669246377539 a007 Real Root Of -290*x^4-450*x^3+792*x^2-825*x+99 2865669246457776 r005 Re(z^2+c),c=-29/98+22/53*I,n=17 2865669249169002 r004 Re(z^2+c),c=1/30-5/18*I,z(0)=exp(1/8*I*Pi),n=8 2865669251259688 r005 Re(z^2+c),c=-21/94+35/61*I,n=47 2865669258738102 m001 sin(1)*FeigenbaumC+PisotVijayaraghavan 2865669266216459 r002 5th iterates of z^2 + 2865669269793366 m003 -Cosh[1/2+Sqrt[5]/2]/6+8*Csch[1/2+Sqrt[5]/2] 2865669272334825 a008 Real Root of x^4-2*x^3-14*x^2+3*x+86 2865669272419564 r009 Re(z^3+c),c=-5/28+49/51*I,n=60 2865669272966630 m001 FeigenbaumDelta*LandauRamanujan2nd+ZetaR(2) 2865669288721792 m005 (2/3*Pi+1/6)/(23/10+5/2*5^(1/2)) 2865669318551268 a007 Real Root Of -287*x^4-963*x^3-465*x^2-231*x-151 2865669319886813 m001 LambertW(1)^ln(Pi)-cos(1/5*Pi) 2865669319886813 m001 LambertW(1)^ln(Pi)-cos(Pi/5) 2865669320974249 r009 Im(z^3+c),c=-11/90+47/56*I,n=18 2865669325080049 m001 Salem^2*exp(GaussKuzminWirsing)*GAMMA(7/12) 2865669325959657 m005 (1/2*Pi-5/8)/(10/11*Pi+4/9) 2865669329391358 m001 (3^(1/2)+Ei(1))/(-BesselJ(1,1)+TreeGrowth2nd) 2865669343378943 l006 ln(3589/4780) 2865669378359518 m001 Trott*(Porter+Salem) 2865669380558484 m001 ln(FeigenbaumC)^2/GlaisherKinkelin*Zeta(9)^2 2865669390520050 r005 Im(z^2+c),c=-3/5+21/50*I,n=18 2865669399418059 a007 Real Root Of -365*x^4+570*x^3-768*x^2+639*x-131 2865669403377035 r005 Im(z^2+c),c=-69/118+26/61*I,n=46 2865669405158698 m001 (Pi-cos(1))/(MasserGramain+MertensB1) 2865669418661525 r009 Re(z^3+c),c=-17/98+22/25*I,n=60 2865669433299962 m005 (1/2*3^(1/2)-3/5)/(1/5*Pi+3/10) 2865669436733563 r009 Re(z^3+c),c=-61/118+1/2*I,n=59 2865669457286015 m001 ln(Niven)/MinimumGamma/GAMMA(5/6)^2 2865669462197583 m005 (1/2*2^(1/2)+1/8)/(5/6*Pi+2/7) 2865669478199139 r005 Im(z^2+c),c=-17/22+25/128*I,n=8 2865669482928614 m001 (Mills-FibonacciFactorial)^OrthogonalArrays 2865669486087152 a001 521/610*102334155^(4/21) 2865669486100569 r005 Im(z^2+c),c=-9/70+20/51*I,n=8 2865669492370275 a001 1364/233*4181^(4/21) 2865669504675206 a007 Real Root Of 184*x^4+154*x^3-789*x^2+959*x+443 2865669504751569 r005 Re(z^2+c),c=-7/19+1/59*I,n=13 2865669506998655 a007 Real Root Of 374*x^4+756*x^3-630*x^2+527*x-747 2865669513814926 r009 Im(z^3+c),c=-19/78+11/40*I,n=15 2865669520365724 h001 (4/7*exp(2)+1/10)/(5/11*exp(1)+3/11) 2865669544954534 r009 Re(z^3+c),c=-61/118+1/2*I,n=56 2865669547525367 r009 Im(z^3+c),c=-8/25+15/61*I,n=10 2865669563680187 r005 Im(z^2+c),c=-13/42+25/52*I,n=16 2865669567516521 m001 1/exp(Catalan)/KhintchineLevy^2*Zeta(7) 2865669588613127 a007 Real Root Of 201*x^4-794*x^3-105*x^2-850*x-255 2865669590229382 a007 Real Root Of -14*x^4+405*x^3-873*x^2-308*x-535 2865669590436323 g001 Re(GAMMA(293/60+I*199/60)) 2865669594786449 a007 Real Root Of 260*x^4-246*x^3-738*x^2-911*x-208 2865669609233142 r005 Im(z^2+c),c=-27/46+28/55*I,n=7 2865669616962815 m001 (ln(Pi)-Zeta(1/2))/(FeigenbaumB+ZetaP(4)) 2865669619086527 a001 47/21*377^(1/24) 2865669622108630 r005 Im(z^2+c),c=-17/52+7/15*I,n=29 2865669625161760 r005 Im(z^2+c),c=27/98+13/40*I,n=5 2865669633922665 r005 Re(z^2+c),c=-45/122+1/61*I,n=12 2865669644125226 m001 1/sin(Pi/5)*FeigenbaumB^2/exp(sqrt(2)) 2865669650225527 r005 Im(z^2+c),c=-3/23+24/61*I,n=8 2865669653636490 a001 3524578/843*199^(4/11) 2865669658685660 m005 (1/2*Zeta(3)-1/4)/(7/9*2^(1/2)+1/8) 2865669673791814 a009 1/12*(22+12^(3/4))^(1/2)*12^(3/4) 2865669689454723 m002 3/2+Pi^3-Sinh[Pi]/3 2865669694521151 r005 Im(z^2+c),c=-31/44+3/52*I,n=55 2865669698201726 m001 Zeta(1/2)^MertensB3/(LaplaceLimit^MertensB3) 2865669702766106 r005 Re(z^2+c),c=-69/118+24/43*I,n=30 2865669704729600 m001 (Stephens+ThueMorse)/(Zeta(1,2)+Lehmer) 2865669714181045 m008 (4/5*Pi+1/6)/(3*Pi^3+1/2) 2865669716426406 l006 ln(5608/7469) 2865669720505236 h001 (3/7*exp(2)+3/5)/(5/12*exp(1)+2/11) 2865669725614290 m001 (-FeigenbaumD+Thue)/(ln(2)/ln(10)+Zeta(1,2)) 2865669731243919 r009 Re(z^3+c),c=-5/14+16/33*I,n=4 2865669732968971 m001 (BesselI(1,2)-Porter)/(TreeGrowth2nd-ZetaQ(3)) 2865669752012811 a007 Real Root Of 295*x^4+881*x^3-32*x^2-326*x+167 2865669757373133 m001 (BesselI(0,1)-sin(1/5*Pi))/(Niven+Robbin) 2865669760877375 l006 ln(148/2599) 2865669767833244 h001 (4/9*exp(2)+7/9)/(5/11*exp(1)+2/11) 2865669769066899 r009 Re(z^3+c),c=-39/98+3/11*I,n=3 2865669778671299 a003 sin(Pi*1/34)/sin(Pi*12/115) 2865669779061587 a007 Real Root Of 41*x^4-46*x^3-327*x^2+468*x+179 2865669782551108 m005 (1/4*Pi+2)/(1/3*Catalan+2/3) 2865669784655184 r002 11th iterates of z^2 + 2865669792750862 a007 Real Root Of 292*x^4+604*x^3-350*x^2+836*x-208 2865669799111786 a003 sin(Pi*12/91)*sin(Pi*29/115) 2865669825688638 l005 770884/10609/(exp(878/103)^2-1) 2865669829631097 a009 1/12*(17*12^(1/3)+17^(1/2))^(1/2)*12^(2/3) 2865669830174081 r005 Im(z^2+c),c=-69/70+18/53*I,n=9 2865669831909061 a001 521/514229*8^(1/2) 2865669844248167 r005 Re(z^2+c),c=-71/60+8/31*I,n=20 2865669846906101 a001 7/3*55^(2/39) 2865669866993175 r005 Re(z^2+c),c=-27/94+22/49*I,n=56 2865669868008080 r005 Re(z^2+c),c=-11/46+31/55*I,n=63 2865669868357657 r005 Re(z^2+c),c=19/52+19/52*I,n=10 2865669880389308 a007 Real Root Of 876*x^4-905*x^3-620*x^2-983*x+348 2865669893691067 m006 (1/6*Pi^2+1/5)/(3/4*Pi-3) 2865669893691067 m008 (1/6*Pi^2+1/5)/(3/4*Pi-3) 2865669906115088 m009 (3/4*Psi(1,3/4)+3/5)/(5/6*Psi(1,1/3)+1/3) 2865669920200276 r005 Im(z^2+c),c=-47/114+22/45*I,n=41 2865669923972772 a001 311187/46*521^(3/13) 2865669925238024 r005 Im(z^2+c),c=-7/26+4/9*I,n=42 2865669925404225 m001 Porter*Cahen^2/ln(cos(Pi/5)) 2865669928047355 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^Chi(1)-Lehmer 2865669930183601 a007 Real Root Of 411*x^4+997*x^3-312*x^2+682*x+262 2865669930700603 m001 (ln(2)+exp(1/Pi))/(Conway-LandauRamanujan2nd) 2865669937859236 m001 BesselI(0,2)*(3^(1/2)-Weierstrass) 2865669950895399 m003 20+3/Log[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2] 2865669973138446 m001 Salem^2/ln(LaplaceLimit)/GAMMA(19/24) 2865669974566200 h001 (-3*exp(3/2)-5)/(-2*exp(1)-1) 2865669975614970 s002 sum(A082727[n]/(n^3*exp(n)+1),n=1..infinity) 2865669978404528 m001 (-HeathBrownMoroz+Kolakoski)/(Si(Pi)+Catalan) 2865669989880961 r002 7th iterates of z^2 + 2865669993225844 m001 (OneNinth+ZetaQ(4))/(GAMMA(5/6)+Khinchin) 2865669997764092 a007 Real Root Of 156*x^4+17*x^3-974*x^2+486*x-729 2865670006483275 m001 ln(Zeta(7))^2*FeigenbaumC^2/cos(Pi/5) 2865670019012766 a007 Real Root Of 382*x^4+838*x^3-963*x^2-859*x-594 2865670036852944 m003 11/5+Sqrt[5]/4+(Sqrt[5]*Sech[1/2+Sqrt[5]/2])/8 2865670040060531 a007 Real Root Of -382*x^4-955*x^3+221*x^2-228*x+819 2865670044335821 m005 (1/3*2^(1/2)+1/5)/(1/11*gamma+2/11) 2865670077384678 m001 (-Cahen+KhinchinHarmonic)/(5^(1/2)+ln(5)) 2865670081178548 m001 (Psi(2,1/3)-exp(Pi))/(GAMMA(23/24)+Niven) 2865670086283807 r005 Re(z^2+c),c=3/29+19/31*I,n=16 2865670098897167 r005 Im(z^2+c),c=-4/3+55/133*I,n=4 2865670104014328 m001 (1+gamma)/(FeigenbaumDelta+GaussAGM) 2865670111377429 m001 (Grothendieck-ThueMorse)/(Zeta(1,-1)+Cahen) 2865670113652553 r009 Re(z^3+c),c=-21/50+2/5*I,n=41 2865670116060036 r005 Re(z^2+c),c=-31/118+21/41*I,n=63 2865670121738825 r009 Im(z^3+c),c=-25/102+14/51*I,n=8 2865670131227896 m001 (2*Pi/GAMMA(5/6)+FransenRobinson)/(Pi-Ei(1,1)) 2865670134909939 a007 Real Root Of 874*x^4-477*x^3-429*x^2-297*x-67 2865670137747490 m001 1/GAMMA(1/24)^2*exp(Robbin)^2/cosh(1)^2 2865670150395517 r005 Re(z^2+c),c=-139/106+3/16*I,n=4 2865670157930203 a007 Real Root Of -778*x^4+969*x^3-837*x^2+922*x+361 2865670173051217 r009 Re(z^3+c),c=-53/122+29/42*I,n=6 2865670175485387 s002 sum(A195504[n]/(n^2*2^n-1),n=1..infinity) 2865670193292233 m001 1/RenyiParking/exp(Bloch)^2*GAMMA(1/24)^2 2865670194973804 b008 Pi*Tanh[1+Cos[1]] 2865670200675567 a001 322/4181*832040^(13/49) 2865670202564287 a007 Real Root Of -302*x^4-108*x^3-835*x^2+928*x+334 2865670207168308 a001 843/4181*3^(8/25) 2865670208433282 m001 (Zeta(5)-Bloch)/(Conway-Riemann2ndZero) 2865670209817002 r005 Im(z^2+c),c=6/25+4/23*I,n=23 2865670213727290 r002 9th iterates of z^2 + 2865670214171611 a007 Real Root Of -415*x^4-980*x^3+771*x^2+602*x+318 2865670234126278 m004 -5+25*Pi+50*Pi*Sec[Sqrt[5]*Pi] 2865670236913057 r005 Im(z^2+c),c=-19/86+26/61*I,n=28 2865670250133042 r009 Re(z^3+c),c=-23/114+24/25*I,n=64 2865670253638239 s002 sum(A097020[n]/(n*exp(pi*n)-1),n=1..infinity) 2865670255315974 a007 Real Root Of 212*x^4+610*x^3-331*x^2-629*x+974 2865670255628386 b008 Pi*EllipticPi[-2,1/32] 2865670260597666 a001 28657/3*521^(31/34) 2865670265807768 r005 Re(z^2+c),c=-79/118+2/57*I,n=4 2865670268948977 r005 Im(z^2+c),c=17/58+6/53*I,n=63 2865670274249145 r005 Im(z^2+c),c=-6/11+28/53*I,n=39 2865670277927779 r005 Re(z^2+c),c=-1/15+5/8*I,n=39 2865670284821783 a007 Real Root Of -132*x^4-221*x^3+306*x^2-684*x-772 2865670287030637 a007 Real Root Of -643*x^4-38*x^3-762*x^2+314*x+156 2865670296170965 r005 Re(z^2+c),c=-1/4+1/2*I,n=18 2865670298404361 h001 (-7*exp(1)-7)/(-8*exp(-2)-8) 2865670304100009 m001 (3^(1/3)-LambertW(1))/(-Pi^(1/2)+Porter) 2865670304106848 r009 Im(z^3+c),c=-15/122+44/53*I,n=28 2865670312855255 m005 (1/2*Zeta(3)+1/5)/(2/7*gamma-4/9) 2865670314828181 m001 (MinimumGamma-Porter)/(Zeta(1/2)-BesselJ(1,1)) 2865670335683288 m001 ZetaQ(2)^(Riemann1stZero/ZetaQ(4)) 2865670350564093 m001 (2^(1/3)-exp(Pi))/(-BesselJ(0,1)+ZetaQ(4)) 2865670374571039 r005 Re(z^2+c),c=-43/118+3/32*I,n=10 2865670379560271 l006 ln(2019/2689) 2865670385739940 m001 (ln(3)+ZetaQ(4))/(GAMMA(3/4)-sin(1)) 2865670386050020 m001 (KhinchinHarmonic+LaplaceLimit)/(1-Catalan) 2865670404253069 m001 1/CopelandErdos/exp(Conway)^2*Catalan 2865670413214363 m009 (32/5*Catalan+4/5*Pi^2+3)/(1/2*Psi(1,1/3)+4/5) 2865670415131063 a007 Real Root Of -564*x^4+x^3+674*x^2+780*x+172 2865670427887613 a007 Real Root Of 233*x^4+193*x^3-984*x^2+830*x-712 2865670444166184 r004 Im(z^2+c),c=2/11+2/9*I,z(0)=exp(7/8*I*Pi),n=20 2865670452100024 m001 Pi*2^(1/2)/GAMMA(3/4)-exp(-1/2*Pi)^ZetaP(3) 2865670452150697 m005 (29/36+1/4*5^(1/2))/(3/4*gamma-10/11) 2865670459804685 b008 2-29*E^(1/18) 2865670465000585 m001 exp(Trott)*Cahen^2/Zeta(1/2) 2865670481729706 r002 38th iterates of z^2 + 2865670502346365 a008 Real Root of x^4-2*x^3+10*x^2+26*x-177 2865670521402747 a007 Real Root Of 310*x^4+773*x^3-104*x^2+799*x+429 2865670527094123 a007 Real Root Of -312*x^4-663*x^3+399*x^2-978*x-641 2865670528512794 m005 (1/2*3^(1/2)-5/7)/(1/4+1/8*5^(1/2)) 2865670538489262 m001 (Mills+Salem)/(Si(Pi)-exp(1)) 2865670540206575 m001 (3^(1/3)+OneNinth)/(Psi(2,1/3)+Zeta(5)) 2865670541999343 a007 Real Root Of 874*x^4+198*x^3+955*x^2-734*x-290 2865670554203597 l006 ln(485/8517) 2865670563030467 m008 (1/5*Pi^3-5/6)/(1/5*Pi^4-3/4) 2865670569987226 r009 Im(z^3+c),c=-65/114+17/54*I,n=42 2865670583916221 r005 Re(z^2+c),c=-29/106+24/49*I,n=33 2865670601793442 r005 Im(z^2+c),c=-99/82+1/11*I,n=3 2865670610834604 m005 (1/6*gamma-3)/(5/6*Catalan+1/4) 2865670613808227 r005 Re(z^2+c),c=-19/110+37/60*I,n=55 2865670618767487 m001 BesselK(1,1)-ln(2)^FellerTornier 2865670620302903 a007 Real Root Of -128*x^4-299*x^3+391*x^2+564*x+1 2865670645160446 m001 (FransenRobinson+Thue)/(1-BesselI(0,2)) 2865670645737876 m001 (cos(1/12*Pi)-Kac)/(Salem+Trott) 2865670648201422 r009 Re(z^3+c),c=-11/26+15/37*I,n=41 2865670648678390 m001 (Ei(1,1)+AlladiGrinstead)/(GaussAGM-PlouffeB) 2865670652959412 a007 Real Root Of -341*x^4-977*x^3-319*x^2-996*x-230 2865670664482502 r005 Im(z^2+c),c=-7/30+17/33*I,n=11 2865670665245450 r009 Re(z^3+c),c=-5/94+37/54*I,n=55 2865670665989264 r005 Im(z^2+c),c=11/34+1/17*I,n=25 2865670671002993 r005 Re(z^2+c),c=-33/118+23/49*I,n=60 2865670716001679 m001 (GAMMA(2/3)-BesselI(1,1))/(Artin-Paris) 2865670732497848 m005 (-17/30+1/10*5^(1/2))/(1/6*exp(1)-1/3) 2865670734976826 r009 Re(z^3+c),c=-13/29+27/61*I,n=37 2865670736064558 a001 1762289/161*521^(2/13) 2865670740486393 h001 (5/12*exp(2)+3/8)/(2/7*exp(1)+3/7) 2865670758306330 m001 ln(5)^exp(1)+Riemann3rdZero 2865670763592437 m005 (1/2*Pi+4/9)/(5/6*gamma+2/9) 2865670790333897 r005 Im(z^2+c),c=-23/78+9/20*I,n=22 2865670808909913 r002 20th iterates of z^2 + 2865670819672131 a001 8740296/305 2865670828159576 h001 (5/9*exp(1)+5/9)/(6/7*exp(2)+7/8) 2865670830768572 r002 7th iterates of z^2 + 2865670833644982 m001 (CareFree+FeigenbaumDelta)/(Rabbit-Sierpinski) 2865670836473169 s002 sum(A072150[n]/(n^3*pi^n+1),n=1..infinity) 2865670839965098 m001 (CopelandErdos+Landau)/exp(1) 2865670841086944 r005 Im(z^2+c),c=-79/118+23/50*I,n=23 2865670852576985 a007 Real Root Of 378*x^4-810*x^3-218*x^2-351*x+135 2865670874407103 m001 (FeigenbaumD+MertensB3)/(exp(1)-ln(2+3^(1/2))) 2865670879515411 a007 Real Root Of -195*x^4-637*x^3-398*x^2-750*x-721 2865670880555817 r004 Re(z^2+c),c=3/11+1/9*I,z(0)=exp(3/8*I*Pi),n=22 2865670889719856 m001 (Tetranacci+ZetaP(3))/(MertensB2-ln(2)/ln(10)) 2865670902607793 l006 ln(337/5918) 2865670903851323 m001 Cahen^2/GaussAGM(1,1/sqrt(2))/ln(Robbin)^2 2865670907991217 r005 Re(z^2+c),c=35/102+5/31*I,n=63 2865670924980450 l006 ln(3887/4000) 2865670926597913 r005 Re(z^2+c),c=-33/34+4/107*I,n=10 2865670927445019 a001 5473/161*1364^(14/15) 2865670928389326 r005 Re(z^2+c),c=-85/86+7/41*I,n=10 2865670929408561 r005 Im(z^2+c),c=-1/32+19/55*I,n=18 2865670932805464 m001 BesselI(1,2)-exp(1/Pi)-GAMMA(7/24) 2865670932827142 m005 (1/2*5^(1/2)-6/7)/(23/180+7/20*5^(1/2)) 2865670951164096 l006 ln(6506/8665) 2865670968837412 a007 Real Root Of -182*x^4-487*x^3+330*x^2+939*x+794 2865670971990096 m002 -Pi^2+3*Pi^4+Pi^4/E^Pi 2865670979984365 m005 (1/2*Pi-1/6)/(1/12*Zeta(3)-5) 2865670989006600 h005 exp(cos(Pi*4/21)/cos(Pi*10/47)) 2865670993570706 a001 521/4181*2504730781961^(4/21) 2865671004853627 a007 Real Root Of 227*x^4+972*x^3+968*x^2-168*x-865 2865671006262515 a007 Real Root Of 349*x^4+798*x^3-526*x^2+60*x-265 2865671009269670 a007 Real Root Of -275*x^4+376*x^3+102*x^2+906*x-275 2865671011437308 a007 Real Root Of 39*x^4-117*x^3-832*x^2-283*x+638 2865671017183152 r005 Im(z^2+c),c=39/106+4/35*I,n=17 2865671019031666 a001 123/2584*75025^(50/51) 2865671023519146 a001 17711/322*1364^(13/15) 2865671044837219 m001 GAMMA(1/6)^2/ln(Kolakoski)*GAMMA(5/12) 2865671055807088 m001 (-MertensB2+ZetaQ(2))/(exp(1)+CareFree) 2865671056835332 r009 Im(z^3+c),c=-27/82+1/4*I,n=4 2865671062452638 m005 (31/44+1/4*5^(1/2))/(3*2^(1/2)+1/6) 2865671069491910 m009 (6*Psi(1,2/3)-1/4)/(2*Psi(1,2/3)+1/5) 2865671081707247 a003 cos(Pi*18/119)-cos(Pi*5/17) 2865671086787443 a001 832040/521*199^(6/11) 2865671089331310 m001 (Catalan-Psi(2,1/3))/(-Porter+Riemann2ndZero) 2865671089553814 a001 281*3^(1/56) 2865671093945464 m001 (-DuboisRaymond+LaplaceLimit)/(2^(1/3)+Artin) 2865671110482132 a001 322/1597*28657^(29/41) 2865671117296912 a007 Real Root Of 218*x^4+611*x^3-152*x^2-86*x+679 2865671124801130 r005 Re(z^2+c),c=-43/118+2/57*I,n=7 2865671128728941 a001 28657/322*1364^(4/5) 2865671136194661 m001 (-KhinchinLevy+Salem)/(5^(1/2)+GAMMA(2/3)) 2865671141250284 m001 (ArtinRank2-Shi(1))/(LaplaceLimit+Lehmer) 2865671146954081 r005 Im(z^2+c),c=-7/6+49/247*I,n=46 2865671151896568 m001 (FeigenbaumAlpha+MadelungNaCl)/(ln(2)-sin(1)) 2865671158600681 m001 arctan(1/3)/GlaisherKinkelin/ZetaQ(3) 2865671165393141 m001 exp(Rabbit)^2/FeigenbaumAlpha*log(2+sqrt(3))^2 2865671166882916 a007 Real Root Of -371*x^4-913*x^3+207*x^2-544*x+275 2865671181069055 m001 1/Pi^2*OneNinth*exp(cos(Pi/12)) 2865671182993632 a007 Real Root Of 20*x^4-118*x^3-267*x^2+357*x-910 2865671207742589 r008 a(0)=0,K{-n^6,21-41*n-50*n^2+31*n^3} 2865671208366698 l006 ln(4487/5976) 2865671223854900 l006 ln(526/9237) 2865671224993130 m001 MertensB3^Kolakoski+ln(5) 2865671227568850 a001 9/1292*5^(29/33) 2865671229154428 m001 (Rabbit+Sarnak)/(FeigenbaumB-MertensB3) 2865671230449226 a001 144*1364^(11/15) 2865671232627312 m001 (1+Si(Pi))/(-arctan(1/3)+ln(2+3^(1/2))) 2865671239317404 m005 (1/2*Catalan+1/8)/(3/8*5^(1/2)-9/11) 2865671245491883 m001 (GaussKuzminWirsing+Thue)/(Pi+Catalan) 2865671247471793 r009 Re(z^3+c),c=-19/66+25/34*I,n=64 2865671258395198 a007 Real Root Of 237*x^4+637*x^3-52*x^2-24*x-634 2865671280978639 r005 Im(z^2+c),c=-13/42+29/63*I,n=24 2865671285962567 a007 Real Root Of -95*x^4-24*x^3+754*x^2-209*x-949 2865671291456669 a007 Real Root Of 377*x^4+997*x^3+4*x^2+681*x-43 2865671297343749 m001 exp(Kolakoski)^2/Bloch/BesselK(1,1)^2 2865671300969760 m001 Pi^Zeta(1/2)+Paris 2865671303125605 s002 sum(A034282[n]/((exp(n)+1)*n),n=1..infinity) 2865671308223827 m009 (1/2*Pi^2-1/4)/(1/3*Psi(1,1/3)-5) 2865671316647164 r005 Re(z^2+c),c=-3/28+28/55*I,n=5 2865671317160505 a007 Real Root Of -154*x^4-392*x^3-80*x^2-540*x+270 2865671333502391 a001 75025/322*1364^(2/3) 2865671341913921 a003 cos(Pi*23/57)*sin(Pi*34/83) 2865671360090374 a007 Real Root Of -304*x^4-891*x^3-228*x^2-450*x+116 2865671362843318 m001 (Zeta(1/2)+Stephens)/(3^(1/2)+GAMMA(2/3)) 2865671366177589 r005 Re(z^2+c),c=-19/56+16/59*I,n=17 2865671372030271 r005 Im(z^2+c),c=-29/74+20/41*I,n=63 2865671374798381 m001 1/BesselJ(1,1)*exp(OneNinth)^2*Zeta(7)^2 2865671385110470 r009 Re(z^3+c),c=-47/106+25/56*I,n=38 2865671385389478 m001 ln(Trott)^2*GolombDickman^2*Ei(1)^2 2865671386798455 p001 sum((-1)^n/(610*n+347)/(64^n),n=0..infinity) 2865671389601895 m004 5*Pi*Sec[Sqrt[5]*Pi]+125*Pi*Sin[Sqrt[5]*Pi] 2865671396933744 m001 (BesselI(1,1)-Landau)/LandauRamanujan 2865671405473796 m001 (MertensB2-Sierpinski)/(GAMMA(2/3)-Ei(1)) 2865671411164136 a007 Real Root Of 242*x^4+799*x^3+539*x^2+347*x-949 2865671411615114 r002 60th iterates of z^2 + 2865671416495592 r005 Re(z^2+c),c=-1/13+13/28*I,n=2 2865671424450964 m001 (-Kac+KhinchinLevy)/(FeigenbaumMu-exp(Pi)) 2865671436046446 a001 121393/322*1364^(3/5) 2865671438553627 r009 Im(z^3+c),c=-1/31+13/42*I,n=9 2865671448531745 p001 sum(1/(349*n+333)/n/(512^n),n=1..infinity) 2865671448964842 l006 ln(6955/9263) 2865671456436256 r005 Re(z^2+c),c=-3/4+34/203*I,n=4 2865671469946308 m001 KomornikLoreti^(FeigenbaumKappa/RenyiParking) 2865671470396347 m001 (Robbin-TreeGrowth2nd)/(ln(2)-Porter) 2865671480158939 m005 (1/2*5^(1/2)-4/9)/(7/11*Zeta(3)-1) 2865671483500414 m001 (ln(3)+Cahen)/(Robbin-ZetaQ(2)) 2865671494912093 p004 log(35069/1997) 2865671497253388 r009 Im(z^3+c),c=-45/94+16/47*I,n=4 2865671498725376 m001 (GAMMA(3/4)+FeigenbaumAlpha)/(1+ln(2)/ln(10)) 2865671520015617 m005 (1/2*Zeta(3)-1/3)/(3*Pi-1/12) 2865671522147693 m001 (exp(Pi)+gamma(1))/(-FeigenbaumB+Trott2nd) 2865671526908912 m001 cos(1)/(ln(5)^MertensB3) 2865671527260184 m001 Riemann3rdZero/(CopelandErdos-ZetaR(2)) 2865671537372679 r009 Im(z^3+c),c=-1/31+13/42*I,n=8 2865671538784969 a001 98209/161*1364^(8/15) 2865671541519535 a007 Real Root Of 99*x^4+148*x^3+394*x^2-874*x-280 2865671542614269 m001 (cos(1/5*Pi)+FeigenbaumD)/(Kac-RenyiParking) 2865671548156343 a001 5702887/322*521^(1/13) 2865671551885196 a001 123/28657*121393^(5/9) 2865671552443679 a007 Real Root Of 199*x^4+618*x^3+459*x^2+662*x-749 2865671552604660 a001 123/3524578*701408733^(5/9) 2865671552604706 a001 123/433494437*4052739537881^(5/9) 2865671552604707 a001 123/39088169*53316291173^(5/9) 2865671552610385 a001 41/105937*9227465^(5/9) 2865671555579497 h001 (10/11*exp(2)+2/7)/(3/11*exp(2)+3/7) 2865671556737837 m001 (-MertensB3+TravellingSalesman)/(Shi(1)+ln(3)) 2865671557557642 r005 Re(z^2+c),c=-39/106+1/23*I,n=23 2865671559571519 a007 Real Root Of 389*x^4-851*x^3-503*x^2-435*x-106 2865671568054873 b008 Cot[6^(1/7)] 2865671568510830 r002 3th iterates of z^2 + 2865671572025854 a007 Real Root Of -297*x^4-495*x^3+643*x^2-790*x+836 2865671592473583 m001 (cos(1)+GAMMA(7/12))/(-Sarnak+ZetaQ(4)) 2865671601280313 m001 (LaplaceLimit-Salem)/(Totient+ZetaP(2)) 2865671604180940 h005 exp(cos(Pi*1/7)/cos(Pi*9/52)) 2865671608249823 a007 Real Root Of -252*x^4-732*x^3-320*x^2-960*x-355 2865671620550114 r005 Re(z^2+c),c=-31/98+9/25*I,n=33 2865671621121875 r005 Im(z^2+c),c=9/56+14/59*I,n=19 2865671627223915 a007 Real Root Of 232*x^4+780*x^3+677*x^2+868*x-362 2865671633692118 r005 Re(z^2+c),c=4/13+23/52*I,n=61 2865671640636605 m001 (BesselI(1,2)+OneNinth)/Lehmer 2865671641449217 a001 317811/322*1364^(7/15) 2865671641791044 q001 192/67 2865671641791044 q001 96/335 2865671641791044 r002 2th iterates of z^2 + 2865671641791044 r005 Im(z^2+c),c=-31/30+18/67*I,n=2 2865671656361019 a003 cos(Pi*4/83)-sin(Pi*27/109) 2865671662240686 m001 Salem^2*ln(FeigenbaumB)*GAMMA(5/6) 2865671672342050 m001 1/Catalan/Salem/exp(sinh(1)) 2865671680679400 h001 (3/11*exp(1)+2/7)/(4/9*exp(2)+3/10) 2865671685349483 m001 (-Artin+ZetaP(2))/(1+3^(1/2)) 2865671687980677 m001 Bloch+MadelungNaCl+MasserGramain 2865671705749842 m001 (ArtinRank2-Robbin)/(cos(1/5*Pi)+BesselJ(1,1)) 2865671718371046 m002 5+E^Pi+16/Pi^3 2865671725407473 r005 Im(z^2+c),c=-3/56+21/59*I,n=21 2865671728883558 m002 4+10/Pi^6-Log[Pi] 2865671744141840 a001 514229/322*1364^(2/5) 2865671748468410 m001 KhinchinHarmonic^Zeta(3)*Porter 2865671750464845 m001 (exp(1/Pi)+ErdosBorwein)/(Kac+PrimesInBinary) 2865671756916865 a007 Real Root Of 315*x^4+572*x^3-716*x^2+698*x+98 2865671763286943 a001 123/2584*1597^(5/9) 2865671763452252 p001 sum(1/(444*n+35)/(25^n),n=0..infinity) 2865671764828562 r002 26th iterates of z^2 + 2865671767589088 a001 141/46*24476^(19/21) 2865671771340486 a001 141/46*64079^(19/23) 2865671771650522 a001 144/2207*7881196^(9/11) 2865671771650560 a001 144/2207*141422324^(9/13) 2865671771650560 a001 144/2207*2537720636^(3/5) 2865671771650560 a001 144/2207*45537549124^(9/17) 2865671771650560 a001 144/2207*817138163596^(9/19) 2865671771650560 a001 144/2207*14662949395604^(3/7) 2865671771650560 a001 144/2207*(1/2+1/2*5^(1/2))^27 2865671771650560 a001 144/2207*192900153618^(1/2) 2865671771650560 a001 144/2207*10749957122^(9/16) 2865671771650560 a001 144/2207*599074578^(9/14) 2865671771650562 a001 144/2207*33385282^(3/4) 2865671771651305 a001 144/2207*1860498^(9/10) 2865671771917014 a001 141/46*817138163596^(1/3) 2865671771917014 a001 141/46*(1/2+1/2*5^(1/2))^19 2865671771917014 a001 141/46*87403803^(1/2) 2865671772128053 a001 141/46*103682^(19/24) 2865671773494993 a001 141/46*39603^(19/22) 2865671783814205 a001 141/46*15127^(19/20) 2865671785089183 r009 Im(z^3+c),c=-11/42+1/46*I,n=10 2865671792941410 r009 Re(z^3+c),c=-47/102+27/61*I,n=24 2865671793781078 m001 BesselK(0,1)^FeigenbaumMu/BesselI(1,2) 2865671794301969 m001 FeigenbaumB*Zeta(1,-1)^Lehmer 2865671796660332 l006 ln(189/3319) 2865671797154917 r002 3th iterates of z^2 + 2865671812199550 r005 Im(z^2+c),c=27/98+3/22*I,n=44 2865671817154095 b008 -251/8+E 2865671826165821 a007 Real Root Of -292*x^4-780*x^3-129*x^2-592*x+699 2865671827422466 m001 (KhinchinLevy-exp(1))/(-Landau+ZetaQ(3)) 2865671836746406 b008 3-Sinh[2]/27 2865671846823630 a001 416020/161*1364^(1/3) 2865671852499920 a007 Real Root Of -540*x^4+840*x^3+740*x^2+625*x-256 2865671853487008 r005 Im(z^2+c),c=13/122+29/55*I,n=7 2865671862377649 a002 17^(1/5)-7^(1/5) 2865671869509627 r002 4th iterates of z^2 + 2865671870034940 h002 exp(6^(1/3)*(10^(1/2)-14^(1/2))) 2865671876489659 r009 Im(z^3+c),c=-1/31+13/42*I,n=11 2865671886389409 l006 ln(2468/3287) 2865671893912665 r005 Re(z^2+c),c=-10/9+10/37*I,n=12 2865671901389982 a007 Real Root Of 890*x^4-521*x^3+872*x^2-498*x-15 2865671912012253 r005 Re(z^2+c),c=-27/74+13/64*I,n=7 2865671912146944 a001 682/1762289*832040^(6/19) 2865671912147251 a001 682/31622993*7778742049^(6/19) 2865671916635940 m001 Lehmer^FransenRobinson-sin(1/12*Pi) 2865671932686974 r005 Re(z^2+c),c=-49/62+1/23*I,n=24 2865671938919862 a007 Real Root Of 981*x^4+705*x^3+577*x^2-996*x-29 2865671940261050 p001 sum((-1)^n/(479*n+64)/n/(64^n),n=1..infinity) 2865671942903545 a007 Real Root Of -481*x^4-156*x^3-16*x^2+803*x+231 2865671943051625 m001 ln(Paris)/ArtinRank2^2*BesselK(1,1) 2865671947355950 r005 Im(z^2+c),c=-11/19+23/56*I,n=45 2865671949509563 a001 1346269/322*1364^(4/15) 2865671953937310 a003 cos(Pi*1/114)-cos(Pi*23/93) 2865671960601698 a007 Real Root Of -423*x^4-833*x^3+947*x^2-503*x-295 2865671964303229 r005 Im(z^2+c),c=-10/7+33/94*I,n=3 2865671972494307 a003 sin(Pi*28/111)-sin(Pi*44/91) 2865671976551463 r009 Im(z^3+c),c=-1/31+13/42*I,n=13 2865671986436906 r009 Im(z^3+c),c=-1/31+13/42*I,n=15 2865671987197378 r009 Im(z^3+c),c=-1/31+13/42*I,n=17 2865671987247553 r009 Im(z^3+c),c=-1/31+13/42*I,n=19 2865671987250452 r009 Im(z^3+c),c=-1/31+13/42*I,n=21 2865671987250596 r009 Im(z^3+c),c=-1/31+13/42*I,n=23 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=25 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=26 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=28 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=30 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=32 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=34 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=36 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=38 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=40 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=42 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=45 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=47 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=49 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=51 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=53 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=55 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=57 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=59 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=62 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=64 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=63 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=61 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=60 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=58 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=56 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=54 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=52 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=50 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=48 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=43 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=46 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=44 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=41 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=39 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=37 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=35 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=33 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=31 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=29 2865671987250601 r009 Im(z^3+c),c=-1/31+13/42*I,n=27 2865671987250602 r009 Im(z^3+c),c=-1/31+13/42*I,n=24 2865671987250632 r009 Im(z^3+c),c=-1/31+13/42*I,n=22 2865671987251292 r009 Im(z^3+c),c=-1/31+13/42*I,n=20 2865671987263557 r009 Im(z^3+c),c=-1/31+13/42*I,n=18 2865671987462225 r009 Im(z^3+c),c=-1/31+13/42*I,n=16 2865671988404939 s002 sum(A068019[n]/((2^n-1)/n),n=1..infinity) 2865671990266191 r009 Im(z^3+c),c=-1/31+13/42*I,n=14 2865672007438974 a005 (1/cos(25/117*Pi))^202 2865672023125182 r009 Im(z^3+c),c=-1/31+13/42*I,n=12 2865672028253381 r002 58th iterates of z^2 + 2865672045109764 m001 1/cos(Pi/12)^2/Robbin/exp(sqrt(3)) 2865672045888575 r009 Re(z^3+c),c=-35/86+25/62*I,n=11 2865672052193919 a001 311187/46*1364^(1/5) 2865672055003906 m001 MertensB3/Zeta(3)*Sierpinski 2865672065672960 m001 (5^(1/2))^(Backhouse/Zeta(1,2)) 2865672065672960 m001 sqrt(5)^(Backhouse/Zeta(1,2)) 2865672068971160 r005 Im(z^2+c),c=-41/66+7/23*I,n=7 2865672081747613 r005 Re(z^2+c),c=11/34+11/46*I,n=7 2865672081809988 m009 (1/3*Pi^2-2)/(3/8*Pi^2+4/5) 2865672095998052 m001 Catalan^Lehmer-LaplaceLimit 2865672101119621 m001 1/cos(1)*FeigenbaumKappa/exp(sqrt(5))^2 2865672102272623 m001 (GAMMA(1/3)+Backhouse*GAMMA(23/24))/Backhouse 2865672106949397 a007 Real Root Of -820*x^4-559*x^3-563*x^2+961*x+314 2865672115623418 m001 Trott*(Conway+Totient) 2865672120269829 m001 Zeta(1,2)/GAMMA(11/12)*FellerTornier 2865672128698578 a001 726103/6*18^(17/57) 2865672135253600 a001 45764784/1597 2865672142076946 m001 gamma(3)^(GAMMA(5/6)/arctan(1/2)) 2865672149440424 a001 6765/322*3571^(15/17) 2865672149594706 r009 Re(z^3+c),c=-73/114+48/61*I,n=2 2865672149641371 r009 Re(z^3+c),c=-1/24+17/38*I,n=14 2865672150215498 m001 MadelungNaCl/ErdosBorwein/ln(MinimumGamma) 2865672154878882 a001 1762289/161*1364^(2/15) 2865672179966260 a001 5473/161*3571^(14/17) 2865672181531393 a001 4181/322*3571^(16/17) 2865672181860480 a007 Real Root Of -250*x^4-466*x^3+511*x^2-858*x-762 2865672186574604 a001 17711/322*3571^(13/17) 2865672186817732 r005 Im(z^2+c),c=-93/82+8/35*I,n=50 2865672190809193 m001 (Artin-Psi(2,1/3))/(MinimumGamma+Weierstrass) 2865672195934725 a009 1/10*(17^(1/2)*10^(1/4)-5^(1/2))*10^(3/4) 2865672199489572 r005 Im(z^2+c),c=-29/66+12/31*I,n=6 2865672200972718 m001 (CopelandErdos+Niven)/(exp(1/Pi)-ArtinRank2) 2865672202318618 a001 28657/322*3571^(12/17) 2865672207687572 r005 Im(z^2+c),c=-1/46+15/44*I,n=18 2865672213111188 r002 22th iterates of z^2 + 2865672214573116 a001 144*3571^(11/17) 2865672228160491 a001 75025/322*3571^(10/17) 2865672235256848 a003 sin(Pi*8/119)/cos(Pi*16/67) 2865672240056544 r002 22th iterates of z^2 + 2865672241238753 a001 121393/322*3571^(9/17) 2865672245076676 a001 1292/161*9349^(17/19) 2865672247268518 r002 3th iterates of z^2 + 2865672252626721 m006 (4*Pi+1/5)/(5/6*exp(2*Pi)-3/4) 2865672254511478 a001 98209/161*3571^(8/17) 2865672257563619 a001 5702887/322*1364^(1/15) 2865672267709925 a001 317811/322*3571^(7/17) 2865672270539686 a001 1292/161*24476^(17/21) 2865672273517917 m001 FransenRobinson+Landau^FeigenbaumDelta 2865672273793935 p004 log(10459/7853) 2865672273896200 a001 1292/161*64079^(17/23) 2865672274145469 a001 8/321*(1/2+1/2*5^(1/2))^29 2865672274145469 a001 8/321*1322157322203^(1/2) 2865672274412042 a001 1292/161*45537549124^(1/3) 2865672274412042 a001 1292/161*(1/2+1/2*5^(1/2))^17 2865672274412051 a001 1292/161*12752043^(1/2) 2865672274600866 a001 1292/161*103682^(17/24) 2865672275823918 a001 1292/161*39603^(17/22) 2865672280936744 a001 514229/322*3571^(6/17) 2865672281299624 a007 Real Root Of -266*x^4-967*x^3-629*x^2-101*x+58 2865672283157918 r009 Im(z^3+c),c=-1/31+13/42*I,n=10 2865672285056899 a001 1292/161*15127^(17/20) 2865672285149235 m001 1/exp(MertensB1)/DuboisRaymond/sinh(1)^2 2865672290726900 r005 Re(z^2+c),c=4/17+29/54*I,n=45 2865672294152726 a001 416020/161*3571^(5/17) 2865672295278596 a007 Real Root Of 390*x^4+833*x^3-643*x^2+354*x-403 2865672300486263 a007 Real Root Of 225*x^4-986*x^3+857*x^2+283*x-14 2865672302789790 a007 Real Root Of -170*x^4+315*x^3-696*x^2+373*x-56 2865672303322962 a003 cos(Pi*2/73)-sin(Pi*49/117) 2865672303413649 r005 Re(z^2+c),c=15/52+5/43*I,n=16 2865672307372847 a001 1346269/322*3571^(4/17) 2865672314982202 p001 sum(1/(239*n+111)/n/(100^n),n=1..infinity) 2865672320591387 a001 311187/46*3571^(3/17) 2865672321840931 a001 6765/322*9349^(15/19) 2865672327194451 a001 119813760/4181 2865672333810531 a001 1762289/161*3571^(2/17) 2865672335988378 a001 17711/322*9349^(13/19) 2865672339411066 r005 Re(z^2+c),c=-39/122+7/20*I,n=16 2865672340239025 a001 28657/322*9349^(12/19) 2865672340873401 a001 5473/161*9349^(14/19) 2865672341000157 a001 144*9349^(11/19) 2865672343094164 a001 75025/322*9349^(10/19) 2865672344308294 a001 6765/322*24476^(5/7) 2865672344679059 a001 121393/322*9349^(9/19) 2865672346458417 a001 98209/161*9349^(8/19) 2865672347029445 a001 5702887/322*3571^(1/17) 2865672347269924 a001 6765/322*64079^(15/23) 2865672347458503 a001 144/15127*(1/2+1/2*5^(1/2))^31 2865672347458503 a001 144/15127*9062201101803^(1/2) 2865672347663985 a001 6765/322*167761^(3/5) 2865672347716825 a001 6765/322*439204^(5/9) 2865672347725057 a001 6765/322*7881196^(5/11) 2865672347725075 a001 6765/322*20633239^(3/7) 2865672347725078 a001 6765/322*141422324^(5/13) 2865672347725078 a001 6765/322*2537720636^(1/3) 2865672347725078 a001 6765/322*45537549124^(5/17) 2865672347725078 a001 6765/322*312119004989^(3/11) 2865672347725078 a001 6765/322*14662949395604^(5/21) 2865672347725078 a001 6765/322*(1/2+1/2*5^(1/2))^15 2865672347725078 a001 6765/322*192900153618^(5/18) 2865672347725078 a001 6765/322*28143753123^(3/10) 2865672347725078 a001 6765/322*10749957122^(5/16) 2865672347725078 a001 6765/322*599074578^(5/14) 2865672347725078 a001 6765/322*228826127^(3/8) 2865672347725079 a001 6765/322*33385282^(5/12) 2865672347725492 a001 6765/322*1860498^(1/2) 2865672347891688 a001 6765/322*103682^(5/8) 2865672348163497 a001 317811/322*9349^(7/19) 2865672348970851 a001 6765/322*39603^(15/22) 2865672349896948 a001 514229/322*9349^(6/19) 2865672351619563 a001 416020/161*9349^(5/19) 2865672353126935 r009 Re(z^3+c),c=-55/126+11/23*I,n=25 2865672353346317 a001 1346269/322*9349^(4/19) 2865672355071490 a001 311187/46*9349^(3/19) 2865672355198245 a001 156838248/5473 2865672355460093 a001 17711/322*24476^(13/21) 2865672355479749 a001 1292/161*5778^(17/18) 2865672356797266 a001 1762289/161*9349^(2/19) 2865672357117599 a001 6765/322*15127^(3/4) 2865672357476223 a001 144*24476^(11/21) 2865672358026839 a001 17711/322*64079^(13/23) 2865672358072406 a001 75025/322*24476^(10/21) 2865672358154731 a001 48/13201*141422324^(11/13) 2865672358154731 a001 48/13201*2537720636^(11/15) 2865672358154731 a001 48/13201*45537549124^(11/17) 2865672358154731 a001 48/13201*312119004989^(3/5) 2865672358154731 a001 48/13201*14662949395604^(11/21) 2865672358154731 a001 48/13201*(1/2+1/2*5^(1/2))^33 2865672358154731 a001 48/13201*192900153618^(11/18) 2865672358154731 a001 48/13201*10749957122^(11/16) 2865672358154731 a001 48/13201*1568397607^(3/4) 2865672358154731 a001 48/13201*599074578^(11/14) 2865672358154733 a001 48/13201*33385282^(11/12) 2865672358159476 a001 121393/322*24476^(3/7) 2865672358212915 a001 28657/322*24476^(4/7) 2865672358421306 a001 17711/322*141422324^(1/3) 2865672358421306 a001 17711/322*(1/2+1/2*5^(1/2))^13 2865672358421306 a001 17711/322*73681302247^(1/4) 2865672358440753 a001 17711/322*271443^(1/2) 2865672358441011 a001 98209/161*24476^(8/21) 2865672358522813 a001 5702887/322*9349^(1/19) 2865672358565701 a001 17711/322*103682^(13/24) 2865672358648266 a001 317811/322*24476^(1/3) 2865672358883894 a001 514229/322*24476^(2/7) 2865672359108684 a001 416020/161*24476^(5/21) 2865672359283944 a001 821215728/28657 2865672359337614 a001 1346269/322*24476^(4/21) 2865672359500976 a001 17711/322*39603^(13/22) 2865672359564962 a001 311187/46*24476^(1/7) 2865672359648085 a001 144*64079^(11/23) 2865672359715290 a001 72/51841*2537720636^(7/9) 2865672359715290 a001 72/51841*17393796001^(5/7) 2865672359715290 a001 72/51841*312119004989^(7/11) 2865672359715290 a001 72/51841*14662949395604^(5/9) 2865672359715290 a001 72/51841*(1/2+1/2*5^(1/2))^35 2865672359715290 a001 72/51841*505019158607^(5/8) 2865672359715290 a001 72/51841*28143753123^(7/10) 2865672359715290 a001 72/51841*599074578^(5/6) 2865672359715290 a001 72/51841*228826127^(7/8) 2865672359792915 a001 1762289/161*24476^(2/21) 2865672359880039 a001 2149970688/75025 2865672359936455 a001 121393/322*64079^(9/23) 2865672359942972 a001 48/90481*(1/2+1/2*5^(1/2))^37 2865672359967009 a001 2814348168/98209 2865672359976190 a001 144/710647*2537720636^(13/15) 2865672359976190 a001 144/710647*45537549124^(13/17) 2865672359976190 a001 144/710647*14662949395604^(13/21) 2865672359976190 a001 144/710647*(1/2+1/2*5^(1/2))^39 2865672359976190 a001 144/710647*192900153618^(13/18) 2865672359976190 a001 144/710647*73681302247^(3/4) 2865672359976190 a001 144/710647*10749957122^(13/16) 2865672359976190 a001 144/710647*599074578^(13/14) 2865672359979697 a001 14736118320/514229 2865672359981037 a001 8/103361*(1/2+1/2*5^(1/2))^41 2865672359981549 a001 38579658624/1346269 2865672359981744 a001 144/4870847*(1/2+1/2*5^(1/2))^43 2865672359981819 a001 567431784/19801 2865672359981847 a001 48/4250681*45537549124^(15/17) 2865672359981847 a001 48/4250681*312119004989^(9/11) 2865672359981847 a001 48/4250681*14662949395604^(5/7) 2865672359981847 a001 48/4250681*(1/2+1/2*5^(1/2))^45 2865672359981847 a001 48/4250681*192900153618^(5/6) 2865672359981847 a001 48/4250681*28143753123^(9/10) 2865672359981847 a001 48/4250681*10749957122^(15/16) 2865672359981849 a001 144*7881196^(1/3) 2865672359981858 a001 264428914032/9227465 2865672359981862 a001 72/16692641*(1/2+1/2*5^(1/2))^47 2865672359981864 a001 692283884544/24157817 2865672359981864 a001 48/29134601*14662949395604^(7/9) 2865672359981864 a001 48/29134601*505019158607^(7/8) 2865672359981865 a001 906211369800/31622993 2865672359981865 a001 144/228826127*817138163596^(17/19) 2865672359981865 a001 144/228826127*14662949395604^(17/21) 2865672359981865 a001 144/228826127*192900153618^(17/18) 2865672359981865 a001 4744984334256/165580141 2865672359981865 a001 12422530263168/433494437 2865672359981865 a001 144/1568397607*3461452808002^(11/12) 2865672359981865 a001 16261303227624/567451585 2865672359981865 a001 48/1368706081*14662949395604^(19/21) 2865672359981865 a001 85145289102576/2971215073 2865672359981865 a001 222913260852480/7778742049 2865672359981865 a001 291797246727432/10182505537 2865672359981865 a001 1527870219512112/53316291173 2865672359981865 a001 144*312119004989^(1/5) 2865672359981865 a001 314758575352416/10983760033 2865672359981865 a001 360681232602384/12586269025 2865672359981865 a001 144/17393796001*14662949395604^(20/21) 2865672359981865 a001 956722026041/33385604 2865672359981865 a001 52622682647328/1836311903 2865672359981865 a001 144*1568397607^(1/4) 2865672359981865 a001 36/634430159*14662949395604^(8/9) 2865672359981865 a001 75281184240/2626999 2865672359981865 a001 144/969323029*14662949395604^(6/7) 2865672359981865 a001 959693241114/33489287 2865672359981865 a001 144/370248451*23725150497407^(13/16) 2865672359981865 a001 144/370248451*505019158607^(13/14) 2865672359981865 a001 977520531552/34111385 2865672359981865 a001 36/35355581*312119004989^(10/11) 2865672359981865 a001 36/35355581*3461452808002^(5/6) 2865672359981865 a001 1120138855056/39088169 2865672359981866 a001 144/54018521*45537549124^(16/17) 2865672359981866 a001 144/54018521*14662949395604^(16/21) 2865672359981866 a001 144/54018521*192900153618^(8/9) 2865672359981866 a001 144/54018521*73681302247^(12/13) 2865672359981867 a001 2971215073/103683 2865672359981871 a001 144/20633239*(1/2+1/2*5^(1/2))^46 2865672359981871 a001 144/20633239*10749957122^(23/24) 2865672359981882 a001 163426056480/5702887 2865672359981911 a001 36/1970299*312119004989^(4/5) 2865672359981911 a001 36/1970299*(1/2+1/2*5^(1/2))^44 2865672359981911 a001 36/1970299*23725150497407^(11/16) 2865672359981911 a001 36/1970299*73681302247^(11/13) 2865672359981911 a001 36/1970299*10749957122^(11/12) 2865672359981911 a001 36/1970299*4106118243^(22/23) 2865672359981986 a001 20807732976/726103 2865672359982181 a001 144/3010349*2537720636^(14/15) 2865672359982181 a001 144/3010349*17393796001^(6/7) 2865672359982181 a001 144/3010349*45537549124^(14/17) 2865672359982181 a001 144/3010349*14662949395604^(2/3) 2865672359982181 a001 144/3010349*(1/2+1/2*5^(1/2))^42 2865672359982181 a001 144/3010349*505019158607^(3/4) 2865672359982181 a001 144/3010349*192900153618^(7/9) 2865672359982181 a001 144/3010349*10749957122^(7/8) 2865672359982181 a001 144/3010349*4106118243^(21/23) 2865672359982181 a001 144/3010349*1568397607^(21/22) 2865672359982693 a001 2980442538/104005 2865672359984032 a001 144/1149851*2537720636^(8/9) 2865672359984032 a001 144/1149851*312119004989^(8/11) 2865672359984032 a001 144/1149851*(1/2+1/2*5^(1/2))^40 2865672359984032 a001 144/1149851*23725150497407^(5/8) 2865672359984032 a001 144/1149851*73681302247^(10/13) 2865672359984032 a001 144/1149851*28143753123^(4/5) 2865672359984032 a001 144/1149851*10749957122^(5/6) 2865672359984032 a001 144/1149851*4106118243^(20/23) 2865672359984032 a001 144/1149851*1568397607^(10/11) 2865672359984032 a001 144/1149851*599074578^(20/21) 2865672359987539 a001 3035807328/105937 2865672359996720 a001 36/109801*817138163596^(2/3) 2865672359996720 a001 36/109801*(1/2+1/2*5^(1/2))^38 2865672359996720 a001 36/109801*10749957122^(19/24) 2865672359996720 a001 36/109801*4106118243^(19/23) 2865672359996720 a001 36/109801*1568397607^(19/22) 2865672359996720 a001 36/109801*599074578^(19/21) 2865672359996721 a001 36/109801*228826127^(19/20) 2865672360020547 a001 98209/161*64079^(8/23) 2865672360020637 a001 5702887/322*24476^(1/21) 2865672360020759 a001 3478725648/121393 2865672360030360 a001 317811/322*64079^(7/23) 2865672360046827 a001 75025/322*64079^(10/23) 2865672360068546 a001 514229/322*64079^(6/23) 2865672360083687 a001 144/167761*141422324^(12/13) 2865672360083687 a001 144/167761*2537720636^(4/5) 2865672360083687 a001 144/167761*45537549124^(12/17) 2865672360083687 a001 144/167761*14662949395604^(4/7) 2865672360083687 a001 144/167761*(1/2+1/2*5^(1/2))^36 2865672360083687 a001 144/167761*192900153618^(2/3) 2865672360083687 a001 144/167761*73681302247^(9/13) 2865672360083687 a001 144/167761*10749957122^(3/4) 2865672360083687 a001 144/167761*4106118243^(18/23) 2865672360083687 a001 144/167761*1568397607^(9/11) 2865672360083687 a001 144/167761*599074578^(6/7) 2865672360083687 a001 144/167761*228826127^(9/10) 2865672360083688 a001 144/167761*87403803^(18/19) 2865672360095894 a001 416020/161*64079^(5/23) 2865672360104045 a001 144*103682^(11/24) 2865672360127382 a001 1346269/322*64079^(4/23) 2865672360157288 a001 311187/46*64079^(3/23) 2865672360187799 a001 1762289/161*64079^(2/23) 2865672360204595 a001 121393/322*439204^(1/3) 2865672360209535 a001 121393/322*7881196^(3/11) 2865672360209547 a001 121393/322*141422324^(3/13) 2865672360209547 a001 121393/322*2537720636^(1/5) 2865672360209547 a001 121393/322*45537549124^(3/17) 2865672360209547 a001 121393/322*14662949395604^(1/7) 2865672360209547 a001 121393/322*(1/2+1/2*5^(1/2))^9 2865672360209547 a001 121393/322*192900153618^(1/6) 2865672360209547 a001 121393/322*10749957122^(3/16) 2865672360209547 a001 121393/322*599074578^(3/14) 2865672360209548 a001 121393/322*33385282^(1/4) 2865672360209796 a001 121393/322*1860498^(3/10) 2865672360218079 a001 5702887/322*64079^(1/23) 2865672360227248 a001 416020/161*167761^(1/5) 2865672360242764 a001 317811/322*20633239^(1/5) 2865672360242766 a001 317811/322*17393796001^(1/7) 2865672360242766 a001 317811/322*14662949395604^(1/9) 2865672360242766 a001 317811/322*(1/2+1/2*5^(1/2))^7 2865672360242766 a001 317811/322*599074578^(1/6) 2865672360244184 a001 317811/322*710647^(1/4) 2865672360246669 a001 311187/46*439204^(1/9) 2865672360247306 a001 514229/322*439204^(2/9) 2865672360247611 a001 416020/161*20633239^(1/7) 2865672360247612 a001 416020/161*2537720636^(1/9) 2865672360247612 a001 416020/161*312119004989^(1/11) 2865672360247612 a001 416020/161*(1/2+1/2*5^(1/2))^5 2865672360247612 a001 416020/161*28143753123^(1/10) 2865672360247612 a001 416020/161*228826127^(1/8) 2865672360247750 a001 416020/161*1860498^(1/6) 2865672360248315 a001 311187/46*7881196^(1/11) 2865672360248319 a001 311187/46*141422324^(1/13) 2865672360248319 a001 311187/46*2537720636^(1/15) 2865672360248319 a001 311187/46*45537549124^(1/17) 2865672360248319 a001 311187/46*14662949395604^(1/21) 2865672360248319 a001 311187/46*(1/2+1/2*5^(1/2))^3 2865672360248319 a001 311187/46*10749957122^(1/16) 2865672360248319 a001 311187/46*599074578^(1/14) 2865672360248319 a001 311187/46*33385282^(1/12) 2865672360248402 a001 311187/46*1860498^(1/10) 2865672360248422 a001 5702887/644+5702887/644*5^(1/2) 2865672360248447 a001 9227465/322 2865672360248486 a001 1762289/161*(1/2+1/2*5^(1/2))^2 2865672360248486 a001 1762289/161*10749957122^(1/24) 2865672360248486 a001 1762289/161*4106118243^(1/23) 2865672360248486 a001 1762289/161*1568397607^(1/22) 2865672360248486 a001 1762289/161*599074578^(1/21) 2865672360248486 a001 1762289/161*228826127^(1/20) 2865672360248486 a001 1762289/161*87403803^(1/19) 2865672360248486 a001 1762289/161*33385282^(1/18) 2865672360248487 a001 1762289/161*12752043^(1/17) 2865672360248494 a001 1762289/161*4870847^(1/16) 2865672360248541 a001 1762289/161*1860498^(1/15) 2865672360248756 a001 1346269/322*(1/2+1/2*5^(1/2))^4 2865672360248756 a001 1346269/322*23725150497407^(1/16) 2865672360248756 a001 1346269/322*73681302247^(1/13) 2865672360248756 a001 1346269/322*10749957122^(1/12) 2865672360248756 a001 1346269/322*4106118243^(2/23) 2865672360248756 a001 1346269/322*1568397607^(1/11) 2865672360248756 a001 1346269/322*599074578^(2/21) 2865672360248756 a001 1346269/322*228826127^(1/10) 2865672360248756 a001 1346269/322*87403803^(2/19) 2865672360248756 a001 1346269/322*33385282^(1/9) 2865672360248758 a001 1346269/322*12752043^(2/17) 2865672360248771 a001 1346269/322*4870847^(1/8) 2865672360248867 a001 1346269/322*1860498^(2/15) 2865672360248891 a001 1762289/161*710647^(1/14) 2865672360249567 a001 1346269/322*710647^(1/7) 2865672360250599 a001 514229/322*7881196^(2/11) 2865672360250607 a001 514229/322*141422324^(2/13) 2865672360250607 a001 514229/322*2537720636^(2/15) 2865672360250607 a001 514229/322*45537549124^(2/17) 2865672360250607 a001 514229/322*14662949395604^(2/21) 2865672360250607 a001 514229/322*(1/2+1/2*5^(1/2))^6 2865672360250607 a001 514229/322*10749957122^(1/8) 2865672360250607 a001 514229/322*4106118243^(3/23) 2865672360250607 a001 514229/322*1568397607^(3/22) 2865672360250607 a001 514229/322*599074578^(1/7) 2865672360250607 a001 514229/322*228826127^(3/20) 2865672360250607 a001 514229/322*87403803^(3/19) 2865672360250608 a001 514229/322*33385282^(1/6) 2865672360250611 a001 514229/322*12752043^(3/17) 2865672360250630 a001 514229/322*4870847^(3/16) 2865672360250773 a001 514229/322*1860498^(1/5) 2865672360251478 a001 1762289/161*271443^(1/13) 2865672360251823 a001 514229/322*710647^(3/14) 2865672360254740 a001 1346269/322*271443^(2/13) 2865672360259530 a001 5702887/322*103682^(1/24) 2865672360259583 a001 514229/322*271443^(3/13) 2865672360263296 a001 98209/161*(1/2+1/2*5^(1/2))^8 2865672360263296 a001 98209/161*23725150497407^(1/8) 2865672360263296 a001 98209/161*505019158607^(1/7) 2865672360263296 a001 98209/161*73681302247^(2/13) 2865672360263296 a001 98209/161*10749957122^(1/6) 2865672360263296 a001 98209/161*4106118243^(4/23) 2865672360263296 a001 98209/161*1568397607^(2/11) 2865672360263296 a001 98209/161*599074578^(4/21) 2865672360263296 a001 98209/161*228826127^(1/5) 2865672360263296 a001 98209/161*87403803^(4/19) 2865672360263296 a001 98209/161*33385282^(2/9) 2865672360263300 a001 98209/161*12752043^(4/17) 2865672360263326 a001 98209/161*4870847^(1/4) 2865672360263516 a001 98209/161*1860498^(4/15) 2865672360264917 a001 98209/161*710647^(2/7) 2865672360270701 a001 1762289/161*103682^(1/12) 2865672360275263 a001 98209/161*271443^(4/13) 2865672360281641 a001 311187/46*103682^(1/8) 2865672360293185 a001 1346269/322*103682^(1/6) 2865672360303149 a001 416020/161*103682^(5/24) 2865672360309513 a001 121393/322*103682^(3/8) 2865672360309534 a001 75025/322*167761^(2/5) 2865672360317251 a001 514229/322*103682^(1/4) 2865672360320517 a001 317811/322*103682^(7/24) 2865672360331474 a001 5702887/322*39603^(1/22) 2865672360350261 a001 75025/322*20633239^(2/7) 2865672360350263 a001 75025/322*2537720636^(2/9) 2865672360350263 a001 75025/322*312119004989^(2/11) 2865672360350263 a001 75025/322*(1/2+1/2*5^(1/2))^10 2865672360350263 a001 75025/322*28143753123^(1/5) 2865672360350263 a001 75025/322*10749957122^(5/24) 2865672360350263 a001 75025/322*4106118243^(5/23) 2865672360350263 a001 75025/322*1568397607^(5/22) 2865672360350263 a001 75025/322*599074578^(5/21) 2865672360350263 a001 75025/322*228826127^(1/4) 2865672360350263 a001 75025/322*87403803^(5/19) 2865672360350263 a001 75025/322*33385282^(5/18) 2865672360350268 a001 75025/322*12752043^(5/17) 2865672360350300 a001 75025/322*4870847^(5/16) 2865672360350539 a001 75025/322*1860498^(1/3) 2865672360352154 a001 98209/161*103682^(1/3) 2865672360352289 a001 75025/322*710647^(5/14) 2865672360365221 a001 75025/322*271443^(5/13) 2865672360414589 a001 1762289/161*39603^(1/11) 2865672360461336 a001 75025/322*103682^(5/12) 2865672360497474 a001 311187/46*39603^(3/22) 2865672360580962 a001 1346269/322*39603^(2/11) 2865672360582220 a001 28657/322*64079^(12/23) 2865672360662870 a001 416020/161*39603^(5/22) 2865672360679768 a001 144/64079*45537549124^(2/3) 2865672360679768 a001 144/64079*(1/2+1/2*5^(1/2))^34 2865672360679768 a001 144/64079*10749957122^(17/24) 2865672360679768 a001 144/64079*4106118243^(17/23) 2865672360679768 a001 144/64079*1568397607^(17/22) 2865672360679768 a001 144/64079*599074578^(17/21) 2865672360679768 a001 144/64079*228826127^(17/20) 2865672360679768 a001 144/64079*87403803^(17/19) 2865672360679770 a001 144/64079*33385282^(17/18) 2865672360748917 a001 514229/322*39603^(3/11) 2865672360824126 a001 317811/322*39603^(7/22) 2865672360874590 a001 5702887/322*15127^(1/20) 2865672360895432 a001 144*39603^(1/2) 2865672360927708 a001 98209/161*39603^(4/11) 2865672360939740 a001 28657/322*439204^(4/9) 2865672360946326 a001 28657/322*7881196^(4/11) 2865672360946343 a001 28657/322*141422324^(4/13) 2865672360946343 a001 28657/322*2537720636^(4/15) 2865672360946343 a001 28657/322*45537549124^(4/17) 2865672360946343 a001 28657/322*817138163596^(4/19) 2865672360946343 a001 28657/322*14662949395604^(4/21) 2865672360946343 a001 28657/322*(1/2+1/2*5^(1/2))^12 2865672360946343 a001 28657/322*192900153618^(2/9) 2865672360946343 a001 28657/322*73681302247^(3/13) 2865672360946343 a001 28657/322*10749957122^(1/4) 2865672360946343 a001 28657/322*4106118243^(6/23) 2865672360946343 a001 28657/322*1568397607^(3/11) 2865672360946343 a001 28657/322*599074578^(2/7) 2865672360946343 a001 28657/322*228826127^(3/10) 2865672360946343 a001 28657/322*87403803^(6/19) 2865672360946344 a001 28657/322*33385282^(1/3) 2865672360946349 a001 28657/322*12752043^(6/17) 2865672360946388 a001 28657/322*4870847^(3/8) 2865672360946674 a001 28657/322*1860498^(2/5) 2865672360948775 a001 28657/322*710647^(3/7) 2865672360957011 a001 121393/322*39603^(9/22) 2865672360964294 a001 28657/322*271443^(6/13) 2865672361079631 a001 28657/322*103682^(1/2) 2865672361180778 a001 75025/322*39603^(5/11) 2865672361500822 a001 1762289/161*15127^(1/10) 2865672361809045 a001 5702688/199 2865672361842939 a001 5473/161*24476^(2/3) 2865672361942961 a001 28657/322*39603^(6/11) 2865672362126823 a001 311187/46*15127^(3/20) 2865672362753429 a001 1346269/322*15127^(1/5) 2865672363378453 a001 416020/161*15127^(1/4) 2865672364007616 a001 514229/322*15127^(3/10) 2865672364607128 a001 5473/161*64079^(14/23) 2865672364625942 a001 317811/322*15127^(7/20) 2865672364765363 a001 36/6119*(1/2+1/2*5^(1/2))^32 2865672364765363 a001 36/6119*23725150497407^(1/2) 2865672364765363 a001 36/6119*505019158607^(4/7) 2865672364765363 a001 36/6119*73681302247^(8/13) 2865672364765363 a001 36/6119*10749957122^(2/3) 2865672364765363 a001 36/6119*4106118243^(16/23) 2865672364765363 a001 36/6119*1568397607^(8/11) 2865672364765363 a001 36/6119*599074578^(16/21) 2865672364765363 a001 36/6119*228826127^(4/5) 2865672364765364 a001 36/6119*87403803^(16/19) 2865672364765366 a001 36/6119*33385282^(8/9) 2865672364765380 a001 36/6119*12752043^(16/17) 2865672365017111 a001 5702887/322*5778^(1/18) 2865672365031936 a001 5473/161*20633239^(2/5) 2865672365031938 a001 5473/161*17393796001^(2/7) 2865672365031938 a001 5473/161*14662949395604^(2/9) 2865672365031938 a001 5473/161*(1/2+1/2*5^(1/2))^14 2865672365031938 a001 5473/161*505019158607^(1/4) 2865672365031938 a001 5473/161*10749957122^(7/24) 2865672365031938 a001 5473/161*4106118243^(7/23) 2865672365031938 a001 5473/161*1568397607^(7/22) 2865672365031939 a001 5473/161*599074578^(1/3) 2865672365031939 a001 5473/161*228826127^(7/20) 2865672365031939 a001 5473/161*87403803^(7/19) 2865672365031939 a001 5473/161*33385282^(7/18) 2865672365031946 a001 5473/161*12752043^(7/17) 2865672365031991 a001 5473/161*4870847^(7/16) 2865672365032325 a001 5473/161*1860498^(7/15) 2865672365034776 a001 5473/161*710647^(1/2) 2865672365052881 a001 5473/161*271443^(7/13) 2865672365187441 a001 5473/161*103682^(7/12) 2865672365272640 a001 98209/161*15127^(2/5) 2865672365425269 a001 4181/322*9349^(16/19) 2865672365845060 a001 121393/322*15127^(9/20) 2865672366194660 a001 5473/161*39603^(7/11) 2865672366561491 a001 17711/322*15127^(13/20) 2865672366611944 a001 75025/322*15127^(1/2) 2865672366869714 a001 144*15127^(11/20) 2865672367640162 r005 Im(z^2+c),c=1/11+27/46*I,n=24 2865672368460360 a001 28657/322*15127^(3/5) 2865672369785864 a001 1762289/161*5778^(1/9) 2865672370602948 m002 -1-Pi^3+(Pi*Log[Pi])/ProductLog[Pi] 2865672372505543 a001 64620912/2255 2865672373774902 r005 Im(z^2+c),c=-35/102+23/47*I,n=21 2865672373798292 a001 5473/161*15127^(7/10) 2865672374554385 a001 311187/46*5778^(1/6) 2865672379323511 a001 1346269/322*5778^(2/9) 2865672384091056 a001 416020/161*5778^(5/18) 2865672386363686 r005 Re(z^2+c),c=-23/62+13/22*I,n=51 2865672387102436 a007 Real Root Of -377*x^4-977*x^3+451*x^2+571*x+365 2865672388862740 a001 514229/322*5778^(1/3) 2865672389390456 a001 4181/322*24476^(16/21) 2865672389893151 r009 Re(z^3+c),c=-25/86+17/24*I,n=15 2865672392549529 a001 4181/322*64079^(16/23) 2865672392768410 a001 144/9349*7881196^(10/11) 2865672392768446 a001 144/9349*20633239^(6/7) 2865672392768452 a001 144/9349*141422324^(10/13) 2865672392768452 a001 144/9349*2537720636^(2/3) 2865672392768452 a001 144/9349*45537549124^(10/17) 2865672392768452 a001 144/9349*312119004989^(6/11) 2865672392768452 a001 144/9349*14662949395604^(10/21) 2865672392768452 a001 144/9349*(1/2+1/2*5^(1/2))^30 2865672392768452 a001 144/9349*192900153618^(5/9) 2865672392768452 a001 144/9349*28143753123^(3/5) 2865672392768452 a001 144/9349*10749957122^(5/8) 2865672392768452 a001 144/9349*4106118243^(15/23) 2865672392768452 a001 144/9349*1568397607^(15/22) 2865672392768452 a001 144/9349*599074578^(5/7) 2865672392768452 a001 144/9349*228826127^(3/4) 2865672392768452 a001 144/9349*87403803^(15/19) 2865672392768454 a001 144/9349*33385282^(5/6) 2865672392768467 a001 144/9349*12752043^(15/17) 2865672392768565 a001 144/9349*4870847^(15/16) 2865672393035027 a001 4181/322*(1/2+1/2*5^(1/2))^16 2865672393035027 a001 4181/322*23725150497407^(1/4) 2865672393035027 a001 4181/322*73681302247^(4/13) 2865672393035027 a001 4181/322*10749957122^(1/3) 2865672393035027 a001 4181/322*4106118243^(8/23) 2865672393035027 a001 4181/322*1568397607^(4/11) 2865672393035027 a001 4181/322*599074578^(8/21) 2865672393035027 a001 4181/322*228826127^(2/5) 2865672393035027 a001 4181/322*87403803^(8/19) 2865672393035028 a001 4181/322*33385282^(4/9) 2865672393035035 a001 4181/322*12752043^(8/17) 2865672393035087 a001 4181/322*4870847^(1/2) 2865672393035468 a001 4181/322*1860498^(8/15) 2865672393038269 a001 4181/322*710647^(4/7) 2865672393058961 a001 4181/322*271443^(8/13) 2865672393212743 a001 4181/322*103682^(2/3) 2865672393623587 a001 317811/322*5778^(7/18) 2865672394363851 a001 4181/322*39603^(8/11) 2865672397019133 a001 5702887/322*2207^(1/16) 2865672398259343 m005 (1/2*gamma+1/8)/(2/7*exp(1)+2/3) 2865672398412806 a001 98209/161*5778^(4/9) 2865672402779710 a007 Real Root Of 266*x^4-754*x^3+940*x^2+355*x+5 2865672403053716 a001 4181/322*15127^(4/5) 2865672403127746 a001 121393/322*5778^(1/2) 2865672408037150 a001 75025/322*5778^(5/9) 2865672411485498 m001 (Zeta(5)-Lehmer)/(ReciprocalLucas-ThueMorse) 2865672412437441 a001 144*5778^(11/18) 2865672413170636 r009 Re(z^3+c),c=-13/32+17/45*I,n=17 2865672418047253 m001 Psi(1,1/3)^PisotVijayaraghavan*Totient 2865672418170608 a001 28657/322*5778^(2/3) 2865672419255410 a001 6765/322*5778^(5/6) 2865672419683123 a007 Real Root Of 59*x^4-21*x^3-633*x^2-341*x-252 2865672420414260 a001 17711/322*5778^(13/18) 2865672424090680 a007 Real Root Of 351*x^4+906*x^3-483*x^2-375*x+542 2865672424286113 h001 (4/7*exp(1)+3/8)/(5/6*exp(2)+4/7) 2865672431793581 a001 5473/161*5778^(7/9) 2865672433789908 a001 1762289/161*2207^(1/8) 2865672434124063 a007 Real Root Of -333*x^4-725*x^3+338*x^2-940*x-74 2865672437375142 m001 (GAMMA(5/6)+MasserGramain)/(Robbin-Sarnak) 2865672438955902 m001 exp(OneNinth)/KhintchineLevy^2*BesselK(1,1)^2 2865672445431667 h001 (5/6*exp(1)+7/10)/(1/8*exp(2)+1/9) 2865672445820433 a001 9256122/323 2865672449556755 m005 (-1/12+1/6*5^(1/2))/(7/10*5^(1/2)-5/9) 2865672450751310 m001 GAMMA(2/3)+BesselJ(1,1)-MasserGramainDelta 2865672451345345 l006 ln(5385/7172) 2865672455685118 r008 a(0)=3,K{-n^6,5+7*n^2-2*n} 2865672458328702 r005 Re(z^2+c),c=-13/30+11/37*I,n=5 2865672469334048 a001 4181/322*5778^(8/9) 2865672469676560 a007 Real Root Of 209*x^4+338*x^3-953*x^2-419*x+485 2865672470560452 a001 311187/46*2207^(3/16) 2865672507142787 m006 (3/Pi+2/5)/(2*exp(Pi)+1) 2865672507331601 a001 1346269/322*2207^(1/4) 2865672514217242 m001 1/GAMMA(1/3)*Lehmer*exp(sin(Pi/12)) 2865672515742581 l006 ln(419/7358) 2865672544101170 a001 416020/161*2207^(5/16) 2865672549007755 m001 (-Zeta(3)+GAMMA(23/24))/(Catalan-ln(2)/ln(10)) 2865672550497062 a007 Real Root Of 630*x^4+4*x^3-407*x^2-315*x-61 2865672553128757 m001 1/Bloch^2*Conway^2*exp(GAMMA(1/4)) 2865672553216552 p004 log(18229/13687) 2865672553910069 a001 1597/322*9349^(18/19) 2865672556553688 m001 1/3*ln(2)^ThueMorse 2865672556904458 a003 sin(Pi*11/119)/sin(Pi*19/39) 2865672558510913 r005 Re(z^2+c),c=-10/31+24/59*I,n=6 2865672568477557 s002 sum(A156323[n]/(n^2*2^n+1),n=1..infinity) 2865672568949278 m001 (Paris+Porter)/(FeigenbaumDelta+Kolakoski) 2865672570952545 m004 -1+(125*Sqrt[5]*Tanh[Sqrt[5]*Pi])/(3*Pi) 2865672580870906 a001 1597/322*24476^(6/7) 2865672580874878 a001 514229/322*2207^(3/8) 2865672582095611 m001 (LaplaceLimit+ZetaQ(4))/(ln(Pi)+GAMMA(19/24)) 2865672584424863 a001 1597/322*64079^(18/23) 2865672584704485 a001 144/3571*20633239^(4/5) 2865672584704490 a001 144/3571*17393796001^(4/7) 2865672584704490 a001 144/3571*14662949395604^(4/9) 2865672584704490 a001 144/3571*(1/2+1/2*5^(1/2))^28 2865672584704490 a001 144/3571*73681302247^(7/13) 2865672584704490 a001 144/3571*10749957122^(7/12) 2865672584704490 a001 144/3571*4106118243^(14/23) 2865672584704490 a001 144/3571*1568397607^(7/11) 2865672584704490 a001 144/3571*599074578^(2/3) 2865672584704490 a001 144/3571*228826127^(7/10) 2865672584704491 a001 144/3571*87403803^(14/19) 2865672584704492 a001 144/3571*33385282^(7/9) 2865672584704505 a001 144/3571*12752043^(14/17) 2865672584704596 a001 144/3571*4870847^(7/8) 2865672584705263 a001 144/3571*1860498^(14/15) 2865672584961144 a001 1597/322*439204^(2/3) 2865672584971023 a001 1597/322*7881196^(6/11) 2865672584971048 a001 1597/322*141422324^(6/13) 2865672584971048 a001 1597/322*2537720636^(2/5) 2865672584971048 a001 1597/322*45537549124^(6/17) 2865672584971048 a001 1597/322*14662949395604^(2/7) 2865672584971048 a001 1597/322*(1/2+1/2*5^(1/2))^18 2865672584971048 a001 1597/322*192900153618^(1/3) 2865672584971048 a001 1597/322*10749957122^(3/8) 2865672584971048 a001 1597/322*4106118243^(9/23) 2865672584971048 a001 1597/322*1568397607^(9/22) 2865672584971048 a001 1597/322*599074578^(3/7) 2865672584971048 a001 1597/322*228826127^(9/20) 2865672584971048 a001 1597/322*87403803^(9/19) 2865672584971049 a001 1597/322*33385282^(1/2) 2865672584971057 a001 1597/322*12752043^(9/17) 2865672584971116 a001 1597/322*4870847^(9/16) 2865672584971545 a001 1597/322*1860498^(3/5) 2865672584974696 a001 1597/322*710647^(9/14) 2865672584997974 a001 1597/322*271443^(9/13) 2865672585170979 a001 1597/322*103682^(3/4) 2865672586465976 a001 1597/322*39603^(9/11) 2865672586507157 a007 Real Root Of 430*x^4-859*x^3+152*x^2-866*x+253 2865672595177226 m001 (Zeta(1/2)-Conway*KhinchinHarmonic)/Conway 2865672596242074 a001 1597/322*15127^(9/10) 2865672602856343 m005 (1/2*5^(1/2)-8/9)/(3/10*Pi-1/7) 2865672603640394 m001 (CareFree+PlouffeB)/(gamma+Zeta(1,-1)) 2865672607139011 p004 log(26113/1487) 2865672614052981 m005 (-13/44+1/4*5^(1/2))/(1/9*3^(1/2)+8/11) 2865672615955256 g006 -Psi(1,1/12)-Psi(1,1/10)-Psi(1,2/7)-Psi(1,1/5) 2865672617637750 a001 317811/322*2207^(7/16) 2865672624093501 r009 Im(z^3+c),c=-3/10+12/47*I,n=5 2865672631926239 r002 20th iterates of z^2 + 2865672635052776 m003 30+Sqrt[5]/8-(3*Coth[1/2+Sqrt[5]/2])/2 2865672636723885 a007 Real Root Of 34*x^4+986*x^3+358*x^2+658*x-474 2865672637268853 m001 (sin(1/12*Pi)-Bloch)/(Porter-Sarnak) 2865672640011670 r005 Im(z^2+c),c=-31/78+25/51*I,n=45 2865672640881638 r005 Re(z^2+c),c=-23/86+26/51*I,n=33 2865672646281657 h005 exp(cos(Pi*3/59)/sin(Pi*12/31)) 2865672648253670 r005 Re(z^2+c),c=4/17+21/41*I,n=15 2865672648282776 a001 5702887/322*843^(1/14) 2865672649383802 r002 9th iterates of z^2 + 2865672654428993 a001 98209/161*2207^(1/2) 2865672654495189 a007 Real Root Of -337*x^4+866*x^3-996*x^2+986*x+387 2865672656376084 m001 (Rabbit+Thue)/(Psi(2,1/3)+Artin) 2865672657090234 m006 (4/5*exp(Pi)-1/5)/(5*ln(Pi)+2/3) 2865672665278227 a007 Real Root Of -344*x^4+806*x^3+331*x^2+367*x-149 2865672691145959 a001 121393/322*2207^(9/16) 2865672692691273 m001 (Pi^(1/2)-OrthogonalArrays)/(Totient-ZetaQ(2)) 2865672711008588 m005 (1/2*exp(1)-5/12)/(8/11*gamma-1/11) 2865672721548265 g006 Psi(1,3/10)+Psi(1,8/9)+Psi(1,1/4)-Psi(1,5/7) 2865672728057390 a001 75025/322*2207^(5/8) 2865672734930965 m005 (1/2*exp(1)-8/11)/(6/7*exp(1)-1/8) 2865672738981627 r009 Re(z^3+c),c=-19/106+23/24*I,n=52 2865672752851540 r005 Im(z^2+c),c=-75/86+10/49*I,n=19 2865672760236327 r008 a(0)=3,K{-n^6,1-9*n^3+7*n^2+6*n} 2865672764459707 a001 144*2207^(11/16) 2865672771871407 s002 sum(A137560[n]/((exp(n)+1)*n),n=1..infinity) 2865672778492845 a007 Real Root Of -235*x^4-537*x^3+233*x^2-318*x+386 2865672782059729 m005 (1/2*exp(1)-3/8)/(1/7*2^(1/2)-6/11) 2865672792355107 a007 Real Root Of 245*x^4+947*x^3+873*x^2+293*x-566 2865672792666046 a001 521/610*4807526976^(6/23) 2865672802194901 a001 28657/322*2207^(3/4) 2865672803738288 g006 2*Psi(1,11/12)+Psi(1,8/9)-Psi(1,7/10) 2865672806304657 m001 1/Paris*ln(Lehmer)*cos(1) 2865672810071015 r009 Im(z^3+c),c=-67/118+17/56*I,n=41 2865672817115243 m001 (5^(1/2)-Psi(2,1/3))/(Champernowne+ZetaP(4)) 2865672819991176 r005 Im(z^2+c),c=-7/10+9/217*I,n=57 2865672823356197 a003 cos(Pi*28/103)*cos(Pi*31/87) 2865672833677314 a001 726103/41*47^(1/8) 2865672835900895 m001 ln(Pi)^2/Backhouse^2*arctan(1/2) 2865672836440580 a001 17711/322*2207^(13/16) 2865672844423662 r002 62th iterates of z^2 + 2865672845549036 m001 1/GaussAGM(1,1/sqrt(2))/exp(Bloch)^3 2865672849279926 a007 Real Root Of -91*x^4+259*x^3-195*x^2+493*x+164 2865672859991322 m001 (Pi^(1/2)+GAMMA(17/24))/(Shi(1)-gamma(2)) 2865672862790152 r005 Im(z^2+c),c=-11/27+13/28*I,n=19 2865672876776073 s001 sum(exp(-Pi/2)^n*A084671[n],n=1..infinity) 2865672879523236 b008 10+EllipticNomeQ[EulerGamma]^(-1) 2865672879821930 a001 5473/161*2207^(7/8) 2865672885571195 a007 Real Root Of 358*x^4-485*x^3-130*x^2-659*x-192 2865672899198678 a005 (1/cos(17/218*Pi))^1326 2865672899285784 a001 6765/322*2207^(15/16) 2865672900757329 m001 Lehmer^KhinchinHarmonic*Lehmer^Cahen 2865672918251276 r005 Re(z^2+c),c=-11/30+2/29*I,n=10 2865672920716481 m006 (1/4*Pi^2-3)/(3/4*ln(Pi)+1) 2865672923702098 m005 (1/2*Pi+4/7)/(2^(1/2)-2/3) 2865672928802301 r009 Re(z^3+c),c=-49/106+1/17*I,n=7 2865672929340263 l006 ln(2917/3885) 2865672929991811 v002 sum(1/(2^n*(n^3+2*n^2-7*n+6)),n=1..infinity) 2865672936317222 a001 1762289/161*843^(1/7) 2865672937110321 r005 Re(z^2+c),c=-47/82+4/7*I,n=10 2865672939702094 m001 (gamma+LambertW(1))/(FellerTornier+ZetaP(4)) 2865672943245408 r005 Im(z^2+c),c=-11/30+29/59*I,n=26 2865672948328267 a001 9428064/329 2865672961886765 a007 Real Root Of -529*x^4-266*x^3+153*x^2+978*x-283 2865672969765208 a007 Real Root Of -99*x^4+576*x^3+924*x^2+608*x-263 2865672973326393 s001 sum(exp(-Pi/3)^(n-1)*A244319[n],n=1..infinity) 2865672975336419 m001 OrthogonalArrays^(KomornikLoreti/Stephens) 2865672999004996 r005 Re(z^2+c),c=-6/19+20/57*I,n=14 2865673001343780 r005 Im(z^2+c),c=17/58+6/53*I,n=57 2865673003705625 m004 -4+5*Sqrt[5]*Pi-(5*Csc[Sqrt[5]*Pi])/3 2865673015214314 m009 (1/5*Psi(1,3/4)+3/5)/(3/8*Pi^2+1/6) 2865673021287410 a007 Real Root Of -15*x^4-408*x^3+657*x^2+885*x+49 2865673021752195 r009 Re(z^3+c),c=-25/78+10/47*I,n=5 2865673027577412 m001 1/exp(Zeta(1,2))^2/BesselJ(1,1)^2/sinh(1) 2865673030447818 a001 123/956722026041*13^(5/16) 2865673034260484 a007 Real Root Of 616*x^4-983*x^3+331*x^2-908*x+252 2865673036420954 m001 1/Riemann3rdZero^2/ln(Conway)^2*(2^(1/3)) 2865673040975928 a007 Real Root Of 26*x^4+721*x^3-670*x^2+569*x-45 2865673043835822 m005 (1/2*5^(1/2)+5/8)/(1/7*gamma+6) 2865673045634111 r009 Re(z^3+c),c=-19/32+35/64*I,n=47 2865673063317284 m001 Bloch-FeigenbaumAlpha-GaussAGM 2865673085560773 m001 (Pi+Zeta(5))/(gamma(3)+Backhouse) 2865673091439804 m001 (Ei(1,1)*BesselI(0,2)-GAMMA(5/6))/Ei(1,1) 2865673097784647 a001 9227465/2207*199^(4/11) 2865673106640217 l006 ln(230/4039) 2865673106738500 a003 sin(Pi*3/62)/sin(Pi*14/79) 2865673111669644 r002 25th iterates of z^2 + 2865673112647456 m005 (1/2*2^(1/2)+7/12)/(2/9*5^(1/2)-5) 2865673168916484 h001 (1/10*exp(1)+5/6)/(5/12*exp(2)+7/9) 2865673183060493 m001 (BesselI(0,1)+ln(5))/(-arctan(1/2)+Porter) 2865673190599159 r009 Im(z^3+c),c=-65/114+15/53*I,n=8 2865673194328799 r005 Re(z^2+c),c=-27/34+1/60*I,n=58 2865673194780933 r002 6th iterates of z^2 + 2865673203414944 a007 Real Root Of 125*x^4+234*x^3-201*x^2+265*x-513 2865673215318234 m001 (GAMMA(7/12)+MinimumGamma)/(Niven-Robbin) 2865673218114541 m001 Tribonacci^2*ln(Bloch)^2*GAMMA(3/4)^2 2865673224351466 a001 311187/46*843^(3/14) 2865673226712140 r009 Re(z^3+c),c=-4/17+11/12*I,n=3 2865673227696546 a001 3571/9227465*832040^(6/19) 2865673227696814 a001 3571/165580141*7778742049^(6/19) 2865673245882829 m002 -Pi^3+4/Log[Pi]-Log[Pi] 2865673254834036 a007 Real Root Of 416*x^4+871*x^3-886*x^2+342*x+699 2865673263310840 r005 Im(z^2+c),c=7/40+11/26*I,n=4 2865673268461165 h001 (1/10*exp(1)+3/7)/(7/11*exp(1)+5/7) 2865673287956257 a007 Real Root Of -180*x^4-763*x^3-816*x^2-237*x+205 2865673288700876 a007 Real Root Of 313*x^4-250*x^3-545*x^2-218*x+111 2865673292208092 r005 Re(z^2+c),c=23/86+3/28*I,n=38 2865673296501563 r005 Re(z^2+c),c=-29/94+17/44*I,n=23 2865673298487971 r005 Re(z^2+c),c=-8/27+11/26*I,n=36 2865673306003403 r005 Re(z^2+c),c=7/25+35/61*I,n=25 2865673309497158 p001 sum((-1)^n/(515*n+338)/(12^n),n=0..infinity) 2865673311197839 m001 (FeigenbaumC+Robbin)/(Trott+Thue) 2865673311539575 r005 Im(z^2+c),c=-117/106+1/29*I,n=12 2865673311774924 a007 Real Root Of 277*x^4+727*x^3-485*x^2-759*x+236 2865673319493149 a007 Real Root Of -359*x^4-947*x^3+43*x^2-526*x+64 2865673333455261 s002 sum(A036405[n]/(exp(n)-1),n=1..infinity) 2865673339017571 l006 ln(6283/8368) 2865673350949633 m001 (exp(1)*sqrt(3)+GAMMA(7/24))/exp(1) 2865673351758558 r002 17th iterates of z^2 + 2865673352120414 a003 cos(Pi*22/57)-cos(Pi*47/98) 2865673364812129 r005 Im(z^2+c),c=-9/70+21/53*I,n=9 2865673371586261 p001 sum(floor(nd*n)/(524*n+5)/(8^n),n=0..infinity) 2865673371811164 m004 -30+ProductLog[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/5 2865673373519082 g007 Psi(2,5/9)+Psi(2,6/7)+Psi(2,1/3)-Psi(2,3/11) 2865673409808898 m001 (KhinchinLevy+Rabbit)/(Zeta(3)-cos(1)) 2865673418163965 m001 (exp(1/exp(1))+BesselI(0,2))/(Sarnak+Stephens) 2865673419632646 a001 9349/24157817*832040^(6/19) 2865673419632909 a001 9349/433494437*7778742049^(6/19) 2865673447635746 a001 12238/31622993*832040^(6/19) 2865673447636008 a001 12238/567451585*7778742049^(6/19) 2865673451721343 a001 64079/165580141*832040^(6/19) 2865673451721605 a001 64079/2971215073*7778742049^(6/19) 2865673452317424 a001 167761/433494437*832040^(6/19) 2865673452317685 a001 167761/7778742049*7778742049^(6/19) 2865673452404391 a001 219602/567451585*832040^(6/19) 2865673452404652 a001 219602/10182505537*7778742049^(6/19) 2865673452417079 a001 1149851/2971215073*832040^(6/19) 2865673452417340 a001 1149851/53316291173*7778742049^(6/19) 2865673452418930 a001 3010349/7778742049*832040^(6/19) 2865673452419192 a001 3010349/139583862445*7778742049^(6/19) 2865673452419200 a001 3940598/10182505537*832040^(6/19) 2865673452419240 a001 20633239/53316291173*832040^(6/19) 2865673452419245 a001 54018521/139583862445*832040^(6/19) 2865673452419246 a001 70711162/182717648081*832040^(6/19) 2865673452419246 a001 370248451/956722026041*832040^(6/19) 2865673452419246 a001 969323029/2504730781961*832040^(6/19) 2865673452419246 a001 1268860318/3278735159921*832040^(6/19) 2865673452419246 a001 1368706081/3536736619241*832040^(6/19) 2865673452419246 a001 1568397607/4052739537881*832040^(6/19) 2865673452419246 a001 33281921/86000486440*832040^(6/19) 2865673452419247 a001 228826127/591286729879*832040^(6/19) 2865673452419247 a001 29134601/75283811239*832040^(6/19) 2865673452419249 a001 16692641/43133785636*832040^(6/19) 2865673452419264 a001 4250681/10983760033*832040^(6/19) 2865673452419367 a001 4870847/12586269025*832040^(6/19) 2865673452419462 a001 3940598/182717648081*7778742049^(6/19) 2865673452419501 a001 20633239/956722026041*7778742049^(6/19) 2865673452419507 a001 54018521/2504730781961*7778742049^(6/19) 2865673452419508 a001 70711162/3278735159921*7778742049^(6/19) 2865673452419508 a001 4868641/225749145909*7778742049^(6/19) 2865673452419508 a001 87403803/4052739537881*7778742049^(6/19) 2865673452419510 a001 16692641/774004377960*7778742049^(6/19) 2865673452419526 a001 12752043/591286729879*7778742049^(6/19) 2865673452419629 a001 4870847/225851433717*7778742049^(6/19) 2865673452420074 a001 103361/267084832*832040^(6/19) 2865673452420336 a001 930249/43133785636*7778742049^(6/19) 2865673452424921 a001 710647/1836311903*832040^(6/19) 2865673452425182 a001 710647/32951280099*7778742049^(6/19) 2865673452458139 a001 90481/233802911*832040^(6/19) 2865673452458401 a001 271443/12586269025*7778742049^(6/19) 2865673452685822 a001 51841/133957148*832040^(6/19) 2865673452686083 a001 1/46368*7778742049^(6/19) 2865673454246381 a001 13201/34111385*832040^(6/19) 2865673454246642 a001 39603/1836311903*7778742049^(6/19) 2865673460092788 r005 Re(z^2+c),c=-39/106+1/23*I,n=25 2865673464942613 a001 15127/39088169*832040^(6/19) 2865673464942874 a001 15127/701408733*7778742049^(6/19) 2865673476207768 b008 Sqrt[E]+E^(Pi/16) 2865673479263087 m001 exp(1/2)^GAMMA(2/3)*Backhouse 2865673482696058 m002 -5/Pi^6+Pi^3-Pi^5-Sinh[Pi] 2865673484086415 r009 Re(z^3+c),c=-7/46+29/39*I,n=20 2865673486000845 r005 Im(z^2+c),c=23/74+23/56*I,n=40 2865673486020514 m005 (1/2*gamma-5/12)/(5*Catalan-1/9) 2865673486354895 s001 sum(exp(-Pi/4)^(n-1)*A068903[n],n=1..infinity) 2865673493983123 a007 Real Root Of 33*x^4-624*x^3+384*x^2-822*x-282 2865673495038692 a007 Real Root Of -429*x^4-919*x^3+697*x^2-281*x+775 2865673512377326 m001 (-Tetranacci+ThueMorse)/(1-GAMMA(7/12)) 2865673512386344 a001 1346269/322*843^(2/7) 2865673520377161 r005 Re(z^2+c),c=4/27+31/53*I,n=56 2865673538255680 a001 1/2584*832040^(6/19) 2865673538255939 a001 2889/133957148*7778742049^(6/19) 2865673551478856 r005 Re(z^2+c),c=-27/94+22/49*I,n=59 2865673552793982 m001 GAMMA(19/24)*LandauRamanujan*exp(sqrt(3))^2 2865673556920691 m001 exp(1)*ArtinRank2-ln(5) 2865673557873929 p004 log(21817/16381) 2865673561165739 r005 Re(z^2+c),c=-17/66+31/60*I,n=35 2865673561527880 a007 Real Root Of 85*x^4-797*x^3-305*x^2-706*x-20 2865673587977665 a007 Real Root Of -461*x^4-971*x^3+770*x^2-796*x-366 2865673593214102 m007 (-3/4*gamma-3/2*ln(2)+5/6)/(-2/5*gamma-2) 2865673600279783 a001 24157817/5778*199^(4/11) 2865673600823800 l006 ln(501/8798) 2865673602885749 l006 ln(8363/8387) 2865673602885749 p004 log(8387/8363) 2865673606913514 a001 1568397607/3*8^(9/11) 2865673611481434 r009 Im(z^3+c),c=-7/34+9/31*I,n=3 2865673618239796 a007 Real Root Of 138*x^4+397*x^3+327*x^2+691*x-669 2865673620827729 a007 Real Root Of -820*x^4+52*x^3-988*x^2+181*x+6 2865673635635469 m001 (Pi+Shi(1))/(polylog(4,1/2)+Riemann1stZero) 2865673636710218 a007 Real Root Of 978*x^4-648*x^3+347*x^2-652*x+167 2865673649010488 m001 (arctan(1/2)-GAMMA(23/24))/(Khinchin-Sarnak) 2865673649965301 a007 Real Root Of -629*x^4+933*x^3-771*x^2-267*x+13 2865673656240918 r005 Re(z^2+c),c=6/19+7/43*I,n=17 2865673661849902 m009 (2/5*Psi(1,3/4)-4/5)/(2/3*Psi(1,1/3)+5/6) 2865673665254517 r005 Re(z^2+c),c=33/98+16/57*I,n=12 2865673673592850 a001 63245986/15127*199^(4/11) 2865673683077275 m005 (1/2*Zeta(3)-4/7)/(3/4*gamma+3/5) 2865673684289083 a001 165580141/39603*199^(4/11) 2865673685849642 a001 433494437/103682*199^(4/11) 2865673686077324 a001 1134903170/271443*199^(4/11) 2865673686110543 a001 2971215073/710647*199^(4/11) 2865673686115389 a001 7778742049/1860498*199^(4/11) 2865673686116096 a001 20365011074/4870847*199^(4/11) 2865673686116200 a001 53316291173/12752043*199^(4/11) 2865673686116215 a001 139583862445/33385282*199^(4/11) 2865673686116217 a001 365435296162/87403803*199^(4/11) 2865673686116217 a001 956722026041/228826127*199^(4/11) 2865673686116217 a001 2504730781961/599074578*199^(4/11) 2865673686116217 a001 6557470319842/1568397607*199^(4/11) 2865673686116217 a001 10610209857723/2537720636*199^(4/11) 2865673686116217 a001 4052739537881/969323029*199^(4/11) 2865673686116217 a001 1548008755920/370248451*199^(4/11) 2865673686116217 a001 591286729879/141422324*199^(4/11) 2865673686116218 a001 225851433717/54018521*199^(4/11) 2865673686116224 a001 86267571272/20633239*199^(4/11) 2865673686116263 a001 32951280099/7881196*199^(4/11) 2865673686116533 a001 12586269025/3010349*199^(4/11) 2865673686118385 a001 4807526976/1149851*199^(4/11) 2865673686131073 a001 1836311903/439204*199^(4/11) 2865673686218040 a001 701408733/167761*199^(4/11) 2865673686814121 a001 267914296/64079*199^(4/11) 2865673690899718 a001 102334155/24476*199^(4/11) 2865673694046881 l006 ln(3366/4483) 2865673713235315 m001 Lehmer/(FellerTornier+KhinchinHarmonic) 2865673714747980 m001 (exp(1/Pi)-BesselI(0,2))/(Bloch+Khinchin) 2865673718248067 r005 Re(z^2+c),c=-33/118+23/49*I,n=59 2865673718902819 a001 4181*199^(4/11) 2865673736623375 a007 Real Root Of -109*x^4-255*x^3+111*x^2-50*x+295 2865673739424234 a001 24476/55*121393^(7/44) 2865673739486561 r005 Re(z^2+c),c=-13/14+107/228*I,n=2 2865673742801073 m001 (ln(2^(1/2)+1)-gamma(1))/(Artin+Otter) 2865673743816059 b008 E^(1/32)/7+E 2865673747087716 m005 (1/2*3^(1/2)+10/11)/(6/11*2^(1/2)-5/6) 2865673774482394 m001 1/GAMMA(2/3)/ln(RenyiParking)*GAMMA(5/6) 2865673783636071 m001 (-gamma(2)+GAMMA(7/12))/(Chi(1)-ln(2)/ln(10)) 2865673792242088 a007 Real Root Of -179*x^4-298*x^3+740*x^2+377*x+62 2865673800419669 a001 416020/161*843^(5/14) 2865673801189091 r005 Re(z^2+c),c=-23/66+7/43*I,n=6 2865673806466468 a007 Real Root Of 414*x^4+930*x^3-462*x^2+881*x+285 2865673825773704 r005 Re(z^2+c),c=31/90+7/61*I,n=47 2865673828898166 m001 (3^(1/3))^2/ln((2^(1/3)))/Pi 2865673834891861 a007 Real Root Of -205*x^4-576*x^3+168*x^2+470*x+237 2865673853425711 a007 Real Root Of -242*x^4-795*x^3-5*x^2+955*x+389 2865673854910666 a003 cos(Pi*33/113)-cos(Pi*27/89) 2865673863641678 r005 Re(z^2+c),c=11/38+24/43*I,n=21 2865673871391689 r009 Im(z^3+c),c=-31/74+5/33*I,n=3 2865673873988206 s001 sum(exp(-Pi/3)^n*A215326[n],n=1..infinity) 2865673875441313 r009 Re(z^3+c),c=-9/13+19/56*I,n=3 2865673887394480 m008 (3/5*Pi^5+1/5)/(2/3*Pi^6+1/2) 2865673895964394 a001 305/161*24476^(20/21) 2865673899913237 a001 305/161*64079^(20/23) 2865673900254362 a001 36/341*141422324^(2/3) 2865673900254362 a001 36/341*(1/2+1/2*5^(1/2))^26 2865673900254362 a001 36/341*73681302247^(1/2) 2865673900254362 a001 36/341*10749957122^(13/24) 2865673900254362 a001 36/341*4106118243^(13/23) 2865673900254362 a001 36/341*1568397607^(13/22) 2865673900254362 a001 36/341*599074578^(13/21) 2865673900254362 a001 36/341*228826127^(13/20) 2865673900254362 a001 36/341*87403803^(13/19) 2865673900254364 a001 36/341*33385282^(13/18) 2865673900254375 a001 36/341*12752043^(13/17) 2865673900254460 a001 36/341*4870847^(13/16) 2865673900255079 a001 36/341*1860498^(13/15) 2865673900259631 a001 36/341*710647^(13/14) 2865673900438651 a001 305/161*167761^(4/5) 2865673900520105 a001 305/161*20633239^(4/7) 2865673900520109 a001 305/161*2537720636^(4/9) 2865673900520109 a001 305/161*(1/2+1/2*5^(1/2))^20 2865673900520109 a001 305/161*23725150497407^(5/16) 2865673900520109 a001 305/161*505019158607^(5/14) 2865673900520109 a001 305/161*73681302247^(5/13) 2865673900520109 a001 305/161*28143753123^(2/5) 2865673900520109 a001 305/161*10749957122^(5/12) 2865673900520109 a001 305/161*4106118243^(10/23) 2865673900520109 a001 305/161*1568397607^(5/11) 2865673900520109 a001 305/161*599074578^(10/21) 2865673900520109 a001 305/161*228826127^(1/2) 2865673900520110 a001 305/161*87403803^(10/19) 2865673900520111 a001 305/161*33385282^(5/9) 2865673900520120 a001 305/161*12752043^(10/17) 2865673900520185 a001 305/161*4870847^(5/8) 2865673900520661 a001 305/161*1860498^(2/3) 2865673900524162 a001 305/161*710647^(5/7) 2865673900550027 a001 305/161*271443^(10/13) 2865673900742255 a001 305/161*103682^(5/6) 2865673902181141 a001 305/161*39603^(10/11) 2865673902211869 m001 (gamma(2)+Kac)/(cos(1)+ln(5)) 2865673910838944 a001 14930352/3571*199^(4/11) 2865673913331430 r002 35th iterates of z^2 + 2865673918980427 r002 3th iterates of z^2 + 2865673923228135 m001 1/BesselK(0,1)*Rabbit^2*exp(GAMMA(1/24))^2 2865673928185068 r002 9th iterates of z^2 + 2865673939597001 a001 6/7*433494437^(3/17) 2865673945403019 r005 Im(z^2+c),c=-19/18+31/128*I,n=46 2865673948568166 a003 cos(Pi*4/55)/cos(Pi*30/77) 2865673951421644 r005 Re(z^2+c),c=-27/94+22/49*I,n=45 2865673957938890 m001 1/2*(Zeta(5)+gamma(3))/Pi*2^(1/2)*GAMMA(3/4) 2865673960382592 m001 1/ln(Tribonacci)^2/Magata*GAMMA(1/4) 2865673960889822 m001 (ln(2)/ln(10)+MertensB2)/(Niven+Otter) 2865673962543227 m009 (2/5*Psi(1,2/3)-1/2)/(1/3*Psi(1,1/3)-5/6) 2865673969482384 m001 (Backhouse-exp(1))/(FeigenbaumMu+GaussAGM) 2865673979166583 m001 (GAMMA(11/12)+ZetaQ(3))/(ln(2)-arctan(1/3)) 2865673979606256 a001 18/17711*10946^(41/48) 2865673991502592 m001 1/Sierpinski^2/ln(Salem)/LambertW(1)^2 2865673991595102 m001 (5^(1/2))^Conway+Trott 2865673996907752 m001 GAMMA(2/3)*exp(MinimumGamma)^2/Zeta(1,2)^2 2865673997337776 m001 (GlaisherKinkelin-MertensB1)/(Pi+BesselK(0,1)) 2865674004678978 l006 ln(7181/9564) 2865674015856262 r009 Re(z^3+c),c=-1/64+19/20*I,n=8 2865674017385223 m001 (Sarnak+Stephens)/(Si(Pi)+FeigenbaumD) 2865674020241409 l006 ln(271/4759) 2865674020241409 p004 log(4759/271) 2865674035028637 m001 exp(Khintchine)*Conway^2*GAMMA(1/12) 2865674037715862 r005 Re(z^2+c),c=-19/22+34/103*I,n=6 2865674040750914 a001 2207/5702887*832040^(6/19) 2865674040751158 a001 2207/102334155*7778742049^(6/19) 2865674055287952 a007 Real Root Of 950*x^4-123*x^3+146*x^2-923*x+249 2865674062940834 m001 (Artin-CareFree)^GAMMA(5/6) 2865674063898392 r005 Im(z^2+c),c=-55/114+23/48*I,n=60 2865674088457162 a001 514229/322*843^(3/7) 2865674108280641 a001 3571/233*75025^(6/23) 2865674118785559 a007 Real Root Of 829*x^4+258*x^3-568*x^2-817*x-187 2865674119387013 r002 24th iterates of z^2 + 2865674127838931 m001 Pi^Zeta(3)*LandauRamanujan^Zeta(3) 2865674135645249 m005 (1/3*3^(1/2)+1/6)/(7/9*5^(1/2)+6/7) 2865674140411928 m001 GAMMA(11/12)^exp(1/2)+sqrt(Pi) 2865674144407146 r005 Im(z^2+c),c=5/26+19/34*I,n=7 2865674161490454 m001 sin(1)*GAMMA(11/12)*FellerTornier 2865674163632065 a007 Real Root Of 296*x^4+492*x^3-761*x^2+692*x-151 2865674176258147 m005 (1/3*Pi-1/10)/(1/3*Catalan+3) 2865674180405810 s002 sum(A206573[n]/(pi^n-1),n=1..infinity) 2865674183833465 m005 (1/2*Catalan-1/10)/(5/8*Pi-5/7) 2865674184671158 a007 Real Root Of 348*x^4+643*x^3-982*x^2+205*x+315 2865674189192803 r005 Re(z^2+c),c=35/106+18/49*I,n=16 2865674191865646 m001 Niven^2*Si(Pi)^2*exp(GAMMA(11/12)) 2865674194300655 a007 Real Root Of -25*x^4+118*x^3+689*x^2+482*x+186 2865674210304403 a005 (1/cos(4/175*Pi))^408 2865674213588657 l006 ln(7602/7823) 2865674216671800 r009 Im(z^3+c),c=-19/106+7/24*I,n=7 2865674218861350 r002 8th iterates of z^2 + 2865674239326607 a007 Real Root Of 818*x^4-619*x^3-53*x^2-985*x-298 2865674241285892 r005 Re(z^2+c),c=-39/106+1/23*I,n=27 2865674248720491 h001 (-8*exp(2/3)-2)/(-exp(-2)-6) 2865674251796566 m001 Sierpinski^exp(Pi)/((5^(1/2))^exp(Pi)) 2865674272718650 m001 FransenRobinson^(2^(1/3)*AlladiGrinstead) 2865674275682298 r008 a(0)=3,K{-n^6,-4-n^3-n^2+8*n} 2865674278751745 l006 ln(3815/5081) 2865674287604134 v002 sum(1/(3^n+(11*n^2+4*n-14)),n=1..infinity) 2865674293641663 m005 (1/3*Catalan-2/9)/(1/12*Zeta(3)-3) 2865674317617134 m001 (-MertensB3+ZetaP(3))/(3^(1/2)-Pi^(1/2)) 2865674325674972 m001 Rabbit-TwinPrimes^ZetaQ(3) 2865674349484221 m001 1/exp(Paris)^2*FeigenbaumB^2*Rabbit^2 2865674376483847 a001 317811/322*843^(1/2) 2865674414885473 r009 Re(z^3+c),c=-21/86+27/41*I,n=3 2865674435438729 a007 Real Root Of -447*x^4-959*x^3+733*x^2-877*x-956 2865674435861530 r005 Re(z^2+c),c=-7/27+22/41*I,n=36 2865674437932299 m001 Riemann1stZero^2*exp(KhintchineLevy)*Robbin^2 2865674438634082 m001 (PisotVijayaraghavan+ZetaP(2))^FeigenbaumC 2865674440497472 m001 1/Tribonacci^2*GolombDickman*exp(BesselJ(1,1)) 2865674444734227 g005 GAMMA(4/5)/GAMMA(5/11)/GAMMA(2/11)/GAMMA(2/9) 2865674450992318 a007 Real Root Of 389*x^4+905*x^3-645*x^2-91*x+100 2865674452699234 m001 (Champernowne-HeathBrownMoroz)/(Mills+Otter) 2865674454448349 a007 Real Root Of 345*x^4+770*x^3-679*x^2-236*x-246 2865674456448151 a003 cos(Pi*37/118)*cos(Pi*16/49) 2865674470099821 m001 (FeigenbaumC+Porter)/(Psi(1,1/3)+2^(1/2)) 2865674478782440 m005 (1/2*Catalan+11/12)/(1/7*2^(1/2)-1/4) 2865674503504244 a007 Real Root Of 983*x^4+418*x^3-104*x^2-415*x+111 2865674504104405 r005 Re(z^2+c),c=-87/94+18/47*I,n=6 2865674509441653 g005 GAMMA(7/10)*GAMMA(7/9)^2*GAMMA(4/7) 2865674512451513 h002 exp(1/6*(18-5^(1/3))^(1/2)*6^(1/4)) 2865674520001754 a007 Real Root Of 274*x^4-765*x^3-576*x^2-696*x-172 2865674527931532 m001 (Zeta(3)+Conway)/(RenyiParking-TwinPrimes) 2865674538934594 a005 (1/sin(103/215*Pi))^1551 2865674540607221 r005 Re(z^2+c),c=-39/106+1/23*I,n=29 2865674558515868 a007 Real Root Of 640*x^4+917*x^3+649*x^2-799*x-265 2865674564466594 m001 (Conway+GaussAGM)/(Ei(1)+2*Pi/GAMMA(5/6)) 2865674594690909 a007 Real Root Of 9*x^4-163*x^3-134*x^2-461*x-125 2865674596517445 r005 Re(z^2+c),c=-11/31+5/27*I,n=21 2865674597356033 r009 Re(z^3+c),c=-12/23+18/49*I,n=52 2865674599125554 m001 1/GAMMA(11/12)*FransenRobinson^2/ln(sinh(1))^2 2865674607479871 r009 Im(z^3+c),c=-7/54+10/33*I,n=3 2865674609761326 r005 Re(z^2+c),c=-19/86+15/26*I,n=47 2865674649555123 r005 Re(z^2+c),c=-39/106+1/23*I,n=31 2865674653156765 r005 Im(z^2+c),c=-21/50+25/51*I,n=46 2865674657059477 r005 Im(z^2+c),c=11/54+8/39*I,n=14 2865674663179063 m001 (FeigenbaumDelta+Trott2nd)/(cos(1)+ln(3)) 2865674663492712 a001 5702887/322*322^(1/12) 2865674663537717 r005 Im(z^2+c),c=-59/58+14/47*I,n=16 2865674664538934 a001 98209/161*843^(4/7) 2865674668212783 r009 Re(z^3+c),c=-9/50+55/56*I,n=32 2865674676993022 a007 Real Root Of -38*x^4+154*x^3+969*x^2+904*x-342 2865674677180958 m001 (ln(2)*FransenRobinson-MadelungNaCl)/ln(2) 2865674687563718 r005 Re(z^2+c),c=-39/106+1/23*I,n=33 2865674693728933 l006 ln(312/5479) 2865674698574384 r005 Re(z^2+c),c=-25/78+23/39*I,n=52 2865674700326503 r005 Re(z^2+c),c=-39/106+1/23*I,n=35 2865674704455409 r005 Re(z^2+c),c=-39/106+1/23*I,n=37 2865674705739872 r005 Re(z^2+c),c=-39/106+1/23*I,n=39 2865674706122032 r005 Re(z^2+c),c=-39/106+1/23*I,n=41 2865674706229577 r005 Re(z^2+c),c=-39/106+1/23*I,n=43 2865674706257567 r005 Re(z^2+c),c=-39/106+1/23*I,n=45 2865674706263963 r005 Re(z^2+c),c=-39/106+1/23*I,n=47 2865674706264503 r005 Re(z^2+c),c=-39/106+1/23*I,n=50 2865674706264604 r005 Re(z^2+c),c=-39/106+1/23*I,n=52 2865674706264704 r005 Re(z^2+c),c=-39/106+1/23*I,n=54 2865674706264758 r005 Re(z^2+c),c=-39/106+1/23*I,n=56 2865674706264783 r005 Re(z^2+c),c=-39/106+1/23*I,n=58 2865674706264793 r005 Re(z^2+c),c=-39/106+1/23*I,n=60 2865674706264796 r005 Re(z^2+c),c=-39/106+1/23*I,n=62 2865674706264798 r005 Re(z^2+c),c=-39/106+1/23*I,n=64 2865674706264800 r005 Re(z^2+c),c=-39/106+1/23*I,n=63 2865674706264802 r005 Re(z^2+c),c=-39/106+1/23*I,n=61 2865674706264808 r005 Re(z^2+c),c=-39/106+1/23*I,n=59 2865674706264821 r005 Re(z^2+c),c=-39/106+1/23*I,n=48 2865674706264824 r005 Re(z^2+c),c=-39/106+1/23*I,n=57 2865674706264861 r005 Re(z^2+c),c=-39/106+1/23*I,n=55 2865674706264937 r005 Re(z^2+c),c=-39/106+1/23*I,n=53 2865674706265050 r005 Re(z^2+c),c=-39/106+1/23*I,n=49 2865674706265054 r005 Re(z^2+c),c=-39/106+1/23*I,n=51 2865674706267619 r005 Re(z^2+c),c=-39/106+1/23*I,n=46 2865674706281295 r005 Re(z^2+c),c=-39/106+1/23*I,n=44 2865674706336819 r005 Re(z^2+c),c=-39/106+1/23*I,n=42 2865674706541174 r005 Re(z^2+c),c=-39/106+1/23*I,n=40 2865674707246077 r005 Re(z^2+c),c=-39/106+1/23*I,n=38 2865674707301248 r005 Re(z^2+c),c=-87/110+1/26*I,n=26 2865674709560852 r005 Re(z^2+c),c=-39/106+1/23*I,n=36 2865674716854307 r005 Re(z^2+c),c=-39/106+1/23*I,n=34 2865674731822672 m001 ln(GAMMA(5/12))^2*Riemann2ndZero^2/Zeta(1,2)^2 2865674733439029 r005 Im(z^2+c),c=-41/86+2/41*I,n=23 2865674734303389 m001 (3^(1/2)-Zeta(3))/(sin(1/12*Pi)+BesselI(1,2)) 2865674738981836 r005 Re(z^2+c),c=-39/106+1/23*I,n=32 2865674740317520 l006 ln(4264/5679) 2865674741395073 a007 Real Root Of 57*x^4+91*x^3-227*x^2-397*x-976 2865674753488648 r009 Im(z^3+c),c=-17/98+52/61*I,n=42 2865674766466833 a003 cos(Pi*29/105)*cos(Pi*23/65) 2865674768845700 r009 Im(z^3+c),c=-41/90+2/19*I,n=11 2865674776351448 m002 Pi^2-Cosh[Pi]+(3*Cosh[Pi])/Log[Pi] 2865674794415765 m001 BesselJ(0,1)/(2^(1/3))/ln(cos(Pi/5)) 2865674794549382 a003 sin(Pi*5/67)/sin(Pi*34/113) 2865674796476876 m001 Magata/exp(CareFree)/sin(Pi/5) 2865674800258720 r005 Re(z^2+c),c=-71/110+13/53*I,n=11 2865674803651668 r005 Re(z^2+c),c=-39/106+1/23*I,n=30 2865674813054963 r009 Re(z^3+c),c=-43/102+32/63*I,n=15 2865674814274662 r009 Im(z^3+c),c=-41/90+9/59*I,n=28 2865674816170374 m002 -Pi^3+Pi^5+Cosh[Pi]-Cosh[Pi]/Pi^5 2865674821664638 m001 1/Kolakoski^2/GaussKuzminWirsing*ln(sqrt(3)) 2865674828822294 r005 Re(z^2+c),c=-19/66+17/38*I,n=40 2865674830429800 m001 exp(1/Pi)^FeigenbaumD*exp(1/Pi)^GolombDickman 2865674830774751 m001 Zeta(5)^2*exp(LaplaceLimit)^2*sin(1)^2 2865674837747618 r005 Im(z^2+c),c=-31/102+16/35*I,n=45 2865674837785062 r009 Re(z^3+c),c=-41/126+35/53*I,n=16 2865674838365584 m001 CopelandErdos^(BesselI(1,2)/Tribonacci) 2865674841899787 r009 Im(z^3+c),c=-71/126+16/57*I,n=25 2865674857122753 r005 Re(z^2+c),c=-37/102+4/33*I,n=19 2865674861111293 r002 30th iterates of z^2 + 2865674862145488 r005 Re(z^2+c),c=-19/70+26/53*I,n=50 2865674875033910 r005 Im(z^2+c),c=-29/102+9/20*I,n=48 2865674889249096 p004 log(19469/18919) 2865674889992408 r009 Re(z^3+c),c=-13/48+3/41*I,n=5 2865674905517351 l003 FresnelS(75/89) 2865674906499090 m001 ThueMorse-Sierpinski-ln(2) 2865674921696380 m001 (Shi(1)+GolombDickman)/(Stephens+Trott) 2865674928943213 a007 Real Root Of -375*x^4-978*x^3+156*x^2-53*x+841 2865674934101921 m005 (1/2*2^(1/2)+11/12)/(2/3*gamma+2/11) 2865674944237365 a007 Real Root Of 3*x^4+859*x^3-198*x^2+949*x+225 2865674944379093 r002 46th iterates of z^2 + 2865674952519770 a001 121393/322*843^(9/14) 2865674985270861 r005 Re(z^2+c),c=-39/106+1/23*I,n=28 2865674992832192 a007 Real Root Of -933*x^4+282*x^3+961*x^2+362*x-183 2865675007863194 r005 Im(z^2+c),c=-89/106+11/59*I,n=21 2865675012155210 r005 Im(z^2+c),c=-17/66+11/25*I,n=26 2865675032394110 m009 (5/6*Psi(1,3/4)-5/6)/(2*Psi(1,3/4)-3/5) 2865675043046408 a007 Real Root Of -68*x^4+434*x^3-630*x^2+171*x-944 2865675049492070 p001 sum(1/(347*n+335)/n/(512^n),n=1..infinity) 2865675055025266 r005 Re(z^2+c),c=21/94+1/17*I,n=10 2865675055627035 r005 Re(z^2+c),c=5/106+9/43*I,n=13 2865675057133986 r005 Im(z^2+c),c=-11/18+35/104*I,n=21 2865675062170889 a003 cos(Pi*14/55)-sin(Pi*42/95) 2865675067937574 m001 (LaplaceLimit-ZetaQ(4))/(ln(5)+ArtinRank2) 2865675084032693 a007 Real Root Of -168*x^4-278*x^3+243*x^2-976*x-5 2865675110006794 m001 (ErdosBorwein-exp(Pi))/(-OneNinth+Thue) 2865675110224640 m001 BesselJ(1,1)+Cahen+Grothendieck 2865675113938008 l006 ln(4713/6277) 2865675126779285 r005 Re(z^2+c),c=-23/66+7/36*I,n=8 2865675126810561 m005 (2/5*gamma+4)/(1/6*Pi-2) 2865675133917544 m001 (MertensB2-Stephens)/(GAMMA(5/6)+Bloch) 2865675178752824 r009 Re(z^3+c),c=-5/14+7/17*I,n=4 2865675178779364 m001 1/RenyiParking*Kolakoski^2/exp(cos(1))^2 2865675180538861 a007 Real Root Of -320*x^4+304*x^3+20*x^2+926*x-272 2865675188426281 r008 a(0)=3,K{-n^6,6+4*n^3-2*n^2+2*n} 2865675191499603 r005 Im(z^2+c),c=-11/56+5/12*I,n=27 2865675196332912 r005 Im(z^2+c),c=-71/78+15/59*I,n=27 2865675196745299 m002 -(Pi^3/E^Pi)+Pi^6/E^Pi-Sinh[Pi] 2865675205238138 h001 (3/8*exp(2)+11/12)/(3/11*exp(1)+6/11) 2865675210768622 l006 ln(353/6199) 2865675210768622 p004 log(6199/353) 2865675218256507 m001 (Ei(1)-exp(Pi))/(-Zeta(1,-1)+Stephens) 2865675226389409 a001 5702887/1364*199^(4/11) 2865675227252302 a007 Real Root Of -210*x^4+387*x^3-107*x^2+782*x-223 2865675230390165 l004 sinh(329/46*Pi) 2865675230390165 l004 cosh(329/46*Pi) 2865675240695100 a001 75025/322*843^(5/7) 2865675257593307 m005 (1/2*gamma+8/11)/(7/11*2^(1/2)-6/11) 2865675259378705 m001 1/Ei(1)^2/GlaisherKinkelin^2/ln(arctan(1/2))^2 2865675283533469 a009 1/10*(11^(3/4)-18*10^(1/4))^(1/2)*10^(3/4) 2865675291364826 m001 exp(GAMMA(2/3))^2*TreeGrowth2nd^2*Pi^2 2865675306687022 m001 (Pi+Psi(1,1/3))/(Zeta(1,2)+PlouffeB) 2865675311373147 a007 Real Root Of -989*x^4+235*x^3+871*x^2+215*x-132 2865675313322464 r005 Im(z^2+c),c=25/122+25/47*I,n=61 2865675342522261 a007 Real Root Of -396*x^4-713*x^3+850*x^2-877*x+433 2865675358041495 r002 34th iterates of z^2 + 2865675364700119 r005 Im(z^2+c),c=43/114+7/44*I,n=9 2865675366816287 m001 Zeta(1,2)^2/Paris^2*exp(gamma)^2 2865675371692505 m001 (Ei(1,1)+StolarskyHarborth)^Otter 2865675393458964 m001 cos(1)/(Ei(1)+gamma(2)) 2865675407401307 m001 exp(GAMMA(17/24))/TwinPrimes^2*sin(Pi/5)^2 2865675409873274 m001 1/exp(Trott)^2*GaussKuzminWirsing/Zeta(5) 2865675422562128 l006 ln(5162/6875) 2865675460165946 r005 Im(z^2+c),c=29/86+17/43*I,n=39 2865675461684979 m001 GAMMA(11/12)/(BesselK(1,1)+GAMMA(7/24)) 2865675472344056 r005 Re(z^2+c),c=-39/106+1/23*I,n=26 2865675479022885 a007 Real Root Of 569*x^4-803*x^3-582*x^2-740*x-187 2865675482025703 a007 Real Root Of 400*x^4+842*x^3-590*x^2+489*x-914 2865675495714750 h001 (10/11*exp(2)+4/9)/(2/9*exp(2)+6/7) 2865675499149497 r005 Re(z^2+c),c=5/114+5/8*I,n=13 2865675503390712 r002 36th iterates of z^2 + 2865675514417675 m001 (2^(1/2)-GAMMA(2/3))/(ln(2)+OrthogonalArrays) 2865675514661135 m002 E^Pi+(Pi^4*Log[Pi]^2)/E^Pi 2865675515389804 a003 cos(Pi*8/105)/sin(Pi*12/109) 2865675520004302 m001 (Magata-Riemann1stZero)/(Pi+BesselK(1,1)) 2865675526559004 r009 Re(z^3+c),c=-53/118+25/64*I,n=13 2865675528361344 a001 144*843^(11/14) 2865675528633883 r005 Re(z^2+c),c=-79/86+14/59*I,n=36 2865675539225993 m001 (exp(1/exp(1))+MadelungNaCl)/(Robbin+ZetaP(2)) 2865675550338010 p001 sum((-1)^n/(283*n+65)/n/(100^n),n=1..infinity) 2865675560188119 m001 (FeigenbaumD-Psi(1,1/3))/(Sierpinski+ZetaQ(4)) 2865675568581870 a003 sin(Pi*4/35)*sin(Pi*17/56) 2865675571455299 p001 sum((-1)^n/(191*n+81)/n/(128^n),n=1..infinity) 2865675572556039 p003 LerchPhi(1/256,2,17/91) 2865675587357334 r009 Im(z^3+c),c=-11/28+8/39*I,n=18 2865675587809020 r005 Re(z^2+c),c=-31/70+17/56*I,n=5 2865675592572344 r005 Im(z^2+c),c=-11/42+26/59*I,n=23 2865675593878528 r004 Im(z^2+c),c=1/24-13/15*I,z(0)=I,n=17 2865675594712407 r005 Im(z^2+c),c=39/122+5/61*I,n=47 2865675611568766 r005 Re(z^2+c),c=-17/90+17/30*I,n=10 2865675617074489 a007 Real Root Of -814*x^4+728*x^3+532*x^2+784*x-280 2865675620200877 l006 ln(394/6919) 2865675621681740 m001 Pi^(1/2)*GlaisherKinkelin+Lehmer 2865675651218517 m001 (Zeta(1,-1)+Gompertz)/(Catalan+sin(1/5*Pi)) 2865675658520251 m001 (MertensB2+Trott)/(1-HardyLittlewoodC3) 2865675671076448 r005 Im(z^2+c),c=-11/34+13/28*I,n=44 2865675681793181 l006 ln(5611/7473) 2865675685972439 a007 Real Root Of -29*x^4-834*x^3-105*x^2-566*x+489 2865675691303675 r005 Im(z^2+c),c=21/118+33/59*I,n=18 2865675696458876 r009 Re(z^3+c),c=-11/25+17/39*I,n=48 2865675702293370 a007 Real Root Of -471*x^4-988*x^3+887*x^2-390*x+111 2865675719316539 m001 1/OneNinth^2/ln(Niven)*sqrt(Pi) 2865675719715883 m001 (-Zeta(1,2)+1/3)/(-BesselI(1,1)+5) 2865675723164197 m001 FeigenbaumD*GAMMA(5/6)^Landau 2865675724656621 m001 (Bloch+Grothendieck)/(ReciprocalLucas-Salem) 2865675734593151 r005 Im(z^2+c),c=-27/74+16/33*I,n=36 2865675738912689 m005 (1/2*Pi+1/9)/(1/7*Catalan-6) 2865675744420721 r002 16th iterates of z^2 + 2865675746550816 a007 Real Root Of 265*x^4+629*x^3-105*x^2+919*x+427 2865675765920509 r005 Im(z^2+c),c=3/74+13/42*I,n=14 2865675769758356 m005 (-3/20+1/4*5^(1/2))/(3/8*3^(1/2)+7/9) 2865675773344334 r009 Re(z^3+c),c=-29/110+1/61*I,n=4 2865675777801097 r002 7th iterates of z^2 + 2865675779113820 m001 (Si(Pi)+Catalan)/(-gamma(3)+Paris) 2865675783879742 a007 Real Root Of -246*x^4-417*x^3+768*x^2-427*x-754 2865675788040236 m005 (1/2*Catalan-8/11)/(7/10*3^(1/2)-3/11) 2865675797217260 m001 Trott^2*FeigenbaumD^2*ln(Zeta(3))^2 2865675810702118 a003 sin(Pi*7/117)/sin(Pi*26/115) 2865675816068680 a005 (1/cos(14/177*Pi))^1879 2865675817360495 a001 28657/322*843^(6/7) 2865675826431650 m001 1/ln((3^(1/3)))^2*Riemann2ndZero^2/GAMMA(1/12) 2865675833367181 r005 Re(z^2+c),c=-5/16+19/51*I,n=27 2865675856705603 a007 Real Root Of 189*x^4+509*x^3+128*x^2+978*x+984 2865675883095600 b008 EulerGamma*Sqrt[Tan[Pi/13]] 2865675885896362 b008 Pi-8*ArcCsc[29] 2865675887118430 m001 1/cosh(1)^2*ln(Trott)^2/sqrt(3)^2 2865675889614389 m001 (MinimumGamma-Paris)/PlouffeB 2865675891041625 m001 (ZetaP(4)+ZetaQ(4))/(Paris+ZetaP(3)) 2865675894476159 m001 (Lehmer-Rabbit)/(cos(1/12*Pi)-exp(1/Pi)) 2865675901061022 p001 sum(1/(57*n+35)/(128^n),n=0..infinity) 2865675902610121 l006 ln(6060/8071) 2865675904972553 r005 Re(z^2+c),c=-7/19+1/30*I,n=12 2865675908837017 a007 Real Root Of 317*x^4+509*x^3-732*x^2+980*x-580 2865675911805217 m001 (cos(1/12*Pi)+Cahen)/(Psi(2,1/3)-Zeta(5)) 2865675913442434 m001 HardyLittlewoodC3^FellerTornier-gamma 2865675918996193 r005 Re(z^2+c),c=-21/82+21/40*I,n=30 2865675937592744 r005 Im(z^2+c),c=-9/26+13/25*I,n=26 2865675942958951 m005 (1/2*exp(1)+11/12)/(2/7*Pi-9/11) 2865675952452675 l006 ln(435/7639) 2865675971627997 r009 Re(z^3+c),c=-17/42+19/51*I,n=23 2865675972229255 m008 (1/3*Pi^2+4)/(5/6*Pi^3-2/5) 2865675976446313 m001 1/exp(RenyiParking)/FeigenbaumAlpha/TwinPrimes 2865675979844739 a007 Real Root Of 33*x^4+938*x^3-233*x^2-388*x-349 2865675979887113 s002 sum(A128013[n]/(n!^2),n=1..infinity) 2865675983034275 r005 Re(z^2+c),c=-9/29+17/43*I,n=16 2865675991983903 r009 Im(z^3+c),c=-7/50+38/47*I,n=10 2865675998392262 m001 (5^(1/2)+1)/(-Niven+Stephens) 2865676000125828 h002 exp(1/5*(4^(2/3)-11^(3/4))*5^(1/4)) 2865676019347134 p001 sum(1/(411*n+337)/n/(5^n),n=1..infinity) 2865676026924674 a009 1/5*(5^(1/3)*6^(1/4)+11^(1/3))*5^(2/3) 2865676043422456 a007 Real Root Of -782*x^4-868*x^3+5*x^2+842*x-216 2865676046604587 a007 Real Root Of -653*x^4+736*x^3+13*x^2+235*x+88 2865676085849848 a007 Real Root Of 179*x^4+243*x^3-538*x^2+716*x+117 2865676092962530 l006 ln(6509/8669) 2865676102870156 a001 17711/322*843^(13/14) 2865676105438760 m006 (4/5*Pi^2+5/6)/(5/6*ln(Pi)-4) 2865676114653589 h001 (1/11*exp(2)+9/11)/(7/12*exp(2)+8/9) 2865676127579048 s002 sum(A046694[n]/((2*n)!),n=1..infinity) 2865676131052613 m001 Grothendieck+GAMMA(5/6)^Robbin 2865676134972267 h001 (-8*exp(1/3)-2)/(-3*exp(-2)+5) 2865676135926069 m001 1/Riemann1stZero*ln(Conway)/cos(Pi/5)^2 2865676138165413 r005 Im(z^2+c),c=3/98+26/43*I,n=23 2865676139082165 m001 GAMMA(1/3)^2*GaussKuzminWirsing*ln(Zeta(5))^2 2865676152896823 a007 Real Root Of 260*x^4+649*x^3-438*x^2-343*x+353 2865676164382127 m002 Pi^(-4)+Pi-Log[Pi]/4 2865676188775917 m005 (1/3*3^(1/2)+2/3)/(-101/176+1/16*5^(1/2)) 2865676198441830 a007 Real Root Of 702*x^4-106*x^3+314*x^2-485*x-172 2865676200547767 m002 -Pi^2+3*Pi^6-Pi^2/Log[Pi] 2865676207517642 a007 Real Root Of -950*x^4-741*x^3+242*x^2+558*x+129 2865676225404859 m001 GAMMA(13/24)-Zeta(1/2)^cos(1/5*Pi) 2865676225404859 m001 GAMMA(13/24)-Zeta(1/2)^cos(Pi/5) 2865676227467736 l006 ln(476/8359) 2865676227977863 m001 (2^(1/3))/exp(GaussKuzminWirsing)*GAMMA(7/24) 2865676228299084 m002 -Pi^3+Pi^5+Cosh[Pi]-Sinh[Pi]/Pi^5 2865676231900986 a001 5702887/843*199^(3/11) 2865676236539309 m001 (GAMMA(19/24)+FeigenbaumMu)/(Trott-Trott2nd) 2865676237827336 r009 Re(z^3+c),c=-39/98+22/61*I,n=17 2865676258748040 l006 ln(6958/9267) 2865676299842472 r005 Re(z^2+c),c=-31/114+26/53*I,n=41 2865676305107493 r005 Re(z^2+c),c=-1/10+37/58*I,n=33 2865676311971669 r009 Re(z^3+c),c=-35/64+17/45*I,n=31 2865676315179993 r009 Re(z^3+c),c=-29/70+23/59*I,n=35 2865676319365844 a007 Real Root Of -73*x^4+204*x^3+783*x^2-821*x+941 2865676320611586 r009 Im(z^3+c),c=-11/42+1/46*I,n=11 2865676321156543 r009 Re(z^3+c),c=-51/118+17/43*I,n=13 2865676326445319 b008 1+E-ProductLog[2] 2865676333072127 r004 Re(z^2+c),c=1/3+1/7*I,z(0)=exp(5/8*I*Pi),n=39 2865676335721442 m005 (1/2*Pi-7/10)/(3/4*exp(1)+1) 2865676336345221 r005 Re(z^2+c),c=-31/102+24/55*I,n=16 2865676356624177 a001 377/1860498*2^(1/2) 2865676362918810 a007 Real Root Of -369*x^4-861*x^3+500*x^2-382*x-578 2865676368037050 r005 Re(z^2+c),c=23/70+5/33*I,n=53 2865676371319574 m009 (1/2*Pi^2-5)/(3/5*Psi(1,3/4)+3/4) 2865676372115599 a008 Real Root of (1+2*x-4*x^2+5*x^3+2*x^4-3*x^5) 2865676377872290 a007 Real Root Of -148*x^4+799*x^3+379*x^2+713*x+193 2865676392572944 a001 10803600/377 2865676394209875 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]+2*Sech[Sqrt[5]*Pi] 2865676394238029 m004 -3+4/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865676394266184 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]+2*Csch[Sqrt[5]*Pi] 2865676397552225 m001 (GAMMA(2/3)-Backhouse*Cahen)/Backhouse 2865676399366166 r005 Re(z^2+c),c=-23/102+19/32*I,n=21 2865676404434265 l006 ln(7407/9865) 2865676426075048 r005 Re(z^2+c),c=11/38+23/41*I,n=33 2865676436196012 a007 Real Root Of 128*x^4+221*x^3-380*x^2-169*x-795 2865676451738562 m006 (1/3/Pi+1/2)/(3/5*Pi-4) 2865676458863328 l006 ln(517/9079) 2865676467586361 m005 (1/3*3^(1/2)-1/8)/(5/6*2^(1/2)+2/5) 2865676468740065 a007 Real Root Of 394*x^4+892*x^3-982*x^2-766*x+290 2865676474875088 a008 Real Root of x^4-x^3-10*x^2+16*x+37 2865676482698701 r005 Re(z^2+c),c=5/18+3/26*I,n=18 2865676562779031 a003 sin(Pi*10/81)*sin(Pi*26/95) 2865676563092001 r009 Re(z^3+c),c=-49/110+14/31*I,n=25 2865676576381041 a007 Real Root Of 300*x^4+699*x^3-668*x^2-716*x-348 2865676578724122 m008 (3/4*Pi^2-2/5)/(1/4*Pi^6+4) 2865676579545394 r009 Re(z^3+c),c=-43/98+13/32*I,n=16 2865676579590669 r005 Re(z^2+c),c=3/16+19/39*I,n=50 2865676591289836 m001 Psi(1,1/3)^UniversalParabolic/CareFree 2865676623661973 m001 (KhinchinHarmonic-MertensB2)/(PlouffeB-Sarnak) 2865676623938686 a007 Real Root Of -500*x^4+824*x^3+755*x^2+143*x-119 2865676636845161 a007 Real Root Of -160*x^4-156*x^3+657*x^2-695*x-268 2865676638742781 m001 (exp(1/exp(1))-GaussAGM)/(Porter+Robbin) 2865676652116220 m001 (GAMMA(3/4)-GAMMA(19/24))/(Niven+Paris) 2865676656254507 l006 ln(558/9799) 2865676660158232 r005 Re(z^2+c),c=4/23+23/48*I,n=55 2865676660493622 r005 Im(z^2+c),c=9/28+14/39*I,n=10 2865676674665102 a007 Real Root Of 703*x^4-437*x^3+189*x^2-867*x-279 2865676687861842 r005 Re(z^2+c),c=-21/106+34/63*I,n=16 2865676697930471 m001 (FransenRobinson+LandauRamanujan)/(Pi-Ei(1)) 2865676704129127 r005 Re(z^2+c),c=-39/106+1/23*I,n=24 2865676707420599 m001 (Lehmer-ReciprocalLucas)/(Pi+GAMMA(13/24)) 2865676713772932 a007 Real Root Of 21*x^4-436*x^3+37*x^2-408*x+124 2865676715929973 s002 sum(A085876[n]/((exp(n)-1)/n),n=1..infinity) 2865676726642362 r005 Im(z^2+c),c=-13/62+27/64*I,n=36 2865676737031113 a007 Real Root Of -317*x^4-591*x^3+800*x^2-244*x+201 2865676745534361 m005 (1/3*3^(1/2)-1/10)/(5/7*3^(1/2)+3/7) 2865676758797403 a007 Real Root Of -126*x^4+273*x^3-237*x^2+643*x+211 2865676762642036 r005 Re(z^2+c),c=-3/34+17/28*I,n=17 2865676771267782 a001 46/1515744265389*2178309^(2/13) 2865676772002010 s002 sum(A230488[n]/(n*10^n-1),n=1..infinity) 2865676776311898 a001 322/4052739537881*4181^(2/13) 2865676777218890 r009 Im(z^3+c),c=-19/78+11/40*I,n=12 2865676788042027 s001 sum(exp(-Pi/4)^(n-1)*A020880[n],n=1..infinity) 2865676790673377 r005 Im(z^2+c),c=23/78+1/20*I,n=7 2865676807603479 m001 Backhouse-Psi(2,1/3)^HardyLittlewoodC4 2865676809671575 r005 Im(z^2+c),c=29/114+4/25*I,n=21 2865676810603897 m001 GaussKuzminWirsing^Catalan*sin(1)^Catalan 2865676812815175 r005 Im(z^2+c),c=-11/106+17/45*I,n=11 2865676823398487 m001 sin(1/5*Pi)^(MertensB2/TreeGrowth2nd) 2865676824718342 a003 sin(Pi*11/100)*sin(Pi*26/81) 2865676834689256 m001 Shi(1)*Pi*2^(1/2)/GAMMA(3/4)*RenyiParking 2865676839980729 r005 Im(z^2+c),c=19/102+11/51*I,n=8 2865676872063356 r009 Im(z^3+c),c=-47/106+7/44*I,n=14 2865676876560859 m005 (7/12+1/3*5^(1/2))/(2*exp(1)-4/5) 2865676883279372 m001 2^(1/3)-ArtinRank2*HardHexagonsEntropy 2865676899069116 r005 Re(z^2+c),c=-27/70+28/59*I,n=13 2865676905007326 r009 Im(z^3+c),c=-21/82+16/59*I,n=7 2865676909979528 m005 (1/2*2^(1/2)+1/11)/(1/7*Pi-8/11) 2865676915808206 r005 Re(z^2+c),c=13/44+22/39*I,n=45 2865676935609113 a001 11592*7^(20/43) 2865676941852783 r002 58th iterates of z^2 + 2865676952129368 r002 12th iterates of z^2 + 2865676958694323 m004 3*Sin[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]^2 2865676962745190 m001 Pi-exp(-Pi)^HardyLittlewoodC5 2865676966738916 a001 1762289/161*322^(1/6) 2865676973083986 r005 Re(z^2+c),c=29/102+7/61*I,n=16 2865676991879962 m008 (3/4*Pi^5+1/6)/(5/6*Pi^6+1/3) 2865676992266879 m001 cos(Pi/12)^2*Zeta(1,2)*ln(sqrt(Pi))^2 2865676997909052 m005 (1/2*2^(1/2)-4/9)/(-16/45+1/5*5^(1/2)) 2865677005791639 r009 Re(z^3+c),c=-25/56+17/38*I,n=54 2865677015029427 r009 Im(z^3+c),c=-11/32+15/64*I,n=15 2865677015983669 r005 Re(z^2+c),c=3/26+13/23*I,n=22 2865677017507033 s002 sum(A091309[n]/(n^3*pi^n+1),n=1..infinity) 2865677029905096 r009 Re(z^3+c),c=-37/94+6/17*I,n=24 2865677031410489 r001 13i'th iterates of 2*x^2-1 of 2865677046711694 a003 sin(Pi*23/107)/cos(Pi*43/100) 2865677050978169 m001 (ln(2)+Zeta(1,2))/(Bloch-PisotVijayaraghavan) 2865677066518131 a009 7*6^(3/4)+11^(1/4) 2865677075125473 r005 Re(z^2+c),c=-21/74+11/24*I,n=45 2865677080860687 a007 Real Root Of -217*x^4-803*x^3-774*x^2-706*x+70 2865677091222115 r005 Re(z^2+c),c=-7/19+1/42*I,n=15 2865677095303113 a001 1364/2178309*4181^(36/49) 2865677096750135 m001 (-ArtinRank2+Tribonacci)/(exp(1)+BesselI(0,1)) 2865677104534796 m001 (Bloch+FellerTornier)/(1+Pi^(1/2)) 2865677105984567 m004 (-125*Sqrt[5])/(3*Pi)+Coth[Sqrt[5]*Pi] 2865677105984817 m004 -2+(125*Sqrt[5])/(3*Pi)+Tanh[Sqrt[5]*Pi] 2865677118477548 r009 Re(z^3+c),c=-9/38+27/38*I,n=10 2865677134018406 m009 (1/8*Pi^2-2/3)/(1/3*Psi(1,2/3)-3) 2865677142768070 r005 Re(z^2+c),c=-5/6+59/213*I,n=4 2865677147239468 r004 Im(z^2+c),c=-5/46-1/3*I,z(0)=I,n=7 2865677148500235 r008 a(0)=3,K{-n^6,57-5*n^3+15*n^2-44*n} 2865677157986730 m001 Landau-cos(1/12*Pi)*Thue 2865677173413297 a007 Real Root Of -367*x^4+20*x^3+559*x^2+283*x-125 2865677181413691 m001 exp(-1/2*Pi)-gamma(1)+Sierpinski 2865677193014500 a007 Real Root Of 56*x^4-702*x^3-386*x^2-688*x+245 2865677193052678 r005 Im(z^2+c),c=-13/40+13/28*I,n=43 2865677203691302 a007 Real Root Of -497*x^4+439*x^3-539*x^2+398*x+172 2865677203958010 a007 Real Root Of 131*x^4+367*x^3-245*x^2-944*x-891 2865677231655417 a007 Real Root Of 15*x^4+460*x^3+839*x^2-739*x-683 2865677245148375 m001 (Ei(1)+sin(1/12*Pi))/(Backhouse-CareFree) 2865677246747512 r005 Re(z^2+c),c=-47/34+23/105*I,n=4 2865677249714640 m005 (1/2*Zeta(3)+6)/(3^(1/2)+4/7) 2865677253769079 m005 (1/3*gamma-4)/(7/12+1/3*5^(1/2)) 2865677258012691 r005 Re(z^2+c),c=35/114+9/16*I,n=41 2865677268057055 r005 Re(z^2+c),c=-31/34+29/109*I,n=16 2865677271189237 a001 1364/233*75025^(16/29) 2865677271479836 m005 (1/2*gamma+7/9)/(3/5*Zeta(3)+3) 2865677281196639 a007 Real Root Of -290*x^4-928*x^3-500*x^2-451*x+532 2865677281402344 m001 (GAMMA(13/24)+Conway)/(Porter-TreeGrowth2nd) 2865677301357174 r009 Im(z^3+c),c=-11/42+1/46*I,n=12 2865677313505631 r005 Im(z^2+c),c=-23/52+1/2*I,n=38 2865677332288908 m001 (RenyiParking+ThueMorse)/(5^(1/2)-FeigenbaumC) 2865677335410129 s002 sum(A027922[n]/(n^3*pi^n+1),n=1..infinity) 2865677341459569 m006 (1/2*Pi^2-2)/(1/6*ln(Pi)+5/6) 2865677355905563 a007 Real Root Of 354*x^4+936*x^3-61*x^2+162*x-881 2865677360453958 r005 Im(z^2+c),c=7/32+11/57*I,n=20 2865677360638834 m001 (Si(Pi)-sin(1))/(-ln(2)+PolyaRandomWalk3D) 2865677362158422 r009 Re(z^3+c),c=-13/31+37/47*I,n=2 2865677367750270 a007 Real Root Of -155*x^4-161*x^3+685*x^2-217*x+417 2865677385828959 m001 (Pi+BesselK(0,1))/(3^(1/3)-Khinchin) 2865677391598942 m001 (arctan(1/2)-Champernowne)/(Salem+Trott) 2865677408196122 r005 Re(z^2+c),c=-35/102+6/23*I,n=12 2865677411643241 g001 Psi(1/2,17/61) 2865677412025021 r005 Re(z^2+c),c=-17/46+37/55*I,n=13 2865677422491657 m004 (-125*Sqrt[5])/(3*Pi)+Tanh[Sqrt[5]*Pi] 2865677422613973 m001 (5^(1/2)+sin(1/5*Pi))/(Zeta(1/2)+Weierstrass) 2865677423654522 r002 34th iterates of z^2 + 2865677426415184 a001 1/846*(1/2*5^(1/2)+1/2)^22*47^(8/17) 2865677457222711 r005 Im(z^2+c),c=-27/70+17/35*I,n=58 2865677459686693 r005 Im(z^2+c),c=-7/44+38/59*I,n=29 2865677484904486 a001 281/726103*832040^(6/19) 2865677484904627 a001 843/39088169*7778742049^(6/19) 2865677499130001 a001 29/13*55^(1/16) 2865677500095632 r009 Im(z^3+c),c=-11/42+1/46*I,n=13 2865677512278532 m009 (24/5*Catalan+3/5*Pi^2-6)/(5*Psi(1,2/3)-1/4) 2865677512968789 m001 (OneNinth-PolyaRandomWalk3D)/(Backhouse-Cahen) 2865677514703701 a001 3/5*365435296162^(7/22) 2865677516006810 p004 log(19433/14591) 2865677520652410 r008 a(0)=3,K{-n^6,-42+16*n+36*n^2-2*n^3} 2865677536436515 p001 sum((-1)^n/(532*n+313)/(3^n),n=0..infinity) 2865677536676122 r009 Im(z^3+c),c=-11/42+1/46*I,n=14 2865677537492501 m001 1/Ei(1)*exp(Niven)*Pi^2 2865677537930602 m002 2*Coth[Pi]-Cosh[Pi]*Log[Pi]+Sinh[Pi] 2865677539664709 a007 Real Root Of 271*x^4+979*x^3+825*x^2+850*x+424 2865677542318501 r009 Im(z^3+c),c=-11/42+1/46*I,n=15 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=32 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=33 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=31 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=34 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=35 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=36 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=37 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=38 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=39 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=40 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=41 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=42 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=43 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=44 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=45 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=46 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=63 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=64 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=62 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=61 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=60 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=59 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=58 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=57 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=56 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=55 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=54 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=53 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=52 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=51 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=50 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=49 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=48 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=47 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=30 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=29 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=28 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=27 2865677542624738 r009 Im(z^3+c),c=-11/42+1/46*I,n=26 2865677542624742 r009 Im(z^3+c),c=-11/42+1/46*I,n=25 2865677542624755 r009 Im(z^3+c),c=-11/42+1/46*I,n=24 2865677542624812 r009 Im(z^3+c),c=-11/42+1/46*I,n=23 2865677542625035 r009 Im(z^3+c),c=-11/42+1/46*I,n=22 2865677542625874 r009 Im(z^3+c),c=-11/42+1/46*I,n=21 2865677542628878 r009 Im(z^3+c),c=-11/42+1/46*I,n=20 2865677542638914 r009 Im(z^3+c),c=-11/42+1/46*I,n=19 2865677542669121 r009 Im(z^3+c),c=-11/42+1/46*I,n=18 2865677542743430 r009 Im(z^3+c),c=-11/42+1/46*I,n=17 2865677542834032 r009 Im(z^3+c),c=-11/42+1/46*I,n=16 2865677560857607 m005 (31/28+1/4*5^(1/2))/(8/9*Catalan+5) 2865677566448190 a007 Real Root Of 363*x^4+725*x^3-886*x^2+218*x+482 2865677577464387 a007 Real Root Of -321*x^4+196*x^3-676*x^2+747*x-161 2865677580744826 m004 (-125*Sqrt[5])/(3*Pi)+Tanh[Sqrt[5]*Pi]^2 2865677583040727 r009 Im(z^3+c),c=-8/17+7/54*I,n=26 2865677584179710 m006 (1/6*exp(2*Pi)+2)/(3*ln(Pi)-1/4) 2865677587597108 m001 GAMMA(1/12)/ln(Paris)*gamma 2865677588880320 r005 Im(z^2+c),c=-31/66+1/27*I,n=7 2865677592849110 m001 gamma^2*GAMMA(11/12)^2/exp(sin(Pi/12)) 2865677603822815 r002 15th iterates of z^2 + 2865677612199173 h001 (4/5*exp(2)+4/11)/(4/7*exp(1)+7/11) 2865677648224278 r005 Re(z^2+c),c=-3/34+38/59*I,n=35 2865677648474195 s002 sum(A143053[n]/(n^2*10^n-1),n=1..infinity) 2865677648945042 m006 (1/3*ln(Pi)+4/5)/(1/3*Pi^2+5/6) 2865677649682980 a007 Real Root Of 507*x^4+987*x^3-966*x^2+728*x-945 2865677654455325 l006 ln(3715/3823) 2865677658795254 m005 (1/2*Catalan-4/5)/(8/9*Zeta(3)+1/8) 2865677665056437 a001 1346269/521*199^(5/11) 2865677668858696 s002 sum(A220508[n]/(n^2*10^n-1),n=1..infinity) 2865677669477834 h001 (1/6*exp(1)+1/11)/(1/6*exp(2)+2/3) 2865677674324922 r005 Im(z^2+c),c=-1/20+12/19*I,n=34 2865677678408727 m001 (-Ei(1)+GAMMA(17/24))/(Si(Pi)-exp(Pi)) 2865677681947235 r005 Re(z^2+c),c=-19/60+4/11*I,n=18 2865677690072674 a007 Real Root Of -441*x^4+23*x^3-490*x^2+957*x+318 2865677693999165 a001 3571*144^(15/17) 2865677709119298 m001 (FeigenbaumB+Landau)/(Shi(1)-gamma) 2865677720708455 r005 Re(z^2+c),c=29/86+23/61*I,n=52 2865677730084035 r005 Im(z^2+c),c=-9/8+13/53*I,n=36 2865677734999725 m001 (AlladiGrinstead-Paris)/(PlouffeB-Sarnak) 2865677746904107 a005 (1/sin(93/205*Pi))^532 2865677753254443 a007 Real Root Of -370*x^4-864*x^3+411*x^2-317*x+336 2865677756092136 s002 sum(A023622[n]/((2^n-1)/n),n=1..infinity) 2865677757840349 m001 (exp(1/Pi)-gamma(1))/(GaussAGM-Totient) 2865677772162982 m001 (2*Pi/GAMMA(5/6)-MadelungNaCl)/MertensB3 2865677777191569 r005 Re(z^2+c),c=-11/14+2/105*I,n=16 2865677791957360 a007 Real Root Of -229*x^4-441*x^3+265*x^2-848*x+459 2865677798054057 r005 Re(z^2+c),c=-27/74+4/41*I,n=17 2865677802003196 m001 LaplaceLimit^2*ArtinRank2^2*ln((3^(1/3)))^2 2865677803322606 r009 Im(z^3+c),c=-59/90+20/37*I,n=4 2865677804230002 r005 Im(z^2+c),c=29/94+4/49*I,n=36 2865677808628325 a007 Real Root Of -176*x^4-546*x^3+81*x^2+483*x-261 2865677824880420 r009 Re(z^3+c),c=-51/122+23/58*I,n=51 2865677835114463 r009 Im(z^3+c),c=-31/94+7/29*I,n=16 2865677840469821 m001 1/Ei(1)/ln(CopelandErdos)/GAMMA(5/6)^2 2865677874084714 a007 Real Root Of -312*x^4-793*x^3+174*x^2-163*x+483 2865677879190537 r005 Re(z^2+c),c=-33/86+19/40*I,n=13 2865677893498183 a007 Real Root Of -262*x^4-725*x^3+198*x^2+613*x+738 2865677894150628 a007 Real Root Of 94*x^4+104*x^3-185*x^2+867*x+112 2865677899998575 r005 Im(z^2+c),c=-47/62+6/61*I,n=22 2865677912223727 r005 Im(z^2+c),c=-17/18+42/199*I,n=6 2865677927225322 h001 (9/11*exp(2)+8/11)/(7/12*exp(1)+7/9) 2865677927631789 s002 sum(A221934[n]/(exp(2/5*pi*n)),n=1..infinity) 2865677929381422 r005 Im(z^2+c),c=27/86+3/53*I,n=58 2865677941070151 r005 Im(z^2+c),c=-7/19+27/62*I,n=9 2865677949798840 r005 Re(z^2+c),c=-35/66+20/59*I,n=5 2865677950282489 h001 (2/9*exp(1)+2/9)/(3/10*exp(2)+2/3) 2865677965350934 r009 Re(z^3+c),c=-29/56+21/34*I,n=34 2865677972168839 r005 Re(z^2+c),c=-33/122+27/46*I,n=45 2865677972517892 m001 (Zeta(1/2)+Kolakoski)/(MadelungNaCl+Stephens) 2865677984560268 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12)-ZetaQ(2))/Sarnak 2865677996214564 r002 32th iterates of z^2 + 2865678007486359 r005 Re(z^2+c),c=-33/94+8/45*I,n=3 2865678009456737 r005 Im(z^2+c),c=-1+51/169*I,n=12 2865678010502854 r005 Im(z^2+c),c=-3/56+21/59*I,n=20 2865678013640192 m001 (Psi(1,1/3)-ln(5)*Magata)/ln(5) 2865678022037086 r009 Re(z^3+c),c=-11/50+54/61*I,n=2 2865678022843555 r002 34th iterates of z^2 + 2865678031233612 m005 (-1/6+1/4*5^(1/2))/(4/5*Catalan+7/11) 2865678032141751 a007 Real Root Of 337*x^4+628*x^3-746*x^2+940*x+872 2865678040436907 r005 Im(z^2+c),c=29/86+3/44*I,n=23 2865678046950700 m001 (GAMMA(5/6)+Weierstrass)/(Psi(2,1/3)-sin(1)) 2865678048136610 a009 1/5*(10*5^(1/3)-22)*5^(2/3) 2865678050880804 a007 Real Root Of -612*x^4-673*x^3-840*x^2+854*x+302 2865678069739061 r005 Im(z^2+c),c=-69/106+2/37*I,n=64 2865678084254423 a007 Real Root Of -805*x^4+223*x^3-739*x^2-92*x+45 2865678086890895 r009 Re(z^3+c),c=-47/82+4/13*I,n=4 2865678087248257 m001 KhinchinHarmonic*(Porter+ZetaP(3)) 2865678093591713 m001 Otter^StronglyCareFree/cos(1/5*Pi) 2865678105973870 m002 2+(25*ProductLog[Pi])/Pi^3 2865678112647968 a007 Real Root Of 300*x^4+934*x^3+367*x^2+131*x-890 2865678125697634 m005 (1/2*3^(1/2)-1/3)/(3/4*5^(1/2)+2/11) 2865678130418637 m001 Si(Pi)/(Robbin^Shi(1)) 2865678153652904 m005 (1/2*exp(1)+2)/(1/3*Pi+1/8) 2865678156186751 a005 (1/sin(75/167*Pi))^82 2865678157167557 m001 GAMMA(11/12)^2*ln(GAMMA(1/12))/GAMMA(7/24)^2 2865678157646650 r009 Im(z^3+c),c=-21/50+11/60*I,n=13 2865678166351606 r005 Re(z^2+c),c=-11/8+103/115*I,n=2 2865678172874966 r005 Re(z^2+c),c=35/106+22/57*I,n=33 2865678179025824 a007 Real Root Of 516*x^4+402*x^3+931*x^2-616*x-247 2865678185195362 r005 Im(z^2+c),c=-41/106+22/45*I,n=51 2865678212373206 h001 (3/8*exp(1)+7/12)/(2/3*exp(2)+2/3) 2865678221904293 m008 (2/3*Pi^4+3)/(1/2*Pi+4/5) 2865678224705002 m001 (Trott+ZetaQ(4))/(ln(3)-LaplaceLimit) 2865678225381444 a007 Real Root Of 6*x^4-166*x^3-517*x^2+175*x+436 2865678244138453 m001 GlaisherKinkelin/Gompertz*MertensB3 2865678253742681 r009 Im(z^3+c),c=-1/64+28/33*I,n=30 2865678255396680 a007 Real Root Of 302*x^4+607*x^3-945*x^2-308*x+796 2865678258499690 a007 Real Root Of 354*x^4+874*x^3-596*x^2-639*x-242 2865678267927714 p004 log(27799/1583) 2865678270415957 a007 Real Root Of -217*x^4-499*x^3+262*x^2-465*x-593 2865678275491566 r005 Re(z^2+c),c=23/94+3/35*I,n=17 2865678306127214 a007 Real Root Of -960*x^4+802*x^3-363*x^2+652*x+242 2865678330369401 r001 42i'th iterates of 2*x^2-1 of 2865678330924498 r009 Re(z^3+c),c=-37/118+9/46*I,n=5 2865678335935170 m001 KhintchineLevy/ErdosBorwein/ln(BesselK(1,1))^2 2865678346940636 m001 MadelungNaCl^(MasserGramainDelta*MertensB2) 2865678348940604 r002 27i'th iterates of 2*x/(1-x^2) of 2865678351481195 r005 Im(z^2+c),c=-23/22+13/51*I,n=17 2865678352626168 m001 LambertW(1)^BesselK(1,1)/(Paris^BesselK(1,1)) 2865678356963681 r005 Im(z^2+c),c=35/122+37/63*I,n=27 2865678359285895 a003 cos(Pi*20/83)/cos(Pi*41/98) 2865678369255719 r009 Re(z^3+c),c=-51/110+15/29*I,n=15 2865678388786369 r005 Re(z^2+c),c=-4/5+13/56*I,n=4 2865678391942866 m001 arctan(1/2)*FeigenbaumAlpha+Niven 2865678402587541 r005 Im(z^2+c),c=17/64+7/47*I,n=10 2865678406220370 p001 sum(1/(464*n+35)/(24^n),n=0..infinity) 2865678414555708 a007 Real Root Of -347*x^4-740*x^3+423*x^2-760*x+335 2865678420817294 r005 Im(z^2+c),c=-25/29+11/54*I,n=31 2865678424901994 r009 Im(z^3+c),c=-57/110+1/11*I,n=15 2865678452342144 r005 Re(z^2+c),c=-5/18+23/47*I,n=25 2865678466972568 g007 Psi(2,2/11)+Psi(2,6/7)-Psi(2,5/9)-Psi(2,3/8) 2865678472097671 r005 Re(z^2+c),c=-91/90+6/41*I,n=16 2865678481129141 k001 Champernowne real with 281*n+5 2865678484728701 m001 (HardyLittlewoodC5+Paris)/(gamma(3)+Pi^(1/2)) 2865678493230009 a007 Real Root Of -322*x^4-674*x^3+738*x^2+196*x+355 2865678493573956 r002 26th iterates of z^2 + 2865678494474261 m009 (1/6*Pi^2-6)/(8*Catalan+Pi^2-2) 2865678495828404 a007 Real Root Of 336*x^4+882*x^3-107*x^2+615*x+738 2865678496803857 r005 Im(z^2+c),c=-71/82+13/63*I,n=21 2865678499416549 a007 Real Root Of -427*x^4-904*x^3+571*x^2-974*x+42 2865678503159579 m001 (3^(1/3)-BesselI(1,1))/(FeigenbaumKappa+Niven) 2865678504670106 a007 Real Root Of -187*x^4+591*x^3-104*x^2+842*x+265 2865678507257322 m004 90/Pi+5*Sech[Sqrt[5]*Pi] 2865678508665039 m004 90/Pi+5*Csch[Sqrt[5]*Pi] 2865678514593049 r005 Re(z^2+c),c=5/46+7/26*I,n=10 2865678514801408 r005 Im(z^2+c),c=-5/114+19/54*I,n=13 2865678524269754 h001 (5/11*exp(2)+2/7)/(1/11*exp(2)+3/5) 2865678524465507 r005 Im(z^2+c),c=-59/70+1/57*I,n=42 2865678545562896 r008 a(0)=3,K{-n^6,45-40*n^3+63*n^2-61*n} 2865678553294652 m001 (ln(Pi)+Bloch)/(Khinchin+Otter) 2865678564185611 r009 Im(z^3+c),c=-13/23+28/61*I,n=25 2865678581210739 a007 Real Root Of -948*x^4+194*x^3+126*x^2+790*x+227 2865678583910796 m006 (exp(2*Pi)+3/4)/(4/5*exp(Pi)+1/5) 2865678589220276 m001 (Lehmer-Salem)/(Zeta(3)+GaussAGM) 2865678591295720 m001 exp(TreeGrowth2nd)^2*DuboisRaymond^2*Pi 2865678594462365 r005 Im(z^2+c),c=-53/54+17/62*I,n=9 2865678597980989 m001 MertensB2^ln(Pi)/(ThueMorse^ln(Pi)) 2865678612313484 a007 Real Root Of -370*x^4-762*x^3+481*x^2-834*x+680 2865678628983258 r005 Re(z^2+c),c=-17/58+16/37*I,n=41 2865678647734324 r005 Re(z^2+c),c=-17/66+25/48*I,n=43 2865678655330139 m001 exp(1/exp(1))*(2/3+ln(2+sqrt(3))) 2865678657143226 m001 (Khinchin+Niven)/(Pi-ln(5)) 2865678662083774 l006 ln(449/598) 2865678664487709 p001 sum(1/(345*n+337)/n/(512^n),n=1..infinity) 2865678665150601 s002 sum(A082362[n]/(n^2*10^n-1),n=1..infinity) 2865678666713470 m005 (1/3*Zeta(3)+2/9)/(8/11*Pi-1/9) 2865678696094233 m005 (1/12+5/12*5^(1/2))/(1/2*Catalan-4) 2865678729630715 m001 (-sin(1/5*Pi)+ZetaQ(3))/(1-Zeta(3)) 2865678729859740 m001 FibonacciFactorial*(exp(Pi)+Ei(1,1)) 2865678734253106 m001 (Champernowne+Lehmer)/(GAMMA(2/3)+ln(Pi)) 2865678742651726 r008 a(0)=3,K{-n^6,29-37*n^3+46*n^2-31*n} 2865678744274422 s002 sum(A223617[n]/(n^2*10^n-1),n=1..infinity) 2865678750226058 r005 Re(z^2+c),c=-9/29+18/47*I,n=21 2865678753782203 a007 Real Root Of -395*x^4-843*x^3+510*x^2-606*x+875 2865678769630075 m001 (Zeta(1,2)-sin(1))/(-ArtinRank2+ZetaP(4)) 2865678770834732 m001 (BesselK(1,1)+ZetaQ(2))/(exp(Pi)-sin(1/12*Pi)) 2865678782457037 a001 7/1597*10610209857723^(3/5) 2865678803887063 m005 (1/3*exp(1)-2/3)/(1/10*gamma+7/9) 2865678809786090 a007 Real Root Of -206*x^4-687*x^3-40*x^2+592*x-250 2865678818994336 r005 Re(z^2+c),c=-21/86+44/61*I,n=23 2865678821716552 r005 Re(z^2+c),c=-1/70+30/47*I,n=40 2865678828944278 m001 (Psi(2,1/3)+ln(gamma))/(PlouffeB+Porter) 2865678831746280 s002 sum(A082364[n]/(n^2*10^n-1),n=1..infinity) 2865678836684072 m005 (1/3*3^(1/2)-1/2)/(7/11*Pi+7/10) 2865678848843584 a001 1364/1346269*8^(1/2) 2865678854241379 m001 RenyiParking^Landau/(OneNinth^Landau) 2865678862215561 r005 Re(z^2+c),c=19/56+7/46*I,n=40 2865678873004034 r005 Im(z^2+c),c=-17/44+14/41*I,n=3 2865678888868933 a007 Real Root Of -143*x^4-216*x^3+794*x^2+619*x-186 2865678891638422 m001 1/ln(Porter)*Paris^2*GAMMA(5/6) 2865678902080306 m001 (-Trott2nd+Thue)/(Catalan-Kac) 2865678902942008 m005 (1/2*5^(1/2)+8/9)/(1/12*2^(1/2)-9/11) 2865678916917152 a007 Real Root Of -22*x^4+383*x^3-787*x^2-345*x-78 2865678946796957 r005 Im(z^2+c),c=1/106+14/43*I,n=13 2865678971516633 m001 1/ln(FeigenbaumC)^2/CareFree*exp(1)^2 2865678974041911 m005 (1/2*5^(1/2)-1/5)/(2/9*Catalan+3) 2865678974248256 m001 1/exp((2^(1/3)))^2*Kolakoski^2/BesselK(0,1)^2 2865678981265943 a003 sin(Pi*13/107)*sin(Pi*19/68) 2865678984870142 m001 LaplaceLimit^2/Conway^2/ln(Sierpinski)^2 2865678986853552 r005 Im(z^2+c),c=-37/58+2/47*I,n=29 2865678990268307 r009 Re(z^3+c),c=-25/62+31/64*I,n=10 2865679004646276 a007 Real Root Of 165*x^4-3*x^3+8*x^2-819*x+233 2865679013419188 b008 17*Pi*Sin[12] 2865679022348499 r009 Im(z^3+c),c=-27/56+3/25*I,n=63 2865679026294951 r005 Re(z^2+c),c=-19/62+20/51*I,n=30 2865679027506009 m005 (1/2*Catalan+2/5)/(5/7*Pi+3/4) 2865679047233329 m001 exp(GAMMA(1/4))^2/Cahen^2*sin(1) 2865679047320424 m001 1/exp(Lehmer)^2*GolombDickman*GAMMA(3/4)^2 2865679049445602 m001 (1-3^(1/2))/(GAMMA(7/12)+GAMMA(23/24)) 2865679052602297 r005 Im(z^2+c),c=27/62+23/54*I,n=5 2865679069255117 r009 Im(z^3+c),c=-25/48+13/32*I,n=60 2865679073922999 r005 Im(z^2+c),c=-5/82+23/64*I,n=19 2865679078342926 r005 Im(z^2+c),c=37/110+1/57*I,n=7 2865679082720907 a001 29/12586269025*121393^(14/23) 2865679082744581 a001 29/10610209857723*7778742049^(14/23) 2865679086715101 m001 (ln(2)/ln(10)+gamma)/(GAMMA(3/4)+Tribonacci) 2865679089418017 a007 Real Root Of 288*x^4+902*x^3+378*x^2+800*x+993 2865679095462537 p004 (log(8/43)/Pi)^2 2865679103478166 a007 Real Root Of 252*x^4+973*x^3+390*x^2-904*x+110 2865679122233876 a007 Real Root Of -29*x^4+500*x^3-326*x^2+814*x+272 2865679145305793 l006 ln(41/720) 2865679155295428 a003 cos(Pi*1/97)/sin(Pi*11/97) 2865679157350564 r005 Re(z^2+c),c=-27/94+22/49*I,n=62 2865679157898988 a007 Real Root Of -840*x^4+675*x^3+615*x^2+992*x-345 2865679159826268 a007 Real Root Of -375*x^4-896*x^3+262*x^2-773*x-163 2865679161764613 a007 Real Root Of 247*x^4+814*x^3+667*x^2+761*x-798 2865679168776555 m001 ArtinRank2-Psi(1,1/3)^MinimumGamma 2865679185154357 a007 Real Root Of 469*x^4+968*x^3-992*x^2+289*x+126 2865679185816331 m001 (BesselI(1,2)+ZetaP(3))/(BesselK(1,1)-cos(1)) 2865679208271110 a007 Real Root Of 464*x^4-861*x^3+769*x^2-356*x+56 2865679213049742 s001 sum(exp(-Pi/3)^(n-1)*A108072[n],n=1..infinity) 2865679217178051 a007 Real Root Of -214*x^4+111*x^3+383*x^2+303*x-9 2865679218538983 m001 exp(Zeta(9))^2*GAMMA(7/12)^2*sqrt(1+sqrt(3)) 2865679219865422 m005 (1/3*Pi+1/5)/(11/12*Zeta(3)-2/3) 2865679234410633 m001 (FeigenbaumKappa+Otter)/(Ei(1,1)+GAMMA(17/24)) 2865679234590680 r009 Re(z^3+c),c=-61/98+12/49*I,n=18 2865679239968684 a007 Real Root Of -47*x^4+294*x^3-182*x^2-517*x-773 2865679241557177 a007 Real Root Of -174*x^4-453*x^3-146*x^2-590*x+582 2865679254844922 r005 Re(z^2+c),c=-25/122+29/43*I,n=19 2865679254879703 a007 Real Root Of 336*x^4+994*x^3+186*x^2-21*x-855 2865679263342689 a007 Real Root Of -43*x^4+308*x^3+873*x^2-998*x+119 2865679266390336 a007 Real Root Of -492*x^4+838*x^3+800*x^2+779*x-23 2865679269986740 a001 311187/46*322^(1/4) 2865679281033104 r002 50th iterates of z^2 + 2865679291448162 r005 Im(z^2+c),c=-19/86+26/61*I,n=35 2865679293412318 m001 GAMMA(3/4)^cos(Pi/12)+exp(1/2) 2865679301704961 r005 Re(z^2+c),c=-5/16+7/17*I,n=13 2865679310802538 r009 Re(z^3+c),c=-45/98+19/41*I,n=61 2865679315199775 a007 Real Root Of -411*x^4-808*x^3+838*x^2-687*x-148 2865679318075914 m005 (1/3*3^(1/2)+1/2)/(5/12*gamma-4) 2865679322602550 a007 Real Root Of -371*x^4-723*x^3+996*x^2+387*x+935 2865679344913472 m001 (-BesselK(0,1)+Porter)/(2^(1/2)+5^(1/2)) 2865679361471973 m001 Backhouse*(Mills+Robbin) 2865679383082248 a007 Real Root Of 706*x^4+282*x^3-588*x^2-786*x+23 2865679387264467 a001 832040/3*1364^(11/34) 2865679397000449 a007 Real Root Of -209*x^4-642*x^3+240*x^2+785*x-735 2865679397246037 q001 1103/3849 2865679397886535 r005 Im(z^2+c),c=-5/26+22/53*I,n=28 2865679413985402 a007 Real Root Of -173*x^4-257*x^3+539*x^2-130*x+820 2865679422126513 m005 (1/2*Catalan-3)/(1/11*Zeta(3)+7/9) 2865679436503893 r005 Im(z^2+c),c=15/44+34/57*I,n=8 2865679446003906 r005 Re(z^2+c),c=-71/90+3/56*I,n=18 2865679447706588 a007 Real Root Of 123*x^4+242*x^3-188*x^2+290*x-225 2865679448965910 r005 Im(z^2+c),c=-31/48+11/31*I,n=8 2865679451087668 r005 Im(z^2+c),c=-45/58+9/38*I,n=6 2865679454543973 a007 Real Root Of -296*x^4-110*x^3-751*x^2+73*x+82 2865679468537060 s002 sum(A269770[n]/(n^2*pi^n+1),n=1..infinity) 2865679468674609 s002 sum(A269770[n]/(n^2*pi^n-1),n=1..infinity) 2865679473328800 a003 sin(Pi*10/103)*sin(Pi*48/119) 2865679479101029 r005 Re(z^2+c),c=-37/30+4/115*I,n=2 2865679480565852 p004 log(27211/20431) 2865679481912770 m001 (ErdosBorwein+Porter)/(ThueMorse+TwinPrimes) 2865679489666447 r002 44th iterates of z^2 + 2865679493052413 r005 Re(z^2+c),c=-37/122+33/50*I,n=21 2865679498240284 p003 LerchPhi(1/125,6,367/203) 2865679507974052 m001 (2^(1/3)-Ei(1))/(-BesselJ(1,1)+Robbin) 2865679517773759 a007 Real Root Of 84*x^4+160*x^3+43*x^2+479*x-880 2865679529684287 m002 E^Pi/15+Pi^5/ProductLog[Pi] 2865679548200265 r005 Im(z^2+c),c=-1/86+15/44*I,n=4 2865679550112509 m001 (GAMMA(2/3)-ln(Pi))/(BesselK(1,1)-MertensB3) 2865679558539658 r009 Re(z^3+c),c=-41/98+25/63*I,n=29 2865679566643557 r005 Re(z^2+c),c=-39/106+1/23*I,n=22 2865679571791132 m005 (1/3*5^(1/2)-1/2)/(1/9*Zeta(3)-1/8) 2865679577307781 m001 (2/3*(3^(1/3))-exp(1/Pi))/(3^(1/3)) 2865679590081832 r005 Im(z^2+c),c=9/70+14/55*I,n=7 2865679595963330 a003 sin(Pi*23/111)-sin(Pi*33/94) 2865679597075897 a007 Real Root Of -68*x^4+11*x^3+750*x^2+563*x+299 2865679604483722 r002 33th iterates of z^2 + 2865679604881724 p004 log(23623/17737) 2865679625723610 h001 (3/8*exp(1)+1/7)/(3/7*exp(2)+8/9) 2865679635009858 h001 (1/7*exp(2)+3/10)/(6/11*exp(2)+7/10) 2865679653232240 p001 sum(1/(599*n+363)/(10^n),n=0..infinity) 2865679669451535 h002 exp(1/21*(4*21^(1/2)+11^(2/3))^(1/2)*21^(1/2)) 2865679671818365 r009 Re(z^3+c),c=-7/38+51/53*I,n=24 2865679676057104 a001 14930352/2207*199^(3/11) 2865679676333781 r009 Re(z^3+c),c=-29/64+20/41*I,n=49 2865679682384918 m008 (1/6*Pi^5+3/5)/(1/4*Pi^2-2/3) 2865679685850650 m001 Cahen^MertensB2*ZetaP(2) 2865679694812347 h002 exp(1/3*(21-3^(1/2)*12^(1/4))*3^(1/2)) 2865679696125362 r005 Im(z^2+c),c=-5/13+15/31*I,n=45 2865679698215202 r005 Im(z^2+c),c=-5/4+15/173*I,n=38 2865679700893625 m002 -E^Pi+Pi^9-Pi^4*Cosh[Pi] 2865679707791804 r005 Re(z^2+c),c=-17/106+9/19*I,n=5 2865679711581352 a007 Real Root Of -257*x^4-634*x^3+411*x^2+376*x+114 2865679716000083 m001 (Trott+ZetaP(2))/(Otter-Totient) 2865679720530216 r009 Re(z^3+c),c=-53/122+20/47*I,n=61 2865679733146975 a007 Real Root Of -501*x^4-861*x^3-834*x^2+462*x+184 2865679739406962 m001 (-ln(Pi)+Bloch)/(1-BesselJ(0,1)) 2865679748880645 m001 (Catalan+ln(Pi))^Backhouse 2865679769637753 r009 Im(z^3+c),c=-43/102+9/49*I,n=30 2865679778943408 a007 Real Root Of -602*x^4+548*x^3+48*x^2+820*x+248 2865679782086607 m001 GaussAGM-MasserGramain-Weierstrass 2865679800786690 a001 987/4870847*2^(1/2) 2865679809338701 r005 Re(z^2+c),c=-123/98+11/60*I,n=2 2865679809355498 a007 Real Root Of -166*x^4-205*x^3+791*x^2+13*x-88 2865679810001163 a007 Real Root Of 113*x^4+66*x^3-236*x^2-761*x+22 2865679810214688 m005 (1/2*Zeta(3)+10/11)/(61/12+1/12*5^(1/2)) 2865679811274599 r005 Re(z^2+c),c=-27/94+22/49*I,n=64 2865679813659327 r002 5th iterates of z^2 + 2865679818570513 a001 1364/1597*102334155^(4/21) 2865679819812735 m002 -6-E^Pi+(6*Csch[Pi])/ProductLog[Pi] 2865679824816404 a001 3571/610*4181^(4/21) 2865679830063890 r005 Im(z^2+c),c=-19/30+29/110*I,n=13 2865679833014831 r005 Re(z^2+c),c=-13/42+2/5*I,n=16 2865679847238463 m005 (2*2^(1/2)-5/6)/(1/6*gamma+3/5) 2865679848867000 a001 199/956722026041*3^(7/24) 2865679853574029 m001 (-ln(2)+5)/(-FeigenbaumAlpha+1) 2865679855050037 m001 (Psi(2,1/3)+sin(1))/(sin(1/5*Pi)+Mills) 2865679856156028 r005 Re(z^2+c),c=-27/34+11/73*I,n=28 2865679861583523 a001 17711/3*9349^(23/34) 2865679864346610 m001 (Magata-ZetaQ(3))/(Gompertz-Grothendieck) 2865679867259981 m001 GaussKuzminWirsing/(ZetaP(2)^exp(Pi)) 2865679885234998 m001 GAMMA(13/24)^2/exp(Salem)*sin(Pi/5)^2 2865679899135459 m001 (ThueMorse-ZetaQ(2))/(sin(1/5*Pi)-Tribonacci) 2865679901539303 m001 (ln(Pi)+Cahen)/(Conway-Tetranacci) 2865679911212539 r005 Im(z^2+c),c=-41/62+17/63*I,n=14 2865679921744724 m001 Otter*(KhinchinHarmonic-StronglyCareFree) 2865679941337658 a007 Real Root Of 33*x^4-82*x^3-245*x^2+966*x+625 2865679941965389 a007 Real Root Of 314*x^4+842*x^3-408*x^2-709*x-42 2865679961977386 a005 (1/sin(78/167*Pi))^1914 2865679968363096 g001 Psi(7/9,29/70) 2865679973589240 m009 (1/3*Pi^2+2/5)/(5*Psi(1,3/4)+1/6) 2865679974189553 r009 Re(z^3+c),c=-35/78+15/37*I,n=16 2865679978754163 r005 Im(z^2+c),c=-15/26+3/58*I,n=33 2865679982183645 r009 Re(z^3+c),c=-37/94+6/17*I,n=28 2865679983005887 m001 (Trott+ZetaQ(2))/(ln(2^(1/2)+1)+exp(1/Pi)) 2865679991499221 a007 Real Root Of -296*x^4-748*x^3-9*x^2-961*x-321 2865680000334786 p001 sum(1/(595*n+351)/(64^n),n=0..infinity) 2865680002159593 r009 Re(z^3+c),c=-1/42+13/24*I,n=2 2865680010087316 m004 -6+(625*Csc[Sqrt[5]*Pi])/Pi-Log[Sqrt[5]*Pi] 2865680016203318 r002 8th iterates of z^2 + 2865680019450252 a007 Real Root Of -209*x^4+26*x^3-68*x^2+462*x+140 2865680030615702 m001 (1-Zeta(3))/(gamma(2)+TravellingSalesman) 2865680036460434 h001 (3/8*exp(1)+8/9)/(8/9*exp(2)+1/11) 2865680037676745 m005 (1/2*gamma+3/11)/(11/12*5^(1/2)-1/11) 2865680038510195 a001 682/5473*2504730781961^(4/21) 2865680046720831 a007 Real Root Of -404*x^4-748*x^3+770*x^2-930*x+654 2865680055968439 a007 Real Root Of 240*x^4+714*x^3-354*x^2-882*x+997 2865680067457679 m005 (1/3+1/4*5^(1/2))/(5*gamma-6) 2865680071867707 a007 Real Root Of -423*x^4-637*x^3+496*x^2+967*x-300 2865680077551204 a001 199/34*21^(12/23) 2865680081719545 m006 (3/4*ln(Pi)+1/3)/(1/2/Pi+4) 2865680083175509 a007 Real Root Of 366*x^4+974*x^3-193*x^2-69*x-374 2865680083371097 r005 Re(z^2+c),c=11/70+20/59*I,n=41 2865680094616761 r005 Re(z^2+c),c=-27/94+22/49*I,n=53 2865680099397708 m001 (Sarnak-ZetaP(2))/(Cahen+GaussKuzminWirsing) 2865680117625079 m001 (FeigenbaumAlpha+Porter)/(Robbin+Sarnak) 2865680131483131 r005 Im(z^2+c),c=-113/122+1/39*I,n=3 2865680134628834 r005 Im(z^2+c),c=-19/118+17/43*I,n=10 2865680135128368 r005 Im(z^2+c),c=-17/48+29/60*I,n=31 2865680136596471 q001 1007/3514 2865680143282006 r005 Re(z^2+c),c=-13/46+6/13*I,n=58 2865680146796884 a003 cos(Pi*27/74)-cos(Pi*23/50) 2865680164396601 a001 3571/3524578*8^(1/2) 2865680176210904 m005 (1/2*Catalan-3/8)/(1/3*Zeta(3)-1/9) 2865680178553401 a001 39088169/5778*199^(3/11) 2865680183509240 a008 Real Root of x^4-x^3-29*x^2-21*x+87 2865680189118909 r005 Im(z^2+c),c=-19/86+26/61*I,n=41 2865680191980136 m009 (4/5*Psi(1,2/3)-1/6)/(3/4*Psi(1,1/3)+2/5) 2865680201603048 r005 Im(z^2+c),c=-5/52+53/62*I,n=51 2865680226309396 a007 Real Root Of 378*x^4+986*x^3-383*x^2-237*x+178 2865680226730161 a007 Real Root Of 327*x^4+926*x^3+284*x^2+745*x-458 2865680236659415 a001 1/116*(1/2*5^(1/2)+1/2)^21*29^(1/11) 2865680242355746 a007 Real Root Of 155*x^4-960*x^3-918*x^2-412*x+215 2865680243947152 m006 (1/4*Pi^2-3/5)/(1/Pi+1/3) 2865680248297228 m005 (1/2*Pi-1/5)/(1/8*3^(1/2)-5) 2865680251866638 a001 6765*199^(3/11) 2865680255676563 r005 Re(z^2+c),c=-7/38+31/61*I,n=8 2865680262562895 a001 267914296/39603*199^(3/11) 2865680264123458 a001 701408733/103682*199^(3/11) 2865680264351141 a001 1836311903/271443*199^(3/11) 2865680264384360 a001 686789568/101521*199^(3/11) 2865680264389206 a001 12586269025/1860498*199^(3/11) 2865680264389913 a001 32951280099/4870847*199^(3/11) 2865680264390017 a001 86267571272/12752043*199^(3/11) 2865680264390032 a001 32264490531/4769326*199^(3/11) 2865680264390034 a001 591286729879/87403803*199^(3/11) 2865680264390034 a001 1548008755920/228826127*199^(3/11) 2865680264390034 a001 4052739537881/599074578*199^(3/11) 2865680264390034 a001 1515744265389/224056801*199^(3/11) 2865680264390034 a001 6557470319842/969323029*199^(3/11) 2865680264390034 a001 2504730781961/370248451*199^(3/11) 2865680264390034 a001 956722026041/141422324*199^(3/11) 2865680264390035 a001 365435296162/54018521*199^(3/11) 2865680264390041 a001 139583862445/20633239*199^(3/11) 2865680264390080 a001 53316291173/7881196*199^(3/11) 2865680264390350 a001 20365011074/3010349*199^(3/11) 2865680264392202 a001 7778742049/1149851*199^(3/11) 2865680264404890 a001 2971215073/439204*199^(3/11) 2865680264491857 a001 1134903170/167761*199^(3/11) 2865680265087939 a001 433494437/64079*199^(3/11) 2865680269173546 a001 165580141/24476*199^(3/11) 2865680269879540 a007 Real Root Of 864*x^4-848*x^3+663*x^2-568*x-243 2865680273350018 r005 Re(z^2+c),c=37/122+26/55*I,n=10 2865680274240028 r005 Im(z^2+c),c=-5/13+4/9*I,n=16 2865680286058126 r005 Im(z^2+c),c=-19/22+17/78*I,n=33 2865680297176712 a001 63245986/9349*199^(3/11) 2865680303283228 a001 2584/12752043*2^(1/2) 2865680310660007 m001 GaussAGM*Khinchin+GolombDickman 2865680313762950 m001 ln(3)*HardHexagonsEntropy+MertensB3 2865680315445604 m001 Grothendieck*exp(1)^Weierstrass 2865680320065901 r005 Im(z^2+c),c=-67/114+20/51*I,n=45 2865680333677020 r009 Re(z^3+c),c=-37/86+26/59*I,n=17 2865680333998008 p001 sum(1/(9*n+2)/n/(32^n),,n=0..infinity) 2865680343651251 m005 (1/2*3^(1/2)-5/7)/(1/6*3^(1/2)-9/11) 2865680356333199 a001 9349/9227465*8^(1/2) 2865680362990870 a007 Real Root Of 311*x^4+756*x^3-738*x^2-862*x+408 2865680368415582 m001 (Gompertz+Paris)/(ln(Pi)-FeigenbaumMu) 2865680376596485 a001 6765/33385282*2^(1/2) 2865680380053229 a003 sin(Pi*19/107)/cos(Pi*41/93) 2865680382231848 r005 Re(z^2+c),c=-27/82+5/16*I,n=25 2865680384336372 a001 24476/24157817*8^(1/2) 2865680387292745 a001 17711/87403803*2^(1/2) 2865680387895786 r005 Re(z^2+c),c=5/66+13/63*I,n=12 2865680388421980 a001 64079/63245986*8^(1/2) 2865680388853309 a001 46368/228826127*2^(1/2) 2865680389018062 a001 167761/165580141*8^(1/2) 2865680389080992 a001 121393/599074578*2^(1/2) 2865680389105029 a001 439204/433494437*8^(1/2) 2865680389114210 a001 317811/1568397607*2^(1/2) 2865680389117717 a001 1149851/1134903170*8^(1/2) 2865680389119057 a001 832040/4106118243*2^(1/2) 2865680389119569 a001 3010349/2971215073*8^(1/2) 2865680389119764 a001 987/4870846*2^(1/2) 2865680389119839 a001 7881196/7778742049*8^(1/2) 2865680389119867 a001 5702887/28143753123*2^(1/2) 2865680389119878 a001 20633239/20365011074*8^(1/2) 2865680389119882 a001 14930352/73681302247*2^(1/2) 2865680389119884 a001 54018521/53316291173*8^(1/2) 2865680389119884 a001 39088169/192900153618*2^(1/2) 2865680389119885 a001 141422324/139583862445*8^(1/2) 2865680389119885 a001 102334155/505019158607*2^(1/2) 2865680389119885 a001 370248451/365435296162*8^(1/2) 2865680389119885 a001 267914296/1322157322203*2^(1/2) 2865680389119885 a001 969323029/956722026041*8^(1/2) 2865680389119885 a001 701408733/3461452808002*2^(1/2) 2865680389119885 a001 2537720636/2504730781961*8^(1/2) 2865680389119885 a001 1836311903/9062201101803*2^(1/2) 2865680389119885 a001 6643838879/6557470319842*8^(1/2) 2865680389119885 a001 4807526976/23725150497407*2^(1/2) 2865680389119885 a001 4870846/4807525989*8^(1/2) 2865680389119885 a001 2971215073/14662949395604*2^(1/2) 2865680389119885 a001 4106118243/4052739537881*8^(1/2) 2865680389119885 a001 1134903170/5600748293801*2^(1/2) 2865680389119885 a001 1568397607/1548008755920*8^(1/2) 2865680389119885 a001 433494437/2139295485799*2^(1/2) 2865680389119885 a001 599074578/591286729879*8^(1/2) 2865680389119885 a001 165580141/817138163596*2^(1/2) 2865680389119885 a001 228826127/225851433717*8^(1/2) 2865680389119885 a001 63245986/312119004989*2^(1/2) 2865680389119885 a001 87403803/86267571272*8^(1/2) 2865680389119886 a001 24157817/119218851371*2^(1/2) 2865680389119887 a001 33385282/32951280099*8^(1/2) 2865680389119891 a001 9227465/45537549124*2^(1/2) 2865680389119902 a001 12752043/12586269025*8^(1/2) 2865680389119931 a001 3524578/17393796001*2^(1/2) 2865680389120006 a001 4870847/4807526976*8^(1/2) 2865680389120201 a001 1346269/6643838879*2^(1/2) 2865680389120713 a001 1860498/1836311903*8^(1/2) 2865680389122052 a001 514229/2537720636*2^(1/2) 2865680389125559 a001 710647/701408733*8^(1/2) 2865680389134740 a001 196418/969323029*2^(1/2) 2865680389158778 a001 271443/267914296*8^(1/2) 2865680389221708 a001 75025/370248451*2^(1/2) 2865680389386461 a001 103682/102334155*8^(1/2) 2865680389817790 a001 28657/141422324*2^(1/2) 2865680390947024 a001 39603/39088169*8^(1/2) 2865680392316761 m001 1/KhintchineHarmonic/Bloch^2*exp(OneNinth) 2865680393903398 a001 10946/54018521*2^(1/2) 2865680401643284 a001 15127/14930352*8^(1/2) 2865680413574702 m001 (Porter+StolarskyHarborth)/cos(1) 2865680417615661 m001 BesselK(0,1)^sqrt(Pi)-GAMMA(7/24) 2865680421906570 a001 4181/20633239*2^(1/2) 2865680426534655 m001 Tribonacci/Si(Pi)/ln(sqrt(2)) 2865680464987997 m001 (gamma(2)-CareFree)/(Grothendieck+Rabbit) 2865680474956541 a001 5778/5702887*8^(1/2) 2865680489113281 a001 24157817/3571*199^(3/11) 2865680491378798 a007 Real Root Of -323*x^4+357*x^3-209*x^2+301*x+114 2865680491992107 r005 Im(z^2+c),c=2/13+6/23*I,n=5 2865680499961755 r005 Im(z^2+c),c=-11/26+3/62*I,n=12 2865680511738009 a007 Real Root Of 30*x^4+830*x^3-855*x^2-87*x+606 2865680514506218 r009 Re(z^3+c),c=-35/106+7/12*I,n=6 2865680517611437 m001 GAMMA(1/6)*ln((2^(1/3)))^2/Zeta(5) 2865680522070945 r005 Re(z^2+c),c=-9/29+19/50*I,n=39 2865680525403339 r009 Re(z^3+c),c=-3/17+34/35*I,n=26 2865680526106246 a007 Real Root Of 165*x^4+562*x^3+448*x^2+605*x+153 2865680548772920 r005 Im(z^2+c),c=-27/86+31/47*I,n=10 2865680561780965 r002 1i'th iterates of 2*x/(1-x^2) of 2865680579675090 p001 sum((-1)^n/(398*n+307)/(3^n),n=0..infinity) 2865680581514902 m001 Cahen/(FeigenbaumMu-PisotVijayaraghavan) 2865680582072505 m001 (Pi+ln(2)/ln(10)-exp(-1/2*Pi))/GAMMA(5/6) 2865680598029358 r005 Im(z^2+c),c=-7/62+13/34*I,n=24 2865680613843168 a001 1597/7881196*2^(1/2) 2865680619635073 m008 (5*Pi^6-5/6)/(1/6*Pi^3-5) 2865680624603129 m005 (1/2*3^(1/2)+5/11)/(4*Zeta(3)-1/5) 2865680629407942 a007 Real Root Of 227*x^4+432*x^3-731*x^2-195*x+302 2865680641087878 m001 Gompertz^CareFree*ThueMorse 2865680653749500 a007 Real Root Of 156*x^4+541*x^3+154*x^2-630*x-859 2865680660814530 r005 Re(z^2+c),c=-17/52+9/28*I,n=22 2865680665000748 m006 (1/3/Pi-2/3)/(2*ln(Pi)-1/3) 2865680714125447 r009 Re(z^3+c),c=-59/122+19/40*I,n=5 2865680728986282 p004 log(15401/877) 2865680729427838 a007 Real Root Of -793*x^4+880*x^3-238*x^2+968*x+323 2865680738203764 r008 a(0)=3,K{-n^6,35+12*n^3+32*n^2-71*n} 2865680746417508 a007 Real Root Of -469*x^4-705*x^3+31*x^2+806*x+215 2865680757088895 m001 1/Catalan^2*ln(Bloch)^2/GAMMA(1/24) 2865680769386514 a001 4/317811*233^(8/53) 2865680774142701 a001 199*(1/2*5^(1/2)+1/2)^28*3^(9/14) 2865680790154010 h001 (5/7*exp(1)+6/7)/(2/7*exp(1)+1/5) 2865680807009476 a003 sin(Pi*3/34)/cos(Pi*7/73) 2865680826087560 r002 11th iterates of z^2 + 2865680828268268 m005 (1/2*gamma-7/10)/(5/11*exp(1)+1/5) 2865680831808721 m005 (13/4+1/4*5^(1/2))/(2/5*3^(1/2)+7/11) 2865680839548787 m001 (GAMMA(2/3)-Pi^(1/2))/(GAMMA(17/24)+ZetaP(3)) 2865680845925800 r002 5th iterates of z^2 + 2865680851097780 m005 (3*Pi+2/5)/(2*2^(1/2)+3/5) 2865680870581497 r005 Im(z^2+c),c=-129/106+5/17*I,n=7 2865680874861312 r005 Re(z^2+c),c=13/40+4/27*I,n=62 2865680891255737 a007 Real Root Of -356*x^4-966*x^3+185*x^2+185*x+286 2865680892783949 a001 89/9349*29^(18/55) 2865680905745336 r002 39th iterates of z^2 + 2865680912090533 m001 1/GAMMA(2/3)*ln(MertensB1)^2/arctan(1/2) 2865680918818746 l006 ln(7410/9869) 2865680926543621 m001 (-HeathBrownMoroz+ZetaP(2))/(exp(1)-ln(Pi)) 2865680940917880 a003 cos(Pi*1/99)-sin(Pi*24/95) 2865680949413986 a008 Real Root of (-5+5*x-2*x^2-4*x^3+2*x^4+x^5) 2865680960732845 r005 Im(z^2+c),c=-9/94+16/43*I,n=8 2865680967287254 m001 FeigenbaumD+HardyLittlewoodC4^(3^(1/3)) 2865680977453080 a001 1/987*8^(1/2) 2865680983057599 a007 Real Root Of 263*x^4+208*x^3-101*x^2-654*x-176 2865681002371351 s002 sum(A289335[n]/(exp(n)-1),n=1..infinity) 2865681022069426 a007 Real Root Of 9*x^4-185*x^3-652*x^2-181*x-125 2865681022509222 m001 exp(FeigenbaumD)*Champernowne^2*GAMMA(17/24) 2865681027515801 m009 (1/5*Psi(1,2/3)+3/4)/(2/5*Psi(1,2/3)-3/4) 2865681031770997 q001 911/3179 2865681040944035 m001 (-exp(gamma)+2/3)/(-GAMMA(11/12)+2/3) 2865681050732668 p003 LerchPhi(1/8,5,437/214) 2865681052862362 r005 Re(z^2+c),c=-77/106+3/22*I,n=4 2865681055452363 a001 15456/41*123^(9/10) 2865681060649600 r005 Re(z^2+c),c=-25/98+17/32*I,n=44 2865681061259926 r009 Re(z^3+c),c=-8/19+23/57*I,n=24 2865681064383159 l006 ln(6961/9271) 2865681092387495 r005 Re(z^2+c),c=-27/110+35/46*I,n=19 2865681106320385 r005 Im(z^2+c),c=-2/9+26/61*I,n=23 2865681109672535 a007 Real Root Of 576*x^4-561*x^3-739*x^2-663*x+260 2865681122242519 m003 -4+Sqrt[5]/4-5*E^(1/2+Sqrt[5]/2) 2865681125112026 r002 7th iterates of z^2 + 2865681135872055 a007 Real Root Of -631*x^4+471*x^3-53*x^2+528*x+171 2865681144522857 m001 Bloch*(FeigenbaumDelta+OrthogonalArrays) 2865681144777310 r005 Re(z^2+c),c=-7/19+1/39*I,n=19 2865681145244340 r002 5th iterates of z^2 + 2865681153700910 a001 1364/89*55^(19/26) 2865681165422183 a007 Real Root Of 350*x^4+639*x^3-778*x^2+716*x-125 2865681166838176 m005 (3*Pi-1)/(-2/3+1/6*5^(1/2)) 2865681179009356 r005 Im(z^2+c),c=25/118+19/35*I,n=26 2865681190774343 r005 Re(z^2+c),c=-7/31+18/35*I,n=16 2865681199163341 m001 (gamma(3)+FeigenbaumMu)/(Pi-Ei(1)) 2865681213385373 r005 Re(z^2+c),c=7/52+17/40*I,n=4 2865681214013317 r005 Re(z^2+c),c=-13/48+20/37*I,n=8 2865681215444614 a001 48*18^(34/55) 2865681216441259 a007 Real Root Of 511*x^4-315*x^3+940*x^2-607*x-262 2865681223865072 a001 102334155/76*3^(11/16) 2865681226992282 m005 (1/3*Zeta(3)-1/10)/(3/10*2^(1/2)+5/8) 2865681230020795 l006 ln(6512/8673) 2865681234051637 a007 Real Root Of 259*x^4+662*x^3-387*x^2-287*x+468 2865681235147985 r005 Re(z^2+c),c=7/20+10/53*I,n=6 2865681240779358 a007 Real Root Of 320*x^4+659*x^3-989*x^2-843*x-366 2865681241854756 b008 28+ArcCosh[4]/Pi 2865681243403429 r005 Re(z^2+c),c=-29/106+31/64*I,n=40 2865681258122785 r009 Im(z^3+c),c=-23/48+6/49*I,n=45 2865681258405102 l006 ln(7258/7469) 2865681261799366 a007 Real Root Of -503*x^4-182*x^3-788*x^2+210*x+124 2865681262703041 a007 Real Root Of 72*x^4-167*x^3-890*x^2+589*x+211 2865681265283649 a007 Real Root Of -333*x^4-938*x^3+414*x^2+991*x-177 2865681271039694 a003 cos(Pi*33/112)-sin(Pi*8/23) 2865681276404745 m001 BesselI(1,1)*(2/3-GAMMA(19/24)) 2865681277270943 s002 sum(A123087[n]/((exp(n)+1)/n),n=1..infinity) 2865681281318859 m001 Ei(1)-ln(1+sqrt(2))+Si(Pi) 2865681281318859 m001 Si(Pi)-ln(2^(1/2)+1)+Ei(1) 2865681293501802 m001 (polylog(4,1/2)+HardyLittlewoodC5)/(5^(1/2)+1) 2865681303730781 s001 sum(exp(-2*Pi/3)^n*A142925[n],n=1..infinity) 2865681303811829 p003 LerchPhi(1/6,2,398/205) 2865681309870526 m001 (FeigenbaumDelta+Kac)/(2^(1/3)+sin(1/5*Pi)) 2865681321356996 r009 Im(z^3+c),c=-15/38+9/44*I,n=9 2865681326060313 a001 3571/4181*102334155^(4/21) 2865681328172757 m001 1/TreeGrowth2nd*Lehmer*exp(GAMMA(7/12))^2 2865681329437880 r004 Re(z^2+c),c=9/20-4/7*I,z(0)=exp(3/8*I*Pi),n=3 2865681331829655 r009 Re(z^3+c),c=-5/11+23/56*I,n=13 2865681332305414 a001 9349/1597*4181^(4/21) 2865681339450985 a007 Real Root Of 33*x^4+915*x^3-845*x^2+974*x-45 2865681354102027 r009 Re(z^3+c),c=-19/106+59/60*I,n=32 2865681358149097 a001 3571/28657*2504730781961^(4/21) 2865681374727557 a007 Real Root Of 16*x^4+432*x^3-743*x^2+467*x-302 2865681379459479 g004 Im(GAMMA(-43/15+I*3/4)) 2865681382877766 r005 Im(z^2+c),c=-17/52+27/58*I,n=42 2865681413669789 m001 (Pi+3^(1/2))/(GAMMA(3/4)-HardHexagonsEntropy) 2865681418102918 q001 7/24427 2865681420191265 l006 ln(6063/8075) 2865681442655022 r005 Im(z^2+c),c=-23/36+29/64*I,n=30 2865681444384981 a005 (1/sin(27/58*Pi))^1354 2865681448439264 a001 55/29*7^(7/33) 2865681451232282 m001 (GaussKuzminWirsing+MasserGramain*Trott)/Trott 2865681461295008 a007 Real Root Of 281*x^4+587*x^3-528*x^2+303*x+68 2865681466133052 m001 Riemann2ndZero^FeigenbaumMu/Tribonacci 2865681467378905 a007 Real Root Of -787*x^4-901*x^3-229*x^2+775*x+225 2865681470388201 r009 Re(z^3+c),c=-11/24+13/29*I,n=37 2865681472333975 a007 Real Root Of -125*x^4-409*x^3-80*x^2+50*x-395 2865681476400338 r005 Im(z^2+c),c=-37/114+25/54*I,n=24 2865681489900188 a007 Real Root Of 341*x^4+715*x^3-462*x^2+563*x-763 2865681502977142 a007 Real Root Of 56*x^4-269*x^3+467*x^2-935*x-313 2865681525742356 a001 55/199*521^(23/31) 2865681538018815 r005 Re(z^2+c),c=-9/56+33/59*I,n=14 2865681542656300 a001 1/182717648081*1836311903^(16/17) 2865681542658340 a001 2/165580141*514229^(16/17) 2865681543852326 h001 (-11*exp(3)-8)/(-10*exp(2)-6) 2865681545649210 m001 (5^(1/2))^GAMMA(2/3)-OneNinth 2865681545649210 m001 sqrt(5)^GAMMA(2/3)-OneNinth 2865681546000127 a001 9349/10946*102334155^(4/21) 2865681550681818 a001 9349/75025*2504730781961^(4/21) 2865681551382065 a007 Real Root Of 124*x^4-614*x^3+345*x^2+969*x+477 2865681552245212 a001 24476/4181*4181^(4/21) 2865681563432268 p004 log(23029/17291) 2865681567578289 m001 BesselK(0,1)-ln(gamma)+Ei(1) 2865681567578289 m001 BesselK(0,1)-log(gamma)+Ei(1) 2865681570770208 m001 (gamma+cos(1))/(-cos(1/12*Pi)+Stephens) 2865681573237020 a001 1346269/322*322^(1/3) 2865681573256473 r005 Im(z^2+c),c=-57/62+11/49*I,n=36 2865681577151489 a003 cos(Pi*1/89)-cos(Pi*24/97) 2865681578088914 a001 24476/28657*102334155^(4/21) 2865681578771963 a001 12238/98209*2504730781961^(4/21) 2865681582770605 a001 64079/75025*102334155^(4/21) 2865681582870260 a001 64079/514229*2504730781961^(4/21) 2865681583453654 a001 167761/196418*102334155^(4/21) 2865681583468194 a001 167761/1346269*2504730781961^(4/21) 2865681583553310 a001 439204/514229*102334155^(4/21) 2865681583555431 a001 219602/1762289*2504730781961^(4/21) 2865681583567849 a001 1149851/1346269*102334155^(4/21) 2865681583568159 a001 1149851/9227465*2504730781961^(4/21) 2865681583569971 a001 3010349/3524578*102334155^(4/21) 2865681583570016 a001 3010349/24157817*2504730781961^(4/21) 2865681583570280 a001 7881196/9227465*102334155^(4/21) 2865681583570287 a001 3940598/31622993*2504730781961^(4/21) 2865681583570325 a001 20633239/24157817*102334155^(4/21) 2865681583570326 a001 20633239/165580141*2504730781961^(4/21) 2865681583570332 a001 54018521/63245986*102334155^(4/21) 2865681583570332 a001 54018521/433494437*2504730781961^(4/21) 2865681583570333 a001 141422324/165580141*102334155^(4/21) 2865681583570333 a001 70711162/567451585*2504730781961^(4/21) 2865681583570333 a001 370248451/433494437*102334155^(4/21) 2865681583570333 a001 370248451/2971215073*2504730781961^(4/21) 2865681583570333 a001 969323029/1134903170*102334155^(4/21) 2865681583570333 a001 2537720636/2971215073*102334155^(4/21) 2865681583570333 a001 6643838879/7778742049*102334155^(4/21) 2865681583570333 a001 17393796001/20365011074*102334155^(4/21) 2865681583570333 a001 45537549124/53316291173*102334155^(4/21) 2865681583570333 a001 119218851371/139583862445*102334155^(4/21) 2865681583570333 a001 312119004989/365435296162*102334155^(4/21) 2865681583570333 a001 2139295485799/2504730781961*102334155^(4/21) 2865681583570333 a001 505019158607/591286729879*102334155^(4/21) 2865681583570333 a001 64300051206/75283811239*102334155^(4/21) 2865681583570333 a001 73681302247/86267571272*102334155^(4/21) 2865681583570333 a001 9381251041/10983760033*102334155^(4/21) 2865681583570333 a001 10749957122/12586269025*102334155^(4/21) 2865681583570333 a001 1368706081/1602508992*102334155^(4/21) 2865681583570333 a001 1568397607/1836311903*102334155^(4/21) 2865681583570333 a001 969323029/7778742049*2504730781961^(4/21) 2865681583570333 a001 199691526/233802911*102334155^(4/21) 2865681583570333 a001 1268860318/10182505537*2504730781961^(4/21) 2865681583570333 a001 6643838879/53316291173*2504730781961^(4/21) 2865681583570333 a001 17393796001/139583862445*2504730781961^(4/21) 2865681583570333 a001 22768774562/182717648081*2504730781961^(4/21) 2865681583570333 a001 119218851371/956722026041*2504730781961^(4/21) 2865681583570333 a001 10716675201/86000486440*2504730781961^(4/21) 2865681583570333 a001 73681302247/591286729879*2504730781961^(4/21) 2865681583570333 a001 9381251041/75283811239*2504730781961^(4/21) 2865681583570333 a001 5374978561/43133785636*2504730781961^(4/21) 2865681583570333 a001 1368706081/10983760033*2504730781961^(4/21) 2865681583570333 a001 1568397607/12586269025*2504730781961^(4/21) 2865681583570333 a001 33281921/267084832*2504730781961^(4/21) 2865681583570333 a001 228826127/267914296*102334155^(4/21) 2865681583570333 a001 228826127/1836311903*2504730781961^(4/21) 2865681583570334 a001 29134601/233802911*2504730781961^(4/21) 2865681583570334 a001 29134601/34111385*102334155^(4/21) 2865681583570336 a001 16692641/133957148*2504730781961^(4/21) 2865681583570336 a001 33385282/39088169*102334155^(4/21) 2865681583570351 a001 4250681/34111385*2504730781961^(4/21) 2865681583570353 a001 4250681/4976784*102334155^(4/21) 2865681583570454 a001 4870847/39088169*2504730781961^(4/21) 2865681583570472 a001 4870847/5702887*102334155^(4/21) 2865681583571164 a001 103361/829464*2504730781961^(4/21) 2865681583571282 a001 620166/726103*102334155^(4/21) 2865681583576025 a001 710647/5702887*2504730781961^(4/21) 2865681583576835 a001 710647/832040*102334155^(4/21) 2865681583609347 a001 90481/726103*2504730781961^(4/21) 2865681583614900 a001 90481/105937*102334155^(4/21) 2865681583837737 a001 51841/416020*2504730781961^(4/21) 2865681583875802 a001 103682/121393*102334155^(4/21) 2865681584333998 a001 64079/10946*4181^(4/21) 2865681585403147 a001 13201/105937*2504730781961^(4/21) 2865681585664049 a001 13201/15456*102334155^(4/21) 2865681586785538 a007 Real Root Of -301*x^4-968*x^3-532*x^2-471*x+538 2865681589015689 a001 167761/28657*4181^(4/21) 2865681589698739 a001 439204/75025*4181^(4/21) 2865681589798394 a001 1149851/196418*4181^(4/21) 2865681589812934 a001 3010349/514229*4181^(4/21) 2865681589815055 a001 7881196/1346269*4181^(4/21) 2865681589815364 a001 20633239/3524578*4181^(4/21) 2865681589815410 a001 54018521/9227465*4181^(4/21) 2865681589815416 a001 141422324/24157817*4181^(4/21) 2865681589815417 a001 370248451/63245986*4181^(4/21) 2865681589815417 a001 969323029/165580141*4181^(4/21) 2865681589815417 a001 2537720636/433494437*4181^(4/21) 2865681589815417 a001 6643838879/1134903170*4181^(4/21) 2865681589815417 a001 17393796001/2971215073*4181^(4/21) 2865681589815417 a001 45537549124/7778742049*4181^(4/21) 2865681589815417 a001 119218851371/20365011074*4181^(4/21) 2865681589815417 a001 312119004989/53316291173*4181^(4/21) 2865681589815417 a001 817138163596/139583862445*4181^(4/21) 2865681589815417 a001 14662949395604/2504730781961*4181^(4/21) 2865681589815417 a001 440719107401/75283811239*4181^(4/21) 2865681589815417 a001 505019158607/86267571272*4181^(4/21) 2865681589815417 a001 64300051206/10983760033*4181^(4/21) 2865681589815417 a001 73681302247/12586269025*4181^(4/21) 2865681589815417 a001 9381251041/1602508992*4181^(4/21) 2865681589815417 a001 10749957122/1836311903*4181^(4/21) 2865681589815417 a001 1368706081/233802911*4181^(4/21) 2865681589815417 a001 1568397607/267914296*4181^(4/21) 2865681589815417 a001 199691526/34111385*4181^(4/21) 2865681589815418 a001 228826127/39088169*4181^(4/21) 2865681589815420 a001 29134601/4976784*4181^(4/21) 2865681589815438 a001 33385282/5702887*4181^(4/21) 2865681589815556 a001 4250681/726103*4181^(4/21) 2865681589816366 a001 4870847/832040*4181^(4/21) 2865681589821920 a001 620166/105937*4181^(4/21) 2865681589859985 a001 710647/121393*4181^(4/21) 2865681590120886 a001 90481/15456*4181^(4/21) 2865681591909133 a001 103682/17711*4181^(4/21) 2865681592907470 a005 (1/sin(84/179*Pi))^1706 2865681596132628 a001 15127/121393*2504730781961^(4/21) 2865681597920875 a001 15127/17711*102334155^(4/21) 2865681604165959 a001 13201/2255*4181^(4/21) 2865681610888241 r005 Im(z^2+c),c=-11/30+23/48*I,n=57 2865681626240950 r005 Re(z^2+c),c=-27/94+22/49*I,n=61 2865681640780877 l006 ln(5614/7477) 2865681646658028 r008 a(0)=0,K{-n^6,-6+94*n^3-13*n^2-40*n} 2865681648301271 r005 Im(z^2+c),c=-97/118+1/62*I,n=24 2865681653196276 r009 Re(z^3+c),c=-19/48+33/59*I,n=20 2865681655523525 m005 (1/2*5^(1/2)-6/7)/(1/4*Pi+1/8) 2865681669673584 a001 321/2576*2504730781961^(4/21) 2865681675154849 l006 ln(549/9641) 2865681681930410 a001 1926/2255*102334155^(4/21) 2865681687922315 r009 Re(z^3+c),c=-21/82+53/57*I,n=13 2865681688175497 a001 15127/2584*4181^(4/21) 2865681689342403 r005 Re(z^2+c),c=-73/70+13/48*I,n=2 2865681725033403 r002 3th iterates of z^2 + 2865681729392880 r005 Re(z^2+c),c=-5/13+13/45*I,n=3 2865681738654290 r005 Im(z^2+c),c=-35/44+9/64*I,n=12 2865681770051390 q001 1/3489571 2865681774024947 b008 (E/5)^Pi+E 2865681780468339 r005 Im(z^2+c),c=11/78+19/29*I,n=29 2865681787573832 m001 (Cahen+FeigenbaumMu*Khinchin)/FeigenbaumMu 2865681790925111 p004 log(35591/26723) 2865681799078195 m005 (-1/12+1/6*5^(1/2))/(4/7*2^(1/2)-10/11) 2865681801444808 r005 Re(z^2+c),c=-29/90+21/61*I,n=15 2865681804328584 p001 sum((-1)^n/(453*n+335)/(10^n),n=0..infinity) 2865681804666787 a001 9227465/1364*199^(3/11) 2865681816554646 m001 Psi(2,1/3)^Landau/Pi/csc(7/24*Pi)*GAMMA(17/24) 2865681821523656 m001 (ln(gamma)+Pi^(1/2))/(ArtinRank2+FeigenbaumMu) 2865681826349489 v002 sum(1/(5^n+(5/2*n^2+53/2*n+33)),n=1..infinity) 2865681839411234 m001 (exp(1/Pi)-Pi^(1/2))/(Mills+StolarskyHarborth) 2865681850237968 m001 (-ln(2)+ZetaP(4))/(LambertW(1)-exp(1)) 2865681854440912 r009 Re(z^3+c),c=-39/98+21/58*I,n=18 2865681858774876 r005 Im(z^2+c),c=-25/86+19/42*I,n=40 2865681868918642 r005 Re(z^2+c),c=-32/31+17/44*I,n=17 2865681874803490 m001 (sin(1)+Zeta(1,-1))/(GAMMA(11/12)+Conway) 2865681878155906 m001 Conway/(ZetaQ(3)-arctan(1/2)) 2865681879335301 l006 ln(508/8921) 2865681887542438 a007 Real Root Of -8*x^4-260*x^3-853*x^2+799*x-152 2865681889148500 m009 (2*Psi(1,3/4)+1/4)/(2/3*Psi(1,3/4)+1/6) 2865681889422508 s002 sum(A247704[n]/(n^3*exp(n)+1),n=1..infinity) 2865681892408303 a007 Real Root Of -260*x^4+746*x^3-997*x^2+788*x+327 2865681893391119 a003 sin(Pi*1/11)/sin(Pi*49/111) 2865681894240199 m009 (4*Psi(1,3/4)-1/6)/(1/3*Pi^2+1/5) 2865681897626724 r005 Im(z^2+c),c=-47/82+20/51*I,n=31 2865681898146943 r005 Im(z^2+c),c=-1/114+16/47*I,n=7 2865681899722752 l006 ln(5165/6879) 2865681900332959 r009 Re(z^3+c),c=-71/118+13/42*I,n=28 2865681906227344 m001 exp(-1/2*Pi)^FellerTornier/Riemann2ndZero 2865681908105773 a007 Real Root Of -338*x^4-657*x^3+993*x^2-42*x-942 2865681909417592 a005 (1/cos(11/134*Pi))^716 2865681922521553 r005 Re(z^2+c),c=-11/54+18/31*I,n=36 2865681926240556 r008 a(0)=0,K{-n^6,64-81*n^3+3*n^2-21*n} 2865681929396186 a001 610/3010349*2^(1/2) 2865681930417148 m001 Salem^2*exp(Magata)^2/GAMMA(5/24) 2865681932362920 m001 Ei(1)-exp(1)+Kolakoski 2865681948195295 m001 Ei(1)^2*Backhouse^2/exp(GAMMA(13/24))^2 2865681951171235 r005 Re(z^2+c),c=-5/26+25/46*I,n=13 2865681957531357 m004 -1+(125*Sqrt[5]*Coth[Sqrt[5]*Pi])/(3*Pi) 2865681969607336 s002 sum(A053686[n]/((10^n+1)/n),n=1..infinity) 2865681983320396 r009 Re(z^3+c),c=-3/74+11/26*I,n=11 2865681986758437 a001 41/329*832040^(48/53) 2865681990263678 r002 40th iterates of z^2 + 2865681997839594 m001 Chi(1)/(FeigenbaumDelta-KhinchinHarmonic) 2865682006271804 r008 a(0)=0,K{-n^6,40-71*n^3-39*n^2+35*n} 2865682015192344 a007 Real Root Of -341*x^4-714*x^3+627*x^2-559*x-557 2865682022698988 a002 7^(7/4)-10^(1/6) 2865682022908345 m001 (Zeta(5)-Zeta(1,-1))/(FeigenbaumMu+Kac) 2865682034595333 m002 -Pi^4/5+3*Pi^6+Tanh[Pi] 2865682042284339 r002 11th iterates of z^2 + 2865682044015739 m005 (1/2*Catalan+2/7)/(11/12*5^(1/2)+6/11) 2865682051922473 r008 a(0)=0,K{-n^6,24-65*n^3-65*n^2+71*n} 2865682053204740 r009 Re(z^3+c),c=-9/22+8/21*I,n=20 2865682054217050 m001 (Magata-Totient)/(Ei(1)-GAMMA(19/24)) 2865682068312598 a001 48*39603^(32/53) 2865682119367513 l006 ln(467/8201) 2865682134532414 m001 (cos(1/12*Pi)-Pi^(1/2))/(Lehmer-Magata) 2865682136853109 m001 1/KhintchineLevy^2*exp(Cahen)^2*GAMMA(11/12)^2 2865682137834036 q001 815/2844 2865682141713621 p004 log(32003/24029) 2865682144180925 a005 (1/cos(2/85*Pi))^385 2865682160084869 a007 Real Root Of -25*x^4-693*x^3+675*x^2+111*x+26 2865682173730793 a001 2207/17711*2504730781961^(4/21) 2865682179613526 r008 a(0)=0,K{-n^6,54+34*n-62*n^2-61*n^3} 2865682199105227 r008 a(0)=0,K{-n^6,62+22*n-58*n^2-61*n^3} 2865682202736345 s001 sum(exp(-Pi/4)^n*A251549[n],n=1..infinity) 2865682205548129 r005 Re(z^2+c),c=-21/74+11/24*I,n=44 2865682207971192 l006 ln(4716/6281) 2865682219732304 m008 (1/2*Pi^2+3/4)/(2/3*Pi^3-5/6) 2865682244514957 a005 (1/cos(70/227*Pi))^14 2865682257740347 a001 2207/2584*102334155^(4/21) 2865682258205684 r005 Im(z^2+c),c=11/46+6/35*I,n=11 2865682263538889 h001 (11/12*exp(1)+6/11)/(1/12*exp(1)+5/6) 2865682263985551 a001 1926/329*4181^(4/21) 2865682272222126 r009 Im(z^3+c),c=-17/46+11/50*I,n=19 2865682278486544 a007 Real Root Of 861*x^4-309*x^3-182*x^2-522*x+166 2865682293600908 p001 sum(1/(343*n+339)/n/(512^n),n=1..infinity) 2865682305233898 r005 Im(z^2+c),c=-16/31+20/37*I,n=29 2865682310389584 r009 Im(z^3+c),c=-13/25+25/63*I,n=14 2865682310812674 a007 Real Root Of 795*x^4-803*x^3-676*x^2-778*x+292 2865682318509106 a007 Real Root Of -66*x^4+32*x^3+707*x^2+142*x-195 2865682341524402 r005 Re(z^2+c),c=-6/29+39/58*I,n=16 2865682358205938 m001 (GAMMA(5/6)*Artin-Paris)/GAMMA(5/6) 2865682359667805 a001 2207/3*28657^(29/36) 2865682366801195 a003 cos(Pi*26/115)*cos(Pi*29/77) 2865682368435111 a007 Real Root Of 67*x^4-426*x^3+326*x^2+844*x+411 2865682388192792 r002 8th iterates of z^2 + 2865682388863401 m005 (1/3*Zeta(3)+1/6)/(7/11*exp(1)+1/4) 2865682405603034 l006 ln(426/7481) 2865682408851321 m001 1/Robbin*Cahen*ln(GAMMA(1/6))^2 2865682409344811 r002 3th iterates of z^2 + 2865682409375668 m005 (1/2*5^(1/2)+3/4)/(1/77+2/7*5^(1/2)) 2865682409491012 a007 Real Root Of 198*x^4+271*x^3-947*x^2-257*x+65 2865682429461417 a007 Real Root Of -73*x^4+278*x^3+990*x^2-891*x+782 2865682448157160 m001 (Bloch-Psi(2,1/3))/(-Magata+Porter) 2865682449689614 r005 Re(z^2+c),c=-5/17+8/19*I,n=17 2865682455014753 r005 Im(z^2+c),c=1/26+17/55*I,n=9 2865682459632390 r005 Im(z^2+c),c=-75/122+3/55*I,n=36 2865682470339914 m001 ln(2)*Niven/ThueMorse 2865682470528543 m005 (1/3*3^(1/2)-2/3)/(11/12*exp(1)+5/8) 2865682515594429 a005 (1/sin(77/186*Pi))^1461 2865682520829479 a001 2/233*6557470319842^(6/17) 2865682543231019 a001 4/121393*10946^(10/43) 2865682549531964 r009 Re(z^3+c),c=-35/122+39/55*I,n=45 2865682550777293 m001 ln(Lehmer)*Bloch*Magata^2 2865682551254259 m005 (1/2*Zeta(3)+5/8)/(5/12*3^(1/2)-5) 2865682555637154 a001 48*2207^(44/53) 2865682560791642 r009 Im(z^3+c),c=-17/46+11/50*I,n=17 2865682564008281 m001 (cos(1/5*Pi)+sin(1/12*Pi))/(MertensB3-Niven) 2865682575834880 m001 (Robbin+ZetaP(4))/(Grothendieck+Kolakoski) 2865682581091215 l006 ln(4267/5683) 2865682587044643 m001 (TwinPrimes-ZetaP(4))/(Riemann2ndZero-Robbin) 2865682588128276 m001 (FransenRobinson-Trott)/(BesselI(0,2)-Conway) 2865682589802468 m001 FeigenbaumB/Zeta(5)*FeigenbaumMu 2865682590772742 a007 Real Root Of 726*x^4+122*x^3+853*x^2-80*x-95 2865682622770175 m001 ZetaQ(3)^CopelandErdos*ZetaQ(3) 2865682624807658 m006 (3/5*Pi^2-4/5)/(5/6*ln(Pi)+5/6) 2865682668070131 a001 843/1346269*4181^(36/49) 2865682668216466 r005 Re(z^2+c),c=-17/52+9/28*I,n=26 2865682670699699 r009 Re(z^3+c),c=-9/56+27/32*I,n=54 2865682684780687 r005 Re(z^2+c),c=-13/10+64/199*I,n=2 2865682686706951 m001 (Chi(1)-sin(1))/(-GAMMA(17/24)+Trott2nd) 2865682688628756 a007 Real Root Of 343*x^4+800*x^3-923*x^2-954*x+541 2865682696597819 r005 Re(z^2+c),c=-19/66+17/38*I,n=29 2865682697014193 r009 Re(z^3+c),c=-27/52+10/39*I,n=12 2865682699258111 h001 (-7*exp(2)-4)/(-3*exp(3/2)-6) 2865682703883374 m001 (1-cosh(1))/Ei(1) 2865682710598518 m001 Niven^2*GaussKuzminWirsing^2/exp(sqrt(5)) 2865682721862872 r005 Im(z^2+c),c=-9/14+67/239*I,n=14 2865682722149600 m001 (Psi(2,1/3)+Grothendieck)/(-Sarnak+Sierpinski) 2865682723788294 m001 (Khinchin+ZetaP(4))/(cos(1/12*Pi)-gamma(3)) 2865682726367129 m004 -2-(100*Sqrt[5])/Pi+125*Pi*Tan[Sqrt[5]*Pi] 2865682727202794 m005 (3/4*2^(1/2)+1/6)/(1/5*2^(1/2)+4) 2865682740964980 m001 (ErdosBorwein+Rabbit)/(ln(gamma)-sin(1/12*Pi)) 2865682743415718 r002 9th iterates of z^2 + 2865682752802893 l006 ln(385/6761) 2865682755157011 m005 (1/3*exp(1)+1/12)/(1/11*Zeta(3)-5/11) 2865682757133111 a007 Real Root Of 388*x^4+935*x^3-95*x^2+867*x-898 2865682775913847 m005 (1/3*Pi+1/5)/(6*gamma+8/9) 2865682787831709 a007 Real Root Of 300*x^4+893*x^3-116*x^2-587*x+54 2865682806908495 r009 Re(z^3+c),c=-12/31+25/51*I,n=7 2865682810180672 a001 9227465/843*199^(2/11) 2865682816181697 r005 Im(z^2+c),c=-27/22+5/47*I,n=7 2865682842225045 a007 Real Root Of 860*x^4+618*x^3+270*x^2-836*x-253 2865682844187574 a007 Real Root Of -180*x^4+907*x^3-429*x^2+618*x-162 2865682845353510 m009 (4*Psi(1,2/3)+1/6)/(1/2*Pi^2-3/5) 2865682846433958 r005 Re(z^2+c),c=-97/126+5/63*I,n=8 2865682846629415 a007 Real Root Of -639*x^4+102*x^3-993*x^2+369*x+194 2865682866353881 p003 LerchPhi(1/3,5,187/91) 2865682867300820 r005 Im(z^2+c),c=-35/62+17/44*I,n=12 2865682877993501 a007 Real Root Of 151*x^4+645*x^3+645*x^2-120*x-645 2865682886518985 a001 29/514229*1346269^(26/43) 2865682896983569 m009 (2/5*Psi(1,1/3)-5)/(16*Catalan+2*Pi^2-5/6) 2865682905659665 m001 GAMMA(3/4)*(ArtinRank2-arctan(1/2)) 2865682911263066 b008 Pi-(26*Log[2])/3 2865682914957794 a007 Real Root Of -108*x^4+21*x^3+591*x^2-817*x+583 2865682916759955 a001 233/322*64079^(22/23) 2865682917186629 a001 144/521*439204^(8/9) 2865682917199800 a001 144/521*7881196^(8/11) 2865682917199834 a001 144/521*141422324^(8/13) 2865682917199834 a001 144/521*2537720636^(8/15) 2865682917199834 a001 144/521*45537549124^(8/17) 2865682917199834 a001 144/521*14662949395604^(8/21) 2865682917199834 a001 144/521*(1/2+1/2*5^(1/2))^24 2865682917199834 a001 144/521*192900153618^(4/9) 2865682917199834 a001 144/521*73681302247^(6/13) 2865682917199834 a001 144/521*10749957122^(1/2) 2865682917199834 a001 144/521*4106118243^(12/23) 2865682917199834 a001 144/521*1568397607^(6/11) 2865682917199834 a001 144/521*599074578^(4/7) 2865682917199834 a001 144/521*228826127^(3/5) 2865682917199834 a001 144/521*87403803^(12/19) 2865682917199836 a001 144/521*33385282^(2/3) 2865682917199846 a001 144/521*12752043^(12/17) 2865682917199925 a001 144/521*4870847^(3/4) 2865682917200496 a001 144/521*1860498^(4/5) 2865682917204698 a001 144/521*710647^(6/7) 2865682917235735 a001 144/521*271443^(12/13) 2865682917427487 a001 233/322*7881196^(2/3) 2865682917427517 a001 233/322*312119004989^(2/5) 2865682917427517 a001 233/322*(1/2+1/2*5^(1/2))^22 2865682917427517 a001 233/322*10749957122^(11/24) 2865682917427517 a001 233/322*4106118243^(11/23) 2865682917427517 a001 233/322*1568397607^(1/2) 2865682917427517 a001 233/322*599074578^(11/21) 2865682917427517 a001 233/322*228826127^(11/20) 2865682917427518 a001 233/322*87403803^(11/19) 2865682917427519 a001 233/322*33385282^(11/18) 2865682917427529 a001 233/322*12752043^(11/17) 2865682917427600 a001 233/322*4870847^(11/16) 2865682917428124 a001 233/322*1860498^(11/15) 2865682917431976 a001 233/322*710647^(11/14) 2865682917460427 a001 233/322*271443^(11/13) 2865682917671879 a001 233/322*103682^(11/12) 2865682925411685 m001 (Si(Pi)+GAMMA(2/3))/(-BesselI(1,2)+Bloch) 2865682933332609 m005 (1/2*3^(1/2)+6/11)/(1/12*gamma+4/9) 2865682939217163 r005 Re(z^2+c),c=-29/94+23/60*I,n=20 2865682948266660 r005 Re(z^2+c),c=-29/42+7/26*I,n=42 2865682952018683 a007 Real Root Of 272*x^4-167*x^3-209*x^2-533*x+172 2865682960178182 m009 (2*Pi^2+5/6)/(32*Catalan+4*Pi^2+3) 2865682960982319 r005 Im(z^2+c),c=-31/56+23/56*I,n=6 2865682981348013 b008 ArcCoth[2*(-2+E)]/3 2865682986202815 r005 Re(z^2+c),c=49/122+3/14*I,n=46 2865682993542051 a007 Real Root Of -141*x^4-65*x^3+962*x^2-356*x-941 2865683001758792 m005 (7/6+1/3*5^(1/2))/(11/5+2*5^(1/2)) 2865683012583943 a003 cos(Pi*31/75)+cos(Pi*44/89) 2865683017318197 m001 1/ln(Catalan)^2*Niven^2/log(2+sqrt(3)) 2865683026483556 r005 Im(z^2+c),c=5/42+9/34*I,n=13 2865683037989648 r005 Re(z^2+c),c=-27/94+22/49*I,n=57 2865683039678759 a001 7/377*956722026041^(3/5) 2865683041969674 l006 ln(3818/5085) 2865683053440172 r009 Re(z^3+c),c=-53/118+15/34*I,n=22 2865683054335217 a007 Real Root Of -909*x^4+743*x^3-601*x^2-300*x-13 2865683055799349 r005 Im(z^2+c),c=-6/23+31/61*I,n=11 2865683062375193 m001 GAMMA(1/3)*HardHexagonsEntropy^2*ln(sqrt(3)) 2865683067420309 a007 Real Root Of 23*x^4-393*x^3-702*x^2-622*x-130 2865683067948080 m001 (Chi(1)-sin(1/12*Pi))/(exp(1/exp(1))+Stephens) 2865683068468289 a007 Real Root Of -172*x^4-474*x^3+114*x^2-63*x-672 2865683072711211 b008 -3/(4*E)+Pi 2865683084749536 a001 2/75025*34^(33/49) 2865683089337593 a007 Real Root Of -249*x^4-390*x^3+760*x^2-215*x+757 2865683110890593 m005 (1/2*5^(1/2)-1/12)/(9/11*gamma-5/6) 2865683118560947 b008 1/5+AiryAi[E/2] 2865683125161329 a001 1364/1597*4807526976^(6/23) 2865683134779654 m001 Backhouse+FeigenbaumKappa^GAMMA(5/6) 2865683135736753 a003 cos(Pi*29/119)/cos(Pi*44/105) 2865683154527173 m005 (1/2*2^(1/2)-5/8)/(1/7*gamma-1/9) 2865683182765342 l006 ln(344/6041) 2865683191778323 r002 25th iterates of z^2 + 2865683196139258 m001 (MasserGramainDelta+ZetaQ(2))/(Pi+Magata) 2865683201178085 r002 16th iterates of z^2 + 2865683203297945 m005 (1/3*3^(1/2)-3/7)/(1/10*Pi-5/6) 2865683207047286 m005 (1/2*Pi+3/7)/(8/11*exp(1)+5) 2865683216375652 a007 Real Root Of -388*x^4-747*x^3+699*x^2-985*x+24 2865683218785111 r009 Im(z^3+c),c=-11/28+8/39*I,n=23 2865683224891543 r005 Re(z^2+c),c=-17/60+35/58*I,n=34 2865683230129769 a005 (1/cos(27/182*Pi))^91 2865683232075665 r005 Re(z^2+c),c=-11/42+20/39*I,n=38 2865683233159897 a007 Real Root Of -37*x^4+412*x^3+133*x^2+642*x+183 2865683233880826 a007 Real Root Of 437*x^4-803*x^3+377*x^2-513*x+132 2865683238915307 r009 Im(z^3+c),c=-17/46+11/50*I,n=22 2865683246719366 m001 exp(LandauRamanujan)^2*Cahen*cos(Pi/12) 2865683254187042 r009 Re(z^3+c),c=-41/122+12/47*I,n=5 2865683268590471 m001 exp(RenyiParking)*Kolakoski/BesselJ(0,1)^2 2865683280617732 r005 Im(z^2+c),c=-7/10+51/215*I,n=49 2865683285107308 r005 Re(z^2+c),c=-15/56+30/59*I,n=33 2865683294779375 m001 MinimumGamma^Paris-PisotVijayaraghavan 2865683300080445 a007 Real Root Of -497*x^4+935*x^3+28*x^2+726*x-229 2865683302956721 a007 Real Root Of -327*x^4-780*x^3+356*x^2-610*x-975 2865683308657281 m006 (1/2*Pi^2-2/5)/(4/5*ln(Pi)+2/3) 2865683313596462 a007 Real Root Of 733*x^4+249*x^3+718*x^2-949*x-330 2865683315598213 l006 ln(7187/9572) 2865683317125460 a001 9349/610*75025^(6/23) 2865683346398288 a001 41/3536736619241*102334155^(4/23) 2865683346520690 a007 Real Root Of 740*x^4-498*x^3-251*x^2-722*x-203 2865683371025858 r005 Re(z^2+c),c=-33/82+19/31*I,n=6 2865683377233302 r009 Re(z^3+c),c=-51/122+23/58*I,n=54 2865683383997591 a001 199/102334155*3^(6/17) 2865683385480629 a001 1/12585437040*1597^(4/23) 2865683394018679 s002 sum(A063476[n]/(n!^2),n=1..infinity) 2865683394177620 m001 2^(1/2)-Ei(1)+ZetaP(2) 2865683406424098 a007 Real Root Of 961*x^4-261*x^3-268*x^2-284*x-72 2865683413354722 a007 Real Root Of -284*x^4-725*x^3+91*x^2-203*x+762 2865683414393312 m001 arctan(1/2)^((1+3^(1/2))^(1/2))+Sierpinski 2865683424751331 r005 Im(z^2+c),c=9/82+10/37*I,n=18 2865683427988490 m001 1/BesselK(0,1)*exp(Cahen)^2*gamma^2 2865683436786184 m001 (gamma-ln(5))/(MasserGramain+Otter) 2865683439840370 m001 MertensB3*Tribonacci+PrimesInBinary 2865683455024804 m001 (Pi-exp(Pi))/Psi(2,1/3)/BesselI(0,1) 2865683467343628 a007 Real Root Of 756*x^4-79*x^3+719*x^2-835*x+177 2865683474389932 a007 Real Root Of -148*x^4-572*x^3-336*x^2+530*x+798 2865683476775430 a001 64079*144^(13/17) 2865683490948889 m001 (ln(Pi)-Ei(1))/(3^(1/3)+Salem) 2865683491080339 a007 Real Root Of -717*x^4-541*x^3-223*x^2+850*x+254 2865683492146008 r005 Im(z^2+c),c=13/90+13/49*I,n=5 2865683519802317 a007 Real Root Of 230*x^4+647*x^3-41*x^2+177*x+559 2865683521392926 r005 Re(z^2+c),c=-31/44+19/48*I,n=7 2865683528052240 m005 (1/2*2^(1/2)-10/11)/(4/7*gamma+3/8) 2865683539258668 q001 719/2509 2865683545306828 a007 Real Root Of -145*x^4-287*x^3+658*x^2+834*x+11 2865683547190226 r005 Im(z^2+c),c=-7/19+11/23*I,n=35 2865683556379510 m005 (1/2*5^(1/2)-8/9)/(6/11*Catalan+3/10) 2865683559066084 m001 Zeta(3)/((ln(2)/ln(10))^Sarnak) 2865683561649018 m001 Tribonacci*Salem/ln(GAMMA(5/12)) 2865683576584386 r009 Re(z^3+c),c=-39/118+7/30*I,n=9 2865683583678109 m001 (-Niven+OneNinth)/(Kac-Psi(2,1/3)) 2865683593309621 r005 Im(z^2+c),c=-7/8+53/242*I,n=10 2865683611582571 m001 BesselI(1,1)^(GAMMA(3/4)*KomornikLoreti) 2865683617890553 r009 Im(z^3+c),c=-9/25+42/59*I,n=35 2865683625694304 l006 ln(3369/4487) 2865683632995601 m001 Trott2nd/Robbin/exp(1/exp(1)) 2865683654894683 r009 Re(z^3+c),c=-17/54+24/37*I,n=6 2865683655593827 m001 (Kac+LaplaceLimit)/(3^(1/2)-GlaisherKinkelin) 2865683677423662 r005 Re(z^2+c),c=-5/4+14/221*I,n=6 2865683679530564 r005 Re(z^2+c),c=-23/78+20/47*I,n=25 2865683693317255 m005 (2/3*gamma+3/5)/(2*exp(1)-2) 2865683711106064 m001 (Psi(1,1/3)+ln(5))/(GAMMA(5/6)+Otter) 2865683716061391 m005 (5/8+1/4*5^(1/2))/(4/7*gamma+1/12) 2865683716468952 a008 Real Root of x^2-x-82408 2865683717401234 m005 (-7/30+1/6*5^(1/2))/(-31/88+3/8*5^(1/2)) 2865683729087000 l006 ln(303/5321) 2865683744724612 a007 Real Root Of 845*x^4-219*x^3-558*x^2-970*x-243 2865683745222424 m005 (1/3*gamma+1/7)/(3/11*exp(1)+3/7) 2865683750702166 r002 34i'th iterates of 2*x/(1-x^2) of 2865683782685757 r009 Re(z^3+c),c=-5/62+43/62*I,n=16 2865683788317618 m005 (1/3*3^(1/2)+3/4)/(23/18+3/2*5^(1/2)) 2865683794739214 m001 (1-Zeta(1,-1))/(BesselI(0,2)+KomornikLoreti) 2865683798243366 m001 (Psi(2,1/3)+exp(1))/(Champernowne+Niven) 2865683808159723 r005 Im(z^2+c),c=27/98+3/22*I,n=37 2865683816358970 m002 2/(3*Pi^3)-Sinh[Pi]/4 2865683826691831 m005 (1/2*Zeta(3)+1/11)/(3*Catalan-1/3) 2865683832070362 r005 Im(z^2+c),c=-1/6+19/47*I,n=16 2865683849556034 m001 (GAMMA(23/24)-Shi(1)*MertensB1)/MertensB1 2865683849730523 a001 2/2971215073*1836311903^(14/17) 2865683849730523 a001 2/2504730781961*6557470319842^(14/17) 2865683849732262 a001 1/1762289*514229^(14/17) 2865683849854202 h002 exp(1/10*(4*10^(1/2)-6^(1/4))^(1/2)*10^(1/2)) 2865683854618087 r002 18th iterates of z^2 + 2865683863678319 m002 -E^Pi+3*Pi^6+5/ProductLog[Pi] 2865683876487570 a001 416020/161*322^(5/12) 2865683884310791 m002 -6/Pi^6+Pi^3-Pi^5-Sinh[Pi] 2865683887669999 a007 Real Root Of -267*x^4-835*x^3-275*x^2-28*x+534 2865683921135780 r005 Im(z^2+c),c=-101/102+7/24*I,n=37 2865683923115187 m001 (GAMMA(13/24)+Salem)/(gamma(1)+GAMMA(11/12)) 2865683943402885 m001 (LandauRamanujan2nd+TreeGrowth2nd)/(1-Cahen) 2865683958472312 a007 Real Root Of -32*x^4-910*x^3+229*x^2+824*x+733 2865683963989658 m001 (-MasserGramain+Mills)/(1+Conway) 2865683966272126 m005 (1/2*Catalan-2/9)/(1/12*5^(1/2)+7/11) 2865683972447897 a007 Real Root Of -405*x^4-918*x^3+584*x^2-176*x+409 2865683976842534 r002 12th iterates of z^2 + 2865683977445315 m001 GolombDickman+exp(1/2)+Lehmer 2865683980068694 l006 ln(6289/8376) 2865683982204200 r009 Im(z^3+c),c=-51/118+13/21*I,n=8 2865684004199245 m005 (1/3*Catalan+1/10)/(7/10*Zeta(3)-7/10) 2865684006014194 r005 Re(z^2+c),c=-57/118+9/14*I,n=21 2865684012657329 r005 Im(z^2+c),c=-19/30+12/113*I,n=6 2865684029902842 r009 Re(z^3+c),c=-17/36+25/46*I,n=45 2865684034866844 p004 log(29017/21787) 2865684061714553 l006 ln(565/9922) 2865684064573285 m005 (1/2*Zeta(3)-5/6)/(2/3*Catalan+1/5) 2865684070506713 r009 Im(z^3+c),c=-11/90+16/53*I,n=5 2865684071171657 m001 1/ln(GAMMA(3/4))^2*KhintchineLevy/Zeta(9) 2865684090235880 m001 (MadelungNaCl-MertensB2)/(Ei(1)+Lehmer) 2865684092607411 r005 Re(z^2+c),c=-37/106+9/56*I,n=6 2865684103273272 a007 Real Root Of 213*x^4+884*x^3+537*x^2-707*x+3 2865684117407195 m005 (1/2*gamma-4/7)/(3*Pi+4/9) 2865684119201802 m001 (cos(1/5*Pi)+(1+3^(1/2))^(1/2))/Thue 2865684121075186 p001 sum(1/(337*n+35)/(32^n),n=0..infinity) 2865684121952761 m001 arctan(1/2)*Si(Pi)^Otter 2865684124311819 r005 Im(z^2+c),c=3/70+13/42*I,n=8 2865684133760876 r005 Re(z^2+c),c=-43/118+30/61*I,n=11 2865684143305066 m001 1/ln(Catalan)^2*Porter^2*GAMMA(23/24) 2865684147097177 m005 (1/3*gamma+1/9)/(1/2*exp(1)-3/10) 2865684148773192 m001 (Pi+cos(1))/(CareFree-Stephens) 2865684149222181 m005 (1/2*Pi+3/5)/(7/24+5/24*5^(1/2)) 2865684153065777 m001 (ln(2+3^(1/2))-Gompertz)/(ZetaP(3)+ZetaP(4)) 2865684185194702 a007 Real Root Of -195*x^4+246*x^3-523*x^2-63*x+32 2865684185861468 s002 sum(A274107[n]/(n*exp(pi*n)+1),n=1..infinity) 2865684198607989 m001 1/GAMMA(1/3)/exp(Backhouse)^2/sin(1)^2 2865684199048686 r005 Re(z^2+c),c=-17/66+15/28*I,n=34 2865684199639468 r005 Re(z^2+c),c=37/118+22/45*I,n=59 2865684199804494 m001 Cahen^2/exp(Artin)^2/MertensB1^2 2865684200529870 m001 ln(ArtinRank2)^2*Bloch^2/Zeta(7) 2865684205603499 r005 Re(z^2+c),c=25/82+8/59*I,n=41 2865684224616753 m001 Pi-1/(Si(Pi)+Pi^(1/2)) 2865684241425392 m002 -31+Pi^5+Sinh[Pi] 2865684243338951 a001 2178309/521*199^(4/11) 2865684248677589 r009 Im(z^3+c),c=-31/94+7/29*I,n=17 2865684258675184 m001 (ln(gamma)+ln(3))/(ln(2^(1/2)+1)+MertensB2) 2865684260727580 m002 9*Pi^5+Pi^4*Log[Pi] 2865684276257763 r002 22th iterates of z^2 + 2865684286585213 r005 Re(z^2+c),c=-47/122+9/31*I,n=3 2865684288088520 r009 Re(z^3+c),c=-11/29+14/43*I,n=13 2865684299524437 s001 sum(exp(-Pi/2)^(n-1)*A089260[n],n=1..infinity) 2865684302941382 h001 (-4*exp(3/2)-4)/(-7*exp(-3)+8) 2865684305845339 m001 (-Tetranacci+Trott)/(Magata-Psi(1,1/3)) 2865684308871739 m001 (FeigenbaumDelta+Paris)/(ln(3)+BesselI(1,1)) 2865684316339889 m001 ln(5)^Khinchin-Sarnak 2865684334800899 r009 Re(z^3+c),c=-15/82+15/17*I,n=58 2865684351713550 m001 Robbin^2/exp(MadelungNaCl)^2/arctan(1/2) 2865684366331043 m001 FeigenbaumC^2/MinimumGamma^2*exp(BesselK(1,1)) 2865684372352951 r005 Re(z^2+c),c=-31/122+27/46*I,n=56 2865684388934198 l006 ln(2920/3889) 2865684411708184 r005 Re(z^2+c),c=-13/38+10/39*I,n=21 2865684420851729 m002 -Pi^3+Pi^5+Cosh[Pi]-Log[Pi]/Pi^3 2865684421615593 a001 843/832040*8^(1/2) 2865684422052082 m001 (Robbin+StolarskyHarborth)/(Ei(1)+ArtinRank2) 2865684424098618 r005 Re(z^2+c),c=-29/118+33/59*I,n=51 2865684426900583 m001 (FibonacciFactorial-Otter)/(Stephens+Trott2nd) 2865684433356163 a007 Real Root Of -29*x^4+201*x^3+795*x^2-303*x-711 2865684442840185 m005 (1/2*Zeta(3)-8/9)/(29/40+1/8*5^(1/2)) 2865684446394371 l006 ln(262/4601) 2865684447004874 r009 Im(z^3+c),c=-1/31+13/42*I,n=7 2865684451745854 m001 cos(1)^(3^(1/2))*FeigenbaumB 2865684459331770 r005 Im(z^2+c),c=-17/48+28/59*I,n=43 2865684466586803 r005 Re(z^2+c),c=-27/106+22/41*I,n=33 2865684495696153 r002 8th iterates of z^2 + 2865684504568198 r005 Re(z^2+c),c=7/16+1/3*I,n=5 2865684528825626 r005 Im(z^2+c),c=-7/18+19/39*I,n=40 2865684542031718 m001 Gompertz/(ThueMorse^(Pi^(1/2))) 2865684561021284 m001 5^(1/2)+arctan(1/2)^BesselK(1,1) 2865684561021284 m001 sqrt(5)+arctan(1/2)^BesselK(1,1) 2865684561671977 h001 (5/8*exp(1)+1/2)/(11/12*exp(2)+9/10) 2865684562287515 a007 Real Root Of -331*x^4-757*x^3+807*x^2+502*x-681 2865684564884516 v003 sum((17/2*n^2-47/2*n+36)/n^n,n=1..infinity) 2865684566930781 r005 Re(z^2+c),c=5/16+8/57*I,n=56 2865684572782361 r009 Re(z^3+c),c=-21/46+28/61*I,n=55 2865684576004319 a003 sin(Pi*31/117)-sin(Pi*29/104) 2865684577955618 r005 Re(z^2+c),c=31/106+23/41*I,n=37 2865684585861809 r005 Im(z^2+c),c=-13/11+16/53*I,n=29 2865684591952626 p003 LerchPhi(1/3,5,113/221) 2865684592402990 a007 Real Root Of 194*x^4-776*x^3-543*x^2-532*x+214 2865684596235418 m001 Zeta(1,2)^2*ln(GolombDickman)/Zeta(3)^2 2865684602120020 a007 Real Root Of 218*x^4+342*x^3-708*x^2+185*x-309 2865684603235043 a007 Real Root Of 636*x^4-843*x^3+519*x^2-294*x-151 2865684624412376 r009 Im(z^3+c),c=-55/114+7/58*I,n=59 2865684632537235 m001 (exp(1)+2^(1/2))/(-Si(Pi)+HardyLittlewoodC5) 2865684632652868 a001 3571/4181*4807526976^(6/23) 2865684633307217 a007 Real Root Of -745*x^4+216*x^3+650*x^2+658*x-242 2865684644231585 r005 Im(z^2+c),c=1/19+1/3*I,n=4 2865684651723294 a007 Real Root Of -384*x^4+673*x^3+348*x^2+203*x-100 2865684657422037 m001 (Gompertz+Trott2nd)/(exp(1/Pi)-exp(Pi)) 2865684660682656 a001 24476/1597*75025^(6/23) 2865684681467632 m005 (4*gamma+1/5)/(3*exp(1)+3/5) 2865684688554331 a007 Real Root Of -236*x^4-426*x^3+817*x^2+403*x+336 2865684692555834 h001 (-exp(2)-4)/(-exp(6)+6) 2865684694960558 a007 Real Root Of 646*x^4+977*x^3-461*x^2-909*x+271 2865684698325976 p004 log(11069/8311) 2865684699766879 m001 GAMMA(13/24)*(gamma(3)+KhinchinHarmonic) 2865684705214598 m005 (1/2*exp(1)-9/11)/(11/12*3^(1/2)+3/10) 2865684712225853 m005 (1/3*Zeta(3)+2/5)/(3/5*Pi+10/11) 2865684728560397 a007 Real Root Of -443*x^4-935*x^3-584*x^2+778*x-150 2865684731599691 a001 76/9227465*89^(5/18) 2865684733011523 a003 cos(Pi*25/103)/cos(Pi*49/117) 2865684755990667 a007 Real Root Of -56*x^4-212*x^3-320*x^2-265*x+656 2865684760504415 r005 Im(z^2+c),c=-5/8+65/178*I,n=53 2865684769166463 r005 Re(z^2+c),c=43/122+5/28*I,n=47 2865684790747973 r002 54th iterates of z^2 + 2865684794864881 m001 (FeigenbaumD+Trott)/(Pi^(1/2)-FeigenbaumB) 2865684809628463 h001 (7/9*exp(2)+3/10)/(5/9*exp(1)+3/5) 2865684809686125 m001 arctan(1/2)/(ln(2+3^(1/2))^MadelungNaCl) 2865684809686125 m001 arctan(1/2)/(ln(2+sqrt(3))^MadelungNaCl) 2865684814799931 a007 Real Root Of -338*x^4-782*x^3+732*x^2+760*x+558 2865684816928024 r009 Im(z^3+c),c=-11/28+8/39*I,n=24 2865684817192183 h001 (1/2*exp(2)+6/11)/(1/4*exp(1)+4/5) 2865684820235684 a007 Real Root Of 939*x^4+377*x^3-947*x^2-863*x-167 2865684833063235 a007 Real Root Of 994*x^4-107*x^3-254*x^2-884*x+270 2865684840192467 m001 (gamma+ln(2))/(Khinchin+MadelungNaCl) 2865684847979332 m001 BesselJ(0,1)^GAMMA(23/24)-GAMMA(1/4) 2865684852592936 a001 9349/10946*4807526976^(6/23) 2865684854503681 r005 Re(z^2+c),c=-39/106+2/63*I,n=11 2865684856705113 a001 64079/4181*75025^(6/23) 2865684864026993 m001 (-Stephens+ZetaP(2))/(3^(1/2)+Sierpinski) 2865684865906011 l006 ln(5391/7180) 2865684878298850 a007 Real Root Of 184*x^4+188*x^3-627*x^2+733*x-735 2865684880489701 m001 (ErdosBorwein+Sarnak)/(GAMMA(17/24)-Bloch) 2865684884681760 a001 24476/28657*4807526976^(6/23) 2865684885167498 m001 (arctan(1/2)-KhinchinHarmonic)/(Mills-Thue) 2865684885304406 a001 167761/10946*75025^(6/23) 2865684889363456 a001 64079/75025*4807526976^(6/23) 2865684889476986 a001 439204/28657*75025^(6/23) 2865684890046507 a001 167761/196418*4807526976^(6/23) 2865684890085758 a001 1149851/75025*75025^(6/23) 2865684890146162 a001 439204/514229*4807526976^(6/23) 2865684890160702 a001 1149851/1346269*4807526976^(6/23) 2865684890162823 a001 3010349/3524578*4807526976^(6/23) 2865684890163133 a001 7881196/9227465*4807526976^(6/23) 2865684890163178 a001 20633239/24157817*4807526976^(6/23) 2865684890163185 a001 54018521/63245986*4807526976^(6/23) 2865684890163186 a001 141422324/165580141*4807526976^(6/23) 2865684890163186 a001 370248451/433494437*4807526976^(6/23) 2865684890163186 a001 969323029/1134903170*4807526976^(6/23) 2865684890163186 a001 2537720636/2971215073*4807526976^(6/23) 2865684890163186 a001 6643838879/7778742049*4807526976^(6/23) 2865684890163186 a001 17393796001/20365011074*4807526976^(6/23) 2865684890163186 a001 45537549124/53316291173*4807526976^(6/23) 2865684890163186 a001 119218851371/139583862445*4807526976^(6/23) 2865684890163186 a001 312119004989/365435296162*4807526976^(6/23) 2865684890163186 a001 817138163596/956722026041*4807526976^(6/23) 2865684890163186 a001 2139295485799/2504730781961*4807526976^(6/23) 2865684890163186 a001 505019158607/591286729879*4807526976^(6/23) 2865684890163186 a001 64300051206/75283811239*4807526976^(6/23) 2865684890163186 a001 73681302247/86267571272*4807526976^(6/23) 2865684890163186 a001 9381251041/10983760033*4807526976^(6/23) 2865684890163186 a001 10749957122/12586269025*4807526976^(6/23) 2865684890163186 a001 1368706081/1602508992*4807526976^(6/23) 2865684890163186 a001 1568397607/1836311903*4807526976^(6/23) 2865684890163186 a001 199691526/233802911*4807526976^(6/23) 2865684890163186 a001 228826127/267914296*4807526976^(6/23) 2865684890163186 a001 29134601/34111385*4807526976^(6/23) 2865684890163189 a001 33385282/39088169*4807526976^(6/23) 2865684890163206 a001 4250681/4976784*4807526976^(6/23) 2865684890163324 a001 4870847/5702887*4807526976^(6/23) 2865684890164134 a001 620166/726103*4807526976^(6/23) 2865684890169688 a001 710647/832040*4807526976^(6/23) 2865684890174576 a001 3010349/196418*75025^(6/23) 2865684890187535 a001 7881196/514229*75025^(6/23) 2865684890189425 a001 20633239/1346269*75025^(6/23) 2865684890189701 a001 54018521/3524578*75025^(6/23) 2865684890189741 a001 141422324/9227465*75025^(6/23) 2865684890189747 a001 370248451/24157817*75025^(6/23) 2865684890189748 a001 969323029/63245986*75025^(6/23) 2865684890189748 a001 2537720636/165580141*75025^(6/23) 2865684890189748 a001 6643838879/433494437*75025^(6/23) 2865684890189748 a001 17393796001/1134903170*75025^(6/23) 2865684890189748 a001 45537549124/2971215073*75025^(6/23) 2865684890189748 a001 119218851371/7778742049*75025^(6/23) 2865684890189748 a001 312119004989/20365011074*75025^(6/23) 2865684890189748 a001 817138163596/53316291173*75025^(6/23) 2865684890189748 a001 2139295485799/139583862445*75025^(6/23) 2865684890189748 a001 14662949395604/956722026041*75025^(6/23) 2865684890189748 a001 494493258286/32264490531*75025^(6/23) 2865684890189748 a001 1322157322203/86267571272*75025^(6/23) 2865684890189748 a001 505019158607/32951280099*75025^(6/23) 2865684890189748 a001 192900153618/12586269025*75025^(6/23) 2865684890189748 a001 10525900321/686789568*75025^(6/23) 2865684890189748 a001 28143753123/1836311903*75025^(6/23) 2865684890189748 a001 10749957122/701408733*75025^(6/23) 2865684890189748 a001 4106118243/267914296*75025^(6/23) 2865684890189748 a001 224056801/14619165*75025^(6/23) 2865684890189749 a001 599074578/39088169*75025^(6/23) 2865684890189751 a001 228826127/14930352*75025^(6/23) 2865684890189766 a001 87403803/5702887*75025^(6/23) 2865684890189872 a001 4769326/311187*75025^(6/23) 2865684890190594 a001 12752043/832040*75025^(6/23) 2865684890195543 a001 4870847/317811*75025^(6/23) 2865684890207753 a001 90481/105937*4807526976^(6/23) 2865684890229469 a001 1860498/121393*75025^(6/23) 2865684890461999 a001 101521/6624*75025^(6/23) 2865684890468655 a001 103682/121393*4807526976^(6/23) 2865684892055783 a001 271443/17711*75025^(6/23) 2865684892256904 a001 13201/15456*4807526976^(6/23) 2865684896381963 l006 ln(483/8482) 2865684902979741 a001 103682/6765*75025^(6/23) 2865684904513744 a001 15127/17711*4807526976^(6/23) 2865684920030731 m001 1/Bloch^2/FeigenbaumDelta*ln(sin(1))^2 2865684924406536 m001 (-GAMMA(17/24)+Porter)/(2^(1/3)-Ei(1)) 2865684926956772 m002 -2+Pi^3-2/(5*Log[Pi]) 2865684934671993 a007 Real Root Of -343*x^4-913*x^3+179*x^2-17*x+127 2865684964705932 m001 1/gamma^2/ln(GAMMA(2/3))/sin(Pi/5)^2 2865684977853666 a001 39603/2584*75025^(6/23) 2865684988523376 a001 1926/2255*4807526976^(6/23) 2865684991835801 a001 47*(1/2*5^(1/2)+1/2)^31*199^(2/15) 2865685000816750 a005 (1/sin(103/229*Pi))^637 2865685001867149 r005 Im(z^2+c),c=-17/50+22/41*I,n=26 2865685002174710 r009 Re(z^3+c),c=-19/58+5/22*I,n=10 2865685004901069 r002 44th iterates of z^2 + 2865685007566269 r005 Re(z^2+c),c=17/48+10/51*I,n=39 2865685011287469 a007 Real Root Of -547*x^4-600*x^3-506*x^2+24*x+38 2865685021164044 a007 Real Root Of -388*x^4-842*x^3+888*x^2+357*x+82 2865685029534674 p003 LerchPhi(1/32,6,302/167) 2865685037313635 l006 ln(3543/3646) 2865685038608564 a001 38/182717648081*34^(1/11) 2865685052348905 m002 -ProductLog[Pi]+25*Sinh[Pi]*Tanh[Pi] 2865685076200142 r005 Im(z^2+c),c=39/122+3/40*I,n=28 2865685077150119 r002 16th iterates of z^2 + 2865685089496597 h001 (6/11*exp(2)+9/11)/(1/7*exp(2)+7/11) 2865685093721386 a005 (1/sin(78/217*Pi))^490 2865685097139762 a005 (1/cos(1/84*Pi))^1505 2865685110144153 m001 (ArtinRank2-Tribonacci)/(ZetaP(2)-ZetaQ(2)) 2865685113838663 a007 Real Root Of -208*x^4-614*x^3+234*x^2+977*x+456 2865685117746665 r005 Im(z^2+c),c=-67/110+9/23*I,n=29 2865685119554910 m001 (ln(2)+FeigenbaumAlpha)/(Psi(1,1/3)+Shi(1)) 2865685130996784 r005 Im(z^2+c),c=27/118+7/38*I,n=21 2865685148873002 m001 (GAMMA(17/24)-Kac)/(ln(Pi)-exp(1/Pi)) 2865685153040742 h001 (7/9*exp(2)+2/11)/(5/11*exp(1)+5/6) 2865685169651459 m001 1/Lehmer^2/Si(Pi)/ln(Paris)^2 2865685170438418 a007 Real Root Of 540*x^4-952*x^3+590*x^2-923*x-339 2865685182263916 a007 Real Root Of 227*x^4+202*x^3-925*x^2+724*x-884 2865685196772033 p001 sum(1/(569*n+350)/(128^n),n=0..infinity) 2865685200260971 r002 42th iterates of z^2 + 2865685210633316 a007 Real Root Of -294*x^4-871*x^3+75*x^2+124*x-931 2865685217083354 r005 Im(z^2+c),c=-30/29+11/42*I,n=11 2865685222561244 m001 (ln(2+3^(1/2))+FeigenbaumDelta)/(GaussAGM-Kac) 2865685223246720 r002 6th iterates of z^2 + 2865685228633626 m005 (5*exp(1)-2/5)/(2*exp(1)-5/6) 2865685237813887 r002 10th iterates of z^2 + 2865685243789330 m001 Pi+exp(Pi)/(ln(2)/ln(10)-Ei(1,1)) 2865685249190855 a001 5778/55*377^(52/55) 2865685251085494 s002 sum(A121894[n]/(n^3*10^n+1),n=1..infinity) 2865685265731990 m009 (1/6*Psi(1,1/3)+5)/(1/2*Psi(1,2/3)+4/5) 2865685273536759 m001 Psi(1,1/3)^Kolakoski/(FeigenbaumD^Kolakoski) 2865685286198441 m001 (gamma(1)+ArtinRank2)/(Otter-StronglyCareFree) 2865685289499688 m001 (Thue-Weierstrass)/(Kac+TravellingSalesman) 2865685289561100 m004 -3+5/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865685289834654 a007 Real Root Of -213*x^4-855*x^3-989*x^2-891*x-188 2865685310043923 r005 Re(z^2+c),c=-39/106+1/23*I,n=20 2865685314815949 b008 3-22/(3*E^4) 2865685335535531 m001 1/ln((3^(1/3)))*OneNinth/GAMMA(23/24) 2865685346250799 m001 (Conway-Kac)/(Niven+TwinPrimes) 2865685349952847 r005 Im(z^2+c),c=-3/10+1/29*I,n=3 2865685368078553 r005 Im(z^2+c),c=-3/10+23/48*I,n=16 2865685369215003 r005 Im(z^2+c),c=27/122+20/49*I,n=4 2865685372585096 q001 623/2174 2865685390998959 r005 Im(z^2+c),c=15/56+9/62*I,n=21 2865685394295677 m001 cos(Pi/12)^2*MertensB1^2*ln(cos(Pi/5))^2 2865685400196820 m001 1/ln(Magata)^2/FibonacciFactorial^2/cosh(1) 2865685407011126 h001 (1/7*exp(1)+1/10)/(5/12*exp(1)+4/7) 2865685407725321 a001 6677047/233 2865685409178352 r009 Re(z^3+c),c=-37/60+10/63*I,n=4 2865685410906685 m001 ErdosBorwein^2*exp(Backhouse)*sin(Pi/12) 2865685413107298 s002 sum(A039349[n]/(n^2*10^n+1),n=1..infinity) 2865685416542541 r004 Re(z^2+c),c=1/3+2/13*I,z(0)=exp(3/8*I*Pi),n=57 2865685424949238 a009 1/2*(8+23*2^(1/2))*2^(1/2) 2865685426940897 m001 exp(-Pi)^sqrt(5)/(Lehmer^sqrt(5)) 2865685429547298 l006 ln(2471/3291) 2865685429851153 l006 ln(221/3881) 2865685433604098 s002 sum(A138657[n]/(n^3*pi^n-1),n=1..infinity) 2865685449029257 r001 8i'th iterates of 2*x^2-1 of 2865685461453847 r002 41th iterates of z^2 + 2865685465846729 r005 Im(z^2+c),c=-43/114+21/43*I,n=41 2865685468375554 s002 sum(A043172[n]/(n^2*10^n+1),n=1..infinity) 2865685469469309 s002 sum(A043952[n]/(n^2*10^n+1),n=1..infinity) 2865685490193739 m001 1/3*3^(1/2)*(Pi+Psi(2,1/3))+GAMMA(2/3) 2865685491047286 a001 2161/141*75025^(6/23) 2865685491278829 r002 37th iterates of z^2 + 2865685491343428 m001 1/log(1+sqrt(2))^2/BesselJ(1,1)^2/exp(sin(1)) 2865685492337228 a007 Real Root Of -232*x^4-379*x^3+604*x^2-777*x-460 2865685495955508 r005 Re(z^2+c),c=-27/34+2/119*I,n=52 2865685496453963 m001 FellerTornier/(Tribonacci^DuboisRaymond) 2865685507904664 r005 Re(z^2+c),c=-23/98+31/53*I,n=59 2865685509824685 a007 Real Root Of -219*x^3-29*x^2-601*x-175 2865685510516280 m001 (2^(1/2)+Cahen)/(Landau+ZetaP(3)) 2865685515745326 a009 23*12^(1/3)-24 2865685519189964 m001 (BesselI(1,1)+CareFree*MertensB1)/MertensB1 2865685535629992 m001 1/GAMMA(13/24)/exp(GAMMA(1/12))*arctan(1/2) 2865685542475082 m004 (Sqrt[5]*Pi)/3+4/(5*ProductLog[Sqrt[5]*Pi]) 2865685559734038 r009 Im(z^3+c),c=-17/46+11/50*I,n=23 2865685563381812 m001 (TwinPrimes+ZetaQ(2))/(Ei(1)+Gompertz) 2865685564333978 a001 2207/2584*4807526976^(6/23) 2865685566742839 m001 1/sin(1)/exp(CopelandErdos)^2/sin(Pi/12) 2865685572770074 r005 Im(z^2+c),c=-17/60+9/20*I,n=32 2865685573496969 b008 19*ArcSec[16] 2865685576364978 r009 Im(z^3+c),c=-17/60+1/47*I,n=3 2865685586515715 r002 35th iterates of z^2 + 2865685601045521 m001 (Landau-Paris)/(CopelandErdos-KomornikLoreti) 2865685604745218 m001 (-Bloch+OneNinth)/(BesselJ(1,1)-LambertW(1)) 2865685605979947 r005 Im(z^2+c),c=11/52+9/46*I,n=9 2865685613862618 r009 Re(z^3+c),c=-17/48+37/53*I,n=5 2865685616409465 h002 exp(18/(5^(2/3)-6)^(1/2)) 2865685618401893 a007 Real Root Of -239*x^4-715*x^3-257*x^2-401*x+253 2865685623736418 r009 Re(z^3+c),c=-1/24+13/29*I,n=11 2865685628590314 a001 281/2255*2504730781961^(4/21) 2865685639496209 r005 Re(z^2+c),c=-19/36+25/62*I,n=7 2865685642764291 a007 Real Root Of -399*x^4+975*x^3-430*x^2+904*x-244 2865685643364232 m001 Pi-(1-cos(1/5*Pi))*exp(1/exp(1)) 2865685645365262 r005 Im(z^2+c),c=-9/14+40/241*I,n=12 2865685678394261 m001 1/BesselK(1,1)*ArtinRank2^2/exp(Zeta(5)) 2865685683036922 r004 Im(z^2+c),c=1/5+5/24*I,z(0)=exp(7/8*I*Pi),n=26 2865685692357227 a001 521/8*2504730781961^(7/9) 2865685692765475 m001 1/OneNinth^2*Rabbit^2*exp(GAMMA(5/24))^2 2865685692812784 r005 Re(z^2+c),c=-117/106+19/30*I,n=2 2865685703994092 m002 -6+3*Cosh[Pi]-Cosh[Pi]/Pi^4 2865685709268548 r005 Im(z^2+c),c=-37/90+20/39*I,n=51 2865685711284807 a007 Real Root Of -874*x^4+977*x^3+592*x^2+854*x+225 2865685711574025 m001 (-Landau+Porter)/(2^(1/3)+Zeta(1,2)) 2865685716799346 r008 a(0)=2,K{-n^6,-45+41*n^3+62*n^2-59*n} 2865685717667921 p001 sum((-1)^n/(559*n+314)/(3^n),n=0..infinity) 2865685730596717 r005 Re(z^2+c),c=-27/94+22/49*I,n=63 2865685735474685 a007 Real Root Of 82*x^4-670*x^3-655*x^2-382*x-72 2865685745382314 a001 521/75025*89^(6/19) 2865685748504388 m001 (Ei(1,1)+Sierpinski)/(3^(1/3)-arctan(1/2)) 2865685762519112 m002 -1+Pi^4/5-3*Pi^6 2865685764003206 m001 GAMMA(7/12)/(BesselI(1,1)-ln(3)) 2865685765320555 m005 (1/2*5^(1/2)-1/11)/(-73/16+7/16*5^(1/2)) 2865685766153319 r002 52th iterates of z^2 + 2865685766314095 m001 1/GAMMA(23/24)^2*exp(Niven)^2/Zeta(9)^2 2865685769394778 r005 Re(z^2+c),c=-11/30+31/55*I,n=40 2865685769699870 a003 cos(Pi*24/101)*cos(Pi*35/94) 2865685784062270 p001 sum((-1)^n/(464*n+93)/n/(6^n),n=1..infinity) 2865685784149745 m001 1/2-MadelungNaCl+exp(sqrt(2)) 2865685787818565 m009 (3/4*Psi(1,3/4)-1/3)/(1/6*Psi(1,2/3)-6) 2865685801906374 m001 1/ln(cosh(1))^2/PrimesInBinary*sqrt(5) 2865685808711797 a007 Real Root Of -70*x^4+129*x^3+714*x^2-848*x-537 2865685821366940 r005 Re(z^2+c),c=-17/22+8/115*I,n=54 2865685841309610 r002 34th iterates of z^2 + 2865685852582887 m001 1/(2^(1/3))^2*KhintchineHarmonic*ln(sinh(1))^2 2865685856409454 m002 5-E^Pi+Pi^5-Log[Pi]^2 2865685864918507 a003 cos(Pi*29/95)-sin(Pi*34/103) 2865685865875562 l006 ln(6964/9275) 2865685872603979 m005 (1/2*Zeta(3)+7/12)/(7/12*gamma-3/4) 2865685876690145 r005 Im(z^2+c),c=-69/110+15/34*I,n=34 2865685884531362 r005 Re(z^2+c),c=-6/23+26/51*I,n=27 2865685884625807 m005 (1/4*gamma-5)/(4/5+2/5*5^(1/2)) 2865685885513788 m001 2^(1/2)-exp(1)+BesselI(1,2) 2865685885513788 m001 exp(1)-sqrt(2)-BesselI(1,2) 2865685901098997 m001 exp(-1/2*Pi)*(PisotVijayaraghavan+ZetaQ(2)) 2865685913020630 m001 1/Zeta(9)*ln(Artin)*cos(1)^2 2865685914304513 a001 3/3571*76^(17/60) 2865685924147124 a009 8/(10^(1/3)-11^(2/3)) 2865685950149677 a007 Real Root Of -222*x^4-563*x^3+353*x^2+144*x-764 2865685955353767 r005 Re(z^2+c),c=-17/54+23/63*I,n=32 2865685955566537 r008 a(0)=3,K{-n^6,5-22*n^3-11*n^2+35*n} 2865685957286099 a007 Real Root Of 546*x^4+46*x^3+209*x^2-779*x-243 2865685958150273 m001 (Chi(1)*Bloch-MadelungNaCl)/Bloch 2865685966564444 r002 51th iterates of z^2 + 2865685970049931 m001 (Bloch+GolombDickman)/(Ei(1,1)-BesselK(1,1)) 2865686010351664 m005 (1/2*2^(1/2)-5)/(3/10*Pi+5/9) 2865686016035298 r005 Im(z^2+c),c=-109/126+7/31*I,n=39 2865686029621744 m001 1/exp(Catalan)*Sierpinski^2/cos(Pi/12)^2 2865686029681267 a007 Real Root Of -404*x^4-772*x^3+752*x^2-691*x+922 2865686029989552 r005 Re(z^2+c),c=-19/62+9/23*I,n=25 2865686032831589 a003 sin(Pi*16/91)*sin(Pi*16/87) 2865686040229891 r009 Im(z^3+c),c=-5/32+8/27*I,n=6 2865686044260428 g004 Re(GAMMA(-44/15+I*1/3)) 2865686046946523 r002 25th iterates of z^2 + 2865686051263352 r005 Im(z^2+c),c=-9/38+21/41*I,n=11 2865686066176065 r005 Im(z^2+c),c=-35/78+16/31*I,n=57 2865686072408428 l006 ln(401/7042) 2865686098739208 a007 Real Root Of -280*x^4-861*x^3+193*x^2+959*x-216 2865686104833066 b008 (1+38*Sqrt[5])/3 2865686105841532 l006 ln(4493/5984) 2865686106513610 a008 Real Root of x^2-x-81835 2865686116391736 a007 Real Root Of 777*x^4+903*x^3+917*x^2-491*x-200 2865686122576894 a007 Real Root Of -998*x^4-739*x^3-292*x^2+463*x+146 2865686136603069 m005 (2/5*gamma-5)/(2^(1/2)+1/4) 2865686142168974 r005 Re(z^2+c),c=-27/94+22/49*I,n=49 2865686152211976 r008 a(0)=3,K{-n^6,-21+37*n-32*n^2+24*n^3} 2865686153882969 s002 sum(A240673[n]/(n^3*pi^n+1),n=1..infinity) 2865686156706310 a001 2/75025*514229^(12/17) 2865686156806602 a001 2/24157817*1836311903^(12/17) 2865686156806603 a001 2/7778742049*6557470319842^(12/17) 2865686168214149 a001 322/32951280099*317811^(4/15) 2865686168215662 a001 161/774004377960*591286729879^(4/15) 2865686168215662 a001 46/32264490531*433494437^(4/15) 2865686175887736 r005 Re(z^2+c),c=-13/14+53/238*I,n=6 2865686179744111 a001 514229/322*322^(1/2) 2865686181815169 m001 Ei(1)^2/TreeGrowth2nd^2/ln(sqrt(5))^2 2865686192921084 r005 Re(z^2+c),c=13/38+19/53*I,n=8 2865686200371201 r005 Im(z^2+c),c=27/82+5/62*I,n=13 2865686200938811 r005 Im(z^2+c),c=23/70+5/56*I,n=45 2865686201254310 r005 Im(z^2+c),c=-139/122+13/59*I,n=50 2865686203152485 m005 (3/5*exp(1)+3/5)/(5/6*2^(1/2)-2/5) 2865686204401162 a001 281/329*102334155^(4/21) 2865686209041530 m001 (GAMMA(17/24)-Grothendieck)/(Kac-ZetaP(2)) 2865686210634801 s002 sum(A278544[n]/(n!^2),n=1..infinity) 2865686210651810 a001 2207/377*4181^(4/21) 2865686210836011 m001 (BesselJ(0,1)+ln(3))/(PlouffeB+ZetaP(3)) 2865686221717075 a001 75025/843*521^(12/13) 2865686221895144 m005 (1/2*Zeta(3)-4/9)/(1/5*3^(1/2)+1/5) 2865686223894031 m005 (1/3*5^(1/2)+1/10)/(7/8*exp(1)+4/7) 2865686225301409 r004 Im(z^2+c),c=-67/46+3/14*I,z(0)=-1,n=4 2865686225730860 r005 Im(z^2+c),c=-43/34+12/125*I,n=16 2865686227164423 a007 Real Root Of -395*x^4-950*x^3+292*x^2-403*x+729 2865686230779212 r005 Re(z^2+c),c=-33/98+9/32*I,n=27 2865686232068808 a007 Real Root Of 302*x^4+606*x^3+100*x^2-349*x-96 2865686248899642 m001 (-Chi(1)+gamma)/(1-Psi(1,1/3)) 2865686254344675 a001 24157817/2207*199^(2/11) 2865686266677328 r009 Re(z^3+c),c=-19/50+21/64*I,n=16 2865686266999828 r009 Re(z^3+c),c=-51/122+23/58*I,n=57 2865686274509803 q001 2923/1020 2865686291183143 r005 Im(z^2+c),c=17/58+6/53*I,n=49 2865686291704660 r005 Im(z^2+c),c=-13/44+40/61*I,n=41 2865686293465624 m001 GAMMA(13/24)^(5^(1/2))/(GAMMA(13/24)^OneNinth) 2865686294063468 m005 (1/2*3^(1/2)-2/3)/(5/9*gamma+3/8) 2865686294838357 r009 Re(z^3+c),c=-97/114+17/25*I,n=2 2865686314902164 a007 Real Root Of 80*x^4-626*x^3-711*x^2-825*x+309 2865686314909768 m001 exp(FeigenbaumKappa)^2/MinimumGamma/Ei(1)^2 2865686317192248 a007 Real Root Of -321*x^4-855*x^3+254*x^2+90*x-301 2865686318612747 a007 Real Root Of -335*x^4-702*x^3+767*x^2+298*x+627 2865686334808476 h001 (11/12*exp(2)+6/11)/(1/3*exp(2)+1/11) 2865686336444496 h001 (9/10*exp(2)+5/8)/(3/4*exp(1)+1/2) 2865686361053231 r009 Re(z^3+c),c=-11/24+24/53*I,n=33 2865686362345442 l006 ln(6515/8677) 2865686365780313 m004 -2+3*Cos[Sqrt[5]*Pi]-6/Log[Sqrt[5]*Pi] 2865686383750828 a003 cos(Pi*47/108)+cos(Pi*44/93) 2865686389482451 m001 FeigenbaumDelta/(ln(5)^GAMMA(23/24)) 2865686413641447 a007 Real Root Of -651*x^4+732*x^3-171*x^2+64*x+54 2865686417191815 m001 (2^(1/2)+GAMMA(2/3))/(-ln(5)+Cahen) 2865686436429805 m001 (FeigenbaumC-FeigenbaumD)/(ln(2)+BesselI(0,2)) 2865686437851705 m001 (-GAMMA(5/24)+1/2)/(ln(2)+2/3) 2865686452226747 m001 1/ln(GAMMA(1/3))/Riemann1stZero^2/sqrt(Pi) 2865686459688470 g007 Psi(2,1/12)+Psi(2,3/11)-Psi(2,1/7)-Psi(2,4/5) 2865686459841087 r005 Im(z^2+c),c=-37/110+26/57*I,n=17 2865686469336012 p001 sum(1/(591*n+350)/(125^n),n=0..infinity) 2865686476468034 m001 (HeathBrownMoroz-Lehmer)/(Sarnak+Totient) 2865686482347229 a007 Real Root Of 437*x^4+599*x^3-486*x^2-824*x+259 2865686494767021 m001 ln(OneNinth)/Si(Pi)*cosh(1)^2 2865686501415512 r005 Im(z^2+c),c=-5/4+25/151*I,n=13 2865686509624344 r009 Re(z^3+c),c=-51/122+23/58*I,n=47 2865686518813854 q001 115/4013 2865686518965126 m001 KhinchinHarmonic^BesselI(0,1)+sin(1) 2865686537597108 m001 (BesselK(1,1)+Lehmer)/(BesselK(0,1)-Chi(1)) 2865686554256748 b008 65*Pi*ArcSec[6] 2865686555316705 m005 (1/2*gamma+5/11)/(exp(1)-1/8) 2865686559652546 a007 Real Root Of -248*x^4-404*x^3+614*x^2-862*x-295 2865686560918814 r009 Re(z^3+c),c=-41/114+9/31*I,n=20 2865686562954171 a007 Real Root Of 287*x^4+448*x^3-829*x^2+601*x-282 2865686576263094 m001 1/Rabbit*Khintchine^2*exp(Zeta(5)) 2865686583334587 r005 Re(z^2+c),c=-31/98+9/25*I,n=36 2865686585927179 r005 Im(z^2+c),c=-57/82+14/59*I,n=10 2865686596218457 m001 1/exp(GAMMA(1/6))/Salem*log(1+sqrt(2)) 2865686620912765 m008 (3/5*Pi^5+1/6)/(2/3*Pi^2-1/6) 2865686631782156 g005 GAMMA(4/11)*GAMMA(3/7)*GAMMA(5/6)/GAMMA(4/9) 2865686632378971 a003 cos(Pi*7/90)-sin(Pi*49/115) 2865686634298447 m008 (4/5*Pi^3+5)/(1/3*Pi^5+2) 2865686640071561 r005 Im(z^2+c),c=-3/46+48/49*I,n=5 2865686641097015 r009 Im(z^3+c),c=-47/102+6/41*I,n=41 2865686648568142 b008 Csch[7/Sqrt[E]] 2865686653123967 r009 Re(z^3+c),c=-43/122+13/47*I,n=18 2865686655404938 m001 (2*Pi/GAMMA(5/6)-GlaisherKinkelin)^Sarnak 2865686657168738 r002 16th iterates of z^2 + 2865686667905163 r005 Im(z^2+c),c=-35/66+19/54*I,n=5 2865686678248386 m007 (-5*gamma-15*ln(2)-5/2*Pi+3)/(-3/4*gamma-1/5) 2865686684966947 m005 (-13/30+2/5*5^(1/2))/(21/20+1/4*5^(1/2)) 2865686707620293 s002 sum(A029757[n]/(n!^2),n=1..infinity) 2865686721937588 r008 a(0)=3,K{-n^6,-60-28*n^3+63*n^2+34*n} 2865686724131830 m005 (37/36+1/4*5^(1/2))/(1/11*Zeta(3)+4/9) 2865686740839254 r005 Im(z^2+c),c=-41/30+3/106*I,n=23 2865686745788341 a007 Real Root Of -773*x^4+415*x^3-87*x^2+381*x+11 2865686749986279 a003 sin(Pi*1/92)*sin(Pi*13/41) 2865686750186248 a007 Real Root Of -119*x^4-487*x^3-330*x^2+257*x+11 2865686752206714 r002 10th iterates of z^2 + 2865686754220722 r002 3th iterates of z^2 + 2865686756286218 a001 102287808*7^(9/17) 2865686756842123 a001 31622993/2889*199^(2/11) 2865686761296740 m001 (Champernowne+Khinchin)/(Tribonacci-Thue) 2865686762526022 b008 ArcCsch[3/13]+Log[2] 2865686767813120 m001 (ln(Pi)+Zeta(1/2))/(GAMMA(5/6)-Trott2nd) 2865686769502550 m001 GAMMA(5/6)/(polylog(4,1/2)^(2^(1/2))) 2865686769502550 m001 GAMMA(5/6)/(polylog(4,1/2)^sqrt(2)) 2865686793656560 r005 Re(z^2+c),c=11/94+17/42*I,n=32 2865686795491645 r005 Im(z^2+c),c=-23/60+27/53*I,n=36 2865686796481168 r005 Re(z^2+c),c=25/62+11/54*I,n=53 2865686811297255 m001 (5^(1/2)-LandauRamanujan2nd)/gamma 2865686824522405 a008 Real Root of x^4-x^3-8*x^2+9*x-4 2865686829895254 m002 -2/Pi^5+Pi^3-Pi^5-Sinh[Pi] 2865686830155527 a001 165580141/15127*199^(2/11) 2865686835305193 r002 11th iterates of z^2 + 2865686839173516 m001 Si(Pi)/MasserGramain 2865686840851809 a001 433494437/39603*199^(2/11) 2865686842168544 r005 Re(z^2+c),c=-89/90+11/21*I,n=4 2865686842227812 m001 FeigenbaumC^ErdosBorwein*Trott 2865686842412375 a001 567451585/51841*199^(2/11) 2865686842640059 a001 2971215073/271443*199^(2/11) 2865686842673278 a001 7778742049/710647*199^(2/11) 2865686842678124 a001 10182505537/930249*199^(2/11) 2865686842678831 a001 53316291173/4870847*199^(2/11) 2865686842678934 a001 139583862445/12752043*199^(2/11) 2865686842678949 a001 182717648081/16692641*199^(2/11) 2865686842678952 a001 956722026041/87403803*199^(2/11) 2865686842678952 a001 2504730781961/228826127*199^(2/11) 2865686842678952 a001 3278735159921/299537289*199^(2/11) 2865686842678952 a001 10610209857723/969323029*199^(2/11) 2865686842678952 a001 4052739537881/370248451*199^(2/11) 2865686842678952 a001 387002188980/35355581*199^(2/11) 2865686842678953 a001 591286729879/54018521*199^(2/11) 2865686842678959 a001 7787980473/711491*199^(2/11) 2865686842678998 a001 21566892818/1970299*199^(2/11) 2865686842679268 a001 32951280099/3010349*199^(2/11) 2865686842681119 a001 12586269025/1149851*199^(2/11) 2865686842693808 a001 1201881744/109801*199^(2/11) 2865686842780775 a001 1836311903/167761*199^(2/11) 2865686843376859 a001 701408733/64079*199^(2/11) 2865686847462475 a001 10946*199^(2/11) 2865686861325407 l006 ln(180/3161) 2865686875465705 a001 102334155/9349*199^(2/11) 2865686883920679 m008 (1/3*Pi^2-1/2)/(1/3*Pi^3-3/5) 2865686884947574 m008 (1/2*Pi^4-5)/(1/2*Pi^5-1/2) 2865686891674136 r005 Im(z^2+c),c=-6/11+37/61*I,n=55 2865686902603531 m009 (1/8*Pi^2-5/6)/(3/2*Pi^2-5/6) 2865686918299806 m001 1/MinimumGamma/exp(Backhouse)/GAMMA(1/6) 2865686928222560 m005 (1/15+1/6*5^(1/2))/(5/12*3^(1/2)-7/8) 2865686932311821 l006 ln(2022/2693) 2865686937109949 m005 (1/2*Pi+2/9)/(4*2^(1/2)+3/5) 2865686945868855 r009 Re(z^3+c),c=-31/70+15/34*I,n=39 2865686947249594 r009 Im(z^3+c),c=-17/46+11/50*I,n=27 2865686950811875 r009 Im(z^3+c),c=-17/46+11/50*I,n=26 2865686971579131 m001 (arctan(1/3)+GAMMA(11/12))/(Bloch+ZetaQ(3)) 2865686986470090 m001 (Ei(1)+exp(1/exp(1)))/(Salem-Trott) 2865686987362836 r009 Im(z^3+c),c=-19/40+7/54*I,n=57 2865686991648495 m001 (ln(gamma)-gamma(3))/(Sierpinski-TwinPrimes) 2865687010072721 r002 43th iterates of z^2 + 2865687018290072 r002 12th iterates of z^2 + 2865687030405884 h001 (1/5*exp(1)+1/11)/(5/7*exp(1)+3/11) 2865687033003206 m001 TwinPrimes^2/ln(Porter)^2*cos(Pi/12) 2865687033672597 a001 121393/843*521^(11/13) 2865687042169330 a007 Real Root Of -282*x^4-871*x^3-62*x^2+398*x+170 2865687053884173 m001 exp(GAMMA(1/4))*BesselJ(1,1)*log(2+sqrt(3))^2 2865687053958247 a005 (1/cos(16/127*Pi))^843 2865687055179670 r005 Re(z^2+c),c=7/22+7/48*I,n=39 2865687060195665 m001 exp(-1/2*Pi)-Magata^Catalan 2865687062527543 r002 5th iterates of z^2 + 2865687067402713 a001 39088169/3571*199^(2/11) 2865687082067955 m001 (gamma(2)+GaussKuzminWirsing)/GAMMA(23/24) 2865687085955388 r009 Re(z^3+c),c=-51/122+23/58*I,n=58 2865687087263065 m001 (-Mills+Salem)/(3^(1/2)+FransenRobinson) 2865687115721017 a001 123/4181*2971215073^(8/19) 2865687120105486 m001 exp(Pi)^BesselJ(1,1)/(exp(Pi)^Chi(1)) 2865687123121242 a007 Real Root Of -281*x^4-724*x^3+375*x^2+400*x-21 2865687128201402 m005 (1/2*3^(1/2)+10/11)/(1/7*5^(1/2)+3/10) 2865687146788881 a005 (1/cos(3/121*Pi))^1105 2865687157678568 r009 Im(z^3+c),c=-17/46+11/50*I,n=31 2865687163694263 h001 (3/4*exp(2)+2/5)/(1/2*exp(1)+5/7) 2865687180209777 r009 Im(z^3+c),c=-17/46+11/50*I,n=32 2865687180897938 r009 Im(z^3+c),c=-17/46+11/50*I,n=35 2865687180999755 r009 Im(z^3+c),c=-17/46+11/50*I,n=30 2865687182130813 r009 Im(z^3+c),c=-17/46+11/50*I,n=36 2865687182894546 r009 Im(z^3+c),c=-17/46+11/50*I,n=40 2865687182899363 r009 Im(z^3+c),c=-17/46+11/50*I,n=39 2865687183009283 r009 Im(z^3+c),c=-17/46+11/50*I,n=44 2865687183021411 r009 Im(z^3+c),c=-17/46+11/50*I,n=45 2865687183021873 r009 Im(z^3+c),c=-17/46+11/50*I,n=48 2865687183022183 r009 Im(z^3+c),c=-17/46+11/50*I,n=43 2865687183022528 r009 Im(z^3+c),c=-17/46+11/50*I,n=49 2865687183022948 r009 Im(z^3+c),c=-17/46+11/50*I,n=53 2865687183022952 r009 Im(z^3+c),c=-17/46+11/50*I,n=52 2865687183023010 r009 Im(z^3+c),c=-17/46+11/50*I,n=57 2865687183023017 r009 Im(z^3+c),c=-17/46+11/50*I,n=58 2865687183023017 r009 Im(z^3+c),c=-17/46+11/50*I,n=61 2865687183023017 r009 Im(z^3+c),c=-17/46+11/50*I,n=56 2865687183023017 r009 Im(z^3+c),c=-17/46+11/50*I,n=62 2865687183023018 r009 Im(z^3+c),c=-17/46+11/50*I,n=64 2865687183023018 r009 Im(z^3+c),c=-17/46+11/50*I,n=63 2865687183023018 r009 Im(z^3+c),c=-17/46+11/50*I,n=60 2865687183023020 r009 Im(z^3+c),c=-17/46+11/50*I,n=59 2865687183023029 r009 Im(z^3+c),c=-17/46+11/50*I,n=54 2865687183023041 r009 Im(z^3+c),c=-17/46+11/50*I,n=55 2865687183023212 r009 Im(z^3+c),c=-17/46+11/50*I,n=51 2865687183023311 r009 Im(z^3+c),c=-17/46+11/50*I,n=50 2865687183024081 r009 Im(z^3+c),c=-17/46+11/50*I,n=47 2865687183027118 r009 Im(z^3+c),c=-17/46+11/50*I,n=46 2865687183044419 r009 Im(z^3+c),c=-17/46+11/50*I,n=41 2865687183066332 r009 Im(z^3+c),c=-17/46+11/50*I,n=42 2865687183378025 r009 Im(z^3+c),c=-17/46+11/50*I,n=38 2865687183569873 r009 Im(z^3+c),c=-17/46+11/50*I,n=37 2865687184688758 r005 Im(z^2+c),c=4/13+22/37*I,n=13 2865687184940394 r009 Im(z^3+c),c=-17/46+11/50*I,n=34 2865687185699318 m001 TwinPrimes^2/Riemann3rdZero^2*exp(sqrt(2)) 2865687190610364 r009 Im(z^3+c),c=-17/46+11/50*I,n=33 2865687190654812 m001 FeigenbaumD*(ZetaP(4)-ln(Pi)) 2865687193760348 r009 Re(z^3+c),c=-51/122+23/58*I,n=61 2865687201208117 r005 Re(z^2+c),c=-5/24+37/64*I,n=39 2865687203869787 a007 Real Root Of 594*x^4+535*x^3-x^2-613*x-167 2865687208204236 m005 (1/2*Pi+3/4)/(1/12*exp(1)+7/12) 2865687213434451 m001 GaussKuzminWirsing^(Si(Pi)*ln(5)) 2865687213434451 m001 GaussKuzminWirsing^(ln(5)*Si(Pi)) 2865687216591893 m006 (5/6/Pi-5)/(3/4*exp(Pi)-5/6) 2865687223958057 r009 Im(z^3+c),c=-17/46+11/50*I,n=28 2865687230374879 m001 (5^(1/2)-ln(Pi))/(BesselI(0,2)+GAMMA(7/12)) 2865687238539058 a007 Real Root Of 48*x^4+x^3-302*x^2+175*x-232 2865687240421722 m006 (4*Pi^2-1)/(1/4*exp(2*Pi)+2/5) 2865687247531030 m002 2/9-Pi^3/ProductLog[Pi] 2865687247912395 a007 Real Root Of 778*x^4-113*x^3-885*x^2-903*x-194 2865687258155159 p001 sum((-1)^n/(175*n+163)/n/(10^n),n=0..infinity) 2865687262739773 r009 Im(z^3+c),c=-17/46+11/50*I,n=29 2865687265273662 m001 (cos(1/5*Pi)+gamma(2))/(3^(1/2)+Shi(1)) 2865687267549849 a007 Real Root Of 18*x^4-119*x^3-194*x^2+981*x+390 2865687273939370 m001 (Landau+PrimesInBinary)/(GAMMA(5/6)-Kolakoski) 2865687294885282 m001 Psi(1,1/3)^(2*Pi/GAMMA(5/6))/FeigenbaumKappa 2865687303252885 q001 2731/953 2865687307435227 r005 Im(z^2+c),c=-17/22+8/75*I,n=60 2865687311040431 r005 Im(z^2+c),c=-11/32+22/45*I,n=21 2865687319611009 r005 Im(z^2+c),c=-19/50+15/31*I,n=53 2865687335713374 a001 2178309/11*76^(29/47) 2865687347133775 r005 Re(z^2+c),c=-27/94+22/49*I,n=60 2865687357216257 r005 Im(z^2+c),c=-13/23+11/28*I,n=12 2865687359544855 a007 Real Root Of 267*x^4+828*x^3+472*x^2+962*x+360 2865687368114677 r005 Re(z^2+c),c=-33/118+23/49*I,n=63 2865687370644701 r002 13th iterates of z^2 + 2865687381403007 m001 GAMMA(1/6)*ln(Magata)/cosh(1)^2 2865687382940197 m001 (Ei(1,1)+OneNinth)/(3^(1/3)-ln(2)/ln(10)) 2865687406971379 p003 LerchPhi(1/25,3,105/149) 2865687411183356 m001 1/KhintchineLevy^2/exp(Artin)/Niven 2865687413433750 m001 (gamma+GAMMA(2/3))/(MertensB1+ThueMorse) 2865687432800978 m001 ln(5)/(BesselI(0,1)-CareFree) 2865687462188112 r009 Re(z^3+c),c=-51/122+23/58*I,n=64 2865687464890250 r009 Re(z^3+c),c=-19/42+17/38*I,n=25 2865687473239040 r005 Im(z^2+c),c=29/98+6/55*I,n=52 2865687477804537 b008 -4+2^(2/11) 2865687481806786 a007 Real Root Of -336*x^4-967*x^3-10*x^2+223*x+624 2865687481811706 a007 Real Root Of -189*x^4-765*x^3-816*x^2-312*x+550 2865687487367876 r002 2th iterates of z^2 + 2865687487877898 r002 26th iterates of z^2 + 2865687495304331 l006 ln(499/8763) 2865687517772490 r005 Im(z^2+c),c=1/114+19/56*I,n=4 2865687519461283 r009 Re(z^3+c),c=-51/122+23/58*I,n=60 2865687519569988 m001 BesselI(0,1)*ZetaR(2)+Paris 2865687525549603 a007 Real Root Of -432*x^4-989*x^3+678*x^2-287*x-531 2865687526302556 a001 12238*4181^(5/49) 2865687535807455 r005 Re(z^2+c),c=11/74+17/38*I,n=35 2865687537930232 r009 Re(z^3+c),c=-55/126+25/49*I,n=33 2865687546498525 m009 (2/3*Psi(1,2/3)+1/5)/(3*Psi(1,3/4)+1/5) 2865687546635055 a007 Real Root Of 788*x^4-783*x^3+984*x^2-361*x-208 2865687547544086 a003 cos(Pi*17/115)*cos(Pi*24/49) 2865687550478896 a007 Real Root Of 934*x^4-488*x^3+675*x^2+252*x-1 2865687552381781 h001 (1/11*exp(2)+3/7)/(4/9*exp(2)+5/9) 2865687553202926 a007 Real Root Of -336*x^4-816*x^3+646*x^2+814*x+484 2865687560118457 h001 (2/7*exp(2)+3/8)/(2/7*exp(1)+1/11) 2865687560861260 r005 Im(z^2+c),c=-9/58+25/32*I,n=21 2865687561248811 m001 (-ArtinRank2+MadelungNaCl)/(Catalan+ln(gamma)) 2865687568667226 r009 Re(z^3+c),c=-5/11+11/25*I,n=24 2865687573826284 r005 Im(z^2+c),c=-27/25+2/61*I,n=10 2865687575455542 a001 199/233*63245986^(17/24) 2865687586971607 r005 Re(z^2+c),c=-15/62+32/59*I,n=35 2865687593399721 l006 ln(5617/7481) 2865687596879999 a007 Real Root Of 351*x^4+962*x^3-305*x^2-323*x+547 2865687603663413 a001 3571/610*75025^(16/29) 2865687633361357 r001 4i'th iterates of 2*x^2-1 of 2865687649773245 m002 -(Log[Pi]/E^Pi)+(Pi*Tanh[Pi])/ProductLog[Pi] 2865687650195735 r005 Im(z^2+c),c=-11/62+40/63*I,n=61 2865687652922616 r005 Im(z^2+c),c=-21/86+16/37*I,n=17 2865687655566140 m005 (1/3*Zeta(3)-2/7)/(7/12*Zeta(3)-3/10) 2865687664796878 s002 sum(A033033[n]/(n^3*pi^n+1),n=1..infinity) 2865687680475245 a007 Real Root Of 717*x^4+934*x^3+204*x^2-626*x-179 2865687682835338 m005 (1/3*2^(1/2)+1/8)/(9/11*exp(1)-1/7) 2865687701280079 a007 Real Root Of -422*x^4-987*x^3+750*x^2+118*x-589 2865687706152201 m001 (FransenRobinson+Landau)/(ArtinRank2+Bloch) 2865687727167733 r005 Im(z^2+c),c=-57/52+15/56*I,n=11 2865687738281233 m001 BesselI(0,1)+(2^(1/2))^FeigenbaumKappa 2865687756499794 m001 (GAMMA(3/4)-HardyLittlewoodC3)/(Kac-Khinchin) 2865687757770577 r009 Re(z^3+c),c=-11/25+22/51*I,n=34 2865687768399322 r009 Im(z^3+c),c=-57/118+5/39*I,n=35 2865687770246164 r005 Im(z^2+c),c=-33/74+23/49*I,n=31 2865687787068677 m001 ln(GAMMA(11/24))/Conway*LambertW(1) 2865687789911070 a001 4181/18*2^(10/33) 2865687793735945 r009 Re(z^3+c),c=-1/19+39/58*I,n=45 2865687794887330 a007 Real Root Of -3*x^4-105*x^3-522*x^2+654*x-411 2865687797469460 r005 Im(z^2+c),c=-15/74+29/55*I,n=5 2865687805338744 a003 sin(Pi*1/88)*sin(Pi*27/91) 2865687810217953 r009 Re(z^3+c),c=-51/122+23/58*I,n=55 2865687829473533 s001 sum(exp(-Pi/2)^(n-1)*A026781[n],n=1..infinity) 2865687832254750 r009 Im(z^3+c),c=-17/46+11/50*I,n=25 2865687832556031 r009 Re(z^3+c),c=-31/66+5/11*I,n=46 2865687835074378 a008 Real Root of (-3-5*x+2*x^2+5*x^3+4*x^4-2*x^5) 2865687836992418 m001 1/Trott*exp(CareFree)^2/log(2+sqrt(3)) 2865687838615584 m001 1/ln(Zeta(5))^2/Ei(1)^2/exp(1)^2 2865687845822813 a001 196418/843*521^(10/13) 2865687853035209 l006 ln(319/5602) 2865687860783763 p004 log(26633/19997) 2865687872436883 a007 Real Root Of -311*x^4-936*x^3-433*x^2-564*x+886 2865687873844480 q001 527/1839 2865687878907395 m001 exp(1)^(ln(5)/GAMMA(7/12)) 2865687878907395 m001 exp(ln(5)/GAMMA(7/12)) 2865687880774132 p001 sum(1/(416*n+197)/n/(6^n),n=1..infinity) 2865687885129984 a007 Real Root Of -717*x^4-937*x^3-885*x^2+295*x+140 2865687900826702 r005 Im(z^2+c),c=-55/106+11/23*I,n=49 2865687904027342 r005 Im(z^2+c),c=-1/82+22/35*I,n=38 2865687905670616 h001 (-5*exp(-1)-8)/(-9*exp(3/2)+6) 2865687927373025 r005 Re(z^2+c),c=-13/50+27/52*I,n=53 2865687932545777 m005 (1/2*Catalan-1/2)/(5/7*Pi-7/9) 2865687947250557 r009 Re(z^3+c),c=-51/122+23/58*I,n=63 2865687948361609 m001 Robbin^Sarnak/sin(1/12*Pi) 2865687948548613 m001 (Ei(1)-arctan(1/3))/(Kac-ZetaP(4)) 2865687948569439 a001 2/341*199^(36/49) 2865687952682655 a007 Real Root Of -423*x^4-14*x^3-449*x^2+707*x+242 2865687958645328 r009 Im(z^3+c),c=-31/94+7/29*I,n=20 2865687965227167 l006 ln(3595/4788) 2865687972066951 a007 Real Root Of -73*x^4-144*x^3+244*x^2+242*x+224 2865687997896086 r005 Re(z^2+c),c=-17/18+35/223*I,n=62 2865688000320301 m001 (GAMMA(11/12)+KhinchinLevy)/(Thue-ZetaP(4)) 2865688007636448 r005 Re(z^2+c),c=7/38+13/27*I,n=49 2865688015732971 p003 LerchPhi(1/32,6,287/233) 2865688023516114 m001 GAMMA(5/6)^2*GAMMA(23/24)^2/exp(cosh(1)) 2865688026872060 a005 (1/cos(7/107*Pi))^266 2865688035620637 r005 Re(z^2+c),c=7/50+27/56*I,n=8 2865688043100463 r009 Re(z^3+c),c=-27/70+4/9*I,n=7 2865688061703737 m001 ThueMorse/(ln(5)^BesselJ(0,1)) 2865688076944438 a007 Real Root Of 180*x^4-539*x^3-343*x^2-256*x+113 2865688081284010 a007 Real Root Of -319*x^4+299*x^3-667*x^2+712*x+268 2865688082065253 m001 1/ln(GAMMA(3/4))/KhintchineHarmonic*Zeta(7)^2 2865688082720991 m001 ln(3)/(MertensB1^TravellingSalesman) 2865688082917400 a007 Real Root Of 445*x^4+6*x^3+64*x^2-633*x+173 2865688085869444 m001 2^(1/3)+ln(3)*MinimumGamma 2865688097984305 m001 (Sierpinski-ZetaQ(3))/(3^(1/3)-Landau) 2865688133692773 m001 gamma/GAMMA(1/4)*exp(sin(Pi/5)) 2865688138363874 r005 Im(z^2+c),c=6/29+25/61*I,n=4 2865688146125490 r009 Im(z^3+c),c=-13/28+11/62*I,n=2 2865688161046486 m001 Lehmer/(PrimesInBinary-exp(-1/2*Pi)) 2865688164520667 m001 (HardyLittlewoodC4+Kolakoski)/(5^(1/2)+ln(5)) 2865688165666374 a007 Real Root Of -32*x^4-914*x^3+98*x^2+338*x+283 2865688182703533 a001 11/13*28657^(21/37) 2865688188100419 r005 Im(z^2+c),c=9/40+10/53*I,n=13 2865688198028115 r005 Re(z^2+c),c=-39/106+1/23*I,n=16 2865688198496572 a001 11/1346269*8^(35/58) 2865688198648125 m001 BesselK(0,1)/ln(ErdosBorwein)/GAMMA(1/6)^2 2865688202413575 r009 Im(z^3+c),c=-17/46+11/50*I,n=24 2865688208240444 r005 Im(z^2+c),c=-93/82+8/35*I,n=56 2865688224118930 r005 Im(z^2+c),c=-43/66+25/58*I,n=28 2865688233444136 p001 sum((-1)^n/(611*n+347)/(64^n),n=0..infinity) 2865688238797626 m001 sqrt(2)*exp(sqrt(2))^GAMMA(5/12) 2865688239161963 a001 2/1597*514229^(10/17) 2865688242789884 l006 ln(458/8043) 2865688244659928 m001 1/(3^(1/3))*ErdosBorwein^2/exp(Catalan)^2 2865688247146155 a007 Real Root Of -212*x^4-589*x^3-289*x^2-787*x+554 2865688254802812 m002 -E^Pi+Pi^5+Cosh[Pi]/Pi 2865688270016075 r005 Im(z^2+c),c=-19/94+23/55*I,n=6 2865688271334436 r009 Im(z^3+c),c=-7/16+6/43*I,n=5 2865688273606147 m005 (1/2*gamma+2/3)/(3/7*Zeta(3)-2/11) 2865688277010360 r005 Im(z^2+c),c=-35/118+21/44*I,n=16 2865688278460514 a007 Real Root Of -476*x^4-52*x^3+323*x^2+965*x+252 2865688281703122 r005 Re(z^2+c),c=-9/31+23/56*I,n=9 2865688291312841 r002 28th iterates of z^2 + 2865688304924208 m001 1/OneNinth^2*ln(Salem)^2*(2^(1/3)) 2865688306360569 a007 Real Root Of 966*x^4+392*x^3-986*x^2-397*x+179 2865688314123322 r002 33th iterates of z^2 + 2865688314274858 m001 (arctan(1/3)*ZetaP(3)-ZetaR(2))/arctan(1/3) 2865688344656613 r005 Im(z^2+c),c=-27/106+18/41*I,n=33 2865688359654613 r009 Im(z^3+c),c=-31/94+7/29*I,n=21 2865688360225026 r005 Im(z^2+c),c=-15/22+24/95*I,n=21 2865688364269709 r005 Re(z^2+c),c=5/56+2/9*I,n=4 2865688365212492 m001 1/FeigenbaumD*Lehmer^2*exp(cosh(1))^2 2865688369131061 r005 Im(z^2+c),c=-17/118+23/57*I,n=8 2865688369359264 l006 ln(5168/6883) 2865688372395719 a001 3/1597*14930352^(7/23) 2865688381921712 a007 Real Root Of 300*x^4+928*x^3+527*x^2+926*x-67 2865688382959231 a001 3732588/341*199^(2/11) 2865688388903291 p001 sum(1/(381*n+364)/(12^n),n=0..infinity) 2865688389474584 a001 123/11*(1/2*5^(1/2)+1/2)^4*11^(11/20) 2865688389636550 b008 E*(-106+EulerGamma) 2865688390939683 a007 Real Root Of 296*x^4-162*x^3-365*x^2-245*x+102 2865688402549441 a007 Real Root Of 912*x^4+141*x^3+291*x^2-985*x-309 2865688417080826 a007 Real Root Of -254*x^4-463*x^3+544*x^2-832*x-618 2865688435330167 r005 Re(z^2+c),c=-11/118+44/53*I,n=27 2865688438073642 r005 Im(z^2+c),c=1/24+19/56*I,n=3 2865688448109189 m001 (exp(Pi)+exp(-Pi))/cos(1/5*Pi) 2865688448109189 m001 (exp(Pi)+exp(-Pi))/cos(Pi/5) 2865688463869685 a001 1/98209*1836311903^(10/17) 2865688463884540 a001 2/24157817*6557470319842^(10/17) 2865688469876288 a007 Real Root Of -983*x^4+812*x^3-212*x^2+921*x-259 2865688473200321 a007 Real Root Of 232*x^4+554*x^3-62*x^2+653*x-228 2865688475953366 r002 53th iterates of z^2 + 2865688477360815 m001 (-Kac+Magata)/(BesselK(0,1)-ln(gamma)) 2865688478502779 m001 (GaussAGM+ZetaQ(2))/(Zeta(1/2)-GAMMA(13/24)) 2865688482991665 a001 317811/322*322^(7/12) 2865688486544725 b008 ArcCsch[1/3+11*Pi] 2865688487584650 q001 2539/886 2865688496815135 m001 1/Zeta(1,2)^2/MinimumGamma^2*exp(sin(1))^2 2865688496916571 r005 Re(z^2+c),c=-7/10+46/167*I,n=57 2865688498206809 m005 (3/4*Pi+4)/(11/10+1/2*5^(1/2)) 2865688501132141 k001 Champernowne real with 282*n+4 2865688508073565 h001 (9/10*exp(2)+2/5)/(2/9*exp(2)+9/11) 2865688509407245 m001 1/exp(GAMMA(1/24))*Khintchine*GAMMA(17/24)^2 2865688510889940 r005 Im(z^2+c),c=-41/102+27/53*I,n=41 2865688523902591 m001 1/Khintchine^2*exp(DuboisRaymond)/sin(Pi/5) 2865688536003716 r009 Re(z^3+c),c=-51/122+23/58*I,n=62 2865688544404106 r002 7th iterates of z^2 + 2865688544805986 m001 KhinchinLevy/CareFree/sin(1/5*Pi) 2865688549296064 r009 Im(z^3+c),c=-31/94+7/29*I,n=24 2865688552606535 m005 (1/3*gamma-1/6)/(1/12*Pi+7/11) 2865688568433477 a008 Real Root of (2+5*x-6*x^2+3*x^3-2*x^4-5*x^5) 2865688574020294 r009 Im(z^3+c),c=-31/94+7/29*I,n=25 2865688583599495 r009 Im(z^3+c),c=-31/94+7/29*I,n=28 2865688584884385 l006 ln(6741/8978) 2865688585106438 r009 Im(z^3+c),c=-31/94+7/29*I,n=29 2865688585583304 r009 Im(z^3+c),c=-31/94+7/29*I,n=32 2865688585674270 r009 Im(z^3+c),c=-31/94+7/29*I,n=33 2865688585697577 r009 Im(z^3+c),c=-31/94+7/29*I,n=36 2865688585703023 r009 Im(z^3+c),c=-31/94+7/29*I,n=37 2865688585704135 r009 Im(z^3+c),c=-31/94+7/29*I,n=40 2865688585704458 r009 Im(z^3+c),c=-31/94+7/29*I,n=41 2865688585704510 r009 Im(z^3+c),c=-31/94+7/29*I,n=44 2865688585704529 r009 Im(z^3+c),c=-31/94+7/29*I,n=45 2865688585704531 r009 Im(z^3+c),c=-31/94+7/29*I,n=48 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=49 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=52 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=53 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=56 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=57 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=60 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=64 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=61 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=63 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=62 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=59 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=58 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=55 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=54 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=51 2865688585704532 r009 Im(z^3+c),c=-31/94+7/29*I,n=50 2865688585704533 r009 Im(z^3+c),c=-31/94+7/29*I,n=47 2865688585704538 r009 Im(z^3+c),c=-31/94+7/29*I,n=46 2865688585704548 r009 Im(z^3+c),c=-31/94+7/29*I,n=43 2865688585704627 r009 Im(z^3+c),c=-31/94+7/29*I,n=42 2865688585704867 r009 Im(z^3+c),c=-31/94+7/29*I,n=39 2865688585706196 r009 Im(z^3+c),c=-31/94+7/29*I,n=38 2865688585711305 r009 Im(z^3+c),c=-31/94+7/29*I,n=35 2865688585733583 r009 Im(z^3+c),c=-31/94+7/29*I,n=34 2865688585839281 r009 Im(z^3+c),c=-31/94+7/29*I,n=31 2865688586209936 r009 Im(z^3+c),c=-31/94+7/29*I,n=30 2865688588351560 r009 Im(z^3+c),c=-31/94+7/29*I,n=27 2865688592897284 m001 (-Conway+Khinchin)/(5^(1/2)-exp(1)) 2865688594463491 r009 Im(z^3+c),c=-31/94+7/29*I,n=26 2865688597386160 a001 1/15456*956722026041^(7/23) 2865688599596921 a007 Real Root Of -95*x^4+61*x^3+912*x^2-46*x+221 2865688607105169 m002 -3-2/E^Pi+Pi*ProductLog[Pi] 2865688615146284 m001 exp(arctan(1/2))^2*GAMMA(19/24)*cos(Pi/12) 2865688629706934 r005 Im(z^2+c),c=-1/31+40/47*I,n=9 2865688637154923 r009 Im(z^3+c),c=-31/94+7/29*I,n=23 2865688638442306 m009 (4/3*Catalan+1/6*Pi^2+3/5)/(Psi(1,1/3)+2) 2865688650341352 a007 Real Root Of 26*x^4+766*x^3+620*x^2+592*x+154 2865688651029357 a001 199/377*8^(48/59) 2865688655902992 r002 6th iterates of z^2 + 2865688657898980 a001 377*521^(9/13) 2865688662687769 r002 25th iterates of z^2 + 2865688674372877 m002 -Pi+4*E^Pi*Pi*Tanh[Pi] 2865688683422515 a007 Real Root Of 254*x^4+935*x^3+729*x^2+145*x-697 2865688702205181 m001 (-Champernowne+RenyiParking)/(cos(1)-exp(1)) 2865688704071862 h001 (8/11*exp(2)+3/5)/(7/10*exp(1)+2/11) 2865688707630209 r009 Im(z^3+c),c=-19/46+4/21*I,n=19 2865688710350328 r009 Im(z^3+c),c=-43/94+7/46*I,n=22 2865688720290055 r005 Re(z^2+c),c=27/58+43/51*I,n=2 2865688723394700 r005 Re(z^2+c),c=-39/106+1/23*I,n=15 2865688729596986 m001 (5^(1/2)+gamma(1))/(-Bloch+FibonacciFactorial) 2865688733400478 m005 (1/2*exp(1)+3/11)/(1/7*5^(1/2)-8/9) 2865688735482854 a007 Real Root Of 693*x^4+554*x^3-900*x^2-938*x+325 2865688736884252 r009 Im(z^3+c),c=-31/94+7/29*I,n=22 2865688740898497 m004 1/2+ProductLog[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]^2 2865688743793558 a007 Real Root Of -439*x^4-962*x^3+829*x^2-157*x-291 2865688767753013 r005 Re(z^2+c),c=-8/23+6/25*I,n=10 2865688778581381 m001 Rabbit/(3^(1/3)+MertensB2) 2865688797985220 r005 Re(z^2+c),c=-10/31+21/62*I,n=20 2865688805544789 a003 cos(Pi*4/51)-cos(Pi*9/82) 2865688806435013 a001 3/6557470319842*8^(15/17) 2865688806564358 m005 (1/2*Pi+6/7)/(1/8*Pi+5/11) 2865688813958177 a007 Real Root Of 283*x^4+571*x^3-463*x^2+435*x-599 2865688828723620 r005 Im(z^2+c),c=9/82+10/37*I,n=14 2865688841201716 a001 6677055/233 2865688846154755 r009 Im(z^3+c),c=-1/18+43/51*I,n=28 2865688858327035 m001 (2^(1/3))-1/2-GAMMA(1/4) 2865688872595748 r009 Re(z^3+c),c=-9/22+19/48*I,n=14 2865688878119472 r002 6th iterates of z^2 + 2865688882725540 m001 ln(Robbin)^2/Lehmer/Zeta(9)^2 2865688885373186 h001 (6/11*exp(1)+1/12)/(8/11*exp(2)+1/11) 2865688887158664 m001 1/Lehmer^2/Cahen*ln(sqrt(5))^2 2865688892749384 r005 Im(z^2+c),c=-11/10+43/143*I,n=3 2865688914579290 m001 (FeigenbaumKappa-Khinchin)/(Trott-Weierstrass) 2865688927436464 r009 Re(z^3+c),c=-33/70+25/61*I,n=12 2865688931154024 m001 (-BesselK(1,1)+Mills)/(exp(Pi)+3^(1/3)) 2865688960415306 r005 Re(z^2+c),c=-29/122+27/49*I,n=35 2865688963122711 r005 Re(z^2+c),c=33/106+9/50*I,n=4 2865688968372899 m001 (Pi-ln(3))/(MadelungNaCl-MertensB2) 2865688971929353 a007 Real Root Of -711*x^4-869*x^3-897*x^2+827*x+295 2865688976486196 r005 Re(z^2+c),c=-27/94+22/49*I,n=58 2865688977914686 r002 16th iterates of z^2 + 2865688983473178 a001 1/14930208*233^(4/15) 2865688994494660 r009 Re(z^3+c),c=-11/28+18/53*I,n=10 2865688997618146 r005 Re(z^2+c),c=-7/27+31/60*I,n=40 2865689000351617 a007 Real Root Of 363*x^4-92*x^3+57*x^2-826*x-246 2865689001363145 r009 Im(z^3+c),c=-3/40+26/31*I,n=30 2865689004238290 l006 ln(6914/7115) 2865689008533531 a001 5778/377*75025^(6/23) 2865689011109872 m001 (-sin(1/12*Pi)+Trott)/(3^(1/3)-Psi(1,1/3)) 2865689014852850 a007 Real Root Of -216*x^4-347*x^3+782*x^2+74*x+191 2865689017806037 a003 sin(Pi*14/103)*sin(Pi*9/37) 2865689020072941 a007 Real Root Of -397*x^4+904*x^3-80*x^2+560*x+191 2865689036233078 a001 1149851*144^(11/17) 2865689043555760 a007 Real Root Of -501*x^4-433*x^3-789*x^2+926*x-187 2865689046879330 b008 1/2+Cot[E^EulerGamma] 2865689053072792 r005 Im(z^2+c),c=37/122+2/33*I,n=20 2865689076874837 r009 Re(z^3+c),c=-23/52+7/16*I,n=30 2865689093010566 r005 Re(z^2+c),c=-4/11+7/58*I,n=11 2865689097712899 a007 Real Root Of -250*x^4-558*x^3+204*x^2-730*x-39 2865689101813300 r009 Im(z^3+c),c=-23/110+11/38*I,n=3 2865689102177901 r005 Re(z^2+c),c=-2/3+37/123*I,n=58 2865689111118370 m001 (-MertensB2+Niven)/(exp(Pi)+sin(1/12*Pi)) 2865689111156514 a001 9349/1597*75025^(16/29) 2865689125583149 r009 Re(z^3+c),c=-7/44+29/39*I,n=18 2865689137262268 l006 ln(139/2441) 2865689137262268 p004 log(2441/139) 2865689146169225 m001 GAMMA(1/4)/ln(MinimumGamma)*sqrt(3)^2 2865689152648311 r005 Re(z^2+c),c=-61/62+5/26*I,n=4 2865689153401348 s002 sum(A271794[n]/(n^2*10^n-1),n=1..infinity) 2865689153569395 a007 Real Root Of -90*x^4-14*x^3+322*x^2-962*x+339 2865689155673258 m001 Artin^Robbin/(Artin^(3^(1/2))) 2865689161660231 a007 Real Root Of 416*x^4+996*x^3-414*x^2+769*x+988 2865689165270171 a003 cos(Pi*33/112)*cos(Pi*40/117) 2865689200789495 m001 ln(GAMMA(5/12))^3/GAMMA(3/4)^2 2865689202640753 m001 1/Ei(1)^2*Kolakoski*exp(sin(Pi/12)) 2865689227289567 a008 Real Root of (1+3*x-3*x^2-5*x^3+6*x^5) 2865689243424067 a007 Real Root Of -78*x^4+425*x^3-318*x^2-432*x-892 2865689252961060 r005 Re(z^2+c),c=-13/46+6/13*I,n=55 2865689253643676 h001 (4/11*exp(2)+5/11)/(1/4*exp(1)+5/12) 2865689254728023 r005 Re(z^2+c),c=5/38+15/26*I,n=62 2865689262563298 m001 (ArtinRank2-Robbin)/(Trott+ZetaQ(4)) 2865689264845827 a005 (1/sin(104/223*Pi))^600 2865689270386266 a001 6677056/233 2865689284040969 r005 Im(z^2+c),c=-11/16+1/120*I,n=26 2865689287762661 a003 cos(Pi*8/87)*cos(Pi*48/119) 2865689288265070 r005 Im(z^2+c),c=9/56+14/59*I,n=21 2865689292979602 l006 ln(1573/2095) 2865689303858932 a003 cos(Pi*22/89)-sin(Pi*52/105) 2865689313873514 r005 Re(z^2+c),c=11/38+31/56*I,n=29 2865689319466046 m001 exp(PrimesInBinary)/Champernowne*GAMMA(7/12)^2 2865689322571231 m001 (-Kac+Magata)/(Si(Pi)-ln(2^(1/2)+1)) 2865689322609095 a007 Real Root Of 28*x^4+773*x^3-857*x^2-435*x-404 2865689331096909 a001 24476/4181*75025^(16/29) 2865689358245637 a001 55/199*64079^(13/31) 2865689363069162 a007 Real Root Of -206*x^4+914*x^3+380*x^2+955*x-325 2865689367481595 m001 ReciprocalLucas*FeigenbaumAlpha^ThueMorse 2865689375012081 r002 27th iterates of z^2 + 2865689375709051 r009 Re(z^3+c),c=-51/122+23/58*I,n=59 2865689383017798 a001 13201/2255*75025^(16/29) 2865689388475424 a001 4976784/281*199^(1/11) 2865689389826977 r005 Re(z^2+c),c=1/25+19/31*I,n=3 2865689401346422 r009 Re(z^3+c),c=-37/126+7/47*I,n=11 2865689411077477 a001 29/144*4181^(22/37) 2865689422200377 a007 Real Root Of 784*x^4-56*x^3-297*x^2-480*x+14 2865689427938929 r005 Im(z^2+c),c=-19/30+32/73*I,n=34 2865689428534365 m001 (-ln(2)+3^(1/3))/(2^(1/3)+GAMMA(2/3)) 2865689432449589 m008 (3/4*Pi^5-1/6)/(5/6*Pi^6-5/6) 2865689433202236 m005 (1/3*Pi+1/6)/(2/9*5^(1/2)-5/11) 2865689436335696 m006 (2/3*ln(Pi)+3/5)/(3/5/Pi-2/3) 2865689442060083 a001 2/233*(1/2+1/2*5^(1/2))^36 2865689463142495 m001 1/exp(Robbin)^2*GlaisherKinkelin^2*cos(Pi/5)^2 2865689467027564 a001 15127/2584*75025^(16/29) 2865689470003750 a001 514229/843*521^(8/13) 2865689486227368 r005 Im(z^2+c),c=37/98+11/39*I,n=32 2865689496207039 r005 Re(z^2+c),c=-1/4+27/50*I,n=44 2865689499320338 m005 (-15/4+1/4*5^(1/2))/(5/12*5^(1/2)+2/11) 2865689500448698 q001 958/3343 2865689510999346 a001 281/329*4807526976^(6/23) 2865689511092034 r005 Re(z^2+c),c=2/15+18/59*I,n=11 2865689525285611 m008 (3*Pi-2/3)/(Pi^5-2/5) 2865689530249969 r002 2th iterates of z^2 + 2865689539802794 s001 sum(exp(-2*Pi)^(n-1)*A272174[n],n=1..infinity) 2865689540610063 r005 Re(z^2+c),c=-19/98+29/34*I,n=7 2865689541623731 r005 Re(z^2+c),c=-45/118+9/32*I,n=3 2865689542448804 a008 Real Root of (1+5*x-6*x^2-6*x^3-6*x^4+3*x^5) 2865689545252479 h001 (8/9*exp(2)+4/9)/(5/6*exp(1)+2/11) 2865689545419025 r008 a(0)=3,K{-n^6,21+15*n-9*n^2-20*n^3} 2865689547417500 r009 Im(z^3+c),c=-31/60+3/19*I,n=7 2865689574893973 s002 sum(A270083[n]/((exp(n)-1)/n),n=1..infinity) 2865689576807482 r009 Im(z^3+c),c=-31/94+7/29*I,n=19 2865689579238733 r009 Re(z^3+c),c=-5/28+43/47*I,n=44 2865689589886761 r009 Im(z^3+c),c=-15/31+1/13*I,n=26 2865689592642483 a007 Real Root Of 232*x^4+509*x^3-24*x^2+980*x-662 2865689596452079 m005 (1/2*3^(1/2)-10/11)/(7/10*exp(1)-2/5) 2865689612807671 m001 (BesselI(0,2)+Lehmer)/(Psi(1,1/3)+gamma(1)) 2865689620654502 p001 sum(1/(443*n+35)/(25^n),n=0..infinity) 2865689622367215 s002 sum(A064583[n]/(n^2*pi^n+1),n=1..infinity) 2865689633041861 m005 (1/2*Pi-3/4)/(7/9*exp(1)+3/4) 2865689643355376 p001 sum(1/(555*n+547)/n/(32^n),n=1..infinity) 2865689665798217 a001 196418/2207*521^(12/13) 2865689669781790 m001 Niven^HardHexagonsEntropy*Niven^gamma 2865689676562649 a007 Real Root Of 40*x^4-742*x^3-382*x^2-846*x+291 2865689695343297 m001 KhinchinLevy*(ReciprocalLucas+ZetaP(2)) 2865689699570815 a001 6677057/233 2865689703493163 p004 log(25411/1447) 2865689709039275 b008 -29+Sech[Sqrt[3]] 2865689709288882 r009 Re(z^3+c),c=-9/34+1/30*I,n=7 2865689711667882 m002 -Pi^6/3+3*Pi^2*Log[Pi] 2865689712086678 s002 sum(A094569[n]/(n^2*pi^n+1),n=1..infinity) 2865689716375843 s002 sum(A286333[n]/((exp(n)-1)/n),n=1..infinity) 2865689733783136 a007 Real Root Of 207*x^4+398*x^3-733*x^2-448*x+142 2865689751749182 r005 Im(z^2+c),c=-47/106+17/35*I,n=19 2865689777655024 a001 7/7778742049*55^(19/22) 2865689779585366 r005 Im(z^2+c),c=5/86+3/10*I,n=23 2865689780425411 m001 (ln(gamma)+Zeta(1,2))/(Grothendieck+Magata) 2865689788776639 r005 Re(z^2+c),c=17/126+22/59*I,n=23 2865689793693106 r009 Re(z^3+c),c=-13/29+23/50*I,n=11 2865689811706654 r005 Im(z^2+c),c=-10/29+16/33*I,n=26 2865689829708248 m006 (1/3*ln(Pi)+5)/(2/3/Pi-2/5) 2865689829723503 b008 1/4+(-2+E)*(1/2+Pi) 2865689830874907 r005 Im(z^2+c),c=-5/16+23/50*I,n=43 2865689831377496 m001 (ln(2)/ln(10)+ln(gamma)*ln(Pi))/ln(Pi) 2865689839761987 r005 Re(z^2+c),c=39/106+5/54*I,n=62 2865689845123317 r005 Im(z^2+c),c=-35/94+17/35*I,n=38 2865689845427729 a007 Real Root Of 391*x^4+800*x^3-854*x^2+261*x+219 2865689852426717 m001 (Psi(1,1/3)-Zeta(5))/(Khinchin+PlouffeB) 2865689852620363 m002 -Pi-E^Pi*Coth[Pi]*Log[Pi]+ProductLog[Pi] 2865689862636296 a001 5778/13*514229^(16/19) 2865689865689865 q001 2347/819 2865689869731213 m001 1/GAMMA(7/12)/exp(PrimesInBinary)^2*Zeta(9)^2 2865689874626718 m001 GAMMA(13/24)/(gamma(2)+LandauRamanujan2nd) 2865689875306365 m001 (2*Pi/GAMMA(5/6)-2^(1/3))/(GAMMA(5/6)+Artin) 2865689880519355 m001 RenyiParking*Artin^2*exp(Zeta(7)) 2865689884501858 r005 Im(z^2+c),c=-13/42+28/61*I,n=46 2865689891372844 r005 Im(z^2+c),c=-1/52+25/34*I,n=48 2865689895344139 a007 Real Root Of 245*x^4+493*x^3-701*x^2-603*x-892 2865689897624866 r009 Im(z^3+c),c=-59/98+17/58*I,n=25 2865689901328508 a007 Real Root Of -940*x^4+653*x^3+92*x^2+989*x-300 2865689906116025 a007 Real Root Of -481*x^4+509*x^3-983*x^2+774*x+23 2865689912960160 r005 Im(z^2+c),c=1/60+19/59*I,n=14 2865689923541379 a007 Real Root Of -225*x^4-582*x^3+141*x^2-145*x-96 2865689930078865 m001 ln(OneNinth)^3*sin(Pi/12) 2865689932281595 r002 12th iterates of z^2 + 2865689932734124 l006 ln(515/9044) 2865689936624362 l006 ln(7416/9877) 2865689943958519 p001 sum(1/(429*n+371)/(8^n),n=0..infinity) 2865689948596210 r005 Re(z^2+c),c=-21/82+9/17*I,n=53 2865689949814878 a007 Real Root Of 266*x^4-875*x^3-671*x^2-840*x-208 2865689957571394 a008 Real Root of x^3+205*x-611 2865689964532798 m001 (GlaisherKinkelin+Rabbit)/(ln(2)+gamma(3)) 2865689981567137 a007 Real Root Of 927*x^4-825*x^3+941*x^2+101*x-74 2865689987582175 s002 sum(A101625[n]/(n!^2),n=1..infinity) 2865689999120932 h003 exp(Pi*(1/21*(14-17^(1/2)*21^(1/2))*21^(1/2))) 2865690010119585 m001 (GAMMA(5/6)-Cahen)/(MadelungNaCl-ZetaQ(2)) 2865690012984055 p004 log(17659/13259) 2865690022715472 r009 Re(z^3+c),c=-1/74+46/61*I,n=21 2865690040683625 r005 Im(z^2+c),c=-19/86+26/61*I,n=44 2865690042839181 a001 1926/329*75025^(16/29) 2865690052622041 r005 Re(z^2+c),c=-25/74+5/18*I,n=17 2865690056256760 a007 Real Root Of 333*x^4+825*x^3-158*x^2+575*x-97 2865690059878762 m001 (MertensB1+Porter)/(exp(1/exp(1))-sin(1)) 2865690084902887 a001 29/121393*55^(31/50) 2865690085534182 m001 GAMMA(5/24)^arctan(1/2)*(3^(1/3)) 2865690104391099 m001 (2^(1/3)-Shi(1))/(-Conway+Gompertz) 2865690109900618 l006 ln(5843/7782) 2865690113851982 m001 gamma(2)^ArtinRank2/exp(1/Pi) 2865690127818323 r005 Im(z^2+c),c=27/98+3/22*I,n=42 2865690141595991 p003 LerchPhi(1/64,2,328/175) 2865690142192514 h001 (-exp(1)+7)/(-exp(5)-1) 2865690154170003 m001 (Pi+1)/(Backhouse-Trott) 2865690168283575 a001 514229/5778*521^(12/13) 2865690168849042 p004 log(29033/21799) 2865690170485717 m001 (Cahen+ZetaQ(4))/(cos(1/12*Pi)+GAMMA(17/24)) 2865690173046314 a007 Real Root Of 919*x^4-555*x^3-813*x^2-769*x+294 2865690196997597 a007 Real Root Of 259*x^4+409*x^3-894*x^2+186*x+33 2865690216003433 m005 (13/4+1/4*5^(1/2))/(3/10*5^(1/2)-2) 2865690218265226 h001 (5/12*exp(2)+11/12)/(2/11*exp(1)+9/10) 2865690221533978 m005 (1/2*exp(1)-2/11)/(1/3*Pi-7/11) 2865690221747380 m001 (Chi(1)+gamma(2))/(-Champernowne+ThueMorse) 2865690226804676 l006 ln(376/6603) 2865690229875575 m001 (BesselJ(1,1)-BesselK(0,1))/(-Cahen+Rabbit) 2865690238400688 a001 317811/2*7^(10/33) 2865690241595216 a001 1346269/15127*521^(12/13) 2865690247181889 r005 Im(z^2+c),c=-24/25+1/38*I,n=22 2865690248919441 r005 Im(z^2+c),c=-24/25+1/38*I,n=20 2865690252291241 a001 3524578/39603*521^(12/13) 2865690253851770 a001 9227465/103682*521^(12/13) 2865690254079448 a001 24157817/271443*521^(12/13) 2865690254112665 a001 63245986/710647*521^(12/13) 2865690254117512 a001 165580141/1860498*521^(12/13) 2865690254118219 a001 433494437/4870847*521^(12/13) 2865690254118322 a001 1134903170/12752043*521^(12/13) 2865690254118337 a001 2971215073/33385282*521^(12/13) 2865690254118339 a001 7778742049/87403803*521^(12/13) 2865690254118340 a001 20365011074/228826127*521^(12/13) 2865690254118340 a001 53316291173/599074578*521^(12/13) 2865690254118340 a001 139583862445/1568397607*521^(12/13) 2865690254118340 a001 365435296162/4106118243*521^(12/13) 2865690254118340 a001 956722026041/10749957122*521^(12/13) 2865690254118340 a001 2504730781961/28143753123*521^(12/13) 2865690254118340 a001 6557470319842/73681302247*521^(12/13) 2865690254118340 a001 10610209857723/119218851371*521^(12/13) 2865690254118340 a001 4052739537881/45537549124*521^(12/13) 2865690254118340 a001 1548008755920/17393796001*521^(12/13) 2865690254118340 a001 591286729879/6643838879*521^(12/13) 2865690254118340 a001 225851433717/2537720636*521^(12/13) 2865690254118340 a001 86267571272/969323029*521^(12/13) 2865690254118340 a001 32951280099/370248451*521^(12/13) 2865690254118340 a001 12586269025/141422324*521^(12/13) 2865690254118341 a001 4807526976/54018521*521^(12/13) 2865690254118346 a001 1836311903/20633239*521^(12/13) 2865690254118386 a001 3524667/39604*521^(12/13) 2865690254118656 a001 267914296/3010349*521^(12/13) 2865690254120507 a001 102334155/1149851*521^(12/13) 2865690254133195 a001 39088169/439204*521^(12/13) 2865690254220160 a001 14930352/167761*521^(12/13) 2865690254816229 a001 5702887/64079*521^(12/13) 2865690254941567 r005 Im(z^2+c),c=-24/25+1/38*I,n=19 2865690256126291 r005 Im(z^2+c),c=-24/25+1/38*I,n=21 2865690258901747 a001 2178309/24476*521^(12/13) 2865690261039731 r005 Im(z^2+c),c=-24/25+1/38*I,n=24 2865690263681046 r005 Im(z^2+c),c=-24/25+1/38*I,n=23 2865690265537975 r005 Im(z^2+c),c=-24/25+1/38*I,n=26 2865690266055112 r005 Im(z^2+c),c=-24/25+1/38*I,n=25 2865690266469102 r005 Im(z^2+c),c=-24/25+1/38*I,n=28 2865690266507422 r005 Im(z^2+c),c=1/25+1/38*I,n=10 2865690266537702 r005 Im(z^2+c),c=-24/25+1/38*I,n=27 2865690266549420 r002 40th iterates of z^2 + 2865690266551221 r002 42th iterates of z^2 + 2865690266570118 r002 39th iterates of z^2 + 2865690266576930 r002 41th iterates of z^2 + 2865690266586372 r005 Im(z^2+c),c=1/25+1/38*I,n=11 2865690266591244 r002 44th iterates of z^2 + 2865690266598712 r002 43th iterates of z^2 + 2865690266602066 r005 Im(z^2+c),c=-24/25+1/38*I,n=30 2865690266603985 r002 46th iterates of z^2 + 2865690266604599 r005 Im(z^2+c),c=1/25+1/38*I,n=12 2865690266605049 r005 Im(z^2+c),c=-24/25+1/38*I,n=29 2865690266605432 r002 45th iterates of z^2 + 2865690266606595 r002 48th iterates of z^2 + 2865690266606784 r002 47th iterates of z^2 + 2865690266606791 r005 Im(z^2+c),c=1/25+1/38*I,n=13 2865690266606962 r002 50th iterates of z^2 + 2865690266606968 r005 Im(z^2+c),c=1/25+1/38*I,n=14 2865690266606970 r002 49th iterates of z^2 + 2865690266606973 r005 Im(z^2+c),c=-24/25+1/38*I,n=42 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=44 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=41 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=43 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=46 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=45 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=48 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=47 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=50 2865690266606974 r002 62th iterates of z^2 + 2865690266606974 r002 61th iterates of z^2 + 2865690266606974 r002 64th iterates of z^2 + 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=49 2865690266606974 r002 63th iterates of z^2 + 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=20 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=21 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=52 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=22 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=23 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=64 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=63 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=24 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=30 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=31 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=32 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=33 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=34 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=40 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=41 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=42 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=43 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=44 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=45 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=46 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=47 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=48 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=49 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=50 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=51 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=52 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=53 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=54 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=55 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=56 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=57 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=58 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=59 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=61 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=39 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=38 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=37 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=35 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=36 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=29 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=28 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=27 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=26 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=25 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=61 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=62 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=59 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=60 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=57 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=58 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=51 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=55 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=56 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=53 2865690266606974 r005 Im(z^2+c),c=-24/25+1/38*I,n=54 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=19 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=18 2865690266606974 r002 59th iterates of z^2 + 2865690266606974 r002 60th iterates of z^2 + 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=17 2865690266606974 r002 57th iterates of z^2 + 2865690266606974 r002 58th iterates of z^2 + 2865690266606974 r005 Im(z^2+c),c=1/25+1/38*I,n=16 2865690266606974 r002 55th iterates of z^2 + 2865690266606975 r005 Im(z^2+c),c=1/25+1/38*I,n=15 2865690266606975 r002 56th iterates of z^2 + 2865690266606976 r005 Im(z^2+c),c=-24/25+1/38*I,n=39 2865690266606976 r002 53th iterates of z^2 + 2865690266606978 r005 Im(z^2+c),c=-24/25+1/38*I,n=40 2865690266606978 r002 54th iterates of z^2 + 2865690266606979 r002 51th iterates of z^2 + 2865690266606984 r002 52th iterates of z^2 + 2865690266606996 r005 Im(z^2+c),c=-24/25+1/38*I,n=37 2865690266607018 r005 Im(z^2+c),c=-24/25+1/38*I,n=38 2865690266607123 r005 Im(z^2+c),c=-24/25+1/38*I,n=35 2865690266607261 r005 Im(z^2+c),c=-24/25+1/38*I,n=36 2865690266607660 r005 Im(z^2+c),c=-24/25+1/38*I,n=33 2865690266608270 r005 Im(z^2+c),c=-24/25+1/38*I,n=34 2865690266608899 r005 Im(z^2+c),c=-24/25+1/38*I,n=31 2865690266610461 r005 Im(z^2+c),c=-24/25+1/38*I,n=32 2865690267042333 r005 Im(z^2+c),c=1/25+1/38*I,n=9 2865690267104522 r002 37th iterates of z^2 + 2865690267624835 r002 38th iterates of z^2 + 2865690271952385 r002 35th iterates of z^2 + 2865690277055877 r002 36th iterates of z^2 + 2865690280235859 m001 (Catalan-exp(1))^KomornikLoreti 2865690282097912 a001 832040/843*521^(7/13) 2865690283745942 r005 Im(z^2+c),c=1/25+1/38*I,n=8 2865690285127678 r005 Re(z^2+c),c=-19/66+21/47*I,n=36 2865690286904304 a001 832040/9349*521^(12/13) 2865690291197931 m002 -6+3*Pi^4+ProductLog[Pi]/Pi 2865690299676019 r002 33th iterates of z^2 + 2865690301061811 h001 (6/11*exp(2)+1/8)/(1/2*exp(1)+1/11) 2865690320633252 a007 Real Root Of -252*x^4-715*x^3-273*x^2-802*x+112 2865690324917912 m001 (GAMMA(2/3)+FeigenbaumMu)/(1-exp(1)) 2865690330013903 r002 34th iterates of z^2 + 2865690337963570 a009 1/24*5^(1/2)+1/24*10^(2/3) 2865690344905610 r005 Im(z^2+c),c=21/94+19/37*I,n=39 2865690355969681 a001 55/710647*7^(37/55) 2865690368487214 a009 5*12^(2/3)+6^(1/2) 2865690372277398 m006 (1/6*exp(2*Pi)-5)/(2/5/Pi+1/6) 2865690376889498 m002 -Pi/2-Pi^3/Log[Pi] 2865690377792449 m001 1/(2^(1/3))^2/ln(KhintchineLevy)/GAMMA(17/24) 2865690403436735 m005 (1/2*exp(1)+6)/(9/10*5^(1/2)+5/9) 2865690408739228 r009 Re(z^3+c),c=-13/48+4/55*I,n=6 2865690409372386 r002 31th iterates of z^2 + 2865690410841294 l006 ln(4270/5687) 2865690426247395 r005 Im(z^2+c),c=-23/118+21/58*I,n=4 2865690431670818 s002 sum(A090952[n]/(n^2*10^n+1),n=1..infinity) 2865690450568083 r005 Im(z^2+c),c=-24/25+1/38*I,n=17 2865690451398054 m001 Psi(1,1/3)^Backhouse-FellerTornier 2865690451778498 a008 Real Root of x^4-30*x^2-8*x+156 2865690461307122 m001 Riemann2ndZero/exp(FeigenbaumC)/Trott^2 2865690470549038 a007 Real Root Of -422*x^4+962*x^3-828*x^2+773*x+315 2865690471287950 l003 BesselI(3,28/117) 2865690472186348 a007 Real Root Of -97*x^4-101*x^3+168*x^2-885*x+249 2865690477874900 a001 317811/2207*521^(11/13) 2865690478836694 a001 317811/3571*521^(12/13) 2865690481420015 r005 Im(z^2+c),c=-11/90+17/44*I,n=20 2865690498188622 m003 1/4+(3*Sqrt[5])/32+5*Log[1/2+Sqrt[5]/2] 2865690504079833 r005 Im(z^2+c),c=1/25+1/38*I,n=7 2865690509692669 m002 -(Pi^5*Csch[Pi])+(6*Pi^2)/ProductLog[Pi] 2865690518133267 r005 Re(z^2+c),c=23/86+27/47*I,n=21 2865690522489902 m001 (ln(gamma)+Trott)/(BesselJ(0,1)-gamma) 2865690532621591 r005 Im(z^2+c),c=25/86+7/60*I,n=44 2865690534906460 r002 32th iterates of z^2 + 2865690536921177 p003 LerchPhi(1/100,3,50/153) 2865690542937219 r009 Re(z^3+c),c=-17/40+16/57*I,n=3 2865690545755547 m001 (Bloch+FeigenbaumD*Sierpinski)/Sierpinski 2865690546240302 a001 2/1597*1836311903^(8/17) 2865690549724787 m001 (gamma(2)+Bloch)/(PrimesInBinary-Stephens) 2865690558289133 r005 Re(z^2+c),c=2/25+32/53*I,n=50 2865690579508748 r004 Im(z^2+c),c=-5/6+1/4*I,z(0)=-1,n=14 2865690579760857 a007 Real Root Of -70*x^4-139*x^3+125*x^2-96*x+148 2865690587448000 r005 Re(z^2+c),c=-7/19+1/58*I,n=13 2865690595571306 r005 Im(z^2+c),c=-45/98+25/56*I,n=23 2865690598617338 m001 FeigenbaumKappa^(ln(2)/ln(10))*MertensB1 2865690605133344 a007 Real Root Of -541*x^4+356*x^3+594*x^2+882*x+216 2865690605581825 a007 Real Root Of -330*x^4-430*x^3-758*x^2+421*x+175 2865690606897256 r005 Im(z^2+c),c=-14/15+13/50*I,n=51 2865690610548423 r002 29th iterates of z^2 + 2865690610721989 r005 Re(z^2+c),c=-9/118+39/64*I,n=24 2865690627989737 m005 (5/6*2^(1/2)-3)/(3/4*Pi+4) 2865690636809120 a007 Real Root Of 639*x^4-691*x^3-385*x^2-504*x+188 2865690637909034 r009 Im(z^3+c),c=-17/46+11/50*I,n=21 2865690641878298 r005 Im(z^2+c),c=-24/25+1/38*I,n=18 2865690651674005 a007 Real Root Of -115*x^4-562*x^3-872*x^2-873*x-811 2865690663230604 l006 ln(6967/9279) 2865690681392718 p001 sum(1/(482*n+129)/n/(6^n),n=1..infinity) 2865690685609872 m001 Pi^(1/2)*(Zeta(1,-1)+Grothendieck) 2865690695422877 r005 Re(z^2+c),c=-11/36+23/58*I,n=24 2865690697483799 a007 Real Root Of 274*x^4-972*x^3-606*x^2-744*x+284 2865690707940616 m001 1/ln(Sierpinski)*Kolakoski/cos(1)^2 2865690732834141 r002 35th iterates of z^2 + 2865690734940956 m005 (1/3*3^(1/2)+1/11)/(2*Catalan+1/2) 2865690736277118 m001 (-gamma(2)+HeathBrownMoroz)/(5^(1/2)-Si(Pi)) 2865690737438676 a007 Real Root Of -472*x^4-974*x^3+895*x^2-290*x+729 2865690740022596 r009 Re(z^3+c),c=-51/122+23/58*I,n=56 2865690747839296 h001 (1/7*exp(2)+2/9)/(6/11*exp(2)+3/7) 2865690747929627 m001 1/TreeGrowth2nd*Conway^2*exp(Zeta(9))^2 2865690752644611 m001 (-MertensB1+MertensB2)/(3^(1/2)+cos(1/12*Pi)) 2865690755252861 h001 (1/4*exp(1)+3/8)/(3/8*exp(2)+10/11) 2865690770009097 a007 Real Root Of -5*x^4+178*x^3-10*x^2+450*x+134 2865690770862513 a001 2/75025*6557470319842^(8/17) 2865690786117016 m001 (-Salem+ZetaP(2))/(3^(1/2)+Kolakoski) 2865690786269443 a001 98209/161*322^(2/3) 2865690794542003 a003 sin(Pi*11/28)/cos(Pi*46/117) 2865690807221528 m001 1/Salem/exp(Kolakoski)^2*GAMMA(17/24)^2 2865690812382372 r009 Im(z^3+c),c=-1/44+27/32*I,n=6 2865690821637170 a001 3524578/521*199^(3/11) 2865690836940759 m001 BesselK(1,1)*ln(FeigenbaumB)^2*sqrt(2) 2865690850283215 a001 7/75025*514229^(11/14) 2865690850383336 a001 7/2971215073*365435296162^(11/14) 2865690850383338 a001 7/14930352*433494437^(11/14) 2865690865818448 l006 ln(237/4162) 2865690878621796 r002 30th iterates of z^2 + 2865690883097396 a007 Real Root Of -380*x^4-708*x^3+936*x^2-128*x+912 2865690892401696 a001 1/75640*121393^(17/37) 2865690902104853 m001 Champernowne*GaussKuzminWirsing^GAMMA(3/4) 2865690910469974 r005 Re(z^2+c),c=-33/118+23/49*I,n=64 2865690915219440 r005 Im(z^2+c),c=-11/82+9/23*I,n=22 2865690919650725 v002 sum(1/(5^n+(30*n^2-31*n+54)),n=1..infinity) 2865690929127816 m005 (1/2*3^(1/2)+2/11)/(3/8*Catalan-4) 2865690933868366 m001 LandauRamanujan^2*Conway*exp(LaplaceLimit)^2 2865690938727218 m009 (6*Catalan+3/4*Pi^2-1/2)/(1/4*Psi(1,2/3)-1/3) 2865690946330708 a001 233/1149851*2^(1/2) 2865690947714507 s002 sum(A205582[n]/(exp(2*pi*n)+1),n=1..infinity) 2865690950962126 r002 13th iterates of z^2 + 2865690956993649 r005 Re(z^2+c),c=9/110+13/37*I,n=14 2865690959493971 a007 Real Root Of 750*x^4-286*x^3+618*x^2-204*x-121 2865690963671275 m005 (1/2*5^(1/2)-6/7)/(5/12*exp(1)-2/9) 2865690963759004 r005 Re(z^2+c),c=35/118+4/55*I,n=9 2865690964078434 r005 Re(z^2+c),c=-27/106+29/55*I,n=40 2865690973442160 r009 Re(z^3+c),c=-51/122+23/58*I,n=52 2865690978384735 r005 Im(z^2+c),c=-13/36+16/31*I,n=21 2865690980377936 a001 416020/2889*521^(11/13) 2865690983932666 m002 -(E^Pi/Pi^5)+4*Coth[Pi]-ProductLog[Pi] 2865690987124463 a001 6677060/233 2865690990978252 r005 Im(z^2+c),c=-7/34+8/19*I,n=17 2865691009872481 r005 Im(z^2+c),c=-9/10+38/167*I,n=47 2865691018258550 m001 (PrimesInBinary-Robbin)/(Pi-BesselI(0,2)) 2865691026170417 a007 Real Root Of 111*x^4+552*x^3+861*x^2+283*x-755 2865691040761313 b008 Zeta[-1/12]/15 2865691046309806 g002 2*Psi(8/11)+Psi(3/5)-Psi(4/5) 2865691053089084 a007 Real Root Of 55*x^4-217*x^3-754*x^2+752*x-469 2865691053089749 p004 log(22531/1283) 2865691053692156 a001 311187/2161*521^(11/13) 2865691057699909 m001 Pi^2*exp(FeigenbaumC)/arctan(1/2)^2 2865691060084390 a008 Real Root of x^4-x^3+6*x^2-21*x-33 2865691062823602 l006 ln(2697/3592) 2865691064388556 a001 5702887/39603*521^(11/13) 2865691065949140 a001 7465176/51841*521^(11/13) 2865691066176826 a001 39088169/271443*521^(11/13) 2865691066210045 a001 14619165/101521*521^(11/13) 2865691066214892 a001 133957148/930249*521^(11/13) 2865691066215599 a001 701408733/4870847*521^(11/13) 2865691066215702 a001 1836311903/12752043*521^(11/13) 2865691066215717 a001 14930208/103681*521^(11/13) 2865691066215719 a001 12586269025/87403803*521^(11/13) 2865691066215720 a001 32951280099/228826127*521^(11/13) 2865691066215720 a001 43133785636/299537289*521^(11/13) 2865691066215720 a001 32264490531/224056801*521^(11/13) 2865691066215720 a001 591286729879/4106118243*521^(11/13) 2865691066215720 a001 774004377960/5374978561*521^(11/13) 2865691066215720 a001 4052739537881/28143753123*521^(11/13) 2865691066215720 a001 1515744265389/10525900321*521^(11/13) 2865691066215720 a001 3278735159921/22768774562*521^(11/13) 2865691066215720 a001 2504730781961/17393796001*521^(11/13) 2865691066215720 a001 956722026041/6643838879*521^(11/13) 2865691066215720 a001 182717648081/1268860318*521^(11/13) 2865691066215720 a001 139583862445/969323029*521^(11/13) 2865691066215720 a001 53316291173/370248451*521^(11/13) 2865691066215720 a001 10182505537/70711162*521^(11/13) 2865691066215721 a001 7778742049/54018521*521^(11/13) 2865691066215726 a001 2971215073/20633239*521^(11/13) 2865691066215766 a001 567451585/3940598*521^(11/13) 2865691066216036 a001 433494437/3010349*521^(11/13) 2865691066217887 a001 165580141/1149851*521^(11/13) 2865691066230576 a001 31622993/219602*521^(11/13) 2865691066317544 a001 24157817/167761*521^(11/13) 2865691066913634 a001 9227465/64079*521^(11/13) 2865691070999296 a001 1762289/12238*521^(11/13) 2865691077500393 r004 Re(z^2+c),c=-4/11+1/9*I,z(0)=-1,n=18 2865691084364936 h001 (1/12*exp(1)+4/7)/(6/7*exp(1)+5/11) 2865691094196444 a001 1346269/843*521^(6/13) 2865691096392862 r009 Re(z^3+c),c=-31/110+4/35*I,n=5 2865691096830276 m001 1/Zeta(5)/ln(GAMMA(1/12))^2*sqrt(Pi) 2865691099002837 a001 1346269/9349*521^(11/13) 2865691099737115 a007 Real Root Of -204*x^4+449*x^3-111*x^2+935*x+289 2865691103040393 a007 Real Root Of 248*x^4-816*x^3-52*x^2-901*x+280 2865691105380196 r005 Im(z^2+c),c=-41/118+17/35*I,n=21 2865691108103589 m008 (1/5*Pi^4-1)/(-1+1/6*Pi^2) 2865691115931694 a007 Real Root Of 378*x^4+826*x^3-796*x^2+129*x+853 2865691122620189 r005 Im(z^2+c),c=-21/22+31/92*I,n=7 2865691147332432 m005 (1/2*3^(1/2)+5/7)/(-117/20+3/20*5^(1/2)) 2865691155726876 r002 10th iterates of z^2 + 2865691156014052 r005 Re(z^2+c),c=-23/90+31/60*I,n=32 2865691160058480 a007 Real Root Of -868*x^4-342*x^3+671*x^2+767*x-261 2865691162813585 p004 log(14207/809) 2865691164192537 r005 Im(z^2+c),c=-9/11+7/40*I,n=39 2865691171222003 h001 (7/12*exp(2)+2/9)/(3/7*exp(1)+5/12) 2865691178059842 r005 Im(z^2+c),c=-29/82+28/59*I,n=47 2865691183634500 r009 Im(z^3+c),c=-31/94+7/29*I,n=18 2865691185486099 r005 Re(z^2+c),c=-2/7+24/53*I,n=29 2865691186047328 a005 (1/cos(7/78*Pi))^1398 2865691191913263 r005 Im(z^2+c),c=3/13+25/49*I,n=20 2865691193798883 a007 Real Root Of -270*x^4-549*x^3+350*x^2-621*x+635 2865691208131158 m001 (Landau-Riemann1stZero)/(ln(3)-GolombDickman) 2865691210326873 r002 27th iterates of z^2 + 2865691218868559 r005 Re(z^2+c),c=17/66+5/51*I,n=19 2865691220238023 m005 (9/20+1/4*5^(1/2))/(4/11*exp(1)-7/11) 2865691227347212 p001 sum((-1)^n/(101*n+37)/n/(25^n),n=0..infinity) 2865691238093519 r005 Im(z^2+c),c=-99/122+9/56*I,n=45 2865691242426887 m001 1/ln(Trott)/FeigenbaumAlpha/GAMMA(7/24) 2865691255723789 m001 (-exp(-1/2*Pi)+Otter)/(2^(1/3)-ln(2)/ln(10)) 2865691257375560 b008 CosIntegral[E/85] 2865691267991062 a001 1926/7*3^(1/27) 2865691268717040 a007 Real Root Of 714*x^4+495*x^3+507*x^2-566*x-197 2865691282324692 m001 (GAMMA(23/24)-LandauRamanujan)/(Thue+ZetaQ(2)) 2865691285869236 l006 ln(572/10045) 2865691289980185 a001 514229/2207*521^(10/13) 2865691290941980 a001 514229/3571*521^(11/13) 2865691303774091 a001 5702887/322*123^(1/10) 2865691311946504 r005 Im(z^2+c),c=-11/9+15/112*I,n=31 2865691314560195 l005 sec(257/59) 2865691325967354 a001 3/13*13^(55/56) 2865691326217146 m001 exp(1)*(GAMMA(11/12)-HeathBrownMoroz) 2865691327785981 m001 (Zeta(1,2)+MinimumGamma)/(ln(5)+Ei(1,1)) 2865691334781308 r009 Im(z^3+c),c=-53/110+4/43*I,n=43 2865691340423790 m001 (StronglyCareFree-Thue)/(3^(1/3)+MinimumGamma) 2865691349234618 a007 Real Root Of 494*x^4-417*x^3+33*x^2-601*x+176 2865691350212240 r005 Re(z^2+c),c=-10/29+17/28*I,n=56 2865691355066024 r005 Re(z^2+c),c=-19/24+4/33*I,n=10 2865691369064845 a007 Real Root Of -343*x^4-411*x^3-690*x^2+927*x-197 2865691382589032 a001 11/196418*34^(25/54) 2865691383089810 m005 (1/2*Catalan+5)/(1/2*exp(1)+6/11) 2865691389833120 r009 Im(z^3+c),c=-11/31+4/17*I,n=4 2865691391026958 r002 18th iterates of z^2 + 2865691403668396 r005 Re(z^2+c),c=-13/44+28/57*I,n=19 2865691406042786 a003 sin(Pi*17/97)/cos(Pi*34/77) 2865691417748088 m001 (-GAMMA(1/12)+3)/(cos(Pi/12)+2) 2865691418672803 m001 (Magata+Tribonacci)^HardyLittlewoodC3 2865691433650330 p003 LerchPhi(1/8,6,535/201) 2865691443222440 a007 Real Root Of -121*x^4+53*x^3+909*x^2-911*x-668 2865691450380784 r005 Re(z^2+c),c=-41/28+37/59*I,n=2 2865691464374932 r005 Re(z^2+c),c=39/110+9/64*I,n=58 2865691465104348 r009 Re(z^3+c),c=-19/60+11/54*I,n=9 2865691480648463 r005 Im(z^2+c),c=-25/36+15/53*I,n=23 2865691489361702 q001 2155/752 2865691489943011 l006 ln(6518/8681) 2865691525819431 r005 Re(z^2+c),c=-13/44+16/41*I,n=12 2865691542508917 h005 exp(cos(Pi*8/37)/cos(Pi*4/17)) 2865691557875893 h002 exp(21^(1/2)/(14+11^(2/3))^(1/2)) 2865691574034284 h001 (4/7*exp(1)+3/11)/(7/9*exp(2)+5/8) 2865691574193433 r005 Im(z^2+c),c=-41/114+24/53*I,n=16 2865691583039389 l006 ln(335/5883) 2865691610238875 r005 Re(z^2+c),c=-17/48+11/58*I,n=21 2865691613144712 r005 Im(z^2+c),c=11/30+4/13*I,n=6 2865691613536821 a007 Real Root Of -32*x^4-892*x^3+693*x^2-720*x-896 2865691614289775 b008 InverseErf[-1/3+Sech[1]] 2865691617068077 m001 exp(Zeta(3))^2/Cahen^2/cos(Pi/12)^2 2865691628852421 a007 Real Root Of 105*x^4-812*x^3-543*x^2-342*x+161 2865691650700523 m001 1/exp(CareFree)^2*DuboisRaymond^2*GAMMA(1/6)^2 2865691665432465 m005 (1/2*5^(1/2)+2/7)/(3/8*Catalan-5/6) 2865691670008479 r005 Im(z^2+c),c=-1/15+21/58*I,n=15 2865691671073629 r005 Im(z^2+c),c=-61/52+19/53*I,n=3 2865691673482848 a007 Real Root Of 280*x^4+443*x^3-910*x^2+203*x-403 2865691676771891 r005 Im(z^2+c),c=27/98+3/22*I,n=43 2865691678986260 s002 sum(A102616[n]/((2*n+1)!),n=1..infinity) 2865691682236568 r005 Im(z^2+c),c=-11/56+16/39*I,n=10 2865691684614579 r005 Re(z^2+c),c=-7/19+1/35*I,n=14 2865691690909244 a001 1/76*(1/2*5^(1/2)+1/2)^5*199^(9/16) 2865691727459640 a007 Real Root Of -201*x^4-676*x^3-591*x^2-952*x-228 2865691729233233 m009 (8*Catalan+Pi^2+2/5)/(6*Psi(1,1/3)+5/6) 2865691735704554 m005 (4/5*Catalan-1/5)/(1/2*exp(1)+1/2) 2865691753771931 m005 (21/10+5/2*5^(1/2))/(3*gamma-2) 2865691758999098 r009 Re(z^3+c),c=-41/114+9/31*I,n=19 2865691760605102 p001 sum(1/(522*n+355)/(24^n),n=0..infinity) 2865691765464914 r005 Im(z^2+c),c=17/58+4/33*I,n=18 2865691778157639 m001 (MertensB2+ZetaQ(3))/(Shi(1)-ln(2)) 2865691782081274 a007 Real Root Of 861*x^4-269*x^3+549*x^2-910*x-318 2865691791419327 l006 ln(3821/5089) 2865691792476666 a001 1346269/5778*521^(10/13) 2865691794361562 a001 121393/1364*521^(12/13) 2865691817201613 r005 Im(z^2+c),c=-7/48+21/53*I,n=27 2865691818773596 a003 sin(Pi*17/91)-sin(Pi*27/85) 2865691824740520 a001 47*(1/2*5^(1/2)+1/2)^29*521^(4/15) 2865691841787528 a007 Real Root Of -618*x^4+756*x^3+931*x^2+743*x-303 2865691857159794 r005 Re(z^2+c),c=5/16+8/57*I,n=53 2865691862689700 a007 Real Root Of -88*x^4+661*x^3+422*x^2+113*x-82 2865691865789929 a001 3524578/15127*521^(10/13) 2865691875433702 m001 (DuboisRaymond-Stephens)/(Totient-ZetaQ(3)) 2865691876486190 a001 9227465/39603*521^(10/13) 2865691878046754 a001 24157817/103682*521^(10/13) 2865691878274437 a001 63245986/271443*521^(10/13) 2865691878307656 a001 165580141/710647*521^(10/13) 2865691878312502 a001 433494437/1860498*521^(10/13) 2865691878313209 a001 1134903170/4870847*521^(10/13) 2865691878313312 a001 2971215073/12752043*521^(10/13) 2865691878313327 a001 7778742049/33385282*521^(10/13) 2865691878313330 a001 20365011074/87403803*521^(10/13) 2865691878313330 a001 53316291173/228826127*521^(10/13) 2865691878313330 a001 139583862445/599074578*521^(10/13) 2865691878313330 a001 365435296162/1568397607*521^(10/13) 2865691878313330 a001 956722026041/4106118243*521^(10/13) 2865691878313330 a001 2504730781961/10749957122*521^(10/13) 2865691878313330 a001 6557470319842/28143753123*521^(10/13) 2865691878313330 a001 10610209857723/45537549124*521^(10/13) 2865691878313330 a001 4052739537881/17393796001*521^(10/13) 2865691878313330 a001 1548008755920/6643838879*521^(10/13) 2865691878313330 a001 591286729879/2537720636*521^(10/13) 2865691878313330 a001 225851433717/969323029*521^(10/13) 2865691878313330 a001 86267571272/370248451*521^(10/13) 2865691878313330 a001 63246219/271444*521^(10/13) 2865691878313331 a001 12586269025/54018521*521^(10/13) 2865691878313337 a001 4807526976/20633239*521^(10/13) 2865691878313376 a001 1836311903/7881196*521^(10/13) 2865691878313646 a001 701408733/3010349*521^(10/13) 2865691878315497 a001 267914296/1149851*521^(10/13) 2865691878328186 a001 102334155/439204*521^(10/13) 2865691878415153 a001 39088169/167761*521^(10/13) 2865691879011235 a001 14930352/64079*521^(10/13) 2865691880367397 r009 Im(z^3+c),c=-43/102+9/49*I,n=31 2865691883096843 a001 5702887/24476*521^(10/13) 2865691889170041 r005 Im(z^2+c),c=-6/31+33/49*I,n=35 2865691890317599 r002 7th iterates of z^2 + 2865691892337978 r002 5th iterates of z^2 + 2865691906293626 a001 726103/281*521^(5/13) 2865691909306145 r002 19th iterates of z^2 + 2865691911100020 a001 2178309/9349*521^(10/13) 2865691922420964 r002 12th iterates of z^2 + 2865691934268489 a001 377/843*(1/2+1/2*5^(1/2))^23 2865691934268489 a001 377/843*4106118243^(1/2) 2865691934523958 a001 377/843*103682^(23/24) 2865691934589933 r005 Im(z^2+c),c=29/110+3/20*I,n=31 2865691948808619 a007 Real Root Of -268*x^4+696*x^3-47*x^2+614*x+198 2865691961628127 m002 -6-E^Pi+15/Pi^3 2865691963056544 r002 13th iterates of z^2 + 2865691971472144 r009 Im(z^3+c),c=-37/58+15/52*I,n=7 2865691975301496 g002 -gamma-2*ln(2)+Psi(2/9)-Psi(5/12)-Psi(7/11) 2865691975605829 l006 ln(433/7604) 2865691983347133 r009 Im(z^3+c),c=-29/50+20/43*I,n=12 2865691987840386 m001 Ei(1)/(HardyLittlewoodC5^arctan(1/2)) 2865692019674393 m001 (GAMMA(2/3)+Backhouse)/(ZetaP(3)-ZetaP(4)) 2865692027719075 r005 Re(z^2+c),c=-35/122+13/28*I,n=22 2865692039738236 a007 Real Root Of -907*x^4-355*x^3-249*x^2+589*x+187 2865692041041150 r005 Re(z^2+c),c=-3/11+19/39*I,n=43 2865692044086412 r005 Im(z^2+c),c=-5/4+24/179*I,n=6 2865692049042714 m001 (ln(2)+Zeta(1/2))/(gamma(1)+PolyaRandomWalk3D) 2865692059927640 a007 Real Root Of -363*x^4-879*x^3+777*x^2+855*x-136 2865692068083496 r005 Im(z^2+c),c=-15/58+26/59*I,n=32 2865692073230633 m001 ln(3)*(3^(1/2))^KhinchinHarmonic 2865692079449515 r005 Re(z^2+c),c=-27/74+7/58*I,n=9 2865692088536112 m001 Pi+exp(Pi)+BesselJ(0,1)+ln(5) 2865692090727583 m001 ln(Ei(1))^2/MertensB1*GAMMA(2/3)^2 2865692091195488 a007 Real Root Of 362*x^4+966*x^3-575*x^2-922*x+400 2865692102074864 a001 832040/2207*521^(9/13) 2865692103036658 a001 832040/3571*521^(10/13) 2865692104890801 a007 Real Root Of 102*x^4+377*x^3+576*x^2+678*x-794 2865692134385460 m001 (TreeGrowth2nd+Tribonacci)/(Ei(1,1)+Stephens) 2865692147725479 a007 Real Root Of 404*x^4+990*x^3-503*x^2-192*x-367 2865692148564853 m001 (BesselI(0,1)*Robbin-Weierstrass)/BesselI(0,1) 2865692155230287 a007 Real Root Of 34*x^4+998*x^3+701*x^2+666*x+326 2865692155689297 r005 Im(z^2+c),c=-111/122+14/57*I,n=50 2865692156398058 m001 (GAMMA(19/24)+Salem)/(Ei(1)-Psi(1,1/3)) 2865692188794971 l006 ln(4945/6586) 2865692189516774 r005 Im(z^2+c),c=-24/25+1/38*I,n=15 2865692200474800 m001 exp(GAMMA(23/24))/GAMMA(1/6)^2/Pi 2865692223270077 l006 ln(531/9325) 2865692247010132 m001 (Si(Pi)+gamma)/(-exp(-1/2*Pi)+GAMMA(11/12)) 2865692251518693 r005 Im(z^2+c),c=-67/110+11/26*I,n=55 2865692252104091 h001 (3/8*exp(1)+10/11)/(4/5*exp(2)+9/11) 2865692257212147 b008 -3+(71/2)^(1/3) 2865692261583239 a001 15127/2*4181^(17/39) 2865692278774103 r005 Im(z^2+c),c=-43/48+7/31*I,n=51 2865692299250474 m001 1+BesselK(0,1)+exp(1/exp(1)) 2865692300760274 a007 Real Root Of -782*x^4+744*x^3-183*x^2+388*x+149 2865692307696989 m001 Pi-ln(2)/ln(10)-2^(1/3)+GAMMA(17/24) 2865692308125970 r005 Re(z^2+c),c=9/25+7/27*I,n=52 2865692317865748 r009 Re(z^3+c),c=-51/122+23/58*I,n=53 2865692318032547 r005 Re(z^2+c),c=-19/86+18/37*I,n=10 2865692325147869 r009 Im(z^3+c),c=-9/19+8/61*I,n=64 2865692339004982 m001 BesselJ(0,1)*gamma^KomornikLoreti 2865692349964193 m001 2*Pi/GAMMA(5/6)/(StronglyCareFree-exp(1)) 2865692352464132 m001 ln(CopelandErdos)^2*Cahen*Zeta(1/2)^2 2865692357220997 m005 (1/2*Pi-4/5)/(7/12*Pi+6/7) 2865692363014310 m005 (1/2*2^(1/2)-5/8)/(-71/24+1/24*5^(1/2)) 2865692366527551 r005 Im(z^2+c),c=-4/17+21/50*I,n=12 2865692375731943 a008 Real Root of (2+4*x^2+x^3+2*x^4-x^5) 2865692379599017 m001 KomornikLoreti^cos(1/5*Pi)+BesselI(0,1) 2865692386554993 a007 Real Root Of -59*x^4+75*x^3+701*x^2-95*x-285 2865692387645961 r005 Re(z^2+c),c=-33/38+22/53*I,n=2 2865692390743594 m001 (HardyLittlewoodC5-Rabbit)/(Zeta(5)-gamma(2)) 2865692402482333 a007 Real Root Of -983*x^4-581*x^3-668*x^2+552*x+206 2865692412949014 m009 (3/5*Psi(1,2/3)-2/5)/(1/5*Psi(1,1/3)+3) 2865692416333307 s002 sum(A039900[n]/(n*2^n-1),n=1..infinity) 2865692426624748 m001 1/exp(Magata)/MadelungNaCl/Robbin 2865692433043342 m001 (sin(1)+Grothendieck)/(PlouffeB+TreeGrowth2nd) 2865692435104103 r005 Re(z^2+c),c=-91/118+1/12*I,n=8 2865692438979892 l006 ln(6069/8083) 2865692441703229 r005 Im(z^2+c),c=1/25+1/38*I,n=6 2865692442656227 a007 Real Root Of 96*x^4-97*x^3-769*x^2+716*x-390 2865692442810506 m002 6-E^Pi+Pi^5-Sinh[Pi]/5 2865692449960351 r005 Re(z^2+c),c=-9/25+9/61*I,n=13 2865692456915170 m001 (2^(1/2)+exp(1/Pi))/(-HeathBrownMoroz+Paris) 2865692465475374 a008 Real Root of x^4-7*x^2-22*x-73 2865692490861601 r009 Re(z^3+c),c=-51/122+23/58*I,n=50 2865692494379911 m001 1/exp(Porter)/Si(Pi)^2/GAMMA(1/24) 2865692506509800 m001 BesselI(0,1)*(5^(1/2)+Trott2nd) 2865692516770029 m001 1/exp(LambertW(1))*(2^(1/3))^2/Pi 2865692522890747 b008 -3+Zeta[-1/4,1/3] 2865692547696412 r009 Re(z^3+c),c=-5/13+4/15*I,n=3 2865692552730335 a007 Real Root Of 276*x^4+4*x^3+835*x^2-606*x-244 2865692556936172 m001 Conway*(BesselI(0,2)-StolarskyHarborth) 2865692561325739 m005 (1/3*Catalan-2/3)/(3/4*exp(1)-7/9) 2865692565635255 r005 Im(z^2+c),c=-9/13+3/29*I,n=35 2865692573771828 m001 (Si(Pi)+cos(1/12*Pi))/(BesselJ(1,1)+Landau) 2865692581428908 a007 Real Root Of -355*x^4-759*x^3+420*x^2-714*x+584 2865692587972598 a007 Real Root Of 360*x^4+828*x^3-661*x^2-561*x-972 2865692589306933 r002 27th iterates of z^2 + 2865692591194084 r005 Im(z^2+c),c=-33/94+9/19*I,n=56 2865692591833402 r005 Im(z^2+c),c=-31/74+23/43*I,n=64 2865692600256473 a007 Real Root Of -222*x^4+444*x^3-314*x^2+809*x-215 2865692603499555 r005 Im(z^2+c),c=5/86+3/10*I,n=22 2865692604574045 a001 726103/1926*521^(9/13) 2865692606513127 a001 98209/682*521^(11/13) 2865692610975500 l006 ln(7193/9580) 2865692620585919 r005 Re(z^2+c),c=4/27+7/25*I,n=4 2865692623151054 m001 exp(Riemann2ndZero)*PrimesInBinary^2/cos(Pi/5) 2865692624604472 r005 Re(z^2+c),c=-89/70+15/62*I,n=2 2865692625661200 r005 Re(z^2+c),c=-11/106+19/29*I,n=63 2865692636303827 m001 (1+3^(1/2))^(1/2)/Trott2nd*Weierstrass 2865692655361164 a007 Real Root Of 962*x^4+985*x^3+303*x^2-979*x+226 2865692677887702 a001 5702887/15127*521^(9/13) 2865692688584021 a001 4976784/13201*521^(9/13) 2865692690144593 a001 39088169/103682*521^(9/13) 2865692690372277 a001 34111385/90481*521^(9/13) 2865692690405496 a001 267914296/710647*521^(9/13) 2865692690410342 a001 233802911/620166*521^(9/13) 2865692690411050 a001 1836311903/4870847*521^(9/13) 2865692690411153 a001 1602508992/4250681*521^(9/13) 2865692690411168 a001 12586269025/33385282*521^(9/13) 2865692690411170 a001 10983760033/29134601*521^(9/13) 2865692690411170 a001 86267571272/228826127*521^(9/13) 2865692690411170 a001 267913919/710646*521^(9/13) 2865692690411170 a001 591286729879/1568397607*521^(9/13) 2865692690411170 a001 516002918640/1368706081*521^(9/13) 2865692690411170 a001 4052739537881/10749957122*521^(9/13) 2865692690411170 a001 3536736619241/9381251041*521^(9/13) 2865692690411170 a001 6557470319842/17393796001*521^(9/13) 2865692690411170 a001 2504730781961/6643838879*521^(9/13) 2865692690411170 a001 956722026041/2537720636*521^(9/13) 2865692690411170 a001 365435296162/969323029*521^(9/13) 2865692690411170 a001 139583862445/370248451*521^(9/13) 2865692690411170 a001 53316291173/141422324*521^(9/13) 2865692690411171 a001 20365011074/54018521*521^(9/13) 2865692690411177 a001 7778742049/20633239*521^(9/13) 2865692690411216 a001 2971215073/7881196*521^(9/13) 2865692690411487 a001 1134903170/3010349*521^(9/13) 2865692690413338 a001 433494437/1149851*521^(9/13) 2865692690426026 a001 165580141/439204*521^(9/13) 2865692690512994 a001 63245986/167761*521^(9/13) 2865692691109079 a001 24157817/64079*521^(9/13) 2865692695194710 a001 9227465/24476*521^(9/13) 2865692704330930 a007 Real Root Of -297*x^4-634*x^3+577*x^2+171*x+861 2865692718391641 a001 3524578/843*521^(4/13) 2865692719880710 a007 Real Root Of -142*x^4-346*x^3-175*x^2-685*x+908 2865692723198036 a001 3524578/9349*521^(9/13) 2865692738793337 m001 ln(5)*3^(1/3)*Champernowne 2865692743429783 r002 11th iterates of z^2 + 2865692745833096 m001 FeigenbaumAlpha-ln(gamma)*TwinPrimes 2865692745833096 m001 FeigenbaumAlpha-log(gamma)*TwinPrimes 2865692747781222 r005 Im(z^2+c),c=1/5+5/24*I,n=23 2865692755154675 m001 (Catalan-GAMMA(7/12))/(Conway+GaussAGM) 2865692768244854 m001 (GAMMA(19/24)-Stephens)/(Trott-ZetaQ(3)) 2865692787317094 r005 Re(z^2+c),c=-9/25+5/34*I,n=16 2865692806566886 a001 47/55*46368^(17/52) 2865692806736672 m001 Psi(2,1/3)*GAMMA(3/4)/CopelandErdos 2865692808623209 r005 Re(z^2+c),c=-19/54+10/49*I,n=22 2865692824658442 r005 Im(z^2+c),c=-9/29+17/37*I,n=36 2865692832647341 a001 39088169/2207*199^(1/11) 2865692848586454 a007 Real Root Of -208*x^4+988*x^3+68*x^2+921*x+283 2865692866758993 r005 Re(z^2+c),c=-41/94+11/29*I,n=3 2865692869516374 m001 (-ThueMorse+Weierstrass)/(MertensB3-exp(Pi)) 2865692871209478 r005 Re(z^2+c),c=-5/14+9/53*I,n=16 2865692882594581 a007 Real Root Of 889*x^4+591*x^3+117*x^2-766*x+190 2865692889436428 r002 5th iterates of z^2 + 2865692890360531 m001 1/OneNinth*exp(MertensB1)/BesselK(0,1) 2865692897887210 b008 ArcCsch[2+3^(1/3)] 2865692902524753 a007 Real Root Of 13*x^4-581*x^3+152*x^2-718*x-232 2865692914173911 a001 1346269/2207*521^(8/13) 2865692915135706 a001 1346269/3571*521^(9/13) 2865692928981308 m001 exp(sqrt(2))/GAMMA(1/3)^2*sqrt(5)^2 2865692937320672 r008 a(0)=3,K{-n^6,27-17*n^3-15*n^2+12*n} 2865692952427347 g004 Im(Psi(-15/4+I*29/24)) 2865692952965851 m005 (1/3*exp(1)+1/6)/(4/9*gamma-4) 2865692960669212 m009 (3/8*Pi^2-2/3)/(2/5*Psi(1,2/3)-1/6) 2865692965545834 m005 (1/3*2^(1/2)-1/10)/(7/9*exp(1)-9/11) 2865692965938610 b008 -4/9+Cot[Sqrt[2]] 2865692971404519 a005 (1/cos(56/181*Pi))^42 2865692975032437 a001 28657/123*7^(5/47) 2865692976359150 a007 Real Root Of -224*x^4-766*x^3-275*x^2+262*x+89 2865692988850294 r002 34th iterates of z^2 + 2865692994182508 m002 2+E^Pi/Log[Pi]+6*ProductLog[Pi] 2865693003019762 r005 Im(z^2+c),c=-7/26+4/9*I,n=47 2865693007490937 a007 Real Root Of -61*x^4+439*x^3-41*x^2+373*x+121 2865693012729158 m001 (Ei(1)-GAMMA(7/12))/(Mills-Sierpinski) 2865693013171038 a007 Real Root Of 55*x^4-196*x^3-968*x^2+347*x+622 2865693017063757 m001 (gamma(3)+GAMMA(17/24))/(Zeta(5)-sin(1/5*Pi)) 2865693026770814 m001 (Trott+Trott2nd)/(CareFree-Chi(1)) 2865693060942035 m001 (-Porter+Rabbit)/(gamma-sin(1)) 2865693067969220 m005 (1/2*2^(1/2)-1/11)/(1/8*Zeta(3)+2) 2865693084135123 r005 Im(z^2+c),c=-19/86+26/61*I,n=39 2865693086297418 r005 Im(z^2+c),c=-51/98+23/56*I,n=20 2865693089474793 a001 121393/322*322^(3/4) 2865693099820435 m001 DuboisRaymond*(PisotVijayaraghavan+ZetaR(2)) 2865693102373031 m005 (1/3*3^(1/2)-1/4)/(3/7*3^(1/2)+2/5) 2865693116926633 r009 Im(z^3+c),c=-9/62+47/56*I,n=48 2865693144274139 m001 BesselK(1,1)^GAMMA(23/24)-HardyLittlewoodC4 2865693147398576 a007 Real Root Of -226*x^4-548*x^3+501*x^2+415*x-580 2865693150027201 a007 Real Root Of -370*x^4-738*x^3+504*x^2-997*x+589 2865693152988992 m001 OneNinth^2/ln(CopelandErdos)^2/BesselJ(1,1)^2 2865693154272347 m005 (47/44+1/4*5^(1/2))/(2/5*3^(1/2)-1/8) 2865693156158675 m001 FeigenbaumD+LandauRamanujan2nd^Pi 2865693171774356 r005 Re(z^2+c),c=41/114+17/31*I,n=5 2865693173568898 l006 ln(3371/3469) 2865693173568898 p004 log(3469/3371) 2865693206596133 a007 Real Root Of 34*x^4+957*x^3-501*x^2-148*x-782 2865693208145899 r009 Re(z^3+c),c=-11/62+53/58*I,n=52 2865693236384094 a007 Real Root Of -247*x^4-270*x^3+964*x^2-528*x+874 2865693241633497 m002 -11+Pi+Pi^5-Cosh[Pi] 2865693261338574 r004 Im(z^2+c),c=1/5+5/24*I,z(0)=exp(5/8*I*Pi),n=27 2865693276381086 r005 Re(z^2+c),c=-39/106+1/23*I,n=18 2865693283916113 m001 1/exp(HardHexagonsEntropy)*Backhouse*Kolakoski 2865693296865920 a007 Real Root Of 319*x^4+630*x^3-891*x^2-165*x+157 2865693311379767 a001 2/199*7^(7/13) 2865693317540967 l006 ln(98/1721) 2865693321561783 r002 32th iterates of z^2 + 2865693333408005 r005 Im(z^2+c),c=-29/114+18/41*I,n=18 2865693335145944 a001 34111385/1926*199^(1/11) 2865693339903153 r009 Re(z^3+c),c=-25/58+13/31*I,n=40 2865693340639688 m006 (3/4*exp(2*Pi)+2)/(5/Pi-3) 2865693349691720 r009 Im(z^3+c),c=-35/74+7/53*I,n=58 2865693355780220 a003 sin(Pi*5/29)-sin(Pi*8/27) 2865693361274830 m005 (1/3*gamma+1/2)/(8/9*5^(1/2)+3/7) 2865693365070439 h001 (2/5*exp(2)+3/5)/(1/12*exp(2)+5/8) 2865693370358224 m007 (-3/5*gamma-1/3)/(-2*gamma-6*ln(2)+Pi-1/5) 2865693371849267 m005 (1/2*Pi+1)/(35/44+1/22*5^(1/2)) 2865693391924052 a007 Real Root Of -449*x^4-927*x^3+888*x^2-480*x-203 2865693396482632 a007 Real Root Of 905*x^4-721*x^3+506*x^2-940*x-334 2865693398793196 m001 (Weierstrass+ZetaQ(2))/(ln(5)+CopelandErdos) 2865693407335535 g006 2*Psi(1,1/12)-Psi(1,8/9)-Psi(1,7/9) 2865693408459517 a001 267914296/15127*199^(1/11) 2865693409507970 m001 (FeigenbaumKappa+Paris)/(ln(2^(1/2)+1)-Artin) 2865693414953841 r008 a(0)=3,K{-n^6,27-43*n+4*n^2+20*n^3} 2865693416672258 a001 1762289/2889*521^(8/13) 2865693418590644 a001 317811/1364*521^(10/13) 2865693419155823 a001 17711*199^(1/11) 2865693420716393 a001 1836311903/103682*199^(1/11) 2865693420944077 a001 1602508992/90481*199^(1/11) 2865693420977296 a001 12586269025/710647*199^(1/11) 2865693420982143 a001 10983760033/620166*199^(1/11) 2865693420982850 a001 86267571272/4870847*199^(1/11) 2865693420982953 a001 75283811239/4250681*199^(1/11) 2865693420982968 a001 591286729879/33385282*199^(1/11) 2865693420982970 a001 516002918640/29134601*199^(1/11) 2865693420982970 a001 4052739537881/228826127*199^(1/11) 2865693420982970 a001 3536736619241/199691526*199^(1/11) 2865693420982971 a001 6557470319842/370248451*199^(1/11) 2865693420982971 a001 2504730781961/141422324*199^(1/11) 2865693420982971 a001 956722026041/54018521*199^(1/11) 2865693420982977 a001 365435296162/20633239*199^(1/11) 2865693420983017 a001 139583862445/7881196*199^(1/11) 2865693420983287 a001 53316291173/3010349*199^(1/11) 2865693420985138 a001 20365011074/1149851*199^(1/11) 2865693420997826 a001 7778742049/439204*199^(1/11) 2865693421084794 a001 2971215073/167761*199^(1/11) 2865693421624882 r005 Re(z^2+c),c=-2/7+29/64*I,n=50 2865693421680879 a001 1134903170/64079*199^(1/11) 2865693425766504 a001 433494437/24476*199^(1/11) 2865693430656934 q001 1963/685 2865693434266978 m001 (Zeta(3)-arctan(1/2))/(Grothendieck+Kolakoski) 2865693441064040 r005 Im(z^2+c),c=15/56+8/51*I,n=9 2865693447342637 m005 (1/2*Catalan-1/11)/(17/22+5/22*5^(1/2)) 2865693453769798 a001 165580141/9349*199^(1/11) 2865693464566362 a007 Real Root Of 586*x^4-602*x^3+436*x^2-857*x+220 2865693489985793 a001 9227465/15127*521^(8/13) 2865693491688290 r005 Im(z^2+c),c=-35/122+23/51*I,n=27 2865693493094761 r005 Re(z^2+c),c=-37/118+17/38*I,n=5 2865693498049004 r005 Im(z^2+c),c=13/60+16/29*I,n=11 2865693500682094 a001 24157817/39603*521^(8/13) 2865693502242664 a001 31622993/51841*521^(8/13) 2865693502470348 a001 165580141/271443*521^(8/13) 2865693502503566 a001 433494437/710647*521^(8/13) 2865693502508413 a001 567451585/930249*521^(8/13) 2865693502509120 a001 2971215073/4870847*521^(8/13) 2865693502509223 a001 7778742049/12752043*521^(8/13) 2865693502509238 a001 10182505537/16692641*521^(8/13) 2865693502509240 a001 53316291173/87403803*521^(8/13) 2865693502509241 a001 139583862445/228826127*521^(8/13) 2865693502509241 a001 182717648081/299537289*521^(8/13) 2865693502509241 a001 956722026041/1568397607*521^(8/13) 2865693502509241 a001 2504730781961/4106118243*521^(8/13) 2865693502509241 a001 3278735159921/5374978561*521^(8/13) 2865693502509241 a001 10610209857723/17393796001*521^(8/13) 2865693502509241 a001 4052739537881/6643838879*521^(8/13) 2865693502509241 a001 1134903780/1860499*521^(8/13) 2865693502509241 a001 591286729879/969323029*521^(8/13) 2865693502509241 a001 225851433717/370248451*521^(8/13) 2865693502509241 a001 21566892818/35355581*521^(8/13) 2865693502509242 a001 32951280099/54018521*521^(8/13) 2865693502509248 a001 1144206275/1875749*521^(8/13) 2865693502509287 a001 1201881744/1970299*521^(8/13) 2865693502509557 a001 1836311903/3010349*521^(8/13) 2865693502511408 a001 701408733/1149851*521^(8/13) 2865693502524097 a001 66978574/109801*521^(8/13) 2865693502611064 a001 9303105/15251*521^(8/13) 2865693503207149 a001 39088169/64079*521^(8/13) 2865693505357556 a001 1/11592*317811^(16/25) 2865693507292772 a001 3732588/6119*521^(8/13) 2865693513052146 m001 Stephens/(PrimesInBinary^MasserGramainDelta) 2865693519528984 a007 Real Root Of 693*x^4-398*x^3-684*x^2-660*x+250 2865693530489655 a001 5702887/843*521^(3/13) 2865693535296052 a001 5702887/9349*521^(8/13) 2865693539659919 l006 ln(1124/1497) 2865693546756625 r002 61th iterates of z^2 + 2865693548374295 a002 19^(7/6)-18^(3/10) 2865693550920272 m001 (-ErdosBorwein+ZetaP(4))/(Psi(2,1/3)+3^(1/2)) 2865693552387104 m001 Trott^Grothendieck/ln(3) 2865693558011348 m001 Khinchin+MertensB1-StolarskyHarborth 2865693559455647 m005 (1/3*5^(1/2)+1/12)/(11/12*exp(1)+2/5) 2865693565567969 m001 (polylog(4,1/2)+MertensB1)/exp(1) 2865693578636273 r005 Re(z^2+c),c=37/102+6/23*I,n=11 2865693591475703 r009 Re(z^3+c),c=-13/126+32/45*I,n=14 2865693599872804 r005 Re(z^2+c),c=5/17+7/55*I,n=31 2865693601284308 a003 sin(Pi*1/113)/cos(Pi*5/64) 2865693619655861 r005 Im(z^2+c),c=-69/70+5/17*I,n=5 2865693621749978 a001 322/1597*3^(8/25) 2865693623393236 a007 Real Root Of -435*x^4-325*x^3-835*x^2-167*x+16 2865693631672937 r009 Im(z^3+c),c=-17/36+3/28*I,n=23 2865693633311139 a008 Real Root of x^2-82122 2865693637633639 m005 (1/2*3^(1/2)-4/11)/(7/9*Zeta(3)+9/11) 2865693643648162 a003 cos(Pi*28/97)-sin(Pi*19/53) 2865693645707248 a001 63245986/3571*199^(1/11) 2865693662401573 r002 3th iterates of z^2 + 2865693664210445 a007 Real Root Of 476*x^4+745*x^3+445*x^2-910*x-283 2865693675730395 a007 Real Root Of -343*x^4-986*x^3-137*x^2-522*x-443 2865693689005560 r009 Im(z^3+c),c=-45/98+4/27*I,n=47 2865693700465750 m001 (Kac+MadelungNaCl)/(Chi(1)+gamma(2)) 2865693726271608 a001 987*521^(7/13) 2865693727007058 r009 Im(z^3+c),c=-27/64+11/60*I,n=17 2865693727233404 a001 2178309/3571*521^(8/13) 2865693739671844 m001 1/exp((3^(1/3)))*Rabbit/BesselJ(0,1)^2 2865693742830219 a001 8/29*199^(50/57) 2865693764071691 a007 Real Root Of 642*x^4+439*x^3+442*x^2-990*x-314 2865693771165566 m001 gamma+GAMMA(13/24)*HardHexagonsEntropy 2865693777354975 r005 Im(z^2+c),c=5/86+3/10*I,n=26 2865693786103045 h001 (-7*exp(2)-9)/(-8*exp(1/2)-8) 2865693792496133 r005 Re(z^2+c),c=-9/14+88/221*I,n=12 2865693805381104 r009 Re(z^3+c),c=-41/114+16/55*I,n=12 2865693806640716 r005 Im(z^2+c),c=5/86+3/10*I,n=27 2865693808453580 a007 Real Root Of -31*x^4+267*x^3+979*x^2-12*x+300 2865693810393801 m001 (2*Pi/GAMMA(5/6)+Grothendieck)/(Niven+Thue) 2865693823589390 a007 Real Root Of 420*x^4+797*x^3-976*x^2+473*x-198 2865693825608780 a007 Real Root Of -320*x^4-772*x^3+350*x^2-40*x+424 2865693830990813 m001 (-LandauRamanujan+Mills)/(Shi(1)+GaussAGM) 2865693835634641 m006 (5/6*Pi+2)/(3*exp(2*Pi)+5) 2865693837075131 m001 Weierstrass^Champernowne*Pi 2865693848768230 m001 (cos(1/12*Pi)-BesselI(1,1))/(Pi^(1/2)-Artin) 2865693856833972 r009 Im(z^3+c),c=-15/32+7/51*I,n=50 2865693873738371 m001 1/Khintchine/ln(DuboisRaymond)*(2^(1/3)) 2865693876070898 m001 ln(gamma)^(cos(1)/sin(1/12*Pi)) 2865693876070898 m001 log(gamma)^(cos(1)/sin(Pi/12)) 2865693880585822 r005 Im(z^2+c),c=-77/64+2/53*I,n=52 2865693886564634 b008 Sinh[12*CosIntegral[1]] 2865693887406013 r005 Re(z^2+c),c=-11/30+4/57*I,n=16 2865693899904407 m001 (ln(Pi)+Zeta(1,2))/(GolombDickman+Paris) 2865693908519851 m002 5/3+E^Pi+Sinh[Pi]/3 2865693910028883 s002 sum(A274341[n]/((pi^n-1)/n),n=1..infinity) 2865693920647293 r005 Re(z^2+c),c=-10/29+2/9*I,n=8 2865693925475051 m001 Pi*FellerTornier^StolarskyHarborth 2865693927812029 s002 sum(A134852[n]/(pi^n+1),n=1..infinity) 2865693956048848 r005 Re(z^2+c),c=-9/32+20/43*I,n=50 2865693976805087 q001 766/2673 2865693980931499 r009 Im(z^3+c),c=-9/23+13/63*I,n=14 2865693983037100 a007 Real Root Of 337*x^4+856*x^3-468*x^2-322*x+338 2865693989516153 a001 2207/377*75025^(16/29) 2865693999333484 m009 (4/5*Psi(1,1/3)+3)/(1/3*Psi(1,1/3)+1/2) 2865694001612386 h001 (-4*exp(3)-5)/(-5*exp(1/3)+4) 2865694007772744 r005 Im(z^2+c),c=-11/122+19/51*I,n=18 2865694009317352 m001 1/OneNinth^2*Rabbit*exp(cosh(1)) 2865694013689480 m001 (MertensB3-Stephens)/(cos(1/5*Pi)+FeigenbaumC) 2865694020435339 h001 (-3*exp(5)-6)/(-8*exp(1)+6) 2865694022690000 r005 Im(z^2+c),c=-24/25+1/38*I,n=16 2865694027847834 a007 Real Root Of -687*x^4-416*x^3-721*x^2+272*x+132 2865694058880835 r009 Im(z^3+c),c=-19/40+14/27*I,n=27 2865694071053692 m001 GaussKuzminWirsing^(Lehmer/BesselI(1,1)) 2865694072011596 a007 Real Root Of 248*x^4+655*x^3-45*x^2+44*x-815 2865694076772076 a007 Real Root Of 274*x^4+773*x^3+222*x^2+661*x-216 2865694088345824 m001 (ln(Pi)+exp(1/Pi))/(CareFree+ZetaP(3)) 2865694102847883 a007 Real Root Of 302*x^4+570*x^3-728*x^2+385*x+129 2865694104705601 a007 Real Root Of 550*x^4+151*x^3+572*x^2-851*x-291 2865694112721619 h001 (-4*exp(3/2)+3)/(-2*exp(1/3)+8) 2865694122140006 s001 sum(exp(-4*Pi/5)^n*A185339[n],n=1..infinity) 2865694125418992 m001 1/ln(KhintchineHarmonic)/Si(Pi)/Tribonacci^2 2865694130711724 a007 Real Root Of 129*x^4+45*x^3-659*x^2+611*x-478 2865694135547472 p004 log(37423/2131) 2865694137785981 r004 Re(z^2+c),c=-1/42-4/5*I,z(0)=I,n=4 2865694141269244 m001 (Pi+ln(3))/(Riemann1stZero+Robbin) 2865694148113877 a007 Real Root Of 5*x^4-301*x^3+786*x^2-109*x+604 2865694148639469 r005 Im(z^2+c),c=5/86+3/10*I,n=30 2865694157477738 s001 sum(exp(-4*Pi/5)^n*A189139[n],n=1..infinity) 2865694184841939 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]+3*Sech[Sqrt[5]*Pi] 2865694184884171 m004 -3+6/E^(Sqrt[5]*Pi)+125*Pi*Cos[Sqrt[5]*Pi] 2865694184926402 m004 -3+125*Pi*Cos[Sqrt[5]*Pi]+3*Csch[Sqrt[5]*Pi] 2865694186605141 a001 38/5473*377^(37/59) 2865694188474387 r005 Im(z^2+c),c=5/86+3/10*I,n=31 2865694190185563 s001 sum(exp(-Pi/3)^(n-1)*A227902[n],n=1..infinity) 2865694191948465 a003 cos(Pi*1/67)/cos(Pi*29/75) 2865694202305552 r002 27th iterates of z^2 + 2865694206373876 m005 (1/2*Zeta(3)+5)/(9/11*5^(1/2)+1/8) 2865694211517921 r005 Im(z^2+c),c=5/86+3/10*I,n=34 2865694213790461 a001 4/514229*55^(9/10) 2865694215363980 m001 (Kac+KomornikLoreti)/(Stephens-TwinPrimes) 2865694219419937 r005 Im(z^2+c),c=5/86+3/10*I,n=35 2865694220104045 r005 Im(z^2+c),c=5/86+3/10*I,n=38 2865694221130853 r005 Im(z^2+c),c=5/86+3/10*I,n=42 2865694221212758 r005 Im(z^2+c),c=5/86+3/10*I,n=41 2865694221240686 r005 Im(z^2+c),c=5/86+3/10*I,n=45 2865694221240895 r005 Im(z^2+c),c=5/86+3/10*I,n=46 2865694221250390 r005 Im(z^2+c),c=5/86+3/10*I,n=49 2865694221251413 r005 Im(z^2+c),c=5/86+3/10*I,n=50 2865694221252066 r005 Im(z^2+c),c=5/86+3/10*I,n=53 2865694221252276 r005 Im(z^2+c),c=5/86+3/10*I,n=54 2865694221252297 r005 Im(z^2+c),c=5/86+3/10*I,n=57 2865694221252325 r005 Im(z^2+c),c=5/86+3/10*I,n=61 2865694221252328 r005 Im(z^2+c),c=5/86+3/10*I,n=60 2865694221252328 r005 Im(z^2+c),c=5/86+3/10*I,n=64 2865694221252329 r005 Im(z^2+c),c=5/86+3/10*I,n=58 2865694221252329 r005 Im(z^2+c),c=5/86+3/10*I,n=62 2865694221252330 r005 Im(z^2+c),c=5/86+3/10*I,n=63 2865694221252337 r005 Im(z^2+c),c=5/86+3/10*I,n=56 2865694221252339 r005 Im(z^2+c),c=5/86+3/10*I,n=59 2865694221252420 r005 Im(z^2+c),c=5/86+3/10*I,n=55 2865694221252563 r005 Im(z^2+c),c=5/86+3/10*I,n=52 2865694221253056 r005 Im(z^2+c),c=5/86+3/10*I,n=51 2865694221255648 r005 Im(z^2+c),c=5/86+3/10*I,n=48 2865694221257250 r005 Im(z^2+c),c=5/86+3/10*I,n=47 2865694221264686 r005 Im(z^2+c),c=5/86+3/10*I,n=39 2865694221276800 r005 Im(z^2+c),c=5/86+3/10*I,n=43 2865694221290205 r005 Im(z^2+c),c=5/86+3/10*I,n=44 2865694221540443 r005 Im(z^2+c),c=5/86+3/10*I,n=37 2865694221630890 r005 Im(z^2+c),c=5/86+3/10*I,n=40 2865694224643104 r005 Im(z^2+c),c=5/86+3/10*I,n=36 2865694228117595 a007 Real Root Of -360*x^4-290*x^3+754*x^2+556*x-212 2865694228770471 a001 5702887/5778*521^(7/13) 2865694229552779 r005 Im(z^2+c),c=5/86+3/10*I,n=33 2865694230520761 r005 Im(z^2+c),c=-79/78+9/35*I,n=26 2865694230696762 a001 514229/1364*521^(9/13) 2865694241309333 r009 Re(z^3+c),c=-23/122+17/24*I,n=20 2865694246809344 m001 (Psi(2,1/3)+ln(gamma))/(ln(2+3^(1/2))+Kac) 2865694248336676 r005 Im(z^2+c),c=5/86+3/10*I,n=32 2865694261530128 r005 Im(z^2+c),c=-31/106+28/59*I,n=16 2865694261710478 a003 cos(Pi*11/98)-cos(Pi*20/73) 2865694273240623 g005 GAMMA(2/11)/GAMMA(4/11)/GAMMA(6/7)/GAMMA(1/7) 2865694279429956 r005 Re(z^2+c),c=21/106+16/41*I,n=27 2865694283644461 r005 Im(z^2+c),c=-87/94+13/55*I,n=3 2865694286435045 s002 sum(A013881[n]/((2^n-1)/n),n=1..infinity) 2865694293224958 r005 Re(z^2+c),c=-39/122+9/26*I,n=19 2865694302084081 a001 14930352/15127*521^(7/13) 2865694312780393 a001 39088169/39603*521^(7/13) 2865694314340964 a001 102334155/103682*521^(7/13) 2865694314568648 a001 267914296/271443*521^(7/13) 2865694314601867 a001 701408733/710647*521^(7/13) 2865694314606714 a001 1836311903/1860498*521^(7/13) 2865694314607421 a001 4807526976/4870847*521^(7/13) 2865694314607524 a001 12586269025/12752043*521^(7/13) 2865694314607539 a001 32951280099/33385282*521^(7/13) 2865694314607541 a001 86267571272/87403803*521^(7/13) 2865694314607541 a001 225851433717/228826127*521^(7/13) 2865694314607541 a001 591286729879/599074578*521^(7/13) 2865694314607541 a001 1548008755920/1568397607*521^(7/13) 2865694314607541 a001 4052739537881/4106118243*521^(7/13) 2865694314607541 a001 4807525989/4870846*521^(7/13) 2865694314607541 a001 6557470319842/6643838879*521^(7/13) 2865694314607541 a001 2504730781961/2537720636*521^(7/13) 2865694314607541 a001 956722026041/969323029*521^(7/13) 2865694314607541 a001 365435296162/370248451*521^(7/13) 2865694314607542 a001 139583862445/141422324*521^(7/13) 2865694314607542 a001 53316291173/54018521*521^(7/13) 2865694314607548 a001 20365011074/20633239*521^(7/13) 2865694314607588 a001 7778742049/7881196*521^(7/13) 2865694314607858 a001 2971215073/3010349*521^(7/13) 2865694314609709 a001 1134903170/1149851*521^(7/13) 2865694314622397 a001 433494437/439204*521^(7/13) 2865694314709365 a001 165580141/167761*521^(7/13) 2865694315305450 a001 63245986/64079*521^(7/13) 2865694318658006 r005 Im(z^2+c),c=9/56+14/59*I,n=25 2865694319391078 a001 24157817/24476*521^(7/13) 2865694326422750 m001 1/2*Psi(2,1/3)^Tribonacci/Pi*GAMMA(5/6) 2865694326583973 r005 Im(z^2+c),c=-9/52+24/59*I,n=18 2865694337172976 r009 Im(z^3+c),c=-19/94+25/28*I,n=8 2865694340956108 r005 Im(z^2+c),c=5/86+3/10*I,n=29 2865694342587988 a001 9227465/843*521^(2/13) 2865694344278335 g006 Psi(1,2/11)+Psi(1,9/10)+Psi(1,8/9)-Psi(1,5/12) 2865694347394386 a001 9227465/9349*521^(7/13) 2865694351115113 r005 Im(z^2+c),c=31/102+5/52*I,n=60 2865694358555560 a007 Real Root Of -5*x^4+431*x^3-592*x^2+889*x-25 2865694360617609 p001 sum((-1)^n/(345*n+77)/n/(8^n),n=1..infinity) 2865694365335567 r005 Im(z^2+c),c=-11/78+20/51*I,n=13 2865694372508782 m001 Psi(1,1/3)^(cos(1)/KhinchinLevy) 2865694379127059 m006 (3*ln(Pi)-1/6)/(3/4*Pi^2+4) 2865694379398046 r009 Re(z^3+c),c=-1/3+11/46*I,n=10 2865694379802788 l006 ln(547/9606) 2865694380328329 a007 Real Root Of -470*x^4-931*x^3+823*x^2-838*x+627 2865694395805271 a007 Real Root Of 284*x^4+892*x^3+375*x^2+353*x-229 2865694396802529 a007 Real Root Of 91*x^4+137*x^3-124*x^2+643*x-52 2865694400712394 m006 (3/5*ln(Pi)+1/3)/(2/3*exp(2*Pi)-1) 2865694403219568 m001 ln(GAMMA(11/12))/Lehmer*Pi 2865694406905359 r005 Im(z^2+c),c=5/86+3/10*I,n=28 2865694426229508 a001 8740368/305 2865694440054369 l006 ln(7419/9881) 2865694450513536 a003 cos(Pi*22/69)-cos(Pi*49/117) 2865694451649562 m001 GAMMA(13/24)*Grothendieck^cos(1/12*Pi) 2865694453289180 q001 9/31406 2865694453866277 m001 exp(GAMMA(13/24))^2/TwinPrimes^2/GAMMA(5/12) 2865694456148647 b008 Pi-LogGamma[Pi]/3 2865694458191735 r005 Re(z^2+c),c=-13/36+7/43*I,n=9 2865694461038664 m001 ZetaQ(2)/(2^(1/2)+arctan(1/2)) 2865694462463882 m001 (Catalan+Ei(1))/(-Conway+FellerTornier) 2865694474630391 r009 Re(z^3+c),c=-49/110+17/38*I,n=44 2865694475216102 a001 47*(1/2*5^(1/2)+1/2)^20*3571^(11/15) 2865694479367596 m001 FeigenbaumD^(exp(1/Pi)*StronglyCareFree) 2865694482204701 a001 144/11*64079^(41/59) 2865694485283600 a007 Real Root Of -181*x^4-547*x^3+32*x^2+536*x+607 2865694492127660 a003 sin(Pi*7/106)-sin(Pi*10/61) 2865694493494761 m005 (1/3*5^(1/2)+1/2)/(5/7*Catalan-5) 2865694499670729 r009 Im(z^3+c),c=-11/28+8/39*I,n=28 2865694499720373 m001 exp(Paris)^2*Kolakoski^2/FeigenbaumD 2865694509032347 r009 Re(z^3+c),c=-35/94+6/19*I,n=12 2865694509173973 m009 (1/5*Pi^2-3/4)/(1/2*Psi(1,3/4)+3) 2865694513772532 a007 Real Root Of -392*x^4-905*x^3+439*x^2-406*x+370 2865694527320076 m005 (1/3*Catalan-1/11)/(1/8*2^(1/2)+4/7) 2865694528528123 m001 ReciprocalFibonacci/(ArtinRank2+Weierstrass) 2865694529884438 a001 28657/843*1364^(14/15) 2865694533691891 m005 (1/2*gamma-1/4)/(7/10*exp(1)-5/9) 2865694538370139 a001 3524578/2207*521^(6/13) 2865694539331935 a001 3524578/3571*521^(7/13) 2865694541080740 s002 sum(A176249[n]/(exp(n)-1),n=1..infinity) 2865694552759279 m001 (1-GAMMA(2/3))/(-ReciprocalLucas+Tribonacci) 2865694557858003 m001 ln(Tribonacci)^2*GolombDickman/cos(Pi/5) 2865694561302226 r005 Re(z^2+c),c=-11/31+5/27*I,n=23 2865694564519780 m008 (1/2*Pi^6-1)/(2*Pi^2-3) 2865694567196150 m007 (-3*gamma-6*ln(2)-5/6)/(-3/5*gamma-2) 2865694578659232 m001 (Trott-Thue)/(GAMMA(5/6)+FeigenbaumC) 2865694595007931 a001 20633239*144^(9/17) 2865694596210490 a007 Real Root Of -825*x^4+557*x^3-848*x^2+805*x+319 2865694600823758 l006 ln(6295/8384) 2865694608154892 r009 Im(z^3+c),c=-33/70+10/33*I,n=4 2865694611598701 a001 47*(1/2*5^(1/2)+1/2)^16*9349^(13/15) 2865694611654884 l006 ln(449/7885) 2865694613863829 r005 Im(z^2+c),c=-11/90+17/44*I,n=21 2865694621977646 b008 ArcCsch[(2+Pi)/45] 2865694631605554 a001 15456/281*1364^(13/15) 2865694634097383 m005 (1/2*Catalan-3/11)/(1/7*Zeta(3)-9/11) 2865694635617670 r005 Re(z^2+c),c=-1/30+27/44*I,n=8 2865694638472494 m001 TreeGrowth2nd*(TwinPrimes-ZetaQ(3)) 2865694639362583 a001 47*(1/2*5^(1/2)+1/2)^11*64079^(14/15) 2865694640135774 a001 47*(1/2*5^(1/2)+1/2)^31*39603^(1/15) 2865694652818482 a007 Real Root Of -400*x^4-974*x^3+576*x^2+172*x-183 2865694658513028 r005 Re(z^2+c),c=-23/82+20/43*I,n=29 2865694663383237 m001 (Mills+Tribonacci)/(Psi(1,1/3)+ln(2^(1/2)+1)) 2865694683391282 m001 1/Porter^2/exp(Cahen)*GAMMA(19/24) 2865694685827854 r005 Im(z^2+c),c=29/90+13/36*I,n=10 2865694688034541 m001 (Paris+TwinPrimes)/(Shi(1)+BesselI(1,2)) 2865694688865752 a001 28657/3*199^(11/53) 2865694693358671 a007 Real Root Of 343*x^4+491*x^3-966*x^2+953*x-913 2865694699377277 m001 1/GAMMA(1/24)/Kolakoski^2*ln(GAMMA(7/12)) 2865694703344892 m001 Conway*KhinchinHarmonic^(2^(1/2)) 2865694703652903 r005 Re(z^2+c),c=-25/102+27/49*I,n=60 2865694710434171 m006 (1/5*ln(Pi)+3)/(3/4/Pi-1/4) 2865694723089073 r002 5th iterates of z^2 + 2865694725029421 r009 Re(z^3+c),c=-3/19+26/41*I,n=2 2865694726787535 a007 Real Root Of -277*x^4-867*x^3+2*x^2+669*x+178 2865694734659560 a001 75025/843*1364^(4/5) 2865694735788209 r009 Re(z^3+c),c=-37/90+13/35*I,n=13 2865694736093333 m005 (1/2*2^(1/2)-5/7)/(2/7*3^(1/2)-3) 2865694748088568 m001 FibonacciFactorial/Artin/ln(Pi) 2865694757161542 b008 91*Gamma[2/7] 2865694759045075 s002 sum(A018965[n]/((2^n-1)/n),n=1..infinity) 2865694759045075 s002 sum(A018995[n]/((2^n-1)/n),n=1..infinity) 2865694761722207 a001 17/51841*18^(3/4) 2865694762452025 a001 682/98209*89^(6/19) 2865694770073881 m001 LambertW(1)+exp(gamma)+polylog(4,1/2) 2865694774686147 m001 (ln(3)+MadelungNaCl)/(2^(1/2)-BesselK(0,1)) 2865694775786202 b008 11*Csch[3/8] 2865694779070316 r009 Im(z^3+c),c=-35/78+9/17*I,n=6 2865694783197962 a001 47/196418*17711^(24/25) 2865694783710596 r005 Re(z^2+c),c=-11/40+35/64*I,n=8 2865694788571098 r005 Re(z^2+c),c=-3/4+172/223*I,n=3 2865694789039531 m001 exp(GAMMA(7/12))/GAMMA(3/4)^2*cos(Pi/12)^2 2865694790152121 b008 ArcCot[LogGamma[2+Pi]] 2865694795859642 m001 MasserGramainDelta+StronglyCareFree^Zeta(1,-1) 2865694810879595 m005 (1/3*3^(1/2)-1/5)/(1/3*5^(1/2)+4/7) 2865694822168067 a007 Real Root Of -118*x^4-334*x^3+20*x^2-205*x-654 2865694829066365 a007 Real Root Of -276*x^4-980*x^3-317*x^2+959*x+902 2865694831484767 l006 ln(5171/6887) 2865694837204453 a001 121393/843*1364^(11/15) 2865694837381581 a001 3/10946*610^(29/40) 2865694857298803 m005 (1/2*3^(1/2)+6)/(2/9*exp(1)-3) 2865694859479114 a003 cos(Pi*38/113)-cos(Pi*26/75) 2865694875920766 r005 Im(z^2+c),c=-7/52+19/54*I,n=4 2865694891237408 r009 Re(z^3+c),c=-23/114+22/29*I,n=14 2865694893786206 r005 Re(z^2+c),c=-7/38+16/25*I,n=42 2865694894116723 a007 Real Root Of 105*x^4+112*x^3+965*x^2-962*x-353 2865694897671086 r005 Im(z^2+c),c=3/7+23/63*I,n=12 2865694900384129 m001 (Backhouse+Weierstrass)/(ln(3)-Pi^(1/2)) 2865694901600444 m003 5/8+Sqrt[5]/64+Tan[1/2+Sqrt[5]/2]/6 2865694905751050 r008 a(0)=0,K{-n^6,-51+12*n+2*n^2+2*n^3} 2865694914570749 a001 47*(1/2*5^(1/2)+1/2)^25*2207^(7/15) 2865694926780805 a007 Real Root Of 347*x^4+884*x^3-3*x^2+764*x-384 2865694939943815 a001 196418/843*1364^(2/3) 2865694950546590 q001 1101/3842 2865694951253036 m001 1/GAMMA(1/24)^2*Lehmer^2*ln(cos(Pi/5))^2 2865694952272300 m001 Conway*(ln(2^(1/2)+1)+ln(2+3^(1/2))) 2865694956444932 m005 (1/3*exp(1)+1/5)/(1/11*exp(1)-2/7) 2865694961266789 a001 24157817/1364*199^(1/11) 2865694972974140 l006 ln(351/6164) 2865694975406012 m001 GAMMA(13/24)-exp(sqrt(2))^arctan(1/2) 2865694976517075 m001 (Gompertz+Trott2nd)/(LambertW(1)+ln(5)) 2865694981604164 r002 5th iterates of z^2 + 2865694981930612 b008 3-(2*(-2+Pi))/17 2865694985718377 r002 25th iterates of z^2 + 2865694992252609 r009 Im(z^3+c),c=-6/23+1/42*I,n=2 2865694995068070 r005 Re(z^2+c),c=-13/56+31/53*I,n=59 2865694998904041 m001 (LandauRamanujan+Lehmer)/(MertensB3-Thue) 2865695007226583 r005 Re(z^2+c),c=-89/94+5/36*I,n=10 2865695007392017 m008 (3/4*Pi+2/5)/(Pi^6+2/5) 2865695013146067 m001 (Conway-Lehmer)/(Pi*2^(1/2)/GAMMA(3/4)-ln(Pi)) 2865695025779667 r002 16th iterates of z^2 + 2865695026443485 m001 FeigenbaumAlpha-FeigenbaumD-Khinchin 2865695034772389 r005 Re(z^2+c),c=-19/60+14/39*I,n=28 2865695040869001 a001 9227465/5778*521^(6/13) 2865695042343239 m001 (Ei(1,1)-BesselJ(1,1))/(Grothendieck-Niven) 2865695042608901 a001 377*1364^(3/5) 2865695042792274 a001 610*521^(8/13) 2865695045983508 p001 sum((-1)^n/(481*n+62)/n/(64^n),n=1..infinity) 2865695047819913 a008 Real Root of x^4-x^3-34*x^2-95*x-84 2865695056929533 m001 (-ln(2^(1/2)+1)+BesselI(1,2))/(exp(Pi)+ln(5)) 2865695059010193 m005 (1/2*Zeta(3)+2/5)/(1/3*Zeta(3)-3/4) 2865695079057326 h005 exp(cos(Pi*1/60)/cos(Pi*4/39)) 2865695079758963 a001 2576*11^(2/45) 2865695085934756 h001 (9/11*exp(2)+2/9)/(2/3*exp(1)+3/8) 2865695096899519 r005 Im(z^2+c),c=-1/44+14/41*I,n=16 2865695097148632 m001 (-Zeta(1/2)+MadelungNaCl)/(Psi(1,1/3)+ln(3)) 2865695098982318 a007 Real Root Of 26*x^4+73*x^3+308*x^2+634*x-748 2865695103718276 a003 1/2+2*cos(1/5*Pi)+cos(2/21*Pi)-cos(13/30*Pi) 2865695105798139 a007 Real Root Of 103*x^4+217*x^3-123*x^2-819*x+239 2865695106169247 r005 Re(z^2+c),c=9/56+35/53*I,n=12 2865695113476433 a007 Real Root Of -253*x^4-876*x^3-456*x^2+5*x+206 2865695114182612 a001 24157817/15127*521^(6/13) 2865695114538990 r005 Im(z^2+c),c=-11/23+10/27*I,n=8 2865695124878924 a001 63245986/39603*521^(6/13) 2865695126439495 a001 165580141/103682*521^(6/13) 2865695126667179 a001 433494437/271443*521^(6/13) 2865695126700398 a001 1134903170/710647*521^(6/13) 2865695126705244 a001 2971215073/1860498*521^(6/13) 2865695126705951 a001 7778742049/4870847*521^(6/13) 2865695126706055 a001 20365011074/12752043*521^(6/13) 2865695126706070 a001 53316291173/33385282*521^(6/13) 2865695126706072 a001 139583862445/87403803*521^(6/13) 2865695126706072 a001 365435296162/228826127*521^(6/13) 2865695126706072 a001 956722026041/599074578*521^(6/13) 2865695126706072 a001 2504730781961/1568397607*521^(6/13) 2865695126706072 a001 6557470319842/4106118243*521^(6/13) 2865695126706072 a001 10610209857723/6643838879*521^(6/13) 2865695126706072 a001 4052739537881/2537720636*521^(6/13) 2865695126706072 a001 1548008755920/969323029*521^(6/13) 2865695126706072 a001 591286729879/370248451*521^(6/13) 2865695126706072 a001 225851433717/141422324*521^(6/13) 2865695126706073 a001 86267571272/54018521*521^(6/13) 2865695126706079 a001 32951280099/20633239*521^(6/13) 2865695126706118 a001 12586269025/7881196*521^(6/13) 2865695126706388 a001 4807526976/3010349*521^(6/13) 2865695126708240 a001 1836311903/1149851*521^(6/13) 2865695126720928 a001 701408733/439204*521^(6/13) 2865695126807896 a001 267914296/167761*521^(6/13) 2865695127403981 a001 102334155/64079*521^(6/13) 2865695131489608 a001 39088169/24476*521^(6/13) 2865695134341271 r005 Im(z^2+c),c=-6/7+11/56*I,n=6 2865695138101204 m001 1/Cahen^2/Artin^2*ln(GAMMA(1/4))^2 2865695139193095 h001 (9/11*exp(2)+6/7)/(3/5*exp(1)+7/9) 2865695145302363 a001 514229/843*1364^(8/15) 2865695147152729 r009 Re(z^3+c),c=-67/118+34/55*I,n=45 2865695151783762 a007 Real Root Of 99*x^4+162*x^3-305*x^2-85*x-603 2865695153446628 a007 Real Root Of 249*x^4+628*x^3-387*x^2-658*x-721 2865695154686518 a001 4976784/281*521^(1/13) 2865695159492917 a001 14930352/9349*521^(6/13) 2865695161879344 h001 (7/10*exp(2)+11/12)/(4/9*exp(1)+11/12) 2865695172267509 a003 cos(Pi*31/117)/cos(Pi*45/106) 2865695172553683 r005 Im(z^2+c),c=5/86+3/10*I,n=24 2865695176238492 r005 Im(z^2+c),c=5/86+3/10*I,n=20 2865695182823348 r005 Re(z^2+c),c=-23/66+8/49*I,n=3 2865695188510721 m001 FeigenbaumC^Zeta(1/2)*GAMMA(17/24)^Zeta(1/2) 2865695190271772 l006 ln(4047/5390) 2865695207725362 r009 Re(z^3+c),c=-5/106+29/50*I,n=15 2865695210407716 m005 (1/2*exp(1)-9/11)/(7/12*5^(1/2)+7/12) 2865695228158541 r005 Im(z^2+c),c=-19/86+26/61*I,n=47 2865695247984991 a001 832040/843*1364^(7/15) 2865695258026291 m001 1/ln(cos(Pi/5))^2*GAMMA(5/12)/sqrt(1+sqrt(3)) 2865695264298599 m001 (GAMMA(3/4)-HardyLittlewoodC3)/(Lehmer+Porter) 2865695273651279 r009 Re(z^3+c),c=-5/118+13/28*I,n=11 2865695274911733 s002 sum(A173013[n]/((exp(n)-1)/n),n=1..infinity) 2865695295043080 a007 Real Root Of 316*x^4+569*x^3-820*x^2+741*x+937 2865695304207445 a001 1/55*17711^(2/43) 2865695304737290 a007 Real Root Of -746*x^4+909*x^3+52*x^2+598*x-192 2865695314020977 r009 Re(z^3+c),c=-21/118+56/59*I,n=20 2865695330532977 p001 sum(1/(295*n+64)/n/(10^n),n=1..infinity) 2865695336650291 a009 17+11^(1/3)*12^(2/3) 2865695346538674 a007 Real Root Of 311*x^4+627*x^3-558*x^2+559*x-34 2865695350468670 a001 5702887/2207*521^(5/13) 2865695350671763 a001 1346269/843*1364^(2/5) 2865695351430466 a001 1597*521^(6/13) 2865695351679583 r005 Re(z^2+c),c=-17/62+25/47*I,n=19 2865695355207150 r009 Re(z^3+c),c=-27/74+15/49*I,n=8 2865695355460344 a007 Real Root Of 760*x^4-980*x^3-324*x^2-490*x-142 2865695361000426 a007 Real Root Of 272*x^4+668*x^3-393*x^2+53*x+756 2865695374474254 a007 Real Root Of 577*x^4-842*x^3+99*x^2-859*x-278 2865695377811796 a001 329/281*64079^(21/23) 2865695378437462 a001 329/281*439204^(7/9) 2865695378443458 a001 377/2207*20633239^(5/7) 2865695378443463 a001 377/2207*2537720636^(5/9) 2865695378443463 a001 377/2207*312119004989^(5/11) 2865695378443463 a001 377/2207*(1/2+1/2*5^(1/2))^25 2865695378443463 a001 377/2207*3461452808002^(5/12) 2865695378443463 a001 377/2207*28143753123^(1/2) 2865695378443463 a001 377/2207*228826127^(5/8) 2865695378444153 a001 377/2207*1860498^(5/6) 2865695378448988 a001 329/281*7881196^(7/11) 2865695378449013 a001 329/281*20633239^(3/5) 2865695378449017 a001 329/281*141422324^(7/13) 2865695378449017 a001 329/281*2537720636^(7/15) 2865695378449017 a001 329/281*17393796001^(3/7) 2865695378449017 a001 329/281*45537549124^(7/17) 2865695378449017 a001 329/281*14662949395604^(1/3) 2865695378449017 a001 329/281*(1/2+1/2*5^(1/2))^21 2865695378449017 a001 329/281*192900153618^(7/18) 2865695378449017 a001 329/281*10749957122^(7/16) 2865695378449017 a001 329/281*599074578^(1/2) 2865695378449018 a001 329/281*33385282^(7/12) 2865695378449596 a001 329/281*1860498^(7/10) 2865695378453273 a001 329/281*710647^(3/4) 2865695378682272 a001 329/281*103682^(7/8) 2865695380193113 a001 329/281*39603^(21/22) 2865695383494562 a005 (1/cos(10/119*Pi))^1140 2865695392876460 a001 75025/322*322^(5/6) 2865695396509533 a001 1/47*(1/2*5^(1/2)+1/2)^18*11^(6/17) 2865695400807588 a007 Real Root Of -454*x^4-961*x^3+642*x^2-664*x+827 2865695421339026 m001 (sin(1)+GAMMA(13/24))/(FellerTornier+Landau) 2865695425370527 m009 (4*Psi(1,2/3)+1/2)/(3/8*Pi^2+3/4) 2865695427017442 a007 Real Root Of -560*x^4-403*x^3+424*x^2+721*x-21 2865695428143317 r005 Im(z^2+c),c=1/106+14/43*I,n=18 2865695433385260 r009 Re(z^3+c),c=-2/25+15/19*I,n=40 2865695434333410 m001 1/LandauRamanujan^2/exp(CareFree)^2/Zeta(1/2) 2865695440393469 r009 Re(z^3+c),c=-7/11+22/39*I,n=2 2865695442402642 a007 Real Root Of -169*x^4-237*x^3+584*x^2-469*x-320 2865695450219679 m001 (cos(1)+ZetaQ(3))/(1+Catalan) 2865695453356957 a001 726103/281*1364^(1/3) 2865695456453629 l006 ln(6970/9283) 2865695466145612 m005 (1/2*Catalan-5/8)/(2/9*gamma+5/11) 2865695467531727 r005 Im(z^2+c),c=-21/82+15/34*I,n=21 2865695483041474 m005 (-19/4+1/4*5^(1/2))/(50/77+4/11*5^(1/2)) 2865695485376700 r005 Im(z^2+c),c=-11/106+14/37*I,n=20 2865695490538402 h001 (6/11*exp(2)+7/12)/(2/7*exp(1)+5/6) 2865695494782636 a007 Real Root Of -177*x^4-496*x^3-92*x^2-39*x+908 2865695500833842 m003 17/6+(Sqrt[5]*Log[1/2+Sqrt[5]/2]^2)/16 2865695502375861 r002 27th iterates of z^2 + 2865695503566649 r005 Im(z^2+c),c=29/78+6/19*I,n=16 2865695505150729 r005 Im(z^2+c),c=-13/110+5/13*I,n=24 2865695507941525 r005 Re(z^2+c),c=-23/52+25/58*I,n=10 2865695516753047 a007 Real Root Of 203*x^4+647*x^3+340*x^2-593*x-184 2865695518960085 m001 KhintchineHarmonic*ln(CareFree)^2/RenyiParking 2865695555153960 m001 (Mills-ReciprocalLucas)/(Landau+MadelungNaCl) 2865695555942786 r005 Re(z^2+c),c=-37/106+19/33*I,n=51 2865695556042759 a001 3524578/843*1364^(4/15) 2865695557902190 m005 (1/2*3^(1/2)+9/11)/(11/12*3^(1/2)-1) 2865695559580592 p001 sum(1/(463*n+35)/(24^n),n=0..infinity) 2865695562407410 a007 Real Root Of 289*x^4+913*x^3+639*x^2+807*x-939 2865695564914748 b008 Sqrt[2]+14*Log[7] 2865695568536959 p001 sum(1/(59*n+35)/(125^n),n=0..infinity) 2865695574764059 r009 Re(z^3+c),c=-2/5+11/31*I,n=9 2865695577353907 m001 (ln(gamma)-Zeta(1,2))/(MinimumGamma-OneNinth) 2865695577557272 r005 Re(z^2+c),c=-9/25+6/41*I,n=17 2865695579274054 a007 Real Root Of 768*x^4-924*x^3-950*x^2-155*x+139 2865695584482297 r005 Re(z^2+c),c=-1/15+19/35*I,n=5 2865695586191286 r005 Im(z^2+c),c=-2/3+89/223*I,n=7 2865695587197563 a007 Real Root Of 409*x^4-751*x^3+149*x^2-542*x+158 2865695600873888 r005 Im(z^2+c),c=5/86+3/10*I,n=25 2865695606521705 a007 Real Root Of -67*x^4+542*x^3-938*x^2-32*x-442 2865695614208388 l006 ln(253/4443) 2865695615880682 a001 7/317811*4181^(43/50) 2865695636693674 a007 Real Root Of -171*x^4+801*x^3+268*x^2+841*x+239 2865695643243090 r005 Re(z^2+c),c=-35/114+5/13*I,n=15 2865695648258085 g007 Psi(2,1/5)+Psi(2,1/3)+14*Zeta(3)-Psi(2,9/10) 2865695658728334 a001 5702887/843*1364^(1/5) 2865695665500380 m001 (gamma-sin(1/5*Pi)*TwinPrimes)/TwinPrimes 2865695665500380 m001 (gamma-sin(Pi/5)*TwinPrimes)/TwinPrimes 2865695669603026 r005 Re(z^2+c),c=-33/98+9/32*I,n=25 2865695674943792 r009 Im(z^3+c),c=-11/28+8/39*I,n=29 2865695680105172 r005 Im(z^2+c),c=9/56+14/59*I,n=24 2865695685580577 a005 (1/cos(31/122*Pi))^163 2865695697743669 a001 39603/2*10946^(23/43) 2865695706476420 m001 Pi*2^(1/3)-2^(1/2)+arctan(1/3) 2865695707319847 s002 sum(A252356[n]/(exp(n)),n=1..infinity) 2865695710736453 a007 Real Root Of 425*x^4+867*x^3-603*x^2+860*x-842 2865695722812397 m001 Magata*LaplaceLimit^2/exp(sqrt(1+sqrt(3))) 2865695737536897 a001 5/439204*521^(38/43) 2865695742016280 a001 45765161/1597 2865695748746756 r008 a(0)=0,K{-n^6,-1-83*n^3-23*n^2+72*n} 2865695760063453 a001 10946/843*3571^(16/17) 2865695761414000 a001 9227465/843*1364^(2/15) 2865695761525684 h001 (-6*exp(1/2)+3)/(-4*exp(1/2)+9) 2865695766671852 a001 17711/843*3571^(15/17) 2865695771667919 r005 Re(z^2+c),c=27/86+7/50*I,n=37 2865695780255213 m001 (exp(1/Pi)+Zeta(1,2))/(BesselJ(1,1)-Lehmer) 2865695782415995 a001 28657/843*3571^(14/17) 2865695788782565 r005 Re(z^2+c),c=-1+33/182*I,n=46 2865695792029379 a001 5374978561/4*987^(7/9) 2865695792880258 q001 1771/618 2865695793472861 r009 Im(z^3+c),c=-17/118+40/47*I,n=14 2865695794670594 a001 15456/281*3571^(13/17) 2865695795396991 m005 (1/2*5^(1/2)-1/12)/(2/3*Catalan+3) 2865695808258081 a001 75025/843*3571^(12/17) 2865695809482288 m001 GAMMA(1/4)-sin(1)^BesselI(1,2) 2865695809482288 m001 Pi*2^(1/2)/GAMMA(3/4)-sin(1)^BesselI(1,2) 2865695809588079 a007 Real Root Of 258*x^4-759*x^3-496*x^2-838*x+297 2865695821336450 a001 121393/843*3571^(11/17) 2865695824992097 l006 ln(2923/3893) 2865695827591789 r005 Im(z^2+c),c=13/102+7/27*I,n=16 2865695834609285 a001 196418/843*3571^(10/17) 2865695844495709 a007 Real Root Of -662*x^4+919*x^3-593*x^2+245*x+145 2865695847807840 a001 377*3571^(9/17) 2865695852967729 a001 2584*521^(5/13) 2865695854892155 a001 1346269/1364*521^(7/13) 2865695859546471 m001 (Porter-Trott)/(ln(Pi)-(1+3^(1/2))^(1/2)) 2865695861034768 a001 514229/843*3571^(8/17) 2865695864099637 a001 4976784/281*1364^(1/15) 2865695873703267 s002 sum(A084585[n]/(n*2^n-1),n=1..infinity) 2865695874250858 a001 832040/843*3571^(7/17) 2865695876620221 a001 2584/843*24476^(19/21) 2865695880371651 a001 2584/843*64079^(19/23) 2865695880942474 a001 377/5778*7881196^(9/11) 2865695880942512 a001 377/5778*141422324^(9/13) 2865695880942512 a001 377/5778*2537720636^(3/5) 2865695880942512 a001 377/5778*45537549124^(9/17) 2865695880942512 a001 377/5778*14662949395604^(3/7) 2865695880942512 a001 377/5778*(1/2+1/2*5^(1/2))^27 2865695880942512 a001 377/5778*192900153618^(1/2) 2865695880942512 a001 377/5778*10749957122^(9/16) 2865695880942512 a001 377/5778*599074578^(9/14) 2865695880942514 a001 377/5778*33385282^(3/4) 2865695880943257 a001 377/5778*1860498^(9/10) 2865695880948184 a001 2584/843*817138163596^(1/3) 2865695880948184 a001 2584/843*(1/2+1/2*5^(1/2))^19 2865695880948184 a001 2584/843*87403803^(1/2) 2865695881159224 a001 2584/843*103682^(19/24) 2865695882526176 a001 2584/843*39603^(19/22) 2865695887471088 a001 1346269/843*3571^(6/17) 2865695892845475 a001 2584/843*15127^(19/20) 2865695900689737 a001 726103/281*3571^(5/17) 2865695903250896 m001 Pi^AlladiGrinstead/ln(2^(1/2)+1) 2865695909594880 m001 1/Pi^2*GAMMA(11/12)/exp(log(2+sqrt(3))) 2865695910016353 r008 a(0)=0,K{-n^6,-9+72*n^3+51*n^2-79*n} 2865695911302056 r002 29th iterates of z^2 + 2865695913908990 a001 3524578/843*3571^(4/17) 2865695916387397 r005 Re(z^2+c),c=-35/34+1/116*I,n=10 2865695918120795 m001 KomornikLoreti/(ln(2)/ln(10)+FellerTornier) 2865695919395204 r005 Im(z^2+c),c=-67/114+10/27*I,n=24 2865695919430563 a001 370248451/34*6557470319842^(11/19) 2865695919430563 a001 73681302247/34*701408733^(11/19) 2865695919489513 a001 7331474697802/17*75025^(11/19) 2865695921074863 m005 (1/2*2^(1/2)+1)/(5/11*gamma+1/3) 2865695924926216 a001 2255/281*9349^(17/19) 2865695926281368 a001 39088169/15127*521^(5/13) 2865695927128013 a001 5702887/843*3571^(3/17) 2865695931060653 g007 Psi(2,3/10)+Psi(2,2/3)-Psi(2,3/11)-Psi(2,4/7) 2865695931206939 r009 Re(z^3+c),c=-41/106+22/51*I,n=7 2865695933987084 a001 119814747/4181 2865695936977684 a001 34111385/13201*521^(5/13) 2865695938538256 a001 133957148/51841*521^(5/13) 2865695938765940 a001 233802911/90481*521^(5/13) 2865695938799159 a001 1836311903/710647*521^(5/13) 2865695938804005 a001 267084832/103361*521^(5/13) 2865695938804712 a001 12586269025/4870847*521^(5/13) 2865695938804816 a001 10983760033/4250681*521^(5/13) 2865695938804831 a001 43133785636/16692641*521^(5/13) 2865695938804833 a001 75283811239/29134601*521^(5/13) 2865695938804833 a001 591286729879/228826127*521^(5/13) 2865695938804833 a001 86000486440/33281921*521^(5/13) 2865695938804833 a001 4052739537881/1568397607*521^(5/13) 2865695938804833 a001 3536736619241/1368706081*521^(5/13) 2865695938804833 a001 3278735159921/1268860318*521^(5/13) 2865695938804833 a001 2504730781961/969323029*521^(5/13) 2865695938804833 a001 956722026041/370248451*521^(5/13) 2865695938804833 a001 182717648081/70711162*521^(5/13) 2865695938804834 a001 139583862445/54018521*521^(5/13) 2865695938804840 a001 53316291173/20633239*521^(5/13) 2865695938804879 a001 10182505537/3940598*521^(5/13) 2865695938805149 a001 7778742049/3010349*521^(5/13) 2865695938807001 a001 2971215073/1149851*521^(5/13) 2865695938819689 a001 567451585/219602*521^(5/13) 2865695938906657 a001 433494437/167761*521^(5/13) 2865695939073780 a001 17711/843*9349^(15/19) 2865695939499342 a001 4181/3*4^(13/25) 2865695939502742 a001 165580141/64079*521^(5/13) 2865695940347123 a001 9227465/843*3571^(2/17) 2865695943324461 a001 28657/843*9349^(14/19) 2865695943588371 a001 31622993/12238*521^(5/13) 2865695943958842 a001 10946/843*9349^(16/19) 2865695944085599 a001 15456/281*9349^(13/19) 2865695946179624 a001 75025/843*9349^(12/19) 2865695947764532 a001 121393/843*9349^(11/19) 2865695949543905 a001 196418/843*9349^(10/19) 2865695950389436 a001 2255/281*24476^(17/21) 2865695951248998 a001 377*9349^(9/19) 2865695952982464 a001 514229/843*9349^(8/19) 2865695953566200 a001 4976784/281*3571^(1/17) 2865695953745979 a001 2255/281*64079^(17/23) 2865695954256150 a001 377/15127*(1/2+1/2*5^(1/2))^29 2865695954256150 a001 377/15127*1322157322203^(1/2) 2865695954261824 a001 2255/281*45537549124^(1/3) 2865695954261824 a001 2255/281*(1/2+1/2*5^(1/2))^17 2865695954261833 a001 2255/281*12752043^(1/2) 2865695954450650 a001 2255/281*103682^(17/24) 2865695954705093 a001 832040/843*9349^(7/19) 2865695955001091 a007 Real Root Of -443*x^4-913*x^3+830*x^2-233*x+906 2865695955673712 a001 2255/281*39603^(17/22) 2865695956431861 a001 1346269/843*9349^(6/19) 2865695958157048 a001 726103/281*9349^(5/19) 2865695959882839 a001 3524578/843*9349^(4/19) 2865695961541327 a001 17711/843*24476^(5/7) 2865695961608399 a001 5702887/843*9349^(3/19) 2865695961995249 a001 12064580/421 2865695963334048 a001 9227465/843*9349^(2/19) 2865695963557474 a001 15456/281*24476^(13/21) 2865695963844232 m001 TwinPrimes*(2*Pi/GAMMA(5/6)-GAMMA(3/4)) 2865695963844232 m001 TwinPrimes*(GAMMA(1/6)-GAMMA(3/4)) 2865695964153662 a001 75025/843*24476^(4/7) 2865695964240733 a001 121393/843*24476^(11/21) 2865695964294173 a001 28657/843*24476^(2/3) 2865695964502982 a001 17711/843*64079^(15/23) 2865695964522270 a001 196418/843*24476^(10/21) 2865695964729527 a001 377*24476^(3/7) 2865695964897046 a001 17711/843*167761^(3/5) 2865695964906769 a001 2255/281*15127^(17/20) 2865695964949887 a001 17711/843*439204^(5/9) 2865695964952466 a001 377/39603*(1/2+1/2*5^(1/2))^31 2865695964952466 a001 377/39603*9062201101803^(1/2) 2865695964958119 a001 17711/843*7881196^(5/11) 2865695964958137 a001 17711/843*20633239^(3/7) 2865695964958140 a001 17711/843*141422324^(5/13) 2865695964958140 a001 17711/843*2537720636^(1/3) 2865695964958140 a001 17711/843*45537549124^(5/17) 2865695964958140 a001 17711/843*312119004989^(3/11) 2865695964958140 a001 17711/843*14662949395604^(5/21) 2865695964958140 a001 17711/843*(1/2+1/2*5^(1/2))^15 2865695964958140 a001 17711/843*192900153618^(5/18) 2865695964958140 a001 17711/843*28143753123^(3/10) 2865695964958140 a001 17711/843*10749957122^(5/16) 2865695964958140 a001 17711/843*599074578^(5/14) 2865695964958140 a001 17711/843*228826127^(3/8) 2865695964958141 a001 17711/843*33385282^(5/12) 2865695964958554 a001 17711/843*1860498^(1/2) 2865695964965156 a001 514229/843*24476^(8/21) 2865695965059663 a001 4976784/281*9349^(1/19) 2865695965124751 a001 17711/843*103682^(5/8) 2865695965189949 a001 832040/843*24476^(1/3) 2865695965418880 a001 1346269/843*24476^(2/7) 2865695965646231 a001 726103/281*24476^(5/21) 2865695965874185 a001 3524578/843*24476^(4/21) 2865695966081585 a001 821222493/28657 2865695966101909 a001 5702887/843*24476^(1/7) 2865695966124242 a001 15456/281*64079^(13/23) 2865695966203924 a001 17711/843*39603^(15/22) 2865695966329721 a001 9227465/843*24476^(2/21) 2865695966412614 a001 121393/843*64079^(11/23) 2865695966496706 a001 196418/843*64079^(10/23) 2865695966506520 a001 377*64079^(9/23) 2865695966513037 a001 377/103682*141422324^(11/13) 2865695966513037 a001 377/103682*2537720636^(11/15) 2865695966513037 a001 377/103682*45537549124^(11/17) 2865695966513037 a001 377/103682*312119004989^(3/5) 2865695966513037 a001 377/103682*817138163596^(11/19) 2865695966513037 a001 377/103682*14662949395604^(11/21) 2865695966513037 a001 377/103682*(1/2+1/2*5^(1/2))^33 2865695966513037 a001 377/103682*192900153618^(11/18) 2865695966513037 a001 377/103682*10749957122^(11/16) 2865695966513037 a001 377/103682*1568397607^(3/4) 2865695966513037 a001 377/103682*599074578^(11/14) 2865695966513040 a001 377/103682*33385282^(11/12) 2865695966518712 a001 15456/281*141422324^(1/3) 2865695966518712 a001 15456/281*(1/2+1/2*5^(1/2))^13 2865695966518712 a001 15456/281*73681302247^(1/4) 2865695966522986 a001 75025/843*64079^(12/23) 2865695966538158 a001 15456/281*271443^(1/2) 2865695966544706 a001 514229/843*64079^(8/23) 2865695966557499 a001 4976784/281*24476^(1/21) 2865695966572054 a001 832040/843*64079^(7/23) 2865695966603542 a001 1346269/843*64079^(6/23) 2865695966633449 a001 726103/281*64079^(5/23) 2865695966663108 a001 15456/281*103682^(13/24) 2865695966663960 a001 3524578/843*64079^(4/23) 2865695966677774 a001 2149988399/75025 2865695966694240 a001 5702887/843*64079^(3/23) 2865695966724608 a001 9227465/843*64079^(2/23) 2865695966740722 a001 377/271443*2537720636^(7/9) 2865695966740722 a001 377/271443*17393796001^(5/7) 2865695966740722 a001 377/271443*312119004989^(7/11) 2865695966740722 a001 377/271443*14662949395604^(5/9) 2865695966740722 a001 377/271443*(1/2+1/2*5^(1/2))^35 2865695966740722 a001 377/271443*505019158607^(5/8) 2865695966740722 a001 377/271443*28143753123^(7/10) 2865695966740722 a001 377/271443*599074578^(5/6) 2865695966740722 a001 377/271443*228826127^(7/8) 2865695966746381 a001 121393/843*7881196^(1/3) 2865695966746396 a001 121393/843*312119004989^(1/5) 2865695966746396 a001 121393/843*(1/2+1/2*5^(1/2))^11 2865695966746396 a001 121393/843*1568397607^(1/4) 2865695966754943 a001 4976784/281*64079^(1/23) 2865695966759416 a001 196418/843*167761^(2/5) 2865695966764756 a001 165551256/5777 2865695966764804 a001 726103/281*167761^(1/5) 2865695966773940 a001 377/710647*(1/2+1/2*5^(1/2))^37 2865695966774663 a001 377*439204^(1/3) 2865695966777447 a001 14736239713/514229 2865695966778787 a001 377/1860498*2537720636^(13/15) 2865695966778787 a001 377/1860498*45537549124^(13/17) 2865695966778787 a001 377/1860498*14662949395604^(13/21) 2865695966778787 a001 377/1860498*(1/2+1/2*5^(1/2))^39 2865695966778787 a001 377/1860498*192900153618^(13/18) 2865695966778787 a001 377/1860498*73681302247^(3/4) 2865695966778787 a001 377/1860498*10749957122^(13/16) 2865695966778787 a001 377/1860498*599074578^(13/14) 2865695966779298 a001 38579976435/1346269 2865695966779494 a001 377/4870847*(1/2+1/2*5^(1/2))^41 2865695966779569 a001 50501844796/1762289 2865695966779597 a001 377/12752043*(1/2+1/2*5^(1/2))^43 2865695966779602 a001 377*7881196^(3/11) 2865695966779608 a001 20340853257/709805 2865695966779612 a001 377/33385282*45537549124^(15/17) 2865695966779612 a001 377/33385282*312119004989^(9/11) 2865695966779612 a001 377/33385282*14662949395604^(5/7) 2865695966779612 a001 377/33385282*(1/2+1/2*5^(1/2))^45 2865695966779612 a001 377/33385282*192900153618^(5/6) 2865695966779612 a001 377/33385282*28143753123^(9/10) 2865695966779612 a001 377/33385282*10749957122^(15/16) 2865695966779614 a001 692289587431/24157817 2865695966779615 a001 906218834976/31622993 2865695966779615 a001 377/228826127*14662949395604^(7/9) 2865695966779615 a001 377/228826127*505019158607^(7/8) 2865695966779615 a001 377*141422324^(3/13) 2865695966779615 a001 4745023422425/165580141 2865695966779615 a001 377/599074578*14662949395604^(17/21) 2865695966779615 a001 377/599074578*192900153618^(17/18) 2865695966779615 a001 12422632597323/433494437 2865695966779615 a001 956555128516/33379505 2865695966779615 a001 377/4106118243*3461452808002^(11/12) 2865695966779615 a001 377*2537720636^(1/5) 2865695966779615 a001 85145990511309/2971215073 2865695966779615 a001 377/10749957122*14662949395604^(19/21) 2865695966779615 a001 17147315166491/598364773 2865695966779615 a001 291799650490920/10182505537 2865695966779615 a001 377*45537549124^(3/17) 2865695966779615 a001 1527882805781137/53316291173 2865695966779615 a001 4000049116361571/139583862445 2865695966779615 a001 377*14662949395604^(1/7) 2865695966779615 a001 377*192900153618^(1/6) 2865695966779615 a001 72710773840601/2537281508 2865695966779615 a001 944283504799297/32951280099 2865695966779615 a001 377/45537549124*14662949395604^(20/21) 2865695966779615 a001 360684203817457/12586269025 2865695966779615 a001 377*10749957122^(3/16) 2865695966779615 a001 68884553326537/2403763488 2865695966779615 a001 377/6643838879*14662949395604^(8/9) 2865695966779615 a001 52623116141765/1836311903 2865695966779615 a001 377/2537720636*14662949395604^(6/7) 2865695966779615 a001 20100241772221/701408733 2865695966779615 a001 377*599074578^(3/14) 2865695966779615 a001 377/969323029*23725150497407^(13/16) 2865695966779615 a001 377/969323029*505019158607^(13/14) 2865695966779615 a001 10182505537/355324 2865695966779615 a001 377/370248451*312119004989^(10/11) 2865695966779615 a001 377/370248451*3461452808002^(5/6) 2865695966779615 a001 2932585752473/102334155 2865695966779615 a001 377/141422324*45537549124^(16/17) 2865695966779615 a001 377/141422324*14662949395604^(16/21) 2865695966779615 a001 377/141422324*192900153618^(8/9) 2865695966779615 a001 377/141422324*73681302247^(12/13) 2865695966779615 a001 1120148082521/39088169 2865695966779615 a001 377*33385282^(1/4) 2865695966779616 a001 377/54018521*10749957122^(23/24) 2865695966779617 a001 12584073385/439128 2865695966779621 a001 13/711491*312119004989^(4/5) 2865695966779621 a001 13/711491*(1/2+1/2*5^(1/2))^44 2865695966779621 a001 13/711491*23725150497407^(11/16) 2865695966779621 a001 13/711491*73681302247^(11/13) 2865695966779621 a001 13/711491*10749957122^(11/12) 2865695966779621 a001 13/711491*4106118243^(22/23) 2865695966779632 a001 163427402749/5702887 2865695966779661 a001 377/7881196*2537720636^(14/15) 2865695966779661 a001 377/7881196*17393796001^(6/7) 2865695966779661 a001 377/7881196*45537549124^(14/17) 2865695966779661 a001 377/7881196*817138163596^(14/19) 2865695966779661 a001 377/7881196*14662949395604^(2/3) 2865695966779661 a001 377/7881196*(1/2+1/2*5^(1/2))^42 2865695966779661 a001 377/7881196*505019158607^(3/4) 2865695966779661 a001 377/7881196*192900153618^(7/9) 2865695966779661 a001 377/7881196*10749957122^(7/8) 2865695966779661 a001 377/7881196*4106118243^(21/23) 2865695966779661 a001 377/7881196*1568397607^(21/22) 2865695966779736 a001 62423713157/2178309 2865695966779863 a001 377*1860498^(3/10) 2865695966779931 a001 377/3010349*2537720636^(8/9) 2865695966779931 a001 377/3010349*312119004989^(8/11) 2865695966779931 a001 377/3010349*(1/2+1/2*5^(1/2))^40 2865695966779931 a001 377/3010349*23725150497407^(5/8) 2865695966779931 a001 377/3010349*73681302247^(10/13) 2865695966779931 a001 377/3010349*28143753123^(4/5) 2865695966779931 a001 377/3010349*10749957122^(5/6) 2865695966779931 a001 377/3010349*4106118243^(20/23) 2865695966779931 a001 377/3010349*1568397607^(10/11) 2865695966779931 a001 377/3010349*599074578^(20/21) 2865695966780443 a001 11921868361/416020 2865695966781782 a001 377/1149851*817138163596^(2/3) 2865695966781782 a001 377/1149851*(1/2+1/2*5^(1/2))^38 2865695966781782 a001 377/1149851*10749957122^(19/24) 2865695966781782 a001 377/1149851*4106118243^(19/23) 2865695966781782 a001 377/1149851*1568397607^(19/22) 2865695966781782 a001 377/1149851*599074578^(19/21) 2865695966781782 a001 377/1149851*228826127^(19/20) 2865695966782304 a001 1346269/843*439204^(2/9) 2865695966783621 a001 5702887/843*439204^(1/9) 2865695966784460 a001 832040/843*20633239^(1/5) 2865695966784461 a001 832040/843*17393796001^(1/7) 2865695966784461 a001 832040/843*14662949395604^(1/9) 2865695966784461 a001 832040/843*(1/2+1/2*5^(1/2))^7 2865695966784461 a001 832040/843*599074578^(1/6) 2865695966785167 a001 726103/281*20633239^(1/7) 2865695966785168 a001 726103/281*2537720636^(1/9) 2865695966785168 a001 726103/281*312119004989^(1/11) 2865695966785168 a001 726103/281*(1/2+1/2*5^(1/2))^5 2865695966785168 a001 726103/281*28143753123^(1/10) 2865695966785168 a001 726103/281*228826127^(1/8) 2865695966785267 a001 5702887/843*7881196^(1/11) 2865695966785272 a001 5702887/843*141422324^(1/13) 2865695966785272 a001 5702887/843*2537720636^(1/15) 2865695966785272 a001 5702887/843*45537549124^(1/17) 2865695966785272 a001 5702887/843*14662949395604^(1/21) 2865695966785272 a001 5702887/843*(1/2+1/2*5^(1/2))^3 2865695966785272 a001 5702887/843*192900153618^(1/18) 2865695966785272 a001 5702887/843*10749957122^(1/16) 2865695966785272 a001 5702887/843*599074578^(1/14) 2865695966785272 a001 5702887/843*33385282^(1/12) 2865695966785287 a001 2488392/281+2488392/281*5^(1/2) 2865695966785290 a001 24157817/843 2865695966785296 a001 9227465/843*(1/2+1/2*5^(1/2))^2 2865695966785296 a001 9227465/843*10749957122^(1/24) 2865695966785296 a001 9227465/843*4106118243^(1/23) 2865695966785296 a001 9227465/843*1568397607^(1/22) 2865695966785296 a001 9227465/843*599074578^(1/21) 2865695966785296 a001 9227465/843*228826127^(1/20) 2865695966785296 a001 9227465/843*87403803^(1/19) 2865695966785296 a001 9227465/843*33385282^(1/18) 2865695966785297 a001 9227465/843*12752043^(1/17) 2865695966785303 a001 9227465/843*4870847^(1/16) 2865695966785306 a001 726103/281*1860498^(1/6) 2865695966785335 a001 3524578/843*(1/2+1/2*5^(1/2))^4 2865695966785335 a001 3524578/843*23725150497407^(1/16) 2865695966785335 a001 3524578/843*73681302247^(1/13) 2865695966785335 a001 3524578/843*10749957122^(1/12) 2865695966785335 a001 3524578/843*4106118243^(2/23) 2865695966785335 a001 3524578/843*1568397607^(1/11) 2865695966785335 a001 3524578/843*599074578^(2/21) 2865695966785335 a001 3524578/843*228826127^(1/10) 2865695966785335 a001 3524578/843*87403803^(2/19) 2865695966785336 a001 3524578/843*33385282^(1/9) 2865695966785337 a001 3524578/843*12752043^(2/17) 2865695966785350 a001 3524578/843*4870847^(1/8) 2865695966785351 a001 9227465/843*1860498^(1/15) 2865695966785354 a001 5702887/843*1860498^(1/10) 2865695966785446 a001 3524578/843*1860498^(2/15) 2865695966785597 a001 1346269/843*7881196^(2/11) 2865695966785605 a001 1346269/843*141422324^(2/13) 2865695966785605 a001 1346269/843*2537720636^(2/15) 2865695966785605 a001 1346269/843*45537549124^(2/17) 2865695966785605 a001 1346269/843*14662949395604^(2/21) 2865695966785605 a001 1346269/843*(1/2+1/2*5^(1/2))^6 2865695966785605 a001 1346269/843*10749957122^(1/8) 2865695966785605 a001 1346269/843*4106118243^(3/23) 2865695966785605 a001 1346269/843*1568397607^(3/22) 2865695966785605 a001 1346269/843*599074578^(1/7) 2865695966785605 a001 1346269/843*228826127^(3/20) 2865695966785605 a001 1346269/843*87403803^(3/19) 2865695966785606 a001 1346269/843*33385282^(1/6) 2865695966785608 a001 1346269/843*12752043^(3/17) 2865695966785628 a001 1346269/843*4870847^(3/16) 2865695966785701 a001 9227465/843*710647^(1/14) 2865695966785771 a001 1346269/843*1860498^(1/5) 2865695966785880 a001 832040/843*710647^(1/4) 2865695966786146 a001 3524578/843*710647^(1/7) 2865695966786821 a001 1346269/843*710647^(3/14) 2865695966787457 a001 514229/843*(1/2+1/2*5^(1/2))^8 2865695966787457 a001 514229/843*23725150497407^(1/8) 2865695966787457 a001 514229/843*73681302247^(2/13) 2865695966787457 a001 514229/843*10749957122^(1/6) 2865695966787457 a001 514229/843*4106118243^(4/23) 2865695966787457 a001 514229/843*1568397607^(2/11) 2865695966787457 a001 514229/843*599074578^(4/21) 2865695966787457 a001 514229/843*228826127^(1/5) 2865695966787457 a001 514229/843*87403803^(4/19) 2865695966787457 a001 514229/843*33385282^(2/9) 2865695966787461 a001 514229/843*12752043^(4/17) 2865695966787487 a001 514229/843*4870847^(1/4) 2865695966787677 a001 514229/843*1860498^(4/15) 2865695966788288 a001 9227465/843*271443^(1/13) 2865695966789078 a001 514229/843*710647^(2/7) 2865695966791319 a001 3524578/843*271443^(2/13) 2865695966794470 a001 377/439204*141422324^(12/13) 2865695966794471 a001 377/439204*2537720636^(4/5) 2865695966794471 a001 377/439204*45537549124^(12/17) 2865695966794471 a001 377/439204*14662949395604^(4/7) 2865695966794471 a001 377/439204*(1/2+1/2*5^(1/2))^36 2865695966794471 a001 377/439204*505019158607^(9/14) 2865695966794471 a001 377/439204*192900153618^(2/3) 2865695966794471 a001 377/439204*73681302247^(9/13) 2865695966794471 a001 377/439204*10749957122^(3/4) 2865695966794471 a001 377/439204*4106118243^(18/23) 2865695966794471 a001 377/439204*1568397607^(9/11) 2865695966794471 a001 377/439204*599074578^(6/7) 2865695966794471 a001 377/439204*228826127^(9/10) 2865695966794471 a001 377/439204*87403803^(18/19) 2865695966794581 a001 1346269/843*271443^(3/13) 2865695966796394 a001 4976784/281*103682^(1/24) 2865695966799424 a001 514229/843*271443^(4/13) 2865695966800143 a001 196418/843*20633239^(2/7) 2865695966800145 a001 196418/843*2537720636^(2/9) 2865695966800145 a001 196418/843*312119004989^(2/11) 2865695966800145 a001 196418/843*(1/2+1/2*5^(1/2))^10 2865695966800145 a001 196418/843*28143753123^(1/5) 2865695966800145 a001 196418/843*10749957122^(5/24) 2865695966800145 a001 196418/843*4106118243^(5/23) 2865695966800145 a001 196418/843*1568397607^(5/22) 2865695966800145 a001 196418/843*599074578^(5/21) 2865695966800145 a001 196418/843*228826127^(1/4) 2865695966800145 a001 196418/843*87403803^(5/19) 2865695966800146 a001 196418/843*33385282^(5/18) 2865695966800150 a001 196418/843*12752043^(5/17) 2865695966800183 a001 196418/843*4870847^(5/16) 2865695966800421 a001 196418/843*1860498^(1/3) 2865695966802172 a001 196418/843*710647^(5/14) 2865695966807511 a001 9227465/843*103682^(1/12) 2865695966815104 a001 196418/843*271443^(5/13) 2865695966818515 a001 3478754305/121393 2865695966818594 a001 5702887/843*103682^(1/8) 2865695966829765 a001 3524578/843*103682^(1/6) 2865695966840705 a001 726103/281*103682^(5/24) 2865695966852250 a001 1346269/843*103682^(1/4) 2865695966862213 a001 832040/843*103682^(7/24) 2865695966868339 a001 4976784/281*39603^(1/22) 2865695966868577 a001 121393/843*103682^(11/24) 2865695966876316 a001 514229/843*103682^(1/3) 2865695966879581 a001 377*103682^(3/8) 2865695966880510 a001 75025/843*439204^(4/9) 2865695966881438 a001 377/167761*45537549124^(2/3) 2865695966881438 a001 377/167761*(1/2+1/2*5^(1/2))^34 2865695966881438 a001 377/167761*10749957122^(17/24) 2865695966881438 a001 377/167761*4106118243^(17/23) 2865695966881438 a001 377/167761*1568397607^(17/22) 2865695966881438 a001 377/167761*599074578^(17/21) 2865695966881438 a001 377/167761*228826127^(17/20) 2865695966881439 a001 377/167761*87403803^(17/19) 2865695966881441 a001 377/167761*33385282^(17/18) 2865695966887096 a001 75025/843*7881196^(4/11) 2865695966887113 a001 75025/843*141422324^(4/13) 2865695966887113 a001 75025/843*2537720636^(4/15) 2865695966887113 a001 75025/843*45537549124^(4/17) 2865695966887113 a001 75025/843*817138163596^(4/19) 2865695966887113 a001 75025/843*14662949395604^(4/21) 2865695966887113 a001 75025/843*(1/2+1/2*5^(1/2))^12 2865695966887113 a001 75025/843*192900153618^(2/9) 2865695966887113 a001 75025/843*73681302247^(3/13) 2865695966887113 a001 75025/843*10749957122^(1/4) 2865695966887113 a001 75025/843*4106118243^(6/23) 2865695966887113 a001 75025/843*1568397607^(3/11) 2865695966887113 a001 75025/843*599074578^(2/7) 2865695966887113 a001 75025/843*228826127^(3/10) 2865695966887113 a001 75025/843*87403803^(6/19) 2865695966887114 a001 75025/843*33385282^(1/3) 2865695966887119 a001 75025/843*12752043^(6/17) 2865695966887158 a001 75025/843*4870847^(3/8) 2865695966887444 a001 75025/843*1860498^(2/5) 2865695966889545 a001 75025/843*710647^(3/7) 2865695966905063 a001 75025/843*271443^(6/13) 2865695966911219 a001 196418/843*103682^(5/12) 2865695966951400 a001 9227465/843*39603^(1/11) 2865695967020401 a001 75025/843*103682^(1/2) 2865695967034428 a001 5702887/843*39603^(3/22) 2865695967046238 a001 664382953/23184 2865695967058384 a001 28657/843*64079^(14/23) 2865695967117544 a001 3524578/843*39603^(2/11) 2865695967200429 a001 726103/281*39603^(5/22) 2865695967283919 a001 1346269/843*39603^(3/11) 2865695967365827 a001 832040/843*39603^(7/22) 2865695967411460 a001 4976784/281*15127^(1/20) 2865695967451874 a001 514229/843*39603^(4/11) 2865695967477523 a001 377/64079*(1/2+1/2*5^(1/2))^32 2865695967477523 a001 377/64079*23725150497407^(1/2) 2865695967477523 a001 377/64079*73681302247^(8/13) 2865695967477523 a001 377/64079*10749957122^(2/3) 2865695967477523 a001 377/64079*4106118243^(16/23) 2865695967477523 a001 377/64079*1568397607^(8/11) 2865695967477524 a001 377/64079*599074578^(16/21) 2865695967477524 a001 377/64079*228826127^(4/5) 2865695967477524 a001 377/64079*87403803^(16/19) 2865695967477526 a001 377/64079*33385282^(8/9) 2865695967477540 a001 377/64079*12752043^(16/17) 2865695967483195 a001 28657/843*20633239^(2/5) 2865695967483198 a001 28657/843*17393796001^(2/7) 2865695967483198 a001 28657/843*14662949395604^(2/9) 2865695967483198 a001 28657/843*(1/2+1/2*5^(1/2))^14 2865695967483198 a001 28657/843*10749957122^(7/24) 2865695967483198 a001 28657/843*4106118243^(7/23) 2865695967483198 a001 28657/843*1568397607^(7/22) 2865695967483198 a001 28657/843*599074578^(1/3) 2865695967483198 a001 28657/843*228826127^(7/20) 2865695967483198 a001 28657/843*87403803^(7/19) 2865695967483199 a001 28657/843*33385282^(7/18) 2865695967483205 a001 28657/843*12752043^(7/17) 2865695967483251 a001 28657/843*4870847^(7/16) 2865695967483584 a001 28657/843*1860498^(7/15) 2865695967486035 a001 28657/843*710647^(1/2) 2865695967504140 a001 28657/843*271443^(7/13) 2865695967527085 a001 377*39603^(9/22) 2865695967598391 a001 15456/281*39603^(13/22) 2865695967630667 a001 196418/843*39603^(5/11) 2865695967638701 a001 28657/843*103682^(7/12) 2865695967659970 a001 121393/843*39603^(1/2) 2865695967883739 a001 75025/843*39603^(6/11) 2865695967924227 a001 10946/843*24476^(16/21) 2865695968037642 a001 9227465/843*15127^(1/10) 2865695968510913 a001 4181/843*9349^(18/19) 2865695968607080 a001 507543413/17711 2865695968645929 a001 28657/843*39603^(7/11) 2865695968663791 a001 5702887/843*15127^(3/20) 2865695969290028 a001 3524578/843*15127^(1/5) 2865695969916035 a001 726103/281*15127^(1/4) 2865695970542645 a001 1346269/843*15127^(3/10) 2865695971083325 a001 10946/843*64079^(16/23) 2865695971167674 a001 832040/843*15127^(7/20) 2865695971554015 a001 4976784/281*5778^(1/18) 2865695971563111 a001 13/844*7881196^(10/11) 2865695971563147 a001 13/844*20633239^(6/7) 2865695971563153 a001 13/844*141422324^(10/13) 2865695971563153 a001 13/844*2537720636^(2/3) 2865695971563153 a001 13/844*45537549124^(10/17) 2865695971563153 a001 13/844*312119004989^(6/11) 2865695971563153 a001 13/844*14662949395604^(10/21) 2865695971563153 a001 13/844*(1/2+1/2*5^(1/2))^30 2865695971563153 a001 13/844*192900153618^(5/9) 2865695971563153 a001 13/844*28143753123^(3/5) 2865695971563153 a001 13/844*10749957122^(5/8) 2865695971563153 a001 13/844*4106118243^(15/23) 2865695971563153 a001 13/844*1568397607^(15/22) 2865695971563153 a001 13/844*599074578^(5/7) 2865695971563153 a001 13/844*228826127^(3/4) 2865695971563153 a001 13/844*87403803^(15/19) 2865695971563155 a001 13/844*33385282^(5/6) 2865695971563168 a001 13/844*12752043^(15/17) 2865695971563266 a001 13/844*4870847^(15/16) 2865695971568827 a001 10946/843*(1/2+1/2*5^(1/2))^16 2865695971568827 a001 10946/843*23725150497407^(1/4) 2865695971568827 a001 10946/843*73681302247^(4/13) 2865695971568827 a001 10946/843*10749957122^(1/3) 2865695971568827 a001 10946/843*4106118243^(8/23) 2865695971568827 a001 10946/843*1568397607^(4/11) 2865695971568827 a001 10946/843*599074578^(8/21) 2865695971568827 a001 10946/843*228826127^(2/5) 2865695971568827 a001 10946/843*87403803^(8/19) 2865695971568828 a001 10946/843*33385282^(4/9) 2865695971568835 a001 10946/843*12752043^(8/17) 2865695971568887 a001 10946/843*4870847^(1/2) 2865695971569269 a001 10946/843*1860498^(8/15) 2865695971572070 a001 10946/843*710647^(4/7) 2865695971591691 a001 24157817/9349*521^(5/13) 2865695971592761 a001 10946/843*271443^(8/13) 2865695971746545 a001 10946/843*103682^(2/3) 2865695971796843 a001 514229/843*15127^(2/5) 2865695972415174 a001 377*15127^(9/20) 2865695972897663 a001 10946/843*39603^(8/11) 2865695973061877 a001 196418/843*15127^(1/2) 2865695973634302 a001 121393/843*15127^(11/20) 2865695974350739 a001 17711/843*15127^(3/4) 2865695974401192 a001 75025/843*15127^(3/5) 2865695974658964 a001 15456/281*15127^(13/20) 2865695975321405 a003 sin(Pi*6/65)/sin(Pi*57/119) 2865695976173089 r005 Im(z^2+c),c=-33/34+29/122*I,n=30 2865695976249623 a001 28657/843*15127^(7/10) 2865695976322752 a001 9227465/843*5778^(1/9) 2865695977628854 a001 15127/233*34^(8/19) 2865695977919784 r009 Re(z^3+c),c=-27/64+25/62*I,n=38 2865695979305247 a001 193864333/6765 2865695981091456 a001 5702887/843*5778^(1/6) 2865695981587599 a001 10946/843*15127^(4/5) 2865695985860247 a001 3524578/843*5778^(2/9) 2865695988956880 r005 Re(z^2+c),c=21/94+1/15*I,n=6 2865695990441831 r008 a(0)=0,K{-n^6,39-71*n^3-39*n^2+36*n} 2865695990628808 a001 726103/281*5778^(5/18) 2865695993857633 r005 Re(z^2+c),c=-115/98+7/25*I,n=18 2865695995397974 a001 1346269/843*5778^(1/3) 2865695995471970 a001 4181/843*24476^(6/7) 2865695999025956 a001 4181/843*64079^(18/23) 2865695999562242 a001 4181/843*439204^(2/3) 2865695999566466 a001 377/9349*20633239^(4/5) 2865695999566472 a001 377/9349*17393796001^(4/7) 2865695999566472 a001 377/9349*14662949395604^(4/9) 2865695999566472 a001 377/9349*(1/2+1/2*5^(1/2))^28 2865695999566472 a001 377/9349*505019158607^(1/2) 2865695999566472 a001 377/9349*73681302247^(7/13) 2865695999566472 a001 377/9349*10749957122^(7/12) 2865695999566472 a001 377/9349*4106118243^(14/23) 2865695999566472 a001 377/9349*1568397607^(7/11) 2865695999566472 a001 377/9349*599074578^(2/3) 2865695999566472 a001 377/9349*228826127^(7/10) 2865695999566472 a001 377/9349*87403803^(14/19) 2865695999566474 a001 377/9349*33385282^(7/9) 2865695999566486 a001 377/9349*12752043^(14/17) 2865695999566578 a001 377/9349*4870847^(7/8) 2865695999567245 a001 377/9349*1860498^(14/15) 2865695999572121 a001 4181/843*7881196^(6/11) 2865695999572146 a001 4181/843*141422324^(6/13) 2865695999572146 a001 4181/843*2537720636^(2/5) 2865695999572146 a001 4181/843*45537549124^(6/17) 2865695999572146 a001 4181/843*14662949395604^(2/7) 2865695999572146 a001 4181/843*(1/2+1/2*5^(1/2))^18 2865695999572146 a001 4181/843*192900153618^(1/3) 2865695999572146 a001 4181/843*10749957122^(3/8) 2865695999572146 a001 4181/843*4106118243^(9/23) 2865695999572146 a001 4181/843*1568397607^(9/22) 2865695999572146 a001 4181/843*599074578^(3/7) 2865695999572146 a001 4181/843*228826127^(9/20) 2865695999572146 a001 4181/843*87403803^(9/19) 2865695999572147 a001 4181/843*33385282^(1/2) 2865695999572155 a001 4181/843*12752043^(9/17) 2865695999572214 a001 4181/843*4870847^(9/16) 2865695999572643 a001 4181/843*1860498^(3/5) 2865695999575794 a001 4181/843*710647^(9/14) 2865695999599072 a001 4181/843*271443^(9/13) 2865695999772079 a001 4181/843*103682^(3/4) 2865696000165557 a001 832040/843*5778^(7/18) 2865696001067086 a001 4181/843*39603^(9/11) 2865696001790426 r005 Im(z^2+c),c=-29/94+23/48*I,n=18 2865696002539565 a007 Real Root Of 979*x^4+353*x^3-916*x^2-969*x+338 2865696003556300 a001 4976784/281*2207^(1/16) 2865696004126227 r008 a(0)=0,K{-n^6,9-65*n^3-72*n^2+93*n} 2865696004937281 a001 514229/843*5778^(4/9) 2865696009698167 a001 377*5778^(1/2) 2865696009834623 m005 (1/3*Pi-1/7)/(-11/36+5/18*5^(1/2)) 2865696010843264 a001 4181/843*15127^(9/10) 2865696014487425 a001 196418/843*5778^(5/9) 2865696019202405 a001 121393/843*5778^(11/18) 2865696023563867 r002 11th iterates of z^2 + 2865696023563867 r002 11th iterates of z^2 + 2865696024111849 a001 75025/843*5778^(2/3) 2865696028512176 a001 15456/281*5778^(13/18) 2865696030054872 m002 -Pi^3+Pi^6/3-Sinh[Pi]/4 2865696034245391 a001 28657/843*5778^(7/9) 2865696035299316 p004 log(18773/1069) 2865696035330201 a001 2255/281*5778^(17/18) 2865696036329071 r008 a(0)=0,K{-n^6,23-65*n^3-65*n^2+72*n} 2865696036489061 a001 17711/843*5778^(5/6) 2865696040327323 a001 9227465/843*2207^(1/8) 2865696040955094 r008 a(0)=0,K{-n^6,-49+69*n^3+40*n^2-25*n} 2865696047868476 a001 10946/843*5778^(8/9) 2865696054345722 r005 Im(z^2+c),c=-17/50+28/57*I,n=21 2865696066133181 r009 Im(z^3+c),c=-11/28+8/39*I,n=33 2865696066815050 a003 sin(Pi*28/99)/cos(Pi*26/63) 2865696072954555 m009 (1/8*Pi^2-1/3)/(Psi(1,3/4)+3/5) 2865696077098313 a001 5702887/843*2207^(3/16) 2865696078024766 a001 3571/514229*89^(6/19) 2865696093121507 a001 7/377*610^(11/14) 2865696096779391 r002 8th iterates of z^2 + 2865696100995962 r009 Re(z^3+c),c=-9/31+35/36*I,n=21 2865696101504644 r009 Im(z^3+c),c=-11/28+8/39*I,n=32 2865696103436231 r005 Im(z^2+c),c=-33/118+26/57*I,n=11 2865696110243402 s002 sum(A206701[n]/((pi^n+1)/n),n=1..infinity) 2865696113869392 a001 3524578/843*2207^(1/4) 2865696128409668 m001 (cos(1)*FeigenbaumB+ln(3))/cos(1) 2865696130593961 a007 Real Root Of -378*x^4-954*x^3+385*x^2-241*x-811 2865696138802140 r005 Im(z^2+c),c=19/66+6/13*I,n=33 2865696141403033 m001 BesselK(0,1)^(gamma*FeigenbaumAlpha) 2865696150640240 a001 726103/281*2207^(5/16) 2865696155246487 h001 (2/11*exp(2)+1/12)/(3/5*exp(2)+6/11) 2865696162567518 a001 9227465/2207*521^(4/13) 2865696163529314 a001 9227465/3571*521^(5/13) 2865696163972915 m001 GAMMA(7/24)^2/exp(MadelungNaCl)/gamma 2865696165858110 l006 ln(408/7165) 2865696168466547 m001 (ln(gamma)-BesselK(1,1))/(Khinchin+MertensB3) 2865696177277795 p002 log(18/(11^(1/2)-6)^(1/2)) 2865696184280156 r008 a(0)=0,K{-n^6,61+23*n-58*n^2-61*n^3} 2865696186953998 a001 1597/843*24476^(20/21) 2865696187411693 a001 1346269/843*2207^(3/8) 2865696188207206 r005 Im(z^2+c),c=9/34+3/20*I,n=14 2865696190902871 a001 1597/843*64079^(20/23) 2865696191428290 a001 1597/843*167761^(4/5) 2865696191504091 a001 377/3571*141422324^(2/3) 2865696191504092 a001 377/3571*(1/2+1/2*5^(1/2))^26 2865696191504092 a001 377/3571*73681302247^(1/2) 2865696191504092 a001 377/3571*10749957122^(13/24) 2865696191504092 a001 377/3571*4106118243^(13/23) 2865696191504092 a001 377/3571*1568397607^(13/22) 2865696191504092 a001 377/3571*599074578^(13/21) 2865696191504092 a001 377/3571*228826127^(13/20) 2865696191504092 a001 377/3571*87403803^(13/19) 2865696191504093 a001 377/3571*33385282^(13/18) 2865696191504105 a001 377/3571*12752043^(13/17) 2865696191504190 a001 377/3571*4870847^(13/16) 2865696191504809 a001 377/3571*1860498^(13/15) 2865696191509361 a001 377/3571*710647^(13/14) 2865696191509744 a001 1597/843*20633239^(4/7) 2865696191509748 a001 1597/843*2537720636^(4/9) 2865696191509748 a001 1597/843*(1/2+1/2*5^(1/2))^20 2865696191509748 a001 1597/843*23725150497407^(5/16) 2865696191509748 a001 1597/843*505019158607^(5/14) 2865696191509748 a001 1597/843*73681302247^(5/13) 2865696191509748 a001 1597/843*28143753123^(2/5) 2865696191509748 a001 1597/843*10749957122^(5/12) 2865696191509748 a001 1597/843*4106118243^(10/23) 2865696191509748 a001 1597/843*1568397607^(5/11) 2865696191509748 a001 1597/843*599074578^(10/21) 2865696191509748 a001 1597/843*228826127^(1/2) 2865696191509749 a001 1597/843*87403803^(10/19) 2865696191509750 a001 1597/843*33385282^(5/9) 2865696191509759 a001 1597/843*12752043^(10/17) 2865696191509824 a001 1597/843*4870847^(5/8) 2865696191510300 a001 1597/843*1860498^(2/3) 2865696191513802 a001 1597/843*710647^(5/7) 2865696191539666 a001 1597/843*271443^(10/13) 2865696191731896 a001 1597/843*103682^(5/6) 2865696193170793 a001 1597/843*39603^(10/11) 2865696197193861 r009 Im(z^3+c),c=-11/28+8/39*I,n=37 2865696197279461 m001 (FeigenbaumB+HeathBrownMoroz)/(Si(Pi)+Shi(1)) 2865696206966046 m002 1+2/Log[Pi]+Sinh[Pi]/Pi^4 2865696207470269 r009 Im(z^3+c),c=-11/28+8/39*I,n=38 2865696210047312 r005 Im(z^2+c),c=-37/94+15/31*I,n=31 2865696212662476 m001 1/exp(Zeta(7))^2/Zeta(3)*sin(Pi/12) 2865696214391065 r009 Im(z^3+c),c=-11/28+8/39*I,n=42 2865696215470555 r009 Im(z^3+c),c=-11/28+8/39*I,n=41 2865696216081592 r009 Im(z^3+c),c=-11/28+8/39*I,n=46 2865696216133505 r009 Im(z^3+c),c=-11/28+8/39*I,n=43 2865696216152572 r009 Im(z^3+c),c=-11/28+8/39*I,n=47 2865696216259619 r009 Im(z^3+c),c=-11/28+8/39*I,n=51 2865696216277879 r009 Im(z^3+c),c=-11/28+8/39*I,n=52 2865696216280111 r009 Im(z^3+c),c=-11/28+8/39*I,n=50 2865696216280513 r009 Im(z^3+c),c=-11/28+8/39*I,n=55 2865696216280683 r009 Im(z^3+c),c=-11/28+8/39*I,n=56 2865696216282210 r009 Im(z^3+c),c=-11/28+8/39*I,n=60 2865696216282388 r009 Im(z^3+c),c=-11/28+8/39*I,n=61 2865696216282458 r009 Im(z^3+c),c=-11/28+8/39*I,n=64 2865696216282527 r009 Im(z^3+c),c=-11/28+8/39*I,n=63 2865696216282539 r009 Im(z^3+c),c=-11/28+8/39*I,n=59 2865696216282554 r009 Im(z^3+c),c=-11/28+8/39*I,n=62 2865696216282782 r009 Im(z^3+c),c=-11/28+8/39*I,n=57 2865696216283221 r009 Im(z^3+c),c=-11/28+8/39*I,n=58 2865696216285994 r009 Im(z^3+c),c=-11/28+8/39*I,n=54 2865696216289952 r009 Im(z^3+c),c=-11/28+8/39*I,n=53 2865696216326719 r009 Im(z^3+c),c=-11/28+8/39*I,n=48 2865696216341852 r009 Im(z^3+c),c=-11/28+8/39*I,n=49 2865696216500151 r009 Im(z^3+c),c=-11/28+8/39*I,n=45 2865696216956735 r009 Im(z^3+c),c=-11/28+8/39*I,n=44 2865696220802242 r009 Im(z^3+c),c=-11/28+8/39*I,n=40 2865696221333916 r009 Im(z^3+c),c=-11/28+8/39*I,n=39 2865696223347014 r009 Im(z^3+c),c=-11/28+8/39*I,n=34 2865696224181566 a001 832040/843*2207^(7/16) 2865696227558651 r009 Im(z^3+c),c=-11/28+8/39*I,n=36 2865696227679912 r005 Im(z^2+c),c=-17/42+11/24*I,n=13 2865696230678061 a005 (1/sin(91/197*Pi))^468 2865696241523297 a007 Real Root Of -816*x^4+629*x^3+104*x^2+171*x-5 2865696242770070 a002 12^(7/10)-2^(3/2) 2865696245061593 m001 Riemann2ndZero^FeigenbaumC*Trott 2865696249609457 a001 109801/2*433494437^(7/9) 2865696249624317 a001 12752043/8*5702887^(7/9) 2865696249703509 a001 370248451/8*75025^(7/9) 2865696250830215 r005 Re(z^2+c),c=-8/23+13/57*I,n=9 2865696250896897 m009 (3/4*Psi(1,2/3)+2)/(20/3*Catalan+5/6*Pi^2+2/3) 2865696254822013 a001 4976784/281*843^(1/14) 2865696260552646 m001 (cos(1)+Zeta(5))/(FeigenbaumDelta+GaussAGM) 2865696260955578 a001 514229/843*2207^(1/2) 2865696262147779 a001 15127/8*32951280099^(7/9) 2865696266070288 r002 3th iterates of z^2 + 2865696269392427 a001 123/832040*13^(8/31) 2865696269964243 a001 9349/1346269*89^(6/19) 2865696271356632 r005 Re(z^2+c),c=-4/15+35/62*I,n=36 2865696274340325 r009 Im(z^3+c),c=-11/28+8/39*I,n=35 2865696277090307 m009 (2*Psi(1,2/3)+1/4)/(2/5*Psi(1,2/3)+1) 2865696278812833 m001 (-Trott+ZetaQ(4))/(Si(Pi)+FeigenbaumKappa) 2865696283273745 r005 Im(z^2+c),c=-9/38+16/37*I,n=30 2865696297718753 a001 377*2207^(9/16) 2865696297967835 a001 12238/1762289*89^(6/19) 2865696300869653 p003 LerchPhi(1/256,5,217/169) 2865696302053504 a001 64079/9227465*89^(6/19) 2865696302649595 a001 167761/24157817*89^(6/19) 2865696302736563 a001 219602/31622993*89^(6/19) 2865696302749252 a001 1149851/165580141*89^(6/19) 2865696302751103 a001 3010349/433494437*89^(6/19) 2865696302751373 a001 3940598/567451585*89^(6/19) 2865696302751413 a001 20633239/2971215073*89^(6/19) 2865696302751418 a001 54018521/7778742049*89^(6/19) 2865696302751419 a001 70711162/10182505537*89^(6/19) 2865696302751419 a001 370248451/53316291173*89^(6/19) 2865696302751419 a001 969323029/139583862445*89^(6/19) 2865696302751419 a001 1268860318/182717648081*89^(6/19) 2865696302751419 a001 6643838879/956722026041*89^(6/19) 2865696302751419 a001 17393796001/2504730781961*89^(6/19) 2865696302751419 a001 22768774562/3278735159921*89^(6/19) 2865696302751419 a001 10525900321/1515744265389*89^(6/19) 2865696302751419 a001 28143753123/4052739537881*89^(6/19) 2865696302751419 a001 5374978561/774004377960*89^(6/19) 2865696302751419 a001 4106118243/591286729879*89^(6/19) 2865696302751419 a001 224056801/32264490531*89^(6/19) 2865696302751419 a001 299537289/43133785636*89^(6/19) 2865696302751419 a001 228826127/32951280099*89^(6/19) 2865696302751420 a001 87403803/12586269025*89^(6/19) 2865696302751422 a001 103681/14930208*89^(6/19) 2865696302751437 a001 12752043/1836311903*89^(6/19) 2865696302751540 a001 4870847/701408733*89^(6/19) 2865696302752247 a001 930249/133957148*89^(6/19) 2865696302757094 a001 101521/14619165*89^(6/19) 2865696302790313 a001 271443/39088169*89^(6/19) 2865696303017999 a001 51841/7465176*89^(6/19) 2865696304578586 a001 39603/5702887*89^(6/19) 2865696315275007 a001 2161/311187*89^(6/19) 2865696325655130 a007 Real Root Of 986*x^4+652*x^3-280*x^2-805*x-199 2865696331954149 m001 ln(2)/ln(10)*(Psi(1,1/3)-Stephens) 2865696334510301 a001 196418/843*2207^(5/8) 2865696334732292 a007 Real Root Of -281*x^4-554*x^3+724*x^2-220*x-663 2865696336987003 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+Robbin-Weierstrass 2865696344047415 m001 (Sarnak+ZetaQ(4))/(ln(2)-BesselJ(1,1)) 2865696362572449 r005 Re(z^2+c),c=-13/29+22/37*I,n=10 2865696368980451 l006 ln(4722/6289) 2865696371227570 a001 121393/843*2207^(11/16) 2865696379173888 h001 (5/11*exp(1)+1/10)/(5/9*exp(2)+5/9) 2865696379238107 r005 Im(z^2+c),c=-3/4+38/219*I,n=7 2865696382462594 a007 Real Root Of -247*x^4-828*x^3-762*x^2-971*x+647 2865696383760109 r008 a(0)=0,K{-n^6,-67+49*n^3+91*n^2-38*n} 2865696388589363 a001 2889/416020*89^(6/19) 2865696407063128 r002 8th iterates of z^2 + 2865696408139306 a001 75025/843*2207^(3/4) 2865696411590482 r005 Re(z^2+c),c=-18/31+25/59*I,n=59 2865696413757442 l006 ln(563/9887) 2865696413757442 p004 log(9887/563) 2865696413956812 r009 Im(z^3+c),c=-43/106+10/51*I,n=16 2865696418948285 r005 Im(z^2+c),c=-123/98+1/34*I,n=55 2865696436818689 m001 Pi*exp(Pi)/(sin(1)-sin(1/5*Pi)) 2865696437030304 a003 cos(Pi*7/87)-cos(Pi*29/111) 2865696444541924 a001 15456/281*2207^(13/16) 2865696458694819 m005 (4/5*gamma-3/5)/(4*2^(1/2)-5/6) 2865696462897089 a007 Real Root Of 62*x^4-294*x^3+416*x^2-941*x+242 2865696464368248 r009 Im(z^3+c),c=-45/74+2/37*I,n=3 2865696467895052 a007 Real Root Of -258*x^4-830*x^3-311*x^2-144*x+8 2865696470126139 r005 Im(z^2+c),c=-19/86+26/61*I,n=49 2865696482277430 a001 28657/843*2207^(7/8) 2865696497807721 m001 1/BesselK(0,1)*MinimumGamma/ln(GAMMA(5/6)) 2865696511143716 a001 377/3*521^(46/53) 2865696511715121 m001 (FeigenbaumMu*GaussAGM-sin(1/5*Pi))/GaussAGM 2865696516523392 a001 17711/843*2207^(15/16) 2865696523801578 r009 Re(z^3+c),c=-1/19+31/46*I,n=51 2865696542858777 a001 9227465/843*843^(1/7) 2865696542922368 r009 Im(z^3+c),c=-11/28+8/39*I,n=31 2865696549461623 b008 60/7+E^3 2865696549765551 m001 CareFree*KomornikLoreti+ErdosBorwein 2865696555217831 a001 28284425/987 2865696561331330 r009 Im(z^3+c),c=-11/28+8/39*I,n=27 2865696581235180 r009 Re(z^3+c),c=-51/122+21/53*I,n=29 2865696589468912 m001 1/Porter/exp(MertensB1)/FeigenbaumC 2865696601146389 m006 (1/5/Pi-1)/(1/4*Pi^2+4/5) 2865696612820030 l006 ln(6521/8685) 2865696616554105 s002 sum(A235612[n]/(n^2*exp(n)+1),n=1..infinity) 2865696627980600 a007 Real Root Of -153*x^4-478*x^3-139*x^2-24*x+142 2865696630093329 a001 13/9062201101803*47^(7/9) 2865696636226246 m005 (1/2*exp(1)+4/9)/(2*exp(1)+6/7) 2865696638563341 r005 Im(z^2+c),c=9/26+11/57*I,n=6 2865696662101400 a007 Real Root Of -384*x^4-810*x^3+615*x^2-556*x+191 2865696665066699 a001 24157817/5778*521^(4/13) 2865696666990685 a001 2178309/1364*521^(6/13) 2865696670324027 m005 (4/5*2^(1/2)-1/6)/(2/5*Catalan+3) 2865696684591370 r005 Re(z^2+c),c=-11/14+11/196*I,n=14 2865696690622910 m001 ln(GAMMA(1/6))^2*MertensB1/GAMMA(13/24)^2 2865696697183007 m001 1/ln(GAMMA(1/4))^2*Cahen*exp(1)^2 2865696698031115 r005 Im(z^2+c),c=-73/82+7/30*I,n=4 2865696704299110 m001 Backhouse-GAMMA(17/24)^GolombDickman 2865696711881184 a008 Real Root of x^3-x^2+13*x+69 2865696714364485 a007 Real Root Of -333*x^4-533*x^3+997*x^2-375*x+652 2865696719942168 r005 Im(z^2+c),c=-13/48+26/57*I,n=3 2865696721639754 a007 Real Root Of -313*x^4-829*x^3-248*x^2-975*x+842 2865696722390014 a007 Real Root Of -463*x^4-192*x^3+392*x^2+525*x-175 2865696729252792 m001 (BesselK(0,1)+GAMMA(11/24))^Zeta(1/2) 2865696730719278 a001 832040/3*521^(43/58) 2865696730797152 r009 Im(z^3+c),c=-11/28+8/39*I,n=30 2865696738380356 a001 63245986/15127*521^(4/13) 2865696739118341 m001 (Si(Pi)-Zeta(5))/(ln(3)+KhinchinHarmonic) 2865696739294546 a005 (1/sin(59/143*Pi))^1354 2865696746908149 a007 Real Root Of 186*x^4+670*x^3+657*x^2+858*x+287 2865696749076675 a001 165580141/39603*521^(4/13) 2865696750637247 a001 433494437/103682*521^(4/13) 2865696750864931 a001 1134903170/271443*521^(4/13) 2865696750898150 a001 2971215073/710647*521^(4/13) 2865696750902996 a001 7778742049/1860498*521^(4/13) 2865696750903703 a001 20365011074/4870847*521^(4/13) 2865696750903807 a001 53316291173/12752043*521^(4/13) 2865696750903822 a001 139583862445/33385282*521^(4/13) 2865696750903824 a001 365435296162/87403803*521^(4/13) 2865696750903824 a001 956722026041/228826127*521^(4/13) 2865696750903824 a001 2504730781961/599074578*521^(4/13) 2865696750903824 a001 6557470319842/1568397607*521^(4/13) 2865696750903824 a001 10610209857723/2537720636*521^(4/13) 2865696750903824 a001 4052739537881/969323029*521^(4/13) 2865696750903824 a001 1548008755920/370248451*521^(4/13) 2865696750903824 a001 591286729879/141422324*521^(4/13) 2865696750903825 a001 225851433717/54018521*521^(4/13) 2865696750903831 a001 86267571272/20633239*521^(4/13) 2865696750903870 a001 32951280099/7881196*521^(4/13) 2865696750904140 a001 12586269025/3010349*521^(4/13) 2865696750905992 a001 4807526976/1149851*521^(4/13) 2865696750918680 a001 1836311903/439204*521^(4/13) 2865696751005648 a001 701408733/167761*521^(4/13) 2865696751601733 a001 267914296/64079*521^(4/13) 2865696753900272 h001 (10/11*exp(2)+2/5)/(1/4*exp(2)+7/11) 2865696755687363 a001 102334155/24476*521^(4/13) 2865696758599890 m005 (1/2*exp(1)+7/9)/(11/12*gamma-5/11) 2865696774144996 a003 cos(Pi*31/75)/cos(Pi*55/117) 2865696775027196 m005 (1/2*Pi+5/11)/(5/9*gamma-1/4) 2865696780126134 p003 LerchPhi(1/2,6,616/229) 2865696783690690 a001 4181*521^(4/13) 2865696790687889 a001 47*(1/2*5^(1/2)+1/2)^25*843^(8/15) 2865696796757144 m005 (1/3*Pi+1/10)/(1/4*3^(1/2)-5/6) 2865696801632365 r005 Re(z^2+c),c=27/82+18/35*I,n=33 2865696805319888 m008 (3/5*Pi^3+3/5)/(2*Pi^3+5) 2865696806005810 r004 Im(z^2+c),c=1/5+2/11*I,z(0)=exp(5/8*I*Pi),n=8 2865696820730421 a001 38*2584^(9/35) 2865696829632187 r005 Im(z^2+c),c=-19/86+26/61*I,n=52 2865696830895537 a001 5702887/843*843^(3/14) 2865696831303901 h001 (9/10*exp(1)+5/12)/(1/10*exp(1)+8/11) 2865696850900380 a007 Real Root Of 295*x^4+764*x^3+968*x^2-601*x-18 2865696855989453 a001 18/233*3524578^(2/23) 2865696857918473 h002 exp(12^(1/3)-19+12^(3/4)) 2865696868522191 r005 Re(z^2+c),c=-7/30+29/50*I,n=49 2865696870331391 m005 (1/2*Catalan+5/7)/(3/10*2^(1/2)-5/6) 2865696891093435 a001 2207/317811*89^(6/19) 2865696893879147 r005 Re(z^2+c),c=-33/94+11/52*I,n=14 2865696902018437 a009 1/3*(12+11^(1/3))^(1/2)*3^(3/4) 2865696919521092 p001 sum((-1)^n/(473*n+343)/(24^n),n=0..infinity) 2865696935787423 m001 (BesselK(1,1)-exp(Pi))/(Rabbit+ZetaP(4)) 2865696951277051 s002 sum(A280441[n]/(16^n),n=1..infinity) 2865696952256609 s002 sum(A051611[n]/(n^3*pi^n+1),n=1..infinity) 2865696962822397 r009 Im(z^3+c),c=-33/64+7/15*I,n=3 2865696966885731 r005 Im(z^2+c),c=-51/82+3/64*I,n=29 2865696967299198 m005 (1/3*3^(1/2)-2/9)/(5/9*Zeta(3)+4/7) 2865696974666564 a001 14930352/2207*521^(3/13) 2865696975628360 a001 14930352/3571*521^(4/13) 2865696979903995 a007 Real Root Of -493*x^4+648*x^3-249*x^2+307*x+127 2865696993446739 m005 (1/2*3^(1/2)+4/9)/(4*Catalan+10/11) 2865697012632946 r005 Im(z^2+c),c=1/74+11/34*I,n=17 2865697012879317 g007 -Psi(2,7/12)-2*Psi(2,9/10)-Psi(2,4/7) 2865697018146794 r005 Im(z^2+c),c=1/9+31/44*I,n=6 2865697021221957 m005 (1/2*exp(1)-8/9)/(6*exp(1)+1/10) 2865697041757646 r005 Re(z^2+c),c=-65/94+21/62*I,n=27 2865697042373353 r005 Re(z^2+c),c=25/86+1/8*I,n=30 2865697062652638 r002 5th iterates of z^2 + 2865697063775329 r005 Im(z^2+c),c=-6/17+25/41*I,n=8 2865697066292164 l006 ln(155/2722) 2865697068509344 a007 Real Root Of 545*x^4-15*x^3-384*x^2-759*x-190 2865697068776923 a007 Real Root Of 900*x^4-384*x^3-719*x^2-764*x-175 2865697070292109 a007 Real Root Of -414*x^4-414*x^3-486*x^2+789*x+23 2865697085218356 r005 Re(z^2+c),c=-13/46+6/13*I,n=53 2865697086469897 r005 Im(z^2+c),c=9/29+1/17*I,n=49 2865697098613336 r005 Re(z^2+c),c=13/46+30/59*I,n=37 2865697106998006 r005 Re(z^2+c),c=-21/82+29/54*I,n=42 2865697118932414 a001 3524578/843*843^(2/7) 2865697127140351 r002 5th iterates of z^2 + 2865697128143267 r005 Im(z^2+c),c=-33/46+15/58*I,n=15 2865697132924866 a005 (1/cos(22/201*Pi))^361 2865697143156230 m001 Trott2nd*(Paris-ln(Pi)) 2865697150292450 r005 Im(z^2+c),c=-7/18+17/35*I,n=45 2865697158262238 r005 Re(z^2+c),c=-13/48+29/59*I,n=45 2865697160197749 m008 (3/5*Pi^4+4/5)/(1/4*Pi^2-2/5) 2865697163338414 m001 sin(1)^Ei(1,1)/ReciprocalFibonacci 2865697177074422 q001 335/1169 2865697179702402 m009 (4*Psi(1,1/3)-1/4)/(3/2*Pi^2-4/5) 2865697180336789 m001 GAMMA(19/24)-StronglyCareFree^Bloch 2865697187180813 a003 cos(Pi*29/115)-sin(Pi*19/42) 2865697191467319 m001 (ln(Pi)+Zeta(1,-1))/(FeigenbaumB+Sierpinski) 2865697207634611 r005 Im(z^2+c),c=-19/86+26/61*I,n=46 2865697217646070 m001 (ln(Pi)-BesselI(1,2))/(FeigenbaumB+Sarnak) 2865697223710123 r005 Im(z^2+c),c=-19/86+26/61*I,n=50 2865697225449318 r005 Im(z^2+c),c=-19/86+26/61*I,n=55 2865697227688539 m001 (KhinchinHarmonic+Niven)/(Zeta(3)+gamma(3)) 2865697232338851 m001 (-ln(3)+3^(1/3))/(5^(1/2)-Zeta(5)) 2865697237502023 r005 Re(z^2+c),c=10/29+4/23*I,n=43 2865697241089147 r009 Re(z^3+c),c=-49/122+18/49*I,n=34 2865697243416925 m001 Zeta(1,2)*ln(TwinPrimes)^2*sqrt(Pi) 2865697252848068 l006 ln(1799/2396) 2865697263611972 m006 (2/5*exp(Pi)+5)/(5*Pi^2+2/5) 2865697263668962 a007 Real Root Of 208*x^4+747*x^3+45*x^2-845*x+761 2865697279106119 m001 (Backhouse-Bloch)/(Magata+Trott2nd) 2865697279978359 a007 Real Root Of -826*x^4-334*x^3-734*x^2+14*x+62 2865697289624178 a007 Real Root Of -20*x^4-605*x^3-895*x^2+490*x-762 2865697306402391 m001 FeigenbaumDelta/Zeta(3)/FeigenbaumKappa 2865697307988976 r009 Im(z^3+c),c=-57/122+2/51*I,n=29 2865697309985353 r009 Re(z^3+c),c=-5/28+63/64*I,n=32 2865697322341846 a007 Real Root Of -213*x^4-335*x^3+664*x^2-215*x+412 2865697322945510 r009 Re(z^3+c),c=-13/90+48/59*I,n=6 2865697340489792 m001 Rabbit/(Pi^(1/2)+CareFree) 2865697344902960 a005 (1/sin(57/229*Pi))^128 2865697347154277 b008 Tan[1/2+Sqrt[Cos[1]]] 2865697349543418 p004 log(22777/1297) 2865697362309067 m001 OneNinth^2/exp(Si(Pi))^2*Zeta(9)^2 2865697370412392 m001 Khinchin^ln(5)*Khinchin^KomornikLoreti 2865697373707248 r002 11th iterates of z^2 + 2865697399950258 a001 5702887/521*199^(2/11) 2865697401020957 r004 Re(z^2+c),c=1/34+1/4*I,z(0)=exp(5/8*I*Pi),n=7 2865697406969089 a001 726103/281*843^(5/14) 2865697410313368 a001 199/196418*514229^(21/22) 2865697410326155 a001 199/4807526976*20365011074^(21/22) 2865697416983234 s002 sum(A258028[n]/(n^3*pi^n+1),n=1..infinity) 2865697424946685 m001 (Ei(1)+Zeta(1,2))/(3^(1/2)+ln(5)) 2865697428076270 r005 Re(z^2+c),c=-87/110+1/63*I,n=22 2865697438757180 p001 sum(1/(557*n+471)/(2^n),n=0..infinity) 2865697448827385 r005 Im(z^2+c),c=-19/86+26/61*I,n=58 2865697450252969 m001 1/OneNinth/PisotVijayaraghavan*ln(Ei(1))^2 2865697452143562 m001 (3^(1/3)+FeigenbaumC)/(MertensB2+OneNinth) 2865697452913521 m001 MertensB2^BesselJ(0,1)+Tribonacci 2865697460791281 m005 (1/4*Catalan+4/5)/(1/3*gamma+1/6) 2865697473455181 m001 (2*Pi/GAMMA(5/6)+Robbin)/(Ei(1,1)-gamma(3)) 2865697476095622 r002 3th iterates of z^2 + 2865697477165894 a001 39088169/5778*521^(3/13) 2865697479090050 a001 1762289/682*521^(5/13) 2865697483500424 a007 Real Root Of 253*x^4-230*x^3+990*x^2-344*x-187 2865697489315215 r005 Im(z^2+c),c=-1/7+15/23*I,n=27 2865697490071004 r005 Re(z^2+c),c=-31/90+12/49*I,n=23 2865697494271141 r009 Im(z^3+c),c=-10/21+5/39*I,n=28 2865697499427061 m001 (arctan(1/3)-GAMMA(5/6))/(GAMMA(13/24)+Salem) 2865697506402081 a001 610/843*64079^(22/23) 2865697507051595 a001 377/1364*439204^(8/9) 2865697507064767 a001 377/1364*7881196^(8/11) 2865697507064800 a001 377/1364*141422324^(8/13) 2865697507064800 a001 377/1364*2537720636^(8/15) 2865697507064800 a001 377/1364*45537549124^(8/17) 2865697507064800 a001 377/1364*14662949395604^(8/21) 2865697507064800 a001 377/1364*(1/2+1/2*5^(1/2))^24 2865697507064800 a001 377/1364*192900153618^(4/9) 2865697507064800 a001 377/1364*73681302247^(6/13) 2865697507064800 a001 377/1364*10749957122^(1/2) 2865697507064800 a001 377/1364*4106118243^(12/23) 2865697507064800 a001 377/1364*1568397607^(6/11) 2865697507064800 a001 377/1364*599074578^(4/7) 2865697507064800 a001 377/1364*228826127^(3/5) 2865697507064800 a001 377/1364*87403803^(12/19) 2865697507064802 a001 377/1364*33385282^(2/3) 2865697507064813 a001 377/1364*12752043^(12/17) 2865697507064891 a001 377/1364*4870847^(3/4) 2865697507065463 a001 377/1364*1860498^(4/5) 2865697507069616 a001 610/843*7881196^(2/3) 2865697507069647 a001 610/843*312119004989^(2/5) 2865697507069647 a001 610/843*(1/2+1/2*5^(1/2))^22 2865697507069647 a001 610/843*10749957122^(11/24) 2865697507069647 a001 610/843*4106118243^(11/23) 2865697507069647 a001 610/843*1568397607^(1/2) 2865697507069647 a001 610/843*599074578^(11/21) 2865697507069647 a001 610/843*228826127^(11/20) 2865697507069647 a001 610/843*87403803^(11/19) 2865697507069648 a001 610/843*33385282^(11/18) 2865697507069658 a001 610/843*12752043^(11/17) 2865697507069664 a001 377/1364*710647^(6/7) 2865697507069730 a001 610/843*4870847^(11/16) 2865697507070254 a001 610/843*1860498^(11/15) 2865697507074105 a001 610/843*710647^(11/14) 2865697507100702 a001 377/1364*271443^(12/13) 2865697507102556 a001 610/843*271443^(11/13) 2865697507314010 a001 610/843*103682^(11/12) 2865697520023715 r005 Im(z^2+c),c=-19/86+26/61*I,n=60 2865697523554807 r005 Im(z^2+c),c=-17/22+19/111*I,n=7 2865697530271646 r005 Im(z^2+c),c=-19/86+26/61*I,n=63 2865697539907720 r005 Im(z^2+c),c=-19/86+26/61*I,n=61 2865697540701569 a007 Real Root Of 419*x^4+601*x^3+868*x^2-42*x-72 2865697543552865 a007 Real Root Of -571*x^4-629*x^3-797*x^2+752*x+270 2865697546028056 a007 Real Root Of -234*x^4-399*x^3+993*x^2+755*x+400 2865697550479574 a001 6765*521^(3/13) 2865697554343627 r005 Im(z^2+c),c=-19/34+7/17*I,n=36 2865697558518549 m002 -24-5/ProductLog[Pi] 2865697561150588 a007 Real Root Of 30*x^4-401*x^3-687*x^2-406*x+182 2865697561175895 a001 267914296/39603*521^(3/13) 2865697561202169 l006 ln(6570/6761) 2865697562042072 r009 Im(z^3+c),c=-23/90+16/59*I,n=11 2865697562736468 a001 701408733/103682*521^(3/13) 2865697562964152 a001 1836311903/271443*521^(3/13) 2865697562997371 a001 686789568/101521*521^(3/13) 2865697563002217 a001 12586269025/1860498*521^(3/13) 2865697563002925 a001 32951280099/4870847*521^(3/13) 2865697563003028 a001 86267571272/12752043*521^(3/13) 2865697563003043 a001 32264490531/4769326*521^(3/13) 2865697563003045 a001 591286729879/87403803*521^(3/13) 2865697563003045 a001 1548008755920/228826127*521^(3/13) 2865697563003045 a001 4052739537881/599074578*521^(3/13) 2865697563003045 a001 1515744265389/224056801*521^(3/13) 2865697563003045 a001 6557470319842/969323029*521^(3/13) 2865697563003045 a001 2504730781961/370248451*521^(3/13) 2865697563003046 a001 956722026041/141422324*521^(3/13) 2865697563003046 a001 365435296162/54018521*521^(3/13) 2865697563003052 a001 139583862445/20633239*521^(3/13) 2865697563003092 a001 53316291173/7881196*521^(3/13) 2865697563003362 a001 20365011074/3010349*521^(3/13) 2865697563005213 a001 7778742049/1149851*521^(3/13) 2865697563017901 a001 2971215073/439204*521^(3/13) 2865697563104869 a001 1134903170/167761*521^(3/13) 2865697563700955 a001 433494437/64079*521^(3/13) 2865697564851685 r005 Im(z^2+c),c=-19/86+26/61*I,n=57 2865697565805321 r005 Im(z^2+c),c=-19/86+26/61*I,n=64 2865697566709330 m005 (1/3*Zeta(3)-2/5)/(3/7*Catalan+2) 2865697567786586 a001 165580141/24476*521^(3/13) 2865697579059291 m001 Artin/(FeigenbaumC^TreeGrowth2nd) 2865697585255417 b008 EulerGamma*EllipticNomeQ[ArcCoth[2]] 2865697589489908 m001 (OneNinth+ZetaP(4))/(KhinchinLevy-Landau) 2865697595789921 a001 63245986/9349*521^(3/13) 2865697596993855 a007 Real Root Of -529*x^4-603*x^3-595*x^2+889*x+293 2865697603869868 r005 Im(z^2+c),c=-19/86+26/61*I,n=62 2865697607129419 b008 17/27+Sqrt[5] 2865697621232151 a007 Real Root Of -511*x^4-813*x^3-11*x^2+731*x-186 2865697630823110 a007 Real Root Of -381*x^4-848*x^3+907*x^2+378*x-627 2865697632363368 r009 Re(z^3+c),c=-27/70+14/23*I,n=48 2865697638558645 r002 62th iterates of z^2 + 2865697648412513 m005 (1/3*gamma+1/4)/(9/11*5^(1/2)-2/7) 2865697651272132 r005 Re(z^2+c),c=-23/18+11/80*I,n=6 2865697652900752 a007 Real Root Of 316*x^4+869*x^3+128*x^2+651*x-46 2865697667273279 r005 Im(z^2+c),c=-19/86+26/61*I,n=59 2865697686831981 r005 Im(z^2+c),c=-9/26+25/53*I,n=25 2865697694013957 r005 Re(z^2+c),c=15/52+43/53*I,n=2 2865697694841266 h001 (3/7*exp(1)+3/11)/(2/3*exp(2)+1/11) 2865697695006397 a001 1346269/843*843^(3/7) 2865697695236889 h001 (1/4*exp(2)+2/9)/(9/10*exp(2)+4/7) 2865697695770860 a001 144*322^(11/12) 2865697699017267 m001 (ln(5)+BesselI(1,2))/(LambertW(1)-ln(gamma)) 2865697705150188 m002 Pi-Cosh[Pi]^2/(5*Pi^4) 2865697705401595 m001 (gamma+GAMMA(5/6))/(Bloch+Champernowne) 2865697706537818 m001 1/GAMMA(5/24)^2/MadelungNaCl^2*exp(sqrt(2))^2 2865697706693346 p004 log(30223/1721) 2865697710424797 a001 3571/89*8^(52/55) 2865697712988005 p004 log(36241/27211) 2865697713944314 r005 Im(z^2+c),c=-33/82+21/43*I,n=57 2865697720700765 m001 1/Rabbit*Bloch/exp(sin(1)) 2865697722044028 a001 6/7*1597^(9/55) 2865697723761383 r005 Im(z^2+c),c=-37/102+31/64*I,n=33 2865697737939188 r005 Im(z^2+c),c=-19/86+26/61*I,n=53 2865697739277040 m005 (1/2*5^(1/2)+3/10)/(2/11*gamma-1/10) 2865697739456978 a007 Real Root Of 229*x^4+288*x^3-773*x^2+483*x-934 2865697750995216 r005 Im(z^2+c),c=-19/86+26/61*I,n=56 2865697770079136 l006 ln(522/9167) 2865697771184601 m001 cos(1)^ArtinRank2*cos(1)^MertensB3 2865697775905488 a007 Real Root Of 720*x^4-929*x^3-77*x^2-707*x-223 2865697779938792 m005 (1/3*2^(1/2)-1/7)/(1/2*Zeta(3)+6/11) 2865697786765852 a001 24157817/2207*521^(2/13) 2865697787727648 a001 24157817/3571*521^(3/13) 2865697801609457 r005 Im(z^2+c),c=-19/86+26/61*I,n=54 2865697804334071 m001 1/Niven^2*exp(Conway)/Riemann2ndZero^2 2865697809498329 h001 (-2*exp(7)-8)/(-7*exp(7)-5) 2865697811837564 a007 Real Root Of 368*x^4+955*x^3-231*x^2+146*x-28 2865697816874094 m006 (3*exp(2*Pi)-5)/(3/5*Pi^2-1/3) 2865697817039672 p001 sum((-1)^n/(602*n+327)/(5^n),n=0..infinity) 2865697820920170 m001 (1+CopelandErdos)/(-DuboisRaymond+Kac) 2865697826450690 m006 (4/5*ln(Pi)+2)/(3*Pi+3/4) 2865697826562973 r004 Im(z^2+c),c=1/5+5/24*I,z(0)=exp(7/8*I*Pi),n=30 2865697829209901 m001 (Bloch-QuadraticClass)/(GAMMA(11/12)+Artin) 2865697833115269 m001 Khinchin/exp(1/Pi)*Porter 2865697836659562 r009 Im(z^3+c),c=-1/64+28/33*I,n=28 2865697848652130 m001 OrthogonalArrays^LandauRamanujan/ZetaP(2) 2865697868852459 a001 17480757/610 2865697887033290 a007 Real Root Of 472*x^4+648*x^3-240*x^2-512*x+148 2865697899646432 m001 (GAMMA(3/4)-AlladiGrinstead)/(Lehmer+Thue) 2865697907230115 m001 1/Rabbit^2*exp(Backhouse)^2/GAMMA(5/6)^2 2865697911026408 r005 Re(z^2+c),c=-27/94+22/49*I,n=41 2865697911867776 r009 Im(z^3+c),c=-43/102+9/49*I,n=35 2865697913001892 r005 Re(z^2+c),c=-31/56+23/38*I,n=15 2865697939054893 a007 Real Root Of -425*x^4+487*x^3-287*x^2+471*x-120 2865697940203562 l006 ln(6072/8087) 2865697942497359 m005 (39/44+1/4*5^(1/2))/(7/12*5^(1/2)-4/5) 2865697946493322 r005 Re(z^2+c),c=-11/32+5/18*I,n=10 2865697960764906 b008 21-5*Sinh[2] 2865697965450791 r009 Im(z^3+c),c=-23/48+6/49*I,n=50 2865697970643034 a007 Real Root Of 502*x^4-845*x^3+139*x^2-401*x+120 2865697973466447 a001 75025/2207*1364^(14/15) 2865697983042152 a001 832040/843*843^(1/2) 2865697987488219 m001 ln(GAMMA(1/24))^2/MadelungNaCl^2*Zeta(1,2)^2 2865697995191899 r005 Re(z^2+c),c=-27/122+14/25*I,n=33 2865698001999125 m005 (1/3*gamma-1/4)/(7/12*Catalan-1/3) 2865698016179690 r009 Re(z^3+c),c=-15/34+7/16*I,n=60 2865698029675178 s002 sum(A224696[n]/(64^n),n=1..infinity) 2865698057176710 r005 Im(z^2+c),c=9/56+14/59*I,n=26 2865698060119428 m001 Khinchin^GAMMA(17/24)-ln(2) 2865698066602053 r005 Im(z^2+c),c=-10/27+12/25*I,n=52 2865698067318717 l006 ln(367/6445) 2865698068810077 m001 (ln(3)+ln(5))/(ErdosBorwein-Robbin) 2865698076011455 a001 121393/2207*1364^(13/15) 2865698090875676 h001 (9/10*exp(1)+5/8)/(4/11*exp(1)+1/12) 2865698103934913 r005 Re(z^2+c),c=19/56+3/34*I,n=52 2865698105579193 a007 Real Root Of 434*x^4+903*x^3-897*x^2+388*x+460 2865698109067615 a001 161/72*3^(7/31) 2865698109871171 s002 sum(A181613[n]/(n^2*2^n+1),n=1..infinity) 2865698111454891 r005 Re(z^2+c),c=-55/102+13/38*I,n=5 2865698123586452 r005 Im(z^2+c),c=-8/17+3/37*I,n=6 2865698126273308 m004 (-5*Pi)/2+(100*Sqrt[5])/(Pi*Log[Sqrt[5]*Pi]) 2865698129018926 a007 Real Root Of 45*x^4-516*x^3+726*x^2+845*x+725 2865698132691500 a001 199/832040*6557470319842^(17/24) 2865698140589952 m001 1/MadelungNaCl^2*ln(Champernowne)^2*sqrt(2)^2 2865698144121596 r004 Re(z^2+c),c=-2/11*I,z(0)=exp(1/8*I*Pi),n=11 2865698154353449 m001 (Shi(1)+GAMMA(5/6))/(-FeigenbaumKappa+Lehmer) 2865698159611129 m001 LaplaceLimit-QuadraticClass^ThueMorse 2865698159902867 a007 Real Root Of -306*x^4-667*x^3+664*x^2+245*x+189 2865698163479140 r005 Re(z^2+c),c=-15/56+27/55*I,n=29 2865698164799910 r005 Re(z^2+c),c=-12/31+15/64*I,n=5 2865698168801162 m001 (GAMMA(5/6)+MertensB3)/(RenyiParking-Robbin) 2865698172524458 r005 Im(z^2+c),c=9/56+14/59*I,n=30 2865698178750933 a001 196418/2207*1364^(4/5) 2865698194782973 m001 (Mills+Niven)/(Stephens+Weierstrass) 2865698195559096 m001 (Backhouse*Paris+FeigenbaumD)/Paris 2865698216193929 r005 Im(z^2+c),c=9/56+14/59*I,n=29 2865698221774999 a007 Real Root Of -50*x^4+145*x^3+532*x^2-629*x+613 2865698222073910 a001 521/832040*28657^(19/51) 2865698224524305 r009 Re(z^3+c),c=-10/29+11/42*I,n=10 2865698229590989 l006 ln(4273/5691) 2865698249625795 r005 Re(z^2+c),c=-73/94+4/55*I,n=56 2865698261944825 r002 35i'th iterates of 2*x/(1-x^2) of 2865698265548237 r005 Re(z^2+c),c=-25/98+23/44*I,n=8 2865698266494606 h001 (2/7*exp(1)+1/6)/(11/12*exp(1)+4/5) 2865698267033163 m005 (1/2*Zeta(3)-3/4)/(1/11*exp(1)+3/11) 2865698270048549 a001 4976784/281*322^(1/12) 2865698271082076 a001 514229/843*843^(4/7) 2865698273291665 m001 1/Riemann2ndZero/ln(Magata)/GAMMA(2/3) 2865698281416135 a001 317811/2207*1364^(11/15) 2865698283362881 s002 sum(A094971[n]/(n*exp(n)+1),n=1..infinity) 2865698284980687 m005 (1/3*Pi+1/11)/(8/11*2^(1/2)-5) 2865698285446777 a007 Real Root Of 983*x^4-267*x^3-292*x^2-412*x-107 2865698289265322 a001 31622993/2889*521^(2/13) 2865698291189414 a001 5702887/1364*521^(4/13) 2865698311122520 m005 (1/3*Zeta(3)+1/2)/(2/11*2^(1/2)-4/7) 2865698314475883 m001 ln(2^(1/2)+1)^(2^(1/3))*ReciprocalFibonacci 2865698318617978 a007 Real Root Of -240*x^4-626*x^3+64*x^2-439*x-330 2865698321168990 a003 sin(Pi*8/105)/cos(Pi*15/79) 2865698329458618 m001 (Ei(1,1)-ln(5)*OneNinth)/ln(5) 2865698334043955 a003 cos(Pi*15/79)/cos(Pi*24/59) 2865698338848329 r005 Im(z^2+c),c=-67/94+9/49*I,n=14 2865698360538613 r009 Im(z^3+c),c=-11/28+8/39*I,n=25 2865698360655737 a001 1748076/61 2865698362579021 a001 165580141/15127*521^(2/13) 2865698363761434 r005 Re(z^2+c),c=33/106+6/43*I,n=60 2865698371853066 r002 7th iterates of z^2 + 2865698373275346 a001 433494437/39603*521^(2/13) 2865698374835919 a001 567451585/51841*521^(2/13) 2865698375063604 a001 2971215073/271443*521^(2/13) 2865698375096822 a001 7778742049/710647*521^(2/13) 2865698375101669 a001 10182505537/930249*521^(2/13) 2865698375102376 a001 53316291173/4870847*521^(2/13) 2865698375102479 a001 139583862445/12752043*521^(2/13) 2865698375102494 a001 182717648081/16692641*521^(2/13) 2865698375102496 a001 956722026041/87403803*521^(2/13) 2865698375102497 a001 2504730781961/228826127*521^(2/13) 2865698375102497 a001 3278735159921/299537289*521^(2/13) 2865698375102497 a001 10610209857723/969323029*521^(2/13) 2865698375102497 a001 4052739537881/370248451*521^(2/13) 2865698375102497 a001 387002188980/35355581*521^(2/13) 2865698375102498 a001 591286729879/54018521*521^(2/13) 2865698375102503 a001 7787980473/711491*521^(2/13) 2865698375102543 a001 21566892818/1970299*521^(2/13) 2865698375102813 a001 32951280099/3010349*521^(2/13) 2865698375104664 a001 12586269025/1149851*521^(2/13) 2865698375117353 a001 1201881744/109801*521^(2/13) 2865698375204320 a001 1836311903/167761*521^(2/13) 2865698375800406 a001 701408733/64079*521^(2/13) 2865698379886039 a001 10946*521^(2/13) 2865698384109713 a001 514229/2207*1364^(2/3) 2865698393868374 m002 -Pi+Pi^3+Sinh[Pi]-Sinh[Pi]/ProductLog[Pi] 2865698394817040 m001 BesselJ(1,1)*(Thue-exp(-1/2*Pi)) 2865698400499539 r005 Re(z^2+c),c=-29/118+11/20*I,n=47 2865698405474679 m001 BesselJ(1,1)^PisotVijayaraghavan/Salem 2865698406261799 r009 Im(z^3+c),c=-31/66+2/27*I,n=33 2865698407889381 a001 102334155/9349*521^(2/13) 2865698415173999 r005 Im(z^2+c),c=31/102+4/43*I,n=34 2865698418352789 r005 Re(z^2+c),c=-39/110+12/47*I,n=7 2865698427935061 m001 GAMMA(2/3)+GAMMA(17/24)*Salem 2865698430626132 r002 55th iterates of z^2 + 2865698459016393 a001 1/305*(1/2+1/2*5^(1/2))^38 2865698461224066 r005 Im(z^2+c),c=9/56+14/59*I,n=34 2865698462579582 r005 Im(z^2+c),c=9/56+14/59*I,n=35 2865698468733967 m005 (1/2*3^(1/2)+1/4)/(2/5*5^(1/2)+3) 2865698474602697 r005 Im(z^2+c),c=9/56+14/59*I,n=31 2865698475878983 a001 98209/2889*1364^(14/15) 2865698478438290 m001 (Sierpinski-Totient)/(Zeta(1/2)+GAMMA(23/24)) 2865698483653046 r005 Im(z^2+c),c=9/56+14/59*I,n=39 2865698484116725 r005 Im(z^2+c),c=9/56+14/59*I,n=40 2865698485630243 r005 Im(z^2+c),c=9/56+14/59*I,n=44 2865698485692954 r005 Im(z^2+c),c=9/56+14/59*I,n=45 2865698485799663 r005 Im(z^2+c),c=9/56+14/59*I,n=49 2865698485806494 r005 Im(z^2+c),c=9/56+14/59*I,n=50 2865698485813854 r005 Im(z^2+c),c=9/56+14/59*I,n=54 2865698485814526 r005 Im(z^2+c),c=9/56+14/59*I,n=55 2865698485815020 r005 Im(z^2+c),c=9/56+14/59*I,n=59 2865698485815083 r005 Im(z^2+c),c=9/56+14/59*I,n=60 2865698485815115 r005 Im(z^2+c),c=9/56+14/59*I,n=64 2865698485815122 r005 Im(z^2+c),c=9/56+14/59*I,n=63 2865698485815136 r005 Im(z^2+c),c=9/56+14/59*I,n=58 2865698485815145 r005 Im(z^2+c),c=9/56+14/59*I,n=62 2865698485815146 r005 Im(z^2+c),c=9/56+14/59*I,n=61 2865698485815372 r005 Im(z^2+c),c=9/56+14/59*I,n=56 2865698485815422 r005 Im(z^2+c),c=9/56+14/59*I,n=57 2865698485815570 r005 Im(z^2+c),c=9/56+14/59*I,n=53 2865698485817691 r005 Im(z^2+c),c=9/56+14/59*I,n=51 2865698485819096 r005 Im(z^2+c),c=9/56+14/59*I,n=52 2865698485824371 r005 Im(z^2+c),c=9/56+14/59*I,n=48 2865698485839302 r005 Im(z^2+c),c=9/56+14/59*I,n=46 2865698485867183 r005 Im(z^2+c),c=9/56+14/59*I,n=47 2865698485978728 r005 Im(z^2+c),c=9/56+14/59*I,n=43 2865698486005132 r005 Im(z^2+c),c=9/56+14/59*I,n=41 2865698486488609 r005 Im(z^2+c),c=9/56+14/59*I,n=42 2865698486628594 r005 Im(z^2+c),c=9/56+14/59*I,n=36 2865698486792458 a001 832040/2207*1364^(3/5) 2865698488481605 r005 Im(z^2+c),c=9/56+14/59*I,n=38 2865698490026798 l006 ln(6747/8986) 2865698494414701 r005 Im(z^2+c),c=9/56+14/59*I,n=37 2865698497554105 m001 exp(Zeta(1,2))*MinimumGamma^2/cos(1)^2 2865698506308589 r005 Im(z^2+c),c=-19/86+26/61*I,n=51 2865698521135141 k001 Champernowne real with 283*n+3 2865698524590163 a001 17480761/610 2865698527086173 r005 Im(z^2+c),c=9/56+14/59*I,n=33 2865698531086335 m001 (Bloch-Psi(2,1/3))/(-MasserGramain+ZetaP(2)) 2865698545651918 r009 Re(z^3+c),c=-37/86+19/43*I,n=11 2865698547699906 p003 LerchPhi(1/1024,2,71/38) 2865698549179999 a001 514229/15127*1364^(14/15) 2865698553687221 m002 (Sinh[Pi]*Tanh[Pi]^2)/4 2865698558817429 r005 Im(z^2+c),c=1/5+5/24*I,n=22 2865698559111192 a001 377*843^(9/14) 2865698559874473 a001 1346269/39603*1364^(14/15) 2865698561434776 a001 1762289/51841*1364^(14/15) 2865698561662421 a001 9227465/271443*1364^(14/15) 2865698561695634 a001 24157817/710647*1364^(14/15) 2865698561700480 a001 31622993/930249*1364^(14/15) 2865698561701186 a001 165580141/4870847*1364^(14/15) 2865698561701290 a001 433494437/12752043*1364^(14/15) 2865698561701305 a001 567451585/16692641*1364^(14/15) 2865698561701307 a001 2971215073/87403803*1364^(14/15) 2865698561701307 a001 7778742049/228826127*1364^(14/15) 2865698561701307 a001 10182505537/299537289*1364^(14/15) 2865698561701307 a001 53316291173/1568397607*1364^(14/15) 2865698561701307 a001 139583862445/4106118243*1364^(14/15) 2865698561701307 a001 182717648081/5374978561*1364^(14/15) 2865698561701307 a001 956722026041/28143753123*1364^(14/15) 2865698561701307 a001 2504730781961/73681302247*1364^(14/15) 2865698561701307 a001 3278735159921/96450076809*1364^(14/15) 2865698561701307 a001 10610209857723/312119004989*1364^(14/15) 2865698561701307 a001 4052739537881/119218851371*1364^(14/15) 2865698561701307 a001 387002188980/11384387281*1364^(14/15) 2865698561701307 a001 591286729879/17393796001*1364^(14/15) 2865698561701307 a001 225851433717/6643838879*1364^(14/15) 2865698561701307 a001 1135099622/33391061*1364^(14/15) 2865698561701307 a001 32951280099/969323029*1364^(14/15) 2865698561701307 a001 12586269025/370248451*1364^(14/15) 2865698561701307 a001 1201881744/35355581*1364^(14/15) 2865698561701308 a001 1836311903/54018521*1364^(14/15) 2865698561701314 a001 701408733/20633239*1364^(14/15) 2865698561701353 a001 66978574/1970299*1364^(14/15) 2865698561701623 a001 102334155/3010349*1364^(14/15) 2865698561703474 a001 39088169/1149851*1364^(14/15) 2865698561716161 a001 196452/5779*1364^(14/15) 2865698561803113 a001 5702887/167761*1364^(14/15) 2865698561893385 r009 Im(z^3+c),c=-5/9+6/49*I,n=28 2865698562399096 a001 2178309/64079*1364^(14/15) 2865698566484022 a001 208010/6119*1364^(14/15) 2865698567884570 a007 Real Root Of -116*x^4-100*x^3+779*x^2+569*x+703 2865698575380356 r002 39th iterates of z^2 + 2865698578544196 a001 105937/1926*1364^(13/15) 2865698587096089 a007 Real Root Of 352*x^4+989*x^3-195*x^2-386*x+31 2865698589479346 a001 1346269/2207*1364^(8/15) 2865698591793797 r005 Re(z^2+c),c=-57/50+9/32*I,n=6 2865698594136535 r005 Im(z^2+c),c=9/56+14/59*I,n=32 2865698594482520 a001 317811/9349*1364^(14/15) 2865698594499181 r009 Re(z^3+c),c=-37/126+7/47*I,n=15 2865698598865365 a001 39088169/2207*521^(1/13) 2865698599827162 a001 39088169/3571*521^(2/13) 2865698602713448 r005 Im(z^2+c),c=-63/86+1/5*I,n=5 2865698604972398 a003 cos(Pi*11/68)*cos(Pi*37/94) 2865698610712428 p004 log(12281/9221) 2865698614059010 a007 Real Root Of 15*x^4+426*x^3-106*x^2+154*x+745 2865698619785450 m005 (1/2*Zeta(3)+1/3)/(1/5*Catalan+1/7) 2865698627571196 m001 Artin*Trott2nd^GAMMA(2/3) 2865698637412690 r005 Im(z^2+c),c=-19/44+23/48*I,n=24 2865698642269161 r005 Im(z^2+c),c=37/122+6/61*I,n=38 2865698642419570 r009 Re(z^3+c),c=-37/126+7/47*I,n=16 2865698647192086 m001 exp(Lehmer)/Bloch*RenyiParking 2865698650336510 r002 19th iterates of z^2 + 2865698651862749 a001 832040/15127*1364^(13/15) 2865698656740176 p001 sum((-1)^n/(247*n+173)/n/(8^n),n=1..infinity) 2865698662559782 a001 726103/13201*1364^(13/15) 2865698664120458 a001 5702887/103682*1364^(13/15) 2865698664348158 a001 4976784/90481*1364^(13/15) 2865698664381379 a001 39088169/710647*1364^(13/15) 2865698664386226 a001 831985/15126*1364^(13/15) 2865698664386933 a001 267914296/4870847*1364^(13/15) 2865698664387036 a001 233802911/4250681*1364^(13/15) 2865698664387051 a001 1836311903/33385282*1364^(13/15) 2865698664387053 a001 1602508992/29134601*1364^(13/15) 2865698664387053 a001 12586269025/228826127*1364^(13/15) 2865698664387054 a001 10983760033/199691526*1364^(13/15) 2865698664387054 a001 86267571272/1568397607*1364^(13/15) 2865698664387054 a001 75283811239/1368706081*1364^(13/15) 2865698664387054 a001 591286729879/10749957122*1364^(13/15) 2865698664387054 a001 12585437040/228811001*1364^(13/15) 2865698664387054 a001 4052739537881/73681302247*1364^(13/15) 2865698664387054 a001 3536736619241/64300051206*1364^(13/15) 2865698664387054 a001 6557470319842/119218851371*1364^(13/15) 2865698664387054 a001 2504730781961/45537549124*1364^(13/15) 2865698664387054 a001 956722026041/17393796001*1364^(13/15) 2865698664387054 a001 365435296162/6643838879*1364^(13/15) 2865698664387054 a001 139583862445/2537720636*1364^(13/15) 2865698664387054 a001 53316291173/969323029*1364^(13/15) 2865698664387054 a001 20365011074/370248451*1364^(13/15) 2865698664387054 a001 7778742049/141422324*1364^(13/15) 2865698664387055 a001 2971215073/54018521*1364^(13/15) 2865698664387060 a001 1134903170/20633239*1364^(13/15) 2865698664387100 a001 433494437/7881196*1364^(13/15) 2865698664387370 a001 165580141/3010349*1364^(13/15) 2865698664389221 a001 63245986/1149851*1364^(13/15) 2865698664401910 a001 24157817/439204*1364^(13/15) 2865698664488884 a001 9227465/167761*1364^(13/15) 2865698665085009 a001 3524578/64079*1364^(13/15) 2865698667034173 r005 Im(z^2+c),c=-93/82+8/35*I,n=62 2865698669001669 p004 log(36229/2063) 2865698669170912 a001 1346269/24476*1364^(13/15) 2865698681237784 a001 514229/5778*1364^(4/5) 2865698683265968 r005 Re(z^2+c),c=-51/64+9/59*I,n=8 2865698688524590 a001 8740381/305 2865698692164656 a001 987*1364^(7/15) 2865698697176109 a001 514229/9349*1364^(13/15) 2865698703150801 r009 Re(z^3+c),c=-37/126+7/47*I,n=17 2865698706807628 r009 Re(z^3+c),c=-37/126+7/47*I,n=21 2865698706977948 r009 Re(z^3+c),c=-37/126+7/47*I,n=20 2865698707087993 r009 Re(z^3+c),c=-37/126+7/47*I,n=22 2865698707162722 r009 Re(z^3+c),c=-37/126+7/47*I,n=26 2865698707163649 r009 Re(z^3+c),c=-37/126+7/47*I,n=27 2865698707164275 r009 Re(z^3+c),c=-37/126+7/47*I,n=31 2865698707164276 r009 Re(z^3+c),c=-37/126+7/47*I,n=32 2865698707164279 r009 Re(z^3+c),c=-37/126+7/47*I,n=33 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=37 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=38 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=42 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=43 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=44 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=48 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=47 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=49 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=53 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=54 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=58 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=59 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=60 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=64 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=63 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=62 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=61 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=57 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=55 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=56 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=52 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=51 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=50 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=46 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=45 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=41 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=39 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=40 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=36 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=35 2865698707164280 r009 Re(z^3+c),c=-37/126+7/47*I,n=34 2865698707164298 r009 Re(z^3+c),c=-37/126+7/47*I,n=28 2865698707164301 r009 Re(z^3+c),c=-37/126+7/47*I,n=30 2865698707164363 r009 Re(z^3+c),c=-37/126+7/47*I,n=29 2865698707165848 r009 Re(z^3+c),c=-37/126+7/47*I,n=25 2865698707180271 r009 Re(z^3+c),c=-37/126+7/47*I,n=24 2865698707187482 r009 Re(z^3+c),c=-37/126+7/47*I,n=23 2865698709606397 r009 Re(z^3+c),c=-37/126+7/47*I,n=19 2865698710579045 r005 Im(z^2+c),c=-13/50+26/61*I,n=12 2865698714121080 r009 Re(z^3+c),c=-37/126+7/47*I,n=18 2865698718770077 r009 Re(z^3+c),c=-11/38+3/22*I,n=5 2865698721741878 m001 1/ln(cos(1))*Conway/exp(1)^2 2865698722895410 r005 Re(z^2+c),c=-45/118+12/55*I,n=5 2865698724860817 m001 exp(Kolakoski)^2*FeigenbaumDelta^2*FeigenbaumD 2865698729582577 q001 1579/551 2865698729781469 a007 Real Root Of -795*x^4-625*x^3-588*x^2+904*x+298 2865698754549643 a001 1346269/15127*1364^(4/5) 2865698757489930 m001 1/FeigenbaumAlpha^2*Cahen^2*exp(Porter) 2865698765245699 a001 3524578/39603*1364^(4/5) 2865698766806232 a001 9227465/103682*1364^(4/5) 2865698767033911 a001 24157817/271443*1364^(4/5) 2865698767067129 a001 63245986/710647*1364^(4/5) 2865698767071976 a001 165580141/1860498*1364^(4/5) 2865698767072683 a001 433494437/4870847*1364^(4/5) 2865698767072786 a001 1134903170/12752043*1364^(4/5) 2865698767072801 a001 2971215073/33385282*1364^(4/5) 2865698767072803 a001 7778742049/87403803*1364^(4/5) 2865698767072803 a001 20365011074/228826127*1364^(4/5) 2865698767072803 a001 53316291173/599074578*1364^(4/5) 2865698767072803 a001 139583862445/1568397607*1364^(4/5) 2865698767072803 a001 365435296162/4106118243*1364^(4/5) 2865698767072803 a001 956722026041/10749957122*1364^(4/5) 2865698767072803 a001 2504730781961/28143753123*1364^(4/5) 2865698767072803 a001 6557470319842/73681302247*1364^(4/5) 2865698767072803 a001 10610209857723/119218851371*1364^(4/5) 2865698767072803 a001 4052739537881/45537549124*1364^(4/5) 2865698767072803 a001 1548008755920/17393796001*1364^(4/5) 2865698767072803 a001 591286729879/6643838879*1364^(4/5) 2865698767072803 a001 225851433717/2537720636*1364^(4/5) 2865698767072803 a001 86267571272/969323029*1364^(4/5) 2865698767072803 a001 32951280099/370248451*1364^(4/5) 2865698767072804 a001 12586269025/141422324*1364^(4/5) 2865698767072804 a001 4807526976/54018521*1364^(4/5) 2865698767072810 a001 1836311903/20633239*1364^(4/5) 2865698767072850 a001 3524667/39604*1364^(4/5) 2865698767073120 a001 267914296/3010349*1364^(4/5) 2865698767074971 a001 102334155/1149851*1364^(4/5) 2865698767087659 a001 39088169/439204*1364^(4/5) 2865698767174625 a001 14930352/167761*1364^(4/5) 2865698767770695 a001 5702887/64079*1364^(4/5) 2865698770825981 a001 377/4*76^(41/52) 2865698771856225 a001 2178309/24476*1364^(4/5) 2865698783421719 a007 Real Root Of -217*x^4-804*x^3-615*x^2+764 2865698783920539 a001 416020/2889*1364^(11/15) 2865698786387094 a001 121393/3571*1364^(14/15) 2865698794850574 a001 3524578/2207*1364^(2/5) 2865698799200704 l006 ln(212/3723) 2865698799858865 a001 832040/9349*1364^(4/5) 2865698806912804 r005 Im(z^2+c),c=-25/27+8/35*I,n=46 2865698822628131 a001 987/2207*(1/2+1/2*5^(1/2))^23 2865698822628131 a001 987/2207*4106118243^(1/2) 2865698822883601 a001 987/2207*103682^(23/24) 2865698829433344 m001 (Artin+Salem)/(Psi(2,1/3)+GAMMA(23/24)) 2865698840206755 m001 (Kac+Salem)/(exp(1)+FeigenbaumMu) 2865698840751010 m001 exp(GAMMA(3/4))/GAMMA(11/12)^2*Zeta(1,2) 2865698841061780 m001 1/GAMMA(5/12)^2/exp(GAMMA(17/24))/Zeta(1/2)^2 2865698847168709 a001 196418/843*843^(5/7) 2865698852457792 r005 Im(z^2+c),c=9/52+8/35*I,n=26 2865698856516146 r005 Im(z^2+c),c=-19/82+31/60*I,n=11 2865698857234959 a001 311187/2161*1364^(11/15) 2865698857583434 r005 Re(z^2+c),c=-23/122+16/29*I,n=13 2865698860174890 m001 (ArtinRank2+ZetaQ(4))/(Si(Pi)+sin(1/5*Pi)) 2865698867661478 m005 (1/2*Zeta(3)-9/11)/(1/12*5^(1/2)+4/7) 2865698867931389 a001 5702887/39603*1364^(11/15) 2865698869491977 a001 7465176/51841*1364^(11/15) 2865698869719664 a001 39088169/271443*1364^(11/15) 2865698869752883 a001 14619165/101521*1364^(11/15) 2865698869757729 a001 133957148/930249*1364^(11/15) 2865698869758436 a001 701408733/4870847*1364^(11/15) 2865698869758539 a001 1836311903/12752043*1364^(11/15) 2865698869758555 a001 14930208/103681*1364^(11/15) 2865698869758557 a001 12586269025/87403803*1364^(11/15) 2865698869758557 a001 32951280099/228826127*1364^(11/15) 2865698869758557 a001 43133785636/299537289*1364^(11/15) 2865698869758557 a001 32264490531/224056801*1364^(11/15) 2865698869758557 a001 591286729879/4106118243*1364^(11/15) 2865698869758557 a001 774004377960/5374978561*1364^(11/15) 2865698869758557 a001 4052739537881/28143753123*1364^(11/15) 2865698869758557 a001 1515744265389/10525900321*1364^(11/15) 2865698869758557 a001 3278735159921/22768774562*1364^(11/15) 2865698869758557 a001 2504730781961/17393796001*1364^(11/15) 2865698869758557 a001 956722026041/6643838879*1364^(11/15) 2865698869758557 a001 182717648081/1268860318*1364^(11/15) 2865698869758557 a001 139583862445/969323029*1364^(11/15) 2865698869758557 a001 53316291173/370248451*1364^(11/15) 2865698869758557 a001 10182505537/70711162*1364^(11/15) 2865698869758558 a001 7778742049/54018521*1364^(11/15) 2865698869758564 a001 2971215073/20633239*1364^(11/15) 2865698869758603 a001 567451585/3940598*1364^(11/15) 2865698869758873 a001 433494437/3010349*1364^(11/15) 2865698869760725 a001 165580141/1149851*1364^(11/15) 2865698869773413 a001 31622993/219602*1364^(11/15) 2865698869860382 a001 24157817/167761*1364^(11/15) 2865698870456473 a001 9227465/64079*1364^(11/15) 2865698874542146 a001 1762289/12238*1364^(11/15) 2865698886607438 a001 1346269/5778*1364^(2/3) 2865698889126598 a001 196418/3571*1364^(13/15) 2865698897536264 a001 5702887/2207*1364^(1/3) 2865698902545764 a001 1346269/9349*1364^(11/15) 2865698913376291 p001 sum(1/(305*n+243)/n/(64^n),n=1..infinity) 2865698931458874 r009 Re(z^3+c),c=-33/82+7/19*I,n=23 2865698939841743 l006 ln(2474/3295) 2865698943898199 a007 Real Root Of 40*x^4-196*x^3-742*x^2+508*x+239 2865698945329726 m001 PisotVijayaraghavan*(5^(1/2)+gamma(1)) 2865698959920883 a001 3524578/15127*1364^(2/3) 2865698970617170 a001 9227465/39603*1364^(2/3) 2865698970868096 a007 Real Root Of 448*x^4+898*x^3-822*x^2+628*x-530 2865698971193887 h003 exp(Pi*(1/3*23^(1/2)-8/3)) 2865698972177738 a001 24157817/103682*1364^(2/3) 2865698972405421 a001 63245986/271443*1364^(2/3) 2865698972438640 a001 165580141/710647*1364^(2/3) 2865698972443486 a001 433494437/1860498*1364^(2/3) 2865698972444194 a001 1134903170/4870847*1364^(2/3) 2865698972444297 a001 2971215073/12752043*1364^(2/3) 2865698972444312 a001 7778742049/33385282*1364^(2/3) 2865698972444314 a001 20365011074/87403803*1364^(2/3) 2865698972444314 a001 53316291173/228826127*1364^(2/3) 2865698972444314 a001 139583862445/599074578*1364^(2/3) 2865698972444314 a001 365435296162/1568397607*1364^(2/3) 2865698972444314 a001 956722026041/4106118243*1364^(2/3) 2865698972444314 a001 2504730781961/10749957122*1364^(2/3) 2865698972444314 a001 6557470319842/28143753123*1364^(2/3) 2865698972444314 a001 10610209857723/45537549124*1364^(2/3) 2865698972444314 a001 4052739537881/17393796001*1364^(2/3) 2865698972444314 a001 1548008755920/6643838879*1364^(2/3) 2865698972444314 a001 591286729879/2537720636*1364^(2/3) 2865698972444314 a001 225851433717/969323029*1364^(2/3) 2865698972444314 a001 86267571272/370248451*1364^(2/3) 2865698972444315 a001 63246219/271444*1364^(2/3) 2865698972444315 a001 12586269025/54018521*1364^(2/3) 2865698972444321 a001 4807526976/20633239*1364^(2/3) 2865698972444361 a001 1836311903/7881196*1364^(2/3) 2865698972444631 a001 701408733/3010349*1364^(2/3) 2865698972446482 a001 267914296/1149851*1364^(2/3) 2865698972459170 a001 102334155/439204*1364^(2/3) 2865698972546138 a001 39088169/167761*1364^(2/3) 2865698973142221 a001 14930352/64079*1364^(2/3) 2865698974125566 r009 Re(z^3+c),c=-37/126+7/47*I,n=14 2865698977227840 a001 5702887/24476*1364^(2/3) 2865698980152749 a007 Real Root Of 143*x^4-942*x^3+19*x^2-249*x+91 2865698980351541 m005 (1/3*exp(1)-1/2)/(4/5*2^(1/2)+2/7) 2865698989292759 a001 726103/1926*1364^(3/5) 2865698990596602 m001 (Magata+Thue)/(Pi-(1+3^(1/2))^(1/2)) 2865698991791825 a001 317811/3571*1364^(4/5) 2865699000222047 a001 9227465/2207*1364^(4/15) 2865699005231085 a001 2178309/9349*1364^(2/3) 2865699011634849 h001 (1/9*exp(1)+3/11)/(2/9*exp(2)+4/11) 2865699012180772 a007 Real Root Of 204*x^4+334*x^3-390*x^2+768*x-494 2865699015632388 q001 2/69791 2865699023440856 a003 sin(Pi*34/89)-sin(Pi*39/95) 2865699025041233 m001 1/Zeta(5)^2*ln(Niven)/sqrt(3) 2865699031239436 m001 (1+gamma(1))/(-Artin+ArtinRank2) 2865699031530719 a001 377/322*7^(23/50) 2865699040235225 r002 7th iterates of z^2 + 2865699041459584 m001 (2*Pi/GAMMA(5/6)-Si(Pi))/(MertensB1+MertensB2) 2865699046458930 h001 (7/10*exp(2)+3/4)/(5/7*exp(1)+1/8) 2865699053302012 r005 Re(z^2+c),c=-19/74+10/19*I,n=59 2865699056631235 m001 (gamma(1)+Salem)/(Trott2nd-ThueMorse) 2865699062606579 a001 5702887/15127*1364^(3/5) 2865699065633949 m001 Pi*(2^(1/3)-3^(1/2)-BesselJ(1,1)) 2865699066931764 r009 Re(z^3+c),c=-21/52+23/62*I,n=20 2865699067961631 r005 Im(z^2+c),c=-37/78+1/34*I,n=3 2865699073302922 a001 4976784/13201*1364^(3/5) 2865699074863497 a001 39088169/103682*1364^(3/5) 2865699075091182 a001 34111385/90481*1364^(3/5) 2865699075124401 a001 267914296/710647*1364^(3/5) 2865699075129247 a001 233802911/620166*1364^(3/5) 2865699075129955 a001 1836311903/4870847*1364^(3/5) 2865699075130058 a001 1602508992/4250681*1364^(3/5) 2865699075130073 a001 12586269025/33385282*1364^(3/5) 2865699075130075 a001 10983760033/29134601*1364^(3/5) 2865699075130075 a001 86267571272/228826127*1364^(3/5) 2865699075130075 a001 267913919/710646*1364^(3/5) 2865699075130075 a001 591286729879/1568397607*1364^(3/5) 2865699075130075 a001 516002918640/1368706081*1364^(3/5) 2865699075130075 a001 4052739537881/10749957122*1364^(3/5) 2865699075130075 a001 3536736619241/9381251041*1364^(3/5) 2865699075130075 a001 6557470319842/17393796001*1364^(3/5) 2865699075130075 a001 2504730781961/6643838879*1364^(3/5) 2865699075130075 a001 956722026041/2537720636*1364^(3/5) 2865699075130075 a001 365435296162/969323029*1364^(3/5) 2865699075130075 a001 139583862445/370248451*1364^(3/5) 2865699075130075 a001 53316291173/141422324*1364^(3/5) 2865699075130076 a001 20365011074/54018521*1364^(3/5) 2865699075130082 a001 7778742049/20633239*1364^(3/5) 2865699075130121 a001 2971215073/7881196*1364^(3/5) 2865699075130392 a001 1134903170/3010349*1364^(3/5) 2865699075132243 a001 433494437/1149851*1364^(3/5) 2865699075144931 a001 165580141/439204*1364^(3/5) 2865699075231899 a001 63245986/167761*1364^(3/5) 2865699075247754 l006 ln(9769/10053) 2865699075827986 a001 24157817/64079*1364^(3/5) 2865699079624776 r005 Re(z^2+c),c=-13/56+29/51*I,n=39 2865699079913625 a001 9227465/24476*1364^(3/5) 2865699080971719 a007 Real Root Of 371*x^4+895*x^3-687*x^2-871*x-812 2865699082622493 r005 Im(z^2+c),c=-89/122+18/43*I,n=4 2865699084575104 r005 Re(z^2+c),c=13/40+5/32*I,n=31 2865699087196554 r009 Re(z^3+c),c=-35/78+13/28*I,n=35 2865699091978687 a001 1762289/2889*1364^(8/15) 2865699092483021 a007 Real Root Of -703*x^4-20*x^3-901*x^2+27*x+86 2865699094485429 a001 514229/3571*1364^(11/15) 2865699096441164 r005 Re(z^2+c),c=-57/74+5/62*I,n=8 2865699101364979 a001 34111385/1926*521^(1/13) 2865699101786457 r005 Im(z^2+c),c=9/56+14/59*I,n=28 2865699102907800 a001 14930352/2207*1364^(1/5) 2865699103289096 a001 9227465/1364*521^(3/13) 2865699107519763 r005 Re(z^2+c),c=-45/122+1/60*I,n=12 2865699107917014 a001 3524578/9349*1364^(3/5) 2865699110429533 m005 (1/3*3^(1/2)-2/3)/(1/7*exp(1)-7/10) 2865699111321688 m001 1/BesselJ(1,1)^2*OneNinth*exp(GAMMA(13/24)) 2865699113812037 p001 sum(1/(427*n+354)/(32^n),n=0..infinity) 2865699120805764 b008 31*BesselK[0,1/2] 2865699123803727 r002 9th iterates of z^2 + 2865699127010042 a001 199/1346269*233^(31/57) 2865699133710731 r009 Re(z^3+c),c=-41/102+31/46*I,n=7 2865699133957876 m001 (BesselI(0,2)+Backhouse)/Conway 2865699135151976 a001 121393/843*843^(11/14) 2865699140206101 p003 LerchPhi(1/10,2,319/167) 2865699144713488 m001 (ln(gamma)+FibonacciFactorial)/(Lehmer-Otter) 2865699152745340 m001 (Si(Pi)+1/3)/(GAMMA(1/4)+4) 2865699161379912 a007 Real Root Of 24*x^4+659*x^3-794*x^2+895*x+684 2865699165107402 m001 (-Robbin+ZetaQ(4))/(OneNinth-exp(Pi)) 2865699165292368 a001 9227465/15127*1364^(8/15) 2865699174678699 a001 267914296/15127*521^(1/13) 2865699175988690 a001 24157817/39603*1364^(8/15) 2865699177549262 a001 31622993/51841*1364^(8/15) 2865699177776947 a001 165580141/271443*1364^(8/15) 2865699177810166 a001 433494437/710647*1364^(8/15) 2865699177815012 a001 567451585/930249*1364^(8/15) 2865699177815719 a001 2971215073/4870847*1364^(8/15) 2865699177815822 a001 7778742049/12752043*1364^(8/15) 2865699177815837 a001 10182505537/16692641*1364^(8/15) 2865699177815840 a001 53316291173/87403803*1364^(8/15) 2865699177815840 a001 139583862445/228826127*1364^(8/15) 2865699177815840 a001 182717648081/299537289*1364^(8/15) 2865699177815840 a001 956722026041/1568397607*1364^(8/15) 2865699177815840 a001 2504730781961/4106118243*1364^(8/15) 2865699177815840 a001 3278735159921/5374978561*1364^(8/15) 2865699177815840 a001 10610209857723/17393796001*1364^(8/15) 2865699177815840 a001 4052739537881/6643838879*1364^(8/15) 2865699177815840 a001 1134903780/1860499*1364^(8/15) 2865699177815840 a001 591286729879/969323029*1364^(8/15) 2865699177815840 a001 225851433717/370248451*1364^(8/15) 2865699177815840 a001 21566892818/35355581*1364^(8/15) 2865699177815841 a001 32951280099/54018521*1364^(8/15) 2865699177815847 a001 1144206275/1875749*1364^(8/15) 2865699177815886 a001 1201881744/1970299*1364^(8/15) 2865699177816156 a001 1836311903/3010349*1364^(8/15) 2865699177818007 a001 701408733/1149851*1364^(8/15) 2865699177830696 a001 66978574/109801*1364^(8/15) 2865699177917664 a001 9303105/15251*1364^(8/15) 2865699178513749 a001 39088169/64079*1364^(8/15) 2865699182599381 a001 3732588/6119*1364^(8/15) 2865699185375027 a001 17711*521^(1/13) 2865699185973700 a001 45765216/1597 2865699186935600 a001 1836311903/103682*521^(1/13) 2865699187163285 a001 1602508992/90481*521^(1/13) 2865699187196504 a001 12586269025/710647*521^(1/13) 2865699187201350 a001 10983760033/620166*521^(1/13) 2865699187202057 a001 86267571272/4870847*521^(1/13) 2865699187202161 a001 75283811239/4250681*521^(1/13) 2865699187202176 a001 591286729879/33385282*521^(1/13) 2865699187202178 a001 516002918640/29134601*521^(1/13) 2865699187202178 a001 4052739537881/228826127*521^(1/13) 2865699187202178 a001 3536736619241/199691526*521^(1/13) 2865699187202178 a001 6557470319842/370248451*521^(1/13) 2865699187202178 a001 2504730781961/141422324*521^(1/13) 2865699187202179 a001 956722026041/54018521*521^(1/13) 2865699187202185 a001 365435296162/20633239*521^(1/13) 2865699187202224 a001 139583862445/7881196*521^(1/13) 2865699187202494 a001 53316291173/3010349*521^(1/13) 2865699187204346 a001 20365011074/1149851*521^(1/13) 2865699187217034 a001 7778742049/439204*521^(1/13) 2865699187304002 a001 2971215073/167761*521^(1/13) 2865699187900088 a001 1134903170/64079*521^(1/13) 2865699191985721 a001 433494437/24476*521^(1/13) 2865699194664389 a001 5702887/5778*1364^(7/15) 2865699197168199 a001 832040/3571*1364^(2/3) 2865699199245464 r005 Im(z^2+c),c=-23/74+28/61*I,n=35 2865699200157392 a001 28657/2207*3571^(16/17) 2865699205593569 a001 24157817/2207*1364^(2/15) 2865699209249308 a002 5^(7/2)+6^(12/11) 2865699210602716 a001 5702887/9349*1364^(8/15) 2865699212412006 a001 46368/2207*3571^(15/17) 2865699219989072 a001 165580141/9349*521^(1/13) 2865699225592209 a001 271443/89*610^(17/24) 2865699225999509 a001 75025/2207*3571^(14/17) 2865699229505038 m001 Catalan+BesselK(0,1)+GAMMA(7/12) 2865699235343253 a007 Real Root Of 53*x^4-190*x^3-856*x^2+163*x-549 2865699239077893 a001 121393/2207*3571^(13/17) 2865699239728577 a007 Real Root Of 387*x^4+775*x^3-586*x^2+979*x-243 2865699252350744 a001 196418/2207*3571^(12/17) 2865699265549315 a001 317811/2207*3571^(11/17) 2865699266644158 m005 (1/3*Catalan-1/4)/(7/9*3^(1/2)+7/12) 2865699267978126 a001 14930352/15127*1364^(7/15) 2865699274203829 r009 Re(z^3+c),c=-25/56+26/59*I,n=37 2865699278674457 a001 39088169/39603*1364^(7/15) 2865699278776258 a001 514229/2207*3571^(10/17) 2865699278902672 r005 Im(z^2+c),c=5/74+15/23*I,n=6 2865699280235031 a001 102334155/103682*1364^(7/15) 2865699280462715 a001 267914296/271443*1364^(7/15) 2865699280495934 a001 701408733/710647*1364^(7/15) 2865699280500780 a001 1836311903/1860498*1364^(7/15) 2865699280501488 a001 4807526976/4870847*1364^(7/15) 2865699280501591 a001 12586269025/12752043*1364^(7/15) 2865699280501606 a001 32951280099/33385282*1364^(7/15) 2865699280501608 a001 86267571272/87403803*1364^(7/15) 2865699280501608 a001 225851433717/228826127*1364^(7/15) 2865699280501608 a001 591286729879/599074578*1364^(7/15) 2865699280501608 a001 1548008755920/1568397607*1364^(7/15) 2865699280501608 a001 4052739537881/4106118243*1364^(7/15) 2865699280501608 a001 4807525989/4870846*1364^(7/15) 2865699280501608 a001 6557470319842/6643838879*1364^(7/15) 2865699280501608 a001 2504730781961/2537720636*1364^(7/15) 2865699280501608 a001 956722026041/969323029*1364^(7/15) 2865699280501608 a001 365435296162/370248451*1364^(7/15) 2865699280501608 a001 139583862445/141422324*1364^(7/15) 2865699280501609 a001 53316291173/54018521*1364^(7/15) 2865699280501615 a001 20365011074/20633239*1364^(7/15) 2865699280501654 a001 7778742049/7881196*1364^(7/15) 2865699280501925 a001 2971215073/3010349*1364^(7/15) 2865699280503776 a001 1134903170/1149851*1364^(7/15) 2865699280516464 a001 433494437/439204*1364^(7/15) 2865699280603432 a001 165580141/167761*1364^(7/15) 2865699281199518 a001 63245986/64079*1364^(7/15) 2865699281254884 h001 (2/3*exp(1)+5/6)/(3/11*exp(1)+2/11) 2865699285285153 a001 24157817/24476*1364^(7/15) 2865699285603753 r005 Im(z^2+c),c=37/98+23/59*I,n=10 2865699291488311 a007 Real Root Of 391*x^4+957*x^3-209*x^2+401*x-982 2865699291992365 a001 832040/2207*3571^(9/17) 2865699297350182 a001 9227465/5778*1364^(2/5) 2865699298849159 r005 Re(z^2+c),c=31/106+9/20*I,n=18 2865699299855112 a001 1346269/3571*1364^(3/5) 2865699305212611 a001 1346269/2207*3571^(8/17) 2865699308279337 a001 39088169/2207*1364^(1/15) 2865699313288510 a001 9227465/9349*1364^(7/15) 2865699318431275 a001 987*3571^(7/17) 2865699319556097 a007 Real Root Of 292*x^4+833*x^3+118*x^2+379*x+28 2865699321931218 r005 Im(z^2+c),c=-5/11+29/56*I,n=48 2865699324490680 a001 2584/2207*64079^(21/23) 2865699325116347 a001 2584/2207*439204^(7/9) 2865699325127779 a001 329/1926*20633239^(5/7) 2865699325127784 a001 329/1926*2537720636^(5/9) 2865699325127784 a001 329/1926*312119004989^(5/11) 2865699325127784 a001 329/1926*(1/2+1/2*5^(1/2))^25 2865699325127784 a001 329/1926*3461452808002^(5/12) 2865699325127784 a001 329/1926*28143753123^(1/2) 2865699325127784 a001 329/1926*228826127^(5/8) 2865699325127873 a001 2584/2207*7881196^(7/11) 2865699325127898 a001 2584/2207*20633239^(3/5) 2865699325127902 a001 2584/2207*141422324^(7/13) 2865699325127902 a001 2584/2207*2537720636^(7/15) 2865699325127902 a001 2584/2207*17393796001^(3/7) 2865699325127902 a001 2584/2207*45537549124^(7/17) 2865699325127902 a001 2584/2207*14662949395604^(1/3) 2865699325127902 a001 2584/2207*(1/2+1/2*5^(1/2))^21 2865699325127902 a001 2584/2207*192900153618^(7/18) 2865699325127902 a001 2584/2207*10749957122^(7/16) 2865699325127902 a001 2584/2207*599074578^(1/2) 2865699325127903 a001 2584/2207*33385282^(7/12) 2865699325128474 a001 329/1926*1860498^(5/6) 2865699325128481 a001 2584/2207*1860498^(7/10) 2865699325132158 a001 2584/2207*710647^(3/4) 2865699325361157 a001 2584/2207*103682^(7/8) 2865699326872001 a001 2584/2207*39603^(21/22) 2865699327777683 r002 34th iterates of z^2 + 2865699330318509 m001 BesselI(1,2)^(ArtinRank2/HardyLittlewoodC4) 2865699331650544 a001 3524578/2207*3571^(6/17) 2865699333034098 m005 (1/3*2^(1/2)-1/7)/(7/11*exp(1)-7/12) 2865699344869582 a001 5702887/2207*3571^(5/17) 2865699357621735 l006 ln(481/8447) 2865699357631675 m001 (MadelungNaCl-Sierpinski)/(Pi-Ei(1,1)) 2865699358088709 a001 9227465/2207*3571^(4/17) 2865699359970667 a007 Real Root Of -872*x^4-326*x^3+212*x^2+402*x+96 2865699369974054 r005 Re(z^2+c),c=-11/17+22/63*I,n=52 2865699370663902 a001 24157817/15127*1364^(2/5) 2865699371307801 a001 14930352/2207*3571^(3/17) 2865699378139201 a001 119814891/4181 2865699379802315 a001 17711/2207*9349^(17/19) 2865699380194069 r005 Im(z^2+c),c=9/52+8/35*I,n=22 2865699381360229 a001 63245986/39603*1364^(2/5) 2865699382920803 a001 165580141/103682*1364^(2/5) 2865699383148487 a001 433494437/271443*1364^(2/5) 2865699383181706 a001 1134903170/710647*1364^(2/5) 2865699383186552 a001 2971215073/1860498*1364^(2/5) 2865699383187260 a001 7778742049/4870847*1364^(2/5) 2865699383187363 a001 20365011074/12752043*1364^(2/5) 2865699383187378 a001 53316291173/33385282*1364^(2/5) 2865699383187380 a001 139583862445/87403803*1364^(2/5) 2865699383187380 a001 365435296162/228826127*1364^(2/5) 2865699383187380 a001 956722026041/599074578*1364^(2/5) 2865699383187380 a001 2504730781961/1568397607*1364^(2/5) 2865699383187380 a001 6557470319842/4106118243*1364^(2/5) 2865699383187380 a001 10610209857723/6643838879*1364^(2/5) 2865699383187380 a001 4052739537881/2537720636*1364^(2/5) 2865699383187380 a001 1548008755920/969323029*1364^(2/5) 2865699383187380 a001 591286729879/370248451*1364^(2/5) 2865699383187381 a001 225851433717/141422324*1364^(2/5) 2865699383187381 a001 86267571272/54018521*1364^(2/5) 2865699383187387 a001 32951280099/20633239*1364^(2/5) 2865699383187427 a001 12586269025/7881196*1364^(2/5) 2865699383187697 a001 4807526976/3010349*1364^(2/5) 2865699383189548 a001 1836311903/1149851*1364^(2/5) 2865699383202236 a001 701408733/439204*1364^(2/5) 2865699383289204 a001 267914296/167761*1364^(2/5) 2865699383885290 a001 102334155/64079*1364^(2/5) 2865699384053002 a001 28657/2207*9349^(16/19) 2865699384526907 a001 24157817/2207*3571^(2/17) 2865699384687384 a001 10946/2207*9349^(18/19) 2865699384814141 a001 46368/2207*9349^(15/19) 2865699386908168 a001 75025/2207*9349^(14/19) 2865699387970924 a001 39088169/24476*1364^(2/5) 2865699388493078 a001 121393/2207*9349^(13/19) 2865699390272453 a001 196418/2207*9349^(12/19) 2865699391977549 a001 317811/2207*9349^(11/19) 2865699393711017 a001 514229/2207*9349^(10/19) 2865699394113662 a001 6765/2207*24476^(19/21) 2865699394779682 m001 cos(Pi/5)^2*ln(OneNinth)^2*log(1+sqrt(2)) 2865699395433647 a001 832040/2207*9349^(9/19) 2865699397160418 a001 1346269/2207*9349^(8/19) 2865699397746008 a001 39088169/2207*3571^(1/17) 2865699397865096 a001 6765/2207*64079^(19/23) 2865699398441472 a001 141/2161*7881196^(9/11) 2865699398441510 a001 141/2161*141422324^(9/13) 2865699398441510 a001 141/2161*2537720636^(3/5) 2865699398441510 a001 141/2161*45537549124^(9/17) 2865699398441510 a001 141/2161*817138163596^(9/19) 2865699398441510 a001 141/2161*14662949395604^(3/7) 2865699398441510 a001 141/2161*(1/2+1/2*5^(1/2))^27 2865699398441510 a001 141/2161*192900153618^(1/2) 2865699398441510 a001 141/2161*10749957122^(9/16) 2865699398441510 a001 141/2161*599074578^(9/14) 2865699398441512 a001 141/2161*33385282^(3/4) 2865699398441630 a001 6765/2207*817138163596^(1/3) 2865699398441630 a001 6765/2207*(1/2+1/2*5^(1/2))^19 2865699398441631 a001 6765/2207*87403803^(1/2) 2865699398442255 a001 141/2161*1860498^(9/10) 2865699398652671 a001 6765/2207*103682^(19/24) 2865699398885607 a001 987*9349^(7/19) 2865699400019625 a001 6765/2207*39603^(19/22) 2865699400035945 a001 2584*1364^(1/3) 2865699400611400 a001 3524578/2207*9349^(6/19) 2865699402336962 a001 5702887/2207*9349^(5/19) 2865699402540448 a001 2178309/3571*1364^(8/15) 2865699404062613 a001 9227465/2207*9349^(4/19) 2865699405265567 a001 17711/2207*24476^(17/21) 2865699405788229 a001 14930352/2207*9349^(3/19) 2865699406175771 a001 24129189/842 2865699407281716 a001 46368/2207*24476^(5/7) 2865699407513859 a001 24157817/2207*9349^(2/19) 2865699407877905 a001 75025/2207*24476^(2/3) 2865699407964976 a001 121393/2207*24476^(13/21) 2865699408018415 a001 28657/2207*24476^(16/21) 2865699408246513 a001 196418/2207*24476^(4/7) 2865699408453770 a001 317811/2207*24476^(11/21) 2865699408622113 a001 17711/2207*64079^(17/23) 2865699408689400 a001 514229/2207*24476^(10/21) 2865699408914192 a001 832040/2207*24476^(3/7) 2865699409137838 a001 329/13201*(1/2+1/2*5^(1/2))^29 2865699409137838 a001 329/13201*1322157322203^(1/2) 2865699409137959 a001 17711/2207*45537549124^(1/3) 2865699409137959 a001 17711/2207*(1/2+1/2*5^(1/2))^17 2865699409137968 a001 17711/2207*12752043^(1/2) 2865699409143124 a001 1346269/2207*24476^(8/21) 2865699409239484 a001 39088169/2207*9349^(1/19) 2865699409326785 a001 17711/2207*103682^(17/24) 2865699409370475 a001 987*24476^(1/3) 2865699409598430 a001 3524578/2207*24476^(2/7) 2865699409826154 a001 5702887/2207*24476^(5/21) 2865699410053966 a001 9227465/2207*24476^(4/21) 2865699410243374 a001 46368/2207*64079^(15/23) 2865699410266252 a001 821223480/28657 2865699410281744 a001 14930352/2207*24476^(1/7) 2865699410338936 a001 6765/2207*15127^(19/20) 2865699410509536 a001 24157817/2207*24476^(2/21) 2865699410531747 a001 121393/2207*64079^(13/23) 2865699410549849 a001 17711/2207*39603^(17/22) 2865699410615839 a001 196418/2207*64079^(12/23) 2865699410625653 a001 317811/2207*64079^(11/23) 2865699410637438 a001 46368/2207*167761^(3/5) 2865699410642119 a001 75025/2207*64079^(14/23) 2865699410663839 a001 514229/2207*64079^(10/23) 2865699410690279 a001 46368/2207*439204^(5/9) 2865699410691187 a001 832040/2207*64079^(9/23) 2865699410698412 a001 21/2206*(1/2+1/2*5^(1/2))^31 2865699410698412 a001 21/2206*9062201101803^(1/2) 2865699410698512 a001 46368/2207*7881196^(5/11) 2865699410698530 a001 46368/2207*20633239^(3/7) 2865699410698533 a001 46368/2207*141422324^(5/13) 2865699410698533 a001 46368/2207*2537720636^(1/3) 2865699410698533 a001 46368/2207*45537549124^(5/17) 2865699410698533 a001 46368/2207*312119004989^(3/11) 2865699410698533 a001 46368/2207*14662949395604^(5/21) 2865699410698533 a001 46368/2207*(1/2+1/2*5^(1/2))^15 2865699410698533 a001 46368/2207*192900153618^(5/18) 2865699410698533 a001 46368/2207*28143753123^(3/10) 2865699410698533 a001 46368/2207*10749957122^(5/16) 2865699410698533 a001 46368/2207*599074578^(5/14) 2865699410698533 a001 46368/2207*228826127^(3/8) 2865699410698534 a001 46368/2207*33385282^(5/12) 2865699410698947 a001 46368/2207*1860498^(1/2) 2865699410722675 a001 1346269/2207*64079^(8/23) 2865699410737322 a001 39088169/2207*24476^(1/21) 2865699410752582 a001 987*64079^(7/23) 2865699410783093 a001 3524578/2207*64079^(6/23) 2865699410813373 a001 5702887/2207*64079^(5/23) 2865699410843742 a001 9227465/2207*64079^(4/23) 2865699410863045 a001 2149990983/75025 2865699410865144 a001 46368/2207*103682^(5/8) 2865699410874076 a001 14930352/2207*64079^(3/23) 2865699410904424 a001 24157817/2207*64079^(2/23) 2865699410926096 a001 329/90481*141422324^(11/13) 2865699410926096 a001 329/90481*2537720636^(11/15) 2865699410926096 a001 329/90481*45537549124^(11/17) 2865699410926096 a001 329/90481*312119004989^(3/5) 2865699410926096 a001 329/90481*14662949395604^(11/21) 2865699410926096 a001 329/90481*(1/2+1/2*5^(1/2))^33 2865699410926096 a001 329/90481*192900153618^(11/18) 2865699410926096 a001 329/90481*10749957122^(11/16) 2865699410926096 a001 329/90481*1568397607^(3/4) 2865699410926096 a001 329/90481*599074578^(11/14) 2865699410926099 a001 329/90481*33385282^(11/12) 2865699410926217 a001 121393/2207*141422324^(1/3) 2865699410926217 a001 121393/2207*(1/2+1/2*5^(1/2))^13 2865699410926217 a001 121393/2207*73681302247^(1/4) 2865699410926548 a001 514229/2207*167761^(2/5) 2865699410934766 a001 39088169/2207*64079^(1/23) 2865699410944728 a001 5702887/2207*167761^(1/5) 2865699410945664 a001 121393/2207*271443^(1/2) 2865699410950116 a001 5628749469/196418 2865699410959315 a001 141/101521*2537720636^(7/9) 2865699410959315 a001 141/101521*17393796001^(5/7) 2865699410959315 a001 141/101521*312119004989^(7/11) 2865699410959315 a001 141/101521*14662949395604^(5/9) 2865699410959315 a001 141/101521*(1/2+1/2*5^(1/2))^35 2865699410959315 a001 141/101521*505019158607^(5/8) 2865699410959315 a001 141/101521*28143753123^(7/10) 2865699410959315 a001 141/101521*599074578^(5/6) 2865699410959315 a001 141/101521*228826127^(7/8) 2865699410959331 a001 832040/2207*439204^(1/3) 2865699410959421 a001 317811/2207*7881196^(1/3) 2865699410959436 a001 317811/2207*312119004989^(1/5) 2865699410959436 a001 317811/2207*(1/2+1/2*5^(1/2))^11 2865699410959436 a001 317811/2207*1568397607^(1/4) 2865699410961855 a001 3524578/2207*439204^(2/9) 2865699410962820 a001 14736257424/514229 2865699410963457 a001 14930352/2207*439204^(1/9) 2865699410964162 a001 329/620166*(1/2+1/2*5^(1/2))^37 2865699410964270 a001 832040/2207*7881196^(3/11) 2865699410964282 a001 832040/2207*141422324^(3/13) 2865699410964282 a001 832040/2207*2537720636^(1/5) 2865699410964282 a001 832040/2207*45537549124^(3/17) 2865699410964282 a001 832040/2207*14662949395604^(1/7) 2865699410964282 a001 832040/2207*(1/2+1/2*5^(1/2))^9 2865699410964282 a001 832040/2207*192900153618^(1/6) 2865699410964282 a001 832040/2207*10749957122^(3/16) 2865699410964282 a001 832040/2207*599074578^(3/14) 2865699410964283 a001 832040/2207*33385282^(1/4) 2865699410964531 a001 832040/2207*1860498^(3/10) 2865699410964673 a001 38580022803/1346269 2865699410964869 a001 987/4870847*2537720636^(13/15) 2865699410964869 a001 987/4870847*45537549124^(13/17) 2865699410964869 a001 987/4870847*14662949395604^(13/21) 2865699410964869 a001 987/4870847*(1/2+1/2*5^(1/2))^39 2865699410964869 a001 987/4870847*192900153618^(13/18) 2865699410964869 a001 987/4870847*73681302247^(3/4) 2865699410964869 a001 987/4870847*10749957122^(13/16) 2865699410964869 a001 987/4870847*599074578^(13/14) 2865699410964943 a001 101003810985/3524578 2865699410964972 a001 329/4250681*(1/2+1/2*5^(1/2))^41 2865699410964983 a001 20340877704/709805 2865699410964987 a001 141/4769326*(1/2+1/2*5^(1/2))^43 2865699410964988 a001 987*20633239^(1/5) 2865699410964989 a001 692290419471/24157817 2865699410964989 a001 329/29134601*45537549124^(15/17) 2865699410964989 a001 329/29134601*312119004989^(9/11) 2865699410964989 a001 329/29134601*14662949395604^(5/7) 2865699410964989 a001 329/29134601*192900153618^(5/6) 2865699410964989 a001 329/29134601*28143753123^(9/10) 2865699410964989 a001 329/29134601*10749957122^(15/16) 2865699410964989 a001 1812439848261/63245986 2865699410964990 a001 4745029125312/165580141 2865699410964990 a001 329/199691526*14662949395604^(7/9) 2865699410964990 a001 329/199691526*505019158607^(7/8) 2865699410964990 a001 12422647527675/433494437 2865699410964990 a001 141/224056801*817138163596^(17/19) 2865699410964990 a001 141/224056801*14662949395604^(17/21) 2865699410964990 a001 141/224056801*192900153618^(17/18) 2865699410964990 a001 32522913457713/1134903170 2865699410964990 a001 85146092845464/2971215073 2865699410964990 a001 987/10749957122*3461452808002^(11/12) 2865699410964990 a001 17147335775283/598364773 2865699410964990 a001 329/9381251041*14662949395604^(19/21) 2865699410964990 a001 583600002390573/20365011074 2865699410964990 a001 987*17393796001^(1/7) 2865699410964990 a001 1527884642093040/53316291173 2865699410964990 a001 4000053923888547/139583862445 2865699410964990 a001 10472277129572601/365435296162 2865699410964990 a001 23707777310198/827294629 2865699410964990 a001 2472169281795507/86267571272 2865699410964990 a001 987/119218851371*14662949395604^(20/21) 2865699410964990 a001 314761546567489/10983760033 2865699410964990 a001 360684637311894/12586269025 2865699410964990 a001 987/17393796001*14662949395604^(8/9) 2865699410964990 a001 139583862445/4870848 2865699410964990 a001 987/6643838879*14662949395604^(6/7) 2865699410964990 a001 52623179387751/1836311903 2865699410964990 a001 987/2537720636*23725150497407^(13/16) 2865699410964990 a001 987/2537720636*505019158607^(13/14) 2865699410964990 a001 6700088643346/233802911 2865699410964990 a001 987*599074578^(1/6) 2865699410964990 a001 987/969323029*312119004989^(10/11) 2865699410964990 a001 987/969323029*3461452808002^(5/6) 2865699410964990 a001 590586030951/20608792 2865699410964990 a001 987/370248451*45537549124^(16/17) 2865699410964990 a001 987/370248451*14662949395604^(16/21) 2865699410964990 a001 987/370248451*192900153618^(8/9) 2865699410964990 a001 987/370248451*73681302247^(12/13) 2865699410964990 a001 139647108431/4873055 2865699410964990 a001 987/141422324*10749957122^(23/24) 2865699410964990 a001 1120149428790/39088169 2865699410964991 a001 987/54018521*312119004989^(4/5) 2865699410964991 a001 987/54018521*23725150497407^(11/16) 2865699410964991 a001 987/54018521*73681302247^(11/13) 2865699410964991 a001 987/54018521*10749957122^(11/12) 2865699410964991 a001 987/54018521*4106118243^(22/23) 2865699410964992 a001 142619669773/4976784 2865699410964996 a001 987/20633239*2537720636^(14/15) 2865699410964996 a001 987/20633239*17393796001^(6/7) 2865699410964996 a001 987/20633239*45537549124^(14/17) 2865699410964996 a001 987/20633239*817138163596^(14/19) 2865699410964996 a001 987/20633239*14662949395604^(2/3) 2865699410964996 a001 987/20633239*(1/2+1/2*5^(1/2))^42 2865699410964996 a001 987/20633239*505019158607^(3/4) 2865699410964996 a001 987/20633239*192900153618^(7/9) 2865699410964996 a001 987/20633239*10749957122^(7/8) 2865699410964996 a001 987/20633239*4106118243^(21/23) 2865699410964996 a001 987/20633239*1568397607^(21/22) 2865699410965007 a001 163427599167/5702887 2865699410965036 a001 987/7881196*2537720636^(8/9) 2865699410965036 a001 987/7881196*312119004989^(8/11) 2865699410965036 a001 987/7881196*(1/2+1/2*5^(1/2))^40 2865699410965036 a001 987/7881196*23725150497407^(5/8) 2865699410965036 a001 987/7881196*73681302247^(10/13) 2865699410965036 a001 987/7881196*28143753123^(4/5) 2865699410965036 a001 987/7881196*10749957122^(5/6) 2865699410965036 a001 987/7881196*4106118243^(20/23) 2865699410965036 a001 987/7881196*1568397607^(10/11) 2865699410965036 a001 987/7881196*599074578^(20/21) 2865699410965092 a001 5702887/2207*20633239^(1/7) 2865699410965093 a001 5702887/2207*2537720636^(1/9) 2865699410965093 a001 5702887/2207*312119004989^(1/11) 2865699410965093 a001 5702887/2207*(1/2+1/2*5^(1/2))^5 2865699410965093 a001 5702887/2207*28143753123^(1/10) 2865699410965093 a001 5702887/2207*228826127^(1/8) 2865699410965104 a001 14930352/2207*7881196^(1/11) 2865699410965108 a001 14930352/2207*141422324^(1/13) 2865699410965108 a001 14930352/2207*2537720636^(1/15) 2865699410965108 a001 14930352/2207*45537549124^(1/17) 2865699410965108 a001 14930352/2207*14662949395604^(1/21) 2865699410965108 a001 14930352/2207*(1/2+1/2*5^(1/2))^3 2865699410965108 a001 14930352/2207*192900153618^(1/18) 2865699410965108 a001 14930352/2207*10749957122^(1/16) 2865699410965108 a001 14930352/2207*599074578^(1/14) 2865699410965108 a001 14930352/2207*33385282^(1/12) 2865699410965110 a001 39088169/4414+39088169/4414*5^(1/2) 2865699410965111 a001 63245986/2207 2865699410965111 a001 24157817/2207*(1/2+1/2*5^(1/2))^2 2865699410965111 a001 24157817/2207*10749957122^(1/24) 2865699410965111 a001 24157817/2207*4106118243^(1/23) 2865699410965111 a001 24157817/2207*1568397607^(1/22) 2865699410965111 a001 24157817/2207*599074578^(1/21) 2865699410965111 a001 24157817/2207*228826127^(1/20) 2865699410965111 a001 24157817/2207*87403803^(1/19) 2865699410965111 a001 24157817/2207*33385282^(1/18) 2865699410965112 a001 24157817/2207*12752043^(1/17) 2865699410965117 a001 9227465/2207*(1/2+1/2*5^(1/2))^4 2865699410965117 a001 9227465/2207*23725150497407^(1/16) 2865699410965117 a001 9227465/2207*73681302247^(1/13) 2865699410965117 a001 9227465/2207*10749957122^(1/12) 2865699410965117 a001 9227465/2207*4106118243^(2/23) 2865699410965117 a001 9227465/2207*1568397607^(1/11) 2865699410965117 a001 9227465/2207*599074578^(2/21) 2865699410965117 a001 9227465/2207*228826127^(1/10) 2865699410965117 a001 9227465/2207*87403803^(2/19) 2865699410965117 a001 9227465/2207*33385282^(1/9) 2865699410965119 a001 24157817/2207*4870847^(1/16) 2865699410965119 a001 9227465/2207*12752043^(2/17) 2865699410965132 a001 9227465/2207*4870847^(1/8) 2865699410965148 a001 3524578/2207*7881196^(2/11) 2865699410965156 a001 3524578/2207*141422324^(2/13) 2865699410965157 a001 3524578/2207*2537720636^(2/15) 2865699410965157 a001 3524578/2207*45537549124^(2/17) 2865699410965157 a001 3524578/2207*14662949395604^(2/21) 2865699410965157 a001 3524578/2207*(1/2+1/2*5^(1/2))^6 2865699410965157 a001 3524578/2207*10749957122^(1/8) 2865699410965157 a001 3524578/2207*4106118243^(3/23) 2865699410965157 a001 3524578/2207*1568397607^(3/22) 2865699410965157 a001 3524578/2207*599074578^(1/7) 2865699410965157 a001 3524578/2207*228826127^(3/20) 2865699410965157 a001 3524578/2207*87403803^(3/19) 2865699410965157 a001 3524578/2207*33385282^(1/6) 2865699410965160 a001 3524578/2207*12752043^(3/17) 2865699410965167 a001 24157817/2207*1860498^(1/15) 2865699410965179 a001 3524578/2207*4870847^(3/16) 2865699410965191 a001 14930352/2207*1860498^(1/10) 2865699410965227 a001 9227465/2207*1860498^(2/15) 2865699410965231 a001 5702887/2207*1860498^(1/6) 2865699410965306 a001 987/3010349*817138163596^(2/3) 2865699410965306 a001 987/3010349*(1/2+1/2*5^(1/2))^38 2865699410965306 a001 987/3010349*10749957122^(19/24) 2865699410965306 a001 987/3010349*4106118243^(19/23) 2865699410965306 a001 987/3010349*1568397607^(19/22) 2865699410965306 a001 987/3010349*599074578^(19/21) 2865699410965306 a001 987/3010349*228826127^(19/20) 2865699410965322 a001 3524578/2207*1860498^(1/5) 2865699410965427 a001 1346269/2207*(1/2+1/2*5^(1/2))^8 2865699410965427 a001 1346269/2207*23725150497407^(1/8) 2865699410965427 a001 1346269/2207*505019158607^(1/7) 2865699410965427 a001 1346269/2207*73681302247^(2/13) 2865699410965427 a001 1346269/2207*10749957122^(1/6) 2865699410965427 a001 1346269/2207*4106118243^(4/23) 2865699410965427 a001 1346269/2207*1568397607^(2/11) 2865699410965427 a001 1346269/2207*599074578^(4/21) 2865699410965427 a001 1346269/2207*228826127^(1/5) 2865699410965427 a001 1346269/2207*87403803^(4/19) 2865699410965427 a001 1346269/2207*33385282^(2/9) 2865699410965431 a001 1346269/2207*12752043^(4/17) 2865699410965457 a001 1346269/2207*4870847^(1/4) 2865699410965517 a001 24157817/2207*710647^(1/14) 2865699410965647 a001 1346269/2207*1860498^(4/15) 2865699410965818 a001 23843765379/832040 2865699410965928 a001 9227465/2207*710647^(1/7) 2865699410966372 a001 3524578/2207*710647^(3/14) 2865699410966408 a001 987*710647^(1/4) 2865699410967048 a001 1346269/2207*710647^(2/7) 2865699410967157 a001 987/1149851*141422324^(12/13) 2865699410967157 a001 987/1149851*2537720636^(4/5) 2865699410967157 a001 987/1149851*45537549124^(12/17) 2865699410967157 a001 987/1149851*14662949395604^(4/7) 2865699410967157 a001 987/1149851*(1/2+1/2*5^(1/2))^36 2865699410967157 a001 987/1149851*505019158607^(9/14) 2865699410967157 a001 987/1149851*192900153618^(2/3) 2865699410967157 a001 987/1149851*73681302247^(9/13) 2865699410967157 a001 987/1149851*10749957122^(3/4) 2865699410967157 a001 987/1149851*4106118243^(18/23) 2865699410967157 a001 987/1149851*1568397607^(9/11) 2865699410967157 a001 987/1149851*599074578^(6/7) 2865699410967157 a001 987/1149851*228826127^(9/10) 2865699410967157 a001 987/1149851*87403803^(18/19) 2865699410967276 a001 514229/2207*20633239^(2/7) 2865699410967278 a001 514229/2207*2537720636^(2/9) 2865699410967278 a001 514229/2207*312119004989^(2/11) 2865699410967278 a001 514229/2207*(1/2+1/2*5^(1/2))^10 2865699410967278 a001 514229/2207*28143753123^(1/5) 2865699410967278 a001 514229/2207*10749957122^(5/24) 2865699410967278 a001 514229/2207*4106118243^(5/23) 2865699410967278 a001 514229/2207*1568397607^(5/22) 2865699410967278 a001 514229/2207*599074578^(5/21) 2865699410967278 a001 514229/2207*228826127^(1/4) 2865699410967278 a001 514229/2207*87403803^(5/19) 2865699410967279 a001 514229/2207*33385282^(5/18) 2865699410967283 a001 514229/2207*12752043^(5/17) 2865699410967316 a001 514229/2207*4870847^(5/16) 2865699410967554 a001 514229/2207*1860498^(1/3) 2865699410968103 a001 24157817/2207*271443^(1/13) 2865699410969304 a001 514229/2207*710647^(5/14) 2865699410970671 a001 233525845/8149 2865699410971101 a001 9227465/2207*271443^(2/13) 2865699410973364 a001 196418/2207*439204^(4/9) 2865699410974132 a001 3524578/2207*271443^(3/13) 2865699410976217 a001 39088169/2207*103682^(1/24) 2865699410977394 a001 1346269/2207*271443^(4/13) 2865699410979845 a001 987/439204*45537549124^(2/3) 2865699410979845 a001 987/439204*(1/2+1/2*5^(1/2))^34 2865699410979845 a001 987/439204*10749957122^(17/24) 2865699410979845 a001 987/439204*4106118243^(17/23) 2865699410979845 a001 987/439204*1568397607^(17/22) 2865699410979845 a001 987/439204*599074578^(17/21) 2865699410979845 a001 987/439204*228826127^(17/20) 2865699410979846 a001 987/439204*87403803^(17/19) 2865699410979848 a001 987/439204*33385282^(17/18) 2865699410979949 a001 196418/2207*7881196^(4/11) 2865699410979966 a001 196418/2207*141422324^(4/13) 2865699410979966 a001 196418/2207*2537720636^(4/15) 2865699410979966 a001 196418/2207*45537549124^(4/17) 2865699410979966 a001 196418/2207*817138163596^(4/19) 2865699410979966 a001 196418/2207*14662949395604^(4/21) 2865699410979966 a001 196418/2207*(1/2+1/2*5^(1/2))^12 2865699410979966 a001 196418/2207*192900153618^(2/9) 2865699410979966 a001 196418/2207*73681302247^(3/13) 2865699410979966 a001 196418/2207*10749957122^(1/4) 2865699410979966 a001 196418/2207*4106118243^(6/23) 2865699410979966 a001 196418/2207*1568397607^(3/11) 2865699410979966 a001 196418/2207*599074578^(2/7) 2865699410979966 a001 196418/2207*228826127^(3/10) 2865699410979966 a001 196418/2207*87403803^(6/19) 2865699410979967 a001 196418/2207*33385282^(1/3) 2865699410979972 a001 196418/2207*12752043^(6/17) 2865699410980012 a001 196418/2207*4870847^(3/8) 2865699410980297 a001 196418/2207*1860498^(2/5) 2865699410982237 a001 514229/2207*271443^(5/13) 2865699410982398 a001 196418/2207*710647^(3/7) 2865699410987326 a001 24157817/2207*103682^(1/12) 2865699410997917 a001 196418/2207*271443^(6/13) 2865699410998430 a001 14930352/2207*103682^(1/8) 2865699411003929 a001 3478758486/121393 2865699411009547 a001 9227465/2207*103682^(1/6) 2865699411020630 a001 5702887/2207*103682^(5/24) 2865699411031801 a001 3524578/2207*103682^(1/4) 2865699411042741 a001 987*103682^(7/24) 2865699411048162 a001 39088169/2207*39603^(1/22) 2865699411054286 a001 1346269/2207*103682^(1/3) 2865699411064249 a001 832040/2207*103682^(3/8) 2865699411066813 a001 987/167761*(1/2+1/2*5^(1/2))^32 2865699411066813 a001 987/167761*23725150497407^(1/2) 2865699411066813 a001 987/167761*73681302247^(8/13) 2865699411066813 a001 987/167761*10749957122^(2/3) 2865699411066813 a001 987/167761*4106118243^(16/23) 2865699411066813 a001 987/167761*1568397607^(8/11) 2865699411066813 a001 987/167761*599074578^(16/21) 2865699411066813 a001 987/167761*228826127^(4/5) 2865699411066814 a001 987/167761*87403803^(16/19) 2865699411066816 a001 987/167761*33385282^(8/9) 2865699411066830 a001 987/167761*12752043^(16/17) 2865699411066931 a001 75025/2207*20633239^(2/5) 2865699411066934 a001 75025/2207*17393796001^(2/7) 2865699411066934 a001 75025/2207*14662949395604^(2/9) 2865699411066934 a001 75025/2207*(1/2+1/2*5^(1/2))^14 2865699411066934 a001 75025/2207*505019158607^(1/4) 2865699411066934 a001 75025/2207*10749957122^(7/24) 2865699411066934 a001 75025/2207*4106118243^(7/23) 2865699411066934 a001 75025/2207*1568397607^(7/22) 2865699411066934 a001 75025/2207*599074578^(1/3) 2865699411066934 a001 75025/2207*228826127^(7/20) 2865699411066934 a001 75025/2207*87403803^(7/19) 2865699411066935 a001 75025/2207*33385282^(7/18) 2865699411066941 a001 75025/2207*12752043^(7/17) 2865699411066987 a001 75025/2207*4870847^(7/16) 2865699411067320 a001 75025/2207*1860498^(7/15) 2865699411069771 a001 75025/2207*710647^(1/2) 2865699411070613 a001 121393/2207*103682^(13/24) 2865699411078352 a001 514229/2207*103682^(5/12) 2865699411081617 a001 317811/2207*103682^(11/24) 2865699411087876 a001 75025/2207*271443^(7/13) 2865699411113255 a001 196418/2207*103682^(1/2) 2865699411131216 a001 24157817/2207*39603^(1/11) 2865699411177518 a001 28657/2207*64079^(16/23) 2865699411214265 a001 14930352/2207*39603^(3/22) 2865699411222438 a001 75025/2207*103682^(7/12) 2865699411231884 a001 63274643/2208 2865699411297326 a001 9227465/2207*39603^(2/11) 2865699411380354 a001 5702887/2207*39603^(5/22) 2865699411463470 a001 3524578/2207*39603^(3/11) 2865699411546356 a001 987*39603^(7/22) 2865699411591284 a001 39088169/2207*15127^(1/20) 2865699411629845 a001 1346269/2207*39603^(4/11) 2865699411648474 a001 10946/2207*24476^(6/7) 2865699411662857 a001 987/64079*7881196^(10/11) 2865699411662893 a001 987/64079*20633239^(6/7) 2865699411662899 a001 987/64079*141422324^(10/13) 2865699411662899 a001 987/64079*2537720636^(2/3) 2865699411662899 a001 987/64079*45537549124^(10/17) 2865699411662899 a001 987/64079*312119004989^(6/11) 2865699411662899 a001 987/64079*14662949395604^(10/21) 2865699411662899 a001 987/64079*(1/2+1/2*5^(1/2))^30 2865699411662899 a001 987/64079*192900153618^(5/9) 2865699411662899 a001 987/64079*28143753123^(3/5) 2865699411662899 a001 987/64079*10749957122^(5/8) 2865699411662899 a001 987/64079*4106118243^(15/23) 2865699411662899 a001 987/64079*1568397607^(15/22) 2865699411662899 a001 987/64079*599074578^(5/7) 2865699411662899 a001 987/64079*228826127^(3/4) 2865699411662899 a001 987/64079*87403803^(15/19) 2865699411662901 a001 987/64079*33385282^(5/6) 2865699411662915 a001 987/64079*12752043^(15/17) 2865699411663012 a001 987/64079*4870847^(15/16) 2865699411663020 a001 28657/2207*(1/2+1/2*5^(1/2))^16 2865699411663020 a001 28657/2207*23725150497407^(1/4) 2865699411663020 a001 28657/2207*73681302247^(4/13) 2865699411663020 a001 28657/2207*10749957122^(1/3) 2865699411663020 a001 28657/2207*4106118243^(8/23) 2865699411663020 a001 28657/2207*1568397607^(4/11) 2865699411663020 a001 28657/2207*599074578^(8/21) 2865699411663020 a001 28657/2207*228826127^(2/5) 2865699411663020 a001 28657/2207*87403803^(8/19) 2865699411663021 a001 28657/2207*33385282^(4/9) 2865699411663028 a001 28657/2207*12752043^(8/17) 2865699411663080 a001 28657/2207*4870847^(1/2) 2865699411663462 a001 28657/2207*1860498^(8/15) 2865699411666263 a001 28657/2207*710647^(4/7) 2865699411686954 a001 28657/2207*271443^(8/13) 2865699411711753 a001 832040/2207*39603^(9/22) 2865699411797801 a001 514229/2207*39603^(5/11) 2865699411840738 a001 28657/2207*103682^(2/3) 2865699411873011 a001 317811/2207*39603^(1/2) 2865699411926908 a001 63245986/3571*521^(1/13) 2865699411944317 a001 46368/2207*39603^(15/22) 2865699411976594 a001 196418/2207*39603^(6/11) 2865699412005897 a001 121393/2207*39603^(13/22) 2865699412217459 a001 24157817/2207*15127^(1/10) 2865699412229667 a001 75025/2207*39603^(7/11) 2865699412794308 a001 507544023/17711 2865699412843630 a001 14930352/2207*15127^(3/20) 2865699412991857 a001 28657/2207*39603^(8/11) 2865699413469813 a001 9227465/2207*15127^(1/5) 2865699414095963 a001 5702887/2207*15127^(1/4) 2865699414722200 a001 3524578/2207*15127^(3/10) 2865699415202464 a001 10946/2207*64079^(18/23) 2865699415348208 a001 987*15127^(7/20) 2865699415733844 a001 39088169/2207*5778^(1/18) 2865699415738750 a001 10946/2207*439204^(2/3) 2865699415748528 a001 987/24476*20633239^(4/5) 2865699415748533 a001 987/24476*17393796001^(4/7) 2865699415748533 a001 987/24476*14662949395604^(4/9) 2865699415748533 a001 987/24476*(1/2+1/2*5^(1/2))^28 2865699415748533 a001 987/24476*505019158607^(1/2) 2865699415748533 a001 987/24476*73681302247^(7/13) 2865699415748533 a001 987/24476*10749957122^(7/12) 2865699415748533 a001 987/24476*4106118243^(14/23) 2865699415748533 a001 987/24476*1568397607^(7/11) 2865699415748533 a001 987/24476*599074578^(2/3) 2865699415748533 a001 987/24476*228826127^(7/10) 2865699415748534 a001 987/24476*87403803^(14/19) 2865699415748535 a001 987/24476*33385282^(7/9) 2865699415748548 a001 987/24476*12752043^(14/17) 2865699415748629 a001 10946/2207*7881196^(6/11) 2865699415748639 a001 987/24476*4870847^(7/8) 2865699415748654 a001 10946/2207*141422324^(6/13) 2865699415748654 a001 10946/2207*2537720636^(2/5) 2865699415748654 a001 10946/2207*45537549124^(6/17) 2865699415748654 a001 10946/2207*14662949395604^(2/7) 2865699415748654 a001 10946/2207*(1/2+1/2*5^(1/2))^18 2865699415748654 a001 10946/2207*192900153618^(1/3) 2865699415748654 a001 10946/2207*10749957122^(3/8) 2865699415748654 a001 10946/2207*4106118243^(9/23) 2865699415748654 a001 10946/2207*1568397607^(9/22) 2865699415748654 a001 10946/2207*599074578^(3/7) 2865699415748654 a001 10946/2207*228826127^(9/20) 2865699415748654 a001 10946/2207*87403803^(9/19) 2865699415748655 a001 10946/2207*33385282^(1/2) 2865699415748663 a001 10946/2207*12752043^(9/17) 2865699415748722 a001 10946/2207*4870847^(9/16) 2865699415749151 a001 10946/2207*1860498^(3/5) 2865699415749306 a001 987/24476*1860498^(14/15) 2865699415752302 a001 10946/2207*710647^(9/14) 2865699415775580 a001 10946/2207*271443^(9/13) 2865699415948587 a001 10946/2207*103682^(3/4) 2865699415974274 a001 14930352/9349*1364^(2/5) 2865699415974819 a001 1346269/2207*15127^(2/5) 2865699416599848 a001 832040/2207*15127^(9/20) 2865699417229018 a001 514229/2207*15127^(1/2) 2865699417243596 a001 10946/2207*39603^(9/11) 2865699417847350 a001 317811/2207*15127^(11/20) 2865699418494054 a001 196418/2207*15127^(3/5) 2865699419066479 a001 121393/2207*15127^(13/20) 2865699419782917 a001 17711/2207*15127^(17/20) 2865699419833370 a001 75025/2207*15127^(7/10) 2865699420091143 a001 46368/2207*15127^(3/4) 2865699420502579 a001 24157817/2207*5778^(1/9) 2865699421681804 a001 28657/2207*15127^(4/5) 2865699423329737 a001 75025/843*843^(6/7) 2865699423503325 a001 64621522/2255 2865699425271309 a001 14930352/2207*5778^(1/6) 2865699426917243 a007 Real Root Of 73*x^4-766*x^3+837*x^2-477*x+13 2865699427019786 a001 10946/2207*15127^(9/10) 2865699427438750 m001 (Psi(2,1/3)-exp(1/exp(1)))/(-Robbin+Thue) 2865699430040052 a001 9227465/2207*5778^(2/9) 2865699434808762 a001 5702887/2207*5778^(5/18) 2865699437682499 m001 Psi(1,1/3)/(LambertW(1)+Otter) 2865699439196251 a001 4181/2207*24476^(20/21) 2865699439577559 a001 3524578/2207*5778^(1/3) 2865699443145129 a001 4181/2207*64079^(20/23) 2865699443670548 a001 4181/2207*167761^(4/5) 2865699443751886 a001 987/9349*141422324^(2/3) 2865699443751886 a001 987/9349*(1/2+1/2*5^(1/2))^26 2865699443751886 a001 987/9349*73681302247^(1/2) 2865699443751886 a001 987/9349*10749957122^(13/24) 2865699443751886 a001 987/9349*4106118243^(13/23) 2865699443751886 a001 987/9349*1568397607^(13/22) 2865699443751886 a001 987/9349*599074578^(13/21) 2865699443751886 a001 987/9349*228826127^(13/20) 2865699443751886 a001 987/9349*87403803^(13/19) 2865699443751888 a001 987/9349*33385282^(13/18) 2865699443751900 a001 987/9349*12752043^(13/17) 2865699443751984 a001 987/9349*4870847^(13/16) 2865699443752003 a001 4181/2207*20633239^(4/7) 2865699443752007 a001 4181/2207*2537720636^(4/9) 2865699443752007 a001 4181/2207*(1/2+1/2*5^(1/2))^20 2865699443752007 a001 4181/2207*23725150497407^(5/16) 2865699443752007 a001 4181/2207*505019158607^(5/14) 2865699443752007 a001 4181/2207*73681302247^(5/13) 2865699443752007 a001 4181/2207*28143753123^(2/5) 2865699443752007 a001 4181/2207*10749957122^(5/12) 2865699443752007 a001 4181/2207*4106118243^(10/23) 2865699443752007 a001 4181/2207*1568397607^(5/11) 2865699443752007 a001 4181/2207*599074578^(10/21) 2865699443752007 a001 4181/2207*228826127^(1/2) 2865699443752007 a001 4181/2207*87403803^(10/19) 2865699443752008 a001 4181/2207*33385282^(5/9) 2865699443752017 a001 4181/2207*12752043^(10/17) 2865699443752082 a001 4181/2207*4870847^(5/8) 2865699443752558 a001 4181/2207*1860498^(2/3) 2865699443752604 a001 987/9349*1860498^(13/15) 2865699443756060 a001 4181/2207*710647^(5/7) 2865699443757155 a001 987/9349*710647^(13/14) 2865699443781924 a001 4181/2207*271443^(10/13) 2865699443974155 a001 4181/2207*103682^(5/6) 2865699444346126 a001 987*5778^(7/18) 2865699445413053 a001 4181/2207*39603^(10/11) 2865699447736168 a001 39088169/2207*2207^(1/16) 2865699449115297 a001 1346269/2207*5778^(4/9) 2865699452179322 m001 Psi(1,1/3)/(PlouffeB^OrthogonalArrays) 2865699452239065 r002 40i'th iterates of 2*x/(1-x^2) of 2865699453882886 a001 832040/2207*5778^(1/2) 2865699456735293 a007 Real Root Of 209*x^4-800*x^3+213*x^2-985*x-320 2865699458654616 a001 514229/2207*5778^(5/9) 2865699461226962 r005 Re(z^2+c),c=11/70+20/59*I,n=36 2865699462556382 a007 Real Root Of 163*x^4+141*x^3-799*x^2+268*x-345 2865699463415507 a001 317811/2207*5778^(11/18) 2865699468204772 a001 196418/2207*5778^(2/3) 2865699470988527 m008 (1/3*Pi^6-2/5)/(1/3*Pi^3+5/6) 2865699472919756 a001 121393/2207*5778^(13/18) 2865699473349675 a001 39088169/15127*1364^(1/3) 2865699477829207 a001 75025/2207*5778^(7/9) 2865699479571653 l006 ln(5623/7489) 2865699479571653 p004 log(7489/5623) 2865699482229539 a001 46368/2207*5778^(5/6) 2865699484046005 a001 34111385/13201*1364^(1/3) 2865699484507227 a001 24157817/2207*2207^(1/8) 2865699485606578 a001 133957148/51841*1364^(1/3) 2865699485783170 a007 Real Root Of -640*x^4+42*x^3-45*x^2+862*x-240 2865699485834263 a001 233802911/90481*1364^(1/3) 2865699485867482 a001 1836311903/710647*1364^(1/3) 2865699485872328 a001 267084832/103361*1364^(1/3) 2865699485873035 a001 12586269025/4870847*1364^(1/3) 2865699485873138 a001 10983760033/4250681*1364^(1/3) 2865699485873153 a001 43133785636/16692641*1364^(1/3) 2865699485873156 a001 75283811239/29134601*1364^(1/3) 2865699485873156 a001 591286729879/228826127*1364^(1/3) 2865699485873156 a001 86000486440/33281921*1364^(1/3) 2865699485873156 a001 4052739537881/1568397607*1364^(1/3) 2865699485873156 a001 3536736619241/1368706081*1364^(1/3) 2865699485873156 a001 3278735159921/1268860318*1364^(1/3) 2865699485873156 a001 2504730781961/969323029*1364^(1/3) 2865699485873156 a001 956722026041/370248451*1364^(1/3) 2865699485873156 a001 182717648081/70711162*1364^(1/3) 2865699485873157 a001 139583862445/54018521*1364^(1/3) 2865699485873163 a001 53316291173/20633239*1364^(1/3) 2865699485873202 a001 10182505537/3940598*1364^(1/3) 2865699485873472 a001 7778742049/3010349*1364^(1/3) 2865699485875324 a001 2971215073/1149851*1364^(1/3) 2865699485888012 a001 567451585/219602*1364^(1/3) 2865699485974980 a001 433494437/167761*1364^(1/3) 2865699486571066 a001 165580141/64079*1364^(1/3) 2865699487962761 a001 28657/2207*5778^(8/9) 2865699490206434 a001 17711/2207*5778^(17/18) 2865699490656700 a001 31622993/12238*1364^(1/3) 2865699493855731 m005 (1/2*5^(1/2)+2/11)/(1/5*3^(1/2)-4/5) 2865699496372843 m005 (1/3*Zeta(3)-1/6)/(7/11*2^(1/2)-1/12) 2865699496904024 a001 74049675/2584 2865699497252539 r008 a(0)=3,K{-n^6,-23+56*n-57*n^2+32*n^3} 2865699501256666 r009 Im(z^3+c),c=-29/50+13/28*I,n=3 2865699502721725 a001 24157817/5778*1364^(4/15) 2865699505226391 a001 3524578/3571*1364^(7/15) 2865699510709749 m001 (Kolakoski+ZetaP(2))/(cos(1/5*Pi)-Artin) 2865699516360281 a007 Real Root Of 816*x^4+190*x^3+775*x^2-378*x-173 2865699518660054 a001 24157817/9349*1364^(1/3) 2865699521278282 a001 14930352/2207*2207^(3/16) 2865699521579029 r009 Im(z^3+c),c=-10/23+3/17*I,n=10 2865699523542767 m001 GAMMA(1/6)^2/ln(Salem)*GAMMA(3/4)^2 2865699536847209 r005 Im(z^2+c),c=19/98+13/61*I,n=18 2865699543660289 s001 sum(exp(-3*Pi/4)^n*A040600[n],n=1..infinity) 2865699558049351 a001 9227465/2207*2207^(1/4) 2865699559776268 s001 sum(exp(-4*Pi/5)^n*A087249[n],n=1..infinity) 2865699571488175 m001 (QuadraticClass+Tetranacci)/(Khinchin-Niven) 2865699572612623 r005 Re(z^2+c),c=-9/34+13/24*I,n=31 2865699573417842 m005 (5/6*2^(1/2)-1/5)/(3*Catalan+2/3) 2865699576035455 a001 63245986/15127*1364^(4/15) 2865699579563317 r005 Im(z^2+c),c=23/90+44/61*I,n=3 2865699585623319 m001 1/ln(FeigenbaumC)*sin(Pi/12)^3 2865699586731784 a001 165580141/39603*1364^(4/15) 2865699588292358 a001 433494437/103682*1364^(4/15) 2865699588520042 a001 1134903170/271443*1364^(4/15) 2865699588553261 a001 2971215073/710647*1364^(4/15) 2865699588558108 a001 7778742049/1860498*1364^(4/15) 2865699588558815 a001 20365011074/4870847*1364^(4/15) 2865699588558918 a001 53316291173/12752043*1364^(4/15) 2865699588558933 a001 139583862445/33385282*1364^(4/15) 2865699588558935 a001 365435296162/87403803*1364^(4/15) 2865699588558935 a001 956722026041/228826127*1364^(4/15) 2865699588558935 a001 2504730781961/599074578*1364^(4/15) 2865699588558935 a001 6557470319842/1568397607*1364^(4/15) 2865699588558935 a001 10610209857723/2537720636*1364^(4/15) 2865699588558935 a001 4052739537881/969323029*1364^(4/15) 2865699588558935 a001 1548008755920/370248451*1364^(4/15) 2865699588558936 a001 591286729879/141422324*1364^(4/15) 2865699588558936 a001 225851433717/54018521*1364^(4/15) 2865699588558942 a001 86267571272/20633239*1364^(4/15) 2865699588558982 a001 32951280099/7881196*1364^(4/15) 2865699588559252 a001 12586269025/3010349*1364^(4/15) 2865699588561103 a001 4807526976/1149851*1364^(4/15) 2865699588573791 a001 1836311903/439204*1364^(4/15) 2865699588660759 a001 701408733/167761*1364^(4/15) 2865699589256845 a001 267914296/64079*1364^(4/15) 2865699593342479 a001 102334155/24476*1364^(4/15) 2865699594820386 a001 5702887/2207*2207^(5/16) 2865699595993587 r009 Re(z^3+c),c=-5/94+35/51*I,n=30 2865699598533503 m004 -3+(125*Pi)/3-Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 2865699605407504 a001 39088169/5778*1364^(1/5) 2865699607912107 a001 1597*1364^(2/5) 2865699621345834 a001 4181*1364^(4/15) 2865699631171428 a009 1/23*(23*3^(1/2)+13^(1/2))^(1/2) 2865699631591510 a001 3524578/2207*2207^(3/8) 2865699635022274 a001 1597/2207*64079^(22/23) 2865699635532163 m001 3^(1/3)+ln(2+3^(1/2))^GlaisherKinkelin 2865699635676531 a001 987/3571*439204^(8/9) 2865699635689703 a001 987/3571*7881196^(8/11) 2865699635689736 a001 987/3571*141422324^(8/13) 2865699635689736 a001 987/3571*2537720636^(8/15) 2865699635689736 a001 987/3571*45537549124^(8/17) 2865699635689736 a001 987/3571*14662949395604^(8/21) 2865699635689736 a001 987/3571*(1/2+1/2*5^(1/2))^24 2865699635689736 a001 987/3571*192900153618^(4/9) 2865699635689736 a001 987/3571*73681302247^(6/13) 2865699635689736 a001 987/3571*10749957122^(1/2) 2865699635689736 a001 987/3571*4106118243^(12/23) 2865699635689736 a001 987/3571*1568397607^(6/11) 2865699635689736 a001 987/3571*599074578^(4/7) 2865699635689737 a001 987/3571*228826127^(3/5) 2865699635689737 a001 987/3571*87403803^(12/19) 2865699635689738 a001 987/3571*33385282^(2/3) 2865699635689749 a001 987/3571*12752043^(12/17) 2865699635689809 a001 1597/2207*7881196^(2/3) 2865699635689827 a001 987/3571*4870847^(3/4) 2865699635689840 a001 1597/2207*312119004989^(2/5) 2865699635689840 a001 1597/2207*(1/2+1/2*5^(1/2))^22 2865699635689840 a001 1597/2207*10749957122^(11/24) 2865699635689840 a001 1597/2207*4106118243^(11/23) 2865699635689840 a001 1597/2207*1568397607^(1/2) 2865699635689840 a001 1597/2207*599074578^(11/21) 2865699635689840 a001 1597/2207*228826127^(11/20) 2865699635689840 a001 1597/2207*87403803^(11/19) 2865699635689841 a001 1597/2207*33385282^(11/18) 2865699635689851 a001 1597/2207*12752043^(11/17) 2865699635689923 a001 1597/2207*4870847^(11/16) 2865699635690399 a001 987/3571*1860498^(4/5) 2865699635690447 a001 1597/2207*1860498^(11/15) 2865699635694298 a001 1597/2207*710647^(11/14) 2865699635694600 a001 987/3571*710647^(6/7) 2865699635722749 a001 1597/2207*271443^(11/13) 2865699635725638 a001 987/3571*271443^(12/13) 2865699635934203 a001 1597/2207*103682^(11/12) 2865699639515753 h001 (4/11*exp(1)+5/11)/(7/11*exp(2)+1/3) 2865699661877195 m001 (ArtinRank2+TwinPrimes)/(ln(2)-Ei(1,1)) 2865699668362403 a001 987*2207^(7/16) 2865699678721237 a001 6765*1364^(1/5) 2865699683179303 a003 cos(Pi*17/96)/cos(Pi*26/53) 2865699686912961 a001 45765224/1597 2865699689417567 a001 267914296/39603*1364^(1/5) 2865699690978141 a001 701408733/103682*1364^(1/5) 2865699691205825 a001 1836311903/271443*1364^(1/5) 2865699691239044 a001 686789568/101521*1364^(1/5) 2865699691243891 a001 12586269025/1860498*1364^(1/5) 2865699691244598 a001 32951280099/4870847*1364^(1/5) 2865699691244701 a001 86267571272/12752043*1364^(1/5) 2865699691244716 a001 32264490531/4769326*1364^(1/5) 2865699691244718 a001 591286729879/87403803*1364^(1/5) 2865699691244718 a001 1548008755920/228826127*1364^(1/5) 2865699691244718 a001 4052739537881/599074578*1364^(1/5) 2865699691244718 a001 1515744265389/224056801*1364^(1/5) 2865699691244718 a001 6557470319842/969323029*1364^(1/5) 2865699691244719 a001 2504730781961/370248451*1364^(1/5) 2865699691244719 a001 956722026041/141422324*1364^(1/5) 2865699691244719 a001 365435296162/54018521*1364^(1/5) 2865699691244725 a001 139583862445/20633239*1364^(1/5) 2865699691244765 a001 53316291173/7881196*1364^(1/5) 2865699691245035 a001 20365011074/3010349*1364^(1/5) 2865699691246886 a001 7778742049/1149851*1364^(1/5) 2865699691259574 a001 2971215073/439204*1364^(1/5) 2865699691346542 a001 1134903170/167761*1364^(1/5) 2865699691942628 a001 433494437/64079*1364^(1/5) 2865699693927703 m005 (1/2*2^(1/2)-6/7)/(5/11*exp(1)+4) 2865699696028263 a001 165580141/24476*1364^(1/5) 2865699699002182 a001 39088169/2207*843^(1/14) 2865699699577227 r002 4th iterates of z^2 + 2865699700120928 m002 2/5+Log[Pi]+Pi^5/ProductLog[Pi] 2865699702061025 a001 75025/5778*3571^(16/17) 2865699705133901 a001 1346269/2207*2207^(1/2) 2865699708093288 a001 31622993/2889*1364^(2/15) 2865699710597916 a001 9227465/3571*1364^(1/3) 2865699710998409 a001 15456/281*843^(13/14) 2865699715139412 a001 121393/5778*3571^(15/17) 2865699717121287 h003 exp(Pi*(23^(1/2)/(17+10^(1/2))^(1/2))) 2865699724031618 a001 63245986/9349*1364^(1/5) 2865699728412264 a001 98209/2889*3571^(14/17) 2865699741610838 a001 105937/1926*3571^(13/17) 2865699741903819 a001 832040/2207*2207^(9/16) 2865699749530369 a001 45765225/1597 2865699754837783 a001 514229/5778*3571^(12/17) 2865699755419551 r005 Im(z^2+c),c=-5/27+25/59*I,n=6 2865699758947772 a007 Real Root Of 243*x^4+553*x^3-243*x^2+809*x+940 2865699763781770 m001 ln(Riemann3rdZero)^2/FeigenbaumAlpha/Zeta(3)^2 2865699768053892 a001 416020/2889*3571^(11/17) 2865699768117681 r009 Re(z^3+c),c=-51/122+23/58*I,n=49 2865699774577332 a001 2/1597*(1/2+1/2*5^(1/2))^40 2865699775287793 a001 196418/15127*3571^(16/17) 2865699778677876 a001 514229/2207*2207^(5/8) 2865699781274140 a001 1346269/5778*3571^(10/17) 2865699781407024 a001 165580141/15127*1364^(2/15) 2865699784600590 m001 (BesselI(1,1)+ThueMorse)/(exp(1)+ln(2)) 2865699785971434 a001 514229/39603*3571^(16/17) 2865699787530157 a001 1346269/103682*3571^(16/17) 2865699787757571 a001 3524578/271443*3571^(16/17) 2865699787790751 a001 9227465/710647*3571^(16/17) 2865699787795591 a001 24157817/1860498*3571^(16/17) 2865699787796298 a001 63245986/4870847*3571^(16/17) 2865699787796401 a001 165580141/12752043*3571^(16/17) 2865699787796416 a001 433494437/33385282*3571^(16/17) 2865699787796418 a001 1134903170/87403803*3571^(16/17) 2865699787796418 a001 2971215073/228826127*3571^(16/17) 2865699787796418 a001 7778742049/599074578*3571^(16/17) 2865699787796418 a001 20365011074/1568397607*3571^(16/17) 2865699787796418 a001 53316291173/4106118243*3571^(16/17) 2865699787796418 a001 139583862445/10749957122*3571^(16/17) 2865699787796418 a001 365435296162/28143753123*3571^(16/17) 2865699787796418 a001 956722026041/73681302247*3571^(16/17) 2865699787796418 a001 2504730781961/192900153618*3571^(16/17) 2865699787796418 a001 10610209857723/817138163596*3571^(16/17) 2865699787796418 a001 4052739537881/312119004989*3571^(16/17) 2865699787796418 a001 1548008755920/119218851371*3571^(16/17) 2865699787796418 a001 591286729879/45537549124*3571^(16/17) 2865699787796418 a001 7787980473/599786069*3571^(16/17) 2865699787796418 a001 86267571272/6643838879*3571^(16/17) 2865699787796418 a001 32951280099/2537720636*3571^(16/17) 2865699787796418 a001 12586269025/969323029*3571^(16/17) 2865699787796418 a001 4807526976/370248451*3571^(16/17) 2865699787796418 a001 1836311903/141422324*3571^(16/17) 2865699787796419 a001 701408733/54018521*3571^(16/17) 2865699787796425 a001 9238424/711491*3571^(16/17) 2865699787796464 a001 102334155/7881196*3571^(16/17) 2865699787796734 a001 39088169/3010349*3571^(16/17) 2865699787798583 a001 14930352/1149851*3571^(16/17) 2865699787811257 a001 5702887/439204*3571^(16/17) 2865699787898121 a001 2178309/167761*3571^(16/17) 2865699788486366 a001 317811/15127*3571^(15/17) 2865699788493500 a001 832040/64079*3571^(16/17) 2865699790064192 r002 6th iterates of z^2 + 2865699792103354 a001 433494437/39603*1364^(2/15) 2865699792574288 a001 10959/844*3571^(16/17) 2865699793663927 a001 567451585/51841*1364^(2/15) 2865699793891612 a001 2971215073/271443*1364^(2/15) 2865699793924831 a001 7778742049/710647*1364^(2/15) 2865699793929677 a001 10182505537/930249*1364^(2/15) 2865699793930384 a001 53316291173/4870847*1364^(2/15) 2865699793930488 a001 139583862445/12752043*1364^(2/15) 2865699793930503 a001 182717648081/16692641*1364^(2/15) 2865699793930505 a001 956722026041/87403803*1364^(2/15) 2865699793930505 a001 2504730781961/228826127*1364^(2/15) 2865699793930505 a001 3278735159921/299537289*1364^(2/15) 2865699793930505 a001 10610209857723/969323029*1364^(2/15) 2865699793930505 a001 4052739537881/370248451*1364^(2/15) 2865699793930505 a001 387002188980/35355581*1364^(2/15) 2865699793930506 a001 591286729879/54018521*1364^(2/15) 2865699793930512 a001 7787980473/711491*1364^(2/15) 2865699793930551 a001 21566892818/1970299*1364^(2/15) 2865699793930821 a001 32951280099/3010349*1364^(2/15) 2865699793932673 a001 12586269025/1149851*1364^(2/15) 2865699793945361 a001 1201881744/109801*1364^(2/15) 2865699794032329 a001 1836311903/167761*1364^(2/15) 2865699794492807 a001 726103/1926*3571^(9/17) 2865699794628415 a001 701408733/64079*1364^(2/15) 2865699797715413 l006 ln(269/4724) 2865699798714050 a001 10946*1364^(2/15) 2865699799187543 a001 832040/39603*3571^(15/17) 2865699800748824 a001 46347/2206*3571^(15/17) 2865699800976611 a001 5702887/271443*3571^(15/17) 2865699801009845 a001 14930352/710647*3571^(15/17) 2865699801014694 a001 39088169/1860498*3571^(15/17) 2865699801015401 a001 102334155/4870847*3571^(15/17) 2865699801015505 a001 267914296/12752043*3571^(15/17) 2865699801015520 a001 701408733/33385282*3571^(15/17) 2865699801015522 a001 1836311903/87403803*3571^(15/17) 2865699801015522 a001 102287808/4868641*3571^(15/17) 2865699801015522 a001 12586269025/599074578*3571^(15/17) 2865699801015522 a001 32951280099/1568397607*3571^(15/17) 2865699801015522 a001 86267571272/4106118243*3571^(15/17) 2865699801015522 a001 225851433717/10749957122*3571^(15/17) 2865699801015522 a001 591286729879/28143753123*3571^(15/17) 2865699801015522 a001 1548008755920/73681302247*3571^(15/17) 2865699801015522 a001 4052739537881/192900153618*3571^(15/17) 2865699801015522 a001 225749145909/10745088481*3571^(15/17) 2865699801015522 a001 6557470319842/312119004989*3571^(15/17) 2865699801015522 a001 2504730781961/119218851371*3571^(15/17) 2865699801015522 a001 956722026041/45537549124*3571^(15/17) 2865699801015522 a001 365435296162/17393796001*3571^(15/17) 2865699801015522 a001 139583862445/6643838879*3571^(15/17) 2865699801015522 a001 53316291173/2537720636*3571^(15/17) 2865699801015522 a001 20365011074/969323029*3571^(15/17) 2865699801015522 a001 7778742049/370248451*3571^(15/17) 2865699801015522 a001 2971215073/141422324*3571^(15/17) 2865699801015523 a001 1134903170/54018521*3571^(15/17) 2865699801015529 a001 433494437/20633239*3571^(15/17) 2865699801015568 a001 165580141/7881196*3571^(15/17) 2865699801015839 a001 63245986/3010349*3571^(15/17) 2865699801017691 a001 24157817/1149851*3571^(15/17) 2865699801030385 a001 9227465/439204*3571^(15/17) 2865699801117392 a001 3524578/167761*3571^(15/17) 2865699801713312 a001 514229/15127*3571^(14/17) 2865699801713748 a001 1346269/64079*3571^(15/17) 2865699805801234 a001 514229/24476*3571^(15/17) 2865699806355128 p004 log(32653/24517) 2865699807712078 a001 1762289/2889*3571^(8/17) 2865699809081322 a007 Real Root Of -903*x^4-953*x^3-692*x^2+595*x+211 2865699810779075 a001 34111385/1926*1364^(1/15) 2865699812147777 a001 45765226/1597 2865699812407791 a001 1346269/39603*3571^(14/17) 2865699813266989 a007 Real Root Of -660*x^4-676*x^3+538*x^2+709*x-227 2865699813283694 a001 14930352/3571*1364^(4/15) 2865699813968095 a001 1762289/51841*3571^(14/17) 2865699814195740 a001 9227465/271443*3571^(14/17) 2865699814228953 a001 24157817/710647*3571^(14/17) 2865699814233799 a001 31622993/930249*3571^(14/17) 2865699814234506 a001 165580141/4870847*3571^(14/17) 2865699814234609 a001 433494437/12752043*3571^(14/17) 2865699814234624 a001 567451585/16692641*3571^(14/17) 2865699814234626 a001 2971215073/87403803*3571^(14/17) 2865699814234626 a001 7778742049/228826127*3571^(14/17) 2865699814234626 a001 10182505537/299537289*3571^(14/17) 2865699814234626 a001 53316291173/1568397607*3571^(14/17) 2865699814234626 a001 139583862445/4106118243*3571^(14/17) 2865699814234626 a001 182717648081/5374978561*3571^(14/17) 2865699814234626 a001 956722026041/28143753123*3571^(14/17) 2865699814234626 a001 2504730781961/73681302247*3571^(14/17) 2865699814234626 a001 3278735159921/96450076809*3571^(14/17) 2865699814234626 a001 10610209857723/312119004989*3571^(14/17) 2865699814234626 a001 4052739537881/119218851371*3571^(14/17) 2865699814234626 a001 387002188980/11384387281*3571^(14/17) 2865699814234626 a001 591286729879/17393796001*3571^(14/17) 2865699814234626 a001 225851433717/6643838879*3571^(14/17) 2865699814234626 a001 1135099622/33391061*3571^(14/17) 2865699814234626 a001 32951280099/969323029*3571^(14/17) 2865699814234626 a001 12586269025/370248451*3571^(14/17) 2865699814234626 a001 1201881744/35355581*3571^(14/17) 2865699814234627 a001 1836311903/54018521*3571^(14/17) 2865699814234633 a001 701408733/20633239*3571^(14/17) 2865699814234672 a001 66978574/1970299*3571^(14/17) 2865699814234943 a001 102334155/3010349*3571^(14/17) 2865699814236793 a001 39088169/1149851*3571^(14/17) 2865699814249480 a001 196452/5779*3571^(14/17) 2865699814336432 a001 5702887/167761*3571^(14/17) 2865699814929421 a001 832040/15127*3571^(13/17) 2865699814932415 a001 2178309/64079*3571^(14/17) 2865699815441096 a001 317811/2207*2207^(11/16) 2865699819017343 a001 208010/6119*3571^(14/17) 2865699820544426 a001 121393/9349*3571^(16/17) 2865699820568578 m001 (-BesselJ(0,1)+2)/(-LandauRamanujan+1/3) 2865699820931118 a001 5702887/5778*3571^(7/17) 2865699825626458 a001 726103/13201*3571^(13/17) 2865699826717406 a001 102334155/9349*1364^(2/15) 2865699827187135 a001 5702887/103682*3571^(13/17) 2865699827414835 a001 4976784/90481*3571^(13/17) 2865699827448056 a001 39088169/710647*3571^(13/17) 2865699827452903 a001 831985/15126*3571^(13/17) 2865699827453610 a001 267914296/4870847*3571^(13/17) 2865699827453713 a001 233802911/4250681*3571^(13/17) 2865699827453728 a001 1836311903/33385282*3571^(13/17) 2865699827453730 a001 1602508992/29134601*3571^(13/17) 2865699827453730 a001 12586269025/228826127*3571^(13/17) 2865699827453730 a001 10983760033/199691526*3571^(13/17) 2865699827453730 a001 86267571272/1568397607*3571^(13/17) 2865699827453730 a001 75283811239/1368706081*3571^(13/17) 2865699827453730 a001 591286729879/10749957122*3571^(13/17) 2865699827453730 a001 12585437040/228811001*3571^(13/17) 2865699827453730 a001 4052739537881/73681302247*3571^(13/17) 2865699827453730 a001 3536736619241/64300051206*3571^(13/17) 2865699827453730 a001 6557470319842/119218851371*3571^(13/17) 2865699827453730 a001 2504730781961/45537549124*3571^(13/17) 2865699827453730 a001 956722026041/17393796001*3571^(13/17) 2865699827453730 a001 365435296162/6643838879*3571^(13/17) 2865699827453730 a001 139583862445/2537720636*3571^(13/17) 2865699827453730 a001 53316291173/969323029*3571^(13/17) 2865699827453731 a001 20365011074/370248451*3571^(13/17) 2865699827453731 a001 7778742049/141422324*3571^(13/17) 2865699827453731 a001 2971215073/54018521*3571^(13/17) 2865699827453737 a001 1134903170/20633239*3571^(13/17) 2865699827453777 a001 433494437/7881196*3571^(13/17) 2865699827454047 a001 165580141/3010349*3571^(13/17) 2865699827455898 a001 63245986/1149851*3571^(13/17) 2865699827468587 a001 24157817/439204*3571^(13/17) 2865699827555561 a001 9227465/167761*3571^(13/17) 2865699827627643 a001 1292/2889*(1/2+1/2*5^(1/2))^23 2865699827627643 a001 1292/2889*4106118243^(1/2) 2865699827745295 r002 34th iterates of z^2 + 2865699827883113 a001 1292/2889*103682^(23/24) 2865699828149669 a001 1346269/15127*3571^(12/17) 2865699828151686 a001 3524578/64079*3571^(13/17) 2865699830279015 a007 Real Root Of -247*x^4-285*x^3-43*x^2+930*x+265 2865699830492619 r005 Im(z^2+c),c=9/56+14/59*I,n=27 2865699831860165 r009 Re(z^3+c),c=-11/31+10/39*I,n=4 2865699832237591 a001 1346269/24476*3571^(13/17) 2865699833817279 a001 196418/9349*3571^(15/17) 2865699834150247 a001 9227465/5778*3571^(6/17) 2865699837379314 m006 (4/5*exp(Pi)+3/4)/(3/5*Pi^2+4/5) 2865699838845729 a001 3524578/39603*3571^(12/17) 2865699840406264 a001 9227465/103682*3571^(12/17) 2865699840633942 a001 24157817/271443*3571^(12/17) 2865699840667160 a001 63245986/710647*3571^(12/17) 2865699840672007 a001 165580141/1860498*3571^(12/17) 2865699840672714 a001 433494437/4870847*3571^(12/17) 2865699840672817 a001 1134903170/12752043*3571^(12/17) 2865699840672832 a001 2971215073/33385282*3571^(12/17) 2865699840672834 a001 7778742049/87403803*3571^(12/17) 2865699840672835 a001 20365011074/228826127*3571^(12/17) 2865699840672835 a001 53316291173/599074578*3571^(12/17) 2865699840672835 a001 139583862445/1568397607*3571^(12/17) 2865699840672835 a001 365435296162/4106118243*3571^(12/17) 2865699840672835 a001 956722026041/10749957122*3571^(12/17) 2865699840672835 a001 2504730781961/28143753123*3571^(12/17) 2865699840672835 a001 6557470319842/73681302247*3571^(12/17) 2865699840672835 a001 10610209857723/119218851371*3571^(12/17) 2865699840672835 a001 4052739537881/45537549124*3571^(12/17) 2865699840672835 a001 1548008755920/17393796001*3571^(12/17) 2865699840672835 a001 591286729879/6643838879*3571^(12/17) 2865699840672835 a001 225851433717/2537720636*3571^(12/17) 2865699840672835 a001 86267571272/969323029*3571^(12/17) 2865699840672835 a001 32951280099/370248451*3571^(12/17) 2865699840672835 a001 12586269025/141422324*3571^(12/17) 2865699840672836 a001 4807526976/54018521*3571^(12/17) 2865699840672841 a001 1836311903/20633239*3571^(12/17) 2865699840672881 a001 3524667/39604*3571^(12/17) 2865699840673151 a001 267914296/3010349*3571^(12/17) 2865699840675002 a001 102334155/1149851*3571^(12/17) 2865699840687690 a001 39088169/439204*3571^(12/17) 2865699840774656 a001 14930352/167761*3571^(12/17) 2865699841368336 a001 311187/2161*3571^(11/17) 2865699841370727 a001 5702887/64079*3571^(12/17) 2865699845456258 a001 2178309/24476*3571^(12/17) 2865699847015853 a001 317811/9349*3571^(14/17) 2865699847369342 a001 2584*3571^(5/17) 2865699852064770 a001 5702887/39603*3571^(11/17) 2865699852232689 a001 196418/2207*2207^(3/4) 2865699853625359 a001 7465176/51841*3571^(11/17) 2865699853853045 a001 39088169/271443*3571^(11/17) 2865699853886264 a001 14619165/101521*3571^(11/17) 2865699853891111 a001 133957148/930249*3571^(11/17) 2865699853891818 a001 701408733/4870847*3571^(11/17) 2865699853891921 a001 1836311903/12752043*3571^(11/17) 2865699853891936 a001 14930208/103681*3571^(11/17) 2865699853891939 a001 12586269025/87403803*3571^(11/17) 2865699853891939 a001 32951280099/228826127*3571^(11/17) 2865699853891939 a001 43133785636/299537289*3571^(11/17) 2865699853891939 a001 32264490531/224056801*3571^(11/17) 2865699853891939 a001 591286729879/4106118243*3571^(11/17) 2865699853891939 a001 774004377960/5374978561*3571^(11/17) 2865699853891939 a001 4052739537881/28143753123*3571^(11/17) 2865699853891939 a001 1515744265389/10525900321*3571^(11/17) 2865699853891939 a001 3278735159921/22768774562*3571^(11/17) 2865699853891939 a001 2504730781961/17393796001*3571^(11/17) 2865699853891939 a001 956722026041/6643838879*3571^(11/17) 2865699853891939 a001 182717648081/1268860318*3571^(11/17) 2865699853891939 a001 139583862445/969323029*3571^(11/17) 2865699853891939 a001 53316291173/370248451*3571^(11/17) 2865699853891939 a001 10182505537/70711162*3571^(11/17) 2865699853891940 a001 7778742049/54018521*3571^(11/17) 2865699853891946 a001 2971215073/20633239*3571^(11/17) 2865699853891985 a001 567451585/3940598*3571^(11/17) 2865699853892255 a001 433494437/3010349*3571^(11/17) 2865699853894106 a001 165580141/1149851*3571^(11/17) 2865699853906795 a001 31622993/219602*3571^(11/17) 2865699853993764 a001 24157817/167761*3571^(11/17) 2865699854587608 a001 3524578/15127*3571^(10/17) 2865699854589855 a001 9227465/64079*3571^(11/17) 2865699858675529 a001 1762289/12238*3571^(11/17) 2865699859004912 r002 5th iterates of z^2 + 2865699860242799 a001 514229/9349*3571^(13/17) 2865699860588449 a001 24157817/5778*3571^(4/17) 2865699865283899 a001 9227465/39603*3571^(10/17) 2865699866844466 a001 24157817/103682*3571^(10/17) 2865699866903662 a003 sin(Pi*5/53)*sin(Pi*39/89) 2865699867072150 a001 63245986/271443*3571^(10/17) 2865699867105369 a001 165580141/710647*3571^(10/17) 2865699867110215 a001 433494437/1860498*3571^(10/17) 2865699867110922 a001 1134903170/4870847*3571^(10/17) 2865699867111026 a001 2971215073/12752043*3571^(10/17) 2865699867111041 a001 7778742049/33385282*3571^(10/17) 2865699867111043 a001 20365011074/87403803*3571^(10/17) 2865699867111043 a001 53316291173/228826127*3571^(10/17) 2865699867111043 a001 139583862445/599074578*3571^(10/17) 2865699867111043 a001 365435296162/1568397607*3571^(10/17) 2865699867111043 a001 956722026041/4106118243*3571^(10/17) 2865699867111043 a001 2504730781961/10749957122*3571^(10/17) 2865699867111043 a001 6557470319842/28143753123*3571^(10/17) 2865699867111043 a001 10610209857723/45537549124*3571^(10/17) 2865699867111043 a001 4052739537881/17393796001*3571^(10/17) 2865699867111043 a001 1548008755920/6643838879*3571^(10/17) 2865699867111043 a001 591286729879/2537720636*3571^(10/17) 2865699867111043 a001 225851433717/969323029*3571^(10/17) 2865699867111043 a001 86267571272/370248451*3571^(10/17) 2865699867111043 a001 63246219/271444*3571^(10/17) 2865699867111044 a001 12586269025/54018521*3571^(10/17) 2865699867111050 a001 4807526976/20633239*3571^(10/17) 2865699867111089 a001 1836311903/7881196*3571^(10/17) 2865699867111359 a001 701408733/3010349*3571^(10/17) 2865699867113211 a001 267914296/1149851*3571^(10/17) 2865699867125899 a001 102334155/439204*3571^(10/17) 2865699867212867 a001 39088169/167761*3571^(10/17) 2865699867378366 r009 Im(z^3+c),c=-41/90+3/20*I,n=19 2865699867806648 a001 5702887/15127*3571^(9/17) 2865699867808950 a001 14930352/64079*3571^(10/17) 2865699871894570 a001 5702887/24476*3571^(10/17) 2865699873458908 a001 832040/9349*3571^(12/17) 2865699873807552 a001 39088169/5778*3571^(3/17) 2865699873896595 q001 909/3172 2865699877232319 r005 Im(z^2+c),c=-29/52+16/47*I,n=10 2865699878502994 a001 4976784/13201*3571^(9/17) 2865699879620960 m001 1/Khintchine*MertensB1^2*ln(GAMMA(7/24)) 2865699880033172 m001 (Magata+ZetaQ(4))/(BesselI(1,1)+GolombDickman) 2865699880063569 a001 39088169/103682*3571^(9/17) 2865699880291254 a001 34111385/90481*3571^(9/17) 2865699880324473 a001 267914296/710647*3571^(9/17) 2865699880329320 a001 233802911/620166*3571^(9/17) 2865699880330027 a001 1836311903/4870847*3571^(9/17) 2865699880330130 a001 1602508992/4250681*3571^(9/17) 2865699880330145 a001 12586269025/33385282*3571^(9/17) 2865699880330147 a001 10983760033/29134601*3571^(9/17) 2865699880330148 a001 86267571272/228826127*3571^(9/17) 2865699880330148 a001 267913919/710646*3571^(9/17) 2865699880330148 a001 591286729879/1568397607*3571^(9/17) 2865699880330148 a001 516002918640/1368706081*3571^(9/17) 2865699880330148 a001 4052739537881/10749957122*3571^(9/17) 2865699880330148 a001 3536736619241/9381251041*3571^(9/17) 2865699880330148 a001 6557470319842/17393796001*3571^(9/17) 2865699880330148 a001 2504730781961/6643838879*3571^(9/17) 2865699880330148 a001 956722026041/2537720636*3571^(9/17) 2865699880330148 a001 365435296162/969323029*3571^(9/17) 2865699880330148 a001 139583862445/370248451*3571^(9/17) 2865699880330148 a001 53316291173/141422324*3571^(9/17) 2865699880330149 a001 20365011074/54018521*3571^(9/17) 2865699880330154 a001 7778742049/20633239*3571^(9/17) 2865699880330194 a001 2971215073/7881196*3571^(9/17) 2865699880330464 a001 1134903170/3010349*3571^(9/17) 2865699880332315 a001 433494437/1149851*3571^(9/17) 2865699880345004 a001 165580141/439204*3571^(9/17) 2865699880411384 a001 119814912/4181 2865699880431971 a001 63245986/167761*3571^(9/17) 2865699881025777 a001 9227465/15127*3571^(8/17) 2865699881028058 a001 24157817/64079*3571^(9/17) 2865699883101500 a001 28657/5778*9349^(18/19) 2865699883862639 a001 2576/321*9349^(17/19) 2865699884092814 a001 267914296/15127*1364^(1/15) 2865699885113699 a001 9227465/24476*3571^(9/17) 2865699885956667 a001 75025/5778*9349^(16/19) 2865699886679157 a001 1346269/9349*3571^(11/17) 2865699887026657 a001 31622993/2889*3571^(2/17) 2865699887100682 a008 Real Root of x^3-x^2-288*x+810 2865699887541577 a001 121393/5778*9349^(15/19) 2865699888950004 a001 121393/2207*2207^(13/16) 2865699889320952 a001 98209/2889*9349^(14/19) 2865699891026048 a001 105937/1926*9349^(13/19) 2865699891722102 a001 24157817/39603*3571^(8/17) 2865699892759517 a001 514229/5778*9349^(12/19) 2865699893282674 a001 31622993/51841*3571^(8/17) 2865699893510359 a001 165580141/271443*3571^(8/17) 2865699893543578 a001 433494437/710647*3571^(8/17) 2865699893548424 a001 567451585/930249*3571^(8/17) 2865699893549131 a001 2971215073/4870847*3571^(8/17) 2865699893549234 a001 7778742049/12752043*3571^(8/17) 2865699893549249 a001 10182505537/16692641*3571^(8/17) 2865699893549252 a001 53316291173/87403803*3571^(8/17) 2865699893549252 a001 139583862445/228826127*3571^(8/17) 2865699893549252 a001 182717648081/299537289*3571^(8/17) 2865699893549252 a001 956722026041/1568397607*3571^(8/17) 2865699893549252 a001 2504730781961/4106118243*3571^(8/17) 2865699893549252 a001 3278735159921/5374978561*3571^(8/17) 2865699893549252 a001 10610209857723/17393796001*3571^(8/17) 2865699893549252 a001 4052739537881/6643838879*3571^(8/17) 2865699893549252 a001 1134903780/1860499*3571^(8/17) 2865699893549252 a001 591286729879/969323029*3571^(8/17) 2865699893549252 a001 225851433717/370248451*3571^(8/17) 2865699893549252 a001 21566892818/35355581*3571^(8/17) 2865699893549253 a001 32951280099/54018521*3571^(8/17) 2865699893549259 a001 1144206275/1875749*3571^(8/17) 2865699893549298 a001 1201881744/1970299*3571^(8/17) 2865699893549568 a001 1836311903/3010349*3571^(8/17) 2865699893551419 a001 701408733/1149851*3571^(8/17) 2865699893564108 a001 66978574/109801*3571^(8/17) 2865699893651076 a001 9303105/15251*3571^(8/17) 2865699894244872 a001 14930352/15127*3571^(7/17) 2865699894247161 a001 39088169/64079*3571^(8/17) 2865699894482148 a001 416020/2889*9349^(11/19) 2865699894551910 m001 (Zeta(3)*cos(1/5*Pi)-ln(2+3^(1/2)))/Zeta(3) 2865699894551910 m001 (Zeta(3)*cos(Pi/5)-ln(2+sqrt(3)))/Zeta(3) 2865699894789144 a001 17711*1364^(1/15) 2865699896208918 a001 1346269/5778*9349^(10/19) 2865699896349718 a001 1836311903/103682*1364^(1/15) 2865699896577402 a001 1602508992/90481*1364^(1/15) 2865699896610621 a001 12586269025/710647*1364^(1/15) 2865699896615468 a001 10983760033/620166*1364^(1/15) 2865699896616175 a001 86267571272/4870847*1364^(1/15) 2865699896616278 a001 75283811239/4250681*1364^(1/15) 2865699896616293 a001 591286729879/33385282*1364^(1/15) 2865699896616295 a001 516002918640/29134601*1364^(1/15) 2865699896616296 a001 4052739537881/228826127*1364^(1/15) 2865699896616296 a001 3536736619241/199691526*1364^(1/15) 2865699896616296 a001 6557470319842/370248451*1364^(1/15) 2865699896616296 a001 2504730781961/141422324*1364^(1/15) 2865699896616297 a001 956722026041/54018521*1364^(1/15) 2865699896616302 a001 365435296162/20633239*1364^(1/15) 2865699896616342 a001 139583862445/7881196*1364^(1/15) 2865699896616612 a001 53316291173/3010349*1364^(1/15) 2865699896618463 a001 20365011074/1149851*1364^(1/15) 2865699896631152 a001 7778742049/439204*1364^(1/15) 2865699896646815 m008 (1/6*Pi^6+5)/(3/5*Pi^6-1/4) 2865699896718119 a001 2971215073/167761*1364^(1/15) 2865699897314205 a001 1134903170/64079*1364^(1/15) 2865699897318094 m001 GaussKuzminWirsing/(sin(1/5*Pi)+Bloch) 2865699897934108 a001 726103/1926*9349^(9/19) 2865699898332794 a001 3732588/6119*3571^(8/17) 2865699899659901 a001 1762289/2889*9349^(8/19) 2865699899897824 a001 2178309/9349*3571^(10/17) 2865699900245762 a001 34111385/1926*3571^(1/17) 2865699900304162 a001 2255/1926*64079^(21/23) 2865699900929830 a001 2255/1926*439204^(7/9) 2865699900941355 a001 2255/1926*7881196^(7/11) 2865699900941377 a001 2584/15127*20633239^(5/7) 2865699900941380 a001 2255/1926*20633239^(3/5) 2865699900941382 a001 2584/15127*2537720636^(5/9) 2865699900941382 a001 2584/15127*312119004989^(5/11) 2865699900941382 a001 2584/15127*(1/2+1/2*5^(1/2))^25 2865699900941382 a001 2584/15127*3461452808002^(5/12) 2865699900941382 a001 2584/15127*28143753123^(1/2) 2865699900941382 a001 2584/15127*228826127^(5/8) 2865699900941384 a001 2255/1926*141422324^(7/13) 2865699900941384 a001 2255/1926*2537720636^(7/15) 2865699900941384 a001 2255/1926*17393796001^(3/7) 2865699900941384 a001 2255/1926*45537549124^(7/17) 2865699900941384 a001 2255/1926*14662949395604^(1/3) 2865699900941384 a001 2255/1926*(1/2+1/2*5^(1/2))^21 2865699900941384 a001 2255/1926*192900153618^(7/18) 2865699900941384 a001 2255/1926*10749957122^(7/16) 2865699900941384 a001 2255/1926*599074578^(1/2) 2865699900941386 a001 2255/1926*33385282^(7/12) 2865699900941964 a001 2255/1926*1860498^(7/10) 2865699900942071 a001 2584/15127*1860498^(5/6) 2865699900945640 a001 2255/1926*710647^(3/4) 2865699901174640 a001 2255/1926*103682^(7/8) 2865699901385464 a001 5702887/5778*9349^(7/19) 2865699901399840 a001 433494437/24476*1364^(1/15) 2865699902685483 a001 2255/1926*39603^(21/22) 2865699903111114 a001 9227465/5778*9349^(6/19) 2865699903608406 l006 ln(3149/4194) 2865699904836732 a001 2584*9349^(5/19) 2865699904941205 a001 39088169/39603*3571^(7/17) 2865699906501779 a001 102334155/103682*3571^(7/17) 2865699906562362 a001 24157817/5778*9349^(4/19) 2865699906729463 a001 267914296/271443*3571^(7/17) 2865699906762682 a001 701408733/710647*3571^(7/17) 2865699906767529 a001 1836311903/1860498*3571^(7/17) 2865699906768236 a001 4807526976/4870847*3571^(7/17) 2865699906768339 a001 12586269025/12752043*3571^(7/17) 2865699906768354 a001 32951280099/33385282*3571^(7/17) 2865699906768356 a001 86267571272/87403803*3571^(7/17) 2865699906768356 a001 225851433717/228826127*3571^(7/17) 2865699906768357 a001 591286729879/599074578*3571^(7/17) 2865699906768357 a001 1548008755920/1568397607*3571^(7/17) 2865699906768357 a001 4052739537881/4106118243*3571^(7/17) 2865699906768357 a001 4807525989/4870846*3571^(7/17) 2865699906768357 a001 6557470319842/6643838879*3571^(7/17) 2865699906768357 a001 2504730781961/2537720636*3571^(7/17) 2865699906768357 a001 956722026041/969323029*3571^(7/17) 2865699906768357 a001 365435296162/370248451*3571^(7/17) 2865699906768357 a001 139583862445/141422324*3571^(7/17) 2865699906768358 a001 53316291173/54018521*3571^(7/17) 2865699906768363 a001 20365011074/20633239*3571^(7/17) 2865699906768403 a001 7778742049/7881196*3571^(7/17) 2865699906768673 a001 2971215073/3010349*3571^(7/17) 2865699906770524 a001 1134903170/1149851*3571^(7/17) 2865699906783212 a001 433494437/439204*3571^(7/17) 2865699906870180 a001 165580141/167761*3571^(7/17) 2865699907309746 a001 17711/5778*24476^(19/21) 2865699907463980 a001 24157817/15127*3571^(6/17) 2865699907466266 a001 63245986/64079*3571^(7/17) 2865699908287987 a001 39088169/5778*9349^(3/19) 2865699908642426 a001 156839756/5473 2865699909325895 a001 2576/321*24476^(17/21) 2865699909922085 a001 75025/5778*24476^(16/21) 2865699910009156 a001 121393/5778*24476^(5/7) 2865699910013614 a001 31622993/2889*9349^(2/19) 2865699910062595 a001 28657/5778*24476^(6/7) 2865699910290692 a001 98209/2889*24476^(2/3) 2865699910497950 a001 105937/1926*24476^(13/21) 2865699910733580 a001 514229/5778*24476^(4/7) 2865699910958372 a001 416020/2889*24476^(11/21) 2865699911061181 a001 17711/5778*64079^(19/23) 2865699911187304 a001 1346269/5778*24476^(10/21) 2865699911414655 a001 726103/1926*24476^(3/7) 2865699911551902 a001 24157817/24476*3571^(7/17) 2865699911637674 a001 2584/39603*7881196^(9/11) 2865699911637712 a001 2584/39603*141422324^(9/13) 2865699911637712 a001 2584/39603*2537720636^(3/5) 2865699911637712 a001 2584/39603*45537549124^(9/17) 2865699911637712 a001 2584/39603*817138163596^(9/19) 2865699911637712 a001 2584/39603*14662949395604^(3/7) 2865699911637712 a001 2584/39603*(1/2+1/2*5^(1/2))^27 2865699911637712 a001 2584/39603*192900153618^(1/2) 2865699911637712 a001 2584/39603*10749957122^(9/16) 2865699911637712 a001 2584/39603*599074578^(9/14) 2865699911637714 a001 2584/39603*33385282^(3/4) 2865699911637715 a001 17711/5778*817138163596^(1/3) 2865699911637715 a001 17711/5778*(1/2+1/2*5^(1/2))^19 2865699911637715 a001 17711/5778*87403803^(1/2) 2865699911638457 a001 2584/39603*1860498^(9/10) 2865699911642610 a001 1762289/2889*24476^(8/21) 2865699911739240 a001 34111385/1926*9349^(1/19) 2865699911848756 a001 17711/5778*103682^(19/24) 2865699911870334 a001 5702887/5778*24476^(1/3) 2865699912098146 a001 9227465/5778*24476^(2/7) 2865699912325924 a001 2584*24476^(5/21) 2865699912553716 a001 24157817/5778*24476^(4/21) 2865699912682442 a001 2576/321*64079^(17/23) 2865699912761279 a001 821223624/28657 2865699912781502 a001 39088169/5778*24476^(1/7) 2865699912970815 a001 121393/5778*64079^(15/23) 2865699913009291 a001 31622993/2889*24476^(2/21) 2865699913054907 a001 98209/2889*64079^(14/23) 2865699913064721 a001 105937/1926*64079^(13/23) 2865699913081187 a001 75025/5778*64079^(16/23) 2865699913102907 a001 514229/5778*64079^(12/23) 2865699913117096 a001 3524578/9349*3571^(9/17) 2865699913130255 a001 416020/2889*64079^(11/23) 2865699913161743 a001 1346269/5778*64079^(10/23) 2865699913191650 a001 726103/1926*64079^(9/23) 2865699913198286 a001 1292/51841*(1/2+1/2*5^(1/2))^29 2865699913198286 a001 1292/51841*1322157322203^(1/2) 2865699913198288 a001 2576/321*45537549124^(1/3) 2865699913198288 a001 2576/321*(1/2+1/2*5^(1/2))^17 2865699913198297 a001 2576/321*12752043^(1/2) 2865699913215709 a001 17711/5778*39603^(19/22) 2865699913222161 a001 1762289/2889*64079^(8/23) 2865699913237078 a001 34111385/1926*24476^(1/21) 2865699913252441 a001 5702887/5778*64079^(7/23) 2865699913282810 a001 9227465/5778*64079^(6/23) 2865699913313144 a001 2584*64079^(5/23) 2865699913343492 a001 24157817/5778*64079^(4/23) 2865699913362212 a001 429998272/15005 2865699913364879 a001 121393/5778*167761^(3/5) 2865699913373834 a001 39088169/5778*64079^(3/23) 2865699913387114 a001 2576/321*103682^(17/24) 2865699913404179 a001 31622993/2889*64079^(2/23) 2865699913417720 a001 121393/5778*439204^(5/9) 2865699913424453 a001 1346269/5778*167761^(2/5) 2865699913425952 a001 121393/5778*7881196^(5/11) 2865699913425970 a001 121393/5778*20633239^(3/7) 2865699913425970 a001 2584/271443*(1/2+1/2*5^(1/2))^31 2865699913425970 a001 2584/271443*9062201101803^(1/2) 2865699913425973 a001 121393/5778*141422324^(5/13) 2865699913425973 a001 121393/5778*2537720636^(1/3) 2865699913425973 a001 121393/5778*45537549124^(5/17) 2865699913425973 a001 121393/5778*312119004989^(3/11) 2865699913425973 a001 121393/5778*14662949395604^(5/21) 2865699913425973 a001 121393/5778*(1/2+1/2*5^(1/2))^15 2865699913425973 a001 121393/5778*192900153618^(5/18) 2865699913425973 a001 121393/5778*28143753123^(3/10) 2865699913425973 a001 121393/5778*10749957122^(5/16) 2865699913425973 a001 121393/5778*599074578^(5/14) 2865699913425973 a001 121393/5778*228826127^(3/8) 2865699913425974 a001 121393/5778*33385282^(5/12) 2865699913426387 a001 121393/5778*1860498^(1/2) 2865699913434522 a001 34111385/1926*64079^(1/23) 2865699913444499 a001 2584*167761^(1/5) 2865699913449887 a001 165551484/5777 2865699913459189 a001 2584/710647*141422324^(11/13) 2865699913459189 a001 2584/710647*2537720636^(11/15) 2865699913459189 a001 2584/710647*45537549124^(11/17) 2865699913459189 a001 2584/710647*312119004989^(3/5) 2865699913459189 a001 2584/710647*817138163596^(11/19) 2865699913459189 a001 2584/710647*14662949395604^(11/21) 2865699913459189 a001 2584/710647*(1/2+1/2*5^(1/2))^33 2865699913459189 a001 2584/710647*192900153618^(11/18) 2865699913459189 a001 2584/710647*10749957122^(11/16) 2865699913459189 a001 2584/710647*1568397607^(3/4) 2865699913459189 a001 2584/710647*599074578^(11/14) 2865699913459192 a001 2584/710647*33385282^(11/12) 2865699913459192 a001 105937/1926*141422324^(1/3) 2865699913459192 a001 105937/1926*(1/2+1/2*5^(1/2))^13 2865699913459192 a001 105937/1926*73681302247^(1/4) 2865699913459793 a001 726103/1926*439204^(1/3) 2865699913460431 a001 514229/5778*439204^(4/9) 2865699913461572 a001 9227465/5778*439204^(2/9) 2865699913462679 a001 14736260008/514229 2865699913463215 a001 39088169/5778*439204^(1/9) 2865699913464023 a001 416020/2889*7881196^(1/3) 2865699913464036 a001 1292/930249*2537720636^(7/9) 2865699913464036 a001 1292/930249*17393796001^(5/7) 2865699913464036 a001 1292/930249*312119004989^(7/11) 2865699913464036 a001 1292/930249*14662949395604^(5/9) 2865699913464036 a001 1292/930249*(1/2+1/2*5^(1/2))^35 2865699913464036 a001 1292/930249*505019158607^(5/8) 2865699913464036 a001 1292/930249*28143753123^(7/10) 2865699913464036 a001 1292/930249*599074578^(5/6) 2865699913464036 a001 1292/930249*228826127^(7/8) 2865699913464038 a001 416020/2889*312119004989^(1/5) 2865699913464038 a001 416020/2889*(1/2+1/2*5^(1/2))^11 2865699913464038 a001 416020/2889*1568397607^(1/4) 2865699913464545 a001 38580029568/1346269 2865699913464733 a001 726103/1926*7881196^(3/11) 2865699913464743 a001 2584/4870847*(1/2+1/2*5^(1/2))^37 2865699913464745 a001 726103/1926*141422324^(3/13) 2865699913464745 a001 726103/1926*2537720636^(1/5) 2865699913464745 a001 726103/1926*45537549124^(3/17) 2865699913464745 a001 726103/1926*817138163596^(3/19) 2865699913464745 a001 726103/1926*14662949395604^(1/7) 2865699913464745 a001 726103/1926*(1/2+1/2*5^(1/2))^9 2865699913464745 a001 726103/1926*192900153618^(1/6) 2865699913464745 a001 726103/1926*10749957122^(3/16) 2865699913464745 a001 726103/1926*599074578^(3/14) 2865699913464746 a001 726103/1926*33385282^(1/4) 2865699913464817 a001 50501914348/1762289 2865699913464846 a001 2584/12752043*2537720636^(13/15) 2865699913464846 a001 2584/12752043*45537549124^(13/17) 2865699913464846 a001 2584/12752043*14662949395604^(13/21) 2865699913464846 a001 2584/12752043*(1/2+1/2*5^(1/2))^39 2865699913464846 a001 2584/12752043*192900153618^(13/18) 2865699913464846 a001 2584/12752043*73681302247^(3/4) 2865699913464846 a001 2584/12752043*10749957122^(13/16) 2865699913464846 a001 2584/12752043*599074578^(13/14) 2865699913464847 a001 5702887/5778*20633239^(1/5) 2865699913464849 a001 5702887/5778*17393796001^(1/7) 2865699913464849 a001 5702887/5778*14662949395604^(1/9) 2865699913464849 a001 5702887/5778*(1/2+1/2*5^(1/2))^7 2865699913464849 a001 5702887/5778*599074578^(1/6) 2865699913464857 a001 52886291304/1845493 2865699913464861 a001 1292/16692641*(1/2+1/2*5^(1/2))^41 2865699913464862 a001 39088169/5778*7881196^(1/11) 2865699913464863 a001 692290540864/24157817 2865699913464863 a001 2584*20633239^(1/7) 2865699913464863 a001 906220083036/31622993 2865699913464864 a001 2584/228826127*45537549124^(15/17) 2865699913464864 a001 2584/228826127*312119004989^(9/11) 2865699913464864 a001 2584/228826127*14662949395604^(5/7) 2865699913464864 a001 2584/228826127*192900153618^(5/6) 2865699913464864 a001 2584/228826127*28143753123^(9/10) 2865699913464864 a001 2584/228826127*10749957122^(15/16) 2865699913464864 a001 4745029957352/165580141 2865699913464864 a001 12422649705984/433494437 2865699913464864 a001 2584/1568397607*14662949395604^(7/9) 2865699913464864 a001 2584/1568397607*505019158607^(7/8) 2865699913464864 a001 191311289180/6675901 2865699913464864 a001 2584/4106118243*817138163596^(17/19) 2865699913464864 a001 2584/4106118243*14662949395604^(17/21) 2865699913464864 a001 2584/4106118243*192900153618^(17/18) 2865699913464864 a001 85146107775816/2971215073 2865699913464864 a001 2584*2537720636^(1/9) 2865699913464864 a001 222915404166848/7778742049 2865699913464864 a001 2584/28143753123*3461452808002^(11/12) 2865699913464864 a001 291800052362364/10182505537 2865699913464864 a001 2584/73681302247*14662949395604^(19/21) 2865699913464864 a001 1527884910007336/53316291173 2865699913464864 a001 800010925059456/27916772489 2865699913464864 a001 2584*312119004989^(1/11) 2865699913464864 a001 16944503306471728/591286729879 2865699913464864 a001 6472224340587224/225851433717 2865699913464864 a001 2584/312119004989*14662949395604^(20/21) 2865699913464864 a001 956722026041/33385283 2865699913464864 a001 2584*28143753123^(1/10) 2865699913464864 a001 944284805282608/32951280099 2865699913464864 a001 646/11384387281*14662949395604^(8/9) 2865699913464864 a001 72136940111576/2517253805 2865699913464864 a001 2584/17393796001*14662949395604^(6/7) 2865699913464864 a001 17221162048879/600940872 2865699913464864 a001 2584/6643838879*23725150497407^(13/16) 2865699913464864 a001 2584/6643838879*505019158607^(13/14) 2865699913464864 a001 52623188615216/1836311903 2865699913464864 a001 34/33391061*312119004989^(10/11) 2865699913464864 a001 34/33391061*3461452808002^(5/6) 2865699913464864 a001 20100269454616/701408733 2865699913464864 a001 2584/969323029*45537549124^(16/17) 2865699913464864 a001 2584/969323029*14662949395604^(16/21) 2865699913464864 a001 2584/969323029*192900153618^(8/9) 2865699913464864 a001 2584/969323029*73681302247^(12/13) 2865699913464864 a001 2584*228826127^(1/8) 2865699913464864 a001 959702468579/33489287 2865699913464864 a001 2584/370248451*10749957122^(23/24) 2865699913464864 a001 586517958256/20466831 2865699913464864 a001 646/35355581*312119004989^(4/5) 2865699913464864 a001 646/35355581*23725150497407^(11/16) 2865699913464864 a001 646/35355581*73681302247^(11/13) 2865699913464864 a001 646/35355581*10749957122^(11/12) 2865699913464864 a001 646/35355581*4106118243^(22/23) 2865699913464864 a001 1120149625208/39088169 2865699913464865 a001 9227465/5778*7881196^(2/11) 2865699913464865 a001 2584/54018521*2537720636^(14/15) 2865699913464865 a001 2584/54018521*17393796001^(6/7) 2865699913464865 a001 2584/54018521*45537549124^(14/17) 2865699913464865 a001 2584/54018521*817138163596^(14/19) 2865699913464865 a001 2584/54018521*14662949395604^(2/3) 2865699913464865 a001 2584/54018521*505019158607^(3/4) 2865699913464865 a001 2584/54018521*192900153618^(7/9) 2865699913464865 a001 2584/54018521*10749957122^(7/8) 2865699913464865 a001 2584/54018521*4106118243^(21/23) 2865699913464865 a001 2584/54018521*1568397607^(21/22) 2865699913464866 a001 39088169/5778*141422324^(1/13) 2865699913464866 a001 39088169/5778*2537720636^(1/15) 2865699913464866 a001 39088169/5778*45537549124^(1/17) 2865699913464866 a001 39088169/5778*14662949395604^(1/21) 2865699913464866 a001 39088169/5778*(1/2+1/2*5^(1/2))^3 2865699913464866 a001 39088169/5778*192900153618^(1/18) 2865699913464866 a001 39088169/5778*10749957122^(1/16) 2865699913464866 a001 39088169/5778*599074578^(1/14) 2865699913464866 a001 39088169/5778*33385282^(1/12) 2865699913464866 a001 34111385/3852+34111385/3852*5^(1/2) 2865699913464866 a001 165580141/5778 2865699913464866 a001 31622993/2889*(1/2+1/2*5^(1/2))^2 2865699913464866 a001 31622993/2889*10749957122^(1/24) 2865699913464866 a001 31622993/2889*4106118243^(1/23) 2865699913464866 a001 31622993/2889*1568397607^(1/22) 2865699913464866 a001 31622993/2889*599074578^(1/21) 2865699913464866 a001 31622993/2889*228826127^(1/20) 2865699913464866 a001 31622993/2889*87403803^(1/19) 2865699913464867 a001 31622993/2889*33385282^(1/18) 2865699913464867 a001 24157817/5778*(1/2+1/2*5^(1/2))^4 2865699913464867 a001 24157817/5778*23725150497407^(1/16) 2865699913464867 a001 24157817/5778*73681302247^(1/13) 2865699913464867 a001 24157817/5778*10749957122^(1/12) 2865699913464867 a001 24157817/5778*4106118243^(2/23) 2865699913464867 a001 24157817/5778*1568397607^(1/11) 2865699913464867 a001 24157817/5778*599074578^(2/21) 2865699913464867 a001 24157817/5778*228826127^(1/10) 2865699913464867 a001 24157817/5778*87403803^(2/19) 2865699913464867 a001 31622993/2889*12752043^(1/17) 2865699913464867 a001 24157817/5778*33385282^(1/9) 2865699913464869 a001 24157817/5778*12752043^(2/17) 2865699913464870 a001 2584/20633239*2537720636^(8/9) 2865699913464870 a001 2584/20633239*312119004989^(8/11) 2865699913464870 a001 2584/20633239*(1/2+1/2*5^(1/2))^40 2865699913464870 a001 2584/20633239*23725150497407^(5/8) 2865699913464870 a001 2584/20633239*73681302247^(10/13) 2865699913464870 a001 2584/20633239*28143753123^(4/5) 2865699913464870 a001 2584/20633239*10749957122^(5/6) 2865699913464870 a001 2584/20633239*4106118243^(20/23) 2865699913464870 a001 2584/20633239*1568397607^(10/11) 2865699913464870 a001 2584/20633239*599074578^(20/21) 2865699913464873 a001 9227465/5778*141422324^(2/13) 2865699913464873 a001 9227465/5778*2537720636^(2/15) 2865699913464873 a001 9227465/5778*45537549124^(2/17) 2865699913464873 a001 9227465/5778*14662949395604^(2/21) 2865699913464873 a001 9227465/5778*(1/2+1/2*5^(1/2))^6 2865699913464873 a001 9227465/5778*10749957122^(1/8) 2865699913464873 a001 9227465/5778*4106118243^(3/23) 2865699913464873 a001 9227465/5778*1568397607^(3/22) 2865699913464873 a001 9227465/5778*599074578^(1/7) 2865699913464873 a001 9227465/5778*228826127^(3/20) 2865699913464873 a001 9227465/5778*87403803^(3/19) 2865699913464873 a001 9227465/5778*33385282^(1/6) 2865699913464874 a001 31622993/2889*4870847^(1/16) 2865699913464876 a001 9227465/5778*12752043^(3/17) 2865699913464881 a001 163427627824/5702887 2865699913464882 a001 24157817/5778*4870847^(1/8) 2865699913464896 a001 9227465/5778*4870847^(3/16) 2865699913464910 a001 646/1970299*817138163596^(2/3) 2865699913464910 a001 646/1970299*(1/2+1/2*5^(1/2))^38 2865699913464910 a001 646/1970299*10749957122^(19/24) 2865699913464910 a001 646/1970299*4106118243^(19/23) 2865699913464910 a001 646/1970299*1568397607^(19/22) 2865699913464910 a001 646/1970299*599074578^(19/21) 2865699913464910 a001 646/1970299*228826127^(19/20) 2865699913464912 a001 1762289/2889*(1/2+1/2*5^(1/2))^8 2865699913464912 a001 1762289/2889*23725150497407^(1/8) 2865699913464912 a001 1762289/2889*73681302247^(2/13) 2865699913464912 a001 1762289/2889*10749957122^(1/6) 2865699913464912 a001 1762289/2889*4106118243^(4/23) 2865699913464912 a001 1762289/2889*1568397607^(2/11) 2865699913464912 a001 1762289/2889*599074578^(4/21) 2865699913464912 a001 1762289/2889*228826127^(1/5) 2865699913464912 a001 1762289/2889*87403803^(4/19) 2865699913464913 a001 1762289/2889*33385282^(2/9) 2865699913464916 a001 1762289/2889*12752043^(4/17) 2865699913464922 a001 31622993/2889*1860498^(1/15) 2865699913464943 a001 1762289/2889*4870847^(1/4) 2865699913464949 a001 39088169/5778*1860498^(1/10) 2865699913464978 a001 24157817/5778*1860498^(2/15) 2865699913464985 a001 62423799128/2178309 2865699913464994 a001 726103/1926*1860498^(3/10) 2865699913465002 a001 2584*1860498^(1/6) 2865699913465039 a001 9227465/5778*1860498^(1/5) 2865699913465133 a001 1762289/2889*1860498^(4/15) 2865699913465180 a001 2584/3010349*141422324^(12/13) 2865699913465180 a001 2584/3010349*2537720636^(4/5) 2865699913465180 a001 2584/3010349*45537549124^(12/17) 2865699913465180 a001 2584/3010349*14662949395604^(4/7) 2865699913465180 a001 2584/3010349*(1/2+1/2*5^(1/2))^36 2865699913465180 a001 2584/3010349*505019158607^(9/14) 2865699913465180 a001 2584/3010349*192900153618^(2/3) 2865699913465180 a001 2584/3010349*73681302247^(9/13) 2865699913465180 a001 2584/3010349*10749957122^(3/4) 2865699913465180 a001 2584/3010349*4106118243^(18/23) 2865699913465180 a001 2584/3010349*1568397607^(9/11) 2865699913465180 a001 2584/3010349*599074578^(6/7) 2865699913465180 a001 2584/3010349*228826127^(9/10) 2865699913465180 a001 2584/3010349*87403803^(18/19) 2865699913465181 a001 1346269/5778*20633239^(2/7) 2865699913465182 a001 1346269/5778*2537720636^(2/9) 2865699913465182 a001 1346269/5778*312119004989^(2/11) 2865699913465182 a001 1346269/5778*(1/2+1/2*5^(1/2))^10 2865699913465182 a001 1346269/5778*28143753123^(1/5) 2865699913465182 a001 1346269/5778*10749957122^(5/24) 2865699913465182 a001 1346269/5778*4106118243^(5/23) 2865699913465182 a001 1346269/5778*1568397607^(5/22) 2865699913465182 a001 1346269/5778*599074578^(5/21) 2865699913465182 a001 1346269/5778*228826127^(1/4) 2865699913465183 a001 1346269/5778*87403803^(5/19) 2865699913465183 a001 1346269/5778*33385282^(5/18) 2865699913465188 a001 1346269/5778*12752043^(5/17) 2865699913465220 a001 1346269/5778*4870847^(5/16) 2865699913465272 a001 31622993/2889*710647^(1/14) 2865699913465458 a001 1346269/5778*1860498^(1/3) 2865699913465678 a001 24157817/5778*710647^(1/7) 2865699913465698 a001 596094239/20801 2865699913466089 a001 9227465/5778*710647^(3/14) 2865699913466267 a001 5702887/5778*710647^(1/4) 2865699913466534 a001 1762289/2889*710647^(2/7) 2865699913467017 a001 514229/5778*7881196^(4/11) 2865699913467031 a001 2584/1149851*45537549124^(2/3) 2865699913467031 a001 2584/1149851*(1/2+1/2*5^(1/2))^34 2865699913467031 a001 2584/1149851*10749957122^(17/24) 2865699913467031 a001 2584/1149851*4106118243^(17/23) 2865699913467031 a001 2584/1149851*1568397607^(17/22) 2865699913467031 a001 2584/1149851*599074578^(17/21) 2865699913467031 a001 2584/1149851*228826127^(17/20) 2865699913467031 a001 2584/1149851*87403803^(17/19) 2865699913467034 a001 2584/1149851*33385282^(17/18) 2865699913467034 a001 514229/5778*141422324^(4/13) 2865699913467034 a001 514229/5778*2537720636^(4/15) 2865699913467034 a001 514229/5778*45537549124^(4/17) 2865699913467034 a001 514229/5778*817138163596^(4/19) 2865699913467034 a001 514229/5778*14662949395604^(4/21) 2865699913467034 a001 514229/5778*(1/2+1/2*5^(1/2))^12 2865699913467034 a001 514229/5778*192900153618^(2/9) 2865699913467034 a001 514229/5778*73681302247^(3/13) 2865699913467034 a001 514229/5778*10749957122^(1/4) 2865699913467034 a001 514229/5778*4106118243^(6/23) 2865699913467034 a001 514229/5778*1568397607^(3/11) 2865699913467034 a001 514229/5778*599074578^(2/7) 2865699913467034 a001 514229/5778*228826127^(3/10) 2865699913467034 a001 514229/5778*87403803^(6/19) 2865699913467035 a001 514229/5778*33385282^(1/3) 2865699913467040 a001 514229/5778*12752043^(6/17) 2865699913467079 a001 514229/5778*4870847^(3/8) 2865699913467209 a001 1346269/5778*710647^(5/14) 2865699913467365 a001 514229/5778*1860498^(2/5) 2865699913467858 a001 31622993/2889*271443^(1/13) 2865699913469466 a001 514229/5778*710647^(3/7) 2865699913470584 a001 9107509552/317811 2865699913470851 a001 24157817/5778*271443^(2/13) 2865699913473848 a001 9227465/5778*271443^(3/13) 2865699913475974 a001 34111385/1926*103682^(1/24) 2865699913476879 a001 1762289/2889*271443^(4/13) 2865699913478638 a001 105937/1926*271443^(1/2) 2865699913479719 a001 98209/2889*20633239^(2/5) 2865699913479720 a001 34/5779*(1/2+1/2*5^(1/2))^32 2865699913479720 a001 34/5779*23725150497407^(1/2) 2865699913479720 a001 34/5779*73681302247^(8/13) 2865699913479720 a001 34/5779*10749957122^(2/3) 2865699913479720 a001 34/5779*4106118243^(16/23) 2865699913479720 a001 34/5779*1568397607^(8/11) 2865699913479720 a001 34/5779*599074578^(16/21) 2865699913479720 a001 34/5779*228826127^(4/5) 2865699913479720 a001 34/5779*87403803^(16/19) 2865699913479722 a001 34/5779*33385282^(8/9) 2865699913479722 a001 98209/2889*17393796001^(2/7) 2865699913479722 a001 98209/2889*14662949395604^(2/9) 2865699913479722 a001 98209/2889*(1/2+1/2*5^(1/2))^14 2865699913479722 a001 98209/2889*10749957122^(7/24) 2865699913479722 a001 98209/2889*4106118243^(7/23) 2865699913479722 a001 98209/2889*1568397607^(7/22) 2865699913479722 a001 98209/2889*599074578^(1/3) 2865699913479722 a001 98209/2889*228826127^(7/20) 2865699913479722 a001 98209/2889*87403803^(7/19) 2865699913479723 a001 98209/2889*33385282^(7/18) 2865699913479729 a001 98209/2889*12752043^(7/17) 2865699913479736 a001 34/5779*12752043^(16/17) 2865699913479775 a001 98209/2889*4870847^(7/16) 2865699913480108 a001 98209/2889*1860498^(7/15) 2865699913480141 a001 1346269/5778*271443^(5/13) 2865699913482559 a001 98209/2889*710647^(1/2) 2865699913484984 a001 514229/5778*271443^(6/13) 2865699913487081 a001 31622993/2889*103682^(1/12) 2865699913498188 a001 39088169/5778*103682^(1/8) 2865699913500665 a001 98209/2889*271443^(7/13) 2865699913504073 a001 3478759096/121393 2865699913509297 a001 24157817/5778*103682^(1/6) 2865699913520401 a001 2584*103682^(5/24) 2865699913531517 a001 9227465/5778*103682^(1/4) 2865699913542600 a001 5702887/5778*103682^(7/24) 2865699913547918 a001 34111385/1926*39603^(1/22) 2865699913553772 a001 1762289/2889*103682^(1/3) 2865699913564712 a001 726103/1926*103682^(3/8) 2865699913566645 a001 2584/167761*7881196^(10/11) 2865699913566682 a001 2584/167761*20633239^(6/7) 2865699913566687 a001 2584/167761*141422324^(10/13) 2865699913566687 a001 2584/167761*2537720636^(2/3) 2865699913566687 a001 2584/167761*45537549124^(10/17) 2865699913566687 a001 2584/167761*312119004989^(6/11) 2865699913566687 a001 2584/167761*14662949395604^(10/21) 2865699913566687 a001 2584/167761*(1/2+1/2*5^(1/2))^30 2865699913566687 a001 2584/167761*192900153618^(5/9) 2865699913566687 a001 2584/167761*28143753123^(3/5) 2865699913566687 a001 2584/167761*10749957122^(5/8) 2865699913566687 a001 2584/167761*4106118243^(15/23) 2865699913566687 a001 2584/167761*1568397607^(15/22) 2865699913566687 a001 2584/167761*599074578^(5/7) 2865699913566687 a001 2584/167761*228826127^(3/4) 2865699913566688 a001 2584/167761*87403803^(15/19) 2865699913566689 a001 2584/167761*33385282^(5/6) 2865699913566690 a001 75025/5778*(1/2+1/2*5^(1/2))^16 2865699913566690 a001 75025/5778*23725150497407^(1/4) 2865699913566690 a001 75025/5778*73681302247^(4/13) 2865699913566690 a001 75025/5778*10749957122^(1/3) 2865699913566690 a001 75025/5778*4106118243^(8/23) 2865699913566690 a001 75025/5778*1568397607^(4/11) 2865699913566690 a001 75025/5778*599074578^(8/21) 2865699913566690 a001 75025/5778*228826127^(2/5) 2865699913566690 a001 75025/5778*87403803^(8/19) 2865699913566691 a001 75025/5778*33385282^(4/9) 2865699913566698 a001 75025/5778*12752043^(8/17) 2865699913566703 a001 2584/167761*12752043^(15/17) 2865699913566750 a001 75025/5778*4870847^(1/2) 2865699913566801 a001 2584/167761*4870847^(15/16) 2865699913567131 a001 75025/5778*1860498^(8/15) 2865699913569932 a001 75025/5778*710647^(4/7) 2865699913576257 a001 1346269/5778*103682^(5/12) 2865699913586220 a001 416020/2889*103682^(11/24) 2865699913590624 a001 75025/5778*271443^(8/13) 2865699913592584 a001 121393/5778*103682^(5/8) 2865699913600323 a001 514229/5778*103682^(1/2) 2865699913603588 a001 105937/1926*103682^(13/24) 2865699913616586 a001 28657/5778*64079^(18/23) 2865699913630971 a001 31622993/2889*39603^(1/11) 2865699913635226 a001 98209/2889*103682^(7/12) 2865699913692654 a001 5473/2889*24476^(20/21) 2865699913714023 a001 39088169/5778*39603^(3/22) 2865699913733609 a001 166095967/5796 2865699913744408 a001 75025/5778*103682^(2/3) 2865699913797077 a001 24157817/5778*39603^(2/11) 2865699913880125 a001 2584*39603^(5/22) 2865699913963187 a001 9227465/5778*39603^(3/11) 2865699914046215 a001 5702887/5778*39603^(7/22) 2865699914091040 a001 34111385/1926*15127^(1/20) 2865699914129331 a001 1762289/2889*39603^(4/11) 2865699914152872 a001 28657/5778*439204^(2/3) 2865699914162751 a001 28657/5778*7881196^(6/11) 2865699914162768 a001 2584/64079*20633239^(4/5) 2865699914162773 a001 2584/64079*17393796001^(4/7) 2865699914162773 a001 2584/64079*14662949395604^(4/9) 2865699914162773 a001 2584/64079*(1/2+1/2*5^(1/2))^28 2865699914162773 a001 2584/64079*73681302247^(7/13) 2865699914162773 a001 2584/64079*10749957122^(7/12) 2865699914162773 a001 2584/64079*4106118243^(14/23) 2865699914162773 a001 2584/64079*1568397607^(7/11) 2865699914162773 a001 2584/64079*599074578^(2/3) 2865699914162773 a001 2584/64079*228826127^(7/10) 2865699914162774 a001 2584/64079*87403803^(14/19) 2865699914162775 a001 2584/64079*33385282^(7/9) 2865699914162776 a001 28657/5778*141422324^(6/13) 2865699914162776 a001 28657/5778*2537720636^(2/5) 2865699914162776 a001 28657/5778*45537549124^(6/17) 2865699914162776 a001 28657/5778*14662949395604^(2/7) 2865699914162776 a001 28657/5778*(1/2+1/2*5^(1/2))^18 2865699914162776 a001 28657/5778*192900153618^(1/3) 2865699914162776 a001 28657/5778*10749957122^(3/8) 2865699914162776 a001 28657/5778*4106118243^(9/23) 2865699914162776 a001 28657/5778*1568397607^(9/22) 2865699914162776 a001 28657/5778*599074578^(3/7) 2865699914162776 a001 28657/5778*228826127^(9/20) 2865699914162776 a001 28657/5778*87403803^(9/19) 2865699914162777 a001 28657/5778*33385282^(1/2) 2865699914162785 a001 28657/5778*12752043^(9/17) 2865699914162788 a001 2584/64079*12752043^(14/17) 2865699914162844 a001 28657/5778*4870847^(9/16) 2865699914162879 a001 2584/64079*4870847^(7/8) 2865699914163273 a001 28657/5778*1860498^(3/5) 2865699914163546 a001 2584/64079*1860498^(14/15) 2865699914166424 a001 28657/5778*710647^(9/14) 2865699914189702 a001 28657/5778*271443^(9/13) 2865699914212216 a001 726103/1926*39603^(9/22) 2865699914295706 a001 1346269/5778*39603^(5/11) 2865699914362709 a001 28657/5778*103682^(3/4) 2865699914377614 a001 416020/2889*39603^(1/2) 2865699914463662 a001 514229/5778*39603^(6/11) 2865699914538872 a001 105937/1926*39603^(13/22) 2865699914610178 a001 2576/321*39603^(17/22) 2865699914642455 a001 98209/2889*39603^(7/11) 2865699914671758 a001 121393/5778*39603^(15/22) 2865699914717215 a001 31622993/2889*15127^(1/10) 2865699914895527 a001 75025/5778*39603^(8/11) 2865699915306871 a001 507544112/17711 2865699915343388 a001 39088169/5778*15127^(3/20) 2865699915388974 a001 3732588/341*521^(2/13) 2865699915657718 a001 28657/5778*39603^(9/11) 2865699915969488 a001 24157817/3571*1364^(1/5) 2865699915969564 a001 24157817/5778*15127^(1/5) 2865699916595734 a001 2584*15127^(1/4) 2865699917221918 a001 9227465/5778*15127^(3/10) 2865699917641533 a001 5473/2889*64079^(20/23) 2865699917848067 a001 5702887/5778*15127^(7/20) 2865699918160310 a001 63245986/39603*3571^(6/17) 2865699918166952 a001 5473/2889*167761^(4/5) 2865699918233601 a001 34111385/1926*5778^(1/18) 2865699918248407 a001 5473/2889*20633239^(4/7) 2865699918248408 a001 646/6119*141422324^(2/3) 2865699918248408 a001 646/6119*(1/2+1/2*5^(1/2))^26 2865699918248408 a001 646/6119*73681302247^(1/2) 2865699918248408 a001 646/6119*10749957122^(13/24) 2865699918248408 a001 646/6119*4106118243^(13/23) 2865699918248408 a001 646/6119*1568397607^(13/22) 2865699918248408 a001 646/6119*599074578^(13/21) 2865699918248408 a001 646/6119*228826127^(13/20) 2865699918248408 a001 646/6119*87403803^(13/19) 2865699918248410 a001 646/6119*33385282^(13/18) 2865699918248411 a001 5473/2889*2537720636^(4/9) 2865699918248411 a001 5473/2889*(1/2+1/2*5^(1/2))^20 2865699918248411 a001 5473/2889*23725150497407^(5/16) 2865699918248411 a001 5473/2889*505019158607^(5/14) 2865699918248411 a001 5473/2889*73681302247^(5/13) 2865699918248411 a001 5473/2889*28143753123^(2/5) 2865699918248411 a001 5473/2889*10749957122^(5/12) 2865699918248411 a001 5473/2889*4106118243^(10/23) 2865699918248411 a001 5473/2889*1568397607^(5/11) 2865699918248411 a001 5473/2889*599074578^(10/21) 2865699918248411 a001 5473/2889*228826127^(1/2) 2865699918248411 a001 5473/2889*87403803^(10/19) 2865699918248412 a001 5473/2889*33385282^(5/9) 2865699918248421 a001 5473/2889*12752043^(10/17) 2865699918248422 a001 646/6119*12752043^(13/17) 2865699918248486 a001 5473/2889*4870847^(5/8) 2865699918248506 a001 646/6119*4870847^(13/16) 2865699918248963 a001 5473/2889*1860498^(2/3) 2865699918249126 a001 646/6119*1860498^(13/15) 2865699918252464 a001 5473/2889*710647^(5/7) 2865699918253677 a001 646/6119*710647^(13/14) 2865699918278329 a001 5473/2889*271443^(10/13) 2865699918470559 a001 5473/2889*103682^(5/6) 2865699918474305 a001 1762289/2889*15127^(2/5) 2865699919100312 a001 726103/1926*15127^(9/20) 2865699919720883 a001 165580141/103682*3571^(6/17) 2865699919726924 a001 1346269/5778*15127^(1/2) 2865699919909457 a001 5473/2889*39603^(10/11) 2865699919948568 a001 433494437/271443*3571^(6/17) 2865699919981787 a001 1134903170/710647*3571^(6/17) 2865699919986633 a001 2971215073/1860498*3571^(6/17) 2865699919987340 a001 7778742049/4870847*3571^(6/17) 2865699919987443 a001 20365011074/12752043*3571^(6/17) 2865699919987459 a001 53316291173/33385282*3571^(6/17) 2865699919987461 a001 139583862445/87403803*3571^(6/17) 2865699919987461 a001 365435296162/228826127*3571^(6/17) 2865699919987461 a001 956722026041/599074578*3571^(6/17) 2865699919987461 a001 2504730781961/1568397607*3571^(6/17) 2865699919987461 a001 6557470319842/4106118243*3571^(6/17) 2865699919987461 a001 10610209857723/6643838879*3571^(6/17) 2865699919987461 a001 4052739537881/2537720636*3571^(6/17) 2865699919987461 a001 1548008755920/969323029*3571^(6/17) 2865699919987461 a001 591286729879/370248451*3571^(6/17) 2865699919987461 a001 225851433717/141422324*3571^(6/17) 2865699919987462 a001 86267571272/54018521*3571^(6/17) 2865699919987468 a001 32951280099/20633239*3571^(6/17) 2865699919987507 a001 12586269025/7881196*3571^(6/17) 2865699919987777 a001 4807526976/3010349*3571^(6/17) 2865699919989629 a001 1836311903/1149851*3571^(6/17) 2865699920002317 a001 701408733/439204*3571^(6/17) 2865699920089285 a001 267914296/167761*3571^(6/17) 2865699920351953 a001 416020/2889*15127^(11/20) 2865699920683083 a001 39088169/15127*3571^(5/17) 2865699920685371 a001 102334155/64079*3571^(6/17) 2865699920981123 a001 514229/5778*15127^(3/5) 2865699921599455 a001 105937/1926*15127^(13/20) 2865699922246160 a001 98209/2889*15127^(7/10) 2865699922818585 a001 121393/5778*15127^(3/4) 2865699923002336 a001 31622993/2889*5778^(1/9) 2865699923529918 r009 Re(z^3+c),c=-37/126+7/47*I,n=12 2865699923535023 a001 17711/5778*15127^(19/20) 2865699923585476 a001 75025/5778*15127^(4/5) 2865699923599689 a001 3/11*2^(1/14) 2865699923599689 b008 (3*2^(1/14))/11 2865699923843248 a001 2576/321*15127^(17/20) 2865699924771005 a001 39088169/24476*3571^(6/17) 2865699925029364 r002 26th iterates of z^2 + 2865699925433910 a001 28657/5778*15127^(9/10) 2865699925861784 a001 75025/2207*2207^(7/8) 2865699926090169 a001 38772920/1353 2865699926336136 a001 5702887/9349*3571^(8/17) 2865699927771070 a001 39088169/5778*5778^(1/6) 2865699929403198 a001 165580141/9349*1364^(1/15) 2865699931342748 m005 (7/18+1/6*5^(1/2))/(4/9*Zeta(3)-4/5) 2865699931379414 a001 34111385/13201*3571^(5/17) 2865699932539806 a001 24157817/5778*5778^(2/9) 2865699932939988 a001 133957148/51841*3571^(5/17) 2865699933167673 a001 233802911/90481*3571^(5/17) 2865699933200891 a001 1836311903/710647*3571^(5/17) 2865699933205738 a001 267084832/103361*3571^(5/17) 2865699933206445 a001 12586269025/4870847*3571^(5/17) 2865699933206548 a001 10983760033/4250681*3571^(5/17) 2865699933206563 a001 43133785636/16692641*3571^(5/17) 2865699933206565 a001 75283811239/29134601*3571^(5/17) 2865699933206566 a001 591286729879/228826127*3571^(5/17) 2865699933206566 a001 86000486440/33281921*3571^(5/17) 2865699933206566 a001 4052739537881/1568397607*3571^(5/17) 2865699933206566 a001 3536736619241/1368706081*3571^(5/17) 2865699933206566 a001 3278735159921/1268860318*3571^(5/17) 2865699933206566 a001 2504730781961/969323029*3571^(5/17) 2865699933206566 a001 956722026041/370248451*3571^(5/17) 2865699933206566 a001 182717648081/70711162*3571^(5/17) 2865699933206567 a001 139583862445/54018521*3571^(5/17) 2865699933206572 a001 53316291173/20633239*3571^(5/17) 2865699933206612 a001 10182505537/3940598*3571^(5/17) 2865699933206882 a001 7778742049/3010349*3571^(5/17) 2865699933208733 a001 2971215073/1149851*3571^(5/17) 2865699933221422 a001 567451585/219602*3571^(5/17) 2865699933308389 a001 433494437/167761*3571^(5/17) 2865699933902188 a001 63245986/15127*3571^(4/17) 2865699933904475 a001 165580141/64079*3571^(5/17) 2865699937308537 a001 2584*5778^(5/18) 2865699937990110 a001 31622993/12238*3571^(5/17) 2865699938385486 a007 Real Root Of 2*x^4-381*x^3+400*x^2-367*x-147 2865699939555265 a001 9227465/9349*3571^(7/17) 2865699942077281 a001 9227465/5778*5778^(1/3) 2865699944598519 a001 165580141/39603*3571^(4/17) 2865699945584202 a001 4181/5778*64079^(22/23) 2865699946159093 a001 433494437/103682*3571^(4/17) 2865699946238561 a001 2584/9349*439204^(8/9) 2865699946251732 a001 2584/9349*7881196^(8/11) 2865699946251737 a001 4181/5778*7881196^(2/3) 2865699946251766 a001 2584/9349*141422324^(8/13) 2865699946251766 a001 2584/9349*2537720636^(8/15) 2865699946251766 a001 2584/9349*45537549124^(8/17) 2865699946251766 a001 2584/9349*14662949395604^(8/21) 2865699946251766 a001 2584/9349*(1/2+1/2*5^(1/2))^24 2865699946251766 a001 2584/9349*192900153618^(4/9) 2865699946251766 a001 2584/9349*73681302247^(6/13) 2865699946251766 a001 2584/9349*10749957122^(1/2) 2865699946251766 a001 2584/9349*4106118243^(12/23) 2865699946251766 a001 2584/9349*1568397607^(6/11) 2865699946251766 a001 2584/9349*599074578^(4/7) 2865699946251766 a001 2584/9349*228826127^(3/5) 2865699946251766 a001 2584/9349*87403803^(12/19) 2865699946251768 a001 2584/9349*33385282^(2/3) 2865699946251768 a001 4181/5778*312119004989^(2/5) 2865699946251768 a001 4181/5778*(1/2+1/2*5^(1/2))^22 2865699946251768 a001 4181/5778*10749957122^(11/24) 2865699946251768 a001 4181/5778*4106118243^(11/23) 2865699946251768 a001 4181/5778*1568397607^(1/2) 2865699946251768 a001 4181/5778*599074578^(11/21) 2865699946251768 a001 4181/5778*228826127^(11/20) 2865699946251768 a001 4181/5778*87403803^(11/19) 2865699946251770 a001 4181/5778*33385282^(11/18) 2865699946251778 a001 2584/9349*12752043^(12/17) 2865699946251780 a001 4181/5778*12752043^(11/17) 2865699946251851 a001 4181/5778*4870847^(11/16) 2865699946251856 a001 2584/9349*4870847^(3/4) 2865699946252375 a001 4181/5778*1860498^(11/15) 2865699946252428 a001 2584/9349*1860498^(4/5) 2865699946256227 a001 4181/5778*710647^(11/14) 2865699946256630 a001 2584/9349*710647^(6/7) 2865699946284678 a001 4181/5778*271443^(11/13) 2865699946287667 a001 2584/9349*271443^(12/13) 2865699946386777 a001 1134903170/271443*3571^(4/17) 2865699946419996 a001 2971215073/710647*3571^(4/17) 2865699946424843 a001 7778742049/1860498*3571^(4/17) 2865699946425550 a001 20365011074/4870847*3571^(4/17) 2865699946425653 a001 53316291173/12752043*3571^(4/17) 2865699946425668 a001 139583862445/33385282*3571^(4/17) 2865699946425670 a001 365435296162/87403803*3571^(4/17) 2865699946425670 a001 956722026041/228826127*3571^(4/17) 2865699946425670 a001 2504730781961/599074578*3571^(4/17) 2865699946425670 a001 6557470319842/1568397607*3571^(4/17) 2865699946425670 a001 10610209857723/2537720636*3571^(4/17) 2865699946425670 a001 4052739537881/969323029*3571^(4/17) 2865699946425670 a001 1548008755920/370248451*3571^(4/17) 2865699946425671 a001 591286729879/141422324*3571^(4/17) 2865699946425671 a001 225851433717/54018521*3571^(4/17) 2865699946425677 a001 86267571272/20633239*3571^(4/17) 2865699946425717 a001 32951280099/7881196*3571^(4/17) 2865699946425987 a001 12586269025/3010349*3571^(4/17) 2865699946427838 a001 4807526976/1149851*3571^(4/17) 2865699946440526 a001 1836311903/439204*3571^(4/17) 2865699946496131 a001 4181/5778*103682^(11/12) 2865699946527494 a001 701408733/167761*3571^(4/17) 2865699946845991 a001 5702887/5778*5778^(7/18) 2865699947121293 a001 6765*3571^(3/17) 2865699947123580 a001 267914296/64079*3571^(4/17) 2865699950235930 a001 34111385/1926*2207^(1/16) 2865699951209215 a001 102334155/24476*3571^(4/17) 2865699951329658 m001 (Magata+MinimumGamma)/(GAMMA(11/12)+Cahen) 2865699951614789 a001 1762289/2889*5778^(4/9) 2865699951831815 r005 Re(z^2+c),c=9/62+19/43*I,n=59 2865699952164553 a001 119814915/4181 2865699952774361 a001 14930352/9349*3571^(6/17) 2865699955819155 a001 75025/15127*9349^(18/19) 2865699956383357 a001 726103/1926*5778^(1/2) 2865699957404064 a001 121393/15127*9349^(17/19) 2865699957817624 a001 267914296/39603*3571^(3/17) 2865699959183440 a001 196418/15127*9349^(16/19) 2865699959378197 a001 701408733/103682*3571^(3/17) 2865699959605882 a001 1836311903/271443*3571^(3/17) 2865699959639101 a001 686789568/101521*3571^(3/17) 2865699959643947 a001 12586269025/1860498*3571^(3/17) 2865699959644654 a001 32951280099/4870847*3571^(3/17) 2865699959644758 a001 86267571272/12752043*3571^(3/17) 2865699959644773 a001 32264490531/4769326*3571^(3/17) 2865699959644775 a001 591286729879/87403803*3571^(3/17) 2865699959644775 a001 1548008755920/228826127*3571^(3/17) 2865699959644775 a001 4052739537881/599074578*3571^(3/17) 2865699959644775 a001 1515744265389/224056801*3571^(3/17) 2865699959644775 a001 6557470319842/969323029*3571^(3/17) 2865699959644775 a001 2504730781961/370248451*3571^(3/17) 2865699959644775 a001 956722026041/141422324*3571^(3/17) 2865699959644776 a001 365435296162/54018521*3571^(3/17) 2865699959644782 a001 139583862445/20633239*3571^(3/17) 2865699959644821 a001 53316291173/7881196*3571^(3/17) 2865699959645091 a001 20365011074/3010349*3571^(3/17) 2865699959646943 a001 7778742049/1149851*3571^(3/17) 2865699959659631 a001 2971215073/439204*3571^(3/17) 2865699959746599 a001 1134903170/167761*3571^(3/17) 2865699960340398 a001 165580141/15127*3571^(2/17) 2865699960342685 a001 433494437/64079*3571^(3/17) 2865699960888536 a001 317811/15127*9349^(15/19) 2865699961152529 a001 1346269/5778*5778^(5/9) 2865699962264447 a001 46368/2207*2207^(15/16) 2865699962622004 a001 514229/15127*9349^(14/19) 2865699964344635 a001 832040/15127*9349^(13/19) 2865699964428320 a001 165580141/24476*3571^(3/17) 2865699964879671 p001 sum((-1)^n/(87*n+65)/n/(2^n),n=0..infinity) 2865699965920119 a001 416020/2889*5778^(11/18) 2865699965993469 a001 24157817/9349*3571^(5/17) 2865699966071406 a001 1346269/15127*9349^(12/19) 2865699966428518 a001 196418/39603*9349^(18/19) 2865699966515187 a001 2/4181*(1/2+1/2*5^(1/2))^42 2865699967796595 a001 311187/2161*9349^(11/19) 2865699967976403 a001 514229/103682*9349^(18/19) 2865699968133614 a001 105937/13201*9349^(17/19) 2865699968202236 a001 1346269/271443*9349^(18/19) 2865699968235185 a001 3524578/710647*9349^(18/19) 2865699968239992 a001 9227465/1860498*9349^(18/19) 2865699968240694 a001 24157817/4870847*9349^(18/19) 2865699968240796 a001 63245986/12752043*9349^(18/19) 2865699968240811 a001 165580141/33385282*9349^(18/19) 2865699968240813 a001 433494437/87403803*9349^(18/19) 2865699968240813 a001 1134903170/228826127*9349^(18/19) 2865699968240813 a001 2971215073/599074578*9349^(18/19) 2865699968240813 a001 7778742049/1568397607*9349^(18/19) 2865699968240813 a001 20365011074/4106118243*9349^(18/19) 2865699968240813 a001 53316291173/10749957122*9349^(18/19) 2865699968240813 a001 139583862445/28143753123*9349^(18/19) 2865699968240813 a001 365435296162/73681302247*9349^(18/19) 2865699968240813 a001 956722026041/192900153618*9349^(18/19) 2865699968240813 a001 2504730781961/505019158607*9349^(18/19) 2865699968240813 a001 10610209857723/2139295485799*9349^(18/19) 2865699968240813 a001 140728068720/28374454999*9349^(18/19) 2865699968240813 a001 591286729879/119218851371*9349^(18/19) 2865699968240813 a001 225851433717/45537549124*9349^(18/19) 2865699968240813 a001 86267571272/17393796001*9349^(18/19) 2865699968240813 a001 32951280099/6643838879*9349^(18/19) 2865699968240813 a001 1144206275/230701876*9349^(18/19) 2865699968240813 a001 4807526976/969323029*9349^(18/19) 2865699968240813 a001 1836311903/370248451*9349^(18/19) 2865699968240813 a001 701408733/141422324*9349^(18/19) 2865699968240814 a001 267914296/54018521*9349^(18/19) 2865699968240820 a001 9303105/1875749*9349^(18/19) 2865699968240859 a001 39088169/7881196*9349^(18/19) 2865699968241127 a001 14930352/3010349*9349^(18/19) 2865699968242963 a001 5702887/1149851*9349^(18/19) 2865699968255548 a001 2178309/439204*9349^(18/19) 2865699968341809 a001 75640/15251*9349^(18/19) 2865699968933049 a001 317811/64079*9349^(18/19) 2865699969522389 a001 3524578/15127*9349^(10/19) 2865699969699034 a001 416020/51841*9349^(17/19) 2865699969867082 a001 514229/39603*9349^(16/19) 2865699969927426 a001 726103/90481*9349^(17/19) 2865699969960748 a001 5702887/710647*9349^(17/19) 2865699969965609 a001 829464/103361*9349^(17/19) 2865699969966319 a001 39088169/4870847*9349^(17/19) 2865699969966422 a001 34111385/4250681*9349^(17/19) 2865699969966437 a001 133957148/16692641*9349^(17/19) 2865699969966439 a001 233802911/29134601*9349^(17/19) 2865699969966440 a001 1836311903/228826127*9349^(17/19) 2865699969966440 a001 267084832/33281921*9349^(17/19) 2865699969966440 a001 12586269025/1568397607*9349^(17/19) 2865699969966440 a001 10983760033/1368706081*9349^(17/19) 2865699969966440 a001 43133785636/5374978561*9349^(17/19) 2865699969966440 a001 75283811239/9381251041*9349^(17/19) 2865699969966440 a001 591286729879/73681302247*9349^(17/19) 2865699969966440 a001 86000486440/10716675201*9349^(17/19) 2865699969966440 a001 4052739537881/505019158607*9349^(17/19) 2865699969966440 a001 3278735159921/408569081798*9349^(17/19) 2865699969966440 a001 2504730781961/312119004989*9349^(17/19) 2865699969966440 a001 956722026041/119218851371*9349^(17/19) 2865699969966440 a001 182717648081/22768774562*9349^(17/19) 2865699969966440 a001 139583862445/17393796001*9349^(17/19) 2865699969966440 a001 53316291173/6643838879*9349^(17/19) 2865699969966440 a001 10182505537/1268860318*9349^(17/19) 2865699969966440 a001 7778742049/969323029*9349^(17/19) 2865699969966440 a001 2971215073/370248451*9349^(17/19) 2865699969966440 a001 567451585/70711162*9349^(17/19) 2865699969966441 a001 433494437/54018521*9349^(17/19) 2865699969966447 a001 165580141/20633239*9349^(17/19) 2865699969966486 a001 31622993/3940598*9349^(17/19) 2865699969966757 a001 24157817/3010349*9349^(17/19) 2865699969968614 a001 9227465/1149851*9349^(17/19) 2865699969981342 a001 1762289/219602*9349^(17/19) 2865699970068580 a001 1346269/167761*9349^(17/19) 2865699970617330 m001 ln(GAMMA(1/3))*Kolakoski/sqrt(1+sqrt(3))^2 2865699970666517 a001 514229/64079*9349^(17/19) 2865699970691849 a001 514229/5778*5778^(2/3) 2865699971036728 a001 433494437/39603*3571^(2/17) 2865699971247951 a001 5702887/15127*9349^(9/19) 2865699971425805 a001 1346269/103682*9349^(16/19) 2865699971589713 a001 832040/39603*9349^(15/19) 2865699971653219 a001 3524578/271443*9349^(16/19) 2865699971686399 a001 9227465/710647*9349^(16/19) 2865699971691239 a001 24157817/1860498*9349^(16/19) 2865699971691946 a001 63245986/4870847*9349^(16/19) 2865699971692049 a001 165580141/12752043*9349^(16/19) 2865699971692064 a001 433494437/33385282*9349^(16/19) 2865699971692066 a001 1134903170/87403803*9349^(16/19) 2865699971692066 a001 2971215073/228826127*9349^(16/19) 2865699971692066 a001 7778742049/599074578*9349^(16/19) 2865699971692066 a001 20365011074/1568397607*9349^(16/19) 2865699971692066 a001 53316291173/4106118243*9349^(16/19) 2865699971692066 a001 139583862445/10749957122*9349^(16/19) 2865699971692066 a001 365435296162/28143753123*9349^(16/19) 2865699971692066 a001 956722026041/73681302247*9349^(16/19) 2865699971692066 a001 2504730781961/192900153618*9349^(16/19) 2865699971692066 a001 10610209857723/817138163596*9349^(16/19) 2865699971692066 a001 4052739537881/312119004989*9349^(16/19) 2865699971692066 a001 1548008755920/119218851371*9349^(16/19) 2865699971692066 a001 591286729879/45537549124*9349^(16/19) 2865699971692066 a001 7787980473/599786069*9349^(16/19) 2865699971692066 a001 86267571272/6643838879*9349^(16/19) 2865699971692066 a001 32951280099/2537720636*9349^(16/19) 2865699971692066 a001 12586269025/969323029*9349^(16/19) 2865699971692066 a001 4807526976/370248451*9349^(16/19) 2865699971692066 a001 1836311903/141422324*9349^(16/19) 2865699971692067 a001 701408733/54018521*9349^(16/19) 2865699971692073 a001 9238424/711491*9349^(16/19) 2865699971692112 a001 102334155/7881196*9349^(16/19) 2865699971692382 a001 39088169/3010349*9349^(16/19) 2865699971694231 a001 14930352/1149851*9349^(16/19) 2865699971706904 a001 5702887/439204*9349^(16/19) 2865699971793769 a001 2178309/167761*9349^(16/19) 2865699972389148 a001 832040/64079*9349^(16/19) 2865699972597302 a001 567451585/51841*3571^(2/17) 2865699972824987 a001 2971215073/271443*3571^(2/17) 2865699972858206 a001 7778742049/710647*3571^(2/17) 2865699972863052 a001 10182505537/930249*3571^(2/17) 2865699972863759 a001 53316291173/4870847*3571^(2/17) 2865699972863862 a001 139583862445/12752043*3571^(2/17) 2865699972863877 a001 182717648081/16692641*3571^(2/17) 2865699972863880 a001 956722026041/87403803*3571^(2/17) 2865699972863880 a001 2504730781961/228826127*3571^(2/17) 2865699972863880 a001 3278735159921/299537289*3571^(2/17) 2865699972863880 a001 10610209857723/969323029*3571^(2/17) 2865699972863880 a001 4052739537881/370248451*3571^(2/17) 2865699972863880 a001 387002188980/35355581*3571^(2/17) 2865699972863881 a001 591286729879/54018521*3571^(2/17) 2865699972863887 a001 7787980473/711491*3571^(2/17) 2865699972863926 a001 21566892818/1970299*3571^(2/17) 2865699972864196 a001 32951280099/3010349*3571^(2/17) 2865699972866047 a001 12586269025/1149851*3571^(2/17) 2865699972878736 a001 1201881744/109801*3571^(2/17) 2865699972965704 a001 1836311903/167761*3571^(2/17) 2865699972973602 a001 9227465/15127*9349^(8/19) 2865699972985465 a001 121393/24476*9349^(18/19) 2865699973150994 a001 46347/2206*9349^(15/19) 2865699973316484 a001 1346269/39603*9349^(14/19) 2865699973378782 a001 5702887/271443*9349^(15/19) 2865699973412016 a001 14930352/710647*9349^(15/19) 2865699973416864 a001 39088169/1860498*9349^(15/19) 2865699973417572 a001 102334155/4870847*9349^(15/19) 2865699973417675 a001 267914296/12752043*9349^(15/19) 2865699973417690 a001 701408733/33385282*9349^(15/19) 2865699973417692 a001 1836311903/87403803*9349^(15/19) 2865699973417693 a001 102287808/4868641*9349^(15/19) 2865699973417693 a001 12586269025/599074578*9349^(15/19) 2865699973417693 a001 32951280099/1568397607*9349^(15/19) 2865699973417693 a001 86267571272/4106118243*9349^(15/19) 2865699973417693 a001 225851433717/10749957122*9349^(15/19) 2865699973417693 a001 591286729879/28143753123*9349^(15/19) 2865699973417693 a001 1548008755920/73681302247*9349^(15/19) 2865699973417693 a001 4052739537881/192900153618*9349^(15/19) 2865699973417693 a001 225749145909/10745088481*9349^(15/19) 2865699973417693 a001 6557470319842/312119004989*9349^(15/19) 2865699973417693 a001 2504730781961/119218851371*9349^(15/19) 2865699973417693 a001 956722026041/45537549124*9349^(15/19) 2865699973417693 a001 365435296162/17393796001*9349^(15/19) 2865699973417693 a001 139583862445/6643838879*9349^(15/19) 2865699973417693 a001 53316291173/2537720636*9349^(15/19) 2865699973417693 a001 20365011074/969323029*9349^(15/19) 2865699973417693 a001 7778742049/370248451*9349^(15/19) 2865699973417693 a001 2971215073/141422324*9349^(15/19) 2865699973417694 a001 1134903170/54018521*9349^(15/19) 2865699973417699 a001 433494437/20633239*9349^(15/19) 2865699973417739 a001 165580141/7881196*9349^(15/19) 2865699973418009 a001 63245986/3010349*9349^(15/19) 2865699973419861 a001 24157817/1149851*9349^(15/19) 2865699973432555 a001 9227465/439204*9349^(15/19) 2865699973519563 a001 3524578/167761*9349^(15/19) 2865699973559502 a001 267914296/15127*3571^(1/17) 2865699973561790 a001 701408733/64079*3571^(2/17) 2865699973918459 a007 Real Root Of 169*x^4+78*x^3-956*x^2+864*x+765 2865699974115919 a001 1346269/64079*9349^(15/19) 2865699974255125 a001 6765/15127*(1/2+1/2*5^(1/2))^23 2865699974255125 a001 6765/15127*4106118243^(1/2) 2865699974510595 a001 6765/15127*103682^(23/24) 2865699974699219 a001 14930352/15127*9349^(7/19) 2865699974764840 a001 98209/12238*9349^(17/19) 2865699974876788 a001 1762289/51841*9349^(14/19) 2865699975039727 m005 (1/2*Zeta(3)+5/11)/(5/12*Catalan-3/4) 2865699975041673 a001 726103/13201*9349^(13/19) 2865699975104433 a001 9227465/271443*9349^(14/19) 2865699975137646 a001 24157817/710647*9349^(14/19) 2865699975142491 a001 31622993/930249*9349^(14/19) 2865699975143198 a001 165580141/4870847*9349^(14/19) 2865699975143302 a001 433494437/12752043*9349^(14/19) 2865699975143317 a001 567451585/16692641*9349^(14/19) 2865699975143319 a001 2971215073/87403803*9349^(14/19) 2865699975143319 a001 7778742049/228826127*9349^(14/19) 2865699975143319 a001 10182505537/299537289*9349^(14/19) 2865699975143319 a001 53316291173/1568397607*9349^(14/19) 2865699975143319 a001 139583862445/4106118243*9349^(14/19) 2865699975143319 a001 182717648081/5374978561*9349^(14/19) 2865699975143319 a001 956722026041/28143753123*9349^(14/19) 2865699975143319 a001 2504730781961/73681302247*9349^(14/19) 2865699975143319 a001 3278735159921/96450076809*9349^(14/19) 2865699975143319 a001 10610209857723/312119004989*9349^(14/19) 2865699975143319 a001 4052739537881/119218851371*9349^(14/19) 2865699975143319 a001 387002188980/11384387281*9349^(14/19) 2865699975143319 a001 591286729879/17393796001*9349^(14/19) 2865699975143319 a001 225851433717/6643838879*9349^(14/19) 2865699975143319 a001 1135099622/33391061*9349^(14/19) 2865699975143319 a001 32951280099/969323029*9349^(14/19) 2865699975143319 a001 12586269025/370248451*9349^(14/19) 2865699975143319 a001 1201881744/35355581*9349^(14/19) 2865699975143320 a001 1836311903/54018521*9349^(14/19) 2865699975143326 a001 701408733/20633239*9349^(14/19) 2865699975143365 a001 66978574/1970299*9349^(14/19) 2865699975143635 a001 102334155/3010349*9349^(14/19) 2865699975145486 a001 39088169/1149851*9349^(14/19) 2865699975158172 a001 196452/5779*9349^(14/19) 2865699975245125 a001 5702887/167761*9349^(14/19) 2865699975452742 a001 105937/1926*5778^(13/18) 2865699975841108 a001 2178309/64079*9349^(14/19) 2865699976082276 a001 119814916/4181 2865699976424849 a001 24157817/15127*9349^(6/19) 2865699976469936 a001 10959/844*9349^(16/19) 2865699976602350 a001 5702887/103682*9349^(13/19) 2865699976767467 a001 3524578/39603*9349^(12/19) 2865699976830050 a001 4976784/90481*9349^(13/19) 2865699976863271 a001 39088169/710647*9349^(13/19) 2865699976868118 a001 831985/15126*9349^(13/19) 2865699976868825 a001 267914296/4870847*9349^(13/19) 2865699976868928 a001 233802911/4250681*9349^(13/19) 2865699976868943 a001 1836311903/33385282*9349^(13/19) 2865699976868945 a001 1602508992/29134601*9349^(13/19) 2865699976868946 a001 12586269025/228826127*9349^(13/19) 2865699976868946 a001 10983760033/199691526*9349^(13/19) 2865699976868946 a001 86267571272/1568397607*9349^(13/19) 2865699976868946 a001 75283811239/1368706081*9349^(13/19) 2865699976868946 a001 591286729879/10749957122*9349^(13/19) 2865699976868946 a001 12585437040/228811001*9349^(13/19) 2865699976868946 a001 4052739537881/73681302247*9349^(13/19) 2865699976868946 a001 3536736619241/64300051206*9349^(13/19) 2865699976868946 a001 6557470319842/119218851371*9349^(13/19) 2865699976868946 a001 2504730781961/45537549124*9349^(13/19) 2865699976868946 a001 956722026041/17393796001*9349^(13/19) 2865699976868946 a001 365435296162/6643838879*9349^(13/19) 2865699976868946 a001 139583862445/2537720636*9349^(13/19) 2865699976868946 a001 53316291173/969323029*9349^(13/19) 2865699976868946 a001 20365011074/370248451*9349^(13/19) 2865699976868946 a001 7778742049/141422324*9349^(13/19) 2865699976868947 a001 2971215073/54018521*9349^(13/19) 2865699976868952 a001 1134903170/20633239*9349^(13/19) 2865699976868992 a001 433494437/7881196*9349^(13/19) 2865699976869262 a001 165580141/3010349*9349^(13/19) 2865699976871113 a001 63245986/1149851*9349^(13/19) 2865699976883802 a001 24157817/439204*9349^(13/19) 2865699976970776 a001 9227465/167761*9349^(13/19) 2865699977566902 a001 3524578/64079*9349^(13/19) 2865699977647425 a001 10946*3571^(2/17) 2865699978150475 a001 39088169/15127*9349^(5/19) 2865699978203405 a001 514229/24476*9349^(15/19) 2865699978328001 a001 9227465/103682*9349^(12/19) 2865699978493029 a001 5702887/39603*9349^(11/19) 2865699978555680 a001 24157817/271443*9349^(12/19) 2865699978588898 a001 63245986/710647*9349^(12/19) 2865699978593744 a001 165580141/1860498*9349^(12/19) 2865699978594451 a001 433494437/4870847*9349^(12/19) 2865699978594554 a001 1134903170/12752043*9349^(12/19) 2865699978594570 a001 2971215073/33385282*9349^(12/19) 2865699978594572 a001 7778742049/87403803*9349^(12/19) 2865699978594572 a001 20365011074/228826127*9349^(12/19) 2865699978594572 a001 53316291173/599074578*9349^(12/19) 2865699978594572 a001 139583862445/1568397607*9349^(12/19) 2865699978594572 a001 365435296162/4106118243*9349^(12/19) 2865699978594572 a001 956722026041/10749957122*9349^(12/19) 2865699978594572 a001 2504730781961/28143753123*9349^(12/19) 2865699978594572 a001 6557470319842/73681302247*9349^(12/19) 2865699978594572 a001 10610209857723/119218851371*9349^(12/19) 2865699978594572 a001 4052739537881/45537549124*9349^(12/19) 2865699978594572 a001 1548008755920/17393796001*9349^(12/19) 2865699978594572 a001 591286729879/6643838879*9349^(12/19) 2865699978594572 a001 225851433717/2537720636*9349^(12/19) 2865699978594572 a001 86267571272/969323029*9349^(12/19) 2865699978594572 a001 32951280099/370248451*9349^(12/19) 2865699978594572 a001 12586269025/141422324*9349^(12/19) 2865699978594573 a001 4807526976/54018521*9349^(12/19) 2865699978594579 a001 1836311903/20633239*9349^(12/19) 2865699978594618 a001 3524667/39604*9349^(12/19) 2865699978594888 a001 267914296/3010349*9349^(12/19) 2865699978596739 a001 102334155/1149851*9349^(12/19) 2865699978609428 a001 39088169/439204*9349^(12/19) 2865699978696393 a001 14930352/167761*9349^(12/19) 2865699978816520 m002 -Pi^4/5+Pi^5+Tanh[Pi]/Pi^3 2865699979212573 a001 4181*3571^(4/17) 2865699979292464 a001 5702887/64079*9349^(12/19) 2865699979876102 a001 63245986/15127*9349^(4/19) 2865699979926036 a001 208010/6119*9349^(14/19) 2865699980053618 a001 7465176/51841*9349^(11/19) 2865699980218680 a001 9227465/39603*9349^(10/19) 2865699980242007 a001 98209/2889*5778^(7/9) 2865699980281305 a001 39088169/271443*9349^(11/19) 2865699980314524 a001 14619165/101521*9349^(11/19) 2865699980319371 a001 133957148/930249*9349^(11/19) 2865699980320078 a001 701408733/4870847*9349^(11/19) 2865699980320181 a001 1836311903/12752043*9349^(11/19) 2865699980320196 a001 14930208/103681*9349^(11/19) 2865699980320198 a001 12586269025/87403803*9349^(11/19) 2865699980320199 a001 32951280099/228826127*9349^(11/19) 2865699980320199 a001 43133785636/299537289*9349^(11/19) 2865699980320199 a001 32264490531/224056801*9349^(11/19) 2865699980320199 a001 591286729879/4106118243*9349^(11/19) 2865699980320199 a001 774004377960/5374978561*9349^(11/19) 2865699980320199 a001 4052739537881/28143753123*9349^(11/19) 2865699980320199 a001 1515744265389/10525900321*9349^(11/19) 2865699980320199 a001 3278735159921/22768774562*9349^(11/19) 2865699980320199 a001 2504730781961/17393796001*9349^(11/19) 2865699980320199 a001 956722026041/6643838879*9349^(11/19) 2865699980320199 a001 182717648081/1268860318*9349^(11/19) 2865699980320199 a001 139583862445/969323029*9349^(11/19) 2865699980320199 a001 53316291173/370248451*9349^(11/19) 2865699980320199 a001 10182505537/70711162*9349^(11/19) 2865699980320200 a001 7778742049/54018521*9349^(11/19) 2865699980320205 a001 2971215073/20633239*9349^(11/19) 2865699980320245 a001 567451585/3940598*9349^(11/19) 2865699980320515 a001 433494437/3010349*9349^(11/19) 2865699980322366 a001 165580141/1149851*9349^(11/19) 2865699980335055 a001 31622993/219602*9349^(11/19) 2865699980422023 a001 24157817/167761*9349^(11/19) 2865699981018115 a001 9227465/64079*9349^(11/19) 2865699981094904 a007 Real Root Of -219*x^4-850*x^3-424*x^2+408*x-583 2865699981601728 a001 6765*9349^(3/19) 2865699981652806 a001 1346269/24476*9349^(13/19) 2865699981728485 a001 156839760/5473 2865699981779248 a001 24157817/103682*9349^(10/19) 2865699981944297 a001 4976784/13201*9349^(9/19) 2865699982006932 a001 63245986/271443*9349^(10/19) 2865699982040151 a001 165580141/710647*9349^(10/19) 2865699982044997 a001 433494437/1860498*9349^(10/19) 2865699982045704 a001 1134903170/4870847*9349^(10/19) 2865699982045807 a001 2971215073/12752043*9349^(10/19) 2865699982045822 a001 7778742049/33385282*9349^(10/19) 2865699982045825 a001 20365011074/87403803*9349^(10/19) 2865699982045825 a001 53316291173/228826127*9349^(10/19) 2865699982045825 a001 139583862445/599074578*9349^(10/19) 2865699982045825 a001 365435296162/1568397607*9349^(10/19) 2865699982045825 a001 956722026041/4106118243*9349^(10/19) 2865699982045825 a001 2504730781961/10749957122*9349^(10/19) 2865699982045825 a001 6557470319842/28143753123*9349^(10/19) 2865699982045825 a001 10610209857723/45537549124*9349^(10/19) 2865699982045825 a001 4052739537881/17393796001*9349^(10/19) 2865699982045825 a001 1548008755920/6643838879*9349^(10/19) 2865699982045825 a001 591286729879/2537720636*9349^(10/19) 2865699982045825 a001 225851433717/969323029*9349^(10/19) 2865699982045825 a001 86267571272/370248451*9349^(10/19) 2865699982045825 a001 63246219/271444*9349^(10/19) 2865699982045826 a001 12586269025/54018521*9349^(10/19) 2865699982045832 a001 4807526976/20633239*9349^(10/19) 2865699982045871 a001 1836311903/7881196*9349^(10/19) 2865699982046141 a001 701408733/3010349*9349^(10/19) 2865699982047992 a001 267914296/1149851*9349^(10/19) 2865699982060681 a001 102334155/439204*9349^(10/19) 2865699982147648 a001 39088169/167761*9349^(10/19) 2865699982184061 a001 6624/2161*24476^(19/21) 2865699982743732 a001 14930352/64079*9349^(10/19) 2865699982780250 a001 75025/15127*24476^(6/7) 2865699982867321 a001 121393/15127*24476^(17/21) 2865699982920760 a001 28657/15127*24476^(20/21) 2865699983148858 a001 196418/15127*24476^(16/21) 2865699983327354 a001 165580141/15127*9349^(2/19) 2865699983356115 a001 317811/15127*24476^(5/7) 2865699983377996 a001 2178309/24476*9349^(12/19) 2865699983504873 a001 39088169/103682*9349^(9/19) 2865699983591745 a001 514229/15127*24476^(2/3) 2865699983669927 a001 24157817/39603*9349^(8/19) 2865699983732558 a001 34111385/90481*9349^(9/19) 2865699983765777 a001 267914296/710647*9349^(9/19) 2865699983770624 a001 233802911/620166*9349^(9/19) 2865699983771331 a001 1836311903/4870847*9349^(9/19) 2865699983771434 a001 1602508992/4250681*9349^(9/19) 2865699983771449 a001 12586269025/33385282*9349^(9/19) 2865699983771451 a001 10983760033/29134601*9349^(9/19) 2865699983771451 a001 86267571272/228826127*9349^(9/19) 2865699983771451 a001 267913919/710646*9349^(9/19) 2865699983771451 a001 591286729879/1568397607*9349^(9/19) 2865699983771451 a001 516002918640/1368706081*9349^(9/19) 2865699983771451 a001 4052739537881/10749957122*9349^(9/19) 2865699983771451 a001 3536736619241/9381251041*9349^(9/19) 2865699983771451 a001 6557470319842/17393796001*9349^(9/19) 2865699983771451 a001 2504730781961/6643838879*9349^(9/19) 2865699983771451 a001 956722026041/2537720636*9349^(9/19) 2865699983771451 a001 365435296162/969323029*9349^(9/19) 2865699983771452 a001 139583862445/370248451*9349^(9/19) 2865699983771452 a001 53316291173/141422324*9349^(9/19) 2865699983771452 a001 20365011074/54018521*9349^(9/19) 2865699983771458 a001 7778742049/20633239*9349^(9/19) 2865699983771498 a001 2971215073/7881196*9349^(9/19) 2865699983771768 a001 1134903170/3010349*9349^(9/19) 2865699983773619 a001 433494437/1149851*9349^(9/19) 2865699983786307 a001 165580141/439204*9349^(9/19) 2865699983816537 a001 832040/15127*24476^(13/21) 2865699983873275 a001 63245986/167761*9349^(9/19) 2865699984045469 a001 1346269/15127*24476^(4/7) 2865699984255833 a001 17711*3571^(1/17) 2865699984272820 a001 311187/2161*24476^(11/21) 2865699984314234 a001 17711/15127*64079^(21/23) 2865699984469362 a001 24157817/64079*9349^(9/19) 2865699984500775 a001 3524578/15127*24476^(10/21) 2865699984728499 a001 5702887/15127*24476^(3/7) 2865699984939901 a001 17711/15127*439204^(7/9) 2865699984951426 a001 17711/15127*7881196^(7/11) 2865699984951451 a001 2255/13201*20633239^(5/7) 2865699984951452 a001 17711/15127*20633239^(3/5) 2865699984951456 a001 17711/15127*141422324^(7/13) 2865699984951456 a001 2255/13201*2537720636^(5/9) 2865699984951456 a001 2255/13201*312119004989^(5/11) 2865699984951456 a001 2255/13201*(1/2+1/2*5^(1/2))^25 2865699984951456 a001 2255/13201*3461452808002^(5/12) 2865699984951456 a001 2255/13201*28143753123^(1/2) 2865699984951456 a001 2255/13201*228826127^(5/8) 2865699984951456 a001 17711/15127*2537720636^(7/15) 2865699984951456 a001 17711/15127*17393796001^(3/7) 2865699984951456 a001 17711/15127*45537549124^(7/17) 2865699984951456 a001 17711/15127*14662949395604^(1/3) 2865699984951456 a001 17711/15127*(1/2+1/2*5^(1/2))^21 2865699984951456 a001 17711/15127*192900153618^(7/18) 2865699984951456 a001 17711/15127*10749957122^(7/16) 2865699984951456 a001 17711/15127*599074578^(1/2) 2865699984951457 a001 17711/15127*33385282^(7/12) 2865699984952035 a001 17711/15127*1860498^(7/10) 2865699984952146 a001 2255/13201*1860498^(5/6) 2865699984955712 a001 17711/15127*710647^(3/4) 2865699984956311 a001 9227465/15127*24476^(8/21) 2865699984956992 a001 121393/5778*5778^(5/6) 2865699985052981 a001 267914296/15127*9349^(1/19) 2865699985103789 a001 1762289/12238*9349^(11/19) 2865699985184090 a001 14930352/15127*24476^(1/3) 2865699985184711 a001 17711/15127*103682^(7/8) 2865699985230500 a001 31622993/51841*9349^(8/19) 2865699985395553 a001 39088169/39603*9349^(7/19) 2865699985411881 a001 24157817/15127*24476^(2/7) 2865699985458185 a001 165580141/271443*9349^(8/19) 2865699985491404 a001 433494437/710647*9349^(8/19) 2865699985496250 a001 567451585/930249*9349^(8/19) 2865699985496957 a001 2971215073/4870847*9349^(8/19) 2865699985497060 a001 7778742049/12752043*9349^(8/19) 2865699985497075 a001 10182505537/16692641*9349^(8/19) 2865699985497078 a001 53316291173/87403803*9349^(8/19) 2865699985497078 a001 139583862445/228826127*9349^(8/19) 2865699985497078 a001 182717648081/299537289*9349^(8/19) 2865699985497078 a001 956722026041/1568397607*9349^(8/19) 2865699985497078 a001 2504730781961/4106118243*9349^(8/19) 2865699985497078 a001 3278735159921/5374978561*9349^(8/19) 2865699985497078 a001 10610209857723/17393796001*9349^(8/19) 2865699985497078 a001 4052739537881/6643838879*9349^(8/19) 2865699985497078 a001 1134903780/1860499*9349^(8/19) 2865699985497078 a001 591286729879/969323029*9349^(8/19) 2865699985497078 a001 225851433717/370248451*9349^(8/19) 2865699985497078 a001 21566892818/35355581*9349^(8/19) 2865699985497079 a001 32951280099/54018521*9349^(8/19) 2865699985497085 a001 1144206275/1875749*9349^(8/19) 2865699985497124 a001 1201881744/1970299*9349^(8/19) 2865699985497394 a001 1836311903/3010349*9349^(8/19) 2865699985499245 a001 701408733/1149851*9349^(8/19) 2865699985511934 a001 66978574/109801*9349^(8/19) 2865699985598902 a001 9303105/15251*9349^(8/19) 2865699985639668 a001 39088169/15127*24476^(5/21) 2865699985816407 a001 1836311903/103682*3571^(1/17) 2865699985867456 a001 63245986/15127*24476^(4/21) 2865699985935495 a001 6624/2161*64079^(19/23) 2865699986041804 a001 821223645/28657 2865699986044092 a001 1602508992/90481*3571^(1/17) 2865699986077310 a001 12586269025/710647*3571^(1/17) 2865699986082157 a001 10983760033/620166*3571^(1/17) 2865699986082864 a001 86267571272/4870847*3571^(1/17) 2865699986082967 a001 75283811239/4250681*3571^(1/17) 2865699986082982 a001 591286729879/33385282*3571^(1/17) 2865699986082984 a001 516002918640/29134601*3571^(1/17) 2865699986082985 a001 4052739537881/228826127*3571^(1/17) 2865699986082985 a001 3536736619241/199691526*3571^(1/17) 2865699986082985 a001 6557470319842/370248451*3571^(1/17) 2865699986082985 a001 2504730781961/141422324*3571^(1/17) 2865699986082986 a001 956722026041/54018521*3571^(1/17) 2865699986082992 a001 365435296162/20633239*3571^(1/17) 2865699986083031 a001 139583862445/7881196*3571^(1/17) 2865699986083301 a001 53316291173/3010349*3571^(1/17) 2865699986085152 a001 20365011074/1149851*3571^(1/17) 2865699986095244 a001 6765*24476^(1/7) 2865699986097841 a001 7778742049/439204*3571^(1/17) 2865699986184808 a001 2971215073/167761*3571^(1/17) 2865699986194987 a001 39088169/64079*9349^(8/19) 2865699986223868 a001 121393/15127*64079^(17/23) 2865699986307961 a001 196418/15127*64079^(16/23) 2865699986317774 a001 317811/15127*64079^(15/23) 2865699986323032 a001 165580141/15127*24476^(2/21) 2865699986334241 a001 75025/15127*64079^(18/23) 2865699986355960 a001 514229/15127*64079^(14/23) 2865699986383309 a001 832040/15127*64079^(13/23) 2865699986414797 a001 1346269/15127*64079^(12/23) 2865699986444704 a001 311187/2161*64079^(11/23) 2865699986475214 a001 3524578/15127*64079^(10/23) 2865699986505495 a001 5702887/15127*64079^(9/23) 2865699986511992 a001 6765/103682*7881196^(9/11) 2865699986512029 a001 6765/103682*141422324^(9/13) 2865699986512029 a001 6765/103682*2537720636^(3/5) 2865699986512029 a001 6765/103682*45537549124^(9/17) 2865699986512029 a001 6765/103682*817138163596^(9/19) 2865699986512029 a001 6765/103682*14662949395604^(3/7) 2865699986512029 a001 6765/103682*(1/2+1/2*5^(1/2))^27 2865699986512029 a001 6765/103682*192900153618^(1/2) 2865699986512029 a001 6765/103682*10749957122^(9/16) 2865699986512029 a001 6765/103682*599074578^(9/14) 2865699986512029 a001 6624/2161*817138163596^(1/3) 2865699986512029 a001 6624/2161*(1/2+1/2*5^(1/2))^19 2865699986512030 a001 6624/2161*87403803^(1/2) 2865699986512031 a001 6765/103682*33385282^(3/4) 2865699986512775 a001 6765/103682*1860498^(9/10) 2865699986535863 a001 9227465/15127*64079^(8/23) 2865699986550819 a001 267914296/15127*24476^(1/21) 2865699986566197 a001 14930352/15127*64079^(7/23) 2865699986596545 a001 24157817/15127*64079^(6/23) 2865699986626887 a001 39088169/15127*64079^(5/23) 2865699986657232 a001 63245986/15127*64079^(4/23) 2865699986671109 a001 429998283/15005 2865699986687576 a001 6765*64079^(3/23) 2865699986695555 a001 17711/15127*39603^(21/22) 2865699986711839 a001 317811/15127*167761^(3/5) 2865699986717920 a001 165580141/15127*64079^(2/23) 2865699986723070 a001 6624/2161*103682^(19/24) 2865699986737924 a001 3524578/15127*167761^(2/5) 2865699986739714 a001 2255/90481*(1/2+1/2*5^(1/2))^29 2865699986739714 a001 2255/90481*1322157322203^(1/2) 2865699986739714 a001 121393/15127*45537549124^(1/3) 2865699986739714 a001 121393/15127*(1/2+1/2*5^(1/2))^17 2865699986739723 a001 121393/15127*12752043^(1/2) 2865699986748263 a001 267914296/15127*64079^(1/23) 2865699986758242 a001 39088169/15127*167761^(1/5) 2865699986762923 a001 2814375300/98209 2865699986764680 a001 317811/15127*439204^(5/9) 2865699986772321 a001 1346269/15127*439204^(4/9) 2865699986772912 a001 317811/15127*7881196^(5/11) 2865699986772930 a001 317811/15127*20633239^(3/7) 2865699986772933 a001 317811/15127*141422324^(5/13) 2865699986772933 a001 6765/710647*(1/2+1/2*5^(1/2))^31 2865699986772933 a001 6765/710647*9062201101803^(1/2) 2865699986772933 a001 317811/15127*2537720636^(1/3) 2865699986772933 a001 317811/15127*45537549124^(5/17) 2865699986772933 a001 317811/15127*312119004989^(3/11) 2865699986772933 a001 317811/15127*14662949395604^(5/21) 2865699986772933 a001 317811/15127*(1/2+1/2*5^(1/2))^15 2865699986772933 a001 317811/15127*192900153618^(5/18) 2865699986772933 a001 317811/15127*28143753123^(3/10) 2865699986772933 a001 317811/15127*10749957122^(5/16) 2865699986772933 a001 317811/15127*599074578^(5/14) 2865699986772933 a001 317811/15127*228826127^(3/8) 2865699986772934 a001 317811/15127*33385282^(5/12) 2865699986773347 a001 317811/15127*1860498^(1/2) 2865699986773638 a001 5702887/15127*439204^(1/3) 2865699986775307 a001 24157817/15127*439204^(2/9) 2865699986776319 a001 14736260385/514229 2865699986776957 a001 6765*439204^(1/9) 2865699986777779 a001 55/15126*141422324^(11/13) 2865699986777779 a001 55/15126*2537720636^(11/15) 2865699986777779 a001 55/15126*45537549124^(11/17) 2865699986777779 a001 55/15126*312119004989^(3/5) 2865699986777779 a001 55/15126*817138163596^(11/19) 2865699986777779 a001 55/15126*14662949395604^(11/21) 2865699986777779 a001 55/15126*(1/2+1/2*5^(1/2))^33 2865699986777779 a001 55/15126*192900153618^(11/18) 2865699986777779 a001 55/15126*10749957122^(11/16) 2865699986777779 a001 55/15126*1568397607^(3/4) 2865699986777779 a001 55/15126*599074578^(11/14) 2865699986777779 a001 832040/15127*141422324^(1/3) 2865699986777779 a001 832040/15127*(1/2+1/2*5^(1/2))^13 2865699986777779 a001 832040/15127*73681302247^(1/4) 2865699986777782 a001 55/15126*33385282^(11/12) 2865699986778273 a001 38580030555/1346269 2865699986778471 a001 311187/2161*7881196^(1/3) 2865699986778486 a001 6765/4870847*2537720636^(7/9) 2865699986778486 a001 6765/4870847*17393796001^(5/7) 2865699986778486 a001 6765/4870847*312119004989^(7/11) 2865699986778486 a001 6765/4870847*14662949395604^(5/9) 2865699986778486 a001 6765/4870847*(1/2+1/2*5^(1/2))^35 2865699986778486 a001 6765/4870847*505019158607^(5/8) 2865699986778486 a001 6765/4870847*28143753123^(7/10) 2865699986778486 a001 6765/4870847*599074578^(5/6) 2865699986778486 a001 6765/4870847*228826127^(7/8) 2865699986778486 a001 311187/2161*312119004989^(1/5) 2865699986778486 a001 311187/2161*(1/2+1/2*5^(1/2))^11 2865699986778486 a001 311187/2161*1568397607^(1/4) 2865699986778559 a001 50501915640/1762289 2865699986778577 a001 5702887/15127*7881196^(3/11) 2865699986778590 a001 2255/4250681*(1/2+1/2*5^(1/2))^37 2865699986778590 a001 5702887/15127*141422324^(3/13) 2865699986778590 a001 5702887/15127*2537720636^(1/5) 2865699986778590 a001 5702887/15127*45537549124^(3/17) 2865699986778590 a001 5702887/15127*14662949395604^(1/7) 2865699986778590 a001 5702887/15127*(1/2+1/2*5^(1/2))^9 2865699986778590 a001 5702887/15127*192900153618^(1/6) 2865699986778590 a001 5702887/15127*10749957122^(3/16) 2865699986778590 a001 5702887/15127*599074578^(3/14) 2865699986778590 a001 5702887/15127*33385282^(1/4) 2865699986778600 a001 24157817/15127*7881196^(2/11) 2865699986778600 a001 52886292657/1845493 2865699986778603 a001 6765*7881196^(1/11) 2865699986778603 a001 14930352/15127*20633239^(1/5) 2865699986778605 a001 6765/33385282*2537720636^(13/15) 2865699986778605 a001 6765/33385282*45537549124^(13/17) 2865699986778605 a001 6765/33385282*14662949395604^(13/21) 2865699986778605 a001 6765/33385282*(1/2+1/2*5^(1/2))^39 2865699986778605 a001 6765/33385282*192900153618^(13/18) 2865699986778605 a001 6765/33385282*73681302247^(3/4) 2865699986778605 a001 6765/33385282*10749957122^(13/16) 2865699986778605 a001 6765/33385282*599074578^(13/14) 2865699986778605 a001 14930352/15127*17393796001^(1/7) 2865699986778605 a001 14930352/15127*14662949395604^(1/9) 2865699986778605 a001 14930352/15127*(1/2+1/2*5^(1/2))^7 2865699986778605 a001 14930352/15127*599074578^(1/6) 2865699986778606 a001 39088169/15127*20633239^(1/7) 2865699986778606 a001 692290558575/24157817 2865699986778607 a001 39088169/15127*2537720636^(1/9) 2865699986778607 a001 39088169/15127*312119004989^(1/11) 2865699986778607 a001 39088169/15127*(1/2+1/2*5^(1/2))^5 2865699986778607 a001 39088169/15127*28143753123^(1/10) 2865699986778607 a001 39088169/15127*228826127^(1/8) 2865699986778607 a001 906220106220/31622993 2865699986778607 a001 4745030078745/165580141 2865699986778607 a001 6765*141422324^(1/13) 2865699986778607 a001 2255/199691526*45537549124^(15/17) 2865699986778607 a001 2255/199691526*312119004989^(9/11) 2865699986778607 a001 2255/199691526*14662949395604^(5/7) 2865699986778607 a001 2255/199691526*192900153618^(5/6) 2865699986778607 a001 2255/199691526*28143753123^(9/10) 2865699986778607 a001 2255/199691526*10749957122^(15/16) 2865699986778607 a001 12422650023795/433494437 2865699986778607 a001 3252291999264/113490317 2865699986778607 a001 2255/1368706081*14662949395604^(7/9) 2865699986778607 a001 2255/1368706081*505019158607^(7/8) 2865699986778607 a001 85146109954125/2971215073 2865699986778607 a001 6765*2537720636^(1/15) 2865699986778607 a001 6765/10749957122*817138163596^(17/19) 2865699986778607 a001 6765/10749957122*14662949395604^(17/21) 2865699986778607 a001 6765/10749957122*192900153618^(17/18) 2865699986778607 a001 222915409869735/7778742049 2865699986778607 a001 291800059827540/10182505537 2865699986778607 a001 6765/73681302247*3461452808002^(11/12) 2865699986778607 a001 1527884949095505/53316291173 2865699986778607 a001 2255/64300051206*14662949395604^(19/21) 2865699986778607 a001 5236139616899400/182717648081 2865699986778607 a001 16944503739966165/591286729879 2865699986778607 a001 2157408168722455/75283811239 2865699986778607 a001 1236084889267965/43133785636 2865699986778607 a001 6765/119218851371*14662949395604^(8/9) 2865699986778607 a001 314761609813475/10983760033 2865699986778607 a001 6765/45537549124*14662949395604^(6/7) 2865699986778607 a001 6765*10749957122^(1/16) 2865699986778607 a001 6557903814279/228841255 2865699986778607 a001 6765/17393796001*23725150497407^(13/16) 2865699986778607 a001 6765/17393796001*505019158607^(13/14) 2865699986778607 a001 22961549985935/801254496 2865699986778607 a001 6765/6643838879*312119004989^(10/11) 2865699986778607 a001 6765/6643838879*3461452808002^(5/6) 2865699986778607 a001 52623189961485/1836311903 2865699986778607 a001 615/230701876*45537549124^(16/17) 2865699986778607 a001 615/230701876*14662949395604^(16/21) 2865699986778607 a001 615/230701876*192900153618^(8/9) 2865699986778607 a001 615/230701876*73681302247^(12/13) 2865699986778607 a001 6765*599074578^(1/14) 2865699986778607 a001 6700089989615/233802911 2865699986778607 a001 6765/969323029*10749957122^(23/24) 2865699986778607 a001 3838809972525/133957148 2865699986778607 a001 6765/370248451*312119004989^(4/5) 2865699986778607 a001 6765/370248451*23725150497407^(11/16) 2865699986778607 a001 6765/370248451*73681302247^(11/13) 2865699986778607 a001 6765/370248451*10749957122^(11/12) 2865699986778607 a001 6765/370248451*4106118243^(22/23) 2865699986778607 a001 133957148/15127+133957148/15127*5^(1/2) 2865699986778607 a001 433494437/15127 2865699986778607 a001 165580141/15127*(1/2+1/2*5^(1/2))^2 2865699986778607 a001 165580141/15127*10749957122^(1/24) 2865699986778607 a001 165580141/15127*4106118243^(1/23) 2865699986778607 a001 165580141/15127*1568397607^(1/22) 2865699986778607 a001 165580141/15127*599074578^(1/21) 2865699986778607 a001 165580141/15127*228826127^(1/20) 2865699986778607 a001 165580141/15127*87403803^(1/19) 2865699986778607 a001 6765/141422324*2537720636^(14/15) 2865699986778607 a001 6765/141422324*17393796001^(6/7) 2865699986778607 a001 6765/141422324*45537549124^(14/17) 2865699986778607 a001 6765/141422324*14662949395604^(2/3) 2865699986778607 a001 6765/141422324*505019158607^(3/4) 2865699986778607 a001 6765/141422324*192900153618^(7/9) 2865699986778607 a001 6765/141422324*10749957122^(7/8) 2865699986778607 a001 6765/141422324*4106118243^(21/23) 2865699986778607 a001 6765/141422324*1568397607^(21/22) 2865699986778607 a001 63245986/15127*(1/2+1/2*5^(1/2))^4 2865699986778607 a001 63245986/15127*23725150497407^(1/16) 2865699986778607 a001 63245986/15127*73681302247^(1/13) 2865699986778607 a001 63245986/15127*10749957122^(1/12) 2865699986778607 a001 63245986/15127*4106118243^(2/23) 2865699986778607 a001 63245986/15127*1568397607^(1/11) 2865699986778607 a001 63245986/15127*599074578^(2/21) 2865699986778607 a001 63245986/15127*228826127^(1/10) 2865699986778607 a001 6765*33385282^(1/12) 2865699986778607 a001 165580141/15127*33385282^(1/18) 2865699986778607 a001 63245986/15127*87403803^(2/19) 2865699986778608 a001 1120149653865/39088169 2865699986778608 a001 63245986/15127*33385282^(1/9) 2865699986778608 a001 6765/54018521*2537720636^(8/9) 2865699986778608 a001 6765/54018521*312119004989^(8/11) 2865699986778608 a001 6765/54018521*23725150497407^(5/8) 2865699986778608 a001 6765/54018521*73681302247^(10/13) 2865699986778608 a001 6765/54018521*28143753123^(4/5) 2865699986778608 a001 6765/54018521*10749957122^(5/6) 2865699986778608 a001 6765/54018521*4106118243^(20/23) 2865699986778608 a001 6765/54018521*1568397607^(10/11) 2865699986778608 a001 6765/54018521*599074578^(20/21) 2865699986778608 a001 24157817/15127*141422324^(2/13) 2865699986778608 a001 24157817/15127*2537720636^(2/15) 2865699986778608 a001 24157817/15127*45537549124^(2/17) 2865699986778608 a001 24157817/15127*14662949395604^(2/21) 2865699986778608 a001 24157817/15127*(1/2+1/2*5^(1/2))^6 2865699986778608 a001 24157817/15127*10749957122^(1/8) 2865699986778608 a001 24157817/15127*4106118243^(3/23) 2865699986778608 a001 24157817/15127*1568397607^(3/22) 2865699986778608 a001 24157817/15127*599074578^(1/7) 2865699986778608 a001 24157817/15127*228826127^(3/20) 2865699986778608 a001 24157817/15127*87403803^(3/19) 2865699986778608 a001 165580141/15127*12752043^(1/17) 2865699986778609 a001 24157817/15127*33385282^(1/6) 2865699986778610 a001 63245986/15127*12752043^(2/17) 2865699986778610 a001 71309849215/2488392 2865699986778611 a001 24157817/15127*12752043^(3/17) 2865699986778614 a001 615/1875749*817138163596^(2/3) 2865699986778614 a001 615/1875749*(1/2+1/2*5^(1/2))^38 2865699986778614 a001 615/1875749*10749957122^(19/24) 2865699986778614 a001 615/1875749*4106118243^(19/23) 2865699986778614 a001 615/1875749*1568397607^(19/22) 2865699986778614 a001 615/1875749*599074578^(19/21) 2865699986778614 a001 615/1875749*228826127^(19/20) 2865699986778614 a001 9227465/15127*(1/2+1/2*5^(1/2))^8 2865699986778614 a001 9227465/15127*23725150497407^(1/8) 2865699986778614 a001 9227465/15127*505019158607^(1/7) 2865699986778614 a001 9227465/15127*73681302247^(2/13) 2865699986778614 a001 9227465/15127*10749957122^(1/6) 2865699986778614 a001 9227465/15127*4106118243^(4/23) 2865699986778614 a001 9227465/15127*1568397607^(2/11) 2865699986778614 a001 9227465/15127*599074578^(4/21) 2865699986778614 a001 9227465/15127*228826127^(1/5) 2865699986778614 a001 9227465/15127*87403803^(4/19) 2865699986778615 a001 9227465/15127*33385282^(2/9) 2865699986778615 a001 165580141/15127*4870847^(1/16) 2865699986778618 a001 9227465/15127*12752043^(4/17) 2865699986778623 a001 63245986/15127*4870847^(1/8) 2865699986778626 a001 163427632005/5702887 2865699986778631 a001 24157817/15127*4870847^(3/16) 2865699986778644 a001 9227465/15127*4870847^(1/4) 2865699986778651 a001 3524578/15127*20633239^(2/7) 2865699986778653 a001 6765/7881196*141422324^(12/13) 2865699986778653 a001 6765/7881196*2537720636^(4/5) 2865699986778653 a001 6765/7881196*45537549124^(12/17) 2865699986778653 a001 6765/7881196*14662949395604^(4/7) 2865699986778653 a001 6765/7881196*(1/2+1/2*5^(1/2))^36 2865699986778653 a001 6765/7881196*505019158607^(9/14) 2865699986778653 a001 6765/7881196*192900153618^(2/3) 2865699986778653 a001 6765/7881196*73681302247^(9/13) 2865699986778653 a001 6765/7881196*10749957122^(3/4) 2865699986778653 a001 6765/7881196*4106118243^(18/23) 2865699986778653 a001 6765/7881196*1568397607^(9/11) 2865699986778653 a001 6765/7881196*599074578^(6/7) 2865699986778653 a001 6765/7881196*228826127^(9/10) 2865699986778653 a001 3524578/15127*2537720636^(2/9) 2865699986778653 a001 3524578/15127*312119004989^(2/11) 2865699986778653 a001 3524578/15127*(1/2+1/2*5^(1/2))^10 2865699986778653 a001 3524578/15127*28143753123^(1/5) 2865699986778653 a001 3524578/15127*10749957122^(5/24) 2865699986778653 a001 3524578/15127*4106118243^(5/23) 2865699986778653 a001 3524578/15127*1568397607^(5/22) 2865699986778653 a001 3524578/15127*599074578^(5/21) 2865699986778653 a001 3524578/15127*228826127^(1/4) 2865699986778654 a001 3524578/15127*87403803^(5/19) 2865699986778654 a001 6765/7881196*87403803^(18/19) 2865699986778654 a001 3524578/15127*33385282^(5/18) 2865699986778659 a001 3524578/15127*12752043^(5/17) 2865699986778662 a001 165580141/15127*1860498^(1/15) 2865699986778690 a001 6765*1860498^(1/10) 2865699986778691 a001 3524578/15127*4870847^(5/16) 2865699986778718 a001 63245986/15127*1860498^(2/15) 2865699986778735 a001 20807933575/726103 2865699986778745 a001 39088169/15127*1860498^(1/6) 2865699986778774 a001 24157817/15127*1860498^(1/5) 2865699986778835 a001 9227465/15127*1860498^(4/15) 2865699986778838 a001 5702887/15127*1860498^(3/10) 2865699986778907 a001 1346269/15127*7881196^(4/11) 2865699986778923 a001 6765/3010349*45537549124^(2/3) 2865699986778923 a001 6765/3010349*(1/2+1/2*5^(1/2))^34 2865699986778923 a001 6765/3010349*10749957122^(17/24) 2865699986778923 a001 6765/3010349*4106118243^(17/23) 2865699986778923 a001 6765/3010349*1568397607^(17/22) 2865699986778923 a001 6765/3010349*599074578^(17/21) 2865699986778923 a001 1346269/15127*141422324^(4/13) 2865699986778924 a001 6765/3010349*228826127^(17/20) 2865699986778924 a001 1346269/15127*2537720636^(4/15) 2865699986778924 a001 1346269/15127*45537549124^(4/17) 2865699986778924 a001 1346269/15127*817138163596^(4/19) 2865699986778924 a001 1346269/15127*14662949395604^(4/21) 2865699986778924 a001 1346269/15127*(1/2+1/2*5^(1/2))^12 2865699986778924 a001 1346269/15127*192900153618^(2/9) 2865699986778924 a001 1346269/15127*73681302247^(3/13) 2865699986778924 a001 1346269/15127*10749957122^(1/4) 2865699986778924 a001 1346269/15127*4106118243^(6/23) 2865699986778924 a001 1346269/15127*1568397607^(3/11) 2865699986778924 a001 1346269/15127*599074578^(2/7) 2865699986778924 a001 1346269/15127*228826127^(3/10) 2865699986778924 a001 1346269/15127*87403803^(6/19) 2865699986778924 a001 6765/3010349*87403803^(17/19) 2865699986778924 a001 1346269/15127*33385282^(1/3) 2865699986778926 a001 6765/3010349*33385282^(17/18) 2865699986778929 a001 3524578/15127*1860498^(1/3) 2865699986778930 a001 1346269/15127*12752043^(6/17) 2865699986778969 a001 1346269/15127*4870847^(3/8) 2865699986779013 a001 165580141/15127*710647^(1/14) 2865699986779255 a001 1346269/15127*1860498^(2/5) 2865699986779418 a001 63245986/15127*710647^(1/7) 2865699986779481 a001 216761547/7564 2865699986779824 a001 24157817/15127*710647^(3/14) 2865699986780023 a001 14930352/15127*710647^(1/4) 2865699986780235 a001 9227465/15127*710647^(2/7) 2865699986780680 a001 3524578/15127*710647^(5/14) 2865699986780772 a001 514229/15127*20633239^(2/5) 2865699986780775 a001 6765/1149851*(1/2+1/2*5^(1/2))^32 2865699986780775 a001 6765/1149851*23725150497407^(1/2) 2865699986780775 a001 6765/1149851*73681302247^(8/13) 2865699986780775 a001 6765/1149851*10749957122^(2/3) 2865699986780775 a001 6765/1149851*4106118243^(16/23) 2865699986780775 a001 6765/1149851*1568397607^(8/11) 2865699986780775 a001 6765/1149851*599074578^(16/21) 2865699986780775 a001 6765/1149851*228826127^(4/5) 2865699986780775 a001 514229/15127*17393796001^(2/7) 2865699986780775 a001 514229/15127*14662949395604^(2/9) 2865699986780775 a001 514229/15127*(1/2+1/2*5^(1/2))^14 2865699986780775 a001 514229/15127*10749957122^(7/24) 2865699986780775 a001 514229/15127*4106118243^(7/23) 2865699986780775 a001 514229/15127*1568397607^(7/22) 2865699986780775 a001 514229/15127*599074578^(1/3) 2865699986780775 a001 514229/15127*228826127^(7/20) 2865699986780775 a001 514229/15127*87403803^(7/19) 2865699986780775 a001 6765/1149851*87403803^(16/19) 2865699986780776 a001 514229/15127*33385282^(7/18) 2865699986780777 a001 6765/1149851*33385282^(8/9) 2865699986780782 a001 514229/15127*12752043^(7/17) 2865699986780791 a001 6765/1149851*12752043^(16/17) 2865699986780828 a001 514229/15127*4870847^(7/16) 2865699986780895 a001 1134903170/64079*3571^(1/17) 2865699986781161 a001 514229/15127*1860498^(7/15) 2865699986781355 a001 1346269/15127*710647^(3/7) 2865699986781599 a001 165580141/15127*271443^(1/13) 2865699986783612 a001 514229/15127*710647^(1/2) 2865699986784591 a001 63245986/15127*271443^(2/13) 2865699986784598 a001 3035836595/105937 2865699986787584 a001 24157817/15127*271443^(3/13) 2865699986789715 a001 267914296/15127*103682^(1/24) 2865699986790581 a001 9227465/15127*271443^(4/13) 2865699986793421 a001 6765/439204*7881196^(10/11) 2865699986793457 a001 6765/439204*20633239^(6/7) 2865699986793463 a001 6765/439204*141422324^(10/13) 2865699986793463 a001 6765/439204*2537720636^(2/3) 2865699986793463 a001 6765/439204*45537549124^(10/17) 2865699986793463 a001 6765/439204*312119004989^(6/11) 2865699986793463 a001 6765/439204*14662949395604^(10/21) 2865699986793463 a001 6765/439204*(1/2+1/2*5^(1/2))^30 2865699986793463 a001 6765/439204*192900153618^(5/9) 2865699986793463 a001 6765/439204*28143753123^(3/5) 2865699986793463 a001 6765/439204*10749957122^(5/8) 2865699986793463 a001 6765/439204*4106118243^(15/23) 2865699986793463 a001 6765/439204*1568397607^(15/22) 2865699986793463 a001 6765/439204*599074578^(5/7) 2865699986793463 a001 6765/439204*228826127^(3/4) 2865699986793463 a001 196418/15127*(1/2+1/2*5^(1/2))^16 2865699986793463 a001 196418/15127*23725150497407^(1/4) 2865699986793463 a001 196418/15127*73681302247^(4/13) 2865699986793463 a001 196418/15127*10749957122^(1/3) 2865699986793463 a001 196418/15127*4106118243^(8/23) 2865699986793463 a001 196418/15127*1568397607^(4/11) 2865699986793463 a001 196418/15127*599074578^(8/21) 2865699986793463 a001 196418/15127*228826127^(2/5) 2865699986793463 a001 196418/15127*87403803^(8/19) 2865699986793463 a001 6765/439204*87403803^(15/19) 2865699986793464 a001 196418/15127*33385282^(4/9) 2865699986793465 a001 6765/439204*33385282^(5/6) 2865699986793471 a001 196418/15127*12752043^(8/17) 2865699986793479 a001 6765/439204*12752043^(15/17) 2865699986793524 a001 196418/15127*4870847^(1/2) 2865699986793576 a001 6765/439204*4870847^(15/16) 2865699986793612 a001 3524578/15127*271443^(5/13) 2865699986793905 a001 196418/15127*1860498^(8/15) 2865699986796706 a001 196418/15127*710647^(4/7) 2865699986796874 a001 1346269/15127*271443^(6/13) 2865699986797226 a001 832040/15127*271443^(1/2) 2865699986800822 a001 165580141/15127*103682^(1/12) 2865699986801717 a001 514229/15127*271443^(7/13) 2865699986811929 a001 6765*103682^(1/8) 2865699986817397 a001 196418/15127*271443^(8/13) 2865699986819668 a001 3478759185/121393 2865699986823037 a001 63245986/15127*103682^(1/6) 2865699986829352 a001 5702887/24476*9349^(10/19) 2865699986834144 a001 39088169/15127*103682^(5/24) 2865699986845253 a001 24157817/15127*103682^(1/4) 2865699986856357 a001 14930352/15127*103682^(7/24) 2865699986861660 a001 267914296/15127*39603^(1/22) 2865699986867473 a001 9227465/15127*103682^(1/3) 2865699986869639 a001 28657/15127*64079^(20/23) 2865699986870527 a001 75025/15127*439204^(2/3) 2865699986878556 a001 5702887/15127*103682^(3/8) 2865699986880406 a001 75025/15127*7881196^(6/11) 2865699986880426 a001 615/15251*20633239^(4/5) 2865699986880431 a001 75025/15127*141422324^(6/13) 2865699986880431 a001 615/15251*17393796001^(4/7) 2865699986880431 a001 615/15251*14662949395604^(4/9) 2865699986880431 a001 615/15251*(1/2+1/2*5^(1/2))^28 2865699986880431 a001 615/15251*505019158607^(1/2) 2865699986880431 a001 615/15251*73681302247^(7/13) 2865699986880431 a001 615/15251*10749957122^(7/12) 2865699986880431 a001 615/15251*4106118243^(14/23) 2865699986880431 a001 615/15251*1568397607^(7/11) 2865699986880431 a001 615/15251*599074578^(2/3) 2865699986880431 a001 615/15251*228826127^(7/10) 2865699986880431 a001 75025/15127*2537720636^(2/5) 2865699986880431 a001 75025/15127*45537549124^(6/17) 2865699986880431 a001 75025/15127*14662949395604^(2/7) 2865699986880431 a001 75025/15127*(1/2+1/2*5^(1/2))^18 2865699986880431 a001 75025/15127*192900153618^(1/3) 2865699986880431 a001 75025/15127*10749957122^(3/8) 2865699986880431 a001 75025/15127*4106118243^(9/23) 2865699986880431 a001 75025/15127*1568397607^(9/22) 2865699986880431 a001 75025/15127*599074578^(3/7) 2865699986880431 a001 75025/15127*228826127^(9/20) 2865699986880431 a001 75025/15127*87403803^(9/19) 2865699986880431 a001 615/15251*87403803^(14/19) 2865699986880432 a001 75025/15127*33385282^(1/2) 2865699986880433 a001 615/15251*33385282^(7/9) 2865699986880440 a001 75025/15127*12752043^(9/17) 2865699986880445 a001 615/15251*12752043^(14/17) 2865699986880499 a001 75025/15127*4870847^(9/16) 2865699986880537 a001 615/15251*4870847^(7/8) 2865699986880928 a001 75025/15127*1860498^(3/5) 2865699986881204 a001 615/15251*1860498^(14/15) 2865699986884079 a001 75025/15127*710647^(9/14) 2865699986889728 a001 3524578/15127*103682^(5/12) 2865699986900668 a001 311187/2161*103682^(11/24) 2865699986907357 a001 75025/15127*271443^(9/13) 2865699986912212 a001 1346269/15127*103682^(1/2) 2865699986922176 a001 832040/15127*103682^(13/24) 2865699986928540 a001 121393/15127*103682^(17/24) 2865699986936278 a001 514229/15127*103682^(7/12) 2865699986939544 a001 317811/15127*103682^(5/8) 2865699986944712 a001 165580141/15127*39603^(1/11) 2865699986956127 a001 102334155/103682*9349^(7/19) 2865699986971182 a001 196418/15127*103682^(2/3) 2865699987006995 a001 31622993/2889*2207^(1/8) 2865699987027764 a001 6765*39603^(3/22) 2865699987039285 a001 24157817/2207*843^(1/7) 2865699987060041 a001 221461295/7728 2865699987080364 a001 75025/15127*103682^(3/4) 2865699987110817 a001 63245986/15127*39603^(2/11) 2865699987121180 a001 63245986/39603*9349^(6/19) 2865699987183811 a001 267914296/271443*9349^(7/19) 2865699987193869 a001 39088169/15127*39603^(5/22) 2865699987217030 a001 701408733/710647*9349^(7/19) 2865699987221877 a001 1836311903/1860498*9349^(7/19) 2865699987222584 a001 4807526976/4870847*9349^(7/19) 2865699987222687 a001 12586269025/12752043*9349^(7/19) 2865699987222702 a001 32951280099/33385282*9349^(7/19) 2865699987222704 a001 86267571272/87403803*9349^(7/19) 2865699987222704 a001 225851433717/228826127*9349^(7/19) 2865699987222704 a001 591286729879/599074578*9349^(7/19) 2865699987222704 a001 1548008755920/1568397607*9349^(7/19) 2865699987222704 a001 4052739537881/4106118243*9349^(7/19) 2865699987222704 a001 4807525989/4870846*9349^(7/19) 2865699987222704 a001 6557470319842/6643838879*9349^(7/19) 2865699987222704 a001 2504730781961/2537720636*9349^(7/19) 2865699987222704 a001 956722026041/969323029*9349^(7/19) 2865699987222704 a001 365435296162/370248451*9349^(7/19) 2865699987222705 a001 139583862445/141422324*9349^(7/19) 2865699987222705 a001 53316291173/54018521*9349^(7/19) 2865699987222711 a001 20365011074/20633239*9349^(7/19) 2865699987222751 a001 7778742049/7881196*9349^(7/19) 2865699987223021 a001 2971215073/3010349*9349^(7/19) 2865699987224872 a001 1134903170/1149851*9349^(7/19) 2865699987237560 a001 433494437/439204*9349^(7/19) 2865699987276922 a001 24157817/15127*39603^(3/11) 2865699987324528 a001 165580141/167761*9349^(7/19) 2865699987359971 a001 14930352/15127*39603^(7/22) 2865699987395058 a001 28657/15127*167761^(4/5) 2865699987404781 a001 267914296/15127*15127^(1/20) 2865699987443033 a001 9227465/15127*39603^(4/11) 2865699987476513 a001 28657/15127*20633239^(4/7) 2865699987476517 a001 6765/64079*141422324^(2/3) 2865699987476517 a001 6765/64079*(1/2+1/2*5^(1/2))^26 2865699987476517 a001 6765/64079*73681302247^(1/2) 2865699987476517 a001 6765/64079*10749957122^(13/24) 2865699987476517 a001 6765/64079*4106118243^(13/23) 2865699987476517 a001 6765/64079*1568397607^(13/22) 2865699987476517 a001 6765/64079*599074578^(13/21) 2865699987476517 a001 6765/64079*228826127^(13/20) 2865699987476517 a001 28657/15127*2537720636^(4/9) 2865699987476517 a001 28657/15127*(1/2+1/2*5^(1/2))^20 2865699987476517 a001 28657/15127*23725150497407^(5/16) 2865699987476517 a001 28657/15127*505019158607^(5/14) 2865699987476517 a001 28657/15127*73681302247^(5/13) 2865699987476517 a001 28657/15127*28143753123^(2/5) 2865699987476517 a001 28657/15127*10749957122^(5/12) 2865699987476517 a001 28657/15127*4106118243^(10/23) 2865699987476517 a001 28657/15127*1568397607^(5/11) 2865699987476517 a001 28657/15127*599074578^(10/21) 2865699987476517 a001 28657/15127*228826127^(1/2) 2865699987476517 a001 28657/15127*87403803^(10/19) 2865699987476517 a001 6765/64079*87403803^(13/19) 2865699987476518 a001 28657/15127*33385282^(5/9) 2865699987476519 a001 6765/64079*33385282^(13/18) 2865699987476527 a001 28657/15127*12752043^(10/17) 2865699987476530 a001 6765/64079*12752043^(13/17) 2865699987476593 a001 28657/15127*4870847^(5/8) 2865699987476615 a001 6765/64079*4870847^(13/16) 2865699987477069 a001 28657/15127*1860498^(2/3) 2865699987477234 a001 6765/64079*1860498^(13/15) 2865699987480570 a001 28657/15127*710647^(5/7) 2865699987481786 a001 6765/64079*710647^(13/14) 2865699987506435 a001 28657/15127*271443^(10/13) 2865699987526061 a001 5702887/15127*39603^(9/22) 2865699987609177 a001 3524578/15127*39603^(5/11) 2865699987692062 a001 311187/2161*39603^(1/2) 2865699987698665 a001 28657/15127*103682^(5/6) 2865699987775552 a001 1346269/15127*39603^(6/11) 2865699987857460 a001 832040/15127*39603^(13/22) 2865699987920614 a001 63245986/64079*9349^(7/19) 2865699987943507 a001 514229/15127*39603^(7/11) 2865699988018718 a001 317811/15127*39603^(15/22) 2865699988030956 a001 165580141/15127*15127^(1/10) 2865699988090024 a001 6624/2161*39603^(19/22) 2865699988122301 a001 196418/15127*39603^(8/11) 2865699988151604 a001 121393/15127*39603^(17/22) 2865699988375373 a001 75025/15127*39603^(9/11) 2865699988555003 a001 9227465/24476*9349^(9/19) 2865699988657130 a001 6765*15127^(3/20) 2865699988681753 a001 165580141/103682*9349^(6/19) 2865699988707582 a001 507544125/17711 2865699988846806 a001 34111385/13201*9349^(5/19) 2865699988909438 a001 433494437/271443*9349^(6/19) 2865699988942656 a001 1134903170/710647*9349^(6/19) 2865699988947503 a001 2971215073/1860498*9349^(6/19) 2865699988948210 a001 7778742049/4870847*9349^(6/19) 2865699988948313 a001 20365011074/12752043*9349^(6/19) 2865699988948328 a001 53316291173/33385282*9349^(6/19) 2865699988948331 a001 139583862445/87403803*9349^(6/19) 2865699988948331 a001 365435296162/228826127*9349^(6/19) 2865699988948331 a001 956722026041/599074578*9349^(6/19) 2865699988948331 a001 2504730781961/1568397607*9349^(6/19) 2865699988948331 a001 6557470319842/4106118243*9349^(6/19) 2865699988948331 a001 10610209857723/6643838879*9349^(6/19) 2865699988948331 a001 4052739537881/2537720636*9349^(6/19) 2865699988948331 a001 1548008755920/969323029*9349^(6/19) 2865699988948331 a001 591286729879/370248451*9349^(6/19) 2865699988948331 a001 225851433717/141422324*9349^(6/19) 2865699988948332 a001 86267571272/54018521*9349^(6/19) 2865699988948338 a001 32951280099/20633239*9349^(6/19) 2865699988948377 a001 12586269025/7881196*9349^(6/19) 2865699988948647 a001 4807526976/3010349*9349^(6/19) 2865699988950498 a001 1836311903/1149851*9349^(6/19) 2865699988963187 a001 701408733/439204*9349^(6/19) 2865699989050155 a001 267914296/167761*9349^(6/19) 2865699989137564 a001 28657/15127*39603^(10/11) 2865699989283304 a001 63245986/15127*15127^(1/5) 2865699989646241 a001 102334155/64079*9349^(6/19) 2865699989866444 a001 75025/5778*5778^(8/9) 2865699989909478 a001 39088169/15127*15127^(1/4) 2865699990280620 a001 3732588/6119*9349^(8/19) 2865699990407380 a001 133957148/51841*9349^(5/19) 2865699990535653 a001 24157817/15127*15127^(3/10) 2865699990572432 a001 165580141/39603*9349^(4/19) 2865699990635064 a001 233802911/90481*9349^(5/19) 2865699990668283 a001 1836311903/710647*9349^(5/19) 2865699990673129 a001 267084832/103361*9349^(5/19) 2865699990673837 a001 12586269025/4870847*9349^(5/19) 2865699990673940 a001 10983760033/4250681*9349^(5/19) 2865699990673955 a001 43133785636/16692641*9349^(5/19) 2865699990673957 a001 75283811239/29134601*9349^(5/19) 2865699990673957 a001 591286729879/228826127*9349^(5/19) 2865699990673957 a001 86000486440/33281921*9349^(5/19) 2865699990673957 a001 4052739537881/1568397607*9349^(5/19) 2865699990673957 a001 3536736619241/1368706081*9349^(5/19) 2865699990673957 a001 3278735159921/1268860318*9349^(5/19) 2865699990673957 a001 2504730781961/969323029*9349^(5/19) 2865699990673957 a001 956722026041/370248451*9349^(5/19) 2865699990673958 a001 182717648081/70711162*9349^(5/19) 2865699990673958 a001 139583862445/54018521*9349^(5/19) 2865699990673964 a001 53316291173/20633239*9349^(5/19) 2865699990674004 a001 10182505537/3940598*9349^(5/19) 2865699990674274 a001 7778742049/3010349*9349^(5/19) 2865699990676125 a001 2971215073/1149851*9349^(5/19) 2865699990688813 a001 567451585/219602*9349^(5/19) 2865699990775781 a001 433494437/167761*9349^(5/19) 2865699990864242 a001 1292+12238*5^(1/2) 2865699990864242 a001 313679521/10946 2865699990866529 a001 433494437/24476*3571^(1/17) 2865699990894586 a001 10946/15127*64079^(22/23) 2865699991161824 a001 14930352/15127*15127^(7/20) 2865699991371867 a001 165580141/64079*9349^(5/19) 2865699991547342 a001 267914296/15127*5778^(1/18) 2865699991548947 a001 6765/24476*439204^(8/9) 2865699991562118 a001 6765/24476*7881196^(8/11) 2865699991562121 a001 10946/15127*7881196^(2/3) 2865699991562152 a001 6765/24476*141422324^(8/13) 2865699991562152 a001 6765/24476*2537720636^(8/15) 2865699991562152 a001 6765/24476*45537549124^(8/17) 2865699991562152 a001 6765/24476*14662949395604^(8/21) 2865699991562152 a001 6765/24476*(1/2+1/2*5^(1/2))^24 2865699991562152 a001 6765/24476*192900153618^(4/9) 2865699991562152 a001 6765/24476*73681302247^(6/13) 2865699991562152 a001 6765/24476*10749957122^(1/2) 2865699991562152 a001 6765/24476*4106118243^(12/23) 2865699991562152 a001 6765/24476*1568397607^(6/11) 2865699991562152 a001 6765/24476*599074578^(4/7) 2865699991562152 a001 6765/24476*228826127^(3/5) 2865699991562152 a001 10946/15127*312119004989^(2/5) 2865699991562152 a001 10946/15127*(1/2+1/2*5^(1/2))^22 2865699991562152 a001 10946/15127*10749957122^(11/24) 2865699991562152 a001 10946/15127*4106118243^(11/23) 2865699991562152 a001 10946/15127*1568397607^(1/2) 2865699991562152 a001 10946/15127*599074578^(11/21) 2865699991562152 a001 10946/15127*228826127^(11/20) 2865699991562152 a001 6765/24476*87403803^(12/19) 2865699991562152 a001 10946/15127*87403803^(11/19) 2865699991562153 a001 10946/15127*33385282^(11/18) 2865699991562154 a001 6765/24476*33385282^(2/3) 2865699991562163 a001 10946/15127*12752043^(11/17) 2865699991562164 a001 6765/24476*12752043^(12/17) 2865699991562235 a001 10946/15127*4870847^(11/16) 2865699991562242 a001 6765/24476*4870847^(3/4) 2865699991562759 a001 10946/15127*1860498^(11/15) 2865699991562814 a001 6765/24476*1860498^(4/5) 2865699991566610 a001 10946/15127*710647^(11/14) 2865699991567016 a001 6765/24476*710647^(6/7) 2865699991595062 a001 10946/15127*271443^(11/13) 2865699991598053 a001 6765/24476*271443^(12/13) 2865699991788007 a001 9227465/15127*15127^(2/5) 2865699991806515 a001 10946/15127*103682^(11/12) 2865699992006250 a001 24157817/24476*9349^(7/19) 2865699992133006 a001 433494437/103682*9349^(4/19) 2865699992298059 a001 267914296/39603*9349^(3/19) 2865699992360691 a001 1134903170/271443*9349^(4/19) 2865699992393909 a001 2971215073/710647*9349^(4/19) 2865699992398756 a001 7778742049/1860498*9349^(4/19) 2865699992399463 a001 20365011074/4870847*9349^(4/19) 2865699992399566 a001 53316291173/12752043*9349^(4/19) 2865699992399581 a001 139583862445/33385282*9349^(4/19) 2865699992399583 a001 365435296162/87403803*9349^(4/19) 2865699992399584 a001 956722026041/228826127*9349^(4/19) 2865699992399584 a001 2504730781961/599074578*9349^(4/19) 2865699992399584 a001 6557470319842/1568397607*9349^(4/19) 2865699992399584 a001 10610209857723/2537720636*9349^(4/19) 2865699992399584 a001 4052739537881/969323029*9349^(4/19) 2865699992399584 a001 1548008755920/370248451*9349^(4/19) 2865699992399584 a001 591286729879/141422324*9349^(4/19) 2865699992399585 a001 225851433717/54018521*9349^(4/19) 2865699992399591 a001 86267571272/20633239*9349^(4/19) 2865699992399630 a001 32951280099/7881196*9349^(4/19) 2865699992399900 a001 12586269025/3010349*9349^(4/19) 2865699992401751 a001 4807526976/1149851*9349^(4/19) 2865699992414157 a001 5702887/15127*15127^(9/20) 2865699992414440 a001 1836311903/439204*9349^(4/19) 2865699992431678 a001 63245986/9349*3571^(3/17) 2865699992501408 a001 701408733/167761*9349^(4/19) 2865699993021005 a001 75025/39603*24476^(20/21) 2865699993040395 a001 3524578/15127*15127^(1/2) 2865699993097494 a001 267914296/64079*9349^(4/19) 2865699993108076 a001 121393/39603*24476^(19/21) 2865699993389303 a001 42187/2+6765/2*5^(1/2) 2865699993389613 a001 196418/39603*24476^(6/7) 2865699993596871 a001 105937/13201*24476^(17/21) 2865699993666402 a001 311187/2161*15127^(11/20) 2865699993731875 a001 39088169/24476*9349^(6/19) 2865699993832500 a001 514229/39603*24476^(16/21) 2865699993858633 a001 701408733/103682*9349^(3/19) 2865699994023685 a001 433494437/39603*9349^(2/19) 2865699994057293 a001 832040/39603*24476^(5/7) 2865699994086317 a001 1836311903/271443*9349^(3/19) 2865699994119536 a001 686789568/101521*9349^(3/19) 2865699994124382 a001 12586269025/1860498*9349^(3/19) 2865699994125090 a001 32951280099/4870847*9349^(3/19) 2865699994125193 a001 86267571272/12752043*9349^(3/19) 2865699994125208 a001 32264490531/4769326*9349^(3/19) 2865699994125210 a001 591286729879/87403803*9349^(3/19) 2865699994125210 a001 1548008755920/228826127*9349^(3/19) 2865699994125210 a001 4052739537881/599074578*9349^(3/19) 2865699994125210 a001 1515744265389/224056801*9349^(3/19) 2865699994125210 a001 6557470319842/969323029*9349^(3/19) 2865699994125210 a001 2504730781961/370248451*9349^(3/19) 2865699994125210 a001 956722026041/141422324*9349^(3/19) 2865699994125211 a001 365435296162/54018521*9349^(3/19) 2865699994125217 a001 139583862445/20633239*9349^(3/19) 2865699994125256 a001 53316291173/7881196*9349^(3/19) 2865699994125527 a001 20365011074/3010349*9349^(3/19) 2865699994127378 a001 7778742049/1149851*9349^(3/19) 2865699994140066 a001 2971215073/439204*9349^(3/19) 2865699994227034 a001 1134903170/167761*9349^(3/19) 2865699994266777 a001 2576/321*5778^(17/18) 2865699994286225 a001 1346269/39603*24476^(2/3) 2865699994293013 a001 1346269/15127*15127^(3/5) 2865699994494611 a001 98209/51841*24476^(20/21) 2865699994513576 a001 726103/13201*24476^(13/21) 2865699994518545 a001 1/5473*(1/2+1/2*5^(1/2))^44 2865699994701869 a001 317811/103682*24476^(19/21) 2865699994709607 a001 514229/271443*24476^(20/21) 2865699994740975 a001 1346269/710647*24476^(20/21) 2865699994741530 a001 3524578/39603*24476^(4/7) 2865699994745551 a001 1762289/930249*24476^(20/21) 2865699994746219 a001 9227465/4870847*24476^(20/21) 2865699994746316 a001 24157817/12752043*24476^(20/21) 2865699994746330 a001 31622993/16692641*24476^(20/21) 2865699994746333 a001 165580141/87403803*24476^(20/21) 2865699994746333 a001 433494437/228826127*24476^(20/21) 2865699994746333 a001 567451585/299537289*24476^(20/21) 2865699994746333 a001 2971215073/1568397607*24476^(20/21) 2865699994746333 a001 7778742049/4106118243*24476^(20/21) 2865699994746333 a001 10182505537/5374978561*24476^(20/21) 2865699994746333 a001 53316291173/28143753123*24476^(20/21) 2865699994746333 a001 139583862445/73681302247*24476^(20/21) 2865699994746333 a001 182717648081/96450076809*24476^(20/21) 2865699994746333 a001 956722026041/505019158607*24476^(20/21) 2865699994746333 a001 10610209857723/5600748293801*24476^(20/21) 2865699994746333 a001 591286729879/312119004989*24476^(20/21) 2865699994746333 a001 225851433717/119218851371*24476^(20/21) 2865699994746333 a001 21566892818/11384387281*24476^(20/21) 2865699994746333 a001 32951280099/17393796001*24476^(20/21) 2865699994746333 a001 12586269025/6643838879*24476^(20/21) 2865699994746333 a001 1201881744/634430159*24476^(20/21) 2865699994746333 a001 1836311903/969323029*24476^(20/21) 2865699994746333 a001 701408733/370248451*24476^(20/21) 2865699994746333 a001 66978574/35355581*24476^(20/21) 2865699994746334 a001 102334155/54018521*24476^(20/21) 2865699994746339 a001 39088169/20633239*24476^(20/21) 2865699994746376 a001 3732588/1970299*24476^(20/21) 2865699994746632 a001 5702887/3010349*24476^(20/21) 2865699994748380 a001 2178309/1149851*24476^(20/21) 2865699994760361 a001 208010/109801*24476^(20/21) 2865699994823120 a001 433494437/64079*9349^(3/19) 2865699994842482 a001 317811/167761*24476^(20/21) 2865699994918043 a001 832040/15127*15127^(13/20) 2865699994934400 a001 832040/271443*24476^(19/21) 2865699994937498 a001 514229/103682*24476^(6/7) 2865699994949877 a001 -10946+17711*5^(1/2) 2865699994968326 a001 311187/101521*24476^(19/21) 2865699994969254 a001 5702887/39603*24476^(11/21) 2865699994973275 a001 5702887/1860498*24476^(19/21) 2865699994973997 a001 14930352/4870847*24476^(19/21) 2865699994974103 a001 39088169/12752043*24476^(19/21) 2865699994974118 a001 14619165/4769326*24476^(19/21) 2865699994974120 a001 267914296/87403803*24476^(19/21) 2865699994974121 a001 701408733/228826127*24476^(19/21) 2865699994974121 a001 1836311903/599074578*24476^(19/21) 2865699994974121 a001 686789568/224056801*24476^(19/21) 2865699994974121 a001 12586269025/4106118243*24476^(19/21) 2865699994974121 a001 32951280099/10749957122*24476^(19/21) 2865699994974121 a001 86267571272/28143753123*24476^(19/21) 2865699994974121 a001 32264490531/10525900321*24476^(19/21) 2865699994974121 a001 591286729879/192900153618*24476^(19/21) 2865699994974121 a001 1548008755920/505019158607*24476^(19/21) 2865699994974121 a001 1515744265389/494493258286*24476^(19/21) 2865699994974121 a001 2504730781961/817138163596*24476^(19/21) 2865699994974121 a001 956722026041/312119004989*24476^(19/21) 2865699994974121 a001 365435296162/119218851371*24476^(19/21) 2865699994974121 a001 139583862445/45537549124*24476^(19/21) 2865699994974121 a001 53316291173/17393796001*24476^(19/21) 2865699994974121 a001 20365011074/6643838879*24476^(19/21) 2865699994974121 a001 7778742049/2537720636*24476^(19/21) 2865699994974121 a001 2971215073/969323029*24476^(19/21) 2865699994974121 a001 1134903170/370248451*24476^(19/21) 2865699994974121 a001 433494437/141422324*24476^(19/21) 2865699994974122 a001 165580141/54018521*24476^(19/21) 2865699994974128 a001 63245986/20633239*24476^(19/21) 2865699994974168 a001 24157817/7881196*24476^(19/21) 2865699994974444 a001 9227465/3010349*24476^(19/21) 2865699994976334 a001 3524578/1149851*24476^(19/21) 2865699994989293 a001 1346269/439204*24476^(19/21) 2865699995078112 a001 514229/167761*24476^(19/21) 2865699995162291 a001 416020/51841*24476^(17/21) 2865699995163332 a001 1346269/271443*24476^(6/7) 2865699995196280 a001 3524578/710647*24476^(6/7) 2865699995197067 a001 9227465/39603*24476^(10/21) 2865699995201087 a001 9227465/1860498*24476^(6/7) 2865699995201789 a001 24157817/4870847*24476^(6/7) 2865699995201891 a001 63245986/12752043*24476^(6/7) 2865699995201906 a001 165580141/33385282*24476^(6/7) 2865699995201908 a001 433494437/87403803*24476^(6/7) 2865699995201909 a001 1134903170/228826127*24476^(6/7) 2865699995201909 a001 2971215073/599074578*24476^(6/7) 2865699995201909 a001 7778742049/1568397607*24476^(6/7) 2865699995201909 a001 20365011074/4106118243*24476^(6/7) 2865699995201909 a001 53316291173/10749957122*24476^(6/7) 2865699995201909 a001 139583862445/28143753123*24476^(6/7) 2865699995201909 a001 365435296162/73681302247*24476^(6/7) 2865699995201909 a001 956722026041/192900153618*24476^(6/7) 2865699995201909 a001 2504730781961/505019158607*24476^(6/7) 2865699995201909 a001 10610209857723/2139295485799*24476^(6/7) 2865699995201909 a001 4052739537881/817138163596*24476^(6/7) 2865699995201909 a001 140728068720/28374454999*24476^(6/7) 2865699995201909 a001 591286729879/119218851371*24476^(6/7) 2865699995201909 a001 225851433717/45537549124*24476^(6/7) 2865699995201909 a001 86267571272/17393796001*24476^(6/7) 2865699995201909 a001 32951280099/6643838879*24476^(6/7) 2865699995201909 a001 1144206275/230701876*24476^(6/7) 2865699995201909 a001 4807526976/969323029*24476^(6/7) 2865699995201909 a001 1836311903/370248451*24476^(6/7) 2865699995201909 a001 701408733/141422324*24476^(6/7) 2865699995201910 a001 267914296/54018521*24476^(6/7) 2865699995201915 a001 9303105/1875749*24476^(6/7) 2865699995201954 a001 39088169/7881196*24476^(6/7) 2865699995202222 a001 14930352/3010349*24476^(6/7) 2865699995204058 a001 5702887/1149851*24476^(6/7) 2865699995216644 a001 2178309/439204*24476^(6/7) 2865699995302904 a001 75640/15251*24476^(6/7) 2865699995390682 a001 726103/90481*24476^(17/21) 2865699995391223 a001 1346269/103682*24476^(16/21) 2865699995405350 a001 121393/64079*24476^(20/21) 2865699995424004 a001 5702887/710647*24476^(17/21) 2865699995424845 a001 4976784/13201*24476^(3/7) 2865699995428866 a001 829464/103361*24476^(17/21) 2865699995429575 a001 39088169/4870847*24476^(17/21) 2865699995429679 a001 34111385/4250681*24476^(17/21) 2865699995429694 a001 133957148/16692641*24476^(17/21) 2865699995429696 a001 233802911/29134601*24476^(17/21) 2865699995429696 a001 1836311903/228826127*24476^(17/21) 2865699995429696 a001 267084832/33281921*24476^(17/21) 2865699995429696 a001 12586269025/1568397607*24476^(17/21) 2865699995429696 a001 10983760033/1368706081*24476^(17/21) 2865699995429696 a001 43133785636/5374978561*24476^(17/21) 2865699995429696 a001 75283811239/9381251041*24476^(17/21) 2865699995429696 a001 591286729879/73681302247*24476^(17/21) 2865699995429696 a001 86000486440/10716675201*24476^(17/21) 2865699995429696 a001 4052739537881/505019158607*24476^(17/21) 2865699995429696 a001 3278735159921/408569081798*24476^(17/21) 2865699995429696 a001 2504730781961/312119004989*24476^(17/21) 2865699995429696 a001 956722026041/119218851371*24476^(17/21) 2865699995429696 a001 182717648081/22768774562*24476^(17/21) 2865699995429696 a001 139583862445/17393796001*24476^(17/21) 2865699995429696 a001 53316291173/6643838879*24476^(17/21) 2865699995429696 a001 10182505537/1268860318*24476^(17/21) 2865699995429696 a001 7778742049/969323029*24476^(17/21) 2865699995429696 a001 2971215073/370248451*24476^(17/21) 2865699995429697 a001 567451585/70711162*24476^(17/21) 2865699995429697 a001 433494437/54018521*24476^(17/21) 2865699995429703 a001 165580141/20633239*24476^(17/21) 2865699995429743 a001 31622993/3940598*24476^(17/21) 2865699995430014 a001 24157817/3010349*24476^(17/21) 2865699995431871 a001 9227465/1149851*24476^(17/21) 2865699995444598 a001 1762289/219602*24476^(17/21) 2865699995457502 a001 31622993/12238*9349^(5/19) 2865699995531836 a001 1346269/167761*24476^(17/21) 2865699995547212 a001 514229/15127*15127^(7/10) 2865699995584259 a001 567451585/51841*9349^(2/19) 2865699995618574 a001 46347/2206*24476^(5/7) 2865699995618637 a001 3524578/271443*24476^(16/21) 2865699995647787 a001 17711/39603*(1/2+1/2*5^(1/2))^23 2865699995647787 a001 17711/39603*4106118243^(1/2) 2865699995651817 a001 9227465/710647*24476^(16/21) 2865699995652637 a001 24157817/39603*24476^(8/21) 2865699995656657 a001 24157817/1860498*24476^(16/21) 2865699995657364 a001 63245986/4870847*24476^(16/21) 2865699995657467 a001 165580141/12752043*24476^(16/21) 2865699995657482 a001 433494437/33385282*24476^(16/21) 2865699995657484 a001 1134903170/87403803*24476^(16/21) 2865699995657484 a001 2971215073/228826127*24476^(16/21) 2865699995657484 a001 7778742049/599074578*24476^(16/21) 2865699995657484 a001 20365011074/1568397607*24476^(16/21) 2865699995657484 a001 53316291173/4106118243*24476^(16/21) 2865699995657484 a001 139583862445/10749957122*24476^(16/21) 2865699995657484 a001 365435296162/28143753123*24476^(16/21) 2865699995657484 a001 956722026041/73681302247*24476^(16/21) 2865699995657484 a001 2504730781961/192900153618*24476^(16/21) 2865699995657484 a001 10610209857723/817138163596*24476^(16/21) 2865699995657484 a001 4052739537881/312119004989*24476^(16/21) 2865699995657484 a001 1548008755920/119218851371*24476^(16/21) 2865699995657484 a001 591286729879/45537549124*24476^(16/21) 2865699995657484 a001 7787980473/599786069*24476^(16/21) 2865699995657484 a001 86267571272/6643838879*24476^(16/21) 2865699995657484 a001 32951280099/2537720636*24476^(16/21) 2865699995657484 a001 12586269025/969323029*24476^(16/21) 2865699995657484 a001 4807526976/370248451*24476^(16/21) 2865699995657484 a001 1836311903/141422324*24476^(16/21) 2865699995657485 a001 701408733/54018521*24476^(16/21) 2865699995657491 a001 9238424/711491*24476^(16/21) 2865699995657530 a001 102334155/7881196*24476^(16/21) 2865699995657800 a001 39088169/3010349*24476^(16/21) 2865699995659649 a001 14930352/1149851*24476^(16/21) 2865699995672323 a001 5702887/439204*24476^(16/21) 2865699995686886 a001 196418/64079*24476^(19/21) 2865699995749312 a001 17711*9349^(1/19) 2865699995759187 a001 2178309/167761*24476^(16/21) 2865699995811944 a001 2971215073/271443*9349^(2/19) 2865699995845162 a001 7778742049/710647*9349^(2/19) 2865699995846361 a001 5702887/271443*24476^(5/7) 2865699995846528 a001 1762289/51841*24476^(2/3) 2865699995850009 a001 10182505537/930249*9349^(2/19) 2865699995850716 a001 53316291173/4870847*9349^(2/19) 2865699995850819 a001 139583862445/12752043*9349^(2/19) 2865699995850834 a001 182717648081/16692641*9349^(2/19) 2865699995850836 a001 956722026041/87403803*9349^(2/19) 2865699995850837 a001 2504730781961/228826127*9349^(2/19) 2865699995850837 a001 3278735159921/299537289*9349^(2/19) 2865699995850837 a001 10610209857723/969323029*9349^(2/19) 2865699995850837 a001 4052739537881/370248451*9349^(2/19) 2865699995850837 a001 387002188980/35355581*9349^(2/19) 2865699995850838 a001 591286729879/54018521*9349^(2/19) 2865699995850844 a001 7787980473/711491*9349^(2/19) 2865699995850883 a001 21566892818/1970299*9349^(2/19) 2865699995851153 a001 32951280099/3010349*9349^(2/19) 2865699995853004 a001 12586269025/1149851*9349^(2/19) 2865699995865693 a001 1201881744/109801*9349^(2/19) 2865699995879595 a001 14930352/710647*24476^(5/7) 2865699995880423 a001 39088169/39603*24476^(1/3) 2865699995884444 a001 39088169/1860498*24476^(5/7) 2865699995885151 a001 102334155/4870847*24476^(5/7) 2865699995885254 a001 267914296/12752043*24476^(5/7) 2865699995885270 a001 701408733/33385282*24476^(5/7) 2865699995885272 a001 1836311903/87403803*24476^(5/7) 2865699995885272 a001 102287808/4868641*24476^(5/7) 2865699995885272 a001 12586269025/599074578*24476^(5/7) 2865699995885272 a001 32951280099/1568397607*24476^(5/7) 2865699995885272 a001 86267571272/4106118243*24476^(5/7) 2865699995885272 a001 225851433717/10749957122*24476^(5/7) 2865699995885272 a001 591286729879/28143753123*24476^(5/7) 2865699995885272 a001 1548008755920/73681302247*24476^(5/7) 2865699995885272 a001 4052739537881/192900153618*24476^(5/7) 2865699995885272 a001 225749145909/10745088481*24476^(5/7) 2865699995885272 a001 6557470319842/312119004989*24476^(5/7) 2865699995885272 a001 2504730781961/119218851371*24476^(5/7) 2865699995885272 a001 956722026041/45537549124*24476^(5/7) 2865699995885272 a001 365435296162/17393796001*24476^(5/7) 2865699995885272 a001 139583862445/6643838879*24476^(5/7) 2865699995885272 a001 53316291173/2537720636*24476^(5/7) 2865699995885272 a001 20365011074/969323029*24476^(5/7) 2865699995885272 a001 7778742049/370248451*24476^(5/7) 2865699995885272 a001 2971215073/141422324*24476^(5/7) 2865699995885273 a001 1134903170/54018521*24476^(5/7) 2865699995885279 a001 433494437/20633239*24476^(5/7) 2865699995885318 a001 165580141/7881196*24476^(5/7) 2865699995885588 a001 63245986/3010349*24476^(5/7) 2865699995887441 a001 24157817/1149851*24476^(5/7) 2865699995894144 a001 317811/64079*24476^(6/7) 2865699995900135 a001 9227465/439204*24476^(5/7) 2865699995903257 a001 17711/39603*103682^(23/24) 2865699995914365 a001 40895-5473*5^(1/2) 2865699995952660 a001 1836311903/167761*9349^(2/19) 2865699995987142 a001 3524578/167761*24476^(5/7) 2865699996074174 a001 9227465/271443*24476^(2/3) 2865699996074252 a001 5702887/103682*24476^(13/21) 2865699996107387 a001 24157817/710647*24476^(2/3) 2865699996108211 a001 63245986/39603*24476^(2/7) 2865699996112232 a001 31622993/930249*24476^(2/3) 2865699996112939 a001 165580141/4870847*24476^(2/3) 2865699996113042 a001 433494437/12752043*24476^(2/3) 2865699996113057 a001 567451585/16692641*24476^(2/3) 2865699996113060 a001 2971215073/87403803*24476^(2/3) 2865699996113060 a001 7778742049/228826127*24476^(2/3) 2865699996113060 a001 10182505537/299537289*24476^(2/3) 2865699996113060 a001 53316291173/1568397607*24476^(2/3) 2865699996113060 a001 139583862445/4106118243*24476^(2/3) 2865699996113060 a001 182717648081/5374978561*24476^(2/3) 2865699996113060 a001 956722026041/28143753123*24476^(2/3) 2865699996113060 a001 2504730781961/73681302247*24476^(2/3) 2865699996113060 a001 3278735159921/96450076809*24476^(2/3) 2865699996113060 a001 10610209857723/312119004989*24476^(2/3) 2865699996113060 a001 4052739537881/119218851371*24476^(2/3) 2865699996113060 a001 387002188980/11384387281*24476^(2/3) 2865699996113060 a001 591286729879/17393796001*24476^(2/3) 2865699996113060 a001 225851433717/6643838879*24476^(2/3) 2865699996113060 a001 1135099622/33391061*24476^(2/3) 2865699996113060 a001 32951280099/969323029*24476^(2/3) 2865699996113060 a001 12586269025/370248451*24476^(2/3) 2865699996113060 a001 1201881744/35355581*24476^(2/3) 2865699996113061 a001 1836311903/54018521*24476^(2/3) 2865699996113067 a001 701408733/20633239*24476^(2/3) 2865699996113106 a001 66978574/1970299*24476^(2/3) 2865699996113376 a001 102334155/3010349*24476^(2/3) 2865699996115227 a001 39088169/1149851*24476^(2/3) 2865699996127913 a001 196452/5779*24476^(2/3) 2865699996129774 a001 514229/64079*24476^(17/21) 2865699996165545 a001 317811/15127*15127^(3/4) 2865699996214866 a001 5702887/167761*24476^(2/3) 2865699996301952 a001 4976784/90481*24476^(13/21) 2865699996302065 a001 9227465/103682*24476^(4/7) 2865699996316077 a001 165580141/15127*5778^(1/9) 2865699996335173 a001 39088169/710647*24476^(13/21) 2865699996335999 a001 34111385/13201*24476^(5/21) 2865699996340020 a001 831985/15126*24476^(13/21) 2865699996340727 a001 267914296/4870847*24476^(13/21) 2865699996340830 a001 233802911/4250681*24476^(13/21) 2865699996340845 a001 1836311903/33385282*24476^(13/21) 2865699996340847 a001 1602508992/29134601*24476^(13/21) 2865699996340848 a001 12586269025/228826127*24476^(13/21) 2865699996340848 a001 10983760033/199691526*24476^(13/21) 2865699996340848 a001 86267571272/1568397607*24476^(13/21) 2865699996340848 a001 75283811239/1368706081*24476^(13/21) 2865699996340848 a001 591286729879/10749957122*24476^(13/21) 2865699996340848 a001 12585437040/228811001*24476^(13/21) 2865699996340848 a001 4052739537881/73681302247*24476^(13/21) 2865699996340848 a001 3536736619241/64300051206*24476^(13/21) 2865699996340848 a001 6557470319842/119218851371*24476^(13/21) 2865699996340848 a001 2504730781961/45537549124*24476^(13/21) 2865699996340848 a001 956722026041/17393796001*24476^(13/21) 2865699996340848 a001 365435296162/6643838879*24476^(13/21) 2865699996340848 a001 139583862445/2537720636*24476^(13/21) 2865699996340848 a001 53316291173/969323029*24476^(13/21) 2865699996340848 a001 20365011074/370248451*24476^(13/21) 2865699996340848 a001 7778742049/141422324*24476^(13/21) 2865699996340849 a001 2971215073/54018521*24476^(13/21) 2865699996340855 a001 1134903170/20633239*24476^(13/21) 2865699996340894 a001 433494437/7881196*24476^(13/21) 2865699996341164 a001 165580141/3010349*24476^(13/21) 2865699996343015 a001 63245986/1149851*24476^(13/21) 2865699996354566 a001 832040/64079*24476^(16/21) 2865699996355705 a001 24157817/439204*24476^(13/21) 2865699996442678 a001 9227465/167761*24476^(13/21) 2865699996510451 a001 -85971/2+64079/2*5^(1/2) 2865699996510451 a001 821223648/28657 2865699996529743 a001 24157817/271443*24476^(4/7) 2865699996529843 a001 7465176/51841*24476^(11/21) 2865699996548747 a001 701408733/64079*9349^(2/19) 2865699996562961 a001 63245986/710647*24476^(4/7) 2865699996563787 a001 165580141/39603*24476^(4/21) 2865699996567808 a001 165580141/1860498*24476^(4/7) 2865699996568515 a001 433494437/4870847*24476^(4/7) 2865699996568618 a001 1134903170/12752043*24476^(4/7) 2865699996568633 a001 2971215073/33385282*24476^(4/7) 2865699996568635 a001 7778742049/87403803*24476^(4/7) 2865699996568636 a001 20365011074/228826127*24476^(4/7) 2865699996568636 a001 53316291173/599074578*24476^(4/7) 2865699996568636 a001 139583862445/1568397607*24476^(4/7) 2865699996568636 a001 365435296162/4106118243*24476^(4/7) 2865699996568636 a001 956722026041/10749957122*24476^(4/7) 2865699996568636 a001 2504730781961/28143753123*24476^(4/7) 2865699996568636 a001 6557470319842/73681302247*24476^(4/7) 2865699996568636 a001 10610209857723/119218851371*24476^(4/7) 2865699996568636 a001 4052739537881/45537549124*24476^(4/7) 2865699996568636 a001 1548008755920/17393796001*24476^(4/7) 2865699996568636 a001 591286729879/6643838879*24476^(4/7) 2865699996568636 a001 225851433717/2537720636*24476^(4/7) 2865699996568636 a001 86267571272/969323029*24476^(4/7) 2865699996568636 a001 32951280099/370248451*24476^(4/7) 2865699996568636 a001 12586269025/141422324*24476^(4/7) 2865699996568637 a001 4807526976/54018521*24476^(4/7) 2865699996568642 a001 1836311903/20633239*24476^(4/7) 2865699996568682 a001 3524667/39604*24476^(4/7) 2865699996568952 a001 267914296/3010349*24476^(4/7) 2865699996570803 a001 102334155/1149851*24476^(4/7) 2865699996571139 a001 15456/13201*64079^(21/23) 2865699996583491 a001 39088169/439204*24476^(4/7) 2865699996583498 a001 1346269/64079*24476^(5/7) 2865699996670457 a001 14930352/167761*24476^(4/7) 2865699996757530 a001 39088169/271443*24476^(11/21) 2865699996757635 a001 24157817/103682*24476^(10/21) 2865699996790749 a001 14619165/101521*24476^(11/21) 2865699996791575 a001 267914296/39603*24476^(1/7) 2865699996795596 a001 133957148/930249*24476^(11/21) 2865699996796303 a001 701408733/4870847*24476^(11/21) 2865699996796406 a001 1836311903/12752043*24476^(11/21) 2865699996796421 a001 14930208/103681*24476^(11/21) 2865699996796423 a001 12586269025/87403803*24476^(11/21) 2865699996796423 a001 32951280099/228826127*24476^(11/21) 2865699996796423 a001 43133785636/299537289*24476^(11/21) 2865699996796423 a001 32264490531/224056801*24476^(11/21) 2865699996796423 a001 591286729879/4106118243*24476^(11/21) 2865699996796423 a001 774004377960/5374978561*24476^(11/21) 2865699996796423 a001 4052739537881/28143753123*24476^(11/21) 2865699996796423 a001 1515744265389/10525900321*24476^(11/21) 2865699996796423 a001 3278735159921/22768774562*24476^(11/21) 2865699996796423 a001 2504730781961/17393796001*24476^(11/21) 2865699996796423 a001 956722026041/6643838879*24476^(11/21) 2865699996796423 a001 182717648081/1268860318*24476^(11/21) 2865699996796423 a001 139583862445/969323029*24476^(11/21) 2865699996796424 a001 53316291173/370248451*24476^(11/21) 2865699996796424 a001 10182505537/70711162*24476^(11/21) 2865699996796424 a001 7778742049/54018521*24476^(11/21) 2865699996796430 a001 2971215073/20633239*24476^(11/21) 2865699996796470 a001 567451585/3940598*24476^(11/21) 2865699996796740 a001 433494437/3010349*24476^(11/21) 2865699996798591 a001 165580141/1149851*24476^(11/21) 2865699996810849 a001 2178309/64079*24476^(2/3) 2865699996811280 a001 31622993/219602*24476^(11/21) 2865699996812249 a001 196418/15127*15127^(4/5) 2865699996859511 a001 121393/39603*64079^(19/23) 2865699996898248 a001 24157817/167761*24476^(11/21) 2865699996943604 a001 196418/39603*64079^(18/23) 2865699996953417 a001 105937/13201*64079^(17/23) 2865699996969884 a001 75025/39603*64079^(20/23) 2865699996985318 a001 63245986/271443*24476^(10/21) 2865699996985421 a001 39088169/103682*24476^(3/7) 2865699996991603 a001 514229/39603*64079^(16/23) 2865699997018537 a001 165580141/710647*24476^(10/21) 2865699997018952 a001 832040/39603*64079^(15/23) 2865699997019363 a001 433494437/39603*24476^(2/21) 2865699997023383 a001 433494437/1860498*24476^(10/21) 2865699997024091 a001 1134903170/4870847*24476^(10/21) 2865699997024194 a001 2971215073/12752043*24476^(10/21) 2865699997024209 a001 7778742049/33385282*24476^(10/21) 2865699997024211 a001 20365011074/87403803*24476^(10/21) 2865699997024211 a001 53316291173/228826127*24476^(10/21) 2865699997024211 a001 139583862445/599074578*24476^(10/21) 2865699997024211 a001 365435296162/1568397607*24476^(10/21) 2865699997024211 a001 956722026041/4106118243*24476^(10/21) 2865699997024211 a001 2504730781961/10749957122*24476^(10/21) 2865699997024211 a001 6557470319842/28143753123*24476^(10/21) 2865699997024211 a001 10610209857723/45537549124*24476^(10/21) 2865699997024211 a001 4052739537881/17393796001*24476^(10/21) 2865699997024211 a001 1548008755920/6643838879*24476^(10/21) 2865699997024211 a001 591286729879/2537720636*24476^(10/21) 2865699997024211 a001 225851433717/969323029*24476^(10/21) 2865699997024211 a001 86267571272/370248451*24476^(10/21) 2865699997024211 a001 63246219/271444*24476^(10/21) 2865699997024212 a001 12586269025/54018521*24476^(10/21) 2865699997024218 a001 4807526976/20633239*24476^(10/21) 2865699997024257 a001 1836311903/7881196*24476^(10/21) 2865699997024528 a001 701408733/3010349*24476^(10/21) 2865699997026379 a001 267914296/1149851*24476^(10/21) 2865699997038804 a001 3524578/64079*24476^(13/21) 2865699997039067 a001 102334155/439204*24476^(10/21) 2865699997050440 a001 1346269/39603*64079^(14/23) 2865699997080347 a001 726103/13201*64079^(13/23) 2865699997110858 a001 3524578/39603*64079^(12/23) 2865699997126035 a001 39088169/167761*24476^(10/21) 2865699997141138 a001 5702887/39603*64079^(11/23) 2865699997171506 a001 9227465/39603*64079^(10/23) 2865699997183128 a001 102334155/24476*9349^(4/19) 2865699997196806 a001 15456/13201*439204^(7/9) 2865699997201841 a001 4976784/13201*64079^(9/23) 2865699997208331 a001 15456/13201*7881196^(7/11) 2865699997208356 a001 17711/103682*20633239^(5/7) 2865699997208356 a001 15456/13201*20633239^(3/5) 2865699997208360 a001 15456/13201*141422324^(7/13) 2865699997208360 a001 17711/103682*2537720636^(5/9) 2865699997208360 a001 17711/103682*312119004989^(5/11) 2865699997208360 a001 17711/103682*(1/2+1/2*5^(1/2))^25 2865699997208360 a001 17711/103682*3461452808002^(5/12) 2865699997208360 a001 17711/103682*28143753123^(1/2) 2865699997208360 a001 15456/13201*2537720636^(7/15) 2865699997208360 a001 15456/13201*17393796001^(3/7) 2865699997208360 a001 15456/13201*45537549124^(7/17) 2865699997208360 a001 15456/13201*14662949395604^(1/3) 2865699997208360 a001 15456/13201*(1/2+1/2*5^(1/2))^21 2865699997208360 a001 15456/13201*192900153618^(7/18) 2865699997208360 a001 15456/13201*10749957122^(7/16) 2865699997208360 a001 15456/13201*599074578^(1/2) 2865699997208360 a001 17711/103682*228826127^(5/8) 2865699997208362 a001 15456/13201*33385282^(7/12) 2865699997208940 a001 15456/13201*1860498^(7/10) 2865699997209050 a001 17711/103682*1860498^(5/6) 2865699997212616 a001 15456/13201*710647^(3/4) 2865699997213106 a001 34111385/90481*24476^(3/7) 2865699997213209 a001 31622993/51841*24476^(8/21) 2865699997232188 a001 24157817/39603*64079^(8/23) 2865699997246325 a001 267914296/710647*24476^(3/7) 2865699997247150 a001 17711*24476^(1/21) 2865699997251171 a001 233802911/620166*24476^(3/7) 2865699997251878 a001 1836311903/4870847*24476^(3/7) 2865699997251982 a001 1602508992/4250681*24476^(3/7) 2865699997251997 a001 12586269025/33385282*24476^(3/7) 2865699997251999 a001 10983760033/29134601*24476^(3/7) 2865699997251999 a001 86267571272/228826127*24476^(3/7) 2865699997251999 a001 267913919/710646*24476^(3/7) 2865699997251999 a001 591286729879/1568397607*24476^(3/7) 2865699997251999 a001 516002918640/1368706081*24476^(3/7) 2865699997251999 a001 4052739537881/10749957122*24476^(3/7) 2865699997251999 a001 3536736619241/9381251041*24476^(3/7) 2865699997251999 a001 6557470319842/17393796001*24476^(3/7) 2865699997251999 a001 2504730781961/6643838879*24476^(3/7) 2865699997251999 a001 956722026041/2537720636*24476^(3/7) 2865699997251999 a001 365435296162/969323029*24476^(3/7) 2865699997251999 a001 139583862445/370248451*24476^(3/7) 2865699997251999 a001 53316291173/141422324*24476^(3/7) 2865699997252000 a001 20365011074/54018521*24476^(3/7) 2865699997252006 a001 7778742049/20633239*24476^(3/7) 2865699997252045 a001 2971215073/7881196*24476^(3/7) 2865699997252315 a001 1134903170/3010349*24476^(3/7) 2865699997254167 a001 433494437/1149851*24476^(3/7) 2865699997262531 a001 39088169/39603*64079^(7/23) 2865699997266528 a001 5702887/64079*24476^(4/7) 2865699997266855 a001 165580141/439204*24476^(3/7) 2865699997292875 a001 63245986/39603*64079^(6/23) 2865699997309885 a001 1836311903/103682*9349^(1/19) 2865699997323219 a001 34111385/13201*64079^(5/23) 2865699997334221 a001 2149991423/75025 2865699997353563 a001 165580141/39603*64079^(4/23) 2865699997353823 a001 63245986/167761*24476^(3/7) 2865699997383907 a001 267914296/39603*64079^(3/23) 2865699997384674 a001 121393/15127*15127^(17/20) 2865699997413016 a001 832040/39603*167761^(3/5) 2865699997414250 a001 433494437/39603*64079^(2/23) 2865699997434216 a001 9227465/39603*167761^(2/5) 2865699997436007 a001 17711/271443*7881196^(9/11) 2865699997436045 a001 17711/271443*141422324^(9/13) 2865699997436045 a001 17711/271443*2537720636^(3/5) 2865699997436045 a001 17711/271443*45537549124^(9/17) 2865699997436045 a001 17711/271443*817138163596^(9/19) 2865699997436045 a001 17711/271443*14662949395604^(3/7) 2865699997436045 a001 17711/271443*(1/2+1/2*5^(1/2))^27 2865699997436045 a001 17711/271443*192900153618^(1/2) 2865699997436045 a001 17711/271443*10749957122^(9/16) 2865699997436045 a001 121393/39603*817138163596^(1/3) 2865699997436045 a001 121393/39603*(1/2+1/2*5^(1/2))^19 2865699997436045 a001 17711/271443*599074578^(9/14) 2865699997436045 a001 121393/39603*87403803^(1/2) 2865699997436047 a001 17711/271443*33385282^(3/4) 2865699997436790 a001 17711/271443*1860498^(9/10) 2865699997440894 a001 165580141/271443*24476^(8/21) 2865699997440997 a001 102334155/103682*24476^(1/3) 2865699997441616 a001 15456/13201*103682^(7/8) 2865699997444594 a001 17711*64079^(1/23) 2865699997454408 a001 5628750621/196418 2865699997454573 a001 34111385/13201*167761^(1/5) 2865699997465857 a001 832040/39603*439204^(5/9) 2865699997468382 a001 3524578/39603*439204^(4/9) 2865699997469264 a001 17711/710647*(1/2+1/2*5^(1/2))^29 2865699997469264 a001 17711/710647*1322157322203^(1/2) 2865699997469264 a001 105937/13201*45537549124^(1/3) 2865699997469264 a001 105937/13201*(1/2+1/2*5^(1/2))^17 2865699997469273 a001 105937/13201*12752043^(1/2) 2865699997469984 a001 4976784/13201*439204^(1/3) 2865699997471637 a001 63245986/39603*439204^(2/9) 2865699997471943 a001 14736260440/514229 2865699997473288 a001 267914296/39603*439204^(1/9) 2865699997474089 a001 832040/39603*7881196^(5/11) 2865699997474107 a001 832040/39603*20633239^(3/7) 2865699997474110 a001 832040/39603*141422324^(5/13) 2865699997474110 a001 17711/1860498*(1/2+1/2*5^(1/2))^31 2865699997474110 a001 17711/1860498*9062201101803^(1/2) 2865699997474110 a001 832040/39603*2537720636^(1/3) 2865699997474110 a001 832040/39603*45537549124^(5/17) 2865699997474110 a001 832040/39603*312119004989^(3/11) 2865699997474110 a001 832040/39603*14662949395604^(5/21) 2865699997474110 a001 832040/39603*(1/2+1/2*5^(1/2))^15 2865699997474110 a001 832040/39603*192900153618^(5/18) 2865699997474110 a001 832040/39603*28143753123^(3/10) 2865699997474110 a001 832040/39603*10749957122^(5/16) 2865699997474110 a001 832040/39603*599074578^(5/14) 2865699997474110 a001 832040/39603*228826127^(3/8) 2865699997474111 a001 832040/39603*33385282^(5/12) 2865699997474113 a001 433494437/710647*24476^(8/21) 2865699997474501 a001 38580030699/1346269 2865699997474524 a001 832040/39603*1860498^(1/2) 2865699997474817 a001 17711/4870847*141422324^(11/13) 2865699997474817 a001 726103/13201*141422324^(1/3) 2865699997474817 a001 17711/4870847*2537720636^(11/15) 2865699997474817 a001 17711/4870847*45537549124^(11/17) 2865699997474817 a001 17711/4870847*312119004989^(3/5) 2865699997474817 a001 17711/4870847*817138163596^(11/19) 2865699997474817 a001 17711/4870847*14662949395604^(11/21) 2865699997474817 a001 17711/4870847*(1/2+1/2*5^(1/2))^33 2865699997474817 a001 17711/4870847*192900153618^(11/18) 2865699997474817 a001 17711/4870847*10749957122^(11/16) 2865699997474817 a001 17711/4870847*1568397607^(3/4) 2865699997474817 a001 726103/13201*(1/2+1/2*5^(1/2))^13 2865699997474817 a001 726103/13201*73681302247^(1/4) 2865699997474817 a001 17711/4870847*599074578^(11/14) 2865699997474820 a001 17711/4870847*33385282^(11/12) 2865699997474875 a001 1134874513/39602 2865699997474905 a001 5702887/39603*7881196^(1/3) 2865699997474921 a001 17711/12752043*2537720636^(7/9) 2865699997474921 a001 17711/12752043*17393796001^(5/7) 2865699997474921 a001 17711/12752043*312119004989^(7/11) 2865699997474921 a001 17711/12752043*14662949395604^(5/9) 2865699997474921 a001 17711/12752043*(1/2+1/2*5^(1/2))^35 2865699997474921 a001 17711/12752043*505019158607^(5/8) 2865699997474921 a001 17711/12752043*28143753123^(7/10) 2865699997474921 a001 5702887/39603*312119004989^(1/5) 2865699997474921 a001 5702887/39603*(1/2+1/2*5^(1/2))^11 2865699997474921 a001 5702887/39603*1568397607^(1/4) 2865699997474921 a001 17711/12752043*599074578^(5/6) 2865699997474921 a001 17711/12752043*228826127^(7/8) 2865699997474923 a001 4976784/13201*7881196^(3/11) 2865699997474929 a001 264431464272/9227465 2865699997474930 a001 63245986/39603*7881196^(2/11) 2865699997474934 a001 267914296/39603*7881196^(1/11) 2865699997474936 a001 4976784/13201*141422324^(3/13) 2865699997474936 a001 17711/33385282*(1/2+1/2*5^(1/2))^37 2865699997474936 a001 4976784/13201*2537720636^(1/5) 2865699997474936 a001 4976784/13201*45537549124^(3/17) 2865699997474936 a001 4976784/13201*14662949395604^(1/7) 2865699997474936 a001 4976784/13201*(1/2+1/2*5^(1/2))^9 2865699997474936 a001 4976784/13201*192900153618^(1/6) 2865699997474936 a001 4976784/13201*10749957122^(3/16) 2865699997474936 a001 4976784/13201*599074578^(3/14) 2865699997474936 a001 4976784/13201*33385282^(1/4) 2865699997474937 a001 39088169/39603*20633239^(1/5) 2865699997474937 a001 692290561159/24157817 2865699997474937 a001 34111385/13201*20633239^(1/7) 2865699997474938 a001 17711/87403803*2537720636^(13/15) 2865699997474938 a001 17711/87403803*45537549124^(13/17) 2865699997474938 a001 17711/87403803*14662949395604^(13/21) 2865699997474938 a001 17711/87403803*192900153618^(13/18) 2865699997474938 a001 17711/87403803*73681302247^(3/4) 2865699997474938 a001 17711/87403803*10749957122^(13/16) 2865699997474938 a001 39088169/39603*17393796001^(1/7) 2865699997474938 a001 39088169/39603*14662949395604^(1/9) 2865699997474938 a001 39088169/39603*(1/2+1/2*5^(1/2))^7 2865699997474938 a001 39088169/39603*599074578^(1/6) 2865699997474938 a001 17711/87403803*599074578^(13/14) 2865699997474938 a001 1812440219205/63245986 2865699997474938 a001 34111385/13201*2537720636^(1/9) 2865699997474938 a001 34111385/13201*312119004989^(1/11) 2865699997474938 a001 34111385/13201*(1/2+1/2*5^(1/2))^5 2865699997474938 a001 34111385/13201*28143753123^(1/10) 2865699997474938 a001 34111385/13201*228826127^(1/8) 2865699997474938 a001 4745030096456/165580141 2865699997474938 a001 267914296/39603*141422324^(1/13) 2865699997474938 a001 267914296/39603*2537720636^(1/15) 2865699997474938 a001 267914296/39603*45537549124^(1/17) 2865699997474938 a001 267914296/39603*14662949395604^(1/21) 2865699997474938 a001 267914296/39603*(1/2+1/2*5^(1/2))^3 2865699997474938 a001 267914296/39603*192900153618^(1/18) 2865699997474938 a001 267914296/39603*10749957122^(1/16) 2865699997474938 a001 267914296/39603*599074578^(1/14) 2865699997474938 a001 12422650070163/433494437 2865699997474938 a001 17711/1568397607*45537549124^(15/17) 2865699997474938 a001 17711/1568397607*312119004989^(9/11) 2865699997474938 a001 17711/1568397607*14662949395604^(5/7) 2865699997474938 a001 17711/1568397607*192900153618^(5/6) 2865699997474938 a001 17711/1568397607*28143753123^(9/10) 2865699997474938 a001 17711/1568397607*10749957122^(15/16) 2865699997474938 a001 32522920114033/1134903170 2865699997474938 a001 85146110271936/2971215073 2865699997474938 a001 17711/10749957122*14662949395604^(7/9) 2865699997474938 a001 17711/10749957122*505019158607^(7/8) 2865699997474938 a001 222915410701775/7778742049 2865699997474938 a001 17711/28143753123*817138163596^(17/19) 2865699997474938 a001 17711/28143753123*14662949395604^(17/21) 2865699997474938 a001 17711/28143753123*192900153618^(17/18) 2865699997474938 a001 583600121833389/20365011074 2865699997474938 a001 1527884954798392/53316291173 2865699997474938 a001 17711/192900153618*3461452808002^(11/12) 2865699997474938 a001 44944435309683/1568358005 2865699997474938 a001 10472279272886969/365435296162 2865699997474938 a001 17711/2+17711/2*5^(1/2) 2865699997474938 a001 16944503803212151/591286729879 2865699997474938 a001 6472224530325182/225851433717 2865699997474938 a001 89/1568437211*14662949395604^(8/9) 2865699997474938 a001 2472169787763395/86267571272 2865699997474938 a001 17711/119218851371*14662949395604^(6/7) 2865699997474938 a001 944284832965003/32951280099 2865699997474938 a001 17711/45537549124*23725150497407^(13/16) 2865699997474938 a001 17711/45537549124*505019158607^(13/14) 2865699997474938 a001 360684711131614/12586269025 2865699997474938 a001 17711/17393796001*312119004989^(10/11) 2865699997474938 a001 17711/17393796001*3461452808002^(5/6) 2865699997474938 a001 137769300429839/4807526976 2865699997474938 a001 17711/6643838879*45537549124^(16/17) 2865699997474938 a001 17711/6643838879*14662949395604^(16/21) 2865699997474938 a001 17711/6643838879*192900153618^(8/9) 2865699997474938 a001 17711/6643838879*73681302247^(12/13) 2865699997474938 a001 52623190157903/1836311903 2865699997474938 a001 17711/2537720636*10749957122^(23/24) 2865699997474938 a001 1134903170/39603 2865699997474938 a001 17711/969323029*312119004989^(4/5) 2865699997474938 a001 17711/969323029*23725150497407^(11/16) 2865699997474938 a001 17711/969323029*73681302247^(11/13) 2865699997474938 a001 17711/969323029*10749957122^(11/12) 2865699997474938 a001 17711/969323029*4106118243^(22/23) 2865699997474938 a001 433494437/39603*(1/2+1/2*5^(1/2))^2 2865699997474938 a001 433494437/39603*10749957122^(1/24) 2865699997474938 a001 433494437/39603*4106118243^(1/23) 2865699997474938 a001 433494437/39603*1568397607^(1/22) 2865699997474938 a001 433494437/39603*599074578^(1/21) 2865699997474938 a001 433494437/39603*228826127^(1/20) 2865699997474938 a001 7677619973707/267914296 2865699997474938 a001 17711/370248451*2537720636^(14/15) 2865699997474938 a001 17711/370248451*17393796001^(6/7) 2865699997474938 a001 17711/370248451*45537549124^(14/17) 2865699997474938 a001 17711/370248451*817138163596^(14/19) 2865699997474938 a001 17711/370248451*14662949395604^(2/3) 2865699997474938 a001 17711/370248451*505019158607^(3/4) 2865699997474938 a001 17711/370248451*192900153618^(7/9) 2865699997474938 a001 17711/370248451*10749957122^(7/8) 2865699997474938 a001 17711/370248451*4106118243^(21/23) 2865699997474938 a001 17711/370248451*1568397607^(21/22) 2865699997474938 a001 165580141/39603*(1/2+1/2*5^(1/2))^4 2865699997474938 a001 165580141/39603*23725150497407^(1/16) 2865699997474938 a001 165580141/39603*73681302247^(1/13) 2865699997474938 a001 165580141/39603*10749957122^(1/12) 2865699997474938 a001 165580141/39603*4106118243^(2/23) 2865699997474938 a001 165580141/39603*1568397607^(1/11) 2865699997474938 a001 165580141/39603*599074578^(2/21) 2865699997474938 a001 433494437/39603*87403803^(1/19) 2865699997474938 a001 165580141/39603*228826127^(1/10) 2865699997474938 a001 165580141/39603*87403803^(2/19) 2865699997474938 a001 2932589877251/102334155 2865699997474938 a001 63245986/39603*141422324^(2/13) 2865699997474938 a001 17711/141422324*2537720636^(8/9) 2865699997474938 a001 17711/141422324*312119004989^(8/11) 2865699997474938 a001 17711/141422324*23725150497407^(5/8) 2865699997474938 a001 17711/141422324*73681302247^(10/13) 2865699997474938 a001 17711/141422324*28143753123^(4/5) 2865699997474938 a001 17711/141422324*10749957122^(5/6) 2865699997474938 a001 17711/141422324*4106118243^(20/23) 2865699997474938 a001 17711/141422324*1568397607^(10/11) 2865699997474938 a001 63245986/39603*2537720636^(2/15) 2865699997474938 a001 63245986/39603*45537549124^(2/17) 2865699997474938 a001 63245986/39603*14662949395604^(2/21) 2865699997474938 a001 63245986/39603*(1/2+1/2*5^(1/2))^6 2865699997474938 a001 63245986/39603*10749957122^(1/8) 2865699997474938 a001 63245986/39603*4106118243^(3/23) 2865699997474938 a001 63245986/39603*1568397607^(3/22) 2865699997474938 a001 63245986/39603*599074578^(1/7) 2865699997474938 a001 433494437/39603*33385282^(1/18) 2865699997474938 a001 17711/141422324*599074578^(20/21) 2865699997474938 a001 63245986/39603*228826127^(3/20) 2865699997474938 a001 63245986/39603*87403803^(3/19) 2865699997474938 a001 267914296/39603*33385282^(1/12) 2865699997474939 a001 165580141/39603*33385282^(1/9) 2865699997474939 a001 1120149658046/39088169 2865699997474939 a001 63245986/39603*33385282^(1/6) 2865699997474939 a001 17711/54018521*817138163596^(2/3) 2865699997474939 a001 17711/54018521*10749957122^(19/24) 2865699997474939 a001 17711/54018521*4106118243^(19/23) 2865699997474939 a001 17711/54018521*1568397607^(19/22) 2865699997474939 a001 24157817/39603*(1/2+1/2*5^(1/2))^8 2865699997474939 a001 24157817/39603*23725150497407^(1/8) 2865699997474939 a001 24157817/39603*505019158607^(1/7) 2865699997474939 a001 24157817/39603*73681302247^(2/13) 2865699997474939 a001 24157817/39603*10749957122^(1/6) 2865699997474939 a001 24157817/39603*4106118243^(4/23) 2865699997474939 a001 24157817/39603*1568397607^(2/11) 2865699997474939 a001 24157817/39603*599074578^(4/21) 2865699997474939 a001 17711/54018521*599074578^(19/21) 2865699997474939 a001 24157817/39603*228826127^(1/5) 2865699997474939 a001 17711/54018521*228826127^(19/20) 2865699997474939 a001 433494437/39603*12752043^(1/17) 2865699997474939 a001 24157817/39603*87403803^(4/19) 2865699997474940 a001 24157817/39603*33385282^(2/9) 2865699997474940 a001 165580141/39603*12752043^(2/17) 2865699997474942 a001 63245986/39603*12752043^(3/17) 2865699997474942 a001 427859096887/14930352 2865699997474943 a001 9227465/39603*20633239^(2/7) 2865699997474943 a001 24157817/39603*12752043^(4/17) 2865699997474945 a001 17711/20633239*141422324^(12/13) 2865699997474945 a001 17711/20633239*2537720636^(4/5) 2865699997474945 a001 17711/20633239*45537549124^(12/17) 2865699997474945 a001 17711/20633239*14662949395604^(4/7) 2865699997474945 a001 17711/20633239*(1/2+1/2*5^(1/2))^36 2865699997474945 a001 17711/20633239*505019158607^(9/14) 2865699997474945 a001 17711/20633239*192900153618^(2/3) 2865699997474945 a001 17711/20633239*73681302247^(9/13) 2865699997474945 a001 17711/20633239*10749957122^(3/4) 2865699997474945 a001 17711/20633239*4106118243^(18/23) 2865699997474945 a001 17711/20633239*1568397607^(9/11) 2865699997474945 a001 9227465/39603*2537720636^(2/9) 2865699997474945 a001 9227465/39603*312119004989^(2/11) 2865699997474945 a001 9227465/39603*(1/2+1/2*5^(1/2))^10 2865699997474945 a001 9227465/39603*28143753123^(1/5) 2865699997474945 a001 9227465/39603*10749957122^(5/24) 2865699997474945 a001 9227465/39603*4106118243^(5/23) 2865699997474945 a001 9227465/39603*1568397607^(5/22) 2865699997474945 a001 9227465/39603*599074578^(5/21) 2865699997474945 a001 17711/20633239*599074578^(6/7) 2865699997474945 a001 9227465/39603*228826127^(1/4) 2865699997474945 a001 17711/20633239*228826127^(9/10) 2865699997474945 a001 9227465/39603*87403803^(5/19) 2865699997474945 a001 17711/20633239*87403803^(18/19) 2865699997474946 a001 9227465/39603*33385282^(5/18) 2865699997474946 a001 433494437/39603*4870847^(1/16) 2865699997474950 a001 9227465/39603*12752043^(5/17) 2865699997474953 a001 165580141/39603*4870847^(1/8) 2865699997474961 a001 63245986/39603*4870847^(3/16) 2865699997474963 a001 163427632615/5702887 2865699997474968 a001 3524578/39603*7881196^(4/11) 2865699997474969 a001 24157817/39603*4870847^(1/4) 2865699997474983 a001 9227465/39603*4870847^(5/16) 2865699997474984 a001 3524578/39603*141422324^(4/13) 2865699997474984 a001 89/39604*45537549124^(2/3) 2865699997474984 a001 89/39604*(1/2+1/2*5^(1/2))^34 2865699997474984 a001 89/39604*10749957122^(17/24) 2865699997474984 a001 89/39604*4106118243^(17/23) 2865699997474984 a001 89/39604*1568397607^(17/22) 2865699997474984 a001 3524578/39603*2537720636^(4/15) 2865699997474984 a001 3524578/39603*45537549124^(4/17) 2865699997474984 a001 3524578/39603*817138163596^(4/19) 2865699997474984 a001 3524578/39603*14662949395604^(4/21) 2865699997474984 a001 3524578/39603*(1/2+1/2*5^(1/2))^12 2865699997474984 a001 3524578/39603*192900153618^(2/9) 2865699997474984 a001 3524578/39603*73681302247^(3/13) 2865699997474984 a001 3524578/39603*10749957122^(1/4) 2865699997474984 a001 3524578/39603*4106118243^(6/23) 2865699997474984 a001 3524578/39603*1568397607^(3/11) 2865699997474984 a001 3524578/39603*599074578^(2/7) 2865699997474984 a001 89/39604*599074578^(17/21) 2865699997474984 a001 3524578/39603*228826127^(3/10) 2865699997474984 a001 89/39604*228826127^(17/20) 2865699997474985 a001 3524578/39603*87403803^(6/19) 2865699997474985 a001 89/39604*87403803^(17/19) 2865699997474985 a001 3524578/39603*33385282^(1/3) 2865699997474987 a001 89/39604*33385282^(17/18) 2865699997474991 a001 3524578/39603*12752043^(6/17) 2865699997474993 a001 433494437/39603*1860498^(1/15) 2865699997475021 a001 267914296/39603*1860498^(1/10) 2865699997475030 a001 3524578/39603*4870847^(3/8) 2865699997475049 a001 165580141/39603*1860498^(2/15) 2865699997475076 a001 34111385/13201*1860498^(1/6) 2865699997475104 a001 63245986/39603*1860498^(1/5) 2865699997475105 a001 62423800958/2178309 2865699997475160 a001 24157817/39603*1860498^(4/15) 2865699997475184 a001 4976784/13201*1860498^(3/10) 2865699997475221 a001 9227465/39603*1860498^(1/3) 2865699997475252 a001 1346269/39603*20633239^(2/5) 2865699997475254 a001 17711/3010349*(1/2+1/2*5^(1/2))^32 2865699997475254 a001 17711/3010349*23725150497407^(1/2) 2865699997475254 a001 17711/3010349*505019158607^(4/7) 2865699997475254 a001 17711/3010349*73681302247^(8/13) 2865699997475254 a001 17711/3010349*10749957122^(2/3) 2865699997475254 a001 17711/3010349*4106118243^(16/23) 2865699997475254 a001 17711/3010349*1568397607^(8/11) 2865699997475254 a001 1346269/39603*17393796001^(2/7) 2865699997475254 a001 1346269/39603*14662949395604^(2/9) 2865699997475254 a001 1346269/39603*(1/2+1/2*5^(1/2))^14 2865699997475254 a001 1346269/39603*505019158607^(1/4) 2865699997475254 a001 1346269/39603*10749957122^(7/24) 2865699997475254 a001 1346269/39603*4106118243^(7/23) 2865699997475254 a001 1346269/39603*1568397607^(7/22) 2865699997475254 a001 1346269/39603*599074578^(1/3) 2865699997475254 a001 17711/3010349*599074578^(16/21) 2865699997475255 a001 1346269/39603*228826127^(7/20) 2865699997475255 a001 17711/3010349*228826127^(4/5) 2865699997475255 a001 1346269/39603*87403803^(7/19) 2865699997475255 a001 17711/3010349*87403803^(16/19) 2865699997475255 a001 1346269/39603*33385282^(7/18) 2865699997475257 a001 17711/3010349*33385282^(8/9) 2865699997475262 a001 1346269/39603*12752043^(7/17) 2865699997475271 a001 17711/3010349*12752043^(16/17) 2865699997475307 a001 1346269/39603*4870847^(7/16) 2865699997475316 a001 3524578/39603*1860498^(2/5) 2865699997475344 a001 433494437/39603*710647^(1/14) 2865699997475641 a001 1346269/39603*1860498^(7/15) 2865699997475749 a001 165580141/39603*710647^(1/7) 2865699997476082 a001 23843770259/832040 2865699997476154 a001 63245986/39603*710647^(3/14) 2865699997476357 a001 39088169/39603*710647^(1/4) 2865699997476561 a001 24157817/39603*710647^(2/7) 2865699997476972 a001 9227465/39603*710647^(5/14) 2865699997477064 a001 17711/1149851*7881196^(10/11) 2865699997477100 a001 17711/1149851*20633239^(6/7) 2865699997477106 a001 17711/1149851*141422324^(10/13) 2865699997477106 a001 17711/1149851*2537720636^(2/3) 2865699997477106 a001 17711/1149851*45537549124^(10/17) 2865699997477106 a001 17711/1149851*312119004989^(6/11) 2865699997477106 a001 17711/1149851*14662949395604^(10/21) 2865699997477106 a001 17711/1149851*(1/2+1/2*5^(1/2))^30 2865699997477106 a001 17711/1149851*192900153618^(5/9) 2865699997477106 a001 17711/1149851*28143753123^(3/5) 2865699997477106 a001 17711/1149851*10749957122^(5/8) 2865699997477106 a001 17711/1149851*4106118243^(15/23) 2865699997477106 a001 17711/1149851*1568397607^(15/22) 2865699997477106 a001 514229/39603*(1/2+1/2*5^(1/2))^16 2865699997477106 a001 514229/39603*23725150497407^(1/4) 2865699997477106 a001 514229/39603*73681302247^(4/13) 2865699997477106 a001 514229/39603*10749957122^(1/3) 2865699997477106 a001 514229/39603*4106118243^(8/23) 2865699997477106 a001 514229/39603*1568397607^(4/11) 2865699997477106 a001 514229/39603*599074578^(8/21) 2865699997477106 a001 17711/1149851*599074578^(5/7) 2865699997477106 a001 514229/39603*228826127^(2/5) 2865699997477106 a001 17711/1149851*228826127^(3/4) 2865699997477106 a001 514229/39603*87403803^(8/19) 2865699997477106 a001 17711/1149851*87403803^(15/19) 2865699997477107 a001 514229/39603*33385282^(4/9) 2865699997477108 a001 17711/1149851*33385282^(5/6) 2865699997477114 a001 514229/39603*12752043^(8/17) 2865699997477121 a001 17711/1149851*12752043^(15/17) 2865699997477166 a001 514229/39603*4870847^(1/2) 2865699997477219 a001 17711/1149851*4870847^(15/16) 2865699997477416 a001 3524578/39603*710647^(3/7) 2865699997477547 a001 514229/39603*1860498^(8/15) 2865699997477930 a001 433494437/39603*271443^(1/13) 2865699997478092 a001 1346269/39603*710647^(1/2) 2865699997478959 a001 567451585/930249*24476^(8/21) 2865699997479666 a001 2971215073/4870847*24476^(8/21) 2865699997479769 a001 7778742049/12752043*24476^(8/21) 2865699997479784 a001 10182505537/16692641*24476^(8/21) 2865699997479787 a001 53316291173/87403803*24476^(8/21) 2865699997479787 a001 139583862445/228826127*24476^(8/21) 2865699997479787 a001 182717648081/299537289*24476^(8/21) 2865699997479787 a001 956722026041/1568397607*24476^(8/21) 2865699997479787 a001 2504730781961/4106118243*24476^(8/21) 2865699997479787 a001 3278735159921/5374978561*24476^(8/21) 2865699997479787 a001 10610209857723/17393796001*24476^(8/21) 2865699997479787 a001 4052739537881/6643838879*24476^(8/21) 2865699997479787 a001 1134903780/1860499*24476^(8/21) 2865699997479787 a001 591286729879/969323029*24476^(8/21) 2865699997479787 a001 225851433717/370248451*24476^(8/21) 2865699997479787 a001 21566892818/35355581*24476^(8/21) 2865699997479788 a001 32951280099/54018521*24476^(8/21) 2865699997479794 a001 1144206275/1875749*24476^(8/21) 2865699997479833 a001 1201881744/1970299*24476^(8/21) 2865699997479890 a001 196418/39603*439204^(2/3) 2865699997480103 a001 1836311903/3010349*24476^(8/21) 2865699997480348 a001 514229/39603*710647^(4/7) 2865699997480922 a001 165580141/39603*271443^(2/13) 2865699997481954 a001 701408733/1149851*24476^(8/21) 2865699997482780 a001 9107509819/317811 2865699997483914 a001 63245986/39603*271443^(3/13) 2865699997486046 a001 17711*103682^(1/24) 2865699997486906 a001 24157817/39603*271443^(4/13) 2865699997489769 a001 196418/39603*7881196^(6/11) 2865699997489789 a001 17711/439204*20633239^(4/5) 2865699997489794 a001 196418/39603*141422324^(6/13) 2865699997489794 a001 17711/439204*17393796001^(4/7) 2865699997489794 a001 17711/439204*14662949395604^(4/9) 2865699997489794 a001 17711/439204*(1/2+1/2*5^(1/2))^28 2865699997489794 a001 17711/439204*505019158607^(1/2) 2865699997489794 a001 17711/439204*73681302247^(7/13) 2865699997489794 a001 17711/439204*10749957122^(7/12) 2865699997489794 a001 17711/439204*4106118243^(14/23) 2865699997489794 a001 17711/439204*1568397607^(7/11) 2865699997489794 a001 196418/39603*2537720636^(2/5) 2865699997489794 a001 196418/39603*45537549124^(6/17) 2865699997489794 a001 196418/39603*14662949395604^(2/7) 2865699997489794 a001 196418/39603*(1/2+1/2*5^(1/2))^18 2865699997489794 a001 196418/39603*192900153618^(1/3) 2865699997489794 a001 196418/39603*10749957122^(3/8) 2865699997489794 a001 196418/39603*4106118243^(9/23) 2865699997489794 a001 196418/39603*1568397607^(9/22) 2865699997489794 a001 196418/39603*599074578^(3/7) 2865699997489794 a001 17711/439204*599074578^(2/3) 2865699997489794 a001 196418/39603*228826127^(9/20) 2865699997489794 a001 17711/439204*228826127^(7/10) 2865699997489794 a001 196418/39603*87403803^(9/19) 2865699997489794 a001 17711/439204*87403803^(14/19) 2865699997489795 a001 196418/39603*33385282^(1/2) 2865699997489796 a001 17711/439204*33385282^(7/9) 2865699997489803 a001 196418/39603*12752043^(9/17) 2865699997489809 a001 17711/439204*12752043^(14/17) 2865699997489862 a001 196418/39603*4870847^(9/16) 2865699997489900 a001 17711/439204*4870847^(7/8) 2865699997489904 a001 9227465/39603*271443^(5/13) 2865699997490291 a001 196418/39603*1860498^(3/5) 2865699997490567 a001 17711/439204*1860498^(14/15) 2865699997492935 a001 3524578/39603*271443^(6/13) 2865699997493442 a001 196418/39603*710647^(9/14) 2865699997494264 a001 726103/13201*271443^(1/2) 2865699997494340 a001 9227465/64079*24476^(11/21) 2865699997494643 a001 66978574/109801*24476^(8/21) 2865699997495303 a001 75025/39603*167761^(4/5) 2865699997496197 a001 1346269/39603*271443^(7/13) 2865699997497153 a001 433494437/39603*103682^(1/12) 2865699997501040 a001 514229/39603*271443^(8/13) 2865699997505282 a001 28657/39603*64079^(22/23) 2865699997508260 a001 267914296/39603*103682^(1/8) 2865699997516720 a001 196418/39603*271443^(9/13) 2865699997519368 a001 165580141/39603*103682^(1/6) 2865699997528687 a001 3478759198/121393 2865699997530475 a001 34111385/13201*103682^(5/24) 2865699997537570 a001 1602508992/90481*9349^(1/19) 2865699997541583 a001 63245986/39603*103682^(1/4) 2865699997552690 a001 39088169/39603*103682^(7/24) 2865699997557991 a001 17711*39603^(1/22) 2865699997563799 a001 24157817/39603*103682^(1/3) 2865699997570789 a001 12586269025/710647*9349^(1/19) 2865699997574902 a001 4976784/13201*103682^(3/8) 2865699997575635 a001 10983760033/620166*9349^(1/19) 2865699997576342 a001 86267571272/4870847*9349^(1/19) 2865699997576446 a001 75283811239/4250681*9349^(1/19) 2865699997576461 a001 591286729879/33385282*9349^(1/19) 2865699997576463 a001 516002918640/29134601*9349^(1/19) 2865699997576463 a001 4052739537881/228826127*9349^(1/19) 2865699997576463 a001 3536736619241/199691526*9349^(1/19) 2865699997576463 a001 6557470319842/370248451*9349^(1/19) 2865699997576463 a001 2504730781961/141422324*9349^(1/19) 2865699997576464 a001 956722026041/54018521*9349^(1/19) 2865699997576470 a001 365435296162/20633239*9349^(1/19) 2865699997576509 a001 139583862445/7881196*9349^(1/19) 2865699997576758 a001 75025/39603*20633239^(4/7) 2865699997576762 a001 17711/167761*141422324^(2/3) 2865699997576762 a001 17711/167761*(1/2+1/2*5^(1/2))^26 2865699997576762 a001 17711/167761*73681302247^(1/2) 2865699997576762 a001 17711/167761*10749957122^(13/24) 2865699997576762 a001 17711/167761*4106118243^(13/23) 2865699997576762 a001 17711/167761*1568397607^(13/22) 2865699997576762 a001 75025/39603*2537720636^(4/9) 2865699997576762 a001 75025/39603*(1/2+1/2*5^(1/2))^20 2865699997576762 a001 75025/39603*23725150497407^(5/16) 2865699997576762 a001 75025/39603*505019158607^(5/14) 2865699997576762 a001 75025/39603*73681302247^(5/13) 2865699997576762 a001 75025/39603*28143753123^(2/5) 2865699997576762 a001 75025/39603*10749957122^(5/12) 2865699997576762 a001 75025/39603*4106118243^(10/23) 2865699997576762 a001 75025/39603*1568397607^(5/11) 2865699997576762 a001 17711/167761*599074578^(13/21) 2865699997576762 a001 75025/39603*599074578^(10/21) 2865699997576762 a001 75025/39603*228826127^(1/2) 2865699997576762 a001 17711/167761*228826127^(13/20) 2865699997576762 a001 75025/39603*87403803^(10/19) 2865699997576762 a001 17711/167761*87403803^(13/19) 2865699997576763 a001 75025/39603*33385282^(5/9) 2865699997576764 a001 17711/167761*33385282^(13/18) 2865699997576772 a001 75025/39603*12752043^(10/17) 2865699997576775 a001 17711/167761*12752043^(13/17) 2865699997576779 a001 53316291173/3010349*9349^(1/19) 2865699997576837 a001 75025/39603*4870847^(5/8) 2865699997576860 a001 17711/167761*4870847^(13/16) 2865699997577314 a001 75025/39603*1860498^(2/3) 2865699997577479 a001 17711/167761*1860498^(13/15) 2865699997578631 a001 20365011074/1149851*9349^(1/19) 2865699997580815 a001 75025/39603*710647^(5/7) 2865699997581611 a001 9303105/15251*24476^(8/21) 2865699997582031 a001 17711/167761*710647^(13/14) 2865699997586019 a001 9227465/39603*103682^(5/12) 2865699997591319 a001 7778742049/439204*9349^(1/19) 2865699997597102 a001 5702887/39603*103682^(11/24) 2865699997606680 a001 75025/39603*271443^(10/13) 2865699997608273 a001 3524578/39603*103682^(1/2) 2865699997619214 a001 726103/13201*103682^(13/24) 2865699997630758 a001 1346269/39603*103682^(7/12) 2865699997640722 a001 832040/39603*103682^(5/8) 2865699997641043 a001 433494437/39603*39603^(1/11) 2865699997647086 a001 121393/39603*103682^(19/24) 2865699997654824 a001 514229/39603*103682^(2/3) 2865699997658090 a001 105937/13201*103682^(17/24) 2865699997668682 a001 267914296/271443*24476^(1/3) 2865699997668785 a001 165580141/103682*24476^(2/7) 2865699997678287 a001 2971215073/167761*9349^(1/19) 2865699997689727 a001 196418/39603*103682^(3/4) 2865699997701900 a001 701408733/710647*24476^(1/3) 2865699997706747 a001 1836311903/1860498*24476^(1/3) 2865699997707454 a001 4807526976/4870847*24476^(1/3) 2865699997707557 a001 12586269025/12752043*24476^(1/3) 2865699997707572 a001 32951280099/33385282*24476^(1/3) 2865699997707574 a001 86267571272/87403803*24476^(1/3) 2865699997707575 a001 225851433717/228826127*24476^(1/3) 2865699997707575 a001 591286729879/599074578*24476^(1/3) 2865699997707575 a001 1548008755920/1568397607*24476^(1/3) 2865699997707575 a001 4052739537881/4106118243*24476^(1/3) 2865699997707575 a001 4807525989/4870846*24476^(1/3) 2865699997707575 a001 6557470319842/6643838879*24476^(1/3) 2865699997707575 a001 2504730781961/2537720636*24476^(1/3) 2865699997707575 a001 956722026041/969323029*24476^(1/3) 2865699997707575 a001 365435296162/370248451*24476^(1/3) 2865699997707575 a001 139583862445/141422324*24476^(1/3) 2865699997707576 a001 53316291173/54018521*24476^(1/3) 2865699997707582 a001 20365011074/20633239*24476^(1/3) 2865699997707621 a001 7778742049/7881196*24476^(1/3) 2865699997707891 a001 2971215073/3010349*24476^(1/3) 2865699997709742 a001 1134903170/1149851*24476^(1/3) 2865699997722119 a001 14930352/64079*24476^(10/21) 2865699997722431 a001 433494437/439204*24476^(1/3) 2865699997724095 a001 267914296/39603*39603^(3/22) 2865699997798910 a001 75025/39603*103682^(5/6) 2865699997807148 a001 165580141/39603*39603^(2/11) 2865699997809399 a001 165580141/167761*24476^(1/3) 2865699997843340 a001 1328767775/46368 2865699997843340 a001 144577-51841*5^(1/2) 2865699997890200 a001 34111385/13201*39603^(5/22) 2865699997896470 a001 433494437/271443*24476^(2/7) 2865699997896573 a001 133957148/51841*24476^(5/21) 2865699997929688 a001 1134903170/710647*24476^(2/7) 2865699997934535 a001 2971215073/1860498*24476^(2/7) 2865699997935242 a001 7778742049/4870847*24476^(2/7) 2865699997935345 a001 20365011074/12752043*24476^(2/7) 2865699997935360 a001 53316291173/33385282*24476^(2/7) 2865699997935362 a001 139583862445/87403803*24476^(2/7) 2865699997935363 a001 365435296162/228826127*24476^(2/7) 2865699997935363 a001 956722026041/599074578*24476^(2/7) 2865699997935363 a001 2504730781961/1568397607*24476^(2/7) 2865699997935363 a001 6557470319842/4106118243*24476^(2/7) 2865699997935363 a001 10610209857723/6643838879*24476^(2/7) 2865699997935363 a001 4052739537881/2537720636*24476^(2/7) 2865699997935363 a001 1548008755920/969323029*24476^(2/7) 2865699997935363 a001 591286729879/370248451*24476^(2/7) 2865699997935363 a001 225851433717/141422324*24476^(2/7) 2865699997935364 a001 86267571272/54018521*24476^(2/7) 2865699997935369 a001 32951280099/20633239*24476^(2/7) 2865699997935409 a001 12586269025/7881196*24476^(2/7) 2865699997935679 a001 4807526976/3010349*24476^(2/7) 2865699997937530 a001 1836311903/1149851*24476^(2/7) 2865699997949910 a001 24157817/64079*24476^(3/7) 2865699997950219 a001 701408733/439204*24476^(2/7) 2865699997973252 a001 63245986/39603*39603^(3/11) 2865699998037186 a001 267914296/167761*24476^(2/7) 2865699998056304 a001 39088169/39603*39603^(7/22) 2865699998071024 a001 -75025+46368*5^(1/2) 2865699998101112 a001 17711*15127^(1/20) 2865699998124257 a001 233802911/90481*24476^(5/21) 2865699998124361 a001 433494437/103682*24476^(4/21) 2865699998139358 a001 24157817/39603*39603^(4/11) 2865699998151565 a001 75025/15127*15127^(9/10) 2865699998157476 a001 1836311903/710647*24476^(5/21) 2865699998159643 a001 17711/64079*439204^(8/9) 2865699998162323 a001 267084832/103361*24476^(5/21) 2865699998163030 a001 12586269025/4870847*24476^(5/21) 2865699998163133 a001 10983760033/4250681*24476^(5/21) 2865699998163148 a001 43133785636/16692641*24476^(5/21) 2865699998163150 a001 75283811239/29134601*24476^(5/21) 2865699998163150 a001 591286729879/228826127*24476^(5/21) 2865699998163151 a001 86000486440/33281921*24476^(5/21) 2865699998163151 a001 4052739537881/1568397607*24476^(5/21) 2865699998163151 a001 3536736619241/1368706081*24476^(5/21) 2865699998163151 a001 3278735159921/1268860318*24476^(5/21) 2865699998163151 a001 2504730781961/969323029*24476^(5/21) 2865699998163151 a001 956722026041/370248451*24476^(5/21) 2865699998163151 a001 182717648081/70711162*24476^(5/21) 2865699998163152 a001 139583862445/54018521*24476^(5/21) 2865699998163157 a001 53316291173/20633239*24476^(5/21) 2865699998163197 a001 10182505537/3940598*24476^(5/21) 2865699998163467 a001 7778742049/3010349*24476^(5/21) 2865699998165318 a001 2971215073/1149851*24476^(5/21) 2865699998172814 a001 17711/64079*7881196^(8/11) 2865699998172817 a001 28657/39603*7881196^(2/3) 2865699998172848 a001 17711/64079*141422324^(8/13) 2865699998172848 a001 17711/64079*2537720636^(8/15) 2865699998172848 a001 17711/64079*45537549124^(8/17) 2865699998172848 a001 17711/64079*14662949395604^(8/21) 2865699998172848 a001 17711/64079*(1/2+1/2*5^(1/2))^24 2865699998172848 a001 17711/64079*192900153618^(4/9) 2865699998172848 a001 17711/64079*73681302247^(6/13) 2865699998172848 a001 17711/64079*10749957122^(1/2) 2865699998172848 a001 17711/64079*4106118243^(12/23) 2865699998172848 a001 17711/64079*1568397607^(6/11) 2865699998172848 a001 28657/39603*312119004989^(2/5) 2865699998172848 a001 28657/39603*(1/2+1/2*5^(1/2))^22 2865699998172848 a001 28657/39603*10749957122^(11/24) 2865699998172848 a001 28657/39603*4106118243^(11/23) 2865699998172848 a001 28657/39603*1568397607^(1/2) 2865699998172848 a001 17711/64079*599074578^(4/7) 2865699998172848 a001 28657/39603*599074578^(11/21) 2865699998172848 a001 28657/39603*228826127^(11/20) 2865699998172848 a001 17711/64079*228826127^(3/5) 2865699998172848 a001 28657/39603*87403803^(11/19) 2865699998172848 a001 17711/64079*87403803^(12/19) 2865699998172850 a001 28657/39603*33385282^(11/18) 2865699998172850 a001 17711/64079*33385282^(2/3) 2865699998172859 a001 28657/39603*12752043^(11/17) 2865699998172860 a001 17711/64079*12752043^(12/17) 2865699998172931 a001 28657/39603*4870847^(11/16) 2865699998172939 a001 17711/64079*4870847^(3/4) 2865699998173455 a001 28657/39603*1860498^(11/15) 2865699998173510 a001 17711/64079*1860498^(4/5) 2865699998177307 a001 28657/39603*710647^(11/14) 2865699998177696 a001 39088169/64079*24476^(8/21) 2865699998177712 a001 17711/64079*710647^(6/7) 2865699998178006 a001 567451585/219602*24476^(5/21) 2865699998205758 a001 28657/39603*271443^(11/13) 2865699998208749 a001 17711/64079*271443^(12/13) 2865699998222407 a001 4976784/13201*39603^(9/22) 2865699998264974 a001 433494437/167761*24476^(5/21) 2865699998274373 a001 1134903170/64079*9349^(1/19) 2865699998305468 a001 9227465/39603*39603^(5/11) 2865699998352045 a001 1134903170/271443*24476^(4/21) 2865699998352148 a001 701408733/103682*24476^(1/7) 2865699998359397 a001 121393/103682*64079^(21/23) 2865699998385264 a001 2971215073/710647*24476^(4/21) 2865699998388496 a001 5702887/39603*39603^(1/2) 2865699998390110 a001 7778742049/1860498*24476^(4/21) 2865699998390818 a001 20365011074/4870847*24476^(4/21) 2865699998390921 a001 53316291173/12752043*24476^(4/21) 2865699998390936 a001 139583862445/33385282*24476^(4/21) 2865699998390938 a001 365435296162/87403803*24476^(4/21) 2865699998390938 a001 956722026041/228826127*24476^(4/21) 2865699998390938 a001 2504730781961/599074578*24476^(4/21) 2865699998390938 a001 6557470319842/1568397607*24476^(4/21) 2865699998390938 a001 10610209857723/2537720636*24476^(4/21) 2865699998390938 a001 4052739537881/969323029*24476^(4/21) 2865699998390938 a001 1548008755920/370248451*24476^(4/21) 2865699998390939 a001 591286729879/141422324*24476^(4/21) 2865699998390939 a001 225851433717/54018521*24476^(4/21) 2865699998390945 a001 86267571272/20633239*24476^(4/21) 2865699998390985 a001 32951280099/7881196*24476^(4/21) 2865699998391255 a001 12586269025/3010349*24476^(4/21) 2865699998393106 a001 4807526976/1149851*24476^(4/21) 2865699998405485 a001 63245986/64079*24476^(1/3) 2865699998405794 a001 1836311903/439204*24476^(4/21) 2865699998409338 a001 6624/2161*15127^(19/20) 2865699998417211 a001 28657/39603*103682^(11/12) 2865699998439426 a001 121393/2-28657/2*5^(1/2) 2865699998443490 a001 98209/51841*64079^(20/23) 2865699998453303 a001 317811/103682*64079^(19/23) 2865699998469770 a001 75025/103682*64079^(22/23) 2865699998471612 a001 3524578/39603*39603^(6/11) 2865699998491489 a001 514229/103682*64079^(18/23) 2865699998492762 a001 701408733/167761*24476^(4/21) 2865699998518838 a001 416020/51841*64079^(17/23) 2865699998550326 a001 1346269/103682*64079^(16/23) 2865699998554498 a001 726103/13201*39603^(13/22) 2865699998579833 a001 1836311903/271443*24476^(1/7) 2865699998579936 a001 567451585/51841*24476^(2/21) 2865699998580233 a001 46347/2206*64079^(15/23) 2865699998604180 a001 2/28657*(1/2+1/2*5^(1/2))^46 2865699998610487 a001 196418/271443*64079^(22/23) 2865699998610743 a001 1762289/51841*64079^(14/23) 2865699998613052 a001 686789568/101521*24476^(1/7) 2865699998617898 a001 12586269025/1860498*24476^(1/7) 2865699998618605 a001 32951280099/4870847*24476^(1/7) 2865699998618709 a001 86267571272/12752043*24476^(1/7) 2865699998618724 a001 32264490531/4769326*24476^(1/7) 2865699998618726 a001 591286729879/87403803*24476^(1/7) 2865699998618726 a001 1548008755920/228826127*24476^(1/7) 2865699998618726 a001 4052739537881/599074578*24476^(1/7) 2865699998618726 a001 1515744265389/224056801*24476^(1/7) 2865699998618726 a001 6557470319842/969323029*24476^(1/7) 2865699998618726 a001 2504730781961/370248451*24476^(1/7) 2865699998618726 a001 956722026041/141422324*24476^(1/7) 2865699998618727 a001 365435296162/54018521*24476^(1/7) 2865699998618733 a001 139583862445/20633239*24476^(1/7) 2865699998618772 a001 53316291173/7881196*24476^(1/7) 2865699998619042 a001 20365011074/3010349*24476^(1/7) 2865699998620300 a001 105937/90481*64079^(21/23) 2865699998620894 a001 7778742049/1149851*24476^(1/7) 2865699998631017 a001 514229/710647*64079^(22/23) 2865699998633272 a001 102334155/64079*24476^(2/7) 2865699998633582 a001 2971215073/439204*24476^(1/7) 2865699998634012 a001 1346269/1860498*64079^(22/23) 2865699998634449 a001 3524578/4870847*64079^(22/23) 2865699998634513 a001 9227465/12752043*64079^(22/23) 2865699998634522 a001 24157817/33385282*64079^(22/23) 2865699998634524 a001 63245986/87403803*64079^(22/23) 2865699998634524 a001 165580141/228826127*64079^(22/23) 2865699998634524 a001 433494437/599074578*64079^(22/23) 2865699998634524 a001 1134903170/1568397607*64079^(22/23) 2865699998634524 a001 2971215073/4106118243*64079^(22/23) 2865699998634524 a001 7778742049/10749957122*64079^(22/23) 2865699998634524 a001 20365011074/28143753123*64079^(22/23) 2865699998634524 a001 53316291173/73681302247*64079^(22/23) 2865699998634524 a001 139583862445/192900153618*64079^(22/23) 2865699998634524 a001 365435296162/505019158607*64079^(22/23) 2865699998634524 a001 10610209857723/14662949395604*64079^(22/23) 2865699998634524 a001 225851433717/312119004989*64079^(22/23) 2865699998634524 a001 86267571272/119218851371*64079^(22/23) 2865699998634524 a001 32951280099/45537549124*64079^(22/23) 2865699998634524 a001 12586269025/17393796001*64079^(22/23) 2865699998634524 a001 4807526976/6643838879*64079^(22/23) 2865699998634524 a001 1836311903/2537720636*64079^(22/23) 2865699998634524 a001 701408733/969323029*64079^(22/23) 2865699998634524 a001 267914296/370248451*64079^(22/23) 2865699998634524 a001 102334155/141422324*64079^(22/23) 2865699998634524 a001 39088169/54018521*64079^(22/23) 2865699998634528 a001 14930352/20633239*64079^(22/23) 2865699998634552 a001 5702887/7881196*64079^(22/23) 2865699998634719 a001 2178309/3010349*64079^(22/23) 2865699998635863 a001 832040/1149851*64079^(22/23) 2865699998637987 a001 1346269/39603*39603^(7/11) 2865699998641024 a001 5702887/103682*64079^(13/23) 2865699998643705 a001 317811/439204*64079^(22/23) 2865699998658365 a001 832040/710647*64079^(21/23) 2865699998658486 a001 514229/271443*64079^(20/23) 2865699998663919 a001 726103/620166*64079^(21/23) 2865699998664729 a001 5702887/4870847*64079^(21/23) 2865699998664848 a001 4976784/4250681*64079^(21/23) 2865699998664865 a001 39088169/33385282*64079^(21/23) 2865699998664867 a001 34111385/29134601*64079^(21/23) 2865699998664868 a001 267914296/228826127*64079^(21/23) 2865699998664868 a001 233802911/199691526*64079^(21/23) 2865699998664868 a001 1836311903/1568397607*64079^(21/23) 2865699998664868 a001 1602508992/1368706081*64079^(21/23) 2865699998664868 a001 12586269025/10749957122*64079^(21/23) 2865699998664868 a001 10983760033/9381251041*64079^(21/23) 2865699998664868 a001 86267571272/73681302247*64079^(21/23) 2865699998664868 a001 75283811239/64300051206*64079^(21/23) 2865699998664868 a001 2504730781961/2139295485799*64079^(21/23) 2865699998664868 a001 365435296162/312119004989*64079^(21/23) 2865699998664868 a001 139583862445/119218851371*64079^(21/23) 2865699998664868 a001 53316291173/45537549124*64079^(21/23) 2865699998664868 a001 20365011074/17393796001*64079^(21/23) 2865699998664868 a001 7778742049/6643838879*64079^(21/23) 2865699998664868 a001 2971215073/2537720636*64079^(21/23) 2865699998664868 a001 1134903170/969323029*64079^(21/23) 2865699998664868 a001 433494437/370248451*64079^(21/23) 2865699998664868 a001 165580141/141422324*64079^(21/23) 2865699998664869 a001 63245986/54018521*64079^(21/23) 2865699998664875 a001 24157817/20633239*64079^(21/23) 2865699998664921 a001 9227465/7881196*64079^(21/23) 2865699998665230 a001 3524578/3010349*64079^(21/23) 2865699998667110 a001 2149991424/75025 2865699998667351 a001 1346269/1149851*64079^(21/23) 2865699998671392 a001 9227465/103682*64079^(12/23) 2865699998681891 a001 514229/439204*64079^(21/23) 2865699998685835 a001 832040/271443*64079^(19/23) 2865699998689853 a001 1346269/710647*64079^(20/23) 2865699998694430 a001 1762289/930249*64079^(20/23) 2865699998695098 a001 9227465/4870847*64079^(20/23) 2865699998695195 a001 24157817/12752043*64079^(20/23) 2865699998695209 a001 31622993/16692641*64079^(20/23) 2865699998695211 a001 165580141/87403803*64079^(20/23) 2865699998695212 a001 433494437/228826127*64079^(20/23) 2865699998695212 a001 567451585/299537289*64079^(20/23) 2865699998695212 a001 2971215073/1568397607*64079^(20/23) 2865699998695212 a001 7778742049/4106118243*64079^(20/23) 2865699998695212 a001 10182505537/5374978561*64079^(20/23) 2865699998695212 a001 53316291173/28143753123*64079^(20/23) 2865699998695212 a001 139583862445/73681302247*64079^(20/23) 2865699998695212 a001 182717648081/96450076809*64079^(20/23) 2865699998695212 a001 956722026041/505019158607*64079^(20/23) 2865699998695212 a001 10610209857723/5600748293801*64079^(20/23) 2865699998695212 a001 591286729879/312119004989*64079^(20/23) 2865699998695212 a001 225851433717/119218851371*64079^(20/23) 2865699998695212 a001 21566892818/11384387281*64079^(20/23) 2865699998695212 a001 32951280099/17393796001*64079^(20/23) 2865699998695212 a001 12586269025/6643838879*64079^(20/23) 2865699998695212 a001 1201881744/634430159*64079^(20/23) 2865699998695212 a001 1836311903/969323029*64079^(20/23) 2865699998695212 a001 701408733/370248451*64079^(20/23) 2865699998695212 a001 66978574/35355581*64079^(20/23) 2865699998695213 a001 102334155/54018521*64079^(20/23) 2865699998695218 a001 39088169/20633239*64079^(20/23) 2865699998695255 a001 3732588/1970299*64079^(20/23) 2865699998695510 a001 5702887/3010349*64079^(20/23) 2865699998697258 a001 2178309/1149851*64079^(20/23) 2865699998697454 a001 121393/167761*64079^(22/23) 2865699998701726 a001 7465176/51841*64079^(11/23) 2865699998709240 a001 208010/109801*64079^(20/23) 2865699998717323 a001 1346269/271443*64079^(18/23) 2865699998719760 a001 311187/101521*64079^(19/23) 2865699998719895 a001 832040/39603*39603^(15/22) 2865699998720550 a001 1134903170/167761*24476^(1/7) 2865699998724710 a001 5702887/1860498*64079^(19/23) 2865699998725432 a001 14930352/4870847*64079^(19/23) 2865699998725538 a001 39088169/12752043*64079^(19/23) 2865699998725553 a001 14619165/4769326*64079^(19/23) 2865699998725555 a001 267914296/87403803*64079^(19/23) 2865699998725556 a001 701408733/228826127*64079^(19/23) 2865699998725556 a001 1836311903/599074578*64079^(19/23) 2865699998725556 a001 686789568/224056801*64079^(19/23) 2865699998725556 a001 12586269025/4106118243*64079^(19/23) 2865699998725556 a001 32951280099/10749957122*64079^(19/23) 2865699998725556 a001 86267571272/28143753123*64079^(19/23) 2865699998725556 a001 32264490531/10525900321*64079^(19/23) 2865699998725556 a001 591286729879/192900153618*64079^(19/23) 2865699998725556 a001 1548008755920/505019158607*64079^(19/23) 2865699998725556 a001 1515744265389/494493258286*64079^(19/23) 2865699998725556 a001 2504730781961/817138163596*64079^(19/23) 2865699998725556 a001 956722026041/312119004989*64079^(19/23) 2865699998725556 a001 365435296162/119218851371*64079^(19/23) 2865699998725556 a001 139583862445/45537549124*64079^(19/23) 2865699998725556 a001 53316291173/17393796001*64079^(19/23) 2865699998725556 a001 20365011074/6643838879*64079^(19/23) 2865699998725556 a001 7778742049/2537720636*64079^(19/23) 2865699998725556 a001 2971215073/969323029*64079^(19/23) 2865699998725556 a001 1134903170/370248451*64079^(19/23) 2865699998725556 a001 433494437/141422324*64079^(19/23) 2865699998725557 a001 165580141/54018521*64079^(19/23) 2865699998725562 a001 63245986/20633239*64079^(19/23) 2865699998725603 a001 24157817/7881196*64079^(19/23) 2865699998725879 a001 9227465/3010349*64079^(19/23) 2865699998727287 a001 433494437/39603*15127^(1/10) 2865699998727769 a001 3524578/1149851*64079^(19/23) 2865699998732074 a001 24157817/103682*64079^(10/23) 2865699998740728 a001 1346269/439204*64079^(19/23) 2865699998747229 a001 726103/90481*64079^(17/23) 2865699998750271 a001 3524578/710647*64079^(18/23) 2865699998755078 a001 9227465/1860498*64079^(18/23) 2865699998755780 a001 24157817/4870847*64079^(18/23) 2865699998755882 a001 63245986/12752043*64079^(18/23) 2865699998755897 a001 165580141/33385282*64079^(18/23) 2865699998755899 a001 433494437/87403803*64079^(18/23) 2865699998755899 a001 1134903170/228826127*64079^(18/23) 2865699998755899 a001 2971215073/599074578*64079^(18/23) 2865699998755899 a001 7778742049/1568397607*64079^(18/23) 2865699998755899 a001 20365011074/4106118243*64079^(18/23) 2865699998755899 a001 53316291173/10749957122*64079^(18/23) 2865699998755899 a001 139583862445/28143753123*64079^(18/23) 2865699998755899 a001 365435296162/73681302247*64079^(18/23) 2865699998755899 a001 956722026041/192900153618*64079^(18/23) 2865699998755899 a001 2504730781961/505019158607*64079^(18/23) 2865699998755899 a001 10610209857723/2139295485799*64079^(18/23) 2865699998755899 a001 140728068720/28374454999*64079^(18/23) 2865699998755899 a001 591286729879/119218851371*64079^(18/23) 2865699998755899 a001 225851433717/45537549124*64079^(18/23) 2865699998755899 a001 86267571272/17393796001*64079^(18/23) 2865699998755899 a001 32951280099/6643838879*64079^(18/23) 2865699998755899 a001 1144206275/230701876*64079^(18/23) 2865699998755899 a001 4807526976/969323029*64079^(18/23) 2865699998755900 a001 1836311903/370248451*64079^(18/23) 2865699998755900 a001 701408733/141422324*64079^(18/23) 2865699998755900 a001 267914296/54018521*64079^(18/23) 2865699998755906 a001 9303105/1875749*64079^(18/23) 2865699998755945 a001 39088169/7881196*64079^(18/23) 2865699998756213 a001 14930352/3010349*64079^(18/23) 2865699998758049 a001 5702887/1149851*64079^(18/23) 2865699998762416 a001 39088169/103682*64079^(9/23) 2865699998768934 a001 23184/51841*(1/2+1/2*5^(1/2))^23 2865699998768934 a001 23184/51841*4106118243^(1/2) 2865699998770635 a001 2178309/439204*64079^(18/23) 2865699998777740 a001 3524578/271443*64079^(16/23) 2865699998780551 a001 5702887/710647*64079^(17/23) 2865699998781547 a001 196418/167761*64079^(21/23) 2865699998785413 a001 829464/103361*64079^(17/23) 2865699998786122 a001 39088169/4870847*64079^(17/23) 2865699998786226 a001 34111385/4250681*64079^(17/23) 2865699998786241 a001 133957148/16692641*64079^(17/23) 2865699998786243 a001 233802911/29134601*64079^(17/23) 2865699998786243 a001 1836311903/228826127*64079^(17/23) 2865699998786243 a001 267084832/33281921*64079^(17/23) 2865699998786243 a001 12586269025/1568397607*64079^(17/23) 2865699998786243 a001 10983760033/1368706081*64079^(17/23) 2865699998786243 a001 43133785636/5374978561*64079^(17/23) 2865699998786243 a001 75283811239/9381251041*64079^(17/23) 2865699998786243 a001 591286729879/73681302247*64079^(17/23) 2865699998786243 a001 86000486440/10716675201*64079^(17/23) 2865699998786243 a001 4052739537881/505019158607*64079^(17/23) 2865699998786243 a001 3278735159921/408569081798*64079^(17/23) 2865699998786243 a001 2504730781961/312119004989*64079^(17/23) 2865699998786243 a001 956722026041/119218851371*64079^(17/23) 2865699998786243 a001 182717648081/22768774562*64079^(17/23) 2865699998786243 a001 139583862445/17393796001*64079^(17/23) 2865699998786243 a001 53316291173/6643838879*64079^(17/23) 2865699998786243 a001 10182505537/1268860318*64079^(17/23) 2865699998786243 a001 7778742049/969323029*64079^(17/23) 2865699998786243 a001 2971215073/370248451*64079^(17/23) 2865699998786244 a001 567451585/70711162*64079^(17/23) 2865699998786244 a001 433494437/54018521*64079^(17/23) 2865699998786250 a001 165580141/20633239*64079^(17/23) 2865699998786290 a001 31622993/3940598*64079^(17/23) 2865699998786561 a001 24157817/3010349*64079^(17/23) 2865699998788418 a001 9227465/1149851*64079^(17/23) 2865699998791361 a001 317811/167761*64079^(20/23) 2865699998792761 a001 31622993/51841*64079^(8/23) 2865699998801145 a001 1762289/219602*64079^(17/23) 2865699998805943 a001 514229/39603*39603^(8/11) 2865699998807621 a001 2971215073/271443*24476^(2/21) 2865699998807724 a001 1836311903/103682*24476^(1/21) 2865699998807827 a001 196418-75025*5^(1/2) 2865699998808020 a001 5702887/271443*64079^(15/23) 2865699998810920 a001 9227465/710647*64079^(16/23) 2865699998815760 a001 24157817/1860498*64079^(16/23) 2865699998816467 a001 63245986/4870847*64079^(16/23) 2865699998816570 a001 165580141/12752043*64079^(16/23) 2865699998816585 a001 433494437/33385282*64079^(16/23) 2865699998816587 a001 1134903170/87403803*64079^(16/23) 2865699998816587 a001 2971215073/228826127*64079^(16/23) 2865699998816587 a001 7778742049/599074578*64079^(16/23) 2865699998816587 a001 20365011074/1568397607*64079^(16/23) 2865699998816587 a001 53316291173/4106118243*64079^(16/23) 2865699998816587 a001 139583862445/10749957122*64079^(16/23) 2865699998816587 a001 365435296162/28143753123*64079^(16/23) 2865699998816587 a001 956722026041/73681302247*64079^(16/23) 2865699998816587 a001 2504730781961/192900153618*64079^(16/23) 2865699998816587 a001 10610209857723/817138163596*64079^(16/23) 2865699998816587 a001 4052739537881/312119004989*64079^(16/23) 2865699998816587 a001 1548008755920/119218851371*64079^(16/23) 2865699998816587 a001 591286729879/45537549124*64079^(16/23) 2865699998816587 a001 7787980473/599786069*64079^(16/23) 2865699998816587 a001 86267571272/6643838879*64079^(16/23) 2865699998816587 a001 32951280099/2537720636*64079^(16/23) 2865699998816587 a001 12586269025/969323029*64079^(16/23) 2865699998816587 a001 4807526976/370248451*64079^(16/23) 2865699998816587 a001 1836311903/141422324*64079^(16/23) 2865699998816588 a001 701408733/54018521*64079^(16/23) 2865699998816594 a001 9238424/711491*64079^(16/23) 2865699998816633 a001 102334155/7881196*64079^(16/23) 2865699998816903 a001 39088169/3010349*64079^(16/23) 2865699998818752 a001 14930352/1149851*64079^(16/23) 2865699998823105 a001 102334155/103682*64079^(7/23) 2865699998829547 a001 514229/167761*64079^(19/23) 2865699998831426 a001 5702887/439204*64079^(16/23) 2865699998838389 a001 9227465/271443*64079^(14/23) 2865699998840840 a001 7778742049/710647*24476^(2/21) 2865699998841254 a001 14930352/710647*64079^(15/23) 2865699998845686 a001 10182505537/930249*24476^(2/21) 2865699998846103 a001 39088169/1860498*64079^(15/23) 2865699998846393 a001 53316291173/4870847*24476^(2/21) 2865699998846496 a001 139583862445/12752043*24476^(2/21) 2865699998846511 a001 182717648081/16692641*24476^(2/21) 2865699998846514 a001 956722026041/87403803*24476^(2/21) 2865699998846514 a001 2504730781961/228826127*24476^(2/21) 2865699998846514 a001 3278735159921/299537289*24476^(2/21) 2865699998846514 a001 10610209857723/969323029*24476^(2/21) 2865699998846514 a001 4052739537881/370248451*24476^(2/21) 2865699998846514 a001 387002188980/35355581*24476^(2/21) 2865699998846515 a001 591286729879/54018521*24476^(2/21) 2865699998846521 a001 7787980473/711491*24476^(2/21) 2865699998846560 a001 21566892818/1970299*24476^(2/21) 2865699998846810 a001 102334155/4870847*64079^(15/23) 2865699998846830 a001 32951280099/3010349*24476^(2/21) 2865699998846914 a001 267914296/12752043*64079^(15/23) 2865699998846929 a001 701408733/33385282*64079^(15/23) 2865699998846931 a001 1836311903/87403803*64079^(15/23) 2865699998846931 a001 102287808/4868641*64079^(15/23) 2865699998846931 a001 12586269025/599074578*64079^(15/23) 2865699998846931 a001 32951280099/1568397607*64079^(15/23) 2865699998846931 a001 86267571272/4106118243*64079^(15/23) 2865699998846931 a001 225851433717/10749957122*64079^(15/23) 2865699998846931 a001 591286729879/28143753123*64079^(15/23) 2865699998846931 a001 1548008755920/73681302247*64079^(15/23) 2865699998846931 a001 4052739537881/192900153618*64079^(15/23) 2865699998846931 a001 225749145909/10745088481*64079^(15/23) 2865699998846931 a001 6557470319842/312119004989*64079^(15/23) 2865699998846931 a001 2504730781961/119218851371*64079^(15/23) 2865699998846931 a001 956722026041/45537549124*64079^(15/23) 2865699998846931 a001 365435296162/17393796001*64079^(15/23) 2865699998846931 a001 139583862445/6643838879*64079^(15/23) 2865699998846931 a001 53316291173/2537720636*64079^(15/23) 2865699998846931 a001 20365011074/969323029*64079^(15/23) 2865699998846931 a001 7778742049/370248451*64079^(15/23) 2865699998846931 a001 2971215073/141422324*64079^(15/23) 2865699998846932 a001 1134903170/54018521*64079^(15/23) 2865699998846938 a001 433494437/20633239*64079^(15/23) 2865699998846977 a001 165580141/7881196*64079^(15/23) 2865699998847248 a001 63245986/3010349*64079^(15/23) 2865699998848681 a001 12586269025/1149851*24476^(2/21) 2865699998849100 a001 24157817/1149851*64079^(15/23) 2865699998853449 a001 165580141/103682*64079^(6/23) 2865699998856895 a001 75640/15251*64079^(18/23) 2865699998861060 a001 165580141/64079*24476^(5/21) 2865699998861370 a001 1201881744/109801*24476^(2/21) 2865699998861794 a001 9227465/439204*64079^(15/23) 2865699998868723 a001 4976784/90481*64079^(13/23) 2865699998871602 a001 24157817/710647*64079^(14/23) 2865699998876447 a001 31622993/930249*64079^(14/23) 2865699998877154 a001 165580141/4870847*64079^(14/23) 2865699998877257 a001 433494437/12752043*64079^(14/23) 2865699998877273 a001 567451585/16692641*64079^(14/23) 2865699998877275 a001 2971215073/87403803*64079^(14/23) 2865699998877275 a001 7778742049/228826127*64079^(14/23) 2865699998877275 a001 10182505537/299537289*64079^(14/23) 2865699998877275 a001 53316291173/1568397607*64079^(14/23) 2865699998877275 a001 139583862445/4106118243*64079^(14/23) 2865699998877275 a001 182717648081/5374978561*64079^(14/23) 2865699998877275 a001 956722026041/28143753123*64079^(14/23) 2865699998877275 a001 2504730781961/73681302247*64079^(14/23) 2865699998877275 a001 3278735159921/96450076809*64079^(14/23) 2865699998877275 a001 10610209857723/312119004989*64079^(14/23) 2865699998877275 a001 4052739537881/119218851371*64079^(14/23) 2865699998877275 a001 387002188980/11384387281*64079^(14/23) 2865699998877275 a001 591286729879/17393796001*64079^(14/23) 2865699998877275 a001 225851433717/6643838879*64079^(14/23) 2865699998877275 a001 1135099622/33391061*64079^(14/23) 2865699998877275 a001 32951280099/969323029*64079^(14/23) 2865699998877275 a001 12586269025/370248451*64079^(14/23) 2865699998877275 a001 1201881744/35355581*64079^(14/23) 2865699998877276 a001 1836311903/54018521*64079^(14/23) 2865699998877282 a001 701408733/20633239*64079^(14/23) 2865699998877321 a001 66978574/1970299*64079^(14/23) 2865699998877591 a001 102334155/3010349*64079^(14/23) 2865699998879442 a001 39088169/1149851*64079^(14/23) 2865699998881154 a001 105937/13201*39603^(17/22) 2865699998883792 a001 133957148/51841*64079^(5/23) 2865699998888383 a001 1346269/167761*64079^(17/23) 2865699998892128 a001 196452/5779*64079^(14/23) 2865699998899071 a001 24157817/271443*64079^(12/23) 2865699998901944 a001 39088169/710647*64079^(13/23) 2865699998906791 a001 831985/15126*64079^(13/23) 2865699998907498 a001 267914296/4870847*64079^(13/23) 2865699998907601 a001 233802911/4250681*64079^(13/23) 2865699998907616 a001 1836311903/33385282*64079^(13/23) 2865699998907619 a001 1602508992/29134601*64079^(13/23) 2865699998907619 a001 12586269025/228826127*64079^(13/23) 2865699998907619 a001 10983760033/199691526*64079^(13/23) 2865699998907619 a001 86267571272/1568397607*64079^(13/23) 2865699998907619 a001 75283811239/1368706081*64079^(13/23) 2865699998907619 a001 591286729879/10749957122*64079^(13/23) 2865699998907619 a001 12585437040/228811001*64079^(13/23) 2865699998907619 a001 4052739537881/73681302247*64079^(13/23) 2865699998907619 a001 3536736619241/64300051206*64079^(13/23) 2865699998907619 a001 6557470319842/119218851371*64079^(13/23) 2865699998907619 a001 2504730781961/45537549124*64079^(13/23) 2865699998907619 a001 956722026041/17393796001*64079^(13/23) 2865699998907619 a001 365435296162/6643838879*64079^(13/23) 2865699998907619 a001 139583862445/2537720636*64079^(13/23) 2865699998907619 a001 53316291173/969323029*64079^(13/23) 2865699998907619 a001 20365011074/370248451*64079^(13/23) 2865699998907619 a001 7778742049/141422324*64079^(13/23) 2865699998907620 a001 2971215073/54018521*64079^(13/23) 2865699998907626 a001 1134903170/20633239*64079^(13/23) 2865699998907665 a001 433494437/7881196*64079^(13/23) 2865699998907935 a001 165580141/3010349*64079^(13/23) 2865699998908755 a001 165580141/24476*9349^(3/19) 2865699998909787 a001 63245986/1149851*64079^(13/23) 2865699998914136 a001 433494437/103682*64079^(4/23) 2865699998918290 a001 2178309/167761*64079^(16/23) 2865699998922476 a001 24157817/439204*64079^(13/23) 2865699998929413 a001 39088169/271443*64079^(11/23) 2865699998932289 a001 63245986/710647*64079^(12/23) 2865699998937135 a001 165580141/1860498*64079^(12/23) 2865699998937842 a001 433494437/4870847*64079^(12/23) 2865699998937945 a001 1134903170/12752043*64079^(12/23) 2865699998937960 a001 2971215073/33385282*64079^(12/23) 2865699998937963 a001 7778742049/87403803*64079^(12/23) 2865699998937963 a001 20365011074/228826127*64079^(12/23) 2865699998937963 a001 53316291173/599074578*64079^(12/23) 2865699998937963 a001 139583862445/1568397607*64079^(12/23) 2865699998937963 a001 365435296162/4106118243*64079^(12/23) 2865699998937963 a001 956722026041/10749957122*64079^(12/23) 2865699998937963 a001 2504730781961/28143753123*64079^(12/23) 2865699998937963 a001 6557470319842/73681302247*64079^(12/23) 2865699998937963 a001 10610209857723/119218851371*64079^(12/23) 2865699998937963 a001 4052739537881/45537549124*64079^(12/23) 2865699998937963 a001 1548008755920/17393796001*64079^(12/23) 2865699998937963 a001 591286729879/6643838879*64079^(12/23) 2865699998937963 a001 225851433717/2537720636*64079^(12/23) 2865699998937963 a001 86267571272/969323029*64079^(12/23) 2865699998937963 a001 32951280099/370248451*64079^(12/23) 2865699998937963 a001 12586269025/141422324*64079^(12/23) 2865699998937964 a001 4807526976/54018521*64079^(12/23) 2865699998937970 a001 1836311903/20633239*64079^(12/23) 2865699998938009 a001 3524667/39604*64079^(12/23) 2865699998938279 a001 267914296/3010349*64079^(12/23) 2865699998940130 a001 102334155/1149851*64079^(12/23) 2865699998944480 a001 701408733/103682*64079^(3/23) 2865699998948338 a001 1836311903/167761*24476^(2/21) 2865699998948801 a001 3524578/167761*64079^(15/23) 2865699998952460 a001 15456/13201*39603^(21/22) 2865699998952818 a001 39088169/439204*64079^(12/23) 2865699998959758 a001 63245986/271443*64079^(10/23) 2865699998962632 a001 14619165/101521*64079^(11/23) 2865699998967479 a001 133957148/930249*64079^(11/23) 2865699998968186 a001 701408733/4870847*64079^(11/23) 2865699998968289 a001 1836311903/12752043*64079^(11/23) 2865699998968304 a001 14930208/103681*64079^(11/23) 2865699998968306 a001 12586269025/87403803*64079^(11/23) 2865699998968307 a001 32951280099/228826127*64079^(11/23) 2865699998968307 a001 43133785636/299537289*64079^(11/23) 2865699998968307 a001 32264490531/224056801*64079^(11/23) 2865699998968307 a001 591286729879/4106118243*64079^(11/23) 2865699998968307 a001 774004377960/5374978561*64079^(11/23) 2865699998968307 a001 4052739537881/28143753123*64079^(11/23) 2865699998968307 a001 1515744265389/10525900321*64079^(11/23) 2865699998968307 a001 3278735159921/22768774562*64079^(11/23) 2865699998968307 a001 2504730781961/17393796001*64079^(11/23) 2865699998968307 a001 956722026041/6643838879*64079^(11/23) 2865699998968307 a001 182717648081/1268860318*64079^(11/23) 2865699998968307 a001 139583862445/969323029*64079^(11/23) 2865699998968307 a001 53316291173/370248451*64079^(11/23) 2865699998968307 a001 10182505537/70711162*64079^(11/23) 2865699998968308 a001 7778742049/54018521*64079^(11/23) 2865699998968314 a001 2971215073/20633239*64079^(11/23) 2865699998968353 a001 567451585/3940598*64079^(11/23) 2865699998968623 a001 433494437/3010349*64079^(11/23) 2865699998968909 a001 98209/51841*167761^(4/5) 2865699998970474 a001 165580141/1149851*64079^(11/23) 2865699998974297 a001 46347/2206*167761^(3/5) 2865699998974824 a001 567451585/51841*64079^(2/23) 2865699998979081 a001 5702887/167761*64079^(14/23) 2865699998981763 a001 2814375312/98209 2865699998983163 a001 31622993/219602*64079^(11/23) 2865699998984736 a001 196418/39603*39603^(9/11) 2865699998985064 a001 121393/103682*439204^(7/9) 2865699998990101 a001 34111385/90481*64079^(9/23) 2865699998992976 a001 165580141/710647*64079^(10/23) 2865699998994783 a001 24157817/103682*167761^(2/5) 2865699998996589 a001 121393/103682*7881196^(7/11) 2865699998996614 a001 15456/90481*20633239^(5/7) 2865699998996615 a001 121393/103682*20633239^(3/5) 2865699998996619 a001 121393/103682*141422324^(7/13) 2865699998996619 a001 15456/90481*2537720636^(5/9) 2865699998996619 a001 121393/103682*2537720636^(7/15) 2865699998996619 a001 15456/90481*312119004989^(5/11) 2865699998996619 a001 15456/90481*(1/2+1/2*5^(1/2))^25 2865699998996619 a001 15456/90481*3461452808002^(5/12) 2865699998996619 a001 15456/90481*28143753123^(1/2) 2865699998996619 a001 121393/103682*17393796001^(3/7) 2865699998996619 a001 121393/103682*45537549124^(7/17) 2865699998996619 a001 121393/103682*14662949395604^(1/3) 2865699998996619 a001 121393/103682*(1/2+1/2*5^(1/2))^21 2865699998996619 a001 121393/103682*192900153618^(7/18) 2865699998996619 a001 121393/103682*10749957122^(7/16) 2865699998996619 a001 121393/103682*599074578^(1/2) 2865699998996619 a001 15456/90481*228826127^(5/8) 2865699998996620 a001 121393/103682*33385282^(7/12) 2865699998997198 a001 121393/103682*1860498^(7/10) 2865699998997309 a001 15456/90481*1860498^(5/6) 2865699998997823 a001 433494437/1860498*64079^(10/23) 2865699998998530 a001 1134903170/4870847*64079^(10/23) 2865699998998633 a001 2971215073/12752043*64079^(10/23) 2865699998998648 a001 7778742049/33385282*64079^(10/23) 2865699998998650 a001 20365011074/87403803*64079^(10/23) 2865699998998651 a001 53316291173/228826127*64079^(10/23) 2865699998998651 a001 139583862445/599074578*64079^(10/23) 2865699998998651 a001 365435296162/1568397607*64079^(10/23) 2865699998998651 a001 956722026041/4106118243*64079^(10/23) 2865699998998651 a001 2504730781961/10749957122*64079^(10/23) 2865699998998651 a001 6557470319842/28143753123*64079^(10/23) 2865699998998651 a001 10610209857723/45537549124*64079^(10/23) 2865699998998651 a001 4052739537881/17393796001*64079^(10/23) 2865699998998651 a001 1548008755920/6643838879*64079^(10/23) 2865699998998651 a001 591286729879/2537720636*64079^(10/23) 2865699998998651 a001 225851433717/969323029*64079^(10/23) 2865699998998651 a001 86267571272/370248451*64079^(10/23) 2865699998998651 a001 63246219/271444*64079^(10/23) 2865699998998652 a001 12586269025/54018521*64079^(10/23) 2865699998998657 a001 4807526976/20633239*64079^(10/23) 2865699998998697 a001 1836311903/7881196*64079^(10/23) 2865699998998967 a001 701408733/3010349*64079^(10/23) 2865699999000818 a001 267914296/1149851*64079^(10/23) 2865699999000875 a001 121393/103682*710647^(3/4) 2865699999005168 a001 1836311903/103682*64079^(1/23) 2865699999009449 a001 9227465/167761*64079^(13/23) 2865699999013507 a001 102334155/439204*64079^(10/23) 2865699999014040 a001 121393/39603*39603^(19/22) 2865699999015147 a001 133957148/51841*167761^(1/5) 2865699999020445 a001 165580141/271443*64079^(8/23) 2865699999023320 a001 267914296/710647*64079^(9/23) 2865699999024405 a001 23184/51841*103682^(23/24) 2865699999027138 a001 46347/2206*439204^(5/9) 2865699999027670 a001 14736260448/514229 2865699999027775 a001 514229/103682*439204^(2/3) 2865699999028167 a001 233802911/620166*64079^(9/23) 2865699999028874 a001 1836311903/4870847*64079^(9/23) 2865699999028916 a001 9227465/103682*439204^(4/9) 2865699999028977 a001 1602508992/4250681*64079^(9/23) 2865699999028992 a001 12586269025/33385282*64079^(9/23) 2865699999028994 a001 10983760033/29134601*64079^(9/23) 2865699999028995 a001 86267571272/228826127*64079^(9/23) 2865699999028995 a001 267913919/710646*64079^(9/23) 2865699999028995 a001 591286729879/1568397607*64079^(9/23) 2865699999028995 a001 516002918640/1368706081*64079^(9/23) 2865699999028995 a001 4052739537881/10749957122*64079^(9/23) 2865699999028995 a001 3536736619241/9381251041*64079^(9/23) 2865699999028995 a001 6557470319842/17393796001*64079^(9/23) 2865699999028995 a001 2504730781961/6643838879*64079^(9/23) 2865699999028995 a001 956722026041/2537720636*64079^(9/23) 2865699999028995 a001 365435296162/969323029*64079^(9/23) 2865699999028995 a001 139583862445/370248451*64079^(9/23) 2865699999028995 a001 53316291173/141422324*64079^(9/23) 2865699999028996 a001 20365011074/54018521*64079^(9/23) 2865699999029001 a001 7778742049/20633239*64079^(9/23) 2865699999029041 a001 2971215073/7881196*64079^(9/23) 2865699999029311 a001 1134903170/3010349*64079^(9/23) 2865699999029800 a001 6624/101521*7881196^(9/11) 2865699999029837 a001 6624/101521*141422324^(9/13) 2865699999029837 a001 6624/101521*2537720636^(3/5) 2865699999029837 a001 6624/101521*45537549124^(9/17) 2865699999029837 a001 6624/101521*817138163596^(9/19) 2865699999029837 a001 6624/101521*14662949395604^(3/7) 2865699999029837 a001 6624/101521*(1/2+1/2*5^(1/2))^27 2865699999029837 a001 6624/101521*192900153618^(1/2) 2865699999029837 a001 6624/101521*10749957122^(9/16) 2865699999029837 a001 317811/103682*817138163596^(1/3) 2865699999029837 a001 317811/103682*(1/2+1/2*5^(1/2))^19 2865699999029837 a001 6624/101521*599074578^(9/14) 2865699999029838 a001 317811/103682*87403803^(1/2) 2865699999029839 a001 6624/101521*33385282^(3/4) 2865699999030560 a001 39088169/103682*439204^(1/3) 2865699999030583 a001 6624/101521*1860498^(9/10) 2865699999031162 a001 433494437/1149851*64079^(9/23) 2865699999032211 a001 165580141/103682*439204^(2/9) 2865699999033861 a001 701408733/103682*439204^(1/9) 2865699999034368 a001 38580030720/1346269 2865699999034684 a001 2576/103361*(1/2+1/2*5^(1/2))^29 2865699999034684 a001 2576/103361*1322157322203^(1/2) 2865699999034684 a001 416020/51841*45537549124^(1/3) 2865699999034684 a001 416020/51841*(1/2+1/2*5^(1/2))^17 2865699999034693 a001 416020/51841*12752043^(1/2) 2865699999035345 a001 50501915856/1762289 2865699999035370 a001 46347/2206*7881196^(5/11) 2865699999035388 a001 46347/2206*20633239^(3/7) 2865699999035391 a001 46347/2206*141422324^(5/13) 2865699999035391 a001 46347/2206*2537720636^(1/3) 2865699999035391 a001 46368/4870847*(1/2+1/2*5^(1/2))^31 2865699999035391 a001 46368/4870847*9062201101803^(1/2) 2865699999035391 a001 46347/2206*45537549124^(5/17) 2865699999035391 a001 46347/2206*312119004989^(3/11) 2865699999035391 a001 46347/2206*14662949395604^(5/21) 2865699999035391 a001 46347/2206*(1/2+1/2*5^(1/2))^15 2865699999035391 a001 46347/2206*192900153618^(5/18) 2865699999035391 a001 46347/2206*28143753123^(3/10) 2865699999035391 a001 46347/2206*10749957122^(5/16) 2865699999035391 a001 46347/2206*599074578^(5/14) 2865699999035391 a001 46347/2206*228826127^(3/8) 2865699999035392 a001 46347/2206*33385282^(5/12) 2865699999035409 a001 1602508992/90481*24476^(1/21) 2865699999035488 a001 264431464416/9227465 2865699999035494 a001 7465176/51841*7881196^(1/3) 2865699999035494 a001 15456/4250681*141422324^(11/13) 2865699999035494 a001 5702887/103682*141422324^(1/3) 2865699999035494 a001 15456/4250681*2537720636^(11/15) 2865699999035494 a001 15456/4250681*45537549124^(11/17) 2865699999035494 a001 15456/4250681*312119004989^(3/5) 2865699999035494 a001 15456/4250681*14662949395604^(11/21) 2865699999035494 a001 15456/4250681*(1/2+1/2*5^(1/2))^33 2865699999035494 a001 15456/4250681*192900153618^(11/18) 2865699999035494 a001 15456/4250681*10749957122^(11/16) 2865699999035494 a001 5702887/103682*(1/2+1/2*5^(1/2))^13 2865699999035494 a001 5702887/103682*73681302247^(1/4) 2865699999035494 a001 15456/4250681*1568397607^(3/4) 2865699999035494 a001 15456/4250681*599074578^(11/14) 2865699999035497 a001 15456/4250681*33385282^(11/12) 2865699999035499 a001 39088169/103682*7881196^(3/11) 2865699999035502 a001 9227465/103682*7881196^(4/11) 2865699999035504 a001 165580141/103682*7881196^(2/11) 2865699999035508 a001 701408733/103682*7881196^(1/11) 2865699999035508 a001 692290561536/24157817 2865699999035509 a001 144/103681*2537720636^(7/9) 2865699999035509 a001 144/103681*17393796001^(5/7) 2865699999035509 a001 144/103681*312119004989^(7/11) 2865699999035509 a001 144/103681*14662949395604^(5/9) 2865699999035509 a001 144/103681*(1/2+1/2*5^(1/2))^35 2865699999035509 a001 144/103681*505019158607^(5/8) 2865699999035509 a001 144/103681*28143753123^(7/10) 2865699999035509 a001 7465176/51841*312119004989^(1/5) 2865699999035509 a001 7465176/51841*(1/2+1/2*5^(1/2))^11 2865699999035509 a001 7465176/51841*1568397607^(1/4) 2865699999035509 a001 144/103681*599074578^(5/6) 2865699999035509 a001 144/103681*228826127^(7/8) 2865699999035511 a001 102334155/103682*20633239^(1/5) 2865699999035511 a001 133957148/51841*20633239^(1/7) 2865699999035511 a001 24157817/103682*20633239^(2/7) 2865699999035511 a001 906220110096/31622993 2865699999035512 a001 39088169/103682*141422324^(3/13) 2865699999035512 a001 39088169/103682*2537720636^(1/5) 2865699999035512 a001 39088169/103682*45537549124^(3/17) 2865699999035512 a001 39088169/103682*14662949395604^(1/7) 2865699999035512 a001 39088169/103682*(1/2+1/2*5^(1/2))^9 2865699999035512 a001 39088169/103682*192900153618^(1/6) 2865699999035512 a001 39088169/103682*10749957122^(3/16) 2865699999035512 a001 39088169/103682*599074578^(3/14) 2865699999035512 a001 4745030099040/165580141 2865699999035512 a001 46368/228826127*2537720636^(13/15) 2865699999035512 a001 46368/228826127*45537549124^(13/17) 2865699999035512 a001 46368/228826127*14662949395604^(13/21) 2865699999035512 a001 46368/228826127*192900153618^(13/18) 2865699999035512 a001 46368/228826127*73681302247^(3/4) 2865699999035512 a001 46368/228826127*10749957122^(13/16) 2865699999035512 a001 102334155/103682*17393796001^(1/7) 2865699999035512 a001 102334155/103682*14662949395604^(1/9) 2865699999035512 a001 102334155/103682*(1/2+1/2*5^(1/2))^7 2865699999035512 a001 102334155/103682*599074578^(1/6) 2865699999035512 a001 46368/228826127*599074578^(13/14) 2865699999035512 a001 701408733/103682*141422324^(1/13) 2865699999035512 a001 12422650076928/433494437 2865699999035512 a001 133957148/51841*2537720636^(1/9) 2865699999035512 a001 133957148/51841*312119004989^(1/11) 2865699999035512 a001 133957148/51841*(1/2+1/2*5^(1/2))^5 2865699999035512 a001 133957148/51841*28143753123^(1/10) 2865699999035512 a001 16261460065872/567451585 2865699999035512 a001 701408733/103682*2537720636^(1/15) 2865699999035512 a001 701408733/103682*45537549124^(1/17) 2865699999035512 a001 701408733/103682*14662949395604^(1/21) 2865699999035512 a001 701408733/103682*(1/2+1/2*5^(1/2))^3 2865699999035512 a001 701408733/103682*192900153618^(1/18) 2865699999035512 a001 701408733/103682*10749957122^(1/16) 2865699999035512 a001 133957148/51841*228826127^(1/8) 2865699999035512 a001 165580141/103682*141422324^(2/13) 2865699999035512 a001 701408733/103682*599074578^(1/14) 2865699999035512 a001 85146110318304/2971215073 2865699999035512 a001 15456/1368706081*45537549124^(15/17) 2865699999035512 a001 15456/1368706081*312119004989^(9/11) 2865699999035512 a001 15456/1368706081*14662949395604^(5/7) 2865699999035512 a001 15456/1368706081*192900153618^(5/6) 2865699999035512 a001 15456/1368706081*28143753123^(9/10) 2865699999035512 a001 15456/1368706081*10749957122^(15/16) 2865699999035512 a001 1836311903/207364+1836311903/207364*5^(1/2) 2865699999035512 a001 222915410823168/7778742049 2865699999035512 a001 291800061075600/10182505537 2865699999035512 a001 15456/9381251041*14662949395604^(7/9) 2865699999035512 a001 15456/9381251041*505019158607^(7/8) 2865699999035512 a001 1527884955630432/53316291173 2865699999035512 a001 6624/10525900321*817138163596^(17/19) 2865699999035512 a001 6624/10525900321*14662949395604^(17/21) 2865699999035512 a001 6624/10525900321*192900153618^(17/18) 2865699999035512 a001 4000054744740096/139583862445 2865699999035512 a001 46368/505019158607*3461452808002^(11/12) 2865699999035512 a001 11592/204284540899*14662949395604^(8/9) 2865699999035512 a001 46368/312119004989*14662949395604^(6/7) 2865699999035512 a001 308201168278560/10754830177 2865699999035512 a001 46368/119218851371*23725150497407^(13/16) 2865699999035512 a001 46368/119218851371*505019158607^(13/14) 2865699999035512 a001 309021223638708/10783446409 2865699999035512 a001 11592/11384387281*312119004989^(10/11) 2865699999035512 a001 11592/11384387281*3461452808002^(5/6) 2865699999035512 a001 314761611159744/10983760033 2865699999035512 a001 46368/17393796001*45537549124^(16/17) 2865699999035512 a001 46368/17393796001*14662949395604^(16/21) 2865699999035512 a001 46368/17393796001*192900153618^(8/9) 2865699999035512 a001 46368/17393796001*73681302247^(12/13) 2865699999035512 a001 360684711328032/12586269025 2865699999035512 a001 46368/6643838879*10749957122^(23/24) 2865699999035512 a001 2971215073/103682 2865699999035512 a001 11592/634430159*312119004989^(4/5) 2865699999035512 a001 11592/634430159*23725150497407^(11/16) 2865699999035512 a001 11592/634430159*73681302247^(11/13) 2865699999035512 a001 11592/634430159*10749957122^(11/12) 2865699999035512 a001 567451585/51841*(1/2+1/2*5^(1/2))^2 2865699999035512 a001 567451585/51841*10749957122^(1/24) 2865699999035512 a001 567451585/51841*4106118243^(1/23) 2865699999035512 a001 567451585/51841*1568397607^(1/22) 2865699999035512 a001 11592/634430159*4106118243^(22/23) 2865699999035512 a001 52623190186560/1836311903 2865699999035512 a001 567451585/51841*599074578^(1/21) 2865699999035512 a001 46368/969323029*2537720636^(14/15) 2865699999035512 a001 46368/969323029*17393796001^(6/7) 2865699999035512 a001 46368/969323029*45537549124^(14/17) 2865699999035512 a001 46368/969323029*817138163596^(14/19) 2865699999035512 a001 46368/969323029*14662949395604^(2/3) 2865699999035512 a001 46368/969323029*505019158607^(3/4) 2865699999035512 a001 46368/969323029*192900153618^(7/9) 2865699999035512 a001 46368/969323029*10749957122^(7/8) 2865699999035512 a001 433494437/103682*(1/2+1/2*5^(1/2))^4 2865699999035512 a001 433494437/103682*23725150497407^(1/16) 2865699999035512 a001 433494437/103682*73681302247^(1/13) 2865699999035512 a001 433494437/103682*10749957122^(1/12) 2865699999035512 a001 433494437/103682*4106118243^(2/23) 2865699999035512 a001 433494437/103682*1568397607^(1/11) 2865699999035512 a001 46368/969323029*4106118243^(21/23) 2865699999035512 a001 567451585/51841*228826127^(1/20) 2865699999035512 a001 433494437/103682*599074578^(2/21) 2865699999035512 a001 46368/969323029*1568397607^(21/22) 2865699999035512 a001 6700090018272/233802911 2865699999035512 a001 433494437/103682*228826127^(1/10) 2865699999035512 a001 567451585/51841*87403803^(1/19) 2865699999035512 a001 46368/370248451*2537720636^(8/9) 2865699999035512 a001 165580141/103682*2537720636^(2/15) 2865699999035512 a001 46368/370248451*312119004989^(8/11) 2865699999035512 a001 46368/370248451*23725150497407^(5/8) 2865699999035512 a001 46368/370248451*73681302247^(10/13) 2865699999035512 a001 46368/370248451*28143753123^(4/5) 2865699999035512 a001 46368/370248451*10749957122^(5/6) 2865699999035512 a001 165580141/103682*45537549124^(2/17) 2865699999035512 a001 165580141/103682*14662949395604^(2/21) 2865699999035512 a001 165580141/103682*(1/2+1/2*5^(1/2))^6 2865699999035512 a001 165580141/103682*10749957122^(1/8) 2865699999035512 a001 165580141/103682*4106118243^(3/23) 2865699999035512 a001 46368/370248451*4106118243^(20/23) 2865699999035512 a001 165580141/103682*1568397607^(3/22) 2865699999035512 a001 46368/370248451*1568397607^(10/11) 2865699999035512 a001 165580141/103682*599074578^(1/7) 2865699999035512 a001 46368/370248451*599074578^(20/21) 2865699999035512 a001 959702497236/33489287 2865699999035512 a001 165580141/103682*228826127^(3/20) 2865699999035512 a001 433494437/103682*87403803^(2/19) 2865699999035512 a001 165580141/103682*87403803^(3/19) 2865699999035512 a001 11592/35355581*817138163596^(2/3) 2865699999035512 a001 11592/35355581*10749957122^(19/24) 2865699999035512 a001 31622993/51841*(1/2+1/2*5^(1/2))^8 2865699999035512 a001 31622993/51841*23725150497407^(1/8) 2865699999035512 a001 31622993/51841*505019158607^(1/7) 2865699999035512 a001 31622993/51841*73681302247^(2/13) 2865699999035512 a001 567451585/51841*33385282^(1/18) 2865699999035512 a001 31622993/51841*10749957122^(1/6) 2865699999035512 a001 31622993/51841*4106118243^(4/23) 2865699999035512 a001 11592/35355581*4106118243^(19/23) 2865699999035512 a001 31622993/51841*1568397607^(2/11) 2865699999035512 a001 11592/35355581*1568397607^(19/22) 2865699999035512 a001 31622993/51841*599074578^(4/21) 2865699999035512 a001 11592/35355581*599074578^(19/21) 2865699999035512 a001 31622993/51841*228826127^(1/5) 2865699999035512 a001 11592/35355581*228826127^(19/20) 2865699999035512 a001 139647137088/4873055 2865699999035512 a001 701408733/103682*33385282^(1/12) 2865699999035512 a001 31622993/51841*87403803^(4/19) 2865699999035512 a001 39088169/103682*33385282^(1/4) 2865699999035512 a001 433494437/103682*33385282^(1/9) 2865699999035512 a001 165580141/103682*33385282^(1/6) 2865699999035513 a001 31622993/51841*33385282^(2/9) 2865699999035513 a001 46368/54018521*141422324^(12/13) 2865699999035513 a001 46368/54018521*2537720636^(4/5) 2865699999035513 a001 24157817/103682*2537720636^(2/9) 2865699999035513 a001 46368/54018521*45537549124^(12/17) 2865699999035513 a001 46368/54018521*14662949395604^(4/7) 2865699999035513 a001 46368/54018521*505019158607^(9/14) 2865699999035513 a001 46368/54018521*192900153618^(2/3) 2865699999035513 a001 46368/54018521*73681302247^(9/13) 2865699999035513 a001 46368/54018521*10749957122^(3/4) 2865699999035513 a001 24157817/103682*312119004989^(2/11) 2865699999035513 a001 24157817/103682*(1/2+1/2*5^(1/2))^10 2865699999035513 a001 24157817/103682*28143753123^(1/5) 2865699999035513 a001 24157817/103682*10749957122^(5/24) 2865699999035513 a001 24157817/103682*4106118243^(5/23) 2865699999035513 a001 46368/54018521*4106118243^(18/23) 2865699999035513 a001 24157817/103682*1568397607^(5/22) 2865699999035513 a001 46368/54018521*1568397607^(9/11) 2865699999035513 a001 24157817/103682*599074578^(5/21) 2865699999035513 a001 46368/54018521*599074578^(6/7) 2865699999035513 a001 24157817/103682*228826127^(1/4) 2865699999035513 a001 46368/54018521*228826127^(9/10) 2865699999035513 a001 567451585/51841*12752043^(1/17) 2865699999035513 a001 24157817/103682*87403803^(5/19) 2865699999035513 a001 46368/54018521*87403803^(18/19) 2865699999035513 a001 1120149658656/39088169 2865699999035514 a001 24157817/103682*33385282^(5/18) 2865699999035514 a001 433494437/103682*12752043^(2/17) 2865699999035515 a001 165580141/103682*12752043^(3/17) 2865699999035516 a001 31622993/51841*12752043^(4/17) 2865699999035518 a001 24157817/103682*12752043^(5/17) 2865699999035519 a001 9227465/103682*141422324^(4/13) 2865699999035519 a001 9227465/103682*2537720636^(4/15) 2865699999035519 a001 46368/20633239*45537549124^(2/3) 2865699999035519 a001 46368/20633239*(1/2+1/2*5^(1/2))^34 2865699999035519 a001 46368/20633239*10749957122^(17/24) 2865699999035519 a001 9227465/103682*45537549124^(4/17) 2865699999035519 a001 9227465/103682*14662949395604^(4/21) 2865699999035519 a001 9227465/103682*(1/2+1/2*5^(1/2))^12 2865699999035519 a001 9227465/103682*192900153618^(2/9) 2865699999035519 a001 9227465/103682*73681302247^(3/13) 2865699999035519 a001 9227465/103682*10749957122^(1/4) 2865699999035519 a001 9227465/103682*4106118243^(6/23) 2865699999035519 a001 46368/20633239*4106118243^(17/23) 2865699999035519 a001 9227465/103682*1568397607^(3/11) 2865699999035519 a001 46368/20633239*1568397607^(17/22) 2865699999035519 a001 9227465/103682*599074578^(2/7) 2865699999035519 a001 46368/20633239*599074578^(17/21) 2865699999035519 a001 9227465/103682*228826127^(3/10) 2865699999035519 a001 46368/20633239*228826127^(17/20) 2865699999035519 a001 9227465/103682*87403803^(6/19) 2865699999035519 a001 46368/20633239*87403803^(17/19) 2865699999035519 a001 567451585/51841*4870847^(1/16) 2865699999035520 a001 9227465/103682*33385282^(1/3) 2865699999035521 a001 46368/20633239*33385282^(17/18) 2865699999035521 a001 2971243730/103683 2865699999035525 a001 9227465/103682*12752043^(6/17) 2865699999035527 a001 433494437/103682*4870847^(1/8) 2865699999035535 a001 165580141/103682*4870847^(3/16) 2865699999035542 a001 31622993/51841*4870847^(1/4) 2865699999035551 a001 24157817/103682*4870847^(5/16) 2865699999035555 a001 1762289/51841*20633239^(2/5) 2865699999035558 a001 11592/1970299*(1/2+1/2*5^(1/2))^32 2865699999035558 a001 11592/1970299*23725150497407^(1/2) 2865699999035558 a001 11592/1970299*73681302247^(8/13) 2865699999035558 a001 11592/1970299*10749957122^(2/3) 2865699999035558 a001 1762289/51841*17393796001^(2/7) 2865699999035558 a001 1762289/51841*14662949395604^(2/9) 2865699999035558 a001 1762289/51841*(1/2+1/2*5^(1/2))^14 2865699999035558 a001 1762289/51841*505019158607^(1/4) 2865699999035558 a001 1762289/51841*10749957122^(7/24) 2865699999035558 a001 1762289/51841*4106118243^(7/23) 2865699999035558 a001 11592/1970299*4106118243^(16/23) 2865699999035558 a001 1762289/51841*1568397607^(7/22) 2865699999035558 a001 11592/1970299*1568397607^(8/11) 2865699999035558 a001 1762289/51841*599074578^(1/3) 2865699999035558 a001 11592/1970299*599074578^(16/21) 2865699999035558 a001 1762289/51841*228826127^(7/20) 2865699999035558 a001 11592/1970299*228826127^(4/5) 2865699999035558 a001 1762289/51841*87403803^(7/19) 2865699999035558 a001 11592/1970299*87403803^(16/19) 2865699999035559 a001 1762289/51841*33385282^(7/18) 2865699999035560 a001 11592/1970299*33385282^(8/9) 2865699999035564 a001 9227465/103682*4870847^(3/8) 2865699999035565 a001 1762289/51841*12752043^(7/17) 2865699999035567 a001 567451585/51841*1860498^(1/15) 2865699999035575 a001 11592/1970299*12752043^(16/17) 2865699999035576 a001 163427632704/5702887 2865699999035595 a001 701408733/103682*1860498^(1/10) 2865699999035611 a001 1762289/51841*4870847^(7/16) 2865699999035622 a001 433494437/103682*1860498^(2/15) 2865699999035650 a001 133957148/51841*1860498^(1/6) 2865699999035678 a001 165580141/103682*1860498^(1/5) 2865699999035733 a001 31622993/51841*1860498^(4/15) 2865699999035760 a001 39088169/103682*1860498^(3/10) 2865699999035786 a001 46368/3010349*7881196^(10/11) 2865699999035789 a001 24157817/103682*1860498^(1/3) 2865699999035805 a001 46347/2206*1860498^(1/2) 2865699999035822 a001 46368/3010349*20633239^(6/7) 2865699999035828 a001 46368/3010349*141422324^(10/13) 2865699999035828 a001 46368/3010349*2537720636^(2/3) 2865699999035828 a001 46368/3010349*45537549124^(10/17) 2865699999035828 a001 46368/3010349*312119004989^(6/11) 2865699999035828 a001 46368/3010349*14662949395604^(10/21) 2865699999035828 a001 46368/3010349*(1/2+1/2*5^(1/2))^30 2865699999035828 a001 46368/3010349*192900153618^(5/9) 2865699999035828 a001 46368/3010349*28143753123^(3/5) 2865699999035828 a001 46368/3010349*10749957122^(5/8) 2865699999035828 a001 1346269/103682*(1/2+1/2*5^(1/2))^16 2865699999035828 a001 1346269/103682*23725150497407^(1/4) 2865699999035828 a001 1346269/103682*73681302247^(4/13) 2865699999035828 a001 1346269/103682*10749957122^(1/3) 2865699999035828 a001 1346269/103682*4106118243^(8/23) 2865699999035828 a001 46368/3010349*4106118243^(15/23) 2865699999035828 a001 1346269/103682*1568397607^(4/11) 2865699999035828 a001 46368/3010349*1568397607^(15/22) 2865699999035828 a001 1346269/103682*599074578^(8/21) 2865699999035828 a001 46368/3010349*599074578^(5/7) 2865699999035828 a001 1346269/103682*228826127^(2/5) 2865699999035828 a001 46368/3010349*228826127^(3/4) 2865699999035828 a001 1346269/103682*87403803^(8/19) 2865699999035828 a001 46368/3010349*87403803^(15/19) 2865699999035829 a001 1346269/103682*33385282^(4/9) 2865699999035830 a001 46368/3010349*33385282^(5/6) 2865699999035836 a001 1346269/103682*12752043^(8/17) 2865699999035844 a001 46368/3010349*12752043^(15/17) 2865699999035850 a001 9227465/103682*1860498^(2/5) 2865699999035889 a001 1346269/103682*4870847^(1/2) 2865699999035917 a001 567451585/51841*710647^(1/14) 2865699999035941 a001 46368/3010349*4870847^(15/16) 2865699999035944 a001 1762289/51841*1860498^(7/15) 2865699999035949 a001 2972561952/103729 2865699999036270 a001 1346269/103682*1860498^(8/15) 2865699999036323 a001 433494437/103682*710647^(1/7) 2865699999036728 a001 165580141/103682*710647^(3/14) 2865699999036930 a001 102334155/103682*710647^(1/4) 2865699999037133 a001 31622993/51841*710647^(2/7) 2865699999037539 a001 24157817/103682*710647^(5/14) 2865699999037654 a001 514229/103682*7881196^(6/11) 2865699999037674 a001 46368/1149851*20633239^(4/5) 2865699999037679 a001 514229/103682*141422324^(6/13) 2865699999037679 a001 514229/103682*2537720636^(2/5) 2865699999037679 a001 46368/1149851*17393796001^(4/7) 2865699999037679 a001 46368/1149851*14662949395604^(4/9) 2865699999037679 a001 46368/1149851*(1/2+1/2*5^(1/2))^28 2865699999037679 a001 46368/1149851*73681302247^(7/13) 2865699999037679 a001 46368/1149851*10749957122^(7/12) 2865699999037679 a001 514229/103682*45537549124^(6/17) 2865699999037679 a001 514229/103682*14662949395604^(2/7) 2865699999037679 a001 514229/103682*(1/2+1/2*5^(1/2))^18 2865699999037679 a001 514229/103682*192900153618^(1/3) 2865699999037679 a001 514229/103682*10749957122^(3/8) 2865699999037679 a001 514229/103682*4106118243^(9/23) 2865699999037679 a001 46368/1149851*4106118243^(14/23) 2865699999037679 a001 514229/103682*1568397607^(9/22) 2865699999037679 a001 46368/1149851*1568397607^(7/11) 2865699999037679 a001 514229/103682*599074578^(3/7) 2865699999037679 a001 46368/1149851*599074578^(2/3) 2865699999037679 a001 514229/103682*228826127^(9/20) 2865699999037679 a001 46368/1149851*228826127^(7/10) 2865699999037680 a001 514229/103682*87403803^(9/19) 2865699999037680 a001 46368/1149851*87403803^(14/19) 2865699999037681 a001 514229/103682*33385282^(1/2) 2865699999037681 a001 46368/1149851*33385282^(7/9) 2865699999037689 a001 514229/103682*12752043^(9/17) 2865699999037694 a001 46368/1149851*12752043^(14/17) 2865699999037747 a001 514229/103682*4870847^(9/16) 2865699999037785 a001 46368/1149851*4870847^(7/8) 2865699999037951 a001 9227465/103682*710647^(3/7) 2865699999038176 a001 514229/103682*1860498^(3/5) 2865699999038395 a001 1762289/51841*710647^(1/2) 2865699999038452 a001 46368/1149851*1860498^(14/15) 2865699999038504 a001 567451585/51841*271443^(1/13) 2865699999038507 a001 2980471284/104005 2865699999039071 a001 1346269/103682*710647^(4/7) 2865699999039784 a001 14930352/167761*64079^(12/23) 2865699999041327 a001 514229/103682*710647^(9/14) 2865699999041496 a001 433494437/103682*271443^(2/13) 2865699999043851 a001 165580141/439204*64079^(9/23) 2865699999044487 a001 165580141/103682*271443^(3/13) 2865699999046619 a001 1836311903/103682*103682^(1/24) 2865699999047479 a001 31622993/51841*271443^(4/13) 2865699999050364 a001 98209/51841*20633239^(4/7) 2865699999050368 a001 11592/109801*141422324^(2/3) 2865699999050368 a001 98209/51841*2537720636^(4/9) 2865699999050368 a001 11592/109801*(1/2+1/2*5^(1/2))^26 2865699999050368 a001 11592/109801*73681302247^(1/2) 2865699999050368 a001 11592/109801*10749957122^(13/24) 2865699999050368 a001 98209/51841*(1/2+1/2*5^(1/2))^20 2865699999050368 a001 98209/51841*23725150497407^(5/16) 2865699999050368 a001 98209/51841*505019158607^(5/14) 2865699999050368 a001 98209/51841*73681302247^(5/13) 2865699999050368 a001 98209/51841*28143753123^(2/5) 2865699999050368 a001 98209/51841*10749957122^(5/12) 2865699999050368 a001 11592/109801*4106118243^(13/23) 2865699999050368 a001 98209/51841*4106118243^(10/23) 2865699999050368 a001 98209/51841*1568397607^(5/11) 2865699999050368 a001 11592/109801*1568397607^(13/22) 2865699999050368 a001 98209/51841*599074578^(10/21) 2865699999050368 a001 11592/109801*599074578^(13/21) 2865699999050368 a001 98209/51841*228826127^(1/2) 2865699999050368 a001 11592/109801*228826127^(13/20) 2865699999050368 a001 98209/51841*87403803^(10/19) 2865699999050368 a001 11592/109801*87403803^(13/19) 2865699999050369 a001 98209/51841*33385282^(5/9) 2865699999050370 a001 11592/109801*33385282^(13/18) 2865699999050378 a001 98209/51841*12752043^(10/17) 2865699999050381 a001 11592/109801*12752043^(13/17) 2865699999050443 a001 98209/51841*4870847^(5/8) 2865699999050466 a001 11592/109801*4870847^(13/16) 2865699999050472 a001 24157817/103682*271443^(5/13) 2865699999050789 a001 267914296/271443*64079^(7/23) 2865699999050920 a001 98209/51841*1860498^(2/3) 2865699999051085 a001 11592/109801*1860498^(13/15) 2865699999053469 a001 9227465/103682*271443^(6/13) 2865699999053664 a001 433494437/710647*64079^(8/23) 2865699999054421 a001 98209/51841*710647^(5/7) 2865699999054941 a001 5702887/103682*271443^(1/2) 2865699999055637 a001 11592/109801*710647^(13/14) 2865699999056042 a001 3035836608/105937 2865699999056501 a001 1762289/51841*271443^(7/13) 2865699999057727 a001 567451585/51841*103682^(1/12) 2865699999058511 a001 567451585/930249*64079^(8/23) 2865699999059218 a001 2971215073/4870847*64079^(8/23) 2865699999059321 a001 7778742049/12752043*64079^(8/23) 2865699999059336 a001 10182505537/16692641*64079^(8/23) 2865699999059338 a001 53316291173/87403803*64079^(8/23) 2865699999059338 a001 139583862445/228826127*64079^(8/23) 2865699999059339 a001 182717648081/299537289*64079^(8/23) 2865699999059339 a001 956722026041/1568397607*64079^(8/23) 2865699999059339 a001 2504730781961/4106118243*64079^(8/23) 2865699999059339 a001 3278735159921/5374978561*64079^(8/23) 2865699999059339 a001 10610209857723/17393796001*64079^(8/23) 2865699999059339 a001 4052739537881/6643838879*64079^(8/23) 2865699999059339 a001 1134903780/1860499*64079^(8/23) 2865699999059339 a001 591286729879/969323029*64079^(8/23) 2865699999059339 a001 225851433717/370248451*64079^(8/23) 2865699999059339 a001 21566892818/35355581*64079^(8/23) 2865699999059340 a001 32951280099/54018521*64079^(8/23) 2865699999059345 a001 1144206275/1875749*64079^(8/23) 2865699999059385 a001 1201881744/1970299*64079^(8/23) 2865699999059655 a001 1836311903/3010349*64079^(8/23) 2865699999059762 a001 1346269/103682*271443^(8/13) 2865699999061506 a001 701408733/1149851*64079^(8/23) 2865699999064605 a001 514229/103682*271443^(9/13) 2865699999065856 a001 46368/64079*64079^(22/23) 2865699999068627 a001 12586269025/710647*24476^(1/21) 2865699999068834 a001 701408733/103682*103682^(1/8) 2865699999070131 a001 24157817/167761*64079^(11/23) 2865699999073474 a001 10983760033/620166*24476^(1/21) 2865699999074181 a001 86267571272/4870847*24476^(1/21) 2865699999074194 a001 66978574/109801*64079^(8/23) 2865699999074284 a001 75283811239/4250681*24476^(1/21) 2865699999074299 a001 591286729879/33385282*24476^(1/21) 2865699999074302 a001 516002918640/29134601*24476^(1/21) 2865699999074302 a001 4052739537881/228826127*24476^(1/21) 2865699999074302 a001 3536736619241/199691526*24476^(1/21) 2865699999074302 a001 6557470319842/370248451*24476^(1/21) 2865699999074302 a001 2504730781961/141422324*24476^(1/21) 2865699999074303 a001 956722026041/54018521*24476^(1/21) 2865699999074309 a001 365435296162/20633239*24476^(1/21) 2865699999074348 a001 139583862445/7881196*24476^(1/21) 2865699999074618 a001 53316291173/3010349*24476^(1/21) 2865699999076469 a001 20365011074/1149851*24476^(1/21) 2865699999079942 a001 433494437/103682*103682^(1/6) 2865699999080286 a001 98209/51841*271443^(10/13) 2865699999081133 a001 433494437/271443*64079^(6/23) 2865699999084008 a001 701408733/710647*64079^(7/23) 2865699999088848 a001 267914296/64079*24476^(4/21) 2865699999088855 a001 1836311903/1860498*64079^(7/23) 2865699999089158 a001 7778742049/439204*24476^(1/21) 2865699999089562 a001 4807526976/4870847*64079^(7/23) 2865699999089665 a001 12586269025/12752043*64079^(7/23) 2865699999089680 a001 32951280099/33385282*64079^(7/23) 2865699999089682 a001 86267571272/87403803*64079^(7/23) 2865699999089682 a001 225851433717/228826127*64079^(7/23) 2865699999089682 a001 591286729879/599074578*64079^(7/23) 2865699999089682 a001 1548008755920/1568397607*64079^(7/23) 2865699999089682 a001 4052739537881/4106118243*64079^(7/23) 2865699999089682 a001 4807525989/4870846*64079^(7/23) 2865699999089682 a001 6557470319842/6643838879*64079^(7/23) 2865699999089682 a001 2504730781961/2537720636*64079^(7/23) 2865699999089682 a001 956722026041/969323029*64079^(7/23) 2865699999089682 a001 365435296162/370248451*64079^(7/23) 2865699999089683 a001 139583862445/141422324*64079^(7/23) 2865699999089683 a001 53316291173/54018521*64079^(7/23) 2865699999089689 a001 20365011074/20633239*64079^(7/23) 2865699999089729 a001 7778742049/7881196*64079^(7/23) 2865699999089999 a001 2971215073/3010349*64079^(7/23) 2865699999091049 a001 133957148/51841*103682^(5/24) 2865699999091850 a001 1134903170/1149851*64079^(7/23) 2865699999100474 a001 39088169/167761*64079^(10/23) 2865699999102156 a001 165580141/103682*103682^(1/4) 2865699999104538 a001 433494437/439204*64079^(7/23) 2865699999111477 a001 233802911/90481*64079^(5/23) 2865699999113264 a001 102334155/103682*103682^(7/24) 2865699999114352 a001 1134903170/710647*64079^(6/23) 2865699999118564 a001 1836311903/103682*39603^(1/22) 2865699999119198 a001 2971215073/1860498*64079^(6/23) 2865699999119906 a001 7778742049/4870847*64079^(6/23) 2865699999120009 a001 20365011074/12752043*64079^(6/23) 2865699999120024 a001 53316291173/33385282*64079^(6/23) 2865699999120026 a001 139583862445/87403803*64079^(6/23) 2865699999120026 a001 365435296162/228826127*64079^(6/23) 2865699999120026 a001 956722026041/599074578*64079^(6/23) 2865699999120026 a001 2504730781961/1568397607*64079^(6/23) 2865699999120026 a001 6557470319842/4106118243*64079^(6/23) 2865699999120026 a001 10610209857723/6643838879*64079^(6/23) 2865699999120026 a001 4052739537881/2537720636*64079^(6/23) 2865699999120026 a001 1548008755920/969323029*64079^(6/23) 2865699999120026 a001 591286729879/370248451*64079^(6/23) 2865699999120026 a001 225851433717/141422324*64079^(6/23) 2865699999120027 a001 86267571272/54018521*64079^(6/23) 2865699999120033 a001 32951280099/20633239*64079^(6/23) 2865699999120072 a001 12586269025/7881196*64079^(6/23) 2865699999120343 a001 4807526976/3010349*64079^(6/23) 2865699999122194 a001 1836311903/1149851*64079^(6/23) 2865699999124130 a001 46368/167761*439204^(8/9) 2865699999124371 a001 31622993/51841*103682^(1/3) 2865699999130818 a001 63245986/167761*64079^(9/23) 2865699999134882 a001 701408733/439204*64079^(6/23) 2865699999135478 a001 39088169/103682*103682^(3/8) 2865699999137302 a001 46368/167761*7881196^(8/11) 2865699999137305 a001 75025/103682*7881196^(2/3) 2865699999137336 a001 46368/167761*141422324^(8/13) 2865699999137336 a001 46368/167761*2537720636^(8/15) 2865699999137336 a001 46368/167761*45537549124^(8/17) 2865699999137336 a001 46368/167761*14662949395604^(8/21) 2865699999137336 a001 46368/167761*(1/2+1/2*5^(1/2))^24 2865699999137336 a001 46368/167761*192900153618^(4/9) 2865699999137336 a001 46368/167761*73681302247^(6/13) 2865699999137336 a001 46368/167761*10749957122^(1/2) 2865699999137336 a001 75025/103682*312119004989^(2/5) 2865699999137336 a001 75025/103682*(1/2+1/2*5^(1/2))^22 2865699999137336 a001 75025/103682*10749957122^(11/24) 2865699999137336 a001 46368/167761*4106118243^(12/23) 2865699999137336 a001 75025/103682*4106118243^(11/23) 2865699999137336 a001 75025/103682*1568397607^(1/2) 2865699999137336 a001 46368/167761*1568397607^(6/11) 2865699999137336 a001 75025/103682*599074578^(11/21) 2865699999137336 a001 46368/167761*599074578^(4/7) 2865699999137336 a001 75025/103682*228826127^(11/20) 2865699999137336 a001 46368/167761*228826127^(3/5) 2865699999137336 a001 75025/103682*87403803^(11/19) 2865699999137336 a001 46368/167761*87403803^(12/19) 2865699999137337 a001 75025/103682*33385282^(11/18) 2865699999137337 a001 46368/167761*33385282^(2/3) 2865699999137347 a001 75025/103682*12752043^(11/17) 2865699999137348 a001 46368/167761*12752043^(12/17) 2865699999137419 a001 75025/103682*4870847^(11/16) 2865699999137426 a001 46368/167761*4870847^(3/4) 2865699999137943 a001 75025/103682*1860498^(11/15) 2865699999137998 a001 46368/167761*1860498^(4/5) 2865699999141794 a001 75025/103682*710647^(11/14) 2865699999141821 a001 1134903170/271443*64079^(4/23) 2865699999142199 a001 46368/167761*710647^(6/7) 2865699999144696 a001 1836311903/710647*64079^(5/23) 2865699999146587 a001 24157817/103682*103682^(5/12) 2865699999149542 a001 267084832/103361*64079^(5/23) 2865699999150249 a001 12586269025/4870847*64079^(5/23) 2865699999150353 a001 10983760033/4250681*64079^(5/23) 2865699999150368 a001 43133785636/16692641*64079^(5/23) 2865699999150370 a001 75283811239/29134601*64079^(5/23) 2865699999150370 a001 591286729879/228826127*64079^(5/23) 2865699999150370 a001 86000486440/33281921*64079^(5/23) 2865699999150370 a001 4052739537881/1568397607*64079^(5/23) 2865699999150370 a001 3536736619241/1368706081*64079^(5/23) 2865699999150370 a001 3278735159921/1268860318*64079^(5/23) 2865699999150370 a001 2504730781961/969323029*64079^(5/23) 2865699999150370 a001 956722026041/370248451*64079^(5/23) 2865699999150370 a001 182717648081/70711162*64079^(5/23) 2865699999150371 a001 139583862445/54018521*64079^(5/23) 2865699999150377 a001 53316291173/20633239*64079^(5/23) 2865699999150416 a001 10182505537/3940598*64079^(5/23) 2865699999150686 a001 7778742049/3010349*64079^(5/23) 2865699999152538 a001 2971215073/1149851*64079^(5/23) 2865699999157691 a001 7465176/51841*103682^(11/24) 2865699999161162 a001 9303105/15251*64079^(8/23) 2865699999165226 a001 567451585/219602*64079^(5/23) 2865699999168808 a001 9227465/103682*103682^(1/2) 2865699999170245 a001 75025/103682*271443^(11/13) 2865699999172165 a001 1836311903/271443*64079^(3/23) 2865699999173237 a001 46368/167761*271443^(12/13) 2865699999175040 a001 2971215073/710647*64079^(4/23) 2865699999176126 a001 2971215073/167761*24476^(1/21) 2865699999176229 a001 3478759200/121393 2865699999179886 a001 7778742049/1860498*64079^(4/23) 2865699999179891 a001 5702887/103682*103682^(13/24) 2865699999180593 a001 20365011074/4870847*64079^(4/23) 2865699999180697 a001 53316291173/12752043*64079^(4/23) 2865699999180712 a001 139583862445/33385282*64079^(4/23) 2865699999180714 a001 365435296162/87403803*64079^(4/23) 2865699999180714 a001 956722026041/228826127*64079^(4/23) 2865699999180714 a001 2504730781961/599074578*64079^(4/23) 2865699999180714 a001 6557470319842/1568397607*64079^(4/23) 2865699999180714 a001 10610209857723/2537720636*64079^(4/23) 2865699999180714 a001 4052739537881/969323029*64079^(4/23) 2865699999180714 a001 1548008755920/370248451*64079^(4/23) 2865699999180714 a001 591286729879/141422324*64079^(4/23) 2865699999180715 a001 225851433717/54018521*64079^(4/23) 2865699999180721 a001 86267571272/20633239*64079^(4/23) 2865699999180760 a001 32951280099/7881196*64079^(4/23) 2865699999181030 a001 12586269025/3010349*64079^(4/23) 2865699999182882 a001 4807526976/1149851*64079^(4/23) 2865699999183905 a001 514229/271443*167761^(4/5) 2865699999191062 a001 1762289/51841*103682^(7/12) 2865699999191506 a001 165580141/167761*64079^(7/23) 2865699999195570 a001 1836311903/439204*64079^(4/23) 2865699999200266 a001 2/75025*(1/2+1/2*5^(1/2))^48 2865699999201617 a001 567451585/51841*39603^(1/11) 2865699999202002 a001 46347/2206*103682^(5/8) 2865699999202085 a001 5702887/271443*167761^(3/5) 2865699999202509 a001 2971215073/271443*64079^(2/23) 2865699999205384 a001 686789568/101521*64079^(3/23) 2865699999210230 a001 12586269025/1860498*64079^(3/23) 2865699999210937 a001 32951280099/4870847*64079^(3/23) 2865699999211040 a001 86267571272/12752043*64079^(3/23) 2865699999211055 a001 32264490531/4769326*64079^(3/23) 2865699999211058 a001 591286729879/87403803*64079^(3/23) 2865699999211058 a001 1548008755920/228826127*64079^(3/23) 2865699999211058 a001 4052739537881/599074578*64079^(3/23) 2865699999211058 a001 1515744265389/224056801*64079^(3/23) 2865699999211058 a001 6557470319842/969323029*64079^(3/23) 2865699999211058 a001 2504730781961/370248451*64079^(3/23) 2865699999211058 a001 956722026041/141422324*64079^(3/23) 2865699999211059 a001 365435296162/54018521*64079^(3/23) 2865699999211065 a001 139583862445/20633239*64079^(3/23) 2865699999211104 a001 53316291173/7881196*64079^(3/23) 2865699999211374 a001 20365011074/3010349*64079^(3/23) 2865699999213225 a001 7778742049/1149851*64079^(3/23) 2865699999213547 a001 1346269/103682*103682^(2/3) 2865699999215273 a001 1346269/710647*167761^(4/5) 2865699999219849 a001 1762289/930249*167761^(4/5) 2865699999220517 a001 9227465/4870847*167761^(4/5) 2865699999220614 a001 24157817/12752043*167761^(4/5) 2865699999220628 a001 31622993/16692641*167761^(4/5) 2865699999220630 a001 165580141/87403803*167761^(4/5) 2865699999220631 a001 433494437/228826127*167761^(4/5) 2865699999220631 a001 567451585/299537289*167761^(4/5) 2865699999220631 a001 2971215073/1568397607*167761^(4/5) 2865699999220631 a001 7778742049/4106118243*167761^(4/5) 2865699999220631 a001 10182505537/5374978561*167761^(4/5) 2865699999220631 a001 53316291173/28143753123*167761^(4/5) 2865699999220631 a001 139583862445/73681302247*167761^(4/5) 2865699999220631 a001 182717648081/96450076809*167761^(4/5) 2865699999220631 a001 956722026041/505019158607*167761^(4/5) 2865699999220631 a001 10610209857723/5600748293801*167761^(4/5) 2865699999220631 a001 591286729879/312119004989*167761^(4/5) 2865699999220631 a001 225851433717/119218851371*167761^(4/5) 2865699999220631 a001 21566892818/11384387281*167761^(4/5) 2865699999220631 a001 32951280099/17393796001*167761^(4/5) 2865699999220631 a001 12586269025/6643838879*167761^(4/5) 2865699999220631 a001 1201881744/634430159*167761^(4/5) 2865699999220631 a001 1836311903/969323029*167761^(4/5) 2865699999220631 a001 701408733/370248451*167761^(4/5) 2865699999220631 a001 66978574/35355581*167761^(4/5) 2865699999220632 a001 102334155/54018521*167761^(4/5) 2865699999220637 a001 39088169/20633239*167761^(4/5) 2865699999220674 a001 3732588/1970299*167761^(4/5) 2865699999220929 a001 5702887/3010349*167761^(4/5) 2865699999221850 a001 267914296/167761*64079^(6/23) 2865699999222136 a001 14736260449/514229 2865699999222467 a001 63245986/271443*167761^(2/5) 2865699999222677 a001 2178309/1149851*167761^(4/5) 2865699999223510 a001 416020/51841*103682^(17/24) 2865699999224303 a001 121393/271443*(1/2+1/2*5^(1/2))^23 2865699999224303 a001 121393/271443*4106118243^(1/2) 2865699999225914 a001 2971215073/439204*64079^(3/23) 2865699999229874 a001 121393/103682*103682^(7/8) 2865699999232853 a001 1602508992/90481*64079^(1/23) 2865699999234659 a001 208010/109801*167761^(4/5) 2865699999235319 a001 14930352/710647*167761^(3/5) 2865699999235727 a001 7778742049/710647*64079^(2/23) 2865699999237613 a001 514229/103682*103682^(3/4) 2865699999237809 a001 75025/39603*39603^(10/11) 2865699999240167 a001 39088169/1860498*167761^(3/5) 2865699999240574 a001 10182505537/930249*64079^(2/23) 2865699999240875 a001 102334155/4870847*167761^(3/5) 2865699999240878 a001 317811/103682*103682^(19/24) 2865699999240978 a001 267914296/12752043*167761^(3/5) 2865699999240993 a001 701408733/33385282*167761^(3/5) 2865699999240995 a001 1836311903/87403803*167761^(3/5) 2865699999240995 a001 102287808/4868641*167761^(3/5) 2865699999240996 a001 12586269025/599074578*167761^(3/5) 2865699999240996 a001 32951280099/1568397607*167761^(3/5) 2865699999240996 a001 86267571272/4106118243*167761^(3/5) 2865699999240996 a001 225851433717/10749957122*167761^(3/5) 2865699999240996 a001 591286729879/28143753123*167761^(3/5) 2865699999240996 a001 1548008755920/73681302247*167761^(3/5) 2865699999240996 a001 4052739537881/192900153618*167761^(3/5) 2865699999240996 a001 225749145909/10745088481*167761^(3/5) 2865699999240996 a001 6557470319842/312119004989*167761^(3/5) 2865699999240996 a001 2504730781961/119218851371*167761^(3/5) 2865699999240996 a001 956722026041/45537549124*167761^(3/5) 2865699999240996 a001 365435296162/17393796001*167761^(3/5) 2865699999240996 a001 139583862445/6643838879*167761^(3/5) 2865699999240996 a001 53316291173/2537720636*167761^(3/5) 2865699999240996 a001 20365011074/969323029*167761^(3/5) 2865699999240996 a001 7778742049/370248451*167761^(3/5) 2865699999240996 a001 2971215073/141422324*167761^(3/5) 2865699999240997 a001 1134903170/54018521*167761^(3/5) 2865699999241002 a001 433494437/20633239*167761^(3/5) 2865699999241042 a001 165580141/7881196*167761^(3/5) 2865699999241281 a001 53316291173/4870847*64079^(2/23) 2865699999241312 a001 63245986/3010349*167761^(3/5) 2865699999241384 a001 139583862445/12752043*64079^(2/23) 2865699999241399 a001 182717648081/16692641*64079^(2/23) 2865699999241402 a001 956722026041/87403803*64079^(2/23) 2865699999241402 a001 2504730781961/228826127*64079^(2/23) 2865699999241402 a001 3278735159921/299537289*64079^(2/23) 2865699999241402 a001 10610209857723/969323029*64079^(2/23) 2865699999241402 a001 4052739537881/370248451*64079^(2/23) 2865699999241402 a001 387002188980/35355581*64079^(2/23) 2865699999241403 a001 591286729879/54018521*64079^(2/23) 2865699999241409 a001 7787980473/711491*64079^(2/23) 2865699999241448 a001 21566892818/1970299*64079^(2/23) 2865699999241718 a001 32951280099/3010349*64079^(2/23) 2865699999242832 a001 233802911/90481*167761^(1/5) 2865699999243164 a001 24157817/1149851*167761^(3/5) 2865699999243569 a001 12586269025/1149851*64079^(2/23) 2865699999245968 a001 105937/90481*439204^(7/9) 2865699999252194 a001 433494437/167761*64079^(5/23) 2865699999253609 a001 1346269/271443*439204^(2/3) 2865699999254926 a001 5702887/271443*439204^(5/9) 2865699999255686 a001 165580141/710647*167761^(2/5) 2865699999255858 a001 9227465/439204*167761^(3/5) 2865699999256258 a001 1201881744/109801*64079^(2/23) 2865699999256595 a001 24157817/271443*439204^(4/9) 2865699999257206 a001 38580030723/1346269 2865699999257493 a001 105937/90481*7881196^(7/11) 2865699999257517 a001 121393/710647*20633239^(5/7) 2865699999257518 a001 105937/90481*20633239^(3/5) 2865699999257522 a001 105937/90481*141422324^(7/13) 2865699999257522 a001 121393/710647*2537720636^(5/9) 2865699999257522 a001 105937/90481*2537720636^(7/15) 2865699999257522 a001 105937/90481*17393796001^(3/7) 2865699999257522 a001 105937/90481*45537549124^(7/17) 2865699999257522 a001 121393/710647*312119004989^(5/11) 2865699999257522 a001 121393/710647*(1/2+1/2*5^(1/2))^25 2865699999257522 a001 121393/710647*3461452808002^(5/12) 2865699999257522 a001 105937/90481*14662949395604^(1/3) 2865699999257522 a001 105937/90481*(1/2+1/2*5^(1/2))^21 2865699999257522 a001 105937/90481*192900153618^(7/18) 2865699999257522 a001 121393/710647*28143753123^(1/2) 2865699999257522 a001 105937/90481*10749957122^(7/16) 2865699999257522 a001 105937/90481*599074578^(1/2) 2865699999257522 a001 121393/710647*228826127^(5/8) 2865699999257524 a001 105937/90481*33385282^(7/12) 2865699999258102 a001 105937/90481*1860498^(7/10) 2865699999258212 a001 121393/710647*1860498^(5/6) 2865699999258245 a001 34111385/90481*439204^(1/3) 2865699999259895 a001 433494437/271443*439204^(2/9) 2865699999260532 a001 433494437/1860498*167761^(2/5) 2865699999261239 a001 1134903170/4870847*167761^(2/5) 2865699999261343 a001 2971215073/12752043*167761^(2/5) 2865699999261358 a001 7778742049/33385282*167761^(2/5) 2865699999261360 a001 20365011074/87403803*167761^(2/5) 2865699999261360 a001 53316291173/228826127*167761^(2/5) 2865699999261360 a001 139583862445/599074578*167761^(2/5) 2865699999261360 a001 365435296162/1568397607*167761^(2/5) 2865699999261360 a001 956722026041/4106118243*167761^(2/5) 2865699999261360 a001 2504730781961/10749957122*167761^(2/5) 2865699999261360 a001 6557470319842/28143753123*167761^(2/5) 2865699999261360 a001 10610209857723/45537549124*167761^(2/5) 2865699999261360 a001 4052739537881/17393796001*167761^(2/5) 2865699999261360 a001 1548008755920/6643838879*167761^(2/5) 2865699999261360 a001 591286729879/2537720636*167761^(2/5) 2865699999261360 a001 225851433717/969323029*167761^(2/5) 2865699999261360 a001 86267571272/370248451*167761^(2/5) 2865699999261360 a001 63246219/271444*167761^(2/5) 2865699999261361 a001 12586269025/54018521*167761^(2/5) 2865699999261367 a001 4807526976/20633239*167761^(2/5) 2865699999261406 a001 1836311903/7881196*167761^(2/5) 2865699999261546 a001 1836311903/271443*439204^(1/9) 2865699999261676 a001 701408733/3010349*167761^(2/5) 2865699999261778 a001 105937/90481*710647^(3/4) 2865699999262323 a001 50501915860/1762289 2865699999262331 a001 121393/1860498*7881196^(9/11) 2865699999262369 a001 121393/1860498*141422324^(9/13) 2865699999262369 a001 121393/1860498*2537720636^(3/5) 2865699999262369 a001 121393/1860498*45537549124^(9/17) 2865699999262369 a001 121393/1860498*817138163596^(9/19) 2865699999262369 a001 121393/1860498*14662949395604^(3/7) 2865699999262369 a001 121393/1860498*(1/2+1/2*5^(1/2))^27 2865699999262369 a001 121393/1860498*192900153618^(1/2) 2865699999262369 a001 832040/271443*817138163596^(1/3) 2865699999262369 a001 832040/271443*(1/2+1/2*5^(1/2))^19 2865699999262369 a001 121393/1860498*10749957122^(9/16) 2865699999262369 a001 121393/1860498*599074578^(9/14) 2865699999262369 a001 832040/271443*87403803^(1/2) 2865699999262371 a001 121393/1860498*33385282^(3/4) 2865699999263069 a001 264431464437/9227465 2865699999263076 a001 121393/4870847*(1/2+1/2*5^(1/2))^29 2865699999263076 a001 121393/4870847*1322157322203^(1/2) 2865699999263076 a001 726103/90481*45537549124^(1/3) 2865699999263076 a001 726103/90481*(1/2+1/2*5^(1/2))^17 2865699999263085 a001 726103/90481*12752043^(1/2) 2865699999263114 a001 121393/1860498*1860498^(9/10) 2865699999263158 a001 5702887/271443*7881196^(5/11) 2865699999263176 a001 5702887/271443*20633239^(3/7) 2865699999263178 a001 692290561591/24157817 2865699999263179 a001 5702887/271443*141422324^(5/13) 2865699999263179 a001 5702887/271443*2537720636^(1/3) 2865699999263179 a001 121393/12752043*(1/2+1/2*5^(1/2))^31 2865699999263179 a001 121393/12752043*9062201101803^(1/2) 2865699999263179 a001 5702887/271443*45537549124^(5/17) 2865699999263179 a001 5702887/271443*312119004989^(3/11) 2865699999263179 a001 5702887/271443*14662949395604^(5/21) 2865699999263179 a001 5702887/271443*(1/2+1/2*5^(1/2))^15 2865699999263179 a001 5702887/271443*192900153618^(5/18) 2865699999263179 a001 5702887/271443*28143753123^(3/10) 2865699999263179 a001 5702887/271443*10749957122^(5/16) 2865699999263179 a001 5702887/271443*599074578^(5/14) 2865699999263179 a001 5702887/271443*228826127^(3/8) 2865699999263180 a001 5702887/271443*33385282^(5/12) 2865699999263181 a001 24157817/271443*7881196^(4/11) 2865699999263181 a001 39088169/271443*7881196^(1/3) 2865699999263184 a001 34111385/90481*7881196^(3/11) 2865699999263188 a001 433494437/271443*7881196^(2/11) 2865699999263192 a001 1836311903/271443*7881196^(1/11) 2865699999263194 a001 3889356696/135721 2865699999263194 a001 121393/33385282*141422324^(11/13) 2865699999263194 a001 4976784/90481*141422324^(1/3) 2865699999263194 a001 121393/33385282*2537720636^(11/15) 2865699999263194 a001 121393/33385282*45537549124^(11/17) 2865699999263194 a001 121393/33385282*312119004989^(3/5) 2865699999263194 a001 121393/33385282*14662949395604^(11/21) 2865699999263194 a001 121393/33385282*(1/2+1/2*5^(1/2))^33 2865699999263194 a001 121393/33385282*192900153618^(11/18) 2865699999263194 a001 4976784/90481*(1/2+1/2*5^(1/2))^13 2865699999263194 a001 4976784/90481*73681302247^(1/4) 2865699999263194 a001 121393/33385282*10749957122^(11/16) 2865699999263194 a001 121393/33385282*1568397607^(3/4) 2865699999263194 a001 121393/33385282*599074578^(11/14) 2865699999263195 a001 63245986/271443*20633239^(2/7) 2865699999263195 a001 267914296/271443*20633239^(1/5) 2865699999263196 a001 233802911/90481*20633239^(1/7) 2865699999263196 a001 4745030099417/165580141 2865699999263196 a001 121393/87403803*2537720636^(7/9) 2865699999263196 a001 121393/87403803*17393796001^(5/7) 2865699999263196 a001 121393/87403803*312119004989^(7/11) 2865699999263196 a001 121393/87403803*14662949395604^(5/9) 2865699999263196 a001 121393/87403803*505019158607^(5/8) 2865699999263196 a001 39088169/271443*312119004989^(1/5) 2865699999263196 a001 39088169/271443*(1/2+1/2*5^(1/2))^11 2865699999263196 a001 121393/87403803*28143753123^(7/10) 2865699999263196 a001 39088169/271443*1568397607^(1/4) 2865699999263196 a001 121393/87403803*599074578^(5/6) 2865699999263196 a001 121393/87403803*228826127^(7/8) 2865699999263196 a001 121393/33385282*33385282^(11/12) 2865699999263196 a001 34111385/90481*141422324^(3/13) 2865699999263197 a001 12422650077915/433494437 2865699999263197 a001 34111385/90481*2537720636^(1/5) 2865699999263197 a001 34111385/90481*45537549124^(3/17) 2865699999263197 a001 34111385/90481*817138163596^(3/19) 2865699999263197 a001 34111385/90481*14662949395604^(1/7) 2865699999263197 a001 34111385/90481*(1/2+1/2*5^(1/2))^9 2865699999263197 a001 34111385/90481*192900153618^(1/6) 2865699999263197 a001 34111385/90481*10749957122^(3/16) 2865699999263197 a001 34111385/90481*599074578^(3/14) 2865699999263197 a001 433494437/271443*141422324^(2/13) 2865699999263197 a001 1836311903/271443*141422324^(1/13) 2865699999263197 a001 16261460067164/567451585 2865699999263197 a001 121393/599074578*2537720636^(13/15) 2865699999263197 a001 121393/599074578*45537549124^(13/17) 2865699999263197 a001 267914296/271443*17393796001^(1/7) 2865699999263197 a001 121393/599074578*14662949395604^(13/21) 2865699999263197 a001 121393/599074578*192900153618^(13/18) 2865699999263197 a001 121393/599074578*73681302247^(3/4) 2865699999263197 a001 267914296/271443*14662949395604^(1/9) 2865699999263197 a001 267914296/271443*(1/2+1/2*5^(1/2))^7 2865699999263197 a001 121393/599074578*10749957122^(13/16) 2865699999263197 a001 267914296/271443*599074578^(1/6) 2865699999263197 a001 85146110325069/2971215073 2865699999263197 a001 233802911/90481*2537720636^(1/9) 2865699999263197 a001 233802911/90481*312119004989^(1/11) 2865699999263197 a001 233802911/90481*(1/2+1/2*5^(1/2))^5 2865699999263197 a001 233802911/90481*28143753123^(1/10) 2865699999263197 a001 121393/599074578*599074578^(13/14) 2865699999263197 a001 1836311903/271443*2537720636^(1/15) 2865699999263197 a001 222915410840879/7778742049 2865699999263197 a001 1836311903/271443*45537549124^(1/17) 2865699999263197 a001 1836311903/271443*14662949395604^(1/21) 2865699999263197 a001 1836311903/271443*(1/2+1/2*5^(1/2))^3 2865699999263197 a001 1836311903/271443*192900153618^(1/18) 2865699999263197 a001 1836311903/271443*10749957122^(1/16) 2865699999263197 a001 291800061098784/10182505537 2865699999263197 a001 121393/10749957122*45537549124^(15/17) 2865699999263197 a001 121393/10749957122*312119004989^(9/11) 2865699999263197 a001 121393/10749957122*14662949395604^(5/7) 2865699999263197 a001 121393/10749957122*192900153618^(5/6) 2865699999263197 a001 801254496/90481+801254496/90481*5^(1/2) 2865699999263197 a001 121393/10749957122*28143753123^(9/10) 2865699999263197 a001 1527884955751825/53316291173 2865699999263197 a001 121393/10749957122*10749957122^(15/16) 2865699999263197 a001 4000054745057907/139583862445 2865699999263197 a001 121393/73681302247*14662949395604^(7/9) 2865699999263197 a001 121393/73681302247*505019158607^(7/8) 2865699999263197 a001 121393/192900153618*817138163596^(17/19) 2865699999263197 a001 121393/192900153618*14662949395604^(17/21) 2865699999263197 a001 27416783093207781/956722026041 2865699999263197 a001 116139356907195113/4052739537881 2865699999263197 a001 22180643453496833/774004377960 2865699999263197 a001 121393/312119004989*23725150497407^(13/16) 2865699999263197 a001 121393/312119004989*505019158607^(13/14) 2865699999263197 a001 121393/45537549124*45537549124^(16/17) 2865699999263197 a001 121393/119218851371*312119004989^(10/11) 2865699999263197 a001 121393/119218851371*3461452808002^(5/6) 2865699999263197 a001 121393/45537549124*14662949395604^(16/21) 2865699999263197 a001 121393/45537549124*192900153618^(8/9) 2865699999263197 a001 1236084894653041/43133785636 2865699999263197 a001 121393/45537549124*73681302247^(12/13) 2865699999263197 a001 7778742049/271443 2865699999263197 a001 121393/2537720636*2537720636^(14/15) 2865699999263197 a001 121393/17393796001*10749957122^(23/24) 2865699999263197 a001 121393/6643838879*312119004989^(4/5) 2865699999263197 a001 121393/6643838879*23725150497407^(11/16) 2865699999263197 a001 121393/6643838879*73681302247^(11/13) 2865699999263197 a001 2971215073/271443*(1/2+1/2*5^(1/2))^2 2865699999263197 a001 2971215073/271443*10749957122^(1/24) 2865699999263197 a001 360684711356689/12586269025 2865699999263197 a001 2971215073/271443*4106118243^(1/23) 2865699999263197 a001 121393/6643838879*10749957122^(11/12) 2865699999263197 a001 2971215073/271443*1568397607^(1/22) 2865699999263197 a001 121393/6643838879*4106118243^(22/23) 2865699999263197 a001 1836311903/271443*599074578^(1/14) 2865699999263197 a001 121393/2537720636*17393796001^(6/7) 2865699999263197 a001 121393/2537720636*45537549124^(14/17) 2865699999263197 a001 121393/2537720636*14662949395604^(2/3) 2865699999263197 a001 121393/2537720636*505019158607^(3/4) 2865699999263197 a001 121393/2537720636*192900153618^(7/9) 2865699999263197 a001 1134903170/271443*(1/2+1/2*5^(1/2))^4 2865699999263197 a001 1134903170/271443*23725150497407^(1/16) 2865699999263197 a001 1134903170/271443*73681302247^(1/13) 2865699999263197 a001 2971215073/271443*599074578^(1/21) 2865699999263197 a001 1134903170/271443*10749957122^(1/12) 2865699999263197 a001 1134903170/271443*4106118243^(2/23) 2865699999263197 a001 121393/2537720636*10749957122^(7/8) 2865699999263197 a001 68884650257905/2403763488 2865699999263197 a001 1134903170/271443*1568397607^(1/11) 2865699999263197 a001 121393/2537720636*4106118243^(21/23) 2865699999263197 a001 1134903170/271443*599074578^(2/21) 2865699999263197 a001 121393/2537720636*1568397607^(21/22) 2865699999263197 a001 121393/969323029*2537720636^(8/9) 2865699999263197 a001 2971215073/271443*228826127^(1/20) 2865699999263197 a001 433494437/271443*2537720636^(2/15) 2865699999263197 a001 121393/969323029*312119004989^(8/11) 2865699999263197 a001 121393/969323029*23725150497407^(5/8) 2865699999263197 a001 433494437/271443*45537549124^(2/17) 2865699999263197 a001 121393/969323029*73681302247^(10/13) 2865699999263197 a001 433494437/271443*14662949395604^(2/21) 2865699999263197 a001 433494437/271443*(1/2+1/2*5^(1/2))^6 2865699999263197 a001 121393/969323029*28143753123^(4/5) 2865699999263197 a001 433494437/271443*10749957122^(1/8) 2865699999263197 a001 121393/969323029*10749957122^(5/6) 2865699999263197 a001 433494437/271443*4106118243^(3/23) 2865699999263197 a001 121393/969323029*4106118243^(20/23) 2865699999263197 a001 433494437/271443*1568397607^(3/22) 2865699999263197 a001 52623190190741/1836311903 2865699999263197 a001 121393/969323029*1568397607^(10/11) 2865699999263197 a001 433494437/271443*599074578^(1/7) 2865699999263197 a001 233802911/90481*228826127^(1/8) 2865699999263197 a001 1134903170/271443*228826127^(1/10) 2865699999263197 a001 121393/969323029*599074578^(20/21) 2865699999263197 a001 233/271444*141422324^(12/13) 2865699999263197 a001 433494437/271443*228826127^(3/20) 2865699999263197 a001 2971215073/271443*87403803^(1/19) 2865699999263197 a001 121393/370248451*817138163596^(2/3) 2865699999263197 a001 165580141/271443*(1/2+1/2*5^(1/2))^8 2865699999263197 a001 165580141/271443*23725150497407^(1/8) 2865699999263197 a001 165580141/271443*505019158607^(1/7) 2865699999263197 a001 165580141/271443*73681302247^(2/13) 2865699999263197 a001 165580141/271443*10749957122^(1/6) 2865699999263197 a001 121393/370248451*10749957122^(19/24) 2865699999263197 a001 165580141/271443*4106118243^(4/23) 2865699999263197 a001 121393/370248451*4106118243^(19/23) 2865699999263197 a001 165580141/271443*1568397607^(2/11) 2865699999263197 a001 121393/370248451*1568397607^(19/22) 2865699999263197 a001 20100270056413/701408733 2865699999263197 a001 165580141/271443*599074578^(4/21) 2865699999263197 a001 121393/370248451*599074578^(19/21) 2865699999263197 a001 165580141/271443*228826127^(1/5) 2865699999263197 a001 1134903170/271443*87403803^(2/19) 2865699999263197 a001 433494437/271443*87403803^(3/19) 2865699999263197 a001 121393/370248451*228826127^(19/20) 2865699999263197 a001 165580141/271443*87403803^(4/19) 2865699999263197 a001 2971215073/271443*33385282^(1/18) 2865699999263197 a001 233/271444*2537720636^(4/5) 2865699999263197 a001 63245986/271443*2537720636^(2/9) 2865699999263197 a001 233/271444*45537549124^(12/17) 2865699999263197 a001 233/271444*14662949395604^(4/7) 2865699999263197 a001 233/271444*505019158607^(9/14) 2865699999263197 a001 233/271444*192900153618^(2/3) 2865699999263197 a001 233/271444*73681302247^(9/13) 2865699999263197 a001 63245986/271443*312119004989^(2/11) 2865699999263197 a001 63245986/271443*(1/2+1/2*5^(1/2))^10 2865699999263197 a001 63245986/271443*28143753123^(1/5) 2865699999263197 a001 63245986/271443*10749957122^(5/24) 2865699999263197 a001 233/271444*10749957122^(3/4) 2865699999263197 a001 63245986/271443*4106118243^(5/23) 2865699999263197 a001 233/271444*4106118243^(18/23) 2865699999263197 a001 63245986/271443*1568397607^(5/22) 2865699999263197 a001 233/271444*1568397607^(9/11) 2865699999263197 a001 63245986/271443*599074578^(5/21) 2865699999263197 a001 233/271444*599074578^(6/7) 2865699999263197 a001 3838809989249/133957148 2865699999263197 a001 63245986/271443*228826127^(1/4) 2865699999263197 a001 233/271444*228826127^(9/10) 2865699999263197 a001 1836311903/271443*33385282^(1/12) 2865699999263197 a001 63245986/271443*87403803^(5/19) 2865699999263197 a001 1134903170/271443*33385282^(1/9) 2865699999263197 a001 433494437/271443*33385282^(1/6) 2865699999263197 a001 233/271444*87403803^(18/19) 2865699999263197 a001 34111385/90481*33385282^(1/4) 2865699999263197 a001 165580141/271443*33385282^(2/9) 2865699999263197 a001 63245986/271443*33385282^(5/18) 2865699999263197 a001 24157817/271443*141422324^(4/13) 2865699999263198 a001 24157817/271443*2537720636^(4/15) 2865699999263198 a001 121393/54018521*45537549124^(2/3) 2865699999263198 a001 24157817/271443*45537549124^(4/17) 2865699999263198 a001 24157817/271443*817138163596^(4/19) 2865699999263198 a001 24157817/271443*14662949395604^(4/21) 2865699999263198 a001 24157817/271443*(1/2+1/2*5^(1/2))^12 2865699999263198 a001 24157817/271443*192900153618^(2/9) 2865699999263198 a001 24157817/271443*73681302247^(3/13) 2865699999263198 a001 24157817/271443*10749957122^(1/4) 2865699999263198 a001 121393/54018521*10749957122^(17/24) 2865699999263198 a001 24157817/271443*4106118243^(6/23) 2865699999263198 a001 121393/54018521*4106118243^(17/23) 2865699999263198 a001 24157817/271443*1568397607^(3/11) 2865699999263198 a001 121393/54018521*1568397607^(17/22) 2865699999263198 a001 24157817/271443*599074578^(2/7) 2865699999263198 a001 121393/54018521*599074578^(17/21) 2865699999263198 a001 24157817/271443*228826127^(3/10) 2865699999263198 a001 121393/54018521*228826127^(17/20) 2865699999263198 a001 2971215073/271443*12752043^(1/17) 2865699999263198 a001 2932589879081/102334155 2865699999263198 a001 24157817/271443*87403803^(6/19) 2865699999263198 a001 121393/54018521*87403803^(17/19) 2865699999263198 a001 24157817/271443*33385282^(1/3) 2865699999263199 a001 1134903170/271443*12752043^(2/17) 2865699999263200 a001 433494437/271443*12752043^(3/17) 2865699999263200 a001 121393/54018521*33385282^(17/18) 2865699999263201 a001 9227465/271443*20633239^(2/5) 2865699999263201 a001 165580141/271443*12752043^(4/17) 2865699999263201 a001 121393/7881196*7881196^(10/11) 2865699999263202 a001 63245986/271443*12752043^(5/17) 2865699999263203 a001 9227465/271443*17393796001^(2/7) 2865699999263203 a001 121393/20633239*(1/2+1/2*5^(1/2))^32 2865699999263203 a001 121393/20633239*23725150497407^(1/2) 2865699999263203 a001 121393/20633239*73681302247^(8/13) 2865699999263203 a001 9227465/271443*14662949395604^(2/9) 2865699999263203 a001 9227465/271443*(1/2+1/2*5^(1/2))^14 2865699999263203 a001 9227465/271443*10749957122^(7/24) 2865699999263203 a001 121393/20633239*10749957122^(2/3) 2865699999263203 a001 9227465/271443*4106118243^(7/23) 2865699999263203 a001 121393/20633239*4106118243^(16/23) 2865699999263203 a001 9227465/271443*1568397607^(7/22) 2865699999263203 a001 121393/20633239*1568397607^(8/11) 2865699999263203 a001 9227465/271443*599074578^(1/3) 2865699999263203 a001 121393/20633239*599074578^(16/21) 2865699999263203 a001 9227465/271443*228826127^(7/20) 2865699999263203 a001 121393/20633239*228826127^(4/5) 2865699999263203 a001 9227465/271443*87403803^(7/19) 2865699999263204 a001 121393/20633239*87403803^(16/19) 2865699999263204 a001 1120149658745/39088169 2865699999263204 a001 24157817/271443*12752043^(6/17) 2865699999263204 a001 2971215073/271443*4870847^(1/16) 2865699999263204 a001 9227465/271443*33385282^(7/18) 2865699999263206 a001 121393/20633239*33385282^(8/9) 2865699999263211 a001 9227465/271443*12752043^(7/17) 2865699999263212 a001 1134903170/271443*4870847^(1/8) 2865699999263219 a001 433494437/271443*4870847^(3/16) 2865699999263220 a001 121393/20633239*12752043^(16/17) 2865699999263227 a001 165580141/271443*4870847^(1/4) 2865699999263234 a001 63245986/271443*4870847^(5/16) 2865699999263237 a001 121393/7881196*20633239^(6/7) 2865699999263243 a001 121393/7881196*141422324^(10/13) 2865699999263243 a001 121393/7881196*2537720636^(2/3) 2865699999263243 a001 121393/7881196*45537549124^(10/17) 2865699999263243 a001 121393/7881196*312119004989^(6/11) 2865699999263243 a001 121393/7881196*14662949395604^(10/21) 2865699999263243 a001 121393/7881196*(1/2+1/2*5^(1/2))^30 2865699999263243 a001 121393/7881196*192900153618^(5/9) 2865699999263243 a001 3524578/271443*(1/2+1/2*5^(1/2))^16 2865699999263243 a001 3524578/271443*23725150497407^(1/4) 2865699999263243 a001 3524578/271443*73681302247^(4/13) 2865699999263243 a001 121393/7881196*28143753123^(3/5) 2865699999263243 a001 3524578/271443*10749957122^(1/3) 2865699999263243 a001 121393/7881196*10749957122^(5/8) 2865699999263243 a001 3524578/271443*4106118243^(8/23) 2865699999263243 a001 121393/7881196*4106118243^(15/23) 2865699999263243 a001 3524578/271443*1568397607^(4/11) 2865699999263243 a001 121393/7881196*1568397607^(15/22) 2865699999263243 a001 3524578/271443*599074578^(8/21) 2865699999263243 a001 121393/7881196*599074578^(5/7) 2865699999263243 a001 3524578/271443*228826127^(2/5) 2865699999263243 a001 121393/7881196*228826127^(3/4) 2865699999263243 a001 24157817/271443*4870847^(3/8) 2865699999263243 a001 3524578/271443*87403803^(8/19) 2865699999263243 a001 121393/7881196*87403803^(15/19) 2865699999263244 a001 3524578/271443*33385282^(4/9) 2865699999263245 a001 121393/7881196*33385282^(5/6) 2865699999263245 a001 213929548577/7465176 2865699999263251 a001 3524578/271443*12752043^(8/17) 2865699999263252 a001 2971215073/271443*1860498^(1/15) 2865699999263256 a001 9227465/271443*4870847^(7/16) 2865699999263258 a001 121393/7881196*12752043^(15/17) 2865699999263279 a001 1836311903/271443*1860498^(1/10) 2865699999263300 a001 11592/6119*24476^(20/21) 2865699999263303 a001 3524578/271443*4870847^(1/2) 2865699999263307 a001 1134903170/271443*1860498^(2/15) 2865699999263335 a001 233802911/90481*1860498^(1/6) 2865699999263356 a001 121393/7881196*4870847^(15/16) 2865699999263362 a001 433494437/271443*1860498^(1/5) 2865699999263417 a001 165580141/271443*1860498^(4/15) 2865699999263445 a001 34111385/90481*1860498^(3/10) 2865699999263473 a001 63245986/271443*1860498^(1/3) 2865699999263488 a001 1346269/271443*7881196^(6/11) 2865699999263507 a001 121393/3010349*20633239^(4/5) 2865699999263513 a001 1346269/271443*141422324^(6/13) 2865699999263513 a001 1346269/271443*2537720636^(2/5) 2865699999263513 a001 121393/3010349*17393796001^(4/7) 2865699999263513 a001 121393/3010349*14662949395604^(4/9) 2865699999263513 a001 121393/3010349*(1/2+1/2*5^(1/2))^28 2865699999263513 a001 1346269/271443*45537549124^(6/17) 2865699999263513 a001 121393/3010349*73681302247^(7/13) 2865699999263513 a001 1346269/271443*14662949395604^(2/7) 2865699999263513 a001 1346269/271443*(1/2+1/2*5^(1/2))^18 2865699999263513 a001 1346269/271443*192900153618^(1/3) 2865699999263513 a001 1346269/271443*10749957122^(3/8) 2865699999263513 a001 121393/3010349*10749957122^(7/12) 2865699999263513 a001 1346269/271443*4106118243^(9/23) 2865699999263513 a001 121393/3010349*4106118243^(14/23) 2865699999263513 a001 1346269/271443*1568397607^(9/22) 2865699999263513 a001 121393/3010349*1568397607^(7/11) 2865699999263513 a001 1346269/271443*599074578^(3/7) 2865699999263513 a001 121393/3010349*599074578^(2/3) 2865699999263513 a001 1346269/271443*228826127^(9/20) 2865699999263513 a001 121393/3010349*228826127^(7/10) 2865699999263513 a001 1346269/271443*87403803^(9/19) 2865699999263513 a001 121393/3010349*87403803^(14/19) 2865699999263514 a001 1346269/271443*33385282^(1/2) 2865699999263515 a001 121393/3010349*33385282^(7/9) 2865699999263522 a001 1346269/271443*12752043^(9/17) 2865699999263527 a001 121393/3010349*12752043^(14/17) 2865699999263528 a001 267914296/1149851*167761^(2/5) 2865699999263529 a001 24157817/271443*1860498^(2/5) 2865699999263530 a001 163427632717/5702887 2865699999263581 a001 1346269/271443*4870847^(9/16) 2865699999263590 a001 9227465/271443*1860498^(7/15) 2865699999263593 a001 5702887/271443*1860498^(1/2) 2865699999263602 a001 2971215073/271443*710647^(1/14) 2865699999263618 a001 121393/3010349*4870847^(7/8) 2865699999263684 a001 3524578/271443*1860498^(8/15) 2865699999264007 a001 1134903170/271443*710647^(1/7) 2865699999264010 a001 1346269/271443*1860498^(3/5) 2865699999264285 a001 121393/3010349*1860498^(14/15) 2865699999264413 a001 433494437/271443*710647^(3/14) 2865699999264615 a001 267914296/271443*710647^(1/4) 2865699999264818 a001 165580141/271443*710647^(2/7) 2865699999264847 a001 121393/439204*439204^(8/9) 2865699999265223 a001 63245986/271443*710647^(5/14) 2865699999265360 a001 514229/271443*20633239^(4/7) 2865699999265364 a001 121393/1149851*141422324^(2/3) 2865699999265364 a001 514229/271443*2537720636^(4/9) 2865699999265364 a001 121393/1149851*(1/2+1/2*5^(1/2))^26 2865699999265364 a001 121393/1149851*73681302247^(1/2) 2865699999265364 a001 514229/271443*(1/2+1/2*5^(1/2))^20 2865699999265364 a001 514229/271443*23725150497407^(5/16) 2865699999265364 a001 514229/271443*505019158607^(5/14) 2865699999265364 a001 514229/271443*73681302247^(5/13) 2865699999265364 a001 514229/271443*28143753123^(2/5) 2865699999265364 a001 514229/271443*10749957122^(5/12) 2865699999265364 a001 121393/1149851*10749957122^(13/24) 2865699999265364 a001 514229/271443*4106118243^(10/23) 2865699999265364 a001 121393/1149851*4106118243^(13/23) 2865699999265364 a001 514229/271443*1568397607^(5/11) 2865699999265364 a001 121393/1149851*1568397607^(13/22) 2865699999265364 a001 514229/271443*599074578^(10/21) 2865699999265364 a001 121393/1149851*599074578^(13/21) 2865699999265364 a001 514229/271443*228826127^(1/2) 2865699999265364 a001 121393/1149851*228826127^(13/20) 2865699999265364 a001 514229/271443*87403803^(10/19) 2865699999265364 a001 121393/1149851*87403803^(13/19) 2865699999265365 a001 514229/271443*33385282^(5/9) 2865699999265366 a001 121393/1149851*33385282^(13/18) 2865699999265374 a001 514229/271443*12752043^(10/17) 2865699999265377 a001 121393/1149851*12752043^(13/17) 2865699999265439 a001 514229/271443*4870847^(5/8) 2865699999265462 a001 121393/1149851*4870847^(13/16) 2865699999265485 a001 62423800997/2178309 2865699999265629 a001 24157817/271443*710647^(3/7) 2865699999265916 a001 514229/271443*1860498^(2/3) 2865699999266041 a001 9227465/271443*710647^(1/2) 2865699999266071 a001 12586269025/710647*64079^(1/23) 2865699999266082 a001 121393/1149851*1860498^(13/15) 2865699999266188 a001 2971215073/271443*271443^(1/13) 2865699999266485 a001 3524578/271443*710647^(4/7) 2865699999267161 a001 1346269/271443*710647^(9/14) 2865699999269180 a001 1134903170/271443*271443^(2/13) 2865699999269417 a001 514229/271443*710647^(5/7) 2865699999270633 a001 121393/1149851*710647^(13/14) 2865699999270918 a001 10983760033/620166*64079^(1/23) 2865699999271625 a001 86267571272/4870847*64079^(1/23) 2865699999271728 a001 75283811239/4250681*64079^(1/23) 2865699999271743 a001 591286729879/33385282*64079^(1/23) 2865699999271745 a001 516002918640/29134601*64079^(1/23) 2865699999271746 a001 4052739537881/228826127*64079^(1/23) 2865699999271746 a001 3536736619241/199691526*64079^(1/23) 2865699999271746 a001 6557470319842/370248451*64079^(1/23) 2865699999271746 a001 2504730781961/141422324*64079^(1/23) 2865699999271747 a001 956722026041/54018521*64079^(1/23) 2865699999271753 a001 365435296162/20633239*64079^(1/23) 2865699999271792 a001 139583862445/7881196*64079^(1/23) 2865699999272062 a001 53316291173/3010349*64079^(1/23) 2865699999272172 a001 433494437/271443*271443^(3/13) 2865699999272516 a001 98209/51841*103682^(5/6) 2865699999273913 a001 20365011074/1149851*64079^(1/23) 2865699999274304 a001 1602508992/90481*103682^(1/24) 2865699999275164 a001 165580141/271443*271443^(4/13) 2865699999276051 a001 1836311903/710647*167761^(1/5) 2865699999276216 a001 102334155/439204*167761^(2/5) 2865699999278019 a001 121393/439204*7881196^(8/11) 2865699999278022 a001 196418/271443*7881196^(2/3) 2865699999278052 a001 121393/439204*141422324^(8/13) 2865699999278052 a001 121393/439204*2537720636^(8/15) 2865699999278052 a001 121393/439204*45537549124^(8/17) 2865699999278052 a001 121393/439204*14662949395604^(8/21) 2865699999278052 a001 121393/439204*(1/2+1/2*5^(1/2))^24 2865699999278052 a001 121393/439204*192900153618^(4/9) 2865699999278052 a001 121393/439204*73681302247^(6/13) 2865699999278052 a001 196418/271443*312119004989^(2/5) 2865699999278052 a001 196418/271443*(1/2+1/2*5^(1/2))^22 2865699999278052 a001 196418/271443*10749957122^(11/24) 2865699999278052 a001 121393/439204*10749957122^(1/2) 2865699999278052 a001 196418/271443*4106118243^(11/23) 2865699999278052 a001 121393/439204*4106118243^(12/23) 2865699999278052 a001 196418/271443*1568397607^(1/2) 2865699999278052 a001 121393/439204*1568397607^(6/11) 2865699999278052 a001 196418/271443*599074578^(11/21) 2865699999278052 a001 121393/439204*599074578^(4/7) 2865699999278052 a001 196418/271443*228826127^(11/20) 2865699999278052 a001 121393/439204*228826127^(3/5) 2865699999278053 a001 196418/271443*87403803^(11/19) 2865699999278053 a001 121393/439204*87403803^(12/19) 2865699999278054 a001 196418/271443*33385282^(11/18) 2865699999278054 a001 121393/439204*33385282^(2/3) 2865699999278064 a001 196418/271443*12752043^(11/17) 2865699999278065 a001 121393/439204*12752043^(12/17) 2865699999278135 a001 196418/271443*4870847^(11/16) 2865699999278143 a001 121393/439204*4870847^(3/4) 2865699999278156 a001 63245986/271443*271443^(5/13) 2865699999278660 a001 196418/271443*1860498^(11/15) 2865699999278715 a001 121393/439204*1860498^(4/5) 2865699999278880 a001 11921885137/416020 2865699999280897 a001 267084832/103361*167761^(1/5) 2865699999281148 a001 24157817/271443*271443^(6/13) 2865699999281604 a001 12586269025/4870847*167761^(1/5) 2865699999281707 a001 10983760033/4250681*167761^(1/5) 2865699999281722 a001 43133785636/16692641*167761^(1/5) 2865699999281725 a001 75283811239/29134601*167761^(1/5) 2865699999281725 a001 591286729879/228826127*167761^(1/5) 2865699999281725 a001 86000486440/33281921*167761^(1/5) 2865699999281725 a001 4052739537881/1568397607*167761^(1/5) 2865699999281725 a001 3536736619241/1368706081*167761^(1/5) 2865699999281725 a001 3278735159921/1268860318*167761^(1/5) 2865699999281725 a001 2504730781961/969323029*167761^(1/5) 2865699999281725 a001 956722026041/370248451*167761^(1/5) 2865699999281725 a001 182717648081/70711162*167761^(1/5) 2865699999281726 a001 139583862445/54018521*167761^(1/5) 2865699999281732 a001 53316291173/20633239*167761^(1/5) 2865699999281771 a001 10182505537/3940598*167761^(1/5) 2865699999282041 a001 7778742049/3010349*167761^(1/5) 2865699999282511 a001 196418/271443*710647^(11/14) 2865699999282538 a001 701408733/167761*64079^(4/23) 2865699999282641 a001 4976784/90481*271443^(1/2) 2865699999282916 a001 121393/439204*710647^(6/7) 2865699999283892 a001 2971215073/1149851*167761^(1/5) 2865699999284033 a001 832040/710647*439204^(7/9) 2865699999284146 a001 9227465/271443*271443^(7/13) 2865699999284669 a001 701408733/103682*39603^(3/22) 2865699999285378 a001 317811/1149851*439204^(8/9) 2865699999285411 a001 2971215073/271443*103682^(1/12) 2865699999286558 a001 3524578/710647*439204^(2/3) 2865699999286602 a001 7778742049/439204*64079^(1/23) 2865699999287177 a001 3524578/271443*271443^(8/13) 2865699999287234 a001 1/98209*(1/2+1/2*5^(1/2))^50 2865699999288159 a001 14930352/710647*439204^(5/9) 2865699999288373 a001 832040/3010349*439204^(8/9) 2865699999288810 a001 2178309/7881196*439204^(8/9) 2865699999288874 a001 5702887/20633239*439204^(8/9) 2865699999288883 a001 14930352/54018521*439204^(8/9) 2865699999288884 a001 39088169/141422324*439204^(8/9) 2865699999288884 a001 102334155/370248451*439204^(8/9) 2865699999288885 a001 267914296/969323029*439204^(8/9) 2865699999288885 a001 701408733/2537720636*439204^(8/9) 2865699999288885 a001 1836311903/6643838879*439204^(8/9) 2865699999288885 a001 4807526976/17393796001*439204^(8/9) 2865699999288885 a001 12586269025/45537549124*439204^(8/9) 2865699999288885 a001 32951280099/119218851371*439204^(8/9) 2865699999288885 a001 86267571272/312119004989*439204^(8/9) 2865699999288885 a001 225851433717/817138163596*439204^(8/9) 2865699999288885 a001 1548008755920/5600748293801*439204^(8/9) 2865699999288885 a001 139583862445/505019158607*439204^(8/9) 2865699999288885 a001 53316291173/192900153618*439204^(8/9) 2865699999288885 a001 20365011074/73681302247*439204^(8/9) 2865699999288885 a001 7778742049/28143753123*439204^(8/9) 2865699999288885 a001 2971215073/10749957122*439204^(8/9) 2865699999288885 a001 1134903170/4106118243*439204^(8/9) 2865699999288885 a001 433494437/1568397607*439204^(8/9) 2865699999288885 a001 165580141/599074578*439204^(8/9) 2865699999288885 a001 63245986/228826127*439204^(8/9) 2865699999288885 a001 24157817/87403803*439204^(8/9) 2865699999288889 a001 9227465/33385282*439204^(8/9) 2865699999288913 a001 3524578/12752043*439204^(8/9) 2865699999289080 a001 1346269/4870847*439204^(8/9) 2865699999289586 a001 726103/620166*439204^(7/9) 2865699999289813 a001 63245986/710647*439204^(4/9) 2865699999290224 a001 514229/1860498*439204^(8/9) 2865699999290397 a001 5702887/4870847*439204^(7/9) 2865699999290439 a001 1346269/271443*271443^(9/13) 2865699999290515 a001 4976784/4250681*439204^(7/9) 2865699999290532 a001 39088169/33385282*439204^(7/9) 2865699999290535 a001 34111385/29134601*439204^(7/9) 2865699999290535 a001 267914296/228826127*439204^(7/9) 2865699999290535 a001 233802911/199691526*439204^(7/9) 2865699999290535 a001 1836311903/1568397607*439204^(7/9) 2865699999290535 a001 1602508992/1368706081*439204^(7/9) 2865699999290535 a001 12586269025/10749957122*439204^(7/9) 2865699999290535 a001 10983760033/9381251041*439204^(7/9) 2865699999290535 a001 86267571272/73681302247*439204^(7/9) 2865699999290535 a001 75283811239/64300051206*439204^(7/9) 2865699999290535 a001 2504730781961/2139295485799*439204^(7/9) 2865699999290535 a001 365435296162/312119004989*439204^(7/9) 2865699999290535 a001 139583862445/119218851371*439204^(7/9) 2865699999290535 a001 53316291173/45537549124*439204^(7/9) 2865699999290535 a001 20365011074/17393796001*439204^(7/9) 2865699999290535 a001 7778742049/6643838879*439204^(7/9) 2865699999290535 a001 2971215073/2537720636*439204^(7/9) 2865699999290535 a001 1134903170/969323029*439204^(7/9) 2865699999290535 a001 433494437/370248451*439204^(7/9) 2865699999290535 a001 165580141/141422324*439204^(7/9) 2865699999290536 a001 63245986/54018521*439204^(7/9) 2865699999290543 a001 24157817/20633239*439204^(7/9) 2865699999290588 a001 9227465/7881196*439204^(7/9) 2865699999290695 a001 101003831721/3524578 2865699999290741 a001 317811/710647*(1/2+1/2*5^(1/2))^23 2865699999290741 a001 317811/710647*4106118243^(1/2) 2865699999290898 a001 3524578/3010349*439204^(7/9) 2865699999291365 a001 9227465/1860498*439204^(2/3) 2865699999291463 a001 267914296/710647*439204^(1/3) 2865699999292066 a001 24157817/4870847*439204^(2/3) 2865699999292168 a001 63245986/12752043*439204^(2/3) 2865699999292183 a001 165580141/33385282*439204^(2/3) 2865699999292185 a001 433494437/87403803*439204^(2/3) 2865699999292186 a001 1134903170/228826127*439204^(2/3) 2865699999292186 a001 2971215073/599074578*439204^(2/3) 2865699999292186 a001 7778742049/1568397607*439204^(2/3) 2865699999292186 a001 20365011074/4106118243*439204^(2/3) 2865699999292186 a001 53316291173/10749957122*439204^(2/3) 2865699999292186 a001 139583862445/28143753123*439204^(2/3) 2865699999292186 a001 365435296162/73681302247*439204^(2/3) 2865699999292186 a001 956722026041/192900153618*439204^(2/3) 2865699999292186 a001 2504730781961/505019158607*439204^(2/3) 2865699999292186 a001 10610209857723/2139295485799*439204^(2/3) 2865699999292186 a001 4052739537881/817138163596*439204^(2/3) 2865699999292186 a001 140728068720/28374454999*439204^(2/3) 2865699999292186 a001 591286729879/119218851371*439204^(2/3) 2865699999292186 a001 225851433717/45537549124*439204^(2/3) 2865699999292186 a001 86267571272/17393796001*439204^(2/3) 2865699999292186 a001 32951280099/6643838879*439204^(2/3) 2865699999292186 a001 1144206275/230701876*439204^(2/3) 2865699999292186 a001 4807526976/969323029*439204^(2/3) 2865699999292186 a001 1836311903/370248451*439204^(2/3) 2865699999292186 a001 701408733/141422324*439204^(2/3) 2865699999292187 a001 267914296/54018521*439204^(2/3) 2865699999292193 a001 9303105/1875749*439204^(2/3) 2865699999292232 a001 39088169/7881196*439204^(2/3) 2865699999292499 a001 14930352/3010349*439204^(2/3) 2865699999293008 a001 39088169/1860498*439204^(5/9) 2865699999293019 a001 1346269/1149851*439204^(7/9) 2865699999293114 a001 1134903170/710647*439204^(2/9) 2865699999293716 a001 102334155/4870847*439204^(5/9) 2865699999293819 a001 267914296/12752043*439204^(5/9) 2865699999293834 a001 701408733/33385282*439204^(5/9) 2865699999293836 a001 1836311903/87403803*439204^(5/9) 2865699999293836 a001 102287808/4868641*439204^(5/9) 2865699999293836 a001 12586269025/599074578*439204^(5/9) 2865699999293836 a001 32951280099/1568397607*439204^(5/9) 2865699999293836 a001 86267571272/4106118243*439204^(5/9) 2865699999293836 a001 225851433717/10749957122*439204^(5/9) 2865699999293836 a001 591286729879/28143753123*439204^(5/9) 2865699999293836 a001 1548008755920/73681302247*439204^(5/9) 2865699999293836 a001 4052739537881/192900153618*439204^(5/9) 2865699999293836 a001 225749145909/10745088481*439204^(5/9) 2865699999293836 a001 6557470319842/312119004989*439204^(5/9) 2865699999293836 a001 2504730781961/119218851371*439204^(5/9) 2865699999293836 a001 956722026041/45537549124*439204^(5/9) 2865699999293836 a001 365435296162/17393796001*439204^(5/9) 2865699999293836 a001 139583862445/6643838879*439204^(5/9) 2865699999293836 a001 53316291173/2537720636*439204^(5/9) 2865699999293836 a001 20365011074/969323029*439204^(5/9) 2865699999293836 a001 7778742049/370248451*439204^(5/9) 2865699999293837 a001 2971215073/141422324*439204^(5/9) 2865699999293837 a001 1134903170/54018521*439204^(5/9) 2865699999293843 a001 433494437/20633239*439204^(5/9) 2865699999293883 a001 165580141/7881196*439204^(5/9) 2865699999294153 a001 63245986/3010349*439204^(5/9) 2865699999294336 a001 5702887/1149851*439204^(2/3) 2865699999294659 a001 165580141/1860498*439204^(4/9) 2865699999294765 a001 686789568/101521*439204^(1/9) 2865699999295282 a001 514229/271443*271443^(10/13) 2865699999295366 a001 433494437/4870847*439204^(4/9) 2865699999295470 a001 1134903170/12752043*439204^(4/9) 2865699999295485 a001 2971215073/33385282*439204^(4/9) 2865699999295487 a001 7778742049/87403803*439204^(4/9) 2865699999295487 a001 20365011074/228826127*439204^(4/9) 2865699999295487 a001 53316291173/599074578*439204^(4/9) 2865699999295487 a001 139583862445/1568397607*439204^(4/9) 2865699999295487 a001 365435296162/4106118243*439204^(4/9) 2865699999295487 a001 956722026041/10749957122*439204^(4/9) 2865699999295487 a001 2504730781961/28143753123*439204^(4/9) 2865699999295487 a001 6557470319842/73681302247*439204^(4/9) 2865699999295487 a001 10610209857723/119218851371*439204^(4/9) 2865699999295487 a001 4052739537881/45537549124*439204^(4/9) 2865699999295487 a001 1548008755920/17393796001*439204^(4/9) 2865699999295487 a001 591286729879/6643838879*439204^(4/9) 2865699999295487 a001 225851433717/2537720636*439204^(4/9) 2865699999295487 a001 86267571272/969323029*439204^(4/9) 2865699999295487 a001 32951280099/370248451*439204^(4/9) 2865699999295487 a001 12586269025/141422324*439204^(4/9) 2865699999295488 a001 4807526976/54018521*439204^(4/9) 2865699999295494 a001 1836311903/20633239*439204^(4/9) 2865699999295533 a001 3524667/39604*439204^(4/9) 2865699999295558 a001 832040/710647*7881196^(7/11) 2865699999295581 a001 4068176376/141961 2865699999295583 a001 105937/620166*20633239^(5/7) 2865699999295583 a001 832040/710647*20633239^(3/5) 2865699999295587 a001 832040/710647*141422324^(7/13) 2865699999295587 a001 105937/620166*2537720636^(5/9) 2865699999295587 a001 832040/710647*2537720636^(7/15) 2865699999295587 a001 832040/710647*17393796001^(3/7) 2865699999295587 a001 832040/710647*45537549124^(7/17) 2865699999295587 a001 105937/620166*312119004989^(5/11) 2865699999295587 a001 105937/620166*(1/2+1/2*5^(1/2))^25 2865699999295587 a001 105937/620166*3461452808002^(5/12) 2865699999295587 a001 832040/710647*14662949395604^(1/3) 2865699999295587 a001 832040/710647*(1/2+1/2*5^(1/2))^21 2865699999295587 a001 832040/710647*192900153618^(7/18) 2865699999295587 a001 105937/620166*28143753123^(1/2) 2865699999295587 a001 832040/710647*10749957122^(7/16) 2865699999295587 a001 832040/710647*599074578^(1/2) 2865699999295587 a001 105937/620166*228826127^(5/8) 2865699999295589 a001 832040/710647*33385282^(7/12) 2865699999295803 a001 267914296/3010349*439204^(4/9) 2865699999296005 a001 24157817/1149851*439204^(5/9) 2865699999296167 a001 832040/710647*1860498^(7/10) 2865699999296257 a001 317811/4870847*7881196^(9/11) 2865699999296277 a001 105937/620166*1860498^(5/6) 2865699999296294 a001 692290561599/24157817 2865699999296294 a001 317811/4870847*141422324^(9/13) 2865699999296295 a001 317811/4870847*2537720636^(3/5) 2865699999296295 a001 317811/4870847*45537549124^(9/17) 2865699999296295 a001 317811/4870847*817138163596^(9/19) 2865699999296295 a001 317811/4870847*14662949395604^(3/7) 2865699999296295 a001 317811/4870847*(1/2+1/2*5^(1/2))^27 2865699999296295 a001 311187/101521*817138163596^(1/3) 2865699999296295 a001 311187/101521*(1/2+1/2*5^(1/2))^19 2865699999296295 a001 317811/4870847*192900153618^(1/2) 2865699999296295 a001 317811/4870847*10749957122^(9/16) 2865699999296295 a001 317811/4870847*599074578^(9/14) 2865699999296295 a001 311187/101521*87403803^(1/2) 2865699999296296 a001 317811/4870847*33385282^(3/4) 2865699999296310 a001 233802911/620166*439204^(1/3) 2865699999296380 a001 10959/711491*7881196^(10/11) 2865699999296392 a001 14930352/710647*7881196^(5/11) 2865699999296398 a001 1812440220357/63245986 2865699999296398 a001 5702887/710647*45537549124^(1/3) 2865699999296398 a001 105937/4250681*(1/2+1/2*5^(1/2))^29 2865699999296398 a001 105937/4250681*1322157322203^(1/2) 2865699999296398 a001 5702887/710647*(1/2+1/2*5^(1/2))^17 2865699999296399 a001 63245986/710647*7881196^(4/11) 2865699999296400 a001 14619165/101521*7881196^(1/3) 2865699999296403 a001 267914296/710647*7881196^(3/11) 2865699999296406 a001 5702887/710647*12752043^(1/2) 2865699999296407 a001 1134903170/710647*7881196^(2/11) 2865699999296410 a001 14930352/710647*20633239^(3/7) 2865699999296411 a001 686789568/101521*7881196^(1/11) 2865699999296413 a001 14930352/710647*141422324^(5/13) 2865699999296413 a001 4745030099472/165580141 2865699999296413 a001 14930352/710647*2537720636^(1/3) 2865699999296413 a001 14930352/710647*45537549124^(5/17) 2865699999296413 a001 317811/33385282*(1/2+1/2*5^(1/2))^31 2865699999296413 a001 14930352/710647*312119004989^(3/11) 2865699999296413 a001 14930352/710647*14662949395604^(5/21) 2865699999296413 a001 14930352/710647*(1/2+1/2*5^(1/2))^15 2865699999296413 a001 14930352/710647*192900153618^(5/18) 2865699999296413 a001 14930352/710647*28143753123^(3/10) 2865699999296413 a001 14930352/710647*10749957122^(5/16) 2865699999296413 a001 14930352/710647*599074578^(5/14) 2865699999296413 a001 14930352/710647*228826127^(3/8) 2865699999296413 a001 165580141/710647*20633239^(2/7) 2865699999296414 a001 24157817/710647*20633239^(2/5) 2865699999296414 a001 14930352/710647*33385282^(5/12) 2865699999296414 a001 701408733/710647*20633239^(1/5) 2865699999296414 a001 1836311903/710647*20633239^(1/7) 2865699999296415 a001 105937/29134601*141422324^(11/13) 2865699999296415 a001 39088169/710647*141422324^(1/3) 2865699999296415 a001 12422650078059/433494437 2865699999296415 a001 105937/29134601*2537720636^(11/15) 2865699999296415 a001 105937/29134601*45537549124^(11/17) 2865699999296415 a001 105937/29134601*312119004989^(3/5) 2865699999296415 a001 105937/29134601*14662949395604^(11/21) 2865699999296415 a001 39088169/710647*(1/2+1/2*5^(1/2))^13 2865699999296415 a001 105937/29134601*192900153618^(11/18) 2865699999296415 a001 39088169/710647*73681302247^(1/4) 2865699999296415 a001 105937/29134601*10749957122^(11/16) 2865699999296415 a001 105937/29134601*1568397607^(3/4) 2865699999296415 a001 105937/29134601*599074578^(11/14) 2865699999296415 a001 317811/370248451*141422324^(12/13) 2865699999296415 a001 6504584026941/226980634 2865699999296415 a001 317811/228826127*2537720636^(7/9) 2865699999296415 a001 317811/228826127*17393796001^(5/7) 2865699999296415 a001 317811/228826127*312119004989^(7/11) 2865699999296415 a001 317811/228826127*14662949395604^(5/9) 2865699999296415 a001 14619165/101521*312119004989^(1/5) 2865699999296415 a001 14619165/101521*(1/2+1/2*5^(1/2))^11 2865699999296415 a001 317811/228826127*28143753123^(7/10) 2865699999296415 a001 14619165/101521*1568397607^(1/4) 2865699999296415 a001 317811/228826127*599074578^(5/6) 2865699999296415 a001 267914296/710647*141422324^(3/13) 2865699999296415 a001 1134903170/710647*141422324^(2/13) 2865699999296415 a001 686789568/101521*141422324^(1/13) 2865699999296415 a001 267914296/710647*2537720636^(1/5) 2865699999296415 a001 85146110326056/2971215073 2865699999296415 a001 267914296/710647*45537549124^(3/17) 2865699999296415 a001 267914296/710647*817138163596^(3/19) 2865699999296415 a001 267914296/710647*14662949395604^(1/7) 2865699999296415 a001 267914296/710647*(1/2+1/2*5^(1/2))^9 2865699999296415 a001 267914296/710647*192900153618^(1/6) 2865699999296415 a001 267914296/710647*10749957122^(3/16) 2865699999296415 a001 317811/228826127*228826127^(7/8) 2865699999296415 a001 267914296/710647*599074578^(3/14) 2865699999296415 a001 317811/1568397607*2537720636^(13/15) 2865699999296415 a001 17147339295651/598364773 2865699999296415 a001 701408733/710647*17393796001^(1/7) 2865699999296415 a001 317811/1568397607*45537549124^(13/17) 2865699999296415 a001 317811/1568397607*14662949395604^(13/21) 2865699999296415 a001 701408733/710647*14662949395604^(1/9) 2865699999296415 a001 701408733/710647*(1/2+1/2*5^(1/2))^7 2865699999296415 a001 317811/1568397607*192900153618^(13/18) 2865699999296415 a001 317811/1568397607*73681302247^(3/4) 2865699999296415 a001 317811/1568397607*10749957122^(13/16) 2865699999296415 a001 317811/6643838879*2537720636^(14/15) 2865699999296415 a001 1836311903/710647*2537720636^(1/9) 2865699999296415 a001 583600122204333/20365011074 2865699999296415 a001 1836311903/710647*312119004989^(1/11) 2865699999296415 a001 1836311903/710647*(1/2+1/2*5^(1/2))^5 2865699999296415 a001 1836311903/710647*28143753123^(1/10) 2865699999296415 a001 686789568/101521*2537720636^(1/15) 2865699999296415 a001 1527884955769536/53316291173 2865699999296415 a001 686789568/101521*45537549124^(1/17) 2865699999296415 a001 686789568/101521*14662949395604^(1/21) 2865699999296415 a001 686789568/101521*(1/2+1/2*5^(1/2))^3 2865699999296415 a001 686789568/101521*192900153618^(1/18) 2865699999296415 a001 686789568/101521*10749957122^(1/16) 2865699999296415 a001 105937/9381251041*45537549124^(15/17) 2865699999296415 a001 800010949020855/27916772489 2865699999296415 a001 105937/9381251041*312119004989^(9/11) 2865699999296415 a001 105937/9381251041*14662949395604^(5/7) 2865699999296415 a001 105937/9381251041*192900153618^(5/6) 2865699999296415 a001 317811/119218851371*45537549124^(16/17) 2865699999296415 a001 10472279279543289/365435296162 2865699999296415 a001 105937/9381251041*28143753123^(9/10) 2865699999296415 a001 27416783093525592/956722026041 2865699999296415 a001 105937/64300051206*14662949395604^(7/9) 2865699999296415 a001 105937/64300051206*505019158607^(7/8) 2865699999296415 a001 317811/505019158607*14662949395604^(17/21) 2865699999296415 a001 101352261272705417/3536736619241 2865699999296415 a001 116139356908541382/4052739537881 2865699999296415 a001 317811/817138163596*505019158607^(13/14) 2865699999296415 a001 317811/312119004989*3461452808002^(5/6) 2865699999296415 a001 2957419127167193/103200583728 2865699999296415 a001 317811/505019158607*192900153618^(17/18) 2865699999296415 a001 16944503813982303/591286729879 2865699999296415 a001 317811/119218851371*192900153618^(8/9) 2865699999296415 a001 317811/119218851371*73681302247^(12/13) 2865699999296415 a001 20365011074/710647 2865699999296415 a001 10959/599786069*312119004989^(4/5) 2865699999296415 a001 10959/599786069*23725150497407^(11/16) 2865699999296415 a001 7778742049/710647*(1/2+1/2*5^(1/2))^2 2865699999296415 a001 2472169789334739/86267571272 2865699999296415 a001 10959/599786069*73681302247^(11/13) 2865699999296415 a001 7778742049/710647*10749957122^(1/24) 2865699999296415 a001 7778742049/710647*4106118243^(1/23) 2865699999296415 a001 105937/9381251041*10749957122^(15/16) 2865699999296415 a001 317811/45537549124*10749957122^(23/24) 2865699999296415 a001 10959/599786069*10749957122^(11/12) 2865699999296415 a001 317811/2537720636*2537720636^(8/9) 2865699999296415 a001 317811/6643838879*17393796001^(6/7) 2865699999296415 a001 7778742049/710647*1568397607^(1/22) 2865699999296415 a001 317811/6643838879*45537549124^(14/17) 2865699999296415 a001 317811/6643838879*817138163596^(14/19) 2865699999296415 a001 317811/6643838879*505019158607^(3/4) 2865699999296415 a001 2971215073/710647*(1/2+1/2*5^(1/2))^4 2865699999296415 a001 2971215073/710647*23725150497407^(1/16) 2865699999296415 a001 2971215073/710647*73681302247^(1/13) 2865699999296415 a001 317811/6643838879*192900153618^(7/9) 2865699999296415 a001 314761611188401/10983760033 2865699999296415 a001 2971215073/710647*10749957122^(1/12) 2865699999296415 a001 2971215073/710647*4106118243^(2/23) 2865699999296415 a001 317811/6643838879*10749957122^(7/8) 2865699999296415 a001 701408733/710647*599074578^(1/6) 2865699999296415 a001 2971215073/710647*1568397607^(1/11) 2865699999296415 a001 10959/599786069*4106118243^(22/23) 2865699999296415 a001 317811/6643838879*4106118243^(21/23) 2865699999296415 a001 1134903170/710647*2537720636^(2/15) 2865699999296415 a001 7778742049/710647*599074578^(1/21) 2865699999296415 a001 1134903170/710647*45537549124^(2/17) 2865699999296415 a001 317811/2537720636*312119004989^(8/11) 2865699999296415 a001 317811/2537720636*23725150497407^(5/8) 2865699999296415 a001 1134903170/710647*14662949395604^(2/21) 2865699999296415 a001 1134903170/710647*(1/2+1/2*5^(1/2))^6 2865699999296415 a001 317811/2537720636*73681302247^(10/13) 2865699999296415 a001 317811/2537720636*28143753123^(4/5) 2865699999296415 a001 1134903170/710647*10749957122^(1/8) 2865699999296415 a001 72136942272174/2517253805 2865699999296415 a001 317811/2537720636*10749957122^(5/6) 2865699999296415 a001 1134903170/710647*4106118243^(3/23) 2865699999296415 a001 686789568/101521*599074578^(1/14) 2865699999296415 a001 317811/2537720636*4106118243^(20/23) 2865699999296415 a001 1134903170/710647*1568397607^(3/22) 2865699999296415 a001 2971215073/710647*599074578^(2/21) 2865699999296415 a001 317811/6643838879*1568397607^(21/22) 2865699999296415 a001 317811/2537720636*1568397607^(10/11) 2865699999296415 a001 1134903170/710647*599074578^(1/7) 2865699999296415 a001 7778742049/710647*228826127^(1/20) 2865699999296415 a001 317811/969323029*817138163596^(2/3) 2865699999296415 a001 433494437/710647*(1/2+1/2*5^(1/2))^8 2865699999296415 a001 433494437/710647*23725150497407^(1/8) 2865699999296415 a001 433494437/710647*73681302247^(2/13) 2865699999296415 a001 433494437/710647*10749957122^(1/6) 2865699999296415 a001 317811/969323029*10749957122^(19/24) 2865699999296415 a001 45923100172469/1602508992 2865699999296415 a001 433494437/710647*4106118243^(4/23) 2865699999296415 a001 317811/969323029*4106118243^(19/23) 2865699999296415 a001 433494437/710647*1568397607^(2/11) 2865699999296415 a001 317811/969323029*1568397607^(19/22) 2865699999296415 a001 433494437/710647*599074578^(4/21) 2865699999296415 a001 2971215073/710647*228826127^(1/10) 2865699999296415 a001 317811/1568397607*599074578^(13/14) 2865699999296415 a001 1836311903/710647*228826127^(1/8) 2865699999296415 a001 317811/2537720636*599074578^(20/21) 2865699999296415 a001 1134903170/710647*228826127^(3/20) 2865699999296415 a001 317811/969323029*599074578^(19/21) 2865699999296415 a001 433494437/710647*228826127^(1/5) 2865699999296415 a001 7778742049/710647*87403803^(1/19) 2865699999296415 a001 317811/370248451*2537720636^(4/5) 2865699999296415 a001 165580141/710647*2537720636^(2/9) 2865699999296415 a001 317811/370248451*45537549124^(12/17) 2865699999296415 a001 317811/370248451*14662949395604^(4/7) 2865699999296415 a001 165580141/710647*312119004989^(2/11) 2865699999296415 a001 317811/370248451*505019158607^(9/14) 2865699999296415 a001 165580141/710647*(1/2+1/2*5^(1/2))^10 2865699999296415 a001 317811/370248451*192900153618^(2/3) 2865699999296415 a001 317811/370248451*73681302247^(9/13) 2865699999296415 a001 165580141/710647*28143753123^(1/5) 2865699999296415 a001 165580141/710647*10749957122^(5/24) 2865699999296415 a001 317811/370248451*10749957122^(3/4) 2865699999296415 a001 165580141/710647*4106118243^(5/23) 2865699999296415 a001 317811/370248451*4106118243^(18/23) 2865699999296415 a001 52623190191351/1836311903 2865699999296415 a001 165580141/710647*1568397607^(5/22) 2865699999296415 a001 317811/370248451*1568397607^(9/11) 2865699999296415 a001 165580141/710647*599074578^(5/21) 2865699999296415 a001 317811/370248451*599074578^(6/7) 2865699999296415 a001 165580141/710647*228826127^(1/4) 2865699999296415 a001 2971215073/710647*87403803^(2/19) 2865699999296415 a001 317811/969323029*228826127^(19/20) 2865699999296415 a001 1134903170/710647*87403803^(3/19) 2865699999296415 a001 317811/370248451*228826127^(9/10) 2865699999296415 a001 433494437/710647*87403803^(4/19) 2865699999296415 a001 63245986/710647*141422324^(4/13) 2865699999296415 a001 165580141/710647*87403803^(5/19) 2865699999296415 a001 7778742049/710647*33385282^(1/18) 2865699999296415 a001 63245986/710647*2537720636^(4/15) 2865699999296415 a001 317811/141422324*45537549124^(2/3) 2865699999296415 a001 63245986/710647*45537549124^(4/17) 2865699999296415 a001 63245986/710647*817138163596^(4/19) 2865699999296415 a001 63245986/710647*14662949395604^(4/21) 2865699999296415 a001 63245986/710647*(1/2+1/2*5^(1/2))^12 2865699999296415 a001 63245986/710647*192900153618^(2/9) 2865699999296415 a001 63245986/710647*73681302247^(3/13) 2865699999296415 a001 63245986/710647*10749957122^(1/4) 2865699999296415 a001 317811/141422324*10749957122^(17/24) 2865699999296415 a001 63245986/710647*4106118243^(6/23) 2865699999296415 a001 317811/141422324*4106118243^(17/23) 2865699999296415 a001 63245986/710647*1568397607^(3/11) 2865699999296415 a001 317811/141422324*1568397607^(17/22) 2865699999296415 a001 6700090018882/233802911 2865699999296415 a001 63245986/710647*599074578^(2/7) 2865699999296415 a001 317811/141422324*599074578^(17/21) 2865699999296415 a001 63245986/710647*228826127^(3/10) 2865699999296415 a001 317811/141422324*228826127^(17/20) 2865699999296416 a001 686789568/101521*33385282^(1/12) 2865699999296416 a001 63245986/710647*87403803^(6/19) 2865699999296416 a001 2971215073/710647*33385282^(1/9) 2865699999296416 a001 317811/370248451*87403803^(18/19) 2865699999296416 a001 1134903170/710647*33385282^(1/6) 2865699999296416 a001 317811/141422324*87403803^(17/19) 2865699999296416 a001 433494437/710647*33385282^(2/9) 2865699999296416 a001 267914296/710647*33385282^(1/4) 2865699999296416 a001 165580141/710647*33385282^(5/18) 2865699999296416 a001 10959/711491*20633239^(6/7) 2865699999296416 a001 24157817/710647*17393796001^(2/7) 2865699999296416 a001 317811/54018521*23725150497407^(1/2) 2865699999296416 a001 24157817/710647*14662949395604^(2/9) 2865699999296416 a001 24157817/710647*(1/2+1/2*5^(1/2))^14 2865699999296416 a001 24157817/710647*505019158607^(1/4) 2865699999296416 a001 317811/54018521*73681302247^(8/13) 2865699999296416 a001 24157817/710647*10749957122^(7/24) 2865699999296416 a001 317811/54018521*10749957122^(2/3) 2865699999296416 a001 24157817/710647*4106118243^(7/23) 2865699999296416 a001 317811/54018521*4106118243^(16/23) 2865699999296416 a001 24157817/710647*1568397607^(7/22) 2865699999296416 a001 317811/54018521*1568397607^(8/11) 2865699999296416 a001 24157817/710647*599074578^(1/3) 2865699999296416 a001 317811/54018521*599074578^(16/21) 2865699999296416 a001 20365039731/710648 2865699999296416 a001 63245986/710647*33385282^(1/3) 2865699999296416 a001 24157817/710647*228826127^(7/20) 2865699999296416 a001 317811/54018521*228826127^(4/5) 2865699999296416 a001 7778742049/710647*12752043^(1/17) 2865699999296416 a001 24157817/710647*87403803^(7/19) 2865699999296417 a001 317811/54018521*87403803^(16/19) 2865699999296417 a001 105937/29134601*33385282^(11/12) 2865699999296417 a001 24157817/710647*33385282^(7/18) 2865699999296417 a001 2971215073/710647*12752043^(2/17) 2865699999296418 a001 317811/141422324*33385282^(17/18) 2865699999296418 a001 1134903170/710647*12752043^(3/17) 2865699999296419 a001 317811/54018521*33385282^(8/9) 2865699999296419 a001 433494437/710647*12752043^(4/17) 2865699999296421 a001 165580141/710647*12752043^(5/17) 2865699999296422 a001 63245986/710647*12752043^(6/17) 2865699999296422 a001 10959/711491*141422324^(10/13) 2865699999296422 a001 10959/711491*2537720636^(2/3) 2865699999296422 a001 10959/711491*45537549124^(10/17) 2865699999296422 a001 10959/711491*312119004989^(6/11) 2865699999296422 a001 10959/711491*14662949395604^(10/21) 2865699999296422 a001 10959/711491*(1/2+1/2*5^(1/2))^30 2865699999296422 a001 9227465/710647*(1/2+1/2*5^(1/2))^16 2865699999296422 a001 9227465/710647*23725150497407^(1/4) 2865699999296422 a001 10959/711491*192900153618^(5/9) 2865699999296422 a001 9227465/710647*73681302247^(4/13) 2865699999296422 a001 10959/711491*28143753123^(3/5) 2865699999296422 a001 9227465/710647*10749957122^(1/3) 2865699999296422 a001 10959/711491*10749957122^(5/8) 2865699999296422 a001 9227465/710647*4106118243^(8/23) 2865699999296422 a001 10959/711491*4106118243^(15/23) 2865699999296422 a001 9227465/710647*1568397607^(4/11) 2865699999296422 a001 10959/711491*1568397607^(15/22) 2865699999296422 a001 9227465/710647*599074578^(8/21) 2865699999296422 a001 10959/711491*599074578^(5/7) 2865699999296422 a001 9227465/710647*228826127^(2/5) 2865699999296422 a001 10959/711491*228826127^(3/4) 2865699999296422 a001 195505991941/6822277 2865699999296422 a001 9227465/710647*87403803^(8/19) 2865699999296422 a001 10959/711491*87403803^(15/19) 2865699999296423 a001 7778742049/710647*4870847^(1/16) 2865699999296423 a001 9227465/710647*33385282^(4/9) 2865699999296424 a001 24157817/710647*12752043^(7/17) 2865699999296424 a001 10959/711491*33385282^(5/6) 2865699999296430 a001 9227465/710647*12752043^(8/17) 2865699999296430 a001 2971215073/710647*4870847^(1/8) 2865699999296433 a001 317811/54018521*12752043^(16/17) 2865699999296436 a001 3524578/710647*7881196^(6/11) 2865699999296438 a001 10959/711491*12752043^(15/17) 2865699999296438 a001 1134903170/710647*4870847^(3/16) 2865699999296446 a001 433494437/710647*4870847^(1/4) 2865699999296453 a001 165580141/710647*4870847^(5/16) 2865699999296456 a001 317811/7881196*20633239^(4/5) 2865699999296461 a001 63245986/710647*4870847^(3/8) 2865699999296461 a001 3524578/710647*141422324^(6/13) 2865699999296461 a001 3524578/710647*2537720636^(2/5) 2865699999296461 a001 317811/7881196*17393796001^(4/7) 2865699999296461 a001 3524578/710647*45537549124^(6/17) 2865699999296461 a001 317811/7881196*14662949395604^(4/9) 2865699999296461 a001 317811/7881196*(1/2+1/2*5^(1/2))^28 2865699999296461 a001 317811/7881196*505019158607^(1/2) 2865699999296461 a001 3524578/710647*(1/2+1/2*5^(1/2))^18 2865699999296461 a001 3524578/710647*192900153618^(1/3) 2865699999296461 a001 317811/7881196*73681302247^(7/13) 2865699999296461 a001 3524578/710647*10749957122^(3/8) 2865699999296461 a001 317811/7881196*10749957122^(7/12) 2865699999296461 a001 3524578/710647*4106118243^(9/23) 2865699999296461 a001 317811/7881196*4106118243^(14/23) 2865699999296461 a001 3524578/710647*1568397607^(9/22) 2865699999296461 a001 317811/7881196*1568397607^(7/11) 2865699999296461 a001 3524578/710647*599074578^(3/7) 2865699999296461 a001 317811/7881196*599074578^(2/3) 2865699999296461 a001 3524578/710647*228826127^(9/20) 2865699999296461 a001 317811/7881196*228826127^(7/10) 2865699999296462 a001 3524578/710647*87403803^(9/19) 2865699999296462 a001 317811/7881196*87403803^(14/19) 2865699999296462 a001 1120149658758/39088169 2865699999296463 a001 3524578/710647*33385282^(1/2) 2865699999296463 a001 317811/7881196*33385282^(7/9) 2865699999296469 a001 24157817/710647*4870847^(7/16) 2865699999296470 a001 7778742049/710647*1860498^(1/15) 2865699999296471 a001 3524578/710647*12752043^(9/17) 2865699999296476 a001 317811/7881196*12752043^(14/17) 2865699999296482 a001 9227465/710647*4870847^(1/2) 2865699999296498 a001 686789568/101521*1860498^(1/10) 2865699999296519 a001 1836311903/271443*103682^(1/8) 2865699999296526 a001 2971215073/710647*1860498^(2/15) 2865699999296529 a001 3524578/710647*4870847^(9/16) 2865699999296535 a001 10959/711491*4870847^(15/16) 2865699999296553 a001 1836311903/710647*1860498^(1/6) 2865699999296567 a001 317811/7881196*4870847^(7/8) 2865699999296581 a001 567451585/219602*167761^(1/5) 2865699999296581 a001 1134903170/710647*1860498^(1/5) 2865699999296636 a001 433494437/710647*1860498^(4/15) 2865699999296664 a001 267914296/710647*1860498^(3/10) 2865699999296691 a001 165580141/710647*1860498^(1/3) 2865699999296728 a001 1346269/710647*20633239^(4/7) 2865699999296731 a001 317811/3010349*141422324^(2/3) 2865699999296732 a001 1346269/710647*2537720636^(4/9) 2865699999296732 a001 317811/3010349*(1/2+1/2*5^(1/2))^26 2865699999296732 a001 1346269/710647*(1/2+1/2*5^(1/2))^20 2865699999296732 a001 1346269/710647*23725150497407^(5/16) 2865699999296732 a001 1346269/710647*505019158607^(5/14) 2865699999296732 a001 1346269/710647*73681302247^(5/13) 2865699999296732 a001 317811/3010349*73681302247^(1/2) 2865699999296732 a001 1346269/710647*28143753123^(2/5) 2865699999296732 a001 1346269/710647*10749957122^(5/12) 2865699999296732 a001 317811/3010349*10749957122^(13/24) 2865699999296732 a001 1346269/710647*4106118243^(10/23) 2865699999296732 a001 317811/3010349*4106118243^(13/23) 2865699999296732 a001 1346269/710647*1568397607^(5/11) 2865699999296732 a001 317811/3010349*1568397607^(13/22) 2865699999296732 a001 1346269/710647*599074578^(10/21) 2865699999296732 a001 317811/3010349*599074578^(13/21) 2865699999296732 a001 1346269/710647*228826127^(1/2) 2865699999296732 a001 317811/3010349*228826127^(13/20) 2865699999296732 a001 1346269/710647*87403803^(10/19) 2865699999296732 a001 317811/3010349*87403803^(13/19) 2865699999296733 a001 1346269/710647*33385282^(5/9) 2865699999296733 a001 317811/3010349*33385282^(13/18) 2865699999296734 a001 142619699053/4976784 2865699999296742 a001 1346269/710647*12752043^(10/17) 2865699999296745 a001 317811/3010349*12752043^(13/17) 2865699999296747 a001 63245986/710647*1860498^(2/5) 2865699999296803 a001 24157817/710647*1860498^(7/15) 2865699999296807 a001 1346269/710647*4870847^(5/8) 2865699999296821 a001 7778742049/710647*710647^(1/14) 2865699999296827 a001 14930352/710647*1860498^(1/2) 2865699999296830 a001 317811/3010349*4870847^(13/16) 2865699999296864 a001 9227465/710647*1860498^(8/15) 2865699999296958 a001 3524578/710647*1860498^(3/5) 2865699999297017 a001 1836311903/4870847*439204^(1/3) 2865699999297040 a001 317811/4870847*1860498^(9/10) 2865699999297120 a001 1602508992/4250681*439204^(1/3) 2865699999297135 a001 12586269025/33385282*439204^(1/3) 2865699999297137 a001 10983760033/29134601*439204^(1/3) 2865699999297138 a001 86267571272/228826127*439204^(1/3) 2865699999297138 a001 267913919/710646*439204^(1/3) 2865699999297138 a001 591286729879/1568397607*439204^(1/3) 2865699999297138 a001 516002918640/1368706081*439204^(1/3) 2865699999297138 a001 4052739537881/10749957122*439204^(1/3) 2865699999297138 a001 3536736619241/9381251041*439204^(1/3) 2865699999297138 a001 6557470319842/17393796001*439204^(1/3) 2865699999297138 a001 2504730781961/6643838879*439204^(1/3) 2865699999297138 a001 956722026041/2537720636*439204^(1/3) 2865699999297138 a001 365435296162/969323029*439204^(1/3) 2865699999297138 a001 139583862445/370248451*439204^(1/3) 2865699999297138 a001 53316291173/141422324*439204^(1/3) 2865699999297139 a001 20365011074/54018521*439204^(1/3) 2865699999297145 a001 7778742049/20633239*439204^(1/3) 2865699999297184 a001 2971215073/7881196*439204^(1/3) 2865699999297226 a001 2971215073/710647*710647^(1/7) 2865699999297234 a001 317811/7881196*1860498^(14/15) 2865699999297283 a001 1346269/710647*1860498^(2/3) 2865699999297449 a001 317811/3010349*1860498^(13/15) 2865699999297454 a001 1134903170/3010349*439204^(1/3) 2865699999297631 a001 1134903170/710647*710647^(3/14) 2865699999297655 a001 102334155/1149851*439204^(4/9) 2865699999297834 a001 701408733/710647*710647^(1/4) 2865699999297961 a001 2971215073/1860498*439204^(2/9) 2865699999298037 a001 433494437/710647*710647^(2/7) 2865699999298066 a001 196418/710647*439204^(8/9) 2865699999298442 a001 165580141/710647*710647^(5/14) 2865699999298549 a001 317811/1149851*7881196^(8/11) 2865699999298552 a001 514229/710647*7881196^(2/3) 2865699999298583 a001 317811/1149851*141422324^(8/13) 2865699999298583 a001 317811/1149851*2537720636^(8/15) 2865699999298583 a001 317811/1149851*45537549124^(8/17) 2865699999298583 a001 514229/710647*312119004989^(2/5) 2865699999298583 a001 317811/1149851*14662949395604^(8/21) 2865699999298583 a001 317811/1149851*(1/2+1/2*5^(1/2))^24 2865699999298583 a001 514229/710647*(1/2+1/2*5^(1/2))^22 2865699999298583 a001 317811/1149851*192900153618^(4/9) 2865699999298583 a001 317811/1149851*73681302247^(6/13) 2865699999298583 a001 514229/710647*10749957122^(11/24) 2865699999298583 a001 317811/1149851*10749957122^(1/2) 2865699999298583 a001 514229/710647*4106118243^(11/23) 2865699999298583 a001 317811/1149851*4106118243^(12/23) 2865699999298583 a001 514229/710647*1568397607^(1/2) 2865699999298583 a001 317811/1149851*1568397607^(6/11) 2865699999298583 a001 514229/710647*599074578^(11/21) 2865699999298583 a001 317811/1149851*599074578^(4/7) 2865699999298583 a001 514229/710647*228826127^(11/20) 2865699999298583 a001 317811/1149851*228826127^(3/5) 2865699999298583 a001 514229/710647*87403803^(11/19) 2865699999298583 a001 317811/1149851*87403803^(12/19) 2865699999298584 a001 514229/710647*33385282^(11/18) 2865699999298584 a001 317811/1149851*33385282^(2/3) 2865699999298594 a001 514229/710647*12752043^(11/17) 2865699999298595 a001 317811/1149851*12752043^(12/17) 2865699999298600 a001 163427632719/5702887 2865699999298666 a001 514229/710647*4870847^(11/16) 2865699999298668 a001 7778742049/4870847*439204^(2/9) 2865699999298673 a001 317811/1149851*4870847^(3/4) 2865699999298771 a001 20365011074/12752043*439204^(2/9) 2865699999298786 a001 53316291173/33385282*439204^(2/9) 2865699999298788 a001 139583862445/87403803*439204^(2/9) 2865699999298788 a001 365435296162/228826127*439204^(2/9) 2865699999298788 a001 956722026041/599074578*439204^(2/9) 2865699999298788 a001 2504730781961/1568397607*439204^(2/9) 2865699999298788 a001 6557470319842/4106118243*439204^(2/9) 2865699999298788 a001 10610209857723/6643838879*439204^(2/9) 2865699999298788 a001 4052739537881/2537720636*439204^(2/9) 2865699999298788 a001 1548008755920/969323029*439204^(2/9) 2865699999298788 a001 591286729879/370248451*439204^(2/9) 2865699999298789 a001 225851433717/141422324*439204^(2/9) 2865699999298789 a001 86267571272/54018521*439204^(2/9) 2865699999298795 a001 32951280099/20633239*439204^(2/9) 2865699999298835 a001 12586269025/7881196*439204^(2/9) 2865699999298847 a001 63245986/710647*710647^(3/7) 2865699999299105 a001 4807526976/3010349*439204^(2/9) 2865699999299190 a001 514229/710647*1860498^(11/15) 2865699999299245 a001 317811/1149851*1860498^(4/5) 2865699999299254 a001 24157817/710647*710647^(1/2) 2865699999299305 a001 433494437/1149851*439204^(1/3) 2865699999299407 a001 7778742049/710647*271443^(1/13) 2865699999299611 a001 12586269025/1860498*439204^(1/9) 2865699999299665 a001 9227465/710647*710647^(4/7) 2865699999299843 a001 832040/710647*710647^(3/4) 2865699999299922 a001 2/514229*(1/2+1/2*5^(1/2))^52 2865699999300109 a001 3524578/710647*710647^(9/14) 2865699999300318 a001 32951280099/4870847*439204^(1/9) 2865699999300421 a001 86267571272/12752043*439204^(1/9) 2865699999300433 a001 692290561600/24157817 2865699999300434 a001 416020/930249*(1/2+1/2*5^(1/2))^23 2865699999300434 a001 416020/930249*4106118243^(1/2) 2865699999300437 a001 32264490531/4769326*439204^(1/9) 2865699999300439 a001 591286729879/87403803*439204^(1/9) 2865699999300439 a001 1548008755920/228826127*439204^(1/9) 2865699999300439 a001 4052739537881/599074578*439204^(1/9) 2865699999300439 a001 1515744265389/224056801*439204^(1/9) 2865699999300439 a001 6557470319842/969323029*439204^(1/9) 2865699999300439 a001 2504730781961/370248451*439204^(1/9) 2865699999300439 a001 956722026041/141422324*439204^(1/9) 2865699999300440 a001 365435296162/54018521*439204^(1/9) 2865699999300446 a001 139583862445/20633239*439204^(1/9) 2865699999300485 a001 53316291173/7881196*439204^(1/9) 2865699999300755 a001 20365011074/3010349*439204^(1/9) 2865699999300785 a001 1346269/710647*710647^(5/7) 2865699999300956 a001 1836311903/1149851*439204^(2/9) 2865699999301112 a001 726103/620166*7881196^(7/11) 2865699999301136 a001 832040/4870847*20633239^(5/7) 2865699999301137 a001 726103/620166*20633239^(3/5) 2865699999301141 a001 906220110180/31622993 2865699999301141 a001 726103/620166*141422324^(7/13) 2865699999301141 a001 832040/4870847*2537720636^(5/9) 2865699999301141 a001 726103/620166*2537720636^(7/15) 2865699999301141 a001 726103/620166*17393796001^(3/7) 2865699999301141 a001 726103/620166*45537549124^(7/17) 2865699999301141 a001 832040/4870847*312119004989^(5/11) 2865699999301141 a001 832040/4870847*(1/2+1/2*5^(1/2))^25 2865699999301141 a001 832040/4870847*3461452808002^(5/12) 2865699999301141 a001 726103/620166*14662949395604^(1/3) 2865699999301141 a001 726103/620166*(1/2+1/2*5^(1/2))^21 2865699999301141 a001 726103/620166*192900153618^(7/18) 2865699999301141 a001 832040/4870847*28143753123^(1/2) 2865699999301141 a001 726103/620166*10749957122^(7/16) 2865699999301141 a001 726103/620166*599074578^(1/2) 2865699999301141 a001 832040/4870847*228826127^(5/8) 2865699999301143 a001 726103/620166*33385282^(7/12) 2865699999301206 a001 832040/12752043*7881196^(9/11) 2865699999301221 a001 832040/54018521*7881196^(10/11) 2865699999301241 a001 39088169/1860498*7881196^(5/11) 2865699999301243 a001 9227465/1860498*7881196^(6/11) 2865699999301244 a001 832040/12752043*141422324^(9/13) 2865699999301244 a001 4745030099480/165580141 2865699999301244 a001 832040/12752043*2537720636^(3/5) 2865699999301244 a001 832040/12752043*45537549124^(9/17) 2865699999301244 a001 5702887/1860498*817138163596^(1/3) 2865699999301244 a001 832040/12752043*14662949395604^(3/7) 2865699999301244 a001 832040/12752043*(1/2+1/2*5^(1/2))^27 2865699999301244 a001 5702887/1860498*(1/2+1/2*5^(1/2))^19 2865699999301244 a001 832040/12752043*192900153618^(1/2) 2865699999301244 a001 832040/12752043*10749957122^(9/16) 2865699999301244 a001 832040/12752043*599074578^(9/14) 2865699999301244 a001 5702887/1860498*87403803^(1/2) 2865699999301245 a001 165580141/1860498*7881196^(4/11) 2865699999301246 a001 832040/12752043*33385282^(3/4) 2865699999301246 a001 133957148/930249*7881196^(1/3) 2865699999301249 a001 233802911/620166*7881196^(3/11) 2865699999301253 a001 2971215073/1860498*7881196^(2/11) 2865699999301257 a001 832040/54018521*20633239^(6/7) 2865699999301258 a001 12586269025/1860498*7881196^(1/11) 2865699999301259 a001 39088169/1860498*20633239^(3/7) 2865699999301259 a001 12422650078080/433494437 2865699999301259 a001 829464/103361*45537549124^(1/3) 2865699999301259 a001 416020/16692641*(1/2+1/2*5^(1/2))^29 2865699999301259 a001 829464/103361*(1/2+1/2*5^(1/2))^17 2865699999301259 a001 416020/16692641*1322157322203^(1/2) 2865699999301259 a001 31622993/930249*20633239^(2/5) 2865699999301260 a001 433494437/1860498*20633239^(2/7) 2865699999301261 a001 1836311903/1860498*20633239^(1/5) 2865699999301261 a001 267084832/103361*20633239^(1/7) 2865699999301261 a001 39088169/1860498*141422324^(5/13) 2865699999301261 a001 53316262516/1860497 2865699999301261 a001 39088169/1860498*2537720636^(1/3) 2865699999301261 a001 39088169/1860498*45537549124^(5/17) 2865699999301261 a001 39088169/1860498*312119004989^(3/11) 2865699999301261 a001 39088169/1860498*14662949395604^(5/21) 2865699999301261 a001 39088169/1860498*(1/2+1/2*5^(1/2))^15 2865699999301261 a001 39088169/1860498*192900153618^(5/18) 2865699999301261 a001 39088169/1860498*28143753123^(3/10) 2865699999301261 a001 39088169/1860498*10749957122^(5/16) 2865699999301261 a001 39088169/1860498*599074578^(5/14) 2865699999301261 a001 39088169/1860498*228826127^(3/8) 2865699999301262 a001 832040/228826127*141422324^(11/13) 2865699999301262 a001 832040/969323029*141422324^(12/13) 2865699999301262 a001 831985/15126*141422324^(1/3) 2865699999301262 a001 832040/228826127*2537720636^(11/15) 2865699999301262 a001 85146110326200/2971215073 2865699999301262 a001 832040/228826127*45537549124^(11/17) 2865699999301262 a001 832040/228826127*312119004989^(3/5) 2865699999301262 a001 832040/228826127*14662949395604^(11/21) 2865699999301262 a001 831985/15126*(1/2+1/2*5^(1/2))^13 2865699999301262 a001 832040/228826127*192900153618^(11/18) 2865699999301262 a001 831985/15126*73681302247^(1/4) 2865699999301262 a001 832040/228826127*10749957122^(11/16) 2865699999301262 a001 832040/228826127*1568397607^(3/4) 2865699999301262 a001 832040/228826127*599074578^(11/14) 2865699999301262 a001 233802911/620166*141422324^(3/13) 2865699999301262 a001 165580141/1860498*141422324^(4/13) 2865699999301262 a001 2971215073/1860498*141422324^(2/13) 2865699999301262 a001 12586269025/1860498*141422324^(1/13) 2865699999301262 a001 416020/299537289*2537720636^(7/9) 2865699999301262 a001 17147339295680/598364773 2865699999301262 a001 416020/299537289*17393796001^(5/7) 2865699999301262 a001 416020/299537289*312119004989^(7/11) 2865699999301262 a001 133957148/930249*312119004989^(1/5) 2865699999301262 a001 416020/299537289*14662949395604^(5/9) 2865699999301262 a001 133957148/930249*(1/2+1/2*5^(1/2))^11 2865699999301262 a001 416020/299537289*505019158607^(5/8) 2865699999301262 a001 416020/299537289*28143753123^(7/10) 2865699999301262 a001 133957148/930249*1568397607^(1/4) 2865699999301262 a001 416020/299537289*599074578^(5/6) 2865699999301262 a001 233802911/620166*2537720636^(1/5) 2865699999301262 a001 291800061102660/10182505537 2865699999301262 a001 233802911/620166*45537549124^(3/17) 2865699999301262 a001 233802911/620166*14662949395604^(1/7) 2865699999301262 a001 233802911/620166*(1/2+1/2*5^(1/2))^9 2865699999301262 a001 233802911/620166*192900153618^(1/6) 2865699999301262 a001 233802911/620166*10749957122^(3/16) 2865699999301262 a001 832040/4106118243*2537720636^(13/15) 2865699999301262 a001 832040/17393796001*2537720636^(14/15) 2865699999301262 a001 832040/6643838879*2537720636^(8/9) 2865699999301262 a001 1836311903/1860498*17393796001^(1/7) 2865699999301262 a001 832040/4106118243*45537549124^(13/17) 2865699999301262 a001 1527884955772120/53316291173 2865699999301262 a001 1836311903/1860498*14662949395604^(1/9) 2865699999301262 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^7 2865699999301262 a001 832040/4106118243*192900153618^(13/18) 2865699999301262 a001 832040/4106118243*73681302247^(3/4) 2865699999301262 a001 832040/4106118243*10749957122^(13/16) 2865699999301262 a001 267084832/103361*2537720636^(1/9) 2865699999301262 a001 12586269025/1860498*2537720636^(1/15) 2865699999301262 a001 800010949022208/27916772489 2865699999301262 a001 267084832/103361*312119004989^(1/11) 2865699999301262 a001 267084832/103361*(1/2+1/2*5^(1/2))^5 2865699999301262 a001 267084832/103361*28143753123^(1/10) 2865699999301262 a001 12586269025/1860498*45537549124^(1/17) 2865699999301262 a001 12586269025/1860498*14662949395604^(1/21) 2865699999301262 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^3 2865699999301262 a001 12586269025/1860498*192900153618^(1/18) 2865699999301262 a001 12586269025/1860498*10749957122^(1/16) 2865699999301262 a001 832040/73681302247*45537549124^(15/17) 2865699999301262 a001 75640/28374454999*45537549124^(16/17) 2865699999301262 a001 832040/73681302247*312119004989^(9/11) 2865699999301262 a001 27416783093571960/956722026041 2865699999301262 a001 832040/73681302247*192900153618^(5/6) 2865699999301262 a001 71778070001154880/2504730781961 2865699999301262 a001 208010/204284540899*312119004989^(10/11) 2865699999301262 a001 208010/3665737348901*14662949395604^(8/9) 2865699999301262 a001 208010/204284540899*3461452808002^(5/6) 2865699999301262 a001 832040/2139295485799*505019158607^(13/14) 2865699999301262 a001 116139356908737800/4052739537881 2865699999301262 a001 832040/1322157322203*192900153618^(17/18) 2865699999301262 a001 75640/28374454999*192900153618^(8/9) 2865699999301262 a001 53316291173/1860498 2865699999301262 a001 75640/28374454999*73681302247^(12/13) 2865699999301262 a001 832040/17393796001*17393796001^(6/7) 2865699999301262 a001 208010/11384387281*23725150497407^(11/16) 2865699999301262 a001 10182505537/930249*(1/2+1/2*5^(1/2))^2 2865699999301262 a001 16944503814010960/591286729879 2865699999301262 a001 208010/11384387281*73681302247^(11/13) 2865699999301262 a001 10182505537/930249*10749957122^(1/24) 2865699999301262 a001 832040/73681302247*28143753123^(9/10) 2865699999301262 a001 2971215073/1860498*2537720636^(2/15) 2865699999301262 a001 832040/17393796001*45537549124^(14/17) 2865699999301262 a001 10182505537/930249*4106118243^(1/23) 2865699999301262 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^4 2865699999301262 a001 7778742049/1860498*23725150497407^(1/16) 2865699999301262 a001 497863425726920/17373187209 2865699999301262 a001 7778742049/1860498*73681302247^(1/13) 2865699999301262 a001 832040/17393796001*192900153618^(7/9) 2865699999301262 a001 7778742049/1860498*10749957122^(1/12) 2865699999301262 a001 832040/73681302247*10749957122^(15/16) 2865699999301262 a001 832040/119218851371*10749957122^(23/24) 2865699999301262 a001 208010/11384387281*10749957122^(11/12) 2865699999301262 a001 7778742049/1860498*4106118243^(2/23) 2865699999301262 a001 832040/17393796001*10749957122^(7/8) 2865699999301262 a001 10182505537/930249*1568397607^(1/22) 2865699999301262 a001 2971215073/1860498*45537549124^(2/17) 2865699999301262 a001 832040/6643838879*312119004989^(8/11) 2865699999301262 a001 2971215073/1860498*14662949395604^(2/21) 2865699999301262 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^6 2865699999301262 a001 309021223667365/10783446409 2865699999301262 a001 832040/6643838879*73681302247^(10/13) 2865699999301262 a001 832040/6643838879*28143753123^(4/5) 2865699999301262 a001 2971215073/1860498*10749957122^(1/8) 2865699999301262 a001 832040/6643838879*10749957122^(5/6) 2865699999301262 a001 2971215073/1860498*4106118243^(3/23) 2865699999301262 a001 7778742049/1860498*1568397607^(1/11) 2865699999301262 a001 208010/11384387281*4106118243^(22/23) 2865699999301262 a001 832040/17393796001*4106118243^(21/23) 2865699999301262 a001 832040/6643838879*4106118243^(20/23) 2865699999301262 a001 2971215073/1860498*1568397607^(3/22) 2865699999301262 a001 10182505537/930249*599074578^(1/21) 2865699999301262 a001 610/1860499*817138163596^(2/3) 2865699999301262 a001 567451585/930249*(1/2+1/2*5^(1/2))^8 2865699999301262 a001 567451585/930249*23725150497407^(1/8) 2865699999301262 a001 567451585/930249*505019158607^(1/7) 2865699999301262 a001 567451585/930249*73681302247^(2/13) 2865699999301262 a001 944284833566800/32951280099 2865699999301262 a001 567451585/930249*10749957122^(1/6) 2865699999301262 a001 610/1860499*10749957122^(19/24) 2865699999301262 a001 567451585/930249*4106118243^(4/23) 2865699999301262 a001 233802911/620166*599074578^(3/14) 2865699999301262 a001 12586269025/1860498*599074578^(1/14) 2865699999301262 a001 610/1860499*4106118243^(19/23) 2865699999301262 a001 567451585/930249*1568397607^(2/11) 2865699999301262 a001 7778742049/1860498*599074578^(2/21) 2865699999301262 a001 832040/17393796001*1568397607^(21/22) 2865699999301262 a001 832040/6643838879*1568397607^(10/11) 2865699999301262 a001 1836311903/1860498*599074578^(1/6) 2865699999301262 a001 2971215073/1860498*599074578^(1/7) 2865699999301262 a001 610/1860499*1568397607^(19/22) 2865699999301262 a001 567451585/930249*599074578^(4/21) 2865699999301262 a001 832040/969323029*2537720636^(4/5) 2865699999301262 a001 10182505537/930249*228826127^(1/20) 2865699999301262 a001 433494437/1860498*2537720636^(2/9) 2865699999301262 a001 832040/969323029*45537549124^(12/17) 2865699999301262 a001 433494437/1860498*312119004989^(2/11) 2865699999301262 a001 433494437/1860498*(1/2+1/2*5^(1/2))^10 2865699999301262 a001 832040/969323029*505019158607^(9/14) 2865699999301262 a001 832040/969323029*192900153618^(2/3) 2865699999301262 a001 832040/969323029*73681302247^(9/13) 2865699999301262 a001 433494437/1860498*28143753123^(1/5) 2865699999301262 a001 6557903842936/228841255 2865699999301262 a001 433494437/1860498*10749957122^(5/24) 2865699999301262 a001 832040/969323029*10749957122^(3/4) 2865699999301262 a001 433494437/1860498*4106118243^(5/23) 2865699999301262 a001 832040/969323029*4106118243^(18/23) 2865699999301262 a001 433494437/1860498*1568397607^(5/22) 2865699999301262 a001 832040/969323029*1568397607^(9/11) 2865699999301262 a001 433494437/1860498*599074578^(5/21) 2865699999301262 a001 7778742049/1860498*228826127^(1/10) 2865699999301262 a001 267084832/103361*228826127^(1/8) 2865699999301262 a001 832040/4106118243*599074578^(13/14) 2865699999301262 a001 610/1860499*599074578^(19/21) 2865699999301262 a001 832040/6643838879*599074578^(20/21) 2865699999301262 a001 2971215073/1860498*228826127^(3/20) 2865699999301262 a001 832040/969323029*599074578^(6/7) 2865699999301262 a001 567451585/930249*228826127^(1/5) 2865699999301262 a001 433494437/1860498*228826127^(1/4) 2865699999301262 a001 10182505537/930249*87403803^(1/19) 2865699999301262 a001 165580141/1860498*2537720636^(4/15) 2865699999301262 a001 832040/370248451*45537549124^(2/3) 2865699999301262 a001 165580141/1860498*45537549124^(4/17) 2865699999301262 a001 165580141/1860498*817138163596^(4/19) 2865699999301262 a001 165580141/1860498*14662949395604^(4/21) 2865699999301262 a001 165580141/1860498*(1/2+1/2*5^(1/2))^12 2865699999301262 a001 165580141/1860498*192900153618^(2/9) 2865699999301262 a001 165580141/1860498*73681302247^(3/13) 2865699999301262 a001 165580141/1860498*10749957122^(1/4) 2865699999301262 a001 832040/370248451*10749957122^(17/24) 2865699999301262 a001 17221162564705/600940872 2865699999301262 a001 165580141/1860498*4106118243^(6/23) 2865699999301262 a001 832040/370248451*4106118243^(17/23) 2865699999301262 a001 165580141/1860498*1568397607^(3/11) 2865699999301262 a001 832040/370248451*1568397607^(17/22) 2865699999301262 a001 165580141/1860498*599074578^(2/7) 2865699999301262 a001 832040/370248451*599074578^(17/21) 2865699999301262 a001 165580141/1860498*228826127^(3/10) 2865699999301262 a001 7778742049/1860498*87403803^(2/19) 2865699999301262 a001 416020/299537289*228826127^(7/8) 2865699999301262 a001 832040/969323029*228826127^(9/10) 2865699999301262 a001 610/1860499*228826127^(19/20) 2865699999301262 a001 2971215073/1860498*87403803^(3/19) 2865699999301262 a001 832040/370248451*228826127^(17/20) 2865699999301262 a001 567451585/930249*87403803^(4/19) 2865699999301262 a001 433494437/1860498*87403803^(5/19) 2865699999301262 a001 165580141/1860498*87403803^(6/19) 2865699999301262 a001 10182505537/930249*33385282^(1/18) 2865699999301262 a001 31622993/930249*17393796001^(2/7) 2865699999301262 a001 208010/35355581*23725150497407^(1/2) 2865699999301262 a001 31622993/930249*(1/2+1/2*5^(1/2))^14 2865699999301262 a001 208010/35355581*505019158607^(4/7) 2865699999301262 a001 208010/35355581*73681302247^(8/13) 2865699999301262 a001 31622993/930249*10749957122^(7/24) 2865699999301262 a001 208010/35355581*10749957122^(2/3) 2865699999301262 a001 31622993/930249*4106118243^(7/23) 2865699999301262 a001 208010/35355581*4106118243^(16/23) 2865699999301262 a001 52623190191440/1836311903 2865699999301262 a001 31622993/930249*1568397607^(7/22) 2865699999301262 a001 208010/35355581*1568397607^(8/11) 2865699999301262 a001 31622993/930249*599074578^(1/3) 2865699999301262 a001 208010/35355581*599074578^(16/21) 2865699999301262 a001 31622993/930249*228826127^(7/20) 2865699999301262 a001 208010/35355581*228826127^(4/5) 2865699999301262 a001 12586269025/1860498*33385282^(1/12) 2865699999301262 a001 31622993/930249*87403803^(7/19) 2865699999301262 a001 7778742049/1860498*33385282^(1/9) 2865699999301262 a001 832040/370248451*87403803^(17/19) 2865699999301262 a001 832040/969323029*87403803^(18/19) 2865699999301262 a001 2971215073/1860498*33385282^(1/6) 2865699999301262 a001 208010/35355581*87403803^(16/19) 2865699999301262 a001 567451585/930249*33385282^(2/9) 2865699999301262 a001 233802911/620166*33385282^(1/4) 2865699999301263 a001 39088169/1860498*33385282^(5/12) 2865699999301263 a001 433494437/1860498*33385282^(5/18) 2865699999301263 a001 832040/54018521*141422324^(10/13) 2865699999301263 a001 165580141/1860498*33385282^(1/3) 2865699999301263 a001 832040/54018521*2537720636^(2/3) 2865699999301263 a001 832040/54018521*45537549124^(10/17) 2865699999301263 a001 832040/54018521*312119004989^(6/11) 2865699999301263 a001 832040/54018521*14662949395604^(10/21) 2865699999301263 a001 24157817/1860498*(1/2+1/2*5^(1/2))^16 2865699999301263 a001 24157817/1860498*23725150497407^(1/4) 2865699999301263 a001 832040/54018521*192900153618^(5/9) 2865699999301263 a001 24157817/1860498*73681302247^(4/13) 2865699999301263 a001 832040/54018521*28143753123^(3/5) 2865699999301263 a001 24157817/1860498*10749957122^(1/3) 2865699999301263 a001 832040/54018521*10749957122^(5/8) 2865699999301263 a001 24157817/1860498*4106118243^(8/23) 2865699999301263 a001 832040/54018521*4106118243^(15/23) 2865699999301263 a001 24157817/1860498*1568397607^(4/11) 2865699999301263 a001 832040/54018521*1568397607^(15/22) 2865699999301263 a001 20100270056680/701408733 2865699999301263 a001 24157817/1860498*599074578^(8/21) 2865699999301263 a001 832040/54018521*599074578^(5/7) 2865699999301263 a001 24157817/1860498*228826127^(2/5) 2865699999301263 a001 832040/54018521*228826127^(3/4) 2865699999301263 a001 10182505537/930249*12752043^(1/17) 2865699999301263 a001 24157817/1860498*87403803^(8/19) 2865699999301263 a001 31622993/930249*33385282^(7/18) 2865699999301263 a001 832040/54018521*87403803^(15/19) 2865699999301263 a001 75640/1875749*20633239^(4/5) 2865699999301264 a001 7778742049/1860498*12752043^(2/17) 2865699999301264 a001 24157817/1860498*33385282^(4/9) 2865699999301264 a001 832040/228826127*33385282^(11/12) 2865699999301264 a001 208010/35355581*33385282^(8/9) 2865699999301264 a001 832040/370248451*33385282^(17/18) 2865699999301265 a001 2971215073/1860498*12752043^(3/17) 2865699999301265 a001 832040/54018521*33385282^(5/6) 2865699999301266 a001 567451585/930249*12752043^(4/17) 2865699999301267 a001 433494437/1860498*12752043^(5/17) 2865699999301268 a001 829464/103361*12752043^(1/2) 2865699999301268 a001 165580141/1860498*12752043^(6/17) 2865699999301269 a001 9227465/1860498*141422324^(6/13) 2865699999301269 a001 9227465/1860498*2537720636^(2/5) 2865699999301269 a001 75640/1875749*17393796001^(4/7) 2865699999301269 a001 9227465/1860498*45537549124^(6/17) 2865699999301269 a001 75640/1875749*14662949395604^(4/9) 2865699999301269 a001 75640/1875749*(1/2+1/2*5^(1/2))^28 2865699999301269 a001 9227465/1860498*(1/2+1/2*5^(1/2))^18 2865699999301269 a001 9227465/1860498*192900153618^(1/3) 2865699999301269 a001 75640/1875749*73681302247^(7/13) 2865699999301269 a001 9227465/1860498*10749957122^(3/8) 2865699999301269 a001 75640/1875749*10749957122^(7/12) 2865699999301269 a001 9227465/1860498*4106118243^(9/23) 2865699999301269 a001 75640/1875749*4106118243^(14/23) 2865699999301269 a001 9227465/1860498*1568397607^(9/22) 2865699999301269 a001 75640/1875749*1568397607^(7/11) 2865699999301269 a001 9227465/1860498*599074578^(3/7) 2865699999301269 a001 75640/1875749*599074578^(2/3) 2865699999301269 a001 73823269025/2576099 2865699999301269 a001 9227465/1860498*228826127^(9/20) 2865699999301269 a001 75640/1875749*228826127^(7/10) 2865699999301269 a001 9227465/1860498*87403803^(9/19) 2865699999301269 a001 75640/1875749*87403803^(14/19) 2865699999301269 a001 31622993/930249*12752043^(7/17) 2865699999301269 a001 10182505537/930249*4870847^(1/16) 2865699999301270 a001 9227465/1860498*33385282^(1/2) 2865699999301271 a001 75640/1875749*33385282^(7/9) 2865699999301271 a001 24157817/1860498*12752043^(8/17) 2865699999301277 a001 7778742049/1860498*4870847^(1/8) 2865699999301278 a001 9227465/1860498*12752043^(9/17) 2865699999301278 a001 832040/54018521*12752043^(15/17) 2865699999301279 a001 208010/35355581*12752043^(16/17) 2865699999301283 a001 75640/1875749*12752043^(14/17) 2865699999301284 a001 2971215073/1860498*4870847^(3/16) 2865699999301292 a001 567451585/930249*4870847^(1/4) 2865699999301300 a001 433494437/1860498*4870847^(5/16) 2865699999301304 a001 1762289/930249*20633239^(4/7) 2865699999301307 a001 165580141/1860498*4870847^(3/8) 2865699999301308 a001 208010/1970299*141422324^(2/3) 2865699999301308 a001 1762289/930249*2537720636^(4/9) 2865699999301308 a001 208010/1970299*(1/2+1/2*5^(1/2))^26 2865699999301308 a001 1762289/930249*(1/2+1/2*5^(1/2))^20 2865699999301308 a001 1762289/930249*23725150497407^(5/16) 2865699999301308 a001 1762289/930249*505019158607^(5/14) 2865699999301308 a001 1762289/930249*73681302247^(5/13) 2865699999301308 a001 208010/1970299*73681302247^(1/2) 2865699999301308 a001 1762289/930249*28143753123^(2/5) 2865699999301308 a001 1762289/930249*10749957122^(5/12) 2865699999301308 a001 208010/1970299*10749957122^(13/24) 2865699999301308 a001 1762289/930249*4106118243^(10/23) 2865699999301308 a001 208010/1970299*4106118243^(13/23) 2865699999301308 a001 1762289/930249*1568397607^(5/11) 2865699999301308 a001 208010/1970299*1568397607^(13/22) 2865699999301308 a001 1762289/930249*599074578^(10/21) 2865699999301308 a001 208010/1970299*599074578^(13/21) 2865699999301308 a001 1762289/930249*228826127^(1/2) 2865699999301308 a001 208010/1970299*228826127^(13/20) 2865699999301308 a001 53319815984/1860621 2865699999301308 a001 1762289/930249*87403803^(10/19) 2865699999301308 a001 208010/1970299*87403803^(13/19) 2865699999301309 a001 1762289/930249*33385282^(5/9) 2865699999301310 a001 208010/1970299*33385282^(13/18) 2865699999301315 a001 31622993/930249*4870847^(7/16) 2865699999301317 a001 10182505537/930249*1860498^(1/15) 2865699999301318 a001 1762289/930249*12752043^(10/17) 2865699999301321 a001 208010/1970299*12752043^(13/17) 2865699999301323 a001 24157817/1860498*4870847^(1/2) 2865699999301337 a001 9227465/1860498*4870847^(9/16) 2865699999301345 a001 12586269025/1860498*1860498^(1/10) 2865699999301372 a001 7778742049/1860498*1860498^(2/15) 2865699999301374 a001 75640/1875749*4870847^(7/8) 2865699999301376 a001 832040/54018521*4870847^(15/16) 2865699999301383 a001 1762289/930249*4870847^(5/8) 2865699999301400 a001 267084832/103361*1860498^(1/6) 2865699999301406 a001 208010/1970299*4870847^(13/16) 2865699999301427 a001 2971215073/1860498*1860498^(1/5) 2865699999301483 a001 567451585/930249*1860498^(4/15) 2865699999301510 a001 233802911/620166*1860498^(3/10) 2865699999301538 a001 433494437/1860498*1860498^(1/3) 2865699999301545 a001 832040/3010349*7881196^(8/11) 2865699999301547 a001 1346269/1860498*7881196^(2/3) 2865699999301578 a001 832040/3010349*141422324^(8/13) 2865699999301578 a001 832040/3010349*2537720636^(8/15) 2865699999301578 a001 832040/3010349*45537549124^(8/17) 2865699999301578 a001 1346269/1860498*312119004989^(2/5) 2865699999301578 a001 832040/3010349*(1/2+1/2*5^(1/2))^24 2865699999301578 a001 1346269/1860498*(1/2+1/2*5^(1/2))^22 2865699999301578 a001 832040/3010349*192900153618^(4/9) 2865699999301578 a001 832040/3010349*73681302247^(6/13) 2865699999301578 a001 1346269/1860498*10749957122^(11/24) 2865699999301578 a001 832040/3010349*10749957122^(1/2) 2865699999301578 a001 1346269/1860498*4106118243^(11/23) 2865699999301578 a001 832040/3010349*4106118243^(12/23) 2865699999301578 a001 1346269/1860498*1568397607^(1/2) 2865699999301578 a001 832040/3010349*1568397607^(6/11) 2865699999301578 a001 1346269/1860498*599074578^(11/21) 2865699999301578 a001 832040/3010349*599074578^(4/7) 2865699999301578 a001 1346269/1860498*228826127^(11/20) 2865699999301578 a001 832040/3010349*228826127^(3/5) 2865699999301578 a001 1346269/1860498*87403803^(11/19) 2865699999301578 a001 832040/3010349*87403803^(12/19) 2865699999301578 a001 1120149658760/39088169 2865699999301580 a001 1346269/1860498*33385282^(11/18) 2865699999301580 a001 832040/3010349*33385282^(2/3) 2865699999301589 a001 1346269/1860498*12752043^(11/17) 2865699999301591 a001 832040/3010349*12752043^(12/17) 2865699999301593 a001 165580141/1860498*1860498^(2/5) 2865699999301648 a001 31622993/930249*1860498^(7/15) 2865699999301661 a001 1346269/1860498*4870847^(11/16) 2865699999301667 a001 10182505537/930249*710647^(1/14) 2865699999301669 a001 832040/3010349*4870847^(3/4) 2865699999301675 a001 39088169/1860498*1860498^(1/2) 2865699999301704 a001 24157817/1860498*1860498^(8/15) 2865699999301721 a001 726103/620166*1860498^(7/10) 2865699999301765 a001 9227465/1860498*1860498^(3/5) 2865699999301774 a001 2/1346269*(1/2+1/2*5^(1/2))^54 2865699999301831 a001 832040/4870847*1860498^(5/6) 2865699999301848 a001 4745030099481/165580141 2865699999301848 a001 2178309/4870847*(1/2+1/2*5^(1/2))^23 2865699999301848 a001 2178309/4870847*4106118243^(1/2) 2865699999301860 a001 1762289/930249*1860498^(2/3) 2865699999301922 a001 5702887/4870847*7881196^(7/11) 2865699999301927 a001 2178309/141422324*7881196^(10/11) 2865699999301929 a001 311187/4769326*7881196^(9/11) 2865699999301945 a001 24157817/4870847*7881196^(6/11) 2865699999301947 a001 726103/4250681*20633239^(5/7) 2865699999301947 a001 5702887/4870847*20633239^(3/5) 2865699999301948 a001 102334155/4870847*7881196^(5/11) 2865699999301951 a001 5702887/4870847*141422324^(7/13) 2865699999301951 a001 12422650078083/433494437 2865699999301951 a001 726103/4250681*2537720636^(5/9) 2865699999301951 a001 5702887/4870847*2537720636^(7/15) 2865699999301951 a001 5702887/4870847*17393796001^(3/7) 2865699999301951 a001 5702887/4870847*45537549124^(7/17) 2865699999301951 a001 726103/4250681*312119004989^(5/11) 2865699999301951 a001 726103/4250681*(1/2+1/2*5^(1/2))^25 2865699999301951 a001 5702887/4870847*14662949395604^(1/3) 2865699999301951 a001 5702887/4870847*(1/2+1/2*5^(1/2))^21 2865699999301951 a001 726103/4250681*3461452808002^(5/12) 2865699999301951 a001 5702887/4870847*192900153618^(7/18) 2865699999301951 a001 726103/4250681*28143753123^(1/2) 2865699999301951 a001 5702887/4870847*10749957122^(7/16) 2865699999301951 a001 5702887/4870847*599074578^(1/2) 2865699999301951 a001 726103/4250681*228826127^(5/8) 2865699999301952 a001 433494437/4870847*7881196^(4/11) 2865699999301953 a001 5702887/4870847*33385282^(7/12) 2865699999301954 a001 701408733/4870847*7881196^(1/3) 2865699999301956 a001 1836311903/4870847*7881196^(3/11) 2865699999301961 a001 7778742049/4870847*7881196^(2/11) 2865699999301963 a001 2178309/141422324*20633239^(6/7) 2865699999301965 a001 2178309/54018521*20633239^(4/5) 2865699999301965 a001 32951280099/4870847*7881196^(1/11) 2865699999301966 a001 102334155/4870847*20633239^(3/7) 2865699999301966 a001 165580141/4870847*20633239^(2/5) 2865699999301966 a001 311187/4769326*141422324^(9/13) 2865699999301966 a001 956556474552/33379505 2865699999301966 a001 311187/4769326*2537720636^(3/5) 2865699999301966 a001 311187/4769326*45537549124^(9/17) 2865699999301966 a001 14930352/4870847*817138163596^(1/3) 2865699999301966 a001 311187/4769326*14662949395604^(3/7) 2865699999301966 a001 311187/4769326*(1/2+1/2*5^(1/2))^27 2865699999301966 a001 14930352/4870847*(1/2+1/2*5^(1/2))^19 2865699999301966 a001 311187/4769326*192900153618^(1/2) 2865699999301966 a001 311187/4769326*10749957122^(9/16) 2865699999301966 a001 311187/4769326*599074578^(9/14) 2865699999301967 a001 14930352/4870847*87403803^(1/2) 2865699999301967 a001 1134903170/4870847*20633239^(2/7) 2865699999301968 a001 4807526976/4870847*20633239^(1/5) 2865699999301968 a001 12586269025/4870847*20633239^(1/7) 2865699999301968 a001 311187/4769326*33385282^(3/4) 2865699999301969 a001 85146110326221/2971215073 2865699999301969 a001 39088169/4870847*45537549124^(1/3) 2865699999301969 a001 39088169/4870847*(1/2+1/2*5^(1/2))^17 2865699999301969 a001 726103/29134601*1322157322203^(1/2) 2865699999301969 a001 2178309/2537720636*141422324^(12/13) 2865699999301969 a001 726103/199691526*141422324^(11/13) 2865699999301969 a001 102334155/4870847*141422324^(5/13) 2865699999301969 a001 267914296/4870847*141422324^(1/3) 2865699999301969 a001 102334155/4870847*2537720636^(1/3) 2865699999301969 a001 222915410843895/7778742049 2865699999301969 a001 102334155/4870847*45537549124^(5/17) 2865699999301969 a001 102334155/4870847*312119004989^(3/11) 2865699999301969 a001 102334155/4870847*14662949395604^(5/21) 2865699999301969 a001 102334155/4870847*(1/2+1/2*5^(1/2))^15 2865699999301969 a001 102334155/4870847*192900153618^(5/18) 2865699999301969 a001 102334155/4870847*28143753123^(3/10) 2865699999301969 a001 102334155/4870847*10749957122^(5/16) 2865699999301969 a001 102334155/4870847*599074578^(5/14) 2865699999301969 a001 433494437/4870847*141422324^(4/13) 2865699999301969 a001 102334155/4870847*228826127^(3/8) 2865699999301969 a001 1836311903/4870847*141422324^(3/13) 2865699999301969 a001 7778742049/4870847*141422324^(2/13) 2865699999301969 a001 32951280099/4870847*141422324^(1/13) 2865699999301969 a001 726103/199691526*2537720636^(11/15) 2865699999301969 a001 291800061102732/10182505537 2865699999301969 a001 726103/199691526*45537549124^(11/17) 2865699999301969 a001 726103/199691526*312119004989^(3/5) 2865699999301969 a001 726103/199691526*14662949395604^(11/21) 2865699999301969 a001 267914296/4870847*(1/2+1/2*5^(1/2))^13 2865699999301969 a001 726103/199691526*192900153618^(11/18) 2865699999301969 a001 267914296/4870847*73681302247^(1/4) 2865699999301969 a001 726103/199691526*10749957122^(11/16) 2865699999301969 a001 726103/199691526*1568397607^(3/4) 2865699999301969 a001 726103/199691526*599074578^(11/14) 2865699999301969 a001 311187/224056801*2537720636^(7/9) 2865699999301969 a001 311187/224056801*17393796001^(5/7) 2865699999301969 a001 1527884955772497/53316291173 2865699999301969 a001 311187/224056801*312119004989^(7/11) 2865699999301969 a001 311187/224056801*14662949395604^(5/9) 2865699999301969 a001 701408733/4870847*(1/2+1/2*5^(1/2))^11 2865699999301969 a001 311187/224056801*505019158607^(5/8) 2865699999301969 a001 311187/224056801*28143753123^(7/10) 2865699999301969 a001 701408733/4870847*1568397607^(1/4) 2865699999301969 a001 2178309/45537549124*2537720636^(14/15) 2865699999301969 a001 987/4870846*2537720636^(13/15) 2865699999301969 a001 2178309/17393796001*2537720636^(8/9) 2865699999301969 a001 1836311903/4870847*2537720636^(1/5) 2865699999301969 a001 1836311903/4870847*45537549124^(3/17) 2865699999301969 a001 4000054745112027/139583862445 2865699999301969 a001 1836311903/4870847*14662949395604^(1/7) 2865699999301969 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^9 2865699999301969 a001 1836311903/4870847*192900153618^(1/6) 2865699999301969 a001 1836311903/4870847*10749957122^(3/16) 2865699999301969 a001 12586269025/4870847*2537720636^(1/9) 2865699999301969 a001 7778742049/4870847*2537720636^(2/15) 2865699999301969 a001 32951280099/4870847*2537720636^(1/15) 2865699999301969 a001 4807526976/4870847*17393796001^(1/7) 2865699999301969 a001 987/4870846*45537549124^(13/17) 2865699999301969 a001 4807526976/4870847*14662949395604^(1/9) 2865699999301969 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^7 2865699999301969 a001 987/4870846*192900153618^(13/18) 2865699999301969 a001 987/4870846*73681302247^(3/4) 2865699999301969 a001 2178309/45537549124*17393796001^(6/7) 2865699999301969 a001 987/4870846*10749957122^(13/16) 2865699999301969 a001 12586269025/4870847*312119004989^(1/11) 2865699999301969 a001 27416783093578725/956722026041 2865699999301969 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^5 2865699999301969 a001 12586269025/4870847*28143753123^(1/10) 2865699999301969 a001 726103/64300051206*45537549124^(15/17) 2865699999301969 a001 2178309/817138163596*45537549124^(16/17) 2865699999301969 a001 32951280099/4870847*45537549124^(1/17) 2865699999301969 a001 32951280099/4870847*14662949395604^(1/21) 2865699999301969 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^3 2865699999301969 a001 32951280099/4870847*192900153618^(1/18) 2865699999301969 a001 5526983144409972/192866774113 2865699999301969 a001 2178309/2139295485799*312119004989^(10/11) 2865699999301969 a001 2178309/14662949395604*14662949395604^(6/7) 2865699999301969 a001 2178309/2139295485799*3461452808002^(5/6) 2865699999301969 a001 2178309/817138163596*14662949395604^(16/21) 2865699999301969 a001 139583862445/4870847 2865699999301969 a001 2178309/817138163596*192900153618^(8/9) 2865699999301969 a001 2178309/119218851371*312119004989^(4/5) 2865699999301969 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^2 2865699999301969 a001 116139356908766457/4052739537881 2865699999301969 a001 2178309/45537549124*45537549124^(14/17) 2865699999301969 a001 2178309/817138163596*73681302247^(12/13) 2865699999301969 a001 2178309/119218851371*73681302247^(11/13) 2865699999301969 a001 32951280099/4870847*10749957122^(1/16) 2865699999301969 a001 53316291173/4870847*10749957122^(1/24) 2865699999301969 a001 2178309/45537549124*817138163596^(14/19) 2865699999301969 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^4 2865699999301969 a001 20365011074/4870847*23725150497407^(1/16) 2865699999301969 a001 2178309/45537549124*505019158607^(3/4) 2865699999301969 a001 20365011074/4870847*73681302247^(1/13) 2865699999301969 a001 2178309/45537549124*192900153618^(7/9) 2865699999301969 a001 726103/64300051206*28143753123^(9/10) 2865699999301969 a001 20365011074/4870847*10749957122^(1/12) 2865699999301969 a001 53316291173/4870847*4106118243^(1/23) 2865699999301969 a001 7778742049/4870847*45537549124^(2/17) 2865699999301969 a001 2178309/17393796001*312119004989^(8/11) 2865699999301969 a001 7778742049/4870847*14662949395604^(2/21) 2865699999301969 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^6 2865699999301969 a001 16944503814015141/591286729879 2865699999301969 a001 2178309/17393796001*73681302247^(10/13) 2865699999301969 a001 2178309/17393796001*28143753123^(4/5) 2865699999301969 a001 7778742049/4870847*10749957122^(1/8) 2865699999301969 a001 20365011074/4870847*4106118243^(2/23) 2865699999301969 a001 2178309/119218851371*10749957122^(11/12) 2865699999301969 a001 2178309/45537549124*10749957122^(7/8) 2865699999301969 a001 726103/64300051206*10749957122^(15/16) 2865699999301969 a001 2178309/312119004989*10749957122^(23/24) 2865699999301969 a001 2178309/17393796001*10749957122^(5/6) 2865699999301969 a001 7778742049/4870847*4106118243^(3/23) 2865699999301969 a001 53316291173/4870847*1568397607^(1/22) 2865699999301969 a001 2178309/6643838879*817138163596^(2/3) 2865699999301969 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^8 2865699999301969 a001 308201168307217/10754830177 2865699999301969 a001 2971215073/4870847*73681302247^(2/13) 2865699999301969 a001 2971215073/4870847*10749957122^(1/6) 2865699999301969 a001 2178309/6643838879*10749957122^(19/24) 2865699999301969 a001 2178309/2537720636*2537720636^(4/5) 2865699999301969 a001 2971215073/4870847*4106118243^(4/23) 2865699999301969 a001 20365011074/4870847*1568397607^(1/11) 2865699999301969 a001 2178309/45537549124*4106118243^(21/23) 2865699999301969 a001 2178309/17393796001*4106118243^(20/23) 2865699999301969 a001 2178309/119218851371*4106118243^(22/23) 2865699999301969 a001 7778742049/4870847*1568397607^(3/22) 2865699999301969 a001 2178309/6643838879*4106118243^(19/23) 2865699999301969 a001 2971215073/4870847*1568397607^(2/11) 2865699999301969 a001 1134903170/4870847*2537720636^(2/9) 2865699999301969 a001 53316291173/4870847*599074578^(1/21) 2865699999301969 a001 2178309/2537720636*45537549124^(12/17) 2865699999301969 a001 1134903170/4870847*312119004989^(2/11) 2865699999301969 a001 2178309/2537720636*14662949395604^(4/7) 2865699999301969 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^10 2865699999301969 a001 2178309/2537720636*192900153618^(2/3) 2865699999301969 a001 72710876157045/2537281508 2865699999301969 a001 2178309/2537720636*73681302247^(9/13) 2865699999301969 a001 1134903170/4870847*28143753123^(1/5) 2865699999301969 a001 1134903170/4870847*10749957122^(5/24) 2865699999301969 a001 2178309/2537720636*10749957122^(3/4) 2865699999301969 a001 1134903170/4870847*4106118243^(5/23) 2865699999301969 a001 32951280099/4870847*599074578^(1/14) 2865699999301969 a001 2178309/2537720636*4106118243^(18/23) 2865699999301969 a001 1134903170/4870847*1568397607^(5/22) 2865699999301969 a001 20365011074/4870847*599074578^(2/21) 2865699999301969 a001 2178309/17393796001*1568397607^(10/11) 2865699999301969 a001 2178309/6643838879*1568397607^(19/22) 2865699999301969 a001 2178309/45537549124*1568397607^(21/22) 2865699999301969 a001 7778742049/4870847*599074578^(1/7) 2865699999301969 a001 4807526976/4870847*599074578^(1/6) 2865699999301969 a001 2178309/2537720636*1568397607^(9/11) 2865699999301969 a001 1836311903/4870847*599074578^(3/14) 2865699999301969 a001 2971215073/4870847*599074578^(4/21) 2865699999301969 a001 1134903170/4870847*599074578^(5/21) 2865699999301969 a001 53316291173/4870847*228826127^(1/20) 2865699999301969 a001 433494437/4870847*2537720636^(4/15) 2865699999301969 a001 2178309/969323029*45537549124^(2/3) 2865699999301969 a001 433494437/4870847*45537549124^(4/17) 2865699999301969 a001 433494437/4870847*817138163596^(4/19) 2865699999301969 a001 433494437/4870847*14662949395604^(4/21) 2865699999301969 a001 433494437/4870847*(1/2+1/2*5^(1/2))^12 2865699999301969 a001 433494437/4870847*73681302247^(3/13) 2865699999301969 a001 314761611189011/10983760033 2865699999301969 a001 433494437/4870847*10749957122^(1/4) 2865699999301969 a001 2178309/969323029*10749957122^(17/24) 2865699999301969 a001 433494437/4870847*4106118243^(6/23) 2865699999301969 a001 2178309/969323029*4106118243^(17/23) 2865699999301969 a001 433494437/4870847*1568397607^(3/11) 2865699999301969 a001 2178309/969323029*1568397607^(17/22) 2865699999301969 a001 433494437/4870847*599074578^(2/7) 2865699999301969 a001 20365011074/4870847*228826127^(1/10) 2865699999301969 a001 311187/224056801*599074578^(5/6) 2865699999301969 a001 12586269025/4870847*228826127^(1/8) 2865699999301969 a001 2178309/2537720636*599074578^(6/7) 2865699999301969 a001 2178309/6643838879*599074578^(19/21) 2865699999301969 a001 987/4870846*599074578^(13/14) 2865699999301969 a001 2178309/17393796001*599074578^(20/21) 2865699999301969 a001 7778742049/4870847*228826127^(3/20) 2865699999301969 a001 2178309/969323029*599074578^(17/21) 2865699999301969 a001 2971215073/4870847*228826127^(1/5) 2865699999301969 a001 1134903170/4870847*228826127^(1/4) 2865699999301969 a001 433494437/4870847*228826127^(3/10) 2865699999301969 a001 53316291173/4870847*87403803^(1/19) 2865699999301969 a001 165580141/4870847*17393796001^(2/7) 2865699999301969 a001 165580141/4870847*14662949395604^(2/9) 2865699999301969 a001 165580141/4870847*(1/2+1/2*5^(1/2))^14 2865699999301969 a001 2178309/370248451*505019158607^(4/7) 2865699999301969 a001 2178309/370248451*73681302247^(8/13) 2865699999301969 a001 360684711361569/12586269025 2865699999301969 a001 165580141/4870847*10749957122^(7/24) 2865699999301969 a001 2178309/370248451*10749957122^(2/3) 2865699999301969 a001 165580141/4870847*4106118243^(7/23) 2865699999301969 a001 2178309/370248451*4106118243^(16/23) 2865699999301969 a001 165580141/4870847*1568397607^(7/22) 2865699999301969 a001 2178309/370248451*1568397607^(8/11) 2865699999301969 a001 165580141/4870847*599074578^(1/3) 2865699999301969 a001 2178309/370248451*599074578^(16/21) 2865699999301969 a001 2178309/141422324*141422324^(10/13) 2865699999301969 a001 20365011074/4870847*87403803^(2/19) 2865699999301969 a001 165580141/4870847*228826127^(7/20) 2865699999301969 a001 311187/224056801*228826127^(7/8) 2865699999301969 a001 2178309/969323029*228826127^(17/20) 2865699999301969 a001 2178309/2537720636*228826127^(9/10) 2865699999301969 a001 2178309/6643838879*228826127^(19/20) 2865699999301969 a001 7778742049/4870847*87403803^(3/19) 2865699999301969 a001 2178309/370248451*228826127^(4/5) 2865699999301969 a001 2971215073/4870847*87403803^(4/19) 2865699999301969 a001 1134903170/4870847*87403803^(5/19) 2865699999301969 a001 433494437/4870847*87403803^(6/19) 2865699999301969 a001 53316291173/4870847*33385282^(1/18) 2865699999301969 a001 2178309/141422324*2537720636^(2/3) 2865699999301969 a001 2178309/141422324*45537549124^(10/17) 2865699999301969 a001 2178309/141422324*312119004989^(6/11) 2865699999301969 a001 2178309/141422324*14662949395604^(10/21) 2865699999301969 a001 63245986/4870847*(1/2+1/2*5^(1/2))^16 2865699999301969 a001 63245986/4870847*23725150497407^(1/4) 2865699999301969 a001 2178309/141422324*192900153618^(5/9) 2865699999301969 a001 63245986/4870847*73681302247^(4/13) 2865699999301969 a001 2178309/141422324*28143753123^(3/5) 2865699999301969 a001 63245986/4870847*10749957122^(1/3) 2865699999301969 a001 2178309/141422324*10749957122^(5/8) 2865699999301969 a001 69791945551/2435424 2865699999301969 a001 63245986/4870847*4106118243^(8/23) 2865699999301969 a001 2178309/141422324*4106118243^(15/23) 2865699999301969 a001 63245986/4870847*1568397607^(4/11) 2865699999301969 a001 2178309/141422324*1568397607^(15/22) 2865699999301969 a001 63245986/4870847*599074578^(8/21) 2865699999301969 a001 2178309/141422324*599074578^(5/7) 2865699999301969 a001 165580141/4870847*87403803^(7/19) 2865699999301969 a001 63245986/4870847*228826127^(2/5) 2865699999301969 a001 2178309/141422324*228826127^(3/4) 2865699999301969 a001 32951280099/4870847*33385282^(1/12) 2865699999301969 a001 20365011074/4870847*33385282^(1/9) 2865699999301969 a001 63245986/4870847*87403803^(8/19) 2865699999301969 a001 2178309/370248451*87403803^(16/19) 2865699999301969 a001 2178309/969323029*87403803^(17/19) 2865699999301969 a001 2178309/2537720636*87403803^(18/19) 2865699999301969 a001 7778742049/4870847*33385282^(1/6) 2865699999301969 a001 2178309/141422324*87403803^(15/19) 2865699999301970 a001 2971215073/4870847*33385282^(2/9) 2865699999301970 a001 1836311903/4870847*33385282^(1/4) 2865699999301970 a001 1134903170/4870847*33385282^(5/18) 2865699999301970 a001 433494437/4870847*33385282^(1/3) 2865699999301970 a001 24157817/4870847*141422324^(6/13) 2865699999301970 a001 24157817/4870847*2537720636^(2/5) 2865699999301970 a001 2178309/54018521*17393796001^(4/7) 2865699999301970 a001 24157817/4870847*45537549124^(6/17) 2865699999301970 a001 2178309/54018521*14662949395604^(4/9) 2865699999301970 a001 24157817/4870847*(1/2+1/2*5^(1/2))^18 2865699999301970 a001 2178309/54018521*505019158607^(1/2) 2865699999301970 a001 24157817/4870847*192900153618^(1/3) 2865699999301970 a001 2178309/54018521*73681302247^(7/13) 2865699999301970 a001 24157817/4870847*10749957122^(3/8) 2865699999301970 a001 2178309/54018521*10749957122^(7/12) 2865699999301970 a001 24157817/4870847*4106118243^(9/23) 2865699999301970 a001 2178309/54018521*4106118243^(14/23) 2865699999301970 a001 52623190191453/1836311903 2865699999301970 a001 24157817/4870847*1568397607^(9/22) 2865699999301970 a001 2178309/54018521*1568397607^(7/11) 2865699999301970 a001 24157817/4870847*599074578^(3/7) 2865699999301970 a001 2178309/54018521*599074578^(2/3) 2865699999301970 a001 24157817/4870847*228826127^(9/20) 2865699999301970 a001 102334155/4870847*33385282^(5/12) 2865699999301970 a001 2178309/54018521*228826127^(7/10) 2865699999301970 a001 165580141/4870847*33385282^(7/18) 2865699999301970 a001 53316291173/4870847*12752043^(1/17) 2865699999301970 a001 24157817/4870847*87403803^(9/19) 2865699999301970 a001 2178309/54018521*87403803^(14/19) 2865699999301970 a001 63245986/4870847*33385282^(4/9) 2865699999301971 a001 20365011074/4870847*12752043^(2/17) 2865699999301971 a001 24157817/4870847*33385282^(1/2) 2865699999301971 a001 2178309/141422324*33385282^(5/6) 2865699999301971 a001 2178309/370248451*33385282^(8/9) 2865699999301971 a001 726103/199691526*33385282^(11/12) 2865699999301971 a001 2178309/969323029*33385282^(17/18) 2865699999301972 a001 9227465/4870847*20633239^(4/7) 2865699999301972 a001 2178309/54018521*33385282^(7/9) 2865699999301972 a001 7778742049/4870847*12752043^(3/17) 2865699999301973 a001 2971215073/4870847*12752043^(4/17) 2865699999301974 a001 1134903170/4870847*12752043^(5/17) 2865699999301975 a001 433494437/4870847*12752043^(6/17) 2865699999301976 a001 2178309/20633239*141422324^(2/3) 2865699999301976 a001 9227465/4870847*2537720636^(4/9) 2865699999301976 a001 2178309/20633239*(1/2+1/2*5^(1/2))^26 2865699999301976 a001 9227465/4870847*(1/2+1/2*5^(1/2))^20 2865699999301976 a001 9227465/4870847*23725150497407^(5/16) 2865699999301976 a001 9227465/4870847*505019158607^(5/14) 2865699999301976 a001 9227465/4870847*73681302247^(5/13) 2865699999301976 a001 2178309/20633239*73681302247^(1/2) 2865699999301976 a001 9227465/4870847*28143753123^(2/5) 2865699999301976 a001 9227465/4870847*10749957122^(5/12) 2865699999301976 a001 2178309/20633239*10749957122^(13/24) 2865699999301976 a001 9227465/4870847*4106118243^(10/23) 2865699999301976 a001 2178309/20633239*4106118243^(13/23) 2865699999301976 a001 9227465/4870847*1568397607^(5/11) 2865699999301976 a001 2178309/20633239*1568397607^(13/22) 2865699999301976 a001 6700090018895/233802911 2865699999301976 a001 9227465/4870847*599074578^(10/21) 2865699999301976 a001 2178309/20633239*599074578^(13/21) 2865699999301976 a001 9227465/4870847*228826127^(1/2) 2865699999301976 a001 2178309/20633239*228826127^(13/20) 2865699999301976 a001 9227465/4870847*87403803^(10/19) 2865699999301976 a001 2178309/20633239*87403803^(13/19) 2865699999301976 a001 165580141/4870847*12752043^(7/17) 2865699999301977 a001 53316291173/4870847*4870847^(1/16) 2865699999301977 a001 9227465/4870847*33385282^(5/9) 2865699999301977 a001 39088169/4870847*12752043^(1/2) 2865699999301977 a001 63245986/4870847*12752043^(8/17) 2865699999301978 a001 2178309/20633239*33385282^(13/18) 2865699999301979 a001 24157817/4870847*12752043^(9/17) 2865699999301982 a001 2178309/7881196*7881196^(8/11) 2865699999301984 a001 20365011074/4870847*4870847^(1/8) 2865699999301984 a001 3524578/4870847*7881196^(2/3) 2865699999301984 a001 2178309/54018521*12752043^(14/17) 2865699999301985 a001 2178309/141422324*12752043^(15/17) 2865699999301986 a001 2178309/370248451*12752043^(16/17) 2865699999301986 a001 9227465/4870847*12752043^(10/17) 2865699999301989 a001 2178309/20633239*12752043^(13/17) 2865699999301989 a001 832040/12752043*1860498^(9/10) 2865699999301992 a001 7778742049/4870847*4870847^(3/16) 2865699999301999 a001 2971215073/4870847*4870847^(1/4) 2865699999302001 a001 317811/3010349*710647^(13/14) 2865699999302007 a001 1134903170/4870847*4870847^(5/16) 2865699999302014 a001 433494437/4870847*4870847^(3/8) 2865699999302015 a001 2178309/7881196*141422324^(8/13) 2865699999302015 a001 2178309/7881196*2537720636^(8/15) 2865699999302015 a001 2178309/7881196*45537549124^(8/17) 2865699999302015 a001 3524578/4870847*312119004989^(2/5) 2865699999302015 a001 2178309/7881196*14662949395604^(8/21) 2865699999302015 a001 2178309/7881196*(1/2+1/2*5^(1/2))^24 2865699999302015 a001 3524578/4870847*(1/2+1/2*5^(1/2))^22 2865699999302015 a001 2178309/7881196*192900153618^(4/9) 2865699999302015 a001 2178309/7881196*73681302247^(6/13) 2865699999302015 a001 3524578/4870847*10749957122^(11/24) 2865699999302015 a001 2178309/7881196*10749957122^(1/2) 2865699999302015 a001 3524578/4870847*4106118243^(11/23) 2865699999302015 a001 2178309/7881196*4106118243^(12/23) 2865699999302015 a001 3524578/4870847*1568397607^(1/2) 2865699999302015 a001 2178309/7881196*1568397607^(6/11) 2865699999302015 a001 3524578/4870847*599074578^(11/21) 2865699999302015 a001 2178309/7881196*599074578^(4/7) 2865699999302015 a001 3838809989301/133957148 2865699999302015 a001 3524578/4870847*228826127^(11/20) 2865699999302015 a001 2178309/7881196*228826127^(3/5) 2865699999302015 a001 3524578/4870847*87403803^(11/19) 2865699999302015 a001 2178309/7881196*87403803^(12/19) 2865699999302017 a001 3524578/4870847*33385282^(11/18) 2865699999302017 a001 2178309/7881196*33385282^(2/3) 2865699999302022 a001 165580141/4870847*4870847^(7/16) 2865699999302024 a001 53316291173/4870847*1860498^(1/15) 2865699999302025 a001 208010/1970299*1860498^(13/15) 2865699999302026 a001 3524578/4870847*12752043^(11/17) 2865699999302028 a001 2178309/7881196*12752043^(12/17) 2865699999302029 a001 63245986/4870847*4870847^(1/2) 2865699999302030 a001 5702887/370248451*7881196^(10/11) 2865699999302034 a001 5702887/87403803*7881196^(9/11) 2865699999302038 a001 24157817/4870847*4870847^(9/16) 2865699999302040 a001 4976784/4250681*7881196^(7/11) 2865699999302041 a001 75640/1875749*1860498^(14/15) 2865699999302044 a001 1/1762289*(1/2+1/2*5^(1/2))^56 2865699999302045 a001 14930352/969323029*7881196^(10/11) 2865699999302045 a001 5702887/20633239*7881196^(8/11) 2865699999302047 a001 63245986/12752043*7881196^(6/11) 2865699999302047 a001 39088169/2537720636*7881196^(10/11) 2865699999302048 a001 102334155/6643838879*7881196^(10/11) 2865699999302048 a001 9238424/599786069*7881196^(10/11) 2865699999302048 a001 701408733/45537549124*7881196^(10/11) 2865699999302048 a001 1836311903/119218851371*7881196^(10/11) 2865699999302048 a001 4807526976/312119004989*7881196^(10/11) 2865699999302048 a001 12586269025/817138163596*7881196^(10/11) 2865699999302048 a001 32951280099/2139295485799*7881196^(10/11) 2865699999302048 a001 86267571272/5600748293801*7881196^(10/11) 2865699999302048 a001 7787980473/505618944676*7881196^(10/11) 2865699999302048 a001 365435296162/23725150497407*7881196^(10/11) 2865699999302048 a001 139583862445/9062201101803*7881196^(10/11) 2865699999302048 a001 53316291173/3461452808002*7881196^(10/11) 2865699999302048 a001 20365011074/1322157322203*7881196^(10/11) 2865699999302048 a001 7778742049/505019158607*7881196^(10/11) 2865699999302048 a001 2971215073/192900153618*7881196^(10/11) 2865699999302048 a001 1134903170/73681302247*7881196^(10/11) 2865699999302048 a001 433494437/28143753123*7881196^(10/11) 2865699999302048 a001 165580141/10749957122*7881196^(10/11) 2865699999302048 a001 63245986/4106118243*7881196^(10/11) 2865699999302048 a001 9227465/12752043*7881196^(2/3) 2865699999302049 a001 24157817/1568397607*7881196^(10/11) 2865699999302049 a001 14930352/228826127*7881196^(9/11) 2865699999302051 a001 267914296/12752043*7881196^(5/11) 2865699999302051 a001 9227465/4870847*4870847^(5/8) 2865699999302052 a001 39088169/599074578*7881196^(9/11) 2865699999302052 a001 32951280099/4870847*1860498^(1/10) 2865699999302052 a001 14619165/224056801*7881196^(9/11) 2865699999302052 a001 267914296/4106118243*7881196^(9/11) 2865699999302052 a001 701408733/10749957122*7881196^(9/11) 2865699999302052 a001 1836311903/28143753123*7881196^(9/11) 2865699999302052 a001 686789568/10525900321*7881196^(9/11) 2865699999302052 a001 12586269025/192900153618*7881196^(9/11) 2865699999302052 a001 32951280099/505019158607*7881196^(9/11) 2865699999302052 a001 86267571272/1322157322203*7881196^(9/11) 2865699999302052 a001 32264490531/494493258286*7881196^(9/11) 2865699999302052 a001 591286729879/9062201101803*7881196^(9/11) 2865699999302052 a001 1548008755920/23725150497407*7881196^(9/11) 2865699999302052 a001 139583862445/2139295485799*7881196^(9/11) 2865699999302052 a001 53316291173/817138163596*7881196^(9/11) 2865699999302052 a001 20365011074/312119004989*7881196^(9/11) 2865699999302052 a001 7778742049/119218851371*7881196^(9/11) 2865699999302052 a001 2971215073/45537549124*7881196^(9/11) 2865699999302052 a001 1134903170/17393796001*7881196^(9/11) 2865699999302052 a001 433494437/6643838879*7881196^(9/11) 2865699999302052 a001 165580141/2537720636*7881196^(9/11) 2865699999302052 a001 63245986/969323029*7881196^(9/11) 2865699999302053 a001 24157817/370248451*7881196^(9/11) 2865699999302054 a001 32522920134769/1134903170 2865699999302054 a001 5702887/12752043*(1/2+1/2*5^(1/2))^23 2865699999302054 a001 5702887/12752043*4106118243^(1/2) 2865699999302055 a001 9227465/599074578*7881196^(10/11) 2865699999302055 a001 14930352/54018521*7881196^(8/11) 2865699999302055 a001 1134903170/12752043*7881196^(4/11) 2865699999302056 a001 39088169/141422324*7881196^(8/11) 2865699999302056 a001 102334155/370248451*7881196^(8/11) 2865699999302056 a001 267914296/969323029*7881196^(8/11) 2865699999302056 a001 701408733/2537720636*7881196^(8/11) 2865699999302056 a001 1836311903/6643838879*7881196^(8/11) 2865699999302056 a001 4807526976/17393796001*7881196^(8/11) 2865699999302056 a001 12586269025/45537549124*7881196^(8/11) 2865699999302056 a001 32951280099/119218851371*7881196^(8/11) 2865699999302056 a001 86267571272/312119004989*7881196^(8/11) 2865699999302056 a001 225851433717/817138163596*7881196^(8/11) 2865699999302056 a001 1548008755920/5600748293801*7881196^(8/11) 2865699999302056 a001 139583862445/505019158607*7881196^(8/11) 2865699999302056 a001 53316291173/192900153618*7881196^(8/11) 2865699999302056 a001 20365011074/73681302247*7881196^(8/11) 2865699999302056 a001 7778742049/28143753123*7881196^(8/11) 2865699999302056 a001 2971215073/10749957122*7881196^(8/11) 2865699999302056 a001 1134903170/4106118243*7881196^(8/11) 2865699999302056 a001 433494437/1568397607*7881196^(8/11) 2865699999302056 a001 165580141/599074578*7881196^(8/11) 2865699999302056 a001 63245986/228826127*7881196^(8/11) 2865699999302057 a001 1836311903/12752043*7881196^(1/3) 2865699999302057 a001 24157817/87403803*7881196^(8/11) 2865699999302057 a001 24157817/33385282*7881196^(2/3) 2865699999302057 a001 39088169/33385282*7881196^(7/11) 2865699999302059 a001 63245986/87403803*7881196^(2/3) 2865699999302059 a001 9227465/141422324*7881196^(9/11) 2865699999302059 a001 165580141/228826127*7881196^(2/3) 2865699999302059 a001 433494437/599074578*7881196^(2/3) 2865699999302059 a001 1134903170/1568397607*7881196^(2/3) 2865699999302059 a001 2971215073/4106118243*7881196^(2/3) 2865699999302059 a001 7778742049/10749957122*7881196^(2/3) 2865699999302059 a001 20365011074/28143753123*7881196^(2/3) 2865699999302059 a001 53316291173/73681302247*7881196^(2/3) 2865699999302059 a001 139583862445/192900153618*7881196^(2/3) 2865699999302059 a001 10610209857723/14662949395604*7881196^(2/3) 2865699999302059 a001 225851433717/312119004989*7881196^(2/3) 2865699999302059 a001 86267571272/119218851371*7881196^(2/3) 2865699999302059 a001 32951280099/45537549124*7881196^(2/3) 2865699999302059 a001 12586269025/17393796001*7881196^(2/3) 2865699999302059 a001 4807526976/6643838879*7881196^(2/3) 2865699999302059 a001 1836311903/2537720636*7881196^(2/3) 2865699999302059 a001 701408733/969323029*7881196^(2/3) 2865699999302059 a001 267914296/370248451*7881196^(2/3) 2865699999302059 a001 102334155/141422324*7881196^(2/3) 2865699999302060 a001 1602508992/4250681*7881196^(3/11) 2865699999302060 a001 39088169/54018521*7881196^(2/3) 2865699999302060 a001 34111385/29134601*7881196^(7/11) 2865699999302060 a001 267914296/228826127*7881196^(7/11) 2865699999302060 a001 9227465/33385282*7881196^(8/11) 2865699999302060 a001 233802911/199691526*7881196^(7/11) 2865699999302060 a001 1836311903/1568397607*7881196^(7/11) 2865699999302060 a001 1602508992/1368706081*7881196^(7/11) 2865699999302060 a001 12586269025/10749957122*7881196^(7/11) 2865699999302060 a001 10983760033/9381251041*7881196^(7/11) 2865699999302060 a001 86267571272/73681302247*7881196^(7/11) 2865699999302060 a001 75283811239/64300051206*7881196^(7/11) 2865699999302060 a001 2504730781961/2139295485799*7881196^(7/11) 2865699999302060 a001 365435296162/312119004989*7881196^(7/11) 2865699999302060 a001 139583862445/119218851371*7881196^(7/11) 2865699999302060 a001 53316291173/45537549124*7881196^(7/11) 2865699999302060 a001 20365011074/17393796001*7881196^(7/11) 2865699999302060 a001 7778742049/6643838879*7881196^(7/11) 2865699999302060 a001 2971215073/2537720636*7881196^(7/11) 2865699999302060 a001 1134903170/969323029*7881196^(7/11) 2865699999302060 a001 433494437/370248451*7881196^(7/11) 2865699999302061 a001 165580141/141422324*7881196^(7/11) 2865699999302062 a001 63245986/54018521*7881196^(7/11) 2865699999302062 a001 165580141/33385282*7881196^(6/11) 2865699999302063 a001 14930352/20633239*7881196^(2/3) 2865699999302064 a001 20365011074/12752043*7881196^(2/11) 2865699999302064 a001 433494437/87403803*7881196^(6/11) 2865699999302065 a001 1134903170/228826127*7881196^(6/11) 2865699999302065 a001 2971215073/599074578*7881196^(6/11) 2865699999302065 a001 7778742049/1568397607*7881196^(6/11) 2865699999302065 a001 20365011074/4106118243*7881196^(6/11) 2865699999302065 a001 53316291173/10749957122*7881196^(6/11) 2865699999302065 a001 139583862445/28143753123*7881196^(6/11) 2865699999302065 a001 365435296162/73681302247*7881196^(6/11) 2865699999302065 a001 956722026041/192900153618*7881196^(6/11) 2865699999302065 a001 2504730781961/505019158607*7881196^(6/11) 2865699999302065 a001 10610209857723/2139295485799*7881196^(6/11) 2865699999302065 a001 140728068720/28374454999*7881196^(6/11) 2865699999302065 a001 591286729879/119218851371*7881196^(6/11) 2865699999302065 a001 225851433717/45537549124*7881196^(6/11) 2865699999302065 a001 86267571272/17393796001*7881196^(6/11) 2865699999302065 a001 32951280099/6643838879*7881196^(6/11) 2865699999302065 a001 1144206275/230701876*7881196^(6/11) 2865699999302065 a001 4807526976/969323029*7881196^(6/11) 2865699999302065 a001 1836311903/370248451*7881196^(6/11) 2865699999302065 a001 701408733/141422324*7881196^(6/11) 2865699999302065 a001 5702887/33385282*20633239^(5/7) 2865699999302066 a001 4976784/4250681*20633239^(3/5) 2865699999302066 a001 267914296/54018521*7881196^(6/11) 2865699999302066 a001 701408733/33385282*7881196^(5/11) 2865699999302066 a001 5702887/370248451*20633239^(6/7) 2865699999302067 a001 5702887/141422324*20633239^(4/5) 2865699999302068 a001 86267571272/12752043*7881196^(1/11) 2865699999302068 a001 24157817/20633239*7881196^(7/11) 2865699999302068 a001 1836311903/87403803*7881196^(5/11) 2865699999302069 a001 102287808/4868641*7881196^(5/11) 2865699999302069 a001 12586269025/599074578*7881196^(5/11) 2865699999302069 a001 32951280099/1568397607*7881196^(5/11) 2865699999302069 a001 86267571272/4106118243*7881196^(5/11) 2865699999302069 a001 225851433717/10749957122*7881196^(5/11) 2865699999302069 a001 591286729879/28143753123*7881196^(5/11) 2865699999302069 a001 1548008755920/73681302247*7881196^(5/11) 2865699999302069 a001 4052739537881/192900153618*7881196^(5/11) 2865699999302069 a001 225749145909/10745088481*7881196^(5/11) 2865699999302069 a001 6557470319842/312119004989*7881196^(5/11) 2865699999302069 a001 2504730781961/119218851371*7881196^(5/11) 2865699999302069 a001 956722026041/45537549124*7881196^(5/11) 2865699999302069 a001 365435296162/17393796001*7881196^(5/11) 2865699999302069 a001 139583862445/6643838879*7881196^(5/11) 2865699999302069 a001 53316291173/2537720636*7881196^(5/11) 2865699999302069 a001 20365011074/969323029*7881196^(5/11) 2865699999302069 a001 7778742049/370248451*7881196^(5/11) 2865699999302069 a001 2971215073/141422324*7881196^(5/11) 2865699999302069 a001 267914296/12752043*20633239^(3/7) 2865699999302069 a001 24157817/12752043*20633239^(4/7) 2865699999302069 a001 433494437/12752043*20633239^(2/5) 2865699999302069 a001 4976784/4250681*141422324^(7/13) 2865699999302070 a001 5702887/33385282*2537720636^(5/9) 2865699999302070 a001 4976784/4250681*2537720636^(7/15) 2865699999302070 a001 85146110326224/2971215073 2865699999302070 a001 4976784/4250681*17393796001^(3/7) 2865699999302070 a001 4976784/4250681*45537549124^(7/17) 2865699999302070 a001 5702887/33385282*312119004989^(5/11) 2865699999302070 a001 4976784/4250681*14662949395604^(1/3) 2865699999302070 a001 5702887/33385282*(1/2+1/2*5^(1/2))^25 2865699999302070 a001 4976784/4250681*(1/2+1/2*5^(1/2))^21 2865699999302070 a001 5702887/33385282*3461452808002^(5/12) 2865699999302070 a001 4976784/4250681*192900153618^(7/18) 2865699999302070 a001 5702887/33385282*28143753123^(1/2) 2865699999302070 a001 4976784/4250681*10749957122^(7/16) 2865699999302070 a001 4976784/4250681*599074578^(1/2) 2865699999302070 a001 5702887/33385282*228826127^(5/8) 2865699999302070 a001 1134903170/54018521*7881196^(5/11) 2865699999302070 a001 2971215073/12752043*20633239^(2/7) 2865699999302070 a001 2971215073/33385282*7881196^(4/11) 2865699999302071 a001 12586269025/12752043*20633239^(1/5) 2865699999302071 a001 4976784/4250681*33385282^(7/12) 2865699999302071 a001 10983760033/4250681*20633239^(1/7) 2865699999302071 a001 9303105/1875749*7881196^(6/11) 2865699999302072 a001 5702887/87403803*141422324^(9/13) 2865699999302072 a001 5702887/87403803*2537720636^(3/5) 2865699999302072 a001 222915410843903/7778742049 2865699999302072 a001 5702887/87403803*45537549124^(9/17) 2865699999302072 a001 39088169/12752043*817138163596^(1/3) 2865699999302072 a001 5702887/87403803*14662949395604^(3/7) 2865699999302072 a001 39088169/12752043*(1/2+1/2*5^(1/2))^19 2865699999302072 a001 5702887/87403803*192900153618^(1/2) 2865699999302072 a001 5702887/87403803*10749957122^(9/16) 2865699999302072 a001 5702887/87403803*599074578^(9/14) 2865699999302072 a001 14930208/103681*7881196^(1/3) 2865699999302072 a001 39088169/12752043*87403803^(1/2) 2865699999302072 a001 5702887/6643838879*141422324^(12/13) 2865699999302072 a001 5702887/1568397607*141422324^(11/13) 2865699999302072 a001 5702887/370248451*141422324^(10/13) 2865699999302072 a001 267914296/12752043*141422324^(5/13) 2865699999302072 a001 365435267505/12752042 2865699999302072 a001 34111385/4250681*45537549124^(1/3) 2865699999302072 a001 34111385/4250681*(1/2+1/2*5^(1/2))^17 2865699999302072 a001 5702887/228826127*1322157322203^(1/2) 2865699999302072 a001 233802911/4250681*141422324^(1/3) 2865699999302072 a001 1134903170/12752043*141422324^(4/13) 2865699999302072 a001 1602508992/4250681*141422324^(3/13) 2865699999302072 a001 20365011074/12752043*141422324^(2/13) 2865699999302072 a001 86267571272/12752043*141422324^(1/13) 2865699999302072 a001 267914296/12752043*2537720636^(1/3) 2865699999302072 a001 267914296/12752043*45537549124^(5/17) 2865699999302072 a001 1527884955772552/53316291173 2865699999302072 a001 267914296/12752043*312119004989^(3/11) 2865699999302072 a001 267914296/12752043*14662949395604^(5/21) 2865699999302072 a001 267914296/12752043*(1/2+1/2*5^(1/2))^15 2865699999302072 a001 5702887/599074578*9062201101803^(1/2) 2865699999302072 a001 267914296/12752043*192900153618^(5/18) 2865699999302072 a001 267914296/12752043*28143753123^(3/10) 2865699999302072 a001 267914296/12752043*10749957122^(5/16) 2865699999302072 a001 267914296/12752043*599074578^(5/14) 2865699999302072 a001 5702887/1568397607*2537720636^(11/15) 2865699999302072 a001 5702887/1568397607*45537549124^(11/17) 2865699999302072 a001 44944435338339/1568358005 2865699999302072 a001 5702887/1568397607*312119004989^(3/5) 2865699999302072 a001 5702887/1568397607*14662949395604^(11/21) 2865699999302072 a001 233802911/4250681*(1/2+1/2*5^(1/2))^13 2865699999302072 a001 5702887/1568397607*192900153618^(11/18) 2865699999302072 a001 233802911/4250681*73681302247^(1/4) 2865699999302072 a001 5702887/1568397607*10749957122^(11/16) 2865699999302072 a001 5702887/4106118243*2537720636^(7/9) 2865699999302072 a001 5702887/119218851371*2537720636^(14/15) 2865699999302072 a001 1597/12752044*2537720636^(8/9) 2865699999302072 a001 5702887/28143753123*2537720636^(13/15) 2865699999302072 a001 5702887/1568397607*1568397607^(3/4) 2865699999302072 a001 5702887/6643838879*2537720636^(4/5) 2865699999302072 a001 5702887/4106118243*17393796001^(5/7) 2865699999302072 a001 5702887/4106118243*312119004989^(7/11) 2865699999302072 a001 1836311903/12752043*312119004989^(1/5) 2865699999302072 a001 10472279279563961/365435296162 2865699999302072 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^11 2865699999302072 a001 5702887/4106118243*505019158607^(5/8) 2865699999302072 a001 5702887/4106118243*28143753123^(7/10) 2865699999302072 a001 1602508992/4250681*2537720636^(1/5) 2865699999302072 a001 20365011074/12752043*2537720636^(2/15) 2865699999302072 a001 10983760033/4250681*2537720636^(1/9) 2865699999302072 a001 2971215073/12752043*2537720636^(2/9) 2865699999302072 a001 86267571272/12752043*2537720636^(1/15) 2865699999302072 a001 1602508992/4250681*45537549124^(3/17) 2865699999302072 a001 27416783093579712/956722026041 2865699999302072 a001 1602508992/4250681*14662949395604^(1/7) 2865699999302072 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^9 2865699999302072 a001 1602508992/4250681*192900153618^(1/6) 2865699999302072 a001 1602508992/4250681*10749957122^(3/16) 2865699999302072 a001 5702887/119218851371*17393796001^(6/7) 2865699999302072 a001 12586269025/12752043*17393796001^(1/7) 2865699999302072 a001 5702887/28143753123*45537549124^(13/17) 2865699999302072 a001 12586269025/12752043*14662949395604^(1/9) 2865699999302072 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^7 2865699999302072 a001 5702887/28143753123*192900153618^(13/18) 2865699999302072 a001 5702887/28143753123*73681302247^(3/4) 2865699999302072 a001 5702887/2139295485799*45537549124^(16/17) 2865699999302072 a001 5702887/505019158607*45537549124^(15/17) 2865699999302072 a001 5702887/119218851371*45537549124^(14/17) 2865699999302072 a001 10983760033/4250681*312119004989^(1/11) 2865699999302072 a001 187917426909945813/6557470319842 2865699999302072 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^5 2865699999302072 a001 10983760033/4250681*28143753123^(1/10) 2865699999302072 a001 86267571272/12752043*45537549124^(1/17) 2865699999302072 a001 86267571272/12752043*14662949395604^(1/21) 2865699999302072 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^3 2865699999302072 a001 86267571272/12752043*192900153618^(1/18) 2865699999302072 a001 5702887/505019158607*312119004989^(9/11) 2865699999302072 a001 5702887/5600748293801*312119004989^(10/11) 2865699999302072 a001 5702887/505019158607*14662949395604^(5/7) 2865699999302072 a001 5702887/3461452808002*505019158607^(7/8) 2865699999302072 a001 5702887/14662949395604*505019158607^(13/14) 2865699999302072 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^2 2865699999302072 a001 5702887/312119004989*23725150497407^(11/16) 2865699999302072 a001 5702887/505019158607*192900153618^(5/6) 2865699999302072 a001 5702887/2139295485799*192900153618^(8/9) 2865699999302072 a001 5702887/9062201101803*192900153618^(17/18) 2865699999302072 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^4 2865699999302072 a001 304056783818716451/10610209857723 2865699999302072 a001 5702887/119218851371*505019158607^(3/4) 2865699999302072 a001 53316291173/12752043*73681302247^(1/13) 2865699999302072 a001 5702887/119218851371*192900153618^(7/9) 2865699999302072 a001 5702887/312119004989*73681302247^(11/13) 2865699999302072 a001 5702887/2139295485799*73681302247^(12/13) 2865699999302072 a001 139583862445/12752043*10749957122^(1/24) 2865699999302072 a001 20365011074/12752043*45537549124^(2/17) 2865699999302072 a001 1597/12752044*312119004989^(8/11) 2865699999302072 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^6 2865699999302072 a001 1597/12752044*23725150497407^(5/8) 2865699999302072 a001 116139356908770638/4052739537881 2865699999302072 a001 86267571272/12752043*10749957122^(1/16) 2865699999302072 a001 1597/12752044*73681302247^(10/13) 2865699999302072 a001 53316291173/12752043*10749957122^(1/12) 2865699999302072 a001 5702887/505019158607*28143753123^(9/10) 2865699999302072 a001 1597/12752044*28143753123^(4/5) 2865699999302072 a001 20365011074/12752043*10749957122^(1/8) 2865699999302072 a001 139583862445/12752043*4106118243^(1/23) 2865699999302072 a001 5702887/17393796001*817138163596^(2/3) 2865699999302072 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^8 2865699999302072 a001 44361286907595463/1548008755920 2865699999302072 a001 7778742049/12752043*73681302247^(2/13) 2865699999302072 a001 7778742049/12752043*10749957122^(1/6) 2865699999302072 a001 53316291173/12752043*4106118243^(2/23) 2865699999302072 a001 5702887/28143753123*10749957122^(13/16) 2865699999302072 a001 5702887/119218851371*10749957122^(7/8) 2865699999302072 a001 1597/12752044*10749957122^(5/6) 2865699999302072 a001 5702887/312119004989*10749957122^(11/12) 2865699999302072 a001 5702887/505019158607*10749957122^(15/16) 2865699999302072 a001 20365011074/12752043*4106118243^(3/23) 2865699999302072 a001 5702887/817138163596*10749957122^(23/24) 2865699999302072 a001 5702887/17393796001*10749957122^(19/24) 2865699999302072 a001 7778742049/12752043*4106118243^(4/23) 2865699999302072 a001 139583862445/12752043*1568397607^(1/22) 2865699999302072 a001 5702887/6643838879*45537549124^(12/17) 2865699999302072 a001 2971215073/12752043*312119004989^(2/11) 2865699999302072 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^10 2865699999302072 a001 16944503814015751/591286729879 2865699999302072 a001 5702887/6643838879*192900153618^(2/3) 2865699999302072 a001 5702887/6643838879*73681302247^(9/13) 2865699999302072 a001 2971215073/12752043*28143753123^(1/5) 2865699999302072 a001 2971215073/12752043*10749957122^(5/24) 2865699999302072 a001 5702887/6643838879*10749957122^(3/4) 2865699999302072 a001 2971215073/12752043*4106118243^(5/23) 2865699999302072 a001 53316291173/12752043*1568397607^(1/11) 2865699999302072 a001 1836311903/12752043*1568397607^(1/4) 2865699999302072 a001 1597/12752044*4106118243^(20/23) 2865699999302072 a001 5702887/17393796001*4106118243^(19/23) 2865699999302072 a001 5702887/119218851371*4106118243^(21/23) 2865699999302072 a001 20365011074/12752043*1568397607^(3/22) 2865699999302072 a001 5702887/312119004989*4106118243^(22/23) 2865699999302072 a001 5702887/6643838879*4106118243^(18/23) 2865699999302072 a001 7778742049/12752043*1568397607^(2/11) 2865699999302072 a001 1134903170/12752043*2537720636^(4/15) 2865699999302072 a001 2971215073/12752043*1568397607^(5/22) 2865699999302072 a001 139583862445/12752043*599074578^(1/21) 2865699999302072 a001 5702887/2537720636*45537549124^(2/3) 2865699999302072 a001 1134903170/12752043*45537549124^(4/17) 2865699999302072 a001 1134903170/12752043*817138163596^(4/19) 2865699999302072 a001 1134903170/12752043*14662949395604^(4/21) 2865699999302072 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^12 2865699999302072 a001 1134903170/12752043*192900153618^(2/9) 2865699999302072 a001 1134903170/12752043*73681302247^(3/13) 2865699999302072 a001 1134903170/12752043*10749957122^(1/4) 2865699999302072 a001 5702887/2537720636*10749957122^(17/24) 2865699999302072 a001 1134903170/12752043*4106118243^(6/23) 2865699999302072 a001 86267571272/12752043*599074578^(1/14) 2865699999302072 a001 5702887/2537720636*4106118243^(17/23) 2865699999302072 a001 53316291173/12752043*599074578^(2/21) 2865699999302072 a001 1134903170/12752043*1568397607^(3/11) 2865699999302072 a001 5702887/17393796001*1568397607^(19/22) 2865699999302072 a001 5702887/6643838879*1568397607^(9/11) 2865699999302072 a001 1597/12752044*1568397607^(10/11) 2865699999302072 a001 5702887/119218851371*1568397607^(21/22) 2865699999302072 a001 20365011074/12752043*599074578^(1/7) 2865699999302072 a001 12586269025/12752043*599074578^(1/6) 2865699999302072 a001 5702887/2537720636*1568397607^(17/22) 2865699999302072 a001 7778742049/12752043*599074578^(4/21) 2865699999302072 a001 1602508992/4250681*599074578^(3/14) 2865699999302072 a001 2971215073/12752043*599074578^(5/21) 2865699999302072 a001 1134903170/12752043*599074578^(2/7) 2865699999302072 a001 139583862445/12752043*228826127^(1/20) 2865699999302072 a001 433494437/12752043*17393796001^(2/7) 2865699999302072 a001 433494437/12752043*14662949395604^(2/9) 2865699999302072 a001 433494437/12752043*(1/2+1/2*5^(1/2))^14 2865699999302072 a001 5702887/969323029*505019158607^(4/7) 2865699999302072 a001 2472169789339619/86267571272 2865699999302072 a001 5702887/969323029*73681302247^(8/13) 2865699999302072 a001 433494437/12752043*10749957122^(7/24) 2865699999302072 a001 5702887/969323029*10749957122^(2/3) 2865699999302072 a001 433494437/12752043*4106118243^(7/23) 2865699999302072 a001 5702887/969323029*4106118243^(16/23) 2865699999302072 a001 433494437/12752043*1568397607^(7/22) 2865699999302072 a001 5702887/969323029*1568397607^(8/11) 2865699999302072 a001 5702887/1568397607*599074578^(11/14) 2865699999302072 a001 53316291173/12752043*228826127^(1/10) 2865699999302072 a001 433494437/12752043*599074578^(1/3) 2865699999302072 a001 5702887/4106118243*599074578^(5/6) 2865699999302072 a001 10983760033/4250681*228826127^(1/8) 2865699999302072 a001 5702887/2537720636*599074578^(17/21) 2865699999302072 a001 5702887/6643838879*599074578^(6/7) 2865699999302072 a001 5702887/17393796001*599074578^(19/21) 2865699999302072 a001 5702887/28143753123*599074578^(13/14) 2865699999302072 a001 1597/12752044*599074578^(20/21) 2865699999302072 a001 20365011074/12752043*228826127^(3/20) 2865699999302072 a001 5702887/969323029*599074578^(16/21) 2865699999302072 a001 7778742049/12752043*228826127^(1/5) 2865699999302072 a001 267914296/12752043*228826127^(3/8) 2865699999302072 a001 2971215073/12752043*228826127^(1/4) 2865699999302072 a001 1134903170/12752043*228826127^(3/10) 2865699999302072 a001 139583862445/12752043*87403803^(1/19) 2865699999302072 a001 5702887/370248451*2537720636^(2/3) 2865699999302072 a001 5702887/370248451*45537549124^(10/17) 2865699999302072 a001 5702887/370248451*312119004989^(6/11) 2865699999302072 a001 5702887/370248451*14662949395604^(10/21) 2865699999302072 a001 165580141/12752043*(1/2+1/2*5^(1/2))^16 2865699999302072 a001 165580141/12752043*23725150497407^(1/4) 2865699999302072 a001 5702887/370248451*192900153618^(5/9) 2865699999302072 a001 165580141/12752043*73681302247^(4/13) 2865699999302072 a001 944284833567067/32951280099 2865699999302072 a001 5702887/370248451*28143753123^(3/5) 2865699999302072 a001 165580141/12752043*10749957122^(1/3) 2865699999302072 a001 5702887/370248451*10749957122^(5/8) 2865699999302072 a001 165580141/12752043*4106118243^(8/23) 2865699999302072 a001 5702887/370248451*4106118243^(15/23) 2865699999302072 a001 165580141/12752043*1568397607^(4/11) 2865699999302072 a001 5702887/370248451*1568397607^(15/22) 2865699999302072 a001 433494437/12752043*228826127^(7/20) 2865699999302072 a001 165580141/12752043*599074578^(8/21) 2865699999302072 a001 5702887/370248451*599074578^(5/7) 2865699999302072 a001 53316291173/12752043*87403803^(2/19) 2865699999302072 a001 165580141/12752043*228826127^(2/5) 2865699999302072 a001 5702887/969323029*228826127^(4/5) 2865699999302072 a001 5702887/2537720636*228826127^(17/20) 2865699999302072 a001 5702887/4106118243*228826127^(7/8) 2865699999302072 a001 5702887/6643838879*228826127^(9/10) 2865699999302072 a001 5702887/17393796001*228826127^(19/20) 2865699999302072 a001 20365011074/12752043*87403803^(3/19) 2865699999302072 a001 5702887/370248451*228826127^(3/4) 2865699999302072 a001 63245986/12752043*141422324^(6/13) 2865699999302072 a001 7778742049/12752043*87403803^(4/19) 2865699999302072 a001 2971215073/12752043*87403803^(5/19) 2865699999302072 a001 1134903170/12752043*87403803^(6/19) 2865699999302072 a001 433494437/12752043*87403803^(7/19) 2865699999302072 a001 139583862445/12752043*33385282^(1/18) 2865699999302072 a001 63245986/12752043*2537720636^(2/5) 2865699999302072 a001 5702887/141422324*17393796001^(4/7) 2865699999302072 a001 63245986/12752043*45537549124^(6/17) 2865699999302072 a001 5702887/141422324*14662949395604^(4/9) 2865699999302072 a001 63245986/12752043*(1/2+1/2*5^(1/2))^18 2865699999302072 a001 5702887/141422324*505019158607^(1/2) 2865699999302072 a001 63245986/12752043*192900153618^(1/3) 2865699999302072 a001 5702887/141422324*73681302247^(7/13) 2865699999302072 a001 360684711361582/12586269025 2865699999302072 a001 63245986/12752043*10749957122^(3/8) 2865699999302072 a001 5702887/141422324*10749957122^(7/12) 2865699999302072 a001 63245986/12752043*4106118243^(9/23) 2865699999302072 a001 5702887/141422324*4106118243^(14/23) 2865699999302072 a001 63245986/12752043*1568397607^(9/22) 2865699999302072 a001 5702887/141422324*1568397607^(7/11) 2865699999302072 a001 63245986/12752043*599074578^(3/7) 2865699999302072 a001 5702887/141422324*599074578^(2/3) 2865699999302072 a001 63245986/12752043*228826127^(9/20) 2865699999302072 a001 165580141/12752043*87403803^(8/19) 2865699999302072 a001 5702887/141422324*228826127^(7/10) 2865699999302072 a001 86267571272/12752043*33385282^(1/12) 2865699999302072 a001 53316291173/12752043*33385282^(1/9) 2865699999302072 a001 5702887/370248451*87403803^(15/19) 2865699999302072 a001 5702887/969323029*87403803^(16/19) 2865699999302072 a001 63245986/12752043*87403803^(9/19) 2865699999302072 a001 5702887/2537720636*87403803^(17/19) 2865699999302072 a001 5702887/6643838879*87403803^(18/19) 2865699999302072 a001 7778742049/1860498*710647^(1/7) 2865699999302073 a001 5702887/141422324*87403803^(14/19) 2865699999302073 a001 20365011074/12752043*33385282^(1/6) 2865699999302073 a001 7778742049/87403803*7881196^(4/11) 2865699999302073 a001 7778742049/12752043*33385282^(2/9) 2865699999302073 a001 1602508992/4250681*33385282^(1/4) 2865699999302073 a001 2971215073/12752043*33385282^(5/18) 2865699999302073 a001 20365011074/228826127*7881196^(4/11) 2865699999302073 a001 53316291173/599074578*7881196^(4/11) 2865699999302073 a001 139583862445/1568397607*7881196^(4/11) 2865699999302073 a001 365435296162/4106118243*7881196^(4/11) 2865699999302073 a001 956722026041/10749957122*7881196^(4/11) 2865699999302073 a001 2504730781961/28143753123*7881196^(4/11) 2865699999302073 a001 6557470319842/73681302247*7881196^(4/11) 2865699999302073 a001 10610209857723/119218851371*7881196^(4/11) 2865699999302073 a001 4052739537881/45537549124*7881196^(4/11) 2865699999302073 a001 1548008755920/17393796001*7881196^(4/11) 2865699999302073 a001 591286729879/6643838879*7881196^(4/11) 2865699999302073 a001 225851433717/2537720636*7881196^(4/11) 2865699999302073 a001 86267571272/969323029*7881196^(4/11) 2865699999302073 a001 1134903170/12752043*33385282^(1/3) 2865699999302073 a001 32951280099/370248451*7881196^(4/11) 2865699999302073 a001 5702887/54018521*141422324^(2/3) 2865699999302073 a001 24157817/12752043*2537720636^(4/9) 2865699999302073 a001 24157817/12752043*(1/2+1/2*5^(1/2))^20 2865699999302073 a001 24157817/12752043*23725150497407^(5/16) 2865699999302073 a001 24157817/12752043*505019158607^(5/14) 2865699999302073 a001 24157817/12752043*73681302247^(5/13) 2865699999302073 a001 5702887/54018521*73681302247^(1/2) 2865699999302073 a001 24157817/12752043*28143753123^(2/5) 2865699999302073 a001 24157817/12752043*10749957122^(5/12) 2865699999302073 a001 5702887/54018521*10749957122^(13/24) 2865699999302073 a001 137769300517679/4807526976 2865699999302073 a001 24157817/12752043*4106118243^(10/23) 2865699999302073 a001 5702887/54018521*4106118243^(13/23) 2865699999302073 a001 24157817/12752043*1568397607^(5/11) 2865699999302073 a001 5702887/54018521*1568397607^(13/22) 2865699999302073 a001 24157817/12752043*599074578^(10/21) 2865699999302073 a001 5702887/54018521*599074578^(13/21) 2865699999302073 a001 12586269025/141422324*7881196^(4/11) 2865699999302073 a001 433494437/12752043*33385282^(7/18) 2865699999302073 a001 24157817/12752043*228826127^(1/2) 2865699999302073 a001 5702887/54018521*228826127^(13/20) 2865699999302073 a001 139583862445/12752043*12752043^(1/17) 2865699999302073 a001 267914296/12752043*33385282^(5/12) 2865699999302073 a001 165580141/12752043*33385282^(4/9) 2865699999302073 a001 24157817/12752043*87403803^(10/19) 2865699999302073 a001 5702887/54018521*87403803^(13/19) 2865699999302074 a001 63245986/12752043*33385282^(1/2) 2865699999302074 a001 5702887/87403803*33385282^(3/4) 2865699999302074 a001 2178309/20633239*4870847^(13/16) 2865699999302074 a001 4807526976/54018521*7881196^(4/11) 2865699999302074 a001 12586269025/87403803*7881196^(1/3) 2865699999302074 a001 53316291173/12752043*12752043^(2/17) 2865699999302074 a001 5702887/141422324*33385282^(7/9) 2865699999302074 a001 5702887/370248451*33385282^(5/6) 2865699999302074 a001 32951280099/228826127*7881196^(1/3) 2865699999302074 a001 43133785636/299537289*7881196^(1/3) 2865699999302074 a001 32264490531/224056801*7881196^(1/3) 2865699999302074 a001 591286729879/4106118243*7881196^(1/3) 2865699999302074 a001 774004377960/5374978561*7881196^(1/3) 2865699999302074 a001 4052739537881/28143753123*7881196^(1/3) 2865699999302074 a001 1515744265389/10525900321*7881196^(1/3) 2865699999302074 a001 3278735159921/22768774562*7881196^(1/3) 2865699999302074 a001 2504730781961/17393796001*7881196^(1/3) 2865699999302074 a001 956722026041/6643838879*7881196^(1/3) 2865699999302074 a001 182717648081/1268860318*7881196^(1/3) 2865699999302074 a001 139583862445/969323029*7881196^(1/3) 2865699999302074 a001 53316291173/370248451*7881196^(1/3) 2865699999302074 a001 5702887/969323029*33385282^(8/9) 2865699999302074 a001 5702887/1568397607*33385282^(11/12) 2865699999302075 a001 10182505537/70711162*7881196^(1/3) 2865699999302075 a001 24157817/12752043*33385282^(5/9) 2865699999302075 a001 5702887/2537720636*33385282^(17/18) 2865699999302075 a001 12586269025/33385282*7881196^(3/11) 2865699999302075 a001 5702887/54018521*33385282^(13/18) 2865699999302075 a001 20365011074/12752043*12752043^(3/17) 2865699999302075 a001 7778742049/54018521*7881196^(1/3) 2865699999302076 a001 433494437/20633239*7881196^(5/11) 2865699999302076 a001 2178309/54018521*4870847^(7/8) 2865699999302076 a001 7778742049/12752043*12752043^(4/17) 2865699999302077 a001 10983760033/29134601*7881196^(3/11) 2865699999302077 a001 86267571272/228826127*7881196^(3/11) 2865699999302077 a001 267913919/710646*7881196^(3/11) 2865699999302077 a001 591286729879/1568397607*7881196^(3/11) 2865699999302077 a001 516002918640/1368706081*7881196^(3/11) 2865699999302077 a001 4052739537881/10749957122*7881196^(3/11) 2865699999302077 a001 3536736619241/9381251041*7881196^(3/11) 2865699999302077 a001 6557470319842/17393796001*7881196^(3/11) 2865699999302077 a001 2504730781961/6643838879*7881196^(3/11) 2865699999302077 a001 956722026041/2537720636*7881196^(3/11) 2865699999302077 a001 365435296162/969323029*7881196^(3/11) 2865699999302077 a001 139583862445/370248451*7881196^(3/11) 2865699999302077 a001 2971215073/12752043*12752043^(5/17) 2865699999302077 a001 53316291173/141422324*7881196^(3/11) 2865699999302078 a001 20365011074/54018521*7881196^(3/11) 2865699999302078 a001 1134903170/12752043*12752043^(6/17) 2865699999302079 a001 5702887/20633239*141422324^(8/13) 2865699999302079 a001 53316291173/33385282*7881196^(2/11) 2865699999302079 a001 5702887/20633239*2537720636^(8/15) 2865699999302079 a001 5702887/20633239*45537549124^(8/17) 2865699999302079 a001 5702887/20633239*14662949395604^(8/21) 2865699999302079 a001 5702887/20633239*(1/2+1/2*5^(1/2))^24 2865699999302079 a001 9227465/12752043*(1/2+1/2*5^(1/2))^22 2865699999302079 a001 5702887/20633239*192900153618^(4/9) 2865699999302079 a001 5702887/20633239*73681302247^(6/13) 2865699999302079 a001 9227465/12752043*10749957122^(11/24) 2865699999302079 a001 5702887/20633239*10749957122^(1/2) 2865699999302079 a001 9227465/12752043*4106118243^(11/23) 2865699999302079 a001 5702887/20633239*4106118243^(12/23) 2865699999302079 a001 52623190191455/1836311903 2865699999302079 a001 9227465/12752043*1568397607^(1/2) 2865699999302079 a001 5702887/20633239*1568397607^(6/11) 2865699999302079 a001 9227465/12752043*599074578^(11/21) 2865699999302079 a001 5702887/20633239*599074578^(4/7) 2865699999302079 a001 9227465/12752043*228826127^(11/20) 2865699999302079 a001 5702887/20633239*228826127^(3/5) 2865699999302079 a001 9227465/12752043*87403803^(11/19) 2865699999302079 a001 5702887/20633239*87403803^(12/19) 2865699999302079 a001 20365011074/4870847*1860498^(2/15) 2865699999302079 a001 433494437/12752043*12752043^(7/17) 2865699999302080 a001 139583862445/12752043*4870847^(1/16) 2865699999302080 a001 1836311903/20633239*7881196^(4/11) 2865699999302080 a001 9227465/12752043*33385282^(11/18) 2865699999302080 a001 165580141/12752043*12752043^(8/17) 2865699999302081 a001 5702887/20633239*33385282^(2/3) 2865699999302081 a001 34111385/4250681*12752043^(1/2) 2865699999302081 a001 139583862445/87403803*7881196^(2/11) 2865699999302081 a001 2971215073/20633239*7881196^(1/3) 2865699999302081 a001 365435296162/228826127*7881196^(2/11) 2865699999302081 a001 956722026041/599074578*7881196^(2/11) 2865699999302081 a001 2504730781961/1568397607*7881196^(2/11) 2865699999302081 a001 6557470319842/4106118243*7881196^(2/11) 2865699999302081 a001 10610209857723/6643838879*7881196^(2/11) 2865699999302081 a001 4052739537881/2537720636*7881196^(2/11) 2865699999302081 a001 1548008755920/969323029*7881196^(2/11) 2865699999302081 a001 591286729879/370248451*7881196^(2/11) 2865699999302081 a001 14930352/969323029*20633239^(6/7) 2865699999302081 a001 225851433717/141422324*7881196^(2/11) 2865699999302082 a001 63245986/12752043*12752043^(9/17) 2865699999302082 a001 14930352/370248451*20633239^(4/5) 2865699999302082 a001 4976784/29134601*20633239^(5/7) 2865699999302082 a001 86267571272/54018521*7881196^(2/11) 2865699999302082 a001 2178309/141422324*4870847^(15/16) 2865699999302083 a001 39088169/33385282*20633239^(3/5) 2865699999302083 a001 32264490531/4769326*7881196^(1/11) 2865699999302083 a001 2/9227465*(1/2+1/2*5^(1/2))^58 2865699999302083 a001 24157817/12752043*12752043^(10/17) 2865699999302083 a001 31622993/16692641*20633239^(4/7) 2865699999302084 a001 39088169/2537720636*20633239^(6/7) 2865699999302084 a001 7778742049/20633239*7881196^(3/11) 2865699999302084 a001 102334155/6643838879*20633239^(6/7) 2865699999302084 a001 9238424/599786069*20633239^(6/7) 2865699999302084 a001 701408733/45537549124*20633239^(6/7) 2865699999302084 a001 1836311903/119218851371*20633239^(6/7) 2865699999302084 a001 4807526976/312119004989*20633239^(6/7) 2865699999302084 a001 12586269025/817138163596*20633239^(6/7) 2865699999302084 a001 32951280099/2139295485799*20633239^(6/7) 2865699999302084 a001 86267571272/5600748293801*20633239^(6/7) 2865699999302084 a001 7787980473/505618944676*20633239^(6/7) 2865699999302084 a001 365435296162/23725150497407*20633239^(6/7) 2865699999302084 a001 139583862445/9062201101803*20633239^(6/7) 2865699999302084 a001 53316291173/3461452808002*20633239^(6/7) 2865699999302084 a001 20365011074/1322157322203*20633239^(6/7) 2865699999302084 a001 7778742049/505019158607*20633239^(6/7) 2865699999302084 a001 2971215073/192900153618*20633239^(6/7) 2865699999302084 a001 1134903170/73681302247*20633239^(6/7) 2865699999302084 a001 433494437/28143753123*20633239^(6/7) 2865699999302084 a001 39088169/969323029*20633239^(4/5) 2865699999302084 a001 165580141/10749957122*20633239^(6/7) 2865699999302084 a001 63245986/4106118243*20633239^(6/7) 2865699999302084 a001 701408733/33385282*20633239^(3/7) 2865699999302084 a001 9303105/230701876*20633239^(4/5) 2865699999302084 a001 267914296/6643838879*20633239^(4/5) 2865699999302084 a001 701408733/17393796001*20633239^(4/5) 2865699999302084 a001 1836311903/45537549124*20633239^(4/5) 2865699999302084 a001 4807526976/119218851371*20633239^(4/5) 2865699999302084 a001 1144206275/28374454999*20633239^(4/5) 2865699999302084 a001 32951280099/817138163596*20633239^(4/5) 2865699999302084 a001 86267571272/2139295485799*20633239^(4/5) 2865699999302084 a001 225851433717/5600748293801*20633239^(4/5) 2865699999302084 a001 591286729879/14662949395604*20633239^(4/5) 2865699999302084 a001 365435296162/9062201101803*20633239^(4/5) 2865699999302084 a001 139583862445/3461452808002*20633239^(4/5) 2865699999302084 a001 53316291173/1322157322203*20633239^(4/5) 2865699999302084 a001 20365011074/505019158607*20633239^(4/5) 2865699999302084 a001 7778742049/192900153618*20633239^(4/5) 2865699999302084 a001 2971215073/73681302247*20633239^(4/5) 2865699999302084 a001 1134903170/28143753123*20633239^(4/5) 2865699999302084 a001 433494437/10749957122*20633239^(4/5) 2865699999302084 a001 165580141/4106118243*20633239^(4/5) 2865699999302084 a001 567451585/16692641*20633239^(2/5) 2865699999302084 a001 63245986/1568397607*20633239^(4/5) 2865699999302085 a001 39088169/228826127*20633239^(5/7) 2865699999302085 a001 222915410843904/7778742049 2865699999302085 a001 7465176/16692641*(1/2+1/2*5^(1/2))^23 2865699999302085 a001 7465176/16692641*4106118243^(1/2) 2865699999302085 a001 3524578/12752043*7881196^(8/11) 2865699999302085 a001 34111385/199691526*20633239^(5/7) 2865699999302085 a001 267914296/1568397607*20633239^(5/7) 2865699999302085 a001 233802911/1368706081*20633239^(5/7) 2865699999302085 a001 1836311903/10749957122*20633239^(5/7) 2865699999302085 a001 1602508992/9381251041*20633239^(5/7) 2865699999302085 a001 12586269025/73681302247*20633239^(5/7) 2865699999302085 a001 10983760033/64300051206*20633239^(5/7) 2865699999302085 a001 86267571272/505019158607*20633239^(5/7) 2865699999302085 a001 75283811239/440719107401*20633239^(5/7) 2865699999302085 a001 2504730781961/14662949395604*20633239^(5/7) 2865699999302085 a001 139583862445/817138163596*20633239^(5/7) 2865699999302085 a001 53316291173/312119004989*20633239^(5/7) 2865699999302085 a001 20365011074/119218851371*20633239^(5/7) 2865699999302085 a001 7778742049/45537549124*20633239^(5/7) 2865699999302085 a001 2971215073/17393796001*20633239^(5/7) 2865699999302085 a001 1134903170/6643838879*20633239^(5/7) 2865699999302085 a001 433494437/2537720636*20633239^(5/7) 2865699999302085 a001 24157817/1568397607*20633239^(6/7) 2865699999302085 a001 165580141/969323029*20633239^(5/7) 2865699999302085 a001 63245986/370248451*20633239^(5/7) 2865699999302085 a001 591286729879/87403803*7881196^(1/11) 2865699999302085 a001 7778742049/33385282*20633239^(2/7) 2865699999302085 a001 34111385/29134601*20633239^(3/5) 2865699999302085 a001 24157817/599074578*20633239^(4/5) 2865699999302085 a001 1548008755920/228826127*7881196^(1/11) 2865699999302086 a001 4052739537881/599074578*7881196^(1/11) 2865699999302086 a001 165580141/87403803*20633239^(4/7) 2865699999302086 a001 1515744265389/224056801*7881196^(1/11) 2865699999302086 a001 6557470319842/969323029*7881196^(1/11) 2865699999302086 a001 2504730781961/370248451*7881196^(1/11) 2865699999302086 a001 267914296/228826127*20633239^(3/5) 2865699999302086 a001 956722026041/141422324*7881196^(1/11) 2865699999302086 a001 233802911/199691526*20633239^(3/5) 2865699999302086 a001 1836311903/1568397607*20633239^(3/5) 2865699999302086 a001 1602508992/1368706081*20633239^(3/5) 2865699999302086 a001 12586269025/10749957122*20633239^(3/5) 2865699999302086 a001 10983760033/9381251041*20633239^(3/5) 2865699999302086 a001 86267571272/73681302247*20633239^(3/5) 2865699999302086 a001 75283811239/64300051206*20633239^(3/5) 2865699999302086 a001 2504730781961/2139295485799*20633239^(3/5) 2865699999302086 a001 365435296162/312119004989*20633239^(3/5) 2865699999302086 a001 139583862445/119218851371*20633239^(3/5) 2865699999302086 a001 53316291173/45537549124*20633239^(3/5) 2865699999302086 a001 20365011074/17393796001*20633239^(3/5) 2865699999302086 a001 7778742049/6643838879*20633239^(3/5) 2865699999302086 a001 2971215073/2537720636*20633239^(3/5) 2865699999302086 a001 1134903170/969323029*20633239^(3/5) 2865699999302086 a001 433494437/370248451*20633239^(3/5) 2865699999302086 a001 32951280099/33385282*20633239^(1/5) 2865699999302086 a001 433494437/228826127*20633239^(4/7) 2865699999302086 a001 165580141/141422324*20633239^(3/5) 2865699999302086 a001 567451585/299537289*20633239^(4/7) 2865699999302086 a001 2971215073/1568397607*20633239^(4/7) 2865699999302086 a001 7778742049/4106118243*20633239^(4/7) 2865699999302086 a001 10182505537/5374978561*20633239^(4/7) 2865699999302086 a001 53316291173/28143753123*20633239^(4/7) 2865699999302086 a001 139583862445/73681302247*20633239^(4/7) 2865699999302086 a001 182717648081/96450076809*20633239^(4/7) 2865699999302086 a001 956722026041/505019158607*20633239^(4/7) 2865699999302086 a001 10610209857723/5600748293801*20633239^(4/7) 2865699999302086 a001 591286729879/312119004989*20633239^(4/7) 2865699999302086 a001 225851433717/119218851371*20633239^(4/7) 2865699999302086 a001 21566892818/11384387281*20633239^(4/7) 2865699999302086 a001 32951280099/17393796001*20633239^(4/7) 2865699999302086 a001 12586269025/6643838879*20633239^(4/7) 2865699999302086 a001 1201881744/634430159*20633239^(4/7) 2865699999302086 a001 1836311903/969323029*20633239^(4/7) 2865699999302086 a001 701408733/370248451*20633239^(4/7) 2865699999302086 a001 66978574/35355581*20633239^(4/7) 2865699999302086 a001 24157817/141422324*20633239^(5/7) 2865699999302086 a001 43133785636/16692641*20633239^(1/7) 2865699999302086 a001 1836311903/87403803*20633239^(3/7) 2865699999302087 a001 365435296162/54018521*7881196^(1/11) 2865699999302087 a001 5702887/54018521*12752043^(13/17) 2865699999302087 a001 2971215073/87403803*20633239^(2/5) 2865699999302087 a001 39088169/33385282*141422324^(7/13) 2865699999302087 a001 5702887/141422324*12752043^(14/17) 2865699999302087 a001 4976784/29134601*2537720636^(5/9) 2865699999302087 a001 39088169/33385282*2537720636^(7/15) 2865699999302087 a001 39088169/33385282*17393796001^(3/7) 2865699999302087 a001 291800061102744/10182505537 2865699999302087 a001 39088169/33385282*45537549124^(7/17) 2865699999302087 a001 4976784/29134601*312119004989^(5/11) 2865699999302087 a001 39088169/33385282*14662949395604^(1/3) 2865699999302087 a001 39088169/33385282*(1/2+1/2*5^(1/2))^21 2865699999302087 a001 4976784/29134601*3461452808002^(5/12) 2865699999302087 a001 39088169/33385282*192900153618^(7/18) 2865699999302087 a001 4976784/29134601*28143753123^(1/2) 2865699999302087 a001 39088169/33385282*10749957122^(7/16) 2865699999302087 a001 39088169/33385282*599074578^(1/2) 2865699999302087 a001 102287808/4868641*20633239^(3/7) 2865699999302087 a001 102334155/54018521*20633239^(4/7) 2865699999302087 a001 63245986/54018521*20633239^(3/5) 2865699999302087 a001 4976784/29134601*228826127^(5/8) 2865699999302087 a001 12586269025/599074578*20633239^(3/7) 2865699999302087 a001 32951280099/1568397607*20633239^(3/7) 2865699999302087 a001 86267571272/4106118243*20633239^(3/7) 2865699999302087 a001 225851433717/10749957122*20633239^(3/7) 2865699999302087 a001 591286729879/28143753123*20633239^(3/7) 2865699999302087 a001 1548008755920/73681302247*20633239^(3/7) 2865699999302087 a001 4052739537881/192900153618*20633239^(3/7) 2865699999302087 a001 225749145909/10745088481*20633239^(3/7) 2865699999302087 a001 6557470319842/312119004989*20633239^(3/7) 2865699999302087 a001 2504730781961/119218851371*20633239^(3/7) 2865699999302087 a001 956722026041/45537549124*20633239^(3/7) 2865699999302087 a001 365435296162/17393796001*20633239^(3/7) 2865699999302087 a001 139583862445/6643838879*20633239^(3/7) 2865699999302087 a001 53316291173/2537720636*20633239^(3/7) 2865699999302087 a001 20365011074/969323029*20633239^(3/7) 2865699999302087 a001 7778742049/370248451*20633239^(3/7) 2865699999302087 a001 7778742049/228826127*20633239^(2/5) 2865699999302087 a001 2971215073/141422324*20633239^(3/7) 2865699999302087 a001 14930352/228826127*141422324^(9/13) 2865699999302087 a001 14930352/17393796001*141422324^(12/13) 2865699999302087 a001 10182505537/299537289*20633239^(2/5) 2865699999302087 a001 53316291173/1568397607*20633239^(2/5) 2865699999302087 a001 139583862445/4106118243*20633239^(2/5) 2865699999302087 a001 182717648081/5374978561*20633239^(2/5) 2865699999302087 a001 4976784/1368706081*141422324^(11/13) 2865699999302087 a001 956722026041/28143753123*20633239^(2/5) 2865699999302087 a001 2504730781961/73681302247*20633239^(2/5) 2865699999302087 a001 3278735159921/96450076809*20633239^(2/5) 2865699999302087 a001 10610209857723/312119004989*20633239^(2/5) 2865699999302087 a001 4052739537881/119218851371*20633239^(2/5) 2865699999302087 a001 387002188980/11384387281*20633239^(2/5) 2865699999302087 a001 591286729879/17393796001*20633239^(2/5) 2865699999302087 a001 225851433717/6643838879*20633239^(2/5) 2865699999302087 a001 1135099622/33391061*20633239^(2/5) 2865699999302087 a001 32951280099/969323029*20633239^(2/5) 2865699999302087 a001 14930352/969323029*141422324^(10/13) 2865699999302087 a001 12586269025/370248451*20633239^(2/5) 2865699999302087 a001 701408733/33385282*141422324^(5/13) 2865699999302087 a001 14930352/228826127*2537720636^(3/5) 2865699999302087 a001 14930352/228826127*45537549124^(9/17) 2865699999302087 a001 1527884955772560/53316291173 2865699999302087 a001 14619165/4769326*817138163596^(1/3) 2865699999302087 a001 14930352/228826127*14662949395604^(3/7) 2865699999302087 a001 14619165/4769326*(1/2+1/2*5^(1/2))^19 2865699999302087 a001 14930352/228826127*192900153618^(1/2) 2865699999302087 a001 14930352/228826127*10749957122^(9/16) 2865699999302087 a001 14930352/228826127*599074578^(9/14) 2865699999302087 a001 1836311903/33385282*141422324^(1/3) 2865699999302087 a001 165580141/33385282*141422324^(6/13) 2865699999302087 a001 2971215073/33385282*141422324^(4/13) 2865699999302087 a001 12586269025/33385282*141422324^(3/13) 2865699999302087 a001 53316291173/33385282*141422324^(2/13) 2865699999302087 a001 32264490531/4769326*141422324^(1/13) 2865699999302087 a001 133957148/16692641*45537549124^(1/3) 2865699999302087 a001 4000054745112192/139583862445 2865699999302087 a001 133957148/16692641*(1/2+1/2*5^(1/2))^17 2865699999302087 a001 829464/33281921*1322157322203^(1/2) 2865699999302087 a001 701408733/33385282*2537720636^(1/3) 2865699999302087 a001 701408733/33385282*45537549124^(5/17) 2865699999302087 a001 701408733/33385282*312119004989^(3/11) 2865699999302087 a001 701408733/33385282*14662949395604^(5/21) 2865699999302087 a001 701408733/33385282*(1/2+1/2*5^(1/2))^15 2865699999302087 a001 14930352/1568397607*9062201101803^(1/2) 2865699999302087 a001 701408733/33385282*192900153618^(5/18) 2865699999302087 a001 701408733/33385282*28143753123^(3/10) 2865699999302087 a001 701408733/33385282*10749957122^(5/16) 2865699999302087 a001 4976784/1368706081*2537720636^(11/15) 2865699999302087 a001 14930352/312119004989*2537720636^(14/15) 2865699999302087 a001 14930352/119218851371*2537720636^(8/9) 2865699999302087 a001 14930352/73681302247*2537720636^(13/15) 2865699999302087 a001 7465176/5374978561*2537720636^(7/9) 2865699999302087 a001 14930352/17393796001*2537720636^(4/5) 2865699999302087 a001 4976784/1368706081*45537549124^(11/17) 2865699999302087 a001 4976784/1368706081*312119004989^(3/5) 2865699999302087 a001 27416783093579856/956722026041 2865699999302087 a001 4976784/1368706081*14662949395604^(11/21) 2865699999302087 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^13 2865699999302087 a001 4976784/1368706081*192900153618^(11/18) 2865699999302087 a001 1836311903/33385282*73681302247^(1/4) 2865699999302087 a001 4976784/1368706081*10749957122^(11/16) 2865699999302087 a001 12586269025/33385282*2537720636^(1/5) 2865699999302087 a001 7778742049/33385282*2537720636^(2/9) 2865699999302087 a001 53316291173/33385282*2537720636^(2/15) 2865699999302087 a001 2971215073/33385282*2537720636^(4/15) 2865699999302087 a001 43133785636/16692641*2537720636^(1/9) 2865699999302087 a001 7465176/5374978561*17393796001^(5/7) 2865699999302087 a001 32264490531/4769326*2537720636^(1/15) 2865699999302087 a001 7465176/5374978561*312119004989^(7/11) 2865699999302087 a001 14930208/103681*312119004989^(1/5) 2865699999302087 a001 7465176/5374978561*14662949395604^(5/9) 2865699999302087 a001 14930208/103681*(1/2+1/2*5^(1/2))^11 2865699999302087 a001 7465176/5374978561*28143753123^(7/10) 2865699999302087 a001 14930352/312119004989*17393796001^(6/7) 2865699999302087 a001 12586269025/33385282*45537549124^(3/17) 2865699999302087 a001 12586269025/33385282*817138163596^(3/19) 2865699999302087 a001 12586269025/33385282*14662949395604^(1/7) 2865699999302087 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^9 2865699999302087 a001 12586269025/33385282*192900153618^(1/6) 2865699999302087 a001 32951280099/33385282*17393796001^(1/7) 2865699999302087 a001 14930352/73681302247*45537549124^(13/17) 2865699999302087 a001 14930352/5600748293801*45537549124^(16/17) 2865699999302087 a001 4976784/440719107401*45537549124^(15/17) 2865699999302087 a001 14930352/312119004989*45537549124^(14/17) 2865699999302087 a001 14930352/73681302247*14662949395604^(13/21) 2865699999302087 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^7 2865699999302087 a001 14930352/73681302247*192900153618^(13/18) 2865699999302087 a001 14930352/73681302247*73681302247^(3/4) 2865699999302087 a001 32264490531/4769326*45537549124^(1/17) 2865699999302087 a001 43133785636/16692641*312119004989^(1/11) 2865699999302087 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^5 2865699999302087 a001 196452/192933544679*312119004989^(10/11) 2865699999302087 a001 32264490531/4769326*14662949395604^(1/21) 2865699999302087 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^3 2865699999302087 a001 14930352/23725150497407*817138163596^(17/19) 2865699999302087 a001 14930352/23725150497407*14662949395604^(17/21) 2865699999302087 a006 5^(1/2)*Fibonacci(59)/Lucas(36)/sqrt(5) 2865699999302087 a001 3732588/204284540899*23725150497407^(11/16) 2865699999302087 a001 14930352/312119004989*14662949395604^(2/3) 2865699999302087 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^4 2865699999302087 a001 139583862445/33385282*23725150497407^(1/16) 2865699999302087 a001 14930352/312119004989*505019158607^(3/4) 2865699999302087 a001 14930352/5600748293801*192900153618^(8/9) 2865699999302087 a001 139583862445/33385282*73681302247^(1/13) 2865699999302087 a001 14930352/23725150497407*192900153618^(17/18) 2865699999302087 a001 14930352/312119004989*192900153618^(7/9) 2865699999302087 a001 14930352/119218851371*312119004989^(8/11) 2865699999302087 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^6 2865699999302087 a001 14930352/119218851371*23725150497407^(5/8) 2865699999302087 a001 43133785636/16692641*28143753123^(1/10) 2865699999302087 a001 3732588/204284540899*73681302247^(11/13) 2865699999302087 a001 14930352/5600748293801*73681302247^(12/13) 2865699999302087 a001 14930352/119218851371*73681302247^(10/13) 2865699999302087 a001 12586269025/33385282*10749957122^(3/16) 2865699999302087 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^8 2865699999302087 a001 10182505537/16692641*23725150497407^(1/8) 2865699999302087 a001 101352261272906016/3536736619241 2865699999302087 a001 10182505537/16692641*73681302247^(2/13) 2865699999302087 a001 32264490531/4769326*10749957122^(1/16) 2865699999302087 a001 139583862445/33385282*10749957122^(1/12) 2865699999302087 a001 14930352/119218851371*28143753123^(4/5) 2865699999302087 a001 4976784/440719107401*28143753123^(9/10) 2865699999302087 a001 53316291173/33385282*10749957122^(1/8) 2865699999302087 a001 10182505537/16692641*10749957122^(1/6) 2865699999302087 a001 182717648081/16692641*4106118243^(1/23) 2865699999302087 a001 14930352/17393796001*45537549124^(12/17) 2865699999302087 a001 14930352/17393796001*14662949395604^(4/7) 2865699999302087 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^10 2865699999302087 a001 116139356908771248/4052739537881 2865699999302087 a001 14930352/17393796001*192900153618^(2/3) 2865699999302087 a001 14930352/17393796001*73681302247^(9/13) 2865699999302087 a001 7778742049/33385282*28143753123^(1/5) 2865699999302087 a001 7778742049/33385282*10749957122^(5/24) 2865699999302087 a001 139583862445/33385282*4106118243^(2/23) 2865699999302087 a001 14930352/73681302247*10749957122^(13/16) 2865699999302087 a001 14930352/119218851371*10749957122^(5/6) 2865699999302087 a001 3732588/11384387281*10749957122^(19/24) 2865699999302087 a001 14930352/312119004989*10749957122^(7/8) 2865699999302087 a001 53316291173/33385282*4106118243^(3/23) 2865699999302087 a001 3732588/204284540899*10749957122^(11/12) 2865699999302087 a001 4976784/440719107401*10749957122^(15/16) 2865699999302087 a001 14930352/2139295485799*10749957122^(23/24) 2865699999302087 a001 14930352/17393796001*10749957122^(3/4) 2865699999302087 a001 10182505537/16692641*4106118243^(4/23) 2865699999302087 a001 7778742049/33385282*4106118243^(5/23) 2865699999302087 a001 182717648081/16692641*1568397607^(1/22) 2865699999302087 a001 14930352/6643838879*45537549124^(2/3) 2865699999302087 a001 2971215073/33385282*45537549124^(4/17) 2865699999302087 a001 2971215073/33385282*817138163596^(4/19) 2865699999302087 a001 2971215073/33385282*14662949395604^(4/21) 2865699999302087 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^12 2865699999302087 a001 2971215073/33385282*192900153618^(2/9) 2865699999302087 a001 2971215073/33385282*73681302247^(3/13) 2865699999302087 a001 2971215073/33385282*10749957122^(1/4) 2865699999302087 a001 14930352/6643838879*10749957122^(17/24) 2865699999302087 a001 139583862445/33385282*1568397607^(1/11) 2865699999302087 a001 2971215073/33385282*4106118243^(6/23) 2865699999302087 a001 3732588/11384387281*4106118243^(19/23) 2865699999302087 a001 14930352/17393796001*4106118243^(18/23) 2865699999302087 a001 14930352/119218851371*4106118243^(20/23) 2865699999302087 a001 14930352/312119004989*4106118243^(21/23) 2865699999302087 a001 53316291173/33385282*1568397607^(3/22) 2865699999302087 a001 3732588/204284540899*4106118243^(22/23) 2865699999302087 a001 14930352/6643838879*4106118243^(17/23) 2865699999302087 a001 10182505537/16692641*1568397607^(2/11) 2865699999302087 a001 14930208/103681*1568397607^(1/4) 2865699999302087 a001 7778742049/33385282*1568397607^(5/22) 2865699999302087 a001 182717648081/16692641*599074578^(1/21) 2865699999302087 a001 2971215073/33385282*1568397607^(3/11) 2865699999302087 a001 567451585/16692641*17393796001^(2/7) 2865699999302087 a001 567451585/16692641*14662949395604^(2/9) 2865699999302087 a001 567451585/16692641*(1/2+1/2*5^(1/2))^14 2865699999302087 a001 16944503814015840/591286729879 2865699999302087 a001 196452/33391061*73681302247^(8/13) 2865699999302087 a001 567451585/16692641*10749957122^(7/24) 2865699999302087 a001 196452/33391061*10749957122^(2/3) 2865699999302087 a001 567451585/16692641*4106118243^(7/23) 2865699999302087 a001 196452/33391061*4106118243^(16/23) 2865699999302087 a001 32264490531/4769326*599074578^(1/14) 2865699999302087 a001 4976784/1368706081*1568397607^(3/4) 2865699999302087 a001 139583862445/33385282*599074578^(2/21) 2865699999302087 a001 567451585/16692641*1568397607^(7/22) 2865699999302087 a001 14930352/17393796001*1568397607^(9/11) 2865699999302087 a001 14930352/6643838879*1568397607^(17/22) 2865699999302087 a001 3732588/11384387281*1568397607^(19/22) 2865699999302087 a001 14930352/119218851371*1568397607^(10/11) 2865699999302087 a001 14930352/312119004989*1568397607^(21/22) 2865699999302087 a001 53316291173/33385282*599074578^(1/7) 2865699999302087 a001 196452/33391061*1568397607^(8/11) 2865699999302087 a001 32951280099/33385282*599074578^(1/6) 2865699999302087 a001 10182505537/16692641*599074578^(4/21) 2865699999302087 a001 701408733/33385282*599074578^(5/14) 2865699999302087 a001 12586269025/33385282*599074578^(3/14) 2865699999302087 a001 7778742049/33385282*599074578^(5/21) 2865699999302087 a001 2971215073/33385282*599074578^(2/7) 2865699999302087 a001 182717648081/16692641*228826127^(1/20) 2865699999302087 a001 14930352/969323029*2537720636^(2/3) 2865699999302087 a001 14930352/969323029*45537549124^(10/17) 2865699999302087 a001 14930352/969323029*312119004989^(6/11) 2865699999302087 a001 14930352/969323029*14662949395604^(10/21) 2865699999302087 a001 433494437/33385282*(1/2+1/2*5^(1/2))^16 2865699999302087 a001 433494437/33385282*23725150497407^(1/4) 2865699999302087 a001 2157408178150608/75283811239 2865699999302087 a001 14930352/969323029*192900153618^(5/9) 2865699999302087 a001 433494437/33385282*73681302247^(4/13) 2865699999302087 a001 14930352/969323029*28143753123^(3/5) 2865699999302087 a001 433494437/33385282*10749957122^(1/3) 2865699999302087 a001 14930352/969323029*10749957122^(5/8) 2865699999302087 a001 567451585/16692641*599074578^(1/3) 2865699999302087 a001 433494437/33385282*4106118243^(8/23) 2865699999302087 a001 14930352/969323029*4106118243^(15/23) 2865699999302087 a001 433494437/33385282*1568397607^(4/11) 2865699999302087 a001 14930352/969323029*1568397607^(15/22) 2865699999302087 a001 139583862445/33385282*228826127^(1/10) 2865699999302087 a001 433494437/33385282*599074578^(8/21) 2865699999302087 a001 4976784/1368706081*599074578^(11/14) 2865699999302087 a001 196452/33391061*599074578^(16/21) 2865699999302087 a001 14930352/6643838879*599074578^(17/21) 2865699999302087 a001 7465176/5374978561*599074578^(5/6) 2865699999302087 a001 43133785636/16692641*228826127^(1/8) 2865699999302087 a001 14930352/17393796001*599074578^(6/7) 2865699999302087 a001 3732588/11384387281*599074578^(19/21) 2865699999302087 a001 14930352/73681302247*599074578^(13/14) 2865699999302087 a001 14930352/119218851371*599074578^(20/21) 2865699999302087 a001 53316291173/33385282*228826127^(3/20) 2865699999302087 a001 14930352/969323029*599074578^(5/7) 2865699999302087 a001 10182505537/16692641*228826127^(1/5) 2865699999302087 a001 7778742049/33385282*228826127^(1/4) 2865699999302087 a001 2971215073/33385282*228826127^(3/10) 2865699999302087 a001 701408733/33385282*228826127^(3/8) 2865699999302087 a001 567451585/16692641*228826127^(7/20) 2865699999302087 a001 182717648081/16692641*87403803^(1/19) 2865699999302087 a001 165580141/33385282*2537720636^(2/5) 2865699999302087 a001 14930352/370248451*17393796001^(4/7) 2865699999302087 a001 165580141/33385282*45537549124^(6/17) 2865699999302087 a001 14930352/370248451*14662949395604^(4/9) 2865699999302087 a001 165580141/33385282*(1/2+1/2*5^(1/2))^18 2865699999302087 a001 165580141/33385282*192900153618^(1/3) 2865699999302087 a001 956722054698/33385283 2865699999302087 a001 14930352/370248451*73681302247^(7/13) 2865699999302087 a001 165580141/33385282*10749957122^(3/8) 2865699999302087 a001 14930352/370248451*10749957122^(7/12) 2865699999302087 a001 165580141/33385282*4106118243^(9/23) 2865699999302087 a001 14930352/370248451*4106118243^(14/23) 2865699999302087 a001 165580141/33385282*1568397607^(9/22) 2865699999302087 a001 14930352/370248451*1568397607^(7/11) 2865699999302087 a001 1201881744/35355581*20633239^(2/5) 2865699999302087 a001 165580141/33385282*599074578^(3/7) 2865699999302087 a001 433494437/33385282*228826127^(2/5) 2865699999302087 a001 14930352/370248451*599074578^(2/3) 2865699999302087 a001 139583862445/33385282*87403803^(2/19) 2865699999302087 a001 14930352/969323029*228826127^(3/4) 2865699999302087 a001 196452/33391061*228826127^(4/5) 2865699999302087 a001 165580141/33385282*228826127^(9/20) 2865699999302087 a001 14930352/6643838879*228826127^(17/20) 2865699999302087 a001 53316291173/12752043*4870847^(1/8) 2865699999302087 a001 3732588/35355581*141422324^(2/3) 2865699999302087 a001 7465176/5374978561*228826127^(7/8) 2865699999302087 a001 14930352/17393796001*228826127^(9/10) 2865699999302087 a001 3732588/11384387281*228826127^(19/20) 2865699999302087 a001 14930352/370248451*228826127^(7/10) 2865699999302087 a001 53316291173/33385282*87403803^(3/19) 2865699999302087 a001 10182505537/16692641*87403803^(4/19) 2865699999302087 a001 7778742049/33385282*87403803^(5/19) 2865699999302087 a001 2971215073/33385282*87403803^(6/19) 2865699999302087 a001 14619165/4769326*87403803^(1/2) 2865699999302087 a001 567451585/16692641*87403803^(7/19) 2865699999302087 a001 182717648081/16692641*33385282^(1/18) 2865699999302087 a001 31622993/16692641*2537720636^(4/9) 2865699999302087 a001 31622993/16692641*(1/2+1/2*5^(1/2))^20 2865699999302087 a001 31622993/16692641*23725150497407^(5/16) 2865699999302087 a001 31622993/16692641*505019158607^(5/14) 2865699999302087 a001 31622993/16692641*73681302247^(5/13) 2865699999302087 a001 3732588/35355581*73681302247^(1/2) 2865699999302087 a001 1350908202528/47140601 2865699999302087 a001 31622993/16692641*28143753123^(2/5) 2865699999302087 a001 31622993/16692641*10749957122^(5/12) 2865699999302087 a001 3732588/35355581*10749957122^(13/24) 2865699999302087 a001 31622993/16692641*4106118243^(10/23) 2865699999302087 a001 3732588/35355581*4106118243^(13/23) 2865699999302087 a001 31622993/16692641*1568397607^(5/11) 2865699999302087 a001 3732588/35355581*1568397607^(13/22) 2865699999302087 a001 31622993/16692641*599074578^(10/21) 2865699999302087 a001 3732588/35355581*599074578^(13/21) 2865699999302087 a001 433494437/33385282*87403803^(8/19) 2865699999302087 a001 31622993/16692641*228826127^(1/2) 2865699999302087 a001 3732588/35355581*228826127^(13/20) 2865699999302087 a001 165580141/33385282*87403803^(9/19) 2865699999302087 a001 32264490531/4769326*33385282^(1/12) 2865699999302087 a001 20365011074/87403803*20633239^(2/7) 2865699999302087 a001 139583862445/33385282*33385282^(1/9) 2865699999302087 a001 14930352/370248451*87403803^(14/19) 2865699999302087 a001 14930352/969323029*87403803^(15/19) 2865699999302087 a001 196452/33391061*87403803^(16/19) 2865699999302087 a001 5702887/7881196*7881196^(2/3) 2865699999302088 a001 14930352/6643838879*87403803^(17/19) 2865699999302088 a001 31622993/16692641*87403803^(10/19) 2865699999302088 a001 14930352/17393796001*87403803^(18/19) 2865699999302088 a001 3732588/35355581*87403803^(13/19) 2865699999302088 a001 53316291173/33385282*33385282^(1/6) 2865699999302088 a001 5702887/370248451*12752043^(15/17) 2865699999302088 a001 10182505537/16692641*33385282^(2/9) 2865699999302088 a001 53316291173/228826127*20633239^(2/7) 2865699999302088 a001 139583862445/599074578*20633239^(2/7) 2865699999302088 a001 12586269025/33385282*33385282^(1/4) 2865699999302088 a001 365435296162/1568397607*20633239^(2/7) 2865699999302088 a001 956722026041/4106118243*20633239^(2/7) 2865699999302088 a001 2504730781961/10749957122*20633239^(2/7) 2865699999302088 a001 6557470319842/28143753123*20633239^(2/7) 2865699999302088 a001 10610209857723/45537549124*20633239^(2/7) 2865699999302088 a001 4052739537881/17393796001*20633239^(2/7) 2865699999302088 a001 1548008755920/6643838879*20633239^(2/7) 2865699999302088 a001 591286729879/2537720636*20633239^(2/7) 2865699999302088 a001 225851433717/969323029*20633239^(2/7) 2865699999302088 a001 86267571272/370248451*20633239^(2/7) 2865699999302088 a001 1134903170/54018521*20633239^(3/7) 2865699999302088 a001 7778742049/33385282*33385282^(5/18) 2865699999302088 a001 63246219/271444*20633239^(2/7) 2865699999302088 a001 86267571272/87403803*20633239^(1/5) 2865699999302088 a001 2971215073/33385282*33385282^(1/3) 2865699999302088 a001 1836311903/54018521*20633239^(2/5) 2865699999302088 a001 14930352/54018521*141422324^(8/13) 2865699999302088 a001 32951280099/20633239*7881196^(2/11) 2865699999302088 a001 14930352/54018521*2537720636^(8/15) 2865699999302088 a001 14930352/54018521*45537549124^(8/17) 2865699999302088 a001 14930352/54018521*14662949395604^(8/21) 2865699999302088 a001 24157817/33385282*(1/2+1/2*5^(1/2))^22 2865699999302088 a001 14930352/54018521*192900153618^(4/9) 2865699999302088 a001 14930352/54018521*73681302247^(6/13) 2865699999302088 a001 360684711361584/12586269025 2865699999302088 a001 24157817/33385282*10749957122^(11/24) 2865699999302088 a001 14930352/54018521*10749957122^(1/2) 2865699999302088 a001 24157817/33385282*4106118243^(11/23) 2865699999302088 a001 14930352/54018521*4106118243^(12/23) 2865699999302088 a001 24157817/33385282*1568397607^(1/2) 2865699999302088 a001 14930352/54018521*1568397607^(6/11) 2865699999302088 a001 24157817/33385282*599074578^(11/21) 2865699999302088 a001 14930352/54018521*599074578^(4/7) 2865699999302088 a001 567451585/16692641*33385282^(7/18) 2865699999302088 a001 24157817/33385282*228826127^(11/20) 2865699999302088 a001 14930352/54018521*228826127^(3/5) 2865699999302088 a001 182717648081/16692641*12752043^(1/17) 2865699999302088 a001 701408733/33385282*33385282^(5/12) 2865699999302088 a001 39088169/33385282*33385282^(7/12) 2865699999302088 a001 433494437/33385282*33385282^(4/9) 2865699999302088 a001 225851433717/228826127*20633239^(1/5) 2865699999302088 a001 24157817/33385282*87403803^(11/19) 2865699999302088 a001 591286729879/599074578*20633239^(1/5) 2865699999302088 a001 14930352/54018521*87403803^(12/19) 2865699999302088 a001 1548008755920/1568397607*20633239^(1/5) 2865699999302088 a001 4052739537881/4106118243*20633239^(1/5) 2865699999302088 a001 4807525989/4870846*20633239^(1/5) 2865699999302088 a001 6557470319842/6643838879*20633239^(1/5) 2865699999302088 a001 2504730781961/2537720636*20633239^(1/5) 2865699999302088 a001 956722026041/969323029*20633239^(1/5) 2865699999302088 a001 75283811239/29134601*20633239^(1/7) 2865699999302088 a001 365435296162/370248451*20633239^(1/5) 2865699999302088 a001 165580141/33385282*33385282^(1/2) 2865699999302089 a001 139583862445/141422324*20633239^(1/5) 2865699999302089 a001 5702887/969323029*12752043^(16/17) 2865699999302089 a001 591286729879/228826127*20633239^(1/7) 2865699999302089 a001 31622993/16692641*33385282^(5/9) 2865699999302089 a001 2/24157817*(1/2+1/2*5^(1/2))^60 2865699999302089 a001 86000486440/33281921*20633239^(1/7) 2865699999302089 a001 4052739537881/1568397607*20633239^(1/7) 2865699999302089 a001 3536736619241/1368706081*20633239^(1/7) 2865699999302089 a001 3278735159921/1268860318*20633239^(1/7) 2865699999302089 a001 2504730781961/969323029*20633239^(1/7) 2865699999302089 a001 12586269025/54018521*20633239^(2/7) 2865699999302089 a001 956722026041/370248451*20633239^(1/7) 2865699999302089 a001 182717648081/70711162*20633239^(1/7) 2865699999302089 a001 1527884955772561/53316291173 2865699999302089 a001 39088169/87403803*4106118243^(1/2) 2865699999302089 a001 14930352/228826127*33385282^(3/4) 2865699999302089 a001 3732588/35355581*33385282^(13/18) 2865699999302089 a001 14930352/370248451*33385282^(7/9) 2865699999302089 a001 39088169/45537549124*141422324^(12/13) 2865699999302089 a001 34111385/29134601*141422324^(7/13) 2865699999302089 a001 139583862445/33385282*12752043^(2/17) 2865699999302089 a001 39088169/10749957122*141422324^(11/13) 2865699999302089 a001 39088169/2537720636*141422324^(10/13) 2865699999302089 a001 39088169/599074578*141422324^(9/13) 2865699999302089 a001 39088169/370248451*141422324^(2/3) 2865699999302089 a001 433494437/87403803*141422324^(6/13) 2865699999302089 a001 1836311903/87403803*141422324^(5/13) 2865699999302089 a001 39088169/228826127*2537720636^(5/9) 2865699999302089 a001 34111385/29134601*2537720636^(7/15) 2865699999302089 a001 34111385/29134601*17393796001^(3/7) 2865699999302089 a001 34111385/29134601*45537549124^(7/17) 2865699999302089 a001 800010949022439/27916772489 2865699999302089 a001 39088169/228826127*312119004989^(5/11) 2865699999302089 a001 34111385/29134601*14662949395604^(1/3) 2865699999302089 a001 34111385/29134601*192900153618^(7/18) 2865699999302089 a001 39088169/228826127*28143753123^(1/2) 2865699999302089 a001 34111385/29134601*10749957122^(7/16) 2865699999302089 a001 34111385/29134601*599074578^(1/2) 2865699999302089 a001 14930352/969323029*33385282^(5/6) 2865699999302089 a001 1602508992/29134601*141422324^(1/3) 2865699999302089 a001 7778742049/87403803*141422324^(4/13) 2865699999302089 a001 10983760033/29134601*141422324^(3/13) 2865699999302089 a001 139583862445/87403803*141422324^(2/13) 2865699999302089 a001 39088169/228826127*228826127^(5/8) 2865699999302089 a001 591286729879/87403803*141422324^(1/13) 2865699999302089 a001 39088169/599074578*2537720636^(3/5) 2865699999302089 a001 39088169/599074578*45537549124^(9/17) 2865699999302089 a001 1252365376652/43701901 2865699999302089 a001 39088169/599074578*14662949395604^(3/7) 2865699999302089 a001 39088169/599074578*192900153618^(1/2) 2865699999302089 a001 39088169/599074578*10749957122^(9/16) 2865699999302089 a001 39088169/599074578*599074578^(9/14) 2865699999302089 a001 233802911/29134601*45537549124^(1/3) 2865699999302089 a001 27416783093579877/956722026041 2865699999302089 a001 39088169/1568397607*1322157322203^(1/2) 2865699999302089 a001 4181/87403804*2537720636^(14/15) 2865699999302089 a001 39088169/312119004989*2537720636^(8/9) 2865699999302089 a001 39088169/192900153618*2537720636^(13/15) 2865699999302089 a001 39088169/45537549124*2537720636^(4/5) 2865699999302089 a001 39088169/10749957122*2537720636^(11/15) 2865699999302089 a001 39088169/28143753123*2537720636^(7/9) 2865699999302089 a001 1836311903/87403803*2537720636^(1/3) 2865699999302089 a001 1836311903/87403803*45537549124^(5/17) 2865699999302089 a001 1836311903/87403803*312119004989^(3/11) 2865699999302089 a001 1836311903/87403803*14662949395604^(5/21) 2865699999302089 a001 1836311903/87403803*192900153618^(5/18) 2865699999302089 a001 1836311903/87403803*28143753123^(3/10) 2865699999302089 a001 1836311903/87403803*10749957122^(5/16) 2865699999302089 a001 7778742049/87403803*2537720636^(4/15) 2865699999302089 a001 20365011074/87403803*2537720636^(2/9) 2865699999302089 a001 10983760033/29134601*2537720636^(1/5) 2865699999302089 a001 139583862445/87403803*2537720636^(2/15) 2865699999302089 a001 75283811239/29134601*2537720636^(1/9) 2865699999302089 a001 591286729879/87403803*2537720636^(1/15) 2865699999302089 a001 39088169/10749957122*45537549124^(11/17) 2865699999302089 a001 39088169/10749957122*312119004989^(3/5) 2865699999302089 a001 39088169/10749957122*14662949395604^(11/21) 2865699999302089 a001 39088169/10749957122*192900153618^(11/18) 2865699999302089 a001 1602508992/29134601*73681302247^(1/4) 2865699999302089 a001 39088169/28143753123*17393796001^(5/7) 2865699999302089 a001 4181/87403804*17393796001^(6/7) 2865699999302089 a001 39088169/10749957122*10749957122^(11/16) 2865699999302089 a001 39088169/28143753123*312119004989^(7/11) 2865699999302089 a001 12586269025/87403803*312119004989^(1/5) 2865699999302089 a001 39088169/28143753123*505019158607^(5/8) 2865699999302089 a001 86267571272/87403803*17393796001^(1/7) 2865699999302089 a001 39088169/14662949395604*45537549124^(16/17) 2865699999302089 a001 39088169/3461452808002*45537549124^(15/17) 2865699999302089 a001 39088169/192900153618*45537549124^(13/17) 2865699999302089 a001 39088169/28143753123*28143753123^(7/10) 2865699999302089 a001 10983760033/29134601*45537549124^(3/17) 2865699999302089 a001 10983760033/29134601*14662949395604^(1/7) 2865699999302089 a001 10983760033/29134601*192900153618^(1/6) 2865699999302089 a001 139583862445/87403803*45537549124^(2/17) 2865699999302089 a001 39088169/192900153618*14662949395604^(13/21) 2865699999302089 a001 86267571272/87403803*14662949395604^(1/9) 2865699999302089 a001 39088169/2139295485799*312119004989^(4/5) 2865699999302089 a001 39088169/192900153618*192900153618^(13/18) 2865699999302089 a001 75283811239/29134601*312119004989^(1/11) 2865699999302089 a001 39088169/3461452808002*14662949395604^(5/7) 2865699999302089 a001 39088169/23725150497407*14662949395604^(7/9) 2865699999302089 a001 365435296162/87403803*23725150497407^(1/16) 2865699999302089 a001 39088169/23725150497407*505019158607^(7/8) 2865699999302089 a001 139583862445/87403803*14662949395604^(2/21) 2865699999302089 a001 39088169/312119004989*23725150497407^(5/8) 2865699999302089 a001 39088169/14662949395604*192900153618^(8/9) 2865699999302089 a001 39088169/119218851371*817138163596^(2/3) 2865699999302089 a001 53316291173/87403803*23725150497407^(1/8) 2865699999302089 a001 53316291173/87403803*73681302247^(2/13) 2865699999302089 a001 39088169/192900153618*73681302247^(3/4) 2865699999302089 a001 75283811239/29134601*28143753123^(1/10) 2865699999302089 a001 39088169/45537549124*45537549124^(12/17) 2865699999302089 a001 39088169/312119004989*73681302247^(10/13) 2865699999302089 a001 39088169/2139295485799*73681302247^(11/13) 2865699999302089 a001 39088169/14662949395604*73681302247^(12/13) 2865699999302089 a001 956722026041/87403803*10749957122^(1/24) 2865699999302089 a001 20365011074/87403803*312119004989^(2/11) 2865699999302089 a001 39088169/45537549124*14662949395604^(4/7) 2865699999302089 a001 39088169/45537549124*192900153618^(2/3) 2865699999302089 a001 591286729879/87403803*10749957122^(1/16) 2865699999302089 a001 39088169/45537549124*73681302247^(9/13) 2865699999302089 a001 365435296162/87403803*10749957122^(1/12) 2865699999302089 a001 20365011074/87403803*28143753123^(1/5) 2865699999302089 a001 39088169/312119004989*28143753123^(4/5) 2865699999302089 a001 139583862445/87403803*10749957122^(1/8) 2865699999302089 a001 39088169/3461452808002*28143753123^(9/10) 2865699999302089 a001 10983760033/29134601*10749957122^(3/16) 2865699999302089 a001 53316291173/87403803*10749957122^(1/6) 2865699999302089 a001 20365011074/87403803*10749957122^(5/24) 2865699999302089 a001 956722026041/87403803*4106118243^(1/23) 2865699999302089 a001 39088169/17393796001*45537549124^(2/3) 2865699999302089 a001 7778742049/87403803*45537549124^(4/17) 2865699999302089 a001 7778742049/87403803*14662949395604^(4/21) 2865699999302089 a001 304056783818718281/10610209857723 2865699999302089 a001 7778742049/87403803*73681302247^(3/13) 2865699999302089 a001 365435296162/87403803*4106118243^(2/23) 2865699999302089 a001 7778742049/87403803*10749957122^(1/4) 2865699999302089 a001 39088169/119218851371*10749957122^(19/24) 2865699999302089 a001 39088169/45537549124*10749957122^(3/4) 2865699999302089 a001 39088169/192900153618*10749957122^(13/16) 2865699999302089 a001 39088169/312119004989*10749957122^(5/6) 2865699999302089 a001 4181/87403804*10749957122^(7/8) 2865699999302089 a001 139583862445/87403803*4106118243^(3/23) 2865699999302089 a001 39088169/2139295485799*10749957122^(11/12) 2865699999302089 a001 39088169/3461452808002*10749957122^(15/16) 2865699999302089 a001 39088169/5600748293801*10749957122^(23/24) 2865699999302089 a001 39088169/17393796001*10749957122^(17/24) 2865699999302089 a001 53316291173/87403803*4106118243^(4/23) 2865699999302089 a001 20365011074/87403803*4106118243^(5/23) 2865699999302089 a001 956722026041/87403803*1568397607^(1/22) 2865699999302089 a001 7778742049/87403803*4106118243^(6/23) 2865699999302089 a001 2971215073/87403803*17393796001^(2/7) 2865699999302089 a001 116139356908771337/4052739537881 2865699999302089 a001 39088169/6643838879*505019158607^(4/7) 2865699999302089 a001 39088169/6643838879*73681302247^(8/13) 2865699999302089 a001 2971215073/87403803*10749957122^(7/24) 2865699999302089 a001 39088169/6643838879*10749957122^(2/3) 2865699999302089 a001 365435296162/87403803*1568397607^(1/11) 2865699999302089 a001 2971215073/87403803*4106118243^(7/23) 2865699999302089 a001 39088169/45537549124*4106118243^(18/23) 2865699999302089 a001 39088169/17393796001*4106118243^(17/23) 2865699999302089 a001 39088169/119218851371*4106118243^(19/23) 2865699999302089 a001 39088169/312119004989*4106118243^(20/23) 2865699999302089 a001 39088169/2537720636*2537720636^(2/3) 2865699999302089 a001 4181/87403804*4106118243^(21/23) 2865699999302089 a001 139583862445/87403803*1568397607^(3/22) 2865699999302089 a001 39088169/2139295485799*4106118243^(22/23) 2865699999302089 a001 39088169/6643838879*4106118243^(16/23) 2865699999302089 a001 53316291173/87403803*1568397607^(2/11) 2865699999302089 a001 20365011074/87403803*1568397607^(5/22) 2865699999302089 a001 12586269025/87403803*1568397607^(1/4) 2865699999302089 a001 7778742049/87403803*1568397607^(3/11) 2865699999302089 a001 956722026041/87403803*599074578^(1/21) 2865699999302089 a001 2971215073/87403803*1568397607^(7/22) 2865699999302089 a001 39088169/2537720636*45537549124^(10/17) 2865699999302089 a001 39088169/2537720636*312119004989^(6/11) 2865699999302089 a001 39088169/2537720636*14662949395604^(10/21) 2865699999302089 a001 1134903170/87403803*23725150497407^(1/4) 2865699999302089 a001 39088169/2537720636*192900153618^(5/9) 2865699999302089 a001 1134903170/87403803*73681302247^(4/13) 2865699999302089 a001 39088169/2537720636*28143753123^(3/5) 2865699999302089 a001 1134903170/87403803*10749957122^(1/3) 2865699999302089 a001 39088169/2537720636*10749957122^(5/8) 2865699999302089 a001 1134903170/87403803*4106118243^(8/23) 2865699999302089 a001 39088169/2537720636*4106118243^(15/23) 2865699999302089 a001 591286729879/87403803*599074578^(1/14) 2865699999302089 a001 365435296162/87403803*599074578^(2/21) 2865699999302089 a001 39088169/10749957122*1568397607^(3/4) 2865699999302089 a001 1134903170/87403803*1568397607^(4/11) 2865699999302089 a001 39088169/17393796001*1568397607^(17/22) 2865699999302089 a001 39088169/6643838879*1568397607^(8/11) 2865699999302089 a001 39088169/45537549124*1568397607^(9/11) 2865699999302089 a001 39088169/119218851371*1568397607^(19/22) 2865699999302089 a001 39088169/312119004989*1568397607^(10/11) 2865699999302089 a001 4181/87403804*1568397607^(21/22) 2865699999302089 a001 139583862445/87403803*599074578^(1/7) 2865699999302089 a001 39088169/2537720636*1568397607^(15/22) 2865699999302089 a001 86267571272/87403803*599074578^(1/6) 2865699999302089 a001 53316291173/87403803*599074578^(4/21) 2865699999302089 a001 10983760033/29134601*599074578^(3/14) 2865699999302089 a001 20365011074/87403803*599074578^(5/21) 2865699999302089 a001 7778742049/87403803*599074578^(2/7) 2865699999302089 a001 1836311903/87403803*599074578^(5/14) 2865699999302089 a001 2971215073/87403803*599074578^(1/3) 2865699999302089 a001 956722026041/87403803*228826127^(1/20) 2865699999302089 a001 433494437/87403803*2537720636^(2/5) 2865699999302089 a001 39088169/969323029*17393796001^(4/7) 2865699999302089 a001 433494437/87403803*45537549124^(6/17) 2865699999302089 a001 16944503814015853/591286729879 2865699999302089 a001 433494437/87403803*192900153618^(1/3) 2865699999302089 a001 39088169/969323029*73681302247^(7/13) 2865699999302089 a001 433494437/87403803*10749957122^(3/8) 2865699999302089 a001 39088169/969323029*10749957122^(7/12) 2865699999302089 a001 433494437/87403803*4106118243^(9/23) 2865699999302089 a001 39088169/969323029*4106118243^(14/23) 2865699999302089 a001 1134903170/87403803*599074578^(8/21) 2865699999302089 a001 433494437/87403803*1568397607^(9/22) 2865699999302089 a001 39088169/969323029*1568397607^(7/11) 2865699999302089 a001 365435296162/87403803*228826127^(1/10) 2865699999302089 a001 39088169/2537720636*599074578^(5/7) 2865699999302089 a001 39088169/6643838879*599074578^(16/21) 2865699999302089 a001 39088169/10749957122*599074578^(11/14) 2865699999302089 a001 433494437/87403803*599074578^(3/7) 2865699999302089 a001 39088169/17393796001*599074578^(17/21) 2865699999302089 a001 39088169/28143753123*599074578^(5/6) 2865699999302089 a001 75283811239/29134601*228826127^(1/8) 2865699999302089 a001 39088169/45537549124*599074578^(6/7) 2865699999302089 a001 39088169/119218851371*599074578^(19/21) 2865699999302089 a001 39088169/192900153618*599074578^(13/14) 2865699999302089 a001 39088169/312119004989*599074578^(20/21) 2865699999302089 a001 139583862445/87403803*228826127^(3/20) 2865699999302089 a001 39088169/969323029*599074578^(2/3) 2865699999302089 a001 53316291173/54018521*20633239^(1/5) 2865699999302089 a001 20365011074/87403803*228826127^(1/4) 2865699999302089 a001 7778742049/87403803*228826127^(3/10) 2865699999302089 a001 2971215073/87403803*228826127^(7/20) 2865699999302089 a001 956722026041/87403803*87403803^(1/19) 2865699999302089 a001 1836311903/87403803*228826127^(3/8) 2865699999302089 a001 165580141/87403803*2537720636^(4/9) 2865699999302089 a001 165580141/87403803*23725150497407^(5/16) 2865699999302089 a001 165580141/87403803*505019158607^(5/14) 2865699999302089 a001 6472224534451829/225851433717 2865699999302089 a001 165580141/87403803*73681302247^(5/13) 2865699999302089 a001 39088169/370248451*73681302247^(1/2) 2865699999302089 a001 165580141/87403803*28143753123^(2/5) 2865699999302089 a001 165580141/87403803*10749957122^(5/12) 2865699999302089 a001 39088169/370248451*10749957122^(13/24) 2865699999302089 a001 165580141/87403803*4106118243^(10/23) 2865699999302089 a001 39088169/370248451*4106118243^(13/23) 2865699999302089 a001 165580141/87403803*1568397607^(5/11) 2865699999302089 a001 39088169/370248451*1568397607^(13/22) 2865699999302089 a001 1134903170/87403803*228826127^(2/5) 2865699999302089 a001 165580141/87403803*599074578^(10/21) 2865699999302089 a001 39088169/370248451*599074578^(13/21) 2865699999302089 a001 433494437/87403803*228826127^(9/20) 2865699999302089 a001 365435296162/87403803*87403803^(2/19) 2865699999302089 a001 39088169/969323029*228826127^(7/10) 2865699999302089 a001 39088169/2537720636*228826127^(3/4) 2865699999302089 a001 39088169/6643838879*228826127^(4/5) 2865699999302089 a001 39088169/17393796001*228826127^(17/20) 2865699999302089 a001 39088169/28143753123*228826127^(7/8) 2865699999302089 a001 165580141/87403803*228826127^(1/2) 2865699999302089 a001 39088169/45537549124*228826127^(9/10) 2865699999302089 a001 39088169/119218851371*228826127^(19/20) 2865699999302089 a001 39088169/141422324*141422324^(8/13) 2865699999302089 a001 39088169/370248451*228826127^(13/20) 2865699999302089 a001 139583862445/87403803*87403803^(3/19) 2865699999302089 a001 53316291173/87403803*87403803^(4/19) 2865699999302089 a001 196452/33391061*33385282^(8/9) 2865699999302089 a001 20365011074/87403803*87403803^(5/19) 2865699999302089 a001 7778742049/87403803*87403803^(6/19) 2865699999302090 a001 2971215073/87403803*87403803^(7/19) 2865699999302090 a001 956722026041/87403803*33385282^(1/18) 2865699999302090 a001 39088169/141422324*2537720636^(8/15) 2865699999302090 a001 39088169/141422324*45537549124^(8/17) 2865699999302090 a001 39088169/141422324*14662949395604^(8/21) 2865699999302090 a001 39088169/141422324*192900153618^(4/9) 2865699999302090 a001 1236084894669817/43133785636 2865699999302090 a001 39088169/141422324*73681302247^(6/13) 2865699999302090 a001 63245986/87403803*10749957122^(11/24) 2865699999302090 a001 39088169/141422324*10749957122^(1/2) 2865699999302090 a001 63245986/87403803*4106118243^(11/23) 2865699999302090 a001 39088169/141422324*4106118243^(12/23) 2865699999302090 a001 63245986/87403803*1568397607^(1/2) 2865699999302090 a001 39088169/141422324*1568397607^(6/11) 2865699999302090 a001 63245986/87403803*599074578^(11/21) 2865699999302090 a001 39088169/141422324*599074578^(4/7) 2865699999302090 a001 1134903170/87403803*87403803^(8/19) 2865699999302090 a001 4976784/1368706081*33385282^(11/12) 2865699999302090 a001 63245986/87403803*228826127^(11/20) 2865699999302090 a001 39088169/141422324*228826127^(3/5) 2865699999302090 a001 267914296/87403803*87403803^(1/2) 2865699999302090 a001 433494437/87403803*87403803^(9/19) 2865699999302090 a001 102334155/119218851371*141422324^(12/13) 2865699999302090 a001 831985/228811001*141422324^(11/13) 2865699999302090 a001 102334155/6643838879*141422324^(10/13) 2865699999302090 a001 591286729879/87403803*33385282^(1/12) 2865699999302090 a001 165580141/87403803*87403803^(10/19) 2865699999302090 a001 14619165/224056801*141422324^(9/13) 2865699999302090 a001 102334155/969323029*141422324^(2/3) 2865699999302090 a001 1/31622993*(1/2+1/2*5^(1/2))^62 2865699999302090 a001 14930352/6643838879*33385282^(17/18) 2865699999302090 a001 267914296/312119004989*141422324^(12/13) 2865699999302090 a001 267914296/228826127*141422324^(7/13) 2865699999302090 a001 701408733/817138163596*141422324^(12/13) 2865699999302090 a001 1836311903/2139295485799*141422324^(12/13) 2865699999302090 a001 4807526976/5600748293801*141422324^(12/13) 2865699999302090 a001 12586269025/14662949395604*141422324^(12/13) 2865699999302090 a001 20365011074/23725150497407*141422324^(12/13) 2865699999302090 a001 7778742049/9062201101803*141422324^(12/13) 2865699999302090 a001 2971215073/3461452808002*141422324^(12/13) 2865699999302090 a001 1134903170/1322157322203*141422324^(12/13) 2865699999302090 a001 267914296/73681302247*141422324^(11/13) 2865699999302090 a001 433494437/505019158607*141422324^(12/13) 2865699999302090 a001 233802911/64300051206*141422324^(11/13) 2865699999302090 a001 102334155/370248451*141422324^(8/13) 2865699999302090 a001 1836311903/505019158607*141422324^(11/13) 2865699999302090 a001 1602508992/440719107401*141422324^(11/13) 2865699999302090 a001 12586269025/3461452808002*141422324^(11/13) 2865699999302090 a001 10983760033/3020733700601*141422324^(11/13) 2865699999302090 a001 86267571272/23725150497407*141422324^(11/13) 2865699999302090 a001 53316291173/14662949395604*141422324^(11/13) 2865699999302090 a001 20365011074/5600748293801*141422324^(11/13) 2865699999302090 a001 7778742049/2139295485799*141422324^(11/13) 2865699999302090 a001 2971215073/817138163596*141422324^(11/13) 2865699999302090 a001 1134903170/312119004989*141422324^(11/13) 2865699999302090 a001 1134903170/228826127*141422324^(6/13) 2865699999302090 a001 9238424/599786069*141422324^(10/13) 2865699999302090 a001 433494437/119218851371*141422324^(11/13) 2865699999302090 a001 701408733/45537549124*141422324^(10/13) 2865699999302090 a001 165580141/192900153618*141422324^(12/13) 2865699999302090 a001 1836311903/119218851371*141422324^(10/13) 2865699999302090 a001 4807526976/312119004989*141422324^(10/13) 2865699999302090 a001 12586269025/817138163596*141422324^(10/13) 2865699999302090 a001 32951280099/2139295485799*141422324^(10/13) 2865699999302090 a001 86267571272/5600748293801*141422324^(10/13) 2865699999302090 a001 7787980473/505618944676*141422324^(10/13) 2865699999302090 a001 365435296162/23725150497407*141422324^(10/13) 2865699999302090 a001 139583862445/9062201101803*141422324^(10/13) 2865699999302090 a001 53316291173/3461452808002*141422324^(10/13) 2865699999302090 a001 20365011074/1322157322203*141422324^(10/13) 2865699999302090 a001 7778742049/505019158607*141422324^(10/13) 2865699999302090 a001 2971215073/192900153618*141422324^(10/13) 2865699999302090 a001 102287808/4868641*141422324^(5/13) 2865699999302090 a001 1134903170/73681302247*141422324^(10/13) 2865699999302090 a001 10472279279564025/365435296162 2865699999302090 a001 102334155/228826127*4106118243^(1/2) 2865699999302090 a001 267914296/4106118243*141422324^(9/13) 2865699999302090 a001 433494437/28143753123*141422324^(10/13) 2865699999302090 a001 66978574/634430159*141422324^(2/3) 2865699999302090 a001 12586269025/228826127*141422324^(1/3) 2865699999302090 a001 701408733/10749957122*141422324^(9/13) 2865699999302090 a001 165580141/45537549124*141422324^(11/13) 2865699999302090 a001 1836311903/28143753123*141422324^(9/13) 2865699999302090 a001 686789568/10525900321*141422324^(9/13) 2865699999302090 a001 12586269025/192900153618*141422324^(9/13) 2865699999302090 a001 32951280099/505019158607*141422324^(9/13) 2865699999302090 a001 86267571272/1322157322203*141422324^(9/13) 2865699999302090 a001 32264490531/494493258286*141422324^(9/13) 2865699999302090 a001 1548008755920/23725150497407*141422324^(9/13) 2865699999302090 a001 365435296162/5600748293801*141422324^(9/13) 2865699999302090 a001 139583862445/2139295485799*141422324^(9/13) 2865699999302090 a001 53316291173/817138163596*141422324^(9/13) 2865699999302090 a001 20365011074/312119004989*141422324^(9/13) 2865699999302090 a001 7778742049/119218851371*141422324^(9/13) 2865699999302090 a001 2971215073/45537549124*141422324^(9/13) 2865699999302090 a001 20365011074/228826127*141422324^(4/13) 2865699999302090 a001 1134903170/17393796001*141422324^(9/13) 2865699999302090 a001 39088169/370248451*87403803^(13/19) 2865699999302090 a001 701408733/6643838879*141422324^(2/3) 2865699999302090 a001 433494437/6643838879*141422324^(9/13) 2865699999302090 a001 1836311903/17393796001*141422324^(2/3) 2865699999302090 a001 39088169/969323029*87403803^(14/19) 2865699999302090 a001 1201881744/11384387281*141422324^(2/3) 2865699999302090 a001 12586269025/119218851371*141422324^(2/3) 2865699999302090 a001 32951280099/312119004989*141422324^(2/3) 2865699999302090 a001 21566892818/204284540899*141422324^(2/3) 2865699999302090 a001 225851433717/2139295485799*141422324^(2/3) 2865699999302090 a001 182717648081/1730726404001*141422324^(2/3) 2865699999302090 a001 139583862445/1322157322203*141422324^(2/3) 2865699999302090 a001 53316291173/505019158607*141422324^(2/3) 2865699999302090 a001 10182505537/96450076809*141422324^(2/3) 2865699999302090 a001 7778742049/73681302247*141422324^(2/3) 2865699999302090 a001 2971215073/28143753123*141422324^(2/3) 2865699999302090 a001 567451585/5374978561*141422324^(2/3) 2865699999302090 a001 267914296/969323029*141422324^(8/13) 2865699999302090 a001 433494437/4106118243*141422324^(2/3) 2865699999302090 a001 365435296162/87403803*33385282^(1/9) 2865699999302090 a001 165580141/10749957122*141422324^(10/13) 2865699999302090 a001 701408733/2537720636*141422324^(8/13) 2865699999302090 a001 1836311903/6643838879*141422324^(8/13) 2865699999302090 a001 4807526976/17393796001*141422324^(8/13) 2865699999302090 a001 12586269025/45537549124*141422324^(8/13) 2865699999302090 a001 32951280099/119218851371*141422324^(8/13) 2865699999302090 a001 86267571272/312119004989*141422324^(8/13) 2865699999302090 a001 225851433717/817138163596*141422324^(8/13) 2865699999302090 a001 1548008755920/5600748293801*141422324^(8/13) 2865699999302090 a001 139583862445/505019158607*141422324^(8/13) 2865699999302090 a001 53316291173/192900153618*141422324^(8/13) 2865699999302090 a001 20365011074/73681302247*141422324^(8/13) 2865699999302090 a001 7778742049/28143753123*141422324^(8/13) 2865699999302090 a001 2971215073/10749957122*141422324^(8/13) 2865699999302090 a001 1134903170/4106118243*141422324^(8/13) 2865699999302090 a001 86267571272/228826127*141422324^(3/13) 2865699999302090 a001 233802911/199691526*141422324^(7/13) 2865699999302090 a001 433494437/1568397607*141422324^(8/13) 2865699999302090 a001 39088169/2537720636*87403803^(15/19) 2865699999302090 a001 1836311903/1568397607*141422324^(7/13) 2865699999302090 a001 165580141/2537720636*141422324^(9/13) 2865699999302090 a001 1602508992/1368706081*141422324^(7/13) 2865699999302090 a001 12586269025/10749957122*141422324^(7/13) 2865699999302090 a001 10983760033/9381251041*141422324^(7/13) 2865699999302090 a001 86267571272/73681302247*141422324^(7/13) 2865699999302090 a001 75283811239/64300051206*141422324^(7/13) 2865699999302090 a001 2504730781961/2139295485799*141422324^(7/13) 2865699999302090 a001 365435296162/312119004989*141422324^(7/13) 2865699999302090 a001 139583862445/119218851371*141422324^(7/13) 2865699999302090 a001 53316291173/45537549124*141422324^(7/13) 2865699999302090 a001 20365011074/17393796001*141422324^(7/13) 2865699999302090 a001 7778742049/6643838879*141422324^(7/13) 2865699999302090 a001 365435296162/228826127*141422324^(2/13) 2865699999302090 a001 2971215073/2537720636*141422324^(7/13) 2865699999302090 a001 165580141/1568397607*141422324^(2/3) 2865699999302090 a001 165580141/599074578*141422324^(8/13) 2865699999302090 a001 2971215073/599074578*141422324^(6/13) 2865699999302090 a001 1134903170/969323029*141422324^(7/13) 2865699999302090 a001 7778742049/1568397607*141422324^(6/13) 2865699999302090 a001 20365011074/4106118243*141422324^(6/13) 2865699999302090 a001 53316291173/10749957122*141422324^(6/13) 2865699999302090 a001 139583862445/28143753123*141422324^(6/13) 2865699999302090 a001 365435296162/73681302247*141422324^(6/13) 2865699999302090 a001 956722026041/192900153618*141422324^(6/13) 2865699999302090 a001 2504730781961/505019158607*141422324^(6/13) 2865699999302090 a001 10610209857723/2139295485799*141422324^(6/13) 2865699999302090 a001 4052739537881/817138163596*141422324^(6/13) 2865699999302090 a001 140728068720/28374454999*141422324^(6/13) 2865699999302090 a001 591286729879/119218851371*141422324^(6/13) 2865699999302090 a001 225851433717/45537549124*141422324^(6/13) 2865699999302090 a001 86267571272/17393796001*141422324^(6/13) 2865699999302090 a001 32951280099/6643838879*141422324^(6/13) 2865699999302090 a001 1548008755920/228826127*141422324^(1/13) 2865699999302090 a001 1144206275/230701876*141422324^(6/13) 2865699999302090 a001 4807526976/969323029*141422324^(6/13) 2865699999302090 a001 12586269025/599074578*141422324^(5/13) 2865699999302090 a001 34111385/199691526*2537720636^(5/9) 2865699999302090 a001 267914296/228826127*2537720636^(7/15) 2865699999302090 a001 267914296/228826127*17393796001^(3/7) 2865699999302090 a001 267914296/228826127*45537549124^(7/17) 2865699999302090 a001 34111385/199691526*312119004989^(5/11) 2865699999302090 a001 27416783093579880/956722026041 2865699999302090 a001 267914296/228826127*14662949395604^(1/3) 2865699999302090 a001 267914296/228826127*192900153618^(7/18) 2865699999302090 a001 34111385/199691526*28143753123^(1/2) 2865699999302090 a001 267914296/228826127*10749957122^(7/16) 2865699999302090 a001 39088169/6643838879*87403803^(16/19) 2865699999302090 a001 267914296/228826127*599074578^(1/2) 2865699999302090 a001 32951280099/1568397607*141422324^(5/13) 2865699999302090 a001 14619165/224056801*2537720636^(3/5) 2865699999302090 a001 14619165/224056801*45537549124^(9/17) 2865699999302090 a001 14619165/224056801*14662949395604^(3/7) 2865699999302090 a001 14619165/224056801*192900153618^(1/2) 2865699999302090 a001 14619165/224056801*10749957122^(9/16) 2865699999302090 a001 10983760033/199691526*141422324^(1/3) 2865699999302090 a001 86267571272/4106118243*141422324^(5/13) 2865699999302090 a001 102334155/2139295485799*2537720636^(14/15) 2865699999302090 a001 225851433717/10749957122*141422324^(5/13) 2865699999302090 a001 102334155/817138163596*2537720636^(8/9) 2865699999302090 a001 102334155/505019158607*2537720636^(13/15) 2865699999302090 a001 591286729879/28143753123*141422324^(5/13) 2865699999302090 a001 1548008755920/73681302247*141422324^(5/13) 2865699999302090 a001 4052739537881/192900153618*141422324^(5/13) 2865699999302090 a001 225749145909/10745088481*141422324^(5/13) 2865699999302090 a001 6557470319842/312119004989*141422324^(5/13) 2865699999302090 a001 2504730781961/119218851371*141422324^(5/13) 2865699999302090 a001 956722026041/45537549124*141422324^(5/13) 2865699999302090 a001 365435296162/17393796001*141422324^(5/13) 2865699999302090 a001 102334155/119218851371*2537720636^(4/5) 2865699999302090 a001 14619165/10525900321*2537720636^(7/9) 2865699999302090 a001 831985/228811001*2537720636^(11/15) 2865699999302090 a001 139583862445/6643838879*141422324^(5/13) 2865699999302090 a001 102334155/6643838879*2537720636^(2/3) 2865699999302090 a001 102287808/4868641*2537720636^(1/3) 2865699999302090 a001 1836311903/228826127*45537549124^(1/3) 2865699999302090 a001 187917426909946965/6557470319842 2865699999302090 a001 20365011074/228826127*2537720636^(4/15) 2865699999302090 a001 53316291173/228826127*2537720636^(2/9) 2865699999302090 a001 86267571272/228826127*2537720636^(1/5) 2865699999302090 a001 365435296162/228826127*2537720636^(2/15) 2865699999302090 a001 591286729879/228826127*2537720636^(1/9) 2865699999302090 a001 1548008755920/228826127*2537720636^(1/15) 2865699999302090 a001 102287808/4868641*45537549124^(5/17) 2865699999302090 a001 102287808/4868641*312119004989^(3/11) 2865699999302090 a001 102287808/4868641*14662949395604^(5/21) 2865699999302090 a001 102334155/10749957122*9062201101803^(1/2) 2865699999302090 a001 102287808/4868641*192900153618^(5/18) 2865699999302090 a001 102287808/4868641*28143753123^(3/10) 2865699999302090 a001 102287808/4868641*10749957122^(5/16) 2865699999302090 a001 102334155/2139295485799*17393796001^(6/7) 2865699999302090 a001 14619165/10525900321*17393796001^(5/7) 2865699999302090 a001 831985/228811001*45537549124^(11/17) 2865699999302090 a001 831985/228811001*312119004989^(3/5) 2865699999302090 a001 831985/228811001*817138163596^(11/19) 2865699999302090 a001 831985/228811001*14662949395604^(11/21) 2865699999302090 a001 831985/228811001*192900153618^(11/18) 2865699999302090 a001 12586269025/228826127*73681302247^(1/4) 2865699999302090 a001 225851433717/228826127*17393796001^(1/7) 2865699999302090 a001 34111385/3020733700601*45537549124^(15/17) 2865699999302090 a001 102334155/2139295485799*45537549124^(14/17) 2865699999302090 a001 102334155/505019158607*45537549124^(13/17) 2865699999302090 a001 102334155/119218851371*45537549124^(12/17) 2865699999302090 a001 14619165/10525900321*312119004989^(7/11) 2865699999302090 a001 32951280099/228826127*312119004989^(1/5) 2865699999302090 a001 14619165/10525900321*14662949395604^(5/9) 2865699999302090 a001 14619165/10525900321*505019158607^(5/8) 2865699999302090 a001 86267571272/228826127*45537549124^(3/17) 2865699999302090 a001 365435296162/228826127*45537549124^(2/17) 2865699999302090 a001 1548008755920/228826127*45537549124^(1/17) 2865699999302090 a001 86267571272/228826127*14662949395604^(1/7) 2865699999302090 a001 86267571272/228826127*192900153618^(1/6) 2865699999302090 a001 34111385/3020733700601*312119004989^(9/11) 2865699999302090 a001 102334155/5600748293801*312119004989^(4/5) 2865699999302090 a001 102334155/817138163596*312119004989^(8/11) 2865699999302090 a001 102334155/505019158607*14662949395604^(13/21) 2865699999302090 a006 5^(1/2)*Fibonacci(63)/Lucas(40)/sqrt(5) 2865699999302090 a001 102334155/2139295485799*14662949395604^(2/3) 2865699999302090 a001 102334155/817138163596*23725150497407^(5/8) 2865699999302090 a001 102334155/2139295485799*505019158607^(3/4) 2865699999302090 a001 139583862445/228826127*23725150497407^(1/8) 2865699999302090 a001 102334155/505019158607*192900153618^(13/18) 2865699999302090 a001 102334155/2139295485799*192900153618^(7/9) 2865699999302090 a001 34111385/3020733700601*192900153618^(5/6) 2865699999302090 a001 139583862445/228826127*73681302247^(2/13) 2865699999302090 a001 102334155/119218851371*14662949395604^(4/7) 2865699999302090 a001 102334155/119218851371*505019158607^(9/14) 2865699999302090 a001 102334155/119218851371*192900153618^(2/3) 2865699999302090 a001 591286729879/228826127*28143753123^(1/10) 2865699999302090 a001 102334155/505019158607*73681302247^(3/4) 2865699999302090 a001 102334155/817138163596*73681302247^(10/13) 2865699999302090 a001 102334155/5600748293801*73681302247^(11/13) 2865699999302090 a001 102334155/45537549124*45537549124^(2/3) 2865699999302090 a001 102334155/119218851371*73681302247^(9/13) 2865699999302090 a001 53316291173/228826127*28143753123^(1/5) 2865699999302090 a001 2504730781961/228826127*10749957122^(1/24) 2865699999302090 a001 20365011074/228826127*45537549124^(4/17) 2865699999302090 a001 20365011074/228826127*817138163596^(4/19) 2865699999302090 a001 20365011074/228826127*14662949395604^(4/21) 2865699999302090 a001 20365011074/228826127*192900153618^(2/9) 2865699999302090 a001 20365011074/228826127*73681302247^(3/13) 2865699999302090 a001 1548008755920/228826127*10749957122^(1/16) 2865699999302090 a001 14619165/10525900321*28143753123^(7/10) 2865699999302090 a001 956722026041/228826127*10749957122^(1/12) 2865699999302090 a001 102334155/817138163596*28143753123^(4/5) 2865699999302090 a001 365435296162/228826127*10749957122^(1/8) 2865699999302090 a001 34111385/3020733700601*28143753123^(9/10) 2865699999302090 a001 139583862445/228826127*10749957122^(1/6) 2865699999302090 a001 86267571272/228826127*10749957122^(3/16) 2865699999302090 a001 53316291173/228826127*10749957122^(5/24) 2865699999302090 a001 7778742049/228826127*17393796001^(2/7) 2865699999302090 a001 2504730781961/228826127*4106118243^(1/23) 2865699999302090 a001 20365011074/228826127*10749957122^(1/4) 2865699999302090 a001 7778742049/228826127*14662949395604^(2/9) 2865699999302090 a001 102334155/17393796001*23725150497407^(1/2) 2865699999302090 a001 102334155/17393796001*73681302247^(8/13) 2865699999302090 a001 831985/228811001*10749957122^(11/16) 2865699999302090 a001 956722026041/228826127*4106118243^(2/23) 2865699999302090 a001 7778742049/228826127*10749957122^(7/24) 2865699999302090 a001 102334155/119218851371*10749957122^(3/4) 2865699999302090 a001 102334155/45537549124*10749957122^(17/24) 2865699999302090 a001 9303105/28374454999*10749957122^(19/24) 2865699999302090 a001 102334155/505019158607*10749957122^(13/16) 2865699999302090 a001 102334155/817138163596*10749957122^(5/6) 2865699999302090 a001 102334155/2139295485799*10749957122^(7/8) 2865699999302090 a001 365435296162/228826127*4106118243^(3/23) 2865699999302090 a001 102334155/5600748293801*10749957122^(11/12) 2865699999302090 a001 34111385/3020733700601*10749957122^(15/16) 2865699999302090 a001 102334155/14662949395604*10749957122^(23/24) 2865699999302090 a001 102334155/17393796001*10749957122^(2/3) 2865699999302090 a001 139583862445/228826127*4106118243^(4/23) 2865699999302090 a001 53316291173/228826127*4106118243^(5/23) 2865699999302090 a001 20365011074/228826127*4106118243^(6/23) 2865699999302090 a001 2504730781961/228826127*1568397607^(1/22) 2865699999302090 a001 7778742049/228826127*4106118243^(7/23) 2865699999302090 a001 102334155/6643838879*45537549124^(10/17) 2865699999302090 a001 102334155/6643838879*312119004989^(6/11) 2865699999302090 a001 102334155/6643838879*14662949395604^(10/21) 2865699999302090 a001 14478894467558015/505248088463 2865699999302090 a001 102334155/6643838879*192900153618^(5/9) 2865699999302090 a001 2971215073/228826127*73681302247^(4/13) 2865699999302090 a001 53316291173/2537720636*141422324^(5/13) 2865699999302090 a001 102334155/6643838879*28143753123^(3/5) 2865699999302090 a001 2971215073/228826127*10749957122^(1/3) 2865699999302090 a001 102334155/6643838879*10749957122^(5/8) 2865699999302090 a001 956722026041/228826127*1568397607^(1/11) 2865699999302090 a001 2971215073/228826127*4106118243^(8/23) 2865699999302090 a001 102334155/45537549124*4106118243^(17/23) 2865699999302090 a001 102334155/17393796001*4106118243^(16/23) 2865699999302090 a001 102334155/119218851371*4106118243^(18/23) 2865699999302090 a001 9303105/28374454999*4106118243^(19/23) 2865699999302090 a001 102334155/817138163596*4106118243^(20/23) 2865699999302090 a001 102334155/2139295485799*4106118243^(21/23) 2865699999302090 a001 365435296162/228826127*1568397607^(3/22) 2865699999302090 a001 102334155/5600748293801*4106118243^(22/23) 2865699999302090 a001 102334155/6643838879*4106118243^(15/23) 2865699999302090 a001 139583862445/228826127*1568397607^(2/11) 2865699999302090 a001 53316291173/228826127*1568397607^(5/22) 2865699999302090 a001 1134903170/228826127*2537720636^(2/5) 2865699999302090 a001 32951280099/228826127*1568397607^(1/4) 2865699999302090 a001 20365011074/228826127*1568397607^(3/11) 2865699999302090 a001 7778742049/228826127*1568397607^(7/22) 2865699999302090 a001 2504730781961/228826127*599074578^(1/21) 2865699999302090 a001 9303105/230701876*17393796001^(4/7) 2865699999302090 a001 1134903170/228826127*45537549124^(6/17) 2865699999302090 a001 1134903170/228826127*14662949395604^(2/7) 2865699999302090 a001 116139356908771350/4052739537881 2865699999302090 a001 1134903170/228826127*192900153618^(1/3) 2865699999302090 a001 9303105/230701876*73681302247^(7/13) 2865699999302090 a001 1134903170/228826127*10749957122^(3/8) 2865699999302090 a001 9303105/230701876*10749957122^(7/12) 2865699999302090 a001 2971215073/228826127*1568397607^(4/11) 2865699999302090 a001 1134903170/228826127*4106118243^(9/23) 2865699999302090 a001 9303105/230701876*4106118243^(14/23) 2865699999302090 a001 1548008755920/228826127*599074578^(1/14) 2865699999302090 a001 956722026041/228826127*599074578^(2/21) 2865699999302090 a001 102334155/17393796001*1568397607^(8/11) 2865699999302090 a001 102334155/6643838879*1568397607^(15/22) 2865699999302090 a001 831985/228811001*1568397607^(3/4) 2865699999302090 a001 102334155/45537549124*1568397607^(17/22) 2865699999302090 a001 1134903170/228826127*1568397607^(9/22) 2865699999302090 a001 102334155/119218851371*1568397607^(9/11) 2865699999302090 a001 9303105/28374454999*1568397607^(19/22) 2865699999302090 a001 102334155/817138163596*1568397607^(10/11) 2865699999302090 a001 102334155/2139295485799*1568397607^(21/22) 2865699999302090 a001 365435296162/228826127*599074578^(1/7) 2865699999302090 a001 9303105/230701876*1568397607^(7/11) 2865699999302090 a001 225851433717/228826127*599074578^(1/6) 2865699999302090 a001 139583862445/228826127*599074578^(4/21) 2865699999302090 a001 433494437/370248451*141422324^(7/13) 2865699999302090 a001 86267571272/228826127*599074578^(3/14) 2865699999302090 a001 53316291173/228826127*599074578^(5/21) 2865699999302090 a001 20365011074/228826127*599074578^(2/7) 2865699999302090 a001 53316291173/599074578*141422324^(4/13) 2865699999302090 a001 7778742049/228826127*599074578^(1/3) 2865699999302090 a001 20365011074/969323029*141422324^(5/13) 2865699999302090 a001 2504730781961/228826127*228826127^(1/20) 2865699999302090 a001 102287808/4868641*599074578^(5/14) 2865699999302090 a001 433494437/228826127*2537720636^(4/9) 2865699999302090 a001 433494437/228826127*23725150497407^(5/16) 2865699999302090 a001 433494437/228826127*505019158607^(5/14) 2865699999302090 a001 433494437/228826127*73681302247^(5/13) 2865699999302090 a001 102334155/969323029*73681302247^(1/2) 2865699999302090 a001 433494437/228826127*28143753123^(2/5) 2865699999302090 a001 433494437/228826127*10749957122^(5/12) 2865699999302090 a001 102334155/969323029*10749957122^(13/24) 2865699999302090 a001 2971215073/228826127*599074578^(8/21) 2865699999302090 a001 433494437/228826127*4106118243^(10/23) 2865699999302090 a001 102334155/969323029*4106118243^(13/23) 2865699999302090 a001 433494437/228826127*1568397607^(5/11) 2865699999302090 a001 102334155/969323029*1568397607^(13/22) 2865699999302090 a001 1134903170/228826127*599074578^(3/7) 2865699999302090 a001 14619165/224056801*599074578^(9/14) 2865699999302090 a001 956722026041/228826127*228826127^(1/10) 2865699999302090 a001 9303105/230701876*599074578^(2/3) 2865699999302090 a001 102334155/6643838879*599074578^(5/7) 2865699999302090 a001 86267571272/1568397607*141422324^(1/3) 2865699999302090 a001 102334155/17393796001*599074578^(16/21) 2865699999302090 a001 831985/228811001*599074578^(11/14) 2865699999302090 a001 102334155/45537549124*599074578^(17/21) 2865699999302090 a001 14619165/10525900321*599074578^(5/6) 2865699999302090 a001 75283811239/1368706081*141422324^(1/3) 2865699999302090 a001 591286729879/228826127*228826127^(1/8) 2865699999302090 a001 102334155/119218851371*599074578^(6/7) 2865699999302090 a001 433494437/228826127*599074578^(10/21) 2865699999302090 a001 591286729879/10749957122*141422324^(1/3) 2865699999302090 a001 12585437040/228811001*141422324^(1/3) 2865699999302090 a001 4052739537881/73681302247*141422324^(1/3) 2865699999302090 a001 3536736619241/64300051206*141422324^(1/3) 2865699999302090 a001 6557470319842/119218851371*141422324^(1/3) 2865699999302090 a001 2504730781961/45537549124*141422324^(1/3) 2865699999302090 a001 956722026041/17393796001*141422324^(1/3) 2865699999302090 a001 365435296162/6643838879*141422324^(1/3) 2865699999302090 a001 9303105/28374454999*599074578^(19/21) 2865699999302090 a001 139583862445/2537720636*141422324^(1/3) 2865699999302090 a001 102334155/505019158607*599074578^(13/14) 2865699999302090 a001 102334155/817138163596*599074578^(20/21) 2865699999302090 a001 102334155/969323029*599074578^(13/21) 2865699999302090 a001 365435296162/228826127*228826127^(3/20) 2865699999302090 a001 1836311903/370248451*141422324^(6/13) 2865699999302090 a001 139583862445/1568397607*141422324^(4/13) 2865699999302090 a001 53316291173/969323029*141422324^(1/3) 2865699999302090 a001 365435296162/4106118243*141422324^(4/13) 2865699999302090 a001 956722026041/10749957122*141422324^(4/13) 2865699999302090 a001 2504730781961/28143753123*141422324^(4/13) 2865699999302090 a001 6557470319842/73681302247*141422324^(4/13) 2865699999302090 a001 10610209857723/119218851371*141422324^(4/13) 2865699999302090 a001 4052739537881/45537549124*141422324^(4/13) 2865699999302090 a001 1548008755920/17393796001*141422324^(4/13) 2865699999302090 a001 591286729879/6643838879*141422324^(4/13) 2865699999302090 a001 139583862445/228826127*228826127^(1/5) 2865699999302090 a001 225851433717/2537720636*141422324^(4/13) 2865699999302090 a001 267913919/710646*141422324^(3/13) 2865699999302090 a001 53316291173/228826127*228826127^(1/4) 2865699999302090 a001 86267571272/969323029*141422324^(4/13) 2865699999302090 a001 39088169/17393796001*87403803^(17/19) 2865699999302090 a001 20365011074/228826127*228826127^(3/10) 2865699999302090 a001 7778742049/228826127*228826127^(7/20) 2865699999302090 a001 2504730781961/228826127*87403803^(1/19) 2865699999302090 a001 102287808/4868641*228826127^(3/8) 2865699999302090 a001 591286729879/1568397607*141422324^(3/13) 2865699999302090 a001 7778742049/370248451*141422324^(5/13) 2865699999302090 a001 102334155/370248451*2537720636^(8/15) 2865699999302090 a001 102334155/370248451*45537549124^(8/17) 2865699999302090 a001 102334155/370248451*14662949395604^(8/21) 2865699999302090 a001 16944503814015855/591286729879 2865699999302090 a001 102334155/370248451*192900153618^(4/9) 2865699999302090 a001 102334155/370248451*73681302247^(6/13) 2865699999302090 a001 165580141/228826127*10749957122^(11/24) 2865699999302090 a001 102334155/370248451*10749957122^(1/2) 2865699999302090 a001 165580141/228826127*4106118243^(11/23) 2865699999302090 a001 102334155/370248451*4106118243^(12/23) 2865699999302090 a001 165580141/228826127*1568397607^(1/2) 2865699999302090 a001 516002918640/1368706081*141422324^(3/13) 2865699999302090 a001 102334155/370248451*1568397607^(6/11) 2865699999302090 a001 4052739537881/10749957122*141422324^(3/13) 2865699999302090 a001 3536736619241/9381251041*141422324^(3/13) 2865699999302090 a001 6557470319842/17393796001*141422324^(3/13) 2865699999302090 a001 2504730781961/6643838879*141422324^(3/13) 2865699999302090 a001 2971215073/228826127*228826127^(2/5) 2865699999302090 a001 956722026041/2537720636*141422324^(3/13) 2865699999302090 a001 956722026041/599074578*141422324^(2/13) 2865699999302090 a001 365435296162/969323029*141422324^(3/13) 2865699999302090 a001 1134903170/228826127*228826127^(9/20) 2865699999302090 a001 165580141/228826127*599074578^(11/21) 2865699999302090 a001 102334155/370248451*599074578^(4/7) 2865699999302090 a001 34111385/199691526*228826127^(5/8) 2865699999302090 a001 20365011074/370248451*141422324^(1/3) 2865699999302090 a001 433494437/228826127*228826127^(1/2) 2865699999302090 a001 2504730781961/1568397607*141422324^(2/13) 2865699999302090 a001 32951280099/370248451*141422324^(4/13) 2865699999302090 a001 6557470319842/4106118243*141422324^(2/13) 2865699999302090 a001 10610209857723/6643838879*141422324^(2/13) 2865699999302090 a001 4052739537881/2537720636*141422324^(2/13) 2865699999302090 a001 2/165580141*(1/2+1/2*5^(1/2))^64 2865699999302090 a001 39088169/45537549124*87403803^(18/19) 2865699999302090 a001 4052739537881/599074578*141422324^(1/13) 2865699999302090 a001 1548008755920/969323029*141422324^(2/13) 2865699999302090 a001 24157817/33385282*33385282^(11/18) 2865699999302090 a001 102334155/969323029*228826127^(13/20) 2865699999302090 a001 9303105/230701876*228826127^(7/10) 2865699999302090 a001 71778070001175616/2504730781961 2865699999302090 a001 133957148/299537289*4106118243^(1/2) 2865699999302090 a001 956722026041/228826127*87403803^(2/19) 2865699999302090 a001 63245986/87403803*87403803^(11/19) 2865699999302090 a001 102334155/6643838879*228826127^(3/4) 2865699999302090 a001 1515744265389/224056801*141422324^(1/13) 2865699999302090 a001 139583862445/370248451*141422324^(3/13) 2865699999302090 a001 102334155/17393796001*228826127^(4/5) 2865699999302090 a001 267914296/1568397607*2537720636^(5/9) 2865699999302090 a001 233802911/199691526*2537720636^(7/15) 2865699999302090 a001 233802911/199691526*17393796001^(3/7) 2865699999302090 a001 233802911/199691526*45537549124^(7/17) 2865699999302090 a001 267914296/1568397607*312119004989^(5/11) 2865699999302090 a001 17167680148908/599074577 2865699999302090 a001 233802911/199691526*14662949395604^(1/3) 2865699999302090 a001 233802911/199691526*192900153618^(7/18) 2865699999302090 a001 267914296/1568397607*28143753123^(1/2) 2865699999302090 a001 233802911/199691526*10749957122^(7/16) 2865699999302090 a001 267914296/4106118243*2537720636^(3/5) 2865699999302090 a001 267914296/5600748293801*2537720636^(14/15) 2865699999302090 a001 267914296/2139295485799*2537720636^(8/9) 2865699999302090 a001 267914296/1322157322203*2537720636^(13/15) 2865699999302090 a001 267914296/312119004989*2537720636^(4/5) 2865699999302090 a001 133957148/96450076809*2537720636^(7/9) 2865699999302090 a001 267914296/73681302247*2537720636^(11/15) 2865699999302090 a001 9238424/599786069*2537720636^(2/3) 2865699999302090 a001 102334155/45537549124*228826127^(17/20) 2865699999302090 a001 267914296/4106118243*45537549124^(9/17) 2865699999302090 a001 267914296/4106118243*817138163596^(9/19) 2865699999302090 a001 1836311903/599074578*817138163596^(1/3) 2865699999302090 a001 267914296/4106118243*192900153618^(1/2) 2865699999302090 a001 267914296/4106118243*10749957122^(9/16) 2865699999302090 a001 12586269025/599074578*2537720636^(1/3) 2865699999302090 a001 53316291173/599074578*2537720636^(4/15) 2865699999302090 a001 2971215073/599074578*2537720636^(2/5) 2865699999302090 a001 139583862445/599074578*2537720636^(2/9) 2865699999302090 a001 267913919/710646*2537720636^(1/5) 2865699999302090 a001 956722026041/599074578*2537720636^(2/15) 2865699999302090 a001 86000486440/33281921*2537720636^(1/9) 2865699999302090 a001 4052739537881/599074578*2537720636^(1/15) 2865699999302090 a001 267084832/33281921*45537549124^(1/3) 2865699999302090 a001 133957148/5374978561*1322157322203^(1/2) 2865699999302090 a001 267914296/5600748293801*17393796001^(6/7) 2865699999302090 a001 133957148/96450076809*17393796001^(5/7) 2865699999302090 a001 12586269025/599074578*45537549124^(5/17) 2865699999302090 a001 12586269025/599074578*312119004989^(3/11) 2865699999302090 a001 12586269025/599074578*14662949395604^(5/21) 2865699999302090 a001 12586269025/599074578*192900153618^(5/18) 2865699999302090 a001 12586269025/599074578*28143753123^(3/10) 2865699999302090 a001 267914296/73681302247*45537549124^(11/17) 2865699999302090 a001 591286729879/599074578*17393796001^(1/7) 2865699999302090 a001 10182505537/299537289*17393796001^(2/7) 2865699999302090 a001 267914296/23725150497407*45537549124^(15/17) 2865699999302090 a001 267914296/5600748293801*45537549124^(14/17) 2865699999302090 a001 267914296/1322157322203*45537549124^(13/17) 2865699999302090 a001 267914296/312119004989*45537549124^(12/17) 2865699999302090 a001 267914296/119218851371*45537549124^(2/3) 2865699999302090 a001 267914296/73681302247*312119004989^(3/5) 2865699999302090 a001 267914296/73681302247*14662949395604^(11/21) 2865699999302090 a001 267914296/73681302247*192900153618^(11/18) 2865699999302090 a001 10983760033/199691526*73681302247^(1/4) 2865699999302090 a001 267913919/710646*45537549124^(3/17) 2865699999302090 a001 956722026041/599074578*45537549124^(2/17) 2865699999302090 a001 53316291173/599074578*45537549124^(4/17) 2865699999302090 a001 133957148/96450076809*312119004989^(7/11) 2865699999302090 a001 43133785636/299537289*312119004989^(1/5) 2865699999302090 a001 133957148/96450076809*14662949395604^(5/9) 2865699999302090 a001 133957148/96450076809*505019158607^(5/8) 2865699999302090 a001 10946/599074579*312119004989^(4/5) 2865699999302090 a001 267914296/2139295485799*312119004989^(8/11) 2865699999302090 a001 267913919/710646*14662949395604^(1/7) 2865699999302090 a001 10946/599074579*23725150497407^(11/16) 2865699999302090 a001 2504730781961/599074578*23725150497407^(1/16) 2865699999302090 a001 139583862445/599074578*312119004989^(2/11) 2865699999302090 a001 267914296/312119004989*14662949395604^(4/7) 2865699999302090 a001 267914296/312119004989*505019158607^(9/14) 2865699999302090 a001 2504730781961/599074578*73681302247^(1/13) 2865699999302090 a001 267914296/1322157322203*192900153618^(13/18) 2865699999302090 a001 267914296/5600748293801*192900153618^(7/9) 2865699999302090 a001 267914296/23725150497407*192900153618^(5/6) 2865699999302090 a001 182717648081/299537289*73681302247^(2/13) 2865699999302090 a001 53316291173/599074578*817138163596^(4/19) 2865699999302090 a001 53316291173/599074578*14662949395604^(4/21) 2865699999302090 a001 53316291173/599074578*192900153618^(2/9) 2865699999302090 a001 53316291173/599074578*73681302247^(3/13) 2865699999302090 a001 86000486440/33281921*28143753123^(1/10) 2865699999302090 a001 267914296/1322157322203*73681302247^(3/4) 2865699999302090 a001 267914296/2139295485799*73681302247^(10/13) 2865699999302090 a001 10946/599074579*73681302247^(11/13) 2865699999302090 a001 139583862445/599074578*28143753123^(1/5) 2865699999302090 a001 3278735159921/299537289*10749957122^(1/24) 2865699999302090 a001 10182505537/299537289*14662949395604^(2/9) 2865699999302090 a001 66978574/11384387281*23725150497407^(1/2) 2865699999302090 a001 66978574/11384387281*505019158607^(4/7) 2865699999302090 a001 4052739537881/599074578*10749957122^(1/16) 2865699999302090 a001 66978574/11384387281*73681302247^(8/13) 2865699999302090 a001 2504730781961/599074578*10749957122^(1/12) 2865699999302090 a001 133957148/96450076809*28143753123^(7/10) 2865699999302090 a001 267914296/2139295485799*28143753123^(4/5) 2865699999302090 a001 956722026041/599074578*10749957122^(1/8) 2865699999302090 a001 267914296/23725150497407*28143753123^(9/10) 2865699999302090 a001 12586269025/599074578*10749957122^(5/16) 2865699999302090 a001 182717648081/299537289*10749957122^(1/6) 2865699999302090 a001 267913919/710646*10749957122^(3/16) 2865699999302090 a001 139583862445/599074578*10749957122^(5/24) 2865699999302090 a001 53316291173/599074578*10749957122^(1/4) 2865699999302090 a001 3278735159921/299537289*4106118243^(1/23) 2865699999302090 a001 10182505537/299537289*10749957122^(7/24) 2865699999302090 a001 9238424/599786069*45537549124^(10/17) 2865699999302090 a001 9238424/599786069*312119004989^(6/11) 2865699999302090 a001 9238424/599786069*14662949395604^(10/21) 2865699999302090 a001 7778742049/599074578*23725150497407^(1/4) 2865699999302090 a001 9238424/599786069*192900153618^(5/9) 2865699999302090 a001 7778742049/599074578*73681302247^(4/13) 2865699999302090 a001 9238424/599786069*28143753123^(3/5) 2865699999302090 a001 6557470319842/969323029*141422324^(1/13) 2865699999302090 a001 2504730781961/599074578*4106118243^(2/23) 2865699999302090 a001 267914296/73681302247*10749957122^(11/16) 2865699999302090 a001 7778742049/599074578*10749957122^(1/3) 2865699999302090 a001 267914296/119218851371*10749957122^(17/24) 2865699999302090 a001 66978574/11384387281*10749957122^(2/3) 2865699999302090 a001 267914296/312119004989*10749957122^(3/4) 2865699999302090 a001 66978574/204284540899*10749957122^(19/24) 2865699999302090 a001 267914296/1322157322203*10749957122^(13/16) 2865699999302090 a001 267914296/2139295485799*10749957122^(5/6) 2865699999302090 a001 267914296/5600748293801*10749957122^(7/8) 2865699999302090 a001 956722026041/599074578*4106118243^(3/23) 2865699999302090 a001 10946/599074579*10749957122^(11/12) 2865699999302090 a001 267914296/23725150497407*10749957122^(15/16) 2865699999302090 a001 9238424/599786069*10749957122^(5/8) 2865699999302090 a001 182717648081/299537289*4106118243^(4/23) 2865699999302090 a001 139583862445/599074578*4106118243^(5/23) 2865699999302090 a001 53316291173/599074578*4106118243^(6/23) 2865699999302090 a001 3278735159921/299537289*1568397607^(1/22) 2865699999302090 a001 10182505537/299537289*4106118243^(7/23) 2865699999302090 a001 267914296/6643838879*17393796001^(4/7) 2865699999302090 a001 2971215073/599074578*45537549124^(6/17) 2865699999302090 a001 267914296/6643838879*14662949395604^(4/9) 2865699999302090 a001 2971215073/599074578*14662949395604^(2/7) 2865699999302090 a001 2971215073/599074578*192900153618^(1/3) 2865699999302090 a001 267914296/6643838879*73681302247^(7/13) 2865699999302090 a001 7778742049/599074578*4106118243^(8/23) 2865699999302090 a001 2971215073/599074578*10749957122^(3/8) 2865699999302090 a001 267914296/6643838879*10749957122^(7/12) 2865699999302090 a001 2504730781961/599074578*1568397607^(1/11) 2865699999302090 a001 66978574/11384387281*4106118243^(16/23) 2865699999302090 a001 9238424/599786069*4106118243^(15/23) 2865699999302090 a001 267914296/119218851371*4106118243^(17/23) 2865699999302090 a001 2971215073/599074578*4106118243^(9/23) 2865699999302090 a001 267914296/312119004989*4106118243^(18/23) 2865699999302090 a001 66978574/204284540899*4106118243^(19/23) 2865699999302090 a001 267914296/2139295485799*4106118243^(20/23) 2865699999302090 a001 267914296/5600748293801*4106118243^(21/23) 2865699999302090 a001 956722026041/599074578*1568397607^(3/22) 2865699999302090 a001 10946/599074579*4106118243^(22/23) 2865699999302090 a001 267914296/6643838879*4106118243^(14/23) 2865699999302090 a001 182717648081/299537289*1568397607^(2/11) 2865699999302090 a001 567451585/299537289*2537720636^(4/9) 2865699999302090 a001 139583862445/599074578*1568397607^(5/22) 2865699999302090 a001 43133785636/299537289*1568397607^(1/4) 2865699999302090 a001 53316291173/599074578*1568397607^(3/11) 2865699999302090 a001 10182505537/299537289*1568397607^(7/22) 2865699999302090 a001 3278735159921/299537289*599074578^(1/21) 2865699999302090 a001 7778742049/599074578*1568397607^(4/11) 2865699999302090 a001 304056783818718320/10610209857723 2865699999302090 a001 567451585/299537289*505019158607^(5/14) 2865699999302090 a001 567451585/299537289*73681302247^(5/13) 2865699999302090 a001 66978574/634430159*73681302247^(1/2) 2865699999302090 a001 567451585/299537289*28143753123^(2/5) 2865699999302090 a001 567451585/299537289*10749957122^(5/12) 2865699999302090 a001 66978574/634430159*10749957122^(13/24) 2865699999302090 a001 567451585/299537289*4106118243^(10/23) 2865699999302090 a001 66978574/634430159*4106118243^(13/23) 2865699999302090 a001 2971215073/599074578*1568397607^(9/22) 2865699999302090 a001 4052739537881/599074578*599074578^(1/14) 2865699999302090 a001 2504730781961/599074578*599074578^(2/21) 2865699999302090 a001 9238424/599786069*1568397607^(15/22) 2865699999302090 a001 267914296/6643838879*1568397607^(7/11) 2865699999302090 a001 66978574/11384387281*1568397607^(8/11) 2865699999302090 a001 267914296/73681302247*1568397607^(3/4) 2865699999302090 a001 267914296/119218851371*1568397607^(17/22) 2865699999302090 a001 267914296/312119004989*1568397607^(9/11) 2865699999302090 a001 567451585/299537289*1568397607^(5/11) 2865699999302090 a001 66978574/204284540899*1568397607^(19/22) 2865699999302090 a001 267914296/2139295485799*1568397607^(10/11) 2865699999302090 a001 267914296/5600748293801*1568397607^(21/22) 2865699999302090 a001 66978574/634430159*1568397607^(13/22) 2865699999302090 a001 956722026041/599074578*599074578^(1/7) 2865699999302090 a001 14619165/10525900321*228826127^(7/8) 2865699999302090 a001 591286729879/599074578*599074578^(1/6) 2865699999302090 a001 182717648081/299537289*599074578^(4/21) 2865699999302090 a001 267913919/710646*599074578^(3/14) 2865699999302090 a001 139583862445/599074578*599074578^(5/21) 2865699999302090 a001 53316291173/599074578*599074578^(2/7) 2865699999302090 a001 102334155/119218851371*228826127^(9/10) 2865699999302090 a001 10182505537/299537289*599074578^(1/3) 2865699999302090 a001 3278735159921/299537289*228826127^(1/20) 2865699999302090 a001 267914296/969323029*2537720636^(8/15) 2865699999302090 a001 233802911/199691526*599074578^(1/2) 2865699999302090 a001 12586269025/599074578*599074578^(5/14) 2865699999302090 a001 267914296/969323029*45537549124^(8/17) 2865699999302090 a001 267914296/969323029*14662949395604^(8/21) 2865699999302090 a001 116139356908771352/4052739537881 2865699999302090 a001 267914296/969323029*192900153618^(4/9) 2865699999302090 a001 267914296/969323029*73681302247^(6/13) 2865699999302090 a001 7778742049/599074578*599074578^(8/21) 2865699999302090 a001 433494437/599074578*10749957122^(11/24) 2865699999302090 a001 267914296/969323029*10749957122^(1/2) 2865699999302090 a001 433494437/599074578*4106118243^(11/23) 2865699999302090 a001 267914296/969323029*4106118243^(12/23) 2865699999302090 a001 2971215073/599074578*599074578^(3/7) 2865699999302090 a001 433494437/599074578*1568397607^(1/2) 2865699999302090 a001 267914296/969323029*1568397607^(6/11) 2865699999302090 a001 567451585/299537289*599074578^(10/21) 2865699999302090 a001 165580141/228826127*228826127^(11/20) 2865699999302090 a001 267914296/4106118243*599074578^(9/14) 2865699999302090 a001 9303105/28374454999*228826127^(19/20) 2865699999302090 a001 66978574/634430159*599074578^(13/21) 2865699999302090 a001 267914296/6643838879*599074578^(2/3) 2865699999302090 a001 2504730781961/599074578*228826127^(1/10) 2865699999302090 a001 9238424/599786069*599074578^(5/7) 2865699999302090 a001 701408733/1568397607*4106118243^(1/2) 2865699999302090 a001 66978574/11384387281*599074578^(16/21) 2865699999302090 a001 267914296/73681302247*599074578^(11/14) 2865699999302090 a001 233802911/1368706081*2537720636^(5/9) 2865699999302090 a001 701408733/14662949395604*2537720636^(14/15) 2865699999302090 a001 701408733/5600748293801*2537720636^(8/9) 2865699999302090 a001 701408733/3461452808002*2537720636^(13/15) 2865699999302090 a001 1836311903/1568397607*2537720636^(7/15) 2865699999302090 a001 701408733/817138163596*2537720636^(4/5) 2865699999302090 a001 267914296/119218851371*599074578^(17/21) 2865699999302090 a001 701408733/505019158607*2537720636^(7/9) 2865699999302090 a001 233802911/64300051206*2537720636^(11/15) 2865699999302090 a001 701408733/45537549124*2537720636^(2/3) 2865699999302090 a001 701408733/10749957122*2537720636^(3/5) 2865699999302090 a001 1836311903/1568397607*17393796001^(3/7) 2865699999302090 a001 1836311903/1568397607*45537549124^(7/17) 2865699999302090 a001 233802911/1368706081*312119004989^(5/11) 2865699999302090 a001 1836311903/1568397607*14662949395604^(1/3) 2865699999302090 a001 233802911/1368706081*3461452808002^(5/12) 2865699999302090 a001 1836311903/1568397607*192900153618^(7/18) 2865699999302090 a001 7778742049/1568397607*2537720636^(2/5) 2865699999302090 a001 233802911/1368706081*28143753123^(1/2) 2865699999302090 a001 133957148/96450076809*599074578^(5/6) 2865699999302090 a001 1836311903/1568397607*10749957122^(7/16) 2865699999302090 a001 32951280099/1568397607*2537720636^(1/3) 2865699999302090 a001 2971215073/1568397607*2537720636^(4/9) 2865699999302090 a001 139583862445/1568397607*2537720636^(4/15) 2865699999302090 a001 365435296162/1568397607*2537720636^(2/9) 2865699999302090 a001 591286729879/1568397607*2537720636^(1/5) 2865699999302090 a001 2504730781961/1568397607*2537720636^(2/15) 2865699999302090 a001 4052739537881/1568397607*2537720636^(1/9) 2865699999302090 a001 1515744265389/224056801*2537720636^(1/15) 2865699999302090 a001 701408733/10749957122*45537549124^(9/17) 2865699999302090 a001 686789568/224056801*817138163596^(1/3) 2865699999302090 a001 701408733/10749957122*192900153618^(1/2) 2865699999302090 a001 701408733/10749957122*10749957122^(9/16) 2865699999302090 a001 701408733/14662949395604*17393796001^(6/7) 2865699999302090 a001 701408733/505019158607*17393796001^(5/7) 2865699999302090 a001 12586269025/1568397607*45537549124^(1/3) 2865699999302090 a001 233802911/9381251041*1322157322203^(1/2) 2865699999302090 a001 53316291173/1568397607*17393796001^(2/7) 2865699999302090 a001 1548008755920/1568397607*17393796001^(1/7) 2865699999302090 a001 701408733/14662949395604*45537549124^(14/17) 2865699999302090 a001 701408733/3461452808002*45537549124^(13/17) 2865699999302090 a001 233802911/64300051206*45537549124^(11/17) 2865699999302090 a001 32951280099/1568397607*45537549124^(5/17) 2865699999302090 a001 3524667/1568437211*45537549124^(2/3) 2865699999302090 a001 32951280099/1568397607*312119004989^(3/11) 2865699999302090 a001 32951280099/1568397607*14662949395604^(5/21) 2865699999302090 a001 701408733/73681302247*9062201101803^(1/2) 2865699999302090 a001 32951280099/1568397607*192900153618^(5/18) 2865699999302090 a001 139583862445/1568397607*45537549124^(4/17) 2865699999302090 a001 591286729879/1568397607*45537549124^(3/17) 2865699999302090 a001 2504730781961/1568397607*45537549124^(2/17) 2865699999302090 a001 233802911/64300051206*312119004989^(3/5) 2865699999302090 a001 1515744265389/224056801*45537549124^(1/17) 2865699999302090 a001 233802911/64300051206*14662949395604^(11/21) 2865699999302090 a001 701408733/505019158607*312119004989^(7/11) 2865699999302090 a001 233802911/64300051206*192900153618^(11/18) 2865699999302090 a001 701408733/505019158607*505019158607^(5/8) 2865699999302090 a001 1515744265389/224056801*14662949395604^(1/21) 2865699999302090 a001 1515744265389/224056801*192900153618^(1/18) 2865699999302090 a001 591286729879/1568397607*192900153618^(1/6) 2865699999302090 a001 139583862445/1568397607*817138163596^(4/19) 2865699999302090 a001 139583862445/1568397607*14662949395604^(4/21) 2865699999302090 a001 139583862445/1568397607*192900153618^(2/9) 2865699999302090 a001 701408733/14662949395604*192900153618^(7/9) 2865699999302090 a001 956722026041/1568397607*73681302247^(2/13) 2865699999302090 a001 139583862445/1568397607*73681302247^(3/13) 2865699999302090 a001 53316291173/1568397607*14662949395604^(2/9) 2865699999302090 a001 53316291173/1568397607*505019158607^(1/4) 2865699999302090 a001 4052739537881/1568397607*28143753123^(1/10) 2865699999302090 a001 701408733/817138163596*73681302247^(9/13) 2865699999302090 a001 701408733/3461452808002*73681302247^(3/4) 2865699999302090 a001 701408733/5600748293801*73681302247^(10/13) 2865699999302090 a001 701408733/119218851371*73681302247^(8/13) 2865699999302090 a001 32951280099/1568397607*28143753123^(3/10) 2865699999302090 a001 701408733/45537549124*45537549124^(10/17) 2865699999302090 a001 365435296162/1568397607*28143753123^(1/5) 2865699999302090 a001 701408733/45537549124*312119004989^(6/11) 2865699999302090 a001 701408733/45537549124*14662949395604^(10/21) 2865699999302090 a001 20365011074/1568397607*23725150497407^(1/4) 2865699999302090 a001 701408733/45537549124*192900153618^(5/9) 2865699999302090 a001 1515744265389/224056801*10749957122^(1/16) 2865699999302090 a001 6557470319842/1568397607*10749957122^(1/12) 2865699999302090 a001 701408733/505019158607*28143753123^(7/10) 2865699999302090 a001 701408733/5600748293801*28143753123^(4/5) 2865699999302090 a001 2504730781961/1568397607*10749957122^(1/8) 2865699999302090 a001 701408733/45537549124*28143753123^(3/5) 2865699999302090 a001 701408733/17393796001*17393796001^(4/7) 2865699999302090 a001 956722026041/1568397607*10749957122^(1/6) 2865699999302090 a001 591286729879/1568397607*10749957122^(3/16) 2865699999302090 a001 365435296162/1568397607*10749957122^(5/24) 2865699999302090 a001 139583862445/1568397607*10749957122^(1/4) 2865699999302090 a001 32951280099/1568397607*10749957122^(5/16) 2865699999302090 a001 53316291173/1568397607*10749957122^(7/24) 2865699999302090 a001 7778742049/1568397607*45537549124^(6/17) 2865699999302090 a001 701408733/17393796001*14662949395604^(4/9) 2865699999302090 a001 7778742049/1568397607*192900153618^(1/3) 2865699999302090 a001 20365011074/1568397607*10749957122^(1/3) 2865699999302090 a001 701408733/17393796001*73681302247^(7/13) 2865699999302090 a001 6557470319842/1568397607*4106118243^(2/23) 2865699999302090 a001 701408733/119218851371*10749957122^(2/3) 2865699999302090 a001 701408733/45537549124*10749957122^(5/8) 2865699999302090 a001 233802911/64300051206*10749957122^(11/16) 2865699999302090 a001 3524667/1568437211*10749957122^(17/24) 2865699999302090 a001 701408733/817138163596*10749957122^(3/4) 2865699999302090 a001 7778742049/1568397607*10749957122^(3/8) 2865699999302090 a001 701408733/2139295485799*10749957122^(19/24) 2865699999302090 a001 701408733/3461452808002*10749957122^(13/16) 2865699999302090 a001 701408733/5600748293801*10749957122^(5/6) 2865699999302090 a001 86000486440/33281921*228826127^(1/8) 2865699999302090 a001 701408733/14662949395604*10749957122^(7/8) 2865699999302090 a001 2504730781961/1568397607*4106118243^(3/23) 2865699999302090 a001 701408733/17393796001*10749957122^(7/12) 2865699999302090 a001 267914296/312119004989*599074578^(6/7) 2865699999302090 a001 591286729879/370248451*141422324^(2/13) 2865699999302090 a001 956722026041/1568397607*4106118243^(4/23) 2865699999302090 a001 365435296162/1568397607*4106118243^(5/23) 2865699999302090 a001 139583862445/1568397607*4106118243^(6/23) 2865699999302090 a001 53316291173/1568397607*4106118243^(7/23) 2865699999302090 a001 20365011074/1568397607*4106118243^(8/23) 2865699999302090 a001 2971215073/1568397607*23725150497407^(5/16) 2865699999302090 a001 2971215073/1568397607*505019158607^(5/14) 2865699999302090 a001 2971215073/1568397607*73681302247^(5/13) 2865699999302090 a001 701408733/6643838879*73681302247^(1/2) 2865699999302090 a001 2971215073/1568397607*28143753123^(2/5) 2865699999302090 a001 2971215073/1568397607*10749957122^(5/12) 2865699999302090 a001 7778742049/1568397607*4106118243^(9/23) 2865699999302090 a001 701408733/6643838879*10749957122^(13/24) 2865699999302090 a001 6557470319842/1568397607*1568397607^(1/11) 2865699999302090 a001 701408733/45537549124*4106118243^(15/23) 2865699999302090 a001 701408733/17393796001*4106118243^(14/23) 2865699999302090 a001 701408733/119218851371*4106118243^(16/23) 2865699999302090 a001 3524667/1568437211*4106118243^(17/23) 2865699999302090 a001 701408733/817138163596*4106118243^(18/23) 2865699999302090 a001 2971215073/1568397607*4106118243^(10/23) 2865699999302090 a001 701408733/2139295485799*4106118243^(19/23) 2865699999302090 a001 701408733/5600748293801*4106118243^(20/23) 2865699999302090 a001 701408733/14662949395604*4106118243^(21/23) 2865699999302090 a001 2504730781961/1568397607*1568397607^(3/22) 2865699999302090 a001 701408733/6643838879*4106118243^(13/23) 2865699999302090 a001 102334155/370248451*228826127^(3/5) 2865699999302090 a001 701408733/2537720636*2537720636^(8/15) 2865699999302090 a001 956722026041/1568397607*1568397607^(2/11) 2865699999302090 a001 365435296162/1568397607*1568397607^(5/22) 2865699999302090 a001 32264490531/224056801*1568397607^(1/4) 2865699999302090 a001 139583862445/1568397607*1568397607^(3/11) 2865699999302090 a001 53316291173/1568397607*1568397607^(7/22) 2865699999302090 a001 66978574/204284540899*599074578^(19/21) 2865699999302090 a001 433494437/599074578*599074578^(11/21) 2865699999302090 a001 20365011074/1568397607*1568397607^(4/11) 2865699999302090 a001 701408733/2537720636*45537549124^(8/17) 2865699999302090 a001 1134903170/1568397607*312119004989^(2/5) 2865699999302090 a001 701408733/2537720636*192900153618^(4/9) 2865699999302090 a001 701408733/2537720636*73681302247^(6/13) 2865699999302090 a001 1134903170/1568397607*10749957122^(11/24) 2865699999302090 a001 701408733/2537720636*10749957122^(1/2) 2865699999302090 a001 7778742049/1568397607*1568397607^(9/22) 2865699999302090 a001 1134903170/1568397607*4106118243^(11/23) 2865699999302090 a001 701408733/2537720636*4106118243^(12/23) 2865699999302090 a001 1515744265389/224056801*599074578^(1/14) 2865699999302090 a001 2971215073/1568397607*1568397607^(5/11) 2865699999302090 a001 267914296/1322157322203*599074578^(13/14) 2865699999302090 a001 1836311903/14662949395604*2537720636^(8/9) 2865699999302090 a001 1836311903/9062201101803*2537720636^(13/15) 2865699999302090 a001 1836311903/2139295485799*2537720636^(4/5) 2865699999302090 a001 1836311903/1322157322203*2537720636^(7/9) 2865699999302090 a001 1836311903/505019158607*2537720636^(11/15) 2865699999302090 a001 1836311903/119218851371*2537720636^(2/3) 2865699999302090 a001 1836311903/10749957122*2537720636^(5/9) 2865699999302090 a001 1836311903/28143753123*2537720636^(3/5) 2865699999302090 a001 701408733/17393796001*1568397607^(7/11) 2865699999302090 a001 701408733/6643838879*1568397607^(13/22) 2865699999302090 a001 4807526976/23725150497407*2537720636^(13/15) 2865699999302090 a001 6557470319842/1568397607*599074578^(2/21) 2865699999302090 a001 1602508992/1368706081*2537720636^(7/15) 2865699999302090 a001 4807526976/5600748293801*2537720636^(4/5) 2865699999302090 a001 267914296/2139295485799*599074578^(20/21) 2865699999302090 a001 267914296/969323029*599074578^(4/7) 2865699999302090 a001 14930208/10749853441*2537720636^(7/9) 2865699999302090 a001 701408733/45537549124*1568397607^(15/22) 2865699999302090 a001 12586269025/14662949395604*2537720636^(4/5) 2865699999302090 a001 7778742049/4106118243*2537720636^(4/9) 2865699999302090 a001 20365011074/23725150497407*2537720636^(4/5) 2865699999302090 a001 1602508992/440719107401*2537720636^(11/15) 2865699999302090 a001 12586269025/9062201101803*2537720636^(7/9) 2865699999302090 a001 32951280099/23725150497407*2537720636^(7/9) 2865699999302090 a001 20365011074/4106118243*2537720636^(2/5) 2865699999302090 a001 7778742049/9062201101803*2537720636^(4/5) 2865699999302090 a001 10182505537/7331474697802*2537720636^(7/9) 2865699999302090 a001 1836311903/6643838879*2537720636^(8/15) 2865699999302090 a001 7778742049/5600748293801*2537720636^(7/9) 2865699999302090 a001 2971215073/23725150497407*2537720636^(8/9) 2865699999302090 a001 12586269025/3461452808002*2537720636^(11/15) 2865699999302090 a001 10983760033/3020733700601*2537720636^(11/15) 2865699999302090 a001 86267571272/23725150497407*2537720636^(11/15) 2865699999302090 a001 53316291173/14662949395604*2537720636^(11/15) 2865699999302090 a001 20365011074/5600748293801*2537720636^(11/15) 2865699999302090 a001 4807526976/312119004989*2537720636^(2/3) 2865699999302090 a001 2971215073/14662949395604*2537720636^(13/15) 2865699999302090 a001 86267571272/4106118243*2537720636^(1/3) 2865699999302090 a001 701408733/119218851371*1568397607^(8/11) 2865699999302090 a001 7778742049/2139295485799*2537720636^(11/15) 2865699999302090 a001 12586269025/817138163596*2537720636^(2/3) 2865699999302090 a001 32951280099/2139295485799*2537720636^(2/3) 2865699999302090 a001 86267571272/5600748293801*2537720636^(2/3) 2865699999302090 a001 7787980473/505618944676*2537720636^(2/3) 2865699999302090 a001 365435296162/23725150497407*2537720636^(2/3) 2865699999302090 a001 139583862445/9062201101803*2537720636^(2/3) 2865699999302090 a001 53316291173/3461452808002*2537720636^(2/3) 2865699999302090 a001 20365011074/1322157322203*2537720636^(2/3) 2865699999302090 a001 686789568/10525900321*2537720636^(3/5) 2865699999302090 a001 233802911/64300051206*1568397607^(3/4) 2865699999302090 a001 2971215073/3461452808002*2537720636^(4/5) 2865699999302090 a001 365435296162/4106118243*2537720636^(4/15) 2865699999302090 a001 7778742049/505019158607*2537720636^(2/3) 2865699999302090 a001 2971215073/2139295485799*2537720636^(7/9) 2865699999302090 a001 1602508992/9381251041*2537720636^(5/9) 2865699999302090 a001 12586269025/192900153618*2537720636^(3/5) 2865699999302090 a001 956722026041/4106118243*2537720636^(2/9) 2865699999302090 a001 32951280099/505019158607*2537720636^(3/5) 2865699999302090 a001 86267571272/1322157322203*2537720636^(3/5) 2865699999302090 a001 32264490531/494493258286*2537720636^(3/5) 2865699999302090 a001 591286729879/9062201101803*2537720636^(3/5) 2865699999302090 a001 1548008755920/23725150497407*2537720636^(3/5) 2865699999302090 a001 139583862445/2139295485799*2537720636^(3/5) 2865699999302090 a001 53316291173/817138163596*2537720636^(3/5) 2865699999302090 a001 20365011074/312119004989*2537720636^(3/5) 2865699999302090 a001 3524667/1568437211*1568397607^(17/22) 2865699999302090 a001 2971215073/817138163596*2537720636^(11/15) 2865699999302090 a001 516002918640/1368706081*2537720636^(1/5) 2865699999302090 a001 7778742049/119218851371*2537720636^(3/5) 2865699999302090 a001 1836311903/4106118243*4106118243^(1/2) 2865699999302090 a001 4807526976/17393796001*2537720636^(8/15) 2865699999302090 a001 12586269025/73681302247*2537720636^(5/9) 2865699999302090 a001 10983760033/64300051206*2537720636^(5/9) 2865699999302090 a001 86267571272/505019158607*2537720636^(5/9) 2865699999302090 a001 75283811239/440719107401*2537720636^(5/9) 2865699999302090 a001 2504730781961/14662949395604*2537720636^(5/9) 2865699999302090 a001 139583862445/817138163596*2537720636^(5/9) 2865699999302090 a001 53316291173/312119004989*2537720636^(5/9) 2865699999302090 a001 20365011074/119218851371*2537720636^(5/9) 2865699999302090 a001 12586269025/45537549124*2537720636^(8/15) 2865699999302090 a001 32951280099/119218851371*2537720636^(8/15) 2865699999302090 a001 86267571272/312119004989*2537720636^(8/15) 2865699999302090 a001 225851433717/817138163596*2537720636^(8/15) 2865699999302090 a001 1548008755920/5600748293801*2537720636^(8/15) 2865699999302090 a001 139583862445/505019158607*2537720636^(8/15) 2865699999302090 a001 53316291173/192900153618*2537720636^(8/15) 2865699999302090 a001 20365011074/73681302247*2537720636^(8/15) 2865699999302090 a001 7778742049/45537549124*2537720636^(5/9) 2865699999302090 a001 12586269025/10749957122*2537720636^(7/15) 2865699999302090 a001 2971215073/192900153618*2537720636^(2/3) 2865699999302090 a001 7778742049/28143753123*2537720636^(8/15) 2865699999302090 a001 6557470319842/4106118243*2537720636^(2/15) 2865699999302090 a001 10182505537/5374978561*2537720636^(4/9) 2865699999302090 a001 3536736619241/1368706081*2537720636^(1/9) 2865699999302090 a001 701408733/817138163596*1568397607^(9/11) 2865699999302090 a001 10983760033/9381251041*2537720636^(7/15) 2865699999302090 a001 86267571272/73681302247*2537720636^(7/15) 2865699999302090 a001 75283811239/64300051206*2537720636^(7/15) 2865699999302090 a001 2504730781961/2139295485799*2537720636^(7/15) 2865699999302090 a001 365435296162/312119004989*2537720636^(7/15) 2865699999302090 a001 139583862445/119218851371*2537720636^(7/15) 2865699999302090 a001 53316291173/45537549124*2537720636^(7/15) 2865699999302090 a001 53316291173/10749957122*2537720636^(2/5) 2865699999302090 a001 53316291173/28143753123*2537720636^(4/9) 2865699999302090 a001 2971215073/45537549124*2537720636^(3/5) 2865699999302090 a001 1602508992/1368706081*17393796001^(3/7) 2865699999302090 a001 139583862445/73681302247*2537720636^(4/9) 2865699999302090 a001 182717648081/96450076809*2537720636^(4/9) 2865699999302090 a001 956722026041/505019158607*2537720636^(4/9) 2865699999302090 a001 10610209857723/5600748293801*2537720636^(4/9) 2865699999302090 a001 591286729879/312119004989*2537720636^(4/9) 2865699999302090 a001 225851433717/119218851371*2537720636^(4/9) 2865699999302090 a001 2971215073/10749957122*2537720636^(8/15) 2865699999302090 a001 20365011074/17393796001*2537720636^(7/15) 2865699999302090 a001 21566892818/11384387281*2537720636^(4/9) 2865699999302090 a001 1602508992/1368706081*45537549124^(7/17) 2865699999302090 a001 1836311903/10749957122*312119004989^(5/11) 2865699999302090 a001 1602508992/1368706081*14662949395604^(1/3) 2865699999302090 a001 1836311903/10749957122*3461452808002^(5/12) 2865699999302090 a001 1602508992/1368706081*192900153618^(7/18) 2865699999302090 a001 1836311903/10749957122*28143753123^(1/2) 2865699999302090 a001 32951280099/17393796001*2537720636^(4/9) 2865699999302090 a001 1602508992/1368706081*10749957122^(7/16) 2865699999302090 a001 139583862445/28143753123*2537720636^(2/5) 2865699999302090 a001 365435296162/73681302247*2537720636^(2/5) 2865699999302090 a001 956722026041/192900153618*2537720636^(2/5) 2865699999302090 a001 2504730781961/505019158607*2537720636^(2/5) 2865699999302090 a001 10610209857723/2139295485799*2537720636^(2/5) 2865699999302090 a001 4052739537881/817138163596*2537720636^(2/5) 2865699999302090 a001 140728068720/28374454999*2537720636^(2/5) 2865699999302090 a001 591286729879/119218851371*2537720636^(2/5) 2865699999302090 a001 1836311903/1322157322203*17393796001^(5/7) 2865699999302090 a001 225851433717/45537549124*2537720636^(2/5) 2865699999302090 a001 1836311903/28143753123*45537549124^(9/17) 2865699999302090 a001 1836311903/45537549124*17393796001^(4/7) 2865699999302090 a001 12586269025/4106118243*817138163596^(1/3) 2865699999302090 a001 1836311903/28143753123*192900153618^(1/2) 2865699999302090 a001 225851433717/10749957122*2537720636^(1/3) 2865699999302090 a001 2971215073/17393796001*2537720636^(5/9) 2865699999302090 a001 139583862445/4106118243*17393796001^(2/7) 2865699999302090 a001 4052739537881/4106118243*17393796001^(1/7) 2865699999302090 a001 1836311903/9062201101803*45537549124^(13/17) 2865699999302090 a001 10983760033/1368706081*45537549124^(1/3) 2865699999302090 a001 1836311903/2139295485799*45537549124^(12/17) 2865699999302090 a001 1836311903/817138163596*45537549124^(2/3) 2865699999302090 a001 1836311903/505019158607*45537549124^(11/17) 2865699999302090 a001 1836311903/119218851371*45537549124^(10/17) 2865699999302090 a001 1836311903/73681302247*1322157322203^(1/2) 2865699999302090 a001 86267571272/4106118243*45537549124^(5/17) 2865699999302090 a001 365435296162/4106118243*45537549124^(4/17) 2865699999302090 a001 516002918640/1368706081*45537549124^(3/17) 2865699999302090 a001 6557470319842/4106118243*45537549124^(2/17) 2865699999302090 a001 86267571272/4106118243*312119004989^(3/11) 2865699999302090 a001 86267571272/4106118243*14662949395604^(5/21) 2865699999302090 a001 1836311903/192900153618*9062201101803^(1/2) 2865699999302090 a001 86267571272/4106118243*192900153618^(5/18) 2865699999302090 a001 1836311903/14662949395604*312119004989^(8/11) 2865699999302090 a001 1836311903/1322157322203*312119004989^(7/11) 2865699999302090 a001 1836311903/1322157322203*14662949395604^(5/9) 2865699999302090 a006 5^(1/2)*Fibonacci(69)/Lucas(46)/sqrt(5) 2865699999302090 a001 1836311903/2139295485799*14662949395604^(4/7) 2865699999302090 a001 1836311903/1322157322203*505019158607^(5/8) 2865699999302090 a001 139583862445/4106118243*14662949395604^(2/9) 2865699999302090 a001 139583862445/4106118243*505019158607^(1/4) 2865699999302090 a001 1836311903/2139295485799*192900153618^(2/3) 2865699999302090 a001 2504730781961/4106118243*73681302247^(2/13) 2865699999302090 a001 365435296162/4106118243*73681302247^(3/13) 2865699999302090 a001 1836311903/119218851371*312119004989^(6/11) 2865699999302090 a001 1836311903/119218851371*14662949395604^(10/21) 2865699999302090 a001 53316291173/4106118243*23725150497407^(1/4) 2865699999302090 a001 1836311903/119218851371*192900153618^(5/9) 2865699999302090 a001 1836311903/312119004989*73681302247^(8/13) 2865699999302090 a001 1836311903/2139295485799*73681302247^(9/13) 2865699999302090 a001 1836311903/9062201101803*73681302247^(3/4) 2865699999302090 a001 1836311903/14662949395604*73681302247^(10/13) 2865699999302090 a001 956722026041/4106118243*28143753123^(1/5) 2865699999302090 a001 20365011074/4106118243*45537549124^(6/17) 2865699999302090 a001 86267571272/4106118243*28143753123^(3/10) 2865699999302090 a001 86267571272/17393796001*2537720636^(2/5) 2865699999302090 a001 1836311903/45537549124*14662949395604^(4/9) 2865699999302090 a001 20365011074/4106118243*192900153618^(1/3) 2865699999302090 a001 1836311903/45537549124*73681302247^(7/13) 2865699999302090 a001 1836311903/119218851371*28143753123^(3/5) 2865699999302090 a001 1836311903/1322157322203*28143753123^(7/10) 2865699999302090 a001 1836311903/14662949395604*28143753123^(4/5) 2865699999302090 a001 6557470319842/4106118243*10749957122^(1/8) 2865699999302090 a001 2504730781961/4106118243*10749957122^(1/6) 2865699999302090 a001 516002918640/1368706081*10749957122^(3/16) 2865699999302090 a001 956722026041/4106118243*10749957122^(5/24) 2865699999302090 a001 365435296162/4106118243*10749957122^(1/4) 2865699999302090 a001 139583862445/4106118243*10749957122^(7/24) 2865699999302090 a001 86267571272/4106118243*10749957122^(5/16) 2865699999302090 a001 53316291173/4106118243*10749957122^(1/3) 2865699999302090 a001 7778742049/4106118243*23725150497407^(5/16) 2865699999302090 a001 7778742049/4106118243*505019158607^(5/14) 2865699999302090 a001 7778742049/4106118243*73681302247^(5/13) 2865699999302090 a001 1836311903/17393796001*73681302247^(1/2) 2865699999302090 a001 1836311903/28143753123*10749957122^(9/16) 2865699999302090 a001 20365011074/4106118243*10749957122^(3/8) 2865699999302090 a001 7778742049/4106118243*28143753123^(2/5) 2865699999302090 a001 701408733/2139295485799*1568397607^(19/22) 2865699999302090 a001 1836311903/119218851371*10749957122^(5/8) 2865699999302090 a001 1836311903/45537549124*10749957122^(7/12) 2865699999302090 a001 1836311903/312119004989*10749957122^(2/3) 2865699999302090 a001 1836311903/505019158607*10749957122^(11/16) 2865699999302090 a001 1836311903/817138163596*10749957122^(17/24) 2865699999302090 a001 591286729879/28143753123*2537720636^(1/3) 2865699999302090 a001 1836311903/2139295485799*10749957122^(3/4) 2865699999302090 a001 1836311903/5600748293801*10749957122^(19/24) 2865699999302090 a001 7778742049/4106118243*10749957122^(5/12) 2865699999302090 a001 1836311903/9062201101803*10749957122^(13/16) 2865699999302090 a001 1836311903/14662949395604*10749957122^(5/6) 2865699999302090 a001 1548008755920/73681302247*2537720636^(1/3) 2865699999302090 a001 4052739537881/192900153618*2537720636^(1/3) 2865699999302090 a001 225749145909/10745088481*2537720636^(1/3) 2865699999302090 a001 6557470319842/312119004989*2537720636^(1/3) 2865699999302090 a001 2504730781961/119218851371*2537720636^(1/3) 2865699999302090 a001 6557470319842/4106118243*4106118243^(3/23) 2865699999302090 a001 1836311903/17393796001*10749957122^(13/24) 2865699999302090 a001 956722026041/45537549124*2537720636^(1/3) 2865699999302090 a001 956722026041/10749957122*2537720636^(4/15) 2865699999302090 a001 2504730781961/4106118243*4106118243^(4/23) 2865699999302090 a001 365435296162/17393796001*2537720636^(1/3) 2865699999302090 a001 1134903170/1568397607*1568397607^(1/2) 2865699999302090 a001 12586269025/6643838879*2537720636^(4/9) 2865699999302090 a001 7778742049/6643838879*2537720636^(7/15) 2865699999302090 a001 956722026041/4106118243*4106118243^(5/23) 2865699999302090 a001 365435296162/4106118243*4106118243^(6/23) 2865699999302090 a001 2504730781961/10749957122*2537720636^(2/9) 2865699999302090 a001 2504730781961/28143753123*2537720636^(4/15) 2865699999302090 a001 6557470319842/73681302247*2537720636^(4/15) 2865699999302090 a001 10610209857723/119218851371*2537720636^(4/15) 2865699999302090 a001 139583862445/4106118243*4106118243^(7/23) 2865699999302090 a001 4052739537881/45537549124*2537720636^(4/15) 2865699999302090 a001 4052739537881/10749957122*2537720636^(1/5) 2865699999302090 a001 32951280099/6643838879*2537720636^(2/5) 2865699999302090 a001 53316291173/4106118243*4106118243^(8/23) 2865699999302090 a001 1548008755920/17393796001*2537720636^(4/15) 2865699999302090 a001 701408733/5600748293801*1568397607^(10/11) 2865699999302090 a001 1836311903/6643838879*45537549124^(8/17) 2865699999302090 a001 1836311903/6643838879*14662949395604^(8/21) 2865699999302090 a001 1836311903/6643838879*192900153618^(4/9) 2865699999302090 a001 1836311903/6643838879*73681302247^(6/13) 2865699999302090 a001 6557470319842/28143753123*2537720636^(2/9) 2865699999302090 a001 20365011074/4106118243*4106118243^(9/23) 2865699999302090 a001 10610209857723/45537549124*2537720636^(2/9) 2865699999302090 a001 2971215073/4106118243*10749957122^(11/24) 2865699999302090 a001 1836311903/6643838879*10749957122^(1/2) 2865699999302090 a001 3536736619241/9381251041*2537720636^(1/5) 2865699999302090 a001 4052739537881/17393796001*2537720636^(2/9) 2865699999302090 a001 7778742049/4106118243*4106118243^(10/23) 2865699999302090 a001 701408733/2537720636*1568397607^(6/11) 2865699999302090 a001 139583862445/6643838879*2537720636^(1/3) 2865699999302090 a001 6557470319842/17393796001*2537720636^(1/5) 2865699999302090 a001 1836311903/45537549124*4106118243^(14/23) 2865699999302090 a001 1836311903/17393796001*4106118243^(13/23) 2865699999302090 a001 1836311903/119218851371*4106118243^(15/23) 2865699999302090 a001 591286729879/6643838879*2537720636^(4/15) 2865699999302090 a001 701408733/14662949395604*1568397607^(21/22) 2865699999302090 a001 1836311903/312119004989*4106118243^(16/23) 2865699999302090 a001 1836311903/817138163596*4106118243^(17/23) 2865699999302090 a001 1836311903/2139295485799*4106118243^(18/23) 2865699999302090 a001 1548008755920/6643838879*2537720636^(2/9) 2865699999302090 a001 12586269025/10749957122*17393796001^(3/7) 2865699999302090 a001 14930208/10749853441*17393796001^(5/7) 2865699999302090 a001 4807526976/119218851371*17393796001^(4/7) 2865699999302090 a001 1836311903/5600748293801*4106118243^(19/23) 2865699999302090 a001 12586269025/10749957122*45537549124^(7/17) 2865699999302090 a001 1602508992/9381251041*312119004989^(5/11) 2865699999302090 a001 12586269025/10749957122*14662949395604^(1/3) 2865699999302090 a001 12586269025/10749957122*192900153618^(7/18) 2865699999302090 a001 182717648081/5374978561*17393796001^(2/7) 2865699999302090 a001 1602508992/9381251041*28143753123^(1/2) 2865699999302090 a001 4807525989/4870846*17393796001^(1/7) 2865699999302090 a001 686789568/10525900321*45537549124^(9/17) 2865699999302090 a001 4807526976/23725150497407*45537549124^(13/17) 2865699999302090 a001 4807526976/5600748293801*45537549124^(12/17) 2865699999302090 a001 4807526976/2139295485799*45537549124^(2/3) 2865699999302090 a001 1602508992/440719107401*45537549124^(11/17) 2865699999302090 a001 4807526976/312119004989*45537549124^(10/17) 2865699999302090 a001 32951280099/10749957122*817138163596^(1/3) 2865699999302090 a001 686789568/10525900321*14662949395604^(3/7) 2865699999302090 a001 686789568/10525900321*192900153618^(1/2) 2865699999302090 a001 225851433717/10749957122*45537549124^(5/17) 2865699999302090 a001 956722026041/10749957122*45537549124^(4/17) 2865699999302090 a001 53316291173/10749957122*45537549124^(6/17) 2865699999302090 a001 4052739537881/10749957122*45537549124^(3/17) 2865699999302090 a001 267084832/10716675201*1322157322203^(1/2) 2865699999302090 a001 225851433717/10749957122*312119004989^(3/11) 2865699999302090 a001 14930208/10749853441*312119004989^(7/11) 2865699999302090 a001 102287808/10745088481*9062201101803^(1/2) 2865699999302090 a001 1201881744/3665737348901*817138163596^(2/3) 2865699999302090 a001 1201881744/204284540899*23725150497407^(1/2) 2865699999302090 a001 14930208/10749853441*505019158607^(5/8) 2865699999302090 a001 139583862445/10749957122*23725150497407^(1/4) 2865699999302090 a001 1602508992/440719107401*192900153618^(11/18) 2865699999302090 a001 4807526976/23725150497407*192900153618^(13/18) 2865699999302090 a001 3278735159921/5374978561*73681302247^(2/13) 2865699999302090 a001 956722026041/10749957122*73681302247^(3/13) 2865699999302090 a001 591286729879/10749957122*73681302247^(1/4) 2865699999302090 a001 139583862445/10749957122*73681302247^(4/13) 2865699999302090 a001 4807526976/119218851371*14662949395604^(4/9) 2865699999302090 a001 4807526976/119218851371*505019158607^(1/2) 2865699999302090 a001 53316291173/10749957122*192900153618^(1/3) 2865699999302090 a001 1201881744/204284540899*73681302247^(8/13) 2865699999302090 a001 4807526976/5600748293801*73681302247^(9/13) 2865699999302090 a001 4807526976/23725150497407*73681302247^(3/4) 2865699999302090 a001 4807526976/119218851371*73681302247^(7/13) 2865699999302090 a001 2504730781961/1568397607*599074578^(1/7) 2865699999302090 a001 2504730781961/10749957122*28143753123^(1/5) 2865699999302090 a001 2971215073/4106118243*4106118243^(11/23) 2865699999302090 a001 225851433717/10749957122*28143753123^(3/10) 2865699999302090 a001 10182505537/5374978561*23725150497407^(5/16) 2865699999302090 a001 10182505537/5374978561*505019158607^(5/14) 2865699999302090 a001 10182505537/5374978561*73681302247^(5/13) 2865699999302090 a001 1201881744/11384387281*73681302247^(1/2) 2865699999302090 a001 4807526976/312119004989*28143753123^(3/5) 2865699999302090 a001 14930208/10749853441*28143753123^(7/10) 2865699999302090 a001 1836311903/14662949395604*4106118243^(20/23) 2865699999302090 a001 10182505537/5374978561*28143753123^(2/5) 2865699999302090 a001 3278735159921/5374978561*10749957122^(1/6) 2865699999302090 a001 4052739537881/10749957122*10749957122^(3/16) 2865699999302090 a001 2504730781961/10749957122*10749957122^(5/24) 2865699999302090 a001 956722026041/10749957122*10749957122^(1/4) 2865699999302090 a001 12586269025/10749957122*10749957122^(7/16) 2865699999302090 a001 225851433717/10749957122*10749957122^(5/16) 2865699999302090 a001 139583862445/10749957122*10749957122^(1/3) 2865699999302090 a001 1836311903/6643838879*4106118243^(12/23) 2865699999302090 a001 4807526976/17393796001*45537549124^(8/17) 2865699999302090 a001 4807526976/17393796001*14662949395604^(8/21) 2865699999302090 a001 53316291173/10749957122*10749957122^(3/8) 2865699999302090 a001 4807526976/17393796001*192900153618^(4/9) 2865699999302090 a001 4807526976/17393796001*73681302247^(6/13) 2865699999302090 a001 10182505537/5374978561*10749957122^(5/12) 2865699999302090 a001 686789568/10525900321*10749957122^(9/16) 2865699999302090 a001 6557470319842/4106118243*1568397607^(3/22) 2865699999302090 a001 12586269025/9062201101803*17393796001^(5/7) 2865699999302090 a001 4807526976/119218851371*10749957122^(7/12) 2865699999302090 a001 1201881744/11384387281*10749957122^(13/24) 2865699999302090 a001 4807526976/312119004989*10749957122^(5/8) 2865699999302090 a001 1144206275/28374454999*17393796001^(4/7) 2865699999302090 a001 1201881744/204284540899*10749957122^(2/3) 2865699999302090 a001 10983760033/9381251041*17393796001^(3/7) 2865699999302090 a001 1602508992/440719107401*10749957122^(11/16) 2865699999302090 a001 32951280099/23725150497407*17393796001^(5/7) 2865699999302090 a001 4807526976/2139295485799*10749957122^(17/24) 2865699999302090 a001 956722026041/28143753123*17393796001^(2/7) 2865699999302090 a001 4807526976/5600748293801*10749957122^(3/4) 2865699999302090 a001 32951280099/817138163596*17393796001^(4/7) 2865699999302090 a001 86267571272/2139295485799*17393796001^(4/7) 2865699999302090 a001 225851433717/5600748293801*17393796001^(4/7) 2865699999302090 a001 591286729879/14662949395604*17393796001^(4/7) 2865699999302090 a001 365435296162/9062201101803*17393796001^(4/7) 2865699999302090 a001 10182505537/7331474697802*17393796001^(5/7) 2865699999302090 a001 139583862445/3461452808002*17393796001^(4/7) 2865699999302090 a001 53316291173/1322157322203*17393796001^(4/7) 2865699999302090 a001 1201881744/3665737348901*10749957122^(19/24) 2865699999302090 a001 10983760033/9381251041*45537549124^(7/17) 2865699999302090 a001 86267571272/73681302247*17393796001^(3/7) 2865699999302090 a001 4807526976/23725150497407*10749957122^(13/16) 2865699999302090 a001 12586269025/14662949395604*45537549124^(12/17) 2865699999302090 a001 12586269025/5600748293801*45537549124^(2/3) 2865699999302090 a001 12586269025/3461452808002*45537549124^(11/17) 2865699999302090 a001 12586269025/192900153618*45537549124^(9/17) 2865699999302090 a001 12586269025/817138163596*45537549124^(10/17) 2865699999302090 a001 12586269025/73681302247*312119004989^(5/11) 2865699999302090 a001 10983760033/9381251041*14662949395604^(1/3) 2865699999302090 a001 10983760033/9381251041*192900153618^(7/18) 2865699999302090 a001 75283811239/9381251041*45537549124^(1/3) 2865699999302090 a001 139583862445/28143753123*45537549124^(6/17) 2865699999302090 a001 2504730781961/2139295485799*17393796001^(3/7) 2865699999302090 a001 20365011074/505019158607*17393796001^(4/7) 2865699999302090 a001 365435296162/312119004989*17393796001^(3/7) 2865699999302090 a001 7778742049/10749957122*10749957122^(11/24) 2865699999302090 a001 2504730781961/28143753123*45537549124^(4/17) 2865699999302090 a001 3536736619241/9381251041*45537549124^(3/17) 2865699999302090 a001 139583862445/119218851371*17393796001^(3/7) 2865699999302090 a001 12586269025/192900153618*817138163596^(9/19) 2865699999302090 a001 12586269025/192900153618*14662949395604^(3/7) 2865699999302090 a001 12586269025/192900153618*192900153618^(1/2) 2865699999302090 a001 12586269025/3461452808002*312119004989^(3/5) 2865699999302090 a001 12586269025/817138163596*312119004989^(6/11) 2865699999302090 a001 12586269025/1322157322203*9062201101803^(1/2) 2865699999302090 a006 5^(1/2)*Fibonacci(73)/Lucas(50)/sqrt(5) 2865699999302090 a001 12586269025/2139295485799*505019158607^(4/7) 2865699999302090 a001 12586269025/14662949395604*505019158607^(9/14) 2865699999302090 a001 1144206275/28374454999*14662949395604^(4/9) 2865699999302090 a001 139583862445/28143753123*14662949395604^(2/7) 2865699999302090 a001 12586269025/14662949395604*192900153618^(2/3) 2865699999302090 a001 139583862445/28143753123*192900153618^(1/3) 2865699999302090 a001 2504730781961/28143753123*73681302247^(3/13) 2865699999302090 a001 12585437040/228811001*73681302247^(1/4) 2865699999302090 a001 365435296162/28143753123*73681302247^(4/13) 2865699999302090 a001 53316291173/28143753123*23725150497407^(5/16) 2865699999302090 a001 53316291173/28143753123*505019158607^(5/14) 2865699999302090 a001 1144206275/28374454999*73681302247^(7/13) 2865699999302090 a001 12586269025/2139295485799*73681302247^(8/13) 2865699999302090 a001 12586269025/14662949395604*73681302247^(9/13) 2865699999302090 a001 2504730781961/73681302247*17393796001^(2/7) 2865699999302090 a001 53316291173/28143753123*73681302247^(5/13) 2865699999302090 a001 12586269025/119218851371*73681302247^(1/2) 2865699999302090 a001 4807526976/17393796001*10749957122^(1/2) 2865699999302090 a001 6557470319842/28143753123*28143753123^(1/5) 2865699999302090 a001 12586269025/45537549124*45537549124^(8/17) 2865699999302090 a001 3278735159921/96450076809*17393796001^(2/7) 2865699999302090 a001 10610209857723/312119004989*17393796001^(2/7) 2865699999302090 a001 591286729879/28143753123*28143753123^(3/10) 2865699999302090 a001 4052739537881/119218851371*17393796001^(2/7) 2865699999302090 a001 53316291173/45537549124*17393796001^(3/7) 2865699999302090 a001 12586269025/73681302247*28143753123^(1/2) 2865699999302090 a001 12586269025/45537549124*14662949395604^(8/21) 2865699999302090 a001 12586269025/45537549124*192900153618^(4/9) 2865699999302090 a001 12586269025/45537549124*73681302247^(6/13) 2865699999302090 a001 53316291173/28143753123*28143753123^(2/5) 2865699999302090 a001 12586269025/817138163596*28143753123^(3/5) 2865699999302090 a001 10983760033/3020733700601*45537549124^(11/17) 2865699999302090 a001 32951280099/2139295485799*45537549124^(10/17) 2865699999302090 a001 387002188980/11384387281*17393796001^(2/7) 2865699999302090 a001 32951280099/505019158607*45537549124^(9/17) 2865699999302090 a001 86267571272/73681302247*45537549124^(7/17) 2865699999302090 a001 12586269025/9062201101803*28143753123^(7/10) 2865699999302090 a001 365435296162/73681302247*45537549124^(6/17) 2865699999302090 a001 591286729879/73681302247*45537549124^(1/3) 2865699999302090 a001 32951280099/119218851371*45537549124^(8/17) 2865699999302090 a001 86267571272/23725150497407*45537549124^(11/17) 2865699999302090 a001 1548008755920/73681302247*45537549124^(5/17) 2865699999302090 a001 86267571272/5600748293801*45537549124^(10/17) 2865699999302090 a001 6557470319842/73681302247*45537549124^(4/17) 2865699999302090 a001 7787980473/505618944676*45537549124^(10/17) 2865699999302090 a001 139583862445/9062201101803*45537549124^(10/17) 2865699999302090 a001 32264490531/494493258286*45537549124^(9/17) 2865699999302090 a001 365435296162/5600748293801*45537549124^(9/17) 2865699999302090 a001 139583862445/2139295485799*45537549124^(9/17) 2865699999302090 a001 53316291173/14662949395604*45537549124^(11/17) 2865699999302090 a001 225851433717/817138163596*45537549124^(8/17) 2865699999302090 a001 1548008755920/5600748293801*45537549124^(8/17) 2865699999302090 a001 10983760033/64300051206*312119004989^(5/11) 2865699999302090 a001 53316291173/3461452808002*45537549124^(10/17) 2865699999302090 a001 10983760033/64300051206*3461452808002^(5/12) 2865699999302090 a001 2504730781961/2139295485799*45537549124^(7/17) 2865699999302090 a001 956722026041/192900153618*45537549124^(6/17) 2865699999302090 a001 10983760033/3020733700601*312119004989^(3/5) 2865699999302090 a001 1548008755920/73681302247*312119004989^(3/11) 2865699999302090 a001 32951280099/23725150497407*505019158607^(5/8) 2865699999302090 a001 2504730781961/505019158607*45537549124^(6/17) 2865699999302090 a001 139583862445/73681302247*23725150497407^(5/16) 2865699999302090 a001 10983760033/3020733700601*192900153618^(11/18) 2865699999302090 a001 3536736619241/440719107401*45537549124^(1/3) 2865699999302090 a001 140728068720/28374454999*45537549124^(6/17) 2865699999302090 a001 225749145909/10745088481*45537549124^(5/17) 2865699999302090 a001 6557470319842/73681302247*73681302247^(3/13) 2865699999302090 a001 4052739537881/73681302247*73681302247^(1/4) 2865699999302090 a001 956722026041/73681302247*73681302247^(4/13) 2865699999302090 a001 139583862445/119218851371*45537549124^(7/17) 2865699999302090 a001 139583862445/73681302247*73681302247^(5/13) 2865699999302090 a001 32951280099/119218851371*192900153618^(4/9) 2865699999302090 a001 956722026041/119218851371*45537549124^(1/3) 2865699999302090 a001 32951280099/312119004989*73681302247^(1/2) 2865699999302090 a001 2504730781961/119218851371*45537549124^(5/17) 2865699999302090 a001 32951280099/5600748293801*73681302247^(8/13) 2865699999302090 a001 10610209857723/119218851371*45537549124^(4/17) 2865699999302090 a001 86267571272/505019158607*312119004989^(5/11) 2865699999302090 a001 86267571272/23725150497407*312119004989^(3/5) 2865699999302090 a006 5^(1/2)*Fibonacci(77)/Lucas(54)/sqrt(5) 2865699999302090 a001 1135099622/192933544679*23725150497407^(1/2) 2865699999302090 a001 182717648081/96450076809*23725150497407^(5/16) 2865699999302090 a001 1135099622/192933544679*505019158607^(4/7) 2865699999302090 a001 139583862445/192900153618*312119004989^(2/5) 2865699999302090 a001 4052739537881/192900153618*192900153618^(5/18) 2865699999302090 a001 225749145909/10745088481*312119004989^(3/11) 2865699999302090 a006 5^(1/2)*Fibonacci(81)/Lucas(58)/sqrt(5) 2865699999302090 a006 5^(1/2)*Fibonacci(83)/Lucas(60)/sqrt(5) 2865699999302090 a006 5^(1/2)*Fibonacci(87)/Lucas(64)/sqrt(5) 2865699999302090 a006 5^(1/2)*Fibonacci(86)/Lucas(63)/sqrt(5) 2865699999302090 a006 5^(1/2)*Fibonacci(84)/Lucas(61)/sqrt(5) 2865699999302090 a006 5^(1/2)*Fibonacci(82)/Lucas(59)/sqrt(5) 2865699999302090 a006 5^(1/2)*Fibonacci(78)/Lucas(55)/sqrt(5) 2865699999302090 a001 139583862445/5600748293801*1322157322203^(1/2) 2865699999302090 a001 140728068720/28374454999*192900153618^(1/3) 2865699999302090 a001 365435296162/312119004989*192900153618^(7/18) 2865699999302090 a001 139583862445/2139295485799*192900153618^(1/2) 2865699999302090 a001 2504730781961/192900153618*73681302247^(4/13) 2865699999302090 a001 53316291173/192900153618*14662949395604^(8/21) 2865699999302090 a001 182717648081/96450076809*73681302247^(5/13) 2865699999302090 a001 53316291173/192900153618*192900153618^(4/9) 2865699999302090 a001 10610209857723/817138163596*73681302247^(4/13) 2865699999302090 a001 2504730781961/119218851371*312119004989^(3/11) 2865699999302090 a006 5^(1/2)*Fibonacci(76)/Lucas(53)/sqrt(5) 2865699999302090 a001 10610209857723/119218851371*192900153618^(2/9) 2865699999302090 a001 2504730781961/119218851371*192900153618^(5/18) 2865699999302090 a001 139583862445/119218851371*14662949395604^(1/3) 2865699999302090 a001 1135099622/192933544679*73681302247^(8/13) 2865699999302090 a001 139583862445/119218851371*192900153618^(7/18) 2865699999302090 a001 139583862445/505019158607*73681302247^(6/13) 2865699999302090 a001 365435296162/9062201101803*73681302247^(7/13) 2865699999302090 a001 139583862445/1322157322203*73681302247^(1/2) 2865699999302090 a001 139583862445/3461452808002*73681302247^(7/13) 2865699999302090 a001 10610209857723/119218851371*73681302247^(3/13) 2865699999302090 a001 6557470319842/119218851371*73681302247^(1/4) 2865699999302090 a001 139583862445/23725150497407*73681302247^(8/13) 2865699999302090 a001 53316291173/192900153618*73681302247^(6/13) 2865699999302090 a001 225851433717/119218851371*73681302247^(5/13) 2865699999302090 a001 20365011074/23725150497407*45537549124^(12/17) 2865699999302090 a001 20365011074/9062201101803*45537549124^(2/3) 2865699999302090 a001 20365011074/5600748293801*45537549124^(11/17) 2865699999302090 a001 53316291173/9062201101803*73681302247^(8/13) 2865699999302090 a001 1548008755920/73681302247*28143753123^(3/10) 2865699999302090 a001 20365011074/1322157322203*45537549124^(10/17) 2865699999302090 a001 20365011074/312119004989*45537549124^(9/17) 2865699999302090 a001 20365011074/73681302247*14662949395604^(8/21) 2865699999302090 a001 225851433717/45537549124*45537549124^(6/17) 2865699999302090 a001 20365011074/73681302247*192900153618^(4/9) 2865699999302090 a001 182717648081/22768774562*45537549124^(1/3) 2865699999302090 a001 139583862445/73681302247*28143753123^(2/5) 2865699999302090 a001 956722026041/45537549124*45537549124^(5/17) 2865699999302090 a001 4052739537881/192900153618*28143753123^(3/10) 2865699999302090 a001 53316291173/45537549124*45537549124^(7/17) 2865699999302090 a001 3536736619241/9381251041*10749957122^(3/16) 2865699999302090 a001 225749145909/10745088481*28143753123^(3/10) 2865699999302090 a001 20365011074/73681302247*73681302247^(6/13) 2865699999302090 a001 6557470319842/312119004989*28143753123^(3/10) 2865699999302090 a001 10983760033/64300051206*28143753123^(1/2) 2865699999302090 a001 2504730781961/119218851371*28143753123^(3/10) 2865699999302090 a001 21566892818/11384387281*23725150497407^(5/16) 2865699999302090 a001 21566892818/11384387281*505019158607^(5/14) 2865699999302090 a001 10182505537/7331474697802*312119004989^(7/11) 2865699999302090 a001 20365011074/1322157322203*312119004989^(6/11) 2865699999302090 a001 10182505537/1730726404001*23725150497407^(1/2) 2865699999302090 a006 5^(1/2)*Fibonacci(74)/Lucas(51)/sqrt(5) 2865699999302090 a001 10182505537/7331474697802*14662949395604^(5/9) 2865699999302090 a001 10182505537/408569081798*1322157322203^(1/2) 2865699999302090 a001 139583862445/45537549124*817138163596^(1/3) 2865699999302090 a001 20365011074/312119004989*14662949395604^(3/7) 2865699999302090 a001 20365011074/1322157322203*192900153618^(5/9) 2865699999302090 a001 20365011074/5600748293801*192900153618^(11/18) 2865699999302090 a001 10610209857723/5600748293801*28143753123^(2/5) 2865699999302090 a001 20365011074/312119004989*192900153618^(1/2) 2865699999302090 a001 591286729879/312119004989*28143753123^(2/5) 2865699999302090 a001 21566892818/11384387281*73681302247^(5/13) 2865699999302090 a001 2504730781961/45537549124*73681302247^(1/4) 2865699999302090 a001 591286729879/45537549124*73681302247^(4/13) 2865699999302090 a001 10182505537/96450076809*73681302247^(1/2) 2865699999302090 a001 20365011074/119218851371*312119004989^(5/11) 2865699999302090 a001 53316291173/45537549124*14662949395604^(1/3) 2865699999302090 a001 53316291173/45537549124*192900153618^(7/18) 2865699999302090 a001 225851433717/119218851371*28143753123^(2/5) 2865699999302090 a001 32951280099/2139295485799*28143753123^(3/5) 2865699999302090 a001 20365011074/505019158607*73681302247^(7/13) 2865699999302090 a001 10182505537/1730726404001*73681302247^(8/13) 2865699999302090 a001 86267571272/505019158607*28143753123^(1/2) 2865699999302090 a001 20365011074/23725150497407*73681302247^(9/13) 2865699999302090 a001 75283811239/440719107401*28143753123^(1/2) 2865699999302090 a001 2504730781961/14662949395604*28143753123^(1/2) 2865699999302090 a001 139583862445/817138163596*28143753123^(1/2) 2865699999302090 a001 32951280099/23725150497407*28143753123^(7/10) 2865699999302090 a001 53316291173/312119004989*28143753123^(1/2) 2865699999302090 a001 86267571272/5600748293801*28143753123^(3/5) 2865699999302090 a001 10610209857723/45537549124*28143753123^(1/5) 2865699999302090 a001 7787980473/505618944676*28143753123^(3/5) 2865699999302090 a001 365435296162/23725150497407*28143753123^(3/5) 2865699999302090 a001 139583862445/9062201101803*28143753123^(3/5) 2865699999302090 a001 53316291173/3461452808002*28143753123^(3/5) 2865699999302090 a001 956722026041/45537549124*28143753123^(3/10) 2865699999302090 a001 2504730781961/28143753123*10749957122^(1/4) 2865699999302090 a001 7778742049/5600748293801*17393796001^(5/7) 2865699999302090 a001 21566892818/11384387281*28143753123^(2/5) 2865699999302090 a001 20365011074/119218851371*28143753123^(1/2) 2865699999302090 a001 20365011074/1322157322203*28143753123^(3/5) 2865699999302090 a001 956722026041/28143753123*10749957122^(7/24) 2865699999302090 a001 10182505537/7331474697802*28143753123^(7/10) 2865699999302090 a001 7778742049/192900153618*17393796001^(4/7) 2865699999302090 a001 591286729879/28143753123*10749957122^(5/16) 2865699999302090 a001 365435296162/28143753123*10749957122^(1/3) 2865699999302090 a001 3278735159921/5374978561*4106118243^(4/23) 2865699999302090 a001 7778742049/28143753123*45537549124^(8/17) 2865699999302090 a001 10610209857723/6643838879*2537720636^(2/15) 2865699999302090 a001 6557470319842/73681302247*10749957122^(1/4) 2865699999302090 a001 139583862445/28143753123*10749957122^(3/8) 2865699999302090 a001 12586269025/17393796001*312119004989^(2/5) 2865699999302090 a001 7778742049/28143753123*192900153618^(4/9) 2865699999302090 a001 7778742049/28143753123*73681302247^(6/13) 2865699999302090 a001 10610209857723/119218851371*10749957122^(1/4) 2865699999302090 a001 10610209857723/45537549124*10749957122^(5/24) 2865699999302090 a001 10983760033/9381251041*10749957122^(7/16) 2865699999302090 a001 2504730781961/73681302247*10749957122^(7/24) 2865699999302090 a001 591286729879/17393796001*17393796001^(2/7) 2865699999302090 a001 20365011074/17393796001*17393796001^(3/7) 2865699999302090 a001 53316291173/28143753123*10749957122^(5/12) 2865699999302090 a001 3278735159921/96450076809*10749957122^(7/24) 2865699999302090 a001 1548008755920/73681302247*10749957122^(5/16) 2865699999302090 a001 10610209857723/312119004989*10749957122^(7/24) 2865699999302090 a001 4052739537881/119218851371*10749957122^(7/24) 2865699999302090 a001 4052739537881/45537549124*10749957122^(1/4) 2865699999302090 a001 4052739537881/192900153618*10749957122^(5/16) 2865699999302090 a001 225749145909/10745088481*10749957122^(5/16) 2865699999302090 a001 956722026041/73681302247*10749957122^(1/3) 2865699999302090 a001 6557470319842/312119004989*10749957122^(5/16) 2865699999302090 a001 2504730781961/119218851371*10749957122^(5/16) 2865699999302090 a001 2504730781961/192900153618*10749957122^(1/3) 2865699999302090 a001 10610209857723/817138163596*10749957122^(1/3) 2865699999302090 a001 4052739537881/312119004989*10749957122^(1/3) 2865699999302090 a001 1548008755920/119218851371*10749957122^(1/3) 2865699999302090 a001 7778742049/9062201101803*45537549124^(12/17) 2865699999302090 a001 7778742049/3461452808002*45537549124^(2/3) 2865699999302090 a001 7778742049/2139295485799*45537549124^(11/17) 2865699999302090 a001 387002188980/11384387281*10749957122^(7/24) 2865699999302090 a001 7778742049/505019158607*45537549124^(10/17) 2865699999302090 a001 365435296162/73681302247*10749957122^(3/8) 2865699999302090 a001 86267571272/17393796001*45537549124^(6/17) 2865699999302090 a001 32951280099/17393796001*23725150497407^(5/16) 2865699999302090 a001 32951280099/17393796001*505019158607^(5/14) 2865699999302090 a001 139583862445/17393796001*45537549124^(1/3) 2865699999302090 a001 365435296162/17393796001*45537549124^(5/17) 2865699999302090 a001 20365011074/28143753123*10749957122^(11/24) 2865699999302090 a001 1548008755920/17393796001*45537549124^(4/17) 2865699999302090 a001 7778742049/73681302247*73681302247^(1/2) 2865699999302090 a001 6557470319842/17393796001*45537549124^(3/17) 2865699999302090 a001 2504730781961/505019158607*10749957122^(3/8) 2865699999302090 a001 10610209857723/2139295485799*10749957122^(3/8) 2865699999302090 a001 4052739537881/817138163596*10749957122^(3/8) 2865699999302090 a001 140728068720/28374454999*10749957122^(3/8) 2865699999302090 a001 7778742049/192900153618*14662949395604^(4/9) 2865699999302090 a001 7778742049/192900153618*505019158607^(1/2) 2865699999302090 a001 86267571272/17393796001*192900153618^(1/3) 2865699999302090 a001 7778742049/505019158607*312119004989^(6/11) 2865699999302090 a001 7778742049/5600748293801*312119004989^(7/11) 2865699999302090 a001 7778742049/2139295485799*312119004989^(3/5) 2865699999302090 a001 1548008755920/17393796001*817138163596^(4/19) 2865699999302090 a006 5^(1/2)*Fibonacci(72)/Lucas(49)/sqrt(5) 2865699999302090 a001 1548008755920/17393796001*192900153618^(2/9) 2865699999302090 a001 365435296162/17393796001*192900153618^(5/18) 2865699999302090 a001 591286729879/119218851371*10749957122^(3/8) 2865699999302090 a001 7778742049/2139295485799*192900153618^(11/18) 2865699999302090 a001 10610209857723/17393796001*73681302247^(2/13) 2865699999302090 a001 1548008755920/17393796001*73681302247^(3/13) 2865699999302090 a001 956722026041/17393796001*73681302247^(1/4) 2865699999302090 a001 7787980473/599786069*73681302247^(4/13) 2865699999302090 a001 591286729879/45537549124*10749957122^(1/3) 2865699999302090 a001 7778742049/119218851371*817138163596^(9/19) 2865699999302090 a001 53316291173/17393796001*817138163596^(1/3) 2865699999302090 a001 7778742049/119218851371*192900153618^(1/2) 2865699999302090 a001 7778742049/1322157322203*73681302247^(8/13) 2865699999302090 a001 139583862445/73681302247*10749957122^(5/12) 2865699999302090 a001 12586269025/119218851371*10749957122^(13/24) 2865699999302090 a001 12586269025/45537549124*10749957122^(1/2) 2865699999302090 a001 4052739537881/17393796001*28143753123^(1/5) 2865699999302090 a001 86267571272/73681302247*10749957122^(7/16) 2865699999302090 a001 12586269025/192900153618*10749957122^(9/16) 2865699999302090 a001 182717648081/96450076809*10749957122^(5/12) 2865699999302090 a001 20365011074/17393796001*45537549124^(7/17) 2865699999302090 a001 956722026041/505019158607*10749957122^(5/12) 2865699999302090 a001 591286729879/312119004989*10749957122^(5/12) 2865699999302090 a001 32951280099/17393796001*28143753123^(2/5) 2865699999302090 a001 225851433717/119218851371*10749957122^(5/12) 2865699999302090 a001 365435296162/17393796001*28143753123^(3/10) 2865699999302090 a001 225851433717/45537549124*10749957122^(3/8) 2865699999302090 a001 75283811239/64300051206*10749957122^(7/16) 2865699999302090 a001 7778742049/45537549124*312119004989^(5/11) 2865699999302090 a001 2504730781961/2139295485799*10749957122^(7/16) 2865699999302090 a001 20365011074/17393796001*14662949395604^(1/3) 2865699999302090 a001 1144206275/28374454999*10749957122^(7/12) 2865699999302090 a001 20365011074/17393796001*192900153618^(7/18) 2865699999302090 a001 53316291173/73681302247*10749957122^(11/24) 2865699999302090 a001 139583862445/119218851371*10749957122^(7/16) 2865699999302090 a001 139583862445/192900153618*10749957122^(11/24) 2865699999302090 a001 365435296162/505019158607*10749957122^(11/24) 2865699999302090 a001 225851433717/312119004989*10749957122^(11/24) 2865699999302090 a001 86267571272/119218851371*10749957122^(11/24) 2865699999302090 a001 7778742049/505019158607*28143753123^(3/5) 2865699999302090 a001 21566892818/11384387281*10749957122^(5/12) 2865699999302090 a001 12586269025/817138163596*10749957122^(5/8) 2865699999302090 a001 7778742049/5600748293801*28143753123^(7/10) 2865699999302090 a001 32951280099/119218851371*10749957122^(1/2) 2865699999302090 a001 2504730781961/10749957122*4106118243^(5/23) 2865699999302090 a001 32951280099/45537549124*10749957122^(11/24) 2865699999302090 a001 86267571272/312119004989*10749957122^(1/2) 2865699999302090 a001 225851433717/817138163596*10749957122^(1/2) 2865699999302090 a001 1548008755920/5600748293801*10749957122^(1/2) 2865699999302090 a001 139583862445/505019158607*10749957122^(1/2) 2865699999302090 a001 53316291173/45537549124*10749957122^(7/16) 2865699999302090 a001 53316291173/192900153618*10749957122^(1/2) 2865699999302090 a001 7778742049/45537549124*28143753123^(1/2) 2865699999302090 a001 12586269025/2139295485799*10749957122^(2/3) 2865699999302090 a001 32951280099/312119004989*10749957122^(13/24) 2865699999302090 a001 20365011074/73681302247*10749957122^(1/2) 2865699999302090 a001 21566892818/204284540899*10749957122^(13/24) 2865699999302090 a001 32951280099/505019158607*10749957122^(9/16) 2865699999302090 a001 12586269025/3461452808002*10749957122^(11/16) 2865699999302090 a001 182717648081/1730726404001*10749957122^(13/24) 2865699999302090 a001 139583862445/1322157322203*10749957122^(13/24) 2865699999302090 a001 10610209857723/17393796001*10749957122^(1/6) 2865699999302090 a001 53316291173/505019158607*10749957122^(13/24) 2865699999302090 a001 86267571272/1322157322203*10749957122^(9/16) 2865699999302090 a001 32264490531/494493258286*10749957122^(9/16) 2865699999302090 a001 12586269025/5600748293801*10749957122^(17/24) 2865699999302090 a001 139583862445/2139295485799*10749957122^(9/16) 2865699999302090 a001 6557470319842/17393796001*10749957122^(3/16) 2865699999302090 a001 53316291173/817138163596*10749957122^(9/16) 2865699999302090 a001 86267571272/2139295485799*10749957122^(7/12) 2865699999302090 a001 225851433717/5600748293801*10749957122^(7/12) 2865699999302090 a001 365435296162/9062201101803*10749957122^(7/12) 2865699999302090 a001 139583862445/3461452808002*10749957122^(7/12) 2865699999302090 a001 4052739537881/17393796001*10749957122^(5/24) 2865699999302090 a001 53316291173/1322157322203*10749957122^(7/12) 2865699999302090 a001 10182505537/96450076809*10749957122^(13/24) 2865699999302090 a001 12586269025/14662949395604*10749957122^(3/4) 2865699999302090 a001 20365011074/312119004989*10749957122^(9/16) 2865699999302090 a001 86267571272/5600748293801*10749957122^(5/8) 2865699999302090 a001 7787980473/505618944676*10749957122^(5/8) 2865699999302090 a001 365435296162/23725150497407*10749957122^(5/8) 2865699999302090 a001 139583862445/9062201101803*10749957122^(5/8) 2865699999302090 a001 1548008755920/17393796001*10749957122^(1/4) 2865699999302090 a001 53316291173/3461452808002*10749957122^(5/8) 2865699999302090 a001 20365011074/505019158607*10749957122^(7/12) 2865699999302090 a001 32951280099/5600748293801*10749957122^(2/3) 2865699999302090 a001 1135099622/192933544679*10749957122^(2/3) 2865699999302090 a001 10983760033/3020733700601*10749957122^(11/16) 2865699999302090 a001 139583862445/23725150497407*10749957122^(2/3) 2865699999302090 a001 591286729879/17393796001*10749957122^(7/24) 2865699999302090 a001 53316291173/9062201101803*10749957122^(2/3) 2865699999302090 a001 20365011074/1322157322203*10749957122^(5/8) 2865699999302090 a001 86267571272/23725150497407*10749957122^(11/16) 2865699999302090 a001 32951280099/14662949395604*10749957122^(17/24) 2865699999302090 a001 12586269025/17393796001*10749957122^(11/24) 2865699999302090 a001 365435296162/17393796001*10749957122^(5/16) 2865699999302090 a001 53316291173/14662949395604*10749957122^(11/16) 2865699999302090 a001 7787980473/599786069*10749957122^(1/3) 2865699999302090 a001 53316291173/23725150497407*10749957122^(17/24) 2865699999302090 a001 10182505537/1730726404001*10749957122^(2/3) 2865699999302090 a001 7778742049/28143753123*10749957122^(1/2) 2865699999302090 a001 20365011074/5600748293801*10749957122^(11/16) 2865699999302090 a001 86267571272/17393796001*10749957122^(3/8) 2865699999302090 a001 20365011074/9062201101803*10749957122^(17/24) 2865699999302090 a001 32951280099/17393796001*10749957122^(5/12) 2865699999302090 a001 956722026041/10749957122*4106118243^(6/23) 2865699999302090 a001 20365011074/23725150497407*10749957122^(3/4) 2865699999302090 a001 20365011074/17393796001*10749957122^(7/16) 2865699999302090 a001 7778742049/73681302247*10749957122^(13/24) 2865699999302090 a001 7778742049/119218851371*10749957122^(9/16) 2865699999302090 a001 7778742049/192900153618*10749957122^(7/12) 2865699999302090 a001 7778742049/505019158607*10749957122^(5/8) 2865699999302090 a001 7778742049/1322157322203*10749957122^(2/3) 2865699999302090 a001 7778742049/2139295485799*10749957122^(11/16) 2865699999302090 a001 182717648081/5374978561*4106118243^(7/23) 2865699999302090 a001 7778742049/3461452808002*10749957122^(17/24) 2865699999302090 a001 7778742049/9062201101803*10749957122^(3/4) 2865699999302090 a001 7778742049/23725150497407*10749957122^(19/24) 2865699999302090 a001 1134903170/23725150497407*2537720636^(14/15) 2865699999302090 a001 6557470319842/28143753123*4106118243^(5/23) 2865699999302090 a001 139583862445/10749957122*4106118243^(8/23) 2865699999302090 a001 2403763488/5374978561*4106118243^(1/2) 2865699999302090 a001 1134903170/4106118243*2537720636^(8/15) 2865699999302090 a001 10610209857723/45537549124*4106118243^(5/23) 2865699999302090 a001 10610209857723/17393796001*4106118243^(4/23) 2865699999302090 a001 2971215073/10749957122*45537549124^(8/17) 2865699999302090 a001 4807526976/6643838879*312119004989^(2/5) 2865699999302090 a001 2971215073/10749957122*14662949395604^(8/21) 2865699999302090 a001 2971215073/10749957122*192900153618^(4/9) 2865699999302090 a001 2971215073/10749957122*73681302247^(6/13) 2865699999302090 a001 2504730781961/28143753123*4106118243^(6/23) 2865699999302090 a001 2504730781961/4106118243*1568397607^(2/11) 2865699999302090 a001 53316291173/10749957122*4106118243^(9/23) 2865699999302090 a001 6557470319842/73681302247*4106118243^(6/23) 2865699999302090 a001 10610209857723/119218851371*4106118243^(6/23) 2865699999302090 a001 4052739537881/45537549124*4106118243^(6/23) 2865699999302090 a001 4052739537881/17393796001*4106118243^(5/23) 2865699999302090 a001 956722026041/28143753123*4106118243^(7/23) 2865699999302090 a001 1134903170/9062201101803*2537720636^(8/9) 2865699999302090 a001 10182505537/5374978561*4106118243^(10/23) 2865699999302090 a001 2504730781961/73681302247*4106118243^(7/23) 2865699999302090 a001 4807526976/6643838879*10749957122^(11/24) 2865699999302090 a001 3278735159921/96450076809*4106118243^(7/23) 2865699999302090 a001 10610209857723/312119004989*4106118243^(7/23) 2865699999302090 a001 4052739537881/119218851371*4106118243^(7/23) 2865699999302090 a001 2971215073/10749957122*10749957122^(1/2) 2865699999302090 a001 387002188980/11384387281*4106118243^(7/23) 2865699999302090 a001 1548008755920/17393796001*4106118243^(6/23) 2865699999302090 a001 365435296162/28143753123*4106118243^(8/23) 2865699999302090 a001 2971215073/2139295485799*17393796001^(5/7) 2865699999302090 a001 956722026041/73681302247*4106118243^(8/23) 2865699999302090 a001 2971215073/73681302247*17393796001^(4/7) 2865699999302090 a001 2504730781961/192900153618*4106118243^(8/23) 2865699999302090 a001 10610209857723/817138163596*4106118243^(8/23) 2865699999302090 a001 4052739537881/312119004989*4106118243^(8/23) 2865699999302090 a001 1548008755920/119218851371*4106118243^(8/23) 2865699999302090 a001 1134903170/5600748293801*2537720636^(13/15) 2865699999302090 a001 591286729879/45537549124*4106118243^(8/23) 2865699999302090 a001 591286729879/17393796001*4106118243^(7/23) 2865699999302090 a001 12586269025/6643838879*23725150497407^(5/16) 2865699999302090 a001 12586269025/6643838879*505019158607^(5/14) 2865699999302090 a001 12586269025/6643838879*73681302247^(5/13) 2865699999302090 a001 2971215073/28143753123*73681302247^(1/2) 2865699999302090 a001 225851433717/6643838879*17393796001^(2/7) 2865699999302090 a001 12586269025/6643838879*28143753123^(2/5) 2865699999302090 a001 139583862445/28143753123*4106118243^(9/23) 2865699999302090 a001 6557470319842/6643838879*17393796001^(1/7) 2865699999302090 a001 2971215073/14662949395604*45537549124^(13/17) 2865699999302090 a001 32951280099/6643838879*45537549124^(6/17) 2865699999302090 a001 2971215073/3461452808002*45537549124^(12/17) 2865699999302090 a001 2971215073/1322157322203*45537549124^(2/3) 2865699999302090 a001 2971215073/192900153618*45537549124^(10/17) 2865699999302090 a001 2971215073/73681302247*14662949395604^(4/9) 2865699999302090 a001 32951280099/6643838879*192900153618^(1/3) 2865699999302090 a001 139583862445/6643838879*45537549124^(5/17) 2865699999302090 a001 591286729879/6643838879*45537549124^(4/17) 2865699999302090 a001 53316291173/6643838879*45537549124^(1/3) 2865699999302090 a001 2504730781961/6643838879*45537549124^(3/17) 2865699999302090 a001 10610209857723/6643838879*45537549124^(2/17) 2865699999302090 a001 2971215073/192900153618*312119004989^(6/11) 2865699999302090 a001 2971215073/192900153618*14662949395604^(10/21) 2865699999302090 a001 86267571272/6643838879*23725150497407^(1/4) 2865699999302090 a001 2971215073/192900153618*192900153618^(5/9) 2865699999302090 a001 2971215073/23725150497407*312119004989^(8/11) 2865699999302090 a001 225851433717/6643838879*505019158607^(1/4) 2865699999302090 a001 1548008755920/6643838879*312119004989^(2/11) 2865699999302090 a001 139583862445/6643838879*312119004989^(3/11) 2865699999302090 a001 139583862445/6643838879*14662949395604^(5/21) 2865699999302090 a001 2971215073/312119004989*9062201101803^(1/2) 2865699999302090 a001 139583862445/6643838879*192900153618^(5/18) 2865699999302090 a001 2971215073/3461452808002*192900153618^(2/3) 2865699999302090 a001 4052739537881/6643838879*73681302247^(2/13) 2865699999302090 a001 86267571272/6643838879*73681302247^(4/13) 2865699999302090 a001 591286729879/6643838879*73681302247^(3/13) 2865699999302090 a001 365435296162/6643838879*73681302247^(1/4) 2865699999302090 a001 2971215073/119218851371*1322157322203^(1/2) 2865699999302090 a001 2971215073/505019158607*73681302247^(8/13) 2865699999302090 a001 2971215073/3461452808002*73681302247^(9/13) 2865699999302090 a001 2971215073/14662949395604*73681302247^(3/4) 2865699999302090 a001 2971215073/45537549124*45537549124^(9/17) 2865699999302090 a001 1548008755920/6643838879*28143753123^(1/5) 2865699999302090 a001 7778742049/10749957122*4106118243^(11/23) 2865699999302090 a001 365435296162/73681302247*4106118243^(9/23) 2865699999302090 a001 139583862445/6643838879*28143753123^(3/10) 2865699999302090 a001 20365011074/6643838879*817138163596^(1/3) 2865699999302090 a001 2971215073/45537549124*14662949395604^(3/7) 2865699999302090 a001 2971215073/45537549124*192900153618^(1/2) 2865699999302090 a001 956722026041/192900153618*4106118243^(9/23) 2865699999302090 a001 2504730781961/505019158607*4106118243^(9/23) 2865699999302090 a001 10610209857723/2139295485799*4106118243^(9/23) 2865699999302090 a001 4052739537881/817138163596*4106118243^(9/23) 2865699999302090 a001 140728068720/28374454999*4106118243^(9/23) 2865699999302090 a001 591286729879/119218851371*4106118243^(9/23) 2865699999302090 a001 2971215073/192900153618*28143753123^(3/5) 2865699999302090 a001 2971215073/2139295485799*28143753123^(7/10) 2865699999302090 a001 2971215073/23725150497407*28143753123^(4/5) 2865699999302090 a001 225851433717/45537549124*4106118243^(9/23) 2865699999302090 a001 10610209857723/6643838879*10749957122^(1/8) 2865699999302090 a001 7787980473/599786069*4106118243^(8/23) 2865699999302090 a001 4052739537881/6643838879*10749957122^(1/6) 2865699999302090 a001 2504730781961/6643838879*10749957122^(3/16) 2865699999302090 a001 1548008755920/6643838879*10749957122^(5/24) 2865699999302090 a001 7778742049/6643838879*17393796001^(3/7) 2865699999302090 a001 53316291173/28143753123*4106118243^(10/23) 2865699999302090 a001 591286729879/6643838879*10749957122^(1/4) 2865699999302090 a001 12586269025/6643838879*10749957122^(5/12) 2865699999302090 a001 225851433717/6643838879*10749957122^(7/24) 2865699999302090 a001 1201881744/11384387281*4106118243^(13/23) 2865699999302090 a001 139583862445/6643838879*10749957122^(5/16) 2865699999302090 a001 86267571272/6643838879*10749957122^(1/3) 2865699999302090 a001 4807526976/17393796001*4106118243^(12/23) 2865699999302090 a001 139583862445/73681302247*4106118243^(10/23) 2865699999302090 a001 32951280099/6643838879*10749957122^(3/8) 2865699999302090 a001 182717648081/96450076809*4106118243^(10/23) 2865699999302090 a001 956722026041/505019158607*4106118243^(10/23) 2865699999302090 a001 591286729879/312119004989*4106118243^(10/23) 2865699999302090 a001 225851433717/119218851371*4106118243^(10/23) 2865699999302090 a001 2971215073/17393796001*312119004989^(5/11) 2865699999302090 a001 7778742049/6643838879*14662949395604^(1/3) 2865699999302090 a001 2971215073/17393796001*3461452808002^(5/12) 2865699999302090 a001 7778742049/6643838879*192900153618^(7/18) 2865699999302090 a001 2971215073/28143753123*10749957122^(13/24) 2865699999302090 a001 21566892818/11384387281*4106118243^(10/23) 2865699999302090 a001 86267571272/17393796001*4106118243^(9/23) 2865699999302090 a001 2971215073/17393796001*28143753123^(1/2) 2865699999302090 a001 12586269025/28143753123*4106118243^(1/2) 2865699999302090 a001 2971215073/73681302247*10749957122^(7/12) 2865699999302090 a001 4807526976/119218851371*4106118243^(14/23) 2865699999302090 a001 20365011074/28143753123*4106118243^(11/23) 2865699999302090 a001 2971215073/45537549124*10749957122^(9/16) 2865699999302090 a001 2971215073/192900153618*10749957122^(5/8) 2865699999302090 a001 53316291173/73681302247*4106118243^(11/23) 2865699999302090 a001 139583862445/192900153618*4106118243^(11/23) 2865699999302090 a001 225851433717/312119004989*4106118243^(11/23) 2865699999302090 a001 86267571272/119218851371*4106118243^(11/23) 2865699999302090 a001 2971215073/505019158607*10749957122^(2/3) 2865699999302090 a001 2971215073/817138163596*10749957122^(11/16) 2865699999302090 a001 32951280099/45537549124*4106118243^(11/23) 2865699999302090 a001 2971215073/1322157322203*10749957122^(17/24) 2865699999302090 a001 32951280099/17393796001*4106118243^(10/23) 2865699999302090 a001 2971215073/3461452808002*10749957122^(3/4) 2865699999302090 a001 32951280099/73681302247*4106118243^(1/2) 2865699999302090 a001 2971215073/9062201101803*10749957122^(19/24) 2865699999302090 a001 43133785636/96450076809*4106118243^(1/2) 2865699999302090 a001 225851433717/505019158607*4106118243^(1/2) 2865699999302090 a001 591286729879/1322157322203*4106118243^(1/2) 2865699999302090 a001 10610209857723/23725150497407*4106118243^(1/2) 2865699999302090 a001 139583862445/312119004989*4106118243^(1/2) 2865699999302090 a001 2971215073/14662949395604*10749957122^(13/16) 2865699999302090 a001 7778742049/6643838879*10749957122^(7/16) 2865699999302090 a001 53316291173/119218851371*4106118243^(1/2) 2865699999302090 a001 2971215073/23725150497407*10749957122^(5/6) 2865699999302090 a001 4807526976/312119004989*4106118243^(15/23) 2865699999302090 a001 12586269025/45537549124*4106118243^(12/23) 2865699999302090 a001 10610209857723/6643838879*4106118243^(3/23) 2865699999302090 a001 12586269025/17393796001*4106118243^(11/23) 2865699999302090 a001 10182505537/22768774562*4106118243^(1/2) 2865699999302090 a001 32951280099/119218851371*4106118243^(12/23) 2865699999302090 a001 86267571272/312119004989*4106118243^(12/23) 2865699999302090 a001 225851433717/817138163596*4106118243^(12/23) 2865699999302090 a001 1548008755920/5600748293801*4106118243^(12/23) 2865699999302090 a001 139583862445/505019158607*4106118243^(12/23) 2865699999302090 a001 53316291173/192900153618*4106118243^(12/23) 2865699999302090 a001 1134903170/1322157322203*2537720636^(4/5) 2865699999302090 a001 20365011074/73681302247*4106118243^(12/23) 2865699999302090 a001 12586269025/119218851371*4106118243^(13/23) 2865699999302090 a001 1201881744/204284540899*4106118243^(16/23) 2865699999302090 a001 4052739537881/6643838879*4106118243^(4/23) 2865699999302090 a001 7778742049/28143753123*4106118243^(12/23) 2865699999302090 a001 956722026041/4106118243*1568397607^(5/22) 2865699999302090 a001 32951280099/312119004989*4106118243^(13/23) 2865699999302090 a001 21566892818/204284540899*4106118243^(13/23) 2865699999302090 a001 225851433717/2139295485799*4106118243^(13/23) 2865699999302090 a001 182717648081/1730726404001*4106118243^(13/23) 2865699999302090 a001 139583862445/1322157322203*4106118243^(13/23) 2865699999302090 a001 53316291173/505019158607*4106118243^(13/23) 2865699999302090 a001 10182505537/96450076809*4106118243^(13/23) 2865699999302090 a001 567451585/408569081798*2537720636^(7/9) 2865699999302090 a001 1144206275/28374454999*4106118243^(14/23) 2865699999302090 a001 4807526976/2139295485799*4106118243^(17/23) 2865699999302090 a001 1548008755920/6643838879*4106118243^(5/23) 2865699999302090 a001 32951280099/817138163596*4106118243^(14/23) 2865699999302090 a001 86267571272/2139295485799*4106118243^(14/23) 2865699999302090 a001 225851433717/5600748293801*4106118243^(14/23) 2865699999302090 a001 591286729879/14662949395604*4106118243^(14/23) 2865699999302090 a001 365435296162/9062201101803*4106118243^(14/23) 2865699999302090 a001 139583862445/3461452808002*4106118243^(14/23) 2865699999302090 a001 53316291173/1322157322203*4106118243^(14/23) 2865699999302090 a001 7778742049/17393796001*4106118243^(1/2) 2865699999302090 a001 20365011074/505019158607*4106118243^(14/23) 2865699999302090 a001 7778742049/73681302247*4106118243^(13/23) 2865699999302090 a001 12586269025/817138163596*4106118243^(15/23) 2865699999302090 a001 4807526976/5600748293801*4106118243^(18/23) 2865699999302090 a001 591286729879/6643838879*4106118243^(6/23) 2865699999302090 a001 32951280099/2139295485799*4106118243^(15/23) 2865699999302090 a001 86267571272/5600748293801*4106118243^(15/23) 2865699999302090 a001 7787980473/505618944676*4106118243^(15/23) 2865699999302090 a001 365435296162/23725150497407*4106118243^(15/23) 2865699999302090 a001 139583862445/9062201101803*4106118243^(15/23) 2865699999302090 a001 53316291173/3461452808002*4106118243^(15/23) 2865699999302090 a001 20365011074/1322157322203*4106118243^(15/23) 2865699999302090 a001 7778742049/192900153618*4106118243^(14/23) 2865699999302090 a001 12586269025/2139295485799*4106118243^(16/23) 2865699999302090 a001 1201881744/3665737348901*4106118243^(19/23) 2865699999302090 a001 225851433717/6643838879*4106118243^(7/23) 2865699999302090 a001 32951280099/5600748293801*4106118243^(16/23) 2865699999302090 a001 1135099622/192933544679*4106118243^(16/23) 2865699999302090 a001 139583862445/23725150497407*4106118243^(16/23) 2865699999302090 a001 53316291173/9062201101803*4106118243^(16/23) 2865699999302090 a001 1134903170/312119004989*2537720636^(11/15) 2865699999302090 a001 10182505537/1730726404001*4106118243^(16/23) 2865699999302090 a001 7778742049/505019158607*4106118243^(15/23) 2865699999302090 a001 591286729879/4106118243*1568397607^(1/4) 2865699999302090 a001 4807526976/6643838879*4106118243^(11/23) 2865699999302090 a001 12586269025/5600748293801*4106118243^(17/23) 2865699999302090 a001 86267571272/6643838879*4106118243^(8/23) 2865699999302090 a001 32951280099/14662949395604*4106118243^(17/23) 2865699999302090 a001 53316291173/23725150497407*4106118243^(17/23) 2865699999302090 a001 20365011074/9062201101803*4106118243^(17/23) 2865699999302090 a001 7778742049/1322157322203*4106118243^(16/23) 2865699999302090 a001 2971215073/10749957122*4106118243^(12/23) 2865699999302090 a001 12586269025/14662949395604*4106118243^(18/23) 2865699999302090 a001 32951280099/6643838879*4106118243^(9/23) 2865699999302090 a001 20365011074/23725150497407*4106118243^(18/23) 2865699999302090 a001 7778742049/3461452808002*4106118243^(17/23) 2865699999302090 a001 12586269025/6643838879*4106118243^(10/23) 2865699999302090 a001 7778742049/9062201101803*4106118243^(18/23) 2865699999302090 a001 365435296162/4106118243*1568397607^(3/11) 2865699999302090 a001 1134903170/73681302247*2537720636^(2/3) 2865699999302090 a001 7778742049/23725150497407*4106118243^(19/23) 2865699999302090 a001 2971215073/28143753123*4106118243^(13/23) 2865699999302090 a001 1548008755920/1568397607*599074578^(1/6) 2865699999302090 a001 2971215073/73681302247*4106118243^(14/23) 2865699999302090 a001 2971215073/192900153618*4106118243^(15/23) 2865699999302090 a001 2971215073/505019158607*4106118243^(16/23) 2865699999302090 a001 3278735159921/5374978561*1568397607^(2/11) 2865699999302090 a001 1134903170/17393796001*2537720636^(3/5) 2865699999302090 a001 2971215073/1322157322203*4106118243^(17/23) 2865699999302090 a001 2971215073/3461452808002*4106118243^(18/23) 2865699999302090 a001 139583862445/4106118243*1568397607^(7/22) 2865699999302090 a001 2971215073/9062201101803*4106118243^(19/23) 2865699999302090 a001 2971215073/23725150497407*4106118243^(20/23) 2865699999302090 a001 2971215073/6643838879*4106118243^(1/2) 2865699999302090 a001 10610209857723/17393796001*1568397607^(2/11) 2865699999302090 a001 1201881744/634430159*2537720636^(4/9) 2865699999302090 a001 10610209857723/6643838879*1568397607^(3/22) 2865699999302090 a001 956722026041/599074578*228826127^(3/20) 2865699999302090 a001 2504730781961/10749957122*1568397607^(5/22) 2865699999302090 a001 53316291173/4106118243*1568397607^(4/11) 2865699999302090 a001 6557470319842/28143753123*1568397607^(5/22) 2865699999302090 a001 1134903170/6643838879*2537720636^(5/9) 2865699999302090 a001 1144206275/230701876*2537720636^(2/5) 2865699999302090 a001 10610209857723/45537549124*1568397607^(5/22) 2865699999302090 a001 774004377960/5374978561*1568397607^(1/4) 2865699999302090 a001 4052739537881/17393796001*1568397607^(5/22) 2865699999302090 a001 1134903170/4106118243*45537549124^(8/17) 2865699999302090 a001 1134903170/4106118243*14662949395604^(8/21) 2865699999302090 a001 1134903170/4106118243*192900153618^(4/9) 2865699999302090 a001 1134903170/4106118243*73681302247^(6/13) 2865699999302090 a001 4052739537881/6643838879*1568397607^(2/11) 2865699999302090 a001 1836311903/2537720636*10749957122^(11/24) 2865699999302090 a001 1134903170/4106118243*10749957122^(1/2) 2865699999302090 a001 4052739537881/28143753123*1568397607^(1/4) 2865699999302090 a001 1515744265389/10525900321*1568397607^(1/4) 2865699999302090 a001 3278735159921/22768774562*1568397607^(1/4) 2865699999302090 a001 956722026041/10749957122*1568397607^(3/11) 2865699999302090 a001 53316291173/2537720636*2537720636^(1/3) 2865699999302090 a001 2504730781961/17393796001*1568397607^(1/4) 2865699999302090 a001 2971215073/2537720636*2537720636^(7/15) 2865699999302090 a001 20365011074/4106118243*1568397607^(9/22) 2865699999302090 a001 2504730781961/28143753123*1568397607^(3/11) 2865699999302090 a001 6557470319842/73681302247*1568397607^(3/11) 2865699999302090 a001 10610209857723/119218851371*1568397607^(3/11) 2865699999302090 a001 4052739537881/45537549124*1568397607^(3/11) 2865699999302090 a001 225851433717/2537720636*2537720636^(4/15) 2865699999302090 a001 1548008755920/17393796001*1568397607^(3/11) 2865699999302090 a001 1548008755920/6643838879*1568397607^(5/22) 2865699999302090 a001 182717648081/5374978561*1568397607^(7/22) 2865699999302090 a001 591286729879/2537720636*2537720636^(2/9) 2865699999302090 a001 956722026041/1568397607*599074578^(4/21) 2865699999302090 a001 956722026041/2537720636*2537720636^(1/5) 2865699999302090 a001 956722026041/6643838879*1568397607^(1/4) 2865699999302090 a001 1836311903/2537720636*4106118243^(11/23) 2865699999302090 a001 1134903170/4106118243*4106118243^(12/23) 2865699999302090 a001 956722026041/28143753123*1568397607^(7/22) 2865699999302090 a001 7778742049/4106118243*1568397607^(5/11) 2865699999302090 a001 2504730781961/73681302247*1568397607^(7/22) 2865699999302090 a001 3278735159921/96450076809*1568397607^(7/22) 2865699999302090 a001 10610209857723/312119004989*1568397607^(7/22) 2865699999302090 a001 4052739537881/119218851371*1568397607^(7/22) 2865699999302090 a001 387002188980/11384387281*1568397607^(7/22) 2865699999302090 a001 63245986/228826127*141422324^(8/13) 2865699999302090 a001 591286729879/17393796001*1568397607^(7/22) 2865699999302090 a001 591286729879/6643838879*1568397607^(3/11) 2865699999302090 a001 4052739537881/2537720636*2537720636^(2/15) 2865699999302090 a001 3278735159921/1268860318*2537720636^(1/9) 2865699999302090 a001 139583862445/10749957122*1568397607^(4/11) 2865699999302090 a001 365435296162/28143753123*1568397607^(4/11) 2865699999302090 a001 1201881744/634430159*23725150497407^(5/16) 2865699999302090 a001 1201881744/634430159*505019158607^(5/14) 2865699999302090 a001 1201881744/634430159*73681302247^(5/13) 2865699999302090 a001 567451585/5374978561*73681302247^(1/2) 2865699999302090 a001 1201881744/634430159*28143753123^(2/5) 2865699999302090 a001 956722026041/73681302247*1568397607^(4/11) 2865699999302090 a001 2504730781961/192900153618*1568397607^(4/11) 2865699999302090 a001 10610209857723/817138163596*1568397607^(4/11) 2865699999302090 a001 4052739537881/312119004989*1568397607^(4/11) 2865699999302090 a001 1548008755920/119218851371*1568397607^(4/11) 2865699999302090 a001 591286729879/45537549124*1568397607^(4/11) 2865699999302090 a001 1201881744/634430159*10749957122^(5/12) 2865699999302090 a001 7787980473/599786069*1568397607^(4/11) 2865699999302090 a001 567451585/5374978561*10749957122^(13/24) 2865699999302090 a001 225851433717/6643838879*1568397607^(7/22) 2865699999302090 a001 1134903170/28143753123*17393796001^(4/7) 2865699999302090 a001 1134903170/23725150497407*17393796001^(6/7) 2865699999302090 a001 567451585/408569081798*17393796001^(5/7) 2865699999302090 a001 1144206275/230701876*45537549124^(6/17) 2865699999302090 a001 1134903170/28143753123*14662949395604^(4/9) 2865699999302090 a001 1144206275/230701876*192900153618^(1/3) 2865699999302090 a001 1134903170/28143753123*73681302247^(7/13) 2865699999302090 a001 1135099622/33391061*17393796001^(2/7) 2865699999302090 a001 2504730781961/2537720636*17393796001^(1/7) 2865699999302090 a001 1134903170/73681302247*45537549124^(10/17) 2865699999302090 a001 1134903170/23725150497407*45537549124^(14/17) 2865699999302090 a001 1134903170/5600748293801*45537549124^(13/17) 2865699999302090 a001 1134903170/1322157322203*45537549124^(12/17) 2865699999302090 a001 1134903170/505019158607*45537549124^(2/3) 2865699999302090 a001 1134903170/312119004989*45537549124^(11/17) 2865699999302090 a001 1134903170/73681302247*312119004989^(6/11) 2865699999302090 a001 1134903170/73681302247*14662949395604^(10/21) 2865699999302090 a001 32951280099/2537720636*23725150497407^(1/4) 2865699999302090 a001 1134903170/73681302247*192900153618^(5/9) 2865699999302090 a001 32951280099/2537720636*73681302247^(4/13) 2865699999302090 a001 225851433717/2537720636*45537549124^(4/17) 2865699999302090 a001 956722026041/2537720636*45537549124^(3/17) 2865699999302090 a001 53316291173/2537720636*45537549124^(5/17) 2865699999302090 a001 4052739537881/2537720636*45537549124^(2/17) 2865699999302090 a001 1135099622/33391061*14662949395604^(2/9) 2865699999302090 a001 567451585/96450076809*505019158607^(4/7) 2865699999302090 a001 1134903170/9062201101803*312119004989^(8/11) 2865699999302090 a001 225851433717/2537720636*817138163596^(4/19) 2865699999302090 a001 1134903170/1322157322203*14662949395604^(4/7) 2865699999302090 a006 5^(1/2)*Fibonacci(68)/Lucas(45)/sqrt(5) 2865699999302090 a001 1134903170/23725150497407*505019158607^(3/4) 2865699999302090 a001 1134903170/312119004989*14662949395604^(11/21) 2865699999302090 a001 10610209857723/2537720636*73681302247^(1/13) 2865699999302090 a001 1134903170/5600748293801*192900153618^(13/18) 2865699999302090 a001 1134903170/23725150497407*192900153618^(7/9) 2865699999302090 a001 1134903170/312119004989*192900153618^(11/18) 2865699999302090 a001 225851433717/2537720636*73681302247^(3/13) 2865699999302090 a001 139583862445/2537720636*73681302247^(1/4) 2865699999302090 a001 53316291173/2537720636*312119004989^(3/11) 2865699999302090 a001 1134903170/119218851371*9062201101803^(1/2) 2865699999302090 a001 53316291173/2537720636*192900153618^(5/18) 2865699999302090 a001 567451585/96450076809*73681302247^(8/13) 2865699999302090 a001 3278735159921/1268860318*28143753123^(1/10) 2865699999302090 a001 1134903170/1322157322203*73681302247^(9/13) 2865699999302090 a001 1134903170/5600748293801*73681302247^(3/4) 2865699999302090 a001 1134903170/9062201101803*73681302247^(10/13) 2865699999302090 a001 591286729879/2537720636*28143753123^(1/5) 2865699999302090 a001 10182505537/1268860318*45537549124^(1/3) 2865699999302090 a001 53316291173/2537720636*28143753123^(3/10) 2865699999302090 a001 567451585/22768774562*1322157322203^(1/2) 2865699999302090 a001 1134903170/73681302247*28143753123^(3/5) 2865699999302090 a001 10610209857723/2537720636*10749957122^(1/12) 2865699999302090 a001 567451585/408569081798*28143753123^(7/10) 2865699999302090 a001 1134903170/9062201101803*28143753123^(4/5) 2865699999302090 a001 4052739537881/2537720636*10749957122^(1/8) 2865699999302090 a001 1134903780/1860499*10749957122^(1/6) 2865699999302090 a001 956722026041/2537720636*10749957122^(3/16) 2865699999302090 a001 591286729879/2537720636*10749957122^(5/24) 2865699999302090 a001 1144206275/230701876*10749957122^(3/8) 2865699999302090 a001 225851433717/2537720636*10749957122^(1/4) 2865699999302090 a001 53316291173/10749957122*1568397607^(9/22) 2865699999302090 a001 1135099622/33391061*10749957122^(7/24) 2865699999302090 a001 32951280099/2537720636*10749957122^(1/3) 2865699999302090 a001 53316291173/2537720636*10749957122^(5/16) 2865699999302090 a001 1134903170/17393796001*45537549124^(9/17) 2865699999302090 a001 1134903170/17393796001*14662949395604^(3/7) 2865699999302090 a001 1134903170/17393796001*192900153618^(1/2) 2865699999302090 a001 1134903170/28143753123*10749957122^(7/12) 2865699999302090 a001 10610209857723/2537720636*4106118243^(2/23) 2865699999302090 a001 1134903170/73681302247*10749957122^(5/8) 2865699999302090 a001 567451585/96450076809*10749957122^(2/3) 2865699999302090 a001 1134903170/312119004989*10749957122^(11/16) 2865699999302090 a001 1134903170/505019158607*10749957122^(17/24) 2865699999302090 a001 1134903170/1322157322203*10749957122^(3/4) 2865699999302090 a001 567451585/1730726404001*10749957122^(19/24) 2865699999302090 a001 1134903170/5600748293801*10749957122^(13/16) 2865699999302090 a001 1134903170/9062201101803*10749957122^(5/6) 2865699999302090 a001 1134903170/23725150497407*10749957122^(7/8) 2865699999302090 a001 4052739537881/2537720636*4106118243^(3/23) 2865699999302090 a001 1134903170/17393796001*10749957122^(9/16) 2865699999302090 a001 139583862445/28143753123*1568397607^(9/22) 2865699999302090 a001 1134903780/1860499*4106118243^(4/23) 2865699999302090 a001 365435296162/73681302247*1568397607^(9/22) 2865699999302090 a001 956722026041/192900153618*1568397607^(9/22) 2865699999302090 a001 2504730781961/505019158607*1568397607^(9/22) 2865699999302090 a001 10610209857723/2139295485799*1568397607^(9/22) 2865699999302090 a001 140728068720/28374454999*1568397607^(9/22) 2865699999302090 a001 591286729879/119218851371*1568397607^(9/22) 2865699999302090 a001 2971215073/4106118243*1568397607^(1/2) 2865699999302090 a001 225851433717/45537549124*1568397607^(9/22) 2865699999302090 a001 591286729879/2537720636*4106118243^(5/23) 2865699999302090 a001 86267571272/17393796001*1568397607^(9/22) 2865699999302090 a001 86267571272/6643838879*1568397607^(4/11) 2865699999302090 a001 225851433717/2537720636*4106118243^(6/23) 2865699999302090 a001 1201881744/634430159*4106118243^(10/23) 2865699999302090 a001 1135099622/33391061*4106118243^(7/23) 2865699999302090 a001 32951280099/2537720636*4106118243^(8/23) 2865699999302090 a001 2971215073/2537720636*17393796001^(3/7) 2865699999302090 a001 10182505537/5374978561*1568397607^(5/11) 2865699999302090 a001 1144206275/230701876*4106118243^(9/23) 2865699999302090 a001 2971215073/2537720636*45537549124^(7/17) 2865699999302090 a001 1134903170/6643838879*312119004989^(5/11) 2865699999302090 a001 1134903170/6643838879*3461452808002^(5/12) 2865699999302090 a001 2971215073/2537720636*192900153618^(7/18) 2865699999302090 a001 1134903170/6643838879*28143753123^(1/2) 2865699999302090 a001 567451585/5374978561*4106118243^(13/23) 2865699999302090 a001 2971215073/2537720636*10749957122^(7/16) 2865699999302090 a001 53316291173/28143753123*1568397607^(5/11) 2865699999302090 a001 1836311903/17393796001*1568397607^(13/22) 2865699999302090 a001 139583862445/73681302247*1568397607^(5/11) 2865699999302090 a001 182717648081/96450076809*1568397607^(5/11) 2865699999302090 a001 956722026041/505019158607*1568397607^(5/11) 2865699999302090 a001 10610209857723/5600748293801*1568397607^(5/11) 2865699999302090 a001 591286729879/312119004989*1568397607^(5/11) 2865699999302090 a001 225851433717/119218851371*1568397607^(5/11) 2865699999302090 a001 1836311903/6643838879*1568397607^(6/11) 2865699999302090 a001 21566892818/11384387281*1568397607^(5/11) 2865699999302090 a001 32951280099/17393796001*1568397607^(5/11) 2865699999302090 a001 32951280099/6643838879*1568397607^(9/22) 2865699999302090 a001 1134903170/28143753123*4106118243^(14/23) 2865699999302090 a001 591286729879/1568397607*599074578^(3/14) 2865699999302090 a001 10610209857723/2537720636*1568397607^(1/11) 2865699999302090 a001 1134903170/73681302247*4106118243^(15/23) 2865699999302090 a001 567451585/96450076809*4106118243^(16/23) 2865699999302090 a001 7778742049/10749957122*1568397607^(1/2) 2865699999302090 a001 1134903170/505019158607*4106118243^(17/23) 2865699999302090 a001 1836311903/45537549124*1568397607^(7/11) 2865699999302090 a001 1134903170/1322157322203*4106118243^(18/23) 2865699999302090 a001 20365011074/28143753123*1568397607^(1/2) 2865699999302090 a001 53316291173/73681302247*1568397607^(1/2) 2865699999302090 a001 139583862445/192900153618*1568397607^(1/2) 2865699999302090 a001 10610209857723/14662949395604*1568397607^(1/2) 2865699999302090 a001 225851433717/312119004989*1568397607^(1/2) 2865699999302090 a001 86267571272/119218851371*1568397607^(1/2) 2865699999302090 a001 32951280099/45537549124*1568397607^(1/2) 2865699999302090 a001 567451585/1730726404001*4106118243^(19/23) 2865699999302090 a001 12586269025/17393796001*1568397607^(1/2) 2865699999302090 a001 12586269025/6643838879*1568397607^(5/11) 2865699999302090 a001 1134903170/9062201101803*4106118243^(20/23) 2865699999302090 a001 1134903170/23725150497407*4106118243^(21/23) 2865699999302090 a001 4052739537881/2537720636*1568397607^(3/22) 2865699999302090 a001 4807526976/17393796001*1568397607^(6/11) 2865699999302090 a001 4807526976/6643838879*1568397607^(1/2) 2865699999302090 a001 1836311903/119218851371*1568397607^(15/22) 2865699999302090 a001 12586269025/45537549124*1568397607^(6/11) 2865699999302090 a001 32951280099/119218851371*1568397607^(6/11) 2865699999302090 a001 86267571272/312119004989*1568397607^(6/11) 2865699999302090 a001 225851433717/817138163596*1568397607^(6/11) 2865699999302090 a001 1548008755920/5600748293801*1568397607^(6/11) 2865699999302090 a001 139583862445/505019158607*1568397607^(6/11) 2865699999302090 a001 53316291173/192900153618*1568397607^(6/11) 2865699999302090 a001 20365011074/73681302247*1568397607^(6/11) 2865699999302090 a001 7778742049/28143753123*1568397607^(6/11) 2865699999302090 a001 1134903780/1860499*1568397607^(2/11) 2865699999302090 a001 1201881744/11384387281*1568397607^(13/22) 2865699999302090 a001 2971215073/10749957122*1568397607^(6/11) 2865699999302090 a001 1836311903/312119004989*1568397607^(8/11) 2865699999302090 a001 12586269025/119218851371*1568397607^(13/22) 2865699999302090 a001 32951280099/312119004989*1568397607^(13/22) 2865699999302090 a001 21566892818/204284540899*1568397607^(13/22) 2865699999302090 a001 225851433717/2139295485799*1568397607^(13/22) 2865699999302090 a001 182717648081/1730726404001*1568397607^(13/22) 2865699999302090 a001 139583862445/1322157322203*1568397607^(13/22) 2865699999302090 a001 53316291173/505019158607*1568397607^(13/22) 2865699999302090 a001 10182505537/96450076809*1568397607^(13/22) 2865699999302090 a001 7778742049/73681302247*1568397607^(13/22) 2865699999302090 a001 1836311903/505019158607*1568397607^(3/4) 2865699999302090 a001 591286729879/2537720636*1568397607^(5/22) 2865699999302090 a001 4807526976/119218851371*1568397607^(7/11) 2865699999302090 a001 1836311903/817138163596*1568397607^(17/22) 2865699999302090 a001 365435296162/1568397607*599074578^(5/21) 2865699999302090 a001 182717648081/1268860318*1568397607^(1/4) 2865699999302090 a001 1144206275/28374454999*1568397607^(7/11) 2865699999302090 a001 32951280099/817138163596*1568397607^(7/11) 2865699999302090 a001 86267571272/2139295485799*1568397607^(7/11) 2865699999302090 a001 225851433717/5600748293801*1568397607^(7/11) 2865699999302090 a001 591286729879/14662949395604*1568397607^(7/11) 2865699999302090 a001 365435296162/9062201101803*1568397607^(7/11) 2865699999302090 a001 139583862445/3461452808002*1568397607^(7/11) 2865699999302090 a001 53316291173/1322157322203*1568397607^(7/11) 2865699999302090 a001 20365011074/505019158607*1568397607^(7/11) 2865699999302090 a001 2971215073/28143753123*1568397607^(13/22) 2865699999302090 a001 7778742049/192900153618*1568397607^(7/11) 2865699999302090 a001 225851433717/2537720636*1568397607^(3/11) 2865699999302090 a001 4807526976/312119004989*1568397607^(15/22) 2865699999302090 a001 1836311903/2139295485799*1568397607^(9/11) 2865699999302090 a001 12586269025/817138163596*1568397607^(15/22) 2865699999302090 a001 32951280099/2139295485799*1568397607^(15/22) 2865699999302090 a001 86267571272/5600748293801*1568397607^(15/22) 2865699999302090 a001 7787980473/505618944676*1568397607^(15/22) 2865699999302090 a001 365435296162/23725150497407*1568397607^(15/22) 2865699999302090 a001 139583862445/9062201101803*1568397607^(15/22) 2865699999302090 a001 53316291173/3461452808002*1568397607^(15/22) 2865699999302090 a001 20365011074/1322157322203*1568397607^(15/22) 2865699999302090 a001 7778742049/505019158607*1568397607^(15/22) 2865699999302090 a001 2971215073/73681302247*1568397607^(7/11) 2865699999302090 a001 1135099622/33391061*1568397607^(7/22) 2865699999302090 a001 1201881744/204284540899*1568397607^(8/11) 2865699999302090 a001 1836311903/5600748293801*1568397607^(19/22) 2865699999302090 a001 12586269025/2139295485799*1568397607^(8/11) 2865699999302090 a001 32951280099/5600748293801*1568397607^(8/11) 2865699999302090 a001 1135099622/192933544679*1568397607^(8/11) 2865699999302090 a001 139583862445/23725150497407*1568397607^(8/11) 2865699999302090 a001 53316291173/9062201101803*1568397607^(8/11) 2865699999302090 a001 10182505537/1730726404001*1568397607^(8/11) 2865699999302090 a001 1602508992/440719107401*1568397607^(3/4) 2865699999302090 a001 7778742049/1322157322203*1568397607^(8/11) 2865699999302090 a001 1836311903/2537720636*1568397607^(1/2) 2865699999302090 a001 2971215073/192900153618*1568397607^(15/22) 2865699999302090 a001 32951280099/2537720636*1568397607^(4/11) 2865699999302090 a001 12586269025/3461452808002*1568397607^(3/4) 2865699999302090 a001 10983760033/3020733700601*1568397607^(3/4) 2865699999302090 a001 86267571272/23725150497407*1568397607^(3/4) 2865699999302090 a001 53316291173/14662949395604*1568397607^(3/4) 2865699999302090 a001 20365011074/5600748293801*1568397607^(3/4) 2865699999302090 a001 4807526976/2139295485799*1568397607^(17/22) 2865699999302090 a001 7778742049/2139295485799*1568397607^(3/4) 2865699999302090 a001 1836311903/14662949395604*1568397607^(10/11) 2865699999302090 a001 12586269025/5600748293801*1568397607^(17/22) 2865699999302090 a001 32951280099/14662949395604*1568397607^(17/22) 2865699999302090 a001 53316291173/23725150497407*1568397607^(17/22) 2865699999302090 a001 20365011074/9062201101803*1568397607^(17/22) 2865699999302090 a001 7778742049/3461452808002*1568397607^(17/22) 2865699999302090 a001 1134903170/4106118243*1568397607^(6/11) 2865699999302090 a001 2971215073/505019158607*1568397607^(8/11) 2865699999302090 a001 1144206275/230701876*1568397607^(9/22) 2865699999302090 a001 4807526976/5600748293801*1568397607^(9/11) 2865699999302090 a001 2971215073/817138163596*1568397607^(3/4) 2865699999302090 a001 12586269025/14662949395604*1568397607^(9/11) 2865699999302090 a001 1201881744/634430159*1568397607^(5/11) 2865699999302090 a001 20365011074/23725150497407*1568397607^(9/11) 2865699999302090 a001 7778742049/9062201101803*1568397607^(9/11) 2865699999302090 a001 2971215073/1322157322203*1568397607^(17/22) 2865699999302090 a001 6557470319842/4106118243*599074578^(1/7) 2865699999302090 a001 567451585/1268860318*4106118243^(1/2) 2865699999302090 a001 1201881744/3665737348901*1568397607^(19/22) 2865699999302090 a001 7778742049/23725150497407*1568397607^(19/22) 2865699999302090 a001 2971215073/3461452808002*1568397607^(9/11) 2865699999302090 a001 2971215073/9062201101803*1568397607^(19/22) 2865699999302090 a001 567451585/5374978561*1568397607^(13/22) 2865699999302090 a001 139583862445/1568397607*599074578^(2/7) 2865699999302090 a001 2971215073/23725150497407*1568397607^(10/11) 2865699999302090 a001 4052739537881/4106118243*599074578^(1/6) 2865699999302090 a001 1134903170/28143753123*1568397607^(7/11) 2865699999302090 a001 10610209857723/2537720636*599074578^(2/21) 2865699999302090 a001 10610209857723/6643838879*599074578^(1/7) 2865699999302090 a001 1134903170/73681302247*1568397607^(15/22) 2865699999302090 a001 567451585/96450076809*1568397607^(8/11) 2865699999302090 a001 4807525989/4870846*599074578^(1/6) 2865699999302090 a001 1134903170/312119004989*1568397607^(3/4) 2865699999302090 a001 1134903170/505019158607*1568397607^(17/22) 2865699999302090 a001 2504730781961/4106118243*599074578^(4/21) 2865699999302090 a001 6557470319842/6643838879*599074578^(1/6) 2865699999302090 a001 1134903170/1322157322203*1568397607^(9/11) 2865699999302090 a001 567451585/1730726404001*1568397607^(19/22) 2865699999302090 a001 3278735159921/5374978561*599074578^(4/21) 2865699999302090 a001 53316291173/1568397607*599074578^(1/3) 2865699999302090 a001 1134903170/9062201101803*1568397607^(10/11) 2865699999302090 a001 10610209857723/17393796001*599074578^(4/21) 2865699999302090 a001 516002918640/1368706081*599074578^(3/14) 2865699999302090 a001 1134903170/23725150497407*1568397607^(21/22) 2865699999302090 a001 4052739537881/2537720636*599074578^(1/7) 2865699999302090 a001 4052739537881/6643838879*599074578^(4/21) 2865699999302090 a001 433494437/1568397607*2537720636^(8/15) 2865699999302090 a001 32951280099/1568397607*599074578^(5/14) 2865699999302090 a001 4052739537881/10749957122*599074578^(3/14) 2865699999302090 a001 3536736619241/9381251041*599074578^(3/14) 2865699999302090 a001 6557470319842/17393796001*599074578^(3/14) 2865699999302090 a001 956722026041/4106118243*599074578^(5/21) 2865699999302090 a001 2504730781961/2537720636*599074578^(1/6) 2865699999302090 a001 2504730781961/6643838879*599074578^(3/14) 2865699999302090 a001 2504730781961/10749957122*599074578^(5/21) 2865699999302090 a001 20365011074/1568397607*599074578^(8/21) 2865699999302090 a001 433494437/1568397607*45537549124^(8/17) 2865699999302090 a001 433494437/1568397607*14662949395604^(8/21) 2865699999302090 a001 101352261272906107/3536736619241 2865699999302090 a001 433494437/1568397607*192900153618^(4/9) 2865699999302090 a001 433494437/1568397607*73681302247^(6/13) 2865699999302090 a001 701408733/969323029*10749957122^(11/24) 2865699999302090 a001 433494437/1568397607*10749957122^(1/2) 2865699999302090 a001 6557470319842/28143753123*599074578^(5/21) 2865699999302090 a001 10610209857723/45537549124*599074578^(5/21) 2865699999302090 a001 4052739537881/17393796001*599074578^(5/21) 2865699999302090 a001 1134903780/1860499*599074578^(4/21) 2865699999302090 a001 1548008755920/6643838879*599074578^(5/21) 2865699999302090 a001 701408733/969323029*4106118243^(11/23) 2865699999302090 a001 433494437/1568397607*4106118243^(12/23) 2865699999302090 a001 365435296162/4106118243*599074578^(2/7) 2865699999302090 a001 956722026041/2537720636*599074578^(3/14) 2865699999302090 a001 956722026041/10749957122*599074578^(2/7) 2865699999302090 a001 7778742049/1568397607*599074578^(3/7) 2865699999302090 a001 2504730781961/28143753123*599074578^(2/7) 2865699999302090 a001 6557470319842/73681302247*599074578^(2/7) 2865699999302090 a001 10610209857723/119218851371*599074578^(2/7) 2865699999302090 a001 4052739537881/45537549124*599074578^(2/7) 2865699999302090 a001 1548008755920/17393796001*599074578^(2/7) 2865699999302090 a001 591286729879/2537720636*599074578^(5/21) 2865699999302090 a001 591286729879/6643838879*599074578^(2/7) 2865699999302090 a001 701408733/969323029*1568397607^(1/2) 2865699999302090 a001 139583862445/4106118243*599074578^(1/3) 2865699999302090 a001 433494437/1568397607*1568397607^(6/11) 2865699999302090 a001 433494437/9062201101803*2537720636^(14/15) 2865699999302090 a001 182717648081/5374978561*599074578^(1/3) 2865699999302090 a001 433494437/3461452808002*2537720636^(8/9) 2865699999302090 a001 1836311903/1568397607*599074578^(1/2) 2865699999302090 a001 956722026041/28143753123*599074578^(1/3) 2865699999302090 a001 2504730781961/73681302247*599074578^(1/3) 2865699999302090 a001 3278735159921/96450076809*599074578^(1/3) 2865699999302090 a001 10610209857723/312119004989*599074578^(1/3) 2865699999302090 a001 4052739537881/119218851371*599074578^(1/3) 2865699999302090 a001 387002188980/11384387281*599074578^(1/3) 2865699999302090 a001 433494437/2139295485799*2537720636^(13/15) 2865699999302090 a001 591286729879/17393796001*599074578^(1/3) 2865699999302090 a001 86267571272/4106118243*599074578^(5/14) 2865699999302090 a001 1836311903/969323029*2537720636^(4/9) 2865699999302090 a001 433494437/505019158607*2537720636^(4/5) 2865699999302090 a001 2971215073/1568397607*599074578^(10/21) 2865699999302090 a001 433494437/312119004989*2537720636^(7/9) 2865699999302090 a001 433494437/119218851371*2537720636^(11/15) 2865699999302090 a001 225851433717/2537720636*599074578^(2/7) 2865699999302090 a001 225851433717/6643838879*599074578^(1/3) 2865699999302090 a001 433494437/28143753123*2537720636^(2/3) 2865699999302090 a001 225851433717/10749957122*599074578^(5/14) 2865699999302090 a001 4807526976/969323029*2537720636^(2/5) 2865699999302090 a001 433494437/6643838879*2537720636^(3/5) 2865699999302090 a001 591286729879/28143753123*599074578^(5/14) 2865699999302090 a001 1548008755920/73681302247*599074578^(5/14) 2865699999302090 a001 4052739537881/192900153618*599074578^(5/14) 2865699999302090 a001 225749145909/10745088481*599074578^(5/14) 2865699999302090 a001 6557470319842/312119004989*599074578^(5/14) 2865699999302090 a001 2504730781961/119218851371*599074578^(5/14) 2865699999302090 a001 956722026041/45537549124*599074578^(5/14) 2865699999302090 a001 365435296162/17393796001*599074578^(5/14) 2865699999302090 a001 53316291173/4106118243*599074578^(8/21) 2865699999302090 a001 1836311903/969323029*23725150497407^(5/16) 2865699999302090 a001 1836311903/969323029*505019158607^(5/14) 2865699999302090 a001 1836311903/969323029*73681302247^(5/13) 2865699999302090 a001 433494437/4106118243*73681302247^(1/2) 2865699999302090 a001 1836311903/969323029*28143753123^(2/5) 2865699999302090 a001 1836311903/969323029*10749957122^(5/12) 2865699999302090 a001 433494437/4106118243*10749957122^(13/24) 2865699999302090 a001 20365011074/969323029*2537720636^(1/3) 2865699999302090 a001 139583862445/6643838879*599074578^(5/14) 2865699999302090 a001 86267571272/969323029*2537720636^(4/15) 2865699999302090 a001 225851433717/969323029*2537720636^(2/9) 2865699999302090 a001 1836311903/969323029*4106118243^(10/23) 2865699999302090 a001 182717648081/299537289*228826127^(1/5) 2865699999302090 a001 433494437/4106118243*4106118243^(13/23) 2865699999302090 a001 1548008755920/969323029*2537720636^(2/15) 2865699999302090 a001 2504730781961/969323029*2537720636^(1/9) 2865699999302090 a001 139583862445/10749957122*599074578^(8/21) 2865699999302090 a001 433494437/10749957122*17393796001^(4/7) 2865699999302090 a001 6557470319842/969323029*2537720636^(1/15) 2865699999302090 a001 4807526976/969323029*45537549124^(6/17) 2865699999302090 a001 433494437/10749957122*14662949395604^(4/9) 2865699999302090 a001 4807526976/969323029*192900153618^(1/3) 2865699999302090 a001 433494437/10749957122*73681302247^(7/13) 2865699999302090 a001 4807526976/969323029*10749957122^(3/8) 2865699999302090 a001 365435296162/28143753123*599074578^(8/21) 2865699999302090 a001 433494437/10749957122*10749957122^(7/12) 2865699999302090 a001 956722026041/73681302247*599074578^(8/21) 2865699999302090 a001 2504730781961/192900153618*599074578^(8/21) 2865699999302090 a001 433494437/9062201101803*17393796001^(6/7) 2865699999302090 a001 10610209857723/817138163596*599074578^(8/21) 2865699999302090 a001 4052739537881/312119004989*599074578^(8/21) 2865699999302090 a001 1548008755920/119218851371*599074578^(8/21) 2865699999302090 a001 433494437/312119004989*17393796001^(5/7) 2865699999302090 a001 591286729879/45537549124*599074578^(8/21) 2865699999302090 a001 433494437/28143753123*45537549124^(10/17) 2865699999302090 a001 433494437/28143753123*312119004989^(6/11) 2865699999302090 a001 433494437/28143753123*14662949395604^(10/21) 2865699999302090 a001 12586269025/969323029*23725150497407^(1/4) 2865699999302090 a001 433494437/28143753123*192900153618^(5/9) 2865699999302090 a001 12586269025/969323029*73681302247^(4/13) 2865699999302090 a001 32951280099/969323029*17393796001^(2/7) 2865699999302090 a001 433494437/28143753123*28143753123^(3/5) 2865699999302090 a001 956722026041/969323029*17393796001^(1/7) 2865699999302090 a001 433494437/9062201101803*45537549124^(14/17) 2865699999302090 a001 433494437/2139295485799*45537549124^(13/17) 2865699999302090 a001 433494437/192900153618*45537549124^(2/3) 2865699999302090 a001 433494437/505019158607*45537549124^(12/17) 2865699999302090 a001 433494437/119218851371*45537549124^(11/17) 2865699999302090 a001 32951280099/969323029*14662949395604^(2/9) 2865699999302090 a001 32951280099/969323029*505019158607^(1/4) 2865699999302090 a001 86267571272/969323029*45537549124^(4/17) 2865699999302090 a001 365435296162/969323029*45537549124^(3/17) 2865699999302090 a001 433494437/73681302247*73681302247^(8/13) 2865699999302090 a001 1548008755920/969323029*45537549124^(2/17) 2865699999302090 a001 6557470319842/969323029*45537549124^(1/17) 2865699999302090 a001 86267571272/969323029*14662949395604^(4/21) 2865699999302090 a001 86267571272/969323029*192900153618^(2/9) 2865699999302090 a001 225851433717/969323029*312119004989^(2/11) 2865699999302090 a001 2504730781961/969323029*312119004989^(1/11) 2865699999302090 a001 1548008755920/969323029*14662949395604^(2/21) 2865699999302090 a006 5^(1/2)*Fibonacci(66)/Lucas(43)/sqrt(5) 2865699999302090 a001 365435296162/969323029*14662949395604^(1/7) 2865699999302090 a001 139583862445/969323029*312119004989^(1/5) 2865699999302090 a001 433494437/312119004989*505019158607^(5/8) 2865699999302090 a001 4052739537881/969323029*73681302247^(1/13) 2865699999302090 a001 433494437/2139295485799*192900153618^(13/18) 2865699999302090 a001 433494437/9062201101803*192900153618^(7/9) 2865699999302090 a001 591286729879/969323029*73681302247^(2/13) 2865699999302090 a001 433494437/119218851371*312119004989^(3/5) 2865699999302090 a001 433494437/119218851371*817138163596^(11/19) 2865699999302090 a001 433494437/119218851371*14662949395604^(11/21) 2865699999302090 a001 433494437/119218851371*192900153618^(11/18) 2865699999302090 a001 53316291173/969323029*73681302247^(1/4) 2865699999302090 a001 2504730781961/969323029*28143753123^(1/10) 2865699999302090 a001 433494437/2139295485799*73681302247^(3/4) 2865699999302090 a001 433494437/23725150497407*73681302247^(11/13) 2865699999302090 a001 225851433717/969323029*28143753123^(1/5) 2865699999302090 a001 20365011074/969323029*45537549124^(5/17) 2865699999302090 a001 10610209857723/969323029*10749957122^(1/24) 2865699999302090 a001 20365011074/969323029*312119004989^(3/11) 2865699999302090 a001 20365011074/969323029*14662949395604^(5/21) 2865699999302090 a001 20365011074/969323029*192900153618^(5/18) 2865699999302090 a001 6557470319842/969323029*10749957122^(1/16) 2865699999302090 a001 4052739537881/969323029*10749957122^(1/12) 2865699999302090 a001 20365011074/969323029*28143753123^(3/10) 2865699999302090 a001 433494437/312119004989*28143753123^(7/10) 2865699999302090 a001 433494437/3461452808002*28143753123^(4/5) 2865699999302090 a001 1548008755920/969323029*10749957122^(1/8) 2865699999302090 a001 591286729879/969323029*10749957122^(1/6) 2865699999302090 a001 12586269025/969323029*10749957122^(1/3) 2865699999302090 a001 365435296162/969323029*10749957122^(3/16) 2865699999302090 a001 225851433717/969323029*10749957122^(5/24) 2865699999302090 a001 86267571272/969323029*10749957122^(1/4) 2865699999302090 a001 32951280099/969323029*10749957122^(7/24) 2865699999302090 a001 10610209857723/969323029*4106118243^(1/23) 2865699999302090 a001 7778742049/969323029*45537549124^(1/3) 2865699999302090 a001 20365011074/969323029*10749957122^(5/16) 2865699999302090 a001 433494437/17393796001*1322157322203^(1/2) 2865699999302090 a001 433494437/28143753123*10749957122^(5/8) 2865699999302090 a001 4052739537881/969323029*4106118243^(2/23) 2865699999302090 a001 433494437/73681302247*10749957122^(2/3) 2865699999302090 a001 433494437/119218851371*10749957122^(11/16) 2865699999302090 a001 433494437/192900153618*10749957122^(17/24) 2865699999302090 a001 433494437/505019158607*10749957122^(3/4) 2865699999302090 a001 433494437/1322157322203*10749957122^(19/24) 2865699999302090 a001 433494437/2139295485799*10749957122^(13/16) 2865699999302090 a001 433494437/3461452808002*10749957122^(5/6) 2865699999302090 a001 433494437/9062201101803*10749957122^(7/8) 2865699999302090 a001 1548008755920/969323029*4106118243^(3/23) 2865699999302090 a001 433494437/23725150497407*10749957122^(11/12) 2865699999302090 a001 591286729879/969323029*4106118243^(4/23) 2865699999302090 a001 225851433717/969323029*4106118243^(5/23) 2865699999302090 a001 4807526976/969323029*4106118243^(9/23) 2865699999302090 a001 86267571272/969323029*4106118243^(6/23) 2865699999302090 a001 32951280099/969323029*4106118243^(7/23) 2865699999302090 a001 10610209857723/969323029*1568397607^(1/22) 2865699999302090 a001 12586269025/969323029*4106118243^(8/23) 2865699999302090 a001 1135099622/33391061*599074578^(1/3) 2865699999302090 a001 86267571272/6643838879*599074578^(8/21) 2865699999302090 a001 433494437/6643838879*45537549124^(9/17) 2865699999302090 a001 2971215073/969323029*817138163596^(1/3) 2865699999302090 a001 433494437/6643838879*14662949395604^(3/7) 2865699999302090 a001 433494437/6643838879*192900153618^(1/2) 2865699999302090 a001 433494437/10749957122*4106118243^(14/23) 2865699999302090 a001 433494437/6643838879*10749957122^(9/16) 2865699999302090 a001 4052739537881/969323029*1568397607^(1/11) 2865699999302090 a001 433494437/28143753123*4106118243^(15/23) 2865699999302090 a001 433494437/73681302247*4106118243^(16/23) 2865699999302090 a001 433494437/192900153618*4106118243^(17/23) 2865699999302090 a001 433494437/505019158607*4106118243^(18/23) 2865699999302090 a001 433494437/1322157322203*4106118243^(19/23) 2865699999302090 a001 433494437/3461452808002*4106118243^(20/23) 2865699999302090 a001 433494437/9062201101803*4106118243^(21/23) 2865699999302090 a001 1548008755920/969323029*1568397607^(3/22) 2865699999302090 a001 433494437/23725150497407*4106118243^(22/23) 2865699999302090 a001 433494437/2537720636*2537720636^(5/9) 2865699999302090 a001 20365011074/4106118243*599074578^(3/7) 2865699999302090 a001 591286729879/969323029*1568397607^(2/11) 2865699999302090 a001 1134903170/969323029*2537720636^(7/15) 2865699999302090 a001 53316291173/2537720636*599074578^(5/14) 2865699999302090 a001 225851433717/969323029*1568397607^(5/22) 2865699999302090 a001 139583862445/969323029*1568397607^(1/4) 2865699999302090 a001 86267571272/969323029*1568397607^(3/11) 2865699999302090 a001 53316291173/10749957122*599074578^(3/7) 2865699999302090 a001 1836311903/969323029*1568397607^(5/11) 2865699999302090 a001 139583862445/28143753123*599074578^(3/7) 2865699999302090 a001 32951280099/969323029*1568397607^(7/22) 2865699999302090 a001 365435296162/73681302247*599074578^(3/7) 2865699999302090 a001 956722026041/192900153618*599074578^(3/7) 2865699999302090 a001 2504730781961/505019158607*599074578^(3/7) 2865699999302090 a001 10610209857723/2139295485799*599074578^(3/7) 2865699999302090 a001 140728068720/28374454999*599074578^(3/7) 2865699999302090 a001 591286729879/119218851371*599074578^(3/7) 2865699999302090 a001 225851433717/45537549124*599074578^(3/7) 2865699999302090 a001 10610209857723/969323029*599074578^(1/21) 2865699999302090 a001 86267571272/17393796001*599074578^(3/7) 2865699999302090 a001 1134903170/1568397607*599074578^(11/21) 2865699999302090 a001 12586269025/969323029*1568397607^(4/11) 2865699999302090 a001 32951280099/2537720636*599074578^(8/21) 2865699999302090 a001 32951280099/6643838879*599074578^(3/7) 2865699999302090 a001 1134903170/969323029*17393796001^(3/7) 2865699999302090 a001 1134903170/969323029*45537549124^(7/17) 2865699999302090 a001 433494437/2537720636*312119004989^(5/11) 2865699999302090 a001 1134903170/969323029*14662949395604^(1/3) 2865699999302090 a001 1134903170/969323029*192900153618^(7/18) 2865699999302090 a001 433494437/2537720636*28143753123^(1/2) 2865699999302090 a001 4807526976/969323029*1568397607^(9/22) 2865699999302090 a001 1134903170/969323029*10749957122^(7/16) 2865699999302090 a001 433494437/4106118243*1568397607^(13/22) 2865699999302090 a001 6557470319842/969323029*599074578^(1/14) 2865699999302090 a001 7778742049/4106118243*599074578^(10/21) 2865699999302090 a001 433494437/10749957122*1568397607^(7/11) 2865699999302090 a001 10182505537/5374978561*599074578^(10/21) 2865699999302090 a001 1602508992/1368706081*599074578^(1/2) 2865699999302090 a001 53316291173/28143753123*599074578^(10/21) 2865699999302090 a001 139583862445/73681302247*599074578^(10/21) 2865699999302090 a001 182717648081/96450076809*599074578^(10/21) 2865699999302090 a001 956722026041/505019158607*599074578^(10/21) 2865699999302090 a001 10610209857723/5600748293801*599074578^(10/21) 2865699999302090 a001 591286729879/312119004989*599074578^(10/21) 2865699999302090 a001 225851433717/119218851371*599074578^(10/21) 2865699999302090 a001 21566892818/11384387281*599074578^(10/21) 2865699999302090 a001 4052739537881/969323029*599074578^(2/21) 2865699999302090 a001 32951280099/17393796001*599074578^(10/21) 2865699999302090 a001 433494437/28143753123*1568397607^(15/22) 2865699999302090 a001 701408733/2537720636*599074578^(4/7) 2865699999302090 a001 701408733/6643838879*599074578^(13/21) 2865699999302090 a001 1144206275/230701876*599074578^(3/7) 2865699999302090 a001 12586269025/6643838879*599074578^(10/21) 2865699999302090 a001 433494437/73681302247*1568397607^(8/11) 2865699999302090 a001 433494437/119218851371*1568397607^(3/4) 2865699999302090 a001 701408733/10749957122*599074578^(9/14) 2865699999302090 a001 433494437/192900153618*1568397607^(17/22) 2865699999302090 a001 12586269025/10749957122*599074578^(1/2) 2865699999302090 a001 10983760033/9381251041*599074578^(1/2) 2865699999302090 a001 86267571272/73681302247*599074578^(1/2) 2865699999302090 a001 75283811239/64300051206*599074578^(1/2) 2865699999302090 a001 2504730781961/2139295485799*599074578^(1/2) 2865699999302090 a001 365435296162/312119004989*599074578^(1/2) 2865699999302090 a001 139583862445/119218851371*599074578^(1/2) 2865699999302090 a001 53316291173/45537549124*599074578^(1/2) 2865699999302090 a001 433494437/505019158607*1568397607^(9/11) 2865699999302090 a001 20365011074/17393796001*599074578^(1/2) 2865699999302090 a001 433494437/1322157322203*1568397607^(19/22) 2865699999302090 a001 7778742049/6643838879*599074578^(1/2) 2865699999302090 a001 2971215073/4106118243*599074578^(11/21) 2865699999302090 a001 433494437/3461452808002*1568397607^(10/11) 2865699999302090 a001 433494437/9062201101803*1568397607^(21/22) 2865699999302090 a001 7778742049/10749957122*599074578^(11/21) 2865699999302090 a001 701408733/17393796001*599074578^(2/3) 2865699999302090 a001 20365011074/28143753123*599074578^(11/21) 2865699999302090 a001 53316291173/73681302247*599074578^(11/21) 2865699999302090 a001 139583862445/192900153618*599074578^(11/21) 2865699999302090 a001 591286729879/817138163596*599074578^(11/21) 2865699999302090 a001 225851433717/312119004989*599074578^(11/21) 2865699999302090 a001 86267571272/119218851371*599074578^(11/21) 2865699999302090 a001 32951280099/45537549124*599074578^(11/21) 2865699999302090 a001 12586269025/17393796001*599074578^(11/21) 2865699999302090 a001 1548008755920/969323029*599074578^(1/7) 2865699999302090 a001 1201881744/634430159*599074578^(10/21) 2865699999302090 a001 4807526976/6643838879*599074578^(11/21) 2865699999302090 a001 6557470319842/1568397607*228826127^(1/10) 2865699999302090 a001 956722026041/969323029*599074578^(1/6) 2865699999302090 a001 1836311903/2537720636*599074578^(11/21) 2865699999302090 a001 1836311903/6643838879*599074578^(4/7) 2865699999302090 a001 365435296162/228826127*87403803^(3/19) 2865699999302090 a001 2971215073/2537720636*599074578^(1/2) 2865699999302090 a001 701408733/45537549124*599074578^(5/7) 2865699999302090 a001 4807526976/17393796001*599074578^(4/7) 2865699999302090 a001 12586269025/45537549124*599074578^(4/7) 2865699999302090 a001 32951280099/119218851371*599074578^(4/7) 2865699999302090 a001 86267571272/312119004989*599074578^(4/7) 2865699999302090 a001 225851433717/817138163596*599074578^(4/7) 2865699999302090 a001 1548008755920/5600748293801*599074578^(4/7) 2865699999302090 a001 139583862445/505019158607*599074578^(4/7) 2865699999302090 a001 53316291173/192900153618*599074578^(4/7) 2865699999302090 a001 20365011074/73681302247*599074578^(4/7) 2865699999302090 a001 7778742049/28143753123*599074578^(4/7) 2865699999302090 a001 591286729879/969323029*599074578^(4/21) 2865699999302090 a001 2971215073/10749957122*599074578^(4/7) 2865699999302090 a001 365435296162/969323029*599074578^(3/14) 2865699999302090 a001 1836311903/17393796001*599074578^(13/21) 2865699999302090 a001 1134903170/4106118243*599074578^(4/7) 2865699999302090 a001 701408733/119218851371*599074578^(16/21) 2865699999302090 a001 1201881744/11384387281*599074578^(13/21) 2865699999302090 a001 12586269025/119218851371*599074578^(13/21) 2865699999302090 a001 32951280099/312119004989*599074578^(13/21) 2865699999302090 a001 21566892818/204284540899*599074578^(13/21) 2865699999302090 a001 225851433717/2139295485799*599074578^(13/21) 2865699999302090 a001 182717648081/1730726404001*599074578^(13/21) 2865699999302090 a001 139583862445/1322157322203*599074578^(13/21) 2865699999302090 a001 53316291173/505019158607*599074578^(13/21) 2865699999302090 a001 10182505537/96450076809*599074578^(13/21) 2865699999302090 a001 225851433717/969323029*599074578^(5/21) 2865699999302090 a001 7778742049/73681302247*599074578^(13/21) 2865699999302090 a001 1836311903/28143753123*599074578^(9/14) 2865699999302090 a001 2971215073/28143753123*599074578^(13/21) 2865699999302090 a001 39088169/141422324*87403803^(12/19) 2865699999302090 a001 686789568/10525900321*599074578^(9/14) 2865699999302090 a001 233802911/64300051206*599074578^(11/14) 2865699999302090 a001 12586269025/192900153618*599074578^(9/14) 2865699999302090 a001 32951280099/505019158607*599074578^(9/14) 2865699999302090 a001 86267571272/1322157322203*599074578^(9/14) 2865699999302090 a001 32264490531/494493258286*599074578^(9/14) 2865699999302090 a001 591286729879/9062201101803*599074578^(9/14) 2865699999302090 a001 1548008755920/23725150497407*599074578^(9/14) 2865699999302090 a001 139583862445/2139295485799*599074578^(9/14) 2865699999302090 a001 53316291173/817138163596*599074578^(9/14) 2865699999302090 a001 20365011074/312119004989*599074578^(9/14) 2865699999302090 a001 7778742049/119218851371*599074578^(9/14) 2865699999302090 a001 1836311903/45537549124*599074578^(2/3) 2865699999302090 a001 2971215073/45537549124*599074578^(9/14) 2865699999302090 a001 4807526976/119218851371*599074578^(2/3) 2865699999302090 a001 3524667/1568437211*599074578^(17/21) 2865699999302090 a001 1144206275/28374454999*599074578^(2/3) 2865699999302090 a001 32951280099/817138163596*599074578^(2/3) 2865699999302090 a001 86267571272/2139295485799*599074578^(2/3) 2865699999302090 a001 225851433717/5600748293801*599074578^(2/3) 2865699999302090 a001 591286729879/14662949395604*599074578^(2/3) 2865699999302090 a001 365435296162/9062201101803*599074578^(2/3) 2865699999302090 a001 139583862445/3461452808002*599074578^(2/3) 2865699999302090 a001 53316291173/1322157322203*599074578^(2/3) 2865699999302090 a001 20365011074/505019158607*599074578^(2/3) 2865699999302090 a001 86267571272/969323029*599074578^(2/7) 2865699999302090 a001 7778742049/192900153618*599074578^(2/3) 2865699999302090 a001 567451585/5374978561*599074578^(13/21) 2865699999302090 a001 2971215073/73681302247*599074578^(2/3) 2865699999302090 a001 701408733/505019158607*599074578^(5/6) 2865699999302090 a001 1836311903/119218851371*599074578^(5/7) 2865699999302090 a001 1134903170/17393796001*599074578^(9/14) 2865699999302090 a001 4052739537881/1568397607*228826127^(1/8) 2865699999302090 a001 4807526976/312119004989*599074578^(5/7) 2865699999302090 a001 701408733/817138163596*599074578^(6/7) 2865699999302090 a001 139583862445/599074578*228826127^(1/4) 2865699999302090 a001 12586269025/817138163596*599074578^(5/7) 2865699999302090 a001 32951280099/2139295485799*599074578^(5/7) 2865699999302090 a001 86267571272/5600748293801*599074578^(5/7) 2865699999302090 a001 7787980473/505618944676*599074578^(5/7) 2865699999302090 a001 365435296162/23725150497407*599074578^(5/7) 2865699999302090 a001 139583862445/9062201101803*599074578^(5/7) 2865699999302090 a001 53316291173/3461452808002*599074578^(5/7) 2865699999302090 a001 20365011074/1322157322203*599074578^(5/7) 2865699999302090 a001 32951280099/969323029*599074578^(1/3) 2865699999302090 a001 7778742049/505019158607*599074578^(5/7) 2865699999302090 a001 1134903170/28143753123*599074578^(2/3) 2865699999302090 a001 2971215073/192900153618*599074578^(5/7) 2865699999302090 a001 10610209857723/969323029*228826127^(1/20) 2865699999302090 a001 20365011074/969323029*599074578^(5/14) 2865699999302090 a001 1836311903/312119004989*599074578^(16/21) 2865699999302090 a001 10610209857723/2537720636*228826127^(1/10) 2865699999302090 a001 1201881744/204284540899*599074578^(16/21) 2865699999302090 a001 701408733/2139295485799*599074578^(19/21) 2865699999302090 a001 701408733/969323029*599074578^(11/21) 2865699999302090 a001 12586269025/2139295485799*599074578^(16/21) 2865699999302090 a001 32951280099/5600748293801*599074578^(16/21) 2865699999302090 a001 1135099622/192933544679*599074578^(16/21) 2865699999302090 a001 139583862445/23725150497407*599074578^(16/21) 2865699999302090 a001 53316291173/9062201101803*599074578^(16/21) 2865699999302090 a001 10182505537/1730726404001*599074578^(16/21) 2865699999302090 a001 12586269025/969323029*599074578^(8/21) 2865699999302090 a001 7778742049/1322157322203*599074578^(16/21) 2865699999302090 a001 187917426909946969/6557470319842 2865699999302090 a001 1836311903/505019158607*599074578^(11/14) 2865699999302090 a001 1134903170/73681302247*599074578^(5/7) 2865699999302090 a001 2971215073/505019158607*599074578^(16/21) 2865699999302090 a001 433494437/969323029*4106118243^(1/2) 2865699999302090 a001 1602508992/440719107401*599074578^(11/14) 2865699999302090 a001 701408733/3461452808002*599074578^(13/14) 2865699999302090 a001 12586269025/3461452808002*599074578^(11/14) 2865699999302090 a001 10983760033/3020733700601*599074578^(11/14) 2865699999302090 a001 86267571272/23725150497407*599074578^(11/14) 2865699999302090 a001 53316291173/14662949395604*599074578^(11/14) 2865699999302090 a001 20365011074/5600748293801*599074578^(11/14) 2865699999302090 a001 7778742049/2139295485799*599074578^(11/14) 2865699999302090 a001 1836311903/817138163596*599074578^(17/21) 2865699999302090 a001 2971215073/817138163596*599074578^(11/14) 2865699999302090 a001 4807526976/2139295485799*599074578^(17/21) 2865699999302090 a001 701408733/5600748293801*599074578^(20/21) 2865699999302090 a001 4807526976/969323029*599074578^(3/7) 2865699999302090 a001 433494437/1568397607*599074578^(4/7) 2865699999302090 a001 12586269025/5600748293801*599074578^(17/21) 2865699999302090 a001 32951280099/14662949395604*599074578^(17/21) 2865699999302090 a001 53316291173/23725150497407*599074578^(17/21) 2865699999302090 a001 20365011074/9062201101803*599074578^(17/21) 2865699999302090 a001 7778742049/3461452808002*599074578^(17/21) 2865699999302090 a001 1836311903/1322157322203*599074578^(5/6) 2865699999302090 a001 567451585/96450076809*599074578^(16/21) 2865699999302090 a001 2971215073/1322157322203*599074578^(17/21) 2865699999302090 a001 14930208/10749853441*599074578^(5/6) 2865699999302090 a001 12586269025/9062201101803*599074578^(5/6) 2865699999302090 a001 32951280099/23725150497407*599074578^(5/6) 2865699999302090 a001 10182505537/7331474697802*599074578^(5/6) 2865699999302090 a001 7778742049/5600748293801*599074578^(5/6) 2865699999302090 a001 3536736619241/1368706081*228826127^(1/8) 2865699999302090 a001 1836311903/2139295485799*599074578^(6/7) 2865699999302090 a001 1836311903/969323029*599074578^(10/21) 2865699999302090 a001 1134903170/312119004989*599074578^(11/14) 2865699999302090 a001 2971215073/2139295485799*599074578^(5/6) 2865699999302090 a001 4807526976/5600748293801*599074578^(6/7) 2865699999302090 a001 12586269025/14662949395604*599074578^(6/7) 2865699999302090 a001 20365011074/23725150497407*599074578^(6/7) 2865699999302090 a001 7778742049/9062201101803*599074578^(6/7) 2865699999302090 a001 1134903170/505019158607*599074578^(17/21) 2865699999302090 a001 2971215073/3461452808002*599074578^(6/7) 2865699999302090 a001 2504730781961/1568397607*228826127^(3/20) 2865699999302090 a001 1836311903/5600748293801*599074578^(19/21) 2865699999302090 a001 567451585/408569081798*599074578^(5/6) 2865699999302090 a001 1201881744/3665737348901*599074578^(19/21) 2865699999302090 a001 7778742049/23725150497407*599074578^(19/21) 2865699999302090 a001 1836311903/9062201101803*599074578^(13/14) 2865699999302090 a001 3278735159921/1268860318*228826127^(1/8) 2865699999302090 a001 1134903170/1322157322203*599074578^(6/7) 2865699999302090 a001 2971215073/9062201101803*599074578^(19/21) 2865699999302090 a001 4807526976/23725150497407*599074578^(13/14) 2865699999302090 a001 1836311903/14662949395604*599074578^(20/21) 2865699999302090 a001 2971215073/14662949395604*599074578^(13/14) 2865699999302090 a001 1134903170/969323029*599074578^(1/2) 2865699999302090 a001 567451585/1730726404001*599074578^(19/21) 2865699999302090 a001 2971215073/23725150497407*599074578^(20/21) 2865699999302090 a001 433494437/4106118243*599074578^(13/21) 2865699999302090 a001 1134903170/5600748293801*599074578^(13/14) 2865699999302090 a001 6557470319842/4106118243*228826127^(3/20) 2865699999302090 a001 1134903170/9062201101803*599074578^(20/21) 2865699999302090 a001 433494437/6643838879*599074578^(9/14) 2865699999302090 a001 10610209857723/6643838879*228826127^(3/20) 2865699999302090 a001 433494437/10749957122*599074578^(2/3) 2865699999302090 a001 53316291173/599074578*228826127^(3/10) 2865699999302090 a001 4052739537881/969323029*228826127^(1/10) 2865699999302090 a001 4052739537881/2537720636*228826127^(3/20) 2865699999302090 a001 433494437/28143753123*599074578^(5/7) 2865699999302090 a001 433494437/73681302247*599074578^(16/21) 2865699999302090 a001 433494437/119218851371*599074578^(11/14) 2865699999302090 a001 433494437/192900153618*599074578^(17/21) 2865699999302090 a001 433494437/312119004989*599074578^(5/6) 2865699999302090 a001 956722026041/1568397607*228826127^(1/5) 2865699999302090 a001 2504730781961/370248451*141422324^(1/13) 2865699999302090 a001 2504730781961/969323029*228826127^(1/8) 2865699999302090 a001 433494437/505019158607*599074578^(6/7) 2865699999302090 a001 433494437/1322157322203*599074578^(19/21) 2865699999302090 a001 433494437/2139295485799*599074578^(13/14) 2865699999302090 a001 433494437/3461452808002*599074578^(20/21) 2865699999302090 a001 2504730781961/4106118243*228826127^(1/5) 2865699999302090 a001 3278735159921/5374978561*228826127^(1/5) 2865699999302090 a001 10610209857723/17393796001*228826127^(1/5) 2865699999302090 a001 4052739537881/6643838879*228826127^(1/5) 2865699999302090 a001 63245986/73681302247*141422324^(12/13) 2865699999302090 a001 10182505537/299537289*228826127^(7/20) 2865699999302090 a001 1548008755920/969323029*228826127^(3/20) 2865699999302090 a001 1134903780/1860499*228826127^(1/5) 2865699999302090 a001 3278735159921/299537289*87403803^(1/19) 2865699999302090 a001 365435296162/1568397607*228826127^(1/4) 2865699999302090 a001 12586269025/599074578*228826127^(3/8) 2865699999302090 a001 165580141/599074578*2537720636^(8/15) 2865699999302090 a001 165580141/599074578*45537549124^(8/17) 2865699999302090 a001 165580141/599074578*14662949395604^(8/21) 2865699999302090 a001 5545160863449467/193501094490 2865699999302090 a001 165580141/599074578*192900153618^(4/9) 2865699999302090 a001 165580141/599074578*73681302247^(6/13) 2865699999302090 a001 267914296/370248451*10749957122^(11/24) 2865699999302090 a001 165580141/599074578*10749957122^(1/2) 2865699999302090 a001 267914296/370248451*4106118243^(11/23) 2865699999302090 a001 165580141/599074578*4106118243^(12/23) 2865699999302090 a001 267914296/370248451*1568397607^(1/2) 2865699999302090 a001 956722026041/4106118243*228826127^(1/4) 2865699999302090 a001 165580141/599074578*1568397607^(6/11) 2865699999302090 a001 2504730781961/10749957122*228826127^(1/4) 2865699999302090 a001 6557470319842/28143753123*228826127^(1/4) 2865699999302090 a001 10610209857723/45537549124*228826127^(1/4) 2865699999302090 a001 4052739537881/17393796001*228826127^(1/4) 2865699999302090 a001 1548008755920/6643838879*228826127^(1/4) 2865699999302090 a001 7778742049/599074578*228826127^(2/5) 2865699999302090 a001 591286729879/969323029*228826127^(1/5) 2865699999302090 a001 591286729879/2537720636*228826127^(1/4) 2865699999302090 a001 139583862445/1568397607*228826127^(3/10) 2865699999302090 a001 365435296162/4106118243*228826127^(3/10) 2865699999302090 a001 956722026041/10749957122*228826127^(3/10) 2865699999302090 a001 2504730781961/28143753123*228826127^(3/10) 2865699999302090 a001 6557470319842/73681302247*228826127^(3/10) 2865699999302090 a001 10610209857723/119218851371*228826127^(3/10) 2865699999302090 a001 4052739537881/45537549124*228826127^(3/10) 2865699999302090 a001 1548008755920/17393796001*228826127^(3/10) 2865699999302090 a001 591286729879/6643838879*228826127^(3/10) 2865699999302090 a001 2971215073/599074578*228826127^(9/20) 2865699999302090 a001 225851433717/969323029*228826127^(1/4) 2865699999302090 a001 225851433717/2537720636*228826127^(3/10) 2865699999302090 a001 267914296/370248451*599074578^(11/21) 2865699999302090 a001 165580141/599074578*599074578^(4/7) 2865699999302090 a001 53316291173/1568397607*228826127^(7/20) 2865699999302090 a001 139583862445/4106118243*228826127^(7/20) 2865699999302090 a001 182717648081/5374978561*228826127^(7/20) 2865699999302090 a001 956722026041/28143753123*228826127^(7/20) 2865699999302090 a001 2504730781961/73681302247*228826127^(7/20) 2865699999302090 a001 3278735159921/96450076809*228826127^(7/20) 2865699999302090 a001 10610209857723/312119004989*228826127^(7/20) 2865699999302090 a001 4052739537881/119218851371*228826127^(7/20) 2865699999302090 a001 387002188980/11384387281*228826127^(7/20) 2865699999302090 a001 591286729879/17393796001*228826127^(7/20) 2865699999302090 a001 225851433717/6643838879*228826127^(7/20) 2865699999302090 a001 32951280099/1568397607*228826127^(3/8) 2865699999302090 a001 86267571272/969323029*228826127^(3/10) 2865699999302090 a001 701408733/370248451*2537720636^(4/9) 2865699999302090 a001 1135099622/33391061*228826127^(7/20) 2865699999302090 a001 116139356908771353/4052739537881 2865699999302090 a001 701408733/370248451*505019158607^(5/14) 2865699999302090 a001 701408733/370248451*73681302247^(5/13) 2865699999302090 a001 165580141/1568397607*73681302247^(1/2) 2865699999302090 a001 701408733/370248451*28143753123^(2/5) 2865699999302090 a001 701408733/370248451*10749957122^(5/12) 2865699999302090 a001 165580141/1568397607*10749957122^(13/24) 2865699999302090 a001 701408733/370248451*4106118243^(10/23) 2865699999302090 a001 567451585/299537289*228826127^(1/2) 2865699999302090 a001 165580141/1568397607*4106118243^(13/23) 2865699999302090 a001 701408733/370248451*1568397607^(5/11) 2865699999302090 a001 86267571272/4106118243*228826127^(3/8) 2865699999302090 a001 165580141/1568397607*1568397607^(13/22) 2865699999302090 a001 139583862445/54018521*20633239^(1/7) 2865699999302090 a001 165580141/3461452808002*2537720636^(14/15) 2865699999302090 a001 225851433717/10749957122*228826127^(3/8) 2865699999302090 a001 165580141/1322157322203*2537720636^(8/9) 2865699999302090 a001 165580141/817138163596*2537720636^(13/15) 2865699999302090 a001 591286729879/28143753123*228826127^(3/8) 2865699999302090 a001 1548008755920/73681302247*228826127^(3/8) 2865699999302090 a001 4052739537881/192900153618*228826127^(3/8) 2865699999302090 a001 225749145909/10745088481*228826127^(3/8) 2865699999302090 a001 6557470319842/312119004989*228826127^(3/8) 2865699999302090 a001 2504730781961/119218851371*228826127^(3/8) 2865699999302090 a001 956722026041/45537549124*228826127^(3/8) 2865699999302090 a001 365435296162/17393796001*228826127^(3/8) 2865699999302090 a001 165580141/192900153618*2537720636^(4/5) 2865699999302090 a001 1836311903/370248451*2537720636^(2/5) 2865699999302090 a001 165580141/119218851371*2537720636^(7/9) 2865699999302090 a001 165580141/45537549124*2537720636^(11/15) 2865699999302090 a001 165580141/10749957122*2537720636^(2/3) 2865699999302090 a001 139583862445/6643838879*228826127^(3/8) 2865699999302090 a001 20365011074/1568397607*228826127^(2/5) 2865699999302090 a001 165580141/4106118243*17393796001^(4/7) 2865699999302090 a001 1836311903/370248451*45537549124^(6/17) 2865699999302090 a001 165580141/4106118243*14662949395604^(4/9) 2865699999302090 a001 1836311903/370248451*192900153618^(1/3) 2865699999302090 a001 165580141/4106118243*73681302247^(7/13) 2865699999302090 a001 1836311903/370248451*10749957122^(3/8) 2865699999302090 a001 165580141/4106118243*10749957122^(7/12) 2865699999302090 a001 7778742049/370248451*2537720636^(1/3) 2865699999302090 a001 32951280099/370248451*2537720636^(4/15) 2865699999302090 a001 1836311903/370248451*4106118243^(9/23) 2865699999302090 a001 86267571272/370248451*2537720636^(2/9) 2865699999302090 a001 139583862445/370248451*2537720636^(1/5) 2865699999302090 a001 165580141/4106118243*4106118243^(14/23) 2865699999302090 a001 591286729879/370248451*2537720636^(2/15) 2865699999302090 a001 956722026041/370248451*2537720636^(1/9) 2865699999302090 a001 2504730781961/370248451*2537720636^(1/15) 2865699999302090 a001 165580141/10749957122*45537549124^(10/17) 2865699999302090 a001 165580141/10749957122*312119004989^(6/11) 2865699999302090 a001 165580141/10749957122*14662949395604^(10/21) 2865699999302090 a001 4807526976/370248451*23725150497407^(1/4) 2865699999302090 a001 165580141/10749957122*192900153618^(5/9) 2865699999302090 a001 4807526976/370248451*73681302247^(4/13) 2865699999302090 a001 165580141/10749957122*28143753123^(3/5) 2865699999302090 a001 4807526976/370248451*10749957122^(1/3) 2865699999302090 a001 165580141/10749957122*10749957122^(5/8) 2865699999302090 a001 165580141/3461452808002*17393796001^(6/7) 2865699999302090 a001 165580141/119218851371*17393796001^(5/7) 2865699999302090 a001 12586269025/370248451*17393796001^(2/7) 2865699999302090 a001 12586269025/370248451*14662949395604^(2/9) 2865699999302090 a001 165580141/28143753123*23725150497407^(1/2) 2865699999302090 a001 165580141/28143753123*73681302247^(8/13) 2865699999302090 a001 165580141/73681302247*45537549124^(2/3) 2865699999302090 a001 365435296162/370248451*17393796001^(1/7) 2865699999302090 a001 165580141/14662949395604*45537549124^(15/17) 2865699999302090 a001 165580141/3461452808002*45537549124^(14/17) 2865699999302090 a001 165580141/192900153618*45537549124^(12/17) 2865699999302090 a001 165580141/817138163596*45537549124^(13/17) 2865699999302090 a001 32951280099/370248451*45537549124^(4/17) 2865699999302090 a001 32951280099/370248451*817138163596^(4/19) 2865699999302090 a001 32951280099/370248451*14662949395604^(4/21) 2865699999302090 a001 32951280099/370248451*192900153618^(2/9) 2865699999302090 a001 32951280099/370248451*73681302247^(3/13) 2865699999302090 a001 139583862445/370248451*45537549124^(3/17) 2865699999302090 a001 591286729879/370248451*45537549124^(2/17) 2865699999302090 a001 2504730781961/370248451*45537549124^(1/17) 2865699999302090 a001 165580141/192900153618*14662949395604^(4/7) 2865699999302090 a001 165580141/192900153618*505019158607^(9/14) 2865699999302090 a001 165580141/1322157322203*312119004989^(8/11) 2865699999302090 a001 165580141/505019158607*817138163596^(2/3) 2865699999302090 a001 1548008755920/370248451*23725150497407^(1/16) 2865699999302090 a001 165580141/14662949395604*14662949395604^(5/7) 2865699999302090 a001 165580141/3461452808002*505019158607^(3/4) 2865699999302090 a001 139583862445/370248451*817138163596^(3/19) 2865699999302090 a001 139583862445/370248451*14662949395604^(1/7) 2865699999302090 a001 139583862445/370248451*192900153618^(1/6) 2865699999302090 a001 165580141/3461452808002*192900153618^(7/9) 2865699999302090 a001 165580141/14662949395604*192900153618^(5/6) 2865699999302090 a001 225851433717/370248451*73681302247^(2/13) 2865699999302090 a001 165580141/119218851371*312119004989^(7/11) 2865699999302090 a001 165580141/119218851371*14662949395604^(5/9) 2865699999302090 a001 165580141/119218851371*505019158607^(5/8) 2865699999302090 a001 165580141/192900153618*73681302247^(9/13) 2865699999302090 a001 956722026041/370248451*28143753123^(1/10) 2865699999302090 a001 165580141/1322157322203*73681302247^(10/13) 2865699999302090 a001 165580141/9062201101803*73681302247^(11/13) 2865699999302090 a001 165580141/45537549124*45537549124^(11/17) 2865699999302090 a001 86267571272/370248451*28143753123^(1/5) 2865699999302090 a001 4052739537881/370248451*10749957122^(1/24) 2865699999302090 a001 165580141/45537549124*312119004989^(3/5) 2865699999302090 a001 165580141/45537549124*14662949395604^(11/21) 2865699999302090 a001 165580141/45537549124*192900153618^(11/18) 2865699999302090 a001 20365011074/370248451*73681302247^(1/4) 2865699999302090 a001 2504730781961/370248451*10749957122^(1/16) 2865699999302090 a001 1548008755920/370248451*10749957122^(1/12) 2865699999302090 a001 165580141/119218851371*28143753123^(7/10) 2865699999302090 a001 165580141/1322157322203*28143753123^(4/5) 2865699999302090 a001 591286729879/370248451*10749957122^(1/8) 2865699999302090 a001 165580141/14662949395604*28143753123^(9/10) 2865699999302090 a001 12586269025/370248451*10749957122^(7/24) 2865699999302090 a001 225851433717/370248451*10749957122^(1/6) 2865699999302090 a001 139583862445/370248451*10749957122^(3/16) 2865699999302090 a001 86267571272/370248451*10749957122^(5/24) 2865699999302090 a001 32951280099/370248451*10749957122^(1/4) 2865699999302090 a001 4052739537881/370248451*4106118243^(1/23) 2865699999302090 a001 7778742049/370248451*45537549124^(5/17) 2865699999302090 a001 7778742049/370248451*312119004989^(3/11) 2865699999302090 a001 165580141/17393796001*9062201101803^(1/2) 2865699999302090 a001 7778742049/370248451*192900153618^(5/18) 2865699999302090 a001 7778742049/370248451*28143753123^(3/10) 2865699999302090 a001 165580141/28143753123*10749957122^(2/3) 2865699999302090 a001 1548008755920/370248451*4106118243^(2/23) 2865699999302090 a001 165580141/73681302247*10749957122^(17/24) 2865699999302090 a001 7778742049/370248451*10749957122^(5/16) 2865699999302090 a001 165580141/45537549124*10749957122^(11/16) 2865699999302090 a001 165580141/192900153618*10749957122^(3/4) 2865699999302090 a001 165580141/505019158607*10749957122^(19/24) 2865699999302090 a001 165580141/817138163596*10749957122^(13/16) 2865699999302090 a001 165580141/1322157322203*10749957122^(5/6) 2865699999302090 a001 165580141/3461452808002*10749957122^(7/8) 2865699999302090 a001 591286729879/370248451*4106118243^(3/23) 2865699999302090 a001 165580141/9062201101803*10749957122^(11/12) 2865699999302090 a001 165580141/14662949395604*10749957122^(15/16) 2865699999302090 a001 165580141/23725150497407*10749957122^(23/24) 2865699999302090 a001 225851433717/370248451*4106118243^(4/23) 2865699999302090 a001 4807526976/370248451*4106118243^(8/23) 2865699999302090 a001 86267571272/370248451*4106118243^(5/23) 2865699999302090 a001 32951280099/370248451*4106118243^(6/23) 2865699999302090 a001 12586269025/370248451*4106118243^(7/23) 2865699999302090 a001 4052739537881/370248451*1568397607^(1/22) 2865699999302090 a001 53316291173/2537720636*228826127^(3/8) 2865699999302090 a001 2971215073/370248451*45537549124^(1/3) 2865699999302090 a001 165580141/6643838879*1322157322203^(1/2) 2865699999302090 a001 165580141/10749957122*4106118243^(15/23) 2865699999302090 a001 1548008755920/370248451*1568397607^(1/11) 2865699999302090 a001 165580141/28143753123*4106118243^(16/23) 2865699999302090 a001 165580141/73681302247*4106118243^(17/23) 2865699999302090 a001 165580141/192900153618*4106118243^(18/23) 2865699999302090 a001 165580141/505019158607*4106118243^(19/23) 2865699999302090 a001 165580141/1322157322203*4106118243^(20/23) 2865699999302090 a001 165580141/3461452808002*4106118243^(21/23) 2865699999302090 a001 591286729879/370248451*1568397607^(3/22) 2865699999302090 a001 165580141/9062201101803*4106118243^(22/23) 2865699999302090 a001 165580141/2537720636*2537720636^(3/5) 2865699999302090 a001 225851433717/370248451*1568397607^(2/11) 2865699999302090 a001 86267571272/370248451*1568397607^(5/22) 2865699999302090 a001 53316291173/370248451*1568397607^(1/4) 2865699999302090 a001 1836311903/370248451*1568397607^(9/22) 2865699999302090 a001 32951280099/370248451*1568397607^(3/11) 2865699999302090 a001 12586269025/370248451*1568397607^(7/22) 2865699999302090 a001 4052739537881/370248451*599074578^(1/21) 2865699999302090 a001 4807526976/370248451*1568397607^(4/11) 2865699999302090 a001 165580141/2537720636*45537549124^(9/17) 2865699999302090 a001 1134903170/370248451*817138163596^(1/3) 2865699999302090 a001 165580141/2537720636*192900153618^(1/2) 2865699999302090 a001 165580141/2537720636*10749957122^(9/16) 2865699999302090 a001 2504730781961/370248451*599074578^(1/14) 2865699999302090 a001 165580141/4106118243*1568397607^(7/11) 2865699999302090 a001 1548008755920/370248451*599074578^(2/21) 2865699999302090 a001 165580141/10749957122*1568397607^(15/22) 2865699999302090 a001 53316291173/4106118243*228826127^(2/5) 2865699999302090 a001 165580141/28143753123*1568397607^(8/11) 2865699999302090 a001 165580141/45537549124*1568397607^(3/4) 2865699999302090 a001 165580141/73681302247*1568397607^(17/22) 2865699999302090 a001 165580141/192900153618*1568397607^(9/11) 2865699999302090 a001 139583862445/10749957122*228826127^(2/5) 2865699999302090 a001 365435296162/28143753123*228826127^(2/5) 2865699999302090 a001 956722026041/73681302247*228826127^(2/5) 2865699999302090 a001 2504730781961/192900153618*228826127^(2/5) 2865699999302090 a001 10610209857723/817138163596*228826127^(2/5) 2865699999302090 a001 4052739537881/312119004989*228826127^(2/5) 2865699999302090 a001 1548008755920/119218851371*228826127^(2/5) 2865699999302090 a001 591286729879/45537549124*228826127^(2/5) 2865699999302090 a001 7787980473/599786069*228826127^(2/5) 2865699999302090 a001 165580141/505019158607*1568397607^(19/22) 2865699999302090 a001 86267571272/6643838879*228826127^(2/5) 2865699999302090 a001 165580141/1322157322203*1568397607^(10/11) 2865699999302090 a001 165580141/3461452808002*1568397607^(21/22) 2865699999302090 a001 591286729879/370248451*599074578^(1/7) 2865699999302090 a001 63245986/17393796001*141422324^(11/13) 2865699999302090 a001 32951280099/969323029*228826127^(7/20) 2865699999302090 a001 365435296162/370248451*599074578^(1/6) 2865699999302090 a001 32951280099/2537720636*228826127^(2/5) 2865699999302090 a001 225851433717/370248451*599074578^(4/21) 2865699999302090 a001 139583862445/370248451*599074578^(3/14) 2865699999302090 a001 10610209857723/969323029*87403803^(1/19) 2865699999302090 a001 86267571272/370248451*599074578^(5/21) 2865699999302090 a001 32951280099/370248451*599074578^(2/7) 2865699999302090 a001 7778742049/1568397607*228826127^(9/20) 2865699999302090 a001 701408733/370248451*599074578^(10/21) 2865699999302090 a001 12586269025/370248451*599074578^(1/3) 2865699999302090 a001 20365011074/969323029*228826127^(3/8) 2865699999302090 a001 4052739537881/370248451*228826127^(1/20) 2865699999302090 a001 165580141/969323029*2537720636^(5/9) 2865699999302090 a001 433494437/370248451*2537720636^(7/15) 2865699999302090 a001 7778742049/370248451*599074578^(5/14) 2865699999302090 a001 4807526976/370248451*599074578^(8/21) 2865699999302090 a001 433494437/370248451*17393796001^(3/7) 2865699999302090 a001 433494437/370248451*45537549124^(7/17) 2865699999302090 a001 165580141/969323029*312119004989^(5/11) 2865699999302090 a001 71778070001175617/2504730781961 2865699999302090 a001 165580141/969323029*3461452808002^(5/12) 2865699999302090 a001 433494437/370248451*192900153618^(7/18) 2865699999302090 a001 165580141/969323029*28143753123^(1/2) 2865699999302090 a001 433494437/370248451*10749957122^(7/16) 2865699999302090 a001 1836311903/370248451*599074578^(3/7) 2865699999302090 a001 139583862445/228826127*87403803^(4/19) 2865699999302090 a001 20365011074/4106118243*228826127^(9/20) 2865699999302090 a001 53316291173/10749957122*228826127^(9/20) 2865699999302090 a001 139583862445/28143753123*228826127^(9/20) 2865699999302090 a001 365435296162/73681302247*228826127^(9/20) 2865699999302090 a001 956722026041/192900153618*228826127^(9/20) 2865699999302090 a001 2504730781961/505019158607*228826127^(9/20) 2865699999302090 a001 10610209857723/2139295485799*228826127^(9/20) 2865699999302090 a001 140728068720/28374454999*228826127^(9/20) 2865699999302090 a001 591286729879/119218851371*228826127^(9/20) 2865699999302090 a001 225851433717/45537549124*228826127^(9/20) 2865699999302090 a001 86267571272/17393796001*228826127^(9/20) 2865699999302090 a001 165580141/1568397607*599074578^(13/21) 2865699999302090 a001 32951280099/6643838879*228826127^(9/20) 2865699999302090 a001 12586269025/969323029*228826127^(2/5) 2865699999302090 a001 267914296/1568397607*228826127^(5/8) 2865699999302090 a001 1144206275/230701876*228826127^(9/20) 2865699999302090 a001 433494437/599074578*228826127^(11/20) 2865699999302090 a001 165580141/4106118243*599074578^(2/3) 2865699999302090 a001 2971215073/1568397607*228826127^(1/2) 2865699999302090 a001 1548008755920/370248451*228826127^(1/10) 2865699999302090 a001 165580141/2537720636*599074578^(9/14) 2865699999302090 a001 165580141/10749957122*599074578^(5/7) 2865699999302090 a001 165580141/28143753123*599074578^(16/21) 2865699999302090 a001 165580141/45537549124*599074578^(11/14) 2865699999302090 a001 7778742049/4106118243*228826127^(1/2) 2865699999302090 a001 10182505537/5374978561*228826127^(1/2) 2865699999302090 a001 53316291173/28143753123*228826127^(1/2) 2865699999302090 a001 139583862445/73681302247*228826127^(1/2) 2865699999302090 a001 182717648081/96450076809*228826127^(1/2) 2865699999302090 a001 956722026041/505019158607*228826127^(1/2) 2865699999302090 a001 10610209857723/5600748293801*228826127^(1/2) 2865699999302090 a001 591286729879/312119004989*228826127^(1/2) 2865699999302090 a001 225851433717/119218851371*228826127^(1/2) 2865699999302090 a001 21566892818/11384387281*228826127^(1/2) 2865699999302090 a001 165580141/73681302247*599074578^(17/21) 2865699999302090 a001 32951280099/17393796001*228826127^(1/2) 2865699999302090 a001 12586269025/6643838879*228826127^(1/2) 2865699999302090 a001 165580141/119218851371*599074578^(5/6) 2865699999302090 a001 4807526976/969323029*228826127^(9/20) 2865699999302090 a001 956722026041/370248451*228826127^(1/8) 2865699999302090 a001 165580141/192900153618*599074578^(6/7) 2865699999302090 a001 1201881744/634430159*228826127^(1/2) 2865699999302090 a001 267914296/969323029*228826127^(3/5) 2865699999302090 a001 433494437/370248451*599074578^(1/2) 2865699999302090 a001 66978574/634430159*228826127^(13/20) 2865699999302090 a001 165580141/505019158607*599074578^(19/21) 2865699999302090 a001 165580141/817138163596*599074578^(13/14) 2865699999302090 a001 165580141/1322157322203*599074578^(20/21) 2865699999302090 a001 591286729879/370248451*228826127^(3/20) 2865699999302090 a001 1134903170/1568397607*228826127^(11/20) 2865699999302090 a001 2971215073/4106118243*228826127^(11/20) 2865699999302090 a001 7778742049/10749957122*228826127^(11/20) 2865699999302090 a001 20365011074/28143753123*228826127^(11/20) 2865699999302090 a001 53316291173/73681302247*228826127^(11/20) 2865699999302090 a001 139583862445/192900153618*228826127^(11/20) 2865699999302090 a001 365435296162/505019158607*228826127^(11/20) 2865699999302090 a001 225851433717/312119004989*228826127^(11/20) 2865699999302090 a001 86267571272/119218851371*228826127^(11/20) 2865699999302090 a001 32951280099/45537549124*228826127^(11/20) 2865699999302090 a001 12586269025/17393796001*228826127^(11/20) 2865699999302090 a001 4807526976/6643838879*228826127^(11/20) 2865699999302090 a001 1836311903/969323029*228826127^(1/2) 2865699999302090 a001 1836311903/2537720636*228826127^(11/20) 2865699999302090 a001 267914296/6643838879*228826127^(7/10) 2865699999302090 a001 2504730781961/599074578*87403803^(2/19) 2865699999302090 a001 225851433717/370248451*228826127^(1/5) 2865699999302090 a001 701408733/969323029*228826127^(11/20) 2865699999302090 a001 701408733/2537720636*228826127^(3/5) 2865699999302090 a001 1836311903/6643838879*228826127^(3/5) 2865699999302090 a001 4807526976/17393796001*228826127^(3/5) 2865699999302090 a001 12586269025/45537549124*228826127^(3/5) 2865699999302090 a001 32951280099/119218851371*228826127^(3/5) 2865699999302090 a001 86267571272/312119004989*228826127^(3/5) 2865699999302090 a001 225851433717/817138163596*228826127^(3/5) 2865699999302090 a001 1548008755920/5600748293801*228826127^(3/5) 2865699999302090 a001 139583862445/505019158607*228826127^(3/5) 2865699999302090 a001 53316291173/192900153618*228826127^(3/5) 2865699999302090 a001 20365011074/73681302247*228826127^(3/5) 2865699999302090 a001 7778742049/28143753123*228826127^(3/5) 2865699999302090 a001 233802911/1368706081*228826127^(5/8) 2865699999302090 a001 2971215073/10749957122*228826127^(3/5) 2865699999302090 a001 63245986/4106118243*141422324^(10/13) 2865699999302090 a001 9238424/599786069*228826127^(3/4) 2865699999302090 a001 1134903170/4106118243*228826127^(3/5) 2865699999302090 a001 1836311903/10749957122*228826127^(5/8) 2865699999302090 a001 1602508992/9381251041*228826127^(5/8) 2865699999302090 a001 12586269025/73681302247*228826127^(5/8) 2865699999302090 a001 10983760033/64300051206*228826127^(5/8) 2865699999302090 a001 86267571272/505019158607*228826127^(5/8) 2865699999302090 a001 75283811239/440719107401*228826127^(5/8) 2865699999302090 a001 2504730781961/14662949395604*228826127^(5/8) 2865699999302090 a001 139583862445/817138163596*228826127^(5/8) 2865699999302090 a001 53316291173/312119004989*228826127^(5/8) 2865699999302090 a001 20365011074/119218851371*228826127^(5/8) 2865699999302090 a001 7778742049/45537549124*228826127^(5/8) 2865699999302090 a001 2971215073/17393796001*228826127^(5/8) 2865699999302090 a001 701408733/6643838879*228826127^(13/20) 2865699999302090 a001 86267571272/370248451*228826127^(1/4) 2865699999302090 a001 1134903170/6643838879*228826127^(5/8) 2865699999302090 a001 433494437/1568397607*228826127^(3/5) 2865699999302090 a001 1836311903/17393796001*228826127^(13/20) 2865699999302090 a001 1201881744/11384387281*228826127^(13/20) 2865699999302090 a001 12586269025/119218851371*228826127^(13/20) 2865699999302090 a001 32951280099/312119004989*228826127^(13/20) 2865699999302090 a001 21566892818/204284540899*228826127^(13/20) 2865699999302090 a001 225851433717/2139295485799*228826127^(13/20) 2865699999302090 a001 182717648081/1730726404001*228826127^(13/20) 2865699999302090 a001 139583862445/1322157322203*228826127^(13/20) 2865699999302090 a001 53316291173/505019158607*228826127^(13/20) 2865699999302090 a001 10182505537/96450076809*228826127^(13/20) 2865699999302090 a001 7778742049/73681302247*228826127^(13/20) 2865699999302090 a001 2971215073/28143753123*228826127^(13/20) 2865699999302090 a001 66978574/11384387281*228826127^(4/5) 2865699999302090 a001 567451585/5374978561*228826127^(13/20) 2865699999302090 a001 701408733/17393796001*228826127^(7/10) 2865699999302090 a001 32951280099/370248451*228826127^(3/10) 2865699999302090 a001 433494437/2537720636*228826127^(5/8) 2865699999302090 a001 1836311903/45537549124*228826127^(7/10) 2865699999302090 a001 4807526976/119218851371*228826127^(7/10) 2865699999302090 a001 1144206275/28374454999*228826127^(7/10) 2865699999302090 a001 32951280099/817138163596*228826127^(7/10) 2865699999302090 a001 86267571272/2139295485799*228826127^(7/10) 2865699999302090 a001 225851433717/5600748293801*228826127^(7/10) 2865699999302090 a001 365435296162/9062201101803*228826127^(7/10) 2865699999302090 a001 139583862445/3461452808002*228826127^(7/10) 2865699999302090 a001 53316291173/1322157322203*228826127^(7/10) 2865699999302090 a001 20365011074/505019158607*228826127^(7/10) 2865699999302090 a001 7778742049/192900153618*228826127^(7/10) 2865699999302090 a001 6557470319842/1568397607*87403803^(2/19) 2865699999302090 a001 2971215073/73681302247*228826127^(7/10) 2865699999302090 a001 433494437/4106118243*228826127^(13/20) 2865699999302090 a001 267914296/119218851371*228826127^(17/20) 2865699999302090 a001 1134903170/28143753123*228826127^(7/10) 2865699999302090 a001 31622993/299537289*141422324^(2/3) 2865699999302090 a001 701408733/45537549124*228826127^(3/4) 2865699999302090 a001 133957148/96450076809*228826127^(7/8) 2865699999302090 a001 10610209857723/2537720636*87403803^(2/19) 2865699999302090 a001 12586269025/370248451*228826127^(7/20) 2865699999302090 a001 4052739537881/370248451*87403803^(1/19) 2865699999302090 a001 1836311903/119218851371*228826127^(3/4) 2865699999302090 a001 4807526976/312119004989*228826127^(3/4) 2865699999302090 a001 12586269025/817138163596*228826127^(3/4) 2865699999302090 a001 32951280099/2139295485799*228826127^(3/4) 2865699999302090 a001 86267571272/5600748293801*228826127^(3/4) 2865699999302090 a001 7787980473/505618944676*228826127^(3/4) 2865699999302090 a001 365435296162/23725150497407*228826127^(3/4) 2865699999302090 a001 139583862445/9062201101803*228826127^(3/4) 2865699999302090 a001 53316291173/3461452808002*228826127^(3/4) 2865699999302090 a001 20365011074/1322157322203*228826127^(3/4) 2865699999302090 a001 7778742049/505019158607*228826127^(3/4) 2865699999302090 a001 2971215073/192900153618*228826127^(3/4) 2865699999302090 a001 267914296/312119004989*228826127^(9/10) 2865699999302090 a001 433494437/10749957122*228826127^(7/10) 2865699999302090 a001 7778742049/370248451*228826127^(3/8) 2865699999302090 a001 1134903170/73681302247*228826127^(3/4) 2865699999302090 a001 27416783093579881/956722026041 2865699999302090 a001 165580141/370248451*4106118243^(1/2) 2865699999302090 a001 4052739537881/969323029*87403803^(2/19) 2865699999302090 a001 701408733/119218851371*228826127^(4/5) 2865699999302090 a001 4807526976/370248451*228826127^(2/5) 2865699999302090 a001 267914296/370248451*228826127^(11/20) 2865699999302090 a001 1836311903/312119004989*228826127^(4/5) 2865699999302090 a001 1201881744/204284540899*228826127^(4/5) 2865699999302090 a001 12586269025/2139295485799*228826127^(4/5) 2865699999302090 a001 32951280099/5600748293801*228826127^(4/5) 2865699999302090 a001 1135099622/192933544679*228826127^(4/5) 2865699999302090 a001 139583862445/23725150497407*228826127^(4/5) 2865699999302090 a001 53316291173/9062201101803*228826127^(4/5) 2865699999302090 a001 10182505537/1730726404001*228826127^(4/5) 2865699999302090 a001 7778742049/1322157322203*228826127^(4/5) 2865699999302090 a001 2971215073/505019158607*228826127^(4/5) 2865699999302090 a001 53316291173/228826127*87403803^(5/19) 2865699999302090 a001 66978574/204284540899*228826127^(19/20) 2865699999302090 a001 433494437/28143753123*228826127^(3/4) 2865699999302090 a001 567451585/96450076809*228826127^(4/5) 2865699999302090 a001 3524667/1568437211*228826127^(17/20) 2865699999302090 a001 1836311903/370248451*228826127^(9/20) 2865699999302090 a001 165580141/599074578*228826127^(3/5) 2865699999302090 a001 1836311903/817138163596*228826127^(17/20) 2865699999302090 a001 4807526976/2139295485799*228826127^(17/20) 2865699999302090 a001 12586269025/5600748293801*228826127^(17/20) 2865699999302090 a001 32951280099/14662949395604*228826127^(17/20) 2865699999302090 a001 53316291173/23725150497407*228826127^(17/20) 2865699999302090 a001 20365011074/9062201101803*228826127^(17/20) 2865699999302090 a001 7778742049/3461452808002*228826127^(17/20) 2865699999302090 a001 2971215073/1322157322203*228826127^(17/20) 2865699999302090 a001 701408733/505019158607*228826127^(7/8) 2865699999302090 a001 433494437/73681302247*228826127^(4/5) 2865699999302090 a001 1134903170/505019158607*228826127^(17/20) 2865699999302090 a001 701408733/370248451*228826127^(1/2) 2865699999302090 a001 63245986/969323029*141422324^(9/13) 2865699999302090 a001 1836311903/1322157322203*228826127^(7/8) 2865699999302090 a001 14930208/10749853441*228826127^(7/8) 2865699999302090 a001 12586269025/9062201101803*228826127^(7/8) 2865699999302090 a001 32951280099/23725150497407*228826127^(7/8) 2865699999302090 a001 10182505537/7331474697802*228826127^(7/8) 2865699999302090 a001 7778742049/5600748293801*228826127^(7/8) 2865699999302090 a001 2971215073/2139295485799*228826127^(7/8) 2865699999302090 a001 701408733/817138163596*228826127^(9/10) 2865699999302090 a001 567451585/408569081798*228826127^(7/8) 2865699999302090 a001 1836311903/2139295485799*228826127^(9/10) 2865699999302090 a001 4807526976/5600748293801*228826127^(9/10) 2865699999302090 a001 12586269025/14662949395604*228826127^(9/10) 2865699999302090 a001 20365011074/23725150497407*228826127^(9/10) 2865699999302090 a001 7778742049/9062201101803*228826127^(9/10) 2865699999302090 a001 2971215073/3461452808002*228826127^(9/10) 2865699999302090 a001 433494437/192900153618*228826127^(17/20) 2865699999302090 a001 1134903170/1322157322203*228826127^(9/10) 2865699999302090 a001 701408733/2139295485799*228826127^(19/20) 2865699999302090 a001 433494437/312119004989*228826127^(7/8) 2865699999302090 a001 956722026041/599074578*87403803^(3/19) 2865699999302090 a001 1836311903/5600748293801*228826127^(19/20) 2865699999302090 a001 1201881744/3665737348901*228826127^(19/20) 2865699999302090 a001 7778742049/23725150497407*228826127^(19/20) 2865699999302090 a001 2971215073/9062201101803*228826127^(19/20) 2865699999302090 a001 433494437/505019158607*228826127^(9/10) 2865699999302090 a001 567451585/1730726404001*228826127^(19/20) 2865699999302090 a001 139583862445/87403803*33385282^(1/6) 2865699999302090 a001 2/102334155*(1/2+1/2*5^(1/2))^63 2865699999302090 a001 433494437/1322157322203*228826127^(19/20) 2865699999302090 a001 165580141/1568397607*228826127^(13/20) 2865699999302090 a001 2504730781961/1568397607*87403803^(3/19) 2865699999302090 a001 165580141/969323029*228826127^(5/8) 2865699999302090 a001 165580141/4106118243*228826127^(7/10) 2865699999302090 a001 6557470319842/4106118243*87403803^(3/19) 2865699999302090 a001 10610209857723/6643838879*87403803^(3/19) 2865699999302090 a001 4052739537881/2537720636*87403803^(3/19) 2865699999302090 a001 1548008755920/370248451*87403803^(2/19) 2865699999302090 a001 165580141/10749957122*228826127^(3/4) 2865699999302090 a001 1548008755920/969323029*87403803^(3/19) 2865699999302090 a001 20365011074/228826127*87403803^(6/19) 2865699999302090 a001 165580141/28143753123*228826127^(4/5) 2865699999302090 a001 165580141/73681302247*228826127^(17/20) 2865699999302090 a001 165580141/119218851371*228826127^(7/8) 2865699999302090 a001 165580141/192900153618*228826127^(9/10) 2865699999302090 a001 182717648081/299537289*87403803^(4/19) 2865699999302090 a001 165580141/505019158607*228826127^(19/20) 2865699999302090 a001 701408733/141422324*141422324^(6/13) 2865699999302090 a001 956722026041/1568397607*87403803^(4/19) 2865699999302090 a001 2504730781961/4106118243*87403803^(4/19) 2865699999302090 a001 3278735159921/5374978561*87403803^(4/19) 2865699999302090 a001 10610209857723/17393796001*87403803^(4/19) 2865699999302090 a001 4052739537881/6643838879*87403803^(4/19) 2865699999302090 a001 1134903780/1860499*87403803^(4/19) 2865699999302090 a001 591286729879/370248451*87403803^(3/19) 2865699999302090 a001 591286729879/969323029*87403803^(4/19) 2865699999302090 a001 7778742049/228826127*87403803^(7/19) 2865699999302090 a001 165580141/141422324*141422324^(7/13) 2865699999302090 a001 2504730781961/228826127*33385282^(1/18) 2865699999302090 a001 2971215073/141422324*141422324^(5/13) 2865699999302090 a001 63245986/228826127*2537720636^(8/15) 2865699999302090 a001 63245986/228826127*45537549124^(8/17) 2865699999302090 a001 102334155/141422324*312119004989^(2/5) 2865699999302090 a001 308201168307230/10754830177 2865699999302090 a001 63245986/228826127*192900153618^(4/9) 2865699999302090 a001 63245986/228826127*73681302247^(6/13) 2865699999302090 a001 102334155/141422324*10749957122^(11/24) 2865699999302090 a001 63245986/228826127*10749957122^(1/2) 2865699999302090 a001 102334155/141422324*4106118243^(11/23) 2865699999302090 a001 63245986/228826127*4106118243^(12/23) 2865699999302090 a001 102334155/141422324*1568397607^(1/2) 2865699999302090 a001 63245986/228826127*1568397607^(6/11) 2865699999302090 a001 139583862445/599074578*87403803^(5/19) 2865699999302090 a001 102334155/141422324*599074578^(11/21) 2865699999302090 a001 63245986/228826127*599074578^(4/7) 2865699999302090 a001 7778742049/141422324*141422324^(1/3) 2865699999302090 a001 365435296162/1568397607*87403803^(5/19) 2865699999302090 a001 956722026041/4106118243*87403803^(5/19) 2865699999302090 a001 2504730781961/10749957122*87403803^(5/19) 2865699999302090 a001 6557470319842/28143753123*87403803^(5/19) 2865699999302090 a001 10610209857723/45537549124*87403803^(5/19) 2865699999302090 a001 4052739537881/17393796001*87403803^(5/19) 2865699999302090 a001 1548008755920/6643838879*87403803^(5/19) 2865699999302090 a001 591286729879/2537720636*87403803^(5/19) 2865699999302090 a001 12586269025/141422324*141422324^(4/13) 2865699999302090 a001 225851433717/370248451*87403803^(4/19) 2865699999302090 a001 225851433717/969323029*87403803^(5/19) 2865699999302090 a001 2971215073/228826127*87403803^(8/19) 2865699999302090 a001 53316291173/141422324*141422324^(3/13) 2865699999302090 a001 53316291173/599074578*87403803^(6/19) 2865699999302090 a001 139583862445/1568397607*87403803^(6/19) 2865699999302090 a001 365435296162/4106118243*87403803^(6/19) 2865699999302090 a001 956722026041/10749957122*87403803^(6/19) 2865699999302090 a001 2504730781961/28143753123*87403803^(6/19) 2865699999302090 a001 6557470319842/73681302247*87403803^(6/19) 2865699999302090 a001 10610209857723/119218851371*87403803^(6/19) 2865699999302090 a001 4052739537881/45537549124*87403803^(6/19) 2865699999302090 a001 1548008755920/17393796001*87403803^(6/19) 2865699999302090 a001 591286729879/6643838879*87403803^(6/19) 2865699999302090 a001 102334155/141422324*228826127^(11/20) 2865699999302090 a001 225851433717/2537720636*87403803^(6/19) 2865699999302090 a001 86267571272/370248451*87403803^(5/19) 2865699999302090 a001 225851433717/141422324*141422324^(2/13) 2865699999302090 a001 63245986/228826127*228826127^(3/5) 2865699999302090 a001 86267571272/969323029*87403803^(6/19) 2865699999302090 a001 1134903170/228826127*87403803^(9/19) 2865699999302090 a001 14930352/54018521*33385282^(2/3) 2865699999302090 a001 10182505537/299537289*87403803^(7/19) 2865699999302090 a001 701408733/228826127*87403803^(1/2) 2865699999302090 a001 956722026041/141422324*141422324^(1/13) 2865699999302090 a001 3278735159921/299537289*33385282^(1/18) 2865699999302090 a001 66978574/35355581*2537720636^(4/9) 2865699999302090 a001 66978574/35355581*23725150497407^(5/16) 2865699999302090 a001 16944503814015856/591286729879 2865699999302090 a001 66978574/35355581*505019158607^(5/14) 2865699999302090 a001 66978574/35355581*73681302247^(5/13) 2865699999302090 a001 31622993/299537289*73681302247^(1/2) 2865699999302090 a001 66978574/35355581*28143753123^(2/5) 2865699999302090 a001 66978574/35355581*10749957122^(5/12) 2865699999302090 a001 31622993/299537289*10749957122^(13/24) 2865699999302090 a001 66978574/35355581*4106118243^(10/23) 2865699999302090 a001 31622993/299537289*4106118243^(13/23) 2865699999302090 a001 66978574/35355581*1568397607^(5/11) 2865699999302090 a001 31622993/299537289*1568397607^(13/22) 2865699999302090 a001 53316291173/1568397607*87403803^(7/19) 2865699999302090 a001 139583862445/4106118243*87403803^(7/19) 2865699999302090 a001 182717648081/5374978561*87403803^(7/19) 2865699999302090 a001 956722026041/28143753123*87403803^(7/19) 2865699999302090 a001 2504730781961/73681302247*87403803^(7/19) 2865699999302090 a001 3278735159921/96450076809*87403803^(7/19) 2865699999302090 a001 10610209857723/312119004989*87403803^(7/19) 2865699999302090 a001 4052739537881/119218851371*87403803^(7/19) 2865699999302090 a001 387002188980/11384387281*87403803^(7/19) 2865699999302090 a001 591286729879/17393796001*87403803^(7/19) 2865699999302090 a001 225851433717/6643838879*87403803^(7/19) 2865699999302090 a001 1135099622/33391061*87403803^(7/19) 2865699999302090 a001 66978574/35355581*599074578^(10/21) 2865699999302090 a001 32951280099/370248451*87403803^(6/19) 2865699999302090 a001 31622993/299537289*599074578^(13/21) 2865699999302090 a001 32951280099/969323029*87403803^(7/19) 2865699999302090 a001 701408733/141422324*2537720636^(2/5) 2865699999302090 a001 63245986/1568397607*17393796001^(4/7) 2865699999302090 a001 701408733/141422324*45537549124^(6/17) 2865699999302090 a001 63245986/1568397607*14662949395604^(4/9) 2865699999302090 a001 701408733/141422324*14662949395604^(2/7) 2865699999302090 a001 701408733/141422324*192900153618^(1/3) 2865699999302090 a001 63245986/1568397607*73681302247^(7/13) 2865699999302090 a001 701408733/141422324*10749957122^(3/8) 2865699999302090 a001 63245986/1568397607*10749957122^(7/12) 2865699999302090 a001 701408733/141422324*4106118243^(9/23) 2865699999302090 a001 63245986/1568397607*4106118243^(14/23) 2865699999302090 a001 701408733/141422324*1568397607^(9/22) 2865699999302090 a001 63245986/4106118243*2537720636^(2/3) 2865699999302090 a001 63245986/1568397607*1568397607^(7/11) 2865699999302090 a001 63245986/1322157322203*2537720636^(14/15) 2865699999302090 a001 63245986/505019158607*2537720636^(8/9) 2865699999302090 a001 63245986/312119004989*2537720636^(13/15) 2865699999302090 a001 63245986/73681302247*2537720636^(4/5) 2865699999302090 a001 31622993/22768774562*2537720636^(7/9) 2865699999302090 a001 63245986/17393796001*2537720636^(11/15) 2865699999302090 a001 63245986/4106118243*45537549124^(10/17) 2865699999302090 a001 63245986/4106118243*312119004989^(6/11) 2865699999302090 a001 63245986/4106118243*14662949395604^(10/21) 2865699999302090 a001 1836311903/141422324*23725150497407^(1/4) 2865699999302090 a001 116139356908771358/4052739537881 2865699999302090 a001 63245986/4106118243*192900153618^(5/9) 2865699999302090 a001 1836311903/141422324*73681302247^(4/13) 2865699999302090 a001 63245986/4106118243*28143753123^(3/5) 2865699999302090 a001 1836311903/141422324*10749957122^(1/3) 2865699999302090 a001 63245986/4106118243*10749957122^(5/8) 2865699999302090 a001 12586269025/141422324*2537720636^(4/15) 2865699999302090 a001 1836311903/141422324*4106118243^(8/23) 2865699999302090 a001 63246219/271444*2537720636^(2/9) 2865699999302090 a001 53316291173/141422324*2537720636^(1/5) 2865699999302090 a001 2971215073/141422324*2537720636^(1/3) 2865699999302090 a001 225851433717/141422324*2537720636^(2/15) 2865699999302090 a001 63245986/4106118243*4106118243^(15/23) 2865699999302090 a001 182717648081/70711162*2537720636^(1/9) 2865699999302090 a001 956722026041/141422324*2537720636^(1/15) 2865699999302090 a001 1201881744/35355581*17393796001^(2/7) 2865699999302090 a001 1201881744/35355581*14662949395604^(2/9) 2865699999302090 a001 1201881744/35355581*505019158607^(1/4) 2865699999302090 a001 31622993/5374978561*73681302247^(8/13) 2865699999302090 a001 1201881744/35355581*10749957122^(7/24) 2865699999302090 a001 31622993/5374978561*10749957122^(2/3) 2865699999302090 a001 63245986/1322157322203*17393796001^(6/7) 2865699999302090 a001 31622993/22768774562*17393796001^(5/7) 2865699999302090 a001 63245986/28143753123*45537549124^(2/3) 2865699999302090 a001 12586269025/141422324*45537549124^(4/17) 2865699999302090 a001 12586269025/141422324*817138163596^(4/19) 2865699999302090 a001 12586269025/141422324*14662949395604^(4/21) 2865699999302090 a001 12586269025/141422324*192900153618^(2/9) 2865699999302090 a001 12586269025/141422324*73681302247^(3/13) 2865699999302090 a001 63245986/73681302247*45537549124^(12/17) 2865699999302090 a001 139583862445/141422324*17393796001^(1/7) 2865699999302090 a001 63245986/23725150497407*45537549124^(16/17) 2865699999302090 a001 63245986/5600748293801*45537549124^(15/17) 2865699999302090 a001 63245986/1322157322203*45537549124^(14/17) 2865699999302090 a001 63245986/312119004989*45537549124^(13/17) 2865699999302090 a001 63245986/73681302247*14662949395604^(4/7) 2865699999302090 a001 63245986/73681302247*505019158607^(9/14) 2865699999302090 a001 63245986/73681302247*192900153618^(2/3) 2865699999302090 a001 225851433717/141422324*45537549124^(2/17) 2865699999302090 a001 63245986/73681302247*73681302247^(9/13) 2865699999302090 a001 21566892818/35355581*23725150497407^(1/8) 2865699999302090 a001 21566892818/35355581*505019158607^(1/7) 2865699999302090 a001 53316291173/141422324*45537549124^(3/17) 2865699999302090 a001 63245986/505019158607*312119004989^(8/11) 2865699999302090 a001 31622993/1730726404001*312119004989^(4/5) 2865699999302090 a001 225851433717/141422324*14662949395604^(2/21) 2865699999302090 a001 31622993/1730726404001*23725150497407^(11/16) 2865699999302090 a001 182717648081/70711162*312119004989^(1/11) 2865699999302090 a001 21566892818/35355581*73681302247^(2/13) 2865699999302090 a001 139583862445/141422324*14662949395604^(1/9) 2865699999302090 a001 591286729879/141422324*73681302247^(1/13) 2865699999302090 a001 63245986/1322157322203*192900153618^(7/9) 2865699999302090 a001 63245986/23725150497407*192900153618^(8/9) 2865699999302090 a001 63245986/312119004989*192900153618^(13/18) 2865699999302090 a001 53316291173/141422324*14662949395604^(1/7) 2865699999302090 a001 53316291173/141422324*192900153618^(1/6) 2865699999302090 a001 182717648081/70711162*28143753123^(1/10) 2865699999302090 a001 63245986/505019158607*73681302247^(10/13) 2865699999302090 a001 63245986/312119004989*73681302247^(3/4) 2865699999302090 a001 31622993/1730726404001*73681302247^(11/13) 2865699999302090 a001 63245986/23725150497407*73681302247^(12/13) 2865699999302090 a001 387002188980/35355581*10749957122^(1/24) 2865699999302090 a001 31622993/22768774562*312119004989^(7/11) 2865699999302090 a001 10182505537/70711162*312119004989^(1/5) 2865699999302090 a001 31622993/22768774562*505019158607^(5/8) 2865699999302090 a001 956722026041/141422324*10749957122^(1/16) 2865699999302090 a001 591286729879/141422324*10749957122^(1/12) 2865699999302090 a001 12586269025/141422324*10749957122^(1/4) 2865699999302090 a001 63245986/505019158607*28143753123^(4/5) 2865699999302090 a001 225851433717/141422324*10749957122^(1/8) 2865699999302090 a001 63245986/5600748293801*28143753123^(9/10) 2865699999302090 a001 31622993/22768774562*28143753123^(7/10) 2865699999302090 a001 21566892818/35355581*10749957122^(1/6) 2865699999302090 a001 63246219/271444*10749957122^(5/24) 2865699999302090 a001 53316291173/141422324*10749957122^(3/16) 2865699999302090 a001 387002188980/35355581*4106118243^(1/23) 2865699999302090 a001 63245986/17393796001*45537549124^(11/17) 2865699999302090 a001 63245986/17393796001*312119004989^(3/5) 2865699999302090 a001 63245986/17393796001*817138163596^(11/19) 2865699999302090 a001 63245986/17393796001*14662949395604^(11/21) 2865699999302090 a001 63245986/17393796001*192900153618^(11/18) 2865699999302090 a001 7778742049/141422324*73681302247^(1/4) 2865699999302090 a001 63245986/28143753123*10749957122^(17/24) 2865699999302090 a001 591286729879/141422324*4106118243^(2/23) 2865699999302090 a001 63245986/73681302247*10749957122^(3/4) 2865699999302090 a001 31622993/96450076809*10749957122^(19/24) 2865699999302090 a001 63245986/312119004989*10749957122^(13/16) 2865699999302090 a001 63245986/505019158607*10749957122^(5/6) 2865699999302090 a001 63245986/1322157322203*10749957122^(7/8) 2865699999302090 a001 225851433717/141422324*4106118243^(3/23) 2865699999302090 a001 31622993/1730726404001*10749957122^(11/12) 2865699999302090 a001 63245986/5600748293801*10749957122^(15/16) 2865699999302090 a001 63245986/9062201101803*10749957122^(23/24) 2865699999302090 a001 63245986/17393796001*10749957122^(11/16) 2865699999302090 a001 1201881744/35355581*4106118243^(7/23) 2865699999302090 a001 21566892818/35355581*4106118243^(4/23) 2865699999302090 a001 63246219/271444*4106118243^(5/23) 2865699999302090 a001 12586269025/141422324*4106118243^(6/23) 2865699999302090 a001 387002188980/35355581*1568397607^(1/22) 2865699999302090 a001 2971215073/141422324*45537549124^(5/17) 2865699999302090 a001 2971215073/141422324*312119004989^(3/11) 2865699999302090 a001 2971215073/141422324*14662949395604^(5/21) 2865699999302090 a001 63245986/6643838879*9062201101803^(1/2) 2865699999302090 a001 2971215073/141422324*192900153618^(5/18) 2865699999302090 a001 2971215073/141422324*28143753123^(3/10) 2865699999302090 a001 2971215073/141422324*10749957122^(5/16) 2865699999302090 a001 31622993/5374978561*4106118243^(16/23) 2865699999302090 a001 591286729879/141422324*1568397607^(1/11) 2865699999302090 a001 63245986/28143753123*4106118243^(17/23) 2865699999302090 a001 63245986/73681302247*4106118243^(18/23) 2865699999302090 a001 31622993/96450076809*4106118243^(19/23) 2865699999302090 a001 63245986/505019158607*4106118243^(20/23) 2865699999302090 a001 63245986/1322157322203*4106118243^(21/23) 2865699999302090 a001 225851433717/141422324*1568397607^(3/22) 2865699999302090 a001 31622993/1730726404001*4106118243^(22/23) 2865699999302090 a001 21566892818/35355581*1568397607^(2/11) 2865699999302090 a001 1836311903/141422324*1568397607^(4/11) 2865699999302090 a001 63246219/271444*1568397607^(5/22) 2865699999302090 a001 10182505537/70711162*1568397607^(1/4) 2865699999302090 a001 12586269025/141422324*1568397607^(3/11) 2865699999302090 a001 1201881744/35355581*1568397607^(7/22) 2865699999302090 a001 387002188980/35355581*599074578^(1/21) 2865699999302090 a001 567451585/70711162*45537549124^(1/3) 2865699999302090 a001 31622993/1268860318*1322157322203^(1/2) 2865699999302090 a001 956722026041/141422324*599074578^(1/14) 2865699999302090 a001 63245986/4106118243*1568397607^(15/22) 2865699999302090 a001 591286729879/141422324*599074578^(2/21) 2865699999302090 a001 31622993/5374978561*1568397607^(8/11) 2865699999302090 a001 63245986/17393796001*1568397607^(3/4) 2865699999302090 a001 63245986/28143753123*1568397607^(17/22) 2865699999302090 a001 63245986/73681302247*1568397607^(9/11) 2865699999302090 a001 31622993/96450076809*1568397607^(19/22) 2865699999302090 a001 63245986/505019158607*1568397607^(10/11) 2865699999302090 a001 63245986/1322157322203*1568397607^(21/22) 2865699999302090 a001 225851433717/141422324*599074578^(1/7) 2865699999302090 a001 139583862445/141422324*599074578^(1/6) 2865699999302090 a001 21566892818/35355581*599074578^(4/21) 2865699999302090 a001 53316291173/141422324*599074578^(3/14) 2865699999302090 a001 63246219/271444*599074578^(5/21) 2865699999302090 a001 701408733/141422324*599074578^(3/7) 2865699999302090 a001 12586269025/141422324*599074578^(2/7) 2865699999302090 a001 433494437/228826127*87403803^(10/19) 2865699999302090 a001 10610209857723/969323029*33385282^(1/18) 2865699999302090 a001 1201881744/35355581*599074578^(1/3) 2865699999302090 a001 387002188980/35355581*228826127^(1/20) 2865699999302090 a001 63245986/969323029*2537720636^(3/5) 2865699999302090 a001 1836311903/141422324*599074578^(8/21) 2865699999302090 a001 2971215073/141422324*599074578^(5/14) 2865699999302090 a001 63245986/969323029*45537549124^(9/17) 2865699999302090 a001 27416783093579882/956722026041 2865699999302090 a001 63245986/969323029*192900153618^(1/2) 2865699999302090 a001 63245986/969323029*10749957122^(9/16) 2865699999302090 a001 63245986/1568397607*599074578^(2/3) 2865699999302090 a001 591286729879/141422324*228826127^(1/10) 2865699999302090 a001 63245986/4106118243*599074578^(5/7) 2865699999302090 a001 31622993/5374978561*599074578^(16/21) 2865699999302090 a001 63245986/17393796001*599074578^(11/14) 2865699999302090 a001 63245986/28143753123*599074578^(17/21) 2865699999302090 a001 31622993/22768774562*599074578^(5/6) 2865699999302090 a001 7778742049/599074578*87403803^(8/19) 2865699999302090 a001 182717648081/70711162*228826127^(1/8) 2865699999302090 a001 63245986/73681302247*599074578^(6/7) 2865699999302090 a001 31622993/96450076809*599074578^(19/21) 2865699999302090 a001 63245986/312119004989*599074578^(13/14) 2865699999302090 a001 63245986/505019158607*599074578^(20/21) 2865699999302090 a001 63245986/969323029*599074578^(9/14) 2865699999302090 a001 225851433717/141422324*228826127^(3/20) 2865699999302090 a001 21566892818/35355581*228826127^(1/5) 2865699999302090 a001 20365011074/1568397607*87403803^(8/19) 2865699999302090 a001 63246219/271444*228826127^(1/4) 2865699999302090 a001 53316291173/4106118243*87403803^(8/19) 2865699999302090 a001 139583862445/10749957122*87403803^(8/19) 2865699999302090 a001 365435296162/28143753123*87403803^(8/19) 2865699999302090 a001 956722026041/73681302247*87403803^(8/19) 2865699999302090 a001 2504730781961/192900153618*87403803^(8/19) 2865699999302090 a001 10610209857723/817138163596*87403803^(8/19) 2865699999302090 a001 4052739537881/312119004989*87403803^(8/19) 2865699999302090 a001 1548008755920/119218851371*87403803^(8/19) 2865699999302090 a001 591286729879/45537549124*87403803^(8/19) 2865699999302090 a001 7787980473/599786069*87403803^(8/19) 2865699999302090 a001 86267571272/6643838879*87403803^(8/19) 2865699999302090 a001 32951280099/2537720636*87403803^(8/19) 2865699999302090 a001 12586269025/370248451*87403803^(7/19) 2865699999302090 a001 1548008755920/228826127*33385282^(1/12) 2865699999302090 a001 12586269025/141422324*228826127^(3/10) 2865699999302090 a001 12586269025/969323029*87403803^(8/19) 2865699999302090 a001 1201881744/35355581*228826127^(7/20) 2865699999302090 a001 66978574/35355581*228826127^(1/2) 2865699999302090 a001 387002188980/35355581*87403803^(1/19) 2865699999302090 a001 4052739537881/370248451*33385282^(1/18) 2865699999302090 a001 2971215073/141422324*228826127^(3/8) 2865699999302090 a001 63245986/370248451*2537720636^(5/9) 2865699999302090 a001 165580141/141422324*2537720636^(7/15) 2865699999302090 a001 165580141/141422324*17393796001^(3/7) 2865699999302090 a001 165580141/141422324*45537549124^(7/17) 2865699999302090 a001 63245986/370248451*312119004989^(5/11) 2865699999302090 a001 165580141/141422324*14662949395604^(1/3) 2865699999302090 a001 63245986/370248451*3461452808002^(5/12) 2865699999302090 a001 165580141/141422324*192900153618^(7/18) 2865699999302090 a001 63245986/370248451*28143753123^(1/2) 2865699999302090 a001 165580141/141422324*10749957122^(7/16) 2865699999302090 a001 1836311903/141422324*228826127^(2/5) 2865699999302090 a001 701408733/141422324*228826127^(9/20) 2865699999302090 a001 165580141/141422324*599074578^(1/2) 2865699999302090 a001 2971215073/599074578*87403803^(9/19) 2865699999302090 a001 31622993/299537289*228826127^(13/20) 2865699999302090 a001 7778742049/1568397607*87403803^(9/19) 2865699999302090 a001 20365011074/4106118243*87403803^(9/19) 2865699999302090 a001 53316291173/10749957122*87403803^(9/19) 2865699999302090 a001 139583862445/28143753123*87403803^(9/19) 2865699999302090 a001 365435296162/73681302247*87403803^(9/19) 2865699999302090 a001 956722026041/192900153618*87403803^(9/19) 2865699999302090 a001 2504730781961/505019158607*87403803^(9/19) 2865699999302090 a001 10610209857723/2139295485799*87403803^(9/19) 2865699999302090 a001 4052739537881/817138163596*87403803^(9/19) 2865699999302090 a001 140728068720/28374454999*87403803^(9/19) 2865699999302090 a001 591286729879/119218851371*87403803^(9/19) 2865699999302090 a001 225851433717/45537549124*87403803^(9/19) 2865699999302090 a001 86267571272/17393796001*87403803^(9/19) 2865699999302090 a001 32951280099/6643838879*87403803^(9/19) 2865699999302090 a001 1144206275/230701876*87403803^(9/19) 2865699999302090 a001 4807526976/370248451*87403803^(8/19) 2865699999302090 a001 1836311903/599074578*87403803^(1/2) 2865699999302090 a001 63245986/1568397607*228826127^(7/10) 2865699999302090 a001 4807526976/969323029*87403803^(9/19) 2865699999302090 a001 591286729879/141422324*87403803^(2/19) 2865699999302090 a001 165580141/228826127*87403803^(11/19) 2865699999302090 a001 63245986/4106118243*228826127^(3/4) 2865699999302090 a001 686789568/224056801*87403803^(1/2) 2865699999302090 a001 31622993/5374978561*228826127^(4/5) 2865699999302090 a001 12586269025/4106118243*87403803^(1/2) 2865699999302090 a001 32951280099/10749957122*87403803^(1/2) 2865699999302090 a001 86267571272/28143753123*87403803^(1/2) 2865699999302090 a001 32264490531/10525900321*87403803^(1/2) 2865699999302090 a001 591286729879/192900153618*87403803^(1/2) 2865699999302090 a001 1515744265389/494493258286*87403803^(1/2) 2865699999302090 a001 2504730781961/817138163596*87403803^(1/2) 2865699999302090 a001 956722026041/312119004989*87403803^(1/2) 2865699999302090 a001 365435296162/119218851371*87403803^(1/2) 2865699999302090 a001 139583862445/45537549124*87403803^(1/2) 2865699999302090 a001 53316291173/17393796001*87403803^(1/2) 2865699999302090 a001 20365011074/6643838879*87403803^(1/2) 2865699999302090 a001 7778742049/2537720636*87403803^(1/2) 2865699999302090 a001 63245986/28143753123*228826127^(17/20) 2865699999302090 a001 567451585/299537289*87403803^(10/19) 2865699999302090 a001 2971215073/969323029*87403803^(1/2) 2865699999302090 a001 31622993/22768774562*228826127^(7/8) 2865699999302090 a001 63245986/73681302247*228826127^(9/10) 2865699999302090 a001 31622993/96450076809*228826127^(19/20) 2865699999302090 a001 53316291173/87403803*33385282^(2/9) 2865699999302090 a001 2971215073/1568397607*87403803^(10/19) 2865699999302090 a001 7778742049/4106118243*87403803^(10/19) 2865699999302090 a001 10182505537/5374978561*87403803^(10/19) 2865699999302090 a001 53316291173/28143753123*87403803^(10/19) 2865699999302090 a001 139583862445/73681302247*87403803^(10/19) 2865699999302090 a001 182717648081/96450076809*87403803^(10/19) 2865699999302090 a001 956722026041/505019158607*87403803^(10/19) 2865699999302090 a001 10610209857723/5600748293801*87403803^(10/19) 2865699999302090 a001 591286729879/312119004989*87403803^(10/19) 2865699999302090 a001 225851433717/119218851371*87403803^(10/19) 2865699999302090 a001 21566892818/11384387281*87403803^(10/19) 2865699999302090 a001 32951280099/17393796001*87403803^(10/19) 2865699999302090 a001 12586269025/6643838879*87403803^(10/19) 2865699999302090 a001 1201881744/634430159*87403803^(10/19) 2865699999302090 a001 63245986/370248451*228826127^(5/8) 2865699999302090 a001 1836311903/370248451*87403803^(9/19) 2865699999302090 a001 1836311903/969323029*87403803^(10/19) 2865699999302090 a001 225851433717/141422324*87403803^(3/19) 2865699999302090 a001 102334155/370248451*87403803^(12/19) 2865699999302090 a001 102334155/969323029*87403803^(13/19) 2865699999302090 a001 4052739537881/599074578*33385282^(1/12) 2865699999302090 a001 1134903170/370248451*87403803^(1/2) 2865699999302090 a001 433494437/599074578*87403803^(11/19) 2865699999302090 a001 1515744265389/224056801*33385282^(1/12) 2865699999302090 a001 1134903170/1568397607*87403803^(11/19) 2865699999302090 a001 2971215073/4106118243*87403803^(11/19) 2865699999302090 a001 7778742049/10749957122*87403803^(11/19) 2865699999302090 a001 701408733/370248451*87403803^(10/19) 2865699999302090 a001 20365011074/28143753123*87403803^(11/19) 2865699999302090 a001 53316291173/73681302247*87403803^(11/19) 2865699999302090 a001 139583862445/192900153618*87403803^(11/19) 2865699999302090 a001 10610209857723/14662949395604*87403803^(11/19) 2865699999302090 a001 591286729879/817138163596*87403803^(11/19) 2865699999302090 a001 225851433717/312119004989*87403803^(11/19) 2865699999302090 a001 86267571272/119218851371*87403803^(11/19) 2865699999302090 a001 32951280099/45537549124*87403803^(11/19) 2865699999302090 a001 12586269025/17393796001*87403803^(11/19) 2865699999302090 a001 4807526976/6643838879*87403803^(11/19) 2865699999302090 a001 6557470319842/969323029*33385282^(1/12) 2865699999302090 a001 1836311903/2537720636*87403803^(11/19) 2865699999302090 a001 701408733/969323029*87403803^(11/19) 2865699999302090 a001 9303105/230701876*87403803^(14/19) 2865699999302090 a001 21566892818/35355581*87403803^(4/19) 2865699999302090 a001 267914296/370248451*87403803^(11/19) 2865699999302090 a001 956722026041/228826127*33385282^(1/9) 2865699999302090 a001 267914296/969323029*87403803^(12/19) 2865699999302090 a001 2504730781961/370248451*33385282^(1/12) 2865699999302090 a001 701408733/2537720636*87403803^(12/19) 2865699999302090 a001 1836311903/6643838879*87403803^(12/19) 2865699999302090 a001 4807526976/17393796001*87403803^(12/19) 2865699999302090 a001 12586269025/45537549124*87403803^(12/19) 2865699999302090 a001 32951280099/119218851371*87403803^(12/19) 2865699999302090 a001 86267571272/312119004989*87403803^(12/19) 2865699999302090 a001 225851433717/817138163596*87403803^(12/19) 2865699999302090 a001 1548008755920/5600748293801*87403803^(12/19) 2865699999302090 a001 139583862445/505019158607*87403803^(12/19) 2865699999302090 a001 53316291173/192900153618*87403803^(12/19) 2865699999302090 a001 20365011074/73681302247*87403803^(12/19) 2865699999302090 a001 7778742049/28143753123*87403803^(12/19) 2865699999302090 a001 2971215073/10749957122*87403803^(12/19) 2865699999302090 a001 1134903170/4106118243*87403803^(12/19) 2865699999302090 a001 433494437/1568397607*87403803^(12/19) 2865699999302090 a001 102334155/6643838879*87403803^(15/19) 2865699999302090 a001 63246219/271444*87403803^(5/19) 2865699999302090 a001 66978574/634430159*87403803^(13/19) 2865699999302090 a001 165580141/599074578*87403803^(12/19) 2865699999302090 a001 701408733/6643838879*87403803^(13/19) 2865699999302090 a001 1836311903/17393796001*87403803^(13/19) 2865699999302090 a001 1201881744/11384387281*87403803^(13/19) 2865699999302090 a001 12586269025/119218851371*87403803^(13/19) 2865699999302090 a001 32951280099/312119004989*87403803^(13/19) 2865699999302090 a001 21566892818/204284540899*87403803^(13/19) 2865699999302090 a001 225851433717/2139295485799*87403803^(13/19) 2865699999302090 a001 182717648081/1730726404001*87403803^(13/19) 2865699999302090 a001 139583862445/1322157322203*87403803^(13/19) 2865699999302090 a001 53316291173/505019158607*87403803^(13/19) 2865699999302090 a001 10182505537/96450076809*87403803^(13/19) 2865699999302090 a001 7778742049/73681302247*87403803^(13/19) 2865699999302090 a001 2971215073/28143753123*87403803^(13/19) 2865699999302090 a001 567451585/5374978561*87403803^(13/19) 2865699999302090 a001 433494437/4106118243*87403803^(13/19) 2865699999302090 a001 102334155/17393796001*87403803^(16/19) 2865699999302090 a001 12586269025/141422324*87403803^(6/19) 2865699999302090 a001 10983760033/29134601*33385282^(1/4) 2865699999302090 a001 267914296/6643838879*87403803^(14/19) 2865699999302090 a001 701408733/17393796001*87403803^(14/19) 2865699999302090 a001 1836311903/45537549124*87403803^(14/19) 2865699999302090 a001 4807526976/119218851371*87403803^(14/19) 2865699999302090 a001 1144206275/28374454999*87403803^(14/19) 2865699999302090 a001 165580141/1568397607*87403803^(13/19) 2865699999302090 a001 32951280099/817138163596*87403803^(14/19) 2865699999302090 a001 86267571272/2139295485799*87403803^(14/19) 2865699999302090 a001 225851433717/5600748293801*87403803^(14/19) 2865699999302090 a001 591286729879/14662949395604*87403803^(14/19) 2865699999302090 a001 365435296162/9062201101803*87403803^(14/19) 2865699999302090 a001 139583862445/3461452808002*87403803^(14/19) 2865699999302090 a001 53316291173/1322157322203*87403803^(14/19) 2865699999302090 a001 20365011074/505019158607*87403803^(14/19) 2865699999302090 a001 7778742049/192900153618*87403803^(14/19) 2865699999302090 a001 2971215073/73681302247*87403803^(14/19) 2865699999302090 a001 1134903170/28143753123*87403803^(14/19) 2865699999302090 a001 2504730781961/599074578*33385282^(1/9) 2865699999302090 a001 433494437/10749957122*87403803^(14/19) 2865699999302090 a001 102334155/45537549124*87403803^(17/19) 2865699999302090 a001 1201881744/35355581*87403803^(7/19) 2865699999302090 a001 6557470319842/1568397607*33385282^(1/9) 2865699999302090 a001 387002188980/35355581*33385282^(1/18) 2865699999302090 a001 10610209857723/2537720636*33385282^(1/9) 2865699999302090 a001 4000054745112196/139583862445 2865699999302090 a001 31622993/70711162*4106118243^(1/2) 2865699999302090 a001 9238424/599786069*87403803^(15/19) 2865699999302090 a001 4052739537881/969323029*33385282^(1/9) 2865699999302090 a001 701408733/45537549124*87403803^(15/19) 2865699999302090 a001 1836311903/119218851371*87403803^(15/19) 2865699999302090 a001 4807526976/312119004989*87403803^(15/19) 2865699999302090 a001 12586269025/817138163596*87403803^(15/19) 2865699999302090 a001 32951280099/2139295485799*87403803^(15/19) 2865699999302090 a001 86267571272/5600748293801*87403803^(15/19) 2865699999302090 a001 7787980473/505618944676*87403803^(15/19) 2865699999302090 a001 365435296162/23725150497407*87403803^(15/19) 2865699999302090 a001 139583862445/9062201101803*87403803^(15/19) 2865699999302090 a001 53316291173/3461452808002*87403803^(15/19) 2865699999302090 a001 20365011074/1322157322203*87403803^(15/19) 2865699999302090 a001 7778742049/505019158607*87403803^(15/19) 2865699999302090 a001 2971215073/192900153618*87403803^(15/19) 2865699999302090 a001 1134903170/73681302247*87403803^(15/19) 2865699999302090 a001 165580141/4106118243*87403803^(14/19) 2865699999302090 a001 433494437/28143753123*87403803^(15/19) 2865699999302090 a001 102334155/119218851371*87403803^(18/19) 2865699999302090 a001 1836311903/141422324*87403803^(8/19) 2865699999302090 a001 102334155/141422324*87403803^(11/19) 2865699999302090 a001 1548008755920/370248451*33385282^(1/9) 2865699999302090 a001 66978574/11384387281*87403803^(16/19) 2865699999302090 a001 701408733/119218851371*87403803^(16/19) 2865699999302090 a001 1836311903/312119004989*87403803^(16/19) 2865699999302090 a001 1201881744/204284540899*87403803^(16/19) 2865699999302090 a001 12586269025/2139295485799*87403803^(16/19) 2865699999302090 a001 32951280099/5600748293801*87403803^(16/19) 2865699999302090 a001 1135099622/192933544679*87403803^(16/19) 2865699999302090 a001 139583862445/23725150497407*87403803^(16/19) 2865699999302090 a001 53316291173/9062201101803*87403803^(16/19) 2865699999302090 a001 10182505537/1730726404001*87403803^(16/19) 2865699999302090 a001 7778742049/1322157322203*87403803^(16/19) 2865699999302090 a001 2971215073/505019158607*87403803^(16/19) 2865699999302090 a001 567451585/96450076809*87403803^(16/19) 2865699999302090 a001 165580141/10749957122*87403803^(15/19) 2865699999302090 a001 433494437/73681302247*87403803^(16/19) 2865699999302090 a001 701408733/141422324*87403803^(9/19) 2865699999302090 a001 63245986/228826127*87403803^(12/19) 2865699999302090 a001 267914296/119218851371*87403803^(17/19) 2865699999302090 a001 66978574/35355581*87403803^(10/19) 2865699999302090 a001 433494437/141422324*87403803^(1/2) 2865699999302090 a001 3524667/1568437211*87403803^(17/19) 2865699999302090 a001 1836311903/817138163596*87403803^(17/19) 2865699999302090 a001 4807526976/2139295485799*87403803^(17/19) 2865699999302090 a001 12586269025/5600748293801*87403803^(17/19) 2865699999302090 a001 32951280099/14662949395604*87403803^(17/19) 2865699999302090 a001 53316291173/23725150497407*87403803^(17/19) 2865699999302090 a001 20365011074/9062201101803*87403803^(17/19) 2865699999302090 a001 7778742049/3461452808002*87403803^(17/19) 2865699999302090 a001 2971215073/1322157322203*87403803^(17/19) 2865699999302090 a001 1134903170/505019158607*87403803^(17/19) 2865699999302090 a001 165580141/28143753123*87403803^(16/19) 2865699999302090 a001 433494437/192900153618*87403803^(17/19) 2865699999302090 a001 20365011074/87403803*33385282^(5/18) 2865699999302090 a001 267914296/312119004989*87403803^(18/19) 2865699999302090 a001 701408733/817138163596*87403803^(18/19) 2865699999302090 a001 1836311903/2139295485799*87403803^(18/19) 2865699999302090 a001 4807526976/5600748293801*87403803^(18/19) 2865699999302090 a001 12586269025/14662949395604*87403803^(18/19) 2865699999302090 a001 20365011074/23725150497407*87403803^(18/19) 2865699999302090 a001 7778742049/9062201101803*87403803^(18/19) 2865699999302090 a001 2971215073/3461452808002*87403803^(18/19) 2865699999302090 a001 1134903170/1322157322203*87403803^(18/19) 2865699999302090 a001 165580141/73681302247*87403803^(17/19) 2865699999302090 a001 956722026041/141422324*33385282^(1/12) 2865699999302090 a001 433494437/505019158607*87403803^(18/19) 2865699999302090 a001 365435296162/228826127*33385282^(1/6) 2865699999302090 a001 2/39088169*(1/2+1/2*5^(1/2))^61 2865699999302090 a001 165580141/192900153618*87403803^(18/19) 2865699999302090 a001 31622993/299537289*87403803^(13/19) 2865699999302090 a001 63245986/1568397607*87403803^(14/19) 2865699999302090 a001 956722026041/599074578*33385282^(1/6) 2865699999302090 a001 2504730781961/1568397607*33385282^(1/6) 2865699999302090 a001 6557470319842/4106118243*33385282^(1/6) 2865699999302090 a001 10610209857723/6643838879*33385282^(1/6) 2865699999302090 a001 591286729879/141422324*33385282^(1/9) 2865699999302090 a001 4052739537881/2537720636*33385282^(1/6) 2865699999302090 a001 1548008755920/969323029*33385282^(1/6) 2865699999302090 a001 63245986/4106118243*87403803^(15/19) 2865699999302090 a001 591286729879/370248451*33385282^(1/6) 2865699999302090 a001 31622993/5374978561*87403803^(16/19) 2865699999302090 a001 63245986/28143753123*87403803^(17/19) 2865699999302090 a001 7778742049/87403803*33385282^(1/3) 2865699999302090 a001 63245986/73681302247*87403803^(18/19) 2865699999302090 a001 9227465/12752043*12752043^(11/17) 2865699999302090 a001 139583862445/228826127*33385282^(2/9) 2865699999302090 a001 24157817/87403803*141422324^(8/13) 2865699999302090 a001 53316291173/33385282*12752043^(3/17) 2865699999302090 a001 182717648081/299537289*33385282^(2/9) 2865699999302090 a001 956722026041/1568397607*33385282^(2/9) 2865699999302090 a001 2504730781961/4106118243*33385282^(2/9) 2865699999302090 a001 3278735159921/5374978561*33385282^(2/9) 2865699999302090 a001 10610209857723/17393796001*33385282^(2/9) 2865699999302090 a001 4052739537881/6643838879*33385282^(2/9) 2865699999302090 a001 225851433717/141422324*33385282^(1/6) 2865699999302090 a001 1134903780/1860499*33385282^(2/9) 2865699999302090 a001 591286729879/969323029*33385282^(2/9) 2865699999302090 a001 86267571272/228826127*33385282^(1/4) 2865699999302090 a001 225851433717/370248451*33385282^(2/9) 2865699999302090 a001 24157817/87403803*2537720636^(8/15) 2865699999302090 a001 24157817/87403803*45537549124^(8/17) 2865699999302090 a001 24157817/87403803*14662949395604^(8/21) 2865699999302090 a001 24157817/87403803*192900153618^(4/9) 2865699999302090 a001 24157817/87403803*73681302247^(6/13) 2865699999302090 a001 944284833567073/32951280099 2865699999302090 a001 39088169/54018521*10749957122^(11/24) 2865699999302090 a001 24157817/87403803*10749957122^(1/2) 2865699999302090 a001 39088169/54018521*4106118243^(11/23) 2865699999302090 a001 24157817/87403803*4106118243^(12/23) 2865699999302090 a001 39088169/54018521*1568397607^(1/2) 2865699999302090 a001 24157817/87403803*1568397607^(6/11) 2865699999302090 a001 39088169/54018521*599074578^(11/21) 2865699999302090 a001 24157817/87403803*599074578^(4/7) 2865699999302090 a001 2971215073/87403803*33385282^(7/18) 2865699999302090 a001 267913919/710646*33385282^(1/4) 2865699999302090 a001 39088169/54018521*228826127^(11/20) 2865699999302090 a001 24157817/87403803*228826127^(3/5) 2865699999302090 a001 591286729879/1568397607*33385282^(1/4) 2865699999302090 a001 516002918640/1368706081*33385282^(1/4) 2865699999302090 a001 4052739537881/10749957122*33385282^(1/4) 2865699999302090 a001 3536736619241/9381251041*33385282^(1/4) 2865699999302090 a001 6557470319842/17393796001*33385282^(1/4) 2865699999302090 a001 2504730781961/6643838879*33385282^(1/4) 2865699999302090 a001 956722026041/2537720636*33385282^(1/4) 2865699999302090 a001 365435296162/969323029*33385282^(1/4) 2865699999302090 a001 53316291173/228826127*33385282^(5/18) 2865699999302090 a001 956722026041/87403803*12752043^(1/17) 2865699999302090 a001 139583862445/370248451*33385282^(1/4) 2865699999302090 a001 1836311903/87403803*33385282^(5/12) 2865699999302090 a001 139583862445/599074578*33385282^(5/18) 2865699999302090 a001 365435296162/1568397607*33385282^(5/18) 2865699999302090 a001 956722026041/4106118243*33385282^(5/18) 2865699999302090 a001 2504730781961/10749957122*33385282^(5/18) 2865699999302090 a001 6557470319842/28143753123*33385282^(5/18) 2865699999302090 a001 10610209857723/45537549124*33385282^(5/18) 2865699999302090 a001 4052739537881/17393796001*33385282^(5/18) 2865699999302090 a001 1548008755920/6643838879*33385282^(5/18) 2865699999302090 a001 21566892818/35355581*33385282^(2/9) 2865699999302090 a001 591286729879/2537720636*33385282^(5/18) 2865699999302090 a001 225851433717/969323029*33385282^(5/18) 2865699999302090 a001 86267571272/370248451*33385282^(5/18) 2865699999302091 a001 1134903170/87403803*33385282^(4/9) 2865699999302091 a001 53316291173/141422324*33385282^(1/4) 2865699999302091 a001 20365011074/228826127*33385282^(1/3) 2865699999302091 a001 39088169/54018521*87403803^(11/19) 2865699999302091 a001 24157817/228826127*141422324^(2/3) 2865699999302091 a001 24157817/87403803*87403803^(12/19) 2865699999302091 a001 53316291173/599074578*33385282^(1/3) 2865699999302091 a001 24157817/28143753123*141422324^(12/13) 2865699999302091 a001 139583862445/1568397607*33385282^(1/3) 2865699999302091 a001 365435296162/4106118243*33385282^(1/3) 2865699999302091 a001 956722026041/10749957122*33385282^(1/3) 2865699999302091 a001 2504730781961/28143753123*33385282^(1/3) 2865699999302091 a001 6557470319842/73681302247*33385282^(1/3) 2865699999302091 a001 10610209857723/119218851371*33385282^(1/3) 2865699999302091 a001 4052739537881/45537549124*33385282^(1/3) 2865699999302091 a001 1548008755920/17393796001*33385282^(1/3) 2865699999302091 a001 591286729879/6643838879*33385282^(1/3) 2865699999302091 a001 63246219/271444*33385282^(5/18) 2865699999302091 a001 225851433717/2537720636*33385282^(1/3) 2865699999302091 a001 86267571272/969323029*33385282^(1/3) 2865699999302091 a001 24157817/6643838879*141422324^(11/13) 2865699999302091 a001 24157817/1568397607*141422324^(10/13) 2865699999302091 a001 32951280099/370248451*33385282^(1/3) 2865699999302091 a001 24157817/370248451*141422324^(9/13) 2865699999302091 a001 267914296/54018521*141422324^(6/13) 2865699999302091 a001 433494437/87403803*33385282^(1/2) 2865699999302091 a001 102334155/54018521*2537720636^(4/9) 2865699999302091 a001 102334155/54018521*23725150497407^(5/16) 2865699999302091 a001 102334155/54018521*505019158607^(5/14) 2865699999302091 a001 2472169789339635/86267571272 2865699999302091 a001 102334155/54018521*73681302247^(5/13) 2865699999302091 a001 24157817/228826127*73681302247^(1/2) 2865699999302091 a001 102334155/54018521*28143753123^(2/5) 2865699999302091 a001 102334155/54018521*10749957122^(5/12) 2865699999302091 a001 24157817/228826127*10749957122^(13/24) 2865699999302091 a001 1134903170/54018521*141422324^(5/13) 2865699999302091 a001 102334155/54018521*4106118243^(10/23) 2865699999302091 a001 24157817/228826127*4106118243^(13/23) 2865699999302091 a001 102334155/54018521*1568397607^(5/11) 2865699999302091 a001 24157817/228826127*1568397607^(13/22) 2865699999302091 a001 102334155/54018521*599074578^(10/21) 2865699999302091 a001 24157817/228826127*599074578^(13/21) 2865699999302091 a001 2971215073/54018521*141422324^(1/3) 2865699999302091 a001 4807526976/54018521*141422324^(4/13) 2865699999302091 a001 7778742049/228826127*33385282^(7/18) 2865699999302091 a001 20365011074/54018521*141422324^(3/13) 2865699999302091 a001 9227465/599074578*20633239^(6/7) 2865699999302091 a001 102334155/54018521*228826127^(1/2) 2865699999302091 a001 86267571272/54018521*141422324^(2/13) 2865699999302091 a001 24157817/228826127*228826127^(13/20) 2865699999302091 a001 365435296162/54018521*141422324^(1/13) 2865699999302091 a001 267914296/54018521*2537720636^(2/5) 2865699999302091 a001 24157817/599074578*17393796001^(4/7) 2865699999302091 a001 267914296/54018521*45537549124^(6/17) 2865699999302091 a001 24157817/599074578*14662949395604^(4/9) 2865699999302091 a001 17167704335416/599075421 2865699999302091 a001 267914296/54018521*192900153618^(1/3) 2865699999302091 a001 24157817/599074578*73681302247^(7/13) 2865699999302091 a001 267914296/54018521*10749957122^(3/8) 2865699999302091 a001 24157817/599074578*10749957122^(7/12) 2865699999302091 a001 267914296/54018521*4106118243^(9/23) 2865699999302091 a001 24157817/599074578*4106118243^(14/23) 2865699999302091 a001 267914296/54018521*1568397607^(9/22) 2865699999302091 a001 24157817/599074578*1568397607^(7/11) 2865699999302091 a001 267914296/54018521*599074578^(3/7) 2865699999302091 a001 24157817/599074578*599074578^(2/3) 2865699999302091 a001 24157817/1568397607*2537720636^(2/3) 2865699999302091 a001 24157817/1568397607*45537549124^(10/17) 2865699999302091 a001 24157817/1568397607*312119004989^(6/11) 2865699999302091 a001 24157817/1568397607*14662949395604^(10/21) 2865699999302091 a001 16944503814015861/591286729879 2865699999302091 a001 24157817/1568397607*192900153618^(5/9) 2865699999302091 a001 701408733/54018521*73681302247^(4/13) 2865699999302091 a001 24157817/1568397607*28143753123^(3/5) 2865699999302091 a001 701408733/54018521*10749957122^(1/3) 2865699999302091 a001 24157817/1568397607*10749957122^(5/8) 2865699999302091 a001 701408733/54018521*4106118243^(8/23) 2865699999302091 a001 24157817/1568397607*4106118243^(15/23) 2865699999302091 a001 701408733/54018521*1568397607^(4/11) 2865699999302091 a001 24157817/505019158607*2537720636^(14/15) 2865699999302091 a001 24157817/192900153618*2537720636^(8/9) 2865699999302091 a001 24157817/119218851371*2537720636^(13/15) 2865699999302091 a001 24157817/1568397607*1568397607^(15/22) 2865699999302091 a001 24157817/28143753123*2537720636^(4/5) 2865699999302091 a001 24157817/17393796001*2537720636^(7/9) 2865699999302091 a001 24157817/6643838879*2537720636^(11/15) 2865699999302091 a001 2504730781961/228826127*12752043^(1/17) 2865699999302091 a001 1836311903/54018521*17393796001^(2/7) 2865699999302091 a001 1836311903/54018521*14662949395604^(2/9) 2865699999302091 a001 1836311903/54018521*505019158607^(1/4) 2865699999302091 a001 24157817/4106118243*73681302247^(8/13) 2865699999302091 a001 1836311903/54018521*10749957122^(7/24) 2865699999302091 a001 24157817/4106118243*10749957122^(2/3) 2865699999302091 a001 4807526976/54018521*2537720636^(4/15) 2865699999302091 a001 1836311903/54018521*4106118243^(7/23) 2865699999302091 a001 12586269025/54018521*2537720636^(2/9) 2865699999302091 a001 20365011074/54018521*2537720636^(1/5) 2865699999302091 a001 86267571272/54018521*2537720636^(2/15) 2865699999302091 a001 24157817/4106118243*4106118243^(16/23) 2865699999302091 a001 139583862445/54018521*2537720636^(1/9) 2865699999302091 a001 365435296162/54018521*2537720636^(1/15) 2865699999302091 a001 24157817/10749957122*45537549124^(2/3) 2865699999302091 a001 4807526976/54018521*45537549124^(4/17) 2865699999302091 a001 4807526976/54018521*817138163596^(4/19) 2865699999302091 a001 116139356908771392/4052739537881 2865699999302091 a001 4807526976/54018521*192900153618^(2/9) 2865699999302091 a001 4807526976/54018521*73681302247^(3/13) 2865699999302091 a001 4807526976/54018521*10749957122^(1/4) 2865699999302091 a001 24157817/505019158607*17393796001^(6/7) 2865699999302091 a001 24157817/10749957122*10749957122^(17/24) 2865699999302091 a001 24157817/28143753123*45537549124^(12/17) 2865699999302091 a001 12586269025/54018521*312119004989^(2/11) 2865699999302091 a001 24157817/28143753123*505019158607^(9/14) 2865699999302091 a001 24157817/28143753123*192900153618^(2/3) 2865699999302091 a001 24157817/28143753123*73681302247^(9/13) 2865699999302091 a001 12586269025/54018521*28143753123^(1/5) 2865699999302091 a001 24157817/9062201101803*45537549124^(16/17) 2865699999302091 a001 24157817/2139295485799*45537549124^(15/17) 2865699999302091 a001 24157817/505019158607*45537549124^(14/17) 2865699999302091 a001 24157817/119218851371*45537549124^(13/17) 2865699999302091 a001 24157817/73681302247*817138163596^(2/3) 2865699999302091 a001 32951280099/54018521*505019158607^(1/7) 2865699999302091 a001 32951280099/54018521*73681302247^(2/13) 2865699999302091 a001 86267571272/54018521*45537549124^(2/17) 2865699999302091 a001 24157817/192900153618*312119004989^(8/11) 2865699999302091 a001 24157817/192900153618*23725150497407^(5/8) 2865699999302091 a001 365435296162/54018521*45537549124^(1/17) 2865699999302091 a001 24157817/1322157322203*312119004989^(4/5) 2865699999302091 a001 24157817/2139295485799*312119004989^(9/11) 2865699999302091 a001 225851433717/54018521*23725150497407^(1/16) 2865699999302091 a001 24157817/1322157322203*23725150497407^(11/16) 2865699999302091 a001 24157817/14662949395604*14662949395604^(7/9) 2865699999302091 a001 24157817/14662949395604*505019158607^(7/8) 2865699999302091 a001 139583862445/54018521*312119004989^(1/11) 2865699999302091 a001 24157817/505019158607*192900153618^(7/9) 2865699999302091 a001 24157817/2139295485799*192900153618^(5/6) 2865699999302091 a001 24157817/119218851371*14662949395604^(13/21) 2865699999302091 a001 53316291173/54018521*14662949395604^(1/9) 2865699999302091 a001 24157817/119218851371*192900153618^(13/18) 2865699999302091 a001 24157817/192900153618*73681302247^(10/13) 2865699999302091 a001 139583862445/54018521*28143753123^(1/10) 2865699999302091 a001 24157817/1322157322203*73681302247^(11/13) 2865699999302091 a001 24157817/9062201101803*73681302247^(12/13) 2865699999302091 a001 24157817/119218851371*73681302247^(3/4) 2865699999302091 a001 591286729879/54018521*10749957122^(1/24) 2865699999302091 a001 20365011074/54018521*45537549124^(3/17) 2865699999302091 a001 20365011074/54018521*14662949395604^(1/7) 2865699999302091 a001 20365011074/54018521*192900153618^(1/6) 2865699999302091 a001 12586269025/54018521*10749957122^(5/24) 2865699999302091 a001 225851433717/54018521*10749957122^(1/12) 2865699999302091 a001 24157817/17393796001*17393796001^(5/7) 2865699999302091 a001 24157817/192900153618*28143753123^(4/5) 2865699999302091 a001 86267571272/54018521*10749957122^(1/8) 2865699999302091 a001 24157817/2139295485799*28143753123^(9/10) 2865699999302091 a001 32951280099/54018521*10749957122^(1/6) 2865699999302091 a001 20365011074/54018521*10749957122^(3/16) 2865699999302091 a001 591286729879/54018521*4106118243^(1/23) 2865699999302091 a001 24157817/17393796001*312119004989^(7/11) 2865699999302091 a001 14455186685380541/504420793834 2865699999302091 a001 24157817/17393796001*14662949395604^(5/9) 2865699999302091 a001 24157817/17393796001*28143753123^(7/10) 2865699999302091 a001 225851433717/54018521*4106118243^(2/23) 2865699999302091 a001 24157817/28143753123*10749957122^(3/4) 2865699999302091 a001 24157817/73681302247*10749957122^(19/24) 2865699999302091 a001 4807526976/54018521*4106118243^(6/23) 2865699999302091 a001 24157817/119218851371*10749957122^(13/16) 2865699999302091 a001 24157817/192900153618*10749957122^(5/6) 2865699999302091 a001 24157817/505019158607*10749957122^(7/8) 2865699999302091 a001 86267571272/54018521*4106118243^(3/23) 2865699999302091 a001 24157817/1322157322203*10749957122^(11/12) 2865699999302091 a001 24157817/2139295485799*10749957122^(15/16) 2865699999302091 a001 24157817/3461452808002*10749957122^(23/24) 2865699999302091 a001 32951280099/54018521*4106118243^(4/23) 2865699999302091 a001 12586269025/54018521*4106118243^(5/23) 2865699999302091 a001 591286729879/54018521*1568397607^(1/22) 2865699999302091 a001 24157817/6643838879*45537549124^(11/17) 2865699999302091 a001 24157817/6643838879*312119004989^(3/5) 2865699999302091 a001 24157817/6643838879*817138163596^(11/19) 2865699999302091 a001 24157817/6643838879*14662949395604^(11/21) 2865699999302091 a001 24157817/6643838879*192900153618^(11/18) 2865699999302091 a001 2971215073/54018521*73681302247^(1/4) 2865699999302091 a001 24157817/6643838879*10749957122^(11/16) 2865699999302091 a001 24157817/10749957122*4106118243^(17/23) 2865699999302091 a001 225851433717/54018521*1568397607^(1/11) 2865699999302091 a001 24157817/28143753123*4106118243^(18/23) 2865699999302091 a001 24157817/73681302247*4106118243^(19/23) 2865699999302091 a001 24157817/192900153618*4106118243^(20/23) 2865699999302091 a001 24157817/505019158607*4106118243^(21/23) 2865699999302091 a001 86267571272/54018521*1568397607^(3/22) 2865699999302091 a001 24157817/1322157322203*4106118243^(22/23) 2865699999302091 a001 1836311903/54018521*1568397607^(7/22) 2865699999302091 a001 32951280099/54018521*1568397607^(2/11) 2865699999302091 a001 12586269025/54018521*1568397607^(5/22) 2865699999302091 a001 4807526976/54018521*1568397607^(3/11) 2865699999302091 a001 1134903170/54018521*2537720636^(1/3) 2865699999302091 a001 7778742049/54018521*1568397607^(1/4) 2865699999302091 a001 591286729879/54018521*599074578^(1/21) 2865699999302091 a001 1134903170/54018521*45537549124^(5/17) 2865699999302091 a001 1134903170/54018521*312119004989^(3/11) 2865699999302091 a001 27416783093579890/956722026041 2865699999302091 a001 1134903170/54018521*14662949395604^(5/21) 2865699999302091 a001 1134903170/54018521*192900153618^(5/18) 2865699999302091 a001 1134903170/54018521*28143753123^(3/10) 2865699999302091 a001 1134903170/54018521*10749957122^(5/16) 2865699999302091 a001 365435296162/54018521*599074578^(1/14) 2865699999302091 a001 24157817/4106118243*1568397607^(8/11) 2865699999302091 a001 225851433717/54018521*599074578^(2/21) 2865699999302091 a001 24157817/10749957122*1568397607^(17/22) 2865699999302091 a001 24157817/6643838879*1568397607^(3/4) 2865699999302091 a001 24157817/28143753123*1568397607^(9/11) 2865699999302091 a001 24157817/73681302247*1568397607^(19/22) 2865699999302091 a001 24157817/192900153618*1568397607^(10/11) 2865699999302091 a001 24157817/505019158607*1568397607^(21/22) 2865699999302091 a001 86267571272/54018521*599074578^(1/7) 2865699999302091 a001 53316291173/54018521*599074578^(1/6) 2865699999302091 a001 32951280099/54018521*599074578^(4/21) 2865699999302091 a001 20365011074/54018521*599074578^(3/14) 2865699999302091 a001 701408733/54018521*599074578^(8/21) 2865699999302091 a001 12586269025/54018521*599074578^(5/21) 2865699999302091 a001 4807526976/54018521*599074578^(2/7) 2865699999302091 a001 1836311903/54018521*599074578^(1/3) 2865699999302091 a001 591286729879/54018521*228826127^(1/20) 2865699999302091 a001 433494437/54018521*45537549124^(1/3) 2865699999302091 a001 10472279279564029/365435296162 2865699999302091 a001 24157817/969323029*1322157322203^(1/2) 2865699999302091 a001 1134903170/54018521*599074578^(5/14) 2865699999302091 a001 24157817/1568397607*599074578^(5/7) 2865699999302091 a001 225851433717/54018521*228826127^(1/10) 2865699999302091 a001 24157817/4106118243*599074578^(16/21) 2865699999302091 a001 24157817/6643838879*599074578^(11/14) 2865699999302091 a001 24157817/10749957122*599074578^(17/21) 2865699999302091 a001 24157817/17393796001*599074578^(5/6) 2865699999302091 a001 24157817/28143753123*599074578^(6/7) 2865699999302091 a001 139583862445/54018521*228826127^(1/8) 2865699999302091 a001 24157817/73681302247*599074578^(19/21) 2865699999302091 a001 24157817/119218851371*599074578^(13/14) 2865699999302091 a001 24157817/192900153618*599074578^(20/21) 2865699999302091 a001 86267571272/54018521*228826127^(3/20) 2865699999302091 a001 10182505537/299537289*33385282^(7/18) 2865699999302091 a001 32951280099/54018521*228826127^(1/5) 2865699999302091 a001 12586269025/54018521*228826127^(1/4) 2865699999302091 a001 4807526976/54018521*228826127^(3/10) 2865699999302091 a001 53316291173/1568397607*33385282^(7/18) 2865699999302091 a001 267914296/54018521*228826127^(9/20) 2865699999302091 a001 139583862445/4106118243*33385282^(7/18) 2865699999302091 a001 182717648081/5374978561*33385282^(7/18) 2865699999302091 a001 956722026041/28143753123*33385282^(7/18) 2865699999302091 a001 2504730781961/73681302247*33385282^(7/18) 2865699999302091 a001 3278735159921/96450076809*33385282^(7/18) 2865699999302091 a001 10610209857723/312119004989*33385282^(7/18) 2865699999302091 a001 4052739537881/119218851371*33385282^(7/18) 2865699999302091 a001 387002188980/11384387281*33385282^(7/18) 2865699999302091 a001 591286729879/17393796001*33385282^(7/18) 2865699999302091 a001 225851433717/6643838879*33385282^(7/18) 2865699999302091 a001 12586269025/141422324*33385282^(1/3) 2865699999302091 a001 1135099622/33391061*33385282^(7/18) 2865699999302091 a001 1836311903/54018521*228826127^(7/20) 2865699999302091 a001 591286729879/54018521*87403803^(1/19) 2865699999302091 a001 24157817/370248451*2537720636^(3/5) 2865699999302091 a001 701408733/54018521*228826127^(2/5) 2865699999302091 a001 32951280099/969323029*33385282^(7/18) 2865699999302091 a001 24157817/370248451*45537549124^(9/17) 2865699999302091 a001 4000054745112197/139583862445 2865699999302091 a001 165580141/54018521*817138163596^(1/3) 2865699999302091 a001 24157817/370248451*14662949395604^(3/7) 2865699999302091 a001 24157817/370248451*192900153618^(1/2) 2865699999302091 a001 24157817/370248451*10749957122^(9/16) 2865699999302091 a001 1134903170/54018521*228826127^(3/8) 2865699999302091 a001 24157817/370248451*599074578^(9/14) 2865699999302091 a001 24157817/599074578*228826127^(7/10) 2865699999302091 a001 102287808/4868641*33385282^(5/12) 2865699999302091 a001 12586269025/370248451*33385282^(7/18) 2865699999302091 a001 225851433717/54018521*87403803^(2/19) 2865699999302091 a001 24157817/1568397607*228826127^(3/4) 2865699999302091 a001 24157817/4106118243*228826127^(4/5) 2865699999302091 a001 24157817/10749957122*228826127^(17/20) 2865699999302091 a001 3278735159921/299537289*12752043^(1/17) 2865699999302091 a001 24157817/17393796001*228826127^(7/8) 2865699999302091 a001 24157817/28143753123*228826127^(9/10) 2865699999302091 a001 24157817/73681302247*228826127^(19/20) 2865699999302091 a001 10610209857723/969323029*12752043^(1/17) 2865699999302091 a001 86267571272/54018521*87403803^(3/19) 2865699999302091 a001 63245986/54018521*141422324^(7/13) 2865699999302091 a001 4052739537881/370248451*12752043^(1/17) 2865699999302091 a001 32951280099/54018521*87403803^(4/19) 2865699999302091 a001 12586269025/599074578*33385282^(5/12) 2865699999302091 a001 34111385/29134601*33385282^(7/12) 2865699999302091 a001 32951280099/1568397607*33385282^(5/12) 2865699999302091 a001 86267571272/4106118243*33385282^(5/12) 2865699999302091 a001 225851433717/10749957122*33385282^(5/12) 2865699999302091 a001 591286729879/28143753123*33385282^(5/12) 2865699999302091 a001 1548008755920/73681302247*33385282^(5/12) 2865699999302091 a001 4052739537881/192900153618*33385282^(5/12) 2865699999302091 a001 225749145909/10745088481*33385282^(5/12) 2865699999302091 a001 6557470319842/312119004989*33385282^(5/12) 2865699999302091 a001 2504730781961/119218851371*33385282^(5/12) 2865699999302091 a001 956722026041/45537549124*33385282^(5/12) 2865699999302091 a001 365435296162/17393796001*33385282^(5/12) 2865699999302091 a001 139583862445/6643838879*33385282^(5/12) 2865699999302091 a001 53316291173/2537720636*33385282^(5/12) 2865699999302091 a001 165580141/87403803*33385282^(5/9) 2865699999302091 a001 20365011074/969323029*33385282^(5/12) 2865699999302091 a001 12586269025/54018521*87403803^(5/19) 2865699999302091 a001 2971215073/228826127*33385282^(4/9) 2865699999302091 a001 7778742049/370248451*33385282^(5/12) 2865699999302091 a001 4807526976/54018521*87403803^(6/19) 2865699999302091 a001 1836311903/54018521*87403803^(7/19) 2865699999302091 a001 102334155/54018521*87403803^(10/19) 2865699999302091 a001 591286729879/54018521*33385282^(1/18) 2865699999302091 a001 24157817/141422324*2537720636^(5/9) 2865699999302091 a001 63245986/54018521*2537720636^(7/15) 2865699999302091 a001 63245986/54018521*17393796001^(3/7) 2865699999302091 a001 63245986/54018521*45537549124^(7/17) 2865699999302091 a001 1527884955772562/53316291173 2865699999302091 a001 24157817/141422324*312119004989^(5/11) 2865699999302091 a001 63245986/54018521*14662949395604^(1/3) 2865699999302091 a001 24157817/141422324*3461452808002^(5/12) 2865699999302091 a001 63245986/54018521*192900153618^(7/18) 2865699999302091 a001 24157817/141422324*28143753123^(1/2) 2865699999302091 a001 63245986/54018521*10749957122^(7/16) 2865699999302091 a001 63245986/54018521*599074578^(1/2) 2865699999302091 a001 7778742049/599074578*33385282^(4/9) 2865699999302091 a001 701408733/54018521*87403803^(8/19) 2865699999302091 a001 20365011074/1568397607*33385282^(4/9) 2865699999302091 a001 53316291173/4106118243*33385282^(4/9) 2865699999302091 a001 139583862445/10749957122*33385282^(4/9) 2865699999302091 a001 365435296162/28143753123*33385282^(4/9) 2865699999302091 a001 956722026041/73681302247*33385282^(4/9) 2865699999302091 a001 2504730781961/192900153618*33385282^(4/9) 2865699999302091 a001 10610209857723/817138163596*33385282^(4/9) 2865699999302091 a001 4052739537881/312119004989*33385282^(4/9) 2865699999302091 a001 1548008755920/119218851371*33385282^(4/9) 2865699999302091 a001 591286729879/45537549124*33385282^(4/9) 2865699999302091 a001 7787980473/599786069*33385282^(4/9) 2865699999302091 a001 86267571272/6643838879*33385282^(4/9) 2865699999302091 a001 1201881744/35355581*33385282^(7/18) 2865699999302091 a001 32951280099/2537720636*33385282^(4/9) 2865699999302091 a001 12586269025/969323029*33385282^(4/9) 2865699999302091 a001 267914296/54018521*87403803^(9/19) 2865699999302091 a001 24157817/141422324*228826127^(5/8) 2865699999302091 a001 4807526976/370248451*33385282^(4/9) 2865699999302091 a001 387002188980/35355581*12752043^(1/17) 2865699999302091 a001 24157817/228826127*87403803^(13/19) 2865699999302091 a001 165580141/54018521*87403803^(1/2) 2865699999302091 a001 365435296162/54018521*33385282^(1/12) 2865699999302091 a001 2971215073/141422324*33385282^(5/12) 2865699999302091 a001 1134903170/228826127*33385282^(1/2) 2865699999302091 a001 24157817/599074578*87403803^(14/19) 2865699999302091 a001 225851433717/54018521*33385282^(1/9) 2865699999302091 a001 24157817/1568397607*87403803^(15/19) 2865699999302091 a001 2971215073/599074578*33385282^(1/2) 2865699999302091 a001 7778742049/1568397607*33385282^(1/2) 2865699999302091 a001 20365011074/4106118243*33385282^(1/2) 2865699999302091 a001 53316291173/10749957122*33385282^(1/2) 2865699999302091 a001 139583862445/28143753123*33385282^(1/2) 2865699999302091 a001 365435296162/73681302247*33385282^(1/2) 2865699999302091 a001 956722026041/192900153618*33385282^(1/2) 2865699999302091 a001 2504730781961/505019158607*33385282^(1/2) 2865699999302091 a001 10610209857723/2139295485799*33385282^(1/2) 2865699999302091 a001 4052739537881/817138163596*33385282^(1/2) 2865699999302091 a001 140728068720/28374454999*33385282^(1/2) 2865699999302091 a001 591286729879/119218851371*33385282^(1/2) 2865699999302091 a001 225851433717/45537549124*33385282^(1/2) 2865699999302091 a001 86267571272/17393796001*33385282^(1/2) 2865699999302091 a001 32951280099/6643838879*33385282^(1/2) 2865699999302091 a001 1836311903/141422324*33385282^(4/9) 2865699999302091 a001 1144206275/230701876*33385282^(1/2) 2865699999302091 a001 4807526976/969323029*33385282^(1/2) 2865699999302091 a001 9227465/228826127*20633239^(4/5) 2865699999302091 a001 24157817/4106118243*87403803^(16/19) 2865699999302091 a001 1836311903/370248451*33385282^(1/2) 2865699999302091 a001 24157817/10749957122*87403803^(17/19) 2865699999302091 a001 24157817/28143753123*87403803^(18/19) 2865699999302091 a001 63245986/87403803*33385282^(11/18) 2865699999302091 a001 433494437/228826127*33385282^(5/9) 2865699999302091 a001 86267571272/54018521*33385282^(1/6) 2865699999302091 a001 567451585/299537289*33385282^(5/9) 2865699999302091 a001 2971215073/1568397607*33385282^(5/9) 2865699999302091 a001 701408733/141422324*33385282^(1/2) 2865699999302091 a001 7778742049/4106118243*33385282^(5/9) 2865699999302091 a001 10182505537/5374978561*33385282^(5/9) 2865699999302091 a001 53316291173/28143753123*33385282^(5/9) 2865699999302091 a001 139583862445/73681302247*33385282^(5/9) 2865699999302091 a001 182717648081/96450076809*33385282^(5/9) 2865699999302091 a001 956722026041/505019158607*33385282^(5/9) 2865699999302091 a001 10610209857723/5600748293801*33385282^(5/9) 2865699999302091 a001 591286729879/312119004989*33385282^(5/9) 2865699999302091 a001 225851433717/119218851371*33385282^(5/9) 2865699999302091 a001 21566892818/11384387281*33385282^(5/9) 2865699999302091 a001 32951280099/17393796001*33385282^(5/9) 2865699999302091 a001 12586269025/6643838879*33385282^(5/9) 2865699999302091 a001 1201881744/634430159*33385282^(5/9) 2865699999302091 a001 1836311903/969323029*33385282^(5/9) 2865699999302091 a001 267914296/228826127*33385282^(7/12) 2865699999302091 a001 701408733/370248451*33385282^(5/9) 2865699999302091 a001 39088169/141422324*33385282^(2/3) 2865699999302091 a001 233802911/199691526*33385282^(7/12) 2865699999302091 a001 1836311903/1568397607*33385282^(7/12) 2865699999302091 a001 1602508992/1368706081*33385282^(7/12) 2865699999302091 a001 12586269025/10749957122*33385282^(7/12) 2865699999302091 a001 10983760033/9381251041*33385282^(7/12) 2865699999302091 a001 86267571272/73681302247*33385282^(7/12) 2865699999302091 a001 75283811239/64300051206*33385282^(7/12) 2865699999302091 a001 2504730781961/2139295485799*33385282^(7/12) 2865699999302091 a001 365435296162/312119004989*33385282^(7/12) 2865699999302091 a001 139583862445/119218851371*33385282^(7/12) 2865699999302091 a001 53316291173/45537549124*33385282^(7/12) 2865699999302091 a001 20365011074/17393796001*33385282^(7/12) 2865699999302091 a001 7778742049/6643838879*33385282^(7/12) 2865699999302091 a001 2971215073/2537720636*33385282^(7/12) 2865699999302091 a001 39088169/370248451*33385282^(13/18) 2865699999302091 a001 1134903170/969323029*33385282^(7/12) 2865699999302091 a001 433494437/370248451*33385282^(7/12) 2865699999302091 a001 165580141/228826127*33385282^(11/18) 2865699999302091 a001 39088169/599074578*33385282^(3/4) 2865699999302091 a001 5702887/20633239*12752043^(12/17) 2865699999302091 a001 32951280099/54018521*33385282^(2/9) 2865699999302091 a001 66978574/35355581*33385282^(5/9) 2865699999302091 a001 433494437/599074578*33385282^(11/18) 2865699999302091 a001 1134903170/1568397607*33385282^(11/18) 2865699999302091 a001 2971215073/4106118243*33385282^(11/18) 2865699999302091 a001 7778742049/10749957122*33385282^(11/18) 2865699999302091 a001 20365011074/28143753123*33385282^(11/18) 2865699999302091 a001 53316291173/73681302247*33385282^(11/18) 2865699999302091 a001 139583862445/192900153618*33385282^(11/18) 2865699999302091 a001 10610209857723/14662949395604*33385282^(11/18) 2865699999302091 a001 591286729879/817138163596*33385282^(11/18) 2865699999302091 a001 225851433717/312119004989*33385282^(11/18) 2865699999302091 a001 86267571272/119218851371*33385282^(11/18) 2865699999302091 a001 32951280099/45537549124*33385282^(11/18) 2865699999302091 a001 12586269025/17393796001*33385282^(11/18) 2865699999302091 a001 4807526976/6643838879*33385282^(11/18) 2865699999302091 a001 1836311903/2537720636*33385282^(11/18) 2865699999302091 a001 701408733/969323029*33385282^(11/18) 2865699999302091 a001 10182505537/16692641*12752043^(4/17) 2865699999302091 a001 267914296/370248451*33385282^(11/18) 2865699999302091 a001 20365011074/54018521*33385282^(1/4) 2865699999302091 a001 39088169/969323029*33385282^(7/9) 2865699999302091 a001 102334155/141422324*33385282^(11/18) 2865699999302091 a001 165580141/141422324*33385282^(7/12) 2865699999302091 a001 102334155/370248451*33385282^(2/3) 2865699999302091 a001 12586269025/54018521*33385282^(5/18) 2865699999302091 a001 365435296162/87403803*12752043^(2/17) 2865699999302091 a001 267914296/969323029*33385282^(2/3) 2865699999302091 a001 701408733/2537720636*33385282^(2/3) 2865699999302091 a001 1836311903/6643838879*33385282^(2/3) 2865699999302091 a001 4807526976/17393796001*33385282^(2/3) 2865699999302091 a001 12586269025/45537549124*33385282^(2/3) 2865699999302091 a001 32951280099/119218851371*33385282^(2/3) 2865699999302091 a001 86267571272/312119004989*33385282^(2/3) 2865699999302091 a001 225851433717/817138163596*33385282^(2/3) 2865699999302091 a001 1548008755920/5600748293801*33385282^(2/3) 2865699999302091 a001 139583862445/505019158607*33385282^(2/3) 2865699999302091 a001 53316291173/192900153618*33385282^(2/3) 2865699999302091 a001 20365011074/73681302247*33385282^(2/3) 2865699999302091 a001 7778742049/28143753123*33385282^(2/3) 2865699999302091 a001 2971215073/10749957122*33385282^(2/3) 2865699999302091 a001 1134903170/4106118243*33385282^(2/3) 2865699999302091 a001 433494437/1568397607*33385282^(2/3) 2865699999302091 a001 165580141/599074578*33385282^(2/3) 2865699999302092 a001 39088169/2537720636*33385282^(5/6) 2865699999302092 a001 63245986/228826127*33385282^(2/3) 2865699999302092 a001 102334155/969323029*33385282^(13/18) 2865699999302092 a001 4807526976/54018521*33385282^(1/3) 2865699999302092 a001 66978574/634430159*33385282^(13/18) 2865699999302092 a001 701408733/6643838879*33385282^(13/18) 2865699999302092 a001 1836311903/17393796001*33385282^(13/18) 2865699999302092 a001 1201881744/11384387281*33385282^(13/18) 2865699999302092 a001 12586269025/119218851371*33385282^(13/18) 2865699999302092 a001 32951280099/312119004989*33385282^(13/18) 2865699999302092 a001 21566892818/204284540899*33385282^(13/18) 2865699999302092 a001 225851433717/2139295485799*33385282^(13/18) 2865699999302092 a001 182717648081/1730726404001*33385282^(13/18) 2865699999302092 a001 139583862445/1322157322203*33385282^(13/18) 2865699999302092 a001 53316291173/505019158607*33385282^(13/18) 2865699999302092 a001 10182505537/96450076809*33385282^(13/18) 2865699999302092 a001 7778742049/73681302247*33385282^(13/18) 2865699999302092 a001 2971215073/28143753123*33385282^(13/18) 2865699999302092 a001 567451585/5374978561*33385282^(13/18) 2865699999302092 a001 433494437/4106118243*33385282^(13/18) 2865699999302092 a001 14619165/224056801*33385282^(3/4) 2865699999302092 a001 165580141/1568397607*33385282^(13/18) 2865699999302092 a001 39088169/6643838879*33385282^(8/9) 2865699999302092 a001 267914296/4106118243*33385282^(3/4) 2865699999302092 a001 701408733/10749957122*33385282^(3/4) 2865699999302092 a001 1836311903/28143753123*33385282^(3/4) 2865699999302092 a001 686789568/10525900321*33385282^(3/4) 2865699999302092 a001 12586269025/192900153618*33385282^(3/4) 2865699999302092 a001 32951280099/505019158607*33385282^(3/4) 2865699999302092 a001 86267571272/1322157322203*33385282^(3/4) 2865699999302092 a001 32264490531/494493258286*33385282^(3/4) 2865699999302092 a001 591286729879/9062201101803*33385282^(3/4) 2865699999302092 a001 1548008755920/23725150497407*33385282^(3/4) 2865699999302092 a001 139583862445/2139295485799*33385282^(3/4) 2865699999302092 a001 53316291173/817138163596*33385282^(3/4) 2865699999302092 a001 20365011074/312119004989*33385282^(3/4) 2865699999302092 a001 7778742049/119218851371*33385282^(3/4) 2865699999302092 a001 2971215073/45537549124*33385282^(3/4) 2865699999302092 a001 1134903170/17393796001*33385282^(3/4) 2865699999302092 a001 433494437/6643838879*33385282^(3/4) 2865699999302092 a001 9303105/230701876*33385282^(7/9) 2865699999302092 a001 165580141/2537720636*33385282^(3/4) 2865699999302092 a001 583600122205489/20365011074 2865699999302092 a001 24157817/54018521*4106118243^(1/2) 2865699999302092 a001 39088169/10749957122*33385282^(11/12) 2865699999302092 a001 1836311903/54018521*33385282^(7/18) 2865699999302092 a001 267914296/6643838879*33385282^(7/9) 2865699999302092 a001 31622993/299537289*33385282^(13/18) 2865699999302092 a001 701408733/17393796001*33385282^(7/9) 2865699999302092 a001 1836311903/45537549124*33385282^(7/9) 2865699999302092 a001 4807526976/119218851371*33385282^(7/9) 2865699999302092 a001 1144206275/28374454999*33385282^(7/9) 2865699999302092 a001 32951280099/817138163596*33385282^(7/9) 2865699999302092 a001 86267571272/2139295485799*33385282^(7/9) 2865699999302092 a001 225851433717/5600748293801*33385282^(7/9) 2865699999302092 a001 365435296162/9062201101803*33385282^(7/9) 2865699999302092 a001 139583862445/3461452808002*33385282^(7/9) 2865699999302092 a001 53316291173/1322157322203*33385282^(7/9) 2865699999302092 a001 20365011074/505019158607*33385282^(7/9) 2865699999302092 a001 7778742049/192900153618*33385282^(7/9) 2865699999302092 a001 2971215073/73681302247*33385282^(7/9) 2865699999302092 a001 1134903170/28143753123*33385282^(7/9) 2865699999302092 a001 433494437/10749957122*33385282^(7/9) 2865699999302092 a001 956722026041/228826127*12752043^(2/17) 2865699999302092 a001 591286729879/54018521*12752043^(1/17) 2865699999302092 a001 165580141/4106118243*33385282^(7/9) 2865699999302092 a001 39088169/17393796001*33385282^(17/18) 2865699999302092 a001 1134903170/54018521*33385282^(5/12) 2865699999302092 a001 2504730781961/599074578*12752043^(2/17) 2865699999302092 a001 6557470319842/1568397607*12752043^(2/17) 2865699999302092 a001 10610209857723/2537720636*12752043^(2/17) 2865699999302092 a001 63245986/969323029*33385282^(3/4) 2865699999302092 a001 4052739537881/969323029*12752043^(2/17) 2865699999302092 a001 102334155/6643838879*33385282^(5/6) 2865699999302092 a001 1548008755920/370248451*12752043^(2/17) 2865699999302092 a001 701408733/54018521*33385282^(4/9) 2865699999302092 a001 9238424/599786069*33385282^(5/6) 2865699999302092 a001 701408733/45537549124*33385282^(5/6) 2865699999302092 a001 63245986/1568397607*33385282^(7/9) 2865699999302092 a001 1836311903/119218851371*33385282^(5/6) 2865699999302092 a001 4807526976/312119004989*33385282^(5/6) 2865699999302092 a001 12586269025/817138163596*33385282^(5/6) 2865699999302092 a001 32951280099/2139295485799*33385282^(5/6) 2865699999302092 a001 86267571272/5600748293801*33385282^(5/6) 2865699999302092 a001 7787980473/505618944676*33385282^(5/6) 2865699999302092 a001 365435296162/23725150497407*33385282^(5/6) 2865699999302092 a001 139583862445/9062201101803*33385282^(5/6) 2865699999302092 a001 53316291173/3461452808002*33385282^(5/6) 2865699999302092 a001 20365011074/1322157322203*33385282^(5/6) 2865699999302092 a001 7778742049/505019158607*33385282^(5/6) 2865699999302092 a001 2971215073/192900153618*33385282^(5/6) 2865699999302092 a001 1134903170/73681302247*33385282^(5/6) 2865699999302092 a001 433494437/28143753123*33385282^(5/6) 2865699999302092 a001 165580141/10749957122*33385282^(5/6) 2865699999302092 a001 39088169/54018521*33385282^(11/18) 2865699999302092 a001 591286729879/141422324*12752043^(2/17) 2865699999302092 a001 102334155/17393796001*33385282^(8/9) 2865699999302092 a001 267914296/54018521*33385282^(1/2) 2865699999302092 a001 66978574/11384387281*33385282^(8/9) 2865699999302092 a001 701408733/119218851371*33385282^(8/9) 2865699999302092 a001 1836311903/312119004989*33385282^(8/9) 2865699999302092 a001 1201881744/204284540899*33385282^(8/9) 2865699999302092 a001 12586269025/2139295485799*33385282^(8/9) 2865699999302092 a001 32951280099/5600748293801*33385282^(8/9) 2865699999302092 a001 1135099622/192933544679*33385282^(8/9) 2865699999302092 a001 139583862445/23725150497407*33385282^(8/9) 2865699999302092 a001 53316291173/9062201101803*33385282^(8/9) 2865699999302092 a001 10182505537/1730726404001*33385282^(8/9) 2865699999302092 a001 7778742049/1322157322203*33385282^(8/9) 2865699999302092 a001 2971215073/505019158607*33385282^(8/9) 2865699999302092 a001 63245986/4106118243*33385282^(5/6) 2865699999302092 a001 567451585/96450076809*33385282^(8/9) 2865699999302092 a001 433494437/73681302247*33385282^(8/9) 2865699999302092 a001 831985/228811001*33385282^(11/12) 2865699999302092 a001 165580141/28143753123*33385282^(8/9) 2865699999302092 a001 24157817/87403803*33385282^(2/3) 2865699999302092 a001 267914296/73681302247*33385282^(11/12) 2865699999302092 a001 233802911/64300051206*33385282^(11/12) 2865699999302092 a001 102334155/54018521*33385282^(5/9) 2865699999302092 a001 1836311903/505019158607*33385282^(11/12) 2865699999302092 a001 1602508992/440719107401*33385282^(11/12) 2865699999302092 a001 12586269025/3461452808002*33385282^(11/12) 2865699999302092 a001 10983760033/3020733700601*33385282^(11/12) 2865699999302092 a001 86267571272/23725150497407*33385282^(11/12) 2865699999302092 a001 53316291173/14662949395604*33385282^(11/12) 2865699999302092 a001 20365011074/5600748293801*33385282^(11/12) 2865699999302092 a001 7778742049/2139295485799*33385282^(11/12) 2865699999302092 a001 2971215073/817138163596*33385282^(11/12) 2865699999302092 a001 1134903170/312119004989*33385282^(11/12) 2865699999302092 a001 433494437/119218851371*33385282^(11/12) 2865699999302092 a001 102334155/45537549124*33385282^(17/18) 2865699999302092 a001 165580141/45537549124*33385282^(11/12) 2865699999302092 a001 267914296/119218851371*33385282^(17/18) 2865699999302092 a001 3524667/1568437211*33385282^(17/18) 2865699999302092 a001 1836311903/817138163596*33385282^(17/18) 2865699999302092 a001 4807526976/2139295485799*33385282^(17/18) 2865699999302092 a001 12586269025/5600748293801*33385282^(17/18) 2865699999302092 a001 32951280099/14662949395604*33385282^(17/18) 2865699999302092 a001 53316291173/23725150497407*33385282^(17/18) 2865699999302092 a001 20365011074/9062201101803*33385282^(17/18) 2865699999302092 a001 7778742049/3461452808002*33385282^(17/18) 2865699999302092 a001 2971215073/1322157322203*33385282^(17/18) 2865699999302092 a001 31622993/5374978561*33385282^(8/9) 2865699999302092 a001 1134903170/505019158607*33385282^(17/18) 2865699999302092 a001 433494437/192900153618*33385282^(17/18) 2865699999302092 a001 165580141/73681302247*33385282^(17/18) 2865699999302092 a001 63245986/17393796001*33385282^(11/12) 2865699999302092 a001 39088169/20633239*20633239^(4/7) 2865699999302092 a001 139583862445/20633239*7881196^(1/11) 2865699999302092 a001 1/7465176*(1/2+1/2*5^(1/2))^59 2865699999302092 a001 63245986/28143753123*33385282^(17/18) 2865699999302092 a001 7778742049/33385282*12752043^(5/17) 2865699999302092 a001 63245986/54018521*33385282^(7/12) 2865699999302092 a001 139583862445/87403803*12752043^(3/17) 2865699999302093 a001 24157817/228826127*33385282^(13/18) 2865699999302093 a001 9227465/54018521*20633239^(5/7) 2865699999302093 a001 24157817/370248451*33385282^(3/4) 2865699999302093 a001 24157817/599074578*33385282^(7/9) 2865699999302093 a001 365435296162/228826127*12752043^(3/17) 2865699999302093 a001 225851433717/54018521*12752043^(2/17) 2865699999302093 a001 956722026041/599074578*12752043^(3/17) 2865699999302093 a001 2504730781961/1568397607*12752043^(3/17) 2865699999302093 a001 6557470319842/4106118243*12752043^(3/17) 2865699999302093 a001 10610209857723/6643838879*12752043^(3/17) 2865699999302093 a001 4052739537881/2537720636*12752043^(3/17) 2865699999302093 a001 1548008755920/969323029*12752043^(3/17) 2865699999302093 a001 24157817/1568397607*33385282^(5/6) 2865699999302093 a001 591286729879/370248451*12752043^(3/17) 2865699999302093 a001 225851433717/141422324*12752043^(3/17) 2865699999302093 a001 24157817/4106118243*33385282^(8/9) 2865699999302093 a001 24157817/6643838879*33385282^(11/12) 2865699999302093 a001 24157817/10749957122*33385282^(17/18) 2865699999302093 a001 2971215073/33385282*12752043^(6/17) 2865699999302093 a001 24157817/20633239*20633239^(3/5) 2865699999302094 a001 53316291173/87403803*12752043^(4/17) 2865699999302094 a001 433494437/20633239*20633239^(3/7) 2865699999302094 a001 701408733/20633239*20633239^(2/5) 2865699999302094 a001 9227465/33385282*141422324^(8/13) 2865699999302094 a001 139583862445/228826127*12752043^(4/17) 2865699999302094 a001 86267571272/54018521*12752043^(3/17) 2865699999302094 a001 182717648081/299537289*12752043^(4/17) 2865699999302094 a001 3524578/228826127*7881196^(10/11) 2865699999302094 a001 956722026041/1568397607*12752043^(4/17) 2865699999302094 a001 2504730781961/4106118243*12752043^(4/17) 2865699999302094 a001 3278735159921/5374978561*12752043^(4/17) 2865699999302094 a001 10610209857723/17393796001*12752043^(4/17) 2865699999302094 a001 4052739537881/6643838879*12752043^(4/17) 2865699999302094 a001 1134903780/1860499*12752043^(4/17) 2865699999302094 a001 591286729879/969323029*12752043^(4/17) 2865699999302094 a001 9227465/33385282*2537720636^(8/15) 2865699999302094 a001 9227465/33385282*45537549124^(8/17) 2865699999302094 a001 14930352/20633239*312119004989^(2/5) 2865699999302094 a001 9227465/33385282*(1/2+1/2*5^(1/2))^24 2865699999302094 a001 14930352/20633239*(1/2+1/2*5^(1/2))^22 2865699999302094 a001 9227465/33385282*192900153618^(4/9) 2865699999302094 a001 9227465/33385282*73681302247^(6/13) 2865699999302094 a001 14930352/20633239*10749957122^(11/24) 2865699999302094 a001 9227465/33385282*10749957122^(1/2) 2865699999302094 a001 956731253595/33385604 2865699999302094 a001 14930352/20633239*4106118243^(11/23) 2865699999302094 a001 9227465/33385282*4106118243^(12/23) 2865699999302094 a001 14930352/20633239*1568397607^(1/2) 2865699999302094 a001 9227465/33385282*1568397607^(6/11) 2865699999302094 a001 14930352/20633239*599074578^(11/21) 2865699999302094 a001 9227465/33385282*599074578^(4/7) 2865699999302094 a001 225851433717/370248451*12752043^(4/17) 2865699999302094 a001 14930352/20633239*228826127^(11/20) 2865699999302094 a001 9227465/33385282*228826127^(3/5) 2865699999302094 a001 21566892818/35355581*12752043^(4/17) 2865699999302094 a001 14930352/20633239*87403803^(11/19) 2865699999302094 a001 9227465/33385282*87403803^(12/19) 2865699999302094 a001 567451585/16692641*12752043^(7/17) 2865699999302095 a001 4807526976/20633239*20633239^(2/7) 2865699999302095 a001 20365011074/87403803*12752043^(5/17) 2865699999302095 a001 182717648081/16692641*4870847^(1/16) 2865699999302095 a001 20365011074/12752043*4870847^(3/16) 2865699999302095 a001 53316291173/228826127*12752043^(5/17) 2865699999302095 a001 32951280099/54018521*12752043^(4/17) 2865699999302095 a001 139583862445/599074578*12752043^(5/17) 2865699999302095 a001 365435296162/1568397607*12752043^(5/17) 2865699999302095 a001 956722026041/4106118243*12752043^(5/17) 2865699999302095 a001 2504730781961/10749957122*12752043^(5/17) 2865699999302095 a001 6557470319842/28143753123*12752043^(5/17) 2865699999302095 a001 10610209857723/45537549124*12752043^(5/17) 2865699999302095 a001 4052739537881/17393796001*12752043^(5/17) 2865699999302095 a001 1548008755920/6643838879*12752043^(5/17) 2865699999302095 a001 591286729879/2537720636*12752043^(5/17) 2865699999302095 a001 225851433717/969323029*12752043^(5/17) 2865699999302095 a001 86267571272/370248451*12752043^(5/17) 2865699999302095 a001 63246219/271444*12752043^(5/17) 2865699999302095 a001 20365011074/20633239*20633239^(1/5) 2865699999302095 a001 433494437/33385282*12752043^(8/17) 2865699999302095 a001 14930352/20633239*33385282^(11/18) 2865699999302096 a001 53316291173/20633239*20633239^(1/7) 2865699999302096 a001 7778742049/87403803*12752043^(6/17) 2865699999302096 a001 9227465/33385282*33385282^(2/3) 2865699999302096 a001 20365011074/228826127*12752043^(6/17) 2865699999302096 a001 12586269025/54018521*12752043^(5/17) 2865699999302096 a001 53316291173/599074578*12752043^(6/17) 2865699999302096 a001 139583862445/1568397607*12752043^(6/17) 2865699999302096 a001 365435296162/4106118243*12752043^(6/17) 2865699999302096 a001 956722026041/10749957122*12752043^(6/17) 2865699999302096 a001 2504730781961/28143753123*12752043^(6/17) 2865699999302096 a001 6557470319842/73681302247*12752043^(6/17) 2865699999302096 a001 10610209857723/119218851371*12752043^(6/17) 2865699999302096 a001 4052739537881/45537549124*12752043^(6/17) 2865699999302096 a001 1548008755920/17393796001*12752043^(6/17) 2865699999302096 a001 591286729879/6643838879*12752043^(6/17) 2865699999302096 a001 225851433717/2537720636*12752043^(6/17) 2865699999302096 a001 86267571272/969323029*12752043^(6/17) 2865699999302096 a001 133957148/16692641*12752043^(1/2) 2865699999302096 a001 32951280099/370248451*12752043^(6/17) 2865699999302096 a001 9227465/87403803*141422324^(2/3) 2865699999302096 a001 39088169/20633239*2537720636^(4/9) 2865699999302096 a001 39088169/20633239*(1/2+1/2*5^(1/2))^20 2865699999302096 a001 39088169/20633239*23725150497407^(5/16) 2865699999302096 a001 39088169/20633239*505019158607^(5/14) 2865699999302096 a001 39088169/20633239*73681302247^(5/13) 2865699999302096 a001 9227465/87403803*73681302247^(1/2) 2865699999302096 a001 39088169/20633239*28143753123^(2/5) 2865699999302096 a001 72136942272317/2517253805 2865699999302096 a001 39088169/20633239*10749957122^(5/12) 2865699999302096 a001 9227465/87403803*10749957122^(13/24) 2865699999302096 a001 39088169/20633239*4106118243^(10/23) 2865699999302096 a001 9227465/87403803*4106118243^(13/23) 2865699999302096 a001 39088169/20633239*1568397607^(5/11) 2865699999302096 a001 9227465/87403803*1568397607^(13/22) 2865699999302096 a001 39088169/20633239*599074578^(10/21) 2865699999302096 a001 9227465/87403803*599074578^(13/21) 2865699999302096 a001 12586269025/141422324*12752043^(6/17) 2865699999302096 a001 39088169/20633239*228826127^(1/2) 2865699999302096 a001 9227465/87403803*228826127^(13/20) 2865699999302096 a001 39088169/20633239*87403803^(10/19) 2865699999302096 a001 9227465/10749957122*141422324^(12/13) 2865699999302096 a001 9303105/1875749*141422324^(6/13) 2865699999302096 a001 9227465/2537720636*141422324^(11/13) 2865699999302096 a001 9227465/87403803*87403803^(13/19) 2865699999302096 a001 9227465/599074578*141422324^(10/13) 2865699999302096 a001 9303105/1875749*2537720636^(2/5) 2865699999302096 a001 9227465/228826127*17393796001^(4/7) 2865699999302096 a001 9303105/1875749*45537549124^(6/17) 2865699999302096 a001 9227465/228826127*14662949395604^(4/9) 2865699999302096 a001 9303105/1875749*(1/2+1/2*5^(1/2))^18 2865699999302096 a001 9303105/1875749*192900153618^(1/3) 2865699999302096 a001 9227465/228826127*73681302247^(7/13) 2865699999302096 a001 314761611189025/10983760033 2865699999302096 a001 9303105/1875749*10749957122^(3/8) 2865699999302096 a001 9227465/228826127*10749957122^(7/12) 2865699999302096 a001 9303105/1875749*4106118243^(9/23) 2865699999302096 a001 9227465/228826127*4106118243^(14/23) 2865699999302096 a001 9303105/1875749*1568397607^(9/22) 2865699999302096 a001 9227465/228826127*1568397607^(7/11) 2865699999302096 a001 433494437/20633239*141422324^(5/13) 2865699999302096 a001 9303105/1875749*599074578^(3/7) 2865699999302096 a001 9227465/228826127*599074578^(2/3) 2865699999302096 a001 1134903170/20633239*141422324^(1/3) 2865699999302096 a001 1836311903/20633239*141422324^(4/13) 2865699999302096 a001 7778742049/20633239*141422324^(3/13) 2865699999302096 a001 9303105/1875749*228826127^(9/20) 2865699999302096 a001 32951280099/20633239*141422324^(2/13) 2865699999302096 a001 9227465/228826127*228826127^(7/10) 2865699999302096 a001 139583862445/20633239*141422324^(1/13) 2865699999302096 a001 9227465/599074578*2537720636^(2/3) 2865699999302096 a001 9227465/599074578*45537549124^(10/17) 2865699999302096 a001 9227465/599074578*312119004989^(6/11) 2865699999302096 a001 9227465/599074578*14662949395604^(10/21) 2865699999302096 a001 9238424/711491*(1/2+1/2*5^(1/2))^16 2865699999302096 a001 9238424/711491*23725150497407^(1/4) 2865699999302096 a001 9227465/599074578*192900153618^(5/9) 2865699999302096 a001 309021223667455/10783446409 2865699999302096 a001 9238424/711491*73681302247^(4/13) 2865699999302096 a001 9227465/599074578*28143753123^(3/5) 2865699999302096 a001 9238424/711491*10749957122^(1/3) 2865699999302096 a001 9227465/599074578*10749957122^(5/8) 2865699999302096 a001 9238424/711491*4106118243^(8/23) 2865699999302096 a001 9227465/599074578*4106118243^(15/23) 2865699999302096 a001 9238424/711491*1568397607^(4/11) 2865699999302096 a001 9227465/599074578*1568397607^(15/22) 2865699999302096 a001 9238424/711491*599074578^(8/21) 2865699999302096 a001 9227465/599074578*599074578^(5/7) 2865699999302096 a001 701408733/20633239*17393796001^(2/7) 2865699999302096 a001 701408733/20633239*14662949395604^(2/9) 2865699999302096 a001 701408733/20633239*(1/2+1/2*5^(1/2))^14 2865699999302096 a001 165954475242355/5791062403 2865699999302096 a001 9227465/1568397607*73681302247^(8/13) 2865699999302096 a001 701408733/20633239*10749957122^(7/24) 2865699999302096 a001 9227465/1568397607*10749957122^(2/3) 2865699999302096 a001 701408733/20633239*4106118243^(7/23) 2865699999302096 a001 9227465/1568397607*4106118243^(16/23) 2865699999302096 a001 701408733/20633239*1568397607^(7/22) 2865699999302096 a001 9227465/192900153618*2537720636^(14/15) 2865699999302096 a001 9227465/73681302247*2537720636^(8/9) 2865699999302096 a001 9227465/45537549124*2537720636^(13/15) 2865699999302096 a001 9227465/10749957122*2537720636^(4/5) 2865699999302096 a001 9227465/1568397607*1568397607^(8/11) 2865699999302096 a001 1836311903/20633239*2537720636^(4/15) 2865699999302096 a001 9227465/6643838879*2537720636^(7/9) 2865699999302096 a001 9227465/4106118243*45537549124^(2/3) 2865699999302096 a001 1836311903/20633239*45537549124^(4/17) 2865699999302096 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^12 2865699999302096 a001 16944503814015895/591286729879 2865699999302096 a001 1836311903/20633239*192900153618^(2/9) 2865699999302096 a001 1836311903/20633239*73681302247^(3/13) 2865699999302096 a001 1836311903/20633239*10749957122^(1/4) 2865699999302096 a001 9227465/4106118243*10749957122^(17/24) 2865699999302096 a001 1836311903/20633239*4106118243^(6/23) 2865699999302096 a001 4807526976/20633239*2537720636^(2/9) 2865699999302096 a001 7778742049/20633239*2537720636^(1/5) 2865699999302096 a001 32951280099/20633239*2537720636^(2/15) 2865699999302096 a001 53316291173/20633239*2537720636^(1/9) 2865699999302096 a001 9227465/4106118243*4106118243^(17/23) 2865699999302096 a001 139583862445/20633239*2537720636^(1/15) 2865699999302096 a001 9227465/10749957122*45537549124^(12/17) 2865699999302096 a001 4807526976/20633239*312119004989^(2/11) 2865699999302096 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^10 2865699999302096 a001 61612898482772/2150012161 2865699999302096 a001 9227465/10749957122*192900153618^(2/3) 2865699999302096 a001 9227465/10749957122*73681302247^(9/13) 2865699999302096 a001 4807526976/20633239*28143753123^(1/5) 2865699999302096 a001 4807526976/20633239*10749957122^(5/24) 2865699999302096 a001 9227465/192900153618*17393796001^(6/7) 2865699999302096 a001 9227465/10749957122*10749957122^(3/4) 2865699999302096 a001 9227465/28143753123*817138163596^(2/3) 2865699999302096 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^8 2865699999302096 a001 1144206275/1875749*23725150497407^(1/8) 2865699999302096 a001 1144206275/1875749*505019158607^(1/7) 2865699999302096 a001 1144206275/1875749*73681302247^(2/13) 2865699999302096 a001 9227465/3461452808002*45537549124^(16/17) 2865699999302096 a001 9227465/192900153618*45537549124^(14/17) 2865699999302096 a001 9227465/817138163596*45537549124^(15/17) 2865699999302096 a001 32951280099/20633239*45537549124^(2/17) 2865699999302096 a001 9227465/73681302247*312119004989^(8/11) 2865699999302096 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^6 2865699999302096 a001 101352261272906345/3536736619241 2865699999302096 a001 9227465/192900153618*14662949395604^(2/3) 2865699999302096 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^4 2865699999302096 a001 86267571272/20633239*23725150497407^(1/16) 2865699999302096 a001 9227465/192900153618*505019158607^(3/4) 2865699999302096 a001 139583862445/20633239*45537549124^(1/17) 2865699999302096 a001 9227465/9062201101803*312119004989^(10/11) 2865699999302096 a001 9227465/192900153618*192900153618^(7/9) 2865699999302096 a001 7787980473/711491*(1/2+1/2*5^(1/2))^2 2865699999302096 a006 5^(1/2)*Fibonacci(58)/Lucas(35)/sqrt(5) 2865699999302096 a001 9227465/14662949395604*14662949395604^(17/21) 2865699999302096 a001 9227465/23725150497407*505019158607^(13/14) 2865699999302096 a001 139583862445/20633239*14662949395604^(1/21) 2865699999302096 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^3 2865699999302096 a001 9227465/3461452808002*192900153618^(8/9) 2865699999302096 a001 9227465/14662949395604*192900153618^(17/18) 2865699999302096 a001 53316291173/20633239*312119004989^(1/11) 2865699999302096 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^5 2865699999302096 a001 9227465/45537549124*45537549124^(13/17) 2865699999302096 a001 9227465/505019158607*73681302247^(11/13) 2865699999302096 a001 9227465/3461452808002*73681302247^(12/13) 2865699999302096 a001 1144206275/1875749*10749957122^(1/6) 2865699999302096 a001 53316291173/20633239*28143753123^(1/10) 2865699999302096 a001 7787980473/711491*10749957122^(1/24) 2865699999302096 a001 9227465/45537549124*14662949395604^(13/21) 2865699999302096 a001 20365011074/20633239*14662949395604^(1/9) 2865699999302096 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^7 2865699999302096 a001 9227465/45537549124*192900153618^(13/18) 2865699999302096 a001 139583862445/20633239*10749957122^(1/16) 2865699999302096 a001 9227465/45537549124*73681302247^(3/4) 2865699999302096 a001 86267571272/20633239*10749957122^(1/12) 2865699999302096 a001 9227465/73681302247*28143753123^(4/5) 2865699999302096 a001 32951280099/20633239*10749957122^(1/8) 2865699999302096 a001 9227465/817138163596*28143753123^(9/10) 2865699999302096 a001 7787980473/711491*4106118243^(1/23) 2865699999302096 a001 7778742049/20633239*45537549124^(3/17) 2865699999302096 a001 71778070001175785/2504730781961 2865699999302096 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^9 2865699999302096 a001 7778742049/20633239*192900153618^(1/6) 2865699999302096 a001 4807526976/20633239*4106118243^(5/23) 2865699999302096 a001 7778742049/20633239*10749957122^(3/16) 2865699999302096 a001 86267571272/20633239*4106118243^(2/23) 2865699999302096 a001 9227465/28143753123*10749957122^(19/24) 2865699999302096 a001 9227465/73681302247*10749957122^(5/6) 2865699999302096 a001 9227465/45537549124*10749957122^(13/16) 2865699999302096 a001 9227465/192900153618*10749957122^(7/8) 2865699999302096 a001 32951280099/20633239*4106118243^(3/23) 2865699999302096 a001 9227465/505019158607*10749957122^(11/12) 2865699999302096 a001 9227465/817138163596*10749957122^(15/16) 2865699999302096 a001 9227465/1322157322203*10749957122^(23/24) 2865699999302096 a001 1144206275/1875749*4106118243^(4/23) 2865699999302096 a001 7787980473/711491*1568397607^(1/22) 2865699999302096 a001 9227465/6643838879*17393796001^(5/7) 2865699999302096 a001 9227465/6643838879*312119004989^(7/11) 2865699999302096 a001 27416783093579945/956722026041 2865699999302096 a001 9227465/6643838879*14662949395604^(5/9) 2865699999302096 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^11 2865699999302096 a001 9227465/6643838879*505019158607^(5/8) 2865699999302096 a001 9227465/6643838879*28143753123^(7/10) 2865699999302096 a001 86267571272/20633239*1568397607^(1/11) 2865699999302096 a001 9227465/10749957122*4106118243^(18/23) 2865699999302096 a001 9227465/2537720636*2537720636^(11/15) 2865699999302096 a001 9227465/28143753123*4106118243^(19/23) 2865699999302096 a001 9227465/73681302247*4106118243^(20/23) 2865699999302096 a001 1836311903/20633239*1568397607^(3/11) 2865699999302096 a001 9227465/192900153618*4106118243^(21/23) 2865699999302096 a001 32951280099/20633239*1568397607^(3/22) 2865699999302096 a001 9227465/505019158607*4106118243^(22/23) 2865699999302096 a001 1144206275/1875749*1568397607^(2/11) 2865699999302096 a001 4807526976/20633239*1568397607^(5/22) 2865699999302096 a001 2971215073/20633239*1568397607^(1/4) 2865699999302096 a001 7787980473/711491*599074578^(1/21) 2865699999302096 a001 9227465/2537720636*45537549124^(11/17) 2865699999302096 a001 9227465/2537720636*312119004989^(3/5) 2865699999302096 a001 5236139639782025/182717648081 2865699999302096 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^13 2865699999302096 a001 9227465/2537720636*192900153618^(11/18) 2865699999302096 a001 1134903170/20633239*73681302247^(1/4) 2865699999302096 a001 9227465/2537720636*10749957122^(11/16) 2865699999302096 a001 139583862445/20633239*599074578^(1/14) 2865699999302096 a001 9227465/4106118243*1568397607^(17/22) 2865699999302096 a001 86267571272/20633239*599074578^(2/21) 2865699999302096 a001 9227465/10749957122*1568397607^(9/11) 2865699999302096 a001 9227465/28143753123*1568397607^(19/22) 2865699999302096 a001 9227465/73681302247*1568397607^(10/11) 2865699999302096 a001 9227465/192900153618*1568397607^(21/22) 2865699999302096 a001 32951280099/20633239*599074578^(1/7) 2865699999302096 a001 9227465/2537720636*1568397607^(3/4) 2865699999302096 a001 20365011074/20633239*599074578^(1/6) 2865699999302096 a001 701408733/20633239*599074578^(1/3) 2865699999302096 a001 1144206275/1875749*599074578^(4/21) 2865699999302096 a001 7778742049/20633239*599074578^(3/14) 2865699999302096 a001 4807526976/20633239*599074578^(5/21) 2865699999302096 a001 1836311903/20633239*599074578^(2/7) 2865699999302096 a001 7787980473/711491*228826127^(1/20) 2865699999302096 a001 433494437/20633239*2537720636^(1/3) 2865699999302096 a001 433494437/20633239*45537549124^(5/17) 2865699999302096 a001 800010949022441/27916772489 2865699999302096 a001 433494437/20633239*312119004989^(3/11) 2865699999302096 a001 433494437/20633239*14662949395604^(5/21) 2865699999302096 a001 433494437/20633239*(1/2+1/2*5^(1/2))^15 2865699999302096 a001 9227465/969323029*9062201101803^(1/2) 2865699999302096 a001 433494437/20633239*192900153618^(5/18) 2865699999302096 a001 433494437/20633239*28143753123^(3/10) 2865699999302096 a001 433494437/20633239*10749957122^(5/16) 2865699999302096 a001 9227465/1568397607*599074578^(16/21) 2865699999302096 a001 86267571272/20633239*228826127^(1/10) 2865699999302096 a001 433494437/20633239*599074578^(5/14) 2865699999302096 a001 9227465/4106118243*599074578^(17/21) 2865699999302096 a001 9227465/2537720636*599074578^(11/14) 2865699999302096 a001 9227465/6643838879*599074578^(5/6) 2865699999302096 a001 9227465/10749957122*599074578^(6/7) 2865699999302096 a001 53316291173/20633239*228826127^(1/8) 2865699999302096 a001 9227465/28143753123*599074578^(19/21) 2865699999302096 a001 9227465/45537549124*599074578^(13/14) 2865699999302096 a001 9227465/73681302247*599074578^(20/21) 2865699999302096 a001 32951280099/20633239*228826127^(3/20) 2865699999302096 a001 1144206275/1875749*228826127^(1/5) 2865699999302096 a001 4807526976/20633239*228826127^(1/4) 2865699999302096 a001 9238424/711491*228826127^(2/5) 2865699999302096 a001 1836311903/20633239*228826127^(3/10) 2865699999302096 a001 701408733/20633239*228826127^(7/20) 2865699999302096 a001 7787980473/711491*87403803^(1/19) 2865699999302096 a001 165580141/20633239*45537549124^(1/3) 2865699999302096 a001 1527884955772565/53316291173 2865699999302096 a001 9227465/370248451*1322157322203^(1/2) 2865699999302096 a001 433494437/20633239*228826127^(3/8) 2865699999302097 a001 9227465/599074578*228826127^(3/4) 2865699999302097 a001 86267571272/20633239*87403803^(2/19) 2865699999302097 a001 9227465/1568397607*228826127^(4/5) 2865699999302097 a001 9227465/141422324*141422324^(9/13) 2865699999302097 a001 9227465/4106118243*228826127^(17/20) 2865699999302097 a001 9227465/6643838879*228826127^(7/8) 2865699999302097 a001 165580141/33385282*12752043^(9/17) 2865699999302097 a001 9227465/10749957122*228826127^(9/10) 2865699999302097 a001 9227465/28143753123*228826127^(19/20) 2865699999302097 a001 32951280099/20633239*87403803^(3/19) 2865699999302097 a001 1144206275/1875749*87403803^(4/19) 2865699999302097 a001 4807526976/20633239*87403803^(5/19) 2865699999302097 a001 1836311903/20633239*87403803^(6/19) 2865699999302097 a001 9303105/1875749*87403803^(9/19) 2865699999302097 a001 701408733/20633239*87403803^(7/19) 2865699999302097 a001 7787980473/711491*33385282^(1/18) 2865699999302097 a001 9227465/141422324*2537720636^(3/5) 2865699999302097 a001 291800061102745/10182505537 2865699999302097 a001 9227465/141422324*45537549124^(9/17) 2865699999302097 a001 9227465/141422324*817138163596^(9/19) 2865699999302097 a001 63245986/20633239*817138163596^(1/3) 2865699999302097 a001 63245986/20633239*(1/2+1/2*5^(1/2))^19 2865699999302097 a001 9227465/141422324*192900153618^(1/2) 2865699999302097 a001 9227465/141422324*10749957122^(9/16) 2865699999302097 a001 9227465/141422324*599074578^(9/14) 2865699999302097 a001 9238424/711491*87403803^(8/19) 2865699999302097 a001 2971215073/87403803*12752043^(7/17) 2865699999302097 a001 139583862445/20633239*33385282^(1/12) 2865699999302097 a001 9227465/228826127*87403803^(14/19) 2865699999302097 a001 86267571272/20633239*33385282^(1/9) 2865699999302097 a001 9227465/599074578*87403803^(15/19) 2865699999302097 a001 9227465/1568397607*87403803^(16/19) 2865699999302097 a001 63245986/20633239*87403803^(1/2) 2865699999302097 a001 9227465/4106118243*87403803^(17/19) 2865699999302097 a001 9227465/10749957122*87403803^(18/19) 2865699999302097 a001 32951280099/20633239*33385282^(1/6) 2865699999302097 a001 956722026041/87403803*4870847^(1/16) 2865699999302097 a001 7778742049/228826127*12752043^(7/17) 2865699999302097 a001 4807526976/54018521*12752043^(6/17) 2865699999302097 a001 10182505537/299537289*12752043^(7/17) 2865699999302097 a001 53316291173/1568397607*12752043^(7/17) 2865699999302097 a001 139583862445/4106118243*12752043^(7/17) 2865699999302097 a001 182717648081/5374978561*12752043^(7/17) 2865699999302097 a001 956722026041/28143753123*12752043^(7/17) 2865699999302097 a001 2504730781961/73681302247*12752043^(7/17) 2865699999302097 a001 3278735159921/96450076809*12752043^(7/17) 2865699999302097 a001 10610209857723/312119004989*12752043^(7/17) 2865699999302097 a001 4052739537881/119218851371*12752043^(7/17) 2865699999302097 a001 387002188980/11384387281*12752043^(7/17) 2865699999302097 a001 591286729879/17393796001*12752043^(7/17) 2865699999302097 a001 225851433717/6643838879*12752043^(7/17) 2865699999302097 a001 1135099622/33391061*12752043^(7/17) 2865699999302097 a001 32951280099/969323029*12752043^(7/17) 2865699999302097 a001 12586269025/370248451*12752043^(7/17) 2865699999302097 a001 1144206275/1875749*33385282^(2/9) 2865699999302097 a001 7778742049/20633239*33385282^(1/4) 2865699999302097 a001 1201881744/35355581*12752043^(7/17) 2865699999302097 a001 4807526976/20633239*33385282^(5/18) 2865699999302097 a001 2504730781961/228826127*4870847^(1/16) 2865699999302097 a001 3278735159921/299537289*4870847^(1/16) 2865699999302097 a001 10610209857723/969323029*4870847^(1/16) 2865699999302097 a001 4052739537881/370248451*4870847^(1/16) 2865699999302097 a001 1836311903/20633239*33385282^(1/3) 2865699999302097 a001 24157817/20633239*141422324^(7/13) 2865699999302097 a001 387002188980/35355581*4870847^(1/16) 2865699999302097 a001 9227465/54018521*2537720636^(5/9) 2865699999302097 a001 24157817/20633239*2537720636^(7/15) 2865699999302097 a001 17147339295685/598364773 2865699999302097 a001 24157817/20633239*17393796001^(3/7) 2865699999302097 a001 24157817/20633239*45537549124^(7/17) 2865699999302097 a001 9227465/54018521*312119004989^(5/11) 2865699999302097 a001 24157817/20633239*14662949395604^(1/3) 2865699999302097 a001 24157817/20633239*(1/2+1/2*5^(1/2))^21 2865699999302097 a001 9227465/54018521*3461452808002^(5/12) 2865699999302097 a001 24157817/20633239*192900153618^(7/18) 2865699999302097 a001 9227465/54018521*28143753123^(1/2) 2865699999302097 a001 24157817/20633239*10749957122^(7/16) 2865699999302097 a001 24157817/20633239*599074578^(1/2) 2865699999302097 a001 701408733/20633239*33385282^(7/18) 2865699999302097 a001 9227465/54018521*228826127^(5/8) 2865699999302098 a001 7787980473/711491*12752043^(1/17) 2865699999302098 a001 39088169/20633239*33385282^(5/9) 2865699999302098 a001 433494437/20633239*33385282^(5/12) 2865699999302098 a001 9238424/711491*33385282^(4/9) 2865699999302098 a001 1134903170/87403803*12752043^(8/17) 2865699999302098 a001 31622993/16692641*12752043^(10/17) 2865699999302098 a001 9303105/1875749*33385282^(1/2) 2865699999302098 a001 9227465/87403803*33385282^(13/18) 2865699999302098 a001 1836311903/54018521*12752043^(7/17) 2865699999302098 a001 2971215073/228826127*12752043^(8/17) 2865699999302098 a001 7778742049/599074578*12752043^(8/17) 2865699999302098 a001 20365011074/1568397607*12752043^(8/17) 2865699999302098 a001 53316291173/4106118243*12752043^(8/17) 2865699999302098 a001 139583862445/10749957122*12752043^(8/17) 2865699999302098 a001 365435296162/28143753123*12752043^(8/17) 2865699999302098 a001 956722026041/73681302247*12752043^(8/17) 2865699999302098 a001 2504730781961/192900153618*12752043^(8/17) 2865699999302098 a001 10610209857723/817138163596*12752043^(8/17) 2865699999302098 a001 4052739537881/312119004989*12752043^(8/17) 2865699999302098 a001 1548008755920/119218851371*12752043^(8/17) 2865699999302098 a001 591286729879/45537549124*12752043^(8/17) 2865699999302098 a001 7787980473/599786069*12752043^(8/17) 2865699999302098 a001 86267571272/6643838879*12752043^(8/17) 2865699999302098 a001 32951280099/2537720636*12752043^(8/17) 2865699999302098 a001 12586269025/969323029*12752043^(8/17) 2865699999302098 a001 4807526976/370248451*12752043^(8/17) 2865699999302098 a001 3524578/4870847*4870847^(11/16) 2865699999302098 a001 233802911/29134601*12752043^(1/2) 2865699999302098 a001 1836311903/141422324*12752043^(8/17) 2865699999302098 a001 591286729879/54018521*4870847^(1/16) 2865699999302098 a001 9227465/228826127*33385282^(7/9) 2865699999302098 a001 1836311903/228826127*12752043^(1/2) 2865699999302099 a001 9227465/141422324*33385282^(3/4) 2865699999302099 a001 267084832/33281921*12752043^(1/2) 2865699999302099 a001 86267571272/20633239*12752043^(2/17) 2865699999302099 a001 12586269025/1568397607*12752043^(1/2) 2865699999302099 a001 10983760033/1368706081*12752043^(1/2) 2865699999302099 a001 43133785636/5374978561*12752043^(1/2) 2865699999302099 a001 75283811239/9381251041*12752043^(1/2) 2865699999302099 a001 591286729879/73681302247*12752043^(1/2) 2865699999302099 a001 86000486440/10716675201*12752043^(1/2) 2865699999302099 a001 4052739537881/505019158607*12752043^(1/2) 2865699999302099 a001 3278735159921/408569081798*12752043^(1/2) 2865699999302099 a001 2504730781961/312119004989*12752043^(1/2) 2865699999302099 a001 956722026041/119218851371*12752043^(1/2) 2865699999302099 a001 182717648081/22768774562*12752043^(1/2) 2865699999302099 a001 139583862445/17393796001*12752043^(1/2) 2865699999302099 a001 53316291173/6643838879*12752043^(1/2) 2865699999302099 a001 10182505537/1268860318*12752043^(1/2) 2865699999302099 a001 7778742049/969323029*12752043^(1/2) 2865699999302099 a001 2971215073/370248451*12752043^(1/2) 2865699999302099 a001 9227465/599074578*33385282^(5/6) 2865699999302099 a001 567451585/70711162*12752043^(1/2) 2865699999302099 a001 433494437/87403803*12752043^(9/17) 2865699999302099 a001 9227465/1568397607*33385282^(8/9) 2865699999302099 a001 9227465/2537720636*33385282^(11/12) 2865699999302099 a001 9227465/4106118243*33385282^(17/18) 2865699999302099 a001 24157817/20633239*33385282^(7/12) 2865699999302099 a001 701408733/54018521*12752043^(8/17) 2865699999302099 a001 1134903170/228826127*12752043^(9/17) 2865699999302099 a001 2971215073/599074578*12752043^(9/17) 2865699999302099 a001 7778742049/1568397607*12752043^(9/17) 2865699999302099 a001 20365011074/4106118243*12752043^(9/17) 2865699999302099 a001 53316291173/10749957122*12752043^(9/17) 2865699999302099 a001 139583862445/28143753123*12752043^(9/17) 2865699999302099 a001 365435296162/73681302247*12752043^(9/17) 2865699999302099 a001 956722026041/192900153618*12752043^(9/17) 2865699999302099 a001 2504730781961/505019158607*12752043^(9/17) 2865699999302099 a001 10610209857723/2139295485799*12752043^(9/17) 2865699999302099 a001 4052739537881/817138163596*12752043^(9/17) 2865699999302099 a001 140728068720/28374454999*12752043^(9/17) 2865699999302099 a001 591286729879/119218851371*12752043^(9/17) 2865699999302099 a001 225851433717/45537549124*12752043^(9/17) 2865699999302099 a001 86267571272/17393796001*12752043^(9/17) 2865699999302099 a001 32951280099/6643838879*12752043^(9/17) 2865699999302099 a001 1144206275/230701876*12752043^(9/17) 2865699999302099 a001 4807526976/969323029*12752043^(9/17) 2865699999302099 a001 1836311903/370248451*12752043^(9/17) 2865699999302099 a001 3524578/54018521*7881196^(9/11) 2865699999302099 a001 701408733/141422324*12752043^(9/17) 2865699999302100 a001 433494437/54018521*12752043^(1/2) 2865699999302100 a001 24157817/33385282*12752043^(11/17) 2865699999302100 a001 32951280099/20633239*12752043^(3/17) 2865699999302100 a001 165580141/87403803*12752043^(10/17) 2865699999302100 a001 267914296/54018521*12752043^(9/17) 2865699999302100 a001 433494437/228826127*12752043^(10/17) 2865699999302100 a001 567451585/299537289*12752043^(10/17) 2865699999302100 a001 2971215073/1568397607*12752043^(10/17) 2865699999302100 a001 7778742049/4106118243*12752043^(10/17) 2865699999302100 a001 10182505537/5374978561*12752043^(10/17) 2865699999302100 a001 53316291173/28143753123*12752043^(10/17) 2865699999302100 a001 139583862445/73681302247*12752043^(10/17) 2865699999302100 a001 182717648081/96450076809*12752043^(10/17) 2865699999302100 a001 956722026041/505019158607*12752043^(10/17) 2865699999302100 a001 10610209857723/5600748293801*12752043^(10/17) 2865699999302100 a001 591286729879/312119004989*12752043^(10/17) 2865699999302100 a001 225851433717/119218851371*12752043^(10/17) 2865699999302100 a001 21566892818/11384387281*12752043^(10/17) 2865699999302100 a001 32951280099/17393796001*12752043^(10/17) 2865699999302100 a001 12586269025/6643838879*12752043^(10/17) 2865699999302100 a001 1201881744/634430159*12752043^(10/17) 2865699999302100 a001 1836311903/969323029*12752043^(10/17) 2865699999302100 a001 701408733/370248451*12752043^(10/17) 2865699999302100 a001 66978574/35355581*12752043^(10/17) 2865699999302101 a001 14930352/54018521*12752043^(12/17) 2865699999302101 a001 1144206275/1875749*12752043^(4/17) 2865699999302101 a001 3732588/35355581*12752043^(13/17) 2865699999302101 a001 63245986/87403803*12752043^(11/17) 2865699999302101 a001 102334155/54018521*12752043^(10/17) 2865699999302101 a001 165580141/228826127*12752043^(11/17) 2865699999302101 a001 433494437/599074578*12752043^(11/17) 2865699999302101 a001 1134903170/1568397607*12752043^(11/17) 2865699999302101 a001 2971215073/4106118243*12752043^(11/17) 2865699999302101 a001 7778742049/10749957122*12752043^(11/17) 2865699999302101 a001 20365011074/28143753123*12752043^(11/17) 2865699999302101 a001 53316291173/73681302247*12752043^(11/17) 2865699999302101 a001 139583862445/192900153618*12752043^(11/17) 2865699999302101 a001 10610209857723/14662949395604*12752043^(11/17) 2865699999302101 a001 591286729879/817138163596*12752043^(11/17) 2865699999302101 a001 225851433717/312119004989*12752043^(11/17) 2865699999302101 a001 86267571272/119218851371*12752043^(11/17) 2865699999302101 a001 32951280099/45537549124*12752043^(11/17) 2865699999302101 a001 12586269025/17393796001*12752043^(11/17) 2865699999302101 a001 4807526976/6643838879*12752043^(11/17) 2865699999302101 a001 1836311903/2537720636*12752043^(11/17) 2865699999302101 a001 701408733/969323029*12752043^(11/17) 2865699999302101 a001 267914296/370248451*12752043^(11/17) 2865699999302101 a001 102334155/141422324*12752043^(11/17) 2865699999302102 a001 4807526976/20633239*12752043^(5/17) 2865699999302102 a001 14930352/370248451*12752043^(14/17) 2865699999302102 a001 39088169/54018521*12752043^(11/17) 2865699999302102 a001 39088169/141422324*12752043^(12/17) 2865699999302102 a001 102334155/370248451*12752043^(12/17) 2865699999302102 a001 267914296/969323029*12752043^(12/17) 2865699999302102 a001 701408733/2537720636*12752043^(12/17) 2865699999302102 a001 1836311903/6643838879*12752043^(12/17) 2865699999302102 a001 4807526976/17393796001*12752043^(12/17) 2865699999302102 a001 12586269025/45537549124*12752043^(12/17) 2865699999302102 a001 32951280099/119218851371*12752043^(12/17) 2865699999302102 a001 86267571272/312119004989*12752043^(12/17) 2865699999302102 a001 225851433717/817138163596*12752043^(12/17) 2865699999302102 a001 1548008755920/5600748293801*12752043^(12/17) 2865699999302102 a001 139583862445/505019158607*12752043^(12/17) 2865699999302102 a001 53316291173/192900153618*12752043^(12/17) 2865699999302102 a001 20365011074/73681302247*12752043^(12/17) 2865699999302102 a001 7778742049/28143753123*12752043^(12/17) 2865699999302102 a001 2971215073/10749957122*12752043^(12/17) 2865699999302102 a001 1134903170/4106118243*12752043^(12/17) 2865699999302102 a001 433494437/1568397607*12752043^(12/17) 2865699999302102 a001 165580141/599074578*12752043^(12/17) 2865699999302102 a001 139583862445/33385282*4870847^(1/8) 2865699999302102 a001 63245986/228826127*12752043^(12/17) 2865699999302102 a001 7778742049/12752043*4870847^(1/4) 2865699999302103 a001 1836311903/20633239*12752043^(6/17) 2865699999302103 a001 14930352/969323029*12752043^(15/17) 2865699999302103 a001 24157817/87403803*12752043^(12/17) 2865699999302103 a001 39088169/370248451*12752043^(13/17) 2865699999302103 a001 102334155/969323029*12752043^(13/17) 2865699999302103 a001 85146110326225/2971215073 2865699999302103 a001 9227465/20633239*(1/2+1/2*5^(1/2))^23 2865699999302103 a001 9227465/20633239*4106118243^(1/2) 2865699999302103 a001 66978574/634430159*12752043^(13/17) 2865699999302103 a001 701408733/6643838879*12752043^(13/17) 2865699999302103 a001 1836311903/17393796001*12752043^(13/17) 2865699999302103 a001 1201881744/11384387281*12752043^(13/17) 2865699999302103 a001 12586269025/119218851371*12752043^(13/17) 2865699999302103 a001 32951280099/312119004989*12752043^(13/17) 2865699999302103 a001 21566892818/204284540899*12752043^(13/17) 2865699999302103 a001 225851433717/2139295485799*12752043^(13/17) 2865699999302103 a001 182717648081/1730726404001*12752043^(13/17) 2865699999302103 a001 139583862445/1322157322203*12752043^(13/17) 2865699999302103 a001 53316291173/505019158607*12752043^(13/17) 2865699999302103 a001 10182505537/96450076809*12752043^(13/17) 2865699999302103 a001 7778742049/73681302247*12752043^(13/17) 2865699999302103 a001 2971215073/28143753123*12752043^(13/17) 2865699999302103 a001 567451585/5374978561*12752043^(13/17) 2865699999302103 a001 433494437/4106118243*12752043^(13/17) 2865699999302103 a001 165580141/1568397607*12752043^(13/17) 2865699999302103 a001 31622993/299537289*12752043^(13/17) 2865699999302104 a001 701408733/20633239*12752043^(7/17) 2865699999302104 a001 196452/33391061*12752043^(16/17) 2865699999302104 a001 39088169/969323029*12752043^(14/17) 2865699999302104 a001 7787980473/711491*4870847^(1/16) 2865699999302104 a001 24157817/228826127*12752043^(13/17) 2865699999302104 a001 9303105/230701876*12752043^(14/17) 2865699999302104 a001 267914296/6643838879*12752043^(14/17) 2865699999302104 a001 701408733/17393796001*12752043^(14/17) 2865699999302104 a001 1836311903/45537549124*12752043^(14/17) 2865699999302104 a001 4807526976/119218851371*12752043^(14/17) 2865699999302104 a001 1144206275/28374454999*12752043^(14/17) 2865699999302104 a001 32951280099/817138163596*12752043^(14/17) 2865699999302104 a001 86267571272/2139295485799*12752043^(14/17) 2865699999302104 a001 225851433717/5600748293801*12752043^(14/17) 2865699999302104 a001 591286729879/14662949395604*12752043^(14/17) 2865699999302104 a001 365435296162/9062201101803*12752043^(14/17) 2865699999302104 a001 139583862445/3461452808002*12752043^(14/17) 2865699999302104 a001 53316291173/1322157322203*12752043^(14/17) 2865699999302104 a001 20365011074/505019158607*12752043^(14/17) 2865699999302104 a001 7778742049/192900153618*12752043^(14/17) 2865699999302104 a001 2971215073/73681302247*12752043^(14/17) 2865699999302104 a001 1134903170/28143753123*12752043^(14/17) 2865699999302104 a001 433494437/10749957122*12752043^(14/17) 2865699999302104 a001 165580141/4106118243*12752043^(14/17) 2865699999302104 a001 63245986/1568397607*12752043^(14/17) 2865699999302104 a001 365435296162/87403803*4870847^(1/8) 2865699999302105 a001 9238424/711491*12752043^(8/17) 2865699999302105 a001 956722026041/228826127*4870847^(1/8) 2865699999302105 a001 2504730781961/599074578*4870847^(1/8) 2865699999302105 a001 6557470319842/1568397607*4870847^(1/8) 2865699999302105 a001 10610209857723/2537720636*4870847^(1/8) 2865699999302105 a001 4052739537881/969323029*4870847^(1/8) 2865699999302105 a001 1548008755920/370248451*4870847^(1/8) 2865699999302105 a001 39088169/2537720636*12752043^(15/17) 2865699999302105 a001 591286729879/141422324*4870847^(1/8) 2865699999302105 a001 24157817/599074578*12752043^(14/17) 2865699999302105 a001 102334155/6643838879*12752043^(15/17) 2865699999302105 a001 9238424/599786069*12752043^(15/17) 2865699999302105 a001 701408733/45537549124*12752043^(15/17) 2865699999302105 a001 1836311903/119218851371*12752043^(15/17) 2865699999302105 a001 4807526976/312119004989*12752043^(15/17) 2865699999302105 a001 12586269025/817138163596*12752043^(15/17) 2865699999302105 a001 32951280099/2139295485799*12752043^(15/17) 2865699999302105 a001 86267571272/5600748293801*12752043^(15/17) 2865699999302105 a001 7787980473/505618944676*12752043^(15/17) 2865699999302105 a001 365435296162/23725150497407*12752043^(15/17) 2865699999302105 a001 139583862445/9062201101803*12752043^(15/17) 2865699999302105 a001 53316291173/3461452808002*12752043^(15/17) 2865699999302105 a001 20365011074/1322157322203*12752043^(15/17) 2865699999302105 a001 7778742049/505019158607*12752043^(15/17) 2865699999302105 a001 2971215073/192900153618*12752043^(15/17) 2865699999302105 a001 1134903170/73681302247*12752043^(15/17) 2865699999302105 a001 433494437/28143753123*12752043^(15/17) 2865699999302105 a001 14930352/20633239*12752043^(11/17) 2865699999302105 a001 165580141/20633239*12752043^(1/2) 2865699999302105 a001 165580141/10749957122*12752043^(15/17) 2865699999302105 a001 63245986/4106118243*12752043^(15/17) 2865699999302106 a001 2178309/7881196*4870847^(3/4) 2865699999302106 a001 9303105/1875749*12752043^(9/17) 2865699999302106 a001 225851433717/54018521*4870847^(1/8) 2865699999302106 a001 39088169/6643838879*12752043^(16/17) 2865699999302106 a001 24157817/1568397607*12752043^(15/17) 2865699999302106 a001 102334155/17393796001*12752043^(16/17) 2865699999302106 a001 66978574/11384387281*12752043^(16/17) 2865699999302106 a001 701408733/119218851371*12752043^(16/17) 2865699999302106 a001 1836311903/312119004989*12752043^(16/17) 2865699999302106 a001 1201881744/204284540899*12752043^(16/17) 2865699999302106 a001 12586269025/2139295485799*12752043^(16/17) 2865699999302106 a001 32951280099/5600748293801*12752043^(16/17) 2865699999302106 a001 1135099622/192933544679*12752043^(16/17) 2865699999302106 a001 139583862445/23725150497407*12752043^(16/17) 2865699999302106 a001 53316291173/9062201101803*12752043^(16/17) 2865699999302106 a001 10182505537/1730726404001*12752043^(16/17) 2865699999302106 a001 7778742049/1322157322203*12752043^(16/17) 2865699999302106 a001 2971215073/505019158607*12752043^(16/17) 2865699999302106 a001 567451585/96450076809*12752043^(16/17) 2865699999302106 a001 433494437/73681302247*12752043^(16/17) 2865699999302106 a001 9227465/33385282*12752043^(12/17) 2865699999302106 a001 165580141/28143753123*12752043^(16/17) 2865699999302106 a001 39088169/20633239*12752043^(10/17) 2865699999302106 a001 31622993/5374978561*12752043^(16/17) 2865699999302107 a001 12586269025/4870847*1860498^(1/6) 2865699999302107 a001 24157817/4106118243*12752043^(16/17) 2865699999302107 a001 2/5702887*(1/2+1/2*5^(1/2))^57 2865699999302110 a001 9227465/87403803*12752043^(13/17) 2865699999302110 a001 53316291173/33385282*4870847^(3/16) 2865699999302110 a001 2971215073/12752043*4870847^(5/16) 2865699999302110 a001 39088169/7881196*7881196^(6/11) 2865699999302111 a001 9227465/228826127*12752043^(14/17) 2865699999302112 a001 86267571272/20633239*4870847^(1/8) 2865699999302112 a001 139583862445/87403803*4870847^(3/16) 2865699999302112 a001 9227465/599074578*12752043^(15/17) 2865699999302112 a001 365435296162/228826127*4870847^(3/16) 2865699999302112 a001 956722026041/599074578*4870847^(3/16) 2865699999302112 a001 2504730781961/1568397607*4870847^(3/16) 2865699999302112 a001 6557470319842/4106118243*4870847^(3/16) 2865699999302112 a001 10610209857723/6643838879*4870847^(3/16) 2865699999302112 a001 4052739537881/2537720636*4870847^(3/16) 2865699999302112 a001 1548008755920/969323029*4870847^(3/16) 2865699999302112 a001 591286729879/370248451*4870847^(3/16) 2865699999302113 a001 225851433717/141422324*4870847^(3/16) 2865699999302113 a001 9227465/1568397607*12752043^(16/17) 2865699999302113 a001 9227465/7881196*7881196^(7/11) 2865699999302113 a001 86267571272/54018521*4870847^(3/16) 2865699999302115 a001 165580141/7881196*7881196^(5/11) 2865699999302117 a001 10182505537/16692641*4870847^(1/4) 2865699999302117 a001 1134903170/12752043*4870847^(3/8) 2865699999302118 a001 3524578/12752043*141422324^(8/13) 2865699999302118 a001 3524578/12752043*2537720636^(8/15) 2865699999302118 a001 3524578/12752043*45537549124^(8/17) 2865699999302118 a001 5702887/7881196*312119004989^(2/5) 2865699999302118 a001 3524578/12752043*14662949395604^(8/21) 2865699999302118 a001 3524578/12752043*(1/2+1/2*5^(1/2))^24 2865699999302118 a001 5702887/7881196*(1/2+1/2*5^(1/2))^22 2865699999302118 a001 3524578/12752043*192900153618^(4/9) 2865699999302118 a001 3524578/12752043*73681302247^(6/13) 2865699999302118 a001 5702887/7881196*10749957122^(11/24) 2865699999302118 a001 3524578/12752043*10749957122^(1/2) 2865699999302118 a001 5702887/7881196*4106118243^(11/23) 2865699999302118 a001 3524578/12752043*4106118243^(12/23) 2865699999302118 a001 5702887/7881196*1568397607^(1/2) 2865699999302118 a001 3524578/12752043*1568397607^(6/11) 2865699999302118 a001 225845730974/7880997 2865699999302118 a001 5702887/7881196*599074578^(11/21) 2865699999302118 a001 3524578/12752043*599074578^(4/7) 2865699999302118 a001 5702887/7881196*228826127^(11/20) 2865699999302118 a001 3524578/12752043*228826127^(3/5) 2865699999302118 a001 5702887/7881196*87403803^(11/19) 2865699999302118 a001 3524578/12752043*87403803^(12/19) 2865699999302119 a001 3524667/39604*7881196^(4/11) 2865699999302119 a001 32951280099/20633239*4870847^(3/16) 2865699999302120 a001 53316291173/87403803*4870847^(1/4) 2865699999302120 a001 5702887/7881196*33385282^(11/18) 2865699999302120 a001 139583862445/228826127*4870847^(1/4) 2865699999302120 a001 182717648081/299537289*4870847^(1/4) 2865699999302120 a001 956722026041/1568397607*4870847^(1/4) 2865699999302120 a001 2504730781961/4106118243*4870847^(1/4) 2865699999302120 a001 3278735159921/5374978561*4870847^(1/4) 2865699999302120 a001 10610209857723/17393796001*4870847^(1/4) 2865699999302120 a001 4052739537881/6643838879*4870847^(1/4) 2865699999302120 a001 1134903780/1860499*4870847^(1/4) 2865699999302120 a001 591286729879/969323029*4870847^(1/4) 2865699999302120 a001 225851433717/370248451*4870847^(1/4) 2865699999302120 a001 3524578/12752043*33385282^(2/3) 2865699999302120 a001 21566892818/35355581*4870847^(1/4) 2865699999302120 a001 567451585/3940598*7881196^(1/3) 2865699999302121 a001 32951280099/54018521*4870847^(1/4) 2865699999302123 a001 2971215073/7881196*7881196^(3/11) 2865699999302125 a001 7778742049/33385282*4870847^(5/16) 2865699999302125 a001 433494437/12752043*4870847^(7/16) 2865699999302127 a001 1144206275/1875749*4870847^(1/4) 2865699999302127 a001 20365011074/87403803*4870847^(5/16) 2865699999302127 a001 139583862445/12752043*1860498^(1/15) 2865699999302127 a001 53316291173/228826127*4870847^(5/16) 2865699999302127 a001 139583862445/599074578*4870847^(5/16) 2865699999302127 a001 365435296162/1568397607*4870847^(5/16) 2865699999302127 a001 956722026041/4106118243*4870847^(5/16) 2865699999302127 a001 2504730781961/10749957122*4870847^(5/16) 2865699999302127 a001 6557470319842/28143753123*4870847^(5/16) 2865699999302127 a001 10610209857723/45537549124*4870847^(5/16) 2865699999302127 a001 4052739537881/17393796001*4870847^(5/16) 2865699999302127 a001 1548008755920/6643838879*4870847^(5/16) 2865699999302127 a001 591286729879/2537720636*4870847^(5/16) 2865699999302127 a001 12586269025/7881196*7881196^(2/11) 2865699999302127 a001 225851433717/969323029*4870847^(5/16) 2865699999302128 a001 86267571272/370248451*4870847^(5/16) 2865699999302128 a001 63246219/271444*4870847^(5/16) 2865699999302128 a001 12586269025/54018521*4870847^(5/16) 2865699999302129 a001 3732588/1970299*20633239^(4/7) 2865699999302130 a001 5702887/7881196*12752043^(11/17) 2865699999302130 a001 3524578/228826127*20633239^(6/7) 2865699999302130 a001 3524578/87403803*20633239^(4/5) 2865699999302131 a001 3524578/12752043*12752043^(12/17) 2865699999302132 a001 53316291173/7881196*7881196^(1/11) 2865699999302132 a001 2971215073/33385282*4870847^(3/8) 2865699999302133 a001 165580141/12752043*4870847^(1/2) 2865699999302133 a001 165580141/7881196*20633239^(3/7) 2865699999302133 a001 66978574/1970299*20633239^(2/5) 2865699999302133 a001 1762289/16692641*141422324^(2/3) 2865699999302133 a001 3732588/1970299*2537720636^(4/9) 2865699999302133 a001 1762289/16692641*(1/2+1/2*5^(1/2))^26 2865699999302133 a001 3732588/1970299*(1/2+1/2*5^(1/2))^20 2865699999302133 a001 3732588/1970299*23725150497407^(5/16) 2865699999302133 a001 3732588/1970299*505019158607^(5/14) 2865699999302133 a001 3732588/1970299*73681302247^(5/13) 2865699999302133 a001 1762289/16692641*73681302247^(1/2) 2865699999302133 a001 3732588/1970299*28143753123^(2/5) 2865699999302133 a001 3732588/1970299*10749957122^(5/12) 2865699999302133 a001 1762289/16692641*10749957122^(13/24) 2865699999302133 a001 3732588/1970299*4106118243^(10/23) 2865699999302133 a001 1762289/16692641*4106118243^(13/23) 2865699999302133 a001 52623190191456/1836311903 2865699999302133 a001 3732588/1970299*1568397607^(5/11) 2865699999302133 a001 1762289/16692641*1568397607^(13/22) 2865699999302133 a001 3732588/1970299*599074578^(10/21) 2865699999302133 a001 1762289/16692641*599074578^(13/21) 2865699999302133 a001 3732588/1970299*228826127^(1/2) 2865699999302133 a001 1762289/16692641*228826127^(13/20) 2865699999302134 a001 3732588/1970299*87403803^(10/19) 2865699999302134 a001 1762289/16692641*87403803^(13/19) 2865699999302134 a001 1836311903/7881196*20633239^(2/7) 2865699999302134 a001 4807526976/20633239*4870847^(5/16) 2865699999302135 a001 7778742049/4870847*1860498^(1/5) 2865699999302135 a001 7778742049/87403803*4870847^(3/8) 2865699999302135 a001 3732588/1970299*33385282^(5/9) 2865699999302135 a001 10182505537/3940598*20633239^(1/7) 2865699999302135 a001 20365011074/228826127*4870847^(3/8) 2865699999302135 a001 53316291173/599074578*4870847^(3/8) 2865699999302135 a001 139583862445/1568397607*4870847^(3/8) 2865699999302135 a001 365435296162/4106118243*4870847^(3/8) 2865699999302135 a001 956722026041/10749957122*4870847^(3/8) 2865699999302135 a001 2504730781961/28143753123*4870847^(3/8) 2865699999302135 a001 6557470319842/73681302247*4870847^(3/8) 2865699999302135 a001 10610209857723/119218851371*4870847^(3/8) 2865699999302135 a001 4052739537881/45537549124*4870847^(3/8) 2865699999302135 a001 1548008755920/17393796001*4870847^(3/8) 2865699999302135 a001 591286729879/6643838879*4870847^(3/8) 2865699999302135 a001 225851433717/2537720636*4870847^(3/8) 2865699999302135 a001 86267571272/969323029*4870847^(3/8) 2865699999302135 a001 32951280099/370248451*4870847^(3/8) 2865699999302135 a001 1762289/16692641*33385282^(13/18) 2865699999302135 a001 12586269025/141422324*4870847^(3/8) 2865699999302135 a001 39088169/7881196*141422324^(6/13) 2865699999302136 a001 39088169/7881196*2537720636^(2/5) 2865699999302136 a001 3524578/87403803*17393796001^(4/7) 2865699999302136 a001 39088169/7881196*45537549124^(6/17) 2865699999302136 a001 3524578/87403803*14662949395604^(4/9) 2865699999302136 a001 39088169/7881196*(1/2+1/2*5^(1/2))^18 2865699999302136 a001 39088169/7881196*192900153618^(1/3) 2865699999302136 a001 3524578/87403803*73681302247^(7/13) 2865699999302136 a001 39088169/7881196*10749957122^(3/8) 2865699999302136 a001 3524578/87403803*10749957122^(7/12) 2865699999302136 a001 68884650258841/2403763488 2865699999302136 a001 39088169/7881196*4106118243^(9/23) 2865699999302136 a001 3524578/87403803*4106118243^(14/23) 2865699999302136 a001 39088169/7881196*1568397607^(9/22) 2865699999302136 a001 3524578/87403803*1568397607^(7/11) 2865699999302136 a001 39088169/7881196*599074578^(3/7) 2865699999302136 a001 3524578/87403803*599074578^(2/3) 2865699999302136 a001 39088169/7881196*228826127^(9/20) 2865699999302136 a001 3524578/87403803*228826127^(7/10) 2865699999302136 a001 39088169/7881196*87403803^(9/19) 2865699999302136 a001 3524578/228826127*141422324^(10/13) 2865699999302136 a001 3524578/4106118243*141422324^(12/13) 2865699999302136 a001 3524578/969323029*141422324^(11/13) 2865699999302136 a001 3524578/87403803*87403803^(14/19) 2865699999302136 a001 3524578/228826127*2537720636^(2/3) 2865699999302136 a001 3524578/228826127*45537549124^(10/17) 2865699999302136 a001 3524578/228826127*312119004989^(6/11) 2865699999302136 a001 3524578/228826127*14662949395604^(10/21) 2865699999302136 a001 102334155/7881196*(1/2+1/2*5^(1/2))^16 2865699999302136 a001 102334155/7881196*23725150497407^(1/4) 2865699999302136 a001 3524578/228826127*192900153618^(5/9) 2865699999302136 a001 102334155/7881196*73681302247^(4/13) 2865699999302136 a001 3524578/228826127*28143753123^(3/5) 2865699999302136 a001 6557903842938/228841255 2865699999302136 a001 102334155/7881196*10749957122^(1/3) 2865699999302136 a001 3524578/228826127*10749957122^(5/8) 2865699999302136 a001 102334155/7881196*4106118243^(8/23) 2865699999302136 a001 3524578/228826127*4106118243^(15/23) 2865699999302136 a001 102334155/7881196*1568397607^(4/11) 2865699999302136 a001 3524578/228826127*1568397607^(15/22) 2865699999302136 a001 102334155/7881196*599074578^(8/21) 2865699999302136 a001 3524578/228826127*599074578^(5/7) 2865699999302136 a001 3524667/39604*141422324^(4/13) 2865699999302136 a001 433494437/7881196*141422324^(1/3) 2865699999302136 a001 165580141/7881196*141422324^(5/13) 2865699999302136 a001 2971215073/7881196*141422324^(3/13) 2865699999302136 a001 102334155/7881196*228826127^(2/5) 2865699999302136 a001 12586269025/7881196*141422324^(2/13) 2865699999302136 a001 3524578/228826127*228826127^(3/4) 2865699999302136 a001 53316291173/7881196*141422324^(1/13) 2865699999302136 a001 66978574/1970299*17393796001^(2/7) 2865699999302136 a001 66978574/1970299*14662949395604^(2/9) 2865699999302136 a001 66978574/1970299*(1/2+1/2*5^(1/2))^14 2865699999302136 a001 1762289/299537289*23725150497407^(1/2) 2865699999302136 a001 1762289/299537289*505019158607^(4/7) 2865699999302136 a001 1762289/299537289*73681302247^(8/13) 2865699999302136 a001 944284833567088/32951280099 2865699999302136 a001 66978574/1970299*10749957122^(7/24) 2865699999302136 a001 1762289/299537289*10749957122^(2/3) 2865699999302136 a001 66978574/1970299*4106118243^(7/23) 2865699999302136 a001 1762289/299537289*4106118243^(16/23) 2865699999302136 a001 66978574/1970299*1568397607^(7/22) 2865699999302136 a001 1762289/299537289*1568397607^(8/11) 2865699999302136 a001 66978574/1970299*599074578^(1/3) 2865699999302136 a001 1762289/299537289*599074578^(16/21) 2865699999302136 a001 3524667/39604*2537720636^(4/15) 2865699999302136 a001 3524578/1568397607*45537549124^(2/3) 2865699999302136 a001 3524667/39604*45537549124^(4/17) 2865699999302136 a001 3524667/39604*817138163596^(4/19) 2865699999302136 a001 3524667/39604*14662949395604^(4/21) 2865699999302136 a001 3524667/39604*(1/2+1/2*5^(1/2))^12 2865699999302136 a001 3524667/39604*192900153618^(2/9) 2865699999302136 a001 1236084894669837/43133785636 2865699999302136 a001 3524667/39604*73681302247^(3/13) 2865699999302136 a001 3524667/39604*10749957122^(1/4) 2865699999302136 a001 3524578/1568397607*10749957122^(17/24) 2865699999302136 a001 3524667/39604*4106118243^(6/23) 2865699999302136 a001 3524578/1568397607*4106118243^(17/23) 2865699999302136 a001 3524667/39604*1568397607^(3/11) 2865699999302136 a001 3524578/4106118243*2537720636^(4/5) 2865699999302136 a001 3524578/73681302247*2537720636^(14/15) 2865699999302136 a001 3524578/28143753123*2537720636^(8/9) 2865699999302136 a001 3524578/17393796001*2537720636^(13/15) 2865699999302136 a001 1836311903/7881196*2537720636^(2/9) 2865699999302136 a001 3524578/1568397607*1568397607^(17/22) 2865699999302136 a001 3524578/4106118243*45537549124^(12/17) 2865699999302136 a001 1836311903/7881196*312119004989^(2/11) 2865699999302136 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^10 2865699999302136 a001 3524578/4106118243*505019158607^(9/14) 2865699999302136 a001 6472224534451934/225851433717 2865699999302136 a001 3524578/4106118243*192900153618^(2/3) 2865699999302136 a001 3524578/4106118243*73681302247^(9/13) 2865699999302136 a001 1836311903/7881196*28143753123^(1/5) 2865699999302136 a001 1836311903/7881196*10749957122^(5/24) 2865699999302136 a001 3524578/4106118243*10749957122^(3/4) 2865699999302136 a001 1836311903/7881196*4106118243^(5/23) 2865699999302136 a001 12586269025/7881196*2537720636^(2/15) 2865699999302136 a001 10182505537/3940598*2537720636^(1/9) 2865699999302136 a001 3524578/4106118243*4106118243^(18/23) 2865699999302136 a001 53316291173/7881196*2537720636^(1/15) 2865699999302136 a001 1762289/5374978561*817138163596^(2/3) 2865699999302136 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^8 2865699999302136 a001 1201881744/1970299*23725150497407^(1/8) 2865699999302136 a001 1201881744/1970299*73681302247^(2/13) 2865699999302136 a001 2971215073/7881196*2537720636^(1/5) 2865699999302136 a001 1201881744/1970299*10749957122^(1/6) 2865699999302136 a001 3524578/73681302247*17393796001^(6/7) 2865699999302136 a001 1762289/5374978561*10749957122^(19/24) 2865699999302136 a001 12586269025/7881196*45537549124^(2/17) 2865699999302136 a001 3524578/28143753123*312119004989^(8/11) 2865699999302136 a001 12586269025/7881196*14662949395604^(2/21) 2865699999302136 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^6 2865699999302136 a001 3524578/28143753123*23725150497407^(5/8) 2865699999302136 a001 3524578/28143753123*73681302247^(10/13) 2865699999302136 a001 3524578/73681302247*45537549124^(14/17) 2865699999302136 a001 3524578/1322157322203*45537549124^(16/17) 2865699999302136 a001 3524578/312119004989*45537549124^(15/17) 2865699999302136 a001 3524578/28143753123*28143753123^(4/5) 2865699999302136 a001 3524578/73681302247*817138163596^(14/19) 2865699999302136 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^4 2865699999302136 a001 116139356908773222/4052739537881 2865699999302136 a001 12586269025/7881196*10749957122^(1/8) 2865699999302136 a001 32951280099/7881196*73681302247^(1/13) 2865699999302136 a001 3524578/73681302247*192900153618^(7/9) 2865699999302136 a001 1762289/96450076809*312119004989^(4/5) 2865699999302136 a001 1762289/96450076809*23725150497407^(11/16) 2865699999302136 a001 1762289/1730726404001*312119004989^(10/11) 2865699999302136 a006 5^(1/2)*Fibonacci(56)/Lucas(33)/sqrt(5) 2865699999302136 a001 3524578/1322157322203*14662949395604^(16/21) 2865699999302136 a001 3524578/23725150497407*14662949395604^(6/7) 2865699999302136 a001 3524578/1322157322203*192900153618^(8/9) 2865699999302136 a001 3524578/5600748293801*192900153618^(17/18) 2865699999302136 a001 3524578/312119004989*192900153618^(5/6) 2865699999302136 a001 53316291173/7881196*45537549124^(1/17) 2865699999302136 a001 53316291173/7881196*14662949395604^(1/21) 2865699999302136 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^3 2865699999302136 a001 1762289/96450076809*73681302247^(11/13) 2865699999302136 a001 3524578/1322157322203*73681302247^(12/13) 2865699999302136 a001 21566892818/1970299*10749957122^(1/24) 2865699999302136 a001 10182505537/3940598*312119004989^(1/11) 2865699999302136 a001 71778070001176772/2504730781961 2865699999302136 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^5 2865699999302136 a001 32951280099/7881196*10749957122^(1/12) 2865699999302136 a001 10182505537/3940598*28143753123^(1/10) 2865699999302136 a001 53316291173/7881196*10749957122^(1/16) 2865699999302136 a001 3524578/312119004989*28143753123^(9/10) 2865699999302136 a001 1201881744/1970299*4106118243^(4/23) 2865699999302136 a001 21566892818/1970299*4106118243^(1/23) 2865699999302136 a001 7778742049/7881196*17393796001^(1/7) 2865699999302136 a001 3524578/17393796001*45537549124^(13/17) 2865699999302136 a001 27416783093580322/956722026041 2865699999302136 a001 3524578/17393796001*14662949395604^(13/21) 2865699999302136 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^7 2865699999302136 a001 3524578/17393796001*192900153618^(13/18) 2865699999302136 a001 3524578/17393796001*73681302247^(3/4) 2865699999302136 a001 32951280099/7881196*4106118243^(2/23) 2865699999302136 a001 3524578/28143753123*10749957122^(5/6) 2865699999302136 a001 12586269025/7881196*4106118243^(3/23) 2865699999302136 a001 3524578/73681302247*10749957122^(7/8) 2865699999302136 a001 1762289/96450076809*10749957122^(11/12) 2865699999302136 a001 3524578/312119004989*10749957122^(15/16) 2865699999302136 a001 3524578/505019158607*10749957122^(23/24) 2865699999302136 a001 3524578/17393796001*10749957122^(13/16) 2865699999302136 a001 21566892818/1970299*1568397607^(1/22) 2865699999302136 a001 2971215073/7881196*45537549124^(3/17) 2865699999302136 a001 5236139639782097/182717648081 2865699999302136 a001 2971215073/7881196*14662949395604^(1/7) 2865699999302136 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^9 2865699999302136 a001 2971215073/7881196*192900153618^(1/6) 2865699999302136 a001 2971215073/7881196*10749957122^(3/16) 2865699999302136 a001 1836311903/7881196*1568397607^(5/22) 2865699999302136 a001 1762289/1268860318*2537720636^(7/9) 2865699999302136 a001 32951280099/7881196*1568397607^(1/11) 2865699999302136 a001 1762289/5374978561*4106118243^(19/23) 2865699999302136 a001 3524578/28143753123*4106118243^(20/23) 2865699999302136 a001 3524578/73681302247*4106118243^(21/23) 2865699999302136 a001 12586269025/7881196*1568397607^(3/22) 2865699999302136 a001 1762289/96450076809*4106118243^(22/23) 2865699999302136 a001 1201881744/1970299*1568397607^(2/11) 2865699999302136 a001 21566892818/1970299*599074578^(1/21) 2865699999302136 a001 1762289/1268860318*17393796001^(5/7) 2865699999302136 a001 8988887067668/313671601 2865699999302136 a001 1762289/1268860318*312119004989^(7/11) 2865699999302136 a001 1762289/1268860318*14662949395604^(5/9) 2865699999302136 a001 567451585/3940598*(1/2+1/2*5^(1/2))^11 2865699999302136 a001 1762289/1268860318*505019158607^(5/8) 2865699999302136 a001 1762289/1268860318*28143753123^(7/10) 2865699999302136 a001 53316291173/7881196*599074578^(1/14) 2865699999302136 a001 567451585/3940598*1568397607^(1/4) 2865699999302136 a001 32951280099/7881196*599074578^(2/21) 2865699999302136 a001 3524578/4106118243*1568397607^(9/11) 2865699999302136 a001 1762289/5374978561*1568397607^(19/22) 2865699999302136 a001 3524578/28143753123*1568397607^(10/11) 2865699999302136 a001 3524578/73681302247*1568397607^(21/22) 2865699999302136 a001 3524667/39604*599074578^(2/7) 2865699999302136 a001 12586269025/7881196*599074578^(1/7) 2865699999302136 a001 7778742049/7881196*599074578^(1/6) 2865699999302136 a001 1201881744/1970299*599074578^(4/21) 2865699999302136 a001 1836311903/7881196*599074578^(5/21) 2865699999302136 a001 2971215073/7881196*599074578^(3/14) 2865699999302136 a001 3524578/969323029*2537720636^(11/15) 2865699999302136 a001 21566892818/1970299*228826127^(1/20) 2865699999302136 a001 3524578/969323029*45537549124^(11/17) 2865699999302136 a001 1527884955772586/53316291173 2865699999302136 a001 3524578/969323029*312119004989^(3/5) 2865699999302136 a001 3524578/969323029*817138163596^(11/19) 2865699999302136 a001 3524578/969323029*14662949395604^(11/21) 2865699999302136 a001 433494437/7881196*(1/2+1/2*5^(1/2))^13 2865699999302136 a001 3524578/969323029*192900153618^(11/18) 2865699999302136 a001 433494437/7881196*73681302247^(1/4) 2865699999302136 a001 3524578/969323029*10749957122^(11/16) 2865699999302136 a001 3524578/969323029*1568397607^(3/4) 2865699999302136 a001 3524578/1568397607*599074578^(17/21) 2865699999302136 a001 32951280099/7881196*228826127^(1/10) 2865699999302136 a001 3524578/4106118243*599074578^(6/7) 2865699999302136 a001 10182505537/3940598*228826127^(1/8) 2865699999302136 a001 1762289/1268860318*599074578^(5/6) 2865699999302136 a001 1762289/5374978561*599074578^(19/21) 2865699999302136 a001 3524578/17393796001*599074578^(13/14) 2865699999302136 a001 3524578/28143753123*599074578^(20/21) 2865699999302136 a001 12586269025/7881196*228826127^(3/20) 2865699999302136 a001 3524578/969323029*599074578^(11/14) 2865699999302136 a001 1201881744/1970299*228826127^(1/5) 2865699999302136 a001 66978574/1970299*228826127^(7/20) 2865699999302136 a001 1836311903/7881196*228826127^(1/4) 2865699999302136 a001 3524667/39604*228826127^(3/10) 2865699999302136 a001 21566892818/1970299*87403803^(1/19) 2865699999302136 a001 165580141/7881196*2537720636^(1/3) 2865699999302136 a001 291800061102749/10182505537 2865699999302136 a001 165580141/7881196*45537549124^(5/17) 2865699999302136 a001 165580141/7881196*312119004989^(3/11) 2865699999302136 a001 165580141/7881196*14662949395604^(5/21) 2865699999302136 a001 165580141/7881196*(1/2+1/2*5^(1/2))^15 2865699999302136 a001 3524578/370248451*9062201101803^(1/2) 2865699999302136 a001 165580141/7881196*192900153618^(5/18) 2865699999302136 a001 165580141/7881196*28143753123^(3/10) 2865699999302136 a001 165580141/7881196*10749957122^(5/16) 2865699999302136 a001 165580141/7881196*599074578^(5/14) 2865699999302136 a001 1762289/299537289*228826127^(4/5) 2865699999302136 a001 32951280099/7881196*87403803^(2/19) 2865699999302136 a001 165580141/7881196*228826127^(3/8) 2865699999302136 a001 3524578/1568397607*228826127^(17/20) 2865699999302136 a001 1762289/1268860318*228826127^(7/8) 2865699999302136 a001 3524578/4106118243*228826127^(9/10) 2865699999302136 a001 1762289/5374978561*228826127^(19/20) 2865699999302136 a001 12586269025/7881196*87403803^(3/19) 2865699999302136 a001 1201881744/1970299*87403803^(4/19) 2865699999302136 a001 1836311903/7881196*87403803^(5/19) 2865699999302136 a001 102334155/7881196*87403803^(8/19) 2865699999302136 a001 3524667/39604*87403803^(6/19) 2865699999302136 a001 66978574/1970299*87403803^(7/19) 2865699999302136 a001 4807526976/54018521*4870847^(3/8) 2865699999302136 a001 21566892818/1970299*33385282^(1/18) 2865699999302136 a001 222915410843908/7778742049 2865699999302136 a001 31622993/3940598*45537549124^(1/3) 2865699999302136 a001 31622993/3940598*(1/2+1/2*5^(1/2))^17 2865699999302136 a001 1762289/70711162*1322157322203^(1/2) 2865699999302136 a001 53316291173/7881196*33385282^(1/12) 2865699999302136 a001 3524578/228826127*87403803^(15/19) 2865699999302136 a001 32951280099/7881196*33385282^(1/9) 2865699999302136 a001 1762289/299537289*87403803^(16/19) 2865699999302136 a001 3524578/1568397607*87403803^(17/19) 2865699999302136 a001 3524578/4106118243*87403803^(18/19) 2865699999302136 a001 12586269025/7881196*33385282^(1/6) 2865699999302136 a001 1201881744/1970299*33385282^(2/9) 2865699999302137 a001 2971215073/7881196*33385282^(1/4) 2865699999302137 a001 1836311903/7881196*33385282^(5/18) 2865699999302137 a001 3524667/39604*33385282^(1/3) 2865699999302137 a001 3524578/54018521*141422324^(9/13) 2865699999302137 a001 39088169/7881196*33385282^(1/2) 2865699999302137 a001 3524578/54018521*2537720636^(3/5) 2865699999302137 a001 85146110326226/2971215073 2865699999302137 a001 3524578/54018521*45537549124^(9/17) 2865699999302137 a001 24157817/7881196*817138163596^(1/3) 2865699999302137 a001 3524578/54018521*14662949395604^(3/7) 2865699999302137 a001 24157817/7881196*(1/2+1/2*5^(1/2))^19 2865699999302137 a001 3524578/54018521*192900153618^(1/2) 2865699999302137 a001 3524578/54018521*10749957122^(9/16) 2865699999302137 a001 3524578/54018521*599074578^(9/14) 2865699999302137 a001 66978574/1970299*33385282^(7/18) 2865699999302137 a001 21566892818/1970299*12752043^(1/17) 2865699999302137 a001 102334155/7881196*33385282^(4/9) 2865699999302137 a001 165580141/7881196*33385282^(5/12) 2865699999302137 a001 24157817/7881196*87403803^(1/2) 2865699999302138 a001 3524578/87403803*33385282^(7/9) 2865699999302138 a001 3524578/20633239*20633239^(5/7) 2865699999302138 a001 32951280099/7881196*12752043^(2/17) 2865699999302138 a001 3524578/228826127*33385282^(5/6) 2865699999302138 a001 1762289/299537289*33385282^(8/9) 2865699999302138 a001 3524578/969323029*33385282^(11/12) 2865699999302138 a001 3524578/1568397607*33385282^(17/18) 2865699999302139 a001 9227465/7881196*20633239^(3/5) 2865699999302139 a001 3524578/54018521*33385282^(3/4) 2865699999302139 a001 12586269025/7881196*12752043^(3/17) 2865699999302140 a001 567451585/16692641*4870847^(7/16) 2865699999302140 a001 1201881744/1970299*12752043^(4/17) 2865699999302140 a001 63245986/12752043*4870847^(9/16) 2865699999302141 a001 1836311903/7881196*12752043^(5/17) 2865699999302142 a001 1836311903/20633239*4870847^(3/8) 2865699999302142 a001 3524667/39604*12752043^(6/17) 2865699999302142 a001 2971215073/87403803*4870847^(7/16) 2865699999302142 a001 182717648081/16692641*1860498^(1/15) 2865699999302143 a001 7778742049/228826127*4870847^(7/16) 2865699999302143 a001 9227465/7881196*141422324^(7/13) 2865699999302143 a001 10182505537/299537289*4870847^(7/16) 2865699999302143 a001 53316291173/1568397607*4870847^(7/16) 2865699999302143 a001 139583862445/4106118243*4870847^(7/16) 2865699999302143 a001 182717648081/5374978561*4870847^(7/16) 2865699999302143 a001 956722026041/28143753123*4870847^(7/16) 2865699999302143 a001 2504730781961/73681302247*4870847^(7/16) 2865699999302143 a001 3278735159921/96450076809*4870847^(7/16) 2865699999302143 a001 10610209857723/312119004989*4870847^(7/16) 2865699999302143 a001 4052739537881/119218851371*4870847^(7/16) 2865699999302143 a001 387002188980/11384387281*4870847^(7/16) 2865699999302143 a001 591286729879/17393796001*4870847^(7/16) 2865699999302143 a001 225851433717/6643838879*4870847^(7/16) 2865699999302143 a001 1135099622/33391061*4870847^(7/16) 2865699999302143 a001 32951280099/969323029*4870847^(7/16) 2865699999302143 a001 12586269025/370248451*4870847^(7/16) 2865699999302143 a001 3252292013477/113490317 2865699999302143 a001 3524578/20633239*2537720636^(5/9) 2865699999302143 a001 9227465/7881196*2537720636^(7/15) 2865699999302143 a001 9227465/7881196*17393796001^(3/7) 2865699999302143 a001 9227465/7881196*45537549124^(7/17) 2865699999302143 a001 3524578/20633239*312119004989^(5/11) 2865699999302143 a001 9227465/7881196*14662949395604^(1/3) 2865699999302143 a001 3524578/20633239*(1/2+1/2*5^(1/2))^25 2865699999302143 a001 9227465/7881196*(1/2+1/2*5^(1/2))^21 2865699999302143 a001 3524578/20633239*3461452808002^(5/12) 2865699999302143 a001 9227465/7881196*192900153618^(7/18) 2865699999302143 a001 3524578/20633239*28143753123^(1/2) 2865699999302143 a001 9227465/7881196*10749957122^(7/16) 2865699999302143 a001 9227465/7881196*599074578^(1/2) 2865699999302143 a001 3524578/20633239*228826127^(5/8) 2865699999302143 a001 1201881744/35355581*4870847^(7/16) 2865699999302143 a001 66978574/1970299*12752043^(7/17) 2865699999302143 a001 21566892818/1970299*4870847^(1/16) 2865699999302144 a001 1836311903/54018521*4870847^(7/16) 2865699999302144 a001 3732588/1970299*12752043^(10/17) 2865699999302144 a001 9227465/7881196*33385282^(7/12) 2865699999302144 a001 102334155/7881196*12752043^(8/17) 2865699999302145 a001 956722026041/87403803*1860498^(1/15) 2865699999302145 a001 39088169/7881196*12752043^(9/17) 2865699999302145 a001 31622993/3940598*12752043^(1/2) 2865699999302145 a001 2504730781961/228826127*1860498^(1/15) 2865699999302145 a001 3278735159921/299537289*1860498^(1/15) 2865699999302145 a001 10610209857723/969323029*1860498^(1/15) 2865699999302145 a001 4052739537881/370248451*1860498^(1/15) 2865699999302145 a001 387002188980/35355581*1860498^(1/15) 2865699999302146 a001 591286729879/54018521*1860498^(1/15) 2865699999302147 a001 1762289/16692641*12752043^(13/17) 2865699999302148 a001 433494437/33385282*4870847^(1/2) 2865699999302149 a001 24157817/12752043*4870847^(5/8) 2865699999302149 a001 701408733/20633239*4870847^(7/16) 2865699999302150 a001 1134903170/87403803*4870847^(1/2) 2865699999302150 a001 3524578/87403803*12752043^(14/17) 2865699999302150 a001 2971215073/228826127*4870847^(1/2) 2865699999302150 a001 7778742049/599074578*4870847^(1/2) 2865699999302150 a001 20365011074/1568397607*4870847^(1/2) 2865699999302150 a001 53316291173/4106118243*4870847^(1/2) 2865699999302150 a001 139583862445/10749957122*4870847^(1/2) 2865699999302150 a001 365435296162/28143753123*4870847^(1/2) 2865699999302150 a001 956722026041/73681302247*4870847^(1/2) 2865699999302150 a001 2504730781961/192900153618*4870847^(1/2) 2865699999302150 a001 10610209857723/817138163596*4870847^(1/2) 2865699999302150 a001 4052739537881/312119004989*4870847^(1/2) 2865699999302150 a001 1548008755920/119218851371*4870847^(1/2) 2865699999302150 a001 591286729879/45537549124*4870847^(1/2) 2865699999302150 a001 7787980473/599786069*4870847^(1/2) 2865699999302150 a001 86267571272/6643838879*4870847^(1/2) 2865699999302150 a001 32951280099/2537720636*4870847^(1/2) 2865699999302150 a001 12586269025/969323029*4870847^(1/2) 2865699999302150 a001 4807526976/370248451*4870847^(1/2) 2865699999302150 a001 1836311903/141422324*4870847^(1/2) 2865699999302151 a001 32951280099/7881196*4870847^(1/8) 2865699999302151 a001 701408733/54018521*4870847^(1/2) 2865699999302151 a001 3524578/228826127*12752043^(15/17) 2865699999302152 a001 7787980473/711491*1860498^(1/15) 2865699999302152 a001 1762289/299537289*12752043^(16/17) 2865699999302155 a001 86267571272/12752043*1860498^(1/10) 2865699999302155 a001 165580141/33385282*4870847^(9/16) 2865699999302157 a001 9238424/711491*4870847^(1/2) 2865699999302157 a001 433494437/87403803*4870847^(9/16) 2865699999302158 a001 1134903170/228826127*4870847^(9/16) 2865699999302158 a001 2971215073/599074578*4870847^(9/16) 2865699999302158 a001 7778742049/1568397607*4870847^(9/16) 2865699999302158 a001 20365011074/4106118243*4870847^(9/16) 2865699999302158 a001 53316291173/10749957122*4870847^(9/16) 2865699999302158 a001 139583862445/28143753123*4870847^(9/16) 2865699999302158 a001 365435296162/73681302247*4870847^(9/16) 2865699999302158 a001 956722026041/192900153618*4870847^(9/16) 2865699999302158 a001 2504730781961/505019158607*4870847^(9/16) 2865699999302158 a001 10610209857723/2139295485799*4870847^(9/16) 2865699999302158 a001 140728068720/28374454999*4870847^(9/16) 2865699999302158 a001 591286729879/119218851371*4870847^(9/16) 2865699999302158 a001 225851433717/45537549124*4870847^(9/16) 2865699999302158 a001 86267571272/17393796001*4870847^(9/16) 2865699999302158 a001 32951280099/6643838879*4870847^(9/16) 2865699999302158 a001 1144206275/230701876*4870847^(9/16) 2865699999302158 a001 4807526976/969323029*4870847^(9/16) 2865699999302158 a001 1836311903/370248451*4870847^(9/16) 2865699999302158 a001 701408733/141422324*4870847^(9/16) 2865699999302159 a001 12586269025/7881196*4870847^(3/16) 2865699999302159 a001 267914296/54018521*4870847^(9/16) 2865699999302162 a001 9227465/12752043*4870847^(11/16) 2865699999302163 a001 31622993/16692641*4870847^(5/8) 2865699999302164 a001 9303105/1875749*4870847^(9/16) 2865699999302165 a001 165580141/87403803*4870847^(5/8) 2865699999302165 a001 433494437/228826127*4870847^(5/8) 2865699999302165 a001 567451585/299537289*4870847^(5/8) 2865699999302165 a001 2971215073/1568397607*4870847^(5/8) 2865699999302165 a001 7778742049/4106118243*4870847^(5/8) 2865699999302165 a001 10182505537/5374978561*4870847^(5/8) 2865699999302165 a001 53316291173/28143753123*4870847^(5/8) 2865699999302165 a001 139583862445/73681302247*4870847^(5/8) 2865699999302165 a001 182717648081/96450076809*4870847^(5/8) 2865699999302165 a001 956722026041/505019158607*4870847^(5/8) 2865699999302165 a001 10610209857723/5600748293801*4870847^(5/8) 2865699999302165 a001 591286729879/312119004989*4870847^(5/8) 2865699999302165 a001 225851433717/119218851371*4870847^(5/8) 2865699999302165 a001 21566892818/11384387281*4870847^(5/8) 2865699999302165 a001 32951280099/17393796001*4870847^(5/8) 2865699999302165 a001 12586269025/6643838879*4870847^(5/8) 2865699999302165 a001 1201881744/634430159*4870847^(5/8) 2865699999302165 a001 1836311903/969323029*4870847^(5/8) 2865699999302165 a001 701408733/370248451*4870847^(5/8) 2865699999302165 a001 66978574/35355581*4870847^(5/8) 2865699999302166 a001 1201881744/1970299*4870847^(1/4) 2865699999302166 a001 102334155/54018521*4870847^(5/8) 2865699999302169 a001 5702887/20633239*4870847^(3/4) 2865699999302170 a001 32264490531/4769326*1860498^(1/10) 2865699999302171 a001 24157817/33385282*4870847^(11/16) 2865699999302171 a001 5702887/54018521*4870847^(13/16) 2865699999302172 a001 39088169/20633239*4870847^(5/8) 2865699999302172 a001 591286729879/87403803*1860498^(1/10) 2865699999302172 a001 1548008755920/228826127*1860498^(1/10) 2865699999302173 a001 4052739537881/599074578*1860498^(1/10) 2865699999302173 a001 1515744265389/224056801*1860498^(1/10) 2865699999302173 a001 6557470319842/969323029*1860498^(1/10) 2865699999302173 a001 63245986/87403803*4870847^(11/16) 2865699999302173 a001 2504730781961/370248451*1860498^(1/10) 2865699999302173 a001 956722026041/141422324*1860498^(1/10) 2865699999302173 a001 165580141/228826127*4870847^(11/16) 2865699999302173 a001 433494437/599074578*4870847^(11/16) 2865699999302173 a001 1134903170/1568397607*4870847^(11/16) 2865699999302173 a001 2971215073/4106118243*4870847^(11/16) 2865699999302173 a001 7778742049/10749957122*4870847^(11/16) 2865699999302173 a001 20365011074/28143753123*4870847^(11/16) 2865699999302173 a001 53316291173/73681302247*4870847^(11/16) 2865699999302173 a001 139583862445/192900153618*4870847^(11/16) 2865699999302173 a001 365435296162/505019158607*4870847^(11/16) 2865699999302173 a001 10610209857723/14662949395604*4870847^(11/16) 2865699999302173 a001 225851433717/312119004989*4870847^(11/16) 2865699999302173 a001 86267571272/119218851371*4870847^(11/16) 2865699999302173 a001 32951280099/45537549124*4870847^(11/16) 2865699999302173 a001 12586269025/17393796001*4870847^(11/16) 2865699999302173 a001 4807526976/6643838879*4870847^(11/16) 2865699999302173 a001 1836311903/2537720636*4870847^(11/16) 2865699999302173 a001 701408733/969323029*4870847^(11/16) 2865699999302173 a001 267914296/370248451*4870847^(11/16) 2865699999302173 a001 102334155/141422324*4870847^(11/16) 2865699999302173 a001 39088169/54018521*4870847^(11/16) 2865699999302174 a001 365435296162/54018521*1860498^(1/10) 2865699999302174 a001 1836311903/7881196*4870847^(5/16) 2865699999302177 a001 14930352/20633239*4870847^(11/16) 2865699999302178 a001 5702887/141422324*4870847^(7/8) 2865699999302179 a001 14930352/54018521*4870847^(3/4) 2865699999302179 a001 139583862445/20633239*1860498^(1/10) 2865699999302180 a001 39088169/141422324*4870847^(3/4) 2865699999302180 a001 102334155/370248451*4870847^(3/4) 2865699999302180 a001 267914296/969323029*4870847^(3/4) 2865699999302180 a001 701408733/2537720636*4870847^(3/4) 2865699999302180 a001 1836311903/6643838879*4870847^(3/4) 2865699999302180 a001 4807526976/17393796001*4870847^(3/4) 2865699999302180 a001 12586269025/45537549124*4870847^(3/4) 2865699999302180 a001 32951280099/119218851371*4870847^(3/4) 2865699999302180 a001 86267571272/312119004989*4870847^(3/4) 2865699999302180 a001 225851433717/817138163596*4870847^(3/4) 2865699999302180 a001 1548008755920/5600748293801*4870847^(3/4) 2865699999302180 a001 139583862445/505019158607*4870847^(3/4) 2865699999302180 a001 53316291173/192900153618*4870847^(3/4) 2865699999302180 a001 20365011074/73681302247*4870847^(3/4) 2865699999302180 a001 7778742049/28143753123*4870847^(3/4) 2865699999302180 a001 2971215073/10749957122*4870847^(3/4) 2865699999302180 a001 1134903170/4106118243*4870847^(3/4) 2865699999302180 a001 433494437/1568397607*4870847^(3/4) 2865699999302180 a001 165580141/599074578*4870847^(3/4) 2865699999302180 a001 63245986/228826127*4870847^(3/4) 2865699999302181 a001 24157817/87403803*4870847^(3/4) 2865699999302181 a001 3524667/39604*4870847^(3/8) 2865699999302182 a001 12422650078084/433494437 2865699999302182 a001 1762289/3940598*(1/2+1/2*5^(1/2))^23 2865699999302182 a001 1762289/3940598*4106118243^(1/2) 2865699999302183 a001 53316291173/12752043*1860498^(2/15) 2865699999302184 a001 9227465/33385282*4870847^(3/4) 2865699999302185 a001 1346269/1860498*1860498^(11/15) 2865699999302185 a001 5702887/370248451*4870847^(15/16) 2865699999302185 a001 3732588/35355581*4870847^(13/16) 2865699999302188 a001 39088169/370248451*4870847^(13/16) 2865699999302188 a001 102334155/969323029*4870847^(13/16) 2865699999302188 a001 66978574/634430159*4870847^(13/16) 2865699999302188 a001 701408733/6643838879*4870847^(13/16) 2865699999302188 a001 1836311903/17393796001*4870847^(13/16) 2865699999302188 a001 1201881744/11384387281*4870847^(13/16) 2865699999302188 a001 12586269025/119218851371*4870847^(13/16) 2865699999302188 a001 32951280099/312119004989*4870847^(13/16) 2865699999302188 a001 21566892818/204284540899*4870847^(13/16) 2865699999302188 a001 225851433717/2139295485799*4870847^(13/16) 2865699999302188 a001 182717648081/1730726404001*4870847^(13/16) 2865699999302188 a001 139583862445/1322157322203*4870847^(13/16) 2865699999302188 a001 53316291173/505019158607*4870847^(13/16) 2865699999302188 a001 10182505537/96450076809*4870847^(13/16) 2865699999302188 a001 7778742049/73681302247*4870847^(13/16) 2865699999302188 a001 2971215073/28143753123*4870847^(13/16) 2865699999302188 a001 567451585/5374978561*4870847^(13/16) 2865699999302188 a001 433494437/4106118243*4870847^(13/16) 2865699999302188 a001 165580141/1568397607*4870847^(13/16) 2865699999302188 a001 31622993/299537289*4870847^(13/16) 2865699999302189 a001 66978574/1970299*4870847^(7/16) 2865699999302189 a001 24157817/228826127*4870847^(13/16) 2865699999302190 a001 2971215073/4870847*1860498^(4/15) 2865699999302191 a001 21566892818/1970299*1860498^(1/15) 2865699999302193 a001 14930352/370248451*4870847^(7/8) 2865699999302194 a001 9227465/87403803*4870847^(13/16) 2865699999302195 a001 39088169/969323029*4870847^(7/8) 2865699999302195 a001 9303105/230701876*4870847^(7/8) 2865699999302195 a001 267914296/6643838879*4870847^(7/8) 2865699999302195 a001 701408733/17393796001*4870847^(7/8) 2865699999302195 a001 1836311903/45537549124*4870847^(7/8) 2865699999302195 a001 4807526976/119218851371*4870847^(7/8) 2865699999302195 a001 1144206275/28374454999*4870847^(7/8) 2865699999302195 a001 32951280099/817138163596*4870847^(7/8) 2865699999302195 a001 86267571272/2139295485799*4870847^(7/8) 2865699999302195 a001 225851433717/5600748293801*4870847^(7/8) 2865699999302195 a001 365435296162/9062201101803*4870847^(7/8) 2865699999302195 a001 139583862445/3461452808002*4870847^(7/8) 2865699999302195 a001 53316291173/1322157322203*4870847^(7/8) 2865699999302195 a001 20365011074/505019158607*4870847^(7/8) 2865699999302195 a001 7778742049/192900153618*4870847^(7/8) 2865699999302195 a001 2971215073/73681302247*4870847^(7/8) 2865699999302195 a001 1134903170/28143753123*4870847^(7/8) 2865699999302195 a001 433494437/10749957122*4870847^(7/8) 2865699999302195 a001 165580141/4106118243*4870847^(7/8) 2865699999302196 a001 63245986/1568397607*4870847^(7/8) 2865699999302196 a001 102334155/7881196*4870847^(1/2) 2865699999302196 a001 24157817/599074578*4870847^(7/8) 2865699999302198 a001 139583862445/33385282*1860498^(2/15) 2865699999302200 a001 365435296162/87403803*1860498^(2/15) 2865699999302200 a001 956722026041/228826127*1860498^(2/15) 2865699999302200 a001 2504730781961/599074578*1860498^(2/15) 2865699999302200 a001 6557470319842/1568397607*1860498^(2/15) 2865699999302200 a001 10610209857723/2537720636*1860498^(2/15) 2865699999302200 a001 4052739537881/969323029*1860498^(2/15) 2865699999302200 a001 1548008755920/370248451*1860498^(2/15) 2865699999302200 a001 591286729879/141422324*1860498^(2/15) 2865699999302200 a001 14930352/969323029*4870847^(15/16) 2865699999302201 a001 225851433717/54018521*1860498^(2/15) 2865699999302201 a001 5702887/7881196*4870847^(11/16) 2865699999302202 a001 9227465/228826127*4870847^(7/8) 2865699999302203 a001 39088169/2537720636*4870847^(15/16) 2865699999302203 a001 102334155/6643838879*4870847^(15/16) 2865699999302203 a001 9238424/599786069*4870847^(15/16) 2865699999302203 a001 701408733/45537549124*4870847^(15/16) 2865699999302203 a001 1836311903/119218851371*4870847^(15/16) 2865699999302203 a001 4807526976/312119004989*4870847^(15/16) 2865699999302203 a001 12586269025/817138163596*4870847^(15/16) 2865699999302203 a001 32951280099/2139295485799*4870847^(15/16) 2865699999302203 a001 86267571272/5600748293801*4870847^(15/16) 2865699999302203 a001 7787980473/505618944676*4870847^(15/16) 2865699999302203 a001 365435296162/23725150497407*4870847^(15/16) 2865699999302203 a001 139583862445/9062201101803*4870847^(15/16) 2865699999302203 a001 53316291173/3461452808002*4870847^(15/16) 2865699999302203 a001 20365011074/1322157322203*4870847^(15/16) 2865699999302203 a001 7778742049/505019158607*4870847^(15/16) 2865699999302203 a001 2971215073/192900153618*4870847^(15/16) 2865699999302203 a001 1134903170/73681302247*4870847^(15/16) 2865699999302203 a001 433494437/28143753123*4870847^(15/16) 2865699999302203 a001 165580141/10749957122*4870847^(15/16) 2865699999302203 a001 63245986/4106118243*4870847^(15/16) 2865699999302203 a001 39088169/7881196*4870847^(9/16) 2865699999302204 a001 24157817/1568397607*4870847^(15/16) 2865699999302207 a001 86267571272/20633239*1860498^(2/15) 2865699999302209 a001 3732588/1970299*4870847^(5/8) 2865699999302209 a001 3524578/12752043*4870847^(3/4) 2865699999302210 a001 9227465/599074578*4870847^(15/16) 2865699999302210 a001 10983760033/4250681*1860498^(1/6) 2865699999302211 a001 2/2178309*(1/2+1/2*5^(1/2))^55 2865699999302217 a001 1836311903/4870847*1860498^(3/10) 2865699999302219 a001 53316291173/7881196*1860498^(1/10) 2865699999302225 a001 43133785636/16692641*1860498^(1/6) 2865699999302227 a001 75283811239/29134601*1860498^(1/6) 2865699999302228 a001 591286729879/228826127*1860498^(1/6) 2865699999302228 a001 86000486440/33281921*1860498^(1/6) 2865699999302228 a001 4052739537881/1568397607*1860498^(1/6) 2865699999302228 a001 3536736619241/1368706081*1860498^(1/6) 2865699999302228 a001 3278735159921/1268860318*1860498^(1/6) 2865699999302228 a001 2504730781961/969323029*1860498^(1/6) 2865699999302228 a001 956722026041/370248451*1860498^(1/6) 2865699999302228 a001 182717648081/70711162*1860498^(1/6) 2865699999302229 a001 139583862445/54018521*1860498^(1/6) 2865699999302231 a001 1762289/16692641*4870847^(13/16) 2865699999302234 a001 53316291173/20633239*1860498^(1/6) 2865699999302238 a001 20365011074/12752043*1860498^(1/5) 2865699999302240 a001 832040/3010349*1860498^(4/5) 2865699999302241 a001 3524578/87403803*4870847^(7/8) 2865699999302245 a001 1134903170/4870847*1860498^(1/3) 2865699999302246 a001 32951280099/7881196*1860498^(2/15) 2865699999302249 a001 3524578/228826127*4870847^(15/16) 2865699999302252 a001 1346269/4870847*7881196^(8/11) 2865699999302253 a001 53316291173/33385282*1860498^(1/5) 2865699999302254 a001 2178309/3010349*7881196^(2/3) 2865699999302255 a001 139583862445/87403803*1860498^(1/5) 2865699999302255 a001 365435296162/228826127*1860498^(1/5) 2865699999302255 a001 956722026041/599074578*1860498^(1/5) 2865699999302255 a001 2504730781961/1568397607*1860498^(1/5) 2865699999302255 a001 6557470319842/4106118243*1860498^(1/5) 2865699999302255 a001 10610209857723/6643838879*1860498^(1/5) 2865699999302255 a001 4052739537881/2537720636*1860498^(1/5) 2865699999302255 a001 1548008755920/969323029*1860498^(1/5) 2865699999302255 a001 591286729879/370248451*1860498^(1/5) 2865699999302255 a001 225851433717/141422324*1860498^(1/5) 2865699999302256 a001 86267571272/54018521*1860498^(1/5) 2865699999302262 a001 32951280099/20633239*1860498^(1/5) 2865699999302274 a001 10182505537/3940598*1860498^(1/6) 2865699999302285 a001 1346269/4870847*141422324^(8/13) 2865699999302285 a001 1346269/4870847*2537720636^(8/15) 2865699999302285 a001 1346269/4870847*45537549124^(8/17) 2865699999302285 a001 2178309/3010349*312119004989^(2/5) 2865699999302285 a001 1346269/4870847*14662949395604^(8/21) 2865699999302285 a001 1346269/4870847*(1/2+1/2*5^(1/2))^24 2865699999302285 a001 2178309/3010349*(1/2+1/2*5^(1/2))^22 2865699999302285 a001 1346269/4870847*192900153618^(4/9) 2865699999302285 a001 1346269/4870847*73681302247^(6/13) 2865699999302285 a001 2178309/3010349*10749957122^(11/24) 2865699999302285 a001 1346269/4870847*10749957122^(1/2) 2865699999302285 a001 2178309/3010349*4106118243^(11/23) 2865699999302285 a001 1346269/4870847*4106118243^(12/23) 2865699999302285 a001 2178309/3010349*1568397607^(1/2) 2865699999302285 a001 1346269/4870847*1568397607^(6/11) 2865699999302285 a001 2178309/3010349*599074578^(11/21) 2865699999302285 a001 1346269/4870847*599074578^(4/7) 2865699999302285 a001 2178309/3010349*228826127^(11/20) 2865699999302285 a001 1346269/4870847*228826127^(3/5) 2865699999302285 a001 139647137101/4873055 2865699999302285 a001 2178309/3010349*87403803^(11/19) 2865699999302285 a001 1346269/4870847*87403803^(12/19) 2865699999302287 a001 2178309/3010349*33385282^(11/18) 2865699999302287 a001 1346269/4870847*33385282^(2/3) 2865699999302293 a001 7778742049/12752043*1860498^(4/15) 2865699999302297 a001 2178309/3010349*12752043^(11/17) 2865699999302298 a001 1346269/4870847*12752043^(12/17) 2865699999302300 a001 433494437/4870847*1860498^(2/5) 2865699999302301 a001 12586269025/7881196*1860498^(1/5) 2865699999302308 a001 10182505537/16692641*1860498^(4/15) 2865699999302310 a001 53316291173/87403803*1860498^(4/15) 2865699999302310 a001 139583862445/228826127*1860498^(4/15) 2865699999302311 a001 182717648081/299537289*1860498^(4/15) 2865699999302311 a001 956722026041/1568397607*1860498^(4/15) 2865699999302311 a001 2504730781961/4106118243*1860498^(4/15) 2865699999302311 a001 3278735159921/5374978561*1860498^(4/15) 2865699999302311 a001 10610209857723/17393796001*1860498^(4/15) 2865699999302311 a001 4052739537881/6643838879*1860498^(4/15) 2865699999302311 a001 1134903780/1860499*1860498^(4/15) 2865699999302311 a001 591286729879/969323029*1860498^(4/15) 2865699999302311 a001 225851433717/370248451*1860498^(4/15) 2865699999302311 a001 21566892818/35355581*1860498^(4/15) 2865699999302311 a001 32951280099/54018521*1860498^(4/15) 2865699999302317 a001 1144206275/1875749*1860498^(4/15) 2865699999302320 a001 1602508992/4250681*1860498^(3/10) 2865699999302336 a001 12586269025/33385282*1860498^(3/10) 2865699999302338 a001 10983760033/29134601*1860498^(3/10) 2865699999302338 a001 86267571272/228826127*1860498^(3/10) 2865699999302338 a001 267913919/710646*1860498^(3/10) 2865699999302338 a001 591286729879/1568397607*1860498^(3/10) 2865699999302338 a001 516002918640/1368706081*1860498^(3/10) 2865699999302338 a001 4052739537881/10749957122*1860498^(3/10) 2865699999302338 a001 3536736619241/9381251041*1860498^(3/10) 2865699999302338 a001 6557470319842/17393796001*1860498^(3/10) 2865699999302338 a001 2504730781961/6643838879*1860498^(3/10) 2865699999302338 a001 956722026041/2537720636*1860498^(3/10) 2865699999302338 a001 365435296162/969323029*1860498^(3/10) 2865699999302338 a001 139583862445/370248451*1860498^(3/10) 2865699999302338 a001 53316291173/141422324*1860498^(3/10) 2865699999302339 a001 20365011074/54018521*1860498^(3/10) 2865699999302345 a001 7778742049/20633239*1860498^(3/10) 2865699999302348 a001 2971215073/12752043*1860498^(1/3) 2865699999302355 a001 165580141/4870847*1860498^(7/15) 2865699999302357 a001 1201881744/1970299*1860498^(4/15) 2865699999302363 a001 7778742049/33385282*1860498^(1/3) 2865699999302364 a001 1346269/87403803*7881196^(10/11) 2865699999302365 a001 20365011074/87403803*1860498^(1/3) 2865699999302366 a001 53316291173/228826127*1860498^(1/3) 2865699999302366 a001 139583862445/599074578*1860498^(1/3) 2865699999302366 a001 365435296162/1568397607*1860498^(1/3) 2865699999302366 a001 956722026041/4106118243*1860498^(1/3) 2865699999302366 a001 2504730781961/10749957122*1860498^(1/3) 2865699999302366 a001 6557470319842/28143753123*1860498^(1/3) 2865699999302366 a001 10610209857723/45537549124*1860498^(1/3) 2865699999302366 a001 4052739537881/17393796001*1860498^(1/3) 2865699999302366 a001 1548008755920/6643838879*1860498^(1/3) 2865699999302366 a001 591286729879/2537720636*1860498^(1/3) 2865699999302366 a001 225851433717/969323029*1860498^(1/3) 2865699999302366 a001 86267571272/370248451*1860498^(1/3) 2865699999302366 a001 63246219/271444*1860498^(1/3) 2865699999302367 a001 12586269025/54018521*1860498^(1/3) 2865699999302368 a001 2178309/3010349*4870847^(11/16) 2865699999302372 a001 4807526976/20633239*1860498^(1/3) 2865699999302374 a001 53316291173/4870847*710647^(1/14) 2865699999302375 a001 1346269/20633239*7881196^(9/11) 2865699999302376 a001 1346269/4870847*4870847^(3/4) 2865699999302378 a001 14930352/3010349*7881196^(6/11) 2865699999302383 a001 102334155/4870847*1860498^(1/2) 2865699999302384 a001 2971215073/7881196*1860498^(3/10) 2865699999302384 a001 5702887/3010349*20633239^(4/7) 2865699999302385 a001 63245986/3010349*7881196^(5/11) 2865699999302388 a001 1346269/12752043*141422324^(2/3) 2865699999302388 a001 5702887/3010349*2537720636^(4/9) 2865699999302388 a001 1346269/12752043*(1/2+1/2*5^(1/2))^26 2865699999302388 a001 5702887/3010349*(1/2+1/2*5^(1/2))^20 2865699999302388 a001 5702887/3010349*23725150497407^(5/16) 2865699999302388 a001 5702887/3010349*505019158607^(5/14) 2865699999302388 a001 5702887/3010349*73681302247^(5/13) 2865699999302388 a001 1346269/12752043*73681302247^(1/2) 2865699999302388 a001 5702887/3010349*28143753123^(2/5) 2865699999302388 a001 5702887/3010349*10749957122^(5/12) 2865699999302388 a001 1346269/12752043*10749957122^(13/24) 2865699999302388 a001 5702887/3010349*4106118243^(10/23) 2865699999302388 a001 1346269/12752043*4106118243^(13/23) 2865699999302388 a001 5702887/3010349*1568397607^(5/11) 2865699999302388 a001 1346269/12752043*1568397607^(13/22) 2865699999302388 a001 5702887/3010349*599074578^(10/21) 2865699999302388 a001 1346269/12752043*599074578^(13/21) 2865699999302388 a001 7677619978603/267914296 2865699999302388 a001 5702887/3010349*228826127^(1/2) 2865699999302388 a001 1346269/12752043*228826127^(13/20) 2865699999302389 a001 5702887/3010349*87403803^(10/19) 2865699999302389 a001 1346269/12752043*87403803^(13/19) 2865699999302389 a001 267914296/3010349*7881196^(4/11) 2865699999302390 a001 5702887/3010349*33385282^(5/9) 2865699999302390 a001 1346269/12752043*33385282^(13/18) 2865699999302391 a001 433494437/3010349*7881196^(1/3) 2865699999302393 a001 1134903170/3010349*7881196^(3/11) 2865699999302398 a001 4807526976/3010349*7881196^(2/11) 2865699999302398 a001 1346269/33385282*20633239^(4/5) 2865699999302399 a001 5702887/3010349*12752043^(10/17) 2865699999302399 a001 2971215073/710647*271443^(2/13) 2865699999302400 a001 1346269/87403803*20633239^(6/7) 2865699999302402 a001 20365011074/3010349*7881196^(1/11) 2865699999302402 a001 1346269/12752043*12752043^(13/17) 2865699999302403 a001 102334155/3010349*20633239^(2/5) 2865699999302403 a001 63245986/3010349*20633239^(3/7) 2865699999302403 a001 1134903170/12752043*1860498^(2/5) 2865699999302403 a001 14930352/3010349*141422324^(6/13) 2865699999302403 a001 14930352/3010349*2537720636^(2/5) 2865699999302403 a001 1346269/33385282*17393796001^(4/7) 2865699999302403 a001 14930352/3010349*45537549124^(6/17) 2865699999302403 a001 1346269/33385282*14662949395604^(4/9) 2865699999302403 a001 1346269/33385282*(1/2+1/2*5^(1/2))^28 2865699999302403 a001 14930352/3010349*(1/2+1/2*5^(1/2))^18 2865699999302403 a001 1346269/33385282*505019158607^(1/2) 2865699999302403 a001 14930352/3010349*192900153618^(1/3) 2865699999302403 a001 1346269/33385282*73681302247^(7/13) 2865699999302403 a001 14930352/3010349*10749957122^(3/8) 2865699999302403 a001 1346269/33385282*10749957122^(7/12) 2865699999302403 a001 14930352/3010349*4106118243^(9/23) 2865699999302403 a001 1346269/33385282*4106118243^(14/23) 2865699999302403 a001 14930352/3010349*1568397607^(9/22) 2865699999302403 a001 1346269/33385282*1568397607^(7/11) 2865699999302403 a001 6700090018896/233802911 2865699999302403 a001 14930352/3010349*599074578^(3/7) 2865699999302403 a001 1346269/33385282*599074578^(2/3) 2865699999302403 a001 14930352/3010349*228826127^(9/20) 2865699999302403 a001 1346269/33385282*228826127^(7/10) 2865699999302404 a001 14930352/3010349*87403803^(9/19) 2865699999302404 a001 1346269/33385282*87403803^(14/19) 2865699999302404 a001 701408733/3010349*20633239^(2/7) 2865699999302405 a001 2971215073/3010349*20633239^(1/5) 2865699999302405 a001 14930352/3010349*33385282^(1/2) 2865699999302405 a001 7778742049/3010349*20633239^(1/7) 2865699999302405 a001 1346269/33385282*33385282^(7/9) 2865699999302405 a001 1346269/87403803*141422324^(10/13) 2865699999302406 a001 1346269/87403803*2537720636^(2/3) 2865699999302406 a001 1346269/87403803*45537549124^(10/17) 2865699999302406 a001 1346269/87403803*312119004989^(6/11) 2865699999302406 a001 1346269/87403803*14662949395604^(10/21) 2865699999302406 a001 39088169/3010349*(1/2+1/2*5^(1/2))^16 2865699999302406 a001 39088169/3010349*23725150497407^(1/4) 2865699999302406 a001 1346269/87403803*192900153618^(5/9) 2865699999302406 a001 39088169/3010349*73681302247^(4/13) 2865699999302406 a001 1346269/87403803*28143753123^(3/5) 2865699999302406 a001 39088169/3010349*10749957122^(1/3) 2865699999302406 a001 1346269/87403803*10749957122^(5/8) 2865699999302406 a001 39088169/3010349*4106118243^(8/23) 2865699999302406 a001 1346269/87403803*4106118243^(15/23) 2865699999302406 a001 52623190191461/1836311903 2865699999302406 a001 39088169/3010349*1568397607^(4/11) 2865699999302406 a001 1346269/87403803*1568397607^(15/22) 2865699999302406 a001 39088169/3010349*599074578^(8/21) 2865699999302406 a001 1346269/87403803*599074578^(5/7) 2865699999302406 a001 39088169/3010349*228826127^(2/5) 2865699999302406 a001 1346269/87403803*228826127^(3/4) 2865699999302406 a001 39088169/3010349*87403803^(8/19) 2865699999302406 a001 1346269/1568397607*141422324^(12/13) 2865699999302406 a001 1346269/370248451*141422324^(11/13) 2865699999302406 a001 1346269/87403803*87403803^(15/19) 2865699999302406 a001 102334155/3010349*17393796001^(2/7) 2865699999302406 a001 102334155/3010349*14662949395604^(2/9) 2865699999302406 a001 102334155/3010349*(1/2+1/2*5^(1/2))^14 2865699999302406 a001 102334155/3010349*505019158607^(1/4) 2865699999302406 a001 1346269/228826127*73681302247^(8/13) 2865699999302406 a001 102334155/3010349*10749957122^(7/24) 2865699999302406 a001 1346269/228826127*10749957122^(2/3) 2865699999302406 a001 6560442881795/228929856 2865699999302406 a001 102334155/3010349*4106118243^(7/23) 2865699999302406 a001 1346269/228826127*4106118243^(16/23) 2865699999302406 a001 102334155/3010349*1568397607^(7/22) 2865699999302406 a001 1346269/228826127*1568397607^(8/11) 2865699999302406 a001 267914296/3010349*141422324^(4/13) 2865699999302406 a001 102334155/3010349*599074578^(1/3) 2865699999302406 a001 1346269/228826127*599074578^(16/21) 2865699999302406 a001 102334155/3010349*228826127^(7/20) 2865699999302406 a001 1134903170/3010349*141422324^(3/13) 2865699999302406 a001 165580141/3010349*141422324^(1/3) 2865699999302406 a001 4807526976/3010349*141422324^(2/13) 2865699999302406 a001 20365011074/3010349*141422324^(1/13) 2865699999302406 a001 1346269/228826127*228826127^(4/5) 2865699999302406 a001 267914296/3010349*2537720636^(4/15) 2865699999302406 a001 1346269/599074578*45537549124^(2/3) 2865699999302406 a001 267914296/3010349*45537549124^(4/17) 2865699999302406 a001 267914296/3010349*817138163596^(4/19) 2865699999302406 a001 267914296/3010349*14662949395604^(4/21) 2865699999302406 a001 267914296/3010349*(1/2+1/2*5^(1/2))^12 2865699999302406 a001 267914296/3010349*192900153618^(2/9) 2865699999302406 a001 267914296/3010349*73681302247^(3/13) 2865699999302406 a001 360684711361624/12586269025 2865699999302406 a001 267914296/3010349*10749957122^(1/4) 2865699999302406 a001 1346269/599074578*10749957122^(17/24) 2865699999302406 a001 267914296/3010349*4106118243^(6/23) 2865699999302406 a001 1346269/599074578*4106118243^(17/23) 2865699999302406 a001 267914296/3010349*1568397607^(3/11) 2865699999302406 a001 1346269/599074578*1568397607^(17/22) 2865699999302406 a001 267914296/3010349*599074578^(2/7) 2865699999302406 a001 1346269/1568397607*2537720636^(4/5) 2865699999302406 a001 1346269/599074578*599074578^(17/21) 2865699999302406 a001 701408733/3010349*2537720636^(2/9) 2865699999302406 a001 1346269/1568397607*45537549124^(12/17) 2865699999302406 a001 1346269/1568397607*14662949395604^(4/7) 2865699999302406 a001 701408733/3010349*(1/2+1/2*5^(1/2))^10 2865699999302406 a001 1346269/1568397607*505019158607^(9/14) 2865699999302406 a001 1346269/1568397607*192900153618^(2/3) 2865699999302406 a001 1346269/1568397607*73681302247^(9/13) 2865699999302406 a001 314761611189059/10983760033 2865699999302406 a001 701408733/3010349*28143753123^(1/5) 2865699999302406 a001 701408733/3010349*10749957122^(5/24) 2865699999302406 a001 1346269/1568397607*10749957122^(3/4) 2865699999302406 a001 701408733/3010349*4106118243^(5/23) 2865699999302406 a001 1346269/1568397607*4106118243^(18/23) 2865699999302406 a001 701408733/3010349*1568397607^(5/22) 2865699999302406 a001 1346269/10749957122*2537720636^(8/9) 2865699999302406 a001 1346269/28143753123*2537720636^(14/15) 2865699999302406 a001 1346269/6643838879*2537720636^(13/15) 2865699999302406 a001 1346269/1568397607*1568397607^(9/11) 2865699999302406 a001 1346269/4106118243*817138163596^(2/3) 2865699999302406 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^8 2865699999302406 a001 1836311903/3010349*505019158607^(1/7) 2865699999302406 a001 2472169789339907/86267571272 2865699999302406 a001 1836311903/3010349*73681302247^(2/13) 2865699999302406 a001 1836311903/3010349*10749957122^(1/6) 2865699999302406 a001 1346269/4106118243*10749957122^(19/24) 2865699999302406 a001 1836311903/3010349*4106118243^(4/23) 2865699999302406 a001 4807526976/3010349*2537720636^(2/15) 2865699999302406 a001 7778742049/3010349*2537720636^(1/9) 2865699999302406 a001 1346269/4106118243*4106118243^(19/23) 2865699999302406 a001 20365011074/3010349*2537720636^(1/15) 2865699999302406 a001 4807526976/3010349*45537549124^(2/17) 2865699999302406 a001 1346269/10749957122*312119004989^(8/11) 2865699999302406 a001 1346269/10749957122*23725150497407^(5/8) 2865699999302406 a001 4807526976/3010349*14662949395604^(2/21) 2865699999302406 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^6 2865699999302406 a001 1346269/10749957122*73681302247^(10/13) 2865699999302406 a001 1346269/10749957122*28143753123^(4/5) 2865699999302406 a001 4807526976/3010349*10749957122^(1/8) 2865699999302406 a001 1346269/28143753123*17393796001^(6/7) 2865699999302406 a001 1346269/28143753123*45537549124^(14/17) 2865699999302406 a001 1346269/10749957122*10749957122^(5/6) 2865699999302406 a001 1346269/28143753123*14662949395604^(2/3) 2865699999302406 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^4 2865699999302406 a001 12586269025/3010349*23725150497407^(1/16) 2865699999302406 a001 1346269/28143753123*505019158607^(3/4) 2865699999302406 a001 12586269025/3010349*73681302247^(1/13) 2865699999302406 a001 1346269/28143753123*192900153618^(7/9) 2865699999302406 a001 4807526976/3010349*4106118243^(3/23) 2865699999302406 a001 12586269025/3010349*10749957122^(1/12) 2865699999302406 a001 1346269/505019158607*45537549124^(16/17) 2865699999302406 a001 1346269/119218851371*45537549124^(15/17) 2865699999302406 a001 1346269/73681302247*312119004989^(4/5) 2865699999302406 a001 1346269/73681302247*23725150497407^(11/16) 2865699999302406 a001 1346269/73681302247*73681302247^(11/13) 2865699999302406 a001 86267571272/3010349 2865699999302406 a001 1346269/1322157322203*312119004989^(10/11) 2865699999302406 a001 14478894467559613/505248088463 2865699999302406 a001 1346269/1322157322203*3461452808002^(5/6) 2865699999302406 a001 1346269/2139295485799*14662949395604^(17/21) 2865699999302406 a001 1346269/3461452808002*505019158607^(13/14) 2865699999302406 a001 1346269/817138163596*505019158607^(7/8) 2865699999302406 a001 1346269/505019158607*192900153618^(8/9) 2865699999302406 a001 1346269/2139295485799*192900153618^(17/18) 2865699999302406 a001 1346269/119218851371*312119004989^(9/11) 2865699999302406 a001 71778070001183537/2504730781961 2865699999302406 a001 1346269/119218851371*14662949395604^(5/7) 2865699999302406 a001 1346269/119218851371*192900153618^(5/6) 2865699999302406 a001 1346269/505019158607*73681302247^(12/13) 2865699999302406 a001 32951280099/3010349*10749957122^(1/24) 2865699999302406 a001 20365011074/3010349*45537549124^(1/17) 2865699999302406 a001 20365011074/3010349*14662949395604^(1/21) 2865699999302406 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^3 2865699999302406 a001 20365011074/3010349*192900153618^(1/18) 2865699999302406 a001 20365011074/3010349*10749957122^(1/16) 2865699999302406 a001 1346269/119218851371*28143753123^(9/10) 2865699999302406 a001 32951280099/3010349*4106118243^(1/23) 2865699999302406 a001 10472279279565181/365435296162 2865699999302406 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^5 2865699999302406 a001 7778742049/3010349*28143753123^(1/10) 2865699999302406 a001 12586269025/3010349*4106118243^(2/23) 2865699999302406 a001 1346269/28143753123*10749957122^(7/8) 2865699999302406 a001 1346269/73681302247*10749957122^(11/12) 2865699999302406 a001 1346269/119218851371*10749957122^(15/16) 2865699999302406 a001 1346269/192900153618*10749957122^(23/24) 2865699999302406 a001 1836311903/3010349*1568397607^(2/11) 2865699999302406 a001 32951280099/3010349*1568397607^(1/22) 2865699999302406 a001 2971215073/3010349*17393796001^(1/7) 2865699999302406 a001 1346269/6643838879*45537549124^(13/17) 2865699999302406 a001 4000054745112637/139583862445 2865699999302406 a001 1346269/6643838879*14662949395604^(13/21) 2865699999302406 a001 2971215073/3010349*14662949395604^(1/9) 2865699999302406 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^7 2865699999302406 a001 1346269/6643838879*192900153618^(13/18) 2865699999302406 a001 1346269/6643838879*73681302247^(3/4) 2865699999302406 a001 1346269/6643838879*10749957122^(13/16) 2865699999302406 a001 12586269025/3010349*1568397607^(1/11) 2865699999302406 a001 1346269/10749957122*4106118243^(20/23) 2865699999302406 a001 4807526976/3010349*1568397607^(3/22) 2865699999302406 a001 1346269/28143753123*4106118243^(21/23) 2865699999302406 a001 1346269/73681302247*4106118243^(22/23) 2865699999302406 a001 1134903170/3010349*2537720636^(1/5) 2865699999302406 a001 32951280099/3010349*599074578^(1/21) 2865699999302406 a001 1134903170/3010349*45537549124^(3/17) 2865699999302406 a001 1527884955772730/53316291173 2865699999302406 a001 1134903170/3010349*817138163596^(3/19) 2865699999302406 a001 1134903170/3010349*14662949395604^(1/7) 2865699999302406 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^9 2865699999302406 a001 1134903170/3010349*192900153618^(1/6) 2865699999302406 a001 1134903170/3010349*10749957122^(3/16) 2865699999302406 a001 20365011074/3010349*599074578^(1/14) 2865699999302406 a001 701408733/3010349*599074578^(5/21) 2865699999302406 a001 12586269025/3010349*599074578^(2/21) 2865699999302406 a001 1346269/4106118243*1568397607^(19/22) 2865699999302406 a001 1346269/10749957122*1568397607^(10/11) 2865699999302406 a001 1346269/28143753123*1568397607^(21/22) 2865699999302406 a001 4807526976/3010349*599074578^(1/7) 2865699999302406 a001 1836311903/3010349*599074578^(4/21) 2865699999302406 a001 2971215073/3010349*599074578^(1/6) 2865699999302406 a001 1134903170/3010349*599074578^(3/14) 2865699999302406 a001 1346269/969323029*2537720636^(7/9) 2865699999302406 a001 32951280099/3010349*228826127^(1/20) 2865699999302406 a001 1346269/969323029*17393796001^(5/7) 2865699999302406 a001 583600122205553/20365011074 2865699999302406 a001 1346269/969323029*312119004989^(7/11) 2865699999302406 a001 433494437/3010349*312119004989^(1/5) 2865699999302406 a001 1346269/969323029*14662949395604^(5/9) 2865699999302406 a001 433494437/3010349*(1/2+1/2*5^(1/2))^11 2865699999302406 a001 1346269/969323029*505019158607^(5/8) 2865699999302406 a001 1346269/969323029*28143753123^(7/10) 2865699999302406 a001 433494437/3010349*1568397607^(1/4) 2865699999302406 a001 12586269025/3010349*228826127^(1/10) 2865699999302406 a001 1346269/1568397607*599074578^(6/7) 2865699999302406 a001 7778742049/3010349*228826127^(1/8) 2865699999302406 a001 1346269/4106118243*599074578^(19/21) 2865699999302406 a001 1346269/6643838879*599074578^(13/14) 2865699999302406 a001 1346269/10749957122*599074578^(20/21) 2865699999302406 a001 4807526976/3010349*228826127^(3/20) 2865699999302406 a001 267914296/3010349*228826127^(3/10) 2865699999302406 a001 1346269/969323029*599074578^(5/6) 2865699999302406 a001 1836311903/3010349*228826127^(1/5) 2865699999302406 a001 701408733/3010349*228826127^(1/4) 2865699999302406 a001 32951280099/3010349*87403803^(1/19) 2865699999302406 a001 1346269/370248451*2537720636^(11/15) 2865699999302406 a001 222915410843929/7778742049 2865699999302406 a001 1346269/370248451*45537549124^(11/17) 2865699999302406 a001 1346269/370248451*312119004989^(3/5) 2865699999302406 a001 1346269/370248451*14662949395604^(11/21) 2865699999302406 a001 165580141/3010349*(1/2+1/2*5^(1/2))^13 2865699999302406 a001 1346269/370248451*192900153618^(11/18) 2865699999302406 a001 165580141/3010349*73681302247^(1/4) 2865699999302406 a001 1346269/370248451*10749957122^(11/16) 2865699999302406 a001 1346269/370248451*1568397607^(3/4) 2865699999302406 a001 1346269/370248451*599074578^(11/14) 2865699999302406 a001 1346269/599074578*228826127^(17/20) 2865699999302406 a001 12586269025/3010349*87403803^(2/19) 2865699999302406 a001 1346269/1568397607*228826127^(9/10) 2865699999302406 a001 1346269/969323029*228826127^(7/8) 2865699999302406 a001 1346269/4106118243*228826127^(19/20) 2865699999302406 a001 4807526976/3010349*87403803^(3/19) 2865699999302406 a001 1836311903/3010349*87403803^(4/19) 2865699999302406 a001 102334155/3010349*87403803^(7/19) 2865699999302406 a001 63245986/3010349*141422324^(5/13) 2865699999302406 a001 701408733/3010349*87403803^(5/19) 2865699999302406 a001 267914296/3010349*87403803^(6/19) 2865699999302406 a001 32951280099/3010349*33385282^(1/18) 2865699999302406 a001 63245986/3010349*2537720636^(1/3) 2865699999302406 a001 85146110326234/2971215073 2865699999302406 a001 63245986/3010349*45537549124^(5/17) 2865699999302406 a001 63245986/3010349*312119004989^(3/11) 2865699999302406 a001 1346269/141422324*9062201101803^(1/2) 2865699999302406 a001 63245986/3010349*14662949395604^(5/21) 2865699999302406 a001 63245986/3010349*(1/2+1/2*5^(1/2))^15 2865699999302406 a001 63245986/3010349*192900153618^(5/18) 2865699999302406 a001 63245986/3010349*28143753123^(3/10) 2865699999302406 a001 63245986/3010349*10749957122^(5/16) 2865699999302406 a001 63245986/3010349*599074578^(5/14) 2865699999302406 a001 63245986/3010349*228826127^(3/8) 2865699999302406 a001 20365011074/3010349*33385282^(1/12) 2865699999302406 a001 1346269/228826127*87403803^(16/19) 2865699999302406 a001 12586269025/3010349*33385282^(1/9) 2865699999302406 a001 1346269/599074578*87403803^(17/19) 2865699999302406 a001 1346269/1568397607*87403803^(18/19) 2865699999302406 a001 4807526976/3010349*33385282^(1/6) 2865699999302407 a001 1836311903/3010349*33385282^(2/9) 2865699999302407 a001 1134903170/3010349*33385282^(1/4) 2865699999302407 a001 701408733/3010349*33385282^(5/18) 2865699999302407 a001 39088169/3010349*33385282^(4/9) 2865699999302407 a001 267914296/3010349*33385282^(1/3) 2865699999302407 a001 102334155/3010349*33385282^(7/18) 2865699999302407 a001 32522920134773/1134903170 2865699999302407 a001 24157817/3010349*45537549124^(1/3) 2865699999302407 a001 24157817/3010349*(1/2+1/2*5^(1/2))^17 2865699999302407 a001 1346269/54018521*1322157322203^(1/2) 2865699999302407 a001 32951280099/3010349*12752043^(1/17) 2865699999302407 a001 63245986/3010349*33385282^(5/12) 2865699999302408 a001 1346269/87403803*33385282^(5/6) 2865699999302408 a001 12586269025/3010349*12752043^(2/17) 2865699999302408 a001 1346269/228826127*33385282^(8/9) 2865699999302408 a001 1346269/370248451*33385282^(11/12) 2865699999302408 a001 1346269/599074578*33385282^(17/18) 2865699999302409 a001 4807526976/3010349*12752043^(3/17) 2865699999302410 a001 1836311903/3010349*12752043^(4/17) 2865699999302411 a001 63245986/4870847*1860498^(8/15) 2865699999302411 a001 701408733/3010349*12752043^(5/17) 2865699999302412 a001 1836311903/7881196*1860498^(1/3) 2865699999302412 a001 267914296/3010349*12752043^(6/17) 2865699999302413 a001 1346269/20633239*141422324^(9/13) 2865699999302413 a001 12422650078085/433494437 2865699999302413 a001 1346269/20633239*2537720636^(3/5) 2865699999302413 a001 1346269/20633239*45537549124^(9/17) 2865699999302413 a001 1346269/20633239*817138163596^(9/19) 2865699999302413 a001 1346269/20633239*14662949395604^(3/7) 2865699999302413 a001 1346269/20633239*(1/2+1/2*5^(1/2))^27 2865699999302413 a001 9227465/3010349*(1/2+1/2*5^(1/2))^19 2865699999302413 a001 1346269/20633239*192900153618^(1/2) 2865699999302413 a001 1346269/20633239*10749957122^(9/16) 2865699999302413 a001 1346269/20633239*599074578^(9/14) 2865699999302413 a001 14930352/3010349*12752043^(9/17) 2865699999302413 a001 9227465/3010349*87403803^(1/2) 2865699999302413 a001 102334155/3010349*12752043^(7/17) 2865699999302414 a001 32951280099/3010349*4870847^(1/16) 2865699999302414 a001 39088169/3010349*12752043^(8/17) 2865699999302415 a001 1346269/20633239*33385282^(3/4) 2865699999302416 a001 24157817/3010349*12752043^(1/2) 2865699999302418 a001 1346269/33385282*12752043^(14/17) 2865699999302418 a001 2971215073/33385282*1860498^(2/5) 2865699999302421 a001 7778742049/87403803*1860498^(2/5) 2865699999302421 a001 20365011074/228826127*1860498^(2/5) 2865699999302421 a001 53316291173/599074578*1860498^(2/5) 2865699999302421 a001 139583862445/1568397607*1860498^(2/5) 2865699999302421 a001 365435296162/4106118243*1860498^(2/5) 2865699999302421 a001 956722026041/10749957122*1860498^(2/5) 2865699999302421 a001 2504730781961/28143753123*1860498^(2/5) 2865699999302421 a001 6557470319842/73681302247*1860498^(2/5) 2865699999302421 a001 10610209857723/119218851371*1860498^(2/5) 2865699999302421 a001 4052739537881/45537549124*1860498^(2/5) 2865699999302421 a001 1548008755920/17393796001*1860498^(2/5) 2865699999302421 a001 591286729879/6643838879*1860498^(2/5) 2865699999302421 a001 225851433717/2537720636*1860498^(2/5) 2865699999302421 a001 86267571272/969323029*1860498^(2/5) 2865699999302421 a001 32951280099/370248451*1860498^(2/5) 2865699999302421 a001 12586269025/141422324*1860498^(2/5) 2865699999302421 a001 12586269025/3010349*4870847^(1/8) 2865699999302421 a001 1346269/87403803*12752043^(15/17) 2865699999302422 a001 4807526976/54018521*1860498^(2/5) 2865699999302422 a001 1346269/228826127*12752043^(16/17) 2865699999302423 a001 3524578/3010349*7881196^(7/11) 2865699999302428 a001 1836311903/20633239*1860498^(2/5) 2865699999302429 a001 4807526976/3010349*4870847^(3/16) 2865699999302436 a001 1836311903/3010349*4870847^(1/4) 2865699999302444 a001 701408733/3010349*4870847^(5/16) 2865699999302447 a001 1346269/7881196*20633239^(5/7) 2865699999302448 a001 3524578/3010349*20633239^(3/5) 2865699999302451 a001 267914296/3010349*4870847^(3/8) 2865699999302452 a001 3524578/3010349*141422324^(7/13) 2865699999302452 a001 4745030099482/165580141 2865699999302452 a001 1346269/7881196*2537720636^(5/9) 2865699999302452 a001 3524578/3010349*2537720636^(7/15) 2865699999302452 a001 3524578/3010349*17393796001^(3/7) 2865699999302452 a001 3524578/3010349*45537549124^(7/17) 2865699999302452 a001 1346269/7881196*312119004989^(5/11) 2865699999302452 a001 1346269/7881196*(1/2+1/2*5^(1/2))^25 2865699999302452 a001 3524578/3010349*(1/2+1/2*5^(1/2))^21 2865699999302452 a001 1346269/7881196*3461452808002^(5/12) 2865699999302452 a001 3524578/3010349*192900153618^(7/18) 2865699999302452 a001 1346269/7881196*28143753123^(1/2) 2865699999302452 a001 3524578/3010349*10749957122^(7/16) 2865699999302452 a001 3524578/3010349*599074578^(1/2) 2865699999302452 a001 1346269/7881196*228826127^(5/8) 2865699999302454 a001 3524578/3010349*33385282^(7/12) 2865699999302458 a001 433494437/12752043*1860498^(7/15) 2865699999302459 a001 102334155/3010349*4870847^(7/16) 2865699999302461 a001 32951280099/3010349*1860498^(1/15) 2865699999302464 a001 5702887/3010349*4870847^(5/8) 2865699999302466 a001 39088169/3010349*4870847^(1/2) 2865699999302467 a001 24157817/4870847*1860498^(3/5) 2865699999302467 a001 3524667/39604*1860498^(2/5) 2865699999302471 a001 14930352/3010349*4870847^(9/16) 2865699999302474 a001 567451585/16692641*1860498^(7/15) 2865699999302476 a001 2971215073/87403803*1860498^(7/15) 2865699999302476 a001 7778742049/228826127*1860498^(7/15) 2865699999302476 a001 10182505537/299537289*1860498^(7/15) 2865699999302476 a001 53316291173/1568397607*1860498^(7/15) 2865699999302476 a001 139583862445/4106118243*1860498^(7/15) 2865699999302476 a001 182717648081/5374978561*1860498^(7/15) 2865699999302476 a001 956722026041/28143753123*1860498^(7/15) 2865699999302476 a001 2504730781961/73681302247*1860498^(7/15) 2865699999302476 a001 3278735159921/96450076809*1860498^(7/15) 2865699999302476 a001 10610209857723/312119004989*1860498^(7/15) 2865699999302476 a001 4052739537881/119218851371*1860498^(7/15) 2865699999302476 a001 387002188980/11384387281*1860498^(7/15) 2865699999302476 a001 591286729879/17393796001*1860498^(7/15) 2865699999302476 a001 225851433717/6643838879*1860498^(7/15) 2865699999302476 a001 1135099622/33391061*1860498^(7/15) 2865699999302476 a001 32951280099/969323029*1860498^(7/15) 2865699999302476 a001 12586269025/370248451*1860498^(7/15) 2865699999302476 a001 1201881744/35355581*1860498^(7/15) 2865699999302477 a001 1836311903/54018521*1860498^(7/15) 2865699999302477 a001 139583862445/12752043*710647^(1/14) 2865699999302478 a001 2971215073/1860498*710647^(3/14) 2865699999302483 a001 701408733/20633239*1860498^(7/15) 2865699999302486 a001 267914296/12752043*1860498^(1/2) 2865699999302486 a001 1346269/12752043*4870847^(13/16) 2865699999302489 a001 20365011074/3010349*1860498^(1/10) 2865699999302492 a001 182717648081/16692641*710647^(1/14) 2865699999302495 a001 956722026041/87403803*710647^(1/14) 2865699999302495 a001 2504730781961/228826127*710647^(1/14) 2865699999302495 a001 3278735159921/299537289*710647^(1/14) 2865699999302495 a001 10610209857723/969323029*710647^(1/14) 2865699999302495 a001 4052739537881/370248451*710647^(1/14) 2865699999302495 a001 387002188980/35355581*710647^(1/14) 2865699999302496 a001 591286729879/54018521*710647^(1/14) 2865699999302501 a001 701408733/33385282*1860498^(1/2) 2865699999302502 a001 7787980473/711491*710647^(1/14) 2865699999302503 a001 1836311903/87403803*1860498^(1/2) 2865699999302504 a001 102287808/4868641*1860498^(1/2) 2865699999302504 a001 12586269025/599074578*1860498^(1/2) 2865699999302504 a001 32951280099/1568397607*1860498^(1/2) 2865699999302504 a001 86267571272/4106118243*1860498^(1/2) 2865699999302504 a001 225851433717/10749957122*1860498^(1/2) 2865699999302504 a001 591286729879/28143753123*1860498^(1/2) 2865699999302504 a001 1548008755920/73681302247*1860498^(1/2) 2865699999302504 a001 4052739537881/192900153618*1860498^(1/2) 2865699999302504 a001 225749145909/10745088481*1860498^(1/2) 2865699999302504 a001 6557470319842/312119004989*1860498^(1/2) 2865699999302504 a001 2504730781961/119218851371*1860498^(1/2) 2865699999302504 a001 956722026041/45537549124*1860498^(1/2) 2865699999302504 a001 365435296162/17393796001*1860498^(1/2) 2865699999302504 a001 139583862445/6643838879*1860498^(1/2) 2865699999302504 a001 53316291173/2537720636*1860498^(1/2) 2865699999302504 a001 20365011074/969323029*1860498^(1/2) 2865699999302504 a001 7778742049/370248451*1860498^(1/2) 2865699999302504 a001 2971215073/141422324*1860498^(1/2) 2865699999302505 a001 1134903170/54018521*1860498^(1/2) 2865699999302509 a001 1346269/33385282*4870847^(7/8) 2865699999302510 a001 433494437/20633239*1860498^(1/2) 2865699999302514 a001 165580141/12752043*1860498^(8/15) 2865699999302516 a001 12586269025/3010349*1860498^(2/15) 2865699999302519 a001 1346269/87403803*4870847^(15/16) 2865699999302522 a001 66978574/1970299*1860498^(7/15) 2865699999302528 a001 9227465/4870847*1860498^(2/3) 2865699999302529 a001 433494437/33385282*1860498^(8/15) 2865699999302531 a001 5702887/4870847*1860498^(7/10) 2865699999302531 a001 1134903170/87403803*1860498^(8/15) 2865699999302531 a001 2971215073/228826127*1860498^(8/15) 2865699999302531 a001 7778742049/599074578*1860498^(8/15) 2865699999302531 a001 20365011074/1568397607*1860498^(8/15) 2865699999302531 a001 53316291173/4106118243*1860498^(8/15) 2865699999302531 a001 139583862445/10749957122*1860498^(8/15) 2865699999302531 a001 365435296162/28143753123*1860498^(8/15) 2865699999302531 a001 956722026041/73681302247*1860498^(8/15) 2865699999302531 a001 2504730781961/192900153618*1860498^(8/15) 2865699999302531 a001 10610209857723/817138163596*1860498^(8/15) 2865699999302531 a001 4052739537881/312119004989*1860498^(8/15) 2865699999302531 a001 1548008755920/119218851371*1860498^(8/15) 2865699999302531 a001 591286729879/45537549124*1860498^(8/15) 2865699999302531 a001 7787980473/599786069*1860498^(8/15) 2865699999302531 a001 86267571272/6643838879*1860498^(8/15) 2865699999302531 a001 32951280099/2537720636*1860498^(8/15) 2865699999302531 a001 12586269025/969323029*1860498^(8/15) 2865699999302531 a001 4807526976/370248451*1860498^(8/15) 2865699999302531 a001 1836311903/141422324*1860498^(8/15) 2865699999302532 a001 701408733/54018521*1860498^(8/15) 2865699999302538 a001 9238424/711491*1860498^(8/15) 2865699999302541 a001 21566892818/1970299*710647^(1/14) 2865699999302544 a001 7778742049/3010349*1860498^(1/6) 2865699999302550 a001 165580141/7881196*1860498^(1/2) 2865699999302569 a001 63245986/12752043*1860498^(3/5) 2865699999302572 a001 4807526976/3010349*1860498^(1/5) 2865699999302577 a001 102334155/7881196*1860498^(8/15) 2865699999302584 a001 165580141/33385282*1860498^(3/5) 2865699999302586 a001 433494437/87403803*1860498^(3/5) 2865699999302586 a001 1134903170/228826127*1860498^(3/5) 2865699999302586 a001 2971215073/599074578*1860498^(3/5) 2865699999302586 a001 7778742049/1568397607*1860498^(3/5) 2865699999302586 a001 20365011074/4106118243*1860498^(3/5) 2865699999302586 a001 53316291173/10749957122*1860498^(3/5) 2865699999302586 a001 139583862445/28143753123*1860498^(3/5) 2865699999302586 a001 365435296162/73681302247*1860498^(3/5) 2865699999302586 a001 956722026041/192900153618*1860498^(3/5) 2865699999302586 a001 2504730781961/505019158607*1860498^(3/5) 2865699999302586 a001 10610209857723/2139295485799*1860498^(3/5) 2865699999302586 a001 140728068720/28374454999*1860498^(3/5) 2865699999302586 a001 591286729879/119218851371*1860498^(3/5) 2865699999302586 a001 225851433717/45537549124*1860498^(3/5) 2865699999302586 a001 86267571272/17393796001*1860498^(3/5) 2865699999302586 a001 32951280099/6643838879*1860498^(3/5) 2865699999302586 a001 1144206275/230701876*1860498^(3/5) 2865699999302586 a001 4807526976/969323029*1860498^(3/5) 2865699999302586 a001 1836311903/370248451*1860498^(3/5) 2865699999302587 a001 701408733/141422324*1860498^(3/5) 2865699999302587 a001 267914296/54018521*1860498^(3/5) 2865699999302593 a001 9303105/1875749*1860498^(3/5) 2865699999302607 a001 7778742049/1149851*439204^(1/9) 2865699999302622 a001 3524578/4870847*1860498^(11/15) 2865699999302625 a001 24157817/12752043*1860498^(2/3) 2865699999302627 a001 1836311903/3010349*1860498^(4/15) 2865699999302632 a001 39088169/7881196*1860498^(3/5) 2865699999302639 a001 31622993/16692641*1860498^(2/3) 2865699999302641 a001 726103/4250681*1860498^(5/6) 2865699999302641 a001 165580141/87403803*1860498^(2/3) 2865699999302642 a001 433494437/228826127*1860498^(2/3) 2865699999302642 a001 567451585/299537289*1860498^(2/3) 2865699999302642 a001 2971215073/1568397607*1860498^(2/3) 2865699999302642 a001 7778742049/4106118243*1860498^(2/3) 2865699999302642 a001 10182505537/5374978561*1860498^(2/3) 2865699999302642 a001 53316291173/28143753123*1860498^(2/3) 2865699999302642 a001 139583862445/73681302247*1860498^(2/3) 2865699999302642 a001 182717648081/96450076809*1860498^(2/3) 2865699999302642 a001 956722026041/505019158607*1860498^(2/3) 2865699999302642 a001 10610209857723/5600748293801*1860498^(2/3) 2865699999302642 a001 591286729879/312119004989*1860498^(2/3) 2865699999302642 a001 225851433717/119218851371*1860498^(2/3) 2865699999302642 a001 21566892818/11384387281*1860498^(2/3) 2865699999302642 a001 32951280099/17393796001*1860498^(2/3) 2865699999302642 a001 12586269025/6643838879*1860498^(2/3) 2865699999302642 a001 1201881744/634430159*1860498^(2/3) 2865699999302642 a001 1836311903/969323029*1860498^(2/3) 2865699999302642 a001 701408733/370248451*1860498^(2/3) 2865699999302642 a001 66978574/35355581*1860498^(2/3) 2865699999302643 a001 102334155/54018521*1860498^(2/3) 2865699999302648 a001 39088169/20633239*1860498^(2/3) 2865699999302649 a001 4976784/4250681*1860498^(7/10) 2865699999302654 a001 1134903170/3010349*1860498^(3/10) 2865699999302666 a001 39088169/33385282*1860498^(7/10) 2865699999302669 a001 34111385/29134601*1860498^(7/10) 2865699999302669 a001 267914296/228826127*1860498^(7/10) 2865699999302669 a001 233802911/199691526*1860498^(7/10) 2865699999302669 a001 1836311903/1568397607*1860498^(7/10) 2865699999302669 a001 1602508992/1368706081*1860498^(7/10) 2865699999302669 a001 12586269025/10749957122*1860498^(7/10) 2865699999302669 a001 10983760033/9381251041*1860498^(7/10) 2865699999302669 a001 86267571272/73681302247*1860498^(7/10) 2865699999302669 a001 75283811239/64300051206*1860498^(7/10) 2865699999302669 a001 2504730781961/2139295485799*1860498^(7/10) 2865699999302669 a001 365435296162/312119004989*1860498^(7/10) 2865699999302669 a001 139583862445/119218851371*1860498^(7/10) 2865699999302669 a001 53316291173/45537549124*1860498^(7/10) 2865699999302669 a001 20365011074/17393796001*1860498^(7/10) 2865699999302669 a001 7778742049/6643838879*1860498^(7/10) 2865699999302669 a001 2971215073/2537720636*1860498^(7/10) 2865699999302669 a001 1134903170/969323029*1860498^(7/10) 2865699999302669 a001 433494437/370248451*1860498^(7/10) 2865699999302669 a001 165580141/141422324*1860498^(7/10) 2865699999302670 a001 63245986/54018521*1860498^(7/10) 2865699999302677 a001 24157817/20633239*1860498^(7/10) 2865699999302677 a001 2178309/7881196*1860498^(4/5) 2865699999302680 a001 1836311903/1860498*710647^(1/4) 2865699999302682 a001 701408733/3010349*1860498^(1/3) 2865699999302685 a001 3732588/1970299*1860498^(2/3) 2865699999302686 a001 9227465/12752043*1860498^(11/15) 2865699999302693 a001 2178309/20633239*1860498^(13/15) 2865699999302695 a001 24157817/33385282*1860498^(11/15) 2865699999302697 a001 63245986/87403803*1860498^(11/15) 2865699999302697 a001 165580141/228826127*1860498^(11/15) 2865699999302697 a001 433494437/599074578*1860498^(11/15) 2865699999302697 a001 1134903170/1568397607*1860498^(11/15) 2865699999302697 a001 2971215073/4106118243*1860498^(11/15) 2865699999302697 a001 7778742049/10749957122*1860498^(11/15) 2865699999302697 a001 20365011074/28143753123*1860498^(11/15) 2865699999302697 a001 53316291173/73681302247*1860498^(11/15) 2865699999302697 a001 139583862445/192900153618*1860498^(11/15) 2865699999302697 a001 10610209857723/14662949395604*1860498^(11/15) 2865699999302697 a001 591286729879/817138163596*1860498^(11/15) 2865699999302697 a001 225851433717/312119004989*1860498^(11/15) 2865699999302697 a001 86267571272/119218851371*1860498^(11/15) 2865699999302697 a001 32951280099/45537549124*1860498^(11/15) 2865699999302697 a001 12586269025/17393796001*1860498^(11/15) 2865699999302697 a001 4807526976/6643838879*1860498^(11/15) 2865699999302697 a001 1836311903/2537720636*1860498^(11/15) 2865699999302697 a001 701408733/969323029*1860498^(11/15) 2865699999302697 a001 267914296/370248451*1860498^(11/15) 2865699999302697 a001 102334155/141422324*1860498^(11/15) 2865699999302697 a001 39088169/54018521*1860498^(11/15) 2865699999302701 a001 14930352/20633239*1860498^(11/15) 2865699999302711 a001 311187/4769326*1860498^(9/10) 2865699999302722 a001 1812440220361/63245986 2865699999302722 a001 9227465/7881196*1860498^(7/10) 2865699999302722 a001 1346269/3010349*(1/2+1/2*5^(1/2))^23 2865699999302722 a001 1346269/3010349*4106118243^(1/2) 2865699999302725 a001 5702887/7881196*1860498^(11/15) 2865699999302737 a001 267914296/3010349*1860498^(2/5) 2865699999302741 a001 5702887/20633239*1860498^(4/5) 2865699999302743 a001 2178309/54018521*1860498^(14/15) 2865699999302750 a001 14930352/54018521*1860498^(4/5) 2865699999302752 a001 39088169/141422324*1860498^(4/5) 2865699999302752 a001 102334155/370248451*1860498^(4/5) 2865699999302752 a001 267914296/969323029*1860498^(4/5) 2865699999302752 a001 701408733/2537720636*1860498^(4/5) 2865699999302752 a001 1836311903/6643838879*1860498^(4/5) 2865699999302752 a001 4807526976/17393796001*1860498^(4/5) 2865699999302752 a001 12586269025/45537549124*1860498^(4/5) 2865699999302752 a001 32951280099/119218851371*1860498^(4/5) 2865699999302752 a001 86267571272/312119004989*1860498^(4/5) 2865699999302752 a001 225851433717/817138163596*1860498^(4/5) 2865699999302752 a001 1548008755920/5600748293801*1860498^(4/5) 2865699999302752 a001 139583862445/505019158607*1860498^(4/5) 2865699999302752 a001 53316291173/192900153618*1860498^(4/5) 2865699999302752 a001 20365011074/73681302247*1860498^(4/5) 2865699999302752 a001 7778742049/28143753123*1860498^(4/5) 2865699999302752 a001 2971215073/10749957122*1860498^(4/5) 2865699999302752 a001 1134903170/4106118243*1860498^(4/5) 2865699999302752 a001 433494437/1568397607*1860498^(4/5) 2865699999302752 a001 165580141/599074578*1860498^(4/5) 2865699999302752 a001 63245986/228826127*1860498^(4/5) 2865699999302753 a001 24157817/87403803*1860498^(4/5) 2865699999302756 a001 9227465/33385282*1860498^(4/5) 2865699999302759 a001 5702887/33385282*1860498^(5/6) 2865699999302777 a001 4976784/29134601*1860498^(5/6) 2865699999302779 a001 39088169/228826127*1860498^(5/6) 2865699999302780 a001 34111385/199691526*1860498^(5/6) 2865699999302780 a001 20365011074/4870847*710647^(1/7) 2865699999302780 a001 267914296/1568397607*1860498^(5/6) 2865699999302780 a001 233802911/1368706081*1860498^(5/6) 2865699999302780 a001 1836311903/10749957122*1860498^(5/6) 2865699999302780 a001 1602508992/9381251041*1860498^(5/6) 2865699999302780 a001 12586269025/73681302247*1860498^(5/6) 2865699999302780 a001 10983760033/64300051206*1860498^(5/6) 2865699999302780 a001 86267571272/505019158607*1860498^(5/6) 2865699999302780 a001 75283811239/440719107401*1860498^(5/6) 2865699999302780 a001 2504730781961/14662949395604*1860498^(5/6) 2865699999302780 a001 139583862445/817138163596*1860498^(5/6) 2865699999302780 a001 53316291173/312119004989*1860498^(5/6) 2865699999302780 a001 20365011074/119218851371*1860498^(5/6) 2865699999302780 a001 7778742049/45537549124*1860498^(5/6) 2865699999302780 a001 2971215073/17393796001*1860498^(5/6) 2865699999302780 a001 1134903170/6643838879*1860498^(5/6) 2865699999302780 a001 433494437/2537720636*1860498^(5/6) 2865699999302780 a001 165580141/969323029*1860498^(5/6) 2865699999302780 a001 63245986/370248451*1860498^(5/6) 2865699999302781 a001 3524578/12752043*1860498^(4/5) 2865699999302781 a001 24157817/141422324*1860498^(5/6) 2865699999302787 a001 9227465/54018521*1860498^(5/6) 2865699999302791 a001 5702887/54018521*1860498^(13/15) 2865699999302792 a001 102334155/3010349*1860498^(7/15) 2865699999302805 a001 3732588/35355581*1860498^(13/15) 2865699999302807 a001 39088169/370248451*1860498^(13/15) 2865699999302807 a001 102334155/969323029*1860498^(13/15) 2865699999302807 a001 66978574/634430159*1860498^(13/15) 2865699999302807 a001 701408733/6643838879*1860498^(13/15) 2865699999302807 a001 1836311903/17393796001*1860498^(13/15) 2865699999302807 a001 1201881744/11384387281*1860498^(13/15) 2865699999302807 a001 12586269025/119218851371*1860498^(13/15) 2865699999302807 a001 32951280099/312119004989*1860498^(13/15) 2865699999302807 a001 21566892818/204284540899*1860498^(13/15) 2865699999302807 a001 225851433717/2139295485799*1860498^(13/15) 2865699999302807 a001 182717648081/1730726404001*1860498^(13/15) 2865699999302807 a001 139583862445/1322157322203*1860498^(13/15) 2865699999302807 a001 53316291173/505019158607*1860498^(13/15) 2865699999302807 a001 10182505537/96450076809*1860498^(13/15) 2865699999302807 a001 7778742049/73681302247*1860498^(13/15) 2865699999302807 a001 2971215073/28143753123*1860498^(13/15) 2865699999302807 a001 567451585/5374978561*1860498^(13/15) 2865699999302807 a001 433494437/4106118243*1860498^(13/15) 2865699999302807 a001 165580141/1568397607*1860498^(13/15) 2865699999302807 a001 31622993/299537289*1860498^(13/15) 2865699999302808 a001 24157817/228826127*1860498^(13/15) 2865699999302811 a001 32951280099/3010349*710647^(1/14) 2865699999302814 a001 9227465/87403803*1860498^(13/15) 2865699999302817 a001 5702887/87403803*1860498^(9/10) 2865699999302820 a001 63245986/3010349*1860498^(1/2) 2865699999302832 a001 14930352/228826127*1860498^(9/10) 2865699999302833 a001 3524578/20633239*1860498^(5/6) 2865699999302834 a001 39088169/599074578*1860498^(9/10) 2865699999302835 a001 14619165/224056801*1860498^(9/10) 2865699999302835 a001 267914296/4106118243*1860498^(9/10) 2865699999302835 a001 701408733/10749957122*1860498^(9/10) 2865699999302835 a001 1836311903/28143753123*1860498^(9/10) 2865699999302835 a001 686789568/10525900321*1860498^(9/10) 2865699999302835 a001 12586269025/192900153618*1860498^(9/10) 2865699999302835 a001 32951280099/505019158607*1860498^(9/10) 2865699999302835 a001 86267571272/1322157322203*1860498^(9/10) 2865699999302835 a001 32264490531/494493258286*1860498^(9/10) 2865699999302835 a001 1548008755920/23725150497407*1860498^(9/10) 2865699999302835 a001 365435296162/5600748293801*1860498^(9/10) 2865699999302835 a001 139583862445/2139295485799*1860498^(9/10) 2865699999302835 a001 53316291173/817138163596*1860498^(9/10) 2865699999302835 a001 20365011074/312119004989*1860498^(9/10) 2865699999302835 a001 7778742049/119218851371*1860498^(9/10) 2865699999302835 a001 2971215073/45537549124*1860498^(9/10) 2865699999302835 a001 1134903170/17393796001*1860498^(9/10) 2865699999302835 a001 433494437/6643838879*1860498^(9/10) 2865699999302835 a001 165580141/2537720636*1860498^(9/10) 2865699999302835 a001 63245986/969323029*1860498^(9/10) 2865699999302836 a001 24157817/370248451*1860498^(9/10) 2865699999302842 a001 9227465/141422324*1860498^(9/10) 2865699999302845 a001 5702887/141422324*1860498^(14/15) 2865699999302847 a001 39088169/3010349*1860498^(8/15) 2865699999302851 a001 1762289/16692641*1860498^(13/15) 2865699999302860 a001 14930352/370248451*1860498^(14/15) 2865699999302862 a001 39088169/969323029*1860498^(14/15) 2865699999302862 a001 9303105/230701876*1860498^(14/15) 2865699999302862 a001 267914296/6643838879*1860498^(14/15) 2865699999302862 a001 701408733/17393796001*1860498^(14/15) 2865699999302862 a001 1836311903/45537549124*1860498^(14/15) 2865699999302862 a001 4807526976/119218851371*1860498^(14/15) 2865699999302862 a001 1144206275/28374454999*1860498^(14/15) 2865699999302862 a001 32951280099/817138163596*1860498^(14/15) 2865699999302862 a001 86267571272/2139295485799*1860498^(14/15) 2865699999302862 a001 225851433717/5600748293801*1860498^(14/15) 2865699999302862 a001 365435296162/9062201101803*1860498^(14/15) 2865699999302862 a001 139583862445/3461452808002*1860498^(14/15) 2865699999302862 a001 53316291173/1322157322203*1860498^(14/15) 2865699999302862 a001 20365011074/505019158607*1860498^(14/15) 2865699999302862 a001 7778742049/192900153618*1860498^(14/15) 2865699999302862 a001 2971215073/73681302247*1860498^(14/15) 2865699999302862 a001 1134903170/28143753123*1860498^(14/15) 2865699999302862 a001 433494437/10749957122*1860498^(14/15) 2865699999302862 a001 165580141/4106118243*1860498^(14/15) 2865699999302863 a001 63245986/1568397607*1860498^(14/15) 2865699999302863 a001 24157817/599074578*1860498^(14/15) 2865699999302869 a001 9227465/228826127*1860498^(14/15) 2865699999302882 a001 3524578/54018521*1860498^(9/10) 2865699999302883 a001 53316291173/12752043*710647^(1/7) 2865699999302883 a001 567451585/930249*710647^(2/7) 2865699999302892 a001 2178309/3010349*1860498^(11/15) 2865699999302898 a001 139583862445/33385282*710647^(1/7) 2865699999302900 a001 365435296162/87403803*710647^(1/7) 2865699999302900 a001 14930352/3010349*1860498^(3/5) 2865699999302900 a001 956722026041/228826127*710647^(1/7) 2865699999302900 a001 2504730781961/599074578*710647^(1/7) 2865699999302900 a001 6557470319842/1568397607*710647^(1/7) 2865699999302900 a001 10610209857723/2537720636*710647^(1/7) 2865699999302900 a001 4052739537881/969323029*710647^(1/7) 2865699999302900 a001 1548008755920/370248451*710647^(1/7) 2865699999302901 a001 591286729879/141422324*710647^(1/7) 2865699999302901 a001 225851433717/54018521*710647^(1/7) 2865699999302907 a001 86267571272/20633239*710647^(1/7) 2865699999302908 a001 3524578/87403803*1860498^(14/15) 2865699999302918 a001 1/416020*(1/2+1/2*5^(1/2))^53 2865699999302940 a001 5702887/3010349*1860498^(2/3) 2865699999302947 a001 32951280099/7881196*710647^(1/7) 2865699999302947 a001 1346269/4870847*1860498^(4/5) 2865699999303032 a001 3524578/3010349*1860498^(7/10) 2865699999303041 a001 514229/710647*710647^(11/14) 2865699999303106 a001 1346269/12752043*1860498^(13/15) 2865699999303142 a001 1346269/7881196*1860498^(5/6) 2865699999303158 a001 1346269/20633239*1860498^(9/10) 2865699999303176 a001 1346269/33385282*1860498^(14/15) 2865699999303185 a001 7778742049/4870847*710647^(3/14) 2865699999303217 a001 12586269025/3010349*710647^(1/7) 2865699999303288 a001 20365011074/12752043*710647^(3/14) 2865699999303288 a001 433494437/1860498*710647^(5/14) 2865699999303303 a001 53316291173/33385282*710647^(3/14) 2865699999303305 a001 139583862445/87403803*710647^(3/14) 2865699999303306 a001 365435296162/228826127*710647^(3/14) 2865699999303306 a001 956722026041/599074578*710647^(3/14) 2865699999303306 a001 2504730781961/1568397607*710647^(3/14) 2865699999303306 a001 6557470319842/4106118243*710647^(3/14) 2865699999303306 a001 10610209857723/6643838879*710647^(3/14) 2865699999303306 a001 4052739537881/2537720636*710647^(3/14) 2865699999303306 a001 1548008755920/969323029*710647^(3/14) 2865699999303306 a001 591286729879/370248451*710647^(3/14) 2865699999303306 a001 225851433717/141422324*710647^(3/14) 2865699999303307 a001 86267571272/54018521*710647^(3/14) 2865699999303312 a001 32951280099/20633239*710647^(3/14) 2865699999303352 a001 12586269025/7881196*710647^(3/14) 2865699999303388 a001 4807526976/4870847*710647^(1/4) 2865699999303396 a001 514229/1860498*7881196^(8/11) 2865699999303399 a001 832040/1149851*7881196^(2/3) 2865699999303429 a001 514229/1860498*141422324^(8/13) 2865699999303429 a001 514229/1860498*2537720636^(8/15) 2865699999303429 a001 514229/1860498*45537549124^(8/17) 2865699999303429 a001 514229/1860498*14662949395604^(8/21) 2865699999303429 a001 514229/1860498*(1/2+1/2*5^(1/2))^24 2865699999303429 a001 832040/1149851*(1/2+1/2*5^(1/2))^22 2865699999303429 a001 514229/1860498*192900153618^(4/9) 2865699999303429 a001 514229/1860498*73681302247^(6/13) 2865699999303429 a001 832040/1149851*10749957122^(11/24) 2865699999303429 a001 514229/1860498*10749957122^(1/2) 2865699999303429 a001 832040/1149851*4106118243^(11/23) 2865699999303429 a001 514229/1860498*4106118243^(12/23) 2865699999303429 a001 832040/1149851*1568397607^(1/2) 2865699999303429 a001 514229/1860498*1568397607^(6/11) 2865699999303429 a001 832040/1149851*599074578^(11/21) 2865699999303429 a001 514229/1860498*599074578^(4/7) 2865699999303429 a001 832040/1149851*228826127^(11/20) 2865699999303429 a001 514229/1860498*228826127^(3/5) 2865699999303430 a001 832040/1149851*87403803^(11/19) 2865699999303430 a001 514229/1860498*87403803^(12/19) 2865699999303431 a001 832040/1149851*33385282^(11/18) 2865699999303431 a001 514229/1860498*33385282^(2/3) 2865699999303432 a001 53482387145/1866294 2865699999303441 a001 832040/1149851*12752043^(11/17) 2865699999303442 a001 514229/1860498*12752043^(12/17) 2865699999303447 a001 317811/1149851*710647^(6/7) 2865699999303491 a001 12586269025/12752043*710647^(1/4) 2865699999303506 a001 32951280099/33385282*710647^(1/4) 2865699999303508 a001 86267571272/87403803*710647^(1/4) 2865699999303508 a001 225851433717/228826127*710647^(1/4) 2865699999303508 a001 591286729879/599074578*710647^(1/4) 2865699999303508 a001 1548008755920/1568397607*710647^(1/4) 2865699999303508 a001 4052739537881/4106118243*710647^(1/4) 2865699999303508 a001 4807525989/4870846*710647^(1/4) 2865699999303508 a001 6557470319842/6643838879*710647^(1/4) 2865699999303508 a001 2504730781961/2537720636*710647^(1/4) 2865699999303508 a001 956722026041/969323029*710647^(1/4) 2865699999303508 a001 365435296162/370248451*710647^(1/4) 2865699999303508 a001 139583862445/141422324*710647^(1/4) 2865699999303509 a001 53316291173/54018521*710647^(1/4) 2865699999303512 a001 832040/1149851*4870847^(11/16) 2865699999303515 a001 20365011074/20633239*710647^(1/4) 2865699999303520 a001 514229/1860498*4870847^(3/4) 2865699999303554 a001 7778742049/7881196*710647^(1/4) 2865699999303590 a001 2971215073/4870847*710647^(2/7) 2865699999303622 a001 4807526976/3010349*710647^(3/14) 2865699999303693 a001 7778742049/12752043*710647^(2/7) 2865699999303694 a001 165580141/1860498*710647^(3/7) 2865699999303708 a001 10182505537/16692641*710647^(2/7) 2865699999303711 a001 53316291173/87403803*710647^(2/7) 2865699999303711 a001 139583862445/228826127*710647^(2/7) 2865699999303711 a001 182717648081/299537289*710647^(2/7) 2865699999303711 a001 956722026041/1568397607*710647^(2/7) 2865699999303711 a001 2504730781961/4106118243*710647^(2/7) 2865699999303711 a001 3278735159921/5374978561*710647^(2/7) 2865699999303711 a001 10610209857723/17393796001*710647^(2/7) 2865699999303711 a001 4052739537881/6643838879*710647^(2/7) 2865699999303711 a001 1134903780/1860499*710647^(2/7) 2865699999303711 a001 591286729879/969323029*710647^(2/7) 2865699999303711 a001 225851433717/370248451*710647^(2/7) 2865699999303711 a001 21566892818/35355581*710647^(2/7) 2865699999303712 a001 32951280099/54018521*710647^(2/7) 2865699999303718 a001 1144206275/1875749*710647^(2/7) 2865699999303757 a001 1201881744/1970299*710647^(2/7) 2865699999303825 a001 2971215073/3010349*710647^(1/4) 2865699999303996 a001 1134903170/4870847*710647^(5/14) 2865699999304027 a001 1836311903/3010349*710647^(2/7) 2865699999304036 a001 832040/1149851*1860498^(11/15) 2865699999304092 a001 514229/1860498*1860498^(4/5) 2865699999304099 a001 2971215073/12752043*710647^(5/14) 2865699999304099 a001 31622993/930249*710647^(1/2) 2865699999304114 a001 7778742049/33385282*710647^(5/14) 2865699999304116 a001 20365011074/87403803*710647^(5/14) 2865699999304116 a001 53316291173/228826127*710647^(5/14) 2865699999304116 a001 139583862445/599074578*710647^(5/14) 2865699999304116 a001 365435296162/1568397607*710647^(5/14) 2865699999304116 a001 956722026041/4106118243*710647^(5/14) 2865699999304116 a001 2504730781961/10749957122*710647^(5/14) 2865699999304116 a001 6557470319842/28143753123*710647^(5/14) 2865699999304116 a001 10610209857723/45537549124*710647^(5/14) 2865699999304116 a001 4052739537881/17393796001*710647^(5/14) 2865699999304116 a001 1548008755920/6643838879*710647^(5/14) 2865699999304116 a001 591286729879/2537720636*710647^(5/14) 2865699999304116 a001 225851433717/969323029*710647^(5/14) 2865699999304116 a001 86267571272/370248451*710647^(5/14) 2865699999304116 a001 63246219/271444*710647^(5/14) 2865699999304117 a001 12586269025/54018521*710647^(5/14) 2865699999304123 a001 4807526976/20633239*710647^(5/14) 2865699999304133 a001 2178309/1149851*20633239^(4/7) 2865699999304136 a001 514229/4870847*141422324^(2/3) 2865699999304136 a001 2178309/1149851*2537720636^(4/9) 2865699999304136 a001 514229/4870847*(1/2+1/2*5^(1/2))^26 2865699999304136 a001 2178309/1149851*(1/2+1/2*5^(1/2))^20 2865699999304136 a001 2178309/1149851*23725150497407^(5/16) 2865699999304136 a001 2178309/1149851*505019158607^(5/14) 2865699999304136 a001 2178309/1149851*73681302247^(5/13) 2865699999304136 a001 514229/4870847*73681302247^(1/2) 2865699999304136 a001 2178309/1149851*28143753123^(2/5) 2865699999304136 a001 2178309/1149851*10749957122^(5/12) 2865699999304136 a001 514229/4870847*10749957122^(13/24) 2865699999304136 a001 2178309/1149851*4106118243^(10/23) 2865699999304136 a001 514229/4870847*4106118243^(13/23) 2865699999304136 a001 2178309/1149851*1568397607^(5/11) 2865699999304136 a001 514229/4870847*1568397607^(13/22) 2865699999304136 a001 2178309/1149851*599074578^(10/21) 2865699999304136 a001 514229/4870847*599074578^(13/21) 2865699999304136 a001 2178309/1149851*228826127^(1/2) 2865699999304136 a001 514229/4870847*228826127^(13/20) 2865699999304137 a001 2178309/1149851*87403803^(10/19) 2865699999304137 a001 514229/4870847*87403803^(13/19) 2865699999304137 a001 1120149658761/39088169 2865699999304138 a001 2178309/1149851*33385282^(5/9) 2865699999304138 a001 514229/4870847*33385282^(13/18) 2865699999304147 a001 2178309/1149851*12752043^(10/17) 2865699999304150 a001 514229/4870847*12752043^(13/17) 2865699999304162 a001 1836311903/7881196*710647^(5/14) 2865699999304212 a001 2178309/1149851*4870847^(5/8) 2865699999304213 a001 514229/33385282*7881196^(10/11) 2865699999304214 a001 5702887/1149851*7881196^(6/11) 2865699999304234 a001 514229/12752043*20633239^(4/5) 2865699999304235 a001 514229/4870847*4870847^(13/16) 2865699999304237 a001 24157817/1149851*7881196^(5/11) 2865699999304239 a001 5702887/1149851*141422324^(6/13) 2865699999304240 a001 5702887/1149851*2537720636^(2/5) 2865699999304240 a001 514229/12752043*17393796001^(4/7) 2865699999304240 a001 5702887/1149851*45537549124^(6/17) 2865699999304240 a001 514229/12752043*14662949395604^(4/9) 2865699999304240 a001 514229/12752043*(1/2+1/2*5^(1/2))^28 2865699999304240 a001 5702887/1149851*(1/2+1/2*5^(1/2))^18 2865699999304240 a001 5702887/1149851*192900153618^(1/3) 2865699999304240 a001 514229/12752043*73681302247^(7/13) 2865699999304240 a001 5702887/1149851*10749957122^(3/8) 2865699999304240 a001 514229/12752043*10749957122^(7/12) 2865699999304240 a001 5702887/1149851*4106118243^(9/23) 2865699999304240 a001 514229/12752043*4106118243^(14/23) 2865699999304240 a001 5702887/1149851*1568397607^(9/22) 2865699999304240 a001 514229/12752043*1568397607^(7/11) 2865699999304240 a001 5702887/1149851*599074578^(3/7) 2865699999304240 a001 514229/12752043*599074578^(2/3) 2865699999304240 a001 5702887/1149851*228826127^(9/20) 2865699999304240 a001 514229/12752043*228826127^(7/10) 2865699999304240 a001 2932589879123/102334155 2865699999304240 a001 5702887/1149851*87403803^(9/19) 2865699999304240 a001 514229/12752043*87403803^(14/19) 2865699999304240 a001 102334155/1149851*7881196^(4/11) 2865699999304241 a001 5702887/1149851*33385282^(1/2) 2865699999304242 a001 514229/12752043*33385282^(7/9) 2865699999304242 a001 165580141/1149851*7881196^(1/3) 2865699999304245 a001 433494437/1149851*7881196^(3/11) 2865699999304249 a001 1836311903/1149851*7881196^(2/11) 2865699999304249 a001 514229/33385282*20633239^(6/7) 2865699999304249 a001 5702887/1149851*12752043^(9/17) 2865699999304253 a001 7778742049/1149851*7881196^(1/11) 2865699999304254 a001 10182505537/930249*271443^(1/13) 2865699999304254 a001 514229/12752043*12752043^(14/17) 2865699999304254 a001 39088169/1149851*20633239^(2/5) 2865699999304255 a001 514229/33385282*141422324^(10/13) 2865699999304255 a001 514229/33385282*2537720636^(2/3) 2865699999304255 a001 514229/33385282*45537549124^(10/17) 2865699999304255 a001 514229/33385282*312119004989^(6/11) 2865699999304255 a001 514229/33385282*14662949395604^(10/21) 2865699999304255 a001 514229/33385282*(1/2+1/2*5^(1/2))^30 2865699999304255 a001 14930352/1149851*(1/2+1/2*5^(1/2))^16 2865699999304255 a001 14930352/1149851*23725150497407^(1/4) 2865699999304255 a001 514229/33385282*192900153618^(5/9) 2865699999304255 a001 14930352/1149851*73681302247^(4/13) 2865699999304255 a001 514229/33385282*28143753123^(3/5) 2865699999304255 a001 14930352/1149851*10749957122^(1/3) 2865699999304255 a001 514229/33385282*10749957122^(5/8) 2865699999304255 a001 14930352/1149851*4106118243^(8/23) 2865699999304255 a001 514229/33385282*4106118243^(15/23) 2865699999304255 a001 14930352/1149851*1568397607^(4/11) 2865699999304255 a001 514229/33385282*1568397607^(15/22) 2865699999304255 a001 14930352/1149851*599074578^(8/21) 2865699999304255 a001 514229/33385282*599074578^(5/7) 2865699999304255 a001 959702497326/33489287 2865699999304255 a001 14930352/1149851*228826127^(2/5) 2865699999304255 a001 514229/33385282*228826127^(3/4) 2865699999304255 a001 14930352/1149851*87403803^(8/19) 2865699999304255 a001 514229/33385282*87403803^(15/19) 2865699999304255 a001 267914296/1149851*20633239^(2/7) 2865699999304255 a001 24157817/1149851*20633239^(3/7) 2865699999304256 a001 14930352/1149851*33385282^(4/9) 2865699999304256 a001 1134903170/1149851*20633239^(1/5) 2865699999304256 a001 2971215073/1149851*20633239^(1/7) 2865699999304257 a001 514229/33385282*33385282^(5/6) 2865699999304257 a001 39088169/1149851*17393796001^(2/7) 2865699999304257 a001 39088169/1149851*14662949395604^(2/9) 2865699999304257 a001 39088169/1149851*(1/2+1/2*5^(1/2))^14 2865699999304257 a001 39088169/1149851*505019158607^(1/4) 2865699999304257 a001 514229/87403803*505019158607^(4/7) 2865699999304257 a001 514229/87403803*73681302247^(8/13) 2865699999304257 a001 39088169/1149851*10749957122^(7/24) 2865699999304257 a001 514229/87403803*10749957122^(2/3) 2865699999304257 a001 39088169/1149851*4106118243^(7/23) 2865699999304257 a001 514229/87403803*4106118243^(16/23) 2865699999304257 a001 39088169/1149851*1568397607^(7/22) 2865699999304257 a001 514229/87403803*1568397607^(8/11) 2865699999304257 a001 20100270056701/701408733 2865699999304257 a001 39088169/1149851*599074578^(1/3) 2865699999304257 a001 514229/87403803*599074578^(16/21) 2865699999304257 a001 39088169/1149851*228826127^(7/20) 2865699999304257 a001 514229/87403803*228826127^(4/5) 2865699999304257 a001 39088169/1149851*87403803^(7/19) 2865699999304257 a001 514229/599074578*141422324^(12/13) 2865699999304257 a001 102334155/1149851*141422324^(4/13) 2865699999304257 a001 514229/87403803*87403803^(16/19) 2865699999304257 a001 102334155/1149851*2537720636^(4/15) 2865699999304257 a001 514229/228826127*45537549124^(2/3) 2865699999304257 a001 102334155/1149851*45537549124^(4/17) 2865699999304257 a001 102334155/1149851*817138163596^(4/19) 2865699999304257 a001 102334155/1149851*14662949395604^(4/21) 2865699999304257 a001 102334155/1149851*(1/2+1/2*5^(1/2))^12 2865699999304257 a001 102334155/1149851*192900153618^(2/9) 2865699999304257 a001 102334155/1149851*73681302247^(3/13) 2865699999304257 a001 102334155/1149851*10749957122^(1/4) 2865699999304257 a001 514229/228826127*10749957122^(17/24) 2865699999304257 a001 102334155/1149851*4106118243^(6/23) 2865699999304257 a001 514229/228826127*4106118243^(17/23) 2865699999304257 a001 52623190191495/1836311903 2865699999304257 a001 102334155/1149851*1568397607^(3/11) 2865699999304257 a001 514229/228826127*1568397607^(17/22) 2865699999304257 a001 102334155/1149851*599074578^(2/7) 2865699999304257 a001 514229/228826127*599074578^(17/21) 2865699999304257 a001 102334155/1149851*228826127^(3/10) 2865699999304257 a001 433494437/1149851*141422324^(3/13) 2865699999304257 a001 1836311903/1149851*141422324^(2/13) 2865699999304257 a001 7778742049/1149851*141422324^(1/13) 2865699999304257 a001 514229/599074578*2537720636^(4/5) 2865699999304257 a001 514229/228826127*228826127^(17/20) 2865699999304257 a001 267914296/1149851*2537720636^(2/9) 2865699999304257 a001 514229/599074578*45537549124^(12/17) 2865699999304257 a001 267914296/1149851*312119004989^(2/11) 2865699999304257 a001 514229/599074578*14662949395604^(4/7) 2865699999304257 a001 267914296/1149851*(1/2+1/2*5^(1/2))^10 2865699999304257 a001 514229/599074578*505019158607^(9/14) 2865699999304257 a001 514229/599074578*192900153618^(2/3) 2865699999304257 a001 514229/599074578*73681302247^(9/13) 2865699999304257 a001 267914296/1149851*28143753123^(1/5) 2865699999304257 a001 267914296/1149851*10749957122^(5/24) 2865699999304257 a001 514229/599074578*10749957122^(3/4) 2865699999304257 a001 17221162564723/600940872 2865699999304257 a001 267914296/1149851*4106118243^(5/23) 2865699999304257 a001 514229/599074578*4106118243^(18/23) 2865699999304257 a001 267914296/1149851*1568397607^(5/22) 2865699999304257 a001 514229/599074578*1568397607^(9/11) 2865699999304257 a001 267914296/1149851*599074578^(5/21) 2865699999304257 a001 514229/1568397607*817138163596^(2/3) 2865699999304257 a001 701408733/1149851*(1/2+1/2*5^(1/2))^8 2865699999304257 a001 701408733/1149851*505019158607^(1/7) 2865699999304257 a001 701408733/1149851*73681302247^(2/13) 2865699999304257 a001 360684711361857/12586269025 2865699999304257 a001 701408733/1149851*10749957122^(1/6) 2865699999304257 a001 514229/1568397607*10749957122^(19/24) 2865699999304257 a001 514229/599074578*599074578^(6/7) 2865699999304257 a001 701408733/1149851*4106118243^(4/23) 2865699999304257 a001 514229/1568397607*4106118243^(19/23) 2865699999304257 a001 701408733/1149851*1568397607^(2/11) 2865699999304257 a001 514229/4106118243*2537720636^(8/9) 2865699999304257 a001 514229/10749957122*2537720636^(14/15) 2865699999304257 a001 1836311903/1149851*2537720636^(2/15) 2865699999304257 a001 1836311903/1149851*45537549124^(2/17) 2865699999304257 a001 514229/4106118243*312119004989^(8/11) 2865699999304257 a001 514229/4106118243*23725150497407^(5/8) 2865699999304257 a001 1836311903/1149851*14662949395604^(2/21) 2865699999304257 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^6 2865699999304257 a001 514229/4106118243*73681302247^(10/13) 2865699999304257 a001 944284833567787/32951280099 2865699999304257 a001 514229/4106118243*28143753123^(4/5) 2865699999304257 a001 1836311903/1149851*10749957122^(1/8) 2865699999304257 a001 514229/1568397607*1568397607^(19/22) 2865699999304257 a001 514229/4106118243*10749957122^(5/6) 2865699999304257 a001 1836311903/1149851*4106118243^(3/23) 2865699999304257 a001 514229/10749957122*17393796001^(6/7) 2865699999304257 a001 514229/10749957122*45537549124^(14/17) 2865699999304257 a001 514229/10749957122*14662949395604^(2/3) 2865699999304257 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^4 2865699999304257 a001 4807526976/1149851*23725150497407^(1/16) 2865699999304257 a001 514229/10749957122*505019158607^(3/4) 2865699999304257 a001 4807526976/1149851*73681302247^(1/13) 2865699999304257 a001 514229/10749957122*192900153618^(7/9) 2865699999304257 a001 309021223667688/10783446409 2865699999304257 a001 4807526976/1149851*10749957122^(1/12) 2865699999304257 a001 514229/4106118243*4106118243^(20/23) 2865699999304257 a001 7778742049/1149851*2537720636^(1/15) 2865699999304257 a001 1836311903/1149851*1568397607^(3/22) 2865699999304257 a001 4807526976/1149851*4106118243^(2/23) 2865699999304257 a001 514229/28143753123*23725150497407^(11/16) 2865699999304257 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^2 2865699999304257 a001 6472224534456725/225851433717 2865699999304257 a001 514229/28143753123*73681302247^(11/13) 2865699999304257 a001 514229/10749957122*10749957122^(7/8) 2865699999304257 a001 12586269025/1149851*10749957122^(1/24) 2865699999304257 a001 514229/192900153618*45537549124^(16/17) 2865699999304257 a001 32951280099/1149851 2865699999304257 a001 514229/192900153618*14662949395604^(16/21) 2865699999304257 a001 514229/505019158607*312119004989^(10/11) 2865699999304257 a001 116139356908859193/4052739537881 2865699999304257 a001 514229/192900153618*192900153618^(8/9) 2865699999304257 a001 304056783818948291/10610209857723 2865699999304257 a001 514229/1322157322203*505019158607^(13/14) 2865699999304257 a001 71778070001229905/2504730781961 2865699999304257 a001 514229/312119004989*14662949395604^(7/9) 2865699999304257 a001 514229/312119004989*505019158607^(7/8) 2865699999304257 a001 514229/817138163596*192900153618^(17/18) 2865699999304257 a001 514229/45537549124*45537549124^(15/17) 2865699999304257 a001 27416783093600617/956722026041 2865699999304257 a001 514229/192900153618*73681302247^(12/13) 2865699999304257 a001 514229/45537549124*312119004989^(9/11) 2865699999304257 a001 5236139639785973/182717648081 2865699999304257 a001 514229/45537549124*192900153618^(5/6) 2865699999304257 a001 12586269025/1149851*4106118243^(1/23) 2865699999304257 a001 514229/45537549124*28143753123^(9/10) 2865699999304257 a001 7778742049/1149851*45537549124^(1/17) 2865699999304257 a001 4000054745115221/139583862445 2865699999304257 a001 7778742049/1149851*14662949395604^(1/21) 2865699999304257 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^3 2865699999304257 a001 7778742049/1149851*192900153618^(1/18) 2865699999304257 a001 7778742049/1149851*10749957122^(1/16) 2865699999304257 a001 2971215073/1149851*2537720636^(1/9) 2865699999304257 a001 514229/28143753123*10749957122^(11/12) 2865699999304257 a001 514229/73681302247*10749957122^(23/24) 2865699999304257 a001 514229/45537549124*10749957122^(15/16) 2865699999304257 a001 12586269025/1149851*1568397607^(1/22) 2865699999304257 a001 514229/2537720636*2537720636^(13/15) 2865699999304257 a001 1527884955773717/53316291173 2865699999304257 a001 2971215073/1149851*312119004989^(1/11) 2865699999304257 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^5 2865699999304257 a001 2971215073/1149851*28143753123^(1/10) 2865699999304257 a001 4807526976/1149851*1568397607^(1/11) 2865699999304257 a001 514229/10749957122*4106118243^(21/23) 2865699999304257 a001 514229/28143753123*4106118243^(22/23) 2865699999304257 a001 701408733/1149851*599074578^(4/21) 2865699999304257 a001 12586269025/1149851*599074578^(1/21) 2865699999304257 a001 291800061102965/10182505537 2865699999304257 a001 1134903170/1149851*17393796001^(1/7) 2865699999304257 a001 514229/2537720636*45537549124^(13/17) 2865699999304257 a001 514229/2537720636*14662949395604^(13/21) 2865699999304257 a001 1134903170/1149851*14662949395604^(1/9) 2865699999304257 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^7 2865699999304257 a001 514229/2537720636*192900153618^(13/18) 2865699999304257 a001 514229/2537720636*73681302247^(3/4) 2865699999304257 a001 514229/2537720636*10749957122^(13/16) 2865699999304257 a001 7778742049/1149851*599074578^(1/14) 2865699999304257 a001 4807526976/1149851*599074578^(2/21) 2865699999304257 a001 514229/4106118243*1568397607^(10/11) 2865699999304257 a001 1836311903/1149851*599074578^(1/7) 2865699999304257 a001 514229/10749957122*1568397607^(21/22) 2865699999304257 a001 1134903170/1149851*599074578^(1/6) 2865699999304257 a001 12586269025/1149851*228826127^(1/20) 2865699999304257 a001 433494437/1149851*2537720636^(1/5) 2865699999304257 a001 222915410844073/7778742049 2865699999304257 a001 433494437/1149851*45537549124^(3/17) 2865699999304257 a001 433494437/1149851*817138163596^(3/19) 2865699999304257 a001 433494437/1149851*14662949395604^(1/7) 2865699999304257 a001 433494437/1149851*(1/2+1/2*5^(1/2))^9 2865699999304257 a001 433494437/1149851*192900153618^(1/6) 2865699999304257 a001 433494437/1149851*10749957122^(3/16) 2865699999304257 a001 433494437/1149851*599074578^(3/14) 2865699999304257 a001 4807526976/1149851*228826127^(1/10) 2865699999304257 a001 267914296/1149851*228826127^(1/4) 2865699999304257 a001 514229/1568397607*599074578^(19/21) 2865699999304257 a001 2971215073/1149851*228826127^(1/8) 2865699999304257 a001 514229/4106118243*599074578^(20/21) 2865699999304257 a001 514229/2537720636*599074578^(13/14) 2865699999304257 a001 1836311903/1149851*228826127^(3/20) 2865699999304257 a001 701408733/1149851*228826127^(1/5) 2865699999304257 a001 12586269025/1149851*87403803^(1/19) 2865699999304257 a001 514229/370248451*2537720636^(7/9) 2865699999304257 a001 85146110326289/2971215073 2865699999304257 a001 514229/370248451*17393796001^(5/7) 2865699999304257 a001 514229/370248451*312119004989^(7/11) 2865699999304257 a001 165580141/1149851*312119004989^(1/5) 2865699999304257 a001 514229/370248451*14662949395604^(5/9) 2865699999304257 a001 165580141/1149851*(1/2+1/2*5^(1/2))^11 2865699999304257 a001 514229/370248451*505019158607^(5/8) 2865699999304257 a001 514229/370248451*28143753123^(7/10) 2865699999304257 a001 165580141/1149851*1568397607^(1/4) 2865699999304257 a001 514229/141422324*141422324^(11/13) 2865699999304257 a001 514229/370248451*599074578^(5/6) 2865699999304257 a001 4807526976/1149851*87403803^(2/19) 2865699999304257 a001 514229/599074578*228826127^(9/10) 2865699999304257 a001 514229/1568397607*228826127^(19/20) 2865699999304257 a001 1836311903/1149851*87403803^(3/19) 2865699999304257 a001 102334155/1149851*87403803^(6/19) 2865699999304257 a001 514229/370248451*228826127^(7/8) 2865699999304257 a001 701408733/1149851*87403803^(4/19) 2865699999304257 a001 267914296/1149851*87403803^(5/19) 2865699999304257 a001 63245986/1149851*141422324^(1/3) 2865699999304257 a001 12586269025/1149851*33385282^(1/18) 2865699999304257 a001 16261460067397/567451585 2865699999304257 a001 514229/141422324*2537720636^(11/15) 2865699999304257 a001 514229/141422324*45537549124^(11/17) 2865699999304257 a001 514229/141422324*312119004989^(3/5) 2865699999304257 a001 514229/141422324*14662949395604^(11/21) 2865699999304257 a001 63245986/1149851*(1/2+1/2*5^(1/2))^13 2865699999304257 a001 514229/141422324*192900153618^(11/18) 2865699999304257 a001 63245986/1149851*73681302247^(1/4) 2865699999304257 a001 514229/141422324*10749957122^(11/16) 2865699999304257 a001 514229/141422324*1568397607^(3/4) 2865699999304257 a001 514229/141422324*599074578^(11/14) 2865699999304257 a001 7778742049/1149851*33385282^(1/12) 2865699999304257 a001 514229/228826127*87403803^(17/19) 2865699999304257 a001 4807526976/1149851*33385282^(1/9) 2865699999304258 a001 514229/599074578*87403803^(18/19) 2865699999304258 a001 1836311903/1149851*33385282^(1/6) 2865699999304258 a001 701408733/1149851*33385282^(2/9) 2865699999304258 a001 39088169/1149851*33385282^(7/18) 2865699999304258 a001 433494437/1149851*33385282^(1/4) 2865699999304258 a001 267914296/1149851*33385282^(5/18) 2865699999304258 a001 102334155/1149851*33385282^(1/3) 2865699999304258 a001 24157817/1149851*141422324^(5/13) 2865699999304258 a001 12422650078093/433494437 2865699999304258 a001 24157817/1149851*2537720636^(1/3) 2865699999304258 a001 24157817/1149851*45537549124^(5/17) 2865699999304258 a001 24157817/1149851*312119004989^(3/11) 2865699999304258 a001 514229/54018521*9062201101803^(1/2) 2865699999304258 a001 24157817/1149851*14662949395604^(5/21) 2865699999304258 a001 24157817/1149851*(1/2+1/2*5^(1/2))^15 2865699999304258 a001 24157817/1149851*192900153618^(5/18) 2865699999304258 a001 24157817/1149851*28143753123^(3/10) 2865699999304258 a001 24157817/1149851*10749957122^(5/16) 2865699999304258 a001 24157817/1149851*599074578^(5/14) 2865699999304258 a001 24157817/1149851*228826127^(3/8) 2865699999304258 a001 12586269025/1149851*12752043^(1/17) 2865699999304259 a001 514229/87403803*33385282^(8/9) 2865699999304259 a001 24157817/1149851*33385282^(5/12) 2865699999304259 a001 4807526976/1149851*12752043^(2/17) 2865699999304260 a001 514229/228826127*33385282^(17/18) 2865699999304260 a001 514229/141422324*33385282^(11/12) 2865699999304260 a001 1836311903/1149851*12752043^(3/17) 2865699999304261 a001 701408733/1149851*12752043^(4/17) 2865699999304262 a001 267914296/1149851*12752043^(5/17) 2865699999304263 a001 14930352/1149851*12752043^(8/17) 2865699999304263 a001 102334155/1149851*12752043^(6/17) 2865699999304264 a001 4745030099485/165580141 2865699999304264 a001 9227465/1149851*45537549124^(1/3) 2865699999304264 a001 514229/20633239*(1/2+1/2*5^(1/2))^29 2865699999304264 a001 514229/20633239*1322157322203^(1/2) 2865699999304264 a001 9227465/1149851*(1/2+1/2*5^(1/2))^17 2865699999304264 a001 39088169/1149851*12752043^(7/17) 2865699999304265 a001 12586269025/1149851*4870847^(1/16) 2865699999304266 a001 514229/7881196*7881196^(9/11) 2865699999304270 a001 514229/33385282*12752043^(15/17) 2865699999304272 a001 4807526976/1149851*4870847^(1/8) 2865699999304273 a001 9227465/1149851*12752043^(1/2) 2865699999304273 a001 514229/87403803*12752043^(16/17) 2865699999304280 a001 1836311903/1149851*4870847^(3/16) 2865699999304287 a001 701408733/1149851*4870847^(1/4) 2865699999304295 a001 267914296/1149851*4870847^(5/16) 2865699999304302 a001 102334155/1149851*4870847^(3/8) 2865699999304303 a001 906220110181/31622993 2865699999304303 a001 514229/7881196*141422324^(9/13) 2865699999304303 a001 514229/7881196*2537720636^(3/5) 2865699999304303 a001 514229/7881196*45537549124^(9/17) 2865699999304303 a001 514229/7881196*14662949395604^(3/7) 2865699999304303 a001 514229/7881196*(1/2+1/2*5^(1/2))^27 2865699999304303 a001 3524578/1149851*817138163596^(1/3) 2865699999304303 a001 3524578/1149851*(1/2+1/2*5^(1/2))^19 2865699999304303 a001 514229/7881196*192900153618^(1/2) 2865699999304303 a001 514229/7881196*10749957122^(9/16) 2865699999304303 a001 514229/7881196*599074578^(9/14) 2865699999304304 a001 3524578/1149851*87403803^(1/2) 2865699999304305 a001 514229/7881196*33385282^(3/4) 2865699999304308 a001 5702887/1149851*4870847^(9/16) 2865699999304310 a001 39088169/1149851*4870847^(7/16) 2865699999304312 a001 12586269025/1149851*1860498^(1/15) 2865699999304315 a001 14930352/1149851*4870847^(1/2) 2865699999304340 a001 7778742049/1149851*1860498^(1/10) 2865699999304345 a001 514229/12752043*4870847^(7/8) 2865699999304368 a001 4807526976/1149851*1860498^(2/15) 2865699999304368 a001 514229/33385282*4870847^(15/16) 2865699999304395 a001 2971215073/1149851*1860498^(1/6) 2865699999304401 a001 433494437/4870847*710647^(3/7) 2865699999304423 a001 1836311903/1149851*1860498^(1/5) 2865699999304433 a001 701408733/3010349*710647^(5/14) 2865699999304478 a001 701408733/1149851*1860498^(4/15) 2865699999304504 a001 1134903170/12752043*710647^(3/7) 2865699999304505 a001 24157817/1860498*710647^(4/7) 2865699999304506 a001 433494437/1149851*1860498^(3/10) 2865699999304519 a001 2971215073/33385282*710647^(3/7) 2865699999304521 a001 7778742049/87403803*710647^(3/7) 2865699999304522 a001 20365011074/228826127*710647^(3/7) 2865699999304522 a001 53316291173/599074578*710647^(3/7) 2865699999304522 a001 139583862445/1568397607*710647^(3/7) 2865699999304522 a001 365435296162/4106118243*710647^(3/7) 2865699999304522 a001 956722026041/10749957122*710647^(3/7) 2865699999304522 a001 2504730781961/28143753123*710647^(3/7) 2865699999304522 a001 6557470319842/73681302247*710647^(3/7) 2865699999304522 a001 10610209857723/119218851371*710647^(3/7) 2865699999304522 a001 4052739537881/45537549124*710647^(3/7) 2865699999304522 a001 1548008755920/17393796001*710647^(3/7) 2865699999304522 a001 591286729879/6643838879*710647^(3/7) 2865699999304522 a001 225851433717/2537720636*710647^(3/7) 2865699999304522 a001 86267571272/969323029*710647^(3/7) 2865699999304522 a001 32951280099/370248451*710647^(3/7) 2865699999304522 a001 12586269025/141422324*710647^(3/7) 2865699999304523 a001 4807526976/54018521*710647^(3/7) 2865699999304528 a001 1836311903/20633239*710647^(3/7) 2865699999304533 a001 267914296/1149851*1860498^(1/3) 2865699999304544 a001 1346269/1149851*7881196^(7/11) 2865699999304568 a001 3524667/39604*710647^(3/7) 2865699999304569 a001 514229/3010349*20633239^(5/7) 2865699999304569 a001 1346269/1149851*20633239^(3/5) 2865699999304572 a001 692290561601/24157817 2865699999304573 a001 1346269/1149851*141422324^(7/13) 2865699999304573 a001 514229/3010349*2537720636^(5/9) 2865699999304573 a001 1346269/1149851*2537720636^(7/15) 2865699999304573 a001 1346269/1149851*17393796001^(3/7) 2865699999304573 a001 1346269/1149851*45537549124^(7/17) 2865699999304573 a001 514229/3010349*312119004989^(5/11) 2865699999304573 a001 514229/3010349*(1/2+1/2*5^(1/2))^25 2865699999304573 a001 514229/3010349*3461452808002^(5/12) 2865699999304573 a001 1346269/1149851*14662949395604^(1/3) 2865699999304573 a001 1346269/1149851*(1/2+1/2*5^(1/2))^21 2865699999304573 a001 1346269/1149851*192900153618^(7/18) 2865699999304573 a001 514229/3010349*28143753123^(1/2) 2865699999304573 a001 1346269/1149851*10749957122^(7/16) 2865699999304573 a001 1346269/1149851*599074578^(1/2) 2865699999304573 a001 514229/3010349*228826127^(5/8) 2865699999304575 a001 1346269/1149851*33385282^(7/12) 2865699999304588 a001 102334155/1149851*1860498^(2/5) 2865699999304643 a001 39088169/1149851*1860498^(7/15) 2865699999304662 a001 12586269025/1149851*710647^(1/14) 2865699999304672 a001 24157817/1149851*1860498^(1/2) 2865699999304688 a001 2178309/1149851*1860498^(2/3) 2865699999304696 a001 14930352/1149851*1860498^(8/15) 2865699999304736 a001 5702887/1149851*1860498^(3/5) 2865699999304806 a001 165580141/4870847*710647^(1/2) 2865699999304838 a001 267914296/3010349*710647^(3/7) 2865699999304854 a001 514229/4870847*1860498^(13/15) 2865699999304909 a001 433494437/12752043*710647^(1/2) 2865699999304916 a001 9227465/1860498*710647^(9/14) 2865699999304924 a001 567451585/16692641*710647^(1/2) 2865699999304927 a001 2971215073/87403803*710647^(1/2) 2865699999304927 a001 7778742049/228826127*710647^(1/2) 2865699999304927 a001 10182505537/299537289*710647^(1/2) 2865699999304927 a001 53316291173/1568397607*710647^(1/2) 2865699999304927 a001 139583862445/4106118243*710647^(1/2) 2865699999304927 a001 182717648081/5374978561*710647^(1/2) 2865699999304927 a001 956722026041/28143753123*710647^(1/2) 2865699999304927 a001 2504730781961/73681302247*710647^(1/2) 2865699999304927 a001 3278735159921/96450076809*710647^(1/2) 2865699999304927 a001 10610209857723/312119004989*710647^(1/2) 2865699999304927 a001 4052739537881/119218851371*710647^(1/2) 2865699999304927 a001 387002188980/11384387281*710647^(1/2) 2865699999304927 a001 591286729879/17393796001*710647^(1/2) 2865699999304927 a001 225851433717/6643838879*710647^(1/2) 2865699999304927 a001 1135099622/33391061*710647^(1/2) 2865699999304927 a001 32951280099/969323029*710647^(1/2) 2865699999304927 a001 12586269025/370248451*710647^(1/2) 2865699999304927 a001 1201881744/35355581*710647^(1/2) 2865699999304928 a001 1836311903/54018521*710647^(1/2) 2865699999304934 a001 701408733/20633239*710647^(1/2) 2865699999304961 a001 53316291173/4870847*271443^(1/13) 2865699999304973 a001 66978574/1970299*710647^(1/2) 2865699999305012 a001 514229/12752043*1860498^(14/15) 2865699999305048 a001 514229/7881196*1860498^(9/10) 2865699999305064 a001 139583862445/12752043*271443^(1/13) 2865699999305068 a001 4807526976/1149851*710647^(1/7) 2865699999305079 a001 182717648081/16692641*271443^(1/13) 2865699999305081 a001 956722026041/87403803*271443^(1/13) 2865699999305081 a001 2504730781961/228826127*271443^(1/13) 2865699999305082 a001 3278735159921/299537289*271443^(1/13) 2865699999305082 a001 10610209857723/969323029*271443^(1/13) 2865699999305082 a001 4052739537881/370248451*271443^(1/13) 2865699999305082 a001 387002188980/35355581*271443^(1/13) 2865699999305083 a001 591286729879/54018521*271443^(1/13) 2865699999305088 a001 7787980473/711491*271443^(1/13) 2865699999305128 a001 21566892818/1970299*271443^(1/13) 2865699999305153 a001 1346269/1149851*1860498^(7/10) 2865699999305212 a001 63245986/4870847*710647^(4/7) 2865699999305243 a001 102334155/3010349*710647^(1/2) 2865699999305263 a001 514229/3010349*1860498^(5/6) 2865699999305315 a001 165580141/12752043*710647^(4/7) 2865699999305330 a001 433494437/33385282*710647^(4/7) 2865699999305332 a001 1134903170/87403803*710647^(4/7) 2865699999305332 a001 2971215073/228826127*710647^(4/7) 2865699999305332 a001 7778742049/599074578*710647^(4/7) 2865699999305332 a001 20365011074/1568397607*710647^(4/7) 2865699999305332 a001 53316291173/4106118243*710647^(4/7) 2865699999305332 a001 139583862445/10749957122*710647^(4/7) 2865699999305332 a001 365435296162/28143753123*710647^(4/7) 2865699999305332 a001 956722026041/73681302247*710647^(4/7) 2865699999305332 a001 2504730781961/192900153618*710647^(4/7) 2865699999305332 a001 10610209857723/817138163596*710647^(4/7) 2865699999305332 a001 4052739537881/312119004989*710647^(4/7) 2865699999305332 a001 1548008755920/119218851371*710647^(4/7) 2865699999305332 a001 591286729879/45537549124*710647^(4/7) 2865699999305332 a001 7787980473/599786069*710647^(4/7) 2865699999305332 a001 86267571272/6643838879*710647^(4/7) 2865699999305332 a001 32951280099/2537720636*710647^(4/7) 2865699999305332 a001 12586269025/969323029*710647^(4/7) 2865699999305332 a001 4807526976/370248451*710647^(4/7) 2865699999305332 a001 1836311903/141422324*710647^(4/7) 2865699999305333 a001 701408733/54018521*710647^(4/7) 2865699999305339 a001 9238424/711491*710647^(4/7) 2865699999305361 a001 1762289/930249*710647^(5/7) 2865699999305378 a001 102334155/7881196*710647^(4/7) 2865699999305391 a001 1134903170/710647*271443^(3/13) 2865699999305397 a001 726103/620166*710647^(3/4) 2865699999305398 a001 32951280099/3010349*271443^(1/13) 2865699999305473 a001 1836311903/1149851*710647^(3/14) 2865699999305618 a001 24157817/4870847*710647^(9/14) 2865699999305648 a001 39088169/3010349*710647^(4/7) 2865699999305676 a001 1134903170/1149851*710647^(1/4) 2865699999305720 a001 63245986/12752043*710647^(9/14) 2865699999305735 a001 165580141/33385282*710647^(9/14) 2865699999305737 a001 433494437/87403803*710647^(9/14) 2865699999305738 a001 1134903170/228826127*710647^(9/14) 2865699999305738 a001 2971215073/599074578*710647^(9/14) 2865699999305738 a001 7778742049/1568397607*710647^(9/14) 2865699999305738 a001 20365011074/4106118243*710647^(9/14) 2865699999305738 a001 53316291173/10749957122*710647^(9/14) 2865699999305738 a001 139583862445/28143753123*710647^(9/14) 2865699999305738 a001 365435296162/73681302247*710647^(9/14) 2865699999305738 a001 956722026041/192900153618*710647^(9/14) 2865699999305738 a001 2504730781961/505019158607*710647^(9/14) 2865699999305738 a001 10610209857723/2139295485799*710647^(9/14) 2865699999305738 a001 4052739537881/817138163596*710647^(9/14) 2865699999305738 a001 140728068720/28374454999*710647^(9/14) 2865699999305738 a001 591286729879/119218851371*710647^(9/14) 2865699999305738 a001 225851433717/45537549124*710647^(9/14) 2865699999305738 a001 86267571272/17393796001*710647^(9/14) 2865699999305738 a001 32951280099/6643838879*710647^(9/14) 2865699999305738 a001 1144206275/230701876*710647^(9/14) 2865699999305738 a001 4807526976/969323029*710647^(9/14) 2865699999305738 a001 1836311903/370248451*710647^(9/14) 2865699999305738 a001 701408733/141422324*710647^(9/14) 2865699999305739 a001 267914296/54018521*710647^(9/14) 2865699999305744 a001 9303105/1875749*710647^(9/14) 2865699999305783 a001 39088169/7881196*710647^(9/14) 2865699999305878 a001 701408733/1149851*710647^(2/7) 2865699999306029 a001 9227465/4870847*710647^(5/7) 2865699999306037 a001 1346269/1860498*710647^(11/14) 2865699999306051 a001 14930352/3010349*710647^(9/14) 2865699999306126 a001 24157817/12752043*710647^(5/7) 2865699999306140 a001 31622993/16692641*710647^(5/7) 2865699999306143 a001 165580141/87403803*710647^(5/7) 2865699999306143 a001 433494437/228826127*710647^(5/7) 2865699999306143 a001 567451585/299537289*710647^(5/7) 2865699999306143 a001 2971215073/1568397607*710647^(5/7) 2865699999306143 a001 7778742049/4106118243*710647^(5/7) 2865699999306143 a001 10182505537/5374978561*710647^(5/7) 2865699999306143 a001 53316291173/28143753123*710647^(5/7) 2865699999306143 a001 139583862445/73681302247*710647^(5/7) 2865699999306143 a001 182717648081/96450076809*710647^(5/7) 2865699999306143 a001 956722026041/505019158607*710647^(5/7) 2865699999306143 a001 10610209857723/5600748293801*710647^(5/7) 2865699999306143 a001 591286729879/312119004989*710647^(5/7) 2865699999306143 a001 225851433717/119218851371*710647^(5/7) 2865699999306143 a001 21566892818/11384387281*710647^(5/7) 2865699999306143 a001 32951280099/17393796001*710647^(5/7) 2865699999306143 a001 12586269025/6643838879*710647^(5/7) 2865699999306143 a001 1201881744/634430159*710647^(5/7) 2865699999306143 a001 1836311903/969323029*710647^(5/7) 2865699999306143 a001 701408733/370248451*710647^(5/7) 2865699999306143 a001 66978574/35355581*710647^(5/7) 2865699999306144 a001 102334155/54018521*710647^(5/7) 2865699999306149 a001 39088169/20633239*710647^(5/7) 2865699999306186 a001 3732588/1970299*710647^(5/7) 2865699999306207 a001 5702887/4870847*710647^(3/4) 2865699999306284 a001 267914296/1149851*710647^(5/14) 2865699999306325 a001 4976784/4250681*710647^(3/4) 2865699999306343 a001 39088169/33385282*710647^(3/4) 2865699999306345 a001 34111385/29134601*710647^(3/4) 2865699999306346 a001 267914296/228826127*710647^(3/4) 2865699999306346 a001 233802911/199691526*710647^(3/4) 2865699999306346 a001 1836311903/1568397607*710647^(3/4) 2865699999306346 a001 1602508992/1368706081*710647^(3/4) 2865699999306346 a001 12586269025/10749957122*710647^(3/4) 2865699999306346 a001 10983760033/9381251041*710647^(3/4) 2865699999306346 a001 86267571272/73681302247*710647^(3/4) 2865699999306346 a001 75283811239/64300051206*710647^(3/4) 2865699999306346 a001 2504730781961/2139295485799*710647^(3/4) 2865699999306346 a001 365435296162/312119004989*710647^(3/4) 2865699999306346 a001 139583862445/119218851371*710647^(3/4) 2865699999306346 a001 53316291173/45537549124*710647^(3/4) 2865699999306346 a001 20365011074/17393796001*710647^(3/4) 2865699999306346 a001 7778742049/6643838879*710647^(3/4) 2865699999306346 a001 2971215073/2537720636*710647^(3/4) 2865699999306346 a001 1134903170/969323029*710647^(3/4) 2865699999306346 a001 433494437/370248451*710647^(3/4) 2865699999306346 a001 165580141/141422324*710647^(3/4) 2865699999306347 a001 63245986/54018521*710647^(3/4) 2865699999306353 a001 24157817/20633239*710647^(3/4) 2865699999306398 a001 9227465/7881196*710647^(3/4) 2865699999306418 a001 264431464441/9227465 2865699999306425 a001 514229/1149851*(1/2+1/2*5^(1/2))^23 2865699999306425 a001 514229/1149851*4106118243^(1/2) 2865699999306442 a001 5702887/3010349*710647^(5/7) 2865699999306442 a001 832040/3010349*710647^(6/7) 2865699999306474 a001 3524578/4870847*710647^(11/14) 2865699999306537 a001 9227465/12752043*710647^(11/14) 2865699999306547 a001 24157817/33385282*710647^(11/14) 2865699999306548 a001 63245986/87403803*710647^(11/14) 2865699999306548 a001 165580141/228826127*710647^(11/14) 2865699999306548 a001 433494437/599074578*710647^(11/14) 2865699999306548 a001 1134903170/1568397607*710647^(11/14) 2865699999306548 a001 2971215073/4106118243*710647^(11/14) 2865699999306548 a001 7778742049/10749957122*710647^(11/14) 2865699999306548 a001 20365011074/28143753123*710647^(11/14) 2865699999306548 a001 53316291173/73681302247*710647^(11/14) 2865699999306548 a001 139583862445/192900153618*710647^(11/14) 2865699999306548 a001 365435296162/505019158607*710647^(11/14) 2865699999306548 a001 10610209857723/14662949395604*710647^(11/14) 2865699999306548 a001 225851433717/312119004989*710647^(11/14) 2865699999306548 a001 86267571272/119218851371*710647^(11/14) 2865699999306548 a001 32951280099/45537549124*710647^(11/14) 2865699999306548 a001 12586269025/17393796001*710647^(11/14) 2865699999306548 a001 4807526976/6643838879*710647^(11/14) 2865699999306548 a001 1836311903/2537720636*710647^(11/14) 2865699999306548 a001 701408733/969323029*710647^(11/14) 2865699999306548 a001 267914296/370248451*710647^(11/14) 2865699999306548 a001 102334155/141422324*710647^(11/14) 2865699999306549 a001 39088169/54018521*710647^(11/14) 2865699999306552 a001 14930352/20633239*710647^(11/14) 2865699999306577 a001 5702887/7881196*710647^(11/14) 2865699999306577 a001 208010/1970299*710647^(13/14) 2865699999306689 a001 102334155/1149851*710647^(3/7) 2865699999306708 a001 3524578/3010349*710647^(3/4) 2865699999306744 a001 2178309/3010349*710647^(11/14) 2865699999306879 a001 2178309/7881196*710647^(6/7) 2865699999306921 a001 2178309/439204*439204^(2/3) 2865699999306943 a001 5702887/20633239*710647^(6/7) 2865699999306952 a001 14930352/54018521*710647^(6/7) 2865699999306953 a001 39088169/141422324*710647^(6/7) 2865699999306954 a001 102334155/370248451*710647^(6/7) 2865699999306954 a001 267914296/969323029*710647^(6/7) 2865699999306954 a001 701408733/2537720636*710647^(6/7) 2865699999306954 a001 1836311903/6643838879*710647^(6/7) 2865699999306954 a001 4807526976/17393796001*710647^(6/7) 2865699999306954 a001 12586269025/45537549124*710647^(6/7) 2865699999306954 a001 32951280099/119218851371*710647^(6/7) 2865699999306954 a001 86267571272/312119004989*710647^(6/7) 2865699999306954 a001 225851433717/817138163596*710647^(6/7) 2865699999306954 a001 1548008755920/5600748293801*710647^(6/7) 2865699999306954 a001 139583862445/505019158607*710647^(6/7) 2865699999306954 a001 53316291173/192900153618*710647^(6/7) 2865699999306954 a001 20365011074/73681302247*710647^(6/7) 2865699999306954 a001 7778742049/28143753123*710647^(6/7) 2865699999306954 a001 2971215073/10749957122*710647^(6/7) 2865699999306954 a001 1134903170/4106118243*710647^(6/7) 2865699999306954 a001 433494437/1568397607*710647^(6/7) 2865699999306954 a001 165580141/599074578*710647^(6/7) 2865699999306954 a001 63245986/228826127*710647^(6/7) 2865699999306954 a001 24157817/87403803*710647^(6/7) 2865699999306958 a001 9227465/33385282*710647^(6/7) 2865699999306982 a001 3524578/12752043*710647^(6/7) 2865699999307094 a001 39088169/1149851*710647^(1/2) 2865699999307149 a001 1346269/4870847*710647^(6/7) 2865699999307245 a001 2178309/20633239*710647^(13/14) 2865699999307245 a001 7778742049/1860498*271443^(2/13) 2865699999307249 a001 12586269025/1149851*271443^(1/13) 2865699999307342 a001 5702887/54018521*710647^(13/14) 2865699999307356 a001 3732588/35355581*710647^(13/14) 2865699999307359 a001 39088169/370248451*710647^(13/14) 2865699999307359 a001 102334155/969323029*710647^(13/14) 2865699999307359 a001 66978574/634430159*710647^(13/14) 2865699999307359 a001 701408733/6643838879*710647^(13/14) 2865699999307359 a001 1836311903/17393796001*710647^(13/14) 2865699999307359 a001 1201881744/11384387281*710647^(13/14) 2865699999307359 a001 12586269025/119218851371*710647^(13/14) 2865699999307359 a001 32951280099/312119004989*710647^(13/14) 2865699999307359 a001 21566892818/204284540899*710647^(13/14) 2865699999307359 a001 225851433717/2139295485799*710647^(13/14) 2865699999307359 a001 182717648081/1730726404001*710647^(13/14) 2865699999307359 a001 139583862445/1322157322203*710647^(13/14) 2865699999307359 a001 53316291173/505019158607*710647^(13/14) 2865699999307359 a001 10182505537/96450076809*710647^(13/14) 2865699999307359 a001 7778742049/73681302247*710647^(13/14) 2865699999307359 a001 2971215073/28143753123*710647^(13/14) 2865699999307359 a001 567451585/5374978561*710647^(13/14) 2865699999307359 a001 433494437/4106118243*710647^(13/14) 2865699999307359 a001 165580141/1568397607*710647^(13/14) 2865699999307359 a001 31622993/299537289*710647^(13/14) 2865699999307360 a001 24157817/228826127*710647^(13/14) 2865699999307365 a001 9227465/87403803*710647^(13/14) 2865699999307402 a001 1762289/16692641*710647^(13/14) 2865699999307497 a001 14930352/1149851*710647^(4/7) 2865699999307523 a001 12586269025/710647*103682^(1/24) 2865699999307558 a001 514229/439204*439204^(7/9) 2865699999307626 a001 1134903170/271443*103682^(1/6) 2865699999307657 a001 1346269/12752043*710647^(13/14) 2865699999307764 a001 2/317811*(1/2+1/2*5^(1/2))^51 2865699999307887 a001 5702887/1149851*710647^(9/14) 2865699999307888 a001 832040/1149851*710647^(11/14) 2865699999307953 a001 20365011074/4870847*271443^(2/13) 2865699999308056 a001 53316291173/12752043*271443^(2/13) 2865699999308071 a001 139583862445/33385282*271443^(2/13) 2865699999308073 a001 365435296162/87403803*271443^(2/13) 2865699999308073 a001 956722026041/228826127*271443^(2/13) 2865699999308073 a001 2504730781961/599074578*271443^(2/13) 2865699999308073 a001 6557470319842/1568397607*271443^(2/13) 2865699999308073 a001 10610209857723/2537720636*271443^(2/13) 2865699999308073 a001 4052739537881/969323029*271443^(2/13) 2865699999308073 a001 1548008755920/370248451*271443^(2/13) 2865699999308073 a001 591286729879/141422324*271443^(2/13) 2865699999308074 a001 225851433717/54018521*271443^(2/13) 2865699999308080 a001 86267571272/20633239*271443^(2/13) 2865699999308119 a001 32951280099/7881196*271443^(2/13) 2865699999308190 a001 2178309/1149851*710647^(5/7) 2865699999308293 a001 514229/1860498*710647^(6/7) 2865699999308382 a001 433494437/710647*271443^(4/13) 2865699999308390 a001 12586269025/3010349*271443^(2/13) 2865699999308699 a001 9227465/439204*439204^(5/9) 2865699999308829 a001 1346269/1149851*710647^(3/4) 2865699999309406 a001 514229/4870847*710647^(13/14) 2865699999310237 a001 2971215073/1860498*271443^(3/13) 2865699999310241 a001 4807526976/1149851*271443^(2/13) 2865699999310343 a001 39088169/439204*439204^(4/9) 2865699999310944 a001 7778742049/4870847*271443^(3/13) 2865699999310962 a001 196418/271443*271443^(11/13) 2865699999311047 a001 20365011074/12752043*271443^(3/13) 2865699999311063 a001 53316291173/33385282*271443^(3/13) 2865699999311065 a001 139583862445/87403803*271443^(3/13) 2865699999311065 a001 365435296162/228826127*271443^(3/13) 2865699999311065 a001 956722026041/599074578*271443^(3/13) 2865699999311065 a001 2504730781961/1568397607*271443^(3/13) 2865699999311065 a001 6557470319842/4106118243*271443^(3/13) 2865699999311065 a001 10610209857723/6643838879*271443^(3/13) 2865699999311065 a001 4052739537881/2537720636*271443^(3/13) 2865699999311065 a001 1548008755920/969323029*271443^(3/13) 2865699999311065 a001 591286729879/370248451*271443^(3/13) 2865699999311065 a001 225851433717/141422324*271443^(3/13) 2865699999311066 a001 86267571272/54018521*271443^(3/13) 2865699999311072 a001 32951280099/20633239*271443^(3/13) 2865699999311111 a001 12586269025/7881196*271443^(3/13) 2865699999311238 a001 196418/710647*7881196^(8/11) 2865699999311240 a001 317811/439204*7881196^(2/3) 2865699999311271 a001 196418/710647*141422324^(8/13) 2865699999311271 a001 196418/710647*2537720636^(8/15) 2865699999311271 a001 196418/710647*45537549124^(8/17) 2865699999311271 a001 196418/710647*14662949395604^(8/21) 2865699999311271 a001 196418/710647*(1/2+1/2*5^(1/2))^24 2865699999311271 a001 196418/710647*192900153618^(4/9) 2865699999311271 a001 317811/439204*(1/2+1/2*5^(1/2))^22 2865699999311271 a001 196418/710647*73681302247^(6/13) 2865699999311271 a001 317811/439204*10749957122^(11/24) 2865699999311271 a001 196418/710647*10749957122^(1/2) 2865699999311271 a001 317811/439204*4106118243^(11/23) 2865699999311271 a001 196418/710647*4106118243^(12/23) 2865699999311271 a001 317811/439204*1568397607^(1/2) 2865699999311271 a001 196418/710647*1568397607^(6/11) 2865699999311271 a001 317811/439204*599074578^(11/21) 2865699999311271 a001 196418/710647*599074578^(4/7) 2865699999311271 a001 317811/439204*228826127^(11/20) 2865699999311271 a001 196418/710647*228826127^(3/5) 2865699999311271 a001 317811/439204*87403803^(11/19) 2865699999311271 a001 196418/710647*87403803^(12/19) 2865699999311273 a001 317811/439204*33385282^(11/18) 2865699999311273 a001 196418/710647*33385282^(2/3) 2865699999311283 a001 317811/439204*12752043^(11/17) 2865699999311284 a001 196418/710647*12752043^(12/17) 2865699999311354 a001 317811/439204*4870847^(11/16) 2865699999311362 a001 196418/710647*4870847^(3/4) 2865699999311374 a001 165580141/710647*271443^(5/13) 2865699999311381 a001 4807526976/3010349*271443^(3/13) 2865699999311392 a001 20807933666/726103 2865699999311878 a001 317811/439204*1860498^(11/15) 2865699999311933 a001 196418/710647*1860498^(4/5) 2865699999311994 a001 165580141/439204*439204^(1/3) 2865699999312369 a001 10983760033/620166*103682^(1/24) 2865699999312882 a001 1134903170/167761*64079^(3/23) 2865699999313076 a001 86267571272/4870847*103682^(1/24) 2865699999313180 a001 75283811239/4250681*103682^(1/24) 2865699999313195 a001 591286729879/33385282*103682^(1/24) 2865699999313197 a001 516002918640/29134601*103682^(1/24) 2865699999313197 a001 4052739537881/228826127*103682^(1/24) 2865699999313197 a001 3536736619241/199691526*103682^(1/24) 2865699999313197 a001 6557470319842/370248451*103682^(1/24) 2865699999313197 a001 2504730781961/141422324*103682^(1/24) 2865699999313198 a001 956722026041/54018521*103682^(1/24) 2865699999313204 a001 365435296162/20633239*103682^(1/24) 2865699999313229 a001 567451585/930249*271443^(4/13) 2865699999313233 a001 1836311903/1149851*271443^(3/13) 2865699999313243 a001 139583862445/7881196*103682^(1/24) 2865699999313513 a001 53316291173/3010349*103682^(1/24) 2865699999313644 a001 701408733/439204*439204^(2/9) 2865699999313936 a001 2971215073/4870847*271443^(4/13) 2865699999313954 a001 121393/439204*271443^(12/13) 2865699999314039 a001 7778742049/12752043*271443^(4/13) 2865699999314054 a001 10182505537/16692641*271443^(4/13) 2865699999314056 a001 53316291173/87403803*271443^(4/13) 2865699999314057 a001 139583862445/228826127*271443^(4/13) 2865699999314057 a001 182717648081/299537289*271443^(4/13) 2865699999314057 a001 956722026041/1568397607*271443^(4/13) 2865699999314057 a001 2504730781961/4106118243*271443^(4/13) 2865699999314057 a001 3278735159921/5374978561*271443^(4/13) 2865699999314057 a001 10610209857723/17393796001*271443^(4/13) 2865699999314057 a001 4052739537881/6643838879*271443^(4/13) 2865699999314057 a001 1134903780/1860499*271443^(4/13) 2865699999314057 a001 591286729879/969323029*271443^(4/13) 2865699999314057 a001 225851433717/370248451*271443^(4/13) 2865699999314057 a001 21566892818/35355581*271443^(4/13) 2865699999314058 a001 32951280099/54018521*271443^(4/13) 2865699999314064 a001 1144206275/1875749*271443^(4/13) 2865699999314103 a001 1201881744/1970299*271443^(4/13) 2865699999314366 a001 63245986/710647*271443^(6/13) 2865699999314373 a001 1836311903/3010349*271443^(4/13) 2865699999315295 a001 2971215073/439204*439204^(1/9) 2865699999315365 a001 20365011074/1149851*103682^(1/24) 2865699999315730 a001 317811/439204*710647^(11/14) 2865699999315862 a001 39088169/710647*271443^(1/2) 2865699999316114 a001 208010/109801*20633239^(4/7) 2865699999316118 a001 98209/930249*141422324^(2/3) 2865699999316118 a001 208010/109801*2537720636^(4/9) 2865699999316118 a001 98209/930249*(1/2+1/2*5^(1/2))^26 2865699999316118 a001 208010/109801*(1/2+1/2*5^(1/2))^20 2865699999316118 a001 208010/109801*23725150497407^(5/16) 2865699999316118 a001 208010/109801*505019158607^(5/14) 2865699999316118 a001 98209/930249*73681302247^(1/2) 2865699999316118 a001 208010/109801*73681302247^(5/13) 2865699999316118 a001 208010/109801*28143753123^(2/5) 2865699999316118 a001 208010/109801*10749957122^(5/12) 2865699999316118 a001 98209/930249*10749957122^(13/24) 2865699999316118 a001 208010/109801*4106118243^(10/23) 2865699999316118 a001 98209/930249*4106118243^(13/23) 2865699999316118 a001 208010/109801*1568397607^(5/11) 2865699999316118 a001 98209/930249*1568397607^(13/22) 2865699999316118 a001 208010/109801*599074578^(10/21) 2865699999316118 a001 98209/930249*599074578^(13/21) 2865699999316118 a001 208010/109801*228826127^(1/2) 2865699999316118 a001 98209/930249*228826127^(13/20) 2865699999316118 a001 208010/109801*87403803^(10/19) 2865699999316118 a001 98209/930249*87403803^(13/19) 2865699999316119 a001 208010/109801*33385282^(5/9) 2865699999316120 a001 98209/930249*33385282^(13/18) 2865699999316128 a001 208010/109801*12752043^(10/17) 2865699999316131 a001 98209/930249*12752043^(13/17) 2865699999316135 a001 196418/710647*710647^(6/7) 2865699999316135 a001 163427632720/5702887 2865699999316193 a001 208010/109801*4870847^(5/8) 2865699999316216 a001 98209/930249*4870847^(13/16) 2865699999316221 a001 433494437/1860498*271443^(5/13) 2865699999316224 a001 701408733/1149851*271443^(4/13) 2865699999316636 a001 433494437/64079*24476^(1/7) 2865699999316670 a001 208010/109801*1860498^(2/3) 2865699999316780 a001 317811/167761*167761^(4/5) 2865699999316800 a001 2178309/439204*7881196^(6/11) 2865699999316819 a001 196418/4870847*20633239^(4/5) 2865699999316825 a001 2178309/439204*141422324^(6/13) 2865699999316825 a001 2178309/439204*2537720636^(2/5) 2865699999316825 a001 196418/4870847*17393796001^(4/7) 2865699999316825 a001 2178309/439204*45537549124^(6/17) 2865699999316825 a001 196418/4870847*14662949395604^(4/9) 2865699999316825 a001 196418/4870847*(1/2+1/2*5^(1/2))^28 2865699999316825 a001 2178309/439204*14662949395604^(2/7) 2865699999316825 a001 2178309/439204*(1/2+1/2*5^(1/2))^18 2865699999316825 a001 2178309/439204*192900153618^(1/3) 2865699999316825 a001 196418/4870847*73681302247^(7/13) 2865699999316825 a001 2178309/439204*10749957122^(3/8) 2865699999316825 a001 196418/4870847*10749957122^(7/12) 2865699999316825 a001 2178309/439204*4106118243^(9/23) 2865699999316825 a001 196418/4870847*4106118243^(14/23) 2865699999316825 a001 2178309/439204*1568397607^(9/22) 2865699999316825 a001 196418/4870847*1568397607^(7/11) 2865699999316825 a001 2178309/439204*599074578^(3/7) 2865699999316825 a001 196418/4870847*599074578^(2/3) 2865699999316825 a001 2178309/439204*228826127^(9/20) 2865699999316825 a001 196418/4870847*228826127^(7/10) 2865699999316825 a001 2178309/439204*87403803^(9/19) 2865699999316825 a001 196418/4870847*87403803^(14/19) 2865699999316826 a001 2178309/439204*33385282^(1/2) 2865699999316827 a001 196418/4870847*33385282^(7/9) 2865699999316827 a001 4194697031/146376 2865699999316834 a001 2178309/439204*12752043^(9/17) 2865699999316835 a001 98209/930249*1860498^(13/15) 2865699999316839 a001 196418/4870847*12752043^(14/17) 2865699999316886 a001 196418/12752043*7881196^(10/11) 2865699999316893 a001 2178309/439204*4870847^(9/16) 2865699999316922 a001 196418/12752043*20633239^(6/7) 2865699999316928 a001 1134903170/4870847*271443^(5/13) 2865699999316928 a001 196418/12752043*141422324^(10/13) 2865699999316928 a001 196418/12752043*2537720636^(2/3) 2865699999316928 a001 196418/12752043*45537549124^(10/17) 2865699999316928 a001 196418/12752043*312119004989^(6/11) 2865699999316928 a001 196418/12752043*14662949395604^(10/21) 2865699999316928 a001 196418/12752043*(1/2+1/2*5^(1/2))^30 2865699999316928 a001 196418/12752043*192900153618^(5/9) 2865699999316928 a001 5702887/439204*(1/2+1/2*5^(1/2))^16 2865699999316928 a001 5702887/439204*23725150497407^(1/4) 2865699999316928 a001 5702887/439204*73681302247^(4/13) 2865699999316928 a001 196418/12752043*28143753123^(3/5) 2865699999316928 a001 5702887/439204*10749957122^(1/3) 2865699999316928 a001 196418/12752043*10749957122^(5/8) 2865699999316928 a001 5702887/439204*4106118243^(8/23) 2865699999316928 a001 196418/12752043*4106118243^(15/23) 2865699999316928 a001 5702887/439204*1568397607^(4/11) 2865699999316928 a001 196418/12752043*1568397607^(15/22) 2865699999316928 a001 5702887/439204*599074578^(8/21) 2865699999316928 a001 196418/12752043*599074578^(5/7) 2865699999316928 a001 5702887/439204*228826127^(2/5) 2865699999316928 a001 196418/12752043*228826127^(3/4) 2865699999316928 a001 5702887/439204*87403803^(8/19) 2865699999316928 a001 196418/12752043*87403803^(15/19) 2865699999316928 a001 1120149658766/39088169 2865699999316928 a001 39088169/439204*7881196^(4/11) 2865699999316929 a001 5702887/439204*33385282^(4/9) 2865699999316930 a001 196418/12752043*33385282^(5/6) 2865699999316930 a001 31622993/219602*7881196^(1/3) 2865699999316931 a001 196418/4870847*4870847^(7/8) 2865699999316931 a001 9227465/439204*7881196^(5/11) 2865699999316933 a001 165580141/439204*7881196^(3/11) 2865699999316936 a001 5702887/439204*12752043^(8/17) 2865699999316937 a001 701408733/439204*7881196^(2/11) 2865699999316940 a001 196452/5779*20633239^(2/5) 2865699999316941 a001 2971215073/439204*7881196^(1/11) 2865699999316943 a001 196452/5779*17393796001^(2/7) 2865699999316943 a001 98209/16692641*(1/2+1/2*5^(1/2))^32 2865699999316943 a001 98209/16692641*23725150497407^(1/2) 2865699999316943 a001 98209/16692641*505019158607^(4/7) 2865699999316943 a001 196452/5779*14662949395604^(2/9) 2865699999316943 a001 196452/5779*(1/2+1/2*5^(1/2))^14 2865699999316943 a001 98209/16692641*73681302247^(8/13) 2865699999316943 a001 196452/5779*10749957122^(7/24) 2865699999316943 a001 98209/16692641*10749957122^(2/3) 2865699999316943 a001 196452/5779*4106118243^(7/23) 2865699999316943 a001 98209/16692641*4106118243^(16/23) 2865699999316943 a001 196452/5779*1568397607^(7/22) 2865699999316943 a001 98209/16692641*1568397607^(8/11) 2865699999316943 a001 196452/5779*599074578^(1/3) 2865699999316943 a001 98209/16692641*599074578^(16/21) 2865699999316943 a001 196452/5779*228826127^(7/20) 2865699999316943 a001 98209/16692641*228826127^(4/5) 2865699999316943 a001 977529959712/34111385 2865699999316943 a001 196452/5779*87403803^(7/19) 2865699999316943 a001 98209/16692641*87403803^(16/19) 2865699999316944 a001 196418/12752043*12752043^(15/17) 2865699999316944 a001 102334155/439204*20633239^(2/7) 2865699999316944 a001 196452/5779*33385282^(7/18) 2865699999316944 a001 433494437/439204*20633239^(1/5) 2865699999316945 a001 567451585/219602*20633239^(1/7) 2865699999316945 a001 39088169/439204*141422324^(4/13) 2865699999316945 a001 39088169/439204*2537720636^(4/15) 2865699999316945 a001 196418/87403803*45537549124^(2/3) 2865699999316945 a001 39088169/439204*45537549124^(4/17) 2865699999316945 a001 39088169/439204*817138163596^(4/19) 2865699999316945 a001 39088169/439204*14662949395604^(4/21) 2865699999316945 a001 39088169/439204*(1/2+1/2*5^(1/2))^12 2865699999316945 a001 39088169/439204*192900153618^(2/9) 2865699999316945 a001 39088169/439204*73681302247^(3/13) 2865699999316945 a001 39088169/439204*10749957122^(1/4) 2865699999316945 a001 196418/87403803*10749957122^(17/24) 2865699999316945 a001 39088169/439204*4106118243^(6/23) 2865699999316945 a001 196418/87403803*4106118243^(17/23) 2865699999316945 a001 39088169/439204*1568397607^(3/11) 2865699999316945 a001 196418/87403803*1568397607^(17/22) 2865699999316945 a001 39088169/439204*599074578^(2/7) 2865699999316945 a001 196418/87403803*599074578^(17/21) 2865699999316945 a001 3838809989321/133957148 2865699999316945 a001 39088169/439204*228826127^(3/10) 2865699999316945 a001 196418/87403803*228826127^(17/20) 2865699999316945 a001 98209/16692641*33385282^(8/9) 2865699999316945 a001 39088169/439204*87403803^(6/19) 2865699999316945 a001 196418/228826127*141422324^(12/13) 2865699999316946 a001 196418/228826127*2537720636^(4/5) 2865699999316946 a001 102334155/439204*2537720636^(2/9) 2865699999316946 a001 196418/228826127*45537549124^(12/17) 2865699999316946 a001 196418/228826127*14662949395604^(4/7) 2865699999316946 a001 196418/228826127*505019158607^(9/14) 2865699999316946 a001 196418/228826127*192900153618^(2/3) 2865699999316946 a001 102334155/439204*312119004989^(2/11) 2865699999316946 a001 102334155/439204*(1/2+1/2*5^(1/2))^10 2865699999316946 a001 196418/228826127*73681302247^(9/13) 2865699999316946 a001 102334155/439204*28143753123^(1/5) 2865699999316946 a001 102334155/439204*10749957122^(5/24) 2865699999316946 a001 196418/228826127*10749957122^(3/4) 2865699999316946 a001 102334155/439204*4106118243^(5/23) 2865699999316946 a001 196418/228826127*4106118243^(18/23) 2865699999316946 a001 102334155/439204*1568397607^(5/22) 2865699999316946 a001 196418/228826127*1568397607^(9/11) 2865699999316946 a001 6700090018930/233802911 2865699999316946 a001 102334155/439204*599074578^(5/21) 2865699999316946 a001 196418/228826127*599074578^(6/7) 2865699999316946 a001 102334155/439204*228826127^(1/4) 2865699999316946 a001 196418/87403803*87403803^(17/19) 2865699999316946 a001 701408733/439204*141422324^(2/13) 2865699999316946 a001 165580141/439204*141422324^(3/13) 2865699999316946 a001 2971215073/439204*141422324^(1/13) 2865699999316946 a001 98209/299537289*817138163596^(2/3) 2865699999316946 a001 66978574/109801*(1/2+1/2*5^(1/2))^8 2865699999316946 a001 66978574/109801*23725150497407^(1/8) 2865699999316946 a001 66978574/109801*505019158607^(1/7) 2865699999316946 a001 66978574/109801*73681302247^(2/13) 2865699999316946 a001 66978574/109801*10749957122^(1/6) 2865699999316946 a001 98209/299537289*10749957122^(19/24) 2865699999316946 a001 66978574/109801*4106118243^(4/23) 2865699999316946 a001 98209/299537289*4106118243^(19/23) 2865699999316946 a001 52623190191728/1836311903 2865699999316946 a001 66978574/109801*1568397607^(2/11) 2865699999316946 a001 98209/299537289*1568397607^(19/22) 2865699999316946 a001 66978574/109801*599074578^(4/21) 2865699999316946 a001 196418/228826127*228826127^(9/10) 2865699999316946 a001 196418/1568397607*2537720636^(8/9) 2865699999316946 a001 701408733/439204*2537720636^(2/15) 2865699999316946 a001 701408733/439204*45537549124^(2/17) 2865699999316946 a001 196418/1568397607*312119004989^(8/11) 2865699999316946 a001 196418/1568397607*23725150497407^(5/8) 2865699999316946 a001 701408733/439204*14662949395604^(2/21) 2865699999316946 a001 701408733/439204*(1/2+1/2*5^(1/2))^6 2865699999316946 a001 196418/1568397607*73681302247^(10/13) 2865699999316946 a001 196418/1568397607*28143753123^(4/5) 2865699999316946 a001 701408733/439204*10749957122^(1/8) 2865699999316946 a001 196418/1568397607*10749957122^(5/6) 2865699999316946 a001 701408733/439204*4106118243^(3/23) 2865699999316946 a001 22961550086399/801254496 2865699999316946 a001 196418/1568397607*4106118243^(20/23) 2865699999316946 a001 701408733/439204*1568397607^(3/22) 2865699999316946 a001 98209/299537289*599074578^(19/21) 2865699999316946 a001 196418/4106118243*2537720636^(14/15) 2865699999316946 a001 196418/4106118243*17393796001^(6/7) 2865699999316946 a001 196418/4106118243*45537549124^(14/17) 2865699999316946 a001 196418/4106118243*14662949395604^(2/3) 2865699999316946 a001 196418/4106118243*505019158607^(3/4) 2865699999316946 a001 196418/4106118243*192900153618^(7/9) 2865699999316946 a001 1836311903/439204*(1/2+1/2*5^(1/2))^4 2865699999316946 a001 1836311903/439204*23725150497407^(1/16) 2865699999316946 a001 1836311903/439204*73681302247^(1/13) 2865699999316946 a001 1836311903/439204*10749957122^(1/12) 2865699999316946 a001 360684711363454/12586269025 2865699999316946 a001 1836311903/439204*4106118243^(2/23) 2865699999316946 a001 196418/4106118243*10749957122^(7/8) 2865699999316946 a001 196418/1568397607*1568397607^(10/11) 2865699999316946 a001 1836311903/439204*1568397607^(1/11) 2865699999316946 a001 98209/5374978561*312119004989^(4/5) 2865699999316946 a001 98209/5374978561*23725150497407^(11/16) 2865699999316946 a001 1201881744/109801*(1/2+1/2*5^(1/2))^2 2865699999316946 a001 98209/5374978561*73681302247^(11/13) 2865699999316946 a001 314761611190656/10983760033 2865699999316946 a001 701408733/439204*599074578^(1/7) 2865699999316946 a001 1201881744/109801*10749957122^(1/24) 2865699999316946 a001 1201881744/109801*4106118243^(1/23) 2865699999316946 a001 196418/4106118243*4106118243^(21/23) 2865699999316946 a001 12586269025/439204 2865699999316946 a001 98209/5374978561*10749957122^(11/12) 2865699999316946 a001 196418/73681302247*45537549124^(16/17) 2865699999316946 a001 196418/73681302247*14662949395604^(16/21) 2865699999316946 a001 2157408178161794/75283811239 2865699999316946 a001 196418/73681302247*192900153618^(8/9) 2865699999316946 a001 98209/96450076809*312119004989^(10/11) 2865699999316946 a001 98209/96450076809*3461452808002^(5/6) 2865699999316946 a001 16944503814103696/591286729879 2865699999316946 a001 196418/73681302247*73681302247^(12/13) 2865699999316946 a001 196418/1322157322203*14662949395604^(6/7) 2865699999316946 a001 101352261273431520/3536736619241 2865699999316946 a001 196418/312119004989*817138163596^(17/19) 2865699999316946 a001 196418/312119004989*14662949395604^(17/21) 2865699999316946 a001 196418/312119004989*192900153618^(17/18) 2865699999316946 a001 5236139639809157/182717648081 2865699999316946 a001 196418/119218851371*14662949395604^(7/9) 2865699999316946 a001 196418/119218851371*505019158607^(7/8) 2865699999316946 a001 4000054745132932/139583862445 2865699999316946 a001 196418/17393796001*45537549124^(15/17) 2865699999316946 a001 1527884955780482/53316291173 2865699999316946 a001 196418/17393796001*312119004989^(9/11) 2865699999316946 a001 196418/17393796001*14662949395604^(5/7) 2865699999316946 a001 196418/17393796001*192900153618^(5/6) 2865699999316946 a001 7778742049/878408+7778742049/878408*5^(1/2) 2865699999316946 a001 196418/17393796001*28143753123^(9/10) 2865699999316946 a001 196418/28143753123*10749957122^(23/24) 2865699999316946 a001 1201881744/109801*1568397607^(1/22) 2865699999316946 a001 196418/17393796001*10749957122^(15/16) 2865699999316946 a001 2971215073/439204*2537720636^(1/15) 2865699999316946 a001 291800061104257/10182505537 2865699999316946 a001 2971215073/439204*45537549124^(1/17) 2865699999316946 a001 2971215073/439204*14662949395604^(1/21) 2865699999316946 a001 2971215073/439204*(1/2+1/2*5^(1/2))^3 2865699999316946 a001 2971215073/439204*10749957122^(1/16) 2865699999316946 a001 98209/5374978561*4106118243^(22/23) 2865699999316946 a001 1201881744/109801*599074578^(1/21) 2865699999316946 a001 567451585/219602*2537720636^(1/9) 2865699999316946 a001 222915410845060/7778742049 2865699999316946 a001 567451585/219602*312119004989^(1/11) 2865699999316946 a001 567451585/219602*(1/2+1/2*5^(1/2))^5 2865699999316946 a001 567451585/219602*28143753123^(1/10) 2865699999316946 a001 1836311903/439204*599074578^(2/21) 2865699999316946 a001 2971215073/439204*599074578^(1/14) 2865699999316946 a001 196418/4106118243*1568397607^(21/22) 2865699999316946 a001 196418/969323029*2537720636^(13/15) 2865699999316946 a001 1201881744/109801*228826127^(1/20) 2865699999316946 a001 66978574/109801*228826127^(1/5) 2865699999316946 a001 85146110326666/2971215073 2865699999316946 a001 433494437/439204*17393796001^(1/7) 2865699999316946 a001 196418/969323029*45537549124^(13/17) 2865699999316946 a001 196418/969323029*14662949395604^(13/21) 2865699999316946 a001 196418/969323029*192900153618^(13/18) 2865699999316946 a001 433494437/439204*14662949395604^(1/9) 2865699999316946 a001 433494437/439204*(1/2+1/2*5^(1/2))^7 2865699999316946 a001 196418/969323029*73681302247^(3/4) 2865699999316946 a001 196418/969323029*10749957122^(13/16) 2865699999316946 a001 433494437/439204*599074578^(1/6) 2865699999316946 a001 1836311903/439204*228826127^(1/10) 2865699999316946 a001 196418/1568397607*599074578^(20/21) 2865699999316946 a001 701408733/439204*228826127^(3/20) 2865699999316946 a001 567451585/219602*228826127^(1/8) 2865699999316946 a001 196418/969323029*599074578^(13/14) 2865699999316946 a001 1201881744/109801*87403803^(1/19) 2865699999316946 a001 956556474557/33379505 2865699999316946 a001 165580141/439204*2537720636^(1/5) 2865699999316946 a001 165580141/439204*45537549124^(3/17) 2865699999316946 a001 165580141/439204*14662949395604^(1/7) 2865699999316946 a001 165580141/439204*(1/2+1/2*5^(1/2))^9 2865699999316946 a001 165580141/439204*192900153618^(1/6) 2865699999316946 a001 165580141/439204*10749957122^(3/16) 2865699999316946 a001 165580141/439204*599074578^(3/14) 2865699999316946 a001 1836311903/439204*87403803^(2/19) 2865699999316946 a001 102334155/439204*87403803^(5/19) 2865699999316946 a001 98209/299537289*228826127^(19/20) 2865699999316946 a001 701408733/439204*87403803^(3/19) 2865699999316946 a001 66978574/109801*87403803^(4/19) 2865699999316946 a001 12422650078148/433494437 2865699999316946 a001 1201881744/109801*33385282^(1/18) 2865699999316946 a001 98209/70711162*2537720636^(7/9) 2865699999316946 a001 98209/70711162*17393796001^(5/7) 2865699999316946 a001 98209/70711162*312119004989^(7/11) 2865699999316946 a001 98209/70711162*14662949395604^(5/9) 2865699999316946 a001 98209/70711162*505019158607^(5/8) 2865699999316946 a001 31622993/219602*312119004989^(1/5) 2865699999316946 a001 31622993/219602*(1/2+1/2*5^(1/2))^11 2865699999316946 a001 98209/70711162*28143753123^(7/10) 2865699999316946 a001 31622993/219602*1568397607^(1/4) 2865699999316946 a001 98209/70711162*599074578^(5/6) 2865699999316946 a001 98209/70711162*228826127^(7/8) 2865699999316946 a001 2971215073/439204*33385282^(1/12) 2865699999316946 a001 1836311903/439204*33385282^(1/9) 2865699999316946 a001 196418/228826127*87403803^(18/19) 2865699999316946 a001 701408733/439204*33385282^(1/6) 2865699999316946 a001 39088169/439204*33385282^(1/3) 2865699999316946 a001 66978574/109801*33385282^(2/9) 2865699999316946 a001 102334155/439204*33385282^(5/18) 2865699999316946 a001 165580141/439204*33385282^(1/4) 2865699999316946 a001 196418/54018521*141422324^(11/13) 2865699999316947 a001 24157817/439204*141422324^(1/3) 2865699999316947 a001 4745030099506/165580141 2865699999316947 a001 196418/54018521*2537720636^(11/15) 2865699999316947 a001 196418/54018521*45537549124^(11/17) 2865699999316947 a001 196418/54018521*312119004989^(3/5) 2865699999316947 a001 196418/54018521*817138163596^(11/19) 2865699999316947 a001 196418/54018521*14662949395604^(11/21) 2865699999316947 a001 196418/54018521*192900153618^(11/18) 2865699999316947 a001 24157817/439204*(1/2+1/2*5^(1/2))^13 2865699999316947 a001 24157817/439204*73681302247^(1/4) 2865699999316947 a001 196418/54018521*10749957122^(11/16) 2865699999316947 a001 196418/54018521*1568397607^(3/4) 2865699999316947 a001 196418/54018521*599074578^(11/14) 2865699999316947 a001 1201881744/109801*12752043^(1/17) 2865699999316948 a001 196418/87403803*33385282^(17/18) 2865699999316948 a001 1836311903/439204*12752043^(2/17) 2865699999316949 a001 701408733/439204*12752043^(3/17) 2865699999316949 a001 196418/54018521*33385282^(11/12) 2865699999316949 a001 9227465/439204*20633239^(3/7) 2865699999316950 a001 66978574/109801*12752043^(4/17) 2865699999316950 a001 196452/5779*12752043^(7/17) 2865699999316951 a001 102334155/439204*12752043^(5/17) 2865699999316951 a001 39088169/439204*12752043^(6/17) 2865699999316952 a001 906220110185/31622993 2865699999316952 a001 9227465/439204*141422324^(5/13) 2865699999316952 a001 9227465/439204*2537720636^(1/3) 2865699999316952 a001 9227465/439204*45537549124^(5/17) 2865699999316952 a001 196418/20633239*(1/2+1/2*5^(1/2))^31 2865699999316952 a001 196418/20633239*9062201101803^(1/2) 2865699999316952 a001 9227465/439204*312119004989^(3/11) 2865699999316952 a001 9227465/439204*14662949395604^(5/21) 2865699999316952 a001 9227465/439204*(1/2+1/2*5^(1/2))^15 2865699999316952 a001 9227465/439204*192900153618^(5/18) 2865699999316952 a001 9227465/439204*28143753123^(3/10) 2865699999316952 a001 9227465/439204*10749957122^(5/16) 2865699999316952 a001 9227465/439204*599074578^(5/14) 2865699999316952 a001 9227465/439204*228826127^(3/8) 2865699999316953 a001 1201881744/109801*4870847^(1/16) 2865699999316953 a001 9227465/439204*33385282^(5/12) 2865699999316960 a001 98209/16692641*12752043^(16/17) 2865699999316961 a001 1836311903/439204*4870847^(1/8) 2865699999316968 a001 701408733/439204*4870847^(3/16) 2865699999316976 a001 66978574/109801*4870847^(1/4) 2865699999316983 a001 102334155/439204*4870847^(5/16) 2865699999316988 a001 5702887/439204*4870847^(1/2) 2865699999316991 a001 39088169/439204*4870847^(3/8) 2865699999316991 a001 692290561604/24157817 2865699999316992 a001 1762289/219602*45537549124^(1/3) 2865699999316992 a001 98209/3940598*(1/2+1/2*5^(1/2))^29 2865699999316992 a001 98209/3940598*1322157322203^(1/2) 2865699999316992 a001 1762289/219602*(1/2+1/2*5^(1/2))^17 2865699999316996 a001 196452/5779*4870847^(7/16) 2865699999317001 a001 1762289/219602*12752043^(1/2) 2865699999317001 a001 1201881744/109801*1860498^(1/15) 2865699999317028 a001 2971215073/439204*1860498^(1/10) 2865699999317031 a001 2971215073/12752043*271443^(5/13) 2865699999317041 a001 196418/12752043*4870847^(15/16) 2865699999317046 a001 7778742049/33385282*271443^(5/13) 2865699999317048 a001 20365011074/87403803*271443^(5/13) 2865699999317049 a001 53316291173/228826127*271443^(5/13) 2865699999317049 a001 139583862445/599074578*271443^(5/13) 2865699999317049 a001 365435296162/1568397607*271443^(5/13) 2865699999317049 a001 956722026041/4106118243*271443^(5/13) 2865699999317049 a001 2504730781961/10749957122*271443^(5/13) 2865699999317049 a001 6557470319842/28143753123*271443^(5/13) 2865699999317049 a001 10610209857723/45537549124*271443^(5/13) 2865699999317049 a001 4052739537881/17393796001*271443^(5/13) 2865699999317049 a001 1548008755920/6643838879*271443^(5/13) 2865699999317049 a001 591286729879/2537720636*271443^(5/13) 2865699999317049 a001 225851433717/969323029*271443^(5/13) 2865699999317049 a001 86267571272/370248451*271443^(5/13) 2865699999317049 a001 63246219/271444*271443^(5/13) 2865699999317050 a001 12586269025/54018521*271443^(5/13) 2865699999317055 a001 4807526976/20633239*271443^(5/13) 2865699999317056 a001 1836311903/439204*1860498^(2/15) 2865699999317084 a001 567451585/219602*1860498^(1/6) 2865699999317095 a001 1836311903/7881196*271443^(5/13) 2865699999317111 a001 701408733/439204*1860498^(1/5) 2865699999317166 a001 66978574/109801*1860498^(4/15) 2865699999317194 a001 165580141/439204*1860498^(3/10) 2865699999317222 a001 102334155/439204*1860498^(1/3) 2865699999317224 a001 196418/3010349*7881196^(9/11) 2865699999317255 a001 264431464442/9227465 2865699999317262 a001 196418/3010349*141422324^(9/13) 2865699999317262 a001 196418/3010349*2537720636^(3/5) 2865699999317262 a001 196418/3010349*45537549124^(9/17) 2865699999317262 a001 196418/3010349*14662949395604^(3/7) 2865699999317262 a001 196418/3010349*(1/2+1/2*5^(1/2))^27 2865699999317262 a001 196418/3010349*192900153618^(1/2) 2865699999317262 a001 1346269/439204*817138163596^(1/3) 2865699999317262 a001 1346269/439204*(1/2+1/2*5^(1/2))^19 2865699999317262 a001 196418/3010349*10749957122^(9/16) 2865699999317262 a001 196418/3010349*599074578^(9/14) 2865699999317262 a001 1346269/439204*87403803^(1/2) 2865699999317264 a001 196418/3010349*33385282^(3/4) 2865699999317276 a001 39088169/439204*1860498^(2/5) 2865699999317322 a001 2178309/439204*1860498^(3/5) 2865699999317329 a001 196452/5779*1860498^(7/15) 2865699999317351 a001 1201881744/109801*710647^(1/14) 2865699999317359 a001 24157817/710647*271443^(7/13) 2865699999317365 a001 701408733/3010349*271443^(5/13) 2865699999317366 a001 9227465/439204*1860498^(1/2) 2865699999317370 a001 5702887/439204*1860498^(8/15) 2865699999317598 a001 196418/4870847*1860498^(14/15) 2865699999317756 a001 1836311903/439204*710647^(1/7) 2865699999318007 a001 196418/3010349*1860498^(9/10) 2865699999318162 a001 701408733/439204*710647^(3/14) 2865699999318364 a001 433494437/439204*710647^(1/4) 2865699999318567 a001 66978574/109801*710647^(2/7) 2865699999318630 a001 7778742049/710647*103682^(1/12) 2865699999318734 a001 233802911/90481*103682^(5/24) 2865699999318972 a001 102334155/439204*710647^(5/14) 2865699999319067 a001 50501915861/1762289 2865699999319084 a001 514229/439204*7881196^(7/11) 2865699999319108 a001 196418/1149851*20633239^(5/7) 2865699999319109 a001 514229/439204*20633239^(3/5) 2865699999319113 a001 514229/439204*141422324^(7/13) 2865699999319113 a001 196418/1149851*2537720636^(5/9) 2865699999319113 a001 514229/439204*2537720636^(7/15) 2865699999319113 a001 514229/439204*17393796001^(3/7) 2865699999319113 a001 514229/439204*45537549124^(7/17) 2865699999319113 a001 196418/1149851*312119004989^(5/11) 2865699999319113 a001 196418/1149851*(1/2+1/2*5^(1/2))^25 2865699999319113 a001 196418/1149851*3461452808002^(5/12) 2865699999319113 a001 514229/439204*14662949395604^(1/3) 2865699999319113 a001 514229/439204*(1/2+1/2*5^(1/2))^21 2865699999319113 a001 514229/439204*192900153618^(7/18) 2865699999319113 a001 196418/1149851*28143753123^(1/2) 2865699999319113 a001 514229/439204*10749957122^(7/16) 2865699999319113 a001 514229/439204*599074578^(1/2) 2865699999319113 a001 196418/1149851*228826127^(5/8) 2865699999319115 a001 514229/439204*33385282^(7/12) 2865699999319213 a001 165580141/1860498*271443^(6/13) 2865699999319216 a001 267914296/1149851*271443^(5/13) 2865699999319377 a001 39088169/439204*710647^(3/7) 2865699999319693 a001 514229/439204*1860498^(7/10) 2865699999319780 a001 196452/5779*710647^(1/2) 2865699999319803 a001 196418/1149851*1860498^(5/6) 2865699999319920 a001 433494437/4870847*271443^(6/13) 2865699999319937 a001 1201881744/109801*271443^(1/13) 2865699999320023 a001 1134903170/12752043*271443^(6/13) 2865699999320038 a001 2971215073/33385282*271443^(6/13) 2865699999320040 a001 7778742049/87403803*271443^(6/13) 2865699999320040 a001 20365011074/228826127*271443^(6/13) 2865699999320040 a001 53316291173/599074578*271443^(6/13) 2865699999320040 a001 139583862445/1568397607*271443^(6/13) 2865699999320040 a001 365435296162/4106118243*271443^(6/13) 2865699999320040 a001 956722026041/10749957122*271443^(6/13) 2865699999320040 a001 2504730781961/28143753123*271443^(6/13) 2865699999320040 a001 6557470319842/73681302247*271443^(6/13) 2865699999320040 a001 10610209857723/119218851371*271443^(6/13) 2865699999320040 a001 4052739537881/45537549124*271443^(6/13) 2865699999320040 a001 1548008755920/17393796001*271443^(6/13) 2865699999320040 a001 591286729879/6643838879*271443^(6/13) 2865699999320040 a001 225851433717/2537720636*271443^(6/13) 2865699999320040 a001 86267571272/969323029*271443^(6/13) 2865699999320040 a001 32951280099/370248451*271443^(6/13) 2865699999320041 a001 12586269025/141422324*271443^(6/13) 2865699999320041 a001 4807526976/54018521*271443^(6/13) 2865699999320047 a001 1836311903/20633239*271443^(6/13) 2865699999320087 a001 3524667/39604*271443^(6/13) 2865699999320171 a001 5702887/439204*710647^(4/7) 2865699999320171 a001 208010/109801*710647^(5/7) 2865699999320356 a001 9227465/710647*271443^(8/13) 2865699999320357 a001 267914296/3010349*271443^(6/13) 2865699999320473 a001 2178309/439204*710647^(9/14) 2865699999320708 a001 831985/15126*271443^(1/2) 2865699999321387 a001 98209/930249*710647^(13/14) 2865699999321416 a001 267914296/4870847*271443^(1/2) 2865699999321519 a001 233802911/4250681*271443^(1/2) 2865699999321534 a001 1836311903/33385282*271443^(1/2) 2865699999321536 a001 1602508992/29134601*271443^(1/2) 2865699999321536 a001 12586269025/228826127*271443^(1/2) 2865699999321536 a001 10983760033/199691526*271443^(1/2) 2865699999321536 a001 86267571272/1568397607*271443^(1/2) 2865699999321536 a001 75283811239/1368706081*271443^(1/2) 2865699999321536 a001 591286729879/10749957122*271443^(1/2) 2865699999321536 a001 12585437040/228811001*271443^(1/2) 2865699999321536 a001 4052739537881/73681302247*271443^(1/2) 2865699999321536 a001 3536736619241/64300051206*271443^(1/2) 2865699999321536 a001 6557470319842/119218851371*271443^(1/2) 2865699999321536 a001 2504730781961/45537549124*271443^(1/2) 2865699999321536 a001 956722026041/17393796001*271443^(1/2) 2865699999321536 a001 365435296162/6643838879*271443^(1/2) 2865699999321536 a001 139583862445/2537720636*271443^(1/2) 2865699999321536 a001 53316291173/969323029*271443^(1/2) 2865699999321536 a001 20365011074/370248451*271443^(1/2) 2865699999321536 a001 7778742049/141422324*271443^(1/2) 2865699999321537 a001 2971215073/54018521*271443^(1/2) 2865699999321543 a001 1134903170/20633239*271443^(1/2) 2865699999321582 a001 433494437/7881196*271443^(1/2) 2865699999321853 a001 165580141/3010349*271443^(1/2) 2865699999322204 a001 31622993/930249*271443^(7/13) 2865699999322208 a001 102334155/1149851*271443^(6/13) 2865699999322911 a001 165580141/4870847*271443^(7/13) 2865699999322929 a001 1836311903/439204*271443^(2/13) 2865699999323015 a001 433494437/12752043*271443^(7/13) 2865699999323030 a001 567451585/16692641*271443^(7/13) 2865699999323032 a001 2971215073/87403803*271443^(7/13) 2865699999323032 a001 7778742049/228826127*271443^(7/13) 2865699999323032 a001 10182505537/299537289*271443^(7/13) 2865699999323032 a001 53316291173/1568397607*271443^(7/13) 2865699999323032 a001 139583862445/4106118243*271443^(7/13) 2865699999323032 a001 182717648081/5374978561*271443^(7/13) 2865699999323032 a001 956722026041/28143753123*271443^(7/13) 2865699999323032 a001 2504730781961/73681302247*271443^(7/13) 2865699999323032 a001 3278735159921/96450076809*271443^(7/13) 2865699999323032 a001 10610209857723/312119004989*271443^(7/13) 2865699999323032 a001 4052739537881/119218851371*271443^(7/13) 2865699999323032 a001 387002188980/11384387281*271443^(7/13) 2865699999323032 a001 591286729879/17393796001*271443^(7/13) 2865699999323032 a001 225851433717/6643838879*271443^(7/13) 2865699999323032 a001 1135099622/33391061*271443^(7/13) 2865699999323032 a001 32951280099/969323029*271443^(7/13) 2865699999323032 a001 12586269025/370248451*271443^(7/13) 2865699999323032 a001 1201881744/35355581*271443^(7/13) 2865699999323033 a001 1836311903/54018521*271443^(7/13) 2865699999323039 a001 701408733/20633239*271443^(7/13) 2865699999323078 a001 66978574/1970299*271443^(7/13) 2865699999323348 a001 102334155/3010349*271443^(7/13) 2865699999323369 a001 514229/439204*710647^(3/4) 2865699999323387 a001 3524578/710647*271443^(9/13) 2865699999323477 a001 10182505537/930249*103682^(1/12) 2865699999323704 a001 63245986/1149851*271443^(1/2) 2865699999324184 a001 53316291173/4870847*103682^(1/12) 2865699999324287 a001 139583862445/12752043*103682^(1/12) 2865699999324302 a001 182717648081/16692641*103682^(1/12) 2865699999324304 a001 956722026041/87403803*103682^(1/12) 2865699999324305 a001 2504730781961/228826127*103682^(1/12) 2865699999324305 a001 3278735159921/299537289*103682^(1/12) 2865699999324305 a001 10610209857723/969323029*103682^(1/12) 2865699999324305 a001 4052739537881/370248451*103682^(1/12) 2865699999324305 a001 387002188980/35355581*103682^(1/12) 2865699999324306 a001 591286729879/54018521*103682^(1/12) 2865699999324311 a001 7787980473/711491*103682^(1/12) 2865699999324351 a001 21566892818/1970299*103682^(1/12) 2865699999324621 a001 32951280099/3010349*103682^(1/12) 2865699999325197 a001 24157817/1860498*271443^(8/13) 2865699999325199 a001 39088169/1149851*271443^(7/13) 2865699999325903 a001 63245986/4870847*271443^(8/13) 2865699999325921 a001 701408733/439204*271443^(3/13) 2865699999326006 a001 165580141/12752043*271443^(8/13) 2865699999326021 a001 433494437/33385282*271443^(8/13) 2865699999326024 a001 1134903170/87403803*271443^(8/13) 2865699999326024 a001 2971215073/228826127*271443^(8/13) 2865699999326024 a001 7778742049/599074578*271443^(8/13) 2865699999326024 a001 20365011074/1568397607*271443^(8/13) 2865699999326024 a001 53316291173/4106118243*271443^(8/13) 2865699999326024 a001 139583862445/10749957122*271443^(8/13) 2865699999326024 a001 365435296162/28143753123*271443^(8/13) 2865699999326024 a001 956722026041/73681302247*271443^(8/13) 2865699999326024 a001 2504730781961/192900153618*271443^(8/13) 2865699999326024 a001 10610209857723/817138163596*271443^(8/13) 2865699999326024 a001 4052739537881/312119004989*271443^(8/13) 2865699999326024 a001 1548008755920/119218851371*271443^(8/13) 2865699999326024 a001 591286729879/45537549124*271443^(8/13) 2865699999326024 a001 7787980473/599786069*271443^(8/13) 2865699999326024 a001 86267571272/6643838879*271443^(8/13) 2865699999326024 a001 32951280099/2537720636*271443^(8/13) 2865699999326024 a001 12586269025/969323029*271443^(8/13) 2865699999326024 a001 4807526976/370248451*271443^(8/13) 2865699999326024 a001 1836311903/141422324*271443^(8/13) 2865699999326025 a001 701408733/54018521*271443^(8/13) 2865699999326031 a001 9238424/711491*271443^(8/13) 2865699999326070 a001 102334155/7881196*271443^(8/13) 2865699999326340 a001 39088169/3010349*271443^(8/13) 2865699999326472 a001 12586269025/1149851*103682^(1/12) 2865699999326649 a001 1346269/710647*271443^(10/13) 2865699999328053 a001 7778742049/439204*103682^(1/24) 2865699999328189 a001 14930352/1149851*271443^(8/13) 2865699999328195 a001 9227465/1860498*271443^(9/13) 2865699999328896 a001 24157817/4870847*271443^(9/13) 2865699999328913 a001 66978574/109801*271443^(4/13) 2865699999328998 a001 63245986/12752043*271443^(9/13) 2865699999329013 a001 165580141/33385282*271443^(9/13) 2865699999329015 a001 433494437/87403803*271443^(9/13) 2865699999329016 a001 1134903170/228826127*271443^(9/13) 2865699999329016 a001 2971215073/599074578*271443^(9/13) 2865699999329016 a001 7778742049/1568397607*271443^(9/13) 2865699999329016 a001 20365011074/4106118243*271443^(9/13) 2865699999329016 a001 53316291173/10749957122*271443^(9/13) 2865699999329016 a001 139583862445/28143753123*271443^(9/13) 2865699999329016 a001 365435296162/73681302247*271443^(9/13) 2865699999329016 a001 956722026041/192900153618*271443^(9/13) 2865699999329016 a001 2504730781961/505019158607*271443^(9/13) 2865699999329016 a001 10610209857723/2139295485799*271443^(9/13) 2865699999329016 a001 4052739537881/817138163596*271443^(9/13) 2865699999329016 a001 140728068720/28374454999*271443^(9/13) 2865699999329016 a001 591286729879/119218851371*271443^(9/13) 2865699999329016 a001 225851433717/45537549124*271443^(9/13) 2865699999329016 a001 86267571272/17393796001*271443^(9/13) 2865699999329016 a001 32951280099/6643838879*271443^(9/13) 2865699999329016 a001 1144206275/230701876*271443^(9/13) 2865699999329016 a001 4807526976/969323029*271443^(9/13) 2865699999329016 a001 1836311903/370248451*271443^(9/13) 2865699999329016 a001 701408733/141422324*271443^(9/13) 2865699999329017 a001 267914296/54018521*271443^(9/13) 2865699999329022 a001 9303105/1875749*271443^(9/13) 2865699999329062 a001 39088169/7881196*271443^(9/13) 2865699999329329 a001 14930352/3010349*271443^(9/13) 2865699999329738 a001 686789568/101521*103682^(1/8) 2865699999329841 a001 433494437/271443*103682^(1/4) 2865699999331166 a001 5702887/1149851*271443^(9/13) 2865699999331226 a001 1762289/930249*271443^(10/13) 2865699999331485 a001 38580030724/1346269 2865699999331492 a001 514229/710647*271443^(11/13) 2865699999331801 a001 98209/219602*(1/2+1/2*5^(1/2))^23 2865699999331801 a001 98209/219602*4106118243^(1/2) 2865699999331894 a001 9227465/4870847*271443^(10/13) 2865699999331904 a001 102334155/439204*271443^(5/13) 2865699999331991 a001 24157817/12752043*271443^(10/13) 2865699999332005 a001 31622993/16692641*271443^(10/13) 2865699999332007 a001 165580141/87403803*271443^(10/13) 2865699999332008 a001 433494437/228826127*271443^(10/13) 2865699999332008 a001 567451585/299537289*271443^(10/13) 2865699999332008 a001 2971215073/1568397607*271443^(10/13) 2865699999332008 a001 7778742049/4106118243*271443^(10/13) 2865699999332008 a001 10182505537/5374978561*271443^(10/13) 2865699999332008 a001 53316291173/28143753123*271443^(10/13) 2865699999332008 a001 139583862445/73681302247*271443^(10/13) 2865699999332008 a001 182717648081/96450076809*271443^(10/13) 2865699999332008 a001 956722026041/505019158607*271443^(10/13) 2865699999332008 a001 10610209857723/5600748293801*271443^(10/13) 2865699999332008 a001 591286729879/312119004989*271443^(10/13) 2865699999332008 a001 225851433717/119218851371*271443^(10/13) 2865699999332008 a001 21566892818/11384387281*271443^(10/13) 2865699999332008 a001 32951280099/17393796001*271443^(10/13) 2865699999332008 a001 12586269025/6643838879*271443^(10/13) 2865699999332008 a001 1201881744/634430159*271443^(10/13) 2865699999332008 a001 1836311903/969323029*271443^(10/13) 2865699999332008 a001 701408733/370248451*271443^(10/13) 2865699999332008 a001 66978574/35355581*271443^(10/13) 2865699999332008 a001 102334155/54018521*271443^(10/13) 2865699999332014 a001 39088169/20633239*271443^(10/13) 2865699999332051 a001 3732588/1970299*271443^(10/13) 2865699999332306 a001 5702887/3010349*271443^(10/13) 2865699999334054 a001 2178309/1149851*271443^(10/13) 2865699999334484 a001 317811/1149851*271443^(12/13) 2865699999334488 a001 1346269/1860498*271443^(11/13) 2865699999334584 a001 12586269025/1860498*103682^(1/8) 2865699999334896 a001 39088169/439204*271443^(6/13) 2865699999334925 a001 3524578/4870847*271443^(11/13) 2865699999334988 a001 9227465/12752043*271443^(11/13) 2865699999334998 a001 24157817/33385282*271443^(11/13) 2865699999334999 a001 63245986/87403803*271443^(11/13) 2865699999334999 a001 165580141/228826127*271443^(11/13) 2865699999334999 a001 433494437/599074578*271443^(11/13) 2865699999334999 a001 1134903170/1568397607*271443^(11/13) 2865699999334999 a001 2971215073/4106118243*271443^(11/13) 2865699999334999 a001 7778742049/10749957122*271443^(11/13) 2865699999334999 a001 20365011074/28143753123*271443^(11/13) 2865699999334999 a001 53316291173/73681302247*271443^(11/13) 2865699999334999 a001 139583862445/192900153618*271443^(11/13) 2865699999334999 a001 365435296162/505019158607*271443^(11/13) 2865699999334999 a001 10610209857723/14662949395604*271443^(11/13) 2865699999334999 a001 225851433717/312119004989*271443^(11/13) 2865699999334999 a001 86267571272/119218851371*271443^(11/13) 2865699999334999 a001 32951280099/45537549124*271443^(11/13) 2865699999334999 a001 12586269025/17393796001*271443^(11/13) 2865699999334999 a001 4807526976/6643838879*271443^(11/13) 2865699999334999 a001 1836311903/2537720636*271443^(11/13) 2865699999334999 a001 701408733/969323029*271443^(11/13) 2865699999334999 a001 267914296/370248451*271443^(11/13) 2865699999334999 a001 102334155/141422324*271443^(11/13) 2865699999335000 a001 39088169/54018521*271443^(11/13) 2865699999335004 a001 14930352/20633239*271443^(11/13) 2865699999335028 a001 5702887/7881196*271443^(11/13) 2865699999335195 a001 2178309/3010349*271443^(11/13) 2865699999335291 a001 32951280099/4870847*103682^(1/8) 2865699999335394 a001 86267571272/12752043*103682^(1/8) 2865699999335409 a001 32264490531/4769326*103682^(1/8) 2865699999335412 a001 591286729879/87403803*103682^(1/8) 2865699999335412 a001 1548008755920/228826127*103682^(1/8) 2865699999335412 a001 4052739537881/599074578*103682^(1/8) 2865699999335412 a001 1515744265389/224056801*103682^(1/8) 2865699999335412 a001 6557470319842/969323029*103682^(1/8) 2865699999335412 a001 2504730781961/370248451*103682^(1/8) 2865699999335412 a001 956722026041/141422324*103682^(1/8) 2865699999335413 a001 365435296162/54018521*103682^(1/8) 2865699999335419 a001 139583862445/20633239*103682^(1/8) 2865699999335458 a001 53316291173/7881196*103682^(1/8) 2865699999335728 a001 20365011074/3010349*103682^(1/8) 2865699999336339 a001 832040/1149851*271443^(11/13) 2865699999336393 a001 24157817/439204*271443^(1/2) 2865699999337479 a001 832040/3010349*271443^(12/13) 2865699999337579 a001 7778742049/1149851*103682^(1/8) 2865699999337886 a001 196452/5779*271443^(7/13) 2865699999337916 a001 2178309/7881196*271443^(12/13) 2865699999337980 a001 5702887/20633239*271443^(12/13) 2865699999337990 a001 14930352/54018521*271443^(12/13) 2865699999337991 a001 39088169/141422324*271443^(12/13) 2865699999337991 a001 102334155/370248451*271443^(12/13) 2865699999337991 a001 267914296/969323029*271443^(12/13) 2865699999337991 a001 701408733/2537720636*271443^(12/13) 2865699999337991 a001 1836311903/6643838879*271443^(12/13) 2865699999337991 a001 4807526976/17393796001*271443^(12/13) 2865699999337991 a001 12586269025/45537549124*271443^(12/13) 2865699999337991 a001 32951280099/119218851371*271443^(12/13) 2865699999337991 a001 86267571272/312119004989*271443^(12/13) 2865699999337991 a001 225851433717/817138163596*271443^(12/13) 2865699999337991 a001 1548008755920/5600748293801*271443^(12/13) 2865699999337991 a001 139583862445/505019158607*271443^(12/13) 2865699999337991 a001 53316291173/192900153618*271443^(12/13) 2865699999337991 a001 20365011074/73681302247*271443^(12/13) 2865699999337991 a001 7778742049/28143753123*271443^(12/13) 2865699999337991 a001 2971215073/10749957122*271443^(12/13) 2865699999337991 a001 1134903170/4106118243*271443^(12/13) 2865699999337991 a001 433494437/1568397607*271443^(12/13) 2865699999337991 a001 165580141/599074578*271443^(12/13) 2865699999337991 a001 63245986/228826127*271443^(12/13) 2865699999337992 a001 24157817/87403803*271443^(12/13) 2865699999337995 a001 9227465/33385282*271443^(12/13) 2865699999338020 a001 3524578/12752043*271443^(12/13) 2865699999338187 a001 1346269/4870847*271443^(12/13) 2865699999339160 a001 1201881744/109801*103682^(1/12) 2865699999339331 a001 514229/1860498*271443^(12/13) 2865699999340845 a001 2971215073/710647*103682^(1/6) 2865699999340862 a001 5702887/439204*271443^(8/13) 2865699999340948 a001 267914296/271443*103682^(7/24) 2865699999340983 a001 2/121393*(1/2+1/2*5^(1/2))^49 2865699999342865 a001 3524578/167761*167761^(3/5) 2865699999343226 a001 1836311903/167761*64079^(2/23) 2865699999343751 a001 2178309/439204*271443^(9/13) 2865699999344181 a001 317811/439204*271443^(11/13) 2865699999345691 a001 7778742049/1860498*103682^(1/6) 2865699999346036 a001 208010/109801*271443^(10/13) 2865699999346249 a001 1602508992/90481*39603^(1/22) 2865699999346399 a001 20365011074/4870847*103682^(1/6) 2865699999346502 a001 53316291173/12752043*103682^(1/6) 2865699999346517 a001 139583862445/33385282*103682^(1/6) 2865699999346519 a001 365435296162/87403803*103682^(1/6) 2865699999346519 a001 956722026041/228826127*103682^(1/6) 2865699999346519 a001 2504730781961/599074578*103682^(1/6) 2865699999346519 a001 6557470319842/1568397607*103682^(1/6) 2865699999346519 a001 10610209857723/2537720636*103682^(1/6) 2865699999346519 a001 4052739537881/969323029*103682^(1/6) 2865699999346519 a001 1548008755920/370248451*103682^(1/6) 2865699999346520 a001 591286729879/141422324*103682^(1/6) 2865699999346520 a001 225851433717/54018521*103682^(1/6) 2865699999346526 a001 86267571272/20633239*103682^(1/6) 2865699999346566 a001 32951280099/7881196*103682^(1/6) 2865699999346836 a001 12586269025/3010349*103682^(1/6) 2865699999347173 a001 196418/710647*271443^(12/13) 2865699999348687 a001 4807526976/1149851*103682^(1/6) 2865699999350268 a001 2971215073/439204*103682^(1/8) 2865699999351815 a001 75025/271443*439204^(8/9) 2865699999351952 a001 1836311903/710647*103682^(5/24) 2865699999352056 a001 165580141/271443*103682^(1/3) 2865699999353461 a001 267914296/39603*15127^(3/20) 2865699999354228 a001 121393/64079*64079^(20/23) 2865699999356799 a001 267084832/103361*103682^(5/24) 2865699999357506 a001 12586269025/4870847*103682^(5/24) 2865699999357609 a001 10983760033/4250681*103682^(5/24) 2865699999357624 a001 43133785636/16692641*103682^(5/24) 2865699999357626 a001 75283811239/29134601*103682^(5/24) 2865699999357627 a001 591286729879/228826127*103682^(5/24) 2865699999357627 a001 86000486440/33281921*103682^(5/24) 2865699999357627 a001 4052739537881/1568397607*103682^(5/24) 2865699999357627 a001 3536736619241/1368706081*103682^(5/24) 2865699999357627 a001 3278735159921/1268860318*103682^(5/24) 2865699999357627 a001 2504730781961/969323029*103682^(5/24) 2865699999357627 a001 956722026041/370248451*103682^(5/24) 2865699999357627 a001 182717648081/70711162*103682^(5/24) 2865699999357628 a001 139583862445/54018521*103682^(5/24) 2865699999357634 a001 53316291173/20633239*103682^(5/24) 2865699999357673 a001 10182505537/3940598*103682^(5/24) 2865699999357943 a001 7778742049/3010349*103682^(5/24) 2865699999359794 a001 2971215073/1149851*103682^(5/24) 2865699999361375 a001 1836311903/439204*103682^(1/6) 2865699999363060 a001 1134903170/710647*103682^(1/4) 2865699999363163 a001 34111385/90481*103682^(3/8) 2865699999363184 a001 39088169/167761*167761^(2/5) 2865699999364987 a001 75025/271443*7881196^(8/11) 2865699999364989 a001 121393/167761*7881196^(2/3) 2865699999365020 a001 75025/271443*141422324^(8/13) 2865699999365020 a001 75025/271443*2537720636^(8/15) 2865699999365020 a001 75025/271443*45537549124^(8/17) 2865699999365020 a001 75025/271443*14662949395604^(8/21) 2865699999365020 a001 75025/271443*(1/2+1/2*5^(1/2))^24 2865699999365020 a001 75025/271443*192900153618^(4/9) 2865699999365020 a001 75025/271443*73681302247^(6/13) 2865699999365020 a001 121393/167761*312119004989^(2/5) 2865699999365020 a001 121393/167761*(1/2+1/2*5^(1/2))^22 2865699999365020 a001 75025/271443*10749957122^(1/2) 2865699999365020 a001 121393/167761*10749957122^(11/24) 2865699999365020 a001 121393/167761*4106118243^(11/23) 2865699999365020 a001 75025/271443*4106118243^(12/23) 2865699999365020 a001 121393/167761*1568397607^(1/2) 2865699999365020 a001 75025/271443*1568397607^(6/11) 2865699999365020 a001 121393/167761*599074578^(11/21) 2865699999365020 a001 75025/271443*599074578^(4/7) 2865699999365020 a001 121393/167761*228826127^(11/20) 2865699999365020 a001 75025/271443*228826127^(3/5) 2865699999365020 a001 121393/167761*87403803^(11/19) 2865699999365020 a001 75025/271443*87403803^(12/19) 2865699999365022 a001 121393/167761*33385282^(11/18) 2865699999365022 a001 75025/271443*33385282^(2/3) 2865699999365032 a001 121393/167761*12752043^(11/17) 2865699999365033 a001 75025/271443*12752043^(12/17) 2865699999365103 a001 121393/167761*4870847^(11/16) 2865699999365111 a001 75025/271443*4870847^(3/4) 2865699999365627 a001 121393/167761*1860498^(11/15) 2865699999365683 a001 75025/271443*1860498^(4/5) 2865699999367721 a001 433494437/103682*39603^(2/11) 2865699999367906 a001 2971215073/1860498*103682^(1/4) 2865699999368613 a001 7778742049/4870847*103682^(1/4) 2865699999368717 a001 20365011074/12752043*103682^(1/4) 2865699999368732 a001 53316291173/33385282*103682^(1/4) 2865699999368734 a001 139583862445/87403803*103682^(1/4) 2865699999368734 a001 365435296162/228826127*103682^(1/4) 2865699999368734 a001 956722026041/599074578*103682^(1/4) 2865699999368734 a001 2504730781961/1568397607*103682^(1/4) 2865699999368734 a001 6557470319842/4106118243*103682^(1/4) 2865699999368734 a001 10610209857723/6643838879*103682^(1/4) 2865699999368734 a001 4052739537881/2537720636*103682^(1/4) 2865699999368734 a001 1548008755920/969323029*103682^(1/4) 2865699999368734 a001 591286729879/370248451*103682^(1/4) 2865699999368734 a001 225851433717/141422324*103682^(1/4) 2865699999368735 a001 86267571272/54018521*103682^(1/4) 2865699999368741 a001 32951280099/20633239*103682^(1/4) 2865699999368780 a001 12586269025/7881196*103682^(1/4) 2865699999369050 a001 4807526976/3010349*103682^(1/4) 2865699999369479 a001 121393/167761*710647^(11/14) 2865699999369884 a001 75025/271443*710647^(6/7) 2865699999370695 a001 9107509825/317811 2865699999370902 a001 1836311903/1149851*103682^(1/4) 2865699999372483 a001 567451585/219602*103682^(5/24) 2865699999373569 a001 2971215073/167761*64079^(1/23) 2865699999374167 a001 701408733/710647*103682^(7/24) 2865699999374271 a001 63245986/271443*103682^(5/12) 2865699999379014 a001 1836311903/1860498*103682^(7/24) 2865699999379468 a001 12586269025/710647*39603^(1/22) 2865699999379721 a001 4807526976/4870847*103682^(7/24) 2865699999379824 a001 12586269025/12752043*103682^(7/24) 2865699999379839 a001 32951280099/33385282*103682^(7/24) 2865699999379841 a001 86267571272/87403803*103682^(7/24) 2865699999379842 a001 225851433717/228826127*103682^(7/24) 2865699999379842 a001 591286729879/599074578*103682^(7/24) 2865699999379842 a001 1548008755920/1568397607*103682^(7/24) 2865699999379842 a001 4052739537881/4106118243*103682^(7/24) 2865699999379842 a001 4807525989/4870846*103682^(7/24) 2865699999379842 a001 6557470319842/6643838879*103682^(7/24) 2865699999379842 a001 2504730781961/2537720636*103682^(7/24) 2865699999379842 a001 956722026041/969323029*103682^(7/24) 2865699999379842 a001 365435296162/370248451*103682^(7/24) 2865699999379842 a001 139583862445/141422324*103682^(7/24) 2865699999379843 a001 53316291173/54018521*103682^(7/24) 2865699999379848 a001 20365011074/20633239*103682^(7/24) 2865699999379888 a001 7778742049/7881196*103682^(7/24) 2865699999380158 a001 2971215073/3010349*103682^(7/24) 2865699999381699 a001 75025/103682*103682^(11/12) 2865699999382009 a001 1134903170/1149851*103682^(7/24) 2865699999383549 a001 433494437/167761*167761^(1/5) 2865699999383590 a001 701408733/439204*103682^(1/4) 2865699999384314 a001 10983760033/620166*39603^(1/22) 2865699999385021 a001 86267571272/4870847*39603^(1/22) 2865699999385124 a001 75283811239/4250681*39603^(1/22) 2865699999385140 a001 591286729879/33385282*39603^(1/22) 2865699999385142 a001 516002918640/29134601*39603^(1/22) 2865699999385142 a001 4052739537881/228826127*39603^(1/22) 2865699999385142 a001 3536736619241/199691526*39603^(1/22) 2865699999385142 a001 6557470319842/370248451*39603^(1/22) 2865699999385142 a001 2504730781961/141422324*39603^(1/22) 2865699999385143 a001 956722026041/54018521*39603^(1/22) 2865699999385149 a001 365435296162/20633239*39603^(1/22) 2865699999385188 a001 139583862445/7881196*39603^(1/22) 2865699999385275 a001 433494437/710647*103682^(1/3) 2865699999385378 a001 39088169/271443*103682^(11/24) 2865699999385458 a001 53316291173/3010349*39603^(1/22) 2865699999387310 a001 20365011074/1149851*39603^(1/22) 2865699999390121 a001 567451585/930249*103682^(1/3) 2865699999390828 a001 2971215073/4870847*103682^(1/3) 2865699999390931 a001 7778742049/12752043*103682^(1/3) 2865699999390946 a001 10182505537/16692641*103682^(1/3) 2865699999390949 a001 53316291173/87403803*103682^(1/3) 2865699999390949 a001 139583862445/228826127*103682^(1/3) 2865699999390949 a001 182717648081/299537289*103682^(1/3) 2865699999390949 a001 956722026041/1568397607*103682^(1/3) 2865699999390949 a001 2504730781961/4106118243*103682^(1/3) 2865699999390949 a001 3278735159921/5374978561*103682^(1/3) 2865699999390949 a001 10610209857723/17393796001*103682^(1/3) 2865699999390949 a001 4052739537881/6643838879*103682^(1/3) 2865699999390949 a001 1134903780/1860499*103682^(1/3) 2865699999390949 a001 591286729879/969323029*103682^(1/3) 2865699999390949 a001 225851433717/370248451*103682^(1/3) 2865699999390949 a001 21566892818/35355581*103682^(1/3) 2865699999390950 a001 32951280099/54018521*103682^(1/3) 2865699999390956 a001 1144206275/1875749*103682^(1/3) 2865699999390995 a001 1201881744/1970299*103682^(1/3) 2865699999391265 a001 1836311903/3010349*103682^(1/3) 2865699999393116 a001 701408733/1149851*103682^(1/3) 2865699999393182 a001 75640/15251*439204^(2/3) 2865699999394697 a001 433494437/439204*103682^(7/24) 2865699999395706 a001 3524578/167761*439204^(5/9) 2865699999396382 a001 267914296/710647*103682^(3/8) 2865699999396486 a001 24157817/271443*103682^(1/2) 2865699999397308 a001 14930352/167761*439204^(4/9) 2865699999397930 a001 121393/167761*271443^(11/13) 2865699999398235 a001 317811/167761*20633239^(4/7) 2865699999398239 a001 75025/710647*141422324^(2/3) 2865699999398239 a001 317811/167761*2537720636^(4/9) 2865699999398239 a001 75025/710647*(1/2+1/2*5^(1/2))^26 2865699999398239 a001 75025/710647*73681302247^(1/2) 2865699999398239 a001 317811/167761*(1/2+1/2*5^(1/2))^20 2865699999398239 a001 317811/167761*23725150497407^(5/16) 2865699999398239 a001 317811/167761*505019158607^(5/14) 2865699999398239 a001 317811/167761*73681302247^(5/13) 2865699999398239 a001 317811/167761*28143753123^(2/5) 2865699999398239 a001 75025/710647*10749957122^(13/24) 2865699999398239 a001 317811/167761*10749957122^(5/12) 2865699999398239 a001 317811/167761*4106118243^(10/23) 2865699999398239 a001 75025/710647*4106118243^(13/23) 2865699999398239 a001 317811/167761*1568397607^(5/11) 2865699999398239 a001 75025/710647*1568397607^(13/22) 2865699999398239 a001 317811/167761*599074578^(10/21) 2865699999398239 a001 75025/710647*599074578^(13/21) 2865699999398239 a001 317811/167761*228826127^(1/2) 2865699999398239 a001 75025/710647*228826127^(13/20) 2865699999398239 a001 317811/167761*87403803^(10/19) 2865699999398239 a001 75025/710647*87403803^(13/19) 2865699999398240 a001 317811/167761*33385282^(5/9) 2865699999398241 a001 75025/710647*33385282^(13/18) 2865699999398249 a001 317811/167761*12752043^(10/17) 2865699999398252 a001 75025/710647*12752043^(13/17) 2865699999398314 a001 317811/167761*4870847^(5/8) 2865699999398337 a001 75025/710647*4870847^(13/16) 2865699999398791 a001 317811/167761*1860498^(2/3) 2865699999398956 a001 75025/710647*1860498^(13/15) 2865699999398962 a001 63245986/167761*439204^(1/3) 2865699999399067 a001 4768754055/166408 2865699999399998 a001 7778742049/439204*39603^(1/22) 2865699999400612 a001 267914296/167761*439204^(2/9) 2865699999400922 a001 75025/271443*271443^(12/13) 2865699999401229 a001 233802911/620166*103682^(3/8) 2865699999401936 a001 1836311903/4870847*103682^(3/8) 2865699999402039 a001 1602508992/4250681*103682^(3/8) 2865699999402054 a001 12586269025/33385282*103682^(3/8) 2865699999402056 a001 10983760033/29134601*103682^(3/8) 2865699999402056 a001 86267571272/228826127*103682^(3/8) 2865699999402056 a001 267913919/710646*103682^(3/8) 2865699999402056 a001 591286729879/1568397607*103682^(3/8) 2865699999402056 a001 516002918640/1368706081*103682^(3/8) 2865699999402056 a001 4052739537881/10749957122*103682^(3/8) 2865699999402056 a001 3536736619241/9381251041*103682^(3/8) 2865699999402056 a001 6557470319842/17393796001*103682^(3/8) 2865699999402056 a001 2504730781961/6643838879*103682^(3/8) 2865699999402056 a001 956722026041/2537720636*103682^(3/8) 2865699999402056 a001 365435296162/969323029*103682^(3/8) 2865699999402056 a001 139583862445/370248451*103682^(3/8) 2865699999402057 a001 53316291173/141422324*103682^(3/8) 2865699999402057 a001 20365011074/54018521*103682^(3/8) 2865699999402063 a001 7778742049/20633239*103682^(3/8) 2865699999402103 a001 2971215073/7881196*103682^(3/8) 2865699999402263 a001 1134903170/167761*439204^(1/9) 2865699999402292 a001 317811/167761*710647^(5/7) 2865699999402373 a001 1134903170/3010349*103682^(3/8) 2865699999403060 a001 75640/15251*7881196^(6/11) 2865699999403080 a001 75025/1860498*20633239^(4/5) 2865699999403085 a001 75640/15251*141422324^(6/13) 2865699999403086 a001 75640/15251*2537720636^(2/5) 2865699999403086 a001 75025/1860498*17393796001^(4/7) 2865699999403086 a001 75025/1860498*14662949395604^(4/9) 2865699999403086 a001 75025/1860498*(1/2+1/2*5^(1/2))^28 2865699999403086 a001 75025/1860498*505019158607^(1/2) 2865699999403086 a001 75025/1860498*73681302247^(7/13) 2865699999403086 a001 75640/15251*45537549124^(6/17) 2865699999403086 a001 75640/15251*14662949395604^(2/7) 2865699999403086 a001 75640/15251*(1/2+1/2*5^(1/2))^18 2865699999403086 a001 75640/15251*192900153618^(1/3) 2865699999403086 a001 75640/15251*10749957122^(3/8) 2865699999403086 a001 75025/1860498*10749957122^(7/12) 2865699999403086 a001 75640/15251*4106118243^(9/23) 2865699999403086 a001 75025/1860498*4106118243^(14/23) 2865699999403086 a001 75640/15251*1568397607^(9/22) 2865699999403086 a001 75025/1860498*1568397607^(7/11) 2865699999403086 a001 75640/15251*599074578^(3/7) 2865699999403086 a001 75025/1860498*599074578^(2/3) 2865699999403086 a001 75640/15251*228826127^(9/20) 2865699999403086 a001 75025/1860498*228826127^(7/10) 2865699999403086 a001 75640/15251*87403803^(9/19) 2865699999403086 a001 75025/1860498*87403803^(14/19) 2865699999403087 a001 75640/15251*33385282^(1/2) 2865699999403088 a001 75025/1860498*33385282^(7/9) 2865699999403095 a001 75640/15251*12752043^(9/17) 2865699999403100 a001 75025/1860498*12752043^(14/17) 2865699999403153 a001 75640/15251*4870847^(9/16) 2865699999403191 a001 75025/1860498*4870847^(7/8) 2865699999403206 a001 62423801000/2178309 2865699999403508 a001 75025/710647*710647^(13/14) 2865699999403582 a001 75640/15251*1860498^(3/5) 2865699999403751 a001 75025/4870847*7881196^(10/11) 2865699999403787 a001 75025/4870847*20633239^(6/7) 2865699999403793 a001 75025/4870847*141422324^(10/13) 2865699999403793 a001 75025/4870847*2537720636^(2/3) 2865699999403793 a001 75025/4870847*45537549124^(10/17) 2865699999403793 a001 75025/4870847*312119004989^(6/11) 2865699999403793 a001 75025/4870847*14662949395604^(10/21) 2865699999403793 a001 75025/4870847*(1/2+1/2*5^(1/2))^30 2865699999403793 a001 75025/4870847*192900153618^(5/9) 2865699999403793 a001 75025/4870847*28143753123^(3/5) 2865699999403793 a001 2178309/167761*(1/2+1/2*5^(1/2))^16 2865699999403793 a001 2178309/167761*23725150497407^(1/4) 2865699999403793 a001 2178309/167761*73681302247^(4/13) 2865699999403793 a001 2178309/167761*10749957122^(1/3) 2865699999403793 a001 75025/4870847*10749957122^(5/8) 2865699999403793 a001 2178309/167761*4106118243^(8/23) 2865699999403793 a001 75025/4870847*4106118243^(15/23) 2865699999403793 a001 2178309/167761*1568397607^(4/11) 2865699999403793 a001 75025/4870847*1568397607^(15/22) 2865699999403793 a001 2178309/167761*599074578^(8/21) 2865699999403793 a001 75025/4870847*599074578^(5/7) 2865699999403793 a001 2178309/167761*228826127^(2/5) 2865699999403793 a001 75025/4870847*228826127^(3/4) 2865699999403793 a001 2178309/167761*87403803^(8/19) 2865699999403793 a001 75025/4870847*87403803^(15/19) 2865699999403794 a001 2178309/167761*33385282^(4/9) 2865699999403795 a001 75025/4870847*33385282^(5/6) 2865699999403801 a001 2178309/167761*12752043^(8/17) 2865699999403808 a001 75025/4870847*12752043^(15/17) 2865699999403810 a001 163427632725/5702887 2865699999403853 a001 2178309/167761*4870847^(1/2) 2865699999403858 a001 75025/1860498*1860498^(14/15) 2865699999403893 a001 5702887/167761*20633239^(2/5) 2865699999403894 a001 14930352/167761*7881196^(4/11) 2865699999403896 a001 75025/12752043*(1/2+1/2*5^(1/2))^32 2865699999403896 a001 75025/12752043*23725150497407^(1/2) 2865699999403896 a001 75025/12752043*73681302247^(8/13) 2865699999403896 a001 5702887/167761*17393796001^(2/7) 2865699999403896 a001 5702887/167761*14662949395604^(2/9) 2865699999403896 a001 5702887/167761*(1/2+1/2*5^(1/2))^14 2865699999403896 a001 5702887/167761*10749957122^(7/24) 2865699999403896 a001 75025/12752043*10749957122^(2/3) 2865699999403896 a001 5702887/167761*4106118243^(7/23) 2865699999403896 a001 75025/12752043*4106118243^(16/23) 2865699999403896 a001 5702887/167761*1568397607^(7/22) 2865699999403896 a001 75025/12752043*1568397607^(8/11) 2865699999403896 a001 5702887/167761*599074578^(1/3) 2865699999403896 a001 75025/12752043*599074578^(16/21) 2865699999403896 a001 5702887/167761*228826127^(7/20) 2865699999403896 a001 75025/12752043*228826127^(4/5) 2865699999403896 a001 5702887/167761*87403803^(7/19) 2865699999403896 a001 75025/12752043*87403803^(16/19) 2865699999403897 a001 5702887/167761*33385282^(7/18) 2865699999403898 a001 75025/12752043*33385282^(8/9) 2865699999403898 a001 427859097175/14930352 2865699999403899 a001 24157817/167761*7881196^(1/3) 2865699999403901 a001 63245986/167761*7881196^(3/11) 2865699999403903 a001 5702887/167761*12752043^(7/17) 2865699999403905 a001 267914296/167761*7881196^(2/11) 2865699999403906 a001 75025/4870847*4870847^(15/16) 2865699999403909 a001 1134903170/167761*7881196^(1/11) 2865699999403911 a001 14930352/167761*141422324^(4/13) 2865699999403911 a001 14930352/167761*2537720636^(4/15) 2865699999403911 a001 75025/33385282*45537549124^(2/3) 2865699999403911 a001 75025/33385282*(1/2+1/2*5^(1/2))^34 2865699999403911 a001 14930352/167761*45537549124^(4/17) 2865699999403911 a001 14930352/167761*817138163596^(4/19) 2865699999403911 a001 14930352/167761*14662949395604^(4/21) 2865699999403911 a001 14930352/167761*(1/2+1/2*5^(1/2))^12 2865699999403911 a001 14930352/167761*192900153618^(2/9) 2865699999403911 a001 14930352/167761*73681302247^(3/13) 2865699999403911 a001 14930352/167761*10749957122^(1/4) 2865699999403911 a001 75025/33385282*10749957122^(17/24) 2865699999403911 a001 14930352/167761*4106118243^(6/23) 2865699999403911 a001 75025/33385282*4106118243^(17/23) 2865699999403911 a001 14930352/167761*1568397607^(3/11) 2865699999403911 a001 75025/33385282*1568397607^(17/22) 2865699999403911 a001 14930352/167761*599074578^(2/7) 2865699999403911 a001 75025/33385282*599074578^(17/21) 2865699999403911 a001 14930352/167761*228826127^(3/10) 2865699999403911 a001 75025/33385282*228826127^(17/20) 2865699999403911 a001 14930352/167761*87403803^(6/19) 2865699999403911 a001 39088169/167761*20633239^(2/7) 2865699999403911 a001 75025/33385282*87403803^(17/19) 2865699999403911 a001 1120149658800/39088169 2865699999403912 a001 14930352/167761*33385282^(1/3) 2865699999403912 a001 165580141/167761*20633239^(1/5) 2865699999403912 a001 75025/12752043*12752043^(16/17) 2865699999403912 a001 433494437/167761*20633239^(1/7) 2865699999403913 a001 75025/87403803*141422324^(12/13) 2865699999403913 a001 75025/87403803*2537720636^(4/5) 2865699999403913 a001 39088169/167761*2537720636^(2/9) 2865699999403913 a001 75025/87403803*45537549124^(12/17) 2865699999403913 a001 75025/87403803*14662949395604^(4/7) 2865699999403913 a001 75025/87403803*505019158607^(9/14) 2865699999403913 a001 75025/87403803*192900153618^(2/3) 2865699999403913 a001 75025/87403803*73681302247^(9/13) 2865699999403913 a001 39088169/167761*312119004989^(2/11) 2865699999403913 a001 39088169/167761*(1/2+1/2*5^(1/2))^10 2865699999403913 a001 39088169/167761*28143753123^(1/5) 2865699999403913 a001 39088169/167761*10749957122^(5/24) 2865699999403913 a001 75025/87403803*10749957122^(3/4) 2865699999403913 a001 39088169/167761*4106118243^(5/23) 2865699999403913 a001 75025/87403803*4106118243^(18/23) 2865699999403913 a001 39088169/167761*1568397607^(5/22) 2865699999403913 a001 75025/87403803*1568397607^(9/11) 2865699999403913 a001 39088169/167761*599074578^(5/21) 2865699999403913 a001 75025/87403803*599074578^(6/7) 2865699999403913 a001 39088169/167761*228826127^(1/4) 2865699999403913 a001 75025/87403803*228826127^(9/10) 2865699999403913 a001 586517975845/20466831 2865699999403913 a001 39088169/167761*87403803^(5/19) 2865699999403913 a001 75025/33385282*33385282^(17/18) 2865699999403913 a001 75025/228826127*817138163596^(2/3) 2865699999403913 a001 9303105/15251*(1/2+1/2*5^(1/2))^8 2865699999403913 a001 9303105/15251*23725150497407^(1/8) 2865699999403913 a001 9303105/15251*505019158607^(1/7) 2865699999403913 a001 9303105/15251*73681302247^(2/13) 2865699999403913 a001 9303105/15251*10749957122^(1/6) 2865699999403913 a001 75025/228826127*10749957122^(19/24) 2865699999403913 a001 9303105/15251*4106118243^(4/23) 2865699999403913 a001 75025/228826127*4106118243^(19/23) 2865699999403913 a001 9303105/15251*1568397607^(2/11) 2865699999403913 a001 75025/228826127*1568397607^(19/22) 2865699999403913 a001 9303105/15251*599074578^(4/21) 2865699999403913 a001 75025/228826127*599074578^(19/21) 2865699999403913 a001 7677619978875/267914296 2865699999403913 a001 9303105/15251*228826127^(1/5) 2865699999403913 a001 267914296/167761*141422324^(2/13) 2865699999403913 a001 75025/87403803*87403803^(18/19) 2865699999403913 a001 1134903170/167761*141422324^(1/13) 2865699999403913 a001 75025/599074578*2537720636^(8/9) 2865699999403913 a001 267914296/167761*2537720636^(2/15) 2865699999403913 a001 75025/599074578*312119004989^(8/11) 2865699999403913 a001 75025/599074578*23725150497407^(5/8) 2865699999403913 a001 75025/599074578*73681302247^(10/13) 2865699999403913 a001 75025/599074578*28143753123^(4/5) 2865699999403913 a001 267914296/167761*45537549124^(2/17) 2865699999403913 a001 267914296/167761*14662949395604^(2/21) 2865699999403913 a001 267914296/167761*(1/2+1/2*5^(1/2))^6 2865699999403913 a001 267914296/167761*10749957122^(1/8) 2865699999403913 a001 75025/599074578*10749957122^(5/6) 2865699999403913 a001 267914296/167761*4106118243^(3/23) 2865699999403913 a001 75025/599074578*4106118243^(20/23) 2865699999403913 a001 267914296/167761*1568397607^(3/22) 2865699999403913 a001 75025/599074578*1568397607^(10/11) 2865699999403913 a001 267914296/167761*599074578^(1/7) 2865699999403913 a001 20100270057400/701408733 2865699999403913 a001 75025/228826127*228826127^(19/20) 2865699999403913 a001 75025/1568397607*2537720636^(14/15) 2865699999403913 a001 75025/1568397607*17393796001^(6/7) 2865699999403913 a001 75025/1568397607*45537549124^(14/17) 2865699999403913 a001 75025/1568397607*817138163596^(14/19) 2865699999403913 a001 75025/1568397607*14662949395604^(2/3) 2865699999403913 a001 75025/1568397607*505019158607^(3/4) 2865699999403913 a001 75025/1568397607*192900153618^(7/9) 2865699999403913 a001 701408733/167761*(1/2+1/2*5^(1/2))^4 2865699999403913 a001 701408733/167761*23725150497407^(1/16) 2865699999403913 a001 701408733/167761*73681302247^(1/13) 2865699999403913 a001 701408733/167761*10749957122^(1/12) 2865699999403913 a001 701408733/167761*4106118243^(2/23) 2865699999403913 a001 75025/1568397607*10749957122^(7/8) 2865699999403913 a001 701408733/167761*1568397607^(1/11) 2865699999403913 a001 75025/1568397607*4106118243^(21/23) 2865699999403913 a001 52623190193325/1836311903 2865699999403913 a001 701408733/167761*599074578^(2/21) 2865699999403913 a001 75025/599074578*599074578^(20/21) 2865699999403913 a001 75025/4106118243*312119004989^(4/5) 2865699999403913 a001 75025/4106118243*23725150497407^(11/16) 2865699999403913 a001 75025/4106118243*73681302247^(11/13) 2865699999403913 a001 1836311903/167761*(1/2+1/2*5^(1/2))^2 2865699999403913 a001 1836311903/167761*10749957122^(1/24) 2865699999403913 a001 1836311903/167761*4106118243^(1/23) 2865699999403913 a001 75025/4106118243*10749957122^(11/12) 2865699999403913 a001 137769300522575/4807526976 2865699999403913 a001 1836311903/167761*1568397607^(1/22) 2865699999403913 a001 75025/1568397607*1568397607^(21/22) 2865699999403913 a001 4807526976/167761 2865699999403913 a001 75025/4106118243*4106118243^(22/23) 2865699999403913 a001 75025/28143753123*45537549124^(16/17) 2865699999403913 a001 75025/28143753123*14662949395604^(16/21) 2865699999403913 a001 75025/28143753123*192900153618^(8/9) 2865699999403913 a001 75025/28143753123*73681302247^(12/13) 2865699999403913 a001 944284833600625/32951280099 2865699999403913 a001 75025/10749957122*10749957122^(23/24) 2865699999403913 a001 75025/73681302247*312119004989^(10/11) 2865699999403913 a001 75025/73681302247*3461452808002^(5/6) 2865699999403913 a001 2472169789427475/86267571272 2865699999403913 a001 75025/192900153618*23725150497407^(13/16) 2865699999403913 a001 6472224534681800/225851433717 2865699999403913 a001 16944503814617925/591286729879 2865699999403913 a001 116139356912898000/4052739537881 2865699999403913 a001 10472279279936125/365435296162 2865699999403913 a001 800010949050865/27916772489 2865699999403913 a001 75025/119218851371*817138163596^(17/19) 2865699999403913 a001 75025/119218851371*14662949395604^(17/21) 2865699999403913 a001 75025/119218851371*192900153618^(17/18) 2865699999403913 a001 1527884955826850/53316291173 2865699999403913 a001 75025/45537549124*14662949395604^(7/9) 2865699999403913 a001 75025/45537549124*505019158607^(7/8) 2865699999403913 a001 583600122226225/20365011074 2865699999403913 a001 222915410851825/7778742049 2865699999403913 a001 75025/6643838879*45537549124^(15/17) 2865699999403913 a001 75025/6643838879*312119004989^(9/11) 2865699999403913 a001 75025/6643838879*14662949395604^(5/7) 2865699999403913 a001 75025/6643838879*192900153618^(5/6) 2865699999403913 a001 75025/6643838879*28143753123^(9/10) 2865699999403913 a001 2971215073/335522+2971215073/335522*5^(1/2) 2865699999403913 a001 75025/6643838879*10749957122^(15/16) 2865699999403913 a001 1836311903/167761*599074578^(1/21) 2865699999403913 a001 267914296/167761*228826127^(3/20) 2865699999403913 a001 85146110329250/2971215073 2865699999403913 a001 1134903170/167761*2537720636^(1/15) 2865699999403913 a001 1134903170/167761*45537549124^(1/17) 2865699999403913 a001 1134903170/167761*14662949395604^(1/21) 2865699999403913 a001 1134903170/167761*(1/2+1/2*5^(1/2))^3 2865699999403913 a001 1134903170/167761*10749957122^(1/16) 2865699999403913 a001 1134903170/167761*599074578^(1/14) 2865699999403913 a001 1836311903/167761*228826127^(1/20) 2865699999403913 a001 6504584027185/226980634 2865699999403913 a001 433494437/167761*2537720636^(1/9) 2865699999403913 a001 433494437/167761*312119004989^(1/11) 2865699999403913 a001 433494437/167761*(1/2+1/2*5^(1/2))^5 2865699999403913 a001 433494437/167761*28143753123^(1/10) 2865699999403913 a001 701408733/167761*228826127^(1/10) 2865699999403913 a001 433494437/167761*228826127^(1/8) 2865699999403913 a001 12422650078525/433494437 2865699999403913 a001 1836311903/167761*87403803^(1/19) 2865699999403913 a001 75025/370248451*2537720636^(13/15) 2865699999403913 a001 75025/370248451*45537549124^(13/17) 2865699999403913 a001 75025/370248451*14662949395604^(13/21) 2865699999403913 a001 75025/370248451*192900153618^(13/18) 2865699999403913 a001 75025/370248451*73681302247^(3/4) 2865699999403913 a001 165580141/167761*17393796001^(1/7) 2865699999403913 a001 165580141/167761*14662949395604^(1/9) 2865699999403913 a001 165580141/167761*(1/2+1/2*5^(1/2))^7 2865699999403913 a001 75025/370248451*10749957122^(13/16) 2865699999403913 a001 165580141/167761*599074578^(1/6) 2865699999403913 a001 9303105/15251*87403803^(4/19) 2865699999403913 a001 75025/370248451*599074578^(13/14) 2865699999403913 a001 701408733/167761*87403803^(2/19) 2865699999403913 a001 267914296/167761*87403803^(3/19) 2865699999403914 a001 63245986/167761*141422324^(3/13) 2865699999403914 a001 4745030099650/165580141 2865699999403914 a001 1836311903/167761*33385282^(1/18) 2865699999403914 a001 63245986/167761*2537720636^(1/5) 2865699999403914 a001 63245986/167761*45537549124^(3/17) 2865699999403914 a001 63245986/167761*14662949395604^(1/7) 2865699999403914 a001 63245986/167761*(1/2+1/2*5^(1/2))^9 2865699999403914 a001 63245986/167761*192900153618^(1/6) 2865699999403914 a001 63245986/167761*10749957122^(3/16) 2865699999403914 a001 63245986/167761*599074578^(3/14) 2865699999403914 a001 1134903170/167761*33385282^(1/12) 2865699999403914 a001 701408733/167761*33385282^(1/9) 2865699999403914 a001 39088169/167761*33385282^(5/18) 2865699999403914 a001 267914296/167761*33385282^(1/6) 2865699999403914 a001 9303105/15251*33385282^(2/9) 2865699999403914 a001 63245986/167761*33385282^(1/4) 2865699999403914 a001 1812440220425/63245986 2865699999403914 a001 75025/54018521*2537720636^(7/9) 2865699999403914 a001 75025/54018521*17393796001^(5/7) 2865699999403914 a001 75025/54018521*312119004989^(7/11) 2865699999403914 a001 75025/54018521*14662949395604^(5/9) 2865699999403914 a001 75025/54018521*505019158607^(5/8) 2865699999403914 a001 75025/54018521*28143753123^(7/10) 2865699999403914 a001 24157817/167761*312119004989^(1/5) 2865699999403914 a001 24157817/167761*(1/2+1/2*5^(1/2))^11 2865699999403914 a001 24157817/167761*1568397607^(1/4) 2865699999403914 a001 75025/54018521*599074578^(5/6) 2865699999403914 a001 75025/54018521*228826127^(7/8) 2865699999403914 a001 1836311903/167761*12752043^(1/17) 2865699999403915 a001 701408733/167761*12752043^(2/17) 2865699999403917 a001 267914296/167761*12752043^(3/17) 2865699999403917 a001 14930352/167761*12752043^(6/17) 2865699999403917 a001 9303105/15251*12752043^(4/17) 2865699999403918 a001 39088169/167761*12752043^(5/17) 2865699999403919 a001 692290561625/24157817 2865699999403920 a001 75025/20633239*141422324^(11/13) 2865699999403920 a001 9227465/167761*141422324^(1/3) 2865699999403920 a001 75025/20633239*2537720636^(11/15) 2865699999403920 a001 75025/20633239*45537549124^(11/17) 2865699999403920 a001 75025/20633239*312119004989^(3/5) 2865699999403920 a001 75025/20633239*14662949395604^(11/21) 2865699999403920 a001 75025/20633239*(1/2+1/2*5^(1/2))^33 2865699999403920 a001 75025/20633239*192900153618^(11/18) 2865699999403920 a001 9227465/167761*(1/2+1/2*5^(1/2))^13 2865699999403920 a001 9227465/167761*73681302247^(1/4) 2865699999403920 a001 75025/20633239*10749957122^(11/16) 2865699999403920 a001 75025/20633239*1568397607^(3/4) 2865699999403920 a001 75025/20633239*599074578^(11/14) 2865699999403921 a001 1836311903/167761*4870847^(1/16) 2865699999403922 a001 75025/20633239*33385282^(11/12) 2865699999403928 a001 701408733/167761*4870847^(1/8) 2865699999403936 a001 267914296/167761*4870847^(3/16) 2865699999403939 a001 3524578/167761*7881196^(5/11) 2865699999403944 a001 9303105/15251*4870847^(1/4) 2865699999403949 a001 5702887/167761*4870847^(7/16) 2865699999403951 a001 39088169/167761*4870847^(5/16) 2865699999403953 a001 52886292890/1845493 2865699999403956 a001 14930352/167761*4870847^(3/8) 2865699999403957 a001 3524578/167761*20633239^(3/7) 2865699999403959 a001 3524578/167761*141422324^(5/13) 2865699999403960 a001 3524578/167761*2537720636^(1/3) 2865699999403960 a001 75025/7881196*(1/2+1/2*5^(1/2))^31 2865699999403960 a001 75025/7881196*9062201101803^(1/2) 2865699999403960 a001 3524578/167761*45537549124^(5/17) 2865699999403960 a001 3524578/167761*312119004989^(3/11) 2865699999403960 a001 3524578/167761*14662949395604^(5/21) 2865699999403960 a001 3524578/167761*(1/2+1/2*5^(1/2))^15 2865699999403960 a001 3524578/167761*192900153618^(5/18) 2865699999403960 a001 3524578/167761*28143753123^(3/10) 2865699999403960 a001 3524578/167761*10749957122^(5/16) 2865699999403960 a001 3524578/167761*599074578^(5/14) 2865699999403960 a001 3524578/167761*228826127^(3/8) 2865699999403961 a001 3524578/167761*33385282^(5/12) 2865699999403969 a001 1836311903/167761*1860498^(1/15) 2865699999403996 a001 1134903170/167761*1860498^(1/10) 2865699999404024 a001 701408733/167761*1860498^(2/15) 2865699999404051 a001 433494437/167761*1860498^(1/6) 2865699999404079 a001 267914296/167761*1860498^(1/5) 2865699999404134 a001 9303105/15251*1860498^(4/15) 2865699999404162 a001 63245986/167761*1860498^(3/10) 2865699999404183 a001 101003831725/3524578 2865699999404189 a001 39088169/167761*1860498^(1/3) 2865699999404224 a001 433494437/1149851*103682^(3/8) 2865699999404230 a001 75025/3010349*(1/2+1/2*5^(1/2))^29 2865699999404230 a001 75025/3010349*1322157322203^(1/2) 2865699999404230 a001 1346269/167761*45537549124^(1/3) 2865699999404230 a001 1346269/167761*(1/2+1/2*5^(1/2))^17 2865699999404234 a001 2178309/167761*1860498^(8/15) 2865699999404238 a001 1346269/167761*12752043^(1/2) 2865699999404242 a001 14930352/167761*1860498^(2/5) 2865699999404282 a001 5702887/167761*1860498^(7/15) 2865699999404319 a001 1836311903/167761*710647^(1/14) 2865699999404373 a001 3524578/167761*1860498^(1/2) 2865699999404724 a001 701408733/167761*710647^(1/7) 2865699999405129 a001 267914296/167761*710647^(3/14) 2865699999405332 a001 165580141/167761*710647^(1/4) 2865699999405535 a001 9303105/15251*710647^(2/7) 2865699999405765 a001 38580030725/1346269 2865699999405805 a001 66978574/109801*103682^(1/3) 2865699999405940 a001 39088169/167761*710647^(5/14) 2865699999406043 a001 75025/1149851*7881196^(9/11) 2865699999406081 a001 75025/1149851*141422324^(9/13) 2865699999406081 a001 75025/1149851*2537720636^(3/5) 2865699999406081 a001 75025/1149851*45537549124^(9/17) 2865699999406081 a001 75025/1149851*817138163596^(9/19) 2865699999406081 a001 75025/1149851*14662949395604^(3/7) 2865699999406081 a001 75025/1149851*(1/2+1/2*5^(1/2))^27 2865699999406081 a001 75025/1149851*192900153618^(1/2) 2865699999406081 a001 514229/167761*817138163596^(1/3) 2865699999406081 a001 514229/167761*(1/2+1/2*5^(1/2))^19 2865699999406081 a001 75025/1149851*10749957122^(9/16) 2865699999406081 a001 75025/1149851*599074578^(9/14) 2865699999406081 a001 514229/167761*87403803^(1/2) 2865699999406083 a001 75025/1149851*33385282^(3/4) 2865699999406343 a001 14930352/167761*710647^(3/7) 2865699999406733 a001 5702887/167761*710647^(1/2) 2865699999406733 a001 75640/15251*710647^(9/14) 2865699999406826 a001 75025/1149851*1860498^(9/10) 2865699999406905 a001 1836311903/167761*271443^(1/13) 2865699999407035 a001 2178309/167761*710647^(4/7) 2865699999407215 a001 196418/167761*439204^(7/9) 2865699999407489 a001 165580141/710647*103682^(5/12) 2865699999407590 a001 4976784/90481*103682^(13/24) 2865699999409897 a001 701408733/167761*271443^(2/13) 2865699999412336 a001 433494437/1860498*103682^(5/12) 2865699999412889 a001 267914296/167761*271443^(3/13) 2865699999413043 a001 1134903170/4870847*103682^(5/12) 2865699999413146 a001 2971215073/12752043*103682^(5/12) 2865699999413161 a001 7778742049/33385282*103682^(5/12) 2865699999413163 a001 20365011074/87403803*103682^(5/12) 2865699999413164 a001 53316291173/228826127*103682^(5/12) 2865699999413164 a001 139583862445/599074578*103682^(5/12) 2865699999413164 a001 365435296162/1568397607*103682^(5/12) 2865699999413164 a001 956722026041/4106118243*103682^(5/12) 2865699999413164 a001 2504730781961/10749957122*103682^(5/12) 2865699999413164 a001 6557470319842/28143753123*103682^(5/12) 2865699999413164 a001 10610209857723/45537549124*103682^(5/12) 2865699999413164 a001 4052739537881/17393796001*103682^(5/12) 2865699999413164 a001 1548008755920/6643838879*103682^(5/12) 2865699999413164 a001 591286729879/2537720636*103682^(5/12) 2865699999413164 a001 225851433717/969323029*103682^(5/12) 2865699999413164 a001 86267571272/370248451*103682^(5/12) 2865699999413164 a001 63246219/271444*103682^(5/12) 2865699999413165 a001 12586269025/54018521*103682^(5/12) 2865699999413171 a001 4807526976/20633239*103682^(5/12) 2865699999413210 a001 1836311903/7881196*103682^(5/12) 2865699999413480 a001 701408733/3010349*103682^(5/12) 2865699999415021 a001 2971215073/167761*103682^(1/24) 2865699999415331 a001 267914296/1149851*103682^(5/12) 2865699999415880 a001 9303105/15251*271443^(4/13) 2865699999416602 a001 14736260450/514229 2865699999416912 a001 165580141/439204*103682^(3/8) 2865699999418597 a001 14619165/101521*103682^(11/24) 2865699999418707 a001 9227465/271443*103682^(7/12) 2865699999418740 a001 196418/167761*7881196^(7/11) 2865699999418764 a001 75025/439204*20633239^(5/7) 2865699999418765 a001 196418/167761*20633239^(3/5) 2865699999418769 a001 196418/167761*141422324^(7/13) 2865699999418769 a001 75025/439204*2537720636^(5/9) 2865699999418769 a001 196418/167761*2537720636^(7/15) 2865699999418769 a001 196418/167761*17393796001^(3/7) 2865699999418769 a001 75025/439204*312119004989^(5/11) 2865699999418769 a001 75025/439204*(1/2+1/2*5^(1/2))^25 2865699999418769 a001 75025/439204*3461452808002^(5/12) 2865699999418769 a001 75025/439204*28143753123^(1/2) 2865699999418769 a001 196418/167761*45537549124^(7/17) 2865699999418769 a001 196418/167761*14662949395604^(1/3) 2865699999418769 a001 196418/167761*(1/2+1/2*5^(1/2))^21 2865699999418769 a001 196418/167761*192900153618^(7/18) 2865699999418769 a001 196418/167761*10749957122^(7/16) 2865699999418769 a001 196418/167761*599074578^(1/2) 2865699999418769 a001 75025/439204*228826127^(5/8) 2865699999418771 a001 196418/167761*33385282^(7/12) 2865699999418872 a001 39088169/167761*271443^(5/13) 2865699999419349 a001 196418/167761*1860498^(7/10) 2865699999419459 a001 75025/439204*1860498^(5/6) 2865699999421862 a001 14930352/167761*271443^(6/13) 2865699999423025 a001 196418/167761*710647^(3/4) 2865699999423367 a001 9227465/167761*271443^(1/2) 2865699999423443 a001 133957148/930249*103682^(11/24) 2865699999424150 a001 701408733/4870847*103682^(11/24) 2865699999424254 a001 1836311903/12752043*103682^(11/24) 2865699999424269 a001 14930208/103681*103682^(11/24) 2865699999424271 a001 12586269025/87403803*103682^(11/24) 2865699999424271 a001 32951280099/228826127*103682^(11/24) 2865699999424271 a001 43133785636/299537289*103682^(11/24) 2865699999424271 a001 32264490531/224056801*103682^(11/24) 2865699999424271 a001 591286729879/4106118243*103682^(11/24) 2865699999424271 a001 774004377960/5374978561*103682^(11/24) 2865699999424271 a001 4052739537881/28143753123*103682^(11/24) 2865699999424271 a001 1515744265389/10525900321*103682^(11/24) 2865699999424271 a001 3278735159921/22768774562*103682^(11/24) 2865699999424271 a001 2504730781961/17393796001*103682^(11/24) 2865699999424271 a001 956722026041/6643838879*103682^(11/24) 2865699999424271 a001 182717648081/1268860318*103682^(11/24) 2865699999424271 a001 139583862445/969323029*103682^(11/24) 2865699999424271 a001 53316291173/370248451*103682^(11/24) 2865699999424271 a001 10182505537/70711162*103682^(11/24) 2865699999424272 a001 7778742049/54018521*103682^(11/24) 2865699999424278 a001 2971215073/20633239*103682^(11/24) 2865699999424317 a001 567451585/3940598*103682^(11/24) 2865699999424587 a001 433494437/3010349*103682^(11/24) 2865699999424838 a001 5702887/167761*271443^(7/13) 2865699999426128 a001 1836311903/167761*103682^(1/12) 2865699999426439 a001 165580141/1149851*103682^(11/24) 2865699999427727 a001 2178309/167761*271443^(8/13) 2865699999428020 a001 102334155/439204*103682^(5/12) 2865699999428157 a001 317811/167761*271443^(10/13) 2865699999429301 a001 2971215073/271443*39603^(1/11) 2865699999429704 a001 63245986/710647*103682^(1/2) 2865699999429790 a001 5702887/271443*103682^(5/8) 2865699999430012 a001 75640/15251*271443^(9/13) 2865699999434551 a001 165580141/1860498*103682^(1/2) 2865699999435258 a001 433494437/4870847*103682^(1/2) 2865699999435361 a001 1134903170/12752043*103682^(1/2) 2865699999435376 a001 2971215073/33385282*103682^(1/2) 2865699999435378 a001 7778742049/87403803*103682^(1/2) 2865699999435379 a001 20365011074/228826127*103682^(1/2) 2865699999435379 a001 53316291173/599074578*103682^(1/2) 2865699999435379 a001 139583862445/1568397607*103682^(1/2) 2865699999435379 a001 365435296162/4106118243*103682^(1/2) 2865699999435379 a001 956722026041/10749957122*103682^(1/2) 2865699999435379 a001 2504730781961/28143753123*103682^(1/2) 2865699999435379 a001 6557470319842/73681302247*103682^(1/2) 2865699999435379 a001 10610209857723/119218851371*103682^(1/2) 2865699999435379 a001 4052739537881/45537549124*103682^(1/2) 2865699999435379 a001 1548008755920/17393796001*103682^(1/2) 2865699999435379 a001 591286729879/6643838879*103682^(1/2) 2865699999435379 a001 225851433717/2537720636*103682^(1/2) 2865699999435379 a001 86267571272/969323029*103682^(1/2) 2865699999435379 a001 32951280099/370248451*103682^(1/2) 2865699999435379 a001 12586269025/141422324*103682^(1/2) 2865699999435380 a001 4807526976/54018521*103682^(1/2) 2865699999435385 a001 1836311903/20633239*103682^(1/2) 2865699999435425 a001 3524667/39604*103682^(1/2) 2865699999435695 a001 267914296/3010349*103682^(1/2) 2865699999437236 a001 1134903170/167761*103682^(1/8) 2865699999437546 a001 102334155/1149851*103682^(1/2) 2865699999438321 a001 196418/64079*64079^(19/23) 2865699999439127 a001 31622993/219602*103682^(11/24) 2865699999440811 a001 39088169/710647*103682^(13/24) 2865699999440961 a001 3524578/271443*103682^(2/3) 2865699999445658 a001 831985/15126*103682^(13/24) 2865699999446365 a001 267914296/4870847*103682^(13/24) 2865699999446468 a001 233802911/4250681*103682^(13/24) 2865699999446483 a001 1836311903/33385282*103682^(13/24) 2865699999446486 a001 1602508992/29134601*103682^(13/24) 2865699999446486 a001 12586269025/228826127*103682^(13/24) 2865699999446486 a001 10983760033/199691526*103682^(13/24) 2865699999446486 a001 86267571272/1568397607*103682^(13/24) 2865699999446486 a001 75283811239/1368706081*103682^(13/24) 2865699999446486 a001 591286729879/10749957122*103682^(13/24) 2865699999446486 a001 12585437040/228811001*103682^(13/24) 2865699999446486 a001 4052739537881/73681302247*103682^(13/24) 2865699999446486 a001 3536736619241/64300051206*103682^(13/24) 2865699999446486 a001 6557470319842/119218851371*103682^(13/24) 2865699999446486 a001 2504730781961/45537549124*103682^(13/24) 2865699999446486 a001 956722026041/17393796001*103682^(13/24) 2865699999446486 a001 365435296162/6643838879*103682^(13/24) 2865699999446486 a001 139583862445/2537720636*103682^(13/24) 2865699999446486 a001 53316291173/969323029*103682^(13/24) 2865699999446486 a001 20365011074/370248451*103682^(13/24) 2865699999446486 a001 7778742049/141422324*103682^(13/24) 2865699999446487 a001 2971215073/54018521*103682^(13/24) 2865699999446493 a001 1134903170/20633239*103682^(13/24) 2865699999446532 a001 433494437/7881196*103682^(13/24) 2865699999446802 a001 165580141/3010349*103682^(13/24) 2865699999448135 a001 317811/64079*64079^(18/23) 2865699999448343 a001 701408733/167761*103682^(1/6) 2865699999448654 a001 63245986/1149851*103682^(13/24) 2865699999450234 a001 39088169/439204*103682^(1/2) 2865699999450774 a001 133957148/51841*39603^(5/22) 2865699999451902 a001 726103/90481*103682^(17/24) 2865699999451920 a001 24157817/710647*103682^(7/12) 2865699999456766 a001 31622993/930249*103682^(7/12) 2865699999457473 a001 165580141/4870847*103682^(7/12) 2865699999457576 a001 433494437/12752043*103682^(7/12) 2865699999457591 a001 567451585/16692641*103682^(7/12) 2865699999457593 a001 2971215073/87403803*103682^(7/12) 2865699999457593 a001 7778742049/228826127*103682^(7/12) 2865699999457593 a001 10182505537/299537289*103682^(7/12) 2865699999457593 a001 53316291173/1568397607*103682^(7/12) 2865699999457593 a001 139583862445/4106118243*103682^(7/12) 2865699999457593 a001 182717648081/5374978561*103682^(7/12) 2865699999457593 a001 956722026041/28143753123*103682^(7/12) 2865699999457593 a001 2504730781961/73681302247*103682^(7/12) 2865699999457593 a001 3278735159921/96450076809*103682^(7/12) 2865699999457593 a001 10610209857723/312119004989*103682^(7/12) 2865699999457593 a001 4052739537881/119218851371*103682^(7/12) 2865699999457593 a001 387002188980/11384387281*103682^(7/12) 2865699999457593 a001 591286729879/17393796001*103682^(7/12) 2865699999457593 a001 225851433717/6643838879*103682^(7/12) 2865699999457593 a001 1135099622/33391061*103682^(7/12) 2865699999457593 a001 32951280099/969323029*103682^(7/12) 2865699999457593 a001 12586269025/370248451*103682^(7/12) 2865699999457594 a001 1201881744/35355581*103682^(7/12) 2865699999457594 a001 1836311903/54018521*103682^(7/12) 2865699999457600 a001 701408733/20633239*103682^(7/12) 2865699999457640 a001 66978574/1970299*103682^(7/12) 2865699999457910 a001 102334155/3010349*103682^(7/12) 2865699999459450 a001 433494437/167761*103682^(5/24) 2865699999459761 a001 39088169/1149851*103682^(7/12) 2865699999461343 a001 24157817/439204*103682^(13/24) 2865699999462520 a001 7778742049/710647*39603^(1/11) 2865699999463024 a001 14930352/710647*103682^(5/8) 2865699999463446 a001 1346269/271443*103682^(3/4) 2865699999464601 a001 75025/64079*64079^(21/23) 2865699999467367 a001 10182505537/930249*39603^(1/11) 2865699999467873 a001 39088169/1860498*103682^(5/8) 2865699999468074 a001 53316291173/4870847*39603^(1/11) 2865699999468177 a001 139583862445/12752043*39603^(1/11) 2865699999468192 a001 182717648081/16692641*39603^(1/11) 2865699999468194 a001 956722026041/87403803*39603^(1/11) 2865699999468194 a001 2504730781961/228826127*39603^(1/11) 2865699999468194 a001 3278735159921/299537289*39603^(1/11) 2865699999468194 a001 10610209857723/969323029*39603^(1/11) 2865699999468194 a001 4052739537881/370248451*39603^(1/11) 2865699999468195 a001 387002188980/35355581*39603^(1/11) 2865699999468195 a001 591286729879/54018521*39603^(1/11) 2865699999468201 a001 7787980473/711491*39603^(1/11) 2865699999468241 a001 21566892818/1970299*39603^(1/11) 2865699999468511 a001 32951280099/3010349*39603^(1/11) 2865699999468580 a001 102334155/4870847*103682^(5/8) 2865699999468683 a001 267914296/12752043*103682^(5/8) 2865699999468698 a001 701408733/33385282*103682^(5/8) 2865699999468700 a001 1836311903/87403803*103682^(5/8) 2865699999468701 a001 102287808/4868641*103682^(5/8) 2865699999468701 a001 12586269025/599074578*103682^(5/8) 2865699999468701 a001 32951280099/1568397607*103682^(5/8) 2865699999468701 a001 86267571272/4106118243*103682^(5/8) 2865699999468701 a001 225851433717/10749957122*103682^(5/8) 2865699999468701 a001 591286729879/28143753123*103682^(5/8) 2865699999468701 a001 1548008755920/73681302247*103682^(5/8) 2865699999468701 a001 4052739537881/192900153618*103682^(5/8) 2865699999468701 a001 225749145909/10745088481*103682^(5/8) 2865699999468701 a001 6557470319842/312119004989*103682^(5/8) 2865699999468701 a001 2504730781961/119218851371*103682^(5/8) 2865699999468701 a001 956722026041/45537549124*103682^(5/8) 2865699999468701 a001 365435296162/17393796001*103682^(5/8) 2865699999468701 a001 139583862445/6643838879*103682^(5/8) 2865699999468701 a001 53316291173/2537720636*103682^(5/8) 2865699999468701 a001 20365011074/969323029*103682^(5/8) 2865699999468701 a001 7778742049/370248451*103682^(5/8) 2865699999468701 a001 2971215073/141422324*103682^(5/8) 2865699999468702 a001 1134903170/54018521*103682^(5/8) 2865699999468708 a001 433494437/20633239*103682^(5/8) 2865699999468747 a001 165580141/7881196*103682^(5/8) 2865699999469017 a001 63245986/3010349*103682^(5/8) 2865699999470362 a001 12586269025/1149851*39603^(1/11) 2865699999470558 a001 267914296/167761*103682^(1/4) 2865699999470869 a001 24157817/1149851*103682^(5/8) 2865699999472447 a001 196452/5779*103682^(7/12) 2865699999473409 a001 832040/271443*103682^(19/24) 2865699999474141 a001 9227465/710647*103682^(2/3) 2865699999478981 a001 24157817/1860498*103682^(2/3) 2865699999479688 a001 63245986/4870847*103682^(2/3) 2865699999479774 a001 121393/271443*103682^(23/24) 2865699999479791 a001 165580141/12752043*103682^(2/3) 2865699999479806 a001 433494437/33385282*103682^(2/3) 2865699999479808 a001 1134903170/87403803*103682^(2/3) 2865699999479808 a001 2971215073/228826127*103682^(2/3) 2865699999479808 a001 7778742049/599074578*103682^(2/3) 2865699999479808 a001 20365011074/1568397607*103682^(2/3) 2865699999479808 a001 53316291173/4106118243*103682^(2/3) 2865699999479808 a001 139583862445/10749957122*103682^(2/3) 2865699999479808 a001 365435296162/28143753123*103682^(2/3) 2865699999479808 a001 956722026041/73681302247*103682^(2/3) 2865699999479808 a001 2504730781961/192900153618*103682^(2/3) 2865699999479808 a001 10610209857723/817138163596*103682^(2/3) 2865699999479808 a001 4052739537881/312119004989*103682^(2/3) 2865699999479808 a001 1548008755920/119218851371*103682^(2/3) 2865699999479808 a001 591286729879/45537549124*103682^(2/3) 2865699999479808 a001 7787980473/599786069*103682^(2/3) 2865699999479808 a001 86267571272/6643838879*103682^(2/3) 2865699999479808 a001 32951280099/2537720636*103682^(2/3) 2865699999479808 a001 12586269025/969323029*103682^(2/3) 2865699999479808 a001 4807526976/370248451*103682^(2/3) 2865699999479808 a001 1836311903/141422324*103682^(2/3) 2865699999479809 a001 701408733/54018521*103682^(2/3) 2865699999479815 a001 9238424/711491*103682^(2/3) 2865699999479854 a001 102334155/7881196*103682^(2/3) 2865699999480124 a001 39088169/3010349*103682^(2/3) 2865699999481665 a001 165580141/167761*103682^(7/24) 2865699999481973 a001 14930352/1149851*103682^(2/3) 2865699999483050 a001 1201881744/109801*39603^(1/11) 2865699999483563 a001 9227465/439204*103682^(5/8) 2865699999485224 a001 5702887/710647*103682^(17/24) 2865699999486321 a001 514229/64079*64079^(17/23) 2865699999486966 a001 2971215073/167761*39603^(1/22) 2865699999487512 a001 514229/271443*103682^(5/6) 2865699999490085 a001 829464/103361*103682^(17/24) 2865699999490778 a001 105937/90481*103682^(7/8) 2865699999490795 a001 39088169/4870847*103682^(17/24) 2865699999490881 a001 5628750625/196418 2865699999490898 a001 34111385/4250681*103682^(17/24) 2865699999490913 a001 133957148/16692641*103682^(17/24) 2865699999490915 a001 233802911/29134601*103682^(17/24) 2865699999490916 a001 1836311903/228826127*103682^(17/24) 2865699999490916 a001 267084832/33281921*103682^(17/24) 2865699999490916 a001 12586269025/1568397607*103682^(17/24) 2865699999490916 a001 10983760033/1368706081*103682^(17/24) 2865699999490916 a001 43133785636/5374978561*103682^(17/24) 2865699999490916 a001 75283811239/9381251041*103682^(17/24) 2865699999490916 a001 591286729879/73681302247*103682^(17/24) 2865699999490916 a001 86000486440/10716675201*103682^(17/24) 2865699999490916 a001 4052739537881/505019158607*103682^(17/24) 2865699999490916 a001 3278735159921/408569081798*103682^(17/24) 2865699999490916 a001 2504730781961/312119004989*103682^(17/24) 2865699999490916 a001 956722026041/119218851371*103682^(17/24) 2865699999490916 a001 182717648081/22768774562*103682^(17/24) 2865699999490916 a001 139583862445/17393796001*103682^(17/24) 2865699999490916 a001 53316291173/6643838879*103682^(17/24) 2865699999490916 a001 10182505537/1268860318*103682^(17/24) 2865699999490916 a001 7778742049/969323029*103682^(17/24) 2865699999490916 a001 2971215073/370248451*103682^(17/24) 2865699999490916 a001 567451585/70711162*103682^(17/24) 2865699999490917 a001 433494437/54018521*103682^(17/24) 2865699999490922 a001 165580141/20633239*103682^(17/24) 2865699999490962 a001 31622993/3940598*103682^(17/24) 2865699999491233 a001 24157817/3010349*103682^(17/24) 2865699999492773 a001 9303105/15251*103682^(1/3) 2865699999493090 a001 9227465/1149851*103682^(17/24) 2865699999494647 a001 5702887/439204*103682^(2/3) 2865699999496395 a001 3524578/710647*103682^(3/4) 2865699999501202 a001 9227465/1860498*103682^(3/4) 2865699999501903 a001 24157817/4870847*103682^(3/4) 2865699999502006 a001 63245986/12752043*103682^(3/4) 2865699999502021 a001 165580141/33385282*103682^(3/4) 2865699999502023 a001 433494437/87403803*103682^(3/4) 2865699999502023 a001 1134903170/228826127*103682^(3/4) 2865699999502023 a001 2971215073/599074578*103682^(3/4) 2865699999502023 a001 7778742049/1568397607*103682^(3/4) 2865699999502023 a001 20365011074/4106118243*103682^(3/4) 2865699999502023 a001 53316291173/10749957122*103682^(3/4) 2865699999502023 a001 139583862445/28143753123*103682^(3/4) 2865699999502023 a001 365435296162/73681302247*103682^(3/4) 2865699999502023 a001 956722026041/192900153618*103682^(3/4) 2865699999502023 a001 2504730781961/505019158607*103682^(3/4) 2865699999502023 a001 10610209857723/2139295485799*103682^(3/4) 2865699999502023 a001 4052739537881/817138163596*103682^(3/4) 2865699999502023 a001 140728068720/28374454999*103682^(3/4) 2865699999502023 a001 591286729879/119218851371*103682^(3/4) 2865699999502023 a001 225851433717/45537549124*103682^(3/4) 2865699999502023 a001 86267571272/17393796001*103682^(3/4) 2865699999502023 a001 32951280099/6643838879*103682^(3/4) 2865699999502023 a001 1144206275/230701876*103682^(3/4) 2865699999502023 a001 4807526976/969323029*103682^(3/4) 2865699999502023 a001 1836311903/370248451*103682^(3/4) 2865699999502023 a001 701408733/141422324*103682^(3/4) 2865699999502024 a001 267914296/54018521*103682^(3/4) 2865699999502030 a001 9303105/1875749*103682^(3/4) 2865699999502069 a001 39088169/7881196*103682^(3/4) 2865699999502337 a001 14930352/3010349*103682^(3/4) 2865699999503880 a001 63245986/167761*103682^(3/8) 2865699999504173 a001 5702887/1149851*103682^(3/4) 2865699999505737 a001 75025/167761*(1/2+1/2*5^(1/2))^23 2865699999505737 a001 75025/167761*4106118243^(1/2) 2865699999505818 a001 1762289/219602*103682^(17/24) 2865699999507335 a001 311187/101521*103682^(19/24) 2865699999512285 a001 5702887/1860498*103682^(19/24) 2865699999512354 a001 1836311903/271443*39603^(3/22) 2865699999513007 a001 14930352/4870847*103682^(19/24) 2865699999513113 a001 39088169/12752043*103682^(19/24) 2865699999513128 a001 14619165/4769326*103682^(19/24) 2865699999513130 a001 267914296/87403803*103682^(19/24) 2865699999513130 a001 701408733/228826127*103682^(19/24) 2865699999513130 a001 1836311903/599074578*103682^(19/24) 2865699999513131 a001 686789568/224056801*103682^(19/24) 2865699999513131 a001 12586269025/4106118243*103682^(19/24) 2865699999513131 a001 32951280099/10749957122*103682^(19/24) 2865699999513131 a001 86267571272/28143753123*103682^(19/24) 2865699999513131 a001 32264490531/10525900321*103682^(19/24) 2865699999513131 a001 591286729879/192900153618*103682^(19/24) 2865699999513131 a001 1548008755920/505019158607*103682^(19/24) 2865699999513131 a001 1515744265389/494493258286*103682^(19/24) 2865699999513131 a001 2504730781961/817138163596*103682^(19/24) 2865699999513131 a001 956722026041/312119004989*103682^(19/24) 2865699999513131 a001 365435296162/119218851371*103682^(19/24) 2865699999513131 a001 139583862445/45537549124*103682^(19/24) 2865699999513131 a001 53316291173/17393796001*103682^(19/24) 2865699999513131 a001 20365011074/6643838879*103682^(19/24) 2865699999513131 a001 7778742049/2537720636*103682^(19/24) 2865699999513131 a001 2971215073/969323029*103682^(19/24) 2865699999513131 a001 1134903170/370248451*103682^(19/24) 2865699999513131 a001 433494437/141422324*103682^(19/24) 2865699999513132 a001 165580141/54018521*103682^(19/24) 2865699999513137 a001 63245986/20633239*103682^(19/24) 2865699999513178 a001 24157817/7881196*103682^(19/24) 2865699999513453 a001 9227465/3010349*103682^(19/24) 2865699999513669 a001 832040/64079*64079^(16/23) 2865699999514987 a001 39088169/167761*103682^(5/12) 2865699999515344 a001 3524578/1149851*103682^(19/24) 2865699999516758 a001 2178309/439204*103682^(3/4) 2865699999518880 a001 1346269/710647*103682^(5/6) 2865699999522415 a001 196418/271443*103682^(11/12) 2865699999523456 a001 1762289/930249*103682^(5/6) 2865699999524124 a001 9227465/4870847*103682^(5/6) 2865699999524221 a001 24157817/12752043*103682^(5/6) 2865699999524235 a001 31622993/16692641*103682^(5/6) 2865699999524238 a001 165580141/87403803*103682^(5/6) 2865699999524238 a001 433494437/228826127*103682^(5/6) 2865699999524238 a001 567451585/299537289*103682^(5/6) 2865699999524238 a001 2971215073/1568397607*103682^(5/6) 2865699999524238 a001 7778742049/4106118243*103682^(5/6) 2865699999524238 a001 10182505537/5374978561*103682^(5/6) 2865699999524238 a001 53316291173/28143753123*103682^(5/6) 2865699999524238 a001 139583862445/73681302247*103682^(5/6) 2865699999524238 a001 182717648081/96450076809*103682^(5/6) 2865699999524238 a001 956722026041/505019158607*103682^(5/6) 2865699999524238 a001 10610209857723/5600748293801*103682^(5/6) 2865699999524238 a001 591286729879/312119004989*103682^(5/6) 2865699999524238 a001 225851433717/119218851371*103682^(5/6) 2865699999524238 a001 21566892818/11384387281*103682^(5/6) 2865699999524238 a001 32951280099/17393796001*103682^(5/6) 2865699999524238 a001 12586269025/6643838879*103682^(5/6) 2865699999524238 a001 1201881744/634430159*103682^(5/6) 2865699999524238 a001 1836311903/969323029*103682^(5/6) 2865699999524238 a001 701408733/370248451*103682^(5/6) 2865699999524238 a001 66978574/35355581*103682^(5/6) 2865699999524239 a001 102334155/54018521*103682^(5/6) 2865699999524244 a001 39088169/20633239*103682^(5/6) 2865699999524281 a001 3732588/1970299*103682^(5/6) 2865699999524537 a001 5702887/3010349*103682^(5/6) 2865699999526096 a001 24157817/167761*103682^(11/24) 2865699999526285 a001 2178309/1149851*103682^(5/6) 2865699999528303 a001 1346269/439204*103682^(19/24) 2865699999528843 a001 832040/710647*103682^(7/8) 2865699999533826 a001 165580141/103682*39603^(3/11) 2865699999534397 a001 726103/620166*103682^(7/8) 2865699999535207 a001 5702887/4870847*103682^(7/8) 2865699999535325 a001 4976784/4250681*103682^(7/8) 2865699999535342 a001 39088169/33385282*103682^(7/8) 2865699999535345 a001 34111385/29134601*103682^(7/8) 2865699999535345 a001 267914296/228826127*103682^(7/8) 2865699999535345 a001 233802911/199691526*103682^(7/8) 2865699999535345 a001 1836311903/1568397607*103682^(7/8) 2865699999535345 a001 1602508992/1368706081*103682^(7/8) 2865699999535345 a001 12586269025/10749957122*103682^(7/8) 2865699999535345 a001 10983760033/9381251041*103682^(7/8) 2865699999535345 a001 86267571272/73681302247*103682^(7/8) 2865699999535345 a001 75283811239/64300051206*103682^(7/8) 2865699999535345 a001 2504730781961/2139295485799*103682^(7/8) 2865699999535345 a001 365435296162/312119004989*103682^(7/8) 2865699999535345 a001 139583862445/119218851371*103682^(7/8) 2865699999535345 a001 53316291173/45537549124*103682^(7/8) 2865699999535345 a001 20365011074/17393796001*103682^(7/8) 2865699999535345 a001 7778742049/6643838879*103682^(7/8) 2865699999535345 a001 2971215073/2537720636*103682^(7/8) 2865699999535345 a001 1134903170/969323029*103682^(7/8) 2865699999535345 a001 433494437/370248451*103682^(7/8) 2865699999535345 a001 165580141/141422324*103682^(7/8) 2865699999535346 a001 63245986/54018521*103682^(7/8) 2865699999535353 a001 24157817/20633239*103682^(7/8) 2865699999535398 a001 9227465/7881196*103682^(7/8) 2865699999535708 a001 3524578/3010349*103682^(7/8) 2865699999537200 a001 14930352/167761*103682^(1/2) 2865699999537829 a001 1346269/1149851*103682^(7/8) 2865699999538266 a001 208010/109801*103682^(5/6) 2865699999542946 a001 514229/710647*103682^(11/12) 2865699999544424 a001 701408733/64079*24476^(2/21) 2865699999545157 a001 1346269/64079*64079^(15/23) 2865699999545572 a001 686789568/101521*39603^(3/22) 2865699999545941 a001 1346269/1860498*103682^(11/12) 2865699999546211 a001 317811/710647*103682^(23/24) 2865699999546378 a001 3524578/4870847*103682^(11/12) 2865699999546442 a001 9227465/12752043*103682^(11/12) 2865699999546451 a001 24157817/33385282*103682^(11/12) 2865699999546452 a001 63245986/87403803*103682^(11/12) 2865699999546453 a001 165580141/228826127*103682^(11/12) 2865699999546453 a001 433494437/599074578*103682^(11/12) 2865699999546453 a001 1134903170/1568397607*103682^(11/12) 2865699999546453 a001 2971215073/4106118243*103682^(11/12) 2865699999546453 a001 7778742049/10749957122*103682^(11/12) 2865699999546453 a001 20365011074/28143753123*103682^(11/12) 2865699999546453 a001 53316291173/73681302247*103682^(11/12) 2865699999546453 a001 139583862445/192900153618*103682^(11/12) 2865699999546453 a001 365435296162/505019158607*103682^(11/12) 2865699999546453 a001 10610209857723/14662949395604*103682^(11/12) 2865699999546453 a001 225851433717/312119004989*103682^(11/12) 2865699999546453 a001 86267571272/119218851371*103682^(11/12) 2865699999546453 a001 32951280099/45537549124*103682^(11/12) 2865699999546453 a001 12586269025/17393796001*103682^(11/12) 2865699999546453 a001 4807526976/6643838879*103682^(11/12) 2865699999546453 a001 1836311903/2537720636*103682^(11/12) 2865699999546453 a001 701408733/969323029*103682^(11/12) 2865699999546453 a001 267914296/370248451*103682^(11/12) 2865699999546453 a001 102334155/141422324*103682^(11/12) 2865699999546453 a001 39088169/54018521*103682^(11/12) 2865699999546457 a001 14930352/20633239*103682^(11/12) 2865699999546481 a001 5702887/7881196*103682^(11/12) 2865699999546648 a001 2178309/3010349*103682^(11/12) 2865699999547792 a001 832040/1149851*103682^(11/12) 2865699999548316 a001 9227465/167761*103682^(13/24) 2865699999550419 a001 12586269025/1860498*39603^(3/22) 2865699999551126 a001 32951280099/4870847*39603^(3/22) 2865699999551229 a001 86267571272/12752043*39603^(3/22) 2865699999551244 a001 32264490531/4769326*39603^(3/22) 2865699999551246 a001 591286729879/87403803*39603^(3/22) 2865699999551247 a001 1548008755920/228826127*39603^(3/22) 2865699999551247 a001 4052739537881/599074578*39603^(3/22) 2865699999551247 a001 1515744265389/224056801*39603^(3/22) 2865699999551247 a001 6557470319842/969323029*39603^(3/22) 2865699999551247 a001 2504730781961/370248451*39603^(3/22) 2865699999551247 a001 956722026041/141422324*39603^(3/22) 2865699999551248 a001 365435296162/54018521*39603^(3/22) 2865699999551253 a001 139583862445/20633239*39603^(3/22) 2865699999551293 a001 53316291173/7881196*39603^(3/22) 2865699999551563 a001 20365011074/3010349*39603^(3/22) 2865699999552369 a001 514229/439204*103682^(7/8) 2865699999553414 a001 7778742049/1149851*39603^(3/22) 2865699999555634 a001 317811/439204*103682^(11/12) 2865699999555904 a001 416020/930249*103682^(23/24) 2865699999557319 a001 2178309/4870847*103682^(23/24) 2865699999557525 a001 5702887/12752043*103682^(23/24) 2865699999557555 a001 7465176/16692641*103682^(23/24) 2865699999557559 a001 39088169/87403803*103682^(23/24) 2865699999557560 a001 102334155/228826127*103682^(23/24) 2865699999557560 a001 133957148/299537289*103682^(23/24) 2865699999557560 a001 701408733/1568397607*103682^(23/24) 2865699999557560 a001 1836311903/4106118243*103682^(23/24) 2865699999557560 a001 2403763488/5374978561*103682^(23/24) 2865699999557560 a001 12586269025/28143753123*103682^(23/24) 2865699999557560 a001 32951280099/73681302247*103682^(23/24) 2865699999557560 a001 43133785636/96450076809*103682^(23/24) 2865699999557560 a001 225851433717/505019158607*103682^(23/24) 2865699999557560 a001 591286729879/1322157322203*103682^(23/24) 2865699999557560 a001 10610209857723/23725150497407*103682^(23/24) 2865699999557560 a001 139583862445/312119004989*103682^(23/24) 2865699999557560 a001 53316291173/119218851371*103682^(23/24) 2865699999557560 a001 10182505537/22768774562*103682^(23/24) 2865699999557560 a001 7778742049/17393796001*103682^(23/24) 2865699999557560 a001 2971215073/6643838879*103682^(23/24) 2865699999557560 a001 567451585/1268860318*103682^(23/24) 2865699999557560 a001 433494437/969323029*103682^(23/24) 2865699999557560 a001 165580141/370248451*103682^(23/24) 2865699999557560 a001 31622993/70711162*103682^(23/24) 2865699999557562 a001 24157817/54018521*103682^(23/24) 2865699999557574 a001 9227465/20633239*103682^(23/24) 2865699999557652 a001 1762289/3940598*103682^(23/24) 2865699999558193 a001 1346269/3010349*103682^(23/24) 2865699999559399 a001 5702887/167761*103682^(7/12) 2865699999561895 a001 514229/1149851*103682^(23/24) 2865699999566103 a001 2971215073/439204*39603^(3/22) 2865699999568668 a001 1/23184*(1/2+1/2*5^(1/2))^47 2865699999570018 a001 1836311903/167761*39603^(1/11) 2865699999570571 a001 3524578/167761*103682^(5/8) 2865699999575064 a001 2178309/64079*64079^(14/23) 2865699999581511 a001 2178309/167761*103682^(2/3) 2865699999587272 a001 98209/219602*103682^(23/24) 2865699999593056 a001 1346269/167761*103682^(17/24) 2865699999595406 a001 1134903170/271443*39603^(2/11) 2865699999603019 a001 75640/15251*103682^(3/4) 2865699999605575 a001 3524578/64079*64079^(13/23) 2865699999609383 a001 121393/167761*103682^(11/12) 2865699999616878 a001 102334155/103682*39603^(7/22) 2865699999617122 a001 514229/167761*103682^(19/24) 2865699999620387 a001 317811/167761*103682^(5/6) 2865699999628625 a001 2971215073/710647*39603^(2/11) 2865699999633471 a001 7778742049/1860498*39603^(2/11) 2865699999634178 a001 20365011074/4870847*39603^(2/11) 2865699999634281 a001 53316291173/12752043*39603^(2/11) 2865699999634297 a001 139583862445/33385282*39603^(2/11) 2865699999634299 a001 365435296162/87403803*39603^(2/11) 2865699999634299 a001 956722026041/228826127*39603^(2/11) 2865699999634299 a001 2504730781961/599074578*39603^(2/11) 2865699999634299 a001 6557470319842/1568397607*39603^(2/11) 2865699999634299 a001 10610209857723/2537720636*39603^(2/11) 2865699999634299 a001 4052739537881/969323029*39603^(2/11) 2865699999634299 a001 1548008755920/370248451*39603^(2/11) 2865699999634299 a001 591286729879/141422324*39603^(2/11) 2865699999634300 a001 225851433717/54018521*39603^(2/11) 2865699999634306 a001 86267571272/20633239*39603^(2/11) 2865699999634345 a001 32951280099/7881196*39603^(2/11) 2865699999634615 a001 12586269025/3010349*39603^(2/11) 2865699999635855 a001 5702887/64079*64079^(12/23) 2865699999636467 a001 4807526976/1149851*39603^(2/11) 2865699999649155 a001 1836311903/439204*39603^(2/11) 2865699999652025 a001 196418/167761*103682^(7/8) 2865699999653070 a001 1134903170/167761*39603^(3/22) 2865699999661686 a001 1836311903/103682*15127^(1/20) 2865699999666223 a001 9227465/64079*64079^(11/23) 2865699999678458 a001 233802911/90481*39603^(5/22) 2865699999696558 a001 14930352/64079*64079^(10/23) 2865699999699931 a001 31622993/51841*39603^(4/11) 2865699999711677 a001 1836311903/710647*39603^(5/22) 2865699999716524 a001 267084832/103361*39603^(5/22) 2865699999717231 a001 12586269025/4870847*39603^(5/22) 2865699999717334 a001 10983760033/4250681*39603^(5/22) 2865699999717349 a001 43133785636/16692641*39603^(5/22) 2865699999717351 a001 75283811239/29134601*39603^(5/22) 2865699999717351 a001 591286729879/228826127*39603^(5/22) 2865699999717351 a001 86000486440/33281921*39603^(5/22) 2865699999717351 a001 4052739537881/1568397607*39603^(5/22) 2865699999717351 a001 3536736619241/1368706081*39603^(5/22) 2865699999717351 a001 3278735159921/1268860318*39603^(5/22) 2865699999717351 a001 2504730781961/969323029*39603^(5/22) 2865699999717351 a001 956722026041/370248451*39603^(5/22) 2865699999717352 a001 182717648081/70711162*39603^(5/22) 2865699999717352 a001 139583862445/54018521*39603^(5/22) 2865699999717358 a001 53316291173/20633239*39603^(5/22) 2865699999717398 a001 10182505537/3940598*39603^(5/22) 2865699999717668 a001 7778742049/3010349*39603^(5/22) 2865699999719519 a001 2971215073/1149851*39603^(5/22) 2865699999720216 a001 28657/103682*439204^(8/9) 2865699999726905 a001 24157817/64079*64079^(9/23) 2865699999732207 a001 567451585/219602*39603^(5/22) 2865699999733388 a001 28657/103682*7881196^(8/11) 2865699999733391 a001 46368/64079*7881196^(2/3) 2865699999733422 a001 28657/103682*141422324^(8/13) 2865699999733422 a001 28657/103682*2537720636^(8/15) 2865699999733422 a001 28657/103682*45537549124^(8/17) 2865699999733422 a001 28657/103682*14662949395604^(8/21) 2865699999733422 a001 28657/103682*(1/2+1/2*5^(1/2))^24 2865699999733422 a001 28657/103682*192900153618^(4/9) 2865699999733422 a001 28657/103682*73681302247^(6/13) 2865699999733422 a001 28657/103682*10749957122^(1/2) 2865699999733422 a001 28657/103682*4106118243^(12/23) 2865699999733422 a001 46368/64079*312119004989^(2/5) 2865699999733422 a001 46368/64079*(1/2+1/2*5^(1/2))^22 2865699999733422 a001 46368/64079*10749957122^(11/24) 2865699999733422 a001 46368/64079*4106118243^(11/23) 2865699999733422 a001 28657/103682*1568397607^(6/11) 2865699999733422 a001 46368/64079*1568397607^(1/2) 2865699999733422 a001 46368/64079*599074578^(11/21) 2865699999733422 a001 28657/103682*599074578^(4/7) 2865699999733422 a001 46368/64079*228826127^(11/20) 2865699999733422 a001 28657/103682*228826127^(3/5) 2865699999733422 a001 46368/64079*87403803^(11/19) 2865699999733422 a001 28657/103682*87403803^(12/19) 2865699999733423 a001 46368/64079*33385282^(11/18) 2865699999733423 a001 28657/103682*33385282^(2/3) 2865699999733433 a001 46368/64079*12752043^(11/17) 2865699999733434 a001 28657/103682*12752043^(12/17) 2865699999733505 a001 46368/64079*4870847^(11/16) 2865699999733512 a001 28657/103682*4870847^(3/4) 2865699999734029 a001 46368/64079*1860498^(11/15) 2865699999734084 a001 28657/103682*1860498^(4/5) 2865699999736123 a001 701408733/167761*39603^(2/11) 2865699999737880 a001 46368/64079*710647^(11/14) 2865699999738285 a001 28657/103682*710647^(6/7) 2865699999757248 a001 39088169/64079*64079^(8/23) 2865699999761207 a001 75025/167761*103682^(23/24) 2865699999761511 a001 433494437/271443*39603^(3/11) 2865699999766331 a001 46368/64079*271443^(11/13) 2865699999769323 a001 28657/103682*271443^(12/13) 2865699999772212 a001 1134903170/64079*24476^(1/21) 2865699999782983 a001 39088169/103682*39603^(9/22) 2865699999787592 a001 63245986/64079*64079^(7/23) 2865699999794729 a001 1134903170/710647*39603^(3/11) 2865699999799576 a001 2971215073/1860498*39603^(3/11) 2865699999800283 a001 7778742049/4870847*39603^(3/11) 2865699999800386 a001 20365011074/12752043*39603^(3/11) 2865699999800401 a001 53316291173/33385282*39603^(3/11) 2865699999800403 a001 139583862445/87403803*39603^(3/11) 2865699999800404 a001 365435296162/228826127*39603^(3/11) 2865699999800404 a001 956722026041/599074578*39603^(3/11) 2865699999800404 a001 2504730781961/1568397607*39603^(3/11) 2865699999800404 a001 6557470319842/4106118243*39603^(3/11) 2865699999800404 a001 10610209857723/6643838879*39603^(3/11) 2865699999800404 a001 4052739537881/2537720636*39603^(3/11) 2865699999800404 a001 1548008755920/969323029*39603^(3/11) 2865699999800404 a001 591286729879/370248451*39603^(3/11) 2865699999800404 a001 225851433717/141422324*39603^(3/11) 2865699999800405 a001 86267571272/54018521*39603^(3/11) 2865699999800411 a001 32951280099/20633239*39603^(3/11) 2865699999800450 a001 12586269025/7881196*39603^(3/11) 2865699999800720 a001 4807526976/3010349*39603^(3/11) 2865699999802571 a001 1836311903/1149851*39603^(3/11) 2865699999815260 a001 701408733/439204*39603^(3/11) 2865699999817936 a001 102334155/64079*64079^(6/23) 2865699999819175 a001 433494437/167761*39603^(5/22) 2865699999844563 a001 267914296/271443*39603^(7/22) 2865699999848280 a001 165580141/64079*64079^(5/23) 2865699999859489 a001 75025/24476*24476^(19/21) 2865699999866036 a001 24157817/103682*39603^(5/11) 2865699999877782 a001 701408733/710647*39603^(7/22) 2865699999878624 a001 267914296/64079*64079^(4/23) 2865699999879647 a001 121393/64079*167761^(4/5) 2865699999882628 a001 1836311903/1860498*39603^(7/22) 2865699999883335 a001 4807526976/4870847*39603^(7/22) 2865699999883438 a001 12586269025/12752043*39603^(7/22) 2865699999883454 a001 32951280099/33385282*39603^(7/22) 2865699999883456 a001 86267571272/87403803*39603^(7/22) 2865699999883456 a001 225851433717/228826127*39603^(7/22) 2865699999883456 a001 591286729879/599074578*39603^(7/22) 2865699999883456 a001 1548008755920/1568397607*39603^(7/22) 2865699999883456 a001 4052739537881/4106118243*39603^(7/22) 2865699999883456 a001 4807525989/4870846*39603^(7/22) 2865699999883456 a001 6557470319842/6643838879*39603^(7/22) 2865699999883456 a001 2504730781961/2537720636*39603^(7/22) 2865699999883456 a001 956722026041/969323029*39603^(7/22) 2865699999883456 a001 365435296162/370248451*39603^(7/22) 2865699999883456 a001 139583862445/141422324*39603^(7/22) 2865699999883457 a001 53316291173/54018521*39603^(7/22) 2865699999883463 a001 20365011074/20633239*39603^(7/22) 2865699999883502 a001 7778742049/7881196*39603^(7/22) 2865699999883772 a001 2971215073/3010349*39603^(7/22) 2865699999885624 a001 1134903170/1149851*39603^(7/22) 2865699999889371 a001 1602508992/90481*15127^(1/20) 2865699999898312 a001 433494437/439204*39603^(7/22) 2865699999902227 a001 267914296/167761*39603^(3/11) 2865699999908968 a001 433494437/64079*64079^(3/23) 2865699999922589 a001 12586269025/710647*15127^(1/20) 2865699999927436 a001 10983760033/620166*15127^(1/20) 2865699999927615 a001 165580141/271443*39603^(4/11) 2865699999928143 a001 86267571272/4870847*15127^(1/20) 2865699999928246 a001 75283811239/4250681*15127^(1/20) 2865699999928261 a001 591286729879/33385282*15127^(1/20) 2865699999928263 a001 516002918640/29134601*15127^(1/20) 2865699999928264 a001 4052739537881/228826127*15127^(1/20) 2865699999928264 a001 3536736619241/199691526*15127^(1/20) 2865699999928264 a001 6557470319842/370248451*15127^(1/20) 2865699999928264 a001 2504730781961/141422324*15127^(1/20) 2865699999928265 a001 956722026041/54018521*15127^(1/20) 2865699999928271 a001 365435296162/20633239*15127^(1/20) 2865699999928310 a001 139583862445/7881196*15127^(1/20) 2865699999928580 a001 53316291173/3010349*15127^(1/20) 2865699999930431 a001 20365011074/1149851*15127^(1/20) 2865699999939222 a001 1346269/64079*167761^(3/5) 2865699999939312 a001 701408733/64079*64079^(2/23) 2865699999943120 a001 7778742049/439204*15127^(1/20) 2865699999946560 a001 121393/24476*24476^(6/7) 2865699999949085 a001 7465176/51841*39603^(1/2) 2865699999959267 a001 14930352/64079*167761^(2/5) 2865699999960834 a001 433494437/710647*39603^(4/11) 2865699999961102 a001 121393/64079*20633239^(4/7) 2865699999961106 a001 28657/271443*141422324^(2/3) 2865699999961106 a001 121393/64079*2537720636^(4/9) 2865699999961106 a001 28657/271443*(1/2+1/2*5^(1/2))^26 2865699999961106 a001 28657/271443*73681302247^(1/2) 2865699999961106 a001 28657/271443*10749957122^(13/24) 2865699999961106 a001 28657/271443*4106118243^(13/23) 2865699999961106 a001 121393/64079*(1/2+1/2*5^(1/2))^20 2865699999961106 a001 121393/64079*23725150497407^(5/16) 2865699999961106 a001 121393/64079*505019158607^(5/14) 2865699999961106 a001 121393/64079*73681302247^(5/13) 2865699999961106 a001 121393/64079*28143753123^(2/5) 2865699999961106 a001 121393/64079*10749957122^(5/12) 2865699999961106 a001 121393/64079*4106118243^(10/23) 2865699999961106 a001 28657/271443*1568397607^(13/22) 2865699999961106 a001 121393/64079*1568397607^(5/11) 2865699999961106 a001 121393/64079*599074578^(10/21) 2865699999961106 a001 28657/271443*599074578^(13/21) 2865699999961106 a001 121393/64079*228826127^(1/2) 2865699999961106 a001 28657/271443*228826127^(13/20) 2865699999961107 a001 121393/64079*87403803^(10/19) 2865699999961107 a001 28657/271443*87403803^(13/19) 2865699999961108 a001 121393/64079*33385282^(5/9) 2865699999961108 a001 28657/271443*33385282^(13/18) 2865699999961117 a001 121393/64079*12752043^(10/17) 2865699999961120 a001 28657/271443*12752043^(13/17) 2865699999961182 a001 121393/64079*4870847^(5/8) 2865699999961204 a001 28657/271443*4870847^(13/16) 2865699999961658 a001 121393/64079*1860498^(2/3) 2865699999961824 a001 28657/271443*1860498^(13/15) 2865699999965159 a001 121393/64079*710647^(5/7) 2865699999965681 a001 567451585/930249*39603^(4/11) 2865699999966375 a001 28657/271443*710647^(13/14) 2865699999966388 a001 2971215073/4870847*39603^(4/11) 2865699999966491 a001 7778742049/12752043*39603^(4/11) 2865699999966506 a001 10182505537/16692641*39603^(4/11) 2865699999966508 a001 53316291173/87403803*39603^(4/11) 2865699999966508 a001 139583862445/228826127*39603^(4/11) 2865699999966508 a001 182717648081/299537289*39603^(4/11) 2865699999966508 a001 956722026041/1568397607*39603^(4/11) 2865699999966508 a001 2504730781961/4106118243*39603^(4/11) 2865699999966508 a001 3278735159921/5374978561*39603^(4/11) 2865699999966508 a001 10610209857723/17393796001*39603^(4/11) 2865699999966508 a001 4052739537881/6643838879*39603^(4/11) 2865699999966508 a001 1134903780/1860499*39603^(4/11) 2865699999966508 a001 591286729879/969323029*39603^(4/11) 2865699999966508 a001 225851433717/370248451*39603^(4/11) 2865699999966509 a001 21566892818/35355581*39603^(4/11) 2865699999966509 a001 32951280099/54018521*39603^(4/11) 2865699999966515 a001 1144206275/1875749*39603^(4/11) 2865699999966555 a001 1201881744/1970299*39603^(4/11) 2865699999966825 a001 1836311903/3010349*39603^(4/11) 2865699999968676 a001 701408733/1149851*39603^(4/11) 2865699999969656 a001 1134903170/64079*64079^(1/23) 2865699999977785 a001 46368/64079*103682^(11/12) 2865699999979635 a001 165580141/39603*15127^(1/5) 2865699999979635 a001 165580141/64079*167761^(1/5) 2865699999981364 a001 66978574/109801*39603^(4/11) 2865699999984421 a001 317811/64079*439204^(2/3) 2865699999985280 a001 165580141/167761*39603^(7/22) 2865699999991024 a001 121393/64079*271443^(10/13) 2865699999992062 a001 1346269/64079*439204^(5/9) 2865699999993379 a001 5702887/64079*439204^(4/9) 2865699999994300 a001 317811/64079*7881196^(6/11) 2865699999994320 a001 28657/710647*20633239^(4/5) 2865699999994325 a001 317811/64079*141422324^(6/13) 2865699999994325 a001 317811/64079*2537720636^(2/5) 2865699999994325 a001 28657/710647*17393796001^(4/7) 2865699999994325 a001 28657/710647*14662949395604^(4/9) 2865699999994325 a001 28657/710647*(1/2+1/2*5^(1/2))^28 2865699999994325 a001 28657/710647*73681302247^(7/13) 2865699999994325 a001 28657/710647*10749957122^(7/12) 2865699999994325 a001 28657/710647*4106118243^(14/23) 2865699999994325 a001 317811/64079*45537549124^(6/17) 2865699999994325 a001 317811/64079*14662949395604^(2/7) 2865699999994325 a001 317811/64079*(1/2+1/2*5^(1/2))^18 2865699999994325 a001 317811/64079*192900153618^(1/3) 2865699999994325 a001 317811/64079*10749957122^(3/8) 2865699999994325 a001 317811/64079*4106118243^(9/23) 2865699999994325 a001 317811/64079*1568397607^(9/22) 2865699999994325 a001 28657/710647*1568397607^(7/11) 2865699999994325 a001 317811/64079*599074578^(3/7) 2865699999994325 a001 28657/710647*599074578^(2/3) 2865699999994325 a001 317811/64079*228826127^(9/20) 2865699999994325 a001 28657/710647*228826127^(7/10) 2865699999994325 a001 317811/64079*87403803^(9/19) 2865699999994325 a001 28657/710647*87403803^(14/19) 2865699999994326 a001 317811/64079*33385282^(1/2) 2865699999994327 a001 28657/710647*33385282^(7/9) 2865699999994334 a001 317811/64079*12752043^(9/17) 2865699999994340 a001 28657/710647*12752043^(14/17) 2865699999994393 a001 317811/64079*4870847^(9/16) 2865699999994431 a001 28657/710647*4870847^(7/8) 2865699999994822 a001 317811/64079*1860498^(3/5) 2865699999995049 a001 24157817/64079*439204^(1/3) 2865699999995098 a001 28657/710647*1860498^(14/15) 2865699999996698 a001 102334155/64079*439204^(2/9) 2865699999997973 a001 317811/64079*710647^(9/14) 2865699999998349 a001 433494437/64079*439204^(1/9) 2865699999999130 a001 28657/1860498*7881196^(10/11) 2865699999999166 a001 28657/1860498*20633239^(6/7) 2865699999999172 a001 28657/1860498*141422324^(10/13) 2865699999999172 a001 28657/1860498*2537720636^(2/3) 2865699999999172 a001 28657/1860498*45537549124^(10/17) 2865699999999172 a001 28657/1860498*312119004989^(6/11) 2865699999999172 a001 28657/1860498*14662949395604^(10/21) 2865699999999172 a001 28657/1860498*(1/2+1/2*5^(1/2))^30 2865699999999172 a001 28657/1860498*192900153618^(5/9) 2865699999999172 a001 28657/1860498*28143753123^(3/5) 2865699999999172 a001 28657/1860498*10749957122^(5/8) 2865699999999172 a001 28657/1860498*4106118243^(15/23) 2865699999999172 a001 832040/64079*(1/2+1/2*5^(1/2))^16 2865699999999172 a001 832040/64079*23725150497407^(1/4) 2865699999999172 a001 832040/64079*73681302247^(4/13) 2865699999999172 a001 832040/64079*10749957122^(1/3) 2865699999999172 a001 832040/64079*4106118243^(8/23) 2865699999999172 a001 832040/64079*1568397607^(4/11) 2865699999999172 a001 28657/1860498*1568397607^(15/22) 2865699999999172 a001 832040/64079*599074578^(8/21) 2865699999999172 a001 28657/1860498*599074578^(5/7) 2865699999999172 a001 832040/64079*228826127^(2/5) 2865699999999172 a001 28657/1860498*228826127^(3/4) 2865699999999172 a001 832040/64079*87403803^(8/19) 2865699999999172 a001 28657/1860498*87403803^(15/19) 2865699999999173 a001 832040/64079*33385282^(4/9) 2865699999999174 a001 28657/1860498*33385282^(5/6) 2865699999999180 a001 832040/64079*12752043^(8/17) 2865699999999187 a001 28657/1860498*12752043^(15/17) 2865699999999232 a001 832040/64079*4870847^(1/2) 2865699999999285 a001 28657/1860498*4870847^(15/16) 2865699999999613 a001 832040/64079*1860498^(8/15) 2865699999999876 a001 2178309/64079*20633239^(2/5) 2865699999999879 a001 28657/4870847*(1/2+1/2*5^(1/2))^32 2865699999999879 a001 28657/4870847*23725150497407^(1/2) 2865699999999879 a001 28657/4870847*505019158607^(4/7) 2865699999999879 a001 28657/4870847*73681302247^(8/13) 2865699999999879 a001 28657/4870847*10749957122^(2/3) 2865699999999879 a001 28657/4870847*4106118243^(16/23) 2865699999999879 a001 2178309/64079*17393796001^(2/7) 2865699999999879 a001 2178309/64079*14662949395604^(2/9) 2865699999999879 a001 2178309/64079*(1/2+1/2*5^(1/2))^14 2865699999999879 a001 2178309/64079*10749957122^(7/24) 2865699999999879 a001 2178309/64079*4106118243^(7/23) 2865699999999879 a001 2178309/64079*1568397607^(7/22) 2865699999999879 a001 28657/4870847*1568397607^(8/11) 2865699999999879 a001 2178309/64079*599074578^(1/3) 2865699999999879 a001 28657/4870847*599074578^(16/21) 2865699999999879 a001 2178309/64079*228826127^(7/20) 2865699999999879 a001 28657/4870847*228826127^(4/5) 2865699999999879 a001 2178309/64079*87403803^(7/19) 2865699999999879 a001 28657/4870847*87403803^(16/19) 2865699999999880 a001 2178309/64079*33385282^(7/18) 2865699999999881 a001 28657/4870847*33385282^(8/9) 2865699999999886 a001 2178309/64079*12752043^(7/17) 2865699999999895 a001 28657/4870847*12752043^(16/17) 2865699999999932 a001 2178309/64079*4870847^(7/16) 2865699999999965 a001 5702887/64079*7881196^(4/11) 2865699999999982 a001 5702887/64079*141422324^(4/13) 2865699999999982 a001 28657/12752043*45537549124^(2/3) 2865699999999982 a001 28657/12752043*(1/2+1/2*5^(1/2))^34 2865699999999982 a001 28657/12752043*10749957122^(17/24) 2865699999999982 a001 5702887/64079*2537720636^(4/15) 2865699999999982 a001 28657/12752043*4106118243^(17/23) 2865699999999982 a001 5702887/64079*45537549124^(4/17) 2865699999999982 a001 5702887/64079*817138163596^(4/19) 2865699999999982 a001 5702887/64079*14662949395604^(4/21) 2865699999999982 a001 5702887/64079*(1/2+1/2*5^(1/2))^12 2865699999999982 a001 5702887/64079*192900153618^(2/9) 2865699999999982 a001 5702887/64079*73681302247^(3/13) 2865699999999982 a001 5702887/64079*10749957122^(1/4) 2865699999999982 a001 5702887/64079*4106118243^(6/23) 2865699999999982 a001 5702887/64079*1568397607^(3/11) 2865699999999982 a001 28657/12752043*1568397607^(17/22) 2865699999999982 a001 5702887/64079*599074578^(2/7) 2865699999999982 a001 28657/12752043*599074578^(17/21) 2865699999999982 a001 5702887/64079*228826127^(3/10) 2865699999999982 a001 28657/12752043*228826127^(17/20) 2865699999999982 a001 5702887/64079*87403803^(6/19) 2865699999999982 a001 28657/12752043*87403803^(17/19) 2865699999999983 a001 5702887/64079*33385282^(1/3) 2865699999999984 a001 28657/12752043*33385282^(17/18) 2865699999999988 a001 24157817/64079*7881196^(3/11) 2865699999999988 a001 5702887/64079*12752043^(6/17) 2865699999999991 a001 9227465/64079*7881196^(1/3) 2865699999999991 a001 102334155/64079*7881196^(2/11) 2865699999999995 a001 14930352/64079*20633239^(2/7) 2865699999999995 a001 433494437/64079*7881196^(1/11) 2865699999999997 a001 28657/33385282*141422324^(12/13) 2865699999999997 a001 28657/33385282*2537720636^(4/5) 2865699999999997 a001 28657/33385282*45537549124^(12/17) 2865699999999997 a001 28657/33385282*14662949395604^(4/7) 2865699999999997 a001 28657/33385282*(1/2+1/2*5^(1/2))^36 2865699999999997 a001 28657/33385282*505019158607^(9/14) 2865699999999997 a001 28657/33385282*192900153618^(2/3) 2865699999999997 a001 28657/33385282*73681302247^(9/13) 2865699999999997 a001 28657/33385282*10749957122^(3/4) 2865699999999997 a001 14930352/64079*2537720636^(2/9) 2865699999999997 a001 28657/33385282*4106118243^(18/23) 2865699999999997 a001 14930352/64079*312119004989^(2/11) 2865699999999997 a001 14930352/64079*(1/2+1/2*5^(1/2))^10 2865699999999997 a001 14930352/64079*28143753123^(1/5) 2865699999999997 a001 14930352/64079*10749957122^(5/24) 2865699999999997 a001 14930352/64079*4106118243^(5/23) 2865699999999997 a001 14930352/64079*1568397607^(5/22) 2865699999999997 a001 28657/33385282*1568397607^(9/11) 2865699999999997 a001 14930352/64079*599074578^(5/21) 2865699999999997 a001 28657/33385282*599074578^(6/7) 2865699999999997 a001 14930352/64079*228826127^(1/4) 2865699999999997 a001 28657/33385282*228826127^(9/10) 2865699999999997 a001 14930352/64079*87403803^(5/19) 2865699999999997 a001 28657/33385282*87403803^(18/19) 2865699999999998 a001 14930352/64079*33385282^(5/18) 2865699999999998 a001 63245986/64079*20633239^(1/5) 2865699999999999 a001 165580141/64079*20633239^(1/7) 2865699999999999 a001 28657/87403803*817138163596^(2/3) 2865699999999999 a001 28657/87403803*10749957122^(19/24) 2865699999999999 a001 28657/87403803*4106118243^(19/23) 2865699999999999 a001 39088169/64079*(1/2+1/2*5^(1/2))^8 2865699999999999 a001 39088169/64079*23725150497407^(1/8) 2865699999999999 a001 39088169/64079*505019158607^(1/7) 2865699999999999 a001 39088169/64079*73681302247^(2/13) 2865699999999999 a001 39088169/64079*10749957122^(1/6) 2865699999999999 a001 39088169/64079*4106118243^(4/23) 2865699999999999 a001 39088169/64079*1568397607^(2/11) 2865699999999999 a001 28657/87403803*1568397607^(19/22) 2865699999999999 a001 39088169/64079*599074578^(4/21) 2865699999999999 a001 28657/87403803*599074578^(19/21) 2865699999999999 a001 39088169/64079*228826127^(1/5) 2865699999999999 a001 28657/87403803*228826127^(19/20) 2865699999999999 a001 39088169/64079*87403803^(4/19) 2865699999999999 a001 102334155/64079*141422324^(2/13) 2865699999999999 a001 28657/228826127*2537720636^(8/9) 2865699999999999 a001 28657/228826127*312119004989^(8/11) 2865699999999999 a001 28657/228826127*23725150497407^(5/8) 2865699999999999 a001 28657/228826127*73681302247^(10/13) 2865699999999999 a001 28657/228826127*28143753123^(4/5) 2865699999999999 a001 28657/228826127*10749957122^(5/6) 2865699999999999 a001 102334155/64079*2537720636^(2/15) 2865699999999999 a001 28657/228826127*4106118243^(20/23) 2865699999999999 a001 102334155/64079*45537549124^(2/17) 2865699999999999 a001 102334155/64079*14662949395604^(2/21) 2865699999999999 a001 102334155/64079*(1/2+1/2*5^(1/2))^6 2865699999999999 a001 102334155/64079*10749957122^(1/8) 2865699999999999 a001 102334155/64079*4106118243^(3/23) 2865699999999999 a001 102334155/64079*1568397607^(3/22) 2865699999999999 a001 28657/228826127*1568397607^(10/11) 2865699999999999 a001 102334155/64079*599074578^(1/7) 2865699999999999 a001 28657/228826127*599074578^(20/21) 2865699999999999 a001 102334155/64079*228826127^(3/20) 2865699999999999 a001 28657/599074578*2537720636^(14/15) 2865699999999999 a001 28657/599074578*17393796001^(6/7) 2865699999999999 a001 28657/599074578*45537549124^(14/17) 2865699999999999 a001 28657/599074578*14662949395604^(2/3) 2865699999999999 a001 28657/599074578*505019158607^(3/4) 2865699999999999 a001 28657/599074578*192900153618^(7/9) 2865699999999999 a001 28657/599074578*10749957122^(7/8) 2865699999999999 a001 28657/599074578*4106118243^(21/23) 2865699999999999 a001 267914296/64079*(1/2+1/2*5^(1/2))^4 2865699999999999 a001 267914296/64079*23725150497407^(1/16) 2865699999999999 a001 267914296/64079*73681302247^(1/13) 2865699999999999 a001 267914296/64079*10749957122^(1/12) 2865699999999999 a001 433494437/64079*141422324^(1/13) 2865699999999999 a001 267914296/64079*4106118243^(2/23) 2865699999999999 a001 267914296/64079*1568397607^(1/11) 2865699999999999 a001 267914296/64079*599074578^(2/21) 2865699999999999 a001 28657/599074578*1568397607^(21/22) 2865699999999999 a001 267914296/64079*228826127^(1/10) 2865699999999999 a001 28657/1568397607*312119004989^(4/5) 2865699999999999 a001 28657/1568397607*23725150497407^(11/16) 2865699999999999 a001 28657/1568397607*73681302247^(11/13) 2865699999999999 a001 28657/1568397607*10749957122^(11/12) 2865699999999999 a001 28657/1568397607*4106118243^(22/23) 2865699999999999 a001 701408733/64079*(1/2+1/2*5^(1/2))^2 2865699999999999 a001 701408733/64079*10749957122^(1/24) 2865699999999999 a001 701408733/64079*4106118243^(1/23) 2865699999999999 a001 701408733/64079*1568397607^(1/22) 2865699999999999 a001 701408733/64079*599074578^(1/21) 2865699999999999 a001 28657/4106118243*10749957122^(23/24) 2865699999999999 a001 28657/10749957122*45537549124^(16/17) 2865699999999999 a001 28657/10749957122*14662949395604^(16/21) 2865699999999999 a001 28657/10749957122*192900153618^(8/9) 2865699999999999 a001 28657/10749957122*73681302247^(12/13) 2865699999999999 a001 28657/28143753123*312119004989^(10/11) 2865699999999999 a001 28657/28143753123*3461452808002^(5/6) 2865699999999999 a001 28657/73681302247*23725150497407^(13/16) 2865699999999999 a001 28657/73681302247*505019158607^(13/14) 2865699999999999 a001 28657/192900153618*14662949395604^(6/7) 2865699999999999 a001 28657/505019158607*14662949395604^(8/9)