2971200000000000 q001 1857/625 2971200000000008 s004 Continued Fraction of A233652 2971200000000008 s004 Continued fraction of A233652 2971200014437624 r005 Re(z^2+c),c=10/29+28/55*I,n=17 2971200017539184 a001 29134601/329*4807526976^(6/23) 2971200017566724 a001 224056801/141*75025^(6/23) 2971200030759704 r005 Re(z^2+c),c=1/6+22/63*I,n=34 2971200032660594 a007 Real Root Of -54*x^4+921*x^3-366*x^2+899*x+324 2971200035144871 a001 123*6765^(1/10) 2971200066976287 r005 Im(z^2+c),c=31/122+5/29*I,n=39 2971200067534717 m001 (GolombDickman+Khinchin)/(Robbin+ZetaP(2)) 2971200068822137 m004 -24-Sqrt[5]*Pi+(125*ProductLog[Sqrt[5]*Pi])/Pi 2971200069295905 m003 4*E^(1/2+Sqrt[5]/2)+25*Sech[1/2+Sqrt[5]/2] 2971200069961301 r005 Re(z^2+c),c=-45/118+6/61*I,n=14 2971200073326354 r005 Re(z^2+c),c=-25/82+19/42*I,n=60 2971200073517535 p001 sum(1/(371*n+351)/(12^n),n=0..infinity) 2971200074938053 a007 Real Root Of 144*x^4+528*x^3+465*x^2+549*x+153 2971200077682914 r009 Re(z^3+c),c=-21/118+61/64*I,n=8 2971200112180004 s003 concatenated sequence A233652 2971200119235520 a003 sin(Pi*7/73)/sin(Pi*29/60) 2971200124207178 h002 exp(1/14*(23-14^(1/2)*5^(1/3))^(1/2)*14^(1/2)) 2971200136526240 m009 (1/5*Psi(1,3/4)+3/5)/(2/3*Psi(1,1/3)-3) 2971200143116663 m003 19/4+Sqrt[5]/32-2*Tanh[1/2+Sqrt[5]/2] 2971200148932611 m001 (Psi(2,1/3)+sin(1/5*Pi))/(GAMMA(19/24)+Robbin) 2971200149843512 m005 3/5*(1/4*Pi-3)*5^(1/2) 2971200154533615 r005 Im(z^2+c),c=-23/32+15/62*I,n=3 2971200159079534 m001 1/arctan(1/2)/exp(GAMMA(5/6))^2*log(2+sqrt(3)) 2971200160179971 a001 33385282/377*102334155^(4/21) 2971200160180094 a001 4870847/377*2504730781961^(4/21) 2971200162999920 r005 Im(z^2+c),c=-7/86+11/29*I,n=8 2971200164196445 l006 ln(6301/8481) 2971200166655006 a001 228826127/377*4181^(4/21) 2971200168888701 a007 Real Root Of 108*x^4+113*x^3-839*x^2-979*x-955 2971200176077443 r005 Im(z^2+c),c=-49/34+23/53*I,n=3 2971200189884952 m001 Zeta(1,2)^3*exp(GlaisherKinkelin) 2971200212157365 a001 1/76*(1/2*5^(1/2)+1/2)^15*4^(4/11) 2971200230181092 m005 (1/2*3^(1/2)-9/10)/(4/5*Zeta(3)+2/11) 2971200236392742 m005 (1/3*gamma+1/4)/(5*Pi-9/11) 2971200245285726 m001 (exp(Pi)+gamma)/(FellerTornier+PlouffeB) 2971200257919149 s002 sum(A196280[n]/(10^n-1),n=1..infinity) 2971200276393060 m001 (BesselI(1,2)-exp(Pi))/(Sarnak+ZetaQ(4)) 2971200276838735 m004 -3+(75*Sec[Sqrt[5]*Pi])/(E^(Sqrt[5]*Pi)*Pi) 2971200279219079 a007 Real Root Of 727*x^4-445*x^3+750*x^2+261*x-6 2971200290380659 r005 Im(z^2+c),c=-31/106+25/36*I,n=3 2971200290518103 r009 Re(z^3+c),c=-39/110+16/63*I,n=23 2971200292175305 r005 Re(z^2+c),c=-25/82+19/42*I,n=55 2971200294291224 a001 167761/233*89^(6/19) 2971200295288190 a003 sin(Pi*1/13)/cos(Pi*21/104) 2971200296308328 m001 LaplaceLimit-ln(3)+Magata 2971200316282846 r005 Re(z^2+c),c=-31/40+6/53*I,n=8 2971200325914200 a007 Real Root Of 341*x^4-690*x^3+12*x^2-179*x-75 2971200328623474 l006 ln(7171/9652) 2971200329374950 r005 Im(z^2+c),c=-41/106+22/43*I,n=59 2971200334522577 r005 Re(z^2+c),c=-9/28+25/62*I,n=55 2971200342121448 m001 (RenyiParking+ZetaQ(2))/(Magata-Rabbit) 2971200349063404 r005 Im(z^2+c),c=-13/40+15/31*I,n=59 2971200353752561 g001 abs(Psi(-10/3+I*21/8)) 2971200361022082 r005 Re(z^2+c),c=-29/114+14/25*I,n=49 2971200362186925 m001 (-BesselK(1,1)+1)/(-TwinPrimes+2) 2971200363337482 a005 (1/cos(23/202*Pi))^404 2971200363465234 m001 GAMMA(1/4)^2/ln(ErdosBorwein)/cos(Pi/12)^2 2971200369321470 m001 Lehmer^Grothendieck/PisotVijayaraghavan 2971200369472709 r005 Re(z^2+c),c=7/94+27/46*I,n=16 2971200377411383 a009 1/5*(21-2^(1/3))^(1/2)*5^(3/4) 2971200383304306 r008 a(0)=3,K{-n^6,-12+4*n^3+63*n^2-20*n} 2971200384803429 r005 Re(z^2+c),c=-25/32+6/47*I,n=8 2971200397977305 a007 Real Root Of 331*x^4-996*x^3-155*x^2-424*x-141 2971200402611396 r002 13th iterates of z^2 + 2971200405970894 m001 (Ei(1,1)+MertensB3)/(OneNinth+PrimesInBinary) 2971200406455283 r005 Re(z^2+c),c=-17/56+25/53*I,n=22 2971200408707110 k003 Champernowne real with 2*n^3+31/2*n^2-107/2*n+38 2971200408876767 m005 (1/2*3^(1/2)-2/11)/(7/10*exp(1)+2/5) 2971200414574332 a007 Real Root Of 365*x^4+944*x^3-436*x^2-207*x-451 2971200415928873 m001 Si(Pi)*GolombDickman-Thue 2971200416719110 k002 Champernowne real with 87/2*n^2-177/2*n+74 2971200426140548 a007 Real Root Of -178*x^4-630*x^3-451*x^2-628*x-537 2971200426973592 r009 Re(z^3+c),c=-5/28+20/21*I,n=8 2971200436511329 m001 (FeigenbaumC-MasserGramain)/(Mills-Niven) 2971200448274757 a007 Real Root Of 834*x^4-170*x^3+712*x^2-630*x-261 2971200449831970 m005 (1/2*Catalan-2/7)/(1/10*Zeta(3)-7/10) 2971200456230396 q001 1042/3507 2971200476186715 r005 Im(z^2+c),c=-15/98+15/41*I,n=4 2971200483214356 a007 Real Root Of 232*x^4+530*x^3-564*x^2-274*x-14 2971200490763964 a007 Real Root Of 322*x^4+697*x^3-508*x^2+974*x+566 2971200498657827 r005 Re(z^2+c),c=-47/122+1/52*I,n=19 2971200502173645 m001 (-GAMMA(5/6)+2/3)/(-exp(1/exp(1))+3) 2971200508264532 a007 Real Root Of -335*x^4+893*x^3-697*x^2-12*x+84 2971200531850522 p003 LerchPhi(1/256,7,101/118) 2971200538396153 r005 Re(z^2+c),c=-9/28+25/62*I,n=60 2971200542546381 m006 (1/4*ln(Pi)+2/3)/(3/5*exp(2*Pi)-3/5) 2971200552843927 h001 (-exp(6)-5)/(-8*exp(1)+8) 2971200554143643 g007 Psi(2,1/5)+Psi(2,1/3)-Psi(2,11/12)-Psi(2,7/10) 2971200555400810 m001 (-Ei(1)+QuadraticClass)/(exp(1)+ln(2)) 2971200559547076 r005 Re(z^2+c),c=-11/31+17/61*I,n=30 2971200564104362 r005 Im(z^2+c),c=-9/28+23/47*I,n=29 2971200578431941 r005 Re(z^2+c),c=-9/28+25/62*I,n=62 2971200583896462 r008 a(0)=3,K{-n^6,-14+23*n+2*n^2+24*n^3} 2971200588502467 m001 (ln(3)*Pi^(1/2)+ln(2+3^(1/2)))/ln(3) 2971200588502467 m001 (ln(3)*sqrt(Pi)+ln(2+sqrt(3)))/ln(3) 2971200590616912 r005 Im(z^2+c),c=1/24+21/55*I,n=3 2971200591736106 m006 (2/3*exp(Pi)+4/5)/(1/5*exp(Pi)+5/6) 2971200604485472 r005 Im(z^2+c),c=-65/46+1/38*I,n=3 2971200613269772 a007 Real Root Of -171*x^4-705*x^3-431*x^2+645*x+556 2971200616680034 r008 a(0)=3,K{-n^6,-2+9*n+2*n^2+26*n^3} 2971200617851059 m009 (3/8*Pi^2+1/4)/(6*Catalan+3/4*Pi^2+2/5) 2971200621305526 m001 Pi-ln(2)/ln(10)/exp(1/Pi)/GAMMA(17/24) 2971200625662994 r009 Re(z^3+c),c=-21/58+15/56*I,n=16 2971200634855563 r008 a(0)=3,K{-n^6,-12+32*n-15*n^2+30*n^3} 2971200647286273 m001 (FeigenbaumMu-LandauRamanujan)^GAMMA(11/12) 2971200648098013 r009 Re(z^3+c),c=-23/52+18/43*I,n=23 2971200668343800 m001 (cos(1/12*Pi)+exp(-1/2*Pi))/(Pi+cos(1/5*Pi)) 2971200674656847 r005 Im(z^2+c),c=-75/56+1/57*I,n=12 2971200681934792 r005 Im(z^2+c),c=1/34+23/38*I,n=6 2971200683905537 r005 Im(z^2+c),c=-25/66+31/60*I,n=25 2971200690942381 l006 ln(163/3181) 2971200690942381 p004 log(3181/163) 2971200691432972 m008 (1/2*Pi^3-1/4)/(1/6*Pi^5+1/3) 2971200706255128 m001 gamma^2/Salem*exp(sinh(1))^2 2971200714680036 m001 (-KhinchinLevy+ZetaP(2))/(2^(1/2)+Shi(1)) 2971200715654383 a007 Real Root Of -198*x^4+474*x^3-33*x^2+478*x-150 2971200716296586 r005 Re(z^2+c),c=-83/122+5/11*I,n=48 2971200718401181 r008 a(0)=3,K{-n^6,-18+43*n^3-57*n^2+67*n} 2971200720718258 a001 2/75025*6557470319842^(12/17) 2971200724802214 r005 Re(z^2+c),c=-5/14+15/56*I,n=20 2971200725842383 a007 Real Root Of 220*x^4+555*x^3-128*x^2+557*x+197 2971200728843889 r008 a(0)=3,K{-n^6,-8+43*n^3-52*n^2+52*n} 2971200729559029 r005 Re(z^2+c),c=-109/106+1/19*I,n=6 2971200732652973 a001 161/7465176*591286729879^(4/15) 2971200732653096 a001 46/311187*433494437^(4/15) 2971200732657285 a001 322/317811*317811^(4/15) 2971200736566339 m002 -Pi^4+Pi^9+Tanh[Pi]/Pi 2971200737876052 r005 Im(z^2+c),c=-11/118+55/64*I,n=51 2971200743080562 r002 46th iterates of z^2 + 2971200744603650 a001 53316291173/322*322^(1/2) 2971200746820368 m001 (-Tribonacci+ZetaQ(4))/(Chi(1)-Ei(1,1)) 2971200750919849 r008 a(0)=3,K{-n^6,56+36*n^3+n^2-58*n} 2971200759213949 m005 (1/2*5^(1/2)-5/8)/(1/2*gamma-5/11) 2971200771951711 r008 a(0)=3,K{-n^6,42-25*n-24*n^2+42*n^3} 2971200773650057 r005 Re(z^2+c),c=-13/46+24/47*I,n=50 2971200775766002 a007 Real Root Of -329*x^4-897*x^3+389*x^2+245*x-594 2971200788018734 a001 7778742049/843*521^(12/13) 2971200796862656 m001 (BesselJ(1,1)+BesselI(1,2))/(ln(2)+gamma(2)) 2971200805876348 r008 a(0)=3,K{-n^6,26+51*n^3-59*n^2+17*n} 2971200809550011 a007 Real Root Of 118*x^4+127*x^3+638*x^2-872*x-313 2971200815995508 r008 a(0)=3,K{-n^6,44-12*n-47*n^2+50*n^3} 2971200819258000 r002 9th iterates of z^2 + 2971200821953253 a001 2504730781961/2207*199^(2/11) 2971200829353395 r005 Re(z^2+c),c=-41/110+7/39*I,n=21 2971200840817066 m008 (2/5*Pi-2)/(1/4*Pi^4+2/3) 2971200846151779 m001 cos(Pi/12)^2/exp(Rabbit)^2*log(2+sqrt(3)) 2971200847935710 a001 21/4870847*9349^(25/54) 2971200855229839 m002 -Pi^(-1)+Pi^4-Pi^9 2971200879385043 m001 BesselK(0,1)^GaussKuzminWirsing-Bloch 2971200880475743 r009 Re(z^3+c),c=-51/110+23/54*I,n=13 2971200882116400 m001 (FeigenbaumB-Kac)/(gamma(3)-ArtinRank2) 2971200882884874 m002 3-Sinh[Pi]/(Pi^5*Log[Pi]^2) 2971200883003278 m002 (5*Log[Pi]*Sinh[Pi])/(E^Pi*Pi^6) 2971200884004702 r002 62th iterates of z^2 + 2971200884024692 m001 PrimesInBinary/LaplaceLimit*exp(GAMMA(7/24))^2 2971200908199536 r005 Re(z^2+c),c=4/19+1/60*I,n=22 2971200908307425 a007 Real Root Of 989*x^4+853*x^3+312*x^2-374*x-124 2971200908391801 m002 Pi^5+(Pi^2*ProductLog[Pi])/4-Sinh[Pi] 2971200914137159 a003 cos(Pi*23/108)*cos(Pi*35/93) 2971200914231413 a005 (1/sin(56/155*Pi))^457 2971200914589207 r002 10th iterates of z^2 + 2971200916651100 r005 Im(z^2+c),c=11/52+11/52*I,n=19 2971200922277596 m005 (1/2*Pi+7/11)/(1/12*2^(1/2)+5/8) 2971200922775118 r005 Im(z^2+c),c=-5/21+23/51*I,n=28 2971200927635207 r005 Re(z^2+c),c=-9/28+25/62*I,n=59 2971200942590137 a007 Real Root Of -233*x^4-357*x^3+809*x^2-322*x+696 2971200959402537 r005 Im(z^2+c),c=-4/13+3/7*I,n=9 2971200963236523 m001 FeigenbaumAlpha^(Backhouse/FibonacciFactorial) 2971200976665563 m001 (FibonacciFactorial-Rabbit)^Tribonacci 2971200982646804 r005 Im(z^2+c),c=-10/29+27/55*I,n=61 2971200986590639 r005 Im(z^2+c),c=-13/50+23/50*I,n=30 2971200994506022 b008 ArcSinh[8+Sqrt[3]] 2971200995267404 m001 1/Champernowne^2/exp(Cahen)^2*GAMMA(13/24) 2971200999757058 r002 36th iterates of z^2 + 2971201013948971 a007 Real Root Of -522*x^4-265*x^3+849*x^2+983*x-356 2971201033078458 a003 cos(Pi*45/112)*sin(Pi*36/83) 2971201033133361 m005 (1/2*3^(1/2)-2/11)/(6/7*3^(1/2)+9/11) 2971201041202931 r008 a(0)=3,K{-n^6,-71-8*n^3+70*n^2+44*n} 2971201052864325 a007 Real Root Of -778*x^4+480*x^3+660*x^2+657*x-260 2971201061116292 r009 Im(z^3+c),c=-7/62+51/62*I,n=50 2971201067934915 m001 ZetaR(2)/KhinchinLevy/BesselK(0,1) 2971201085436928 r005 Re(z^2+c),c=-9/28+25/62*I,n=64 2971201114406649 a007 Real Root Of -244*x^4-724*x^3+275*x^2+688*x-358 2971201126520501 m001 (Lehmer-Magata)/(gamma(2)+Zeta(1,2)) 2971201130704113 m001 (2^(1/3))/(exp(1)^exp(1/exp(1))) 2971201130704113 m001 2^(1/3)/(exp(1)^exp(1/exp(1))) 2971201136238720 r005 Re(z^2+c),c=-13/34+3/34*I,n=19 2971201136558312 r005 Re(z^2+c),c=-9/28+25/62*I,n=63 2971201139028836 m005 (17/15+3/10*5^(1/2))/(8/5+2*5^(1/2)) 2971201149593616 m001 (GAMMA(17/24)+Paris)/(arctan(1/2)+gamma(3)) 2971201166404365 a001 13/76*3571^(29/46) 2971201168859369 m001 GAMMA(1/6)^2/HardHexagonsEntropy^2/exp(Pi)^2 2971201181395201 a007 Real Root Of -155*x^4-316*x^3+293*x^2-467*x-183 2971201186995850 m001 GAMMA(1/6)*ArtinRank2/exp(GAMMA(17/24))^2 2971201193015964 r005 Re(z^2+c),c=-3/17+29/46*I,n=51 2971201204611159 m001 (ln(gamma)+Landau)/(OrthogonalArrays+Rabbit) 2971201214113211 k009 concat of cont frac of 2971201216088635 m001 ln(Catalan)^2*FeigenbaumC^2*GAMMA(1/12) 2971201216411429 m001 (BesselI(0,2)+MertensB3)/(GAMMA(3/4)+gamma(2)) 2971201216998954 m001 (Pi-Catalan)/(exp(1/Pi)-Kac) 2971201219957505 a001 317811/11*9349^(13/51) 2971201223192761 r005 Re(z^2+c),c=-13/14+17/76*I,n=64 2971201224417871 m002 Pi*Csch[Pi]+Cosh[Pi]/(4*ProductLog[Pi]) 2971201226700370 m001 (Backhouse*Salem+Grothendieck)/Salem 2971201233826062 a001 75025/11*15127^(20/51) 2971201241199813 r009 Re(z^3+c),c=-5/94+37/51*I,n=56 2971201242470936 m009 (5/6*Psi(1,2/3)+4)/(1/5*Psi(1,2/3)-5/6) 2971201244965191 a009 1/22*(22*10^(1/4)+13^(1/2))^(1/2) 2971201251419317 m001 (Khinchin+KomornikLoreti)/(MasserGramain+Thue) 2971201251812923 k006 concat of cont frac of 2971201256318331 m001 (HardyLittlewoodC4-Kac)/(MertensB1-MertensB3) 2971201264858808 r009 Im(z^3+c),c=-29/48+15/53*I,n=5 2971201273905634 m001 (GAMMA(5/6)+ReciprocalLucas)/(2^(1/3)-Ei(1,1)) 2971201277746960 a007 Real Root Of -609*x^4+930*x^3+717*x^2+458*x+13 2971201278813363 r005 Re(z^2+c),c=-11/34+23/58*I,n=46 2971201286112288 p001 sum((-1)^n/(445*n+336)/(256^n),n=0..infinity) 2971201311131216 k006 concat of cont frac of 2971201320979568 r005 Im(z^2+c),c=-9/28+5/11*I,n=11 2971201335521724 r002 32th iterates of z^2 + 2971201341490347 r009 Im(z^3+c),c=-3/16+17/55*I,n=3 2971201342952658 a001 3278735159921/2889*199^(2/11) 2971201344366794 m001 (Bloch-sin(1))/(-KomornikLoreti+Landau) 2971201361170044 m006 (1/3*exp(2*Pi)-1)/(1/5*Pi^2+4) 2971201363547803 b008 CosIntegral[2+InverseGudermannian[Pi/7]] 2971201370693233 r002 3th iterates of z^2 + 2971201380342476 l006 ln(456/8899) 2971201392928580 r005 Re(z^2+c),c=-29/26+30/91*I,n=8 2971201393183371 r005 Im(z^2+c),c=1/122+14/41*I,n=17 2971201401785231 a007 Real Root Of -766*x^4+977*x^3+848*x^2+944*x-375 2971201407957439 a007 Real Root Of -82*x^4+31*x^3+584*x^2-550*x+414 2971201411512231 k008 concat of cont frac of 2971201419725111 k002 Champernowne real with 44*n^2-90*n+75 2971201424399919 r005 Re(z^2+c),c=-19/58+23/60*I,n=46 2971201445854721 r009 Re(z^3+c),c=-47/102+23/52*I,n=38 2971201451398724 m001 Mills/Pi/csc(5/24*Pi)*GAMMA(19/24) 2971201452094634 m001 Magata/MadelungNaCl^2/exp(GAMMA(1/4)) 2971201460858830 a007 Real Root Of 308*x^4+844*x^3-152*x^2+317*x+418 2971201463475678 m001 (Chi(1)-Magata)/(ThueMorse+ZetaP(2)) 2971201465943960 a001 10610209857723/9349*199^(2/11) 2971201466105701 m006 (4/5*exp(Pi)-5)/(2/5*Pi^2+3/5) 2971201469053784 r008 a(0)=3,K{-n^6,-43+17*n^3+9*n^2+52*n} 2971201470817324 m001 (FransenRobinson+Kac)/(Psi(1,1/3)-Zeta(1/2)) 2971201474853959 r005 Re(z^2+c),c=-4/13+4/9*I,n=50 2971201486083548 h001 (-4*exp(2)+3)/(-3*exp(8)+5) 2971201508695205 r008 a(0)=3,K{-n^6,-19+16*n+21*n^2+17*n^3} 2971201510920575 m001 1/Sierpinski/ArtinRank2^2/ln(BesselJ(0,1)) 2971201519490879 l006 ln(870/1171) 2971201523894000 m001 GolombDickman^2*exp(ErdosBorwein)*GAMMA(7/12) 2971201527311770 m005 (5/36+1/4*5^(1/2))/(11/12*exp(1)-1/7) 2971201527752125 a001 75025/11*2207^(25/51) 2971201538816704 m009 (6*Psi(1,2/3)+1/3)/(2*Catalan+1/4*Pi^2+2) 2971201541328356 h001 (1/9*exp(2)+3/8)/(5/11*exp(2)+2/3) 2971201544093910 m001 (Gompertz+OneNinth)/(Si(Pi)+polylog(4,1/2)) 2971201545449444 r009 Re(z^3+c),c=-39/110+16/63*I,n=24 2971201551891346 m009 (5/12*Pi^2-1/5)/(4*Psi(1,3/4)+3) 2971201560020623 r009 Re(z^3+c),c=-39/110+16/63*I,n=27 2971201562943105 r008 a(0)=3,K{-n^6,13-24*n^3+41*n^2+11*n} 2971201564221648 r005 Im(z^2+c),c=-11/27+31/60*I,n=40 2971201568755528 r008 a(0)=3,K{-n^6,15+18*n^3+35*n^2-33*n} 2971201570456120 r002 42th iterates of z^2 + 2971201571105144 r005 Re(z^2+c),c=-15/62+27/58*I,n=4 2971201575098454 r005 Re(z^2+c),c=23/94+5/62*I,n=7 2971201576088205 m001 1/exp(MertensB1)/FeigenbaumAlpha*cos(Pi/12) 2971201578802146 m001 (BesselJ(1,1)+Mills)/sin(1/5*Pi) 2971201582801402 r008 a(0)=3,K{-n^6,-17+29*n-2*n^2+25*n^3} 2971201583673094 r005 Re(z^2+c),c=-9/28+25/62*I,n=61 2971201586688516 a007 Real Root Of -411*x^4+145*x^3-471*x^2+412*x+171 2971201588877855 q001 2992/1007 2971201589942905 m005 (1/2*exp(1)-3/5)/(3/11*Zeta(3)-7/12) 2971201593524440 a001 21/9349*18^(3/31) 2971201614382219 m001 (-LambertW(1)+BesselI(0,2))/(2^(1/2)-Chi(1)) 2971201620565812 m005 (1/2*exp(1)-8/9)/(99/112+5/16*5^(1/2)) 2971201629167090 a007 Real Root Of 807*x^4+848*x^3-571*x^2-825*x+267 2971201630016355 a001 12586269025/843*521^(11/13) 2971201631036455 a007 Real Root Of 190*x^4+289*x^3-485*x^2+921*x-209 2971201635782119 a008 Real Root of (-2+5*x+6*x^2-2*x^4+5*x^8) 2971201636237254 r002 5th iterates of z^2 + 2971201643126620 a007 Real Root Of -903*x^4+68*x^3-438*x^2+761*x+23 2971201651035748 r005 Im(z^2+c),c=-26/25+1/3*I,n=12 2971201652903937 r005 Im(z^2+c),c=31/122+5/29*I,n=47 2971201658670741 a007 Real Root Of 219*x^4+758*x^3+210*x^2-564*x-715 2971201661353448 r005 Im(z^2+c),c=-4/25+13/31*I,n=24 2971201664948089 a001 4052739537881/3571*199^(2/11) 2971201673683533 a007 Real Root Of 980*x^4-547*x^3+610*x^2+161*x-28 2971201674487315 m005 (1/2*Zeta(3)-4/7)/(3/8*Zeta(3)+6/11) 2971201675481727 r009 Re(z^3+c),c=-39/110+16/63*I,n=31 2971201682668702 r009 Re(z^3+c),c=-39/110+16/63*I,n=28 2971201685824804 r009 Re(z^3+c),c=-39/110+16/63*I,n=35 2971201686063235 r005 Im(z^2+c),c=-13/42+11/23*I,n=62 2971201686595707 r009 Re(z^3+c),c=-39/110+16/63*I,n=34 2971201686737534 r009 Re(z^3+c),c=-39/110+16/63*I,n=39 2971201686784053 r009 Re(z^3+c),c=-39/110+16/63*I,n=38 2971201686794906 r009 Re(z^3+c),c=-39/110+16/63*I,n=30 2971201686816853 r009 Re(z^3+c),c=-39/110+16/63*I,n=43 2971201686818960 r009 Re(z^3+c),c=-39/110+16/63*I,n=42 2971201686823636 r009 Re(z^3+c),c=-39/110+16/63*I,n=47 2971201686823639 r009 Re(z^3+c),c=-39/110+16/63*I,n=46 2971201686824190 r009 Re(z^3+c),c=-39/110+16/63*I,n=50 2971201686824206 r009 Re(z^3+c),c=-39/110+16/63*I,n=51 2971201686824250 r009 Re(z^3+c),c=-39/110+16/63*I,n=54 2971201686824253 r009 Re(z^3+c),c=-39/110+16/63*I,n=55 2971201686824256 r009 Re(z^3+c),c=-39/110+16/63*I,n=58 2971201686824257 r009 Re(z^3+c),c=-39/110+16/63*I,n=59 2971201686824257 r009 Re(z^3+c),c=-39/110+16/63*I,n=62 2971201686824257 r009 Re(z^3+c),c=-39/110+16/63*I,n=63 2971201686824257 r009 Re(z^3+c),c=-39/110+16/63*I,n=64 2971201686824257 r009 Re(z^3+c),c=-39/110+16/63*I,n=61 2971201686824257 r009 Re(z^3+c),c=-39/110+16/63*I,n=60 2971201686824258 r009 Re(z^3+c),c=-39/110+16/63*I,n=57 2971201686824259 r009 Re(z^3+c),c=-39/110+16/63*I,n=56 2971201686824272 r009 Re(z^3+c),c=-39/110+16/63*I,n=53 2971201686824279 r009 Re(z^3+c),c=-39/110+16/63*I,n=52 2971201686824436 r009 Re(z^3+c),c=-39/110+16/63*I,n=49 2971201686824462 r009 Re(z^3+c),c=-39/110+16/63*I,n=48 2971201686826086 r009 Re(z^3+c),c=-39/110+16/63*I,n=44 2971201686826406 r009 Re(z^3+c),c=-39/110+16/63*I,n=45 2971201686839159 r009 Re(z^3+c),c=-39/110+16/63*I,n=40 2971201686849650 r009 Re(z^3+c),c=-39/110+16/63*I,n=41 2971201686925896 r009 Re(z^3+c),c=-39/110+16/63*I,n=36 2971201687119244 r009 Re(z^3+c),c=-39/110+16/63*I,n=37 2971201687212136 r009 Re(z^3+c),c=-39/110+16/63*I,n=32 2971201690197571 r009 Re(z^3+c),c=-39/110+16/63*I,n=33 2971201697134744 r008 a(0)=3,K{-n^6,29+33*n^3-3*n^2-24*n} 2971201698665256 a007 Real Root Of 606*x^4-860*x^3+479*x^2-301*x-159 2971201700248491 m001 (Mills-Weierstrass)/(Pi^(1/2)+GAMMA(23/24)) 2971201705460493 r005 Re(z^2+c),c=-25/66+7/54*I,n=25 2971201708128367 r009 Re(z^3+c),c=-21/110+28/31*I,n=38 2971201709897634 r008 a(0)=3,K{-n^6,-19+43*n^3-57*n^2+68*n} 2971201713421186 r002 48th iterates of z^2 + 2971201714940032 r009 Re(z^3+c),c=-39/110+16/63*I,n=26 2971201722942833 r005 Im(z^2+c),c=31/122+5/29*I,n=46 2971201724819992 r009 Re(z^3+c),c=-39/110+16/63*I,n=29 2971201726737393 m001 (-arctan(1/3)+StronglyCareFree)/(cos(1)-ln(2)) 2971201736284536 r009 Re(z^3+c),c=-17/36+27/62*I,n=38 2971201737742288 r005 Im(z^2+c),c=-4/25+27/53*I,n=6 2971201740044273 r008 a(0)=3,K{-n^6,53-54*n+36*n^3} 2971201740192684 a007 Real Root Of 346*x^4-231*x^3+604*x^2-554*x-17 2971201744593399 r005 Re(z^2+c),c=-39/31+3/56*I,n=10 2971201747801747 a007 Real Root Of 408*x^4-455*x^3-292*x^2-221*x-55 2971201754026887 r009 Re(z^3+c),c=-25/58+19/49*I,n=52 2971201755859666 m005 (1/2*Zeta(3)-7/11)/(5/12*2^(1/2)+3/5) 2971201761918404 a001 15251/5*2971215073^(8/19) 2971201762021451 a001 7881196/55*317811^(8/19) 2971201762480302 m009 (6*Psi(1,1/3)+3/5)/(2/5*Psi(1,2/3)+5/6) 2971201763865189 l006 ln(293/5718) 2971201764080120 m001 ln(Backhouse)^2*Artin^2*FibonacciFactorial^2 2971201765276680 a007 Real Root Of -718*x^4+996*x^3-485*x^2-22*x+68 2971201781179078 r005 Im(z^2+c),c=-61/102+3/55*I,n=39 2971201791121658 r008 a(0)=3,K{-n^6,19+27*n-62*n^2+51*n^3} 2971201804560470 r008 a(0)=3,K{-n^6,35+3*n-54*n^2+51*n^3} 2971201814058956 r005 Re(z^2+c),c=-13/10+32/105*I,n=2 2971201815345144 r002 54th iterates of z^2 + 2971201820738317 m002 -Pi^(-3)+2/Pi^2-Pi 2971201824654690 h001 (-exp(2)-12)/(-3*exp(3)-5) 2971201830331104 r005 Re(z^2+c),c=13/70+19/51*I,n=53 2971201834709717 r008 a(0)=3,K{-n^6,31+58*n^3-77*n^2+23*n} 2971201838624984 p004 log(36017/26759) 2971201841353713 a007 Real Root Of -199*x^4-334*x^3+84*x^2+894*x+251 2971201843900033 m009 (24*Catalan+3*Pi^2+1/2)/(5/6*Psi(1,2/3)-4/5) 2971201852788234 p001 sum((-1)^n/(586*n+327)/(12^n),n=0..infinity) 2971201857788752 a005 (1/sin(65/151*Pi))^141 2971201869637001 r005 Im(z^2+c),c=5/94+14/23*I,n=37 2971201884392759 r005 Re(z^2+c),c=-9/28+25/62*I,n=58 2971201886332646 p004 log(31333/23279) 2971201889291788 m001 Zeta(1,-1)*(5^(1/2)-TreeGrowth2nd) 2971201899207916 r009 Im(z^3+c),c=-1/94+27/32*I,n=64 2971201900499617 r009 Im(z^3+c),c=-1/94+27/32*I,n=62 2971201902965332 r009 Im(z^3+c),c=-1/94+27/32*I,n=60 2971201907611771 r009 Im(z^3+c),c=-1/94+27/32*I,n=58 2971201910896956 a007 Real Root Of -630*x^4+544*x^3-429*x^2+747*x+279 2971201912788611 m001 GAMMA(3/4)^gamma(1)-GlaisherKinkelin 2971201916257158 r009 Im(z^3+c),c=-1/94+27/32*I,n=56 2971201932138376 r009 Im(z^3+c),c=-1/94+27/32*I,n=54 2971201941077415 h001 (7/11*exp(2)+4/9)/(3/10*exp(1)+11/12) 2971201942440395 m002 (-5*Pi^2)/36+ProductLog[Pi] 2971201944512899 m001 exp(Zeta(9))^2/Sierpinski/cos(Pi/12) 2971201951218288 r005 Im(z^2+c),c=-33/106+7/13*I,n=24 2971201960926920 r009 Im(z^3+c),c=-1/94+27/32*I,n=52 2971201973933937 r005 Re(z^2+c),c=-11/34+23/58*I,n=52 2971201978789591 r005 Im(z^2+c),c=17/82+11/21*I,n=15 2971202011947501 r009 Im(z^3+c),c=-5/74+17/53*I,n=4 2971202012381557 r009 Im(z^3+c),c=-1/94+27/32*I,n=50 2971202019598635 s002 sum(A001336[n]/((2*n+1)!),n=1..infinity) 2971202021975440 m001 (3^(1/3)+gamma(3))/(MertensB1-RenyiParking) 2971202027595554 r009 Re(z^3+c),c=-51/122+15/41*I,n=31 2971202031782852 r005 Im(z^2+c),c=31/122+5/29*I,n=48 2971202035843957 m001 (Bloch+Kolakoski)/(Mills+Otter) 2971202036931123 r008 a(0)=3,K{-n^6,21+29*n-12*n^2} 2971202049478753 m004 -50/Pi+25*Pi-125*Pi*Tan[Sqrt[5]*Pi] 2971202051686343 b008 ArcSinh[1+3*E+EulerGamma] 2971202054074377 r009 Re(z^3+c),c=-31/66+19/42*I,n=61 2971202077951970 r005 Re(z^2+c),c=37/118+5/26*I,n=9 2971202086534004 m001 (-FeigenbaumDelta+ZetaP(3))/(3^(1/2)-Ei(1,1)) 2971202093490754 m001 (Backhouse-FeigenbaumMu)/(Rabbit+ZetaQ(4)) 2971202102937898 r009 Im(z^3+c),c=-1/94+27/32*I,n=48 2971202108412448 r009 Re(z^3+c),c=-39/110+16/63*I,n=25 2971202121024036 a007 Real Root Of 377*x^4+927*x^3-733*x^2-631*x-470 2971202130288185 a001 34/1149851*11^(51/53) 2971202140579120 m006 (2/5*Pi^2+4)/(1/2*exp(2*Pi)-1/4) 2971202141713118 m005 (1/3*Zeta(3)-1/6)/(4/11*Catalan+5/11) 2971202147732039 r009 Re(z^3+c),c=-35/58+9/19*I,n=21 2971202148165173 m005 (1/2*gamma-1/6)/(3/4+3/2*5^(1/2)) 2971202158787685 r005 Im(z^2+c),c=-39/64+7/18*I,n=35 2971202175783306 r005 Im(z^2+c),c=31/122+5/29*I,n=53 2971202177307950 l006 ln(423/8255) 2971202178213640 a007 Real Root Of 445*x^4-272*x^3-47*x^2-943*x+288 2971202194042571 r005 Re(z^2+c),c=-35/102+3/7*I,n=13 2971202198237637 r005 Im(z^2+c),c=31/122+5/29*I,n=54 2971202217905920 a007 Real Root Of 352*x^4+932*x^3-462*x^2-662*x-875 2971202219915054 r008 a(0)=3,K{-n^6,-62+48*n+48*n^2+n^3} 2971202226401073 r005 Re(z^2+c),c=-9/28+25/62*I,n=50 2971202226592197 a007 Real Root Of 95*x^4-618*x^3-776*x^2-929*x+360 2971202233310428 m002 -Pi^4+Pi^9+Tanh[Pi]/3 2971202233557515 m001 (-Robbin+ThueMorse)/(2^(1/3)-BesselK(0,1)) 2971202236689220 m001 (exp(Pi)-FibonacciFactorial)^ln(3) 2971202237728794 r005 Im(z^2+c),c=31/122+5/29*I,n=52 2971202246201782 r005 Im(z^2+c),c=31/122+5/29*I,n=60 2971202248848131 r005 Im(z^2+c),c=31/122+5/29*I,n=59 2971202249873332 r005 Im(z^2+c),c=31/122+5/29*I,n=55 2971202251464021 r005 Im(z^2+c),c=31/122+5/29*I,n=61 2971202257281995 r005 Im(z^2+c),c=31/122+5/29*I,n=62 2971202258062845 r005 Im(z^2+c),c=31/122+5/29*I,n=64 2971202259380581 r005 Im(z^2+c),c=31/122+5/29*I,n=63 2971202259553687 r009 Im(z^3+c),c=-1/94+27/32*I,n=46 2971202262987371 r005 Im(z^2+c),c=31/122+5/29*I,n=58 2971202266773982 a007 Real Root Of -142*x^4-353*x^3+114*x^2-586*x-940 2971202268510032 a007 Real Root Of 24*x^4+720*x^3+186*x^2-607*x-950 2971202280412060 r005 Im(z^2+c),c=31/122+5/29*I,n=57 2971202281333377 r005 Im(z^2+c),c=31/122+5/29*I,n=56 2971202287919204 r005 Re(z^2+c),c=-5/23+4/7*I,n=25 2971202290058265 r005 Re(z^2+c),c=5/23+2/51*I,n=5 2971202297079480 r005 Im(z^2+c),c=31/122+5/29*I,n=42 2971202301074117 a007 Real Root Of -208*x^4-735*x^3-223*x^2+591*x+656 2971202316694086 r009 Re(z^3+c),c=-39/110+16/63*I,n=22 2971202319160399 m001 (OneNinth-Tetranacci)/(ln(2+3^(1/2))-CareFree) 2971202338496489 a007 Real Root Of -20*x^4-585*x^3+243*x^2-958*x-609 2971202340173626 m001 (BesselI(0,2)*Lehmer+HardyLittlewoodC5)/Lehmer 2971202342247575 a003 sin(Pi*8/97)/cos(Pi*12/71) 2971202357574554 m002 -1/3+Pi^4-Pi^9 2971202358004083 r005 Im(z^2+c),c=-27/94+13/27*I,n=21 2971202360425239 r005 Im(z^2+c),c=-5/8+13/229*I,n=38 2971202366059451 m001 GolombDickman^2/DuboisRaymond^2/ln(cos(Pi/12)) 2971202367241693 a001 1/322*(1/2*5^(1/2)+1/2)^10*76^(9/19) 2971202376350305 a001 514229/11*843^(14/51) 2971202378397075 r005 Im(z^2+c),c=31/122+5/29*I,n=51 2971202386897222 r005 Im(z^2+c),c=31/122+5/29*I,n=49 2971202399277707 b008 9*(1/2+ArcCosh[2])^2 2971202408171341 r009 Im(z^3+c),c=-31/114+17/61*I,n=11 2971202415388050 a003 2^(1/2)-cos(1/9*Pi)+cos(7/15*Pi)-cos(7/24*Pi) 2971202420406426 r008 a(0)=3,K{-n^6,-46+50*n+17*n^2+14*n^3} 2971202422731112 k002 Champernowne real with 89/2*n^2-183/2*n+76 2971202433576011 r005 Re(z^2+c),c=31/98+12/29*I,n=43 2971202446065913 r005 Re(z^2+c),c=-19/46+1/11*I,n=4 2971202447443408 m001 (LambertW(1)*Otter+ZetaQ(3))/LambertW(1) 2971202448160241 p004 log(34913/1789) 2971202455345194 r008 a(0)=3,K{-n^6,-44+17*n^3+9*n^2+53*n} 2971202461358967 a007 Real Root Of -730*x^4+733*x^3-160*x^2+803*x-238 2971202463474520 r002 39th iterates of z^2 + 2971202463474520 r002 39th iterates of z^2 + 2971202472014214 a001 20365011074/843*521^(10/13) 2971202475315077 a005 (1/cos(35/174*Pi))^48 2971202484457808 r005 Im(z^2+c),c=31/122+5/29*I,n=50 2971202489688831 r002 56th iterates of z^2 + 2971202492569332 h001 (11/12*exp(1)+1/11)/(2/11*exp(1)+3/8) 2971202493485594 a007 Real Root Of 144*x^4+473*x^3-71*x^2-556*x+159 2971202506128002 m001 1/Porter/ln(GaussAGM(1,1/sqrt(2)))/Salem^2 2971202515858673 p001 sum((-1)^n/(389*n+246)/n/(5^n),n=1..infinity) 2971202516740478 r005 Re(z^2+c),c=8/27+3/25*I,n=60 2971202519793087 a007 Real Root Of -253*x^4-793*x^3-309*x^2-627*x-218 2971202524945288 r009 Im(z^3+c),c=-1/94+27/32*I,n=44 2971202538547621 m005 (1/3*2^(1/2)-1/3)/(5/7*2^(1/2)-6/11) 2971202539761956 r002 5th iterates of z^2 + 2971202548202857 m001 exp(1/2)*(BesselJ(0,1)+Zeta(5)) 2971202549856234 r005 Im(z^2+c),c=31/122+5/29*I,n=45 2971202559908590 r008 a(0)=3,K{-n^6,-66-19*n^3+66*n^2+54*n} 2971202571511346 m005 (1/2*2^(1/2)+4/11)/(4/9*Pi-5) 2971202588473974 r009 Im(z^3+c),c=-71/126+13/43*I,n=61 2971202595225054 r005 Re(z^2+c),c=7/22+3/22*I,n=34 2971202595702617 r002 37th iterates of z^2 + 2971202597246200 m001 (Zeta(1,-1)-gamma)/(Tribonacci+TwinPrimes) 2971202600332225 m001 Zeta(9)^2/ln(GAMMA(13/24))^2/sinh(1)^2 2971202616181373 r009 Re(z^3+c),c=-18/29+18/35*I,n=12 2971202624354888 a007 Real Root Of 832*x^4-372*x^3-433*x^2-833*x+289 2971202630794772 a007 Real Root Of 331*x^4+921*x^3+36*x^2+891*x+691 2971202637154573 h001 (-exp(-2)-9)/(-8*exp(1)-9) 2971202640297776 r008 a(0)=3,K{-n^6,-20+53*n-33*n^2+35*n^3} 2971202656432819 r005 Im(z^2+c),c=11/42+10/63*I,n=12 2971202665825524 m001 (3^(1/3)+OneNinth)/(ZetaQ(2)-ZetaQ(4)) 2971202670259905 r008 a(0)=3,K{-n^6,60-17*n^3+2*n^2-11*n} 2971202671909817 m009 (5/2*Pi^2+1/5)/(3/4*Psi(1,1/3)+4/5) 2971202681239842 r002 14th iterates of z^2 + 2971202682142978 m001 1/Khintchine/ln(Artin)/GAMMA(5/6)^2 2971202685203639 a001 2/47*123^(21/52) 2971202689575480 a007 Real Root Of 229*x^4+481*x^3-392*x^2+285*x-923 2971202691272643 m001 (Kolakoski+Otter)/(Backhouse-exp(1)) 2971202695661649 m001 (Zeta(3)+Bloch)/(Champernowne+TreeGrowth2nd) 2971202698077188 r005 Re(z^2+c),c=-9/28+25/62*I,n=56 2971202701433609 p003 LerchPhi(1/1024,4,330/137) 2971202714739898 m005 (21/20+1/4*5^(1/2))/(-37/60+3/10*5^(1/2)) 2971202722537431 r008 a(0)=3,K{-n^6,52-53*n+36*n^3} 2971202736698282 r005 Re(z^2+c),c=-9/26+11/25*I,n=13 2971202736935110 m005 (1/2*Zeta(3)-11/12)/(1/4*Catalan+5/6) 2971202740085997 m001 (Trott+ZetaP(4))/(GAMMA(13/24)+Mills) 2971202743088731 m001 Zeta(1,2)^2*Riemann1stZero^2*exp(sqrt(2))^2 2971202746737553 r008 a(0)=3,K{-n^6,42-26*n-23*n^2+42*n^3} 2971202749163185 a007 Real Root Of -201*x^4-300*x^3+783*x^2-157*x+417 2971202768712456 a007 Real Root Of 372*x^4+900*x^3-598*x^2-191*x-673 2971202772934496 r008 a(0)=3,K{-n^6,36-5*n-44*n^2+48*n^3} 2971202777755269 m001 ln(GolombDickman)^2/Cahen/Magata^2 2971202779435027 m001 (gamma(3)+MertensB1)/(GAMMA(3/4)-Psi(1,1/3)) 2971202783391734 a007 Real Root Of 690*x^4+939*x^3-824*x^2-950*x+325 2971202784820425 l006 ln(6749/9084) 2971202785498372 a007 Real Root Of 215*x^4+854*x^3+792*x^2+682*x+679 2971202786210558 r008 a(0)=3,K{-n^6,34+4*n-54*n^2+51*n^3} 2971202787463297 m001 (Porter+TwinPrimes)/(ln(2^(1/2)+1)+Zeta(1,-1)) 2971202791138183 r008 a(0)=3,K{-n^6,64-17*n+4*n^2-17*n^3} 2971202799261584 g002 -gamma-2*ln(2)+Psi(2/7)-Psi(5/9)-Psi(4/5) 2971202802832478 m005 (1/2*gamma+1/10)/(3/8*Zeta(3)+6/7) 2971202802873152 a007 Real Root Of -363*x^4-837*x^3+710*x^2-353*x-981 2971202804834192 a007 Real Root Of -976*x^4-328*x^3-208*x^2+995*x+313 2971202813097871 m005 (1/2*exp(1)-8/9)/(6/11*exp(1)+1/10) 2971202813569731 a007 Real Root Of -798*x^4-154*x^3-889*x^2+681*x+283 2971202824043179 m001 (GAMMA(3/4)-CareFree)/(Paris+ZetaP(4)) 2971202829321135 m001 (exp(-1/2*Pi)-Tribonacci)/(ln(gamma)+ln(3)) 2971202829640964 a007 Real Root Of 392*x^4-634*x^3-298*x^2-862*x+296 2971202832721156 m001 1/GAMMA(23/24)*exp(Champernowne)^2*cosh(1)^2 2971202833278319 a007 Real Root Of 369*x^4+863*x^3-678*x^2-207*x-751 2971202839217072 r009 Re(z^3+c),c=-23/52+24/59*I,n=53 2971202844432824 m001 (Si(Pi)+BesselJ(0,1))/(-BesselI(1,2)+Rabbit) 2971202852820503 m001 KhinchinHarmonic+Otter+Riemann3rdZero 2971202875440876 l006 ln(3548/3655) 2971202875756846 m001 (ln(2^(1/2)+1)-sin(1))/(Champernowne+Trott) 2971202897111700 h001 (3/10*exp(1)+1/10)/(9/11*exp(1)+6/7) 2971202937753319 m001 (-MertensB2+Salem)/(2^(1/2)+Zeta(1,2)) 2971202939158641 r005 Re(z^2+c),c=-29/110+13/23*I,n=64 2971202940393469 r005 Re(z^2+c),c=-5/17+30/59*I,n=27 2971202942919172 h005 exp(sin(Pi*1/32)+sin(Pi*16/35)) 2971202946582535 m005 (1/2*gamma-3/5)/(5*5^(1/2)-7/10) 2971202948828787 m001 1/(HardyLittlewoodC5+Otter) 2971202960012867 a007 Real Root Of 969*x^4-812*x^3+834*x^2-96*x-131 2971202963604640 r009 Im(z^3+c),c=-1/94+27/32*I,n=42 2971202972069384 l006 ln(5879/7913) 2971202972551890 p003 LerchPhi(1/10,1,65/188) 2971202973215350 r005 Re(z^2+c),c=1/23+28/45*I,n=3 2971202991039165 m005 (1/2*Zeta(3)+9/10)/(3/8*5^(1/2)-1/3) 2971202996376692 a007 Real Root Of -49*x^4-171*x^3-305*x^2+980*x+314 2971202997440226 m001 (Psi(1,1/3)-exp(-Pi))^Bloch 2971203020048784 m005 (1/2*Catalan-3/10)/(5/11*2^(1/2)-1/9) 2971203023282940 r005 Re(z^2+c),c=-11/34+23/58*I,n=54 2971203028943400 a001 1134903780*199^(2/11) 2971203030042517 m001 (5^(1/2)-gamma)/(-cos(1)+ln(3)) 2971203034030974 g007 Psi(2,3/10)+2*Psi(2,1/9)-Psi(2,4/9) 2971203035698646 a001 123/11*(1/2*5^(1/2)+1/2)^28*11^(11/20) 2971203036689450 m001 Kolakoski/Champernowne^2*ln(GAMMA(5/12))^2 2971203038122485 m001 (PrimesInBinary+Stephens)/(BesselJ(0,1)-ln(3)) 2971203048923765 a007 Real Root Of -171*x^4-369*x^3+313*x^2-529*x-687 2971203051812518 s002 sum(A243833[n]/((3*n+1)!),n=1..infinity) 2971203059125977 m001 (Pi-Zeta(1,-1))/(MasserGramainDelta-Rabbit) 2971203060952704 m002 -Pi^4+Pi^5-Pi^9*Coth[Pi] 2971203065288701 a001 322/433494437*8^(2/3) 2971203065565093 a004 Fibonacci(5)/Lucas(6)/(1/2+sqrt(5)/2)^19 2971203067330097 m001 (Mills+TreeGrowth2nd*ZetaQ(4))/TreeGrowth2nd 2971203076966815 a007 Real Root Of 166*x^4+563*x^3+85*x^2-106*x+765 2971203077536166 m003 29+Sqrt[5]/64+(Sqrt[5]*Sinh[1/2+Sqrt[5]/2])/8 2971203080050515 a007 Real Root Of -383*x^4+848*x^3-63*x^2+728*x-230 2971203094958004 m001 Trott^GAMMA(3/4)-ln(2)/ln(10) 2971203102626567 r002 19th iterates of z^2 + 2971203109143699 l006 ln(130/2537) 2971203110595854 m001 (sin(1/12*Pi)-Champernowne)/(Pi+2^(1/2)) 2971203114121287 k007 concat of cont frac of 2971203122020820 r005 Im(z^2+c),c=-7/24+16/35*I,n=17 2971203122707719 m001 1/Pi^2/Sierpinski*ln(log(2+sqrt(3)))^2 2971203124956715 r005 Re(z^2+c),c=-19/14+14/215*I,n=24 2971203131955928 r005 Re(z^2+c),c=23/90+5/57*I,n=12 2971203132664909 a001 32951280099/322*322^(7/12) 2971203135768341 m001 (ArtinRank2-MertensB2)/(GAMMA(2/3)-Ei(1,1)) 2971203136026415 m005 2/3*(1/3*Zeta(3)-3/5)*5^(1/2) 2971203145876898 r009 Im(z^3+c),c=-2/21+7/22*I,n=6 2971203146803599 r005 Im(z^2+c),c=-7/6+9/134*I,n=8 2971203161149559 r009 Re(z^3+c),c=-13/40+10/51*I,n=13 2971203164474121 a007 Real Root Of -190*x^4-833*x^3-792*x^2-249*x-790 2971203170640710 r008 a(0)=3,K{-n^6,-57+34*n+60*n^2-2*n^3} 2971203177124786 r008 a(0)=3,K{-n^6,22+64*n-44*n^2-8*n^3} 2971203186733023 a001 4/987*233^(26/33) 2971203189486212 r005 Re(z^2+c),c=-23/60+3/38*I,n=11 2971203191580137 r005 Im(z^2+c),c=-19/94+30/53*I,n=14 2971203193464205 a003 cos(Pi*22/71)-sin(Pi*27/82) 2971203197257376 r005 Im(z^2+c),c=-21/50+27/52*I,n=50 2971203199842999 m002 -Pi^4+Pi^9+ProductLog[Pi]/Pi 2971203211526040 r005 Im(z^2+c),c=-19/31+2/43*I,n=25 2971203212046666 r009 Im(z^3+c),c=-7/17+10/49*I,n=12 2971203218212322 k006 concat of cont frac of 2971203224363892 l006 ln(5009/6742) 2971203226230835 r002 49th iterates of z^2 + 2971203227201083 r005 Re(z^2+c),c=-27/86+26/61*I,n=39 2971203252890851 a001 1346269/76*11^(11/51) 2971203262223845 a007 Real Root Of 177*x^4+385*x^3-423*x^2-299*x-850 2971203268108461 a007 Real Root Of 284*x^4+988*x^3+255*x^2-360*x+461 2971203281666046 r005 Re(z^2+c),c=-45/74+20/53*I,n=28 2971203289882441 m001 (PlouffeB-TreeGrowth2nd)/(gamma(1)-GAMMA(5/6)) 2971203295715658 a007 Real Root Of 238*x^4+446*x^3-886*x^2-632*x-906 2971203307834572 a001 1/408569081798*3^(3/17) 2971203310751577 a007 Real Root Of -554*x^4+719*x^3-403*x^2-16*x+54 2971203311878880 r009 Im(z^3+c),c=-21/34+8/17*I,n=36 2971203314012312 a001 10983760033/281*521^(9/13) 2971203317806160 r005 Im(z^2+c),c=-81/110+6/25*I,n=3 2971203334461024 a007 Real Root Of 420*x^4+983*x^3-933*x^2-482*x-144 2971203349629426 a008 Real Root of (-3-6*x-x^2+6*x^3-4*x^4-2*x^5) 2971203380832584 a007 Real Root Of 145*x^4+470*x^3+127*x^2+292*x+774 2971203383314109 r005 Re(z^2+c),c=-21/17+23/30*I,n=2 2971203403042273 m008 (1/5*Pi^5-4)/(1/5*Pi^6+1/4) 2971203403053689 a001 7/1597*17711^(25/58) 2971203420737116 k003 Champernowne real with 5/2*n^3+25/2*n^2-48*n+35 2971203425737113 k002 Champernowne real with 45*n^2-93*n+77 2971203426684556 m001 (ln(5)-ErdosBorwein)/(Grothendieck-Thue) 2971203435512232 r002 14th iterates of z^2 + 2971203443921925 r002 50th iterates of z^2 + 2971203445739985 r002 32th iterates of z^2 + 2971203446328861 r008 a(0)=3,K{-n^6,-67+22*n^3-17*n^2+97*n} 2971203468011558 a001 3/63245986*8^(15/17) 2971203472896167 r009 Re(z^3+c),c=-25/58+24/61*I,n=21 2971203483657486 r008 a(0)=3,K{-n^6,35+9*n^3+73*n^2-82*n} 2971203487352488 a007 Real Root Of -70*x^4+107*x^3+664*x^2-931*x-366 2971203515552585 m005 (1/2*3^(1/2)-3/8)/(5*Pi+9/11) 2971203516684506 b008 5*ArcCosh[13/11] 2971203516684506 b008 ArcCoth[2*Sqrt[3]] 2971203516684506 b008 ArcCsch[Sqrt[11]] 2971203517042918 a001 692290419471/233 2971203517886467 h001 (3/7*exp(2)+8/9)/(3/7*exp(1)+1/5) 2971203519694705 a001 47/121393*8^(49/50) 2971203520786799 r005 Im(z^2+c),c=27/98+7/47*I,n=31 2971203521611473 r008 a(0)=3,K{-n^6,1-11*n+26*n^2+19*n^3} 2971203530936554 m002 -Pi^4+Pi^9+4*Sech[Pi] 2971203531290630 r005 Re(z^2+c),c=-31/110+27/53*I,n=40 2971203532847675 a007 Real Root Of 388*x^4-246*x^3+84*x^2-838*x+245 2971203539113450 m001 Catalan+GAMMA(19/24)+QuadraticClass 2971203551484392 r005 Re(z^2+c),c=-141/98+7/52*I,n=7 2971203564422047 r005 Im(z^2+c),c=7/50+9/19*I,n=4 2971203577509284 r005 Im(z^2+c),c=-7/106+27/40*I,n=57 2971203582720830 l006 ln(4139/5571) 2971203588526397 a001 33385282/377*4807526976^(6/23) 2971203588553935 a001 599074578/377*75025^(6/23) 2971203594268983 m001 (3^(1/3))^Porter/Stephens 2971203602780297 h001 (5/8*exp(2)+4/7)/(3/8*exp(1)+8/11) 2971203613367079 m005 (1/2*gamma+6)/(1/5*Pi-5/12) 2971203619625950 r002 15th iterates of z^2 + 2971203626335682 r005 Im(z^2+c),c=-37/34+31/103*I,n=3 2971203628914412 r008 a(0)=3,K{-n^6,9+32*n^3-9*n^2+3*n} 2971203646182726 a007 Real Root Of 407*x^4+792*x^3-999*x^2+625*x-269 2971203651844660 a001 1/144*233^(4/15) 2971203656861259 r008 a(0)=3,K{-n^6,29+33*n^3-2*n^2-25*n} 2971203660056232 m002 -Pi^4+Pi^9+4*Csch[Pi] 2971203665854729 r009 Im(z^3+c),c=-1/94+27/32*I,n=40 2971203670422703 r005 Im(z^2+c),c=-29/90+18/37*I,n=24 2971203677267799 r009 Im(z^3+c),c=-51/110+8/57*I,n=15 2971203691969842 m001 1/ln(GAMMA(13/24))^2/Robbin^2/Pi 2971203693116679 r005 Re(z^2+c),c=3/58+17/56*I,n=11 2971203706273035 a001 119218851371*144^(11/17) 2971203721208882 a003 cos(Pi*1/96)-sin(Pi*29/117) 2971203727998654 a007 Real Root Of 718*x^4+652*x^3+656*x^2-766*x-274 2971203728996393 r005 Im(z^2+c),c=31/122+5/29*I,n=44 2971203729254181 r008 a(0)=3,K{-n^6,21+15*n-48*n^2+47*n^3} 2971203731400363 m005 (1/2*gamma+7/11)/(9/10*exp(1)+2/3) 2971203747986831 p004 log(12041/617) 2971203760923221 m001 Zeta(5)*exp(BesselJ(1,1))^2/sin(1) 2971203770836836 m001 ln(Pi)^(3*Khinchin) 2971203780951921 p003 LerchPhi(1/10,6,349/132) 2971203793725229 p001 sum((-1)^n/(449*n+312)/(5^n),n=0..infinity) 2971203825027776 l006 ln(7408/9971) 2971203827042094 a007 Real Root Of 891*x^4-924*x^3+400*x^2-314*x+9 2971203829608709 a007 Real Root Of -77*x^4+359*x^3-917*x^2-323*x-5 2971203843068757 m009 (24*Catalan+3*Pi^2+4/5)/(6*Psi(1,2/3)-3/4) 2971203844861185 m001 1/exp(Pi)^2/BesselK(0,1)*sin(Pi/12)^2 2971203845937886 m001 MertensB1^2/exp(GaussAGM(1,1/sqrt(2)))/Paris 2971203857423373 r005 Re(z^2+c),c=-11/34+23/58*I,n=57 2971203857681782 m001 Stephens^FeigenbaumC/GAMMA(3/4) 2971203888658048 r005 Im(z^2+c),c=-45/74+22/57*I,n=45 2971203908932346 m001 3^(1/3)/HardyLittlewoodC3/LandauRamanujan 2971203918519836 l006 ln(487/9504) 2971203918859730 r005 Im(z^2+c),c=-39/32+15/47*I,n=16 2971203925643480 p001 sum(1/(503*n+25)/n/(64^n),n=1..infinity) 2971203927886188 m001 (FeigenbaumB+Gompertz)/(KomornikLoreti-Mills) 2971203930820674 a003 sin(Pi*19/77)-sin(Pi*48/101) 2971203938866816 r002 8th iterates of z^2 + 2971203959065597 a001 341/11592*377^(23/59) 2971203963677046 r009 Re(z^3+c),c=-21/64+18/31*I,n=3 2971203967688182 m005 (1/3*exp(1)-1/10)/(Pi-3/7) 2971204009626830 m006 (2*Pi+2/3)/(exp(Pi)+1/4) 2971204036764515 r005 Im(z^2+c),c=31/122+5/29*I,n=43 2971204038042918 a001 692290540864/233 2971204041983229 a001 1597/18*322^(9/43) 2971204062006002 a007 Real Root Of 124*x^4+345*x^3-66*x^2+73*x+185 2971204063891100 a007 Real Root Of -168*x^4-660*x^3-440*x^2-223*x-997 2971204071482700 a001 516002918640/281*199^(1/11) 2971204087154432 r009 Im(z^3+c),c=-29/62+8/55*I,n=20 2971204092832188 m001 OneNinth^(ln(5)/Otter) 2971204102093922 m001 (exp(Pi)+BesselI(1,2))/FeigenbaumB 2971204107515665 r008 a(0)=0,K{-n^6,-20-2*n+59*n^2-3*n^3} 2971204114055793 a001 692290558575/233 2971204115469510 m005 (-11/20+1/4*5^(1/2))/(8/11*Pi+3/4) 2971204125145922 a001 692290561159/233 2971204126763948 a001 692290561536/233 2971204127034334 a001 692290561599/233 2971204127038626 a001 692290561600/233 2971204127040343 a001 2/233*(1/2+1/2*5^(1/2))^60 2971204127040343 a001 3461452808002/233*8^(1/3) 2971204127042918 a001 692290561601/233 2971204127055793 a001 692290561604/233 2971204127145922 a001 692290561625/233 2971204127763948 a001 692290561769/233 2971204127946986 m001 (-AlladiGrinstead+FeigenbaumKappa)/(1+Chi(1)) 2971204131821419 l006 ln(3269/4400) 2971204140450792 r001 64i'th iterates of 2*x^2-1 of 2971204141041149 m001 (GAMMA(23/24)-Paris)/(arctan(1/3)+gamma(2)) 2971204144003837 r008 a(0)=3,K{-n^6,-58+35*n+60*n^2-2*n^3} 2971204153404447 a007 Real Root Of 839*x^4-897*x^3-401*x^2-830*x+299 2971204153614168 m001 exp(GAMMA(1/3))/Kolakoski^2/log(1+sqrt(2))^2 2971204156010648 a001 53316291173/843*521^(8/13) 2971204158219941 r005 Re(z^2+c),c=-29/90+4/7*I,n=46 2971204161034334 a001 692290569521/233 2971204168525874 m001 (MertensB1+ZetaP(2))/(exp(Pi)+ln(2^(1/2)+1)) 2971204188481675 q001 1135/382 2971204188481675 q001 227/764 2971204188531515 p001 sum(1/(589*n+394)/(3^n),n=0..infinity) 2971204194323451 a003 cos(Pi*34/117)-cos(Pi*45/113) 2971204202315044 m001 GAMMA(5/12)^2*Ei(1)*exp(sqrt(Pi))^2 2971204205625338 r002 50th iterates of z^2 + 2971204213250479 l006 ln(357/6967) 2971204218312898 m005 (1/2*Zeta(3)+8/11)/(4/5*Catalan-2/7) 2971204226238490 m001 (-Niven+OneNinth)/(Psi(2,1/3)+GAMMA(2/3)) 2971204226519482 r009 Im(z^3+c),c=-1/15+8/25*I,n=3 2971204229815448 m001 (Pi+exp(Pi)/Chi(1))*cos(1/12*Pi) 2971204229992785 r009 Re(z^3+c),c=-9/25+16/61*I,n=8 2971204234561704 r008 a(0)=3,K{-n^6,-39-53*n^3+61*n^2+65*n} 2971204235066195 p004 log(29629/22013) 2971204238808712 a007 Real Root Of -955*x^4+990*x^3-355*x^2+573*x+235 2971204249037885 m001 Paris^2*FransenRobinson^2*exp(GAMMA(2/3)) 2971204261420734 s002 sum(A273150[n]/((2^n-1)/n),n=1..infinity) 2971204271407778 m001 (Pi*2^(1/2)/GAMMA(3/4)+Tribonacci)/Tribonacci 2971204283088745 m001 1/TwinPrimes^2*ln(LaplaceLimit)^2*BesselJ(0,1) 2971204309093393 r005 Re(z^2+c),c=-5/17+10/21*I,n=31 2971204313559936 m001 GAMMA(19/24)*Thue+ReciprocalLucas 2971204314340708 r005 Re(z^2+c),c=-1+46/249*I,n=12 2971204338188448 a003 cos(Pi*3/17)*cos(Pi*17/44) 2971204343760573 r005 Im(z^2+c),c=-77/90+12/47*I,n=4 2971204358477682 m009 (1/2*Psi(1,2/3)+1/4)/(6*Psi(1,1/3)-3/5) 2971204359001112 a001 20365011074/2207*521^(12/13) 2971204360038626 a001 692290615889/233 2971204364520157 m001 exp(GAMMA(1/6))/OneNinth^2*log(2+sqrt(3)) 2971204395328279 r002 14th iterates of z^2 + 2971204420518192 m001 (Niven+Tribonacci)/(ln(gamma)-Cahen) 2971204423415988 m001 (exp(Pi)*Landau+FeigenbaumMu)/Landau 2971204428743114 k002 Champernowne real with 91/2*n^2-189/2*n+78 2971204452225050 r008 a(0)=3,K{-n^6,34+9*n^3+73*n^2-81*n} 2971204460909059 m001 (MertensB3-Totient)/(FeigenbaumC+Lehmer) 2971204468793391 r009 Im(z^3+c),c=-8/25+33/50*I,n=10 2971204474104737 a001 599074578/13*514229^(16/19) 2971204474143169 a001 271443/13*4807526976^(16/19) 2971204474886318 a001 7/75025*55^(19/22) 2971204475308641 r004 Re(z^2+c),c=-29/30+11/20*I,z(0)=-1,n=3 2971204477592907 a001 329/41*7^(37/55) 2971204478166115 r009 Re(z^3+c),c=-3/16+36/37*I,n=60 2971204479134507 r002 5th iterates of z^2 + 2971204480770862 m001 1/Porter*exp(MadelungNaCl)/log(2+sqrt(3)) 2971204499578306 m001 exp(Porter)/ArtinRank2^2/sqrt(3)^2 2971204502540971 a001 29/17711*3^(32/59) 2971204504001925 m001 (Zeta(5)-sin(1/5*Pi))/(sin(1/12*Pi)-OneNinth) 2971204507550777 m001 (ThueMorse+ZetaP(2))/(Conway+ErdosBorwein) 2971204512688711 r005 Re(z^2+c),c=-11/34+23/58*I,n=59 2971204513447478 a007 Real Root Of -227*x^4-822*x^3-859*x^2-923*x+971 2971204532796582 l006 ln(5668/7629) 2971204535602773 m001 (2*Pi/GAMMA(5/6)+Mills)/(exp(Pi)+gamma(2)) 2971204549421356 m005 (1/2*exp(1)-3/4)/(1/5*Pi-5/6) 2971204551879930 m001 1/Bloch^2*FransenRobinson/ln(GAMMA(7/12)) 2971204558671095 r005 Re(z^2+c),c=-11/34+23/58*I,n=62 2971204564016811 r005 Im(z^2+c),c=3/28+23/39*I,n=24 2971204566008753 r008 a(0)=3,K{-n^6,-12+32*n-16*n^2+31*n^3} 2971204577244879 r005 Im(z^2+c),c=-23/102+41/59*I,n=9 2971204578666954 g002 Psi(2/7)-Psi(4/11)-Psi(4/9)-Psi(3/5) 2971204583535158 a005 (1/cos(22/203*Pi))^1148 2971204585828893 a007 Real Root Of -85*x^4+4*x^3+640*x^2-368*x-14 2971204586916024 m001 1/exp(Riemann2ndZero)*Niven^2*GAMMA(19/24)^2 2971204593436525 m001 1/Riemann3rdZero*LaplaceLimit^2*exp(sqrt(2))^2 2971204600555513 r002 37th iterates of z^2 + 2971204611996472 m005 (1/2*2^(1/2)-2/3)/(5^(1/2)-7/8) 2971204622546593 a007 Real Root Of 163*x^4+203*x^3-668*x^2+642*x+426 2971204623023951 r008 a(0)=3,K{-n^6,28+33*n^3-2*n^2-24*n} 2971204627551894 m001 (Magata-Trott)/(arctan(1/2)-ErdosBorwein) 2971204634018185 a007 Real Root Of 71*x^4-722*x^3+185*x^2-529*x-193 2971204641006815 r005 Im(z^2+c),c=23/82+1/7*I,n=52 2971204664045134 r008 a(0)=3,K{-n^6,52-54*n+36*n^3+n^2} 2971204665037174 r005 Re(z^2+c),c=-41/118+20/63*I,n=13 2971204671589023 m002 -(Pi^6*Sinh[Pi])+Pi^5*Sinh[Pi]^2 2971204677730023 m001 LaplaceLimit/(FransenRobinson-gamma) 2971204678218013 r005 Re(z^2+c),c=37/126+1/9*I,n=17 2971204694926429 m001 (ReciprocalLucas+ZetaQ(3))/(2^(1/3)-Gompertz) 2971204700812918 m001 (-GaussAGM(1,1/sqrt(2))+2/3)/(OneNinth+1/2) 2971204709627628 r008 a(0)=3,K{-n^6,32-45*n^2+48*n^3} 2971204711462755 a007 Real Root Of -832*x^4+888*x^3+958*x^2+931*x-378 2971204712668729 a008 Real Root of x^4-x^3-9*x^2+10*x+5 2971204716326766 a007 Real Root Of 266*x^4+459*x^3-747*x^2+747*x+123 2971204717466160 a007 Real Root Of 104*x^4-654*x^3+670*x^2+889*x+493 2971204725796965 r008 a(0)=3,K{-n^6,34+3*n-53*n^2+51*n^3} 2971204727186173 r008 a(0)=3,K{-n^6,40+45*n-47*n^2-4*n^3} 2971204733619575 r008 a(0)=3,K{-n^6,44-12*n-48*n^2+51*n^3} 2971204736559402 a008 Real Root of (-4+3*x-x^2-x^3-6*x^4-2*x^5) 2971204741891906 r009 Im(z^3+c),c=-1/94+27/32*I,n=38 2971204743795009 m005 (1/2*2^(1/2)+3)/(1/6*5^(1/2)+7/8) 2971204755676519 h001 (9/11*exp(2)+5/6)/(3/11*exp(2)+3/10) 2971204790877998 r005 Im(z^2+c),c=-39/86+9/20*I,n=16 2971204795322637 r005 Re(z^2+c),c=-11/34+23/58*I,n=60 2971204807340039 r005 Im(z^2+c),c=23/82+1/7*I,n=53 2971204808048259 h005 exp(cos(Pi*23/56)/cos(Pi*23/55)) 2971204812847714 m002 -Pi^4+Pi^9+ProductLog[Pi]/3 2971204820919833 a001 29/75025*2584^(21/38) 2971204821644169 r005 Re(z^2+c),c=-11/34+23/58*I,n=64 2971204828100943 m004 2+(5*Sqrt[5]*Cot[Sqrt[5]*Pi])/(4*Pi) 2971204829715674 m001 GAMMA(3/4)^(2/3*exp(Pi)*Pi*3^(1/2)/GAMMA(2/3)) 2971204829715674 m001 GAMMA(3/4)^(GAMMA(1/3)/exp(-Pi)) 2971204829715674 m001 GAMMA(3/4)^(exp(Pi)*GAMMA(1/3)) 2971204838035671 r005 Im(z^2+c),c=-25/122+19/36*I,n=11 2971204843969611 r009 Im(z^3+c),c=-39/82+7/48*I,n=48 2971204844856322 s002 sum(A017375[n]/(exp(2*pi*n)+1),n=1..infinity) 2971204845557778 l006 ln(227/4430) 2971204854545578 r002 45th iterates of z^2 + 2971204855514005 r005 Im(z^2+c),c=-83/66+11/54*I,n=5 2971204865312385 m001 (Artin+ZetaQ(4))/(Si(Pi)-sin(1/5*Pi)) 2971204867826997 a007 Real Root Of 46*x^4-200*x^3-797*x^2+277*x-972 2971204876403768 a007 Real Root Of 848*x^4-199*x^3+775*x^2-16*x-85 2971204880001137 a001 53316291173/5778*521^(12/13) 2971204881760090 a003 -1/2-cos(1/5*Pi)-cos(1/15*Pi)-2*cos(7/18*Pi) 2971204887042902 a007 Real Root Of 306*x^4+713*x^3-726*x^2-238*x+556 2971204888546071 r005 Re(z^2+c),c=-9/28+25/62*I,n=51 2971204898550810 r005 Re(z^2+c),c=-5/14+15/53*I,n=12 2971204898948297 r009 Im(z^3+c),c=-1/94+27/32*I,n=28 2971204909591302 m001 (-FeigenbaumDelta+2/3)/(-sqrt(1+sqrt(3))+3) 2971204912228810 a007 Real Root Of -378*x^4+960*x^3+857*x^2+761*x-324 2971204912989783 m001 ReciprocalLucas^Landau+GAMMA(7/12) 2971204919022034 a007 Real Root Of -740*x^4+497*x^3+739*x^2+439*x+84 2971204921089592 m001 (Magata-arctan(1/3)*MertensB2)/MertensB2 2971204921173406 a007 Real Root Of 285*x^4+341*x^3+689*x^2-730*x-271 2971204923077633 m001 Mills^arctan(1/2)+Tribonacci 2971204927184617 r005 Im(z^2+c),c=-17/50+22/45*I,n=51 2971204941866980 a007 Real Root Of 399*x^4+925*x^3-847*x^2-237*x-60 2971204950872733 m009 (5*Psi(1,2/3)+1/3)/(1/2*Pi^2+1/3) 2971204956014032 a001 139583862445/15127*521^(12/13) 2971204964480709 m005 (-11/20+1/4*5^(1/2))/(1/10*3^(1/2)-1/7) 2971204967104164 a001 365435296162/39603*521^(12/13) 2971204968722192 a001 956722026041/103682*521^(12/13) 2971204968958260 a001 2504730781961/271443*521^(12/13) 2971204968992701 a001 6557470319842/710647*521^(12/13) 2971204969000832 a001 10610209857723/1149851*521^(12/13) 2971204969013988 a001 4052739537881/439204*521^(12/13) 2971204969104157 a001 140728068720/15251*521^(12/13) 2971204969722189 a001 591286729879/64079*521^(12/13) 2971204973958243 a001 7787980473/844*521^(12/13) 2971204987154117 a007 Real Root Of 170*x^4+353*x^3-678*x^2-878*x-613 2971204993104325 r008 a(0)=3,K{-n^6,-71-7*n^3+69*n^2+44*n} 2971204998009224 a001 86267571272/843*521^(7/13) 2971205000414316 r008 a(0)=3,K{-n^6,-21+56*n+43*n^2-44*n^3} 2971205001200541 m002 -Pi+Pi/E^Pi+ProductLog[Pi]/Pi^3 2971205001453101 m001 DuboisRaymond*(GAMMA(7/12)-HeathBrownMoroz) 2971205002992586 a001 86267571272/9349*521^(12/13) 2971205013710717 r005 Re(z^2+c),c=-9/28+25/62*I,n=53 2971205018155722 m008 (1/4*Pi^4-5)/(4/5*Pi+4) 2971205027378239 a007 Real Root Of -344*x^4-891*x^3+375*x^2-136*x-276 2971205028878856 m001 ln(gamma)^Shi(1)/KomornikLoreti 2971205029169938 r005 Im(z^2+c),c=4/29+17/64*I,n=12 2971205037913246 a007 Real Root Of 10*x^4+301*x^3+114*x^2-34*x+109 2971205038383771 r005 Re(z^2+c),c=23/58+4/19*I,n=58 2971205042701095 r008 a(0)=3,K{-n^6,63-n-35*n^2+10*n^3} 2971205048584587 r005 Re(z^2+c),c=-11/34+23/58*I,n=63 2971205067327713 r008 a(0)=3,K{-n^6,-69-3*n^3+58*n^2+49*n} 2971205067986592 a007 Real Root Of -290*x^4+924*x^3-185*x^2+253*x+118 2971205071680167 m005 (1/2*2^(1/2)+11/12)/(4/11*3^(1/2)-1/12) 2971205079185806 l006 ln(2399/3229) 2971205079185806 p004 log(3229/2399) 2971205089106191 m005 (1/3*Zeta(3)-2/3)/(4/7*Pi-9/10) 2971205093171644 m001 (Catalan-Si(Pi))/(BesselI(1,1)+Sierpinski) 2971205096622458 r005 Im(z^2+c),c=-11/16+6/119*I,n=12 2971205097696521 m001 (3^(1/2)-ln(Pi))/(exp(1/Pi)+BesselK(1,1)) 2971205101703736 m001 (ErdosBorwein-Kac)/(ln(gamma)+Ei(1,1)) 2971205107106131 m005 (1/2*Catalan-10/11)/(7/9*Zeta(3)+7/12) 2971205115980738 a001 47/6557470319842*233^(6/23) 2971205150258879 r005 Re(z^2+c),c=-11/34+23/58*I,n=61 2971205152779569 r008 a(0)=3,K{-n^6,-53+31*n+57*n^2} 2971205156258147 a007 Real Root Of 148*x^4+237*x^3-773*x^2-720*x-633 2971205168679119 r005 Im(z^2+c),c=-13/10+4/211*I,n=4 2971205179087446 r009 Re(z^3+c),c=-25/66+13/44*I,n=10 2971205200999745 a001 32951280099/2207*521^(11/13) 2971205201996952 a001 32951280099/3571*521^(12/13) 2971205235860499 m005 (5*exp(1)+1/3)/(2*exp(1)-3/4) 2971205239180132 a007 Real Root Of -913*x^4+720*x^3+46*x^2+879*x-277 2971205241089137 r005 Re(z^2+c),c=-11/34+23/58*I,n=55 2971205241893171 r005 Im(z^2+c),c=-39/74+9/22*I,n=6 2971205251685284 m005 (-13/44+1/4*5^(1/2))/(1/11*Zeta(3)+7/9) 2971205255194000 m005 (3/4*Catalan-4)/(3/5*Pi-3) 2971205256936404 r009 Im(z^3+c),c=-35/74+5/33*I,n=28 2971205260476460 a007 Real Root Of 152*x^4+626*x^3+837*x^2+827*x-358 2971205290194861 a007 Real Root Of -124*x^4-372*x^3+376*x^2+868*x-834 2971205322825894 a001 3571/121393*377^(23/59) 2971205324613519 a007 Real Root Of 132*x^4-854*x^3+970*x^2+979*x+641 2971205332938773 m006 (1/2*exp(Pi)+1/5)/(1/5*exp(Pi)-2/3) 2971205337607899 m002 -Pi^9+Pi^4*Tanh[Pi] 2971205339149239 m001 exp(1/Pi)*(Artin+KomornikLoreti) 2971205348600447 m001 1/FransenRobinson/ln(Cahen)/exp(1) 2971205358701477 a007 Real Root Of 22*x^4+677*x^3+716*x^2+666*x-229 2971205376620463 m009 (3/5*Psi(1,3/4)+1)/(40*Catalan+5*Pi^2-1) 2971205381336418 a003 cos(Pi*13/75)-cos(Pi*19/61) 2971205385335417 r009 Im(z^3+c),c=-19/36+7/36*I,n=56 2971205395910742 r005 Im(z^2+c),c=-3/4+17/125*I,n=16 2971205399204671 r008 a(0)=3,K{-n^6,-13+52*n+35*n^2-40*n^3} 2971205415242014 a003 sin(Pi*1/107)/sin(Pi*32/71) 2971205421072658 r005 Im(z^2+c),c=-27/70+15/29*I,n=44 2971205423869343 a007 Real Root Of 113*x^4+214*x^3-553*x^2-885*x-941 2971205428910341 a001 34/119218851371*47^(14/23) 2971205431749115 k002 Champernowne real with 46*n^2-96*n+79 2971205441097616 m001 Sierpinski/(HardHexagonsEntropy-Psi(1,1/3)) 2971205448870193 r005 Im(z^2+c),c=-49/122+21/43*I,n=34 2971205461275226 m001 QuadraticClass^(Sarnak/ZetaQ(3)) 2971205462125188 m002 -Pi^4+Pi^9+Log[Pi]/Pi 2971205470632300 r008 a(0)=3,K{-n^6,15+19*n^3+34*n^2-33*n} 2971205479562286 r005 Re(z^2+c),c=-23/50+15/31*I,n=20 2971205483580698 m004 -93750/Pi+25*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 2971205490656472 p004 log(20261/15053) 2971205496174782 m001 (Ei(1,1)-Otter)/(StolarskyHarborth+Trott) 2971205500138593 r002 32th iterates of z^2 + 2971205503167145 m001 2^(1/2)+AlladiGrinstead+RenyiParking 2971205515023840 r005 Re(z^2+c),c=-11/34+23/58*I,n=56 2971205519781144 r005 Re(z^2+c),c=-41/114+17/52*I,n=10 2971205520728089 a001 10182505537/161*322^(2/3) 2971205521795839 a001 9349/317811*377^(23/59) 2971205524491783 r005 Im(z^2+c),c=-19/78+17/39*I,n=12 2971205533797502 a003 cos(Pi*3/67)*cos(Pi*27/67) 2971205536444558 r005 Im(z^2+c),c=-11/28+27/52*I,n=59 2971205540418555 m001 (GAMMA(3/4)-Khinchin)/(Landau-MertensB2) 2971205542266283 l006 ln(324/6323) 2971205549893263 m005 (1/3*exp(1)-1/12)/(2/5*gamma-3) 2971205550825163 a001 6119/208010*377^(23/59) 2971205553052591 m001 Artin-Conway+FibonacciFactorial 2971205555060485 a001 64079/2178309*377^(23/59) 2971205557413410 a001 365435296162/521*199^(3/11) 2971205557678057 a001 39603/1346269*377^(23/59) 2971205560983770 r009 Re(z^3+c),c=-14/29+11/26*I,n=15 2971205568664858 l006 ln(6327/8516) 2971205568766272 a001 15127/514229*377^(23/59) 2971205570730822 r005 Re(z^2+c),c=-11/34+23/58*I,n=51 2971205578707384 a007 Real Root Of -276*x^4-735*x^3+568*x^2+993*x+167 2971205586494453 a001 7/28657*365435296162^(11/14) 2971205602859641 r005 Im(z^2+c),c=-17/94+53/55*I,n=6 2971205604606197 a001 377/2*29^(5/37) 2971205606724809 r005 Re(z^2+c),c=-19/58+23/60*I,n=49 2971205611706400 m001 CareFree/ln(ErdosBorwein)*sqrt(2)^2 2971205616893336 r005 Re(z^2+c),c=-9/28+25/62*I,n=46 2971205632047563 m001 (-LaplaceLimit+MertensB3)/(Gompertz-exp(Pi)) 2971205637872540 m005 (-1/18+1/6*5^(1/2))/(7/11*gamma+7/10) 2971205641854956 r002 3th iterates of z^2 + 2971205644766029 a001 2889/98209*377^(23/59) 2971205647785961 m003 -6-Sec[1/2+Sqrt[5]/2]+6*Sinh[1/2+Sqrt[5]/2] 2971205658122911 r008 a(0)=3,K{-n^6,51+43*n^3-20*n^2-39*n} 2971205662923803 r005 Re(z^2+c),c=-11/34+23/58*I,n=58 2971205666881659 m001 (GAMMA(19/24)+Tribonacci)/(Chi(1)-Si(Pi)) 2971205669352577 r005 Re(z^2+c),c=25/56+3/8*I,n=21 2971205675557795 m001 (3^(1/3))^Ei(1)*ZetaR(2) 2971205687764280 g003 Im(GAMMA(121/30+I*(-2/5))) 2971205691695949 a001 10946/521*2^(1/2) 2971205694714035 a007 Real Root Of 318*x^4+951*x^3-28*x^2-185*x-141 2971205695391327 r005 Im(z^2+c),c=-31/102+13/27*I,n=26 2971205715743963 a007 Real Root Of 965*x^4-573*x^3-858*x^2-366*x+192 2971205721999918 a001 43133785636/2889*521^(11/13) 2971205724034334 a001 692290933700/233 2971205724307673 r005 Im(z^2+c),c=23/82+1/7*I,n=47 2971205730459097 m001 Lehmer/exp(GolombDickman)^2*MadelungNaCl 2971205735167633 r008 a(0)=3,K{-n^6,11+43*n+20*n^2-22*n^3} 2971205746246440 r005 Im(z^2+c),c=-15/58+28/61*I,n=39 2971205764543105 m005 (1/3*Pi-3/5)/(3/4*2^(1/2)+4/9) 2971205766192871 r009 Re(z^3+c),c=-5/29+22/23*I,n=10 2971205773025100 m001 (Trott+Trott2nd)/(BesselI(0,1)-Riemann1stZero) 2971205773421927 m001 KhinchinHarmonic^(MinimumGamma/RenyiParking) 2971205790113259 a007 Real Root Of 963*x^4+508*x^3+816*x^2-6*x-68 2971205798012834 a001 32264490531/2161*521^(11/13) 2971205802149615 h001 (9/10*exp(2)+5/8)/(2/3*exp(1)+7/11) 2971205809102969 a001 591286729879/39603*521^(11/13) 2971205810720998 a001 774004377960/51841*521^(11/13) 2971205810875421 b008 -4/9+Sqrt[35/3] 2971205810957065 a001 4052739537881/271443*521^(11/13) 2971205810991507 a001 1515744265389/101521*521^(11/13) 2971205811012793 a001 3278735159921/219602*521^(11/13) 2971205811102963 a001 2504730781961/167761*521^(11/13) 2971205811720995 a001 956722026041/64079*521^(11/13) 2971205815879935 a005 (1/sin(54/137*Pi))^796 2971205815957050 a001 182717648081/12238*521^(11/13) 2971205826635509 r005 Im(z^2+c),c=-15/29+8/35*I,n=4 2971205828570168 r005 Im(z^2+c),c=15/46+1/11*I,n=46 2971205829038483 r005 Re(z^2+c),c=-29/102+28/55*I,n=44 2971205840008037 a001 139583862445/843*521^(6/13) 2971205840346787 r005 Im(z^2+c),c=-17/30+49/116*I,n=55 2971205840372484 r005 Im(z^2+c),c=-89/86+17/62*I,n=3 2971205840612992 m005 (1/2*2^(1/2)-7/9)/(4/7*Pi+7/12) 2971205841008061 p003 LerchPhi(1/2,2,457/216) 2971205844991401 a001 139583862445/9349*521^(11/13) 2971205846385277 a007 Real Root Of 781*x^4-890*x^3-687*x^2-758*x-194 2971205854186735 l006 ln(9185/9462) 2971205867610937 l006 ln(3928/5287) 2971205871082025 r005 Im(z^2+c),c=-3/28+23/58*I,n=22 2971205875066870 m005 (1/2*Pi-1/8)/(1/2*3^(1/2)+4) 2971205897960654 m001 Backhouse^cos(Pi/12)*Backhouse^GAMMA(11/24) 2971205902781535 m001 DuboisRaymond*Backhouse*exp(sinh(1))^2 2971205905045518 r005 Re(z^2+c),c=-23/98+30/49*I,n=4 2971205915033545 m009 (1/4*Psi(1,2/3)+1/5)/(4/5*Psi(1,2/3)+4/5) 2971205915046584 a007 Real Root Of -51*x^4+58*x^3+772*x^2+651*x+615 2971205917926012 l006 ln(421/8216) 2971205921819535 r005 Im(z^2+c),c=7/23+7/64*I,n=49 2971205932643778 m001 (2^(1/3)+ln(2))/(-Conway+MasserGramain) 2971205935750907 m001 Riemann2ndZero^2*FeigenbaumC/exp(Zeta(9)) 2971205941220494 r005 Im(z^2+c),c=-11/46+14/31*I,n=35 2971205956960070 p004 log(28493/21169) 2971205964626874 r002 4th iterates of z^2 + 2971205968225325 a001 377/4870847*11^(23/41) 2971205977816162 r005 Im(z^2+c),c=-5/17+23/48*I,n=24 2971205982843374 a007 Real Root Of -454*x^4-952*x^3+949*x^2-883*x-590 2971205991033201 h005 exp(cos(Pi*5/44)/cos(Pi*8/47)) 2971205991746368 m001 (-exp(1/Pi)+LaplaceLimit)/(arctan(1/3)-exp(1)) 2971206010458807 m001 (-Totient+ThueMorse)/(sin(1)+BesselI(0,2)) 2971206018820983 a005 (1/cos(13/102*Pi))^628 2971206019110530 r005 Im(z^2+c),c=-119/82+4/55*I,n=4 2971206025255244 r005 Re(z^2+c),c=-11/28+7/36*I,n=5 2971206025999656 m005 (1/3*Zeta(3)-1/10)/(7/12*Zeta(3)-3/5) 2971206031277584 m001 (-Zeta(1,2)+Rabbit)/(Psi(2,1/3)-arctan(1/3)) 2971206042393427 r002 4th iterates of z^2 + 2971206042998616 a001 53316291173/2207*521^(10/13) 2971206043203065 m008 (1/4*Pi^5-5/6)/(5/6*Pi^5-1/3) 2971206043995824 a001 53316291173/3571*521^(11/13) 2971206044120821 r005 Im(z^2+c),c=25/114+16/27*I,n=7 2971206051054114 h001 (-6*exp(-2)-6)/(-4*exp(3/2)-5) 2971206057302679 a001 591286729879/322*123^(1/10) 2971206064187544 r005 Re(z^2+c),c=-5/13+2/45*I,n=15 2971206070538772 r008 a(0)=3,K{-n^6,-58+34*n+61*n^2-2*n^3} 2971206075800914 a007 Real Root Of 417*x^4-652*x^3-253*x^2-447*x+169 2971206081044883 r005 Im(z^2+c),c=-19/74+27/59*I,n=28 2971206081949134 r005 Im(z^2+c),c=-25/114+25/56*I,n=13 2971206083479903 m001 (FeigenbaumAlpha-MinimumGamma)/(ln(5)+Ei(1)) 2971206083729304 m001 exp(CareFree)*Backhouse^2*FeigenbaumB^2 2971206088184693 a007 Real Root Of 682*x^4-746*x^3+411*x^2-787*x-295 2971206105497650 r005 Im(z^2+c),c=-31/42+4/27*I,n=53 2971206106154672 r005 Im(z^2+c),c=-9/74+13/32*I,n=12 2971206108731634 r008 a(0)=3,K{-n^6,-54+32*n+57*n^2} 2971206113492902 r008 a(0)=3,K{-n^6,40+n^3-62*n^2+55*n} 2971206120365355 m001 1/ln(Ei(1))^2*Bloch^2/GAMMA(2/3)^2 2971206129214444 a001 47/32951280099*377^(9/10) 2971206134920987 b008 45*Sqrt[CosIntegral[(2*Pi)/5]] 2971206135096022 r005 Re(z^2+c),c=-35/118+21/46*I,n=20 2971206136053405 r009 Re(z^3+c),c=-1/31+8/49*I,n=2 2971206137441796 a005 (1/cos(6/91*Pi))^1116 2971206145063206 m005 (1/2*Catalan-2)/(5/6*gamma-1) 2971206145576954 m001 Sierpinski/exp(FeigenbaumDelta)*GAMMA(3/4) 2971206146880641 r005 Im(z^2+c),c=-1+67/235*I,n=6 2971206147416712 m001 1/DuboisRaymond*ln(Conway)*FeigenbaumDelta^2 2971206163464296 m001 BesselK(0,1)^2/Bloch^2*exp(log(2+sqrt(3))) 2971206165676110 a001 2207/75025*377^(23/59) 2971206172267649 a007 Real Root Of -433*x^4-454*x^3-423*x^2+142*x+71 2971206179619234 m006 (2/3*ln(Pi)-1/2)/(1/6*exp(Pi)+5) 2971206181636881 r005 Re(z^2+c),c=-31/90+10/31*I,n=29 2971206181857343 m001 (BesselK(1,1)-exp(Pi))/(-ArtinRank2+Backhouse) 2971206185093620 a007 Real Root Of -394*x^4-473*x^3-575*x^2+877*x+302 2971206188158257 a009 1/5*(5^(7/12)-7)*5^(3/4) 2971206208868526 m001 (MasserGramain-ZetaP(3))/(ln(3)-Khinchin) 2971206211618150 m001 Weierstrass/gamma(2)/ZetaQ(4) 2971206212276714 m001 (Zeta(5)-Pi^(1/2))/(FeigenbaumAlpha-Trott2nd) 2971206213607288 m006 (Pi+1/2)/(2/5*exp(Pi)+3) 2971206214217457 l006 ln(5457/7345) 2971206224423544 r005 Re(z^2+c),c=-27/82+17/45*I,n=36 2971206224899420 r005 Im(z^2+c),c=-31/122+23/37*I,n=61 2971206230411190 r009 Re(z^3+c),c=-14/31+27/64*I,n=50 2971206240920112 r008 a(0)=3,K{-n^6,3+42*n+22*n^2-33*n^3} 2971206270697724 m002 -Pi^4+Pi^9+Sinh[Pi]/Pi^3 2971206281393351 m001 (Artin-Gompertz)/(StronglyCareFree-Trott2nd) 2971206282512739 m002 -9+Pi^5+Tanh[Pi]/Pi^2 2971206284265864 m001 (GAMMA(3/4)-LaplaceLimit)/(MertensB2+Thue) 2971206284893062 m001 OneNinth^(Artin*Backhouse) 2971206285361178 m001 1/GAMMA(1/4)/ln(MertensB1)*Zeta(3)^2 2971206285486509 r009 Im(z^3+c),c=-1/94+27/32*I,n=36 2971206287432496 r002 37th iterates of z^2 + 2971206289548754 b008 -1+EulerGamma+Pi/25 2971206293309014 r009 Re(z^3+c),c=-39/110+16/63*I,n=21 2971206297073604 r002 4th iterates of z^2 + 2971206337477037 a007 Real Root Of -233*x^4-565*x^3+304*x^2-517*x-881 2971206344109267 r009 Re(z^3+c),c=-15/82+45/46*I,n=40 2971206352806674 r008 a(0)=3,K{-n^6,24+9*n^3+69*n^2-67*n} 2971206367399993 r008 a(0)=3,K{-n^6,34+9*n^3+74*n^2-82*n} 2971206386373129 m001 (-Lehmer+Mills)/(exp(Pi)+ln(2^(1/2)+1)) 2971206389306259 r009 Re(z^3+c),c=-55/122+27/62*I,n=29 2971206409102996 l006 ln(6986/9403) 2971206410069242 m002 -Pi^4+Pi^9+Cosh[Pi]/Pi^3 2971206413333658 r005 Im(z^2+c),c=-55/74+7/53*I,n=31 2971206417721012 r009 Im(z^3+c),c=-55/102+17/64*I,n=49 2971206421272760 a007 Real Root Of 934*x^4-776*x^3+896*x^2+440*x+24 2971206431259972 m001 (3^(1/3))^(exp(1)*Magata) 2971206432767122 k003 Champernowne real with 3*n^3+19/2*n^2-85/2*n+32 2971206434755116 k002 Champernowne real with 93/2*n^2-195/2*n+80 2971206443349805 a007 Real Root Of -391*x^4-976*x^3+290*x^2-595*x+544 2971206458692130 a001 1/76*(1/2*5^(1/2)+1/2)^29*199^(9/16) 2971206458854657 r008 a(0)=3,K{-n^6,2+26*n^3+7*n^2} 2971206480262955 a007 Real Root Of 141*x^4+259*x^3-508*x^2-263*x-492 2971206493340187 m001 ln(Si(Pi))*DuboisRaymond^2*GAMMA(5/6)^2 2971206499852530 a007 Real Root Of 379*x^4-882*x^3+570*x^2-438*x+100 2971206511256900 m001 (BesselJ(1,1)-GaussAGM)/(Kolakoski-Robbin) 2971206511944900 r005 Re(z^2+c),c=-57/122+15/37*I,n=3 2971206520902248 m006 (2*ln(Pi)+1/4)/(1/3*exp(Pi)+5/6) 2971206534970211 a007 Real Root Of 335*x^4+708*x^3-905*x^2-205*x-157 2971206540292520 m001 (Pi+exp(Pi))/(Rabbit+ZetaP(3)) 2971206541795578 r002 14th iterates of z^2 + 2971206548285915 r008 a(0)=3,K{-n^6,-16+61*n-53*n^2+43*n^3} 2971206552264187 r005 Im(z^2+c),c=-15/14+30/109*I,n=8 2971206553970090 r008 a(0)=3,K{-n^6,8+19*n-32*n^2+40*n^3} 2971206562016140 r005 Im(z^2+c),c=3/64+17/53*I,n=17 2971206563998937 a001 139583862445/5778*521^(10/13) 2971206565993887 a001 1144206275/124*521^(12/13) 2971206594605501 m001 exp(BesselK(1,1))^2*CareFree^2/GAMMA(1/6) 2971206600194150 r008 a(0)=3,K{-n^6,42-26*n-24*n^2+43*n^3} 2971206604176140 r005 Im(z^2+c),c=-67/54+1/62*I,n=47 2971206609418506 m001 GAMMA(19/24)/(Landau+Magata) 2971206610773608 a003 cos(Pi*7/89)-sin(Pi*27/115) 2971206614573842 r002 16th iterates of z^2 + 2971206617053370 r005 Re(z^2+c),c=31/78+15/44*I,n=29 2971206626899651 r005 Im(z^2+c),c=-5/114+18/49*I,n=26 2971206631499509 m001 (exp(1)+GAMMA(11/12))/(Kolakoski+PlouffeB) 2971206632316080 g006 Psi(1,11/12)+Psi(1,3/5)-Psi(1,8/11)-Psi(1,3/4) 2971206636338449 m001 (Zeta(3)-FeigenbaumC)/(Niven+ThueMorse) 2971206637777634 r009 Re(z^3+c),c=-47/102+18/41*I,n=61 2971206637947331 m005 (15/28+1/4*5^(1/2))/(6/7*Catalan-5/12) 2971206638033520 a007 Real Root Of -128*x^4+562*x^3+622*x^2+644*x-260 2971206638894131 m001 (TwinPrimes+1)/(-GAMMA(3/4)+2/3) 2971206640011874 a001 365435296162/15127*521^(10/13) 2971206650105829 r002 7th iterates of z^2 + 2971206651102013 a001 956722026041/39603*521^(10/13) 2971206652720042 a001 2504730781961/103682*521^(10/13) 2971206652956109 a001 6557470319842/271443*521^(10/13) 2971206653011837 a001 10610209857723/439204*521^(10/13) 2971206653102007 a001 4052739537881/167761*521^(10/13) 2971206653720039 a001 1548008755920/64079*521^(10/13) 2971206657956095 a001 591286729879/24476*521^(10/13) 2971206658945246 r005 Im(z^2+c),c=7/50+22/47*I,n=4 2971206663750811 m006 (1/6*ln(Pi)+2/3)/(3*Pi^2-3/4) 2971206664875858 r005 Re(z^2+c),c=37/86+20/61*I,n=7 2971206676546539 m001 (Pi^(1/2)-Shi(1))/(KhinchinHarmonic+Robbin) 2971206682007090 a001 267913919*521^(5/13) 2971206686990455 a001 225851433717/9349*521^(10/13) 2971206690090292 a007 Real Root Of 430*x^4+945*x^3-602*x^2+830*x-944 2971206690182116 m001 ln(GAMMA(1/4))/LaplaceLimit^2/Pi^2 2971206704100659 m001 1/ln((3^(1/3)))^2*Champernowne/GAMMA(1/6)^2 2971206711011862 a001 377/843*(1/2+1/2*5^(1/2))^47 2971206714823973 m001 (Si(Pi)-ln(2))/(-ArtinRank2+HardyLittlewoodC4) 2971206714899645 r005 Im(z^2+c),c=-45/118+31/63*I,n=37 2971206746217724 a007 Real Root Of -211*x^4-527*x^3+211*x^2-441*x-552 2971206759030700 r005 Im(z^2+c),c=-27/106+27/59*I,n=41 2971206766345605 a007 Real Root Of -75*x^4+56*x^3+818*x^2-117*x-255 2971206766802965 a003 cos(Pi*1/90)/cos(Pi*34/87) 2971206789909584 a007 Real Root Of 207*x^4+631*x^3+10*x^2+186*x+883 2971206793295550 a007 Real Root Of -217*x^4-827*x^3-886*x^2-719*x+905 2971206816638596 r005 Im(z^2+c),c=-5/29+25/59*I,n=16 2971206817014611 r005 Im(z^2+c),c=-8/25+27/56*I,n=61 2971206836247363 r008 a(0)=3,K{-n^6,19+31*n-9*n^2-9*n^3} 2971206838126793 m001 (Shi(1)-Zeta(3))/(Pi+3^(1/2)) 2971206845811001 a001 11/1597*2584^(8/43) 2971206847965121 m001 FibonacciFactorial/(Trott^CareFree) 2971206851816554 p001 sum(1/(425*n+343)/(24^n),n=0..infinity) 2971206878732473 s002 sum(A129362[n]/(n^3*exp(n)+1),n=1..infinity) 2971206884997726 a001 86267571272/2207*521^(9/13) 2971206885994934 a001 86267571272/3571*521^(10/13) 2971206894302278 m001 (-GAMMA(13/24)+ThueMorse)/(5^(1/2)+Ei(1)) 2971206903170238 m008 (1/4*Pi+2/3)/(1/2*Pi^4+1/6) 2971206905868863 h001 (-exp(1)+5)/(-7*exp(7)-3) 2971206916239211 m009 (16/5*Catalan+2/5*Pi^2-1)/(1/4*Psi(1,3/4)-5/6) 2971206922550059 r008 a(0)=3,K{-n^6,5-22*n^3+54*n^2-n} 2971206928585099 m005 (5*Pi-1/2)/(5/6*2^(1/2)-2/3) 2971206931334497 r009 Re(z^3+c),c=-23/78+1/8*I,n=10 2971206934820361 m005 (1/2*Catalan-1/12)/(3/4*exp(1)-7/9) 2971206940191144 m005 (1/3*gamma+3/4)/(5*gamma+2/7) 2971206955109295 m001 (Zeta(1,-1)+cos(1/12*Pi))/(Khinchin+ZetaQ(3)) 2971206974834913 m001 (1+Ei(1,1))/(-gamma(3)+ThueMorse) 2971206978236692 a007 Real Root Of -109*x^4+209*x^3-355*x^2+893*x+303 2971206990764890 a001 76*139583862445^(1/7) 2971206996256588 h001 (-10*exp(3)+5)/(-12*exp(4)-4) 2971206998560244 m001 HardyLittlewoodC5/(BesselI(1,2)^ln(2)) 2971207017798975 a007 Real Root Of -97*x^4+329*x^3+867*x^2+463*x+13 2971207020812906 m001 Cahen*(ArtinRank2-CopelandErdos) 2971207026288929 m001 1/LambertW(1)^2/ln(Lehmer)*sqrt(5)^2 2971207029115369 r005 Im(z^2+c),c=-31/94+20/41*I,n=39 2971207032410546 a007 Real Root Of -19*x^4-536*x^3+852*x^2+141*x+363 2971207052124106 m001 (2^(1/3))^2/ln(LandauRamanujan)^2/exp(1)^2 2971207058015672 m001 arctan(1/2)-sin(1/12*Pi)*Cahen 2971207058015672 m001 arctan(1/2)-sin(Pi/12)*Cahen 2971207064874573 m001 (Chi(1)-Otter)/(-Sarnak+Trott) 2971207076773208 r009 Im(z^3+c),c=-1/70+36/43*I,n=6 2971207081351253 r005 Re(z^2+c),c=-23/62+9/47*I,n=24 2971207087486157 q001 2683/903 2971207089858921 r005 Im(z^2+c),c=-23/58+28/53*I,n=43 2971207092022431 r005 Re(z^2+c),c=-15/14+129/251*I,n=4 2971207097103265 r002 28th iterates of z^2 + 2971207104649326 l006 ln(1529/2058) 2971207110700981 m001 1/Zeta(9)/Catalan*exp(sqrt(1+sqrt(3)))^2 2971207130542498 r005 Im(z^2+c),c=-4/7+53/124*I,n=50 2971207134808317 m001 Magata/Grothendieck/Cahen 2971207135585102 a003 sin(Pi*11/93)*sin(Pi*18/59) 2971207138662611 p001 sum(1/(459*n+338)/(100^n),n=0..infinity) 2971207144137831 m001 (-ln(Pi)+Thue)/(cos(1)+BesselK(0,1)) 2971207161836400 m001 (BesselI(1,2)+Weierstrass)/(ln(2)+gamma(3)) 2971207164382992 r005 Re(z^2+c),c=31/90+7/60*I,n=37 2971207165794208 a007 Real Root Of -297*x^4-658*x^3+759*x^2+62*x-629 2971207168844416 r005 Re(z^2+c),c=12/29+5/14*I,n=35 2971207172705940 l006 ln(97/1893) 2971207181904082 m002 -Pi^4+Pi^9+Log[Pi]/3 2971207182649882 r008 a(0)=3,K{-n^6,-11+3*n^3+70*n^2-27*n} 2971207201892318 a007 Real Root Of -420*x^4-894*x^3+761*x^2-770*x+277 2971207213575239 a005 (1/cos(37/151*Pi))^45 2971207213998856 m001 1/ln(GAMMA(19/24))/MinimumGamma^2*Zeta(7)^2 2971207214528086 h001 (6/7*exp(1)+1/7)/(3/11*exp(1)+1/11) 2971207223982845 r005 Re(z^2+c),c=-17/44+11/52*I,n=7 2971207244283163 b008 (17*Erfc[1])/9 2971207245161709 m005 (1/2*3^(1/2)-4)/(67/72+1/18*5^(1/2)) 2971207246404498 m001 (Bloch-gamma)/(-Kolakoski+TreeGrowth2nd) 2971207254926586 m001 ZetaR(2)*(FeigenbaumKappa+MasserGramain) 2971207284193387 r005 Im(z^2+c),c=-13/40+13/28*I,n=17 2971207287025933 a003 cos(Pi*5/87)*cos(Pi*51/104) 2971207291630446 m005 (-1/44+1/4*5^(1/2))/(6*Pi-4/5) 2971207293355297 r009 Im(z^3+c),c=-9/122+5/6*I,n=28 2971207296220208 r005 Im(z^2+c),c=17/94+4/17*I,n=13 2971207344640305 r005 Im(z^2+c),c=-67/74+13/54*I,n=13 2971207345373562 m002 2/(Pi^2*Log[Pi])+3/ProductLog[Pi] 2971207352702824 a007 Real Root Of -894*x^4+728*x^3-499*x^2+804*x+309 2971207356040730 m001 (-OneNinth+ZetaP(2))/(LambertW(1)+Lehmer) 2971207360734983 m001 BesselJ(0,1)/exp(Cahen)*exp(1)^2 2971207365887899 r005 Re(z^2+c),c=-23/34+67/101*I,n=3 2971207381369011 m001 (5^(1/2)-GAMMA(3/4))/(-exp(1/Pi)+MertensB2) 2971207401437447 m008 (1/6*Pi^2+1)/(3*Pi^3-4) 2971207401470457 r005 Re(z^2+c),c=31/102+1/8*I,n=47 2971207403439592 h002 exp(15^(11/12)-5^(6/7)) 2971207403439592 h007 exp(15^(11/12)-5^(6/7)) 2971207404098889 m001 1/Pi/exp(FibonacciFactorial)/sqrt(Pi)^2 2971207405397223 r008 a(0)=3,K{-n^6,13+45*n-24*n^3} 2971207405998194 a001 75283811239/1926*521^(9/13) 2971207407993145 a001 10182505537/682*521^(11/13) 2971207415727249 m005 (27/44+1/4*5^(1/2))/(5/24+1/12*5^(1/2)) 2971207426047132 m001 (polylog(4,1/2)+ArtinRank2)/(Kac-MertensB2) 2971207435171526 b008 23/3+9*Sqrt[6] 2971207437761117 k002 Champernowne real with 47*n^2-99*n+81 2971207445882050 r008 a(0)=3,K{-n^6,33+9*n+19*n^2-27*n^3} 2971207449995165 r008 a(0)=3,K{-n^6,3+12*n-13*n^2+33*n^3} 2971207450397744 r002 42th iterates of z^2 + 2971207457867379 m002 -5/3+Pi^3+Sinh[Pi]/Pi^3 2971207462365585 a007 Real Root Of 973*x^4-392*x^3-7*x^2-329*x-115 2971207470342406 r008 a(0)=3,K{-n^6,-13+48*n-39*n^2+39*n^3} 2971207477762181 a008 Real Root of (-6+6*x-x^2-3*x^3-2*x^4+x^5) 2971207479510331 a007 Real Root Of -60*x^4-128*x^3-630*x^2+675*x-2 2971207482011153 a001 591286729879/15127*521^(9/13) 2971207482759657 r005 Im(z^2+c),c=-11/40+27/58*I,n=40 2971207493101295 a001 516002918640/13201*521^(9/13) 2971207494719325 a001 4052739537881/103682*521^(9/13) 2971207494955392 a001 3536736619241/90481*521^(9/13) 2971207495101290 a001 6557470319842/167761*521^(9/13) 2971207495719322 a001 2504730781961/64079*521^(9/13) 2971207499955379 a001 956722026041/24476*521^(9/13) 2971207517039168 r008 a(0)=3,K{-n^6,37-27*n-14*n^2+39*n^3} 2971207523318031 r005 Im(z^2+c),c=-5/12+5/59*I,n=4 2971207524006381 a001 365435296162/843*521^(4/13) 2971207525096187 m005 (1/3*Pi+1/12)/(1/3*2^(1/2)-1/11) 2971207528989747 a001 365435296162/9349*521^(9/13) 2971207530889178 r008 a(0)=3,K{-n^6,29-7*n-30*n^2+43*n^3} 2971207544095956 m001 (gamma(3)-KhinchinLevy)/(MertensB1-TwinPrimes) 2971207556858217 r005 Im(z^2+c),c=-17/90+22/51*I,n=27 2971207563409606 r008 a(0)=3,K{-n^6,27+50*n^3-52*n^2+10*n} 2971207569552236 h001 (2/7*exp(2)+2/11)/(1/11*exp(2)+1/10) 2971207577804522 r002 23th iterates of z^2 + 2971207580386886 p003 LerchPhi(1/32,6,191/229) 2971207595024507 r005 Im(z^2+c),c=-3/10+22/47*I,n=22 2971207606666655 h001 (-3*exp(-1)-4)/(-9*exp(3)+9) 2971207606922376 m002 -3+(3*Coth[Pi])/(Pi^4*ProductLog[Pi]) 2971207607168879 a007 Real Root Of 284*x^4+382*x^3+820*x^2-952*x-29 2971207625786872 a007 Real Root Of -423*x^4-905*x^3+832*x^2-892*x-767 2971207628086366 r005 Re(z^2+c),c=-19/58+23/60*I,n=51 2971207636199460 m001 StronglyCareFree^MasserGramainDelta*Bloch 2971207640635656 r005 Re(z^2+c),c=-11/40+33/62*I,n=50 2971207642469024 a001 4052739537881/2207*199^(1/11) 2971207656799438 r005 Re(z^2+c),c=-25/58+26/59*I,n=8 2971207656964086 m001 MertensB1-gamma(1)^Zeta(3) 2971207669517811 a007 Real Root Of -339*x^4-989*x^3+415*x^2+895*x-526 2971207670154137 m001 Riemann2ndZero/(Robbin^Chi(1)) 2971207676797617 p003 LerchPhi(1/12,4,293/121) 2971207677218119 m001 Paris^2*ln(GaussKuzminWirsing)^2*arctan(1/2)^2 2971207701315843 m001 ReciprocalLucas+Sierpinski^ZetaQ(3) 2971207701516039 h001 (5/11*exp(2)+8/9)/(1/4*exp(1)+3/4) 2971207715665652 m005 (1/2*exp(1)+1/11)/(2/3*3^(1/2)-2/3) 2971207726997075 a001 139583862445/2207*521^(8/13) 2971207727994283 a001 139583862445/3571*521^(9/13) 2971207729047486 l006 ln(5637/5807) 2971207735689440 r009 Re(z^3+c),c=-9/20+13/31*I,n=54 2971207737670338 a007 Real Root Of -116*x^4-566*x^3-387*x^2+754*x-149 2971207742027349 r005 Re(z^2+c),c=-4/11+9/52*I,n=4 2971207767260651 p004 log(34679/1777) 2971207771157774 m001 (-ln(3)+Salem)/(2^(1/3)+GAMMA(2/3)) 2971207772368262 m007 (-1/4*gamma-3/5)/(-2*gamma-6*ln(2)+Pi-1/3) 2971207780480060 r005 Im(z^2+c),c=-29/94+14/29*I,n=29 2971207789587001 m005 (1/2*3^(1/2)-3)/(5*2^(1/2)+1/9) 2971207792065562 r005 Re(z^2+c),c=9/23+2/13*I,n=25 2971207801719697 m006 (4*Pi^2+3/4)/(5/6*ln(Pi)+2/5) 2971207808544421 a001 521/2*13^(2/39) 2971207816121420 a003 cos(Pi*1/117)-cos(Pi*9/115) 2971207816429381 a007 Real Root Of 976*x^4-177*x^3-818*x^2-191*x+126 2971207816816853 m001 (Mills-Pi^(1/2)*TreeGrowth2nd)/Pi^(1/2) 2971207821765816 p003 LerchPhi(1/5,5,321/158) 2971207821857638 l006 ln(6775/9119) 2971207834421669 m001 (GAMMA(3/4)-Ei(1))/(PrimesInBinary+Tribonacci) 2971207834753772 r009 Re(z^3+c),c=-10/23+9/22*I,n=10 2971207835694098 a001 123/8*196418^(2/37) 2971207840124565 p004 log(30893/1583) 2971207841741035 r002 6th iterates of z^2 + 2971207846414141 m001 TwinPrimes/(GAMMA(13/24)+LandauRamanujan2nd) 2971207867960434 r005 Re(z^2+c),c=-11/34+23/58*I,n=53 2971207870144687 m001 (Mills-PlouffeB)/(ln(5)+KhinchinLevy) 2971207872642981 r005 Re(z^2+c),c=-41/110+7/39*I,n=27 2971207875328949 m004 -5+3*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi]/2 2971207892732063 m001 (ln(gamma)+ln(3))/(MertensB1-ZetaP(4)) 2971207901227206 r002 2th iterates of z^2 + 2971207902743699 a009 10^(1/4)/(23^(1/2)+2^(1/4)) 2971207906630579 r009 Re(z^3+c),c=-65/122+9/28*I,n=59 2971207908238028 m001 GAMMA(11/24)*exp(Lehmer)^2/GAMMA(5/12) 2971207908793187 a001 12586269025/322*322^(3/4) 2971207909196554 m001 GAMMA(5/24)^GaussKuzminWirsing*Ei(1) 2971207921732047 m001 (Champernowne+PlouffeB)/(Riemann2ndZero-Thue) 2971207935190779 m005 (1/2*gamma+4/5)/(5*gamma+7/9) 2971207962632207 r005 Re(z^2+c),c=-11/34+8/33*I,n=4 2971207967226461 m001 (-Rabbit+Sarnak)/(Si(Pi)+FransenRobinson) 2971207970523443 r005 Im(z^2+c),c=7/23+6/53*I,n=16 2971207977807245 a001 47/233*514229^(9/44) 2971207980911745 m006 (2*exp(2*Pi)+2/3)/(1/6*exp(Pi)-1/4) 2971207987041728 b008 -39/4+E^8 2971207988795211 m009 (4/5*Psi(1,2/3)-5)/(40*Catalan+5*Pi^2-1/5) 2971207997264307 a007 Real Root Of 640*x^4-413*x^3+736*x^2-832*x-328 2971207999600814 m001 gamma(3)/(Ei(1,1)+Bloch) 2971208000654416 r008 a(0)=3,K{-n^6,-54+31*n+58*n^2} 2971208013760433 r005 Im(z^2+c),c=-25/78+13/27*I,n=28 2971208030895278 l006 ln(5246/7061) 2971208037398148 r002 27th iterates of z^2 + 2971208047954909 r002 17th iterates of z^2 + 2971208060935786 r004 Im(z^2+c),c=-14/11+9/13*I,z(0)=-1,n=6 2971208068155725 a007 Real Root Of -117*x^4-285*x^3+185*x^2-256*x-751 2971208073612347 q001 1001/3369 2971208078750904 r005 Im(z^2+c),c=3/56+13/41*I,n=21 2971208081967003 a008 Real Root of (1+4*x+4*x^2+5*x^3-4*x^4+x^5) 2971208093342795 m005 (1/2*2^(1/2)+2/9)/(3/11*exp(1)-3/7) 2971208094347791 r005 Im(z^2+c),c=-29/54+9/19*I,n=57 2971208114792512 r005 Re(z^2+c),c=-11/31+17/61*I,n=26 2971208130217219 m001 (Pi+ln(5))/(KhinchinLevy+ThueMorse) 2971208142332076 r005 Im(z^2+c),c=-23/40+9/16*I,n=23 2971208153998020 a007 Real Root Of 144*x^4+356*x^3-169*x^2+181*x+145 2971208155293475 m001 (5^(1/2)+2/3*Pi*3^(1/2)/GAMMA(2/3))/Zeta(1,-1) 2971208158175000 m001 (ln(2+3^(1/2))-Sarnak)/(Pi-ln(Pi)) 2971208158586232 r008 a(0)=3,K{-n^6,-14+7*n^3+57*n^2-15*n} 2971208161131423 m001 DuboisRaymond^gamma-ReciprocalFibonacci 2971208163469625 a001 3536736619241/1926*199^(1/11) 2971208187972786 m001 (Si(Pi)-ln(5))/(PlouffeB+PolyaRandomWalk3D) 2971208194266639 m005 (1/2*exp(1)+1/4)/(71/16+7/16*5^(1/2)) 2971208196091945 r005 Re(z^2+c),c=-19/58+23/60*I,n=54 2971208220325365 a001 521/2178309*1597^(1/34) 2971208223945642 r005 Re(z^2+c),c=-29/94+3/5*I,n=39 2971208227942657 r005 Im(z^2+c),c=-9/106+25/53*I,n=6 2971208228718824 a007 Real Root Of 379*x^4+971*x^3-115*x^2+808*x-652 2971208246315896 r005 Re(z^2+c),c=8/27+3/25*I,n=59 2971208247997690 a001 182717648081/2889*521^(8/13) 2971208248218616 r005 Re(z^2+c),c=-15/44+7/18*I,n=10 2971208248378244 a007 Real Root Of 309*x^4+957*x^3+254*x^2+588*x+525 2971208249992642 a001 32951280099/1364*521^(10/13) 2971208258772578 r009 Im(z^3+c),c=-1/28+16/19*I,n=12 2971208259962414 r009 Im(z^3+c),c=-1/94+27/32*I,n=34 2971208260007760 h001 (1/11*exp(2)+4/7)/(4/9*exp(2)+9/10) 2971208262517265 r005 Im(z^2+c),c=-43/98+16/37*I,n=13 2971208266825068 r005 Re(z^2+c),c=-11/34+23/58*I,n=50 2971208270404930 g007 Psi(2,2/11)+Psi(2,1/11)-Psi(2,5/11)-Psi(2,7/9) 2971208274278953 m001 ln(Riemann2ndZero)^2/Magata^2/GAMMA(13/24)^2 2971208277824761 m001 sqrt(Pi)^GAMMA(5/24)*sqrt(Pi)^GAMMA(7/12) 2971208290940585 r005 Im(z^2+c),c=-3/13+13/29*I,n=44 2971208317638595 a007 Real Root Of 282*x^4+738*x^3-316*x^2+236*x+871 2971208322929615 m001 (BesselJ(0,1)+ZetaR(2))/HardyLittlewoodC4 2971208324010671 a001 956722026041/15127*521^(8/13) 2971208331815870 m001 (GAMMA(3/4)+PlouffeB)/(1-Shi(1)) 2971208335011552 a009 1/8*7^(1/2)-6^(2/3) 2971208335100816 a001 2504730781961/39603*521^(8/13) 2971208336718846 a001 3278735159921/51841*521^(8/13) 2971208337100811 a001 10610209857723/167761*521^(8/13) 2971208337718844 a001 4052739537881/64079*521^(8/13) 2971208341426535 l006 ln(452/8821) 2971208341954902 a001 387002188980/6119*521^(8/13) 2971208347635774 r005 Im(z^2+c),c=-13/82+13/31*I,n=20 2971208362063495 m005 (1/2*gamma+1/10)/(3/4*gamma+7/8) 2971208366005910 a001 591286729879/843*521^(3/13) 2971208366494376 r005 Im(z^2+c),c=-11/42+2/47*I,n=18 2971208370989278 a001 591286729879/9349*521^(8/13) 2971208376453460 r005 Im(z^2+c),c=-103/114+12/49*I,n=58 2971208377260433 r005 Im(z^2+c),c=-43/60+13/45*I,n=25 2971208383981627 r008 a(0)=3,K{-n^6,2+13*n-13*n^2+33*n^3} 2971208385665847 a007 Real Root Of -366*x^4-843*x^3+645*x^2-99*x+424 2971208391154438 m001 (arctan(1/3)-CareFree)/(FeigenbaumC-Landau) 2971208396555794 a007 Real Root Of 44*x^4-742*x^3+789*x^2-611*x-271 2971208402245362 r005 Im(z^2+c),c=19/62+11/52*I,n=7 2971208411799222 r008 a(0)=3,K{-n^6,38*n^3-29*n^2+26*n} 2971208411909529 l006 ln(3717/5003) 2971208416618711 m005 (-7/12+1/12*5^(1/2))/(4*Catalan-5) 2971208430285602 s002 sum(A156503[n]/(n^3*pi^n+1),n=1..infinity) 2971208434178011 a007 Real Root Of 722*x^4-310*x^3-420*x^2-792*x-212 2971208438628097 m005 (1/2*gamma-4/7)/(8/11*Catalan+2/7) 2971208440767118 k002 Champernowne real with 95/2*n^2-201/2*n+82 2971208450145797 r008 a(0)=3,K{-n^6,36-26*n-14*n^2+39*n^3} 2971208453597543 r008 a(0)=3,K{-n^6,52-54*n+37*n^3} 2971208453719399 m001 1/ln(Tribonacci)*Riemann3rdZero^2/sin(Pi/5)^2 2971208453759933 a001 5/199*5778^(27/49) 2971208461675323 a001 1/1563*(1/2*5^(1/2)+1/2)^12*3^(1/3) 2971208463836856 m005 (1/3*Pi+1/3)/(1/7*2^(1/2)-2/3) 2971208467612598 m001 ln(2)/ln(10)*(Robbin-exp(1/2)) 2971208471832561 a001 13/64079*7^(10/51) 2971208473617997 m001 Riemann2ndZero*CareFree*ln(Zeta(9)) 2971208479092453 r005 Re(z^2+c),c=27/94+5/43*I,n=19 2971208485212452 a007 Real Root Of -352*x^4-960*x^3+362*x^2+538*x+655 2971208485465796 a001 6557470319842/3571*199^(1/11) 2971208489174607 m001 OrthogonalArrays^Sierpinski/cos(1/5*Pi) 2971208498089510 r005 Im(z^2+c),c=-39/106+29/52*I,n=36 2971208505969529 r008 a(0)=3,K{-n^6,19+50*n-18*n^2-17*n^3} 2971208510522224 m001 (ln(gamma)+Sarnak)/(Pi+exp(1)) 2971208510957429 r008 a(0)=3,K{-n^6,34+3*n-54*n^2+52*n^3} 2971208527160052 m001 Trott*exp(CareFree)^2*sin(Pi/12)^2 2971208532361820 r008 a(0)=3,K{-n^6,40+2*n-63*n^2+56*n^3} 2971208544815342 a007 Real Root Of 213*x^4+337*x^3-778*x^2+369*x+204 2971208556097485 r005 Re(z^2+c),c=-7/10+55/227*I,n=15 2971208557267588 m001 ((1+3^(1/2))^(1/2)-Catalan)/(-PlouffeB+Sarnak) 2971208568996662 a001 225851433717/2207*521^(7/13) 2971208569993870 a001 225851433717/3571*521^(8/13) 2971208589346847 r005 Im(z^2+c),c=-7/44+18/43*I,n=15 2971208601325547 m001 exp(gamma)+GAMMA(13/24)^GAMMA(1/12) 2971208609329001 m005 (1/3*gamma+2/5)/(7/10*5^(1/2)+3/7) 2971208621312106 r008 a(0)=3,K{-n^6,80+74*n^3-97*n^2-22*n} 2971208621811260 m001 (Salem-Sarnak)/(sin(1/12*Pi)-Grothendieck) 2971208622053481 m008 (3*Pi^4+1/6)/(Pi^4+1) 2971208627677296 a007 Real Root Of 19*x^4-963*x^3-360*x^2-947*x-275 2971208639291767 m001 (Totient-Trott2nd)/(BesselI(1,1)-Champernowne) 2971208642205804 h001 (8/9*exp(2)+4/5)/(7/11*exp(1)+3/4) 2971208642952994 a007 Real Root Of -25*x^4-720*x^3+668*x^2-304*x-646 2971208647283894 m001 1/CareFree^2/FibonacciFactorial*exp(Lehmer) 2971208650713293 m001 (Otter-Tetranacci)/(ln(3)-exp(1/exp(1))) 2971208658186705 m001 BesselI(0,2)*Niven-Catalan 2971208660766855 l006 ln(355/6928) 2971208662056883 m005 (2/3*exp(1)-2)/(5*2^(1/2)-3/4) 2971208669370815 p004 log(20899/15527) 2971208673122695 m002 3-Cosh[Pi]/Pi^3+4*Sech[Pi] 2971208690007619 a007 Real Root Of 314*x^4+749*x^3-856*x^2-675*x+726 2971208695826944 m001 Gompertz^Zeta(1/2)/(Gompertz^MasserGramain) 2971208716218000 a007 Real Root Of -34*x^4-226*x^3-903*x^2+922*x+348 2971208719506636 r005 Re(z^2+c),c=-7/27+9/16*I,n=55 2971208744488254 a007 Real Root Of 252*x^4+283*x^3-722*x^2-921*x+328 2971208746330919 a007 Real Root Of -299*x^4-806*x^3+212*x^2-223*x-373 2971208749598604 a007 Real Root Of -598*x^4+465*x^3-835*x^2+25*x+98 2971208750402447 l006 ln(5905/7948) 2971208754753950 m001 Trott^2/GolombDickman^2*ln(GAMMA(1/3)) 2971208757325302 a005 (1/cos(30/227*Pi))^116 2971208761229868 a001 233/18*15127^(14/43) 2971208788382749 r005 Im(z^2+c),c=3/62+50/61*I,n=3 2971208791286668 m005 (1/2*exp(1)-8/9)/(10/11*Catalan+3/4) 2971208810395668 m005 (7/20+1/4*5^(1/2))/(1/7*Pi-1/7) 2971208816428653 m001 (3^(1/2)+BesselI(1,1))/(-MertensB1+MertensB2) 2971208817934758 r005 Im(z^2+c),c=31/122+5/29*I,n=38 2971208846715862 r005 Re(z^2+c),c=-3/29+19/30*I,n=60 2971208852398191 r005 Re(z^2+c),c=-21/34+26/71*I,n=9 2971208856814955 m001 (FeigenbaumKappa+ZetaP(2))^Tribonacci 2971208866005691 m006 (3/5*exp(Pi)+1/3)/(1/4*exp(Pi)-1) 2971208882420576 m008 (3/5*Pi^2+3/4)/(3/4*Pi^3-4/5) 2971208885846585 m001 (Cahen-Robbin)/(arctan(1/3)+Zeta(1,2)) 2971208896693007 r002 58th iterates of z^2 + 2971208904461063 a005 (1/sin(47/159*Pi))^36 2971208906395292 m001 (Catalan-arctan(1/3))/(Pi-exp(Pi)) 2971208916909094 a007 Real Root Of 233*x^4+515*x^3-659*x^2-440*x-140 2971208917944638 a005 (1/cos(19/185*Pi))^1194 2971208924777562 m005 (1/3*gamma+1/12)/(1/8*Zeta(3)+7/9) 2971208926900680 r005 Im(z^2+c),c=1/9+13/46*I,n=11 2971208931300512 m001 GAMMA(23/24)*LandauRamanujan*ln(cos(1))^2 2971208941393490 a007 Real Root Of 203*x^4+426*x^3-529*x^2+252*x+772 2971208951134730 m001 (Khinchin+Porter)/(ln(2)+CareFree) 2971208954736088 m001 (5^(1/2)+GAMMA(3/4))/(ln(2)+Bloch) 2971208956011448 a003 cos(Pi*26/103)*cos(Pi*35/97) 2971208959409925 s002 sum(A185531[n]/(n*exp(pi*n)-1),n=1..infinity) 2971208968198416 r005 Re(z^2+c),c=-19/58+23/60*I,n=56 2971208969740526 r005 Re(z^2+c),c=-19/58+23/60*I,n=59 2971208971328868 m003 2*Csc[1/2+Sqrt[5]/2]+(2*Sinh[1/2+Sqrt[5]/2])/5 2971208986236748 r005 Re(z^2+c),c=-5/7+17/91*I,n=13 2971209003699370 a005 (1/sin(24/71*Pi))^229 2971209005685873 r005 Re(z^2+c),c=-47/122+1/50*I,n=22 2971209010775473 m001 DuboisRaymond*(Champernowne+OrthogonalArrays) 2971209012527509 m006 (4/5/Pi+1/2)/(1/3*Pi^2-3/4) 2971209013833839 r008 a(0)=3,K{-n^6,-57+7*n^3+36*n^2+49*n} 2971209023608005 r005 Im(z^2+c),c=23/82+1/7*I,n=54 2971209025489731 a001 2889/4*55^(6/17) 2971209036807884 r009 Re(z^3+c),c=-7/36+34/37*I,n=62 2971209036980216 r002 63th iterates of z^2 + 2971209041590461 r009 Re(z^3+c),c=-43/90+19/56*I,n=10 2971209056820246 a001 29/28657*3^(50/51) 2971209058467039 r005 Re(z^2+c),c=5/18+5/47*I,n=27 2971209060771160 a007 Real Root Of -792*x^4+481*x^3-241*x^2+649*x-178 2971209070903786 r005 Re(z^2+c),c=5/34+25/56*I,n=42 2971209077917657 a007 Real Root Of 160*x^4+327*x^3-167*x^2+796*x-53 2971209081583279 m005 (1/2*Pi+8/11)/(1/5*gamma-8/9) 2971209087852416 r008 a(0)=3,K{-n^6,-15+7*n^3+57*n^2-14*n} 2971209089997425 a001 591286729879/5778*521^(7/13) 2971209091738453 m001 (Si(Pi)+Shi(1))/(-Kac+Sarnak) 2971209091992377 a001 53316291173/1364*521^(9/13) 2971209093957357 r005 Re(z^2+c),c=-123/86+22/39*I,n=2 2971209094800639 a007 Real Root Of -192*x^4-483*x^3+355*x^2+536*x+753 2971209131423703 m001 (Magata-MasserGramain)/(Ei(1)-cos(1/12*Pi)) 2971209132746029 r009 Im(z^3+c),c=-1/28+53/63*I,n=24 2971209132918852 m002 -3/2-Pi^3+3/ProductLog[Pi] 2971209133016631 r005 Im(z^2+c),c=13/36+8/51*I,n=56 2971209135277125 a001 12238/17*377^(37/59) 2971209144018977 m005 (1/2*2^(1/2)+9/11)/(1/9*Zeta(3)+5) 2971209151478512 r005 Re(z^2+c),c=-19/58+23/60*I,n=57 2971209153326770 m001 (Si(Pi)+cos(1/12*Pi))/(-Zeta(1,2)+Trott) 2971209160445935 r002 60th iterates of z^2 + 2971209166010427 a001 1548008755920/15127*521^(7/13) 2971209177100575 a001 4052739537881/39603*521^(7/13) 2971209178718606 a001 225749145909/2206*521^(7/13) 2971209179718604 a001 6557470319842/64079*521^(7/13) 2971209181456394 r002 41th iterates of z^2 + 2971209183607765 r005 Re(z^2+c),c=-19/58+23/60*I,n=64 2971209183954663 a001 2504730781961/24476*521^(7/13) 2971209188528407 s002 sum(A111765[n]/((exp(n)+1)*n),n=1..infinity) 2971209197259678 r005 Re(z^2+c),c=-19/58+23/60*I,n=62 2971209206397936 r005 Re(z^2+c),c=47/122+31/51*I,n=5 2971209208005678 a001 956722026041/843*521^(2/13) 2971209212989048 a001 956722026041/9349*521^(7/13) 2971209213051823 q001 1548/521 2971209220231045 l006 ln(258/5035) 2971209221542085 r005 Re(z^2+c),c=-19/58+23/60*I,n=61 2971209224094481 m002 -2-Pi^3+5/Log[Pi]-ProductLog[Pi] 2971209240990231 r005 Im(z^2+c),c=-7/6+75/242*I,n=4 2971209244268477 r008 a(0)=3,K{-n^6,25+19*n^3+41*n^2-50*n} 2971209244943652 r009 Re(z^3+c),c=-10/17+23/35*I,n=2 2971209250626239 m001 (exp(-1/2*Pi)+CopelandErdos)/(Rabbit-Thue) 2971209256804667 a007 Real Root Of 344*x^4-176*x^3-495*x^2-533*x+204 2971209262955683 r005 Re(z^2+c),c=-23/60+1/14*I,n=16 2971209274205537 m001 Pi*(Psi(1,1/3)-BesselI(1,1)*GAMMA(5/6)) 2971209277075200 a008 Real Root of (-2+5*x+5*x^2+x^3+6*x^4) 2971209279205427 q001 1/3365633 2971209280253662 a001 161/5473*233^(14/33) 2971209280314100 a007 Real Root Of -309*x^4-840*x^3+405*x^2+288*x-671 2971209286816291 a007 Real Root Of 316*x^4+746*x^3-552*x^2+287*x+666 2971209287623213 m008 (1/5*Pi+4/5)/(5*Pi^6+1/4) 2971209295003278 a001 906218834976/305 2971209299089139 r005 Re(z^2+c),c=-13/36+13/43*I,n=10 2971209325438152 l006 ln(2188/2945) 2971209327552954 r005 Im(z^2+c),c=-17/70+29/64*I,n=25 2971209341191779 r005 Re(z^2+c),c=-19/58+23/60*I,n=52 2971209344560119 r009 Re(z^3+c),c=-25/58+19/49*I,n=48 2971209344976435 r005 Re(z^2+c),c=-19/58+23/60*I,n=63 2971209345225445 a007 Real Root Of 561*x^4-874*x^3-966*x^2-428*x+231 2971209351343831 r009 Im(z^3+c),c=-27/62+3/16*I,n=16 2971209355037391 r005 Re(z^2+c),c=-29/86+7/20*I,n=35 2971209393214773 r002 5th iterates of z^2 + 2971209401474785 a001 2971215073/843*1364^(14/15) 2971209403776860 m005 (1/2*Pi-6/7)/(2/3*gamma-5/8) 2971209406687964 r008 a(0)=3,K{-n^6,1+51*n^3-67*n^2+50*n} 2971209407072904 m005 (1/2*gamma-9/10)/(1/10*gamma+2) 2971209410996487 a001 365435296162/2207*521^(6/13) 2971209411993696 a001 365435296162/3571*521^(7/13) 2971209413101387 m001 (Rabbit-ThueMorse)/(CareFree-Niven) 2971209424930915 r005 Re(z^2+c),c=-19/58+23/60*I,n=60 2971209435602017 h001 (5/11*exp(1)+3/5)/(5/7*exp(2)+9/10) 2971209439779002 r008 a(0)=3,K{-n^6,21+55*n^3-69*n^2+28*n} 2971209442052009 a007 Real Root Of -657*x^4+493*x^3+773*x^2+296*x-164 2971209443433692 m001 Gompertz^(3^(1/2)*FeigenbaumKappa) 2971209443773119 k002 Champernowne real with 48*n^2-102*n+83 2971209444797128 k003 Champernowne real with 7/2*n^3+13/2*n^2-37*n+29 2971209456577446 r008 a(0)=3,K{-n^6,39+3*n-63*n^2+56*n^3} 2971209465885494 r005 Im(z^2+c),c=37/126+1/9*I,n=15 2971209469719737 a001 2139295485799*144^(9/17) 2971209472566295 a007 Real Root Of 845*x^4-971*x^3+147*x^2-949*x-327 2971209472624183 r009 Re(z^3+c),c=-31/74+19/52*I,n=20 2971209477040153 r005 Im(z^2+c),c=-55/122+12/23*I,n=62 2971209479685361 r009 Re(z^3+c),c=-49/102+8/19*I,n=35 2971209495669050 r009 Re(z^3+c),c=-21/40+8/49*I,n=29 2971209498118991 a007 Real Root Of 297*x^4-256*x^3+567*x^2-481*x-202 2971209498193804 r009 Re(z^3+c),c=-23/52+24/59*I,n=50 2971209507941271 a001 1602508992/281*1364^(13/15) 2971209517840414 a001 76/123*(1/2*5^(1/2)+1/2)^7*123^(7/12) 2971209543893446 m005 (1/3*Catalan-2/9)/(5/8*Pi+5/6) 2971209544118742 h001 (7/10*exp(1)+9/10)/(2/7*exp(1)+1/6) 2971209547437023 r005 Re(z^2+c),c=-19/58+23/60*I,n=58 2971209560202788 m001 GAMMA(1/24)^2/exp(MinimumGamma)^2*Zeta(9)^2 2971209575095348 a007 Real Root Of -853*x^4+200*x^3+821*x^2+895*x-337 2971209597396945 r005 Re(z^2+c),c=45/118+9/26*I,n=14 2971209609528573 r005 Im(z^2+c),c=-5/4+3/244*I,n=32 2971209614407760 a001 7778742049/843*1364^(4/5) 2971209620269124 m001 1/GAMMA(5/6)*exp(FibonacciFactorial)/Zeta(7)^2 2971209622862083 g005 GAMMA(3/4)/GAMMA(9/11)/GAMMA(3/11)/GAMMA(7/8) 2971209642848819 a001 34*18^(3/4) 2971209643329975 a001 219602/305*89^(6/19) 2971209652513126 a003 cos(Pi*3/85)*cos(Pi*48/119) 2971209655114666 s002 sum(A156503[n]/(n^3*pi^n-1),n=1..infinity) 2971209668333493 b008 30+Sin[16] 2971209672586710 b008 Gamma[2+Pi,Catalan] 2971209679449036 r005 Re(z^2+c),c=-23/74+27/62*I,n=45 2971209681617898 b008 ArcCot[Sqrt[3/10]+E] 2971209684105845 m004 -4*Sqrt[5]*Pi-(5*Pi*Sinh[Sqrt[5]*Pi])/3 2971209694239839 l006 ln(419/8177) 2971209697534611 m001 (ThueMorse+ZetaQ(2))/(MinimumGamma+OneNinth) 2971209704476144 r005 Im(z^2+c),c=-9/14+17/25*I,n=4 2971209720350762 r005 Re(z^2+c),c=-5/31+28/45*I,n=61 2971209720874253 a001 12586269025/843*1364^(11/15) 2971209736046918 a001 843/28657*377^(23/59) 2971209755919039 a001 5778/5*377^(29/31) 2971209756280314 r005 Re(z^2+c),c=-25/66+10/59*I,n=9 2971209757697317 m005 (1/2*Pi-7/11)/(1/8*Catalan+1/5) 2971209768332178 a007 Real Root Of -224*x^4+899*x^3+868*x^2+786*x-332 2971209776665453 r005 Im(z^2+c),c=-9/10+55/251*I,n=30 2971209779843837 a001 13/76*2^(47/59) 2971209783851008 r005 Im(z^2+c),c=13/70+35/61*I,n=14 2971209786253707 r005 Re(z^2+c),c=-39/110+7/25*I,n=28 2971209786361666 a003 sin(Pi*7/95)/cos(Pi*16/73) 2971209795545539 l006 ln(7223/9722) 2971209813796392 m001 (Landau+LandauRamanujan)/BesselJ(1,1) 2971209820991262 r005 Im(z^2+c),c=-8/9+24/103*I,n=44 2971209826597468 a007 Real Root Of -399*x^4-925*x^3+900*x^2+243*x-390 2971209827340750 a001 20365011074/843*1364^(2/3) 2971209828790452 m005 (3/4*gamma+3/5)/(1/6*Pi-4) 2971209836665227 m001 (Riemann2ndZero-ZetaQ(3))/(Conway-Gompertz) 2971209838032258 a008 Real Root of x^2-x-88578 2971209838595472 r008 a(0)=3,K{-n^6,-58+34*n+60*n^2-n^3} 2971209845625364 s002 sum(A264596[n]/((2^n-1)/n),n=1..infinity) 2971209847481607 m006 (1/2*Pi^2-3/4)/(5/Pi-3) 2971209849464238 a001 2504730781961/1364*199^(1/11) 2971209851358696 r002 30th iterates of z^2 + 2971209853754506 r005 Re(z^2+c),c=-25/82+19/42*I,n=54 2971209872124499 s002 sum(A082949[n]/((2^n+1)/n),n=1..infinity) 2971209875067539 h001 (1/5*exp(2)+7/9)/(11/12*exp(2)+9/11) 2971209879543946 r005 Re(z^2+c),c=-101/94+10/29*I,n=4 2971209881905537 r009 Re(z^3+c),c=-55/118+18/41*I,n=16 2971209885227841 r005 Re(z^2+c),c=4/19+1/60*I,n=21 2971209888434345 a007 Real Root Of -62*x^4+115*x^3+533*x^2-727*x+983 2971209891859351 a001 47/2504730781961*46368^(9/10) 2971209902209912 m001 (arctan(1/2)+arctan(1/3))/(Conway+Totient) 2971209913807387 r005 Re(z^2+c),c=-3/52+11/18*I,n=12 2971209920073524 a007 Real Root Of -506*x^4+928*x^3+808*x^2+149*x-136 2971209925514433 a007 Real Root Of 754*x^4-517*x^3-447*x^2-676*x+248 2971209926333490 r005 Re(z^2+c),c=7/20+10/61*I,n=38 2971209931059796 a008 Real Root of x^4-x^3+2*x^2-98*x-413 2971209931997398 a001 956722026041/5778*521^(6/13) 2971209933807251 a001 10983760033/281*1364^(3/5) 2971209933992351 a001 21566892818/341*521^(8/13) 2971209938862940 m001 ln(3)*(Ei(1)+AlladiGrinstead) 2971209941254945 m001 (-Salem+StolarskyHarborth)/(1+Khinchin) 2971209953284447 r002 23th iterates of z^2 + 2971209957962272 l006 ln(7726/7959) 2971209960767001 a001 89/18*7^(47/51) 2971209964807445 a005 (1/cos(13/231*Pi))^1828 2971209965586148 m003 4+(3*Sqrt[5])/32-3*Csch[1/2+Sqrt[5]/2] 2971209974204601 a007 Real Root Of -814*x^4-639*x^3+98*x^2+954*x-269 2971209977080742 a007 Real Root Of 873*x^4+267*x^3+984*x^2-267*x-166 2971209983702207 r009 Re(z^3+c),c=-19/52+37/59*I,n=34 2971209986460646 r005 Re(z^2+c),c=-6/29+33/58*I,n=7 2971209988217595 m003 -3/20+(5*Sqrt[5])/16+Sinh[1/2+Sqrt[5]/2] 2971209990219570 a007 Real Root Of -344*x^4-850*x^3+683*x^2+539*x+86 2971209999834502 l006 ln(5035/6777) 2971210008010422 a001 2504730781961/15127*521^(6/13) 2971210011034636 m001 exp(Pi)^(ln(2)/ln(10))*ln(5)^(ln(2)/ln(10)) 2971210011034636 m001 ln(5)^(ln(2)/ln(10))/(exp(-Pi)^(ln(2)/ln(10))) 2971210011661770 m001 arctan(1/2)-exp(Pi)*ZetaR(2) 2971210018504648 r005 Re(z^2+c),c=-19/58+23/60*I,n=55 2971210019100573 a001 6557470319842/39603*521^(6/13) 2971210021718603 a001 10610209857723/64079*521^(6/13) 2971210025954663 a001 4052739537881/24476*521^(6/13) 2971210040273756 a001 53316291173/843*1364^(8/15) 2971210050005685 a001 516002918640/281*521^(1/13) 2971210054989056 a001 1548008755920/9349*521^(6/13) 2971210059689237 m002 -9+Pi^(-2)+Pi^5 2971210070692628 r009 Re(z^3+c),c=-1/110+23/29*I,n=56 2971210075180469 m001 (FransenRobinson-gamma)/(Stephens+ZetaP(3)) 2971210091832070 r005 Im(z^2+c),c=-13/94+25/61*I,n=19 2971210095387023 r008 a(0)=3,K{-n^6,24+10*n^3+68*n^2-67*n} 2971210098033755 m005 (1/3*Zeta(3)-1/11)/(1/11*exp(1)-1/7) 2971210099159717 m004 -5+E^(Sqrt[5]*Pi)/4+3*Sqrt[5]*Pi 2971210101658415 m001 (-cos(1/12*Pi)+ZetaQ(4))/(cos(1/5*Pi)-sin(1)) 2971210105108205 r005 Re(z^2+c),c=-19/58+23/60*I,n=53 2971210107726970 m001 (Shi(1)-gamma(2))/(HardyLittlewoodC3+Otter) 2971210108775486 r008 a(0)=3,K{-n^6,34+10*n^3+73*n^2-82*n} 2971210129454959 r005 Re(z^2+c),c=-13/46+23/45*I,n=58 2971210131434133 r005 Im(z^2+c),c=-5/114+18/49*I,n=25 2971210137489841 m001 ZetaQ(4)/Thue/MasserGramain 2971210141622131 r005 Im(z^2+c),c=-11/42+2/47*I,n=20 2971210144376601 r008 a(0)=3,K{-n^6,26-58*n+51*n^2+16*n^3} 2971210145844926 r009 Re(z^3+c),c=-11/78+37/45*I,n=54 2971210146740264 a001 86267571272/843*1364^(7/15) 2971210150799777 r008 a(0)=3,K{-n^6,21+65*n-44*n^2-8*n^3} 2971210157506345 r005 Re(z^2+c),c=-47/122+1/48*I,n=18 2971210177338328 r005 Re(z^2+c),c=17/52+7/39*I,n=16 2971210178935841 r005 Im(z^2+c),c=-7/52+11/17*I,n=33 2971210201493832 r009 Im(z^3+c),c=-1/94+27/32*I,n=32 2971210213747418 r008 a(0)=3,K{-n^6,53+7*n-13*n^2-13*n^3} 2971210215192532 r009 Re(z^3+c),c=-35/62+20/39*I,n=23 2971210217336478 m005 (1/2*Zeta(3)-9/11)/(8/9*Catalan-1/12) 2971210228268346 m005 (1/2*3^(1/2)-10/11)/(9/11*Catalan+7/10) 2971210230447959 r008 a(0)=3,K{-n^6,2+12*n-12*n^2+33*n^3} 2971210237236864 r009 Re(z^3+c),c=-39/86+20/41*I,n=37 2971210243198137 r005 Re(z^2+c),c=-63/118+19/49*I,n=12 2971210252996552 a001 591286729879/2207*521^(5/13) 2971210253206777 a001 139583862445/843*1364^(2/5) 2971210253993761 a001 591286729879/3571*521^(6/13) 2971210259524329 r005 Re(z^2+c),c=-69/98+5/21*I,n=41 2971210269940840 r005 Im(z^2+c),c=13/62+13/61*I,n=22 2971210282001359 a001 377/2207*14662949395604^(7/9) 2971210282001359 a001 377/2207*(1/2+1/2*5^(1/2))^49 2971210282001359 a001 377/2207*505019158607^(7/8) 2971210282007117 a001 329/281*45537549124^(15/17) 2971210282007117 a001 329/281*312119004989^(9/11) 2971210282007117 a001 329/281*14662949395604^(5/7) 2971210282007117 a001 329/281*(1/2+1/2*5^(1/2))^45 2971210282007117 a001 329/281*192900153618^(5/6) 2971210282007117 a001 329/281*28143753123^(9/10) 2971210282007117 a001 329/281*10749957122^(15/16) 2971210283047630 r005 Re(z^2+c),c=-37/48+5/63*I,n=64 2971210294590828 r008 a(0)=3,K{-n^6,36-27*n-13*n^2+39*n^3} 2971210296860205 a001 7778742049/322*322^(5/6) 2971210298251418 m001 (gamma(3)-GAMMA(5/6))/(GAMMA(19/24)-Kolakoski) 2971210305671697 m001 (FeigenbaumD+Gompertz)/(ReciprocalLucas-Thue) 2971210310070157 r009 Im(z^3+c),c=-11/23+3/26*I,n=17 2971210313116211 k008 concat of cont frac of 2971210319709325 r005 Im(z^2+c),c=7/78+8/27*I,n=13 2971210326203821 r005 Im(z^2+c),c=-11/42+2/47*I,n=23 2971210330032626 r005 Im(z^2+c),c=-11/42+2/47*I,n=25 2971210332717068 m001 BesselI(1,1)^(2^(1/3))/GAMMA(13/24) 2971210333258029 r005 Im(z^2+c),c=-11/42+2/47*I,n=27 2971210334301472 r005 Im(z^2+c),c=-11/42+2/47*I,n=29 2971210334567075 r005 Im(z^2+c),c=-11/42+2/47*I,n=31 2971210334626626 r005 Im(z^2+c),c=-11/42+2/47*I,n=33 2971210334638832 r005 Im(z^2+c),c=-11/42+2/47*I,n=35 2971210334641148 r005 Im(z^2+c),c=-11/42+2/47*I,n=37 2971210334641555 r005 Im(z^2+c),c=-11/42+2/47*I,n=39 2971210334641621 r005 Im(z^2+c),c=-11/42+2/47*I,n=41 2971210334641630 r005 Im(z^2+c),c=-11/42+2/47*I,n=43 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=46 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=48 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=50 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=52 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=54 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=56 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=58 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=60 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=62 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=64 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=63 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=61 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=59 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=57 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=55 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=53 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=51 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=45 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=49 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=47 2971210334641631 r005 Im(z^2+c),c=-11/42+2/47*I,n=44 2971210334641634 r005 Im(z^2+c),c=-11/42+2/47*I,n=42 2971210334641659 r005 Im(z^2+c),c=-11/42+2/47*I,n=40 2971210334641824 r005 Im(z^2+c),c=-11/42+2/47*I,n=38 2971210334642805 r005 Im(z^2+c),c=-11/42+2/47*I,n=36 2971210334648172 r005 Im(z^2+c),c=-11/42+2/47*I,n=34 2971210334675405 r005 Im(z^2+c),c=-11/42+2/47*I,n=32 2971210334802781 r005 Im(z^2+c),c=-11/42+2/47*I,n=30 2971210335184560 r005 Im(z^2+c),c=-11/42+2/47*I,n=22 2971210335339803 r005 Im(z^2+c),c=-11/42+2/47*I,n=28 2971210337257139 r005 Im(z^2+c),c=-11/42+2/47*I,n=26 2971210341032847 s002 sum(A047194[n]/(n*exp(pi*n)-1),n=1..infinity) 2971210341032847 s002 sum(A048039[n]/(n*exp(pi*n)-1),n=1..infinity) 2971210341831672 r005 Im(z^2+c),c=-11/42+2/47*I,n=24 2971210342066059 a007 Real Root Of 258*x^4+101*x^3-73*x^2-909*x-263 2971210354470012 a007 Real Root Of 293*x^4+660*x^3-789*x^2-652*x-495 2971210356466006 r008 a(0)=3,K{-n^6,20+55*n^3-69*n^2+29*n} 2971210359673293 a001 267913919*1364^(1/3) 2971210361950052 a007 Real Root Of 924*x^4-154*x^3-411*x^2-77*x+56 2971210373700033 r005 Im(z^2+c),c=-17/58+31/64*I,n=11 2971210376512005 r005 Im(z^2+c),c=-11/42+2/47*I,n=21 2971210380921881 m001 (GAMMA(2/3)+AlladiGrinstead)/gamma(1) 2971210398237914 m001 Pi+gamma-RenyiParking 2971210398237914 m001 RenyiParking-gamma-Pi 2971210415756343 r008 a(0)=3,K{-n^6,-83-17*n^3+96*n^2+39*n} 2971210418888641 h001 (5/9*exp(1)+2/11)/(5/7*exp(2)+5/12) 2971210432813087 a007 Real Root Of 353*x^4+765*x^3-583*x^2+684*x-266 2971210432860851 r005 Im(z^2+c),c=-25/18+5/209*I,n=6 2971210443366709 m001 (Zeta(1/2)-Backhouse)/(Niven-Sarnak) 2971210446343678 g002 Psi(5/12)+Psi(9/10)+Psi(4/5)-Psi(3/11) 2971210446779120 k002 Champernowne real with 97/2*n^2-207/2*n+84 2971210453831103 l006 ln(161/3142) 2971210466139813 a001 365435296162/843*1364^(4/15) 2971210473852903 r005 Re(z^2+c),c=-23/70+19/50*I,n=29 2971210475894551 r004 Im(z^2+c),c=1/11+5/17*I,z(0)=I,n=15 2971210477131554 r009 Re(z^3+c),c=-35/62+20/39*I,n=29 2971210478875764 r009 Re(z^3+c),c=-35/62+20/39*I,n=32 2971210479646160 r009 Re(z^3+c),c=-35/62+20/39*I,n=38 2971210479706381 r009 Re(z^3+c),c=-35/62+20/39*I,n=47 2971210479706756 r009 Re(z^3+c),c=-35/62+20/39*I,n=53 2971210479706765 r009 Re(z^3+c),c=-35/62+20/39*I,n=56 2971210479706765 r009 Re(z^3+c),c=-35/62+20/39*I,n=62 2971210479706766 r009 Re(z^3+c),c=-35/62+20/39*I,n=59 2971210479706848 r009 Re(z^3+c),c=-35/62+20/39*I,n=50 2971210479707463 r009 Re(z^3+c),c=-35/62+20/39*I,n=44 2971210479712054 r009 Re(z^3+c),c=-35/62+20/39*I,n=41 2971210480030845 r009 Re(z^3+c),c=-35/62+20/39*I,n=35 2971210483531961 r009 Re(z^3+c),c=-43/114+14/55*I,n=4 2971210488248340 r005 Im(z^2+c),c=23/82+1/7*I,n=60 2971210490021050 r005 Im(z^2+c),c=17/50+22/63*I,n=39 2971210496470576 m005 (1/2*gamma+1/9)/(5/22+1/2*5^(1/2)) 2971210496480048 r005 Re(z^2+c),c=-31/106+19/37*I,n=27 2971210509166418 r005 Im(z^2+c),c=-37/31+2/63*I,n=22 2971210511189499 a007 Real Root Of 129*x^4+572*x^3+770*x^2+846*x+666 2971210515396017 r009 Im(z^3+c),c=-1/94+27/32*I,n=30 2971210518127136 l006 ln(2847/3832) 2971210522931380 r009 Re(z^3+c),c=-35/62+20/39*I,n=26 2971210536311374 r009 Re(z^3+c),c=-8/19+16/41*I,n=14 2971210537349271 r009 Re(z^3+c),c=-29/86+13/20*I,n=41 2971210545053165 m001 (exp(1)*Otter+RenyiParking)/Otter 2971210546544821 a007 Real Root Of -642*x^4+357*x^3+638*x^2+967*x-348 2971210548026112 m005 (-1/2+1/6*5^(1/2))/(8/11*2^(1/2)-3/5) 2971210550711211 g006 2*Psi(1,5/11)+Psi(1,2/9)-Psi(1,5/8) 2971210551224869 a007 Real Root Of 265*x^4+631*x^3-658*x^2-512*x+186 2971210552608256 r005 Im(z^2+c),c=25/82+5/46*I,n=50 2971210565579921 r005 Im(z^2+c),c=-7/6+48/197*I,n=50 2971210567733917 r009 Im(z^3+c),c=-37/66+18/61*I,n=33 2971210572606337 a001 591286729879/843*1364^(1/5) 2971210576680858 m005 (17/20+1/4*5^(1/2))/(8/11*Zeta(3)-2/5) 2971210578294784 r005 Im(z^2+c),c=-43/74+2/47*I,n=17 2971210579111959 m001 (-FeigenbaumMu+Lehmer)/(1+gamma(3)) 2971210589755795 r005 Im(z^2+c),c=-13/42+11/23*I,n=59 2971210602827429 m001 1/Salem/exp(PisotVijayaraghavan)*GAMMA(1/4)^2 2971210610058991 a007 Real Root Of -714*x^4+441*x^3+525*x^2+608*x-233 2971210620146491 h001 (5/7*exp(1)+1/11)/(8/9*exp(2)+3/11) 2971210625052450 s002 sum(A092328[n]/(n^3*10^n+1),n=1..infinity) 2971210633574554 a007 Real Root Of 234*x^4+407*x^3-511*x^2+798*x-679 2971210634625508 a007 Real Root Of -270*x^4-507*x^3+811*x^2-408*x-628 2971210651995841 r009 Re(z^3+c),c=-25/58+22/57*I,n=26 2971210655856845 s001 sum(exp(-Pi/2)^(n-1)*A109998[n],n=1..infinity) 2971210656919316 m005 (1/2*Catalan-1/4)/(1/11*2^(1/2)+4/7) 2971210658812237 b008 E+ArcCsc[27]^(-1) 2971210659001252 a001 4745023422425/1597 2971210662749618 a001 13/7*2^(40/59) 2971210664523773 r005 Re(z^2+c),c=-15/62+13/22*I,n=39 2971210664996109 m001 (ln(Pi)+ArtinRank2)/(Lehmer+Trott2nd) 2971210672712929 a001 1134903170/843*3571^(16/17) 2971210675131624 r005 Re(z^2+c),c=9/26+8/51*I,n=59 2971210679072864 a001 956722026041/843*1364^(2/15) 2971210682620348 s001 sum(exp(-3*Pi/5)^n*A102559[n],n=1..infinity) 2971210686418741 a001 1836311903/843*3571^(15/17) 2971210689445263 r005 Im(z^2+c),c=25/86+7/54*I,n=55 2971210694963441 m001 (-HeathBrownMoroz+PlouffeB)/(1+Gompertz) 2971210696183631 m008 (4/5*Pi^3-4)/(3/4*Pi^2-2/5) 2971210700124553 a001 2971215073/843*3571^(14/17) 2971210701648609 a001 233/18*843^(20/43) 2971210704520004 m005 (1/2*2^(1/2)+7/12)/(2/5*2^(1/2)-1) 2971210708019249 m001 (Stephens-Weierstrass)/(3^(1/3)-Grothendieck) 2971210710725156 m001 (ArtinRank2-Riemann1stZero)/ZetaP(2) 2971210713830366 a001 1602508992/281*3571^(13/17) 2971210718985452 m005 (1/3*Catalan+1/10)/(7/9*5^(1/2)-3/8) 2971210721518185 r005 Re(z^2+c),c=-13/48+9/17*I,n=27 2971210724238917 r002 50th iterates of z^2 + 2971210725770985 h001 (9/10*exp(2)+8/9)/(9/10*exp(1)+1/11) 2971210727064352 m001 1/exp(FeigenbaumD)^2*Backhouse^2*sqrt(3)^2 2971210727536178 a001 7778742049/843*3571^(12/17) 2971210728334339 m001 1/LaplaceLimit*exp(FeigenbaumDelta)^2/gamma 2971210732549724 m001 (CareFree-Niven)/(Otter+ThueMorse) 2971210741241990 a001 12586269025/843*3571^(11/17) 2971210754947803 a001 20365011074/843*3571^(10/17) 2971210762083499 r009 Im(z^3+c),c=-13/90+19/61*I,n=9 2971210763675444 m001 BesselI(0,1)*Cahen-polylog(4,1/2) 2971210768653615 a001 10983760033/281*3571^(9/17) 2971210773997610 a001 86000486440/321*521^(5/13) 2971210775992564 a001 139583862445/1364*521^(7/13) 2971210779288678 a007 Real Root Of 395*x^4+912*x^3-952*x^2-250*x+799 2971210782359428 a001 53316291173/843*3571^(8/17) 2971210785539395 a001 516002918640/281*1364^(1/15) 2971210794102555 m008 (5/6*Pi+3/4)/(1/3*Pi^3+1) 2971210796065240 a001 86267571272/843*3571^(7/17) 2971210797846005 r005 Im(z^2+c),c=31/122+5/29*I,n=32 2971210801886826 a007 Real Root Of -264*x^4-750*x^3+6*x^2-544*x-767 2971210803002422 a001 377/5778*14662949395604^(17/21) 2971210803002422 a001 377/5778*(1/2+1/2*5^(1/2))^51 2971210803002422 a001 377/5778*192900153618^(17/18) 2971210803008303 a001 2584/843*(1/2+1/2*5^(1/2))^43 2971210809771053 a001 139583862445/843*3571^(6/17) 2971210816630824 m001 exp(GAMMA(1/6))/Sierpinski^2/log(2+sqrt(3)) 2971210821732854 m001 arctan(1/2)*(Conway-LaplaceLimit) 2971210823476866 a001 267913919*3571^(5/17) 2971210830355762 p003 LerchPhi(1/10,6,171/205) 2971210832674248 a001 322/1597*28657^(18/37) 2971210834709675 h001 (1/3*exp(1)+1/11)/(9/10*exp(1)+10/11) 2971210834709675 m005 (1/3*exp(1)+1/11)/(9/10*exp(1)+10/11) 2971210837182679 a001 365435296162/843*3571^(4/17) 2971210846773037 m002 -36+(Pi^5*ProductLog[Pi])/5 2971210847893934 m001 1/Robbin^2*exp(Porter)*sqrt(3)^2 2971210850010656 a001 4052739537881/15127*521^(5/13) 2971210850888492 a001 591286729879/843*3571^(3/17) 2971210851420508 r005 Im(z^2+c),c=2/27+7/23*I,n=10 2971210858005979 a001 12422632597323/4181 2971210859801023 a001 433494437/843*9349^(18/19) 2971210861100810 a001 3536736619241/13201*521^(5/13) 2971210861590185 a001 233802911/281*9349^(17/19) 2971210863379346 a001 1134903170/843*9349^(16/19) 2971210864594305 a001 956722026041/843*3571^(2/17) 2971210865168508 a001 1836311903/843*9349^(15/19) 2971210866957669 a001 2971215073/843*9349^(14/19) 2971210867469494 r005 Im(z^2+c),c=23/82+1/7*I,n=59 2971210867954902 a001 3278735159921/12238*521^(5/13) 2971210868746831 a001 1602508992/281*9349^(13/19) 2971210870535992 a001 7778742049/843*9349^(12/19) 2971210872325154 a001 12586269025/843*9349^(11/19) 2971210874114315 a001 20365011074/843*9349^(10/19) 2971210875903477 a001 10983760033/281*9349^(9/19) 2971210877111966 a007 Real Root Of -458*x^4-294*x^3-976*x^2+779*x+24 2971210877416677 a007 Real Root Of -333*x^4-546*x^3+894*x^2-991*x+794 2971210877692639 a001 53316291173/843*9349^(8/19) 2971210878300118 a001 516002918640/281*3571^(1/17) 2971210878410993 r009 Re(z^3+c),c=-41/110+8/29*I,n=7 2971210879015469 a001 377/15127*(1/2+1/2*5^(1/2))^53 2971210879021352 a001 2255/281*(1/2+1/2*5^(1/2))^41 2971210879481800 a001 86267571272/843*9349^(7/19) 2971210881270962 a001 139583862445/843*9349^(6/19) 2971210882715748 m005 (1/2*2^(1/2)+4/5)/(5/12*Catalan-8/9) 2971210883060123 a001 267913919*9349^(5/19) 2971210884849285 a001 365435296162/843*9349^(4/19) 2971210886638446 a001 591286729879/843*9349^(3/19) 2971210887040380 a001 1250879783444/421 2971210887282438 a001 165580141/843*24476^(20/21) 2971210887518612 a001 267914296/843*24476^(19/21) 2971210887754787 a001 433494437/843*24476^(6/7) 2971210887990962 a001 233802911/281*24476^(17/21) 2971210888227136 a001 1134903170/843*24476^(16/21) 2971210888427608 a001 956722026041/843*9349^(2/19) 2971210888463311 a001 1836311903/843*24476^(5/7) 2971210888699485 a001 2971215073/843*24476^(2/3) 2971210888935660 a001 1602508992/281*24476^(13/21) 2971210889171835 a001 7778742049/843*24476^(4/7) 2971210889408009 a001 12586269025/843*24476^(11/21) 2971210889644184 a001 20365011074/843*24476^(10/21) 2971210889880359 a001 10983760033/281*24476^(3/7) 2971210890105623 a001 377/39603*(1/2+1/2*5^(1/2))^55 2971210890105623 a001 377/39603*3461452808002^(11/12) 2971210890111506 a001 17711/843*2537720636^(13/15) 2971210890111506 a001 17711/843*45537549124^(13/17) 2971210890111506 a001 17711/843*14662949395604^(13/21) 2971210890111506 a001 17711/843*(1/2+1/2*5^(1/2))^39 2971210890111506 a001 17711/843*192900153618^(13/18) 2971210890111506 a001 17711/843*73681302247^(3/4) 2971210890111506 a001 17711/843*10749957122^(13/16) 2971210890111506 a001 17711/843*599074578^(13/14) 2971210890116533 a001 53316291173/843*24476^(8/21) 2971210890216769 a001 516002918640/281*9349^(1/19) 2971210890264177 a001 1568397607/233*34^(8/19) 2971210890352708 a001 86267571272/843*24476^(1/3) 2971210890588883 a001 139583862445/843*24476^(2/7) 2971210890825057 a001 267913919*24476^(5/21) 2971210891061232 a001 365435296162/843*24476^(4/21) 2971210891276442 a001 85145990511309/28657 2971210891297407 a001 591286729879/843*24476^(1/7) 2971210891313786 a001 63245986/843*64079^(22/23) 2971210891345247 a001 34111385/281*64079^(21/23) 2971210891376708 a001 165580141/843*64079^(20/23) 2971210891408169 a001 267914296/843*64079^(19/23) 2971210891439631 a001 433494437/843*64079^(18/23) 2971210891471092 a001 233802911/281*64079^(17/23) 2971210891502553 a001 1134903170/843*64079^(16/23) 2971210891533581 a001 956722026041/843*24476^(2/21) 2971210891534014 a001 1836311903/843*64079^(15/23) 2971210891565475 a001 2971215073/843*64079^(14/23) 2971210891596936 a001 1602508992/281*64079^(13/23) 2971210891628397 a001 7778742049/843*64079^(12/23) 2971210891659858 a001 12586269025/843*64079^(11/23) 2971210891691319 a001 20365011074/843*64079^(10/23) 2971210891722781 a001 10983760033/281*64079^(9/23) 2971210891723655 a001 377/103682*14662949395604^(19/21) 2971210891723655 a001 377/103682*(1/2+1/2*5^(1/2))^57 2971210891729538 a001 15456/281*(1/2+1/2*5^(1/2))^37 2971210891754242 a001 53316291173/843*64079^(8/23) 2971210891769756 a001 516002918640/281*24476^(1/21) 2971210891785703 a001 86267571272/843*64079^(7/23) 2971210891817164 a001 139583862445/843*64079^(6/23) 2971210891848625 a001 267913919*64079^(5/23) 2971210891880086 a001 365435296162/843*64079^(4/23) 2971210891894475 a001 222915097164383/75025 2971210891911547 a001 591286729879/843*64079^(3/23) 2971210891921473 a001 165580141/843*167761^(4/5) 2971210891942587 a001 1836311903/843*167761^(3/5) 2971210891943008 a001 956722026041/843*64079^(2/23) 2971210891959722 a001 377/271443*(1/2+1/2*5^(1/2))^59 2971210891963702 a001 20365011074/843*167761^(2/5) 2971210891965606 a001 121393/843*2537720636^(7/9) 2971210891965606 a001 121393/843*17393796001^(5/7) 2971210891965606 a001 121393/843*312119004989^(7/11) 2971210891965606 a001 121393/843*14662949395604^(5/9) 2971210891965606 a001 121393/843*(1/2+1/2*5^(1/2))^35 2971210891965606 a001 121393/843*505019158607^(5/8) 2971210891965606 a001 121393/843*28143753123^(7/10) 2971210891965606 a001 121393/843*599074578^(5/6) 2971210891965606 a001 121393/843*228826127^(7/8) 2971210891974470 a001 516002918640/281*64079^(1/23) 2971210891984644 a001 291799650490920/98209 2971210891984816 a001 267913919*167761^(1/5) 2971210891992240 a001 24157817/843*439204^(8/9) 2971210891993951 a001 34111385/281*439204^(7/9) 2971210891994164 a001 377/710647*(1/2+1/2*5^(1/2))^61 2971210891995662 a001 433494437/843*439204^(2/3) 2971210891997374 a001 1836311903/843*439204^(5/9) 2971210891997800 a001 1527882805781137/514229 2971210891999085 a001 7778742049/843*439204^(4/9) 2971210891999189 a001 377/1860498*(1/2+1/2*5^(1/2))^63 2971210891999719 a001 4000049116361571/1346269 2971210892000047 a001 377*141422324^(11/13) 2971210892000047 a001 377*2537720636^(11/15) 2971210892000047 a001 377*45537549124^(11/17) 2971210892000047 a001 377*312119004989^(3/5) 2971210892000047 a001 377*14662949395604^(11/21) 2971210892000047 a001 377*(1/2+1/2*5^(1/2))^33 2971210892000047 a001 377*192900153618^(11/18) 2971210892000047 a001 377*10749957122^(11/16) 2971210892000047 a001 377*1568397607^(3/4) 2971210892000047 a001 377*599074578^(11/14) 2971210892000050 a001 377*33385282^(11/12) 2971210892000375 a001 377/3010349*(1/2+1/2*5^(1/2))^64 2971210892000796 a001 10983760033/281*439204^(1/3) 2971210892000906 a001 1236083155290217/416020 2971210892002295 a001 377/1149851*(1/2+1/2*5^(1/2))^62 2971210892002508 a001 139583862445/843*439204^(2/9) 2971210892004219 a001 591286729879/843*439204^(1/9) 2971210892005072 a001 832040/843*(1/2+1/2*5^(1/2))^31 2971210892005072 a001 832040/843*9062201101803^(1/2) 2971210892005805 a001 726103/281*(1/2+1/2*5^(1/2))^29 2971210892005805 a001 726103/281*1322157322203^(1/2) 2971210892005873 a001 5702887/843*7881196^(9/11) 2971210892005897 a001 24157817/843*7881196^(8/11) 2971210892005899 a001 63245986/843*7881196^(2/3) 2971210892005900 a001 34111385/281*7881196^(7/11) 2971210892005905 a001 433494437/843*7881196^(6/11) 2971210892005909 a001 1836311903/843*7881196^(5/11) 2971210892005912 a001 5702887/843*141422324^(9/13) 2971210892005912 a001 5702887/843*2537720636^(3/5) 2971210892005912 a001 5702887/843*45537549124^(9/17) 2971210892005912 a001 5702887/843*817138163596^(9/19) 2971210892005912 a001 5702887/843*14662949395604^(3/7) 2971210892005912 a001 5702887/843*(1/2+1/2*5^(1/2))^27 2971210892005912 a001 5702887/843*192900153618^(1/2) 2971210892005912 a001 5702887/843*10749957122^(9/16) 2971210892005912 a001 5702887/843*599074578^(9/14) 2971210892005913 a001 7778742049/843*7881196^(4/11) 2971210892005914 a001 5702887/843*33385282^(3/4) 2971210892005915 a001 12586269025/843*7881196^(1/3) 2971210892005918 a001 10983760033/281*7881196^(3/11) 2971210892005922 a001 139583862445/843*7881196^(2/11) 2971210892005923 a001 4976784/281*20633239^(5/7) 2971210892005926 a001 591286729879/843*7881196^(1/11) 2971210892005926 a001 34111385/281*20633239^(3/5) 2971210892005927 a001 165580141/843*20633239^(4/7) 2971210892005928 a001 1836311903/843*20633239^(3/7) 2971210892005928 a001 2971215073/843*20633239^(2/5) 2971210892005928 a001 4976784/281*2537720636^(5/9) 2971210892005928 a001 4976784/281*312119004989^(5/11) 2971210892005928 a001 4976784/281*(1/2+1/2*5^(1/2))^25 2971210892005928 a001 4976784/281*3461452808002^(5/12) 2971210892005928 a001 4976784/281*28143753123^(1/2) 2971210892005928 a001 4976784/281*228826127^(5/8) 2971210892005929 a001 20365011074/843*20633239^(2/7) 2971210892005929 a001 86267571272/843*20633239^(1/5) 2971210892005930 a001 267913919*20633239^(1/7) 2971210892005930 a001 39088169/843*(1/2+1/2*5^(1/2))^23 2971210892005930 a001 39088169/843*4106118243^(1/2) 2971210892005931 a001 34111385/281*141422324^(7/13) 2971210892005931 a001 433494437/843*141422324^(6/13) 2971210892005931 a001 1836311903/843*141422324^(5/13) 2971210892005931 a001 34111385/281*2537720636^(7/15) 2971210892005931 a001 34111385/281*17393796001^(3/7) 2971210892005931 a001 34111385/281*45537549124^(7/17) 2971210892005931 a001 34111385/281*14662949395604^(1/3) 2971210892005931 a001 34111385/281*(1/2+1/2*5^(1/2))^21 2971210892005931 a001 34111385/281*192900153618^(7/18) 2971210892005931 a001 34111385/281*10749957122^(7/16) 2971210892005931 a001 34111385/281*599074578^(1/2) 2971210892005931 a001 1602508992/281*141422324^(1/3) 2971210892005931 a001 7778742049/843*141422324^(4/13) 2971210892005931 a001 10983760033/281*141422324^(3/13) 2971210892005931 a001 139583862445/843*141422324^(2/13) 2971210892005931 a001 591286729879/843*141422324^(1/13) 2971210892005931 a001 267914296/843*817138163596^(1/3) 2971210892005931 a001 267914296/843*(1/2+1/2*5^(1/2))^19 2971210892005931 a001 233802911/281*45537549124^(1/3) 2971210892005931 a001 233802911/281*(1/2+1/2*5^(1/2))^17 2971210892005931 a001 1836311903/843*2537720636^(1/3) 2971210892005931 a001 1836311903/843*45537549124^(5/17) 2971210892005931 a001 1836311903/843*312119004989^(3/11) 2971210892005931 a001 1836311903/843*14662949395604^(5/21) 2971210892005931 a001 1836311903/843*(1/2+1/2*5^(1/2))^15 2971210892005931 a001 1836311903/843*192900153618^(5/18) 2971210892005931 a001 1836311903/843*28143753123^(3/10) 2971210892005931 a001 1836311903/843*10749957122^(5/16) 2971210892005931 a001 7778742049/843*2537720636^(4/15) 2971210892005931 a001 20365011074/843*2537720636^(2/9) 2971210892005931 a001 10983760033/281*2537720636^(1/5) 2971210892005931 a001 139583862445/843*2537720636^(2/15) 2971210892005931 a001 267913919*2537720636^(1/9) 2971210892005931 a001 591286729879/843*2537720636^(1/15) 2971210892005931 a001 1602508992/281*(1/2+1/2*5^(1/2))^13 2971210892005931 a001 1602508992/281*73681302247^(1/4) 2971210892005931 a001 12586269025/843*312119004989^(1/5) 2971210892005931 a001 12586269025/843*(1/2+1/2*5^(1/2))^11 2971210892005931 a001 86267571272/843*17393796001^(1/7) 2971210892005931 a001 10983760033/281*45537549124^(3/17) 2971210892005931 a001 10983760033/281*817138163596^(3/19) 2971210892005931 a001 10983760033/281*14662949395604^(1/7) 2971210892005931 a001 10983760033/281*(1/2+1/2*5^(1/2))^9 2971210892005931 a001 10983760033/281*192900153618^(1/6) 2971210892005931 a001 139583862445/843*45537549124^(2/17) 2971210892005931 a001 591286729879/843*45537549124^(1/17) 2971210892005931 a001 86267571272/843*(1/2+1/2*5^(1/2))^7 2971210892005931 a001 267913919*(1/2+1/2*5^(1/2))^5 2971210892005931 a001 591286729879/843*14662949395604^(1/21) 2971210892005931 a001 591286729879/843*(1/2+1/2*5^(1/2))^3 2971210892005931 a001 258001459320/281+258001459320/281*5^(1/2) 2971210892005931 a001 2504730781961/843 2971210892005931 a001 139583862445/843*14662949395604^(2/21) 2971210892005931 a001 139583862445/843*(1/2+1/2*5^(1/2))^6 2971210892005931 a001 365435296162/843*73681302247^(1/13) 2971210892005931 a001 53316291173/843*(1/2+1/2*5^(1/2))^8 2971210892005931 a001 53316291173/843*23725150497407^(1/8) 2971210892005931 a001 53316291173/843*505019158607^(1/7) 2971210892005931 a001 53316291173/843*73681302247^(2/13) 2971210892005931 a001 267913919*28143753123^(1/10) 2971210892005931 a001 956722026041/843*10749957122^(1/24) 2971210892005931 a001 20365011074/843*312119004989^(2/11) 2971210892005931 a001 20365011074/843*(1/2+1/2*5^(1/2))^10 2971210892005931 a001 591286729879/843*10749957122^(1/16) 2971210892005931 a001 365435296162/843*10749957122^(1/12) 2971210892005931 a001 20365011074/843*28143753123^(1/5) 2971210892005931 a001 139583862445/843*10749957122^(1/8) 2971210892005931 a001 10983760033/281*10749957122^(3/16) 2971210892005931 a001 53316291173/843*10749957122^(1/6) 2971210892005931 a001 20365011074/843*10749957122^(5/24) 2971210892005931 a001 956722026041/843*4106118243^(1/23) 2971210892005931 a001 7778742049/843*45537549124^(4/17) 2971210892005931 a001 7778742049/843*817138163596^(4/19) 2971210892005931 a001 7778742049/843*14662949395604^(4/21) 2971210892005931 a001 7778742049/843*(1/2+1/2*5^(1/2))^12 2971210892005931 a001 7778742049/843*192900153618^(2/9) 2971210892005931 a001 7778742049/843*73681302247^(3/13) 2971210892005931 a001 365435296162/843*4106118243^(2/23) 2971210892005931 a001 7778742049/843*10749957122^(1/4) 2971210892005931 a001 139583862445/843*4106118243^(3/23) 2971210892005931 a001 53316291173/843*4106118243^(4/23) 2971210892005931 a001 20365011074/843*4106118243^(5/23) 2971210892005931 a001 956722026041/843*1568397607^(1/22) 2971210892005931 a001 7778742049/843*4106118243^(6/23) 2971210892005931 a001 2971215073/843*17393796001^(2/7) 2971210892005931 a001 2971215073/843*14662949395604^(2/9) 2971210892005931 a001 2971215073/843*(1/2+1/2*5^(1/2))^14 2971210892005931 a001 2971215073/843*10749957122^(7/24) 2971210892005931 a001 365435296162/843*1568397607^(1/11) 2971210892005931 a001 2971215073/843*4106118243^(7/23) 2971210892005931 a001 139583862445/843*1568397607^(3/22) 2971210892005931 a001 53316291173/843*1568397607^(2/11) 2971210892005931 a001 20365011074/843*1568397607^(5/22) 2971210892005931 a001 12586269025/843*1568397607^(1/4) 2971210892005931 a001 7778742049/843*1568397607^(3/11) 2971210892005931 a001 956722026041/843*599074578^(1/21) 2971210892005931 a001 2971215073/843*1568397607^(7/22) 2971210892005931 a001 1134903170/843*(1/2+1/2*5^(1/2))^16 2971210892005931 a001 1134903170/843*23725150497407^(1/4) 2971210892005931 a001 1134903170/843*73681302247^(4/13) 2971210892005931 a001 1134903170/843*10749957122^(1/3) 2971210892005931 a001 1134903170/843*4106118243^(8/23) 2971210892005931 a001 591286729879/843*599074578^(1/14) 2971210892005931 a001 365435296162/843*599074578^(2/21) 2971210892005931 a001 1134903170/843*1568397607^(4/11) 2971210892005931 a001 139583862445/843*599074578^(1/7) 2971210892005931 a001 86267571272/843*599074578^(1/6) 2971210892005931 a001 53316291173/843*599074578^(4/21) 2971210892005931 a001 10983760033/281*599074578^(3/14) 2971210892005931 a001 20365011074/843*599074578^(5/21) 2971210892005931 a001 7778742049/843*599074578^(2/7) 2971210892005931 a001 1836311903/843*599074578^(5/14) 2971210892005931 a001 2971215073/843*599074578^(1/3) 2971210892005931 a001 956722026041/843*228826127^(1/20) 2971210892005931 a001 433494437/843*2537720636^(2/5) 2971210892005931 a001 433494437/843*45537549124^(6/17) 2971210892005931 a001 433494437/843*14662949395604^(2/7) 2971210892005931 a001 433494437/843*(1/2+1/2*5^(1/2))^18 2971210892005931 a001 433494437/843*192900153618^(1/3) 2971210892005931 a001 433494437/843*10749957122^(3/8) 2971210892005931 a001 433494437/843*4106118243^(9/23) 2971210892005931 a001 1134903170/843*599074578^(8/21) 2971210892005931 a001 433494437/843*1568397607^(9/22) 2971210892005931 a001 365435296162/843*228826127^(1/10) 2971210892005931 a001 433494437/843*599074578^(3/7) 2971210892005931 a001 267913919*228826127^(1/8) 2971210892005931 a001 139583862445/843*228826127^(3/20) 2971210892005931 a001 53316291173/843*228826127^(1/5) 2971210892005931 a001 20365011074/843*228826127^(1/4) 2971210892005931 a001 7778742049/843*228826127^(3/10) 2971210892005931 a001 2971215073/843*228826127^(7/20) 2971210892005931 a001 956722026041/843*87403803^(1/19) 2971210892005931 a001 1836311903/843*228826127^(3/8) 2971210892005931 a001 165580141/843*2537720636^(4/9) 2971210892005931 a001 165580141/843*(1/2+1/2*5^(1/2))^20 2971210892005931 a001 165580141/843*23725150497407^(5/16) 2971210892005931 a001 165580141/843*505019158607^(5/14) 2971210892005931 a001 165580141/843*73681302247^(5/13) 2971210892005931 a001 165580141/843*28143753123^(2/5) 2971210892005931 a001 165580141/843*10749957122^(5/12) 2971210892005931 a001 165580141/843*4106118243^(10/23) 2971210892005931 a001 165580141/843*1568397607^(5/11) 2971210892005931 a001 1134903170/843*228826127^(2/5) 2971210892005931 a001 165580141/843*599074578^(10/21) 2971210892005931 a001 433494437/843*228826127^(9/20) 2971210892005931 a001 365435296162/843*87403803^(2/19) 2971210892005931 a001 165580141/843*228826127^(1/2) 2971210892005931 a001 139583862445/843*87403803^(3/19) 2971210892005931 a001 53316291173/843*87403803^(4/19) 2971210892005931 a001 20365011074/843*87403803^(5/19) 2971210892005931 a001 7778742049/843*87403803^(6/19) 2971210892005931 a001 2971215073/843*87403803^(7/19) 2971210892005931 a001 956722026041/843*33385282^(1/18) 2971210892005931 a001 63245986/843*312119004989^(2/5) 2971210892005931 a001 63245986/843*(1/2+1/2*5^(1/2))^22 2971210892005931 a001 63245986/843*10749957122^(11/24) 2971210892005931 a001 63245986/843*4106118243^(11/23) 2971210892005931 a001 63245986/843*1568397607^(1/2) 2971210892005931 a001 63245986/843*599074578^(11/21) 2971210892005931 a001 1134903170/843*87403803^(8/19) 2971210892005931 a001 63245986/843*228826127^(11/20) 2971210892005931 a001 267914296/843*87403803^(1/2) 2971210892005931 a001 433494437/843*87403803^(9/19) 2971210892005931 a001 591286729879/843*33385282^(1/12) 2971210892005931 a001 165580141/843*87403803^(10/19) 2971210892005931 a001 365435296162/843*33385282^(1/9) 2971210892005931 a001 63245986/843*87403803^(11/19) 2971210892005931 a001 139583862445/843*33385282^(1/6) 2971210892005931 a001 53316291173/843*33385282^(2/9) 2971210892005931 a001 10983760033/281*33385282^(1/4) 2971210892005931 a001 20365011074/843*33385282^(5/18) 2971210892005932 a001 7778742049/843*33385282^(1/3) 2971210892005932 a001 24157817/843*141422324^(8/13) 2971210892005932 a001 24157817/843*2537720636^(8/15) 2971210892005932 a001 24157817/843*45537549124^(8/17) 2971210892005932 a001 24157817/843*14662949395604^(8/21) 2971210892005932 a001 24157817/843*(1/2+1/2*5^(1/2))^24 2971210892005932 a001 24157817/843*192900153618^(4/9) 2971210892005932 a001 24157817/843*73681302247^(6/13) 2971210892005932 a001 24157817/843*10749957122^(1/2) 2971210892005932 a001 24157817/843*4106118243^(12/23) 2971210892005932 a001 24157817/843*1568397607^(6/11) 2971210892005932 a001 24157817/843*599074578^(4/7) 2971210892005932 a001 2971215073/843*33385282^(7/18) 2971210892005932 a001 24157817/843*228826127^(3/5) 2971210892005932 a001 956722026041/843*12752043^(1/17) 2971210892005932 a001 1836311903/843*33385282^(5/12) 2971210892005932 a001 1134903170/843*33385282^(4/9) 2971210892005932 a001 24157817/843*87403803^(12/19) 2971210892005932 a001 433494437/843*33385282^(1/2) 2971210892005932 a001 34111385/281*33385282^(7/12) 2971210892005932 a001 165580141/843*33385282^(5/9) 2971210892005932 a001 63245986/843*33385282^(11/18) 2971210892005933 a001 365435296162/843*12752043^(2/17) 2971210892005933 a001 24157817/843*33385282^(2/3) 2971210892005934 a001 139583862445/843*12752043^(3/17) 2971210892005935 a001 53316291173/843*12752043^(4/17) 2971210892005936 a001 20365011074/843*12752043^(5/17) 2971210892005937 a001 7778742049/843*12752043^(6/17) 2971210892005938 a001 9227465/843*141422324^(2/3) 2971210892005938 a001 9227465/843*(1/2+1/2*5^(1/2))^26 2971210892005938 a001 9227465/843*73681302247^(1/2) 2971210892005938 a001 9227465/843*10749957122^(13/24) 2971210892005938 a001 9227465/843*4106118243^(13/23) 2971210892005938 a001 9227465/843*1568397607^(13/22) 2971210892005938 a001 9227465/843*599074578^(13/21) 2971210892005938 a001 9227465/843*228826127^(13/20) 2971210892005938 a001 9227465/843*87403803^(13/19) 2971210892005938 a001 2971215073/843*12752043^(7/17) 2971210892005939 a001 956722026041/843*4870847^(1/16) 2971210892005939 a001 1134903170/843*12752043^(8/17) 2971210892005940 a001 9227465/843*33385282^(13/18) 2971210892005940 a001 233802911/281*12752043^(1/2) 2971210892005940 a001 433494437/843*12752043^(9/17) 2971210892005941 a001 165580141/843*12752043^(10/17) 2971210892005943 a001 63245986/843*12752043^(11/17) 2971210892005945 a001 24157817/843*12752043^(12/17) 2971210892005946 a001 365435296162/843*4870847^(1/8) 2971210892005952 a001 9227465/843*12752043^(13/17) 2971210892005954 a001 139583862445/843*4870847^(3/16) 2971210892005962 a001 53316291173/843*4870847^(1/4) 2971210892005970 a001 20365011074/843*4870847^(5/16) 2971210892005973 a001 3524578/843*20633239^(4/5) 2971210892005978 a001 7778742049/843*4870847^(3/8) 2971210892005979 a001 3524578/843*17393796001^(4/7) 2971210892005979 a001 3524578/843*14662949395604^(4/9) 2971210892005979 a001 3524578/843*(1/2+1/2*5^(1/2))^28 2971210892005979 a001 3524578/843*73681302247^(7/13) 2971210892005979 a001 3524578/843*10749957122^(7/12) 2971210892005979 a001 3524578/843*4106118243^(14/23) 2971210892005979 a001 3524578/843*1568397607^(7/11) 2971210892005979 a001 3524578/843*599074578^(2/3) 2971210892005979 a001 3524578/843*228826127^(7/10) 2971210892005979 a001 3524578/843*87403803^(14/19) 2971210892005981 a001 3524578/843*33385282^(7/9) 2971210892005985 a001 2971215073/843*4870847^(7/16) 2971210892005988 a001 956722026041/843*1860498^(1/15) 2971210892005993 a001 1134903170/843*4870847^(1/2) 2971210892005994 a001 3524578/843*12752043^(14/17) 2971210892006001 a001 433494437/843*4870847^(9/16) 2971210892006009 a001 165580141/843*4870847^(5/8) 2971210892006017 a001 591286729879/843*1860498^(1/10) 2971210892006017 a001 63245986/843*4870847^(11/16) 2971210892006026 a001 24157817/843*4870847^(3/4) 2971210892006039 a001 9227465/843*4870847^(13/16) 2971210892006045 a001 365435296162/843*1860498^(2/15) 2971210892006074 a001 267913919*1860498^(1/6) 2971210892006088 a001 3524578/843*4870847^(7/8) 2971210892006102 a001 139583862445/843*1860498^(1/5) 2971210892006160 a001 53316291173/843*1860498^(4/15) 2971210892006188 a001 10983760033/281*1860498^(3/10) 2971210892006215 a001 1346269/843*7881196^(10/11) 2971210892006217 a001 20365011074/843*1860498^(1/3) 2971210892006253 a001 1346269/843*20633239^(6/7) 2971210892006258 a001 1346269/843*141422324^(10/13) 2971210892006259 a001 1346269/843*2537720636^(2/3) 2971210892006259 a001 1346269/843*45537549124^(10/17) 2971210892006259 a001 1346269/843*312119004989^(6/11) 2971210892006259 a001 1346269/843*14662949395604^(10/21) 2971210892006259 a001 1346269/843*(1/2+1/2*5^(1/2))^30 2971210892006259 a001 1346269/843*192900153618^(5/9) 2971210892006259 a001 1346269/843*28143753123^(3/5) 2971210892006259 a001 1346269/843*10749957122^(5/8) 2971210892006259 a001 1346269/843*4106118243^(15/23) 2971210892006259 a001 1346269/843*1568397607^(15/22) 2971210892006259 a001 1346269/843*599074578^(5/7) 2971210892006259 a001 1346269/843*228826127^(3/4) 2971210892006259 a001 1346269/843*87403803^(15/19) 2971210892006261 a001 1346269/843*33385282^(5/6) 2971210892006274 a001 7778742049/843*1860498^(2/5) 2971210892006275 a001 1346269/843*12752043^(15/17) 2971210892006331 a001 2971215073/843*1860498^(7/15) 2971210892006351 a001 956722026041/843*710647^(1/14) 2971210892006360 a001 1836311903/843*1860498^(1/2) 2971210892006376 a001 1346269/843*4870847^(15/16) 2971210892006388 a001 1134903170/843*1860498^(8/15) 2971210892006446 a001 433494437/843*1860498^(3/5) 2971210892006503 a001 165580141/843*1860498^(2/3) 2971210892006532 a001 34111385/281*1860498^(7/10) 2971210892006560 a001 63245986/843*1860498^(11/15) 2971210892006618 a001 24157817/843*1860498^(4/5) 2971210892006643 a001 4976784/281*1860498^(5/6) 2971210892006682 a001 9227465/843*1860498^(13/15) 2971210892006685 a001 5702887/843*1860498^(9/10) 2971210892006771 a001 365435296162/843*710647^(1/7) 2971210892006780 a001 3524578/843*1860498^(14/15) 2971210892007191 a001 139583862445/843*710647^(3/14) 2971210892007402 a001 86267571272/843*710647^(1/4) 2971210892007612 a001 53316291173/843*710647^(2/7) 2971210892008032 a001 20365011074/843*710647^(5/14) 2971210892008178 a001 514229/843*(1/2+1/2*5^(1/2))^32 2971210892008178 a001 514229/843*23725150497407^(1/2) 2971210892008178 a001 514229/843*505019158607^(4/7) 2971210892008178 a001 514229/843*73681302247^(8/13) 2971210892008178 a001 514229/843*10749957122^(2/3) 2971210892008178 a001 514229/843*4106118243^(16/23) 2971210892008178 a001 514229/843*1568397607^(8/11) 2971210892008178 a001 514229/843*599074578^(16/21) 2971210892008178 a001 514229/843*228826127^(4/5) 2971210892008178 a001 514229/843*87403803^(16/19) 2971210892008180 a001 514229/843*33385282^(8/9) 2971210892008195 a001 514229/843*12752043^(16/17) 2971210892008452 a001 7778742049/843*710647^(3/7) 2971210892008872 a001 2971215073/843*710647^(1/2) 2971210892009033 a001 956722026041/843*271443^(1/13) 2971210892009293 a001 1134903170/843*710647^(4/7) 2971210892009713 a001 433494437/843*710647^(9/14) 2971210892010133 a001 165580141/843*710647^(5/7) 2971210892010343 a001 34111385/281*710647^(3/4) 2971210892010553 a001 63245986/843*710647^(11/14) 2971210892010975 a001 24157817/843*710647^(6/7) 2971210892011401 a001 9227465/843*710647^(13/14) 2971210892012135 a001 365435296162/843*271443^(2/13) 2971210892015237 a001 139583862445/843*271443^(3/13) 2971210892015450 a001 377/439204*14662949395604^(20/21) 2971210892015450 a001 377/439204*(1/2+1/2*5^(1/2))^60 2971210892017447 a001 516002918640/281*103682^(1/24) 2971210892018338 a001 53316291173/843*271443^(4/13) 2971210892021334 a001 196418/843*45537549124^(2/3) 2971210892021334 a001 196418/843*(1/2+1/2*5^(1/2))^34 2971210892021334 a001 196418/843*10749957122^(17/24) 2971210892021334 a001 196418/843*4106118243^(17/23) 2971210892021334 a001 196418/843*1568397607^(17/22) 2971210892021334 a001 196418/843*599074578^(17/21) 2971210892021334 a001 196418/843*228826127^(17/20) 2971210892021334 a001 196418/843*87403803^(17/19) 2971210892021336 a001 196418/843*33385282^(17/18) 2971210892021440 a001 20365011074/843*271443^(5/13) 2971210892024542 a001 7778742049/843*271443^(6/13) 2971210892026093 a001 1602508992/281*271443^(1/2) 2971210892027644 a001 2971215073/843*271443^(7/13) 2971210892028963 a001 956722026041/843*103682^(1/12) 2971210892030746 a001 1134903170/843*271443^(8/13) 2971210892033848 a001 433494437/843*271443^(9/13) 2971210892036950 a001 165580141/843*271443^(10/13) 2971210892040052 a001 63245986/843*271443^(11/13) 2971210892040373 a001 360684203817457/121393 2971210892040480 a001 591286729879/843*103682^(1/8) 2971210892043155 a001 24157817/843*271443^(12/13) 2971210892051996 a001 365435296162/843*103682^(1/6) 2971210892063513 a001 267913919*103682^(5/24) 2971210892075029 a001 139583862445/843*103682^(1/4) 2971210892086545 a001 86267571272/843*103682^(7/24) 2971210892092041 a001 516002918640/281*39603^(1/22) 2971210892098062 a001 53316291173/843*103682^(1/3) 2971210892105620 a001 377/167761*(1/2+1/2*5^(1/2))^58 2971210892109578 a001 10983760033/281*103682^(3/8) 2971210892111503 a001 75025/843*141422324^(12/13) 2971210892111503 a001 75025/843*2537720636^(4/5) 2971210892111503 a001 75025/843*45537549124^(12/17) 2971210892111503 a001 75025/843*14662949395604^(4/7) 2971210892111503 a001 75025/843*(1/2+1/2*5^(1/2))^36 2971210892111503 a001 75025/843*505019158607^(9/14) 2971210892111503 a001 75025/843*192900153618^(2/3) 2971210892111503 a001 75025/843*73681302247^(9/13) 2971210892111503 a001 75025/843*10749957122^(3/4) 2971210892111503 a001 75025/843*4106118243^(18/23) 2971210892111503 a001 75025/843*1568397607^(9/11) 2971210892111503 a001 75025/843*599074578^(6/7) 2971210892111503 a001 75025/843*228826127^(9/10) 2971210892111504 a001 75025/843*87403803^(18/19) 2971210892121094 a001 20365011074/843*103682^(5/12) 2971210892132611 a001 12586269025/843*103682^(11/24) 2971210892144127 a001 7778742049/843*103682^(1/2) 2971210892155643 a001 1602508992/281*103682^(13/24) 2971210892167160 a001 2971215073/843*103682^(7/12) 2971210892178151 a001 956722026041/843*39603^(1/11) 2971210892178676 a001 1836311903/843*103682^(5/8) 2971210892190193 a001 1134903170/843*103682^(2/3) 2971210892201709 a001 233802911/281*103682^(17/24) 2971210892213225 a001 433494437/843*103682^(3/4) 2971210892224742 a001 267914296/843*103682^(19/24) 2971210892236258 a001 165580141/843*103682^(5/6) 2971210892247774 a001 34111385/281*103682^(7/8) 2971210892259291 a001 63245986/843*103682^(11/12) 2971210892264261 a001 591286729879/843*39603^(3/22) 2971210892270807 a001 39088169/843*103682^(23/24) 2971210892276440 a001 68884553326537/23184 2971210892350372 a001 365435296162/843*39603^(2/11) 2971210892436482 a001 267913919*39603^(5/22) 2971210892522592 a001 139583862445/843*39603^(3/11) 2971210892608702 a001 86267571272/843*39603^(7/22) 2971210892655160 a001 516002918640/281*15127^(1/20) 2971210892694812 a001 53316291173/843*39603^(4/11) 2971210892723653 a001 377/64079*14662949395604^(8/9) 2971210892723653 a001 377/64079*(1/2+1/2*5^(1/2))^56 2971210892729536 a001 28657/843*817138163596^(2/3) 2971210892729536 a001 28657/843*(1/2+1/2*5^(1/2))^38 2971210892729536 a001 28657/843*10749957122^(19/24) 2971210892729536 a001 28657/843*4106118243^(19/23) 2971210892729536 a001 28657/843*1568397607^(19/22) 2971210892729536 a001 28657/843*599074578^(19/21) 2971210892729537 a001 28657/843*228826127^(19/20) 2971210892780923 a001 10983760033/281*39603^(9/22) 2971210892867033 a001 20365011074/843*39603^(5/11) 2971210892953143 a001 12586269025/843*39603^(1/2) 2971210893039253 a001 7778742049/843*39603^(6/11) 2971210893125363 a001 1602508992/281*39603^(13/22) 2971210893211474 a001 2971215073/843*39603^(7/11) 2971210893297584 a001 1836311903/843*39603^(15/22) 2971210893304389 a001 956722026041/843*15127^(1/10) 2971210893383694 a001 1134903170/843*39603^(8/11) 2971210893469804 a001 233802911/281*39603^(17/22) 2971210893555914 a001 433494437/843*39603^(9/11) 2971210893642025 a001 267914296/843*39603^(19/22) 2971210893728135 a001 165580141/843*39603^(10/11) 2971210893814245 a001 34111385/281*39603^(21/22) 2971210893894472 a001 591270967885/199 2971210893953618 a001 591286729879/843*15127^(3/20) 2971210894602846 a001 365435296162/843*15127^(1/5) 2971210895252075 a001 267913919*15127^(1/4) 2971210895901304 a001 139583862445/843*15127^(3/10) 2971210896550533 a001 86267571272/843*15127^(7/20) 2971210896950243 a001 516002918640/281*5778^(1/18) 2971210896959715 a001 13/844*14662949395604^(6/7) 2971210896959715 a001 13/844*(1/2+1/2*5^(1/2))^54 2971210896965598 a001 10946/843*2537720636^(8/9) 2971210896965598 a001 10946/843*312119004989^(8/11) 2971210896965598 a001 10946/843*(1/2+1/2*5^(1/2))^40 2971210896965598 a001 10946/843*23725150497407^(5/8) 2971210896965598 a001 10946/843*73681302247^(10/13) 2971210896965598 a001 10946/843*28143753123^(4/5) 2971210896965598 a001 10946/843*10749957122^(5/6) 2971210896965598 a001 10946/843*4106118243^(20/23) 2971210896965598 a001 10946/843*1568397607^(10/11) 2971210896965599 a001 10946/843*599074578^(20/21) 2971210896989303 a001 2504730781961/9349*521^(5/13) 2971210897199762 a001 53316291173/843*15127^(2/5) 2971210897848991 a001 10983760033/281*15127^(9/20) 2971210898498220 a001 20365011074/843*15127^(1/2) 2971210899147449 a001 12586269025/843*15127^(11/20) 2971210899796678 a001 7778742049/843*15127^(3/5) 2971210900445907 a001 1602508992/281*15127^(13/20) 2971210901095136 a001 2971215073/843*15127^(7/10) 2971210901744365 a001 1836311903/843*15127^(3/4) 2971210901894556 a001 956722026041/843*5778^(1/9) 2971210902393594 a001 1134903170/843*15127^(4/5) 2971210903042823 a001 233802911/281*15127^(17/20) 2971210903403463 r008 a(0)=3,K{-n^6,-11+4*n^3+69*n^2-27*n} 2971210903692052 a001 433494437/843*15127^(9/10) 2971210904341281 a001 267914296/843*15127^(19/20) 2971210904984626 a001 20100241772221/6765 2971210906838868 a001 591286729879/843*5778^(1/6) 2971210911783181 a001 365435296162/843*5778^(2/9) 2971210913317346 r008 a(0)=3,K{-n^6,-17+6*n^3+60*n^2-14*n} 2971210916727494 a001 267913919*5778^(5/18) 2971210921671806 a001 139583862445/843*5778^(1/3) 2971210924287713 a007 Real Root Of 417*x^4+914*x^3-995*x^2-94*x-20 2971210925994117 a001 377/9349*(1/2+1/2*5^(1/2))^52 2971210925994117 a001 377/9349*23725150497407^(13/16) 2971210925994117 a001 377/9349*505019158607^(13/14) 2971210925999999 a001 4181/843*2537720636^(14/15) 2971210925999999 a001 4181/843*17393796001^(6/7) 2971210925999999 a001 4181/843*45537549124^(14/17) 2971210925999999 a001 4181/843*14662949395604^(2/3) 2971210925999999 a001 4181/843*(1/2+1/2*5^(1/2))^42 2971210925999999 a001 4181/843*505019158607^(3/4) 2971210925999999 a001 4181/843*192900153618^(7/9) 2971210925999999 a001 4181/843*10749957122^(7/8) 2971210925999999 a001 4181/843*4106118243^(21/23) 2971210925999999 a001 4181/843*1568397607^(21/22) 2971210926197162 r008 a(0)=3,K{-n^6,-15+7*n^3+58*n^2-15*n} 2971210926616119 a001 86267571272/843*5778^(7/18) 2971210928894220 l006 ln(6353/8551) 2971210930130853 a001 516002918640/281*2207^(1/16) 2971210931560431 a001 53316291173/843*5778^(4/9) 2971210935379678 m001 exp(1)/(TreeGrowth2nd+Weierstrass) 2971210936504744 a001 10983760033/281*5778^(1/2) 2971210938382742 r005 Im(z^2+c),c=-25/78+27/56*I,n=40 2971210941449057 a001 20365011074/843*5778^(5/9) 2971210946393369 a001 12586269025/843*5778^(11/18) 2971210949148561 r005 Im(z^2+c),c=-49/78+11/46*I,n=8 2971210951337682 a001 7778742049/843*5778^(2/3) 2971210954295444 m001 FeigenbaumMu-polylog(4,1/2)-StolarskyHarborth 2971210956281995 a001 1602508992/281*5778^(13/18) 2971210961226307 a001 2971215073/843*5778^(7/9) 2971210963200393 m001 1/Catalan*Riemann3rdZero/ln(GAMMA(2/3))^2 2971210966170620 a001 1836311903/843*5778^(5/6) 2971210968255776 a001 956722026041/843*2207^(1/8) 2971210971114933 a001 1134903170/843*5778^(8/9) 2971210972212661 m008 (1/5*Pi^2+3/4)/(1/6*Pi^3+4) 2971210976059246 a001 233802911/281*5778^(17/18) 2971210980997678 a001 3838804587449/1292 2971210985985401 a001 55/2*199^(23/26) 2971210991290120 r005 Im(z^2+c),c=-11/42+2/47*I,n=19 2971210997669012 b008 E+Csch[1/27] 2971211000484977 r005 Re(z^2+c),c=-3/4+31/120*I,n=11 2971211002853294 r005 Im(z^2+c),c=47/122+7/26*I,n=45 2971211006380699 a001 591286729879/843*2207^(3/16) 2971211007341264 a001 1149851/1597*89^(6/19) 2971211007403837 m001 log(2+sqrt(3))^2/GAMMA(2/3)*exp(sin(1)) 2971211008585338 m001 (Pi+BesselK(0,1))/(Zeta(1,2)-MertensB1) 2971211013260951 r008 a(0)=3,K{-n^6,3-28*n+46*n^2+14*n^3} 2971211014319243 k007 concat of cont frac of 2971211021122117 k006 concat of cont frac of 2971211023100803 r005 Re(z^2+c),c=-35/74+7/32*I,n=2 2971211023637262 r005 Im(z^2+c),c=-77/82+11/45*I,n=53 2971211039800008 m005 (1/3*Catalan-3/4)/(6/7*exp(1)-5/6) 2971211044505622 a001 365435296162/843*2207^(1/4) 2971211045477034 r005 Im(z^2+c),c=23/82+1/7*I,n=61 2971211054781641 h001 (1/2*exp(1)+2/7)/(7/10*exp(2)+4/11) 2971211061121110 k008 concat of cont frac of 2971211066975986 m001 (Tetranacci-ZetaP(3))/(gamma(1)+LaplaceLimit) 2971211071878907 m001 (KhinchinLevy-MertensB1)/(ln(Pi)-Backhouse) 2971211078881618 r005 Im(z^2+c),c=33/106+25/56*I,n=18 2971211082630547 a001 267913919*2207^(5/16) 2971211083533726 m005 (1/2*exp(1)-9/10)/(4/7*3^(1/2)+5/9) 2971211094996855 a001 956722026041/2207*521^(4/13) 2971211095994064 a001 956722026041/3571*521^(5/13) 2971211111111119 k006 concat of cont frac of 2971211111111718 k007 concat of cont frac of 2971211112141111 k006 concat of cont frac of 2971211112221713 k006 concat of cont frac of 2971211113970715 m005 (1/2*3^(1/2)-2/3)/(1/12*exp(1)+4/9) 2971211114431121 k006 concat of cont frac of 2971211119238721 r005 Re(z^2+c),c=-7/114+29/46*I,n=43 2971211120755471 a001 139583862445/843*2207^(3/8) 2971211121150122 k009 concat of cont frac of 2971211121835711 k008 concat of cont frac of 2971211123112234 k006 concat of cont frac of 2971211124998879 a001 377/3571*312119004989^(10/11) 2971211124998879 a001 377/3571*(1/2+1/2*5^(1/2))^50 2971211124998879 a001 377/3571*3461452808002^(5/6) 2971211125004744 a001 1597/843*312119004989^(4/5) 2971211125004744 a001 1597/843*(1/2+1/2*5^(1/2))^44 2971211125004744 a001 1597/843*23725150497407^(11/16) 2971211125004744 a001 1597/843*73681302247^(11/13) 2971211125004744 a001 1597/843*10749957122^(11/12) 2971211125004744 a001 1597/843*4106118243^(22/23) 2971211134740811 r005 Im(z^2+c),c=23/82+1/7*I,n=51 2971211138557054 r005 Im(z^2+c),c=-11/30+14/29*I,n=27 2971211140794251 a007 Real Root Of 306*x^4+777*x^3-567*x^2-481*x+109 2971211141295123 k008 concat of cont frac of 2971211145023670 r008 a(0)=3,K{-n^6,-7+29*n-22*n^2+35*n^3} 2971211148132228 k007 concat of cont frac of 2971211152390986 m001 (-cos(1/5*Pi)+ZetaQ(4))/(BesselJ(0,1)-Zeta(5)) 2971211158880396 a001 86267571272/843*2207^(7/16) 2971211176255890 m005 (5/36+1/4*5^(1/2))/(7/8*Pi-2/5) 2971211177717009 p004 log(25741/1319) 2971211178111411 k009 concat of cont frac of 2971211182641381 r009 Im(z^3+c),c=-9/19+9/61*I,n=41 2971211184115610 m001 (LambertW(1)-exp(1/Pi))/exp(1) 2971211185259073 a001 1322157322203/8*5702887^(7/9) 2971211185259086 a001 54018521/8*2504730781961^(7/9) 2971211185259087 a001 1568397607/8*32951280099^(7/9) 2971211185259087 a001 11384387281/2*433494437^(7/9) 2971211190648169 a001 516002918640/281*843^(1/14) 2971211197005322 a001 53316291173/843*2207^(1/2) 2971211201705528 m001 cos(Pi/5)^2*exp(OneNinth)^2/sqrt(1+sqrt(3))^2 2971211202527581 r005 Im(z^2+c),c=7/44+1/55*I,n=6 2971211206347934 a001 3010349/4181*89^(6/19) 2971211211212191 k008 concat of cont frac of 2971211212144227 k006 concat of cont frac of 2971211217415641 k007 concat of cont frac of 2971211221812111 k007 concat of cont frac of 2971211226530663 r009 Re(z^3+c),c=-35/62+20/39*I,n=17 2971211226645414 r002 56th iterates of z^2 + 2971211228834518 a007 Real Root Of 208*x^4+608*x^3+30*x^2+262*x+251 2971211229538346 a001 4870847/3*3524578^(22/23) 2971211230946666 r009 Im(z^3+c),c=-27/50+7/44*I,n=57 2971211231734699 r009 Im(z^3+c),c=-19/78+17/59*I,n=10 2971211235130248 a001 10983760033/281*2207^(9/16) 2971211235382618 a001 3940598/5473*89^(6/19) 2971211239618721 a001 20633239/28657*89^(6/19) 2971211240236760 a001 54018521/75025*89^(6/19) 2971211240326931 a001 70711162/98209*89^(6/19) 2971211240340087 a001 370248451/514229*89^(6/19) 2971211240342006 a001 969323029/1346269*89^(6/19) 2971211240342286 a001 1268860318/1762289*89^(6/19) 2971211240342327 a001 6643838879/9227465*89^(6/19) 2971211240342333 a001 17393796001/24157817*89^(6/19) 2971211240342334 a001 22768774562/31622993*89^(6/19) 2971211240342334 a001 119218851371/165580141*89^(6/19) 2971211240342334 a001 312119004989/433494437*89^(6/19) 2971211240342334 a001 408569081798/567451585*89^(6/19) 2971211240342334 a001 2139295485799/2971215073*89^(6/19) 2971211240342334 a001 5600748293801/7778742049*89^(6/19) 2971211240342334 a001 7331474697802/10182505537*89^(6/19) 2971211240342334 a001 23725150497407/32951280099*89^(6/19) 2971211240342334 a001 9062201101803/12586269025*89^(6/19) 2971211240342334 a001 10749853441/14930208*89^(6/19) 2971211240342334 a001 1322157322203/1836311903*89^(6/19) 2971211240342334 a001 505019158607/701408733*89^(6/19) 2971211240342334 a001 96450076809/133957148*89^(6/19) 2971211240342334 a001 10525900321/14619165*89^(6/19) 2971211240342334 a001 28143753123/39088169*89^(6/19) 2971211240342337 a001 5374978561/7465176*89^(6/19) 2971211240342352 a001 4106118243/5702887*89^(6/19) 2971211240342459 a001 224056801/311187*89^(6/19) 2971211240343192 a001 299537289/416020*89^(6/19) 2971211240348217 a001 228826127/317811*89^(6/19) 2971211240382659 a001 87403803/121393*89^(6/19) 2971211240618729 a001 103681/144*89^(6/19) 2971211242236777 a001 12752043/17711*89^(6/19) 2971211251084816 r009 Re(z^3+c),c=-19/46+9/25*I,n=18 2971211253327040 a001 4870847/6765*89^(6/19) 2971211257236430 r009 Re(z^3+c),c=-12/31+5/16*I,n=24 2971211260648768 m005 (1/2*Catalan-9/11)/(5/7*gamma+4/5) 2971211262452077 l006 ln(3506/4719) 2971211262959374 r005 Re(z^2+c),c=-19/58+23/60*I,n=48 2971211269975144 r008 a(0)=3,K{-n^6,12+26*n^3-81*n^2+79*n} 2971211273255175 a001 20365011074/843*2207^(5/8) 2971211275671682 m001 (GAMMA(23/24)-Cahen)/(gamma(3)+GAMMA(17/24)) 2971211278360863 l006 ln(386/7533) 2971211283224357 r008 a(0)=3,K{-n^6,39+2*n-62*n^2+56*n^3} 2971211285582446 h001 (2/9*exp(1)+3/8)/(7/8*exp(1)+11/12) 2971211293897461 r005 Re(z^2+c),c=-29/94+27/61*I,n=37 2971211297862388 r008 a(0)=3,K{-n^6,56-27*n^3+68*n^2-66*n} 2971211298207495 q001 547/1841 2971211304793880 a007 Real Root Of -184*x^4-747*x^3-543*x^2+29*x-374 2971211311024513 k008 concat of cont frac of 2971211311380102 a001 12586269025/843*2207^(11/16) 2971211321112212 k006 concat of cont frac of 2971211324873920 r005 Im(z^2+c),c=-133/90+1/33*I,n=6 2971211328933210 m001 (Ei(1)+3^(1/3))/(GolombDickman-MadelungNaCl) 2971211329340833 a001 930249/1292*89^(6/19) 2971211332118809 r009 Re(z^3+c),c=-35/62+20/39*I,n=20 2971211338027744 r009 Re(z^3+c),c=-39/86+19/45*I,n=34 2971211348929777 m001 (LaplaceLimit+ZetaQ(4))/(arctan(1/2)+Pi^(1/2)) 2971211349505029 a001 7778742049/843*2207^(3/4) 2971211357199840 m001 (Zeta(5)-gamma(2))/(Zeta(1,2)-Sierpinski) 2971211362145934 r009 Re(z^3+c),c=-19/60+11/60*I,n=3 2971211370305406 r005 Im(z^2+c),c=-107/102+8/33*I,n=60 2971211372057214 a007 Real Root Of -668*x^4+504*x^3-934*x^2+549*x+264 2971211378610535 m001 (1+3^(1/2))^(1/2)/(LambertW(1)-Trott) 2971211387629957 a001 1602508992/281*2207^(13/16) 2971211394379142 m002 5-E^Pi+2/Pi^4-Cosh[Pi] 2971211402805094 m001 (LandauRamanujan-gamma(1)*Magata)/Magata 2971211406774968 p004 log(19763/14683) 2971211407813125 m001 (Weierstrass+ZetaP(2))/(arctan(1/3)+gamma(2)) 2971211408520272 r002 25th iterates of z^2 + 2971211410114324 k009 concat of cont frac of 2971211411231151 k006 concat of cont frac of 2971211411509537 p004 log(19457/997) 2971211412079474 a007 Real Root Of 402*x^4+873*x^3-690*x^2+775*x-37 2971211417360094 r005 Re(z^2+c),c=-19/58+23/60*I,n=47 2971211419650618 m001 (Tetranacci+Thue)/(Khinchin-MadelungNaCl) 2971211423436372 m001 (Zeta(5)*Tribonacci+GAMMA(19/24))/Zeta(5) 2971211424381169 m001 (Paris-Riemann1stZero)/(ln(2+3^(1/2))+Magata) 2971211425754886 a001 2971215073/843*2207^(7/8) 2971211425830965 m001 Magata*Backhouse^2*exp(sqrt(2)) 2971211433282220 m001 (Cahen-StronglyCareFree)/(Pi+ln(2+3^(1/2))) 2971211449785121 k002 Champernowne real with 49*n^2-105*n+85 2971211450258475 m006 (3/4*exp(2*Pi)+1)/(1/6*Pi^2-3) 2971211463879815 a001 1836311903/843*2207^(15/16) 2971211464408151 r005 Re(z^2+c),c=-7/23+13/28*I,n=22 2971211469743405 a003 sin(Pi*4/35)*sin(Pi*17/53) 2971211489290437 a001 956722026041/843*843^(1/7) 2971211500128600 r002 3th iterates of z^2 + 2971211500666108 m001 LaplaceLimit-TwinPrimes^Paris 2971211501998986 a001 2932585752473/987 2971211505684204 a007 Real Root Of 286*x^4-872*x^3-74*x^2-235*x+97 2971211510079544 a007 Real Root Of -218*x^4-518*x^3+529*x^2+612*x+551 2971211511426412 k009 concat of cont frac of 2971211512551323 k006 concat of cont frac of 2971211524628182 a007 Real Root Of -140*x^4-69*x^3+814*x^2-695*x-150 2971211527508295 p001 sum((-1)^n/(567*n+325)/(10^n),n=0..infinity) 2971211532089252 m001 MadelungNaCl*Niven-ZetaQ(3) 2971211568582482 b008 1+Sqrt[3*Pi]*Cot[1] 2971211572360114 r009 Re(z^3+c),c=-29/64+17/40*I,n=61 2971211572713951 a007 Real Root Of -390*x^4-806*x^3+745*x^2-926*x-75 2971211575012484 m001 FeigenbaumDelta*(exp(gamma)-ln(Pi)) 2971211577470608 m001 1/GAMMA(13/24)^2/ln(Paris)/cos(1) 2971211577974639 m001 GAMMA(11/12)/FeigenbaumC*exp(GAMMA(13/24)) 2971211579736972 a001 13/87403803*47^(7/9) 2971211591121214 k007 concat of cont frac of 2971211592285217 s001 sum(exp(-2*Pi)^n*A284981[n],n=1..infinity) 2971211593873837 a007 Real Root Of -168*x^4-223*x^3+890*x^2+410*x+605 2971211595702359 r009 Im(z^3+c),c=-1/9+19/60*I,n=5 2971211598083119 a007 Real Root Of 275*x^4+902*x^3+620*x^2+867*x-670 2971211599659951 r004 Im(z^2+c),c=-3/38+1/8*I,z(0)=I,n=7 2971211615998061 a001 2504730781961/5778*521^(4/13) 2971211617798540 r002 54th iterates of z^2 + 2971211617993015 a001 225851433717/1364*521^(6/13) 2971211640989488 m005 (9/4+5/2*5^(1/2))/(3/4*exp(1)+3/5) 2971211652146165 r005 Re(z^2+c),c=-19/58+23/60*I,n=43 2971211655800362 r008 a(0)=3,K{-n^6,34+11*n-18*n^2+9*n^3} 2971211669784135 m005 (1/2*Pi-4/9)/(2/11*gamma-1/7) 2971211674669009 m002 -(Pi^2/E^Pi)+Pi^4-Pi^9 2971211682133351 r009 Im(z^3+c),c=-13/48+12/43*I,n=12 2971211683120280 m001 1/Catalan/exp(CareFree)*GAMMA(1/24)^2 2971211689577415 h001 (3/10*exp(2)+10/11)/(1/9*exp(1)+3/4) 2971211690523891 a007 Real Root Of 155*x^4+27*x^3-127*x^2-450*x+143 2971211692011128 a001 6557470319842/15127*521^(4/13) 2971211700196592 r005 Im(z^2+c),c=-39/122+27/56*I,n=44 2971211700968776 r008 a(0)=3,K{-n^6,-54+31*n+57*n^2+n^3} 2971211709955379 a001 10610209857723/24476*521^(4/13) 2971211727110582 r005 Re(z^2+c),c=-21/16+39/116*I,n=2 2971211731124230 k006 concat of cont frac of 2971211734993283 m001 Ei(1)^2/ln(Si(Pi))^2*Pi 2971211737906485 a001 199*(1/2*5^(1/2)+1/2)^13*3^(23/24) 2971211738989789 a001 4052739537881/9349*521^(4/13) 2971211742121613 k007 concat of cont frac of 2971211745866856 h001 (1/7*exp(1)+4/9)/(7/10*exp(1)+9/10) 2971211751895321 m001 (sin(1)+PolyaRandomWalk3D)/(2^(1/3)+exp(1)) 2971211756167227 m001 (AlladiGrinstead-ErdosBorwein)/(Magata-Sarnak) 2971211761906898 r008 a(0)=3,K{-n^6,58-34*n+39*n^2-18*n^3} 2971211767675731 a007 Real Root Of 20*x^4+593*x^3-57*x^2-573*x+708 2971211768024582 r009 Re(z^3+c),c=-33/74+26/63*I,n=54 2971211769176697 m004 (-75*Sqrt[5])/Pi+50*Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 2971211771237905 l006 ln(4165/5606) 2971211776819004 a007 Real Root Of -768*x^4+565*x^3-895*x^2-272*x+19 2971211778243046 m001 (gamma(3)-BesselI(1,1))/(Zeta(3)+ln(2)) 2971211778586765 m001 GAMMA(11/12)^2/ln(Backhouse)*Zeta(9) 2971211779101205 r005 Im(z^2+c),c=1/82+20/59*I,n=6 2971211787932736 a001 591286729879/843*843^(3/14) 2971211790686474 m001 (-Rabbit+ZetaQ(4))/(exp(Pi)+ln(2)) 2971211796135570 r005 Im(z^2+c),c=-29/122+23/51*I,n=39 2971211804111847 r005 Im(z^2+c),c=-23/42+21/46*I,n=5 2971211811133324 a007 Real Root Of -10*x^4-320*x^3-710*x^2-927*x-863 2971211812047069 a007 Real Root Of -190*x^4-734*x^3-379*x^2+543*x+514 2971211814449889 m001 (sin(1/5*Pi)-Tribonacci)/(ThueMorse+ZetaQ(3)) 2971211815271129 k006 concat of cont frac of 2971211832897479 m001 (Psi(2,1/3)-sin(1))/(GAMMA(19/24)+Rabbit) 2971211840981716 a007 Real Root Of 472*x^4-115*x^3+964*x^2-694*x-298 2971211842246281 k006 concat of cont frac of 2971211842456958 m001 5^(1/2)/(KomornikLoreti-MertensB2) 2971211850347228 a001 101521/141*89^(6/19) 2971211850366893 r005 Re(z^2+c),c=-5/13+9/61*I,n=7 2971211855465416 m001 arctan(1/3)^FeigenbaumKappa/Sarnak 2971211860234836 r005 Im(z^2+c),c=23/82+1/7*I,n=62 2971211866904106 r005 Im(z^2+c),c=-2/3+19/148*I,n=12 2971211868357297 l006 ln(225/4391) 2971211872458495 r009 Re(z^3+c),c=-23/56+13/37*I,n=16 2971211882728931 a007 Real Root Of 930*x^4+652*x^3-488*x^2-775*x+249 2971211894792133 m005 (1/2*3^(1/2)-2/5)/(6*exp(1)-5/8) 2971211915395192 r008 a(0)=3,K{-n^6,24+10*n^3+69*n^2-68*n} 2971211916204947 r005 Re(z^2+c),c=3/40+21/61*I,n=29 2971211925184940 m001 GAMMA(11/12)/TwinPrimes/ZetaQ(2) 2971211927633162 q001 1/336563 2971211936997396 a001 1548008755920/2207*521^(3/13) 2971211937994606 a001 1548008755920/3571*521^(4/13) 2971211945361356 m002 Pi^3/ProductLog[Pi]+E^Pi*Sinh[Pi]+Tanh[Pi] 2971211946537898 r005 Im(z^2+c),c=-3/16+31/63*I,n=8 2971211946567752 m001 ln(cos(Pi/12))/(3^(1/3))/cos(Pi/5) 2971211952421022 r005 Im(z^2+c),c=-35/118+9/19*I,n=42 2971211952737310 a003 sin(Pi*13/82)/cos(Pi*48/107) 2971211968166527 r005 Im(z^2+c),c=-59/94+1/18*I,n=52 2971211985978127 m001 (Zeta(1/2)/Zeta(1,-1))^(1/2) 2971212012195473 r005 Re(z^2+c),c=-35/106+32/63*I,n=14 2971212012300691 m001 (CareFree+FeigenbaumAlpha)/(Kac-Niven) 2971212012895980 m004 -4*Sqrt[5]*Pi-(5*E^(Sqrt[5]*Pi)*Pi)/6 2971212020037854 a007 Real Root Of 196*x^4-778*x^3-83*x^2-72*x-36 2971212020190489 r008 a(0)=3,K{-n^6,6*n+29*n^3} 2971212021395260 a007 Real Root Of 309*x^4+783*x^3-612*x^2-730*x-310 2971212028340171 r008 a(0)=3,K{-n^6,8-6*n+4*n^2+29*n^3} 2971212035110948 p001 sum((-1)^n/(332*n+75)/n/(8^n),n=1..infinity) 2971212046002784 r005 Im(z^2+c),c=7/118+15/49*I,n=6 2971212048052935 r008 a(0)=3,K{-n^6,-8+30*n-22*n^2+35*n^3} 2971212052468948 r005 Re(z^2+c),c=39/98+13/62*I,n=22 2971212054667342 a007 Real Root Of 230*x^4+342*x^3-807*x^2+794*x+529 2971212060909689 m002 Pi^2+E^Pi/Log[Pi]-Sinh[Pi]/Pi^3 2971212062127082 r005 Re(z^2+c),c=9/26+8/61*I,n=58 2971212062158776 m001 (Si(Pi)+gamma(3))/(-Conway+Tetranacci) 2971212068772856 a001 24476/5*55^(9/20) 2971212071551610 a002 14^(6/5)+5^(10/9) 2971212079708472 r005 Re(z^2+c),c=11/40+6/59*I,n=17 2971212082466062 a001 2/317811*21^(26/51) 2971212086575064 a001 365435296162/843*843^(2/7) 2971212106902283 h001 (7/10*exp(2)+3/5)/(3/7*exp(1)+7/9) 2971212108189899 a003 cos(Pi*1/62)*sin(Pi*5/52) 2971212111311253 k006 concat of cont frac of 2971212113090481 a007 Real Root Of 311*x^4+927*x^3-125*x^2-661*x-783 2971212113161211 k007 concat of cont frac of 2971212115268121 k008 concat of cont frac of 2971212120420784 b008 46/7+E^Pi 2971212121115132 k007 concat of cont frac of 2971212121156711 k009 concat of cont frac of 2971212121212121 q001 1961/660 2971212122116101 r005 Im(z^2+c),c=-79/122+19/54*I,n=42 2971212124827118 r005 Im(z^2+c),c=-45/86+20/43*I,n=44 2971212131191530 k008 concat of cont frac of 2971212138177471 a007 Real Root Of 174*x^4-883*x^3+968*x^2-616*x-293 2971212141014653 l006 ln(4824/6493) 2971212157214224 k009 concat of cont frac of 2971212157610387 m002 -Pi^4+Pi^9+5*Sech[Pi] 2971212161287925 r005 Re(z^2+c),c=-79/66+3/19*I,n=18 2971212168384266 r008 a(0)=3,K{-n^6,20+55*n^3-68*n^2+28*n} 2971212168885360 r009 Re(z^3+c),c=-5/12+23/64*I,n=16 2971212169093998 m001 MasserGramain/(Landau-exp(1)) 2971212169819417 r005 Im(z^2+c),c=3/10+5/43*I,n=52 2971212173953206 a001 233/11*64079^(44/51) 2971212175746865 r009 Re(z^3+c),c=-39/110+16/63*I,n=18 2971212176286191 a001 233/11*39603^(46/51) 2971212179538705 m001 (Paris-TwinPrimes)/(Grothendieck+OneNinth) 2971212191211169 k007 concat of cont frac of 2971212192923962 r009 Re(z^3+c),c=-43/90+11/21*I,n=36 2971212196573316 r005 Im(z^2+c),c=-7/18+28/57*I,n=34 2971212203860117 r005 Re(z^2+c),c=-5/19+31/57*I,n=43 2971212204178317 r005 Im(z^2+c),c=17/90+37/57*I,n=3 2971212211131142 k006 concat of cont frac of 2971212211802167 k008 concat of cont frac of 2971212214636107 m001 (-GAMMA(5/6)+Cahen)/(2^(1/2)+Ei(1,1)) 2971212220021250 m005 (1/2*Catalan-1/10)/(4/7*gamma+7/8) 2971212227967613 r002 25th iterates of z^2 + 2971212230286558 m001 (Magata+QuadraticClass)/(sin(1)+BesselK(1,1)) 2971212237580916 a007 Real Root Of -201*x^4-559*x^3+50*x^2-384*x-580 2971212241785403 a007 Real Root Of -332*x^4+340*x^3-2*x^2+262*x-84 2971212242520655 a001 34/123*5778^(27/50) 2971212250817181 r002 18th iterates of z^2 + 2971212252473803 a007 Real Root Of 805*x^4-107*x^3-706*x^2-889*x+323 2971212263054614 r005 Re(z^2+c),c=-13/34+3/37*I,n=10 2971212275744504 r005 Re(z^2+c),c=-3/46+12/19*I,n=46 2971212277112022 k006 concat of cont frac of 2971212280702716 m001 1/OneNinth/ln(TreeGrowth2nd)^2/arctan(1/2) 2971212305944715 m001 (Lehmer+ZetaQ(2))/(gamma(2)-exp(-1/2*Pi)) 2971212311428320 l006 ln(514/10031) 2971212312421163 k008 concat of cont frac of 2971212312423089 m001 exp(FeigenbaumD)*sin(Pi/5)^3 2971212314116191 k009 concat of cont frac of 2971212318184043 r005 Re(z^2+c),c=-31/106+29/62*I,n=20 2971212319009985 m002 -Pi^4+Pi^9+5*Csch[Pi] 2971212322631314 a001 1/72*4181^(18/49) 2971212322990485 m004 -5+3*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi]/2 2971212326916597 m001 (sin(1)+exp(-1/2*Pi))/(Otter+Stephens) 2971212335730954 m001 (GAMMA(13/24)+GAMMA(17/24))/(Shi(1)+gamma(1)) 2971212341111469 k007 concat of cont frac of 2971212344092252 h002 exp(6^(5/6)-2^(1/12)) 2971212344092252 h007 exp(6^(5/6)-2^(1/12)) 2971212348217465 a003 cos(Pi*2/65)*cos(Pi*23/57) 2971212348513749 r004 Re(z^2+c),c=1/7-4/21*I,z(0)=exp(5/24*I*Pi),n=2 2971212356600456 a001 9349/89*514229^(21/22) 2971212357870739 a001 377/843*18^(19/29) 2971212359292919 r005 Im(z^2+c),c=23/82+1/7*I,n=63 2971212362965693 r005 Im(z^2+c),c=-7/22+13/27*I,n=61 2971212364536637 m001 1/Porter^2/exp(MinimumGamma)/GAMMA(1/4) 2971212370170528 r005 Im(z^2+c),c=23/82+1/7*I,n=64 2971212377940052 a001 591286729879/521*199^(2/11) 2971212378788414 a007 Real Root Of -134*x^4-145*x^3+874*x^2+563*x+597 2971212382120421 r005 Re(z^2+c),c=-5/13+1/22*I,n=14 2971212385217423 a001 267913919*843^(5/14) 2971212387127922 m001 1/GAMMA(13/24)^2/ln(MertensB1)/cos(Pi/12)^2 2971212388974364 a001 199/46368*20365011074^(21/22) 2971212390960021 r009 Re(z^3+c),c=-75/122+26/53*I,n=35 2971212394733726 r005 Im(z^2+c),c=23/82+1/7*I,n=58 2971212415504683 h001 (6/7*exp(2)+1/5)/(5/8*exp(1)+1/2) 2971212419295072 r005 Re(z^2+c),c=-19/58+23/60*I,n=50 2971212421904697 l006 ln(5483/7380) 2971212426806934 a007 Real Root Of -654*x^4+925*x^3+667*x^2+434*x-207 2971212431524894 a007 Real Root Of -331*x^4-980*x^3-197*x^2-445*x+508 2971212435181571 a007 Real Root Of -146*x^4-147*x^3+428*x^2-962*x+886 2971212440937645 m002 -6/Pi^4+Pi-ProductLog[Pi]/Pi^2 2971212441542055 a003 cos(Pi*7/103)-cos(Pi*11/42) 2971212452791122 k002 Champernowne real with 99/2*n^2-213/2*n+86 2971212456827134 k003 Champernowne real with 4*n^3+7/2*n^2-63/2*n+26 2971212457988827 m001 Robbin*Niven^2/ln(sqrt(5))^2 2971212457998750 a001 4052739537881/5778*521^(3/13) 2971212459993705 a001 182717648081/682*521^(5/13) 2971212481016449 r005 Im(z^2+c),c=-1/5+13/19*I,n=54 2971212487581988 m001 HardyLittlewoodC3^Zeta(5)/Riemann2ndZero 2971212488998533 a001 377/1364*45537549124^(16/17) 2971212488998533 a001 377/1364*14662949395604^(16/21) 2971212488998533 a001 377/1364*(1/2+1/2*5^(1/2))^48 2971212488998533 a001 377/1364*192900153618^(8/9) 2971212488998533 a001 377/1364*73681302247^(12/13) 2971212489003558 a001 610/843*(1/2+1/2*5^(1/2))^46 2971212489003558 a001 610/843*10749957122^(23/24) 2971212490645578 h001 (-7*exp(-3)+1)/(-4*exp(3/2)-4) 2971212511112135 k009 concat of cont frac of 2971212518577694 a007 Real Root Of -200*x^4-418*x^3+348*x^2-636*x-339 2971212523017506 m008 (3*Pi+2)/(4*Pi^6-2/5) 2971212527990841 p004 log(26951/1381) 2971212529356644 a007 Real Root Of -361*x^4-961*x^3+294*x^2-138*x-78 2971212530086205 r005 Im(z^2+c),c=-19/58+31/64*I,n=46 2971212530258146 a007 Real Root Of 380*x^4-670*x^3+554*x^2-627*x+152 2971212534011839 a001 1515744265389/2161*521^(3/13) 2971212536907276 m001 (Cahen+KhinchinLevy)/(BesselK(0,1)-Zeta(5)) 2971212541157565 a003 sin(Pi*41/117)/cos(Pi*27/67) 2971212550779442 a003 cos(Pi*1/111)-sin(Pi*35/83) 2971212557745731 a007 Real Root Of 147*x^4+77*x^3+175*x^2-964*x-301 2971212558126264 r005 Im(z^2+c),c=-71/110+15/41*I,n=7 2971212560057821 m001 1/Backhouse/Artin^2*ln(FeigenbaumC) 2971212573485523 a001 1364/89*233^(31/57) 2971212577583525 s001 sum(exp(-Pi/2)^n*A215983[n],n=1..infinity) 2971212580990513 a001 6557470319842/9349*521^(3/13) 2971212598051618 m001 (cos(1)+Totient)/(-Trott2nd+TwinPrimes) 2971212605188632 a007 Real Root Of 163*x^4+389*x^3-372*x^2-378*x-339 2971212614800569 r005 Im(z^2+c),c=-1/19+22/59*I,n=10 2971212626349916 m003 -3-2*Csch[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]^2 2971212634461035 r009 Im(z^3+c),c=-27/50+7/44*I,n=62 2971212642519079 l006 ln(6142/8267) 2971212650161033 g007 Psi(2,1/4)-Psi(2,11/12)-Psi(2,1/11)-Psi(2,1/6) 2971212656379672 l006 ln(289/5640) 2971212656796515 r008 a(0)=3,K{-n^6,39-26*n+28*n^2-5*n^3} 2971212666980796 a003 cos(Pi*11/59)/cos(Pi*55/112) 2971212667690002 h001 (3/5*exp(1)+4/11)/(5/6*exp(2)+5/9) 2971212680651489 r005 Re(z^2+c),c=-27/22+15/83*I,n=4 2971212683035978 m001 arctan(1/2)^Conway/(Salem^Conway) 2971212683859811 a001 139583862445/843*843^(3/7) 2971212684929143 a001 14930208*322^(11/12) 2971212685769324 m005 (1/3*3^(1/2)-1/3)/(1/8*Pi+3/7) 2971212688702365 m001 BesselK(1,1)^FeigenbaumMu/ln(gamma) 2971212699984701 a007 Real Root Of 720*x^4-668*x^3-52*x^2-876*x-26 2971212711492302 r005 Re(z^2+c),c=-15/52+13/25*I,n=27 2971212711579313 a005 (1/cos(7/127*Pi))^1142 2971212711832005 r008 a(0)=3,K{-n^6,-11+4*n^3+70*n^2-28*n} 2971212712274366 m005 (1/2*2^(1/2)-1/3)/(1/2*Catalan+4/5) 2971212732114112 k007 concat of cont frac of 2971212740285255 m001 (arctan(1/2)+arctan(1/3))/(Porter+Salem) 2971212742440827 a001 199/196418*4181^(4/31) 2971212746233365 a007 Real Root Of 4*x^4-250*x^3-522*x^2+590*x-508 2971212755311847 m001 PrimesInBinary^(Pi^(1/2))*2^(1/2) 2971212764668297 r009 Im(z^3+c),c=-17/82+17/60*I,n=2 2971212766626442 a007 Real Root Of 49*x^4-442*x^3-8*x^2-302*x-101 2971212767519445 r008 a(0)=3,K{-n^6,38+13*n^2-15*n} 2971212769696665 r005 Re(z^2+c),c=-19/20+7/51*I,n=24 2971212777585012 a007 Real Root Of -260*x^4-965*x^3-845*x^2-735*x+227 2971212778998176 a001 2504730781961/2207*521^(2/13) 2971212779995386 a001 2504730781961/3571*521^(3/13) 2971212792214293 a007 Real Root Of 722*x^4+417*x^3-466*x^2-651*x+218 2971212800747090 p001 sum(1/(400*n+339)/(64^n),n=0..infinity) 2971212803501299 a001 7/514229*377^(5/38) 2971212807536340 m005 (1/2*Pi+3/4)/(1/3*exp(1)-1/8) 2971212810443456 q001 1/3365629 2971212812732277 r008 a(0)=3,K{-n^6,23+10*n^3+69*n^2-67*n} 2971212820379487 l006 ln(6801/9154) 2971212821514191 m005 (1/3*3^(1/2)+1/11)/(61/48+7/16*5^(1/2)) 2971212828412677 r005 Im(z^2+c),c=7/24+4/29*I,n=7 2971212828990979 a007 Real Root Of 172*x^4+255*x^3-543*x^2+676*x+86 2971212837373228 m001 1/GAMMA(1/3)^2*Cahen/ln(sqrt(3))^2 2971212843747795 r005 Im(z^2+c),c=-13/122+16/41*I,n=5 2971212845642839 m001 (Rabbit+StolarskyHarborth)/(Zeta(3)-Zeta(1/2)) 2971212846714264 m008 (2/5*Pi^5+5/6)/(4*Pi^2+2) 2971212856227265 m001 (3^(1/2)+3)/(Lehmer+1) 2971212866001639 a001 1812439848261/610 2971212869205092 r008 a(0)=3,K{-n^6,38-43*n^3+70*n^2-31*n} 2971212880836948 m001 1/ln(Porter)*HardHexagonsEntropy/GAMMA(3/4) 2971212888966192 r005 Im(z^2+c),c=-3/8+14/25*I,n=57 2971212902927998 r005 Im(z^2+c),c=-11/114+50/59*I,n=27 2971212908342195 a007 Real Root Of 283*x^4+575*x^3-921*x^2-302*x+260 2971212913014296 r009 Im(z^3+c),c=-37/102+15/64*I,n=7 2971212917519734 a007 Real Root Of 634*x^4-275*x^3+9*x^2-17*x-18 2971212922476418 r005 Im(z^2+c),c=31/122+5/29*I,n=36 2971212927613182 m002 -Pi^5+Cosh[Pi]-Cosh[Pi]/Pi+Tanh[Pi] 2971212933548431 r009 Im(z^3+c),c=-27/50+7/44*I,n=52 2971212941697055 r005 Im(z^2+c),c=-11/18+46/123*I,n=21 2971212944022704 r005 Im(z^2+c),c=13/122+17/58*I,n=5 2971212954587049 r005 Im(z^2+c),c=5/21+7/43*I,n=5 2971212965694739 r005 Re(z^2+c),c=-37/122+21/44*I,n=22 2971212966816297 l006 ln(7460/10041) 2971212967510285 m001 (BesselJ(0,1)+Backhouse)/RenyiParking 2971212969071365 r005 Re(z^2+c),c=-4/15+27/50*I,n=38 2971212971211214 k008 concat of cont frac of 2971212972467515 a001 7778742049/2207*1364^(14/15) 2971212976728699 r009 Re(z^3+c),c=-1/102+39/56*I,n=26 2971212977597838 m005 (1/2*5^(1/2)-1/12)/(1/6*gamma-4/9) 2971212982502230 a001 86267571272/843*843^(1/2) 2971212985137770 m005 (1/3*2^(1/2)-1/2)/(7/9*Catalan+1/4) 2971212995213637 a007 Real Root Of -2*x^4-594*x^3+72*x^2-25*x-247 2971213012674384 r008 a(0)=3,K{-n^6,11+21*n-42*n^2+45*n^3} 2971213041306170 h001 (5/7*exp(2)+2/11)/(3/8*exp(1)+9/11) 2971213052420060 r005 Im(z^2+c),c=-39/34+25/112*I,n=38 2971213056301953 m005 (1/2*Pi+2/3)/(1/6*exp(1)+3/10) 2971213061977229 r005 Im(z^2+c),c=-10/29+25/51*I,n=37 2971213062486857 p001 sum(1/(183*n+31)/n/(16^n),n=0..infinity) 2971213063566230 p001 sum(1/(324*n+35)/(3^n),n=0..infinity) 2971213067349884 m001 (Ei(1,1)-Psi(1,1/3))/(-BesselJ(1,1)+OneNinth) 2971213074265329 r009 Re(z^3+c),c=-25/86+7/62*I,n=10 2971213078934129 a001 12586269025/2207*1364^(13/15) 2971213086000398 r008 a(0)=3,K{-n^6,55-25*n-50*n^2+55*n^3} 2971213101525606 r009 Im(z^3+c),c=-10/29+31/47*I,n=40 2971213106769477 m001 (Sierpinski-sin(1))/(Stephens+Trott) 2971213107894901 m005 (1/2*5^(1/2)+5/9)/(7/11*gamma-6) 2971213111141914 k008 concat of cont frac of 2971213123617237 a005 (1/sin(72/179*Pi))^1464 2971213137772452 m001 (Zeta(1/2)+arctan(1/3))/(Backhouse-Tribonacci) 2971213139554328 a001 7881196/89*63245986^(17/24) 2971213145111614 k006 concat of cont frac of 2971213148997344 p003 LerchPhi(1/16,5,144/179) 2971213149754782 m001 (Khinchin*GAMMA(1/6)+BesselI(1,2))/GAMMA(1/6) 2971213151116721 k008 concat of cont frac of 2971213157573107 p001 sum((-1)^n/(169*n+157)/n/(10^n),n=0..infinity) 2971213158659899 l006 ln(353/6889) 2971213159698423 q001 867/2918 2971213165964053 r009 Re(z^3+c),c=-35/78+23/55*I,n=46 2971213166908816 r009 Re(z^3+c),c=-4/9+8/23*I,n=10 2971213167110034 m008 (2/3*Pi^4-3/4)/(3/5*Pi^3+3) 2971213170461767 r009 Re(z^3+c),c=-21/62+11/51*I,n=3 2971213174232540 m001 (FeigenbaumDelta-Trott2nd)/(ln(3)+arctan(1/2)) 2971213179707018 m002 -Pi^3-5*Csch[Pi]+Pi^5*ProductLog[Pi] 2971213185183006 a007 Real Root Of 382*x^4-333*x^3+249*x^2-721*x+198 2971213185400746 a001 20365011074/2207*1364^(4/5) 2971213185557188 m001 (LambertW(1)+Trott)/DuboisRaymond 2971213191046668 m001 (ln(3)+ln(2^(1/2)+1))/(Bloch+DuboisRaymond) 2971213191121151 k006 concat of cont frac of 2971213192975693 r005 Im(z^2+c),c=-19/26+21/89*I,n=20 2971213198435897 r005 Im(z^2+c),c=-77/74+13/47*I,n=3 2971213200946317 p003 LerchPhi(1/1024,4,256/189) 2971213201210966 r005 Im(z^2+c),c=-10/29+28/57*I,n=16 2971213203452993 a001 21/521*322^(35/47) 2971213213961113 k009 concat of cont frac of 2971213214112323 k006 concat of cont frac of 2971213222092697 m001 (Stephens+ZetaQ(3))/(Ei(1)-gamma(1)) 2971213240345749 r005 Re(z^2+c),c=-1/4+27/47*I,n=58 2971213243358334 a001 15127/233*28657^(19/51) 2971213250260402 r008 a(0)=3,K{-n^6,2+43*n+22*n^2-33*n^3} 2971213263971795 r005 Re(z^2+c),c=29/94+3/59*I,n=22 2971213268215554 a005 (1/sin(52/127*Pi))^644 2971213280075346 a001 516002918640/281*322^(1/12) 2971213281144678 a001 53316291173/843*843^(4/7) 2971213291867368 a001 32951280099/2207*1364^(11/15) 2971213298173481 r005 Im(z^2+c),c=23/82+1/7*I,n=55 2971213299624515 r009 Im(z^3+c),c=-19/66+3/11*I,n=10 2971213299999678 a001 3278735159921/2889*521^(2/13) 2971213301994633 a001 591286729879/1364*521^(4/13) 2971213307737662 r005 Re(z^2+c),c=-31/86+11/35*I,n=10 2971213317212412 k006 concat of cont frac of 2971213324097933 a003 sin(Pi*4/31)/cos(Pi*27/59) 2971213331623704 r005 Re(z^2+c),c=5/16+13/56*I,n=3 2971213332886894 r008 a(0)=3,K{-n^6,-98-4*n^3+51*n^2+86*n} 2971213364851039 m001 Pi^(1/2)*(1-FeigenbaumB) 2971213373219600 r005 Im(z^2+c),c=5/23+10/49*I,n=10 2971213373266704 r009 Re(z^3+c),c=-7/16+11/27*I,n=10 2971213387003278 a001 906220083036/305 2971213396719611 m001 1/Porter/FeigenbaumAlpha^2/ln((3^(1/3))) 2971213398333993 a001 53316291173/2207*1364^(2/3) 2971213399784177 m001 (TravellingSalesman+ZetaQ(2))/(Khinchin-Paris) 2971213421642034 m001 (MertensB2+ZetaP(4))/(Shi(1)+FeigenbaumD) 2971213422884632 m001 OneNinth*exp(RenyiParking)/BesselJ(0,1) 2971213422991475 a001 10610209857723/9349*521^(2/13) 2971213423091391 r005 Im(z^2+c),c=-3/4+45/121*I,n=4 2971213428294947 m001 FeigenbaumDelta^exp(-1/2*Pi)/arctan(1/2) 2971213435575786 a007 Real Root Of -732*x^4+619*x^3-816*x^2+340*x+195 2971213445573288 r005 Im(z^2+c),c=5/54+15/43*I,n=4 2971213447171115 r009 Im(z^3+c),c=-71/118+35/61*I,n=3 2971213455797123 k002 Champernowne real with 50*n^2-108*n+87 2971213460837136 k003 Champernowne real with 25/6*n^3+5/2*n^2-89/3*n+25 2971213463016393 a001 181244021244/61 2971213474106557 a001 362488043841/122 2971213474654650 r002 3th iterates of z^2 + 2971213475038009 r005 Re(z^2+c),c=-2/19+30/49*I,n=23 2971213475724590 a001 906220110096/305 2971213475960655 a001 906220110168/305 2971213475995081 a001 1812440220357/610 2971213476000983 a001 1/305*(1/2+1/2*5^(1/2))^62 2971213476000983 a001 9062201101803/610*8^(1/3) 2971213476001639 a001 1812440220361/610 2971213476003278 a001 906220110181/305 2971213476016393 a001 181244022037/61 2971213476106557 a001 362488044085/122 2971213476724590 a001 906220110401/305 2971213480960655 a001 906220111693/305 2971213485748597 m001 (Pi/exp(Pi)-sin(1))*BesselK(0,1) 2971213493469051 a001 10182505537/2889*1364^(14/15) 2971213493769151 r005 Im(z^2+c),c=-27/98+6/11*I,n=19 2971213493845219 r005 Im(z^2+c),c=-17/52+16/33*I,n=55 2971213504800621 a001 86267571272/2207*1364^(3/5) 2971213506762833 l006 ln(417/8138) 2971213509995081 a001 1812440241097/610 2971213520235790 r005 Im(z^2+c),c=13/126+17/59*I,n=25 2971213522820861 a007 Real Root Of -511*x^4+706*x^3-973*x^2+729*x+325 2971213525149672 r005 Re(z^2+c),c=-41/110+7/39*I,n=32 2971213531222977 a007 Real Root Of -387*x^4-756*x^3+900*x^2-913*x-327 2971213531874923 a007 Real Root Of 212*x^4+420*x^3-770*x^2-278*x+466 2971213532087152 m001 (-BesselI(0,2)+Kac)/(Psi(2,1/3)-cos(1)) 2971213549972237 m001 (FeigenbaumB-Sarnak)/(Pi+polylog(4,1/2)) 2971213553834473 r009 Re(z^3+c),c=-11/29+23/37*I,n=4 2971213554228169 m001 Shi(1)/(ZetaR(2)^Otter) 2971213556120308 a003 cos(Pi*7/79)*cos(Pi*2/5) 2971213569482166 a001 53316291173/15127*1364^(14/15) 2971213576338336 m006 (1/3/Pi+2/3)/(3*ln(Pi)-5/6) 2971213579787157 a001 10983760033/281*843^(9/14) 2971213580572330 a001 139583862445/39603*1364^(14/15) 2971213581899485 r009 Im(z^3+c),c=-4/15+1/45*I,n=10 2971213582190363 a001 182717648081/51841*1364^(14/15) 2971213582426431 a001 956722026041/271443*1364^(14/15) 2971213582460873 a001 2504730781961/710647*1364^(14/15) 2971213582465898 a001 3278735159921/930249*1364^(14/15) 2971213582467084 a001 10610209857723/3010349*1364^(14/15) 2971213582469004 a001 4052739537881/1149851*1364^(14/15) 2971213582482159 a001 387002188980/109801*1364^(14/15) 2971213582572329 a001 591286729879/167761*1364^(14/15) 2971213583190363 a001 225851433717/64079*1364^(14/15) 2971213583908856 m001 (Otter+ZetaP(3))/(sin(1/5*Pi)-ln(2)) 2971213587426429 a001 21566892818/6119*1364^(14/15) 2971213591147122 k006 concat of cont frac of 2971213593070709 r005 Re(z^2+c),c=-11/14+7/184*I,n=36 2971213599935683 a001 10983760033/1926*1364^(13/15) 2971213600229649 m001 Tribonacci*Niven^2/exp(sin(Pi/5)) 2971213600827250 r005 Im(z^2+c),c=-11/16+1/46*I,n=23 2971213603180668 r008 a(0)=3,K{-n^6,-12+4*n^3+70*n^2-27*n} 2971213609131838 m001 (Porter+Trott)/(Artin+Champernowne) 2971213610375896 m005 (1/2*gamma+6/7)/(3*Zeta(3)+1/4) 2971213611267254 a001 139583862445/2207*1364^(8/15) 2971213612261377 a007 Real Root Of 241*x^4+482*x^3-375*x^2+696*x-761 2971213616460856 a001 32951280099/9349*1364^(14/15) 2971213620999195 a001 4052739537881/2207*521^(1/13) 2971213621996405 a001 4052739537881/3571*521^(2/13) 2971213623931006 a007 Real Root Of -332*x^4-836*x^3+154*x^2-708*x+483 2971213628481012 m001 (GAMMA(11/12)-Khinchin)/(Stephens-Trott2nd) 2971213633169704 m001 (TwinPrimes-ZetaP(3))/(Zeta(1,-1)+gamma(3)) 2971213637261032 m001 ErdosBorwein*Magata-FeigenbaumAlpha 2971213640309544 h005 exp(cos(Pi*3/40)/sin(Pi*13/37)) 2971213640654524 a007 Real Root Of -168*x^4-129*x^3+881*x^2-559*x+271 2971213642640611 r008 a(0)=3,K{-n^6,-4+7*n^3+65*n^2-33*n} 2971213650723364 r005 Im(z^2+c),c=-23/90+23/50*I,n=24 2971213667061523 a005 (1/sin(44/117*Pi))^754 2971213675948801 a001 86267571272/15127*1364^(13/15) 2971213687038965 a001 75283811239/13201*1364^(13/15) 2971213688656999 a001 591286729879/103682*1364^(13/15) 2971213688893067 a001 516002918640/90481*1364^(13/15) 2971213688927508 a001 4052739537881/710647*1364^(13/15) 2971213688932533 a001 3536736619241/620166*1364^(13/15) 2971213688935639 a001 6557470319842/1149851*1364^(13/15) 2971213688948795 a001 2504730781961/439204*1364^(13/15) 2971213689038965 a001 956722026041/167761*1364^(13/15) 2971213689556145 r002 22th iterates of z^2 + 2971213689656998 a001 365435296162/64079*1364^(13/15) 2971213693893064 a001 139583862445/24476*1364^(13/15) 2971213695010923 r008 a(0)=3,K{-n^6,-20+16*n^3+30*n^2+9*n} 2971213706402319 a001 53316291173/5778*1364^(4/5) 2971213708410248 m001 (Kolakoski+Robbin)/(LambertW(1)-Shi(1)) 2971213708507857 a005 (1/cos(22/237*Pi))^559 2971213712266249 r002 8th iterates of z^2 + 2971213715223686 r005 Im(z^2+c),c=-19/44+22/43*I,n=51 2971213716543852 m001 1/2*Cahen^polylog(4,1/2)/Pi*3^(1/2)*GAMMA(2/3) 2971213716543852 m001 Cahen^polylog(4,1/2)/GAMMA(1/3) 2971213717733891 a001 225851433717/2207*1364^(7/15) 2971213722927493 a001 53316291173/9349*1364^(13/15) 2971213729403233 r005 Re(z^2+c),c=-4/11+13/57*I,n=13 2971213730098505 a007 Real Root Of 638*x^4+760*x^3+647*x^2-575*x-213 2971213736951648 m006 (1/5*exp(2*Pi)+2/5)/(5/6*Pi+1) 2971213743453271 r005 Im(z^2+c),c=-77/86+1/44*I,n=19 2971213749553651 a001 2207/89*6557470319842^(17/24) 2971213752933696 r005 Re(z^2+c),c=-41/110+7/39*I,n=30 2971213758240109 m001 FibonacciFactorial/FeigenbaumAlpha/ZetaQ(4) 2971213762231230 l006 ln(481/9387) 2971213762314879 m001 (Ei(1)+Ei(1,1))/(gamma(1)+ZetaQ(4)) 2971213763722443 r005 Re(z^2+c),c=-41/110+7/39*I,n=29 2971213774872755 r005 Re(z^2+c),c=33/98+13/58*I,n=9 2971213782295322 m002 -Cosh[Pi]+Pi^2/Log[Pi]-Tanh[Pi]/Pi^6 2971213782415440 a001 139583862445/15127*1364^(4/5) 2971213786580397 r005 Re(z^2+c),c=-35/94+9/49*I,n=16 2971213786796053 m005 (1/2*Pi+1/7)/(-13/55+4/11*5^(1/2)) 2971213788174841 r005 Re(z^2+c),c=-3/8+9/55*I,n=16 2971213790303422 r008 a(0)=3,K{-n^6,20-37*n+29*n^2+23*n^3} 2971213790776986 m001 1/ln(Salem)^2/RenyiParking*BesselJ(0,1)^2 2971213793505605 a001 365435296162/39603*1364^(4/5) 2971213795123638 a001 956722026041/103682*1364^(4/5) 2971213795359706 a001 2504730781961/271443*1364^(4/5) 2971213795394148 a001 6557470319842/710647*1364^(4/5) 2971213795402278 a001 10610209857723/1149851*1364^(4/5) 2971213795415434 a001 4052739537881/439204*1364^(4/5) 2971213795505604 a001 140728068720/15251*1364^(4/5) 2971213796123638 a001 591286729879/64079*1364^(4/5) 2971213798201895 m005 (1/2*5^(1/2)+1/7)/(9/10*Catalan-2/5) 2971213800359704 a001 7787980473/844*1364^(4/5) 2971213807402585 a007 Real Root Of 430*x^4+26*x^3+409*x^2+43*x-26 2971213812868959 a001 43133785636/2889*1364^(11/15) 2971213815465799 a001 12586269025/3571*1364^(14/15) 2971213816786723 r009 Re(z^3+c),c=-55/118+14/31*I,n=36 2971213823605024 a007 Real Root Of 409*x^4-739*x^3+845*x^2-962*x-383 2971213824200531 a001 365435296162/2207*1364^(2/5) 2971213829394133 a001 86267571272/9349*1364^(4/5) 2971213833054492 r005 Im(z^2+c),c=1/98+16/47*I,n=13 2971213833631304 r008 a(0)=3,K{-n^6,-8+29*n-21*n^2+35*n^3} 2971213837328565 r008 a(0)=3,K{-n^6,2+12*n-13*n^2+34*n^3} 2971213838132624 h001 (5/12*exp(2)+6/7)/(3/11*exp(1)+7/12) 2971213845218517 m005 (13/42+1/6*5^(1/2))/(7/9*exp(1)+2/11) 2971213849683968 m001 (Stephens-StronglyCareFree)/(ln(Pi)-Bloch) 2971213851479944 m001 (gamma*OneNinth+(1+3^(1/2))^(1/2))/gamma 2971213851479944 m001 (gamma*OneNinth+sqrt(1+sqrt(3)))/gamma 2971213853000906 a001 987/2207*(1/2+1/2*5^(1/2))^47 2971213854588098 m001 cos(1)^(KhinchinLevy/BesselK(1,1)) 2971213871476451 m006 (3/4*ln(Pi)+1/2)/(1/2*ln(Pi)+4) 2971213878429665 a001 20365011074/843*843^(5/7) 2971213878452680 r005 Re(z^2+c),c=-13/50+27/46*I,n=22 2971213881311419 r005 Re(z^2+c),c=-41/110+7/39*I,n=34 2971213887469286 m001 (HardyLittlewoodC3+Trott2nd)/(2^(1/3)-Zeta(5)) 2971213888882082 a001 32264490531/2161*1364^(11/15) 2971213892607615 s001 sum(exp(-3*Pi/4)^n*A025238[n],n=1..infinity) 2971213893780402 a007 Real Root Of 56*x^4+18*x^3-334*x^2+394*x+227 2971213896816883 r008 a(0)=3,K{-n^6,36-27*n-14*n^2+40*n^3} 2971213897140401 r005 Im(z^2+c),c=9/58+15/59*I,n=17 2971213898880211 a001 2889/4*5^(29/33) 2971213899972248 a001 591286729879/39603*1364^(11/15) 2971213901590281 a001 774004377960/51841*1364^(11/15) 2971213901826349 a001 4052739537881/271443*1364^(11/15) 2971213901860791 a001 1515744265389/101521*1364^(11/15) 2971213901882077 a001 3278735159921/219602*1364^(11/15) 2971213901972247 a001 2504730781961/167761*1364^(11/15) 2971213902590281 a001 956722026041/64079*1364^(11/15) 2971213906826347 a001 182717648081/12238*1364^(11/15) 2971213916763253 a008 Real Root of x^2-x-87984 2971213919335603 a001 139583862445/5778*1364^(2/3) 2971213921932443 a001 20365011074/3571*1364^(13/15) 2971213924762353 m001 FeigenbaumAlpha-OneNinth+Stephens 2971213925061644 r002 42th iterates of z^2 + 2971213928711432 m001 exp(Niven)^2*GlaisherKinkelin*BesselJ(0,1) 2971213929684539 r008 a(0)=3,K{-n^6,56+44*n^3-16*n^2-49*n} 2971213930667175 a001 591286729879/2207*1364^(1/3) 2971213931679424 a005 (1/cos(7/114*Pi))^1288 2971213935860778 a001 139583862445/9349*1364^(11/15) 2971213995348729 a001 365435296162/15127*1364^(2/3) 2971214006438894 a001 956722026041/39603*1364^(2/3) 2971214008056928 a001 2504730781961/103682*1364^(2/3) 2971214008292996 a001 6557470319842/271443*1364^(2/3) 2971214008348724 a001 10610209857723/439204*1364^(2/3) 2971214008438894 a001 4052739537881/167761*1364^(2/3) 2971214009056927 a001 1548008755920/64079*1364^(2/3) 2971214013292994 a001 591286729879/24476*1364^(2/3) 2971214017521902 q001 1187/3995 2971214025802250 a001 75283811239/1926*1364^(3/5) 2971214028399091 a001 32951280099/3571*1364^(4/5) 2971214037133823 a001 956722026041/2207*1364^(4/15) 2971214042327426 a001 225851433717/9349*1364^(2/3) 2971214042580680 m001 (OrthogonalArrays-Stephens)/(Tetranacci+Thue) 2971214047442747 r005 Im(z^2+c),c=-63/62+15/61*I,n=28 2971214048621895 a007 Real Root Of -106*x^4-200*x^3+649*x^2+788*x-373 2971214051255307 m001 GAMMA(1/4)*ln(TreeGrowth2nd)/Zeta(9) 2971214051842316 a007 Real Root Of -585*x^4+23*x^3-853*x^2+961*x+366 2971214068443791 a003 sin(Pi*11/103)*sin(Pi*24/67) 2971214071136279 a007 Real Root Of -73*x^4-22*x^3-502*x^2+890*x-26 2971214078223872 r005 Im(z^2+c),c=9/40+1/5*I,n=27 2971214101815379 a001 591286729879/15127*1364^(3/5) 2971214103579181 m007 (-gamma+1/6)/(-1/2*gamma-ln(2)-2/5) 2971214106483774 a001 199/2178309*377^(27/46) 2971214107866240 a007 Real Root Of 39*x^4-664*x^3-985*x^2-858*x+359 2971214110835708 m001 CareFree*ln(GlaisherKinkelin)^2/Porter 2971214111675672 r005 Im(z^2+c),c=-63/118+31/57*I,n=34 2971214112905545 a001 516002918640/13201*1364^(3/5) 2971214113631079 r005 Im(z^2+c),c=-25/82+1/2*I,n=18 2971214114523579 a001 4052739537881/103682*1364^(3/5) 2971214114759646 a001 3536736619241/90481*1364^(3/5) 2971214114905544 a001 6557470319842/167761*1364^(3/5) 2971214115523578 a001 2504730781961/64079*1364^(3/5) 2971214119759645 a001 956722026041/24476*1364^(3/5) 2971214121785174 m001 (Pi+Shi(1))/(Zeta(1,2)-PlouffeB) 2971214131536285 a007 Real Root Of -58*x^4+102*x^3+898*x^2-66*x-928 2971214132268902 a001 182717648081/2889*1364^(8/15) 2971214133880593 r005 Re(z^2+c),c=-41/110+7/39*I,n=36 2971214134865742 a001 53316291173/3571*1364^(11/15) 2971214139494777 r005 Im(z^2+c),c=-29/118+23/50*I,n=19 2971214139818103 m001 1/Zeta(1,2)/Trott*ln(gamma)^2 2971214142000844 a001 3536736619241/1926*521^(1/13) 2971214143600475 a001 1548008755920/2207*1364^(1/5) 2971214143995800 a001 956722026041/1364*521^(3/13) 2971214145158425 m001 1/ln(GAMMA(17/24))*CareFree^2*GAMMA(3/4)^2 2971214148794078 a001 365435296162/9349*1364^(3/5) 2971214151184258 m001 (3^(1/2)-GAMMA(2/3))/(Kac+MasserGramain) 2971214155080386 r005 Re(z^2+c),c=-17/40+32/61*I,n=10 2971214160409341 h001 (11/12*exp(2)+7/10)/(5/6*exp(1)+1/4) 2971214166547535 r009 Re(z^3+c),c=-25/58+19/49*I,n=55 2971214172354874 m005 (1/3*exp(1)-1/8)/(5/6*exp(1)+4/11) 2971214172763523 r005 Re(z^2+c),c=-1/56+27/38*I,n=43 2971214174653929 r005 Im(z^2+c),c=-31/94+26/53*I,n=34 2971214177072204 a001 12586269025/843*843^(11/14) 2971214178043244 a007 Real Root Of -86*x^4-381*x^3-377*x^2+922*x-230 2971214188755474 r005 Im(z^2+c),c=-11/114+16/41*I,n=11 2971214197912408 m008 (3*Pi^4-4)/(1/3*Pi^5-5) 2971214199844829 m001 (GAMMA(17/24)-Psi(2,1/3))/(-Bloch+Robbin) 2971214208282033 a001 956722026041/15127*1364^(8/15) 2971214214602971 r005 Re(z^2+c),c=-5/13+1/24*I,n=13 2971214216882082 r005 Re(z^2+c),c=-41/110+7/39*I,n=41 2971214216992538 m001 Thue-Zeta(5)+Weierstrass 2971214217538900 r005 Re(z^2+c),c=-41/110+7/39*I,n=39 2971214218043301 a003 cos(Pi*27/89)-sin(Pi*17/50) 2971214219372199 a001 2504730781961/39603*1364^(8/15) 2971214220990233 a001 3278735159921/51841*1364^(8/15) 2971214221372199 a001 10610209857723/167761*1364^(8/15) 2971214221990233 a001 4052739537881/64079*1364^(8/15) 2971214222108475 m001 (GAMMA(23/24)+Kac)/(Psi(2,1/3)-arctan(1/2)) 2971214223937905 r005 Re(z^2+c),c=-41/110+7/39*I,n=43 2971214226226300 a001 387002188980/6119*1364^(8/15) 2971214228312708 r005 Re(z^2+c),c=-41/110+7/39*I,n=45 2971214228565087 r005 Re(z^2+c),c=-41/110+7/39*I,n=38 2971214229441172 r005 Re(z^2+c),c=-41/110+7/39*I,n=48 2971214229484181 r005 Re(z^2+c),c=-41/110+7/39*I,n=50 2971214229619278 r005 Re(z^2+c),c=-41/110+7/39*I,n=52 2971214229693978 r005 Re(z^2+c),c=-41/110+7/39*I,n=54 2971214229707961 r005 Re(z^2+c),c=-41/110+7/39*I,n=57 2971214229709592 r005 Re(z^2+c),c=-41/110+7/39*I,n=59 2971214229712111 r005 Re(z^2+c),c=-41/110+7/39*I,n=61 2971214229713369 r005 Re(z^2+c),c=-41/110+7/39*I,n=63 2971214229713640 r005 Re(z^2+c),c=-41/110+7/39*I,n=64 2971214229714362 r005 Re(z^2+c),c=-41/110+7/39*I,n=62 2971214229716276 r005 Re(z^2+c),c=-41/110+7/39*I,n=60 2971214229717129 r005 Re(z^2+c),c=-41/110+7/39*I,n=56 2971214229717359 r005 Re(z^2+c),c=-41/110+7/39*I,n=55 2971214229718950 r005 Re(z^2+c),c=-41/110+7/39*I,n=58 2971214229762220 r005 Re(z^2+c),c=-41/110+7/39*I,n=53 2971214229808163 r005 Re(z^2+c),c=-41/110+7/39*I,n=47 2971214229870977 r005 Re(z^2+c),c=-41/110+7/39*I,n=51 2971214229999263 r005 Re(z^2+c),c=-41/110+7/39*I,n=49 2971214230001252 a001 4745029125312/1597 2971214230110093 r005 Re(z^2+c),c=-41/110+7/39*I,n=46 2971214231193556 m008 (3/4*Pi^2+4)/(2/5*Pi^6-4/5) 2971214232854858 r005 Re(z^2+c),c=-41/110+7/39*I,n=44 2971214238735557 a001 591286729879/5778*1364^(7/15) 2971214238933286 r005 Re(z^2+c),c=-41/110+7/39*I,n=42 2971214241332397 a001 86267571272/3571*1364^(2/3) 2971214243707187 a001 2971215073/2207*3571^(16/17) 2971214244119200 h001 (7/8*exp(2)+7/11)/(3/11*exp(2)+3/8) 2971214244235422 k006 concat of cont frac of 2971214244646929 r005 Re(z^2+c),c=-41/110+7/39*I,n=40 2971214247669660 r005 Re(z^2+c),c=-23/18+25/131*I,n=15 2971214250067130 a001 2504730781961/2207*1364^(2/15) 2971214253967216 r009 Re(z^3+c),c=-3/122+37/48*I,n=6 2971214254324705 r009 Im(z^3+c),c=-13/58+13/47*I,n=2 2971214255260733 a001 591286729879/9349*1364^(8/15) 2971214257413016 a001 4807526976/2207*3571^(15/17) 2971214263242333 r005 Re(z^2+c),c=-41/110+7/39*I,n=37 2971214269107188 m001 (Pi+2/3)/(-exp(1)+4) 2971214269107188 m005 (1/2*Pi+1/3)/(1/2*exp(1)-2) 2971214270761796 a001 28143753123/89*610^(17/24) 2971214271101515 k009 concat of cont frac of 2971214271118845 a001 7778742049/2207*3571^(14/17) 2971214281723145 r005 Re(z^2+c),c=-23/74+23/55*I,n=17 2971214284824673 a001 12586269025/2207*3571^(13/17) 2971214285656320 m001 GAMMA(3/4)^2*CopelandErdos*exp(GAMMA(5/12)) 2971214292519296 r005 Im(z^2+c),c=-31/78+33/64*I,n=49 2971214293946337 a007 Real Root Of 82*x^4-53*x^3-678*x^2+922*x+944 2971214295637432 h001 (1/4*exp(1)+11/12)/(7/10*exp(2)+1/5) 2971214298530502 a001 20365011074/2207*3571^(12/17) 2971214301100598 m001 1/MertensB1/ln(ArtinRank2)^2*Zeta(7) 2971214304143677 a007 Real Root Of -636*x^4-57*x^3+707*x^2+404*x-176 2971214307550372 r005 Re(z^2+c),c=-23/78+31/63*I,n=24 2971214312236331 a001 32951280099/2207*3571^(11/17) 2971214314748691 a001 1548008755920/15127*1364^(7/15) 2971214320098613 r002 13th iterates of z^2 + 2971214325838858 a001 4052739537881/39603*1364^(7/15) 2971214325942160 a001 53316291173/2207*3571^(10/17) 2971214327456891 a001 225749145909/2206*1364^(7/15) 2971214328456891 a001 6557470319842/64079*1364^(7/15) 2971214332583385 r005 Im(z^2+c),c=23/82+1/7*I,n=57 2971214332692958 a001 2504730781961/24476*1364^(7/15) 2971214339647989 a001 86267571272/2207*3571^(9/17) 2971214341686114 m004 -4*Sqrt[5]*Pi-(5*Pi*Cosh[Sqrt[5]*Pi])/3 2971214345202216 a001 956722026041/5778*1364^(2/5) 2971214347799056 a001 139583862445/3571*1364^(3/5) 2971214349358458 r008 a(0)=3,K{-n^6,52+21*n^3-46*n^2+9*n} 2971214352720324 r005 Re(z^2+c),c=-4/13+11/25*I,n=18 2971214353353818 a001 139583862445/2207*3571^(8/17) 2971214356533789 a001 4052739537881/2207*1364^(1/15) 2971214361727393 a001 956722026041/9349*1364^(7/15) 2971214367059647 a001 225851433717/2207*3571^(7/17) 2971214367244122 b008 -1/2+Erfi[1/4]^(-1) 2971214374002596 a001 329/1926*14662949395604^(7/9) 2971214374002596 a001 329/1926*(1/2+1/2*5^(1/2))^49 2971214374002596 a001 329/1926*505019158607^(7/8) 2971214374002718 a001 2584/2207*45537549124^(15/17) 2971214374002718 a001 2584/2207*312119004989^(9/11) 2971214374002718 a001 2584/2207*14662949395604^(5/7) 2971214374002718 a001 2584/2207*(1/2+1/2*5^(1/2))^45 2971214374002718 a001 2584/2207*192900153618^(5/6) 2971214374002718 a001 2584/2207*28143753123^(9/10) 2971214374002718 a001 2584/2207*10749957122^(15/16) 2971214376907623 p001 sum((-1)^n/(431*n+323)/(10^n),n=0..infinity) 2971214380765476 a001 365435296162/2207*3571^(6/17) 2971214381525790 r002 11th iterates of z^2 + 2971214381558453 m001 (GAMMA(3/4)-BesselI(1,2))/(Pi^(1/2)-Landau) 2971214394471305 a001 591286729879/2207*3571^(5/17) 2971214395157274 r005 Re(z^2+c),c=-23/60+28/43*I,n=3 2971214408177135 a001 956722026041/2207*3571^(4/17) 2971214421215352 a001 2504730781961/15127*1364^(2/5) 2971214421882964 a001 1548008755920/2207*3571^(3/17) 2971214423530565 m001 (sin(1/12*Pi)+(1+3^(1/2))^(1/2))/Cahen 2971214423530565 m001 (sin(Pi/12)+sqrt(1+sqrt(3)))/Cahen 2971214427956098 b008 EulerGamma+Cosh[1]+Csch[1] 2971214428728896 r005 Re(z^2+c),c=-41/110+7/39*I,n=35 2971214428945005 m001 (ln(5)-BesselK(1,1))/(GAMMA(19/24)-GaussAGM) 2971214429006218 a001 12422647527675/4181 2971214430795507 a001 1134903170/2207*9349^(18/19) 2971214432305520 a001 6557470319842/39603*1364^(2/5) 2971214432584670 a001 1836311903/2207*9349^(17/19) 2971214434373834 a001 2971215073/2207*9349^(16/19) 2971214434923553 a001 10610209857723/64079*1364^(2/5) 2971214435588794 a001 2504730781961/2207*3571^(2/17) 2971214436162998 a001 4807526976/2207*9349^(15/19) 2971214437952161 a001 7778742049/2207*9349^(14/19) 2971214439159620 a001 4052739537881/24476*1364^(2/5) 2971214439741325 a001 12586269025/2207*9349^(13/19) 2971214441530489 a001 20365011074/2207*9349^(12/19) 2971214441837754 r005 Im(z^2+c),c=11/64+8/33*I,n=20 2971214442355463 h001 (6/7*exp(1)+3/5)/(1/10*exp(1)+5/7) 2971214443319652 a001 32951280099/2207*9349^(11/19) 2971214445108816 a001 53316291173/2207*9349^(10/19) 2971214446897980 a001 86267571272/2207*9349^(9/19) 2971214447010845 b008 EulerGamma*Log[172] 2971214448687143 a001 139583862445/2207*9349^(8/19) 2971214448695872 r009 Im(z^3+c),c=-5/23+27/28*I,n=40 2971214449294623 a001 4052739537881/2207*3571^(1/17) 2971214449507966 m005 (1/2*2^(1/2)-5/8)/(4*gamma+5/11) 2971214450015733 a001 141/2161*817138163596^(17/19) 2971214450015733 a001 141/2161*14662949395604^(17/21) 2971214450015733 a001 141/2161*(1/2+1/2*5^(1/2))^51 2971214450015733 a001 141/2161*192900153618^(17/18) 2971214450015858 a001 6765/2207*(1/2+1/2*5^(1/2))^43 2971214450476307 a001 225851433717/2207*9349^(7/19) 2971214450497869 r008 a(0)=3,K{-n^6,12+46*n-24*n^3} 2971214451668878 a001 86000486440/321*1364^(1/3) 2971214452265471 a001 365435296162/2207*9349^(6/19) 2971214454054634 a001 591286729879/2207*9349^(5/19) 2971214454265719 a001 225851433717/3571*1364^(8/15) 2971214455843798 a001 956722026041/2207*9349^(4/19) 2971214457632962 a001 1548008755920/2207*9349^(3/19) 2971214458040654 a001 32522913457713/10946 2971214458276954 a001 433494437/2207*24476^(20/21) 2971214458513129 a001 701408733/2207*24476^(19/21) 2971214458749304 a001 1134903170/2207*24476^(6/7) 2971214458803124 k002 Champernowne real with 101/2*n^2-219/2*n+88 2971214458985479 a001 1836311903/2207*24476^(17/21) 2971214459221654 a001 2971215073/2207*24476^(16/21) 2971214459422125 a001 2504730781961/2207*9349^(2/19) 2971214459457828 a001 4807526976/2207*24476^(5/7) 2971214459694003 a001 7778742049/2207*24476^(2/3) 2971214459930178 a001 12586269025/2207*24476^(13/21) 2971214460166353 a001 20365011074/2207*24476^(4/7) 2971214460402528 a001 32951280099/2207*24476^(11/21) 2971214460638703 a001 53316291173/2207*24476^(10/21) 2971214460874878 a001 86267571272/2207*24476^(3/7) 2971214461105901 a001 329/13201*(1/2+1/2*5^(1/2))^53 2971214461106026 a001 17711/2207*(1/2+1/2*5^(1/2))^41 2971214461111053 a001 139583862445/2207*24476^(8/21) 2971214461211289 a001 4052739537881/2207*9349^(1/19) 2971214461347228 a001 225851433717/2207*24476^(1/3) 2971214461583403 a001 365435296162/2207*24476^(2/7) 2971214461819578 a001 591286729879/2207*24476^(5/21) 2971214462055753 a001 956722026041/2207*24476^(4/21) 2971214462276721 a001 85146092845464/28657 2971214462291928 a001 1548008755920/2207*24476^(1/7) 2971214462308307 a001 165580141/2207*64079^(22/23) 2971214462339768 a001 267914296/2207*64079^(21/23) 2971214462371229 a001 433494437/2207*64079^(20/23) 2971214462402691 a001 701408733/2207*64079^(19/23) 2971214462434152 a001 1134903170/2207*64079^(18/23) 2971214462465613 a001 1836311903/2207*64079^(17/23) 2971214462497074 a001 2971215073/2207*64079^(16/23) 2971214462528103 a001 2504730781961/2207*24476^(2/21) 2971214462528535 a001 4807526976/2207*64079^(15/23) 2971214462559996 a001 7778742049/2207*64079^(14/23) 2971214462591458 a001 12586269025/2207*64079^(13/23) 2971214462622919 a001 20365011074/2207*64079^(12/23) 2971214462654380 a001 32951280099/2207*64079^(11/23) 2971214462685841 a001 53316291173/2207*64079^(10/23) 2971214462717302 a001 86267571272/2207*64079^(9/23) 2971214462723934 a001 21/2206*(1/2+1/2*5^(1/2))^55 2971214462723934 a001 21/2206*3461452808002^(11/12) 2971214462724059 a001 46368/2207*2537720636^(13/15) 2971214462724059 a001 46368/2207*45537549124^(13/17) 2971214462724059 a001 46368/2207*14662949395604^(13/21) 2971214462724059 a001 46368/2207*(1/2+1/2*5^(1/2))^39 2971214462724059 a001 46368/2207*192900153618^(13/18) 2971214462724059 a001 46368/2207*73681302247^(3/4) 2971214462724059 a001 46368/2207*10749957122^(13/16) 2971214462724059 a001 46368/2207*599074578^(13/14) 2971214462748763 a001 139583862445/2207*64079^(8/23) 2971214462764278 a001 4052739537881/2207*24476^(1/21) 2971214462780224 a001 225851433717/2207*64079^(7/23) 2971214462811686 a001 365435296162/2207*64079^(6/23) 2971214462843147 a001 591286729879/2207*64079^(5/23) 2971214462874608 a001 956722026041/2207*64079^(4/23) 2971214462894755 a001 222915365078679/75025 2971214462906069 a001 1548008755920/2207*64079^(3/23) 2971214462915994 a001 433494437/2207*167761^(4/5) 2971214462937109 a001 4807526976/2207*167761^(3/5) 2971214462937530 a001 2504730781961/2207*64079^(2/23) 2971214462958223 a001 53316291173/2207*167761^(2/5) 2971214462960002 a001 329/90481*14662949395604^(19/21) 2971214462960002 a001 329/90481*(1/2+1/2*5^(1/2))^57 2971214462960127 a001 121393/2207*(1/2+1/2*5^(1/2))^37 2971214462968991 a001 4052739537881/2207*64079^(1/23) 2971214462979338 a001 591286729879/2207*167761^(1/5) 2971214462984925 a001 583600002390573/196418 2971214462986761 a001 63245986/2207*439204^(8/9) 2971214462988473 a001 267914296/2207*439204^(7/9) 2971214462990184 a001 1134903170/2207*439204^(2/3) 2971214462991895 a001 4807526976/2207*439204^(5/9) 2971214462993607 a001 20365011074/2207*439204^(4/9) 2971214462994444 a001 141/101521*(1/2+1/2*5^(1/2))^59 2971214462994569 a001 317811/2207*2537720636^(7/9) 2971214462994569 a001 317811/2207*17393796001^(5/7) 2971214462994569 a001 317811/2207*312119004989^(7/11) 2971214462994569 a001 317811/2207*14662949395604^(5/9) 2971214462994569 a001 317811/2207*(1/2+1/2*5^(1/2))^35 2971214462994569 a001 317811/2207*505019158607^(5/8) 2971214462994569 a001 317811/2207*28143753123^(7/10) 2971214462994569 a001 317811/2207*599074578^(5/6) 2971214462994569 a001 317811/2207*228826127^(7/8) 2971214462995318 a001 86267571272/2207*439204^(1/3) 2971214462997030 a001 365435296162/2207*439204^(2/9) 2971214462998080 a001 1527884642093040/514229 2971214462998741 a001 1548008755920/2207*439204^(1/9) 2971214462999469 a001 329/620166*(1/2+1/2*5^(1/2))^61 2971214462999594 a001 832040/2207*141422324^(11/13) 2971214462999594 a001 832040/2207*2537720636^(11/15) 2971214462999594 a001 832040/2207*45537549124^(11/17) 2971214462999594 a001 832040/2207*312119004989^(3/5) 2971214462999594 a001 832040/2207*14662949395604^(11/21) 2971214462999594 a001 832040/2207*(1/2+1/2*5^(1/2))^33 2971214462999594 a001 832040/2207*192900153618^(11/18) 2971214462999594 a001 832040/2207*10749957122^(11/16) 2971214462999594 a001 832040/2207*1568397607^(3/4) 2971214462999594 a001 832040/2207*599074578^(11/14) 2971214462999597 a001 832040/2207*33385282^(11/12) 2971214463000202 a001 987/4870847*(1/2+1/2*5^(1/2))^63 2971214463000280 a001 10472277129572601/3524578 2971214463000327 a001 987*(1/2+1/2*5^(1/2))^31 2971214463000327 a001 987*9062201101803^(1/2) 2971214463000375 a001 987/7881196*(1/2+1/2*5^(1/2))^64 2971214463000411 a001 14930352/2207*7881196^(9/11) 2971214463000418 a001 63245986/2207*7881196^(8/11) 2971214463000421 a001 165580141/2207*7881196^(2/3) 2971214463000422 a001 267914296/2207*7881196^(7/11) 2971214463000427 a001 1134903170/2207*7881196^(6/11) 2971214463000431 a001 4807526976/2207*7881196^(5/11) 2971214463000434 a001 5702887/2207*(1/2+1/2*5^(1/2))^29 2971214463000434 a001 5702887/2207*1322157322203^(1/2) 2971214463000435 a001 20365011074/2207*7881196^(4/11) 2971214463000437 a001 32951280099/2207*7881196^(1/3) 2971214463000440 a001 86267571272/2207*7881196^(3/11) 2971214463000444 a001 365435296162/2207*7881196^(2/11) 2971214463000447 a001 39088169/2207*20633239^(5/7) 2971214463000448 a001 1548008755920/2207*7881196^(1/11) 2971214463000448 a001 267914296/2207*20633239^(3/5) 2971214463000449 a001 433494437/2207*20633239^(4/7) 2971214463000450 a001 4807526976/2207*20633239^(3/7) 2971214463000450 a001 7778742049/2207*20633239^(2/5) 2971214463000450 a001 14930352/2207*141422324^(9/13) 2971214463000450 a001 14930352/2207*2537720636^(3/5) 2971214463000450 a001 14930352/2207*45537549124^(9/17) 2971214463000450 a001 14930352/2207*817138163596^(9/19) 2971214463000450 a001 14930352/2207*14662949395604^(3/7) 2971214463000450 a001 14930352/2207*(1/2+1/2*5^(1/2))^27 2971214463000450 a001 14930352/2207*192900153618^(1/2) 2971214463000450 a001 14930352/2207*10749957122^(9/16) 2971214463000450 a001 14930352/2207*599074578^(9/14) 2971214463000451 a001 53316291173/2207*20633239^(2/7) 2971214463000451 a001 225851433717/2207*20633239^(1/5) 2971214463000452 a001 591286729879/2207*20633239^(1/7) 2971214463000452 a001 14930352/2207*33385282^(3/4) 2971214463000452 a001 39088169/2207*2537720636^(5/9) 2971214463000452 a001 39088169/2207*312119004989^(5/11) 2971214463000452 a001 39088169/2207*(1/2+1/2*5^(1/2))^25 2971214463000452 a001 39088169/2207*3461452808002^(5/12) 2971214463000452 a001 39088169/2207*28143753123^(1/2) 2971214463000452 a001 39088169/2207*228826127^(5/8) 2971214463000453 a001 267914296/2207*141422324^(7/13) 2971214463000453 a001 1134903170/2207*141422324^(6/13) 2971214463000453 a001 4807526976/2207*141422324^(5/13) 2971214463000453 a001 102334155/2207*(1/2+1/2*5^(1/2))^23 2971214463000453 a001 102334155/2207*4106118243^(1/2) 2971214463000453 a001 12586269025/2207*141422324^(1/3) 2971214463000453 a001 20365011074/2207*141422324^(4/13) 2971214463000453 a001 86267571272/2207*141422324^(3/13) 2971214463000453 a001 365435296162/2207*141422324^(2/13) 2971214463000453 a001 1548008755920/2207*141422324^(1/13) 2971214463000453 a001 267914296/2207*2537720636^(7/15) 2971214463000453 a001 267914296/2207*17393796001^(3/7) 2971214463000453 a001 267914296/2207*45537549124^(7/17) 2971214463000453 a001 267914296/2207*14662949395604^(1/3) 2971214463000453 a001 267914296/2207*(1/2+1/2*5^(1/2))^21 2971214463000453 a001 267914296/2207*192900153618^(7/18) 2971214463000453 a001 267914296/2207*10749957122^(7/16) 2971214463000453 a001 267914296/2207*599074578^(1/2) 2971214463000453 a001 701408733/2207*817138163596^(1/3) 2971214463000453 a001 701408733/2207*(1/2+1/2*5^(1/2))^19 2971214463000453 a001 4807526976/2207*2537720636^(1/3) 2971214463000453 a001 1836311903/2207*45537549124^(1/3) 2971214463000453 a001 1836311903/2207*(1/2+1/2*5^(1/2))^17 2971214463000453 a001 20365011074/2207*2537720636^(4/15) 2971214463000453 a001 53316291173/2207*2537720636^(2/9) 2971214463000453 a001 86267571272/2207*2537720636^(1/5) 2971214463000453 a001 365435296162/2207*2537720636^(2/15) 2971214463000453 a001 591286729879/2207*2537720636^(1/9) 2971214463000453 a001 1548008755920/2207*2537720636^(1/15) 2971214463000453 a001 4807526976/2207*45537549124^(5/17) 2971214463000453 a001 4807526976/2207*312119004989^(3/11) 2971214463000453 a001 4807526976/2207*14662949395604^(5/21) 2971214463000453 a001 4807526976/2207*(1/2+1/2*5^(1/2))^15 2971214463000453 a001 4807526976/2207*192900153618^(5/18) 2971214463000453 a001 4807526976/2207*28143753123^(3/10) 2971214463000453 a001 4807526976/2207*10749957122^(5/16) 2971214463000453 a001 12586269025/2207*(1/2+1/2*5^(1/2))^13 2971214463000453 a001 12586269025/2207*73681302247^(1/4) 2971214463000453 a001 225851433717/2207*17393796001^(1/7) 2971214463000453 a001 32951280099/2207*312119004989^(1/5) 2971214463000453 a001 32951280099/2207*(1/2+1/2*5^(1/2))^11 2971214463000453 a001 86267571272/2207*45537549124^(3/17) 2971214463000453 a001 365435296162/2207*45537549124^(2/17) 2971214463000453 a001 1548008755920/2207*45537549124^(1/17) 2971214463000453 a001 86267571272/2207*(1/2+1/2*5^(1/2))^9 2971214463000453 a001 591286729879/2207*(1/2+1/2*5^(1/2))^5 2971214463000453 a001 1548008755920/2207*14662949395604^(1/21) 2971214463000453 a001 1548008755920/2207*(1/2+1/2*5^(1/2))^3 2971214463000453 a001 4052739537881/4414+4052739537881/4414*5^(1/2) 2971214463000453 a001 956722026041/2207*(1/2+1/2*5^(1/2))^4 2971214463000453 a001 365435296162/2207*14662949395604^(2/21) 2971214463000453 a001 365435296162/2207*(1/2+1/2*5^(1/2))^6 2971214463000453 a001 139583862445/2207*(1/2+1/2*5^(1/2))^8 2971214463000453 a001 139583862445/2207*23725150497407^(1/8) 2971214463000453 a001 139583862445/2207*505019158607^(1/7) 2971214463000453 a001 139583862445/2207*73681302247^(2/13) 2971214463000453 a001 53316291173/2207*312119004989^(2/11) 2971214463000453 a001 53316291173/2207*(1/2+1/2*5^(1/2))^10 2971214463000453 a001 591286729879/2207*28143753123^(1/10) 2971214463000453 a001 53316291173/2207*28143753123^(1/5) 2971214463000453 a001 2504730781961/2207*10749957122^(1/24) 2971214463000453 a001 20365011074/2207*45537549124^(4/17) 2971214463000453 a001 20365011074/2207*817138163596^(4/19) 2971214463000453 a001 20365011074/2207*14662949395604^(4/21) 2971214463000453 a001 20365011074/2207*(1/2+1/2*5^(1/2))^12 2971214463000453 a001 20365011074/2207*192900153618^(2/9) 2971214463000453 a001 20365011074/2207*73681302247^(3/13) 2971214463000453 a001 1548008755920/2207*10749957122^(1/16) 2971214463000453 a001 956722026041/2207*10749957122^(1/12) 2971214463000453 a001 365435296162/2207*10749957122^(1/8) 2971214463000453 a001 139583862445/2207*10749957122^(1/6) 2971214463000453 a001 86267571272/2207*10749957122^(3/16) 2971214463000453 a001 53316291173/2207*10749957122^(5/24) 2971214463000453 a001 7778742049/2207*17393796001^(2/7) 2971214463000453 a001 2504730781961/2207*4106118243^(1/23) 2971214463000453 a001 20365011074/2207*10749957122^(1/4) 2971214463000453 a001 7778742049/2207*14662949395604^(2/9) 2971214463000453 a001 7778742049/2207*(1/2+1/2*5^(1/2))^14 2971214463000453 a001 956722026041/2207*4106118243^(2/23) 2971214463000453 a001 7778742049/2207*10749957122^(7/24) 2971214463000453 a001 365435296162/2207*4106118243^(3/23) 2971214463000453 a001 139583862445/2207*4106118243^(4/23) 2971214463000453 a001 53316291173/2207*4106118243^(5/23) 2971214463000453 a001 20365011074/2207*4106118243^(6/23) 2971214463000453 a001 2504730781961/2207*1568397607^(1/22) 2971214463000453 a001 7778742049/2207*4106118243^(7/23) 2971214463000453 a001 2971215073/2207*(1/2+1/2*5^(1/2))^16 2971214463000453 a001 2971215073/2207*23725150497407^(1/4) 2971214463000453 a001 2971215073/2207*73681302247^(4/13) 2971214463000453 a001 2971215073/2207*10749957122^(1/3) 2971214463000453 a001 956722026041/2207*1568397607^(1/11) 2971214463000453 a001 2971215073/2207*4106118243^(8/23) 2971214463000453 a001 365435296162/2207*1568397607^(3/22) 2971214463000453 a001 139583862445/2207*1568397607^(2/11) 2971214463000453 a001 53316291173/2207*1568397607^(5/22) 2971214463000453 a001 1134903170/2207*2537720636^(2/5) 2971214463000453 a001 32951280099/2207*1568397607^(1/4) 2971214463000453 a001 20365011074/2207*1568397607^(3/11) 2971214463000453 a001 7778742049/2207*1568397607^(7/22) 2971214463000453 a001 2504730781961/2207*599074578^(1/21) 2971214463000453 a001 1134903170/2207*45537549124^(6/17) 2971214463000453 a001 1134903170/2207*14662949395604^(2/7) 2971214463000453 a001 1134903170/2207*(1/2+1/2*5^(1/2))^18 2971214463000453 a001 1134903170/2207*192900153618^(1/3) 2971214463000453 a001 1134903170/2207*10749957122^(3/8) 2971214463000453 a001 2971215073/2207*1568397607^(4/11) 2971214463000453 a001 1134903170/2207*4106118243^(9/23) 2971214463000453 a001 1548008755920/2207*599074578^(1/14) 2971214463000453 a001 956722026041/2207*599074578^(2/21) 2971214463000453 a001 1134903170/2207*1568397607^(9/22) 2971214463000453 a001 365435296162/2207*599074578^(1/7) 2971214463000453 a001 225851433717/2207*599074578^(1/6) 2971214463000453 a001 139583862445/2207*599074578^(4/21) 2971214463000453 a001 86267571272/2207*599074578^(3/14) 2971214463000453 a001 53316291173/2207*599074578^(5/21) 2971214463000453 a001 20365011074/2207*599074578^(2/7) 2971214463000453 a001 7778742049/2207*599074578^(1/3) 2971214463000453 a001 2504730781961/2207*228826127^(1/20) 2971214463000453 a001 4807526976/2207*599074578^(5/14) 2971214463000453 a001 433494437/2207*2537720636^(4/9) 2971214463000453 a001 433494437/2207*(1/2+1/2*5^(1/2))^20 2971214463000453 a001 433494437/2207*23725150497407^(5/16) 2971214463000453 a001 433494437/2207*505019158607^(5/14) 2971214463000453 a001 433494437/2207*73681302247^(5/13) 2971214463000453 a001 433494437/2207*28143753123^(2/5) 2971214463000453 a001 433494437/2207*10749957122^(5/12) 2971214463000453 a001 2971215073/2207*599074578^(8/21) 2971214463000453 a001 433494437/2207*4106118243^(10/23) 2971214463000453 a001 433494437/2207*1568397607^(5/11) 2971214463000453 a001 1134903170/2207*599074578^(3/7) 2971214463000453 a001 956722026041/2207*228826127^(1/10) 2971214463000453 a001 591286729879/2207*228826127^(1/8) 2971214463000453 a001 433494437/2207*599074578^(10/21) 2971214463000453 a001 365435296162/2207*228826127^(3/20) 2971214463000453 a001 139583862445/2207*228826127^(1/5) 2971214463000453 a001 53316291173/2207*228826127^(1/4) 2971214463000453 a001 20365011074/2207*228826127^(3/10) 2971214463000453 a001 7778742049/2207*228826127^(7/20) 2971214463000453 a001 2504730781961/2207*87403803^(1/19) 2971214463000453 a001 4807526976/2207*228826127^(3/8) 2971214463000453 a001 165580141/2207*312119004989^(2/5) 2971214463000453 a001 165580141/2207*(1/2+1/2*5^(1/2))^22 2971214463000453 a001 165580141/2207*10749957122^(11/24) 2971214463000453 a001 165580141/2207*4106118243^(11/23) 2971214463000453 a001 165580141/2207*1568397607^(1/2) 2971214463000453 a001 2971215073/2207*228826127^(2/5) 2971214463000453 a001 1134903170/2207*228826127^(9/20) 2971214463000453 a001 165580141/2207*599074578^(11/21) 2971214463000453 a001 433494437/2207*228826127^(1/2) 2971214463000453 a001 956722026041/2207*87403803^(2/19) 2971214463000453 a001 165580141/2207*228826127^(11/20) 2971214463000453 a001 63245986/2207*141422324^(8/13) 2971214463000453 a001 365435296162/2207*87403803^(3/19) 2971214463000453 a001 139583862445/2207*87403803^(4/19) 2971214463000453 a001 53316291173/2207*87403803^(5/19) 2971214463000453 a001 20365011074/2207*87403803^(6/19) 2971214463000453 a001 7778742049/2207*87403803^(7/19) 2971214463000453 a001 2504730781961/2207*33385282^(1/18) 2971214463000453 a001 63245986/2207*2537720636^(8/15) 2971214463000453 a001 63245986/2207*45537549124^(8/17) 2971214463000453 a001 63245986/2207*14662949395604^(8/21) 2971214463000453 a001 63245986/2207*(1/2+1/2*5^(1/2))^24 2971214463000453 a001 63245986/2207*192900153618^(4/9) 2971214463000453 a001 63245986/2207*73681302247^(6/13) 2971214463000453 a001 63245986/2207*10749957122^(1/2) 2971214463000453 a001 63245986/2207*4106118243^(12/23) 2971214463000453 a001 63245986/2207*1568397607^(6/11) 2971214463000453 a001 63245986/2207*599074578^(4/7) 2971214463000453 a001 2971215073/2207*87403803^(8/19) 2971214463000453 a001 63245986/2207*228826127^(3/5) 2971214463000453 a001 1134903170/2207*87403803^(9/19) 2971214463000453 a001 701408733/2207*87403803^(1/2) 2971214463000453 a001 433494437/2207*87403803^(10/19) 2971214463000453 a001 1548008755920/2207*33385282^(1/12) 2971214463000453 a001 165580141/2207*87403803^(11/19) 2971214463000453 a001 956722026041/2207*33385282^(1/9) 2971214463000453 a001 63245986/2207*87403803^(12/19) 2971214463000453 a001 365435296162/2207*33385282^(1/6) 2971214463000453 a001 139583862445/2207*33385282^(2/9) 2971214463000453 a001 86267571272/2207*33385282^(1/4) 2971214463000453 a001 53316291173/2207*33385282^(5/18) 2971214463000453 a001 20365011074/2207*33385282^(1/3) 2971214463000454 a001 24157817/2207*141422324^(2/3) 2971214463000454 a001 24157817/2207*(1/2+1/2*5^(1/2))^26 2971214463000454 a001 24157817/2207*73681302247^(1/2) 2971214463000454 a001 24157817/2207*10749957122^(13/24) 2971214463000454 a001 24157817/2207*4106118243^(13/23) 2971214463000454 a001 24157817/2207*1568397607^(13/22) 2971214463000454 a001 24157817/2207*599074578^(13/21) 2971214463000454 a001 7778742049/2207*33385282^(7/18) 2971214463000454 a001 24157817/2207*228826127^(13/20) 2971214463000454 a001 2504730781961/2207*12752043^(1/17) 2971214463000454 a001 4807526976/2207*33385282^(5/12) 2971214463000454 a001 2971215073/2207*33385282^(4/9) 2971214463000454 a001 24157817/2207*87403803^(13/19) 2971214463000454 a001 1134903170/2207*33385282^(1/2) 2971214463000454 a001 9227465/2207*20633239^(4/5) 2971214463000454 a001 433494437/2207*33385282^(5/9) 2971214463000454 a001 267914296/2207*33385282^(7/12) 2971214463000454 a001 165580141/2207*33385282^(11/18) 2971214463000455 a001 63245986/2207*33385282^(2/3) 2971214463000455 a001 956722026041/2207*12752043^(2/17) 2971214463000456 a001 24157817/2207*33385282^(13/18) 2971214463000456 a001 365435296162/2207*12752043^(3/17) 2971214463000457 a001 139583862445/2207*12752043^(4/17) 2971214463000457 a001 3524578/2207*7881196^(10/11) 2971214463000458 a001 53316291173/2207*12752043^(5/17) 2971214463000459 a001 20365011074/2207*12752043^(6/17) 2971214463000460 a001 9227465/2207*17393796001^(4/7) 2971214463000460 a001 9227465/2207*14662949395604^(4/9) 2971214463000460 a001 9227465/2207*(1/2+1/2*5^(1/2))^28 2971214463000460 a001 9227465/2207*73681302247^(7/13) 2971214463000460 a001 9227465/2207*10749957122^(7/12) 2971214463000460 a001 9227465/2207*4106118243^(14/23) 2971214463000460 a001 9227465/2207*1568397607^(7/11) 2971214463000460 a001 9227465/2207*599074578^(2/3) 2971214463000460 a001 9227465/2207*228826127^(7/10) 2971214463000460 a001 9227465/2207*87403803^(14/19) 2971214463000460 a001 7778742049/2207*12752043^(7/17) 2971214463000460 a001 2504730781961/2207*4870847^(1/16) 2971214463000461 a001 2971215073/2207*12752043^(8/17) 2971214463000462 a001 9227465/2207*33385282^(7/9) 2971214463000462 a001 1836311903/2207*12752043^(1/2) 2971214463000462 a001 1134903170/2207*12752043^(9/17) 2971214463000463 a001 433494437/2207*12752043^(10/17) 2971214463000464 a001 165580141/2207*12752043^(11/17) 2971214463000466 a001 63245986/2207*12752043^(12/17) 2971214463000468 a001 24157817/2207*12752043^(13/17) 2971214463000468 a001 956722026041/2207*4870847^(1/8) 2971214463000475 a001 9227465/2207*12752043^(14/17) 2971214463000476 a001 365435296162/2207*4870847^(3/16) 2971214463000484 a001 139583862445/2207*4870847^(1/4) 2971214463000492 a001 53316291173/2207*4870847^(5/16) 2971214463000494 a001 3524578/2207*20633239^(6/7) 2971214463000500 a001 20365011074/2207*4870847^(3/8) 2971214463000500 a001 3524578/2207*141422324^(10/13) 2971214463000500 a001 3524578/2207*2537720636^(2/3) 2971214463000500 a001 3524578/2207*45537549124^(10/17) 2971214463000500 a001 3524578/2207*312119004989^(6/11) 2971214463000500 a001 3524578/2207*14662949395604^(10/21) 2971214463000500 a001 3524578/2207*(1/2+1/2*5^(1/2))^30 2971214463000500 a001 3524578/2207*192900153618^(5/9) 2971214463000500 a001 3524578/2207*28143753123^(3/5) 2971214463000500 a001 3524578/2207*10749957122^(5/8) 2971214463000500 a001 3524578/2207*4106118243^(15/23) 2971214463000500 a001 3524578/2207*1568397607^(15/22) 2971214463000500 a001 3524578/2207*599074578^(5/7) 2971214463000500 a001 3524578/2207*228826127^(3/4) 2971214463000501 a001 3524578/2207*87403803^(15/19) 2971214463000503 a001 3524578/2207*33385282^(5/6) 2971214463000507 a001 7778742049/2207*4870847^(7/16) 2971214463000510 a001 2504730781961/2207*1860498^(1/15) 2971214463000515 a001 2971215073/2207*4870847^(1/2) 2971214463000517 a001 3524578/2207*12752043^(15/17) 2971214463000523 a001 1134903170/2207*4870847^(9/16) 2971214463000531 a001 433494437/2207*4870847^(5/8) 2971214463000538 a001 1548008755920/2207*1860498^(1/10) 2971214463000539 a001 165580141/2207*4870847^(11/16) 2971214463000547 a001 63245986/2207*4870847^(3/4) 2971214463000555 a001 24157817/2207*4870847^(13/16) 2971214463000567 a001 956722026041/2207*1860498^(2/15) 2971214463000569 a001 9227465/2207*4870847^(7/8) 2971214463000596 a001 591286729879/2207*1860498^(1/6) 2971214463000618 a001 3524578/2207*4870847^(15/16) 2971214463000624 a001 365435296162/2207*1860498^(1/5) 2971214463000655 a001 987/3010349*(1/2+1/2*5^(1/2))^62 2971214463000682 a001 139583862445/2207*1860498^(4/15) 2971214463000710 a001 86267571272/2207*1860498^(3/10) 2971214463000739 a001 53316291173/2207*1860498^(1/3) 2971214463000780 a001 1346269/2207*(1/2+1/2*5^(1/2))^32 2971214463000780 a001 1346269/2207*23725150497407^(1/2) 2971214463000780 a001 1346269/2207*73681302247^(8/13) 2971214463000780 a001 1346269/2207*10749957122^(2/3) 2971214463000780 a001 1346269/2207*4106118243^(16/23) 2971214463000780 a001 1346269/2207*1568397607^(8/11) 2971214463000780 a001 1346269/2207*599074578^(16/21) 2971214463000781 a001 1346269/2207*228826127^(4/5) 2971214463000781 a001 1346269/2207*87403803^(16/19) 2971214463000783 a001 1346269/2207*33385282^(8/9) 2971214463000796 a001 20365011074/2207*1860498^(2/5) 2971214463000798 a001 1346269/2207*12752043^(16/17) 2971214463000853 a001 7778742049/2207*1860498^(7/15) 2971214463000873 a001 2504730781961/2207*710647^(1/14) 2971214463000882 a001 4807526976/2207*1860498^(1/2) 2971214463000910 a001 2971215073/2207*1860498^(8/15) 2971214463000968 a001 1134903170/2207*1860498^(3/5) 2971214463001025 a001 433494437/2207*1860498^(2/3) 2971214463001053 a001 267914296/2207*1860498^(7/10) 2971214463001082 a001 165580141/2207*1860498^(11/15) 2971214463001139 a001 63245986/2207*1860498^(4/5) 2971214463001168 a001 39088169/2207*1860498^(5/6) 2971214463001186 a001 2472169281795507/832040 2971214463001198 a001 24157817/2207*1860498^(13/15) 2971214463001222 a001 14930352/2207*1860498^(9/10) 2971214463001261 a001 9227465/2207*1860498^(14/15) 2971214463001293 a001 956722026041/2207*710647^(1/7) 2971214463001713 a001 365435296162/2207*710647^(3/14) 2971214463001923 a001 225851433717/2207*710647^(1/4) 2971214463002134 a001 139583862445/2207*710647^(2/7) 2971214463002554 a001 53316291173/2207*710647^(5/14) 2971214463002575 a001 987/1149851*14662949395604^(20/21) 2971214463002575 a001 987/1149851*(1/2+1/2*5^(1/2))^60 2971214463002700 a001 514229/2207*45537549124^(2/3) 2971214463002700 a001 514229/2207*(1/2+1/2*5^(1/2))^34 2971214463002700 a001 514229/2207*10749957122^(17/24) 2971214463002700 a001 514229/2207*4106118243^(17/23) 2971214463002700 a001 514229/2207*1568397607^(17/22) 2971214463002700 a001 514229/2207*599074578^(17/21) 2971214463002700 a001 514229/2207*228826127^(17/20) 2971214463002700 a001 514229/2207*87403803^(17/19) 2971214463002702 a001 514229/2207*33385282^(17/18) 2971214463002974 a001 20365011074/2207*710647^(3/7) 2971214463003394 a001 7778742049/2207*710647^(1/2) 2971214463003555 a001 2504730781961/2207*271443^(1/13) 2971214463003815 a001 2971215073/2207*710647^(4/7) 2971214463004235 a001 1134903170/2207*710647^(9/14) 2971214463004655 a001 433494437/2207*710647^(5/7) 2971214463004865 a001 267914296/2207*710647^(3/4) 2971214463005075 a001 165580141/2207*710647^(11/14) 2971214463005496 a001 63245986/2207*710647^(6/7) 2971214463005917 a001 24157817/2207*710647^(13/14) 2971214463006211 a001 314761546567489/105937 2971214463006656 a001 956722026041/2207*271443^(2/13) 2971214463009758 a001 365435296162/2207*271443^(3/13) 2971214463011969 a001 4052739537881/2207*103682^(1/24) 2971214463012860 a001 139583862445/2207*271443^(4/13) 2971214463015730 a001 987/439204*(1/2+1/2*5^(1/2))^58 2971214463015855 a001 196418/2207*141422324^(12/13) 2971214463015855 a001 196418/2207*2537720636^(4/5) 2971214463015855 a001 196418/2207*45537549124^(12/17) 2971214463015855 a001 196418/2207*14662949395604^(4/7) 2971214463015855 a001 196418/2207*(1/2+1/2*5^(1/2))^36 2971214463015855 a001 196418/2207*505019158607^(9/14) 2971214463015855 a001 196418/2207*192900153618^(2/3) 2971214463015855 a001 196418/2207*73681302247^(9/13) 2971214463015855 a001 196418/2207*10749957122^(3/4) 2971214463015855 a001 196418/2207*4106118243^(18/23) 2971214463015855 a001 196418/2207*1568397607^(9/11) 2971214463015855 a001 196418/2207*599074578^(6/7) 2971214463015856 a001 196418/2207*228826127^(9/10) 2971214463015856 a001 196418/2207*87403803^(18/19) 2971214463015962 a001 53316291173/2207*271443^(5/13) 2971214463019064 a001 20365011074/2207*271443^(6/13) 2971214463020615 a001 12586269025/2207*271443^(1/2) 2971214463022166 a001 7778742049/2207*271443^(7/13) 2971214463023485 a001 2504730781961/2207*103682^(1/12) 2971214463025268 a001 2971215073/2207*271443^(8/13) 2971214463028370 a001 1134903170/2207*271443^(9/13) 2971214463031472 a001 433494437/2207*271443^(10/13) 2971214463034574 a001 165580141/2207*271443^(11/13) 2971214463035002 a001 1548008755920/2207*103682^(1/8) 2971214463037676 a001 63245986/2207*271443^(12/13) 2971214463040653 a001 360684637311894/121393 2971214463046518 a001 956722026041/2207*103682^(1/6) 2971214463058035 a001 591286729879/2207*103682^(5/24) 2971214463069551 a001 365435296162/2207*103682^(1/4) 2971214463081067 a001 225851433717/2207*103682^(7/24) 2971214463086563 a001 4052739537881/2207*39603^(1/22) 2971214463092584 a001 139583862445/2207*103682^(1/3) 2971214463104100 a001 86267571272/2207*103682^(3/8) 2971214463105900 a001 987/167761*14662949395604^(8/9) 2971214463105900 a001 987/167761*(1/2+1/2*5^(1/2))^56 2971214463106025 a001 75025/2207*817138163596^(2/3) 2971214463106025 a001 75025/2207*(1/2+1/2*5^(1/2))^38 2971214463106025 a001 75025/2207*10749957122^(19/24) 2971214463106025 a001 75025/2207*4106118243^(19/23) 2971214463106025 a001 75025/2207*1568397607^(19/22) 2971214463106025 a001 75025/2207*599074578^(19/21) 2971214463106025 a001 75025/2207*228826127^(19/20) 2971214463115616 a001 53316291173/2207*103682^(5/12) 2971214463127133 a001 32951280099/2207*103682^(11/24) 2971214463138649 a001 20365011074/2207*103682^(1/2) 2971214463150166 a001 12586269025/2207*103682^(13/24) 2971214463161682 a001 7778742049/2207*103682^(7/12) 2971214463172673 a001 2504730781961/2207*39603^(1/11) 2971214463173198 a001 4807526976/2207*103682^(5/8) 2971214463184715 a001 2971215073/2207*103682^(2/3) 2971214463196231 a001 1836311903/2207*103682^(17/24) 2971214463207747 a001 1134903170/2207*103682^(3/4) 2971214463219264 a001 701408733/2207*103682^(19/24) 2971214463230780 a001 433494437/2207*103682^(5/6) 2971214463242297 a001 267914296/2207*103682^(7/8) 2971214463253813 a001 165580141/2207*103682^(11/12) 2971214463258784 a001 1548008755920/2207*39603^(3/22) 2971214463265329 a001 102334155/2207*103682^(23/24) 2971214463276721 a001 6560441534915/2208 2971214463344894 a001 956722026041/2207*39603^(2/11) 2971214463431004 a001 591286729879/2207*39603^(5/22) 2971214463517114 a001 365435296162/2207*39603^(3/11) 2971214463603225 a001 225851433717/2207*39603^(7/22) 2971214463649682 a001 4052739537881/2207*15127^(1/20) 2971214463689335 a001 139583862445/2207*39603^(4/11) 2971214463723934 a001 987/64079*14662949395604^(6/7) 2971214463723934 a001 987/64079*(1/2+1/2*5^(1/2))^54 2971214463724059 a001 28657/2207*2537720636^(8/9) 2971214463724059 a001 28657/2207*312119004989^(8/11) 2971214463724059 a001 28657/2207*(1/2+1/2*5^(1/2))^40 2971214463724059 a001 28657/2207*23725150497407^(5/8) 2971214463724059 a001 28657/2207*73681302247^(10/13) 2971214463724059 a001 28657/2207*28143753123^(4/5) 2971214463724059 a001 28657/2207*10749957122^(5/6) 2971214463724059 a001 28657/2207*4106118243^(20/23) 2971214463724059 a001 28657/2207*1568397607^(10/11) 2971214463724059 a001 28657/2207*599074578^(20/21) 2971214463775445 a001 86267571272/2207*39603^(9/22) 2971214463861556 a001 53316291173/2207*39603^(5/11) 2971214463947666 a001 32951280099/2207*39603^(1/2) 2971214463997663 a001 6557470319842/3571*521^(1/13) 2971214464033776 a001 20365011074/2207*39603^(6/11) 2971214464119887 a001 12586269025/2207*39603^(13/22) 2971214464205997 a001 7778742049/2207*39603^(7/11) 2971214464292107 a001 4807526976/2207*39603^(15/22) 2971214464298912 a001 2504730781961/2207*15127^(1/10) 2971214464378218 a001 2971215073/2207*39603^(8/11) 2971214464464328 a001 1836311903/2207*39603^(17/22) 2971214464550438 a001 1134903170/2207*39603^(9/11) 2971214464636548 a001 701408733/2207*39603^(19/22) 2971214464722659 a001 433494437/2207*39603^(10/11) 2971214464808769 a001 267914296/2207*39603^(21/22) 2971214464894754 a001 52623179387751/17711 2971214464948142 a001 1548008755920/2207*15127^(3/20) 2971214465597371 a001 956722026041/2207*15127^(1/5) 2971214466246601 a001 591286729879/2207*15127^(1/4) 2971214466895831 a001 365435296162/2207*15127^(3/10) 2971214467545061 a001 225851433717/2207*15127^(7/20) 2971214467944771 a001 4052739537881/2207*5778^(1/18) 2971214467960001 a001 987/24476*(1/2+1/2*5^(1/2))^52 2971214467960001 a001 987/24476*23725150497407^(13/16) 2971214467960001 a001 987/24476*505019158607^(13/14) 2971214467960126 a001 10946/2207*2537720636^(14/15) 2971214467960126 a001 10946/2207*17393796001^(6/7) 2971214467960126 a001 10946/2207*45537549124^(14/17) 2971214467960126 a001 10946/2207*14662949395604^(2/3) 2971214467960126 a001 10946/2207*(1/2+1/2*5^(1/2))^42 2971214467960126 a001 10946/2207*505019158607^(3/4) 2971214467960126 a001 10946/2207*192900153618^(7/9) 2971214467960126 a001 10946/2207*10749957122^(7/8) 2971214467960126 a001 10946/2207*4106118243^(21/23) 2971214467960126 a001 10946/2207*1568397607^(21/22) 2971214468194056 a001 1548008755920/9349*1364^(2/5) 2971214468194290 a001 139583862445/2207*15127^(2/5) 2971214468843520 a001 86267571272/2207*15127^(9/20) 2971214469492750 a001 53316291173/2207*15127^(1/2) 2971214470141980 a001 32951280099/2207*15127^(11/20) 2971214470791209 a001 20365011074/2207*15127^(3/5) 2971214471440439 a001 12586269025/2207*15127^(13/20) 2971214472089669 a001 7778742049/2207*15127^(7/10) 2971214472738898 a001 4807526976/2207*15127^(3/4) 2971214472889090 a001 2504730781961/2207*5778^(1/9) 2971214473388128 a001 2971215073/2207*15127^(4/5) 2971214474037358 a001 1836311903/2207*15127^(17/20) 2971214474686588 a001 1134903170/2207*15127^(9/10) 2971214475335817 a001 701408733/2207*15127^(19/20) 2971214475714772 a001 7778742049/843*843^(6/7) 2971214475984922 a001 6700088643346/2255 2971214477833408 a001 1548008755920/2207*5778^(1/6) 2971214478070722 l006 ln(659/887) 2971214478070722 p004 log(887/659) 2971214482777727 a001 956722026041/2207*5778^(2/9) 2971214487722045 a001 591286729879/2207*5778^(5/18) 2971214492666364 a001 365435296162/2207*5778^(1/3) 2971214494159456 m001 Pi*Trott^2*ln(sqrt(5)) 2971214495097600 s002 sum(A075261[n]/((2*n)!),n=1..infinity) 2971214496994437 a001 987/9349*312119004989^(10/11) 2971214496994437 a001 987/9349*(1/2+1/2*5^(1/2))^50 2971214496994437 a001 987/9349*3461452808002^(5/6) 2971214496994562 a001 4181/2207*312119004989^(4/5) 2971214496994562 a001 4181/2207*(1/2+1/2*5^(1/2))^44 2971214496994562 a001 4181/2207*23725150497407^(11/16) 2971214496994562 a001 4181/2207*73681302247^(11/13) 2971214496994562 a001 4181/2207*10749957122^(11/12) 2971214496994562 a001 4181/2207*4106118243^(22/23) 2971214497610682 a001 225851433717/2207*5778^(7/18) 2971214501125421 a001 4052739537881/2207*2207^(1/16) 2971214502555001 a001 139583862445/2207*5778^(4/9) 2971214502925689 m001 1/exp(GAMMA(5/6))/Catalan*sin(1) 2971214503574694 a008 Real Root of x^4-37*x^2-45*x+115 2971214507499320 a001 86267571272/2207*5778^(1/2) 2971214508545983 r008 a(0)=3,K{-n^6,-17+7*n^3+59*n^2-14*n} 2971214509488919 a007 Real Root Of 379*x^4+916*x^3-676*x^2-379*x-669 2971214511911135 k008 concat of cont frac of 2971214512443638 a001 53316291173/2207*5778^(5/9) 2971214516343890 r005 Im(z^2+c),c=-5/114+18/49*I,n=29 2971214517387957 a001 32951280099/2207*5778^(11/18) 2971214520312364 a001 1/17*317811^(35/52) 2971214520323260 r008 a(0)=3,K{-n^6,-15+8*n^3+57*n^2-15*n} 2971214522332275 a001 20365011074/2207*5778^(2/3) 2971214527276594 a001 12586269025/2207*5778^(13/18) 2971214527682018 a001 4052739537881/15127*1364^(1/3) 2971214532220913 a001 7778742049/2207*5778^(7/9) 2971214537165231 a001 4807526976/2207*5778^(5/6) 2971214538772186 a001 3536736619241/13201*1364^(1/3) 2971214539250389 a001 2504730781961/2207*2207^(1/8) 2971214542109550 a001 2971215073/2207*5778^(8/9) 2971214545626286 a001 3278735159921/12238*1364^(1/3) 2971214547053868 a001 1836311903/2207*5778^(17/18) 2971214551998065 a001 7677618402363/2584 2971214558135545 a001 2504730781961/5778*1364^(4/15) 2971214560732386 a001 365435296162/3571*1364^(7/15) 2971214572592621 r005 Re(z^2+c),c=-27/98+25/48*I,n=34 2971214573613888 r002 1i'th iterates of 2*x/(1-x^2) of 2971214574660723 a001 2504730781961/9349*1364^(1/3) 2971214577375358 a001 1548008755920/2207*2207^(3/16) 2971214587645547 m001 (gamma(1)+Artin)/(MasserGramain-RenyiParking) 2971214595357498 r008 a(0)=3,K{-n^6,-43+55*n+n^2+22*n^3} 2971214597210635 r005 Re(z^2+c),c=43/122+20/63*I,n=42 2971214600650474 b008 2+Cot[4/5] 2971214603821295 m001 cos(1/12*Pi)^exp(Pi)*LaplaceLimit 2971214610447010 s001 sum(exp(-3*Pi/5)^n*A097298[n],n=1..infinity) 2971214615500328 a001 956722026041/2207*2207^(1/4) 2971214623644146 a005 (1/sin(64/137*Pi))^1931 2971214631153111 r009 Im(z^3+c),c=-19/40+3/41*I,n=40 2971214633207528 a007 Real Root Of 802*x^4+80*x^3-671*x^2-899*x+318 2971214634148687 a001 6557470319842/15127*1364^(4/15) 2971214641023403 a007 Real Root Of -41*x^4+404*x^3+41*x^2+673*x-2 2971214652092956 a001 10610209857723/24476*1364^(4/15) 2971214653625298 a001 591286729879/2207*2207^(5/16) 2971214655140157 r005 Re(z^2+c),c=4/11+8/49*I,n=21 2971214663924792 m001 (Sierpinski+Trott2nd)/(ln(3)-Ei(1,1)) 2971214664602215 a001 4052739537881/5778*1364^(1/5) 2971214667199056 a001 591286729879/3571*1364^(2/5) 2971214669867612 a007 Real Root Of 361*x^4-360*x^3+203*x^2-548*x-193 2971214669985616 m001 (BesselK(1,1)+Pi^(1/2))/(cos(1)+sin(1/12*Pi)) 2971214675861794 m001 (Conway-gamma)/(CopelandErdos+ZetaQ(3)) 2971214681127394 a001 4052739537881/9349*1364^(4/15) 2971214681627494 r005 Re(z^2+c),c=-15/44+19/60*I,n=11 2971214691750268 a001 365435296162/2207*2207^(3/8) 2971214695999439 a001 987/3571*45537549124^(16/17) 2971214695999439 a001 987/3571*14662949395604^(16/21) 2971214695999439 a001 987/3571*(1/2+1/2*5^(1/2))^48 2971214695999439 a001 987/3571*192900153618^(8/9) 2971214695999439 a001 987/3571*73681302247^(12/13) 2971214695999546 a001 1597/2207*(1/2+1/2*5^(1/2))^46 2971214695999546 a001 1597/2207*10749957122^(23/24) 2971214696426458 m008 (1/5*Pi^2+1/6)/(3/4*Pi^6-3/5) 2971214697679761 a005 (1/cos(52/121*Pi))^28 2971214700246095 m001 (BesselI(1,2)+Kac)/(RenyiParking-ZetaQ(4)) 2971214729875239 a001 225851433717/2207*2207^(7/16) 2971214734150639 r008 a(0)=3,K{-n^6,13+35*n^3-10*n^2-3*n} 2971214740615360 a001 1515744265389/2161*1364^(1/5) 2971214745632158 r005 Im(z^2+c),c=-17/118+26/63*I,n=28 2971214751003130 a001 4745029957352/1597 2971214761643050 a001 4052739537881/2207*843^(1/14) 2971214762259570 r005 Re(z^2+c),c=-41/110+7/39*I,n=33 2971214764708946 a001 7778742049/5778*3571^(16/17) 2971214768000210 a001 139583862445/2207*2207^(1/2) 2971214771068890 a001 3278735159921/2889*1364^(2/15) 2971214773665731 a001 956722026041/3571*1364^(1/3) 2971214774357371 a001 1602508992/281*843^(13/14) 2971214778414777 a001 12586269025/5778*3571^(15/17) 2971214779803788 m001 BesselK(0,1)*ln(3)+Zeta(1,-1) 2971214787594069 a001 6557470319842/9349*1364^(1/5) 2971214792120608 a001 10182505537/2889*3571^(14/17) 2971214794187929 r005 Re(z^2+c),c=5/58+21/58*I,n=30 2971214805623281 a001 199/1597*987^(23/50) 2971214805826439 a001 10983760033/1926*3571^(13/17) 2971214806125182 a001 86267571272/2207*2207^(9/16) 2971214815590332 r005 Im(z^2+c),c=-13/18+62/121*I,n=4 2971214819532270 a001 53316291173/5778*3571^(12/17) 2971214821765099 r005 Im(z^2+c),c=-12/31+1/2*I,n=45 2971214824324186 r005 Im(z^2+c),c=-13/31+30/61*I,n=39 2971214825784900 r008 a(0)=3,K{-n^6,43-18*n-40*n^2+50*n^3} 2971214827016280 a001 4745030078745/1597 2971214830234619 a007 Real Root Of 290*x^4+820*x^3-331*x^2-467*x+442 2971214833238101 a001 43133785636/2889*3571^(11/17) 2971214838106449 a001 4745030096456/1597 2971214839724483 a001 4745030099040/1597 2971214839960551 a001 4745030099417/1597 2971214839994990 a001 4745030099472/1597 2971214840000626 a001 4745030099481/1597 2971214840000876 a001 2/1597*(1/2+1/2*5^(1/2))^64 2971214840000876 a001 23725150497407/1597*8^(1/3) 2971214840001252 a001 4745030099482/1597 2971214840003130 a001 4745030099485/1597 2971214840016280 a001 4745030099506/1597 2971214840106449 a001 4745030099650/1597 2971214840722093 a001 20365011074/15127*3571^(16/17) 2971214840724483 a001 4745030100637/1597 2971214842351461 m002 (3*Cosh[Pi]*ProductLog[Pi])/(4*Pi) 2971214842506392 r005 Re(z^2+c),c=-19/106+31/50*I,n=51 2971214844250155 a001 53316291173/2207*2207^(5/8) 2971214844960551 a001 4745030107402/1597 2971214846576144 m001 1/GAMMA(13/24)^2*ln(Lehmer)^2*cos(1)^2 2971214846943933 a001 139583862445/5778*3571^(10/17) 2971214850250521 r008 a(0)=3,K{-n^6,39+2*n-63*n^2+57*n^3} 2971214851812262 a001 53316291173/39603*3571^(16/17) 2971214853430296 a001 139583862445/103682*3571^(16/17) 2971214853666364 a001 365435296162/271443*3571^(16/17) 2971214853700806 a001 956722026041/710647*3571^(16/17) 2971214853705831 a001 2504730781961/1860498*3571^(16/17) 2971214853706564 a001 6557470319842/4870847*3571^(16/17) 2971214853706737 a001 10610209857723/7881196*3571^(16/17) 2971214853707017 a001 1346269*3571^(16/17) 2971214853708936 a001 1548008755920/1149851*3571^(16/17) 2971214853722092 a001 591286729879/439204*3571^(16/17) 2971214853812262 a001 225851433717/167761*3571^(16/17) 2971214854122600 s002 sum(A077235[n]/(n^2*exp(n)-1),n=1..infinity) 2971214854427924 a001 32951280099/15127*3571^(15/17) 2971214854430296 a001 86267571272/64079*3571^(16/17) 2971214857056579 m001 1/cos(Pi/5)^2/ln(sin(1))^3 2971214858666364 a001 32951280099/24476*3571^(16/17) 2971214860649764 a001 75283811239/1926*3571^(9/17) 2971214861376534 r005 Re(z^2+c),c=-11/34+23/58*I,n=48 2971214863631331 a008 Real Root of x^4-2*x^3-10*x^2-28*x+146 2971214865371701 m001 MertensB1^BesselI(0,2)/(MertensB1^exp(1/Pi)) 2971214865518094 a001 86267571272/39603*3571^(15/17) 2971214866558055 r005 Im(z^2+c),c=1/32+17/52*I,n=9 2971214867136127 a001 225851433717/103682*3571^(15/17) 2971214867372195 a001 591286729879/271443*3571^(15/17) 2971214867406637 a001 1548008755920/710647*3571^(15/17) 2971214867411662 a001 4052739537881/1860498*3571^(15/17) 2971214867412395 a001 2178309*3571^(15/17) 2971214867412849 a001 6557470319842/3010349*3571^(15/17) 2971214867414768 a001 2504730781961/1149851*3571^(15/17) 2971214867427924 a001 956722026041/439204*3571^(15/17) 2971214867518093 a001 365435296162/167761*3571^(15/17) 2971214868133756 a001 53316291173/15127*3571^(14/17) 2971214868136127 a001 139583862445/64079*3571^(15/17) 2971214871322459 r005 Im(z^2+c),c=-29/78+17/31*I,n=52 2971214872372195 a001 53316291173/24476*3571^(15/17) 2971214873994990 a001 4745030153770/1597 2971214874355596 a001 182717648081/2889*3571^(8/17) 2971214876353853 r008 a(0)=3,K{-n^6,83+57*n^3-41*n^2-64*n} 2971214877535568 a001 3536736619241/1926*1364^(1/15) 2971214879139655 m001 (-Lehmer+ZetaP(2))/(2*Pi/GAMMA(5/6)-sin(1)) 2971214879223925 a001 139583862445/39603*3571^(14/17) 2971214879490225 a003 cos(Pi*19/43)+cos(Pi*44/95) 2971214880132409 a001 1548008755920/3571*1364^(4/15) 2971214880841959 a001 182717648081/51841*3571^(14/17) 2971214881078027 a001 956722026041/271443*3571^(14/17) 2971214881112469 a001 2504730781961/710647*3571^(14/17) 2971214881117494 a001 3278735159921/930249*3571^(14/17) 2971214881118680 a001 10610209857723/3010349*3571^(14/17) 2971214881120599 a001 4052739537881/1149851*3571^(14/17) 2971214881133755 a001 387002188980/109801*3571^(14/17) 2971214881223925 a001 591286729879/167761*3571^(14/17) 2971214881839587 a001 86267571272/15127*3571^(13/17) 2971214881841959 a001 225851433717/64079*3571^(14/17) 2971214882375128 a001 32951280099/2207*2207^(11/16) 2971214883427468 m005 (1/2*Catalan-9/11)/(25/28+1/7*5^(1/2)) 2971214886078027 a001 21566892818/6119*3571^(14/17) 2971214887700804 a001 12586269025/9349*3571^(16/17) 2971214888061427 a001 591286729879/5778*3571^(7/17) 2971214892929757 a001 75283811239/13201*3571^(13/17) 2971214894060748 a001 10610209857723/9349*1364^(2/15) 2971214894547790 a001 591286729879/103682*3571^(13/17) 2971214894783858 a001 516002918640/90481*3571^(13/17) 2971214894818300 a001 4052739537881/710647*3571^(13/17) 2971214894823325 a001 3536736619241/620166*3571^(13/17) 2971214894826431 a001 6557470319842/1149851*3571^(13/17) 2971214894839587 a001 2504730781961/439204*3571^(13/17) 2971214894929756 a001 956722026041/167761*3571^(13/17) 2971214895004499 a001 1292/2889*(1/2+1/2*5^(1/2))^47 2971214895545419 a001 139583862445/15127*3571^(12/17) 2971214895547790 a001 365435296162/64079*3571^(13/17) 2971214899783858 a001 139583862445/24476*3571^(13/17) 2971214900247666 m001 (-Conway+KhinchinHarmonic)/(2^(1/2)-gamma(1)) 2971214901406635 a001 20365011074/9349*3571^(15/17) 2971214901767259 a001 956722026041/5778*3571^(6/17) 2971214906635588 a001 365435296162/39603*3571^(12/17) 2971214907924916 m006 (2/5*Pi^2-3/5)/(3/4/Pi-1/4) 2971214908253622 a001 956722026041/103682*3571^(12/17) 2971214908489690 a001 2504730781961/271443*3571^(12/17) 2971214908524132 a001 6557470319842/710647*3571^(12/17) 2971214908532263 a001 10610209857723/1149851*3571^(12/17) 2971214908545418 a001 4052739537881/439204*3571^(12/17) 2971214908635588 a001 140728068720/15251*3571^(12/17) 2971214909251251 a001 32264490531/2161*3571^(11/17) 2971214909253622 a001 591286729879/64079*3571^(12/17) 2971214913489690 a001 7787980473/844*3571^(12/17) 2971214915112467 a001 32951280099/9349*3571^(14/17) 2971214915473090 a001 86000486440/321*3571^(5/17) 2971214915916612 k006 concat of cont frac of 2971214920341420 a001 591286729879/39603*3571^(11/17) 2971214920500101 a001 20365011074/2207*2207^(3/4) 2971214921959454 a001 774004377960/51841*3571^(11/17) 2971214922195522 a001 4052739537881/271443*3571^(11/17) 2971214922229964 a001 1515744265389/101521*3571^(11/17) 2971214922251250 a001 3278735159921/219602*3571^(11/17) 2971214922341420 a001 2504730781961/167761*3571^(11/17) 2971214922957082 a001 365435296162/15127*3571^(10/17) 2971214922959454 a001 956722026041/64079*3571^(11/17) 2971214927195521 a001 182717648081/12238*3571^(11/17) 2971214928818299 a001 53316291173/9349*3571^(13/17) 2971214929178922 a001 2504730781961/5778*3571^(4/17) 2971214929918401 r002 15th iterates of z^2 + 2971214934047252 a001 956722026041/39603*3571^(10/17) 2971214935665285 a001 2504730781961/103682*3571^(10/17) 2971214935901353 a001 6557470319842/271443*3571^(10/17) 2971214935957082 a001 10610209857723/439204*3571^(10/17) 2971214936047251 a001 4052739537881/167761*3571^(10/17) 2971214936662914 a001 591286729879/15127*3571^(9/17) 2971214936665285 a001 1548008755920/64079*3571^(10/17) 2971214940901353 a001 591286729879/24476*3571^(10/17) 2971214942524130 a001 86267571272/9349*3571^(12/17) 2971214942884754 a001 4052739537881/5778*3571^(3/17) 2971214945124886 a001 1860498*34^(11/14) 2971214946774874 a007 Real Root Of 188*x^4+450*x^3-230*x^2+249*x-78 2971214947753083 a001 516002918640/13201*3571^(9/17) 2971214949371117 a001 4052739537881/103682*3571^(9/17) 2971214949607185 a001 3536736619241/90481*3571^(9/17) 2971214949753083 a001 6557470319842/167761*3571^(9/17) 2971214950008132 a001 12422649705984/4181 2971214950368746 a001 956722026041/15127*3571^(8/17) 2971214950371117 a001 2504730781961/64079*3571^(9/17) 2971214951315743 s002 sum(A054843[n]/(2^n-1),n=1..infinity) 2971214951797298 a001 2971215073/5778*9349^(18/19) 2971214953586462 a001 267084832/321*9349^(17/19) 2971214954607185 a001 956722026041/24476*3571^(9/17) 2971214955375626 a001 7778742049/5778*9349^(16/19) 2971214956229962 a001 139583862445/9349*3571^(11/17) 2971214956590586 a001 3278735159921/2889*3571^(2/17) 2971214957164790 a001 12586269025/5778*9349^(15/19) 2971214958625075 a001 12586269025/2207*2207^(13/16) 2971214958953954 a001 10182505537/2889*9349^(14/19) 2971214960743118 a001 10983760033/1926*9349^(13/19) 2971214961458915 a001 2504730781961/39603*3571^(8/17) 2971214962532282 a001 53316291173/5778*9349^(12/19) 2971214963076949 a001 3278735159921/51841*3571^(8/17) 2971214963458915 a001 10610209857723/167761*3571^(8/17) 2971214964074578 a001 1548008755920/15127*3571^(7/17) 2971214964076949 a001 4052739537881/64079*3571^(8/17) 2971214964321446 a001 43133785636/2889*9349^(11/19) 2971214964688103 m001 FeigenbaumAlpha*(2^(1/3)+gamma(1)) 2971214966110610 a001 139583862445/5778*9349^(10/19) 2971214966976976 a007 Real Root Of 265*x^4-425*x^3-306*x^2-242*x+108 2971214967899774 a001 75283811239/1926*9349^(9/19) 2971214968313017 a001 387002188980/6119*3571^(8/17) 2971214969688938 a001 182717648081/2889*9349^(8/19) 2971214969935794 a001 225851433717/9349*3571^(10/17) 2971214969975415 r009 Re(z^3+c),c=-23/66+8/33*I,n=11 2971214970296417 a001 3536736619241/1926*3571^(1/17) 2971214971017650 a001 2584/15127*14662949395604^(7/9) 2971214971017650 a001 2584/15127*(1/2+1/2*5^(1/2))^49 2971214971017650 a001 2584/15127*505019158607^(7/8) 2971214971017653 a001 2255/1926*45537549124^(15/17) 2971214971017653 a001 2255/1926*312119004989^(9/11) 2971214971017653 a001 2255/1926*14662949395604^(5/7) 2971214971017653 a001 2255/1926*(1/2+1/2*5^(1/2))^45 2971214971017653 a001 2255/1926*192900153618^(5/6) 2971214971017653 a001 2255/1926*28143753123^(9/10) 2971214971017653 a001 2255/1926*10749957122^(15/16) 2971214971478102 a001 591286729879/5778*9349^(7/19) 2971214973267265 a001 956722026041/5778*9349^(6/19) 2971214973374352 r005 Im(z^2+c),c=-31/110+23/54*I,n=9 2971214975056429 a001 86000486440/321*9349^(5/19) 2971214975164747 a001 4052739537881/39603*3571^(7/17) 2971214976782781 a001 225749145909/2206*3571^(7/17) 2971214976845593 a001 2504730781961/5778*9349^(4/19) 2971214977780410 a001 2504730781961/15127*3571^(6/17) 2971214977782781 a001 6557470319842/64079*3571^(7/17) 2971214978634757 a001 4052739537881/5778*9349^(3/19) 2971214979042572 a001 16261459580300/5473 2971214979278750 a001 567451585/2889*24476^(20/21) 2971214979514925 a001 1836311903/5778*24476^(19/21) 2971214979751100 a001 2971215073/5778*24476^(6/7) 2971214979987275 a001 267084832/321*24476^(17/21) 2971214980223450 a001 7778742049/5778*24476^(16/21) 2971214980423921 a001 3278735159921/2889*9349^(2/19) 2971214980459625 a001 12586269025/5778*24476^(5/7) 2971214980695800 a001 10182505537/2889*24476^(2/3) 2971214980931975 a001 10983760033/1926*24476^(13/21) 2971214981168150 a001 53316291173/5778*24476^(4/7) 2971214981404325 a001 43133785636/2889*24476^(11/21) 2971214981640500 a001 139583862445/5778*24476^(10/21) 2971214981755766 r005 Im(z^2+c),c=-41/106+13/24*I,n=57 2971214981876675 a001 75283811239/1926*24476^(3/7) 2971214982018849 a001 2504730781961/24476*3571^(7/17) 2971214982107820 a001 2584/39603*14662949395604^(17/21) 2971214982107820 a001 2584/39603*(1/2+1/2*5^(1/2))^51 2971214982107820 a001 2584/39603*192900153618^(17/18) 2971214982107822 a001 17711/5778*(1/2+1/2*5^(1/2))^43 2971214982112850 a001 182717648081/2889*24476^(8/21) 2971214982213085 a001 3536736619241/1926*9349^(1/19) 2971214982349025 a001 591286729879/5778*24476^(1/3) 2971214982585200 a001 956722026041/5778*24476^(2/7) 2971214982821375 a001 86000486440/321*24476^(5/21) 2971214983057549 a001 2504730781961/5778*24476^(4/21) 2971214983278640 a001 85146107775816/28657 2971214983293724 a001 4052739537881/5778*24476^(1/7) 2971214983310104 a001 433494437/5778*64079^(22/23) 2971214983341565 a001 233802911/1926*64079^(21/23) 2971214983373026 a001 567451585/2889*64079^(20/23) 2971214983404487 a001 1836311903/5778*64079^(19/23) 2971214983435948 a001 2971215073/5778*64079^(18/23) 2971214983467410 a001 267084832/321*64079^(17/23) 2971214983498871 a001 7778742049/5778*64079^(16/23) 2971214983529899 a001 3278735159921/2889*24476^(2/21) 2971214983530332 a001 12586269025/5778*64079^(15/23) 2971214983561793 a001 10182505537/2889*64079^(14/23) 2971214983593254 a001 10983760033/1926*64079^(13/23) 2971214983624715 a001 53316291173/5778*64079^(12/23) 2971214983641626 a001 365435296162/9349*3571^(9/17) 2971214983656177 a001 43133785636/2889*64079^(11/23) 2971214983687638 a001 139583862445/5778*64079^(10/23) 2971214983719099 a001 75283811239/1926*64079^(9/23) 2971214983725854 a001 1292/51841*(1/2+1/2*5^(1/2))^53 2971214983725856 a001 2576/321*(1/2+1/2*5^(1/2))^41 2971214983750560 a001 182717648081/2889*64079^(8/23) 2971214983766074 a001 3536736619241/1926*24476^(1/21) 2971214983782021 a001 591286729879/5778*64079^(7/23) 2971214983813482 a001 956722026041/5778*64079^(6/23) 2971214983844944 a001 86000486440/321*64079^(5/23) 2971214983876405 a001 2504730781961/5778*64079^(4/23) 2971214983896674 a001 222915404166848/75025 2971214983907866 a001 4052739537881/5778*64079^(3/23) 2971214983917791 a001 567451585/2889*167761^(4/5) 2971214983938906 a001 12586269025/5778*167761^(3/5) 2971214983939327 a001 3278735159921/2889*64079^(2/23) 2971214983960020 a001 139583862445/5778*167761^(2/5) 2971214983961922 a001 2584/271443*(1/2+1/2*5^(1/2))^55 2971214983961922 a001 2584/271443*3461452808002^(11/12) 2971214983961924 a001 121393/5778*2537720636^(13/15) 2971214983961924 a001 121393/5778*45537549124^(13/17) 2971214983961924 a001 121393/5778*14662949395604^(13/21) 2971214983961924 a001 121393/5778*(1/2+1/2*5^(1/2))^39 2971214983961924 a001 121393/5778*192900153618^(13/18) 2971214983961924 a001 121393/5778*73681302247^(3/4) 2971214983961924 a001 121393/5778*10749957122^(13/16) 2971214983961924 a001 121393/5778*599074578^(13/14) 2971214983970788 a001 3536736619241/1926*64079^(1/23) 2971214983981135 a001 86000486440/321*167761^(1/5) 2971214983986844 a001 17164708962492/5777 2971214983988558 a001 165580141/5778*439204^(8/9) 2971214983990269 a001 233802911/1926*439204^(7/9) 2971214983991981 a001 2971215073/5778*439204^(2/3) 2971214983993692 a001 12586269025/5778*439204^(5/9) 2971214983995404 a001 53316291173/5778*439204^(4/9) 2971214983996363 a001 2584/710647*14662949395604^(19/21) 2971214983996363 a001 2584/710647*(1/2+1/2*5^(1/2))^57 2971214983996366 a001 105937/1926*(1/2+1/2*5^(1/2))^37 2971214983997115 a001 75283811239/1926*439204^(1/3) 2971214983998827 a001 956722026041/5778*439204^(2/9) 2971214984000538 a001 4052739537881/5778*439204^(1/9) 2971214984001388 a001 1292/930249*(1/2+1/2*5^(1/2))^59 2971214984001391 a001 416020/2889*2537720636^(7/9) 2971214984001391 a001 416020/2889*17393796001^(5/7) 2971214984001391 a001 416020/2889*312119004989^(7/11) 2971214984001391 a001 416020/2889*14662949395604^(5/9) 2971214984001391 a001 416020/2889*(1/2+1/2*5^(1/2))^35 2971214984001391 a001 416020/2889*505019158607^(5/8) 2971214984001391 a001 416020/2889*28143753123^(7/10) 2971214984001391 a001 416020/2889*599074578^(5/6) 2971214984001391 a001 416020/2889*228826127^(7/8) 2971214984001919 a001 4000054625297280/1346269 2971214984002122 a001 2584/4870847*(1/2+1/2*5^(1/2))^61 2971214984002124 a001 726103/1926*141422324^(11/13) 2971214984002124 a001 726103/1926*2537720636^(11/15) 2971214984002124 a001 726103/1926*45537549124^(11/17) 2971214984002124 a001 726103/1926*312119004989^(3/5) 2971214984002124 a001 726103/1926*817138163596^(11/19) 2971214984002124 a001 726103/1926*14662949395604^(11/21) 2971214984002124 a001 726103/1926*(1/2+1/2*5^(1/2))^33 2971214984002124 a001 726103/1926*192900153618^(11/18) 2971214984002124 a001 726103/1926*10749957122^(11/16) 2971214984002124 a001 726103/1926*1568397607^(3/4) 2971214984002124 a001 726103/1926*599074578^(11/14) 2971214984002127 a001 726103/1926*33385282^(11/12) 2971214984002199 a001 5236139482942252/1762289 2971214984002210 a001 39088169/5778*7881196^(9/11) 2971214984002213 a001 9227465/5778*7881196^(10/11) 2971214984002215 a001 165580141/5778*7881196^(8/11) 2971214984002218 a001 433494437/5778*7881196^(2/3) 2971214984002219 a001 233802911/1926*7881196^(7/11) 2971214984002223 a001 2971215073/5778*7881196^(6/11) 2971214984002228 a001 12586269025/5778*7881196^(5/11) 2971214984002228 a001 2584/12752043*(1/2+1/2*5^(1/2))^63 2971214984002231 a001 5702887/5778*(1/2+1/2*5^(1/2))^31 2971214984002231 a001 5702887/5778*9062201101803^(1/2) 2971214984002232 a001 53316291173/5778*7881196^(4/11) 2971214984002233 a001 43133785636/2889*7881196^(1/3) 2971214984002236 a001 75283811239/1926*7881196^(3/11) 2971214984002240 a001 27416782272356232/9227465 2971214984002241 a001 956722026041/5778*7881196^(2/11) 2971214984002244 a001 34111385/1926*20633239^(5/7) 2971214984002245 a001 24157817/5778*20633239^(4/5) 2971214984002245 a001 4052739537881/5778*7881196^(1/11) 2971214984002245 a001 233802911/1926*20633239^(3/5) 2971214984002245 a001 567451585/2889*20633239^(4/7) 2971214984002246 a001 12586269025/5778*20633239^(3/7) 2971214984002247 a001 10182505537/2889*20633239^(2/5) 2971214984002247 a001 2584*(1/2+1/2*5^(1/2))^29 2971214984002247 a001 2584*1322157322203^(1/2) 2971214984002247 a001 139583862445/5778*20633239^(2/7) 2971214984002248 a001 591286729879/5778*20633239^(1/5) 2971214984002248 a001 86000486440/321*20633239^(1/7) 2971214984002249 a001 39088169/5778*141422324^(9/13) 2971214984002249 a001 39088169/5778*2537720636^(3/5) 2971214984002249 a001 39088169/5778*45537549124^(9/17) 2971214984002249 a001 39088169/5778*14662949395604^(3/7) 2971214984002249 a001 39088169/5778*(1/2+1/2*5^(1/2))^27 2971214984002249 a001 39088169/5778*192900153618^(1/2) 2971214984002249 a001 39088169/5778*10749957122^(9/16) 2971214984002249 a001 39088169/5778*599074578^(9/14) 2971214984002249 a001 233802911/1926*141422324^(7/13) 2971214984002249 a001 165580141/5778*141422324^(8/13) 2971214984002249 a001 2971215073/5778*141422324^(6/13) 2971214984002249 a001 12586269025/5778*141422324^(5/13) 2971214984002249 a001 34111385/1926*2537720636^(5/9) 2971214984002249 a001 34111385/1926*312119004989^(5/11) 2971214984002249 a001 34111385/1926*(1/2+1/2*5^(1/2))^25 2971214984002249 a001 34111385/1926*3461452808002^(5/12) 2971214984002249 a001 34111385/1926*28143753123^(1/2) 2971214984002249 a001 10983760033/1926*141422324^(1/3) 2971214984002249 a001 53316291173/5778*141422324^(4/13) 2971214984002249 a001 75283811239/1926*141422324^(3/13) 2971214984002249 a001 956722026041/5778*141422324^(2/13) 2971214984002249 a001 34111385/1926*228826127^(5/8) 2971214984002249 a001 4052739537881/5778*141422324^(1/13) 2971214984002249 a001 133957148/2889*(1/2+1/2*5^(1/2))^23 2971214984002249 a001 133957148/2889*4106118243^(1/2) 2971214984002249 a001 233802911/1926*2537720636^(7/15) 2971214984002249 a001 233802911/1926*17393796001^(3/7) 2971214984002249 a001 233802911/1926*45537549124^(7/17) 2971214984002249 a001 233802911/1926*14662949395604^(1/3) 2971214984002249 a001 233802911/1926*(1/2+1/2*5^(1/2))^21 2971214984002249 a001 233802911/1926*192900153618^(7/18) 2971214984002249 a001 233802911/1926*10749957122^(7/16) 2971214984002249 a001 1836311903/5778*817138163596^(1/3) 2971214984002249 a001 1836311903/5778*(1/2+1/2*5^(1/2))^19 2971214984002249 a001 12586269025/5778*2537720636^(1/3) 2971214984002249 a001 53316291173/5778*2537720636^(4/15) 2971214984002249 a001 2971215073/5778*2537720636^(2/5) 2971214984002249 a001 139583862445/5778*2537720636^(2/9) 2971214984002249 a001 75283811239/1926*2537720636^(1/5) 2971214984002249 a001 956722026041/5778*2537720636^(2/15) 2971214984002249 a001 86000486440/321*2537720636^(1/9) 2971214984002249 a001 4052739537881/5778*2537720636^(1/15) 2971214984002249 a001 267084832/321*45537549124^(1/3) 2971214984002249 a001 267084832/321*(1/2+1/2*5^(1/2))^17 2971214984002249 a001 12586269025/5778*45537549124^(5/17) 2971214984002249 a001 12586269025/5778*312119004989^(3/11) 2971214984002249 a001 12586269025/5778*14662949395604^(5/21) 2971214984002249 a001 12586269025/5778*(1/2+1/2*5^(1/2))^15 2971214984002249 a001 12586269025/5778*192900153618^(5/18) 2971214984002249 a001 12586269025/5778*28143753123^(3/10) 2971214984002249 a001 591286729879/5778*17393796001^(1/7) 2971214984002249 a001 10182505537/2889*17393796001^(2/7) 2971214984002249 a001 10983760033/1926*(1/2+1/2*5^(1/2))^13 2971214984002249 a001 10983760033/1926*73681302247^(1/4) 2971214984002249 a001 75283811239/1926*45537549124^(3/17) 2971214984002249 a001 956722026041/5778*45537549124^(2/17) 2971214984002249 a001 53316291173/5778*45537549124^(4/17) 2971214984002249 a001 43133785636/2889*312119004989^(1/5) 2971214984002249 a001 4052739537881/5778*45537549124^(1/17) 2971214984002249 a001 43133785636/2889*(1/2+1/2*5^(1/2))^11 2971214984002249 a001 75283811239/1926*(1/2+1/2*5^(1/2))^9 2971214984002249 a001 86000486440/321*(1/2+1/2*5^(1/2))^5 2971214984002249 a001 4052739537881/5778*14662949395604^(1/21) 2971214984002249 a001 3536736619241/3852+3536736619241/3852*5^(1/2) 2971214984002249 a001 3278735159921/2889*(1/2+1/2*5^(1/2))^2 2971214984002249 a001 2504730781961/5778*(1/2+1/2*5^(1/2))^4 2971214984002249 a001 182717648081/2889*23725150497407^(1/8) 2971214984002249 a001 182717648081/2889*505019158607^(1/7) 2971214984002249 a001 139583862445/5778*312119004989^(2/11) 2971214984002249 a001 139583862445/5778*(1/2+1/2*5^(1/2))^10 2971214984002249 a001 2504730781961/5778*73681302247^(1/13) 2971214984002249 a001 182717648081/2889*73681302247^(2/13) 2971214984002249 a001 53316291173/5778*817138163596^(4/19) 2971214984002249 a001 53316291173/5778*14662949395604^(4/21) 2971214984002249 a001 53316291173/5778*(1/2+1/2*5^(1/2))^12 2971214984002249 a001 53316291173/5778*192900153618^(2/9) 2971214984002249 a001 53316291173/5778*73681302247^(3/13) 2971214984002249 a001 86000486440/321*28143753123^(1/10) 2971214984002249 a001 139583862445/5778*28143753123^(1/5) 2971214984002249 a001 3278735159921/2889*10749957122^(1/24) 2971214984002249 a001 10182505537/2889*14662949395604^(2/9) 2971214984002249 a001 10182505537/2889*(1/2+1/2*5^(1/2))^14 2971214984002249 a001 4052739537881/5778*10749957122^(1/16) 2971214984002249 a001 2504730781961/5778*10749957122^(1/12) 2971214984002249 a001 956722026041/5778*10749957122^(1/8) 2971214984002249 a001 12586269025/5778*10749957122^(5/16) 2971214984002249 a001 75283811239/1926*10749957122^(3/16) 2971214984002249 a001 139583862445/5778*10749957122^(5/24) 2971214984002249 a001 53316291173/5778*10749957122^(1/4) 2971214984002249 a001 3278735159921/2889*4106118243^(1/23) 2971214984002249 a001 10182505537/2889*10749957122^(7/24) 2971214984002249 a001 7778742049/5778*(1/2+1/2*5^(1/2))^16 2971214984002249 a001 7778742049/5778*23725150497407^(1/4) 2971214984002249 a001 7778742049/5778*73681302247^(4/13) 2971214984002249 a001 2504730781961/5778*4106118243^(2/23) 2971214984002249 a001 7778742049/5778*10749957122^(1/3) 2971214984002249 a001 956722026041/5778*4106118243^(3/23) 2971214984002249 a001 182717648081/2889*4106118243^(4/23) 2971214984002249 a001 139583862445/5778*4106118243^(5/23) 2971214984002249 a001 53316291173/5778*4106118243^(6/23) 2971214984002249 a001 3278735159921/2889*1568397607^(1/22) 2971214984002249 a001 10182505537/2889*4106118243^(7/23) 2971214984002249 a001 2971215073/5778*45537549124^(6/17) 2971214984002249 a001 2971215073/5778*14662949395604^(2/7) 2971214984002249 a001 2971215073/5778*(1/2+1/2*5^(1/2))^18 2971214984002249 a001 2971215073/5778*192900153618^(1/3) 2971214984002249 a001 7778742049/5778*4106118243^(8/23) 2971214984002249 a001 2971215073/5778*10749957122^(3/8) 2971214984002249 a001 2504730781961/5778*1568397607^(1/11) 2971214984002249 a001 2971215073/5778*4106118243^(9/23) 2971214984002249 a001 956722026041/5778*1568397607^(3/22) 2971214984002249 a001 182717648081/2889*1568397607^(2/11) 2971214984002249 a001 567451585/2889*2537720636^(4/9) 2971214984002249 a001 139583862445/5778*1568397607^(5/22) 2971214984002249 a001 43133785636/2889*1568397607^(1/4) 2971214984002249 a001 53316291173/5778*1568397607^(3/11) 2971214984002249 a001 10182505537/2889*1568397607^(7/22) 2971214984002249 a001 3278735159921/2889*599074578^(1/21) 2971214984002249 a001 7778742049/5778*1568397607^(4/11) 2971214984002249 a001 567451585/2889*(1/2+1/2*5^(1/2))^20 2971214984002249 a001 567451585/2889*23725150497407^(5/16) 2971214984002249 a001 567451585/2889*505019158607^(5/14) 2971214984002249 a001 567451585/2889*73681302247^(5/13) 2971214984002249 a001 567451585/2889*28143753123^(2/5) 2971214984002249 a001 567451585/2889*10749957122^(5/12) 2971214984002249 a001 567451585/2889*4106118243^(10/23) 2971214984002249 a001 2971215073/5778*1568397607^(9/22) 2971214984002249 a001 4052739537881/5778*599074578^(1/14) 2971214984002249 a001 2504730781961/5778*599074578^(2/21) 2971214984002249 a001 567451585/2889*1568397607^(5/11) 2971214984002249 a001 956722026041/5778*599074578^(1/7) 2971214984002249 a001 591286729879/5778*599074578^(1/6) 2971214984002249 a001 182717648081/2889*599074578^(4/21) 2971214984002249 a001 75283811239/1926*599074578^(3/14) 2971214984002249 a001 139583862445/5778*599074578^(5/21) 2971214984002249 a001 53316291173/5778*599074578^(2/7) 2971214984002249 a001 10182505537/2889*599074578^(1/3) 2971214984002249 a001 3278735159921/2889*228826127^(1/20) 2971214984002249 a001 233802911/1926*599074578^(1/2) 2971214984002249 a001 12586269025/5778*599074578^(5/14) 2971214984002249 a001 433494437/5778*312119004989^(2/5) 2971214984002249 a001 433494437/5778*(1/2+1/2*5^(1/2))^22 2971214984002249 a001 7778742049/5778*599074578^(8/21) 2971214984002249 a001 433494437/5778*10749957122^(11/24) 2971214984002249 a001 433494437/5778*4106118243^(11/23) 2971214984002249 a001 2971215073/5778*599074578^(3/7) 2971214984002249 a001 433494437/5778*1568397607^(1/2) 2971214984002249 a001 567451585/2889*599074578^(10/21) 2971214984002249 a001 2504730781961/5778*228826127^(1/10) 2971214984002249 a001 86000486440/321*228826127^(1/8) 2971214984002249 a001 433494437/5778*599074578^(11/21) 2971214984002249 a001 956722026041/5778*228826127^(3/20) 2971214984002249 a001 182717648081/2889*228826127^(1/5) 2971214984002249 a001 139583862445/5778*228826127^(1/4) 2971214984002249 a001 53316291173/5778*228826127^(3/10) 2971214984002249 a001 10182505537/2889*228826127^(7/20) 2971214984002249 a001 3278735159921/2889*87403803^(1/19) 2971214984002249 a001 12586269025/5778*228826127^(3/8) 2971214984002249 a001 165580141/5778*2537720636^(8/15) 2971214984002249 a001 165580141/5778*45537549124^(8/17) 2971214984002249 a001 165580141/5778*14662949395604^(8/21) 2971214984002249 a001 165580141/5778*(1/2+1/2*5^(1/2))^24 2971214984002249 a001 165580141/5778*192900153618^(4/9) 2971214984002249 a001 165580141/5778*73681302247^(6/13) 2971214984002249 a001 165580141/5778*10749957122^(1/2) 2971214984002249 a001 165580141/5778*4106118243^(12/23) 2971214984002249 a001 165580141/5778*1568397607^(6/11) 2971214984002249 a001 7778742049/5778*228826127^(2/5) 2971214984002249 a001 2971215073/5778*228826127^(9/20) 2971214984002249 a001 165580141/5778*599074578^(4/7) 2971214984002249 a001 567451585/2889*228826127^(1/2) 2971214984002249 a001 433494437/5778*228826127^(11/20) 2971214984002249 a001 2504730781961/5778*87403803^(2/19) 2971214984002249 a001 31622993/2889*141422324^(2/3) 2971214984002249 a001 165580141/5778*228826127^(3/5) 2971214984002249 a001 956722026041/5778*87403803^(3/19) 2971214984002249 a001 182717648081/2889*87403803^(4/19) 2971214984002250 a001 139583862445/5778*87403803^(5/19) 2971214984002250 a001 53316291173/5778*87403803^(6/19) 2971214984002250 a001 10182505537/2889*87403803^(7/19) 2971214984002250 a001 3278735159921/2889*33385282^(1/18) 2971214984002250 a001 31622993/2889*(1/2+1/2*5^(1/2))^26 2971214984002250 a001 31622993/2889*73681302247^(1/2) 2971214984002250 a001 31622993/2889*10749957122^(13/24) 2971214984002250 a001 31622993/2889*4106118243^(13/23) 2971214984002250 a001 31622993/2889*1568397607^(13/22) 2971214984002250 a001 31622993/2889*599074578^(13/21) 2971214984002250 a001 7778742049/5778*87403803^(8/19) 2971214984002250 a001 2971215073/5778*87403803^(9/19) 2971214984002250 a001 31622993/2889*228826127^(13/20) 2971214984002250 a001 1836311903/5778*87403803^(1/2) 2971214984002250 a001 567451585/2889*87403803^(10/19) 2971214984002250 a001 4052739537881/5778*33385282^(1/12) 2971214984002250 a001 433494437/5778*87403803^(11/19) 2971214984002250 a001 165580141/5778*87403803^(12/19) 2971214984002250 a001 2504730781961/5778*33385282^(1/9) 2971214984002250 a001 31622993/2889*87403803^(13/19) 2971214984002250 a001 956722026041/5778*33385282^(1/6) 2971214984002250 a001 182717648081/2889*33385282^(2/9) 2971214984002250 a001 75283811239/1926*33385282^(1/4) 2971214984002250 a001 139583862445/5778*33385282^(5/18) 2971214984002250 a001 53316291173/5778*33385282^(1/3) 2971214984002250 a001 9227465/5778*20633239^(6/7) 2971214984002250 a001 24157817/5778*17393796001^(4/7) 2971214984002250 a001 24157817/5778*14662949395604^(4/9) 2971214984002250 a001 24157817/5778*(1/2+1/2*5^(1/2))^28 2971214984002250 a001 24157817/5778*73681302247^(7/13) 2971214984002250 a001 24157817/5778*10749957122^(7/12) 2971214984002250 a001 24157817/5778*4106118243^(14/23) 2971214984002250 a001 24157817/5778*1568397607^(7/11) 2971214984002250 a001 24157817/5778*599074578^(2/3) 2971214984002250 a001 10182505537/2889*33385282^(7/18) 2971214984002250 a001 24157817/5778*228826127^(7/10) 2971214984002250 a001 3278735159921/2889*12752043^(1/17) 2971214984002251 a001 12586269025/5778*33385282^(5/12) 2971214984002251 a001 7778742049/5778*33385282^(4/9) 2971214984002251 a001 24157817/5778*87403803^(14/19) 2971214984002251 a001 2971215073/5778*33385282^(1/2) 2971214984002251 a001 567451585/2889*33385282^(5/9) 2971214984002251 a001 233802911/1926*33385282^(7/12) 2971214984002251 a001 39088169/5778*33385282^(3/4) 2971214984002251 a001 433494437/5778*33385282^(11/18) 2971214984002251 a001 165580141/5778*33385282^(2/3) 2971214984002251 a001 31622993/2889*33385282^(13/18) 2971214984002252 a001 2504730781961/5778*12752043^(2/17) 2971214984002253 a001 24157817/5778*33385282^(7/9) 2971214984002253 a001 956722026041/5778*12752043^(3/17) 2971214984002254 a001 182717648081/2889*12752043^(4/17) 2971214984002254 a001 2584/20633239*(1/2+1/2*5^(1/2))^64 2971214984002255 a001 139583862445/5778*12752043^(5/17) 2971214984002256 a001 53316291173/5778*12752043^(6/17) 2971214984002256 a001 9227465/5778*141422324^(10/13) 2971214984002256 a001 9227465/5778*2537720636^(2/3) 2971214984002256 a001 9227465/5778*45537549124^(10/17) 2971214984002256 a001 9227465/5778*312119004989^(6/11) 2971214984002256 a001 9227465/5778*14662949395604^(10/21) 2971214984002256 a001 9227465/5778*(1/2+1/2*5^(1/2))^30 2971214984002256 a001 9227465/5778*192900153618^(5/9) 2971214984002256 a001 9227465/5778*28143753123^(3/5) 2971214984002256 a001 9227465/5778*10749957122^(5/8) 2971214984002256 a001 9227465/5778*4106118243^(15/23) 2971214984002256 a001 9227465/5778*1568397607^(15/22) 2971214984002256 a001 9227465/5778*599074578^(5/7) 2971214984002256 a001 9227465/5778*228826127^(3/4) 2971214984002257 a001 9227465/5778*87403803^(15/19) 2971214984002257 a001 10182505537/2889*12752043^(7/17) 2971214984002257 a001 3278735159921/2889*4870847^(1/16) 2971214984002258 a001 7778742049/5778*12752043^(8/17) 2971214984002259 a001 267084832/321*12752043^(1/2) 2971214984002259 a001 9227465/5778*33385282^(5/6) 2971214984002259 a001 2971215073/5778*12752043^(9/17) 2971214984002260 a001 567451585/2889*12752043^(10/17) 2971214984002261 a001 433494437/5778*12752043^(11/17) 2971214984002262 a001 165580141/5778*12752043^(12/17) 2971214984002264 a001 31622993/2889*12752043^(13/17) 2971214984002265 a001 16944503306471728/5702887 2971214984002265 a001 2504730781961/5778*4870847^(1/8) 2971214984002265 a001 24157817/5778*12752043^(14/17) 2971214984002273 a001 9227465/5778*12752043^(15/17) 2971214984002273 a001 956722026041/5778*4870847^(3/16) 2971214984002281 a001 182717648081/2889*4870847^(1/4) 2971214984002289 a001 139583862445/5778*4870847^(5/16) 2971214984002295 a001 646/1970299*(1/2+1/2*5^(1/2))^62 2971214984002296 a001 53316291173/5778*4870847^(3/8) 2971214984002297 a001 1762289/2889*(1/2+1/2*5^(1/2))^32 2971214984002297 a001 1762289/2889*23725150497407^(1/2) 2971214984002297 a001 1762289/2889*505019158607^(4/7) 2971214984002297 a001 1762289/2889*73681302247^(8/13) 2971214984002297 a001 1762289/2889*10749957122^(2/3) 2971214984002297 a001 1762289/2889*4106118243^(16/23) 2971214984002297 a001 1762289/2889*1568397607^(8/11) 2971214984002297 a001 1762289/2889*599074578^(16/21) 2971214984002297 a001 1762289/2889*228826127^(4/5) 2971214984002298 a001 1762289/2889*87403803^(16/19) 2971214984002300 a001 1762289/2889*33385282^(8/9) 2971214984002304 a001 10182505537/2889*4870847^(7/16) 2971214984002307 a001 3278735159921/2889*1860498^(1/15) 2971214984002312 a001 7778742049/5778*4870847^(1/2) 2971214984002314 a001 1762289/2889*12752043^(16/17) 2971214984002320 a001 2971215073/5778*4870847^(9/16) 2971214984002328 a001 567451585/2889*4870847^(5/8) 2971214984002335 a001 4052739537881/5778*1860498^(1/10) 2971214984002336 a001 433494437/5778*4870847^(11/16) 2971214984002343 a001 165580141/5778*4870847^(3/4) 2971214984002351 a001 31622993/2889*4870847^(13/16) 2971214984002360 a001 24157817/5778*4870847^(7/8) 2971214984002364 a001 2504730781961/5778*1860498^(2/15) 2971214984002372 a001 6472224340587224/2178309 2971214984002374 a001 9227465/5778*4870847^(15/16) 2971214984002392 a001 86000486440/321*1860498^(1/6) 2971214984002421 a001 956722026041/5778*1860498^(1/5) 2971214984002478 a001 182717648081/2889*1860498^(4/15) 2971214984002507 a001 75283811239/1926*1860498^(3/10) 2971214984002536 a001 139583862445/5778*1860498^(1/3) 2971214984002575 a001 2584/3010349*14662949395604^(20/21) 2971214984002575 a001 2584/3010349*(1/2+1/2*5^(1/2))^60 2971214984002577 a001 1346269/5778*45537549124^(2/3) 2971214984002577 a001 1346269/5778*(1/2+1/2*5^(1/2))^34 2971214984002577 a001 1346269/5778*10749957122^(17/24) 2971214984002577 a001 1346269/5778*4106118243^(17/23) 2971214984002577 a001 1346269/5778*1568397607^(17/22) 2971214984002577 a001 1346269/5778*599074578^(17/21) 2971214984002577 a001 1346269/5778*228826127^(17/20) 2971214984002578 a001 1346269/5778*87403803^(17/19) 2971214984002580 a001 1346269/5778*33385282^(17/18) 2971214984002593 a001 53316291173/5778*1860498^(2/5) 2971214984002650 a001 10182505537/2889*1860498^(7/15) 2971214984002670 a001 3278735159921/2889*710647^(1/14) 2971214984002679 a001 12586269025/5778*1860498^(1/2) 2971214984002707 a001 7778742049/5778*1860498^(8/15) 2971214984002764 a001 2971215073/5778*1860498^(3/5) 2971214984002822 a001 567451585/2889*1860498^(2/3) 2971214984002850 a001 233802911/1926*1860498^(7/10) 2971214984002879 a001 433494437/5778*1860498^(11/15) 2971214984002936 a001 165580141/5778*1860498^(4/5) 2971214984002965 a001 34111385/1926*1860498^(5/6) 2971214984002993 a001 31622993/2889*1860498^(13/15) 2971214984003022 a001 39088169/5778*1860498^(9/10) 2971214984003052 a001 24157817/5778*1860498^(14/15) 2971214984003090 a001 2504730781961/5778*710647^(1/7) 2971214984003105 a001 309021214411243/104005 2971214984003510 a001 956722026041/5778*710647^(3/14) 2971214984003720 a001 591286729879/5778*710647^(1/4) 2971214984003930 a001 182717648081/2889*710647^(2/7) 2971214984004351 a001 139583862445/5778*710647^(5/14) 2971214984004494 a001 2584/1149851*(1/2+1/2*5^(1/2))^58 2971214984004497 a001 514229/5778*141422324^(12/13) 2971214984004497 a001 514229/5778*2537720636^(4/5) 2971214984004497 a001 514229/5778*45537549124^(12/17) 2971214984004497 a001 514229/5778*14662949395604^(4/7) 2971214984004497 a001 514229/5778*(1/2+1/2*5^(1/2))^36 2971214984004497 a001 514229/5778*505019158607^(9/14) 2971214984004497 a001 514229/5778*192900153618^(2/3) 2971214984004497 a001 514229/5778*73681302247^(9/13) 2971214984004497 a001 514229/5778*10749957122^(3/4) 2971214984004497 a001 514229/5778*4106118243^(18/23) 2971214984004497 a001 514229/5778*1568397607^(9/11) 2971214984004497 a001 514229/5778*599074578^(6/7) 2971214984004497 a001 514229/5778*228826127^(9/10) 2971214984004497 a001 514229/5778*87403803^(18/19) 2971214984004771 a001 53316291173/5778*710647^(3/7) 2971214984005191 a001 10182505537/2889*710647^(1/2) 2971214984005351 a001 3278735159921/2889*271443^(1/13) 2971214984005611 a001 7778742049/5778*710647^(4/7) 2971214984006032 a001 2971215073/5778*710647^(9/14) 2971214984006452 a001 567451585/2889*710647^(5/7) 2971214984006662 a001 233802911/1926*710647^(3/4) 2971214984006872 a001 433494437/5778*710647^(11/14) 2971214984007292 a001 165580141/5778*710647^(6/7) 2971214984007713 a001 31622993/2889*710647^(13/14) 2971214984008130 a001 944284805282608/317811 2971214984008453 a001 2504730781961/5778*271443^(2/13) 2971214984011555 a001 956722026041/5778*271443^(3/13) 2971214984013766 a001 3536736619241/1926*103682^(1/24) 2971214984014657 a001 182717648081/2889*271443^(4/13) 2971214984017650 a001 34/5779*14662949395604^(8/9) 2971214984017650 a001 34/5779*(1/2+1/2*5^(1/2))^56 2971214984017652 a001 98209/2889*817138163596^(2/3) 2971214984017652 a001 98209/2889*(1/2+1/2*5^(1/2))^38 2971214984017652 a001 98209/2889*10749957122^(19/24) 2971214984017652 a001 98209/2889*4106118243^(19/23) 2971214984017652 a001 98209/2889*1568397607^(19/22) 2971214984017652 a001 98209/2889*599074578^(19/21) 2971214984017652 a001 98209/2889*228826127^(19/20) 2971214984017759 a001 139583862445/5778*271443^(5/13) 2971214984020861 a001 53316291173/5778*271443^(6/13) 2971214984022412 a001 10983760033/1926*271443^(1/2) 2971214984023963 a001 10182505537/2889*271443^(7/13) 2971214984025282 a001 3278735159921/2889*103682^(1/12) 2971214984027065 a001 7778742049/5778*271443^(8/13) 2971214984030167 a001 2971215073/5778*271443^(9/13) 2971214984033269 a001 567451585/2889*271443^(10/13) 2971214984036371 a001 433494437/5778*271443^(11/13) 2971214984036799 a001 4052739537881/5778*103682^(1/8) 2971214984039473 a001 165580141/5778*271443^(12/13) 2971214984042572 a001 360684700557880/121393 2971214984048315 a001 2504730781961/5778*103682^(1/6) 2971214984059831 a001 86000486440/321*103682^(5/24) 2971214984071348 a001 956722026041/5778*103682^(1/4) 2971214984082864 a001 591286729879/5778*103682^(7/24) 2971214984088360 a001 3536736619241/1926*39603^(1/22) 2971214984094380 a001 182717648081/2889*103682^(1/3) 2971214984105897 a001 75283811239/1926*103682^(3/8) 2971214984107820 a001 2584/167761*14662949395604^(6/7) 2971214984107820 a001 2584/167761*(1/2+1/2*5^(1/2))^54 2971214984107822 a001 75025/5778*2537720636^(8/9) 2971214984107822 a001 75025/5778*312119004989^(8/11) 2971214984107822 a001 75025/5778*(1/2+1/2*5^(1/2))^40 2971214984107822 a001 75025/5778*23725150497407^(5/8) 2971214984107822 a001 75025/5778*73681302247^(10/13) 2971214984107822 a001 75025/5778*28143753123^(4/5) 2971214984107822 a001 75025/5778*10749957122^(5/6) 2971214984107822 a001 75025/5778*4106118243^(20/23) 2971214984107822 a001 75025/5778*1568397607^(10/11) 2971214984107822 a001 75025/5778*599074578^(20/21) 2971214984117413 a001 139583862445/5778*103682^(5/12) 2971214984128930 a001 43133785636/2889*103682^(11/24) 2971214984140446 a001 53316291173/5778*103682^(1/2) 2971214984151962 a001 10983760033/1926*103682^(13/24) 2971214984163479 a001 10182505537/2889*103682^(7/12) 2971214984174470 a001 3278735159921/2889*39603^(1/11) 2971214984174995 a001 12586269025/5778*103682^(5/8) 2971214984186512 a001 7778742049/5778*103682^(2/3) 2971214984198028 a001 267084832/321*103682^(17/24) 2971214984209544 a001 2971215073/5778*103682^(3/4) 2971214984221061 a001 1836311903/5778*103682^(19/24) 2971214984232577 a001 567451585/2889*103682^(5/6) 2971214984244093 a001 233802911/1926*103682^(7/8) 2971214984255610 a001 433494437/5778*103682^(11/12) 2971214984260580 a001 4052739537881/5778*39603^(3/22) 2971214984267126 a001 133957148/2889*103682^(23/24) 2971214984278640 a001 17221162048879/5796 2971214984346691 a001 2504730781961/5778*39603^(2/11) 2971214984432801 a001 86000486440/321*39603^(5/22) 2971214984518911 a001 956722026041/5778*39603^(3/11) 2971214984539981 r005 Re(z^2+c),c=-41/110+7/39*I,n=31 2971214984605022 a001 591286729879/5778*39603^(7/22) 2971214984651479 a001 3536736619241/1926*15127^(1/20) 2971214984691132 a001 182717648081/2889*39603^(4/11) 2971214984725854 a001 2584/64079*(1/2+1/2*5^(1/2))^52 2971214984725854 a001 2584/64079*23725150497407^(13/16) 2971214984725854 a001 2584/64079*505019158607^(13/14) 2971214984725856 a001 28657/5778*2537720636^(14/15) 2971214984725856 a001 28657/5778*17393796001^(6/7) 2971214984725856 a001 28657/5778*45537549124^(14/17) 2971214984725856 a001 28657/5778*817138163596^(14/19) 2971214984725856 a001 28657/5778*14662949395604^(2/3) 2971214984725856 a001 28657/5778*(1/2+1/2*5^(1/2))^42 2971214984725856 a001 28657/5778*505019158607^(3/4) 2971214984725856 a001 28657/5778*192900153618^(7/9) 2971214984725856 a001 28657/5778*10749957122^(7/8) 2971214984725856 a001 28657/5778*4106118243^(21/23) 2971214984725856 a001 28657/5778*1568397607^(21/22) 2971214984777242 a001 75283811239/1926*39603^(9/22) 2971214984863353 a001 139583862445/5778*39603^(5/11) 2971214984949463 a001 43133785636/2889*39603^(1/2) 2971214985035573 a001 53316291173/5778*39603^(6/11) 2971214985121684 a001 10983760033/1926*39603^(13/22) 2971214985207794 a001 10182505537/2889*39603^(7/11) 2971214985293904 a001 12586269025/5778*39603^(15/22) 2971214985300709 a001 3278735159921/2889*15127^(1/10) 2971214985380015 a001 7778742049/5778*39603^(8/11) 2971214985433553 a007 Real Root Of 43*x^4-263*x^3-983*x^2+252*x-823 2971214985466125 a001 267084832/321*39603^(17/22) 2971214985552235 a001 2971215073/5778*39603^(9/11) 2971214985638346 a001 1836311903/5778*39603^(19/22) 2971214985724456 a001 567451585/2889*39603^(10/11) 2971214985810566 a001 233802911/1926*39603^(21/22) 2971214985896674 a001 52623188615216/17711 2971214985949939 a001 4052739537881/5778*15127^(3/20) 2971214985997206 a001 1134903780*521^(2/13) 2971214986599091 a001 2504730781961/3571*1364^(1/5) 2971214986599169 a001 2504730781961/5778*15127^(1/5) 2971214987248399 a001 86000486440/321*15127^(1/4) 2971214987897628 a001 956722026041/5778*15127^(3/10) 2971214988546858 a001 591286729879/5778*15127^(7/20) 2971214988870579 a001 6557470319842/39603*3571^(6/17) 2971214988946569 a001 3536736619241/1926*5778^(1/18) 2971214988961921 a001 646/6119*312119004989^(10/11) 2971214988961921 a001 646/6119*(1/2+1/2*5^(1/2))^50 2971214988961921 a001 646/6119*3461452808002^(5/6) 2971214988961924 a001 5473/2889*312119004989^(4/5) 2971214988961924 a001 5473/2889*(1/2+1/2*5^(1/2))^44 2971214988961924 a001 5473/2889*23725150497407^(11/16) 2971214988961924 a001 5473/2889*73681302247^(11/13) 2971214988961924 a001 5473/2889*10749957122^(11/12) 2971214988961924 a001 5473/2889*4106118243^(22/23) 2971214989196088 a001 182717648081/2889*15127^(2/5) 2971214989845318 a001 75283811239/1926*15127^(9/20) 2971214990494548 a001 139583862445/5778*15127^(1/2) 2971214990602367 m001 (Robbin+ZetaP(3))/(Pi+Riemann3rdZero) 2971214991143778 a001 43133785636/2889*15127^(11/20) 2971214991486242 a001 4052739537881/15127*3571^(5/17) 2971214991488613 a001 10610209857723/64079*3571^(6/17) 2971214991793007 a001 53316291173/5778*15127^(3/5) 2971214992442237 a001 10983760033/1926*15127^(13/20) 2971214993091467 a001 10182505537/2889*15127^(7/10) 2971214993740697 a001 12586269025/5778*15127^(3/4) 2971214993890888 a001 3278735159921/2889*5778^(1/9) 2971214994389927 a001 7778742049/5778*15127^(4/5) 2971214995039157 a001 267084832/321*15127^(17/20) 2971214995688386 a001 2971215073/5778*15127^(9/10) 2971214995724681 a001 4052739537881/24476*3571^(6/17) 2971214996337616 a001 1836311903/5778*15127^(19/20) 2971214996750049 a001 7778742049/2207*2207^(7/8) 2971214996986844 a001 20100269454616/6765 2971214997347458 a001 591286729879/9349*3571^(8/17) 2971214998835208 a001 4052739537881/5778*5778^(1/6) 2971215002576411 a001 3536736619241/13201*3571^(5/17) 2971215003098504 r005 Re(z^2+c),c=3/11+4/39*I,n=38 2971215003779527 a001 2504730781961/5778*5778^(2/9) 2971215005192074 a001 6557470319842/15127*3571^(4/17) 2971215007866820 a001 161/1292*233^(32/55) 2971215008723846 a001 86000486440/321*5778^(5/18) 2971215009430513 a001 3278735159921/12238*3571^(5/17) 2971215011053290 a001 956722026041/9349*3571^(7/17) 2971215013668166 a001 956722026041/5778*5778^(1/3) 2971215017996363 a001 2584/9349*45537549124^(16/17) 2971215017996363 a001 2584/9349*14662949395604^(16/21) 2971215017996363 a001 2584/9349*(1/2+1/2*5^(1/2))^48 2971215017996363 a001 2584/9349*192900153618^(8/9) 2971215017996363 a001 2584/9349*73681302247^(12/13) 2971215017996365 a001 4181/5778*(1/2+1/2*5^(1/2))^46 2971215017996365 a001 4181/5778*10749957122^(23/24) 2971215018612485 a001 591286729879/5778*5778^(7/18) 2971215018897906 a001 1515744265389/2161*3571^(3/17) 2971215022127224 a001 3536736619241/1926*2207^(1/16) 2971215023136345 a001 10610209857723/24476*3571^(4/17) 2971215023556805 a001 182717648081/2889*5778^(4/9) 2971215023854241 r005 Im(z^2+c),c=25/86+7/54*I,n=46 2971215024759122 a001 1548008755920/9349*3571^(6/17) 2971215026021286 a001 12422650023795/4181 2971215027810450 a001 7778742049/15127*9349^(18/19) 2971215028501124 a001 75283811239/1926*5778^(1/2) 2971215029599614 a001 12586269025/15127*9349^(17/19) 2971215031388778 a001 20365011074/15127*9349^(16/19) 2971215033177942 a001 32951280099/15127*9349^(15/19) 2971215033445444 a001 139583862445/5778*5778^(5/9) 2971215034875024 a001 4807526976/2207*2207^(15/16) 2971215034967106 a001 53316291173/15127*9349^(14/19) 2971215036062046 a001 1/123*(1/2*5^(1/2)+1/2)^3*199^(16/19) 2971215036756270 a001 86267571272/15127*9349^(13/19) 2971215037111456 a001 12422650070163/4181 2971215038389763 a001 43133785636/2889*5778^(11/18) 2971215038464955 a001 2504730781961/9349*3571^(5/17) 2971215038545434 a001 139583862445/15127*9349^(12/19) 2971215038729490 a001 12422650076928/4181 2971215038900620 a001 20365011074/39603*9349^(18/19) 2971215038965558 a001 12422650077915/4181 2971215039005022 a001 12422650078080/4181 2971215039005740 a001 12422650078083/4181 2971215039005979 a001 12422650078084/4181 2971215039006218 a001 12422650078085/4181 2971215039008132 a001 12422650078093/4181 2971215039021286 a001 12422650078148/4181 2971215039111456 a001 12422650078525/4181 2971215039729490 a001 12422650081109/4181 2971215040334598 a001 32264490531/2161*9349^(11/19) 2971215040518654 a001 53316291173/103682*9349^(18/19) 2971215040689784 a001 10983760033/13201*9349^(17/19) 2971215040754722 a001 139583862445/271443*9349^(18/19) 2971215040789164 a001 365435296162/710647*9349^(18/19) 2971215040794189 a001 956722026041/1860498*9349^(18/19) 2971215040794922 a001 2504730781961/4870847*9349^(18/19) 2971215040795029 a001 6557470319842/12752043*9349^(18/19) 2971215040795054 a001 10610209857723/20633239*9349^(18/19) 2971215040795095 a001 4052739537881/7881196*9349^(18/19) 2971215040795375 a001 1548008755920/3010349*9349^(18/19) 2971215040797294 a001 514229*9349^(18/19) 2971215040810450 a001 225851433717/439204*9349^(18/19) 2971215040900620 a001 86267571272/167761*9349^(18/19) 2971215041518654 a001 32951280099/64079*9349^(18/19) 2971215042123762 a001 365435296162/15127*9349^(10/19) 2971215042307818 a001 43133785636/51841*9349^(17/19) 2971215042478948 a001 53316291173/39603*9349^(16/19) 2971215042543886 a001 75283811239/90481*9349^(17/19) 2971215042578328 a001 591286729879/710647*9349^(17/19) 2971215042583353 a001 832040*9349^(17/19) 2971215042584086 a001 4052739537881/4870847*9349^(17/19) 2971215042584193 a001 3536736619241/4250681*9349^(17/19) 2971215042584259 a001 3278735159921/3940598*9349^(17/19) 2971215042584539 a001 2504730781961/3010349*9349^(17/19) 2971215042586458 a001 956722026041/1149851*9349^(17/19) 2971215042599614 a001 182717648081/219602*9349^(17/19) 2971215042689784 a001 139583862445/167761*9349^(17/19) 2971215043307818 a001 53316291173/64079*9349^(17/19) 2971215043334083 a001 53316291173/5778*5778^(2/3) 2971215043912926 a001 591286729879/15127*9349^(9/19) 2971215043965558 a001 12422650098820/4181 2971215044096982 a001 139583862445/103682*9349^(16/19) 2971215044268112 a001 86267571272/39603*9349^(15/19) 2971215044333050 a001 365435296162/271443*9349^(16/19) 2971215044367492 a001 956722026041/710647*9349^(16/19) 2971215044372517 a001 2504730781961/1860498*9349^(16/19) 2971215044373250 a001 6557470319842/4870847*9349^(16/19) 2971215044373423 a001 10610209857723/7881196*9349^(16/19) 2971215044373703 a001 1346269*9349^(16/19) 2971215044375622 a001 1548008755920/1149851*9349^(16/19) 2971215044388778 a001 591286729879/439204*9349^(16/19) 2971215044478948 a001 225851433717/167761*9349^(16/19) 2971215045096982 a001 86267571272/64079*9349^(16/19) 2971215045702090 a001 956722026041/15127*9349^(8/19) 2971215045754722 a001 12586269025/24476*9349^(18/19) 2971215045886146 a001 225851433717/103682*9349^(15/19) 2971215046057276 a001 139583862445/39603*9349^(14/19) 2971215046122214 a001 591286729879/271443*9349^(15/19) 2971215046156656 a001 1548008755920/710647*9349^(15/19) 2971215046161681 a001 4052739537881/1860498*9349^(15/19) 2971215046162414 a001 2178309*9349^(15/19) 2971215046162867 a001 6557470319842/3010349*9349^(15/19) 2971215046164786 a001 2504730781961/1149851*9349^(15/19) 2971215046177942 a001 956722026041/439204*9349^(15/19) 2971215046268112 a001 365435296162/167761*9349^(15/19) 2971215046886146 a001 139583862445/64079*9349^(15/19) 2971215047030805 a001 6765/15127*(1/2+1/2*5^(1/2))^47 2971215047491254 a001 1548008755920/15127*9349^(7/19) 2971215047543886 a001 10182505537/12238*9349^(17/19) 2971215047675310 a001 182717648081/51841*9349^(14/19) 2971215047846440 a001 75283811239/13201*9349^(13/19) 2971215047911378 a001 956722026041/271443*9349^(14/19) 2971215047945820 a001 2504730781961/710647*9349^(14/19) 2971215047950845 a001 3278735159921/930249*9349^(14/19) 2971215047952031 a001 10610209857723/3010349*9349^(14/19) 2971215047953950 a001 4052739537881/1149851*9349^(14/19) 2971215047967106 a001 387002188980/109801*9349^(14/19) 2971215048057276 a001 591286729879/167761*9349^(14/19) 2971215048278402 a001 10983760033/1926*5778^(13/18) 2971215048675310 a001 225851433717/64079*9349^(14/19) 2971215048859709 m005 (1/3*Pi+1/3)/(11/12*Catalan-3/8) 2971215049280418 a001 2504730781961/15127*9349^(6/19) 2971215049333050 a001 32951280099/24476*9349^(16/19) 2971215049464474 a001 591286729879/103682*9349^(13/19) 2971215049635604 a001 365435296162/39603*9349^(12/19) 2971215049700542 a001 516002918640/90481*9349^(13/19) 2971215049734984 a001 4052739537881/710647*9349^(13/19) 2971215049740009 a001 3536736619241/620166*9349^(13/19) 2971215049743114 a001 6557470319842/1149851*9349^(13/19) 2971215049756270 a001 2504730781961/439204*9349^(13/19) 2971215049846440 a001 956722026041/167761*9349^(13/19) 2971215050464474 a001 365435296162/64079*9349^(13/19) 2971215051069582 a001 4052739537881/15127*9349^(5/19) 2971215051122214 a001 53316291173/24476*9349^(15/19) 2971215051253638 a001 956722026041/103682*9349^(12/19) 2971215051424768 a001 591286729879/39603*9349^(11/19) 2971215051489706 a001 2504730781961/271443*9349^(12/19) 2971215051524148 a001 6557470319842/710647*9349^(12/19) 2971215051532278 a001 10610209857723/1149851*9349^(12/19) 2971215051545434 a001 4052739537881/439204*9349^(12/19) 2971215051635604 a001 140728068720/15251*9349^(12/19) 2971215052170787 a001 4052739537881/9349*3571^(4/17) 2971215052253638 a001 591286729879/64079*9349^(12/19) 2971215052858746 a001 6557470319842/15127*9349^(4/19) 2971215052911378 a001 21566892818/6119*9349^(14/19) 2971215053042802 a001 774004377960/51841*9349^(11/19) 2971215053213932 a001 956722026041/39603*9349^(10/19) 2971215053222721 a001 10182505537/2889*5778^(7/9) 2971215053278870 a001 4052739537881/271443*9349^(11/19) 2971215053295245 m001 GAMMA(19/24)*(Si(Pi)+GAMMA(1/24)) 2971215053313312 a001 1515744265389/101521*9349^(11/19) 2971215053334598 a001 3278735159921/219602*9349^(11/19) 2971215053400503 r005 Re(z^2+c),c=-8/25+11/18*I,n=47 2971215053424768 a001 2504730781961/167761*9349^(11/19) 2971215054042802 a001 956722026041/64079*9349^(11/19) 2971215054063068 m001 Tribonacci/Sierpinski/exp(GAMMA(1/24))^2 2971215054647910 a001 1515744265389/2161*9349^(3/19) 2971215054700542 a001 139583862445/24476*9349^(13/19) 2971215054831966 a001 2504730781961/103682*9349^(10/19) 2971215055003096 a001 516002918640/13201*9349^(9/19) 2971215055055728 a001 16261459996320/5473 2971215055068034 a001 6557470319842/271443*9349^(10/19) 2971215055123762 a001 10610209857723/439204*9349^(10/19) 2971215055213932 a001 4052739537881/167761*9349^(10/19) 2971215055291903 a001 2971215073/15127*24476^(20/21) 2971215055528078 a001 686789568/2161*24476^(19/21) 2971215055764253 a001 7778742049/15127*24476^(6/7) 2971215055831966 a001 1548008755920/64079*9349^(10/19) 2971215056000428 a001 12586269025/15127*24476^(17/21) 2971215056236603 a001 20365011074/15127*24476^(16/21) 2971215056472778 a001 32951280099/15127*24476^(5/7) 2971215056489706 a001 7787980473/844*9349^(12/19) 2971215056621130 a001 4052739537881/103682*9349^(9/19) 2971215056708953 a001 53316291173/15127*24476^(2/3) 2971215056792260 a001 2504730781961/39603*9349^(8/19) 2971215056857198 a001 3536736619241/90481*9349^(9/19) 2971215056945128 a001 86267571272/15127*24476^(13/21) 2971215057003096 a001 6557470319842/167761*9349^(9/19) 2971215057181303 a001 139583862445/15127*24476^(4/7) 2971215057353254 a007 Real Root Of -81*x^4+597*x^3-105*x^2+472*x-146 2971215057417478 a001 32264490531/2161*24476^(11/21) 2971215057621130 a001 2504730781961/64079*9349^(9/19) 2971215057653653 a001 365435296162/15127*24476^(10/21) 2971215057889828 a001 591286729879/15127*24476^(3/7) 2971215058120975 a001 2255/13201*14662949395604^(7/9) 2971215058120975 a001 2255/13201*(1/2+1/2*5^(1/2))^49 2971215058120975 a001 2255/13201*505019158607^(7/8) 2971215058120975 a001 17711/15127*45537549124^(15/17) 2971215058120975 a001 17711/15127*312119004989^(9/11) 2971215058120975 a001 17711/15127*14662949395604^(5/7) 2971215058120975 a001 17711/15127*(1/2+1/2*5^(1/2))^45 2971215058120975 a001 17711/15127*192900153618^(5/6) 2971215058120975 a001 17711/15127*28143753123^(9/10) 2971215058120975 a001 17711/15127*10749957122^(15/16) 2971215058126003 a001 956722026041/15127*24476^(8/21) 2971215058167041 a001 12586269025/5778*5778^(5/6) 2971215058278870 a001 182717648081/12238*9349^(11/19) 2971215058362178 a001 1548008755920/15127*24476^(1/3) 2971215058410294 a001 3278735159921/51841*9349^(8/19) 2971215058581424 a001 4052739537881/39603*9349^(7/19) 2971215058598352 a001 2504730781961/15127*24476^(2/7) 2971215058792260 a001 10610209857723/167761*9349^(8/19) 2971215058834527 a001 4052739537881/15127*24476^(5/21) 2971215059070702 a001 6557470319842/15127*24476^(4/21) 2971215059291796 a001 85146109954125/28657 2971215059306877 a001 1515744265389/2161*24476^(1/7) 2971215059323257 a001 1134903170/15127*64079^(22/23) 2971215059354718 a001 1836311903/15127*64079^(21/23) 2971215059386179 a001 2971215073/15127*64079^(20/23) 2971215059410294 a001 4052739537881/64079*9349^(8/19) 2971215059417640 a001 686789568/2161*64079^(19/23) 2971215059449101 a001 7778742049/15127*64079^(18/23) 2971215059480563 a001 12586269025/15127*64079^(17/23) 2971215059512024 a001 20365011074/15127*64079^(16/23) 2971215059543485 a001 32951280099/15127*64079^(15/23) 2971215059574946 a001 53316291173/15127*64079^(14/23) 2971215059606407 a001 86267571272/15127*64079^(13/23) 2971215059637868 a001 139583862445/15127*64079^(12/23) 2971215059669330 a001 32264490531/2161*64079^(11/23) 2971215059700791 a001 365435296162/15127*64079^(10/23) 2971215059732252 a001 591286729879/15127*64079^(9/23) 2971215059739009 a001 6765/103682*14662949395604^(17/21) 2971215059739009 a001 6765/103682*(1/2+1/2*5^(1/2))^51 2971215059739009 a001 6765/103682*192900153618^(17/18) 2971215059739009 a001 6624/2161*(1/2+1/2*5^(1/2))^43 2971215059763713 a001 956722026041/15127*64079^(8/23) 2971215059795174 a001 1548008755920/15127*64079^(7/23) 2971215059826635 a001 2504730781961/15127*64079^(6/23) 2971215059858097 a001 4052739537881/15127*64079^(5/23) 2971215059889558 a001 6557470319842/15127*64079^(4/23) 2971215059909830 a001 44583081973947/15005 2971215059921019 a001 1515744265389/2161*64079^(3/23) 2971215059930944 a001 2971215073/15127*167761^(4/5) 2971215059952059 a001 32951280099/15127*167761^(3/5) 2971215059973173 a001 365435296162/15127*167761^(2/5) 2971215059975077 a001 2255/90481*(1/2+1/2*5^(1/2))^53 2971215059975077 a001 121393/15127*(1/2+1/2*5^(1/2))^41 2971215059994288 a001 4052739537881/15127*167761^(1/5) 2971215060001711 a001 433494437/15127*439204^(8/9) 2971215060003422 a001 1836311903/15127*439204^(7/9) 2971215060005134 a001 7778742049/15127*439204^(2/3) 2971215060006845 a001 32951280099/15127*439204^(5/9) 2971215060008557 a001 139583862445/15127*439204^(4/9) 2971215060009519 a001 6765/710647*(1/2+1/2*5^(1/2))^55 2971215060009519 a001 6765/710647*3461452808002^(11/12) 2971215060009519 a001 317811/15127*2537720636^(13/15) 2971215060009519 a001 317811/15127*45537549124^(13/17) 2971215060009519 a001 317811/15127*14662949395604^(13/21) 2971215060009519 a001 317811/15127*(1/2+1/2*5^(1/2))^39 2971215060009519 a001 317811/15127*192900153618^(13/18) 2971215060009519 a001 317811/15127*73681302247^(3/4) 2971215060009519 a001 317811/15127*10749957122^(13/16) 2971215060009519 a001 317811/15127*599074578^(13/14) 2971215060010268 a001 591286729879/15127*439204^(1/3) 2971215060011980 a001 2504730781961/15127*439204^(2/9) 2971215060013155 a001 1527884949095505/514229 2971215060013691 a001 1515744265389/2161*439204^(1/9) 2971215060014544 a001 55/15126*14662949395604^(19/21) 2971215060014544 a001 55/15126*(1/2+1/2*5^(1/2))^57 2971215060014544 a001 832040/15127*(1/2+1/2*5^(1/2))^37 2971215060015074 a001 4000054727631435/1346269 2971215060015277 a001 6765/4870847*(1/2+1/2*5^(1/2))^59 2971215060015277 a001 311187/2161*2537720636^(7/9) 2971215060015277 a001 311187/2161*17393796001^(5/7) 2971215060015277 a001 311187/2161*312119004989^(7/11) 2971215060015277 a001 311187/2161*14662949395604^(5/9) 2971215060015277 a001 311187/2161*(1/2+1/2*5^(1/2))^35 2971215060015277 a001 311187/2161*505019158607^(5/8) 2971215060015277 a001 311187/2161*28143753123^(7/10) 2971215060015277 a001 311187/2161*599074578^(5/6) 2971215060015277 a001 311187/2161*228826127^(7/8) 2971215060015355 a001 5236139616899400/1762289 2971215060015360 a001 24157817/15127*7881196^(10/11) 2971215060015363 a001 6765*7881196^(9/11) 2971215060015368 a001 433494437/15127*7881196^(8/11) 2971215060015371 a001 1134903170/15127*7881196^(2/3) 2971215060015372 a001 1836311903/15127*7881196^(7/11) 2971215060015376 a001 7778742049/15127*7881196^(6/11) 2971215060015381 a001 32951280099/15127*7881196^(5/11) 2971215060015384 a001 5702887/15127*141422324^(11/13) 2971215060015384 a001 2255/4250681*(1/2+1/2*5^(1/2))^61 2971215060015384 a001 5702887/15127*2537720636^(11/15) 2971215060015384 a001 5702887/15127*45537549124^(11/17) 2971215060015384 a001 5702887/15127*312119004989^(3/5) 2971215060015384 a001 5702887/15127*14662949395604^(11/21) 2971215060015384 a001 5702887/15127*(1/2+1/2*5^(1/2))^33 2971215060015384 a001 5702887/15127*192900153618^(11/18) 2971215060015384 a001 5702887/15127*10749957122^(11/16) 2971215060015384 a001 5702887/15127*1568397607^(3/4) 2971215060015384 a001 5702887/15127*599074578^(11/14) 2971215060015385 a001 139583862445/15127*7881196^(4/11) 2971215060015386 a001 32264490531/2161*7881196^(1/3) 2971215060015387 a001 5702887/15127*33385282^(11/12) 2971215060015389 a001 591286729879/15127*7881196^(3/11) 2971215060015394 a001 2504730781961/15127*7881196^(2/11) 2971215060015395 a001 5483356594752993/1845493 2971215060015397 a001 63245986/15127*20633239^(4/5) 2971215060015397 a001 267914296/15127*20633239^(5/7) 2971215060015397 a001 24157817/15127*20633239^(6/7) 2971215060015398 a001 1515744265389/2161*7881196^(1/11) 2971215060015398 a001 1836311903/15127*20633239^(3/5) 2971215060015398 a001 2971215073/15127*20633239^(4/7) 2971215060015399 a001 32951280099/15127*20633239^(3/7) 2971215060015400 a001 53316291173/15127*20633239^(2/5) 2971215060015400 a001 6765/33385282*(1/2+1/2*5^(1/2))^63 2971215060015400 a001 14930352/15127*(1/2+1/2*5^(1/2))^31 2971215060015400 a001 14930352/15127*9062201101803^(1/2) 2971215060015400 a001 365435296162/15127*20633239^(2/7) 2971215060015401 a001 1548008755920/15127*20633239^(1/5) 2971215060015401 a001 71778069687496095/24157817 2971215060015401 a001 4052739537881/15127*20633239^(1/7) 2971215060015402 a001 39088169/15127*(1/2+1/2*5^(1/2))^29 2971215060015402 a001 39088169/15127*1322157322203^(1/2) 2971215060015402 a001 6765*141422324^(9/13) 2971215060015402 a001 433494437/15127*141422324^(8/13) 2971215060015402 a001 1836311903/15127*141422324^(7/13) 2971215060015402 a001 165580141/15127*141422324^(2/3) 2971215060015402 a001 7778742049/15127*141422324^(6/13) 2971215060015402 a001 32951280099/15127*141422324^(5/13) 2971215060015402 a001 6765*2537720636^(3/5) 2971215060015402 a001 6765*45537549124^(9/17) 2971215060015402 a001 6765*817138163596^(9/19) 2971215060015402 a001 6765*14662949395604^(3/7) 2971215060015402 a001 6765*(1/2+1/2*5^(1/2))^27 2971215060015402 a001 6765*192900153618^(1/2) 2971215060015402 a001 6765*10749957122^(9/16) 2971215060015402 a001 6765*599074578^(9/14) 2971215060015402 a001 86267571272/15127*141422324^(1/3) 2971215060015402 a001 139583862445/15127*141422324^(4/13) 2971215060015402 a001 591286729879/15127*141422324^(3/13) 2971215060015402 a001 2504730781961/15127*141422324^(2/13) 2971215060015402 a001 1515744265389/2161*141422324^(1/13) 2971215060015402 a001 267914296/15127*2537720636^(5/9) 2971215060015402 a001 267914296/15127*312119004989^(5/11) 2971215060015402 a001 267914296/15127*(1/2+1/2*5^(1/2))^25 2971215060015402 a001 267914296/15127*3461452808002^(5/12) 2971215060015402 a001 267914296/15127*28143753123^(1/2) 2971215060015402 a001 701408733/15127*(1/2+1/2*5^(1/2))^23 2971215060015402 a001 701408733/15127*4106118243^(1/2) 2971215060015402 a001 1836311903/15127*2537720636^(7/15) 2971215060015402 a001 1836311903/15127*17393796001^(3/7) 2971215060015402 a001 1836311903/15127*45537549124^(7/17) 2971215060015402 a001 1836311903/15127*14662949395604^(1/3) 2971215060015402 a001 1836311903/15127*(1/2+1/2*5^(1/2))^21 2971215060015402 a001 1836311903/15127*192900153618^(7/18) 2971215060015402 a001 7778742049/15127*2537720636^(2/5) 2971215060015402 a001 1836311903/15127*10749957122^(7/16) 2971215060015402 a001 32951280099/15127*2537720636^(1/3) 2971215060015402 a001 2971215073/15127*2537720636^(4/9) 2971215060015402 a001 139583862445/15127*2537720636^(4/15) 2971215060015402 a001 365435296162/15127*2537720636^(2/9) 2971215060015402 a001 591286729879/15127*2537720636^(1/5) 2971215060015402 a001 2504730781961/15127*2537720636^(2/15) 2971215060015402 a001 4052739537881/15127*2537720636^(1/9) 2971215060015402 a001 1515744265389/2161*2537720636^(1/15) 2971215060015402 a001 686789568/2161*817138163596^(1/3) 2971215060015402 a001 686789568/2161*(1/2+1/2*5^(1/2))^19 2971215060015402 a001 12586269025/15127*45537549124^(1/3) 2971215060015402 a001 12586269025/15127*(1/2+1/2*5^(1/2))^17 2971215060015402 a001 53316291173/15127*17393796001^(2/7) 2971215060015402 a001 1548008755920/15127*17393796001^(1/7) 2971215060015402 a001 32951280099/15127*45537549124^(5/17) 2971215060015402 a001 32951280099/15127*312119004989^(3/11) 2971215060015402 a001 32951280099/15127*14662949395604^(5/21) 2971215060015402 a001 32951280099/15127*(1/2+1/2*5^(1/2))^15 2971215060015402 a001 32951280099/15127*192900153618^(5/18) 2971215060015402 a001 139583862445/15127*45537549124^(4/17) 2971215060015402 a001 591286729879/15127*45537549124^(3/17) 2971215060015402 a001 2504730781961/15127*45537549124^(2/17) 2971215060015402 a001 1515744265389/2161*45537549124^(1/17) 2971215060015402 a001 32264490531/2161*312119004989^(1/5) 2971215060015402 a001 32264490531/2161*(1/2+1/2*5^(1/2))^11 2971215060015402 a001 591286729879/15127*(1/2+1/2*5^(1/2))^9 2971215060015402 a001 1548008755920/15127*14662949395604^(1/9) 2971215060015402 a001 4052739537881/15127*(1/2+1/2*5^(1/2))^5 2971215060015402 a001 1515744265389/2161*14662949395604^(1/21) 2971215060015402 a001 1515744265389/2161*(1/2+1/2*5^(1/2))^3 2971215060015402 a001 6557470319842/15127*(1/2+1/2*5^(1/2))^4 2971215060015402 a001 2504730781961/15127*(1/2+1/2*5^(1/2))^6 2971215060015402 a001 956722026041/15127*(1/2+1/2*5^(1/2))^8 2971215060015402 a001 365435296162/15127*(1/2+1/2*5^(1/2))^10 2971215060015402 a001 591286729879/15127*192900153618^(1/6) 2971215060015402 a001 139583862445/15127*817138163596^(4/19) 2971215060015402 a001 139583862445/15127*14662949395604^(4/21) 2971215060015402 a001 139583862445/15127*(1/2+1/2*5^(1/2))^12 2971215060015402 a001 139583862445/15127*192900153618^(2/9) 2971215060015402 a001 86267571272/15127*73681302247^(1/4) 2971215060015402 a001 956722026041/15127*73681302247^(2/13) 2971215060015402 a001 139583862445/15127*73681302247^(3/13) 2971215060015402 a001 53316291173/15127*14662949395604^(2/9) 2971215060015402 a001 4052739537881/15127*28143753123^(1/10) 2971215060015402 a001 32951280099/15127*28143753123^(3/10) 2971215060015402 a001 365435296162/15127*28143753123^(1/5) 2971215060015402 a001 20365011074/15127*(1/2+1/2*5^(1/2))^16 2971215060015402 a001 20365011074/15127*23725150497407^(1/4) 2971215060015402 a001 20365011074/15127*73681302247^(4/13) 2971215060015402 a001 1515744265389/2161*10749957122^(1/16) 2971215060015402 a001 6557470319842/15127*10749957122^(1/12) 2971215060015402 a001 2504730781961/15127*10749957122^(1/8) 2971215060015402 a001 956722026041/15127*10749957122^(1/6) 2971215060015402 a001 591286729879/15127*10749957122^(3/16) 2971215060015402 a001 365435296162/15127*10749957122^(5/24) 2971215060015402 a001 139583862445/15127*10749957122^(1/4) 2971215060015402 a001 32951280099/15127*10749957122^(5/16) 2971215060015402 a001 53316291173/15127*10749957122^(7/24) 2971215060015402 a001 7778742049/15127*45537549124^(6/17) 2971215060015402 a001 7778742049/15127*14662949395604^(2/7) 2971215060015402 a001 7778742049/15127*(1/2+1/2*5^(1/2))^18 2971215060015402 a001 7778742049/15127*192900153618^(1/3) 2971215060015402 a001 20365011074/15127*10749957122^(1/3) 2971215060015402 a001 6557470319842/15127*4106118243^(2/23) 2971215060015402 a001 7778742049/15127*10749957122^(3/8) 2971215060015402 a001 2504730781961/15127*4106118243^(3/23) 2971215060015402 a001 956722026041/15127*4106118243^(4/23) 2971215060015402 a001 365435296162/15127*4106118243^(5/23) 2971215060015402 a001 139583862445/15127*4106118243^(6/23) 2971215060015402 a001 53316291173/15127*4106118243^(7/23) 2971215060015402 a001 20365011074/15127*4106118243^(8/23) 2971215060015402 a001 2971215073/15127*(1/2+1/2*5^(1/2))^20 2971215060015402 a001 2971215073/15127*23725150497407^(5/16) 2971215060015402 a001 2971215073/15127*505019158607^(5/14) 2971215060015402 a001 2971215073/15127*73681302247^(5/13) 2971215060015402 a001 2971215073/15127*28143753123^(2/5) 2971215060015402 a001 2971215073/15127*10749957122^(5/12) 2971215060015402 a001 7778742049/15127*4106118243^(9/23) 2971215060015402 a001 6557470319842/15127*1568397607^(1/11) 2971215060015402 a001 2971215073/15127*4106118243^(10/23) 2971215060015402 a001 2504730781961/15127*1568397607^(3/22) 2971215060015402 a001 956722026041/15127*1568397607^(2/11) 2971215060015402 a001 365435296162/15127*1568397607^(5/22) 2971215060015402 a001 32264490531/2161*1568397607^(1/4) 2971215060015402 a001 139583862445/15127*1568397607^(3/11) 2971215060015402 a001 53316291173/15127*1568397607^(7/22) 2971215060015402 a001 20365011074/15127*1568397607^(4/11) 2971215060015402 a001 1134903170/15127*312119004989^(2/5) 2971215060015402 a001 1134903170/15127*(1/2+1/2*5^(1/2))^22 2971215060015402 a001 1134903170/15127*10749957122^(11/24) 2971215060015402 a001 7778742049/15127*1568397607^(9/22) 2971215060015402 a001 1134903170/15127*4106118243^(11/23) 2971215060015402 a001 1515744265389/2161*599074578^(1/14) 2971215060015402 a001 2971215073/15127*1568397607^(5/11) 2971215060015402 a001 6557470319842/15127*599074578^(2/21) 2971215060015402 a001 1134903170/15127*1568397607^(1/2) 2971215060015402 a001 2504730781961/15127*599074578^(1/7) 2971215060015402 a001 1548008755920/15127*599074578^(1/6) 2971215060015402 a001 956722026041/15127*599074578^(4/21) 2971215060015402 a001 591286729879/15127*599074578^(3/14) 2971215060015402 a001 365435296162/15127*599074578^(5/21) 2971215060015402 a001 139583862445/15127*599074578^(2/7) 2971215060015402 a001 53316291173/15127*599074578^(1/3) 2971215060015402 a001 433494437/15127*2537720636^(8/15) 2971215060015402 a001 32951280099/15127*599074578^(5/14) 2971215060015402 a001 20365011074/15127*599074578^(8/21) 2971215060015402 a001 433494437/15127*45537549124^(8/17) 2971215060015402 a001 433494437/15127*14662949395604^(8/21) 2971215060015402 a001 433494437/15127*(1/2+1/2*5^(1/2))^24 2971215060015402 a001 433494437/15127*192900153618^(4/9) 2971215060015402 a001 433494437/15127*73681302247^(6/13) 2971215060015402 a001 433494437/15127*10749957122^(1/2) 2971215060015402 a001 433494437/15127*4106118243^(12/23) 2971215060015402 a001 7778742049/15127*599074578^(3/7) 2971215060015402 a001 433494437/15127*1568397607^(6/11) 2971215060015402 a001 1836311903/15127*599074578^(1/2) 2971215060015402 a001 2971215073/15127*599074578^(10/21) 2971215060015402 a001 1134903170/15127*599074578^(11/21) 2971215060015402 a001 6557470319842/15127*228826127^(1/10) 2971215060015402 a001 4052739537881/15127*228826127^(1/8) 2971215060015402 a001 433494437/15127*599074578^(4/7) 2971215060015402 a001 2504730781961/15127*228826127^(3/20) 2971215060015402 a001 956722026041/15127*228826127^(1/5) 2971215060015402 a001 365435296162/15127*228826127^(1/4) 2971215060015402 a001 139583862445/15127*228826127^(3/10) 2971215060015402 a001 53316291173/15127*228826127^(7/20) 2971215060015402 a001 32951280099/15127*228826127^(3/8) 2971215060015402 a001 165580141/15127*(1/2+1/2*5^(1/2))^26 2971215060015402 a001 165580141/15127*73681302247^(1/2) 2971215060015402 a001 165580141/15127*10749957122^(13/24) 2971215060015402 a001 165580141/15127*4106118243^(13/23) 2971215060015402 a001 165580141/15127*1568397607^(13/22) 2971215060015402 a001 20365011074/15127*228826127^(2/5) 2971215060015402 a001 7778742049/15127*228826127^(9/20) 2971215060015402 a001 165580141/15127*599074578^(13/21) 2971215060015402 a001 267914296/15127*228826127^(5/8) 2971215060015402 a001 2971215073/15127*228826127^(1/2) 2971215060015402 a001 1134903170/15127*228826127^(11/20) 2971215060015402 a001 433494437/15127*228826127^(3/5) 2971215060015402 a001 6557470319842/15127*87403803^(2/19) 2971215060015402 a001 165580141/15127*228826127^(13/20) 2971215060015402 a001 2504730781961/15127*87403803^(3/19) 2971215060015403 a001 956722026041/15127*87403803^(4/19) 2971215060015403 a001 365435296162/15127*87403803^(5/19) 2971215060015403 a001 139583862445/15127*87403803^(6/19) 2971215060015403 a001 53316291173/15127*87403803^(7/19) 2971215060015403 a001 63245986/15127*17393796001^(4/7) 2971215060015403 a001 63245986/15127*14662949395604^(4/9) 2971215060015403 a001 63245986/15127*(1/2+1/2*5^(1/2))^28 2971215060015403 a001 63245986/15127*505019158607^(1/2) 2971215060015403 a001 63245986/15127*73681302247^(7/13) 2971215060015403 a001 63245986/15127*10749957122^(7/12) 2971215060015403 a001 63245986/15127*4106118243^(14/23) 2971215060015403 a001 63245986/15127*1568397607^(7/11) 2971215060015403 a001 63245986/15127*599074578^(2/3) 2971215060015403 a001 20365011074/15127*87403803^(8/19) 2971215060015403 a001 7778742049/15127*87403803^(9/19) 2971215060015403 a001 63245986/15127*228826127^(7/10) 2971215060015403 a001 686789568/2161*87403803^(1/2) 2971215060015403 a001 2971215073/15127*87403803^(10/19) 2971215060015403 a001 1515744265389/2161*33385282^(1/12) 2971215060015403 a001 1134903170/15127*87403803^(11/19) 2971215060015403 a001 433494437/15127*87403803^(12/19) 2971215060015403 a001 165580141/15127*87403803^(13/19) 2971215060015403 a001 6557470319842/15127*33385282^(1/9) 2971215060015403 a001 63245986/15127*87403803^(14/19) 2971215060015403 a001 2504730781961/15127*33385282^(1/6) 2971215060015403 a001 956722026041/15127*33385282^(2/9) 2971215060015403 a001 591286729879/15127*33385282^(1/4) 2971215060015403 a001 365435296162/15127*33385282^(5/18) 2971215060015403 a001 139583862445/15127*33385282^(1/3) 2971215060015403 a001 24157817/15127*141422324^(10/13) 2971215060015403 a001 24157817/15127*2537720636^(2/3) 2971215060015403 a001 24157817/15127*45537549124^(10/17) 2971215060015403 a001 24157817/15127*312119004989^(6/11) 2971215060015403 a001 24157817/15127*14662949395604^(10/21) 2971215060015403 a001 24157817/15127*(1/2+1/2*5^(1/2))^30 2971215060015403 a001 24157817/15127*192900153618^(5/9) 2971215060015403 a001 24157817/15127*28143753123^(3/5) 2971215060015403 a001 24157817/15127*10749957122^(5/8) 2971215060015403 a001 24157817/15127*4106118243^(15/23) 2971215060015403 a001 24157817/15127*1568397607^(15/22) 2971215060015403 a001 24157817/15127*599074578^(5/7) 2971215060015403 a001 53316291173/15127*33385282^(7/18) 2971215060015403 a001 24157817/15127*228826127^(3/4) 2971215060015404 a001 32951280099/15127*33385282^(5/12) 2971215060015404 a001 20365011074/15127*33385282^(4/9) 2971215060015404 a001 24157817/15127*87403803^(15/19) 2971215060015404 a001 7778742049/15127*33385282^(1/2) 2971215060015404 a001 2971215073/15127*33385282^(5/9) 2971215060015404 a001 1836311903/15127*33385282^(7/12) 2971215060015404 a001 1134903170/15127*33385282^(11/18) 2971215060015404 a001 433494437/15127*33385282^(2/3) 2971215060015404 a001 6765*33385282^(3/4) 2971215060015404 a001 165580141/15127*33385282^(13/18) 2971215060015405 a001 6557470319842/15127*12752043^(2/17) 2971215060015405 a001 63245986/15127*33385282^(7/9) 2971215060015405 a001 434914575624815/146376 2971215060015406 a001 2504730781961/15127*12752043^(3/17) 2971215060015406 a001 24157817/15127*33385282^(5/6) 2971215060015407 a001 956722026041/15127*12752043^(4/17) 2971215060015408 a001 365435296162/15127*12752043^(5/17) 2971215060015409 a001 139583862445/15127*12752043^(6/17) 2971215060015409 a001 615/1875749*(1/2+1/2*5^(1/2))^62 2971215060015409 a001 9227465/15127*(1/2+1/2*5^(1/2))^32 2971215060015409 a001 9227465/15127*23725150497407^(1/2) 2971215060015409 a001 9227465/15127*73681302247^(8/13) 2971215060015409 a001 9227465/15127*10749957122^(2/3) 2971215060015409 a001 9227465/15127*4106118243^(16/23) 2971215060015409 a001 9227465/15127*1568397607^(8/11) 2971215060015409 a001 9227465/15127*599074578^(16/21) 2971215060015409 a001 9227465/15127*228826127^(4/5) 2971215060015410 a001 9227465/15127*87403803^(16/19) 2971215060015410 a001 53316291173/15127*12752043^(7/17) 2971215060015411 a001 20365011074/15127*12752043^(8/17) 2971215060015412 a001 12586269025/15127*12752043^(1/2) 2971215060015412 a001 9227465/15127*33385282^(8/9) 2971215060015412 a001 7778742049/15127*12752043^(9/17) 2971215060015413 a001 2971215073/15127*12752043^(10/17) 2971215060015414 a001 1134903170/15127*12752043^(11/17) 2971215060015415 a001 433494437/15127*12752043^(12/17) 2971215060015416 a001 165580141/15127*12752043^(13/17) 2971215060015418 a001 63245986/15127*12752043^(14/17) 2971215060015418 a001 6557470319842/15127*4870847^(1/8) 2971215060015420 a001 24157817/15127*12752043^(15/17) 2971215060015421 a001 16944503739966165/5702887 2971215060015426 a001 2504730781961/15127*4870847^(3/16) 2971215060015427 a001 9227465/15127*12752043^(16/17) 2971215060015434 a001 956722026041/15127*4870847^(1/4) 2971215060015442 a001 365435296162/15127*4870847^(5/16) 2971215060015449 a001 139583862445/15127*4870847^(3/8) 2971215060015450 a001 6765/7881196*14662949395604^(20/21) 2971215060015450 a001 6765/7881196*(1/2+1/2*5^(1/2))^60 2971215060015450 a001 3524578/15127*45537549124^(2/3) 2971215060015450 a001 3524578/15127*(1/2+1/2*5^(1/2))^34 2971215060015450 a001 3524578/15127*10749957122^(17/24) 2971215060015450 a001 3524578/15127*4106118243^(17/23) 2971215060015450 a001 3524578/15127*1568397607^(17/22) 2971215060015450 a001 3524578/15127*599074578^(17/21) 2971215060015450 a001 3524578/15127*228826127^(17/20) 2971215060015451 a001 3524578/15127*87403803^(17/19) 2971215060015453 a001 3524578/15127*33385282^(17/18) 2971215060015457 a001 53316291173/15127*4870847^(7/16) 2971215060015465 a001 20365011074/15127*4870847^(1/2) 2971215060015473 a001 7778742049/15127*4870847^(9/16) 2971215060015481 a001 2971215073/15127*4870847^(5/8) 2971215060015488 a001 1515744265389/2161*1860498^(1/10) 2971215060015489 a001 1134903170/15127*4870847^(11/16) 2971215060015496 a001 433494437/15127*4870847^(3/4) 2971215060015504 a001 165580141/15127*4870847^(13/16) 2971215060015512 a001 63245986/15127*4870847^(7/8) 2971215060015517 a001 6557470319842/15127*1860498^(2/15) 2971215060015521 a001 24157817/15127*4870847^(15/16) 2971215060015528 a001 2157408168722455/726103 2971215060015545 a001 4052739537881/15127*1860498^(1/6) 2971215060015574 a001 2504730781961/15127*1860498^(1/5) 2971215060015631 a001 956722026041/15127*1860498^(4/15) 2971215060015660 a001 591286729879/15127*1860498^(3/10) 2971215060015689 a001 365435296162/15127*1860498^(1/3) 2971215060015730 a001 1346269/15127*141422324^(12/13) 2971215060015730 a001 6765/3010349*(1/2+1/2*5^(1/2))^58 2971215060015730 a001 1346269/15127*2537720636^(4/5) 2971215060015730 a001 1346269/15127*45537549124^(12/17) 2971215060015730 a001 1346269/15127*14662949395604^(4/7) 2971215060015730 a001 1346269/15127*(1/2+1/2*5^(1/2))^36 2971215060015730 a001 1346269/15127*192900153618^(2/3) 2971215060015730 a001 1346269/15127*73681302247^(9/13) 2971215060015730 a001 1346269/15127*10749957122^(3/4) 2971215060015730 a001 1346269/15127*4106118243^(18/23) 2971215060015730 a001 1346269/15127*1568397607^(9/11) 2971215060015730 a001 1346269/15127*599074578^(6/7) 2971215060015730 a001 1346269/15127*228826127^(9/10) 2971215060015731 a001 1346269/15127*87403803^(18/19) 2971215060015746 a001 139583862445/15127*1860498^(2/5) 2971215060015803 a001 53316291173/15127*1860498^(7/15) 2971215060015832 a001 32951280099/15127*1860498^(1/2) 2971215060015860 a001 20365011074/15127*1860498^(8/15) 2971215060015917 a001 7778742049/15127*1860498^(3/5) 2971215060015975 a001 2971215073/15127*1860498^(2/3) 2971215060016003 a001 1836311903/15127*1860498^(7/10) 2971215060016032 a001 1134903170/15127*1860498^(11/15) 2971215060016089 a001 433494437/15127*1860498^(4/5) 2971215060016118 a001 267914296/15127*1860498^(5/6) 2971215060016146 a001 165580141/15127*1860498^(13/15) 2971215060016175 a001 6765*1860498^(9/10) 2971215060016204 a001 63245986/15127*1860498^(14/15) 2971215060016243 a001 6557470319842/15127*710647^(1/7) 2971215060016261 a001 22474270713963/7564 2971215060016663 a001 2504730781961/15127*710647^(3/14) 2971215060016873 a001 1548008755920/15127*710647^(1/4) 2971215060017083 a001 956722026041/15127*710647^(2/7) 2971215060017504 a001 365435296162/15127*710647^(5/14) 2971215060017650 a001 6765/1149851*14662949395604^(8/9) 2971215060017650 a001 6765/1149851*(1/2+1/2*5^(1/2))^56 2971215060017650 a001 514229/15127*817138163596^(2/3) 2971215060017650 a001 514229/15127*(1/2+1/2*5^(1/2))^38 2971215060017650 a001 514229/15127*10749957122^(19/24) 2971215060017650 a001 514229/15127*4106118243^(19/23) 2971215060017650 a001 514229/15127*1568397607^(19/22) 2971215060017650 a001 514229/15127*599074578^(19/21) 2971215060017650 a001 514229/15127*228826127^(19/20) 2971215060017924 a001 139583862445/15127*710647^(3/7) 2971215060018344 a001 53316291173/15127*710647^(1/2) 2971215060018764 a001 20365011074/15127*710647^(4/7) 2971215060019185 a001 7778742049/15127*710647^(9/14) 2971215060019605 a001 2971215073/15127*710647^(5/7) 2971215060019815 a001 1836311903/15127*710647^(3/4) 2971215060020025 a001 1134903170/15127*710647^(11/14) 2971215060020445 a001 433494437/15127*710647^(6/7) 2971215060020866 a001 165580141/15127*710647^(13/14) 2971215060021286 a001 314761609813475/105937 2971215060021606 a001 6557470319842/15127*271443^(2/13) 2971215060024708 a001 2504730781961/15127*271443^(3/13) 2971215060027810 a001 956722026041/15127*271443^(4/13) 2971215060030805 a001 6765/439204*14662949395604^(6/7) 2971215060030805 a001 6765/439204*(1/2+1/2*5^(1/2))^54 2971215060030805 a001 196418/15127*2537720636^(8/9) 2971215060030805 a001 196418/15127*312119004989^(8/11) 2971215060030805 a001 196418/15127*(1/2+1/2*5^(1/2))^40 2971215060030805 a001 196418/15127*23725150497407^(5/8) 2971215060030805 a001 196418/15127*73681302247^(10/13) 2971215060030805 a001 196418/15127*28143753123^(4/5) 2971215060030805 a001 196418/15127*10749957122^(5/6) 2971215060030805 a001 196418/15127*4106118243^(20/23) 2971215060030805 a001 196418/15127*1568397607^(10/11) 2971215060030805 a001 196418/15127*599074578^(20/21) 2971215060030912 a001 365435296162/15127*271443^(5/13) 2971215060034014 a001 139583862445/15127*271443^(6/13) 2971215060035565 a001 86267571272/15127*271443^(1/2) 2971215060037116 a001 53316291173/15127*271443^(7/13) 2971215060040218 a001 20365011074/15127*271443^(8/13) 2971215060043320 a001 7778742049/15127*271443^(9/13) 2971215060046422 a001 2971215073/15127*271443^(10/13) 2971215060049524 a001 1134903170/15127*271443^(11/13) 2971215060049952 a001 1515744265389/2161*103682^(1/8) 2971215060052626 a001 433494437/15127*271443^(12/13) 2971215060055728 a001 360684709785345/121393 2971215060061468 a001 6557470319842/15127*103682^(1/6) 2971215060068034 a001 591286729879/24476*9349^(10/19) 2971215060072984 a001 4052739537881/15127*103682^(5/24) 2971215060084501 a001 2504730781961/15127*103682^(1/4) 2971215060096017 a001 1548008755920/15127*103682^(7/24) 2971215060107533 a001 956722026041/15127*103682^(1/3) 2971215060119050 a001 591286729879/15127*103682^(3/8) 2971215060120975 a001 615/15251*(1/2+1/2*5^(1/2))^52 2971215060120975 a001 615/15251*23725150497407^(13/16) 2971215060120975 a001 615/15251*505019158607^(13/14) 2971215060120975 a001 75025/15127*2537720636^(14/15) 2971215060120975 a001 75025/15127*17393796001^(6/7) 2971215060120975 a001 75025/15127*45537549124^(14/17) 2971215060120975 a001 75025/15127*817138163596^(14/19) 2971215060120975 a001 75025/15127*14662949395604^(2/3) 2971215060120975 a001 75025/15127*(1/2+1/2*5^(1/2))^42 2971215060120975 a001 75025/15127*505019158607^(3/4) 2971215060120975 a001 75025/15127*192900153618^(7/9) 2971215060120975 a001 75025/15127*10749957122^(7/8) 2971215060120975 a001 75025/15127*4106118243^(21/23) 2971215060120975 a001 75025/15127*1568397607^(21/22) 2971215060130566 a001 365435296162/15127*103682^(5/12) 2971215060142083 a001 32264490531/2161*103682^(11/24) 2971215060153599 a001 139583862445/15127*103682^(1/2) 2971215060165115 a001 86267571272/15127*103682^(13/24) 2971215060176632 a001 53316291173/15127*103682^(7/12) 2971215060188148 a001 32951280099/15127*103682^(5/8) 2971215060199458 a001 225749145909/2206*9349^(7/19) 2971215060199665 a001 20365011074/15127*103682^(2/3) 2971215060211181 a001 12586269025/15127*103682^(17/24) 2971215060222697 a001 7778742049/15127*103682^(3/4) 2971215060234214 a001 686789568/2161*103682^(19/24) 2971215060245730 a001 2971215073/15127*103682^(5/6) 2971215060252199 a001 3278735159921/2889*2207^(1/8) 2971215060257246 a001 1836311903/15127*103682^(7/8) 2971215060268763 a001 1134903170/15127*103682^(11/12) 2971215060273733 a001 1515744265389/2161*39603^(3/22) 2971215060280279 a001 701408733/15127*103682^(23/24) 2971215060285677 a001 2504730781961/2207*843^(1/7) 2971215060291796 a001 22961549985935/7728 2971215060359844 a001 6557470319842/15127*39603^(2/11) 2971215060370588 a001 6557470319842/39603*9349^(6/19) 2971215060445954 a001 4052739537881/15127*39603^(5/22) 2971215060532064 a001 2504730781961/15127*39603^(3/11) 2971215060618175 a001 1548008755920/15127*39603^(7/22) 2971215060704285 a001 956722026041/15127*39603^(4/11) 2971215060739009 a001 6765/64079*312119004989^(10/11) 2971215060739009 a001 6765/64079*(1/2+1/2*5^(1/2))^50 2971215060739009 a001 6765/64079*3461452808002^(5/6) 2971215060739009 a001 28657/15127*312119004989^(4/5) 2971215060739009 a001 28657/15127*(1/2+1/2*5^(1/2))^44 2971215060739009 a001 28657/15127*23725150497407^(11/16) 2971215060739009 a001 28657/15127*73681302247^(11/13) 2971215060739009 a001 28657/15127*10749957122^(11/12) 2971215060739009 a001 28657/15127*4106118243^(22/23) 2971215060790395 a001 591286729879/15127*39603^(9/22) 2971215060876506 a001 365435296162/15127*39603^(5/11) 2971215060962616 a001 32264490531/2161*39603^(1/2) 2971215061048726 a001 139583862445/15127*39603^(6/11) 2971215061134837 a001 86267571272/15127*39603^(13/22) 2971215061199458 a001 6557470319842/64079*9349^(7/19) 2971215061220947 a001 53316291173/15127*39603^(7/11) 2971215061307057 a001 32951280099/15127*39603^(15/22) 2971215061393168 a001 20365011074/15127*39603^(8/11) 2971215061479278 a001 12586269025/15127*39603^(17/22) 2971215061565388 a001 7778742049/15127*39603^(9/11) 2971215061651499 a001 686789568/2161*39603^(19/22) 2971215061737609 a001 2971215073/15127*39603^(10/11) 2971215061823719 a001 1836311903/15127*39603^(21/22) 2971215061857198 a001 956722026041/24476*9349^(9/19) 2971215061909830 a001 52623189961485/17711 2971215061963092 a001 1515744265389/2161*15127^(3/20) 2971215062159752 a001 3536736619241/13201*9349^(5/19) 2971215062612322 a001 6557470319842/15127*15127^(1/5) 2971215062988622 a001 10610209857723/64079*9349^(6/19) 2971215063111360 a001 7778742049/5778*5778^(8/9) 2971215063261552 a001 4052739537881/15127*15127^(1/4) 2971215063646362 a001 387002188980/6119*9349^(8/19) 2971215063910782 a001 2504730781961/15127*15127^(3/10) 2971215064560011 a001 1548008755920/15127*15127^(7/20) 2971215064975077 a001 6765/24476*45537549124^(16/17) 2971215064975077 a001 6765/24476*14662949395604^(16/21) 2971215064975077 a001 6765/24476*(1/2+1/2*5^(1/2))^48 2971215064975077 a001 6765/24476*192900153618^(8/9) 2971215064975077 a001 6765/24476*73681302247^(12/13) 2971215064975077 a001 10946/15127*(1/2+1/2*5^(1/2))^46 2971215064975077 a001 10946/15127*10749957122^(23/24) 2971215065209241 a001 956722026041/15127*15127^(2/5) 2971215065435526 a001 2504730781961/24476*9349^(7/19) 2971215065858471 a001 591286729879/15127*15127^(9/20) 2971215065876619 a001 6557470319842/9349*3571^(3/17) 2971215066145898 a001 32522920114033/10946 2971215066382073 a001 7778742049/39603*24476^(20/21) 2971215066507701 a001 365435296162/15127*15127^(1/2) 2971215066618248 a001 12586269025/39603*24476^(19/21) 2971215066854423 a001 20365011074/39603*24476^(6/7) 2971215067090597 a001 10983760033/13201*24476^(17/21) 2971215067156931 a001 32264490531/2161*15127^(11/20) 2971215067224690 a001 4052739537881/24476*9349^(6/19) 2971215067326772 a001 53316291173/39603*24476^(16/21) 2971215067562947 a001 86267571272/39603*24476^(5/7) 2971215067763932 a001 16261460065872/5473 2971215067799122 a001 139583862445/39603*24476^(2/3) 2971215067806161 a001 139583862445/15127*15127^(3/5) 2971215068000107 a001 10182505537/51841*24476^(20/21) 2971215068034441 a001 2501763087285/842 2971215068035297 a001 75283811239/13201*24476^(13/21) 2971215068039466 a001 16261460067380/5473 2971215068040197 a001 16261460067384/5473 2971215068040288 a001 32522920134769/10946 2971215068040380 a001 1250881543645/421 2971215068040654 a001 32522920134773/10946 2971215068042572 a001 16261460067397/5473 2971215068055680 a001 267084832/321*5778^(17/18) 2971215068055728 a001 16261460067469/5473 2971215068145898 a001 32522920135925/10946 2971215068236174 a001 53316291173/271443*24476^(20/21) 2971215068236282 a001 32951280099/103682*24476^(19/21) 2971215068270616 a001 139583862445/710647*24476^(20/21) 2971215068271472 a001 365435296162/39603*24476^(4/7) 2971215068275641 a001 182717648081/930249*24476^(20/21) 2971215068276374 a001 956722026041/4870847*24476^(20/21) 2971215068276481 a001 2504730781961/12752043*24476^(20/21) 2971215068276497 a001 3278735159921/16692641*24476^(20/21) 2971215068276501 a001 10610209857723/54018521*24476^(20/21) 2971215068276507 a001 4052739537881/20633239*24476^(20/21) 2971215068276548 a001 387002188980/1970299*24476^(20/21) 2971215068276828 a001 591286729879/3010349*24476^(20/21) 2971215068278747 a001 225851433717/1149851*24476^(20/21) 2971215068291903 a001 196418*24476^(20/21) 2971215068382073 a001 32951280099/167761*24476^(20/21) 2971215068455391 a001 86267571272/15127*15127^(13/20) 2971215068472349 a001 86267571272/271443*24476^(19/21) 2971215068472456 a001 53316291173/103682*24476^(6/7) 2971215068506791 a001 317811*24476^(19/21) 2971215068507647 a001 591286729879/39603*24476^(11/21) 2971215068511816 a001 591286729879/1860498*24476^(19/21) 2971215068512549 a001 1548008755920/4870847*24476^(19/21) 2971215068512656 a001 4052739537881/12752043*24476^(19/21) 2971215068512672 a001 1515744265389/4769326*24476^(19/21) 2971215068512682 a001 6557470319842/20633239*24476^(19/21) 2971215068512723 a001 2504730781961/7881196*24476^(19/21) 2971215068513003 a001 956722026041/3010349*24476^(19/21) 2971215068514922 a001 365435296162/1149851*24476^(19/21) 2971215068528078 a001 139583862445/439204*24476^(19/21) 2971215068618248 a001 53316291173/167761*24476^(19/21) 2971215068708524 a001 139583862445/271443*24476^(6/7) 2971215068708631 a001 43133785636/51841*24476^(17/21) 2971215068742966 a001 365435296162/710647*24476^(6/7) 2971215068743822 a001 956722026041/39603*24476^(10/21) 2971215068747991 a001 956722026041/1860498*24476^(6/7) 2971215068748724 a001 2504730781961/4870847*24476^(6/7) 2971215068748831 a001 6557470319842/12752043*24476^(6/7) 2971215068748857 a001 10610209857723/20633239*24476^(6/7) 2971215068748898 a001 4052739537881/7881196*24476^(6/7) 2971215068749178 a001 1548008755920/3010349*24476^(6/7) 2971215068751097 a001 514229*24476^(6/7) 2971215068763932 a001 16261460071345/5473 2971215068764253 a001 225851433717/439204*24476^(6/7) 2971215068854423 a001 86267571272/167761*24476^(6/7) 2971215068944699 a001 75283811239/90481*24476^(17/21) 2971215068944806 a001 139583862445/103682*24476^(16/21) 2971215068979141 a001 591286729879/710647*24476^(17/21) 2971215068979997 a001 516002918640/13201*24476^(3/7) 2971215068984166 a001 832040*24476^(17/21) 2971215068984899 a001 4052739537881/4870847*24476^(17/21) 2971215068985006 a001 3536736619241/4250681*24476^(17/21) 2971215068985073 a001 3278735159921/3940598*24476^(17/21) 2971215068985353 a001 2504730781961/3010349*24476^(17/21) 2971215068987272 a001 956722026041/1149851*24476^(17/21) 2971215069000107 a001 12586269025/64079*24476^(20/21) 2971215069000428 a001 182717648081/219602*24476^(17/21) 2971215069013854 a001 3278735159921/12238*9349^(5/19) 2971215069090597 a001 139583862445/167761*24476^(17/21) 2971215069104620 a001 53316291173/15127*15127^(7/10) 2971215069180874 a001 365435296162/271443*24476^(16/21) 2971215069180981 a001 225851433717/103682*24476^(5/7) 2971215069211145 a001 17711/39603*(1/2+1/2*5^(1/2))^47 2971215069215316 a001 956722026041/710647*24476^(16/21) 2971215069216172 a001 2504730781961/39603*24476^(8/21) 2971215069220341 a001 2504730781961/1860498*24476^(16/21) 2971215069221074 a001 6557470319842/4870847*24476^(16/21) 2971215069221248 a001 10610209857723/7881196*24476^(16/21) 2971215069221528 a001 1346269*24476^(16/21) 2971215069223447 a001 1548008755920/1149851*24476^(16/21) 2971215069236281 a001 20365011074/64079*24476^(19/21) 2971215069236603 a001 591286729879/439204*24476^(16/21) 2971215069326772 a001 225851433717/167761*24476^(16/21) 2971215069417049 a001 591286729879/271443*24476^(5/7) 2971215069417156 a001 182717648081/51841*24476^(2/3) 2971215069451491 a001 1548008755920/710647*24476^(5/7) 2971215069452347 a001 4052739537881/39603*24476^(1/3) 2971215069456516 a001 4052739537881/1860498*24476^(5/7) 2971215069457249 a001 2178309*24476^(5/7) 2971215069457703 a001 6557470319842/3010349*24476^(5/7) 2971215069459622 a001 2504730781961/1149851*24476^(5/7) 2971215069472456 a001 32951280099/64079*24476^(6/7) 2971215069472778 a001 956722026041/439204*24476^(5/7) 2971215069562947 a001 365435296162/167761*24476^(5/7) 2971215069653224 a001 956722026041/271443*24476^(2/3) 2971215069653331 a001 591286729879/103682*24476^(13/21) 2971215069687666 a001 2504730781961/710647*24476^(2/3) 2971215069688522 a001 6557470319842/39603*24476^(2/7) 2971215069692691 a001 3278735159921/930249*24476^(2/3) 2971215069693878 a001 10610209857723/3010349*24476^(2/3) 2971215069695797 a001 4052739537881/1149851*24476^(2/3) 2971215069708631 a001 53316291173/64079*24476^(17/21) 2971215069708953 a001 387002188980/109801*24476^(2/3) 2971215069753850 a001 32951280099/15127*15127^(3/4) 2971215069799122 a001 591286729879/167761*24476^(2/3) 2971215069889399 a001 516002918640/90481*24476^(13/21) 2971215069889506 a001 956722026041/103682*24476^(4/7) 2971215069923841 a001 4052739537881/710647*24476^(13/21) 2971215069924697 a001 3536736619241/13201*24476^(5/21) 2971215069928866 a001 3536736619241/620166*24476^(13/21) 2971215069931972 a001 6557470319842/1149851*24476^(13/21) 2971215069944806 a001 86267571272/64079*24476^(16/21) 2971215069945128 a001 2504730781961/439204*24476^(13/21) 2971215070035297 a001 956722026041/167761*24476^(13/21) 2971215070125574 a001 2504730781961/271443*24476^(4/7) 2971215070125681 a001 774004377960/51841*24476^(11/21) 2971215070160016 a001 6557470319842/710647*24476^(4/7) 2971215070168147 a001 10610209857723/1149851*24476^(4/7) 2971215070180981 a001 139583862445/64079*24476^(5/7) 2971215070181302 a001 4052739537881/439204*24476^(4/7) 2971215070271472 a001 140728068720/15251*24476^(4/7) 2971215070361749 a001 4052739537881/271443*24476^(11/21) 2971215070361856 a001 2504730781961/103682*24476^(10/21) 2971215070381966 a001 85146110271936/28657 2971215070396191 a001 1515744265389/101521*24476^(11/21) 2971215070403080 a001 20365011074/15127*15127^(4/5) 2971215070413427 a001 2971215073/39603*64079^(22/23) 2971215070417156 a001 225851433717/64079*24476^(2/3) 2971215070417477 a001 3278735159921/219602*24476^(11/21) 2971215070444888 a001 1602508992/13201*64079^(21/23) 2971215070476349 a001 7778742049/39603*64079^(20/23) 2971215070507647 a001 2504730781961/167761*24476^(11/21) 2971215070507810 a001 12586269025/39603*64079^(19/23) 2971215070539271 a001 20365011074/39603*64079^(18/23) 2971215070570733 a001 10983760033/13201*64079^(17/23) 2971215070597924 a001 6557470319842/271443*24476^(10/21) 2971215070598031 a001 4052739537881/103682*24476^(3/7) 2971215070602194 a001 53316291173/39603*64079^(16/23) 2971215070633655 a001 86267571272/39603*64079^(15/23) 2971215070653331 a001 365435296162/64079*24476^(13/21) 2971215070653652 a001 10610209857723/439204*24476^(10/21) 2971215070665116 a001 139583862445/39603*64079^(14/23) 2971215070696577 a001 75283811239/13201*64079^(13/23) 2971215070728038 a001 365435296162/39603*64079^(12/23) 2971215070743822 a001 4052739537881/167761*24476^(10/21) 2971215070759499 a001 591286729879/39603*64079^(11/23) 2971215070790961 a001 956722026041/39603*64079^(10/23) 2971215070803018 a001 10610209857723/24476*9349^(4/19) 2971215070822422 a001 516002918640/13201*64079^(9/23) 2971215070829179 a001 17711/103682*14662949395604^(7/9) 2971215070829179 a001 17711/103682*(1/2+1/2*5^(1/2))^49 2971215070829179 a001 17711/103682*505019158607^(7/8) 2971215070829179 a001 15456/13201*45537549124^(15/17) 2971215070829179 a001 15456/13201*312119004989^(9/11) 2971215070829179 a001 15456/13201*14662949395604^(5/7) 2971215070829179 a001 15456/13201*(1/2+1/2*5^(1/2))^45 2971215070829179 a001 15456/13201*192900153618^(5/6) 2971215070829179 a001 15456/13201*28143753123^(9/10) 2971215070829179 a001 15456/13201*10749957122^(15/16) 2971215070834099 a001 3536736619241/90481*24476^(3/7) 2971215070834206 a001 3278735159921/51841*24476^(8/21) 2971215070853883 a001 2504730781961/39603*64079^(8/23) 2971215070885344 a001 4052739537881/39603*64079^(7/23) 2971215070889506 a001 591286729879/64079*24476^(4/7) 2971215070916805 a001 6557470319842/39603*64079^(6/23) 2971215070948266 a001 3536736619241/13201*64079^(5/23) 2971215070979997 a001 6557470319842/167761*24476^(3/7) 2971215071021114 a001 7778742049/39603*167761^(4/5) 2971215071042229 a001 86267571272/39603*167761^(3/5) 2971215071052310 a001 12586269025/15127*15127^(17/20) 2971215071063343 a001 956722026041/39603*167761^(2/5) 2971215071065247 a001 17711/271443*14662949395604^(17/21) 2971215071065247 a001 17711/271443*(1/2+1/2*5^(1/2))^51 2971215071065247 a001 17711/271443*192900153618^(17/18) 2971215071065247 a001 121393/39603*(1/2+1/2*5^(1/2))^43 2971215071070381 a001 225749145909/2206*24476^(1/3) 2971215071084458 a001 3536736619241/13201*167761^(1/5) 2971215071090169 a001 583600121833389/196418 2971215071091881 a001 1134903170/39603*439204^(8/9) 2971215071093592 a001 1602508992/13201*439204^(7/9) 2971215071095304 a001 20365011074/39603*439204^(2/3) 2971215071097015 a001 86267571272/39603*439204^(5/9) 2971215071098727 a001 365435296162/39603*439204^(4/9) 2971215071099689 a001 17711/710647*(1/2+1/2*5^(1/2))^53 2971215071099689 a001 105937/13201*(1/2+1/2*5^(1/2))^41 2971215071100438 a001 516002918640/13201*439204^(1/3) 2971215071102149 a001 6557470319842/39603*439204^(2/9) 2971215071103325 a001 1527884954798392/514229 2971215071104714 a001 17711/1860498*(1/2+1/2*5^(1/2))^55 2971215071104714 a001 17711/1860498*3461452808002^(11/12) 2971215071104714 a001 832040/39603*2537720636^(13/15) 2971215071104714 a001 832040/39603*45537549124^(13/17) 2971215071104714 a001 832040/39603*14662949395604^(13/21) 2971215071104714 a001 832040/39603*(1/2+1/2*5^(1/2))^39 2971215071104714 a001 832040/39603*192900153618^(13/18) 2971215071104714 a001 832040/39603*73681302247^(3/4) 2971215071104714 a001 832040/39603*10749957122^(13/16) 2971215071104714 a001 832040/39603*599074578^(13/14) 2971215071105244 a001 4000054742561787/1346269 2971215071105447 a001 17711/4870847*14662949395604^(19/21) 2971215071105447 a001 17711/4870847*(1/2+1/2*5^(1/2))^57 2971215071105447 a001 726103/13201*(1/2+1/2*5^(1/2))^37 2971215071105524 a001 117666059245921/39602 2971215071105529 a001 63245986/39603*7881196^(10/11) 2971215071105533 a001 267914296/39603*7881196^(9/11) 2971215071105538 a001 1134903170/39603*7881196^(8/11) 2971215071105540 a001 2971215073/39603*7881196^(2/3) 2971215071105542 a001 1602508992/13201*7881196^(7/11) 2971215071105546 a001 20365011074/39603*7881196^(6/11) 2971215071105551 a001 86267571272/39603*7881196^(5/11) 2971215071105554 a001 17711/12752043*(1/2+1/2*5^(1/2))^59 2971215071105554 a001 5702887/39603*2537720636^(7/9) 2971215071105554 a001 5702887/39603*17393796001^(5/7) 2971215071105554 a001 5702887/39603*312119004989^(7/11) 2971215071105554 a001 5702887/39603*14662949395604^(5/9) 2971215071105554 a001 5702887/39603*(1/2+1/2*5^(1/2))^35 2971215071105554 a001 5702887/39603*505019158607^(5/8) 2971215071105554 a001 5702887/39603*28143753123^(7/10) 2971215071105554 a001 5702887/39603*599074578^(5/6) 2971215071105554 a001 5702887/39603*228826127^(7/8) 2971215071105555 a001 365435296162/39603*7881196^(4/11) 2971215071105556 a001 591286729879/39603*7881196^(1/3) 2971215071105559 a001 516002918640/13201*7881196^(3/11) 2971215071105564 a001 6557470319842/39603*7881196^(2/11) 2971215071105565 a001 5483356615219824/1845493 2971215071105566 a001 63245986/39603*20633239^(6/7) 2971215071105567 a001 165580141/39603*20633239^(4/5) 2971215071105567 a001 17711*20633239^(5/7) 2971215071105568 a001 1602508992/13201*20633239^(3/5) 2971215071105568 a001 7778742049/39603*20633239^(4/7) 2971215071105569 a001 86267571272/39603*20633239^(3/7) 2971215071105570 a001 139583862445/39603*20633239^(2/5) 2971215071105570 a001 4976784/13201*141422324^(11/13) 2971215071105570 a001 17711/33385282*(1/2+1/2*5^(1/2))^61 2971215071105570 a001 4976784/13201*2537720636^(11/15) 2971215071105570 a001 4976784/13201*45537549124^(11/17) 2971215071105570 a001 4976784/13201*312119004989^(3/5) 2971215071105570 a001 4976784/13201*14662949395604^(11/21) 2971215071105570 a001 4976784/13201*(1/2+1/2*5^(1/2))^33 2971215071105570 a001 4976784/13201*192900153618^(11/18) 2971215071105570 a001 4976784/13201*10749957122^(11/16) 2971215071105570 a001 4976784/13201*1568397607^(3/4) 2971215071105570 a001 4976784/13201*599074578^(11/14) 2971215071105570 a001 956722026041/39603*20633239^(2/7) 2971215071105571 a001 4052739537881/39603*20633239^(1/5) 2971215071105571 a001 71778069955410391/24157817 2971215071105571 a001 3536736619241/13201*20633239^(1/7) 2971215071105572 a001 39088169/39603*(1/2+1/2*5^(1/2))^31 2971215071105572 a001 39088169/39603*9062201101803^(1/2) 2971215071105572 a001 4976784/13201*33385282^(11/12) 2971215071105572 a001 187917426790132053/63245986 2971215071105572 a001 267914296/39603*141422324^(9/13) 2971215071105572 a001 433494437/39603*141422324^(2/3) 2971215071105572 a001 1134903170/39603*141422324^(8/13) 2971215071105572 a001 1602508992/13201*141422324^(7/13) 2971215071105572 a001 20365011074/39603*141422324^(6/13) 2971215071105572 a001 86267571272/39603*141422324^(5/13) 2971215071105572 a001 34111385/13201*(1/2+1/2*5^(1/2))^29 2971215071105572 a001 34111385/13201*1322157322203^(1/2) 2971215071105572 a001 75283811239/13201*141422324^(1/3) 2971215071105572 a001 365435296162/39603*141422324^(4/13) 2971215071105572 a001 516002918640/13201*141422324^(3/13) 2971215071105572 a001 6557470319842/39603*141422324^(2/13) 2971215071105572 a001 267914296/39603*2537720636^(3/5) 2971215071105572 a001 267914296/39603*45537549124^(9/17) 2971215071105572 a001 267914296/39603*817138163596^(9/19) 2971215071105572 a001 267914296/39603*14662949395604^(3/7) 2971215071105572 a001 267914296/39603*(1/2+1/2*5^(1/2))^27 2971215071105572 a001 267914296/39603*192900153618^(1/2) 2971215071105572 a001 267914296/39603*10749957122^(9/16) 2971215071105572 a001 267914296/39603*599074578^(9/14) 2971215071105572 a001 17711*2537720636^(5/9) 2971215071105572 a001 17711*312119004989^(5/11) 2971215071105572 a001 17711*(1/2+1/2*5^(1/2))^25 2971215071105572 a001 17711*3461452808002^(5/12) 2971215071105572 a001 17711*28143753123^(1/2) 2971215071105572 a001 1602508992/13201*2537720636^(7/15) 2971215071105572 a001 7778742049/39603*2537720636^(4/9) 2971215071105572 a001 20365011074/39603*2537720636^(2/5) 2971215071105572 a001 1836311903/39603*(1/2+1/2*5^(1/2))^23 2971215071105572 a001 86267571272/39603*2537720636^(1/3) 2971215071105572 a001 365435296162/39603*2537720636^(4/15) 2971215071105572 a001 956722026041/39603*2537720636^(2/9) 2971215071105572 a001 516002918640/13201*2537720636^(1/5) 2971215071105572 a001 1836311903/39603*4106118243^(1/2) 2971215071105572 a001 6557470319842/39603*2537720636^(2/15) 2971215071105572 a001 3536736619241/13201*2537720636^(1/9) 2971215071105572 a001 1602508992/13201*17393796001^(3/7) 2971215071105572 a001 1602508992/13201*45537549124^(7/17) 2971215071105572 a001 1602508992/13201*14662949395604^(1/3) 2971215071105572 a001 1602508992/13201*(1/2+1/2*5^(1/2))^21 2971215071105572 a001 1602508992/13201*192900153618^(7/18) 2971215071105572 a001 1602508992/13201*10749957122^(7/16) 2971215071105572 a001 12586269025/39603*817138163596^(1/3) 2971215071105572 a001 12586269025/39603*(1/2+1/2*5^(1/2))^19 2971215071105572 a001 139583862445/39603*17393796001^(2/7) 2971215071105572 a001 4052739537881/39603*17393796001^(1/7) 2971215071105572 a001 10983760033/13201*45537549124^(1/3) 2971215071105572 a001 10983760033/13201*(1/2+1/2*5^(1/2))^17 2971215071105572 a001 86267571272/39603*45537549124^(5/17) 2971215071105572 a001 365435296162/39603*45537549124^(4/17) 2971215071105572 a001 516002918640/13201*45537549124^(3/17) 2971215071105572 a001 6557470319842/39603*45537549124^(2/17) 2971215071105572 a001 86267571272/39603*312119004989^(3/11) 2971215071105572 a001 86267571272/39603*(1/2+1/2*5^(1/2))^15 2971215071105572 a001 75283811239/13201*(1/2+1/2*5^(1/2))^13 2971215071105572 a001 3536736619241/13201*312119004989^(1/11) 2971215071105572 a001 4052739537881/39603*(1/2+1/2*5^(1/2))^7 2971215071105572 a001 3536736619241/13201*(1/2+1/2*5^(1/2))^5 2971215071105572 a001 2504730781961/39603*(1/2+1/2*5^(1/2))^8 2971215071105572 a001 2504730781961/39603*23725150497407^(1/8) 2971215071105572 a001 956722026041/39603*(1/2+1/2*5^(1/2))^10 2971215071105572 a001 2504730781961/39603*505019158607^(1/7) 2971215071105572 a001 365435296162/39603*14662949395604^(4/21) 2971215071105572 a001 139583862445/39603*14662949395604^(2/9) 2971215071105572 a001 139583862445/39603*(1/2+1/2*5^(1/2))^14 2971215071105572 a001 139583862445/39603*505019158607^(1/4) 2971215071105572 a001 2504730781961/39603*73681302247^(2/13) 2971215071105572 a001 75283811239/13201*73681302247^(1/4) 2971215071105572 a001 365435296162/39603*73681302247^(3/13) 2971215071105572 a001 53316291173/39603*23725150497407^(1/4) 2971215071105572 a001 3536736619241/13201*28143753123^(1/10) 2971215071105572 a001 53316291173/39603*73681302247^(4/13) 2971215071105572 a001 956722026041/39603*28143753123^(1/5) 2971215071105572 a001 20365011074/39603*45537549124^(6/17) 2971215071105572 a001 86267571272/39603*28143753123^(3/10) 2971215071105572 a001 20365011074/39603*14662949395604^(2/7) 2971215071105572 a001 20365011074/39603*(1/2+1/2*5^(1/2))^18 2971215071105572 a001 20365011074/39603*192900153618^(1/3) 2971215071105572 a001 6557470319842/39603*10749957122^(1/8) 2971215071105572 a001 2504730781961/39603*10749957122^(1/6) 2971215071105572 a001 516002918640/13201*10749957122^(3/16) 2971215071105572 a001 956722026041/39603*10749957122^(5/24) 2971215071105572 a001 365435296162/39603*10749957122^(1/4) 2971215071105572 a001 139583862445/39603*10749957122^(7/24) 2971215071105572 a001 86267571272/39603*10749957122^(5/16) 2971215071105572 a001 53316291173/39603*10749957122^(1/3) 2971215071105572 a001 7778742049/39603*(1/2+1/2*5^(1/2))^20 2971215071105572 a001 7778742049/39603*23725150497407^(5/16) 2971215071105572 a001 7778742049/39603*505019158607^(5/14) 2971215071105572 a001 7778742049/39603*73681302247^(5/13) 2971215071105572 a001 20365011074/39603*10749957122^(3/8) 2971215071105572 a001 7778742049/39603*28143753123^(2/5) 2971215071105572 a001 7778742049/39603*10749957122^(5/12) 2971215071105572 a001 6557470319842/39603*4106118243^(3/23) 2971215071105572 a001 2504730781961/39603*4106118243^(4/23) 2971215071105572 a001 956722026041/39603*4106118243^(5/23) 2971215071105572 a001 365435296162/39603*4106118243^(6/23) 2971215071105572 a001 139583862445/39603*4106118243^(7/23) 2971215071105572 a001 53316291173/39603*4106118243^(8/23) 2971215071105572 a001 2971215073/39603*312119004989^(2/5) 2971215071105572 a001 2971215073/39603*(1/2+1/2*5^(1/2))^22 2971215071105572 a001 20365011074/39603*4106118243^(9/23) 2971215071105572 a001 2971215073/39603*10749957122^(11/24) 2971215071105572 a001 7778742049/39603*4106118243^(10/23) 2971215071105572 a001 2971215073/39603*4106118243^(11/23) 2971215071105572 a001 6557470319842/39603*1568397607^(3/22) 2971215071105572 a001 1134903170/39603*2537720636^(8/15) 2971215071105572 a001 2504730781961/39603*1568397607^(2/11) 2971215071105572 a001 956722026041/39603*1568397607^(5/22) 2971215071105572 a001 591286729879/39603*1568397607^(1/4) 2971215071105572 a001 365435296162/39603*1568397607^(3/11) 2971215071105572 a001 139583862445/39603*1568397607^(7/22) 2971215071105572 a001 53316291173/39603*1568397607^(4/11) 2971215071105572 a001 1134903170/39603*45537549124^(8/17) 2971215071105572 a001 1134903170/39603*14662949395604^(8/21) 2971215071105572 a001 1134903170/39603*(1/2+1/2*5^(1/2))^24 2971215071105572 a001 1134903170/39603*192900153618^(4/9) 2971215071105572 a001 1134903170/39603*73681302247^(6/13) 2971215071105572 a001 1134903170/39603*10749957122^(1/2) 2971215071105572 a001 20365011074/39603*1568397607^(9/22) 2971215071105572 a001 1134903170/39603*4106118243^(12/23) 2971215071105572 a001 7778742049/39603*1568397607^(5/11) 2971215071105572 a001 2971215073/39603*1568397607^(1/2) 2971215071105572 a001 1134903170/39603*1568397607^(6/11) 2971215071105572 a001 6557470319842/39603*599074578^(1/7) 2971215071105572 a001 4052739537881/39603*599074578^(1/6) 2971215071105572 a001 2504730781961/39603*599074578^(4/21) 2971215071105572 a001 516002918640/13201*599074578^(3/14) 2971215071105572 a001 956722026041/39603*599074578^(5/21) 2971215071105572 a001 365435296162/39603*599074578^(2/7) 2971215071105572 a001 139583862445/39603*599074578^(1/3) 2971215071105572 a001 86267571272/39603*599074578^(5/14) 2971215071105572 a001 53316291173/39603*599074578^(8/21) 2971215071105572 a001 433494437/39603*(1/2+1/2*5^(1/2))^26 2971215071105572 a001 433494437/39603*73681302247^(1/2) 2971215071105572 a001 433494437/39603*10749957122^(13/24) 2971215071105572 a001 433494437/39603*4106118243^(13/23) 2971215071105572 a001 20365011074/39603*599074578^(3/7) 2971215071105572 a001 433494437/39603*1568397607^(13/22) 2971215071105572 a001 7778742049/39603*599074578^(10/21) 2971215071105572 a001 1602508992/13201*599074578^(1/2) 2971215071105572 a001 2971215073/39603*599074578^(11/21) 2971215071105572 a001 1134903170/39603*599074578^(4/7) 2971215071105572 a001 3536736619241/13201*228826127^(1/8) 2971215071105572 a001 433494437/39603*599074578^(13/21) 2971215071105572 a001 6557470319842/39603*228826127^(3/20) 2971215071105572 a001 2504730781961/39603*228826127^(1/5) 2971215071105572 a001 956722026041/39603*228826127^(1/4) 2971215071105572 a001 365435296162/39603*228826127^(3/10) 2971215071105572 a001 139583862445/39603*228826127^(7/20) 2971215071105572 a001 86267571272/39603*228826127^(3/8) 2971215071105572 a001 165580141/39603*17393796001^(4/7) 2971215071105572 a001 165580141/39603*14662949395604^(4/9) 2971215071105572 a001 165580141/39603*(1/2+1/2*5^(1/2))^28 2971215071105572 a001 165580141/39603*73681302247^(7/13) 2971215071105572 a001 165580141/39603*10749957122^(7/12) 2971215071105572 a001 165580141/39603*4106118243^(14/23) 2971215071105572 a001 165580141/39603*1568397607^(7/11) 2971215071105572 a001 53316291173/39603*228826127^(2/5) 2971215071105572 a001 20365011074/39603*228826127^(9/20) 2971215071105572 a001 165580141/39603*599074578^(2/3) 2971215071105572 a001 7778742049/39603*228826127^(1/2) 2971215071105572 a001 2971215073/39603*228826127^(11/20) 2971215071105572 a001 17711*228826127^(5/8) 2971215071105572 a001 63245986/39603*141422324^(10/13) 2971215071105572 a001 1134903170/39603*228826127^(3/5) 2971215071105572 a001 433494437/39603*228826127^(13/20) 2971215071105572 a001 165580141/39603*228826127^(7/10) 2971215071105572 a001 6557470319842/39603*87403803^(3/19) 2971215071105572 a001 2504730781961/39603*87403803^(4/19) 2971215071105572 a001 956722026041/39603*87403803^(5/19) 2971215071105572 a001 365435296162/39603*87403803^(6/19) 2971215071105572 a001 139583862445/39603*87403803^(7/19) 2971215071105572 a001 63245986/39603*2537720636^(2/3) 2971215071105572 a001 63245986/39603*45537549124^(10/17) 2971215071105572 a001 63245986/39603*312119004989^(6/11) 2971215071105572 a001 63245986/39603*14662949395604^(10/21) 2971215071105572 a001 63245986/39603*(1/2+1/2*5^(1/2))^30 2971215071105572 a001 63245986/39603*192900153618^(5/9) 2971215071105572 a001 63245986/39603*28143753123^(3/5) 2971215071105572 a001 63245986/39603*10749957122^(5/8) 2971215071105572 a001 63245986/39603*4106118243^(15/23) 2971215071105572 a001 63245986/39603*1568397607^(15/22) 2971215071105572 a001 63245986/39603*599074578^(5/7) 2971215071105572 a001 53316291173/39603*87403803^(8/19) 2971215071105572 a001 20365011074/39603*87403803^(9/19) 2971215071105573 a001 63245986/39603*228826127^(3/4) 2971215071105573 a001 12586269025/39603*87403803^(1/2) 2971215071105573 a001 7778742049/39603*87403803^(10/19) 2971215071105573 a001 2971215073/39603*87403803^(11/19) 2971215071105573 a001 1134903170/39603*87403803^(12/19) 2971215071105573 a001 433494437/39603*87403803^(13/19) 2971215071105573 a001 165580141/39603*87403803^(14/19) 2971215071105573 a001 116139356834721662/39088169 2971215071105573 a001 6557470319842/39603*33385282^(1/6) 2971215071105573 a001 63245986/39603*87403803^(15/19) 2971215071105573 a001 2504730781961/39603*33385282^(2/9) 2971215071105573 a001 516002918640/13201*33385282^(1/4) 2971215071105573 a001 956722026041/39603*33385282^(5/18) 2971215071105573 a001 365435296162/39603*33385282^(1/3) 2971215071105573 a001 24157817/39603*(1/2+1/2*5^(1/2))^32 2971215071105573 a001 24157817/39603*23725150497407^(1/2) 2971215071105573 a001 24157817/39603*505019158607^(4/7) 2971215071105573 a001 24157817/39603*73681302247^(8/13) 2971215071105573 a001 24157817/39603*10749957122^(2/3) 2971215071105573 a001 24157817/39603*4106118243^(16/23) 2971215071105573 a001 24157817/39603*1568397607^(8/11) 2971215071105573 a001 24157817/39603*599074578^(16/21) 2971215071105573 a001 139583862445/39603*33385282^(7/18) 2971215071105573 a001 24157817/39603*228826127^(4/5) 2971215071105573 a001 86267571272/39603*33385282^(5/12) 2971215071105573 a001 53316291173/39603*33385282^(4/9) 2971215071105574 a001 20365011074/39603*33385282^(1/2) 2971215071105574 a001 24157817/39603*87403803^(16/19) 2971215071105574 a001 7778742049/39603*33385282^(5/9) 2971215071105574 a001 1602508992/13201*33385282^(7/12) 2971215071105574 a001 2971215073/39603*33385282^(11/18) 2971215071105574 a001 1134903170/39603*33385282^(2/3) 2971215071105574 a001 433494437/39603*33385282^(13/18) 2971215071105574 a001 267914296/39603*33385282^(3/4) 2971215071105574 a001 165580141/39603*33385282^(7/9) 2971215071105575 a001 63245986/39603*33385282^(5/6) 2971215071105575 a001 44361286879311271/14930352 2971215071105576 a001 6557470319842/39603*12752043^(3/17) 2971215071105576 a001 24157817/39603*33385282^(8/9) 2971215071105577 a001 2504730781961/39603*12752043^(4/17) 2971215071105578 a001 956722026041/39603*12752043^(5/17) 2971215071105579 a001 365435296162/39603*12752043^(6/17) 2971215071105579 a001 17711/20633239*14662949395604^(20/21) 2971215071105579 a001 17711/20633239*(1/2+1/2*5^(1/2))^60 2971215071105579 a001 9227465/39603*45537549124^(2/3) 2971215071105579 a001 9227465/39603*(1/2+1/2*5^(1/2))^34 2971215071105579 a001 9227465/39603*10749957122^(17/24) 2971215071105579 a001 9227465/39603*4106118243^(17/23) 2971215071105579 a001 9227465/39603*1568397607^(17/22) 2971215071105579 a001 9227465/39603*599074578^(17/21) 2971215071105579 a001 9227465/39603*228826127^(17/20) 2971215071105580 a001 9227465/39603*87403803^(17/19) 2971215071105580 a001 139583862445/39603*12752043^(7/17) 2971215071105581 a001 53316291173/39603*12752043^(8/17) 2971215071105581 a001 10983760033/13201*12752043^(1/2) 2971215071105582 a001 9227465/39603*33385282^(17/18) 2971215071105582 a001 20365011074/39603*12752043^(9/17) 2971215071105583 a001 7778742049/39603*12752043^(10/17) 2971215071105584 a001 2971215073/39603*12752043^(11/17) 2971215071105585 a001 1134903170/39603*12752043^(12/17) 2971215071105586 a001 433494437/39603*12752043^(13/17) 2971215071105587 a001 165580141/39603*12752043^(14/17) 2971215071105589 a001 63245986/39603*12752043^(15/17) 2971215071105591 a001 24157817/39603*12752043^(16/17) 2971215071105591 a001 16944503803212151/5702887 2971215071105596 a001 6557470319842/39603*4870847^(3/16) 2971215071105604 a001 2504730781961/39603*4870847^(1/4) 2971215071105611 a001 956722026041/39603*4870847^(5/16) 2971215071105619 a001 365435296162/39603*4870847^(3/8) 2971215071105620 a001 3524578/39603*141422324^(12/13) 2971215071105620 a001 89/39604*(1/2+1/2*5^(1/2))^58 2971215071105620 a001 3524578/39603*2537720636^(4/5) 2971215071105620 a001 3524578/39603*45537549124^(12/17) 2971215071105620 a001 3524578/39603*14662949395604^(4/7) 2971215071105620 a001 3524578/39603*(1/2+1/2*5^(1/2))^36 2971215071105620 a001 3524578/39603*192900153618^(2/3) 2971215071105620 a001 3524578/39603*73681302247^(9/13) 2971215071105620 a001 3524578/39603*10749957122^(3/4) 2971215071105620 a001 3524578/39603*4106118243^(18/23) 2971215071105620 a001 3524578/39603*1568397607^(9/11) 2971215071105620 a001 3524578/39603*599074578^(6/7) 2971215071105620 a001 3524578/39603*228826127^(9/10) 2971215071105621 a001 3524578/39603*87403803^(18/19) 2971215071105627 a001 139583862445/39603*4870847^(7/16) 2971215071105635 a001 53316291173/39603*4870847^(1/2) 2971215071105643 a001 20365011074/39603*4870847^(9/16) 2971215071105651 a001 7778742049/39603*4870847^(5/8) 2971215071105658 a001 2971215073/39603*4870847^(11/16) 2971215071105666 a001 1134903170/39603*4870847^(3/4) 2971215071105674 a001 433494437/39603*4870847^(13/16) 2971215071105682 a001 165580141/39603*4870847^(7/8) 2971215071105690 a001 63245986/39603*4870847^(15/16) 2971215071105698 a001 6472224530325182/2178309 2971215071105715 a001 3536736619241/13201*1860498^(1/6) 2971215071105744 a001 6557470319842/39603*1860498^(1/5) 2971215071105801 a001 2504730781961/39603*1860498^(4/15) 2971215071105830 a001 516002918640/13201*1860498^(3/10) 2971215071105858 a001 956722026041/39603*1860498^(1/3) 2971215071105900 a001 17711/3010349*14662949395604^(8/9) 2971215071105900 a001 17711/3010349*(1/2+1/2*5^(1/2))^56 2971215071105900 a001 1346269/39603*817138163596^(2/3) 2971215071105900 a001 1346269/39603*(1/2+1/2*5^(1/2))^38 2971215071105900 a001 1346269/39603*10749957122^(19/24) 2971215071105900 a001 1346269/39603*4106118243^(19/23) 2971215071105900 a001 1346269/39603*1568397607^(19/22) 2971215071105900 a001 1346269/39603*599074578^(19/21) 2971215071105900 a001 1346269/39603*228826127^(19/20) 2971215071105916 a001 365435296162/39603*1860498^(2/5) 2971215071105973 a001 139583862445/39603*1860498^(7/15) 2971215071106001 a001 86267571272/39603*1860498^(1/2) 2971215071106030 a001 53316291173/39603*1860498^(8/15) 2971215071106087 a001 20365011074/39603*1860498^(3/5) 2971215071106145 a001 7778742049/39603*1860498^(2/3) 2971215071106173 a001 1602508992/13201*1860498^(7/10) 2971215071106202 a001 2971215073/39603*1860498^(11/15) 2971215071106259 a001 1134903170/39603*1860498^(4/5) 2971215071106288 a001 17711*1860498^(5/6) 2971215071106316 a001 433494437/39603*1860498^(13/15) 2971215071106345 a001 267914296/39603*1860498^(9/10) 2971215071106373 a001 165580141/39603*1860498^(14/15) 2971215071106431 a001 494433957552679/166408 2971215071106833 a001 6557470319842/39603*710647^(3/14) 2971215071107043 a001 4052739537881/39603*710647^(1/4) 2971215071107253 a001 2504730781961/39603*710647^(2/7) 2971215071107674 a001 956722026041/39603*710647^(5/14) 2971215071107820 a001 17711/1149851*14662949395604^(6/7) 2971215071107820 a001 17711/1149851*(1/2+1/2*5^(1/2))^54 2971215071107820 a001 514229/39603*2537720636^(8/9) 2971215071107820 a001 514229/39603*312119004989^(8/11) 2971215071107820 a001 514229/39603*(1/2+1/2*5^(1/2))^40 2971215071107820 a001 514229/39603*23725150497407^(5/8) 2971215071107820 a001 514229/39603*73681302247^(10/13) 2971215071107820 a001 514229/39603*28143753123^(4/5) 2971215071107820 a001 514229/39603*10749957122^(5/6) 2971215071107820 a001 514229/39603*4106118243^(20/23) 2971215071107820 a001 514229/39603*1568397607^(10/11) 2971215071107820 a001 514229/39603*599074578^(20/21) 2971215071108094 a001 365435296162/39603*710647^(3/7) 2971215071108514 a001 139583862445/39603*710647^(1/2) 2971215071108934 a001 53316291173/39603*710647^(4/7) 2971215071109354 a001 20365011074/39603*710647^(9/14) 2971215071109775 a001 7778742049/39603*710647^(5/7) 2971215071109985 a001 1602508992/13201*710647^(3/4) 2971215071110195 a001 2971215073/39603*710647^(11/14) 2971215071110615 a001 1134903170/39603*710647^(6/7) 2971215071111035 a001 433494437/39603*710647^(13/14) 2971215071111456 a001 944284832965003/317811 2971215071114878 a001 6557470319842/39603*271443^(3/13) 2971215071117980 a001 2504730781961/39603*271443^(4/13) 2971215071120975 a001 17711/439204*(1/2+1/2*5^(1/2))^52 2971215071120975 a001 17711/439204*23725150497407^(13/16) 2971215071120975 a001 17711/439204*505019158607^(13/14) 2971215071120975 a001 196418/39603*2537720636^(14/15) 2971215071120975 a001 196418/39603*17393796001^(6/7) 2971215071120975 a001 196418/39603*45537549124^(14/17) 2971215071120975 a001 196418/39603*14662949395604^(2/3) 2971215071120975 a001 196418/39603*(1/2+1/2*5^(1/2))^42 2971215071120975 a001 196418/39603*505019158607^(3/4) 2971215071120975 a001 196418/39603*192900153618^(7/9) 2971215071120975 a001 196418/39603*10749957122^(7/8) 2971215071120975 a001 196418/39603*4106118243^(21/23) 2971215071120975 a001 196418/39603*1568397607^(21/22) 2971215071121082 a001 956722026041/39603*271443^(5/13) 2971215071124184 a001 365435296162/39603*271443^(6/13) 2971215071125681 a001 956722026041/64079*24476^(11/21) 2971215071125735 a001 75283811239/13201*271443^(1/2) 2971215071127286 a001 139583862445/39603*271443^(7/13) 2971215071130388 a001 53316291173/39603*271443^(8/13) 2971215071133490 a001 20365011074/39603*271443^(9/13) 2971215071136592 a001 7778742049/39603*271443^(10/13) 2971215071139694 a001 2971215073/39603*271443^(11/13) 2971215071142796 a001 1134903170/39603*271443^(12/13) 2971215071145898 a001 360684711131614/121393 2971215071163154 a001 3536736619241/13201*103682^(5/24) 2971215071174671 a001 6557470319842/39603*103682^(1/4) 2971215071186187 a001 4052739537881/39603*103682^(7/24) 2971215071197703 a001 2504730781961/39603*103682^(1/3) 2971215071209220 a001 516002918640/13201*103682^(3/8) 2971215071211145 a001 17711/167761*312119004989^(10/11) 2971215071211145 a001 17711/167761*(1/2+1/2*5^(1/2))^50 2971215071211145 a001 17711/167761*3461452808002^(5/6) 2971215071211145 a001 75025/39603*312119004989^(4/5) 2971215071211145 a001 75025/39603*(1/2+1/2*5^(1/2))^44 2971215071211145 a001 75025/39603*23725150497407^(11/16) 2971215071211145 a001 75025/39603*73681302247^(11/13) 2971215071211145 a001 75025/39603*10749957122^(11/12) 2971215071211145 a001 75025/39603*4106118243^(22/23) 2971215071216172 a001 10610209857723/167761*24476^(8/21) 2971215071220736 a001 956722026041/39603*103682^(5/12) 2971215071232253 a001 591286729879/39603*103682^(11/24) 2971215071243769 a001 365435296162/39603*103682^(1/2) 2971215071255285 a001 75283811239/13201*103682^(13/24) 2971215071266802 a001 139583862445/39603*103682^(7/12) 2971215071278318 a001 86267571272/39603*103682^(5/8) 2971215071289834 a001 53316291173/39603*103682^(2/3) 2971215071301351 a001 10983760033/13201*103682^(17/24) 2971215071312867 a001 20365011074/39603*103682^(3/4) 2971215071324384 a001 12586269025/39603*103682^(19/24) 2971215071335900 a001 7778742049/39603*103682^(5/6) 2971215071347416 a001 1602508992/13201*103682^(7/8) 2971215071358933 a001 2971215073/39603*103682^(11/12) 2971215071361856 a001 1548008755920/64079*24476^(10/21) 2971215071370449 a001 1836311903/39603*103682^(23/24) 2971215071381966 a001 137769300429839/46368 2971215071536124 a001 3536736619241/13201*39603^(5/22) 2971215071598031 a001 2504730781961/64079*24476^(3/7) 2971215071622234 a001 6557470319842/39603*39603^(3/11) 2971215071701540 a001 7778742049/15127*15127^(9/10) 2971215071708345 a001 4052739537881/39603*39603^(7/22) 2971215071794455 a001 2504730781961/39603*39603^(4/11) 2971215071829179 a001 17711/64079*45537549124^(16/17) 2971215071829179 a001 17711/64079*14662949395604^(16/21) 2971215071829179 a001 17711/64079*(1/2+1/2*5^(1/2))^48 2971215071829179 a001 17711/64079*192900153618^(8/9) 2971215071829179 a001 17711/64079*73681302247^(12/13) 2971215071829179 a001 28657/39603*(1/2+1/2*5^(1/2))^46 2971215071829179 a001 28657/39603*10749957122^(23/24) 2971215071834206 a001 4052739537881/64079*24476^(8/21) 2971215071880565 a001 516002918640/13201*39603^(9/22) 2971215071966676 a001 956722026041/39603*39603^(5/11) 2971215072031461 a001 7778742049/103682*64079^(22/23) 2971215072052786 a001 591286729879/39603*39603^(1/2) 2971215072062922 a001 12586269025/103682*64079^(21/23) 2971215072070381 a001 6557470319842/64079*24476^(1/3) 2971215072094383 a001 10182505537/51841*64079^(20/23) 2971215072125844 a001 32951280099/103682*64079^(19/23) 2971215072138896 a001 365435296162/39603*39603^(6/11) 2971215072157305 a001 53316291173/103682*64079^(18/23) 2971215072188766 a001 43133785636/51841*64079^(17/23) 2971215072220228 a001 139583862445/103682*64079^(16/23) 2971215072225007 a001 75283811239/13201*39603^(13/22) 2971215072236067 a001 85146110325069/28657 2971215072251689 a001 225851433717/103682*64079^(15/23) 2971215072267529 a001 20365011074/271443*64079^(22/23) 2971215072270509 a001 85146110326056/28657 2971215072275534 a001 85146110326200/28657 2971215072276267 a001 85146110326221/28657 2971215072276372 a001 85146110326224/28657 2971215072276407 a001 85146110326225/28657 2971215072276442 a001 85146110326226/28657 2971215072276721 a001 85146110326234/28657 2971215072278640 a001 85146110326289/28657 2971215072283150 a001 182717648081/51841*64079^(14/23) 2971215072291796 a001 85146110326666/28657 2971215072298990 a001 121393*64079^(21/23) 2971215072301970 a001 53316291173/710647*64079^(22/23) 2971215072306556 a001 10610209857723/64079*24476^(2/7) 2971215072306995 a001 139583862445/1860498*64079^(22/23) 2971215072307729 a001 365435296162/4870847*64079^(22/23) 2971215072307836 a001 956722026041/12752043*64079^(22/23) 2971215072307851 a001 2504730781961/33385282*64079^(22/23) 2971215072307853 a001 6557470319842/87403803*64079^(22/23) 2971215072307854 a001 10610209857723/141422324*64079^(22/23) 2971215072307855 a001 4052739537881/54018521*64079^(22/23) 2971215072307861 a001 140728068720/1875749*64079^(22/23) 2971215072307902 a001 591286729879/7881196*64079^(22/23) 2971215072308182 a001 225851433717/3010349*64079^(22/23) 2971215072310101 a001 86267571272/1149851*64079^(22/23) 2971215072311117 a001 139583862445/39603*39603^(7/11) 2971215072314611 a001 591286729879/103682*64079^(13/23) 2971215072323257 a001 32951280099/439204*64079^(22/23) 2971215072330451 a001 53316291173/271443*64079^(20/23) 2971215072333432 a001 86267571272/710647*64079^(21/23) 2971215072338457 a001 75283811239/620166*64079^(21/23) 2971215072339190 a001 591286729879/4870847*64079^(21/23) 2971215072339297 a001 516002918640/4250681*64079^(21/23) 2971215072339312 a001 4052739537881/33385282*64079^(21/23) 2971215072339315 a001 3536736619241/29134601*64079^(21/23) 2971215072339316 a001 6557470319842/54018521*64079^(21/23) 2971215072339322 a001 2504730781961/20633239*64079^(21/23) 2971215072339363 a001 956722026041/7881196*64079^(21/23) 2971215072339643 a001 365435296162/3010349*64079^(21/23) 2971215072341562 a001 139583862445/1149851*64079^(21/23) 2971215072346072 a001 956722026041/103682*64079^(12/23) 2971215072350770 a001 686789568/2161*15127^(19/20) 2971215072354718 a001 53316291173/439204*64079^(21/23) 2971215072361912 a001 86267571272/271443*64079^(19/23) 2971215072364893 a001 139583862445/710647*64079^(20/23) 2971215072369918 a001 182717648081/930249*64079^(20/23) 2971215072370651 a001 956722026041/4870847*64079^(20/23) 2971215072370758 a001 2504730781961/12752043*64079^(20/23) 2971215072370774 a001 3278735159921/16692641*64079^(20/23) 2971215072370777 a001 10610209857723/54018521*64079^(20/23) 2971215072370783 a001 4052739537881/20633239*64079^(20/23) 2971215072370824 a001 387002188980/1970299*64079^(20/23) 2971215072371104 a001 591286729879/3010349*64079^(20/23) 2971215072373023 a001 225851433717/1149851*64079^(20/23) 2971215072377533 a001 774004377960/51841*64079^(11/23) 2971215072381966 a001 85146110329250/28657 2971215072386179 a001 196418*64079^(20/23) 2971215072393373 a001 139583862445/271443*64079^(18/23) 2971215072396354 a001 317811*64079^(19/23) 2971215072397227 a001 86267571272/39603*39603^(15/22) 2971215072401379 a001 591286729879/1860498*64079^(19/23) 2971215072402112 a001 1548008755920/4870847*64079^(19/23) 2971215072402219 a001 4052739537881/12752043*64079^(19/23) 2971215072402235 a001 1515744265389/4769326*64079^(19/23) 2971215072402244 a001 6557470319842/20633239*64079^(19/23) 2971215072402285 a001 2504730781961/7881196*64079^(19/23) 2971215072402565 a001 956722026041/3010349*64079^(19/23) 2971215072404485 a001 365435296162/1149851*64079^(19/23) 2971215072408995 a001 2504730781961/103682*64079^(10/23) 2971215072413427 a001 75025*64079^(22/23) 2971215072417640 a001 139583862445/439204*64079^(19/23) 2971215072424834 a001 75283811239/90481*64079^(17/23) 2971215072427815 a001 365435296162/710647*64079^(18/23) 2971215072432840 a001 956722026041/1860498*64079^(18/23) 2971215072433573 a001 2504730781961/4870847*64079^(18/23) 2971215072433680 a001 6557470319842/12752043*64079^(18/23) 2971215072433706 a001 10610209857723/20633239*64079^(18/23) 2971215072433746 a001 4052739537881/7881196*64079^(18/23) 2971215072434026 a001 1548008755920/3010349*64079^(18/23) 2971215072435946 a001 514229*64079^(18/23) 2971215072440456 a001 4052739537881/103682*64079^(9/23) 2971215072444888 a001 20365011074/167761*64079^(21/23) 2971215072447213 a001 23184/51841*(1/2+1/2*5^(1/2))^47 2971215072449101 a001 225851433717/439204*64079^(18/23) 2971215072456296 a001 365435296162/271443*64079^(16/23) 2971215072459276 a001 591286729879/710647*64079^(17/23) 2971215072464301 a001 832040*64079^(17/23) 2971215072465034 a001 4052739537881/4870847*64079^(17/23) 2971215072465141 a001 3536736619241/4250681*64079^(17/23) 2971215072465208 a001 3278735159921/3940598*64079^(17/23) 2971215072465488 a001 2504730781961/3010349*64079^(17/23) 2971215072467407 a001 956722026041/1149851*64079^(17/23) 2971215072471917 a001 3278735159921/51841*64079^(8/23) 2971215072476349 a001 32951280099/167761*64079^(20/23) 2971215072480563 a001 182717648081/219602*64079^(17/23) 2971215072483338 a001 53316291173/39603*39603^(8/11) 2971215072487757 a001 591286729879/271443*64079^(15/23) 2971215072490737 a001 956722026041/710647*64079^(16/23) 2971215072495762 a001 2504730781961/1860498*64079^(16/23) 2971215072496496 a001 6557470319842/4870847*64079^(16/23) 2971215072496669 a001 10610209857723/7881196*64079^(16/23) 2971215072496949 a001 1346269*64079^(16/23) 2971215072498868 a001 1548008755920/1149851*64079^(16/23) 2971215072503378 a001 225749145909/2206*64079^(7/23) 2971215072507810 a001 53316291173/167761*64079^(19/23) 2971215072512024 a001 591286729879/439204*64079^(16/23) 2971215072519218 a001 956722026041/271443*64079^(14/23) 2971215072522199 a001 1548008755920/710647*64079^(15/23) 2971215072527224 a001 4052739537881/1860498*64079^(15/23) 2971215072527957 a001 2178309*64079^(15/23) 2971215072528410 a001 6557470319842/3010349*64079^(15/23) 2971215072530329 a001 2504730781961/1149851*64079^(15/23) 2971215072539271 a001 86267571272/167761*64079^(18/23) 2971215072543485 a001 956722026041/439204*64079^(15/23) 2971215072550679 a001 516002918640/90481*64079^(13/23) 2971215072553660 a001 2504730781961/710647*64079^(14/23) 2971215072558685 a001 3278735159921/930249*64079^(14/23) 2971215072559871 a001 10610209857723/3010349*64079^(14/23) 2971215072561790 a001 4052739537881/1149851*64079^(14/23) 2971215072569448 a001 10983760033/13201*39603^(17/22) 2971215072570733 a001 139583862445/167761*64079^(17/23) 2971215072574946 a001 387002188980/109801*64079^(14/23) 2971215072582140 a001 2504730781961/271443*64079^(12/23) 2971215072585121 a001 4052739537881/710647*64079^(13/23) 2971215072590146 a001 3536736619241/620166*64079^(13/23) 2971215072593252 a001 6557470319842/1149851*64079^(13/23) 2971215072602194 a001 225851433717/167761*64079^(16/23) 2971215072606407 a001 2504730781961/439204*64079^(13/23) 2971215072613601 a001 4052739537881/271443*64079^(11/23) 2971215072616582 a001 6557470319842/710647*64079^(12/23) 2971215072618033 a001 222915410823168/75025 2971215072624713 a001 10610209857723/1149851*64079^(12/23) 2971215072633655 a001 365435296162/167761*64079^(15/23) 2971215072637868 a001 4052739537881/439204*64079^(12/23) 2971215072639148 a001 10182505537/51841*167761^(4/5) 2971215072645063 a001 6557470319842/271443*64079^(10/23) 2971215072648043 a001 1515744265389/101521*64079^(11/23) 2971215072655558 a001 20365011074/39603*39603^(9/11) 2971215072660263 a001 225851433717/103682*167761^(3/5) 2971215072665116 a001 591286729879/167761*64079^(14/23) 2971215072669330 a001 3278735159921/219602*64079^(11/23) 2971215072676524 a001 3536736619241/90481*64079^(9/23) 2971215072681377 a001 2504730781961/103682*167761^(2/5) 2971215072683281 a001 15456/90481*14662949395604^(7/9) 2971215072683281 a001 15456/90481*(1/2+1/2*5^(1/2))^49 2971215072683281 a001 15456/90481*505019158607^(7/8) 2971215072683281 a001 121393/103682*45537549124^(15/17) 2971215072683281 a001 121393/103682*312119004989^(9/11) 2971215072683281 a001 121393/103682*14662949395604^(5/7) 2971215072683281 a001 121393/103682*(1/2+1/2*5^(1/2))^45 2971215072683281 a001 121393/103682*192900153618^(5/6) 2971215072683281 a001 121393/103682*28143753123^(9/10) 2971215072683281 a001 121393/103682*10749957122^(15/16) 2971215072696577 a001 956722026041/167761*64079^(13/23) 2971215072700791 a001 10610209857723/439204*64079^(10/23) 2971215072708203 a001 291800061075600/98209 2971215072709915 a001 2971215073/103682*439204^(8/9) 2971215072711626 a001 12586269025/103682*439204^(7/9) 2971215072713338 a001 53316291173/103682*439204^(2/3) 2971215072715049 a001 225851433717/103682*439204^(5/9) 2971215072716761 a001 956722026041/103682*439204^(4/9) 2971215072717723 a001 6624/101521*817138163596^(17/19) 2971215072717723 a001 6624/101521*14662949395604^(17/21) 2971215072717723 a001 6624/101521*(1/2+1/2*5^(1/2))^51 2971215072717723 a001 6624/101521*192900153618^(17/18) 2971215072717723 a001 317811/103682*(1/2+1/2*5^(1/2))^43 2971215072718472 a001 4052739537881/103682*439204^(1/3) 2971215072721359 a001 1527884955630432/514229 2971215072722748 a001 2576/103361*(1/2+1/2*5^(1/2))^53 2971215072722748 a001 416020/51841*(1/2+1/2*5^(1/2))^41 2971215072723278 a001 4000054744740096/1346269 2971215072723481 a001 46347/2206*2537720636^(13/15) 2971215072723481 a001 46368/4870847*(1/2+1/2*5^(1/2))^55 2971215072723481 a001 46368/4870847*3461452808002^(11/12) 2971215072723481 a001 46347/2206*45537549124^(13/17) 2971215072723481 a001 46347/2206*14662949395604^(13/21) 2971215072723481 a001 46347/2206*(1/2+1/2*5^(1/2))^39 2971215072723481 a001 46347/2206*192900153618^(13/18) 2971215072723481 a001 46347/2206*73681302247^(3/4) 2971215072723481 a001 46347/2206*10749957122^(13/16) 2971215072723481 a001 46347/2206*599074578^(13/14) 2971215072723558 a001 5236139639294928/1762289 2971215072723563 a001 165580141/103682*7881196^(10/11) 2971215072723567 a001 701408733/103682*7881196^(9/11) 2971215072723572 a001 2971215073/103682*7881196^(8/11) 2971215072723574 a001 7778742049/103682*7881196^(2/3) 2971215072723576 a001 12586269025/103682*7881196^(7/11) 2971215072723580 a001 53316291173/103682*7881196^(6/11) 2971215072723585 a001 225851433717/103682*7881196^(5/11) 2971215072723588 a001 15456/4250681*14662949395604^(19/21) 2971215072723588 a001 15456/4250681*(1/2+1/2*5^(1/2))^57 2971215072723588 a001 5702887/103682*(1/2+1/2*5^(1/2))^37 2971215072723589 a001 956722026041/103682*7881196^(4/11) 2971215072723590 a001 774004377960/51841*7881196^(1/3) 2971215072723593 a001 4052739537881/103682*7881196^(3/11) 2971215072723599 a001 27416783091029472/9227465 2971215072723600 a001 165580141/103682*20633239^(6/7) 2971215072723601 a001 433494437/103682*20633239^(4/5) 2971215072723601 a001 1836311903/103682*20633239^(5/7) 2971215072723602 a001 12586269025/103682*20633239^(3/5) 2971215072723602 a001 10182505537/51841*20633239^(4/7) 2971215072723603 a001 225851433717/103682*20633239^(3/7) 2971215072723604 a001 182717648081/51841*20633239^(2/5) 2971215072723604 a001 7465176/51841*2537720636^(7/9) 2971215072723604 a001 144/103681*(1/2+1/2*5^(1/2))^59 2971215072723604 a001 7465176/51841*17393796001^(5/7) 2971215072723604 a001 7465176/51841*312119004989^(7/11) 2971215072723604 a001 7465176/51841*14662949395604^(5/9) 2971215072723604 a001 7465176/51841*(1/2+1/2*5^(1/2))^35 2971215072723604 a001 7465176/51841*505019158607^(5/8) 2971215072723604 a001 7465176/51841*28143753123^(7/10) 2971215072723604 a001 7465176/51841*599074578^(5/6) 2971215072723604 a001 7465176/51841*228826127^(7/8) 2971215072723604 a001 2504730781961/103682*20633239^(2/7) 2971215072723605 a001 225749145909/2206*20633239^(1/5) 2971215072723605 a001 71778069994498560/24157817 2971215072723606 a001 39088169/103682*141422324^(11/13) 2971215072723606 a001 39088169/103682*2537720636^(11/15) 2971215072723606 a001 39088169/103682*45537549124^(11/17) 2971215072723606 a001 39088169/103682*312119004989^(3/5) 2971215072723606 a001 39088169/103682*817138163596^(11/19) 2971215072723606 a001 39088169/103682*14662949395604^(11/21) 2971215072723606 a001 39088169/103682*(1/2+1/2*5^(1/2))^33 2971215072723606 a001 39088169/103682*192900153618^(11/18) 2971215072723606 a001 39088169/103682*10749957122^(11/16) 2971215072723606 a001 39088169/103682*1568397607^(3/4) 2971215072723606 a001 39088169/103682*599074578^(11/14) 2971215072723606 a001 93958713446233104/31622993 2971215072723606 a001 701408733/103682*141422324^(9/13) 2971215072723606 a001 567451585/51841*141422324^(2/3) 2971215072723606 a001 165580141/103682*141422324^(10/13) 2971215072723606 a001 2971215073/103682*141422324^(8/13) 2971215072723606 a001 12586269025/103682*141422324^(7/13) 2971215072723606 a001 53316291173/103682*141422324^(6/13) 2971215072723606 a001 225851433717/103682*141422324^(5/13) 2971215072723606 a001 102334155/103682*(1/2+1/2*5^(1/2))^31 2971215072723606 a001 102334155/103682*9062201101803^(1/2) 2971215072723606 a001 591286729879/103682*141422324^(1/3) 2971215072723606 a001 956722026041/103682*141422324^(4/13) 2971215072723606 a001 4052739537881/103682*141422324^(3/13) 2971215072723606 a001 491974210682900064/165580141 2971215072723606 a001 133957148/51841*(1/2+1/2*5^(1/2))^29 2971215072723606 a001 133957148/51841*1322157322203^(1/2) 2971215072723606 a001 701408733/103682*2537720636^(3/5) 2971215072723606 a001 701408733/103682*45537549124^(9/17) 2971215072723606 a001 701408733/103682*817138163596^(9/19) 2971215072723606 a001 701408733/103682*14662949395604^(3/7) 2971215072723606 a001 701408733/103682*(1/2+1/2*5^(1/2))^27 2971215072723606 a001 701408733/103682*192900153618^(1/2) 2971215072723606 a001 701408733/103682*10749957122^(9/16) 2971215072723606 a001 1836311903/103682*2537720636^(5/9) 2971215072723606 a001 12586269025/103682*2537720636^(7/15) 2971215072723606 a001 10182505537/51841*2537720636^(4/9) 2971215072723606 a001 53316291173/103682*2537720636^(2/5) 2971215072723606 a001 2971215073/103682*2537720636^(8/15) 2971215072723606 a001 1836311903/103682*312119004989^(5/11) 2971215072723606 a001 1836311903/103682*(1/2+1/2*5^(1/2))^25 2971215072723606 a001 1836311903/103682*3461452808002^(5/12) 2971215072723606 a001 1836311903/103682*28143753123^(1/2) 2971215072723606 a001 225851433717/103682*2537720636^(1/3) 2971215072723606 a001 956722026041/103682*2537720636^(4/15) 2971215072723606 a001 2504730781961/103682*2537720636^(2/9) 2971215072723606 a001 4052739537881/103682*2537720636^(1/5) 2971215072723606 a001 46368*(1/2+1/2*5^(1/2))^23 2971215072723606 a001 12586269025/103682*17393796001^(3/7) 2971215072723606 a001 12586269025/103682*45537549124^(7/17) 2971215072723606 a001 12586269025/103682*14662949395604^(1/3) 2971215072723606 a001 12586269025/103682*(1/2+1/2*5^(1/2))^21 2971215072723606 a001 12586269025/103682*192900153618^(7/18) 2971215072723606 a001 182717648081/51841*17393796001^(2/7) 2971215072723606 a001 225749145909/2206*17393796001^(1/7) 2971215072723606 a001 32951280099/103682*817138163596^(1/3) 2971215072723606 a001 32951280099/103682*(1/2+1/2*5^(1/2))^19 2971215072723606 a001 225851433717/103682*45537549124^(5/17) 2971215072723606 a001 956722026041/103682*45537549124^(4/17) 2971215072723606 a001 53316291173/103682*45537549124^(6/17) 2971215072723606 a001 4052739537881/103682*45537549124^(3/17) 2971215072723606 a001 43133785636/51841*(1/2+1/2*5^(1/2))^17 2971215072723606 a001 225851433717/103682*312119004989^(3/11) 2971215072723606 a001 225851433717/103682*14662949395604^(5/21) 2971215072723606 a001 225851433717/103682*(1/2+1/2*5^(1/2))^15 2971215072723606 a001 774004377960/51841*(1/2+1/2*5^(1/2))^11 2971215072723606 a001 4052739537881/103682*(1/2+1/2*5^(1/2))^9 2971215072723606 a001 225749145909/2206*(1/2+1/2*5^(1/2))^7 2971215072723606 a001 3278735159921/51841*(1/2+1/2*5^(1/2))^8 2971215072723606 a001 2504730781961/103682*(1/2+1/2*5^(1/2))^10 2971215072723606 a001 956722026041/103682*(1/2+1/2*5^(1/2))^12 2971215072723606 a001 182717648081/51841*14662949395604^(2/9) 2971215072723606 a001 182717648081/51841*(1/2+1/2*5^(1/2))^14 2971215072723606 a001 225851433717/103682*192900153618^(5/18) 2971215072723606 a001 4052739537881/103682*192900153618^(1/6) 2971215072723606 a001 139583862445/103682*(1/2+1/2*5^(1/2))^16 2971215072723606 a001 139583862445/103682*23725150497407^(1/4) 2971215072723606 a001 3278735159921/51841*73681302247^(2/13) 2971215072723606 a001 956722026041/103682*73681302247^(3/13) 2971215072723606 a001 591286729879/103682*73681302247^(1/4) 2971215072723606 a001 139583862445/103682*73681302247^(4/13) 2971215072723606 a001 53316291173/103682*(1/2+1/2*5^(1/2))^18 2971215072723606 a001 53316291173/103682*192900153618^(1/3) 2971215072723606 a001 2504730781961/103682*28143753123^(1/5) 2971215072723606 a001 225851433717/103682*28143753123^(3/10) 2971215072723606 a001 10182505537/51841*(1/2+1/2*5^(1/2))^20 2971215072723606 a001 10182505537/51841*23725150497407^(5/16) 2971215072723606 a001 10182505537/51841*505019158607^(5/14) 2971215072723606 a001 10182505537/51841*73681302247^(5/13) 2971215072723606 a001 10182505537/51841*28143753123^(2/5) 2971215072723606 a001 3278735159921/51841*10749957122^(1/6) 2971215072723606 a001 4052739537881/103682*10749957122^(3/16) 2971215072723606 a001 2504730781961/103682*10749957122^(5/24) 2971215072723606 a001 956722026041/103682*10749957122^(1/4) 2971215072723606 a001 12586269025/103682*10749957122^(7/16) 2971215072723606 a001 182717648081/51841*10749957122^(7/24) 2971215072723606 a001 225851433717/103682*10749957122^(5/16) 2971215072723606 a001 139583862445/103682*10749957122^(1/3) 2971215072723606 a001 7778742049/103682*312119004989^(2/5) 2971215072723606 a001 7778742049/103682*(1/2+1/2*5^(1/2))^22 2971215072723606 a001 53316291173/103682*10749957122^(3/8) 2971215072723606 a001 10182505537/51841*10749957122^(5/12) 2971215072723606 a001 7778742049/103682*10749957122^(11/24) 2971215072723606 a001 3278735159921/51841*4106118243^(4/23) 2971215072723606 a001 2504730781961/103682*4106118243^(5/23) 2971215072723606 a001 956722026041/103682*4106118243^(6/23) 2971215072723606 a001 182717648081/51841*4106118243^(7/23) 2971215072723606 a001 139583862445/103682*4106118243^(8/23) 2971215072723606 a001 46368*4106118243^(1/2) 2971215072723606 a001 2971215073/103682*45537549124^(8/17) 2971215072723606 a001 2971215073/103682*14662949395604^(8/21) 2971215072723606 a001 2971215073/103682*(1/2+1/2*5^(1/2))^24 2971215072723606 a001 2971215073/103682*192900153618^(4/9) 2971215072723606 a001 2971215073/103682*73681302247^(6/13) 2971215072723606 a001 53316291173/103682*4106118243^(9/23) 2971215072723606 a001 10182505537/51841*4106118243^(10/23) 2971215072723606 a001 2971215073/103682*10749957122^(1/2) 2971215072723606 a001 7778742049/103682*4106118243^(11/23) 2971215072723606 a001 2971215073/103682*4106118243^(12/23) 2971215072723606 a001 3278735159921/51841*1568397607^(2/11) 2971215072723606 a001 2504730781961/103682*1568397607^(5/22) 2971215072723606 a001 774004377960/51841*1568397607^(1/4) 2971215072723606 a001 956722026041/103682*1568397607^(3/11) 2971215072723606 a001 182717648081/51841*1568397607^(7/22) 2971215072723606 a001 139583862445/103682*1568397607^(4/11) 2971215072723606 a001 567451585/51841*(1/2+1/2*5^(1/2))^26 2971215072723606 a001 567451585/51841*73681302247^(1/2) 2971215072723606 a001 567451585/51841*10749957122^(13/24) 2971215072723606 a001 53316291173/103682*1568397607^(9/22) 2971215072723606 a001 10182505537/51841*1568397607^(5/11) 2971215072723606 a001 567451585/51841*4106118243^(13/23) 2971215072723606 a001 7778742049/103682*1568397607^(1/2) 2971215072723606 a001 2971215073/103682*1568397607^(6/11) 2971215072723606 a001 567451585/51841*1568397607^(13/22) 2971215072723606 a001 225749145909/2206*599074578^(1/6) 2971215072723606 a001 3278735159921/51841*599074578^(4/21) 2971215072723606 a001 4052739537881/103682*599074578^(3/14) 2971215072723606 a001 2504730781961/103682*599074578^(5/21) 2971215072723606 a001 956722026041/103682*599074578^(2/7) 2971215072723606 a001 182717648081/51841*599074578^(1/3) 2971215072723606 a001 225851433717/103682*599074578^(5/14) 2971215072723606 a001 139583862445/103682*599074578^(8/21) 2971215072723606 a001 433494437/103682*17393796001^(4/7) 2971215072723606 a001 433494437/103682*14662949395604^(4/9) 2971215072723606 a001 433494437/103682*(1/2+1/2*5^(1/2))^28 2971215072723606 a001 433494437/103682*73681302247^(7/13) 2971215072723606 a001 433494437/103682*10749957122^(7/12) 2971215072723606 a001 433494437/103682*4106118243^(14/23) 2971215072723606 a001 53316291173/103682*599074578^(3/7) 2971215072723606 a001 433494437/103682*1568397607^(7/11) 2971215072723606 a001 10182505537/51841*599074578^(10/21) 2971215072723606 a001 701408733/103682*599074578^(9/14) 2971215072723606 a001 12586269025/103682*599074578^(1/2) 2971215072723606 a001 7778742049/103682*599074578^(11/21) 2971215072723606 a001 2971215073/103682*599074578^(4/7) 2971215072723606 a001 567451585/51841*599074578^(13/21) 2971215072723606 a001 433494437/103682*599074578^(2/3) 2971215072723606 a001 3278735159921/51841*228826127^(1/5) 2971215072723606 a001 2504730781961/103682*228826127^(1/4) 2971215072723606 a001 956722026041/103682*228826127^(3/10) 2971215072723606 a001 182717648081/51841*228826127^(7/20) 2971215072723606 a001 225851433717/103682*228826127^(3/8) 2971215072723606 a001 165580141/103682*2537720636^(2/3) 2971215072723606 a001 165580141/103682*45537549124^(10/17) 2971215072723606 a001 165580141/103682*312119004989^(6/11) 2971215072723606 a001 165580141/103682*14662949395604^(10/21) 2971215072723606 a001 165580141/103682*(1/2+1/2*5^(1/2))^30 2971215072723606 a001 165580141/103682*192900153618^(5/9) 2971215072723606 a001 165580141/103682*28143753123^(3/5) 2971215072723606 a001 165580141/103682*10749957122^(5/8) 2971215072723606 a001 165580141/103682*4106118243^(15/23) 2971215072723606 a001 165580141/103682*1568397607^(15/22) 2971215072723606 a001 139583862445/103682*228826127^(2/5) 2971215072723606 a001 53316291173/103682*228826127^(9/20) 2971215072723606 a001 165580141/103682*599074578^(5/7) 2971215072723606 a001 10182505537/51841*228826127^(1/2) 2971215072723606 a001 7778742049/103682*228826127^(11/20) 2971215072723606 a001 2971215073/103682*228826127^(3/5) 2971215072723606 a001 1836311903/103682*228826127^(5/8) 2971215072723606 a001 567451585/51841*228826127^(13/20) 2971215072723606 a001 433494437/103682*228826127^(7/10) 2971215072723606 a001 14478894466211136/4873055 2971215072723606 a001 165580141/103682*228826127^(3/4) 2971215072723606 a001 3278735159921/51841*87403803^(4/19) 2971215072723606 a001 2504730781961/103682*87403803^(5/19) 2971215072723606 a001 956722026041/103682*87403803^(6/19) 2971215072723606 a001 182717648081/51841*87403803^(7/19) 2971215072723606 a001 31622993/51841*(1/2+1/2*5^(1/2))^32 2971215072723606 a001 31622993/51841*23725150497407^(1/2) 2971215072723606 a001 31622993/51841*505019158607^(4/7) 2971215072723606 a001 31622993/51841*73681302247^(8/13) 2971215072723606 a001 31622993/51841*10749957122^(2/3) 2971215072723606 a001 31622993/51841*4106118243^(16/23) 2971215072723606 a001 31622993/51841*1568397607^(8/11) 2971215072723606 a001 31622993/51841*599074578^(16/21) 2971215072723606 a001 139583862445/103682*87403803^(8/19) 2971215072723606 a001 53316291173/103682*87403803^(9/19) 2971215072723606 a001 31622993/51841*228826127^(4/5) 2971215072723606 a001 32951280099/103682*87403803^(1/2) 2971215072723607 a001 10182505537/51841*87403803^(10/19) 2971215072723607 a001 7778742049/103682*87403803^(11/19) 2971215072723607 a001 2971215073/103682*87403803^(12/19) 2971215072723607 a001 567451585/51841*87403803^(13/19) 2971215072723607 a001 433494437/103682*87403803^(14/19) 2971215072723607 a001 165580141/103682*87403803^(15/19) 2971215072723607 a001 116139356897967648/39088169 2971215072723607 a001 31622993/51841*87403803^(16/19) 2971215072723607 a001 3278735159921/51841*33385282^(2/9) 2971215072723607 a001 4052739537881/103682*33385282^(1/4) 2971215072723607 a001 2504730781961/103682*33385282^(5/18) 2971215072723607 a001 956722026041/103682*33385282^(1/3) 2971215072723607 a001 46368/54018521*14662949395604^(20/21) 2971215072723607 a001 24157817/103682*45537549124^(2/3) 2971215072723607 a001 24157817/103682*(1/2+1/2*5^(1/2))^34 2971215072723607 a001 24157817/103682*10749957122^(17/24) 2971215072723607 a001 24157817/103682*4106118243^(17/23) 2971215072723607 a001 24157817/103682*1568397607^(17/22) 2971215072723607 a001 24157817/103682*599074578^(17/21) 2971215072723607 a001 182717648081/51841*33385282^(7/18) 2971215072723607 a001 24157817/103682*228826127^(17/20) 2971215072723607 a001 225851433717/103682*33385282^(5/12) 2971215072723607 a001 139583862445/103682*33385282^(4/9) 2971215072723608 a001 53316291173/103682*33385282^(1/2) 2971215072723608 a001 24157817/103682*87403803^(17/19) 2971215072723608 a001 10182505537/51841*33385282^(5/9) 2971215072723608 a001 12586269025/103682*33385282^(7/12) 2971215072723608 a001 7778742049/103682*33385282^(11/18) 2971215072723608 a001 2971215073/103682*33385282^(2/3) 2971215072723608 a001 567451585/51841*33385282^(13/18) 2971215072723608 a001 701408733/103682*33385282^(3/4) 2971215072723608 a001 39088169/103682*33385282^(11/12) 2971215072723608 a001 433494437/103682*33385282^(7/9) 2971215072723609 a001 165580141/103682*33385282^(5/6) 2971215072723609 a001 31622993/51841*33385282^(8/9) 2971215072723609 a001 308064492385202/103683 2971215072723610 a001 24157817/103682*33385282^(17/18) 2971215072723611 a001 3278735159921/51841*12752043^(4/17) 2971215072723612 a001 2504730781961/103682*12752043^(5/17) 2971215072723613 a001 956722026041/103682*12752043^(6/17) 2971215072723613 a001 9227465/103682*141422324^(12/13) 2971215072723613 a001 9227465/103682*2537720636^(4/5) 2971215072723613 a001 46368/20633239*(1/2+1/2*5^(1/2))^58 2971215072723613 a001 9227465/103682*45537549124^(12/17) 2971215072723613 a001 9227465/103682*14662949395604^(4/7) 2971215072723613 a001 9227465/103682*(1/2+1/2*5^(1/2))^36 2971215072723613 a001 9227465/103682*505019158607^(9/14) 2971215072723613 a001 9227465/103682*192900153618^(2/3) 2971215072723613 a001 9227465/103682*73681302247^(9/13) 2971215072723613 a001 9227465/103682*10749957122^(3/4) 2971215072723613 a001 9227465/103682*4106118243^(18/23) 2971215072723613 a001 9227465/103682*1568397607^(9/11) 2971215072723613 a001 9227465/103682*599074578^(6/7) 2971215072723613 a001 9227465/103682*228826127^(9/10) 2971215072723614 a001 9227465/103682*87403803^(18/19) 2971215072723614 a001 182717648081/51841*12752043^(7/17) 2971215072723615 a001 139583862445/103682*12752043^(8/17) 2971215072723615 a001 43133785636/51841*12752043^(1/2) 2971215072723616 a001 53316291173/103682*12752043^(9/17) 2971215072723617 a001 10182505537/51841*12752043^(10/17) 2971215072723618 a001 7778742049/103682*12752043^(11/17) 2971215072723619 a001 2971215073/103682*12752043^(12/17) 2971215072723620 a001 567451585/51841*12752043^(13/17) 2971215072723621 a001 433494437/103682*12752043^(14/17) 2971215072723622 a001 165580141/103682*12752043^(15/17) 2971215072723624 a001 31622993/51841*12752043^(16/17) 2971215072723625 a001 16944503812439616/5702887 2971215072723638 a001 3278735159921/51841*4870847^(1/4) 2971215072723645 a001 2504730781961/103682*4870847^(5/16) 2971215072723653 a001 956722026041/103682*4870847^(3/8) 2971215072723654 a001 11592/1970299*14662949395604^(8/9) 2971215072723654 a001 11592/1970299*(1/2+1/2*5^(1/2))^56 2971215072723654 a001 1762289/51841*817138163596^(2/3) 2971215072723654 a001 1762289/51841*(1/2+1/2*5^(1/2))^38 2971215072723654 a001 1762289/51841*10749957122^(19/24) 2971215072723654 a001 1762289/51841*4106118243^(19/23) 2971215072723654 a001 1762289/51841*1568397607^(19/22) 2971215072723654 a001 1762289/51841*599074578^(19/21) 2971215072723654 a001 1762289/51841*228826127^(19/20) 2971215072723661 a001 182717648081/51841*4870847^(7/16) 2971215072723669 a001 139583862445/103682*4870847^(1/2) 2971215072723677 a001 53316291173/103682*4870847^(9/16) 2971215072723685 a001 10182505537/51841*4870847^(5/8) 2971215072723692 a001 7778742049/103682*4870847^(11/16) 2971215072723700 a001 2971215073/103682*4870847^(3/4) 2971215072723708 a001 567451585/51841*4870847^(13/16) 2971215072723716 a001 433494437/103682*4870847^(7/8) 2971215072723724 a001 165580141/103682*4870847^(15/16) 2971215072723732 a001 308201168278560/103729 2971215072723835 a001 3278735159921/51841*1860498^(4/15) 2971215072723864 a001 4052739537881/103682*1860498^(3/10) 2971215072723892 a001 2504730781961/103682*1860498^(1/3) 2971215072723934 a001 1346269/103682*2537720636^(8/9) 2971215072723934 a001 46368/3010349*14662949395604^(6/7) 2971215072723934 a001 46368/3010349*(1/2+1/2*5^(1/2))^54 2971215072723934 a001 1346269/103682*312119004989^(8/11) 2971215072723934 a001 1346269/103682*(1/2+1/2*5^(1/2))^40 2971215072723934 a001 1346269/103682*23725150497407^(5/8) 2971215072723934 a001 1346269/103682*73681302247^(10/13) 2971215072723934 a001 1346269/103682*28143753123^(4/5) 2971215072723934 a001 1346269/103682*10749957122^(5/6) 2971215072723934 a001 1346269/103682*4106118243^(20/23) 2971215072723934 a001 1346269/103682*1568397607^(10/11) 2971215072723934 a001 1346269/103682*599074578^(20/21) 2971215072723950 a001 956722026041/103682*1860498^(2/5) 2971215072724007 a001 182717648081/51841*1860498^(7/15) 2971215072724035 a001 225851433717/103682*1860498^(1/2) 2971215072724064 a001 139583862445/103682*1860498^(8/15) 2971215072724121 a001 53316291173/103682*1860498^(3/5) 2971215072724179 a001 10182505537/51841*1860498^(2/3) 2971215072724207 a001 12586269025/103682*1860498^(7/10) 2971215072724236 a001 7778742049/103682*1860498^(11/15) 2971215072724293 a001 2971215073/103682*1860498^(4/5) 2971215072724322 a001 1836311903/103682*1860498^(5/6) 2971215072724350 a001 567451585/51841*1860498^(13/15) 2971215072724379 a001 701408733/103682*1860498^(9/10) 2971215072724407 a001 433494437/103682*1860498^(14/15) 2971215072724465 a001 309021223638708/104005 2971215072725077 a001 225749145909/2206*710647^(1/4) 2971215072725287 a001 3278735159921/51841*710647^(2/7) 2971215072725708 a001 2504730781961/103682*710647^(5/14) 2971215072725854 a001 514229/103682*2537720636^(14/15) 2971215072725854 a001 46368/1149851*(1/2+1/2*5^(1/2))^52 2971215072725854 a001 46368/1149851*23725150497407^(13/16) 2971215072725854 a001 46368/1149851*505019158607^(13/14) 2971215072725854 a001 514229/103682*17393796001^(6/7) 2971215072725854 a001 514229/103682*45537549124^(14/17) 2971215072725854 a001 514229/103682*14662949395604^(2/3) 2971215072725854 a001 514229/103682*(1/2+1/2*5^(1/2))^42 2971215072725854 a001 514229/103682*505019158607^(3/4) 2971215072725854 a001 514229/103682*192900153618^(7/9) 2971215072725854 a001 514229/103682*10749957122^(7/8) 2971215072725854 a001 514229/103682*4106118243^(21/23) 2971215072725854 a001 514229/103682*1568397607^(21/22) 2971215072726128 a001 956722026041/103682*710647^(3/7) 2971215072726548 a001 182717648081/51841*710647^(1/2) 2971215072726968 a001 139583862445/103682*710647^(4/7) 2971215072727388 a001 53316291173/103682*710647^(9/14) 2971215072727809 a001 10182505537/51841*710647^(5/7) 2971215072728019 a001 12586269025/103682*710647^(3/4) 2971215072728038 a001 140728068720/15251*64079^(12/23) 2971215072728229 a001 7778742049/103682*710647^(11/14) 2971215072728649 a001 2971215073/103682*710647^(6/7) 2971215072729069 a001 567451585/51841*710647^(13/14) 2971215072729490 a001 314761611159744/105937 2971215072736014 a001 3278735159921/51841*271443^(4/13) 2971215072739009 a001 11592/109801*312119004989^(10/11) 2971215072739009 a001 11592/109801*(1/2+1/2*5^(1/2))^50 2971215072739009 a001 11592/109801*3461452808002^(5/6) 2971215072739009 a001 98209/51841*312119004989^(4/5) 2971215072739009 a001 98209/51841*(1/2+1/2*5^(1/2))^44 2971215072739009 a001 98209/51841*23725150497407^(11/16) 2971215072739009 a001 98209/51841*73681302247^(11/13) 2971215072739009 a001 98209/51841*10749957122^(11/12) 2971215072739009 a001 98209/51841*4106118243^(22/23) 2971215072739116 a001 2504730781961/103682*271443^(5/13) 2971215072741669 a001 12586269025/39603*39603^(19/22) 2971215072742218 a001 956722026041/103682*271443^(6/13) 2971215072743769 a001 591286729879/103682*271443^(1/2) 2971215072745320 a001 182717648081/51841*271443^(7/13) 2971215072748422 a001 139583862445/103682*271443^(8/13) 2971215072751524 a001 53316291173/103682*271443^(9/13) 2971215072754626 a001 10182505537/51841*271443^(10/13) 2971215072757728 a001 7778742049/103682*271443^(11/13) 2971215072759499 a001 2504730781961/167761*64079^(11/23) 2971215072760830 a001 2971215073/103682*271443^(12/13) 2971215072763932 a001 360684711328032/121393 2971215072790961 a001 4052739537881/167761*64079^(10/23) 2971215072804221 a001 225749145909/2206*103682^(7/24) 2971215072815737 a001 3278735159921/51841*103682^(1/3) 2971215072822422 a001 6557470319842/167761*64079^(9/23) 2971215072827254 a001 4052739537881/103682*103682^(3/8) 2971215072827779 a001 7778742049/39603*39603^(10/11) 2971215072829179 a001 46368/167761*45537549124^(16/17) 2971215072829179 a001 46368/167761*14662949395604^(16/21) 2971215072829179 a001 46368/167761*(1/2+1/2*5^(1/2))^48 2971215072829179 a001 46368/167761*192900153618^(8/9) 2971215072829179 a001 46368/167761*73681302247^(12/13) 2971215072829179 a001 75025/103682*(1/2+1/2*5^(1/2))^46 2971215072829179 a001 75025/103682*10749957122^(23/24) 2971215072838770 a001 2504730781961/103682*103682^(5/12) 2971215072850287 a001 774004377960/51841*103682^(11/24) 2971215072853883 a001 10610209857723/167761*64079^(8/23) 2971215072854101 a001 222915410840879/75025 2971215072861803 a001 956722026041/103682*103682^(1/2) 2971215072873319 a001 591286729879/103682*103682^(13/24) 2971215072875216 a001 53316291173/271443*167761^(4/5) 2971215072884836 a001 182717648081/51841*103682^(7/12) 2971215072888543 a001 222915410843463/75025 2971215072893568 a001 44583082168768/15005 2971215072894301 a001 44583082168779/15005 2971215072894408 a001 222915410843903/75025 2971215072894421 a001 222915410843904/75025 2971215072894435 a001 44583082168781/15005 2971215072894475 a001 222915410843908/75025 2971215072894755 a001 222915410843929/75025 2971215072896331 a001 591286729879/271443*167761^(3/5) 2971215072896352 a001 225851433717/103682*103682^(5/8) 2971215072896674 a001 222915410844073/75025 2971215072907868 a001 139583862445/103682*103682^(2/3) 2971215072909658 a001 139583862445/710647*167761^(4/5) 2971215072909830 a001 44583082169012/15005 2971215072913889 a001 1602508992/13201*39603^(21/22) 2971215072914683 a001 182717648081/930249*167761^(4/5) 2971215072915416 a001 956722026041/4870847*167761^(4/5) 2971215072915523 a001 2504730781961/12752043*167761^(4/5) 2971215072915539 a001 3278735159921/16692641*167761^(4/5) 2971215072915542 a001 10610209857723/54018521*167761^(4/5) 2971215072915548 a001 4052739537881/20633239*167761^(4/5) 2971215072915589 a001 387002188980/1970299*167761^(4/5) 2971215072915869 a001 591286729879/3010349*167761^(4/5) 2971215072917445 a001 6557470319842/271443*167761^(2/5) 2971215072917789 a001 225851433717/1149851*167761^(4/5) 2971215072919349 a001 121393/271443*(1/2+1/2*5^(1/2))^47 2971215072919385 a001 43133785636/51841*103682^(17/24) 2971215072930772 a001 1548008755920/710647*167761^(3/5) 2971215072930901 a001 53316291173/103682*103682^(3/4) 2971215072930944 a001 196418*167761^(4/5) 2971215072935797 a001 4052739537881/1860498*167761^(3/5) 2971215072936531 a001 2178309*167761^(3/5) 2971215072936984 a001 6557470319842/3010349*167761^(3/5) 2971215072938903 a001 2504730781961/1149851*167761^(3/5) 2971215072942418 a001 32951280099/103682*103682^(19/24) 2971215072944271 a001 291800061098784/98209 2971215072945983 a001 7778742049/271443*439204^(8/9) 2971215072947694 a001 121393*439204^(7/9) 2971215072949406 a001 139583862445/271443*439204^(2/3) 2971215072951117 a001 591286729879/271443*439204^(5/9) 2971215072952059 a001 956722026041/439204*167761^(3/5) 2971215072952829 a001 2504730781961/271443*439204^(4/9) 2971215072953791 a001 105937/90481*45537549124^(15/17) 2971215072953791 a001 121393/710647*14662949395604^(7/9) 2971215072953791 a001 121393/710647*(1/2+1/2*5^(1/2))^49 2971215072953791 a001 121393/710647*505019158607^(7/8) 2971215072953791 a001 105937/90481*312119004989^(9/11) 2971215072953791 a001 105937/90481*14662949395604^(5/7) 2971215072953791 a001 105937/90481*(1/2+1/2*5^(1/2))^45 2971215072953791 a001 105937/90481*192900153618^(5/6) 2971215072953791 a001 105937/90481*28143753123^(9/10) 2971215072953791 a001 105937/90481*10749957122^(15/16) 2971215072953934 a001 10182505537/51841*103682^(5/6) 2971215072954540 a001 3536736619241/90481*439204^(1/3) 2971215072957427 a001 1527884955751825/514229 2971215072958816 a001 121393/1860498*14662949395604^(17/21) 2971215072958816 a001 121393/1860498*(1/2+1/2*5^(1/2))^51 2971215072958816 a001 121393/1860498*192900153618^(17/18) 2971215072958816 a001 832040/271443*(1/2+1/2*5^(1/2))^43 2971215072959346 a001 4000054745057907/1346269 2971215072959549 a001 121393/4870847*(1/2+1/2*5^(1/2))^53 2971215072959549 a001 726103/90481*(1/2+1/2*5^(1/2))^41 2971215072959626 a001 5236139639710948/1762289 2971215072959631 a001 433494437/271443*7881196^(10/11) 2971215072959635 a001 1836311903/271443*7881196^(9/11) 2971215072959639 a001 7778742049/271443*7881196^(8/11) 2971215072959642 a001 20365011074/271443*7881196^(2/3) 2971215072959644 a001 121393*7881196^(7/11) 2971215072959648 a001 139583862445/271443*7881196^(6/11) 2971215072959653 a001 591286729879/271443*7881196^(5/11) 2971215072959656 a001 5702887/271443*2537720636^(13/15) 2971215072959656 a001 5702887/271443*45537549124^(13/17) 2971215072959656 a001 121393/12752043*(1/2+1/2*5^(1/2))^55 2971215072959656 a001 121393/12752043*3461452808002^(11/12) 2971215072959656 a001 5702887/271443*14662949395604^(13/21) 2971215072959656 a001 5702887/271443*(1/2+1/2*5^(1/2))^39 2971215072959656 a001 5702887/271443*192900153618^(13/18) 2971215072959656 a001 5702887/271443*73681302247^(3/4) 2971215072959656 a001 5702887/271443*10749957122^(13/16) 2971215072959656 a001 5702887/271443*599074578^(13/14) 2971215072959657 a001 2504730781961/271443*7881196^(4/11) 2971215072959658 a001 4052739537881/271443*7881196^(1/3) 2971215072959661 a001 3536736619241/90481*7881196^(3/11) 2971215072959667 a001 2108983314862137/709805 2971215072959668 a001 433494437/271443*20633239^(6/7) 2971215072959669 a001 1134903170/271443*20633239^(4/5) 2971215072959669 a001 1602508992/90481*20633239^(5/7) 2971215072959670 a001 121393*20633239^(3/5) 2971215072959670 a001 53316291173/271443*20633239^(4/7) 2971215072959671 a001 591286729879/271443*20633239^(3/7) 2971215072959671 a001 956722026041/271443*20633239^(2/5) 2971215072959672 a001 121393/33385282*14662949395604^(19/21) 2971215072959672 a001 121393/33385282*(1/2+1/2*5^(1/2))^57 2971215072959672 a001 4976784/90481*(1/2+1/2*5^(1/2))^37 2971215072959672 a001 6557470319842/271443*20633239^(2/7) 2971215072959673 a001 71778070000201447/24157817 2971215072959674 a001 39088169/271443*2537720636^(7/9) 2971215072959674 a001 39088169/271443*17393796001^(5/7) 2971215072959674 a001 39088169/271443*312119004989^(7/11) 2971215072959674 a001 39088169/271443*14662949395604^(5/9) 2971215072959674 a001 39088169/271443*(1/2+1/2*5^(1/2))^35 2971215072959674 a001 39088169/271443*505019158607^(5/8) 2971215072959674 a001 39088169/271443*28143753123^(7/10) 2971215072959674 a001 39088169/271443*599074578^(5/6) 2971215072959674 a001 39088169/271443*228826127^(7/8) 2971215072959674 a001 34111385/90481*141422324^(11/13) 2971215072959674 a001 403256280917160/135721 2971215072959674 a001 433494437/271443*141422324^(10/13) 2971215072959674 a001 1836311903/271443*141422324^(9/13) 2971215072959674 a001 2971215073/271443*141422324^(2/3) 2971215072959674 a001 7778742049/271443*141422324^(8/13) 2971215072959674 a001 121393*141422324^(7/13) 2971215072959674 a001 139583862445/271443*141422324^(6/13) 2971215072959674 a001 591286729879/271443*141422324^(5/13) 2971215072959674 a001 34111385/90481*2537720636^(11/15) 2971215072959674 a001 34111385/90481*45537549124^(11/17) 2971215072959674 a001 34111385/90481*312119004989^(3/5) 2971215072959674 a001 34111385/90481*14662949395604^(11/21) 2971215072959674 a001 34111385/90481*(1/2+1/2*5^(1/2))^33 2971215072959674 a001 34111385/90481*192900153618^(11/18) 2971215072959674 a001 34111385/90481*10749957122^(11/16) 2971215072959674 a001 34111385/90481*1568397607^(3/4) 2971215072959674 a001 34111385/90481*599074578^(11/14) 2971215072959674 a001 516002918640/90481*141422324^(1/3) 2971215072959674 a001 2504730781961/271443*141422324^(4/13) 2971215072959674 a001 3536736619241/90481*141422324^(3/13) 2971215072959674 a001 491974210721988233/165580141 2971215072959674 a001 267914296/271443*(1/2+1/2*5^(1/2))^31 2971215072959674 a001 267914296/271443*9062201101803^(1/2) 2971215072959674 a001 1288005205258568139/433494437 2971215072959674 a001 233802911/90481*(1/2+1/2*5^(1/2))^29 2971215072959674 a001 233802911/90481*1322157322203^(1/2) 2971215072959674 a001 1836311903/271443*2537720636^(3/5) 2971215072959674 a001 1602508992/90481*2537720636^(5/9) 2971215072959674 a001 7778742049/271443*2537720636^(8/15) 2971215072959674 a001 121393*2537720636^(7/15) 2971215072959674 a001 53316291173/271443*2537720636^(4/9) 2971215072959674 a001 139583862445/271443*2537720636^(2/5) 2971215072959674 a001 1836311903/271443*45537549124^(9/17) 2971215072959674 a001 1836311903/271443*817138163596^(9/19) 2971215072959674 a001 1836311903/271443*14662949395604^(3/7) 2971215072959674 a001 1836311903/271443*(1/2+1/2*5^(1/2))^27 2971215072959674 a001 1836311903/271443*192900153618^(1/2) 2971215072959674 a001 1836311903/271443*10749957122^(9/16) 2971215072959674 a001 591286729879/271443*2537720636^(1/3) 2971215072959674 a001 2504730781961/271443*2537720636^(4/15) 2971215072959674 a001 6557470319842/271443*2537720636^(2/9) 2971215072959674 a001 3536736619241/90481*2537720636^(1/5) 2971215072959674 a001 1602508992/90481*312119004989^(5/11) 2971215072959674 a001 1602508992/90481*(1/2+1/2*5^(1/2))^25 2971215072959674 a001 1602508992/90481*3461452808002^(5/12) 2971215072959674 a001 1602508992/90481*28143753123^(1/2) 2971215072959674 a001 121393*17393796001^(3/7) 2971215072959674 a001 12586269025/271443*(1/2+1/2*5^(1/2))^23 2971215072959674 a001 956722026041/271443*17393796001^(2/7) 2971215072959674 a001 121393*45537549124^(7/17) 2971215072959674 a001 121393*14662949395604^(1/3) 2971215072959674 a001 121393*(1/2+1/2*5^(1/2))^21 2971215072959674 a001 121393*192900153618^(7/18) 2971215072959674 a001 75283811239/90481*45537549124^(1/3) 2971215072959674 a001 139583862445/271443*45537549124^(6/17) 2971215072959674 a001 591286729879/271443*45537549124^(5/17) 2971215072959674 a001 2504730781961/271443*45537549124^(4/17) 2971215072959674 a001 3536736619241/90481*45537549124^(3/17) 2971215072959674 a001 86267571272/271443*817138163596^(1/3) 2971215072959674 a001 86267571272/271443*(1/2+1/2*5^(1/2))^19 2971215072959674 a001 75283811239/90481*(1/2+1/2*5^(1/2))^17 2971215072959674 a001 591286729879/271443*312119004989^(3/11) 2971215072959674 a001 2504730781961/271443*817138163596^(4/19) 2971215072959674 a001 516002918640/90481*(1/2+1/2*5^(1/2))^13 2971215072959674 a001 4052739537881/271443*(1/2+1/2*5^(1/2))^11 2971215072959674 a001 3536736619241/90481*(1/2+1/2*5^(1/2))^9 2971215072959674 a001 2504730781961/271443*14662949395604^(4/21) 2971215072959674 a001 2504730781961/271443*(1/2+1/2*5^(1/2))^12 2971215072959674 a001 956722026041/271443*(1/2+1/2*5^(1/2))^14 2971215072959674 a001 2504730781961/271443*192900153618^(2/9) 2971215072959674 a001 139583862445/271443*14662949395604^(2/7) 2971215072959674 a001 139583862445/271443*(1/2+1/2*5^(1/2))^18 2971215072959674 a001 139583862445/271443*192900153618^(1/3) 2971215072959674 a001 2504730781961/271443*73681302247^(3/13) 2971215072959674 a001 516002918640/90481*73681302247^(1/4) 2971215072959674 a001 365435296162/271443*73681302247^(4/13) 2971215072959674 a001 53316291173/271443*(1/2+1/2*5^(1/2))^20 2971215072959674 a001 53316291173/271443*23725150497407^(5/16) 2971215072959674 a001 53316291173/271443*505019158607^(5/14) 2971215072959674 a001 53316291173/271443*73681302247^(5/13) 2971215072959674 a001 6557470319842/271443*28143753123^(1/5) 2971215072959674 a001 591286729879/271443*28143753123^(3/10) 2971215072959674 a001 20365011074/271443*312119004989^(2/5) 2971215072959674 a001 20365011074/271443*(1/2+1/2*5^(1/2))^22 2971215072959674 a001 53316291173/271443*28143753123^(2/5) 2971215072959674 a001 3536736619241/90481*10749957122^(3/16) 2971215072959674 a001 6557470319842/271443*10749957122^(5/24) 2971215072959674 a001 2504730781961/271443*10749957122^(1/4) 2971215072959674 a001 956722026041/271443*10749957122^(7/24) 2971215072959674 a001 591286729879/271443*10749957122^(5/16) 2971215072959674 a001 365435296162/271443*10749957122^(1/3) 2971215072959674 a001 7778742049/271443*45537549124^(8/17) 2971215072959674 a001 139583862445/271443*10749957122^(3/8) 2971215072959674 a001 7778742049/271443*14662949395604^(8/21) 2971215072959674 a001 7778742049/271443*(1/2+1/2*5^(1/2))^24 2971215072959674 a001 7778742049/271443*192900153618^(4/9) 2971215072959674 a001 7778742049/271443*73681302247^(6/13) 2971215072959674 a001 121393*10749957122^(7/16) 2971215072959674 a001 53316291173/271443*10749957122^(5/12) 2971215072959674 a001 20365011074/271443*10749957122^(11/24) 2971215072959674 a001 7778742049/271443*10749957122^(1/2) 2971215072959674 a001 6557470319842/271443*4106118243^(5/23) 2971215072959674 a001 2504730781961/271443*4106118243^(6/23) 2971215072959674 a001 956722026041/271443*4106118243^(7/23) 2971215072959674 a001 365435296162/271443*4106118243^(8/23) 2971215072959674 a001 2971215073/271443*(1/2+1/2*5^(1/2))^26 2971215072959674 a001 2971215073/271443*73681302247^(1/2) 2971215072959674 a001 139583862445/271443*4106118243^(9/23) 2971215072959674 a001 53316291173/271443*4106118243^(10/23) 2971215072959674 a001 2971215073/271443*10749957122^(13/24) 2971215072959674 a001 12586269025/271443*4106118243^(1/2) 2971215072959674 a001 20365011074/271443*4106118243^(11/23) 2971215072959674 a001 7778742049/271443*4106118243^(12/23) 2971215072959674 a001 2971215073/271443*4106118243^(13/23) 2971215072959674 a001 6557470319842/271443*1568397607^(5/22) 2971215072959674 a001 4052739537881/271443*1568397607^(1/4) 2971215072959674 a001 2504730781961/271443*1568397607^(3/11) 2971215072959674 a001 956722026041/271443*1568397607^(7/22) 2971215072959674 a001 365435296162/271443*1568397607^(4/11) 2971215072959674 a001 1134903170/271443*17393796001^(4/7) 2971215072959674 a001 1134903170/271443*14662949395604^(4/9) 2971215072959674 a001 1134903170/271443*(1/2+1/2*5^(1/2))^28 2971215072959674 a001 1134903170/271443*505019158607^(1/2) 2971215072959674 a001 1134903170/271443*73681302247^(7/13) 2971215072959674 a001 1134903170/271443*10749957122^(7/12) 2971215072959674 a001 139583862445/271443*1568397607^(9/22) 2971215072959674 a001 53316291173/271443*1568397607^(5/11) 2971215072959674 a001 1134903170/271443*4106118243^(14/23) 2971215072959674 a001 20365011074/271443*1568397607^(1/2) 2971215072959674 a001 7778742049/271443*1568397607^(6/11) 2971215072959674 a001 2971215073/271443*1568397607^(13/22) 2971215072959674 a001 1134903170/271443*1568397607^(7/11) 2971215072959674 a001 3536736619241/90481*599074578^(3/14) 2971215072959674 a001 6557470319842/271443*599074578^(5/21) 2971215072959674 a001 2504730781961/271443*599074578^(2/7) 2971215072959674 a001 956722026041/271443*599074578^(1/3) 2971215072959674 a001 433494437/271443*2537720636^(2/3) 2971215072959674 a001 591286729879/271443*599074578^(5/14) 2971215072959674 a001 365435296162/271443*599074578^(8/21) 2971215072959674 a001 433494437/271443*45537549124^(10/17) 2971215072959674 a001 433494437/271443*312119004989^(6/11) 2971215072959674 a001 433494437/271443*14662949395604^(10/21) 2971215072959674 a001 433494437/271443*(1/2+1/2*5^(1/2))^30 2971215072959674 a001 433494437/271443*192900153618^(5/9) 2971215072959674 a001 433494437/271443*28143753123^(3/5) 2971215072959674 a001 433494437/271443*10749957122^(5/8) 2971215072959674 a001 433494437/271443*4106118243^(15/23) 2971215072959674 a001 139583862445/271443*599074578^(3/7) 2971215072959674 a001 53316291173/271443*599074578^(10/21) 2971215072959674 a001 433494437/271443*1568397607^(15/22) 2971215072959674 a001 121393*599074578^(1/2) 2971215072959674 a001 20365011074/271443*599074578^(11/21) 2971215072959674 a001 7778742049/271443*599074578^(4/7) 2971215072959674 a001 1836311903/271443*599074578^(9/14) 2971215072959674 a001 2971215073/271443*599074578^(13/21) 2971215072959674 a001 1134903170/271443*599074578^(2/3) 2971215072959674 a001 72723460125761/24476 2971215072959674 a001 433494437/271443*599074578^(5/7) 2971215072959674 a001 6557470319842/271443*228826127^(1/4) 2971215072959674 a001 2504730781961/271443*228826127^(3/10) 2971215072959674 a001 956722026041/271443*228826127^(7/20) 2971215072959674 a001 591286729879/271443*228826127^(3/8) 2971215072959674 a001 165580141/271443*(1/2+1/2*5^(1/2))^32 2971215072959674 a001 165580141/271443*23725150497407^(1/2) 2971215072959674 a001 165580141/271443*505019158607^(4/7) 2971215072959674 a001 165580141/271443*73681302247^(8/13) 2971215072959674 a001 165580141/271443*10749957122^(2/3) 2971215072959674 a001 165580141/271443*4106118243^(16/23) 2971215072959674 a001 165580141/271443*1568397607^(8/11) 2971215072959674 a001 365435296162/271443*228826127^(2/5) 2971215072959674 a001 139583862445/271443*228826127^(9/20) 2971215072959674 a001 165580141/271443*599074578^(16/21) 2971215072959674 a001 53316291173/271443*228826127^(1/2) 2971215072959674 a001 20365011074/271443*228826127^(11/20) 2971215072959674 a001 7778742049/271443*228826127^(3/5) 2971215072959674 a001 1602508992/90481*228826127^(5/8) 2971215072959674 a001 2971215073/271443*228826127^(13/20) 2971215072959674 a001 1134903170/271443*228826127^(7/10) 2971215072959674 a001 433494437/271443*228826127^(3/4) 2971215072959674 a001 304056783814591673/102334155 2971215072959674 a001 165580141/271443*228826127^(4/5) 2971215072959674 a001 6557470319842/271443*87403803^(5/19) 2971215072959674 a001 2504730781961/271443*87403803^(6/19) 2971215072959674 a001 956722026041/271443*87403803^(7/19) 2971215072959674 a001 63245986/271443*45537549124^(2/3) 2971215072959674 a001 233/271444*14662949395604^(20/21) 2971215072959674 a001 63245986/271443*(1/2+1/2*5^(1/2))^34 2971215072959674 a001 63245986/271443*10749957122^(17/24) 2971215072959674 a001 63245986/271443*4106118243^(17/23) 2971215072959674 a001 63245986/271443*1568397607^(17/22) 2971215072959674 a001 63245986/271443*599074578^(17/21) 2971215072959674 a001 365435296162/271443*87403803^(8/19) 2971215072959674 a001 139583862445/271443*87403803^(9/19) 2971215072959674 a001 86267571272/271443*87403803^(1/2) 2971215072959674 a001 63245986/271443*228826127^(17/20) 2971215072959674 a001 53316291173/271443*87403803^(10/19) 2971215072959675 a001 20365011074/271443*87403803^(11/19) 2971215072959675 a001 7778742049/271443*87403803^(12/19) 2971215072959675 a001 2971215073/271443*87403803^(13/19) 2971215072959675 a001 1134903170/271443*87403803^(14/19) 2971215072959675 a001 433494437/271443*87403803^(15/19) 2971215072959675 a001 165580141/271443*87403803^(16/19) 2971215072959675 a001 116139356907195113/39088169 2971215072959675 a001 63245986/271443*87403803^(17/19) 2971215072959675 a001 3536736619241/90481*33385282^(1/4) 2971215072959675 a001 6557470319842/271443*33385282^(5/18) 2971215072959675 a001 24157817/271443*141422324^(12/13) 2971215072959675 a001 2504730781961/271443*33385282^(1/3) 2971215072959675 a001 24157817/271443*2537720636^(4/5) 2971215072959675 a001 24157817/271443*45537549124^(12/17) 2971215072959675 a001 24157817/271443*14662949395604^(4/7) 2971215072959675 a001 24157817/271443*(1/2+1/2*5^(1/2))^36 2971215072959675 a001 24157817/271443*505019158607^(9/14) 2971215072959675 a001 24157817/271443*192900153618^(2/3) 2971215072959675 a001 24157817/271443*73681302247^(9/13) 2971215072959675 a001 24157817/271443*10749957122^(3/4) 2971215072959675 a001 24157817/271443*4106118243^(18/23) 2971215072959675 a001 24157817/271443*1568397607^(9/11) 2971215072959675 a001 24157817/271443*599074578^(6/7) 2971215072959675 a001 956722026041/271443*33385282^(7/18) 2971215072959675 a001 24157817/271443*228826127^(9/10) 2971215072959675 a001 591286729879/271443*33385282^(5/12) 2971215072959675 a001 365435296162/271443*33385282^(4/9) 2971215072959676 a001 139583862445/271443*33385282^(1/2) 2971215072959676 a001 24157817/271443*87403803^(18/19) 2971215072959676 a001 53316291173/271443*33385282^(5/9) 2971215072959676 a001 121393*33385282^(7/12) 2971215072959676 a001 20365011074/271443*33385282^(11/18) 2971215072959676 a001 7778742049/271443*33385282^(2/3) 2971215072959676 a001 2971215073/271443*33385282^(13/18) 2971215072959676 a001 1836311903/271443*33385282^(3/4) 2971215072959676 a001 1134903170/271443*33385282^(7/9) 2971215072959676 a001 433494437/271443*33385282^(5/6) 2971215072959677 a001 34111385/90481*33385282^(11/12) 2971215072959677 a001 165580141/271443*33385282^(8/9) 2971215072959677 a001 22180643453496833/7465176 2971215072959677 a001 63245986/271443*33385282^(17/18) 2971215072959680 a001 6557470319842/271443*12752043^(5/17) 2971215072959681 a001 2504730781961/271443*12752043^(6/17) 2971215072959681 a001 121393/20633239*14662949395604^(8/9) 2971215072959681 a001 121393/20633239*(1/2+1/2*5^(1/2))^56 2971215072959681 a001 9227465/271443*817138163596^(2/3) 2971215072959681 a001 9227465/271443*(1/2+1/2*5^(1/2))^38 2971215072959681 a001 9227465/271443*10749957122^(19/24) 2971215072959681 a001 9227465/271443*4106118243^(19/23) 2971215072959681 a001 9227465/271443*1568397607^(19/22) 2971215072959681 a001 9227465/271443*599074578^(19/21) 2971215072959681 a001 9227465/271443*228826127^(19/20) 2971215072959682 a001 956722026041/271443*12752043^(7/17) 2971215072959683 a001 365435296162/271443*12752043^(8/17) 2971215072959683 a001 75283811239/90481*12752043^(1/2) 2971215072959684 a001 139583862445/271443*12752043^(9/17) 2971215072959685 a001 53316291173/271443*12752043^(10/17) 2971215072959686 a001 20365011074/271443*12752043^(11/17) 2971215072959687 a001 7778742049/271443*12752043^(12/17) 2971215072959688 a001 2971215073/271443*12752043^(13/17) 2971215072959689 a001 1134903170/271443*12752043^(14/17) 2971215072959690 a001 433494437/271443*12752043^(15/17) 2971215072959691 a001 165580141/271443*12752043^(16/17) 2971215072959693 a001 16944503813785885/5702887 2971215072959713 a001 6557470319842/271443*4870847^(5/16) 2971215072959721 a001 2504730781961/271443*4870847^(3/8) 2971215072959722 a001 3524578/271443*2537720636^(8/9) 2971215072959722 a001 121393/7881196*14662949395604^(6/7) 2971215072959722 a001 121393/7881196*(1/2+1/2*5^(1/2))^54 2971215072959722 a001 3524578/271443*312119004989^(8/11) 2971215072959722 a001 3524578/271443*(1/2+1/2*5^(1/2))^40 2971215072959722 a001 3524578/271443*23725150497407^(5/8) 2971215072959722 a001 3524578/271443*73681302247^(10/13) 2971215072959722 a001 3524578/271443*28143753123^(4/5) 2971215072959722 a001 3524578/271443*10749957122^(5/6) 2971215072959722 a001 3524578/271443*4106118243^(20/23) 2971215072959722 a001 3524578/271443*1568397607^(10/11) 2971215072959722 a001 3524578/271443*599074578^(20/21) 2971215072959729 a001 956722026041/271443*4870847^(7/16) 2971215072959737 a001 365435296162/271443*4870847^(1/2) 2971215072959745 a001 139583862445/271443*4870847^(9/16) 2971215072959753 a001 53316291173/271443*4870847^(5/8) 2971215072959760 a001 20365011074/271443*4870847^(11/16) 2971215072959768 a001 7778742049/271443*4870847^(3/4) 2971215072959776 a001 2971215073/271443*4870847^(13/16) 2971215072959784 a001 1134903170/271443*4870847^(7/8) 2971215072959792 a001 433494437/271443*4870847^(15/16) 2971215072959800 a001 6472224534363989/2178309 2971215072959932 a001 3536736619241/90481*1860498^(3/10) 2971215072959960 a001 6557470319842/271443*1860498^(1/3) 2971215072960002 a001 1346269/271443*2537720636^(14/15) 2971215072960002 a001 1346269/271443*17393796001^(6/7) 2971215072960002 a001 1346269/271443*45537549124^(14/17) 2971215072960002 a001 121393/3010349*(1/2+1/2*5^(1/2))^52 2971215072960002 a001 121393/3010349*23725150497407^(13/16) 2971215072960002 a001 121393/3010349*505019158607^(13/14) 2971215072960002 a001 1346269/271443*817138163596^(14/19) 2971215072960002 a001 1346269/271443*14662949395604^(2/3) 2971215072960002 a001 1346269/271443*(1/2+1/2*5^(1/2))^42 2971215072960002 a001 1346269/271443*505019158607^(3/4) 2971215072960002 a001 1346269/271443*192900153618^(7/9) 2971215072960002 a001 1346269/271443*10749957122^(7/8) 2971215072960002 a001 1346269/271443*4106118243^(21/23) 2971215072960002 a001 1346269/271443*1568397607^(21/22) 2971215072960018 a001 2504730781961/271443*1860498^(2/5) 2971215072960075 a001 956722026041/271443*1860498^(7/15) 2971215072960103 a001 591286729879/271443*1860498^(1/2) 2971215072960132 a001 365435296162/271443*1860498^(8/15) 2971215072960189 a001 139583862445/271443*1860498^(3/5) 2971215072960247 a001 53316291173/271443*1860498^(2/3) 2971215072960275 a001 121393*1860498^(7/10) 2971215072960304 a001 20365011074/271443*1860498^(11/15) 2971215072960361 a001 7778742049/271443*1860498^(4/5) 2971215072960390 a001 1602508992/90481*1860498^(5/6) 2971215072960418 a001 2971215073/271443*1860498^(13/15) 2971215072960447 a001 1836311903/271443*1860498^(9/10) 2971215072960475 a001 1134903170/271443*1860498^(14/15) 2971215072960533 a001 1236084894653041/416020 2971215072961775 a001 6557470319842/271443*710647^(5/14) 2971215072961922 a001 121393/1149851*312119004989^(10/11) 2971215072961922 a001 121393/1149851*(1/2+1/2*5^(1/2))^50 2971215072961922 a001 121393/1149851*3461452808002^(5/6) 2971215072961922 a001 514229/271443*312119004989^(4/5) 2971215072961922 a001 514229/271443*(1/2+1/2*5^(1/2))^44 2971215072961922 a001 514229/271443*23725150497407^(11/16) 2971215072961922 a001 514229/271443*73681302247^(11/13) 2971215072961922 a001 514229/271443*10749957122^(11/12) 2971215072961922 a001 514229/271443*4106118243^(22/23) 2971215072962196 a001 2504730781961/271443*710647^(3/7) 2971215072962616 a001 956722026041/271443*710647^(1/2) 2971215072963036 a001 365435296162/271443*710647^(4/7) 2971215072963456 a001 139583862445/271443*710647^(9/14) 2971215072963877 a001 53316291173/271443*710647^(5/7) 2971215072964087 a001 121393*710647^(3/4) 2971215072964297 a001 20365011074/271443*710647^(11/14) 2971215072964717 a001 7778742049/271443*710647^(6/7) 2971215072965137 a001 2971215073/271443*710647^(13/14) 2971215072965450 a001 12586269025/103682*103682^(7/8) 2971215072965558 a001 72637294888789/24447 2971215072973173 a001 10610209857723/439204*167761^(2/5) 2971215072975077 a001 121393/439204*45537549124^(16/17) 2971215072975077 a001 121393/439204*14662949395604^(16/21) 2971215072975077 a001 121393/439204*(1/2+1/2*5^(1/2))^48 2971215072975077 a001 121393/439204*192900153618^(8/9) 2971215072975077 a001 196418/271443*(1/2+1/2*5^(1/2))^46 2971215072975077 a001 121393/439204*73681302247^(12/13) 2971215072975077 a001 196418/271443*10749957122^(23/24) 2971215072975184 a001 6557470319842/271443*271443^(5/13) 2971215072976967 a001 7778742049/103682*103682^(11/12) 2971215072978286 a001 2504730781961/271443*271443^(6/13) 2971215072978713 a001 583600122204333/196418 2971215072979837 a001 516002918640/90481*271443^(1/2) 2971215072980425 a001 20365011074/710647*439204^(8/9) 2971215072981388 a001 956722026041/271443*271443^(7/13) 2971215072982136 a001 86267571272/710647*439204^(7/9) 2971215072983738 a001 291800061102660/98209 2971215072983848 a001 365435296162/710647*439204^(2/3) 2971215072984471 a001 291800061102732/98209 2971215072984490 a001 365435296162/271443*271443^(8/13) 2971215072984578 a001 583600122205485/196418 2971215072984594 a001 17164709476632/5777 2971215072984599 a001 583600122205489/196418 2971215072984604 a001 291800061102745/98209 2971215072984644 a001 291800061102749/98209 2971215072984925 a001 583600122205553/196418 2971215072985450 a001 53316291173/1860498*439204^(8/9) 2971215072985559 a001 1548008755920/710647*439204^(5/9) 2971215072986183 a001 139583862445/4870847*439204^(8/9) 2971215072986290 a001 365435296162/12752043*439204^(8/9) 2971215072986305 a001 956722026041/33385282*439204^(8/9) 2971215072986308 a001 2504730781961/87403803*439204^(8/9) 2971215072986308 a001 6557470319842/228826127*439204^(8/9) 2971215072986308 a001 10610209857723/370248451*439204^(8/9) 2971215072986308 a001 4052739537881/141422324*439204^(8/9) 2971215072986309 a001 1548008755920/54018521*439204^(8/9) 2971215072986315 a001 591286729879/20633239*439204^(8/9) 2971215072986356 a001 225851433717/7881196*439204^(8/9) 2971215072986636 a001 86267571272/3010349*439204^(8/9) 2971215072986844 a001 17164709476645/5777 2971215072987161 a001 75283811239/620166*439204^(7/9) 2971215072987270 a001 6557470319842/710647*439204^(4/9) 2971215072987592 a001 139583862445/271443*271443^(9/13) 2971215072987894 a001 591286729879/4870847*439204^(7/9) 2971215072988001 a001 516002918640/4250681*439204^(7/9) 2971215072988017 a001 4052739537881/33385282*439204^(7/9) 2971215072988019 a001 3536736619241/29134601*439204^(7/9) 2971215072988021 a001 6557470319842/54018521*439204^(7/9) 2971215072988026 a001 2504730781961/20633239*439204^(7/9) 2971215072988067 a001 956722026041/7881196*439204^(7/9) 2971215072988233 a001 317811/710647*(1/2+1/2*5^(1/2))^47 2971215072988347 a001 365435296162/3010349*439204^(7/9) 2971215072988483 a001 46368*103682^(23/24) 2971215072988555 a001 32951280099/1149851*439204^(8/9) 2971215072988873 a001 956722026041/1860498*439204^(2/3) 2971215072989606 a001 2504730781961/4870847*439204^(2/3) 2971215072989713 a001 6557470319842/12752043*439204^(2/3) 2971215072989738 a001 10610209857723/20633239*439204^(2/3) 2971215072989779 a001 4052739537881/7881196*439204^(2/3) 2971215072990059 a001 1548008755920/3010349*439204^(2/3) 2971215072990267 a001 139583862445/1149851*439204^(7/9) 2971215072990584 a001 4052739537881/1860498*439204^(5/9) 2971215072990694 a001 53316291173/271443*271443^(10/13) 2971215072991317 a001 2178309*439204^(5/9) 2971215072991770 a001 6557470319842/3010349*439204^(5/9) 2971215072991869 a001 1527884955769536/514229 2971215072991978 a001 514229*439204^(2/3) 2971215072993258 a001 832040/710647*45537549124^(15/17) 2971215072993258 a001 105937/620166*14662949395604^(7/9) 2971215072993258 a001 105937/620166*(1/2+1/2*5^(1/2))^49 2971215072993258 a001 105937/620166*505019158607^(7/8) 2971215072993258 a001 832040/710647*(1/2+1/2*5^(1/2))^45 2971215072993258 a001 832040/710647*192900153618^(5/6) 2971215072993258 a001 832040/710647*28143753123^(9/10) 2971215072993258 a001 832040/710647*10749957122^(15/16) 2971215072993690 a001 2504730781961/1149851*439204^(5/9) 2971215072993788 a001 4000054745104275/1346269 2971215072993796 a001 20365011074/271443*271443^(11/13) 2971215072993991 a001 317811/4870847*14662949395604^(17/21) 2971215072993991 a001 317811/4870847*(1/2+1/2*5^(1/2))^51 2971215072993991 a001 311187/101521*(1/2+1/2*5^(1/2))^43 2971215072993991 a001 317811/4870847*192900153618^(17/18) 2971215072994068 a001 10472279279543289/3524578 2971215072994073 a001 1134903170/710647*7881196^(10/11) 2971215072994077 a001 686789568/101521*7881196^(9/11) 2971215072994081 a001 20365011074/710647*7881196^(8/11) 2971215072994084 a001 53316291173/710647*7881196^(2/3) 2971215072994086 a001 86267571272/710647*7881196^(7/11) 2971215072994090 a001 365435296162/710647*7881196^(6/11) 2971215072994094 a001 1548008755920/710647*7881196^(5/11) 2971215072994098 a001 105937/4250681*(1/2+1/2*5^(1/2))^53 2971215072994098 a001 5702887/710647*(1/2+1/2*5^(1/2))^41 2971215072994099 a001 6557470319842/710647*7881196^(4/11) 2971215072994100 a001 1515744265389/101521*7881196^(1/3) 2971215072994109 a001 2108983314886584/709805 2971215072994110 a001 1134903170/710647*20633239^(6/7) 2971215072994111 a001 2971215073/710647*20633239^(4/5) 2971215072994111 a001 12586269025/710647*20633239^(5/7) 2971215072994112 a001 86267571272/710647*20633239^(3/5) 2971215072994112 a001 139583862445/710647*20633239^(4/7) 2971215072994113 a001 1548008755920/710647*20633239^(3/7) 2971215072994113 a001 2504730781961/710647*20633239^(2/5) 2971215072994113 a001 14930352/710647*2537720636^(13/15) 2971215072994113 a001 14930352/710647*45537549124^(13/17) 2971215072994113 a001 317811/33385282*(1/2+1/2*5^(1/2))^55 2971215072994113 a001 317811/33385282*3461452808002^(11/12) 2971215072994113 a001 14930352/710647*14662949395604^(13/21) 2971215072994113 a001 14930352/710647*(1/2+1/2*5^(1/2))^39 2971215072994113 a001 14930352/710647*192900153618^(13/18) 2971215072994113 a001 14930352/710647*73681302247^(3/4) 2971215072994113 a001 14930352/710647*10749957122^(13/16) 2971215072994113 a001 14930352/710647*599074578^(13/14) 2971215072994115 a001 71778070001033487/24157817 2971215072994116 a001 105937/29134601*14662949395604^(19/21) 2971215072994116 a001 39088169/710647*(1/2+1/2*5^(1/2))^37 2971215072994116 a001 187917426909574869/63245986 2971215072994116 a001 267914296/710647*141422324^(11/13) 2971215072994116 a001 1134903170/710647*141422324^(10/13) 2971215072994116 a001 686789568/101521*141422324^(9/13) 2971215072994116 a001 7778742049/710647*141422324^(2/3) 2971215072994116 a001 20365011074/710647*141422324^(8/13) 2971215072994116 a001 86267571272/710647*141422324^(7/13) 2971215072994116 a001 365435296162/710647*141422324^(6/13) 2971215072994116 a001 1548008755920/710647*141422324^(5/13) 2971215072994116 a001 14619165/101521*2537720636^(7/9) 2971215072994116 a001 14619165/101521*17393796001^(5/7) 2971215072994116 a001 14619165/101521*312119004989^(7/11) 2971215072994116 a001 14619165/101521*14662949395604^(5/9) 2971215072994116 a001 14619165/101521*(1/2+1/2*5^(1/2))^35 2971215072994116 a001 14619165/101521*505019158607^(5/8) 2971215072994116 a001 14619165/101521*28143753123^(7/10) 2971215072994116 a001 14619165/101521*599074578^(5/6) 2971215072994116 a001 4052739537881/710647*141422324^(1/3) 2971215072994116 a001 6557470319842/710647*141422324^(4/13) 2971215072994116 a001 491974210727691120/165580141 2971215072994116 a001 267914296/710647*2537720636^(11/15) 2971215072994116 a001 267914296/710647*45537549124^(11/17) 2971215072994116 a001 267914296/710647*312119004989^(3/5) 2971215072994116 a001 267914296/710647*14662949395604^(11/21) 2971215072994116 a001 267914296/710647*(1/2+1/2*5^(1/2))^33 2971215072994116 a001 267914296/710647*192900153618^(11/18) 2971215072994116 a001 267914296/710647*10749957122^(11/16) 2971215072994116 a001 267914296/710647*1568397607^(3/4) 2971215072994116 a001 14619165/101521*228826127^(7/8) 2971215072994116 a001 1288005205273498491/433494437 2971215072994116 a001 267914296/710647*599074578^(11/14) 2971215072994116 a001 701408733/710647*(1/2+1/2*5^(1/2))^31 2971215072994116 a001 701408733/710647*9062201101803^(1/2) 2971215072994116 a001 3372041405092804353/1134903170 2971215072994116 a001 686789568/101521*2537720636^(3/5) 2971215072994116 a001 12586269025/710647*2537720636^(5/9) 2971215072994116 a001 20365011074/710647*2537720636^(8/15) 2971215072994116 a001 86267571272/710647*2537720636^(7/15) 2971215072994116 a001 139583862445/710647*2537720636^(4/9) 2971215072994116 a001 365435296162/710647*2537720636^(2/5) 2971215072994116 a001 1836311903/710647*(1/2+1/2*5^(1/2))^29 2971215072994116 a001 1836311903/710647*1322157322203^(1/2) 2971215072994116 a001 1548008755920/710647*2537720636^(1/3) 2971215072994116 a001 6557470319842/710647*2537720636^(4/15) 2971215072994116 a001 686789568/101521*45537549124^(9/17) 2971215072994116 a001 686789568/101521*14662949395604^(3/7) 2971215072994116 a001 686789568/101521*(1/2+1/2*5^(1/2))^27 2971215072994116 a001 686789568/101521*192900153618^(1/2) 2971215072994116 a001 686789568/101521*10749957122^(9/16) 2971215072994116 a001 86267571272/710647*17393796001^(3/7) 2971215072994116 a001 12586269025/710647*312119004989^(5/11) 2971215072994116 a001 12586269025/710647*(1/2+1/2*5^(1/2))^25 2971215072994116 a001 12586269025/710647*3461452808002^(5/12) 2971215072994116 a001 2504730781961/710647*17393796001^(2/7) 2971215072994116 a001 12586269025/710647*28143753123^(1/2) 2971215072994116 a001 86267571272/710647*45537549124^(7/17) 2971215072994116 a001 32951280099/710647*(1/2+1/2*5^(1/2))^23 2971215072994116 a001 365435296162/710647*45537549124^(6/17) 2971215072994116 a001 591286729879/710647*45537549124^(1/3) 2971215072994116 a001 1548008755920/710647*45537549124^(5/17) 2971215072994116 a001 6557470319842/710647*45537549124^(4/17) 2971215072994116 a001 86267571272/710647*14662949395604^(1/3) 2971215072994116 a001 86267571272/710647*(1/2+1/2*5^(1/2))^21 2971215072994116 a001 86267571272/710647*192900153618^(7/18) 2971215072994116 a001 317811*817138163596^(1/3) 2971215072994116 a001 317811*(1/2+1/2*5^(1/2))^19 2971215072994116 a001 1548008755920/710647*312119004989^(3/11) 2971215072994116 a001 1515744265389/101521*312119004989^(1/5) 2971215072994116 a001 1548008755920/710647*(1/2+1/2*5^(1/2))^15 2971215072994116 a001 4052739537881/710647*(1/2+1/2*5^(1/2))^13 2971215072994116 a001 1515744265389/101521*(1/2+1/2*5^(1/2))^11 2971215072994116 a001 6557470319842/710647*(1/2+1/2*5^(1/2))^12 2971215072994116 a001 2504730781961/710647*(1/2+1/2*5^(1/2))^14 2971215072994116 a001 365435296162/710647*14662949395604^(2/7) 2971215072994116 a001 365435296162/710647*(1/2+1/2*5^(1/2))^18 2971215072994116 a001 1548008755920/710647*192900153618^(5/18) 2971215072994116 a001 139583862445/710647*(1/2+1/2*5^(1/2))^20 2971215072994116 a001 139583862445/710647*23725150497407^(5/16) 2971215072994116 a001 139583862445/710647*505019158607^(5/14) 2971215072994116 a001 6557470319842/710647*73681302247^(3/13) 2971215072994116 a001 4052739537881/710647*73681302247^(1/4) 2971215072994116 a001 956722026041/710647*73681302247^(4/13) 2971215072994116 a001 53316291173/710647*312119004989^(2/5) 2971215072994116 a001 53316291173/710647*(1/2+1/2*5^(1/2))^22 2971215072994116 a001 139583862445/710647*73681302247^(5/13) 2971215072994116 a001 20365011074/710647*45537549124^(8/17) 2971215072994116 a001 1548008755920/710647*28143753123^(3/10) 2971215072994116 a001 20365011074/710647*14662949395604^(8/21) 2971215072994116 a001 20365011074/710647*(1/2+1/2*5^(1/2))^24 2971215072994116 a001 20365011074/710647*192900153618^(4/9) 2971215072994116 a001 139583862445/710647*28143753123^(2/5) 2971215072994116 a001 20365011074/710647*73681302247^(6/13) 2971215072994116 a001 6557470319842/710647*10749957122^(1/4) 2971215072994116 a001 2504730781961/710647*10749957122^(7/24) 2971215072994116 a001 1548008755920/710647*10749957122^(5/16) 2971215072994116 a001 956722026041/710647*10749957122^(1/3) 2971215072994116 a001 365435296162/710647*10749957122^(3/8) 2971215072994116 a001 7778742049/710647*(1/2+1/2*5^(1/2))^26 2971215072994116 a001 7778742049/710647*73681302247^(1/2) 2971215072994116 a001 139583862445/710647*10749957122^(5/12) 2971215072994116 a001 86267571272/710647*10749957122^(7/16) 2971215072994116 a001 53316291173/710647*10749957122^(11/24) 2971215072994116 a001 20365011074/710647*10749957122^(1/2) 2971215072994116 a001 7778742049/710647*10749957122^(13/24) 2971215072994116 a001 6557470319842/710647*4106118243^(6/23) 2971215072994116 a001 2504730781961/710647*4106118243^(7/23) 2971215072994116 a001 956722026041/710647*4106118243^(8/23) 2971215072994116 a001 2971215073/710647*17393796001^(4/7) 2971215072994116 a001 2971215073/710647*14662949395604^(4/9) 2971215072994116 a001 2971215073/710647*(1/2+1/2*5^(1/2))^28 2971215072994116 a001 2971215073/710647*73681302247^(7/13) 2971215072994116 a001 365435296162/710647*4106118243^(9/23) 2971215072994116 a001 139583862445/710647*4106118243^(10/23) 2971215072994116 a001 2971215073/710647*10749957122^(7/12) 2971215072994116 a001 53316291173/710647*4106118243^(11/23) 2971215072994116 a001 32951280099/710647*4106118243^(1/2) 2971215072994116 a001 20365011074/710647*4106118243^(12/23) 2971215072994116 a001 7778742049/710647*4106118243^(13/23) 2971215072994116 a001 1134903170/710647*2537720636^(2/3) 2971215072994116 a001 2971215073/710647*4106118243^(14/23) 2971215072994116 a001 1515744265389/101521*1568397607^(1/4) 2971215072994116 a001 6557470319842/710647*1568397607^(3/11) 2971215072994116 a001 2504730781961/710647*1568397607^(7/22) 2971215072994116 a001 956722026041/710647*1568397607^(4/11) 2971215072994116 a001 1134903170/710647*45537549124^(10/17) 2971215072994116 a001 1134903170/710647*312119004989^(6/11) 2971215072994116 a001 1134903170/710647*14662949395604^(10/21) 2971215072994116 a001 1134903170/710647*(1/2+1/2*5^(1/2))^30 2971215072994116 a001 1134903170/710647*192900153618^(5/9) 2971215072994116 a001 1134903170/710647*28143753123^(3/5) 2971215072994116 a001 1134903170/710647*10749957122^(5/8) 2971215072994116 a001 365435296162/710647*1568397607^(9/22) 2971215072994116 a001 139583862445/710647*1568397607^(5/11) 2971215072994116 a001 1134903170/710647*4106118243^(15/23) 2971215072994116 a001 53316291173/710647*1568397607^(1/2) 2971215072994116 a001 20365011074/710647*1568397607^(6/11) 2971215072994116 a001 7778742049/710647*1568397607^(13/22) 2971215072994116 a001 2971215073/710647*1568397607^(7/11) 2971215072994116 a001 694678733273101954/233802911 2971215072994116 a001 1134903170/710647*1568397607^(15/22) 2971215072994116 a001 6557470319842/710647*599074578^(2/7) 2971215072994116 a001 2504730781961/710647*599074578^(1/3) 2971215072994116 a001 1548008755920/710647*599074578^(5/14) 2971215072994116 a001 956722026041/710647*599074578^(8/21) 2971215072994116 a001 433494437/710647*(1/2+1/2*5^(1/2))^32 2971215072994116 a001 433494437/710647*23725150497407^(1/2) 2971215072994116 a001 433494437/710647*73681302247^(8/13) 2971215072994116 a001 433494437/710647*10749957122^(2/3) 2971215072994116 a001 433494437/710647*4106118243^(16/23) 2971215072994116 a001 365435296162/710647*599074578^(3/7) 2971215072994116 a001 139583862445/710647*599074578^(10/21) 2971215072994116 a001 433494437/710647*1568397607^(8/11) 2971215072994116 a001 86267571272/710647*599074578^(1/2) 2971215072994116 a001 53316291173/710647*599074578^(11/21) 2971215072994116 a001 20365011074/710647*599074578^(4/7) 2971215072994116 a001 7778742049/710647*599074578^(13/21) 2971215072994116 a001 686789568/101521*599074578^(9/14) 2971215072994116 a001 2971215073/710647*599074578^(2/3) 2971215072994116 a001 1134903170/710647*599074578^(5/7) 2971215072994116 a001 2111488049193123/710648 2971215072994116 a001 433494437/710647*599074578^(16/21) 2971215072994116 a001 63245986/710647*141422324^(12/13) 2971215072994116 a001 6557470319842/710647*228826127^(3/10) 2971215072994116 a001 2504730781961/710647*228826127^(7/20) 2971215072994116 a001 1548008755920/710647*228826127^(3/8) 2971215072994116 a001 165580141/710647*45537549124^(2/3) 2971215072994116 a001 317811/370248451*14662949395604^(20/21) 2971215072994116 a001 165580141/710647*(1/2+1/2*5^(1/2))^34 2971215072994116 a001 165580141/710647*10749957122^(17/24) 2971215072994116 a001 165580141/710647*4106118243^(17/23) 2971215072994116 a001 165580141/710647*1568397607^(17/22) 2971215072994116 a001 956722026041/710647*228826127^(2/5) 2971215072994116 a001 365435296162/710647*228826127^(9/20) 2971215072994116 a001 139583862445/710647*228826127^(1/2) 2971215072994116 a001 165580141/710647*599074578^(17/21) 2971215072994116 a001 53316291173/710647*228826127^(11/20) 2971215072994116 a001 20365011074/710647*228826127^(3/5) 2971215072994116 a001 12586269025/710647*228826127^(5/8) 2971215072994116 a001 7778742049/710647*228826127^(13/20) 2971215072994116 a001 2971215073/710647*228826127^(7/10) 2971215072994116 a001 1134903170/710647*228826127^(3/4) 2971215072994116 a001 433494437/710647*228826127^(4/5) 2971215072994116 a001 101352261272705417/34111385 2971215072994116 a001 165580141/710647*228826127^(17/20) 2971215072994116 a001 6557470319842/710647*87403803^(6/19) 2971215072994116 a001 2504730781961/710647*87403803^(7/19) 2971215072994116 a001 63245986/710647*2537720636^(4/5) 2971215072994116 a001 63245986/710647*45537549124^(12/17) 2971215072994116 a001 63245986/710647*14662949395604^(4/7) 2971215072994116 a001 63245986/710647*(1/2+1/2*5^(1/2))^36 2971215072994116 a001 63245986/710647*505019158607^(9/14) 2971215072994116 a001 63245986/710647*192900153618^(2/3) 2971215072994116 a001 63245986/710647*73681302247^(9/13) 2971215072994116 a001 63245986/710647*10749957122^(3/4) 2971215072994116 a001 63245986/710647*4106118243^(18/23) 2971215072994116 a001 63245986/710647*1568397607^(9/11) 2971215072994116 a001 63245986/710647*599074578^(6/7) 2971215072994116 a001 956722026041/710647*87403803^(8/19) 2971215072994116 a001 365435296162/710647*87403803^(9/19) 2971215072994116 a001 317811*87403803^(1/2) 2971215072994116 a001 63245986/710647*228826127^(9/10) 2971215072994116 a001 139583862445/710647*87403803^(10/19) 2971215072994116 a001 53316291173/710647*87403803^(11/19) 2971215072994116 a001 20365011074/710647*87403803^(12/19) 2971215072994116 a001 7778742049/710647*87403803^(13/19) 2971215072994116 a001 2971215073/710647*87403803^(14/19) 2971215072994116 a001 1134903170/710647*87403803^(15/19) 2971215072994116 a001 433494437/710647*87403803^(16/19) 2971215072994116 a001 165580141/710647*87403803^(17/19) 2971215072994117 a001 27777889717422/9349 2971215072994117 a001 63245986/710647*87403803^(18/19) 2971215072994117 a001 6557470319842/710647*33385282^(1/3) 2971215072994117 a001 317811/54018521*14662949395604^(8/9) 2971215072994117 a001 24157817/710647*817138163596^(2/3) 2971215072994117 a001 24157817/710647*(1/2+1/2*5^(1/2))^38 2971215072994117 a001 24157817/710647*10749957122^(19/24) 2971215072994117 a001 24157817/710647*4106118243^(19/23) 2971215072994117 a001 24157817/710647*1568397607^(19/22) 2971215072994117 a001 24157817/710647*599074578^(19/21) 2971215072994117 a001 2504730781961/710647*33385282^(7/18) 2971215072994117 a001 24157817/710647*228826127^(19/20) 2971215072994117 a001 1548008755920/710647*33385282^(5/12) 2971215072994117 a001 956722026041/710647*33385282^(4/9) 2971215072994117 a001 365435296162/710647*33385282^(1/2) 2971215072994118 a001 139583862445/710647*33385282^(5/9) 2971215072994118 a001 86267571272/710647*33385282^(7/12) 2971215072994118 a001 53316291173/710647*33385282^(11/18) 2971215072994118 a001 20365011074/710647*33385282^(2/3) 2971215072994118 a001 7778742049/710647*33385282^(13/18) 2971215072994118 a001 686789568/101521*33385282^(3/4) 2971215072994118 a001 2971215073/710647*33385282^(7/9) 2971215072994118 a001 1134903170/710647*33385282^(5/6) 2971215072994119 a001 433494437/710647*33385282^(8/9) 2971215072994119 a001 267914296/710647*33385282^(11/12) 2971215072994119 a001 165580141/710647*33385282^(17/18) 2971215072994119 a001 14787095635835965/4976784 2971215072994123 a001 6557470319842/710647*12752043^(6/17) 2971215072994123 a001 9227465/710647*2537720636^(8/9) 2971215072994123 a001 9227465/710647*312119004989^(8/11) 2971215072994123 a001 10959/711491*14662949395604^(6/7) 2971215072994123 a001 10959/711491*(1/2+1/2*5^(1/2))^54 2971215072994123 a001 9227465/710647*(1/2+1/2*5^(1/2))^40 2971215072994123 a001 9227465/710647*23725150497407^(5/8) 2971215072994123 a001 9227465/710647*73681302247^(10/13) 2971215072994123 a001 9227465/710647*28143753123^(4/5) 2971215072994123 a001 9227465/710647*10749957122^(5/6) 2971215072994123 a001 9227465/710647*4106118243^(20/23) 2971215072994123 a001 9227465/710647*1568397607^(10/11) 2971215072994123 a001 9227465/710647*599074578^(20/21) 2971215072994124 a001 2504730781961/710647*12752043^(7/17) 2971215072994125 a001 956722026041/710647*12752043^(8/17) 2971215072994125 a001 591286729879/710647*12752043^(1/2) 2971215072994126 a001 365435296162/710647*12752043^(9/17) 2971215072994127 a001 139583862445/710647*12752043^(10/17) 2971215072994128 a001 53316291173/710647*12752043^(11/17) 2971215072994129 a001 20365011074/710647*12752043^(12/17) 2971215072994130 a001 7778742049/710647*12752043^(13/17) 2971215072994131 a001 2971215073/710647*12752043^(14/17) 2971215072994132 a001 1134903170/710647*12752043^(15/17) 2971215072994133 a001 433494437/710647*12752043^(16/17) 2971215072994134 a001 16944503813982303/5702887 2971215072994163 a001 6557470319842/710647*4870847^(3/8) 2971215072994164 a001 3524578/710647*2537720636^(14/15) 2971215072994164 a001 3524578/710647*17393796001^(6/7) 2971215072994164 a001 3524578/710647*45537549124^(14/17) 2971215072994164 a001 317811/7881196*(1/2+1/2*5^(1/2))^52 2971215072994164 a001 317811/7881196*23725150497407^(13/16) 2971215072994164 a001 317811/7881196*505019158607^(13/14) 2971215072994164 a001 3524578/710647*(1/2+1/2*5^(1/2))^42 2971215072994164 a001 3524578/710647*505019158607^(3/4) 2971215072994164 a001 3524578/710647*192900153618^(7/9) 2971215072994164 a001 3524578/710647*10749957122^(7/8) 2971215072994164 a001 3524578/710647*4106118243^(21/23) 2971215072994164 a001 3524578/710647*1568397607^(21/22) 2971215072994171 a001 2504730781961/710647*4870847^(7/16) 2971215072994179 a001 956722026041/710647*4870847^(1/2) 2971215072994187 a001 365435296162/710647*4870847^(9/16) 2971215072994194 a001 139583862445/710647*4870847^(5/8) 2971215072994202 a001 53316291173/710647*4870847^(11/16) 2971215072994210 a001 20365011074/710647*4870847^(3/4) 2971215072994218 a001 7778742049/710647*4870847^(13/16) 2971215072994226 a001 2971215073/710647*4870847^(7/8) 2971215072994234 a001 1134903170/710647*4870847^(15/16) 2971215072994241 a001 2157408178146338/726103 2971215072994444 a001 1346269/710647*312119004989^(4/5) 2971215072994444 a001 317811/3010349*(1/2+1/2*5^(1/2))^50 2971215072994444 a001 1346269/710647*(1/2+1/2*5^(1/2))^44 2971215072994444 a001 1346269/710647*23725150497407^(11/16) 2971215072994444 a001 1346269/710647*73681302247^(11/13) 2971215072994444 a001 1346269/710647*10749957122^(11/12) 2971215072994444 a001 1346269/710647*4106118243^(22/23) 2971215072994459 a001 6557470319842/710647*1860498^(2/5) 2971215072994517 a001 2504730781961/710647*1860498^(7/15) 2971215072994545 a001 1548008755920/710647*1860498^(1/2) 2971215072994574 a001 956722026041/710647*1860498^(8/15) 2971215072994631 a001 365435296162/710647*1860498^(3/5) 2971215072994688 a001 139583862445/710647*1860498^(2/3) 2971215072994717 a001 86267571272/710647*1860498^(7/10) 2971215072994746 a001 53316291173/710647*1860498^(11/15) 2971215072994803 a001 20365011074/710647*1860498^(4/5) 2971215072994831 a001 12586269025/710647*1860498^(5/6) 2971215072994860 a001 7778742049/710647*1860498^(13/15) 2971215072994889 a001 686789568/101521*1860498^(9/10) 2971215072994917 a001 2971215073/710647*1860498^(14/15) 2971215072994975 a001 2472169789334739/832040 2971215072995401 a001 10610209857723/1149851*439204^(4/9) 2971215072996363 a001 317811/1149851*45537549124^(16/17) 2971215072996363 a001 317811/1149851*14662949395604^(16/21) 2971215072996363 a001 317811/1149851*(1/2+1/2*5^(1/2))^48 2971215072996363 a001 514229/710647*(1/2+1/2*5^(1/2))^46 2971215072996363 a001 317811/1149851*192900153618^(8/9) 2971215072996363 a001 317811/1149851*73681302247^(12/13) 2971215072996363 a001 514229/710647*10749957122^(23/24) 2971215072996638 a001 6557470319842/710647*710647^(3/7) 2971215072996894 a001 1527884955772120/514229 2971215072996898 a001 7778742049/271443*271443^(12/13) 2971215072997058 a001 2504730781961/710647*710647^(1/2) 2971215072997478 a001 956722026041/710647*710647^(4/7) 2971215072997627 a001 1527884955772497/514229 2971215072997734 a001 1527884955772552/514229 2971215072997750 a001 1527884955772560/514229 2971215072997751 a001 1527884955772561/514229 2971215072997753 a001 1527884955772562/514229 2971215072997759 a001 1527884955772565/514229 2971215072997800 a001 1527884955772586/514229 2971215072997898 a001 365435296162/710647*710647^(9/14) 2971215072998080 a001 1527884955772730/514229 2971215072998283 a001 416020/930249*(1/2+1/2*5^(1/2))^47 2971215072998319 a001 139583862445/710647*710647^(5/7) 2971215072998529 a001 86267571272/710647*710647^(3/4) 2971215072998739 a001 53316291173/710647*710647^(11/14) 2971215072998813 a001 4000054745111040/1346269 2971215072999016 a001 726103/620166*45537549124^(15/17) 2971215072999016 a001 726103/620166*312119004989^(9/11) 2971215072999016 a001 832040/4870847*14662949395604^(7/9) 2971215072999016 a001 832040/4870847*(1/2+1/2*5^(1/2))^49 2971215072999016 a001 726103/620166*14662949395604^(5/7) 2971215072999016 a001 726103/620166*(1/2+1/2*5^(1/2))^45 2971215072999016 a001 832040/4870847*505019158607^(7/8) 2971215072999016 a001 726103/620166*192900153618^(5/6) 2971215072999016 a001 726103/620166*28143753123^(9/10) 2971215072999016 a001 726103/620166*10749957122^(15/16) 2971215072999093 a001 5236139639780500/1762289 2971215072999098 a001 2971215073/1860498*7881196^(10/11) 2971215072999102 a001 12586269025/1860498*7881196^(9/11) 2971215072999106 a001 53316291173/1860498*7881196^(8/11) 2971215072999109 a001 139583862445/1860498*7881196^(2/3) 2971215072999111 a001 75283811239/620166*7881196^(7/11) 2971215072999115 a001 956722026041/1860498*7881196^(6/11) 2971215072999119 a001 4052739537881/1860498*7881196^(5/11) 2971215072999123 a001 832040/12752043*14662949395604^(17/21) 2971215072999123 a001 832040/12752043*(1/2+1/2*5^(1/2))^51 2971215072999123 a001 5702887/1860498*(1/2+1/2*5^(1/2))^43 2971215072999123 a001 832040/12752043*192900153618^(17/18) 2971215072999134 a001 5483356618714392/1845493 2971215072999135 a001 2971215073/1860498*20633239^(6/7) 2971215072999136 a001 7778742049/1860498*20633239^(4/5) 2971215072999136 a001 10983760033/620166*20633239^(5/7) 2971215072999137 a001 75283811239/620166*20633239^(3/5) 2971215072999137 a001 182717648081/930249*20633239^(4/7) 2971215072999138 a001 4052739537881/1860498*20633239^(3/7) 2971215072999138 a001 3278735159921/930249*20633239^(2/5) 2971215072999138 a001 416020/16692641*(1/2+1/2*5^(1/2))^53 2971215072999138 a001 829464/103361*(1/2+1/2*5^(1/2))^41 2971215072999140 a001 71778070001154880/24157817 2971215072999141 a001 39088169/1860498*2537720636^(13/15) 2971215072999141 a001 39088169/1860498*45537549124^(13/17) 2971215072999141 a001 832040/87403803*3461452808002^(11/12) 2971215072999141 a001 39088169/1860498*14662949395604^(13/21) 2971215072999141 a001 39088169/1860498*(1/2+1/2*5^(1/2))^39 2971215072999141 a001 39088169/1860498*192900153618^(13/18) 2971215072999141 a001 39088169/1860498*73681302247^(3/4) 2971215072999141 a001 39088169/1860498*10749957122^(13/16) 2971215072999141 a001 39088169/1860498*599074578^(13/14) 2971215072999141 a001 93958713454946340/31622993 2971215072999141 a001 233802911/620166*141422324^(11/13) 2971215072999141 a001 165580141/1860498*141422324^(12/13) 2971215072999141 a001 2971215073/1860498*141422324^(10/13) 2971215072999141 a001 12586269025/1860498*141422324^(9/13) 2971215072999141 a001 10182505537/930249*141422324^(2/3) 2971215072999141 a001 53316291173/1860498*141422324^(8/13) 2971215072999141 a001 75283811239/620166*141422324^(7/13) 2971215072999141 a001 956722026041/1860498*141422324^(6/13) 2971215072999141 a001 4052739537881/1860498*141422324^(5/13) 2971215072999141 a001 832040/228826127*14662949395604^(19/21) 2971215072999141 a001 831985/15126*(1/2+1/2*5^(1/2))^37 2971215072999141 a001 3536736619241/620166*141422324^(1/3) 2971215072999141 a001 491974210728523160/165580141 2971215072999141 a001 133957148/930249*2537720636^(7/9) 2971215072999141 a001 133957148/930249*17393796001^(5/7) 2971215072999141 a001 133957148/930249*312119004989^(7/11) 2971215072999141 a001 133957148/930249*14662949395604^(5/9) 2971215072999141 a001 133957148/930249*(1/2+1/2*5^(1/2))^35 2971215072999141 a001 133957148/930249*505019158607^(5/8) 2971215072999141 a001 133957148/930249*28143753123^(7/10) 2971215072999141 a001 1288005205275676800/433494437 2971215072999141 a001 233802911/620166*2537720636^(11/15) 2971215072999141 a001 133957148/930249*599074578^(5/6) 2971215072999141 a001 233802911/620166*45537549124^(11/17) 2971215072999141 a001 233802911/620166*312119004989^(3/5) 2971215072999141 a001 233802911/620166*14662949395604^(11/21) 2971215072999141 a001 233802911/620166*(1/2+1/2*5^(1/2))^33 2971215072999141 a001 233802911/620166*192900153618^(11/18) 2971215072999141 a001 233802911/620166*10749957122^(11/16) 2971215072999141 a001 5527936729669684/1860497 2971215072999141 a001 233802911/620166*1568397607^(3/4) 2971215072999141 a001 12586269025/1860498*2537720636^(3/5) 2971215072999141 a001 10983760033/620166*2537720636^(5/9) 2971215072999141 a001 53316291173/1860498*2537720636^(8/15) 2971215072999141 a001 2971215073/1860498*2537720636^(2/3) 2971215072999141 a001 75283811239/620166*2537720636^(7/15) 2971215072999141 a001 182717648081/930249*2537720636^(4/9) 2971215072999141 a001 956722026041/1860498*2537720636^(2/5) 2971215072999141 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^31 2971215072999141 a001 1836311903/1860498*9062201101803^(1/2) 2971215072999141 a001 4052739537881/1860498*2537720636^(1/3) 2971215072999141 a001 8828119010019844920/2971215073 2971215072999141 a001 267084832/103361*(1/2+1/2*5^(1/2))^29 2971215072999141 a001 267084832/103361*1322157322203^(1/2) 2971215072999141 a001 12586269025/1860498*45537549124^(9/17) 2971215072999141 a001 75283811239/620166*17393796001^(3/7) 2971215072999141 a001 12586269025/1860498*14662949395604^(3/7) 2971215072999141 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^27 2971215072999141 a001 12586269025/1860498*192900153618^(1/2) 2971215072999141 a001 3278735159921/930249*17393796001^(2/7) 2971215072999141 a001 75283811239/620166*45537549124^(7/17) 2971215072999141 a001 10983760033/620166*312119004989^(5/11) 2971215072999141 a001 10983760033/620166*(1/2+1/2*5^(1/2))^25 2971215072999141 a001 10983760033/620166*3461452808002^(5/12) 2971215072999141 a001 956722026041/1860498*45537549124^(6/17) 2971215072999141 a001 832040*45537549124^(1/3) 2971215072999141 a001 53316291173/1860498*45537549124^(8/17) 2971215072999141 a001 4052739537881/1860498*45537549124^(5/17) 2971215072999141 a001 43133785636/930249*(1/2+1/2*5^(1/2))^23 2971215072999141 a001 75283811239/620166*(1/2+1/2*5^(1/2))^21 2971215072999141 a001 4052739537881/1860498*312119004989^(3/11) 2971215072999141 a001 832040*(1/2+1/2*5^(1/2))^17 2971215072999141 a001 4052739537881/1860498*(1/2+1/2*5^(1/2))^15 2971215072999141 a001 3536736619241/620166*(1/2+1/2*5^(1/2))^13 2971215072999141 a001 3278735159921/930249*(1/2+1/2*5^(1/2))^14 2971215072999141 a001 2504730781961/1860498*(1/2+1/2*5^(1/2))^16 2971215072999141 a001 2504730781961/1860498*23725150497407^(1/4) 2971215072999141 a001 956722026041/1860498*(1/2+1/2*5^(1/2))^18 2971215072999141 a001 182717648081/930249*23725150497407^(5/16) 2971215072999141 a001 139583862445/1860498*312119004989^(2/5) 2971215072999141 a001 956722026041/1860498*192900153618^(1/3) 2971215072999141 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^22 2971215072999141 a001 3536736619241/620166*73681302247^(1/4) 2971215072999141 a001 2504730781961/1860498*73681302247^(4/13) 2971215072999141 a001 53316291173/1860498*14662949395604^(8/21) 2971215072999141 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^24 2971215072999141 a001 182717648081/930249*73681302247^(5/13) 2971215072999141 a001 53316291173/1860498*192900153618^(4/9) 2971215072999141 a001 53316291173/1860498*73681302247^(6/13) 2971215072999141 a001 10983760033/620166*28143753123^(1/2) 2971215072999141 a001 10182505537/930249*(1/2+1/2*5^(1/2))^26 2971215072999141 a001 182717648081/930249*28143753123^(2/5) 2971215072999141 a001 10182505537/930249*73681302247^(1/2) 2971215072999141 a001 7778742049/1860498*17393796001^(4/7) 2971215072999141 a001 3278735159921/930249*10749957122^(7/24) 2971215072999141 a001 4052739537881/1860498*10749957122^(5/16) 2971215072999141 a001 2504730781961/1860498*10749957122^(1/3) 2971215072999141 a001 956722026041/1860498*10749957122^(3/8) 2971215072999141 a001 7778742049/1860498*14662949395604^(4/9) 2971215072999141 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^28 2971215072999141 a001 7778742049/1860498*505019158607^(1/2) 2971215072999141 a001 7778742049/1860498*73681302247^(7/13) 2971215072999141 a001 12586269025/1860498*10749957122^(9/16) 2971215072999141 a001 182717648081/930249*10749957122^(5/12) 2971215072999141 a001 75283811239/620166*10749957122^(7/16) 2971215072999141 a001 139583862445/1860498*10749957122^(11/24) 2971215072999141 a001 53316291173/1860498*10749957122^(1/2) 2971215072999141 a001 10182505537/930249*10749957122^(13/24) 2971215072999141 a001 7778742049/1860498*10749957122^(7/12) 2971215072999141 a001 3278735159921/930249*4106118243^(7/23) 2971215072999141 a001 2504730781961/1860498*4106118243^(8/23) 2971215072999141 a001 2971215073/1860498*45537549124^(10/17) 2971215072999141 a001 2971215073/1860498*312119004989^(6/11) 2971215072999141 a001 2971215073/1860498*14662949395604^(10/21) 2971215072999141 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^30 2971215072999141 a001 2971215073/1860498*192900153618^(5/9) 2971215072999141 a001 956722026041/1860498*4106118243^(9/23) 2971215072999141 a001 2971215073/1860498*28143753123^(3/5) 2971215072999141 a001 182717648081/930249*4106118243^(10/23) 2971215072999141 a001 2971215073/1860498*10749957122^(5/8) 2971215072999141 a001 139583862445/1860498*4106118243^(11/23) 2971215072999141 a001 43133785636/930249*4106118243^(1/2) 2971215072999141 a001 53316291173/1860498*4106118243^(12/23) 2971215072999141 a001 10182505537/930249*4106118243^(13/23) 2971215072999141 a001 7778742049/1860498*4106118243^(14/23) 2971215072999141 a001 5456077604921337680/1836311903 2971215072999141 a001 2971215073/1860498*4106118243^(15/23) 2971215072999141 a001 3278735159921/930249*1568397607^(7/22) 2971215072999141 a001 2504730781961/1860498*1568397607^(4/11) 2971215072999141 a001 567451585/930249*(1/2+1/2*5^(1/2))^32 2971215072999141 a001 567451585/930249*23725150497407^(1/2) 2971215072999141 a001 567451585/930249*505019158607^(4/7) 2971215072999141 a001 567451585/930249*73681302247^(8/13) 2971215072999141 a001 567451585/930249*10749957122^(2/3) 2971215072999141 a001 956722026041/1860498*1568397607^(9/22) 2971215072999141 a001 182717648081/930249*1568397607^(5/11) 2971215072999141 a001 567451585/930249*4106118243^(16/23) 2971215072999141 a001 139583862445/1860498*1568397607^(1/2) 2971215072999141 a001 53316291173/1860498*1568397607^(6/11) 2971215072999141 a001 10182505537/930249*1568397607^(13/22) 2971215072999141 a001 7778742049/1860498*1568397607^(7/11) 2971215072999141 a001 2971215073/1860498*1568397607^(15/22) 2971215072999141 a001 2084036199822830440/701408733 2971215072999141 a001 567451585/930249*1568397607^(8/11) 2971215072999141 a001 3278735159921/930249*599074578^(1/3) 2971215072999141 a001 4052739537881/1860498*599074578^(5/14) 2971215072999141 a001 2504730781961/1860498*599074578^(8/21) 2971215072999141 a001 433494437/1860498*45537549124^(2/3) 2971215072999141 a001 832040/969323029*14662949395604^(20/21) 2971215072999141 a001 433494437/1860498*(1/2+1/2*5^(1/2))^34 2971215072999141 a001 433494437/1860498*10749957122^(17/24) 2971215072999141 a001 433494437/1860498*4106118243^(17/23) 2971215072999141 a001 956722026041/1860498*599074578^(3/7) 2971215072999141 a001 182717648081/930249*599074578^(10/21) 2971215072999141 a001 433494437/1860498*1568397607^(17/22) 2971215072999141 a001 75283811239/620166*599074578^(1/2) 2971215072999141 a001 139583862445/1860498*599074578^(11/21) 2971215072999141 a001 53316291173/1860498*599074578^(4/7) 2971215072999141 a001 10182505537/930249*599074578^(13/21) 2971215072999141 a001 233802911/620166*599074578^(11/14) 2971215072999141 a001 12586269025/1860498*599074578^(9/14) 2971215072999141 a001 7778742049/1860498*599074578^(2/3) 2971215072999141 a001 2971215073/1860498*599074578^(5/7) 2971215072999141 a001 567451585/930249*599074578^(16/21) 2971215072999141 a001 99503874318394205/33489287 2971215072999141 a001 433494437/1860498*599074578^(17/21) 2971215072999141 a001 3278735159921/930249*228826127^(7/20) 2971215072999141 a001 4052739537881/1860498*228826127^(3/8) 2971215072999141 a001 165580141/1860498*2537720636^(4/5) 2971215072999141 a001 165580141/1860498*45537549124^(12/17) 2971215072999141 a001 165580141/1860498*14662949395604^(4/7) 2971215072999141 a001 165580141/1860498*(1/2+1/2*5^(1/2))^36 2971215072999141 a001 165580141/1860498*505019158607^(9/14) 2971215072999141 a001 165580141/1860498*192900153618^(2/3) 2971215072999141 a001 165580141/1860498*73681302247^(9/13) 2971215072999141 a001 165580141/1860498*10749957122^(3/4) 2971215072999141 a001 165580141/1860498*4106118243^(18/23) 2971215072999141 a001 165580141/1860498*1568397607^(9/11) 2971215072999141 a001 2504730781961/1860498*228826127^(2/5) 2971215072999141 a001 956722026041/1860498*228826127^(9/20) 2971215072999141 a001 182717648081/930249*228826127^(1/2) 2971215072999141 a001 165580141/1860498*599074578^(6/7) 2971215072999141 a001 139583862445/1860498*228826127^(11/20) 2971215072999141 a001 53316291173/1860498*228826127^(3/5) 2971215072999141 a001 10983760033/620166*228826127^(5/8) 2971215072999141 a001 10182505537/930249*228826127^(13/20) 2971215072999141 a001 7778742049/1860498*228826127^(7/10) 2971215072999141 a001 133957148/930249*228826127^(7/8) 2971215072999141 a001 2971215073/1860498*228826127^(3/4) 2971215072999141 a001 567451585/930249*228826127^(4/5) 2971215072999141 a001 433494437/1860498*228826127^(17/20) 2971215072999141 a001 5528305160338736/1860621 2971215072999141 a001 165580141/1860498*228826127^(9/10) 2971215072999141 a001 3278735159921/930249*87403803^(7/19) 2971215072999141 a001 208010/35355581*14662949395604^(8/9) 2971215072999141 a001 31622993/930249*(1/2+1/2*5^(1/2))^38 2971215072999141 a001 31622993/930249*10749957122^(19/24) 2971215072999141 a001 31622993/930249*4106118243^(19/23) 2971215072999141 a001 31622993/930249*1568397607^(19/22) 2971215072999141 a001 31622993/930249*599074578^(19/21) 2971215072999141 a001 2504730781961/1860498*87403803^(8/19) 2971215072999141 a001 956722026041/1860498*87403803^(9/19) 2971215072999141 a001 591286729879/1860498*87403803^(1/2) 2971215072999141 a001 31622993/930249*228826127^(19/20) 2971215072999141 a001 182717648081/930249*87403803^(10/19) 2971215072999141 a001 139583862445/1860498*87403803^(11/19) 2971215072999141 a001 53316291173/1860498*87403803^(12/19) 2971215072999141 a001 10182505537/930249*87403803^(13/19) 2971215072999141 a001 7778742049/1860498*87403803^(14/19) 2971215072999141 a001 2971215073/1860498*87403803^(15/19) 2971215072999141 a001 567451585/930249*87403803^(16/19) 2971215072999141 a001 433494437/1860498*87403803^(17/19) 2971215072999142 a001 116139356908737800/39088169 2971215072999142 a001 165580141/1860498*87403803^(18/19) 2971215072999142 a001 24157817/1860498*2537720636^(8/9) 2971215072999142 a001 24157817/1860498*312119004989^(8/11) 2971215072999142 a001 24157817/1860498*(1/2+1/2*5^(1/2))^40 2971215072999142 a001 24157817/1860498*23725150497407^(5/8) 2971215072999142 a001 24157817/1860498*73681302247^(10/13) 2971215072999142 a001 24157817/1860498*28143753123^(4/5) 2971215072999142 a001 24157817/1860498*10749957122^(5/6) 2971215072999142 a001 24157817/1860498*4106118243^(20/23) 2971215072999142 a001 24157817/1860498*1568397607^(10/11) 2971215072999142 a001 24157817/1860498*599074578^(20/21) 2971215072999142 a001 3278735159921/930249*33385282^(7/18) 2971215072999142 a001 4052739537881/1860498*33385282^(5/12) 2971215072999142 a001 2504730781961/1860498*33385282^(4/9) 2971215072999142 a001 956722026041/1860498*33385282^(1/2) 2971215072999143 a001 182717648081/930249*33385282^(5/9) 2971215072999143 a001 75283811239/620166*33385282^(7/12) 2971215072999143 a001 139583862445/1860498*33385282^(11/18) 2971215072999143 a001 53316291173/1860498*33385282^(2/3) 2971215072999143 a001 10182505537/930249*33385282^(13/18) 2971215072999143 a001 12586269025/1860498*33385282^(3/4) 2971215072999143 a001 7778742049/1860498*33385282^(7/9) 2971215072999143 a001 2971215073/1860498*33385282^(5/6) 2971215072999143 a001 567451585/930249*33385282^(8/9) 2971215072999144 a001 233802911/620166*33385282^(11/12) 2971215072999144 a001 433494437/1860498*33385282^(17/18) 2971215072999144 a001 5545160863447865/1866294 2971215072999148 a001 9227465/1860498*2537720636^(14/15) 2971215072999148 a001 9227465/1860498*17393796001^(6/7) 2971215072999148 a001 9227465/1860498*45537549124^(14/17) 2971215072999148 a001 75640/1875749*(1/2+1/2*5^(1/2))^52 2971215072999148 a001 75640/1875749*23725150497407^(13/16) 2971215072999148 a001 9227465/1860498*(1/2+1/2*5^(1/2))^42 2971215072999148 a001 75640/1875749*505019158607^(13/14) 2971215072999148 a001 9227465/1860498*192900153618^(7/9) 2971215072999148 a001 9227465/1860498*10749957122^(7/8) 2971215072999148 a001 9227465/1860498*4106118243^(21/23) 2971215072999148 a001 9227465/1860498*1568397607^(21/22) 2971215072999149 a001 3278735159921/930249*12752043^(7/17) 2971215072999150 a001 2504730781961/1860498*12752043^(8/17) 2971215072999150 a001 832040*12752043^(1/2) 2971215072999151 a001 956722026041/1860498*12752043^(9/17) 2971215072999152 a001 182717648081/930249*12752043^(10/17) 2971215072999153 a001 139583862445/1860498*12752043^(11/17) 2971215072999154 a001 53316291173/1860498*12752043^(12/17) 2971215072999155 a001 10182505537/930249*12752043^(13/17) 2971215072999156 a001 7778742049/1860498*12752043^(14/17) 2971215072999157 a001 2971215073/1860498*12752043^(15/17) 2971215072999158 a001 567451585/930249*12752043^(16/17) 2971215072999159 a001 20365011074/710647*710647^(6/7) 2971215072999159 a001 10610209025680/3571 2971215072999189 a001 208010/1970299*312119004989^(10/11) 2971215072999189 a001 1762289/930249*312119004989^(4/5) 2971215072999189 a001 208010/1970299*(1/2+1/2*5^(1/2))^50 2971215072999189 a001 208010/1970299*3461452808002^(5/6) 2971215072999189 a001 1762289/930249*(1/2+1/2*5^(1/2))^44 2971215072999189 a001 1762289/930249*23725150497407^(11/16) 2971215072999189 a001 1762289/930249*73681302247^(11/13) 2971215072999189 a001 1762289/930249*10749957122^(11/12) 2971215072999189 a001 1762289/930249*4106118243^(22/23) 2971215072999196 a001 3278735159921/930249*4870847^(7/16) 2971215072999204 a001 2504730781961/1860498*4870847^(1/2) 2971215072999212 a001 956722026041/1860498*4870847^(9/16) 2971215072999219 a001 182717648081/930249*4870847^(5/8) 2971215072999227 a001 139583862445/1860498*4870847^(11/16) 2971215072999235 a001 53316291173/1860498*4870847^(3/4) 2971215072999243 a001 10182505537/930249*4870847^(13/16) 2971215072999251 a001 7778742049/1860498*4870847^(7/8) 2971215072999259 a001 2971215073/1860498*4870847^(15/16) 2971215072999266 a001 6472224534449960/2178309 2971215072999469 a001 832040/3010349*45537549124^(16/17) 2971215072999469 a001 832040/3010349*14662949395604^(16/21) 2971215072999469 a001 832040/3010349*(1/2+1/2*5^(1/2))^48 2971215072999469 a001 1346269/1860498*(1/2+1/2*5^(1/2))^46 2971215072999469 a001 832040/3010349*192900153618^(8/9) 2971215072999469 a001 832040/3010349*73681302247^(12/13) 2971215072999469 a001 1346269/1860498*10749957122^(23/24) 2971215072999542 a001 3278735159921/930249*1860498^(7/15) 2971215072999546 a001 4000054745112027/1346269 2971215072999570 a001 4052739537881/1860498*1860498^(1/2) 2971215072999579 a001 7778742049/710647*710647^(13/14) 2971215072999599 a001 2504730781961/1860498*1860498^(8/15) 2971215072999653 a001 4000054745112171/1346269 2971215072999656 a001 956722026041/1860498*1860498^(3/5) 2971215072999669 a001 4000054745112192/1346269 2971215072999671 a001 4000054745112195/1346269 2971215072999672 a001 4000054745112196/1346269 2971215072999673 a001 4000054745112197/1346269 2971215072999679 a001 4000054745112205/1346269 2971215072999713 a001 182717648081/930249*1860498^(2/3) 2971215072999719 a001 4000054745112260/1346269 2971215072999742 a001 75283811239/620166*1860498^(7/10) 2971215072999749 a001 2178309/4870847*(1/2+1/2*5^(1/2))^47 2971215072999771 a001 139583862445/1860498*1860498^(11/15) 2971215072999826 a001 5236139639781792/1762289 2971215072999828 a001 53316291173/1860498*1860498^(4/5) 2971215072999831 a001 7778742049/4870847*7881196^(10/11) 2971215072999835 a001 32951280099/4870847*7881196^(9/11) 2971215072999839 a001 139583862445/4870847*7881196^(8/11) 2971215072999842 a001 365435296162/4870847*7881196^(2/3) 2971215072999844 a001 591286729879/4870847*7881196^(7/11) 2971215072999848 a001 2504730781961/4870847*7881196^(6/11) 2971215072999853 a001 2178309*7881196^(5/11) 2971215072999856 a001 5702887/4870847*45537549124^(15/17) 2971215072999856 a001 5702887/4870847*312119004989^(9/11) 2971215072999856 a001 726103/4250681*14662949395604^(7/9) 2971215072999856 a001 5702887/4870847*14662949395604^(5/7) 2971215072999856 a001 726103/4250681*(1/2+1/2*5^(1/2))^49 2971215072999856 a001 5702887/4870847*(1/2+1/2*5^(1/2))^45 2971215072999856 a001 726103/4250681*505019158607^(7/8) 2971215072999856 a001 5702887/4870847*192900153618^(5/6) 2971215072999856 a001 5702887/4870847*28143753123^(9/10) 2971215072999856 a001 5702887/4870847*10749957122^(15/16) 2971215072999856 a001 10983760033/620166*1860498^(5/6) 2971215072999867 a001 5483356618715745/1845493 2971215072999868 a001 7778742049/4870847*20633239^(6/7) 2971215072999869 a001 20365011074/4870847*20633239^(4/5) 2971215072999869 a001 86267571272/4870847*20633239^(5/7) 2971215072999870 a001 591286729879/4870847*20633239^(3/5) 2971215072999870 a001 956722026041/4870847*20633239^(4/7) 2971215072999871 a001 2178309*20633239^(3/7) 2971215072999872 a001 311187/4769326*817138163596^(17/19) 2971215072999872 a001 311187/4769326*14662949395604^(17/21) 2971215072999872 a001 311187/4769326*(1/2+1/2*5^(1/2))^51 2971215072999872 a001 14930352/4870847*(1/2+1/2*5^(1/2))^43 2971215072999872 a001 311187/4769326*192900153618^(17/18) 2971215072999873 a001 71778070001172591/24157817 2971215072999874 a001 39088169/4870847*(1/2+1/2*5^(1/2))^41 2971215072999874 a001 93958713454969524/31622993 2971215072999874 a001 433494437/4870847*141422324^(12/13) 2971215072999874 a001 1836311903/4870847*141422324^(11/13) 2971215072999874 a001 7778742049/4870847*141422324^(10/13) 2971215072999874 a001 32951280099/4870847*141422324^(9/13) 2971215072999874 a001 53316291173/4870847*141422324^(2/3) 2971215072999874 a001 139583862445/4870847*141422324^(8/13) 2971215072999874 a001 591286729879/4870847*141422324^(7/13) 2971215072999874 a001 2504730781961/4870847*141422324^(6/13) 2971215072999874 a001 102334155/4870847*2537720636^(13/15) 2971215072999874 a001 2178309*141422324^(5/13) 2971215072999874 a001 102334155/4870847*45537549124^(13/17) 2971215072999874 a001 102334155/4870847*14662949395604^(13/21) 2971215072999874 a001 102334155/4870847*(1/2+1/2*5^(1/2))^39 2971215072999874 a001 46347/4868641*3461452808002^(11/12) 2971215072999874 a001 102334155/4870847*192900153618^(13/18) 2971215072999874 a001 102334155/4870847*73681302247^(3/4) 2971215072999874 a001 102334155/4870847*10749957122^(13/16) 2971215072999874 a001 102334155/4870847*599074578^(13/14) 2971215072999874 a001 491974210728644553/165580141 2971215072999874 a001 726103/199691526*14662949395604^(19/21) 2971215072999874 a001 267914296/4870847*(1/2+1/2*5^(1/2))^37 2971215072999874 a001 1288005205275994611/433494437 2971215072999874 a001 701408733/4870847*2537720636^(7/9) 2971215072999874 a001 701408733/4870847*17393796001^(5/7) 2971215072999874 a001 701408733/4870847*312119004989^(7/11) 2971215072999874 a001 701408733/4870847*14662949395604^(5/9) 2971215072999874 a001 701408733/4870847*(1/2+1/2*5^(1/2))^35 2971215072999874 a001 701408733/4870847*505019158607^(5/8) 2971215072999874 a001 701408733/4870847*28143753123^(7/10) 2971215072999874 a001 1836311903/4870847*2537720636^(11/15) 2971215072999874 a001 5527936729671048/1860497 2971215072999874 a001 7778742049/4870847*2537720636^(2/3) 2971215072999874 a001 32951280099/4870847*2537720636^(3/5) 2971215072999874 a001 86267571272/4870847*2537720636^(5/9) 2971215072999874 a001 139583862445/4870847*2537720636^(8/15) 2971215072999874 a001 591286729879/4870847*2537720636^(7/15) 2971215072999874 a001 956722026041/4870847*2537720636^(4/9) 2971215072999874 a001 2504730781961/4870847*2537720636^(2/5) 2971215072999874 a001 1836311903/4870847*45537549124^(11/17) 2971215072999874 a001 1836311903/4870847*312119004989^(3/5) 2971215072999874 a001 1836311903/4870847*14662949395604^(11/21) 2971215072999874 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^33 2971215072999874 a001 1836311903/4870847*192900153618^(11/18) 2971215072999874 a001 1836311903/4870847*10749957122^(11/16) 2971215072999874 a001 2178309*2537720636^(1/3) 2971215072999874 a001 8828119010022023229/2971215073 2971215072999874 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^31 2971215072999874 a001 4807526976/4870847*9062201101803^(1/2) 2971215072999874 a001 23112315624966730407/7778742049 2971215072999874 a001 591286729879/4870847*17393796001^(3/7) 2971215072999874 a001 20365011074/4870847*17393796001^(4/7) 2971215072999874 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^29 2971215072999874 a001 12586269025/4870847*1322157322203^(1/2) 2971215072999874 a001 32951280099/4870847*45537549124^(9/17) 2971215072999874 a001 139583862445/4870847*45537549124^(8/17) 2971215072999874 a001 591286729879/4870847*45537549124^(7/17) 2971215072999874 a001 32951280099/4870847*14662949395604^(3/7) 2971215072999874 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^27 2971215072999874 a001 2504730781961/4870847*45537549124^(6/17) 2971215072999874 a001 4052739537881/4870847*45537549124^(1/3) 2971215072999874 a001 2178309*45537549124^(5/17) 2971215072999874 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^25 2971215072999874 a001 86267571272/4870847*3461452808002^(5/12) 2971215072999874 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^23 2971215072999874 a001 2178309*312119004989^(3/11) 2971215072999874 a001 365435296162/4870847*312119004989^(2/5) 2971215072999874 a001 1548008755920/4870847*817138163596^(1/3) 2971215072999874 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^19 2971215072999874 a001 4052739537881/4870847*(1/2+1/2*5^(1/2))^17 2971215072999874 a001 2178309*(1/2+1/2*5^(1/2))^15 2971215072999874 a001 6557470319842/4870847*23725150497407^(1/4) 2971215072999874 a001 2504730781961/4870847*(1/2+1/2*5^(1/2))^18 2971215072999874 a001 591286729879/4870847*192900153618^(7/18) 2971215072999874 a001 139583862445/4870847*14662949395604^(8/21) 2971215072999874 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^24 2971215072999874 a001 139583862445/4870847*192900153618^(4/9) 2971215072999874 a001 6557470319842/4870847*73681302247^(4/13) 2971215072999874 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^26 2971215072999874 a001 956722026041/4870847*73681302247^(5/13) 2971215072999874 a001 139583862445/4870847*73681302247^(6/13) 2971215072999874 a001 53316291173/4870847*73681302247^(1/2) 2971215072999874 a001 2178309*28143753123^(3/10) 2971215072999874 a001 20365011074/4870847*14662949395604^(4/9) 2971215072999874 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^28 2971215072999874 a001 20365011074/4870847*505019158607^(1/2) 2971215072999874 a001 956722026041/4870847*28143753123^(2/5) 2971215072999874 a001 20365011074/4870847*73681302247^(7/13) 2971215072999874 a001 86267571272/4870847*28143753123^(1/2) 2971215072999874 a001 2178309*10749957122^(5/16) 2971215072999874 a001 6557470319842/4870847*10749957122^(1/3) 2971215072999874 a001 7778742049/4870847*45537549124^(10/17) 2971215072999874 a001 2504730781961/4870847*10749957122^(3/8) 2971215072999874 a001 7778742049/4870847*312119004989^(6/11) 2971215072999874 a001 7778742049/4870847*14662949395604^(10/21) 2971215072999874 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^30 2971215072999874 a001 7778742049/4870847*192900153618^(5/9) 2971215072999874 a001 956722026041/4870847*10749957122^(5/12) 2971215072999874 a001 591286729879/4870847*10749957122^(7/16) 2971215072999874 a001 365435296162/4870847*10749957122^(11/24) 2971215072999874 a001 7778742049/4870847*28143753123^(3/5) 2971215072999874 a001 139583862445/4870847*10749957122^(1/2) 2971215072999874 a001 32951280099/4870847*10749957122^(9/16) 2971215072999874 a001 53316291173/4870847*10749957122^(13/24) 2971215072999874 a001 20365011074/4870847*10749957122^(7/12) 2971215072999874 a001 7236168497945647/2435424 2971215072999874 a001 7778742049/4870847*10749957122^(5/8) 2971215072999874 a001 6557470319842/4870847*4106118243^(8/23) 2971215072999874 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^32 2971215072999874 a001 2971215073/4870847*23725150497407^(1/2) 2971215072999874 a001 2971215073/4870847*505019158607^(4/7) 2971215072999874 a001 2971215073/4870847*73681302247^(8/13) 2971215072999874 a001 2504730781961/4870847*4106118243^(9/23) 2971215072999874 a001 956722026041/4870847*4106118243^(10/23) 2971215072999874 a001 365435296162/4870847*4106118243^(11/23) 2971215072999874 a001 2971215073/4870847*10749957122^(2/3) 2971215072999874 a001 225851433717/4870847*4106118243^(1/2) 2971215072999874 a001 139583862445/4870847*4106118243^(12/23) 2971215072999874 a001 53316291173/4870847*4106118243^(13/23) 2971215072999874 a001 20365011074/4870847*4106118243^(14/23) 2971215072999874 a001 7778742049/4870847*4106118243^(15/23) 2971215072999874 a001 5456077604922683949/1836311903 2971215072999874 a001 2971215073/4870847*4106118243^(16/23) 2971215072999874 a001 6557470319842/4870847*1568397607^(4/11) 2971215072999874 a001 1134903170/4870847*45537549124^(2/3) 2971215072999874 a001 2178309/2537720636*14662949395604^(20/21) 2971215072999874 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^34 2971215072999874 a001 1134903170/4870847*10749957122^(17/24) 2971215072999874 a001 2504730781961/4870847*1568397607^(9/22) 2971215072999874 a001 956722026041/4870847*1568397607^(5/11) 2971215072999874 a001 1134903170/4870847*4106118243^(17/23) 2971215072999874 a001 365435296162/4870847*1568397607^(1/2) 2971215072999874 a001 139583862445/4870847*1568397607^(6/11) 2971215072999874 a001 53316291173/4870847*1568397607^(13/22) 2971215072999874 a001 1836311903/4870847*1568397607^(3/4) 2971215072999874 a001 20365011074/4870847*1568397607^(7/11) 2971215072999874 a001 7778742049/4870847*1568397607^(15/22) 2971215072999874 a001 2971215073/4870847*1568397607^(8/11) 2971215072999874 a001 694678733274448223/233802911 2971215072999874 a001 1134903170/4870847*1568397607^(17/22) 2971215072999874 a001 433494437/4870847*2537720636^(4/5) 2971215072999874 a001 2178309*599074578^(5/14) 2971215072999874 a001 6557470319842/4870847*599074578^(8/21) 2971215072999874 a001 433494437/4870847*45537549124^(12/17) 2971215072999874 a001 433494437/4870847*14662949395604^(4/7) 2971215072999874 a001 433494437/4870847*(1/2+1/2*5^(1/2))^36 2971215072999874 a001 433494437/4870847*505019158607^(9/14) 2971215072999874 a001 433494437/4870847*192900153618^(2/3) 2971215072999874 a001 433494437/4870847*73681302247^(9/13) 2971215072999874 a001 433494437/4870847*10749957122^(3/4) 2971215072999874 a001 433494437/4870847*4106118243^(18/23) 2971215072999874 a001 2504730781961/4870847*599074578^(3/7) 2971215072999874 a001 956722026041/4870847*599074578^(10/21) 2971215072999874 a001 591286729879/4870847*599074578^(1/2) 2971215072999874 a001 433494437/4870847*1568397607^(9/11) 2971215072999874 a001 365435296162/4870847*599074578^(11/21) 2971215072999874 a001 139583862445/4870847*599074578^(4/7) 2971215072999874 a001 53316291173/4870847*599074578^(13/21) 2971215072999874 a001 32951280099/4870847*599074578^(9/14) 2971215072999874 a001 20365011074/4870847*599074578^(2/3) 2971215072999874 a001 701408733/4870847*599074578^(5/6) 2971215072999874 a001 7778742049/4870847*599074578^(5/7) 2971215072999874 a001 1836311903/4870847*599074578^(11/14) 2971215072999874 a001 2971215073/4870847*599074578^(16/21) 2971215072999874 a001 1134903170/4870847*599074578^(17/21) 2971215072999874 a001 398015497273675029/133957148 2971215072999874 a001 433494437/4870847*599074578^(6/7) 2971215072999874 a001 2178309*228826127^(3/8) 2971215072999874 a001 165580141/4870847*817138163596^(2/3) 2971215072999874 a001 165580141/4870847*(1/2+1/2*5^(1/2))^38 2971215072999874 a001 165580141/4870847*10749957122^(19/24) 2971215072999874 a001 165580141/4870847*4106118243^(19/23) 2971215072999874 a001 6557470319842/4870847*228826127^(2/5) 2971215072999874 a001 165580141/4870847*1568397607^(19/22) 2971215072999874 a001 2504730781961/4870847*228826127^(9/20) 2971215072999874 a001 956722026041/4870847*228826127^(1/2) 2971215072999874 a001 165580141/4870847*599074578^(19/21) 2971215072999874 a001 365435296162/4870847*228826127^(11/20) 2971215072999874 a001 139583862445/4870847*228826127^(3/5) 2971215072999874 a001 86267571272/4870847*228826127^(5/8) 2971215072999874 a001 53316291173/4870847*228826127^(13/20) 2971215072999874 a001 20365011074/4870847*228826127^(7/10) 2971215072999874 a001 7778742049/4870847*228826127^(3/4) 2971215072999874 a001 2971215073/4870847*228826127^(4/5) 2971215072999874 a001 701408733/4870847*228826127^(7/8) 2971215072999874 a001 1134903170/4870847*228826127^(17/20) 2971215072999874 a001 433494437/4870847*228826127^(9/10) 2971215072999874 a001 2895778893511481/974611 2971215072999874 a001 165580141/4870847*228826127^(19/20) 2971215072999874 a001 63245986/4870847*2537720636^(8/9) 2971215072999874 a001 63245986/4870847*312119004989^(8/11) 2971215072999874 a001 2178309/141422324*14662949395604^(6/7) 2971215072999874 a001 63245986/4870847*(1/2+1/2*5^(1/2))^40 2971215072999874 a001 63245986/4870847*73681302247^(10/13) 2971215072999874 a001 63245986/4870847*28143753123^(4/5) 2971215072999874 a001 63245986/4870847*10749957122^(5/6) 2971215072999874 a001 63245986/4870847*4106118243^(20/23) 2971215072999874 a001 63245986/4870847*1568397607^(10/11) 2971215072999874 a001 63245986/4870847*599074578^(20/21) 2971215072999874 a001 6557470319842/4870847*87403803^(8/19) 2971215072999874 a001 2504730781961/4870847*87403803^(9/19) 2971215072999874 a001 1548008755920/4870847*87403803^(1/2) 2971215072999874 a001 956722026041/4870847*87403803^(10/19) 2971215072999874 a001 365435296162/4870847*87403803^(11/19) 2971215072999875 a001 139583862445/4870847*87403803^(12/19) 2971215072999875 a001 53316291173/4870847*87403803^(13/19) 2971215072999875 a001 20365011074/4870847*87403803^(14/19) 2971215072999875 a001 7778742049/4870847*87403803^(15/19) 2971215072999875 a001 2971215073/4870847*87403803^(16/19) 2971215072999875 a001 1134903170/4870847*87403803^(17/19) 2971215072999875 a001 433494437/4870847*87403803^(18/19) 2971215072999875 a001 116139356908766457/39088169 2971215072999875 a001 24157817/4870847*2537720636^(14/15) 2971215072999875 a001 24157817/4870847*17393796001^(6/7) 2971215072999875 a001 24157817/4870847*45537549124^(14/17) 2971215072999875 a001 24157817/4870847*14662949395604^(2/3) 2971215072999875 a001 2178309/54018521*23725150497407^(13/16) 2971215072999875 a001 24157817/4870847*(1/2+1/2*5^(1/2))^42 2971215072999875 a001 2178309/54018521*505019158607^(13/14) 2971215072999875 a001 24157817/4870847*192900153618^(7/9) 2971215072999875 a001 24157817/4870847*10749957122^(7/8) 2971215072999875 a001 24157817/4870847*4106118243^(21/23) 2971215072999875 a001 24157817/4870847*1568397607^(21/22) 2971215072999875 a001 2178309*33385282^(5/12) 2971215072999875 a001 6557470319842/4870847*33385282^(4/9) 2971215072999876 a001 2504730781961/4870847*33385282^(1/2) 2971215072999876 a001 956722026041/4870847*33385282^(5/9) 2971215072999876 a001 591286729879/4870847*33385282^(7/12) 2971215072999876 a001 365435296162/4870847*33385282^(11/18) 2971215072999876 a001 139583862445/4870847*33385282^(2/3) 2971215072999876 a001 53316291173/4870847*33385282^(13/18) 2971215072999876 a001 32951280099/4870847*33385282^(3/4) 2971215072999876 a001 20365011074/4870847*33385282^(7/9) 2971215072999876 a001 7778742049/4870847*33385282^(5/6) 2971215072999877 a001 2971215073/4870847*33385282^(8/9) 2971215072999877 a001 1836311903/4870847*33385282^(11/12) 2971215072999877 a001 1134903170/4870847*33385282^(17/18) 2971215072999877 a001 7393547817932311/2488392 2971215072999881 a001 2178309/20633239*312119004989^(10/11) 2971215072999881 a001 2178309/20633239*(1/2+1/2*5^(1/2))^50 2971215072999881 a001 9227465/4870847*(1/2+1/2*5^(1/2))^44 2971215072999881 a001 9227465/4870847*23725150497407^(11/16) 2971215072999881 a001 2178309/20633239*3461452808002^(5/6) 2971215072999881 a001 9227465/4870847*73681302247^(11/13) 2971215072999881 a001 9227465/4870847*10749957122^(11/12) 2971215072999881 a001 9227465/4870847*4106118243^(22/23) 2971215072999883 a001 6557470319842/4870847*12752043^(8/17) 2971215072999883 a001 4052739537881/4870847*12752043^(1/2) 2971215072999884 a001 2504730781961/4870847*12752043^(9/17) 2971215072999885 a001 956722026041/4870847*12752043^(10/17) 2971215072999885 a001 10182505537/930249*1860498^(13/15) 2971215072999886 a001 365435296162/4870847*12752043^(11/17) 2971215072999887 a001 139583862445/4870847*12752043^(12/17) 2971215072999888 a001 53316291173/4870847*12752043^(13/17) 2971215072999889 a001 20365011074/4870847*12752043^(14/17) 2971215072999890 a001 7778742049/4870847*12752043^(15/17) 2971215072999891 a001 2971215073/4870847*12752043^(16/17) 2971215072999893 a001 16944503814015141/5702887 2971215072999914 a001 12586269025/1860498*1860498^(9/10) 2971215072999922 a001 2178309/7881196*45537549124^(16/17) 2971215072999922 a001 2178309/7881196*14662949395604^(16/21) 2971215072999922 a001 2178309/7881196*(1/2+1/2*5^(1/2))^48 2971215072999922 a001 3524578/4870847*(1/2+1/2*5^(1/2))^46 2971215072999922 a001 2178309/7881196*192900153618^(8/9) 2971215072999922 a001 2178309/7881196*73681302247^(12/13) 2971215072999922 a001 3524578/4870847*10749957122^(23/24) 2971215072999933 a001 10472279279563961/3524578 2971215072999937 a001 6557470319842/4870847*4870847^(1/2) 2971215072999938 a001 20365011074/12752043*7881196^(10/11) 2971215072999942 a001 86267571272/12752043*7881196^(9/11) 2971215072999942 a001 7778742049/1860498*1860498^(14/15) 2971215072999945 a001 2504730781961/4870847*4870847^(9/16) 2971215072999946 a001 365435296162/12752043*7881196^(8/11) 2971215072999949 a001 58833029660472/19801 2971215072999949 a001 956722026041/12752043*7881196^(2/3) 2971215072999951 a001 516002918640/4250681*7881196^(7/11) 2971215072999951 a001 5236139639782012/1762289 2971215072999952 a001 10472279279564025/3524578 2971215072999952 a001 5236139639782013/1762289 2971215072999953 a001 956722026041/4870847*4870847^(5/8) 2971215072999953 a001 10472279279564029/3524578 2971215072999953 a001 53316291173/33385282*7881196^(10/11) 2971215072999955 a001 6557470319842/12752043*7881196^(6/11) 2971215072999956 a001 139583862445/87403803*7881196^(10/11) 2971215072999956 a001 365435296162/228826127*7881196^(10/11) 2971215072999956 a001 956722026041/599074578*7881196^(10/11) 2971215072999956 a001 2504730781961/1568397607*7881196^(10/11) 2971215072999956 a001 6557470319842/4106118243*7881196^(10/11) 2971215072999956 a001 10610209857723/6643838879*7881196^(10/11) 2971215072999956 a001 4052739537881/2537720636*7881196^(10/11) 2971215072999956 a001 1548008755920/969323029*7881196^(10/11) 2971215072999956 a001 591286729879/370248451*7881196^(10/11) 2971215072999956 a001 225851433717/141422324*7881196^(10/11) 2971215072999957 a001 86267571272/54018521*7881196^(10/11) 2971215072999958 a001 32264490531/4769326*7881196^(9/11) 2971215072999959 a001 5236139639782025/1762289 2971215072999960 a001 591286729879/87403803*7881196^(9/11) 2971215072999960 a001 1548008755920/228826127*7881196^(9/11) 2971215072999960 a001 4052739537881/599074578*7881196^(9/11) 2971215072999960 a001 1515744265389/224056801*7881196^(9/11) 2971215072999960 a001 365435296162/4870847*4870847^(11/16) 2971215072999960 a001 6557470319842/969323029*7881196^(9/11) 2971215072999960 a001 2504730781961/370248451*7881196^(9/11) 2971215072999961 a001 956722026041/141422324*7881196^(9/11) 2971215072999961 a001 365435296162/54018521*7881196^(9/11) 2971215072999962 a001 956722026041/33385282*7881196^(8/11) 2971215072999963 a001 5702887/12752043*(1/2+1/2*5^(1/2))^47 2971215072999963 a001 32951280099/20633239*7881196^(10/11) 2971215072999964 a001 2504730781961/87403803*7881196^(8/11) 2971215072999965 a001 6557470319842/228826127*7881196^(8/11) 2971215072999965 a001 10610209857723/370248451*7881196^(8/11) 2971215072999965 a001 4052739537881/141422324*7881196^(8/11) 2971215072999965 a001 2504730781961/33385282*7881196^(2/3) 2971215072999966 a001 1548008755920/54018521*7881196^(8/11) 2971215072999966 a001 4052739537881/33385282*7881196^(7/11) 2971215072999967 a001 6557470319842/87403803*7881196^(2/3) 2971215072999967 a001 139583862445/20633239*7881196^(9/11) 2971215072999968 a001 10610209857723/141422324*7881196^(2/3) 2971215072999968 a001 139583862445/4870847*4870847^(3/4) 2971215072999969 a001 4052739537881/54018521*7881196^(2/3) 2971215072999969 a001 3536736619241/29134601*7881196^(7/11) 2971215072999970 a001 6557470319842/54018521*7881196^(7/11) 2971215072999972 a001 591286729879/20633239*7881196^(8/11) 2971215072999974 a001 27416783093579712/9227465 2971215072999975 a001 140728068720/1875749*7881196^(2/3) 2971215072999975 a001 20365011074/12752043*20633239^(6/7) 2971215072999976 a001 53316291173/12752043*20633239^(4/5) 2971215072999976 a001 53316291173/4870847*4870847^(13/16) 2971215072999976 a001 2504730781961/20633239*7881196^(7/11) 2971215072999976 a001 75283811239/4250681*20633239^(5/7) 2971215072999977 a001 516002918640/4250681*20633239^(3/5) 2971215072999977 a001 2504730781961/12752043*20633239^(4/7) 2971215072999979 a001 4976784/4250681*45537549124^(15/17) 2971215072999979 a001 4976784/4250681*312119004989^(9/11) 2971215072999979 a001 5702887/33385282*14662949395604^(7/9) 2971215072999979 a001 4976784/4250681*14662949395604^(5/7) 2971215072999979 a001 5702887/33385282*(1/2+1/2*5^(1/2))^49 2971215072999979 a001 4976784/4250681*(1/2+1/2*5^(1/2))^45 2971215072999979 a001 5702887/33385282*505019158607^(7/8) 2971215072999979 a001 4976784/4250681*192900153618^(5/6) 2971215072999979 a001 4976784/4250681*28143753123^(9/10) 2971215072999979 a001 4976784/4250681*10749957122^(15/16) 2971215072999980 a001 71778070001175175/24157817 2971215072999980 a001 10610209857723/20633239*7881196^(6/11) 2971215072999981 a001 5702887/87403803*817138163596^(17/19) 2971215072999981 a001 5702887/87403803*14662949395604^(17/21) 2971215072999981 a001 39088169/12752043*(1/2+1/2*5^(1/2))^43 2971215072999981 a001 5702887/87403803*192900153618^(17/18) 2971215072999981 a001 806512561845261/271442 2971215072999981 a001 1134903170/12752043*141422324^(12/13) 2971215072999981 a001 1602508992/4250681*141422324^(11/13) 2971215072999981 a001 20365011074/12752043*141422324^(10/13) 2971215072999981 a001 86267571272/12752043*141422324^(9/13) 2971215072999981 a001 139583862445/12752043*141422324^(2/3) 2971215072999981 a001 365435296162/12752043*141422324^(8/13) 2971215072999981 a001 516002918640/4250681*141422324^(7/13) 2971215072999981 a001 6557470319842/12752043*141422324^(6/13) 2971215072999981 a001 34111385/4250681*(1/2+1/2*5^(1/2))^41 2971215072999981 a001 491974210728662264/165580141 2971215072999981 a001 267914296/12752043*2537720636^(13/15) 2971215072999981 a001 267914296/12752043*45537549124^(13/17) 2971215072999981 a001 267914296/12752043*14662949395604^(13/21) 2971215072999981 a001 267914296/12752043*(1/2+1/2*5^(1/2))^39 2971215072999981 a001 267914296/12752043*192900153618^(13/18) 2971215072999981 a001 267914296/12752043*73681302247^(3/4) 2971215072999981 a001 267914296/12752043*10749957122^(13/16) 2971215072999981 a001 1288005205276040979/433494437 2971215072999981 a001 5702887/1568397607*14662949395604^(19/21) 2971215072999981 a001 233802911/4250681*(1/2+1/2*5^(1/2))^37 2971215072999981 a001 267914296/12752043*599074578^(13/14) 2971215072999981 a001 1836311903/12752043*2537720636^(7/9) 2971215072999981 a001 3372041405099460673/1134903170 2971215072999981 a001 1602508992/4250681*2537720636^(11/15) 2971215072999981 a001 20365011074/12752043*2537720636^(2/3) 2971215072999981 a001 86267571272/12752043*2537720636^(3/5) 2971215072999981 a001 75283811239/4250681*2537720636^(5/9) 2971215072999981 a001 365435296162/12752043*2537720636^(8/15) 2971215072999981 a001 516002918640/4250681*2537720636^(7/15) 2971215072999981 a001 2504730781961/12752043*2537720636^(4/9) 2971215072999981 a001 6557470319842/12752043*2537720636^(2/5) 2971215072999981 a001 1836311903/12752043*17393796001^(5/7) 2971215072999981 a001 1836311903/12752043*312119004989^(7/11) 2971215072999981 a001 1836311903/12752043*14662949395604^(5/9) 2971215072999981 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^35 2971215072999981 a001 1836311903/12752043*505019158607^(5/8) 2971215072999981 a001 1836311903/12752043*28143753123^(7/10) 2971215072999981 a001 8828119010022341040/2971215073 2971215072999981 a001 1602508992/4250681*45537549124^(11/17) 2971215072999981 a001 1602508992/4250681*312119004989^(3/5) 2971215072999981 a001 1602508992/4250681*14662949395604^(11/21) 2971215072999981 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^33 2971215072999981 a001 1602508992/4250681*192900153618^(11/18) 2971215072999981 a001 23112315624967562447/7778742049 2971215072999981 a001 1602508992/4250681*10749957122^(11/16) 2971215072999981 a001 53316291173/12752043*17393796001^(4/7) 2971215072999981 a001 516002918640/4250681*17393796001^(3/7) 2971215072999981 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^31 2971215072999981 a001 12586269025/12752043*9062201101803^(1/2) 2971215072999981 a001 37889059401928833/12752042 2971215072999981 a001 86267571272/12752043*45537549124^(9/17) 2971215072999981 a001 365435296162/12752043*45537549124^(8/17) 2971215072999981 a001 516002918640/4250681*45537549124^(7/17) 2971215072999981 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^29 2971215072999981 a001 10983760033/4250681*1322157322203^(1/2) 2971215072999981 a001 6557470319842/12752043*45537549124^(6/17) 2971215072999981 a001 3536736619241/4250681*45537549124^(1/3) 2971215072999981 a001 86267571272/12752043*817138163596^(9/19) 2971215072999981 a001 86267571272/12752043*14662949395604^(3/7) 2971215072999981 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^27 2971215072999981 a001 86267571272/12752043*192900153618^(1/2) 2971215072999981 a001 75283811239/4250681*312119004989^(5/11) 2971215072999981 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^25 2971215072999981 a001 75283811239/4250681*3461452808002^(5/12) 2971215072999981 a001 4052739537881/12752043*817138163596^(1/3) 2971215072999981 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^21 2971215072999981 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^17 2971215072999981 a001 5702887*(1/2+1/2*5^(1/2))^13 2971215072999981 a001 6557470319842/12752043*(1/2+1/2*5^(1/2))^18 2971215072999981 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^20 2971215072999981 a001 2504730781961/12752043*23725150497407^(5/16) 2971215072999981 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^22 2971215072999981 a001 2504730781961/12752043*505019158607^(5/14) 2971215072999981 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^26 2971215072999981 a001 365435296162/12752043*192900153618^(4/9) 2971215072999981 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^28 2971215072999981 a001 2504730781961/12752043*73681302247^(5/13) 2971215072999981 a001 365435296162/12752043*73681302247^(6/13) 2971215072999981 a001 139583862445/12752043*73681302247^(1/2) 2971215072999981 a001 53316291173/12752043*73681302247^(7/13) 2971215072999981 a001 20365011074/12752043*45537549124^(10/17) 2971215072999981 a001 20365011074/12752043*312119004989^(6/11) 2971215072999981 a001 20365011074/12752043*14662949395604^(10/21) 2971215072999981 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^30 2971215072999981 a001 20365011074/12752043*192900153618^(5/9) 2971215072999981 a001 2504730781961/12752043*28143753123^(2/5) 2971215072999981 a001 75283811239/4250681*28143753123^(1/2) 2971215072999981 a001 20365011074/12752043*28143753123^(3/5) 2971215072999981 a001 37396512239912783854/12586269025 2971215072999981 a001 6557470319842/12752043*10749957122^(3/8) 2971215072999981 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^32 2971215072999981 a001 7778742049/12752043*23725150497407^(1/2) 2971215072999981 a001 7778742049/12752043*505019158607^(4/7) 2971215072999981 a001 7778742049/12752043*73681302247^(8/13) 2971215072999981 a001 2504730781961/12752043*10749957122^(5/12) 2971215072999981 a001 516002918640/4250681*10749957122^(7/16) 2971215072999981 a001 956722026041/12752043*10749957122^(11/24) 2971215072999981 a001 365435296162/12752043*10749957122^(1/2) 2971215072999981 a001 139583862445/12752043*10749957122^(13/24) 2971215072999981 a001 86267571272/12752043*10749957122^(9/16) 2971215072999981 a001 53316291173/12752043*10749957122^(7/12) 2971215072999981 a001 20365011074/12752043*10749957122^(5/8) 2971215072999981 a001 14284196614945221407/4807526976 2971215072999981 a001 7778742049/12752043*10749957122^(2/3) 2971215072999981 a001 2971215073/12752043*45537549124^(2/3) 2971215072999981 a001 5702887/6643838879*14662949395604^(20/21) 2971215072999981 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^34 2971215072999981 a001 6557470319842/12752043*4106118243^(9/23) 2971215072999981 a001 2504730781961/12752043*4106118243^(10/23) 2971215072999981 a001 956722026041/12752043*4106118243^(11/23) 2971215072999981 a001 2971215073/12752043*10749957122^(17/24) 2971215072999981 a001 591286729879/12752043*4106118243^(1/2) 2971215072999981 a001 365435296162/12752043*4106118243^(12/23) 2971215072999981 a001 1134903170/12752043*2537720636^(4/5) 2971215072999981 a001 139583862445/12752043*4106118243^(13/23) 2971215072999981 a001 53316291173/12752043*4106118243^(14/23) 2971215072999981 a001 20365011074/12752043*4106118243^(15/23) 2971215072999981 a001 7778742049/12752043*4106118243^(16/23) 2971215072999981 a001 5456077604922880367/1836311903 2971215072999981 a001 2971215073/12752043*4106118243^(17/23) 2971215072999981 a001 1134903170/12752043*45537549124^(12/17) 2971215072999981 a001 1134903170/12752043*14662949395604^(4/7) 2971215072999981 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^36 2971215072999981 a001 1134903170/12752043*505019158607^(9/14) 2971215072999981 a001 1134903170/12752043*192900153618^(2/3) 2971215072999981 a001 1134903170/12752043*73681302247^(9/13) 2971215072999981 a001 1134903170/12752043*10749957122^(3/4) 2971215072999981 a001 6557470319842/12752043*1568397607^(9/22) 2971215072999981 a001 2504730781961/12752043*1568397607^(5/11) 2971215072999981 a001 1134903170/12752043*4106118243^(18/23) 2971215072999981 a001 956722026041/12752043*1568397607^(1/2) 2971215072999981 a001 365435296162/12752043*1568397607^(6/11) 2971215072999981 a001 139583862445/12752043*1568397607^(13/22) 2971215072999981 a001 53316291173/12752043*1568397607^(7/11) 2971215072999981 a001 20365011074/12752043*1568397607^(15/22) 2971215072999981 a001 1602508992/4250681*1568397607^(3/4) 2971215072999981 a001 7778742049/12752043*1568397607^(8/11) 2971215072999981 a001 2971215073/12752043*1568397607^(17/22) 2971215072999981 a001 2084036199823419694/701408733 2971215072999981 a001 1134903170/12752043*1568397607^(9/11) 2971215072999981 a001 433494437/12752043*817138163596^(2/3) 2971215072999981 a001 433494437/12752043*(1/2+1/2*5^(1/2))^38 2971215072999981 a001 433494437/12752043*10749957122^(19/24) 2971215072999981 a001 433494437/12752043*4106118243^(19/23) 2971215072999981 a001 6557470319842/12752043*599074578^(3/7) 2971215072999981 a001 2504730781961/12752043*599074578^(10/21) 2971215072999981 a001 516002918640/4250681*599074578^(1/2) 2971215072999981 a001 433494437/12752043*1568397607^(19/22) 2971215072999981 a001 956722026041/12752043*599074578^(11/21) 2971215072999981 a001 365435296162/12752043*599074578^(4/7) 2971215072999981 a001 139583862445/12752043*599074578^(13/21) 2971215072999981 a001 86267571272/12752043*599074578^(9/14) 2971215072999981 a001 53316291173/12752043*599074578^(2/3) 2971215072999981 a001 20365011074/12752043*599074578^(5/7) 2971215072999981 a001 7778742049/12752043*599074578^(16/21) 2971215072999981 a001 1602508992/4250681*599074578^(11/14) 2971215072999981 a001 1836311903/12752043*599074578^(5/6) 2971215072999981 a001 2971215073/12752043*599074578^(17/21) 2971215072999981 a001 1134903170/12752043*599074578^(6/7) 2971215072999981 a001 796030994547378715/267914296 2971215072999981 a001 433494437/12752043*599074578^(19/21) 2971215072999981 a001 165580141/12752043*2537720636^(8/9) 2971215072999981 a001 165580141/12752043*312119004989^(8/11) 2971215072999981 a001 5702887/370248451*14662949395604^(6/7) 2971215072999981 a001 165580141/12752043*(1/2+1/2*5^(1/2))^40 2971215072999981 a001 165580141/12752043*23725150497407^(5/8) 2971215072999981 a001 165580141/12752043*73681302247^(10/13) 2971215072999981 a001 165580141/12752043*28143753123^(4/5) 2971215072999981 a001 165580141/12752043*10749957122^(5/6) 2971215072999981 a001 165580141/12752043*4106118243^(20/23) 2971215072999981 a001 165580141/12752043*1568397607^(10/11) 2971215072999981 a001 6557470319842/12752043*228826127^(9/20) 2971215072999981 a001 2504730781961/12752043*228826127^(1/2) 2971215072999981 a001 165580141/12752043*599074578^(20/21) 2971215072999981 a001 956722026041/12752043*228826127^(11/20) 2971215072999981 a001 365435296162/12752043*228826127^(3/5) 2971215072999981 a001 75283811239/4250681*228826127^(5/8) 2971215072999981 a001 139583862445/12752043*228826127^(13/20) 2971215072999981 a001 53316291173/12752043*228826127^(7/10) 2971215072999981 a001 20365011074/12752043*228826127^(3/4) 2971215072999981 a001 7778742049/12752043*228826127^(4/5) 2971215072999981 a001 2971215073/12752043*228826127^(17/20) 2971215072999981 a001 1836311903/12752043*228826127^(7/8) 2971215072999981 a001 1134903170/12752043*228826127^(9/10) 2971215072999981 a001 304056783818716451/102334155 2971215072999981 a001 433494437/12752043*228826127^(19/20) 2971215072999981 a001 63245986/12752043*2537720636^(14/15) 2971215072999981 a001 63245986/12752043*17393796001^(6/7) 2971215072999981 a001 63245986/12752043*45537549124^(14/17) 2971215072999981 a001 63245986/12752043*817138163596^(14/19) 2971215072999981 a001 63245986/12752043*(1/2+1/2*5^(1/2))^42 2971215072999981 a001 5702887/141422324*23725150497407^(13/16) 2971215072999981 a001 5702887/141422324*505019158607^(13/14) 2971215072999981 a001 63245986/12752043*192900153618^(7/9) 2971215072999981 a001 63245986/12752043*10749957122^(7/8) 2971215072999981 a001 63245986/12752043*4106118243^(21/23) 2971215072999981 a001 63245986/12752043*1568397607^(21/22) 2971215072999981 a001 6557470319842/12752043*87403803^(9/19) 2971215072999981 a001 4052739537881/12752043*87403803^(1/2) 2971215072999981 a001 2504730781961/12752043*87403803^(10/19) 2971215072999981 a001 956722026041/12752043*87403803^(11/19) 2971215072999981 a001 365435296162/12752043*87403803^(12/19) 2971215072999981 a001 139583862445/12752043*87403803^(13/19) 2971215072999982 a001 53316291173/12752043*87403803^(14/19) 2971215072999982 a001 20365011074/12752043*87403803^(15/19) 2971215072999982 a001 7778742049/12752043*87403803^(16/19) 2971215072999982 a001 2971215073/12752043*87403803^(17/19) 2971215072999982 a001 1134903170/12752043*87403803^(18/19) 2971215072999982 a001 116139356908770638/39088169 2971215072999982 a001 5702887/54018521*312119004989^(10/11) 2971215072999982 a001 24157817/12752043*312119004989^(4/5) 2971215072999982 a001 24157817/12752043*(1/2+1/2*5^(1/2))^44 2971215072999982 a001 24157817/12752043*23725150497407^(11/16) 2971215072999982 a001 24157817/12752043*73681302247^(11/13) 2971215072999982 a001 24157817/12752043*10749957122^(11/12) 2971215072999982 a001 24157817/12752043*4106118243^(22/23) 2971215072999983 a001 6557470319842/12752043*33385282^(1/2) 2971215072999983 a001 2504730781961/12752043*33385282^(5/9) 2971215072999983 a001 516002918640/4250681*33385282^(7/12) 2971215072999983 a001 956722026041/12752043*33385282^(11/18) 2971215072999983 a001 365435296162/12752043*33385282^(2/3) 2971215072999983 a001 139583862445/12752043*33385282^(13/18) 2971215072999983 a001 86267571272/12752043*33385282^(3/4) 2971215072999983 a001 53316291173/12752043*33385282^(7/9) 2971215072999983 a001 20365011074/12752043*33385282^(5/6) 2971215072999984 a001 7778742049/12752043*33385282^(8/9) 2971215072999984 a001 1602508992/4250681*33385282^(11/12) 2971215072999984 a001 2971215073/12752043*33385282^(17/18) 2971215072999984 a001 20365011074/4870847*4870847^(7/8) 2971215072999984 a001 44361286907595463/14930352 2971215072999988 a001 5702887/20633239*45537549124^(16/17) 2971215072999988 a001 5702887/20633239*14662949395604^(16/21) 2971215072999988 a001 5702887/20633239*(1/2+1/2*5^(1/2))^48 2971215072999988 a001 9227465/12752043*(1/2+1/2*5^(1/2))^46 2971215072999988 a001 5702887/20633239*192900153618^(8/9) 2971215072999988 a001 5702887/20633239*73681302247^(12/13) 2971215072999988 a001 9227465/12752043*10749957122^(23/24) 2971215072999990 a001 27416783093579856/9227465 2971215072999990 a001 3536736619241/4250681*12752043^(1/2) 2971215072999991 a001 53316291173/33385282*20633239^(6/7) 2971215072999991 a001 6557470319842/12752043*12752043^(9/17) 2971215072999991 a001 139583862445/33385282*20633239^(4/5) 2971215072999992 a001 7778742049/4870847*4870847^(15/16) 2971215072999992 a001 591286729879/33385282*20633239^(5/7) 2971215072999992 a001 2504730781961/12752043*12752043^(10/17) 2971215072999992 a001 27416783093579877/9227465 2971215072999992 a001 421796662978152/141961 2971215072999993 a001 27416783093579881/9227465 2971215072999993 a001 4052739537881/33385282*20633239^(3/5) 2971215072999993 a001 27416783093579882/9227465 2971215072999993 a001 3278735159921/16692641*20633239^(4/7) 2971215072999993 a001 956722026041/12752043*12752043^(11/17) 2971215072999993 a001 139583862445/87403803*20633239^(6/7) 2971215072999993 a001 365435296162/228826127*20633239^(6/7) 2971215072999994 a001 956722026041/599074578*20633239^(6/7) 2971215072999994 a001 2504730781961/1568397607*20633239^(6/7) 2971215072999994 a001 6557470319842/4106118243*20633239^(6/7) 2971215072999994 a001 10610209857723/6643838879*20633239^(6/7) 2971215072999994 a001 4052739537881/2537720636*20633239^(6/7) 2971215072999994 a001 1548008755920/969323029*20633239^(6/7) 2971215072999994 a001 365435296162/87403803*20633239^(4/5) 2971215072999994 a001 591286729879/370248451*20633239^(6/7) 2971215072999994 a001 5483356618715978/1845493 2971215072999994 a001 225851433717/141422324*20633239^(6/7) 2971215072999994 a001 956722026041/228826127*20633239^(4/5) 2971215072999994 a001 2504730781961/599074578*20633239^(4/5) 2971215072999994 a001 6557470319842/1568397607*20633239^(4/5) 2971215072999994 a001 10610209857723/2537720636*20633239^(4/5) 2971215072999994 a001 4052739537881/969323029*20633239^(4/5) 2971215072999994 a001 1548008755920/370248451*20633239^(4/5) 2971215072999994 a001 591286729879/141422324*20633239^(4/5) 2971215072999994 a001 516002918640/29134601*20633239^(5/7) 2971215072999994 a001 365435296162/12752043*12752043^(12/17) 2971215072999994 a001 7465176/16692641*(1/2+1/2*5^(1/2))^47 2971215072999994 a001 4052739537881/228826127*20633239^(5/7) 2971215072999995 a001 3536736619241/199691526*20633239^(5/7) 2971215072999995 a001 86267571272/54018521*20633239^(6/7) 2971215072999995 a001 6557470319842/370248451*20633239^(5/7) 2971215072999995 a001 2504730781961/141422324*20633239^(5/7) 2971215072999995 a001 3536736619241/29134601*20633239^(3/5) 2971215072999995 a001 225851433717/54018521*20633239^(4/5) 2971215072999995 a001 139583862445/12752043*12752043^(13/17) 2971215072999996 a001 956722026041/54018521*20633239^(5/7) 2971215072999996 a001 71778070001175552/24157817 2971215072999996 a001 53316291173/12752043*12752043^(14/17) 2971215072999996 a001 6557470319842/54018521*20633239^(3/5) 2971215072999996 a001 39088169/33385282*45537549124^(15/17) 2971215072999996 a001 39088169/33385282*312119004989^(9/11) 2971215072999996 a001 4976784/29134601*14662949395604^(7/9) 2971215072999996 a001 39088169/33385282*14662949395604^(5/7) 2971215072999996 a001 39088169/33385282*(1/2+1/2*5^(1/2))^45 2971215072999996 a001 4976784/29134601*505019158607^(7/8) 2971215072999996 a001 39088169/33385282*192900153618^(5/6) 2971215072999996 a001 39088169/33385282*28143753123^(9/10) 2971215072999996 a001 39088169/33385282*10749957122^(15/16) 2971215072999997 a001 10610209857723/54018521*20633239^(4/7) 2971215072999997 a001 93958713454973400/31622993 2971215072999997 a001 2971215073/33385282*141422324^(12/13) 2971215072999997 a001 12586269025/33385282*141422324^(11/13) 2971215072999997 a001 53316291173/33385282*141422324^(10/13) 2971215072999997 a001 32264490531/4769326*141422324^(9/13) 2971215072999997 a001 182717648081/16692641*141422324^(2/3) 2971215072999997 a001 956722026041/33385282*141422324^(8/13) 2971215072999997 a001 4052739537881/33385282*141422324^(7/13) 2971215072999997 a001 14930352/228826127*14662949395604^(17/21) 2971215072999997 a001 14619165/4769326*(1/2+1/2*5^(1/2))^43 2971215072999997 a001 14930352/228826127*192900153618^(17/18) 2971215072999997 a001 491974210728664848/165580141 2971215072999997 a001 133957148/16692641*(1/2+1/2*5^(1/2))^41 2971215072999997 a001 1288005205276047744/433494437 2971215072999997 a001 701408733/33385282*2537720636^(13/15) 2971215072999997 a001 701408733/33385282*45537549124^(13/17) 2971215072999997 a001 701408733/33385282*14662949395604^(13/21) 2971215072999997 a001 701408733/33385282*(1/2+1/2*5^(1/2))^39 2971215072999997 a001 14930352/1568397607*3461452808002^(11/12) 2971215072999997 a001 701408733/33385282*192900153618^(13/18) 2971215072999997 a001 701408733/33385282*73681302247^(3/4) 2971215072999997 a001 701408733/33385282*10749957122^(13/16) 2971215072999997 a001 99177688385278776/33379505 2971215072999997 a001 14930208/103681*2537720636^(7/9) 2971215072999997 a001 12586269025/33385282*2537720636^(11/15) 2971215072999997 a001 53316291173/33385282*2537720636^(2/3) 2971215072999997 a001 2971215073/33385282*2537720636^(4/5) 2971215072999997 a001 32264490531/4769326*2537720636^(3/5) 2971215072999997 a001 591286729879/33385282*2537720636^(5/9) 2971215072999997 a001 956722026041/33385282*2537720636^(8/15) 2971215072999997 a001 4052739537881/33385282*2537720636^(7/15) 2971215072999997 a001 3278735159921/16692641*2537720636^(4/9) 2971215072999997 a001 4976784/1368706081*14662949395604^(19/21) 2971215072999997 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^37 2971215072999997 a001 8828119010022387408/2971215073 2971215072999997 a001 14930208/103681*17393796001^(5/7) 2971215072999997 a001 14930208/103681*312119004989^(7/11) 2971215072999997 a001 14930208/103681*14662949395604^(5/9) 2971215072999997 a001 14930208/103681*(1/2+1/2*5^(1/2))^35 2971215072999997 a001 14930208/103681*505019158607^(5/8) 2971215072999997 a001 14930208/103681*28143753123^(7/10) 2971215072999997 a001 23112315624967683840/7778742049 2971215072999997 a001 139583862445/33385282*17393796001^(4/7) 2971215072999997 a001 12586269025/33385282*45537549124^(11/17) 2971215072999997 a001 4052739537881/33385282*17393796001^(3/7) 2971215072999997 a001 12586269025/33385282*312119004989^(3/5) 2971215072999997 a001 12586269025/33385282*14662949395604^(11/21) 2971215072999997 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^33 2971215072999997 a001 12586269025/33385282*192900153618^(11/18) 2971215072999997 a001 30254413932440332056/10182505537 2971215072999997 a001 32264490531/4769326*45537549124^(9/17) 2971215072999997 a001 956722026041/33385282*45537549124^(8/17) 2971215072999997 a001 53316291173/33385282*45537549124^(10/17) 2971215072999997 a001 4052739537881/33385282*45537549124^(7/17) 2971215072999997 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^31 2971215072999997 a001 32951280099/33385282*9062201101803^(1/2) 2971215072999997 a001 158414167969674308496/53316291173 2971215072999997 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^29 2971215072999997 a001 43133785636/16692641*1322157322203^(1/2) 2971215072999997 a001 591286729879/33385282*312119004989^(5/11) 2971215072999997 a001 2504730781961/33385282*312119004989^(2/5) 2971215072999997 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^27 2971215072999997 a001 1515744265389/4769326*817138163596^(1/3) 2971215072999997 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^23 2971215072999997 a001 4052739537881/33385282*14662949395604^(1/3) 2971215072999997 a001 4052739537881/33385282*(1/2+1/2*5^(1/2))^21 2971215072999997 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^19 2971215072999997 a001 14930352*(1/2+1/2*5^(1/2))^11 2971215072999997 a001 3278735159921/16692641*(1/2+1/2*5^(1/2))^20 2971215072999997 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^22 2971215072999997 a001 182717648081/16692641*(1/2+1/2*5^(1/2))^26 2971215072999997 a001 139583862445/33385282*14662949395604^(4/9) 2971215072999997 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^28 2971215072999997 a001 956722026041/33385282*192900153618^(4/9) 2971215072999997 a001 139583862445/33385282*505019158607^(1/2) 2971215072999997 a001 53316291173/33385282*312119004989^(6/11) 2971215072999997 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^30 2971215072999997 a001 3278735159921/16692641*73681302247^(5/13) 2971215072999997 a001 956722026041/33385282*73681302247^(6/13) 2971215072999997 a001 53316291173/33385282*192900153618^(5/9) 2971215072999997 a001 182717648081/16692641*73681302247^(1/2) 2971215072999997 a001 139583862445/33385282*73681302247^(7/13) 2971215072999997 a001 32635113368264548128/10983760033 2971215072999997 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^32 2971215072999997 a001 10182505537/16692641*23725150497407^(1/2) 2971215072999997 a001 10182505537/16692641*505019158607^(4/7) 2971215072999997 a001 3278735159921/16692641*28143753123^(2/5) 2971215072999997 a001 10182505537/16692641*73681302247^(8/13) 2971215072999997 a001 591286729879/33385282*28143753123^(1/2) 2971215072999997 a001 53316291173/33385282*28143753123^(3/5) 2971215072999997 a001 37396512239912980272/12586269025 2971215072999997 a001 7778742049/33385282*45537549124^(2/3) 2971215072999997 a001 14930352/17393796001*14662949395604^(20/21) 2971215072999997 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^34 2971215072999997 a001 3278735159921/16692641*10749957122^(5/12) 2971215072999997 a001 4052739537881/33385282*10749957122^(7/16) 2971215072999997 a001 2504730781961/33385282*10749957122^(11/24) 2971215072999997 a001 956722026041/33385282*10749957122^(1/2) 2971215072999997 a001 12586269025/33385282*10749957122^(11/16) 2971215072999997 a001 32264490531/4769326*10749957122^(9/16) 2971215072999997 a001 139583862445/33385282*10749957122^(7/12) 2971215072999997 a001 53316291173/33385282*10749957122^(5/8) 2971215072999997 a001 10182505537/16692641*10749957122^(2/3) 2971215072999997 a001 99195809826009003/33385604 2971215072999997 a001 7778742049/33385282*10749957122^(17/24) 2971215072999997 a001 2971215073/33385282*45537549124^(12/17) 2971215072999997 a001 2971215073/33385282*14662949395604^(4/7) 2971215072999997 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^36 2971215072999997 a001 2971215073/33385282*505019158607^(9/14) 2971215072999997 a001 2971215073/33385282*192900153618^(2/3) 2971215072999997 a001 2971215073/33385282*73681302247^(9/13) 2971215072999997 a001 3278735159921/16692641*4106118243^(10/23) 2971215072999997 a001 2504730781961/33385282*4106118243^(11/23) 2971215072999997 a001 2971215073/33385282*10749957122^(3/4) 2971215072999997 a001 774004377960/16692641*4106118243^(1/2) 2971215072999997 a001 956722026041/33385282*4106118243^(12/23) 2971215072999997 a001 182717648081/16692641*4106118243^(13/23) 2971215072999997 a001 139583862445/33385282*4106118243^(14/23) 2971215072999997 a001 53316291173/33385282*4106118243^(15/23) 2971215072999997 a001 10182505537/16692641*4106118243^(16/23) 2971215072999997 a001 7778742049/33385282*4106118243^(17/23) 2971215072999997 a001 5456077604922909024/1836311903 2971215072999997 a001 2971215073/33385282*4106118243^(18/23) 2971215072999997 a001 196452/33391061*14662949395604^(8/9) 2971215072999997 a001 567451585/16692641*(1/2+1/2*5^(1/2))^38 2971215072999997 a001 567451585/16692641*10749957122^(19/24) 2971215072999997 a001 3278735159921/16692641*1568397607^(5/11) 2971215072999997 a001 2504730781961/33385282*1568397607^(1/2) 2971215072999997 a001 567451585/16692641*4106118243^(19/23) 2971215072999997 a001 956722026041/33385282*1568397607^(6/11) 2971215072999997 a001 182717648081/16692641*1568397607^(13/22) 2971215072999997 a001 139583862445/33385282*1568397607^(7/11) 2971215072999997 a001 53316291173/33385282*1568397607^(15/22) 2971215072999997 a001 10182505537/16692641*1568397607^(8/11) 2971215072999997 a001 12586269025/33385282*1568397607^(3/4) 2971215072999997 a001 7778742049/33385282*1568397607^(17/22) 2971215072999997 a001 2971215073/33385282*1568397607^(9/11) 2971215072999997 a001 7805379025555920/2626999 2971215072999997 a001 567451585/16692641*1568397607^(19/22) 2971215072999997 a001 433494437/33385282*2537720636^(8/9) 2971215072999997 a001 433494437/33385282*312119004989^(8/11) 2971215072999997 a001 14930352/969323029*14662949395604^(6/7) 2971215072999997 a001 433494437/33385282*(1/2+1/2*5^(1/2))^40 2971215072999997 a001 433494437/33385282*73681302247^(10/13) 2971215072999997 a001 433494437/33385282*28143753123^(4/5) 2971215072999997 a001 433494437/33385282*10749957122^(5/6) 2971215072999997 a001 433494437/33385282*4106118243^(20/23) 2971215072999997 a001 3278735159921/16692641*599074578^(10/21) 2971215072999997 a001 4052739537881/33385282*599074578^(1/2) 2971215072999997 a001 433494437/33385282*1568397607^(10/11) 2971215072999997 a001 2504730781961/33385282*599074578^(11/21) 2971215072999997 a001 956722026041/33385282*599074578^(4/7) 2971215072999997 a001 182717648081/16692641*599074578^(13/21) 2971215072999997 a001 32264490531/4769326*599074578^(9/14) 2971215072999997 a001 139583862445/33385282*599074578^(2/3) 2971215072999997 a001 53316291173/33385282*599074578^(5/7) 2971215072999997 a001 10182505537/16692641*599074578^(16/21) 2971215072999997 a001 701408733/33385282*599074578^(13/14) 2971215072999997 a001 12586269025/33385282*599074578^(11/14) 2971215072999997 a001 7778742049/33385282*599074578^(17/21) 2971215072999997 a001 14930208/103681*599074578^(5/6) 2971215072999997 a001 2971215073/33385282*599074578^(6/7) 2971215072999997 a001 567451585/16692641*599074578^(19/21) 2971215072999997 a001 99503874318422862/33489287 2971215072999997 a001 433494437/33385282*599074578^(20/21) 2971215072999997 a001 165580141/33385282*2537720636^(14/15) 2971215072999997 a001 165580141/33385282*17393796001^(6/7) 2971215072999997 a001 165580141/33385282*45537549124^(14/17) 2971215072999997 a001 165580141/33385282*(1/2+1/2*5^(1/2))^42 2971215072999997 a001 14930352/370248451*23725150497407^(13/16) 2971215072999997 a001 14930352/370248451*505019158607^(13/14) 2971215072999997 a001 165580141/33385282*192900153618^(7/9) 2971215072999997 a001 165580141/33385282*10749957122^(7/8) 2971215072999997 a001 165580141/33385282*4106118243^(21/23) 2971215072999997 a001 165580141/33385282*1568397607^(21/22) 2971215072999997 a001 3278735159921/16692641*228826127^(1/2) 2971215072999997 a001 2504730781961/33385282*228826127^(11/20) 2971215072999997 a001 956722026041/33385282*228826127^(3/5) 2971215072999997 a001 591286729879/33385282*228826127^(5/8) 2971215072999997 a001 182717648081/16692641*228826127^(13/20) 2971215072999997 a001 139583862445/33385282*228826127^(7/10) 2971215072999997 a001 53316291173/33385282*228826127^(3/4) 2971215072999997 a001 10182505537/16692641*228826127^(4/5) 2971215072999997 a001 7778742049/33385282*228826127^(17/20) 2971215072999997 a001 14930208/103681*228826127^(7/8) 2971215072999997 a001 2971215073/33385282*228826127^(9/10) 2971215072999997 a001 567451585/16692641*228826127^(19/20) 2971215072999997 a001 101352261272906016/34111385 2971215072999997 a001 3732588/35355581*312119004989^(10/11) 2971215072999997 a001 31622993/16692641*312119004989^(4/5) 2971215072999997 a001 31622993/16692641*(1/2+1/2*5^(1/2))^44 2971215072999997 a001 31622993/16692641*23725150497407^(11/16) 2971215072999997 a001 3732588/35355581*3461452808002^(5/6) 2971215072999997 a001 31622993/16692641*73681302247^(11/13) 2971215072999997 a001 31622993/16692641*10749957122^(11/12) 2971215072999997 a001 31622993/16692641*4106118243^(22/23) 2971215072999997 a001 1515744265389/4769326*87403803^(1/2) 2971215072999997 a001 3278735159921/16692641*87403803^(10/19) 2971215072999997 a001 2504730781961/33385282*87403803^(11/19) 2971215072999997 a001 956722026041/33385282*87403803^(12/19) 2971215072999997 a001 182717648081/16692641*87403803^(13/19) 2971215072999997 a001 139583862445/33385282*87403803^(14/19) 2971215072999997 a001 53316291173/33385282*87403803^(15/19) 2971215072999997 a001 10182505537/16692641*87403803^(16/19) 2971215072999997 a001 7778742049/33385282*87403803^(17/19) 2971215072999997 a001 2971215073/33385282*87403803^(18/19) 2971215072999997 a001 116139356908771248/39088169 2971215072999997 a001 20365011074/12752043*12752043^(15/17) 2971215072999998 a001 14930352/54018521*45537549124^(16/17) 2971215072999998 a001 14930352/54018521*14662949395604^(16/21) 2971215072999998 a001 24157817/33385282*(1/2+1/2*5^(1/2))^46 2971215072999998 a001 14930352/54018521*192900153618^(8/9) 2971215072999998 a001 14930352/54018521*73681302247^(12/13) 2971215072999998 a001 24157817/33385282*10749957122^(23/24) 2971215072999998 a001 71778070001175607/24157817 2971215072999998 a001 3278735159921/16692641*33385282^(5/9) 2971215072999998 a001 4052739537881/33385282*33385282^(7/12) 2971215072999998 a001 71778070001175615/24157817 2971215072999998 a001 7778742049/12752043*12752043^(16/17) 2971215072999998 a001 2504730781961/33385282*33385282^(11/18) 2971215072999998 a001 71778070001175616/24157817 2971215072999999 a001 71778070001175617/24157817 2971215072999999 a001 956722026041/33385282*33385282^(2/3) 2971215072999999 a001 71778070001175620/24157817 2971215072999999 a001 182717648081/16692641*33385282^(13/18) 2971215072999999 a001 32264490531/4769326*33385282^(3/4) 2971215072999999 a001 139583862445/33385282*33385282^(7/9) 2971215072999999 a001 93958713454973472/31622993 2971215072999999 a001 7778742049/87403803*141422324^(12/13) 2971215072999999 a001 10983760033/29134601*141422324^(11/13) 2971215072999999 a001 139583862445/87403803*141422324^(10/13) 2971215072999999 a001 591286729879/87403803*141422324^(9/13) 2971215072999999 a001 956722026041/87403803*141422324^(2/3) 2971215072999999 a001 2504730781961/87403803*141422324^(8/13) 2971215072999999 a001 3536736619241/29134601*141422324^(7/13) 2971215072999999 a001 34111385/29134601*45537549124^(15/17) 2971215072999999 a001 34111385/29134601*312119004989^(9/11) 2971215072999999 a001 34111385/29134601*14662949395604^(5/7) 2971215072999999 a001 39088169/228826127*505019158607^(7/8) 2971215072999999 a001 34111385/29134601*192900153618^(5/6) 2971215072999999 a001 34111385/29134601*28143753123^(9/10) 2971215072999999 a001 34111385/29134601*10749957122^(15/16) 2971215072999999 a001 53316291173/33385282*33385282^(5/6) 2971215072999999 a001 491974210728665225/165580141 2971215072999999 a001 39088169/599074578*817138163596^(17/19) 2971215072999999 a001 39088169/599074578*14662949395604^(17/21) 2971215072999999 a001 39088169/599074578*192900153618^(17/18) 2971215072999999 a001 1288005205276048731/433494437 2971215072999999 a001 1836311903/87403803*2537720636^(13/15) 2971215072999999 a001 99177688385278852/33379505 2971215072999999 a001 12586269025/87403803*2537720636^(7/9) 2971215072999999 a001 7778742049/87403803*2537720636^(4/5) 2971215072999999 a001 10983760033/29134601*2537720636^(11/15) 2971215072999999 a001 139583862445/87403803*2537720636^(2/3) 2971215072999999 a001 591286729879/87403803*2537720636^(3/5) 2971215072999999 a001 516002918640/29134601*2537720636^(5/9) 2971215072999999 a001 2504730781961/87403803*2537720636^(8/15) 2971215072999999 a001 3536736619241/29134601*2537720636^(7/15) 2971215072999999 a001 1836311903/87403803*45537549124^(13/17) 2971215072999999 a001 1836311903/87403803*14662949395604^(13/21) 2971215072999999 a001 39088169/4106118243*3461452808002^(11/12) 2971215072999999 a001 1836311903/87403803*192900153618^(13/18) 2971215072999999 a001 1836311903/87403803*73681302247^(3/4) 2971215072999999 a001 1836311903/87403803*10749957122^(13/16) 2971215072999999 a001 8828119010022394173/2971215073 2971215072999999 a001 39088169/10749957122*14662949395604^(19/21) 2971215072999999 a001 12586269025/87403803*17393796001^(5/7) 2971215072999999 a001 23112315624967701551/7778742049 2971215072999999 a001 365435296162/87403803*17393796001^(4/7) 2971215072999999 a001 3536736619241/29134601*17393796001^(3/7) 2971215072999999 a001 12586269025/87403803*312119004989^(7/11) 2971215072999999 a001 12586269025/87403803*14662949395604^(5/9) 2971215072999999 a001 12586269025/87403803*505019158607^(5/8) 2971215072999999 a001 10983760033/29134601*45537549124^(11/17) 2971215072999999 a001 30254413932440355240/10182505537 2971215072999999 a001 12586269025/87403803*28143753123^(7/10) 2971215072999999 a001 139583862445/87403803*45537549124^(10/17) 2971215072999999 a001 591286729879/87403803*45537549124^(9/17) 2971215072999999 a001 2504730781961/87403803*45537549124^(8/17) 2971215072999999 a001 3536736619241/29134601*45537549124^(7/17) 2971215072999999 a001 10983760033/29134601*312119004989^(3/5) 2971215072999999 a001 10983760033/29134601*14662949395604^(11/21) 2971215072999999 a001 10983760033/29134601*192900153618^(11/18) 2971215072999999 a001 158414167969674429889/53316291173 2971215072999999 a001 86267571272/87403803*9062201101803^(1/2) 2971215072999999 a001 414733676044142579187/139583862445 2971215072999999 a001 516002918640/29134601*312119004989^(5/11) 2971215072999999 a001 3536736619241/29134601*14662949395604^(1/3) 2971215072999999 a001 39088169*(1/2+1/2*5^(1/2))^9 2971215072999999 a001 2504730781961/87403803*14662949395604^(8/21) 2971215072999999 a001 139583862445/87403803*312119004989^(6/11) 2971215072999999 a001 139583862445/87403803*14662949395604^(10/21) 2971215072999999 a001 2504730781961/87403803*192900153618^(4/9) 2971215072999999 a001 139583862445/87403803*192900153618^(5/9) 2971215072999999 a001 53316291173/87403803*23725150497407^(1/2) 2971215072999999 a001 2504730781961/87403803*73681302247^(6/13) 2971215072999999 a001 956722026041/87403803*73681302247^(1/2) 2971215072999999 a001 365435296162/87403803*73681302247^(7/13) 2971215072999999 a001 20365011074/87403803*45537549124^(2/3) 2971215072999999 a001 53316291173/87403803*73681302247^(8/13) 2971215072999999 a001 97905340104793719409/32951280099 2971215072999999 a001 39088169/45537549124*14662949395604^(20/21) 2971215072999999 a001 516002918640/29134601*28143753123^(1/2) 2971215072999999 a001 139583862445/87403803*28143753123^(3/5) 2971215072999999 a001 37396512239913008929/12586269025 2971215072999999 a001 7778742049/87403803*45537549124^(12/17) 2971215072999999 a001 7778742049/87403803*14662949395604^(4/7) 2971215072999999 a001 7778742049/87403803*192900153618^(2/3) 2971215072999999 a001 7778742049/87403803*73681302247^(9/13) 2971215072999999 a001 3536736619241/29134601*10749957122^(7/16) 2971215072999999 a001 6557470319842/87403803*10749957122^(11/24) 2971215072999999 a001 2504730781961/87403803*10749957122^(1/2) 2971215072999999 a001 956722026041/87403803*10749957122^(13/24) 2971215072999999 a001 591286729879/87403803*10749957122^(9/16) 2971215072999999 a001 365435296162/87403803*10749957122^(7/12) 2971215072999999 a001 139583862445/87403803*10749957122^(5/8) 2971215072999999 a001 10983760033/29134601*10749957122^(11/16) 2971215072999999 a001 53316291173/87403803*10749957122^(2/3) 2971215072999999 a001 20365011074/87403803*10749957122^(17/24) 2971215072999999 a001 7142098307472653689/2403763488 2971215072999999 a001 7778742049/87403803*10749957122^(3/4) 2971215072999999 a001 1134903170/87403803*2537720636^(8/9) 2971215072999999 a001 2971215073/87403803*817138163596^(2/3) 2971215072999999 a001 39088169/6643838879*14662949395604^(8/9) 2971215072999999 a001 6557470319842/87403803*4106118243^(11/23) 2971215072999999 a001 2971215073/87403803*10749957122^(19/24) 2971215072999999 a001 4052739537881/87403803*4106118243^(1/2) 2971215072999999 a001 2504730781961/87403803*4106118243^(12/23) 2971215072999999 a001 956722026041/87403803*4106118243^(13/23) 2971215072999999 a001 365435296162/87403803*4106118243^(14/23) 2971215072999999 a001 139583862445/87403803*4106118243^(15/23) 2971215072999999 a001 53316291173/87403803*4106118243^(16/23) 2971215072999999 a001 20365011074/87403803*4106118243^(17/23) 2971215072999999 a001 7778742049/87403803*4106118243^(18/23) 2971215072999999 a001 5456077604922913205/1836311903 2971215072999999 a001 2971215073/87403803*4106118243^(19/23) 2971215072999999 a001 1134903170/87403803*312119004989^(8/11) 2971215072999999 a001 1134903170/87403803*23725150497407^(5/8) 2971215072999999 a001 1134903170/87403803*73681302247^(10/13) 2971215072999999 a001 1134903170/87403803*28143753123^(4/5) 2971215072999999 a001 1134903170/87403803*10749957122^(5/6) 2971215072999999 a001 6557470319842/87403803*1568397607^(1/2) 2971215072999999 a001 1134903170/87403803*4106118243^(20/23) 2971215072999999 a001 2504730781961/87403803*1568397607^(6/11) 2971215072999999 a001 956722026041/87403803*1568397607^(13/22) 2971215072999999 a001 365435296162/87403803*1568397607^(7/11) 2971215072999999 a001 139583862445/87403803*1568397607^(15/22) 2971215072999999 a001 53316291173/87403803*1568397607^(8/11) 2971215072999999 a001 10983760033/29134601*1568397607^(3/4) 2971215072999999 a001 20365011074/87403803*1568397607^(17/22) 2971215072999999 a001 7778742049/87403803*1568397607^(9/11) 2971215072999999 a001 2971215073/87403803*1568397607^(19/22) 2971215072999999 a001 2084036199823432237/701408733 2971215072999999 a001 1134903170/87403803*1568397607^(10/11) 2971215072999999 a001 433494437/87403803*2537720636^(14/15) 2971215072999999 a001 433494437/87403803*17393796001^(6/7) 2971215072999999 a001 433494437/87403803*45537549124^(14/17) 2971215072999999 a001 433494437/87403803*14662949395604^(2/3) 2971215072999999 a001 39088169/969323029*23725150497407^(13/16) 2971215072999999 a001 39088169/969323029*505019158607^(13/14) 2971215072999999 a001 433494437/87403803*192900153618^(7/9) 2971215072999999 a001 433494437/87403803*10749957122^(7/8) 2971215072999999 a001 433494437/87403803*4106118243^(21/23) 2971215072999999 a001 3536736619241/29134601*599074578^(1/2) 2971215072999999 a001 433494437/87403803*1568397607^(21/22) 2971215072999999 a001 6557470319842/87403803*599074578^(11/21) 2971215072999999 a001 2504730781961/87403803*599074578^(4/7) 2971215072999999 a001 956722026041/87403803*599074578^(13/21) 2971215072999999 a001 591286729879/87403803*599074578^(9/14) 2971215072999999 a001 365435296162/87403803*599074578^(2/3) 2971215072999999 a001 139583862445/87403803*599074578^(5/7) 2971215072999999 a001 53316291173/87403803*599074578^(16/21) 2971215072999999 a001 10983760033/29134601*599074578^(11/14) 2971215072999999 a001 20365011074/87403803*599074578^(17/21) 2971215072999999 a001 12586269025/87403803*599074578^(5/6) 2971215072999999 a001 7778742049/87403803*599074578^(6/7) 2971215072999999 a001 1836311903/87403803*599074578^(13/14) 2971215072999999 a001 2971215073/87403803*599074578^(19/21) 2971215072999999 a001 398015497273691753/133957148 2971215072999999 a001 1134903170/87403803*599074578^(20/21) 2971215072999999 a001 39088169/370248451*312119004989^(10/11) 2971215072999999 a001 165580141/87403803*312119004989^(4/5) 2971215072999999 a001 165580141/87403803*23725150497407^(11/16) 2971215072999999 a001 39088169/370248451*3461452808002^(5/6) 2971215072999999 a001 165580141/87403803*73681302247^(11/13) 2971215072999999 a001 165580141/87403803*10749957122^(11/12) 2971215072999999 a001 165580141/87403803*4106118243^(22/23) 2971215072999999 a001 6557470319842/87403803*228826127^(11/20) 2971215072999999 a001 2504730781961/87403803*228826127^(3/5) 2971215072999999 a001 516002918640/29134601*228826127^(5/8) 2971215072999999 a001 956722026041/87403803*228826127^(13/20) 2971215072999999 a001 365435296162/87403803*228826127^(7/10) 2971215072999999 a001 139583862445/87403803*228826127^(3/4) 2971215072999999 a001 53316291173/87403803*228826127^(4/5) 2971215072999999 a001 20365011074/87403803*228826127^(17/20) 2971215072999999 a001 12586269025/87403803*228826127^(7/8) 2971215072999999 a001 7778742049/87403803*228826127^(9/10) 2971215072999999 a001 2971215073/87403803*228826127^(19/20) 2971215072999999 a001 304056783818718281/102334155 2971215072999999 a001 10182505537/16692641*33385282^(8/9) 2971215072999999 a001 39088169/141422324*45537549124^(16/17) 2971215072999999 a001 39088169/141422324*14662949395604^(16/21) 2971215072999999 a001 39088169/141422324*192900153618^(8/9) 2971215072999999 a001 39088169/141422324*73681302247^(12/13) 2971215072999999 a001 63245986/87403803*10749957122^(23/24) 2971215072999999 a001 12586269025/33385282*33385282^(11/12) 2971215072999999 a001 187917426909946965/63245986 2971215072999999 a001 20365011074/228826127*141422324^(12/13) 2971215072999999 a001 86267571272/228826127*141422324^(11/13) 2971215072999999 a001 365435296162/228826127*141422324^(10/13) 2971215072999999 a001 6557470319842/87403803*87403803^(11/19) 2971215072999999 a001 1548008755920/228826127*141422324^(9/13) 2971215072999999 a001 93958713454973484/31622993 2971215072999999 a001 2504730781961/228826127*141422324^(2/3) 2971215072999999 a001 6557470319842/228826127*141422324^(8/13) 2971215072999999 a001 7778742049/33385282*33385282^(17/18) 2971215072999999 a001 53316291173/599074578*141422324^(12/13) 2971215072999999 a001 2504730781961/87403803*87403803^(12/19) 2971215072999999 a001 187917426909946969/63245986 2971215072999999 a001 139583862445/1568397607*141422324^(12/13) 2971215072999999 a001 365435296162/4106118243*141422324^(12/13) 2971215072999999 a001 956722026041/10749957122*141422324^(12/13) 2971215072999999 a001 2504730781961/28143753123*141422324^(12/13) 2971215072999999 a001 6557470319842/73681302247*141422324^(12/13) 2971215072999999 a001 10610209857723/119218851371*141422324^(12/13) 2971215072999999 a001 4052739537881/45537549124*141422324^(12/13) 2971215072999999 a001 1548008755920/17393796001*141422324^(12/13) 2971215072999999 a001 591286729879/6643838879*141422324^(12/13) 2971215072999999 a001 225851433717/2537720636*141422324^(12/13) 2971215072999999 a001 267913919/710646*141422324^(11/13) 2971215072999999 a001 86267571272/969323029*141422324^(12/13) 2971215072999999 a001 591286729879/1568397607*141422324^(11/13) 2971215072999999 a001 93958713454973485/31622993 2971215072999999 a001 516002918640/1368706081*141422324^(11/13) 2971215072999999 a001 4052739537881/10749957122*141422324^(11/13) 2971215072999999 a001 3536736619241/9381251041*141422324^(11/13) 2971215072999999 a001 6557470319842/17393796001*141422324^(11/13) 2971215072999999 a001 2504730781961/6643838879*141422324^(11/13) 2971215072999999 a001 956722026041/2537720636*141422324^(11/13) 2971215072999999 a001 956722026041/87403803*87403803^(13/19) 2971215072999999 a001 956722026041/599074578*141422324^(10/13) 2971215072999999 a001 365435296162/969323029*141422324^(11/13) 2971215072999999 a001 2504730781961/1568397607*141422324^(10/13) 2971215072999999 a001 32951280099/370248451*141422324^(12/13) 2971215072999999 a001 6557470319842/4106118243*141422324^(10/13) 2971215072999999 a001 10610209857723/6643838879*141422324^(10/13) 2971215072999999 a001 4052739537881/2537720636*141422324^(10/13) 2971215072999999 a001 4052739537881/599074578*141422324^(9/13) 2971215072999999 a001 1548008755920/969323029*141422324^(10/13) 2971215072999999 a001 3278735159921/299537289*141422324^(2/3) 2971215072999999 a001 1515744265389/224056801*141422324^(9/13) 2971215072999999 a001 139583862445/370248451*141422324^(11/13) 2971215072999999 a001 365435296162/87403803*87403803^(14/19) 2971215072999999 a001 6557470319842/969323029*141422324^(9/13) 2971215072999999 a001 10610209857723/969323029*141422324^(2/3) 2971215072999999 a001 591286729879/370248451*141422324^(10/13) 2971215072999999 a001 139583862445/87403803*87403803^(15/19) 2971215072999999 a001 2504730781961/370248451*141422324^(9/13) 2971215072999999 a001 491974210728665280/165580141 2971215072999999 a001 4052739537881/370248451*141422324^(2/3) 2971215072999999 a001 10610209857723/370248451*141422324^(8/13) 2971215072999999 a001 267914296/228826127*45537549124^(15/17) 2971215072999999 a001 267914296/228826127*312119004989^(9/11) 2971215072999999 a001 34111385/199691526*14662949395604^(7/9) 2971215072999999 a001 267914296/228826127*14662949395604^(5/7) 2971215072999999 a001 34111385/199691526*505019158607^(7/8) 2971215072999999 a001 267914296/228826127*192900153618^(5/6) 2971215072999999 a001 267914296/228826127*28143753123^(9/10) 2971215072999999 a001 267914296/228826127*10749957122^(15/16) 2971215072999999 a001 53316291173/87403803*87403803^(16/19) 2971215072999999 a001 1288005205276048875/433494437 2971215072999999 a001 14619165/224056801*14662949395604^(17/21) 2971215072999999 a001 14619165/224056801*192900153618^(17/18) 2971215072999999 a001 674408281019896269/226980634 2971215072999999 a001 102287808/4868641*2537720636^(13/15) 2971215072999999 a001 20365011074/228826127*2537720636^(4/5) 2971215072999999 a001 32951280099/228826127*2537720636^(7/9) 2971215072999999 a001 2971215073/228826127*2537720636^(8/9) 2971215072999999 a001 86267571272/228826127*2537720636^(11/15) 2971215072999999 a001 365435296162/228826127*2537720636^(2/3) 2971215072999999 a001 1548008755920/228826127*2537720636^(3/5) 2971215072999999 a001 4052739537881/228826127*2537720636^(5/9) 2971215072999999 a001 6557470319842/228826127*2537720636^(8/15) 2971215072999999 a001 8828119010022395160/2971215073 2971215072999999 a001 102287808/4868641*45537549124^(13/17) 2971215072999999 a001 102287808/4868641*14662949395604^(13/21) 2971215072999999 a001 102287808/4868641*192900153618^(13/18) 2971215072999999 a001 102287808/4868641*73681302247^(3/4) 2971215072999999 a001 1777870432689823395/598364773 2971215072999999 a001 32951280099/228826127*17393796001^(5/7) 2971215072999999 a001 956722026041/228826127*17393796001^(4/7) 2971215072999999 a001 102287808/4868641*10749957122^(13/16) 2971215072999999 a001 831985/228811001*14662949395604^(19/21) 2971215072999999 a001 60508827864880717245/20365011074 2971215072999999 a001 86267571272/228826127*45537549124^(11/17) 2971215072999999 a001 365435296162/228826127*45537549124^(10/17) 2971215072999999 a001 1548008755920/228826127*45537549124^(9/17) 2971215072999999 a001 53316291173/228826127*45537549124^(2/3) 2971215072999999 a001 6557470319842/228826127*45537549124^(8/17) 2971215072999999 a001 32951280099/228826127*312119004989^(7/11) 2971215072999999 a001 32951280099/228826127*14662949395604^(5/9) 2971215072999999 a001 32951280099/228826127*505019158607^(5/8) 2971215072999999 a001 158414167969674447600/53316291173 2971215072999999 a001 86267571272/228826127*312119004989^(3/5) 2971215072999999 a001 86267571272/228826127*192900153618^(11/18) 2971215072999999 a001 365435296162/228826127*312119004989^(6/11) 2971215072999999 a001 225851433717/228826127*9062201101803^(1/2) 2971215072999999 a001 1085786860162753429065/365435296162 2971215072999999 a001 1548008755920/228826127*14662949395604^(3/7) 2971215072999999 a001 102334155*(1/2+1/2*5^(1/2))^7 2971215072999999 a001 2458070271496742870/827294629 2971215072999999 a001 139583862445/228826127*23725150497407^(1/2) 2971215072999999 a001 139583862445/228826127*505019158607^(4/7) 2971215072999999 a001 256319508074468177955/86267571272 2971215072999999 a001 102334155/119218851371*14662949395604^(20/21) 2971215072999999 a001 6557470319842/228826127*73681302247^(6/13) 2971215072999999 a001 2504730781961/228826127*73681302247^(1/2) 2971215072999999 a001 956722026041/228826127*73681302247^(7/13) 2971215072999999 a001 139583862445/228826127*73681302247^(8/13) 2971215072999999 a001 20365011074/228826127*45537549124^(12/17) 2971215072999999 a001 32635113368264576785/10983760033 2971215072999999 a001 20365011074/228826127*14662949395604^(4/7) 2971215072999999 a001 20365011074/228826127*505019158607^(9/14) 2971215072999999 a001 20365011074/228826127*192900153618^(2/3) 2971215072999999 a001 20365011074/228826127*73681302247^(9/13) 2971215072999999 a001 4052739537881/228826127*28143753123^(1/2) 2971215072999999 a001 32951280099/228826127*28143753123^(7/10) 2971215072999999 a001 365435296162/228826127*28143753123^(3/5) 2971215072999999 a001 679936586180236602/228841255 2971215072999999 a001 102334155/17393796001*14662949395604^(8/9) 2971215072999999 a001 6557470319842/228826127*10749957122^(1/2) 2971215072999999 a001 2504730781961/228826127*10749957122^(13/24) 2971215072999999 a001 1548008755920/228826127*10749957122^(9/16) 2971215072999999 a001 956722026041/228826127*10749957122^(7/12) 2971215072999999 a001 365435296162/228826127*10749957122^(5/8) 2971215072999999 a001 139583862445/228826127*10749957122^(2/3) 2971215072999999 a001 86267571272/228826127*10749957122^(11/16) 2971215072999999 a001 53316291173/228826127*10749957122^(17/24) 2971215072999999 a001 20365011074/228826127*10749957122^(3/4) 2971215072999999 a001 680199838806919475/228929856 2971215072999999 a001 7778742049/228826127*10749957122^(19/24) 2971215072999999 a001 1134903170/228826127*2537720636^(14/15) 2971215072999999 a001 2971215073/228826127*312119004989^(8/11) 2971215072999999 a001 102334155/6643838879*14662949395604^(6/7) 2971215072999999 a001 2971215073/228826127*73681302247^(10/13) 2971215072999999 a001 2971215073/228826127*28143753123^(4/5) 2971215072999999 a001 225749145909/4868641*4106118243^(1/2) 2971215072999999 a001 2971215073/228826127*10749957122^(5/6) 2971215072999999 a001 6557470319842/228826127*4106118243^(12/23) 2971215072999999 a001 2504730781961/228826127*4106118243^(13/23) 2971215072999999 a001 956722026041/228826127*4106118243^(14/23) 2971215072999999 a001 365435296162/228826127*4106118243^(15/23) 2971215072999999 a001 139583862445/228826127*4106118243^(16/23) 2971215072999999 a001 53316291173/228826127*4106118243^(17/23) 2971215072999999 a001 20365011074/228826127*4106118243^(18/23) 2971215072999999 a001 7778742049/228826127*4106118243^(19/23) 2971215072999999 a001 5456077604922913815/1836311903 2971215072999999 a001 2971215073/228826127*4106118243^(20/23) 2971215072999999 a001 1134903170/228826127*17393796001^(6/7) 2971215072999999 a001 1134903170/228826127*45537549124^(14/17) 2971215072999999 a001 1134903170/228826127*14662949395604^(2/3) 2971215072999999 a001 1134903170/228826127*505019158607^(3/4) 2971215072999999 a001 1134903170/228826127*192900153618^(7/9) 2971215072999999 a001 1134903170/228826127*10749957122^(7/8) 2971215072999999 a001 1134903170/228826127*4106118243^(21/23) 2971215072999999 a001 6557470319842/228826127*1568397607^(6/11) 2971215072999999 a001 2504730781961/228826127*1568397607^(13/22) 2971215072999999 a001 956722026041/228826127*1568397607^(7/11) 2971215072999999 a001 365435296162/228826127*1568397607^(15/22) 2971215072999999 a001 139583862445/228826127*1568397607^(8/11) 2971215072999999 a001 86267571272/228826127*1568397607^(3/4) 2971215072999999 a001 53316291173/228826127*1568397607^(17/22) 2971215072999999 a001 20365011074/228826127*1568397607^(9/11) 2971215072999999 a001 7778742049/228826127*1568397607^(19/22) 2971215072999999 a001 2971215073/228826127*1568397607^(10/11) 2971215072999999 a001 694678733274477490/233802911 2971215072999999 a001 1134903170/228826127*1568397607^(21/22) 2971215072999999 a001 102334155/969323029*312119004989^(10/11) 2971215072999999 a001 433494437/228826127*312119004989^(4/5) 2971215072999999 a001 102334155/969323029*3461452808002^(5/6) 2971215072999999 a001 433494437/228826127*73681302247^(11/13) 2971215072999999 a001 433494437/228826127*10749957122^(11/12) 2971215072999999 a001 433494437/228826127*4106118243^(22/23) 2971215072999999 a001 6557470319842/228826127*599074578^(4/7) 2971215072999999 a001 2504730781961/228826127*599074578^(13/21) 2971215072999999 a001 1548008755920/228826127*599074578^(9/14) 2971215072999999 a001 956722026041/228826127*599074578^(2/3) 2971215072999999 a001 365435296162/228826127*599074578^(5/7) 2971215072999999 a001 139583862445/228826127*599074578^(16/21) 2971215072999999 a001 86267571272/228826127*599074578^(11/14) 2971215072999999 a001 53316291173/228826127*599074578^(17/21) 2971215072999999 a001 32951280099/228826127*599074578^(5/6) 2971215072999999 a001 20365011074/228826127*599074578^(6/7) 2971215072999999 a001 7778742049/228826127*599074578^(19/21) 2971215072999999 a001 102287808/4868641*599074578^(13/14) 2971215072999999 a001 2971215073/228826127*599074578^(20/21) 2971215072999999 a001 61233153426721815/20608792 2971215072999999 a001 20365011074/87403803*87403803^(17/19) 2971215072999999 a001 102334155/370248451*45537549124^(16/17) 2971215072999999 a001 102334155/370248451*14662949395604^(16/21) 2971215072999999 a001 102334155/370248451*192900153618^(8/9) 2971215072999999 a001 102334155/370248451*73681302247^(12/13) 2971215072999999 a001 165580141/228826127*10749957122^(23/24) 2971215072999999 a001 491974210728665288/165580141 2971215072999999 a001 491974210728665289/165580141 2971215072999999 a001 6557470319842/228826127*228826127^(3/5) 2971215072999999 a001 4052739537881/228826127*228826127^(5/8) 2971215072999999 a001 7778742049/87403803*87403803^(18/19) 2971215072999999 a001 2504730781961/228826127*228826127^(13/20) 2971215072999999 a001 491974210728665290/165580141 2971215072999999 a001 956722026041/228826127*228826127^(7/10) 2971215072999999 a001 365435296162/228826127*228826127^(3/4) 2971215072999999 a001 1288005205276048896/433494437 2971215072999999 a001 139583862445/228826127*228826127^(4/5) 2971215072999999 a001 233802911/199691526*45537549124^(15/17) 2971215072999999 a001 233802911/199691526*312119004989^(9/11) 2971215072999999 a001 233802911/199691526*14662949395604^(5/7) 2971215072999999 a001 267914296/1568397607*505019158607^(7/8) 2971215072999999 a001 233802911/199691526*192900153618^(5/6) 2971215072999999 a001 233802911/199691526*28143753123^(9/10) 2971215072999999 a001 233802911/199691526*10749957122^(15/16) 2971215072999999 a001 337204140509948140/113490317 2971215072999999 a001 12586269025/599074578*2537720636^(13/15) 2971215072999999 a001 7778742049/599074578*2537720636^(8/9) 2971215072999999 a001 53316291173/599074578*2537720636^(4/5) 2971215072999999 a001 2971215073/599074578*2537720636^(14/15) 2971215072999999 a001 43133785636/299537289*2537720636^(7/9) 2971215072999999 a001 267913919/710646*2537720636^(11/15) 2971215072999999 a001 956722026041/599074578*2537720636^(2/3) 2971215072999999 a001 4052739537881/599074578*2537720636^(3/5) 2971215072999999 a001 3536736619241/199691526*2537720636^(5/9) 2971215072999999 a001 53316291173/228826127*228826127^(17/20) 2971215072999999 a001 267914296/4106118243*817138163596^(17/19) 2971215072999999 a001 267914296/4106118243*14662949395604^(17/21) 2971215072999999 a001 267914296/4106118243*192900153618^(17/18) 2971215072999999 a001 8828119010022395304/2971215073 2971215072999999 a001 1777870432689823424/598364773 2971215072999999 a001 43133785636/299537289*17393796001^(5/7) 2971215072999999 a001 2504730781961/599074578*17393796001^(4/7) 2971215072999999 a001 12586269025/599074578*45537549124^(13/17) 2971215072999999 a001 12586269025/599074578*14662949395604^(13/21) 2971215072999999 a001 12586269025/599074578*192900153618^(13/18) 2971215072999999 a001 12586269025/599074578*73681302247^(3/4) 2971215072999999 a001 30254413932440359116/10182505537 2971215072999999 a001 267913919/710646*45537549124^(11/17) 2971215072999999 a001 139583862445/599074578*45537549124^(2/3) 2971215072999999 a001 956722026041/599074578*45537549124^(10/17) 2971215072999999 a001 53316291173/599074578*45537549124^(12/17) 2971215072999999 a001 4052739537881/599074578*45537549124^(9/17) 2971215072999999 a001 267914296/73681302247*14662949395604^(19/21) 2971215072999999 a001 158414167969674450184/53316291173 2971215072999999 a001 43133785636/299537289*312119004989^(7/11) 2971215072999999 a001 43133785636/299537289*14662949395604^(5/9) 2971215072999999 a001 43133785636/299537289*505019158607^(5/8) 2971215072999999 a001 267913919/710646*312119004989^(3/5) 2971215072999999 a001 3536736619241/199691526*312119004989^(5/11) 2971215072999999 a001 267913919/710646*14662949395604^(11/21) 2971215072999999 a001 267914296*(1/2+1/2*5^(1/2))^5 2971215072999999 a001 2504730781961/599074578*14662949395604^(4/9) 2971215072999999 a001 1756840044281364261232/591286729879 2971215072999999 a001 1779981920739020728/599075421 2971215072999999 a001 267914296/312119004989*14662949395604^(20/21) 2971215072999999 a001 267913919/710646*192900153618^(11/18) 2971215072999999 a001 956722026041/599074578*192900153618^(5/9) 2971215072999999 a001 32039938509308522767/10783446409 2971215072999999 a001 53316291173/599074578*14662949395604^(4/7) 2971215072999999 a001 53316291173/599074578*505019158607^(9/14) 2971215072999999 a001 53316291173/599074578*192900153618^(2/3) 2971215072999999 a001 3278735159921/299537289*73681302247^(1/2) 2971215072999999 a001 2504730781961/599074578*73681302247^(7/13) 2971215072999999 a001 182717648081/299537289*73681302247^(8/13) 2971215072999999 a001 97905340104793731952/32951280099 2971215072999999 a001 53316291173/599074578*73681302247^(9/13) 2971215072999999 a001 10182505537/299537289*817138163596^(2/3) 2971215072999999 a001 66978574/11384387281*14662949395604^(8/9) 2971215072999999 a001 3536736619241/199691526*28143753123^(1/2) 2971215072999999 a001 956722026041/599074578*28143753123^(3/5) 2971215072999999 a001 43133785636/299537289*28143753123^(7/10) 2971215072999999 a001 7479302447982602744/2517253805 2971215072999999 a001 7778742049/599074578*312119004989^(8/11) 2971215072999999 a001 9238424/599786069*14662949395604^(6/7) 2971215072999999 a001 7778742049/599074578*23725150497407^(5/8) 2971215072999999 a001 7778742049/599074578*73681302247^(10/13) 2971215072999999 a001 7778742049/599074578*28143753123^(4/5) 2971215072999999 a001 3278735159921/299537289*10749957122^(13/24) 2971215072999999 a001 4052739537881/599074578*10749957122^(9/16) 2971215072999999 a001 2504730781961/599074578*10749957122^(7/12) 2971215072999999 a001 956722026041/599074578*10749957122^(5/8) 2971215072999999 a001 12586269025/599074578*10749957122^(13/16) 2971215072999999 a001 267913919/710646*10749957122^(11/16) 2971215072999999 a001 139583862445/599074578*10749957122^(17/24) 2971215072999999 a001 53316291173/599074578*10749957122^(3/4) 2971215072999999 a001 10182505537/299537289*10749957122^(19/24) 2971215072999999 a001 1785524576868163651/600940872 2971215072999999 a001 7778742049/599074578*10749957122^(5/6) 2971215072999999 a001 2971215073/599074578*17393796001^(6/7) 2971215072999999 a001 2971215073/599074578*45537549124^(14/17) 2971215072999999 a001 2971215073/599074578*817138163596^(14/19) 2971215072999999 a001 267914296/6643838879*23725150497407^(13/16) 2971215072999999 a001 267914296/6643838879*505019158607^(13/14) 2971215072999999 a001 2971215073/599074578*192900153618^(7/9) 2971215072999999 a001 2971215073/599074578*10749957122^(7/8) 2971215072999999 a001 3278735159921/299537289*4106118243^(13/23) 2971215072999999 a001 2504730781961/599074578*4106118243^(14/23) 2971215072999999 a001 956722026041/599074578*4106118243^(15/23) 2971215072999999 a001 182717648081/299537289*4106118243^(16/23) 2971215072999999 a001 139583862445/599074578*4106118243^(17/23) 2971215072999999 a001 53316291173/599074578*4106118243^(18/23) 2971215072999999 a001 10182505537/299537289*4106118243^(19/23) 2971215072999999 a001 7778742049/599074578*4106118243^(20/23) 2971215072999999 a001 5456077604922913904/1836311903 2971215072999999 a001 2971215073/599074578*4106118243^(21/23) 2971215072999999 a001 66978574/634430159*312119004989^(10/11) 2971215072999999 a001 567451585/299537289*312119004989^(4/5) 2971215072999999 a001 567451585/299537289*23725150497407^(11/16) 2971215072999999 a001 66978574/634430159*3461452808002^(5/6) 2971215072999999 a001 567451585/299537289*73681302247^(11/13) 2971215072999999 a001 567451585/299537289*10749957122^(11/12) 2971215072999999 a001 567451585/299537289*4106118243^(22/23) 2971215072999999 a001 3278735159921/299537289*1568397607^(13/22) 2971215072999999 a001 2504730781961/599074578*1568397607^(7/11) 2971215072999999 a001 956722026041/599074578*1568397607^(15/22) 2971215072999999 a001 182717648081/299537289*1568397607^(8/11) 2971215072999999 a001 267913919/710646*1568397607^(3/4) 2971215072999999 a001 139583862445/599074578*1568397607^(17/22) 2971215072999999 a001 53316291173/599074578*1568397607^(9/11) 2971215072999999 a001 10182505537/299537289*1568397607^(19/22) 2971215072999999 a001 7778742049/599074578*1568397607^(10/11) 2971215072999999 a001 32951280099/228826127*228826127^(7/8) 2971215072999999 a001 2084036199823432504/701408733 2971215072999999 a001 2971215073/599074578*1568397607^(21/22) 2971215072999999 a001 20365011074/228826127*228826127^(9/10) 2971215072999999 a001 267914296/969323029*45537549124^(16/17) 2971215072999999 a001 267914296/969323029*14662949395604^(16/21) 2971215072999999 a001 267914296/969323029*192900153618^(8/9) 2971215072999999 a001 267914296/969323029*73681302247^(12/13) 2971215072999999 a001 433494437/599074578*10749957122^(23/24) 2971215072999999 a001 1288005205276048899/433494437 2971215072999999 a001 3278735159921/299537289*599074578^(13/21) 2971215072999999 a001 4052739537881/599074578*599074578^(9/14) 2971215072999999 a001 7778742049/228826127*228826127^(19/20) 2971215072999999 a001 2504730781961/599074578*599074578^(2/3) 2971215072999999 a001 956722026041/599074578*599074578^(5/7) 2971215072999999 a001 1288005205276048900/433494437 2971215072999999 a001 182717648081/299537289*599074578^(16/21) 2971215072999999 a001 267913919/710646*599074578^(11/14) 2971215072999999 a001 1686020702549740704/567451585 2971215072999999 a001 7778742049/1568397607*2537720636^(14/15) 2971215072999999 a001 20365011074/1568397607*2537720636^(8/9) 2971215072999999 a001 32951280099/1568397607*2537720636^(13/15) 2971215072999999 a001 139583862445/1568397607*2537720636^(4/5) 2971215072999999 a001 139583862445/599074578*599074578^(17/21) 2971215072999999 a001 32264490531/224056801*2537720636^(7/9) 2971215072999999 a001 591286729879/1568397607*2537720636^(11/15) 2971215072999999 a001 2504730781961/1568397607*2537720636^(2/3) 2971215072999999 a001 1515744265389/224056801*2537720636^(3/5) 2971215072999999 a001 1836311903/1568397607*45537549124^(15/17) 2971215072999999 a001 1836311903/1568397607*312119004989^(9/11) 2971215072999999 a001 233802911/1368706081*14662949395604^(7/9) 2971215072999999 a001 1836311903/1568397607*14662949395604^(5/7) 2971215072999999 a001 233802911/1368706081*505019158607^(7/8) 2971215072999999 a001 1836311903/1568397607*192900153618^(5/6) 2971215072999999 a001 1836311903/1568397607*28143753123^(9/10) 2971215072999999 a001 43133785636/299537289*599074578^(5/6) 2971215072999999 a001 1836311903/1568397607*10749957122^(15/16) 2971215072999999 a001 8828119010022395325/2971215073 2971215072999999 a001 701408733/10749957122*817138163596^(17/19) 2971215072999999 a001 701408733/10749957122*14662949395604^(17/21) 2971215072999999 a001 701408733/10749957122*192900153618^(17/18) 2971215072999999 a001 23112315624967704567/7778742049 2971215072999999 a001 32264490531/224056801*17393796001^(5/7) 2971215072999999 a001 6557470319842/1568397607*17393796001^(4/7) 2971215072999999 a001 32951280099/1568397607*45537549124^(13/17) 2971215072999999 a001 30254413932440359188/10182505537 2971215072999999 a001 139583862445/1568397607*45537549124^(12/17) 2971215072999999 a001 365435296162/1568397607*45537549124^(2/3) 2971215072999999 a001 591286729879/1568397607*45537549124^(11/17) 2971215072999999 a001 2504730781961/1568397607*45537549124^(10/17) 2971215072999999 a001 1515744265389/224056801*45537549124^(9/17) 2971215072999999 a001 32951280099/1568397607*14662949395604^(13/21) 2971215072999999 a001 701408733/73681302247*3461452808002^(11/12) 2971215072999999 a001 32951280099/1568397607*192900153618^(13/18) 2971215072999999 a001 158414167969674450561/53316291173 2971215072999999 a001 32951280099/1568397607*73681302247^(3/4) 2971215072999999 a001 233802911/64300051206*14662949395604^(19/21) 2971215072999999 a001 32264490531/224056801*312119004989^(7/11) 2971215072999999 a001 2504730781961/1568397607*312119004989^(6/11) 2971215072999999 a001 1515744265389/224056801*817138163596^(9/19) 2971215072999999 a001 1515744265389/224056801*14662949395604^(3/7) 2971215072999999 a001 223684394706203605351/75283811239 2971215072999999 a001 139583862445/1568397607*14662949395604^(4/7) 2971215072999999 a001 139583862445/1568397607*505019158607^(9/14) 2971215072999999 a001 591286729879/1568397607*192900153618^(11/18) 2971215072999999 a001 139583862445/1568397607*192900153618^(2/3) 2971215072999999 a001 128159754037234091373/43133785636 2971215072999999 a001 53316291173/1568397607*817138163596^(2/3) 2971215072999999 a001 701408733/119218851371*14662949395604^(8/9) 2971215072999999 a001 6557470319842/1568397607*73681302247^(7/13) 2971215072999999 a001 956722026041/1568397607*73681302247^(8/13) 2971215072999999 a001 139583862445/1568397607*73681302247^(9/13) 2971215072999999 a001 32635113368264577395/10983760033 2971215072999999 a001 7778742049/1568397607*17393796001^(6/7) 2971215072999999 a001 20365011074/1568397607*312119004989^(8/11) 2971215072999999 a001 701408733/45537549124*14662949395604^(6/7) 2971215072999999 a001 20365011074/1568397607*23725150497407^(5/8) 2971215072999999 a001 20365011074/1568397607*73681302247^(10/13) 2971215072999999 a001 2504730781961/1568397607*28143753123^(3/5) 2971215072999999 a001 32264490531/224056801*28143753123^(7/10) 2971215072999999 a001 37396512239913013809/12586269025 2971215072999999 a001 20365011074/1568397607*28143753123^(4/5) 2971215072999999 a001 7778742049/1568397607*45537549124^(14/17) 2971215072999999 a001 701408733/17393796001*23725150497407^(13/16) 2971215072999999 a001 701408733/17393796001*505019158607^(13/14) 2971215072999999 a001 7778742049/1568397607*192900153618^(7/9) 2971215072999999 a001 1515744265389/224056801*10749957122^(9/16) 2971215072999999 a001 6557470319842/1568397607*10749957122^(7/12) 2971215072999999 a001 2504730781961/1568397607*10749957122^(5/8) 2971215072999999 a001 956722026041/1568397607*10749957122^(2/3) 2971215072999999 a001 591286729879/1568397607*10749957122^(11/16) 2971215072999999 a001 365435296162/1568397607*10749957122^(17/24) 2971215072999999 a001 139583862445/1568397607*10749957122^(3/4) 2971215072999999 a001 32951280099/1568397607*10749957122^(13/16) 2971215072999999 a001 53316291173/1568397607*10749957122^(19/24) 2971215072999999 a001 20365011074/1568397607*10749957122^(5/6) 2971215072999999 a001 53316291173/599074578*599074578^(6/7) 2971215072999999 a001 2380699435824218207/801254496 2971215072999999 a001 7778742049/1568397607*10749957122^(7/8) 2971215072999999 a001 2971215073/1568397607*312119004989^(4/5) 2971215072999999 a001 2971215073/1568397607*23725150497407^(11/16) 2971215072999999 a001 2971215073/1568397607*73681302247^(11/13) 2971215072999999 a001 2971215073/1568397607*10749957122^(11/12) 2971215072999999 a001 6557470319842/1568397607*4106118243^(14/23) 2971215072999999 a001 2504730781961/1568397607*4106118243^(15/23) 2971215072999999 a001 956722026041/1568397607*4106118243^(16/23) 2971215072999999 a001 365435296162/1568397607*4106118243^(17/23) 2971215072999999 a001 139583862445/1568397607*4106118243^(18/23) 2971215072999999 a001 53316291173/1568397607*4106118243^(19/23) 2971215072999999 a001 20365011074/1568397607*4106118243^(20/23) 2971215072999999 a001 7778742049/1568397607*4106118243^(21/23) 2971215072999999 a001 5456077604922913917/1836311903 2971215072999999 a001 2971215073/1568397607*4106118243^(22/23) 2971215072999999 a001 3372041405099481409/1134903170 2971215072999999 a001 10182505537/299537289*599074578^(19/21) 2971215072999999 a001 701408733/2537720636*45537549124^(16/17) 2971215072999999 a001 701408733/2537720636*14662949395604^(16/21) 2971215072999999 a001 701408733/2537720636*192900153618^(8/9) 2971215072999999 a001 701408733/2537720636*73681302247^(12/13) 2971215072999999 a001 1134903170/1568397607*10749957122^(23/24) 2971215072999999 a001 20365011074/4106118243*2537720636^(14/15) 2971215072999999 a001 12586269025/599074578*599074578^(13/14) 2971215072999999 a001 53316291173/4106118243*2537720636^(8/9) 2971215072999999 a001 86267571272/4106118243*2537720636^(13/15) 2971215072999999 a001 365435296162/4106118243*2537720636^(4/5) 2971215072999999 a001 591286729879/4106118243*2537720636^(7/9) 2971215072999999 a001 516002918640/1368706081*2537720636^(11/15) 2971215072999999 a001 6557470319842/4106118243*2537720636^(2/3) 2971215072999999 a001 53316291173/10749957122*2537720636^(14/15) 2971215072999999 a001 6557470319842/1568397607*1568397607^(7/11) 2971215072999999 a001 139583862445/10749957122*2537720636^(8/9) 2971215072999999 a001 139583862445/28143753123*2537720636^(14/15) 2971215072999999 a001 365435296162/73681302247*2537720636^(14/15) 2971215072999999 a001 956722026041/192900153618*2537720636^(14/15) 2971215072999999 a001 2504730781961/505019158607*2537720636^(14/15) 2971215072999999 a001 4052739537881/817138163596*2537720636^(14/15) 2971215072999999 a001 140728068720/28374454999*2537720636^(14/15) 2971215072999999 a001 591286729879/119218851371*2537720636^(14/15) 2971215072999999 a001 225851433717/45537549124*2537720636^(14/15) 2971215072999999 a001 225851433717/10749957122*2537720636^(13/15) 2971215072999999 a001 86267571272/17393796001*2537720636^(14/15) 2971215072999999 a001 365435296162/28143753123*2537720636^(8/9) 2971215072999999 a001 956722026041/73681302247*2537720636^(8/9) 2971215072999999 a001 2504730781961/192900153618*2537720636^(8/9) 2971215072999999 a001 10610209857723/817138163596*2537720636^(8/9) 2971215072999999 a001 4052739537881/312119004989*2537720636^(8/9) 2971215072999999 a001 1548008755920/119218851371*2537720636^(8/9) 2971215072999999 a001 591286729879/45537549124*2537720636^(8/9) 2971215072999999 a001 591286729879/28143753123*2537720636^(13/15) 2971215072999999 a001 1548008755920/73681302247*2537720636^(13/15) 2971215072999999 a001 7787980473/599786069*2537720636^(8/9) 2971215072999999 a001 4052739537881/192900153618*2537720636^(13/15) 2971215072999999 a001 225749145909/10745088481*2537720636^(13/15) 2971215072999999 a001 6557470319842/312119004989*2537720636^(13/15) 2971215072999999 a001 2504730781961/119218851371*2537720636^(13/15) 2971215072999999 a001 956722026041/45537549124*2537720636^(13/15) 2971215072999999 a001 956722026041/10749957122*2537720636^(4/5) 2971215072999999 a001 365435296162/17393796001*2537720636^(13/15) 2971215072999999 a001 774004377960/5374978561*2537720636^(7/9) 2971215072999999 a001 7778742049/599074578*599074578^(20/21) 2971215072999999 a001 2504730781961/1568397607*1568397607^(15/22) 2971215072999999 a001 2504730781961/28143753123*2537720636^(4/5) 2971215072999999 a001 6557470319842/73681302247*2537720636^(4/5) 2971215072999999 a001 10610209857723/119218851371*2537720636^(4/5) 2971215072999999 a001 4052739537881/45537549124*2537720636^(4/5) 2971215072999999 a001 4052739537881/10749957122*2537720636^(11/15) 2971215072999999 a001 32951280099/6643838879*2537720636^(14/15) 2971215072999999 a001 4052739537881/28143753123*2537720636^(7/9) 2971215072999999 a001 1515744265389/10525900321*2537720636^(7/9) 2971215072999999 a001 1548008755920/17393796001*2537720636^(4/5) 2971215072999999 a001 3278735159921/22768774562*2537720636^(7/9) 2971215072999999 a001 2504730781961/17393796001*2537720636^(7/9) 2971215072999999 a001 86267571272/6643838879*2537720636^(8/9) 2971215072999999 a001 3536736619241/9381251041*2537720636^(11/15) 2971215072999999 a001 139583862445/6643838879*2537720636^(13/15) 2971215072999999 a001 956722026041/1568397607*1568397607^(8/11) 2971215072999999 a001 6557470319842/17393796001*2537720636^(11/15) 2971215072999999 a001 591286729879/1568397607*1568397607^(3/4) 2971215072999999 a001 591286729879/6643838879*2537720636^(4/5) 2971215072999999 a001 956722026041/6643838879*2537720636^(7/9) 2971215072999999 a001 365435296162/1568397607*1568397607^(17/22) 2971215072999999 a001 2504730781961/6643838879*2537720636^(11/15) 2971215072999999 a001 8828119010022395328/2971215073 2971215072999999 a001 10610209857723/6643838879*2537720636^(2/3) 2971215072999999 a001 139583862445/1568397607*1568397607^(9/11) 2971215072999999 a001 1602508992/1368706081*45537549124^(15/17) 2971215072999999 a001 1602508992/1368706081*312119004989^(9/11) 2971215072999999 a001 1602508992/1368706081*14662949395604^(5/7) 2971215072999999 a001 1836311903/10749957122*505019158607^(7/8) 2971215072999999 a001 1602508992/1368706081*192900153618^(5/6) 2971215072999999 a001 1602508992/1368706081*28143753123^(9/10) 2971215072999999 a001 23112315624967704575/7778742049 2971215072999999 a001 591286729879/4106118243*17393796001^(5/7) 2971215072999999 a001 20365011074/4106118243*17393796001^(6/7) 2971215072999999 a001 1836311903/28143753123*14662949395604^(17/21) 2971215072999999 a001 1836311903/28143753123*192900153618^(17/18) 2971215072999999 a001 60508827864880718397/20365011074 2971215072999999 a001 1602508992/1368706081*10749957122^(15/16) 2971215072999999 a001 86267571272/4106118243*45537549124^(13/17) 2971215072999999 a001 365435296162/4106118243*45537549124^(12/17) 2971215072999999 a001 956722026041/4106118243*45537549124^(2/3) 2971215072999999 a001 516002918640/1368706081*45537549124^(11/17) 2971215072999999 a001 6557470319842/4106118243*45537549124^(10/17) 2971215072999999 a001 158414167969674450616/53316291173 2971215072999999 a001 1836311903/192900153618*3461452808002^(11/12) 2971215072999999 a001 414733676044142633451/139583862445 2971215072999999 a001 591286729879/4106118243*312119004989^(7/11) 2971215072999999 a001 516002918640/1368706081*312119004989^(3/5) 2971215072999999 a001 1085786860162753449737/365435296162 2971215072999999 a001 12041560801895081679326/4052739537881 2971215072999999 a001 2504730781961/4106118243*505019158607^(4/7) 2971215072999999 a001 139583862445/4106118243*817138163596^(2/3) 2971215072999999 a001 1836311903/312119004989*14662949395604^(8/9) 2971215072999999 a001 365435296162/4106118243*192900153618^(2/3) 2971215072999999 a001 256319508074468182835/86267571272 2971215072999999 a001 53316291173/4106118243*312119004989^(8/11) 2971215072999999 a001 1836311903/119218851371*14662949395604^(6/7) 2971215072999999 a001 20365011074/4106118243*45537549124^(14/17) 2971215072999999 a001 2504730781961/4106118243*73681302247^(8/13) 2971215072999999 a001 365435296162/4106118243*73681302247^(9/13) 2971215072999999 a001 53316291173/4106118243*73681302247^(10/13) 2971215072999999 a001 97905340104793732219/32951280099 2971215072999999 a001 20365011074/4106118243*14662949395604^(2/3) 2971215072999999 a001 1836311903/45537549124*23725150497407^(13/16) 2971215072999999 a001 1836311903/45537549124*505019158607^(13/14) 2971215072999999 a001 20365011074/4106118243*192900153618^(7/9) 2971215072999999 a001 6557470319842/4106118243*28143753123^(3/5) 2971215072999999 a001 591286729879/4106118243*28143753123^(7/10) 2971215072999999 a001 53316291173/4106118243*28143753123^(4/5) 2971215072999999 a001 37396512239913013822/12586269025 2971215072999999 a001 1836311903/17393796001*312119004989^(10/11) 2971215072999999 a001 7778742049/4106118243*312119004989^(4/5) 2971215072999999 a001 1836311903/17393796001*3461452808002^(5/6) 2971215072999999 a001 7778742049/4106118243*73681302247^(11/13) 2971215072999999 a001 53316291173/1568397607*1568397607^(19/22) 2971215072999999 a001 6557470319842/4106118243*10749957122^(5/8) 2971215072999999 a001 2504730781961/4106118243*10749957122^(2/3) 2971215072999999 a001 516002918640/1368706081*10749957122^(11/16) 2971215072999999 a001 956722026041/4106118243*10749957122^(17/24) 2971215072999999 a001 365435296162/4106118243*10749957122^(3/4) 2971215072999999 a001 139583862445/4106118243*10749957122^(19/24) 2971215072999999 a001 86267571272/4106118243*10749957122^(13/16) 2971215072999999 a001 53316291173/4106118243*10749957122^(5/6) 2971215072999999 a001 20365011074/4106118243*10749957122^(7/8) 2971215072999999 a001 7778742049/4106118243*10749957122^(11/12) 2971215072999999 a001 14284196614945309247/4807526976 2971215072999999 a001 1836311903/6643838879*45537549124^(16/17) 2971215072999999 a001 1836311903/6643838879*14662949395604^(16/21) 2971215072999999 a001 1836311903/6643838879*192900153618^(8/9) 2971215072999999 a001 1836311903/6643838879*73681302247^(12/13) 2971215072999999 a001 20365011074/1568397607*1568397607^(10/11) 2971215072999999 a001 2971215073/4106118243*10749957122^(23/24) 2971215072999999 a001 6643838879/5*5^(1/2) 2971215072999999 a001 6557470319842/4106118243*4106118243^(15/23) 2971215072999999 a001 23112315624967704576/7778742049 2971215072999999 a001 2504730781961/4106118243*4106118243^(16/23) 2971215072999999 a001 956722026041/4106118243*4106118243^(17/23) 2971215072999999 a001 7778742049/1568397607*1568397607^(21/22) 2971215072999999 a001 365435296162/4106118243*4106118243^(18/23) 2971215072999999 a001 53316291173/10749957122*17393796001^(6/7) 2971215072999999 a001 774004377960/5374978561*17393796001^(5/7) 2971215072999999 a001 30254413932440359200/10182505537 2971215072999999 a001 12586269025/10749957122*45537549124^(15/17) 2971215072999999 a001 139583862445/4106118243*4106118243^(19/23) 2971215072999999 a001 12586269025/10749957122*312119004989^(9/11) 2971215072999999 a001 1602508992/9381251041*14662949395604^(7/9) 2971215072999999 a001 12586269025/10749957122*14662949395604^(5/7) 2971215072999999 a001 1602508992/9381251041*505019158607^(7/8) 2971215072999999 a001 12586269025/10749957122*192900153618^(5/6) 2971215072999999 a001 225851433717/10749957122*45537549124^(13/17) 2971215072999999 a001 956722026041/10749957122*45537549124^(12/17) 2971215072999999 a001 53316291173/10749957122*45537549124^(14/17) 2971215072999999 a001 2504730781961/10749957122*45537549124^(2/3) 2971215072999999 a001 4052739537881/10749957122*45537549124^(11/17) 2971215072999999 a001 158414167969674450624/53316291173 2971215072999999 a001 686789568/10525900321*817138163596^(17/19) 2971215072999999 a001 686789568/10525900321*14662949395604^(17/21) 2971215072999999 a001 686789568/10525900321*192900153618^(17/18) 2971215072999999 a001 12586269025/10749957122*28143753123^(9/10) 2971215072999999 a001 414733676044142633472/139583862445 2971215072999999 a001 102287808/10745088481*3461452808002^(11/12) 2971215072999999 a001 2842626904444117715904/956722026041 2971215072999999 a001 1201881744/204284540899*14662949395604^(8/9) 2971215072999999 a001 139583862445/10749957122*312119004989^(8/11) 2971215072999999 a001 4807526976/312119004989*14662949395604^(6/7) 2971215072999999 a001 139583862445/10749957122*23725150497407^(5/8) 2971215072999999 a001 225851433717/10749957122*192900153618^(13/18) 2971215072999999 a001 4052739537881/10749957122*192900153618^(11/18) 2971215072999999 a001 53316291173/10749957122*817138163596^(14/19) 2971215072999999 a001 4807526976/119218851371*23725150497407^(13/16) 2971215072999999 a001 4807526976/119218851371*505019158607^(13/14) 2971215072999999 a001 53316291173/10749957122*192900153618^(7/9) 2971215072999999 a001 32039938509308522856/10783446409 2971215072999999 a001 3278735159921/5374978561*73681302247^(8/13) 2971215072999999 a001 956722026041/10749957122*73681302247^(9/13) 2971215072999999 a001 225851433717/10749957122*73681302247^(3/4) 2971215072999999 a001 139583862445/10749957122*73681302247^(10/13) 2971215072999999 a001 10182505537/5374978561*312119004989^(4/5) 2971215072999999 a001 10182505537/5374978561*23725150497407^(11/16) 2971215072999999 a001 10182505537/5374978561*73681302247^(11/13) 2971215072999999 a001 32635113368264577408/10983760033 2971215072999999 a001 774004377960/5374978561*28143753123^(7/10) 2971215072999999 a001 53316291173/4106118243*4106118243^(20/23) 2971215072999999 a001 139583862445/10749957122*28143753123^(4/5) 2971215072999999 a001 4807526976/17393796001*45537549124^(16/17) 2971215072999999 a001 4807526976/17393796001*14662949395604^(16/21) 2971215072999999 a001 4807526976/17393796001*192900153618^(8/9) 2971215072999999 a001 4807526976/17393796001*73681302247^(12/13) 2971215072999999 a001 20365011074/4106118243*4106118243^(21/23) 2971215072999999 a001 139583862445/28143753123*17393796001^(6/7) 2971215072999999 a001 4052739537881/28143753123*17393796001^(5/7) 2971215072999999 a001 365435296162/73681302247*17393796001^(6/7) 2971215072999999 a001 3278735159921/5374978561*10749957122^(2/3) 2971215072999999 a001 956722026041/192900153618*17393796001^(6/7) 2971215072999999 a001 2504730781961/505019158607*17393796001^(6/7) 2971215072999999 a001 10610209857723/2139295485799*17393796001^(6/7) 2971215072999999 a001 4052739537881/817138163596*17393796001^(6/7) 2971215072999999 a001 140728068720/28374454999*17393796001^(6/7) 2971215072999999 a001 591286729879/119218851371*17393796001^(6/7) 2971215072999999 a001 4052739537881/10749957122*10749957122^(11/16) 2971215072999999 a001 158414167969674450625/53316291173 2971215072999999 a001 1515744265389/10525900321*17393796001^(5/7) 2971215072999999 a001 2504730781961/10749957122*10749957122^(17/24) 2971215072999999 a001 225851433717/45537549124*17393796001^(6/7) 2971215072999999 a001 956722026041/10749957122*10749957122^(3/4) 2971215072999999 a001 3278735159921/22768774562*17393796001^(5/7) 2971215072999999 a001 10983760033/9381251041*45537549124^(15/17) 2971215072999999 a001 12586269025/10749957122*10749957122^(15/16) 2971215072999999 a001 182717648081/5374978561*10749957122^(19/24) 2971215072999999 a001 139583862445/28143753123*45537549124^(14/17) 2971215072999999 a001 591286729879/28143753123*45537549124^(13/17) 2971215072999999 a001 225851433717/10749957122*10749957122^(13/16) 2971215072999999 a001 2504730781961/28143753123*45537549124^(12/17) 2971215072999999 a001 6557470319842/28143753123*45537549124^(2/3) 2971215072999999 a001 3536736619241/9381251041*45537549124^(11/17) 2971215072999999 a001 10983760033/9381251041*312119004989^(9/11) 2971215072999999 a001 10983760033/9381251041*14662949395604^(5/7) 2971215072999999 a001 12586269025/73681302247*505019158607^(7/8) 2971215072999999 a001 139583862445/10749957122*10749957122^(5/6) 2971215072999999 a001 10983760033/9381251041*192900153618^(5/6) 2971215072999999 a001 12586269025/192900153618*817138163596^(17/19) 2971215072999999 a001 365435296162/28143753123*312119004989^(8/11) 2971215072999999 a001 2842626904444117715925/956722026041 2971215072999999 a001 12041560801895081680025/4052739537881 2971215072999999 a001 4052739537881/28143753123*505019158607^(5/8) 2971215072999999 a001 139583862445/28143753123*817138163596^(14/19) 2971215072999999 a001 1144206275/28374454999*23725150497407^(13/16) 2971215072999999 a001 1144206275/28374454999*505019158607^(13/14) 2971215072999999 a001 2504730781961/28143753123*192900153618^(2/3) 2971215072999999 a001 12586269025/45537549124*45537549124^(16/17) 2971215072999999 a001 139583862445/28143753123*192900153618^(7/9) 2971215072999999 a001 12586269025/119218851371*312119004989^(10/11) 2971215072999999 a001 53316291173/28143753123*312119004989^(4/5) 2971215072999999 a001 53316291173/28143753123*23725150497407^(11/16) 2971215072999999 a001 12586269025/119218851371*3461452808002^(5/6) 2971215072999999 a001 2504730781961/28143753123*73681302247^(9/13) 2971215072999999 a001 365435296162/28143753123*73681302247^(10/13) 2971215072999999 a001 53316291173/28143753123*73681302247^(11/13) 2971215072999999 a001 53316291173/10749957122*10749957122^(7/8) 2971215072999999 a001 12586269025/45537549124*14662949395604^(16/21) 2971215072999999 a001 12586269025/45537549124*192900153618^(8/9) 2971215072999999 a001 128159754037234091425/43133785636 2971215072999999 a001 86267571272/73681302247*45537549124^(15/17) 2971215072999999 a001 12586269025/45537549124*73681302247^(12/13) 2971215072999999 a001 365435296162/73681302247*45537549124^(14/17) 2971215072999999 a001 32951280099/119218851371*45537549124^(16/17) 2971215072999999 a001 1548008755920/73681302247*45537549124^(13/17) 2971215072999999 a001 6557470319842/73681302247*45537549124^(12/17) 2971215072999999 a001 86267571272/312119004989*45537549124^(16/17) 2971215072999999 a001 225851433717/817138163596*45537549124^(16/17) 2971215072999999 a001 139583862445/505019158607*45537549124^(16/17) 2971215072999999 a001 956722026041/192900153618*45537549124^(14/17) 2971215072999999 a001 365435296162/312119004989*45537549124^(15/17) 2971215072999999 a001 53316291173/192900153618*45537549124^(16/17) 2971215072999999 a001 2504730781961/505019158607*45537549124^(14/17) 2971215072999999 a001 140728068720/28374454999*45537549124^(14/17) 2971215072999999 a001 225749145909/10745088481*45537549124^(13/17) 2971215072999999 a001 1085786860162753449801/365435296162 2971215072999999 a001 6557470319842/312119004989*45537549124^(13/17) 2971215072999999 a001 139583862445/119218851371*45537549124^(15/17) 2971215072999999 a001 591286729879/119218851371*45537549124^(14/17) 2971215072999999 a001 10983760033/9381251041*28143753123^(9/10) 2971215072999999 a001 2504730781961/119218851371*45537549124^(13/17) 2971215072999999 a001 365435296162/28143753123*28143753123^(4/5) 2971215072999999 a001 10182505537/5374978561*10749957122^(11/12) 2971215072999999 a001 86267571272/73681302247*312119004989^(9/11) 2971215072999999 a001 10983760033/64300051206*14662949395604^(7/9) 2971215072999999 a001 86267571272/73681302247*14662949395604^(5/7) 2971215072999999 a001 10983760033/64300051206*505019158607^(7/8) 2971215072999999 a001 1515744265389/10525900321*312119004989^(7/11) 2971215072999999 a001 86267571272/73681302247*192900153618^(5/6) 2971215072999999 a001 10508405152319921019353/3536736619241 2971215072999999 a001 1515744265389/10525900321*505019158607^(5/8) 2971215072999999 a001 32951280099/817138163596*505019158607^(13/14) 2971215072999999 a001 306631129915032132137/103200583728 2971215072999999 a001 1548008755920/73681302247*192900153618^(13/18) 2971215072999999 a001 32951280099/505019158607*192900153618^(17/18) 2971215072999999 a001 20365011074/73681302247*45537549124^(16/17) 2971215072999999 a001 1756840044281364266127/591286729879 2971215072999999 a001 32951280099/119218851371*192900153618^(8/9) 2971215072999999 a001 6557470319842/73681302247*73681302247^(9/13) 2971215072999999 a001 7442093853169599697984/2504730781961 2971215072999999 a001 1548008755920/73681302247*73681302247^(3/4) 2971215072999999 a001 956722026041/73681302247*73681302247^(10/13) 2971215072999999 a001 21566892818/204284540899*312119004989^(10/11) 2971215072999999 a001 2504730781961/192900153618*312119004989^(8/11) 2971215072999999 a001 182717648081/96450076809*312119004989^(4/5) 2971215072999999 a001 1135099622/192933544679*14662949395604^(8/9) 2971215072999999 a001 139583862445/73681302247*73681302247^(11/13) 2971215072999999 a001 12041560801895081680040/4052739537881 2971215072999999 a001 10610209857723/312119004989*817138163596^(2/3) 2971215072999999 a001 139583862445/1322157322203*3461452808002^(5/6) 2971215072999999 a001 139583862445/817138163596*505019158607^(7/8) 2971215072999999 a001 139583862445/505019158607*192900153618^(8/9) 2971215072999999 a001 140728068720/28374454999*192900153618^(7/9) 2971215072999999 a001 574933368590685247757/193501094490 2971215072999999 a001 32951280099/119218851371*73681302247^(12/13) 2971215072999999 a001 225851433717/119218851371*312119004989^(4/5) 2971215072999999 a001 1548008755920/119218851371*312119004989^(8/11) 2971215072999999 a001 12041560801895081680041/4052739537881 2971215072999999 a001 139583862445/119218851371*312119004989^(9/11) 2971215072999999 a001 139583862445/119218851371*14662949395604^(5/7) 2971215072999999 a001 10610209857723/119218851371*192900153618^(2/3) 2971215072999999 a001 591286729879/119218851371*192900153618^(7/9) 2971215072999999 a001 53316291173/817138163596*192900153618^(17/18) 2971215072999999 a001 139583862445/119218851371*192900153618^(5/6) 2971215072999999 a001 4052739537881/192900153618*73681302247^(3/4) 2971215072999999 a001 2504730781961/192900153618*73681302247^(10/13) 2971215072999999 a001 53316291173/45537549124*45537549124^(15/17) 2971215072999999 a001 182717648081/96450076809*73681302247^(11/13) 2971215072999999 a001 225749145909/10745088481*73681302247^(3/4) 2971215072999999 a001 2842626904444117715929/956722026041 2971215072999999 a001 6557470319842/312119004989*73681302247^(3/4) 2971215072999999 a001 4052739537881/312119004989*73681302247^(10/13) 2971215072999999 a001 86267571272/312119004989*73681302247^(12/13) 2971215072999999 a001 10610209857723/45537549124*45537549124^(2/3) 2971215072999999 a001 225851433717/817138163596*73681302247^(12/13) 2971215072999999 a001 139583862445/505019158607*73681302247^(12/13) 2971215072999999 a001 10610209857723/119218851371*73681302247^(9/13) 2971215072999999 a001 1548008755920/119218851371*73681302247^(10/13) 2971215072999999 a001 53316291173/192900153618*73681302247^(12/13) 2971215072999999 a001 225851433717/119218851371*73681302247^(11/13) 2971215072999999 a001 20365011074/73681302247*14662949395604^(16/21) 2971215072999999 a001 20365011074/73681302247*192900153618^(8/9) 2971215072999999 a001 10182505537/96450076809*312119004989^(10/11) 2971215072999999 a001 21566892818/11384387281*312119004989^(4/5) 2971215072999999 a001 10182505537/96450076809*3461452808002^(5/6) 2971215072999999 a001 1756840044281364266128/591286729879 2971215072999999 a001 20365011074/73681302247*73681302247^(12/13) 2971215072999999 a001 225851433717/45537549124*817138163596^(14/19) 2971215072999999 a001 20365011074/1322157322203*14662949395604^(6/7) 2971215072999999 a001 10182505537/1730726404001*14662949395604^(8/9) 2971215072999999 a001 225851433717/45537549124*192900153618^(7/9) 2971215072999999 a001 956722026041/45537549124*192900153618^(13/18) 2971215072999999 a001 20365011074/312119004989*192900153618^(17/18) 2971215072999999 a001 53316291173/45537549124*312119004989^(9/11) 2971215072999999 a001 20365011074/119218851371*14662949395604^(7/9) 2971215072999999 a001 53316291173/45537549124*14662949395604^(5/7) 2971215072999999 a001 20365011074/119218851371*505019158607^(7/8) 2971215072999999 a001 53316291173/45537549124*192900153618^(5/6) 2971215072999999 a001 21566892818/11384387281*73681302247^(11/13) 2971215072999999 a001 956722026041/45537549124*73681302247^(3/4) 2971215072999999 a001 591286729879/45537549124*73681302247^(10/13) 2971215072999999 a001 1515744265389/10525900321*28143753123^(7/10) 2971215072999999 a001 7778742049/4106118243*4106118243^(22/23) 2971215072999999 a001 956722026041/73681302247*28143753123^(4/5) 2971215072999999 a001 86267571272/73681302247*28143753123^(9/10) 2971215072999999 a001 2504730781961/17393796001*17393796001^(5/7) 2971215072999999 a001 414733676044142633476/139583862445 2971215072999999 a001 2504730781961/192900153618*28143753123^(4/5) 2971215072999999 a001 10610209857723/817138163596*28143753123^(4/5) 2971215072999999 a001 4052739537881/312119004989*28143753123^(4/5) 2971215072999999 a001 1548008755920/119218851371*28143753123^(4/5) 2971215072999999 a001 75283811239/64300051206*28143753123^(9/10) 2971215072999999 a001 2504730781961/2139295485799*28143753123^(9/10) 2971215072999999 a001 365435296162/312119004989*28143753123^(9/10) 2971215072999999 a001 139583862445/119218851371*28143753123^(9/10) 2971215072999999 a001 3278735159921/22768774562*28143753123^(7/10) 2971215072999999 a001 591286729879/45537549124*28143753123^(4/5) 2971215072999999 a001 7778742049/28143753123*45537549124^(16/17) 2971215072999999 a001 53316291173/45537549124*28143753123^(9/10) 2971215072999999 a001 7778742049/28143753123*14662949395604^(16/21) 2971215072999999 a001 7778742049/28143753123*192900153618^(8/9) 2971215072999999 a001 7778742049/28143753123*73681302247^(12/13) 2971215072999999 a001 97905340104793732225/32951280099 2971215072999999 a001 86267571272/17393796001*45537549124^(14/17) 2971215072999999 a001 365435296162/17393796001*45537549124^(13/17) 2971215072999999 a001 7778742049/10749957122*10749957122^(23/24) 2971215072999999 a001 1548008755920/17393796001*45537549124^(12/17) 2971215072999999 a001 4052739537881/17393796001*45537549124^(2/3) 2971215072999999 a001 6557470319842/17393796001*45537549124^(11/17) 2971215072999999 a001 32951280099/17393796001*312119004989^(4/5) 2971215072999999 a001 32951280099/17393796001*23725150497407^(11/16) 2971215072999999 a001 256319508074468182851/86267571272 2971215072999999 a001 32951280099/17393796001*73681302247^(11/13) 2971215072999999 a001 7778742049/192900153618*23725150497407^(13/16) 2971215072999999 a001 51619475701431601256/17373187209 2971215072999999 a001 2504730781961/17393796001*312119004989^(7/11) 2971215072999999 a001 6557470319842/17393796001*312119004989^(3/5) 2971215072999999 a001 1548008755920/17393796001*14662949395604^(4/7) 2971215072999999 a001 10610209857723/17393796001*505019158607^(4/7) 2971215072999999 a001 1085786860162753449805/365435296162 2971215072999999 a001 1548008755920/17393796001*192900153618^(2/3) 2971215072999999 a001 365435296162/17393796001*192900153618^(13/18) 2971215072999999 a001 20365011074/17393796001*45537549124^(15/17) 2971215072999999 a001 414733676044142633477/139583862445 2971215072999999 a001 7778742049/119218851371*817138163596^(17/19) 2971215072999999 a001 7778742049/119218851371*14662949395604^(17/21) 2971215072999999 a001 7778742049/119218851371*192900153618^(17/18) 2971215072999999 a001 10610209857723/17393796001*73681302247^(8/13) 2971215072999999 a001 1548008755920/17393796001*73681302247^(9/13) 2971215072999999 a001 7787980473/599786069*73681302247^(10/13) 2971215072999999 a001 365435296162/17393796001*73681302247^(3/4) 2971215072999999 a001 158414167969674450626/53316291173 2971215072999999 a001 20365011074/17393796001*312119004989^(9/11) 2971215072999999 a001 20365011074/17393796001*14662949395604^(5/7) 2971215072999999 a001 7778742049/45537549124*505019158607^(7/8) 2971215072999999 a001 20365011074/17393796001*192900153618^(5/6) 2971215072999999 a001 2504730781961/17393796001*28143753123^(7/10) 2971215072999999 a001 7787980473/599786069*28143753123^(4/5) 2971215072999999 a001 3536736619241/9381251041*10749957122^(11/16) 2971215072999999 a001 6557470319842/28143753123*10749957122^(17/24) 2971215072999999 a001 20365011074/17393796001*28143753123^(9/10) 2971215072999999 a001 2504730781961/28143753123*10749957122^(3/4) 2971215072999999 a001 956722026041/28143753123*10749957122^(19/24) 2971215072999999 a001 591286729879/28143753123*10749957122^(13/16) 2971215072999999 a001 365435296162/28143753123*10749957122^(5/6) 2971215072999999 a001 60508827864880718401/20365011074 2971215072999999 a001 6557470319842/73681302247*10749957122^(3/4) 2971215072999999 a001 139583862445/28143753123*10749957122^(7/8) 2971215072999999 a001 10610209857723/119218851371*10749957122^(3/4) 2971215072999999 a001 10610209857723/45537549124*10749957122^(17/24) 2971215072999999 a001 10983760033/9381251041*10749957122^(15/16) 2971215072999999 a001 53316291173/28143753123*10749957122^(11/12) 2971215072999999 a001 3278735159921/96450076809*10749957122^(19/24) 2971215072999999 a001 1548008755920/73681302247*10749957122^(13/16) 2971215072999999 a001 4052739537881/119218851371*10749957122^(19/24) 2971215072999999 a001 4052739537881/45537549124*10749957122^(3/4) 2971215072999999 a001 4052739537881/192900153618*10749957122^(13/16) 2971215072999999 a001 225749145909/10745088481*10749957122^(13/16) 2971215072999999 a001 6557470319842/312119004989*10749957122^(13/16) 2971215072999999 a001 2504730781961/119218851371*10749957122^(13/16) 2971215072999999 a001 2504730781961/192900153618*10749957122^(5/6) 2971215072999999 a001 10610209857723/817138163596*10749957122^(5/6) 2971215072999999 a001 4052739537881/312119004989*10749957122^(5/6) 2971215072999999 a001 1548008755920/119218851371*10749957122^(5/6) 2971215072999999 a001 387002188980/11384387281*10749957122^(19/24) 2971215072999999 a001 365435296162/73681302247*10749957122^(7/8) 2971215072999999 a001 20365011074/28143753123*10749957122^(23/24) 2971215072999999 a001 956722026041/45537549124*10749957122^(13/16) 2971215072999999 a001 956722026041/192900153618*10749957122^(7/8) 2971215072999999 a001 2504730781961/505019158607*10749957122^(7/8) 2971215072999999 a001 10610209857723/2139295485799*10749957122^(7/8) 2971215072999999 a001 140728068720/28374454999*10749957122^(7/8) 2971215072999999 a001 591286729879/119218851371*10749957122^(7/8) 2971215072999999 a001 591286729879/45537549124*10749957122^(5/6) 2971215072999999 a001 139583862445/73681302247*10749957122^(11/12) 2971215072999999 a001 86267571272/73681302247*10749957122^(15/16) 2971215072999999 a001 182717648081/96450076809*10749957122^(11/12) 2971215072999999 a001 956722026041/505019158607*10749957122^(11/12) 2971215072999999 a001 591286729879/312119004989*10749957122^(11/12) 2971215072999999 a001 225851433717/119218851371*10749957122^(11/12) 2971215072999999 a001 225851433717/45537549124*10749957122^(7/8) 2971215072999999 a001 75283811239/64300051206*10749957122^(15/16) 2971215072999999 a001 365435296162/312119004989*10749957122^(15/16) 2971215072999999 a001 53316291173/73681302247*10749957122^(23/24) 2971215072999999 a001 139583862445/119218851371*10749957122^(15/16) 2971215072999999 a001 139583862445/192900153618*10749957122^(23/24) 2971215072999999 a001 591286729879/817138163596*10749957122^(23/24) 2971215072999999 a001 225851433717/312119004989*10749957122^(23/24) 2971215072999999 a001 86267571272/119218851371*10749957122^(23/24) 2971215072999999 a001 21566892818/11384387281*10749957122^(11/12) 2971215072999999 a001 32951280099/45537549124*10749957122^(23/24) 2971215072999999 a001 53316291173/45537549124*10749957122^(15/16) 2971215072999999 a001 10610209857723/17393796001*10749957122^(2/3) 2971215072999999 a001 1144206275/230701876*2537720636^(14/15) 2971215072999999 a001 6557470319842/17393796001*10749957122^(11/16) 2971215072999999 a001 4052739537881/17393796001*10749957122^(17/24) 2971215072999999 a001 1548008755920/17393796001*10749957122^(3/4) 2971215072999999 a001 591286729879/17393796001*10749957122^(19/24) 2971215072999999 a001 12586269025/17393796001*10749957122^(23/24) 2971215072999999 a001 365435296162/17393796001*10749957122^(13/16) 2971215072999999 a001 7787980473/599786069*10749957122^(5/6) 2971215072999999 a001 86267571272/17393796001*10749957122^(7/8) 2971215072999999 a001 32951280099/17393796001*10749957122^(11/12) 2971215072999999 a001 20365011074/17393796001*10749957122^(15/16) 2971215072999999 a001 2971215073/10749957122*45537549124^(16/17) 2971215072999999 a001 2971215073/10749957122*14662949395604^(16/21) 2971215072999999 a001 2971215073/10749957122*192900153618^(8/9) 2971215072999999 a001 2971215073/10749957122*73681302247^(12/13) 2971215072999999 a001 32951280099/2537720636*2537720636^(8/9) 2971215072999999 a001 32951280099/6643838879*17393796001^(6/7) 2971215072999999 a001 956722026041/6643838879*17393796001^(5/7) 2971215072999999 a001 53316291173/2537720636*2537720636^(13/15) 2971215072999999 a001 12586269025/6643838879*312119004989^(4/5) 2971215072999999 a001 12586269025/6643838879*23725150497407^(11/16) 2971215072999999 a001 2971215073/28143753123*3461452808002^(5/6) 2971215072999999 a001 12586269025/6643838879*73681302247^(11/13) 2971215072999999 a001 32951280099/6643838879*45537549124^(14/17) 2971215072999999 a001 139583862445/6643838879*45537549124^(13/17) 2971215072999999 a001 591286729879/6643838879*45537549124^(12/17) 2971215072999999 a001 1548008755920/6643838879*45537549124^(2/3) 2971215072999999 a001 2504730781961/6643838879*45537549124^(11/17) 2971215072999999 a001 10610209857723/6643838879*45537549124^(10/17) 2971215072999999 a001 2971215073/73681302247*23725150497407^(13/16) 2971215072999999 a001 2971215073/73681302247*505019158607^(13/14) 2971215072999999 a001 32951280099/6643838879*192900153618^(7/9) 2971215072999999 a001 86267571272/6643838879*312119004989^(8/11) 2971215072999999 a001 2971215073/192900153618*14662949395604^(6/7) 2971215072999999 a001 10610209857723/6643838879*312119004989^(6/11) 2971215072999999 a001 2971215073/505019158607*14662949395604^(8/9) 2971215073000000 a001 2971215073/817138163596*14662949395604^(19/21) 2971215073000000 a001 139583862445/6643838879*14662949395604^(13/21) 2971215073000000 a001 2971215073/312119004989*3461452808002^(11/12) 2971215073000000 a001 10610209857723/6643838879*192900153618^(5/9) 2971215073000000 a001 139583862445/6643838879*192900153618^(13/18) 2971215073000000 a001 4052739537881/6643838879*73681302247^(8/13) 2971215073000000 a001 591286729879/6643838879*73681302247^(9/13) 2971215073000000 a001 139583862445/6643838879*73681302247^(3/4) 2971215073000000 a001 2971215073/45537549124*817138163596^(17/19) 2971215073000000 a001 2971215073/45537549124*14662949395604^(17/21) 2971215073000000 a001 2971215073/45537549124*192900153618^(17/18) 2971215073000000 a001 10610209857723/6643838879*28143753123^(3/5) 2971215073000000 a001 956722026041/6643838879*28143753123^(7/10) 2971215073000000 a001 86267571272/6643838879*28143753123^(4/5) 2971215073000000 a001 7778742049/6643838879*45537549124^(15/17) 2971215073000000 a001 7778742049/6643838879*312119004989^(9/11) 2971215073000000 a001 2971215073/17393796001*14662949395604^(7/9) 2971215073000000 a001 7778742049/6643838879*14662949395604^(5/7) 2971215073000000 a001 2971215073/17393796001*505019158607^(7/8) 2971215073000000 a001 7778742049/6643838879*192900153618^(5/6) 2971215073000000 a001 7778742049/6643838879*28143753123^(9/10) 2971215073000000 a001 10610209857723/6643838879*10749957122^(5/8) 2971215073000000 a001 4052739537881/6643838879*10749957122^(2/3) 2971215073000000 a001 2504730781961/6643838879*10749957122^(11/16) 2971215073000000 a001 1548008755920/6643838879*10749957122^(17/24) 2971215073000000 a001 591286729879/6643838879*10749957122^(3/4) 2971215073000000 a001 12586269025/6643838879*10749957122^(11/12) 2971215073000000 a001 225851433717/6643838879*10749957122^(19/24) 2971215073000000 a001 139583862445/6643838879*10749957122^(13/16) 2971215073000000 a001 86267571272/6643838879*10749957122^(5/6) 2971215073000000 a001 32951280099/6643838879*10749957122^(7/8) 2971215073000000 a001 225851433717/2537720636*2537720636^(4/5) 2971215073000000 a001 3278735159921/5374978561*4106118243^(16/23) 2971215073000000 a001 7778742049/6643838879*10749957122^(15/16) 2971215073000000 a001 182717648081/1268860318*2537720636^(7/9) 2971215073000000 a001 2504730781961/10749957122*4106118243^(17/23) 2971215073000000 a001 956722026041/10749957122*4106118243^(18/23) 2971215073000000 a001 182717648081/5374978561*4106118243^(19/23) 2971215073000000 a001 956722026041/2537720636*2537720636^(11/15) 2971215073000000 a001 6557470319842/28143753123*4106118243^(17/23) 2971215073000000 a001 139583862445/10749957122*4106118243^(20/23) 2971215073000000 a001 10610209857723/45537549124*4106118243^(17/23) 2971215073000000 a001 10610209857723/17393796001*4106118243^(16/23) 2971215073000000 a001 2504730781961/28143753123*4106118243^(18/23) 2971215073000000 a001 53316291173/10749957122*4106118243^(21/23) 2971215073000000 a001 6557470319842/73681302247*4106118243^(18/23) 2971215073000000 a001 10610209857723/119218851371*4106118243^(18/23) 2971215073000000 a001 4052739537881/45537549124*4106118243^(18/23) 2971215073000000 a001 4052739537881/17393796001*4106118243^(17/23) 2971215073000000 a001 956722026041/28143753123*4106118243^(19/23) 2971215073000000 a001 10182505537/5374978561*4106118243^(22/23) 2971215073000000 a001 2504730781961/73681302247*4106118243^(19/23) 2971215073000000 a001 3278735159921/96450076809*4106118243^(19/23) 2971215073000000 a001 10610209857723/312119004989*4106118243^(19/23) 2971215073000000 a001 4052739537881/119218851371*4106118243^(19/23) 2971215073000000 a001 387002188980/11384387281*4106118243^(19/23) 2971215073000000 a001 1548008755920/17393796001*4106118243^(18/23) 2971215073000000 a001 365435296162/28143753123*4106118243^(20/23) 2971215073000000 a001 956722026041/73681302247*4106118243^(20/23) 2971215073000000 a001 2504730781961/192900153618*4106118243^(20/23) 2971215073000000 a001 10610209857723/817138163596*4106118243^(20/23) 2971215073000000 a001 4052739537881/312119004989*4106118243^(20/23) 2971215073000000 a001 1548008755920/119218851371*4106118243^(20/23) 2971215073000000 a001 4052739537881/2537720636*2537720636^(2/3) 2971215073000000 a001 591286729879/45537549124*4106118243^(20/23) 2971215073000000 a001 591286729879/17393796001*4106118243^(19/23) 2971215073000000 a001 139583862445/28143753123*4106118243^(21/23) 2971215073000000 a001 365435296162/73681302247*4106118243^(21/23) 2971215073000000 a001 956722026041/192900153618*4106118243^(21/23) 2971215073000000 a001 2504730781961/505019158607*4106118243^(21/23) 2971215073000000 a001 4052739537881/817138163596*4106118243^(21/23) 2971215073000000 a001 140728068720/28374454999*4106118243^(21/23) 2971215073000000 a001 591286729879/119218851371*4106118243^(21/23) 2971215073000000 a001 225851433717/45537549124*4106118243^(21/23) 2971215073000000 a001 7787980473/599786069*4106118243^(20/23) 2971215073000000 a001 53316291173/28143753123*4106118243^(22/23) 2971215073000000 a001 139583862445/73681302247*4106118243^(22/23) 2971215073000000 a001 182717648081/96450076809*4106118243^(22/23) 2971215073000000 a001 956722026041/505019158607*4106118243^(22/23) 2971215073000000 a001 591286729879/312119004989*4106118243^(22/23) 2971215073000000 a001 225851433717/119218851371*4106118243^(22/23) 2971215073000000 a001 21566892818/11384387281*4106118243^(22/23) 2971215073000000 a001 86267571272/17393796001*4106118243^(21/23) 2971215073000000 a001 32951280099/17393796001*4106118243^(22/23) 2971215073000000 a001 10610209857723/6643838879*4106118243^(15/23) 2971215073000000 a001 4052739537881/6643838879*4106118243^(16/23) 2971215073000000 a001 1548008755920/6643838879*4106118243^(17/23) 2971215073000000 a001 591286729879/6643838879*4106118243^(18/23) 2971215073000000 a001 225851433717/6643838879*4106118243^(19/23) 2971215073000000 a001 86267571272/6643838879*4106118243^(20/23) 2971215073000000 a001 32951280099/6643838879*4106118243^(21/23) 2971215073000000 a001 12586269025/6643838879*4106118243^(22/23) 2971215073000000 a001 1134903170/4106118243*45537549124^(16/17) 2971215073000000 a001 1134903170/4106118243*14662949395604^(16/21) 2971215073000000 a001 1134903170/4106118243*192900153618^(8/9) 2971215073000000 a001 1134903170/4106118243*73681302247^(12/13) 2971215073000000 a001 1836311903/2537720636*10749957122^(23/24) 2971215073000000 a001 8828119010022395330/2971215073 2971215073000000 a001 1201881744/634430159*312119004989^(4/5) 2971215073000000 a001 1201881744/634430159*23725150497407^(11/16) 2971215073000000 a001 567451585/5374978561*3461452808002^(5/6) 2971215073000000 a001 1201881744/634430159*73681302247^(11/13) 2971215073000000 a001 1144206275/230701876*17393796001^(6/7) 2971215073000000 a001 23112315624967704580/7778742049 2971215073000000 a001 182717648081/1268860318*17393796001^(5/7) 2971215073000000 a001 10610209857723/2537720636*17393796001^(4/7) 2971215073000000 a001 1144206275/230701876*45537549124^(14/17) 2971215073000000 a001 1134903170/28143753123*23725150497407^(13/16) 2971215073000000 a001 1134903170/28143753123*505019158607^(13/14) 2971215073000000 a001 1144206275/230701876*192900153618^(7/9) 2971215073000000 a001 1201881744/634430159*10749957122^(11/12) 2971215073000000 a001 30254413932440359205/10182505537 2971215073000000 a001 225851433717/2537720636*45537549124^(12/17) 2971215073000000 a001 591286729879/2537720636*45537549124^(2/3) 2971215073000000 a001 956722026041/2537720636*45537549124^(11/17) 2971215073000000 a001 53316291173/2537720636*45537549124^(13/17) 2971215073000000 a001 4052739537881/2537720636*45537549124^(10/17) 2971215073000000 a001 32951280099/2537720636*312119004989^(8/11) 2971215073000000 a001 1134903170/73681302247*14662949395604^(6/7) 2971215073000000 a001 32951280099/2537720636*23725150497407^(5/8) 2971215073000000 a001 158414167969674450650/53316291173 2971215073000000 a001 32951280099/2537720636*73681302247^(10/13) 2971215073000000 a001 1135099622/33391061*817138163596^(2/3) 2971215073000000 a001 82946735208828526708/27916772489 2971215073000000 a001 182717648081/1268860318*312119004989^(7/11) 2971215073000000 a001 10610209857723/2537720636*14662949395604^(4/9) 2971215073000000 a001 1134903170*(1/2+1/2*5^(1/2))^2 2971215073000000 a001 182717648081/1268860318*505019158607^(5/8) 2971215073000000 a001 1134903170/312119004989*14662949395604^(19/21) 2971215073000000 a001 4052739537881/2537720636*192900153618^(5/9) 2971215073000000 a001 956722026041/2537720636*192900153618^(11/18) 2971215073000000 a001 7538809061013770085/2537281508 2971215073000000 a001 53316291173/2537720636*14662949395604^(13/21) 2971215073000000 a001 1134903170/119218851371*3461452808002^(11/12) 2971215073000000 a001 53316291173/2537720636*192900153618^(13/18) 2971215073000000 a001 10610209857723/2537720636*73681302247^(7/13) 2971215073000000 a001 1134903780/1860499*73681302247^(8/13) 2971215073000000 a001 225851433717/2537720636*73681302247^(9/13) 2971215073000000 a001 97905340104793732240/32951280099 2971215073000000 a001 53316291173/2537720636*73681302247^(3/4) 2971215073000000 a001 4052739537881/2537720636*28143753123^(3/5) 2971215073000000 a001 32951280099/2537720636*28143753123^(4/5) 2971215073000000 a001 182717648081/1268860318*28143753123^(7/10) 2971215073000000 a001 7479302447982602766/2517253805 2971215073000000 a001 1134903170/17393796001*817138163596^(17/19) 2971215073000000 a001 1134903170/17393796001*14662949395604^(17/21) 2971215073000000 a001 1134903170/17393796001*192900153618^(17/18) 2971215073000000 a001 10610209857723/2537720636*10749957122^(7/12) 2971215073000000 a001 4052739537881/2537720636*10749957122^(5/8) 2971215073000000 a001 1134903780/1860499*10749957122^(2/3) 2971215073000000 a001 956722026041/2537720636*10749957122^(11/16) 2971215073000000 a001 591286729879/2537720636*10749957122^(17/24) 2971215073000000 a001 1144206275/230701876*10749957122^(7/8) 2971215073000000 a001 225851433717/2537720636*10749957122^(3/4) 2971215073000000 a001 1135099622/33391061*10749957122^(19/24) 2971215073000000 a001 32951280099/2537720636*10749957122^(5/6) 2971215073000000 a001 53316291173/2537720636*10749957122^(13/16) 2971215073000000 a001 7142098307472654625/2403763488 2971215073000000 a001 2971215073/2537720636*45537549124^(15/17) 2971215073000000 a001 2971215073/2537720636*312119004989^(9/11) 2971215073000000 a001 1134903170/6643838879*14662949395604^(7/9) 2971215073000000 a001 2971215073/2537720636*14662949395604^(5/7) 2971215073000000 a001 1134903170/6643838879*505019158607^(7/8) 2971215073000000 a001 2971215073/2537720636*192900153618^(5/6) 2971215073000000 a001 2971215073/2537720636*28143753123^(9/10) 2971215073000000 a001 2971215073/2537720636*10749957122^(15/16) 2971215073000000 a001 10610209857723/2537720636*4106118243^(14/23) 2971215073000000 a001 4052739537881/2537720636*4106118243^(15/23) 2971215073000000 a001 1134903780/1860499*4106118243^(16/23) 2971215073000000 a001 591286729879/2537720636*4106118243^(17/23) 2971215073000000 a001 225851433717/2537720636*4106118243^(18/23) 2971215073000000 a001 1201881744/634430159*4106118243^(22/23) 2971215073000000 a001 1135099622/33391061*4106118243^(19/23) 2971215073000000 a001 5456077604922913920/1836311903 2971215073000000 a001 32951280099/2537720636*4106118243^(20/23) 2971215073000000 a001 1144206275/230701876*4106118243^(21/23) 2971215073000000 a001 6557470319842/4106118243*1568397607^(15/22) 2971215073000000 a001 2504730781961/4106118243*1568397607^(8/11) 2971215073000000 a001 516002918640/1368706081*1568397607^(3/4) 2971215073000000 a001 956722026041/4106118243*1568397607^(17/22) 2971215073000000 a001 365435296162/4106118243*1568397607^(9/11) 2971215073000000 a001 3278735159921/5374978561*1568397607^(8/11) 2971215073000000 a001 139583862445/4106118243*1568397607^(19/22) 2971215073000000 a001 4052739537881/10749957122*1568397607^(3/4) 2971215073000000 a001 10610209857723/17393796001*1568397607^(8/11) 2971215073000000 a001 10610209857723/6643838879*1568397607^(15/22) 2971215073000000 a001 3536736619241/9381251041*1568397607^(3/4) 2971215073000000 a001 2504730781961/10749957122*1568397607^(17/22) 2971215073000000 a001 6557470319842/17393796001*1568397607^(3/4) 2971215073000000 a001 53316291173/4106118243*1568397607^(10/11) 2971215073000000 a001 6557470319842/28143753123*1568397607^(17/22) 2971215073000000 a001 10610209857723/45537549124*1568397607^(17/22) 2971215073000000 a001 4052739537881/17393796001*1568397607^(17/22) 2971215073000000 a001 4052739537881/6643838879*1568397607^(8/11) 2971215073000000 a001 956722026041/10749957122*1568397607^(9/11) 2971215073000000 a001 2504730781961/6643838879*1568397607^(3/4) 2971215073000000 a001 20365011074/4106118243*1568397607^(21/22) 2971215073000000 a001 2504730781961/28143753123*1568397607^(9/11) 2971215073000000 a001 6557470319842/73681302247*1568397607^(9/11) 2971215073000000 a001 10610209857723/119218851371*1568397607^(9/11) 2971215073000000 a001 4052739537881/45537549124*1568397607^(9/11) 2971215073000000 a001 1548008755920/17393796001*1568397607^(9/11) 2971215073000000 a001 1548008755920/6643838879*1568397607^(17/22) 2971215073000000 a001 182717648081/5374978561*1568397607^(19/22) 2971215073000000 a001 956722026041/28143753123*1568397607^(19/22) 2971215073000000 a001 2504730781961/73681302247*1568397607^(19/22) 2971215073000000 a001 3278735159921/96450076809*1568397607^(19/22) 2971215073000000 a001 10610209857723/312119004989*1568397607^(19/22) 2971215073000000 a001 4052739537881/119218851371*1568397607^(19/22) 2971215073000000 a001 387002188980/11384387281*1568397607^(19/22) 2971215073000000 a001 591286729879/17393796001*1568397607^(19/22) 2971215073000000 a001 591286729879/6643838879*1568397607^(9/11) 2971215073000000 a001 139583862445/10749957122*1568397607^(10/11) 2971215073000000 a001 365435296162/28143753123*1568397607^(10/11) 2971215073000000 a001 956722026041/73681302247*1568397607^(10/11) 2971215073000000 a001 2504730781961/192900153618*1568397607^(10/11) 2971215073000000 a001 10610209857723/817138163596*1568397607^(10/11) 2971215073000000 a001 4052739537881/312119004989*1568397607^(10/11) 2971215073000000 a001 1548008755920/119218851371*1568397607^(10/11) 2971215073000000 a001 591286729879/45537549124*1568397607^(10/11) 2971215073000000 a001 7787980473/599786069*1568397607^(10/11) 2971215073000000 a001 225851433717/6643838879*1568397607^(19/22) 2971215073000000 a001 53316291173/10749957122*1568397607^(21/22) 2971215073000000 a001 139583862445/28143753123*1568397607^(21/22) 2971215073000000 a001 365435296162/73681302247*1568397607^(21/22) 2971215073000000 a001 956722026041/192900153618*1568397607^(21/22) 2971215073000000 a001 2504730781961/505019158607*1568397607^(21/22) 2971215073000000 a001 140728068720/28374454999*1568397607^(21/22) 2971215073000000 a001 591286729879/119218851371*1568397607^(21/22) 2971215073000000 a001 225851433717/45537549124*1568397607^(21/22) 2971215073000000 a001 86267571272/17393796001*1568397607^(21/22) 2971215073000000 a001 86267571272/6643838879*1568397607^(10/11) 2971215073000000 a001 32951280099/6643838879*1568397607^(21/22) 2971215073000000 a001 10610209857723/2537720636*1568397607^(7/11) 2971215073000000 a001 4052739537881/2537720636*1568397607^(15/22) 2971215073000000 a001 1134903780/1860499*1568397607^(8/11) 2971215073000000 a001 956722026041/2537720636*1568397607^(3/4) 2971215073000000 a001 591286729879/2537720636*1568397607^(17/22) 2971215073000000 a001 225851433717/2537720636*1568397607^(9/11) 2971215073000000 a001 2084036199823432510/701408733 2971215073000000 a001 1135099622/33391061*1568397607^(19/22) 2971215073000000 a001 32951280099/2537720636*1568397607^(10/11) 2971215073000000 a001 1144206275/230701876*1568397607^(21/22) 2971215073000000 a001 433494437/1568397607*45537549124^(16/17) 2971215073000000 a001 433494437/1568397607*14662949395604^(16/21) 2971215073000000 a001 433494437/1568397607*192900153618^(8/9) 2971215073000000 a001 433494437/1568397607*73681302247^(12/13) 2971215073000000 a001 701408733/969323029*10749957122^(23/24) 2971215073000000 a001 4807526976/969323029*2537720636^(14/15) 2971215073000000 a001 3372041405099481413/1134903170 2971215073000000 a001 12586269025/969323029*2537720636^(8/9) 2971215073000000 a001 20365011074/969323029*2537720636^(13/15) 2971215073000000 a001 86267571272/969323029*2537720636^(4/5) 2971215073000000 a001 139583862445/969323029*2537720636^(7/9) 2971215073000000 a001 365435296162/969323029*2537720636^(11/15) 2971215073000000 a001 1548008755920/969323029*2537720636^(2/3) 2971215073000000 a001 6557470319842/969323029*2537720636^(3/5) 2971215073000000 a001 433494437/4106118243*312119004989^(10/11) 2971215073000000 a001 1836311903/969323029*312119004989^(4/5) 2971215073000000 a001 1836311903/969323029*23725150497407^(11/16) 2971215073000000 a001 433494437/4106118243*3461452808002^(5/6) 2971215073000000 a001 1836311903/969323029*73681302247^(11/13) 2971215073000000 a001 1836311903/969323029*10749957122^(11/12) 2971215073000000 a001 8828119010022395338/2971215073 2971215073000000 a001 4807526976/969323029*17393796001^(6/7) 2971215073000000 a001 4807526976/969323029*45537549124^(14/17) 2971215073000000 a001 433494437/10749957122*23725150497407^(13/16) 2971215073000000 a001 433494437/10749957122*505019158607^(13/14) 2971215073000000 a001 4807526976/969323029*192900153618^(7/9) 2971215073000000 a001 23112315624967704601/7778742049 2971215073000000 a001 1836311903/969323029*4106118243^(22/23) 2971215073000000 a001 139583862445/969323029*17393796001^(5/7) 2971215073000000 a001 4052739537881/969323029*17393796001^(4/7) 2971215073000000 a001 12586269025/969323029*312119004989^(8/11) 2971215073000000 a001 433494437/28143753123*14662949395604^(6/7) 2971215073000000 a001 12586269025/969323029*23725150497407^(5/8) 2971215073000000 a001 12586269025/969323029*73681302247^(10/13) 2971215073000000 a001 4807526976/969323029*10749957122^(7/8) 2971215073000000 a001 60508827864880718465/20365011074 2971215073000000 a001 86267571272/969323029*45537549124^(12/17) 2971215073000000 a001 225851433717/969323029*45537549124^(2/3) 2971215073000000 a001 365435296162/969323029*45537549124^(11/17) 2971215073000000 a001 1548008755920/969323029*45537549124^(10/17) 2971215073000000 a001 6557470319842/969323029*45537549124^(9/17) 2971215073000000 a001 12586269025/969323029*28143753123^(4/5) 2971215073000000 a001 32951280099/969323029*817138163596^(2/3) 2971215073000000 a001 433494437/73681302247*14662949395604^(8/9) 2971215073000000 a001 158414167969674450794/53316291173 2971215073000000 a001 86267571272/969323029*14662949395604^(4/7) 2971215073000000 a001 86267571272/969323029*505019158607^(9/14) 2971215073000000 a001 414733676044142633917/139583862445 2971215073000000 a001 1548008755920/969323029*312119004989^(6/11) 2971215073000000 a001 365435296162/969323029*312119004989^(3/5) 2971215073000000 a001 1085786860162753450957/365435296162 2971215073000000 a001 433494437*(1/2+1/2*5^(1/2))^4 2971215073000000 a001 139583862445/969323029*312119004989^(7/11) 2971215073000000 a001 139583862445/969323029*14662949395604^(5/9) 2971215073000000 a001 139583862445/969323029*505019158607^(5/8) 2971215073000000 a001 1548008755920/969323029*192900153618^(5/9) 2971215073000000 a001 365435296162/969323029*192900153618^(11/18) 2971215073000000 a001 256319508074468183123/86267571272 2971215073000000 a001 433494437/119218851371*14662949395604^(19/21) 2971215073000000 a001 10610209857723/969323029*73681302247^(1/2) 2971215073000000 a001 4052739537881/969323029*73681302247^(7/13) 2971215073000000 a001 86267571272/969323029*73681302247^(9/13) 2971215073000000 a001 591286729879/969323029*73681302247^(8/13) 2971215073000000 a001 20365011074/969323029*45537549124^(13/17) 2971215073000000 a001 32635113368264577443/10983760033 2971215073000000 a001 20365011074/969323029*14662949395604^(13/21) 2971215073000000 a001 433494437/45537549124*3461452808002^(11/12) 2971215073000000 a001 20365011074/969323029*192900153618^(13/18) 2971215073000000 a001 20365011074/969323029*73681302247^(3/4) 2971215073000000 a001 1548008755920/969323029*28143753123^(3/5) 2971215073000000 a001 139583862445/969323029*28143753123^(7/10) 2971215073000000 a001 37396512239913013864/12586269025 2971215073000000 a001 10610209857723/969323029*10749957122^(13/24) 2971215073000000 a001 6557470319842/969323029*10749957122^(9/16) 2971215073000000 a001 4052739537881/969323029*10749957122^(7/12) 2971215073000000 a001 1548008755920/969323029*10749957122^(5/8) 2971215073000000 a001 591286729879/969323029*10749957122^(2/3) 2971215073000000 a001 12586269025/969323029*10749957122^(5/6) 2971215073000000 a001 225851433717/969323029*10749957122^(17/24) 2971215073000000 a001 86267571272/969323029*10749957122^(3/4) 2971215073000000 a001 32951280099/969323029*10749957122^(19/24) 2971215073000000 a001 20365011074/969323029*10749957122^(13/16) 2971215073000000 a001 4761398871648436421/1602508992 2971215073000000 a001 433494437/6643838879*817138163596^(17/19) 2971215073000000 a001 433494437/6643838879*14662949395604^(17/21) 2971215073000000 a001 433494437/6643838879*192900153618^(17/18) 2971215073000000 a001 10610209857723/969323029*4106118243^(13/23) 2971215073000000 a001 4052739537881/969323029*4106118243^(14/23) 2971215073000000 a001 1548008755920/969323029*4106118243^(15/23) 2971215073000000 a001 591286729879/969323029*4106118243^(16/23) 2971215073000000 a001 225851433717/969323029*4106118243^(17/23) 2971215073000000 a001 4807526976/969323029*4106118243^(21/23) 2971215073000000 a001 86267571272/969323029*4106118243^(18/23) 2971215073000000 a001 32951280099/969323029*4106118243^(19/23) 2971215073000000 a001 12586269025/969323029*4106118243^(20/23) 2971215073000000 a001 5456077604922913925/1836311903 2971215073000000 a001 1134903170/969323029*45537549124^(15/17) 2971215073000000 a001 1134903170/969323029*312119004989^(9/11) 2971215073000000 a001 433494437/2537720636*14662949395604^(7/9) 2971215073000000 a001 1134903170/969323029*14662949395604^(5/7) 2971215073000000 a001 433494437/2537720636*505019158607^(7/8) 2971215073000000 a001 1134903170/969323029*192900153618^(5/6) 2971215073000000 a001 1134903170/969323029*28143753123^(9/10) 2971215073000000 a001 1134903170/969323029*10749957122^(15/16) 2971215073000000 a001 10610209857723/969323029*1568397607^(13/22) 2971215073000000 a001 4052739537881/969323029*1568397607^(7/11) 2971215073000000 a001 1548008755920/969323029*1568397607^(15/22) 2971215073000000 a001 591286729879/969323029*1568397607^(8/11) 2971215073000000 a001 365435296162/969323029*1568397607^(3/4) 2971215073000000 a001 225851433717/969323029*1568397607^(17/22) 2971215073000000 a001 1515744265389/224056801*599074578^(9/14) 2971215073000000 a001 86267571272/969323029*1568397607^(9/11) 2971215073000000 a001 32951280099/969323029*1568397607^(19/22) 2971215073000000 a001 12586269025/969323029*1568397607^(10/11) 2971215073000000 a001 4807526976/969323029*1568397607^(21/22) 2971215073000000 a001 6557470319842/1568397607*599074578^(2/3) 2971215073000000 a001 694678733274477504/233802911 2971215073000000 a001 2504730781961/1568397607*599074578^(5/7) 2971215073000000 a001 956722026041/1568397607*599074578^(16/21) 2971215073000000 a001 591286729879/1568397607*599074578^(11/14) 2971215073000000 a001 365435296162/1568397607*599074578^(17/21) 2971215073000000 a001 32264490531/224056801*599074578^(5/6) 2971215073000000 a001 6557470319842/4106118243*599074578^(5/7) 2971215073000000 a001 139583862445/1568397607*599074578^(6/7) 2971215073000000 a001 10610209857723/2537720636*599074578^(2/3) 2971215073000000 a001 10610209857723/6643838879*599074578^(5/7) 2971215073000000 a001 2504730781961/4106118243*599074578^(16/21) 2971215073000000 a001 3278735159921/5374978561*599074578^(16/21) 2971215073000000 a001 53316291173/1568397607*599074578^(19/21) 2971215073000000 a001 10610209857723/17393796001*599074578^(16/21) 2971215073000000 a001 516002918640/1368706081*599074578^(11/14) 2971215073000000 a001 4052739537881/2537720636*599074578^(5/7) 2971215073000000 a001 4052739537881/6643838879*599074578^(16/21) 2971215073000000 a001 32951280099/1568397607*599074578^(13/14) 2971215073000000 a001 4052739537881/10749957122*599074578^(11/14) 2971215073000000 a001 3536736619241/9381251041*599074578^(11/14) 2971215073000000 a001 6557470319842/17393796001*599074578^(11/14) 2971215073000000 a001 956722026041/4106118243*599074578^(17/21) 2971215073000000 a001 2504730781961/6643838879*599074578^(11/14) 2971215073000000 a001 2504730781961/10749957122*599074578^(17/21) 2971215073000000 a001 20365011074/1568397607*599074578^(20/21) 2971215073000000 a001 6557470319842/28143753123*599074578^(17/21) 2971215073000000 a001 10610209857723/45537549124*599074578^(17/21) 2971215073000000 a001 4052739537881/17393796001*599074578^(17/21) 2971215073000000 a001 591286729879/4106118243*599074578^(5/6) 2971215073000000 a001 1134903780/1860499*599074578^(16/21) 2971215073000000 a001 1548008755920/6643838879*599074578^(17/21) 2971215073000000 a001 774004377960/5374978561*599074578^(5/6) 2971215073000000 a001 4052739537881/28143753123*599074578^(5/6) 2971215073000000 a001 1515744265389/10525900321*599074578^(5/6) 2971215073000000 a001 3278735159921/22768774562*599074578^(5/6) 2971215073000000 a001 2504730781961/17393796001*599074578^(5/6) 2971215073000000 a001 365435296162/4106118243*599074578^(6/7) 2971215073000000 a001 956722026041/2537720636*599074578^(11/14) 2971215073000000 a001 956722026041/6643838879*599074578^(5/6) 2971215073000000 a001 956722026041/10749957122*599074578^(6/7) 2971215073000000 a001 2504730781961/28143753123*599074578^(6/7) 2971215073000000 a001 6557470319842/73681302247*599074578^(6/7) 2971215073000000 a001 10610209857723/119218851371*599074578^(6/7) 2971215073000000 a001 4052739537881/45537549124*599074578^(6/7) 2971215073000000 a001 1548008755920/17393796001*599074578^(6/7) 2971215073000000 a001 591286729879/2537720636*599074578^(17/21) 2971215073000000 a001 591286729879/6643838879*599074578^(6/7) 2971215073000000 a001 139583862445/4106118243*599074578^(19/21) 2971215073000000 a001 182717648081/1268860318*599074578^(5/6) 2971215073000000 a001 182717648081/5374978561*599074578^(19/21) 2971215073000000 a001 956722026041/28143753123*599074578^(19/21) 2971215073000000 a001 2504730781961/73681302247*599074578^(19/21) 2971215073000000 a001 3278735159921/96450076809*599074578^(19/21) 2971215073000000 a001 10610209857723/312119004989*599074578^(19/21) 2971215073000000 a001 4052739537881/119218851371*599074578^(19/21) 2971215073000000 a001 387002188980/11384387281*599074578^(19/21) 2971215073000000 a001 591286729879/17393796001*599074578^(19/21) 2971215073000000 a001 86267571272/4106118243*599074578^(13/14) 2971215073000000 a001 398015497273691805/133957148 2971215073000000 a001 225851433717/2537720636*599074578^(6/7) 2971215073000000 a001 225851433717/6643838879*599074578^(19/21) 2971215073000000 a001 225851433717/10749957122*599074578^(13/14) 2971215073000000 a001 591286729879/28143753123*599074578^(13/14) 2971215073000000 a001 1548008755920/73681302247*599074578^(13/14) 2971215073000000 a001 4052739537881/192900153618*599074578^(13/14) 2971215073000000 a001 225749145909/10745088481*599074578^(13/14) 2971215073000000 a001 6557470319842/312119004989*599074578^(13/14) 2971215073000000 a001 2504730781961/119218851371*599074578^(13/14) 2971215073000000 a001 956722026041/45537549124*599074578^(13/14) 2971215073000000 a001 365435296162/17393796001*599074578^(13/14) 2971215073000000 a001 53316291173/4106118243*599074578^(20/21) 2971215073000000 a001 139583862445/6643838879*599074578^(13/14) 2971215073000000 a001 139583862445/10749957122*599074578^(20/21) 2971215073000000 a001 365435296162/28143753123*599074578^(20/21) 2971215073000000 a001 956722026041/73681302247*599074578^(20/21) 2971215073000000 a001 2504730781961/192900153618*599074578^(20/21) 2971215073000000 a001 10610209857723/817138163596*599074578^(20/21) 2971215073000000 a001 4052739537881/312119004989*599074578^(20/21) 2971215073000000 a001 1548008755920/119218851371*599074578^(20/21) 2971215073000000 a001 591286729879/45537549124*599074578^(20/21) 2971215073000000 a001 7787980473/599786069*599074578^(20/21) 2971215073000000 a001 1135099622/33391061*599074578^(19/21) 2971215073000000 a001 86267571272/6643838879*599074578^(20/21) 2971215073000000 a001 53316291173/2537720636*599074578^(13/14) 2971215073000000 a001 10610209857723/969323029*599074578^(13/21) 2971215073000000 a001 32951280099/2537720636*599074578^(20/21) 2971215073000000 a001 6557470319842/969323029*599074578^(9/14) 2971215073000000 a001 4052739537881/969323029*599074578^(2/3) 2971215073000000 a001 1548008755920/969323029*599074578^(5/7) 2971215073000000 a001 591286729879/969323029*599074578^(16/21) 2971215073000000 a001 365435296162/969323029*599074578^(11/14) 2971215073000000 a001 225851433717/969323029*599074578^(17/21) 2971215073000000 a001 139583862445/969323029*599074578^(5/6) 2971215073000000 a001 86267571272/969323029*599074578^(6/7) 2971215073000000 a001 32951280099/969323029*599074578^(19/21) 2971215073000000 a001 20365011074/969323029*599074578^(13/14) 2971215073000000 a001 12586269025/969323029*599074578^(20/21) 2971215073000000 a001 796030994547383611/267914296 2971215073000000 a001 12586269025/141422324*141422324^(12/13) 2971215073000000 a001 165580141/599074578*45537549124^(16/17) 2971215073000000 a001 165580141/599074578*14662949395604^(16/21) 2971215073000000 a001 165580141/599074578*192900153618^(8/9) 2971215073000000 a001 165580141/599074578*73681302247^(12/13) 2971215073000000 a001 267914296/370248451*10749957122^(23/24) 2971215073000000 a001 1288005205276048909/433494437 2971215073000000 a001 165580141/1568397607*312119004989^(10/11) 2971215073000000 a001 701408733/370248451*312119004989^(4/5) 2971215073000000 a001 701408733/370248451*23725150497407^(11/16) 2971215073000000 a001 165580141/1568397607*3461452808002^(5/6) 2971215073000000 a001 701408733/370248451*73681302247^(11/13) 2971215073000000 a001 701408733/370248451*10749957122^(11/12) 2971215073000000 a001 701408733/370248451*4106118243^(22/23) 2971215073000000 a001 1836311903/370248451*2537720636^(14/15) 2971215073000000 a001 1686020702549740717/567451585 2971215073000000 a001 4807526976/370248451*2537720636^(8/9) 2971215073000000 a001 7778742049/370248451*2537720636^(13/15) 2971215073000000 a001 32951280099/370248451*2537720636^(4/5) 2971215073000000 a001 53316291173/370248451*2537720636^(7/9) 2971215073000000 a001 139583862445/370248451*2537720636^(11/15) 2971215073000000 a001 591286729879/370248451*2537720636^(2/3) 2971215073000000 a001 2504730781961/370248451*2537720636^(3/5) 2971215073000000 a001 6557470319842/370248451*2537720636^(5/9) 2971215073000000 a001 10610209857723/370248451*2537720636^(8/15) 2971215073000000 a001 1836311903/370248451*17393796001^(6/7) 2971215073000000 a001 1836311903/370248451*45537549124^(14/17) 2971215073000000 a001 165580141/4106118243*23725150497407^(13/16) 2971215073000000 a001 1836311903/370248451*505019158607^(3/4) 2971215073000000 a001 165580141/4106118243*505019158607^(13/14) 2971215073000000 a001 1836311903/370248451*192900153618^(7/9) 2971215073000000 a001 1836311903/370248451*10749957122^(7/8) 2971215073000000 a001 8828119010022395393/2971215073 2971215073000000 a001 4807526976/370248451*312119004989^(8/11) 2971215073000000 a001 165580141/10749957122*14662949395604^(6/7) 2971215073000000 a001 4807526976/370248451*73681302247^(10/13) 2971215073000000 a001 4807526976/370248451*28143753123^(4/5) 2971215073000000 a001 1836311903/370248451*4106118243^(21/23) 2971215073000000 a001 23112315624967704745/7778742049 2971215073000000 a001 53316291173/370248451*17393796001^(5/7) 2971215073000000 a001 1548008755920/370248451*17393796001^(4/7) 2971215073000000 a001 4807526976/370248451*10749957122^(5/6) 2971215073000000 a001 12586269025/370248451*817138163596^(2/3) 2971215073000000 a001 165580141/28143753123*14662949395604^(8/9) 2971215073000000 a001 32951280099/370248451*45537549124^(12/17) 2971215073000000 a001 30254413932440359421/10182505537 2971215073000000 a001 86267571272/370248451*45537549124^(2/3) 2971215073000000 a001 139583862445/370248451*45537549124^(11/17) 2971215073000000 a001 591286729879/370248451*45537549124^(10/17) 2971215073000000 a001 2504730781961/370248451*45537549124^(9/17) 2971215073000000 a001 10610209857723/370248451*45537549124^(8/17) 2971215073000000 a001 32951280099/370248451*14662949395604^(4/7) 2971215073000000 a001 32951280099/370248451*505019158607^(9/14) 2971215073000000 a001 32951280099/370248451*192900153618^(2/3) 2971215073000000 a001 158414167969674451781/53316291173 2971215073000000 a001 32951280099/370248451*73681302247^(9/13) 2971215073000000 a001 414733676044142636501/139583862445 2971215073000000 a001 591286729879/370248451*14662949395604^(10/21) 2971215073000000 a001 10610209857723/370248451*14662949395604^(8/21) 2971215073000000 a001 165580141*(1/2+1/2*5^(1/2))^6 2971215073000000 a001 139583862445/370248451*312119004989^(3/5) 2971215073000000 a001 139583862445/370248451*14662949395604^(11/21) 2971215073000000 a001 10610209857723/370248451*192900153618^(4/9) 2971215073000000 a001 2504730781961/370248451*192900153618^(1/2) 2971215073000000 a001 139583862445/370248451*192900153618^(11/18) 2971215073000000 a001 53316291173/370248451*312119004989^(7/11) 2971215073000000 a001 53316291173/370248451*14662949395604^(5/9) 2971215073000000 a001 53316291173/370248451*505019158607^(5/8) 2971215073000000 a001 10610209857723/370248451*73681302247^(6/13) 2971215073000000 a001 4052739537881/370248451*73681302247^(1/2) 2971215073000000 a001 1548008755920/370248451*73681302247^(7/13) 2971215073000000 a001 225851433717/370248451*73681302247^(8/13) 2971215073000000 a001 97905340104793732939/32951280099 2971215073000000 a001 165580141/45537549124*14662949395604^(19/21) 2971215073000000 a001 6557470319842/370248451*28143753123^(1/2) 2971215073000000 a001 591286729879/370248451*28143753123^(3/5) 2971215073000000 a001 53316291173/370248451*28143753123^(7/10) 2971215073000000 a001 37396512239913014097/12586269025 2971215073000000 a001 7778742049/370248451*45537549124^(13/17) 2971215073000000 a001 7778742049/370248451*14662949395604^(13/21) 2971215073000000 a001 165580141/17393796001*3461452808002^(11/12) 2971215073000000 a001 7778742049/370248451*192900153618^(13/18) 2971215073000000 a001 7778742049/370248451*73681302247^(3/4) 2971215073000000 a001 10610209857723/370248451*10749957122^(1/2) 2971215073000000 a001 4052739537881/370248451*10749957122^(13/24) 2971215073000000 a001 2504730781961/370248451*10749957122^(9/16) 2971215073000000 a001 1548008755920/370248451*10749957122^(7/12) 2971215073000000 a001 591286729879/370248451*10749957122^(5/8) 2971215073000000 a001 12586269025/370248451*10749957122^(19/24) 2971215073000000 a001 225851433717/370248451*10749957122^(2/3) 2971215073000000 a001 139583862445/370248451*10749957122^(11/16) 2971215073000000 a001 86267571272/370248451*10749957122^(17/24) 2971215073000000 a001 32951280099/370248451*10749957122^(3/4) 2971215073000000 a001 1785524576868163669/600940872 2971215073000000 a001 7778742049/370248451*10749957122^(13/16) 2971215073000000 a001 10610209857723/370248451*4106118243^(12/23) 2971215073000000 a001 4052739537881/370248451*4106118243^(13/23) 2971215073000000 a001 1548008755920/370248451*4106118243^(14/23) 2971215073000000 a001 591286729879/370248451*4106118243^(15/23) 2971215073000000 a001 225851433717/370248451*4106118243^(16/23) 2971215073000000 a001 4807526976/370248451*4106118243^(20/23) 2971215073000000 a001 86267571272/370248451*4106118243^(17/23) 2971215073000000 a001 32951280099/370248451*4106118243^(18/23) 2971215073000000 a001 12586269025/370248451*4106118243^(19/23) 2971215073000000 a001 5456077604922913959/1836311903 2971215073000000 a001 165580141/2537720636*817138163596^(17/19) 2971215073000000 a001 165580141/2537720636*14662949395604^(17/21) 2971215073000000 a001 165580141/2537720636*192900153618^(17/18) 2971215073000000 a001 10610209857723/370248451*1568397607^(6/11) 2971215073000000 a001 4052739537881/370248451*1568397607^(13/22) 2971215073000000 a001 1548008755920/370248451*1568397607^(7/11) 2971215073000000 a001 591286729879/370248451*1568397607^(15/22) 2971215073000000 a001 225851433717/370248451*1568397607^(8/11) 2971215073000000 a001 139583862445/370248451*1568397607^(3/4) 2971215073000000 a001 86267571272/370248451*1568397607^(17/22) 2971215073000000 a001 1836311903/370248451*1568397607^(21/22) 2971215073000000 a001 32951280099/370248451*1568397607^(9/11) 2971215073000000 a001 12586269025/370248451*1568397607^(19/22) 2971215073000000 a001 4807526976/370248451*1568397607^(10/11) 2971215073000000 a001 53316291173/141422324*141422324^(11/13) 2971215073000000 a001 2084036199823432525/701408733 2971215073000000 a001 433494437/370248451*45537549124^(15/17) 2971215073000000 a001 433494437/370248451*312119004989^(9/11) 2971215073000000 a001 165580141/969323029*14662949395604^(7/9) 2971215073000000 a001 433494437/370248451*14662949395604^(5/7) 2971215073000000 a001 165580141/969323029*505019158607^(7/8) 2971215073000000 a001 433494437/370248451*192900153618^(5/6) 2971215073000000 a001 433494437/370248451*28143753123^(9/10) 2971215073000000 a001 433494437/370248451*10749957122^(15/16) 2971215073000000 a001 10610209857723/370248451*599074578^(4/7) 2971215073000000 a001 4052739537881/370248451*599074578^(13/21) 2971215073000000 a001 2504730781961/370248451*599074578^(9/14) 2971215073000000 a001 3536736619241/199691526*228826127^(5/8) 2971215073000000 a001 1548008755920/370248451*599074578^(2/3) 2971215073000000 a001 591286729879/370248451*599074578^(5/7) 2971215073000000 a001 225851433717/370248451*599074578^(16/21) 2971215073000000 a001 139583862445/370248451*599074578^(11/14) 2971215073000000 a001 86267571272/370248451*599074578^(17/21) 2971215073000000 a001 53316291173/370248451*599074578^(5/6) 2971215073000000 a001 3278735159921/299537289*228826127^(13/20) 2971215073000000 a001 32951280099/370248451*599074578^(6/7) 2971215073000000 a001 12586269025/370248451*599074578^(19/21) 2971215073000000 a001 7778742049/370248451*599074578^(13/14) 2971215073000000 a001 4807526976/370248451*599074578^(20/21) 2971215073000000 a001 99503874318422952/33489287 2971215073000000 a001 2504730781961/599074578*228826127^(7/10) 2971215073000000 a001 956722026041/599074578*228826127^(3/4) 2971215073000000 a001 225851433717/141422324*141422324^(10/13) 2971215073000000 a001 182717648081/299537289*228826127^(4/5) 2971215073000000 a001 6557470319842/1568397607*228826127^(7/10) 2971215073000000 a001 139583862445/599074578*228826127^(17/20) 2971215073000000 a001 10610209857723/969323029*228826127^(13/20) 2971215073000000 a001 10610209857723/2537720636*228826127^(7/10) 2971215073000000 a001 2504730781961/1568397607*228826127^(3/4) 2971215073000000 a001 43133785636/299537289*228826127^(7/8) 2971215073000000 a001 6557470319842/4106118243*228826127^(3/4) 2971215073000000 a001 10610209857723/6643838879*228826127^(3/4) 2971215073000000 a001 53316291173/599074578*228826127^(9/10) 2971215073000000 a001 4052739537881/969323029*228826127^(7/10) 2971215073000000 a001 4052739537881/2537720636*228826127^(3/4) 2971215073000000 a001 956722026041/1568397607*228826127^(4/5) 2971215073000000 a001 2504730781961/4106118243*228826127^(4/5) 2971215073000000 a001 3278735159921/5374978561*228826127^(4/5) 2971215073000000 a001 10610209857723/17393796001*228826127^(4/5) 2971215073000000 a001 4052739537881/6643838879*228826127^(4/5) 2971215073000000 a001 10182505537/299537289*228826127^(19/20) 2971215073000000 a001 956722026041/141422324*141422324^(9/13) 2971215073000000 a001 1548008755920/969323029*228826127^(3/4) 2971215073000000 a001 1134903780/1860499*228826127^(4/5) 2971215073000000 a001 365435296162/1568397607*228826127^(17/20) 2971215073000000 a001 956722026041/4106118243*228826127^(17/20) 2971215073000000 a001 2504730781961/10749957122*228826127^(17/20) 2971215073000000 a001 6557470319842/28143753123*228826127^(17/20) 2971215073000000 a001 10610209857723/45537549124*228826127^(17/20) 2971215073000000 a001 4052739537881/17393796001*228826127^(17/20) 2971215073000000 a001 1548008755920/6643838879*228826127^(17/20) 2971215073000000 a001 32264490531/224056801*228826127^(7/8) 2971215073000000 a001 591286729879/969323029*228826127^(4/5) 2971215073000000 a001 591286729879/2537720636*228826127^(17/20) 2971215073000000 a001 60811356763743664/20466831 2971215073000000 a001 591286729879/4106118243*228826127^(7/8) 2971215073000000 a001 387002188980/35355581*141422324^(2/3) 2971215073000000 a001 774004377960/5374978561*228826127^(7/8) 2971215073000000 a001 4052739537881/28143753123*228826127^(7/8) 2971215073000000 a001 1515744265389/10525900321*228826127^(7/8) 2971215073000000 a001 3278735159921/22768774562*228826127^(7/8) 2971215073000000 a001 2504730781961/17393796001*228826127^(7/8) 2971215073000000 a001 956722026041/6643838879*228826127^(7/8) 2971215073000000 a001 139583862445/1568397607*228826127^(9/10) 2971215073000000 a001 182717648081/1268860318*228826127^(7/8) 2971215073000000 a001 365435296162/4106118243*228826127^(9/10) 2971215073000000 a001 956722026041/10749957122*228826127^(9/10) 2971215073000000 a001 2504730781961/28143753123*228826127^(9/10) 2971215073000000 a001 6557470319842/73681302247*228826127^(9/10) 2971215073000000 a001 10610209857723/119218851371*228826127^(9/10) 2971215073000000 a001 4052739537881/45537549124*228826127^(9/10) 2971215073000000 a001 1548008755920/17393796001*228826127^(9/10) 2971215073000000 a001 591286729879/6643838879*228826127^(9/10) 2971215073000000 a001 225851433717/969323029*228826127^(17/20) 2971215073000000 a001 225851433717/2537720636*228826127^(9/10) 2971215073000000 a001 53316291173/1568397607*228826127^(19/20) 2971215073000000 a001 139583862445/969323029*228826127^(7/8) 2971215073000000 a001 139583862445/4106118243*228826127^(19/20) 2971215073000000 a001 182717648081/5374978561*228826127^(19/20) 2971215073000000 a001 956722026041/28143753123*228826127^(19/20) 2971215073000000 a001 2504730781961/73681302247*228826127^(19/20) 2971215073000000 a001 3278735159921/96450076809*228826127^(19/20) 2971215073000000 a001 10610209857723/312119004989*228826127^(19/20) 2971215073000000 a001 4052739537881/119218851371*228826127^(19/20) 2971215073000000 a001 387002188980/11384387281*228826127^(19/20) 2971215073000000 a001 591286729879/17393796001*228826127^(19/20) 2971215073000000 a001 225851433717/6643838879*228826127^(19/20) 2971215073000000 a001 86267571272/969323029*228826127^(9/10) 2971215073000000 a001 1135099622/33391061*228826127^(19/20) 2971215073000000 a001 10610209857723/370248451*228826127^(3/5) 2971215073000000 a001 32951280099/969323029*228826127^(19/20) 2971215073000000 a001 4052739537881/141422324*141422324^(8/13) 2971215073000000 a001 6557470319842/370248451*228826127^(5/8) 2971215073000000 a001 4052739537881/370248451*228826127^(13/20) 2971215073000000 a001 101352261272906107/34111385 2971215073000000 a001 1548008755920/370248451*228826127^(7/10) 2971215073000000 a001 591286729879/370248451*228826127^(3/4) 2971215073000000 a001 225851433717/370248451*228826127^(4/5) 2971215073000000 a001 86267571272/370248451*228826127^(17/20) 2971215073000000 a001 53316291173/370248451*228826127^(7/8) 2971215073000000 a001 32951280099/370248451*228826127^(9/10) 2971215073000000 a001 12586269025/370248451*228826127^(19/20) 2971215073000000 a001 304056783818718323/102334155 2971215073000000 a001 63245986/228826127*45537549124^(16/17) 2971215073000000 a001 63245986/228826127*14662949395604^(16/21) 2971215073000000 a001 63245986/228826127*192900153618^(8/9) 2971215073000000 a001 63245986/228826127*73681302247^(12/13) 2971215073000000 a001 102334155/141422324*10749957122^(23/24) 2971215073000000 a001 491974210728665314/165580141 2971215073000000 a001 31622993/299537289*312119004989^(10/11) 2971215073000000 a001 31622993/299537289*3461452808002^(5/6) 2971215073000000 a001 66978574/35355581*73681302247^(11/13) 2971215073000000 a001 66978574/35355581*10749957122^(11/12) 2971215073000000 a001 66978574/35355581*4106118243^(22/23) 2971215073000000 a001 1288005205276048964/433494437 2971215073000000 a001 701408733/141422324*2537720636^(14/15) 2971215073000000 a001 701408733/141422324*17393796001^(6/7) 2971215073000000 a001 701408733/141422324*45537549124^(14/17) 2971215073000000 a001 63245986/1568397607*23725150497407^(13/16) 2971215073000000 a001 701408733/141422324*505019158607^(3/4) 2971215073000000 a001 63245986/1568397607*505019158607^(13/14) 2971215073000000 a001 701408733/141422324*192900153618^(7/9) 2971215073000000 a001 701408733/141422324*10749957122^(7/8) 2971215073000000 a001 701408733/141422324*4106118243^(21/23) 2971215073000000 a001 1836311903/141422324*2537720636^(8/9) 2971215073000000 a001 1686020702549740789/567451585 2971215073000000 a001 12586269025/141422324*2537720636^(4/5) 2971215073000000 a001 10182505537/70711162*2537720636^(7/9) 2971215073000000 a001 53316291173/141422324*2537720636^(11/15) 2971215073000000 a001 2971215073/141422324*2537720636^(13/15) 2971215073000000 a001 225851433717/141422324*2537720636^(2/3) 2971215073000000 a001 956722026041/141422324*2537720636^(3/5) 2971215073000000 a001 2504730781961/141422324*2537720636^(5/9) 2971215073000000 a001 4052739537881/141422324*2537720636^(8/15) 2971215073000000 a001 1836311903/141422324*312119004989^(8/11) 2971215073000000 a001 1836311903/141422324*23725150497407^(5/8) 2971215073000000 a001 1836311903/141422324*73681302247^(10/13) 2971215073000000 a001 1836311903/141422324*28143753123^(4/5) 2971215073000000 a001 1836311903/141422324*10749957122^(5/6) 2971215073000000 a001 8828119010022395770/2971215073 2971215073000000 a001 701408733/141422324*1568397607^(21/22) 2971215073000000 a001 1201881744/35355581*817138163596^(2/3) 2971215073000000 a001 31622993/5374978561*14662949395604^(8/9) 2971215073000000 a001 1836311903/141422324*4106118243^(20/23) 2971215073000000 a001 23112315624967705732/7778742049 2971215073000000 a001 591286729879/141422324*17393796001^(4/7) 2971215073000000 a001 10182505537/70711162*17393796001^(5/7) 2971215073000000 a001 1201881744/35355581*10749957122^(19/24) 2971215073000000 a001 12586269025/141422324*45537549124^(12/17) 2971215073000000 a001 12586269025/141422324*14662949395604^(4/7) 2971215073000000 a001 12586269025/141422324*505019158607^(9/14) 2971215073000000 a001 12586269025/141422324*192900153618^(2/3) 2971215073000000 a001 12586269025/141422324*73681302247^(9/13) 2971215073000000 a001 63246219/271444*45537549124^(2/3) 2971215073000000 a001 30254413932440360713/10182505537 2971215073000000 a001 225851433717/141422324*45537549124^(10/17) 2971215073000000 a001 956722026041/141422324*45537549124^(9/17) 2971215073000000 a001 53316291173/141422324*45537549124^(11/17) 2971215073000000 a001 4052739537881/141422324*45537549124^(8/17) 2971215073000000 a001 63245986/73681302247*14662949395604^(20/21) 2971215073000000 a001 158414167969674458546/53316291173 2971215073000000 a001 21566892818/35355581*23725150497407^(1/2) 2971215073000000 a001 21566892818/35355581*505019158607^(4/7) 2971215073000000 a001 225851433717/141422324*312119004989^(6/11) 2971215073000000 a001 2504730781961/141422324*312119004989^(5/11) 2971215073000000 a001 10610209857723/141422324*312119004989^(2/5) 2971215073000000 a001 225851433717/141422324*14662949395604^(10/21) 2971215073000000 a001 591286729879/141422324*14662949395604^(4/9) 2971215073000000 a001 63245986*(1/2+1/2*5^(1/2))^8 2971215073000000 a001 182717648081/70711162*1322157322203^(1/2) 2971215073000000 a001 139583862445/141422324*9062201101803^(1/2) 2971215073000000 a001 4052739537881/141422324*192900153618^(4/9) 2971215073000000 a001 128159754037234097833/43133785636 2971215073000000 a001 53316291173/141422324*312119004989^(3/5) 2971215073000000 a001 53316291173/141422324*817138163596^(11/19) 2971215073000000 a001 53316291173/141422324*14662949395604^(11/21) 2971215073000000 a001 4052739537881/141422324*73681302247^(6/13) 2971215073000000 a001 21566892818/35355581*73681302247^(8/13) 2971215073000000 a001 53316291173/141422324*192900153618^(11/18) 2971215073000000 a001 387002188980/35355581*73681302247^(1/2) 2971215073000000 a001 591286729879/141422324*73681302247^(7/13) 2971215073000000 a001 140064864241478880/47140601 2971215073000000 a001 10182505537/70711162*312119004989^(7/11) 2971215073000000 a001 10182505537/70711162*14662949395604^(5/9) 2971215073000000 a001 10182505537/70711162*505019158607^(5/8) 2971215073000000 a001 2504730781961/141422324*28143753123^(1/2) 2971215073000000 a001 225851433717/141422324*28143753123^(3/5) 2971215073000000 a001 37396512239913015694/12586269025 2971215073000000 a001 10182505537/70711162*28143753123^(7/10) 2971215073000000 a001 63245986/17393796001*14662949395604^(19/21) 2971215073000000 a001 10610209857723/141422324*10749957122^(11/24) 2971215073000000 a001 4052739537881/141422324*10749957122^(1/2) 2971215073000000 a001 387002188980/35355581*10749957122^(13/24) 2971215073000000 a001 956722026041/141422324*10749957122^(9/16) 2971215073000000 a001 591286729879/141422324*10749957122^(7/12) 2971215073000000 a001 12586269025/141422324*10749957122^(3/4) 2971215073000000 a001 225851433717/141422324*10749957122^(5/8) 2971215073000000 a001 21566892818/35355581*10749957122^(2/3) 2971215073000000 a001 63246219/271444*10749957122^(17/24) 2971215073000000 a001 53316291173/141422324*10749957122^(11/16) 2971215073000000 a001 340099919403459761/114464928 2971215073000000 a001 2971215073/141422324*45537549124^(13/17) 2971215073000000 a001 2971215073/141422324*14662949395604^(13/21) 2971215073000000 a001 63245986/6643838879*3461452808002^(11/12) 2971215073000000 a001 2971215073/141422324*192900153618^(13/18) 2971215073000000 a001 2971215073/141422324*73681302247^(3/4) 2971215073000000 a001 10610209857723/141422324*4106118243^(11/23) 2971215073000000 a001 3278735159921/70711162*4106118243^(1/2) 2971215073000000 a001 2971215073/141422324*10749957122^(13/16) 2971215073000000 a001 4052739537881/141422324*4106118243^(12/23) 2971215073000000 a001 387002188980/35355581*4106118243^(13/23) 2971215073000000 a001 591286729879/141422324*4106118243^(14/23) 2971215073000000 a001 225851433717/141422324*4106118243^(15/23) 2971215073000000 a001 1201881744/35355581*4106118243^(19/23) 2971215073000000 a001 21566892818/35355581*4106118243^(16/23) 2971215073000000 a001 63246219/271444*4106118243^(17/23) 2971215073000000 a001 12586269025/141422324*4106118243^(18/23) 2971215073000000 a001 5456077604922914192/1836311903 2971215073000000 a001 10610209857723/141422324*1568397607^(1/2) 2971215073000000 a001 4052739537881/141422324*1568397607^(6/11) 2971215073000000 a001 387002188980/35355581*1568397607^(13/22) 2971215073000000 a001 591286729879/141422324*1568397607^(7/11) 2971215073000000 a001 225851433717/141422324*1568397607^(15/22) 2971215073000000 a001 21566892818/35355581*1568397607^(8/11) 2971215073000000 a001 53316291173/141422324*1568397607^(3/4) 2971215073000000 a001 1836311903/141422324*1568397607^(10/11) 2971215073000000 a001 63246219/271444*1568397607^(17/22) 2971215073000000 a001 12586269025/141422324*1568397607^(9/11) 2971215073000000 a001 1201881744/35355581*1568397607^(19/22) 2971215073000000 a001 694678733274477538/233802911 2971215073000000 a001 63245986/969323029*817138163596^(17/19) 2971215073000000 a001 63245986/969323029*14662949395604^(17/21) 2971215073000000 a001 63245986/969323029*192900153618^(17/18) 2971215073000000 a001 10610209857723/141422324*599074578^(11/21) 2971215073000000 a001 4052739537881/141422324*599074578^(4/7) 2971215073000000 a001 387002188980/35355581*599074578^(13/21) 2971215073000000 a001 956722026041/141422324*599074578^(9/14) 2971215073000000 a001 591286729879/141422324*599074578^(2/3) 2971215073000000 a001 225851433717/141422324*599074578^(5/7) 2971215073000000 a001 21566892818/35355581*599074578^(16/21) 2971215073000000 a001 53316291173/141422324*599074578^(11/14) 2971215073000000 a001 63246219/271444*599074578^(17/21) 2971215073000000 a001 10182505537/70711162*599074578^(5/6) 2971215073000000 a001 12586269025/141422324*599074578^(6/7) 2971215073000000 a001 1201881744/35355581*599074578^(19/21) 2971215073000000 a001 1836311903/141422324*599074578^(20/21) 2971215073000000 a001 2971215073/141422324*599074578^(13/14) 2971215073000000 a001 398015497273691825/133957148 2971215073000000 a001 165580141/141422324*45537549124^(15/17) 2971215073000000 a001 165580141/141422324*312119004989^(9/11) 2971215073000000 a001 63245986/370248451*14662949395604^(7/9) 2971215073000000 a001 165580141/141422324*14662949395604^(5/7) 2971215073000000 a001 63245986/370248451*505019158607^(7/8) 2971215073000000 a001 165580141/141422324*192900153618^(5/6) 2971215073000000 a001 165580141/141422324*28143753123^(9/10) 2971215073000000 a001 165580141/141422324*10749957122^(15/16) 2971215073000000 a001 10610209857723/141422324*228826127^(11/20) 2971215073000000 a001 4052739537881/141422324*228826127^(3/5) 2971215073000000 a001 2504730781961/141422324*228826127^(5/8) 2971215073000000 a001 387002188980/35355581*228826127^(13/20) 2971215073000000 a001 591286729879/141422324*228826127^(7/10) 2971215073000000 a001 6557470319842/228826127*87403803^(12/19) 2971215073000000 a001 225851433717/141422324*228826127^(3/4) 2971215073000000 a001 21566892818/35355581*228826127^(4/5) 2971215073000000 a001 63246219/271444*228826127^(17/20) 2971215073000000 a001 10182505537/70711162*228826127^(7/8) 2971215073000000 a001 12586269025/141422324*228826127^(9/10) 2971215073000000 a001 1201881744/35355581*228826127^(19/20) 2971215073000000 a001 14478894467558016/4873055 2971215073000000 a001 2504730781961/228826127*87403803^(13/19) 2971215073000000 a001 956722026041/228826127*87403803^(14/19) 2971215073000000 a001 365435296162/228826127*87403803^(15/19) 2971215073000000 a001 3278735159921/299537289*87403803^(13/19) 2971215073000000 a001 10610209857723/370248451*87403803^(12/19) 2971215073000000 a001 10610209857723/969323029*87403803^(13/19) 2971215073000000 a001 139583862445/228826127*87403803^(16/19) 2971215073000000 a001 2504730781961/599074578*87403803^(14/19) 2971215073000000 a001 6557470319842/1568397607*87403803^(14/19) 2971215073000000 a001 10610209857723/2537720636*87403803^(14/19) 2971215073000000 a001 4052739537881/370248451*87403803^(13/19) 2971215073000000 a001 4052739537881/969323029*87403803^(14/19) 2971215073000000 a001 53316291173/228826127*87403803^(17/19) 2971215073000000 a001 956722026041/599074578*87403803^(15/19) 2971215073000000 a001 2504730781961/1568397607*87403803^(15/19) 2971215073000000 a001 6557470319842/4106118243*87403803^(15/19) 2971215073000000 a001 10610209857723/6643838879*87403803^(15/19) 2971215073000000 a001 4052739537881/2537720636*87403803^(15/19) 2971215073000000 a001 1548008755920/370248451*87403803^(14/19) 2971215073000000 a001 1548008755920/969323029*87403803^(15/19) 2971215073000000 a001 20365011074/228826127*87403803^(18/19) 2971215073000000 a001 182717648081/299537289*87403803^(16/19) 2971215073000000 a001 956722026041/1568397607*87403803^(16/19) 2971215073000000 a001 2504730781961/4106118243*87403803^(16/19) 2971215073000000 a001 3278735159921/5374978561*87403803^(16/19) 2971215073000000 a001 10610209857723/17393796001*87403803^(16/19) 2971215073000000 a001 4052739537881/6643838879*87403803^(16/19) 2971215073000000 a001 1134903780/1860499*87403803^(16/19) 2971215073000000 a001 591286729879/370248451*87403803^(15/19) 2971215073000000 a001 591286729879/969323029*87403803^(16/19) 2971215073000000 a001 116139356908771350/39088169 2971215073000000 a001 139583862445/599074578*87403803^(17/19) 2971215073000000 a001 365435296162/1568397607*87403803^(17/19) 2971215073000000 a001 956722026041/4106118243*87403803^(17/19) 2971215073000000 a001 2504730781961/10749957122*87403803^(17/19) 2971215073000000 a001 6557470319842/28143753123*87403803^(17/19) 2971215073000000 a001 10610209857723/45537549124*87403803^(17/19) 2971215073000000 a001 4052739537881/17393796001*87403803^(17/19) 2971215073000000 a001 1548008755920/6643838879*87403803^(17/19) 2971215073000000 a001 591286729879/2537720636*87403803^(17/19) 2971215073000000 a001 225851433717/370248451*87403803^(16/19) 2971215073000000 a001 225851433717/969323029*87403803^(17/19) 2971215073000000 a001 53316291173/599074578*87403803^(18/19) 2971215073000000 a001 139583862445/1568397607*87403803^(18/19) 2971215073000000 a001 365435296162/4106118243*87403803^(18/19) 2971215073000000 a001 956722026041/10749957122*87403803^(18/19) 2971215073000000 a001 2504730781961/28143753123*87403803^(18/19) 2971215073000000 a001 6557470319842/73681302247*87403803^(18/19) 2971215073000000 a001 10610209857723/119218851371*87403803^(18/19) 2971215073000000 a001 4052739537881/45537549124*87403803^(18/19) 2971215073000000 a001 1548008755920/17393796001*87403803^(18/19) 2971215073000000 a001 591286729879/6643838879*87403803^(18/19) 2971215073000000 a001 225851433717/2537720636*87403803^(18/19) 2971215073000000 a001 86267571272/370248451*87403803^(17/19) 2971215073000000 a001 86267571272/969323029*87403803^(18/19) 2971215073000000 a001 10610209857723/141422324*87403803^(11/19) 2971215073000000 a001 116139356908771352/39088169 2971215073000000 a001 32951280099/370248451*87403803^(18/19) 2971215073000000 a001 4052739537881/141422324*87403803^(12/19) 2971215073000000 a001 116139356908771353/39088169 2971215073000000 a001 387002188980/35355581*87403803^(13/19) 2971215073000000 a001 591286729879/141422324*87403803^(14/19) 2971215073000000 a001 225851433717/141422324*87403803^(15/19) 2971215073000000 a001 21566892818/35355581*87403803^(16/19) 2971215073000000 a001 63246219/271444*87403803^(17/19) 2971215073000000 a001 12586269025/141422324*87403803^(18/19) 2971215073000000 a001 116139356908771358/39088169 2971215073000000 a001 24157817/87403803*45537549124^(16/17) 2971215073000000 a001 24157817/87403803*14662949395604^(16/21) 2971215073000000 a001 24157817/87403803*192900153618^(8/9) 2971215073000000 a001 24157817/87403803*73681302247^(12/13) 2971215073000000 a001 39088169/54018521*10749957122^(23/24) 2971215073000000 a001 187917426909947033/63245986 2971215073000000 a001 4807526976/54018521*141422324^(12/13) 2971215073000000 a001 20365011074/54018521*141422324^(11/13) 2971215073000000 a001 86267571272/54018521*141422324^(10/13) 2971215073000000 a001 365435296162/54018521*141422324^(9/13) 2971215073000000 a001 591286729879/54018521*141422324^(2/3) 2971215073000000 a001 1548008755920/54018521*141422324^(8/13) 2971215073000000 a001 6557470319842/54018521*141422324^(7/13) 2971215073000000 a001 24157817/228826127*312119004989^(10/11) 2971215073000000 a001 102334155/54018521*312119004989^(4/5) 2971215073000000 a001 102334155/54018521*23725150497407^(11/16) 2971215073000000 a001 102334155/54018521*73681302247^(11/13) 2971215073000000 a001 102334155/54018521*10749957122^(11/12) 2971215073000000 a001 102334155/54018521*4106118243^(22/23) 2971215073000000 a001 491974210728665458/165580141 2971215073000000 a001 32951280099/20633239*20633239^(6/7) 2971215073000001 a001 267914296/54018521*2537720636^(14/15) 2971215073000001 a001 267914296/54018521*17393796001^(6/7) 2971215073000001 a001 267914296/54018521*45537549124^(14/17) 2971215073000001 a001 24157817/599074578*23725150497407^(13/16) 2971215073000001 a001 24157817/599074578*505019158607^(13/14) 2971215073000001 a001 267914296/54018521*192900153618^(7/9) 2971215073000001 a001 267914296/54018521*10749957122^(7/8) 2971215073000001 a001 267914296/54018521*4106118243^(21/23) 2971215073000001 a001 267914296/54018521*1568397607^(21/22) 2971215073000001 a001 1288005205276049341/433494437 2971215073000001 a001 701408733/54018521*2537720636^(8/9) 2971215073000001 a001 701408733/54018521*312119004989^(8/11) 2971215073000001 a001 24157817/1568397607*14662949395604^(6/7) 2971215073000001 a001 701408733/54018521*23725150497407^(5/8) 2971215073000001 a001 701408733/54018521*73681302247^(10/13) 2971215073000001 a001 701408733/54018521*28143753123^(4/5) 2971215073000001 a001 701408733/54018521*10749957122^(5/6) 2971215073000001 a001 701408733/54018521*4106118243^(20/23) 2971215073000001 a001 674408281019896513/226980634 2971215073000001 a001 4807526976/54018521*2537720636^(4/5) 2971215073000001 a001 7778742049/54018521*2537720636^(7/9) 2971215073000001 a001 20365011074/54018521*2537720636^(11/15) 2971215073000001 a001 86267571272/54018521*2537720636^(2/3) 2971215073000001 a001 365435296162/54018521*2537720636^(3/5) 2971215073000001 a001 956722026041/54018521*2537720636^(5/9) 2971215073000001 a001 1548008755920/54018521*2537720636^(8/15) 2971215073000001 a001 6557470319842/54018521*2537720636^(7/15) 2971215073000001 a001 10610209857723/54018521*2537720636^(4/9) 2971215073000001 a001 1836311903/54018521*817138163596^(2/3) 2971215073000001 a001 24157817/4106118243*14662949395604^(8/9) 2971215073000001 a001 1836311903/54018521*10749957122^(19/24) 2971215073000001 a001 701408733/54018521*1568397607^(10/11) 2971215073000001 a001 8828119010022398354/2971215073 2971215073000001 a001 1836311903/54018521*4106118243^(19/23) 2971215073000001 a001 4807526976/54018521*45537549124^(12/17) 2971215073000001 a001 4807526976/54018521*14662949395604^(4/7) 2971215073000001 a001 4807526976/54018521*505019158607^(9/14) 2971215073000001 a001 4807526976/54018521*192900153618^(2/3) 2971215073000001 a001 4807526976/54018521*73681302247^(9/13) 2971215073000001 a001 23112315624967712497/7778742049 2971215073000001 a001 4807526976/54018521*10749957122^(3/4) 2971215073000001 a001 225851433717/54018521*17393796001^(4/7) 2971215073000001 a001 12586269025/54018521*45537549124^(2/3) 2971215073000001 a001 6557470319842/54018521*17393796001^(3/7) 2971215073000001 a001 24157817/28143753123*14662949395604^(20/21) 2971215073000001 a001 60508827864880739137/20365011074 2971215073000001 a001 86267571272/54018521*45537549124^(10/17) 2971215073000001 a001 365435296162/54018521*45537549124^(9/17) 2971215073000001 a001 1548008755920/54018521*45537549124^(8/17) 2971215073000001 a001 6557470319842/54018521*45537549124^(7/17) 2971215073000001 a001 32951280099/54018521*23725150497407^(1/2) 2971215073000001 a001 32951280099/54018521*73681302247^(8/13) 2971215073000001 a001 158414167969674504914/53316291173 2971215073000001 a001 86267571272/54018521*312119004989^(6/11) 2971215073000001 a001 86267571272/54018521*14662949395604^(10/21) 2971215073000001 a001 86267571272/54018521*192900153618^(5/9) 2971215073000001 a001 1548008755920/54018521*14662949395604^(8/21) 2971215073000001 a001 10610209857723/54018521*23725150497407^(5/16) 2971215073000001 a001 24157817*(1/2+1/2*5^(1/2))^10 2971215073000001 a001 10610209857723/54018521*505019158607^(5/14) 2971215073000001 a001 365435296162/54018521*14662949395604^(3/7) 2971215073000001 a001 6557470319842/54018521*192900153618^(7/18) 2971215073000001 a001 139583862445/54018521*1322157322203^(1/2) 2971215073000001 a001 256319508074468270691/86267571272 2971215073000001 a001 10610209857723/54018521*73681302247^(5/13) 2971215073000001 a001 1548008755920/54018521*73681302247^(6/13) 2971215073000001 a001 591286729879/54018521*73681302247^(1/2) 2971215073000001 a001 225851433717/54018521*73681302247^(7/13) 2971215073000001 a001 20365011074/54018521*45537549124^(11/17) 2971215073000001 a001 97905340104793765777/32951280099 2971215073000001 a001 20365011074/54018521*312119004989^(3/5) 2971215073000001 a001 20365011074/54018521*14662949395604^(11/21) 2971215073000001 a001 20365011074/54018521*192900153618^(11/18) 2971215073000001 a001 10610209857723/54018521*28143753123^(2/5) 2971215073000001 a001 956722026041/54018521*28143753123^(1/2) 2971215073000001 a001 86267571272/54018521*28143753123^(3/5) 2971215073000001 a001 7778742049/54018521*17393796001^(5/7) 2971215073000001 a001 679936586180236848/228841255 2971215073000001 a001 7778742049/54018521*312119004989^(7/11) 2971215073000001 a001 7778742049/54018521*14662949395604^(5/9) 2971215073000001 a001 7778742049/54018521*505019158607^(5/8) 2971215073000001 a001 10610209857723/54018521*10749957122^(5/12) 2971215073000001 a001 6557470319842/54018521*10749957122^(7/16) 2971215073000001 a001 4052739537881/54018521*10749957122^(11/24) 2971215073000001 a001 7778742049/54018521*28143753123^(7/10) 2971215073000001 a001 1548008755920/54018521*10749957122^(1/2) 2971215073000001 a001 591286729879/54018521*10749957122^(13/24) 2971215073000001 a001 12586269025/54018521*10749957122^(17/24) 2971215073000001 a001 365435296162/54018521*10749957122^(9/16) 2971215073000001 a001 225851433717/54018521*10749957122^(7/12) 2971215073000001 a001 86267571272/54018521*10749957122^(5/8) 2971215073000001 a001 32951280099/54018521*10749957122^(2/3) 2971215073000001 a001 20365011074/54018521*10749957122^(11/16) 2971215073000001 a001 14284196614945314143/4807526976 2971215073000001 a001 1134903170/54018521*2537720636^(13/15) 2971215073000001 a001 24157817/6643838879*14662949395604^(19/21) 2971215073000001 a001 10610209857723/54018521*4106118243^(10/23) 2971215073000001 a001 4052739537881/54018521*4106118243^(11/23) 2971215073000001 a001 2504730781961/54018521*4106118243^(1/2) 2971215073000001 a001 1548008755920/54018521*4106118243^(12/23) 2971215073000001 a001 591286729879/54018521*4106118243^(13/23) 2971215073000001 a001 225851433717/54018521*4106118243^(14/23) 2971215073000001 a001 4807526976/54018521*4106118243^(18/23) 2971215073000001 a001 86267571272/54018521*4106118243^(15/23) 2971215073000001 a001 32951280099/54018521*4106118243^(16/23) 2971215073000001 a001 12586269025/54018521*4106118243^(17/23) 2971215073000001 a001 5456077604922915789/1836311903 2971215073000001 a001 1134903170/54018521*45537549124^(13/17) 2971215073000001 a001 1134903170/54018521*14662949395604^(13/21) 2971215073000001 a001 1134903170/54018521*192900153618^(13/18) 2971215073000001 a001 1134903170/54018521*73681302247^(3/4) 2971215073000001 a001 1134903170/54018521*10749957122^(13/16) 2971215073000001 a001 10610209857723/54018521*1568397607^(5/11) 2971215073000001 a001 4052739537881/54018521*1568397607^(1/2) 2971215073000001 a001 1548008755920/54018521*1568397607^(6/11) 2971215073000001 a001 591286729879/54018521*1568397607^(13/22) 2971215073000001 a001 225851433717/54018521*1568397607^(7/11) 2971215073000001 a001 86267571272/54018521*1568397607^(15/22) 2971215073000001 a001 1836311903/54018521*1568397607^(19/22) 2971215073000001 a001 32951280099/54018521*1568397607^(8/11) 2971215073000001 a001 20365011074/54018521*1568397607^(3/4) 2971215073000001 a001 12586269025/54018521*1568397607^(17/22) 2971215073000001 a001 4807526976/54018521*1568397607^(9/11) 2971215073000001 a001 2084036199823433224/701408733 2971215073000001 a001 10610209857723/54018521*599074578^(10/21) 2971215073000001 a001 6557470319842/54018521*599074578^(1/2) 2971215073000001 a001 4052739537881/54018521*599074578^(11/21) 2971215073000001 a001 1548008755920/54018521*599074578^(4/7) 2971215073000001 a001 591286729879/54018521*599074578^(13/21) 2971215073000001 a001 365435296162/54018521*599074578^(9/14) 2971215073000001 a001 225851433717/54018521*599074578^(2/3) 2971215073000001 a001 86267571272/54018521*599074578^(5/7) 2971215073000001 a001 32951280099/54018521*599074578^(16/21) 2971215073000001 a001 20365011074/54018521*599074578^(11/14) 2971215073000001 a001 701408733/54018521*599074578^(20/21) 2971215073000001 a001 12586269025/54018521*599074578^(17/21) 2971215073000001 a001 7778742049/54018521*599074578^(5/6) 2971215073000001 a001 4807526976/54018521*599074578^(6/7) 2971215073000001 a001 1836311903/54018521*599074578^(19/21) 2971215073000001 a001 1134903170/54018521*599074578^(13/14) 2971215073000001 a001 796030994547383883/267914296 2971215073000001 a001 24157817/370248451*14662949395604^(17/21) 2971215073000001 a001 24157817/370248451*192900153618^(17/18) 2971215073000001 a001 10610209857723/54018521*228826127^(1/2) 2971215073000001 a001 4052739537881/54018521*228826127^(11/20) 2971215073000001 a001 1548008755920/54018521*228826127^(3/5) 2971215073000001 a001 956722026041/54018521*228826127^(5/8) 2971215073000001 a001 591286729879/54018521*228826127^(13/20) 2971215073000001 a001 225851433717/54018521*228826127^(7/10) 2971215073000001 a001 86267571272/54018521*228826127^(3/4) 2971215073000001 a001 32951280099/54018521*228826127^(4/5) 2971215073000001 a001 12586269025/54018521*228826127^(17/20) 2971215073000001 a001 7778742049/54018521*228826127^(7/8) 2971215073000001 a001 4807526976/54018521*228826127^(9/10) 2971215073000001 a001 1836311903/54018521*228826127^(19/20) 2971215073000001 a001 5528305160340335/1860621 2971215073000001 a001 3536736619241/29134601*33385282^(7/12) 2971215073000001 a001 63245986/54018521*45537549124^(15/17) 2971215073000001 a001 63245986/54018521*312119004989^(9/11) 2971215073000001 a001 24157817/141422324*14662949395604^(7/9) 2971215073000001 a001 63245986/54018521*14662949395604^(5/7) 2971215073000001 a001 24157817/141422324*505019158607^(7/8) 2971215073000001 a001 63245986/54018521*192900153618^(5/6) 2971215073000001 a001 63245986/54018521*28143753123^(9/10) 2971215073000001 a001 63245986/54018521*10749957122^(15/16) 2971215073000001 a001 10610209857723/54018521*87403803^(10/19) 2971215073000001 a001 6557470319842/87403803*33385282^(11/18) 2971215073000001 a001 4052739537881/54018521*87403803^(11/19) 2971215073000001 a001 1548008755920/54018521*87403803^(12/19) 2971215073000001 a001 591286729879/54018521*87403803^(13/19) 2971215073000001 a001 225851433717/54018521*87403803^(14/19) 2971215073000001 a001 86267571272/54018521*87403803^(15/19) 2971215073000001 a001 32951280099/54018521*87403803^(16/19) 2971215073000001 a001 12586269025/54018521*87403803^(17/19) 2971215073000001 a001 4807526976/54018521*87403803^(18/19) 2971215073000001 a001 2504730781961/87403803*33385282^(2/3) 2971215073000001 a001 86267571272/20633239*20633239^(4/5) 2971215073000001 a001 116139356908771392/39088169 2971215073000001 a001 956722026041/87403803*33385282^(13/18) 2971215073000001 a001 591286729879/87403803*33385282^(3/4) 2971215073000001 a001 365435296162/87403803*33385282^(7/9) 2971215073000001 a001 6557470319842/228826127*33385282^(2/3) 2971215073000001 a001 10610209857723/141422324*33385282^(11/18) 2971215073000001 a001 10610209857723/370248451*33385282^(2/3) 2971215073000001 a001 139583862445/87403803*33385282^(5/6) 2971215073000001 a001 2504730781961/228826127*33385282^(13/18) 2971215073000001 a001 3278735159921/299537289*33385282^(13/18) 2971215073000001 a001 4052739537881/141422324*33385282^(2/3) 2971215073000001 a001 10610209857723/969323029*33385282^(13/18) 2971215073000001 a001 1548008755920/228826127*33385282^(3/4) 2971215073000001 a001 4052739537881/370248451*33385282^(13/18) 2971215073000001 a001 53316291173/87403803*33385282^(8/9) 2971215073000001 a001 4052739537881/599074578*33385282^(3/4) 2971215073000001 a001 365435296162/20633239*20633239^(5/7) 2971215073000001 a001 1515744265389/224056801*33385282^(3/4) 2971215073000002 a001 6557470319842/969323029*33385282^(3/4) 2971215073000002 a001 956722026041/228826127*33385282^(7/9) 2971215073000002 a001 2504730781961/370248451*33385282^(3/4) 2971215073000002 a001 10983760033/29134601*33385282^(11/12) 2971215073000002 a001 2504730781961/599074578*33385282^(7/9) 2971215073000002 a001 6557470319842/1568397607*33385282^(7/9) 2971215073000002 a001 387002188980/35355581*33385282^(13/18) 2971215073000002 a001 10610209857723/2537720636*33385282^(7/9) 2971215073000002 a001 4052739537881/969323029*33385282^(7/9) 2971215073000002 a001 1548008755920/370248451*33385282^(7/9) 2971215073000002 a001 20365011074/87403803*33385282^(17/18) 2971215073000002 a001 956722026041/141422324*33385282^(3/4) 2971215073000002 a001 365435296162/228826127*33385282^(5/6) 2971215073000002 a001 956722026041/599074578*33385282^(5/6) 2971215073000002 a001 2504730781961/1568397607*33385282^(5/6) 2971215073000002 a001 6557470319842/4106118243*33385282^(5/6) 2971215073000002 a001 10610209857723/6643838879*33385282^(5/6) 2971215073000002 a001 591286729879/141422324*33385282^(7/9) 2971215073000002 a001 4052739537881/2537720636*33385282^(5/6) 2971215073000002 a001 1548008755920/969323029*33385282^(5/6) 2971215073000002 a001 591286729879/370248451*33385282^(5/6) 2971215073000002 a001 1304743732576345/439128 2971215073000002 a001 139583862445/228826127*33385282^(8/9) 2971215073000002 a001 182717648081/299537289*33385282^(8/9) 2971215073000002 a001 956722026041/1568397607*33385282^(8/9) 2971215073000002 a001 2504730781961/4106118243*33385282^(8/9) 2971215073000002 a001 3278735159921/5374978561*33385282^(8/9) 2971215073000002 a001 10610209857723/17393796001*33385282^(8/9) 2971215073000002 a001 4052739537881/6643838879*33385282^(8/9) 2971215073000002 a001 225851433717/141422324*33385282^(5/6) 2971215073000002 a001 1134903780/1860499*33385282^(8/9) 2971215073000002 a001 591286729879/969323029*33385282^(8/9) 2971215073000002 a001 86267571272/228826127*33385282^(11/12) 2971215073000002 a001 225851433717/370248451*33385282^(8/9) 2971215073000002 a001 267913919/710646*33385282^(11/12) 2971215073000002 a001 591286729879/1568397607*33385282^(11/12) 2971215073000002 a001 516002918640/1368706081*33385282^(11/12) 2971215073000002 a001 4052739537881/10749957122*33385282^(11/12) 2971215073000002 a001 3536736619241/9381251041*33385282^(11/12) 2971215073000002 a001 6557470319842/17393796001*33385282^(11/12) 2971215073000002 a001 2504730781961/6643838879*33385282^(11/12) 2971215073000002 a001 956722026041/2537720636*33385282^(11/12) 2971215073000002 a001 365435296162/969323029*33385282^(11/12) 2971215073000002 a001 53316291173/228826127*33385282^(17/18) 2971215073000002 a001 139583862445/370248451*33385282^(11/12) 2971215073000002 a001 10610209857723/54018521*33385282^(5/9) 2971215073000002 a001 139583862445/599074578*33385282^(17/18) 2971215073000002 a001 365435296162/1568397607*33385282^(17/18) 2971215073000002 a001 956722026041/4106118243*33385282^(17/18) 2971215073000002 a001 2504730781961/10749957122*33385282^(17/18) 2971215073000002 a001 6557470319842/28143753123*33385282^(17/18) 2971215073000002 a001 10610209857723/45537549124*33385282^(17/18) 2971215073000002 a001 4052739537881/17393796001*33385282^(17/18) 2971215073000002 a001 1548008755920/6643838879*33385282^(17/18) 2971215073000002 a001 21566892818/35355581*33385282^(8/9) 2971215073000002 a001 591286729879/2537720636*33385282^(17/18) 2971215073000002 a001 225851433717/969323029*33385282^(17/18) 2971215073000002 a001 86267571272/370248451*33385282^(17/18) 2971215073000002 a001 6557470319842/54018521*33385282^(7/12) 2971215073000002 a001 53316291173/141422324*33385282^(11/12) 2971215073000002 a001 14787095635865245/4976784 2971215073000002 a001 4052739537881/54018521*33385282^(11/18) 2971215073000002 a001 63246219/271444*33385282^(17/18) 2971215073000002 a001 5545160863449467/1866294 2971215073000002 a001 2504730781961/20633239*20633239^(3/5) 2971215073000002 a001 1548008755920/54018521*33385282^(2/3) 2971215073000002 a001 7393547817932623/2488392 2971215073000002 a001 591286729879/54018521*33385282^(13/18) 2971215073000002 a001 4052739537881/20633239*20633239^(4/7) 2971215073000003 a001 365435296162/54018521*33385282^(3/4) 2971215073000003 a001 225851433717/54018521*33385282^(7/9) 2971215073000003 a001 86267571272/54018521*33385282^(5/6) 2971215073000003 a001 32951280099/54018521*33385282^(8/9) 2971215073000003 a001 20365011074/54018521*33385282^(11/12) 2971215073000003 a001 12586269025/54018521*33385282^(17/18) 2971215073000003 a001 44361286907595751/14930352 2971215073000004 a001 9227465/33385282*45537549124^(16/17) 2971215073000004 a001 9227465/33385282*14662949395604^(16/21) 2971215073000004 a001 9227465/33385282*(1/2+1/2*5^(1/2))^48 2971215073000004 a001 14930352/20633239*(1/2+1/2*5^(1/2))^46 2971215073000004 a001 9227465/33385282*192900153618^(8/9) 2971215073000004 a001 9227465/33385282*73681302247^(12/13) 2971215073000004 a001 14930352/20633239*10749957122^(23/24) 2971215073000004 a001 12586269025/7881196*7881196^(10/11) 2971215073000005 a001 71778070001175785/24157817 2971215073000006 a001 9227465/87403803*312119004989^(10/11) 2971215073000006 a001 39088169/20633239*312119004989^(4/5) 2971215073000006 a001 39088169/20633239*(1/2+1/2*5^(1/2))^44 2971215073000006 a001 39088169/20633239*23725150497407^(11/16) 2971215073000006 a001 9227465/87403803*3461452808002^(5/6) 2971215073000006 a001 39088169/20633239*73681302247^(11/13) 2971215073000006 a001 39088169/20633239*10749957122^(11/12) 2971215073000006 a001 39088169/20633239*4106118243^(22/23) 2971215073000006 a001 93958713454973705/31622993 2971215073000006 a001 1836311903/20633239*141422324^(12/13) 2971215073000006 a001 7778742049/20633239*141422324^(11/13) 2971215073000006 a001 32951280099/20633239*141422324^(10/13) 2971215073000006 a001 139583862445/20633239*141422324^(9/13) 2971215073000006 a001 7787980473/711491*141422324^(2/3) 2971215073000006 a001 591286729879/20633239*141422324^(8/13) 2971215073000006 a001 2504730781961/20633239*141422324^(7/13) 2971215073000006 a001 10610209857723/20633239*141422324^(6/13) 2971215073000006 a001 9303105/1875749*2537720636^(14/15) 2971215073000006 a001 9303105/1875749*17393796001^(6/7) 2971215073000006 a001 9303105/1875749*45537549124^(14/17) 2971215073000006 a001 9303105/1875749*(1/2+1/2*5^(1/2))^42 2971215073000006 a001 9227465/228826127*23725150497407^(13/16) 2971215073000006 a001 9227465/228826127*505019158607^(13/14) 2971215073000006 a001 9303105/1875749*192900153618^(7/9) 2971215073000006 a001 9303105/1875749*10749957122^(7/8) 2971215073000006 a001 9303105/1875749*4106118243^(21/23) 2971215073000006 a001 9303105/1875749*1568397607^(21/22) 2971215073000006 a001 491974210728666445/165580141 2971215073000006 a001 9238424/711491*2537720636^(8/9) 2971215073000006 a001 9238424/711491*312119004989^(8/11) 2971215073000006 a001 9227465/599074578*14662949395604^(6/7) 2971215073000006 a001 9238424/711491*(1/2+1/2*5^(1/2))^40 2971215073000006 a001 9238424/711491*23725150497407^(5/8) 2971215073000006 a001 9238424/711491*73681302247^(10/13) 2971215073000006 a001 9238424/711491*28143753123^(4/5) 2971215073000006 a001 9238424/711491*10749957122^(5/6) 2971215073000006 a001 9238424/711491*4106118243^(20/23) 2971215073000006 a001 9238424/711491*1568397607^(10/11) 2971215073000006 a001 1288005205276051925/433494437 2971215073000006 a001 701408733/20633239*817138163596^(2/3) 2971215073000006 a001 701408733/20633239*(1/2+1/2*5^(1/2))^38 2971215073000006 a001 701408733/20633239*10749957122^(19/24) 2971215073000006 a001 701408733/20633239*4106118243^(19/23) 2971215073000006 a001 1836311903/20633239*2537720636^(4/5) 2971215073000006 a001 337204140509948933/113490317 2971215073000006 a001 9238424/711491*599074578^(20/21) 2971215073000006 a001 7778742049/20633239*2537720636^(11/15) 2971215073000006 a001 32951280099/20633239*2537720636^(2/3) 2971215073000006 a001 2971215073/20633239*2537720636^(7/9) 2971215073000006 a001 139583862445/20633239*2537720636^(3/5) 2971215073000006 a001 365435296162/20633239*2537720636^(5/9) 2971215073000006 a001 591286729879/20633239*2537720636^(8/15) 2971215073000006 a001 2504730781961/20633239*2537720636^(7/15) 2971215073000006 a001 4052739537881/20633239*2537720636^(4/9) 2971215073000006 a001 10610209857723/20633239*2537720636^(2/5) 2971215073000006 a001 1836311903/20633239*45537549124^(12/17) 2971215073000006 a001 1836311903/20633239*14662949395604^(4/7) 2971215073000006 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^36 2971215073000006 a001 1836311903/20633239*505019158607^(9/14) 2971215073000006 a001 1836311903/20633239*192900153618^(2/3) 2971215073000006 a001 1836311903/20633239*73681302247^(9/13) 2971215073000006 a001 701408733/20633239*1568397607^(19/22) 2971215073000006 a001 1836311903/20633239*10749957122^(3/4) 2971215073000006 a001 8828119010022416065/2971215073 2971215073000006 a001 1836311903/20633239*4106118243^(18/23) 2971215073000006 a001 4807526976/20633239*45537549124^(2/3) 2971215073000006 a001 9227465/10749957122*14662949395604^(20/21) 2971215073000006 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^34 2971215073000006 a001 1777870432689827605/598364773 2971215073000006 a001 4807526976/20633239*10749957122^(17/24) 2971215073000006 a001 86267571272/20633239*17393796001^(4/7) 2971215073000006 a001 2504730781961/20633239*17393796001^(3/7) 2971215073000006 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^32 2971215073000006 a001 1144206275/1875749*23725150497407^(1/2) 2971215073000006 a001 1144206275/1875749*505019158607^(4/7) 2971215073000006 a001 1144206275/1875749*73681302247^(8/13) 2971215073000006 a001 30254413932440430265/10182505537 2971215073000006 a001 32951280099/20633239*45537549124^(10/17) 2971215073000006 a001 139583862445/20633239*45537549124^(9/17) 2971215073000006 a001 591286729879/20633239*45537549124^(8/17) 2971215073000006 a001 2504730781961/20633239*45537549124^(7/17) 2971215073000006 a001 32951280099/20633239*312119004989^(6/11) 2971215073000006 a001 32951280099/20633239*14662949395604^(10/21) 2971215073000006 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^30 2971215073000006 a001 10610209857723/20633239*45537549124^(6/17) 2971215073000006 a001 32951280099/20633239*192900153618^(5/9) 2971215073000006 a001 86267571272/20633239*14662949395604^(4/9) 2971215073000006 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^28 2971215073000006 a001 140728068720/1875749*312119004989^(2/5) 2971215073000006 a001 7787980473/711491*(1/2+1/2*5^(1/2))^26 2971215073000006 a001 365435296162/20633239*312119004989^(5/11) 2971215073000006 a001 591286729879/20633239*(1/2+1/2*5^(1/2))^24 2971215073000006 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^22 2971215073000006 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^20 2971215073000006 a001 10610209857723/20633239*14662949395604^(2/7) 2971215073000006 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^18 2971215073000006 a001 9227465*(1/2+1/2*5^(1/2))^12 2971215073000006 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^21 2971215073000006 a001 4052739537881/20633239*505019158607^(5/14) 2971215073000006 a001 10610209857723/20633239*192900153618^(1/3) 2971215073000006 a001 139583862445/20633239*14662949395604^(3/7) 2971215073000006 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^27 2971215073000006 a001 591286729879/20633239*192900153618^(4/9) 2971215073000006 a001 139583862445/20633239*192900153618^(1/2) 2971215073000006 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^29 2971215073000006 a001 53316291173/20633239*1322157322203^(1/2) 2971215073000006 a001 4052739537881/20633239*73681302247^(5/13) 2971215073000006 a001 591286729879/20633239*73681302247^(6/13) 2971215073000006 a001 7787980473/711491*73681302247^(1/2) 2971215073000006 a001 32635113368264654065/10983760033 2971215073000006 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^31 2971215073000006 a001 20365011074/20633239*9062201101803^(1/2) 2971215073000006 a001 4052739537881/20633239*28143753123^(2/5) 2971215073000006 a001 32951280099/20633239*28143753123^(3/5) 2971215073000006 a001 365435296162/20633239*28143753123^(1/2) 2971215073000006 a001 7479302447982620333/2517253805 2971215073000006 a001 7778742049/20633239*45537549124^(11/17) 2971215073000006 a001 10610209857723/20633239*10749957122^(3/8) 2971215073000006 a001 7778742049/20633239*312119004989^(3/5) 2971215073000006 a001 7778742049/20633239*14662949395604^(11/21) 2971215073000006 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^33 2971215073000006 a001 7778742049/20633239*192900153618^(11/18) 2971215073000006 a001 4052739537881/20633239*10749957122^(5/12) 2971215073000006 a001 2504730781961/20633239*10749957122^(7/16) 2971215073000006 a001 140728068720/1875749*10749957122^(11/24) 2971215073000006 a001 591286729879/20633239*10749957122^(1/2) 2971215073000006 a001 1144206275/1875749*10749957122^(2/3) 2971215073000006 a001 7787980473/711491*10749957122^(13/24) 2971215073000006 a001 139583862445/20633239*10749957122^(9/16) 2971215073000006 a001 86267571272/20633239*10749957122^(7/12) 2971215073000006 a001 32951280099/20633239*10749957122^(5/8) 2971215073000006 a001 99195809826009325/33385604 2971215073000006 a001 7778742049/20633239*10749957122^(11/16) 2971215073000006 a001 2971215073/20633239*17393796001^(5/7) 2971215073000006 a001 2971215073/20633239*312119004989^(7/11) 2971215073000006 a001 2971215073/20633239*14662949395604^(5/9) 2971215073000006 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^35 2971215073000006 a001 2971215073/20633239*505019158607^(5/8) 2971215073000006 a001 10610209857723/20633239*4106118243^(9/23) 2971215073000006 a001 2971215073/20633239*28143753123^(7/10) 2971215073000006 a001 4052739537881/20633239*4106118243^(10/23) 2971215073000006 a001 140728068720/1875749*4106118243^(11/23) 2971215073000006 a001 956722026041/20633239*4106118243^(1/2) 2971215073000006 a001 591286729879/20633239*4106118243^(12/23) 2971215073000006 a001 7787980473/711491*4106118243^(13/23) 2971215073000006 a001 4807526976/20633239*4106118243^(17/23) 2971215073000006 a001 86267571272/20633239*4106118243^(14/23) 2971215073000006 a001 32951280099/20633239*4106118243^(15/23) 2971215073000006 a001 1144206275/1875749*4106118243^(16/23) 2971215073000006 a001 5456077604922926735/1836311903 2971215073000006 a001 9227465/2537720636*14662949395604^(19/21) 2971215073000006 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^37 2971215073000006 a001 10610209857723/20633239*1568397607^(9/22) 2971215073000006 a001 4052739537881/20633239*1568397607^(5/11) 2971215073000006 a001 140728068720/1875749*1568397607^(1/2) 2971215073000006 a001 591286729879/20633239*1568397607^(6/11) 2971215073000006 a001 7787980473/711491*1568397607^(13/22) 2971215073000006 a001 86267571272/20633239*1568397607^(7/11) 2971215073000006 a001 1836311903/20633239*1568397607^(9/11) 2971215073000006 a001 32951280099/20633239*1568397607^(15/22) 2971215073000006 a001 1144206275/1875749*1568397607^(8/11) 2971215073000006 a001 4807526976/20633239*1568397607^(17/22) 2971215073000006 a001 7778742049/20633239*1568397607^(3/4) 2971215073000006 a001 694678733274479135/233802911 2971215073000006 a001 433494437/20633239*2537720636^(13/15) 2971215073000006 a001 433494437/20633239*45537549124^(13/17) 2971215073000006 a001 433494437/20633239*14662949395604^(13/21) 2971215073000006 a001 433494437/20633239*(1/2+1/2*5^(1/2))^39 2971215073000006 a001 9227465/969323029*3461452808002^(11/12) 2971215073000006 a001 433494437/20633239*192900153618^(13/18) 2971215073000006 a001 433494437/20633239*73681302247^(3/4) 2971215073000006 a001 433494437/20633239*10749957122^(13/16) 2971215073000006 a001 10610209857723/20633239*599074578^(3/7) 2971215073000006 a001 4052739537881/20633239*599074578^(10/21) 2971215073000006 a001 2504730781961/20633239*599074578^(1/2) 2971215073000006 a001 140728068720/1875749*599074578^(11/21) 2971215073000006 a001 591286729879/20633239*599074578^(4/7) 2971215073000006 a001 7787980473/711491*599074578^(13/21) 2971215073000006 a001 139583862445/20633239*599074578^(9/14) 2971215073000006 a001 86267571272/20633239*599074578^(2/3) 2971215073000006 a001 32951280099/20633239*599074578^(5/7) 2971215073000006 a001 701408733/20633239*599074578^(19/21) 2971215073000006 a001 1144206275/1875749*599074578^(16/21) 2971215073000006 a001 7778742049/20633239*599074578^(11/14) 2971215073000006 a001 4807526976/20633239*599074578^(17/21) 2971215073000006 a001 1836311903/20633239*599074578^(6/7) 2971215073000006 a001 2971215073/20633239*599074578^(5/6) 2971215073000006 a001 7654144178340245/2576099 2971215073000006 a001 433494437/20633239*599074578^(13/14) 2971215073000007 a001 165580141/20633239*(1/2+1/2*5^(1/2))^41 2971215073000007 a001 10610209857723/20633239*228826127^(9/20) 2971215073000007 a001 4052739537881/20633239*228826127^(1/2) 2971215073000007 a001 140728068720/1875749*228826127^(11/20) 2971215073000007 a001 591286729879/20633239*228826127^(3/5) 2971215073000007 a001 365435296162/20633239*228826127^(5/8) 2971215073000007 a001 7787980473/711491*228826127^(13/20) 2971215073000007 a001 86267571272/20633239*228826127^(7/10) 2971215073000007 a001 32951280099/20633239*228826127^(3/4) 2971215073000007 a001 1144206275/1875749*228826127^(4/5) 2971215073000007 a001 4807526976/20633239*228826127^(17/20) 2971215073000007 a001 2971215073/20633239*228826127^(7/8) 2971215073000007 a001 1836311903/20633239*228826127^(9/10) 2971215073000007 a001 701408733/20633239*228826127^(19/20) 2971215073000007 a001 20270452254581269/6822277 2971215073000007 a001 9227465/141422324*817138163596^(17/19) 2971215073000007 a001 9227465/141422324*14662949395604^(17/21) 2971215073000007 a001 63245986/20633239*(1/2+1/2*5^(1/2))^43 2971215073000007 a001 9227465/141422324*192900153618^(17/18) 2971215073000007 a001 10610209857723/20633239*87403803^(9/19) 2971215073000007 a001 6557470319842/20633239*87403803^(1/2) 2971215073000007 a001 4052739537881/20633239*87403803^(10/19) 2971215073000007 a001 140728068720/1875749*87403803^(11/19) 2971215073000007 a001 591286729879/20633239*87403803^(12/19) 2971215073000007 a001 7787980473/711491*87403803^(13/19) 2971215073000007 a001 86267571272/20633239*87403803^(14/19) 2971215073000007 a001 32951280099/20633239*87403803^(15/19) 2971215073000007 a001 1144206275/1875749*87403803^(16/19) 2971215073000007 a001 4807526976/20633239*87403803^(17/19) 2971215073000007 a001 1836311903/20633239*87403803^(18/19) 2971215073000007 a001 116139356908771625/39088169 2971215073000007 a001 24157817/20633239*45537549124^(15/17) 2971215073000007 a001 24157817/20633239*312119004989^(9/11) 2971215073000007 a001 9227465/54018521*14662949395604^(7/9) 2971215073000007 a001 24157817/20633239*14662949395604^(5/7) 2971215073000007 a001 24157817/20633239*(1/2+1/2*5^(1/2))^45 2971215073000007 a001 9227465/54018521*505019158607^(7/8) 2971215073000007 a001 24157817/20633239*192900153618^(5/6) 2971215073000007 a001 24157817/20633239*28143753123^(9/10) 2971215073000007 a001 24157817/20633239*10749957122^(15/16) 2971215073000008 a001 3278735159921/16692641*12752043^(10/17) 2971215073000008 a001 10610209857723/20633239*33385282^(1/2) 2971215073000008 a001 4052739537881/20633239*33385282^(5/9) 2971215073000008 a001 2504730781961/20633239*33385282^(7/12) 2971215073000008 a001 140728068720/1875749*33385282^(11/18) 2971215073000008 a001 53316291173/7881196*7881196^(9/11) 2971215073000008 a001 591286729879/20633239*33385282^(2/3) 2971215073000008 a001 7787980473/711491*33385282^(13/18) 2971215073000008 a001 139583862445/20633239*33385282^(3/4) 2971215073000009 a001 86267571272/20633239*33385282^(7/9) 2971215073000009 a001 2504730781961/33385282*12752043^(11/17) 2971215073000009 a001 32951280099/20633239*33385282^(5/6) 2971215073000009 a001 1144206275/1875749*33385282^(8/9) 2971215073000009 a001 7778742049/20633239*33385282^(11/12) 2971215073000009 a001 4807526976/20633239*33385282^(17/18) 2971215073000009 a001 308064492413860/103683 2971215073000010 a001 956722026041/33385282*12752043^(12/17) 2971215073000011 a001 182717648081/16692641*12752043^(13/17) 2971215073000011 a001 6557470319842/87403803*12752043^(11/17) 2971215073000011 a001 10610209857723/54018521*12752043^(10/17) 2971215073000011 a001 10610209857723/141422324*12752043^(11/17) 2971215073000012 a001 139583862445/33385282*12752043^(14/17) 2971215073000012 a001 2504730781961/87403803*12752043^(12/17) 2971215073000012 a001 6557470319842/228826127*12752043^(12/17) 2971215073000012 a001 4052739537881/54018521*12752043^(11/17) 2971215073000012 a001 10610209857723/370248451*12752043^(12/17) 2971215073000013 a001 225851433717/7881196*7881196^(8/11) 2971215073000013 a001 4052739537881/141422324*12752043^(12/17) 2971215073000013 a001 53316291173/33385282*12752043^(15/17) 2971215073000013 a001 956722026041/87403803*12752043^(13/17) 2971215073000013 a001 2504730781961/228826127*12752043^(13/17) 2971215073000013 a001 1548008755920/54018521*12752043^(12/17) 2971215073000013 a001 9227465/20633239*(1/2+1/2*5^(1/2))^47 2971215073000013 a001 3278735159921/299537289*12752043^(13/17) 2971215073000013 a001 10610209857723/969323029*12752043^(13/17) 2971215073000013 a001 4052739537881/370248451*12752043^(13/17) 2971215073000014 a001 387002188980/35355581*12752043^(13/17) 2971215073000014 a001 10182505537/16692641*12752043^(16/17) 2971215073000014 a001 365435296162/87403803*12752043^(14/17) 2971215073000014 a001 956722026041/228826127*12752043^(14/17) 2971215073000014 a001 591286729879/54018521*12752043^(13/17) 2971215073000015 a001 2504730781961/599074578*12752043^(14/17) 2971215073000015 a001 6557470319842/1568397607*12752043^(14/17) 2971215073000015 a001 10610209857723/2537720636*12752043^(14/17) 2971215073000015 a001 4052739537881/969323029*12752043^(14/17) 2971215073000015 a001 1548008755920/370248451*12752043^(14/17) 2971215073000015 a001 591286729879/141422324*12752043^(14/17) 2971215073000015 a001 16944503814015840/5702887 2971215073000015 a001 139583862445/87403803*12752043^(15/17) 2971215073000015 a001 591286729879/7881196*7881196^(2/3) 2971215073000016 a001 365435296162/228826127*12752043^(15/17) 2971215073000016 a001 225851433717/54018521*12752043^(14/17) 2971215073000016 a001 956722026041/599074578*12752043^(15/17) 2971215073000016 a001 2504730781961/1568397607*12752043^(15/17) 2971215073000016 a001 6557470319842/4106118243*12752043^(15/17) 2971215073000016 a001 10610209857723/6643838879*12752043^(15/17) 2971215073000016 a001 4052739537881/2537720636*12752043^(15/17) 2971215073000016 a001 1548008755920/969323029*12752043^(15/17) 2971215073000016 a001 591286729879/370248451*12752043^(15/17) 2971215073000016 a001 225851433717/141422324*12752043^(15/17) 2971215073000016 a001 10610209857723/20633239*12752043^(9/17) 2971215073000016 a001 53316291173/87403803*12752043^(16/17) 2971215073000017 a001 139583862445/228826127*12752043^(16/17) 2971215073000017 a001 86267571272/54018521*12752043^(15/17) 2971215073000017 a001 182717648081/299537289*12752043^(16/17) 2971215073000017 a001 956722026041/1568397607*12752043^(16/17) 2971215073000017 a001 2504730781961/4106118243*12752043^(16/17) 2971215073000017 a001 3278735159921/5374978561*12752043^(16/17) 2971215073000017 a001 10610209857723/17393796001*12752043^(16/17) 2971215073000017 a001 4052739537881/6643838879*12752043^(16/17) 2971215073000017 a001 1134903780/1860499*12752043^(16/17) 2971215073000017 a001 591286729879/969323029*12752043^(16/17) 2971215073000017 a001 225851433717/370248451*12752043^(16/17) 2971215073000017 a001 21566892818/35355581*12752043^(16/17) 2971215073000017 a001 956722026041/7881196*7881196^(7/11) 2971215073000017 a001 4052739537881/20633239*12752043^(10/17) 2971215073000017 a001 16944503814015853/5702887 2971215073000018 a001 32951280099/54018521*12752043^(16/17) 2971215073000018 a001 16944503814015855/5702887 2971215073000018 a001 16944503814015856/5702887 2971215073000018 a001 140728068720/1875749*12752043^(11/17) 2971215073000019 a001 16944503814015861/5702887 2971215073000019 a001 591286729879/20633239*12752043^(12/17) 2971215073000020 a001 7787980473/711491*12752043^(13/17) 2971215073000021 a001 4052739537881/7881196*7881196^(6/11) 2971215073000022 a001 86267571272/20633239*12752043^(14/17) 2971215073000023 a001 32951280099/20633239*12752043^(15/17) 2971215073000024 a001 1144206275/1875749*12752043^(16/17) 2971215073000025 a001 16944503814015895/5702887 2971215073000029 a001 3524578/12752043*45537549124^(16/17) 2971215073000029 a001 3524578/12752043*14662949395604^(16/21) 2971215073000029 a001 3524578/12752043*(1/2+1/2*5^(1/2))^48 2971215073000029 a001 5702887/7881196*(1/2+1/2*5^(1/2))^46 2971215073000029 a001 3524578/12752043*192900153618^(8/9) 2971215073000029 a001 3524578/12752043*73681302247^(12/13) 2971215073000029 a001 5702887/7881196*10749957122^(23/24) 2971215073000040 a001 2108983314890794/709805 2971215073000041 a001 12586269025/7881196*20633239^(6/7) 2971215073000042 a001 32951280099/7881196*20633239^(4/5) 2971215073000042 a001 139583862445/7881196*20633239^(5/7) 2971215073000043 a001 956722026041/7881196*20633239^(3/5) 2971215073000043 a001 387002188980/1970299*20633239^(4/7) 2971215073000045 a001 1762289/16692641*312119004989^(10/11) 2971215073000045 a001 3732588/1970299*312119004989^(4/5) 2971215073000045 a001 1762289/16692641*(1/2+1/2*5^(1/2))^50 2971215073000045 a001 3732588/1970299*(1/2+1/2*5^(1/2))^44 2971215073000045 a001 3732588/1970299*23725150497407^(11/16) 2971215073000045 a001 1762289/16692641*3461452808002^(5/6) 2971215073000045 a001 3732588/1970299*73681302247^(11/13) 2971215073000045 a001 3732588/1970299*10749957122^(11/12) 2971215073000045 a001 3732588/1970299*4106118243^(22/23) 2971215073000046 a001 71778070001176772/24157817 2971215073000047 a001 39088169/7881196*2537720636^(14/15) 2971215073000047 a001 39088169/7881196*17393796001^(6/7) 2971215073000047 a001 39088169/7881196*45537549124^(14/17) 2971215073000047 a001 39088169/7881196*817138163596^(14/19) 2971215073000047 a001 39088169/7881196*(1/2+1/2*5^(1/2))^42 2971215073000047 a001 3524578/87403803*23725150497407^(13/16) 2971215073000047 a001 3524578/87403803*505019158607^(13/14) 2971215073000047 a001 39088169/7881196*192900153618^(7/9) 2971215073000047 a001 39088169/7881196*10749957122^(7/8) 2971215073000047 a001 39088169/7881196*4106118243^(21/23) 2971215073000047 a001 39088169/7881196*1568397607^(21/22) 2971215073000047 a001 93958713454974997/31622993 2971215073000047 a001 3524667/39604*141422324^(12/13) 2971215073000047 a001 2971215073/7881196*141422324^(11/13) 2971215073000047 a001 12586269025/7881196*141422324^(10/13) 2971215073000047 a001 53316291173/7881196*141422324^(9/13) 2971215073000047 a001 21566892818/1970299*141422324^(2/3) 2971215073000047 a001 225851433717/7881196*141422324^(8/13) 2971215073000047 a001 956722026041/7881196*141422324^(7/13) 2971215073000047 a001 4052739537881/7881196*141422324^(6/13) 2971215073000047 a001 102334155/7881196*2537720636^(8/9) 2971215073000047 a001 102334155/7881196*312119004989^(8/11) 2971215073000047 a001 102334155/7881196*(1/2+1/2*5^(1/2))^40 2971215073000047 a001 102334155/7881196*23725150497407^(5/8) 2971215073000047 a001 102334155/7881196*73681302247^(10/13) 2971215073000047 a001 102334155/7881196*28143753123^(4/5) 2971215073000047 a001 102334155/7881196*10749957122^(5/6) 2971215073000047 a001 102334155/7881196*4106118243^(20/23) 2971215073000047 a001 102334155/7881196*1568397607^(10/11) 2971215073000047 a001 102334155/7881196*599074578^(20/21) 2971215073000047 a001 491974210728673210/165580141 2971215073000047 a001 66978574/1970299*817138163596^(2/3) 2971215073000047 a001 1762289/299537289*14662949395604^(8/9) 2971215073000047 a001 66978574/1970299*(1/2+1/2*5^(1/2))^38 2971215073000047 a001 66978574/1970299*10749957122^(19/24) 2971215073000047 a001 66978574/1970299*4106118243^(19/23) 2971215073000047 a001 66978574/1970299*1568397607^(19/22) 2971215073000047 a001 1288005205276069636/433494437 2971215073000047 a001 3524667/39604*2537720636^(4/5) 2971215073000047 a001 3524667/39604*45537549124^(12/17) 2971215073000047 a001 3524667/39604*14662949395604^(4/7) 2971215073000047 a001 3524667/39604*(1/2+1/2*5^(1/2))^36 2971215073000047 a001 3524667/39604*505019158607^(9/14) 2971215073000047 a001 3524667/39604*192900153618^(2/3) 2971215073000047 a001 3524667/39604*73681302247^(9/13) 2971215073000047 a001 3524667/39604*10749957122^(3/4) 2971215073000047 a001 3524667/39604*4106118243^(18/23) 2971215073000047 a001 66978574/1970299*599074578^(19/21) 2971215073000047 a001 1686020702549767849/567451585 2971215073000047 a001 12586269025/7881196*2537720636^(2/3) 2971215073000047 a001 53316291173/7881196*2537720636^(3/5) 2971215073000047 a001 2971215073/7881196*2537720636^(11/15) 2971215073000047 a001 139583862445/7881196*2537720636^(5/9) 2971215073000047 a001 225851433717/7881196*2537720636^(8/15) 2971215073000047 a001 3524667/39604*1568397607^(9/11) 2971215073000047 a001 956722026041/7881196*2537720636^(7/15) 2971215073000047 a001 387002188980/1970299*2537720636^(4/9) 2971215073000047 a001 4052739537881/7881196*2537720636^(2/5) 2971215073000047 a001 1836311903/7881196*45537549124^(2/3) 2971215073000047 a001 3524578/4106118243*14662949395604^(20/21) 2971215073000047 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^34 2971215073000047 a001 1836311903/7881196*10749957122^(17/24) 2971215073000047 a001 8828119010022537458/2971215073 2971215073000047 a001 1836311903/7881196*4106118243^(17/23) 2971215073000047 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^32 2971215073000047 a001 1201881744/1970299*23725150497407^(1/2) 2971215073000047 a001 1201881744/1970299*505019158607^(4/7) 2971215073000047 a001 1201881744/1970299*73681302247^(8/13) 2971215073000047 a001 1777870432689852052/598364773 2971215073000047 a001 1201881744/1970299*10749957122^(2/3) 2971215073000047 a001 32951280099/7881196*17393796001^(4/7) 2971215073000047 a001 12586269025/7881196*45537549124^(10/17) 2971215073000047 a001 956722026041/7881196*17393796001^(3/7) 2971215073000047 a001 12586269025/7881196*312119004989^(6/11) 2971215073000047 a001 12586269025/7881196*14662949395604^(10/21) 2971215073000047 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^30 2971215073000047 a001 12586269025/7881196*192900153618^(5/9) 2971215073000047 a001 12586269025/7881196*28143753123^(3/5) 2971215073000047 a001 225851433717/7881196*45537549124^(8/17) 2971215073000047 a001 956722026041/7881196*45537549124^(7/17) 2971215073000047 a001 32951280099/7881196*14662949395604^(4/9) 2971215073000047 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^28 2971215073000047 a001 32951280099/7881196*505019158607^(1/2) 2971215073000047 a001 4052739537881/7881196*45537549124^(6/17) 2971215073000047 a001 3278735159921/3940598*45537549124^(1/3) 2971215073000047 a001 32951280099/7881196*73681302247^(7/13) 2971215073000047 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^26 2971215073000047 a001 591286729879/7881196*312119004989^(2/5) 2971215073000047 a001 225851433717/7881196*14662949395604^(8/21) 2971215073000047 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^24 2971215073000047 a001 4052739537881/7881196*(1/2+1/2*5^(1/2))^18 2971215073000047 a001 10610209857723/7881196*(1/2+1/2*5^(1/2))^16 2971215073000047 a001 10610209857723/7881196*23725150497407^(1/4) 2971215073000047 a001 3524578*(1/2+1/2*5^(1/2))^14 2971215073000047 a001 3278735159921/3940598*(1/2+1/2*5^(1/2))^17 2971215073000047 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^19 2971215073000047 a001 956722026041/7881196*(1/2+1/2*5^(1/2))^21 2971215073000047 a001 182717648081/3940598*(1/2+1/2*5^(1/2))^23 2971215073000047 a001 139583862445/7881196*312119004989^(5/11) 2971215073000047 a001 4052739537881/7881196*192900153618^(1/3) 2971215073000047 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^25 2971215073000047 a001 139583862445/7881196*3461452808002^(5/12) 2971215073000047 a001 10610209857723/7881196*73681302247^(4/13) 2971215073000047 a001 21566892818/1970299*73681302247^(1/2) 2971215073000047 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^27 2971215073000047 a001 387002188980/1970299*73681302247^(5/13) 2971215073000047 a001 225851433717/7881196*73681302247^(6/13) 2971215073000047 a001 53316291173/7881196*192900153618^(1/2) 2971215073000047 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^29 2971215073000047 a001 10182505537/3940598*1322157322203^(1/2) 2971215073000047 a001 387002188980/1970299*28143753123^(2/5) 2971215073000047 a001 139583862445/7881196*28143753123^(1/2) 2971215073000047 a001 37396512239913615894/12586269025 2971215073000047 a001 10610209857723/7881196*10749957122^(1/3) 2971215073000047 a001 4052739537881/7881196*10749957122^(3/8) 2971215073000047 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^31 2971215073000047 a001 7778742049/7881196*9062201101803^(1/2) 2971215073000047 a001 387002188980/1970299*10749957122^(5/12) 2971215073000047 a001 956722026041/7881196*10749957122^(7/16) 2971215073000047 a001 591286729879/7881196*10749957122^(11/24) 2971215073000047 a001 12586269025/7881196*10749957122^(5/8) 2971215073000047 a001 225851433717/7881196*10749957122^(1/2) 2971215073000047 a001 21566892818/1970299*10749957122^(13/24) 2971215073000047 a001 32951280099/7881196*10749957122^(7/12) 2971215073000047 a001 53316291173/7881196*10749957122^(9/16) 2971215073000047 a001 7142098307472769609/2403763488 2971215073000047 a001 10610209857723/7881196*4106118243^(8/23) 2971215073000047 a001 2971215073/7881196*45537549124^(11/17) 2971215073000047 a001 2971215073/7881196*312119004989^(3/5) 2971215073000047 a001 2971215073/7881196*817138163596^(11/19) 2971215073000047 a001 2971215073/7881196*14662949395604^(11/21) 2971215073000047 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^33 2971215073000047 a001 2971215073/7881196*192900153618^(11/18) 2971215073000047 a001 4052739537881/7881196*4106118243^(9/23) 2971215073000047 a001 387002188980/1970299*4106118243^(10/23) 2971215073000047 a001 591286729879/7881196*4106118243^(11/23) 2971215073000047 a001 2971215073/7881196*10749957122^(11/16) 2971215073000047 a001 182717648081/3940598*4106118243^(1/2) 2971215073000047 a001 225851433717/7881196*4106118243^(12/23) 2971215073000047 a001 1201881744/1970299*4106118243^(16/23) 2971215073000047 a001 21566892818/1970299*4106118243^(13/23) 2971215073000047 a001 567451585/3940598*2537720636^(7/9) 2971215073000047 a001 32951280099/7881196*4106118243^(14/23) 2971215073000047 a001 12586269025/7881196*4106118243^(15/23) 2971215073000047 a001 5456077604923001760/1836311903 2971215073000047 a001 10610209857723/7881196*1568397607^(4/11) 2971215073000047 a001 567451585/3940598*17393796001^(5/7) 2971215073000047 a001 567451585/3940598*312119004989^(7/11) 2971215073000047 a001 567451585/3940598*14662949395604^(5/9) 2971215073000047 a001 567451585/3940598*(1/2+1/2*5^(1/2))^35 2971215073000047 a001 567451585/3940598*505019158607^(5/8) 2971215073000047 a001 567451585/3940598*28143753123^(7/10) 2971215073000047 a001 4052739537881/7881196*1568397607^(9/22) 2971215073000047 a001 387002188980/1970299*1568397607^(5/11) 2971215073000047 a001 591286729879/7881196*1568397607^(1/2) 2971215073000047 a001 225851433717/7881196*1568397607^(6/11) 2971215073000047 a001 21566892818/1970299*1568397607^(13/22) 2971215073000047 a001 1836311903/7881196*1568397607^(17/22) 2971215073000047 a001 32951280099/7881196*1568397607^(7/11) 2971215073000047 a001 12586269025/7881196*1568397607^(15/22) 2971215073000047 a001 1201881744/1970299*1568397607^(8/11) 2971215073000047 a001 2971215073/7881196*1568397607^(3/4) 2971215073000047 a001 23416137076668158/7880997 2971215073000047 a001 10610209857723/7881196*599074578^(8/21) 2971215073000047 a001 3524578/969323029*14662949395604^(19/21) 2971215073000047 a001 433494437/7881196*(1/2+1/2*5^(1/2))^37 2971215073000047 a001 4052739537881/7881196*599074578^(3/7) 2971215073000047 a001 387002188980/1970299*599074578^(10/21) 2971215073000047 a001 956722026041/7881196*599074578^(1/2) 2971215073000047 a001 591286729879/7881196*599074578^(11/21) 2971215073000047 a001 225851433717/7881196*599074578^(4/7) 2971215073000047 a001 21566892818/1970299*599074578^(13/21) 2971215073000047 a001 53316291173/7881196*599074578^(9/14) 2971215073000047 a001 32951280099/7881196*599074578^(2/3) 2971215073000047 a001 3524667/39604*599074578^(6/7) 2971215073000047 a001 12586269025/7881196*599074578^(5/7) 2971215073000047 a001 1201881744/1970299*599074578^(16/21) 2971215073000047 a001 1836311903/7881196*599074578^(17/21) 2971215073000047 a001 2971215073/7881196*599074578^(11/14) 2971215073000047 a001 567451585/3940598*599074578^(5/6) 2971215073000047 a001 1055744024598669/355324 2971215073000047 a001 165580141/7881196*2537720636^(13/15) 2971215073000047 a001 165580141/7881196*45537549124^(13/17) 2971215073000047 a001 165580141/7881196*14662949395604^(13/21) 2971215073000047 a001 165580141/7881196*(1/2+1/2*5^(1/2))^39 2971215073000047 a001 165580141/7881196*192900153618^(13/18) 2971215073000047 a001 165580141/7881196*73681302247^(3/4) 2971215073000047 a001 165580141/7881196*10749957122^(13/16) 2971215073000047 a001 10610209857723/7881196*228826127^(2/5) 2971215073000047 a001 4052739537881/7881196*228826127^(9/20) 2971215073000047 a001 387002188980/1970299*228826127^(1/2) 2971215073000047 a001 165580141/7881196*599074578^(13/14) 2971215073000047 a001 591286729879/7881196*228826127^(11/20) 2971215073000047 a001 225851433717/7881196*228826127^(3/5) 2971215073000047 a001 139583862445/7881196*228826127^(5/8) 2971215073000047 a001 21566892818/1970299*228826127^(13/20) 2971215073000047 a001 32951280099/7881196*228826127^(7/10) 2971215073000047 a001 12586269025/7881196*228826127^(3/4) 2971215073000047 a001 1201881744/1970299*228826127^(4/5) 2971215073000047 a001 66978574/1970299*228826127^(19/20) 2971215073000047 a001 1836311903/7881196*228826127^(17/20) 2971215073000047 a001 3524667/39604*228826127^(9/10) 2971215073000047 a001 567451585/3940598*228826127^(7/8) 2971215073000047 a001 304056783818723216/102334155 2971215073000047 a001 31622993/3940598*(1/2+1/2*5^(1/2))^41 2971215073000047 a001 10610209857723/7881196*87403803^(8/19) 2971215073000048 a001 4052739537881/7881196*87403803^(9/19) 2971215073000048 a001 2504730781961/7881196*87403803^(1/2) 2971215073000048 a001 387002188980/1970299*87403803^(10/19) 2971215073000048 a001 591286729879/7881196*87403803^(11/19) 2971215073000048 a001 225851433717/7881196*87403803^(12/19) 2971215073000048 a001 21566892818/1970299*87403803^(13/19) 2971215073000048 a001 32951280099/7881196*87403803^(14/19) 2971215073000048 a001 12586269025/7881196*87403803^(15/19) 2971215073000048 a001 1201881744/1970299*87403803^(16/19) 2971215073000048 a001 1836311903/7881196*87403803^(17/19) 2971215073000048 a001 3524667/39604*87403803^(18/19) 2971215073000048 a001 116139356908773222/39088169 2971215073000048 a001 3524578/54018521*817138163596^(17/19) 2971215073000048 a001 3524578/54018521*14662949395604^(17/21) 2971215073000048 a001 24157817/7881196*(1/2+1/2*5^(1/2))^43 2971215073000048 a001 3524578/54018521*192900153618^(17/18) 2971215073000049 a001 10610209857723/7881196*33385282^(4/9) 2971215073000049 a001 4052739537881/7881196*33385282^(1/2) 2971215073000049 a001 387002188980/1970299*33385282^(5/9) 2971215073000049 a001 956722026041/7881196*33385282^(7/12) 2971215073000049 a001 591286729879/7881196*33385282^(11/18) 2971215073000049 a001 225851433717/7881196*33385282^(2/3) 2971215073000049 a001 21566892818/1970299*33385282^(13/18) 2971215073000049 a001 53316291173/7881196*33385282^(3/4) 2971215073000049 a001 32951280099/7881196*33385282^(7/9) 2971215073000050 a001 12586269025/7881196*33385282^(5/6) 2971215073000050 a001 1201881744/1970299*33385282^(8/9) 2971215073000050 a001 2971215073/7881196*33385282^(11/12) 2971215073000050 a001 1836311903/7881196*33385282^(17/18) 2971215073000050 a001 22180643453798225/7465176 2971215073000052 a001 6557470319842/12752043*4870847^(9/16) 2971215073000054 a001 9227465/7881196*45537549124^(15/17) 2971215073000054 a001 9227465/7881196*312119004989^(9/11) 2971215073000054 a001 3524578/20633239*14662949395604^(7/9) 2971215073000054 a001 9227465/7881196*14662949395604^(5/7) 2971215073000054 a001 3524578/20633239*(1/2+1/2*5^(1/2))^49 2971215073000054 a001 9227465/7881196*(1/2+1/2*5^(1/2))^45 2971215073000054 a001 3524578/20633239*505019158607^(7/8) 2971215073000054 a001 9227465/7881196*192900153618^(5/6) 2971215073000054 a001 9227465/7881196*28143753123^(9/10) 2971215073000054 a001 9227465/7881196*10749957122^(15/16) 2971215073000056 a001 10610209857723/7881196*12752043^(8/17) 2971215073000056 a001 3278735159921/3940598*12752043^(1/2) 2971215073000057 a001 4052739537881/7881196*12752043^(9/17) 2971215073000058 a001 387002188980/1970299*12752043^(10/17) 2971215073000059 a001 591286729879/7881196*12752043^(11/17) 2971215073000060 a001 2504730781961/12752043*4870847^(5/8) 2971215073000060 a001 225851433717/7881196*12752043^(12/17) 2971215073000061 a001 21566892818/1970299*12752043^(13/17) 2971215073000062 a001 32951280099/7881196*12752043^(14/17) 2971215073000063 a001 12586269025/7881196*12752043^(15/17) 2971215073000065 a001 1201881744/1970299*12752043^(16/17) 2971215073000066 a001 16944503814016128/5702887 2971215073000067 a001 956722026041/12752043*4870847^(11/16) 2971215073000075 a001 3278735159921/16692641*4870847^(5/8) 2971215073000075 a001 365435296162/12752043*4870847^(3/4) 2971215073000077 a001 10610209857723/20633239*4870847^(9/16) 2971215073000079 a001 10610209857723/54018521*4870847^(5/8) 2971215073000083 a001 2504730781961/33385282*4870847^(11/16) 2971215073000083 a001 139583862445/12752043*4870847^(13/16) 2971215073000085 a001 4052739537881/20633239*4870847^(5/8) 2971215073000085 a001 6557470319842/87403803*4870847^(11/16) 2971215073000086 a001 10610209857723/141422324*4870847^(11/16) 2971215073000087 a001 4052739537881/54018521*4870847^(11/16) 2971215073000091 a001 956722026041/33385282*4870847^(3/4) 2971215073000091 a001 53316291173/12752043*4870847^(7/8) 2971215073000093 a001 140728068720/1875749*4870847^(11/16) 2971215073000093 a001 2504730781961/87403803*4870847^(3/4) 2971215073000093 a001 6557470319842/228826127*4870847^(3/4) 2971215073000093 a001 10610209857723/370248451*4870847^(3/4) 2971215073000094 a001 4052739537881/141422324*4870847^(3/4) 2971215073000094 a001 1548008755920/54018521*4870847^(3/4) 2971215073000095 a001 1762289/3940598*(1/2+1/2*5^(1/2))^47 2971215073000099 a001 182717648081/16692641*4870847^(13/16) 2971215073000099 a001 20365011074/12752043*4870847^(15/16) 2971215073000100 a001 591286729879/20633239*4870847^(3/4) 2971215073000101 a001 956722026041/87403803*4870847^(13/16) 2971215073000101 a001 2504730781961/228826127*4870847^(13/16) 2971215073000101 a001 3278735159921/299537289*4870847^(13/16) 2971215073000101 a001 10610209857723/969323029*4870847^(13/16) 2971215073000101 a001 4052739537881/370248451*4870847^(13/16) 2971215073000101 a001 387002188980/35355581*4870847^(13/16) 2971215073000102 a001 591286729879/54018521*4870847^(13/16) 2971215073000106 a001 139583862445/33385282*4870847^(7/8) 2971215073000106 a001 6472224534451790/2178309 2971215073000108 a001 7787980473/711491*4870847^(13/16) 2971215073000109 a001 365435296162/87403803*4870847^(7/8) 2971215073000109 a001 956722026041/228826127*4870847^(7/8) 2971215073000109 a001 2504730781961/599074578*4870847^(7/8) 2971215073000109 a001 6557470319842/1568397607*4870847^(7/8) 2971215073000109 a001 10610209857723/2537720636*4870847^(7/8) 2971215073000109 a001 4052739537881/969323029*4870847^(7/8) 2971215073000109 a001 1548008755920/370248451*4870847^(7/8) 2971215073000109 a001 591286729879/141422324*4870847^(7/8) 2971215073000110 a001 10610209857723/7881196*4870847^(1/2) 2971215073000110 a001 225851433717/54018521*4870847^(7/8) 2971215073000114 a001 53316291173/33385282*4870847^(15/16) 2971215073000116 a001 86267571272/20633239*4870847^(7/8) 2971215073000117 a001 139583862445/87403803*4870847^(15/16) 2971215073000117 a001 365435296162/228826127*4870847^(15/16) 2971215073000117 a001 956722026041/599074578*4870847^(15/16) 2971215073000117 a001 2504730781961/1568397607*4870847^(15/16) 2971215073000117 a001 6557470319842/4106118243*4870847^(15/16) 2971215073000117 a001 10610209857723/6643838879*4870847^(15/16) 2971215073000117 a001 4052739537881/2537720636*4870847^(15/16) 2971215073000117 a001 1548008755920/969323029*4870847^(15/16) 2971215073000117 a001 591286729879/370248451*4870847^(15/16) 2971215073000117 a001 225851433717/141422324*4870847^(15/16) 2971215073000118 a001 4052739537881/7881196*4870847^(9/16) 2971215073000118 a001 86267571272/54018521*4870847^(15/16) 2971215073000122 a001 2157408178150608/726103 2971215073000124 a001 32951280099/20633239*4870847^(15/16) 2971215073000124 a001 6472224534451829/2178309 2971215073000125 a001 308201168307230/103729 2971215073000126 a001 387002188980/1970299*4870847^(5/8) 2971215073000126 a001 6472224534451832/2178309 2971215073000132 a001 2157408178150615/726103 2971215073000133 a001 591286729879/7881196*4870847^(11/16) 2971215073000141 a001 225851433717/7881196*4870847^(3/4) 2971215073000149 a001 21566892818/1970299*4870847^(13/16) 2971215073000157 a001 32951280099/7881196*4870847^(7/8) 2971215073000165 a001 12586269025/7881196*4870847^(15/16) 2971215073000173 a001 6472224534451934/2178309 2971215073000202 a001 1346269/4870847*45537549124^(16/17) 2971215073000202 a001 1346269/4870847*14662949395604^(16/21) 2971215073000202 a001 1346269/4870847*(1/2+1/2*5^(1/2))^48 2971215073000202 a001 2178309/3010349*(1/2+1/2*5^(1/2))^46 2971215073000202 a001 1346269/4870847*192900153618^(8/9) 2971215073000202 a001 1346269/4870847*73681302247^(12/13) 2971215073000202 a001 2178309/3010349*10749957122^(23/24) 2971215073000280 a001 10472279279565181/3524578 2971215073000284 a001 4807526976/3010349*7881196^(10/11) 2971215073000288 a001 20365011074/3010349*7881196^(9/11) 2971215073000293 a001 86267571272/3010349*7881196^(8/11) 2971215073000295 a001 225851433717/3010349*7881196^(2/3) 2971215073000297 a001 365435296162/3010349*7881196^(7/11) 2971215073000301 a001 1548008755920/3010349*7881196^(6/11) 2971215073000303 a001 2178309*1860498^(1/2) 2971215073000306 a001 6557470319842/3010349*7881196^(5/11) 2971215073000309 a001 1346269/12752043*312119004989^(10/11) 2971215073000309 a001 1346269/12752043*(1/2+1/2*5^(1/2))^50 2971215073000309 a001 5702887/3010349*(1/2+1/2*5^(1/2))^44 2971215073000309 a001 5702887/3010349*23725150497407^(11/16) 2971215073000309 a001 1346269/12752043*3461452808002^(5/6) 2971215073000309 a001 5702887/3010349*73681302247^(11/13) 2971215073000309 a001 5702887/3010349*10749957122^(11/12) 2971215073000309 a001 5702887/3010349*4106118243^(22/23) 2971215073000320 a001 27416783093582906/9227465 2971215073000321 a001 4807526976/3010349*20633239^(6/7) 2971215073000322 a001 12586269025/3010349*20633239^(4/5) 2971215073000322 a001 53316291173/3010349*20633239^(5/7) 2971215073000323 a001 365435296162/3010349*20633239^(3/5) 2971215073000323 a001 591286729879/3010349*20633239^(4/7) 2971215073000324 a001 6557470319842/3010349*20633239^(3/7) 2971215073000325 a001 10610209857723/3010349*20633239^(2/5) 2971215073000325 a001 14930352/3010349*2537720636^(14/15) 2971215073000325 a001 14930352/3010349*17393796001^(6/7) 2971215073000325 a001 14930352/3010349*45537549124^(14/17) 2971215073000325 a001 14930352/3010349*817138163596^(14/19) 2971215073000325 a001 1346269/33385282*(1/2+1/2*5^(1/2))^52 2971215073000325 a001 1346269/33385282*23725150497407^(13/16) 2971215073000325 a001 14930352/3010349*(1/2+1/2*5^(1/2))^42 2971215073000325 a001 1346269/33385282*505019158607^(13/14) 2971215073000325 a001 14930352/3010349*192900153618^(7/9) 2971215073000325 a001 14930352/3010349*10749957122^(7/8) 2971215073000325 a001 14930352/3010349*4106118243^(21/23) 2971215073000325 a001 14930352/3010349*1568397607^(21/22) 2971215073000326 a001 71778070001183537/24157817 2971215073000327 a001 39088169/3010349*2537720636^(8/9) 2971215073000327 a001 39088169/3010349*312119004989^(8/11) 2971215073000327 a001 1346269/87403803*14662949395604^(6/7) 2971215073000327 a001 39088169/3010349*(1/2+1/2*5^(1/2))^40 2971215073000327 a001 39088169/3010349*23725150497407^(5/8) 2971215073000327 a001 39088169/3010349*73681302247^(10/13) 2971215073000327 a001 39088169/3010349*28143753123^(4/5) 2971215073000327 a001 39088169/3010349*10749957122^(5/6) 2971215073000327 a001 39088169/3010349*4106118243^(20/23) 2971215073000327 a001 39088169/3010349*1568397607^(10/11) 2971215073000327 a001 39088169/3010349*599074578^(20/21) 2971215073000327 a001 187917426909967705/63245986 2971215073000327 a001 267914296/3010349*141422324^(12/13) 2971215073000327 a001 1134903170/3010349*141422324^(11/13) 2971215073000327 a001 4807526976/3010349*141422324^(10/13) 2971215073000327 a001 20365011074/3010349*141422324^(9/13) 2971215073000327 a001 32951280099/3010349*141422324^(2/3) 2971215073000327 a001 86267571272/3010349*141422324^(8/13) 2971215073000327 a001 365435296162/3010349*141422324^(7/13) 2971215073000327 a001 1548008755920/3010349*141422324^(6/13) 2971215073000327 a001 6557470319842/3010349*141422324^(5/13) 2971215073000327 a001 102334155/3010349*817138163596^(2/3) 2971215073000327 a001 102334155/3010349*(1/2+1/2*5^(1/2))^38 2971215073000327 a001 102334155/3010349*10749957122^(19/24) 2971215073000327 a001 102334155/3010349*4106118243^(19/23) 2971215073000327 a001 102334155/3010349*1568397607^(19/22) 2971215073000327 a001 102334155/3010349*599074578^(19/21) 2971215073000327 a001 491974210728719578/165580141 2971215073000327 a001 267914296/3010349*2537720636^(4/5) 2971215073000327 a001 267914296/3010349*45537549124^(12/17) 2971215073000327 a001 267914296/3010349*14662949395604^(4/7) 2971215073000327 a001 267914296/3010349*(1/2+1/2*5^(1/2))^36 2971215073000327 a001 267914296/3010349*505019158607^(9/14) 2971215073000327 a001 267914296/3010349*192900153618^(2/3) 2971215073000327 a001 267914296/3010349*73681302247^(9/13) 2971215073000327 a001 267914296/3010349*10749957122^(3/4) 2971215073000327 a001 267914296/3010349*4106118243^(18/23) 2971215073000327 a001 267914296/3010349*1568397607^(9/11) 2971215073000327 a001 1288005205276191029/433494437 2971215073000327 a001 102334155/3010349*228826127^(19/20) 2971215073000327 a001 701408733/3010349*45537549124^(2/3) 2971215073000327 a001 1346269/1568397607*14662949395604^(20/21) 2971215073000327 a001 701408733/3010349*(1/2+1/2*5^(1/2))^34 2971215073000327 a001 701408733/3010349*10749957122^(17/24) 2971215073000327 a001 267914296/3010349*599074578^(6/7) 2971215073000327 a001 701408733/3010349*4106118243^(17/23) 2971215073000327 a001 3372041405099853509/1134903170 2971215073000327 a001 4807526976/3010349*2537720636^(2/3) 2971215073000327 a001 20365011074/3010349*2537720636^(3/5) 2971215073000327 a001 701408733/3010349*1568397607^(17/22) 2971215073000327 a001 53316291173/3010349*2537720636^(5/9) 2971215073000327 a001 86267571272/3010349*2537720636^(8/15) 2971215073000327 a001 365435296162/3010349*2537720636^(7/15) 2971215073000327 a001 591286729879/3010349*2537720636^(4/9) 2971215073000327 a001 1548008755920/3010349*2537720636^(2/5) 2971215073000327 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^32 2971215073000327 a001 1836311903/3010349*23725150497407^(1/2) 2971215073000327 a001 1836311903/3010349*73681302247^(8/13) 2971215073000327 a001 1836311903/3010349*10749957122^(2/3) 2971215073000327 a001 6557470319842/3010349*2537720636^(1/3) 2971215073000327 a001 8828119010023369498/2971215073 2971215073000327 a001 1836311903/3010349*4106118243^(16/23) 2971215073000327 a001 4807526976/3010349*45537549124^(10/17) 2971215073000327 a001 4807526976/3010349*312119004989^(6/11) 2971215073000327 a001 4807526976/3010349*14662949395604^(10/21) 2971215073000327 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^30 2971215073000327 a001 4807526976/3010349*192900153618^(5/9) 2971215073000327 a001 4807526976/3010349*28143753123^(3/5) 2971215073000327 a001 4807526976/3010349*10749957122^(5/8) 2971215073000327 a001 12586269025/3010349*17393796001^(4/7) 2971215073000327 a001 365435296162/3010349*17393796001^(3/7) 2971215073000327 a001 12586269025/3010349*14662949395604^(4/9) 2971215073000327 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^28 2971215073000327 a001 12586269025/3010349*73681302247^(7/13) 2971215073000327 a001 10610209857723/3010349*17393796001^(2/7) 2971215073000327 a001 86267571272/3010349*45537549124^(8/17) 2971215073000327 a001 365435296162/3010349*45537549124^(7/17) 2971215073000327 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^26 2971215073000327 a001 1548008755920/3010349*45537549124^(6/17) 2971215073000327 a001 2504730781961/3010349*45537549124^(1/3) 2971215073000327 a001 6557470319842/3010349*45537549124^(5/17) 2971215073000327 a001 32951280099/3010349*73681302247^(1/2) 2971215073000327 a001 86267571272/3010349*14662949395604^(8/21) 2971215073000327 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^24 2971215073000327 a001 225851433717/3010349*312119004989^(2/5) 2971215073000327 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^22 2971215073000327 a001 591286729879/3010349*(1/2+1/2*5^(1/2))^20 2971215073000327 a001 591286729879/3010349*23725150497407^(5/16) 2971215073000327 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^18 2971215073000327 a001 1346269*(1/2+1/2*5^(1/2))^16 2971215073000327 a001 1346269*23725150497407^(1/4) 2971215073000327 a001 10610209857723/3010349*14662949395604^(2/9) 2971215073000327 a001 10610209857723/3010349*(1/2+1/2*5^(1/2))^14 2971215073000327 a001 6557470319842/3010349*(1/2+1/2*5^(1/2))^15 2971215073000327 a001 2504730781961/3010349*(1/2+1/2*5^(1/2))^17 2971215073000327 a001 1548008755920/3010349*192900153618^(1/3) 2971215073000327 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^23 2971215073000327 a001 365435296162/3010349*192900153618^(7/18) 2971215073000327 a001 1346269*73681302247^(4/13) 2971215073000327 a001 86267571272/3010349*73681302247^(6/13) 2971215073000327 a001 53316291173/3010349*312119004989^(5/11) 2971215073000327 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^25 2971215073000327 a001 53316291173/3010349*3461452808002^(5/12) 2971215073000327 a001 20365011074/3010349*45537549124^(9/17) 2971215073000327 a001 6557470319842/3010349*28143753123^(3/10) 2971215073000327 a001 20365011074/3010349*817138163596^(9/19) 2971215073000327 a001 20365011074/3010349*14662949395604^(3/7) 2971215073000327 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^27 2971215073000327 a001 20365011074/3010349*192900153618^(1/2) 2971215073000327 a001 591286729879/3010349*28143753123^(2/5) 2971215073000327 a001 53316291173/3010349*28143753123^(1/2) 2971215073000327 a001 10610209857723/3010349*10749957122^(7/24) 2971215073000327 a001 6557470319842/3010349*10749957122^(5/16) 2971215073000327 a001 1346269*10749957122^(1/3) 2971215073000327 a001 1548008755920/3010349*10749957122^(3/8) 2971215073000327 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^29 2971215073000327 a001 7778742049/3010349*1322157322203^(1/2) 2971215073000327 a001 591286729879/3010349*10749957122^(5/12) 2971215073000327 a001 12586269025/3010349*10749957122^(7/12) 2971215073000327 a001 365435296162/3010349*10749957122^(7/16) 2971215073000327 a001 225851433717/3010349*10749957122^(11/24) 2971215073000327 a001 86267571272/3010349*10749957122^(1/2) 2971215073000327 a001 32951280099/3010349*10749957122^(13/24) 2971215073000327 a001 20365011074/3010349*10749957122^(9/16) 2971215073000327 a001 14472336995893501/4870848 2971215073000327 a001 10610209857723/3010349*4106118243^(7/23) 2971215073000327 a001 1346269*4106118243^(8/23) 2971215073000327 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^31 2971215073000327 a001 2971215073/3010349*9062201101803^(1/2) 2971215073000327 a001 1548008755920/3010349*4106118243^(9/23) 2971215073000327 a001 591286729879/3010349*4106118243^(10/23) 2971215073000327 a001 225851433717/3010349*4106118243^(11/23) 2971215073000327 a001 139583862445/3010349*4106118243^(1/2) 2971215073000327 a001 4807526976/3010349*4106118243^(15/23) 2971215073000327 a001 86267571272/3010349*4106118243^(12/23) 2971215073000327 a001 32951280099/3010349*4106118243^(13/23) 2971215073000327 a001 12586269025/3010349*4106118243^(14/23) 2971215073000327 a001 1134903170/3010349*2537720636^(11/15) 2971215073000327 a001 5456077604923515989/1836311903 2971215073000327 a001 10610209857723/3010349*1568397607^(7/22) 2971215073000327 a001 1346269*1568397607^(4/11) 2971215073000327 a001 1134903170/3010349*45537549124^(11/17) 2971215073000327 a001 1134903170/3010349*312119004989^(3/5) 2971215073000327 a001 1134903170/3010349*14662949395604^(11/21) 2971215073000327 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^33 2971215073000327 a001 1134903170/3010349*192900153618^(11/18) 2971215073000327 a001 1134903170/3010349*10749957122^(11/16) 2971215073000327 a001 1548008755920/3010349*1568397607^(9/22) 2971215073000327 a001 591286729879/3010349*1568397607^(5/11) 2971215073000327 a001 225851433717/3010349*1568397607^(1/2) 2971215073000327 a001 86267571272/3010349*1568397607^(6/11) 2971215073000327 a001 1836311903/3010349*1568397607^(8/11) 2971215073000327 a001 32951280099/3010349*1568397607^(13/22) 2971215073000327 a001 12586269025/3010349*1568397607^(7/11) 2971215073000327 a001 4807526976/3010349*1568397607^(15/22) 2971215073000327 a001 694678733274554160/233802911 2971215073000327 a001 1134903170/3010349*1568397607^(3/4) 2971215073000327 a001 10610209857723/3010349*599074578^(1/3) 2971215073000327 a001 433494437/3010349*2537720636^(7/9) 2971215073000327 a001 6557470319842/3010349*599074578^(5/14) 2971215073000327 a001 1346269*599074578^(8/21) 2971215073000327 a001 433494437/3010349*17393796001^(5/7) 2971215073000327 a001 433494437/3010349*312119004989^(7/11) 2971215073000327 a001 433494437/3010349*14662949395604^(5/9) 2971215073000327 a001 433494437/3010349*(1/2+1/2*5^(1/2))^35 2971215073000327 a001 433494437/3010349*505019158607^(5/8) 2971215073000327 a001 433494437/3010349*28143753123^(7/10) 2971215073000327 a001 1548008755920/3010349*599074578^(3/7) 2971215073000327 a001 591286729879/3010349*599074578^(10/21) 2971215073000327 a001 365435296162/3010349*599074578^(1/2) 2971215073000327 a001 225851433717/3010349*599074578^(11/21) 2971215073000327 a001 86267571272/3010349*599074578^(4/7) 2971215073000327 a001 32951280099/3010349*599074578^(13/21) 2971215073000327 a001 20365011074/3010349*599074578^(9/14) 2971215073000327 a001 701408733/3010349*599074578^(17/21) 2971215073000327 a001 12586269025/3010349*599074578^(2/3) 2971215073000327 a001 4807526976/3010349*599074578^(5/7) 2971215073000327 a001 1836311903/3010349*599074578^(16/21) 2971215073000327 a001 1134903170/3010349*599074578^(11/14) 2971215073000327 a001 796030994547471451/267914296 2971215073000327 a001 433494437/3010349*599074578^(5/6) 2971215073000327 a001 10610209857723/3010349*228826127^(7/20) 2971215073000327 a001 6557470319842/3010349*228826127^(3/8) 2971215073000327 a001 1346269/370248451*14662949395604^(19/21) 2971215073000327 a001 165580141/3010349*(1/2+1/2*5^(1/2))^37 2971215073000327 a001 1346269*228826127^(2/5) 2971215073000327 a001 1548008755920/3010349*228826127^(9/20) 2971215073000327 a001 591286729879/3010349*228826127^(1/2) 2971215073000327 a001 225851433717/3010349*228826127^(11/20) 2971215073000327 a001 86267571272/3010349*228826127^(3/5) 2971215073000327 a001 53316291173/3010349*228826127^(5/8) 2971215073000327 a001 32951280099/3010349*228826127^(13/20) 2971215073000327 a001 12586269025/3010349*228826127^(7/10) 2971215073000327 a001 4807526976/3010349*228826127^(3/4) 2971215073000327 a001 267914296/3010349*228826127^(9/10) 2971215073000327 a001 1836311903/3010349*228826127^(4/5) 2971215073000327 a001 701408733/3010349*228826127^(17/20) 2971215073000327 a001 433494437/3010349*228826127^(7/8) 2971215073000327 a001 14478894467559613/4873055 2971215073000328 a001 10610209857723/3010349*87403803^(7/19) 2971215073000328 a001 63245986/3010349*2537720636^(13/15) 2971215073000328 a001 63245986/3010349*45537549124^(13/17) 2971215073000328 a001 63245986/3010349*14662949395604^(13/21) 2971215073000328 a001 63245986/3010349*(1/2+1/2*5^(1/2))^39 2971215073000328 a001 1346269/141422324*3461452808002^(11/12) 2971215073000328 a001 63245986/3010349*192900153618^(13/18) 2971215073000328 a001 63245986/3010349*73681302247^(3/4) 2971215073000328 a001 63245986/3010349*10749957122^(13/16) 2971215073000328 a001 63245986/3010349*599074578^(13/14) 2971215073000328 a001 1346269*87403803^(8/19) 2971215073000328 a001 1548008755920/3010349*87403803^(9/19) 2971215073000328 a001 956722026041/3010349*87403803^(1/2) 2971215073000328 a001 591286729879/3010349*87403803^(10/19) 2971215073000328 a001 225851433717/3010349*87403803^(11/19) 2971215073000328 a001 86267571272/3010349*87403803^(12/19) 2971215073000328 a001 32951280099/3010349*87403803^(13/19) 2971215073000328 a001 12586269025/3010349*87403803^(14/19) 2971215073000328 a001 4807526976/3010349*87403803^(15/19) 2971215073000328 a001 1836311903/3010349*87403803^(16/19) 2971215073000328 a001 701408733/3010349*87403803^(17/19) 2971215073000328 a001 267914296/3010349*87403803^(18/19) 2971215073000328 a001 116139356908784168/39088169 2971215073000328 a001 24157817/3010349*(1/2+1/2*5^(1/2))^41 2971215073000328 a001 10610209857723/3010349*33385282^(7/18) 2971215073000328 a001 6557470319842/3010349*33385282^(5/12) 2971215073000329 a001 1346269*33385282^(4/9) 2971215073000329 a001 1548008755920/3010349*33385282^(1/2) 2971215073000329 a001 591286729879/3010349*33385282^(5/9) 2971215073000329 a001 365435296162/3010349*33385282^(7/12) 2971215073000329 a001 225851433717/3010349*33385282^(11/18) 2971215073000329 a001 86267571272/3010349*33385282^(2/3) 2971215073000329 a001 32951280099/3010349*33385282^(13/18) 2971215073000329 a001 20365011074/3010349*33385282^(3/4) 2971215073000329 a001 12586269025/3010349*33385282^(7/9) 2971215073000330 a001 4807526976/3010349*33385282^(5/6) 2971215073000330 a001 1836311903/3010349*33385282^(8/9) 2971215073000330 a001 1134903170/3010349*33385282^(11/12) 2971215073000330 a001 701408733/3010349*33385282^(17/18) 2971215073000330 a001 14787095635866877/4976784 2971215073000332 a001 6557470319842/4870847*1860498^(8/15) 2971215073000334 a001 1346269/20633239*817138163596^(17/19) 2971215073000334 a001 1346269/20633239*14662949395604^(17/21) 2971215073000334 a001 1346269/20633239*(1/2+1/2*5^(1/2))^51 2971215073000334 a001 9227465/3010349*(1/2+1/2*5^(1/2))^43 2971215073000334 a001 1346269/20633239*192900153618^(17/18) 2971215073000335 a001 10610209857723/3010349*12752043^(7/17) 2971215073000336 a001 1346269*12752043^(8/17) 2971215073000337 a001 2504730781961/3010349*12752043^(1/2) 2971215073000337 a001 1548008755920/3010349*12752043^(9/17) 2971215073000338 a001 591286729879/3010349*12752043^(10/17) 2971215073000339 a001 225851433717/3010349*12752043^(11/17) 2971215073000340 a001 86267571272/3010349*12752043^(12/17) 2971215073000341 a001 32951280099/3010349*12752043^(13/17) 2971215073000342 a001 12586269025/3010349*12752043^(14/17) 2971215073000343 a001 4807526976/3010349*12752043^(15/17) 2971215073000345 a001 1836311903/3010349*12752043^(16/17) 2971215073000346 a001 16944503814017725/5702887 2971215073000375 a001 3524578/3010349*45537549124^(15/17) 2971215073000375 a001 3524578/3010349*312119004989^(9/11) 2971215073000375 a001 1346269/7881196*14662949395604^(7/9) 2971215073000375 a001 1346269/7881196*(1/2+1/2*5^(1/2))^49 2971215073000375 a001 3524578/3010349*14662949395604^(5/7) 2971215073000375 a001 3524578/3010349*(1/2+1/2*5^(1/2))^45 2971215073000375 a001 1346269/7881196*505019158607^(7/8) 2971215073000375 a001 3524578/3010349*192900153618^(5/6) 2971215073000375 a001 3524578/3010349*28143753123^(9/10) 2971215073000375 a001 3524578/3010349*10749957122^(15/16) 2971215073000382 a001 10610209857723/3010349*4870847^(7/16) 2971215073000389 a001 2504730781961/4870847*1860498^(3/5) 2971215073000390 a001 1346269*4870847^(1/2) 2971215073000398 a001 1548008755920/3010349*4870847^(9/16) 2971215073000406 a001 591286729879/3010349*4870847^(5/8) 2971215073000413 a001 225851433717/3010349*4870847^(11/16) 2971215073000421 a001 86267571272/3010349*4870847^(3/4) 2971215073000429 a001 32951280099/3010349*4870847^(13/16) 2971215073000437 a001 12586269025/3010349*4870847^(7/8) 2971215073000445 a001 4807526976/3010349*4870847^(15/16) 2971215073000447 a001 956722026041/4870847*1860498^(2/3) 2971215073000453 a001 6557471666112/2207 2971215073000475 a001 591286729879/4870847*1860498^(7/10) 2971215073000496 a001 6557470319842/12752043*1860498^(3/5) 2971215073000504 a001 365435296162/4870847*1860498^(11/15) 2971215073000505 a001 10610209857723/7881196*1860498^(8/15) 2971215073000522 a001 10610209857723/20633239*1860498^(3/5) 2971215073000553 a001 2504730781961/12752043*1860498^(2/3) 2971215073000561 a001 139583862445/4870847*1860498^(4/5) 2971215073000562 a001 4052739537881/7881196*1860498^(3/5) 2971215073000569 a001 3278735159921/16692641*1860498^(2/3) 2971215073000573 a001 10610209857723/54018521*1860498^(2/3) 2971215073000579 a001 4052739537881/20633239*1860498^(2/3) 2971215073000582 a001 516002918640/4250681*1860498^(7/10) 2971215073000590 a001 86267571272/4870847*1860498^(5/6) 2971215073000598 a001 4052739537881/33385282*1860498^(7/10) 2971215073000600 a001 3536736619241/29134601*1860498^(7/10) 2971215073000601 a001 6557470319842/54018521*1860498^(7/10) 2971215073000607 a001 2504730781961/20633239*1860498^(7/10) 2971215073000611 a001 956722026041/12752043*1860498^(11/15) 2971215073000618 a001 53316291173/4870847*1860498^(13/15) 2971215073000620 a001 387002188980/1970299*1860498^(2/3) 2971215073000626 a001 2504730781961/33385282*1860498^(11/15) 2971215073000629 a001 6557470319842/87403803*1860498^(11/15) 2971215073000629 a001 10610209857723/141422324*1860498^(11/15) 2971215073000630 a001 4052739537881/54018521*1860498^(11/15) 2971215073000636 a001 140728068720/1875749*1860498^(11/15) 2971215073000647 a001 32951280099/4870847*1860498^(9/10) 2971215073000648 a001 956722026041/7881196*1860498^(7/10) 2971215073000655 a001 1346269/3010349*(1/2+1/2*5^(1/2))^47 2971215073000668 a001 365435296162/12752043*1860498^(4/5) 2971215073000675 a001 20365011074/4870847*1860498^(14/15) 2971215073000677 a001 591286729879/7881196*1860498^(11/15) 2971215073000684 a001 956722026041/33385282*1860498^(4/5) 2971215073000686 a001 2504730781961/87403803*1860498^(4/5) 2971215073000686 a001 6557470319842/228826127*1860498^(4/5) 2971215073000686 a001 10610209857723/370248451*1860498^(4/5) 2971215073000686 a001 4052739537881/141422324*1860498^(4/5) 2971215073000687 a001 1548008755920/54018521*1860498^(4/5) 2971215073000693 a001 591286729879/20633239*1860498^(4/5) 2971215073000697 a001 75283811239/4250681*1860498^(5/6) 2971215073000712 a001 591286729879/33385282*1860498^(5/6) 2971215073000714 a001 516002918640/29134601*1860498^(5/6) 2971215073000715 a001 4052739537881/228826127*1860498^(5/6) 2971215073000715 a001 3536736619241/199691526*1860498^(5/6) 2971215073000715 a001 6557470319842/370248451*1860498^(5/6) 2971215073000715 a001 2504730781961/141422324*1860498^(5/6) 2971215073000716 a001 956722026041/54018521*1860498^(5/6) 2971215073000722 a001 365435296162/20633239*1860498^(5/6) 2971215073000725 a001 139583862445/12752043*1860498^(13/15) 2971215073000728 a001 10610209857723/3010349*1860498^(7/15) 2971215073000733 a001 4052737359573/1364 2971215073000734 a001 225851433717/7881196*1860498^(4/5) 2971215073000741 a001 182717648081/16692641*1860498^(13/15) 2971215073000743 a001 956722026041/87403803*1860498^(13/15) 2971215073000743 a001 2504730781961/228826127*1860498^(13/15) 2971215073000743 a001 3278735159921/299537289*1860498^(13/15) 2971215073000743 a001 10610209857723/969323029*1860498^(13/15) 2971215073000743 a001 4052739537881/370248451*1860498^(13/15) 2971215073000744 a001 387002188980/35355581*1860498^(13/15) 2971215073000744 a001 591286729879/54018521*1860498^(13/15) 2971215073000750 a001 7787980473/711491*1860498^(13/15) 2971215073000754 a001 86267571272/12752043*1860498^(9/10) 2971215073000757 a001 6557470319842/3010349*1860498^(1/2) 2971215073000763 a001 139583862445/7881196*1860498^(5/6) 2971215073000769 a001 32264490531/4769326*1860498^(9/10) 2971215073000772 a001 591286729879/87403803*1860498^(9/10) 2971215073000772 a001 1548008755920/228826127*1860498^(9/10) 2971215073000772 a001 4052739537881/599074578*1860498^(9/10) 2971215073000772 a001 1515744265389/224056801*1860498^(9/10) 2971215073000772 a001 6557470319842/969323029*1860498^(9/10) 2971215073000772 a001 2504730781961/370248451*1860498^(9/10) 2971215073000772 a001 956722026041/141422324*1860498^(9/10) 2971215073000773 a001 365435296162/54018521*1860498^(9/10) 2971215073000779 a001 139583862445/20633239*1860498^(9/10) 2971215073000782 a001 53316291173/12752043*1860498^(14/15) 2971215073000785 a001 1346269*1860498^(8/15) 2971215073000791 a001 21566892818/1970299*1860498^(13/15) 2971215073000798 a001 139583862445/33385282*1860498^(14/15) 2971215073000800 a001 365435296162/87403803*1860498^(14/15) 2971215073000801 a001 956722026041/228826127*1860498^(14/15) 2971215073000801 a001 2504730781961/599074578*1860498^(14/15) 2971215073000801 a001 6557470319842/1568397607*1860498^(14/15) 2971215073000801 a001 10610209857723/2537720636*1860498^(14/15) 2971215073000801 a001 4052739537881/969323029*1860498^(14/15) 2971215073000801 a001 1548008755920/370248451*1860498^(14/15) 2971215073000801 a001 591286729879/141422324*1860498^(14/15) 2971215073000802 a001 225851433717/54018521*1860498^(14/15) 2971215073000808 a001 86267571272/20633239*1860498^(14/15) 2971215073000820 a001 53316291173/7881196*1860498^(9/10) 2971215073000840 a001 2472169789339619/832040 2971215073000842 a001 1548008755920/3010349*1860498^(3/5) 2971215073000848 a001 32951280099/7881196*1860498^(14/15) 2971215073000855 a001 309021223667454/104005 2971215073000858 a001 1236084894669817/416020 2971215073000859 a001 44948541624357/15128 2971215073000865 a001 61804244733491/20801 2971215073000900 a001 591286729879/3010349*1860498^(2/3) 2971215073000906 a001 1236084894669837/416020 2971215073000928 a001 365435296162/3010349*1860498^(7/10) 2971215073000957 a001 225851433717/3010349*1860498^(11/15) 2971215073001014 a001 86267571272/3010349*1860498^(4/5) 2971215073001043 a001 53316291173/3010349*1860498^(5/6) 2971215073001071 a001 32951280099/3010349*1860498^(13/15) 2971215073001100 a001 20365011074/3010349*1860498^(9/10) 2971215073001129 a001 12586269025/3010349*1860498^(14/15) 2971215073001186 a001 2472169789339907/832040 2971215073001388 a001 514229/1860498*45537549124^(16/17) 2971215073001388 a001 514229/1860498*14662949395604^(16/21) 2971215073001388 a001 514229/1860498*(1/2+1/2*5^(1/2))^48 2971215073001388 a001 832040/1149851*(1/2+1/2*5^(1/2))^46 2971215073001388 a001 514229/1860498*192900153618^(8/9) 2971215073001388 a001 514229/1860498*73681302247^(12/13) 2971215073001388 a001 832040/1149851*10749957122^(23/24) 2971215073001711 a001 12586269025/439204*439204^(8/9) 2971215073001919 a001 4000054745115221/1346269 2971215073002083 a001 3278735159921/930249*710647^(1/2) 2971215073002122 a001 514229/4870847*312119004989^(10/11) 2971215073002122 a001 2178309/1149851*312119004989^(4/5) 2971215073002122 a001 514229/4870847*(1/2+1/2*5^(1/2))^50 2971215073002122 a001 514229/4870847*3461452808002^(5/6) 2971215073002122 a001 2178309/1149851*(1/2+1/2*5^(1/2))^44 2971215073002122 a001 2178309/1149851*23725150497407^(11/16) 2971215073002122 a001 2178309/1149851*73681302247^(11/13) 2971215073002122 a001 2178309/1149851*10749957122^(11/12) 2971215073002122 a001 2178309/1149851*4106118243^(22/23) 2971215073002199 a001 5236139639785973/1762289 2971215073002203 a001 1836311903/1149851*7881196^(10/11) 2971215073002208 a001 7778742049/1149851*7881196^(9/11) 2971215073002212 a001 32951280099/1149851*7881196^(8/11) 2971215073002215 a001 86267571272/1149851*7881196^(2/3) 2971215073002216 a001 139583862445/1149851*7881196^(7/11) 2971215073002221 a001 514229*7881196^(6/11) 2971215073002225 a001 2504730781961/1149851*7881196^(5/11) 2971215073002228 a001 5702887/1149851*2537720636^(14/15) 2971215073002228 a001 5702887/1149851*17393796001^(6/7) 2971215073002228 a001 5702887/1149851*45537549124^(14/17) 2971215073002228 a001 514229/12752043*(1/2+1/2*5^(1/2))^52 2971215073002228 a001 514229/12752043*23725150497407^(13/16) 2971215073002228 a001 5702887/1149851*(1/2+1/2*5^(1/2))^42 2971215073002228 a001 5702887/1149851*505019158607^(3/4) 2971215073002228 a001 514229/12752043*505019158607^(13/14) 2971215073002228 a001 5702887/1149851*192900153618^(7/9) 2971215073002228 a001 5702887/1149851*10749957122^(7/8) 2971215073002228 a001 5702887/1149851*4106118243^(21/23) 2971215073002228 a001 5702887/1149851*1568397607^(21/22) 2971215073002229 a001 10610209857723/1149851*7881196^(4/11) 2971215073002240 a001 27416783093600617/9227465 2971215073002241 a001 1836311903/1149851*20633239^(6/7) 2971215073002241 a001 4807526976/1149851*20633239^(4/5) 2971215073002242 a001 20365011074/1149851*20633239^(5/7) 2971215073002243 a001 139583862445/1149851*20633239^(3/5) 2971215073002243 a001 225851433717/1149851*20633239^(4/7) 2971215073002244 a001 2504730781961/1149851*20633239^(3/7) 2971215073002244 a001 4052739537881/1149851*20633239^(2/5) 2971215073002244 a001 14930352/1149851*2537720636^(8/9) 2971215073002244 a001 14930352/1149851*312119004989^(8/11) 2971215073002244 a001 514229/33385282*14662949395604^(6/7) 2971215073002244 a001 514229/33385282*(1/2+1/2*5^(1/2))^54 2971215073002244 a001 14930352/1149851*(1/2+1/2*5^(1/2))^40 2971215073002244 a001 14930352/1149851*23725150497407^(5/8) 2971215073002244 a001 14930352/1149851*73681302247^(10/13) 2971215073002244 a001 14930352/1149851*28143753123^(4/5) 2971215073002244 a001 14930352/1149851*10749957122^(5/6) 2971215073002244 a001 14930352/1149851*4106118243^(20/23) 2971215073002244 a001 14930352/1149851*1568397607^(10/11) 2971215073002244 a001 14930352/1149851*599074578^(20/21) 2971215073002246 a001 71778070001229905/24157817 2971215073002246 a001 39088169/1149851*817138163596^(2/3) 2971215073002246 a001 39088169/1149851*(1/2+1/2*5^(1/2))^38 2971215073002246 a001 39088169/1149851*10749957122^(19/24) 2971215073002246 a001 39088169/1149851*4106118243^(19/23) 2971215073002246 a001 39088169/1149851*1568397607^(19/22) 2971215073002246 a001 39088169/1149851*599074578^(19/21) 2971215073002246 a001 39088169/1149851*228826127^(19/20) 2971215073002247 a001 102334155/1149851*141422324^(12/13) 2971215073002247 a001 93958713455044549/31622993 2971215073002247 a001 433494437/1149851*141422324^(11/13) 2971215073002247 a001 1836311903/1149851*141422324^(10/13) 2971215073002247 a001 7778742049/1149851*141422324^(9/13) 2971215073002247 a001 12586269025/1149851*141422324^(2/3) 2971215073002247 a001 32951280099/1149851*141422324^(8/13) 2971215073002247 a001 139583862445/1149851*141422324^(7/13) 2971215073002247 a001 514229*141422324^(6/13) 2971215073002247 a001 2504730781961/1149851*141422324^(5/13) 2971215073002247 a001 102334155/1149851*2537720636^(4/5) 2971215073002247 a001 102334155/1149851*45537549124^(12/17) 2971215073002247 a001 102334155/1149851*14662949395604^(4/7) 2971215073002247 a001 102334155/1149851*(1/2+1/2*5^(1/2))^36 2971215073002247 a001 102334155/1149851*505019158607^(9/14) 2971215073002247 a001 102334155/1149851*192900153618^(2/3) 2971215073002247 a001 102334155/1149851*73681302247^(9/13) 2971215073002247 a001 102334155/1149851*10749957122^(3/4) 2971215073002247 a001 102334155/1149851*4106118243^(18/23) 2971215073002247 a001 102334155/1149851*1568397607^(9/11) 2971215073002247 a001 102334155/1149851*599074578^(6/7) 2971215073002247 a001 6557470319842/1149851*141422324^(1/3) 2971215073002247 a001 10610209857723/1149851*141422324^(4/13) 2971215073002247 a001 491974210729037389/165580141 2971215073002247 a001 267914296/1149851*45537549124^(2/3) 2971215073002247 a001 514229/599074578*14662949395604^(20/21) 2971215073002247 a001 267914296/1149851*(1/2+1/2*5^(1/2))^34 2971215073002247 a001 267914296/1149851*10749957122^(17/24) 2971215073002247 a001 267914296/1149851*4106118243^(17/23) 2971215073002247 a001 267914296/1149851*1568397607^(17/22) 2971215073002247 a001 102334155/1149851*228826127^(9/10) 2971215073002247 a001 1288005205277023069/433494437 2971215073002247 a001 267914296/1149851*599074578^(17/21) 2971215073002247 a001 701408733/1149851*(1/2+1/2*5^(1/2))^32 2971215073002247 a001 701408733/1149851*23725150497407^(1/2) 2971215073002247 a001 701408733/1149851*505019158607^(4/7) 2971215073002247 a001 701408733/1149851*73681302247^(8/13) 2971215073002247 a001 701408733/1149851*10749957122^(2/3) 2971215073002247 a001 701408733/1149851*4106118243^(16/23) 2971215073002247 a001 1836311903/1149851*2537720636^(2/3) 2971215073002247 a001 99177688385353877/33379505 2971215073002247 a001 701408733/1149851*1568397607^(8/11) 2971215073002247 a001 7778742049/1149851*2537720636^(3/5) 2971215073002247 a001 20365011074/1149851*2537720636^(5/9) 2971215073002247 a001 32951280099/1149851*2537720636^(8/15) 2971215073002247 a001 139583862445/1149851*2537720636^(7/15) 2971215073002247 a001 225851433717/1149851*2537720636^(4/9) 2971215073002247 a001 514229*2537720636^(2/5) 2971215073002247 a001 1836311903/1149851*45537549124^(10/17) 2971215073002247 a001 1836311903/1149851*312119004989^(6/11) 2971215073002247 a001 1836311903/1149851*14662949395604^(10/21) 2971215073002247 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^30 2971215073002247 a001 1836311903/1149851*192900153618^(5/9) 2971215073002247 a001 1836311903/1149851*28143753123^(3/5) 2971215073002247 a001 1836311903/1149851*10749957122^(5/8) 2971215073002247 a001 2504730781961/1149851*2537720636^(1/3) 2971215073002247 a001 10610209857723/1149851*2537720636^(4/15) 2971215073002247 a001 1836311903/1149851*4106118243^(15/23) 2971215073002247 a001 4807526976/1149851*17393796001^(4/7) 2971215073002247 a001 4807526976/1149851*14662949395604^(4/9) 2971215073002247 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^28 2971215073002247 a001 4807526976/1149851*73681302247^(7/13) 2971215073002247 a001 4807526976/1149851*10749957122^(7/12) 2971215073002247 a001 139583862445/1149851*17393796001^(3/7) 2971215073002247 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^26 2971215073002247 a001 12586269025/1149851*73681302247^(1/2) 2971215073002247 a001 4052739537881/1149851*17393796001^(2/7) 2971215073002247 a001 32951280099/1149851*45537549124^(8/17) 2971215073002247 a001 139583862445/1149851*45537549124^(7/17) 2971215073002247 a001 32951280099/1149851*14662949395604^(8/21) 2971215073002247 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^24 2971215073002247 a001 32951280099/1149851*192900153618^(4/9) 2971215073002247 a001 514229*45537549124^(6/17) 2971215073002247 a001 956722026041/1149851*45537549124^(1/3) 2971215073002247 a001 2504730781961/1149851*45537549124^(5/17) 2971215073002247 a001 10610209857723/1149851*45537549124^(4/17) 2971215073002247 a001 32951280099/1149851*73681302247^(6/13) 2971215073002247 a001 86267571272/1149851*312119004989^(2/5) 2971215073002247 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^22 2971215073002247 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^20 2971215073002247 a001 225851433717/1149851*23725150497407^(5/16) 2971215073002247 a001 2504730781961/1149851*312119004989^(3/11) 2971215073002247 a001 514229*(1/2+1/2*5^(1/2))^18 2971215073002247 a001 10610209857723/1149851*817138163596^(4/19) 2971215073002247 a001 1548008755920/1149851*(1/2+1/2*5^(1/2))^16 2971215073002247 a001 4052739537881/1149851*(1/2+1/2*5^(1/2))^14 2971215073002247 a001 10610209857723/1149851*14662949395604^(4/21) 2971215073002247 a001 10610209857723/1149851*(1/2+1/2*5^(1/2))^12 2971215073002247 a001 6557470319842/1149851*(1/2+1/2*5^(1/2))^13 2971215073002247 a001 2504730781961/1149851*(1/2+1/2*5^(1/2))^15 2971215073002247 a001 10610209857723/1149851*192900153618^(2/9) 2971215073002247 a001 139583862445/1149851*14662949395604^(1/3) 2971215073002247 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^21 2971215073002247 a001 139583862445/1149851*192900153618^(7/18) 2971215073002247 a001 10610209857723/1149851*73681302247^(3/13) 2971215073002247 a001 6557470319842/1149851*73681302247^(1/4) 2971215073002247 a001 1548008755920/1149851*73681302247^(4/13) 2971215073002247 a001 225851433717/1149851*73681302247^(5/13) 2971215073002247 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^23 2971215073002247 a001 2504730781961/1149851*28143753123^(3/10) 2971215073002247 a001 20365011074/1149851*312119004989^(5/11) 2971215073002247 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^25 2971215073002247 a001 20365011074/1149851*3461452808002^(5/12) 2971215073002247 a001 225851433717/1149851*28143753123^(2/5) 2971215073002247 a001 20365011074/1149851*28143753123^(1/2) 2971215073002247 a001 10610209857723/1149851*10749957122^(1/4) 2971215073002247 a001 4052739537881/1149851*10749957122^(7/24) 2971215073002247 a001 2504730781961/1149851*10749957122^(5/16) 2971215073002247 a001 1548008755920/1149851*10749957122^(1/3) 2971215073002247 a001 7778742049/1149851*45537549124^(9/17) 2971215073002247 a001 514229*10749957122^(3/8) 2971215073002247 a001 7778742049/1149851*817138163596^(9/19) 2971215073002247 a001 7778742049/1149851*14662949395604^(3/7) 2971215073002247 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^27 2971215073002247 a001 7778742049/1149851*192900153618^(1/2) 2971215073002247 a001 12586269025/1149851*10749957122^(13/24) 2971215073002247 a001 225851433717/1149851*10749957122^(5/12) 2971215073002247 a001 139583862445/1149851*10749957122^(7/16) 2971215073002247 a001 86267571272/1149851*10749957122^(11/24) 2971215073002247 a001 32951280099/1149851*10749957122^(1/2) 2971215073002247 a001 7778742049/1149851*10749957122^(9/16) 2971215073002247 a001 10610209857723/1149851*4106118243^(6/23) 2971215073002247 a001 4052739537881/1149851*4106118243^(7/23) 2971215073002247 a001 1548008755920/1149851*4106118243^(8/23) 2971215073002247 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^29 2971215073002247 a001 2971215073/1149851*1322157322203^(1/2) 2971215073002247 a001 514229*4106118243^(9/23) 2971215073002247 a001 225851433717/1149851*4106118243^(10/23) 2971215073002247 a001 4807526976/1149851*4106118243^(14/23) 2971215073002247 a001 86267571272/1149851*4106118243^(11/23) 2971215073002247 a001 53316291173/1149851*4106118243^(1/2) 2971215073002247 a001 32951280099/1149851*4106118243^(12/23) 2971215073002247 a001 12586269025/1149851*4106118243^(13/23) 2971215073002247 a001 5456077604927040567/1836311903 2971215073002247 a001 10610209857723/1149851*1568397607^(3/11) 2971215073002247 a001 4052739537881/1149851*1568397607^(7/22) 2971215073002247 a001 1548008755920/1149851*1568397607^(4/11) 2971215073002247 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^31 2971215073002247 a001 1134903170/1149851*9062201101803^(1/2) 2971215073002247 a001 514229*1568397607^(9/22) 2971215073002247 a001 225851433717/1149851*1568397607^(5/11) 2971215073002247 a001 86267571272/1149851*1568397607^(1/2) 2971215073002247 a001 1836311903/1149851*1568397607^(15/22) 2971215073002247 a001 32951280099/1149851*1568397607^(6/11) 2971215073002247 a001 12586269025/1149851*1568397607^(13/22) 2971215073002247 a001 4807526976/1149851*1568397607^(7/11) 2971215073002247 a001 2084036199825008749/701408733 2971215073002247 a001 10610209857723/1149851*599074578^(2/7) 2971215073002247 a001 4052739537881/1149851*599074578^(1/3) 2971215073002247 a001 433494437/1149851*2537720636^(11/15) 2971215073002247 a001 2504730781961/1149851*599074578^(5/14) 2971215073002247 a001 1548008755920/1149851*599074578^(8/21) 2971215073002247 a001 433494437/1149851*45537549124^(11/17) 2971215073002247 a001 433494437/1149851*312119004989^(3/5) 2971215073002247 a001 433494437/1149851*14662949395604^(11/21) 2971215073002247 a001 433494437/1149851*(1/2+1/2*5^(1/2))^33 2971215073002247 a001 433494437/1149851*192900153618^(11/18) 2971215073002247 a001 433494437/1149851*10749957122^(11/16) 2971215073002247 a001 514229*599074578^(3/7) 2971215073002247 a001 225851433717/1149851*599074578^(10/21) 2971215073002247 a001 433494437/1149851*1568397607^(3/4) 2971215073002247 a001 139583862445/1149851*599074578^(1/2) 2971215073002247 a001 86267571272/1149851*599074578^(11/21) 2971215073002247 a001 32951280099/1149851*599074578^(4/7) 2971215073002247 a001 701408733/1149851*599074578^(16/21) 2971215073002247 a001 12586269025/1149851*599074578^(13/21) 2971215073002247 a001 7778742049/1149851*599074578^(9/14) 2971215073002247 a001 4807526976/1149851*599074578^(2/3) 2971215073002247 a001 1836311903/1149851*599074578^(5/7) 2971215073002247 a001 99503874318498210/33489287 2971215073002247 a001 433494437/1149851*599074578^(11/14) 2971215073002247 a001 10610209857723/1149851*228826127^(3/10) 2971215073002247 a001 4052739537881/1149851*228826127^(7/20) 2971215073002247 a001 2504730781961/1149851*228826127^(3/8) 2971215073002247 a001 165580141/1149851*2537720636^(7/9) 2971215073002247 a001 165580141/1149851*17393796001^(5/7) 2971215073002247 a001 165580141/1149851*312119004989^(7/11) 2971215073002247 a001 165580141/1149851*14662949395604^(5/9) 2971215073002247 a001 165580141/1149851*(1/2+1/2*5^(1/2))^35 2971215073002247 a001 165580141/1149851*505019158607^(5/8) 2971215073002247 a001 165580141/1149851*28143753123^(7/10) 2971215073002247 a001 1548008755920/1149851*228826127^(2/5) 2971215073002247 a001 514229*228826127^(9/20) 2971215073002247 a001 225851433717/1149851*228826127^(1/2) 2971215073002247 a001 165580141/1149851*599074578^(5/6) 2971215073002247 a001 86267571272/1149851*228826127^(11/20) 2971215073002247 a001 32951280099/1149851*228826127^(3/5) 2971215073002247 a001 20365011074/1149851*228826127^(5/8) 2971215073002247 a001 12586269025/1149851*228826127^(13/20) 2971215073002247 a001 4807526976/1149851*228826127^(7/10) 2971215073002247 a001 267914296/1149851*228826127^(17/20) 2971215073002247 a001 1836311903/1149851*228826127^(3/4) 2971215073002247 a001 701408733/1149851*228826127^(4/5) 2971215073002247 a001 304056783818948291/102334155 2971215073002247 a001 165580141/1149851*228826127^(7/8) 2971215073002247 a001 10610209857723/1149851*87403803^(6/19) 2971215073002247 a001 4052739537881/1149851*87403803^(7/19) 2971215073002247 a001 514229/141422324*14662949395604^(19/21) 2971215073002247 a001 63245986/1149851*(1/2+1/2*5^(1/2))^37 2971215073002247 a001 1548008755920/1149851*87403803^(8/19) 2971215073002247 a001 514229*87403803^(9/19) 2971215073002247 a001 365435296162/1149851*87403803^(1/2) 2971215073002247 a001 225851433717/1149851*87403803^(10/19) 2971215073002247 a001 86267571272/1149851*87403803^(11/19) 2971215073002247 a001 32951280099/1149851*87403803^(12/19) 2971215073002247 a001 12586269025/1149851*87403803^(13/19) 2971215073002247 a001 4807526976/1149851*87403803^(14/19) 2971215073002247 a001 1836311903/1149851*87403803^(15/19) 2971215073002247 a001 102334155/1149851*87403803^(18/19) 2971215073002247 a001 701408733/1149851*87403803^(16/19) 2971215073002247 a001 267914296/1149851*87403803^(17/19) 2971215073002247 a001 116139356908859193/39088169 2971215073002248 a001 10610209857723/1149851*33385282^(1/3) 2971215073002248 a001 24157817/1149851*2537720636^(13/15) 2971215073002248 a001 24157817/1149851*45537549124^(13/17) 2971215073002248 a001 24157817/1149851*14662949395604^(13/21) 2971215073002248 a001 24157817/1149851*(1/2+1/2*5^(1/2))^39 2971215073002248 a001 24157817/1149851*192900153618^(13/18) 2971215073002248 a001 24157817/1149851*73681302247^(3/4) 2971215073002248 a001 24157817/1149851*10749957122^(13/16) 2971215073002248 a001 24157817/1149851*599074578^(13/14) 2971215073002248 a001 4052739537881/1149851*33385282^(7/18) 2971215073002248 a001 2504730781961/1149851*33385282^(5/12) 2971215073002248 a001 1548008755920/1149851*33385282^(4/9) 2971215073002248 a001 514229*33385282^(1/2) 2971215073002248 a001 225851433717/1149851*33385282^(5/9) 2971215073002248 a001 139583862445/1149851*33385282^(7/12) 2971215073002248 a001 86267571272/1149851*33385282^(11/18) 2971215073002249 a001 32951280099/1149851*33385282^(2/3) 2971215073002249 a001 12586269025/1149851*33385282^(13/18) 2971215073002249 a001 7778742049/1149851*33385282^(3/4) 2971215073002249 a001 4807526976/1149851*33385282^(7/9) 2971215073002249 a001 1836311903/1149851*33385282^(5/6) 2971215073002249 a001 701408733/1149851*33385282^(8/9) 2971215073002249 a001 433494437/1149851*33385282^(11/12) 2971215073002249 a001 267914296/1149851*33385282^(17/18) 2971215073002249 a001 17167680691807/5778 2971215073002253 a001 10610209857723/1149851*12752043^(6/17) 2971215073002254 a001 514229/20633239*(1/2+1/2*5^(1/2))^53 2971215073002254 a001 9227465/1149851*(1/2+1/2*5^(1/2))^41 2971215073002254 a001 4052739537881/1149851*12752043^(7/17) 2971215073002255 a001 1548008755920/1149851*12752043^(8/17) 2971215073002256 a001 956722026041/1149851*12752043^(1/2) 2971215073002256 a001 514229*12752043^(9/17) 2971215073002257 a001 225851433717/1149851*12752043^(10/17) 2971215073002259 a001 86267571272/1149851*12752043^(11/17) 2971215073002260 a001 32951280099/1149851*12752043^(12/17) 2971215073002261 a001 12586269025/1149851*12752043^(13/17) 2971215073002262 a001 4807526976/1149851*12752043^(14/17) 2971215073002263 a001 1836311903/1149851*12752043^(15/17) 2971215073002264 a001 701408733/1149851*12752043^(16/17) 2971215073002265 a001 16944503814028671/5702887 2971215073002294 a001 10610209857723/1149851*4870847^(3/8) 2971215073002295 a001 514229/7881196*817138163596^(17/19) 2971215073002295 a001 514229/7881196*14662949395604^(17/21) 2971215073002295 a001 514229/7881196*(1/2+1/2*5^(1/2))^51 2971215073002295 a001 3524578/1149851*(1/2+1/2*5^(1/2))^43 2971215073002295 a001 514229/7881196*192900153618^(17/18) 2971215073002302 a001 4052739537881/1149851*4870847^(7/16) 2971215073002309 a001 1548008755920/1149851*4870847^(1/2) 2971215073002317 a001 514229*4870847^(9/16) 2971215073002325 a001 225851433717/1149851*4870847^(5/8) 2971215073002333 a001 86267571272/1149851*4870847^(11/16) 2971215073002341 a001 32951280099/1149851*4870847^(3/4) 2971215073002349 a001 12586269025/1149851*4870847^(13/16) 2971215073002356 a001 4807526976/1149851*4870847^(7/8) 2971215073002364 a001 1836311903/1149851*4870847^(15/16) 2971215073002372 a001 6472224534456725/2178309 2971215073002503 a001 2504730781961/1860498*710647^(4/7) 2971215073002575 a001 1346269/1149851*45537549124^(15/17) 2971215073002575 a001 1346269/1149851*312119004989^(9/11) 2971215073002575 a001 514229/3010349*(1/2+1/2*5^(1/2))^49 2971215073002575 a001 1346269/1149851*14662949395604^(5/7) 2971215073002575 a001 1346269/1149851*(1/2+1/2*5^(1/2))^45 2971215073002575 a001 514229/3010349*505019158607^(7/8) 2971215073002575 a001 1346269/1149851*192900153618^(5/6) 2971215073002575 a001 1346269/1149851*28143753123^(9/10) 2971215073002575 a001 1346269/1149851*10749957122^(15/16) 2971215073002590 a001 10610209857723/1149851*1860498^(2/5) 2971215073002647 a001 4052739537881/1149851*1860498^(7/15) 2971215073002676 a001 2504730781961/1149851*1860498^(1/2) 2971215073002705 a001 1548008755920/1149851*1860498^(8/15) 2971215073002762 a001 514229*1860498^(3/5) 2971215073002819 a001 225851433717/1149851*1860498^(2/3) 2971215073002848 a001 139583862445/1149851*1860498^(7/10) 2971215073002876 a001 86267571272/1149851*1860498^(11/15) 2971215073002923 a001 956722026041/1860498*710647^(9/14) 2971215073002933 a001 32951280099/1149851*1860498^(4/5) 2971215073002962 a001 20365011074/1149851*1860498^(5/6) 2971215073002991 a001 12586269025/1149851*1860498^(13/15) 2971215073003019 a001 7778742049/1149851*1860498^(9/10) 2971215073003048 a001 4807526976/1149851*1860498^(14/15) 2971215073003105 a001 309021223667688/104005 2971215073003236 a001 6557470319842/4870847*710647^(4/7) 2971215073003269 a001 10610209857723/3010349*710647^(1/2) 2971215073003344 a001 182717648081/930249*710647^(5/7) 2971215073003409 a001 10610209857723/7881196*710647^(4/7) 2971215073003422 a001 53316291173/439204*439204^(7/9) 2971215073003554 a001 75283811239/620166*710647^(3/4) 2971215073003656 a001 2504730781961/4870847*710647^(9/14) 2971215073003689 a001 1346269*710647^(4/7) 2971215073003763 a001 6557470319842/12752043*710647^(9/14) 2971215073003764 a001 139583862445/1860498*710647^(11/14) 2971215073003789 a001 10610209857723/20633239*710647^(9/14) 2971215073003830 a001 4052739537881/7881196*710647^(9/14) 2971215073004077 a001 956722026041/4870847*710647^(5/7) 2971215073004110 a001 1548008755920/3010349*710647^(9/14) 2971215073004184 a001 2504730781961/12752043*710647^(5/7) 2971215073004184 a001 53316291173/1860498*710647^(6/7) 2971215073004199 a001 3278735159921/16692641*710647^(5/7) 2971215073004203 a001 10610209857723/54018521*710647^(5/7) 2971215073004209 a001 4052739537881/20633239*710647^(5/7) 2971215073004250 a001 387002188980/1970299*710647^(5/7) 2971215073004287 a001 591286729879/4870847*710647^(3/4) 2971215073004394 a001 516002918640/4250681*710647^(3/4) 2971215073004409 a001 4052739537881/33385282*710647^(3/4) 2971215073004412 a001 3536736619241/29134601*710647^(3/4) 2971215073004413 a001 6557470319842/54018521*710647^(3/4) 2971215073004419 a001 2504730781961/20633239*710647^(3/4) 2971215073004460 a001 956722026041/7881196*710647^(3/4) 2971215073004494 a001 514229/1149851*(1/2+1/2*5^(1/2))^47 2971215073004497 a001 365435296162/4870847*710647^(11/14) 2971215073004530 a001 591286729879/3010349*710647^(5/7) 2971215073004604 a001 956722026041/12752043*710647^(11/14) 2971215073004604 a001 10182505537/930249*710647^(13/14) 2971215073004619 a001 2504730781961/33385282*710647^(11/14) 2971215073004622 a001 6557470319842/87403803*710647^(11/14) 2971215073004622 a001 10610209857723/141422324*710647^(11/14) 2971215073004623 a001 4052739537881/54018521*710647^(11/14) 2971215073004629 a001 140728068720/1875749*710647^(11/14) 2971215073004670 a001 591286729879/7881196*710647^(11/14) 2971215073004740 a001 365435296162/3010349*710647^(3/4) 2971215073004768 a001 10610209857723/1149851*710647^(3/7) 2971215073004917 a001 139583862445/4870847*710647^(6/7) 2971215073004950 a001 225851433717/3010349*710647^(11/14) 2971215073005024 a001 365435296162/12752043*710647^(6/7) 2971215073005024 a001 944284833566800/317811 2971215073005040 a001 956722026041/33385282*710647^(6/7) 2971215073005042 a001 2504730781961/87403803*710647^(6/7) 2971215073005042 a001 6557470319842/228826127*710647^(6/7) 2971215073005042 a001 10610209857723/370248451*710647^(6/7) 2971215073005043 a001 4052739537881/141422324*710647^(6/7) 2971215073005043 a001 1548008755920/54018521*710647^(6/7) 2971215073005049 a001 591286729879/20633239*710647^(6/7) 2971215073005090 a001 225851433717/7881196*710647^(6/7) 2971215073005134 a001 225851433717/439204*439204^(2/3) 2971215073005188 a001 4052739537881/1149851*710647^(1/2) 2971215073005337 a001 53316291173/4870847*710647^(13/14) 2971215073005370 a001 86267571272/3010349*710647^(6/7) 2971215073005444 a001 139583862445/12752043*710647^(13/14) 2971215073005460 a001 182717648081/16692641*710647^(13/14) 2971215073005462 a001 956722026041/87403803*710647^(13/14) 2971215073005463 a001 2504730781961/228826127*710647^(13/14) 2971215073005463 a001 3278735159921/299537289*710647^(13/14) 2971215073005463 a001 10610209857723/969323029*710647^(13/14) 2971215073005463 a001 4052739537881/370248451*710647^(13/14) 2971215073005463 a001 387002188980/35355581*710647^(13/14) 2971215073005464 a001 591286729879/54018521*710647^(13/14) 2971215073005470 a001 7787980473/711491*710647^(13/14) 2971215073005510 a001 21566892818/1970299*710647^(13/14) 2971215073005609 a001 1548008755920/1149851*710647^(4/7) 2971215073005758 a001 314761611189011/105937 2971215073005790 a001 32951280099/3010349*710647^(13/14) 2971215073005865 a001 944284833567067/317811 2971215073005880 a001 314761611189024/105937 2971215073005884 a001 944284833567073/317811 2971215073005890 a001 24212431629925/8149 2971215073005931 a001 2504734306544/843 2971215073006029 a001 514229*710647^(9/14) 2971215073006211 a001 314761611189059/105937 2971215073006449 a001 225851433717/1149851*710647^(5/7) 2971215073006659 a001 139583862445/1149851*710647^(3/4) 2971215073006845 a001 956722026041/439204*439204^(5/9) 2971215073006869 a001 86267571272/1149851*710647^(11/14) 2971215073007290 a001 32951280099/1149851*710647^(6/7) 2971215073007710 a001 12586269025/1149851*710647^(13/14) 2971215073008130 a001 944284833567787/317811 2971215073008557 a001 4052739537881/439204*439204^(4/9) 2971215073009519 a001 196418/710647*45537549124^(16/17) 2971215073009519 a001 196418/710647*14662949395604^(16/21) 2971215073009519 a001 196418/710647*(1/2+1/2*5^(1/2))^48 2971215073009519 a001 317811/439204*(1/2+1/2*5^(1/2))^46 2971215073009519 a001 196418/710647*192900153618^(8/9) 2971215073009519 a001 196418/710647*73681302247^(12/13) 2971215073009519 a001 317811/439204*10749957122^(23/24) 2971215073012728 a001 6557470319842/710647*271443^(6/13) 2971215073013155 a001 1527884955780482/514229 2971215073014279 a001 4052739537881/710647*271443^(1/2) 2971215073014544 a001 98209/930249*312119004989^(10/11) 2971215073014544 a001 98209/930249*(1/2+1/2*5^(1/2))^50 2971215073014544 a001 98209/930249*3461452808002^(5/6) 2971215073014544 a001 208010/109801*312119004989^(4/5) 2971215073014544 a001 208010/109801*(1/2+1/2*5^(1/2))^44 2971215073014544 a001 208010/109801*23725150497407^(11/16) 2971215073014544 a001 208010/109801*73681302247^(11/13) 2971215073014544 a001 208010/109801*10749957122^(11/12) 2971215073014544 a001 208010/109801*4106118243^(22/23) 2971215073015074 a001 4000054745132932/1346269 2971215073015277 a001 2178309/439204*2537720636^(14/15) 2971215073015277 a001 2178309/439204*17393796001^(6/7) 2971215073015277 a001 2178309/439204*45537549124^(14/17) 2971215073015277 a001 196418/4870847*(1/2+1/2*5^(1/2))^52 2971215073015277 a001 196418/4870847*23725150497407^(13/16) 2971215073015277 a001 196418/4870847*505019158607^(13/14) 2971215073015277 a001 2178309/439204*14662949395604^(2/3) 2971215073015277 a001 2178309/439204*(1/2+1/2*5^(1/2))^42 2971215073015277 a001 2178309/439204*505019158607^(3/4) 2971215073015277 a001 2178309/439204*192900153618^(7/9) 2971215073015277 a001 2178309/439204*10749957122^(7/8) 2971215073015277 a001 2178309/439204*4106118243^(21/23) 2971215073015277 a001 2178309/439204*1568397607^(21/22) 2971215073015355 a001 5236139639809157/1762289 2971215073015359 a001 701408733/439204*7881196^(10/11) 2971215073015363 a001 2971215073/439204*7881196^(9/11) 2971215073015368 a001 12586269025/439204*7881196^(8/11) 2971215073015370 a001 32951280099/439204*7881196^(2/3) 2971215073015372 a001 53316291173/439204*7881196^(7/11) 2971215073015376 a001 225851433717/439204*7881196^(6/11) 2971215073015381 a001 956722026041/439204*7881196^(5/11) 2971215073015384 a001 5702887/439204*2537720636^(8/9) 2971215073015384 a001 196418/12752043*14662949395604^(6/7) 2971215073015384 a001 196418/12752043*(1/2+1/2*5^(1/2))^54 2971215073015384 a001 5702887/439204*312119004989^(8/11) 2971215073015384 a001 5702887/439204*(1/2+1/2*5^(1/2))^40 2971215073015384 a001 5702887/439204*23725150497407^(5/8) 2971215073015384 a001 5702887/439204*73681302247^(10/13) 2971215073015384 a001 5702887/439204*28143753123^(4/5) 2971215073015384 a001 5702887/439204*10749957122^(5/6) 2971215073015384 a001 5702887/439204*4106118243^(20/23) 2971215073015384 a001 5702887/439204*1568397607^(10/11) 2971215073015384 a001 5702887/439204*599074578^(20/21) 2971215073015385 a001 4052739537881/439204*7881196^(4/11) 2971215073015386 a001 3278735159921/219602*7881196^(1/3) 2971215073015395 a001 5483356618744402/1845493 2971215073015396 a001 701408733/439204*20633239^(6/7) 2971215073015397 a001 1836311903/439204*20633239^(4/5) 2971215073015397 a001 7778742049/439204*20633239^(5/7) 2971215073015398 a001 53316291173/439204*20633239^(3/5) 2971215073015398 a001 196418*20633239^(4/7) 2971215073015399 a001 956722026041/439204*20633239^(3/7) 2971215073015400 a001 387002188980/109801*20633239^(2/5) 2971215073015400 a001 98209/16692641*14662949395604^(8/9) 2971215073015400 a001 98209/16692641*(1/2+1/2*5^(1/2))^56 2971215073015400 a001 196452/5779*817138163596^(2/3) 2971215073015400 a001 196452/5779*(1/2+1/2*5^(1/2))^38 2971215073015400 a001 196452/5779*10749957122^(19/24) 2971215073015400 a001 196452/5779*4106118243^(19/23) 2971215073015400 a001 196452/5779*1568397607^(19/22) 2971215073015400 a001 196452/5779*599074578^(19/21) 2971215073015400 a001 196452/5779*228826127^(19/20) 2971215073015400 a001 10610209857723/439204*20633239^(2/7) 2971215073015401 a001 71778070001547716/24157817 2971215073015402 a001 39088169/439204*141422324^(12/13) 2971215073015402 a001 39088169/439204*2537720636^(4/5) 2971215073015402 a001 39088169/439204*45537549124^(12/17) 2971215073015402 a001 39088169/439204*14662949395604^(4/7) 2971215073015402 a001 39088169/439204*(1/2+1/2*5^(1/2))^36 2971215073015402 a001 39088169/439204*505019158607^(9/14) 2971215073015402 a001 39088169/439204*192900153618^(2/3) 2971215073015402 a001 39088169/439204*73681302247^(9/13) 2971215073015402 a001 39088169/439204*10749957122^(3/4) 2971215073015402 a001 39088169/439204*4106118243^(18/23) 2971215073015402 a001 39088169/439204*1568397607^(9/11) 2971215073015402 a001 39088169/439204*599074578^(6/7) 2971215073015402 a001 39088169/439204*228826127^(9/10) 2971215073015402 a001 93958713455460569/31622993 2971215073015402 a001 701408733/439204*141422324^(10/13) 2971215073015402 a001 165580141/439204*141422324^(11/13) 2971215073015402 a001 2971215073/439204*141422324^(9/13) 2971215073015402 a001 1201881744/109801*141422324^(2/3) 2971215073015402 a001 12586269025/439204*141422324^(8/13) 2971215073015402 a001 53316291173/439204*141422324^(7/13) 2971215073015402 a001 225851433717/439204*141422324^(6/13) 2971215073015402 a001 956722026041/439204*141422324^(5/13) 2971215073015402 a001 102334155/439204*45537549124^(2/3) 2971215073015402 a001 196418/228826127*14662949395604^(20/21) 2971215073015402 a001 102334155/439204*(1/2+1/2*5^(1/2))^34 2971215073015402 a001 102334155/439204*10749957122^(17/24) 2971215073015402 a001 102334155/439204*4106118243^(17/23) 2971215073015402 a001 102334155/439204*1568397607^(17/22) 2971215073015402 a001 102334155/439204*599074578^(17/21) 2971215073015402 a001 2504730781961/439204*141422324^(1/3) 2971215073015402 a001 4052739537881/439204*141422324^(4/13) 2971215073015402 a001 491974210731215698/165580141 2971215073015402 a001 39088169/439204*87403803^(18/19) 2971215073015402 a001 102334155/439204*228826127^(17/20) 2971215073015402 a001 66978574/109801*(1/2+1/2*5^(1/2))^32 2971215073015402 a001 66978574/109801*23725150497407^(1/2) 2971215073015402 a001 66978574/109801*73681302247^(8/13) 2971215073015402 a001 66978574/109801*10749957122^(2/3) 2971215073015402 a001 66978574/109801*4106118243^(16/23) 2971215073015402 a001 66978574/109801*1568397607^(8/11) 2971215073015402 a001 1288005205282725956/433494437 2971215073015402 a001 66978574/109801*599074578^(16/21) 2971215073015402 a001 701408733/439204*2537720636^(2/3) 2971215073015402 a001 701408733/439204*45537549124^(10/17) 2971215073015402 a001 701408733/439204*312119004989^(6/11) 2971215073015402 a001 701408733/439204*14662949395604^(10/21) 2971215073015402 a001 701408733/439204*(1/2+1/2*5^(1/2))^30 2971215073015402 a001 701408733/439204*192900153618^(5/9) 2971215073015402 a001 701408733/439204*28143753123^(3/5) 2971215073015402 a001 701408733/439204*10749957122^(5/8) 2971215073015402 a001 701408733/439204*4106118243^(15/23) 2971215073015402 a001 701408733/439204*1568397607^(15/22) 2971215073015402 a001 12586269025/439204*2537720636^(8/15) 2971215073015402 a001 7778742049/439204*2537720636^(5/9) 2971215073015402 a001 53316291173/439204*2537720636^(7/15) 2971215073015402 a001 2971215073/439204*2537720636^(3/5) 2971215073015402 a001 196418*2537720636^(4/9) 2971215073015402 a001 225851433717/439204*2537720636^(2/5) 2971215073015402 a001 1836311903/439204*17393796001^(4/7) 2971215073015402 a001 1836311903/439204*14662949395604^(4/9) 2971215073015402 a001 1836311903/439204*(1/2+1/2*5^(1/2))^28 2971215073015402 a001 1836311903/439204*505019158607^(1/2) 2971215073015402 a001 1836311903/439204*73681302247^(7/13) 2971215073015402 a001 1836311903/439204*10749957122^(7/12) 2971215073015402 a001 956722026041/439204*2537720636^(1/3) 2971215073015402 a001 4052739537881/439204*2537720636^(4/15) 2971215073015402 a001 10610209857723/439204*2537720636^(2/9) 2971215073015402 a001 1836311903/439204*4106118243^(14/23) 2971215073015402 a001 1201881744/109801*(1/2+1/2*5^(1/2))^26 2971215073015402 a001 1201881744/109801*73681302247^(1/2) 2971215073015402 a001 1201881744/109801*10749957122^(13/24) 2971215073015402 a001 12586269025/439204*45537549124^(8/17) 2971215073015402 a001 53316291173/439204*17393796001^(3/7) 2971215073015402 a001 12586269025/439204*14662949395604^(8/21) 2971215073015402 a001 12586269025/439204*(1/2+1/2*5^(1/2))^24 2971215073015402 a001 12586269025/439204*192900153618^(4/9) 2971215073015402 a001 12586269025/439204*73681302247^(6/13) 2971215073015402 a001 387002188980/109801*17393796001^(2/7) 2971215073015402 a001 32951280099/439204*312119004989^(2/5) 2971215073015402 a001 32951280099/439204*(1/2+1/2*5^(1/2))^22 2971215073015402 a001 225851433717/439204*45537549124^(6/17) 2971215073015402 a001 182717648081/219602*45537549124^(1/3) 2971215073015402 a001 956722026041/439204*45537549124^(5/17) 2971215073015402 a001 53316291173/439204*45537549124^(7/17) 2971215073015402 a001 4052739537881/439204*45537549124^(4/17) 2971215073015402 a001 196418*(1/2+1/2*5^(1/2))^20 2971215073015402 a001 196418*23725150497407^(5/16) 2971215073015402 a001 196418*505019158607^(5/14) 2971215073015402 a001 225851433717/439204*14662949395604^(2/7) 2971215073015402 a001 225851433717/439204*(1/2+1/2*5^(1/2))^18 2971215073015402 a001 3278735159921/219602*312119004989^(1/5) 2971215073015402 a001 10610209857723/439204*312119004989^(2/11) 2971215073015402 a001 387002188980/109801*(1/2+1/2*5^(1/2))^14 2971215073015402 a001 10610209857723/439204*(1/2+1/2*5^(1/2))^10 2971215073015402 a001 2504730781961/439204*(1/2+1/2*5^(1/2))^13 2971215073015402 a001 225851433717/439204*192900153618^(1/3) 2971215073015402 a001 139583862445/439204*817138163596^(1/3) 2971215073015402 a001 139583862445/439204*(1/2+1/2*5^(1/2))^19 2971215073015402 a001 4052739537881/439204*73681302247^(3/13) 2971215073015402 a001 196418*73681302247^(5/13) 2971215073015402 a001 591286729879/439204*73681302247^(4/13) 2971215073015402 a001 53316291173/439204*14662949395604^(1/3) 2971215073015402 a001 53316291173/439204*192900153618^(7/18) 2971215073015402 a001 10610209857723/439204*28143753123^(1/5) 2971215073015402 a001 956722026041/439204*28143753123^(3/10) 2971215073015402 a001 196418*28143753123^(2/5) 2971215073015402 a001 10182505537/219602*(1/2+1/2*5^(1/2))^23 2971215073015402 a001 10610209857723/439204*10749957122^(5/24) 2971215073015402 a001 4052739537881/439204*10749957122^(1/4) 2971215073015402 a001 387002188980/109801*10749957122^(7/24) 2971215073015402 a001 956722026041/439204*10749957122^(5/16) 2971215073015402 a001 591286729879/439204*10749957122^(1/3) 2971215073015402 a001 12586269025/439204*10749957122^(1/2) 2971215073015402 a001 225851433717/439204*10749957122^(3/8) 2971215073015402 a001 7778742049/439204*312119004989^(5/11) 2971215073015402 a001 7778742049/439204*(1/2+1/2*5^(1/2))^25 2971215073015402 a001 7778742049/439204*3461452808002^(5/12) 2971215073015402 a001 196418*10749957122^(5/12) 2971215073015402 a001 32951280099/439204*10749957122^(11/24) 2971215073015402 a001 53316291173/439204*10749957122^(7/16) 2971215073015402 a001 7778742049/439204*28143753123^(1/2) 2971215073015402 a001 10610209857723/439204*4106118243^(5/23) 2971215073015402 a001 4052739537881/439204*4106118243^(6/23) 2971215073015402 a001 387002188980/109801*4106118243^(7/23) 2971215073015402 a001 591286729879/439204*4106118243^(8/23) 2971215073015402 a001 2971215073/439204*45537549124^(9/17) 2971215073015402 a001 2971215073/439204*14662949395604^(3/7) 2971215073015402 a001 2971215073/439204*(1/2+1/2*5^(1/2))^27 2971215073015402 a001 2971215073/439204*192900153618^(1/2) 2971215073015402 a001 225851433717/439204*4106118243^(9/23) 2971215073015402 a001 1201881744/109801*4106118243^(13/23) 2971215073015402 a001 196418*4106118243^(10/23) 2971215073015402 a001 2971215073/439204*10749957122^(9/16) 2971215073015402 a001 32951280099/439204*4106118243^(11/23) 2971215073015402 a001 12586269025/439204*4106118243^(12/23) 2971215073015402 a001 10182505537/219602*4106118243^(1/2) 2971215073015402 a001 10610209857723/439204*1568397607^(5/22) 2971215073015402 a001 3278735159921/219602*1568397607^(1/4) 2971215073015402 a001 4052739537881/439204*1568397607^(3/11) 2971215073015402 a001 387002188980/109801*1568397607^(7/22) 2971215073015402 a001 591286729879/439204*1568397607^(4/11) 2971215073015402 a001 567451585/219602*(1/2+1/2*5^(1/2))^29 2971215073015402 a001 567451585/219602*1322157322203^(1/2) 2971215073015402 a001 225851433717/439204*1568397607^(9/22) 2971215073015402 a001 196418*1568397607^(5/11) 2971215073015402 a001 1836311903/439204*1568397607^(7/11) 2971215073015402 a001 32951280099/439204*1568397607^(1/2) 2971215073015402 a001 12586269025/439204*1568397607^(6/11) 2971215073015402 a001 1201881744/109801*1568397607^(13/22) 2971215073015402 a001 694678733278078738/233802911 2971215073015402 a001 10610209857723/439204*599074578^(5/21) 2971215073015402 a001 4052739537881/439204*599074578^(2/7) 2971215073015402 a001 387002188980/109801*599074578^(1/3) 2971215073015402 a001 956722026041/439204*599074578^(5/14) 2971215073015402 a001 591286729879/439204*599074578^(8/21) 2971215073015402 a001 433494437/439204*(1/2+1/2*5^(1/2))^31 2971215073015402 a001 433494437/439204*9062201101803^(1/2) 2971215073015402 a001 225851433717/439204*599074578^(3/7) 2971215073015402 a001 196418*599074578^(10/21) 2971215073015402 a001 53316291173/439204*599074578^(1/2) 2971215073015402 a001 32951280099/439204*599074578^(11/21) 2971215073015402 a001 701408733/439204*599074578^(5/7) 2971215073015402 a001 12586269025/439204*599074578^(4/7) 2971215073015402 a001 1201881744/109801*599074578^(13/21) 2971215073015402 a001 1836311903/439204*599074578^(2/3) 2971215073015402 a001 2971215073/439204*599074578^(9/14) 2971215073015402 a001 398015497275755129/133957148 2971215073015402 a001 10610209857723/439204*228826127^(1/4) 2971215073015402 a001 4052739537881/439204*228826127^(3/10) 2971215073015402 a001 387002188980/109801*228826127^(7/20) 2971215073015402 a001 956722026041/439204*228826127^(3/8) 2971215073015402 a001 165580141/439204*2537720636^(11/15) 2971215073015402 a001 165580141/439204*45537549124^(11/17) 2971215073015402 a001 165580141/439204*312119004989^(3/5) 2971215073015402 a001 165580141/439204*14662949395604^(11/21) 2971215073015402 a001 165580141/439204*(1/2+1/2*5^(1/2))^33 2971215073015402 a001 165580141/439204*192900153618^(11/18) 2971215073015402 a001 165580141/439204*10749957122^(11/16) 2971215073015402 a001 165580141/439204*1568397607^(3/4) 2971215073015402 a001 591286729879/439204*228826127^(2/5) 2971215073015402 a001 225851433717/439204*228826127^(9/20) 2971215073015402 a001 165580141/439204*599074578^(11/14) 2971215073015402 a001 196418*228826127^(1/2) 2971215073015402 a001 32951280099/439204*228826127^(11/20) 2971215073015402 a001 12586269025/439204*228826127^(3/5) 2971215073015402 a001 7778742049/439204*228826127^(5/8) 2971215073015402 a001 1201881744/109801*228826127^(13/20) 2971215073015402 a001 66978574/109801*228826127^(4/5) 2971215073015402 a001 1836311903/439204*228826127^(7/10) 2971215073015402 a001 701408733/439204*228826127^(3/4) 2971215073015402 a001 44945570409504/15127 2971215073015402 a001 10610209857723/439204*87403803^(5/19) 2971215073015402 a001 4052739537881/439204*87403803^(6/19) 2971215073015403 a001 387002188980/109801*87403803^(7/19) 2971215073015403 a001 31622993/219602*2537720636^(7/9) 2971215073015403 a001 31622993/219602*17393796001^(5/7) 2971215073015403 a001 31622993/219602*312119004989^(7/11) 2971215073015403 a001 31622993/219602*14662949395604^(5/9) 2971215073015403 a001 31622993/219602*(1/2+1/2*5^(1/2))^35 2971215073015403 a001 31622993/219602*505019158607^(5/8) 2971215073015403 a001 31622993/219602*28143753123^(7/10) 2971215073015403 a001 31622993/219602*599074578^(5/6) 2971215073015403 a001 591286729879/439204*87403803^(8/19) 2971215073015403 a001 225851433717/439204*87403803^(9/19) 2971215073015403 a001 139583862445/439204*87403803^(1/2) 2971215073015403 a001 31622993/219602*228826127^(7/8) 2971215073015403 a001 196418*87403803^(10/19) 2971215073015403 a001 32951280099/439204*87403803^(11/19) 2971215073015403 a001 12586269025/439204*87403803^(12/19) 2971215073015403 a001 1201881744/109801*87403803^(13/19) 2971215073015403 a001 1836311903/439204*87403803^(14/19) 2971215073015403 a001 102334155/439204*87403803^(17/19) 2971215073015403 a001 701408733/439204*87403803^(15/19) 2971215073015403 a001 66978574/109801*87403803^(16/19) 2971215073015403 a001 116139356909373422/39088169 2971215073015403 a001 10610209857723/439204*33385282^(5/18) 2971215073015403 a001 4052739537881/439204*33385282^(1/3) 2971215073015403 a001 196418/54018521*14662949395604^(19/21) 2971215073015403 a001 24157817/439204*(1/2+1/2*5^(1/2))^37 2971215073015403 a001 387002188980/109801*33385282^(7/18) 2971215073015403 a001 956722026041/439204*33385282^(5/12) 2971215073015404 a001 591286729879/439204*33385282^(4/9) 2971215073015404 a001 225851433717/439204*33385282^(1/2) 2971215073015404 a001 196418*33385282^(5/9) 2971215073015404 a001 53316291173/439204*33385282^(7/12) 2971215073015404 a001 32951280099/439204*33385282^(11/18) 2971215073015404 a001 12586269025/439204*33385282^(2/3) 2971215073015404 a001 1201881744/109801*33385282^(13/18) 2971215073015404 a001 2971215073/439204*33385282^(3/4) 2971215073015404 a001 1836311903/439204*33385282^(7/9) 2971215073015405 a001 701408733/439204*33385282^(5/6) 2971215073015405 a001 66978574/109801*33385282^(8/9) 2971215073015405 a001 102334155/439204*33385282^(17/18) 2971215073015405 a001 165580141/439204*33385282^(11/12) 2971215073015405 a001 434914577527703/146376 2971215073015408 a001 10610209857723/439204*12752043^(5/17) 2971215073015409 a001 4052739537881/439204*12752043^(6/17) 2971215073015409 a001 9227465/439204*2537720636^(13/15) 2971215073015409 a001 9227465/439204*45537549124^(13/17) 2971215073015409 a001 196418/20633239*(1/2+1/2*5^(1/2))^55 2971215073015409 a001 196418/20633239*3461452808002^(11/12) 2971215073015409 a001 9227465/439204*14662949395604^(13/21) 2971215073015409 a001 9227465/439204*(1/2+1/2*5^(1/2))^39 2971215073015409 a001 9227465/439204*192900153618^(13/18) 2971215073015409 a001 9227465/439204*73681302247^(3/4) 2971215073015409 a001 9227465/439204*10749957122^(13/16) 2971215073015409 a001 9227465/439204*599074578^(13/14) 2971215073015410 a001 387002188980/109801*12752043^(7/17) 2971215073015411 a001 591286729879/439204*12752043^(8/17) 2971215073015412 a001 182717648081/219602*12752043^(1/2) 2971215073015412 a001 225851433717/439204*12752043^(9/17) 2971215073015413 a001 196418*12752043^(10/17) 2971215073015414 a001 32951280099/439204*12752043^(11/17) 2971215073015415 a001 12586269025/439204*12752043^(12/17) 2971215073015416 a001 1201881744/109801*12752043^(13/17) 2971215073015417 a001 1836311903/439204*12752043^(14/17) 2971215073015418 a001 701408733/439204*12752043^(15/17) 2971215073015420 a001 66978574/109801*12752043^(16/17) 2971215073015421 a001 16944503814103696/5702887 2971215073015442 a001 10610209857723/439204*4870847^(5/16) 2971215073015449 a001 4052739537881/439204*4870847^(3/8) 2971215073015450 a001 98209/3940598*(1/2+1/2*5^(1/2))^53 2971215073015450 a001 1762289/219602*(1/2+1/2*5^(1/2))^41 2971215073015457 a001 387002188980/109801*4870847^(7/16) 2971215073015465 a001 591286729879/439204*4870847^(1/2) 2971215073015473 a001 225851433717/439204*4870847^(9/16) 2971215073015481 a001 196418*4870847^(5/8) 2971215073015488 a001 32951280099/439204*4870847^(11/16) 2971215073015496 a001 12586269025/439204*4870847^(3/4) 2971215073015504 a001 1201881744/109801*4870847^(13/16) 2971215073015512 a001 1836311903/439204*4870847^(7/8) 2971215073015520 a001 701408733/439204*4870847^(15/16) 2971215073015528 a001 2157408178161794/726103 2971215073015688 a001 10610209857723/439204*1860498^(1/3) 2971215073015730 a001 196418/3010349*817138163596^(17/19) 2971215073015730 a001 196418/3010349*14662949395604^(17/21) 2971215073015730 a001 196418/3010349*(1/2+1/2*5^(1/2))^51 2971215073015730 a001 196418/3010349*192900153618^(17/18) 2971215073015730 a001 1346269/439204*(1/2+1/2*5^(1/2))^43 2971215073015746 a001 4052739537881/439204*1860498^(2/5) 2971215073015803 a001 387002188980/109801*1860498^(7/15) 2971215073015830 a001 2504730781961/710647*271443^(7/13) 2971215073015832 a001 956722026041/439204*1860498^(1/2) 2971215073015860 a001 591286729879/439204*1860498^(8/15) 2971215073015917 a001 225851433717/439204*1860498^(3/5) 2971215073015975 a001 196418*1860498^(2/3) 2971215073016003 a001 53316291173/439204*1860498^(7/10) 2971215073016032 a001 32951280099/439204*1860498^(11/15) 2971215073016089 a001 12586269025/439204*1860498^(4/5) 2971215073016118 a001 7778742049/439204*1860498^(5/6) 2971215073016146 a001 1201881744/109801*1860498^(13/15) 2971215073016175 a001 2971215073/439204*1860498^(9/10) 2971215073016204 a001 1836311903/439204*1860498^(14/15) 2971215073016261 a001 22474270812295/7564 2971215073017504 a001 10610209857723/439204*710647^(5/14) 2971215073017650 a001 514229/439204*45537549124^(15/17) 2971215073017650 a001 196418/1149851*14662949395604^(7/9) 2971215073017650 a001 196418/1149851*(1/2+1/2*5^(1/2))^49 2971215073017650 a001 196418/1149851*505019158607^(7/8) 2971215073017650 a001 514229/439204*312119004989^(9/11) 2971215073017650 a001 514229/439204*14662949395604^(5/7) 2971215073017650 a001 514229/439204*(1/2+1/2*5^(1/2))^45 2971215073017650 a001 514229/439204*192900153618^(5/6) 2971215073017650 a001 514229/439204*28143753123^(9/10) 2971215073017650 a001 514229/439204*10749957122^(15/16) 2971215073017924 a001 4052739537881/439204*710647^(3/7) 2971215073018344 a001 387002188980/109801*710647^(1/2) 2971215073018764 a001 591286729879/439204*710647^(4/7) 2971215073018932 a001 956722026041/710647*271443^(8/13) 2971215073019185 a001 225851433717/439204*710647^(9/14) 2971215073019304 a001 3536736619241/620166*271443^(1/2) 2971215073019605 a001 196418*710647^(5/7) 2971215073019815 a001 53316291173/439204*710647^(3/4) 2971215073020025 a001 32951280099/439204*710647^(11/14) 2971215073020445 a001 12586269025/439204*710647^(6/7) 2971215073020855 a001 3278735159921/930249*271443^(7/13) 2971215073020858 a001 10610209857723/1149851*271443^(6/13) 2971215073020865 a001 1201881744/109801*710647^(13/14) 2971215073021114 a001 32951280099/167761*167761^(4/5) 2971215073021286 a001 314761611190656/105937 2971215073022034 a001 365435296162/710647*271443^(9/13) 2971215073022041 a001 10610209857723/3010349*271443^(7/13) 2971215073022409 a001 6557470319842/1149851*271443^(1/2) 2971215073023957 a001 2504730781961/1860498*271443^(8/13) 2971215073023960 a001 4052739537881/1149851*271443^(7/13) 2971215073024690 a001 6557470319842/4870847*271443^(8/13) 2971215073024863 a001 10610209857723/7881196*271443^(8/13) 2971215073025136 a001 139583862445/710647*271443^(10/13) 2971215073025143 a001 1346269*271443^(8/13) 2971215073027059 a001 956722026041/1860498*271443^(9/13) 2971215073027062 a001 1548008755920/1149851*271443^(8/13) 2971215073027792 a001 2504730781961/4870847*271443^(9/13) 2971215073027899 a001 6557470319842/12752043*271443^(9/13) 2971215073027924 a001 10610209857723/20633239*271443^(9/13) 2971215073027965 a001 4052739537881/7881196*271443^(9/13) 2971215073028237 a001 53316291173/710647*271443^(11/13) 2971215073028245 a001 1548008755920/3010349*271443^(9/13) 2971215073030161 a001 182717648081/930249*271443^(10/13) 2971215073030164 a001 514229*271443^(9/13) 2971215073030805 a001 98209/219602*(1/2+1/2*5^(1/2))^47 2971215073030894 a001 956722026041/4870847*271443^(10/13) 2971215073030912 a001 10610209857723/439204*271443^(5/13) 2971215073031001 a001 2504730781961/12752043*271443^(10/13) 2971215073031016 a001 3278735159921/16692641*271443^(10/13) 2971215073031020 a001 10610209857723/54018521*271443^(10/13) 2971215073031026 a001 4052739537881/20633239*271443^(10/13) 2971215073031067 a001 387002188980/1970299*271443^(10/13) 2971215073031339 a001 20365011074/710647*271443^(12/13) 2971215073031347 a001 591286729879/3010349*271443^(10/13) 2971215073031461 a001 4807526976/64079*64079^(22/23) 2971215073033262 a001 139583862445/1860498*271443^(11/13) 2971215073033266 a001 225851433717/1149851*271443^(10/13) 2971215073033996 a001 365435296162/4870847*271443^(11/13) 2971215073034014 a001 4052739537881/439204*271443^(6/13) 2971215073034103 a001 956722026041/12752043*271443^(11/13) 2971215073034118 a001 2504730781961/33385282*271443^(11/13) 2971215073034120 a001 6557470319842/87403803*271443^(11/13) 2971215073034121 a001 10610209857723/141422324*271443^(11/13) 2971215073034122 a001 4052739537881/54018521*271443^(11/13) 2971215073034128 a001 140728068720/1875749*271443^(11/13) 2971215073034169 a001 591286729879/7881196*271443^(11/13) 2971215073034441 a001 360684711360870/121393 2971215073034449 a001 225851433717/3010349*271443^(11/13) 2971215073035565 a001 2504730781961/439204*271443^(1/2) 2971215073036364 a001 53316291173/1860498*271443^(12/13) 2971215073036368 a001 86267571272/1149851*271443^(11/13) 2971215073037098 a001 139583862445/4870847*271443^(12/13) 2971215073037116 a001 387002188980/109801*271443^(7/13) 2971215073037205 a001 365435296162/12752043*271443^(12/13) 2971215073037220 a001 956722026041/33385282*271443^(12/13) 2971215073037222 a001 2504730781961/87403803*271443^(12/13) 2971215073037223 a001 6557470319842/228826127*271443^(12/13) 2971215073037223 a001 10610209857723/370248451*271443^(12/13) 2971215073037223 a001 4052739537881/141422324*271443^(12/13) 2971215073037224 a001 1548008755920/54018521*271443^(12/13) 2971215073037230 a001 591286729879/20633239*271443^(12/13) 2971215073037271 a001 225851433717/7881196*271443^(12/13) 2971215073037551 a001 86267571272/3010349*271443^(12/13) 2971215073039466 a001 360684711361480/121393 2971215073039470 a001 32951280099/1149851*271443^(12/13) 2971215073040200 a001 360684711361569/121393 2971215073040218 a001 591286729879/439204*271443^(8/13) 2971215073040307 a001 1548003053054/521 2971215073040323 a001 360684711361584/121393 2971215073040331 a001 360684711361585/121393 2971215073040373 a001 360684711361590/121393 2971215073040653 a001 360684711361624/121393 2971215073042229 a001 365435296162/167761*167761^(3/5) 2971215073042572 a001 360684711361857/121393 2971215073043320 a001 225851433717/439204*271443^(9/13) 2971215073046422 a001 196418*271443^(10/13) 2971215073049524 a001 32951280099/439204*271443^(11/13) 2971215073052626 a001 12586269025/439204*271443^(12/13) 2971215073055728 a001 360684711363454/121393 2971215073062922 a001 7778742049/64079*64079^(21/23) 2971215073063322 a001 3536736619241/90481*103682^(3/8) 2971215073063343 a001 4052739537881/167761*167761^(2/5) 2971215073065247 a001 75025/271443*45537549124^(16/17) 2971215073065247 a001 75025/271443*14662949395604^(16/21) 2971215073065247 a001 75025/271443*(1/2+1/2*5^(1/2))^48 2971215073065247 a001 75025/271443*192900153618^(8/9) 2971215073065247 a001 75025/271443*73681302247^(12/13) 2971215073065247 a001 121393/167761*(1/2+1/2*5^(1/2))^46 2971215073065247 a001 121393/167761*10749957122^(23/24) 2971215073074838 a001 6557470319842/271443*103682^(5/12) 2971215073086354 a001 4052739537881/271443*103682^(11/24) 2971215073090169 a001 583600122226225/196418 2971215073091881 a001 4807526976/167761*439204^(8/9) 2971215073093592 a001 20365011074/167761*439204^(7/9) 2971215073094383 a001 12586269025/64079*64079^(20/23) 2971215073095304 a001 86267571272/167761*439204^(2/3) 2971215073097015 a001 365435296162/167761*439204^(5/9) 2971215073097871 a001 2504730781961/271443*103682^(1/2) 2971215073098727 a001 140728068720/15251*439204^(4/9) 2971215073099689 a001 75025/710647*312119004989^(10/11) 2971215073099689 a001 75025/710647*(1/2+1/2*5^(1/2))^50 2971215073099689 a001 75025/710647*3461452808002^(5/6) 2971215073099689 a001 317811/167761*312119004989^(4/5) 2971215073099689 a001 317811/167761*(1/2+1/2*5^(1/2))^44 2971215073099689 a001 317811/167761*23725150497407^(11/16) 2971215073099689 a001 317811/167761*73681302247^(11/13) 2971215073099689 a001 317811/167761*10749957122^(11/12) 2971215073099689 a001 317811/167761*4106118243^(22/23) 2971215073100438 a001 6557470319842/167761*439204^(1/3) 2971215073103325 a001 1527884955826850/514229 2971215073104714 a001 75640/15251*2537720636^(14/15) 2971215073104714 a001 75640/15251*17393796001^(6/7) 2971215073104714 a001 75025/1860498*(1/2+1/2*5^(1/2))^52 2971215073104714 a001 75025/1860498*23725150497407^(13/16) 2971215073104714 a001 75025/1860498*505019158607^(13/14) 2971215073104714 a001 75640/15251*45537549124^(14/17) 2971215073104714 a001 75640/15251*817138163596^(14/19) 2971215073104714 a001 75640/15251*14662949395604^(2/3) 2971215073104714 a001 75640/15251*(1/2+1/2*5^(1/2))^42 2971215073104714 a001 75640/15251*505019158607^(3/4) 2971215073104714 a001 75640/15251*192900153618^(7/9) 2971215073104714 a001 75640/15251*10749957122^(7/8) 2971215073104714 a001 75640/15251*4106118243^(21/23) 2971215073104714 a001 75640/15251*1568397607^(21/22) 2971215073105244 a001 4000054745254325/1346269 2971215073105447 a001 2178309/167761*2537720636^(8/9) 2971215073105447 a001 75025/4870847*14662949395604^(6/7) 2971215073105447 a001 75025/4870847*(1/2+1/2*5^(1/2))^54 2971215073105447 a001 2178309/167761*312119004989^(8/11) 2971215073105447 a001 2178309/167761*(1/2+1/2*5^(1/2))^40 2971215073105447 a001 2178309/167761*23725150497407^(5/8) 2971215073105447 a001 2178309/167761*73681302247^(10/13) 2971215073105447 a001 2178309/167761*28143753123^(4/5) 2971215073105447 a001 2178309/167761*10749957122^(5/6) 2971215073105447 a001 2178309/167761*4106118243^(20/23) 2971215073105447 a001 2178309/167761*1568397607^(10/11) 2971215073105447 a001 2178309/167761*599074578^(20/21) 2971215073105524 a001 117666059325125/39602 2971215073105529 a001 267914296/167761*7881196^(10/11) 2971215073105533 a001 1134903170/167761*7881196^(9/11) 2971215073105538 a001 4807526976/167761*7881196^(8/11) 2971215073105540 a001 75025*7881196^(2/3) 2971215073105542 a001 20365011074/167761*7881196^(7/11) 2971215073105546 a001 86267571272/167761*7881196^(6/11) 2971215073105551 a001 365435296162/167761*7881196^(5/11) 2971215073105554 a001 75025/12752043*14662949395604^(8/9) 2971215073105554 a001 75025/12752043*(1/2+1/2*5^(1/2))^56 2971215073105554 a001 5702887/167761*817138163596^(2/3) 2971215073105554 a001 5702887/167761*(1/2+1/2*5^(1/2))^38 2971215073105554 a001 5702887/167761*10749957122^(19/24) 2971215073105554 a001 5702887/167761*4106118243^(19/23) 2971215073105554 a001 5702887/167761*1568397607^(19/22) 2971215073105554 a001 5702887/167761*599074578^(19/21) 2971215073105554 a001 5702887/167761*228826127^(19/20) 2971215073105555 a001 140728068720/15251*7881196^(4/11) 2971215073105556 a001 2504730781961/167761*7881196^(1/3) 2971215073105559 a001 6557470319842/167761*7881196^(3/11) 2971215073105565 a001 5483356618910810/1845493 2971215073105566 a001 267914296/167761*20633239^(6/7) 2971215073105567 a001 701408733/167761*20633239^(4/5) 2971215073105567 a001 2971215073/167761*20633239^(5/7) 2971215073105568 a001 20365011074/167761*20633239^(3/5) 2971215073105568 a001 32951280099/167761*20633239^(4/7) 2971215073105569 a001 365435296162/167761*20633239^(3/7) 2971215073105570 a001 14930352/167761*141422324^(12/13) 2971215073105570 a001 591286729879/167761*20633239^(2/5) 2971215073105570 a001 14930352/167761*2537720636^(4/5) 2971215073105570 a001 75025/33385282*(1/2+1/2*5^(1/2))^58 2971215073105570 a001 14930352/167761*45537549124^(12/17) 2971215073105570 a001 14930352/167761*14662949395604^(4/7) 2971215073105570 a001 14930352/167761*(1/2+1/2*5^(1/2))^36 2971215073105570 a001 14930352/167761*192900153618^(2/3) 2971215073105570 a001 14930352/167761*73681302247^(9/13) 2971215073105570 a001 14930352/167761*10749957122^(3/4) 2971215073105570 a001 14930352/167761*4106118243^(18/23) 2971215073105570 a001 14930352/167761*1568397607^(9/11) 2971215073105570 a001 14930352/167761*599074578^(6/7) 2971215073105570 a001 14930352/167761*228826127^(9/10) 2971215073105570 a001 14930352/167761*87403803^(18/19) 2971215073105570 a001 4052739537881/167761*20633239^(2/7) 2971215073105571 a001 71778070003726025/24157817 2971215073105572 a001 75025/87403803*14662949395604^(20/21) 2971215073105572 a001 39088169/167761*45537549124^(2/3) 2971215073105572 a001 39088169/167761*(1/2+1/2*5^(1/2))^34 2971215073105572 a001 39088169/167761*10749957122^(17/24) 2971215073105572 a001 39088169/167761*4106118243^(17/23) 2971215073105572 a001 39088169/167761*1568397607^(17/22) 2971215073105572 a001 39088169/167761*599074578^(17/21) 2971215073105572 a001 39088169/167761*228826127^(17/20) 2971215073105572 a001 187917426916624025/63245986 2971215073105572 a001 267914296/167761*141422324^(10/13) 2971215073105572 a001 1134903170/167761*141422324^(9/13) 2971215073105572 a001 1836311903/167761*141422324^(2/3) 2971215073105572 a001 4807526976/167761*141422324^(8/13) 2971215073105572 a001 20365011074/167761*141422324^(7/13) 2971215073105572 a001 86267571272/167761*141422324^(6/13) 2971215073105572 a001 365435296162/167761*141422324^(5/13) 2971215073105572 a001 9303105/15251*(1/2+1/2*5^(1/2))^32 2971215073105572 a001 9303105/15251*23725150497407^(1/2) 2971215073105572 a001 9303105/15251*505019158607^(4/7) 2971215073105572 a001 9303105/15251*73681302247^(8/13) 2971215073105572 a001 9303105/15251*10749957122^(2/3) 2971215073105572 a001 9303105/15251*4106118243^(16/23) 2971215073105572 a001 9303105/15251*1568397607^(8/11) 2971215073105572 a001 9303105/15251*599074578^(16/21) 2971215073105572 a001 956722026041/167761*141422324^(1/3) 2971215073105572 a001 140728068720/15251*141422324^(4/13) 2971215073105572 a001 39088169/167761*87403803^(17/19) 2971215073105572 a001 6557470319842/167761*141422324^(3/13) 2971215073105572 a001 491974210746146050/165580141 2971215073105572 a001 9303105/15251*228826127^(4/5) 2971215073105572 a001 267914296/167761*2537720636^(2/3) 2971215073105572 a001 267914296/167761*45537549124^(10/17) 2971215073105572 a001 267914296/167761*312119004989^(6/11) 2971215073105572 a001 267914296/167761*14662949395604^(10/21) 2971215073105572 a001 267914296/167761*(1/2+1/2*5^(1/2))^30 2971215073105572 a001 267914296/167761*192900153618^(5/9) 2971215073105572 a001 267914296/167761*28143753123^(3/5) 2971215073105572 a001 267914296/167761*10749957122^(5/8) 2971215073105572 a001 267914296/167761*4106118243^(15/23) 2971215073105572 a001 267914296/167761*1568397607^(15/22) 2971215073105572 a001 267914296/167761*599074578^(5/7) 2971215073105572 a001 701408733/167761*17393796001^(4/7) 2971215073105572 a001 701408733/167761*14662949395604^(4/9) 2971215073105572 a001 701408733/167761*(1/2+1/2*5^(1/2))^28 2971215073105572 a001 701408733/167761*73681302247^(7/13) 2971215073105572 a001 701408733/167761*10749957122^(7/12) 2971215073105572 a001 701408733/167761*4106118243^(14/23) 2971215073105572 a001 701408733/167761*1568397607^(7/11) 2971215073105572 a001 4807526976/167761*2537720636^(8/15) 2971215073105572 a001 20365011074/167761*2537720636^(7/15) 2971215073105572 a001 32951280099/167761*2537720636^(4/9) 2971215073105572 a001 2971215073/167761*2537720636^(5/9) 2971215073105572 a001 86267571272/167761*2537720636^(2/5) 2971215073105572 a001 1836311903/167761*(1/2+1/2*5^(1/2))^26 2971215073105572 a001 1836311903/167761*73681302247^(1/2) 2971215073105572 a001 1836311903/167761*10749957122^(13/24) 2971215073105572 a001 365435296162/167761*2537720636^(1/3) 2971215073105572 a001 140728068720/15251*2537720636^(4/15) 2971215073105572 a001 4052739537881/167761*2537720636^(2/9) 2971215073105572 a001 6557470319842/167761*2537720636^(1/5) 2971215073105572 a001 1836311903/167761*4106118243^(13/23) 2971215073105572 a001 4807526976/167761*45537549124^(8/17) 2971215073105572 a001 4807526976/167761*14662949395604^(8/21) 2971215073105572 a001 4807526976/167761*(1/2+1/2*5^(1/2))^24 2971215073105572 a001 4807526976/167761*192900153618^(4/9) 2971215073105572 a001 4807526976/167761*73681302247^(6/13) 2971215073105572 a001 4807526976/167761*10749957122^(1/2) 2971215073105572 a001 75025*312119004989^(2/5) 2971215073105572 a001 75025*(1/2+1/2*5^(1/2))^22 2971215073105572 a001 591286729879/167761*17393796001^(2/7) 2971215073105572 a001 20365011074/167761*17393796001^(3/7) 2971215073105572 a001 86267571272/167761*45537549124^(6/17) 2971215073105572 a001 32951280099/167761*(1/2+1/2*5^(1/2))^20 2971215073105572 a001 32951280099/167761*23725150497407^(5/16) 2971215073105572 a001 32951280099/167761*505019158607^(5/14) 2971215073105572 a001 139583862445/167761*45537549124^(1/3) 2971215073105572 a001 365435296162/167761*45537549124^(5/17) 2971215073105572 a001 140728068720/15251*45537549124^(4/17) 2971215073105572 a001 6557470319842/167761*45537549124^(3/17) 2971215073105572 a001 86267571272/167761*14662949395604^(2/7) 2971215073105572 a001 86267571272/167761*(1/2+1/2*5^(1/2))^18 2971215073105572 a001 86267571272/167761*192900153618^(1/3) 2971215073105572 a001 225851433717/167761*(1/2+1/2*5^(1/2))^16 2971215073105572 a001 2504730781961/167761*312119004989^(1/5) 2971215073105572 a001 140728068720/15251*(1/2+1/2*5^(1/2))^12 2971215073105572 a001 4052739537881/167761*(1/2+1/2*5^(1/2))^10 2971215073105572 a001 10610209857723/167761*(1/2+1/2*5^(1/2))^8 2971215073105572 a001 10610209857723/167761*23725150497407^(1/8) 2971215073105572 a001 6557470319842/167761*(1/2+1/2*5^(1/2))^9 2971215073105572 a001 2504730781961/167761*(1/2+1/2*5^(1/2))^11 2971215073105572 a001 956722026041/167761*(1/2+1/2*5^(1/2))^13 2971215073105572 a001 10610209857723/167761*505019158607^(1/7) 2971215073105572 a001 140728068720/15251*192900153618^(2/9) 2971215073105572 a001 365435296162/167761*192900153618^(5/18) 2971215073105572 a001 139583862445/167761*(1/2+1/2*5^(1/2))^17 2971215073105572 a001 10610209857723/167761*73681302247^(2/13) 2971215073105572 a001 140728068720/15251*73681302247^(3/13) 2971215073105572 a001 956722026041/167761*73681302247^(1/4) 2971215073105572 a001 225851433717/167761*73681302247^(4/13) 2971215073105572 a001 53316291173/167761*817138163596^(1/3) 2971215073105572 a001 53316291173/167761*(1/2+1/2*5^(1/2))^19 2971215073105572 a001 4052739537881/167761*28143753123^(1/5) 2971215073105572 a001 20365011074/167761*45537549124^(7/17) 2971215073105572 a001 32951280099/167761*28143753123^(2/5) 2971215073105572 a001 365435296162/167761*28143753123^(3/10) 2971215073105572 a001 20365011074/167761*14662949395604^(1/3) 2971215073105572 a001 20365011074/167761*(1/2+1/2*5^(1/2))^21 2971215073105572 a001 20365011074/167761*192900153618^(7/18) 2971215073105572 a001 10610209857723/167761*10749957122^(1/6) 2971215073105572 a001 6557470319842/167761*10749957122^(3/16) 2971215073105572 a001 4052739537881/167761*10749957122^(5/24) 2971215073105572 a001 140728068720/15251*10749957122^(1/4) 2971215073105572 a001 591286729879/167761*10749957122^(7/24) 2971215073105572 a001 75025*10749957122^(11/24) 2971215073105572 a001 365435296162/167761*10749957122^(5/16) 2971215073105572 a001 225851433717/167761*10749957122^(1/3) 2971215073105572 a001 86267571272/167761*10749957122^(3/8) 2971215073105572 a001 7778742049/167761*(1/2+1/2*5^(1/2))^23 2971215073105572 a001 32951280099/167761*10749957122^(5/12) 2971215073105572 a001 20365011074/167761*10749957122^(7/16) 2971215073105572 a001 10610209857723/167761*4106118243^(4/23) 2971215073105572 a001 4052739537881/167761*4106118243^(5/23) 2971215073105572 a001 140728068720/15251*4106118243^(6/23) 2971215073105572 a001 591286729879/167761*4106118243^(7/23) 2971215073105572 a001 225851433717/167761*4106118243^(8/23) 2971215073105572 a001 4807526976/167761*4106118243^(12/23) 2971215073105572 a001 2971215073/167761*312119004989^(5/11) 2971215073105572 a001 2971215073/167761*(1/2+1/2*5^(1/2))^25 2971215073105572 a001 2971215073/167761*3461452808002^(5/12) 2971215073105572 a001 86267571272/167761*4106118243^(9/23) 2971215073105572 a001 2971215073/167761*28143753123^(1/2) 2971215073105572 a001 32951280099/167761*4106118243^(10/23) 2971215073105572 a001 75025*4106118243^(11/23) 2971215073105572 a001 7778742049/167761*4106118243^(1/2) 2971215073105572 a001 1134903170/167761*2537720636^(3/5) 2971215073105572 a001 10610209857723/167761*1568397607^(2/11) 2971215073105572 a001 4052739537881/167761*1568397607^(5/22) 2971215073105572 a001 2504730781961/167761*1568397607^(1/4) 2971215073105572 a001 140728068720/15251*1568397607^(3/11) 2971215073105572 a001 591286729879/167761*1568397607^(7/22) 2971215073105572 a001 225851433717/167761*1568397607^(4/11) 2971215073105572 a001 1134903170/167761*45537549124^(9/17) 2971215073105572 a001 1134903170/167761*14662949395604^(3/7) 2971215073105572 a001 1134903170/167761*(1/2+1/2*5^(1/2))^27 2971215073105572 a001 1134903170/167761*192900153618^(1/2) 2971215073105572 a001 1134903170/167761*10749957122^(9/16) 2971215073105572 a001 86267571272/167761*1568397607^(9/22) 2971215073105572 a001 1836311903/167761*1568397607^(13/22) 2971215073105572 a001 32951280099/167761*1568397607^(5/11) 2971215073105572 a001 75025*1568397607^(1/2) 2971215073105572 a001 4807526976/167761*1568397607^(6/11) 2971215073105572 a001 10610209857723/167761*599074578^(4/21) 2971215073105572 a001 6557470319842/167761*599074578^(3/14) 2971215073105572 a001 4052739537881/167761*599074578^(5/21) 2971215073105572 a001 140728068720/15251*599074578^(2/7) 2971215073105572 a001 591286729879/167761*599074578^(1/3) 2971215073105572 a001 365435296162/167761*599074578^(5/14) 2971215073105572 a001 225851433717/167761*599074578^(8/21) 2971215073105572 a001 433494437/167761*(1/2+1/2*5^(1/2))^29 2971215073105572 a001 433494437/167761*1322157322203^(1/2) 2971215073105572 a001 86267571272/167761*599074578^(3/7) 2971215073105572 a001 32951280099/167761*599074578^(10/21) 2971215073105572 a001 20365011074/167761*599074578^(1/2) 2971215073105572 a001 701408733/167761*599074578^(2/3) 2971215073105572 a001 75025*599074578^(11/21) 2971215073105572 a001 4807526976/167761*599074578^(4/7) 2971215073105572 a001 1836311903/167761*599074578^(13/21) 2971215073105572 a001 1134903170/167761*599074578^(9/14) 2971215073105572 a001 796030994575668075/267914296 2971215073105572 a001 10610209857723/167761*228826127^(1/5) 2971215073105572 a001 4052739537881/167761*228826127^(1/4) 2971215073105572 a001 140728068720/15251*228826127^(3/10) 2971215073105572 a001 591286729879/167761*228826127^(7/20) 2971215073105572 a001 365435296162/167761*228826127^(3/8) 2971215073105572 a001 165580141/167761*(1/2+1/2*5^(1/2))^31 2971215073105572 a001 165580141/167761*9062201101803^(1/2) 2971215073105572 a001 225851433717/167761*228826127^(2/5) 2971215073105572 a001 63245986/167761*141422324^(11/13) 2971215073105572 a001 86267571272/167761*228826127^(9/20) 2971215073105572 a001 32951280099/167761*228826127^(1/2) 2971215073105572 a001 75025*228826127^(11/20) 2971215073105572 a001 4807526976/167761*228826127^(3/5) 2971215073105572 a001 267914296/167761*228826127^(3/4) 2971215073105572 a001 2971215073/167761*228826127^(5/8) 2971215073105572 a001 1836311903/167761*228826127^(13/20) 2971215073105572 a001 701408733/167761*228826127^(7/10) 2971215073105572 a001 60811356765904405/20466831 2971215073105572 a001 10610209857723/167761*87403803^(4/19) 2971215073105572 a001 4052739537881/167761*87403803^(5/19) 2971215073105572 a001 140728068720/15251*87403803^(6/19) 2971215073105572 a001 591286729879/167761*87403803^(7/19) 2971215073105572 a001 63245986/167761*2537720636^(11/15) 2971215073105572 a001 63245986/167761*45537549124^(11/17) 2971215073105572 a001 63245986/167761*312119004989^(3/5) 2971215073105572 a001 63245986/167761*817138163596^(11/19) 2971215073105572 a001 63245986/167761*14662949395604^(11/21) 2971215073105572 a001 63245986/167761*(1/2+1/2*5^(1/2))^33 2971215073105572 a001 63245986/167761*192900153618^(11/18) 2971215073105572 a001 63245986/167761*10749957122^(11/16) 2971215073105572 a001 63245986/167761*1568397607^(3/4) 2971215073105572 a001 63245986/167761*599074578^(11/14) 2971215073105572 a001 225851433717/167761*87403803^(8/19) 2971215073105572 a001 86267571272/167761*87403803^(9/19) 2971215073105573 a001 53316291173/167761*87403803^(1/2) 2971215073105573 a001 32951280099/167761*87403803^(10/19) 2971215073105573 a001 75025*87403803^(11/19) 2971215073105573 a001 4807526976/167761*87403803^(12/19) 2971215073105573 a001 1836311903/167761*87403803^(13/19) 2971215073105573 a001 9303105/15251*87403803^(16/19) 2971215073105573 a001 701408733/167761*87403803^(14/19) 2971215073105573 a001 267914296/167761*87403803^(15/19) 2971215073105573 a001 116139356912898000/39088169 2971215073105573 a001 10610209857723/167761*33385282^(2/9) 2971215073105573 a001 6557470319842/167761*33385282^(1/4) 2971215073105573 a001 4052739537881/167761*33385282^(5/18) 2971215073105573 a001 140728068720/15251*33385282^(1/3) 2971215073105573 a001 24157817/167761*2537720636^(7/9) 2971215073105573 a001 24157817/167761*17393796001^(5/7) 2971215073105573 a001 24157817/167761*312119004989^(7/11) 2971215073105573 a001 24157817/167761*14662949395604^(5/9) 2971215073105573 a001 24157817/167761*(1/2+1/2*5^(1/2))^35 2971215073105573 a001 24157817/167761*505019158607^(5/8) 2971215073105573 a001 24157817/167761*28143753123^(7/10) 2971215073105573 a001 24157817/167761*599074578^(5/6) 2971215073105573 a001 591286729879/167761*33385282^(7/18) 2971215073105573 a001 24157817/167761*228826127^(7/8) 2971215073105573 a001 365435296162/167761*33385282^(5/12) 2971215073105573 a001 225851433717/167761*33385282^(4/9) 2971215073105574 a001 86267571272/167761*33385282^(1/2) 2971215073105574 a001 32951280099/167761*33385282^(5/9) 2971215073105574 a001 20365011074/167761*33385282^(7/12) 2971215073105574 a001 75025*33385282^(11/18) 2971215073105574 a001 4807526976/167761*33385282^(2/3) 2971215073105574 a001 1836311903/167761*33385282^(13/18) 2971215073105574 a001 1134903170/167761*33385282^(3/4) 2971215073105574 a001 701408733/167761*33385282^(7/9) 2971215073105574 a001 39088169/167761*33385282^(17/18) 2971215073105575 a001 267914296/167761*33385282^(5/6) 2971215073105575 a001 9303105/15251*33385282^(8/9) 2971215073105575 a001 63245986/167761*33385282^(11/12) 2971215073105575 a001 44361286909171975/14930352 2971215073105577 a001 10610209857723/167761*12752043^(4/17) 2971215073105578 a001 4052739537881/167761*12752043^(5/17) 2971215073105579 a001 140728068720/15251*12752043^(6/17) 2971215073105579 a001 75025/20633239*14662949395604^(19/21) 2971215073105579 a001 75025/20633239*(1/2+1/2*5^(1/2))^57 2971215073105579 a001 9227465/167761*(1/2+1/2*5^(1/2))^37 2971215073105580 a001 591286729879/167761*12752043^(7/17) 2971215073105581 a001 225851433717/167761*12752043^(8/17) 2971215073105581 a001 139583862445/167761*12752043^(1/2) 2971215073105582 a001 86267571272/167761*12752043^(9/17) 2971215073105583 a001 32951280099/167761*12752043^(10/17) 2971215073105584 a001 75025*12752043^(11/17) 2971215073105585 a001 4807526976/167761*12752043^(12/17) 2971215073105586 a001 1836311903/167761*12752043^(13/17) 2971215073105587 a001 701408733/167761*12752043^(14/17) 2971215073105588 a001 267914296/167761*12752043^(15/17) 2971215073105589 a001 9303105/15251*12752043^(16/17) 2971215073105591 a001 16944503814617925/5702887 2971215073105604 a001 10610209857723/167761*4870847^(1/4) 2971215073105611 a001 4052739537881/167761*4870847^(5/16) 2971215073105619 a001 140728068720/15251*4870847^(3/8) 2971215073105620 a001 3524578/167761*2537720636^(13/15) 2971215073105620 a001 75025/7881196*(1/2+1/2*5^(1/2))^55 2971215073105620 a001 75025/7881196*3461452808002^(11/12) 2971215073105620 a001 3524578/167761*45537549124^(13/17) 2971215073105620 a001 3524578/167761*14662949395604^(13/21) 2971215073105620 a001 3524578/167761*(1/2+1/2*5^(1/2))^39 2971215073105620 a001 3524578/167761*192900153618^(13/18) 2971215073105620 a001 3524578/167761*73681302247^(3/4) 2971215073105620 a001 3524578/167761*10749957122^(13/16) 2971215073105620 a001 3524578/167761*599074578^(13/14) 2971215073105627 a001 591286729879/167761*4870847^(7/16) 2971215073105635 a001 225851433717/167761*4870847^(1/2) 2971215073105643 a001 86267571272/167761*4870847^(9/16) 2971215073105651 a001 32951280099/167761*4870847^(5/8) 2971215073105658 a001 75025*4870847^(11/16) 2971215073105666 a001 4807526976/167761*4870847^(3/4) 2971215073105674 a001 1836311903/167761*4870847^(13/16) 2971215073105682 a001 701408733/167761*4870847^(7/8) 2971215073105690 a001 267914296/167761*4870847^(15/16) 2971215073105698 a001 6472224534681800/2178309 2971215073105801 a001 10610209857723/167761*1860498^(4/15) 2971215073105830 a001 6557470319842/167761*1860498^(3/10) 2971215073105858 a001 4052739537881/167761*1860498^(1/3) 2971215073105900 a001 75025/3010349*(1/2+1/2*5^(1/2))^53 2971215073105900 a001 1346269/167761*(1/2+1/2*5^(1/2))^41 2971215073105916 a001 140728068720/15251*1860498^(2/5) 2971215073105973 a001 591286729879/167761*1860498^(7/15) 2971215073106001 a001 365435296162/167761*1860498^(1/2) 2971215073106030 a001 225851433717/167761*1860498^(8/15) 2971215073106087 a001 86267571272/167761*1860498^(3/5) 2971215073106145 a001 32951280099/167761*1860498^(2/3) 2971215073106173 a001 20365011074/167761*1860498^(7/10) 2971215073106202 a001 75025*1860498^(11/15) 2971215073106259 a001 4807526976/167761*1860498^(4/5) 2971215073106288 a001 2971215073/167761*1860498^(5/6) 2971215073106316 a001 1836311903/167761*1860498^(13/15) 2971215073106345 a001 1134903170/167761*1860498^(9/10) 2971215073106373 a001 701408733/167761*1860498^(14/15) 2971215073106431 a001 494433957885495/166408 2971215073107253 a001 10610209857723/167761*710647^(2/7) 2971215073107674 a001 4052739537881/167761*710647^(5/14) 2971215073107820 a001 75025/1149851*14662949395604^(17/21) 2971215073107820 a001 75025/1149851*(1/2+1/2*5^(1/2))^51 2971215073107820 a001 75025/1149851*192900153618^(17/18) 2971215073107820 a001 514229/167761*(1/2+1/2*5^(1/2))^43 2971215073108094 a001 140728068720/15251*710647^(3/7) 2971215073108514 a001 591286729879/167761*710647^(1/2) 2971215073108934 a001 225851433717/167761*710647^(4/7) 2971215073109354 a001 86267571272/167761*710647^(9/14) 2971215073109387 a001 516002918640/90481*103682^(13/24) 2971215073109775 a001 32951280099/167761*710647^(5/7) 2971215073109985 a001 20365011074/167761*710647^(3/4) 2971215073110195 a001 75025*710647^(11/14) 2971215073110615 a001 4807526976/167761*710647^(6/7) 2971215073111035 a001 1836311903/167761*710647^(13/14) 2971215073111456 a001 944284833600625/317811 2971215073117980 a001 10610209857723/167761*271443^(4/13) 2971215073120796 a001 1515744265389/101521*103682^(11/24) 2971215073120904 a001 956722026041/271443*103682^(7/12) 2971215073120975 a001 75025/439204*14662949395604^(7/9) 2971215073120975 a001 75025/439204*(1/2+1/2*5^(1/2))^49 2971215073120975 a001 75025/439204*505019158607^(7/8) 2971215073120975 a001 196418/167761*45537549124^(15/17) 2971215073120975 a001 196418/167761*312119004989^(9/11) 2971215073120975 a001 196418/167761*14662949395604^(5/7) 2971215073120975 a001 196418/167761*(1/2+1/2*5^(1/2))^45 2971215073120975 a001 196418/167761*192900153618^(5/6) 2971215073120975 a001 196418/167761*28143753123^(9/10) 2971215073120975 a001 196418/167761*10749957122^(15/16) 2971215073121082 a001 4052739537881/167761*271443^(5/13) 2971215073124184 a001 140728068720/15251*271443^(6/13) 2971215073125735 a001 956722026041/167761*271443^(1/2) 2971215073125844 a001 20365011074/64079*64079^(19/23) 2971215073127286 a001 591286729879/167761*271443^(7/13) 2971215073130388 a001 225851433717/167761*271443^(8/13) 2971215073130566 a001 10610209857723/439204*103682^(5/12) 2971215073132313 a001 6557470319842/710647*103682^(1/2) 2971215073132420 a001 591286729879/271443*103682^(5/8) 2971215073133490 a001 86267571272/167761*271443^(9/13) 2971215073136592 a001 32951280099/167761*271443^(10/13) 2971215073139694 a001 75025*271443^(11/13) 2971215073140443 a001 10610209857723/1149851*103682^(1/2) 2971215073142083 a001 3278735159921/219602*103682^(11/24) 2971215073142796 a001 4807526976/167761*271443^(12/13) 2971215073143829 a001 4052739537881/710647*103682^(13/24) 2971215073143936 a001 365435296162/271443*103682^(2/3) 2971215073145898 a001 360684711374400/121393 2971215073148854 a001 3536736619241/620166*103682^(13/24) 2971215073151960 a001 6557470319842/1149851*103682^(13/24) 2971215073153599 a001 4052739537881/439204*103682^(1/2) 2971215073155345 a001 2504730781961/710647*103682^(7/12) 2971215073155453 a001 75283811239/90481*103682^(17/24) 2971215073157305 a001 32951280099/64079*64079^(18/23) 2971215073160370 a001 3278735159921/930249*103682^(7/12) 2971215073161557 a001 10610209857723/3010349*103682^(7/12) 2971215073163476 a001 4052739537881/1149851*103682^(7/12) 2971215073165115 a001 2504730781961/439204*103682^(13/24) 2971215073166862 a001 1548008755920/710647*103682^(5/8) 2971215073166969 a001 139583862445/271443*103682^(3/4) 2971215073171887 a001 4052739537881/1860498*103682^(5/8) 2971215073172620 a001 2178309*103682^(5/8) 2971215073173073 a001 6557470319842/3010349*103682^(5/8) 2971215073174992 a001 2504730781961/1149851*103682^(5/8) 2971215073176632 a001 387002188980/109801*103682^(7/12) 2971215073178378 a001 956722026041/710647*103682^(2/3) 2971215073178486 a001 86267571272/271443*103682^(19/24) 2971215073183403 a001 2504730781961/1860498*103682^(2/3) 2971215073184136 a001 6557470319842/4870847*103682^(2/3) 2971215073184309 a001 10610209857723/7881196*103682^(2/3) 2971215073184590 a001 1346269*103682^(2/3) 2971215073186509 a001 1548008755920/1149851*103682^(2/3) 2971215073188148 a001 956722026041/439204*103682^(5/8) 2971215073188766 a001 53316291173/64079*64079^(17/23) 2971215073189895 a001 591286729879/710647*103682^(17/24) 2971215073190002 a001 53316291173/271443*103682^(5/6) 2971215073194920 a001 832040*103682^(17/24) 2971215073195653 a001 4052739537881/4870847*103682^(17/24) 2971215073195760 a001 3536736619241/4250681*103682^(17/24) 2971215073195826 a001 3278735159921/3940598*103682^(17/24) 2971215073196106 a001 2504730781961/3010349*103682^(17/24) 2971215073197703 a001 10610209857723/167761*103682^(1/3) 2971215073198025 a001 956722026041/1149851*103682^(17/24) 2971215073199665 a001 591286729879/439204*103682^(2/3) 2971215073201411 a001 365435296162/710647*103682^(3/4) 2971215073201518 a001 121393*103682^(7/8) 2971215073206436 a001 956722026041/1860498*103682^(3/4) 2971215073207169 a001 2504730781961/4870847*103682^(3/4) 2971215073207276 a001 6557470319842/12752043*103682^(3/4) 2971215073207301 a001 10610209857723/20633239*103682^(3/4) 2971215073207342 a001 4052739537881/7881196*103682^(3/4) 2971215073207622 a001 1548008755920/3010349*103682^(3/4) 2971215073209220 a001 6557470319842/167761*103682^(3/8) 2971215073209542 a001 514229*103682^(3/4) 2971215073211145 a001 75025/167761*(1/2+1/2*5^(1/2))^47 2971215073211181 a001 182717648081/219602*103682^(17/24) 2971215073212927 a001 317811*103682^(19/24) 2971215073213035 a001 20365011074/271443*103682^(11/12) 2971215073217952 a001 591286729879/1860498*103682^(19/24) 2971215073218686 a001 1548008755920/4870847*103682^(19/24) 2971215073218793 a001 4052739537881/12752043*103682^(19/24) 2971215073218808 a001 1515744265389/4769326*103682^(19/24) 2971215073218818 a001 6557470319842/20633239*103682^(19/24) 2971215073218859 a001 2504730781961/7881196*103682^(19/24) 2971215073219139 a001 956722026041/3010349*103682^(19/24) 2971215073220228 a001 86267571272/64079*64079^(16/23) 2971215073220736 a001 4052739537881/167761*103682^(5/12) 2971215073221058 a001 365435296162/1149851*103682^(19/24) 2971215073222697 a001 225851433717/439204*103682^(3/4) 2971215073224444 a001 139583862445/710647*103682^(5/6) 2971215073224551 a001 12586269025/271443*103682^(23/24) 2971215073229469 a001 182717648081/930249*103682^(5/6) 2971215073230202 a001 956722026041/4870847*103682^(5/6) 2971215073230309 a001 2504730781961/12752043*103682^(5/6) 2971215073230325 a001 3278735159921/16692641*103682^(5/6) 2971215073230328 a001 10610209857723/54018521*103682^(5/6) 2971215073230334 a001 4052739537881/20633239*103682^(5/6) 2971215073230375 a001 387002188980/1970299*103682^(5/6) 2971215073230655 a001 591286729879/3010349*103682^(5/6) 2971215073232253 a001 2504730781961/167761*103682^(11/24) 2971215073232574 a001 225851433717/1149851*103682^(5/6) 2971215073234214 a001 139583862445/439204*103682^(19/24) 2971215073235960 a001 86267571272/710647*103682^(7/8) 2971215073236067 a001 68884650257905/23184 2971215073236174 a001 1201881744/6119*24476^(20/21) 2971215073240985 a001 75283811239/620166*103682^(7/8) 2971215073241718 a001 591286729879/4870847*103682^(7/8) 2971215073241825 a001 516002918640/4250681*103682^(7/8) 2971215073241841 a001 4052739537881/33385282*103682^(7/8) 2971215073241843 a001 3536736619241/29134601*103682^(7/8) 2971215073241845 a001 6557470319842/54018521*103682^(7/8) 2971215073241851 a001 2504730781961/20633239*103682^(7/8) 2971215073241891 a001 956722026041/7881196*103682^(7/8) 2971215073242171 a001 365435296162/3010349*103682^(7/8) 2971215073243769 a001 140728068720/15251*103682^(1/2) 2971215073244091 a001 139583862445/1149851*103682^(7/8) 2971215073245730 a001 196418*103682^(5/6) 2971215073247477 a001 53316291173/710647*103682^(11/12) 2971215073251689 a001 139583862445/64079*64079^(15/23) 2971215073252502 a001 139583862445/1860498*103682^(11/12) 2971215073253235 a001 365435296162/4870847*103682^(11/12) 2971215073253342 a001 956722026041/12752043*103682^(11/12) 2971215073253357 a001 2504730781961/33385282*103682^(11/12) 2971215073253360 a001 6557470319842/87403803*103682^(11/12) 2971215073253360 a001 10610209857723/141422324*103682^(11/12) 2971215073253361 a001 4052739537881/54018521*103682^(11/12) 2971215073253367 a001 140728068720/1875749*103682^(11/12) 2971215073253408 a001 591286729879/7881196*103682^(11/12) 2971215073253688 a001 225851433717/3010349*103682^(11/12) 2971215073255285 a001 956722026041/167761*103682^(13/24) 2971215073255607 a001 86267571272/1149851*103682^(11/12) 2971215073257246 a001 53316291173/439204*103682^(7/8) 2971215073258993 a001 32951280099/710647*103682^(23/24) 2971215073264018 a001 43133785636/930249*103682^(23/24) 2971215073264751 a001 225851433717/4870847*103682^(23/24) 2971215073264858 a001 591286729879/12752043*103682^(23/24) 2971215073264874 a001 774004377960/16692641*103682^(23/24) 2971215073264876 a001 4052739537881/87403803*103682^(23/24) 2971215073264876 a001 225749145909/4868641*103682^(23/24) 2971215073264876 a001 3278735159921/70711162*103682^(23/24) 2971215073264877 a001 2504730781961/54018521*103682^(23/24) 2971215073264883 a001 956722026041/20633239*103682^(23/24) 2971215073264924 a001 182717648081/3940598*103682^(23/24) 2971215073265204 a001 139583862445/3010349*103682^(23/24) 2971215073266802 a001 591286729879/167761*103682^(7/12) 2971215073267124 a001 53316291173/1149851*103682^(23/24) 2971215073268763 a001 32951280099/439204*103682^(11/12) 2971215073270509 a001 45923100172469/15456 2971215073275534 a001 17221162564705/5796 2971215073276268 a001 3280221440897/1104 2971215073276375 a001 137769300517679/46368 2971215073276397 a001 956731253595/322 2971215073276440 a001 68884650258841/23184 2971215073276721 a001 6560442881795/2208 2971215073278318 a001 365435296162/167761*103682^(5/8) 2971215073278640 a001 17221162564723/5796 2971215073280279 a001 10182505537/219602*103682^(23/24) 2971215073283150 a001 225851433717/64079*64079^(14/23) 2971215073289834 a001 225851433717/167761*103682^(2/3) 2971215073291796 a001 22961550086399/7728 2971215073301351 a001 139583862445/167761*103682^(17/24) 2971215073312867 a001 86267571272/167761*103682^(3/4) 2971215073314611 a001 365435296162/64079*64079^(13/23) 2971215073324384 a001 53316291173/167761*103682^(19/24) 2971215073326379 a001 225749145909/2206*39603^(7/22) 2971215073335900 a001 32951280099/167761*103682^(5/6) 2971215073346072 a001 591286729879/64079*64079^(12/23) 2971215073347416 a001 20365011074/167761*103682^(7/8) 2971215073358933 a001 75025*103682^(11/12) 2971215073370449 a001 7778742049/167761*103682^(23/24) 2971215073377533 a001 956722026041/64079*64079^(11/23) 2971215073381966 a001 137769300522575/46368 2971215073408995 a001 1548008755920/64079*64079^(10/23) 2971215073412489 a001 3278735159921/51841*39603^(4/11) 2971215073440456 a001 2504730781961/64079*64079^(9/23) 2971215073447213 a001 28657/103682*45537549124^(16/17) 2971215073447213 a001 28657/103682*14662949395604^(16/21) 2971215073447213 a001 28657/103682*(1/2+1/2*5^(1/2))^48 2971215073447213 a001 28657/103682*192900153618^(8/9) 2971215073447213 a001 28657/103682*73681302247^(12/13) 2971215073447213 a001 46368/64079*(1/2+1/2*5^(1/2))^46 2971215073447213 a001 46368/64079*10749957122^(23/24) 2971215073471917 a001 4052739537881/64079*64079^(8/23) 2971215073472349 a001 7778742049/24476*24476^(19/21) 2971215073498599 a001 4052739537881/103682*39603^(9/22) 2971215073503378 a001 6557470319842/64079*64079^(7/23) 2971215073534839 a001 10610209857723/64079*64079^(6/23) 2971215073584710 a001 2504730781961/103682*39603^(5/11) 2971215073618033 a001 222915410898193/75025 2971215073639148 a001 12586269025/64079*167761^(4/5) 2971215073660263 a001 139583862445/64079*167761^(3/5) 2971215073670820 a001 774004377960/51841*39603^(1/2) 2971215073681377 a001 1548008755920/64079*167761^(2/5) 2971215073683281 a001 28657/271443*312119004989^(10/11) 2971215073683281 a001 28657/271443*(1/2+1/2*5^(1/2))^50 2971215073683281 a001 28657/271443*3461452808002^(5/6) 2971215073683281 a001 121393/64079*312119004989^(4/5) 2971215073683281 a001 121393/64079*(1/2+1/2*5^(1/2))^44 2971215073683281 a001 121393/64079*23725150497407^(11/16) 2971215073683281 a001 121393/64079*73681302247^(11/13) 2971215073683281 a001 121393/64079*10749957122^(11/12) 2971215073683281 a001 121393/64079*4106118243^(22/23) 2971215073708203 a001 291800061173809/98209 2971215073708524 a001 12586269025/24476*24476^(6/7) 2971215073709915 a001 28657*439204^(8/9) 2971215073711626 a001 7778742049/64079*439204^(7/9) 2971215073713338 a001 32951280099/64079*439204^(2/3) 2971215073715049 a001 139583862445/64079*439204^(5/9) 2971215073716761 a001 591286729879/64079*439204^(4/9) 2971215073717723 a001 317811/64079*2537720636^(14/15) 2971215073717723 a001 28657/710647*(1/2+1/2*5^(1/2))^52 2971215073717723 a001 28657/710647*23725150497407^(13/16) 2971215073717723 a001 28657/710647*505019158607^(13/14) 2971215073717723 a001 317811/64079*17393796001^(6/7) 2971215073717723 a001 317811/64079*45537549124^(14/17) 2971215073717723 a001 317811/64079*14662949395604^(2/3) 2971215073717723 a001 317811/64079*(1/2+1/2*5^(1/2))^42 2971215073717723 a001 317811/64079*505019158607^(3/4) 2971215073717723 a001 317811/64079*192900153618^(7/9) 2971215073717723 a001 317811/64079*10749957122^(7/8) 2971215073717723 a001 317811/64079*4106118243^(21/23) 2971215073717723 a001 317811/64079*1568397607^(21/22) 2971215073718472 a001 2504730781961/64079*439204^(1/3) 2971215073720183 a001 10610209857723/64079*439204^(2/9) 2971215073721359 a001 1527884956144661/514229 2971215073722748 a001 832040/64079*2537720636^(8/9) 2971215073722748 a001 28657/1860498*14662949395604^(6/7) 2971215073722748 a001 28657/1860498*(1/2+1/2*5^(1/2))^54 2971215073722748 a001 832040/64079*312119004989^(8/11) 2971215073722748 a001 832040/64079*(1/2+1/2*5^(1/2))^40 2971215073722748 a001 832040/64079*23725150497407^(5/8) 2971215073722748 a001 832040/64079*73681302247^(10/13) 2971215073722748 a001 832040/64079*28143753123^(4/5) 2971215073722748 a001 832040/64079*10749957122^(5/6) 2971215073722748 a001 832040/64079*4106118243^(20/23) 2971215073722748 a001 832040/64079*1568397607^(10/11) 2971215073722748 a001 832040/64079*599074578^(20/21) 2971215073723278 a001 4000054746086365/1346269 2971215073723481 a001 28657/4870847*14662949395604^(8/9) 2971215073723481 a001 28657/4870847*(1/2+1/2*5^(1/2))^56 2971215073723481 a001 2178309/64079*817138163596^(2/3) 2971215073723481 a001 2178309/64079*(1/2+1/2*5^(1/2))^38 2971215073723481 a001 2178309/64079*10749957122^(19/24) 2971215073723481 a001 2178309/64079*4106118243^(19/23) 2971215073723481 a001 2178309/64079*1568397607^(19/22) 2971215073723481 a001 2178309/64079*599074578^(19/21) 2971215073723481 a001 2178309/64079*228826127^(19/20) 2971215073723558 a001 5236139641057217/1762289 2971215073723563 a001 102334155/64079*7881196^(10/11) 2971215073723567 a001 433494437/64079*7881196^(9/11) 2971215073723572 a001 28657*7881196^(8/11) 2971215073723574 a001 4807526976/64079*7881196^(2/3) 2971215073723576 a001 7778742049/64079*7881196^(7/11) 2971215073723580 a001 32951280099/64079*7881196^(6/11) 2971215073723585 a001 139583862445/64079*7881196^(5/11) 2971215073723588 a001 5702887/64079*141422324^(12/13) 2971215073723588 a001 5702887/64079*2537720636^(4/5) 2971215073723588 a001 28657/12752043*(1/2+1/2*5^(1/2))^58 2971215073723588 a001 5702887/64079*45537549124^(12/17) 2971215073723588 a001 5702887/64079*14662949395604^(4/7) 2971215073723588 a001 5702887/64079*(1/2+1/2*5^(1/2))^36 2971215073723588 a001 5702887/64079*505019158607^(9/14) 2971215073723588 a001 5702887/64079*192900153618^(2/3) 2971215073723588 a001 5702887/64079*73681302247^(9/13) 2971215073723588 a001 5702887/64079*10749957122^(3/4) 2971215073723588 a001 5702887/64079*4106118243^(18/23) 2971215073723588 a001 5702887/64079*1568397607^(9/11) 2971215073723588 a001 5702887/64079*599074578^(6/7) 2971215073723588 a001 5702887/64079*228826127^(9/10) 2971215073723588 a001 5702887/64079*87403803^(18/19) 2971215073723589 a001 591286729879/64079*7881196^(4/11) 2971215073723590 a001 956722026041/64079*7881196^(1/3) 2971215073723593 a001 2504730781961/64079*7881196^(3/11) 2971215073723598 a001 10610209857723/64079*7881196^(2/11) 2971215073723599 a001 27416783100256937/9227465 2971215073723600 a001 102334155/64079*20633239^(6/7) 2971215073723601 a001 267914296/64079*20633239^(4/5) 2971215073723601 a001 1134903170/64079*20633239^(5/7) 2971215073723602 a001 7778742049/64079*20633239^(3/5) 2971215073723602 a001 12586269025/64079*20633239^(4/7) 2971215073723603 a001 139583862445/64079*20633239^(3/7) 2971215073723604 a001 225851433717/64079*20633239^(2/5) 2971215073723604 a001 28657/33385282*14662949395604^(20/21) 2971215073723604 a001 28657/33385282*(1/2+1/2*5^(1/2))^60 2971215073723604 a001 14930352/64079*45537549124^(2/3) 2971215073723604 a001 14930352/64079*(1/2+1/2*5^(1/2))^34 2971215073723604 a001 14930352/64079*10749957122^(17/24) 2971215073723604 a001 14930352/64079*4106118243^(17/23) 2971215073723604 a001 14930352/64079*1568397607^(17/22) 2971215073723604 a001 14930352/64079*599074578^(17/21) 2971215073723604 a001 14930352/64079*228826127^(17/20) 2971215073723604 a001 14930352/64079*87403803^(17/19) 2971215073723604 a001 1548008755920/64079*20633239^(2/7) 2971215073723605 a001 6557470319842/64079*20633239^(1/5) 2971215073723605 a001 71778070018656377/24157817 2971215073723606 a001 39088169/64079*(1/2+1/2*5^(1/2))^32 2971215073723606 a001 39088169/64079*23725150497407^(1/2) 2971215073723606 a001 39088169/64079*73681302247^(8/13) 2971215073723606 a001 39088169/64079*10749957122^(2/3) 2971215073723606 a001 39088169/64079*4106118243^(16/23) 2971215073723606 a001 39088169/64079*1568397607^(8/11) 2971215073723606 a001 39088169/64079*599074578^(16/21) 2971215073723606 a001 39088169/64079*228826127^(4/5) 2971215073723606 a001 102334155/64079*141422324^(10/13) 2971215073723606 a001 93958713477856097/31622993 2971215073723606 a001 14930352/64079*33385282^(17/18) 2971215073723606 a001 701408733/64079*141422324^(2/3) 2971215073723606 a001 433494437/64079*141422324^(9/13) 2971215073723606 a001 28657*141422324^(8/13) 2971215073723606 a001 7778742049/64079*141422324^(7/13) 2971215073723606 a001 32951280099/64079*141422324^(6/13) 2971215073723606 a001 39088169/64079*87403803^(16/19) 2971215073723606 a001 139583862445/64079*141422324^(5/13) 2971215073723606 a001 102334155/64079*2537720636^(2/3) 2971215073723606 a001 102334155/64079*45537549124^(10/17) 2971215073723606 a001 102334155/64079*312119004989^(6/11) 2971215073723606 a001 102334155/64079*14662949395604^(10/21) 2971215073723606 a001 102334155/64079*(1/2+1/2*5^(1/2))^30 2971215073723606 a001 102334155/64079*192900153618^(5/9) 2971215073723606 a001 102334155/64079*28143753123^(3/5) 2971215073723606 a001 102334155/64079*10749957122^(5/8) 2971215073723606 a001 102334155/64079*4106118243^(15/23) 2971215073723606 a001 102334155/64079*1568397607^(15/22) 2971215073723606 a001 102334155/64079*599074578^(5/7) 2971215073723606 a001 365435296162/64079*141422324^(1/3) 2971215073723606 a001 591286729879/64079*141422324^(4/13) 2971215073723606 a001 2504730781961/64079*141422324^(3/13) 2971215073723606 a001 10610209857723/64079*141422324^(2/13) 2971215073723606 a001 102334155/64079*228826127^(3/4) 2971215073723606 a001 267914296/64079*17393796001^(4/7) 2971215073723606 a001 267914296/64079*14662949395604^(4/9) 2971215073723606 a001 267914296/64079*(1/2+1/2*5^(1/2))^28 2971215073723606 a001 267914296/64079*505019158607^(1/2) 2971215073723606 a001 267914296/64079*73681302247^(7/13) 2971215073723606 a001 267914296/64079*10749957122^(7/12) 2971215073723606 a001 267914296/64079*4106118243^(14/23) 2971215073723606 a001 267914296/64079*1568397607^(7/11) 2971215073723606 a001 267914296/64079*599074578^(2/3) 2971215073723606 a001 701408733/64079*(1/2+1/2*5^(1/2))^26 2971215073723606 a001 701408733/64079*73681302247^(1/2) 2971215073723606 a001 701408733/64079*10749957122^(13/24) 2971215073723606 a001 701408733/64079*4106118243^(13/23) 2971215073723606 a001 701408733/64079*1568397607^(13/22) 2971215073723606 a001 28657*2537720636^(8/15) 2971215073723606 a001 12586269025/64079*2537720636^(4/9) 2971215073723606 a001 7778742049/64079*2537720636^(7/15) 2971215073723606 a001 32951280099/64079*2537720636^(2/5) 2971215073723606 a001 28657*45537549124^(8/17) 2971215073723606 a001 28657*14662949395604^(8/21) 2971215073723606 a001 28657*(1/2+1/2*5^(1/2))^24 2971215073723606 a001 28657*192900153618^(4/9) 2971215073723606 a001 28657*73681302247^(6/13) 2971215073723606 a001 28657*10749957122^(1/2) 2971215073723606 a001 139583862445/64079*2537720636^(1/3) 2971215073723606 a001 591286729879/64079*2537720636^(4/15) 2971215073723606 a001 1548008755920/64079*2537720636^(2/9) 2971215073723606 a001 2504730781961/64079*2537720636^(1/5) 2971215073723606 a001 28657*4106118243^(12/23) 2971215073723606 a001 10610209857723/64079*2537720636^(2/15) 2971215073723606 a001 4807526976/64079*312119004989^(2/5) 2971215073723606 a001 4807526976/64079*(1/2+1/2*5^(1/2))^22 2971215073723606 a001 4807526976/64079*10749957122^(11/24) 2971215073723606 a001 12586269025/64079*(1/2+1/2*5^(1/2))^20 2971215073723606 a001 12586269025/64079*23725150497407^(5/16) 2971215073723606 a001 12586269025/64079*505019158607^(5/14) 2971215073723606 a001 12586269025/64079*73681302247^(5/13) 2971215073723606 a001 225851433717/64079*17393796001^(2/7) 2971215073723606 a001 12586269025/64079*28143753123^(2/5) 2971215073723606 a001 6557470319842/64079*17393796001^(1/7) 2971215073723606 a001 32951280099/64079*45537549124^(6/17) 2971215073723606 a001 32951280099/64079*14662949395604^(2/7) 2971215073723606 a001 32951280099/64079*(1/2+1/2*5^(1/2))^18 2971215073723606 a001 32951280099/64079*192900153618^(1/3) 2971215073723606 a001 139583862445/64079*45537549124^(5/17) 2971215073723606 a001 591286729879/64079*45537549124^(4/17) 2971215073723606 a001 53316291173/64079*45537549124^(1/3) 2971215073723606 a001 2504730781961/64079*45537549124^(3/17) 2971215073723606 a001 10610209857723/64079*45537549124^(2/17) 2971215073723606 a001 86267571272/64079*(1/2+1/2*5^(1/2))^16 2971215073723606 a001 225851433717/64079*14662949395604^(2/9) 2971215073723606 a001 225851433717/64079*(1/2+1/2*5^(1/2))^14 2971215073723606 a001 1548008755920/64079*312119004989^(2/11) 2971215073723606 a001 1548008755920/64079*(1/2+1/2*5^(1/2))^10 2971215073723606 a001 10610209857723/64079*14662949395604^(2/21) 2971215073723606 a001 10610209857723/64079*(1/2+1/2*5^(1/2))^6 2971215073723606 a001 2504730781961/64079*(1/2+1/2*5^(1/2))^9 2971215073723606 a001 956722026041/64079*(1/2+1/2*5^(1/2))^11 2971215073723606 a001 2504730781961/64079*192900153618^(1/6) 2971215073723606 a001 139583862445/64079*14662949395604^(5/21) 2971215073723606 a001 139583862445/64079*(1/2+1/2*5^(1/2))^15 2971215073723606 a001 139583862445/64079*192900153618^(5/18) 2971215073723606 a001 4052739537881/64079*73681302247^(2/13) 2971215073723606 a001 591286729879/64079*73681302247^(3/13) 2971215073723606 a001 365435296162/64079*73681302247^(1/4) 2971215073723606 a001 1548008755920/64079*28143753123^(1/5) 2971215073723606 a001 139583862445/64079*28143753123^(3/10) 2971215073723606 a001 20365011074/64079*817138163596^(1/3) 2971215073723606 a001 20365011074/64079*(1/2+1/2*5^(1/2))^19 2971215073723606 a001 10610209857723/64079*10749957122^(1/8) 2971215073723606 a001 4052739537881/64079*10749957122^(1/6) 2971215073723606 a001 2504730781961/64079*10749957122^(3/16) 2971215073723606 a001 1548008755920/64079*10749957122^(5/24) 2971215073723606 a001 7778742049/64079*17393796001^(3/7) 2971215073723606 a001 591286729879/64079*10749957122^(1/4) 2971215073723606 a001 12586269025/64079*10749957122^(5/12) 2971215073723606 a001 225851433717/64079*10749957122^(7/24) 2971215073723606 a001 139583862445/64079*10749957122^(5/16) 2971215073723606 a001 86267571272/64079*10749957122^(1/3) 2971215073723606 a001 32951280099/64079*10749957122^(3/8) 2971215073723606 a001 7778742049/64079*45537549124^(7/17) 2971215073723606 a001 7778742049/64079*14662949395604^(1/3) 2971215073723606 a001 7778742049/64079*(1/2+1/2*5^(1/2))^21 2971215073723606 a001 7778742049/64079*192900153618^(7/18) 2971215073723606 a001 7778742049/64079*10749957122^(7/16) 2971215073723606 a001 10610209857723/64079*4106118243^(3/23) 2971215073723606 a001 4052739537881/64079*4106118243^(4/23) 2971215073723606 a001 1548008755920/64079*4106118243^(5/23) 2971215073723606 a001 591286729879/64079*4106118243^(6/23) 2971215073723606 a001 225851433717/64079*4106118243^(7/23) 2971215073723606 a001 4807526976/64079*4106118243^(11/23) 2971215073723606 a001 86267571272/64079*4106118243^(8/23) 2971215073723606 a001 2971215073/64079*(1/2+1/2*5^(1/2))^23 2971215073723606 a001 32951280099/64079*4106118243^(9/23) 2971215073723606 a001 12586269025/64079*4106118243^(10/23) 2971215073723606 a001 2971215073/64079*4106118243^(1/2) 2971215073723606 a001 10610209857723/64079*1568397607^(3/22) 2971215073723606 a001 1134903170/64079*2537720636^(5/9) 2971215073723606 a001 4052739537881/64079*1568397607^(2/11) 2971215073723606 a001 1548008755920/64079*1568397607^(5/22) 2971215073723606 a001 956722026041/64079*1568397607^(1/4) 2971215073723606 a001 591286729879/64079*1568397607^(3/11) 2971215073723606 a001 225851433717/64079*1568397607^(7/22) 2971215073723606 a001 86267571272/64079*1568397607^(4/11) 2971215073723606 a001 1134903170/64079*312119004989^(5/11) 2971215073723606 a001 1134903170/64079*(1/2+1/2*5^(1/2))^25 2971215073723606 a001 1134903170/64079*3461452808002^(5/12) 2971215073723606 a001 1134903170/64079*28143753123^(1/2) 2971215073723606 a001 28657*1568397607^(6/11) 2971215073723606 a001 32951280099/64079*1568397607^(9/22) 2971215073723606 a001 12586269025/64079*1568397607^(5/11) 2971215073723606 a001 4807526976/64079*1568397607^(1/2) 2971215073723606 a001 10610209857723/64079*599074578^(1/7) 2971215073723606 a001 6557470319842/64079*599074578^(1/6) 2971215073723606 a001 4052739537881/64079*599074578^(4/21) 2971215073723606 a001 2504730781961/64079*599074578^(3/14) 2971215073723606 a001 1548008755920/64079*599074578^(5/21) 2971215073723606 a001 591286729879/64079*599074578^(2/7) 2971215073723606 a001 225851433717/64079*599074578^(1/3) 2971215073723606 a001 433494437/64079*2537720636^(3/5) 2971215073723606 a001 139583862445/64079*599074578^(5/14) 2971215073723606 a001 86267571272/64079*599074578^(8/21) 2971215073723606 a001 433494437/64079*45537549124^(9/17) 2971215073723606 a001 433494437/64079*817138163596^(9/19) 2971215073723606 a001 433494437/64079*14662949395604^(3/7) 2971215073723606 a001 433494437/64079*(1/2+1/2*5^(1/2))^27 2971215073723606 a001 433494437/64079*192900153618^(1/2) 2971215073723606 a001 433494437/64079*10749957122^(9/16) 2971215073723606 a001 32951280099/64079*599074578^(3/7) 2971215073723606 a001 701408733/64079*599074578^(13/21) 2971215073723606 a001 12586269025/64079*599074578^(10/21) 2971215073723606 a001 7778742049/64079*599074578^(1/2) 2971215073723606 a001 4807526976/64079*599074578^(11/21) 2971215073723606 a001 28657*599074578^(4/7) 2971215073723606 a001 433494437/64079*599074578^(9/14) 2971215073723606 a001 10610209857723/64079*228826127^(3/20) 2971215073723606 a001 4052739537881/64079*228826127^(1/5) 2971215073723606 a001 1548008755920/64079*228826127^(1/4) 2971215073723606 a001 591286729879/64079*228826127^(3/10) 2971215073723606 a001 225851433717/64079*228826127^(7/20) 2971215073723606 a001 139583862445/64079*228826127^(3/8) 2971215073723606 a001 165580141/64079*(1/2+1/2*5^(1/2))^29 2971215073723606 a001 165580141/64079*1322157322203^(1/2) 2971215073723606 a001 86267571272/64079*228826127^(2/5) 2971215073723606 a001 32951280099/64079*228826127^(9/20) 2971215073723606 a001 12586269025/64079*228826127^(1/2) 2971215073723606 a001 4807526976/64079*228826127^(11/20) 2971215073723606 a001 267914296/64079*228826127^(7/10) 2971215073723606 a001 28657*228826127^(3/5) 2971215073723606 a001 701408733/64079*228826127^(13/20) 2971215073723606 a001 1134903170/64079*228826127^(5/8) 2971215073723606 a001 14478894471084191/4873055 2971215073723606 a001 10610209857723/64079*87403803^(3/19) 2971215073723606 a001 4052739537881/64079*87403803^(4/19) 2971215073723606 a001 1548008755920/64079*87403803^(5/19) 2971215073723606 a001 591286729879/64079*87403803^(6/19) 2971215073723606 a001 225851433717/64079*87403803^(7/19) 2971215073723606 a001 63245986/64079*(1/2+1/2*5^(1/2))^31 2971215073723606 a001 63245986/64079*9062201101803^(1/2) 2971215073723606 a001 86267571272/64079*87403803^(8/19) 2971215073723606 a001 32951280099/64079*87403803^(9/19) 2971215073723606 a001 20365011074/64079*87403803^(1/2) 2971215073723607 a001 12586269025/64079*87403803^(10/19) 2971215073723607 a001 4807526976/64079*87403803^(11/19) 2971215073723607 a001 28657*87403803^(12/19) 2971215073723607 a001 102334155/64079*87403803^(15/19) 2971215073723607 a001 701408733/64079*87403803^(13/19) 2971215073723607 a001 267914296/64079*87403803^(14/19) 2971215073723607 a001 116139356937055817/39088169 2971215073723607 a001 10610209857723/64079*33385282^(1/6) 2971215073723607 a001 4052739537881/64079*33385282^(2/9) 2971215073723607 a001 2504730781961/64079*33385282^(1/4) 2971215073723607 a001 1548008755920/64079*33385282^(5/18) 2971215073723607 a001 591286729879/64079*33385282^(1/3) 2971215073723607 a001 24157817/64079*141422324^(11/13) 2971215073723607 a001 24157817/64079*2537720636^(11/15) 2971215073723607 a001 24157817/64079*45537549124^(11/17) 2971215073723607 a001 24157817/64079*312119004989^(3/5) 2971215073723607 a001 24157817/64079*14662949395604^(11/21) 2971215073723607 a001 24157817/64079*(1/2+1/2*5^(1/2))^33 2971215073723607 a001 24157817/64079*192900153618^(11/18) 2971215073723607 a001 24157817/64079*10749957122^(11/16) 2971215073723607 a001 24157817/64079*1568397607^(3/4) 2971215073723607 a001 24157817/64079*599074578^(11/14) 2971215073723607 a001 225851433717/64079*33385282^(7/18) 2971215073723607 a001 139583862445/64079*33385282^(5/12) 2971215073723607 a001 86267571272/64079*33385282^(4/9) 2971215073723608 a001 32951280099/64079*33385282^(1/2) 2971215073723608 a001 12586269025/64079*33385282^(5/9) 2971215073723608 a001 7778742049/64079*33385282^(7/12) 2971215073723608 a001 4807526976/64079*33385282^(11/18) 2971215073723608 a001 28657*33385282^(2/3) 2971215073723608 a001 701408733/64079*33385282^(13/18) 2971215073723608 a001 39088169/64079*33385282^(8/9) 2971215073723608 a001 433494437/64079*33385282^(3/4) 2971215073723608 a001 267914296/64079*33385282^(7/9) 2971215073723608 a001 102334155/64079*33385282^(5/6) 2971215073723609 a001 308064492488885/103683 2971215073723610 a001 10610209857723/64079*12752043^(3/17) 2971215073723610 a001 24157817/64079*33385282^(11/12) 2971215073723611 a001 4052739537881/64079*12752043^(4/17) 2971215073723612 a001 1548008755920/64079*12752043^(5/17) 2971215073723613 a001 591286729879/64079*12752043^(6/17) 2971215073723613 a001 9227465/64079*2537720636^(7/9) 2971215073723613 a001 28657/20633239*(1/2+1/2*5^(1/2))^59 2971215073723613 a001 9227465/64079*17393796001^(5/7) 2971215073723613 a001 9227465/64079*312119004989^(7/11) 2971215073723613 a001 9227465/64079*14662949395604^(5/9) 2971215073723613 a001 9227465/64079*(1/2+1/2*5^(1/2))^35 2971215073723613 a001 9227465/64079*505019158607^(5/8) 2971215073723613 a001 9227465/64079*28143753123^(7/10) 2971215073723613 a001 9227465/64079*599074578^(5/6) 2971215073723613 a001 9227465/64079*228826127^(7/8) 2971215073723614 a001 225851433717/64079*12752043^(7/17) 2971215073723615 a001 86267571272/64079*12752043^(8/17) 2971215073723615 a001 53316291173/64079*12752043^(1/2) 2971215073723616 a001 32951280099/64079*12752043^(9/17) 2971215073723617 a001 12586269025/64079*12752043^(10/17) 2971215073723618 a001 4807526976/64079*12752043^(11/17) 2971215073723619 a001 28657*12752043^(12/17) 2971215073723620 a001 701408733/64079*12752043^(13/17) 2971215073723621 a001 267914296/64079*12752043^(14/17) 2971215073723622 a001 102334155/64079*12752043^(15/17) 2971215073723623 a001 39088169/64079*12752043^(16/17) 2971215073723625 a001 16944503818142503/5702887 2971215073723630 a001 10610209857723/64079*4870847^(3/16) 2971215073723638 a001 4052739537881/64079*4870847^(1/4) 2971215073723645 a001 1548008755920/64079*4870847^(5/16) 2971215073723653 a001 591286729879/64079*4870847^(3/8) 2971215073723654 a001 28657/7881196*14662949395604^(19/21) 2971215073723654 a001 28657/7881196*(1/2+1/2*5^(1/2))^57 2971215073723654 a001 3524578/64079*(1/2+1/2*5^(1/2))^37 2971215073723661 a001 225851433717/64079*4870847^(7/16) 2971215073723669 a001 86267571272/64079*4870847^(1/2) 2971215073723677 a001 32951280099/64079*4870847^(9/16) 2971215073723685 a001 12586269025/64079*4870847^(5/8) 2971215073723692 a001 4807526976/64079*4870847^(11/16) 2971215073723700 a001 28657*4870847^(3/4) 2971215073723708 a001 701408733/64079*4870847^(13/16) 2971215073723716 a001 267914296/64079*4870847^(7/8) 2971215073723724 a001 102334155/64079*4870847^(15/16) 2971215073723732 a001 308201168382289/103729 2971215073723778 a001 10610209857723/64079*1860498^(1/5) 2971215073723835 a001 4052739537881/64079*1860498^(4/15) 2971215073723864 a001 2504730781961/64079*1860498^(3/10) 2971215073723892 a001 1548008755920/64079*1860498^(1/3) 2971215073723934 a001 1346269/64079*2537720636^(13/15) 2971215073723934 a001 28657/3010349*(1/2+1/2*5^(1/2))^55 2971215073723934 a001 28657/3010349*3461452808002^(11/12) 2971215073723934 a001 1346269/64079*45537549124^(13/17) 2971215073723934 a001 1346269/64079*14662949395604^(13/21) 2971215073723934 a001 1346269/64079*(1/2+1/2*5^(1/2))^39 2971215073723934 a001 1346269/64079*192900153618^(13/18) 2971215073723934 a001 1346269/64079*73681302247^(3/4) 2971215073723934 a001 1346269/64079*10749957122^(13/16) 2971215073723934 a001 1346269/64079*599074578^(13/14) 2971215073723950 a001 591286729879/64079*1860498^(2/5) 2971215073724007 a001 225851433717/64079*1860498^(7/15) 2971215073724035 a001 139583862445/64079*1860498^(1/2) 2971215073724064 a001 86267571272/64079*1860498^(8/15) 2971215073724121 a001 32951280099/64079*1860498^(3/5) 2971215073724179 a001 12586269025/64079*1860498^(2/3) 2971215073724207 a001 7778742049/64079*1860498^(7/10) 2971215073724236 a001 4807526976/64079*1860498^(11/15) 2971215073724293 a001 28657*1860498^(4/5) 2971215073724322 a001 1134903170/64079*1860498^(5/6) 2971215073724350 a001 701408733/64079*1860498^(13/15) 2971215073724379 a001 433494437/64079*1860498^(9/10) 2971215073724407 a001 267914296/64079*1860498^(14/15) 2971215073724465 a001 309021223742713/104005 2971215073724867 a001 10610209857723/64079*710647^(3/14) 2971215073725077 a001 6557470319842/64079*710647^(1/4) 2971215073725287 a001 4052739537881/64079*710647^(2/7) 2971215073725708 a001 1548008755920/64079*710647^(5/14) 2971215073725854 a001 28657/1149851*(1/2+1/2*5^(1/2))^53 2971215073725854 a001 514229/64079*(1/2+1/2*5^(1/2))^41 2971215073726128 a001 591286729879/64079*710647^(3/7) 2971215073726548 a001 225851433717/64079*710647^(1/2) 2971215073726968 a001 86267571272/64079*710647^(4/7) 2971215073727388 a001 32951280099/64079*710647^(9/14) 2971215073727809 a001 12586269025/64079*710647^(5/7) 2971215073728019 a001 7778742049/64079*710647^(3/4) 2971215073728229 a001 4807526976/64079*710647^(11/14) 2971215073728649 a001 28657*710647^(6/7) 2971215073729069 a001 701408733/64079*710647^(13/14) 2971215073729490 a001 314761611265681/105937 2971215073732912 a001 10610209857723/64079*271443^(3/13) 2971215073734667 a001 3536736619241/90481*39603^(9/22) 2971215073736014 a001 4052739537881/64079*271443^(4/13) 2971215073739009 a001 28657/439204*817138163596^(17/19) 2971215073739009 a001 28657/439204*14662949395604^(17/21) 2971215073739009 a001 28657/439204*(1/2+1/2*5^(1/2))^51 2971215073739009 a001 28657/439204*192900153618^(17/18) 2971215073739009 a001 196418/64079*(1/2+1/2*5^(1/2))^43 2971215073739116 a001 1548008755920/64079*271443^(5/13) 2971215073742218 a001 591286729879/64079*271443^(6/13) 2971215073743769 a001 365435296162/64079*271443^(1/2) 2971215073745320 a001 225851433717/64079*271443^(7/13) 2971215073748422 a001 86267571272/64079*271443^(8/13) 2971215073751524 a001 32951280099/64079*271443^(9/13) 2971215073754626 a001 12586269025/64079*271443^(10/13) 2971215073756930 a001 956722026041/103682*39603^(6/11) 2971215073757728 a001 4807526976/64079*271443^(11/13) 2971215073760830 a001 28657*271443^(12/13) 2971215073763932 a001 360684711449425/121393 2971215073792705 a001 10610209857723/64079*103682^(1/4) 2971215073794455 a001 10610209857723/167761*39603^(4/11) 2971215073804221 a001 6557470319842/64079*103682^(7/24) 2971215073815737 a001 4052739537881/64079*103682^(1/3) 2971215073820778 a001 6557470319842/271443*39603^(5/11) 2971215073827254 a001 2504730781961/64079*103682^(3/8) 2971215073829179 a001 28657/167761*14662949395604^(7/9) 2971215073829179 a001 28657/167761*(1/2+1/2*5^(1/2))^49 2971215073829179 a001 28657/167761*505019158607^(7/8) 2971215073829179 a001 75025/64079*45537549124^(15/17) 2971215073829179 a001 75025/64079*312119004989^(9/11) 2971215073829179 a001 75025/64079*14662949395604^(5/7) 2971215073829179 a001 75025/64079*(1/2+1/2*5^(1/2))^45 2971215073829179 a001 75025/64079*192900153618^(5/6) 2971215073829179 a001 75025/64079*28143753123^(9/10) 2971215073829179 a001 75025/64079*10749957122^(15/16) 2971215073838770 a001 1548008755920/64079*103682^(5/12) 2971215073843041 a001 591286729879/103682*39603^(13/22) 2971215073850287 a001 956722026041/64079*103682^(11/24) 2971215073861803 a001 591286729879/64079*103682^(1/2) 2971215073873319 a001 365435296162/64079*103682^(13/24) 2971215073876506 a001 10610209857723/439204*39603^(5/11) 2971215073880565 a001 6557470319842/167761*39603^(9/22) 2971215073884836 a001 225851433717/64079*103682^(7/12) 2971215073896352 a001 139583862445/64079*103682^(5/8) 2971215073906888 a001 4052739537881/271443*39603^(1/2) 2971215073907868 a001 86267571272/64079*103682^(2/3) 2971215073919385 a001 53316291173/64079*103682^(17/24) 2971215073929151 a001 182717648081/51841*39603^(7/11) 2971215073930901 a001 32951280099/64079*103682^(3/4) 2971215073941330 a001 1515744265389/101521*39603^(1/2) 2971215073942418 a001 20365011074/64079*103682^(19/24) 2971215073944699 a001 10182505537/12238*24476^(17/21) 2971215073953934 a001 12586269025/64079*103682^(5/6) 2971215073962616 a001 3278735159921/219602*39603^(1/2) 2971215073965450 a001 7778742049/64079*103682^(7/8) 2971215073966676 a001 4052739537881/167761*39603^(5/11) 2971215073976967 a001 4807526976/64079*103682^(11/12) 2971215073988483 a001 2971215073/64079*103682^(23/24) 2971215073992998 a001 2504730781961/271443*39603^(6/11) 2971215074015261 a001 225851433717/103682*39603^(15/22) 2971215074027440 a001 6557470319842/710647*39603^(6/11) 2971215074035571 a001 10610209857723/1149851*39603^(6/11) 2971215074048726 a001 4052739537881/439204*39603^(6/11) 2971215074052786 a001 2504730781961/167761*39603^(1/2) 2971215074079109 a001 516002918640/90481*39603^(13/22) 2971215074101372 a001 139583862445/103682*39603^(8/11) 2971215074113550 a001 4052739537881/710647*39603^(13/22) 2971215074118575 a001 3536736619241/620166*39603^(13/22) 2971215074121681 a001 6557470319842/1149851*39603^(13/22) 2971215074134837 a001 2504730781961/439204*39603^(13/22) 2971215074138896 a001 140728068720/15251*39603^(6/11) 2971215074165219 a001 956722026041/271443*39603^(7/11) 2971215074180874 a001 32951280099/24476*24476^(16/21) 2971215074187482 a001 43133785636/51841*39603^(17/22) 2971215074199661 a001 2504730781961/710647*39603^(7/11) 2971215074204686 a001 3278735159921/930249*39603^(7/11) 2971215074205872 a001 10610209857723/3010349*39603^(7/11) 2971215074207791 a001 4052739537881/1149851*39603^(7/11) 2971215074220947 a001 387002188980/109801*39603^(7/11) 2971215074225007 a001 956722026041/167761*39603^(13/22) 2971215074240268 a001 10610209857723/64079*39603^(3/11) 2971215074251329 a001 591286729879/271443*39603^(15/22) 2971215074273592 a001 53316291173/103682*39603^(9/11) 2971215074285771 a001 1548008755920/710647*39603^(15/22) 2971215074290796 a001 4052739537881/1860498*39603^(15/22) 2971215074291529 a001 2178309*39603^(15/22) 2971215074291982 a001 6557470319842/3010349*39603^(15/22) 2971215074293902 a001 2504730781961/1149851*39603^(15/22) 2971215074307057 a001 956722026041/439204*39603^(15/22) 2971215074311117 a001 591286729879/167761*39603^(7/11) 2971215074326379 a001 6557470319842/64079*39603^(7/22) 2971215074337440 a001 365435296162/271443*39603^(8/11) 2971215074351722 a001 3536736619241/13201*15127^(1/4) 2971215074359703 a001 32951280099/103682*39603^(19/22) 2971215074371881 a001 956722026041/710647*39603^(8/11) 2971215074376906 a001 2504730781961/1860498*39603^(8/11) 2971215074377639 a001 6557470319842/4870847*39603^(8/11) 2971215074377813 a001 10610209857723/7881196*39603^(8/11) 2971215074378093 a001 1346269*39603^(8/11) 2971215074380012 a001 1548008755920/1149851*39603^(8/11) 2971215074393168 a001 591286729879/439204*39603^(8/11) 2971215074397227 a001 365435296162/167761*39603^(15/22) 2971215074412489 a001 4052739537881/64079*39603^(4/11) 2971215074417049 a001 53316291173/24476*24476^(5/7) 2971215074423550 a001 75283811239/90481*39603^(17/22) 2971215074445813 a001 10182505537/51841*39603^(10/11) 2971215074447213 a001 28657/64079*(1/2+1/2*5^(1/2))^47 2971215074457992 a001 591286729879/710647*39603^(17/22) 2971215074463017 a001 832040*39603^(17/22) 2971215074463750 a001 4052739537881/4870847*39603^(17/22) 2971215074463857 a001 3536736619241/4250681*39603^(17/22) 2971215074463923 a001 3278735159921/3940598*39603^(17/22) 2971215074464203 a001 2504730781961/3010349*39603^(17/22) 2971215074466122 a001 956722026041/1149851*39603^(17/22) 2971215074479278 a001 182717648081/219602*39603^(17/22) 2971215074483338 a001 225851433717/167761*39603^(8/11) 2971215074498599 a001 2504730781961/64079*39603^(9/22) 2971215074509660 a001 139583862445/271443*39603^(9/11) 2971215074531923 a001 12586269025/103682*39603^(21/22) 2971215074544102 a001 365435296162/710647*39603^(9/11) 2971215074549127 a001 956722026041/1860498*39603^(9/11) 2971215074549860 a001 2504730781961/4870847*39603^(9/11) 2971215074549967 a001 6557470319842/12752043*39603^(9/11) 2971215074549992 a001 10610209857723/20633239*39603^(9/11) 2971215074550033 a001 4052739537881/7881196*39603^(9/11) 2971215074550313 a001 1548008755920/3010349*39603^(9/11) 2971215074552233 a001 514229*39603^(9/11) 2971215074565388 a001 225851433717/439204*39603^(9/11) 2971215074569448 a001 139583862445/167761*39603^(17/22) 2971215074584710 a001 1548008755920/64079*39603^(5/11) 2971215074595770 a001 86267571272/271443*39603^(19/22) 2971215074618033 a001 52623190186560/17711 2971215074630212 a001 317811*39603^(19/22) 2971215074635237 a001 591286729879/1860498*39603^(19/22) 2971215074635970 a001 1548008755920/4870847*39603^(19/22) 2971215074636077 a001 4052739537881/12752043*39603^(19/22) 2971215074636093 a001 1515744265389/4769326*39603^(19/22) 2971215074636103 a001 6557470319842/20633239*39603^(19/22) 2971215074636144 a001 2504730781961/7881196*39603^(19/22) 2971215074636424 a001 956722026041/3010349*39603^(19/22) 2971215074638343 a001 365435296162/1149851*39603^(19/22) 2971215074651499 a001 139583862445/439204*39603^(19/22) 2971215074653224 a001 21566892818/6119*24476^(2/3) 2971215074655558 a001 86267571272/167761*39603^(9/11) 2971215074670820 a001 956722026041/64079*39603^(1/2) 2971215074681881 a001 53316291173/271443*39603^(10/11) 2971215074716323 a001 139583862445/710647*39603^(10/11) 2971215074721348 a001 182717648081/930249*39603^(10/11) 2971215074722081 a001 956722026041/4870847*39603^(10/11) 2971215074722188 a001 2504730781961/12752043*39603^(10/11) 2971215074722203 a001 3278735159921/16692641*39603^(10/11) 2971215074722207 a001 10610209857723/54018521*39603^(10/11) 2971215074722213 a001 4052739537881/20633239*39603^(10/11) 2971215074722254 a001 387002188980/1970299*39603^(10/11) 2971215074722534 a001 591286729879/3010349*39603^(10/11) 2971215074724453 a001 225851433717/1149851*39603^(10/11) 2971215074737609 a001 196418*39603^(10/11) 2971215074741669 a001 53316291173/167761*39603^(19/22) 2971215074756930 a001 591286729879/64079*39603^(6/11) 2971215074767991 a001 121393*39603^(21/22) 2971215074789164 a001 4807526976/9349*9349^(18/19) 2971215074802433 a001 86267571272/710647*39603^(21/22) 2971215074807458 a001 75283811239/620166*39603^(21/22) 2971215074808191 a001 591286729879/4870847*39603^(21/22) 2971215074808298 a001 516002918640/4250681*39603^(21/22) 2971215074808314 a001 4052739537881/33385282*39603^(21/22) 2971215074808316 a001 3536736619241/29134601*39603^(21/22) 2971215074808317 a001 6557470319842/54018521*39603^(21/22) 2971215074808323 a001 2504730781961/20633239*39603^(21/22) 2971215074808364 a001 956722026041/7881196*39603^(21/22) 2971215074808644 a001 365435296162/3010349*39603^(21/22) 2971215074810564 a001 139583862445/1149851*39603^(21/22) 2971215074823719 a001 53316291173/439204*39603^(21/22) 2971215074827779 a001 32951280099/167761*39603^(10/11) 2971215074843041 a001 365435296162/64079*39603^(13/22) 2971215074848361 a001 1515744265389/2161*5778^(1/6) 2971215074854101 a001 52623190190741/17711 2971215074888543 a001 52623190191351/17711 2971215074889399 a001 139583862445/24476*24476^(13/21) 2971215074893568 a001 52623190191440/17711 2971215074894302 a001 52623190191453/17711 2971215074894415 a001 52623190191455/17711 2971215074894472 a001 591271799904/199 2971215074894754 a001 52623190191461/17711 2971215074896674 a001 52623190191495/17711 2971215074909830 a001 52623190191728/17711 2971215074913889 a001 20365011074/167761*39603^(21/22) 2971215074929151 a001 225851433717/64079*39603^(7/11) 2971215075000951 a001 6557470319842/39603*15127^(3/10) 2971215075015261 a001 139583862445/64079*39603^(15/22) 2971215075101372 a001 86267571272/64079*39603^(8/11) 2971215075125574 a001 7787980473/844*24476^(4/7) 2971215075187482 a001 53316291173/64079*39603^(17/22) 2971215075273592 a001 32951280099/64079*39603^(9/11) 2971215075359703 a001 20365011074/64079*39603^(19/22) 2971215075361749 a001 182717648081/12238*24476^(11/21) 2971215075445813 a001 12586269025/64079*39603^(10/11) 2971215075531923 a001 7778742049/64079*39603^(21/22) 2971215075597924 a001 591286729879/24476*24476^(10/21) 2971215075618033 a001 52623190204271/17711 2971215075650181 a001 4052739537881/39603*15127^(7/20) 2971215075834099 a001 956722026041/24476*24476^(3/7) 2971215076065247 a001 10946/39603*45537549124^(16/17) 2971215076065247 a001 10946/39603*14662949395604^(16/21) 2971215076065247 a001 10946/39603*(1/2+1/2*5^(1/2))^48 2971215076065247 a001 10946/39603*192900153618^(8/9) 2971215076065247 a001 10946/39603*73681302247^(12/13) 2971215076065247 a001 17711/24476*(1/2+1/2*5^(1/2))^46 2971215076065247 a001 17711/24476*10749957122^(23/24) 2971215076070274 a001 387002188980/6119*24476^(8/21) 2971215076299411 a001 2504730781961/39603*15127^(2/5) 2971215076306449 a001 2504730781961/24476*24476^(1/3) 2971215076542624 a001 4052739537881/24476*24476^(2/7) 2971215076578328 a001 7778742049/9349*9349^(17/19) 2971215076778799 a001 3278735159921/12238*24476^(5/21) 2971215076948641 a001 516002918640/13201*15127^(9/20) 2971215077014974 a001 10610209857723/24476*24476^(4/21) 2971215077236067 a001 85146110468354/28657 2971215077267529 a001 1836311903/24476*64079^(22/23) 2971215077268215 a001 225749145909/2206*15127^(7/20) 2971215077298990 a001 2971215073/24476*64079^(21/23) 2971215077330451 a001 1201881744/6119*64079^(20/23) 2971215077361912 a001 7778742049/24476*64079^(19/23) 2971215077393373 a001 12586269025/24476*64079^(18/23) 2971215077424834 a001 10182505537/12238*64079^(17/23) 2971215077456296 a001 32951280099/24476*64079^(16/23) 2971215077487757 a001 53316291173/24476*64079^(15/23) 2971215077519218 a001 21566892818/6119*64079^(14/23) 2971215077550679 a001 139583862445/24476*64079^(13/23) 2971215077582140 a001 7787980473/844*64079^(12/23) 2971215077597871 a001 956722026041/39603*15127^(1/2) 2971215077613601 a001 182717648081/12238*64079^(11/23) 2971215077618985 a001 10610209857723/64079*15127^(3/10) 2971215077645063 a001 591286729879/24476*64079^(10/23) 2971215077676524 a001 956722026041/24476*64079^(9/23) 2971215077683281 a001 5473/51841*312119004989^(10/11) 2971215077683281 a001 5473/51841*(1/2+1/2*5^(1/2))^50 2971215077683281 a001 5473/51841*3461452808002^(5/6) 2971215077683281 a001 11592/6119*312119004989^(4/5) 2971215077683281 a001 11592/6119*(1/2+1/2*5^(1/2))^44 2971215077683281 a001 11592/6119*23725150497407^(11/16) 2971215077683281 a001 11592/6119*73681302247^(11/13) 2971215077683281 a001 11592/6119*10749957122^(11/12) 2971215077683281 a001 11592/6119*4106118243^(22/23) 2971215077707985 a001 387002188980/6119*64079^(8/23) 2971215077739446 a001 2504730781961/24476*64079^(7/23) 2971215077770907 a001 4052739537881/24476*64079^(6/23) 2971215077802368 a001 3278735159921/12238*64079^(5/23) 2971215077833830 a001 10610209857723/24476*64079^(4/23) 2971215077854101 a001 222915411216004/75025 2971215077875216 a001 1201881744/6119*167761^(4/5) 2971215077896331 a001 53316291173/24476*167761^(3/5) 2971215077917445 a001 3278735159921/51841*15127^(2/5) 2971215077917445 a001 591286729879/24476*167761^(2/5) 2971215077919349 a001 10946/271443*(1/2+1/2*5^(1/2))^52 2971215077919349 a001 10946/271443*23725150497407^(13/16) 2971215077919349 a001 10946/271443*505019158607^(13/14) 2971215077919349 a001 121393/24476*2537720636^(14/15) 2971215077919349 a001 121393/24476*17393796001^(6/7) 2971215077919349 a001 121393/24476*45537549124^(14/17) 2971215077919349 a001 121393/24476*817138163596^(14/19) 2971215077919349 a001 121393/24476*14662949395604^(2/3) 2971215077919349 a001 121393/24476*(1/2+1/2*5^(1/2))^42 2971215077919349 a001 121393/24476*505019158607^(3/4) 2971215077919349 a001 121393/24476*192900153618^(7/9) 2971215077919349 a001 121393/24476*10749957122^(7/8) 2971215077919349 a001 121393/24476*4106118243^(21/23) 2971215077919349 a001 121393/24476*1568397607^(21/22) 2971215077938560 a001 3278735159921/12238*167761^(1/5) 2971215077944271 a001 291800061589829/98209 2971215077945983 a001 701408733/24476*439204^(8/9) 2971215077947694 a001 2971215073/24476*439204^(7/9) 2971215077949406 a001 12586269025/24476*439204^(2/3) 2971215077951117 a001 53316291173/24476*439204^(5/9) 2971215077952829 a001 7787980473/844*439204^(4/9) 2971215077953791 a001 10946/710647*14662949395604^(6/7) 2971215077953791 a001 10946/710647*(1/2+1/2*5^(1/2))^54 2971215077953791 a001 10959/844*2537720636^(8/9) 2971215077953791 a001 10959/844*312119004989^(8/11) 2971215077953791 a001 10959/844*(1/2+1/2*5^(1/2))^40 2971215077953791 a001 10959/844*23725150497407^(5/8) 2971215077953791 a001 10959/844*73681302247^(10/13) 2971215077953791 a001 10959/844*28143753123^(4/5) 2971215077953791 a001 10959/844*10749957122^(5/6) 2971215077953791 a001 10959/844*4106118243^(20/23) 2971215077953791 a001 10959/844*1568397607^(10/11) 2971215077953791 a001 10959/844*599074578^(20/21) 2971215077954540 a001 956722026041/24476*439204^(1/3) 2971215077956251 a001 4052739537881/24476*439204^(2/9) 2971215077957427 a001 1527884958322970/514229 2971215077958816 a001 5473/930249*14662949395604^(8/9) 2971215077958816 a001 5473/930249*(1/2+1/2*5^(1/2))^56 2971215077958816 a001 208010/6119*817138163596^(2/3) 2971215077958816 a001 208010/6119*(1/2+1/2*5^(1/2))^38 2971215077958816 a001 208010/6119*10749957122^(19/24) 2971215077958816 a001 208010/6119*4106118243^(19/23) 2971215077958816 a001 208010/6119*1568397607^(19/22) 2971215077958816 a001 208010/6119*599074578^(19/21) 2971215077958816 a001 208010/6119*228826127^(19/20) 2971215077959346 a001 4000054751789252/1346269 2971215077959549 a001 2178309/24476*141422324^(12/13) 2971215077959549 a001 10946/4870847*(1/2+1/2*5^(1/2))^58 2971215077959549 a001 2178309/24476*2537720636^(4/5) 2971215077959549 a001 2178309/24476*45537549124^(12/17) 2971215077959549 a001 2178309/24476*14662949395604^(4/7) 2971215077959549 a001 2178309/24476*(1/2+1/2*5^(1/2))^36 2971215077959549 a001 2178309/24476*505019158607^(9/14) 2971215077959549 a001 2178309/24476*192900153618^(2/3) 2971215077959549 a001 2178309/24476*73681302247^(9/13) 2971215077959549 a001 2178309/24476*10749957122^(3/4) 2971215077959549 a001 2178309/24476*4106118243^(18/23) 2971215077959549 a001 2178309/24476*1568397607^(9/11) 2971215077959549 a001 2178309/24476*599074578^(6/7) 2971215077959549 a001 2178309/24476*228826127^(9/10) 2971215077959549 a001 2178309/24476*87403803^(18/19) 2971215077959626 a001 5236139648522393/1762289 2971215077959630 a001 39088169/24476*7881196^(10/11) 2971215077959635 a001 165580141/24476*7881196^(9/11) 2971215077959639 a001 701408733/24476*7881196^(8/11) 2971215077959642 a001 1836311903/24476*7881196^(2/3) 2971215077959644 a001 2971215073/24476*7881196^(7/11) 2971215077959648 a001 12586269025/24476*7881196^(6/11) 2971215077959653 a001 53316291173/24476*7881196^(5/11) 2971215077959656 a001 10946/12752043*14662949395604^(20/21) 2971215077959656 a001 10946/12752043*(1/2+1/2*5^(1/2))^60 2971215077959656 a001 5702887/24476*45537549124^(2/3) 2971215077959656 a001 5702887/24476*(1/2+1/2*5^(1/2))^34 2971215077959656 a001 5702887/24476*10749957122^(17/24) 2971215077959656 a001 5702887/24476*4106118243^(17/23) 2971215077959656 a001 5702887/24476*1568397607^(17/22) 2971215077959656 a001 5702887/24476*599074578^(17/21) 2971215077959656 a001 5702887/24476*228826127^(17/20) 2971215077959656 a001 5702887/24476*87403803^(17/19) 2971215077959657 a001 7787980473/844*7881196^(4/11) 2971215077959658 a001 182717648081/12238*7881196^(1/3) 2971215077959659 a001 5702887/24476*33385282^(17/18) 2971215077959661 a001 956722026041/24476*7881196^(3/11) 2971215077959666 a001 4052739537881/24476*7881196^(2/11) 2971215077959667 a001 2108983318411162/709805 2971215077959668 a001 39088169/24476*20633239^(6/7) 2971215077959669 a001 102334155/24476*20633239^(4/5) 2971215077959669 a001 433494437/24476*20633239^(5/7) 2971215077959670 a001 2971215073/24476*20633239^(3/5) 2971215077959670 a001 1201881744/6119*20633239^(4/7) 2971215077959671 a001 53316291173/24476*20633239^(3/7) 2971215077959671 a001 21566892818/6119*20633239^(2/5) 2971215077959672 a001 5473/16692641*(1/2+1/2*5^(1/2))^62 2971215077959672 a001 3732588/6119*(1/2+1/2*5^(1/2))^32 2971215077959672 a001 3732588/6119*23725150497407^(1/2) 2971215077959672 a001 3732588/6119*505019158607^(4/7) 2971215077959672 a001 3732588/6119*73681302247^(8/13) 2971215077959672 a001 3732588/6119*10749957122^(2/3) 2971215077959672 a001 3732588/6119*4106118243^(16/23) 2971215077959672 a001 3732588/6119*1568397607^(8/11) 2971215077959672 a001 3732588/6119*599074578^(16/21) 2971215077959672 a001 3732588/6119*228826127^(4/5) 2971215077959672 a001 3732588/6119*87403803^(16/19) 2971215077959672 a001 591286729879/24476*20633239^(2/7) 2971215077959673 a001 2504730781961/24476*20633239^(1/5) 2971215077959673 a001 71778070120990532/24157817 2971215077959673 a001 3278735159921/12238*20633239^(1/7) 2971215077959674 a001 39088169/24476*141422324^(10/13) 2971215077959674 a001 39088169/24476*2537720636^(2/3) 2971215077959674 a001 39088169/24476*45537549124^(10/17) 2971215077959674 a001 39088169/24476*312119004989^(6/11) 2971215077959674 a001 39088169/24476*14662949395604^(10/21) 2971215077959674 a001 39088169/24476*(1/2+1/2*5^(1/2))^30 2971215077959674 a001 39088169/24476*192900153618^(5/9) 2971215077959674 a001 39088169/24476*28143753123^(3/5) 2971215077959674 a001 39088169/24476*10749957122^(5/8) 2971215077959674 a001 39088169/24476*4106118243^(15/23) 2971215077959674 a001 39088169/24476*1568397607^(15/22) 2971215077959674 a001 39088169/24476*599074578^(5/7) 2971215077959674 a001 39088169/24476*228826127^(3/4) 2971215077959674 a001 3732588/6119*33385282^(8/9) 2971215077959674 a001 10946*141422324^(2/3) 2971215077959674 a001 701408733/24476*141422324^(8/13) 2971215077959674 a001 39088169/24476*87403803^(15/19) 2971215077959674 a001 165580141/24476*141422324^(9/13) 2971215077959674 a001 2971215073/24476*141422324^(7/13) 2971215077959674 a001 12586269025/24476*141422324^(6/13) 2971215077959674 a001 53316291173/24476*141422324^(5/13) 2971215077959674 a001 102334155/24476*17393796001^(4/7) 2971215077959674 a001 102334155/24476*14662949395604^(4/9) 2971215077959674 a001 102334155/24476*(1/2+1/2*5^(1/2))^28 2971215077959674 a001 102334155/24476*73681302247^(7/13) 2971215077959674 a001 102334155/24476*10749957122^(7/12) 2971215077959674 a001 102334155/24476*4106118243^(14/23) 2971215077959674 a001 102334155/24476*1568397607^(7/11) 2971215077959674 a001 102334155/24476*599074578^(2/3) 2971215077959674 a001 139583862445/24476*141422324^(1/3) 2971215077959674 a001 7787980473/844*141422324^(4/13) 2971215077959674 a001 956722026041/24476*141422324^(3/13) 2971215077959674 a001 4052739537881/24476*141422324^(2/13) 2971215077959674 a001 102334155/24476*228826127^(7/10) 2971215077959674 a001 10946*(1/2+1/2*5^(1/2))^26 2971215077959674 a001 10946*73681302247^(1/2) 2971215077959674 a001 10946*10749957122^(13/24) 2971215077959674 a001 10946*4106118243^(13/23) 2971215077959674 a001 10946*1568397607^(13/22) 2971215077959674 a001 10946*599074578^(13/21) 2971215077959674 a001 701408733/24476*2537720636^(8/15) 2971215077959674 a001 701408733/24476*45537549124^(8/17) 2971215077959674 a001 701408733/24476*14662949395604^(8/21) 2971215077959674 a001 701408733/24476*(1/2+1/2*5^(1/2))^24 2971215077959674 a001 701408733/24476*192900153618^(4/9) 2971215077959674 a001 701408733/24476*73681302247^(6/13) 2971215077959674 a001 701408733/24476*10749957122^(1/2) 2971215077959674 a001 701408733/24476*4106118243^(12/23) 2971215077959674 a001 701408733/24476*1568397607^(6/11) 2971215077959674 a001 1201881744/6119*2537720636^(4/9) 2971215077959674 a001 12586269025/24476*2537720636^(2/5) 2971215077959674 a001 1836311903/24476*312119004989^(2/5) 2971215077959674 a001 1836311903/24476*(1/2+1/2*5^(1/2))^22 2971215077959674 a001 1836311903/24476*10749957122^(11/24) 2971215077959674 a001 53316291173/24476*2537720636^(1/3) 2971215077959674 a001 2971215073/24476*2537720636^(7/15) 2971215077959674 a001 7787980473/844*2537720636^(4/15) 2971215077959674 a001 591286729879/24476*2537720636^(2/9) 2971215077959674 a001 956722026041/24476*2537720636^(1/5) 2971215077959674 a001 1836311903/24476*4106118243^(11/23) 2971215077959674 a001 4052739537881/24476*2537720636^(2/15) 2971215077959674 a001 3278735159921/12238*2537720636^(1/9) 2971215077959674 a001 1201881744/6119*(1/2+1/2*5^(1/2))^20 2971215077959674 a001 1201881744/6119*23725150497407^(5/16) 2971215077959674 a001 1201881744/6119*505019158607^(5/14) 2971215077959674 a001 1201881744/6119*73681302247^(5/13) 2971215077959674 a001 1201881744/6119*28143753123^(2/5) 2971215077959674 a001 1201881744/6119*10749957122^(5/12) 2971215077959674 a001 12586269025/24476*45537549124^(6/17) 2971215077959674 a001 12586269025/24476*14662949395604^(2/7) 2971215077959674 a001 12586269025/24476*(1/2+1/2*5^(1/2))^18 2971215077959674 a001 12586269025/24476*192900153618^(1/3) 2971215077959674 a001 21566892818/6119*17393796001^(2/7) 2971215077959674 a001 2504730781961/24476*17393796001^(1/7) 2971215077959674 a001 32951280099/24476*(1/2+1/2*5^(1/2))^16 2971215077959674 a001 32951280099/24476*23725150497407^(1/4) 2971215077959674 a001 32951280099/24476*73681302247^(4/13) 2971215077959674 a001 7787980473/844*45537549124^(4/17) 2971215077959674 a001 956722026041/24476*45537549124^(3/17) 2971215077959674 a001 53316291173/24476*45537549124^(5/17) 2971215077959674 a001 4052739537881/24476*45537549124^(2/17) 2971215077959674 a001 21566892818/6119*14662949395604^(2/9) 2971215077959674 a001 21566892818/6119*(1/2+1/2*5^(1/2))^14 2971215077959674 a001 7787980473/844*817138163596^(4/19) 2971215077959674 a001 3278735159921/12238*312119004989^(1/11) 2971215077959674 a001 591286729879/24476*(1/2+1/2*5^(1/2))^10 2971215077959674 a001 182717648081/12238*312119004989^(1/5) 2971215077959674 a001 387002188980/6119*(1/2+1/2*5^(1/2))^8 2971215077959674 a001 10610209857723/24476*(1/2+1/2*5^(1/2))^4 2971215077959674 a001 10610209857723/24476*23725150497407^(1/16) 2971215077959674 a001 3278735159921/12238*(1/2+1/2*5^(1/2))^5 2971215077959674 a001 2504730781961/24476*(1/2+1/2*5^(1/2))^7 2971215077959674 a001 956722026041/24476*(1/2+1/2*5^(1/2))^9 2971215077959674 a001 139583862445/24476*(1/2+1/2*5^(1/2))^13 2971215077959674 a001 10610209857723/24476*73681302247^(1/13) 2971215077959674 a001 387002188980/6119*73681302247^(2/13) 2971215077959674 a001 7787980473/844*73681302247^(3/13) 2971215077959674 a001 139583862445/24476*73681302247^(1/4) 2971215077959674 a001 53316291173/24476*312119004989^(3/11) 2971215077959674 a001 53316291173/24476*14662949395604^(5/21) 2971215077959674 a001 53316291173/24476*(1/2+1/2*5^(1/2))^15 2971215077959674 a001 53316291173/24476*192900153618^(5/18) 2971215077959674 a001 3278735159921/12238*28143753123^(1/10) 2971215077959674 a001 591286729879/24476*28143753123^(1/5) 2971215077959674 a001 10182505537/12238*45537549124^(1/3) 2971215077959674 a001 53316291173/24476*28143753123^(3/10) 2971215077959674 a001 10182505537/12238*(1/2+1/2*5^(1/2))^17 2971215077959674 a001 10610209857723/24476*10749957122^(1/12) 2971215077959674 a001 4052739537881/24476*10749957122^(1/8) 2971215077959674 a001 387002188980/6119*10749957122^(1/6) 2971215077959674 a001 956722026041/24476*10749957122^(3/16) 2971215077959674 a001 591286729879/24476*10749957122^(5/24) 2971215077959674 a001 12586269025/24476*10749957122^(3/8) 2971215077959674 a001 7787980473/844*10749957122^(1/4) 2971215077959674 a001 21566892818/6119*10749957122^(7/24) 2971215077959674 a001 32951280099/24476*10749957122^(1/3) 2971215077959674 a001 53316291173/24476*10749957122^(5/16) 2971215077959674 a001 7778742049/24476*817138163596^(1/3) 2971215077959674 a001 7778742049/24476*(1/2+1/2*5^(1/2))^19 2971215077959674 a001 10610209857723/24476*4106118243^(2/23) 2971215077959674 a001 4052739537881/24476*4106118243^(3/23) 2971215077959674 a001 387002188980/6119*4106118243^(4/23) 2971215077959674 a001 591286729879/24476*4106118243^(5/23) 2971215077959674 a001 7787980473/844*4106118243^(6/23) 2971215077959674 a001 1201881744/6119*4106118243^(10/23) 2971215077959674 a001 21566892818/6119*4106118243^(7/23) 2971215077959674 a001 32951280099/24476*4106118243^(8/23) 2971215077959674 a001 2971215073/24476*17393796001^(3/7) 2971215077959674 a001 12586269025/24476*4106118243^(9/23) 2971215077959674 a001 2971215073/24476*45537549124^(7/17) 2971215077959674 a001 2971215073/24476*14662949395604^(1/3) 2971215077959674 a001 2971215073/24476*(1/2+1/2*5^(1/2))^21 2971215077959674 a001 2971215073/24476*192900153618^(7/18) 2971215077959674 a001 2971215073/24476*10749957122^(7/16) 2971215077959674 a001 10610209857723/24476*1568397607^(1/11) 2971215077959674 a001 4052739537881/24476*1568397607^(3/22) 2971215077959674 a001 387002188980/6119*1568397607^(2/11) 2971215077959674 a001 591286729879/24476*1568397607^(5/22) 2971215077959674 a001 182717648081/12238*1568397607^(1/4) 2971215077959674 a001 7787980473/844*1568397607^(3/11) 2971215077959674 a001 21566892818/6119*1568397607^(7/22) 2971215077959674 a001 1836311903/24476*1568397607^(1/2) 2971215077959674 a001 32951280099/24476*1568397607^(4/11) 2971215077959674 a001 567451585/12238*(1/2+1/2*5^(1/2))^23 2971215077959674 a001 12586269025/24476*1568397607^(9/22) 2971215077959674 a001 1201881744/6119*1568397607^(5/11) 2971215077959674 a001 567451585/12238*4106118243^(1/2) 2971215077959674 a001 10610209857723/24476*599074578^(2/21) 2971215077959674 a001 4052739537881/24476*599074578^(1/7) 2971215077959674 a001 2504730781961/24476*599074578^(1/6) 2971215077959674 a001 387002188980/6119*599074578^(4/21) 2971215077959674 a001 956722026041/24476*599074578^(3/14) 2971215077959674 a001 591286729879/24476*599074578^(5/21) 2971215077959674 a001 7787980473/844*599074578^(2/7) 2971215077959674 a001 21566892818/6119*599074578^(1/3) 2971215077959674 a001 433494437/24476*2537720636^(5/9) 2971215077959674 a001 53316291173/24476*599074578^(5/14) 2971215077959674 a001 32951280099/24476*599074578^(8/21) 2971215077959674 a001 433494437/24476*312119004989^(5/11) 2971215077959674 a001 433494437/24476*(1/2+1/2*5^(1/2))^25 2971215077959674 a001 433494437/24476*3461452808002^(5/12) 2971215077959674 a001 433494437/24476*28143753123^(1/2) 2971215077959674 a001 701408733/24476*599074578^(4/7) 2971215077959674 a001 12586269025/24476*599074578^(3/7) 2971215077959674 a001 1201881744/6119*599074578^(10/21) 2971215077959674 a001 1836311903/24476*599074578^(11/21) 2971215077959674 a001 2971215073/24476*599074578^(1/2) 2971215077959674 a001 10610209857723/24476*228826127^(1/10) 2971215077959674 a001 3278735159921/12238*228826127^(1/8) 2971215077959674 a001 4052739537881/24476*228826127^(3/20) 2971215077959674 a001 387002188980/6119*228826127^(1/5) 2971215077959674 a001 591286729879/24476*228826127^(1/4) 2971215077959674 a001 7787980473/844*228826127^(3/10) 2971215077959674 a001 21566892818/6119*228826127^(7/20) 2971215077959674 a001 53316291173/24476*228826127^(3/8) 2971215077959674 a001 165580141/24476*2537720636^(3/5) 2971215077959674 a001 165580141/24476*45537549124^(9/17) 2971215077959674 a001 165580141/24476*817138163596^(9/19) 2971215077959674 a001 165580141/24476*14662949395604^(3/7) 2971215077959674 a001 165580141/24476*(1/2+1/2*5^(1/2))^27 2971215077959674 a001 165580141/24476*192900153618^(1/2) 2971215077959674 a001 165580141/24476*10749957122^(9/16) 2971215077959674 a001 32951280099/24476*228826127^(2/5) 2971215077959674 a001 12586269025/24476*228826127^(9/20) 2971215077959674 a001 165580141/24476*599074578^(9/14) 2971215077959674 a001 1201881744/6119*228826127^(1/2) 2971215077959674 a001 10946*228826127^(13/20) 2971215077959674 a001 1836311903/24476*228826127^(11/20) 2971215077959674 a001 701408733/24476*228826127^(3/5) 2971215077959674 a001 433494437/24476*228826127^(5/8) 2971215077959674 a001 10610209857723/24476*87403803^(2/19) 2971215077959674 a001 4052739537881/24476*87403803^(3/19) 2971215077959674 a001 387002188980/6119*87403803^(4/19) 2971215077959674 a001 591286729879/24476*87403803^(5/19) 2971215077959674 a001 7787980473/844*87403803^(6/19) 2971215077959674 a001 21566892818/6119*87403803^(7/19) 2971215077959674 a001 31622993/12238*(1/2+1/2*5^(1/2))^29 2971215077959674 a001 31622993/12238*1322157322203^(1/2) 2971215077959674 a001 32951280099/24476*87403803^(8/19) 2971215077959674 a001 12586269025/24476*87403803^(9/19) 2971215077959674 a001 7778742049/24476*87403803^(1/2) 2971215077959674 a001 1201881744/6119*87403803^(10/19) 2971215077959675 a001 1836311903/24476*87403803^(11/19) 2971215077959675 a001 102334155/24476*87403803^(14/19) 2971215077959675 a001 701408733/24476*87403803^(12/19) 2971215077959675 a001 10946*87403803^(13/19) 2971215077959675 a001 10610209857723/24476*33385282^(1/9) 2971215077959675 a001 116139357102635958/39088169 2971215077959675 a001 4052739537881/24476*33385282^(1/6) 2971215077959675 a001 387002188980/6119*33385282^(2/9) 2971215077959675 a001 956722026041/24476*33385282^(1/4) 2971215077959675 a001 591286729879/24476*33385282^(5/18) 2971215077959675 a001 7787980473/844*33385282^(1/3) 2971215077959675 a001 24157817/24476*(1/2+1/2*5^(1/2))^31 2971215077959675 a001 24157817/24476*9062201101803^(1/2) 2971215077959675 a001 21566892818/6119*33385282^(7/18) 2971215077959675 a001 53316291173/24476*33385282^(5/12) 2971215077959675 a001 32951280099/24476*33385282^(4/9) 2971215077959676 a001 12586269025/24476*33385282^(1/2) 2971215077959676 a001 1201881744/6119*33385282^(5/9) 2971215077959676 a001 2971215073/24476*33385282^(7/12) 2971215077959676 a001 1836311903/24476*33385282^(11/18) 2971215077959676 a001 701408733/24476*33385282^(2/3) 2971215077959676 a001 39088169/24476*33385282^(5/6) 2971215077959676 a001 10946*33385282^(13/18) 2971215077959676 a001 102334155/24476*33385282^(7/9) 2971215077959676 a001 165580141/24476*33385282^(3/4) 2971215077959676 a001 10610209857723/24476*12752043^(2/17) 2971215077959677 a001 22180643490822713/7465176 2971215077959678 a001 4052739537881/24476*12752043^(3/17) 2971215077959679 a001 387002188980/6119*12752043^(4/17) 2971215077959680 a001 591286729879/24476*12752043^(5/17) 2971215077959681 a001 7787980473/844*12752043^(6/17) 2971215077959681 a001 9227465/24476*141422324^(11/13) 2971215077959681 a001 10946/20633239*(1/2+1/2*5^(1/2))^61 2971215077959681 a001 9227465/24476*2537720636^(11/15) 2971215077959681 a001 9227465/24476*45537549124^(11/17) 2971215077959681 a001 9227465/24476*312119004989^(3/5) 2971215077959681 a001 9227465/24476*817138163596^(11/19) 2971215077959681 a001 9227465/24476*14662949395604^(11/21) 2971215077959681 a001 9227465/24476*(1/2+1/2*5^(1/2))^33 2971215077959681 a001 9227465/24476*192900153618^(11/18) 2971215077959681 a001 9227465/24476*10749957122^(11/16) 2971215077959681 a001 9227465/24476*1568397607^(3/4) 2971215077959681 a001 9227465/24476*599074578^(11/14) 2971215077959682 a001 21566892818/6119*12752043^(7/17) 2971215077959683 a001 32951280099/24476*12752043^(8/17) 2971215077959683 a001 10182505537/12238*12752043^(1/2) 2971215077959684 a001 9227465/24476*33385282^(11/12) 2971215077959684 a001 12586269025/24476*12752043^(9/17) 2971215077959685 a001 1201881744/6119*12752043^(10/17) 2971215077959686 a001 1836311903/24476*12752043^(11/17) 2971215077959687 a001 701408733/24476*12752043^(12/17) 2971215077959688 a001 10946*12752043^(13/17) 2971215077959689 a001 3732588/6119*12752043^(16/17) 2971215077959689 a001 102334155/24476*12752043^(14/17) 2971215077959690 a001 10610209857723/24476*4870847^(1/8) 2971215077959690 a001 39088169/24476*12752043^(15/17) 2971215077959693 a001 16944503842300320/5702887 2971215077959698 a001 4052739537881/24476*4870847^(3/16) 2971215077959706 a001 387002188980/6119*4870847^(1/4) 2971215077959713 a001 591286729879/24476*4870847^(5/16) 2971215077959721 a001 7787980473/844*4870847^(3/8) 2971215077959722 a001 5473/3940598*(1/2+1/2*5^(1/2))^59 2971215077959722 a001 1762289/12238*2537720636^(7/9) 2971215077959722 a001 1762289/12238*17393796001^(5/7) 2971215077959722 a001 1762289/12238*312119004989^(7/11) 2971215077959722 a001 1762289/12238*14662949395604^(5/9) 2971215077959722 a001 1762289/12238*(1/2+1/2*5^(1/2))^35 2971215077959722 a001 1762289/12238*505019158607^(5/8) 2971215077959722 a001 1762289/12238*28143753123^(7/10) 2971215077959722 a001 1762289/12238*599074578^(5/6) 2971215077959722 a001 1762289/12238*228826127^(7/8) 2971215077959729 a001 21566892818/6119*4870847^(7/16) 2971215077959737 a001 32951280099/24476*4870847^(1/2) 2971215077959745 a001 12586269025/24476*4870847^(9/16) 2971215077959753 a001 1201881744/6119*4870847^(5/8) 2971215077959760 a001 1836311903/24476*4870847^(11/16) 2971215077959768 a001 701408733/24476*4870847^(3/4) 2971215077959776 a001 10946*4870847^(13/16) 2971215077959784 a001 102334155/24476*4870847^(7/8) 2971215077959789 a001 10610209857723/24476*1860498^(2/15) 2971215077959791 a001 39088169/24476*4870847^(15/16) 2971215077959800 a001 6472224545255534/2178309 2971215077959817 a001 3278735159921/12238*1860498^(1/6) 2971215077959846 a001 4052739537881/24476*1860498^(1/5) 2971215077959903 a001 387002188980/6119*1860498^(4/15) 2971215077959932 a001 956722026041/24476*1860498^(3/10) 2971215077959960 a001 591286729879/24476*1860498^(1/3) 2971215077960002 a001 10946/3010349*14662949395604^(19/21) 2971215077960002 a001 10946/3010349*(1/2+1/2*5^(1/2))^57 2971215077960002 a001 1346269/24476*(1/2+1/2*5^(1/2))^37 2971215077960018 a001 7787980473/844*1860498^(2/5) 2971215077960075 a001 21566892818/6119*1860498^(7/15) 2971215077960103 a001 53316291173/24476*1860498^(1/2) 2971215077960132 a001 32951280099/24476*1860498^(8/15) 2971215077960189 a001 12586269025/24476*1860498^(3/5) 2971215077960247 a001 1201881744/6119*1860498^(2/3) 2971215077960275 a001 2971215073/24476*1860498^(7/10) 2971215077960304 a001 1836311903/24476*1860498^(11/15) 2971215077960361 a001 701408733/24476*1860498^(4/5) 2971215077960390 a001 433494437/24476*1860498^(5/6) 2971215077960418 a001 10946*1860498^(13/15) 2971215077960447 a001 165580141/24476*1860498^(9/10) 2971215077960475 a001 102334155/24476*1860498^(14/15) 2971215077960515 a001 10610209857723/24476*710647^(1/7) 2971215077960533 a001 1236084896733141/416020 2971215077960935 a001 4052739537881/24476*710647^(3/14) 2971215077961145 a001 2504730781961/24476*710647^(1/4) 2971215077961355 a001 387002188980/6119*710647^(2/7) 2971215077961775 a001 591286729879/24476*710647^(5/14) 2971215077961922 a001 10946/1149851*(1/2+1/2*5^(1/2))^55 2971215077961922 a001 10946/1149851*3461452808002^(11/12) 2971215077961922 a001 514229/24476*2537720636^(13/15) 2971215077961922 a001 514229/24476*45537549124^(13/17) 2971215077961922 a001 514229/24476*14662949395604^(13/21) 2971215077961922 a001 514229/24476*(1/2+1/2*5^(1/2))^39 2971215077961922 a001 514229/24476*192900153618^(13/18) 2971215077961922 a001 514229/24476*73681302247^(3/4) 2971215077961922 a001 514229/24476*10749957122^(13/16) 2971215077961922 a001 514229/24476*599074578^(13/14) 2971215077962196 a001 7787980473/844*710647^(3/7) 2971215077962616 a001 21566892818/6119*710647^(1/2) 2971215077963036 a001 32951280099/24476*710647^(4/7) 2971215077963456 a001 12586269025/24476*710647^(9/14) 2971215077963877 a001 1201881744/6119*710647^(5/7) 2971215077964087 a001 2971215073/24476*710647^(3/4) 2971215077964297 a001 1836311903/24476*710647^(11/14) 2971215077964717 a001 701408733/24476*710647^(6/7) 2971215077965137 a001 10946*710647^(13/14) 2971215077965558 a001 72637295011024/24447 2971215077965878 a001 10610209857723/24476*271443^(2/13) 2971215077968980 a001 4052739537881/24476*271443^(3/13) 2971215077972082 a001 387002188980/6119*271443^(4/13) 2971215077975077 a001 5473/219602*(1/2+1/2*5^(1/2))^53 2971215077975077 a001 98209/12238*(1/2+1/2*5^(1/2))^41 2971215077975184 a001 591286729879/24476*271443^(5/13) 2971215077978286 a001 7787980473/844*271443^(6/13) 2971215077979837 a001 139583862445/24476*271443^(1/2) 2971215077981388 a001 21566892818/6119*271443^(7/13) 2971215077984490 a001 32951280099/24476*271443^(8/13) 2971215077987592 a001 12586269025/24476*271443^(9/13) 2971215077990694 a001 1201881744/6119*271443^(10/13) 2971215077993796 a001 1836311903/24476*271443^(11/13) 2971215077996898 a001 701408733/24476*271443^(12/13) 2971215078005740 a001 10610209857723/24476*103682^(1/6) 2971215078017256 a001 3278735159921/12238*103682^(5/24) 2971215078028773 a001 4052739537881/24476*103682^(1/4) 2971215078040289 a001 2504730781961/24476*103682^(7/24) 2971215078051805 a001 387002188980/6119*103682^(1/3) 2971215078063322 a001 956722026041/24476*103682^(3/8) 2971215078065247 a001 10946/167761*14662949395604^(17/21) 2971215078065247 a001 10946/167761*(1/2+1/2*5^(1/2))^51 2971215078065247 a001 10946/167761*192900153618^(17/18) 2971215078065247 a001 75025/24476*(1/2+1/2*5^(1/2))^43 2971215078074838 a001 591286729879/24476*103682^(5/12) 2971215078086355 a001 182717648081/12238*103682^(11/24) 2971215078097871 a001 7787980473/844*103682^(1/2) 2971215078109387 a001 139583862445/24476*103682^(13/24) 2971215078120904 a001 21566892818/6119*103682^(7/12) 2971215078132420 a001 53316291173/24476*103682^(5/8) 2971215078143936 a001 32951280099/24476*103682^(2/3) 2971215078155453 a001 10182505537/12238*103682^(17/24) 2971215078166969 a001 12586269025/24476*103682^(3/4) 2971215078178486 a001 7778742049/24476*103682^(19/24) 2971215078190002 a001 1201881744/6119*103682^(5/6) 2971215078201518 a001 2971215073/24476*103682^(7/8) 2971215078213035 a001 1836311903/24476*103682^(11/12) 2971215078224551 a001 567451585/12238*103682^(23/24) 2971215078236067 a001 68884650373825/23184 2971215078247101 a001 591286729879/39603*15127^(11/20) 2971215078268215 a001 6557470319842/64079*15127^(7/20) 2971215078299411 a001 10610209857723/167761*15127^(2/5) 2971215078304116 a001 10610209857723/24476*39603^(2/11) 2971215078367492 a001 12586269025/9349*9349^(16/19) 2971215078390226 a001 3278735159921/12238*39603^(5/22) 2971215078476336 a001 4052739537881/24476*39603^(3/11) 2971215078562447 a001 2504730781961/24476*39603^(7/22) 2971215078566675 a001 4052739537881/103682*15127^(9/20) 2971215078648557 a001 387002188980/6119*39603^(4/11) 2971215078683281 a001 10946/64079*14662949395604^(7/9) 2971215078683281 a001 10946/64079*(1/2+1/2*5^(1/2))^49 2971215078683281 a001 10946/64079*505019158607^(7/8) 2971215078683281 a001 28657/24476*45537549124^(15/17) 2971215078683281 a001 28657/24476*312119004989^(9/11) 2971215078683281 a001 28657/24476*14662949395604^(5/7) 2971215078683281 a001 28657/24476*(1/2+1/2*5^(1/2))^45 2971215078683281 a001 28657/24476*192900153618^(5/6) 2971215078683281 a001 28657/24476*28143753123^(9/10) 2971215078683281 a001 28657/24476*10749957122^(15/16) 2971215078734667 a001 956722026041/24476*39603^(9/22) 2971215078802743 a001 3536736619241/90481*15127^(9/20) 2971215078820778 a001 591286729879/24476*39603^(5/11) 2971215078896331 a001 365435296162/39603*15127^(3/5) 2971215078906888 a001 182717648081/12238*39603^(1/2) 2971215078917445 a001 4052739537881/64079*15127^(2/5) 2971215078948641 a001 6557470319842/167761*15127^(9/20) 2971215078992998 a001 7787980473/844*39603^(6/11) 2971215079079109 a001 139583862445/24476*39603^(13/22) 2971215079165219 a001 21566892818/6119*39603^(7/11) 2971215079215905 a001 2504730781961/103682*15127^(1/2) 2971215079251329 a001 53316291173/24476*39603^(15/22) 2971215079337440 a001 32951280099/24476*39603^(8/11) 2971215079423550 a001 10182505537/12238*39603^(17/22) 2971215079451973 a001 6557470319842/271443*15127^(1/2) 2971215079507701 a001 10610209857723/439204*15127^(1/2) 2971215079509660 a001 12586269025/24476*39603^(9/11) 2971215079545560 a001 75283811239/13201*15127^(13/20) 2971215079566675 a001 2504730781961/64079*15127^(9/20) 2971215079582452 a001 10610209857723/9349*3571^(2/17) 2971215079595770 a001 7778742049/24476*39603^(19/22) 2971215079597871 a001 4052739537881/167761*15127^(1/2) 2971215079681881 a001 1201881744/6119*39603^(10/11) 2971215079767991 a001 2971215073/24476*39603^(21/22) 2971215079792680 a001 6557470319842/15127*5778^(2/9) 2971215079854101 a001 52623190279296/17711 2971215079865135 a001 774004377960/51841*15127^(11/20) 2971215080101203 a001 4052739537881/271443*15127^(11/20) 2971215080135645 a001 1515744265389/101521*15127^(11/20) 2971215080156656 a001 20365011074/9349*9349^(15/19) 2971215080156931 a001 3278735159921/219602*15127^(11/20) 2971215080194790 a001 139583862445/39603*15127^(7/10) 2971215080215905 a001 1548008755920/64079*15127^(1/2) 2971215080247101 a001 2504730781961/167761*15127^(11/20) 2971215080514365 a001 956722026041/103682*15127^(3/5) 2971215080556594 a001 10610209857723/24476*15127^(1/5) 2971215080750433 a001 2504730781961/271443*15127^(3/5) 2971215080784874 a001 6557470319842/710647*15127^(3/5) 2971215080793005 a001 10610209857723/1149851*15127^(3/5) 2971215080806161 a001 4052739537881/439204*15127^(3/5) 2971215080844020 a001 86267571272/39603*15127^(3/4) 2971215080865135 a001 956722026041/64079*15127^(11/20) 2971215080896331 a001 140728068720/15251*15127^(3/5) 2971215081163594 a001 591286729879/103682*15127^(13/20) 2971215081205824 a001 3278735159921/12238*15127^(1/4) 2971215081399662 a001 516002918640/90481*15127^(13/20) 2971215081434104 a001 4052739537881/710647*15127^(13/20) 2971215081439129 a001 3536736619241/620166*15127^(13/20) 2971215081442235 a001 6557470319842/1149851*15127^(13/20) 2971215081455390 a001 2504730781961/439204*15127^(13/20) 2971215081493250 a001 53316291173/39603*15127^(4/5) 2971215081514365 a001 591286729879/64079*15127^(3/5) 2971215081545560 a001 956722026041/167761*15127^(13/20) 2971215081812824 a001 182717648081/51841*15127^(7/10) 2971215081855053 a001 4052739537881/24476*15127^(3/10) 2971215081945820 a001 32951280099/9349*9349^(14/19) 2971215082048892 a001 956722026041/271443*15127^(7/10) 2971215082083334 a001 2504730781961/710647*15127^(7/10) 2971215082088359 a001 3278735159921/930249*15127^(7/10) 2971215082089545 a001 10610209857723/3010349*15127^(7/10) 2971215082091465 a001 4052739537881/1149851*15127^(7/10) 2971215082104620 a001 387002188980/109801*15127^(7/10) 2971215082142480 a001 10983760033/13201*15127^(17/20) 2971215082163594 a001 365435296162/64079*15127^(13/20) 2971215082194790 a001 591286729879/167761*15127^(7/10) 2971215082462054 a001 225851433717/103682*15127^(3/4) 2971215082504283 a001 2504730781961/24476*15127^(7/20) 2971215082698122 a001 591286729879/271443*15127^(3/4) 2971215082732564 a001 1548008755920/710647*15127^(3/4) 2971215082737589 a001 4052739537881/1860498*15127^(3/4) 2971215082738322 a001 2178309*15127^(3/4) 2971215082738775 a001 6557470319842/3010349*15127^(3/4) 2971215082740695 a001 2504730781961/1149851*15127^(3/4) 2971215082753850 a001 956722026041/439204*15127^(3/4) 2971215082791710 a001 20365011074/39603*15127^(9/10) 2971215082812824 a001 225851433717/64079*15127^(7/10) 2971215082844020 a001 365435296162/167761*15127^(3/4) 2971215082919349 a001 5473/12238*(1/2+1/2*5^(1/2))^47 2971215083111284 a001 139583862445/103682*15127^(4/5) 2971215083153513 a001 387002188980/6119*15127^(2/5) 2971215083347352 a001 365435296162/271443*15127^(4/5) 2971215083381794 a001 956722026041/710647*15127^(4/5) 2971215083386819 a001 2504730781961/1860498*15127^(4/5) 2971215083387552 a001 6557470319842/4870847*15127^(4/5) 2971215083387725 a001 10610209857723/7881196*15127^(4/5) 2971215083388005 a001 1346269*15127^(4/5) 2971215083389924 a001 1548008755920/1149851*15127^(4/5) 2971215083403080 a001 591286729879/439204*15127^(4/5) 2971215083440940 a001 12586269025/39603*15127^(19/20) 2971215083462054 a001 139583862445/64079*15127^(3/4) 2971215083493250 a001 225851433717/167761*15127^(4/5) 2971215083734984 a001 53316291173/9349*9349^(13/19) 2971215083760514 a001 43133785636/51841*15127^(17/20) 2971215083802743 a001 956722026041/24476*15127^(9/20) 2971215083996582 a001 75283811239/90481*15127^(17/20) 2971215084031024 a001 591286729879/710647*15127^(17/20) 2971215084036049 a001 832040*15127^(17/20) 2971215084036782 a001 4052739537881/4870847*15127^(17/20) 2971215084036889 a001 3536736619241/4250681*15127^(17/20) 2971215084036955 a001 3278735159921/3940598*15127^(17/20) 2971215084037235 a001 2504730781961/3010349*15127^(17/20) 2971215084039154 a001 956722026041/1149851*15127^(17/20) 2971215084052310 a001 182717648081/219602*15127^(17/20) 2971215084090169 a001 4020054008774/1353 2971215084111284 a001 86267571272/64079*15127^(4/5) 2971215084142480 a001 139583862445/167761*15127^(17/20) 2971215084409744 a001 53316291173/103682*15127^(9/10) 2971215084451973 a001 591286729879/24476*15127^(1/2) 2971215084645812 a001 139583862445/271443*15127^(9/10) 2971215084680254 a001 365435296162/710647*15127^(9/10) 2971215084685279 a001 956722026041/1860498*15127^(9/10) 2971215084686012 a001 2504730781961/4870847*15127^(9/10) 2971215084686119 a001 6557470319842/12752043*15127^(9/10) 2971215084686144 a001 10610209857723/20633239*15127^(9/10) 2971215084686185 a001 4052739537881/7881196*15127^(9/10) 2971215084686465 a001 1548008755920/3010349*15127^(9/10) 2971215084688384 a001 514229*15127^(9/10) 2971215084701540 a001 225851433717/439204*15127^(9/10) 2971215084737000 a001 4052739537881/15127*5778^(5/18) 2971215084760514 a001 53316291173/64079*15127^(17/20) 2971215084791710 a001 86267571272/167761*15127^(9/10) 2971215085058974 a001 32951280099/103682*15127^(19/20) 2971215085101203 a001 182717648081/12238*15127^(11/20) 2971215085295042 a001 86267571272/271443*15127^(19/20) 2971215085329483 a001 317811*15127^(19/20) 2971215085334508 a001 591286729879/1860498*15127^(19/20) 2971215085335242 a001 1548008755920/4870847*15127^(19/20) 2971215085335349 a001 4052739537881/12752043*15127^(19/20) 2971215085335364 a001 1515744265389/4769326*15127^(19/20) 2971215085335374 a001 6557470319842/20633239*15127^(19/20) 2971215085335415 a001 2504730781961/7881196*15127^(19/20) 2971215085335695 a001 956722026041/3010349*15127^(19/20) 2971215085337614 a001 365435296162/1149851*15127^(19/20) 2971215085350770 a001 139583862445/439204*15127^(19/20) 2971215085409744 a001 32951280099/64079*15127^(9/10) 2971215085440940 a001 53316291173/167761*15127^(19/20) 2971215085524148 a001 86267571272/9349*9349^(12/19) 2971215085708203 a001 6700090018272/2255 2971215085750433 a001 7787980473/844*15127^(3/5) 2971215085944271 a001 20100270056413/6765 2971215085978713 a001 6700090018882/2255 2971215085983739 a001 365459455576/123 2971215085984478 a001 1340018003779/451 2971215085984626 a001 20100270056686/6765 2971215085984922 a001 6700090018896/2255 2971215085986844 a001 20100270056701/6765 2971215086058974 a001 20365011074/64079*15127^(19/20) 2971215086090169 a001 4020054011480/1353 2971215086399662 a001 139583862445/24476*15127^(13/20) 2971215086705832 a001 4807526976/3571*3571^(16/17) 2971215086708203 a001 6700090020527/2255 2971215087048892 a001 21566892818/6119*15127^(7/10) 2971215087313312 a001 139583862445/9349*9349^(11/19) 2971215087698122 a001 53316291173/24476*15127^(3/4) 2971215087900467 r005 Im(z^2+c),c=23/118+9/40*I,n=25 2971215088259872 s002 sum(A258734[n]/(n^3*pi^n+1),n=1..infinity) 2971215088347352 a001 32951280099/24476*15127^(4/5) 2971215088996582 a001 10182505537/12238*15127^(17/20) 2971215089102476 a001 225851433717/9349*9349^(10/19) 2971215089645812 a001 12586269025/24476*15127^(9/10) 2971215089681320 a001 2504730781961/15127*5778^(1/3) 2971215090295042 a001 7778742049/24476*15127^(19/20) 2971215090891640 a001 365435296162/9349*9349^(9/19) 2971215090944271 a001 20100270090238/6765 2971215092680804 a001 591286729879/9349*9349^(8/19) 2971215093065776 a001 4052739537881/3571*1364^(2/15) 2971215094009519 a001 4181/15127*45537549124^(16/17) 2971215094009519 a001 4181/15127*14662949395604^(16/21) 2971215094009519 a001 4181/15127*(1/2+1/2*5^(1/2))^48 2971215094009519 a001 4181/15127*192900153618^(8/9) 2971215094009519 a001 4181/15127*73681302247^(12/13) 2971215094009519 a001 6765/9349*(1/2+1/2*5^(1/2))^46 2971215094009519 a001 6765/9349*10749957122^(23/24) 2971215094469968 a001 956722026041/9349*9349^(7/19) 2971215094586550 r005 Im(z^2+c),c=-41/110+1/2*I,n=63 2971215094625639 a001 1548008755920/15127*5778^(7/18) 2971215095827170 a001 3536736619241/13201*5778^(5/18) 2971215096259132 a001 1548008755920/9349*9349^(6/19) 2971215097736952 a001 10610209857723/24476*5778^(2/9) 2971215098048296 a001 2504730781961/9349*9349^(5/19) 2971215098377175 a001 4052739537881/5778*2207^(3/16) 2971215099569959 a001 956722026041/15127*5778^(4/9) 2971215099837460 a001 4052739537881/9349*9349^(4/19) 2971215100411664 a001 7778742049/3571*3571^(15/17) 2971215100771490 a001 6557470319842/39603*5778^(1/3) 2971215101096211 a007 Real Root Of 353*x^4+699*x^3-810*x^2+883*x+598 2971215101626624 a001 6557470319842/9349*9349^(3/19) 2971215102034441 a001 2501763115913/842 2971215102270617 a001 1836311903/9349*24476^(20/21) 2971215102506792 a001 2971215073/9349*24476^(19/21) 2971215102681272 a001 3278735159921/12238*5778^(5/18) 2971215102742967 a001 4807526976/9349*24476^(6/7) 2971215102979142 a001 7778742049/9349*24476^(17/21) 2971215103215317 a001 12586269025/9349*24476^(16/21) 2971215103389524 a001 10610209857723/64079*5778^(1/3) 2971215103415788 a001 10610209857723/9349*9349^(2/19) 2971215103451492 a001 20365011074/9349*24476^(5/7) 2971215103687667 a001 32951280099/9349*24476^(2/3) 2971215103923842 a001 53316291173/9349*24476^(13/21) 2971215104160017 a001 86267571272/9349*24476^(4/7) 2971215104396192 a001 139583862445/9349*24476^(11/21) 2971215104514278 a001 591286729879/15127*5778^(1/2) 2971215104632367 a001 225851433717/9349*24476^(10/21) 2971215104868542 a001 365435296162/9349*24476^(3/7) 2971215105099689 a001 4181/39603*312119004989^(10/11) 2971215105099689 a001 4181/39603*(1/2+1/2*5^(1/2))^50 2971215105099689 a001 4181/39603*3461452808002^(5/6) 2971215105099689 a001 17711/9349*312119004989^(4/5) 2971215105099689 a001 17711/9349*(1/2+1/2*5^(1/2))^44 2971215105099689 a001 17711/9349*23725150497407^(11/16) 2971215105099689 a001 17711/9349*73681302247^(11/13) 2971215105099689 a001 17711/9349*10749957122^(11/12) 2971215105099689 a001 17711/9349*4106118243^(22/23) 2971215105104717 a001 591286729879/9349*24476^(8/21) 2971215105340892 a001 956722026041/9349*24476^(1/3) 2971215105577067 a001 1548008755920/9349*24476^(2/7) 2971215105715809 a001 4052739537881/39603*5778^(7/18) 2971215105813242 a001 2504730781961/9349*24476^(5/21) 2971215106049417 a001 4052739537881/9349*24476^(4/21) 2971215106270509 a001 85146111300394/28657 2971215106285592 a001 6557470319842/9349*24476^(1/7) 2971215106301971 a001 701408733/9349*64079^(22/23) 2971215106333432 a001 1134903170/9349*64079^(21/23) 2971215106364893 a001 1836311903/9349*64079^(20/23) 2971215106396354 a001 2971215073/9349*64079^(19/23) 2971215106427816 a001 4807526976/9349*64079^(18/23) 2971215106459277 a001 7778742049/9349*64079^(17/23) 2971215106490738 a001 12586269025/9349*64079^(16/23) 2971215106521767 a001 10610209857723/9349*24476^(2/21) 2971215106522199 a001 20365011074/9349*64079^(15/23) 2971215106553660 a001 32951280099/9349*64079^(14/23) 2971215106585121 a001 53316291173/9349*64079^(13/23) 2971215106616583 a001 86267571272/9349*64079^(12/23) 2971215106648044 a001 139583862445/9349*64079^(11/23) 2971215106679505 a001 225851433717/9349*64079^(10/23) 2971215106710966 a001 365435296162/9349*64079^(9/23) 2971215106717723 a001 4181/103682*(1/2+1/2*5^(1/2))^52 2971215106717723 a001 4181/103682*23725150497407^(13/16) 2971215106717723 a001 4181/103682*505019158607^(13/14) 2971215106717723 a001 46368/9349*2537720636^(14/15) 2971215106717723 a001 46368/9349*17393796001^(6/7) 2971215106717723 a001 46368/9349*45537549124^(14/17) 2971215106717723 a001 46368/9349*14662949395604^(2/3) 2971215106717723 a001 46368/9349*(1/2+1/2*5^(1/2))^42 2971215106717723 a001 46368/9349*505019158607^(3/4) 2971215106717723 a001 46368/9349*192900153618^(7/9) 2971215106717723 a001 46368/9349*10749957122^(7/8) 2971215106717723 a001 46368/9349*4106118243^(21/23) 2971215106717723 a001 46368/9349*1568397607^(21/22) 2971215106742427 a001 591286729879/9349*64079^(8/23) 2971215106773888 a001 956722026041/9349*64079^(7/23) 2971215106805350 a001 1548008755920/9349*64079^(6/23) 2971215106836811 a001 2504730781961/9349*64079^(5/23) 2971215106868272 a001 4052739537881/9349*64079^(4/23) 2971215106888543 a001 222915413394313/75025 2971215106899733 a001 6557470319842/9349*64079^(3/23) 2971215106909658 a001 1836311903/9349*167761^(4/5) 2971215106930773 a001 20365011074/9349*167761^(3/5) 2971215106931194 a001 10610209857723/9349*64079^(2/23) 2971215106951887 a001 225851433717/9349*167761^(2/5) 2971215106953791 a001 4181/271443*14662949395604^(6/7) 2971215106953791 a001 4181/271443*(1/2+1/2*5^(1/2))^54 2971215106953791 a001 121393/9349*2537720636^(8/9) 2971215106953791 a001 121393/9349*312119004989^(8/11) 2971215106953791 a001 121393/9349*(1/2+1/2*5^(1/2))^40 2971215106953791 a001 121393/9349*23725150497407^(5/8) 2971215106953791 a001 121393/9349*73681302247^(10/13) 2971215106953791 a001 121393/9349*28143753123^(4/5) 2971215106953791 a001 121393/9349*10749957122^(5/6) 2971215106953791 a001 121393/9349*4106118243^(20/23) 2971215106953791 a001 121393/9349*1568397607^(10/11) 2971215106953791 a001 121393/9349*599074578^(20/21) 2971215106973002 a001 2504730781961/9349*167761^(1/5) 2971215106978713 a001 583600128882545/196418 2971215106980425 a001 267914296/9349*439204^(8/9) 2971215106982137 a001 1134903170/9349*439204^(7/9) 2971215106983848 a001 4807526976/9349*439204^(2/3) 2971215106985559 a001 20365011074/9349*439204^(5/9) 2971215106987271 a001 86267571272/9349*439204^(4/9) 2971215106988233 a001 4181/710647*14662949395604^(8/9) 2971215106988233 a001 4181/710647*(1/2+1/2*5^(1/2))^56 2971215106988233 a001 317811/9349*817138163596^(2/3) 2971215106988233 a001 317811/9349*(1/2+1/2*5^(1/2))^38 2971215106988233 a001 317811/9349*10749957122^(19/24) 2971215106988233 a001 317811/9349*4106118243^(19/23) 2971215106988233 a001 317811/9349*1568397607^(19/22) 2971215106988233 a001 317811/9349*599074578^(19/21) 2971215106988233 a001 317811/9349*228826127^(19/20) 2971215106988982 a001 365435296162/9349*439204^(1/3) 2971215106990694 a001 1548008755920/9349*439204^(2/9) 2971215106991869 a001 1527884973253322/514229 2971215106992405 a001 6557470319842/9349*439204^(1/9) 2971215106993258 a001 4181/1860498*(1/2+1/2*5^(1/2))^58 2971215106993258 a001 832040/9349*141422324^(12/13) 2971215106993258 a001 832040/9349*2537720636^(4/5) 2971215106993258 a001 832040/9349*45537549124^(12/17) 2971215106993258 a001 832040/9349*14662949395604^(4/7) 2971215106993258 a001 832040/9349*(1/2+1/2*5^(1/2))^36 2971215106993258 a001 832040/9349*505019158607^(9/14) 2971215106993258 a001 832040/9349*192900153618^(2/3) 2971215106993258 a001 832040/9349*73681302247^(9/13) 2971215106993258 a001 832040/9349*10749957122^(3/4) 2971215106993258 a001 832040/9349*4106118243^(18/23) 2971215106993258 a001 832040/9349*1568397607^(9/11) 2971215106993258 a001 832040/9349*599074578^(6/7) 2971215106993258 a001 832040/9349*228826127^(9/10) 2971215106993259 a001 832040/9349*87403803^(18/19) 2971215106993788 a001 4000054790877421/1346269 2971215106993991 a001 4181/4870847*14662949395604^(20/21) 2971215106993991 a001 4181/4870847*(1/2+1/2*5^(1/2))^60 2971215106993991 a001 2178309/9349*45537549124^(2/3) 2971215106993991 a001 2178309/9349*(1/2+1/2*5^(1/2))^34 2971215106993991 a001 2178309/9349*10749957122^(17/24) 2971215106993991 a001 2178309/9349*4106118243^(17/23) 2971215106993991 a001 2178309/9349*1568397607^(17/22) 2971215106993991 a001 2178309/9349*599074578^(17/21) 2971215106993991 a001 2178309/9349*228826127^(17/20) 2971215106993992 a001 2178309/9349*87403803^(17/19) 2971215106993994 a001 2178309/9349*33385282^(17/18) 2971215106994068 a001 10472279399378941/3524578 2971215106994070 a001 14930352/9349*7881196^(10/11) 2971215106994078 a001 63245986/9349*7881196^(9/11) 2971215106994082 a001 267914296/9349*7881196^(8/11) 2971215106994085 a001 701408733/9349*7881196^(2/3) 2971215106994086 a001 1134903170/9349*7881196^(7/11) 2971215106994090 a001 4807526976/9349*7881196^(6/11) 2971215106994095 a001 20365011074/9349*7881196^(5/11) 2971215106994098 a001 4181/12752043*(1/2+1/2*5^(1/2))^62 2971215106994098 a001 5702887/9349*(1/2+1/2*5^(1/2))^32 2971215106994098 a001 5702887/9349*23725150497407^(1/2) 2971215106994098 a001 5702887/9349*73681302247^(8/13) 2971215106994098 a001 5702887/9349*10749957122^(2/3) 2971215106994098 a001 5702887/9349*4106118243^(16/23) 2971215106994098 a001 5702887/9349*1568397607^(8/11) 2971215106994098 a001 5702887/9349*599074578^(16/21) 2971215106994098 a001 5702887/9349*228826127^(4/5) 2971215106994099 a001 5702887/9349*87403803^(16/19) 2971215106994099 a001 86267571272/9349*7881196^(4/11) 2971215106994101 a001 139583862445/9349*7881196^(1/3) 2971215106994101 a001 5702887/9349*33385282^(8/9) 2971215106994103 a001 365435296162/9349*7881196^(3/11) 2971215106994108 a001 1548008755920/9349*7881196^(2/11) 2971215106994108 a001 14930352/9349*20633239^(6/7) 2971215106994109 a001 2108983339019954/709805 2971215106994111 a001 4181*20633239^(4/5) 2971215106994112 a001 165580141/9349*20633239^(5/7) 2971215106994112 a001 6557470319842/9349*7881196^(1/11) 2971215106994112 a001 1134903170/9349*20633239^(3/5) 2971215106994113 a001 1836311903/9349*20633239^(4/7) 2971215106994113 a001 4181/33385282*(1/2+1/2*5^(1/2))^64 2971215106994114 a001 20365011074/9349*20633239^(3/7) 2971215106994114 a001 32951280099/9349*20633239^(2/5) 2971215106994114 a001 14930352/9349*141422324^(10/13) 2971215106994114 a001 14930352/9349*2537720636^(2/3) 2971215106994114 a001 14930352/9349*45537549124^(10/17) 2971215106994114 a001 14930352/9349*312119004989^(6/11) 2971215106994114 a001 14930352/9349*14662949395604^(10/21) 2971215106994114 a001 14930352/9349*(1/2+1/2*5^(1/2))^30 2971215106994114 a001 14930352/9349*192900153618^(5/9) 2971215106994114 a001 14930352/9349*28143753123^(3/5) 2971215106994114 a001 14930352/9349*10749957122^(5/8) 2971215106994114 a001 14930352/9349*4106118243^(15/23) 2971215106994114 a001 14930352/9349*1568397607^(15/22) 2971215106994114 a001 14930352/9349*599074578^(5/7) 2971215106994114 a001 14930352/9349*228826127^(3/4) 2971215106994114 a001 14930352/9349*87403803^(15/19) 2971215106994115 a001 225851433717/9349*20633239^(2/7) 2971215106994115 a001 956722026041/9349*20633239^(1/5) 2971215106994115 a001 5702887/9349*12752043^(16/17) 2971215106994116 a001 2504730781961/9349*20633239^(1/7) 2971215106994116 a001 14930352/9349*33385282^(5/6) 2971215106994116 a001 4181*17393796001^(4/7) 2971215106994116 a001 4181*14662949395604^(4/9) 2971215106994116 a001 4181*(1/2+1/2*5^(1/2))^28 2971215106994116 a001 4181*73681302247^(7/13) 2971215106994116 a001 4181*10749957122^(7/12) 2971215106994116 a001 4181*4106118243^(14/23) 2971215106994116 a001 4181*1568397607^(7/11) 2971215106994116 a001 4181*599074578^(2/3) 2971215106994116 a001 4181*228826127^(7/10) 2971215106994116 a001 102334155/9349*141422324^(2/3) 2971215106994116 a001 4181*87403803^(14/19) 2971215106994116 a001 267914296/9349*141422324^(8/13) 2971215106994116 a001 1134903170/9349*141422324^(7/13) 2971215106994116 a001 4807526976/9349*141422324^(6/13) 2971215106994116 a001 20365011074/9349*141422324^(5/13) 2971215106994116 a001 102334155/9349*(1/2+1/2*5^(1/2))^26 2971215106994116 a001 102334155/9349*73681302247^(1/2) 2971215106994116 a001 102334155/9349*10749957122^(13/24) 2971215106994116 a001 102334155/9349*4106118243^(13/23) 2971215106994116 a001 102334155/9349*1568397607^(13/22) 2971215106994116 a001 102334155/9349*599074578^(13/21) 2971215106994116 a001 53316291173/9349*141422324^(1/3) 2971215106994116 a001 86267571272/9349*141422324^(4/13) 2971215106994116 a001 365435296162/9349*141422324^(3/13) 2971215106994116 a001 1548008755920/9349*141422324^(2/13) 2971215106994116 a001 102334155/9349*228826127^(13/20) 2971215106994117 a001 6557470319842/9349*141422324^(1/13) 2971215106994117 a001 267914296/9349*2537720636^(8/15) 2971215106994117 a001 267914296/9349*45537549124^(8/17) 2971215106994117 a001 267914296/9349*14662949395604^(8/21) 2971215106994117 a001 267914296/9349*(1/2+1/2*5^(1/2))^24 2971215106994117 a001 267914296/9349*192900153618^(4/9) 2971215106994117 a001 267914296/9349*73681302247^(6/13) 2971215106994117 a001 267914296/9349*10749957122^(1/2) 2971215106994117 a001 267914296/9349*4106118243^(12/23) 2971215106994117 a001 267914296/9349*1568397607^(6/11) 2971215106994117 a001 267914296/9349*599074578^(4/7) 2971215106994117 a001 701408733/9349*312119004989^(2/5) 2971215106994117 a001 701408733/9349*(1/2+1/2*5^(1/2))^22 2971215106994117 a001 701408733/9349*10749957122^(11/24) 2971215106994117 a001 701408733/9349*4106118243^(11/23) 2971215106994117 a001 701408733/9349*1568397607^(1/2) 2971215106994117 a001 1836311903/9349*2537720636^(4/9) 2971215106994117 a001 4807526976/9349*2537720636^(2/5) 2971215106994117 a001 1836311903/9349*(1/2+1/2*5^(1/2))^20 2971215106994117 a001 1836311903/9349*23725150497407^(5/16) 2971215106994117 a001 1836311903/9349*505019158607^(5/14) 2971215106994117 a001 1836311903/9349*73681302247^(5/13) 2971215106994117 a001 1836311903/9349*28143753123^(2/5) 2971215106994117 a001 1836311903/9349*10749957122^(5/12) 2971215106994117 a001 20365011074/9349*2537720636^(1/3) 2971215106994117 a001 86267571272/9349*2537720636^(4/15) 2971215106994117 a001 225851433717/9349*2537720636^(2/9) 2971215106994117 a001 1836311903/9349*4106118243^(10/23) 2971215106994117 a001 365435296162/9349*2537720636^(1/5) 2971215106994117 a001 1548008755920/9349*2537720636^(2/15) 2971215106994117 a001 2504730781961/9349*2537720636^(1/9) 2971215106994117 a001 6557470319842/9349*2537720636^(1/15) 2971215106994117 a001 4807526976/9349*45537549124^(6/17) 2971215106994117 a001 4807526976/9349*14662949395604^(2/7) 2971215106994117 a001 4807526976/9349*(1/2+1/2*5^(1/2))^18 2971215106994117 a001 4807526976/9349*192900153618^(1/3) 2971215106994117 a001 4807526976/9349*10749957122^(3/8) 2971215106994117 a001 12586269025/9349*(1/2+1/2*5^(1/2))^16 2971215106994117 a001 12586269025/9349*23725150497407^(1/4) 2971215106994117 a001 12586269025/9349*73681302247^(4/13) 2971215106994117 a001 32951280099/9349*17393796001^(2/7) 2971215106994117 a001 956722026041/9349*17393796001^(1/7) 2971215106994117 a001 32951280099/9349*14662949395604^(2/9) 2971215106994117 a001 32951280099/9349*(1/2+1/2*5^(1/2))^14 2971215106994117 a001 86267571272/9349*45537549124^(4/17) 2971215106994117 a001 365435296162/9349*45537549124^(3/17) 2971215106994117 a001 1548008755920/9349*45537549124^(2/17) 2971215106994117 a001 86267571272/9349*14662949395604^(4/21) 2971215106994117 a001 86267571272/9349*(1/2+1/2*5^(1/2))^12 2971215106994117 a001 225851433717/9349*312119004989^(2/11) 2971215106994117 a001 225851433717/9349*(1/2+1/2*5^(1/2))^10 2971215106994117 a001 2504730781961/9349*312119004989^(1/11) 2971215106994117 a001 1548008755920/9349*14662949395604^(2/21) 2971215106994117 a001 1548008755920/9349*(1/2+1/2*5^(1/2))^6 2971215106994117 a001 4052739537881/9349*(1/2+1/2*5^(1/2))^4 2971215106994117 a001 10610209857723/9349*(1/2+1/2*5^(1/2))^2 2971215106994117 a001 6557470319842/9349*(1/2+1/2*5^(1/2))^3 2971215106994117 a001 2504730781961/9349*(1/2+1/2*5^(1/2))^5 2971215106994117 a001 365435296162/9349*14662949395604^(1/7) 2971215106994117 a001 365435296162/9349*192900153618^(1/6) 2971215106994117 a001 139583862445/9349*312119004989^(1/5) 2971215106994117 a001 139583862445/9349*(1/2+1/2*5^(1/2))^11 2971215106994117 a001 591286729879/9349*73681302247^(2/13) 2971215106994117 a001 53316291173/9349*(1/2+1/2*5^(1/2))^13 2971215106994117 a001 53316291173/9349*73681302247^(1/4) 2971215106994117 a001 2504730781961/9349*28143753123^(1/10) 2971215106994117 a001 225851433717/9349*28143753123^(1/5) 2971215106994117 a001 20365011074/9349*45537549124^(5/17) 2971215106994117 a001 10610209857723/9349*10749957122^(1/24) 2971215106994117 a001 20365011074/9349*312119004989^(3/11) 2971215106994117 a001 20365011074/9349*14662949395604^(5/21) 2971215106994117 a001 20365011074/9349*(1/2+1/2*5^(1/2))^15 2971215106994117 a001 20365011074/9349*192900153618^(5/18) 2971215106994117 a001 6557470319842/9349*10749957122^(1/16) 2971215106994117 a001 4052739537881/9349*10749957122^(1/12) 2971215106994117 a001 20365011074/9349*28143753123^(3/10) 2971215106994117 a001 1548008755920/9349*10749957122^(1/8) 2971215106994117 a001 591286729879/9349*10749957122^(1/6) 2971215106994117 a001 12586269025/9349*10749957122^(1/3) 2971215106994117 a001 365435296162/9349*10749957122^(3/16) 2971215106994117 a001 225851433717/9349*10749957122^(5/24) 2971215106994117 a001 86267571272/9349*10749957122^(1/4) 2971215106994117 a001 32951280099/9349*10749957122^(7/24) 2971215106994117 a001 10610209857723/9349*4106118243^(1/23) 2971215106994117 a001 7778742049/9349*45537549124^(1/3) 2971215106994117 a001 20365011074/9349*10749957122^(5/16) 2971215106994117 a001 7778742049/9349*(1/2+1/2*5^(1/2))^17 2971215106994117 a001 4052739537881/9349*4106118243^(2/23) 2971215106994117 a001 1548008755920/9349*4106118243^(3/23) 2971215106994117 a001 591286729879/9349*4106118243^(4/23) 2971215106994117 a001 225851433717/9349*4106118243^(5/23) 2971215106994117 a001 4807526976/9349*4106118243^(9/23) 2971215106994117 a001 86267571272/9349*4106118243^(6/23) 2971215106994117 a001 32951280099/9349*4106118243^(7/23) 2971215106994117 a001 10610209857723/9349*1568397607^(1/22) 2971215106994117 a001 12586269025/9349*4106118243^(8/23) 2971215106994117 a001 2971215073/9349*817138163596^(1/3) 2971215106994117 a001 2971215073/9349*(1/2+1/2*5^(1/2))^19 2971215106994117 a001 4052739537881/9349*1568397607^(1/11) 2971215106994117 a001 1548008755920/9349*1568397607^(3/22) 2971215106994117 a001 591286729879/9349*1568397607^(2/11) 2971215106994117 a001 1134903170/9349*2537720636^(7/15) 2971215106994117 a001 225851433717/9349*1568397607^(5/22) 2971215106994117 a001 139583862445/9349*1568397607^(1/4) 2971215106994117 a001 86267571272/9349*1568397607^(3/11) 2971215106994117 a001 1836311903/9349*1568397607^(5/11) 2971215106994117 a001 32951280099/9349*1568397607^(7/22) 2971215106994117 a001 10610209857723/9349*599074578^(1/21) 2971215106994117 a001 12586269025/9349*1568397607^(4/11) 2971215106994117 a001 1134903170/9349*17393796001^(3/7) 2971215106994117 a001 1134903170/9349*45537549124^(7/17) 2971215106994117 a001 1134903170/9349*14662949395604^(1/3) 2971215106994117 a001 1134903170/9349*(1/2+1/2*5^(1/2))^21 2971215106994117 a001 1134903170/9349*192900153618^(7/18) 2971215106994117 a001 4807526976/9349*1568397607^(9/22) 2971215106994117 a001 1134903170/9349*10749957122^(7/16) 2971215106994117 a001 6557470319842/9349*599074578^(1/14) 2971215106994117 a001 4052739537881/9349*599074578^(2/21) 2971215106994117 a001 1548008755920/9349*599074578^(1/7) 2971215106994117 a001 956722026041/9349*599074578^(1/6) 2971215106994117 a001 591286729879/9349*599074578^(4/21) 2971215106994117 a001 365435296162/9349*599074578^(3/14) 2971215106994117 a001 225851433717/9349*599074578^(5/21) 2971215106994117 a001 86267571272/9349*599074578^(2/7) 2971215106994117 a001 32951280099/9349*599074578^(1/3) 2971215106994117 a001 10610209857723/9349*228826127^(1/20) 2971215106994117 a001 20365011074/9349*599074578^(5/14) 2971215106994117 a001 701408733/9349*599074578^(11/21) 2971215106994117 a001 12586269025/9349*599074578^(8/21) 2971215106994117 a001 433494437/9349*(1/2+1/2*5^(1/2))^23 2971215106994117 a001 433494437/9349*4106118243^(1/2) 2971215106994117 a001 4807526976/9349*599074578^(3/7) 2971215106994117 a001 1836311903/9349*599074578^(10/21) 2971215106994117 a001 1134903170/9349*599074578^(1/2) 2971215106994117 a001 4052739537881/9349*228826127^(1/10) 2971215106994117 a001 2504730781961/9349*228826127^(1/8) 2971215106994117 a001 1548008755920/9349*228826127^(3/20) 2971215106994117 a001 591286729879/9349*228826127^(1/5) 2971215106994117 a001 225851433717/9349*228826127^(1/4) 2971215106994117 a001 86267571272/9349*228826127^(3/10) 2971215106994117 a001 32951280099/9349*228826127^(7/20) 2971215106994117 a001 10610209857723/9349*87403803^(1/19) 2971215106994117 a001 20365011074/9349*228826127^(3/8) 2971215106994117 a001 165580141/9349*2537720636^(5/9) 2971215106994117 a001 165580141/9349*312119004989^(5/11) 2971215106994117 a001 165580141/9349*(1/2+1/2*5^(1/2))^25 2971215106994117 a001 165580141/9349*3461452808002^(5/12) 2971215106994117 a001 165580141/9349*28143753123^(1/2) 2971215106994117 a001 12586269025/9349*228826127^(2/5) 2971215106994117 a001 4807526976/9349*228826127^(9/20) 2971215106994117 a001 267914296/9349*228826127^(3/5) 2971215106994117 a001 1836311903/9349*228826127^(1/2) 2971215106994117 a001 701408733/9349*228826127^(11/20) 2971215106994117 a001 4052739537881/9349*87403803^(2/19) 2971215106994117 a001 63245986/9349*141422324^(9/13) 2971215106994117 a001 165580141/9349*228826127^(5/8) 2971215106994117 a001 1548008755920/9349*87403803^(3/19) 2971215106994117 a001 591286729879/9349*87403803^(4/19) 2971215106994117 a001 225851433717/9349*87403803^(5/19) 2971215106994117 a001 86267571272/9349*87403803^(6/19) 2971215106994117 a001 32951280099/9349*87403803^(7/19) 2971215106994117 a001 10610209857723/9349*33385282^(1/18) 2971215106994117 a001 63245986/9349*2537720636^(3/5) 2971215106994117 a001 63245986/9349*45537549124^(9/17) 2971215106994117 a001 63245986/9349*817138163596^(9/19) 2971215106994117 a001 63245986/9349*14662949395604^(3/7) 2971215106994117 a001 63245986/9349*(1/2+1/2*5^(1/2))^27 2971215106994117 a001 63245986/9349*192900153618^(1/2) 2971215106994117 a001 63245986/9349*10749957122^(9/16) 2971215106994117 a001 63245986/9349*599074578^(9/14) 2971215106994117 a001 12586269025/9349*87403803^(8/19) 2971215106994117 a001 4807526976/9349*87403803^(9/19) 2971215106994117 a001 2971215073/9349*87403803^(1/2) 2971215106994117 a001 1836311903/9349*87403803^(10/19) 2971215106994117 a001 102334155/9349*87403803^(13/19) 2971215106994117 a001 6557470319842/9349*33385282^(1/12) 2971215106994117 a001 701408733/9349*87403803^(11/19) 2971215106994117 a001 267914296/9349*87403803^(12/19) 2971215106994117 a001 4052739537881/9349*33385282^(1/9) 2971215106994117 a001 1548008755920/9349*33385282^(1/6) 2971215106994117 a001 591286729879/9349*33385282^(2/9) 2971215106994117 a001 365435296162/9349*33385282^(1/4) 2971215106994117 a001 225851433717/9349*33385282^(5/18) 2971215106994117 a001 86267571272/9349*33385282^(1/3) 2971215106994118 a001 24157817/9349*(1/2+1/2*5^(1/2))^29 2971215106994118 a001 24157817/9349*1322157322203^(1/2) 2971215106994118 a001 32951280099/9349*33385282^(7/18) 2971215106994118 a001 10610209857723/9349*12752043^(1/17) 2971215106994118 a001 20365011074/9349*33385282^(5/12) 2971215106994118 a001 12586269025/9349*33385282^(4/9) 2971215106994118 a001 4807526976/9349*33385282^(1/2) 2971215106994118 a001 1836311903/9349*33385282^(5/9) 2971215106994118 a001 1134903170/9349*33385282^(7/12) 2971215106994118 a001 701408733/9349*33385282^(11/18) 2971215106994118 a001 4181*33385282^(7/9) 2971215106994118 a001 267914296/9349*33385282^(2/3) 2971215106994118 a001 102334155/9349*33385282^(13/18) 2971215106994119 a001 63245986/9349*33385282^(3/4) 2971215106994119 a001 4052739537881/9349*12752043^(2/17) 2971215106994119 a001 14787095805046621/4976784 2971215106994120 a001 1548008755920/9349*12752043^(3/17) 2971215106994121 a001 591286729879/9349*12752043^(4/17) 2971215106994122 a001 225851433717/9349*12752043^(5/17) 2971215106994123 a001 86267571272/9349*12752043^(6/17) 2971215106994123 a001 4181/20633239*(1/2+1/2*5^(1/2))^63 2971215106994123 a001 9227465/9349*(1/2+1/2*5^(1/2))^31 2971215106994123 a001 9227465/9349*9062201101803^(1/2) 2971215106994124 a001 32951280099/9349*12752043^(7/17) 2971215106994124 a001 10610209857723/9349*4870847^(1/16) 2971215106994125 a001 12586269025/9349*12752043^(8/17) 2971215106994126 a001 7778742049/9349*12752043^(1/2) 2971215106994126 a001 4807526976/9349*12752043^(9/17) 2971215106994127 a001 1836311903/9349*12752043^(10/17) 2971215106994128 a001 701408733/9349*12752043^(11/17) 2971215106994129 a001 267914296/9349*12752043^(12/17) 2971215106994130 a001 14930352/9349*12752043^(15/17) 2971215106994130 a001 102334155/9349*12752043^(13/17) 2971215106994131 a001 4181*12752043^(14/17) 2971215106994132 a001 4052739537881/9349*4870847^(1/8) 2971215106994134 a001 16944504007880461/5702887 2971215106994140 a001 1548008755920/9349*4870847^(3/16) 2971215106994148 a001 591286729879/9349*4870847^(1/4) 2971215106994156 a001 225851433717/9349*4870847^(5/16) 2971215106994163 a001 86267571272/9349*4870847^(3/8) 2971215106994164 a001 4181/7881196*(1/2+1/2*5^(1/2))^61 2971215106994164 a001 3524578/9349*141422324^(11/13) 2971215106994164 a001 3524578/9349*2537720636^(11/15) 2971215106994164 a001 3524578/9349*45537549124^(11/17) 2971215106994164 a001 3524578/9349*312119004989^(3/5) 2971215106994164 a001 3524578/9349*817138163596^(11/19) 2971215106994164 a001 3524578/9349*14662949395604^(11/21) 2971215106994164 a001 3524578/9349*(1/2+1/2*5^(1/2))^33 2971215106994164 a001 3524578/9349*192900153618^(11/18) 2971215106994164 a001 3524578/9349*10749957122^(11/16) 2971215106994164 a001 3524578/9349*1568397607^(3/4) 2971215106994164 a001 3524578/9349*599074578^(11/14) 2971215106994167 a001 3524578/9349*33385282^(11/12) 2971215106994171 a001 32951280099/9349*4870847^(7/16) 2971215106994174 a001 10610209857723/9349*1860498^(1/15) 2971215106994179 a001 12586269025/9349*4870847^(1/2) 2971215106994187 a001 4807526976/9349*4870847^(9/16) 2971215106994195 a001 1836311903/9349*4870847^(5/8) 2971215106994202 a001 6557470319842/9349*1860498^(1/10) 2971215106994203 a001 701408733/9349*4870847^(11/16) 2971215106994210 a001 267914296/9349*4870847^(3/4) 2971215106994218 a001 102334155/9349*4870847^(13/16) 2971215106994226 a001 4181*4870847^(7/8) 2971215106994231 a001 4052739537881/9349*1860498^(2/15) 2971215106994231 a001 14930352/9349*4870847^(15/16) 2971215106994241 a001 2157408202833840/726103 2971215106994260 a001 2504730781961/9349*1860498^(1/6) 2971215106994288 a001 1548008755920/9349*1860498^(1/5) 2971215106994345 a001 591286729879/9349*1860498^(4/15) 2971215106994374 a001 365435296162/9349*1860498^(3/10) 2971215106994403 a001 225851433717/9349*1860498^(1/3) 2971215106994444 a001 4181/3010349*(1/2+1/2*5^(1/2))^59 2971215106994444 a001 1346269/9349*2537720636^(7/9) 2971215106994444 a001 1346269/9349*17393796001^(5/7) 2971215106994444 a001 1346269/9349*312119004989^(7/11) 2971215106994444 a001 1346269/9349*14662949395604^(5/9) 2971215106994444 a001 1346269/9349*(1/2+1/2*5^(1/2))^35 2971215106994444 a001 1346269/9349*505019158607^(5/8) 2971215106994444 a001 1346269/9349*28143753123^(7/10) 2971215106994444 a001 1346269/9349*599074578^(5/6) 2971215106994444 a001 1346269/9349*228826127^(7/8) 2971215106994460 a001 86267571272/9349*1860498^(2/5) 2971215106994517 a001 32951280099/9349*1860498^(7/15) 2971215106994537 a001 10610209857723/9349*710647^(1/14) 2971215106994546 a001 20365011074/9349*1860498^(1/2) 2971215106994574 a001 12586269025/9349*1860498^(8/15) 2971215106994632 a001 4807526976/9349*1860498^(3/5) 2971215106994689 a001 1836311903/9349*1860498^(2/3) 2971215106994717 a001 1134903170/9349*1860498^(7/10) 2971215106994746 a001 701408733/9349*1860498^(11/15) 2971215106994803 a001 267914296/9349*1860498^(4/5) 2971215106994832 a001 165580141/9349*1860498^(5/6) 2971215106994860 a001 102334155/9349*1860498^(13/15) 2971215106994889 a001 63245986/9349*1860498^(9/10) 2971215106994917 a001 4181*1860498^(14/15) 2971215106994957 a001 4052739537881/9349*710647^(1/7) 2971215106994975 a001 2472169817624099/832040 2971215106995377 a001 1548008755920/9349*710647^(3/14) 2971215106995587 a001 956722026041/9349*710647^(1/4) 2971215106995797 a001 591286729879/9349*710647^(2/7) 2971215106996218 a001 225851433717/9349*710647^(5/14) 2971215106996363 a001 4181/1149851*14662949395604^(19/21) 2971215106996363 a001 4181/1149851*(1/2+1/2*5^(1/2))^57 2971215106996364 a001 514229/9349*(1/2+1/2*5^(1/2))^37 2971215106996638 a001 86267571272/9349*710647^(3/7) 2971215106997058 a001 32951280099/9349*710647^(1/2) 2971215106997218 a001 10610209857723/9349*271443^(1/13) 2971215106997478 a001 12586269025/9349*710647^(4/7) 2971215106997899 a001 4807526976/9349*710647^(9/14) 2971215106998319 a001 1836311903/9349*710647^(5/7) 2971215106998529 a001 1134903170/9349*710647^(3/4) 2971215106998739 a001 701408733/9349*710647^(11/14) 2971215106999159 a001 267914296/9349*710647^(6/7) 2971215106999580 a001 102334155/9349*710647^(13/14) 2971215107000320 a001 4052739537881/9349*271443^(2/13) 2971215107003422 a001 1548008755920/9349*271443^(3/13) 2971215107006524 a001 591286729879/9349*271443^(4/13) 2971215107009519 a001 4181/439204*(1/2+1/2*5^(1/2))^55 2971215107009519 a001 4181/439204*3461452808002^(11/12) 2971215107009519 a001 196418/9349*2537720636^(13/15) 2971215107009519 a001 196418/9349*45537549124^(13/17) 2971215107009519 a001 196418/9349*14662949395604^(13/21) 2971215107009519 a001 196418/9349*(1/2+1/2*5^(1/2))^39 2971215107009519 a001 196418/9349*192900153618^(13/18) 2971215107009519 a001 196418/9349*73681302247^(3/4) 2971215107009519 a001 196418/9349*10749957122^(13/16) 2971215107009519 a001 196418/9349*599074578^(13/14) 2971215107009626 a001 225851433717/9349*271443^(5/13) 2971215107012728 a001 86267571272/9349*271443^(6/13) 2971215107014279 a001 53316291173/9349*271443^(1/2) 2971215107015830 a001 32951280099/9349*271443^(7/13) 2971215107017149 a001 10610209857723/9349*103682^(1/12) 2971215107018932 a001 12586269025/9349*271443^(8/13) 2971215107022034 a001 4807526976/9349*271443^(9/13) 2971215107025136 a001 1836311903/9349*271443^(10/13) 2971215107028238 a001 701408733/9349*271443^(11/13) 2971215107028666 a001 6557470319842/9349*103682^(1/8) 2971215107031340 a001 267914296/9349*271443^(12/13) 2971215107034441 a001 360684715488232/121393 2971215107040182 a001 4052739537881/9349*103682^(1/6) 2971215107051698 a001 2504730781961/9349*103682^(5/24) 2971215107063215 a001 1548008755920/9349*103682^(1/4) 2971215107074731 a001 956722026041/9349*103682^(7/24) 2971215107086248 a001 591286729879/9349*103682^(1/3) 2971215107097764 a001 365435296162/9349*103682^(3/8) 2971215107099689 a001 4181/167761*(1/2+1/2*5^(1/2))^53 2971215107099689 a001 75025/9349*(1/2+1/2*5^(1/2))^41 2971215107109280 a001 225851433717/9349*103682^(5/12) 2971215107120797 a001 139583862445/9349*103682^(11/24) 2971215107132313 a001 86267571272/9349*103682^(1/2) 2971215107143830 a001 53316291173/9349*103682^(13/24) 2971215107155346 a001 32951280099/9349*103682^(7/12) 2971215107166337 a001 10610209857723/9349*39603^(1/11) 2971215107166862 a001 20365011074/9349*103682^(5/8) 2971215107178379 a001 12586269025/9349*103682^(2/3) 2971215107189895 a001 7778742049/9349*103682^(17/24) 2971215107201411 a001 4807526976/9349*103682^(3/4) 2971215107212928 a001 2971215073/9349*103682^(19/24) 2971215107224444 a001 1836311903/9349*103682^(5/6) 2971215107235961 a001 1134903170/9349*103682^(7/8) 2971215107247477 a001 701408733/9349*103682^(11/12) 2971215107252448 a001 6557470319842/9349*39603^(3/22) 2971215107258993 a001 433494437/9349*103682^(23/24) 2971215107270509 a001 45923100697973/15456 2971215107333843 a001 225749145909/2206*5778^(7/18) 2971215107338558 a001 4052739537881/9349*39603^(2/11) 2971215107424668 a001 2504730781961/9349*39603^(5/22) 2971215107510778 a001 1548008755920/9349*39603^(3/11) 2971215107596889 a001 956722026041/9349*39603^(7/22) 2971215107625592 a001 4052739537881/24476*5778^(1/3) 2971215107682999 a001 591286729879/9349*39603^(4/11) 2971215107717723 a001 4181/64079*14662949395604^(17/21) 2971215107717723 a001 4181/64079*(1/2+1/2*5^(1/2))^51 2971215107717723 a001 4181/64079*192900153618^(17/18) 2971215107717723 a001 28657/9349*(1/2+1/2*5^(1/2))^43 2971215107769109 a001 365435296162/9349*39603^(9/22) 2971215107855220 a001 225851433717/9349*39603^(5/11) 2971215107941330 a001 139583862445/9349*39603^(1/2) 2971215108027440 a001 86267571272/9349*39603^(6/11) 2971215108113551 a001 53316291173/9349*39603^(13/22) 2971215108199661 a001 32951280099/9349*39603^(7/11) 2971215108285771 a001 20365011074/9349*39603^(15/22) 2971215108292576 a001 10610209857723/9349*15127^(1/10) 2971215108333843 a001 6557470319842/64079*5778^(7/18) 2971215108371882 a001 12586269025/9349*39603^(8/11) 2971215108457992 a001 7778742049/9349*39603^(17/22) 2971215108544102 a001 4807526976/9349*39603^(9/11) 2971215108630213 a001 2971215073/9349*39603^(19/22) 2971215108716323 a001 1836311903/9349*39603^(10/11) 2971215108802433 a001 1134903170/9349*39603^(21/22) 2971215108888543 a001 52623190793525/17711 2971215108941806 a001 6557470319842/9349*15127^(3/20) 2971215109458598 a001 365435296162/15127*5778^(5/9) 2971215109591036 a001 4052739537881/9349*15127^(1/5) 2971215110240266 a001 2504730781961/9349*15127^(1/4) 2971215110660129 a001 2504730781961/39603*5778^(4/9) 2971215110889496 a001 1548008755920/9349*15127^(3/10) 2971215111433539 r005 Im(z^2+c),c=23/82+1/7*I,n=56 2971215111538726 a001 956722026041/9349*15127^(7/20) 2971215111953791 a001 4181/24476*14662949395604^(7/9) 2971215111953791 a001 4181/24476*(1/2+1/2*5^(1/2))^49 2971215111953791 a001 4181/24476*505019158607^(7/8) 2971215111953791 a001 10946/9349*45537549124^(15/17) 2971215111953791 a001 10946/9349*312119004989^(9/11) 2971215111953791 a001 10946/9349*14662949395604^(5/7) 2971215111953791 a001 10946/9349*(1/2+1/2*5^(1/2))^45 2971215111953791 a001 10946/9349*192900153618^(5/6) 2971215111953791 a001 10946/9349*28143753123^(9/10) 2971215111953791 a001 10946/9349*10749957122^(15/16) 2971215112187955 a001 591286729879/9349*15127^(2/5) 2971215112278163 a001 3278735159921/51841*5778^(4/9) 2971215112569911 a001 2504730781961/24476*5778^(7/18) 2971215112660129 a001 10610209857723/167761*5778^(4/9) 2971215112837185 a001 365435296162/9349*15127^(9/20) 2971215113278163 a001 4052739537881/64079*5778^(4/9) 2971215113486415 a001 225851433717/9349*15127^(1/2) 2971215113590607 r002 39th iterates of z^2 + 2971215114117497 a001 12586269025/3571*3571^(14/17) 2971215114135645 a001 139583862445/9349*15127^(11/20) 2971215114402917 a001 32264490531/2161*5778^(11/18) 2971215114784875 a001 86267571272/9349*15127^(3/5) 2971215115434105 a001 53316291173/9349*15127^(13/20) 2971215115604448 a001 516002918640/13201*5778^(1/2) 2971215116083335 a001 32951280099/9349*15127^(7/10) 2971215116732564 a001 20365011074/9349*15127^(3/4) 2971215116882756 a001 10610209857723/9349*5778^(1/9) 2971215117222482 a001 4052739537881/103682*5778^(1/2) 2971215117381794 a001 12586269025/9349*15127^(4/5) 2971215117458550 a001 3536736619241/90481*5778^(1/2) 2971215117514231 a001 387002188980/6119*5778^(4/9) 2971215117604448 a001 6557470319842/167761*5778^(1/2) 2971215118031024 a001 7778742049/9349*15127^(17/20) 2971215118222482 a001 2504730781961/64079*5778^(1/2) 2971215118680254 a001 4807526976/9349*15127^(9/10) 2971215119329484 a001 2971215073/9349*15127^(19/20) 2971215119347237 a001 139583862445/15127*5778^(2/3) 2971215119978713 a001 6700090095552/2255 2971215120548768 a001 956722026041/39603*5778^(5/9) 2971215121827075 a001 6557470319842/9349*5778^(1/6) 2971215122166802 a001 2504730781961/103682*5778^(5/9) 2971215122402870 a001 6557470319842/271443*5778^(5/9) 2971215122458550 a001 956722026041/24476*5778^(1/2) 2971215122458598 a001 10610209857723/439204*5778^(5/9) 2971215122548768 a001 4052739537881/167761*5778^(5/9) 2971215123166802 a001 1548008755920/64079*5778^(5/9) 2971215124291557 a001 86267571272/15127*5778^(13/18) 2971215125493088 a001 591286729879/39603*5778^(11/18) 2971215126771395 a001 4052739537881/9349*5778^(2/9) 2971215127111122 a001 774004377960/51841*5778^(11/18) 2971215127347190 a001 4052739537881/271443*5778^(11/18) 2971215127381631 a001 1515744265389/101521*5778^(11/18) 2971215127402870 a001 591286729879/24476*5778^(5/9) 2971215127402918 a001 3278735159921/219602*5778^(11/18) 2971215127493088 a001 2504730781961/167761*5778^(11/18) 2971215127823330 a001 20365011074/3571*3571^(13/17) 2971215128111122 a001 956722026041/64079*5778^(11/18) 2971215129235876 a001 53316291173/15127*5778^(7/9) 2971215130437407 a001 365435296162/39603*5778^(2/3) 2971215131715715 a001 2504730781961/9349*5778^(5/18) 2971215132055441 a001 956722026041/103682*5778^(2/3) 2971215132291509 a001 2504730781961/271443*5778^(2/3) 2971215132325951 a001 6557470319842/710647*5778^(2/3) 2971215132334082 a001 10610209857723/1149851*5778^(2/3) 2971215132347190 a001 182717648081/12238*5778^(11/18) 2971215132347237 a001 4052739537881/439204*5778^(2/3) 2971215132437407 a001 140728068720/15251*5778^(2/3) 2971215133055441 a001 591286729879/64079*5778^(2/3) 2971215134180196 a001 32951280099/15127*5778^(5/6) 2971215135381727 a001 75283811239/13201*5778^(13/18) 2971215135877660 a007 Real Root Of 362*x^4+812*x^3-595*x^2+381*x-529 2971215136502151 a001 2504730781961/5778*2207^(1/4) 2971215136660034 a001 1548008755920/9349*5778^(1/3) 2971215136999761 a001 591286729879/103682*5778^(13/18) 2971215137235829 a001 516002918640/90481*5778^(13/18) 2971215137270271 a001 4052739537881/710647*5778^(13/18) 2971215137275296 a001 3536736619241/620166*5778^(13/18) 2971215137278401 a001 6557470319842/1149851*5778^(13/18) 2971215137291509 a001 7787980473/844*5778^(2/3) 2971215137291557 a001 2504730781961/439204*5778^(13/18) 2971215137381727 a001 956722026041/167761*5778^(13/18) 2971215137999761 a001 365435296162/64079*5778^(13/18) 2971215139124516 a001 20365011074/15127*5778^(8/9) 2971215140326046 a001 139583862445/39603*5778^(7/9) 2971215140988234 a001 4181/9349*(1/2+1/2*5^(1/2))^47 2971215141110111 k009 concat of cont frac of 2971215141529162 a001 32951280099/3571*3571^(12/17) 2971215141604354 a001 956722026041/9349*5778^(7/18) 2971215141944080 a001 182717648081/51841*5778^(7/9) 2971215142180148 a001 956722026041/271443*5778^(7/9) 2971215142214590 a001 2504730781961/710647*5778^(7/9) 2971215142219615 a001 3278735159921/930249*5778^(7/9) 2971215142220802 a001 10610209857723/3010349*5778^(7/9) 2971215142222721 a001 4052739537881/1149851*5778^(7/9) 2971215142235829 a001 139583862445/24476*5778^(13/18) 2971215142235876 a001 387002188980/109801*5778^(7/9) 2971215142326046 a001 591286729879/167761*5778^(7/9) 2971215142944080 a001 225851433717/64079*5778^(7/9) 2971215143211441 k007 concat of cont frac of 2971215143473252 m005 (1/2*3^(1/2)-1/5)/(Pi-9/10) 2971215144068835 a001 12586269025/15127*5778^(17/18) 2971215145270366 a001 86267571272/39603*5778^(5/6) 2971215146548673 a001 591286729879/9349*5778^(4/9) 2971215146888400 a001 225851433717/103682*5778^(5/6) 2971215147124468 a001 591286729879/271443*5778^(5/6) 2971215147158910 a001 1548008755920/710647*5778^(5/6) 2971215147163935 a001 4052739537881/1860498*5778^(5/6) 2971215147164668 a001 2178309*5778^(5/6) 2971215147165121 a001 6557470319842/3010349*5778^(5/6) 2971215147167041 a001 2504730781961/1149851*5778^(5/6) 2971215147180149 a001 21566892818/6119*5778^(7/9) 2971215147180196 a001 956722026041/439204*5778^(5/6) 2971215147270366 a001 365435296162/167761*5778^(5/6) 2971215147888400 a001 139583862445/64079*5778^(5/6) 2971215150214686 a001 53316291173/39603*5778^(8/9) 2971215151492993 a001 365435296162/9349*5778^(1/2) 2971215151832720 a001 139583862445/103682*5778^(8/9) 2971215152068788 a001 365435296162/271443*5778^(8/9) 2971215152103230 a001 956722026041/710647*5778^(8/9) 2971215152108255 a001 2504730781961/1860498*5778^(8/9) 2971215152108988 a001 6557470319842/4870847*5778^(8/9) 2971215152109161 a001 10610209857723/7881196*5778^(8/9) 2971215152109441 a001 1346269*5778^(8/9) 2971215152111360 a001 1548008755920/1149851*5778^(8/9) 2971215152124468 a001 53316291173/24476*5778^(5/6) 2971215152124516 a001 591286729879/439204*5778^(8/9) 2971215152214686 a001 225851433717/167761*5778^(8/9) 2971215152832720 a001 86267571272/64079*5778^(8/9) 2971215153480096 h002 exp(1/10*(120-2^(1/2))^(1/2)) 2971215155159005 a001 10983760033/13201*5778^(17/18) 2971215155234995 a001 53316291173/3571*3571^(11/17) 2971215156437313 a001 225851433717/9349*5778^(5/9) 2971215156777039 a001 43133785636/51841*5778^(17/18) 2971215157013107 a001 75283811239/90481*5778^(17/18) 2971215157047549 a001 591286729879/710647*5778^(17/18) 2971215157052574 a001 832040*5778^(17/18) 2971215157053307 a001 4052739537881/4870847*5778^(17/18) 2971215157053414 a001 3536736619241/4250681*5778^(17/18) 2971215157053480 a001 3278735159921/3940598*5778^(17/18) 2971215157053760 a001 2504730781961/3010349*5778^(17/18) 2971215157055680 a001 956722026041/1149851*5778^(17/18) 2971215157068788 a001 32951280099/24476*5778^(8/9) 2971215157068835 a001 182717648081/219602*5778^(17/18) 2971215157159005 a001 139583862445/167761*5778^(17/18) 2971215157777039 a001 53316291173/64079*5778^(17/18) 2971215160103328 a001 7677619973707/2584 2971215161381632 a001 139583862445/9349*5778^(11/18) 2971215161721362 a001 959702497236/323 2971215161957430 a001 3838809989249/1292 2971215161991873 a001 7677619978587/2584 2971215161996904 a001 959702497325/323 2971215161997678 a001 3838809989301/1292 2971215161998065 a001 7677619978603/2584 2971215162013108 a001 10182505537/12238*5778^(17/18) 2971215162103328 a001 7677619978875/2584 2971215162721362 a001 959702497559/323 2971215166325952 a001 86267571272/9349*5778^(2/3) 2971215166957430 a001 3838809995709/1292 2971215168940828 a001 86267571272/3571*3571^(10/17) 2971215171270272 a001 53316291173/9349*5778^(13/18) 2971215172228984 m001 ln(OneNinth)/LaplaceLimit^2*BesselJ(0,1)^2 2971215174390331 a001 1515744265389/2161*2207^(3/16) 2971215174627128 a001 86000486440/321*2207^(5/16) 2971215176214591 a001 32951280099/9349*5778^(7/9) 2971215179414207 r005 Re(z^2+c),c=-17/56+11/24*I,n=29 2971215179466688 a001 1201881744/341*1364^(14/15) 2971215181158911 a001 20365011074/9349*5778^(5/6) 2971215182646661 a001 139583862445/3571*3571^(9/17) 2971215183244070 a001 10610209857723/9349*2207^(1/8) 2971215184068058 a007 Real Root Of -156*x^4-523*x^3+48*x^2+410*x-766 2971215186103231 a001 12586269025/9349*5778^(8/9) 2971215191047551 a001 7778742049/9349*5778^(17/18) 2971215193797518 a007 Real Root Of 10*x^4+156*x^3+773*x^2+918*x-784 2971215195991873 a001 7677620066443/2584 2971215196352494 a001 225851433717/3571*3571^(8/17) 2971215199532466 a001 6557470319842/3571*1364^(1/15) 2971215205274136 r009 Re(z^3+c),c=-12/23+37/60*I,n=9 2971215208261834 h001 (3/4*exp(2)+1/4)/(7/12*exp(1)+4/11) 2971215210058327 a001 365435296162/3571*3571^(7/17) 2971215211312117 k007 concat of cont frac of 2971215211989912 m001 (-MasserGramainDelta+Totient)/(1+Kac) 2971215212129812 k006 concat of cont frac of 2971215212515308 a001 6557470319842/15127*2207^(1/4) 2971215212752105 a001 956722026041/5778*2207^(3/8) 2971215214051921 r009 Re(z^3+c),c=-33/70+18/37*I,n=62 2971215217001384 a001 1597/5778*45537549124^(16/17) 2971215217001384 a001 1597/5778*14662949395604^(16/21) 2971215217001384 a001 1597/5778*(1/2+1/2*5^(1/2))^48 2971215217001384 a001 1597/5778*192900153618^(8/9) 2971215217001384 a001 1597/5778*73681302247^(12/13) 2971215217001400 a001 2584/3571*(1/2+1/2*5^(1/2))^46 2971215217001400 a001 2584/3571*10749957122^(23/24) 2971215221369047 a001 6557470319842/9349*2207^(3/16) 2971215223764160 a001 591286729879/3571*3571^(6/17) 2971215230459581 a001 10610209857723/24476*2207^(1/4) 2971215233459766 b008 1/6+E+Sech[Pi] 2971215237469993 a001 956722026041/3571*3571^(5/17) 2971215241111111 k008 concat of cont frac of 2971215248074186 m001 GAMMA(5/6)*AlladiGrinstead/HardyLittlewoodC4 2971215250640286 a001 4052739537881/15127*2207^(5/16) 2971215250877083 a001 591286729879/5778*2207^(7/16) 2971215251175826 a001 1548008755920/3571*3571^(4/17) 2971215259100195 m001 (Chi(1)-LambertW(1))/(-arctan(1/2)+exp(1/Pi)) 2971215259494025 a001 4052739537881/9349*2207^(1/4) 2971215261730456 a001 3536736619241/13201*2207^(5/16) 2971215264881659 a001 2504730781961/3571*3571^(3/17) 2971215268584559 a001 3278735159921/12238*2207^(5/16) 2971215270172005 r005 Re(z^2+c),c=-21/82+25/42*I,n=54 2971215272005022 a001 12422651052253/4181 2971215273794204 a001 1836311903/3571*9349^(18/19) 2971215275583368 a001 2971215073/3571*9349^(17/19) 2971215277058993 r005 Re(z^2+c),c=-35/48+4/37*I,n=31 2971215277372533 a001 4807526976/3571*9349^(16/19) 2971215278414062 r009 Re(z^3+c),c=-17/58+3/25*I,n=8 2971215278587493 a001 4052739537881/3571*3571^(2/17) 2971215279161697 a001 7778742049/3571*9349^(15/19) 2971215280950861 a001 12586269025/3571*9349^(14/19) 2971215282644899 a001 3536736619241/1926*843^(1/14) 2971215282740025 a001 20365011074/3571*9349^(13/19) 2971215284529189 a001 32951280099/3571*9349^(12/19) 2971215285933381 a001 7778742049/1364*1364^(13/15) 2971215286318353 a001 53316291173/3571*9349^(11/19) 2971215288107518 a001 86267571272/3571*9349^(10/19) 2971215288765264 a001 2504730781961/15127*2207^(3/8) 2971215289002061 a001 182717648081/2889*2207^(1/2) 2971215289896682 a001 139583862445/3571*9349^(9/19) 2971215291685846 a001 225851433717/3571*9349^(8/19) 2971215292293326 a001 6557470319842/3571*3571^(1/17) 2971215293014543 a001 1597/15127*312119004989^(10/11) 2971215293014543 a001 1597/15127*(1/2+1/2*5^(1/2))^50 2971215293014543 a001 1597/15127*3461452808002^(5/6) 2971215293014561 a001 6765/3571*312119004989^(4/5) 2971215293014561 a001 6765/3571*(1/2+1/2*5^(1/2))^44 2971215293014561 a001 6765/3571*23725150497407^(11/16) 2971215293014561 a001 6765/3571*73681302247^(11/13) 2971215293014561 a001 6765/3571*10749957122^(11/12) 2971215293014561 a001 6765/3571*4106118243^(22/23) 2971215293475010 a001 365435296162/3571*9349^(7/19) 2971215295264174 a001 591286729879/3571*9349^(6/19) 2971215296753576 r005 Im(z^2+c),c=23/62+14/55*I,n=46 2971215297053338 a001 956722026041/3571*9349^(5/19) 2971215297619003 a001 2504730781961/9349*2207^(5/16) 2971215298752467 r005 Im(z^2+c),c=-41/34+12/85*I,n=64 2971215298842503 a001 1548008755920/3571*9349^(4/19) 2971215299855435 a001 6557470319842/39603*2207^(3/8) 2971215300631667 a001 2504730781961/3571*9349^(3/19) 2971215301039466 a001 16261461342589/5473 2971215301275659 a001 701408733/3571*24476^(20/21) 2971215301511834 a001 1134903170/3571*24476^(19/21) 2971215301512405 a007 Real Root Of -679*x^4+877*x^3-654*x^2+949*x+368 2971215301748009 a001 1836311903/3571*24476^(6/7) 2971215301984184 a001 2971215073/3571*24476^(17/21) 2971215302220359 a001 4807526976/3571*24476^(16/21) 2971215302420831 a001 4052739537881/3571*9349^(2/19) 2971215302456534 a001 7778742049/3571*24476^(5/7) 2971215302473469 a001 10610209857723/64079*2207^(3/8) 2971215302692709 a001 12586269025/3571*24476^(2/3) 2971215302928884 a001 20365011074/3571*24476^(13/21) 2971215303165059 a001 32951280099/3571*24476^(4/7) 2971215303401234 a001 53316291173/3571*24476^(11/21) 2971215303637409 a001 86267571272/3571*24476^(10/21) 2971215303873584 a001 139583862445/3571*24476^(3/7) 2971215304104714 a001 1597/39603*(1/2+1/2*5^(1/2))^52 2971215304104714 a001 1597/39603*23725150497407^(13/16) 2971215304104714 a001 1597/39603*505019158607^(13/14) 2971215304104732 a001 17711/3571*2537720636^(14/15) 2971215304104732 a001 17711/3571*17393796001^(6/7) 2971215304104732 a001 17711/3571*45537549124^(14/17) 2971215304104732 a001 17711/3571*817138163596^(14/19) 2971215304104732 a001 17711/3571*14662949395604^(2/3) 2971215304104732 a001 17711/3571*(1/2+1/2*5^(1/2))^42 2971215304104732 a001 17711/3571*192900153618^(7/9) 2971215304104732 a001 17711/3571*10749957122^(7/8) 2971215304104732 a001 17711/3571*4106118243^(21/23) 2971215304104732 a001 17711/3571*1568397607^(21/22) 2971215304109759 a001 225851433717/3571*24476^(8/21) 2971215304209995 a001 6557470319842/3571*9349^(1/19) 2971215304345934 a001 365435296162/3571*24476^(1/3) 2971215304582109 a001 591286729879/3571*24476^(2/7) 2971215304818284 a001 956722026041/3571*24476^(5/21) 2971215305054459 a001 1548008755920/3571*24476^(4/21) 2971215305275534 a001 85146117003281/28657 2971215305290634 a001 2504730781961/3571*24476^(1/7) 2971215305307014 a001 267914296/3571*64079^(22/23) 2971215305338475 a001 433494437/3571*64079^(21/23) 2971215305369936 a001 701408733/3571*64079^(20/23) 2971215305401397 a001 1134903170/3571*64079^(19/23) 2971215305432858 a001 1836311903/3571*64079^(18/23) 2971215305464320 a001 2971215073/3571*64079^(17/23) 2971215305495781 a001 4807526976/3571*64079^(16/23) 2971215305526809 a001 4052739537881/3571*24476^(2/21) 2971215305527242 a001 7778742049/3571*64079^(15/23) 2971215305558703 a001 12586269025/3571*64079^(14/23) 2971215305590164 a001 20365011074/3571*64079^(13/23) 2971215305621625 a001 32951280099/3571*64079^(12/23) 2971215305653087 a001 53316291173/3571*64079^(11/23) 2971215305684548 a001 86267571272/3571*64079^(10/23) 2971215305716009 a001 139583862445/3571*64079^(9/23) 2971215305722748 a001 1597/103682*14662949395604^(6/7) 2971215305722748 a001 1597/103682*(1/2+1/2*5^(1/2))^54 2971215305722766 a001 46368/3571*2537720636^(8/9) 2971215305722766 a001 46368/3571*312119004989^(8/11) 2971215305722766 a001 46368/3571*(1/2+1/2*5^(1/2))^40 2971215305722766 a001 46368/3571*23725150497407^(5/8) 2971215305722766 a001 46368/3571*73681302247^(10/13) 2971215305722766 a001 46368/3571*28143753123^(4/5) 2971215305722766 a001 46368/3571*10749957122^(5/6) 2971215305722766 a001 46368/3571*4106118243^(20/23) 2971215305722766 a001 46368/3571*1568397607^(10/11) 2971215305722766 a001 46368/3571*599074578^(20/21) 2971215305747470 a001 225851433717/3571*64079^(8/23) 2971215305762984 a001 6557470319842/3571*24476^(1/21) 2971215305778931 a001 365435296162/3571*64079^(7/23) 2971215305810392 a001 591286729879/3571*64079^(6/23) 2971215305841854 a001 956722026041/3571*64079^(5/23) 2971215305873315 a001 1548008755920/3571*64079^(4/23) 2971215305893568 a001 44583085664933/15005 2971215305904776 a001 2504730781961/3571*64079^(3/23) 2971215305914701 a001 701408733/3571*167761^(4/5) 2971215305935816 a001 7778742049/3571*167761^(3/5) 2971215305936237 a001 4052739537881/3571*64079^(2/23) 2971215305956930 a001 86267571272/3571*167761^(2/5) 2971215305958816 a001 1597/271443*14662949395604^(8/9) 2971215305958816 a001 1597/271443*(1/2+1/2*5^(1/2))^56 2971215305958834 a001 121393/3571*817138163596^(2/3) 2971215305958834 a001 121393/3571*(1/2+1/2*5^(1/2))^38 2971215305958834 a001 121393/3571*10749957122^(19/24) 2971215305958834 a001 121393/3571*4106118243^(19/23) 2971215305958834 a001 121393/3571*1568397607^(19/22) 2971215305958834 a001 121393/3571*599074578^(19/21) 2971215305958834 a001 121393/3571*228826127^(19/20) 2971215305967698 a001 6557470319842/3571*64079^(1/23) 2971215305978045 a001 956722026041/3571*167761^(1/5) 2971215305983738 a001 291800083985357/98209 2971215305985468 a001 102334155/3571*439204^(8/9) 2971215305987179 a001 433494437/3571*439204^(7/9) 2971215305988891 a001 1836311903/3571*439204^(2/3) 2971215305990602 a001 7778742049/3571*439204^(5/9) 2971215305992314 a001 32951280099/3571*439204^(4/9) 2971215305993258 a001 1597/710647*(1/2+1/2*5^(1/2))^58 2971215305993276 a001 317811/3571*141422324^(12/13) 2971215305993276 a001 317811/3571*2537720636^(4/5) 2971215305993276 a001 317811/3571*45537549124^(12/17) 2971215305993276 a001 317811/3571*14662949395604^(4/7) 2971215305993276 a001 317811/3571*(1/2+1/2*5^(1/2))^36 2971215305993276 a001 317811/3571*505019158607^(9/14) 2971215305993276 a001 317811/3571*192900153618^(2/3) 2971215305993276 a001 317811/3571*73681302247^(9/13) 2971215305993276 a001 317811/3571*10749957122^(3/4) 2971215305993276 a001 317811/3571*4106118243^(18/23) 2971215305993276 a001 317811/3571*1568397607^(9/11) 2971215305993276 a001 317811/3571*599074578^(6/7) 2971215305993276 a001 317811/3571*228826127^(9/10) 2971215305993276 a001 317811/3571*87403803^(18/19) 2971215305994025 a001 139583862445/3571*439204^(1/3) 2971215305995737 a001 591286729879/3571*439204^(2/9) 2971215305996894 a001 1527885075587477/514229 2971215305997448 a001 2504730781961/3571*439204^(1/9) 2971215305998283 a001 1597/1860498*14662949395604^(20/21) 2971215305998283 a001 1597/1860498*(1/2+1/2*5^(1/2))^60 2971215305998301 a001 832040/3571*45537549124^(2/3) 2971215305998301 a001 832040/3571*(1/2+1/2*5^(1/2))^34 2971215305998301 a001 832040/3571*10749957122^(17/24) 2971215305998301 a001 832040/3571*4106118243^(17/23) 2971215305998301 a001 832040/3571*1568397607^(17/22) 2971215305998301 a001 832040/3571*599074578^(17/21) 2971215305998301 a001 832040/3571*228826127^(17/20) 2971215305998301 a001 832040/3571*87403803^(17/19) 2971215305998304 a001 832040/3571*33385282^(17/18) 2971215305998813 a001 4000055058791717/1346269 2971215305999016 a001 1597/4870847*(1/2+1/2*5^(1/2))^62 2971215305999034 a001 2178309/3571*(1/2+1/2*5^(1/2))^32 2971215305999034 a001 2178309/3571*23725150497407^(1/2) 2971215305999034 a001 2178309/3571*73681302247^(8/13) 2971215305999034 a001 2178309/3571*10749957122^(2/3) 2971215305999034 a001 2178309/3571*4106118243^(16/23) 2971215305999034 a001 2178309/3571*1568397607^(8/11) 2971215305999034 a001 2178309/3571*599074578^(16/21) 2971215305999034 a001 2178309/3571*228826127^(4/5) 2971215305999034 a001 2178309/3571*87403803^(16/19) 2971215305999037 a001 2178309/3571*33385282^(8/9) 2971215305999051 a001 2178309/3571*12752043^(16/17) 2971215305999093 a001 5236140050393837/1762289 2971215305999098 a001 1597*7881196^(10/11) 2971215305999121 a001 24157817/3571*7881196^(9/11) 2971215305999123 a001 1597/12752043*(1/2+1/2*5^(1/2))^64 2971215305999125 a001 102334155/3571*7881196^(8/11) 2971215305999128 a001 267914296/3571*7881196^(2/3) 2971215305999129 a001 433494437/3571*7881196^(7/11) 2971215305999133 a001 1836311903/3571*7881196^(6/11) 2971215305999135 a001 1597*20633239^(6/7) 2971215305999138 a001 7778742049/3571*7881196^(5/11) 2971215305999141 a001 1597*141422324^(10/13) 2971215305999141 a001 1597*2537720636^(2/3) 2971215305999141 a001 1597*45537549124^(10/17) 2971215305999141 a001 1597*312119004989^(6/11) 2971215305999141 a001 1597*14662949395604^(10/21) 2971215305999141 a001 1597*(1/2+1/2*5^(1/2))^30 2971215305999141 a001 1597*192900153618^(5/9) 2971215305999141 a001 1597*28143753123^(3/5) 2971215305999141 a001 1597*10749957122^(5/8) 2971215305999141 a001 1597*4106118243^(15/23) 2971215305999141 a001 1597*1568397607^(15/22) 2971215305999141 a001 1597*599074578^(5/7) 2971215305999141 a001 1597*228826127^(3/4) 2971215305999141 a001 1597*87403803^(15/19) 2971215305999142 a001 32951280099/3571*7881196^(4/11) 2971215305999143 a001 1597*33385282^(5/6) 2971215305999143 a001 53316291173/3571*7881196^(1/3) 2971215305999146 a001 139583862445/3571*7881196^(3/11) 2971215305999151 a001 591286729879/3571*7881196^(2/11) 2971215305999151 a001 14930352/3571*20633239^(4/5) 2971215305999155 a001 63245986/3571*20633239^(5/7) 2971215305999155 a001 2504730781961/3571*7881196^(1/11) 2971215305999155 a001 433494437/3571*20633239^(3/5) 2971215305999155 a001 701408733/3571*20633239^(4/7) 2971215305999156 a001 7778742049/3571*20633239^(3/7) 2971215305999157 a001 12586269025/3571*20633239^(2/5) 2971215305999157 a001 14930352/3571*17393796001^(4/7) 2971215305999157 a001 14930352/3571*14662949395604^(4/9) 2971215305999157 a001 14930352/3571*(1/2+1/2*5^(1/2))^28 2971215305999157 a001 14930352/3571*505019158607^(1/2) 2971215305999157 a001 14930352/3571*73681302247^(7/13) 2971215305999157 a001 14930352/3571*10749957122^(7/12) 2971215305999157 a001 14930352/3571*4106118243^(14/23) 2971215305999157 a001 14930352/3571*1568397607^(7/11) 2971215305999157 a001 14930352/3571*599074578^(2/3) 2971215305999157 a001 14930352/3571*228826127^(7/10) 2971215305999157 a001 14930352/3571*87403803^(14/19) 2971215305999157 a001 1597*12752043^(15/17) 2971215305999157 a001 86267571272/3571*20633239^(2/7) 2971215305999158 a001 365435296162/3571*20633239^(1/5) 2971215305999158 a001 956722026041/3571*20633239^(1/7) 2971215305999159 a001 14930352/3571*33385282^(7/9) 2971215305999159 a001 39088169/3571*141422324^(2/3) 2971215305999159 a001 39088169/3571*(1/2+1/2*5^(1/2))^26 2971215305999159 a001 39088169/3571*73681302247^(1/2) 2971215305999159 a001 39088169/3571*10749957122^(13/24) 2971215305999159 a001 39088169/3571*4106118243^(13/23) 2971215305999159 a001 39088169/3571*1568397607^(13/22) 2971215305999159 a001 39088169/3571*599074578^(13/21) 2971215305999159 a001 39088169/3571*228826127^(13/20) 2971215305999159 a001 102334155/3571*141422324^(8/13) 2971215305999159 a001 39088169/3571*87403803^(13/19) 2971215305999159 a001 433494437/3571*141422324^(7/13) 2971215305999159 a001 1836311903/3571*141422324^(6/13) 2971215305999159 a001 7778742049/3571*141422324^(5/13) 2971215305999159 a001 102334155/3571*2537720636^(8/15) 2971215305999159 a001 102334155/3571*45537549124^(8/17) 2971215305999159 a001 102334155/3571*14662949395604^(8/21) 2971215305999159 a001 102334155/3571*(1/2+1/2*5^(1/2))^24 2971215305999159 a001 102334155/3571*192900153618^(4/9) 2971215305999159 a001 102334155/3571*73681302247^(6/13) 2971215305999159 a001 102334155/3571*10749957122^(1/2) 2971215305999159 a001 102334155/3571*4106118243^(12/23) 2971215305999159 a001 102334155/3571*1568397607^(6/11) 2971215305999159 a001 102334155/3571*599074578^(4/7) 2971215305999159 a001 20365011074/3571*141422324^(1/3) 2971215305999159 a001 32951280099/3571*141422324^(4/13) 2971215305999159 a001 139583862445/3571*141422324^(3/13) 2971215305999159 a001 591286729879/3571*141422324^(2/13) 2971215305999159 a001 102334155/3571*228826127^(3/5) 2971215305999159 a001 2504730781961/3571*141422324^(1/13) 2971215305999159 a001 267914296/3571*312119004989^(2/5) 2971215305999159 a001 267914296/3571*(1/2+1/2*5^(1/2))^22 2971215305999159 a001 267914296/3571*10749957122^(11/24) 2971215305999159 a001 267914296/3571*4106118243^(11/23) 2971215305999159 a001 267914296/3571*1568397607^(1/2) 2971215305999159 a001 267914296/3571*599074578^(11/21) 2971215305999159 a001 701408733/3571*2537720636^(4/9) 2971215305999159 a001 701408733/3571*(1/2+1/2*5^(1/2))^20 2971215305999159 a001 701408733/3571*23725150497407^(5/16) 2971215305999159 a001 701408733/3571*505019158607^(5/14) 2971215305999159 a001 701408733/3571*73681302247^(5/13) 2971215305999159 a001 701408733/3571*28143753123^(2/5) 2971215305999159 a001 701408733/3571*10749957122^(5/12) 2971215305999159 a001 701408733/3571*4106118243^(10/23) 2971215305999159 a001 701408733/3571*1568397607^(5/11) 2971215305999159 a001 1836311903/3571*2537720636^(2/5) 2971215305999159 a001 1836311903/3571*45537549124^(6/17) 2971215305999159 a001 1836311903/3571*14662949395604^(2/7) 2971215305999159 a001 1836311903/3571*(1/2+1/2*5^(1/2))^18 2971215305999159 a001 1836311903/3571*192900153618^(1/3) 2971215305999159 a001 1836311903/3571*10749957122^(3/8) 2971215305999159 a001 7778742049/3571*2537720636^(1/3) 2971215305999159 a001 32951280099/3571*2537720636^(4/15) 2971215305999159 a001 1836311903/3571*4106118243^(9/23) 2971215305999159 a001 86267571272/3571*2537720636^(2/9) 2971215305999159 a001 139583862445/3571*2537720636^(1/5) 2971215305999159 a001 591286729879/3571*2537720636^(2/15) 2971215305999159 a001 956722026041/3571*2537720636^(1/9) 2971215305999159 a001 2504730781961/3571*2537720636^(1/15) 2971215305999159 a001 4807526976/3571*(1/2+1/2*5^(1/2))^16 2971215305999159 a001 4807526976/3571*23725150497407^(1/4) 2971215305999159 a001 4807526976/3571*73681302247^(4/13) 2971215305999159 a001 4807526976/3571*10749957122^(1/3) 2971215305999159 a001 12586269025/3571*17393796001^(2/7) 2971215305999159 a001 12586269025/3571*14662949395604^(2/9) 2971215305999159 a001 12586269025/3571*(1/2+1/2*5^(1/2))^14 2971215305999159 a001 12586269025/3571*505019158607^(1/4) 2971215305999159 a001 365435296162/3571*17393796001^(1/7) 2971215305999159 a001 32951280099/3571*45537549124^(4/17) 2971215305999159 a001 32951280099/3571*817138163596^(4/19) 2971215305999159 a001 32951280099/3571*14662949395604^(4/21) 2971215305999159 a001 32951280099/3571*(1/2+1/2*5^(1/2))^12 2971215305999159 a001 32951280099/3571*192900153618^(2/9) 2971215305999159 a001 32951280099/3571*73681302247^(3/13) 2971215305999159 a001 139583862445/3571*45537549124^(3/17) 2971215305999159 a001 591286729879/3571*45537549124^(2/17) 2971215305999159 a001 2504730781961/3571*45537549124^(1/17) 2971215305999159 a001 86267571272/3571*(1/2+1/2*5^(1/2))^10 2971215305999159 a001 225851433717/3571*(1/2+1/2*5^(1/2))^8 2971215305999159 a001 225851433717/3571*23725150497407^(1/8) 2971215305999159 a001 1548008755920/3571*(1/2+1/2*5^(1/2))^4 2971215305999159 a001 10610209857723/3571 2971215305999159 a001 2504730781961/3571*(1/2+1/2*5^(1/2))^3 2971215305999159 a001 2504730781961/3571*192900153618^(1/18) 2971215305999159 a001 139583862445/3571*14662949395604^(1/7) 2971215305999159 a001 139583862445/3571*(1/2+1/2*5^(1/2))^9 2971215305999159 a001 1548008755920/3571*73681302247^(1/13) 2971215305999159 a001 139583862445/3571*192900153618^(1/6) 2971215305999159 a001 225851433717/3571*73681302247^(2/13) 2971215305999159 a001 53316291173/3571*312119004989^(1/5) 2971215305999159 a001 53316291173/3571*(1/2+1/2*5^(1/2))^11 2971215305999159 a001 956722026041/3571*28143753123^(1/10) 2971215305999159 a001 86267571272/3571*28143753123^(1/5) 2971215305999159 a001 4052739537881/3571*10749957122^(1/24) 2971215305999159 a001 20365011074/3571*(1/2+1/2*5^(1/2))^13 2971215305999159 a001 20365011074/3571*73681302247^(1/4) 2971215305999159 a001 2504730781961/3571*10749957122^(1/16) 2971215305999159 a001 1548008755920/3571*10749957122^(1/12) 2971215305999159 a001 591286729879/3571*10749957122^(1/8) 2971215305999159 a001 12586269025/3571*10749957122^(7/24) 2971215305999159 a001 225851433717/3571*10749957122^(1/6) 2971215305999159 a001 139583862445/3571*10749957122^(3/16) 2971215305999159 a001 86267571272/3571*10749957122^(5/24) 2971215305999159 a001 32951280099/3571*10749957122^(1/4) 2971215305999159 a001 4052739537881/3571*4106118243^(1/23) 2971215305999159 a001 7778742049/3571*45537549124^(5/17) 2971215305999159 a001 7778742049/3571*312119004989^(3/11) 2971215305999159 a001 7778742049/3571*14662949395604^(5/21) 2971215305999159 a001 7778742049/3571*(1/2+1/2*5^(1/2))^15 2971215305999159 a001 7778742049/3571*192900153618^(5/18) 2971215305999159 a001 7778742049/3571*28143753123^(3/10) 2971215305999159 a001 1548008755920/3571*4106118243^(2/23) 2971215305999159 a001 7778742049/3571*10749957122^(5/16) 2971215305999159 a001 591286729879/3571*4106118243^(3/23) 2971215305999159 a001 225851433717/3571*4106118243^(4/23) 2971215305999159 a001 4807526976/3571*4106118243^(8/23) 2971215305999159 a001 86267571272/3571*4106118243^(5/23) 2971215305999159 a001 32951280099/3571*4106118243^(6/23) 2971215305999159 a001 12586269025/3571*4106118243^(7/23) 2971215305999159 a001 4052739537881/3571*1568397607^(1/22) 2971215305999159 a001 2971215073/3571*45537549124^(1/3) 2971215305999159 a001 2971215073/3571*(1/2+1/2*5^(1/2))^17 2971215305999159 a001 1548008755920/3571*1568397607^(1/11) 2971215305999159 a001 591286729879/3571*1568397607^(3/22) 2971215305999159 a001 225851433717/3571*1568397607^(2/11) 2971215305999159 a001 86267571272/3571*1568397607^(5/22) 2971215305999159 a001 53316291173/3571*1568397607^(1/4) 2971215305999159 a001 1836311903/3571*1568397607^(9/22) 2971215305999159 a001 32951280099/3571*1568397607^(3/11) 2971215305999159 a001 12586269025/3571*1568397607^(7/22) 2971215305999159 a001 4052739537881/3571*599074578^(1/21) 2971215305999159 a001 4807526976/3571*1568397607^(4/11) 2971215305999159 a001 1134903170/3571*817138163596^(1/3) 2971215305999159 a001 1134903170/3571*(1/2+1/2*5^(1/2))^19 2971215305999159 a001 2504730781961/3571*599074578^(1/14) 2971215305999159 a001 1548008755920/3571*599074578^(2/21) 2971215305999159 a001 591286729879/3571*599074578^(1/7) 2971215305999159 a001 365435296162/3571*599074578^(1/6) 2971215305999159 a001 225851433717/3571*599074578^(4/21) 2971215305999159 a001 139583862445/3571*599074578^(3/14) 2971215305999159 a001 86267571272/3571*599074578^(5/21) 2971215305999159 a001 32951280099/3571*599074578^(2/7) 2971215305999159 a001 701408733/3571*599074578^(10/21) 2971215305999159 a001 12586269025/3571*599074578^(1/3) 2971215305999159 a001 4052739537881/3571*228826127^(1/20) 2971215305999159 a001 433494437/3571*2537720636^(7/15) 2971215305999159 a001 7778742049/3571*599074578^(5/14) 2971215305999159 a001 4807526976/3571*599074578^(8/21) 2971215305999159 a001 433494437/3571*17393796001^(3/7) 2971215305999159 a001 433494437/3571*45537549124^(7/17) 2971215305999159 a001 433494437/3571*14662949395604^(1/3) 2971215305999159 a001 433494437/3571*(1/2+1/2*5^(1/2))^21 2971215305999159 a001 433494437/3571*192900153618^(7/18) 2971215305999159 a001 433494437/3571*10749957122^(7/16) 2971215305999159 a001 1836311903/3571*599074578^(3/7) 2971215305999159 a001 1548008755920/3571*228826127^(1/10) 2971215305999159 a001 956722026041/3571*228826127^(1/8) 2971215305999159 a001 433494437/3571*599074578^(1/2) 2971215305999159 a001 591286729879/3571*228826127^(3/20) 2971215305999159 a001 225851433717/3571*228826127^(1/5) 2971215305999159 a001 86267571272/3571*228826127^(1/4) 2971215305999159 a001 32951280099/3571*228826127^(3/10) 2971215305999159 a001 12586269025/3571*228826127^(7/20) 2971215305999159 a001 4052739537881/3571*87403803^(1/19) 2971215305999159 a001 7778742049/3571*228826127^(3/8) 2971215305999159 a001 165580141/3571*(1/2+1/2*5^(1/2))^23 2971215305999159 a001 165580141/3571*4106118243^(1/2) 2971215305999159 a001 4807526976/3571*228826127^(2/5) 2971215305999159 a001 267914296/3571*228826127^(11/20) 2971215305999159 a001 1836311903/3571*228826127^(9/20) 2971215305999159 a001 701408733/3571*228826127^(1/2) 2971215305999159 a001 1548008755920/3571*87403803^(2/19) 2971215305999159 a001 591286729879/3571*87403803^(3/19) 2971215305999159 a001 225851433717/3571*87403803^(4/19) 2971215305999160 a001 86267571272/3571*87403803^(5/19) 2971215305999160 a001 32951280099/3571*87403803^(6/19) 2971215305999160 a001 12586269025/3571*87403803^(7/19) 2971215305999160 a001 4052739537881/3571*33385282^(1/18) 2971215305999160 a001 63245986/3571*2537720636^(5/9) 2971215305999160 a001 63245986/3571*312119004989^(5/11) 2971215305999160 a001 63245986/3571*(1/2+1/2*5^(1/2))^25 2971215305999160 a001 63245986/3571*3461452808002^(5/12) 2971215305999160 a001 63245986/3571*28143753123^(1/2) 2971215305999160 a001 4807526976/3571*87403803^(8/19) 2971215305999160 a001 63245986/3571*228826127^(5/8) 2971215305999160 a001 1836311903/3571*87403803^(9/19) 2971215305999160 a001 102334155/3571*87403803^(12/19) 2971215305999160 a001 1134903170/3571*87403803^(1/2) 2971215305999160 a001 701408733/3571*87403803^(10/19) 2971215305999160 a001 267914296/3571*87403803^(11/19) 2971215305999160 a001 2504730781961/3571*33385282^(1/12) 2971215305999160 a001 1548008755920/3571*33385282^(1/9) 2971215305999160 a001 591286729879/3571*33385282^(1/6) 2971215305999160 a001 225851433717/3571*33385282^(2/9) 2971215305999160 a001 139583862445/3571*33385282^(1/4) 2971215305999160 a001 86267571272/3571*33385282^(5/18) 2971215305999160 a001 32951280099/3571*33385282^(1/3) 2971215305999160 a001 24157817/3571*141422324^(9/13) 2971215305999160 a001 24157817/3571*2537720636^(3/5) 2971215305999160 a001 24157817/3571*45537549124^(9/17) 2971215305999160 a001 24157817/3571*817138163596^(9/19) 2971215305999160 a001 24157817/3571*14662949395604^(3/7) 2971215305999160 a001 24157817/3571*(1/2+1/2*5^(1/2))^27 2971215305999160 a001 24157817/3571*192900153618^(1/2) 2971215305999160 a001 24157817/3571*10749957122^(9/16) 2971215305999160 a001 24157817/3571*599074578^(9/14) 2971215305999160 a001 12586269025/3571*33385282^(7/18) 2971215305999160 a001 4052739537881/3571*12752043^(1/17) 2971215305999161 a001 7778742049/3571*33385282^(5/12) 2971215305999161 a001 4807526976/3571*33385282^(4/9) 2971215305999161 a001 1836311903/3571*33385282^(1/2) 2971215305999161 a001 701408733/3571*33385282^(5/9) 2971215305999161 a001 39088169/3571*33385282^(13/18) 2971215305999161 a001 433494437/3571*33385282^(7/12) 2971215305999161 a001 267914296/3571*33385282^(11/18) 2971215305999161 a001 102334155/3571*33385282^(2/3) 2971215305999162 a001 1548008755920/3571*12752043^(2/17) 2971215305999162 a001 24157817/3571*33385282^(3/4) 2971215305999163 a001 591286729879/3571*12752043^(3/17) 2971215305999164 a001 225851433717/3571*12752043^(4/17) 2971215305999165 a001 86267571272/3571*12752043^(5/17) 2971215305999166 a001 32951280099/3571*12752043^(6/17) 2971215305999166 a001 9227465/3571*(1/2+1/2*5^(1/2))^29 2971215305999166 a001 9227465/3571*1322157322203^(1/2) 2971215305999167 a001 12586269025/3571*12752043^(7/17) 2971215305999167 a001 4052739537881/3571*4870847^(1/16) 2971215305999168 a001 4807526976/3571*12752043^(8/17) 2971215305999169 a001 2971215073/3571*12752043^(1/2) 2971215305999169 a001 1836311903/3571*12752043^(9/17) 2971215305999170 a001 701408733/3571*12752043^(10/17) 2971215305999171 a001 267914296/3571*12752043^(11/17) 2971215305999172 a001 14930352/3571*12752043^(14/17) 2971215305999172 a001 102334155/3571*12752043^(12/17) 2971215305999173 a001 39088169/3571*12752043^(13/17) 2971215305999175 a001 1548008755920/3571*4870847^(1/8) 2971215305999183 a001 591286729879/3571*4870847^(3/16) 2971215305999189 a001 1597/7881196*(1/2+1/2*5^(1/2))^63 2971215305999191 a001 225851433717/3571*4870847^(1/4) 2971215305999199 a001 86267571272/3571*4870847^(5/16) 2971215305999206 a001 32951280099/3571*4870847^(3/8) 2971215305999207 a001 3524578/3571*(1/2+1/2*5^(1/2))^31 2971215305999207 a001 3524578/3571*9062201101803^(1/2) 2971215305999214 a001 12586269025/3571*4870847^(7/16) 2971215305999217 a001 4052739537881/3571*1860498^(1/15) 2971215305999222 a001 4807526976/3571*4870847^(1/2) 2971215305999230 a001 1836311903/3571*4870847^(9/16) 2971215305999238 a001 701408733/3571*4870847^(5/8) 2971215305999245 a001 2504730781961/3571*1860498^(1/10) 2971215305999245 a001 267914296/3571*4870847^(11/16) 2971215305999253 a001 102334155/3571*4870847^(3/4) 2971215305999259 a001 1597*4870847^(15/16) 2971215305999261 a001 39088169/3571*4870847^(13/16) 2971215305999266 a001 14930352/3571*4870847^(7/8) 2971215305999266 a001 6472225041995957/2178309 2971215305999274 a001 1548008755920/3571*1860498^(2/15) 2971215305999302 a001 956722026041/3571*1860498^(1/6) 2971215305999331 a001 591286729879/3571*1860498^(1/5) 2971215305999388 a001 225851433717/3571*1860498^(4/15) 2971215305999417 a001 139583862445/3571*1860498^(3/10) 2971215305999446 a001 86267571272/3571*1860498^(1/3) 2971215305999469 a001 1597/3010349*(1/2+1/2*5^(1/2))^61 2971215305999487 a001 1346269/3571*141422324^(11/13) 2971215305999487 a001 1346269/3571*2537720636^(11/15) 2971215305999487 a001 1346269/3571*45537549124^(11/17) 2971215305999487 a001 1346269/3571*312119004989^(3/5) 2971215305999487 a001 1346269/3571*14662949395604^(11/21) 2971215305999487 a001 1346269/3571*(1/2+1/2*5^(1/2))^33 2971215305999487 a001 1346269/3571*192900153618^(11/18) 2971215305999487 a001 1346269/3571*10749957122^(11/16) 2971215305999487 a001 1346269/3571*1568397607^(3/4) 2971215305999487 a001 1346269/3571*599074578^(11/14) 2971215305999490 a001 1346269/3571*33385282^(11/12) 2971215305999503 a001 32951280099/3571*1860498^(2/5) 2971215305999560 a001 12586269025/3571*1860498^(7/15) 2971215305999580 a001 4052739537881/3571*710647^(1/14) 2971215305999589 a001 7778742049/3571*1860498^(1/2) 2971215305999617 a001 4807526976/3571*1860498^(8/15) 2971215305999674 a001 1836311903/3571*1860498^(3/5) 2971215305999732 a001 701408733/3571*1860498^(2/3) 2971215305999760 a001 433494437/3571*1860498^(7/10) 2971215305999789 a001 267914296/3571*1860498^(11/15) 2971215305999846 a001 102334155/3571*1860498^(4/5) 2971215305999875 a001 63245986/3571*1860498^(5/6) 2971215305999903 a001 39088169/3571*1860498^(13/15) 2971215305999933 a001 24157817/3571*1860498^(9/10) 2971215305999958 a001 14930352/3571*1860498^(14/15) 2971215306000000 a001 1548008755920/3571*710647^(1/7) 2971215306000420 a001 591286729879/3571*710647^(3/14) 2971215306000630 a001 365435296162/3571*710647^(1/4) 2971215306000840 a001 225851433717/3571*710647^(2/7) 2971215306001261 a001 86267571272/3571*710647^(5/14) 2971215306001388 a001 1597/1149851*(1/2+1/2*5^(1/2))^59 2971215306001407 a001 514229/3571*2537720636^(7/9) 2971215306001407 a001 514229/3571*17393796001^(5/7) 2971215306001407 a001 514229/3571*312119004989^(7/11) 2971215306001407 a001 514229/3571*14662949395604^(5/9) 2971215306001407 a001 514229/3571*(1/2+1/2*5^(1/2))^35 2971215306001407 a001 514229/3571*505019158607^(5/8) 2971215306001407 a001 514229/3571*28143753123^(7/10) 2971215306001407 a001 514229/3571*599074578^(5/6) 2971215306001407 a001 514229/3571*228826127^(7/8) 2971215306001681 a001 32951280099/3571*710647^(3/7) 2971215306002101 a001 12586269025/3571*710647^(1/2) 2971215306002261 a001 4052739537881/3571*271443^(1/13) 2971215306002521 a001 4807526976/3571*710647^(4/7) 2971215306002942 a001 1836311903/3571*710647^(9/14) 2971215306003362 a001 701408733/3571*710647^(5/7) 2971215306003572 a001 433494437/3571*710647^(3/4) 2971215306003782 a001 267914296/3571*710647^(11/14) 2971215306004202 a001 102334155/3571*710647^(6/7) 2971215306004622 a001 39088169/3571*710647^(13/14) 2971215306005024 a001 944284907616763/317811 2971215306005363 a001 1548008755920/3571*271443^(2/13) 2971215306008465 a001 591286729879/3571*271443^(3/13) 2971215306010676 a001 6557470319842/3571*103682^(1/24) 2971215306011567 a001 225851433717/3571*271443^(4/13) 2971215306014544 a001 1597/439204*14662949395604^(19/21) 2971215306014544 a001 1597/439204*(1/2+1/2*5^(1/2))^57 2971215306014562 a001 196418/3571*(1/2+1/2*5^(1/2))^37 2971215306014669 a001 86267571272/3571*271443^(5/13) 2971215306017771 a001 32951280099/3571*271443^(6/13) 2971215306019322 a001 20365011074/3571*271443^(1/2) 2971215306020873 a001 12586269025/3571*271443^(7/13) 2971215306022192 a001 4052739537881/3571*103682^(1/12) 2971215306023975 a001 4807526976/3571*271443^(8/13) 2971215306027077 a001 1836311903/3571*271443^(9/13) 2971215306030179 a001 701408733/3571*271443^(10/13) 2971215306033281 a001 267914296/3571*271443^(11/13) 2971215306033709 a001 2504730781961/3571*103682^(1/8) 2971215306036383 a001 102334155/3571*271443^(12/13) 2971215306039466 a001 360684739646049/121393 2971215306045225 a001 1548008755920/3571*103682^(1/6) 2971215306056741 a001 956722026041/3571*103682^(5/24) 2971215306068258 a001 591286729879/3571*103682^(1/4) 2971215306079774 a001 365435296162/3571*103682^(7/24) 2971215306085270 a001 6557470319842/3571*39603^(1/22) 2971215306091290 a001 225851433717/3571*103682^(1/3) 2971215306102807 a001 139583862445/3571*103682^(3/8) 2971215306104714 a001 1597/167761*(1/2+1/2*5^(1/2))^55 2971215306104714 a001 1597/167761*3461452808002^(11/12) 2971215306104732 a001 75025/3571*2537720636^(13/15) 2971215306104732 a001 75025/3571*45537549124^(13/17) 2971215306104732 a001 75025/3571*14662949395604^(13/21) 2971215306104732 a001 75025/3571*(1/2+1/2*5^(1/2))^39 2971215306104732 a001 75025/3571*192900153618^(13/18) 2971215306104732 a001 75025/3571*73681302247^(3/4) 2971215306104732 a001 75025/3571*10749957122^(13/16) 2971215306104732 a001 75025/3571*599074578^(13/14) 2971215306114323 a001 86267571272/3571*103682^(5/12) 2971215306125840 a001 53316291173/3571*103682^(11/24) 2971215306137356 a001 32951280099/3571*103682^(1/2) 2971215306148872 a001 20365011074/3571*103682^(13/24) 2971215306160389 a001 12586269025/3571*103682^(7/12) 2971215306171380 a001 4052739537881/3571*39603^(1/11) 2971215306171905 a001 7778742049/3571*103682^(5/8) 2971215306183422 a001 4807526976/3571*103682^(2/3) 2971215306194938 a001 2971215073/3571*103682^(17/24) 2971215306206454 a001 1836311903/3571*103682^(3/4) 2971215306217971 a001 1134903170/3571*103682^(19/24) 2971215306229487 a001 701408733/3571*103682^(5/6) 2971215306241003 a001 433494437/3571*103682^(7/8) 2971215306252520 a001 267914296/3571*103682^(11/12) 2971215306257490 a001 2504730781961/3571*39603^(3/22) 2971215306264036 a001 165580141/3571*103682^(23/24) 2971215306275534 a001 17221163915173/5796 2971215306343601 a001 1548008755920/3571*39603^(2/11) 2971215306429711 a001 956722026041/3571*39603^(5/22) 2971215306515821 a001 591286729879/3571*39603^(3/11) 2971215306601932 a001 365435296162/3571*39603^(7/22) 2971215306648389 a001 6557470319842/3571*15127^(1/20) 2971215306688042 a001 225851433717/3571*39603^(4/11) 2971215306709537 a001 4052739537881/24476*2207^(3/8) 2971215306722748 a001 1597/64079*(1/2+1/2*5^(1/2))^53 2971215306722766 a001 28657/3571*(1/2+1/2*5^(1/2))^41 2971215306774152 a001 139583862445/3571*39603^(9/22) 2971215306860263 a001 86267571272/3571*39603^(5/11) 2971215306946373 a001 53316291173/3571*39603^(1/2) 2971215307032483 a001 32951280099/3571*39603^(6/11) 2971215307118594 a001 20365011074/3571*39603^(13/22) 2971215307204704 a001 12586269025/3571*39603^(7/11) 2971215307290814 a001 7778742049/3571*39603^(15/22) 2971215307297619 a001 4052739537881/3571*15127^(1/10) 2971215307376925 a001 4807526976/3571*39603^(8/11) 2971215307463035 a001 2971215073/3571*39603^(17/22) 2971215307549145 a001 1836311903/3571*39603^(9/11) 2971215307635256 a001 1134903170/3571*39603^(19/22) 2971215307721366 a001 701408733/3571*39603^(10/11) 2971215307807476 a001 433494437/3571*39603^(21/22) 2971215307893568 a001 52623194318103/17711 2971215307946849 a001 2504730781961/3571*15127^(3/20) 2971215308596079 a001 1548008755920/3571*15127^(1/5) 2971215308915163 a001 4/233*34^(7/45) 2971215309245309 a001 956722026041/3571*15127^(1/4) 2971215309894539 a001 591286729879/3571*15127^(3/10) 2971215310543769 a001 365435296162/3571*15127^(7/20) 2971215310943479 a001 6557470319842/3571*5778^(1/18) 2971215310958816 a001 1597/24476*817138163596^(17/19) 2971215310958816 a001 1597/24476*14662949395604^(17/21) 2971215310958816 a001 1597/24476*(1/2+1/2*5^(1/2))^51 2971215310958816 a001 1597/24476*192900153618^(17/18) 2971215310958835 a001 10946/3571*(1/2+1/2*5^(1/2))^43 2971215311192999 a001 225851433717/3571*15127^(2/5) 2971215311842229 a001 139583862445/3571*15127^(9/20) 2971215312491458 a001 86267571272/3571*15127^(1/2) 2971215313140688 a001 53316291173/3571*15127^(11/20) 2971215313789918 a001 32951280099/3571*15127^(3/5) 2971215314439148 a001 20365011074/3571*15127^(13/20) 2971215315088378 a001 12586269025/3571*15127^(7/10) 2971215315737608 a001 7778742049/3571*15127^(3/4) 2971215315887799 a001 4052739537881/3571*5778^(1/9) 2971215316386838 a001 4807526976/3571*15127^(4/5) 2971215317036068 a001 2971215073/3571*15127^(17/20) 2971215317685298 a001 1836311903/3571*15127^(9/10) 2971215318334528 a001 1134903170/3571*15127^(19/20) 2971215318983739 a001 365459484235/123 2971215320832119 a001 2504730781961/3571*5778^(1/6) 2971215321993999 m007 (-4*gamma-12*ln(2)+2*Pi+2/5)/(-gamma-3/4) 2971215325776439 a001 1548008755920/3571*5778^(2/9) 2971215325865363 a007 Real Root Of 889*x^4+137*x^3+943*x^2-863*x-343 2971215326890242 a001 1548008755920/15127*2207^(7/16) 2971215327127039 a001 75283811239/1926*2207^(9/16) 2971215329712030 m005 (1/3*3^(1/2)-1/11)/(5/7*3^(1/2)+2/5) 2971215330720759 a001 956722026041/3571*5778^(5/18) 2971215335665079 a001 591286729879/3571*5778^(1/3) 2971215335743982 a001 1548008755920/9349*2207^(3/8) 2971215337980413 a001 4052739537881/39603*2207^(7/16) 2971215338152714 a007 Real Root Of 179*x^4-963*x^3+530*x^2+89*x-47 2971215339508034 a007 Real Root Of 914*x^4-389*x^3+203*x^2-642*x-226 2971215339598447 a001 225749145909/2206*2207^(7/16) 2971215339993261 a001 1597/9349*14662949395604^(7/9) 2971215339993261 a001 1597/9349*(1/2+1/2*5^(1/2))^49 2971215339993261 a001 1597/9349*505019158607^(7/8) 2971215339993279 a001 4181/3571*45537549124^(15/17) 2971215339993279 a001 4181/3571*312119004989^(9/11) 2971215339993279 a001 4181/3571*14662949395604^(5/7) 2971215339993279 a001 4181/3571*(1/2+1/2*5^(1/2))^45 2971215339993279 a001 4181/3571*192900153618^(5/6) 2971215339993279 a001 4181/3571*28143753123^(9/10) 2971215339993279 a001 4181/3571*10749957122^(15/16) 2971215340598448 a001 6557470319842/64079*2207^(7/16) 2971215340609399 a001 365435296162/3571*5778^(7/18) 2971215344124138 a001 6557470319842/3571*2207^(1/16) 2971215344834516 a001 2504730781961/24476*2207^(7/16) 2971215345553719 a001 225851433717/3571*5778^(4/9) 2971215350498039 a001 139583862445/3571*5778^(1/2) 2971215351812366 q001 2787/938 2971215355442359 a001 86267571272/3571*5778^(5/9) 2971215358928335 a001 1548008755920/2207*843^(3/14) 2971215360386679 a001 53316291173/3571*5778^(11/18) 2971215361363802 r005 Im(z^2+c),c=-19/18+5/152*I,n=16 2971215363988164 r008 a(0)=3,K{-n^6,-32+7*n^3+52*n^2+8*n} 2971215364024501 r009 Im(z^3+c),c=-7/15+5/32*I,n=38 2971215365015222 a001 956722026041/15127*2207^(1/2) 2971215365252018 a001 139583862445/5778*2207^(5/8) 2971215365330999 a001 32951280099/3571*5778^(2/3) 2971215366406816 m001 GAMMA(3/4)^2/FransenRobinson/exp(sin(Pi/5)) 2971215370275319 a001 20365011074/3571*5778^(13/18) 2971215373868961 a001 956722026041/9349*2207^(7/16) 2971215374941956 r009 Re(z^3+c),c=-37/122+5/34*I,n=12 2971215375219639 a001 12586269025/3571*5778^(7/9) 2971215375847435 r009 Re(z^3+c),c=-37/122+5/34*I,n=16 2971215376105393 a001 2504730781961/39603*2207^(1/2) 2971215377723427 a001 3278735159921/51841*2207^(1/2) 2971215378105393 a001 10610209857723/167761*2207^(1/2) 2971215378723427 a001 4052739537881/64079*2207^(1/2) 2971215379624644 m001 2^(1/3)+(3^(1/3))^Porter 2971215380163959 a001 7778742049/3571*5778^(5/6) 2971215382249118 a001 4052739537881/3571*2207^(1/8) 2971215382959495 a001 387002188980/6119*2207^(1/2) 2971215385108279 a001 4807526976/3571*5778^(8/9) 2971215390052599 a001 2971215073/3571*5778^(17/18) 2971215392400077 a001 1144206275/124*1364^(4/5) 2971215394996904 a001 959702572584/323 2971215399733313 a001 843/55*13^(8/31) 2971215402250975 r005 Im(z^2+c),c=-11/56+27/62*I,n=19 2971215403140201 a001 591286729879/15127*2207^(9/16) 2971215403376998 a001 43133785636/2889*2207^(11/16) 2971215411993940 a001 591286729879/9349*2207^(1/2) 2971215414130381 r005 Im(z^2+c),c=-43/98+14/27*I,n=42 2971215414230372 a001 516002918640/13201*2207^(9/16) 2971215415848406 a001 4052739537881/103682*2207^(9/16) 2971215416084474 a001 3536736619241/90481*2207^(9/16) 2971215416230372 a001 6557470319842/167761*2207^(9/16) 2971215416489751 r005 Im(z^2+c),c=-27/94+36/61*I,n=38 2971215416848407 a001 2504730781961/64079*2207^(9/16) 2971215420374097 a001 2504730781961/3571*2207^(3/16) 2971215420833875 m001 (-Pi^(1/2)+Cahen)/(2^(1/3)-GAMMA(13/24)) 2971215421084475 a001 956722026041/24476*2207^(9/16) 2971215421383101 a001 271443/377*89^(6/19) 2971215425812992 r009 Re(z^3+c),c=-37/122+5/34*I,n=15 2971215426765905 l006 ln(64/1249) 2971215432152697 r002 64th iterates of z^2 + 2971215441265181 a001 365435296162/15127*2207^(5/8) 2971215441501978 a001 53316291173/5778*2207^(3/4) 2971215444736533 a007 Real Root Of -16*x^4-53*x^3-558*x^2+589*x+223 2971215450118921 a001 365435296162/9349*2207^(9/16) 2971215452355352 a001 956722026041/39603*2207^(5/8) 2971215453973387 a001 2504730781961/103682*2207^(5/8) 2971215454209455 a001 6557470319842/271443*2207^(5/8) 2971215454265183 a001 10610209857723/439204*2207^(5/8) 2971215454355353 a001 4052739537881/167761*2207^(5/8) 2971215454973387 a001 1548008755920/64079*2207^(5/8) 2971215458499078 a001 1548008755920/3571*2207^(1/4) 2971215459209455 a001 591286729879/24476*2207^(5/8) 2971215460733042 m001 GAMMA(7/24)^GAMMA(13/24)/(GAMMA(7/24)^exp(1)) 2971215461809125 k002 Champernowne real with 51*n^2-111*n+89 2971215463798233 a007 Real Root Of 386*x^4+947*x^3-697*x^2+2*x+916 2971215468857140 k003 Champernowne real with 9/2*n^3+1/2*n^2-26*n+23 2971215479390162 a001 32264490531/2161*2207^(11/16) 2971215479626959 a001 10983760033/1926*2207^(13/16) 2971215481073570 m005 (1/4*Catalan+1/6)/(4*Pi+3/4) 2971215488243901 a001 225851433717/9349*2207^(5/8) 2971215490480333 a001 591286729879/39603*2207^(11/16) 2971215492098367 a001 774004377960/51841*2207^(11/16) 2971215492334435 a001 4052739537881/271443*2207^(11/16) 2971215492368877 a001 1515744265389/101521*2207^(11/16) 2971215492390164 a001 3278735159921/219602*2207^(11/16) 2971215492480333 a001 2504730781961/167761*2207^(11/16) 2971215493098368 a001 956722026041/64079*2207^(11/16) 2971215494966899 r005 Im(z^2+c),c=-29/54+3/53*I,n=18 2971215496624058 a001 956722026041/3571*2207^(5/16) 2971215497334436 a001 182717648081/12238*2207^(11/16) 2971215498866778 a001 10182505537/682*1364^(11/15) 2971215503256187 r008 a(0)=3,K{-n^6,-10+3*n+21*n^2+21*n^3} 2971215507446889 r009 Re(z^3+c),c=-37/122+5/34*I,n=17 2971215517220071 r005 Re(z^2+c),c=-19/50+6/41*I,n=4 2971215517515143 a001 139583862445/15127*2207^(3/4) 2971215517751940 a001 10182505537/2889*2207^(7/8) 2971215521708730 m001 GAMMA(3/4)/(KomornikLoreti-exp(1/Pi)) 2971215526368882 a001 139583862445/9349*2207^(11/16) 2971215528605314 a001 365435296162/39603*2207^(3/4) 2971215530223349 a001 956722026041/103682*2207^(3/4) 2971215530459417 a001 2504730781961/271443*2207^(3/4) 2971215530493858 a001 6557470319842/710647*2207^(3/4) 2971215530501989 a001 10610209857723/1149851*2207^(3/4) 2971215530515145 a001 4052739537881/439204*2207^(3/4) 2971215530605315 a001 140728068720/15251*2207^(3/4) 2971215531223349 a001 591286729879/64079*2207^(3/4) 2971215534749040 a001 591286729879/3571*2207^(3/8) 2971215535459417 a001 7787980473/844*2207^(3/4) 2971215538998319 a001 1597/3571*(1/2+1/2*5^(1/2))^47 2971215540525271 m004 5+5*Pi*Csc[Sqrt[5]*Pi]+(5*Tan[Sqrt[5]*Pi])/Pi 2971215542292180 r009 Re(z^3+c),c=-37/122+5/34*I,n=21 2971215542773170 r009 Re(z^3+c),c=-37/122+5/34*I,n=22 2971215543194876 r009 Re(z^3+c),c=-37/122+5/34*I,n=23 2971215543197919 r009 Re(z^3+c),c=-37/122+5/34*I,n=27 2971215543199058 r009 Re(z^3+c),c=-37/122+5/34*I,n=26 2971215543200514 r009 Re(z^3+c),c=-37/122+5/34*I,n=28 2971215543201228 r009 Re(z^3+c),c=-37/122+5/34*I,n=32 2971215543201237 r009 Re(z^3+c),c=-37/122+5/34*I,n=33 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=34 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=38 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=37 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=39 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=43 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=44 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=45 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=49 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=48 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=50 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=54 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=55 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=56 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=60 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=59 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=61 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=64 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=63 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=62 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=58 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=57 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=53 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=52 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=51 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=47 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=46 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=42 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=41 2971215543201245 r009 Re(z^3+c),c=-37/122+5/34*I,n=40 2971215543201246 r009 Re(z^3+c),c=-37/122+5/34*I,n=36 2971215543201247 r009 Re(z^3+c),c=-37/122+5/34*I,n=35 2971215543201267 r009 Re(z^3+c),c=-37/122+5/34*I,n=31 2971215543201421 r009 Re(z^3+c),c=-37/122+5/34*I,n=30 2971215543201482 r009 Re(z^3+c),c=-37/122+5/34*I,n=29 2971215543220164 r009 Re(z^3+c),c=-37/122+5/34*I,n=25 2971215543259089 r009 Re(z^3+c),c=-37/122+5/34*I,n=24 2971215543905251 r008 a(0)=3,K{-n^6,-2+n+10*n^2+26*n^3} 2971215544236852 r009 Re(z^3+c),c=-37/122+5/34*I,n=20 2971215552015106 r009 Re(z^3+c),c=-37/122+5/34*I,n=19 2971215555447032 r009 Re(z^3+c),c=-37/122+5/34*I,n=18 2971215555640124 a001 86267571272/15127*2207^(13/16) 2971215555876921 a001 12586269025/5778*2207^(15/16) 2971215564493864 a001 86267571272/9349*2207^(3/4) 2971215566730296 a001 75283811239/13201*2207^(13/16) 2971215568348330 a001 591286729879/103682*2207^(13/16) 2971215568563650 m001 (ln(Pi)+FeigenbaumKappa)/sin(1) 2971215568584398 a001 516002918640/90481*2207^(13/16) 2971215568618840 a001 4052739537881/710647*2207^(13/16) 2971215568623865 a001 3536736619241/620166*2207^(13/16) 2971215568626971 a001 6557470319842/1149851*2207^(13/16) 2971215568640126 a001 2504730781961/439204*2207^(13/16) 2971215568730296 a001 956722026041/167761*2207^(13/16) 2971215569348330 a001 365435296162/64079*2207^(13/16) 2971215572874021 a001 365435296162/3571*2207^(7/16) 2971215573584399 a001 139583862445/24476*2207^(13/16) 2971215575206706 r008 a(0)=3,K{-n^6,-24+35*n^3-28*n^2+52*n} 2971215577053829 r008 a(0)=3,K{-n^6,2+5*n-3*n^2+31*n^3} 2971215581287579 a001 3278735159921/2889*843^(1/7) 2971215592338726 m001 gamma(2)+HardyLittlewoodC5^PisotVijayaraghavan 2971215593446913 m001 FeigenbaumKappa^QuadraticClass/BesselJ(1,1) 2971215593487703 r002 32th iterates of z^2 + 2971215593765106 a001 53316291173/15127*2207^(7/8) 2971215594002026 a001 2932589791280/987 2971215598337888 m005 (1/3*2^(1/2)-2/3)/(-17/66+9/22*5^(1/2)) 2971215602618846 a001 53316291173/9349*2207^(13/16) 2971215604641841 a001 6557470319842/3571*843^(1/14) 2971215604855278 a001 139583862445/39603*2207^(7/8) 2971215605333482 a001 32951280099/1364*1364^(2/3) 2971215606473313 a001 182717648081/51841*2207^(7/8) 2971215606709381 a001 956722026041/271443*2207^(7/8) 2971215606743822 a001 2504730781961/710647*2207^(7/8) 2971215606748847 a001 3278735159921/930249*2207^(7/8) 2971215606750034 a001 10610209857723/3010349*2207^(7/8) 2971215606751953 a001 4052739537881/1149851*2207^(7/8) 2971215606765109 a001 387002188980/109801*2207^(7/8) 2971215606855279 a001 591286729879/167761*2207^(7/8) 2971215607473313 a001 225851433717/64079*2207^(7/8) 2971215610342666 m001 1/ln(FeigenbaumKappa)/GolombDickman/sqrt(Pi) 2971215610999004 a001 225851433717/3571*2207^(1/2) 2971215611709381 a001 21566892818/6119*2207^(7/8) 2971215620548767 s002 sum(A109328[n]/(16^n-1),n=1..infinity) 2971215631890089 a001 32951280099/15127*2207^(15/16) 2971215632861836 m002 E^Pi+4*Log[Pi]+2*Tanh[Pi] 2971215634420980 r005 Im(z^2+c),c=-13/29+29/59*I,n=9 2971215640743829 a001 32951280099/9349*2207^(7/8) 2971215642980261 a001 86267571272/39603*2207^(15/16) 2971215644598295 a001 225851433717/103682*2207^(15/16) 2971215644834363 a001 591286729879/271443*2207^(15/16) 2971215644868805 a001 1548008755920/710647*2207^(15/16) 2971215644873830 a001 4052739537881/1860498*2207^(15/16) 2971215644874563 a001 2178309*2207^(15/16) 2971215644875016 a001 6557470319842/3010349*2207^(15/16) 2971215644876936 a001 2504730781961/1149851*2207^(15/16) 2971215644890091 a001 956722026041/439204*2207^(15/16) 2971215644980261 a001 365435296162/167761*2207^(15/16) 2971215645598295 a001 139583862445/64079*2207^(15/16) 2971215649123986 a001 139583862445/3571*2207^(9/16) 2971215649834364 a001 53316291173/24476*2207^(15/16) 2971215654263039 r008 a(0)=3,K{-n^6,22+43*n^3-29*n^2-n} 2971215657571022 a001 956722026041/2207*843^(2/7) 2971215666031443 r002 42th iterates of z^2 + 2971215668146682 a001 956722026041/843*322^(1/6) 2971215670015197 a001 977529955435/329 2971215675557270 h001 (-8*exp(-1)-7)/(-9*exp(1)-9) 2971215677580698 r008 a(0)=3,K{-n^6,12+28*n-55*n^2+50*n^3} 2971215678868812 a001 20365011074/9349*2207^(15/16) 2971215678984119 r008 a(0)=3,K{-n^6,14+50*n^3-54*n^2+25*n} 2971215679526860 r005 Re(z^2+c),c=-45/122+9/44*I,n=17 2971215681105369 a001 2932589877251/987 2971215682959473 a001 2932589879081/987 2971215682993920 a001 977529959705/329 2971215682998986 a001 2932589879120/987 2971215682999797 a001 14662949395604/987*8^(1/3) 2971215682999797 a001 2/987*(1/2+1/2*5^(1/2))^63 2971215683002026 a001 2932589879123/987 2971215683015197 a001 977529959712/329 2971215683105369 a001 2932589879225/987 2971215687248970 a001 86267571272/3571*2207^(5/8) 2971215687959473 a001 2932589884016/987 2971215698025737 r008 a(0)=3,K{-n^6,42-17*n-40*n^2+50*n^3} 2971215702197813 m006 (1/4*Pi-3)/(4/5/Pi-1) 2971215704279471 a001 10610209857723/9349*843^(1/7) 2971215707155241 r008 a(0)=3,K{-n^6,20+56*n^3-69*n^2+28*n} 2971215711800190 a001 53316291173/1364*1364^(3/5) 2971215716993920 a001 977529970891/329 2971215725373953 a001 53316291173/3571*2207^(11/16) 2971215730637263 r005 Re(z^2+c),c=-47/122+1/50*I,n=24 2971215732773751 a007 Real Root Of 40*x^4+79*x^3+22*x^2+262*x-461 2971215735264322 m001 (-Magata+Stephens)/(LambertW(1)-Psi(1,1/3)) 2971215740059866 h003 exp(Pi*(2^(10/7)+2^(2/5))) 2971215740059866 h008 exp(Pi*(2^(10/7)+2^(2/5))) 2971215743203370 m001 (Psi(2,1/3)-Zeta(1,-1))/(Landau+Mills) 2971215745805397 a007 Real Root Of 344*x^4+881*x^3-588*x^2-768*x-792 2971215753903361 m001 1/Sierpinski*RenyiParking/exp(GAMMA(1/12))^2 2971215754433495 m001 (GaussAGM+Trott2nd)/(GAMMA(5/6)+Pi^(1/2)) 2971215763498938 a001 32951280099/3571*2207^(3/4) 2971215768396395 m005 (7/18+1/6*5^(1/2))/(7/11*exp(1)+5/6) 2971215771085563 r002 5th iterates of z^2 + 2971215793276820 r005 Im(z^2+c),c=-6/17+31/63*I,n=43 2971215801623922 a001 20365011074/3571*2207^(13/16) 2971215816667717 m001 Zeta(1/2)/(5^(1/2)+2/3*Pi*3^(1/2)/GAMMA(2/3)) 2971215816667717 m001 Zeta(1/2)/(sqrt(5)+GAMMA(1/3)) 2971215818266901 a001 21566892818/341*1364^(8/15) 2971215823225393 r005 Im(z^2+c),c=-11/42+2/47*I,n=17 2971215823359486 r009 Re(z^3+c),c=-29/62+13/27*I,n=53 2971215826023107 m001 Psi(2,1/3)/(OneNinth-ReciprocalLucas) 2971215827998850 a001 2504730781961/1364*521^(1/13) 2971215834819473 m001 (-FeigenbaumB+Niven)/(exp(1)+Ei(1,1)) 2971215839748908 a001 12586269025/3571*2207^(7/8) 2971215841960494 m005 (5*exp(1)+1/2)/(3*2^(1/2)+1/2) 2971215848453866 m001 (-Backhouse+Magata)/(1+2*Pi/GAMMA(5/6)) 2971215849586730 m001 (ln(2)-AlladiGrinstead)/(Cahen-MertensB2) 2971215853649863 r002 3th iterates of z^2 + 2971215856073027 m001 ln(GAMMA(1/3))/FeigenbaumD*cos(Pi/5) 2971215858822847 a001 3571/21*2584^(23/35) 2971215870134039 h001 (4/5*exp(2)+2/7)/(7/12*exp(1)+1/2) 2971215872145077 a007 Real Root Of 5*x^4-647*x^3+612*x^2+91*x-44 2971215877873893 a001 7778742049/3571*2207^(15/16) 2971215879930288 a001 4052739537881/5778*843^(3/14) 2971215888158299 a007 Real Root Of -836*x^4-904*x^3-75*x^2+877*x+250 2971215893124043 a007 Real Root Of 224*x^4+772*x^3+178*x^2-669*x-767 2971215903284553 a001 4052739537881/3571*843^(1/7) 2971215915001668 a001 4807526976/521*521^(12/13) 2971215915998986 a001 2932590109091/987 2971215919978490 p003 LerchPhi(1/16,2,225/121) 2971215923313498 a007 Real Root Of -974*x^4-579*x^3-549*x^2+337*x+141 2971215924733617 a001 139583862445/1364*1364^(7/15) 2971215926176490 m001 GAMMA(19/24)-Pi^(1/2)+FeigenbaumMu 2971215931549277 m001 1/GolombDickman*GlaisherKinkelin/ln(Zeta(7))^2 2971215935663503 g005 GAMMA(5/7)/GAMMA(1/11)/GAMMA(7/10)/GAMMA(2/7) 2971215940594015 a007 Real Root Of 504*x^4+226*x^3+914*x^2-691*x-284 2971215941948197 m001 (exp(-1/2*Pi)-Bloch)/(MadelungNaCl-Thue) 2971215954031113 a007 Real Root Of 316*x^4+840*x^3-555*x^2-892*x-345 2971215955943464 a001 1515744265389/2161*843^(3/14) 2971215956213739 a001 591286729879/2207*843^(5/14) 2971215960720791 b008 -27/4+Pi^Pi 2971215972510924 l006 ln(2089/2152) 2971215979938572 m005 (1/2*Zeta(3)-5/6)/(9/10*Zeta(3)-3/10) 2971215981938172 r005 Im(z^2+c),c=-53/74+11/48*I,n=34 2971215984923551 p001 sum((-1)^n/(417*n+311)/(5^n),n=0..infinity) 2971216002922193 a001 6557470319842/9349*843^(3/14) 2971216031200336 a001 225851433717/1364*1364^(2/5) 2971216039298840 r005 Re(z^2+c),c=-33/106+32/59*I,n=30 2971216045665465 r005 Im(z^2+c),c=-23/110+15/31*I,n=11 2971216059406774 r005 Im(z^2+c),c=-85/126+15/59*I,n=16 2971216059999999 a001 610/2207*45537549124^(16/17) 2971216059999999 a001 610/2207*14662949395604^(16/21) 2971216059999999 a001 610/2207*(1/2+1/2*5^(1/2))^48 2971216059999999 a001 610/2207*192900153618^(8/9) 2971216059999999 a001 610/2207*73681302247^(12/13) 2971216060000733 a001 987/1364*(1/2+1/2*5^(1/2))^46 2971216060000733 a001 987/1364*10749957122^(23/24) 2971216078581710 m001 (Robbin+ZetaQ(2))/(3^(1/3)+cos(1/12*Pi)) 2971216079940040 l006 ln(7038/9473) 2971216091465851 r005 Im(z^2+c),c=13/126+17/59*I,n=24 2971216105708074 r005 Re(z^2+c),c=1/27+30/49*I,n=42 2971216106228491 a007 Real Root Of 414*x^4-934*x^3+425*x^2-780*x-297 2971216114936091 r005 Im(z^2+c),c=-39/64+20/43*I,n=16 2971216115110802 a007 Real Root Of -146*x^4+769*x^3+199*x^2+987*x+297 2971216117110111 k006 concat of cont frac of 2971216131238487 r005 Re(z^2+c),c=-9/28+25/62*I,n=48 2971216137667060 a001 182717648081/682*1364^(1/3) 2971216143544454 a007 Real Root Of -717*x^4+878*x^3+935*x^2+377*x-212 2971216148096119 r005 Re(z^2+c),c=-17/90+37/64*I,n=25 2971216158618715 p004 log(18059/13417) 2971216168043061 r009 Re(z^3+c),c=-25/52+27/59*I,n=50 2971216169614962 m005 (1/3*5^(1/2)-2/7)/(10/11*Catalan+5/7) 2971216178573028 a001 2504730781961/5778*843^(2/7) 2971216181274266 m001 exp(GAMMA(1/12))^2*FeigenbaumD/Zeta(1,2)^2 2971216201927296 a001 2504730781961/3571*843^(3/14) 2971216208215370 a008 Real Root of x^3+8*x-50 2971216210531605 a003 cos(Pi*28/89)-cos(Pi*18/43) 2971216211954558 m001 (3^(1/2)+Kolakoski)/(-Thue+ZetaQ(3)) 2971216214589894 r005 Re(z^2+c),c=-23/62+9/47*I,n=20 2971216221111541 k006 concat of cont frac of 2971216224911573 l005 416/71/(exp(208/71)+1) 2971216237113613 m001 (Psi(2,1/3)+BesselK(0,1))/(Artin+Porter) 2971216239581102 r008 a(0)=3,K{-n^6,-35+14*n+48*n^2+8*n^3} 2971216239920456 m001 1/TreeGrowth2nd/exp(HardHexagonsEntropy)/Ei(1) 2971216240337025 r005 Im(z^2+c),c=-23/54+31/64*I,n=18 2971216241131214 k006 concat of cont frac of 2971216244133787 a001 591286729879/1364*1364^(4/15) 2971216245425506 l006 ln(6379/8586) 2971216248124159 a007 Real Root Of -291*x^4-691*x^3+236*x^2-703*x+382 2971216252291549 a007 Real Root Of -73*x^4+149*x^3-279*x^2+767*x+257 2971216253422121 k008 concat of cont frac of 2971216254586212 a001 6557470319842/15127*843^(2/7) 2971216254856487 a001 365435296162/2207*843^(3/7) 2971216256169609 m005 (1/2*exp(1)+5/6)/(1/9*3^(1/2)+6/11) 2971216257128617 r008 a(0)=3,K{-n^6,-17+7*n^3+60*n^2-15*n} 2971216261449931 p003 LerchPhi(1/25,5,180/89) 2971216265046097 r005 Re(z^2+c),c=-13/36+19/34*I,n=40 2971216272426161 a007 Real Root Of -377*x^4-745*x^3+876*x^2-493*x+642 2971216272530491 a001 10610209857723/24476*843^(2/7) 2971216278420067 m008 (2/3*Pi^3-3/5)/(3/5*Pi^2+5/6) 2971216280780564 m001 (FeigenbaumDelta+Sarnak)^MasserGramain 2971216284942247 m005 (1/3*Catalan+1/5)/(5/11*Pi+3/11) 2971216289494313 r005 Re(z^2+c),c=-25/82+19/42*I,n=57 2971216294669637 a001 321/8*832040^(6/19) 2971216295026172 m005 (1/2*3^(1/2)+1/9)/(1/6*3^(1/2)+3) 2971216301564945 a001 4052739537881/9349*843^(2/7) 2971216306177944 a007 Real Root Of 276*x^4+575*x^3-987*x^2-956*x-555 2971216310685555 m001 (Cahen-Landau)/(ReciprocalFibonacci+Trott) 2971216311949814 m002 -Pi^2+Pi^5-2*Csch[Pi]+Log[Pi] 2971216313592290 m001 (Si(Pi)+ln(5))/(-GAMMA(19/24)+ZetaQ(3)) 2971216326301974 r002 35th iterates of z^2 + 2971216332652485 m001 1/GAMMA(7/12)/KhintchineLevy*exp(Zeta(1/2))^2 2971216339494621 m009 (1/6*Pi^2-3/4)/(3*Psi(1,1/3)-1/6) 2971216341689879 q001 32/1077 2971216341689879 q001 8/26925 2971216345742123 r008 a(0)=3,K{-n^6,-21+15*n+22*n^2+19*n^3} 2971216346723519 m001 FeigenbaumC^cos(1/5*Pi)+Totient 2971216346975283 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)*(Bloch+Kolakoski) 2971216350600517 a001 956722026041/1364*1364^(1/5) 2971216354250525 m005 (1/2*gamma+4/11)/(9/10*3^(1/2)+7/11) 2971216380486203 m001 (GAMMA(13/24)-ArtinRank2)/(Salem-Thue) 2971216382143871 a007 Real Root Of 896*x^4-610*x^3+567*x^2-222*x-139 2971216385966403 m001 (CareFree-GlaisherKinkelin)/DuboisRaymond 2971216390179032 m001 (cos(1/12*Pi)-Artin)/(Lehmer-Sierpinski) 2971216392574699 a001 29/4052739537881*317811^(5/17) 2971216411000896 r008 a(0)=3,K{-n^6,-3+2*n+10*n^2+26*n^3} 2971216413205536 r009 Re(z^3+c),c=-27/70+15/46*I,n=8 2971216416149042 r005 Re(z^2+c),c=-21/58+9/53*I,n=6 2971216419975669 r005 Im(z^2+c),c=25/86+7/54*I,n=56 2971216421684047 r005 Im(z^2+c),c=-5/8+15/214*I,n=24 2971216422487597 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=29 2971216423026706 m001 (Ei(1,1)+ReciprocalLucas)^HardHexagonsEntropy 2971216424776785 r008 a(0)=3,K{-n^6,29-52*n+35*n^2+23*n^3} 2971216425306372 r009 Re(z^3+c),c=-35/102+10/43*I,n=9 2971216431588394 a007 Real Root Of 775*x^4-484*x^3+784*x^2-781*x-320 2971216431747926 a007 Real Root Of 240*x^4+556*x^3-638*x^2-633*x-369 2971216437000626 a001 4745032649890/1597 2971216440958448 a008 Real Root of x^4-x^3-x^2+23*x-27 2971216443362941 a007 Real Root Of 210*x^4+618*x^3-274*x^2-636*x+373 2971216447341464 r009 Re(z^3+c),c=-9/50+35/38*I,n=30 2971216449042059 l006 ln(5720/7699) 2971216449255337 a007 Real Root Of 515*x^4-585*x^3+570*x^2-479*x-212 2971216450707304 a001 1836311903/1364*3571^(16/17) 2971216452851074 r008 a(0)=3,K{-n^6,-25+37*n^3-34*n^2+57*n} 2971216457067252 a001 1134903780*1364^(2/15) 2971216464413143 a001 2971215073/1364*3571^(15/17) 2971216464815126 k002 Champernowne real with 103/2*n^2-225/2*n+90 2971216465542373 m001 (gamma(3)-ArtinRank2)/(CopelandErdos-ZetaQ(4)) 2971216477215798 a001 86000486440/321*843^(5/14) 2971216478118982 a001 1201881744/341*3571^(14/17) 2971216478836728 r009 Re(z^3+c),c=-37/122+5/34*I,n=14 2971216484990320 m002 Pi^4*Sech[Pi]+25*Sinh[Pi] 2971216488196576 m001 GAMMA(3/4)*KhinchinHarmonic+FeigenbaumB 2971216491333803 r009 Im(z^3+c),c=-25/126+3/10*I,n=5 2971216491824821 a001 7778742049/1364*3571^(13/17) 2971216496638819 a007 Real Root Of 587*x^4-707*x^3+800*x^2-85*x-119 2971216500570068 a001 1548008755920/3571*843^(2/7) 2971216505530660 a001 1144206275/124*3571^(12/17) 2971216507413414 r005 Im(z^2+c),c=-11/46+22/49*I,n=20 2971216509132687 r005 Im(z^2+c),c=-53/98+25/47*I,n=30 2971216519236499 a001 10182505537/682*3571^(11/17) 2971216526864076 m002 -5+Pi-Pi^5+Sinh[Pi]/ProductLog[Pi] 2971216527339547 s002 sum(A006720[n]/(n^3*pi^n+1),n=1..infinity) 2971216532942338 a001 32951280099/1364*3571^(10/17) 2971216546648177 a001 53316291173/1364*3571^(9/17) 2971216553228989 a001 4052739537881/15127*843^(5/14) 2971216553499264 a001 225851433717/2207*843^(1/2) 2971216554056725 r005 Re(z^2+c),c=-1/7+25/47*I,n=8 2971216559024888 a008 Real Root of x^4-x^2-31*x+23 2971216560354017 a001 21566892818/341*3571^(8/17) 2971216563533990 a001 2504730781961/1364*1364^(1/15) 2971216564319165 a001 3536736619241/13201*843^(5/14) 2971216571173270 a001 3278735159921/12238*843^(5/14) 2971216574059856 a001 139583862445/1364*3571^(7/17) 2971216577193500 m001 (Mills-Salem)/(Zeta(3)-GAMMA(13/24)) 2971216581002076 a001 305/2889*312119004989^(10/11) 2971216581002076 a001 305/2889*(1/2+1/2*5^(1/2))^50 2971216581002076 a001 305/2889*3461452808002^(5/6) 2971216581002932 a001 646/341*312119004989^(4/5) 2971216581002932 a001 646/341*(1/2+1/2*5^(1/2))^44 2971216581002932 a001 646/341*23725150497407^(11/16) 2971216581002932 a001 646/341*73681302247^(11/13) 2971216581002932 a001 646/341*10749957122^(11/12) 2971216581002932 a001 646/341*4106118243^(22/23) 2971216587765695 a001 225851433717/1364*3571^(6/17) 2971216593216601 r004 Im(z^2+c),c=5/14+5/21*I,z(0)=exp(5/8*I*Pi),n=5 2971216599320544 m001 1/RenyiParking^2*exp(FransenRobinson)*Zeta(9) 2971216600207727 a001 2504730781961/9349*843^(5/14) 2971216601471535 a001 182717648081/682*3571^(5/17) 2971216601753825 r005 Re(z^2+c),c=-4/13+4/9*I,n=53 2971216610072867 p003 LerchPhi(1/2,5,361/176) 2971216615177374 a001 591286729879/1364*3571^(4/17) 2971216624277728 r002 57th iterates of z^2 + 2971216626241613 a001 4/28657*2584^(5/52) 2971216628883214 a001 956722026041/1364*3571^(3/17) 2971216629635194 m001 (1-KhinchinHarmonic)/(Riemann3rdZero+ZetaP(4)) 2971216634392213 m001 Zeta(1/2)^2*Bloch/ln(Zeta(3))^2 2971216636005740 a001 12422656755140/4181 2971216637795763 a001 701408733/1364*9349^(18/19) 2971216638990596 m001 (sin(1/5*Pi)-CopelandErdos)/(OneNinth+Trott) 2971216639584928 a001 567451585/682*9349^(17/19) 2971216641374093 a001 1836311903/1364*9349^(16/19) 2971216642574340 m005 (1/2*Catalan+5/12)/(1/8*gamma+2/9) 2971216642589053 a001 1134903780*3571^(2/17) 2971216643163258 a001 2971215073/1364*9349^(15/19) 2971216644952423 a001 1201881744/341*9349^(14/19) 2971216646741588 a001 7778742049/1364*9349^(13/19) 2971216647417438 m001 (3^(1/3)-gamma(1))/(CareFree-DuboisRaymond) 2971216648530753 a001 1144206275/124*9349^(12/19) 2971216650319918 a001 10182505537/682*9349^(11/19) 2971216652109083 a001 32951280099/1364*9349^(10/19) 2971216653465912 r005 Im(z^2+c),c=1/8+14/51*I,n=14 2971216653898248 a001 53316291173/1364*9349^(9/19) 2971216655687413 a001 21566892818/341*9349^(8/19) 2971216656294893 a001 2504730781961/1364*3571^(1/17) 2971216657015270 a001 610/15127*(1/2+1/2*5^(1/2))^52 2971216657015270 a001 610/15127*23725150497407^(13/16) 2971216657015270 a001 610/15127*505019158607^(13/14) 2971216657016129 a001 615/124*2537720636^(14/15) 2971216657016129 a001 615/124*17393796001^(6/7) 2971216657016129 a001 615/124*45537549124^(14/17) 2971216657016129 a001 615/124*817138163596^(14/19) 2971216657016129 a001 615/124*14662949395604^(2/3) 2971216657016129 a001 615/124*(1/2+1/2*5^(1/2))^42 2971216657016129 a001 615/124*505019158607^(3/4) 2971216657016129 a001 615/124*192900153618^(7/9) 2971216657016129 a001 615/124*10749957122^(7/8) 2971216657016129 a001 615/124*4106118243^(21/23) 2971216657016129 a001 615/124*1568397607^(21/22) 2971216657476578 a001 139583862445/1364*9349^(7/19) 2971216658578045 a007 Real Root Of 384*x^4-560*x^3+213*x^2+5*x-35 2971216659265743 a001 225851433717/1364*9349^(6/19) 2971216661054908 a001 182717648081/682*9349^(5/19) 2971216662844073 a001 591286729879/1364*9349^(4/19) 2971216664633238 a001 956722026041/1364*9349^(3/19) 2971216665040197 a001 16261468807765/5473 2971216665277230 a001 66978574/341*24476^(20/21) 2971216665513405 a001 433494437/1364*24476^(19/21) 2971216665749581 a001 701408733/1364*24476^(6/7) 2971216665985756 a001 567451585/682*24476^(17/21) 2971216666221931 a001 1836311903/1364*24476^(16/21) 2971216666422403 a001 1134903780*9349^(2/19) 2971216666458106 a001 2971215073/1364*24476^(5/7) 2971216666694281 a001 1201881744/341*24476^(2/3) 2971216666930456 a001 7778742049/1364*24476^(13/21) 2971216667166631 a001 1144206275/124*24476^(4/7) 2971216667402806 a001 10182505537/682*24476^(11/21) 2971216667638981 a001 32951280099/1364*24476^(10/21) 2971216667875157 a001 53316291173/1364*24476^(3/7) 2971216668105446 a001 610/39603*14662949395604^(6/7) 2971216668105446 a001 610/39603*(1/2+1/2*5^(1/2))^54 2971216668106304 a001 17711/1364*2537720636^(8/9) 2971216668106304 a001 17711/1364*312119004989^(8/11) 2971216668106304 a001 17711/1364*(1/2+1/2*5^(1/2))^40 2971216668106304 a001 17711/1364*23725150497407^(5/8) 2971216668106304 a001 17711/1364*73681302247^(10/13) 2971216668106304 a001 17711/1364*28143753123^(4/5) 2971216668106304 a001 17711/1364*10749957122^(5/6) 2971216668106304 a001 17711/1364*4106118243^(20/23) 2971216668106304 a001 17711/1364*1568397607^(10/11) 2971216668106304 a001 17711/1364*599074578^(20/21) 2971216668111332 a001 21566892818/341*24476^(8/21) 2971216668211568 a001 2504730781961/1364*9349^(1/19) 2971216668347507 a001 139583862445/1364*24476^(1/3) 2971216668583682 a001 225851433717/1364*24476^(2/7) 2971216668819857 a001 182717648081/682*24476^(5/21) 2971216669056032 a001 591286729879/1364*24476^(4/21) 2971216669276267 a001 85146156091450/28657 2971216669292207 a001 956722026041/1364*24476^(1/7) 2971216669308587 a001 9303105/124*64079^(22/23) 2971216669340048 a001 165580141/1364*64079^(21/23) 2971216669371509 a001 66978574/341*64079^(20/23) 2971216669402970 a001 433494437/1364*64079^(19/23) 2971216669434431 a001 701408733/1364*64079^(18/23) 2971216669465893 a001 567451585/682*64079^(17/23) 2971216669497354 a001 1836311903/1364*64079^(16/23) 2971216669528382 a001 1134903780*24476^(2/21) 2971216669528815 a001 2971215073/1364*64079^(15/23) 2971216669560276 a001 1201881744/341*64079^(14/23) 2971216669591737 a001 7778742049/1364*64079^(13/23) 2971216669623198 a001 1144206275/124*64079^(12/23) 2971216669654660 a001 10182505537/682*64079^(11/23) 2971216669686121 a001 32951280099/1364*64079^(10/23) 2971216669717582 a001 53316291173/1364*64079^(9/23) 2971216669723481 a001 305/51841*14662949395604^(8/9) 2971216669723481 a001 305/51841*(1/2+1/2*5^(1/2))^56 2971216669724339 a001 11592/341*817138163596^(2/3) 2971216669724339 a001 11592/341*(1/2+1/2*5^(1/2))^38 2971216669724339 a001 11592/341*10749957122^(19/24) 2971216669724339 a001 11592/341*4106118243^(19/23) 2971216669724339 a001 11592/341*1568397607^(19/22) 2971216669724339 a001 11592/341*599074578^(19/21) 2971216669724339 a001 11592/341*228826127^(19/20) 2971216669749043 a001 21566892818/341*64079^(8/23) 2971216669764558 a001 2504730781961/1364*24476^(1/21) 2971216669780504 a001 139583862445/1364*64079^(7/23) 2971216669811966 a001 225851433717/1364*64079^(6/23) 2971216669843427 a001 182717648081/682*64079^(5/23) 2971216669874888 a001 591286729879/1364*64079^(4/23) 2971216669894301 a001 44583106131764/15005 2971216669906349 a001 956722026041/1364*64079^(3/23) 2971216669916274 a001 66978574/341*167761^(4/5) 2971216669937389 a001 2971215073/1364*167761^(3/5) 2971216669937810 a001 1134903780*64079^(2/23) 2971216669958503 a001 32951280099/1364*167761^(2/5) 2971216669959549 a001 610/271443*(1/2+1/2*5^(1/2))^58 2971216669960407 a001 121393/1364*141422324^(12/13) 2971216669960407 a001 121393/1364*2537720636^(4/5) 2971216669960407 a001 121393/1364*45537549124^(12/17) 2971216669960407 a001 121393/1364*14662949395604^(4/7) 2971216669960407 a001 121393/1364*(1/2+1/2*5^(1/2))^36 2971216669960407 a001 121393/1364*505019158607^(9/14) 2971216669960407 a001 121393/1364*192900153618^(2/3) 2971216669960407 a001 121393/1364*73681302247^(9/13) 2971216669960407 a001 121393/1364*10749957122^(3/4) 2971216669960407 a001 121393/1364*4106118243^(18/23) 2971216669960407 a001 121393/1364*1568397607^(9/11) 2971216669960407 a001 121393/1364*599074578^(6/7) 2971216669960407 a001 121393/1364*228826127^(9/10) 2971216669960408 a001 121393/1364*87403803^(18/19) 2971216669969271 a001 2504730781961/1364*64079^(1/23) 2971216669979618 a001 182717648081/682*167761^(1/5) 2971216669984471 a001 291800217942505/98209 2971216669987041 a001 39088169/1364*439204^(8/9) 2971216669988753 a001 165580141/1364*439204^(7/9) 2971216669990464 a001 701408733/1364*439204^(2/3) 2971216669992175 a001 2971215073/1364*439204^(5/9) 2971216669993887 a001 1144206275/124*439204^(4/9) 2971216669993991 a001 610/710647*14662949395604^(20/21) 2971216669993991 a001 610/710647*(1/2+1/2*5^(1/2))^60 2971216669994849 a001 317811/1364*45537549124^(2/3) 2971216669994849 a001 317811/1364*(1/2+1/2*5^(1/2))^34 2971216669994849 a001 317811/1364*10749957122^(17/24) 2971216669994849 a001 317811/1364*4106118243^(17/23) 2971216669994849 a001 317811/1364*1568397607^(17/22) 2971216669994849 a001 317811/1364*599074578^(17/21) 2971216669994849 a001 317811/1364*228826127^(17/20) 2971216669994850 a001 317811/1364*87403803^(17/19) 2971216669994852 a001 317811/1364*33385282^(17/18) 2971216669995598 a001 53316291173/1364*439204^(1/3) 2971216669997310 a001 225851433717/1364*439204^(2/9) 2971216669997627 a001 1527885776996210/514229 2971216669999016 a001 305/930249*(1/2+1/2*5^(1/2))^62 2971216669999021 a001 956722026041/1364*439204^(1/9) 2971216669999546 a001 4000056895103620/1346269 2971216669999749 a001 610/4870847*(1/2+1/2*5^(1/2))^64 2971216669999874 a001 610*(1/2+1/2*5^(1/2))^32 2971216669999874 a001 610*23725150497407^(1/2) 2971216669999874 a001 610*505019158607^(4/7) 2971216669999874 a001 610*73681302247^(8/13) 2971216669999874 a001 610*10749957122^(2/3) 2971216669999874 a001 610*4106118243^(16/23) 2971216669999874 a001 610*1568397607^(8/11) 2971216669999874 a001 610*599074578^(16/21) 2971216669999874 a001 610*228826127^(4/5) 2971216669999875 a001 610*87403803^(16/19) 2971216669999877 a001 610*33385282^(8/9) 2971216669999891 a001 610*12752043^(16/17) 2971216670000202 a001 610/3010349*(1/2+1/2*5^(1/2))^63 2971216670000564 a001 2178309/1364*7881196^(10/11) 2971216670000601 a001 2178309/1364*20633239^(6/7) 2971216670000607 a001 2178309/1364*141422324^(10/13) 2971216670000607 a001 2178309/1364*2537720636^(2/3) 2971216670000607 a001 2178309/1364*45537549124^(10/17) 2971216670000607 a001 2178309/1364*312119004989^(6/11) 2971216670000607 a001 2178309/1364*14662949395604^(10/21) 2971216670000607 a001 2178309/1364*(1/2+1/2*5^(1/2))^30 2971216670000607 a001 2178309/1364*192900153618^(5/9) 2971216670000607 a001 2178309/1364*28143753123^(3/5) 2971216670000607 a001 2178309/1364*10749957122^(5/8) 2971216670000607 a001 2178309/1364*4106118243^(15/23) 2971216670000607 a001 2178309/1364*1568397607^(15/22) 2971216670000607 a001 2178309/1364*599074578^(5/7) 2971216670000607 a001 2178309/1364*228826127^(3/4) 2971216670000608 a001 2178309/1364*87403803^(15/19) 2971216670000610 a001 2178309/1364*33385282^(5/6) 2971216670000624 a001 2178309/1364*12752043^(15/17) 2971216670000697 a001 39088169/1364*7881196^(8/11) 2971216670000700 a001 9227465/1364*7881196^(9/11) 2971216670000701 a001 9303105/124*7881196^(2/3) 2971216670000702 a001 165580141/1364*7881196^(7/11) 2971216670000707 a001 701408733/1364*7881196^(6/11) 2971216670000709 a001 5702887/1364*20633239^(4/5) 2971216670000711 a001 2971215073/1364*7881196^(5/11) 2971216670000714 a001 5702887/1364*17393796001^(4/7) 2971216670000714 a001 5702887/1364*14662949395604^(4/9) 2971216670000714 a001 5702887/1364*(1/2+1/2*5^(1/2))^28 2971216670000714 a001 5702887/1364*505019158607^(1/2) 2971216670000714 a001 5702887/1364*73681302247^(7/13) 2971216670000714 a001 5702887/1364*10749957122^(7/12) 2971216670000714 a001 5702887/1364*4106118243^(14/23) 2971216670000714 a001 5702887/1364*1568397607^(7/11) 2971216670000714 a001 5702887/1364*599074578^(2/3) 2971216670000714 a001 5702887/1364*228826127^(7/10) 2971216670000715 a001 5702887/1364*87403803^(14/19) 2971216670000715 a001 1144206275/124*7881196^(4/11) 2971216670000716 a001 5702887/1364*33385282^(7/9) 2971216670000717 a001 10182505537/682*7881196^(1/3) 2971216670000720 a001 53316291173/1364*7881196^(3/11) 2971216670000724 a001 225851433717/1364*7881196^(2/11) 2971216670000725 a001 2178309/1364*4870847^(15/16) 2971216670000728 a001 956722026041/1364*7881196^(1/11) 2971216670000728 a001 165580141/1364*20633239^(3/5) 2971216670000729 a001 66978574/341*20633239^(4/7) 2971216670000729 a001 24157817/1364*20633239^(5/7) 2971216670000729 a001 5702887/1364*12752043^(14/17) 2971216670000730 a001 2971215073/1364*20633239^(3/7) 2971216670000730 a001 1201881744/341*20633239^(2/5) 2971216670000730 a001 3732588/341*141422324^(2/3) 2971216670000730 a001 3732588/341*(1/2+1/2*5^(1/2))^26 2971216670000730 a001 3732588/341*73681302247^(1/2) 2971216670000730 a001 3732588/341*10749957122^(13/24) 2971216670000730 a001 3732588/341*4106118243^(13/23) 2971216670000730 a001 3732588/341*1568397607^(13/22) 2971216670000730 a001 3732588/341*599074578^(13/21) 2971216670000730 a001 3732588/341*228826127^(13/20) 2971216670000730 a001 3732588/341*87403803^(13/19) 2971216670000731 a001 32951280099/1364*20633239^(2/7) 2971216670000731 a001 139583862445/1364*20633239^(1/5) 2971216670000732 a001 182717648081/682*20633239^(1/7) 2971216670000732 a001 3732588/341*33385282^(13/18) 2971216670000732 a001 39088169/1364*141422324^(8/13) 2971216670000732 a001 39088169/1364*2537720636^(8/15) 2971216670000732 a001 39088169/1364*45537549124^(8/17) 2971216670000732 a001 39088169/1364*14662949395604^(8/21) 2971216670000732 a001 39088169/1364*(1/2+1/2*5^(1/2))^24 2971216670000732 a001 39088169/1364*192900153618^(4/9) 2971216670000732 a001 39088169/1364*73681302247^(6/13) 2971216670000732 a001 39088169/1364*10749957122^(1/2) 2971216670000732 a001 39088169/1364*4106118243^(12/23) 2971216670000732 a001 39088169/1364*1568397607^(6/11) 2971216670000732 a001 39088169/1364*599074578^(4/7) 2971216670000732 a001 39088169/1364*228826127^(3/5) 2971216670000732 a001 39088169/1364*87403803^(12/19) 2971216670000733 a001 701408733/1364*141422324^(6/13) 2971216670000733 a001 165580141/1364*141422324^(7/13) 2971216670000733 a001 2971215073/1364*141422324^(5/13) 2971216670000733 a001 9303105/124*312119004989^(2/5) 2971216670000733 a001 9303105/124*(1/2+1/2*5^(1/2))^22 2971216670000733 a001 9303105/124*10749957122^(11/24) 2971216670000733 a001 9303105/124*4106118243^(11/23) 2971216670000733 a001 9303105/124*1568397607^(1/2) 2971216670000733 a001 9303105/124*599074578^(11/21) 2971216670000733 a001 7778742049/1364*141422324^(1/3) 2971216670000733 a001 1144206275/124*141422324^(4/13) 2971216670000733 a001 53316291173/1364*141422324^(3/13) 2971216670000733 a001 9303105/124*228826127^(11/20) 2971216670000733 a001 225851433717/1364*141422324^(2/13) 2971216670000733 a001 956722026041/1364*141422324^(1/13) 2971216670000733 a001 66978574/341*2537720636^(4/9) 2971216670000733 a001 66978574/341*(1/2+1/2*5^(1/2))^20 2971216670000733 a001 66978574/341*23725150497407^(5/16) 2971216670000733 a001 66978574/341*505019158607^(5/14) 2971216670000733 a001 66978574/341*73681302247^(5/13) 2971216670000733 a001 66978574/341*28143753123^(2/5) 2971216670000733 a001 66978574/341*10749957122^(5/12) 2971216670000733 a001 66978574/341*4106118243^(10/23) 2971216670000733 a001 66978574/341*1568397607^(5/11) 2971216670000733 a001 66978574/341*599074578^(10/21) 2971216670000733 a001 701408733/1364*2537720636^(2/5) 2971216670000733 a001 701408733/1364*45537549124^(6/17) 2971216670000733 a001 701408733/1364*14662949395604^(2/7) 2971216670000733 a001 701408733/1364*(1/2+1/2*5^(1/2))^18 2971216670000733 a001 701408733/1364*192900153618^(1/3) 2971216670000733 a001 701408733/1364*10749957122^(3/8) 2971216670000733 a001 701408733/1364*4106118243^(9/23) 2971216670000733 a001 701408733/1364*1568397607^(9/22) 2971216670000733 a001 1836311903/1364*(1/2+1/2*5^(1/2))^16 2971216670000733 a001 1836311903/1364*23725150497407^(1/4) 2971216670000733 a001 1836311903/1364*73681302247^(4/13) 2971216670000733 a001 1836311903/1364*10749957122^(1/3) 2971216670000733 a001 1144206275/124*2537720636^(4/15) 2971216670000733 a001 1836311903/1364*4106118243^(8/23) 2971216670000733 a001 32951280099/1364*2537720636^(2/9) 2971216670000733 a001 53316291173/1364*2537720636^(1/5) 2971216670000733 a001 2971215073/1364*2537720636^(1/3) 2971216670000733 a001 225851433717/1364*2537720636^(2/15) 2971216670000733 a001 182717648081/682*2537720636^(1/9) 2971216670000733 a001 956722026041/1364*2537720636^(1/15) 2971216670000733 a001 1201881744/341*17393796001^(2/7) 2971216670000733 a001 1201881744/341*14662949395604^(2/9) 2971216670000733 a001 1201881744/341*(1/2+1/2*5^(1/2))^14 2971216670000733 a001 1201881744/341*10749957122^(7/24) 2971216670000733 a001 1144206275/124*45537549124^(4/17) 2971216670000733 a001 1144206275/124*817138163596^(4/19) 2971216670000733 a001 1144206275/124*14662949395604^(4/21) 2971216670000733 a001 1144206275/124*(1/2+1/2*5^(1/2))^12 2971216670000733 a001 1144206275/124*73681302247^(3/13) 2971216670000733 a001 139583862445/1364*17393796001^(1/7) 2971216670000733 a001 32951280099/1364*312119004989^(2/11) 2971216670000733 a001 32951280099/1364*(1/2+1/2*5^(1/2))^10 2971216670000733 a001 225851433717/1364*45537549124^(2/17) 2971216670000733 a001 21566892818/341*(1/2+1/2*5^(1/2))^8 2971216670000733 a001 21566892818/341*23725150497407^(1/8) 2971216670000733 a001 21566892818/341*505019158607^(1/7) 2971216670000733 a001 53316291173/1364*45537549124^(3/17) 2971216670000733 a001 225851433717/1364*14662949395604^(2/21) 2971216670000733 a001 225851433717/1364*(1/2+1/2*5^(1/2))^6 2971216670000733 a001 1134903780*(1/2+1/2*5^(1/2))^2 2971216670000733 a001 182717648081/682*312119004989^(1/11) 2971216670000733 a001 21566892818/341*73681302247^(2/13) 2971216670000733 a001 182717648081/682*(1/2+1/2*5^(1/2))^5 2971216670000733 a001 139583862445/1364*14662949395604^(1/9) 2971216670000733 a001 139583862445/1364*(1/2+1/2*5^(1/2))^7 2971216670000733 a001 591286729879/1364*73681302247^(1/13) 2971216670000733 a001 32951280099/1364*28143753123^(1/5) 2971216670000733 a001 53316291173/1364*14662949395604^(1/7) 2971216670000733 a001 53316291173/1364*(1/2+1/2*5^(1/2))^9 2971216670000733 a001 53316291173/1364*192900153618^(1/6) 2971216670000733 a001 182717648081/682*28143753123^(1/10) 2971216670000733 a001 1134903780*10749957122^(1/24) 2971216670000733 a001 10182505537/682*312119004989^(1/5) 2971216670000733 a001 10182505537/682*(1/2+1/2*5^(1/2))^11 2971216670000733 a001 956722026041/1364*10749957122^(1/16) 2971216670000733 a001 591286729879/1364*10749957122^(1/12) 2971216670000733 a001 1144206275/124*10749957122^(1/4) 2971216670000733 a001 225851433717/1364*10749957122^(1/8) 2971216670000733 a001 21566892818/341*10749957122^(1/6) 2971216670000733 a001 32951280099/1364*10749957122^(5/24) 2971216670000733 a001 53316291173/1364*10749957122^(3/16) 2971216670000733 a001 1134903780*4106118243^(1/23) 2971216670000733 a001 7778742049/1364*(1/2+1/2*5^(1/2))^13 2971216670000733 a001 7778742049/1364*73681302247^(1/4) 2971216670000733 a001 591286729879/1364*4106118243^(2/23) 2971216670000733 a001 225851433717/1364*4106118243^(3/23) 2971216670000733 a001 1201881744/341*4106118243^(7/23) 2971216670000733 a001 21566892818/341*4106118243^(4/23) 2971216670000733 a001 32951280099/1364*4106118243^(5/23) 2971216670000733 a001 1144206275/124*4106118243^(6/23) 2971216670000733 a001 1134903780*1568397607^(1/22) 2971216670000733 a001 2971215073/1364*45537549124^(5/17) 2971216670000733 a001 2971215073/1364*312119004989^(3/11) 2971216670000733 a001 2971215073/1364*14662949395604^(5/21) 2971216670000733 a001 2971215073/1364*(1/2+1/2*5^(1/2))^15 2971216670000733 a001 2971215073/1364*192900153618^(5/18) 2971216670000733 a001 2971215073/1364*28143753123^(3/10) 2971216670000733 a001 2971215073/1364*10749957122^(5/16) 2971216670000733 a001 591286729879/1364*1568397607^(1/11) 2971216670000733 a001 225851433717/1364*1568397607^(3/22) 2971216670000733 a001 21566892818/341*1568397607^(2/11) 2971216670000733 a001 1836311903/1364*1568397607^(4/11) 2971216670000733 a001 32951280099/1364*1568397607^(5/22) 2971216670000733 a001 10182505537/682*1568397607^(1/4) 2971216670000733 a001 1144206275/124*1568397607^(3/11) 2971216670000733 a001 1201881744/341*1568397607^(7/22) 2971216670000733 a001 1134903780*599074578^(1/21) 2971216670000733 a001 567451585/682*45537549124^(1/3) 2971216670000733 a001 567451585/682*(1/2+1/2*5^(1/2))^17 2971216670000733 a001 956722026041/1364*599074578^(1/14) 2971216670000733 a001 591286729879/1364*599074578^(2/21) 2971216670000733 a001 225851433717/1364*599074578^(1/7) 2971216670000733 a001 139583862445/1364*599074578^(1/6) 2971216670000733 a001 21566892818/341*599074578^(4/21) 2971216670000733 a001 53316291173/1364*599074578^(3/14) 2971216670000733 a001 32951280099/1364*599074578^(5/21) 2971216670000733 a001 701408733/1364*599074578^(3/7) 2971216670000733 a001 1144206275/124*599074578^(2/7) 2971216670000733 a001 1201881744/341*599074578^(1/3) 2971216670000733 a001 1134903780*228826127^(1/20) 2971216670000733 a001 1836311903/1364*599074578^(8/21) 2971216670000733 a001 2971215073/1364*599074578^(5/14) 2971216670000733 a001 433494437/1364*817138163596^(1/3) 2971216670000733 a001 433494437/1364*(1/2+1/2*5^(1/2))^19 2971216670000733 a001 591286729879/1364*228826127^(1/10) 2971216670000733 a001 182717648081/682*228826127^(1/8) 2971216670000733 a001 225851433717/1364*228826127^(3/20) 2971216670000733 a001 21566892818/341*228826127^(1/5) 2971216670000733 a001 32951280099/1364*228826127^(1/4) 2971216670000733 a001 1144206275/124*228826127^(3/10) 2971216670000733 a001 1201881744/341*228826127^(7/20) 2971216670000733 a001 66978574/341*228826127^(1/2) 2971216670000733 a001 1134903780*87403803^(1/19) 2971216670000733 a001 2971215073/1364*228826127^(3/8) 2971216670000733 a001 165580141/1364*2537720636^(7/15) 2971216670000733 a001 165580141/1364*17393796001^(3/7) 2971216670000733 a001 165580141/1364*45537549124^(7/17) 2971216670000733 a001 165580141/1364*14662949395604^(1/3) 2971216670000733 a001 165580141/1364*(1/2+1/2*5^(1/2))^21 2971216670000733 a001 165580141/1364*192900153618^(7/18) 2971216670000733 a001 165580141/1364*10749957122^(7/16) 2971216670000733 a001 1836311903/1364*228826127^(2/5) 2971216670000733 a001 701408733/1364*228826127^(9/20) 2971216670000733 a001 165580141/1364*599074578^(1/2) 2971216670000733 a001 591286729879/1364*87403803^(2/19) 2971216670000733 a001 225851433717/1364*87403803^(3/19) 2971216670000733 a001 21566892818/341*87403803^(4/19) 2971216670000733 a001 32951280099/1364*87403803^(5/19) 2971216670000733 a001 1144206275/124*87403803^(6/19) 2971216670000733 a001 1201881744/341*87403803^(7/19) 2971216670000733 a001 1134903780*33385282^(1/18) 2971216670000733 a001 31622993/682*(1/2+1/2*5^(1/2))^23 2971216670000733 a001 31622993/682*4106118243^(1/2) 2971216670000733 a001 1836311903/1364*87403803^(8/19) 2971216670000733 a001 9303105/124*87403803^(11/19) 2971216670000733 a001 701408733/1364*87403803^(9/19) 2971216670000733 a001 66978574/341*87403803^(10/19) 2971216670000733 a001 433494437/1364*87403803^(1/2) 2971216670000733 a001 956722026041/1364*33385282^(1/12) 2971216670000733 a001 591286729879/1364*33385282^(1/9) 2971216670000733 a001 225851433717/1364*33385282^(1/6) 2971216670000733 a001 21566892818/341*33385282^(2/9) 2971216670000733 a001 53316291173/1364*33385282^(1/4) 2971216670000733 a001 32951280099/1364*33385282^(5/18) 2971216670000734 a001 1144206275/124*33385282^(1/3) 2971216670000734 a001 24157817/1364*2537720636^(5/9) 2971216670000734 a001 24157817/1364*312119004989^(5/11) 2971216670000734 a001 24157817/1364*(1/2+1/2*5^(1/2))^25 2971216670000734 a001 24157817/1364*3461452808002^(5/12) 2971216670000734 a001 24157817/1364*28143753123^(1/2) 2971216670000734 a001 1201881744/341*33385282^(7/18) 2971216670000734 a001 24157817/1364*228826127^(5/8) 2971216670000734 a001 1134903780*12752043^(1/17) 2971216670000734 a001 2971215073/1364*33385282^(5/12) 2971216670000734 a001 1836311903/1364*33385282^(4/9) 2971216670000734 a001 701408733/1364*33385282^(1/2) 2971216670000734 a001 39088169/1364*33385282^(2/3) 2971216670000734 a001 66978574/341*33385282^(5/9) 2971216670000734 a001 9303105/124*33385282^(11/18) 2971216670000734 a001 165580141/1364*33385282^(7/12) 2971216670000735 a001 591286729879/1364*12752043^(2/17) 2971216670000736 a001 225851433717/1364*12752043^(3/17) 2971216670000737 a001 21566892818/341*12752043^(4/17) 2971216670000738 a001 32951280099/1364*12752043^(5/17) 2971216670000739 a001 1144206275/124*12752043^(6/17) 2971216670000740 a001 9227465/1364*141422324^(9/13) 2971216670000740 a001 9227465/1364*2537720636^(3/5) 2971216670000740 a001 9227465/1364*45537549124^(9/17) 2971216670000740 a001 9227465/1364*817138163596^(9/19) 2971216670000740 a001 9227465/1364*14662949395604^(3/7) 2971216670000740 a001 9227465/1364*(1/2+1/2*5^(1/2))^27 2971216670000740 a001 9227465/1364*192900153618^(1/2) 2971216670000740 a001 9227465/1364*10749957122^(9/16) 2971216670000740 a001 9227465/1364*599074578^(9/14) 2971216670000740 a001 1201881744/341*12752043^(7/17) 2971216670000740 a001 1134903780*4870847^(1/16) 2971216670000741 a001 1836311903/1364*12752043^(8/17) 2971216670000742 a001 9227465/1364*33385282^(3/4) 2971216670000742 a001 567451585/682*12752043^(1/2) 2971216670000742 a001 701408733/1364*12752043^(9/17) 2971216670000743 a001 66978574/341*12752043^(10/17) 2971216670000744 a001 3732588/341*12752043^(13/17) 2971216670000744 a001 9303105/124*12752043^(11/17) 2971216670000745 a001 39088169/1364*12752043^(12/17) 2971216670000748 a001 591286729879/1364*4870847^(1/8) 2971216670000756 a001 225851433717/1364*4870847^(3/16) 2971216670000764 a001 21566892818/341*4870847^(1/4) 2971216670000772 a001 32951280099/1364*4870847^(5/16) 2971216670000780 a001 1144206275/124*4870847^(3/8) 2971216670000780 a001 1762289/682*(1/2+1/2*5^(1/2))^29 2971216670000780 a001 1762289/682*1322157322203^(1/2) 2971216670000787 a001 1201881744/341*4870847^(7/16) 2971216670000790 a001 1134903780*1860498^(1/15) 2971216670000795 a001 1836311903/1364*4870847^(1/2) 2971216670000803 a001 701408733/1364*4870847^(9/16) 2971216670000811 a001 66978574/341*4870847^(5/8) 2971216670000818 a001 956722026041/1364*1860498^(1/10) 2971216670000819 a001 9303105/124*4870847^(11/16) 2971216670000824 a001 5702887/1364*4870847^(7/8) 2971216670000826 a001 39088169/1364*4870847^(3/4) 2971216670000832 a001 3732588/341*4870847^(13/16) 2971216670000847 a001 591286729879/1364*1860498^(2/15) 2971216670000876 a001 182717648081/682*1860498^(1/6) 2971216670000904 a001 225851433717/1364*1860498^(1/5) 2971216670000962 a001 21566892818/341*1860498^(4/15) 2971216670000990 a001 53316291173/1364*1860498^(3/10) 2971216670001019 a001 32951280099/1364*1860498^(1/3) 2971216670001061 a001 1346269/1364*(1/2+1/2*5^(1/2))^31 2971216670001061 a001 1346269/1364*9062201101803^(1/2) 2971216670001076 a001 1144206275/124*1860498^(2/5) 2971216670001133 a001 1201881744/341*1860498^(7/15) 2971216670001153 a001 1134903780*710647^(1/14) 2971216670001162 a001 2971215073/1364*1860498^(1/2) 2971216670001190 a001 1836311903/1364*1860498^(8/15) 2971216670001248 a001 701408733/1364*1860498^(3/5) 2971216670001305 a001 66978574/341*1860498^(2/3) 2971216670001334 a001 165580141/1364*1860498^(7/10) 2971216670001362 a001 9303105/124*1860498^(11/15) 2971216670001419 a001 39088169/1364*1860498^(4/5) 2971216670001449 a001 24157817/1364*1860498^(5/6) 2971216670001474 a001 3732588/341*1860498^(13/15) 2971216670001512 a001 9227465/1364*1860498^(9/10) 2971216670001516 a001 5702887/1364*1860498^(14/15) 2971216670001573 a001 591286729879/1364*710647^(1/7) 2971216670001993 a001 225851433717/1364*710647^(3/14) 2971216670002122 a001 610/1149851*(1/2+1/2*5^(1/2))^61 2971216670002203 a001 139583862445/1364*710647^(1/4) 2971216670002414 a001 21566892818/341*710647^(2/7) 2971216670002834 a001 32951280099/1364*710647^(5/14) 2971216670002980 a001 514229/1364*141422324^(11/13) 2971216670002980 a001 514229/1364*2537720636^(11/15) 2971216670002980 a001 514229/1364*45537549124^(11/17) 2971216670002980 a001 514229/1364*312119004989^(3/5) 2971216670002980 a001 514229/1364*14662949395604^(11/21) 2971216670002980 a001 514229/1364*(1/2+1/2*5^(1/2))^33 2971216670002980 a001 514229/1364*192900153618^(11/18) 2971216670002980 a001 514229/1364*10749957122^(11/16) 2971216670002980 a001 514229/1364*1568397607^(3/4) 2971216670002980 a001 514229/1364*599074578^(11/14) 2971216670002982 a001 514229/1364*33385282^(11/12) 2971216670003254 a001 1144206275/124*710647^(3/7) 2971216670003674 a001 1201881744/341*710647^(1/2) 2971216670003835 a001 1134903780*271443^(1/13) 2971216670004095 a001 1836311903/1364*710647^(4/7) 2971216670004515 a001 701408733/1364*710647^(9/14) 2971216670004935 a001 66978574/341*710647^(5/7) 2971216670005145 a001 165580141/1364*710647^(3/4) 2971216670005355 a001 9303105/124*710647^(11/14) 2971216670005758 a001 314761780370400/105937 2971216670005775 a001 39088169/1364*710647^(6/7) 2971216670006193 a001 3732588/341*710647^(13/14) 2971216670006937 a001 591286729879/1364*271443^(2/13) 2971216670010038 a001 225851433717/1364*271443^(3/13) 2971216670012249 a001 2504730781961/1364*103682^(1/24) 2971216670013140 a001 21566892818/341*271443^(4/13) 2971216670015277 a001 305/219602*(1/2+1/2*5^(1/2))^59 2971216670016136 a001 98209/682*2537720636^(7/9) 2971216670016136 a001 98209/682*17393796001^(5/7) 2971216670016136 a001 98209/682*312119004989^(7/11) 2971216670016136 a001 98209/682*14662949395604^(5/9) 2971216670016136 a001 98209/682*(1/2+1/2*5^(1/2))^35 2971216670016136 a001 98209/682*505019158607^(5/8) 2971216670016136 a001 98209/682*28143753123^(7/10) 2971216670016136 a001 98209/682*599074578^(5/6) 2971216670016136 a001 98209/682*228826127^(7/8) 2971216670016242 a001 32951280099/1364*271443^(5/13) 2971216670019344 a001 1144206275/124*271443^(6/13) 2971216670020895 a001 7778742049/1364*271443^(1/2) 2971216670022446 a001 1201881744/341*271443^(7/13) 2971216670023765 a001 1134903780*103682^(1/12) 2971216670025548 a001 1836311903/1364*271443^(8/13) 2971216670028650 a001 701408733/1364*271443^(9/13) 2971216670031752 a001 66978574/341*271443^(10/13) 2971216670034854 a001 9303105/124*271443^(11/13) 2971216670035282 a001 956722026041/1364*103682^(1/8) 2971216670037956 a001 39088169/1364*271443^(12/13) 2971216670040200 a001 360684905226190/121393 2971216670046798 a001 591286729879/1364*103682^(1/6) 2971216670058315 a001 182717648081/682*103682^(5/24) 2971216670069831 a001 225851433717/1364*103682^(1/4) 2971216670081347 a001 139583862445/1364*103682^(7/24) 2971216670086843 a001 2504730781961/1364*39603^(1/22) 2971216670092864 a001 21566892818/341*103682^(1/3) 2971216670104380 a001 53316291173/1364*103682^(3/8) 2971216670105447 a001 610/167761*14662949395604^(19/21) 2971216670105447 a001 610/167761*(1/2+1/2*5^(1/2))^57 2971216670106306 a001 75025/1364*(1/2+1/2*5^(1/2))^37 2971216670115897 a001 32951280099/1364*103682^(5/12) 2971216670127413 a001 10182505537/682*103682^(11/24) 2971216670138929 a001 1144206275/124*103682^(1/2) 2971216670150446 a001 7778742049/1364*103682^(13/24) 2971216670161962 a001 1201881744/341*103682^(7/12) 2971216670172953 a001 1134903780*39603^(1/11) 2971216670173478 a001 2971215073/1364*103682^(5/8) 2971216670184995 a001 1836311903/1364*103682^(2/3) 2971216670196511 a001 567451585/682*103682^(17/24) 2971216670208028 a001 701408733/1364*103682^(3/4) 2971216670219544 a001 433494437/1364*103682^(19/24) 2971216670231060 a001 66978574/341*103682^(5/6) 2971216670242577 a001 165580141/1364*103682^(7/8) 2971216670254093 a001 9303105/124*103682^(11/12) 2971216670259064 a001 956722026041/1364*39603^(3/22) 2971216670265610 a001 31622993/682*103682^(23/24) 2971216670276268 a001 3280223203985/1104 2971216670345174 a001 591286729879/1364*39603^(2/11) 2971216670431285 a001 182717648081/682*39603^(5/22) 2971216670517395 a001 225851433717/1364*39603^(3/11) 2971216670603505 a001 139583862445/1364*39603^(7/22) 2971216670649963 a001 2504730781961/1364*15127^(1/20) 2971216670689616 a001 21566892818/341*39603^(4/11) 2971216670723481 a001 610/64079*(1/2+1/2*5^(1/2))^55 2971216670723481 a001 610/64079*3461452808002^(11/12) 2971216670724340 a001 28657/1364*2537720636^(13/15) 2971216670724340 a001 28657/1364*45537549124^(13/17) 2971216670724340 a001 28657/1364*14662949395604^(13/21) 2971216670724340 a001 28657/1364*(1/2+1/2*5^(1/2))^39 2971216670724340 a001 28657/1364*192900153618^(13/18) 2971216670724340 a001 28657/1364*73681302247^(3/4) 2971216670724340 a001 28657/1364*10749957122^(13/16) 2971216670724340 a001 28657/1364*599074578^(13/14) 2971216670775726 a001 53316291173/1364*39603^(9/22) 2971216670861836 a001 32951280099/1364*39603^(5/11) 2971216670947947 a001 10182505537/682*39603^(1/2) 2971216671034057 a001 1144206275/124*39603^(6/11) 2971216671120167 a001 7778742049/1364*39603^(13/22) 2971216671206278 a001 1201881744/341*39603^(7/11) 2971216671292388 a001 2971215073/1364*39603^(15/22) 2971216671299193 a001 1134903780*15127^(1/10) 2971216671378499 a001 1836311903/1364*39603^(8/11) 2971216671464609 a001 567451585/682*39603^(17/22) 2971216671550719 a001 701408733/1364*39603^(9/11) 2971216671636830 a001 433494437/1364*39603^(19/22) 2971216671722940 a001 66978574/341*39603^(10/11) 2971216671809050 a001 165580141/1364*39603^(21/22) 2971216671894302 a001 52623218475920/17711 2971216671948423 a001 956722026041/1364*15127^(3/20) 2971216672597653 a001 591286729879/1364*15127^(1/5) 2971216672789515 m001 (arctan(1/2)-ArtinRank2)/(CareFree-Kac) 2971216673246884 a001 182717648081/682*15127^(1/4) 2971216673896114 a001 225851433717/1364*15127^(3/10) 2971216674545344 a001 139583862445/1364*15127^(7/20) 2971216674945055 a001 2504730781961/1364*5778^(1/18) 2971216674959552 a001 305/12238*(1/2+1/2*5^(1/2))^53 2971216674960410 a001 5473/682*(1/2+1/2*5^(1/2))^41 2971216675194574 a001 21566892818/341*15127^(2/5) 2971216675843804 a001 53316291173/1364*15127^(9/20) 2971216676493035 a001 32951280099/1364*15127^(1/2) 2971216677142265 a001 10182505537/682*15127^(11/20) 2971216677791495 a001 1144206275/124*15127^(3/5) 2971216678261054 r005 Im(z^2+c),c=-7/114+47/57*I,n=48 2971216678440725 a001 7778742049/1364*15127^(13/20) 2971216679089956 a001 1201881744/341*15127^(7/10) 2971216679153526 a007 Real Root Of 261*x^4-628*x^3+978*x^2-815*x-347 2971216679739186 a001 2971215073/1364*15127^(3/4) 2971216679889377 a001 1134903780*5778^(1/9) 2971216680388416 a001 1836311903/1364*15127^(4/5) 2971216681037646 a001 567451585/682*15127^(17/20) 2971216681686876 a001 701408733/1364*15127^(9/10) 2971216682336107 a001 433494437/1364*15127^(19/20) 2971216682984478 a001 1340018724026/451 2971216683399295 m001 (Backhouse+FeigenbaumD)/(Ei(1,1)+GAMMA(19/24)) 2971216684833699 a001 956722026041/1364*5778^(1/6) 2971216686889111 m002 6+E^Pi+Pi^5/E^(2*Pi) 2971216688436273 r005 Im(z^2+c),c=-19/22+23/97*I,n=3 2971216689121883 p003 LerchPhi(1/512,4,163/214) 2971216689778021 a001 591286729879/1364*5778^(2/9) 2971216692479548 h001 (3/11*exp(1)+2/3)/(7/12*exp(2)+3/7) 2971216694722344 a001 182717648081/682*5778^(5/18) 2971216699666666 a001 225851433717/1364*5778^(1/3) 2971216701849721 r005 Re(z^2+c),c=-10/31+19/48*I,n=20 2971216703994010 a001 610/9349*14662949395604^(17/21) 2971216703994010 a001 610/9349*(1/2+1/2*5^(1/2))^51 2971216703994010 a001 610/9349*192900153618^(17/18) 2971216703994868 a001 4181/1364*(1/2+1/2*5^(1/2))^43 2971216704610988 a001 139583862445/1364*5778^(7/18) 2971216705685009 l006 ln(5061/6812) 2971216706374710 r005 Re(z^2+c),c=-4/21+20/31*I,n=32 2971216708125729 a001 2504730781961/1364*2207^(1/16) 2971216708167671 r005 Im(z^2+c),c=-19/18+50/177*I,n=6 2971216709555310 a001 21566892818/341*5778^(4/9) 2971216714499633 a001 53316291173/1364*5778^(1/2) 2971216717007041 r009 Im(z^3+c),c=-15/32+5/41*I,n=16 2971216719443955 a001 32951280099/1364*5778^(5/9) 2971216721982910 r005 Re(z^2+c),c=-11/14+61/170*I,n=2 2971216724388277 a001 10182505537/682*5778^(11/18) 2971216726971127 m001 (RenyiParking-Thue)/(Artin+HeathBrownMoroz) 2971216729332599 a001 1144206275/124*5778^(2/3) 2971216729601634 r005 Im(z^2+c),c=13/126+17/59*I,n=29 2971216734276922 a001 7778742049/1364*5778^(13/18) 2971216735085173 r009 Re(z^3+c),c=-11/24+13/30*I,n=62 2971216735411028 a007 Real Root Of -283*x^4-585*x^3+581*x^2-591*x-174 2971216739221244 a001 1201881744/341*5778^(7/9) 2971216743826057 a007 Real Root Of 365*x^4+866*x^3-597*x^2+8*x-437 2971216744165566 a001 2971215073/1364*5778^(5/6) 2971216746250726 a001 1134903780*2207^(1/8) 2971216749109889 a001 1836311903/1364*5778^(8/9) 2971216754054211 a001 567451585/682*5778^(17/18) 2971216757003576 a001 7778742049/521*521^(11/13) 2971216758997678 a001 3838812052625/1292 2971216759238336 a007 Real Root Of -304*x^4-814*x^3+389*x^2+240*x-380 2971216769422375 m001 1/Tribonacci/Khintchine*ln(GAMMA(5/6))^2 2971216771337912 a007 Real Root Of 222*x^4-480*x^3-410*x^2-471*x+187 2971216775858598 a001 956722026041/5778*843^(3/7) 2971216777646993 r005 Re(z^2+c),c=-9/25+11/43*I,n=17 2971216777929758 r005 Re(z^2+c),c=-9/28+25/62*I,n=45 2971216778804526 r005 Im(z^2+c),c=-3/5+7/127*I,n=38 2971216781817680 r005 Re(z^2+c),c=-41/110+7/39*I,n=28 2971216784109556 r005 Re(z^2+c),c=-25/86+26/53*I,n=56 2971216784375723 a001 956722026041/1364*2207^(3/16) 2971216792005229 r009 Re(z^3+c),c=-15/31+26/53*I,n=29 2971216796621851 h001 (-9*exp(3/2)-2)/(-7*exp(-1)+4) 2971216798689877 r005 Im(z^2+c),c=31/122+5/29*I,n=37 2971216799212870 a001 956722026041/3571*843^(5/14) 2971216806418488 m001 (TwinPrimes+ZetaQ(3))/(CareFree-Otter) 2971216816076223 r005 Im(z^2+c),c=-157/126+19/59*I,n=7 2971216822500721 a001 591286729879/1364*2207^(1/4) 2971216829885867 a001 1/3*47^(25/44) 2971216832007334 m005 (1/2*Catalan-6)/(5/6*exp(1)-2/5) 2971216851072738 a001 4052739537881/2207*322^(1/12) 2971216851871797 a001 2504730781961/15127*843^(3/7) 2971216852142072 a001 139583862445/2207*843^(4/7) 2971216860625719 a001 182717648081/682*2207^(5/16) 2971216862961973 a001 6557470319842/39603*843^(3/7) 2971216865580009 a001 10610209857723/64079*843^(3/7) 2971216868671898 a007 Real Root Of -702*x^4-367*x^3+667*x^2+855*x+191 2971216869816079 a001 4052739537881/24476*843^(3/7) 2971216880307476 m001 Sierpinski*FeigenbaumB^2*ln(GAMMA(1/4))^2 2971216880604787 r005 Re(z^2+c),c=-25/78+21/52*I,n=25 2971216880741500 m005 (1/2*exp(1)+5/9)/(5/6*gamma-6/11) 2971216884914494 m001 Champernowne-Conway*FellerTornier 2971216889697358 r005 Re(z^2+c),c=-19/52+7/31*I,n=21 2971216898750718 a001 225851433717/1364*2207^(3/8) 2971216898850539 a001 1548008755920/9349*843^(3/7) 2971216902999159 a001 610/3571*14662949395604^(7/9) 2971216902999159 a001 610/3571*(1/2+1/2*5^(1/2))^49 2971216902999159 a001 610/3571*505019158607^(7/8) 2971216903000000 a001 1597/1364*45537549124^(15/17) 2971216903000000 a001 1597/1364*312119004989^(9/11) 2971216903000000 a001 1597/1364*14662949395604^(5/7) 2971216903000000 a001 1597/1364*(1/2+1/2*5^(1/2))^45 2971216903000000 a001 1597/1364*192900153618^(5/6) 2971216903000000 a001 1597/1364*28143753123^(9/10) 2971216903000000 a001 1597/1364*10749957122^(15/16) 2971216903047936 m006 (3/4*exp(2*Pi)+2/3)/(5/6*ln(Pi)+2/5) 2971216918669696 m001 (LandauRamanujan+Salem)/(gamma(2)-Cahen) 2971216919002217 a001 34/7*64079^(9/55) 2971216924285701 m001 1/(Conway-FeigenbaumDelta) 2971216924285701 m001 1/abs(-Conway+FeigenbaumDelta) 2971216924800048 m001 Zeta(5)+gamma(3)+Pi*csc(11/24*Pi)/GAMMA(13/24) 2971216929739962 r005 Im(z^2+c),c=-15/14+72/247*I,n=3 2971216933847124 r005 Im(z^2+c),c=-4/3+5/146*I,n=21 2971216936875717 a001 139583862445/1364*2207^(7/16) 2971216950323184 a007 Real Root Of 683*x^4-936*x^3+444*x^2-407*x-190 2971216963783463 r005 Im(z^2+c),c=-35/31+9/38*I,n=32 2971216964664010 m002 -6+Pi^5-Cosh[Pi]/4 2971216967921789 r005 Re(z^2+c),c=-17/18+46/93*I,n=2 2971216968643552 a001 2504730781961/1364*843^(1/14) 2971216973040383 r005 Im(z^2+c),c=-9/14+7/124*I,n=51 2971216975000717 a001 21566892818/341*2207^(1/2) 2971216997352084 m001 (-arctan(1/2)+Niven)/(Zeta(1/2)-exp(1)) 2971217013125717 a001 53316291173/1364*2207^(9/16) 2971217025025957 a005 (1/cos(1/77*Pi))^1308 2971217026510446 r005 Re(z^2+c),c=-31/122+31/56*I,n=29 2971217038754541 r005 Im(z^2+c),c=-117/110+15/59*I,n=26 2971217039169249 l006 ln(4402/5925) 2971217040882950 m005 (1/2*3^(1/2)-3/5)/(1/5*Catalan-3/11) 2971217044796665 a007 Real Root Of 900*x^4+93*x^3-564*x^2-534*x+199 2971217051250718 a001 32951280099/1364*2207^(5/8) 2971217074501427 a001 591286729879/5778*843^(1/2) 2971217078764256 s002 sum(A122847[n]/(exp(n)+1),n=1..infinity) 2971217087415502 m001 (Si(Pi)+BesselK(1,1))/(-GaussAGM+ZetaQ(3)) 2971217089375719 a001 10182505537/682*2207^(11/16) 2971217091526635 m001 (FransenRobinson+PlouffeB)^Catalan 2971217097855702 a001 591286729879/3571*843^(3/7) 2971217098247833 l006 ln(479/9348) 2971217103854446 r005 Re(z^2+c),c=-23/102+36/61*I,n=53 2971217105045845 m001 Ei(1,1)+exp(-1/2*Pi)*Artin 2971217115399078 m001 (sin(1/5*Pi)+Pi^(1/2))/(Backhouse-Robbin) 2971217119277692 r008 a(0)=3,K{-n^6,-18+7*n^3+60*n^2-14*n} 2971217121117351 k006 concat of cont frac of 2971217127500721 a001 1144206275/124*2207^(3/4) 2971217129143722 r009 Re(z^3+c),c=-19/66+5/48*I,n=5 2971217136354402 r005 Im(z^2+c),c=13/126+17/59*I,n=33 2971217142606589 r009 Im(z^3+c),c=-5/17+10/37*I,n=13 2971217144228816 r008 a(0)=3,K{-n^6,-48+47*n+21*n^2+15*n^3} 2971217148217071 r005 Im(z^2+c),c=-37/78+1/21*I,n=13 2971217150514634 a001 1548008755920/15127*843^(1/2) 2971217150784909 a001 86267571272/2207*843^(9/14) 2971217150876354 m001 (-GlaisherKinkelin+Salem)/(3^(1/2)-exp(1/Pi)) 2971217153637170 a007 Real Root Of 17*x^4+494*x^3-306*x^2+737*x+701 2971217154451162 m001 gamma(2)/(Khinchin+Stephens) 2971217157219832 r005 Im(z^2+c),c=13/126+17/59*I,n=30 2971217161604812 a001 4052739537881/39603*843^(1/2) 2971217163222847 a001 225749145909/2206*843^(1/2) 2971217164222847 a001 6557470319842/64079*843^(1/2) 2971217165625723 a001 7778742049/1364*2207^(13/16) 2971217168458918 a001 2504730781961/24476*843^(1/2) 2971217173431839 r002 3th iterates of z^2 + 2971217181018327 r005 Im(z^2+c),c=13/126+17/59*I,n=34 2971217185797619 r005 Im(z^2+c),c=13/126+17/59*I,n=37 2971217190045140 r005 Im(z^2+c),c=13/126+17/59*I,n=38 2971217190179298 r005 Re(z^2+c),c=-21/110+37/62*I,n=17 2971217190328257 h005 exp(cos(Pi*8/53)/cos(Pi*9/46)) 2971217191546375 r005 Im(z^2+c),c=13/126+17/59*I,n=41 2971217191887505 r005 Im(z^2+c),c=13/126+17/59*I,n=42 2971217192181001 r005 Im(z^2+c),c=13/126+17/59*I,n=45 2971217192198022 r005 Im(z^2+c),c=13/126+17/59*I,n=46 2971217192245314 r005 Im(z^2+c),c=13/126+17/59*I,n=50 2971217192246495 r005 Im(z^2+c),c=13/126+17/59*I,n=49 2971217192252047 r005 Im(z^2+c),c=13/126+17/59*I,n=54 2971217192252604 r005 Im(z^2+c),c=13/126+17/59*I,n=53 2971217192252957 r005 Im(z^2+c),c=13/126+17/59*I,n=58 2971217192253075 r005 Im(z^2+c),c=13/126+17/59*I,n=62 2971217192253075 r005 Im(z^2+c),c=13/126+17/59*I,n=57 2971217192253089 r005 Im(z^2+c),c=13/126+17/59*I,n=59 2971217192253089 r005 Im(z^2+c),c=13/126+17/59*I,n=63 2971217192253095 r005 Im(z^2+c),c=13/126+17/59*I,n=61 2971217192253097 r005 Im(z^2+c),c=13/126+17/59*I,n=64 2971217192253139 r005 Im(z^2+c),c=13/126+17/59*I,n=60 2971217192253200 r005 Im(z^2+c),c=13/126+17/59*I,n=55 2971217192253467 r005 Im(z^2+c),c=13/126+17/59*I,n=56 2971217192254956 r005 Im(z^2+c),c=13/126+17/59*I,n=51 2971217192255957 r005 Im(z^2+c),c=13/126+17/59*I,n=52 2971217192273930 r005 Im(z^2+c),c=13/126+17/59*I,n=48 2971217192275283 r005 Im(z^2+c),c=13/126+17/59*I,n=47 2971217192396320 r005 Im(z^2+c),c=13/126+17/59*I,n=44 2971217192481183 r005 Im(z^2+c),c=13/126+17/59*I,n=43 2971217193164960 r005 Im(z^2+c),c=13/126+17/59*I,n=40 2971217194405032 r005 Im(z^2+c),c=13/126+17/59*I,n=39 2971217197386618 r005 Im(z^2+c),c=13/126+17/59*I,n=36 2971217197493381 a001 956722026041/9349*843^(1/2) 2971217203750726 a001 1201881744/341*2207^(7/8) 2971217211363894 r005 Im(z^2+c),c=13/126+17/59*I,n=35 2971217212161888 r005 Im(z^2+c),c=13/126+17/59*I,n=28 2971217214340992 m001 (LambertW(1)+GAMMA(2/3))/(Bloch+ZetaP(3)) 2971217214435824 r005 Im(z^2+c),c=13/126+17/59*I,n=32 2971217220403748 r008 a(0)=3,K{-n^6,-28+31*n+10*n^2+22*n^3} 2971217221741830 m001 (gamma(3)+Lehmer)/(Robbin+Totient) 2971217226145907 r005 Im(z^2+c),c=-7/6+8/207*I,n=24 2971217229255574 r008 a(0)=3,K{-n^6,4-25*n+38*n^2+18*n^3} 2971217229361068 b008 ExpIntegralEi[3^Log[4]] 2971217241875729 a001 2971215073/1364*2207^(15/16) 2971217247399623 m002 Pi^4/(5*Log[Pi])+Log[Pi]+Sinh[Pi] 2971217249052520 r009 Im(z^3+c),c=-7/58+33/40*I,n=46 2971217251402176 m001 (5^(1/2)+PlouffeB*Riemann3rdZero)/PlouffeB 2971217253032236 p001 sum(1/(247*n+40)/n/(12^n),n=1..infinity) 2971217253378913 h001 (2/9*exp(1)+7/10)/(4/7*exp(2)+1/6) 2971217254233022 r005 Re(z^2+c),c=-5/18+23/44*I,n=64 2971217254920843 m001 cos(1)^(MasserGramainDelta/OneNinth) 2971217263606904 m001 BesselI(1,1)*Kolakoski*Robbin 2971217267286401 a001 1134903780*843^(1/7) 2971217284652472 r008 a(0)=3,K{-n^6,28-51*n+35*n^2+23*n^3} 2971217288521121 r008 a(0)=3,K{-n^6,-28+33*n^3-23*n^2+53*n} 2971217304765606 m001 gamma^(Pi^(1/2))/(ln(Pi)^(Pi^(1/2))) 2971217304765606 m001 gamma^sqrt(Pi)/(ln(Pi)^sqrt(Pi)) 2971217307492540 a007 Real Root Of -247*x^4-807*x^3-505*x^2-885*x-89 2971217315168872 r005 Re(z^2+c),c=7/54+20/33*I,n=19 2971217322855802 r008 a(0)=3,K{-n^6,-8+29*n-22*n^2+36*n^3} 2971217322993578 m001 TwinPrimes/(ln(2)+GAMMA(7/12)) 2971217323749421 m001 (BesselI(0,1)+2/3)/(-TwinPrimes+2/3) 2971217324274682 m005 (1/2*Pi+6/11)/(5/9*3^(1/2)-1/4) 2971217325332755 m001 MasserGramainDelta^(Pi^(1/2))-gamma(1) 2971217343134109 a008 Real Root of x^3-x^2-125*x+354 2971217353931093 r005 Im(z^2+c),c=13/126+17/59*I,n=31 2971217356018291 l006 ln(415/8099) 2971217359865124 r005 Im(z^2+c),c=13/126+17/59*I,n=26 2971217372074954 a001 3536736619241/1926*322^(1/12) 2971217373144287 a001 182717648081/2889*843^(4/7) 2971217382132142 r002 10th iterates of z^2 + 2971217383011184 r008 a(0)=3,K{-n^6,-4+47*n-56*n^2+48*n^3} 2971217383213385 m001 GAMMA(1/12)^2*BesselJ(0,1)/exp(GAMMA(3/4)) 2971217388305794 m004 (25*E^(Sqrt[5]*Pi)*Pi)/3+Sinh[Sqrt[5]*Pi]/2 2971217396498564 a001 365435296162/3571*843^(1/2) 2971217399121583 m003 30+Cos[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2]/2 2971217410544102 m004 E^(Sqrt[5]*Pi)/4+(25*E^(Sqrt[5]*Pi)*Pi)/3 2971217411596644 r005 Im(z^2+c),c=-5/114+18/49*I,n=32 2971217412140008 r008 a(0)=3,K{-n^6,56+45*n^3-17*n^2-49*n} 2971217413445308 a007 Real Root Of -33*x^4-999*x^3-573*x^2-701*x-191 2971217416067168 m001 (Landau-Paris)/(Zeta(5)-KhinchinLevy) 2971217422594499 r008 a(0)=3,K{-n^6,42-18*n-39*n^2+50*n^3} 2971217425662122 r005 Re(z^2+c),c=-27/34+11/76*I,n=32 2971217432782409 m004 (25*E^(Sqrt[5]*Pi)*Pi)/3+Cosh[Sqrt[5]*Pi]/2 2971217436558144 a007 Real Root Of -761*x^4-570*x^3-966*x^2+676*x-2 2971217440823569 h001 (2/3*exp(1)+2/7)/(6/7*exp(2)+8/11) 2971217449157501 a001 956722026041/15127*843^(4/7) 2971217449162193 a007 Real Root Of -125*x^4-93*x^3+858*x^2-103*x-578 2971217449427776 a001 53316291173/2207*843^(5/7) 2971217450151398 m001 1/exp(Tribonacci)/CareFree*log(2+sqrt(3)) 2971217460247680 a001 2504730781961/39603*843^(4/7) 2971217461865715 a001 3278735159921/51841*843^(4/7) 2971217462247682 a001 10610209857723/167761*843^(4/7) 2971217462865716 a001 4052739537881/64079*843^(4/7) 2971217465078409 a001 271443*514229^(15/17) 2971217467101788 a001 387002188980/6119*843^(4/7) 2971217467821127 k002 Champernowne real with 52*n^2-114*n+91 2971217476877144 k003 Champernowne real with 29/6*n^3-3/2*n^2-67/3*n+21 2971217477235667 m006 (4*exp(Pi)+3)/(3/5*exp(2*Pi)+1/3) 2971217490081265 l006 ln(3743/5038) 2971217496136253 a001 591286729879/9349*843^(4/7) 2971217497839878 r005 Re(z^2+c),c=-10/27+16/57*I,n=7 2971217498629771 r002 12th iterates of z^2 + 2971217500581079 m001 HardyLittlewoodC4-Khinchin^Zeta(3) 2971217510809775 a007 Real Root Of -279*x^4-575*x^3+766*x^2-92*x-374 2971217513124136 a007 Real Root Of 663*x^4+97*x^3+98*x^2-502*x-15 2971217530742142 a007 Real Root Of -994*x^4-279*x^3-588*x^2-230*x-16 2971217530906193 m001 Conway/Otter/ZetaR(2) 2971217536587011 m001 (ln(5)+BesselI(1,1)*Champernowne)/BesselI(1,1) 2971217540404246 m001 (ArtinRank2+Grothendieck)/(1+Zeta(1,-1)) 2971217549122117 b008 Sech[(-2/3+E)^2] 2971217550422056 m001 ln(Salem)/CopelandErdos^2*Zeta(7)^2 2971217551169067 a007 Real Root Of 306*x^4+607*x^3-947*x^2-221*x-223 2971217552000642 a007 Real Root Of -949*x^4+927*x^3-791*x^2+779*x+333 2971217564630528 r008 a(0)=3,K{-n^6,58-n-10*n^2-13*n^3} 2971217565929280 a001 956722026041/1364*843^(3/14) 2971217567082747 r002 30th iterates of z^2 + 2971217574013314 r005 Re(z^2+c),c=-13/46+23/45*I,n=62 2971217577096214 p004 log(21799/1117) 2971217581030565 r005 Im(z^2+c),c=-31/94+33/64*I,n=26 2971217581366206 r002 37th iterates of z^2 + 2971217583987752 r002 46th iterates of z^2 + 2971217588322110 a007 Real Root Of 274*x^4+516*x^3-675*x^2+847*x+656 2971217589509240 m001 Robbin/DuboisRaymond^2/exp(sqrt(Pi)) 2971217591733995 s002 sum(A227359[n]/(exp(pi*n)-1),n=1..infinity) 2971217592831386 a005 (1/cos(9/158*Pi))^1498 2971217599005722 a001 12586269025/521*521^(10/13) 2971217600082124 r005 Re(z^2+c),c=-27/74+13/57*I,n=20 2971217620676098 r005 Im(z^2+c),c=-25/118+19/43*I,n=22 2971217626268617 m001 (-LandauRamanujan2nd+ZetaQ(4))/(2^(1/3)+ln(2)) 2971217630260076 m001 Cahen/(Mills+Thue) 2971217632085733 a008 Real Root of x^4-10*x^2-12*x+46 2971217659938012 m002 -Pi^(-6)-Cosh[Pi]+Pi^2/Log[Pi] 2971217671787177 a001 75283811239/1926*843^(9/14) 2971217674588880 r005 Im(z^2+c),c=-71/110+1/39*I,n=13 2971217678118530 a007 Real Root Of 186*x^4+361*x^3-840*x^2-810*x-18 2971217688244708 m001 (gamma(2)+ArtinRank2)/(PlouffeB+Tribonacci) 2971217690694785 m001 Pi*Psi(1,1/3)-2^(1/3)*BesselI(1,2) 2971217693188700 r005 Im(z^2+c),c=5/118+34/57*I,n=20 2971217694072123 a001 6557470319842/3571*322^(1/12) 2971217694836038 v003 sum((29+6*n^2-18*n)/n^(n-1),n=1..infinity) 2971217695141456 a001 225851433717/3571*843^(4/7) 2971217696929358 a007 Real Root Of 181*x^4-972*x^3-496*x^2-199*x+127 2971217707790405 l006 ln(351/6850) 2971217712112111 k006 concat of cont frac of 2971217714397517 a007 Real Root Of 24*x^4+745*x^3+976*x^2+838*x+223 2971217719331703 r009 Re(z^3+c),c=-43/114+18/61*I,n=19 2971217729143361 r002 16th iterates of z^2 + 2971217732014889 a003 cos(Pi*15/89)-cos(Pi*29/94) 2971217734361372 r005 Re(z^2+c),c=17/60+4/37*I,n=15 2971217737355615 r005 Re(z^2+c),c=-9/40+47/62*I,n=30 2971217739895422 a007 Real Root Of 979*x^4-653*x^3-72*x^2+173*x+33 2971217747800399 a001 591286729879/15127*843^(9/14) 2971217748070674 a001 32951280099/2207*843^(11/14) 2971217750821646 m001 (Conway+Salem)/GaussAGM 2971217758890579 a001 516002918640/13201*843^(9/14) 2971217760508614 a001 4052739537881/103682*843^(9/14) 2971217760744682 a001 3536736619241/90481*843^(9/14) 2971217760791524 m001 Kolakoski^Otter/Niven 2971217760890581 a001 6557470319842/167761*843^(9/14) 2971217761508615 a001 2504730781961/64079*843^(9/14) 2971217765744687 a001 956722026041/24476*843^(9/14) 2971217771930406 m005 (-11/36+1/4*5^(1/2))/(2/9*Zeta(3)-2/11) 2971217780826046 l006 ln(6827/9189) 2971217787925561 a003 sin(Pi*1/82)+sin(Pi*1/12) 2971217793052049 h001 (7/10*exp(2)+3/10)/(5/8*exp(1)+1/7) 2971217794779155 a001 365435296162/9349*843^(9/14) 2971217798547729 m005 (1/2*Zeta(3)-7/9)/(2/7*3^(1/2)+1/10) 2971217802110159 m001 (Porter*TreeGrowth2nd+Robbin)/TreeGrowth2nd 2971217814944398 r005 Re(z^2+c),c=-9/14+9/235*I,n=4 2971217824880248 r005 Re(z^2+c),c=-37/86+11/25*I,n=8 2971217826783180 m001 (Pi+BesselK(1,1))/(2^(1/3)) 2971217826783180 m001 1/2*(Pi+BesselK(1,1))*2^(2/3) 2971217826897193 r009 Re(z^3+c),c=-17/58+3/25*I,n=9 2971217836586502 r005 Re(z^2+c),c=-47/122+1/50*I,n=26 2971217839837427 r002 16th iterates of z^2 + 2971217848762136 r009 Re(z^3+c),c=-53/110+4/9*I,n=38 2971217864572189 a001 591286729879/1364*843^(2/7) 2971217866541774 a001 7/832040*514229^(34/35) 2971217866848880 m001 (GAMMA(23/24)-gamma)/(Backhouse+ZetaQ(2)) 2971217890332861 m006 (5/6*Pi+4/5)/(5*exp(Pi)-2/3) 2971217897356606 a003 cos(Pi*15/112)-cos(Pi*13/45) 2971217897643581 r005 Im(z^2+c),c=-11/14+2/99*I,n=7 2971217897873646 r009 Re(z^3+c),c=-19/70+1/56*I,n=6 2971217901218751 m001 cos(1/12*Pi)*(Pi^(1/2)+Conway) 2971217902034347 r008 a(0)=3,K{-n^6,-61+48*n+42*n^2+6*n^3} 2971217905331390 h001 (2/11*exp(2)+9/10)/(10/11*exp(2)+5/6) 2971217905832956 m001 (OneNinth-Robbin)/(FeigenbaumMu-Niven) 2971217923582828 r009 Im(z^3+c),c=-12/25+8/57*I,n=63 2971217928844909 m005 (1/2*Zeta(3)+1/12)/(4/7*exp(1)+3/4) 2971217929318304 m001 (BesselI(0,1)-Shi(1))/(-CareFree+ZetaQ(4)) 2971217933875094 a007 Real Root Of 133*x^4+168*x^3-493*x^2+642*x+301 2971217939988656 m001 1/GAMMA(1/12)*ln((3^(1/3)))*cos(Pi/12)^2 2971217945661182 r008 a(0)=3,K{-n^6,-51+39*n+38*n^2+9*n^3} 2971217947385782 p001 sum((-1)^n/(382*n+335)/(100^n),n=0..infinity) 2971217956248055 m002 6+Pi^5+Cosh[Pi]-E^Pi*Log[Pi] 2971217966629999 r002 38th iterates of z^2 + 2971217970430097 a001 139583862445/5778*843^(5/7) 2971217973835831 m005 (1/2*exp(1)-3)/(4*Zeta(3)+5/7) 2971217975202546 a005 (1/sin(69/211*Pi))^7 2971217978947211 r005 Re(z^2+c),c=-24/25+6/31*I,n=32 2971217993784378 a001 139583862445/3571*843^(9/14) 2971218004154251 r005 Re(z^2+c),c=21/64+4/61*I,n=27 2971218005894545 m006 (1/2*exp(2*Pi)+2/5)/(3*Pi-2/5) 2971218007984150 p004 log(25793/19163) 2971218029821143 r002 29th iterates of z^2 + 2971218036356841 a007 Real Root Of -508*x^4+140*x^3+909*x^2+855*x-334 2971218042479296 r005 Re(z^2+c),c=-29/86+22/63*I,n=22 2971218046443326 a001 365435296162/15127*843^(5/7) 2971218046713601 a001 20365011074/2207*843^(6/7) 2971218052997213 m001 (LambertW(1)-ln(2))/(GAMMA(17/24)+Otter) 2971218055041937 r005 Im(z^2+c),c=-17/42+21/61*I,n=3 2971218056219936 a001 591286729879/843*322^(1/4) 2971218057533507 a001 956722026041/39603*843^(5/7) 2971218059151543 a001 2504730781961/103682*843^(5/7) 2971218059387611 a001 6557470319842/271443*843^(5/7) 2971218059443339 a001 10610209857723/439204*843^(5/7) 2971218059533509 a001 4052739537881/167761*843^(5/7) 2971218060151544 a001 1548008755920/64079*843^(5/7) 2971218064387616 a001 591286729879/24476*843^(5/7) 2971218071820867 r005 Im(z^2+c),c=-10/29+28/55*I,n=31 2971218079321187 r002 5th iterates of z^2 + 2971218093422088 a001 225851433717/9349*843^(5/7) 2971218109709873 m001 LaplaceLimit+(Pi^(1/2))^MinimumGamma 2971218116718591 p001 sum(1/(422*n+373)/(5^n),n=0..infinity) 2971218116830712 r008 a(0)=3,K{-n^6,-23-59*n^3+88*n^2+28*n} 2971218118279218 r008 a(0)=3,K{-n^6,-35+30*n^3-17*n^2+57*n} 2971218121297477 r009 Re(z^3+c),c=-57/122+26/55*I,n=62 2971218126106171 r008 a(0)=3,K{-n^6,-3+n+11*n^2+26*n^3} 2971218133698186 l006 ln(3084/4151) 2971218141394727 r008 a(0)=3,K{-n^6,-29+33*n^3-23*n^2+54*n} 2971218160006941 r005 Re(z^2+c),c=1/6+22/63*I,n=39 2971218163215128 a001 182717648081/682*843^(5/14) 2971218172437861 m001 (Porter-ZetaQ(2))/(FeigenbaumMu+KhinchinLevy) 2971218175288953 r008 a(0)=3,K{-n^6,-9+30*n-22*n^2+36*n^3} 2971218184121595 k006 concat of cont frac of 2971218193525443 r008 a(0)=3,K{-n^6,37-47*n+13*n^2+32*n^3} 2971218195293974 r005 Re(z^2+c),c=-29/94+27/61*I,n=26 2971218208024443 a005 (1/cos(18/203*Pi))^672 2971218216450211 l006 ln(287/5601) 2971218224141778 r009 Re(z^3+c),c=-33/106+26/45*I,n=2 2971218225218132 k006 concat of cont frac of 2971218225366076 m006 (1/5*ln(Pi)+4)/(2/5*Pi+1/6) 2971218231522480 h001 (11/12*exp(2)+7/8)/(1/3*exp(2)+1/9) 2971218233541711 r005 Im(z^2+c),c=37/106+9/61*I,n=29 2971218245269427 r005 Im(z^2+c),c=-5/114+18/49*I,n=35 2971218248596249 m005 (1/2*exp(1)-7/11)/(7/12*Pi+3/5) 2971218261705281 a007 Real Root Of 439*x^4+930*x^3-822*x^2+904*x+123 2971218267001466 a001 305/682*(1/2+1/2*5^(1/2))^47 2971218268669042 r008 a(0)=3,K{-n^6,51-38*n-25*n^2+47*n^3} 2971218269073047 a001 43133785636/2889*843^(11/14) 2971218272338348 h001 (2/9*exp(1)+10/11)/(2/3*exp(2)+1/6) 2971218276544671 a007 Real Root Of 42*x^4-189*x^3-875*x^2-112*x-839 2971218277122601 m001 GAMMA(5/6)^2/ln(Porter)^2/cos(1)^2 2971218290207724 a003 sin(Pi*8/91)-sin(Pi*11/57) 2971218292427331 a001 86267571272/3571*843^(5/7) 2971218295584281 m001 (HeathBrownMoroz+OneNinth)/(Ei(1)+Pi^(1/2)) 2971218297759824 r005 Re(z^2+c),c=-27/118+25/43*I,n=44 2971218304294691 m001 Salem/gamma(1)*Tribonacci 2971218343860509 a008 Real Root of x^4-x^3-19*x^2-15*x+19 2971218345086284 a001 32264490531/2161*843^(11/14) 2971218345356559 a001 12586269025/2207*843^(13/14) 2971218352881408 a009 2^(1/3)*(19+21^(1/2)) 2971218356176466 a001 591286729879/39603*843^(11/14) 2971218357794502 a001 774004377960/51841*843^(11/14) 2971218357987778 r009 Im(z^3+c),c=-27/62+11/59*I,n=28 2971218358030570 a001 4052739537881/271443*843^(11/14) 2971218358065012 a001 1515744265389/101521*843^(11/14) 2971218358086298 a001 3278735159921/219602*843^(11/14) 2971218358176468 a001 2504730781961/167761*843^(11/14) 2971218358794503 a001 956722026041/64079*843^(11/14) 2971218359605330 m001 (-GAMMA(5/6)+TwinPrimes)/(1+gamma) 2971218362571343 k009 concat of cont frac of 2971218362917131 r008 a(0)=3,K{-n^6,91+69*n^3-71*n^2-54*n} 2971218363030575 a001 182717648081/12238*843^(11/14) 2971218379110399 r002 12i'th iterates of 2*x/(1-x^2) of 2971218380655532 a007 Real Root Of 219*x^4+501*x^3-538*x^2-141*x+404 2971218389008837 r005 Im(z^2+c),c=-11/18+5/102*I,n=27 2971218389596823 r005 Re(z^2+c),c=-25/66+7/54*I,n=23 2971218390414195 r005 Im(z^2+c),c=-1/3+15/32*I,n=19 2971218392065050 a001 139583862445/9349*843^(11/14) 2971218394292774 r005 Im(z^2+c),c=-99/82+7/43*I,n=44 2971218401505184 m005 (-7/4+1/4*5^(1/2))/(5*Catalan-4/7) 2971218401728206 m001 (5^(1/2)+GAMMA(13/24))/(Psi(1,1/3)-exp(Pi)) 2971218409128484 m001 (GAMMA(2/3)-ln(2))/(Zeta(1/2)-LandauRamanujan) 2971218430471147 a007 Real Root Of -283*x^4-913*x^3-592*x^2-908*x+636 2971218441008107 a001 20365011074/521*521^(9/13) 2971218442664695 r005 Im(z^2+c),c=-5/114+18/49*I,n=38 2971218443548798 m001 GAMMA(5/12)*ln(BesselJ(1,1))/sin(Pi/5) 2971218444932635 r005 Im(z^2+c),c=-5/114+18/49*I,n=36 2971218453329888 r005 Im(z^2+c),c=-5/114+18/49*I,n=39 2971218454622450 a001 141422324*34^(4/19) 2971218461673552 a001 3*39088169^(10/19) 2971218461858098 a001 225851433717/1364*843^(3/7) 2971218462908540 m001 GAMMA(11/12)/TwinPrimes/exp(sin(1))^2 2971218466358289 r005 Im(z^2+c),c=-9/56+37/56*I,n=33 2971218469653848 r009 Re(z^3+c),c=-37/122+5/34*I,n=13 2971218470668854 r005 Im(z^2+c),c=-5/114+18/49*I,n=42 2971218470827128 k002 Champernowne real with 105/2*n^2-231/2*n+92 2971218478319361 r005 Im(z^2+c),c=-5/114+18/49*I,n=45 2971218479268956 r005 Im(z^2+c),c=-5/114+18/49*I,n=41 2971218479685549 r005 Re(z^2+c),c=-47/122+1/50*I,n=28 2971218480762298 r005 Im(z^2+c),c=-5/114+18/49*I,n=48 2971218480887146 k003 Champernowne real with 5*n^3-5/2*n^2-41/2*n+20 2971218481397755 r005 Im(z^2+c),c=-5/114+18/49*I,n=51 2971218481491606 r005 Im(z^2+c),c=-5/114+18/49*I,n=52 2971218481522468 r005 Im(z^2+c),c=-5/114+18/49*I,n=55 2971218481532067 r005 Im(z^2+c),c=-5/114+18/49*I,n=54 2971218481541334 r005 Im(z^2+c),c=-5/114+18/49*I,n=58 2971218481548172 r005 Im(z^2+c),c=-5/114+18/49*I,n=61 2971218481550125 r005 Im(z^2+c),c=-5/114+18/49*I,n=64 2971218481551015 r005 Im(z^2+c),c=-5/114+18/49*I,n=62 2971218481551532 r005 Im(z^2+c),c=-5/114+18/49*I,n=63 2971218481552308 r005 Im(z^2+c),c=-5/114+18/49*I,n=57 2971218481552720 r005 Im(z^2+c),c=-5/114+18/49*I,n=60 2971218481553372 r005 Im(z^2+c),c=-5/114+18/49*I,n=49 2971218481554417 r005 Im(z^2+c),c=-5/114+18/49*I,n=59 2971218481571612 r005 Im(z^2+c),c=-5/114+18/49*I,n=56 2971218481641133 r005 Im(z^2+c),c=-5/114+18/49*I,n=53 2971218481871830 r005 Im(z^2+c),c=-5/114+18/49*I,n=50 2971218482432783 r005 Im(z^2+c),c=-5/114+18/49*I,n=46 2971218482455261 r005 Im(z^2+c),c=-5/114+18/49*I,n=47 2971218483128561 r005 Im(z^2+c),c=-5/114+18/49*I,n=44 2971218487627725 r005 Im(z^2+c),c=-5/114+18/49*I,n=43 2971218491238896 r005 Im(z^2+c),c=15/58+10/59*I,n=15 2971218502431732 r005 Im(z^2+c),c=13/126+17/59*I,n=27 2971218507197410 m001 (Pi^(1/2)+ZetaP(4))/(ln(gamma)+gamma(1)) 2971218510794577 r005 Im(z^2+c),c=-5/114+18/49*I,n=40 2971218524272114 m006 (2*exp(Pi)-3/5)/(5*Pi-1/3) 2971218527548929 l006 ln(5377/5393) 2971218540308859 r005 Re(z^2+c),c=-15/28+27/55*I,n=3 2971218547991880 b008 -2*Pi+Csch[1/36] 2971218557155124 h005 exp(sin(Pi*1/35)+sin(Pi*21/43)) 2971218558741808 r002 5th iterates of z^2 + 2971218560328100 r002 5th iterates of z^2 + 2971218566527692 l006 ln(510/9953) 2971218567716027 a001 53316291173/5778*843^(6/7) 2971218567807887 m001 PisotVijayaraghavan^(Tribonacci/Weierstrass) 2971218568485560 m001 3^(1/2)/BesselJ(1,1)/PisotVijayaraghavan 2971218570993159 l006 ln(5509/7415) 2971218571693642 a003 sin(Pi*4/31)*sin(Pi*22/81) 2971218578926979 r009 Im(z^3+c),c=-9/19+4/27*I,n=48 2971218581750129 m001 BesselJ(1,1)+Sierpinski-ZetaQ(2) 2971218591070313 a001 53316291173/3571*843^(11/14) 2971218595496161 r005 Im(z^2+c),c=-5/114+18/49*I,n=37 2971218598374491 a007 Real Root Of -42*x^4+201*x^3+835*x^2-135*x+773 2971218618669870 m001 PrimesInBinary/(Ei(1,1)+Salem) 2971218620337872 m001 (-CareFree+GaussAGM)/(Catalan-GAMMA(2/3)) 2971218621816202 r002 6th iterates of z^2 + 2971218623842133 p004 log(34211/1753) 2971218629828415 m005 (1/3*3^(1/2)-1/12)/(3/4*3^(1/2)+4/11) 2971218640156973 r005 Im(z^2+c),c=-5/114+18/49*I,n=33 2971218641038561 r005 Im(z^2+c),c=-25/74+13/33*I,n=3 2971218643729271 a001 139583862445/15127*843^(6/7) 2971218644005305 a001 1120149428790/377 2971218650912575 m001 GAMMA(5/6)-Porter*Riemann2ndZero 2971218654819455 a001 365435296162/39603*843^(6/7) 2971218656437490 a001 956722026041/103682*843^(6/7) 2971218656673559 a001 2504730781961/271443*843^(6/7) 2971218656708001 a001 6557470319842/710647*843^(6/7) 2971218656716131 a001 10610209857723/1149851*843^(6/7) 2971218656729287 a001 4052739537881/439204*843^(6/7) 2971218656819457 a001 140728068720/15251*843^(6/7) 2971218657437492 a001 591286729879/64079*843^(6/7) 2971218661673565 a001 7787980473/844*843^(6/7) 2971218662913757 r005 Re(z^2+c),c=-21/40+43/53*I,n=3 2971218669521133 r005 Re(z^2+c),c=-47/122+1/50*I,n=30 2971218673218324 g007 Psi(2,5/12)+Psi(2,7/9)+Psi(2,1/5)-Psi(13/10) 2971218673887150 m001 Ei(1)^2*FransenRobinson*exp(cos(1))^2 2971218674889192 m001 GAMMA(3/4)*ln(CareFree)/Zeta(3)^2 2971218676966449 a001 29/32951280099*987^(3/17) 2971218688342662 a007 Real Root Of -78*x^4+140*x^3-69*x^2+616*x-180 2971218690276637 m001 (-GAMMA(1/3)+2)/(GAMMA(17/24)+1) 2971218690708042 a001 86267571272/9349*843^(6/7) 2971218697289732 r004 Re(z^2+c),c=-13/21*I,z(0)=I,n=44 2971218710618679 h001 (-9*exp(1)+8)/(-4*exp(-2)-5) 2971218711350213 r005 Im(z^2+c),c=-103/110+8/33*I,n=51 2971218719057382 m001 Kolakoski^2*MertensB1*exp(sin(Pi/5)) 2971218722874577 r005 Re(z^2+c),c=-47/122+1/50*I,n=32 2971218736731799 r005 Re(z^2+c),c=-47/122+1/50*I,n=34 2971218739616533 m001 2^(1/3)*GlaisherKinkelin+FeigenbaumKappa 2971218739677728 r005 Re(z^2+c),c=-47/122+1/50*I,n=39 2971218739749433 r005 Re(z^2+c),c=-47/122+1/50*I,n=37 2971218739789329 r005 Re(z^2+c),c=-47/122+1/50*I,n=41 2971218739824237 r005 Re(z^2+c),c=-47/122+1/50*I,n=36 2971218739876981 r005 Re(z^2+c),c=-47/122+1/50*I,n=43 2971218739924809 r005 Re(z^2+c),c=-47/122+1/50*I,n=45 2971218739947558 r005 Re(z^2+c),c=-47/122+1/50*I,n=47 2971218739957610 r005 Re(z^2+c),c=-47/122+1/50*I,n=49 2971218739961851 r005 Re(z^2+c),c=-47/122+1/50*I,n=51 2971218739963582 r005 Re(z^2+c),c=-47/122+1/50*I,n=53 2971218739964272 r005 Re(z^2+c),c=-47/122+1/50*I,n=55 2971218739964542 r005 Re(z^2+c),c=-47/122+1/50*I,n=57 2971218739964645 r005 Re(z^2+c),c=-47/122+1/50*I,n=59 2971218739964685 r005 Re(z^2+c),c=-47/122+1/50*I,n=61 2971218739964700 r005 Re(z^2+c),c=-47/122+1/50*I,n=63 2971218739964714 r005 Re(z^2+c),c=-47/122+1/50*I,n=64 2971218739964723 r005 Re(z^2+c),c=-47/122+1/50*I,n=62 2971218739964747 r005 Re(z^2+c),c=-47/122+1/50*I,n=60 2971218739964811 r005 Re(z^2+c),c=-47/122+1/50*I,n=58 2971218739964979 r005 Re(z^2+c),c=-47/122+1/50*I,n=56 2971218739965411 r005 Re(z^2+c),c=-47/122+1/50*I,n=54 2971218739966507 r005 Re(z^2+c),c=-47/122+1/50*I,n=52 2971218739969225 r005 Re(z^2+c),c=-47/122+1/50*I,n=50 2971218739975785 r005 Re(z^2+c),c=-47/122+1/50*I,n=48 2971218739991015 r005 Re(z^2+c),c=-47/122+1/50*I,n=46 2971218740024392 r005 Re(z^2+c),c=-47/122+1/50*I,n=44 2971218740090724 r005 Re(z^2+c),c=-47/122+1/50*I,n=42 2971218740197694 r005 Re(z^2+c),c=-47/122+1/50*I,n=40 2971218740270253 r005 Re(z^2+c),c=-47/122+1/50*I,n=38 2971218741045182 r005 Re(z^2+c),c=-47/122+1/50*I,n=35 2971218747771802 r005 Re(z^2+c),c=-47/122+1/50*I,n=33 2971218750346659 a007 Real Root Of -220*x^4+660*x^3-507*x^2+933*x+341 2971218751318972 r008 a(0)=3,K{-n^6,-62+49*n+42*n^2+6*n^3} 2971218759908043 m001 (Pi^(1/2)+HardyLittlewoodC5)/(Sarnak+Trott) 2971218760501097 a001 139583862445/1364*843^(1/2) 2971218760903601 r008 a(0)=3,K{-n^6,-68+8*n^3+33*n^2+62*n} 2971218775312085 r005 Re(z^2+c),c=-47/122+1/50*I,n=31 2971218784613593 a001 29/591286729879*12586269025^(3/17) 2971218784613602 a001 29/139583862445*3524578^(3/17) 2971218786246107 r005 Re(z^2+c),c=37/118+7/53*I,n=40 2971218794319636 r008 a(0)=3,K{-n^6,-52+40*n+38*n^2+9*n^3} 2971218809184004 m005 (1/2*Pi-5/8)/(1/5*Catalan+3) 2971218814368803 r008 a(0)=3,K{-n^6,-32+8*n^3+51*n^2+8*n} 2971218837845031 m002 -Pi^4+Pi^9+Tanh[Pi]/2 2971218844174826 r005 Im(z^2+c),c=-5/114+18/49*I,n=34 2971218850020552 a001 7/610*514229^(17/22) 2971218866359036 a001 10983760033/1926*843^(13/14) 2971218876294896 r005 Re(z^2+c),c=-39/58+5/56*I,n=4 2971218876708858 r005 Re(z^2+c),c=-47/122+1/50*I,n=29 2971218889522417 m001 GaussAGM*(OneNinth-arctan(1/2)) 2971218889713325 a001 32951280099/3571*843^(6/7) 2971218893071338 a007 Real Root Of 555*x^4+363*x^3-124*x^2-263*x-62 2971218894959577 r005 Im(z^2+c),c=-11/56+11/27*I,n=7 2971218909642244 r005 Im(z^2+c),c=-11/20+17/28*I,n=10 2971218909712694 r008 a(0)=3,K{-n^6,3+20*n+27*n^2-14*n^3} 2971218912155675 r008 a(0)=3,K{-n^6,-2-21*n+42*n^2+16*n^3} 2971218913978264 a007 Real Root Of 409*x^4+989*x^3-646*x^2-72*x-445 2971218914119830 r009 Im(z^3+c),c=-43/90+1/7*I,n=32 2971218924133457 r009 Im(z^3+c),c=-41/94+2/11*I,n=13 2971218930869084 m002 -Pi^4+Pi^9+Sinh[Pi]/E^Pi 2971218938874280 a007 Real Root Of x^4+35*x^3+170*x^2+388*x+151 2971218942372289 a001 86267571272/15127*843^(13/14) 2971218951431062 m009 (1/2*Psi(1,1/3)+1/6)/(6*Psi(1,2/3)-5/6) 2971218952061699 r005 Re(z^2+c),c=23/118+23/60*I,n=48 2971218953462473 a001 75283811239/13201*843^(13/14) 2971218955080509 a001 591286729879/103682*843^(13/14) 2971218955316578 a001 516002918640/90481*843^(13/14) 2971218955351019 a001 4052739537881/710647*843^(13/14) 2971218955356044 a001 3536736619241/620166*843^(13/14) 2971218955359150 a001 6557470319842/1149851*843^(13/14) 2971218955372306 a001 2504730781961/439204*843^(13/14) 2971218955462476 a001 956722026041/167761*843^(13/14) 2971218956080511 a001 365435296162/64079*843^(13/14) 2971218960316584 a001 139583862445/24476*843^(13/14) 2971218961625282 q001 1053/3544 2971218971557522 a007 Real Root Of 419*x^4+696*x^3+885*x^2-326*x-160 2971218971911260 m001 (Pi+1)*BesselJ(0,1)*Zeta(1,2) 2971218978868397 r005 Re(z^2+c),c=-21/94+25/46*I,n=19 2971218981536067 r009 Re(z^3+c),c=-21/122+31/58*I,n=2 2971218985490170 r008 a(0)=3,K{-n^6,28-52*n+36*n^2+23*n^3} 2971218989351064 a001 53316291173/9349*843^(13/14) 2971218994527056 m001 Porter*Artin^2/exp(GAMMA(11/24)) 2971219005231486 r009 Re(z^3+c),c=-29/114+41/43*I,n=11 2971219008896546 r008 a(0)=3,K{-n^6,-24+36*n^3-29*n^2+52*n} 2971219010625326 r008 a(0)=3,K{-n^6,-16+38*n-22*n^2+35*n^3} 2971219017075659 l006 ln(223/4352) 2971219024241220 m002 -1/2+Pi^4-Pi^9 2971219032339480 a007 Real Root Of 35*x^4-135*x^3-790*x^2-404*x-495 2971219033274417 r008 a(0)=3,K{-n^6,40+44*n-46*n^2-4*n^3} 2971219035695010 r008 a(0)=3,K{-n^6,-16+48*n-37*n^2+40*n^3} 2971219038868856 r008 a(0)=3,K{-n^6,36-46*n+13*n^2+32*n^3} 2971219040505111 r008 a(0)=3,K{-n^6,-22+61*n-46*n^2+42*n^3} 2971219057551245 r008 a(0)=3,K{-n^6,12+40*n^3-23*n^2+6*n} 2971219058074792 a001 2504730781961/1364*322^(1/12) 2971219058196714 r005 Re(z^2+c),c=-3/4+6/133*I,n=8 2971219059144126 a001 21566892818/341*843^(4/7) 2971219064293231 r005 Im(z^2+c),c=-27/106+27/59*I,n=40 2971219066734749 r005 Im(z^2+c),c=-5/114+18/49*I,n=28 2971219072934796 m001 1/GAMMA(1/12)/exp(FeigenbaumC)*Zeta(1/2)^2 2971219074052433 m001 (Landau-MertensB2)/(BesselI(0,2)-Kac) 2971219076854622 r002 5th iterates of z^2 + 2971219077017254 m001 (FeigenbaumMu-Tribonacci)/(Pi+FeigenbaumD) 2971219078107847 r008 a(0)=3,K{-n^6,-14+63*n-63*n^2+49*n^3} 2971219083387448 m001 Porter*exp(Artin)/GAMMA(1/3)^2 2971219085457718 m001 exp(Zeta(9))^2*Zeta(3)*gamma^2 2971219105013999 m005 (1/2*Pi-1/10)/(9/10*2^(1/2)-7/9) 2971219109237308 r008 a(0)=3,K{-n^6,56+45*n^3-16*n^2-50*n} 2971219117613357 m002 -Pi^4+Pi^9+Cosh[Pi]/E^Pi 2971219127124140 l006 ln(2425/3264) 2971219130539412 r009 Re(z^3+c),c=-23/48+27/64*I,n=35 2971219131640722 r008 a(0)=3,K{-n^6,32+6*n-58*n^2+55*n^3} 2971219132884007 r005 Re(z^2+c),c=19/56+23/57*I,n=4 2971219140682330 r005 Re(z^2+c),c=1/74+43/58*I,n=39 2971219141322398 m001 Zeta(3)*(5^(1/2)+CopelandErdos) 2971219143932686 m002 -Pi^6/3+(Pi^5*Sinh[Pi])/ProductLog[Pi] 2971219146438084 r005 Im(z^2+c),c=-55/114+20/53*I,n=8 2971219154584863 h001 (5/6*exp(1)+9/10)/(1/11*exp(1)+9/11) 2971219165007957 a001 1120149625208/377 2971219166797674 r005 Re(z^2+c),c=-7/29+45/59*I,n=15 2971219170341546 r005 Re(z^2+c),c=3/16+3/8*I,n=30 2971219171618741 m001 (BesselI(0,2)*Gompertz+ThueMorse)/Gompertz 2971219178119346 r008 a(0)=3,K{-n^6,44+67*n^3-88*n^2+12*n} 2971219187404152 r009 Re(z^3+c),c=-19/102+41/56*I,n=5 2971219188356367 a001 20365011074/3571*843^(13/14) 2971219190686127 a007 Real Root Of 677*x^4+483*x^3-51*x^2-905*x-257 2971219197032898 a007 Real Root Of 114*x^4-188*x^3+998*x^2-495*x-241 2971219198482351 a001 956722026041/521*199^(1/11) 2971219200096761 r002 60th iterates of z^2 + 2971219202439423 r005 Re(z^2+c),c=-35/106+9/28*I,n=9 2971219204605629 r005 Re(z^2+c),c=-33/86+3/46*I,n=20 2971219205803765 r005 Im(z^2+c),c=-79/82+8/33*I,n=48 2971219206227602 r008 a(0)=3,K{-n^6,90+69*n^3-71*n^2-53*n} 2971219227857212 r005 Re(z^2+c),c=-47/122+1/50*I,n=27 2971219230258700 r005 Re(z^2+c),c=-7/106+30/37*I,n=51 2971219231503416 m001 (Pi+ln(Pi))/(exp(1/exp(1))-gamma(3)) 2971219239146944 a001 2504730781961/2207*322^(1/6) 2971219241021220 a001 1120149653865/377 2971219242449470 m001 (KhinchinLevy+MertensB1)/(Pi+3^(1/2)) 2971219245797664 a007 Real Root Of -324*x^4+13*x^3-847*x^2+570*x+247 2971219247202882 m005 (1/2*gamma+1/11)/(2/3*Catalan+2/3) 2971219252111405 a001 1120149658046/377 2971219253729442 a001 1120149658656/377 2971219254005305 a001 1120149658760/377 2971219254005835 a001 5600748293801/377*8^(1/3) 2971219254005835 a001 2/377*(1/2+1/2*5^(1/2))^61 2971219254007957 a001 1120149658761/377 2971219254021220 a001 1120149658766/377 2971219254111405 a001 1120149658800/377 2971219254729442 a001 1120149659033/377 2971219277168969 m009 (4/5*Psi(1,2/3)-2)/(5/6*Psi(1,3/4)-3/5) 2971219283010730 a001 63246219*521^(8/13) 2971219294060152 m004 1+5*Cot[Sqrt[5]*Pi]+5*Pi*Csc[Sqrt[5]*Pi] 2971219303327462 m001 (Pi+ln(2^(1/2)+1))/(MinimumGamma-OneNinth) 2971219319240592 m001 (Landau+OneNinth)/(Porter+Sarnak) 2971219321568123 k006 concat of cont frac of 2971219330387232 r005 Im(z^2+c),c=-5/114+18/49*I,n=31 2971219336527834 m001 (-Grothendieck+Thue)/(3^(1/2)+exp(1/Pi)) 2971219349719708 a003 cos(Pi*29/95)*cos(Pi*17/52) 2971219351992354 s002 sum(A170987[n]/(n^2*10^n-1),n=1..infinity) 2971219357787185 a001 53316291173/1364*843^(9/14) 2971219369162514 a007 Real Root Of -203*x^4+373*x^3+658*x^2+384*x-12 2971219369374238 r005 Im(z^2+c),c=37/106+7/41*I,n=21 2971219377127780 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)/(GaussAGM^Mills) 2971219377134563 a007 Real Root Of -762*x^4+905*x^3-384*x^2+826*x+309 2971219379433291 a007 Real Root Of -264*x^4-724*x^3+226*x^2+424*x+849 2971219379450889 m001 KhinchinLevy*exp(-1/2*Pi)^QuadraticClass 2971219383510356 r004 Im(z^2+c),c=-5/8-2/7*I,z(0)=exp(1/8*I*Pi),n=10 2971219385423399 a007 Real Root Of 484*x^4+148*x^3+401*x^2-919*x+230 2971219408283527 r005 Im(z^2+c),c=15/86+7/26*I,n=5 2971219441504581 m001 (3^(1/2)+Lehmer)/(-Thue+ZetaP(4)) 2971219442463226 a005 (1/cos(9/116*Pi))^420 2971219444405979 a007 Real Root Of 8*x^4-331*x^3-730*x^2+862*x-300 2971219447076476 r005 Re(z^2+c),c=4/11+5/8*I,n=18 2971219464885991 a007 Real Root Of -693*x^4-210*x^3-12*x^2+949*x-270 2971219473833129 k002 Champernowne real with 53*n^2-117*n+93 2971219476603868 a007 Real Root Of -340*x^4-836*x^3+764*x^2+452*x-832 2971219484897148 k003 Champernowne real with 31/6*n^3-7/2*n^2-56/3*n+19 2971219487005305 a001 1120149746601/377 2971219489003798 m001 1/TreeGrowth2nd/KhintchineLevy^2*ln(Zeta(3)) 2971219490731980 r009 Re(z^3+c),c=-11/28+10/31*I,n=23 2971219499873356 a001 987/2207*18^(19/29) 2971219502058247 r005 Im(z^2+c),c=-11/34+29/60*I,n=49 2971219509649941 a007 Real Root Of 153*x^4+597*x^3+468*x^2+303*x+504 2971219514272471 h001 (7/10*exp(2)+1/8)/(5/9*exp(1)+3/11) 2971219520641662 a007 Real Root Of -718*x^4+790*x^3-195*x^2+880*x+305 2971219522156746 r008 a(0)=3,K{-n^6,-69+57*n^2+47*n} 2971219526241828 r005 Im(z^2+c),c=3/86+20/61*I,n=8 2971219541755556 m001 1/exp(Kolakoski)^2*MertensB1*GAMMA(1/6) 2971219545728666 m005 (1/2*3^(1/2)-3/5)/(1/8*exp(1)+5/9) 2971219545969864 m002 -4/E^Pi-Pi^2+Pi^5+Log[Pi] 2971219547533151 r005 Im(z^2+c),c=-7/6+7/176*I,n=20 2971219549755905 m001 (BesselJ(1,1)-Zeta(1,2))/arctan(1/2) 2971219553805719 m001 (Mills+Paris)/(ln(3)-Kac) 2971219555664108 r008 a(0)=3,K{-n^6,-13+51*n+36*n^2-40*n^3} 2971219557405387 a003 sin(Pi*5/84)/sin(Pi*17/79) 2971219574869098 m005 (1/3*exp(1)-3/7)/(5*Pi+4/11) 2971219583498880 m001 ((1+3^(1/2))^(1/2)+Trott)/(1-BesselJ(1,1)) 2971219590202347 l006 ln(6616/8905) 2971219592373438 r005 Re(z^2+c),c=19/60+9/26*I,n=2 2971219595281306 m001 (-Pi^(1/2)+Trott2nd)/(3^(1/2)-ln(Pi)) 2971219598152219 m004 (-4*Sqrt[5])/Pi+5*Sqrt[5]*Pi-5/Log[Sqrt[5]*Pi] 2971219610888998 a001 1/98209*514229^(43/55) 2971219618072375 m001 (exp(-1/2*Pi)-Lehmer)/(Zeta(1/2)-Zeta(1,-1)) 2971219618592263 l006 ln(382/7455) 2971219626153895 a007 Real Root Of 338*x^4-840*x^3+917*x^2-772*x-335 2971219627257559 m001 (Kac-LandauRamanujan)/(Niven+Otter) 2971219628878291 a005 (1/sin(70/177*Pi))^565 2971219638254641 m001 ErdosBorwein/ln(5)/ReciprocalFibonacci 2971219642307669 m001 (-Conway+Landau)/(2^(1/2)+ln(Pi)) 2971219649602419 r009 Im(z^3+c),c=-5/19+11/39*I,n=7 2971219649943267 r002 26th iterates of z^2 + 2971219652737136 h002 exp(7^(3/4)*(2^(1/4)-3^(1/3))) 2971219656430275 a001 32951280099/1364*843^(5/7) 2971219670479851 m005 (1/2*Catalan-5/12)/(7/8*3^(1/2)-1/8) 2971219678634404 m005 (1/2*2^(1/2)+7/12)/(7/12*Catalan-1/10) 2971219686048781 r009 Re(z^3+c),c=-19/86+21/23*I,n=11 2971219692940089 a007 Real Root Of -134*x^4-24*x^3+898*x^2-617*x+53 2971219703145737 r008 a(0)=3,K{-n^6,-15+11*n^3+51*n^2-12*n} 2971219704513495 r009 Im(z^3+c),c=-7/118+41/49*I,n=16 2971219704993578 a001 3/2*29^(47/53) 2971219721747804 r002 8th iterates of z^2 + 2971219727010303 r005 Im(z^2+c),c=1/8+13/47*I,n=9 2971219730395005 r002 11th iterates of z^2 + 2971219730717337 m001 MinimumGamma*ln(GAMMA(3/4)) 2971219735100485 a007 Real Root Of 327*x^4+591*x^3-829*x^2+853*x-130 2971219741311035 r005 Im(z^2+c),c=-87/64+1/26*I,n=61 2971219743453190 r008 a(0)=3,K{-n^6,-17+17*n^3+32*n^2+3*n} 2971219745864396 r002 21th iterates of z^2 + 2971219747046155 m001 GAMMA(13/24)^(exp(gamma)/cos(Pi/5)) 2971219760149578 a001 3278735159921/2889*322^(1/6) 2971219767882955 m001 1/Zeta(9)^2/LambertW(1)*exp(sqrt(2))^2 2971219773943791 r002 3th iterates of z^2 + 2971219774177758 m001 (-gamma(2)+ArtinRank2)/(2^(1/2)+cos(1/12*Pi)) 2971219779963424 r005 Re(z^2+c),c=-25/102+34/57*I,n=39 2971219781403452 a001 1/4*29^(2/39) 2971219781961825 h001 (5/12*exp(1)+7/8)/(1/11*exp(1)+3/7) 2971219788920479 a007 Real Root Of 28*x^4+812*x^3-581*x^2+349*x+211 2971219793356428 a007 Real Root Of -331*x^4-737*x^3+874*x^2+323*x-291 2971219819456641 r005 Re(z^2+c),c=2/9+8/19*I,n=34 2971219826919822 m001 1/GAMMA(7/12)^2/OneNinth^2*ln(sqrt(5)) 2971219828438811 r008 a(0)=3,K{-n^6,-29+33*n^3-22*n^2+53*n} 2971219834936762 a007 Real Root Of 18*x^4-182*x^3-985*x^2-801*x+139 2971219837311537 m001 (-BesselJ(1,1)+1/3)/(-GAMMA(23/24)+2/3) 2971219838116263 h001 (-8*exp(8)-7)/(-2*exp(6)+4) 2971219839267565 m001 KomornikLoreti/(AlladiGrinstead-exp(-1/2*Pi)) 2971219839566946 a007 Real Root Of -7*x^4-178*x^3+903*x^2+358*x-17 2971219842598190 r008 a(0)=3,K{-n^6,35-59*n+34*n^2+25*n^3} 2971219846277805 a007 Real Root Of -611*x^4+920*x^3+548*x^2+260*x-145 2971219846786715 m001 (ln(2+3^(1/2))-Otter*ZetaR(2))/Otter 2971219849551092 r008 a(0)=3,K{-n^6,-17+39*n-22*n^2+35*n^3} 2971219849872445 r005 Im(z^2+c),c=-19/56+23/47*I,n=57 2971219852114446 a001 24476*1836311903^(13/17) 2971219855954393 m001 (ErdosBorwein-Niven)/(Zeta(1/2)+GAMMA(5/6)) 2971219857075865 a001 12752043*514229^(13/17) 2971219858149045 l006 ln(4191/5641) 2971219861314437 r008 a(0)=3,K{-n^6,-9+29*n-21*n^2+36*n^3} 2971219866630538 m001 exp(GAMMA(2/3))/GAMMA(1/4)^2*Zeta(7) 2971219871117905 b005 Number DB table 2971219874304480 r008 a(0)=3,K{-n^6,-17+49*n-37*n^2+40*n^3} 2971219881325211 k006 concat of cont frac of 2971219881654827 m002 -Pi^2+Pi^5*Coth[Pi]-2*Csch[Pi] 2971219883141643 a001 10610209857723/9349*322^(1/6) 2971219885590601 m001 1/exp(FeigenbaumKappa)^2*Kolakoski^2*sin(1)^2 2971219886285096 r005 Re(z^2+c),c=-23/52+1/62*I,n=4 2971219889280622 a007 Real Root Of 896*x^4+124*x^3-752*x^2-713*x+268 2971219902876004 m001 Cahen^GAMMA(17/24)*Cahen^Porter 2971219907545752 m001 (Si(Pi)-cos(1))/(ErdosBorwein+FransenRobinson) 2971219916191678 r008 a(0)=3,K{-n^6,-15+64*n-63*n^2+49*n^3} 2971219917011988 m008 (3*Pi^6+1/6)/(Pi^4-1/3) 2971219918639027 p002 log(13^(12/7)-19^(7/5)) 2971219929657684 r009 Re(z^3+c),c=-1/50+21/29*I,n=9 2971219932303372 m008 (1/2*Pi^4-1/4)/(5*Pi+3/5) 2971219946942960 r008 a(0)=3,K{-n^6,55+45*n^3-16*n^2-49*n} 2971219955073394 a001 10182505537/682*843^(11/14) 2971219960615192 m004 (-5*Cot[Sqrt[5]*Pi])/6+5*Pi*Log[Sqrt[5]*Pi] 2971219963313330 m001 1/BesselK(0,1)^2*exp(Khintchine)*Ei(1)^2 2971219968852155 a007 Real Root Of -219*x^4-230*x^3+943*x^2-622*x+862 2971219969078071 r008 a(0)=3,K{-n^6,31+7*n-58*n^2+55*n^3} 2971219969992211 r005 Re(z^2+c),c=-39/122+13/32*I,n=25 2971219992631773 a007 Real Root Of -332*x^4-822*x^3+402*x^2-294*x-109 2971219997157053 a007 Real Root Of -974*x^4-702*x^3-908*x^2+534*x+228 2971219997187860 r009 Im(z^3+c),c=-12/25+7/50*I,n=48 2971220015010656 r008 a(0)=3,K{-n^6,43+67*n^3-88*n^2+13*n} 2971220020589644 a007 Real Root Of 214*x^4+578*x^3+473*x^2-665*x+139 2971220024782589 m001 (ln(3)-CareFree)/(FeigenbaumAlpha-Salem) 2971220026882487 m001 (arctan(1/3)+KomornikLoreti)/Rabbit 2971220030382459 r005 Im(z^2+c),c=23/94+2/11*I,n=27 2971220031856503 m001 (Pi+ln(2)/ln(10)-gamma)*Zeta(5) 2971220037413872 m005 (1/2*5^(1/2)+1)/(1/10*2^(1/2)+4/7) 2971220038347985 r005 Re(z^2+c),c=-25/74+26/61*I,n=11 2971220039953290 r005 Im(z^2+c),c=-5/31+22/35*I,n=32 2971220043572984 r009 Re(z^3+c),c=-17/30+40/51*I,n=2 2971220051675369 m005 (31/44+1/4*5^(1/2))/(4*Zeta(3)-5/9) 2971220051898159 b008 BesselI[0,Cosh[E]] 2971220056940852 m001 1/BesselK(1,1)*FeigenbaumD^2/ln(Zeta(9))^2 2971220064219397 a007 Real Root Of -354*x^4-996*x^3+84*x^2-125*x+351 2971220070432288 a005 (1/cos(7/166*Pi))^647 2971220073383442 r005 Im(z^2+c),c=-17/54+9/19*I,n=25 2971220073551678 a007 Real Root Of -343*x^4-858*x^3+568*x^2-67*x-987 2971220076403761 m001 Ei(1)*GlaisherKinkelin^2/exp(sinh(1))^2 2971220082147006 a001 4052739537881/3571*322^(1/6) 2971220086301906 a003 sin(Pi*39/110)/cos(Pi*51/104) 2971220105391163 q001 733/2467 2971220111074466 m001 GAMMA(5/6)/GAMMA(19/24)^2*ln(Zeta(5)) 2971220116581439 r005 Im(z^2+c),c=-5/114+18/49*I,n=30 2971220125013592 a001 53316291173/521*521^(7/13) 2971220139687629 h001 (-9*exp(1)-8)/(-exp(7)+4) 2971220144525548 a007 Real Root Of -274*x^4-721*x^3-122*x^2-957*x+676 2971220148369970 r005 Re(z^2+c),c=-8/21+5/47*I,n=22 2971220151636010 m001 PisotVijayaraghavan^2/Niven/exp(sqrt(Pi))^2 2971220155007704 m003 -119/4+(Sqrt[5]*Coth[1/2+Sqrt[5]/2])/64 2971220155737648 l006 ln(5957/8018) 2971220159725452 a009 1/2*(21-5^(3/4))^(1/2)*2^(1/2) 2971220168491682 p003 LerchPhi(1/100,2,421/229) 2971220169293944 a007 Real Root Of 338*x^4-443*x^3+541*x^2-700*x-270 2971220172725664 r005 Re(z^2+c),c=-69/106+1/18*I,n=4 2971220184307615 a001 123/28657*514229^(39/58) 2971220185276568 r009 Im(z^3+c),c=-7/20+11/45*I,n=16 2971220189149890 m001 GAMMA(5/12)/exp(OneNinth)^2*sqrt(3) 2971220189276516 m001 GAMMA(5/12)^2*exp(CareFree)/GAMMA(7/24) 2971220201915545 s002 sum(A222830[n]/(10^n+1),n=1..infinity) 2971220201923309 s001 sum(1/10^n*A222830[n],n=1..infinity) 2971220201931141 s002 sum(A222830[n]/(10^n-1),n=1..infinity) 2971220206099277 m001 (5^(1/2)+Catalan)/(sin(1)+Ei(1,1)) 2971220218728903 m001 (Stephens+Thue)/(2^(1/3)+FeigenbaumMu) 2971220221684959 r005 Im(z^2+c),c=-11/36+9/19*I,n=19 2971220237665084 r002 43th iterates of z^2 + 2971220239246098 a001 4106118243/610*34^(8/19) 2971220243268637 r005 Im(z^2+c),c=-17/18-63/254*I,n=5 2971220244874549 m001 BesselI(1,2)^Chi(1)-Pi^(1/2) 2971220252003932 m008 (2/3*Pi^5+5)/(1/5*Pi^3+5/6) 2971220253061656 r008 a(0)=3,K{-n^6,9+26*n+35*n^2-36*n^3} 2971220253716543 a001 1144206275/124*843^(6/7) 2971220254927415 r002 14th iterates of z^2 + 2971220262022636 m001 (1-Catalan)/(ln(gamma)+FeigenbaumB) 2971220267304434 r005 Im(z^2+c),c=-5/32+10/23*I,n=8 2971220289071474 a007 Real Root Of -70*x^4+543*x^3-744*x^2-611*x-404 2971220291621047 k008 concat of cont frac of 2971220296677210 m001 exp(1/Pi)*(GAMMA(7/12)-exp(Pi)) 2971220299565512 r005 Re(z^2+c),c=-3/11+7/13*I,n=55 2971220299583558 r005 Im(z^2+c),c=-23/94+17/37*I,n=19 2971220299651289 r005 Im(z^2+c),c=-47/118+26/49*I,n=64 2971220301585429 h001 (1/7*exp(2)+11/12)/(1/11*exp(1)+5/12) 2971220305304057 r005 Im(z^2+c),c=-1/90+17/49*I,n=8 2971220312902570 a007 Real Root Of -39*x^4+565*x^3-569*x^2+645*x+257 2971220321088530 m001 GAMMA(1/12)^sin(Pi/5)/sqrt(2) 2971220336624990 m001 1/exp(Lehmer)^2*ErdosBorwein/sqrt(1+sqrt(3)) 2971220337893279 r008 a(0)=3,K{-n^6,-18+49*n+22*n^2-23*n^3} 2971220348711284 h001 (5/9*exp(1)+1/2)/(7/8*exp(2)+3/10) 2971220363372398 a007 Real Root Of -160*x^4-610*x^3-375*x^2+607*x-130 2971220376008229 r005 Re(z^2+c),c=-29/86+7/20*I,n=38 2971220378652618 m005 (1/2*3^(1/2)-3)/(9/10*Zeta(3)-4/11) 2971220384326744 m001 FeigenbaumAlpha*ZetaP(2)+Tribonacci 2971220384896911 m001 Thue*(Paris+ReciprocalFibonacci) 2971220392885382 a007 Real Root Of -906*x^4+702*x^3+731*x^2+586*x-250 2971220393672964 r008 a(0)=3,K{-n^6,-50+67*n^2+18*n} 2971220395804674 r005 Re(z^2+c),c=-47/122+1/50*I,n=25 2971220406443115 m001 LandauRamanujan/ln(Champernowne)^2/sin(Pi/5) 2971220429187971 m001 (2^(1/2)-BesselI(1,2))/(-Conway+Rabbit) 2971220432555439 r008 a(0)=3,K{-n^6,-62+48*n+43*n^2+6*n^3} 2971220432877385 r009 Re(z^3+c),c=-29/70+23/64*I,n=37 2971220437057855 r005 Im(z^2+c),c=23/90+9/52*I,n=13 2971220437158209 m001 (Stephens+ZetaP(2))/(ln(3)-exp(1/exp(1))) 2971220437953763 m001 1/ln(TreeGrowth2nd)/Backhouse^2/GAMMA(5/24)^2 2971220444295110 a001 365435296162/843*322^(1/3) 2971220447020846 a001 1/311187*20365011074^(17/22) 2971220461724748 m001 1/GAMMA(1/6)*ln(Sierpinski)^2*GAMMA(2/3)^2 2971220462228148 l006 ln(159/3103) 2971220464404804 r005 Im(z^2+c),c=3/56+13/41*I,n=20 2971220470011019 m001 (Zeta(3)-Zeta(1,2))/(Cahen+ZetaP(4)) 2971220474069844 r008 a(0)=3,K{-n^6,-52+39*n+39*n^2+9*n^3} 2971220474992337 m001 ln(5)^Zeta(3)/Gompertz 2971220476839130 k002 Champernowne real with 107/2*n^2-237/2*n+94 2971220490443304 r009 Im(z^3+c),c=-65/118+29/62*I,n=6 2971220493439780 r008 a(0)=3,K{-n^6,-32+8*n^3+52*n^2+7*n} 2971220496600394 r005 Im(z^2+c),c=-9/10+49/216*I,n=48 2971220503840932 a001 11/2504730781961*7778742049^(19/24) 2971220503924511 a001 11/267914296*75025^(19/24) 2971220506740394 m001 BesselI(0,2)/(PrimesInBinary^(ln(2)/ln(10))) 2971220509208723 a003 cos(Pi*29/111)*cos(Pi*36/101) 2971220516902481 h001 (5/11*exp(1)+3/7)/(7/10*exp(2)+3/7) 2971220540443200 r009 Im(z^3+c),c=-4/15+1/45*I,n=11 2971220541878930 a001 1292/2889*18^(19/29) 2971220547183825 a007 Real Root Of 977*x^4+117*x^3-980*x^2-741*x+296 2971220548458120 r009 Im(z^3+c),c=-15/31+8/59*I,n=60 2971220552359723 a001 7778742049/1364*843^(13/14) 2971220556050573 a007 Real Root Of 364*x^4+767*x^3-770*x^2+333*x-463 2971220573058239 a007 Real Root Of -295*x^4-841*x^3+49*x^2+30*x+588 2971220581438516 m005 (1/2*5^(1/2)-2/5)/(6/7*5^(1/2)+1/2) 2971220583373409 m001 (MertensB1-Riemann1stZero)/FeigenbaumDelta 2971220585189500 a008 Real Root of x^3-x^2-264*x+767 2971220620344161 m001 Zeta(1,2)^BesselI(1,1)*GAMMA(7/24) 2971220626791123 r005 Im(z^2+c),c=-47/44+5/21*I,n=24 2971220627220336 a007 Real Root Of -293*x^4-528*x^3+901*x^2-399*x-154 2971220627245576 r008 a(0)=3,K{-n^6,-42+29*n^3-16*n^2+64*n} 2971220629607969 m001 (-Zeta(1,2)+Gompertz)/(Chi(1)-GAMMA(2/3)) 2971220635435454 r005 Re(z^2+c),c=-33/106+23/53*I,n=39 2971220648904736 r002 15th iterates of z^2 + 2971220649042422 m001 LandauRamanujan*exp(CareFree)^2/GAMMA(23/24)^2 2971220669432400 p004 log(29411/21851) 2971220671171139 m004 6+5*Pi*Csc[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/2 2971220681783779 r008 a(0)=3,K{-n^6,-24+36*n^3-28*n^2+51*n} 2971220693905525 a001 6765/15127*18^(19/29) 2971220701946027 r005 Re(z^2+c),c=-11/62+31/47*I,n=22 2971220710870092 r008 a(0)=3,K{-n^6,36-47*n+14*n^2+32*n^3} 2971220716085907 a001 17711/39603*18^(19/29) 2971220719321981 a001 23184/51841*18^(19/29) 2971220719794118 a001 121393/271443*18^(19/29) 2971220719863002 a001 317811/710647*18^(19/29) 2971220719873052 a001 416020/930249*18^(19/29) 2971220719874518 a001 2178309/4870847*18^(19/29) 2971220719875424 a001 1346269/3010349*18^(19/29) 2971220719879263 a001 514229/1149851*18^(19/29) 2971220719905574 a001 98209/219602*18^(19/29) 2971220720085915 a001 75025/167761*18^(19/29) 2971220721321985 a001 28657/64079*18^(19/29) 2971220729794137 a001 5473/12238*18^(19/29) 2971220737713661 r008 a(0)=3,K{-n^6,6+20*n-34*n^2+43*n^3} 2971220742687408 h001 (7/8*exp(2)+1/4)/(5/9*exp(1)+3/4) 2971220745136274 a007 Real Root Of -192*x^4-461*x^3-951*x^2+820*x+317 2971220745391242 a001 208010*18^(23/25) 2971220745465738 r005 Im(z^2+c),c=-4/17+9/20*I,n=37 2971220755803857 r009 Im(z^3+c),c=-37/94+11/46*I,n=5 2971220763944243 a001 1/55*1346269^(13/36) 2971220771071633 m001 1/Ei(1)^2/exp(OneNinth)/sin(1) 2971220782806262 m001 (BesselI(0,2)+Paris)/(cos(1/5*Pi)-ln(5)) 2971220784284221 m002 -Pi^4+Pi^9+6*Sech[Pi] 2971220786657694 r002 51th iterates of z^2 + 2971220787863132 a001 4181/9349*18^(19/29) 2971220792725052 r008 a(0)=3,K{-n^6,42-18*n-40*n^2+51*n^3} 2971220805618599 m001 BesselI(1,2)-GAMMA(19/24)^ErdosBorwein 2971220808315176 b008 1-5*Zeta[Sin[1]] 2971220827817821 a007 Real Root Of 94*x^4+132*x^3-637*x^2-454*x+411 2971220829207888 a007 Real Root Of 82*x^4-940*x^3+204*x^2-663*x+203 2971220851007957 a001 1120150260830/377 2971220861962886 l006 ln(1766/2377) 2971220873599425 r008 a(0)=3,K{-n^6,90+69*n^3-70*n^2-54*n} 2971220879249124 m005 (1/2*2^(1/2)-1/6)/(5/11*exp(1)+7/12) 2971220887150864 r008 a(0)=3,K{-n^6,-21-25*n^3-13*n^2+93*n} 2971220896998990 m001 Ei(1,1)^ln(5)/(Ei(1,1)^AlladiGrinstead) 2971220898695830 m002 5/Pi^5+Pi^3-Log[Pi]^2 2971220901979043 m001 1/BesselK(1,1)^2*TreeGrowth2nd/ln(Ei(1))^2 2971220907451902 r005 Re(z^2+c),c=-55/42+1/63*I,n=48 2971220931383041 a001 843/8*10946^(41/48) 2971220931822941 m001 (Pi^(1/2)*Otter+Trott2nd)/Pi^(1/2) 2971220944754848 r005 Im(z^2+c),c=-151/126+1/24*I,n=38 2971220959988115 r005 Re(z^2+c),c=15/58+23/51*I,n=48 2971220967016692 a001 86267571272/521*521^(6/13) 2971220972593458 r005 Re(z^2+c),c=-67/106+21/64*I,n=25 2971220977963738 m002 -Pi^4+Pi^9+6*Csch[Pi] 2971220980960089 r005 Re(z^2+c),c=-9/25+16/63*I,n=23 2971220982291485 r008 a(0)=3,K{-n^6,-26*n^3+38*n^2+30*n+1} 2971221009509010 r005 Re(z^2+c),c=-93/118+1/39*I,n=42 2971221011125133 k007 concat of cont frac of 2971221016206762 a001 64079/13*55^(13/29) 2971221028930833 a007 Real Root Of 606*x^4-869*x^3+186*x^2-569*x-213 2971221036540733 b008 Pi*JacobiAmplitude[1,2/5] 2971221040601550 m001 (Rabbit-ZetaQ(4))/(FeigenbaumMu-KhinchinLevy) 2971221047136587 r005 Im(z^2+c),c=-5/62+5/13*I,n=26 2971221087488006 h002 exp(1/5*(14^(1/2)-17)^(1/2)*5^(1/4)) 2971221090836926 m002 (8*Sech[Pi]*Tanh[Pi])/E^Pi 2971221094495488 s001 sum(exp(-2*Pi/5)^n*A188811[n],n=1..infinity) 2971221094495488 s002 sum(A188811[n]/(exp(2/5*pi*n)),n=1..infinity) 2971221095200644 a001 233/3010349*11^(23/41) 2971221104722340 s002 sum(A011588[n]/(2^n+1),n=1..infinity) 2971221110657722 m005 (1/2*2^(1/2)-1/6)/(1/5*Zeta(3)-2/9) 2971221111115111 k009 concat of cont frac of 2971221112195652 m008 (3/4*Pi^2-5)/(1/4*Pi^3+1/3) 2971221115464312 k006 concat of cont frac of 2971221116222152 k006 concat of cont frac of 2971221117650590 r009 Re(z^3+c),c=-29/98+40/41*I,n=3 2971221121810261 r009 Re(z^3+c),c=-71/118+10/33*I,n=55 2971221126776574 r005 Im(z^2+c),c=-35/31+9/38*I,n=62 2971221140149350 r005 Re(z^2+c),c=-27/98+31/59*I,n=45 2971221143710600 l006 ln(8986/9257) 2971221152711521 k006 concat of cont frac of 2971221156339123 q001 1146/3857 2971221160682110 p002 log(18^(10/9)-7^(6/7)) 2971221176636425 a001 29/1836311903*46368^(1/17) 2971221176652683 a001 29/4807526976*591286729879^(1/17) 2971221176652683 a001 29/2971215073*165580141^(1/17) 2971221185873974 a001 1597/3571*18^(19/29) 2971221187111473 k007 concat of cont frac of 2971221199280543 m001 1/GAMMA(1/12)*exp(Si(Pi))^2*sin(1) 2971221200190352 m005 (1/3*exp(1)-1/7)/(7/9*exp(1)+5/11) 2971221215815411 k008 concat of cont frac of 2971221221151522 k006 concat of cont frac of 2971221229835265 m001 (3^(1/2)+FeigenbaumC)/(PlouffeB+Sarnak) 2971221241732543 r005 Im(z^2+c),c=-43/114+30/61*I,n=37 2971221242539641 l006 ln(413/8060) 2971221246468040 m005 (1/2*2^(1/2)+11/12)/(2*Pi-9/11) 2971221251111252 k008 concat of cont frac of 2971221255626162 m001 (3^(1/2)-BesselK(0,1))/(-GAMMA(23/24)+Porter) 2971221267655700 m001 Gompertz*HeathBrownMoroz^ZetaP(2) 2971221268582828 a007 Real Root Of -369*x^4-871*x^3+640*x^2+28*x+345 2971221281873357 m004 -2/3+5*Sqrt[5]*Pi-Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 2971221284453729 r005 Re(z^2+c),c=-17/74+32/55*I,n=47 2971221294881442 r002 31th iterates of z^2 + 2971221298509563 a007 Real Root Of 412*x^4+995*x^3-398*x^2+837*x-10 2971221311312111 k007 concat of cont frac of 2971221315614092 a009 1-12^(1/3)-2^(3/4) 2971221316479486 m001 1/Zeta(7)*GolombDickman^2*ln(arctan(1/2)) 2971221321545501 r008 a(0)=3,K{-n^6,-33+8*n^3+52*n^2+8*n} 2971221324440390 r005 Im(z^2+c),c=3/64+17/53*I,n=12 2971221325640427 p004 log(29137/1493) 2971221326315194 k009 concat of cont frac of 2971221347861554 r005 Re(z^2+c),c=-21/106+16/29*I,n=16 2971221360941555 a007 Real Root Of -336*x^4-993*x^3+137*x^2+499*x+413 2971221388498299 b008 3/11+Zeta[3,5] 2971221389146293 a007 Real Root Of 118*x^4+43*x^3-677*x^2+802*x+291 2971221391416068 m001 ErdosBorwein*FeigenbaumD-Totient 2971221393437147 a007 Real Root Of 205*x^4+341*x^3-662*x^2+690*x+862 2971221402271939 a009 12^(1/4)*(10^(1/4)-9^(2/3))^(1/2) 2971221411168111 k008 concat of cont frac of 2971221412694978 m001 3^(1/2)/(gamma(2)+Lehmer) 2971221424116181 k006 concat of cont frac of 2971221427040068 r005 Im(z^2+c),c=-8/27+37/52*I,n=3 2971221427788952 h001 (-exp(2)-11)/(-10*exp(2)+12) 2971221430783272 r005 Im(z^2+c),c=-13/28+22/43*I,n=49 2971221434603001 m005 (-1/2+1/4*5^(1/2))/(2/3*Zeta(3)-1) 2971221437592566 r008 a(0)=3,K{-n^6,71+n^3+25*n^2-61*n} 2971221446150771 a001 1134903780*322^(1/6) 2971221455457846 r008 a(0)=3,K{-n^6,-23+29*n+3*n^2+26*n^3} 2971221456172483 s002 sum(A260877[n]/(n^2*exp(n)+1),n=1..infinity) 2971221460463626 r005 Im(z^2+c),c=29/94+10/47*I,n=7 2971221462575091 r008 a(0)=3,K{-n^6,21+3*n^3-45*n^2+53*n} 2971221474700764 r005 Im(z^2+c),c=-11/52+26/61*I,n=9 2971221479644343 r008 a(0)=3,K{-n^6,-3+n+10*n^2+27*n^3} 2971221479845131 k002 Champernowne real with 54*n^2-120*n+95 2971221482845914 a007 Real Root Of 100*x^4+304*x^3+226*x^2+495*x-344 2971221483175922 r005 Re(z^2+c),c=-19/58+23/60*I,n=45 2971221486054686 m001 1/FeigenbaumD^2/MertensB1^2/exp(GAMMA(1/6))^2 2971221492917152 k003 Champernowne real with 11/2*n^3-11/2*n^2-15*n+17 2971221507393188 r008 a(0)=3,K{-n^6,-25+36*n^3-28*n^2+52*n} 2971221509049311 r008 a(0)=3,K{-n^6,-17+38*n-21*n^2+35*n^3} 2971221510915167 m001 (-Zeta(1,2)+Robbin)/(cos(1)-gamma(3)) 2971221513531176 r002 29th iterates of z^2 + 2971221518790903 l006 ln(6405/8621) 2971221532154230 m001 1/exp(Robbin)/GlaisherKinkelin/GAMMA(2/3) 2971221533072551 r008 a(0)=3,K{-n^6,-17+48*n-36*n^2+40*n^3} 2971221534348157 r005 Re(z^2+c),c=-11/14+6/185*I,n=50 2971221537574567 m001 (Shi(1)-Si(Pi))/(-Khinchin+Trott) 2971221541212430 k006 concat of cont frac of 2971221542394339 a007 Real Root Of 191*x^4+387*x^3-448*x^2+116*x-435 2971221543294207 r005 Re(z^2+c),c=13/29+21/62*I,n=5 2971221545732185 a001 9349/144*4181^(36/49) 2971221552485157 r009 Re(z^3+c),c=-4/9+16/39*I,n=47 2971221556522836 m001 (-Robbin+Trott)/(BesselJ(0,1)-Otter) 2971221565430998 r008 a(0)=3,K{-n^6,27+40*n^3-14*n^2-18*n} 2971221571215433 k009 concat of cont frac of 2971221573751631 r008 a(0)=3,K{-n^6,-15+63*n-62*n^2+49*n^3} 2971221588393883 r008 a(0)=3,K{-n^6,43-36*n-15*n^2+43*n^3} 2971221590986898 r008 a(0)=3,K{-n^6,47-42*n-13*n^2+43*n^3} 2971221603249096 a001 10749957122/1597*34^(8/19) 2971221606257712 r005 Im(z^2+c),c=-11/48+7/11*I,n=57 2971221611581511 k009 concat of cont frac of 2971221625161854 r008 a(0)=3,K{-n^6,31+6*n-57*n^2+55*n^3} 2971221627223068 a001 1548008755920/2207*322^(1/4) 2971221647935687 r005 Im(z^2+c),c=-5/16+12/25*I,n=42 2971221656354640 r005 Im(z^2+c),c=-33/118+31/57*I,n=19 2971221658311214 k007 concat of cont frac of 2971221660812907 m001 (GaussAGM-Landau)/(ZetaP(3)-ZetaP(4)) 2971221661277551 r005 Re(z^2+c),c=-17/22+5/94*I,n=44 2971221669856529 r008 a(0)=3,K{-n^6,43+67*n^3-87*n^2+12*n} 2971221682266523 a001 969323029/55*377^(10/21) 2971221699780254 r005 Im(z^2+c),c=-29/122+23/51*I,n=40 2971221706291306 s001 sum(1/10^(n-1)*A043016[n]/n!,n=1..infinity) 2971221709178897 m001 (1-cos(1))/(GAMMA(3/4)+arctan(1/3)) 2971221715957504 r009 Re(z^3+c),c=-1/42+30/43*I,n=14 2971221722056087 m001 MasserGramain*(Pi+Backhouse) 2971221726647511 r009 Re(z^3+c),c=-25/58+19/49*I,n=58 2971221731002037 l006 ln(254/4957) 2971221734142918 r009 Re(z^3+c),c=-31/58+21/64*I,n=47 2971221736348584 r005 Re(z^2+c),c=-65/64+7/54*I,n=30 2971221740594588 m001 (FeigenbaumB+Magata)/(Tribonacci-ThueMorse) 2971221750458572 m005 (1/2*Zeta(3)-5/12)/(1/8*5^(1/2)-9/10) 2971221752390061 m001 (BesselK(0,1)-exp(1))/(-GAMMA(3/4)+ZetaP(2)) 2971221753319481 m001 (-RenyiParking+Trott2nd)/(exp(Pi)+ln(3)) 2971221761998928 a005 (1/cos(23/171*Pi))^437 2971221768835790 l006 ln(4639/6244) 2971221771930627 r002 35th iterates of z^2 + 2971221788902564 a001 123/89*1346269^(5/23) 2971221793071224 m001 BesselJ(0,1)/(ln(5)+cos(1/12*Pi)) 2971221793071224 m001 BesselJ(0,1)/(ln(5)+cos(Pi/12)) 2971221799721290 r009 Im(z^3+c),c=-63/122+13/56*I,n=13 2971221802254556 a001 28143753123/4181*34^(8/19) 2971221809020032 a001 139583862445/521*521^(5/13) 2971221826976563 m001 (TwinPrimes+ZetaQ(3))/(GAMMA(7/12)-Conway) 2971221831289064 a001 73681302247/10946*34^(8/19) 2971221835525141 a001 192900153618/28657*34^(8/19) 2971221836143177 a001 505019158607/75025*34^(8/19) 2971221836233347 a001 1322157322203/196418*34^(8/19) 2971221836246502 a001 3461452808002/514229*34^(8/19) 2971221836248422 a001 9062201101803/1346269*34^(8/19) 2971221836248702 a001 23725150497407/3524578*34^(8/19) 2971221836248875 a001 14662949395604/2178309*34^(8/19) 2971221836249608 a001 5600748293801/832040*34^(8/19) 2971221836254633 a001 2139295485799/317811*34^(8/19) 2971221836289075 a001 817138163596/121393*34^(8/19) 2971221836525143 a001 312119004989/46368*34^(8/19) 2971221837990510 a001 233/843*45537549124^(16/17) 2971221837990510 a001 233/843*14662949395604^(16/21) 2971221837990510 a001 233/843*(1/2+1/2*5^(1/2))^48 2971221837990510 a001 233/843*192900153618^(8/9) 2971221837990510 a001 233/843*73681302247^(12/13) 2971221838024952 a001 377/521*(1/2+1/2*5^(1/2))^46 2971221838024952 a001 377/521*10749957122^(23/24) 2971221838143181 a001 119218851371/17711*34^(8/19) 2971221838162333 r005 Im(z^2+c),c=-11/82+26/43*I,n=12 2971221849233376 a001 45537549124/6765*34^(8/19) 2971221851057492 r005 Im(z^2+c),c=19/98+7/31*I,n=15 2971221854361789 m005 (1/2*Zeta(3)+1/12)/(3/8*2^(1/2)-3/10) 2971221862335574 s002 sum(A288187[n]/((exp(n)+1)/n),n=1..infinity) 2971221867054001 m001 (gamma(3)+Cahen)/(ln(3)-ln(2^(1/2)+1)) 2971221878331810 r009 Re(z^3+c),c=-21/46+29/63*I,n=35 2971221893548485 a001 4807526976/199*199^(10/11) 2971221893784392 a001 29/17711*2^(49/57) 2971221893929740 m001 CopelandErdos^TreeGrowth2nd/Grothendieck 2971221899517040 m001 (GolombDickman-Totient)/(arctan(1/2)-CareFree) 2971221913420395 r005 Re(z^2+c),c=-9/31+29/59*I,n=56 2971221925246708 a001 17393796001/2584*34^(8/19) 2971221938444035 m005 (1/2*gamma-4)/(13/48+7/16*5^(1/2)) 2971221939710772 m001 Psi(2,1/3)/(GAMMA(7/12)^Backhouse) 2971221941119211 k006 concat of cont frac of 2971221941482629 m001 (Pi+GAMMA(11/12))/(Riemann1stZero-ZetaQ(3)) 2971221947910359 a007 Real Root Of -284*x^4-902*x^3-117*x^2+382*x+642 2971221953111751 m001 (-LaplaceLimit+Otter)/(gamma+DuboisRaymond) 2971221956501157 a007 Real Root Of -419*x^4+736*x^3+931*x^2+80*x-122 2971221971782586 a003 -1+cos(2/5*Pi)-2^(1/2)-1/2*3^(1/2) 2971221974477189 m001 (Shi(1)-ln(Pi))/(-FeigenbaumMu+Kac) 2971221999321581 m001 exp(ArtinRank2)^2/GaussKuzminWirsing*sqrt(5) 2971222000752634 r005 Im(z^2+c),c=-23/54+6/13*I,n=21 2971222002463964 a007 Real Root Of 109*x^4-124*x^3-974*x^2+903*x-466 2971222003792358 r005 Re(z^2+c),c=-11/32+15/46*I,n=17 2971222026076465 r005 Re(z^2+c),c=-35/118+19/40*I,n=45 2971222036192713 m001 (PolyaRandomWalk3D+Sarnak)/(Pi+BesselJ(1,1)) 2971222041384131 r005 Im(z^2+c),c=13/126+17/59*I,n=22 2971222042792774 a007 Real Root Of -972*x^4+975*x^3-255*x^2+230*x+124 2971222059415789 h005 exp(cos(Pi*6/43)/cos(Pi*3/16)) 2971222068092233 r002 7th iterates of z^2 + 2971222078812580 s002 sum(A187125[n]/((2^n-1)/n),n=1..infinity) 2971222082158938 m001 QuadraticClass*(gamma(1)+HardyLittlewoodC5) 2971222088204280 m001 1/Robbin^2/Champernowne^2/exp(cos(Pi/5))^2 2971222095785240 r005 Re(z^2+c),c=-13/70+29/49*I,n=17 2971222098374023 r009 Im(z^3+c),c=-4/15+1/45*I,n=12 2971222112021407 r005 Im(z^2+c),c=-3/56+19/52*I,n=8 2971222122757808 m005 (1/2*gamma+8/11)/(2/9*Catalan-6/11) 2971222129145512 k007 concat of cont frac of 2971222131287115 k007 concat of cont frac of 2971222140125558 m001 Pi^(1/2)/(sin(1/5*Pi)+ZetaQ(3)) 2971222141090752 m001 (3^(1/2)+Totient)/(Thue+ZetaP(3)) 2971222145070346 r009 Re(z^3+c),c=-55/98+8/29*I,n=11 2971222148226121 a001 4052739537881/5778*322^(1/4) 2971222150047320 m001 ZetaQ(4)^ZetaP(3)/(ZetaQ(4)^Grothendieck) 2971222152667971 m001 (3^(1/2)+cos(1/12*Pi))/(AlladiGrinstead+Paris) 2971222153748916 m005 (1/2*Zeta(3)-6/7)/(23/63+2/9*5^(1/2)) 2971222160195821 h001 (3/11*exp(1)+6/11)/(1/2*exp(2)+7/11) 2971222176918040 m005 (1/2*Catalan-2/3)/(1/3*3^(1/2)+1/8) 2971222198812389 m001 (gamma(1)-GaussAGM)/(ln(5)+exp(1/exp(1))) 2971222201193414 m001 1/ln(GAMMA(1/12))*Champernowne*sin(Pi/5) 2971222203095297 m001 (3^(1/2))^polylog(4,1/2)*5^(1/2) 2971222203095297 m001 sqrt(5)*sqrt(3)^polylog(4,1/2) 2971222207579817 m003 -1/10+Sqrt[5]/4096+2*E^(-1/2-Sqrt[5]/2) 2971222224239458 a001 1515744265389/2161*322^(1/4) 2971222230773629 r005 Im(z^2+c),c=23/82+1/7*I,n=50 2971222232427046 m005 (1/3*gamma+3/7)/(2/5*Pi+5/6) 2971222234822718 r005 Re(z^2+c),c=-41/64+1/31*I,n=4 2971222238018836 s002 sum(A058168[n]/(n^2*pi^n+1),n=1..infinity) 2971222238986133 a001 1/311187*121393^(42/43) 2971222244091687 h001 (1/10*exp(2)+5/7)/(5/8*exp(2)+3/11) 2971222246581272 m001 ArtinRank2/(MadelungNaCl^GAMMA(7/12)) 2971222248310822 a005 (1/sin(96/221*Pi))^589 2971222249113754 a001 3010349*1836311903^(11/17) 2971222249115536 a001 599074578*514229^(11/17) 2971222255321410 r005 Im(z^2+c),c=-35/31+9/38*I,n=56 2971222255581206 a008 Real Root of x^4-x^3+7*x^2+36*x-59 2971222256415274 r005 Im(z^2+c),c=-17/60+20/49*I,n=6 2971222258449534 m001 (2^(1/3)+GAMMA(3/4))/(Robbin+ZetaP(3)) 2971222262098710 a001 15127*6557470319842^(11/17) 2971222271218285 a001 6557470319842/9349*322^(1/4) 2971222275189893 r008 a(0)=3,K{-n^6,-24+30*n+3*n^2+26*n^3} 2971222283219422 b008 -23/135+Pi 2971222285030607 r009 Re(z^3+c),c=-12/29+5/14*I,n=20 2971222288144124 a007 Real Root Of 221*x^4+385*x^3-856*x^2-220*x-222 2971222290069287 r008 a(0)=3,K{-n^6,-14+17*n+5*n^2+27*n^3} 2971222293995421 m001 (FeigenbaumDelta-Rabbit)/MertensB3 2971222301203730 a007 Real Root Of 223*x^4+562*x^3-341*x^2-310*x-549 2971222306513396 a007 Real Root Of -833*x^4-292*x^3+206*x^2+607*x+161 2971222309038891 l006 ln(349/6811) 2971222311276740 r008 a(0)=3,K{-n^6,28-52*n+35*n^2+24*n^3} 2971222317439625 m001 ln(FeigenbaumC)^2*FibonacciFactorial*Robbin 2971222326280075 l006 ln(2873/3867) 2971222329995462 m001 (Chi(1)-GAMMA(5/6))/(-Kac+Sarnak) 2971222335810009 r005 Im(z^2+c),c=-14/23+11/30*I,n=35 2971222350639014 r009 Im(z^3+c),c=-27/50+7/44*I,n=37 2971222360788734 r005 Re(z^2+c),c=-29/110+29/45*I,n=54 2971222365921812 m001 (ln(2)+exp(gamma))^Zeta(3) 2971222373476766 a007 Real Root Of -379*x^4-893*x^3+952*x^2+894*x+366 2971222379229322 m001 (polylog(4,1/2)+Sierpinski*Totient)/Totient 2971222383782783 r008 a(0)=3,K{-n^6,26+40*n^3-14*n^2-17*n} 2971222398761900 m001 (Bloch+Magata)/(cos(1)+BesselJ(0,1)) 2971222409029658 r008 a(0)=3,K{-n^6,46-41*n-13*n^2+43*n^3} 2971222412044008 r005 Im(z^2+c),c=-11/86+15/37*I,n=19 2971222416820573 a007 Real Root Of 672*x^4-771*x^3-202*x^2-809*x-248 2971222423269928 h001 (7/10*exp(2)+8/9)/(3/7*exp(1)+7/8) 2971222423324531 a007 Real Root Of 183*x^4+744*x^3+846*x^2+641*x-311 2971222423665478 r009 Im(z^3+c),c=-4/15+1/45*I,n=13 2971222433643800 s002 sum(A116622[n]/(n*exp(n)+1),n=1..infinity) 2971222436565874 r009 Re(z^3+c),c=-45/106+23/61*I,n=31 2971222446249936 a001 6643838879/987*34^(8/19) 2971222449390585 m001 1/GAMMA(13/24)^2*ln(Sierpinski)^2/GAMMA(5/6) 2971222449545074 r008 a(0)=3,K{-n^6,54+53*n^3-39*n^2-33*n} 2971222450162155 m001 GAMMA(11/12)^2*exp(BesselJ(0,1))^2*gamma 2971222451021193 b008 E^(-5/3)-11*E 2971222467804890 r009 Im(z^3+c),c=-5/122+49/59*I,n=4 2971222470223808 a001 2504730781961/3571*322^(1/4) 2971222482851132 k002 Champernowne real with 109/2*n^2-243/2*n+96 2971222484045915 r008 a(0)=3,K{-n^6,30+68*n^3-96*n^2+33*n} 2971222484724293 r009 Im(z^3+c),c=-4/15+1/45*I,n=14 2971222490363405 m001 (ArtinRank2+Trott2nd)/(Si(Pi)+sin(1/5*Pi)) 2971222491240466 a007 Real Root Of -716*x^4+963*x^3+803*x^2+476*x-232 2971222494038268 r009 Im(z^3+c),c=-4/15+1/45*I,n=15 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=31 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=32 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=33 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=34 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=35 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=36 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=37 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=38 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=39 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=40 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=41 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=42 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=43 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=44 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=45 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=62 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=63 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=64 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=61 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=60 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=59 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=58 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=57 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=56 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=55 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=54 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=53 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=52 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=51 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=50 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=49 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=48 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=46 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=47 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=30 2971222494153024 r009 Im(z^3+c),c=-4/15+1/45*I,n=29 2971222494153025 r009 Im(z^3+c),c=-4/15+1/45*I,n=28 2971222494153025 r009 Im(z^3+c),c=-4/15+1/45*I,n=27 2971222494153027 r009 Im(z^3+c),c=-4/15+1/45*I,n=26 2971222494153037 r009 Im(z^3+c),c=-4/15+1/45*I,n=25 2971222494153076 r009 Im(z^3+c),c=-4/15+1/45*I,n=24 2971222494153231 r009 Im(z^3+c),c=-4/15+1/45*I,n=23 2971222494153824 r009 Im(z^3+c),c=-4/15+1/45*I,n=22 2971222494155990 r009 Im(z^3+c),c=-4/15+1/45*I,n=21 2971222494163507 r009 Im(z^3+c),c=-4/15+1/45*I,n=20 2971222494187962 r009 Im(z^3+c),c=-4/15+1/45*I,n=19 2971222494260290 r009 Im(z^3+c),c=-4/15+1/45*I,n=18 2971222494440188 r009 Im(z^3+c),c=-4/15+1/45*I,n=17 2971222494711643 r009 Im(z^3+c),c=-4/15+1/45*I,n=16 2971222507095769 m002 -9+Pi+Sinh[Pi]/4 2971222507336934 a007 Real Root Of -98*x^4-211*x^3+227*x^2+75*x+322 2971222508024431 m001 (Shi(1)-gamma)/(GAMMA(2/3)+MertensB1) 2971222525926544 a007 Real Root Of 341*x^4+767*x^3-767*x^2+195*x+893 2971222532123133 k008 concat of cont frac of 2971222534359150 m001 GAMMA(7/12)+AlladiGrinstead*Grothendieck 2971222547987013 r005 Im(z^2+c),c=-3/14+15/34*I,n=23 2971222550048297 r005 Re(z^2+c),c=-33/94+13/44*I,n=29 2971222562624306 r005 Re(z^2+c),c=5/17+29/59*I,n=27 2971222568183640 r008 a(0)=3,K{-n^6,11+49*n-30*n^2+7*n^3} 2971222568296788 r002 8th iterates of z^2 + 2971222570342874 r002 41th iterates of z^2 + 2971222580032547 r009 Re(z^3+c),c=-25/58+19/49*I,n=59 2971222581257461 a001 39603/610*28657^(19/51) 2971222594931090 m001 (FeigenbaumD-GaussAGM)^(Pi^(1/2)) 2971222600571665 r009 Im(z^3+c),c=-27/58+3/19*I,n=23 2971222602114683 p003 LerchPhi(1/25,2,121/208) 2971222622282278 r002 4th iterates of z^2 + 2971222624253733 m001 (-Rabbit+TravellingSalesman)/(gamma+ln(3)) 2971222633703313 m001 (ln(gamma)-3^(1/3))/(exp(1/Pi)-CareFree) 2971222639717481 l006 ln(444/8665) 2971222646722607 r005 Im(z^2+c),c=-9/31+8/17*I,n=36 2971222651023609 a001 225851433717/521*521^(4/13) 2971222661866878 r008 a(0)=3,K{-n^6,49+3*n^3-15*n} 2971222666955319 r008 a(0)=3,K{-n^6,31-8*n+20*n^2-8*n^3} 2971222672267130 a007 Real Root Of -32*x^4-972*x^3-613*x^2+489*x-619 2971222674908367 a001 8/271443*11^(53/55) 2971222676468395 r009 Im(z^3+c),c=-45/106+9/46*I,n=29 2971222681230781 a001 15127/3*317811^(7/50) 2971222696674866 m001 Grothendieck+HardyLittlewoodC4+QuadraticClass 2971222699841668 r005 Re(z^2+c),c=-8/21+5/47*I,n=24 2971222703630712 l006 ln(6853/9224) 2971222707150960 m002 -Pi^4+Pi^9+ProductLog[Pi]/2 2971222709990977 l006 ln(6897/7105) 2971222714166742 r005 Re(z^2+c),c=-29/110+32/57*I,n=44 2971222728605141 r005 Im(z^2+c),c=-19/44+22/43*I,n=42 2971222740109000 r005 Re(z^2+c),c=-1/52+7/62*I,n=6 2971222750793913 a003 -1-2^(1/2)+cos(3/8*Pi)-cos(1/9*Pi) 2971222764824566 a001 11/987*34^(27/29) 2971222767933733 m002 -Pi^2+Pi^5+Log[Pi]-2*Sech[Pi] 2971222769622805 r009 Im(z^3+c),c=-11/40+58/59*I,n=14 2971222769947783 a007 Real Root Of 128*x^4-906*x^3-223*x^2-895*x-271 2971222782332924 r009 Im(z^3+c),c=-2/5+19/32*I,n=3 2971222792477695 m001 (gamma+Zeta(5))/Landau 2971222803964657 a001 105937/41*76^(1/31) 2971222812532971 r005 Re(z^2+c),c=-25/66+3/23*I,n=15 2971222816139408 a007 Real Root Of 154*x^4-439*x^3+549*x^2+41*x-49 2971222817816481 m001 (-GAMMA(1/12)+4)/(-RenyiParking+1) 2971222817877634 m001 (Artin-RenyiParking)/(Salem+StolarskyHarborth) 2971222820552662 a007 Real Root Of -978*x^4+209*x^3-238*x^2+990*x-271 2971222824034708 m002 -(E^Pi/Pi^6)-Pi^2+Pi^5+Tanh[Pi] 2971222825063089 r009 Re(z^3+c),c=-55/118+2/39*I,n=38 2971222825653653 a007 Real Root Of 942*x^4-79*x^3+278*x^2-367*x-143 2971222831730364 m001 1/GAMMA(5/6)*exp(BesselK(0,1))^2*Zeta(3)^2 2971222832372203 a001 267913919*322^(5/12) 2971222848184526 a007 Real Root Of 822*x^4-799*x^3+640*x^2-926*x-359 2971222860097661 m005 (1/2*Zeta(3)+4/11)/(2/5*gamma-5/9) 2971222865448429 r009 Re(z^3+c),c=-1/3+13/61*I,n=17 2971222870880485 m009 (5*Psi(1,2/3)-2/5)/(1/3*Psi(1,2/3)+4) 2971222871520508 m001 1/Niven*MadelungNaCl^2*ln(GAMMA(1/4))^2 2971222900762387 m001 (ZetaQ(3)+ZetaQ(4))/(Ei(1)+ErdosBorwein) 2971222916031274 r009 Im(z^3+c),c=-12/29+20/39*I,n=3 2971222916910145 r009 Im(z^3+c),c=-17/36+7/46*I,n=21 2971222920087558 m008 (1/4*Pi^2+3)/(3/5*Pi^5+2/5) 2971222941725810 r005 Im(z^2+c),c=-81/118+1/26*I,n=45 2971222945619959 r005 Re(z^2+c),c=-11/34+23/58*I,n=45 2971222948461660 m001 ln(Paris)*CareFree^2*Sierpinski 2971222954020577 s002 sum(A207055[n]/(n^2*pi^n+1),n=1..infinity) 2971222955707863 r005 Im(z^2+c),c=-29/122+23/51*I,n=42 2971222957004249 m001 (Sarnak+Trott)/(ln(2^(1/2)+1)+BesselI(1,2)) 2971222965710956 r002 28th iterates of z^2 + 2971222976024769 l006 ln(3980/5357) 2971222978147815 m001 Shi(1)^(Pi*2^(1/2)/GAMMA(3/4))+MadelungNaCl 2971222982104515 a007 Real Root Of -720*x^4-916*x^3+882*x^2+982*x-340 2971222994300825 r005 Re(z^2+c),c=-53/66+10/51*I,n=10 2971223002556024 r005 Im(z^2+c),c=-13/50+23/50*I,n=32 2971223011716915 a007 Real Root Of -363*x^4-696*x^3-145*x^2+804*x-205 2971223019216112 m001 GAMMA(3/4)*(LandauRamanujan-Riemann3rdZero) 2971223021582733 q001 413/139 2971223037189454 m005 (1/3*2^(1/2)-1/8)/(5/8*3^(1/2)+1/12) 2971223053548981 r005 Im(z^2+c),c=-15/52+28/59*I,n=19 2971223061934793 m001 1/BesselK(1,1)/ln(Robbin)/GAMMA(2/3) 2971223067002927 m005 (1/2*exp(1)+1/6)/(5*Zeta(3)-7/8) 2971223068724917 r009 Re(z^3+c),c=-25/58+19/49*I,n=62 2971223071736664 r009 Re(z^3+c),c=-11/31+14/55*I,n=14 2971223078950961 r005 Im(z^2+c),c=-89/126+19/53*I,n=8 2971223115674877 m002 -4/E^Pi-Pi^2+Pi^5*Coth[Pi] 2971223123179948 m001 exp(Khintchine)*KhintchineHarmonic*Magata^2 2971223125415407 a007 Real Root Of 173*x^4-284*x^3-373*x^2-636*x+228 2971223127504836 r008 a(0)=3,K{-n^6,-29+34*n^3-23*n^2+53*n} 2971223135424682 r009 Im(z^3+c),c=-75/122+19/63*I,n=41 2971223144984425 m001 (-gamma(3)+GAMMA(17/24))/(Ei(1)-Si(Pi)) 2971223158018499 r008 a(0)=3,K{-n^6,-9+29*n-22*n^2+37*n^3} 2971223160522475 m001 (BesselJ(0,1)+Backhouse)/(-ErdosBorwein+Thue) 2971223194212112 k008 concat of cont frac of 2971223213733515 r009 Re(z^3+c),c=-45/98+27/55*I,n=49 2971223218832654 r005 Re(z^2+c),c=-1/34+20/31*I,n=58 2971223220859841 m001 1/exp(Zeta(5))^2/MinimumGamma*sin(Pi/5)^2 2971223223778058 m001 1/TwinPrimes/CareFree^2*exp(GAMMA(1/12))^2 2971223249966180 m001 (1-exp(1/exp(1)))/(-FeigenbaumD+KhinchinLevy) 2971223254156310 m005 (-1/12+1/4*5^(1/2))/(6*exp(1)-3/10) 2971223260662514 r008 a(0)=3,K{-n^6,53+53*n^3-39*n^2-32*n} 2971223264978108 m001 FransenRobinson/(ErdosBorwein-Robbin) 2971223270691060 m005 (17/30+1/6*5^(1/2))/(3/8*5^(1/2)-4) 2971223272264991 a007 Real Root Of 723*x^4-952*x^3+770*x^2-820*x+195 2971223272452660 r005 Re(z^2+c),c=31/126+29/52*I,n=13 2971223277687933 r005 Re(z^2+c),c=-37/106+10/33*I,n=21 2971223278743616 a003 cos(Pi*15/37)/sin(Pi*37/83) 2971223279602699 m005 (1/2*5^(1/2)+7/11)/(2/11*2^(1/2)+1/3) 2971223279827514 r008 a(0)=3,K{-n^6,18+45*n-41*n^2+14*n^3} 2971223282847031 r008 a(0)=3,K{-n^6,53-18*n-60*n^2+60*n^3} 2971223294764003 r008 a(0)=3,K{-n^6,29+68*n^3-96*n^2+34*n} 2971223304277812 r005 Re(z^2+c),c=-15/19+1/8*I,n=12 2971223321683618 m005 (1/2*gamma-5)/(5/9*2^(1/2)+4/5) 2971223324108766 m005 (1/2*Pi+7/9)/(5*2^(1/2)+5/6) 2971223339091418 r005 Re(z^2+c),c=13/70+19/51*I,n=58 2971223342982978 l006 ln(5087/6847) 2971223348926815 a001 2/233*610^(21/38) 2971223350447993 a005 (1/sin(111/227*Pi))^1819 2971223356660419 a007 Real Root Of 234*x^4+595*x^3-522*x^2-616*x+148 2971223361038656 a007 Real Root Of -805*x^4-92*x^3-764*x^2+524*x+227 2971223364261542 r005 Re(z^2+c),c=-9/23+3/11*I,n=3 2971223367775175 r005 Im(z^2+c),c=-5/38+20/49*I,n=15 2971223374300820 a007 Real Root Of -911*x^4+407*x^3+802*x^2+305*x-165 2971223375700740 a007 Real Root Of -379*x^4+462*x^3+585*x^2+689*x-21 2971223381990415 r005 Re(z^2+c),c=-17/56+16/29*I,n=33 2971223389521733 a001 3461452808002/89*2971215073^(7/23) 2971223397851173 a001 1/72*(1/2*5^(1/2)+1/2)^20*4^(1/4) 2971223404207906 q001 1/3365617 2971223407337032 a001 5/9062201101803*29^(1/2) 2971223410835806 a001 15127/144*8^(1/2) 2971223415604773 a007 Real Root Of -189*x^4-638*x^3-246*x^2-323*x-793 2971223420560322 b008 Pi+(4-Pi^2)^(-1) 2971223421848488 r009 Im(z^3+c),c=-47/86+15/53*I,n=5 2971223435410467 r009 Im(z^3+c),c=-1/17+9/28*I,n=7 2971223436330408 a007 Real Root Of 299*x^4+696*x^3-725*x^2-181*x+816 2971223437998040 r005 Re(z^2+c),c=6/29+33/53*I,n=5 2971223440124616 m001 Catalan*Salem/ln(Zeta(5)) 2971223452547336 a007 Real Root Of 28*x^4+849*x^3+486*x^2-593*x+756 2971223480361811 r005 Re(z^2+c),c=-31/25+1/6*I,n=14 2971223485857133 k002 Champernowne real with 55*n^2-123*n+97 2971223490497680 a007 Real Root Of 593*x^4-774*x^3-885*x^2-768*x+322 2971223492285888 p004 log(29059/1489) 2971223492628089 m001 GAMMA(5/6)^(ln(gamma)/ZetaQ(4)) 2971223493027426 a001 365435296162/521*521^(3/13) 2971223511398526 b008 93*Pi+ExpIntegralEi[2] 2971223511574739 a003 sin(Pi*17/93)-sin(Pi*27/85) 2971223514497903 b008 5-2*E^(1/70) 2971223517552060 m001 (MadelungNaCl+Sarnak)/(Bloch-Conway) 2971223528955606 m005 (1/3*3^(1/2)+2/3)/(4/11*5^(1/2)-5) 2971223546555068 h001 (3/4*exp(1)+1/7)/(10/11*exp(2)+5/8) 2971223548096075 r008 a(0)=3,K{-n^6,-19+34*n+43*n^2-22*n^3} 2971223548119887 b008 3/11+ArcCoth[41] 2971223573693206 m005 (-1/6+1/4*5^(1/2))/(7/11*Zeta(3)+5/9) 2971223578774653 l006 ln(6194/8337) 2971223586931658 r005 Re(z^2+c),c=-41/118+17/37*I,n=6 2971223591705141 m005 (1/3*exp(1)+2/7)/(1/12*3^(1/2)-6/11) 2971223593834839 s002 sum(A065612[n]/(n^3*pi^n+1),n=1..infinity) 2971223609948355 a007 Real Root Of 171*x^4+137*x^3+220*x^2-612*x-199 2971223657876362 m005 (1/2*Zeta(3)-6/7)/(5/12*2^(1/2)+3/11) 2971223663647967 m001 Paris/GolombDickman*exp(Porter)^2 2971223668288291 a001 11*317811^(4/51) 2971223670288781 r005 Im(z^2+c),c=25/98+6/35*I,n=27 2971223672501769 a001 64079/55*225851433717^(10/21) 2971223673225333 a001 7881196/55*9227465^(10/21) 2971223676512025 a001 4/1597*2584^(1/46) 2971223678620695 m002 Pi^5-Cosh[Pi]/Log[Pi]+Log[Pi]*ProductLog[Pi] 2971223699410892 h001 (-4*exp(2/3)-7)/(-5*exp(1/3)+2) 2971223701228634 r005 Im(z^2+c),c=-5/114+18/49*I,n=20 2971223701826886 m001 (Psi(1,1/3)+cos(1))/(-gamma(2)+FeigenbaumMu) 2971223711560017 a007 Real Root Of -241*x^4-649*x^3+485*x^2+677*x-511 2971223718923222 m002 -1/5-E^Pi+Pi^6/3 2971223723558748 r008 a(0)=3,K{-n^6,-62+48*n+42*n^2+7*n^3} 2971223726107363 r005 Im(z^2+c),c=-37/106+1/2*I,n=20 2971223737853324 m001 GAMMA(2/3)^Tribonacci/sin(1/5*Pi) 2971223740002561 r005 Re(z^2+c),c=-1/82+39/50*I,n=10 2971223743063411 l006 ln(7301/9827) 2971223743090696 m005 (1/3*Catalan+2/5)/(7/10*gamma-1/6) 2971223760623640 r005 Re(z^2+c),c=-11/42+13/23*I,n=58 2971223761564432 r008 a(0)=3,K{-n^6,-52+39*n+38*n^2+10*n^3} 2971223771680990 r008 a(0)=3,K{-n^6,4+2*n^3+90*n^2-61*n} 2971223781496336 a007 Real Root Of -82*x^4+16*x^3+543*x^2-737*x-173 2971223789314566 r005 Im(z^2+c),c=1/38+16/47*I,n=7 2971223802189101 r005 Re(z^2+c),c=4/19+1/60*I,n=20 2971223807016320 r008 a(0)=3,K{-n^6,17-9*n^3+49*n^2-58*n} 2971223826235733 r009 Re(z^3+c),c=-23/52+15/37*I,n=10 2971223834228670 a001 956722026041/1364*322^(1/4) 2971223841146018 m001 3^(1/2)+LandauRamanujan+Weierstrass 2971223842745985 r009 Re(z^3+c),c=-39/82+11/25*I,n=50 2971223843369141 r009 Re(z^3+c),c=-55/126+25/63*I,n=42 2971223851233926 a007 Real Root Of -110*x^4-293*x^3+210*x^2+611*x+849 2971223854525259 l006 ln(95/1854) 2971223855242721 r009 Im(z^3+c),c=-31/98+6/23*I,n=15 2971223856645024 h001 (-7*exp(-1)+7)/(-6*exp(1/2)-5) 2971223865885857 a007 Real Root Of 14*x^4+442*x^3+753*x^2-616*x-320 2971223880366159 r005 Im(z^2+c),c=-17/26+3/52*I,n=44 2971223888024943 a007 Real Root Of -551*x^4+117*x^3+693*x^2+818*x-303 2971223891134303 r002 17th iterates of z^2 + 2971223893514236 r009 Re(z^3+c),c=-1/20+31/53*I,n=35 2971223897156363 r008 a(0)=3,K{-n^6,-24+29*n+4*n^2+26*n^3} 2971223898150827 r005 Im(z^2+c),c=-87/122+1/31*I,n=18 2971223903892406 r005 Im(z^2+c),c=1/27+17/53*I,n=6 2971223911546301 r008 a(0)=3,K{-n^6,22-50*n+42*n^2+21*n^3} 2971223913114023 a007 Real Root Of -315*x^4-419*x^3-188*x^2+993*x-265 2971223913152896 m001 1/Kolakoski*exp(ArtinRank2)*sinh(1) 2971223913882305 a001 305/682*18^(19/29) 2971223915164260 m001 (2^(1/3)+ln(3))/((1+3^(1/2))^(1/2)-Thue) 2971223928401770 m001 (RenyiParking+TwinPrimes)/(Grothendieck+Otter) 2971223934276373 m005 (1/3*exp(1)+5)/(2*gamma+5/6) 2971223936589766 m001 Pi*2^(1/2)/GAMMA(3/4)-arctan(1/3)^Artin 2971223938168063 g001 GAMMA(4/9,97/104) 2971223942105258 a007 Real Root Of -608*x^4+372*x^3+398*x^2+888*x-304 2971223945396504 a008 Real Root of (1+3*x-x^2+3*x^3+6*x^4-5*x^5) 2971223969497036 r009 Re(z^3+c),c=-23/58+21/64*I,n=17 2971223970772483 m001 1/cosh(1)^2/Riemann1stZero 2971223977020563 m001 (MertensB2+Paris)/(GAMMA(5/6)+Khinchin) 2971223979684572 m001 1/Zeta(5)^2*PisotVijayaraghavan^2/ln(sqrt(3)) 2971223980255276 r008 a(0)=3,K{-n^6,36-47*n+13*n^2+33*n^3} 2971223988790551 a003 cos(Pi*3/16)-sin(Pi*36/109) 2971223989045329 r005 Re(z^2+c),c=-3/8+10/63*I,n=12 2971223991147219 r009 Re(z^3+c),c=-27/56+19/48*I,n=23 2971224001141103 k008 concat of cont frac of 2971224002557013 r008 a(0)=3,K{-n^6,26+40*n^3-13*n^2-18*n} 2971224003654812 r005 Re(z^2+c),c=-19/58+23/60*I,n=42 2971224015301112 a001 956722026041/2207*322^(1/3) 2971224020519415 m001 BesselI(0,2)*GAMMA(7/12)^GolombDickman 2971224022090982 r008 a(0)=3,K{-n^6,44+42*n^3-10*n^2-41*n} 2971224023608827 m005 (1/2*Pi+5/11)/(5/12*Catalan+3/10) 2971224026561697 r005 Re(z^2+c),c=25/122+5/13*I,n=20 2971224027095674 r008 a(0)=3,K{-n^6,46-42*n-12*n^2+43*n^3} 2971224030701520 r002 34th iterates of z^2 + 2971224042160965 h001 (6/7*exp(2)+4/7)/(5/8*exp(1)+5/8) 2971224044578089 r005 Im(z^2+c),c=-2/23+12/31*I,n=13 2971224047470660 r008 a(0)=3,K{-n^6,50+48*n^3-25*n^2-38*n} 2971224054490452 a003 sin(Pi*3/32)/sin(Pi*41/95) 2971224063828462 b008 E*Sqrt[ArcCsch[2/3]] 2971224074634295 a003 sin(Pi*4/97)-sin(Pi*15/107) 2971224087344714 r008 a(0)=3,K{-n^6,52-17*n-60*n^2+60*n^3} 2971224087991697 a007 Real Root Of 141*x^4+73*x^3-614*x^2+982*x-736 2971224088374801 a007 Real Root Of -284*x^4-771*x^3-428*x^2+896*x-206 2971224092314967 r008 a(0)=3,K{-n^6,50+62*n^3-67*n^2-10*n} 2971224098352561 a005 (1/sin(77/195*Pi))^1180 2971224103501585 h001 (6/11*exp(1)+2/11)/(7/11*exp(2)+9/10) 2971224111444471 r002 17th iterates of z^2 + 2971224113343501 k009 concat of cont frac of 2971224120449637 m001 GAMMA(2/3)+Psi(1,1/3)^exp(-1/2*Pi) 2971224122376801 r005 Im(z^2+c),c=-11/18+3/109*I,n=9 2971224122584166 a007 Real Root Of 629*x^4-5*x^3-615*x^2-826*x-24 2971224130632030 a007 Real Root Of 294*x^4+911*x^3+137*x^2-169*x-729 2971224132378341 r008 a(0)=3,K{-n^6,90+70*n^3-71*n^2-54*n} 2971224132472228 m009 (8/5*Catalan+1/5*Pi^2+2/5)/(4*Psi(1,2/3)+2/3) 2971224145255437 r005 Re(z^2+c),c=-13/36+14/53*I,n=12 2971224151778121 m001 1/cos(Pi/5)^2/ln(HardHexagonsEntropy)/cosh(1) 2971224163544324 m001 1/exp(Catalan)/FeigenbaumAlpha^2/arctan(1/2)^2 2971224169461349 r005 Re(z^2+c),c=-47/122+1/50*I,n=23 2971224173501448 m001 1/exp(cos(1))/GAMMA(1/3)^2/sqrt(1+sqrt(3))^2 2971224173953459 m002 -Pi^(-2)-Pi^2+Pi^5+ProductLog[Pi] 2971224175025899 r005 Re(z^2+c),c=-5/16+17/30*I,n=16 2971224181544258 m001 (5^(1/2))^ln(2^(1/2)+1)*(5^(1/2))^Bloch 2971224211234112 k008 concat of cont frac of 2971224216858841 m001 (gamma(1)-FellerTornier)/(MertensB3-ZetaQ(4)) 2971224226084848 r005 Im(z^2+c),c=-19/56+25/51*I,n=47 2971224229525971 m001 GAMMA(5/6)*ZetaP(3)^BesselJ(0,1) 2971224241221577 r009 Re(z^3+c),c=-5/38+23/28*I,n=32 2971224242742367 r005 Re(z^2+c),c=-49/44+15/59*I,n=52 2971224249384346 r005 Im(z^2+c),c=-5/24+15/34*I,n=19 2971224250832547 p004 log(26561/1361) 2971224264966165 r005 Re(z^2+c),c=-9/25+13/51*I,n=19 2971224266885412 h002 exp(1/4*(1+3^(2/3))*4^(1/4)) 2971224270857562 r005 Re(z^2+c),c=-31/82+7/54*I,n=12 2971224272801677 m002 3-Sinh[Pi]/ProductLog[Pi]+Pi^5*Tanh[Pi] 2971224272920345 m001 1/exp(Catalan)/GolombDickman^2/sin(Pi/5)^2 2971224290094917 r009 Im(z^3+c),c=-18/31+11/36*I,n=61 2971224302009865 m001 (-ZetaP(2)+ZetaP(4))/(cos(1)+Sarnak) 2971224302652074 r008 a(0)=3,K{-n^6,58+7*n^3-70*n^2+39*n} 2971224307003330 m001 (3^(1/3)+2)/(-sin(1)+2) 2971224315135167 p004 log(22853/1171) 2971224315806646 r002 12th iterates of z^2 + 2971224323162715 m001 (FeigenbaumMu+Niven)/(Chi(1)-Zeta(1,2)) 2971224335031481 a001 591286729879/521*521^(2/13) 2971224357028162 r002 14th iterates of z^2 + 2971224365235181 m001 Robbin^2/FeigenbaumC*exp((2^(1/3)))^2 2971224370308345 r008 a(0)=3,K{-n^6,31-11*n^3-29*n^2+43*n} 2971224375411544 r009 Im(z^3+c),c=-35/106+1/61*I,n=10 2971224380210618 r005 Im(z^2+c),c=-2/3+73/231*I,n=10 2971224383810415 m001 gamma+Niven*OrthogonalArrays 2971224396704610 r005 Re(z^2+c),c=-29/114+19/32*I,n=29 2971224402704733 r005 Im(z^2+c),c=-1/11+43/50*I,n=3 2971224403272957 a007 Real Root Of 990*x^4-619*x^3+325*x^2-879*x+241 2971224405165128 m001 (HardyLittlewoodC3+Otter)/(BesselI(1,1)+Cahen) 2971224409701117 r009 Im(z^3+c),c=-7/118+41/49*I,n=30 2971224410933829 m005 (1/4*gamma-1/2)/(1/6*exp(1)-1/3) 2971224421995081 a001 1812446897417/610 2971224428566244 a001 29/4181*28657^(22/27) 2971224443125112 r005 Im(z^2+c),c=-9/32+29/62*I,n=53 2971224447714592 r002 4th iterates of z^2 + 2971224458945901 m001 ZetaP(2)^Khinchin-ZetaR(2) 2971224460460258 m009 (1/5*Pi^2+1/3)/(4*Catalan+1/2*Pi^2-5/6) 2971224464565832 r005 Re(z^2+c),c=-87/70+3/43*I,n=24 2971224466442859 r009 Re(z^3+c),c=-1/3+13/61*I,n=16 2971224478101249 a007 Real Root Of 101*x^4-740*x^3+388*x^2-261*x-132 2971224488863134 k002 Champernowne real with 111/2*n^2-249/2*n+98 2971224502261234 r002 24i'th iterates of 2*x/(1-x^2) of 2971224504947158 k003 Champernowne real with 6*n^3-17/2*n^2-19/2*n+14 2971224522155647 a008 Real Root of x^4-x^3-2*x^2+17*x-36 2971224528501572 a001 1836311903/521*1364^(14/15) 2971224531604740 r005 Im(z^2+c),c=8/29+4/27*I,n=26 2971224536304584 a001 2504730781961/5778*322^(1/3) 2971224553599034 a007 Real Root Of 423*x^4-224*x^3-358*x^2-927*x-253 2971224556339250 a007 Real Root Of -627*x^4+112*x^3+573*x^2+395*x-166 2971224563395273 m001 GAMMA(13/24)^2*OneNinth^2/exp(sinh(1))^2 2971224573859365 r008 a(0)=3,K{-n^6,3+2*n^3+90*n^2-60*n} 2971224591736500 h001 (7/10*exp(2)+8/11)/(5/11*exp(1)+3/4) 2971224593517015 r008 a(0)=3,K{-n^6,-29+4*n+50*n^2+10*n^3} 2971224595921923 r008 a(0)=3,K{-n^6,-39+12*n^3+39*n^2+23*n} 2971224602072963 a007 Real Root Of 443*x^4+116*x^3+620*x^2-363*x-163 2971224605796231 r002 23th iterates of z^2 + 2971224612317981 a001 6557470319842/15127*322^(1/3) 2971224612891068 a005 (1/cos(6/167*Pi))^892 2971224627852353 r008 a(0)=3,K{-n^6,-41+36*n+23*n^2+17*n^3} 2971224630262311 a001 10610209857723/24476*322^(1/3) 2971224634968600 a001 2971215073/521*1364^(13/15) 2971224636293249 a001 4250681/48*102334155^(4/21) 2971224636294090 a001 103361/8*2504730781961^(4/21) 2971224641155961 a001 370248451*1836311903^(9/17) 2971224641156086 a001 4870847*6557470319842^(9/17) 2971224641157150 a001 28143753123*514229^(9/17) 2971224642768322 a001 29134601/48*4181^(4/21) 2971224658289522 r008 a(0)=3,K{-n^6,21+64*n-43*n^2-8*n^3} 2971224659296847 a001 4052739537881/9349*322^(1/3) 2971224662308679 l006 ln(1107/1490) 2971224680926758 a007 Real Root Of -109*x^4-351*x^3-360*x^2-718*x+333 2971224687051945 a007 Real Root Of 600*x^4-216*x^3+546*x^2-328*x-156 2971224690251604 m001 (BesselI(0,1)-Si(Pi))/(Ei(1)+ZetaP(4)) 2971224700160835 m001 1/Khintchine/ln(GlaisherKinkelin)/Rabbit^2 2971224711881809 r008 a(0)=3,K{-n^6,21-49*n+42*n^2+21*n^3} 2971224713609950 s002 sum(A119071[n]/(n*pi^n-1),n=1..infinity) 2971224714448402 a001 3/34*5^(43/57) 2971224717372120 a007 Real Root Of -32*x^4+142*x^3+686*x^2-119*x-191 2971224717753914 r005 Im(z^2+c),c=-8/25+23/47*I,n=23 2971224721016082 r005 Im(z^2+c),c=-1/82+23/64*I,n=7 2971224728512011 r002 28th iterates of z^2 + 2971224739336943 a001 144/710647*199^(49/52) 2971224741162060 r008 a(0)=0,K{-n^6,-69-52*n^3+62*n^2+25*n} 2971224741435631 a001 4807526976/521*1364^(4/5) 2971224754571464 r008 a(0)=3,K{-n^6,-17+38*n-22*n^2+36*n^3} 2971224767414974 r005 Im(z^2+c),c=9/74+13/47*I,n=20 2971224774393564 r009 Re(z^3+c),c=-15/44+7/30*I,n=6 2971224776903261 r008 a(0)=3,K{-n^6,-17+48*n-37*n^2+41*n^3} 2971224777301945 m001 (-Niven+Totient)/(LambertW(1)+LaplaceLimit) 2971224778460992 r005 Re(z^2+c),c=-6/13+49/62*I,n=3 2971224778601677 m001 ReciprocalLucas+FeigenbaumKappa^Trott2nd 2971224778883691 r009 Re(z^3+c),c=-23/54+23/60*I,n=17 2971224781168368 r008 a(0)=3,K{-n^6,19-16*n-4*n^2+36*n^3} 2971224785671455 r009 Re(z^3+c),c=-25/58+19/49*I,n=56 2971224797744629 r008 a(0)=3,K{-n^6,43-52*n+8*n^2+36*n^3} 2971224798731452 m005 (1/3*Catalan-1/11)/(5/72+7/24*5^(1/2)) 2971224809605294 m006 (4/5*exp(2*Pi)-1)/(3/5*exp(Pi)+1/2) 2971224814793094 r008 a(0)=3,K{-n^6,-15+63*n-63*n^2+50*n^3} 2971224826007021 r008 a(0)=3,K{-n^6,57-63*n+41*n^3} 2971224842728309 a007 Real Root Of -537*x^4-27*x^3-680*x^2+281*x+147 2971224846146470 r008 a(0)=3,K{-n^6,49+48*n^3-25*n^2-37*n} 2971224847902667 a001 7778742049/521*1364^(11/15) 2971224856376175 m001 (arctan(1/2)-Magata)/(PrimesInBinary+Stephens) 2971224858302529 a001 1548008755920/3571*322^(1/3) 2971224862813087 r008 a(0)=3,K{-n^6,31+6*n-58*n^2+56*n^3} 2971224863849384 m001 cosh(1)^2*FeigenbaumDelta^2*ln(sqrt(Pi)) 2971224864954774 r008 a(0)=3,K{-n^6,53+53*n^3-38*n^2-33*n} 2971224868141018 r008 a(0)=3,K{-n^6,71+51*n^3-23*n^2-64*n} 2971224871347422 m001 1/PrimesInBinary/Khintchine^2/ln(GAMMA(7/24)) 2971224898150301 r008 a(0)=3,K{-n^6,29+68*n^3-95*n^2+33*n} 2971224902048292 r005 Im(z^2+c),c=5/74+17/55*I,n=14 2971224904681643 r008 a(0)=3,K{-n^6,43+68*n^3-88*n^2+12*n} 2971224906181894 m005 (1/2*exp(1)+1/9)/(2/11*gamma-1/10) 2971224909256886 a007 Real Root Of 715*x^4-162*x^3+903*x^2-153*x-135 2971224910703982 m001 (Zeta(1,-1)-FeigenbaumKappa)/(Kolakoski-Mills) 2971224911251233 m001 ln(LaplaceLimit)/Si(Pi)/RenyiParking 2971224911518015 r008 a(0)=3,K{-n^6,57-11*n-25*n^2+15*n^3} 2971224911539039 a007 Real Root Of 291*x^4+966*x^3+325*x^2-246*x-941 2971224916188656 m002 3-Cosh[Pi]/Pi^3+Pi^3/Log[Pi] 2971224919785582 m001 1/ln(FeigenbaumD)^2/sin(Pi/5)^2 2971224920481857 l006 ln(506/9875) 2971224938349464 r005 Re(z^2+c),c=-47/122+1/55*I,n=17 2971224938564381 r005 Im(z^2+c),c=-7/12+40/119*I,n=10 2971224939221064 r001 46i'th iterates of 2*x^2-1 of 2971224942428749 m001 5^(1/2)*(CareFree+GolombDickman) 2971224942800182 r009 Re(z^3+c),c=-11/23+26/53*I,n=44 2971224944497388 m001 BesselJZeros(0,1)+GAMMA(1/12)^GAMMA(2/3) 2971224948966330 m001 (sin(1)-MertensB3)/(1+3^(1/2))^(1/2) 2971224952827097 m001 TreeGrowth2nd^2*Conway^2/exp(Zeta(3))^2 2971224954369706 a001 12586269025/521*1364^(2/3) 2971224962936302 m005 (1/3*3^(1/2)+1/12)/(1/10*5^(1/2)+2) 2971224979979215 m001 ln(cos(Pi/5))^2*GAMMA(1/6)/sin(1) 2971224992732115 m001 1/exp(Magata)^2/Kolakoski*arctan(1/2)^2 2971224993068024 a001 11/514229*610^(16/39) 2971225010645695 p004 log(25933/19267) 2971225011877960 m001 (1-2/3*Pi*3^(1/2)/GAMMA(2/3))/(-Zeta(5)+Bloch) 2971225014144485 r005 Re(z^2+c),c=-21/62+15/26*I,n=40 2971225022145978 g006 Psi(1,6/11)+Psi(1,3/8)-Psi(1,5/11)-Psi(1,3/5) 2971225035736124 m005 (1/3*gamma+2/5)/(1+4/9*5^(1/2)) 2971225039518097 r005 Re(z^2+c),c=35/114+13/23*I,n=17 2971225050534539 m001 (Bloch*Paris+FeigenbaumKappa)/Bloch 2971225060836749 a001 20365011074/521*1364^(3/5) 2971225078995860 s002 sum(A196566[n]/(n*exp(n)-1),n=1..infinity) 2971225080546094 r009 Im(z^3+c),c=-23/48+6/41*I,n=13 2971225080931813 r005 Im(z^2+c),c=-18/31+19/49*I,n=19 2971225095229621 a007 Real Root Of 435*x^4+999*x^3-637*x^2+429*x-800 2971225105033642 a001 1346269/3*9349^(51/53) 2971225106598450 s002 sum(A257535[n]/(n*pi^n-1),n=1..infinity) 2971225119628459 a007 Real Root Of 786*x^4-860*x^3+940*x^2-580*x-284 2971225131898699 a007 Real Root Of -128*x^4+878*x^3-621*x^2+539*x+239 2971225149050969 h001 (8/9*exp(2)+1/2)/(3/11*exp(2)+4/11) 2971225151651152 r009 Re(z^3+c),c=-41/94+21/53*I,n=39 2971225156289905 m005 (1/2*3^(1/2)-5)/(3/4*5^(1/2)-2/7) 2971225163471022 b008 5*InverseHaversine[3/35] 2971225163471022 b008 ArcCot[4*Sqrt[2/3]] 2971225164555512 m001 1/GAMMA(23/24)^2/GAMMA(19/24)^2/exp(Zeta(1/2)) 2971225166870689 l006 ln(411/8021) 2971225166943671 r009 Re(z^3+c),c=-25/58+19/49*I,n=61 2971225167303795 a001 63246219*1364^(8/15) 2971225176560149 a007 Real Root Of 255*x^4+783*x^3+197*x^2+607*x+729 2971225177035774 a001 956722026041/521*521^(1/13) 2971225180067988 r009 Im(z^3+c),c=-33/74+10/57*I,n=18 2971225192021393 m001 exp(Lehmer)^2*LandauRamanujan/sin(1) 2971225194033840 m001 (Grothendieck-OneNinth)/(Zeta(1,2)+Artin) 2971225217155289 a001 64079/2*34^(12/19) 2971225218905432 r005 Re(z^2+c),c=11/82+34/59*I,n=28 2971225219283487 r009 Re(z^3+c),c=-31/70+15/37*I,n=26 2971225220451216 a001 139583862445/843*322^(1/2) 2971225225972327 r005 Im(z^2+c),c=-13/18+1/56*I,n=13 2971225232422252 m005 (1/3*Pi+2/7)/(9/40+1/10*5^(1/2)) 2971225239805121 r002 3th iterates of z^2 + 2971225242855236 r009 Im(z^3+c),c=-27/50+7/44*I,n=47 2971225245861503 m001 (-Porter+Tetranacci)/(BesselK(0,1)+GAMMA(5/6)) 2971225273770846 a001 53316291173/521*1364^(7/15) 2971225274875373 m001 (MertensB1+ZetaP(2))/(ln(3)+Conway) 2971225294426173 m005 (2/5*2^(1/2)+3/4)/(2/3*2^(1/2)-1/2) 2971225305616850 r005 Im(z^2+c),c=-1+29/98*I,n=11 2971225306450968 a007 Real Root Of 93*x^4-527*x^3+183*x^2-293*x+84 2971225310535432 a007 Real Root Of 955*x^4+411*x^3-448*x^2-322*x+117 2971225318822986 m001 Pi^arctan(1/2)*MadelungNaCl 2971225319150570 a007 Real Root Of 379*x^4+49*x^3+671*x^2-697*x-268 2971225322260202 r009 Im(z^3+c),c=-29/64+7/48*I,n=5 2971225328431176 r008 a(0)=3,K{-n^6,-60+44*n+44*n^2+7*n^3} 2971225343484685 r005 Re(z^2+c),c=-39/98+25/61*I,n=8 2971225343599795 r009 Re(z^3+c),c=-11/40+33/47*I,n=50 2971225344851944 m005 (1/3*3^(1/2)-1/12)/(4/9*exp(1)+5/11) 2971225347559004 q001 919/3093 2971225349273595 m002 Pi+Pi^4/4+Log[Pi]+ProductLog[Pi] 2971225353924775 r005 Im(z^2+c),c=-9/34+6/13*I,n=38 2971225358069140 a007 Real Root Of -441*x^4-989*x^3+766*x^2-808*x-735 2971225359096421 p003 LerchPhi(1/256,2,112/61) 2971225362802347 r005 Im(z^2+c),c=5/24+9/49*I,n=3 2971225378045629 a007 Real Root Of -32*x^4-954*x^3-104*x^2-258*x+3 2971225380237900 a001 86267571272/521*1364^(2/5) 2971225383810565 r005 Im(z^2+c),c=-15/14+65/232*I,n=7 2971225388658346 a007 Real Root Of 229*x^4-966*x^3-733*x^2-352*x-67 2971225390173791 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=31 2971225391526854 r008 a(0)=3,K{-n^6,-40+12*n^3+39*n^2+24*n} 2971225391982071 r005 Re(z^2+c),c=-21/82+13/23*I,n=33 2971225408998187 a001 233/2207*312119004989^(10/11) 2971225408998187 a001 233/2207*(1/2+1/2*5^(1/2))^50 2971225408998187 a001 233/2207*3461452808002^(5/6) 2971225409038387 a001 987/521*312119004989^(4/5) 2971225409038387 a001 987/521*(1/2+1/2*5^(1/2))^44 2971225409038387 a001 987/521*23725150497407^(11/16) 2971225409038387 a001 987/521*73681302247^(11/13) 2971225409038387 a001 987/521*10749957122^(11/12) 2971225409038387 a001 987/521*4106118243^(22/23) 2971225409621457 m001 (cos(1)+BesselK(0,1))/(-Artin+ArtinRank2) 2971225409651656 r005 Im(z^2+c),c=-5/66+13/34*I,n=23 2971225411197526 s002 sum(A270852[n]/(2^n-1),n=1..infinity) 2971225413656312 r009 Re(z^3+c),c=-35/78+10/39*I,n=4 2971225418249720 m001 KhinchinHarmonic^(3^(1/2)*GAMMA(5/6)) 2971225423031037 r008 a(0)=3,K{-n^6,-42+37*n+23*n^2+17*n^3} 2971225426820619 s002 sum(A207055[n]/(n^2*pi^n-1),n=1..infinity) 2971225443511465 m001 FransenRobinson^cos(1/5*Pi)/StronglyCareFree 2971225445775579 m001 (Zeta(3)+Otter)/(TreeGrowth2nd-Tribonacci) 2971225460277585 m001 (Thue+ThueMorse)/(Zeta(1/2)+Backhouse) 2971225482485104 m001 FeigenbaumKappa-Rabbit^Zeta(1,-1) 2971225483128191 a007 Real Root Of -98*x^4+331*x^3-903*x^2+787*x+323 2971225486704959 a001 139583862445/521*1364^(1/3) 2971225489161983 m001 (Si(Pi)+ln(5))/(-GAMMA(13/24)+Weierstrass) 2971225491869135 k002 Champernowne real with 56*n^2-126*n+99 2971225506764203 r008 a(0)=3,K{-n^6,61-11*n^3-14*n^2-2*n} 2971225511115141 k006 concat of cont frac of 2971225516701365 r005 Re(z^2+c),c=-1/3+19/51*I,n=18 2971225526399243 a007 Real Root Of 48*x^4-976*x^3+199*x^2-15*x-48 2971225527508133 b008 7/4+ProductLog[1+Pi] 2971225527715584 g005 GAMMA(10/11)^2*GAMMA(4/11)*GAMMA(8/9) 2971225529032861 m005 (1/3*exp(1)+2/11)/(2/7*5^(1/2)-3/11) 2971225536500338 a001 139583862445/76*29^(1/7) 2971225542934674 a007 Real Root Of -438*x^4+215*x^3+100*x^2+669*x+199 2971225552825711 m001 (LaplaceLimit-MertensB2)/(Ei(1)-Cahen) 2971225557755006 r009 Im(z^3+c),c=-13/23+10/63*I,n=7 2971225561404580 l006 ln(316/6167) 2971225574404809 r008 a(0)=3,K{-n^6,12-4*n-10*n^2+37*n^3} 2971225579741260 r009 Im(z^3+c),c=-19/102+10/33*I,n=5 2971225580271348 m005 (1/3*5^(1/2)-3/7)/(9/11*2^(1/2)-1/11) 2971225580451826 a007 Real Root Of -739*x^4+157*x^3+388*x^2+873*x-292 2971225583972322 m001 (BesselI(0,1)+5)/(3^(1/3)+2/3) 2971225585346691 a007 Real Root Of -364*x^4-991*x^3+591*x^2+733*x-665 2971225590280288 r005 Re(z^2+c),c=-11/21+29/63*I,n=27 2971225590777014 r008 a(0)=3,K{-n^6,42-51*n+8*n^2+36*n^3} 2971225593172020 a001 225851433717/521*1364^(4/15) 2971225593713391 r009 Re(z^3+c),c=-29/70+23/64*I,n=36 2971225595079133 r005 Im(z^2+c),c=-9/32+29/62*I,n=56 2971225602496076 a007 Real Root Of -33*x^4-948*x^3+952*x^2-439*x-878 2971225606339908 r008 a(0)=3,K{-n^6,30-21*n-16*n^2+42*n^3} 2971225608339540 m001 MadelungNaCl+Zeta(5)^GAMMA(1/6) 2971225608339540 m001 Zeta(5)^(2*Pi/GAMMA(5/6))+MadelungNaCl 2971225608910806 l006 ln(7090/9543) 2971225611454759 r005 Im(z^2+c),c=-29/98+27/55*I,n=21 2971225614139823 a007 Real Root Of -683*x^4-701*x^3+459*x^2+978*x+237 2971225618701945 r008 a(0)=3,K{-n^6,56-62*n+41*n^3} 2971225619591963 b008 1/25-3*Coth[Pi] 2971225619591963 m002 -1/25+3*Coth[Pi] 2971225624454796 a005 (1/cos(44/167*Pi))^156 2971225626441614 m008 (3/5*Pi^4+1/3)/(1/6*Pi^2+1/3) 2971225629360866 r005 Im(z^2+c),c=-85/86+2/7*I,n=9 2971225634224829 m001 exp(Pi)^2*Kolakoski^2*Zeta(1,2)^2 2971225637319419 l006 ln(4808/4953) 2971225644693674 a007 Real Root Of 380*x^4+994*x^3-594*x^2-657*x-251 2971225646556437 m007 (-1/2*gamma-ln(2)+2)/(-2*gamma-4*ln(2)+1/2) 2971225650810212 r005 Im(z^2+c),c=31/86+9/59*I,n=16 2971225650901422 r009 Re(z^3+c),c=-49/110+7/17*I,n=48 2971225655355275 a001 1322157322203/233*1836311903^(16/17) 2971225655355275 a001 599074578/233*6557470319842^(16/17) 2971225675055801 r009 Re(z^3+c),c=-53/110+24/41*I,n=15 2971225678538029 r008 a(0)=3,K{-n^6,52-18*n-59*n^2+60*n^3} 2971225696695755 m001 BesselI(0,2)*FibonacciFactorial+ZetaP(3) 2971225698458798 a001 182717648081/161*123^(1/5) 2971225699639086 a001 365435296162/521*1364^(1/5) 2971225721849722 r005 Im(z^2+c),c=37/122+1/9*I,n=56 2971225728655338 r005 Re(z^2+c),c=41/126+20/37*I,n=45 2971225729033124 m001 (Zeta(5)+BesselI(1,1))/(Psi(2,1/3)+Zeta(3)) 2971225737163222 a007 Real Root Of -165*x^4-473*x^3+4*x^2+112*x+750 2971225744075603 a007 Real Root Of -313*x^4-726*x^3+292*x^2-833*x+298 2971225749695244 a007 Real Root Of 410*x^4+884*x^3-762*x^2+965*x+828 2971225751949131 m001 1/Salem^2/exp(RenyiParking)^2*GAMMA(2/3)^2 2971225754652872 a003 sin(Pi*6/79)-sin(Pi*1/13) 2971225767227553 r002 49th iterates of z^2 + 2971225780483598 r008 a(0)=2,K{-n^6,3+3*n^2-8*n} 2971225782917022 p001 sum((-1)^n/(289*n+39)/n/(10^n),n=1..infinity) 2971225784055131 l006 ln(5983/8053) 2971225784722664 p001 sum((-1)^n/(188*n+19)/n/(16^n),n=1..infinity) 2971225799746188 a001 701408733/521*3571^(16/17) 2971225801053174 r005 Re(z^2+c),c=1/27+23/36*I,n=3 2971225802668457 m001 1/GAMMA(7/24)*GAMMA(1/4)*ln(sqrt(1+sqrt(3)))^2 2971225806106156 a001 591286729879/521*1364^(2/15) 2971225813452070 a001 1134903170/521*3571^(15/17) 2971225813593249 r005 Im(z^2+c),c=-23/122+27/53*I,n=5 2971225822537891 a007 Real Root Of -391*x^4-910*x^3+936*x^2+394*x-489 2971225827157952 a001 1836311903/521*3571^(14/17) 2971225830584819 m009 (2/3*Psi(1,2/3)+4)/(1/8*Pi^2+4/5) 2971225837319028 r005 Re(z^2+c),c=-5/114+27/38*I,n=49 2971225840863834 a001 2971215073/521*3571^(13/17) 2971225842508206 r009 Re(z^3+c),c=-17/46+32/57*I,n=9 2971225844510978 r002 8th iterates of z^2 + 2971225848457143 a007 Real Root Of -10*x^4-297*x^3+13*x^2+267*x-328 2971225852807705 p001 sum((-1)^n/(559*n+98)/n/(512^n),n=1..infinity) 2971225854569716 a001 4807526976/521*3571^(12/17) 2971225862832118 s002 sum(A033648[n]/(n^3*2^n+1),n=1..infinity) 2971225866042725 m001 (ln(2+3^(1/2))+GAMMA(7/12))/(Paris+Thue) 2971225866968460 m001 (Kolakoski-ZetaP(4))/(Pi^(1/2)+Cahen) 2971225868275599 a001 7778742049/521*3571^(11/17) 2971225881981481 a001 12586269025/521*3571^(10/17) 2971225886636157 a007 Real Root Of 535*x^4+199*x^3-155*x^2-440*x-116 2971225893999821 r005 Re(z^2+c),c=-11/32+19/44*I,n=13 2971225895687363 a001 20365011074/521*3571^(9/17) 2971225909393246 a001 63246219*3571^(8/17) 2971225911606533 a007 Real Root Of 513*x^4-303*x^3+698*x^2-614*x-256 2971225912573229 a001 956722026041/521*1364^(1/15) 2971225914790583 a007 Real Root Of -303*x^4-943*x^3-383*x^2-811*x-149 2971225916007395 m005 (1/2*5^(1/2)+4)/(6/11*3^(1/2)+7/9) 2971225922873710 r009 Im(z^3+c),c=-10/21+9/62*I,n=60 2971225923099128 a001 53316291173/521*3571^(7/17) 2971225930001903 a001 233/5778*(1/2+1/2*5^(1/2))^52 2971225930001903 a001 233/5778*23725150497407^(13/16) 2971225930001903 a001 233/5778*505019158607^(13/14) 2971225930042226 a001 2584/521*2537720636^(14/15) 2971225930042226 a001 2584/521*17393796001^(6/7) 2971225930042226 a001 2584/521*45537549124^(14/17) 2971225930042226 a001 2584/521*817138163596^(14/19) 2971225930042226 a001 2584/521*14662949395604^(2/3) 2971225930042226 a001 2584/521*(1/2+1/2*5^(1/2))^42 2971225930042226 a001 2584/521*505019158607^(3/4) 2971225930042226 a001 2584/521*192900153618^(7/9) 2971225930042226 a001 2584/521*10749957122^(7/8) 2971225930042226 a001 2584/521*4106118243^(21/23) 2971225930042226 a001 2584/521*1568397607^(21/22) 2971225936141608 r005 Im(z^2+c),c=-11/10+45/146*I,n=3 2971225936805010 a001 86267571272/521*3571^(6/17) 2971225937624723 m001 (AlladiGrinstead+ZetaP(3))/(Si(Pi)-Zeta(1/2)) 2971225950510893 a001 139583862445/521*3571^(5/17) 2971225952200799 r005 Im(z^2+c),c=23/82+1/7*I,n=48 2971225964216776 a001 225851433717/521*3571^(4/17) 2971225968175812 a007 Real Root Of 157*x^4+455*x^3+72*x^2+180*x-402 2971225969208837 m002 Pi^5-Cosh[Pi]+Pi^3*Coth[Pi]*Csch[Pi] 2971225977922658 a001 365435296162/521*3571^(3/17) 2971225981149587 r005 Im(z^2+c),c=-23/118+23/53*I,n=31 2971225985005740 a001 12422695843309/4181 2971225986835235 a001 267914296/521*9349^(18/19) 2971225988624406 a001 433494437/521*9349^(17/19) 2971225990413577 a001 701408733/521*9349^(16/19) 2971225991628541 a001 591286729879/521*3571^(2/17) 2971225992202747 a001 1134903170/521*9349^(15/19) 2971225993991918 a001 1836311903/521*9349^(14/19) 2971225995781088 a001 2971215073/521*9349^(13/19) 2971225997570259 a001 4807526976/521*9349^(12/19) 2971225999359430 a001 7778742049/521*9349^(11/19) 2971226001148600 a001 12586269025/521*9349^(10/19) 2971226002937771 a001 20365011074/521*9349^(9/19) 2971226003385983 m001 FeigenbaumAlpha-ln(5)-Gompertz 2971226004726942 a001 63246219*9349^(8/19) 2971226005334424 a001 956722026041/521*3571^(1/17) 2971226006015336 a001 233/15127*14662949395604^(6/7) 2971226006015336 a001 233/15127*(1/2+1/2*5^(1/2))^54 2971226006055662 a001 6765/521*2537720636^(8/9) 2971226006055662 a001 6765/521*312119004989^(8/11) 2971226006055662 a001 6765/521*(1/2+1/2*5^(1/2))^40 2971226006055662 a001 6765/521*23725150497407^(5/8) 2971226006055662 a001 6765/521*73681302247^(10/13) 2971226006055662 a001 6765/521*28143753123^(4/5) 2971226006055662 a001 6765/521*10749957122^(5/6) 2971226006055662 a001 6765/521*4106118243^(20/23) 2971226006055662 a001 6765/521*1568397607^(10/11) 2971226006055662 a001 6765/521*599074578^(20/21) 2971226006516112 a001 53316291173/521*9349^(7/19) 2971226008305283 a001 86267571272/521*9349^(6/19) 2971226010094453 a001 139583862445/521*9349^(5/19) 2971226011883624 a001 225851433717/521*9349^(4/19) 2971226012807821 r005 Im(z^2+c),c=-9/14+13/229*I,n=44 2971226013672795 a001 365435296162/521*9349^(3/19) 2971226014040288 a001 32523039949685/10946 2971226014316789 a001 102334155/521*24476^(20/21) 2971226014356671 m005 (1/2*Catalan-7/8)/(8/11*2^(1/2)+3/8) 2971226014552965 a001 165580141/521*24476^(19/21) 2971226014789141 a001 267914296/521*24476^(6/7) 2971226015025317 a001 433494437/521*24476^(17/21) 2971226015261493 a001 701408733/521*24476^(16/21) 2971226015461965 a001 591286729879/521*9349^(2/19) 2971226015497669 a001 1134903170/521*24476^(5/7) 2971226015695676 m001 (-Pi^(1/2)+GAMMA(23/24))/(2^(1/2)+ln(3)) 2971226015733845 a001 1836311903/521*24476^(2/3) 2971226015970020 a001 2971215073/521*24476^(13/21) 2971226016206196 a001 4807526976/521*24476^(4/7) 2971226016442372 a001 7778742049/521*24476^(11/21) 2971226016678548 a001 12586269025/521*24476^(10/21) 2971226016914724 a001 20365011074/521*24476^(3/7) 2971226017105547 a001 233/39603*14662949395604^(8/9) 2971226017105547 a001 233/39603*(1/2+1/2*5^(1/2))^56 2971226017145872 a001 17711/521*817138163596^(2/3) 2971226017145872 a001 17711/521*(1/2+1/2*5^(1/2))^38 2971226017145872 a001 17711/521*10749957122^(19/24) 2971226017145872 a001 17711/521*4106118243^(19/23) 2971226017145872 a001 17711/521*1568397607^(19/22) 2971226017145872 a001 17711/521*599074578^(19/21) 2971226017145872 a001 17711/521*228826127^(19/20) 2971226017150900 a001 63246219*24476^(8/21) 2971226017251136 a001 956722026041/521*9349^(1/19) 2971226017264102 a001 2537720636/377*34^(8/19) 2971226017387076 a001 53316291173/521*24476^(1/3) 2971226017623251 a001 86267571272/521*24476^(2/7) 2971226017859427 a001 139583862445/521*24476^(5/21) 2971226018095603 a001 225851433717/521*24476^(4/21) 2971226018276372 a001 85146424005746/28657 2971226018331779 a001 365435296162/521*24476^(1/7) 2971226018348158 a001 39088169/521*64079^(22/23) 2971226018379620 a001 63245986/521*64079^(21/23) 2971226018411081 a001 102334155/521*64079^(20/23) 2971226018442542 a001 165580141/521*64079^(19/23) 2971226018474004 a001 267914296/521*64079^(18/23) 2971226018505465 a001 433494437/521*64079^(17/23) 2971226018536926 a001 701408733/521*64079^(16/23) 2971226018567955 a001 591286729879/521*24476^(2/21) 2971226018568387 a001 1134903170/521*64079^(15/23) 2971226018599849 a001 1836311903/521*64079^(14/23) 2971226018631310 a001 2971215073/521*64079^(13/23) 2971226018662771 a001 4807526976/521*64079^(12/23) 2971226018694233 a001 7778742049/521*64079^(11/23) 2971226018723587 a001 233/103682*(1/2+1/2*5^(1/2))^58 2971226018725694 a001 12586269025/521*64079^(10/23) 2971226018757155 a001 20365011074/521*64079^(9/23) 2971226018763912 a001 46368/521*141422324^(12/13) 2971226018763912 a001 46368/521*2537720636^(4/5) 2971226018763912 a001 46368/521*45537549124^(12/17) 2971226018763912 a001 46368/521*14662949395604^(4/7) 2971226018763912 a001 46368/521*(1/2+1/2*5^(1/2))^36 2971226018763912 a001 46368/521*505019158607^(9/14) 2971226018763912 a001 46368/521*192900153618^(2/3) 2971226018763912 a001 46368/521*73681302247^(9/13) 2971226018763912 a001 46368/521*10749957122^(3/4) 2971226018763912 a001 46368/521*4106118243^(18/23) 2971226018763912 a001 46368/521*1568397607^(9/11) 2971226018763912 a001 46368/521*599074578^(6/7) 2971226018763912 a001 46368/521*228826127^(9/10) 2971226018763913 a001 46368/521*87403803^(18/19) 2971226018788616 a001 63246219*64079^(8/23) 2971226018804131 a001 956722026041/521*24476^(1/21) 2971226018820078 a001 53316291173/521*64079^(7/23) 2971226018851539 a001 86267571272/521*64079^(6/23) 2971226018883000 a001 139583862445/521*64079^(5/23) 2971226018894408 a001 222916232067553/75025 2971226018914461 a001 225851433717/521*64079^(4/23) 2971226018945923 a001 365435296162/521*64079^(3/23) 2971226018955848 a001 102334155/521*167761^(4/5) 2971226018959656 a001 233/271443*14662949395604^(20/21) 2971226018959656 a001 233/271443*(1/2+1/2*5^(1/2))^60 2971226018976963 a001 1134903170/521*167761^(3/5) 2971226018977384 a001 591286729879/521*64079^(2/23) 2971226018984578 a001 583602272196913/196418 2971226018994098 a001 233/710647*(1/2+1/2*5^(1/2))^62 2971226018997734 a001 1527890584523186/514229 2971226018998077 a001 12586269025/521*167761^(2/5) 2971226018999123 a001 233/1860498*(1/2+1/2*5^(1/2))^64 2971226018999981 a001 233*45537549124^(2/3) 2971226018999981 a001 233*(1/2+1/2*5^(1/2))^34 2971226018999981 a001 233*10749957122^(17/24) 2971226018999981 a001 233*4106118243^(17/23) 2971226018999981 a001 233*1568397607^(17/22) 2971226018999981 a001 233*599074578^(17/21) 2971226018999981 a001 233*228826127^(17/20) 2971226018999982 a001 233*87403803^(17/19) 2971226018999984 a001 233*33385282^(17/18) 2971226019000840 a001 2472178896849459/832040 2971226019002228 a001 233/1149851*(1/2+1/2*5^(1/2))^63 2971226019005865 a001 944288312326273/317811 2971226019008845 a001 956722026041/521*64079^(1/23) 2971226019015384 a001 233/439204*(1/2+1/2*5^(1/2))^61 2971226019019192 a001 139583862445/521*167761^(1/5) 2971226019026612 a001 14930352/521*439204^(8/9) 2971226019028327 a001 63245986/521*439204^(7/9) 2971226019030038 a001 267914296/521*439204^(2/3) 2971226019031749 a001 1134903170/521*439204^(5/9) 2971226019033461 a001 4807526976/521*439204^(4/9) 2971226019034423 a001 317811/521*(1/2+1/2*5^(1/2))^32 2971226019034423 a001 317811/521*23725150497407^(1/2) 2971226019034423 a001 317811/521*73681302247^(8/13) 2971226019034423 a001 317811/521*10749957122^(2/3) 2971226019034423 a001 317811/521*4106118243^(16/23) 2971226019034423 a001 317811/521*1568397607^(8/11) 2971226019034423 a001 317811/521*599074578^(16/21) 2971226019034423 a001 317811/521*228826127^(4/5) 2971226019034424 a001 317811/521*87403803^(16/19) 2971226019034426 a001 317811/521*33385282^(8/9) 2971226019034440 a001 317811/521*12752043^(16/17) 2971226019035172 a001 20365011074/521*439204^(1/3) 2971226019036884 a001 86267571272/521*439204^(2/9) 2971226019038595 a001 365435296162/521*439204^(1/9) 2971226019039405 a001 832040/521*7881196^(10/11) 2971226019039442 a001 832040/521*20633239^(6/7) 2971226019039448 a001 832040/521*141422324^(10/13) 2971226019039448 a001 832040/521*2537720636^(2/3) 2971226019039448 a001 832040/521*45537549124^(10/17) 2971226019039448 a001 832040/521*312119004989^(6/11) 2971226019039448 a001 832040/521*14662949395604^(10/21) 2971226019039448 a001 832040/521*(1/2+1/2*5^(1/2))^30 2971226019039448 a001 832040/521*192900153618^(5/9) 2971226019039448 a001 832040/521*28143753123^(3/5) 2971226019039448 a001 832040/521*10749957122^(5/8) 2971226019039448 a001 832040/521*4106118243^(15/23) 2971226019039448 a001 832040/521*1568397607^(15/22) 2971226019039448 a001 832040/521*599074578^(5/7) 2971226019039448 a001 832040/521*228826127^(3/4) 2971226019039449 a001 832040/521*87403803^(15/19) 2971226019039450 a001 832040/521*33385282^(5/6) 2971226019039464 a001 832040/521*12752043^(15/17) 2971226019039566 a001 832040/521*4870847^(15/16) 2971226019040176 a001 2178309/521*20633239^(4/5) 2971226019040181 a001 2178309/521*17393796001^(4/7) 2971226019040181 a001 2178309/521*14662949395604^(4/9) 2971226019040181 a001 2178309/521*(1/2+1/2*5^(1/2))^28 2971226019040181 a001 2178309/521*73681302247^(7/13) 2971226019040181 a001 2178309/521*10749957122^(7/12) 2971226019040181 a001 2178309/521*4106118243^(14/23) 2971226019040181 a001 2178309/521*1568397607^(7/11) 2971226019040181 a001 2178309/521*599074578^(2/3) 2971226019040181 a001 2178309/521*228826127^(7/10) 2971226019040182 a001 2178309/521*87403803^(14/19) 2971226019040183 a001 2178309/521*33385282^(7/9) 2971226019040196 a001 2178309/521*12752043^(14/17) 2971226019040269 a001 14930352/521*7881196^(8/11) 2971226019040274 a001 39088169/521*7881196^(2/3) 2971226019040276 a001 63245986/521*7881196^(7/11) 2971226019040281 a001 267914296/521*7881196^(6/11) 2971226019040285 a001 1134903170/521*7881196^(5/11) 2971226019040288 a001 5702887/521*141422324^(2/3) 2971226019040288 a001 5702887/521*(1/2+1/2*5^(1/2))^26 2971226019040288 a001 5702887/521*73681302247^(1/2) 2971226019040288 a001 5702887/521*10749957122^(13/24) 2971226019040288 a001 5702887/521*4106118243^(13/23) 2971226019040288 a001 5702887/521*1568397607^(13/22) 2971226019040288 a001 5702887/521*599074578^(13/21) 2971226019040288 a001 5702887/521*228826127^(13/20) 2971226019040289 a001 5702887/521*87403803^(13/19) 2971226019040289 a001 4807526976/521*7881196^(4/11) 2971226019040290 a001 5702887/521*33385282^(13/18) 2971226019040291 a001 7778742049/521*7881196^(1/3) 2971226019040291 a001 2178309/521*4870847^(7/8) 2971226019040294 a001 20365011074/521*7881196^(3/11) 2971226019040298 a001 86267571272/521*7881196^(2/11) 2971226019040302 a001 365435296162/521*7881196^(1/11) 2971226019040302 a001 5702887/521*12752043^(13/17) 2971226019040303 a001 102334155/521*20633239^(4/7) 2971226019040303 a001 63245986/521*20633239^(3/5) 2971226019040304 a001 1134903170/521*20633239^(3/7) 2971226019040304 a001 1836311903/521*20633239^(2/5) 2971226019040304 a001 14930352/521*141422324^(8/13) 2971226019040304 a001 14930352/521*2537720636^(8/15) 2971226019040304 a001 14930352/521*45537549124^(8/17) 2971226019040304 a001 14930352/521*14662949395604^(8/21) 2971226019040304 a001 14930352/521*(1/2+1/2*5^(1/2))^24 2971226019040304 a001 14930352/521*192900153618^(4/9) 2971226019040304 a001 14930352/521*73681302247^(6/13) 2971226019040304 a001 14930352/521*10749957122^(1/2) 2971226019040304 a001 14930352/521*4106118243^(12/23) 2971226019040304 a001 14930352/521*1568397607^(6/11) 2971226019040304 a001 14930352/521*599074578^(4/7) 2971226019040304 a001 14930352/521*228826127^(3/5) 2971226019040304 a001 14930352/521*87403803^(12/19) 2971226019040305 a001 12586269025/521*20633239^(2/7) 2971226019040305 a001 53316291173/521*20633239^(1/5) 2971226019040306 a001 139583862445/521*20633239^(1/7) 2971226019040306 a001 14930352/521*33385282^(2/3) 2971226019040306 a001 39088169/521*312119004989^(2/5) 2971226019040306 a001 39088169/521*(1/2+1/2*5^(1/2))^22 2971226019040306 a001 39088169/521*10749957122^(11/24) 2971226019040306 a001 39088169/521*4106118243^(11/23) 2971226019040306 a001 39088169/521*1568397607^(1/2) 2971226019040306 a001 39088169/521*599074578^(11/21) 2971226019040306 a001 39088169/521*228826127^(11/20) 2971226019040306 a001 39088169/521*87403803^(11/19) 2971226019040307 a001 267914296/521*141422324^(6/13) 2971226019040307 a001 102334155/521*2537720636^(4/9) 2971226019040307 a001 102334155/521*(1/2+1/2*5^(1/2))^20 2971226019040307 a001 102334155/521*23725150497407^(5/16) 2971226019040307 a001 102334155/521*505019158607^(5/14) 2971226019040307 a001 102334155/521*73681302247^(5/13) 2971226019040307 a001 102334155/521*28143753123^(2/5) 2971226019040307 a001 102334155/521*10749957122^(5/12) 2971226019040307 a001 1134903170/521*141422324^(5/13) 2971226019040307 a001 102334155/521*4106118243^(10/23) 2971226019040307 a001 102334155/521*1568397607^(5/11) 2971226019040307 a001 102334155/521*599074578^(10/21) 2971226019040307 a001 2971215073/521*141422324^(1/3) 2971226019040307 a001 4807526976/521*141422324^(4/13) 2971226019040307 a001 20365011074/521*141422324^(3/13) 2971226019040307 a001 102334155/521*228826127^(1/2) 2971226019040307 a001 86267571272/521*141422324^(2/13) 2971226019040307 a001 365435296162/521*141422324^(1/13) 2971226019040307 a001 267914296/521*2537720636^(2/5) 2971226019040307 a001 267914296/521*45537549124^(6/17) 2971226019040307 a001 267914296/521*14662949395604^(2/7) 2971226019040307 a001 267914296/521*(1/2+1/2*5^(1/2))^18 2971226019040307 a001 267914296/521*192900153618^(1/3) 2971226019040307 a001 267914296/521*10749957122^(3/8) 2971226019040307 a001 267914296/521*4106118243^(9/23) 2971226019040307 a001 267914296/521*1568397607^(9/22) 2971226019040307 a001 267914296/521*599074578^(3/7) 2971226019040307 a001 701408733/521*(1/2+1/2*5^(1/2))^16 2971226019040307 a001 701408733/521*23725150497407^(1/4) 2971226019040307 a001 701408733/521*73681302247^(4/13) 2971226019040307 a001 701408733/521*10749957122^(1/3) 2971226019040307 a001 701408733/521*4106118243^(8/23) 2971226019040307 a001 701408733/521*1568397607^(4/11) 2971226019040307 a001 1836311903/521*17393796001^(2/7) 2971226019040307 a001 1836311903/521*14662949395604^(2/9) 2971226019040307 a001 1836311903/521*(1/2+1/2*5^(1/2))^14 2971226019040307 a001 1836311903/521*505019158607^(1/4) 2971226019040307 a001 1836311903/521*10749957122^(7/24) 2971226019040307 a001 4807526976/521*2537720636^(4/15) 2971226019040307 a001 1836311903/521*4106118243^(7/23) 2971226019040307 a001 12586269025/521*2537720636^(2/9) 2971226019040307 a001 20365011074/521*2537720636^(1/5) 2971226019040307 a001 86267571272/521*2537720636^(2/15) 2971226019040307 a001 139583862445/521*2537720636^(1/9) 2971226019040307 a001 365435296162/521*2537720636^(1/15) 2971226019040307 a001 4807526976/521*45537549124^(4/17) 2971226019040307 a001 4807526976/521*817138163596^(4/19) 2971226019040307 a001 4807526976/521*14662949395604^(4/21) 2971226019040307 a001 4807526976/521*(1/2+1/2*5^(1/2))^12 2971226019040307 a001 4807526976/521*192900153618^(2/9) 2971226019040307 a001 4807526976/521*73681302247^(3/13) 2971226019040307 a001 4807526976/521*10749957122^(1/4) 2971226019040307 a001 12586269025/521*312119004989^(2/11) 2971226019040307 a001 12586269025/521*(1/2+1/2*5^(1/2))^10 2971226019040307 a001 12586269025/521*28143753123^(1/5) 2971226019040307 a001 53316291173/521*17393796001^(1/7) 2971226019040307 a001 63246219*(1/2+1/2*5^(1/2))^8 2971226019040307 a001 63246219*23725150497407^(1/8) 2971226019040307 a001 63246219*505019158607^(1/7) 2971226019040307 a001 63246219*73681302247^(2/13) 2971226019040307 a001 86267571272/521*45537549124^(2/17) 2971226019040307 a001 86267571272/521*(1/2+1/2*5^(1/2))^6 2971226019040307 a001 365435296162/521*45537549124^(1/17) 2971226019040307 a001 225851433717/521*(1/2+1/2*5^(1/2))^4 2971226019040307 a001 225851433717/521*23725150497407^(1/16) 2971226019040307 a001 1548008755920/521 2971226019040307 a001 365435296162/521*192900153618^(1/18) 2971226019040307 a001 139583862445/521*312119004989^(1/11) 2971226019040307 a001 225851433717/521*73681302247^(1/13) 2971226019040307 a001 139583862445/521*(1/2+1/2*5^(1/2))^5 2971226019040307 a001 53316291173/521*14662949395604^(1/9) 2971226019040307 a001 53316291173/521*(1/2+1/2*5^(1/2))^7 2971226019040307 a001 139583862445/521*28143753123^(1/10) 2971226019040307 a001 591286729879/521*10749957122^(1/24) 2971226019040307 a001 20365011074/521*45537549124^(3/17) 2971226019040307 a001 20365011074/521*14662949395604^(1/7) 2971226019040307 a001 20365011074/521*(1/2+1/2*5^(1/2))^9 2971226019040307 a001 20365011074/521*192900153618^(1/6) 2971226019040307 a001 12586269025/521*10749957122^(5/24) 2971226019040307 a001 365435296162/521*10749957122^(1/16) 2971226019040307 a001 225851433717/521*10749957122^(1/12) 2971226019040307 a001 86267571272/521*10749957122^(1/8) 2971226019040307 a001 63246219*10749957122^(1/6) 2971226019040307 a001 20365011074/521*10749957122^(3/16) 2971226019040307 a001 591286729879/521*4106118243^(1/23) 2971226019040307 a001 7778742049/521*312119004989^(1/5) 2971226019040307 a001 7778742049/521*(1/2+1/2*5^(1/2))^11 2971226019040307 a001 225851433717/521*4106118243^(2/23) 2971226019040307 a001 4807526976/521*4106118243^(6/23) 2971226019040307 a001 86267571272/521*4106118243^(3/23) 2971226019040307 a001 63246219*4106118243^(4/23) 2971226019040307 a001 12586269025/521*4106118243^(5/23) 2971226019040307 a001 591286729879/521*1568397607^(1/22) 2971226019040307 a001 2971215073/521*(1/2+1/2*5^(1/2))^13 2971226019040307 a001 2971215073/521*73681302247^(1/4) 2971226019040307 a001 225851433717/521*1568397607^(1/11) 2971226019040307 a001 86267571272/521*1568397607^(3/22) 2971226019040307 a001 1836311903/521*1568397607^(7/22) 2971226019040307 a001 63246219*1568397607^(2/11) 2971226019040307 a001 12586269025/521*1568397607^(5/22) 2971226019040307 a001 4807526976/521*1568397607^(3/11) 2971226019040307 a001 1134903170/521*2537720636^(1/3) 2971226019040307 a001 7778742049/521*1568397607^(1/4) 2971226019040307 a001 591286729879/521*599074578^(1/21) 2971226019040307 a001 1134903170/521*45537549124^(5/17) 2971226019040307 a001 1134903170/521*312119004989^(3/11) 2971226019040307 a001 1134903170/521*14662949395604^(5/21) 2971226019040307 a001 1134903170/521*(1/2+1/2*5^(1/2))^15 2971226019040307 a001 1134903170/521*192900153618^(5/18) 2971226019040307 a001 1134903170/521*28143753123^(3/10) 2971226019040307 a001 1134903170/521*10749957122^(5/16) 2971226019040307 a001 365435296162/521*599074578^(1/14) 2971226019040307 a001 225851433717/521*599074578^(2/21) 2971226019040307 a001 86267571272/521*599074578^(1/7) 2971226019040307 a001 53316291173/521*599074578^(1/6) 2971226019040307 a001 63246219*599074578^(4/21) 2971226019040307 a001 20365011074/521*599074578^(3/14) 2971226019040307 a001 701408733/521*599074578^(8/21) 2971226019040307 a001 12586269025/521*599074578^(5/21) 2971226019040307 a001 4807526976/521*599074578^(2/7) 2971226019040307 a001 1836311903/521*599074578^(1/3) 2971226019040307 a001 591286729879/521*228826127^(1/20) 2971226019040307 a001 433494437/521*45537549124^(1/3) 2971226019040307 a001 433494437/521*(1/2+1/2*5^(1/2))^17 2971226019040307 a001 1134903170/521*599074578^(5/14) 2971226019040307 a001 225851433717/521*228826127^(1/10) 2971226019040307 a001 139583862445/521*228826127^(1/8) 2971226019040307 a001 86267571272/521*228826127^(3/20) 2971226019040307 a001 63246219*228826127^(1/5) 2971226019040307 a001 12586269025/521*228826127^(1/4) 2971226019040307 a001 4807526976/521*228826127^(3/10) 2971226019040307 a001 267914296/521*228826127^(9/20) 2971226019040307 a001 1836311903/521*228826127^(7/20) 2971226019040307 a001 591286729879/521*87403803^(1/19) 2971226019040307 a001 701408733/521*228826127^(2/5) 2971226019040307 a001 165580141/521*817138163596^(1/3) 2971226019040307 a001 165580141/521*(1/2+1/2*5^(1/2))^19 2971226019040307 a001 1134903170/521*228826127^(3/8) 2971226019040307 a001 225851433717/521*87403803^(2/19) 2971226019040307 a001 86267571272/521*87403803^(3/19) 2971226019040307 a001 63245986/521*141422324^(7/13) 2971226019040307 a001 63246219*87403803^(4/19) 2971226019040307 a001 12586269025/521*87403803^(5/19) 2971226019040307 a001 4807526976/521*87403803^(6/19) 2971226019040307 a001 1836311903/521*87403803^(7/19) 2971226019040307 a001 102334155/521*87403803^(10/19) 2971226019040307 a001 591286729879/521*33385282^(1/18) 2971226019040307 a001 63245986/521*2537720636^(7/15) 2971226019040307 a001 63245986/521*17393796001^(3/7) 2971226019040307 a001 63245986/521*45537549124^(7/17) 2971226019040307 a001 63245986/521*14662949395604^(1/3) 2971226019040307 a001 63245986/521*(1/2+1/2*5^(1/2))^21 2971226019040307 a001 63245986/521*192900153618^(7/18) 2971226019040307 a001 63245986/521*10749957122^(7/16) 2971226019040307 a001 63245986/521*599074578^(1/2) 2971226019040307 a001 701408733/521*87403803^(8/19) 2971226019040307 a001 267914296/521*87403803^(9/19) 2971226019040307 a001 165580141/521*87403803^(1/2) 2971226019040307 a001 365435296162/521*33385282^(1/12) 2971226019040307 a001 225851433717/521*33385282^(1/9) 2971226019040307 a001 86267571272/521*33385282^(1/6) 2971226019040307 a001 63246219*33385282^(2/9) 2971226019040307 a001 20365011074/521*33385282^(1/4) 2971226019040307 a001 12586269025/521*33385282^(5/18) 2971226019040307 a001 4807526976/521*33385282^(1/3) 2971226019040308 a001 24157817/521*(1/2+1/2*5^(1/2))^23 2971226019040308 a001 24157817/521*4106118243^(1/2) 2971226019040308 a001 1836311903/521*33385282^(7/18) 2971226019040308 a001 591286729879/521*12752043^(1/17) 2971226019040308 a001 1134903170/521*33385282^(5/12) 2971226019040308 a001 701408733/521*33385282^(4/9) 2971226019040308 a001 39088169/521*33385282^(11/18) 2971226019040308 a001 267914296/521*33385282^(1/2) 2971226019040308 a001 102334155/521*33385282^(5/9) 2971226019040308 a001 63245986/521*33385282^(7/12) 2971226019040309 a001 9227465/521*20633239^(5/7) 2971226019040309 a001 225851433717/521*12752043^(2/17) 2971226019040310 a001 86267571272/521*12752043^(3/17) 2971226019040311 a001 63246219*12752043^(4/17) 2971226019040312 a001 12586269025/521*12752043^(5/17) 2971226019040313 a001 4807526976/521*12752043^(6/17) 2971226019040314 a001 9227465/521*2537720636^(5/9) 2971226019040314 a001 9227465/521*312119004989^(5/11) 2971226019040314 a001 9227465/521*(1/2+1/2*5^(1/2))^25 2971226019040314 a001 9227465/521*3461452808002^(5/12) 2971226019040314 a001 9227465/521*28143753123^(1/2) 2971226019040314 a001 9227465/521*228826127^(5/8) 2971226019040314 a001 1836311903/521*12752043^(7/17) 2971226019040314 a001 591286729879/521*4870847^(1/16) 2971226019040315 a001 701408733/521*12752043^(8/17) 2971226019040315 a001 3524578/521*7881196^(9/11) 2971226019040316 a001 433494437/521*12752043^(1/2) 2971226019040316 a001 267914296/521*12752043^(9/17) 2971226019040317 a001 14930352/521*12752043^(12/17) 2971226019040317 a001 102334155/521*12752043^(10/17) 2971226019040318 a001 39088169/521*12752043^(11/17) 2971226019040322 a001 225851433717/521*4870847^(1/8) 2971226019040330 a001 86267571272/521*4870847^(3/16) 2971226019040338 a001 63246219*4870847^(1/4) 2971226019040346 a001 12586269025/521*4870847^(5/16) 2971226019040354 a001 4807526976/521*4870847^(3/8) 2971226019040354 a001 3524578/521*141422324^(9/13) 2971226019040354 a001 3524578/521*2537720636^(3/5) 2971226019040354 a001 3524578/521*45537549124^(9/17) 2971226019040354 a001 3524578/521*817138163596^(9/19) 2971226019040354 a001 3524578/521*14662949395604^(3/7) 2971226019040354 a001 3524578/521*(1/2+1/2*5^(1/2))^27 2971226019040354 a001 3524578/521*192900153618^(1/2) 2971226019040354 a001 3524578/521*10749957122^(9/16) 2971226019040354 a001 3524578/521*599074578^(9/14) 2971226019040356 a001 3524578/521*33385282^(3/4) 2971226019040361 a001 1836311903/521*4870847^(7/16) 2971226019040364 a001 591286729879/521*1860498^(1/15) 2971226019040369 a001 701408733/521*4870847^(1/2) 2971226019040377 a001 267914296/521*4870847^(9/16) 2971226019040385 a001 102334155/521*4870847^(5/8) 2971226019040390 a001 5702887/521*4870847^(13/16) 2971226019040392 a001 39088169/521*4870847^(11/16) 2971226019040392 a001 365435296162/521*1860498^(1/10) 2971226019040398 a001 14930352/521*4870847^(3/4) 2971226019040421 a001 225851433717/521*1860498^(2/15) 2971226019040450 a001 139583862445/521*1860498^(1/6) 2971226019040478 a001 86267571272/521*1860498^(1/5) 2971226019040536 a001 63246219*1860498^(4/15) 2971226019040564 a001 20365011074/521*1860498^(3/10) 2971226019040593 a001 12586269025/521*1860498^(1/3) 2971226019040634 a001 1346269/521*(1/2+1/2*5^(1/2))^29 2971226019040634 a001 1346269/521*1322157322203^(1/2) 2971226019040650 a001 4807526976/521*1860498^(2/5) 2971226019040707 a001 1836311903/521*1860498^(7/15) 2971226019040727 a001 591286729879/521*710647^(1/14) 2971226019040736 a001 1134903170/521*1860498^(1/2) 2971226019040764 a001 701408733/521*1860498^(8/15) 2971226019040822 a001 267914296/521*1860498^(3/5) 2971226019040879 a001 102334155/521*1860498^(2/3) 2971226019040908 a001 63245986/521*1860498^(7/10) 2971226019040936 a001 39088169/521*1860498^(11/15) 2971226019040983 a001 2178309/521*1860498^(14/15) 2971226019040991 a001 14930352/521*1860498^(4/5) 2971226019041029 a001 9227465/521*1860498^(5/6) 2971226019041032 a001 5702887/521*1860498^(13/15) 2971226019041127 a001 3524578/521*1860498^(9/10) 2971226019041147 a001 225851433717/521*710647^(1/7) 2971226019041567 a001 86267571272/521*710647^(3/14) 2971226019041777 a001 53316291173/521*710647^(1/4) 2971226019041988 a001 63246219*710647^(2/7) 2971226019042408 a001 12586269025/521*710647^(5/14) 2971226019042554 a001 514229/521*(1/2+1/2*5^(1/2))^31 2971226019042554 a001 514229/521*9062201101803^(1/2) 2971226019042828 a001 4807526976/521*710647^(3/7) 2971226019043248 a001 1836311903/521*710647^(1/2) 2971226019043409 a001 591286729879/521*271443^(1/13) 2971226019043669 a001 701408733/521*710647^(4/7) 2971226019044089 a001 267914296/521*710647^(9/14) 2971226019044509 a001 102334155/521*710647^(5/7) 2971226019044719 a001 63245986/521*710647^(3/4) 2971226019044929 a001 39088169/521*710647^(11/14) 2971226019045347 a001 14930352/521*710647^(6/7) 2971226019045751 a001 5702887/521*710647^(13/14) 2971226019046511 a001 225851433717/521*271443^(2/13) 2971226019049612 a001 86267571272/521*271443^(3/13) 2971226019051823 a001 956722026041/521*103682^(1/24) 2971226019052714 a001 63246219*271443^(4/13) 2971226019055709 a001 196418/521*141422324^(11/13) 2971226019055710 a001 196418/521*2537720636^(11/15) 2971226019055710 a001 196418/521*45537549124^(11/17) 2971226019055710 a001 196418/521*312119004989^(3/5) 2971226019055710 a001 196418/521*817138163596^(11/19) 2971226019055710 a001 196418/521*14662949395604^(11/21) 2971226019055710 a001 196418/521*(1/2+1/2*5^(1/2))^33 2971226019055710 a001 196418/521*192900153618^(11/18) 2971226019055710 a001 196418/521*10749957122^(11/16) 2971226019055710 a001 196418/521*1568397607^(3/4) 2971226019055710 a001 196418/521*599074578^(11/14) 2971226019055712 a001 196418/521*33385282^(11/12) 2971226019055816 a001 12586269025/521*271443^(5/13) 2971226019058918 a001 4807526976/521*271443^(6/13) 2971226019060469 a001 2971215073/521*271443^(1/2) 2971226019062020 a001 1836311903/521*271443^(7/13) 2971226019063339 a001 591286729879/521*103682^(1/12) 2971226019065122 a001 701408733/521*271443^(8/13) 2971226019068224 a001 267914296/521*271443^(9/13) 2971226019071326 a001 102334155/521*271443^(10/13) 2971226019074428 a001 39088169/521*271443^(11/13) 2971226019074856 a001 365435296162/521*103682^(1/8) 2971226019077527 a001 14930352/521*271443^(12/13) 2971226019086372 a001 225851433717/521*103682^(1/6) 2971226019097889 a001 139583862445/521*103682^(5/24) 2971226019105554 a001 233/167761*(1/2+1/2*5^(1/2))^59 2971226019109405 a001 86267571272/521*103682^(1/4) 2971226019120922 a001 53316291173/521*103682^(7/24) 2971226019126417 a001 956722026041/521*39603^(1/22) 2971226019132438 a001 63246219*103682^(1/3) 2971226019143954 a001 20365011074/521*103682^(3/8) 2971226019145880 a001 75025/521*2537720636^(7/9) 2971226019145880 a001 75025/521*17393796001^(5/7) 2971226019145880 a001 75025/521*312119004989^(7/11) 2971226019145880 a001 75025/521*14662949395604^(5/9) 2971226019145880 a001 75025/521*(1/2+1/2*5^(1/2))^35 2971226019145880 a001 75025/521*505019158607^(5/8) 2971226019145880 a001 75025/521*28143753123^(7/10) 2971226019145880 a001 75025/521*599074578^(5/6) 2971226019145880 a001 75025/521*228826127^(7/8) 2971226019155471 a001 12586269025/521*103682^(5/12) 2971226019166987 a001 7778742049/521*103682^(11/24) 2971226019178504 a001 4807526976/521*103682^(1/2) 2971226019190020 a001 2971215073/521*103682^(13/24) 2971226019201537 a001 1836311903/521*103682^(7/12) 2971226019212528 a001 591286729879/521*39603^(1/11) 2971226019213053 a001 1134903170/521*103682^(5/8) 2971226019224569 a001 701408733/521*103682^(2/3) 2971226019236086 a001 433494437/521*103682^(17/24) 2971226019247602 a001 267914296/521*103682^(3/4) 2971226019259119 a001 165580141/521*103682^(19/24) 2971226019270635 a001 102334155/521*103682^(5/6) 2971226019276375 a001 137769808061807/46368 2971226019282152 a001 63245986/521*103682^(7/8) 2971226019293668 a001 39088169/521*103682^(11/12) 2971226019298639 a001 365435296162/521*39603^(3/22) 2971226019305185 a001 24157817/521*103682^(23/24) 2971226019384749 a001 225851433717/521*39603^(2/11) 2971226019470860 a001 139583862445/521*39603^(5/22) 2971226019556970 a001 86267571272/521*39603^(3/11) 2971226019641149 a007 Real Root Of -143*x^4-531*x^3-450*x^2-374*x+78 2971226019643081 a001 53316291173/521*39603^(7/22) 2971226019689539 a001 956722026041/521*15127^(1/20) 2971226019723591 a001 233/64079*14662949395604^(19/21) 2971226019723591 a001 233/64079*(1/2+1/2*5^(1/2))^57 2971226019729192 a001 63246219*39603^(4/11) 2971226019763916 a001 28657/521*(1/2+1/2*5^(1/2))^37 2971226019815302 a001 20365011074/521*39603^(9/22) 2971226019901413 a001 12586269025/521*39603^(5/11) 2971226019987524 a001 7778742049/521*39603^(1/2) 2971226020073634 a001 4807526976/521*39603^(6/11) 2971226020159745 a001 2971215073/521*39603^(13/22) 2971226020245856 a001 1836311903/521*39603^(7/11) 2971226020331966 a001 1134903170/521*39603^(15/22) 2971226020338771 a001 591286729879/521*15127^(1/10) 2971226020418077 a001 701408733/521*39603^(8/11) 2971226020504188 a001 433494437/521*39603^(17/22) 2971226020590298 a001 267914296/521*39603^(9/11) 2971226020676409 a001 165580141/521*39603^(19/22) 2971226020762519 a001 102334155/521*39603^(10/11) 2971226020848630 a001 63245986/521*39603^(21/22) 2971226020894415 a001 52623384056061/17711 2971226020988003 a001 365435296162/521*15127^(3/20) 2971226021637236 a001 225851433717/521*15127^(1/5) 2971226022286468 a001 139583862445/521*15127^(1/4) 2971226022935700 a001 86267571272/521*15127^(3/10) 2971226023584932 a001 53316291173/521*15127^(7/20) 2971226023959674 a001 233/24476*(1/2+1/2*5^(1/2))^55 2971226023959674 a001 233/24476*3461452808002^(11/12) 2971226023984644 a001 956722026041/521*5778^(1/18) 2971226024000000 a001 10946/521*2537720636^(13/15) 2971226024000000 a001 10946/521*45537549124^(13/17) 2971226024000000 a001 10946/521*14662949395604^(13/21) 2971226024000000 a001 10946/521*(1/2+1/2*5^(1/2))^39 2971226024000000 a001 10946/521*192900153618^(13/18) 2971226024000000 a001 10946/521*73681302247^(3/4) 2971226024000000 a001 10946/521*10749957122^(13/16) 2971226024000000 a001 10946/521*599074578^(13/14) 2971226024234165 a001 63246219*15127^(2/5) 2971226024883397 a001 20365011074/521*15127^(9/20) 2971226025532629 a001 12586269025/521*15127^(1/2) 2971226026181861 a001 7778742049/521*15127^(11/20) 2971226026831094 a001 4807526976/521*15127^(3/5) 2971226027480326 a001 2971215073/521*15127^(13/20) 2971226028129558 a001 1836311903/521*15127^(7/10) 2971226028778790 a001 1134903170/521*15127^(3/4) 2971226028928982 a001 591286729879/521*5778^(1/9) 2971226029428023 a001 701408733/521*15127^(4/5) 2971226030077255 a001 433494437/521*15127^(17/20) 2971226030726487 a001 267914296/521*15127^(9/10) 2971226031375719 a001 165580141/521*15127^(19/20) 2971226031984626 a001 20100344106376/6765 2971226033873320 a001 365435296162/521*5778^(1/6) 2971226036770542 m001 (2^(1/2)-Ei(1,1))/(gamma(1)+Weierstrass) 2971226038725606 l006 ln(4876/6563) 2971226038817658 a001 225851433717/521*5778^(2/9) 2971226043761995 a001 139583862445/521*5778^(5/18) 2971226048706333 a001 86267571272/521*5778^(1/3) 2971226052994223 a001 233/9349*(1/2+1/2*5^(1/2))^53 2971226053034548 a001 4181/521*(1/2+1/2*5^(1/2))^41 2971226053650671 a001 53316291173/521*5778^(7/18) 2971226057165423 a001 956722026041/521*2207^(1/16) 2971226058595009 a001 63246219*5778^(4/9) 2971226059444693 a007 Real Root Of -245*x^4-723*x^3-153*x^2-745*x-733 2971226059608480 a001 11/28657*1346269^(49/51) 2971226063539347 a001 20365011074/521*5778^(1/2) 2971226065068838 m001 1/Niven^2*ln(Lehmer)*GAMMA(17/24)^2 2971226068483684 a001 12586269025/521*5778^(5/9) 2971226070284398 r009 Re(z^3+c),c=-49/118+13/36*I,n=24 2971226073428022 a001 7778742049/521*5778^(11/18) 2971226078372360 a001 4807526976/521*5778^(2/3) 2971226082038880 s002 sum(A034957[n]/(n*exp(n)-1),n=1..infinity) 2971226083316698 a001 2971215073/521*5778^(13/18) 2971226084913044 m001 1/Zeta(7)*KhintchineHarmonic*exp(cos(1)) 2971226088261036 a001 1836311903/521*5778^(7/9) 2971226093205374 a001 1134903170/521*5778^(5/6) 2971226093784247 r005 Re(z^2+c),c=41/94+13/30*I,n=3 2971226095290540 a001 591286729879/521*2207^(1/8) 2971226098149711 a001 701408733/521*5778^(8/9) 2971226102454225 a007 Real Root Of 46*x^4+345*x^3+645*x^2-457*x+13 2971226103094049 a001 433494437/521*5778^(17/18) 2971226107401874 r005 Im(z^2+c),c=13/50+1/6*I,n=21 2971226107998065 a001 7677648263067/2584 2971226111758346 a003 cos(Pi*9/97)/sin(Pi*7/67) 2971226114310903 m005 (1/2*Catalan-6/7)/(35/66+4/11*5^(1/2)) 2971226128976034 r005 Im(z^2+c),c=-25/27+10/41*I,n=3 2971226133415657 a001 365435296162/521*2207^(3/16) 2971226147913014 b008 3*(1/29+Pi^2) 2971226151232665 a001 29/987*17711^(29/41) 2971226160266511 m001 1/Porter^2/DuboisRaymond^2/ln(GAMMA(3/4))^2 2971226161892954 r008 a(0)=3,K{-n^6,3+2*n^3+91*n^2-61*n} 2971226168810934 m005 (1/3*exp(1)+1/5)/(5*Catalan-6/7) 2971226171540775 a001 225851433717/521*2207^(1/4) 2971226175239046 m001 1/Ei(1)/exp(Niven)*GAMMA(1/6)^2 2971226176420981 r005 Re(z^2+c),c=-3/11+11/35*I,n=2 2971226190236913 r005 Im(z^2+c),c=1/70+18/53*I,n=10 2971226192795385 a001 29/1597*2178309^(50/51) 2971226192956696 m005 (1/3*Pi-1/12)/(5/7*Pi+1) 2971226209665893 a001 139583862445/521*2207^(5/16) 2971226209896518 r008 a(0)=3,K{-n^6,-51+52*n+16*n^2+18*n^3} 2971226216810444 r009 Re(z^3+c),c=-25/58+19/49*I,n=64 2971226219688397 r005 Im(z^2+c),c=-17/54+14/29*I,n=34 2971226222308488 a001 591286729879/1364*322^(1/3) 2971226225903723 a007 Real Root Of -312*x^4+956*x^3+189*x^2+842*x+261 2971226226313111 k008 concat of cont frac of 2971226226966480 a007 Real Root Of 845*x^4+386*x^3-751*x^2-587*x+224 2971226228916287 m005 (1/3*Zeta(3)-3/7)/(6*2^(1/2)+9/10) 2971226240754333 r005 Re(z^2+c),c=-31/114+25/46*I,n=41 2971226245341137 a007 Real Root Of 388*x^4-597*x^3+529*x^2-655*x-260 2971226247668332 m001 1/Paris^2/Khintchine/ln(GAMMA(1/4)) 2971226247791012 a001 86267571272/521*2207^(3/8) 2971226252000000 a001 233/3571*817138163596^(17/19) 2971226252000000 a001 233/3571*14662949395604^(17/21) 2971226252000000 a001 233/3571*(1/2+1/2*5^(1/2))^51 2971226252000000 a001 233/3571*192900153618^(17/18) 2971226252040307 a001 1597/521*(1/2+1/2*5^(1/2))^43 2971226260735513 m002 -Pi^4+Pi^9+Log[Pi]/2 2971226274488096 m009 (4/5*Psi(1,1/3)-3)/(Psi(1,3/4)-5/6) 2971226279063869 a007 Real Root Of 123*x^4-896*x^3-203*x^2-961*x+326 2971226285916131 a001 53316291173/521*2207^(7/16) 2971226288579302 a007 Real Root Of -3*x^4-103*x^3-422*x^2-306*x-182 2971226295130090 l006 ln(221/4313) 2971226295591691 r008 a(0)=3,K{-n^6,21-50*n+43*n^2+21*n^3} 2971226295706629 m001 exp(-Pi)^Zeta(1,2)/(ln(5)^Zeta(1,2)) 2971226298901850 a007 Real Root Of 219*x^4+483*x^3-204*x^2+908*x+100 2971226300946637 r005 Re(z^2+c),c=27/82+6/43*I,n=58 2971226308910531 r008 a(0)=3,K{-n^6,-5+3*n+9*n^2+28*n^3} 2971226314474137 m005 (1/2*Pi+2/7)/(4/11*exp(1)-4/11) 2971226317684065 a001 956722026041/521*843^(1/14) 2971226323105878 a007 Real Root Of 360*x^4-892*x^3+430*x^2-671*x+182 2971226324041251 a001 63246219*2207^(1/2) 2971226324639276 a001 4/1346269*233^(49/58) 2971226327957203 h001 (5/11*exp(1)+8/9)/(9/10*exp(2)+1/2) 2971226328782314 v002 sum(1/(5^n+(19*n^2-16*n+52)),n=1..infinity) 2971226337638747 m002 -Pi^2+Pi^5*Coth[Pi]-2*Sech[Pi] 2971226353931682 a007 Real Root Of 361*x^4+417*x^3+184*x^2-528*x-165 2971226354235983 m003 9/2+Sqrt[5]/16-(5*Csc[1/2+Sqrt[5]/2])/3 2971226361480280 r008 a(0)=3,K{-n^6,11-3*n-10*n^2+37*n^3} 2971226362166371 a001 20365011074/521*2207^(9/16) 2971226375096462 r008 a(0)=3,K{-n^6,29+6*n+16*n^2-18*n^3} 2971226377505896 m001 1/cos(Pi/5)*ln(cos(Pi/12))^2*sqrt(2)^2 2971226378077035 r009 Re(z^3+c),c=-49/106+25/53*I,n=44 2971226380437575 m001 (Lehmer-Paris)/(gamma(2)-(1+3^(1/2))^(1/2)) 2971226393023892 r008 a(0)=3,K{-n^6,47+39*n^3+2*n^2-53*n} 2971226393032094 r008 a(0)=3,K{-n^6,29-20*n-16*n^2+42*n^3} 2971226400291492 a001 12586269025/521*2207^(5/8) 2971226400724789 a007 Real Root Of -279*x^4-463*x^3+898*x^2-315*x+736 2971226403381076 a001 591286729879/2207*322^(5/12) 2971226421577875 m001 (gamma-ln(3))/(-Grothendieck+Trott2nd) 2971226426031150 r008 a(0)=3,K{-n^6,49+48*n^3-24*n^2-38*n} 2971226428098246 a007 Real Root Of 25*x^4+731*x^3-340*x^2+322*x+32 2971226435315941 s001 sum(exp(-2*Pi/3)^n*A013275[n],n=1..infinity) 2971226438416613 a001 7778742049/521*2207^(11/16) 2971226442899481 m001 1/GlaisherKinkelin^2*Artin*exp(GAMMA(17/24))^2 2971226442995545 l006 ln(3769/5073) 2971226443483435 m008 (1/6*Pi^3-3)/(4/5*Pi^2-3/5) 2971226468739631 h001 (7/12*exp(2)+9/10)/(4/9*exp(1)+6/11) 2971226476541734 a001 4807526976/521*2207^(3/4) 2971226483465336 m001 OneNinth/ln(Champernowne)/sqrt(3) 2971226493652589 m001 (-DuboisRaymond+TwinPrimes)/(1+LambertW(1)) 2971226494875136 k002 Champernowne real with 113/2*n^2-255/2*n+100 2971226500070767 a007 Real Root Of 741*x^4-750*x^3+663*x^2-653*x-278 2971226500651222 p001 sum((-1)^n/(465*n+287)/(2^n),n=0..infinity) 2971226502295396 m001 3^(1/2)+ErdosBorwein^ZetaP(2) 2971226512233495 m001 (DuboisRaymond+ZetaP(2))/(Chi(1)-GAMMA(11/12)) 2971226514666857 a001 2971215073/521*2207^(13/16) 2971226517114737 r005 Im(z^2+c),c=-19/20+9/35*I,n=12 2971226523601501 a005 (1/cos(12/197*Pi))^809 2971226529579604 m005 (1/2*Zeta(3)-2/11)/(2/11*exp(1)+11/12) 2971226536713428 m001 3^(1/3)/(ReciprocalFibonacci^Conway) 2971226537134475 b008 EulerGamma*(4+Cot[7]) 2971226547670496 r002 55th iterates of z^2 + 2971226552791979 a001 1836311903/521*2207^(7/8) 2971226555009540 m001 (ArtinRank2-FeigenbaumMu)/(OneNinth+Thue) 2971226555869285 r009 Re(z^3+c),c=-23/70+39/59*I,n=16 2971226559300487 r009 Re(z^3+c),c=-12/31+5/16*I,n=25 2971226576078059 r005 Im(z^2+c),c=31/106+5/32*I,n=9 2971226589841307 m001 BesselK(1,1)/(DuboisRaymond+FeigenbaumC) 2971226590917102 a001 1134903170/521*2207^(15/16) 2971226606115258 p004 log(32531/24169) 2971226609048932 a007 Real Root Of -304*x^4-827*x^3+164*x^2-336*x-446 2971226610857301 r009 Im(z^3+c),c=-7/15+10/59*I,n=10 2971226614297255 r008 a(0)=3,K{-n^6,-8-44*n^3+51*n^2+35*n} 2971226614759173 r005 Im(z^2+c),c=-3/17+25/59*I,n=12 2971226616327854 a001 591286729879/521*843^(1/7) 2971226619147214 r005 Re(z^2+c),c=-41/110+7/39*I,n=26 2971226622608691 a007 Real Root Of 789*x^4-511*x^3-510*x^2-201*x+112 2971226622720527 m001 (OneNinth+Porter)/(3^(1/2)-Zeta(3)) 2971226629002026 a001 2932600682825/987 2971226633764393 m001 (cos(1/5*Pi)+ln(2+3^(1/2)))/(Robbin+ZetaQ(2)) 2971226637875549 a008 Real Root of x^2-x-88579 2971226638175122 m001 1/Zeta(5)/KhintchineLevy^2*ln(cosh(1)) 2971226643674173 m001 (GaussAGM+QuadraticClass)/(LambertW(1)-ln(Pi)) 2971226645879639 r009 Re(z^3+c),c=-25/58+25/61*I,n=17 2971226673580338 m001 (MasserGramain-Sarnak)/(ln(Pi)-Zeta(1/2)) 2971226686728886 m001 gamma(3)*(BesselI(1,1)+QuadraticClass) 2971226691541120 p001 sum((-1)^n/(449*n+336)/(256^n),n=0..infinity) 2971226693080274 a007 Real Root Of 810*x^4-860*x^3-83*x^2-328*x-119 2971226693813949 a007 Real Root Of 247*x^4+661*x^3-298*x^2+27*x+799 2971226712816938 p002 log(11^(7/6)+7^(7/12)) 2971226731985758 m004 10*Pi+Cos[Sqrt[5]*Pi]/3-Log[Sqrt[5]*Pi] 2971226744581080 r005 Re(z^2+c),c=-5/4+2/183*I,n=6 2971226749420685 m001 (-cos(1/5*Pi)+Salem)/(1-5^(1/2)) 2971226749513996 l006 ln(6431/8656) 2971226750044766 p001 sum(1/(234*n+205)/n/(8^n),n=1..infinity) 2971226755894513 r008 a(0)=3,K{-n^6,-41-34*n^3+37*n^2+70*n} 2971226768543343 a007 Real Root Of -286*x^4-514*x^3+726*x^2-619*x+559 2971226774681830 r005 Re(z^2+c),c=-8/21+5/47*I,n=26 2971226795783040 m001 (Totient-TreeGrowth2nd)/(gamma(1)-Otter) 2971226795823561 m004 -25*Pi*Log[Sqrt[5]*Pi]^2+Sec[Sqrt[5]*Pi] 2971226803719654 m002 2-E^Pi*Csch[Pi]^2+Log[Pi] 2971226806653141 a007 Real Root Of -106*x^4-376*x^3-296*x^2-8*x+988 2971226808577797 m001 ln(FeigenbaumD)/Sierpinski/GAMMA(17/24) 2971226818035912 m001 1/ln(Catalan)/PisotVijayaraghavan*sin(Pi/5)^2 2971226821225377 r005 Im(z^2+c),c=-1+40/141*I,n=54 2971226822676825 s002 sum(A051287[n]/((2^n-1)/n),n=1..infinity) 2971226826116197 a007 Real Root Of 149*x^4+177*x^3-659*x^2+625*x+705 2971226827030673 m005 (1/2*gamma+2/11)/(2/3*3^(1/2)+3/7) 2971226836347750 m005 (1/3*Zeta(3)+2/7)/(5/9*exp(1)+4/5) 2971226843102626 a001 1/843*(1/2*5^(1/2)+1/2)^12*76^(9/19) 2971226852897965 r009 Re(z^3+c),c=-25/62+16/47*I,n=21 2971226854912806 m001 1/Paris*exp(ErdosBorwein)*sin(Pi/5) 2971226862775307 a007 Real Root Of 261*x^4+147*x^3-851*x^2-743*x+290 2971226873694076 a007 Real Root Of -675*x^4+x^3-774*x^2+284*x+158 2971226884744942 a007 Real Root Of -924*x^4-888*x^3-931*x^2+466*x-13 2971226896292696 m005 (1/2*Zeta(3)+4)/(3/5*2^(1/2)+7/10) 2971226897504926 r009 Re(z^3+c),c=-19/62+9/55*I,n=3 2971226910433195 r005 Im(z^2+c),c=23/74+8/61*I,n=3 2971226914061102 r005 Im(z^2+c),c=-11/34+13/28*I,n=12 2971226914971673 a001 365435296162/521*843^(3/14) 2971226924384966 a001 86000486440/321*322^(5/12) 2971226925977042 m001 (sin(1)+gamma(1))/(Riemann3rdZero+Thue) 2971226944202769 a007 Real Root Of -154*x^4+364*x^3-302*x^2+177*x+90 2971226947595765 r005 Re(z^2+c),c=-17/26+12/31*I,n=9 2971226963306166 l006 ln(347/6772) 2971226966490715 r008 a(0)=3,K{-n^6,-40+12*n^3+40*n^2+23*n} 2971226967427226 m008 (5/6*Pi^3-1/3)/(Pi-4) 2971226970565159 a007 Real Root Of 336*x^4-946*x^3-454*x^2-339*x+163 2971226979869517 r008 a(0)=3,K{-n^6,-46+15*n^3+28*n^2+38*n} 2971226981645168 h001 (1/2*exp(1)+10/11)/(10/11*exp(2)+11/12) 2971226992798232 r008 a(0)=3,K{-n^6,-52+53*n+16*n^2+18*n^3} 2971226996991049 r008 a(0)=3,K{-n^6,-42+36*n+24*n^2+17*n^3} 2971227000398425 a001 4052739537881/15127*322^(5/12) 2971227001061473 a001 121393/76*47^(41/54) 2971227011488639 a001 3536736619241/13201*322^(5/12) 2971227013043302 r005 Im(z^2+c),c=35/122+7/52*I,n=36 2971227018342769 a001 3278735159921/12238*322^(5/12) 2971227020993866 a005 (1/sin(97/209*Pi))^171 2971227028024357 m001 MasserGramain-Otter-Robbin 2971227029211968 r008 a(0)=0,K{-n^6,55-27*n^3+26*n^2-21*n} 2971227033199765 a001 45537549124*1836311903^(7/17) 2971227033199765 a001 1568397607*6557470319842^(7/17) 2971227033200691 a001 1322157322203*514229^(7/17) 2971227033733849 r005 Im(z^2+c),c=29/94+1/12*I,n=24 2971227036448370 r009 Re(z^3+c),c=-25/58+19/49*I,n=63 2971227042654290 p004 log(36319/1861) 2971227043849289 r009 Re(z^3+c),c=-1/3+13/61*I,n=21 2971227047377328 a001 2504730781961/9349*322^(5/12) 2971227051848181 m005 (1/2*exp(1)-7/12)/(5^(1/2)+3/8) 2971227055189822 a007 Real Root Of 338*x^4+751*x^3-434*x^2+622*x-964 2971227070677005 r008 a(0)=3,K{-n^6,-24+29*n+3*n^2+27*n^3} 2971227073771145 m006 (1/2*ln(Pi)-1/4)/(3/5*Pi-4/5) 2971227088959560 r008 a(0)=3,K{-n^6,-38+33*n^3-22*n^2+62*n} 2971227093640650 r008 a(0)=3,K{-n^6,46+n^3-22*n^2+15*n} 2971227116134703 a001 123/55*3^(15/58) 2971227127057299 r008 a(0)=3,K{-n^6,-18+42*n-27*n^2+38*n^3} 2971227134983348 h001 (-4*exp(5)+6)/(-2*exp(2)-5) 2971227140095494 p001 sum((-1)^n/(560*n+97)/n/(512^n),n=1..infinity) 2971227159242157 r005 Re(z^2+c),c=-29/66+16/25*I,n=5 2971227159436287 m006 (1/3*ln(Pi)-3/4)/(4*Pi-1/6) 2971227159745078 r008 a(0)=3,K{-n^6,42-52*n+9*n^2+36*n^3} 2971227168668646 r008 a(0)=3,K{-n^6,26+41*n^3-14*n^2-18*n} 2971227168679691 r008 a(0)=3,K{-n^6,2+45*n^3-38*n^2+26*n} 2971227172093652 m001 1/GAMMA(5/24)/Artin^2*ln(sin(Pi/12))^2 2971227175732187 r009 Im(z^3+c),c=-39/94+11/54*I,n=15 2971227183498968 l006 ln(2662/3583) 2971227184146970 m001 GAMMA(23/24)/PisotVijayaraghavan/ln(sinh(1))^2 2971227186401447 r005 Im(z^2+c),c=-33/106+12/25*I,n=32 2971227186895732 r008 a(0)=3,K{-n^6,56-63*n+41*n^3+n^2} 2971227191575187 r008 a(0)=3,K{-n^6,46-42*n-13*n^2+44*n^3} 2971227194512481 r008 a(0)=3,K{-n^6,56-48*n^3+95*n^2-69*n} 2971227194709320 m006 (1/5*ln(Pi)-1/3)/(4/5*Pi+1) 2971227197877792 m001 (CareFree-Lehmer)/(Paris-Weierstrass) 2971227198868815 r005 Re(z^2+c),c=-35/114+17/62*I,n=4 2971227213615522 a001 225851433717/521*843^(2/7) 2971227217596201 a007 Real Root Of 284*x^4+752*x^3-7*x^2+698*x-273 2971227218264730 a001 3571/21*1346269^(15/41) 2971227221316121 k006 concat of cont frac of 2971227221810423 r009 Re(z^3+c),c=-1/3+13/61*I,n=22 2971227229208974 m005 (1/3*5^(1/2)+3/4)/(10/11*5^(1/2)+3) 2971227229653556 m001 Totient^(3^(1/3))*arctan(1/3)^(3^(1/3)) 2971227234249795 a005 (1/sin(85/177*Pi))^564 2971227235690202 m001 Pi*ln(2)/ln(10)-Zeta(1/2)+BesselI(1,1) 2971227239023325 p001 sum(1/(443*n+357)/(8^n),n=0..infinity) 2971227242253133 r008 a(0)=3,K{-n^6,70+56*n^3-37*n^2-54*n} 2971227246036406 q001 506/1703 2971227246383170 a001 956722026041/3571*322^(5/12) 2971227247763325 h005 exp(sin(Pi*5/53)/cos(Pi*21/43)) 2971227248736803 a007 Real Root Of 343*x^4+845*x^3-735*x^2-585*x+183 2971227254461293 r009 Re(z^3+c),c=-1/3+13/61*I,n=25 2971227257182184 m005 (1/2*gamma+2/11)/(295/264+5/24*5^(1/2)) 2971227258899020 r009 Re(z^3+c),c=-1/3+13/61*I,n=26 2971227262775334 r009 Re(z^3+c),c=-1/3+13/61*I,n=30 2971227262831978 r009 Re(z^3+c),c=-1/3+13/61*I,n=29 2971227263032573 r009 Re(z^3+c),c=-1/3+13/61*I,n=34 2971227263044413 r009 Re(z^3+c),c=-1/3+13/61*I,n=35 2971227263045977 r009 Re(z^3+c),c=-1/3+13/61*I,n=38 2971227263046305 r009 Re(z^3+c),c=-1/3+13/61*I,n=39 2971227263046531 r009 Re(z^3+c),c=-1/3+13/61*I,n=43 2971227263046532 r009 Re(z^3+c),c=-1/3+13/61*I,n=42 2971227263046547 r009 Re(z^3+c),c=-1/3+13/61*I,n=47 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=48 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=51 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=52 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=55 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=56 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=60 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=59 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=61 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=64 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=63 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=62 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=57 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=58 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=54 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=53 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=46 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=50 2971227263046548 r009 Re(z^3+c),c=-1/3+13/61*I,n=49 2971227263046550 r009 Re(z^3+c),c=-1/3+13/61*I,n=44 2971227263046552 r009 Re(z^3+c),c=-1/3+13/61*I,n=45 2971227263046614 r009 Re(z^3+c),c=-1/3+13/61*I,n=41 2971227263046650 r009 Re(z^3+c),c=-1/3+13/61*I,n=40 2971227263047349 r009 Re(z^3+c),c=-1/3+13/61*I,n=37 2971227263049236 r009 Re(z^3+c),c=-1/3+13/61*I,n=33 2971227263049467 r009 Re(z^3+c),c=-1/3+13/61*I,n=36 2971227263065293 r009 Re(z^3+c),c=-1/3+13/61*I,n=31 2971227263109791 r009 Re(z^3+c),c=-1/3+13/61*I,n=32 2971227264144586 r009 Re(z^3+c),c=-1/3+13/61*I,n=28 2971227264529903 r009 Re(z^3+c),c=-1/3+13/61*I,n=27 2971227274553686 m001 ArtinRank2^Mills/Riemann2ndZero 2971227275498218 l006 ln(473/9231) 2971227276932284 m001 (Artin-Grothendieck)/(Magata+MertensB3) 2971227277266787 r009 Re(z^3+c),c=-1/3+13/61*I,n=24 2971227307991971 r009 Re(z^3+c),c=-1/3+13/61*I,n=23 2971227308938226 m001 (exp(1)+2^(1/2))/(-GAMMA(3/4)+Zeta(1,-1)) 2971227321941536 m001 (GolombDickman-Pi)/GaussAGM(1,1/sqrt(2)) 2971227322904365 m005 (1/2*3^(1/2)-2/5)/(7/9*Pi-7/8) 2971227332405959 r005 Im(z^2+c),c=-35/31+9/38*I,n=50 2971227338386536 m001 arctan(1/2)/exp(MadelungNaCl)/exp(1) 2971227339541410 r009 Re(z^3+c),c=-1/3+13/61*I,n=20 2971227342075789 m001 (Zeta(5)-ln(2^(1/2)+1))/(BesselI(0,2)+Otter) 2971227344738611 r005 Im(z^2+c),c=-8/17+22/47*I,n=33 2971227359415258 m001 (gamma(1)+Trott2nd)/GAMMA(7/12) 2971227360033507 a007 Real Root Of -778*x^4-969*x^3+462*x^2+975*x-299 2971227365064424 r009 Re(z^3+c),c=-1/21+20/37*I,n=15 2971227366974158 m005 (1/2*2^(1/2)+9/10)/(8/11*Zeta(3)-1/3) 2971227375930469 r005 Im(z^2+c),c=13/126+17/59*I,n=23 2971227379895037 r005 Re(z^2+c),c=-33/94+17/55*I,n=7 2971227383237027 r005 Im(z^2+c),c=-2/7+23/49*I,n=52 2971227384850565 m001 1/exp((2^(1/3)))*ArtinRank2*GAMMA(3/4)^2 2971227394378413 a007 Real Root Of -134*x^4-117*x^3+923*x^2+214*x-138 2971227408784301 m002 -2+(4*Coth[Pi])/E^Pi-Log[Pi] 2971227411146855 a007 Real Root Of 439*x^4+921*x^3-775*x^2+760*x-956 2971227412535363 a007 Real Root Of -298*x^4-891*x^3-67*x^2-60*x+267 2971227412997187 r009 Re(z^3+c),c=-1/3+13/61*I,n=18 2971227423008542 r005 Re(z^2+c),c=-21/74+10/23*I,n=10 2971227430201650 r005 Re(z^2+c),c=-29/98+12/25*I,n=32 2971227431430014 m001 (cos(1/12*Pi)+Conway)/(Salem-ThueMorse) 2971227447458721 m001 ln(5)*FellerTornier/ZetaP(3) 2971227468601874 m001 GlaisherKinkelin/Artin^2*exp(sin(Pi/5))^2 2971227492738382 m001 (Lehmer-Mills)/(ln(3)+Conway) 2971227497881137 k002 Champernowne real with 57*n^2-129*n+101 2971227500376661 r005 Im(z^2+c),c=-5/114+18/49*I,n=27 2971227503829710 r008 a(0)=3,K{-n^6,49+34*n-47*n^2-2*n^3} 2971227512259401 a001 139583862445/521*843^(5/14) 2971227516977164 k003 Champernowne real with 13/2*n^3-23/2*n^2-4*n+11 2971227525209376 m001 (FeigenbaumD+KhinchinLevy)/(Si(Pi)+ln(gamma)) 2971227539332984 m001 (Gompertz+Sierpinski)/(exp(1/exp(1))-Artin) 2971227548358352 m001 (BesselI(1,1)*Landau-Weierstrass)/BesselI(1,1) 2971227559352689 a007 Real Root Of 44*x^4-627*x^3-632*x^2-34*x+82 2971227560528900 m002 -Pi^3+15*Sech[Pi] 2971227572250310 r005 Im(z^2+c),c=-13/24+5/11*I,n=46 2971227575819727 b008 ArcCot[1-3*Sinh[Pi]] 2971227580683162 a005 (1/cos(2/181*Pi))^1807 2971227580903387 m002 Pi-Sinh[Pi]/(6*Pi^2*Log[Pi]) 2971227582269272 a007 Real Root Of -396*x^4-910*x^3-768*x^2+562*x+214 2971227589220329 l006 ln(6879/9259) 2971227590112091 r005 Im(z^2+c),c=-23/66+6/11*I,n=23 2971227608532148 a001 86267571272/843*322^(7/12) 2971227608938296 m001 (Landau-Riemann1stZero)/(ln(2)-CopelandErdos) 2971227616006598 a001 233/1364*14662949395604^(7/9) 2971227616006598 a001 233/1364*(1/2+1/2*5^(1/2))^49 2971227616006598 a001 233/1364*505019158607^(7/8) 2971227616046065 a001 610/521*45537549124^(15/17) 2971227616046065 a001 610/521*312119004989^(9/11) 2971227616046065 a001 610/521*14662949395604^(5/7) 2971227616046065 a001 610/521*(1/2+1/2*5^(1/2))^45 2971227616046065 a001 610/521*192900153618^(5/6) 2971227616046065 a001 610/521*28143753123^(9/10) 2971227616046065 a001 610/521*10749957122^(15/16) 2971227616472241 a007 Real Root Of -657*x^4+508*x^3+440*x^2+434*x-176 2971227625198472 r005 Im(z^2+c),c=-43/78+26/45*I,n=4 2971227627591748 p001 sum((-1)^n/(274*n+33)/(5^n),n=0..infinity) 2971227631615978 r005 Re(z^2+c),c=-35/118+11/23*I,n=32 2971227632512159 r005 Re(z^2+c),c=-27/82+16/41*I,n=16 2971227637084936 l005 76/105/(exp(38/105)+1) 2971227637221849 m001 (ZetaQ(3)+ZetaQ(4))/(exp(1/Pi)-Totient) 2971227638854073 m005 (1/2*5^(1/2)-2/3)/(3/11*exp(1)+7/9) 2971227658502452 m005 (1/2*exp(1)+4/7)/(9/10*3^(1/2)-10/11) 2971227659150616 r009 Re(z^3+c),c=-9/19+19/41*I,n=45 2971227662114322 m004 -10/Pi+Csc[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 2971227678148269 m001 (ZetaQ(2)+ZetaQ(4))/(Tribonacci+Trott2nd) 2971227691938226 m001 (exp(Pi)+GaussAGM)/(-Porter+TwinPrimes) 2971227706168195 r008 a(0)=3,K{-n^6,-37+6*n+60*n^2+6*n^3} 2971227706866510 r005 Im(z^2+c),c=-23/102+18/41*I,n=15 2971227711384052 r009 Im(z^3+c),c=-45/106+6/31*I,n=9 2971227716285604 a003 cos(Pi*30/103)-cos(Pi*10/33) 2971227724405725 a001 29134601/7*987^(13/21) 2971227726560893 r005 Re(z^2+c),c=-11/14+3/91*I,n=48 2971227730280896 p004 log(20611/15313) 2971227732948847 r005 Re(z^2+c),c=-33/86+8/61*I,n=7 2971227740369522 a001 15127/233*832040^(37/47) 2971227742850451 p003 LerchPhi(1/12,4,205/151) 2971227760023804 m001 (-Bloch+Gompertz)/(BesselK(0,1)-gamma(3)) 2971227769320420 r009 Re(z^3+c),c=-73/114+25/38*I,n=4 2971227771143137 p004 log(31963/23747) 2971227784087700 r005 Im(z^2+c),c=39/122+4/49*I,n=59 2971227788165329 m001 (GAMMA(19/24)-Cahen)/(MertensB3+ZetaP(2)) 2971227792972270 r008 a(0)=3,K{-n^6,2+42*n+23*n^2-33*n^3} 2971227795045188 m005 (1/2*gamma-8/9)/(1/9*exp(1)-1/10) 2971227795481997 l004 Pi/cosh(553/103*Pi) 2971227795482011 l004 Pi/sinh(553/103*Pi) 2971227795674165 r005 Re(z^2+c),c=-23/74+27/50*I,n=17 2971227810903310 a001 86267571272/521*843^(3/7) 2971227819664117 a001 47/10946*832040^(24/37) 2971227820843144 m001 (ln(5)+HardyLittlewoodC5)/(Totient-TwinPrimes) 2971227825967177 a007 Real Root Of 439*x^4-250*x^3+359*x^2-755*x-266 2971227827338311 r008 a(0)=3,K{-n^6,21+22*n+6*n^2-16*n^3} 2971227832341341 r004 Re(z^2+c),c=7/46+3/10*I,z(0)=I,n=14 2971227841186578 m001 (Mills+ZetaQ(4))/(FeigenbaumB+FeigenbaumMu) 2971227843132395 r008 a(0)=3,K{-n^6,-11+24*n^3+19*n^2+3*n} 2971227845333734 l006 ln(4217/5676) 2971227856434117 m001 exp(1/exp(1))+Ei(1)^Robbin 2971227869429403 m009 (4*Psi(1,3/4)+1/4)/(16*Catalan+2*Pi^2+2/3) 2971227874020150 r009 Re(z^3+c),c=-43/122+35/52*I,n=15 2971227874034904 g007 Psi(2,3/10)+Psi(2,1/7)-Psi(2,1/6)-Psi(2,2/5) 2971227876663999 r005 Re(z^2+c),c=2/25+10/47*I,n=16 2971227881565858 r005 Im(z^2+c),c=-25/58+28/53*I,n=55 2971227894390187 r002 15th iterates of z^2 + 2971227896461643 r008 a(0)=3,K{-n^6,15+31*n^3+11*n^2-22*n} 2971227918791821 r008 a(0)=3,K{-n^6,11-4*n-9*n^2+37*n^3} 2971227919761277 m004 25+(10*Csc[Sqrt[5]*Pi])/Pi 2971227928596340 a007 Real Root Of 769*x^4-486*x^3-621*x^2-771*x-193 2971227933035106 m001 TwinPrimes*(GAMMA(19/24)-Sarnak) 2971227941057004 m001 Pi-ReciprocalFibonacci^Zeta(1/2) 2971227941578621 r005 Im(z^2+c),c=41/110+29/49*I,n=14 2971227943340705 r008 a(0)=3,K{-n^6,1+45*n^3-38*n^2+27*n} 2971227948214960 r005 Re(z^2+c),c=-137/114+8/43*I,n=4 2971227949462159 r008 a(0)=3,K{-n^6,29-21*n-15*n^2+42*n^3} 2971227951129957 m002 -Pi^2+Pi^5+ProductLog[Pi]-Tanh[Pi]/Pi^2 2971227972179832 m001 sqrt(1+sqrt(3))^(3/2*exp(1/exp(1))) 2971227978193925 m001 (LaplaceLimit-Niven*ReciprocalFibonacci)/Niven 2971227983414741 m008 (3/4*Pi^5-2/5)/(4/5*Pi^6+2) 2971228002398246 r008 a(0)=3,K{-n^6,53+54*n^3-39*n^2-33*n} 2971228010522403 m001 (Chi(1)-exp(-1/2*Pi))/(-BesselI(1,1)+Khinchin) 2971228016061688 r008 a(0)=3,K{-n^6,69+56*n^3-37*n^2-53*n} 2971228016893283 r005 Im(z^2+c),c=-7/16+5/51*I,n=4 2971228025054950 r005 Im(z^2+c),c=-23/36+37/60*I,n=5 2971228031461913 a007 Real Root Of 124*x^4+167*x^3+868*x^2-901*x+26 2971228033523103 r008 a(0)=3,K{-n^6,29+69*n^3-96*n^2+33*n} 2971228038601252 a007 Real Root Of 312*x^4-716*x^3+923*x^2-277*x-185 2971228041427960 r002 16th iterates of z^2 + 2971228047399896 a001 192900153618/233*6557470319842^(14/17) 2971228054883281 m001 1/2*2^(1/2)*ln(2)/ZetaQ(4) 2971228060373296 m001 (Otter+Sierpinski)/(Zeta(3)+LaplaceLimit) 2971228060624513 m005 (1/2*gamma-2/5)/(3*Zeta(3)+1/7) 2971228064667917 a001 4250681/48*4807526976^(6/23) 2971228064695439 a001 228826127/144*75025^(6/23) 2971228067412480 m005 (1/2*exp(1)-4/5)/(9/10*Zeta(3)+4/5) 2971228081516326 a007 Real Root Of -364*x^4-183*x^3-492*x^2+998*x+338 2971228082989818 m001 (Ei(1)-Cahen)/(FellerTornier+Paris) 2971228083229353 a007 Real Root Of 335*x^4+622*x^3-815*x^2+886*x+34 2971228089329529 r005 Im(z^2+c),c=6/25+11/60*I,n=9 2971228089539743 m005 (-1/8+1/4*5^(1/2))/(9/10*Catalan+7/11) 2971228090102413 m005 (1/2*2^(1/2)-3/10)/(4/11*3^(1/2)-2) 2971228101920668 a001 167761/21*24157817^(13/21) 2971228109547249 a001 53316291173/521*843^(1/2) 2971228111011152 k006 concat of cont frac of 2971228111921412 k007 concat of cont frac of 2971228121251201 k006 concat of cont frac of 2971228122110577 m001 (Lehmer*QuadraticClass-Pi)/QuadraticClass 2971228132325497 m005 (1/3*gamma-1/11)/(1/10*Catalan+1/4) 2971228135264714 l006 ln(126/2459) 2971228142092943 r005 Im(z^2+c),c=-95/94+11/42*I,n=35 2971228150566592 l006 ln(5772/7769) 2971228183625837 a007 Real Root Of -137*x^4-433*x^3+36*x^2+303*x-98 2971228185899725 r005 Im(z^2+c),c=-17/31+20/61*I,n=5 2971228187540284 r005 Re(z^2+c),c=-11/14+8/197*I,n=32 2971228193655581 m005 (1/3*Zeta(3)+1/10)/(6/7*Catalan+9/10) 2971228195899664 r009 Im(z^3+c),c=-53/122+7/37*I,n=15 2971228202988636 m001 TreeGrowth2nd*FeigenbaumDelta/ln(Zeta(7))^2 2971228210330945 m005 (1/2*2^(1/2)+3/10)/(1/9*2^(1/2)+2/11) 2971228222539958 m002 -E^Pi/(5*Pi^3)+Pi^3-Log[Pi] 2971228233699786 a001 18/1346269*17711^(4/49) 2971228237315091 a007 Real Root Of -914*x^4-196*x^3+626*x^2+823*x-25 2971228238691594 r008 a(0)=3,K{-n^6,-22-25*n^3-13*n^2+94*n} 2971228245027434 r005 Re(z^2+c),c=5/27+23/32*I,n=2 2971228254679792 m001 (HardyLittlewoodC3+Trott2nd)/(exp(Pi)-sin(1)) 2971228256682125 a007 Real Root Of -343*x^4-746*x^3+742*x^2-352*x-432 2971228265708435 r009 Im(z^3+c),c=-1/50+43/51*I,n=26 2971228271649574 r009 Re(z^3+c),c=-1/3+13/61*I,n=19 2971228279299987 r005 Re(z^2+c),c=9/26+8/57*I,n=56 2971228280852880 a007 Real Root Of 470*x^4-289*x^3-108*x^2-887*x+277 2971228281614979 r005 Im(z^2+c),c=19/126+17/31*I,n=4 2971228300285484 a007 Real Root Of -4*x^4+834*x^3+374*x^2-13*x-51 2971228319634245 l006 ln(7527/7754) 2971228324151873 r005 Im(z^2+c),c=-37/90+14/29*I,n=13 2971228324666609 a007 Real Root Of -577*x^4-31*x^3+230*x^2+579*x+17 2971228326241075 l006 ln(7327/9862) 2971228326453482 r005 Re(z^2+c),c=-11/114+24/25*I,n=5 2971228333120487 r005 Im(z^2+c),c=-47/114+3/59*I,n=10 2971228352425887 a001 844/13*28657^(19/51) 2971228355634748 m002 3/E^Pi+E^Pi+6*ProductLog[Pi] 2971228358418976 m001 Ei(1)*(cos(1/12*Pi)+BesselK(1,1)) 2971228358418976 m001 Ei(1)*(cos(Pi/12)+BesselK(1,1)) 2971228359038338 r009 Re(z^3+c),c=-9/32+34/55*I,n=3 2971228365256098 a001 1/322*(1/2*5^(1/2)+1/2)^16*47^(8/21) 2971228372534030 a003 sin(Pi*7/82)/cos(Pi*13/87) 2971228372796850 a003 sin(Pi*13/89)*sin(Pi*11/47) 2971228373764547 r005 Im(z^2+c),c=23/94+11/60*I,n=14 2971228385459128 m001 GAMMA(11/12)-Kolakoski^Zeta(3) 2971228397631278 a007 Real Root Of 133*x^4-863*x^3+979*x^2+347*x-7 2971228398822280 p004 log(30113/1543) 2971228405077146 a001 3/29*11^(11/25) 2971228407121880 a001 956722026041/521*322^(1/12) 2971228408191218 a001 63246219*843^(4/7) 2971228410480423 m001 (exp(1)+FeigenbaumDelta)/(-Paris+Sierpinski) 2971228413179928 r009 Im(z^3+c),c=-9/22+11/53*I,n=20 2971228418765545 m001 (FeigenbaumD+ZetaP(4))/(ln(2)+CopelandErdos) 2971228446046903 r009 Re(z^3+c),c=-47/114+19/53*I,n=18 2971228447356684 h001 (6/7*exp(2)+1/9)/(7/12*exp(1)+7/12) 2971228451115304 r005 Im(z^2+c),c=-23/122+25/58*I,n=24 2971228456518695 m001 (Ei(1,1)-cos(1))/(-BesselI(1,1)+Stephens) 2971228477892839 r008 a(0)=3,K{-n^6,-38+7*n+60*n^2+6*n^3} 2971228483701569 p004 log(26003/19319) 2971228485837063 r005 Im(z^2+c),c=23/82+1/7*I,n=40 2971228487719709 m001 (2^(1/2)-GAMMA(19/24))/AlladiGrinstead 2971228495293381 a007 Real Root Of -94*x^4+80*x^3+902*x^2-504*x-36 2971228495596820 m001 (Lehmer-Rabbit)/(Ei(1,1)-sin(1/12*Pi)) 2971228500887138 k002 Champernowne real with 115/2*n^2-261/2*n+102 2971228503885587 r005 Re(z^2+c),c=-5/13+3/62*I,n=12 2971228510405019 r008 a(0)=3,K{-n^6,-10+6*n^3+74*n^2-35*n} 2971228534962154 m001 Totient^ln(Pi)/(polylog(4,1/2)^ln(Pi)) 2971228540406441 r005 Im(z^2+c),c=21/118+1/57*I,n=4 2971228542586420 r008 a(0)=3,K{-n^6,-52+52*n+17*n^2+18*n^3} 2971228553501332 a008 Real Root of x^4+14*x^2-88*x-463 2971228564435277 r008 a(0)=3,K{-n^6,-24+8*n+34*n^2+17*n^3} 2971228582044311 m005 (1/2*Zeta(3)-7/8)/(1/4*gamma+7/9) 2971228596508682 r005 Im(z^2+c),c=-23/82+11/19*I,n=27 2971228606064234 a003 sin(Pi*4/33)*sin(Pi*23/78) 2971228610390225 a001 182717648081/682*322^(5/12) 2971228623630825 m001 (Shi(1)+Otter)/(Totient+Trott) 2971228627983415 m001 (Thue-ZetaQ(4))/(ln(3)+KomornikLoreti) 2971228651998225 p004 log(15359/787) 2971228670912367 a001 7/121393*610^(37/38) 2971228670948128 a009 1/5*(15*5^(1/4)+22)*5^(3/4) 2971228674873395 m001 OneNinth^(Rabbit/Conway) 2971228677013759 m002 -Pi^5-4/ProductLog[Pi]+ProductLog[Pi]+Sinh[Pi] 2971228683443742 r005 Re(z^2+c),c=8/25+8/59*I,n=56 2971228692254108 m002 -Log[Pi]-(11*Tanh[Pi])/6 2971228692269257 b008 (9*BesselY[2,1])/5 2971228702069229 a008 Real Root of x^2-88282 2971228706835217 a001 20365011074/521*843^(9/14) 2971228714112627 a001 7778742049/199*199^(9/11) 2971228716260862 a008 Real Root of x^4-2*x^3-192*x+545 2971228724363766 r009 Im(z^3+c),c=-7/20+11/45*I,n=17 2971228734082923 m001 gamma(2)*FeigenbaumC^Si(Pi) 2971228748946215 a007 Real Root Of 875*x^4-193*x^3-880*x^2-845*x+327 2971228754380813 h002 exp(1/7*7^(1/2)*(3^(1/4)+6^(1/4))) 2971228758772966 r008 a(0)=0,K{-n^6,-16+46*n+9*n^2-36*n^3} 2971228761026611 r009 Re(z^3+c),c=-59/98+24/37*I,n=9 2971228772095634 r002 6th iterates of z^2 + 2971228790442131 r008 a(0)=3,K{-n^6,52-18*n-60*n^2+61*n^3} 2971228791462958 a001 365435296162/2207*322^(1/2) 2971228797730251 a007 Real Root Of -337*x^4-671*x^3+617*x^2-762*x+953 2971228806528482 m005 (1/2*exp(1)-4/11)/(3/8*3^(1/2)-4) 2971228807514619 a007 Real Root Of -770*x^4+162*x^3-983*x^2-128*x+59 2971228824952944 q001 1105/3719 2971228829548869 a007 Real Root Of 309*x^4+690*x^3-830*x^2-245*x+616 2971228846488578 a001 3/832040*2584^(47/55) 2971228846492639 a007 Real Root Of 324*x^4-520*x^3+266*x^2-934*x-28 2971228849598248 a007 Real Root Of -217*x^4-459*x^3+168*x^2+730*x-218 2971228857082229 m006 (1/2*Pi^2-3/4)/(3/5*exp(Pi)+1/5) 2971228858061989 r005 Im(z^2+c),c=25/86+7/54*I,n=54 2971228859113724 a007 Real Root Of 160*x^4-236*x^3-76*x^2-644*x+203 2971228873217960 a009 12/23+6^(1/2) 2971228894690872 r005 Re(z^2+c),c=-47/118+1/48*I,n=6 2971228897194968 r005 Im(z^2+c),c=2/21+12/41*I,n=11 2971228903052301 m008 (3*Pi^3+2)/(1/3*Pi^6-2/3) 2971228906505782 a007 Real Root Of -392*x^4-851*x^3+732*x^2-804*x-622 2971228931681715 m001 (Riemann2ndZero+Thue)/(Conway-LambertW(1)) 2971228937522170 a005 (1/cos(11/229*Pi))^1304 2971228940116606 m004 4+(5*Sqrt[5])/Pi+125*Pi*Cos[Sqrt[5]*Pi] 2971228946888829 a005 (1/cos(19/113*Pi))^196 2971228978326652 l006 ln(1555/2093) 2971228986803611 m001 (5^(1/2))^Catalan+ln(2^(1/2)+1) 2971228986803611 m001 sqrt(5)^Catalan+ln(1+sqrt(2)) 2971228986829134 r009 Re(z^3+c),c=-43/102+30/61*I,n=13 2971228990983655 m001 (Chi(1)+ln(5))/(-Cahen+Porter) 2971228994052445 r009 Re(z^3+c),c=-19/46+5/14*I,n=27 2971229002105522 a007 Real Root Of 324*x^4+333*x^3-374*x^2-595*x+18 2971229004782664 r005 Im(z^2+c),c=-13/98+23/56*I,n=12 2971229005479246 a001 12586269025/521*843^(5/7) 2971229005688437 a005 (1/cos(2/177*Pi))^1728 2971229010166747 r009 Im(z^3+c),c=-61/126+24/47*I,n=24 2971229025088158 v002 sum(1/(3^n+(n^3+6*n^2-n-5)),n=1..infinity) 2971229026805271 m001 (-PlouffeB+Riemann1stZero)/(Zeta(5)-gamma) 2971229033268824 m003 51/10+Sqrt[5]/64-2*Coth[1/2+Sqrt[5]/2] 2971229038363316 r005 Im(z^2+c),c=-53/86+11/28*I,n=30 2971229039386522 s002 sum(A151191[n]/(n^3*pi^n-1),n=1..infinity) 2971229056781667 m005 (1/3*Pi-1/11)/(7/12*2^(1/2)-6/7) 2971229057833352 m001 (Zeta(3)+Zeta(5))/(GAMMA(3/4)-Bloch) 2971229079216113 m001 (QuadraticClass+Sarnak)/(Psi(2,1/3)+ln(3)) 2971229079326318 r008 a(0)=3,K{-n^6,12+45*n-24*n^3+n^2} 2971229082213733 m001 ln(Rabbit)/FeigenbaumC*(2^(1/3))^2 2971229086082408 a008 Real Root of x^4-x^3-11*x^2-2*x-13 2971229087593796 a007 Real Root Of 831*x^4+279*x^3+419*x^2-851*x-289 2971229111795855 h001 (1/5*exp(1)+9/11)/(1/2*exp(2)+8/9) 2971229129565877 l006 ln(409/7982) 2971229133166015 r005 Im(z^2+c),c=41/106+7/46*I,n=48 2971229133206485 a005 (1/cos(29/202*Pi))^513 2971229153927846 a001 11/610*3^(5/11) 2971229154920339 s002 sum(A183421[n]/(n!^2),n=1..infinity) 2971229156329925 r005 Re(z^2+c),c=-8/21+5/47*I,n=28 2971229162746691 m006 (3/4*Pi+2/5)/(4*exp(Pi)+1/5) 2971229163634344 r005 Re(z^2+c),c=-39/118+26/57*I,n=16 2971229164820368 r009 Re(z^3+c),c=-43/106+19/49*I,n=8 2971229165588654 m001 FibonacciFactorial^2/ErdosBorwein*exp(gamma)^2 2971229184500632 m006 (3/4/Pi+5)/(2/3*ln(Pi)+1) 2971229191079043 a001 17/12238*11^(13/41) 2971229191326062 m001 (5^(1/2)-Catalan)/(-Zeta(5)+Lehmer) 2971229217303107 h001 (5/6*exp(2)+6/11)/(3/5*exp(1)+5/8) 2971229225081239 m001 (Magata+Tribonacci)/(cos(1)+GAMMA(3/4)) 2971229235063190 m001 (Grothendieck-ZetaQ(3))/(Zeta(5)-BesselJ(1,1)) 2971229240269226 m002 Pi^2/5+Tanh[Pi]+Tanh[Pi]/Pi^6 2971229246958429 m001 (TwinPrimes+ZetaQ(4))/(ln(3)+GAMMA(5/6)) 2971229249168441 m004 -4+2*Cos[Sqrt[5]*Pi]+6*Tan[Sqrt[5]*Pi] 2971229260478471 b008 4/5-7*Sqrt[19] 2971229266130249 m001 TreeGrowth2nd/ArtinRank2/exp(GAMMA(1/3))^2 2971229269965080 a003 sin(Pi*9/55)*sin(Pi*19/92) 2971229271307214 r008 a(0)=3,K{-n^6,3+3*n^3+90*n^2-61*n} 2971229275773729 r008 a(0)=3,K{-n^6,-11+6*n^3+74*n^2-34*n} 2971229280447910 a007 Real Root Of 853*x^4-743*x^3-346*x^2-449*x-129 2971229289721924 r002 19th iterates of z^2 + 2971229290521445 r005 Im(z^2+c),c=-3/19+18/43*I,n=29 2971229290894535 r005 Re(z^2+c),c=-47/122+1/49*I,n=20 2971229291604331 m001 1/exp(Salem)^2*Rabbit*BesselJ(1,1) 2971229303980788 a007 Real Root Of 86*x^4-23*x^3-870*x^2-395*x-799 2971229304123305 a001 7778742049/521*843^(11/14) 2971229308587331 m001 (GAMMA(17/24)+Sarnak)/(sin(1)+Zeta(1,-1)) 2971229312467268 a001 956722026041/5778*322^(1/2) 2971229319666817 m002 -Pi^3+Pi^5*ProductLog[Pi]-5*Sech[Pi] 2971229325950760 m001 (arctan(1/3)+BesselI(0,2))/ZetaQ(3) 2971229345097367 r005 Im(z^2+c),c=-17/62+20/43*I,n=38 2971229349125675 m001 Ei(1,1)^(GAMMA(19/24)/Porter) 2971229353630580 r005 Im(z^2+c),c=-11/102+9/23*I,n=5 2971229355028151 p004 log(32533/1667) 2971229366261313 a005 (1/cos(4/13*Pi))^63 2971229367035497 r008 a(0)=3,K{-n^6,-37+45*n+n^2+26*n^3} 2971229370838259 m001 ln(Catalan)/Backhouse^2*GAMMA(1/3)^2 2971229375163974 r002 20th iterates of z^2 + 2971229378563862 r009 Im(z^3+c),c=-11/60+12/41*I,n=2 2971229379183758 m002 -3+(4*Pi^2)/E^Pi+Pi^3 2971229379819804 r005 Im(z^2+c),c=-7/60+29/34*I,n=18 2971229388480787 a001 2504730781961/15127*322^(1/2) 2971229394860307 r008 a(0)=3,K{-n^6,21-50*n+42*n^2+22*n^3} 2971229394891949 r008 a(0)=3,K{-n^6,-15+16*n+6*n^2+28*n^3} 2971229399571011 a001 6557470319842/39603*322^(1/2) 2971229399949760 m005 (1/2*Pi-1/3)/(3/7*5^(1/2)-11/12) 2971229402189057 a001 10610209857723/64079*322^(1/2) 2971229406425146 a001 4052739537881/24476*322^(1/2) 2971229408115066 m001 (GAMMA(3/4)+Ei(1))/(polylog(4,1/2)-ThueMorse) 2971229425245496 a001 5600748293801*1836311903^(5/17) 2971229425245496 a001 505019158607*6557470319842^(5/17) 2971229430835771 a007 Real Root Of -783*x^4+47*x^3+670*x^2+827*x-300 2971229433533302 s001 sum(exp(-3*Pi/5)^n*A284697[n],n=1..infinity) 2971229435106911 a007 Real Root Of 130*x^4+204*x^3-139*x^2+950*x-731 2971229435459728 a001 1548008755920/9349*322^(1/2) 2971229435674613 a005 (1/sin(81/197*Pi))^1078 2971229450511165 a001 199*610^(1/16) 2971229451547080 m001 ln(Porter)/Backhouse*GAMMA(5/6) 2971229456372849 a008 Real Root of (3+10*x-3*x^2-9*x^3) 2971229476113495 r008 a(0)=3,K{-n^6,1+45*n^3-37*n^2+26*n} 2971229476171061 m001 1/Niven*exp(Khintchine)*sin(Pi/5)^2 2971229479686945 r008 a(0)=3,K{-n^6,49+38*n^3+8*n^2-60*n} 2971229503893139 k002 Champernowne real with 58*n^2-132*n+103 2971229509691132 m005 (1/2*Pi+11/12)/(6/7*2^(1/2)-3/8) 2971229510481549 a007 Real Root Of 207*x^4+730*x^3+103*x^2-902*x-574 2971229512535453 m001 GAMMA(5/24)-Zeta(5)*exp(1/Pi) 2971229512535453 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-Zeta(5)*exp(1/Pi) 2971229516440938 r008 a(0)=3,K{-n^6,49+49*n^3-25*n^2-38*n} 2971229519845573 m001 BesselI(1,2)+Porter^sin(1) 2971229524997168 k003 Champernowne real with 41/6*n^3-27/2*n^2-1/3*n+9 2971229527265888 r009 Re(z^3+c),c=-25/58+19/49*I,n=60 2971229529634174 r005 Im(z^2+c),c=23/110+4/19*I,n=8 2971229546887262 r008 a(0)=3,K{-n^6,69+56*n^3-36*n^2-54*n} 2971229548260351 m001 FeigenbaumB/exp(MertensB1)*arctan(1/2) 2971229562294263 r002 3th iterates of z^2 + 2971229569790564 r005 Re(z^2+c),c=-3/98+25/34*I,n=58 2971229571089460 a007 Real Root Of 109*x^4-504*x^3-575*x^2-524*x-119 2971229572257949 l006 ln(283/5523) 2971229602767394 a001 4807526976/521*843^(6/7) 2971229605739969 a007 Real Root Of 368*x^4-919*x^3-789*x^2-623*x+276 2971229607264778 g001 Re(GAMMA(239/60+I*47/60)) 2971229615189359 r008 a(0)=3,K{-n^6,6+21*n+15*n^2-15*n^3} 2971229617336096 m001 Si(Pi)*exp(1/exp(1))^GAMMA(17/24) 2971229625522097 m001 (Pi+Zeta(5))/(HardHexagonsEntropy+Trott) 2971229632700640 m001 (ln(5)-AlladiGrinstead)/(OneNinth+Sierpinski) 2971229634465731 a001 591286729879/3571*322^(1/2) 2971229640199308 r005 Im(z^2+c),c=-17/26+41/124*I,n=46 2971229643666391 a001 5473/9*199^(36/49) 2971229644490958 m006 (1/5*exp(Pi)-4)/(exp(Pi)-2) 2971229646302161 m001 (-KhinchinLevy+Rabbit)/(ln(2)/ln(10)+Conway) 2971229646587886 a007 Real Root Of 364*x^4-567*x^3+668*x^2-967*x-364 2971229651598270 m001 (-HardyLittlewoodC3+ZetaP(3))/(1-ln(gamma)) 2971229655634092 s002 sum(A035777[n]/(exp(2*pi*n)+1),n=1..infinity) 2971229666862399 r009 Re(z^3+c),c=-19/46+5/14*I,n=26 2971229671884750 m001 (-gamma(1)+gamma(2))/(Ei(1)-exp(Pi)) 2971229671898255 r005 Re(z^2+c),c=-33/98+27/64*I,n=11 2971229675353770 m001 exp(BesselK(1,1))/Khintchine^2*GAMMA(19/24) 2971229685772684 a007 Real Root Of 210*x^4+425*x^3-631*x^2-7*x+331 2971229694857950 l006 ln(6668/8975) 2971229706189794 m001 GAMMA(5/6)/(exp(-1/2*Pi)-sin(1/5*Pi)) 2971229706189794 m001 GAMMA(5/6)/(exp(-1/2*Pi)-sin(Pi/5)) 2971229708337807 p001 sum((-1)^n/(562*n+95)/n/(512^n),n=1..infinity) 2971229710330836 a007 Real Root Of 209*x^4+431*x^3-628*x^2-256*x-200 2971229711090369 a007 Real Root Of 291*x^4+991*x^3+425*x^2+168*x+62 2971229719210376 r005 Im(z^2+c),c=11/60+11/47*I,n=16 2971229719678489 r005 Im(z^2+c),c=-59/44+1/48*I,n=44 2971229732963351 r005 Re(z^2+c),c=-9/31+29/59*I,n=40 2971229751198704 a007 Real Root Of 275*x^4+611*x^3-516*x^2+88*x-589 2971229754238791 r005 Im(z^2+c),c=-29/34+1/52*I,n=24 2971229770105842 a003 -3/2-cos(3/7*Pi)-1/2*3^(1/2)-cos(3/8*Pi) 2971229790388790 r005 Im(z^2+c),c=-11/28+31/63*I,n=27 2971229791356820 r005 Im(z^2+c),c=-25/19+6/17*I,n=4 2971229792657919 r005 Im(z^2+c),c=-73/56+4/43*I,n=8 2971229801571940 r005 Re(z^2+c),c=-29/78+8/43*I,n=23 2971229808727437 r005 Im(z^2+c),c=-2/15+20/49*I,n=23 2971229811327974 r005 Re(z^2+c),c=-15/74+34/57*I,n=45 2971229819636698 m001 (ln(gamma)+BesselJ(1,1))/(Landau-ZetaP(3)) 2971229820918796 r009 Im(z^3+c),c=-1/30+17/53*I,n=3 2971229827233249 r005 Re(z^2+c),c=-27/70+1/55*I,n=12 2971229832141770 m005 (1/3*gamma+1/11)/(5*3^(1/2)+7/8) 2971229841301860 a007 Real Root Of -890*x^4+721*x^3-983*x^2+358*x+219 2971229843905554 a001 15127/89*514229^(26/35) 2971229874413104 a007 Real Root Of 420*x^4-470*x^3+349*x^2-39*x-58 2971229880446765 m001 1/exp((2^(1/3)))^2*Trott^2*Pi 2971229883626805 p004 log(22697/1163) 2971229888380069 m005 (1/2*5^(1/2)-2/3)/(46/45+2/9*5^(1/2)) 2971229890682768 m006 (5/6*ln(Pi)+3/4)/(1/2*Pi^2+4/5) 2971229901411513 a001 2971215073/521*843^(13/14) 2971229909337356 r005 Im(z^2+c),c=21/58+7/36*I,n=25 2971229910467609 m004 5*Pi+Cos[Sqrt[5]*Pi]/2+Sinh[Sqrt[5]*Pi]/2 2971229912774264 l006 ln(5113/6882) 2971229917093210 r008 a(0)=3,K{-n^6,4-17*n^3-24*n^2+71*n} 2971229922171714 a003 1/2+2*cos(2/27*Pi)+cos(5/21*Pi)-cos(13/30*Pi) 2971229943099432 r005 Re(z^2+c),c=-5/52+38/47*I,n=60 2971229946051677 a007 Real Root Of 306*x^4+262*x^3-824*x^2-934*x+341 2971229956824666 m001 exp(Pi)^Totient*Landau^Totient 2971229959902632 m006 (4/5*exp(2*Pi)+1/5)/(3*Pi+5) 2971229970269357 a007 Real Root Of 965*x^4-885*x^3+831*x^2-513*x-16 2971229983760177 l006 ln(440/8587) 2971229989268169 r005 Re(z^2+c),c=-89/78+11/51*I,n=40 2971229993848420 m001 BesselK(1,1)^(KomornikLoreti/RenyiParking) 2971229996614999 a001 53316291173/843*322^(2/3) 2971230002281929 p003 LerchPhi(1/16,5,65/203) 2971230002837980 m001 (-TreeGrowth2nd+Weierstrass)/(5^(1/2)-Shi(1)) 2971230005994036 r008 a(0)=3,K{-n^6,-38+6*n+61*n^2+6*n^3} 2971230007136594 s002 sum(A082949[n]/((2^n-1)/n),n=1..infinity) 2971230033619084 s001 sum(exp(-Pi/2)^(n-1)*A128439[n],n=1..infinity) 2971230050273146 r008 a(0)=3,K{-n^6,-40+13*n^3+39*n^2+23*n} 2971230057259456 m001 (BesselI(0,1)-cos(1))/(-arctan(1/2)+Ei(1,1)) 2971230062608135 r008 a(0)=3,K{-n^6,-46+16*n^3+27*n^2+38*n} 2971230064102924 m005 (1/2*Zeta(3)+3)/(4/7*3^(1/2)+2/9) 2971230066892454 a007 Real Root Of 261*x^4+429*x^3-779*x^2+469*x-818 2971230074920622 m001 cos(Pi/12)/exp(FeigenbaumB)/sqrt(2) 2971230078411372 r008 a(0)=3,K{-n^6,-42+36*n+23*n^2+18*n^3} 2971230085927539 a007 Real Root Of -571*x^4+680*x^3+106*x^2+642*x+19 2971230098153550 r009 Re(z^3+c),c=-37/90+14/39*I,n=15 2971230100887742 b008 1/4+ArcCsch[15*Sqrt[2]] 2971230106909963 m005 (1/2*2^(1/2)-3/7)/(5/9*Catalan+3/7) 2971230122164462 m005 (1/2*Zeta(3)-1/11)/(3/7*2^(1/2)-7/9) 2971230124335703 a007 Real Root Of -890*x^4+692*x^3+24*x^2+754*x+247 2971230138753318 m001 (BesselJ(0,1)-exp(1))/(-Conway+MasserGramain) 2971230147647070 m009 (3*Pi^2+1)/(48*Catalan+6*Pi^2-1/6) 2971230156852382 m001 (GAMMA(19/24)+MertensB3)/(sin(1)+gamma(3)) 2971230158730158 q001 2995/1008 2971230158734706 s002 sum(A040365[n]/(64^n),n=1..infinity) 2971230162974467 a007 Real Root Of 204*x^4+523*x^3-388*x^2-599*x-535 2971230164593257 a001 11/144*1597^(38/47) 2971230186708491 s002 sum(A040366[n]/(64^n),n=1..infinity) 2971230188310761 m001 1/exp(Trott)*MadelungNaCl^2/Zeta(7)^2 2971230192861703 r005 Re(z^2+c),c=-8/21+5/47*I,n=30 2971230192980386 r005 Im(z^2+c),c=-29/98+12/25*I,n=24 2971230200021220 a001 1120153785408/377 2971230204203268 m005 (1/2*3^(1/2)-8/11)/(1/4*3^(1/2)-9/10) 2971230209766354 m001 (Psi(2,1/3)-ln(2))/(-ln(Pi)+MertensB3) 2971230209799650 a007 Real Root Of -213*x^4-408*x^3+877*x^2+424*x-584 2971230212058651 b008 Cos[1]/ArcSinh[3] 2971230220952671 r008 a(0)=3,K{-n^6,34-42*n+7*n^2+36*n^3} 2971230224443820 r009 Re(z^3+c),c=-5/27+37/51*I,n=42 2971230229523346 r008 a(0)=3,K{-n^6,42-52*n+8*n^2+37*n^3} 2971230234832079 a007 Real Root Of 253*x^4-75*x^3+140*x^2-938*x-295 2971230236670745 r008 a(0)=3,K{-n^6,48+38*n^3+8*n^2-59*n} 2971230236695873 r008 a(0)=3,K{-n^6,-12+48*n^3-52*n^2+51*n} 2971230242819883 b008 EllipticK[E*ProductLog[1/2]] 2971230254886859 r008 a(0)=3,K{-n^6,56-63*n+42*n^3} 2971230261773614 r005 Im(z^2+c),c=-9/23+1/21*I,n=23 2971230283782677 s002 sum(A146065[n]/(n^2*exp(n)-1),n=1..infinity) 2971230288923764 m005 (7/44+1/4*5^(1/2))/(4/11*5^(1/2)-4/7) 2971230297925623 s002 sum(A114416[n]/(n^3*10^n+1),n=1..infinity) 2971230305817774 r005 Im(z^2+c),c=23/82+1/7*I,n=49 2971230308538737 r008 a(0)=3,K{-n^6,56+60*n^3-54*n^2-27*n} 2971230318238728 a003 sin(Pi*3/71)*sin(Pi*8/111) 2971230321168289 l006 ln(3558/4789) 2971230323272591 r005 Im(z^2+c),c=19/98+7/31*I,n=20 2971230324311798 m001 Ei(1)*BesselI(1,2)-exp(-Pi) 2971230334496140 s002 sum(A211847[n]/(n*10^n-1),n=1..infinity) 2971230338578572 r005 Re(z^2+c),c=9/46+34/63*I,n=33 2971230344423810 a007 Real Root Of 847*x^4+108*x^3+357*x^2-747*x+181 2971230352205670 a007 Real Root Of -296*x^4-709*x^3+629*x^2+694*x+981 2971230366740752 m005 (1/2*3^(1/2)-2/5)/(1/4*exp(1)+8/9) 2971230373270083 h001 (5/11*exp(1)+8/11)/(6/7*exp(2)+3/11) 2971230380026148 m005 (1/2*Pi+1/10)/(1/4*Catalan+1/3) 2971230394136821 m001 1/ln(BesselK(1,1))*BesselK(0,1)^2/sinh(1) 2971230396341215 m005 (1/2*gamma+1/3)/(5^(1/2)-1/7) 2971230398182953 r005 Im(z^2+c),c=-5/28+15/31*I,n=5 2971230404242388 r005 Re(z^2+c),c=-29/78+8/43*I,n=21 2971230408260841 m001 Zeta(5)+(ln(2)/ln(10))^ln(gamma) 2971230411945140 r008 a(0)=3,K{-n^6,46-21*n^3+9*n^2} 2971230414116319 a001 1/2207*(1/2*5^(1/2)+1/2)^14*76^(9/19) 2971230419544299 r005 Re(z^2+c),c=-25/22+27/79*I,n=9 2971230419572559 a007 Real Root Of -275*x^4-857*x^3-296*x^2-652*x-371 2971230426666121 p004 log(26641/19793) 2971230447194576 m001 Ei(1)^2*Trott/ln(Pi)^2 2971230451213201 r002 3th iterates of z^2 + 2971230455368736 a007 Real Root Of 332*x^4+935*x^3-61*x^2-35*x-915 2971230456258695 r002 17th iterates of z^2 + 2971230470457764 r005 Im(z^2+c),c=-39/122+29/60*I,n=37 2971230473594053 a001 9349/89*3^(53/56) 2971230475028171 a007 Real Root Of -390*x^4+846*x^3+340*x^2+457*x+131 2971230492413073 r005 Im(z^2+c),c=-27/118+5/11*I,n=14 2971230495013366 m005 (1/6*gamma+3/5)/(2/5*2^(1/2)-4/5) 2971230506899140 k002 Champernowne real with 117/2*n^2-267/2*n+104 2971230528100717 k003 Champernowne real with 7*n^3-29/2*n^2+3/2*n+8 2971230533001260 m001 (cos(1/12*Pi)+polylog(4,1/2))/(Bloch+Trott2nd) 2971230533194010 a001 516002918640/281*123^(1/10) 2971230539157820 r002 19th iterates of z^2 + 2971230540356593 a007 Real Root Of -234*x^4-417*x^3+824*x^2+233*x+717 2971230540602072 m001 (Lehmer-Totient)/(ZetaP(3)+ZetaP(4)) 2971230546955044 m001 (-ln(5)+1/2)/(-BesselI(0,1)+5) 2971230549117170 a003 -1-cos(1/5*Pi)-cos(3/7*Pi)-cos(1/9*Pi) 2971230560289822 r005 Re(z^2+c),c=-8/21+5/47*I,n=32 2971230588071627 a007 Real Root Of 322*x^4+717*x^3-697*x^2+272*x+673 2971230593927183 r009 Im(z^3+c),c=-7/29+13/45*I,n=6 2971230601323359 r005 Re(z^2+c),c=27/110+2/27*I,n=10 2971230619114323 a007 Real Root Of 249*x^4+598*x^3-340*x^2-65*x-912 2971230620729005 a005 (1/sin(76/183*Pi))^416 2971230621439579 m001 (Salem-ZetaP(4))/(Kac-LaplaceLimit) 2971230631052829 a007 Real Root Of -182*x^4-149*x^3+958*x^2-876*x-784 2971230643507287 p003 LerchPhi(1/5,3,137/196) 2971230644260175 a007 Real Root Of -186*x^4+986*x^3+311*x^2+337*x-152 2971230645135772 m001 (gamma(2)-FeigenbaumDelta)/(OneNinth+Porter) 2971230664076927 r005 Re(z^2+c),c=-8/21+5/47*I,n=34 2971230665353533 r005 Re(z^2+c),c=-8/21+5/47*I,n=37 2971230668305844 r005 Im(z^2+c),c=-2/3+38/121*I,n=39 2971230668879751 r005 Re(z^2+c),c=-8/21+5/47*I,n=39 2971230670029721 r005 Re(z^2+c),c=-8/21+5/47*I,n=35 2971230671887980 r005 Re(z^2+c),c=-8/21+5/47*I,n=41 2971230673420208 r005 Re(z^2+c),c=-8/21+5/47*I,n=43 2971230674033852 r005 Re(z^2+c),c=-8/21+5/47*I,n=45 2971230674234554 r005 Re(z^2+c),c=-8/21+5/47*I,n=47 2971230674275602 r005 Re(z^2+c),c=-8/21+5/47*I,n=50 2971230674276129 r005 Re(z^2+c),c=-8/21+5/47*I,n=52 2971230674279334 r005 Re(z^2+c),c=-8/21+5/47*I,n=54 2971230674281411 r005 Re(z^2+c),c=-8/21+5/47*I,n=56 2971230674282363 r005 Re(z^2+c),c=-8/21+5/47*I,n=58 2971230674282716 r005 Re(z^2+c),c=-8/21+5/47*I,n=60 2971230674282821 r005 Re(z^2+c),c=-8/21+5/47*I,n=62 2971230674282838 r005 Re(z^2+c),c=-8/21+5/47*I,n=63 2971230674282844 r005 Re(z^2+c),c=-8/21+5/47*I,n=64 2971230674282890 r005 Re(z^2+c),c=-8/21+5/47*I,n=61 2971230674283089 r005 Re(z^2+c),c=-8/21+5/47*I,n=59 2971230674283683 r005 Re(z^2+c),c=-8/21+5/47*I,n=57 2971230674284717 r005 Re(z^2+c),c=-8/21+5/47*I,n=49 2971230674285132 r005 Re(z^2+c),c=-8/21+5/47*I,n=55 2971230674287880 r005 Re(z^2+c),c=-8/21+5/47*I,n=53 2971230674290742 r005 Re(z^2+c),c=-8/21+5/47*I,n=51 2971230674296327 r005 Re(z^2+c),c=-8/21+5/47*I,n=48 2971230674401175 r005 Re(z^2+c),c=-8/21+5/47*I,n=46 2971230674761570 r005 Re(z^2+c),c=-8/21+5/47*I,n=44 2971230675019104 r005 Re(z^2+c),c=9/118+9/44*I,n=7 2971230675756114 r005 Re(z^2+c),c=-8/21+5/47*I,n=42 2971230677984231 r005 Re(z^2+c),c=-8/21+5/47*I,n=40 2971230678142238 a007 Real Root Of 325*x^4+868*x^3+552*x^2-833*x-276 2971230681615928 r005 Re(z^2+c),c=-8/21+5/47*I,n=38 2971230683123413 r005 Re(z^2+c),c=-8/21+5/47*I,n=36 2971230694188685 m001 FeigenbaumC*Backhouse^2/exp(GAMMA(17/24))^2 2971230696661647 l006 ln(5561/7485) 2971230700575650 r005 Re(z^2+c),c=-28/27+15/59*I,n=46 2971230704397276 a005 (1/sin(49/123*Pi))^21 2971230707294842 r009 Im(z^3+c),c=-3/86+10/31*I,n=5 2971230714314225 a003 cos(Pi*35/108)-cos(Pi*35/82) 2971230718448415 r005 Re(z^2+c),c=-8/21+5/47*I,n=33 2971230725512173 l006 ln(157/3064) 2971230726030268 m005 (1/2*2^(1/2)-4/11)/(1/7*exp(1)-3/11) 2971230738618024 a001 370248451/5*75025^(17/23) 2971230738816386 a001 103682/5*4807526976^(17/23) 2971230744207074 r008 a(0)=3,K{-n^6,59-21*n^3+40*n^2-45*n} 2971230760221690 r005 Im(z^2+c),c=31/122+5/29*I,n=29 2971230764038762 r005 Im(z^2+c),c=-10/23+31/53*I,n=19 2971230773220451 a008 Real Root of x^2-x-87985 2971230790164779 a007 Real Root Of -916*x^4+376*x^3+389*x^2+996*x-333 2971230791175436 r008 a(0)=3,K{-n^6,-11+6*n^3+75*n^2-35*n} 2971230795205374 a001 591286729879/521*322^(1/6) 2971230803398810 m005 (1/3*Zeta(3)-1/4)/(1/12*2^(1/2)-5/8) 2971230813528731 m001 1/GAMMA(7/24)/DuboisRaymond*exp(gamma) 2971230817115766 m001 RenyiParking^exp(Pi)/(arctan(1/3)^exp(Pi)) 2971230829427952 s002 sum(A040364[n]/(64^n),n=1..infinity) 2971230831757662 m001 exp(GAMMA(1/24))^2*GolombDickman^2/Pi 2971230851766074 m005 (1/2*gamma-1/10)/(1/9*Pi+2/7) 2971230853720081 r008 a(0)=3,K{-n^6,5-43*n+59*n^2+14*n^3} 2971230857005552 r005 Im(z^2+c),c=-35/106+29/56*I,n=26 2971230859298321 b008 (94+EulerGamma)*Pi 2971230862383612 r009 Re(z^3+c),c=-15/28+9/22*I,n=13 2971230878501869 a007 Real Root Of 979*x^4-725*x^3-372*x^2-844*x+295 2971230880852845 r009 Im(z^3+c),c=-31/60+3/11*I,n=5 2971230887138665 m005 (1/2*3^(1/2)+3/11)/(7/12*Pi+2) 2971230914047547 m001 ln(FeigenbaumB)^2*FeigenbaumAlpha^2/Rabbit 2971230914281690 m005 (1/2*2^(1/2)+1/3)/(1/12*Zeta(3)+1/4) 2971230920452893 r005 Re(z^2+c),c=-8/21+5/47*I,n=31 2971230928391053 m005 (1/3*2^(1/2)-1/8)/(7/11*Pi-5/6) 2971230930432971 r002 3th iterates of z^2 + 2971230935120913 a001 1/5778*(1/2*5^(1/2)+1/2)^16*76^(9/19) 2971230946739966 r005 Im(z^2+c),c=-11/98+13/36*I,n=4 2971230950313865 a007 Real Root Of -186*x^4-834*x^3-570*x^2+871*x+240 2971230960110166 r009 Re(z^3+c),c=-49/106+16/37*I,n=41 2971230966182450 r008 a(0)=3,K{-n^6,11-4*n-10*n^2+38*n^3} 2971230972381293 r008 a(0)=3,K{-n^6,33-41*n+7*n^2+36*n^3} 2971230985608761 r008 a(0)=3,K{-n^6,-23+49*n^3-60*n^2+69*n} 2971230989302707 p001 sum((-1)^n/(563*n+94)/n/(512^n),n=1..infinity) 2971230994814144 r008 a(0)=3,K{-n^6,29-21*n-16*n^2+43*n^3} 2971230998473882 a001 225851433717/1364*322^(1/2) 2971230999793712 m001 (BesselI(0,2)-ZetaP(4)*ZetaQ(3))/ZetaP(4) 2971231002877176 a007 Real Root Of -342*x^4+867*x^3-626*x^2+755*x+305 2971231011134474 a001 1/15127*(1/2*5^(1/2)+1/2)^18*76^(9/19) 2971231015010132 k007 concat of cont frac of 2971231015559633 r008 a(0)=3,K{-n^6,19+51*n^3-45*n^2+10*n} 2971231021023600 r005 Im(z^2+c),c=-47/110+31/61*I,n=46 2971231021182041 a001 1/33*(1/2*5^(1/2)+1/2)^3*11^(7/20) 2971231022224703 a001 1/39603*(1/2*5^(1/2)+1/2)^20*76^(9/19) 2971231024842751 a001 1/64079*(1/2*5^(1/2)+1/2)^21*76^(9/19) 2971231026867094 r008 a(0)=3,K{-n^6,29+53*n^3-46*n^2-n} 2971231029078842 a001 1/24476*(1/2*5^(1/2)+1/2)^19*76^(9/19) 2971231058113440 a001 1/9349*(1/2*5^(1/2)+1/2)^17*76^(9/19) 2971231059263154 m005 (1/2*Catalan+4)/(6/11*Catalan-2) 2971231059824488 m001 (-Robbin+Totient)/(ln(2)/ln(10)+gamma(1)) 2971231061674257 a007 Real Root Of -155*x^4-260*x^3+635*x^2+14*x-304 2971231073491515 m005 (1/2*Pi+8/9)/(3/11*Zeta(3)+1/2) 2971231074926400 r005 Re(z^2+c),c=-15/34+1/44*I,n=4 2971231075506095 r009 Re(z^3+c),c=-17/44+14/45*I,n=18 2971231077883448 m001 (CareFree-ErdosBorwein)/GaussKuzminWirsing 2971231088418837 g001 GAMMA(3/5,109/110) 2971231093345315 m001 (exp(Pi)+BesselJ(0,1))/(GAMMA(2/3)+ln(gamma)) 2971231098296769 a001 1/682*3^(9/14) 2971231106514151 k009 concat of cont frac of 2971231110718429 r005 Im(z^2+c),c=17/110+13/51*I,n=14 2971231111191082 k006 concat of cont frac of 2971231121022110 k008 concat of cont frac of 2971231130744875 m005 (1/2*2^(1/2)+5/7)/(2/11*gamma-7/12) 2971231131211045 s002 sum(A073324[n]/(2^n+1),n=1..infinity) 2971231132831762 a007 Real Root Of -374*x^4-874*x^3+998*x^2+953*x+244 2971231137486798 a001 521/225851433717*317811^(13/23) 2971231139378592 m001 (Mills-Weierstrass)/(GolombDickman-Gompertz) 2971231139602540 m005 (5/36+1/4*5^(1/2))/(7/8*3^(1/2)+5/6) 2971231142654680 b008 EulerGamma+3*ProductLog[Sqrt[Pi]] 2971231154406748 m001 Magata^BesselJ(1,1)/gamma 2971231172312576 k006 concat of cont frac of 2971231174770780 m002 -E^Pi+Pi^6/3-Tanh[Pi]/5 2971231179534301 v002 sum(1/(5^n+(30*n^2-56*n+82)),n=1..infinity) 2971231179546761 a001 225851433717/2207*322^(7/12) 2971231183918821 h001 (3/10*exp(1)+1/11)/(4/11*exp(2)+4/11) 2971231194200014 a001 4/17711*144^(54/55) 2971231195665871 a007 Real Root Of -174*x^4-390*x^3+332*x^2-411*x-821 2971231211824222 k007 concat of cont frac of 2971231214312122 k007 concat of cont frac of 2971231217455941 r005 Im(z^2+c),c=33/86+5/16*I,n=6 2971231227127111 k006 concat of cont frac of 2971231243545260 r009 Re(z^3+c),c=-3/110+47/51*I,n=3 2971231247671666 b008 -E+LogIntegral[2/5] 2971231255116115 k006 concat of cont frac of 2971231255264549 m001 1/GAMMA(2/3)/HardHexagonsEntropy/exp(gamma) 2971231257119551 a001 1/3571*(1/2*5^(1/2)+1/2)^15*76^(9/19) 2971231262552911 b008 Log[5*(Pi+Tanh[1])] 2971231264771142 m005 (5*Catalan-1/3)/(1/2*Pi-3) 2971231267300142 a007 Real Root Of 183*x^4+203*x^3-677*x^2+799*x-587 2971231271544205 a007 Real Root Of -29*x^4+317*x^3-829*x^2+603*x-528 2971231275439721 a001 5/521*39603^(42/43) 2971231277973037 r005 Im(z^2+c),c=-7/20+25/52*I,n=24 2971231292799816 h001 (5/8*exp(2)+2/11)/(3/10*exp(1)+4/5) 2971231293254075 m001 (HardyLittlewoodC5+ThueMorse)/(Pi-Artin) 2971231300345224 q001 2582/869 2971231301960035 a007 Real Root Of 17*x^4+506*x^3+8*x^2-530*x+553 2971231304464110 m001 GAMMA(17/24)/(exp(1)+ErdosBorwein) 2971231306723703 m001 (-ln(2)+OrthogonalArrays)/(Si(Pi)+cos(1)) 2971231307934301 r005 Re(z^2+c),c=6/17+19/44*I,n=37 2971231311555596 a001 9349/3*75025^(11/18) 2971231318642935 r005 Im(z^2+c),c=27/86+4/47*I,n=42 2971231338808901 r005 Re(z^2+c),c=-7/38+23/38*I,n=40 2971231341028780 r009 Re(z^3+c),c=-13/40+10/51*I,n=14 2971231344725616 r005 Re(z^2+c),c=25/82+35/64*I,n=53 2971231348532616 a007 Real Root Of 20*x^4+602*x^3+231*x^2+27*x+256 2971231357271308 m001 (ln(5)*FeigenbaumD+arctan(1/2))/ln(5) 2971231360556562 a001 15456/41*18^(5/7) 2971231363663793 l006 ln(2003/2696) 2971231365192656 r005 Im(z^2+c),c=-11/54+26/59*I,n=6 2971231366405143 m001 QuadraticClass/(Pi-ZetaP(3)) 2971231367362175 a007 Real Root Of 682*x^4+109*x^3+638*x^2-445*x-191 2971231375652913 l006 ln(502/9797) 2971231383623392 a001 2/21*34^(40/41) 2971231384229471 a007 Real Root Of -91*x^4-296*x^3-449*x^2-977*x+389 2971231387295104 m001 2^(1/3)/(1-Stephens) 2971231403751577 a007 Real Root Of -388*x^4-744*x^3+941*x^2-600*x+634 2971231411132021 a007 Real Root Of -313*x^4+676*x^3-376*x^2+857*x+308 2971231411996443 a007 Real Root Of -10*x^4-299*x^3-50*x^2+194*x+674 2971231439057864 r008 a(0)=3,K{-n^6,43+7*n^3-7*n^2-7*n} 2971231440751778 a005 (1/cos(107/230*Pi))^14 2971231449668496 m001 (3^(1/2)-CareFree)/(Paris+ReciprocalFibonacci) 2971231452538220 m002 2*E^Pi*Sech[Pi]^3 2971231455060432 r005 Im(z^2+c),c=-5/44+21/53*I,n=5 2971231463123671 m009 (5/6*Psi(1,3/4)-1)/(1/6*Psi(1,3/4)-4/5) 2971231465842450 r005 Im(z^2+c),c=-1/54+17/20*I,n=9 2971231468158991 m001 1/Tribonacci/exp(Khintchine)^2*Trott^2 2971231470214030 m001 (-Landau+Mills)/(Pi*2^(1/2)/GAMMA(3/4)-Shi(1)) 2971231482972457 s002 sum(A101064[n]/(n^3*exp(n)-1),n=1..infinity) 2971231488408381 b008 ArcCsch[7/40+Pi] 2971231496443021 r005 Re(z^2+c),c=-41/110+8/39*I,n=9 2971231509905141 k002 Champernowne real with 59*n^2-135*n+105 2971231518752176 s002 sum(A040363[n]/(64^n),n=1..infinity) 2971231521285340 r002 9th iterates of z^2 + 2971231528566366 p003 LerchPhi(1/1024,10,7/62) 2971231528567371 p003 LerchPhi(1/256,10,7/62) 2971231528569462 p003 LerchPhi(1/100,10,7/62) 2971231528571392 p003 LerchPhi(1/64,10,7/62) 2971231528579756 p003 LerchPhi(1/25,10,7/62) 2971231528587477 p003 LerchPhi(1/16,10,7/62) 2971231528600347 p003 LerchPhi(1/10,10,7/62) 2971231528608927 p003 LerchPhi(1/8,10,7/62) 2971231528634674 p003 LerchPhi(1/5,10,7/62) 2971231528651842 p003 LerchPhi(1/4,10,7/62) 2971231528655372 a007 Real Root Of 293*x^4+805*x^3+2*x^2+604*x+57 2971231528656400 p004 log(30259/22481) 2971231528680462 p003 LerchPhi(1/3,10,7/62) 2971231528737725 p003 LerchPhi(1/2,10,7/62) 2971231529796568 m006 (5*Pi^2-1/5)/(5*Pi+5/6) 2971231529796568 m008 (5*Pi^2-1/5)/(5*Pi+5/6) 2971231532101717 k003 Champernowne real with 43/6*n^3-31/2*n^2+10/3*n+7 2971231538201407 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)+ArtinRank2^Bloch 2971231548430613 m001 (Pi*GAMMA(23/24)-ZetaP(3))/GAMMA(23/24) 2971231553118927 r005 Re(z^2+c),c=-8/21+5/47*I,n=29 2971231554596818 m001 (BesselK(0,1)-Shi(1))/(-MertensB1+PlouffeB) 2971231555299729 r005 Im(z^2+c),c=27/86+3/32*I,n=53 2971231557678169 r008 a(0)=3,K{-n^6,-24+11*n^3+54*n^2-6*n} 2971231559795845 m005 (1/2*Zeta(3)+6/11)/(5/7*Zeta(3)+3) 2971231565632683 r008 a(0)=3,K{-n^6,-46+16*n^3+28*n^2+37*n} 2971231577194869 r008 a(0)=3,K{-n^6,-52+52*n+16*n^2+19*n^3} 2971231584688426 r008 a(0)=3,K{-n^6,-50+51*n+14*n^2+20*n^3} 2971231590157853 r008 a(0)=3,K{-n^6,-14-13*n+47*n^2+15*n^3} 2971231591165382 m001 1/GAMMA(2/3)*Conway/exp(sin(Pi/5))^2 2971231600917414 r008 a(0)=3,K{-n^6,4-42*n+59*n^2+14*n^3} 2971231607927071 r008 a(0)=3,K{-n^6,-32*n+51*n^2+16*n^3} 2971231613534811 k007 concat of cont frac of 2971231621967844 a007 Real Root Of -299*x^4-855*x^3+371*x^2+966*x+471 2971231632089153 a007 Real Root Of -347*x^4-830*x^3+936*x^2+925*x-242 2971231636861380 a007 Real Root Of 164*x^4+138*x^3-899*x^2+614*x+599 2971231640873474 r008 a(0)=3,K{-n^6,22+19*n^3+53*n^2-59*n} 2971231643935399 a007 Real Root Of 500*x^4+723*x^3+749*x^2-784*x-284 2971231644017945 r008 a(0)=3,K{-n^6,-4-10*n+25*n^2+24*n^3} 2971231645209623 m005 (1/2*2^(1/2)-2/9)/(2*Catalan-1/5) 2971231650422333 m005 (1/2*Pi+1/5)/(4/7*Zeta(3)-1/11) 2971231656399702 r009 Re(z^3+c),c=-19/52+18/37*I,n=4 2971231658683039 m001 (HardyLittlewoodC4+Rabbit)/(Ei(1)+GAMMA(7/12)) 2971231664367233 m005 (1/2*exp(1)+5/6)/(6*Zeta(3)+1/6) 2971231671513921 l006 ln(345/6733) 2971231678370370 m005 (1/4*gamma+5)/(4/5*2^(1/2)+3/5) 2971231684444680 r008 a(0)=3,K{-n^6,66+32*n^3-72*n^2+10*n} 2971231690572922 m003 3/2+(17*Sqrt[5])/32-6*Cos[1/2+Sqrt[5]/2] 2971231694558829 a007 Real Root Of -432*x^4-933*x^3+715*x^2-884*x+257 2971231700551489 a001 591286729879/5778*322^(7/12) 2971231706766056 m001 FeigenbaumKappa^GAMMA(2/3)+MinimumGamma 2971231718170029 p004 log(14083/10463) 2971231723586776 r009 Re(z^3+c),c=-49/118+21/58*I,n=21 2971231724374709 m001 (Paris+RenyiParking)/(OneNinth-Otter) 2971231726231600 r005 Im(z^2+c),c=-9/10+45/203*I,n=62 2971231730625758 r005 Re(z^2+c),c=-131/122+3/8*I,n=7 2971231731968593 s002 sum(A016687[n]/(2^n+1),n=1..infinity) 2971231734631456 r008 a(0)=3,K{-n^6,48+38*n^3+9*n^2-60*n} 2971231738226436 a007 Real Root Of -309*x^4-985*x^3-5*x^2+368*x-617 2971231756389366 a007 Real Root Of -376*x^4-679*x^3+984*x^2-630*x+935 2971231759767211 r008 a(0)=3,K{-n^6,28-8*n-34*n^2+49*n^3} 2971231762512135 k006 concat of cont frac of 2971231768978791 r008 a(0)=3,K{-n^6,58-57*n-13*n^2+47*n^3} 2971231776565069 a001 1548008755920/15127*322^(7/12) 2971231782587611 m001 Conway/(BesselJ(1,1)-HeathBrownMoroz) 2971231787655302 a001 4052739537881/39603*322^(7/12) 2971231789273345 a001 225749145909/2206*322^(7/12) 2971231790268760 m001 1/ln(Si(Pi))^2*FeigenbaumDelta^2/GAMMA(11/24) 2971231790273350 a001 6557470319842/64079*322^(7/12) 2971231791135427 r008 a(0)=3,K{-n^6,80+51*n^3-14*n^2-82*n} 2971231792754821 b008 -30+Log[4/3] 2971231792754821 b008 3-ArcCoth[7]/5 2971231794509442 a001 2504730781961/24476*322^(7/12) 2971231812328806 r008 a(0)=3,K{-n^6,68+61*n^3-50*n^2-44*n} 2971231818921841 a007 Real Root Of -31*x^4-933*x^3-380*x^2-791*x-651 2971231820695416 a003 sin(Pi*3/37)/cos(Pi*35/74) 2971231823544048 a001 956722026041/9349*322^(7/12) 2971231832611234 k008 concat of cont frac of 2971231834633992 a007 Real Root Of 649*x^4+313*x^3+890*x^2-389*x-191 2971231835324355 a007 Real Root Of 95*x^4+138*x^3-709*x^2-661*x+511 2971231838068616 r002 3th iterates of z^2 + 2971231838464466 m001 (Kac+PlouffeB)/(Pi+BesselI(1,1)) 2971231843161877 m001 (3^(1/2))^(MadelungNaCl/QuadraticClass) 2971231847669681 m005 6/5*(4*exp(1)+1/5)*5^(1/2) 2971231855764704 r005 Im(z^2+c),c=-17/118+26/63*I,n=27 2971231864088907 r005 Re(z^2+c),c=-6/31+17/27*I,n=36 2971231870444062 a007 Real Root Of 141*x^4+51*x^3-966*x^2+370*x-24 2971231875648702 r005 Im(z^2+c),c=9/50+5/21*I,n=10 2971231876018840 m001 (ln(2)/ln(10)+ln(3))/(Conway+Magata) 2971231884598561 m005 (4*exp(1)+5/6)/(3/4*2^(1/2)-2/3) 2971231896860840 m004 -4-(25*Pi*Sec[Sqrt[5]*Pi])/4+Tan[Sqrt[5]*Pi] 2971231903145841 r005 Im(z^2+c),c=-11/90+25/62*I,n=25 2971231904595145 s002 sum(A120847[n]/(n*2^n+1),n=1..infinity) 2971231904728131 r005 Im(z^2+c),c=-37/114+16/33*I,n=42 2971231913339508 r009 Im(z^3+c),c=-33/118+8/29*I,n=14 2971231914271903 r005 Re(z^2+c),c=37/126+2/17*I,n=32 2971231921163161 k006 concat of cont frac of 2971231931645723 r005 Re(z^2+c),c=-39/106+4/19*I,n=20 2971231938109930 l006 ln(6457/8691) 2971231938281910 m001 (gamma(1)+gamma(2))/(Zeta(1,2)-Tribonacci) 2971231940418996 r005 Re(z^2+c),c=-15/52+27/58*I,n=18 2971231945016763 a007 Real Root Of -285*x^4-546*x^3+593*x^2-727*x+495 2971231945131964 a007 Real Root Of 426*x^4-353*x^3+414*x^2-427*x-176 2971231952381023 r005 Re(z^2+c),c=-23/70+19/50*I,n=35 2971231952407174 m004 2+(125*Pi)/Log[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi]/6 2971231956937275 m005 (1/3*2^(1/2)+1/11)/(8/9*Pi-9/10) 2971231959425170 a008 Real Root of (-6+3*x+5*x^2+4*x^3-2*x^4-x^5) 2971231968485289 r005 Re(z^2+c),c=-23/74+27/62*I,n=35 2971231972984602 m009 (6*Psi(1,1/3)-1/5)/(5*Psi(1,2/3)+5) 2971231976523351 r008 a(0)=3,K{-n^6,64-17*n+3*n^2-16*n^3} 2971231977458105 r005 Re(z^2+c),c=-63/94+5/58*I,n=4 2971231981301023 a007 Real Root Of 92*x^4+183*x^3-599*x^2-936*x+137 2971231989103605 r005 Re(z^2+c),c=-11/50+43/59*I,n=39 2971232000188679 m001 1/Khintchine*GolombDickman^2*ln(Trott)^2 2971232001770861 r009 Im(z^3+c),c=-51/110+7/44*I,n=35 2971232019969133 m001 (-GAMMA(1/12)+2/3)/(-GAMMA(2/3)+5) 2971232022550210 a001 365435296162/3571*322^(7/12) 2971232024324810 m005 (1/2*Pi+9/10)/(9/10*3^(1/2)-8/11) 2971232031484854 m006 (1/6*Pi+3/4)/(4/5*exp(2*Pi)+1/4) 2971232036016300 a007 Real Root Of 273*x^4+568*x^3-489*x^2+525*x-501 2971232063695360 m001 (Ei(1,1)-ln(2)/ln(10))/(-exp(-1/2*Pi)+Otter) 2971232113813450 s002 sum(A278786[n]/(n!^3),n=1..infinity) 2971232113813452 s002 sum(A279826[n]/(n!^3),n=1..infinity) 2971232113828517 s002 sum(A277952[n]/(n!^3),n=1..infinity) 2971232114609602 s002 sum(A279949[n]/(n!^3),n=1..infinity) 2971232114609832 s002 sum(A279472[n]/(n!^3),n=1..infinity) 2971232128287311 r008 a(0)=3,K{-n^6,-30+56*n+22*n^2-12*n^3} 2971232129744947 a007 Real Root Of 136*x^4+233*x^3+848*x^2-4*x-71 2971232133970311 r005 Re(z^2+c),c=-45/106+27/64*I,n=10 2971232134298376 m004 E^(Sqrt[5]*Pi)/4+5*Pi+Cos[Sqrt[5]*Pi]/2 2971232151314121 k006 concat of cont frac of 2971232159914170 a003 cos(Pi*1/57)-sin(Pi*24/97) 2971232160787508 b008 ArcCoth[2^(1/132)] 2971232171962159 m001 1/Zeta(3)/HardHexagonsEntropy/ln(Zeta(9)) 2971232174609290 m001 Pi*2^(1/3)/GAMMA(3/4)-sin(1/12*Pi) 2971232187889467 r005 Im(z^2+c),c=-2/5+13/25*I,n=61 2971232196443016 l006 ln(4454/5995) 2971232202202151 m002 -Pi^9+Pi^4*Coth[Pi]-Tanh[Pi] 2971232209813278 a005 (1/cos(8/217*Pi))^162 2971232229623907 m001 (5^(1/2)+cos(1/5*Pi))/(-Pi^(1/2)+RenyiParking) 2971232229955410 h001 (-6*exp(1/3)+1)/(-exp(3/2)+2) 2971232236229563 r005 Im(z^2+c),c=8/27+5/41*I,n=41 2971232242088877 r009 Re(z^3+c),c=-41/114+17/64*I,n=9 2971232246553288 r009 Re(z^3+c),c=-8/19+17/46*I,n=23 2971232256454136 r005 Im(z^2+c),c=25/114+20/43*I,n=8 2971232275240001 a007 Real Root Of -804*x^4-188*x^3+556*x^2+504*x+102 2971232278756545 r005 Im(z^2+c),c=23/118+9/40*I,n=24 2971232279132451 m005 (5*exp(1)+1/2)/(1/3*gamma-2/3) 2971232285306615 r005 Re(z^2+c),c=-25/66+7/54*I,n=17 2971232288535852 q001 692/2329 2971232290096638 m005 (1/2*Catalan+3/11)/(9/11*Pi-1/9) 2971232297223265 a009 1/6*(11-2^(1/4))*6^(1/3) 2971232303735430 r005 Im(z^2+c),c=-7/22+12/25*I,n=35 2971232307643444 r008 a(0)=3,K{-n^6,-47+16*n^3+28*n^2+38*n} 2971232312156466 m001 (Kolakoski+Rabbit*Trott2nd)/Trott2nd 2971232315209339 a001 39603/89*4181^(39/50) 2971232321329088 r005 Im(z^2+c),c=-51/94+14/41*I,n=5 2971232337935072 r009 Re(z^3+c),c=-33/74+13/31*I,n=24 2971232343514283 m001 (FeigenbaumD-Landau)/(RenyiParking-Trott2nd) 2971232345167030 a007 Real Root Of -224*x^4-403*x^3+616*x^2-214*x+813 2971232366089560 r005 Re(z^2+c),c=-31/90+10/23*I,n=13 2971232368672472 a003 cos(Pi*7/26)*cos(Pi*25/71) 2971232369269873 r005 Im(z^2+c),c=15/82+9/14*I,n=3 2971232380534681 r002 3th iterates of z^2 + 2971232381938766 r008 a(0)=3,K{-n^6,21+19*n^3+53*n^2-58*n} 2971232383976022 m001 exp(Pi)*BesselI(0,1)+PrimesInBinary 2971232384699770 a001 10983760033/281*322^(3/4) 2971232385044567 r008 a(0)=3,K{-n^6,-5-9*n+25*n^2+24*n^3} 2971232393098320 m001 (arctan(1/3)-cos(1))/(-gamma(1)+LaplaceLimit) 2971232399347225 m001 (ArtinRank2*Totient-MertensB3)/Totient 2971232406333741 a003 sin(Pi*8/91)/cos(Pi*13/100) 2971232411315328 m001 (Champernowne+Robbin)/(gamma-sin(1)) 2971232438015311 l006 ln(6905/9294) 2971232441902677 r005 Im(z^2+c),c=-41/64+15/43*I,n=60 2971232459126138 m001 (BesselK(0,1)-GAMMA(17/24))/(-Porter+Salem) 2971232459467945 r008 a(0)=3,K{-n^6,33-42*n+8*n^2+36*n^3} 2971232459487128 r008 a(0)=3,K{-n^6,-9+35*n-34*n^2+43*n^3} 2971232459725461 m001 Shi(1)^Thue*ReciprocalFibonacci^Thue 2971232461525332 l006 ln(188/3669) 2971232470206817 a005 (1/cos(9/212*Pi))^1929 2971232474739373 m001 (Landau+PolyaRandomWalk3D)/(Zeta(3)+Pi^(1/2)) 2971232474881722 m005 (1/4*2^(1/2)+4)/(5/6*exp(1)-4/5) 2971232475725279 r008 a(0)=3,K{-n^6,1+46*n^3-38*n^2+26*n} 2971232481112164 k007 concat of cont frac of 2971232494788668 m001 1/Niven*exp(FeigenbaumAlpha)*PrimesInBinary 2971232499424905 r008 a(0)=3,K{-n^6,27-7*n-34*n^2+49*n^3} 2971232512911142 k002 Champernowne real with 119/2*n^2-273/2*n+106 2971232513450714 m001 (-gamma+GaussAGM)/(Si(Pi)-exp(1)) 2971232513464190 r008 a(0)=3,K{-n^6,43-27*n-32*n^2+51*n^3} 2971232520194635 a007 Real Root Of -738*x^4+906*x^3+427*x^2+351*x-160 2971232520793341 m001 exp(Catalan)*OneNinth^2*GAMMA(23/24) 2971232524808460 r009 Im(z^3+c),c=-23/50+6/35*I,n=16 2971232527626417 a001 18/2971215073*8^(13/17) 2971232528835865 a007 Real Root Of -938*x^4-156*x^3-970*x^2-538*x-71 2971232530439391 r008 a(0)=3,K{-n^6,79+51*n^3-14*n^2-81*n} 2971232532144078 a001 4/13*75025^(30/49) 2971232536102717 k003 Champernowne real with 22/3*n^3-33/2*n^2+31/6*n+6 2971232536226815 m001 (1-RenyiParking)^QuadraticClass 2971232538333004 m001 exp(FeigenbaumD)*FeigenbaumC^2/GAMMA(17/24)^2 2971232542019119 r008 a(0)=3,K{-n^6,69+57*n^3-37*n^2-54*n} 2971232545456437 r002 6th iterates of z^2 + 2971232561652321 k007 concat of cont frac of 2971232565398954 m005 (1/2*2^(1/2)+5/6)/(3/10*exp(1)-6) 2971232569680068 r009 Re(z^3+c),c=-25/58+19/49*I,n=51 2971232569911563 a001 1364/5*2504730781961^(17/21) 2971232572430870 m001 ln(2+3^(1/2))*FeigenbaumMu+Riemann3rdZero 2971232574994529 m002 -1-Pi^9+Pi^4*Coth[Pi] 2971232586291616 r005 Im(z^2+c),c=-15/46+31/64*I,n=57 2971232595219732 m001 ln(GAMMA(5/12))^2/GAMMA(17/24)*sin(Pi/12)^2 2971232604660474 g007 2*Psi(2,6/11)+Psi(2,3/5)-Psi(2,7/10) 2971232608112761 b008 3-Tan[1/7]/5 2971232610584913 m001 (-exp(1/Pi)+Sarnak)/(GAMMA(3/4)-exp(Pi)) 2971232614105739 r009 Im(z^3+c),c=-15/64+16/55*I,n=9 2971232621128447 a001 1/1364*(1/2*5^(1/2)+1/2)^13*76^(9/19) 2971232632887563 s002 sum(A159435[n]/(n*exp(pi*n)+1),n=1..infinity) 2971232632887590 s002 sum(A159435[n]/(n*exp(pi*n)-1),n=1..infinity) 2971232645370527 s002 sum(A040362[n]/(64^n),n=1..infinity) 2971232646794999 r005 Re(z^2+c),c=-19/50+3/22*I,n=5 2971232649415061 m001 (Sierpinski+ZetaP(4))/(AlladiGrinstead-Niven) 2971232654451126 r005 Im(z^2+c),c=-6/19+21/44*I,n=27 2971232658585368 m001 1/Trott*Cahen^2*exp(GAMMA(23/24))^2 2971232662292896 m001 ln(2)+Conway*MadelungNaCl 2971232670799128 m005 (1/2*gamma-6/7)/(3*gamma+2/11) 2971232680806877 a007 Real Root Of 25*x^4+718*x^3-733*x^2+125*x+87 2971232681530099 m001 (Zeta(1,2)+GAMMA(5/6))/(LaplaceLimit-Mills) 2971232685811196 r005 Im(z^2+c),c=-37/70+1/15*I,n=4 2971232687022174 r005 Im(z^2+c),c=-131/118+8/35*I,n=18 2971232688359321 a007 Real Root Of -392*x^4-854*x^3+952*x^2+105*x+58 2971232692427563 a007 Real Root Of 116*x^4+590*x^3+963*x^2+792*x+287 2971232713121822 m001 FransenRobinson/(RenyiParking^DuboisRaymond) 2971232739701302 m001 ln(Pi)/(FibonacciFactorial-sin(1)) 2971232746989584 a003 -1+cos(7/15*Pi)-2*cos(1/10*Pi)-cos(4/9*Pi) 2971232747535858 a007 Real Root Of -329*x^4-705*x^3+545*x^2-924*x-408 2971232771175809 m006 (3/5/Pi-2)/(3/5*Pi^2+1/6) 2971232776034395 r002 6th iterates of z^2 + 2971232778231930 a007 Real Root Of 971*x^4+82*x^3+207*x^2-866*x-281 2971232790731768 a007 Real Root Of 275*x^4+501*x^3-811*x^2+259*x-362 2971232800605573 m001 ArtinRank2-cos(1)^ZetaQ(3) 2971232808879322 a007 Real Root Of -575*x^4-503*x^3+773*x^2+927*x-326 2971232813698803 h001 (1/6*exp(1)+1/4)/(7/11*exp(1)+7/11) 2971232813801345 b008 Zeta[3,3/20] 2971232823894822 v003 sum((1/2*n^3+29/2*n-6)/n^(n-1),n=1..infinity) 2971232826283989 a008 Real Root of x^4-2*x^3-12*x^2-16*x-72 2971232844490062 r008 a(0)=3,K{-n^6,50-10*n^3-22*n^2+16*n} 2971232850365875 m005 (1/2*exp(1)-6/7)/(3/4*Pi-2/3) 2971232850801109 m005 (1/2*3^(1/2)+11/12)/(2/9*2^(1/2)+2/7) 2971232861263258 r005 Re(z^2+c),c=-5/14+15/56*I,n=21 2971232863945139 a007 Real Root Of -109*x^4-77*x^3+425*x^2-854*x+186 2971232868202485 m001 (-Kolakoski+ZetaP(2))/(2^(1/3)-ln(Pi)) 2971232872451217 m005 (1/3*Catalan+1/4)/(5/7*Pi-3/8) 2971232876712328 q001 2169/730 2971232877004688 l006 ln(2451/3299) 2971232877346436 r005 Re(z^2+c),c=-43/122+11/38*I,n=24 2971232884717375 r009 Im(z^3+c),c=-17/82+17/57*I,n=4 2971232897807684 a007 Real Root Of -581*x^4+611*x^3-796*x^2+253*x+166 2971232902241758 r002 33th iterates of z^2 + 2971232906694053 a007 Real Root Of -285*x^4+673*x^3+656*x^2+120*x-109 2971232908946946 h001 (-8*exp(1/3)-8)/(-9*exp(2)+2) 2971232912865296 r005 Re(z^2+c),c=17/44+11/32*I,n=44 2971232915453777 r005 Im(z^2+c),c=-79/106+14/59*I,n=8 2971232920958228 m001 GAMMA(2/3)/Ei(1)/BesselJZeros(0,1) 2971232922363567 m001 (Ei(1)+Sarnak)/ln(2^(1/2)+1) 2971232923593589 r005 Re(z^2+c),c=1/52+13/55*I,n=10 2971232934049020 m001 (gamma(1)-Grothendieck)/GolombDickman 2971232936709368 r001 22i'th iterates of 2*x^2-1 of 2971232940807167 r009 Im(z^3+c),c=-23/56+13/63*I,n=23 2971232946459016 a007 Real Root Of -437*x^4+107*x^3-682*x^2+922*x+28 2971232954142656 r002 7th iterates of z^2 + 2971232957500606 a001 365435296162/199*76^(1/9) 2971232963852105 m001 (ArtinRank2+Cahen)/(FransenRobinson+Niven) 2971232976285780 m005 (1/2*Catalan-3)/(2/9*gamma+8/11) 2971232987501551 r005 Re(z^2+c),c=-27/74+12/53*I,n=15 2971232999409736 r008 a(0)=3,K{-n^6,-38+6*n+60*n^2+7*n^3} 2971232999810501 s002 sum(A206206[n]/(n^2*10^n-1),n=1..infinity) 2971233001403484 m005 (1/3*Catalan-1/3)/(3/7*exp(1)-2/9) 2971233003958685 a007 Real Root Of -372*x^4-839*x^3+606*x^2-511*x+117 2971233011611046 a001 1368706081/7*12586269025^(10/11) 2971233011611046 a001 505019158607/21*63245986^(10/11) 2971233011611049 a001 4769326/3*2504730781961^(10/11) 2971233011744500 r008 a(0)=3,K{-n^6,60-11*n^3-14*n^2-n} 2971233016194741 a007 Real Root Of -54*x^4+125*x^3+598*x^2-932*x-561 2971233024741538 m001 GAMMA(2/3)/Gompertz/LandauRamanujan 2971233026442735 a001 521*(1/2*5^(1/2)+1/2)^8*3^(3/17) 2971233051841582 r009 Im(z^3+c),c=-35/74+7/47*I,n=55 2971233054629377 r009 Re(z^3+c),c=-29/70+23/64*I,n=40 2971233055896600 m001 (Chi(1)+FeigenbaumD)/(Salem+ZetaQ(3)) 2971233062763781 l006 ln(2719/2801) 2971233062763781 p004 log(2801/2719) 2971233071039223 r005 Im(z^2+c),c=-29/26+13/50*I,n=20 2971233071885587 h001 (5/11*exp(1)+1/10)/(4/7*exp(2)+3/11) 2971233074304759 r002 9th iterates of z^2 + 2971233080188409 r008 a(0)=3,K{-n^6,4-43*n+60*n^2+14*n^3} 2971233081618373 m001 exp(Pi)^(FeigenbaumDelta*Thue) 2971233082172349 r002 55i'th iterates of 2*x/(1-x^2) of 2971233098617073 r005 Im(z^2+c),c=-103/90+14/51*I,n=40 2971233101817457 r008 a(0)=3,K{-n^6,-36+25*n^3+7*n^2+39*n} 2971233112833933 r008 a(0)=3,K{-n^6,2+21*n^3+38*n^2-26*n} 2971233117911917 m002 Pi^(-6)+Pi^2/5+Tanh[Pi] 2971233123600585 r008 a(0)=3,K{-n^6,37+15*n-43*n^2+14*n^3} 2971233131190537 l006 ln(407/7943) 2971233131238213 g001 Re(GAMMA(5/6+I*23/5)) 2971233155101360 m001 (Rabbit+ZetaP(3))/(exp(1)+sin(1/12*Pi)) 2971233163859623 r005 Re(z^2+c),c=-7/24+17/45*I,n=7 2971233168593046 r005 Re(z^2+c),c=-8/21+5/47*I,n=27 2971233170169156 r005 Im(z^2+c),c=-9/70+16/39*I,n=5 2971233170953637 r005 Re(z^2+c),c=-13/38+9/43*I,n=4 2971233171120320 m001 1/Zeta(1,2)/exp(OneNinth)^2*sin(Pi/5)^2 2971233179331816 a007 Real Root Of 116*x^4+500*x^3+742*x^2+871*x+112 2971233183290786 a001 365435296162/521*322^(1/4) 2971233188627680 m001 (Landau-MadelungNaCl)/(Zeta(5)-3^(1/3)) 2971233192826996 r009 Im(z^3+c),c=-53/94+47/64*I,n=3 2971233202805331 r009 Re(z^3+c),c=-25/58+19/49*I,n=57 2971233213436227 r008 a(0)=3,K{-n^6,-12+49*n^3-53*n^2+51*n} 2971233215839726 m002 Pi/ProductLog[Pi]+(Pi*Sech[Pi])/6 2971233217597206 r009 Im(z^3+c),c=-41/74+17/61*I,n=37 2971233219379417 s002 sum(A145067[n]/((2^n+1)/n),n=1..infinity) 2971233220991884 m001 (-GAMMA(7/12)+GaussAGM)/(exp(Pi)+Ei(1,1)) 2971233230347357 r005 Im(z^2+c),c=-15/94+13/31*I,n=26 2971233233634639 r002 5th iterates of z^2 + 2971233240889705 r008 a(0)=3,K{-n^6,14-7*n^3-4*n^2+35*n} 2971233245901368 m001 (Catalan-Ei(1))/(MertensB3+ReciprocalLucas) 2971233246468863 a007 Real Root Of -324*x^4-945*x^3+243*x^2+747*x+538 2971233251259062 r008 a(0)=3,K{-n^6,14+57*n^3-64*n^2+28*n} 2971233252384847 a007 Real Root Of 818*x^4+698*x^3+513*x^2-332*x-132 2971233253426283 m001 (2^(1/3)+Catalan)/(-cos(1/5*Pi)+ZetaP(4)) 2971233263443319 m001 ln(Ei(1))^2/Porter/Zeta(1,2) 2971233280161989 m008 (2*Pi+5/6)/(1/4*Pi^6-5/6) 2971233292221193 r005 Re(z^2+c),c=-65/126+28/55*I,n=8 2971233307034887 r005 Im(z^2+c),c=3/25+17/27*I,n=45 2971233309145818 r005 Re(z^2+c),c=-15/74+58/63*I,n=4 2971233322887860 r005 Im(z^2+c),c=29/106+5/33*I,n=17 2971233328926894 m002 3*Pi^2+(6*Sech[Pi])/5 2971233344130657 r008 a(0)=3,K{-n^6,12-39*n^3+71*n^2-11*n} 2971233348198524 r005 Im(z^2+c),c=15/118+7/26*I,n=6 2971233380377509 a007 Real Root Of 297*x^4+824*x^3-151*x^2+129*x+183 2971233380926866 r005 Im(z^2+c),c=-29/78+29/57*I,n=39 2971233386559458 a001 139583862445/1364*322^(7/12) 2971233386728971 r005 Im(z^2+c),c=4/17+27/49*I,n=20 2971233388788678 m001 (Riemann2ndZero+Thue)/(Chi(1)-LandauRamanujan) 2971233402232960 r005 Im(z^2+c),c=-13/38+25/51*I,n=54 2971233422833535 r009 Re(z^3+c),c=-51/118+19/49*I,n=26 2971233427630249 r002 30th iterates of z^2 + 2971233432177792 a007 Real Root Of -221*x^4+300*x^3+940*x^2+915*x-361 2971233434961019 m004 2+Cosh[Sqrt[5]*Pi]/6+(125*Pi)/Log[Sqrt[5]*Pi] 2971233436534035 r005 Re(z^2+c),c=5/29+21/59*I,n=24 2971233442622212 m001 (exp(Pi)+exp(1))/(-Shi(1)+Tetranacci) 2971233443588145 l006 ln(5350/7201) 2971233447758643 m001 Pi*(Psi(1,1/3)-Zeta(3))+Pi^(1/2) 2971233455521486 r008 a(0)=3,K{-n^6,20+45*n-32*n^2+4*n^3} 2971233456305606 m001 (OneNinth-Robbin)/(Gompertz-HardyLittlewoodC5) 2971233459725932 a007 Real Root Of 263*x^4-297*x^3-769*x^2-358*x+180 2971233483006011 a007 Real Root Of 344*x^4+614*x^3-958*x^2+576*x-536 2971233496985665 a007 Real Root Of 252*x^4+864*x^3+55*x^2-573*x+835 2971233500672946 m001 Zeta(3)^exp(-1/2*Pi)+GAMMA(11/24) 2971233510595006 m001 Backhouse*Otter-MertensB3 2971233515917143 k002 Champernowne real with 60*n^2-138*n+107 2971233519141028 m001 (FeigenbaumB-ZetaP(4))/(ln(3)+exp(1/exp(1))) 2971233536266707 r009 Im(z^3+c),c=-9/22+11/53*I,n=23 2971233540103717 k003 Champernowne real with 15/2*n^3-35/2*n^2+7*n+5 2971233544681056 m005 (1/2*Pi+3/10)/(11/12*2^(1/2)+5) 2971233544945811 p001 sum((-1)^n/(565*n+92)/n/(512^n),n=1..infinity) 2971233549735834 m006 (1/5*Pi+1/5)/(2/3/Pi-3) 2971233555748304 m001 (BesselK(0,1)+sin(1/5*Pi))/(Khinchin+Rabbit) 2971233564261158 r005 Re(z^2+c),c=-35/106+23/61*I,n=21 2971233566466307 r002 6th iterates of z^2 + 2971233567632482 a001 139583862445/2207*322^(2/3) 2971233570110892 p004 log(33587/1721) 2971233584267276 a001 5778/233*2178309^(17/35) 2971233598148705 m005 (1/2*Pi-7/12)/(Pi+2/11) 2971233604404197 m001 Pi*Catalan^HardyLittlewoodC3 2971233615096964 h002 exp(1/10*(21+2^(1/4))*10^(2/3)) 2971233632961211 k007 concat of cont frac of 2971233639687066 h003 exp(Pi*(19^(1/2)-4*14^(1/2))) 2971233657653829 r005 Re(z^2+c),c=-23/62+9/47*I,n=19 2971233671357652 a001 233/11*7^(4/23) 2971233674654338 r005 Re(z^2+c),c=-17/86+15/22*I,n=63 2971233677338831 m001 (-PlouffeB+Porter)/(Shi(1)+BesselI(0,2)) 2971233685957352 s001 sum(exp(-4*Pi/5)^n*A178460[n],n=1..infinity) 2971233689643562 a007 Real Root Of -407*x^4-846*x^3+996*x^2-504*x-761 2971233691260347 r005 Re(z^2+c),c=27/118+13/25*I,n=31 2971233706062592 l006 ln(219/4274) 2971233707687937 r009 Im(z^3+c),c=-8/17+9/58*I,n=21 2971233720047605 r005 Im(z^2+c),c=-13/106+23/57*I,n=20 2971233728824052 r005 Re(z^2+c),c=-13/34+7/58*I,n=9 2971233729259865 m001 ln(Conway)/Champernowne*Salem^2 2971233749342143 a003 cos(Pi*24/119)-cos(Pi*34/103) 2971233753104246 r005 Im(z^2+c),c=-9/28+14/29*I,n=52 2971233756323515 m006 (3/5*Pi^2-2/5)/(Pi-5) 2971233756323515 m008 (3/5*Pi^2-2/5)/(Pi-5) 2971233758046313 r005 Re(z^2+c),c=-11/34+23/58*I,n=43 2971233759320277 r005 Im(z^2+c),c=5/62+19/31*I,n=31 2971233759523973 r008 a(0)=3,K{-n^6,-11+7*n^3+74*n^2-35*n} 2971233759730414 m001 FeigenbaumD*(ln(3)+ZetaQ(3)) 2971233761568767 r008 a(0)=3,K{-n^6,-57+50*n+27*n^2+15*n^3} 2971233768145464 r005 Im(z^2+c),c=-19/22+21/104*I,n=32 2971233776466273 a007 Real Root Of -349*x^4+488*x^3+199*x^2+156*x-74 2971233778080153 m001 (Paris+ZetaQ(4))/(DuboisRaymond-FeigenbaumMu) 2971233786598004 a007 Real Root Of -206*x^4-642*x^3+277*x^2+751*x-999 2971233787171966 r009 Im(z^3+c),c=-23/56+13/63*I,n=18 2971233793262568 r008 a(0)=3,K{-n^6,-5-34*n+62*n^2+12*n^3} 2971233820464566 m001 1/exp(Zeta(1,2))^2*MinimumGamma^2*Zeta(1/2)^2 2971233820722009 r008 a(0)=3,K{-n^6,-51+25*n^3+61*n} 2971233843005181 s001 sum(exp(-Pi/2)^(n-1)*A048398[n],n=1..infinity) 2971233848946078 r008 a(0)=3,K{-n^6,21+19*n^3+54*n^2-59*n} 2971233851961628 r008 a(0)=3,K{-n^6,-5-10*n+26*n^2+24*n^3} 2971233852458634 a007 Real Root Of 173*x^4+326*x^3-712*x^2-775*x-949 2971233852795432 m001 (5^(1/2)-cos(1))/(-Grothendieck+Tribonacci) 2971233857293570 m002 -Pi^3/4+Pi^5-Log[Pi] 2971233861707072 m001 BesselI(1,1)^(3^(1/3))/(ZetaQ(2)^(3^(1/3))) 2971233879296848 h001 (9/11*exp(2)+4/11)/(7/12*exp(1)+4/7) 2971233911075187 m001 Si(Pi)^Magata/(Si(Pi)^GAMMA(13/24)) 2971233912449387 r008 a(0)=3,K{-n^6,-29+64*n-43*n^2+43*n^3} 2971233913701741 q001 785/2642 2971233917230252 r008 a(0)=3,K{-n^6,33-47*n+15*n^2+34*n^3} 2971233922614010 l006 ln(2899/3902) 2971233923991866 r005 Im(z^2+c),c=-17/14+3/77*I,n=51 2971233928787801 m001 (exp(1/Pi)-Backhouse)/(FeigenbaumMu-GaussAGM) 2971233929110543 m001 (Zeta(5)-Artin)/(LandauRamanujan+Porter) 2971233935735096 m005 (1/2*3^(1/2)-2/7)/(5/8*5^(1/2)+5/9) 2971233939449491 r009 Re(z^3+c),c=-25/58+19/49*I,n=53 2971233940119813 r008 a(0)=3,K{-n^6,-23+50*n^3-61*n^2+69*n} 2971233941052676 a007 Real Root Of -57*x^4+32*x^3+495*x^2-5*x+897 2971233941748862 r005 Im(z^2+c),c=-10/13+5/47*I,n=19 2971233946119045 m005 (1/2*2^(1/2)-5/8)/(5/6*5^(1/2)+9/10) 2971233951999527 m005 (1/2*2^(1/2)-1/7)/(5/7*2^(1/2)+8/9) 2971233957097395 b008 EulerGamma*ArcCsch[1/86] 2971233963179149 r008 a(0)=3,K{-n^6,27-8*n-33*n^2+49*n^3} 2971233978748115 r008 a(0)=3,K{-n^6,29+54*n^3-47*n^2-n} 2971233982495942 r008 a(0)=3,K{-n^6,19+57*n^3-61*n^2+20*n} 2971233984391744 r005 Re(z^2+c),c=-23/82+16/31*I,n=64 2971233987017998 m001 ln(Ei(1))^2/Catalan/GAMMA(3/4)^2 2971233992930095 r002 36th iterates of z^2 + 2971233993386117 r008 a(0)=3,K{-n^6,79+51*n^3-13*n^2-82*n} 2971233995582439 r005 Im(z^2+c),c=-13/94+16/39*I,n=21 2971234018753631 a007 Real Root Of -219*x^4-695*x^3-216*x^2-456*x-610 2971234023254759 a007 Real Root Of -434*x^4-940*x^3+814*x^2-804*x-407 2971234025192663 r009 Re(z^3+c),c=-51/86+33/52*I,n=6 2971234029001588 m001 gamma*MinimumGamma+Pi*csc(5/12*Pi)/GAMMA(7/12) 2971234030943552 m001 (-TwinPrimes+2/3)/(-exp(gamma)+2) 2971234033973702 m005 (1/2*Zeta(3)+3)/(3/7*Zeta(3)-7/11) 2971234044650005 a007 Real Root Of -437*x^4-955*x^3+668*x^2-864*x+544 2971234057247523 m005 (1/3*5^(1/2)-1/2)/(3/8*Zeta(3)+3/8) 2971234074021949 r005 Re(z^2+c),c=-8/27+8/17*I,n=13 2971234076201707 a001 4/1597*610^(35/47) 2971234076554553 a007 Real Root Of 574*x^4-959*x^3+95*x^2-763*x+239 2971234082981279 m001 gamma(1)*ReciprocalLucas+BesselJ(1,1) 2971234085178677 m001 (Landau+Stephens)/(Tetranacci+Tribonacci) 2971234087077521 m001 1/2*(2^(1/3)*Porter+Ei(1))*2^(2/3) 2971234087526178 a005 (1/cos(41/224*Pi))^282 2971234088637629 a001 182717648081/2889*322^(2/3) 2971234092858235 r005 Re(z^2+c),c=-15/26+34/89*I,n=12 2971234095133457 a001 17711/123*521^(15/31) 2971234103324181 m005 (-23/60+5/12*5^(1/2))/(2*gamma-3) 2971234104212138 a001 4052739537881/2207*123^(1/10) 2971234111124117 k009 concat of cont frac of 2971234113219794 g004 abs(GAMMA(-251/60+I*(-121/30))) 2971234122961578 a007 Real Root Of -310*x^4-588*x^3+943*x^2-244*x-313 2971234127858823 m001 1/LambertW(1)/ln(GAMMA(3/4))/cos(1)^2 2971234132908122 r005 Re(z^2+c),c=-29/86+7/20*I,n=40 2971234155344235 m001 (Otter-ReciprocalFibonacci)/(ln(3)+MertensB1) 2971234164384431 m001 (arctan(1/3)-Niven)/(PisotVijayaraghavan-Thue) 2971234164464517 p003 LerchPhi(1/25,5,227/178) 2971234164651271 a001 956722026041/15127*322^(2/3) 2971234166921825 a001 4870847/5*102334155^(17/21) 2971234175741512 a001 2504730781961/39603*322^(2/3) 2971234177359556 a001 3278735159921/51841*322^(2/3) 2971234177741525 a001 10610209857723/167761*322^(2/3) 2971234178359563 a001 4052739537881/64079*322^(2/3) 2971234181319121 k007 concat of cont frac of 2971234182595658 a001 387002188980/6119*322^(2/3) 2971234185023470 r009 Im(z^3+c),c=-31/98+6/23*I,n=16 2971234188961071 s001 sum(exp(-2*Pi)^n*A237673[n],n=1..infinity) 2971234190138645 a007 Real Root Of -3*x^4-891*x^3+113*x^2+885*x-830 2971234193412888 r005 Im(z^2+c),c=-15/34+2/41*I,n=15 2971234194440924 a001 17393796001/5*4181^(17/21) 2971234197499326 r009 Re(z^3+c),c=-41/94+7/16*I,n=14 2971234204938499 l006 ln(469/9153) 2971234206736663 r005 Re(z^2+c),c=-27/82+19/59*I,n=6 2971234207732458 a001 161/5473*377^(23/59) 2971234211630287 a001 591286729879/9349*322^(2/3) 2971234223130934 m001 (Pi+exp(1))/(Zeta(1,2)-MertensB2) 2971234244402956 a001 7/144*433494437^(11/14) 2971234264371302 m001 (2^(1/2)+BesselK(0,1))/(-Zeta(1,-1)+ZetaP(2)) 2971234279628519 a007 Real Root Of -279*x^4-475*x^3+786*x^2-625*x+489 2971234319520346 p004 log(37217/1907) 2971234332922729 l006 ln(6246/8407) 2971234336633025 a001 167761/8*55^(2/23) 2971234337402512 a007 Real Root Of -310*x^4-234*x^3-737*x^2+258*x+138 2971234339683049 m001 (-Cahen+ReciprocalFibonacci)/(cos(1)+Artin) 2971234347964978 s002 sum(A147030[n]/(n^3*2^n+1),n=1..infinity) 2971234358129144 m004 5*Pi+Cos[Sqrt[5]*Pi]/2+Cosh[Sqrt[5]*Pi]/2 2971234358927083 p001 sum(1/(135*n+1)/n/(25^n),n=0..infinity) 2971234369739923 r008 a(0)=3,K{-n^6,-48-4*n^3+89*n^2-2*n} 2971234371587334 m001 (Zeta(3)-gamma)/(-GaussAGM+GolombDickman) 2971234385145546 a003 cos(Pi*3/77)*sin(Pi*3/31) 2971234385229905 r005 Re(z^2+c),c=-39/98+1/40*I,n=6 2971234386259224 r005 Re(z^2+c),c=-17/58+21/32*I,n=45 2971234392171185 m005 (3/5*Pi-5/6)/(19/6+1/6*5^(1/2)) 2971234392327553 a007 Real Root Of -222*x^4-342*x^3+927*x^2-18*x+94 2971234397656605 a003 cos(Pi*1/57)/cos(Pi*43/110) 2971234410636609 a001 225851433717/3571*322^(2/3) 2971234424113019 k009 concat of cont frac of 2971234454707895 a007 Real Root Of 456*x^4-431*x^3-928*x^2-166*x+139 2971234456816816 r009 Re(z^3+c),c=-1/18+35/51*I,n=28 2971234461082381 r008 a(0)=3,K{-n^6,-24+5*n^3+74*n^2-20*n} 2971234464065865 a007 Real Root Of -310*x^4-925*x^3-264*x^2-664*x+255 2971234467790377 r005 Re(z^2+c),c=1/94+25/38*I,n=20 2971234468534209 a001 1/3*196418^(7/39) 2971234474352755 r005 Re(z^2+c),c=-11/31+17/61*I,n=25 2971234475321730 a007 Real Root Of 16*x^4+27*x^3+279*x^2+770*x-714 2971234487202097 r008 a(0)=3,K{-n^6,-58+51*n+27*n^2+15*n^3} 2971234501179109 a007 Real Root Of 374*x^4+973*x^3-425*x^2-215*x-513 2971234502267514 r008 a(0)=3,K{-n^6,-24+12*n^3+53*n^2-6*n} 2971234507448844 a007 Real Root Of 241*x^4+781*x^3+111*x^2-546*x-899 2971234518493368 r008 a(0)=3,K{-n^6,-6-33*n+62*n^2+12*n^3} 2971234518923144 k002 Champernowne real with 121/2*n^2-279/2*n+108 2971234521912271 a007 Real Root Of 898*x^4-488*x^3+109*x^2-97*x+25 2971234527581763 m008 (3/4*Pi^6+2)/(1/4*Pi^6+3) 2971234544104717 k003 Champernowne real with 23/3*n^3-37/2*n^2+53/6*n+4 2971234550429175 r008 a(0)=3,K{-n^6,-40+42*n+9*n^2+24*n^3} 2971234559656688 r005 Re(z^2+c),c=-45/122+8/39*I,n=25 2971234562191876 a007 Real Root Of -329*x^4-898*x^3-117*x^2-897*x+454 2971234562686827 m001 BesselK(1,1)/(LandauRamanujan-Riemann2ndZero) 2971234563607525 m001 Pi*Chi(1)*GAMMA(5/6) 2971234568996194 r005 Re(z^2+c),c=21/64+13/33*I,n=43 2971234573705174 m005 (1/2*5^(1/2)-7/12)/(65/56+2/7*5^(1/2)) 2971234582744238 b008 3-ArcCsc[5]/7 2971234588663546 b008 5/2+BesselJ[2,E] 2971234588762479 h001 (1/6*exp(2)+10/11)/(8/9*exp(2)+7/11) 2971234599231140 m001 (ln(2)+arctan(1/2))/(Zeta(1,2)-Otter) 2971234605303468 m005 (1/3*Zeta(3)-3/7)/(3/8*5^(1/2)+1/10) 2971234611360364 m001 (-Paris+ZetaP(4))/(1-MertensB1) 2971234619213545 p003 LerchPhi(1/100,4,429/178) 2971234625217379 a001 3536736619241/1926*123^(1/10) 2971234636234856 r008 a(0)=3,K{-n^6,-30+65*n-43*n^2+43*n^3} 2971234641953590 l006 ln(250/4879) 2971234648708219 r009 Re(z^3+c),c=-33/82+13/38*I,n=15 2971234664149680 m004 -27-2*Sec[Sqrt[5]*Pi] 2971234666452707 a007 Real Root Of 504*x^4+78*x^3+113*x^2-340*x+10 2971234666790452 r008 a(0)=3,K{-n^6,48+39*n^3+8*n^2-60*n} 2971234666812212 r008 a(0)=3,K{-n^6,-12+49*n^3-52*n^2+50*n} 2971234668782171 r009 Re(z^3+c),c=-41/94+17/43*I,n=32 2971234669950473 a001 646*11^(7/11) 2971234681345053 m009 (3/4*Psi(1,1/3)-2)/(Psi(1,3/4)-2/3) 2971234686380793 r008 a(0)=3,K{-n^6,32-18*n-27*n^2+48*n^3} 2971234686790511 r008 a(0)=3,K{-n^6,55-48*n^3+95*n^2-68*n} 2971234688311116 l006 ln(3347/4505) 2971234694194333 r008 a(0)=3,K{-n^6,42-31*n-25*n^2+49*n^3} 2971234697345044 r005 Re(z^2+c),c=17/50+17/44*I,n=43 2971234697705559 a007 Real Root Of -21*x^4-639*x^3-479*x^2-959*x-151 2971234706365741 m001 ln(2^(1/2)+1)/ReciprocalLucas*Robbin 2971234707322081 m001 1/GAMMA(13/24)/Artin^2/ln(GAMMA(5/6))^2 2971234709348649 m005 (1/2*gamma+4/11)/(4/7*Pi+2/5) 2971234713032427 r005 Re(z^2+c),c=-45/82+22/37*I,n=25 2971234719248861 m001 (ln(2)*Lehmer+exp(1/2))/ln(2) 2971234727646828 m001 (Pi+sin(1/12*Pi))/(FellerTornier-Porter) 2971234729829228 m005 (1/2*Catalan+4/9)/(11/12*exp(1)+6/11) 2971234734700632 a009 1/5*(17+20*5^(2/3))^(1/2)*5^(1/3) 2971234736961036 r005 Re(z^2+c),c=-63/122+29/62*I,n=3 2971234740021244 r009 Re(z^3+c),c=-4/9+16/39*I,n=57 2971234740750121 m001 1/Catalan^2*ln(DuboisRaymond)^2/Zeta(5)^2 2971234743872276 r009 Im(z^3+c),c=-3/25+51/61*I,n=8 2971234751452796 m001 (gamma+ArtinRank2)/(Niven+Sierpinski) 2971234757632451 r005 Im(z^2+c),c=-9/14+73/164*I,n=25 2971234759153703 h005 exp(sin(Pi*2/59)+sin(Pi*26/59)) 2971234761221956 k007 concat of cont frac of 2971234772786460 a001 20365011074/843*322^(5/6) 2971234775636782 m001 (ErdosBorwein-GaussAGM)/(MertensB1-ZetaQ(4)) 2971234775826888 p004 log(29879/1531) 2971234781170517 r002 13th iterates of z^2 + 2971234787617441 a001 7778742049/76*11^(4/9) 2971234789322875 m001 (Artin+TravellingSalesman)/(Catalan+ln(gamma)) 2971234796179083 m005 (1/2*exp(1)-4/11)/(5/6*Zeta(3)-2/3) 2971234811593592 r005 Re(z^2+c),c=8/27+3/25*I,n=53 2971234819634287 p001 sum((-1)^n/(566*n+91)/n/(512^n),n=1..infinity) 2971234825995219 r005 Re(z^2+c),c=-39/31+5/64*I,n=6 2971234834270680 m001 (Catalan+exp(1/exp(1)))/(Bloch+FellerTornier) 2971234834821182 a007 Real Root Of -418*x^4-914*x^3+717*x^2-931*x-493 2971234835988718 r005 Re(z^2+c),c=-145/118+4/39*I,n=60 2971234842894237 a007 Real Root Of -386*x^4-860*x^3+792*x^2-85*x+281 2971234843456341 m001 (-Bloch+PlouffeB)/(ln(2)/ln(10)+cos(1/12*Pi)) 2971234843649736 a001 3/53316291173*365435296162^(1/16) 2971234843649736 a001 1/10983760033*165580141^(1/16) 2971234843656334 a001 3/20365011074*75025^(1/16) 2971234844718584 m001 (OneNinth-ThueMorse)/GAMMA(23/24) 2971234845203429 a007 Real Root Of 793*x^4-30*x^3-529*x^2-753*x-184 2971234858668826 r009 Im(z^3+c),c=-31/118+2/7*I,n=4 2971234864851492 a007 Real Root Of -406*x^4+208*x^3-278*x^2-152*x-12 2971234876259395 m005 (1/3*2^(1/2)-1/12)/(1/3*exp(1)+2/5) 2971234878866085 a001 76/28657*2178309^(23/36) 2971234883486219 a007 Real Root Of 705*x^4-805*x^3-776*x^2-427*x+211 2971234902669880 h002 exp(12^(1/4)*(14^(1/2)-9^(2/3))) 2971234904621710 a007 Real Root Of -268*x^4-632*x^3+95*x^2-911*x+764 2971234907472011 r002 33th iterates of z^2 + 2971234924021875 r002 42th iterates of z^2 + 2971234927662985 m005 (1/2*Zeta(3)-9/11)/(1/7*Catalan+3/5) 2971234930321744 a007 Real Root Of -205*x^4+287*x^3-678*x^2+515*x+222 2971234942226845 r005 Im(z^2+c),c=-13/18+29/56*I,n=4 2971234944532373 a001 199/18*(1/2*5^(1/2)+1/2)^32*18^(13/22) 2971234947216417 a001 6557470319842/3571*123^(1/10) 2971234956130110 a007 Real Root Of -358*x^4-820*x^3+976*x^2+839*x+269 2971234963453752 r005 Im(z^2+c),c=-4/31+13/32*I,n=24 2971234999114224 l006 ln(7142/9613) 2971235004383654 a001 1730726404001/305*1836311903^(16/17) 2971235004383654 a001 1568397607/610*6557470319842^(16/17) 2971235012657379 r005 Re(z^2+c),c=-85/64+1/59*I,n=40 2971235039748214 r005 Im(z^2+c),c=-19/30+26/99*I,n=7 2971235051760577 m001 (RenyiParking-ZetaP(3))/(Backhouse+Bloch) 2971235057532598 a007 Real Root Of -310*x^4-923*x^3-254*x^2-449*x+858 2971235063130556 m005 (1/2*Catalan+10/11)/(1/2*Zeta(3)+4) 2971235070037337 r005 Im(z^2+c),c=25/86+7/54*I,n=57 2971235078463439 a001 29/832040*1597^(43/47) 2971235083285769 a007 Real Root Of -314*x^4-974*x^3-22*x^2+449*x+452 2971235083770153 a007 Real Root Of 242*x^4+740*x^3+205*x^2+488*x+190 2971235092861271 m005 (1/2*exp(1)+5)/(5/6*exp(1)-1/8) 2971235096970123 m005 (1/2*Zeta(3)-3/5)/(1/11*5^(1/2)+1/7) 2971235097599380 r002 60th iterates of z^2 + 2971235101480120 m006 (5*exp(2*Pi)+5/6)/(3/5/Pi-1/5) 2971235104870240 m001 (cos(1/12*Pi)-Otter)/(GAMMA(3/4)-Ei(1)) 2971235113618031 p001 sum(1/(497*n+461)/(2^n),n=0..infinity) 2971235126072125 r005 Re(z^2+c),c=-47/122+39/50*I,n=3 2971235126112439 r005 Re(z^2+c),c=-1/16+35/54*I,n=20 2971235139669350 m001 Magata*(Psi(1,1/3)-exp(1/Pi)) 2971235140022144 r009 Re(z^3+c),c=-25/86+7/62*I,n=9 2971235140132261 m001 FeigenbaumAlpha/Conway*exp(GAMMA(1/24)) 2971235154520197 r005 Re(z^2+c),c=-29/82+11/58*I,n=4 2971235173266892 r005 Im(z^2+c),c=-61/78+1/8*I,n=63 2971235173488756 r005 Re(z^2+c),c=-13/58+13/25*I,n=8 2971235192056518 m001 OneNinth^2/Riemann2ndZero*exp(Zeta(1/2))^2 2971235194585448 q001 1756/591 2971235201057869 a007 Real Root Of -127*x^4-203*x^3+850*x^2+704*x-839 2971235204806550 r005 Im(z^2+c),c=-3/14+19/43*I,n=28 2971235205737223 m001 (MertensB3+ZetaQ(3))/(FeigenbaumC+FeigenbaumD) 2971235205850355 m001 (2^(1/3))^2*ln(ArtinRank2)^2*(3^(1/3)) 2971235213234746 m001 1/exp((2^(1/3)))^2/OneNinth^2/GAMMA(7/12)^2 2971235214046793 a003 cos(Pi*1/79)-cos(Pi*28/111) 2971235214891664 m005 (1/3*gamma+1/11)/(5/9*Zeta(3)+2/7) 2971235225591630 m005 (13/6+5/2*5^(1/2))/(2/3*Catalan+2) 2971235230917537 s001 sum(exp(-Pi/3)^(n-1)*A084422[n],n=1..infinity) 2971235234589586 r002 35th iterates of z^2 + 2971235245731750 a007 Real Root Of -247*x^4-973*x^3-576*x^2+527*x+379 2971235245825728 a009 3^(1/2)*(15+10^(1/3)) 2971235250305892 r008 a(0)=3,K{-n^6,-11+15*n^3+51*n^2-20*n} 2971235255018274 m001 (Ei(1)+Zeta(1/2))/(Champernowne+Totient) 2971235259448462 r005 Im(z^2+c),c=-35/29+2/47*I,n=12 2971235268054853 m001 (LambertW(1)-Zeta(1,-1))/(CopelandErdos+Trott) 2971235269873552 r008 a(0)=3,K{-n^6,-41+43*n+9*n^2+24*n^3} 2971235271428678 r008 a(0)=3,K{-n^6,-21+7*n+28*n^2+21*n^3} 2971235273226996 l006 ln(3795/5108) 2971235274559394 m006 (1/4*exp(2*Pi)-1)/(1/3*Pi-3/5) 2971235293149332 a007 Real Root Of -599*x^4+230*x^3-455*x^2+963*x+337 2971235302794143 r008 a(0)=3,K{-n^6,-33+43*n-5*n^2+30*n^3} 2971235317287670 m001 CopelandErdos^2*ln(Artin)/Tribonacci 2971235320350825 r005 Re(z^2+c),c=-17/14+162/217*I,n=2 2971235327418383 r002 36th iterates of z^2 + 2971235328194073 r005 Im(z^2+c),c=-71/110+2/33*I,n=36 2971235328751281 r005 Im(z^2+c),c=-41/102+37/54*I,n=5 2971235340928758 m005 (1/3*exp(1)+1/5)/(9/11*gamma-1/10) 2971235341372451 r005 Im(z^2+c),c=-13/16+1/57*I,n=13 2971235342743768 a001 2/123*15127^(16/53) 2971235348016651 a001 39603/2*17711^(58/59) 2971235349636355 m001 Zeta(1,2)^Conway+Magata 2971235370728096 r008 a(0)=3,K{-n^6,33-42*n+7*n^2+37*n^3} 2971235371307462 r009 Im(z^3+c),c=-43/126+11/42*I,n=4 2971235371348459 l006 ln(281/5484) 2971235382756455 r008 a(0)=3,K{-n^6,-23+50*n^3-60*n^2+68*n} 2971235384878119 r008 a(0)=3,K{-n^6,-13+49*n^3-52*n^2+51*n} 2971235394529030 s002 sum(A127507[n]/(n^3*2^n+1),n=1..infinity) 2971235404225200 r008 a(0)=3,K{-n^6,31-17*n-27*n^2+48*n^3} 2971235406853720 m001 MertensB2+MinimumGamma+Weierstrass 2971235408548162 m001 (ln(gamma)+GAMMA(7/12))/(exp(1)+gamma) 2971235411951111 r008 a(0)=3,K{-n^6,41-30*n-25*n^2+49*n^3} 2971235420369333 r008 a(0)=3,K{-n^6,29+54*n^3-46*n^2-2*n} 2971235424855225 m005 (1/3*5^(1/2)+1/2)/(2*3^(1/2)+8/11) 2971235434807899 s001 sum(exp(-Pi/3)^(n-1)*A241705[n],n=1..infinity) 2971235439950248 a007 Real Root Of -251*x^4-495*x^3+876*x^2+543*x+458 2971235452421605 m002 -1+Pi^3-Cosh[Pi]+Pi^2*Log[Pi] 2971235468173743 a007 Real Root Of -285*x^4-934*x^3-408*x^2-464*x-64 2971235470898903 a001 1/2204*(1/2*5^(1/2)+1/2)^25*76^(11/13) 2971235476563008 m001 (GAMMA(17/24)+FeigenbaumD)/(Kac+Rabbit) 2971235503649543 r005 Im(z^2+c),c=4/15+7/44*I,n=29 2971235514784722 a007 Real Root Of 348*x^4+734*x^3-481*x^2+953*x-791 2971235517039586 m001 1/Robbin^2*exp(Kolakoski)*sin(Pi/5) 2971235521929145 k002 Champernowne real with 61*n^2-141*n+109 2971235528651169 m005 (1/3*gamma+3/5)/(4/11*Catalan-3) 2971235534236673 r005 Re(z^2+c),c=-113/98+9/32*I,n=10 2971235534692426 a001 12586269025/199*199^(8/11) 2971235535924231 r005 Im(z^2+c),c=-11/74+17/41*I,n=25 2971235543585591 a007 Real Root Of 292*x^4-334*x^3+151*x^2-93*x-52 2971235543763863 m001 1/ln(BesselJ(0,1))*CareFree*GAMMA(5/6) 2971235548105718 k003 Champernowne real with 47/6*n^3-39/2*n^2+32/3*n+3 2971235556830930 m001 GAMMA(1/24)/FeigenbaumKappa*exp(cos(1)) 2971235563878568 r005 Im(z^2+c),c=-3/32+37/60*I,n=18 2971235564613044 m005 (1/2*2^(1/2)-1/7)/(7/10*2^(1/2)+10/11) 2971235566240612 s002 sum(A085763[n]/((10^n-1)/n),n=1..infinity) 2971235569013974 a001 2/123*2207^(20/53) 2971235571378118 a001 225851433717/521*322^(1/3) 2971235574299084 m001 (Si(Pi)+gamma(2))/(Lehmer+Trott2nd) 2971235592911314 r005 Im(z^2+c),c=-9/11+1/64*I,n=49 2971235596624789 m001 Zeta(1/2)^2*ln(FeigenbaumB)/log(2+sqrt(3)) 2971235601803361 r002 10th iterates of z^2 + 2971235616518068 g006 Psi(1,6/11)+Psi(1,7/9)+1/2*Pi^2-Psi(1,4/11) 2971235616894727 m005 (1/3*3^(1/2)-1/5)/(7/10*Zeta(3)+3/7) 2971235618179966 r005 Im(z^2+c),c=3/28+2/7*I,n=16 2971235621699323 m002 -E^(2*Pi)+36*Pi^4 2971235629444286 r005 Re(z^2+c),c=-37/102+6/25*I,n=28 2971235631515895 r005 Re(z^2+c),c=-31/114+7/13*I,n=61 2971235636652796 a007 Real Root Of -392*x^4-847*x^3+720*x^2-458*x+617 2971235639830635 a003 sin(Pi*1/120)/cos(Pi*8/51) 2971235644440571 a003 sin(Pi*22/113)/cos(Pi*46/105) 2971235646850234 r005 Re(z^2+c),c=17/42+6/41*I,n=13 2971235649216056 m001 OrthogonalArrays^BesselI(1,2)*3^(1/2) 2971235649230997 r008 a(0)=3,K{-n^6,-16+45*n+36*n^2-32*n^3} 2971235678839502 m001 1/ln(Porter)^2/GolombDickman^2/sin(Pi/5) 2971235682355673 a001 38/31622993*13^(6/17) 2971235701416874 m001 ln(2^(1/2)+1)^(MertensB2/OneNinth) 2971235734625380 l006 ln(4243/5711) 2971235734625380 p004 log(5711/4243) 2971235739579850 m001 1/DuboisRaymond^2/ln(Backhouse)^2*(2^(1/3))^2 2971235742262608 r005 Im(z^2+c),c=-11/54+7/16*I,n=36 2971235743284446 r005 Re(z^2+c),c=-47/122+1/51*I,n=19 2971235746838192 r005 Re(z^2+c),c=-33/86+2/31*I,n=16 2971235755676736 r005 Re(z^2+c),c=-33/94+13/44*I,n=32 2971235759594608 m005 (1/3*Catalan+1/12)/(8/9*gamma-1/2) 2971235774646953 a001 21566892818/341*322^(2/3) 2971235782698848 m001 1/ln(Porter)*Champernowne/Trott 2971235788290155 a007 Real Root Of 223*x^4+578*x^3+151*x^2+980*x-640 2971235789191001 a001 11/21*9227465^(19/23) 2971235795543646 a007 Real Root Of 166*x^4-28*x^3+698*x^2-782*x-296 2971235804360111 r005 Re(z^2+c),c=-2/27+30/47*I,n=52 2971235805099515 r009 Im(z^3+c),c=-23/56+13/63*I,n=24 2971235807855235 r005 Im(z^2+c),c=-2/11+3/7*I,n=34 2971235820674932 r005 Im(z^2+c),c=-103/74+3/31*I,n=4 2971235836358439 m001 1/gamma^2*GAMMA(7/12)*ln(sqrt(5))^2 2971235841026126 a001 521/196418*832040^(9/26) 2971235841704201 m001 (Pi+2^(1/3))/gamma(2)/GAMMA(7/12) 2971235841777541 r008 a(0)=3,K{-n^6,12-4*n+49*n^2-27*n^3} 2971235860438941 p001 sum((-1)^n/(345*n+334)/(64^n),n=0..infinity) 2971235864562418 r002 9th iterates of z^2 + 2971235875521361 m001 (-FeigenbaumDelta+Kolakoski)/(2^(1/2)-exp(1)) 2971235875836822 m001 (Ei(1)+FeigenbaumB)/(Catalan-Psi(1,1/3)) 2971235875888620 m005 (1/3*gamma+1/3)/(2/5*5^(1/2)+7/8) 2971235879766794 s001 sum(exp(-Pi/4)^(n-1)*A078173[n],n=1..infinity) 2971235885818182 a001 1/102287808*139583862445^(5/16) 2971235885818183 a001 47/433494437*63245986^(5/16) 2971235886044312 a001 47/39088169*28657^(5/16) 2971235892993738 r002 42th iterates of z^2 + 2971235893008702 p004 log(29761/22111) 2971235899576999 m001 (FeigenbaumD+Porter)/(sin(1/5*Pi)+cos(1/5*Pi)) 2971235916646426 r008 a(0)=3,K{-n^6,-60+51*n+30*n^2+14*n^3} 2971235924214806 r008 a(0)=3,K{-n^6,-58+50*n+28*n^2+15*n^3} 2971235926520021 m005 (1/2*3^(1/2)-8/9)/(9/10*gamma+1/4) 2971235928572578 m001 (exp(Pi)+GAMMA(13/24))/(FeigenbaumB+ZetaQ(4)) 2971235938821263 r008 a(0)=3,K{-n^6,-24+12*n^3+54*n^2-7*n} 2971235941332724 r005 Im(z^2+c),c=-7/17+31/61*I,n=54 2971235953041923 m001 FeigenbaumDelta*QuadraticClass-ln(Pi) 2971235953339016 m001 (-BesselJ(1,1)+GAMMA(5/6))/(cos(1/5*Pi)-gamma) 2971235954558129 r008 a(0)=3,K{-n^6,-6-34*n+63*n^2+12*n^3} 2971235955720123 a001 86267571272/2207*322^(3/4) 2971235955799091 l006 ln(312/6089) 2971235958131968 r009 Re(z^3+c),c=-13/28+13/32*I,n=10 2971235970977334 m001 Bloch*ln(Conway)/BesselK(0,1) 2971235976812720 r009 Im(z^3+c),c=-13/54+16/55*I,n=4 2971235977644932 r008 a(0)=3,K{-n^6,4-43*n+59*n^2+15*n^3} 2971235991931039 m005 (1/3*2^(1/2)-1/9)/(7/10*Catalan+4/7) 2971235996655813 r005 Re(z^2+c),c=-5/21+26/57*I,n=5 2971235999260799 a005 (1/cos(1/85*Pi))^1594 2971236000999951 m005 (1/2*exp(1)+1/2)/(2/11*2^(1/2)+6) 2971236001630813 b008 ArcCosh[(2+EulerGamma)^2+Pi] 2971236003756389 r005 Re(z^2+c),c=-11/30+9/41*I,n=10 2971236010243808 m001 (Porter+Tetranacci)/(ln(2)/ln(10)+sin(1)) 2971236016502481 r008 a(0)=3,K{-n^6,-16+11*n+13*n^2+27*n^3} 2971236016515816 r008 a(0)=3,K{-n^6,-34+44*n-5*n^2+30*n^3} 2971236020046514 a007 Real Root Of 861*x^4+19*x^3+357*x^2-462*x-175 2971236024401681 r002 47th iterates of z^2 + 2971236026683058 r005 Im(z^2+c),c=-1/110+1/33*I,n=3 2971236037068151 r008 a(0)=3,K{-n^6,23+n^3+3*n^2+9*n} 2971236046051420 r008 a(0)=3,K{-n^6,40+2*n^3-63*n^2+55*n} 2971236046603971 a003 sin(Pi*4/25)-sin(Pi*27/95) 2971236054395556 r002 9th iterates of z^2 + 2971236068930326 r008 a(0)=3,K{-n^6,-30+64*n-42*n^2+43*n^3} 2971236080129155 r004 Im(z^2+c),c=-2/11+3/7*I,z(0)=I,n=44 2971236089321498 m001 ln(Paris)*Conway^2/PisotVijayaraghavan 2971236090024719 m001 exp(DuboisRaymond)/Backhouse/FransenRobinson 2971236095455569 r005 Re(z^2+c),c=-47/122+1/50*I,n=21 2971236095543596 r008 a(0)=3,K{-n^6,-24+50*n^3-60*n^2+69*n} 2971236104844137 r008 a(0)=3,K{-n^6,42+42*n^3-3*n^2-46*n} 2971236107601976 a007 Real Root Of 710*x^4-519*x^3+79*x^2-454*x+136 2971236107894789 l006 ln(4691/6314) 2971236121574576 r008 a(0)=3,K{-n^6,28-9*n-34*n^2+50*n^3} 2971236123739400 r009 Im(z^3+c),c=-61/126+5/37*I,n=49 2971236126921656 m001 (ln(5)-Artin*MertensB3)/Artin 2971236129129629 r005 Re(z^2+c),c=-29/86+7/20*I,n=43 2971236132734054 r008 a(0)=3,K{-n^6,28+54*n^3-46*n^2-n} 2971236132988317 m005 (1/3*Catalan-1/5)/(-9/44+1/4*5^(1/2)) 2971236147224601 m005 (1/3*Zeta(3)-1/10)/(3/10*exp(1)-5/7) 2971236150494117 r005 Im(z^2+c),c=-19/62+15/32*I,n=22 2971236152783371 m001 Otter+Robbin^Psi(1,1/3) 2971236167366400 m001 (cos(1)-ln(2))/(FeigenbaumDelta+Weierstrass) 2971236170555972 a001 144/199*47^(55/57) 2971236189599016 r005 Im(z^2+c),c=-21/50+30/61*I,n=39 2971236194831753 r005 Im(z^2+c),c=-5/102+23/44*I,n=6 2971236204206387 r009 Re(z^3+c),c=-25/58+19/49*I,n=54 2971236219343137 m005 (1/2*2^(1/2)-7/11)/(7/10*Pi+2/11) 2971236230110159 q001 971/3268 2971236231022490 h001 (-6*exp(2/3)-8)/(-3*exp(3)-6) 2971236233411373 h001 (5/12*exp(1)+2/3)/(5/7*exp(2)+7/9) 2971236234354179 m001 (Backhouse+Kac)/(PlouffeB-Salem) 2971236234659583 m008 (1/6*Pi^3-5)/(3/5*Pi^4-2) 2971236236053068 r005 Re(z^2+c),c=-21/86+22/39*I,n=41 2971236239318224 r005 Im(z^2+c),c=-71/60+15/46*I,n=4 2971236256851457 m003 17/2+Sqrt[5]/64-Sec[1/2+Sqrt[5]/2] 2971236260384224 m001 (Zeta(5)-FeigenbaumD)/(OneNinth-Robbin) 2971236264854573 h001 (5/11*exp(2)+11/12)/(1/10*exp(2)+7/10) 2971236281807240 m005 (1/2*2^(1/2)-4/9)/(13/4+5/2*5^(1/2)) 2971236283276790 r005 Im(z^2+c),c=-43/60+9/55*I,n=16 2971236296921808 r005 Im(z^2+c),c=-11/70+23/55*I,n=22 2971236301345686 m005 (1/2*Zeta(3)-11/12)/(4*exp(1)-1/4) 2971236303932593 r005 Im(z^2+c),c=-11/34+24/43*I,n=32 2971236305713287 r005 Im(z^2+c),c=-13/102+19/49*I,n=7 2971236311227007 a001 2504730781961/1364*123^(1/10) 2971236315811315 a007 Real Root Of 650*x^4-244*x^3-967*x^2-627*x+273 2971236321219256 m001 (arctan(1/3)+FellerTornier)/(exp(1)+ln(gamma)) 2971236337600502 m001 (Trott2nd-ZetaP(4))/(Ei(1)-CopelandErdos) 2971236339436443 b008 Pi*BesselI[2,9/4] 2971236341546391 a003 sin(Pi*9/119)/cos(Pi*14/67) 2971236353772324 r005 Re(z^2+c),c=-16/23+23/55*I,n=5 2971236364617247 a002 11^(10/3)+18^(5/6) 2971236368393430 a001 9062201101803/1597*1836311903^(16/17) 2971236368393430 a001 4106118243/1597*6557470319842^(16/17) 2971236387597907 m001 1/ln(BesselJ(0,1))^2*Kolakoski/GAMMA(11/24)^2 2971236388146290 r005 Im(z^2+c),c=-9/86+17/43*I,n=17 2971236388371197 a003 sin(Pi*4/119)-sin(Pi*12/91) 2971236390383728 a007 Real Root Of -27*x^4-795*x^3+181*x^2-988*x+602 2971236409127681 a003 cos(Pi*7/87)-sin(Pi*42/101) 2971236414421940 m002 -3-5*Cosh[Pi]+Pi^3*Sinh[Pi] 2971236416083551 l006 ln(5139/6917) 2971236424914729 r009 Re(z^3+c),c=-1/20+26/43*I,n=17 2971236425361455 m001 (FeigenbaumMu+ZetaQ(4))/Zeta(3) 2971236434605332 l006 ln(343/6694) 2971236444130612 a007 Real Root Of 391*x^4+980*x^3-626*x^2-2*x+753 2971236444313654 r005 Re(z^2+c),c=-8/21+5/47*I,n=25 2971236447959721 m001 (-exp(1/Pi)+FellerTornier)/(1-GAMMA(2/3)) 2971236451480816 a003 sin(Pi*10/109)/sin(Pi*41/101) 2971236454169481 m005 (1/2*exp(1)-7/9)/(2/5*Pi+7/10) 2971236462776551 r005 Im(z^2+c),c=-19/94+23/49*I,n=11 2971236463813915 m005 (1/3*5^(1/2)-2/9)/(3/4*2^(1/2)+7/10) 2971236473294079 b008 (7/6)^EulerGamma*E 2971236476725689 a001 75283811239/1926*322^(3/4) 2971236481627236 r008 a(0)=3,K{-n^6,-24+59*n+9*n^2-8*n^3} 2971236490722407 m001 ln(2+3^(1/2))^Otter+TravellingSalesman 2971236496555251 a003 cos(Pi*1/37)*sin(Pi*8/83) 2971236507807629 a007 Real Root Of -277*x^4-585*x^3+546*x^2-641*x-481 2971236512175851 r005 Im(z^2+c),c=25/86+7/54*I,n=63 2971236512792986 r008 a(0)=0,K{-n^6,59-28*n-40*n^2+43*n^3} 2971236518965985 r002 23th iterates of z^2 + 2971236524935146 k002 Champernowne real with 123/2*n^2-285/2*n+110 2971236526978231 r005 Im(z^2+c),c=-57/70+10/61*I,n=47 2971236531188451 m001 Riemann3rdZero^2/exp(Rabbit)*cos(Pi/12) 2971236534989839 r005 Re(z^2+c),c=-7/19+11/53*I,n=20 2971236543050945 m001 BesselK(0,1)^2*Salem^2*ln(GAMMA(5/6)) 2971236552106718 k003 Champernowne real with 8*n^3-41/2*n^2+25/2*n+2 2971236552739392 a001 591286729879/15127*322^(3/4) 2971236554284846 s001 sum(exp(-Pi/3)^(n-1)*A031394[n],n=1..infinity) 2971236554360551 r005 Re(z^2+c),c=-7/11+1/63*I,n=4 2971236563829642 a001 516002918640/13201*322^(3/4) 2971236564612285 m002 -Pi^3+Pi^5+2*Cosh[Pi]-ProductLog[Pi] 2971236565447687 a001 4052739537881/103682*322^(3/4) 2971236565683757 a001 3536736619241/90481*322^(3/4) 2971236565829656 a001 6557470319842/167761*322^(3/4) 2971236566447695 a001 2504730781961/64079*322^(3/4) 2971236567399879 a001 23725150497407/4181*1836311903^(16/17) 2971236567399879 a001 10749957122/4181*6557470319842^(16/17) 2971236569690889 r005 Im(z^2+c),c=-7/18+25/49*I,n=44 2971236570683793 a001 956722026041/24476*322^(3/4) 2971236577500475 r005 Re(z^2+c),c=-29/98+11/37*I,n=4 2971236579403316 r005 Re(z^2+c),c=-45/56+45/53*I,n=3 2971236580940369 p001 sum(1/(563*n+342)/(24^n),n=0..infinity) 2971236587543438 h001 (7/10*exp(1)+5/9)/(1/10*exp(1)+5/9) 2971236596434531 a001 28143753123/10946*6557470319842^(16/17) 2971236598050624 r005 Im(z^2+c),c=-27/22+7/128*I,n=4 2971236599718445 a001 365435296162/9349*322^(3/4) 2971236600670630 a001 73681302247/28657*6557470319842^(16/17) 2971236601288668 a001 192900153618/75025*6557470319842^(16/17) 2971236601378839 a001 505019158607/196418*6557470319842^(16/17) 2971236601391995 a001 1322157322203/514229*6557470319842^(16/17) 2971236601393914 a001 3461452808002/1346269*6557470319842^(16/17) 2971236601394194 a001 9062201101803/3524578*6557470319842^(16/17) 2971236601394235 a001 23725150497407/9227465*6557470319842^(16/17) 2971236601394260 a001 14662949395604/5702887*6557470319842^(16/17) 2971236601394367 a001 5600748293801/2178309*6557470319842^(16/17) 2971236601395100 a001 2139295485799/832040*6557470319842^(16/17) 2971236601400125 a001 817138163596/317811*6557470319842^(16/17) 2971236601434567 a001 312119004989/121393*6557470319842^(16/17) 2971236601670637 a001 119218851371/46368*6557470319842^(16/17) 2971236603288683 a001 45537549124/17711*6557470319842^(16/17) 2971236610605170 r005 Im(z^2+c),c=-15/14+9/233*I,n=4 2971236614378933 a001 17393796001/6765*6557470319842^(16/17) 2971236614548829 r005 Re(z^2+c),c=-11/31+17/61*I,n=28 2971236620677158 m001 ln(GAMMA(7/12))/GAMMA(5/24)^2/exp(1)^2 2971236624530018 m001 (exp(1)+ln(3))/(FeigenbaumB+ZetaP(2)) 2971236624880124 r005 Im(z^2+c),c=-8/27+9/19*I,n=27 2971236626343448 r008 a(0)=3,K{-n^6,-61+52*n+30*n^2+14*n^3} 2971236626468597 p004 log(36997/27487) 2971236628488206 m001 Sierpinski^2*ln(Cahen)*Zeta(7) 2971236637185931 m001 (ln(3)-ln(2+3^(1/2)))/(exp(1/exp(1))-Rabbit) 2971236639303208 r005 Im(z^2+c),c=-29/56+19/50*I,n=10 2971236648237662 r008 a(0)=3,K{-n^6,-25+12*n^3+54*n^2-6*n} 2971236648963979 r002 8th iterates of z^2 + 2971236671768341 m001 2*Pi/GAMMA(5/6)/ln(5)*Thue 2971236674479847 m001 MasserGramainDelta/(Trott2nd^StronglyCareFree) 2971236674847367 l006 ln(5587/7520) 2971236679168048 r005 Re(z^2+c),c=-5/22+35/58*I,n=45 2971236686464486 r009 Im(z^3+c),c=-63/118+5/12*I,n=31 2971236690130696 a007 Real Root Of 400*x^4-495*x^3+535*x^2-672*x-263 2971236690392642 a001 192933544679/34*1836311903^(16/17) 2971236690392642 a001 6643838879/2584*6557470319842^(16/17) 2971236694385477 r008 a(0)=3,K{-n^6,-41+42*n+10*n^2+24*n^3} 2971236705202233 a001 17711/11*3^(29/52) 2971236713710100 s002 sum(A083516[n]/(pi^n-1),n=1..infinity) 2971236715325212 s002 sum(A040361[n]/(64^n),n=1..infinity) 2971236716718380 a007 Real Root Of -316*x^4-826*x^3+246*x^2-35*x+686 2971236722152934 r008 a(0)=3,K{-n^6,21+20*n^3+53*n^2-59*n} 2971236724956985 r008 a(0)=3,K{-n^6,-5-10*n+25*n^2+25*n^3} 2971236724965879 r008 a(0)=3,K{-n^6,-17+12*n+13*n^2+27*n^3} 2971236746904036 m005 (1/3*Catalan+1/6)/(3/4+3/8*5^(1/2)) 2971236748192630 r005 Im(z^2+c),c=-25/86+13/27*I,n=18 2971236752479493 r005 Im(z^2+c),c=-17/60+15/32*I,n=40 2971236757826974 r005 Re(z^2+c),c=-11/14+7/219*I,n=52 2971236760491593 r009 Re(z^3+c),c=-17/38+31/61*I,n=39 2971236763771261 r008 a(0)=3,K{-n^6,13-23*n+13*n^2+32*n^3} 2971236763848937 m001 Conway*(exp(1/exp(1))+GaussAGM) 2971236770845416 r005 Im(z^2+c),c=-11/122+7/18*I,n=20 2971236797913819 a007 Real Root Of 794*x^4+59*x^3-396*x^2-356*x+133 2971236798724928 a001 139583862445/3571*322^(3/4) 2971236800747935 m001 (Psi(2,1/3)-exp(Pi))/(-arctan(1/3)+Otter) 2971236805456408 h001 (1/11*exp(2)+1/12)/(8/9*exp(1)+1/8) 2971236816874400 q001 3099/1043 2971236825030340 r008 a(0)=3,K{-n^6,31-18*n-26*n^2+48*n^3} 2971236825037160 r008 a(0)=3,K{-n^6,7+52*n^3-50*n^2+26*n} 2971236828824474 r008 a(0)=3,K{-n^6,27-8*n-34*n^2+50*n^3} 2971236832555646 r008 a(0)=3,K{-n^6,41-31*n-24*n^2+49*n^3} 2971236832931789 h001 (1/3*exp(2)+1/9)/(3/11*exp(1)+1/8) 2971236834037100 l006 ln(374/7299) 2971236835639192 m005 (1/3*5^(1/2)-2/7)/(2*Zeta(3)-6/7) 2971236835760719 m001 (Zeta(1,2)-KhinchinLevy)/(Sarnak-ZetaQ(3)) 2971236836418762 r005 Re(z^2+c),c=23/78+7/60*I,n=23 2971236837795233 r005 Im(z^2+c),c=-13/18+41/80*I,n=4 2971236842954571 a003 cos(Pi*25/99)-sin(Pi*43/89) 2971236846945763 r008 a(0)=3,K{-n^6,19+58*n^3-62*n^2+20*n} 2971236850402253 r008 a(0)=3,K{-n^6,51-36*n-34*n^2+54*n^3} 2971236857173003 r008 a(0)=3,K{-n^6,79+52*n^3-14*n^2-82*n} 2971236857903270 r009 Re(z^3+c),c=-9/29+10/61*I,n=9 2971236860840652 b008 8/3+InverseErf[1/3] 2971236864572433 r008 a(0)=3,K{-n^6,43-10*n-59*n^2+61*n^3} 2971236865377616 r008 a(0)=3,K{-n^6,51+60*n^3-52*n^2-24*n} 2971236866551582 m001 (-FellerTornier+MertensB1)/(2^(1/2)+Cahen) 2971236870341955 r008 a(0)=3,K{-n^6,33+9*n+18*n^2-26*n^3} 2971236895193219 l006 ln(6035/8123) 2971236899950116 m001 gamma(2)/(Backhouse-Grothendieck) 2971236902170280 m001 (ln(Pi)+Tetranacci)/(5^(1/2)-Zeta(3)) 2971236904544923 m005 (1/3*Zeta(3)-1/8)/(1/8*gamma-1) 2971236915591009 a007 Real Root Of -364*x^4-786*x^3+842*x^2-222*x-341 2971236916185412 m001 ln(Porter)/Artin^2*Trott 2971236928581247 a005 (1/cos(8/101*Pi))^1286 2971236929849832 a007 Real Root Of -239*x^4-446*x^3+781*x^2-161*x-445 2971236949831062 m001 (Trott2nd+ZetaQ(2))/(BesselI(0,1)+Porter) 2971236963709664 m001 FeigenbaumKappa+OrthogonalArrays^(2^(1/2)) 2971236964422633 m001 (GAMMA(2/3)-GAMMA(3/4))/(ln(5)-Salem) 2971236965080614 a001 233/521*(1/2+1/2*5^(1/2))^47 2971236972289437 r002 39th iterates of z^2 + 2971236973246405 m001 1/Zeta(7)^2*ln(Rabbit)*log(1+sqrt(2)) 2971236983986209 m001 1/Zeta(5)*GAMMA(11/24)*ln(log(1+sqrt(2)))^2 2971236989804184 m001 (ln(5)+exp(1/exp(1)))/(gamma(3)+GAMMA(23/24)) 2971236994348912 a007 Real Root Of 275*x^4+568*x^3-605*x^2+565*x+486 2971236994364224 a001 196418/47*199^(29/36) 2971236997967050 m001 Niven/(Stephens-gamma(3)) 2971237013328151 s002 sum(A180066[n]/(n*2^n-1),n=1..infinity) 2971237051679974 a007 Real Root Of -24*x^4-700*x^3+422*x^2+960*x-486 2971237055604831 m001 (Pi+Gompertz)/(Landau+TravellingSalesman) 2971237077882028 r005 Im(z^2+c),c=-27/106+16/35*I,n=25 2971237078314210 a001 39603/610*832040^(37/47) 2971237084613236 q001 1064/3581 2971237085085592 l006 ln(6483/8726) 2971237090051676 m001 1/GolombDickman*exp(Cahen)/GAMMA(23/24) 2971237091213767 r009 Re(z^3+c),c=-49/86+13/47*I,n=3 2971237094985891 a007 Real Root Of 153*x^4-887*x^3-895*x^2-969*x+389 2971237100728616 m001 KhintchineLevy/ln(Si(Pi))*cosh(1) 2971237111144837 m001 (QuadraticClass-Tribonacci)/(ln(Pi)-Porter) 2971237116469283 m005 (1/2*5^(1/2)+5/11)/(4/9*gamma+3/11) 2971237120601706 r009 Re(z^3+c),c=-11/28+9/28*I,n=13 2971237124913907 r005 Re(z^2+c),c=-25/94+19/35*I,n=37 2971237125023203 m005 (1/3*Pi+5/6)/(3/4*gamma+1/5) 2971237125742506 m001 (Robbin+Trott2nd)/(ln(5)+Rabbit) 2971237125758482 l006 ln(8787/9052) 2971237142346356 r005 Im(z^2+c),c=-9/25+27/55*I,n=29 2971237160875070 a001 12586269025/843*322^(11/12) 2971237172321164 l006 ln(405/7904) 2971237179501084 a007 Real Root Of 341*x^4+846*x^3-268*x^2+396*x-843 2971237208243015 p001 sum((-1)^n/(383*n+335)/(100^n),n=0..infinity) 2971237210605015 r005 Re(z^2+c),c=-33/122+22/37*I,n=59 2971237211398459 a001 2537720636/987*6557470319842^(16/17) 2971237211398459 a001 5600748293801/987*1836311903^(16/17) 2971237217896932 m001 FeigenbaumB/(MinimumGamma+Totient) 2971237228860488 r005 Re(z^2+c),c=-7/20+3/10*I,n=32 2971237229159865 r005 Re(z^2+c),c=-5/14+17/64*I,n=16 2971237232581143 m001 Stephens-ZetaP(2)^ln(5) 2971237235386067 r009 Re(z^3+c),c=-25/56+26/63*I,n=41 2971237239635665 r005 Im(z^2+c),c=-69/122+18/43*I,n=6 2971237240422918 m004 -6-Cos[Sqrt[5]*Pi]+(125*Tan[Sqrt[5]*Pi])/Pi 2971237241555826 m005 (1/2*Pi+4)/(3^(1/2)+1/7) 2971237248711948 a007 Real Root Of -270*x^4-973*x^3-873*x^2-809*x+824 2971237250429763 l006 ln(6931/9329) 2971237251859178 r005 Re(z^2+c),c=-23/74+20/39*I,n=22 2971237261451687 m001 1/GAMMA(7/12)^2/ln(Trott)*Pi 2971237266144698 a007 Real Root Of 486*x^4-382*x^3+374*x^2-770*x+202 2971237276788095 a007 Real Root Of -116*x^4-53*x^3+837*x^2+81*x+502 2971237280023307 m001 1/FeigenbaumD^2/exp(ErdosBorwein)/Zeta(1,2) 2971237283371609 m005 (1/3*3^(1/2)-1/4)/(6*3^(1/2)+5/8) 2971237293212655 r005 Im(z^2+c),c=-3/13+13/29*I,n=47 2971237298170211 m002 -6+Pi^9-Pi^4/ProductLog[Pi] 2971237299572999 b008 1/2+Sqrt[5]*E^(1/10) 2971237306285798 a007 Real Root Of 100*x^4+244*x^3-38*x^2+417*x+181 2971237312292853 a003 cos(Pi*1/71)-cos(Pi*27/107) 2971237321936143 r005 Re(z^2+c),c=3/11+4/39*I,n=40 2971237327296577 r005 Re(z^2+c),c=-8/21+5/47*I,n=20 2971237328745432 s002 sum(A052890[n]/(n^3*exp(n)+1),n=1..infinity) 2971237345529717 m001 (2^(1/3)-FeigenbaumMu)/(Sarnak+ZetaQ(2)) 2971237345705623 r005 Re(z^2+c),c=-59/66+19/51*I,n=4 2971237358982211 a007 Real Root Of -760*x^4-65*x^3+27*x^2+916*x+274 2971237362770652 p001 sum((-1)^n/(568*n+89)/n/(512^n),n=1..infinity) 2971237364444751 r008 a(0)=3,K{-n^6,-18+13*n^3+55*n^2-15*n} 2971237368562108 m001 (ln(5)+3^(1/3))/(CareFree+FellerTornier) 2971237369872388 b008 1/72+21*Sqrt[2] 2971237380052368 m005 (1/2*Pi+7/10)/(4/11*2^(1/2)+1/4) 2971237395696905 l006 ln(7379/9932) 2971237396435802 a001 505019158607/610*6557470319842^(14/17) 2971237399251813 r005 Im(z^2+c),c=-57/70+1/46*I,n=10 2971237404317340 r005 Im(z^2+c),c=-91/90+5/19*I,n=43 2971237404669776 m005 (1/3*5^(1/2)-2/9)/(3/10*Pi+9/11) 2971237404721925 m001 (ArtinRank2+Otter)/(Riemann1stZero-Tribonacci) 2971237411559105 r005 Re(z^2+c),c=-13/34+3/35*I,n=8 2971237414366213 m001 DuboisRaymond*(GAMMA(11/12)+Bloch) 2971237421307055 a007 Real Root Of 664*x^4-799*x^3-646*x^2-905*x-238 2971237423854882 r008 a(0)=3,K{-n^6,-9+64*n-42*n^2+4*n^3} 2971237424821430 a007 Real Root Of 536*x^4-813*x^3+431*x^2-227*x-131 2971237429605661 r008 a(0)=3,K{-n^6,-34+43*n-4*n^2+30*n^3} 2971237441473963 m005 (1/2*Zeta(3)+10/11)/(1/7*gamma+5) 2971237454845154 r005 Re(z^2+c),c=-8/21+5/47*I,n=21 2971237460143361 m005 (27/28+1/4*5^(1/2))/(39/22+3/2*5^(1/2)) 2971237462500523 l006 ln(436/8509) 2971237466577421 r008 a(0)=3,K{-n^6,12-22*n+13*n^2+32*n^3} 2971237468326018 m002 -Pi+Pi^3+Pi^2*Sech[Pi]+Tanh[Pi] 2971237479678444 m001 1/MinimumGamma/FeigenbaumB*exp(GAMMA(17/24)) 2971237486169827 r008 a(0)=3,K{-n^6,-2+40*n^3-18*n^2+15*n} 2971237489977126 a007 Real Root Of -350*x^4-828*x^3+763*x^2+286*x-327 2971237499959263 m001 GAMMA(7/24)*ln(GaussKuzminWirsing)*cos(Pi/5) 2971237513533515 r008 a(0)=3,K{-n^6,50+40*n^3+8*n^2-63*n} 2971237516526643 r008 a(0)=3,K{-n^6,2+49*n^3-43*n^2+27*n} 2971237519408419 a007 Real Root Of 82*x^4-471*x^3-617*x^2-760*x+292 2971237522975910 r009 Re(z^3+c),c=-49/110+7/17*I,n=45 2971237527941147 k002 Champernowne real with 62*n^2-144*n+111 2971237545024835 m001 (cos(1/12*Pi)+Conway)/(Stephens-Totient) 2971237547425721 r005 Im(z^2+c),c=-29/86+22/45*I,n=52 2971237556107718 k003 Champernowne real with 49/6*n^3-43/2*n^2+43/3*n+1 2971237566247552 r008 a(0)=3,K{-n^6,42-9*n-59*n^2+61*n^3} 2971237569823313 r002 3th iterates of z^2 + 2971237582686892 r009 Re(z^3+c),c=-43/102+19/51*I,n=12 2971237598570946 m001 Weierstrass^FeigenbaumAlpha-ZetaP(2) 2971237607745624 a003 cos(Pi*3/61)*sin(Pi*7/72) 2971237611272237 m001 HardyLittlewoodC4/(BesselJ(0,1)-Robbin) 2971237616664819 m005 (1/2*Zeta(3)-1)/(10/11*Zeta(3)+1/4) 2971237621067272 r009 Re(z^3+c),c=-27/98+15/22*I,n=8 2971237624208821 m001 (Riemann3rdZero-ZetaQ(3))/sin(1) 2971237631444839 a001 322/13*55^(31/50) 2971237639095960 g006 Psi(1,2/11)+Psi(1,1/3)-Psi(1,7/11)-Psi(1,4/11) 2971237642693392 m008 (3/4*Pi^3-3/5)/(5/6*Pi^2-3/5) 2971237645289049 a001 1/829464*46368^(16/17) 2971237645549183 a001 6/10983760033*165580141^(16/17) 2971237646723780 m001 (Bloch-ZetaP(4))/(Ei(1)-BesselI(1,1)) 2971237667040521 r009 Re(z^3+c),c=-29/70+23/64*I,n=34 2971237670093673 m001 (GAMMA(3/4)+ln(Pi))/(FeigenbaumAlpha-Niven) 2971237673834594 m001 (1+HardyLittlewoodC4)/BesselJ(1,1) 2971237679588329 m002 -3+3/Pi^2-Pi^5+Cosh[Pi] 2971237682510340 m001 GAMMA(1/12)/ln(PrimesInBinary)/GAMMA(5/24) 2971237694263203 h001 (6/7*exp(2)+3/7)/(1/4*exp(2)+3/7) 2971237700932020 a003 sin(Pi*9/80)*sin(Pi*23/70) 2971237709623706 m001 (2^(1/2)+1)/(-Pi^(1/2)+Sierpinski) 2971237713922700 b008 3-Sinh[1/5]/7 2971237714154930 l006 ln(467/9114) 2971237714342330 r002 45th iterates of z^2 + 2971237726768122 r005 Re(z^2+c),c=-47/122+1/44*I,n=16 2971237750132772 r009 Im(z^3+c),c=-5/9+11/39*I,n=41 2971237752827560 b008 -11/4+LogIntegral[9] 2971237776704205 m001 exp(Pi)*FibonacciFactorial+PisotVijayaraghavan 2971237801746276 q001 1157/3894 2971237801746276 r002 2th iterates of z^2 + 2971237802412620 r002 6th iterates of z^2 + 2971237806937897 m001 1/ln(Robbin)*Khintchine^2/sin(Pi/5) 2971237823340403 m001 ReciprocalFibonacci/(PlouffeB^Zeta(1,-1)) 2971237826014706 r005 Re(z^2+c),c=-47/122+3/64*I,n=10 2971237829472092 a007 Real Root Of 259*x^4+949*x^3+747*x^2+466*x-503 2971237834397411 r002 21th iterates of z^2 + 2971237852518768 r009 Im(z^3+c),c=-23/110+14/47*I,n=4 2971237857569693 m001 1/exp(sinh(1))*CopelandErdos^2*sqrt(3) 2971237861936910 r001 45i'th iterates of 2*x^2-1 of 2971237876730837 r005 Im(z^2+c),c=9/74+13/47*I,n=19 2971237879230302 m001 Artin*LandauRamanujan+Khinchin 2971237882235256 r005 Im(z^2+c),c=-21/58+25/51*I,n=29 2971237884539168 r005 Re(z^2+c),c=3/10+6/49*I,n=33 2971237885051398 m001 (Pi+gamma(1))/(FeigenbaumKappa-FellerTornier) 2971237885807070 a001 11/1346269*75025^(29/31) 2971237893971991 r005 Re(z^2+c),c=-41/122+17/48*I,n=26 2971237895800473 m001 BesselK(1,1)*PlouffeB+Trott 2971237896604253 m001 (2^(1/2)-FeigenbaumC)/(-Paris+Riemann1stZero) 2971237903154463 m005 (1/3*3^(1/2)+1/5)/(8/9*exp(1)+1/5) 2971237934258489 a007 Real Root Of 22*x^4+661*x^3+246*x^2+864*x+707 2971237934478817 l006 ln(498/9719) 2971237945141596 m001 exp(Zeta(1/2))*GlaisherKinkelin/Zeta(9) 2971237958748045 r008 a(0)=3,K{-n^6,-55+n^3+73*n^2+16*n} 2971237959467370 a001 139583862445/521*322^(5/12) 2971237973195947 a007 Real Root Of 216*x^4+774*x^3+240*x^2-547*x-276 2971237974392290 m001 (exp(1)+Riemann1stZero)/(-Stephens+ZetaQ(3)) 2971237989957031 a007 Real Root Of -188*x^4-345*x^3+960*x^2+716*x-745 2971237990793371 r005 Re(z^2+c),c=-29/122+15/23*I,n=57 2971237991562978 m001 GAMMA(13/24)*Champernowne*ln(GAMMA(5/6))^2 2971237993199766 m002 5/Pi^2+Cosh[Pi]+Pi^5/ProductLog[Pi] 2971238007085238 r008 a(0)=3,K{-n^6,45-21*n^3+9*n^2+n} 2971238020863897 r005 Re(z^2+c),c=-7/20+3/10*I,n=29 2971238031312540 a007 Real Root Of -23*x^4-690*x^3-206*x^2-256*x+732 2971238031969510 r008 a(0)=3,K{-n^6,-61+51*n+31*n^2+14*n^3} 2971238044935584 m001 (CareFree*Robbin-LaplaceLimit)/Robbin 2971238054936520 r008 a(0)=3,K{-n^6,-41+23*n+38*n^2+15*n^3} 2971238065558109 a007 Real Root Of 320*x^4+845*x^3-229*x^2+471*x+646 2971238075969835 a007 Real Root Of 917*x^4-312*x^3-418*x^2-914*x-250 2971238079190230 p001 sum((-1)^n/(526*n+515)/n/(32^n),n=1..infinity) 2971238079550594 r008 a(0)=3,K{-n^6,-11-22*n+53*n^2+15*n^3} 2971238080513232 p003 LerchPhi(1/25,2,309/167) 2971238085796023 r008 a(0)=3,K{-n^6,3-45*n+63*n^2+14*n^3} 2971238107178945 a001 18/89*2971215073^(6/11) 2971238107825607 r009 Im(z^3+c),c=-19/98+19/63*I,n=9 2971238118847531 m001 exp(exp(1))/Conway^2*gamma^2 2971238127696085 r008 a(0)=3,K{-n^6,-17+11*n+14*n^2+27*n^3} 2971238130175013 r008 a(0)=3,K{-n^6,19+50*n-19*n^2-16*n^3} 2971238131239116 a007 Real Root Of -415*x^4-977*x^3+651*x^2-119*x+616 2971238141625863 r005 Im(z^2+c),c=-31/122+22/49*I,n=15 2971238152490668 a001 76/21*28657^(17/26) 2971238159577418 r009 Im(z^3+c),c=-31/78+12/55*I,n=9 2971238162736368 a001 53316291173/1364*322^(3/4) 2971238163409286 m001 1/exp((3^(1/3)))/Artin/GAMMA(5/12) 2971238168704378 m001 FellerTornier/(MadelungNaCl-Robbin) 2971238176497429 m001 GAMMA(3/4)*exp(Cahen)*GAMMA(5/6)^2 2971238187998803 a007 Real Root Of -672*x^4-174*x^3+767*x^2+734*x-276 2971238189774454 r005 Im(z^2+c),c=-33/122+22/39*I,n=3 2971238189809485 p004 log(15359/11411) 2971238189835116 r005 Re(z^2+c),c=-121/98+2/19*I,n=38 2971238198586352 r005 Im(z^2+c),c=35/114+5/44*I,n=26 2971238199155347 r004 Im(z^2+c),c=-5/9+1/19*I,z(0)=-1,n=21 2971238204087824 m001 FeigenbaumKappa/(Zeta(3)+ReciprocalFibonacci) 2971238213627560 r008 a(0)=3,K{-n^6,1+49*n^3-43*n^2+28*n} 2971238228750527 r008 a(0)=3,K{-n^6,27-9*n-33*n^2+50*n^3} 2971238235683399 a001 710647/55*377^(11/12) 2971238246408127 r008 a(0)=3,K{-n^6,19+58*n^3-61*n^2+19*n} 2971238247704171 r002 24th iterates of z^2 + 2971238251836535 r002 2th iterates of z^2 + 2971238255748745 r005 Re(z^2+c),c=-13/44+11/23*I,n=54 2971238274816347 m002 3*Pi^2+Sinh[Pi]/(Pi^4*Log[Pi]) 2971238275833206 m005 (1/2*2^(1/2)+1/4)/(7/9*Pi+7/9) 2971238286055142 a007 Real Root Of 94*x^4+173*x^3+21*x^2+847*x-457 2971238294771268 h001 (3/7*exp(2)+7/9)/(2/11*exp(1)+5/6) 2971238300770633 a001 1/73681302247*4^(13/23) 2971238343809683 a001 53316291173/2207*322^(5/6) 2971238347675872 m001 exp(GAMMA(1/4))*Kolakoski/Zeta(9)^2 2971238358719578 m001 BesselK(0,1)^2*Rabbit^2*exp(Zeta(3)) 2971238363831058 m001 (-cos(1/12*Pi)+gamma(1))/(2^(1/3)+5^(1/2)) 2971238376228131 r005 Re(z^2+c),c=3/44+1/3*I,n=13 2971238380737284 a007 Real Root Of 266*x^4+753*x^3+x^2+190*x-424 2971238386560718 a007 Real Root Of -301*x^4-585*x^3+702*x^2-734*x-264 2971238387713888 r005 Re(z^2+c),c=-18/23+1/27*I,n=60 2971238398143056 a007 Real Root Of 341*x^4+855*x^3-373*x^2+258*x-90 2971238398972633 a001 1/76*(1/2*5^(1/2)+1/2)^23*521^(15/16) 2971238407769915 a007 Real Root Of -362*x^4-730*x^3+632*x^2-952*x+657 2971238412170192 q001 1/33656 2971238428780159 r009 Im(z^3+c),c=-55/118+17/60*I,n=4 2971238442310426 a001 1/38*64079^(43/51) 2971238445071125 h001 (1/7*exp(1)+3/10)/(5/7*exp(1)+3/8) 2971238451298284 m005 (1/2*Zeta(3)+8/11)/(1/12*exp(1)-2/11) 2971238456953494 m001 (2^(1/3)+BesselI(0,1))^sinh(1) 2971238458566049 a001 29/365435296162*89^(5/17) 2971238466617079 r005 Im(z^2+c),c=-69/122+14/33*I,n=55 2971238474303287 h001 (1/10*exp(1)+7/11)/(3/8*exp(2)+2/7) 2971238481415895 m009 (3/8*Pi^2-5)/(2/5*Psi(1,1/3)+1/3) 2971238488264209 g006 Psi(1,3/10)-Psi(1,5/12)-Psi(1,7/9)-Psi(1,4/9) 2971238489212094 r009 Re(z^3+c),c=-31/98+19/27*I,n=56 2971238490998512 m001 (Kolakoski+Lehmer)/(ln(3)+FeigenbaumMu) 2971238492564640 r009 Im(z^3+c),c=-31/98+6/23*I,n=19 2971238496058922 a008 Real Root of x^4-x^3-26*x^2+6*x+160 2971238505637842 r009 Re(z^3+c),c=-5/118+32/61*I,n=7 2971238516744159 r005 Im(z^2+c),c=11/38+5/38*I,n=26 2971238529818598 r009 Re(z^3+c),c=-14/31+27/52*I,n=56 2971238530947148 k002 Champernowne real with 125/2*n^2-291/2*n+112 2971238544527864 m001 (Mills+QuadraticClass)/(Salem-TreeGrowth2nd) 2971238552357546 a001 47/317811*21^(11/48) 2971238560108718 k003 Champernowne real with 25/3*n^3-45/2*n^2+97/6*n 2971238560609845 a003 sin(Pi*23/111)-sin(Pi*33/92) 2971238571696971 a007 Real Root Of -262*x^4-811*x^3-207*x^2-69*x+769 2971238585622361 m003 -2+(19*Sqrt[5])/64+1/(2*Log[1/2+Sqrt[5]/2]) 2971238591746772 r005 Re(z^2+c),c=-31/110+30/53*I,n=44 2971238592088879 m001 ln(3)/(GAMMA(5/12)^sqrt(3)) 2971238596353325 m001 (Pi*2^(1/2)/GAMMA(3/4)+Magata)/(Niven+Robbin) 2971238610199531 r005 Re(z^2+c),c=-71/110+2/45*I,n=4 2971238612322444 r005 Re(z^2+c),c=-11/34+23/58*I,n=37 2971238631228714 p001 sum((-1)^n/(569*n+88)/n/(512^n),n=1..infinity) 2971238632670535 m001 (-Bloch+MasserGramain)/(gamma(2)-gamma) 2971238635517554 a007 Real Root Of -404*x^4+162*x^3-644*x^2+955*x-228 2971238655073235 r005 Im(z^2+c),c=-5/44+14/23*I,n=15 2971238655859829 m001 (5^(1/2)+BesselJ(0,1))/(-Stephens+Weierstrass) 2971238662093890 r009 Re(z^3+c),c=-13/40+10/51*I,n=17 2971238663484625 m001 (-GAMMA(7/24)+2)/(GAMMA(13/24)+2) 2971238663674223 m008 (5*Pi^6+1/2)/(5/6*Pi-1) 2971238694732014 r005 Im(z^2+c),c=-31/30+29/119*I,n=40 2971238705286301 p004 log(23801/17683) 2971238721918236 a001 17711/123*1364^(13/31) 2971238724530456 m001 (Psi(2,1/3)+Zeta(3))/(Totient+Weierstrass) 2971238725406650 m001 exp(GAMMA(3/4))^2*DuboisRaymond*log(2+sqrt(3)) 2971238735705180 r002 13th iterates of z^2 + 2971238740309971 r008 a(0)=3,K{-n^6,-58+50*n+27*n^2+16*n^3} 2971238747899083 r005 Im(z^2+c),c=25/86+7/54*I,n=64 2971238758692187 a009 1/3*(14*3^(1/2)+5^(1/2))^(1/2)*3^(1/2) 2971238760446676 a001 1322157322203/1597*6557470319842^(14/17) 2971238763631619 r008 a(0)=3,K{-n^6,-12-25*n+59*n^2+13*n^3} 2971238766613107 a007 Real Root Of 652*x^4-462*x^3+766*x^2-665*x+137 2971238766872225 r008 a(0)=3,K{-n^6,-44+35*n+25*n^2+19*n^3} 2971238768418485 r008 a(0)=3,K{-n^6,-6-34*n+62*n^2+13*n^3} 2971238771587822 r009 Re(z^3+c),c=-13/40+10/51*I,n=18 2971238792069497 m001 (-Mills+Stephens)/(exp(Pi)+3^(1/3)) 2971238792725704 r002 5th iterates of z^2 + 2971238797368234 a007 Real Root Of 169*x^4+544*x^3+39*x^2-322*x-203 2971238798425456 r009 Re(z^3+c),c=-6/13+25/51*I,n=55 2971238802448692 m001 (2*Pi/GAMMA(5/6)+Niven)/(Chi(1)+ln(5)) 2971238803866476 m001 (Zeta(1,2)+ErdosBorwein)/(2^(1/2)+Chi(1)) 2971238805514999 m001 (Gompertz+Niven)^Mills 2971238813923961 r005 Re(z^2+c),c=-23/62+8/41*I,n=14 2971238817985066 r005 Re(z^2+c),c=-55/42+1/63*I,n=64 2971238818130165 r005 Re(z^2+c),c=-55/42+1/63*I,n=60 2971238824871511 m005 (1/2*3^(1/2)-1/8)/(5/7*Pi+1/4) 2971238828491426 a007 Real Root Of -199*x^4-402*x^3+777*x^2+533*x-311 2971238831157200 r008 a(0)=3,K{-n^6,-14+29*n^3+10*n^2+10*n} 2971238835844787 a007 Real Root Of -409*x^4-852*x^3+788*x^2-892*x-79 2971238843976546 a007 Real Root Of -304*x^4-969*x^3+209*x^2+987*x-637 2971238850960843 r009 Re(z^3+c),c=-19/46+5/14*I,n=19 2971238857999896 r008 a(0)=3,K{-n^6,12-23*n+14*n^2+32*n^3} 2971238864815668 a001 139583862445/5778*322^(5/6) 2971238869650279 m001 1/Si(Pi)*exp(Niven) 2971238869650279 m001 exp(1)^Niven/Si(Pi) 2971238874903553 r008 a(0)=3,K{-n^6,-30+64*n-43*n^2+44*n^3} 2971238890082436 a003 cos(Pi*29/85)-cos(Pi*19/54) 2971238895745830 m005 (1/2*3^(1/2)-4/5)/(7/9*3^(1/2)+7/8) 2971238898038468 b008 5*(50+3*Pi) 2971238905870186 a001 2207/2*75025^(3/34) 2971238906830162 a007 Real Root Of 370*x^4+915*x^3-948*x^2-928*x+776 2971238917115104 m001 Pi/(ln(Pi)^ThueMorse) 2971238923270845 r005 Re(z^2+c),c=-19/54+4/47*I,n=3 2971238923491200 h001 (7/12*exp(2)+3/11)/(1/3*exp(1)+7/11) 2971238938053097 q001 1343/452 2971238938075474 r008 a(0)=3,K{-n^6,18+58*n^3-61*n^2+20*n} 2971238939862264 r008 a(0)=0,K{-n^6,41-52*n^2+44*n^3+n} 2971238940829432 a001 365435296162/15127*322^(5/6) 2971238941307500 r005 Re(z^2+c),c=-29/78+3/16*I,n=16 2971238944498987 m001 (-arctan(1/3)+sin(1/12*Pi))/(Catalan+Zeta(3)) 2971238946338948 l006 ln(6068/6251) 2971238951919691 a001 956722026041/39603*322^(5/6) 2971238953537738 a001 2504730781961/103682*322^(5/6) 2971238953773808 a001 6557470319842/271443*322^(5/6) 2971238953829536 a001 10610209857723/439204*322^(5/6) 2971238953919707 a001 4052739537881/167761*322^(5/6) 2971238954537746 a001 1548008755920/64079*322^(5/6) 2971238955072511 r008 a(0)=3,K{-n^6,42-10*n-58*n^2+61*n^3} 2971238958773848 a001 591286729879/24476*322^(5/6) 2971238959453285 a001 3461452808002/4181*6557470319842^(14/17) 2971238960006243 p001 sum(1/(457*n+338)/(100^n),n=0..infinity) 2971238961448621 a007 Real Root Of -530*x^4+557*x^3-835*x^2+611*x+274 2971238961449311 r005 Re(z^2+c),c=-13/36+27/46*I,n=30 2971238970668391 m001 (BesselJ(1,1)-KhinchinLevy)/(Kolakoski-Landau) 2971238971712119 r005 Re(z^2+c),c=-79/82+11/60*I,n=28 2971238971927525 r005 Im(z^2+c),c=25/86+7/54*I,n=62 2971238976382300 a007 Real Root Of -997*x^4-441*x^3+612*x^2+866*x-292 2971238987808523 a001 225851433717/9349*322^(5/6) 2971238988487961 a001 9062201101803/10946*6557470319842^(14/17) 2971238992108318 b008 1/18+Cosh[EulerGamma^(-1)] 2971238992724063 a001 23725150497407/28657*6557470319842^(14/17) 2971238995342118 a001 14662949395604/17711*6557470319842^(14/17) 2971239005201032 a007 Real Root Of -348*x^4-779*x^3+529*x^2-574*x+313 2971239006432377 a001 5600748293801/6765*6557470319842^(14/17) 2971239008531052 r005 Re(z^2+c),c=25/82+30/53*I,n=57 2971239010003593 m001 (Zeta(5)-ln(3))/(MertensB1-Riemann2ndZero) 2971239018593966 a001 124/5*144^(2/55) 2971239025491079 m001 (gamma(1)+Bloch)/(CareFree-Riemann1stZero) 2971239026224478 m001 (1-2^(1/3))/(-Shi(1)+ln(Pi)) 2971239026870217 a007 Real Root Of 168*x^4+86*x^3-926*x^2+946*x+148 2971239049804013 a007 Real Root Of 375*x^4+956*x^3-516*x^2-60*x+227 2971239066990413 m006 (3*Pi+5)/(5*Pi^2-4/5) 2971239066990413 m008 (3*Pi+5)/(5*Pi^2-4/5) 2971239082446147 a001 2139295485799/2584*6557470319842^(14/17) 2971239082968734 p004 log(29723/1523) 2971239086211307 r009 Re(z^3+c),c=-55/114+33/58*I,n=54 2971239086320114 r009 Im(z^3+c),c=-33/118+8/29*I,n=15 2971239087850097 a007 Real Root Of -333*x^4-942*x^3+402*x^2+625*x-448 2971239103294903 a007 Real Root Of 390*x^4-770*x^3+376*x^2-463*x-194 2971239104305349 a007 Real Root Of -275*x^4-469*x^3+844*x^2-672*x-317 2971239108636683 s002 sum(A006720[n]/(n^3*pi^n-1),n=1..infinity) 2971239130269702 s002 sum(A093558[n]/(n^2*exp(n)+1),n=1..infinity) 2971239132583284 m001 (GAMMA(2/3)-Zeta(1/2))/(gamma(2)+Zeta(1,2)) 2971239139199183 m001 (BesselJ(1,1)+Mills)/(Tetranacci-Totient) 2971239141709697 m008 (3/5*Pi^4+2/5)/(4/5*Pi^3-5) 2971239152100593 m001 BesselI(0,2)^Grothendieck/MinimumGamma 2971239158617901 m005 (1/2*2^(1/2)-1/7)/(3/4*3^(1/2)+3/5) 2971239161051763 a009 16*10^(1/4)+2^(1/3) 2971239174487828 r005 Re(z^2+c),c=-3/8+7/43*I,n=20 2971239175233195 r005 Im(z^2+c),c=-31/98+25/52*I,n=56 2971239186815166 a001 86267571272/3571*322^(5/6) 2971239189535473 r005 Re(z^2+c),c=29/126+13/32*I,n=21 2971239207775665 r005 Im(z^2+c),c=-1/8+17/42*I,n=18 2971239214880408 a007 Real Root Of -72*x^4+781*x^3+31*x^2+856*x-277 2971239215132654 r005 Im(z^2+c),c=-3/10+28/59*I,n=27 2971239222993785 s002 sum(A045137[n]/(n^2*10^n-1),n=1..infinity) 2971239225178009 r005 Re(z^2+c),c=13/42+25/59*I,n=54 2971239228432931 m001 (BesselI(1,2)+MertensB2)/(2^(1/3)-Psi(1,1/3)) 2971239232694647 r005 Im(z^2+c),c=-9/14+77/229*I,n=57 2971239238350904 r009 Im(z^3+c),c=-13/48+1/44*I,n=3 2971239260183627 a007 Real Root Of -786*x^4-134*x^3+338*x^2+834*x-268 2971239263794586 m001 Sierpinski^(1/2*exp(1/exp(1))*2^(2/3)) 2971239265160600 a007 Real Root Of 261*x^4+808*x^3+6*x^2-497*x-677 2971239275925756 a007 Real Root Of 372*x^4+924*x^3-768*x^2-646*x+105 2971239286116928 m005 (1/2*Pi+5/8)/(9/5+5/2*5^(1/2)) 2971239294996225 q001 1/3365599 2971239295836932 r005 Re(z^2+c),c=-29/86+7/20*I,n=45 2971239297494554 p001 sum((-1)^n/(451*n+336)/(256^n),n=0..infinity) 2971239301087282 m001 (GAMMA(23/24)-LambertW(1))/(Porter+ZetaP(4)) 2971239306394806 h002 exp(11^(1/2)/(4^(3/4)+12^(3/4))^(1/2)) 2971239306461557 m006 (3/5*Pi^2+2/3)/(1/4*Pi^2-1/4) 2971239306461557 m008 (3/5*Pi^2+2/3)/(1/4*Pi^2-1/4) 2971239306652282 h001 (-8*exp(2)-1)/(-5*exp(6)-6) 2971239319204957 p004 log(33353/1709) 2971239320157946 m001 (Magata+Sierpinski)/(5^(1/2)-Ei(1,1)) 2971239330727861 a007 Real Root Of 760*x^4-603*x^3-222*x^2-971*x+318 2971239348503023 a007 Real Root Of -227*x^4-471*x^3+921*x^2+918*x-66 2971239348536485 a001 75025/123*3571^(6/31) 2971239358984447 m001 (2^(1/2)-Zeta(3))/(-MinimumGamma+RenyiParking) 2971239360869036 a003 cos(Pi*21/64)-cos(Pi*34/79) 2971239385575340 a001 15456/41*9349^(7/31) 2971239388481989 r009 Re(z^3+c),c=-13/40+10/51*I,n=22 2971239392646918 a001 2/121393*1346269^(17/32) 2971239394381015 a001 196418/123*15127^(2/31) 2971239395000709 r008 a(0)=3,K{-n^6,-43+7*n^3+62*n^2+9*n} 2971239398758824 r008 a(0)=3,K{-n^6,-33+6*n^3+70*n^2-8*n} 2971239402022684 a007 Real Root Of -313*x^4-838*x^3+220*x^2-314*x-462 2971239406448946 r009 Re(z^3+c),c=-13/40+10/51*I,n=23 2971239407675280 m001 (Cahen-Conway)/(ln(2)+GAMMA(7/12)) 2971239408643307 s002 sum(A025610[n]/((exp(n)-1)/n),n=1..infinity) 2971239408956483 r009 Re(z^3+c),c=-53/122+24/61*I,n=48 2971239410599276 r009 Im(z^3+c),c=-33/118+8/29*I,n=18 2971239412809386 r009 Re(z^3+c),c=-13/40+10/51*I,n=27 2971239412846862 r009 Re(z^3+c),c=-13/40+10/51*I,n=26 2971239413263336 r009 Re(z^3+c),c=-13/40+10/51*I,n=31 2971239413274495 r009 Re(z^3+c),c=-13/40+10/51*I,n=32 2971239413279735 r009 Re(z^3+c),c=-13/40+10/51*I,n=36 2971239413279844 r009 Re(z^3+c),c=-13/40+10/51*I,n=35 2971239413280066 r009 Re(z^3+c),c=-13/40+10/51*I,n=40 2971239413280067 r009 Re(z^3+c),c=-13/40+10/51*I,n=37 2971239413280072 r009 Re(z^3+c),c=-13/40+10/51*I,n=41 2971239413280076 r009 Re(z^3+c),c=-13/40+10/51*I,n=45 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=44 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=46 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=49 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=50 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=54 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=53 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=55 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=58 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=59 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=63 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=64 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=62 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=60 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=61 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=57 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=56 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=52 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=51 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=48 2971239413280077 r009 Re(z^3+c),c=-13/40+10/51*I,n=47 2971239413280078 r009 Re(z^3+c),c=-13/40+10/51*I,n=43 2971239413280078 r009 Re(z^3+c),c=-13/40+10/51*I,n=42 2971239413280090 r009 Re(z^3+c),c=-13/40+10/51*I,n=39 2971239413280143 r009 Re(z^3+c),c=-13/40+10/51*I,n=38 2971239413281592 r009 Re(z^3+c),c=-13/40+10/51*I,n=34 2971239413282497 r009 Re(z^3+c),c=-13/40+10/51*I,n=33 2971239413288722 r009 Re(z^3+c),c=-13/40+10/51*I,n=28 2971239413294147 r009 Re(z^3+c),c=-13/40+10/51*I,n=30 2971239413375535 r009 Re(z^3+c),c=-13/40+10/51*I,n=29 2971239415277414 r009 Re(z^3+c),c=-13/40+10/51*I,n=25 2971239417103361 r009 Re(z^3+c),c=-13/40+10/51*I,n=24 2971239419509040 r009 Im(z^3+c),c=-33/118+8/29*I,n=17 2971239425232077 m001 (5^(1/2)-ZetaQ(2))^HardHexagonsEntropy 2971239426932474 r009 Re(z^3+c),c=-13/40+10/51*I,n=21 2971239434122419 r005 Im(z^2+c),c=-69/122+19/30*I,n=7 2971239443643869 r009 Im(z^3+c),c=-31/98+6/23*I,n=20 2971239450793476 r005 Re(z^2+c),c=-17/46+1/5*I,n=17 2971239451510037 r009 Im(z^3+c),c=-31/98+6/23*I,n=23 2971239452303362 r008 a(0)=3,K{-n^6,-13-24*n+59*n^2+13*n^3} 2971239457146030 r009 Re(z^3+c),c=-13/40+10/51*I,n=19 2971239457738810 s002 sum(A131554[n]/(n^2*exp(n)+1),n=1..infinity) 2971239462149623 a007 Real Root Of 395*x^4-162*x^3-790*x^2-596*x+248 2971239463257256 r008 a(0)=3,K{-n^6,-29+18*n^3+36*n^2+10*n} 2971239466111364 b008 LogIntegral[3/32] 2971239468778822 r005 Re(z^2+c),c=-95/118+4/23*I,n=18 2971239472512691 r008 a(0)=3,K{-n^6,71-18*n^3+13*n^2-32*n} 2971239473456985 a001 4181/123*5778^(16/31) 2971239485448394 r008 a(0)=3,K{-n^6,-41+42*n+9*n^2+25*n^3} 2971239490996556 r009 Im(z^3+c),c=-31/98+6/23*I,n=22 2971239500094818 r009 Im(z^3+c),c=-31/98+6/23*I,n=26 2971239501067401 r009 Im(z^3+c),c=-31/98+6/23*I,n=27 2971239502910957 r009 Im(z^3+c),c=-31/98+6/23*I,n=30 2971239503102372 r009 Im(z^3+c),c=-31/98+6/23*I,n=31 2971239503144530 r009 Im(z^3+c),c=-31/98+6/23*I,n=34 2971239503158546 r009 Im(z^3+c),c=-31/98+6/23*I,n=38 2971239503158832 r009 Im(z^3+c),c=-31/98+6/23*I,n=37 2971239503159192 r009 Im(z^3+c),c=-31/98+6/23*I,n=41 2971239503159220 r009 Im(z^3+c),c=-31/98+6/23*I,n=42 2971239503159242 r009 Im(z^3+c),c=-31/98+6/23*I,n=45 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=46 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=49 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=53 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=52 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=56 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=57 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=60 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=61 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=64 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=63 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=62 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=59 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=58 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=55 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=54 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=48 2971239503159245 r009 Im(z^3+c),c=-31/98+6/23*I,n=50 2971239503159246 r009 Im(z^3+c),c=-31/98+6/23*I,n=51 2971239503159246 r009 Im(z^3+c),c=-31/98+6/23*I,n=47 2971239503159250 r009 Im(z^3+c),c=-31/98+6/23*I,n=44 2971239503159260 r009 Im(z^3+c),c=-31/98+6/23*I,n=43 2971239503159385 r009 Im(z^3+c),c=-31/98+6/23*I,n=40 2971239503159415 r009 Im(z^3+c),c=-31/98+6/23*I,n=39 2971239503159485 r009 Im(z^3+c),c=-31/98+6/23*I,n=35 2971239503162542 r009 Im(z^3+c),c=-31/98+6/23*I,n=36 2971239503165293 r009 Im(z^3+c),c=-31/98+6/23*I,n=33 2971239503221505 r009 Im(z^3+c),c=-31/98+6/23*I,n=32 2971239503531139 r009 Im(z^3+c),c=-31/98+6/23*I,n=29 2971239504079299 r009 Im(z^3+c),c=-31/98+6/23*I,n=28 2971239509027845 r009 Re(z^3+c),c=-3/8+17/61*I,n=7 2971239511539844 r009 Im(z^3+c),c=-31/98+6/23*I,n=24 2971239513779952 r005 Im(z^2+c),c=7/118+39/61*I,n=6 2971239513905592 r009 Im(z^3+c),c=-31/98+6/23*I,n=25 2971239516328000 r002 22th iterates of z^2 + 2971239519019187 r008 a(0)=3,K{-n^6,-15+29*n^3+10*n^2+11*n} 2971239532619949 r008 a(0)=3,K{-n^6,-23+33*n-9*n^2+34*n^3} 2971239533953149 k002 Champernowne real with 63*n^2-147*n+113 2971239537140999 a001 18/17711*987^(14/17) 2971239542080454 r008 a(0)=3,K{-n^6,11-24*n+17*n^2+31*n^3} 2971239544546337 m001 (2^(1/3)+MinimumGamma)/Catalan 2971239547175074 m005 (1/3*Zeta(3)-1/9)/(10/11*3^(1/2)-3/5) 2971239548726787 r009 Re(z^3+c),c=-13/40+10/51*I,n=20 2971239550948954 b008 (5*Cosh[1/7])/17 2971239564109718 k003 Champernowne real with 17/2*n^3-47/2*n^2+18*n-1 2971239571879265 m005 (4/5*Pi+2)/(5/6*gamma-2) 2971239573828630 r008 a(0)=3,K{-n^6,21+39*n^3-2*n^2-23*n} 2971239582942638 r008 a(0)=3,K{-n^6,-21+60*n-53*n^2+49*n^3} 2971239593619102 r008 a(0)=3,K{-n^6,1+49*n^3-42*n^2+27*n} 2971239603452384 a001 817138163596/987*6557470319842^(14/17) 2971239607455966 r008 a(0)=3,K{-n^6,31-18*n-27*n^2+49*n^3} 2971239608213343 r009 Re(z^3+c),c=-1/20+31/53*I,n=37 2971239611313232 k006 concat of cont frac of 2971239613315831 m001 exp(FeigenbaumC)*Khintchine*BesselK(0,1)^2 2971239614518276 r008 a(0)=3,K{-n^6,41-31*n-25*n^2+50*n^3} 2971239616627873 r009 Im(z^3+c),c=-33/118+8/29*I,n=21 2971239630555482 m001 LambertW(1)*Pi^(1/2)*Otter 2971239635555354 r002 55th iterates of z^2 + 2971239636228819 r009 Im(z^3+c),c=-33/118+8/29*I,n=24 2971239636542005 r009 Im(z^3+c),c=-33/118+8/29*I,n=25 2971239636658297 m005 (1/2*3^(1/2)-4/5)/(1/10*2^(1/2)-4/11) 2971239636977573 r009 Im(z^3+c),c=-33/118+8/29*I,n=28 2971239637027105 r009 Im(z^3+c),c=-33/118+8/29*I,n=31 2971239637028696 r009 Im(z^3+c),c=-33/118+8/29*I,n=32 2971239637029553 r009 Im(z^3+c),c=-33/118+8/29*I,n=35 2971239637029675 r009 Im(z^3+c),c=-33/118+8/29*I,n=38 2971239637029681 r009 Im(z^3+c),c=-33/118+8/29*I,n=39 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=42 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=41 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=45 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=46 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=49 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=48 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=52 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=53 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=55 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=56 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=59 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=62 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=63 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=64 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=60 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=61 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=58 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=57 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=54 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=51 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=50 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=47 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=44 2971239637029682 r009 Im(z^3+c),c=-33/118+8/29*I,n=43 2971239637029684 r009 Im(z^3+c),c=-33/118+8/29*I,n=40 2971239637029701 r009 Im(z^3+c),c=-33/118+8/29*I,n=37 2971239637029703 r009 Im(z^3+c),c=-33/118+8/29*I,n=36 2971239637029719 r009 Im(z^3+c),c=-33/118+8/29*I,n=34 2971239637030354 r009 Im(z^3+c),c=-33/118+8/29*I,n=33 2971239637034112 r009 Im(z^3+c),c=-33/118+8/29*I,n=29 2971239637038150 r009 Im(z^3+c),c=-33/118+8/29*I,n=30 2971239637065796 r009 Im(z^3+c),c=-33/118+8/29*I,n=27 2971239637235770 r009 Im(z^3+c),c=-33/118+8/29*I,n=22 2971239637276545 r009 Im(z^3+c),c=-33/118+8/29*I,n=26 2971239639880576 r005 Re(z^2+c),c=-29/86+7/20*I,n=48 2971239640666097 r009 Im(z^3+c),c=-33/118+8/29*I,n=23 2971239643122002 l006 ln(448/603) 2971239645636976 a007 Real Root Of 525*x^4-376*x^3-265*x^2-890*x-255 2971239650488736 r005 Im(z^2+c),c=-113/94+1/25*I,n=63 2971239659642903 r009 Im(z^3+c),c=-33/118+8/29*I,n=20 2971239677547943 h001 (3/7*exp(2)+2/11)/(1/5*exp(1)+7/12) 2971239681511411 r005 Im(z^2+c),c=-23/94+37/49*I,n=30 2971239687047548 r005 Re(z^2+c),c=-47/122+3/46*I,n=8 2971239687522858 m001 (ln(gamma)+gamma(1))/(Robbin-ZetaP(2)) 2971239690758833 r005 Re(z^2+c),c=-7/32+41/59*I,n=48 2971239692850892 m001 TwinPrimes^2*GaussAGM(1,1/sqrt(2))*ln(sqrt(5)) 2971239693883719 m001 (Khinchin+Niven)/(ln(2^(1/2)+1)+Gompertz) 2971239705213269 b008 7+E-E^8 2971239712700961 a001 123/196418*2584^(28/57) 2971239715211875 r005 Im(z^2+c),c=-49/38+1/38*I,n=25 2971239716579958 a007 Real Root Of 122*x^4+399*x^3+424*x^2+990*x+156 2971239718197321 k006 concat of cont frac of 2971239723815213 r009 Im(z^3+c),c=-33/118+8/29*I,n=19 2971239733103468 b008 6+E^3+Sinh[2] 2971239734114640 a007 Real Root Of -353*x^4-966*x^3-337*x^2+787*x+241 2971239737059568 a007 Real Root Of 134*x^4+38*x^3-953*x^2+361*x+39 2971239737134374 m001 (Lehmer-Magata)/(BesselI(1,2)-Cahen) 2971239737809831 r009 Im(z^3+c),c=-31/98+6/23*I,n=21 2971239739459069 m007 (-1/2*gamma-ln(2)+1)/(-3*gamma-6*ln(2)-1/4) 2971239749674273 m001 (GAMMA(3/4)+Sierpinski)/GlaisherKinkelin 2971239750356823 r005 Re(z^2+c),c=-5/48+35/47*I,n=12 2971239751573606 m001 Robbin^2/FeigenbaumC/ln(sqrt(5)) 2971239771860994 r004 Im(z^2+c),c=5/42+5/18*I,z(0)=I,n=19 2971239772754966 m001 1/PisotVijayaraghavan/exp(Khintchine)*gamma 2971239781718531 a001 4181/123*2207^(18/31) 2971239786871404 a007 Real Root Of -809*x^4+585*x^3+839*x^2+629*x-270 2971239790402460 m005 (5*Pi+1/5)/(1/4*Pi-1/4) 2971239790402460 m006 (1/5/Pi+5)/(1/4/Pi-1/4) 2971239790402460 m008 (5*Pi+1/5)/(1/4*Pi-1/4) 2971239792222476 a007 Real Root Of 276*x^4+676*x^3-571*x^2-137*x+855 2971239800995675 a007 Real Root Of 28*x^4+830*x^3-57*x^2+34*x+256 2971239814707905 a007 Real Root Of -132*x^4+106*x^3-871*x^2+940*x+360 2971239816963965 a007 Real Root Of 857*x^4-687*x^3+397*x^2-886*x-323 2971239817540602 r009 Re(z^3+c),c=-47/114+21/59*I,n=19 2971239820899284 m002 -E^Pi+Tanh[Pi]+(Pi^6*Tanh[Pi])/3 2971239841611884 a001 1/9348*(1/2*5^(1/2)+1/2)^17*123^(19/21) 2971239856902373 r009 Re(z^3+c),c=-17/38+22/53*I,n=57 2971239858212704 r009 Re(z^3+c),c=-43/114+18/61*I,n=20 2971239872491605 m001 exp(GAMMA(13/24))/FibonacciFactorial/sqrt(2) 2971239873330247 r005 Im(z^2+c),c=-9/122+11/30*I,n=5 2971239878649897 a007 Real Root Of 236*x^4+831*x^3+675*x^2+847*x-38 2971239882682808 h005 exp(cos(Pi*11/35)+cos(Pi*15/47)) 2971239897858152 a001 51841/72*89^(6/19) 2971239905829856 m001 (-Kac+Mills)/(Catalan+exp(1/Pi)) 2971239912810318 a003 sin(Pi*12/71)-sin(Pi*30/101) 2971239912968596 s001 sum(exp(-Pi)^(n-1)*A105131[n],n=1..infinity) 2971239915936578 a005 (1/cos(47/187*Pi))^95 2971239916132600 m001 (Zeta(1/2)+Cahen)/(GlaisherKinkelin+Porter) 2971239916877769 m005 (1/3*3^(1/2)-1/10)/(9/11*Catalan+6/7) 2971239916979554 r009 Re(z^3+c),c=-53/110+29/61*I,n=60 2971239919119899 r005 Re(z^2+c),c=-19/60+16/39*I,n=20 2971239919455540 m001 arctan(1/3)-HardyLittlewoodC3^Shi(1) 2971239922149696 a007 Real Root Of 291*x^4+571*x^3-891*x^2-77*x-65 2971239925565203 a007 Real Root Of 184*x^4+748*x^3+571*x^2+213*x+872 2971239940814008 m002 -Pi^9+Pi^4*Coth[Pi]-ProductLog[Pi] 2971239955862379 r005 Im(z^2+c),c=-35/31+9/38*I,n=44 2971239962084141 m001 Salem^2/ln(Lehmer)^2*sin(Pi/5) 2971239978241442 m005 (1/2*Pi+2/5)/(7/12*gamma-1) 2971239982978878 m001 (Gompertz+RenyiParking)/(Catalan-arctan(1/2)) 2971240004912224 r004 Re(z^2+c),c=-13/38+1/3*I,z(0)=-1,n=23 2971240010075282 r005 Im(z^2+c),c=-83/82+11/42*I,n=59 2971240012644099 m002 -1-(4*Pi^2)/5+Pi^5 2971240013905475 a001 3/1346269*17711^(1/34) 2971240020192656 a008 Real Root of x^4-x^3+22*x^2-72*x-32 2971240021911460 a007 Real Root Of 351*x^4-695*x^3+338*x^2-906*x-320 2971240037603457 a001 18/12586269025*12586269025^(14/17) 2971240037603499 a001 1/829464*3524578^(14/17) 2971240041454991 r008 a(0)=3,K{-n^6,97+26*n^3-84*n^2-5*n} 2971240042052694 m004 25*Sqrt[5]*Pi+(125*Sinh[Sqrt[5]*Pi])/(8*Pi) 2971240042711487 r005 Im(z^2+c),c=11/70+1/4*I,n=8 2971240050032712 r008 a(0)=3,K{-n^6,-44+2*n^3+77*n^2} 2971240066771559 a007 Real Root Of -860*x^4+946*x^3-693*x^2+903*x+361 2971240075874289 h001 (10/11*exp(1)+1/3)/(1/7*exp(1)+5/9) 2971240084814699 a001 1/322*(1/2*5^(1/2)+1/2)^4*76^(14/23) 2971240092276910 r008 a(0)=3,K{-n^6,-48+10*n^3+51*n^2+22*n} 2971240092300095 m001 (-ln(3)+HardyLittlewoodC5)/(cos(1/5*Pi)-gamma) 2971240098661302 m005 (-13/44+1/4*5^(1/2))/(4/7*Catalan+4/11) 2971240098812482 h001 (-4*exp(1/2)+2)/(-9*exp(1)+9) 2971240101556361 r008 a(0)=3,K{-n^6,51+10*n-15*n^2-12*n^3} 2971240102197934 r009 Im(z^3+c),c=-45/118+15/64*I,n=4 2971240102707742 a007 Real Root Of -950*x^4+379*x^3+171*x^2+191*x+59 2971240118581692 a007 Real Root Of -686*x^4+562*x^3-728*x^2+507*x+235 2971240125492390 r005 Re(z^2+c),c=4/25+7/17*I,n=9 2971240126504729 r005 Im(z^2+c),c=-15/22+27/97*I,n=62 2971240129668308 r005 Im(z^2+c),c=-11/114+13/34*I,n=5 2971240137452751 h001 (-7*exp(1)-12)/(-5*exp(3)-4) 2971240137559487 r008 a(0)=3,K{-n^6,-18+14*n^3+54*n^2-15*n} 2971240146808244 r008 a(0)=3,K{-n^6,-30+18*n^3+36*n^2+11*n} 2971240148745085 m001 (ln(3)-ln(Pi))/(polylog(4,1/2)+MertensB2) 2971240149276165 r005 Im(z^2+c),c=-5/22+1/23*I,n=4 2971240162472736 r005 Re(z^2+c),c=-45/122+8/39*I,n=28 2971240167555200 a007 Real Root Of 236*x^4+639*x^3-586*x^2-992*x+594 2971240169041990 r005 Im(z^2+c),c=3/62+8/25*I,n=14 2971240171495425 m005 (1/3*Pi-2/11)/(1/6*Zeta(3)+1/11) 2971240183449875 r008 a(0)=3,K{-n^6,53+7*n-14*n^2-12*n^3} 2971240188601256 m001 1/Lehmer/GolombDickman^2/exp(GAMMA(1/3)) 2971240191711704 m008 (1/5*Pi+4/5)/(5*Pi^6+1/5) 2971240193459259 m005 (1/2*exp(1)+1/6)/(-13/40+3/8*5^(1/2)) 2971240193608211 a008 Real Root of x^3-x^2+14*x-59 2971240195643796 r005 Im(z^2+c),c=-8/11+2/57*I,n=8 2971240198134968 r008 a(0)=3,K{-n^6,-34+43*n-5*n^2+31*n^3} 2971240198941126 r005 Im(z^2+c),c=29/82+19/60*I,n=41 2971240223805934 m001 1/cosh(1)/GAMMA(19/24)*exp(sin(1))^2 2971240233111414 m001 (Catalan+ln(3))/(-3^(1/3)+LandauRamanujan) 2971240240172515 r002 4th iterates of z^2 + 2971240241423721 r008 a(0)=3,K{-n^6,-8+20*n-16*n^2+39*n^3} 2971240242755049 m001 (-GAMMA(11/12)+ZetaP(2))/(BesselK(0,1)+ln(5)) 2971240251999724 r008 a(0)=3,K{-n^6,-30+46*n^3-48*n^2+67*n} 2971240255117665 r009 Im(z^3+c),c=-31/98+6/23*I,n=18 2971240262656055 a007 Real Root Of 48*x^4-20*x^3-305*x^2+416*x-337 2971240273266808 r005 Im(z^2+c),c=1/98+16/47*I,n=17 2971240283713270 r005 Re(z^2+c),c=-35/118+29/61*I,n=46 2971240300448196 r005 Im(z^2+c),c=-31/102+29/61*I,n=27 2971240300615997 h001 (3/5*exp(2)+9/11)/(7/12*exp(1)+2/11) 2971240308874880 r005 Re(z^2+c),c=-29/86+7/20*I,n=41 2971240308981886 r005 Im(z^2+c),c=-15/22+1/29*I,n=39 2971240316083068 r008 a(0)=3,K{-n^6,46+57*n^3-43*n^2-25*n} 2971240317976071 a007 Real Root Of 300*x^4+653*x^3-872*x^2-503*x-49 2971240319113422 m005 (1/2*Pi+3/5)/(1/9*exp(1)+3/7) 2971240322987339 a007 Real Root Of -81*x^4+32*x^3+611*x^2-719*x-378 2971240338847039 r005 Re(z^2+c),c=-55/42+1/63*I,n=56 2971240342718193 r008 a(0)=3,K{-n^6,58+67*n^3-67*n^2-23*n} 2971240347558541 a001 86267571272/521*322^(1/2) 2971240351851229 r005 Re(z^2+c),c=-31/46+33/50*I,n=3 2971240352682469 a007 Real Root Of -238*x^4-829*x^3-193*x^2+374*x-381 2971240358418338 m006 (3/5*ln(Pi)-3)/(1/4*exp(Pi)+2) 2971240366330710 r005 Re(z^2+c),c=-29/86+7/20*I,n=50 2971240369589786 a001 1/6624*75025^(25/37) 2971240372632229 m005 (1/3*2^(1/2)-1/12)/(3/7*2^(1/2)+7/10) 2971240375716751 p004 log(30469/22637) 2971240381479157 a007 Real Root Of -726*x^4+343*x^3-610*x^2-32*x+59 2971240389607325 a003 cos(Pi*5/86)-cos(Pi*7/27) 2971240402337823 m001 (GAMMA(2/3)-Si(Pi))/(Ei(1,1)+Backhouse) 2971240405655899 a007 Real Root Of 256*x^4+743*x^3-325*x^2-781*x+86 2971240420932137 r005 Re(z^2+c),c=-29/86+7/20*I,n=53 2971240425378625 a008 Real Root of x^4+5*x^2-32*x-27 2971240427234848 r008 a(0)=3,K{-n^6,25+6*n^3-29*n^2+36*n} 2971240427981285 r005 Im(z^2+c),c=35/118+4/33*I,n=45 2971240450868087 r005 Re(z^2+c),c=-19/32+22/63*I,n=14 2971240454542953 m001 FeigenbaumB*(2^(1/2)-Shi(1)) 2971240457914607 a007 Real Root Of -78*x^4-119*x^3+92*x^2-469*x+752 2971240467132461 r005 Re(z^2+c),c=-1+41/231*I,n=22 2971240486571894 a001 1364/591286729879*317811^(13/23) 2971240494559612 r005 Re(z^2+c),c=-29/86+7/20*I,n=46 2971240501317087 m001 KhinchinHarmonic/(GaussAGM-StronglyCareFree) 2971240504241731 r009 Im(z^3+c),c=-37/86+4/21*I,n=18 2971240505833882 r005 Im(z^2+c),c=-17/12+4/83*I,n=14 2971240517409746 m001 ln(2+3^(1/2))*(Kolakoski+MinimumGamma) 2971240522476701 m005 (1/2*Pi-1/6)/(5/8*gamma-5/6) 2971240535076479 a001 2/9349*29^(4/41) 2971240536959150 k002 Champernowne real with 127/2*n^2-297/2*n+114 2971240550827702 a001 32951280099/1364*322^(5/6) 2971240554549146 m001 GAMMA(1/12)^2/ln(Champernowne)/GAMMA(5/12) 2971240557474088 r005 Im(z^2+c),c=-33/46+10/47*I,n=60 2971240558944577 m001 1/exp(sin(Pi/5))/Artin*sqrt(2)^2 2971240566990233 r005 Re(z^2+c),c=-29/110+27/49*I,n=51 2971240569683127 g001 Re(GAMMA(53/20+I*43/15)) 2971240572208642 v002 sum(1/(2^n*(29/2*n^2+15/2*n-2)),n=1..infinity) 2971240575926805 r005 Im(z^2+c),c=-33/106+29/52*I,n=11 2971240583796994 a007 Real Root Of -92*x^4-59*x^3+458*x^2-683*x-450 2971240587055824 r005 Re(z^2+c),c=-29/86+7/20*I,n=55 2971240593367237 b008 4/5+Sqrt[33/7] 2971240594361600 r005 Re(z^2+c),c=-29/86+7/20*I,n=51 2971240594400785 r005 Re(z^2+c),c=-29/86+7/20*I,n=58 2971240596577387 s001 sum(exp(-2*Pi/5)^n*A034819[n],n=1..infinity) 2971240596577387 s002 sum(A034819[n]/(exp(2/5*pi*n)),n=1..infinity) 2971240618917880 r005 Re(z^2+c),c=-15/58+31/49*I,n=59 2971240620834066 a009 1/19*(5+19*2^(1/2))^(1/2) 2971240628613674 m005 (1/2*Zeta(3)-6/11)/(9/11*Pi-7/10) 2971240629275790 r005 Re(z^2+c),c=-29/86+7/20*I,n=56 2971240632278621 r005 Re(z^2+c),c=-29/86+7/20*I,n=60 2971240632863188 r005 Re(z^2+c),c=-29/86+7/20*I,n=63 2971240636495307 r005 Im(z^2+c),c=-33/122+27/59*I,n=20 2971240639800491 r005 Re(z^2+c),c=-29/86+7/20*I,n=61 2971240643638613 r005 Im(z^2+c),c=-3/13+13/29*I,n=49 2971240645122029 l006 ln(9417/9701) 2971240649478812 m005 (1/2*Zeta(3)+1/4)/(7/9*exp(1)+3/4) 2971240650758760 r005 Re(z^2+c),c=-29/86+7/20*I,n=64 2971240654819135 r005 Re(z^2+c),c=-29/86+7/20*I,n=62 2971240659678919 r009 Re(z^3+c),c=-37/118+11/64*I,n=7 2971240664364215 r009 Im(z^3+c),c=-39/86+9/53*I,n=37 2971240669283627 r005 Re(z^2+c),c=-8/21+5/47*I,n=23 2971240676164771 r005 Re(z^2+c),c=-29/86+7/20*I,n=59 2971240677716138 m001 BesselI(1,2)*Otter+Riemann3rdZero 2971240682008266 r005 Re(z^2+c),c=-29/86+7/20*I,n=36 2971240682262882 s002 sum(A242859[n]/(n^3*exp(n)+1),n=1..infinity) 2971240684105017 r005 Re(z^2+c),c=-67/56+7/26*I,n=6 2971240692015766 r005 Re(z^2+c),c=-29/86+7/20*I,n=57 2971240727684433 r005 Im(z^2+c),c=-15/44+24/49*I,n=63 2971240729862525 r008 a(0)=3,K{-n^6,-45+2*n^3+77*n^2+n} 2971240731901163 a001 32951280099/2207*322^(11/12) 2971240732994783 a007 Real Root Of 248*x^4+879*x^3+244*x^2-655*x-372 2971240735184920 p001 sum(1/(483*n+341)/(32^n),n=0..infinity) 2971240760319339 m001 MinimumGamma*(GAMMA(19/24)+Thue) 2971240764360801 r008 a(0)=3,K{-n^6,-45+8*n^3+59*n^2+13*n} 2971240782430371 a001 969323029/377*6557470319842^(16/17) 2971240782430371 a001 2139295485799/377*1836311903^(16/17) 2971240786187020 r005 Im(z^2+c),c=-13/18+17/92*I,n=41 2971240787223011 r008 a(0)=3,K{-n^6,-61+51*n+30*n^2+15*n^3} 2971240788014612 r002 27th iterates of z^2 + 2971240793895830 r005 Re(z^2+c),c=-29/86+7/20*I,n=54 2971240797288796 r009 Im(z^3+c),c=-37/78+7/48*I,n=24 2971240816284864 r008 a(0)=3,K{-n^6,-13-25*n+60*n^2+13*n^3} 2971240827875054 a007 Real Root Of -940*x^4+154*x^3+610*x^2+614*x-233 2971240854009578 r005 Re(z^2+c),c=-29/86+7/20*I,n=52 2971240854203419 r005 Im(z^2+c),c=-5/17+29/61*I,n=29 2971240860685402 r005 Re(z^2+c),c=-21/62+19/55*I,n=23 2971240865886215 r008 a(0)=3,K{-n^6,15-53*n+53*n^2+20*n^3} 2971240876133446 r008 a(0)=3,K{-n^6,-17+11*n+13*n^2+28*n^3} 2971240881105538 r008 a(0)=3,K{-n^6,-15+29*n^3+11*n^2+10*n} 2971240882020743 r009 Re(z^3+c),c=-55/126+16/31*I,n=30 2971240883456121 m001 (-Landau+Salem)/(exp(1)-sin(1/5*Pi)) 2971240884388424 m005 (1/2*3^(1/2)+4/7)/(1/6*5^(1/2)+1/9) 2971240892266619 a008 Real Root of x^4-3*x^2-19*x+5 2971240893992753 a003 cos(Pi*19/58)-cos(Pi*46/107) 2971240897834552 r008 a(0)=3,K{-n^6,-35+56*n-23*n^2+37*n^3} 2971240905813073 r008 a(0)=3,K{-n^6,-33+57*n-28*n^2+39*n^3} 2971240919084855 m001 (Landau-Trott)/(gamma(2)-Grothendieck) 2971240922145203 a007 Real Root Of -273*x^4-608*x^3+295*x^2-854*x+187 2971240926222896 m001 exp(GAMMA(11/24))/ArtinRank2/gamma^2 2971240929392374 r008 a(0)=3,K{-n^6,-31+46*n^3-48*n^2+68*n} 2971240940653248 p004 log(17203/12781) 2971240941985267 r005 Im(z^2+c),c=-13/38+24/49*I,n=56 2971240942715854 m001 1/cos(Pi/12)*(3^(1/3))/ln(sqrt(1+sqrt(3))) 2971240948847383 m005 (1/3*gamma-1/2)/(3/8*Pi-1/7) 2971240950313422 m001 (Chi(1)+3^(1/3))/(Lehmer+ZetaP(3)) 2971240970664947 r008 a(0)=3,K{-n^6,27-9*n-34*n^2+51*n^3} 2971240971522019 r008 a(0)=3,K{-n^6,35-23*n-27*n^2+50*n^3} 2971240976097212 m001 (DuboisRaymond+Porter)/(ln(gamma)+gamma(2)) 2971240980768796 r008 a(0)=3,K{-n^6,3+59*n^3-70*n^2+43*n} 2971240988957507 r002 10th iterates of z^2 + 2971240992161982 a007 Real Root Of 419*x^4+909*x^3+563*x^2-565*x-197 2971240992763054 m005 (1/3*Zeta(3)+1/10)/(71/70+3/10*5^(1/2)) 2971240993030073 a007 Real Root Of -35*x^4+2*x^3+553*x^2+531*x-524 2971241002150977 p002 log(13^(11/12)+14^(5/6)) 2971241004467652 m005 (1/2*Pi+7/11)/(2/9*2^(1/2)+3/7) 2971241004507810 r009 Re(z^3+c),c=-5/27+58/59*I,n=64 2971241008235095 a005 (1/cos(12/227*Pi))^411 2971241019125126 r008 a(0)=3,K{-n^6,57+67*n^3-67*n^2-22*n} 2971241021499049 h001 (5/6*exp(2)+4/5)/(5/7*exp(1)+2/5) 2971241022378202 m001 (-gamma(2)+Sarnak)/(BesselI(0,1)+Zeta(3)) 2971241023744384 m005 (1/2*exp(1)-6/7)/(5/9*3^(1/2)+8/11) 2971241034964324 s002 sum(A147030[n]/(n^3*2^n-1),n=1..infinity) 2971241037927027 a007 Real Root Of -18*x^4-560*x^3-775*x^2-778*x+669 2971241044041079 m001 BesselK(0,1)*Tribonacci/ln(sinh(1))^2 2971241045869640 r009 Re(z^3+c),c=-9/46+47/50*I,n=14 2971241053845863 a007 Real Root Of 111*x^4+320*x^3-176*x^2-330*x+316 2971241053898275 a007 Real Root Of 15*x^4-583*x^3+920*x^2-680*x+136 2971241055934062 a001 34/710647*521^(33/50) 2971241060300478 a007 Real Root Of -242*x^4+952*x^3+328*x^2+522*x+153 2971241060649863 q001 1/3365597 2971241094447261 m001 (3^(1/2)-Psi(1,1/3))/(-cos(1)+sin(1/12*Pi)) 2971241106308748 r005 Im(z^2+c),c=11/64+8/33*I,n=14 2971241111221191 k006 concat of cont frac of 2971241119010084 r008 a(0)=3,K{-n^6,50-12*n} 2971241120540249 h002 exp(1/10*(2+10^(1/3)*7^(1/4))^(1/2)*10^(2/3)) 2971241122112211 k008 concat of cont frac of 2971241122803998 m001 gamma(1)^HardyLittlewoodC4*gamma(1)^MertensB2 2971241126778739 a003 -3/2-cos(4/9*Pi)-cos(2/21*Pi)-cos(7/18*Pi) 2971241142094741 m001 Shi(1)*(ln(gamma)+ReciprocalFibonacci) 2971241145737572 r009 Im(z^3+c),c=-33/118+8/29*I,n=16 2971241152575952 m001 PlouffeB/Catalan/ZetaP(3) 2971241161949909 p001 sum((-1)^n/(571*n+86)/n/(512^n),n=1..infinity) 2971241186815394 r009 Im(z^3+c),c=-16/31+3/7*I,n=20 2971241188208889 r005 Re(z^2+c),c=-13/50+34/59*I,n=61 2971241200409486 m001 1/exp(FeigenbaumB)/LaplaceLimit^2*sqrt(3)^2 2971241212142141 k007 concat of cont frac of 2971241237629897 m001 1/Zeta(5)^2/exp(Kolakoski)/sqrt(2) 2971241252907566 a001 43133785636/2889*322^(11/12) 2971241253545695 l006 ln(31/605) 2971241256684359 r005 Re(z^2+c),c=-55/42+1/63*I,n=52 2971241263091547 h003 exp(Pi*(3*23^(1/2)-3*2^(1/3))) 2971241267006397 m001 (1+3^(1/2))^(1/2)-GAMMA(2/3)-ZetaQ(4) 2971241269156176 m005 (1/2*3^(1/2)-5/7)/(3/11*2^(1/2)+1/8) 2971241294914400 a007 Real Root Of 79*x^4+23*x^3-890*x^2-475*x+892 2971241316403064 a007 Real Root Of 238*x^4+522*x^3-546*x^2+50*x+112 2971241318430195 m001 TreeGrowth2nd*exp(Porter)^2*Ei(1)^2 2971241327211237 k006 concat of cont frac of 2971241328921391 a001 32264490531/2161*322^(11/12) 2971241332553186 m001 (-ArtinRank2+CareFree)/(exp(Pi)+Ei(1,1)) 2971241338379897 r005 Re(z^2+c),c=-29/86+7/20*I,n=49 2971241339212404 m004 -3+Cos[Sqrt[5]*Pi]/6+3*Log[Sqrt[5]*Pi] 2971241340011659 a001 591286729879/39603*322^(11/12) 2971241341629707 a001 774004377960/51841*322^(11/12) 2971241341865778 a001 4052739537881/271443*322^(11/12) 2971241341900220 a001 1515744265389/101521*322^(11/12) 2971241341921506 a001 3278735159921/219602*322^(11/12) 2971241342011677 a001 2504730781961/167761*322^(11/12) 2971241342629716 a001 956722026041/64079*322^(11/12) 2971241346865822 a001 182717648081/12238*322^(11/12) 2971241373863393 m001 BesselJ(1,1)*exp(ErdosBorwein)*GAMMA(2/3) 2971241375900521 a001 139583862445/9349*322^(11/12) 2971241376978789 a007 Real Root Of 124*x^4-763*x^3-454*x^2-740*x+279 2971241386401624 m002 -Pi^9+Cosh[Pi]+Pi^4/Log[Pi] 2971241389777981 m002 -6+Log[Pi]/ProductLog[Pi]+3*Sinh[Pi] 2971241396405713 r008 a(0)=3,K{-n^6,31+19*n-25*n^2+11*n^3} 2971241397408798 r005 Re(z^2+c),c=5/34+29/45*I,n=13 2971241402913589 r008 a(0)=3,K{-n^6,-96+10*n^3+28*n^2+93*n} 2971241413241158 a003 cos(Pi*6/95)-sin(Pi*17/71) 2971241417245164 r005 Re(z^2+c),c=-31/114+29/55*I,n=40 2971241421661944 r005 Im(z^2+c),c=3/22+10/33*I,n=4 2971241433844724 r002 3th iterates of z^2 + 2971241435888673 a007 Real Root Of 539*x^4-865*x^3+195*x^2-767*x-272 2971241438499060 r005 Re(z^2+c),c=7/18+8/23*I,n=35 2971241438854816 r008 a(0)=3,K{-n^6,-46+8*n^3+59*n^2+14*n} 2971241461398149 r008 a(0)=3,K{-n^6,-38+8*n+54*n^2+11*n^3} 2971241462753118 a007 Real Root Of -431*x^4-507*x^3-878*x^2+964*x+354 2971241480827659 r005 Re(z^2+c),c=11/74+14/43*I,n=30 2971241488259845 m002 -E^Pi/2+Pi^5+Pi^3*Sech[Pi] 2971241490036239 h001 (3/10*exp(2)+11/12)/(1/4*exp(1)+3/8) 2971241491663265 r008 a(0)=3,K{-n^6,-18+14*n^3+55*n^2-16*n} 2971241496224234 r008 a(0)=3,K{-n^6,-60+63*n+10*n^2+22*n^3} 2971241500643864 r008 a(0)=3,K{-n^6,-30+18*n^3+37*n^2+10*n} 2971241512043020 m001 Sierpinski^2*PisotVijayaraghavan/ln(sin(1))^2 2971241515601113 m002 -Pi^9+Pi^4*Tanh[Pi]^2 2971241515722191 k008 concat of cont frac of 2971241531911511 a003 cos(Pi*7/103)-cos(Pi*6/83) 2971241535539588 r009 Im(z^3+c),c=-59/98+15/64*I,n=13 2971241536078801 m001 (3^(1/3))^(ErdosBorwein/cos(1)) 2971241539147030 r008 a(0)=3,K{-n^6,14-52*n+53*n^2+20*n^3} 2971241539965151 k002 Champernowne real with 64*n^2-150*n+115 2971241543591379 r008 a(0)=3,K{-n^6,-18+47*n+50*n^2-45*n^3} 2971241557028858 r005 Re(z^2+c),c=-29/86+7/20*I,n=47 2971241564563015 r002 37th iterates of z^2 + 2971241572111719 k003 Champernowne real with 53/6*n^3-51/2*n^2+65/3*n-3 2971241574907323 a001 53316291173/3571*322^(11/12) 2971241584082599 r008 a(0)=3,K{-n^6,12-23*n+13*n^2+33*n^3} 2971241590266912 m001 (Sierpinski+Tetranacci)/(2^(1/3)+sin(1/12*Pi)) 2971241591158659 a007 Real Root Of 320*x^4+664*x^3-634*x^2+875*x+674 2971241593478402 a001 1/7*233^(47/48) 2971241595764687 r008 a(0)=3,K{-n^6,4-n-6*n^2+38*n^3} 2971241596859772 a007 Real Root Of 480*x^4-985*x^3+381*x^2-457*x-199 2971241624402988 m005 (1/2*2^(1/2)+1/10)/(11/12*5^(1/2)+2/3) 2971241625982796 r008 a(0)=3,K{-n^6,-24+53*n^3-65*n^2+71*n} 2971241649573826 m001 (BesselJ(0,1)-Tribonacci)/(Trott2nd+ZetaQ(3)) 2971241654458648 a007 Real Root Of -126*x^4-397*x^3-105*x^2-364*x-748 2971241663238227 a001 2/5*196418^(32/59) 2971241664789574 r002 13th iterates of z^2 + 2971241669303400 r009 Im(z^3+c),c=-35/66+14/59*I,n=30 2971241674698070 r005 Im(z^2+c),c=13/27+2/57*I,n=4 2971241675142036 r008 a(0)=3,K{-n^6,42-10*n-59*n^2+62*n^3} 2971241675460536 s002 sum(A257075[n]/(exp(n)),n=1..infinity) 2971241677337419 r005 Re(z^2+c),c=-27/94+31/64*I,n=26 2971241690782418 r005 Re(z^2+c),c=-13/34+4/43*I,n=13 2971241698245143 a001 123/10946*144^(9/46) 2971241715070899 m001 1/GAMMA(11/24)*BesselK(0,1)^2*exp(sinh(1)) 2971241717437662 r005 Re(z^2+c),c=-33/86+3/47*I,n=14 2971241717783114 r005 Re(z^2+c),c=-8/27+10/17*I,n=63 2971241718901433 a007 Real Root Of 783*x^4-108*x^3+557*x^2-942*x-338 2971241722540577 m001 (-MadelungNaCl+Paris)/(Artin-Psi(2,1/3)) 2971241741821814 m005 (1/2*Zeta(3)+5/9)/(4/11*2^(1/2)-1/8) 2971241754218008 r009 Re(z^3+c),c=-37/78+5/11*I,n=58 2971241756137313 r005 Re(z^2+c),c=-37/102+6/25*I,n=31 2971241760458997 m001 (ln(Pi)+3^(1/3))/(QuadraticClass-Trott) 2971241762079194 r005 Im(z^2+c),c=-17/58+17/36*I,n=53 2971241776437332 r009 Re(z^3+c),c=-37/94+6/19*I,n=10 2971241783955488 r002 55th iterates of z^2 + 2971241830065359 q001 2273/765 2971241835257628 a001 3571/55*121393^(11/12) 2971241850585027 a001 3571/1548008755920*317811^(13/23) 2971241862713553 a001 41/105937*4181^(11/45) 2971241873576850 a007 Real Root Of -19*x^4-536*x^3+855*x^2+238*x+779 2971241882655570 l006 ln(7405/9967) 2971241882882914 m001 (-Mills+Porter)/(Psi(2,1/3)+Zeta(5)) 2971241894882350 a001 7*(1/2*5^(1/2)+1/2)^21*18^(4/21) 2971241913214619 r005 Re(z^2+c),c=-27/70+27/59*I,n=13 2971241914862221 r005 Re(z^2+c),c=-27/86+23/54*I,n=38 2971241930455258 a007 Real Root Of -876*x^4-874*x^3+169*x^2+962*x-271 2971241954510710 h001 (1/4*exp(1)+1/3)/(4/9*exp(2)+1/8) 2971241959596728 r005 Im(z^2+c),c=-15/22+5/83*I,n=53 2971241968417728 a007 Real Root Of 940*x^4+678*x^3+725*x^2-816*x-296 2971241970218212 a001 1/521*(1/2*5^(1/2)+1/2)^11*76^(9/19) 2971241999829811 r005 Re(z^2+c),c=7/24+31/61*I,n=5 2971242003215626 r009 Re(z^3+c),c=-13/40+10/51*I,n=16 2971242015945079 r005 Re(z^2+c),c=-23/66+19/62*I,n=27 2971242026871600 l006 ln(6957/9364) 2971242027774140 a001 1346269/47*3^(1/30) 2971242049591861 a001 9349/4052739537881*317811^(13/23) 2971242055205562 a001 123/75025*12586269025^(11/12) 2971242055311139 a001 41/4976784*4052739537881^(11/12) 2971242056457480 m001 Salem^3*exp(BesselK(1,1)) 2971242060433382 m004 9375*Pi+25*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 2971242068886749 r009 Im(z^3+c),c=-49/102+7/50*I,n=54 2971242073026068 r008 a(0)=3,K{-n^6,-97+10*n^3+28*n^2+94*n} 2971242076840453 r008 a(0)=3,K{-n^6,-45+2*n^3+78*n^2} 2971242078626567 a001 24476/10610209857723*317811^(13/23) 2971242085606093 r005 Im(z^2+c),c=-47/114+3/62*I,n=23 2971242091850518 m001 GAMMA(1/12)^2/exp(Bloch)^2/sqrt(3) 2971242092581988 a001 7/4052739537881*2^(18/23) 2971242096571002 a001 15127/6557470319842*317811^(13/23) 2971242097788220 m001 exp(Zeta(5))*GAMMA(11/12)/Zeta(9) 2971242108445647 a001 199/365435296162*365435296162^(13/14) 2971242108445647 a001 1/3524667*433494437^(13/14) 2971242108447406 a001 199/1346269*514229^(13/14) 2971242109285708 a007 Real Root Of 268*x^4+411*x^3-903*x^2+881*x+483 2971242125716249 m001 1/ln(GAMMA(17/24))*TwinPrimes*GAMMA(5/6) 2971242131913111 k006 concat of cont frac of 2971242139391545 m001 FeigenbaumKappa*(HardHexagonsEntropy-Salem) 2971242153899268 a007 Real Root Of 256*x^4+372*x^3-730*x^2+984*x-826 2971242158981819 h001 (2/9*exp(1)+11/12)/(5/8*exp(2)+1/2) 2971242160670225 r008 a(0)=3,K{-n^6,-19+14*n^3+55*n^2-15*n} 2971242169726267 m001 (Ei(1,1)+sin(1/12*Pi))/ln(5) 2971242172584849 a001 5778/2504730781961*317811^(13/23) 2971242175020722 r005 Re(z^2+c),c=-6/25+25/43*I,n=58 2971242181231010 r005 Im(z^2+c),c=-39/70+29/62*I,n=60 2971242190870320 a003 cos(Pi*46/113)/sin(Pi*21/50) 2971242190939765 l006 ln(6509/8761) 2971242201072427 r005 Im(z^2+c),c=-4/31+13/32*I,n=26 2971242213014707 r005 Re(z^2+c),c=-13/54+33/58*I,n=35 2971242218173131 m001 Zeta(9)^2*exp(GAMMA(5/12))^2/cosh(1)^2 2971242220054532 r008 a(0)=3,K{-n^6,-45+33*n^3-15*n^2+62*n} 2971242228633966 h001 (4/9*exp(1)+1/2)/(8/11*exp(2)+3/8) 2971242230318667 a007 Real Root Of -53*x^4+41*x^3+471*x^2-275*x+231 2971242230933243 r005 Im(z^2+c),c=-2/3+2/87*I,n=7 2971242246716576 m005 (1/2*5^(1/2)+9/11)/(2/7*exp(1)-1/8) 2971242254138064 m004 (125*E^(Sqrt[5]*Pi))/(16*Pi)+25*Sqrt[5]*Pi 2971242263558680 r008 a(0)=3,K{-n^6,3-6*n^2+38*n^3} 2971242270647903 r008 a(0)=3,K{-n^6,-31+46*n^3-47*n^2+67*n} 2971242273390275 r005 Re(z^2+c),c=5/17+2/21*I,n=7 2971242274236803 r005 Re(z^2+c),c=-37/122+14/29*I,n=22 2971242278918255 m001 1/Riemann2ndZero*exp(GlaisherKinkelin)/gamma 2971242279046607 b008 ArcSinh[8+EulerGamma^(-1)] 2971242286578621 r005 Im(z^2+c),c=-7/48+12/29*I,n=15 2971242287360487 m001 (Porter+ZetaQ(2))/(Kolakoski-Mills) 2971242290357390 m001 (Zeta(1,2)+Khinchin*MasserGramain)/Khinchin 2971242293441532 r008 a(0)=3,K{-n^6,-25+53*n^3-65*n^2+72*n} 2971242297028239 r008 a(0)=3,K{-n^6,1+50*n^3-43*n^2+27*n} 2971242303180487 r008 a(0)=3,K{-n^6,21-5*n-30*n^2+49*n^3} 2971242320294411 a008 Real Root of x^4-11*x^2-6*x+37 2971242327810150 r008 a(0)=3,K{-n^6,15+60*n^3-66*n^2+26*n} 2971242327811282 r008 a(0)=3,K{-n^6,9+61*n^3-72*n^2+37*n} 2971242330621060 r005 Im(z^2+c),c=-127/110+13/59*I,n=8 2971242336510896 a007 Real Root Of 178*x^4-285*x^3-742*x^2-311*x+164 2971242350978731 m001 (-OrthogonalArrays+ZetaQ(3))/(OneNinth-gamma) 2971242352740422 m001 Zeta(5)/(BesselJ(1,1)-Weierstrass) 2971242355030390 m001 FeigenbaumDelta-FeigenbaumMu*PlouffeB 2971242355287882 a001 20365011074/199*199^(7/11) 2971242358124126 r008 a(0)=3,K{-n^6,57+67*n^3-66*n^2-23*n} 2971242375533775 a001 1364*(1/2*5^(1/2)+1/2)^6*3^(3/17) 2971242379262187 l006 ln(6061/8158) 2971242394149430 r009 Im(z^3+c),c=-15/64+16/55*I,n=13 2971242412545891 r005 Re(z^2+c),c=-37/86+3/53*I,n=4 2971242414063380 r005 Im(z^2+c),c=-13/54+1/24*I,n=14 2971242422588075 r002 20th iterates of z^2 + 2971242424223117 p001 sum((-1)^n/(572*n+85)/n/(512^n),n=1..infinity) 2971242429659657 a001 1/267084832*4052739537881^(12/17) 2971242429659660 a001 1/829464*1134903170^(12/17) 2971242429931900 a001 1/2576*317811^(12/17) 2971242430901705 m001 ln(Catalan)/Niven*gamma 2971242436434141 r005 Im(z^2+c),c=-2/21+43/50*I,n=63 2971242437408340 a001 3/4*(1/2*5^(1/2)+1/2)^26*4^(3/11) 2971242444489352 r005 Im(z^2+c),c=-5/17+27/56*I,n=11 2971242452012941 m001 1/Lehmer^2*exp(HardHexagonsEntropy)*Sierpinski 2971242455775234 r005 Re(z^2+c),c=-19/25+21/62*I,n=2 2971242456199663 h001 (3/10*exp(2)+5/6)/(1/12*exp(1)+4/5) 2971242462207766 m001 1/GAMMA(5/6)^2/exp(TreeGrowth2nd)*sin(Pi/5) 2971242464732972 a007 Real Root Of 25*x^4+729*x^3-433*x^2-644*x+864 2971242465677375 r005 Im(z^2+c),c=-9/14+51/203*I,n=17 2971242485832018 a009 6*12^(3/4)-6*5^(1/4) 2971242497424909 a007 Real Root Of -217*x^4-197*x^3+997*x^2-926*x+192 2971242499994590 a007 Real Root Of -245*x^4-912*x^3-400*x^2+717*x+834 2971242518802483 a007 Real Root Of 304*x^4+864*x^3+119*x^2+510*x-565 2971242528309026 m005 (3/8+1/4*5^(1/2))/(8/9*exp(1)+8/11) 2971242533060908 m001 FransenRobinson*Zeta(3)^HardyLittlewoodC4 2971242536449022 m001 exp(FeigenbaumDelta)*Backhouse^2*GAMMA(1/4)^2 2971242536460445 a007 Real Root Of 226*x^4+519*x^3-539*x^2-306*x-151 2971242536567563 r005 Re(z^2+c),c=-3/122+15/26*I,n=7 2971242537378671 m001 Paris^2*exp(Bloch)^2/sin(1) 2971242542971152 k002 Champernowne real with 129/2*n^2-303/2*n+116 2971242544105367 r009 Re(z^3+c),c=-19/102+29/31*I,n=40 2971242548228321 a007 Real Root Of -323*x^4-863*x^3+5*x^2-741*x+291 2971242556065767 a007 Real Root Of -272*x^4-490*x^3+756*x^2-350*x+632 2971242562292382 a007 Real Root Of 64*x^4-493*x^3+432*x^2-476*x-193 2971242565397869 m001 FeigenbaumMu/((2^(1/3))^Kolakoski) 2971242576112719 k003 Champernowne real with 9*n^3-53/2*n^2+47/2*n-4 2971242583093630 a007 Real Root Of 121*x^4+506*x^3+388*x^2-72*x+203 2971242583325266 a007 Real Root Of 75*x^4-103*x^3-714*x^2+981*x+671 2971242587044184 m001 (exp(1/exp(1))+GAMMA(11/12))/sin(1) 2971242588448995 m005 (-23/4+1/4*5^(1/2))/(10/11*5^(1/2)-2/7) 2971242596635681 r002 12th iterates of z^2 + 2971242597593187 a001 1322157322203/5*832040^(13/19) 2971242597593774 a001 2537720636/5*7778742049^(13/19) 2971242597646406 l006 ln(5613/7555) 2971242598057040 m001 HardyLittlewoodC3^Psi(2,1/3)*ln(5)^Psi(2,1/3) 2971242602920774 r002 21th iterates of z^2 + 2971242604938416 m001 GAMMA(17/24)*ln(DuboisRaymond)/sin(1)^2 2971242610924628 m005 (1/2*Catalan-3/7)/(8/11*5^(1/2)-7/11) 2971242611996989 a001 233/521*18^(19/29) 2971242619014388 a001 29/6765*8^(27/29) 2971242636661218 a007 Real Root Of -126*x^4+290*x^3+353*x^2+739*x+197 2971242636674768 r008 a(0)=3,K{-n^6,18-24*n^3+45*n^2-10*n} 2971242691069453 r005 Im(z^2+c),c=-37/94+23/44*I,n=59 2971242693591505 a001 2207/956722026041*317811^(13/23) 2971242697036815 a007 Real Root Of -183*x^4-435*x^3+66*x^2-500*x+784 2971242704771840 r009 Re(z^3+c),c=-5/48+30/61*I,n=2 2971242718556348 m001 (FeigenbaumB+ZetaQ(3))/(exp(1/Pi)+Backhouse) 2971242723031666 r005 Re(z^2+c),c=-29/114+15/26*I,n=54 2971242735471988 r005 Im(z^2+c),c=-11/14+29/216*I,n=13 2971242735651631 a001 53316291173/521*322^(7/12) 2971242748917765 m001 (Ei(1,1)+Backhouse)/(FeigenbaumD+Otter) 2971242751325335 m001 (polylog(4,1/2)-GAMMA(5/6))/(FeigenbaumD-Kac) 2971242763713284 m002 -5+2*ProductLog[Pi]-Sinh[Pi]/Pi^4 2971242775128164 r008 a(0)=3,K{-n^6,-46+8*n^3+60*n^2+13*n} 2971242776592954 m001 1/cosh(1)^2/cos(Pi/5)*ln(sqrt(Pi)) 2971242780440103 a005 (1/sin(92/197*Pi))^1058 2971242790687332 a007 Real Root Of -363*x^4+415*x^3+765*x^2+751*x-23 2971242793976587 a003 sin(Pi*20/91)-sin(Pi*33/86) 2971242797775078 m001 1/Pi*Conway^2*ln(sqrt(3)) 2971242798557445 m001 1/Sierpinski/Salem/exp(Zeta(3))^2 2971242803086586 m002 -5/6-Pi^3/ProductLog[Pi] 2971242808240938 l004 Shi(213/95) 2971242815162618 a005 (1/cos(60/193*Pi))^113 2971242827817008 r005 Re(z^2+c),c=-29/106+28/55*I,n=26 2971242831103852 b008 1/6+SphericalBesselY[0,1+Pi] 2971242833825553 r005 Im(z^2+c),c=-5/22+3/7*I,n=6 2971242835110706 r008 a(0)=3,K{-n^6,-42+20*n^3+26*n^2+31*n} 2971242845004352 m001 1/ln(Zeta(3))/FeigenbaumAlpha^2/cos(1)^2 2971242849510795 a001 844/13*832040^(37/47) 2971242853914890 l006 ln(5165/6952) 2971242857306738 a001 15127/610*2178309^(17/35) 2971242872518170 r008 a(0)=3,K{-n^6,14-53*n+54*n^2+20*n^3} 2971242873960645 r005 Re(z^2+c),c=-29/94+19/43*I,n=38 2971242879215700 m001 (sin(1)+Zeta(3)*PlouffeB)/PlouffeB 2971242879745692 a007 Real Root Of 225*x^4+584*x^3-336*x^2-417*x-490 2971242889891816 r005 Im(z^2+c),c=-21/110+31/60*I,n=5 2971242895317344 r008 a(0)=3,K{-n^6,-32+44*n-11*n^2+34*n^3} 2971242903421680 r009 Im(z^3+c),c=-25/44+5/17*I,n=5 2971242919903917 a007 Real Root Of -250*x^4-118*x^3-645*x^2+381*x+169 2971242921223089 m001 1/Magata/exp(MertensB1)^2/BesselJ(0,1)^2 2971242922429370 r005 Re(z^2+c),c=-25/66+6/47*I,n=14 2971242924673941 m006 (1/2*Pi^2+3/4)/(4/5*Pi-3/5) 2971242924673941 m008 (1/2*Pi^2+3/4)/(4/5*Pi-3/5) 2971242928611756 r008 a(0)=3,K{-n^6,12+37*n^3+2*n^2-16*n} 2971242932467162 a007 Real Root Of 14*x^4-250*x^3-759*x^2+62*x-764 2971242936435804 m001 (Zeta(1,2)+Totient)^MertensB3 2971242938920956 a001 10182505537/682*322^(11/12) 2971242947474182 r009 Re(z^3+c),c=-17/30+11/42*I,n=48 2971242952088752 m001 1/Khintchine*Backhouse^2/exp(GAMMA(13/24))^2 2971242981418749 m001 (gamma(2)-Magata)/Pi/csc(1/12*Pi)*GAMMA(11/12) 2971242990145329 r008 a(0)=3,K{-n^6,14+60*n^3-66*n^2+27*n} 2971242997127998 m002 -2/3+(3*Cosh[Pi])/Log[Pi] 2971242997686639 r008 a(0)=3,K{-n^6,46+58*n^3-44*n^2-25*n} 2971242998330498 a001 1597/123*843^(25/31) 2971243006696602 m001 Zeta(1,2)/(MasserGramainDelta+MertensB3) 2971243014909917 r005 Re(z^2+c),c=-11/36+21/46*I,n=22 2971243020288273 m001 GAMMA(17/24)*Champernowne^2/exp(GAMMA(5/24))^2 2971243028977653 a008 Real Root of x^4-x^3-20*x^2-21*x+10 2971243029499542 m001 (MertensB1+ZetaQ(3))/(1-Psi(1,1/3)) 2971243037769672 r009 Im(z^3+c),c=-2/7+27/40*I,n=5 2971243043512802 a001 24476/55*8^(21/23) 2971243044139084 a007 Real Root Of -879*x^4-178*x^3-269*x^2+219*x+91 2971243045322468 r002 8th iterates of z^2 + 2971243047992409 r005 Re(z^2+c),c=-59/94+18/49*I,n=37 2971243055410264 a007 Real Root Of 321*x^4+563*x^3-878*x^2+660*x-538 2971243100412942 m008 (2*Pi+3/4)/(2/3*Pi^3+3) 2971243114020443 r005 Re(z^2+c),c=-33/86+4/61*I,n=21 2971243122523765 a007 Real Root Of -30*x^4-860*x^3+916*x^2-459*x+634 2971243123096964 r005 Im(z^2+c),c=-73/98+1/59*I,n=13 2971243130969018 m001 (ln(5)-BesselI(1,2))/(Trott2nd-TwinPrimes) 2971243132759758 m009 (3/4*Psi(1,2/3)-3/5)/(1/2*Psi(1,1/3)+2/3) 2971243140198459 r005 Re(z^2+c),c=-85/86+5/47*I,n=32 2971243147222375 s002 sum(A092003[n]/(64^n),n=1..infinity) 2971243152472579 h001 (1/6*exp(2)+5/7)/(7/8*exp(2)+1/12) 2971243158861882 l006 ln(4717/6349) 2971243162480584 m001 GAMMA(1/3)*Riemann1stZero^2/ln(GAMMA(7/12))^2 2971243166855424 r005 Im(z^2+c),c=-17/50+23/47*I,n=37 2971243174487171 a001 312119004989/377*6557470319842^(14/17) 2971243179612999 m005 (1/2*5^(1/2)-1/7)/(2/7*3^(1/2)-1/6) 2971243181128158 m001 GAMMA(11/12)/(BesselJZeros(0,1)^exp(1/exp(1))) 2971243191763397 a007 Real Root Of 519*x^4+884*x^3-220*x^2-802*x+24 2971243193804128 m001 1/ln(GAMMA(1/12))^2/BesselK(0,1)^2*Pi 2971243217112412 k008 concat of cont frac of 2971243223985090 m008 (2/5*Pi^3-3/4)/(3/5*Pi^2-2) 2971243226186226 r005 Im(z^2+c),c=2/23+17/32*I,n=3 2971243241773257 r005 Re(z^2+c),c=-45/122+8/39*I,n=30 2971243243585230 a008 Real Root of x^4-x^3-20*x^2+11*x+5 2971243256637044 a007 Real Root Of -769*x^4-430*x^3-366*x^2+461*x+164 2971243256965189 r005 Re(z^2+c),c=37/110+14/37*I,n=58 2971243268898826 a007 Real Root Of 278*x^4+638*x^3-515*x^2+278*x+441 2971243295745591 r005 Im(z^2+c),c=-47/114+23/47*I,n=31 2971243309203206 m001 (GAMMA(2/3)+KomornikLoreti)/Shi(1) 2971243311789207 m001 (Totient-Trott)/(Khinchin+KomornikLoreti) 2971243315230329 m005 (1/2*2^(1/2)-1)/(5/8*gamma+5/8) 2971243319142715 r005 Im(z^2+c),c=13/64+10/41*I,n=5 2971243325281734 p003 LerchPhi(1/2,2,43/71) 2971243331196036 r005 Im(z^2+c),c=-3/16+19/47*I,n=7 2971243332300204 r009 Im(z^3+c),c=-13/94+5/16*I,n=8 2971243334703065 r009 Re(z^3+c),c=-12/31+5/16*I,n=28 2971243344886068 m001 (Chi(1)-KhinchinHarmonic)/(Otter+Paris) 2971243348101862 r009 Re(z^3+c),c=-9/20+14/33*I,n=36 2971243348251511 a007 Real Root Of 265*x^4+826*x^3+25*x^2-440*x-515 2971243369619484 m005 (1/2*Pi+11/12)/(5/7*3^(1/2)-2/5) 2971243389719072 r009 Im(z^3+c),c=-35/74+7/47*I,n=50 2971243393472636 g005 GAMMA(7/12)*GAMMA(7/10)*GAMMA(6/7)*GAMMA(2/3) 2971243400841251 r008 a(0)=3,K{-n^6,-97+10*n^3+29*n^2+93*n} 2971243404974531 r005 Im(z^2+c),c=-17/122+27/64*I,n=5 2971243412675929 m005 (1/2*exp(1)+1/5)/(1/7*3^(1/2)+5) 2971243416038246 r009 Im(z^3+c),c=-35/78+11/63*I,n=22 2971243416669138 m005 (1/2*Pi-4/9)/(7/9*Catalan-1/3) 2971243424744744 r008 a(0)=3,K{-n^6,16-32*n^3+28*n^2+22*n} 2971243431808747 r008 a(0)=3,K{-n^6,-63+42*n+46*n^2+10*n^3} 2971243434231892 m001 (CopelandErdos-MertensB1)/(Thue+ZetaQ(3)) 2971243456198430 a007 Real Root Of -268*x^4-423*x^3+921*x^2-313*x+731 2971243459676849 a001 1/38*521^(34/45) 2971243460359256 m001 (KhinchinLevy+Porter)/(cos(1/12*Pi)+gamma(1)) 2971243460695995 r005 Re(z^2+c),c=2/25+10/47*I,n=17 2971243476241150 s002 sum(A273264[n]/((10^n-1)/n),n=1..infinity) 2971243480695561 m001 1/BesselJ(0,1)^2/FeigenbaumAlpha/exp(exp(1))^2 2971243484372012 b008 3+Sqrt[2]+8*Sqrt[10] 2971243485582268 m001 BesselK(0,1)/(LandauRamanujan2nd-Sarnak) 2971243490196764 r008 a(0)=3,K{-n^6,-13-25*n+59*n^2+14*n^3} 2971243492485783 a007 Real Root Of 370*x^4+990*x^3-496*x^2-271*x+705 2971243493081657 r008 a(0)=3,K{-n^6,-45+20*n^3+25*n^2+35*n} 2971243508243899 r005 Re(z^2+c),c=-41/98+26/47*I,n=41 2971243508853808 r008 a(0)=3,K{-n^6,-22-25*n^3-12*n^2+93*n} 2971243509307312 r005 Im(z^2+c),c=-7/29+9/20*I,n=18 2971243518411956 m001 (Psi(1,1/3)-exp(1))/(GAMMA(2/3)+GAMMA(5/6)) 2971243527812728 l006 ln(4269/5746) 2971243544189333 m005 (2/3*exp(1)-5/6)/(12/5+2/5*5^(1/2)) 2971243545977153 k002 Champernowne real with 65*n^2-153*n+117 2971243550563217 r008 a(0)=3,K{-n^6,-15+30*n^3+10*n^2+10*n} 2971243552499887 a007 Real Root Of -174*x^4-210*x^3+947*x^2+15*x-263 2971243556670408 a007 Real Root Of 646*x^4-24*x^3+642*x^2-571*x-232 2971243560050801 r005 Re(z^2+c),c=-45/98+35/52*I,n=3 2971243566884043 a007 Real Root Of -147*x^4-113*x^3+712*x^2-934*x-568 2971243576291241 m005 (1/2*gamma-2/5)/(6*gamma+2/7) 2971243580113719 k003 Champernowne real with 55/6*n^3-55/2*n^2+76/3*n-5 2971243585925479 r008 a(0)=3,K{-n^6,3-n-5*n^2+38*n^3} 2971243597930375 r008 a(0)=3,K{-n^6,38-25*n+28*n^2-5*n^3} 2971243598542726 a007 Real Root Of -322*x^4-584*x^3+950*x^2-192*x+820 2971243599526457 r008 a(0)=3,K{-n^6,-29+48*n^3-51*n^2+67*n} 2971243600440897 a007 Real Root Of 641*x^4+883*x^3+174*x^2-972*x-286 2971243608685362 r005 Im(z^2+c),c=-3/13+13/29*I,n=46 2971243615035218 r008 a(0)=3,K{-n^6,-25+53*n^3-64*n^2+71*n} 2971243616085708 r009 Im(z^3+c),c=-31/98+6/23*I,n=17 2971243620254598 r008 a(0)=3,K{-n^6,29-24*n-16*n^2+46*n^3} 2971243622456016 a007 Real Root Of -378*x^4-801*x^3+832*x^2-464*x-274 2971243643950541 r008 a(0)=3,K{-n^6,3+60*n^3-71*n^2+43*n} 2971243645693544 r009 Im(z^3+c),c=-23/52+11/61*I,n=28 2971243655010034 r009 Im(z^3+c),c=-5/42+25/31*I,n=44 2971243655980039 r008 a(0)=3,K{-n^6,29+6*n-61*n^2+61*n^3} 2971243656525746 m002 -(E^Pi/Pi^3)+Pi^4-Pi^9 2971243656711383 r008 a(0)=3,K{-n^6,19+63*n^3-72*n^2+25*n} 2971243680386176 a001 199/2584*610^(13/14) 2971243691474993 s002 sum(A219813[n]/(10^n-1),n=1..infinity) 2971243703881929 m001 MasserGramainDelta/(GolombDickman-Trott) 2971243712738944 a001 13201/7*3^(12/29) 2971243719510355 a007 Real Root Of 352*x^4+x^3+57*x^2-521*x+147 2971243723120085 l006 ln(3349/3450) 2971243730276388 a001 1/72*(1/2+1/2*5^(1/2))^59 2971243737554869 a008 Real Root of x^4-2*x^3-29*x^2-48*x-17 2971243739547775 a001 3571*(1/2*5^(1/2)+1/2)^4*3^(3/17) 2971243744755834 m001 (Pi-ln(2)/ln(10))/cos(1)*BesselI(1,1) 2971243749490107 r005 Im(z^2+c),c=-9/8+9/247*I,n=30 2971243757669009 a005 (1/cos(13/171*Pi))^1717 2971243782758027 r005 Re(z^2+c),c=-35/102+20/63*I,n=14 2971243789320406 a007 Real Root Of -132*x^4-379*x^3-291*x^2-821*x+476 2971243797824198 p003 LerchPhi(1/64,1,74/219) 2971243798761365 r009 Re(z^3+c),c=-27/98+33/47*I,n=49 2971243804023093 m005 (1/2*Catalan+2/3)/(6/7*Catalan+3) 2971243820373423 p001 sum((-1)^n/(424*n+325)/(12^n),n=0..infinity) 2971243821947426 a007 Real Root Of -134*x^4-389*x^3-743*x^2+951*x+339 2971243825795034 r005 Re(z^2+c),c=-37/102+6/25*I,n=33 2971243830821457 r005 Im(z^2+c),c=-13/94+9/22*I,n=16 2971243833358653 m001 (3^(1/2))^HardyLittlewoodC4+KomornikLoreti 2971243837133884 r005 Im(z^2+c),c=-3/13+13/29*I,n=52 2971243838348385 a001 9349/3*987^(39/59) 2971243850092801 m005 (1/2*2^(1/2)-3/7)/(7/8*2^(1/2)-3/10) 2971243851710519 r005 Re(z^2+c),c=-29/86+7/20*I,n=44 2971243871232605 a007 Real Root Of 565*x^4-865*x^3+883*x^2-985*x+233 2971243892315676 m001 Magata*(Sarnak+ZetaR(2)) 2971243905104791 m005 (1/3*gamma+1/9)/(43/180+7/20*5^(1/2)) 2971243906285130 a007 Real Root Of 237*x^4+473*x^3-801*x^2-652*x-930 2971243915689225 a007 Real Root Of 439*x^4-868*x^3-9*x^2-975*x+29 2971243924340689 a007 Real Root Of -876*x^4-88*x^3-113*x^2+448*x-114 2971243925506343 r005 Im(z^2+c),c=-33/74+3/55*I,n=10 2971243929845462 a007 Real Root Of -14*x^4-415*x^3+41*x^2+358*x-6 2971243938174316 a007 Real Root Of -216*x^4-282*x^3+977*x^2-578*x-905 2971243938554736 a001 9349*(1/2*5^(1/2)+1/2)^2*3^(3/17) 2971243960431584 m001 FeigenbaumB^2*MertensB1^2/ln(log(1+sqrt(2)))^2 2971243960762314 r005 Im(z^2+c),c=-23/29+1/61*I,n=20 2971243965333529 s002 sum(A089394[n]/(pi^n),n=1..infinity) 2971243966425966 m001 (5^(1/2)-ln(5))/(arctan(1/3)+KomornikLoreti) 2971243967589460 a001 24476*3^(3/17) 2971243972549183 a001 (1/2*5^(1/2)+1/2)^21*3^(3/17) 2971243983280162 l006 ln(3821/5143) 2971243983808378 a007 Real Root Of 903*x^4+681*x^3+965*x^2-719*x-288 2971243985533906 a001 15127*(1/2*5^(1/2)+1/2)*3^(3/17) 2971243991975669 r005 Re(z^2+c),c=23/118+24/43*I,n=45 2971243994456500 m005 (1/2*exp(1)-1/11)/(3*gamma-6) 2971243994567337 r002 58th iterates of z^2 + 2971243995787516 a008 Real Root of x^4-2*x^3-40*x^2+12*x+292 2971244028750105 a007 Real Root Of -35*x^4+221*x^3+836*x^2-158*x+675 2971244031394633 a005 (1/cos(10/57*Pi))^93 2971244034742356 r005 Re(z^2+c),c=-45/34+4/95*I,n=40 2971244047546766 m005 (1/2*exp(1)-4/9)/(7/8*exp(1)+7/10) 2971244054905064 r005 Im(z^2+c),c=4/15+5/33*I,n=12 2971244061547801 a001 5778*(1/2*5^(1/2)+1/2)^3*3^(3/17) 2971244076146222 m005 (1/2*Catalan+2/3)/(5/6*2^(1/2)-4/5) 2971244087284172 r008 a(0)=3,K{-n^6,-64+43*n+46*n^2+10*n^3} 2971244088430008 m001 (Mills+Salem)/(ln(2)-GAMMA(7/12)) 2971244090731317 a007 Real Root Of 505*x^4-215*x^3-613*x^2-529*x+213 2971244104086458 r005 Re(z^2+c),c=-29/52+37/62*I,n=28 2971244109847078 a007 Real Root Of -842*x^4+245*x^3-64*x^2+883*x+281 2971244118646627 m001 (Paris-Trott2nd)/(Zeta(1/2)+Zeta(1,2)) 2971244122648364 a007 Real Root Of 286*x^4-986*x^3+99*x^2-798*x+252 2971244124123421 k008 concat of cont frac of 2971244154727128 r008 a(0)=3,K{-n^6,-30+19*n^3+36*n^2+10*n} 2971244168209116 m005 (1/2*Zeta(3)+7/11)/(3/8*gamma+1/5) 2971244172696258 r005 Re(z^2+c),c=-6/13+19/39*I,n=13 2971244175787957 r008 a(0)=3,K{-n^6,2-38*n+52*n^2+19*n^3} 2971244193062972 a009 5^(3/4)*(21^(1/2)+7^(3/4)) 2971244199122217 m005 (1/2*3^(1/2)+4)/(7/12*5^(1/2)+1/3) 2971244208895862 a007 Real Root Of -244*x^4+122*x^3-810*x^2+970*x-218 2971244210229840 a001 39603/1597*2178309^(17/35) 2971244214907924 m001 (Pi+Zeta(1,2))/(GAMMA(17/24)-Landau) 2971244218434460 m001 LandauRamanujan/(Rabbit+Riemann3rdZero) 2971244219002102 r008 a(0)=3,K{-n^6,-38+60*n-25*n^2+38*n^3} 2971244229833182 r009 Re(z^3+c),c=-29/70+23/64*I,n=43 2971244234697332 a007 Real Root Of -931*x^4+559*x^3-361*x^2+917*x-248 2971244235376857 m001 1/Lehmer^2*DuboisRaymond^2/ln(Zeta(5)) 2971244238069336 r005 Im(z^2+c),c=-41/86+7/15*I,n=33 2971244238336705 a007 Real Root Of 466*x^4-490*x^3+494*x^2-822*x+24 2971244253038304 r008 a(0)=3,K{-n^6,-30+48*n^3-51*n^2+68*n} 2971244253559618 l006 ln(7194/9683) 2971244258219523 s002 sum(A202112[n]/(n^2*2^n-1),n=1..infinity) 2971244261200869 m001 (Pi+exp(Pi))/(sin(1/12*Pi)+Kac) 2971244273540389 r008 a(0)=3,K{-n^6,28-23*n-16*n^2+46*n^3} 2971244287431349 r009 Im(z^3+c),c=-45/94+13/48*I,n=4 2971244301525030 r008 a(0)=3,K{-n^6,14+60*n^3-65*n^2+26*n} 2971244308512617 r005 Re(z^2+c),c=35/86+14/23*I,n=9 2971244308881634 r008 a(0)=3,K{-n^6,46+58*n^3-43*n^2-26*n} 2971244324213366 r005 Im(z^2+c),c=-11/26+26/55*I,n=26 2971244324628973 r005 Re(z^2+c),c=-25/58+24/49*I,n=18 2971244328399401 r002 3th iterates of z^2 + 2971244331644066 m001 1/GAMMA(1/4)^2/Riemann2ndZero^2*ln(sin(1)) 2971244336389727 h002 exp(1/7*(2^(1/4)-9^(2/3))^(1/2)*7^(3/4)) 2971244341252577 r009 Re(z^3+c),c=-13/29+12/29*I,n=35 2971244349332195 r005 Re(z^2+c),c=-9/25+11/37*I,n=7 2971244359611202 r008 a(0)=3,K{-n^6,80+79*n^3-89*n^2-35*n} 2971244368847607 m001 Stephens^KomornikLoreti*Stephens^ThueMorse 2971244377231901 m001 ZetaP(4)/gamma*5^(1/2) 2971244379166271 m001 ln(BesselK(0,1))/FransenRobinson/Zeta(5) 2971244383875424 r005 Re(z^2+c),c=5/22+2/33*I,n=7 2971244389315127 m001 exp(Lehmer)^2/LaplaceLimit*BesselK(1,1) 2971244396801690 m005 (1/2*Zeta(3)+1/6)/(8/9*exp(1)-5) 2971244410100201 r005 Im(z^2+c),c=-6/31+29/51*I,n=8 2971244420555315 b008 3-Sech[Pi]/3 2971244420555315 m002 -3+Sech[Pi]/3 2971244432782380 h001 (1/12*exp(2)+2/3)/(6/11*exp(2)+2/7) 2971244434489608 p001 sum(1/(482*n+349)/(12^n),n=0..infinity) 2971244437817171 r005 Im(z^2+c),c=29/98+5/41*I,n=37 2971244458130221 p001 sum((-1)^n/(483*n+55)/n/(6^n),n=1..infinity) 2971244463140400 r008 a(0)=3,K{-n^6,23+9*n^3-41*n^2+54*n} 2971244466223435 m004 25*Sqrt[5]*Pi+(125*Cosh[Sqrt[5]*Pi])/(8*Pi) 2971244476028245 m001 1/GAMMA(5/24)*ln(FeigenbaumKappa)^2/sin(1)^2 2971244480079598 s002 sum(A168092[n]/((10^n-1)/n),n=1..infinity) 2971244481483496 r005 Re(z^2+c),c=13/70+19/51*I,n=62 2971244484954964 m001 (Psi(1,1/3)+Grothendieck)^BesselJ(1,1) 2971244487971124 a003 sin(Pi*7/110)/sin(Pi*24/103) 2971244489682740 m001 1/Riemann2ndZero^2*ln(Backhouse)^2/Zeta(5)^2 2971244494983963 m001 1/GAMMA(3/4)^2/MinimumGamma/exp(Zeta(1,2))^2 2971244507286135 a007 Real Root Of 798*x^4-85*x^3-521*x^2-436*x-92 2971244509892632 m008 (1/3*Pi^2+4)/(1/4*Pi^6+5) 2971244514527214 r009 Im(z^3+c),c=-47/114+12/61*I,n=8 2971244523187225 m001 ArtinRank2^2*ln(Artin)^2*Kolakoski^2 2971244524965763 m001 1/ln(BesselJ(1,1))^2/Sierpinski/GAMMA(11/24) 2971244531210232 a007 Real Root Of 799*x^4+779*x^3-430*x^2-487*x+156 2971244532358408 r005 Re(z^2+c),c=-41/110+7/39*I,n=24 2971244537949729 m001 (MasserGramain+Trott)/(GAMMA(23/24)-exp(Pi)) 2971244548983154 k002 Champernowne real with 131/2*n^2-309/2*n+118 2971244559737434 l006 ln(3373/4540) 2971244565863302 m001 1/Robbin/FeigenbaumAlpha^2/exp(GAMMA(5/24)) 2971244577905066 r009 Re(z^3+c),c=-33/62+7/43*I,n=25 2971244578965187 m001 (Zeta(1,2)+GAMMA(17/24))/(FeigenbaumC-Robbin) 2971244579303135 r009 Re(z^3+c),c=-35/66+5/31*I,n=14 2971244581937356 r009 Im(z^3+c),c=-23/44+38/61*I,n=13 2971244582554788 a001 2207*(1/2*5^(1/2)+1/2)^5*3^(3/17) 2971244584841191 m001 GAMMA(1/6)/exp(FeigenbaumC)*gamma^2 2971244592549256 s002 sum(A251416[n]/((10^n-1)/n),n=1..infinity) 2971244596268793 r005 Re(z^2+c),c=-29/86+7/20*I,n=42 2971244599476457 l006 ln(494/9641) 2971244605928685 r002 12th iterates of z^2 + 2971244611103223 r005 Re(z^2+c),c=-23/86+27/50*I,n=46 2971244627643514 m005 (1/2*exp(1)+1/7)/(1/7*Catalan-7/11) 2971244664706670 m001 ln(3)+FeigenbaumC^Zeta(5) 2971244681681104 r009 Re(z^3+c),c=-55/122+9/20*I,n=19 2971244683910131 r005 Im(z^2+c),c=25/126+2/9*I,n=20 2971244683975195 m001 (1-Cahen)/(-MertensB1+MinimumGamma) 2971244718835715 r008 a(0)=3,K{-n^6,-45+3*n^3+77*n^2} 2971244740367325 m005 (1/2*Catalan-2/5)/(5/7*3^(1/2)+5/7) 2971244742701803 m001 ln(GAMMA(11/24))/MadelungNaCl^2*GAMMA(19/24)^2 2971244753969405 m004 5+75/Pi+Tan[Sqrt[5]*Pi]^2 2971244755706399 m001 Pi*Psi(1,1/3)-Zeta(5)/polylog(4,1/2) 2971244757835789 r008 a(0)=3,K{-n^6,-59+41*n+40*n^2+13*n^3} 2971244760472503 m001 1/ln(Pi)*Si(Pi)^2/Zeta(7) 2971244761356637 m001 1/Zeta(7)^2/(2^(1/3))/exp(cos(Pi/12)) 2971244774966801 r005 Im(z^2+c),c=-27/38+13/64*I,n=13 2971244777441612 r005 Im(z^2+c),c=-49/64+3/23*I,n=13 2971244781813667 r005 Im(z^2+c),c=-1/42+9/25*I,n=10 2971244785326730 m001 ln(TreeGrowth2nd)^2/Si(Pi)/GAMMA(3/4) 2971244790633557 a007 Real Root Of -877*x^4+891*x^3-590*x^2+763*x+309 2971244800680013 r008 a(0)=3,K{-n^6,-49+42*n+21*n^2+21*n^3} 2971244807799630 r005 Im(z^2+c),c=6/25+3/16*I,n=12 2971244814934512 m005 11/10*(1/2*Catalan+3/4)*5^(1/2) 2971244818154374 r005 Re(z^2+c),c=4/19+1/60*I,n=19 2971244819834419 a007 Real Root Of -277*x^4-615*x^3+813*x^2+263*x-939 2971244821717908 a001 6/726103*139583862445^(10/17) 2971244823501659 l006 ln(463/9036) 2971244823612229 a001 18/17711*39088169^(10/17) 2971244824302925 r008 a(0)=3,K{-n^6,11-56*n+63*n^2+17*n^3} 2971244825567002 r008 a(0)=3,K{-n^6,1-37*n+52*n^2+19*n^3} 2971244837052060 a007 Real Root Of -589*x^4+13*x^3-547*x^2+152*x+5 2971244842034166 m005 (1/3*Pi-1/11)/(1/10*5^(1/2)-6/11) 2971244851827380 r008 a(0)=3,K{-n^6,-45+34*n^3-16*n^2+62*n} 2971244862683039 a001 161/72*7778742049^(6/19) 2971244866486445 r005 Re(z^2+c),c=9/26+7/30*I,n=9 2971244868286814 r008 a(0)=3,K{-n^6,-39+61*n-25*n^2+38*n^3} 2971244870581886 r005 Im(z^2+c),c=-27/98+27/58*I,n=34 2971244884467150 r005 Im(z^2+c),c=-27/106+27/59*I,n=46 2971244885558498 r009 Re(z^3+c),c=-25/66+14/47*I,n=22 2971244892449062 b008 Tanh[10/7]/3 2971244899159841 r008 a(0)=3,K{-n^6,-31+47*n^3-48*n^2+67*n} 2971244909474356 l006 ln(6298/8477) 2971244922750769 m001 (Si(Pi)-gamma)/(Niven+Sierpinski) 2971244923895230 r008 a(0)=3,K{-n^6,67+40*n^3+22*n^2-94*n} 2971244927058674 r005 Im(z^2+c),c=-1+12/53*I,n=4 2971244942619819 p001 sum((-1)^n/(574*n+83)/n/(512^n),n=1..infinity) 2971244943175739 h001 (7/11*exp(2)+5/12)/(1/2*exp(1)+4/11) 2971244945622868 r005 Re(z^2+c),c=-5/98+37/47*I,n=6 2971244946171320 r008 a(0)=3,K{-n^6,3+60*n^3-70*n^2+42*n} 2971244953973265 h001 (2/5*exp(1)+11/12)/(4/5*exp(2)+5/6) 2971244957189411 r008 a(0)=3,K{-n^6,45+58*n^3-43*n^2-25*n} 2971244961125275 m001 Rabbit*exp(HardHexagonsEntropy)*Zeta(5) 2971244962788594 r009 Re(z^3+c),c=-41/102+11/32*I,n=12 2971244963526965 r008 a(0)=3,K{-n^6,69+57*n^3-28*n^2-63*n} 2971244964536620 m001 Zeta(5)^2/HardHexagonsEntropy^2*exp(sin(1))^2 2971244977230297 m002 -4*Pi+Pi^2-Pi^5+Cosh[Pi] 2971244981422933 r008 a(0)=3,K{-n^6,57+68*n^3-67*n^2-23*n} 2971244981504170 r009 Im(z^3+c),c=-23/48+5/36*I,n=32 2971244983208295 a007 Real Root Of 14*x^4-403*x^3-584*x^2-737*x+281 2971244989665235 m001 BesselI(0,2)-Zeta(1,2)^TravellingSalesman 2971244992738520 r002 10th iterates of z^2 + 2971244995457234 m001 (Zeta(1/2)-FeigenbaumDelta)/(OneNinth+Paris) 2971245007397808 r008 a(0)=3,K{-n^6,79+79*n^3-89*n^2-34*n} 2971245015151939 p003 LerchPhi(1/100,5,218/171) 2971245021447861 s002 sum(A273974[n]/(n*exp(pi*n)-1),n=1..infinity) 2971245041167576 r005 Im(z^2+c),c=-151/126+2/51*I,n=30 2971245046382923 a001 24476/987*2178309^(17/35) 2971245079678565 l006 ln(432/8431) 2971245080652584 r005 Re(z^2+c),c=-5/4+39/217*I,n=4 2971245091187958 m001 GAMMA(13/24)*BesselJ(1,1)^2*exp(sqrt(5)) 2971245109864013 r005 Im(z^2+c),c=-5/6+23/125*I,n=58 2971245111558789 r005 Im(z^2+c),c=-7/20+25/47*I,n=34 2971245122435265 a003 cos(Pi*7/87)-cos(Pi*21/79) 2971245123746640 a001 63246219*322^(2/3) 2971245126734964 r005 Im(z^2+c),c=-113/122+11/53*I,n=6 2971245149572429 p004 log(33119/1697) 2971245159631513 m001 (Kac+ReciprocalFibonacci)/(2^(1/2)+gamma(1)) 2971245161105647 m005 (1/2*2^(1/2)+4)/(-41/16+7/16*5^(1/2)) 2971245169233341 h001 (2/9*exp(2)+1/8)/(7/9*exp(2)+1/5) 2971245184067489 r005 Re(z^2+c),c=-27/70+2/51*I,n=10 2971245185053895 r009 Re(z^3+c),c=-7/12+34/53*I,n=28 2971245190139178 a001 1364/514229*832040^(9/26) 2971245190777509 m001 cos(1/12*Pi)+BesselI(1,2)+PrimesInBinary 2971245198707640 r005 Re(z^2+c),c=-10/29+19/60*I,n=7 2971245201931713 m001 ln(Trott)/GaussKuzminWirsing^2/GAMMA(17/24)^2 2971245207673973 m001 (Magata+TreeGrowth2nd)/(gamma(2)-GAMMA(17/24)) 2971245224870616 r005 Im(z^2+c),c=29/74+14/45*I,n=26 2971245228399550 m001 1/Zeta(7)/GAMMA(3/4)/exp(Zeta(9)) 2971245241092117 m001 (-Stephens+ZetaP(3))/(Psi(1,1/3)+Magata) 2971245246801759 r002 54th iterates of z^2 + 2971245266122708 r009 Im(z^3+c),c=-27/50+7/44*I,n=42 2971245278341363 r009 Re(z^3+c),c=-1/98+23/29*I,n=32 2971245281042861 r002 21th iterates of z^2 + 2971245281162004 r005 Re(z^2+c),c=-33/82+11/20*I,n=44 2971245284799526 r005 Im(z^2+c),c=-15/118+15/37*I,n=27 2971245286026794 m001 exp(Paris)*FeigenbaumDelta/log(2+sqrt(3))^2 2971245287838209 r005 Im(z^2+c),c=-97/94+3/11*I,n=9 2971245295549966 r009 Re(z^3+c),c=-11/15+15/56*I,n=3 2971245305671484 m001 Khinchin+exp(1/Pi)*exp(-1/2*Pi) 2971245305671484 m001 exp(1/Pi)*exp(-1/2*Pi)+Khinchin 2971245306352701 m001 exp(Pi)*GAMMA(3/4)+FeigenbaumKappa 2971245312777806 l006 ln(2925/3937) 2971245319228769 r009 Re(z^3+c),c=-13/40+10/51*I,n=15 2971245320465945 r009 Im(z^3+c),c=-3/52+41/49*I,n=22 2971245326057055 r005 Re(z^2+c),c=-37/102+10/41*I,n=14 2971245328103145 r009 Re(z^3+c),c=-19/50+3/10*I,n=21 2971245328342881 m001 Niven*FransenRobinson^2/ln(Trott) 2971245335982585 r005 Re(z^2+c),c=-7/26+33/61*I,n=57 2971245338192990 a007 Real Root Of -543*x^4-266*x^3+442*x^2+630*x-215 2971245339542469 m001 CareFree/Pi^(1/2)*RenyiParking 2971245339744756 a001 32264490531/46*123^(3/10) 2971245346715888 r005 Re(z^2+c),c=13/46+18/41*I,n=64 2971245352035286 r005 Im(z^2+c),c=7/50+29/62*I,n=4 2971245358297987 a007 Real Root Of -254*x^4+932*x^3+989*x^2+132*x-149 2971245375463788 l006 ln(401/7826) 2971245385785963 m001 ln(arctan(1/2))*Magata/log(1+sqrt(2)) 2971245386050332 r008 a(0)=3,K{-n^6,-64+42*n+47*n^2+10*n^3} 2971245388938756 r009 Re(z^3+c),c=-25/58+19/49*I,n=43 2971245395866915 r008 a(0)=3,K{-n^6,-46+9*n^3+59*n^2+13*n} 2971245397959101 r009 Re(z^3+c),c=-1/3+13/61*I,n=15 2971245402127591 r005 Im(z^2+c),c=-67/54+1/53*I,n=41 2971245403850341 r008 a(0)=3,K{-n^6,-60+42*n+40*n^2+13*n^3} 2971245414402106 a007 Real Root Of -120*x^4+228*x^3+735*x^2+964*x+28 2971245422325257 g005 GAMMA(7/11)*GAMMA(2/9)/GAMMA(7/12)/GAMMA(5/7) 2971245430739622 m001 (exp(Pi)+3^(1/2))/(-ln(3)+MertensB1) 2971245445135018 a001 76*(1/2*5^(1/2)+1/2)^25*7^(10/23) 2971245446180922 r008 a(0)=3,K{-n^6,-50+43*n+21*n^2+21*n^3} 2971245446966707 m001 (Mills+ReciprocalFibonacci)/(ln(3)+Bloch) 2971245450402934 m002 (Pi^3*ProductLog[Pi])/5+E^Pi*Tanh[Pi] 2971245457722681 m008 (1/2*Pi^6-1/4)/(1/2*Pi^3+2/3) 2971245460321902 r002 56th iterates of z^2 + 2971245474211401 r005 Im(z^2+c),c=-11/12+28/107*I,n=47 2971245486405786 r008 a(0)=3,K{-n^6,14-53*n+53*n^2+21*n^3} 2971245493417969 m005 (1/2*Catalan+4/11)/(5/6*exp(1)+1/2) 2971245513630321 r005 Im(z^2+c),c=-35/102+25/51*I,n=46 2971245520189435 h001 (-9*exp(2/3)+8)/(-6*exp(-1)-1) 2971245524321234 r005 Re(z^2+c),c=-11/36+17/37*I,n=21 2971245526818846 m001 GAMMA(5/24)*Champernowne/ln(sin(Pi/12))^2 2971245530076570 a008 Real Root of x^2-88283 2971245536398803 m001 (Niven+ZetaQ(2))/(2^(1/3)-Si(Pi)) 2971245547205335 r008 a(0)=3,K{-n^6,-30+48*n^3-50*n^2+67*n} 2971245551989155 k002 Champernowne real with 66*n^2-156*n+119 2971245560826339 r005 Re(z^2+c),c=-9/25+15/59*I,n=24 2971245567186906 r008 a(0)=3,K{-n^6,28-24*n-15*n^2+46*n^3} 2971245568007463 r008 a(0)=3,K{-n^6,66+40*n^3+22*n^2-93*n} 2971245580254387 r005 Re(z^2+c),c=-15/14+51/190*I,n=18 2971245588115720 k003 Champernowne real with 19/2*n^3-59/2*n^2+29*n-7 2971245590046342 r008 a(0)=3,K{-n^6,2+60*n^3-70*n^2+43*n} 2971245591104880 a007 Real Root Of -214*x^4-607*x^3+137*x^2+459*x+911 2971245607220159 r008 a(0)=3,K{-n^6,68+57*n^3-28*n^2-62*n} 2971245629584704 m001 1/Tribonacci*TreeGrowth2nd^2*ln(sin(Pi/5))^2 2971245646472678 s001 sum(exp(-4*Pi/5)^n*A043467[n],n=1..infinity) 2971245654535744 r008 a(0)=3,K{-n^6,26+4*n+8*n^2-2*n^3} 2971245654805691 m005 (-1/30+3/10*5^(1/2))/(2/3*exp(1)+1/3) 2971245659553017 r005 Im(z^2+c),c=11/46+9/56*I,n=5 2971245660328383 a001 956722026041/521*123^(1/10) 2971245661535853 r009 Re(z^3+c),c=-17/30+11/42*I,n=52 2971245672015595 a001 7/233*956722026041^(1/4) 2971245678469303 r009 Re(z^3+c),c=-5/64+27/38*I,n=10 2971245679446750 r009 Im(z^3+c),c=-15/64+16/55*I,n=16 2971245680099197 a007 Real Root Of -115*x^4+745*x^3+806*x^2+731*x-307 2971245687820795 m001 (Psi(2,1/3)+Kolakoski)/(-Tribonacci+Trott) 2971245690488072 m001 (Lehmer+Trott)/(Bloch-FeigenbaumAlpha) 2971245699627282 m008 (3/5*Pi^6+4)/(2*Pi^4+2/3) 2971245707793450 m002 -Pi^9+Pi^4/Log[Pi]+Sinh[Pi] 2971245710460235 m001 GAMMA(7/12)^GAMMA(11/24)/LandauRamanujan 2971245715830208 m001 exp(gamma)*(Zeta(1/2)-exp(-1/2*Pi)) 2971245720812911 l006 ln(370/7221) 2971245723430507 m001 MertensB1/ErdosBorwein*exp(BesselK(1,1)) 2971245730543620 m001 1/cos(Pi/5)*exp(CareFree)/sin(1) 2971245734766493 a001 2/21*6765^(28/43) 2971245752309803 m005 (1/2*2^(1/2)+1/2)/(2/9*exp(1)-3/5) 2971245769305982 r005 Im(z^2+c),c=-65/94+11/49*I,n=20 2971245779726489 m001 (FransenRobinson-Totient)/(cos(1/12*Pi)-Bloch) 2971245782974959 l006 ln(5402/7271) 2971245792927371 m001 (Psi(1,1/3)-exp(1))/(sin(1/5*Pi)+Ei(1)) 2971245795785770 a007 Real Root Of -778*x^4+385*x^3-517*x^2+867*x-216 2971245798734131 a007 Real Root Of 601*x^4+816*x^3-545*x^2-774*x+252 2971245804274742 m001 GAMMA(7/12)/Kolakoski/ln(sqrt(5))^2 2971245848579971 r005 Im(z^2+c),c=-17/52+27/56*I,n=35 2971245855641779 m005 (1/2*Zeta(3)+1)/(1/6*2^(1/2)-2/11) 2971245856000650 r009 Im(z^3+c),c=-15/64+16/55*I,n=19 2971245864745641 r009 Im(z^3+c),c=-15/64+16/55*I,n=22 2971245865118982 r009 Im(z^3+c),c=-15/64+16/55*I,n=23 2971245865140919 r009 Im(z^3+c),c=-15/64+16/55*I,n=25 2971245865152548 r009 Im(z^3+c),c=-15/64+16/55*I,n=26 2971245865156692 r009 Im(z^3+c),c=-15/64+16/55*I,n=28 2971245865156838 r009 Im(z^3+c),c=-15/64+16/55*I,n=29 2971245865157177 r009 Im(z^3+c),c=-15/64+16/55*I,n=32 2971245865157194 r009 Im(z^3+c),c=-15/64+16/55*I,n=31 2971245865157200 r009 Im(z^3+c),c=-15/64+16/55*I,n=35 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=38 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=41 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=44 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=45 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=47 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=48 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=50 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=51 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=54 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=53 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=57 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=60 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=63 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=64 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=62 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=61 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=59 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=58 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=56 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=55 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=52 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=49 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=46 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=42 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=43 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=40 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=39 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=37 2971245865157201 r009 Im(z^3+c),c=-15/64+16/55*I,n=36 2971245865157202 r009 Im(z^3+c),c=-15/64+16/55*I,n=34 2971245865157209 r009 Im(z^3+c),c=-15/64+16/55*I,n=33 2971245865157385 r009 Im(z^3+c),c=-15/64+16/55*I,n=30 2971245865160927 r009 Im(z^3+c),c=-15/64+16/55*I,n=27 2971245865226681 r009 Im(z^3+c),c=-15/64+16/55*I,n=24 2971245865453680 r009 Im(z^3+c),c=-15/64+16/55*I,n=20 2971245866346039 r009 Im(z^3+c),c=-15/64+16/55*I,n=21 2971245872779035 m002 -3-Pi^5+4*Csch[Pi]+Sinh[Pi] 2971245873376293 m005 (1/2*2^(1/2)+2/11)/(11/12*exp(1)+1/2) 2971245883410574 r009 Im(z^3+c),c=-15/64+16/55*I,n=18 2971245884516485 r002 13th iterates of z^2 + 2971245889989421 r009 Im(z^3+c),c=-15/64+16/55*I,n=17 2971245893753313 s001 sum(exp(-2*Pi)^n*A213116[n],n=1..infinity) 2971245927090826 a001 3/4052739537881*832040^(14/23) 2971245929972314 b008 -1/2+Erfc[1/3]/Pi 2971245938469547 s002 sum(A202157[n]/(n^3*pi^n-1),n=1..infinity) 2971245946987341 m001 (exp(1)+MertensB2)/(-Totient+ZetaP(4)) 2971245955706591 r009 Re(z^3+c),c=-37/66+11/57*I,n=4 2971245960441872 m005 (1/3*2^(1/2)+1/5)/(8/11*3^(1/2)+1) 2971245985347611 a003 cos(Pi*29/65)*cos(Pi*44/89) 2971245988012941 m001 (Paris-arctan(1/3))^cos(1/5*Pi) 2971245989950346 m009 (Psi(1,2/3)+3/5)/(20/3*Catalan+5/6*Pi^2-2) 2971246003790488 r009 Re(z^3+c),c=-55/126+18/41*I,n=11 2971246005615808 r008 a(0)=3,K{-n^6,-97+11*n^3+28*n^2+93*n} 2971246006389776 q001 93/313 2971246008399853 r005 Re(z^2+c),c=-19/54+12/41*I,n=20 2971246011045959 a001 377/18*11^(7/48) 2971246013809189 r009 Re(z^3+c),c=-16/31+20/63*I,n=18 2971246024410771 r009 Re(z^3+c),c=-13/31+7/19*I,n=24 2971246039329915 r005 Re(z^2+c),c=-1/25+30/49*I,n=8 2971246044843884 r009 Re(z^3+c),c=-25/66+17/57*I,n=13 2971246045137436 a005 (1/cos(8/97*Pi))^1999 2971246047310020 b008 Log[2/3+6*Pi] 2971246050818155 r005 Re(z^2+c),c=-37/102+6/25*I,n=35 2971246067953223 b008 3+(13*Sqrt[38])/3 2971246070803456 m001 (ln(2)-Zeta(1,-1))/(polylog(4,1/2)-Magata) 2971246074375606 m005 (4*gamma-3/4)/(5*Catalan+2/3) 2971246076700298 a007 Real Root Of -184*x^4-436*x^3+65*x^2-724*x+179 2971246085306673 r005 Im(z^2+c),c=-4/3+7/208*I,n=11 2971246086501889 m001 ThueMorse^TreeGrowth2nd/BesselI(0,2) 2971246087130677 r008 a(0)=3,K{-n^6,-21-11*n+51*n^2+16*n^3} 2971246099416474 a001 1/96450076809*3^(23/24) 2971246100861987 r009 Im(z^3+c),c=-15/64+16/55*I,n=15 2971246107214967 r005 Re(z^2+c),c=-45/122+8/39*I,n=32 2971246107856279 r005 Re(z^2+c),c=-19/52+8/47*I,n=4 2971246111821125 k007 concat of cont frac of 2971246112686727 r008 a(0)=3,K{-n^6,1-38*n+53*n^2+19*n^3} 2971246113871000 r005 Im(z^2+c),c=-33/118+29/63*I,n=20 2971246123975221 k008 concat of cont frac of 2971246128246460 p002 log(6^(1/5)-5^(1/5)) 2971246129323076 l006 ln(339/6616) 2971246138232827 r008 a(0)=3,K{-n^6,-45+34*n^3-15*n^2+61*n} 2971246143792981 a009 1/2*(15*2^(2/3)-6^(1/4))^(1/2)*2^(1/3) 2971246147389370 r005 Im(z^2+c),c=-3/4+157/228*I,n=4 2971246154253787 r008 a(0)=3,K{-n^6,-39+60*n-24*n^2+38*n^3} 2971246161942039 a007 Real Root Of -137*x^4-199*x^3-842*x^2+585*x+244 2971246169475757 m002 -Pi^2+Pi^5-Csch[Pi]*Log[Pi]+ProductLog[Pi] 2971246175718236 m001 (3^(1/3)+sin(1/12*Pi))/(Zeta(5)-ln(5)) 2971246177851269 r008 a(0)=3,K{-n^6,3-n-6*n^2+39*n^3} 2971246197569612 r005 Re(z^2+c),c=9/25+9/40*I,n=43 2971246197632482 m008 (3/4*Pi-5/6)/(1/6*Pi^5+1/4) 2971246201824421 m002 5-E^Pi*Log[Pi]^3 2971246205144424 r008 a(0)=3,K{-n^6,53+41*n^3+13*n^2-72*n} 2971246205163523 r008 a(0)=3,K{-n^6,-25+54*n^3-65*n^2+71*n} 2971246212480563 r008 a(0)=3,K{-n^6,47-55*n-2*n^2+45*n^3} 2971246221940672 r005 Re(z^2+c),c=-37/102+6/25*I,n=38 2971246222943220 m001 exp(1/Pi)+HardyLittlewoodC5+KhinchinLevy 2971246228012003 m005 (1/2*Catalan-2/11)/(-43/198+1/18*5^(1/2)) 2971246229412460 r008 a(0)=3,K{-n^6,37+54*n^3-34*n^2-22*n} 2971246234248895 r002 10th iterates of z^2 + 2971246236354940 a001 123/377*39088169^(11/12) 2971246246077453 m001 polylog(4,1/2)*(Psi(2,1/3)-UniversalParabolic) 2971246252602845 m005 (1/3*gamma-1/12)/(7/12*gamma-3/10) 2971246261010318 m001 (exp(1/Pi)+KhinchinLevy)/(cos(1)+arctan(1/3)) 2971246264624248 a001 843/365435296162*317811^(13/23) 2971246274385538 m001 1/2*ln(5)^Shi(1)/Pi*GAMMA(5/6) 2971246274861334 m001 sin(1)/((3^(1/2))^Ei(1)) 2971246274861334 m001 sin(1)/(sqrt(3)^Ei(1)) 2971246276603387 m001 (Pi^(1/2)+OneNinth)/(Trott2nd-TwinPrimes) 2971246278264935 r008 a(0)=3,K{-n^6,55+76*n^3-91*n^2-5*n} 2971246279409298 a005 (1/cos(19/120*Pi))^561 2971246289771863 m005 (1/2*3^(1/2)-1/3)/(7/10*gamma-7/12) 2971246289932226 r008 a(0)=3,K{-n^6,79+79*n^3-88*n^2-35*n} 2971246290252070 m001 (exp(1/exp(1))+FeigenbaumMu)/(Kac-Kolakoski) 2971246295313828 m001 (FeigenbaumB+Otter)/(Ei(1,1)+GAMMA(11/12)) 2971246298087245 m001 (BesselI(1,1)-Artin)/(ln(5)-cos(1/12*Pi)) 2971246310358050 a007 Real Root Of -34*x^4+514*x^3-220*x^2+694*x-200 2971246313050077 m001 (BesselK(0,1)-GAMMA(1/4)*Cahen)/Cahen 2971246324929268 m005 (1/2*Catalan-5/8)/(4/11*Zeta(3)+1/8) 2971246326919774 m001 (sin(1/5*Pi)-gamma(1))/(GAMMA(7/12)-Mills) 2971246334314848 m001 Niven^2*ln(GlaisherKinkelin)^2*GAMMA(17/24)^2 2971246335158557 m005 (1/42+1/6*5^(1/2))/(4*Pi+7/9) 2971246338213797 l006 ln(2477/3334) 2971246342672299 a007 Real Root Of 549*x^4+472*x^3-479*x^2-560*x-116 2971246347698975 r005 Re(z^2+c),c=-19/62+22/51*I,n=17 2971246348171158 a003 cos(Pi*1/91)/cos(Pi*34/87) 2971246357623371 q001 1/3365591 2971246362353454 r009 Re(z^3+c),c=-21/46+28/57*I,n=43 2971246379737016 r005 Re(z^2+c),c=-37/102+6/25*I,n=40 2971246385220397 m005 (1/3*Catalan+1/4)/(2/3*3^(1/2)+5/7) 2971246389451881 m005 (1/2*Pi-1/12)/(4/9*5^(1/2)-6) 2971246391022544 a007 Real Root Of -146*x^4-225*x^3+713*x^2+18*x-764 2971246392591534 m001 (Gompertz-HardyLittlewoodC3)/(Bloch+GaussAGM) 2971246404432665 m001 (GAMMA(23/24)+OneNinth)/(Otter+Thue) 2971246408856481 r005 Re(z^2+c),c=-45/122+8/39*I,n=26 2971246413223176 r009 Re(z^3+c),c=-1/20+31/53*I,n=25 2971246415783224 m005 (1/2*Zeta(3)-1/7)/(1/2*Catalan-2) 2971246426377884 r009 Im(z^3+c),c=-3/44+17/53*I,n=9 2971246435581321 a007 Real Root Of -679*x^4-890*x^3-662*x^2+458*x-13 2971246437833617 r005 Im(z^2+c),c=25/86+7/54*I,n=61 2971246438998210 a001 144/521*76^(17/31) 2971246445490011 m001 1/Si(Pi)^2*DuboisRaymond^2/ln(Tribonacci)^2 2971246449309119 m001 Conway+exp(1/Pi)^ErdosBorwein 2971246450552579 r005 Im(z^2+c),c=9/28+2/21*I,n=35 2971246452182678 s002 sum(A245142[n]/(n*exp(n)+1),n=1..infinity) 2971246455526097 s001 sum(exp(-2*Pi)^(n-1)*A208320[n],n=1..infinity) 2971246465344370 m005 (2/5*Pi-4)/(2/5*Pi-1/3) 2971246465344370 m006 (4/Pi-2/5)/(1/3/Pi-2/5) 2971246465344370 m008 (2/5*Pi-4)/(2/5*Pi-1/3) 2971246473081737 r005 Re(z^2+c),c=-37/102+6/25*I,n=36 2971246484371191 r005 Re(z^2+c),c=-33/122+32/59*I,n=52 2971246489834051 m001 (Artin-ArtinRank2)/(ln(3)+gamma(2)) 2971246491248454 m001 (Porter+ZetaQ(3))/(ln(3)-BesselK(1,1)) 2971246510994199 r005 Re(z^2+c),c=-37/102+6/25*I,n=45 2971246512034837 r005 Re(z^2+c),c=-37/102+6/25*I,n=42 2971246514249467 m001 (FeigenbaumD-ThueMorse)/LandauRamanujan 2971246515311219 h001 (1/4*exp(2)+2/11)/(7/8*exp(2)+4/11) 2971246516115501 r005 Im(z^2+c),c=1/122+30/47*I,n=48 2971246520350662 r005 Re(z^2+c),c=-37/102+6/25*I,n=43 2971246522170290 r005 Re(z^2+c),c=-37/102+6/25*I,n=47 2971246529179952 r005 Re(z^2+c),c=-37/102+6/25*I,n=52 2971246529407291 r005 Re(z^2+c),c=-37/102+6/25*I,n=50 2971246529880021 r005 Re(z^2+c),c=-37/102+6/25*I,n=49 2971246529933507 r005 Re(z^2+c),c=-37/102+6/25*I,n=54 2971246530291178 r005 Re(z^2+c),c=-37/102+6/25*I,n=57 2971246530296687 r005 Re(z^2+c),c=-37/102+6/25*I,n=59 2971246530345677 r005 Re(z^2+c),c=-37/102+6/25*I,n=61 2971246530362379 r005 Re(z^2+c),c=-37/102+6/25*I,n=64 2971246530370310 r005 Re(z^2+c),c=-37/102+6/25*I,n=63 2971246530373869 r005 Re(z^2+c),c=-37/102+6/25*I,n=56 2971246530374340 r005 Re(z^2+c),c=-37/102+6/25*I,n=62 2971246530413359 r005 Re(z^2+c),c=-37/102+6/25*I,n=60 2971246530456636 r005 Re(z^2+c),c=-37/102+6/25*I,n=58 2971246530518434 b008 27+ArcCsch[2/15] 2971246530525248 r005 Re(z^2+c),c=-37/102+6/25*I,n=55 2971246531177144 r005 Re(z^2+c),c=-37/102+6/25*I,n=53 2971246531528239 p004 log(36671/1879) 2971246531726295 r005 Re(z^2+c),c=-37/102+6/25*I,n=51 2971246532785225 m001 (Ei(1,1)+cos(1/12*Pi))/(PlouffeB-ZetaP(4)) 2971246533839538 r005 Re(z^2+c),c=-37/102+6/25*I,n=48 2971246543720795 m009 (3*Psi(1,3/4)+2/5)/(3/8*Pi^2-1) 2971246544499616 r005 Re(z^2+c),c=-37/102+6/25*I,n=46 2971246550409471 r005 Re(z^2+c),c=-37/102+6/25*I,n=44 2971246554156389 a001 3571/1346269*832040^(9/26) 2971246554995156 k002 Champernowne real with 133/2*n^2-315/2*n+120 2971246566455430 a007 Real Root Of -26*x^4-748*x^3+744*x^2+465*x+284 2971246585335407 a007 Real Root Of -295*x^4+980*x^3-903*x^2-339*x+7 2971246602038697 r005 Re(z^2+c),c=-37/102+6/25*I,n=41 2971246611611810 m005 (1/3*gamma+1/5)/(5/9*gamma+1) 2971246611644793 a005 (1/cos(36/157*Pi))^28 2971246619929058 a007 Real Root Of -222*x^4-689*x^3-347*x^2-568*x+605 2971246620065587 l006 ln(308/6011) 2971246626343695 m006 (5/6*exp(2*Pi)+1/4)/(2/3*exp(Pi)-2/5) 2971246631611506 a007 Real Root Of -327*x^4-978*x^3+14*x^2+190*x+273 2971246633378261 s001 sum(1/10^(n-1)*A231484[n]/n!,n=1..infinity) 2971246638681235 r005 Re(z^2+c),c=-1/19+41/63*I,n=44 2971246650313235 m001 (Psi(2,1/3)+exp(1))/(-Pi^(1/2)+ZetaQ(3)) 2971246666924845 a009 15/22+12^(1/3) 2971246667426311 m005 (1/2*Pi-3/7)/(-65/14+5/14*5^(1/2)) 2971246668055991 r009 Im(z^3+c),c=-15/64+16/55*I,n=14 2971246669039710 r009 Im(z^3+c),c=-14/29+7/57*I,n=20 2971246681006097 r009 Re(z^3+c),c=-47/102+19/42*I,n=41 2971246683855314 r008 a(0)=3,K{-n^6,-60+41*n+41*n^2+13*n^3} 2971246690604795 r005 Im(z^2+c),c=-19/30+13/41*I,n=20 2971246691934678 a001 63245986/3*29^(11/14) 2971246702727537 r009 Re(z^3+c),c=-61/106+27/52*I,n=5 2971246723628872 r008 a(0)=3,K{-n^6,-22-10*n+51*n^2+16*n^3} 2971246724974290 r008 a(0)=3,K{-n^6,-50+42*n+22*n^2+21*n^3} 2971246727599971 r008 a(0)=3,K{-n^6,-52+47*n+18*n^2+22*n^3} 2971246733504761 a005 (1/sin(74/189*Pi))^485 2971246734676438 r009 Re(z^3+c),c=-1/46+17/24*I,n=9 2971246751918530 r005 Im(z^2+c),c=-71/86+8/45*I,n=43 2971246767742661 l006 ln(6983/9399) 2971246770838725 r008 a(0)=3,K{-n^6,-28+27*n+6*n^2+30*n^3} 2971246771591985 r005 Im(z^2+c),c=-25/34+19/116*I,n=28 2971246772274574 r005 Re(z^2+c),c=-37/102+6/25*I,n=39 2971246774142929 r008 a(0)=3,K{-n^6,-46+34*n^3-15*n^2+62*n} 2971246780740652 a007 Real Root Of 810*x^4+366*x^3+803*x^2-523*x-223 2971246811268601 r005 Re(z^2+c),c=-37/102+6/25*I,n=37 2971246814397337 a007 Real Root Of 229*x^4+804*x^3+643*x^2+840*x+61 2971246816076338 r008 a(0)=3,K{-n^6,20+37*n^3+9*n^2-31*n} 2971246817906790 r008 a(0)=3,K{-n^6,-6+18*n-19*n^2+42*n^3} 2971246821384489 r005 Im(z^2+c),c=-37/118+27/56*I,n=34 2971246829009130 s001 sum(exp(-4*Pi)^(n-1)*A072321[n],n=1..infinity) 2971246843571279 r008 a(0)=3,K{-n^6,66+40*n^3+23*n^2-94*n} 2971246845225430 m001 1/ln(Catalan)^2/Backhouse/sqrt(3)^2 2971246847576983 r008 a(0)=3,K{-n^6,46-54*n-2*n^2+45*n^3} 2971246854188377 m001 TravellingSalesman/(exp(Pi)+Catalan) 2971246863476065 r005 Re(z^2+c),c=-33/106+23/53*I,n=50 2971246864396550 r005 Re(z^2+c),c=-45/122+8/39*I,n=35 2971246870097408 r008 a(0)=3,K{-n^6,40-23*n-38*n^2+56*n^3} 2971246871518360 r008 a(0)=3,K{-n^6,14+61*n^3-66*n^2+26*n} 2971246874157949 p001 sum(1/(271*n+167)/n/(8^n),n=1..infinity) 2971246876157174 a001 1926/726103*832040^(9/26) 2971246881824756 r008 a(0)=3,K{-n^6,68+57*n^3-27*n^2-63*n} 2971246886741307 m001 Otter^(ln(5)*GolombDickman) 2971246887025274 m001 (QuadraticClass+Totient)/RenyiParking 2971246888201215 r002 4th iterates of z^2 + 2971246892352670 m001 (Zeta(5)-Zeta(1,-1))/(MinimumGamma+Sierpinski) 2971246910116912 r005 Re(z^2+c),c=1/26+36/55*I,n=12 2971246912860671 r002 14th iterates of z^2 + 2971246919053460 r005 Im(z^2+c),c=-6/19+23/48*I,n=28 2971246919878332 r005 Re(z^2+c),c=-45/122+8/39*I,n=37 2971246919904278 r008 a(0)=0,K{-n^6,18-47*n-11*n^2+37*n^3} 2971246928970198 a007 Real Root Of -366*x^4-745*x^3+624*x^2-916*x+753 2971246934519565 m007 (-gamma+1/3)/(-4/5*gamma-8/5*ln(2)+3/4) 2971246974931347 a007 Real Root Of -691*x^4-329*x^3+484*x^2+338*x+1 2971246980845262 m001 1/ln(GAMMA(19/24))^2*BesselJ(1,1)/gamma 2971246981546380 m001 1/MinimumGamma/MadelungNaCl^2*exp(Sierpinski) 2971246990296498 m001 (Sarnak-Trott2nd)/(Zeta(5)+Mills) 2971246992687323 r005 Re(z^2+c),c=-21/31+20/43*I,n=20 2971246997250320 r005 Im(z^2+c),c=-19/94+1/25*I,n=10 2971247001953481 m007 (-1/2*gamma-3/2*ln(2)+1/4*Pi-3)/(-1/3*gamma-1) 2971247003465064 a001 1/29*(1/2*5^(1/2)+1/2)^19*123^(6/13) 2971247003859607 l006 ln(4506/6065) 2971247007285358 r009 Im(z^3+c),c=-57/118+9/61*I,n=18 2971247014151959 m001 exp(1)/exp(CareFree)^2/sqrt(5) 2971247016369932 a007 Real Root Of 21*x^4+657*x^3+963*x^2-578*x-714 2971247017709413 r005 Im(z^2+c),c=23/82+1/7*I,n=43 2971247039207212 r005 Re(z^2+c),c=-45/122+8/39*I,n=39 2971247047983114 m002 -Pi^9+Pi^4*Coth[Pi]-Log[Pi] 2971247057910856 r009 Re(z^3+c),c=-31/50+7/11*I,n=10 2971247093982496 r005 Re(z^2+c),c=-45/122+8/39*I,n=44 2971247095913945 r005 Re(z^2+c),c=-45/122+8/39*I,n=42 2971247097923852 r005 Re(z^2+c),c=-45/122+8/39*I,n=41 2971247098397920 r005 Re(z^2+c),c=-45/122+8/39*I,n=46 2971247099780101 r009 Im(z^3+c),c=-17/36+32/55*I,n=44 2971247101271247 r005 Re(z^2+c),c=-45/122+8/39*I,n=48 2971247101571114 r005 Re(z^2+c),c=-45/122+8/39*I,n=51 2971247101704157 r005 Re(z^2+c),c=-45/122+8/39*I,n=53 2971247101833923 r005 Re(z^2+c),c=-45/122+8/39*I,n=55 2971247101870430 r005 Re(z^2+c),c=-45/122+8/39*I,n=58 2971247101872569 r005 Re(z^2+c),c=-45/122+8/39*I,n=60 2971247101874895 r005 Re(z^2+c),c=-45/122+8/39*I,n=49 2971247101877924 r005 Re(z^2+c),c=-45/122+8/39*I,n=62 2971247101880621 r005 Re(z^2+c),c=-45/122+8/39*I,n=64 2971247101882052 r005 Re(z^2+c),c=-45/122+8/39*I,n=63 2971247101884989 r005 Re(z^2+c),c=-45/122+8/39*I,n=57 2971247101886211 r005 Re(z^2+c),c=-45/122+8/39*I,n=61 2971247101891471 r005 Re(z^2+c),c=-45/122+8/39*I,n=59 2971247101893903 r005 Re(z^2+c),c=-45/122+8/39*I,n=56 2971247101982656 r005 Re(z^2+c),c=-45/122+8/39*I,n=54 2971247102138784 r005 Re(z^2+c),c=-45/122+8/39*I,n=52 2971247102143540 r005 Re(z^2+c),c=-45/122+8/39*I,n=50 2971247103622674 r005 Re(z^2+c),c=-45/122+8/39*I,n=47 2971247104965832 r005 Im(z^2+c),c=-7/26+31/61*I,n=16 2971247107598237 r005 Re(z^2+c),c=-45/122+8/39*I,n=45 2971247110631865 r005 Re(z^2+c),c=-45/122+8/39*I,n=43 2971247111700858 m001 1/Porter^2*KhintchineLevy*exp(Zeta(1/2))^2 2971247117809516 r005 Im(z^2+c),c=-3/13+13/29*I,n=55 2971247127324203 r005 Re(z^2+c),c=-45/122+8/39*I,n=40 2971247140133886 h001 (6/11*exp(2)+11/12)/(3/7*exp(1)+1/2) 2971247152830477 a007 Real Root Of -222*x^4-431*x^3+768*x^2+547*x+842 2971247172238954 a001 1597/7*47^(2/3) 2971247173863259 s002 sum(A083374[n]/((10^n-1)/n),n=1..infinity) 2971247174747020 a001 1/5*317811^(15/38) 2971247183516367 m001 (CopelandErdos-sin(1))/(-Gompertz+Stephens) 2971247190401727 b008 -10/7+Pi*ArcCoth[2] 2971247201821775 m005 (1/3*Catalan+1/9)/(3/4*Zeta(3)+1/2) 2971247206699025 a007 Real Root Of -360*x^4+869*x^3+927*x^2+253*x-177 2971247208851761 a001 29/13*4052739537881^(15/17) 2971247209140024 s002 sum(A251115[n]/(10^n+1),n=1..infinity) 2971247209412788 a007 Real Root Of 825*x^4-508*x^3+472*x^2-524*x-16 2971247209948678 r005 Re(z^2+c),c=-45/122+8/39*I,n=34 2971247215163279 r005 Im(z^2+c),c=-109/94+11/51*I,n=8 2971247218832623 r005 Re(z^2+c),c=-45/122+8/39*I,n=38 2971247219174137 r005 Im(z^2+c),c=4/27+19/45*I,n=4 2971247220649054 l006 ln(277/5406) 2971247226762572 a001 6/2255*53316291173^(8/17) 2971247228129502 r005 Re(z^2+c),c=31/98+22/61*I,n=18 2971247244790945 r005 Re(z^2+c),c=-13/44+26/55*I,n=28 2971247246784626 m002 -Pi^2+Pi^5+Pi^2*Log[Pi]*Sech[Pi] 2971247255826372 r005 Re(z^2+c),c=-33/94+13/44*I,n=34 2971247256163294 l006 ln(6535/8796) 2971247265225488 r009 Im(z^3+c),c=-12/25+8/57*I,n=57 2971247278067330 m001 (-Otter+ZetaP(3))/(Catalan-Si(Pi)) 2971247279464300 r005 Im(z^2+c),c=-95/126+5/56*I,n=26 2971247291143624 r009 Re(z^3+c),c=-17/30+11/42*I,n=56 2971247291364187 h001 (1/4*exp(2)+1/8)/(1/11*exp(1)+5/12) 2971247303555259 s002 sum(A103231[n]/(2^n+1),n=1..infinity) 2971247304082502 m001 Zeta(1,2)^2/ln(Champernowne)/sqrt(2) 2971247316552210 r005 Im(z^2+c),c=-13/18+5/51*I,n=61 2971247316677924 m001 (Pi^(1/2)+4)/(ln(5)+1/3) 2971247326989076 r008 a(0)=3,K{-n^6,47-13*n^3+21*n^2-24*n} 2971247338159205 r008 a(0)=3,K{-n^6,-67+19*n^3+20*n^2+63*n} 2971247338812027 r005 Re(z^2+c),c=-45/122+8/39*I,n=36 2971247339885626 m001 (Rabbit+ZetaP(3))/(BesselI(0,2)+ArtinRank2) 2971247340613588 h001 (1/3*exp(1)+3/5)/(2/3*exp(2)+1/7) 2971247341659346 m001 1/TreeGrowth2nd^2/Khintchine/ln(sqrt(5))^2 2971247356635095 a003 cos(Pi*23/105)-cos(Pi*38/111) 2971247358260506 m005 (9/20+1/4*5^(1/2))/(2/9*exp(1)-4) 2971247359620686 r008 a(0)=3,K{-n^6,-53+48*n+18*n^2+22*n^3} 2971247361913990 r005 Re(z^2+c),c=-45/122+8/39*I,n=33 2971247363387671 a001 1/76*(1/2*5^(1/2)+1/2)^23*1364^(13/16) 2971247363817327 r005 Im(z^2+c),c=11/118+12/41*I,n=7 2971247375252273 r005 Re(z^2+c),c=-61/78+5/57*I,n=20 2971247383452887 m001 1/ln(GAMMA(1/24))*Zeta(1,2) 2971247397165387 a001 2207/832040*832040^(9/26) 2971247402823842 m001 (5^(1/2)+FibonacciFactorial)/(-Salem+Trott) 2971247407586294 r005 Re(z^2+c),c=-27/74+13/54*I,n=10 2971247416054805 a007 Real Root Of -440*x^4-154*x^3-969*x^2+256*x+161 2971247425800917 r009 Re(z^3+c),c=-10/27+31/56*I,n=4 2971247439578268 m001 1/ln(Zeta(5))*Ei(1)^2*sqrt(3)^2 2971247441981694 r002 10th iterates of z^2 + 2971247443953030 m001 (Zeta(5)-ln(2^(1/2)+1))/(gamma(1)+Gompertz) 2971247448910501 r008 a(0)=3,K{-n^6,-7+19*n-19*n^2+42*n^3} 2971247452475193 r008 a(0)=3,K{-n^6,-17+45*n^3-33*n^2+40*n} 2971247457527031 m003 -3/4+Sqrt[5]/2+(3*Cot[1/2+Sqrt[5]/2])/2 2971247468645572 r008 a(0)=3,K{-n^6,3+48*n^3-32*n^2+16*n} 2971247477674295 r009 Im(z^3+c),c=-23/38+17/61*I,n=33 2971247491272789 m001 BesselI(1,1)*Trott2nd+Otter 2971247499186127 a001 2/225851433717*63245986^(17/24) 2971247500545939 r008 a(0)=3,K{-n^6,39-22*n-38*n^2+56*n^3} 2971247504817798 r005 Re(z^2+c),c=-27/70+10/59*I,n=7 2971247511843569 a001 20365011074/521*322^(3/4) 2971247512631845 r005 Re(z^2+c),c=-17/22+1/23*I,n=12 2971247512729195 r008 a(0)=3,K{-n^6,5+36*n-n^2-11*n^3} 2971247526345395 a007 Real Root Of -275*x^4-636*x^3+461*x^2-55*x+517 2971247535570205 a007 Real Root Of 105*x^4-984*x^3+376*x^2-869*x+250 2971247537139808 r005 Re(z^2+c),c=-37/102+6/25*I,n=29 2971247538306497 m005 (1/2*2^(1/2)-1/9)/(2/7*Zeta(3)-1/7) 2971247544172533 m005 (1/3*2^(1/2)-1/12)/(7/9*gamma+6/7) 2971247554089556 r002 18th iterates of z^2 + 2971247557100115 k002 Champernowne real with 67*n^2-159*n+121 2971247560111627 r004 Im(z^2+c),c=-3/26-7/20*I,z(0)=I,n=7 2971247560540967 r008 a(0)=3,K{-n^6,62+n-35*n^2+8*n^3} 2971247583150242 a007 Real Root Of 900*x^4-317*x^3-130*x^2-401*x-123 2971247596117720 k003 Champernowne real with 59/6*n^3-63/2*n^2+98/3*n-9 2971247609338142 m001 1/3/(Zeta(1/2)^GaussKuzminWirsing) 2971247637320888 m001 Khintchine^2*FeigenbaumDelta^2/ln(Kolakoski)^2 2971247638772669 a003 cos(Pi*43/113)-cos(Pi*54/113) 2971247654712336 h001 (7/8*exp(2)+6/11)/(3/10*exp(2)+1/7) 2971247658984977 m001 1/Rabbit/MadelungNaCl^2/exp(TreeGrowth2nd) 2971247664818882 r005 Re(z^2+c),c=-4/13+4/9*I,n=58 2971247665713897 r009 Re(z^3+c),c=-17/30+11/42*I,n=64 2971247676884765 r009 Re(z^3+c),c=-17/30+11/42*I,n=60 2971247677869703 r002 31th iterates of z^2 + 2971247678565865 l006 ln(7328/7549) 2971247695030825 m002 -6+Cosh[Pi]-3/Log[Pi] 2971247715838448 m009 (3/8*Pi^2-5/6)/(24/5*Catalan+3/5*Pi^2-2/3) 2971247720691747 s003 concatenated sequence A272285 2971247732577058 r005 Im(z^2+c),c=15/82+11/47*I,n=14 2971247733684329 g007 Psi(2,2/11)+Psi(2,1/3)-Psi(2,2/7)-Psi(2,3/4) 2971247737459089 a001 9/4*233^(43/48) 2971247737802917 m001 GlaisherKinkelin^Psi(1,1/3)/PrimesInBinary 2971247742806002 r009 Re(z^3+c),c=-9/20+19/61*I,n=7 2971247743712302 r005 Im(z^2+c),c=-11/42+2/47*I,n=15 2971247759855474 m001 (Grothendieck+Niven)/GAMMA(19/24) 2971247772851449 m001 (exp(Pi)+sin(1/12*Pi))/(gamma(3)+ZetaP(4)) 2971247783103640 r009 Re(z^3+c),c=-55/122+11/24*I,n=22 2971247787938637 r005 Im(z^2+c),c=-17/66+28/61*I,n=32 2971247792747971 r005 Im(z^2+c),c=7/26+3/19*I,n=16 2971247798407257 a005 (1/sin(90/209*Pi))^911 2971247813662679 a007 Real Root Of 317*x^4+981*x^3+106*x^2+77*x+319 2971247816478902 l006 ln(2029/2731) 2971247816478902 p004 log(2731/2029) 2971247823379447 a001 322/1346269*1597^(1/34) 2971247844249695 r005 Re(z^2+c),c=-5/6+72/241*I,n=8 2971247847182173 m001 exp(Bloch)*FransenRobinson*TwinPrimes 2971247849295284 r009 Im(z^3+c),c=-15/64+16/55*I,n=12 2971247853084951 r002 2th iterates of z^2 + 2971247854127414 r009 Re(z^3+c),c=-1/20+31/53*I,n=39 2971247854404276 r009 Im(z^3+c),c=-29/64+8/47*I,n=32 2971247862580972 m001 1/exp(FeigenbaumD)*Rabbit^2/OneNinth^2 2971247868731054 r008 a(0)=3,K{-n^6,52-14*n^3+37*n^2-50*n} 2971247875246779 m002 -Pi^5-ProductLog[Pi]/Log[Pi]+Pi^2*Tanh[Pi] 2971247878377912 r002 4th iterates of z^2 + 2971247883160353 a007 Real Root Of -781*x^4-331*x^3-225*x^2+615*x+200 2971247888486551 h001 (1/8*exp(2)+4/5)/(2/3*exp(2)+7/8) 2971247898398420 r005 Re(z^2+c),c=-29/86+7/20*I,n=31 2971247905373475 r005 Re(z^2+c),c=-15/56+25/46*I,n=57 2971247907770684 m001 Zeta(3)^3*ln(KhintchineLevy) 2971247932166313 a007 Real Root Of 135*x^4+296*x^3-604*x^2-559*x+914 2971247933925631 r008 a(0)=3,K{-n^6,-64+42*n+46*n^2+11*n^3} 2971247934601749 r005 Im(z^2+c),c=11/50+10/49*I,n=14 2971247936550042 r009 Re(z^3+c),c=-17/30+11/42*I,n=44 2971247943741036 r005 Re(z^2+c),c=-37/102+6/25*I,n=34 2971247951518940 r008 a(0)=3,K{-n^6,50+11*n-15*n^2-12*n^3} 2971247951608188 r005 Re(z^2+c),c=1/48+23/51*I,n=4 2971247954361028 m003 -5/6+Sqrt[5]/4+3*Coth[1/2+Sqrt[5]/2] 2971247972598577 l006 ln(246/4801) 2971247976212691 r005 Re(z^2+c),c=-2/11+19/30*I,n=45 2971247984667953 r008 a(0)=3,K{-n^6,-22-11*n+52*n^2+16*n^3} 2971247989489107 r005 Im(z^2+c),c=-6/23+23/50*I,n=46 2971247993499865 m001 (-Kac+MinimumGamma)/(5^(1/2)+gamma) 2971247998952205 m009 (3*Psi(1,3/4)+2/5)/(4/5*Psi(1,2/3)+1/4) 2971248010955804 r005 Re(z^2+c),c=-17/56+26/57*I,n=38 2971248022099526 m001 1/3*(3^(5/6)+KomornikLoreti)*3^(2/3) 2971248029841982 m001 cos(Pi/5)*LambertW(1)*ln(sqrt(5))^2 2971248035790979 m001 (Pi-LambertW(1))/(Mills-TreeGrowth2nd) 2971248050851399 s002 sum(A152013[n]/((exp(n)-1)/n),n=1..infinity) 2971248064678858 r005 Re(z^2+c),c=9/29+1/8*I,n=24 2971248067393821 r008 a(0)=3,K{-n^6,34-63*n+32*n^2+32*n^3} 2971248070349046 m001 (ln(2+3^(1/2))-KomornikLoreti)/(Sarnak+Thue) 2971248079070584 r008 a(0)=3,K{-n^6,-18+45*n^3-33*n^2+41*n} 2971248084255245 r008 a(0)=3,K{-n^6,-30+49*n^3-51*n^2+67*n} 2971248085471062 a007 Real Root Of -203*x^4-860*x^3-849*x^2-239*x+48 2971248086643464 r009 Re(z^3+c),c=-3/52+5/7*I,n=10 2971248087686905 m005 (-11/6+1/6*5^(1/2))/(Catalan+4) 2971248088784049 r008 a(0)=0,K{-n^6,-17-41*n^3+55*n^2-31*n} 2971248088789759 r005 Re(z^2+c),c=-19/56+12/35*I,n=25 2971248095402800 a003 cos(Pi*1/56)-sin(Pi*50/119) 2971248101697253 m005 (-11/42+1/6*5^(1/2))/(1/10*exp(1)-4) 2971248103027732 r008 a(0)=3,K{-n^6,28-24*n-16*n^2+47*n^3} 2971248105356073 r008 a(0)=3,K{-n^6,46-55*n-n^2+45*n^3} 2971248107963782 a001 34/4870847*3571^(37/50) 2971248129193806 m001 FeigenbaumD^(1/2*Otter/Pi*3^(1/2)*GAMMA(2/3)) 2971248131800450 m001 (1-2^(1/2))/(-sin(1/12*Pi)+(1+3^(1/2))^(1/2)) 2971248146981264 m001 (Psi(1,1/3)+5^(1/2))/(-BesselK(1,1)+Cahen) 2971248148629363 m001 (3^(1/2))^(2*Pi/GAMMA(5/6)/FransenRobinson) 2971248153589802 a001 843*(1/2*5^(1/2)+1/2)^7*3^(3/17) 2971248171728188 r002 17th iterates of z^2 + 2971248187783389 a001 76/121393*89^(17/49) 2971248188936234 r009 Re(z^3+c),c=-21/46+25/58*I,n=61 2971248193260501 r005 Im(z^2+c),c=-2/3+10/59*I,n=23 2971248197519509 r005 Im(z^2+c),c=-19/82+17/38*I,n=23 2971248201607091 r005 Im(z^2+c),c=-7/10+41/179*I,n=24 2971248205696167 r005 Im(z^2+c),c=-7/38+17/28*I,n=23 2971248212866383 r009 Re(z^3+c),c=-29/70+23/64*I,n=47 2971248220752012 a007 Real Root Of -32*x^4-970*x^3-541*x^2+906*x+879 2971248232388768 r005 Im(z^2+c),c=-7/29+19/42*I,n=37 2971248252863613 m001 exp(FeigenbaumC)^2*Artin^2/GAMMA(2/3)^2 2971248270618335 m004 (25*Sqrt[5]*Pi)/6+(3*Cos[Sqrt[5]*Pi])/5 2971248280051479 a001 17/930249*64079^(23/50) 2971248282798711 m009 (1/3*Psi(1,3/4)+1/2)/(3/8*Pi^2+5/6) 2971248287023417 r005 Re(z^2+c),c=11/58+29/51*I,n=8 2971248298825437 a007 Real Root Of -224*x^4-585*x^3+296*x^2-70*x-708 2971248304585901 a007 Real Root Of -584*x^4+209*x^3-587*x^2+263*x+140 2971248305562845 a007 Real Root Of 328*x^4+627*x^3-830*x^2+291*x-925 2971248311105748 m005 (1/2*2^(1/2)-4/7)/(2/5*Pi-4/5) 2971248315580968 r005 Im(z^2+c),c=35/118+35/61*I,n=40 2971248328805307 m005 (-11/36+1/4*5^(1/2))/(1/6*exp(1)+2/5) 2971248337320242 r005 Im(z^2+c),c=-11/28+22/49*I,n=4 2971248352105583 r005 Re(z^2+c),c=13/70+19/51*I,n=57 2971248359643893 r005 Im(z^2+c),c=-1/19+13/35*I,n=17 2971248382477159 m009 (2/5*Psi(1,1/3)-3/5)/(3/4*Psi(1,1/3)+4) 2971248385904387 m009 (6*Psi(1,2/3)+3/4)/(8/5*Catalan+1/5*Pi^2+3) 2971248398612065 r005 Re(z^2+c),c=-4/13+4/9*I,n=56 2971248408580561 m001 1/Robbin/exp(HardHexagonsEntropy)/(2^(1/3)) 2971248415883961 a007 Real Root Of -953*x^4+43*x^3+986*x^2+260*x-158 2971248424420470 l006 ln(461/8997) 2971248425642876 r005 Im(z^2+c),c=-3/13+13/29*I,n=39 2971248442307036 r009 Re(z^3+c),c=-29/70+23/64*I,n=44 2971248444657284 g001 GAMMA(1/4,78/89) 2971248447269117 m001 (BesselK(0,1)-gamma)/(Bloch+ZetaQ(2)) 2971248450551323 r009 Re(z^3+c),c=-1/3+13/61*I,n=14 2971248465824934 l006 ln(5639/7590) 2971248512784941 m005 (1/2*5^(1/2)-1/7)/(-37/99+2/11*5^(1/2)) 2971248517764421 a003 sin(Pi*4/107)/cos(Pi*23/62) 2971248527791436 m005 (1/3*2^(1/2)+2/5)/(10/11*5^(1/2)+9/10) 2971248531448689 a007 Real Root Of -30*x^4-874*x^3+492*x^2-699*x+632 2971248532180441 m001 Otter*(Psi(1,1/3)-exp(-Pi)) 2971248556543194 r005 Re(z^2+c),c=4/15+4/41*I,n=36 2971248560100715 k002 Champernowne real with 135/2*n^2-321/2*n+122 2971248570815392 m005 (1/2*3^(1/2)-3/11)/(-23/144+1/16*5^(1/2)) 2971248574521325 a007 Real Root Of -227*x^4-512*x^3+235*x^2-758*x-65 2971248577879040 r008 a(0)=3,K{-n^6,30-2*n^3-9*n^2+17*n} 2971248588389482 a001 9349/377*2178309^(17/35) 2971248588704083 m001 (BesselI(1,2)+Paris)/(3^(1/2)-Psi(2,1/3)) 2971248589252509 m001 (-Bloch+Tribonacci)/(BesselJ(0,1)-GAMMA(3/4)) 2971248598658281 m001 GaussKuzminWirsing^(cos(1/5*Pi)/Kolakoski) 2971248600118720 k003 Champernowne real with 10*n^3-65/2*n^2+69/2*n-10 2971248604643457 r002 4th iterates of z^2 + 2971248611811213 r008 a(0)=3,K{-n^6,-53+47*n+19*n^2+22*n^3} 2971248614881253 m009 (40*Catalan+5*Pi^2+4/5)/(3*Pi^2-2/5) 2971248617276968 a001 1/76*(1/2*5^(1/2)+1/2)^32*3571^(3/16) 2971248630406628 a001 1/31622993*610^(17/24) 2971248636868915 r008 a(0)=3,K{-n^6,1-38*n+52*n^2+20*n^3} 2971248639157000 r008 a(0)=3,K{-n^6,-37+33*n+12*n^2+27*n^3} 2971248643641864 r008 a(0)=3,K{-n^6,-65+33*n^3-20*n^2+87*n} 2971248658794920 a001 1/76*(1/2*5^(1/2)+1/2)^26*24476^(7/16) 2971248659869485 r008 a(0)=3,K{-n^6,60-11*n^3-13*n^2-2*n} 2971248660738673 a001 1/76*(1/2*5^(1/2)+1/2)^28*64079^(5/16) 2971248663539058 r009 Re(z^3+c),c=-10/23+16/29*I,n=54 2971248668105714 r008 a(0)=3,K{-n^6,30-6*n^3-43*n^2+53*n} 2971248674735144 r008 a(0)=3,K{-n^6,25-58*n+40*n^2+28*n^3} 2971248675730704 r008 a(0)=3,K{-n^6,-39+60*n-25*n^2+39*n^3} 2971248676304990 r002 33th iterates of z^2 + 2971248678986705 m005 (1/2*Pi+7/12)/(25/9+2*5^(1/2)) 2971248683342968 r008 a(0)=3,K{-n^6,-17+25*n-11*n^2+38*n^3} 2971248686568579 m002 5+E^Pi+ProductLog[Pi]+Tanh[Pi]/2 2971248686889546 h001 (-2*exp(3)-3)/(-9*exp(2/3)+3) 2971248689791674 r008 a(0)=3,K{-n^6,33-62*n+32*n^2+32*n^3} 2971248694621099 r009 Im(z^3+c),c=-41/78+9/49*I,n=14 2971248698729840 r008 a(0)=3,K{-n^6,-7+18*n-18*n^2+42*n^3} 2971248715553669 s002 sum(A043170[n]/(n^3*2^n-1),n=1..infinity) 2971248717410788 a005 (1/sin(98/219*Pi))^585 2971248721726170 a007 Real Root Of 15*x^4+13*x^3-149*x^2-197*x-98 2971248723234524 a001 4/28657*317811^(7/29) 2971248723484951 r008 a(0)=3,K{-n^6,53+42*n^3+12*n^2-72*n} 2971248738530927 a007 Real Root Of 32*x^4+943*x^3-244*x^2-380*x-472 2971248742808947 r008 a(0)=3,K{-n^6,51-51*n-16*n^2+51*n^3} 2971248743377074 m005 (1/2*2^(1/2)+3/5)/(2/11*3^(1/2)+1/8) 2971248746297820 r005 Re(z^2+c),c=13/42+5/39*I,n=39 2971248746323676 r008 a(0)=3,K{-n^6,37+55*n^3-35*n^2-22*n} 2971248749088758 r008 a(0)=3,K{-n^6,39-23*n-37*n^2+56*n^3} 2971248752490781 r008 a(0)=3,K{-n^6,43-27*n-38*n^2+57*n^3} 2971248761977778 r005 Re(z^2+c),c=-23/62+9/47*I,n=22 2971248764235651 r002 15th iterates of z^2 + 2971248764979955 m002 Pi^5+(Cosh[Pi]*Log[Pi])/5-Sinh[Pi] 2971248779266454 r009 Re(z^3+c),c=-1/20+32/45*I,n=6 2971248783553609 r005 Im(z^2+c),c=-13/40+15/31*I,n=56 2971248795770080 r002 8th iterates of z^2 + 2971248796108210 s002 sum(A270569[n]/(n*2^n-1),n=1..infinity) 2971248799529252 m001 1/CareFree*ArtinRank2/ln(HardHexagonsEntropy) 2971248803057083 m001 (FeigenbaumKappa-ZetaP(2))/(ln(Pi)+Ei(1)) 2971248803467992 r008 a(0)=3,K{-n^6,79+80*n^3-89*n^2-35*n} 2971248803500863 a007 Real Root Of -143*x^4-252*x^3+515*x^2+121*x+348 2971248810623551 r005 Im(z^2+c),c=-7/19+3/64*I,n=14 2971248824145571 r005 Im(z^2+c),c=31/126+11/61*I,n=18 2971248828232675 r005 Re(z^2+c),c=-8/23+17/55*I,n=30 2971248830789763 l006 ln(3610/4859) 2971248835652266 m001 Riemann2ndZero^(HardHexagonsEntropy*Totient) 2971248837458824 m001 Trott/KhinchinLevy/HardyLittlewoodC4 2971248839855106 m002 -E^Pi+3/Log[Pi]-Pi^2/ProductLog[Pi] 2971248849617473 m005 (1/2*Zeta(3)+3/4)/(2/3*3^(1/2)-7/10) 2971248851846628 r005 Im(z^2+c),c=-15/44+24/49*I,n=62 2971248866513790 m001 GAMMA(13/24)-GAMMA(2/3)+Khinchin 2971248866513790 m001 GAMMA(2/3)-Khinchin-GAMMA(13/24) 2971248880970949 a003 sin(Pi*5/79)/cos(Pi*29/108) 2971248885203043 r005 Re(z^2+c),c=19/122+26/47*I,n=37 2971248902794130 a003 cos(Pi*2/89)-cos(Pi*21/83) 2971248908522143 a007 Real Root Of 19*x^4-363*x^3+809*x^2+141*x+480 2971248917539045 r005 Im(z^2+c),c=-15/32+19/30*I,n=5 2971248918517126 m001 exp(Pi)^GAMMA(11/12)*exp(Pi)^Otter 2971248921191869 a003 cos(2/5*Pi)-3^(1/2)-cos(1/10*Pi)-cos(8/27*Pi) 2971248923165853 s001 sum(exp(-3*Pi/5)^n*A060724[n],n=1..infinity) 2971248941388524 l006 ln(215/4196) 2971248949529448 r005 Im(z^2+c),c=-15/118+15/37*I,n=29 2971248957036043 m001 (exp(1/Pi)+Cahen)/(Conway-GolombDickman) 2971248959149468 a007 Real Root Of 266*x^4+424*x^3-856*x^2+355*x-998 2971248989400625 a001 233/29*4^(50/53) 2971248999283886 r009 Im(z^3+c),c=-5/42+24/29*I,n=30 2971249000219765 r009 Im(z^3+c),c=-65/118+7/44*I,n=12 2971249001052293 m001 (sin(1)+ln(3))/(-Robbin+ZetaQ(3)) 2971249021138043 a007 Real Root Of 165*x^4+702*x^3+933*x^2+816*x-258 2971249022800590 m009 (1/4*Psi(1,2/3)+5)/(2*Pi^2-1/3) 2971249024788943 r005 Im(z^2+c),c=15/64+9/47*I,n=22 2971249046893617 a007 Real Root Of 52*x^4-520*x^3+567*x^2-592*x-240 2971249058387043 r005 Im(z^2+c),c=-3/13+13/29*I,n=58 2971249058835379 m001 (Trott-Weierstrass)/(GAMMA(2/3)+exp(-1/2*Pi)) 2971249060245704 m001 (3^(1/2)+Paris)/(-Sarnak+Totient) 2971249078730104 r002 62th iterates of z^2 + 2971249112831271 a007 Real Root Of -109*x^4-548*x^3-573*x^2+151*x-372 2971249119268122 r005 Re(z^2+c),c=-39/118+22/59*I,n=27 2971249124686769 r005 Re(z^2+c),c=-13/46+29/57*I,n=42 2971249130683353 p004 log(24571/1259) 2971249141654928 a001 196418/7*7^(1/34) 2971249146586667 m001 BesselI(0,1)-LaplaceLimit^ZetaP(4) 2971249157774460 r009 Re(z^3+c),c=-29/70+23/64*I,n=50 2971249169367965 a001 23725150497407/13*39088169^(9/11) 2971249169367965 a001 312119004989/13*7778742049^(9/11) 2971249169367965 a001 4106118243/13*1548008755920^(9/11) 2971249175898995 a001 32951280099/199*199^(6/11) 2971249190343672 r005 Im(z^2+c),c=-11/42+30/53*I,n=16 2971249195015120 r008 a(0)=3,K{-n^6,-60+41*n+40*n^2+14*n^3} 2971249196079634 r009 Im(z^3+c),c=-8/17+3/19*I,n=22 2971249200379786 r005 Im(z^2+c),c=-3/13+13/29*I,n=50 2971249206434010 b008 Erfc[Zeta[3]]/3 2971249209845042 m001 (Catalan-GAMMA(3/4))^MertensB2 2971249215657709 a001 377/1860498*199^(49/52) 2971249224599148 m002 -(E^Pi*Cosh[Pi])-Pi^3/ProductLog[Pi] 2971249227252216 l006 ln(5191/6987) 2971249233266448 r008 a(0)=3,K{-n^6,-50+42*n+21*n^2+22*n^3} 2971249237958179 r009 Re(z^3+c),c=-73/122+7/13*I,n=11 2971249243939171 b008 (13*Tan[5]^2)/5 2971249247799054 a007 Real Root Of 12*x^4+334*x^3-664*x^2+190*x+336 2971249248376537 m008 (3/4*Pi^3-2/3)/(3/4*Pi^2+1/5) 2971249256815196 m001 GaussKuzminWirsing^FeigenbaumD/exp(1/Pi) 2971249257820581 r008 a(0)=3,K{-n^6,-14-10*n+36*n^2+23*n^3} 2971249262268504 r008 a(0)=3,K{-n^6,-66+33*n^3-20*n^2+88*n} 2971249262734092 r009 Re(z^3+c),c=-29/70+23/64*I,n=46 2971249262874562 s001 sum(exp(-Pi/4)^n*A241931[n],n=1..infinity) 2971249268472341 m003 1/4+(5*Sqrt[5])/64-(3*Log[1/2+Sqrt[5]/2])/2 2971249275855755 m005 (1/2*3^(1/2)-9/10)/(2/7*Zeta(3)+4/5) 2971249291140863 m001 1/Tribonacci*MadelungNaCl^2*exp((3^(1/3)))^2 2971249300183032 r005 Re(z^2+c),c=-47/42+6/23*I,n=62 2971249300801944 r005 Re(z^2+c),c=-45/122+8/39*I,n=31 2971249301529820 r008 a(0)=3,K{-n^6,-18+26*n-11*n^2+38*n^3} 2971249317598923 r008 a(0)=3,K{-n^6,42+34*n^3+31*n^2-72*n} 2971249320186981 r008 a(0)=3,K{-n^6,-18+45*n^3-32*n^2+40*n} 2971249326236167 m001 (ErdosBorwein+ZetaQ(4))/(ln(3)-GAMMA(13/24)) 2971249332170822 r008 a(0)=3,K{-n^6,-28+32*n+61*n^2-29*n^3} 2971249343099962 m001 Totient^Bloch*sin(1/12*Pi) 2971249344300160 r008 a(0)=3,K{-n^6,66+41*n^3+22*n^2-94*n} 2971249344818675 a007 Real Root Of 741*x^4-189*x^3+818*x^2-643*x-274 2971249346769230 m005 (1/2*gamma+10/11)/(2/9*5^(1/2)-9/10) 2971249360363364 r008 a(0)=3,K{-n^6,50-50*n-16*n^2+51*n^3} 2971249368646611 m005 (1/2*2^(1/2)+3/8)/(1/11*gamma-5/12) 2971249368985829 m001 (Mills+ReciprocalLucas)/(sin(1)+sin(1/12*Pi)) 2971249369945204 r008 a(0)=3,K{-n^6,42-26*n-38*n^2+57*n^3} 2971249373188563 r008 a(0)=3,K{-n^6,-19+48*n+50*n^2-45*n^3} 2971249376763787 a001 2/19*64079^(25/27) 2971249380023010 m005 (1/2*3^(1/2)+5/11)/(1/7*Zeta(3)+3/11) 2971249380335749 r008 a(0)=3,K{-n^6,68+58*n^3-28*n^2-63*n} 2971249393850520 m005 (1/2*exp(1)-2)/(7/12*Catalan-3/4) 2971249397158554 a001 521/196418*2584^(42/47) 2971249400446399 m001 Sierpinski^2*exp(FeigenbaumB)^2*sin(1) 2971249401147080 r005 Im(z^2+c),c=-3/13+13/29*I,n=60 2971249405432988 m005 (1/2*3^(1/2)+2/11)/(1/6*Catalan+1/5) 2971249408742556 r009 Re(z^3+c),c=-2/11+37/39*I,n=8 2971249416465751 m001 sin(1)^(MinimumGamma/exp(-1/2*Pi)) 2971249432654109 a001 89/599074578*4^(1/2) 2971249434633150 a007 Real Root Of -189*x^4-496*x^3+439*x^2+391*x-994 2971249438597374 l006 ln(6772/9115) 2971249439754997 a007 Real Root Of -297*x^4-809*x^3+26*x^2-298*x+812 2971249451344160 a007 Real Root Of -219*x^4-501*x^3+111*x^2-732*x+772 2971249470301482 m001 Magata/(KomornikLoreti^CopelandErdos) 2971249473010438 a001 2/514229*4181^(13/25) 2971249482573017 m008 (2/3*Pi^6+5)/(2*Pi^2+2) 2971249487048314 m001 Riemann2ndZero/CareFree*ln(GAMMA(1/24))^2 2971249499874859 m001 GAMMA(11/12)^2/ln(GAMMA(1/24))*sin(1) 2971249504560039 m001 (-FeigenbaumD+Tetranacci)/(2^(1/2)+GAMMA(5/6)) 2971249504627052 r005 Re(z^2+c),c=-51/94+27/44*I,n=40 2971249518304745 m001 arctan(1/2)^2/exp(TreeGrowth2nd)^2*gamma^2 2971249519485905 r002 38th iterates of z^2 + 2971249534971274 r005 Im(z^2+c),c=-25/28+4/17*I,n=28 2971249538687122 l006 ln(399/7787) 2971249538727455 r009 Re(z^3+c),c=-19/46+21/59*I,n=20 2971249547604951 r005 Re(z^2+c),c=-41/110+9/50*I,n=18 2971249560527971 a007 Real Root Of -236*x^4-908*x^3-641*x^2+165*x+725 2971249563101315 k002 Champernowne real with 68*n^2-162*n+123 2971249569938533 p004 log(11243/8353) 2971249580172325 r005 Im(z^2+c),c=-3/13+13/29*I,n=63 2971249585429398 r005 Im(z^2+c),c=-43/98+29/59*I,n=29 2971249589065153 a007 Real Root Of -672*x^4-260*x^3-460*x^2+788*x-23 2971249589552701 m001 (LambertW(1)*ln(gamma)+Weierstrass)/ln(gamma) 2971249598880539 m002 -E^Pi-Pi^5+Log[Pi]+Pi^3*Tanh[Pi] 2971249604814969 m001 (Khinchin+Thue)/(ln(gamma)-Cahen) 2971249607027430 r005 Re(z^2+c),c=-8/21+4/37*I,n=15 2971249613981063 r009 Im(z^3+c),c=-9/22+11/53*I,n=24 2971249614239205 m001 (Kolakoski-Totient)/(ZetaP(3)+ZetaQ(3)) 2971249618461718 m001 Lehmer/(UniversalParabolic-ln(2)/ln(10)) 2971249620361182 r005 Re(z^2+c),c=-29/98+10/21*I,n=42 2971249624792538 a007 Real Root Of 43*x^4-86*x^3-626*x^2+183*x+463 2971249650338425 m005 (1/2*Catalan+2/5)/(8/9*5^(1/2)+9/10) 2971249657988300 a001 1/6643838879*18^(4/17) 2971249673970021 h001 (1/10*exp(1)+4/11)/(3/4*exp(1)+1/10) 2971249674859478 a007 Real Root Of 188*x^4+744*x^3+510*x^2-315*x-575 2971249675992316 s002 sum(A207924[n]/(n*pi^n-1),n=1..infinity) 2971249676540041 m001 (Artin-MertensB3)/FellerTornier 2971249677153745 r005 Im(z^2+c),c=-3/13+13/29*I,n=57 2971249688579240 a007 Real Root Of 209*x^4+541*x^3-188*x^2-123*x-804 2971249696798655 m001 1/GAMMA(5/24)*Magata^2*ln(GAMMA(7/24)) 2971249729758560 r005 Re(z^2+c),c=7/34+19/48*I,n=51 2971249743130057 a009 1/14*(13+7^(3/4))^(1/2) 2971249745972901 m005 (1/2*Pi-5)/(51/112+5/16*5^(1/2)) 2971249750092978 m003 2/3+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/128 2971249752101002 m008 (3*Pi+2/3)/(2/5*Pi^4-5) 2971249754991209 m001 1/exp(GAMMA(1/24))/Ei(1)^2*GAMMA(17/24)^2 2971249767535040 b008 (10*EulerGamma+Pi)/3 2971249767535040 b008 (EulerGamma+Pi/10)/3 2971249774996686 m002 (Pi^2*Cosh[Pi]*ProductLog[Pi])/4-Tanh[Pi] 2971249788458730 m001 (2*Pi/GAMMA(5/6)+Landau)/(MertensB3+Sarnak) 2971249791647749 r009 Re(z^3+c),c=-13/40+10/51*I,n=12 2971249794299774 r008 a(0)=3,K{-n^6,-41+7*n^3+71*n^2-2*n} 2971249799230821 m001 Pi^(1/2)*ErdosBorwein+Champernowne 2971249804111216 k008 concat of cont frac of 2971249809195556 m001 Khinchin+ThueMorse^(2^(1/2)) 2971249809195556 m001 Khinchin+ThueMorse^sqrt(2) 2971249809432172 r009 Re(z^3+c),c=-29/70+23/64*I,n=53 2971249814327682 a007 Real Root Of 280*x^4+908*x^3+295*x^2+540*x+995 2971249826519990 m001 MadelungNaCl+GAMMA(7/12)^PlouffeB 2971249830435671 p003 LerchPhi(1/3,2,463/232) 2971249836939461 r005 Im(z^2+c),c=-11/58+19/44*I,n=31 2971249839531852 m001 2^(1/3)+3^(1/3)*KhinchinLevy 2971249847737396 m001 Ei(1)/exp(Conway)/sqrt(3) 2971249859030402 m001 (LambertW(1)-LaplaceLimit)/arctan(1/3) 2971249862402745 r009 Re(z^3+c),c=-53/118+23/55*I,n=53 2971249864654625 m002 -Pi^2+Pi^5+ProductLog[Pi]-Log[Pi]*Sech[Pi] 2971249886934825 m001 ln(GAMMA(11/12))*FeigenbaumC/gamma^2 2971249887399434 r005 Im(z^2+c),c=-3/13+13/29*I,n=61 2971249888949535 q001 1/3365587 2971249899693099 r005 Im(z^2+c),c=-23/106+27/61*I,n=29 2971249899942418 a001 12586269025/521*322^(5/6) 2971249922676840 r008 a(0)=3,K{-n^6,33-63*n+33*n^2+32*n^3} 2971249930499789 m001 (1/2+Lehmer*GAMMA(5/12))/Lehmer 2971249930537929 r008 a(0)=3,K{-n^6,-21+44*n^3-30*n^2+42*n} 2971249930612603 r005 Re(z^2+c),c=19/60+2/15*I,n=63 2971249931374321 r008 a(0)=3,K{-n^6,41+34*n^3+31*n^2-71*n} 2971249939833506 r002 12th iterates of z^2 + 2971249942954252 r009 Re(z^3+c),c=-29/70+23/64*I,n=54 2971249944048578 m001 1/Bloch^2*exp(Conway)/GAMMA(1/6) 2971249954778850 r008 a(0)=3,K{-n^6,-9+40*n-48*n^2+52*n^3} 2971249955526973 r008 a(0)=3,K{-n^6,53+42*n^3+13*n^2-73*n} 2971249962116939 r009 Im(z^3+c),c=-11/102+13/41*I,n=5 2971249964107101 a001 28657/29*4^(27/34) 2971249965968318 m001 (cos(1/12*Pi)-ZetaQ(2))/(ln(5)-Zeta(1/2)) 2971249969049541 r005 Re(z^2+c),c=-47/122+1/49*I,n=22 2971249969455511 r009 Re(z^3+c),c=-29/70+23/64*I,n=57 2971249973404294 a001 18/233*2178309^(34/47) 2971249977404012 m005 (13/12+1/4*5^(1/2))/(2*exp(1)+1/11) 2971249977811133 r008 a(0)=3,K{-n^6,37+55*n^3-34*n^2-23*n} 2971249985014368 a001 6/329*139583862445^(14/19) 2971249988669447 r005 Re(z^2+c),c=-9/28+25/62*I,n=43 2971250001258120 a007 Real Root Of -266*x^4-632*x^3+648*x^2+244*x-842 2971250007712817 r005 Re(z^2+c),c=19/122+37/60*I,n=9 2971250008485770 a003 sin(Pi*14/75)/cos(Pi*48/109) 2971250010664917 m001 (-cos(1)+PrimesInBinary)/(1-gamma) 2971250012212428 m001 PisotVijayaraghavan^2/Kolakoski^2/exp(sqrt(5)) 2971250013105842 r008 a(0)=3,K{-n^6,-13+51*n+35*n^2-39*n^3} 2971250020276145 m005 (1/2*3^(1/2)-1/12)/(5/9*Pi+8/9) 2971250021418789 r009 Re(z^3+c),c=-3/52+18/25*I,n=64 2971250021772951 r008 a(0)=3,K{-n^6,87+71*n^3-57*n^2-66*n} 2971250033158139 r009 Re(z^3+c),c=-29/70+23/64*I,n=60 2971250034090863 m001 BesselJ(1,1)^2/PrimesInBinary^2/ln(cos(1))^2 2971250045317053 g001 GAMMA(1/5,51/59) 2971250049201339 m005 (1/2*5^(1/2)+3/8)/(5/9*gamma+2/11) 2971250051126965 r005 Re(z^2+c),c=-41/114+28/43*I,n=25 2971250053916989 m005 (-11/4+1/4*5^(1/2))/(2/7*2^(1/2)+1/3) 2971250066489042 r009 Re(z^3+c),c=-29/70+23/64*I,n=56 2971250069772402 r009 Re(z^3+c),c=-29/70+23/64*I,n=63 2971250071579015 r009 Re(z^3+c),c=-29/70+23/64*I,n=64 2971250076890812 h001 (-5*exp(1/3)-6)/(-exp(-1)-4) 2971250081563120 r009 Re(z^3+c),c=-29/70+23/64*I,n=61 2971250084706295 m001 (gamma+Champernowne)/(Grothendieck+Stephens) 2971250085248421 r005 Re(z^2+c),c=-31/78+32/41*I,n=3 2971250095553186 r008 a(0)=3,K{-n^6,40+44*n-47*n^2-3*n^3} 2971250098674076 m001 (Chi(1)+GAMMA(2/3))/(Psi(1,1/3)-exp(1)) 2971250104147400 m001 1/ln(BesselK(1,1))^2/Lehmer^2*GAMMA(13/24)^2 2971250108581662 r009 Re(z^3+c),c=-29/70+23/64*I,n=62 2971250118033244 r005 Im(z^2+c),c=-3/13+13/29*I,n=64 2971250119251958 r009 Re(z^3+c),c=-29/70+23/64*I,n=59 2971250122273627 r009 Re(z^3+c),c=-39/86+20/47*I,n=62 2971250126235111 m001 2/3*Psi(1,1/3)*Pi*3^(1/2)/GAMMA(2/3)*ln(3) 2971250128146156 a007 Real Root Of -427*x^4+265*x^3-837*x^2+373*x+195 2971250128340857 m005 (1/2*Catalan-2/5)/(8/11*Pi-1/3) 2971250130440364 a001 21/1149851*2^(33/47) 2971250132520629 l006 ln(1581/2128) 2971250134021226 r009 Im(z^3+c),c=-37/78+4/27*I,n=38 2971250138002520 m005 (1/4*Catalan+4)/(2/5*Pi+1/6) 2971250138782836 r009 Re(z^3+c),c=-29/70+23/64*I,n=58 2971250150986398 a007 Real Root Of -188*x^4-210*x^3+760*x^2-573*x+732 2971250165067941 a008 Real Root of x^4-x^3-32*x^2+124*x-34 2971250166288808 a001 89/47*199^(4/47) 2971250168438772 a007 Real Root Of -202*x^4-429*x^3+307*x^2-651*x-154 2971250168675273 m001 GAMMA(13/24)+sqrt(Pi)^(1/2) 2971250171482708 r005 Re(z^2+c),c=-37/102+6/25*I,n=30 2971250174511927 a001 956722026041/843*123^(1/5) 2971250176515545 m005 (1/3*Pi-1/2)/(3/5*5^(1/2)+1/2) 2971250178951484 m001 (Psi(2,1/3)-KhinchinLevy)/Ei(1) 2971250189182959 a007 Real Root Of 22*x^4+32*x^3+177*x^2+978*x+468 2971250190997006 m001 (-Chi(1)+exp(1/exp(1)))/(exp(1)-exp(Pi)) 2971250202640297 m001 exp(Magata)^2/ArtinRank2^2*(2^(1/3))^2 2971250209896414 r009 Re(z^3+c),c=-29/70+23/64*I,n=51 2971250212747161 r005 Re(z^2+c),c=-41/34+19/73*I,n=6 2971250236617097 l006 ln(184/3591) 2971250239908257 m001 (ln(2)-Ei(1))/(Zeta(1/2)-Sierpinski) 2971250245938539 r008 a(0)=3,K{-n^6,55-48*n^3+96*n^2-69*n} 2971250246777922 r008 a(0)=3,K{-n^6,19-3*n+60*n^2-42*n^3} 2971250265181541 m001 (Rabbit+Robbin)/(arctan(1/2)-gamma(3)) 2971250266282836 r009 Re(z^3+c),c=-13/36+13/49*I,n=11 2971250284832867 a009 1/5*(6^(3/4)-7^(1/4))^(1/2) 2971250290777383 r008 a(0)=3,K{-n^6,40+24*n-48*n^2+20*n^3} 2971250293936025 r009 Re(z^3+c),c=-29/70+23/64*I,n=55 2971250318265995 a001 1597/322*7^(23/25) 2971250321077037 r005 Im(z^2+c),c=-9/34+15/32*I,n=19 2971250326290529 r005 Re(z^2+c),c=-25/82+19/42*I,n=34 2971250328506381 a001 55/521*39603^(30/31) 2971250342451203 r002 25th iterates of z^2 + 2971250349166534 m009 (1/4*Psi(1,1/3)+1/5)/(4*Psi(1,3/4)-1) 2971250351568567 m001 (Artin-Mills)/(ln(5)+GAMMA(7/12)) 2971250351830324 r002 45th iterates of z^2 + 2971250358836640 a007 Real Root Of -267*x^4-484*x^3+626*x^2-995*x-369 2971250372858505 m005 (1/2*2^(1/2)-8/9)/(1/2*5^(1/2)+5) 2971250379366051 m001 (-Bloch+Salem)/(exp(Pi)+LambertW(1)) 2971250405434482 r008 a(0)=3,K{-n^6,-42+7*n^3+71*n^2-n} 2971250405869673 r005 Im(z^2+c),c=3/28+19/32*I,n=56 2971250413139609 r009 Im(z^3+c),c=-31/52+33/62*I,n=57 2971250418844448 m001 (-AlladiGrinstead+Artin)/(Catalan-ln(gamma)) 2971250419726532 r005 Im(z^2+c),c=3/10+7/61*I,n=31 2971250420699372 r008 a(0)=3,K{-n^6,47-45*n^3+83*n^2-51*n} 2971250430723215 a003 cos(Pi*10/61)*cos(Pi*45/92) 2971250435729569 r005 Re(z^2+c),c=-7/20+3/10*I,n=30 2971250438427840 a007 Real Root Of -263*x^4-721*x^3-136*x^2-764*x+516 2971250442959820 r005 Im(z^2+c),c=-3/13+13/29*I,n=62 2971250445752634 a007 Real Root Of 211*x^4+326*x^3-947*x^2-119*x+113 2971250453965273 r002 10th iterates of z^2 + 2971250455192544 m001 Ei(1,1)*(KomornikLoreti-Pi) 2971250458106291 a007 Real Root Of 16*x^4-374*x^3+62*x^2-490*x-161 2971250458463282 r008 a(0)=3,K{-n^6,-22-11*n+51*n^2+17*n^3} 2971250463896964 a007 Real Root Of 323*x^4+809*x^3-625*x^2-546*x-58 2971250468967050 r005 Im(z^2+c),c=11/46+11/59*I,n=16 2971250474261915 a007 Real Root Of -369*x^4-897*x^3+486*x^2-219*x+289 2971250474538723 r005 Re(z^2+c),c=-27/74+9/56*I,n=6 2971250479449336 p001 sum(1/(499*n+29)/n/(64^n),n=1..infinity) 2971250487899954 r008 a(0)=3,K{-n^6,-66+33*n^3-19*n^2+87*n} 2971250493590370 a001 969323029/144*34^(8/19) 2971250494201465 r008 a(0)=3,K{-n^6,-48+58*n-7*n^2+32*n^3} 2971250497758108 m001 ln(GAMMA(1/12))/Artin^2/sin(Pi/5) 2971250503033303 a005 (1/cos(5/226*Pi))^1403 2971250511815995 a007 Real Root Of -143*x^4-649*x^3-849*x^2-433*x+330 2971250519131358 r009 Re(z^3+c),c=-3/7+23/60*I,n=32 2971250521687527 m005 (1/3*Catalan-1/10)/(5*Zeta(3)+9/10) 2971250526137171 r008 a(0)=3,K{-n^6,-18+25*n-10*n^2+38*n^3} 2971250532960232 r005 Im(z^2+c),c=25/74+7/60*I,n=32 2971250533652373 a001 3/6643838879*11^(11/14) 2971250541750508 r009 Re(z^3+c),c=-29/70+23/64*I,n=52 2971250544264493 m001 LambertW(1)/GAMMA(7/24)*ln(sinh(1)) 2971250545816136 r005 Im(z^2+c),c=-67/126+35/62*I,n=62 2971250560727865 m001 (Pi-Robbin)/GaussAGM 2971250564114228 r008 a(0)=3,K{-n^6,-10+41*n-48*n^2+52*n^3} 2971250564367863 m009 (1/5*Psi(1,1/3)-6)/(6*Catalan+3/4*Pi^2+1/2) 2971250564854540 r008 a(0)=3,K{-n^6,52+42*n^3+13*n^2-72*n} 2971250566101916 k002 Champernowne real with 137/2*n^2-327/2*n+124 2971250571514727 r008 a(0)=3,K{-n^6,46-55*n-2*n^2+46*n^3} 2971250571914977 r009 Re(z^3+c),c=-29/70+23/64*I,n=49 2971250573696208 r008 a(0)=3,K{-n^6,-8+46*n-59*n^2+56*n^3} 2971250578482957 m001 (GAMMA(2/3)-Psi(1,1/3))/(ln(5)+MertensB3) 2971250578558753 h001 (9/10*exp(1)+9/10)/(1/11*exp(2)+5/11) 2971250583512528 r008 a(0)=3,K{-n^6,50-51*n-15*n^2+51*n^3} 2971250586907488 r008 a(0)=3,K{-n^6,36+55*n^3-34*n^2-22*n} 2971250588675730 r005 Re(z^2+c),c=-37/102+6/25*I,n=32 2971250592865529 r008 a(0)=3,K{-n^6,42-27*n-37*n^2+57*n^3} 2971250596192954 r002 47th iterates of z^2 + 2971250600590243 a005 (1/cos(5/141*Pi))^1286 2971250607799963 r005 Re(z^2+c),c=-47/106+21/40*I,n=38 2971250617254588 m001 1/OneNinth/ErdosBorwein^2*exp(GAMMA(11/12))^2 2971250632476992 m001 TreeGrowth2nd/(FibonacciFactorial-exp(1/Pi)) 2971250637263529 r005 Im(z^2+c),c=41/122+9/58*I,n=9 2971250649233925 r005 Re(z^2+c),c=-41/110+7/39*I,n=22 2971250649980392 a007 Real Root Of 133*x^4+204*x^3-453*x^2+294*x-142 2971250658417208 a003 cos(Pi*17/42)/sin(Pi*40/87) 2971250663080641 r002 45th iterates of z^2 + 2971250666151121 m001 (ln(Pi)-GAMMA(7/12))/(Porter-ZetaP(3)) 2971250666212523 m001 (Psi(2,1/3)+Zeta(3))/(exp(1/Pi)+TreeGrowth2nd) 2971250669995658 r005 Re(z^2+c),c=-17/62+19/35*I,n=47 2971250675729897 r005 Re(z^2+c),c=7/66+40/59*I,n=4 2971250692053738 m005 (3/5*2^(1/2)-5)/(19/20+1/5*5^(1/2)) 2971250713070300 m001 Si(Pi)^2/exp(GaussKuzminWirsing)*GAMMA(19/24) 2971250713159820 m005 (1/2*3^(1/2)+9/11)/(9/11*Zeta(3)-5/12) 2971250723026488 r004 Im(z^2+c),c=2/7+2/15*I,z(0)=exp(5/8*I*Pi),n=24 2971250726497422 a007 Real Root Of 166*x^4+177*x^3-895*x^2+255*x+364 2971250740100581 m001 1/exp(Porter)^2/Paris^2/Tribonacci 2971250741889087 m004 30-(Cos[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/5 2971250762700054 l006 ln(7457/10037) 2971250762700054 p004 log(10037/7457) 2971250772403607 s002 sum(A141165[n]/(exp(n)),n=1..infinity) 2971250796298894 m005 (1/2*2^(1/2)+8/9)/(4/9*2^(1/2)-6) 2971250797669578 r002 26i'th iterates of 2*x/(1-x^2) of 2971250800642183 r005 Re(z^2+c),c=-33/106+23/53*I,n=47 2971250813158861 r008 a(0)=2,K{-n^6,-33+50*n-14*n^2-6*n^3} 2971250823059191 a007 Real Root Of 89*x^4+3*x^3-485*x^2+620*x-734 2971250833700241 r008 a(0)=3,K{-n^6,9-12*n^3+23*n^2+16*n} 2971250846768842 b008 ArcSin[ArcSin[EulerGamma/2]] 2971250861718660 a007 Real Root Of 432*x^4-892*x^3+436*x^2-466*x+120 2971250867289273 m001 (KhinchinLevy+ZetaQ(3))/(Pi+ln(2^(1/2)+1)) 2971250871886271 a007 Real Root Of 165*x^4+275*x^3-583*x^2-157*x-966 2971250875534442 a001 47/233*28657^(2/53) 2971250884249408 r002 2th iterates of z^2 + 2971250894381709 m001 Pi^2*Cahen*exp(cosh(1)) 2971250932256493 l006 ln(5876/7909) 2971250932383906 m001 ln(FeigenbaumC)/ArtinRank2/cos(1)^2 2971250945149079 m001 1/ln(BesselK(0,1))/DuboisRaymond*sqrt(5)^2 2971250947761585 a007 Real Root Of 376*x^4+976*x^3-107*x^2+871*x-171 2971250956882165 m008 (4/5*Pi^4+1/6)/(1/5*Pi+2) 2971250959434562 m008 (2/3*Pi^3-1)/(1/5*Pi^5+5) 2971250961871671 m001 GAMMA(1/6)*HardHexagonsEntropy^2*exp(Zeta(7)) 2971250964971644 r005 Im(z^2+c),c=13/56+6/31*I,n=21 2971250965321668 m005 (1/2*Pi-10/11)/(5/6*5^(1/2)+4/11) 2971250968208809 a001 1/377*832040^(9/26) 2971250973076227 m001 PisotVijayaraghavan^Gompertz*Paris^Gompertz 2971250984322714 l006 ln(5713/5730) 2971250987844057 r005 Im(z^2+c),c=-19/62+21/44*I,n=50 2971250996483444 r005 Re(z^2+c),c=1/14+29/48*I,n=43 2971251006009456 r005 Re(z^2+c),c=-19/94+39/61*I,n=20 2971251007740892 l006 ln(3979/4099) 2971251012937577 m001 1/TwinPrimes/Trott^2/ln(cosh(1)) 2971251035461677 r009 Im(z^3+c),c=-15/118+53/62*I,n=4 2971251039392722 r002 11th iterates of z^2 + 2971251054256158 m002 -E^Pi-Pi^4*Csch[Pi]+2/ProductLog[Pi] 2971251062948989 l006 ln(337/6577) 2971251062948989 p004 log(6577/337) 2971251068364518 r008 a(0)=3,K{-n^6,-53+47*n+18*n^2+23*n^3} 2971251077114131 r009 Re(z^3+c),c=-41/102+7/12*I,n=33 2971251077628494 a007 Real Root Of -163*x^4-389*x^3+387*x^2+509*x+596 2971251089470832 r005 Im(z^2+c),c=-6/11+25/58*I,n=25 2971251092904178 m001 exp(1/exp(1))*(Gompertz-Zeta(1/2)) 2971251100143834 r008 a(0)=3,K{-n^6,-49+59*n-7*n^2+32*n^3} 2971251107411447 m005 (1/2*gamma-4/11)/(1/7*2^(1/2)-5/11) 2971251111249251 k008 concat of cont frac of 2971251115184183 r005 Im(z^2+c),c=-19/90+43/63*I,n=43 2971251117521795 r005 Im(z^2+c),c=-3/13+13/29*I,n=59 2971251118576985 a007 Real Root Of 604*x^4+727*x^3+175*x^2-721*x+175 2971251126848860 r005 Re(z^2+c),c=-41/118+27/61*I,n=13 2971251129938567 m001 ln(Zeta(9))^2*MinimumGamma^2*sin(Pi/5)^2 2971251144127992 r002 10th iterates of z^2 + 2971251146572967 r009 Im(z^3+c),c=-5/27+13/42*I,n=3 2971251147223930 r008 a(0)=3,K{-n^6,41+34*n^3+32*n^2-72*n} 2971251148049544 m001 (gamma(2)+DuboisRaymond)/(Ei(1,1)-sin(1)) 2971251149716760 r008 a(0)=3,K{-n^6,-7+18*n-19*n^2+43*n^3} 2971251159964418 r009 Re(z^3+c),c=-13/31+20/53*I,n=7 2971251162454808 r008 a(0)=3,K{-n^6,37-52*n+9*n^2+41*n^3} 2971251164766822 r008 a(0)=3,K{-n^6,7+5*n-24*n^2+47*n^3} 2971251165082157 r005 Re(z^2+c),c=29/74+13/43*I,n=13 2971251182433625 a007 Real Root Of -572*x^4+66*x^3+18*x^2+661*x+201 2971251183499973 m005 (1/2*gamma-7/10)/(1/10*5^(1/2)-2/9) 2971251185996094 r009 Re(z^3+c),c=-37/94+19/40*I,n=7 2971251197112141 r008 a(0)=3,K{-n^6,39-23*n-38*n^2+57*n^3} 2971251200685013 r009 Im(z^3+c),c=-5/106+47/56*I,n=50 2971251208469782 r009 Im(z^3+c),c=-25/106+17/23*I,n=48 2971251210319038 r009 Re(z^3+c),c=-39/110+16/63*I,n=17 2971251210897452 r009 Re(z^3+c),c=-11/20+17/60*I,n=28 2971251223052746 m005 (1/2*gamma+1/12)/(7/8*Zeta(3)+1/5) 2971251226641203 l006 ln(4295/5781) 2971251235163811 r009 Re(z^3+c),c=-15/38+3/10*I,n=7 2971251238927673 m001 ln(GAMMA(1/12))/MertensB1^2/Zeta(3) 2971251246500899 m001 (-HardyLittlewoodC5+Sierpinski)/(1-3^(1/2)) 2971251256373591 m001 (Catalan+Bloch)/(FeigenbaumDelta+ZetaQ(4)) 2971251266511116 k007 concat of cont frac of 2971251267978694 a007 Real Root Of 167*x^4+217*x^3-853*x^2-388*x-946 2971251281667472 r008 a(0)=3,K{-n^6,-42+49*n+49*n^2-20*n^3} 2971251283635194 m001 Pi-ln(2)/ln(10)/(Zeta(3)+BesselI(1,1)) 2971251292881772 a007 Real Root Of -219*x^4-616*x^3+25*x^2-48*x+547 2971251309856564 p001 sum(1/(413*n+22)/n/(8^n),n=1..infinity) 2971251318566648 r009 Im(z^3+c),c=-59/106+2/7*I,n=33 2971251331411116 k007 concat of cont frac of 2971251343291912 m001 (Niven-Salem)/(gamma(3)-Grothendieck) 2971251352811020 r009 Re(z^3+c),c=-29/70+23/64*I,n=48 2971251358898472 m001 (Pi+GAMMA(11/12)*GAMMA(13/24))/GAMMA(13/24) 2971251360539121 r002 4th iterates of z^2 + 2971251361262163 r002 2th iterates of z^2 + 2971251363043361 p003 LerchPhi(1/5,4,227/93) 2971251364888093 m001 (ErdosBorwein-Gompertz)/(Pi+sin(1/12*Pi)) 2971251372826823 r005 Im(z^2+c),c=-17/18+37/163*I,n=4 2971251373244870 l006 ln(490/9563) 2971251383614596 a007 Real Root Of -326*x^4-629*x^3+989*x^2-13*x+139 2971251388671895 a007 Real Root Of 419*x^4+927*x^3-885*x^2+374*x+584 2971251394473409 r005 Im(z^2+c),c=5/24+3/14*I,n=18 2971251402260341 a001 1/76*(1/2*5^(1/2)+1/2)^15*199^(2/21) 2971251404511968 a007 Real Root Of 910*x^4-950*x^3-30*x^2-722*x+235 2971251406349363 a007 Real Root Of 573*x^4+929*x^3+625*x^2-965*x-322 2971251408478522 m002 (3*E^Pi)/Pi^5+Pi/Log[Pi] 2971251412329357 a001 6119/2*225851433717^(2/23) 2971251413407631 m001 Sierpinski^2*exp(Rabbit)^2*Zeta(5)^2 2971251416565481 a001 64079/8*3524578^(2/23) 2971251419331822 m001 (BesselI(0,2)-ZetaQ(2))/(ln(2)-3^(1/3)) 2971251425973023 m001 (Bloch+Sierpinski)/(arctan(1/2)+BesselI(1,1)) 2971251436693291 a007 Real Root Of 153*x^4-873*x^3+841*x^2-83*x-123 2971251438716235 s002 sum(A205953[n]/(n^3*10^n-1),n=1..infinity) 2971251439676679 r005 Im(z^2+c),c=-3/13+13/29*I,n=54 2971251440902642 r008 a(0)=3,K{-n^6,33-8*n+43*n^2-34*n^3} 2971251441619471 m001 Catalan*(Grothendieck+MinimumGamma) 2971251448438821 a007 Real Root Of -184*x^4+548*x^3-915*x^2+982*x+30 2971251452972865 m001 (BesselI(0,2)+GAMMA(11/12))/(Salem-ZetaQ(2)) 2971251455855036 r008 a(0)=3,K{-n^6,65+32*n^3-72*n^2+11*n} 2971251458467347 m001 ln(Trott)^2/PrimesInBinary*BesselK(1,1) 2971251460791632 m009 (4/5*Psi(1,1/3)-1/4)/(1/4*Pi^2+1/6) 2971251463493733 r005 Im(z^2+c),c=11/52+11/52*I,n=21 2971251471638436 p001 sum((-1)^n/(484*n+313)/(5^n),n=0..infinity) 2971251473438822 l006 ln(7009/9434) 2971251485207396 m001 (3^(1/3)+Zeta(1,-1))/(Trott-ZetaQ(2)) 2971251488653396 m001 ln(BesselJ(0,1))^2*DuboisRaymond*Zeta(1/2)^2 2971251492353745 a007 Real Root Of 295*x^4+867*x^3-119*x^2-561*x-866 2971251502813005 r005 Im(z^2+c),c=-9/32+29/62*I,n=59 2971251504017263 m005 (1/2*3^(1/2)+3/8)/(1/8*2^(1/2)+4) 2971251509537230 a005 (1/cos(19/235*Pi))^104 2971251511003734 m001 ln(OneNinth)*ErdosBorwein^2/BesselJ(1,1)^2 2971251512909014 m001 (MertensB1+Mills)/(Conway-FeigenbaumC) 2971251530371560 m001 (Robbin-Sarnak)/(Zeta(1/2)-GolombDickman) 2971251535730498 a007 Real Root Of 109*x^4-367*x^3+632*x^2-164*x-115 2971251537754981 a001 843*121393^(30/43) 2971251537803304 h001 (1/4*exp(2)+7/9)/(1/11*exp(1)+7/11) 2971251544151018 a007 Real Root Of 226*x^4+467*x^3-308*x^2+966*x+225 2971251545218831 r005 Im(z^2+c),c=-67/94+7/45*I,n=48 2971251548152148 m001 GAMMA(2/3)/GAMMA(1/4)*exp(Zeta(5))^2 2971251553634899 r005 Im(z^2+c),c=-24/29+9/59*I,n=12 2971251563247875 r009 Im(z^3+c),c=-5/106+47/56*I,n=48 2971251569078602 a008 Real Root of (-2+8*x-4*x^2-3*x^4-8*x^8) 2971251569102516 k002 Champernowne real with 69*n^2-165*n+125 2971251589946386 r005 Re(z^2+c),c=-8/21+2/27*I,n=7 2971251592866824 r009 Re(z^3+c),c=-45/118+13/43*I,n=17 2971251595470315 a001 1/38*3571^(26/45) 2971251605508819 m001 MinimumGamma*(DuboisRaymond+ZetaQ(3)) 2971251612121721 k003 Champernowne real with 21/2*n^3-71/2*n^2+40*n-13 2971251613057926 r009 Im(z^3+c),c=-5/106+47/56*I,n=52 2971251616656381 r008 a(0)=3,K{-n^6,-42+7*n^3+72*n^2-2*n} 2971251621573282 a003 cos(Pi*22/113)/cos(Pi*28/57) 2971251627320553 a007 Real Root Of 220*x^4+304*x^3+944*x^2+7*x-75 2971251631881751 r008 a(0)=3,K{-n^6,-50+20*n+53*n^2+12*n^3} 2971251635155329 p003 LerchPhi(1/8,2,432/229) 2971251653042418 m001 (FeigenbaumMu+ReciprocalLucas)/(5^(1/2)-Artin) 2971251657513150 a007 Real Root Of 27*x^4-160*x^3-506*x^2-368*x+158 2971251658455830 h001 (-2*exp(1)-3)/(-5*exp(-1)-1) 2971251662412008 a007 Real Root Of -958*x^4+164*x^3+663*x^2+406*x-176 2971251666396509 p002 log(7^(12/7)-6^(6/5)) 2971251670076232 m006 (3/4/Pi+2/3)/(1/3*Pi+2) 2971251671621957 m005 (1/2*2^(1/2)-4/11)/(3/10*3^(1/2)+7/11) 2971251672248326 a007 Real Root Of 223*x^4+401*x^3-444*x^2+869*x-360 2971251673157980 a007 Real Root Of -232*x^4-517*x^3+210*x^2-818*x+236 2971251676664779 m001 (Pi^(1/2))^(BesselI(0,2)*GaussAGM) 2971251681316325 m001 (Pi+cos(1))/(LandauRamanujan+Weierstrass) 2971251683940047 r009 Im(z^3+c),c=-33/118+8/29*I,n=13 2971251694176843 m001 3^(1/2)*ln(2^(1/2)+1)+exp(1/exp(1)) 2971251694176843 m001 sqrt(3)*ln(1+sqrt(2))+exp(1/exp(1)) 2971251695784919 a007 Real Root Of 398*x^4+967*x^3-364*x^2+597*x-667 2971251696824801 r008 a(0)=3,K{-n^6,-18-2*n+30*n^2+25*n^3} 2971251699623218 r002 12th iterates of z^2 + 2971251703781275 r005 Im(z^2+c),c=-1/54+39/49*I,n=33 2971251721397132 a008 Real Root of x^4-x^3-13*x^2-23*x+8 2971251722009462 m001 (gamma(2)-Cahen)/(QuadraticClass-Robbin) 2971251746280933 b008 Sinh[Pi^(1/3)/5] 2971251754237206 r008 a(0)=3,K{-n^6,-18+46*n^3-33*n^2+40*n} 2971251758590336 l003 BesselY(0,67/110) 2971251762118098 a009 1/17*(17^(1/2)*4^(2/3)+12^(1/4))*17^(1/2) 2971251763611948 r008 a(0)=3,K{-n^6,36-51*n+9*n^2+41*n^3} 2971251765899727 r008 a(0)=3,K{-n^6,6+6*n-24*n^2+47*n^3} 2971251770568068 a007 Real Root Of -407*x^4+151*x^3+488*x^2+609*x+145 2971251770787919 r005 Re(z^2+c),c=9/52+21/44*I,n=61 2971251771126577 r008 a(0)=3,K{-n^6,-10+40*n-47*n^2+52*n^3} 2971251771485477 a001 1/76*(1/2*5^(1/2)+1/2)^8*521^(13/21) 2971251774912702 r005 Re(z^2+c),c=-11/19+33/59*I,n=44 2971251779959442 m001 1/Robbin^2/LaplaceLimit/exp(GAMMA(3/4))^2 2971251781796331 a008 Real Root of x^3-x^2-3018*x+64324 2971251782203888 a003 cos(Pi*28/69)/sin(Pi*43/98) 2971251792717466 r008 a(0)=3,K{-n^6,10+24*n-58*n^2+59*n^3} 2971251793304228 a007 Real Root Of 83*x^4-372*x^3-309*x^2-581*x-17 2971251802967612 r008 a(0)=3,K{-n^6,42-24*n-42*n^2+59*n^3} 2971251818488486 r008 a(0)=3,K{-n^6,76+62*n^3-34*n^2-69*n} 2971251819048885 m001 (Ei(1)-GAMMA(13/24))/(RenyiParking-Robbin) 2971251821983004 m001 Trott^2*exp(GolombDickman)*GAMMA(2/3) 2971251827312635 h001 (5/8*exp(2)+2/7)/(3/11*exp(1)+10/11) 2971251829101250 a007 Real Root Of -676*x^4-419*x^3-852*x^2-106*x+38 2971251834177153 r009 Re(z^3+c),c=-15/44+13/57*I,n=14 2971251837647990 r009 Im(z^3+c),c=-13/74+11/36*I,n=7 2971251839964174 r008 a(0)=3,K{-n^6,78+75*n^3-72*n^2-46*n} 2971251864004680 l006 ln(2714/3653) 2971251868628829 a007 Real Root Of 199*x^4+551*x^3+110*x^2+637*x-135 2971251873388605 a007 Real Root Of -957*x^4-848*x^3+157*x^2+645*x+163 2971251873619147 b008 E+EulerGamma*FresnelS[1] 2971251881073751 s002 sum(A210867[n]/(n^2*pi^n+1),n=1..infinity) 2971251881867676 m001 ln(2)/ln(10)/GAMMA(7/12)/LaplaceLimit 2971251896782836 r009 Re(z^3+c),c=-1/20+31/53*I,n=41 2971251906916576 a008 Real Root of (-3-3*x-4*x^2-x^3-5*x^4+2*x^5) 2971251910247463 a007 Real Root Of -291*x^4-976*x^3-296*x^2+415*x+925 2971251925054981 m001 1/ln(FeigenbaumDelta)/Artin/LandauRamanujan^2 2971251930525863 r005 Im(z^2+c),c=-37/118+13/27*I,n=31 2971251931567023 a001 29/1346269*377^(49/59) 2971251936983471 r002 2th iterates of z^2 + 2971251955620673 m001 (FeigenbaumB+ZetaQ(4))/(gamma(1)-exp(-1/2*Pi)) 2971251958912589 a001 2178309/11*2^(24/41) 2971251960620597 r005 Re(z^2+c),c=-15/19+1/57*I,n=56 2971251960885998 r005 Re(z^2+c),c=37/122+1/8*I,n=36 2971251962417541 r009 Im(z^3+c),c=-7/20+11/45*I,n=20 2971251978132571 r005 Re(z^2+c),c=5/86+22/37*I,n=3 2971251990011683 m001 ln(2+3^(1/2))^Pi+Gompertz 2971252013385411 r005 Im(z^2+c),c=-3/13+13/29*I,n=56 2971252016145071 r005 Im(z^2+c),c=-17/44+8/15*I,n=54 2971252016158437 a007 Real Root Of -278*x^4-760*x^3-167*x^2-946*x+395 2971252026056292 m005 (1/2*Catalan+8/11)/(-2/9+5/18*5^(1/2)) 2971252028022089 r005 Im(z^2+c),c=-31/56+7/22*I,n=5 2971252033073876 s001 sum(exp(-3*Pi/4)^n*A065577[n],n=1..infinity) 2971252035619650 s002 sum(A191488[n]/(exp(n)),n=1..infinity) 2971252038208438 s002 sum(A062364[n]/(10^n+1),n=1..infinity) 2971252038208642 s002 sum(A062364[n]/(10^n-1),n=1..infinity) 2971252046926760 a007 Real Root Of 294*x^4+504*x^3-972*x^2+433*x+174 2971252056706700 l006 ln(153/2986) 2971252062356965 m001 (ln(Pi)-exp(1/Pi))/(ErdosBorwein-FeigenbaumB) 2971252065239580 r005 Im(z^2+c),c=19/70+6/41*I,n=11 2971252083456956 m001 (Kac+MasserGramain)/(GAMMA(2/3)-Grothendieck) 2971252086334619 r009 Re(z^3+c),c=-25/58+19/49*I,n=38 2971252087973204 m005 (17/20+1/4*5^(1/2))/(1/9*3^(1/2)-2/3) 2971252090102987 m001 1/exp(Pi)^2*Sierpinski^2*cosh(1)^2 2971252102184628 r005 Im(z^2+c),c=-63/118+24/55*I,n=18 2971252107158330 m001 1/ln(Zeta(5))/GolombDickman^2/cosh(1)^2 2971252113213068 m001 (Ei(1,1)-GAMMA(5/6))/(FeigenbaumKappa+Niven) 2971252134247072 a007 Real Root Of 215*x^4+428*x^3-611*x^2+72*x+78 2971252140434333 m001 GAMMA(3/4)^2*exp(Riemann3rdZero)*exp(1) 2971252144988318 m001 (Zeta(3)-Zeta(5))/(2*Pi/GAMMA(5/6)-ZetaQ(3)) 2971252154799668 a005 (1/cos(23/223*Pi))^1313 2971252161450672 m001 1/FeigenbaumKappa^2*Khintchine*ln(GAMMA(3/4)) 2971252177784701 h001 (-3*exp(3)-5)/(-2*exp(7)-3) 2971252183787551 m001 Pi-ln(2)/ln(10)+exp(-1/2*Pi)/BesselI(1,2) 2971252186464337 r009 Im(z^3+c),c=-5/106+47/56*I,n=54 2971252196339555 r005 Re(z^2+c),c=-23/60+4/55*I,n=21 2971252199342706 a003 sin(Pi*11/102)*sin(Pi*25/71) 2971252201924726 r002 16th iterates of z^2 + 2971252202256028 m002 3+Sinh[Pi]+Pi^9*Tanh[Pi] 2971252204054389 a007 Real Root Of 312*x^4+717*x^3-932*x^2-847*x+202 2971252206870282 r002 6th iterates of z^2 + 2971252209145937 m001 (exp(1/exp(1))+Trott2nd)/(exp(1)+5^(1/2)) 2971252216633973 r009 Re(z^3+c),c=-13/28+25/54*I,n=50 2971252218262603 r005 Im(z^2+c),c=-3/8+1/2*I,n=30 2971252219084552 m001 1/GAMMA(2/3)/ln(Si(Pi))^2/cos(Pi/5)^2 2971252228754410 m005 (5/6*exp(1)-2/5)/(-4/15+2/5*5^(1/2)) 2971252238601079 a001 64079/21*225851433717^(19/24) 2971252239324596 a001 199691526/7*2178309^(19/24) 2971252240297183 m001 1/exp(Robbin)^2*Porter/GAMMA(1/4)^2 2971252242413800 r009 Re(z^3+c),c=-5/27+13/14*I,n=48 2971252242793998 a008 Real Root of x^4+11*x^2-33*x-77 2971252244470718 a003 sin(Pi*3/43)-sin(Pi*16/93) 2971252249965962 m001 (Zeta(1,2)-GlaisherKinkelin)/(Lehmer-Totient) 2971252251544181 a001 10946/29*11^(37/43) 2971252252288397 r005 Im(z^2+c),c=25/86+7/54*I,n=58 2971252254180224 r005 Im(z^2+c),c=-3/13+13/29*I,n=53 2971252281239246 l006 ln(6561/8831) 2971252288043186 a001 7778742049/521*322^(11/12) 2971252300728909 r008 a(0)=3,K{-n^6,-49+58*n-6*n^2+32*n^3} 2971252333222995 r008 a(0)=3,K{-n^6,21-47*n+29*n^2+32*n^3} 2971252339299674 r002 9th iterates of z^2 + 2971252340854882 r008 a(0)=3,K{-n^6,33-63*n+32*n^2+33*n^3} 2971252341953111 m001 Pi*GAMMA(1/6)^2/ln(sqrt(Pi))^2 2971252346783970 r005 Im(z^2+c),c=-11/10+55/212*I,n=4 2971252347681354 a003 cos(Pi*25/116)-cos(Pi*35/103) 2971252368847059 b008 Pi+ExpIntegralEi[-2*EulerGamma] 2971252387536654 r008 a(0)=3,K{-n^6,57+50*n^3-7*n^2-65*n} 2971252387544323 r008 a(0)=3,K{-n^6,9+23*n-55*n^2+58*n^3} 2971252389510998 r008 a(0)=3,K{-n^6,9+25*n-58*n^2+59*n^3} 2971252391177178 r005 Im(z^2+c),c=-23/122+19/44*I,n=19 2971252399657211 r008 a(0)=3,K{-n^6,41-23*n-42*n^2+59*n^3} 2971252402345893 a007 Real Root Of -277*x^4-732*x^3-591*x+632 2971252408094859 r008 a(0)=3,K{-n^6,63+60*n^3-34*n^2-54*n} 2971252408509828 m001 (BesselI(1,1)-Otter)/(GAMMA(2/3)+ln(gamma)) 2971252410436847 r008 a(0)=3,K{-n^6,47-22*n-54*n^2+64*n^3} 2971252413354769 r005 Re(z^2+c),c=-10/11+1/5*I,n=30 2971252415022543 r008 a(0)=3,K{-n^6,75+62*n^3-34*n^2-68*n} 2971252415662301 m005 (1/2*5^(1/2)+9/11)/(2/11*Pi-7/11) 2971252420115217 r005 Re(z^2+c),c=-13/46+29/57*I,n=45 2971252429384277 a007 Real Root Of -217*x^4-886*x^3-731*x^2-329*x-852 2971252432969613 r005 Im(z^2+c),c=-9/32+29/62*I,n=46 2971252433873554 r009 Im(z^3+c),c=-73/114+19/64*I,n=43 2971252435867599 r005 Im(z^2+c),c=-17/36+22/43*I,n=9 2971252436286655 r008 a(0)=3,K{-n^6,77+75*n^3-72*n^2-45*n} 2971252441621111 k009 concat of cont frac of 2971252447500895 r005 Im(z^2+c),c=-6/31+13/30*I,n=32 2971252460270125 r005 Re(z^2+c),c=-19/60+12/47*I,n=4 2971252462720557 m001 (BesselI(0,2)-Bloch)^Tribonacci 2971252479663498 m001 (1/2*arctan(1/2)-ln(5))/arctan(1/2) 2971252479866939 a001 89/3571*3^(4/25) 2971252487759646 r008 a(0)=3,K{-n^6,-27-18*n^3+5*n^2+80*n} 2971252488630979 m002 -Pi+Pi^5-(Sinh[Pi]*Tanh[Pi])/2 2971252494394582 m001 1/ln(GAMMA(1/6))/GlaisherKinkelin/GAMMA(7/12) 2971252497025245 r005 Re(z^2+c),c=-9/8+5/21*I,n=58 2971252515114109 m005 (1/2*exp(1)+2/7)/(1/5*3^(1/2)-9/10) 2971252533173524 a007 Real Root Of 250*x^4+495*x^3-751*x^2+231*x+816 2971252535949781 b008 E^(4/7)/7+E 2971252545093372 m006 (1/4*exp(2*Pi)+3)/(2/5/Pi+1/3) 2971252551770161 r002 10th iterates of z^2 + 2971252566735112 q001 1447/487 2971252568740791 r005 Re(z^2+c),c=-25/66+7/54*I,n=21 2971252572103116 k002 Champernowne real with 139/2*n^2-333/2*n+126 2971252575591878 l006 ln(3847/5178) 2971252575693728 a001 1/39606*(1/2*5^(1/2)+1/2)^23*322^(2/19) 2971252586871246 m005 (1/2*Catalan+2/11)/(4/7*exp(1)+3/5) 2971252608887492 r009 Im(z^3+c),c=-7/20+11/45*I,n=21 2971252614208876 m002 2+3*Pi^4+Cosh[Pi]/4 2971252616226118 m005 (1/3*exp(1)+2/3)/(-7/9+1/9*5^(1/2)) 2971252624278143 a007 Real Root Of 198*x^4-951*x^3+150*x^2-11*x-43 2971252627962469 r009 Im(z^3+c),c=-59/114+9/58*I,n=62 2971252628266309 m001 1/Zeta(5)^2/exp(Ei(1))^2*sqrt(2) 2971252638631145 r005 Re(z^2+c),c=-37/114+24/61*I,n=24 2971252639150454 b008 E*(8+E)+EulerGamma 2971252652348964 r009 Im(z^3+c),c=-5/106+47/56*I,n=56 2971252658622374 m005 (1/2*exp(1)-7/11)/(exp(1)-2/7) 2971252663081762 a008 Real Root of x^3-x^2-311*x-889 2971252668397102 m001 GolombDickman/(gamma(2)+Riemann2ndZero) 2971252674164754 r008 a(0)=3,K{-n^6,-71-58*n^3+87*n^2+75*n} 2971252691414249 a007 Real Root Of -214*x^4+400*x^3+733*x^2+604*x-253 2971252693136349 r005 Re(z^2+c),c=-2/3+26/95*I,n=2 2971252698387120 r009 Re(z^3+c),c=-11/38+38/53*I,n=7 2971252704949174 r004 Im(z^2+c),c=-11/14-2/13*I,z(0)=-1,n=36 2971252714243141 r009 Re(z^3+c),c=-21/52+16/41*I,n=5 2971252718903242 a007 Real Root Of -x^4+881*x^3+392*x^2+351*x-162 2971252731478588 r005 Re(z^2+c),c=-49/106+13/59*I,n=2 2971252773866681 m005 (1/3*5^(1/2)-1/5)/(3/8*gamma-2/5) 2971252779234505 m001 ln(FeigenbaumB)*FeigenbaumAlpha^2*Sierpinski 2971252779611285 a007 Real Root Of 289*x^4-275*x^3+79*x^2-675*x-217 2971252786704782 a001 987/4870847*199^(49/52) 2971252788941939 r008 a(0)=3,K{-n^6,12-16*n+62*n^2-30*n^3} 2971252798287779 r005 Re(z^2+c),c=-45/122+8/39*I,n=29 2971252799736581 a001 9349/144*28657^(19/51) 2971252802594300 a001 55/64079*11^(29/56) 2971252802754804 r005 Re(z^2+c),c=-15/28+30/61*I,n=46 2971252808644990 m001 (MertensB3-MinimumGamma)/(ln(2)-sin(1/12*Pi)) 2971252810070881 a007 Real Root Of -784*x^4+988*x^3+72*x^2+787*x-260 2971252810072894 r008 a(0)=3,K{-n^6,-44+7*n^3+72*n^2} 2971252823092237 m009 (3*Psi(1,1/3)+5)/(5*Psi(1,3/4)-5/6) 2971252839174109 l006 ln(428/8353) 2971252841331195 a001 1/843*(1/2*5^(1/2)+1/2)^18*47^(8/21) 2971252842660106 m001 BesselJ(1,1)/sin(1/12*Pi)*MadelungNaCl 2971252842660106 m001 MadelungNaCl/sin(Pi/12)*BesselJ(1,1) 2971252852942179 a007 Real Root Of 535*x^4+91*x^3+33*x^2-590*x-180 2971252863917998 r005 Re(z^2+c),c=5/48+11/43*I,n=8 2971252869105784 r005 Im(z^2+c),c=-107/86+2/29*I,n=15 2971252869397194 r008 a(0)=3,K{-n^6,-20+19*n^3+48*n^2-12*n} 2971252876733961 m005 (1/2*Catalan+3/10)/(7/9*gamma-3) 2971252879053039 m005 (1/3*gamma-1/9)/(6*gamma-8/11) 2971252888407717 a007 Real Root Of -57*x^4-315*x^3-632*x^2-792*x-594 2971252891463196 r008 a(0)=3,K{-n^6,-62+33*n^3-15*n^2+79*n} 2971252892464294 r008 a(0)=3,K{-n^6,-66+34*n^3-20*n^2+87*n} 2971252895179934 r005 Re(z^2+c),c=11/62+11/19*I,n=52 2971252899542435 b008 1/4+Pi^2*Csch[2] 2971252907860260 r008 a(0)=3,K{-n^6,-10-5*n+20*n^2+30*n^3} 2971252909704492 r008 a(0)=3,K{-n^6,18+26*n^3+46*n^2-55*n} 2971252923393887 a007 Real Root Of -229*x^4-890*x^3-491*x^2+525*x+397 2971252924690062 r005 Re(z^2+c),c=-11/46+19/35*I,n=24 2971252926584931 r008 a(0)=3,K{-n^6,20-46*n+29*n^2+32*n^3} 2971252928298802 r008 a(0)=3,K{-n^6,-18+25*n-11*n^2+39*n^3} 2971252933940128 p001 sum((-1)^n/(419*n+332)/(32^n),n=0..infinity) 2971252940624470 r008 a(0)=3,K{-n^6,48+33*n^3+40*n^2-86*n} 2971252944086437 r009 Re(z^3+c),c=-10/19+2/7*I,n=8 2971252944676101 r009 Im(z^3+c),c=-5/106+47/56*I,n=58 2971252954524717 r008 a(0)=3,K{-n^6,36-52*n+10*n^2+41*n^3} 2971252956011541 r008 a(0)=3,K{-n^6,34+42*n^3+6*n^2-47*n} 2971252956756598 r008 a(0)=3,K{-n^6,6+5*n-23*n^2+47*n^3} 2971252960005582 m009 (2/5*Psi(1,1/3)-4)/(Pi^2+3) 2971252963392590 l006 ln(4980/6703) 2971252967617929 a007 Real Root Of -364*x^4-978*x^3+723*x^2+904*x-981 2971252972348061 r008 a(0)=3,K{-n^6,-16+58*n^3-67*n^2+60*n} 2971252973701690 r008 a(0)=3,K{-n^6,56*n^3-53*n^2+32*n} 2971252973842323 r005 Re(z^2+c),c=-13/34+5/57*I,n=18 2971252980339692 r008 a(0)=3,K{-n^6,8+24*n-55*n^2+58*n^3} 2971252982279930 r008 a(0)=3,K{-n^6,50-51*n-16*n^2+52*n^3} 2971252982888901 m001 Ei(1,1)^(2^(1/2))/(polylog(4,1/2)^(2^(1/2))) 2971252983614284 r009 Re(z^3+c),c=-3/64+23/44*I,n=19 2971252991103566 r008 a(0)=3,K{-n^6,42-27*n-38*n^2+58*n^3} 2971252991830262 r009 Im(z^3+c),c=-45/106+9/46*I,n=30 2971253000683048 r008 a(0)=3,K{-n^6,62+60*n^3-34*n^2-53*n} 2971253003001668 r008 a(0)=3,K{-n^6,46-21*n-54*n^2+64*n^3} 2971253017716516 r008 a(0)=3,K{-n^6,9+62*n-33*n^2-5*n^3} 2971253019824287 r009 Re(z^3+c),c=-41/78+13/32*I,n=29 2971253027751945 a008 Real Root of x^4-4*x^2-13*x-4 2971253029673516 r005 Re(z^2+c),c=8/27+3/25*I,n=50 2971253031381740 m005 (1/2*exp(1)+5/7)/(1/8*Catalan+7/12) 2971253038100701 m005 (1/2*Zeta(3)+1/12)/(-5/12+1/12*5^(1/2)) 2971253040654544 r009 Re(z^3+c),c=-43/126+31/47*I,n=17 2971253064322753 h001 (-4*exp(7)+1)/(-7*exp(3)-7) 2971253078395963 m001 KhinchinLevy-Zeta(3)-Otter 2971253079089751 a007 Real Root Of 867*x^4-264*x^3+657*x^2-962*x+228 2971253084075657 a007 Real Root Of 13*x^4-321*x^3-812*x^2+806*x+130 2971253085321191 g006 Psi(1,2/7)+Psi(1,2/5)+Psi(1,1/4)-Psi(1,3/8) 2971253089735973 r009 Im(z^3+c),c=-5/106+47/56*I,n=60 2971253095172473 r005 Re(z^2+c),c=-33/94+13/44*I,n=37 2971253103998304 m005 (1/3*Catalan+1/4)/(10/11*2^(1/2)+7/12) 2971253120704948 s002 sum(A216459[n]/(n^2*exp(n)+1),n=1..infinity) 2971253121784248 a007 Real Root Of -202*x^4-461*x^3+540*x^2+588*x+631 2971253125842815 r005 Re(z^2+c),c=23/114+25/64*I,n=37 2971253126368272 m001 (Ei(1)+exp(1/exp(1)))/(Psi(1,1/3)+ln(Pi)) 2971253139606770 r009 Im(z^3+c),c=-5/106+47/56*I,n=62 2971253140136261 m002 -5/E^Pi+Pi^3-Coth[Pi]*ProductLog[Pi] 2971253140638041 r009 Im(z^3+c),c=-5/106+47/56*I,n=64 2971253142347193 r009 Im(z^3+c),c=-29/64+7/41*I,n=22 2971253143995711 a005 (1/cos(20/187*Pi))^219 2971253147767402 r002 33i'th iterates of 2*x/(1-x^2) of 2971253154837348 r005 Re(z^2+c),c=-23/56+6/13*I,n=10 2971253157051565 r005 Re(z^2+c),c=15/38+18/53*I,n=49 2971253165771971 m001 LaplaceLimit*(BesselI(0,2)-FeigenbaumC) 2971253172601873 m001 1/Riemann3rdZero^2/ln(Kolakoski)^2/Zeta(7)^2 2971253176979011 a001 14662949395604/89*21^(19/20) 2971253184113481 m002 -5+3/Pi^3+Cosh[Pi]/6 2971253185246536 r005 Re(z^2+c),c=-45/122+8/39*I,n=27 2971253201161588 m001 1/Riemann1stZero^2/ln(FeigenbaumC)*Ei(1)^2 2971253202313946 a007 Real Root Of 563*x^4-864*x^3-62*x^2-62*x-40 2971253207441223 l006 ln(6113/8228) 2971253210261716 r009 Re(z^3+c),c=-7/94+32/47*I,n=16 2971253219340281 r005 Im(z^2+c),c=-73/52+1/36*I,n=42 2971253221311418 k009 concat of cont frac of 2971253226980715 a007 Real Root Of 25*x^4+9*x^3-151*x^2+232*x+310 2971253227216716 r005 Im(z^2+c),c=7/32+9/43*I,n=5 2971253228057361 a007 Real Root Of -231*x^4-965*x^3-948*x^2-98*x+769 2971253231119540 a001 29/2584*1346269^(13/56) 2971253234348739 m006 (3/4*ln(Pi)+1)/(3/5*Pi^2+1/3) 2971253235163774 r005 Re(z^2+c),c=45/106+19/46*I,n=3 2971253247572881 a007 Real Root Of 221*x^4+700*x^3+110*x^2+3*x+175 2971253267407510 m001 (BesselI(0,1)+Conway)/(-Totient+Weierstrass) 2971253274510257 l006 ln(275/5367) 2971253275072503 m001 (ln(Pi)+BesselJ(1,1)*ZetaP(2))/ZetaP(2) 2971253290519511 a007 Real Root Of -217*x^4-761*x^3-546*x^2-445*x+449 2971253294121946 m002 -Pi+Pi^5+Cosh[Pi]/2-Sinh[Pi] 2971253299255727 r008 a(0)=3,K{-n^6,44+20*n-49*n^2+21*n^3} 2971253322328582 a007 Real Root Of -163*x^4-438*x^3-71*x^2-602*x+53 2971253340844956 m001 (Ei(1)-arctan(1/3))/(Zeta(1,2)+Porter) 2971253347452298 m002 1+Pi^3-E^Pi*Csch[Pi]*Log[Pi] 2971253353429404 m001 ZetaQ(2)/Kolakoski/BesselI(0,2) 2971253354429761 m005 (1/2*Zeta(3)+7/12)/(5^(1/2)+7/4) 2971253357695928 r005 Re(z^2+c),c=-19/58+23/60*I,n=40 2971253363967025 r005 Re(z^2+c),c=-19/27+7/10*I,n=3 2971253364827424 r008 a(0)=3,K{-n^6,29+47*n-59*n^2+15*n^3} 2971253369167940 r009 Re(z^3+c),c=-31/90+13/20*I,n=61 2971253375169924 l006 ln(7246/9753) 2971253376976076 r005 Re(z^2+c),c=-13/48+25/46*I,n=55 2971253401030860 r009 Im(z^3+c),c=-31/52+33/62*I,n=63 2971253409120127 a007 Real Root Of 885*x^4-881*x^3-440*x^2-959*x+340 2971253409204109 a007 Real Root Of 395*x^4+767*x^3-931*x^2+535*x-858 2971253409911302 m005 (1/2*Catalan+3/4)/(1/8*2^(1/2)-7/12) 2971253411951229 m005 (1/2*exp(1)+6)/(1/6*5^(1/2)-1/8) 2971253418618908 a007 Real Root Of 121*x^4+581*x^3+590*x^2-72*x+387 2971253421332341 m001 exp(OneNinth)^2/TreeGrowth2nd^2*arctan(1/2) 2971253424593874 a007 Real Root Of 673*x^4+311*x^3-814*x^2-786*x+292 2971253440084027 m006 (1/2*exp(2*Pi)+2/5)/(5/6*Pi^2+4/5) 2971253444241305 s002 sum(A150717[n]/(n^2*exp(n)-1),n=1..infinity) 2971253453438890 a005 (1/cos(11/202*Pi))^1953 2971253456831266 m009 (3/5*Psi(1,1/3)+5/6)/(2*Psi(1,1/3)+3) 2971253457207218 r008 a(0)=3,K{-n^6,-13+17*n^3+58*n^2-27*n} 2971253459874775 m001 (3^(1/3)+sin(1/12*Pi))/(1-Shi(1)) 2971253467966287 r008 a(0)=3,K{-n^6,-59+28*n^3+2*n^2+64*n} 2971253470011441 r004 Im(z^2+c),c=-29/46+1/18*I,z(0)=-1,n=53 2971253481219500 r008 a(0)=3,K{-n^6,-63+33*n^3-15*n^2+80*n} 2971253489935193 r008 a(0)=3,K{-n^6,3-35*n+42*n^2+25*n^3} 2971253490112832 m001 (GAMMA(13/24)-Tribonacci)/(Trott+TwinPrimes) 2971253494780191 h001 (-11*exp(1)-5)/(-8*exp(1)+10) 2971253497437820 r008 a(0)=3,K{-n^6,-11-4*n+20*n^2+30*n^3} 2971253504926680 a003 cos(Pi*8/117)*sin(Pi*6/61) 2971253513394760 a007 Real Root Of -425*x^4-998*x^3+440*x^2-831*x+592 2971253515447496 r005 Re(z^2+c),c=-5/4+1/92*I,n=6 2971253528558457 a007 Real Root Of -529*x^4+803*x^3-666*x^2+690*x+289 2971253530166120 r005 Re(z^2+c),c=-39/110+17/61*I,n=18 2971253532212204 r008 a(0)=3,K{-n^6,41+35*n^3+31*n^2-72*n} 2971253538013740 h001 (7/10*exp(1)+1/7)/(5/6*exp(2)+8/11) 2971253545078629 r008 a(0)=3,K{-n^6,33+42*n^3+6*n^2-46*n} 2971253549510575 b008 21/8+Tan[1/3] 2971253554402372 a007 Real Root Of -311*x^4-797*x^3+533*x^2+502*x+119 2971253557763964 a007 Real Root Of -825*x^4+596*x^3+46*x^2+440*x-144 2971253558933228 r005 Re(z^2+c),c=-17/58+31/64*I,n=56 2971253561246862 r008 a(0)=3,K{-n^6,-17+58*n^3-67*n^2+61*n} 2971253568325715 m001 1/Catalan/GolombDickman/exp(sqrt(Pi)) 2971253569944112 a007 Real Root Of -872*x^4+545*x^3+233*x^2+720*x-242 2971253570108700 m001 LambertW(1)*ErdosBorwein-QuadraticClass 2971253571721590 r008 a(0)=3,K{-n^6,9+24*n-57*n^2+59*n^3} 2971253574396223 a007 Real Root Of -160*x^4+661*x^3-448*x^2+639*x+248 2971253575103716 k002 Champernowne real with 70*n^2-168*n+127 2971253577028404 r005 Im(z^2+c),c=-5/16+16/33*I,n=29 2971253578544842 m006 (2/3/Pi-4/5)/(1/6*Pi^2+1/3) 2971253580421564 r008 a(0)=3,K{-n^6,31+60*n^3-49*n^2-7*n} 2971253581629967 r008 a(0)=3,K{-n^6,41-24*n-41*n^2+59*n^3} 2971253584017805 m005 (1/2*2^(1/2)-10/11)/(1/10*Zeta(3)-4/5) 2971253584548568 m001 1/exp(Bloch)*DuboisRaymond^2/Kolakoski 2971253586387033 r008 a(0)=3,K{-n^6,51-37*n-39*n^2+60*n^3} 2971253590172192 m001 1/GAMMA(11/12)/ln(Porter)*Zeta(3) 2971253596640455 r008 a(0)=3,K{-n^6,75+62*n^3-33*n^2-69*n} 2971253608085911 a007 Real Root Of 175*x^4-763*x^3+50*x^2-117*x+49 2971253611672965 r009 Im(z^3+c),c=-3/28+37/45*I,n=46 2971253613474173 r008 a(0)=3,K{-n^6,49+77*n^3-91*n^2} 2971253617424107 r008 a(0)=3,K{-n^6,77+75*n^3-71*n^2-46*n} 2971253631658366 r005 Re(z^2+c),c=-4/13+4/9*I,n=61 2971253641544705 a005 (1/sin(106/239*Pi))^1669 2971253656291509 m002 -4-4*E^Pi+Pi^9 2971253666498402 r009 Re(z^3+c),c=-21/58+15/56*I,n=17 2971253669680059 r005 Re(z^2+c),c=-3/8+16/59*I,n=7 2971253670139805 m005 (1/2*5^(1/2)+4/9)/(3/11*exp(1)-6) 2971253671076867 m005 (1/3*3^(1/2)-3/5)/(31/70+1/7*5^(1/2)) 2971253678333143 a007 Real Root Of 672*x^4+879*x^3+342*x^2-756*x-237 2971253678399670 r005 Re(z^2+c),c=-47/122+1/54*I,n=17 2971253698115228 r009 Im(z^3+c),c=-13/27+5/36*I,n=51 2971253699950796 m001 (Pi-Zeta(5))/(ArtinRank2+Trott) 2971253706929909 a007 Real Root Of -429*x^4-974*x^3+598*x^2-642*x+700 2971253715797423 r005 Re(z^2+c),c=-29/34+26/83*I,n=4 2971253723943623 m005 (1/3*gamma+5)/(2^(1/2)+1/3) 2971253730989755 m001 Rabbit*exp(Niven)/GAMMA(1/4)^2 2971253734711673 a007 Real Root Of -379*x^4-977*x^3+208*x^2-455*x+723 2971253743839696 l006 ln(397/7748) 2971253745018708 m001 (sin(1/12*Pi)-GaussAGM)/(Paris+Tribonacci) 2971253745553661 a001 2504730781961/2207*123^(1/5) 2971253758573132 r009 Re(z^3+c),c=-1/20+31/53*I,n=43 2971253771616139 r005 Re(z^2+c),c=-7/9+3/71*I,n=14 2971253778887126 r009 Im(z^3+c),c=-5/106+47/56*I,n=46 2971253780774152 r005 Im(z^2+c),c=-11/36+15/31*I,n=24 2971253786760716 m001 1/exp(Zeta(9))/Riemann2ndZero/sin(Pi/5) 2971253799719309 r005 Re(z^2+c),c=-21/74+30/59*I,n=54 2971253803588160 m008 (3/5*Pi^3-1/5)/(2/3*Pi^4-3) 2971253811176509 b008 Zeta[-4/9,14] 2971253815009489 r008 a(0)=3,K{-n^6,45-21*n^3+10*n^2} 2971253817865108 h001 (7/8*exp(2)+1/4)/(2/11*exp(2)+11/12) 2971253820756876 m001 Zeta(5)^GAMMA(11/12)+GAMMA(11/24) 2971253836160076 p001 sum((-1)^n/(335*n+298)/n/(5^n),n=1..infinity) 2971253848302104 r005 Im(z^2+c),c=-1/20+23/62*I,n=13 2971253848471428 l006 ln(8588/8847) 2971253871330713 m001 (ln(3)-GaussAGM)/(MadelungNaCl-Thue) 2971253875726182 m002 -Pi^3+6/ProductLog[Pi]-4*ProductLog[Pi] 2971253888924417 s002 sum(A209724[n]/(n*exp(n)+1),n=1..infinity) 2971253905127315 r002 36th iterates of z^2 + 2971253905584465 m001 (sin(1/5*Pi)-exp(-1/2*Pi))/(Mills-Sierpinski) 2971253913097756 m001 Ei(1)^FeigenbaumKappa+Lehmer 2971253915974951 r005 Im(z^2+c),c=-23/40+13/20*I,n=20 2971253918073479 r009 Im(z^3+c),c=-55/122+5/29*I,n=37 2971253926249654 r005 Im(z^2+c),c=-21/38+27/59*I,n=29 2971253932698241 a001 3571/5*832040^(56/59) 2971253935433044 a007 Real Root Of 137*x^4+565*x^3+161*x^2-746*x+505 2971253938261921 m005 (1/2*3^(1/2)-11/12)/(3/10*exp(1)+8/9) 2971253941144622 s002 sum(A216459[n]/(n^2*exp(n)-1),n=1..infinity) 2971253942326339 h003 exp(Pi*(11^(10/7)-17^(3/5))) 2971253942326339 h008 exp(Pi*(11^(10/7)-17^(3/5))) 2971253951649737 a007 Real Root Of -325*x^4+771*x^3-869*x^2+409*x+221 2971253952386856 r005 Im(z^2+c),c=-11/30+31/59*I,n=20 2971253958165103 m001 (1-FibonacciFactorial)/(-Landau+Mills) 2971253971614243 r005 Re(z^2+c),c=-33/94+13/44*I,n=39 2971253971957917 a007 Real Root Of -957*x^4-283*x^3-681*x^2+124*x+97 2971253994167332 r008 a(0)=3,K{-n^6,-42+8*n^3+71*n^2-2*n} 2971254002863121 r005 Im(z^2+c),c=-9/94+54/61*I,n=27 2971254026447372 r008 a(0)=3,K{-n^6,-62+20*n^3+25*n^2+52*n} 2971254029646732 r005 Re(z^2+c),c=-91/94+4/47*I,n=4 2971254037614699 r008 a(0)=3,K{-n^6,-17-45*n^3+88*n^2+16*n} 2971254041122074 r008 a(0)=3,K{-n^6,-54+23*n^3+20*n^2+46*n} 2971254043278694 r008 a(0)=3,K{-n^6,-14+17*n^3+58*n^2-26*n} 2971254060797828 m001 sin(1/5*Pi)^(MadelungNaCl/BesselJ(0,1)) 2971254060797828 m001 sin(Pi/5)^(MadelungNaCl/BesselJ(0,1)) 2971254063952697 r005 Im(z^2+c),c=-35/31+9/38*I,n=38 2971254064659670 r009 Re(z^3+c),c=-29/70+23/64*I,n=45 2971254070777329 m001 (exp(1)+BesselI(1,1))^Catalan 2971254072822495 r008 a(0)=3,K{-n^6,-52+63*n-9*n^2+33*n^3} 2971254079545660 a007 Real Root Of 367*x^4-784*x^3+978*x^2+255*x-34 2971254081752547 h001 (5/9*exp(1)+1/5)/(7/10*exp(2)+7/12) 2971254088480549 r008 a(0)=3,K{-n^6,-48+38*n^3-22*n^2+67*n} 2971254092786917 m001 (Chi(1)+ln(2))/(-DuboisRaymond+Rabbit) 2971254102156026 p004 log(35149/1801) 2971254102226644 r008 a(0)=3,K{-n^6,20-47*n+30*n^2+32*n^3} 2971254105805149 r005 Re(z^2+c),c=25/82+1/8*I,n=32 2971254109606981 r008 a(0)=3,K{-n^6,-34+58*n-33*n^2+44*n^3} 2971254110400630 r008 a(0)=3,K{-n^6,-2-2*n^2+39*n^3} 2971254113359806 m001 Pi/(Psi(1,1/3)+BesselK(0,1)/ln(2^(1/2)+1)) 2971254116712157 m001 ReciprocalFibonacci*Thue^AlladiGrinstead 2971254120995623 m005 (1/3*Zeta(3)-3/4)/(10/11*5^(1/2)-6/7) 2971254121317125 k009 concat of cont frac of 2971254133808191 q001 1168/3931 2971254138723931 r008 a(0)=3,K{-n^6,-10+40*n-48*n^2+53*n^3} 2971254139068285 r005 Im(z^2+c),c=-9/46+34/55*I,n=8 2971254144031310 m005 (31/28+1/4*5^(1/2))/(5/8*gamma+1/5) 2971254154674191 r008 a(0)=3,K{-n^6,8+23*n-54*n^2+58*n^3} 2971254166099253 m002 -Pi^4+Pi^9+Pi^2*Sech[Pi] 2971254168085034 h001 (-9*exp(5)-8)/(-3*exp(5)-7) 2971254174543704 r008 a(0)=3,K{-n^6,62+60*n^3-33*n^2-54*n} 2971254174550601 r008 a(0)=3,K{-n^6,2+70*n^3-93*n^2+56*n} 2971254176809022 r008 a(0)=3,K{-n^6,46-22*n-53*n^2+64*n^3} 2971254195730366 r005 Re(z^2+c),c=-33/86+1/15*I,n=10 2971254197914247 r008 a(0)=3,K{-n^6,48+77*n^3-91*n^2+n} 2971254213043587 r002 57th iterates of z^2 + 2971254215591331 r009 Im(z^3+c),c=-3/28+7/22*I,n=3 2971254221413636 r005 Re(z^2+c),c=-9/28+32/57*I,n=35 2971254227647546 a005 (1/cos(43/142*Pi))^74 2971254241217088 r005 Re(z^2+c),c=11/74+14/45*I,n=8 2971254243901803 m002 -5+Pi^5-Cosh[Pi]/4-Tanh[Pi] 2971254254455365 m008 (3*Pi^6+1/5)/(Pi^4-1/3) 2971254258060814 a007 Real Root Of -193*x^4-333*x^3+494*x^2-725*x-208 2971254266562346 a001 3278735159921/2889*123^(1/5) 2971254274078017 r005 Re(z^2+c),c=-49/34+1/42*I,n=6 2971254280135056 l006 ln(1133/1525) 2971254304198959 m005 (-1/3+1/4*5^(1/2))/(1/5*gamma-7/8) 2971254305531279 a007 Real Root Of 612*x^4+539*x^3+387*x^2-983*x+239 2971254320007907 r008 a(0)=0,K{-n^6,15+26*n-44*n^2+37*n^3} 2971254321111231 k008 concat of cont frac of 2971254326080868 r005 Re(z^2+c),c=-15/74+32/39*I,n=21 2971254329112501 m001 (Totient+ZetaP(3))/(FeigenbaumB-FellerTornier) 2971254339687909 r005 Im(z^2+c),c=-7/23+40/63*I,n=58 2971254350699498 m002 -Pi^2+Pi^5+Pi/(3*ProductLog[Pi]) 2971254351500771 r009 Re(z^3+c),c=-43/110+15/47*I,n=25 2971254354985171 r009 Re(z^3+c),c=-53/126+21/59*I,n=13 2971254357920247 r002 22th iterates of z^2 + 2971254360255380 r005 Im(z^2+c),c=-13/36+32/61*I,n=28 2971254362022671 a007 Real Root Of 389*x^4+798*x^3-887*x^2+721*x+587 2971254364987517 m005 (1/2*Catalan+2)/(11/16+1/16*5^(1/2)) 2971254367300707 b008 1+7*CosIntegral[(4*Pi)/5] 2971254371436597 a007 Real Root Of -310*x^4-638*x^3+697*x^2-368*x+179 2971254389555839 a001 10610209857723/9349*123^(1/5) 2971254389766972 r005 Im(z^2+c),c=11/62+1/62*I,n=10 2971254396238118 r005 Im(z^2+c),c=-19/118+53/63*I,n=42 2971254409744293 a009 1/13*(17-3^(2/3))^(1/2) 2971254421423439 r005 Re(z^2+c),c=21/64+7/50*I,n=45 2971254426192352 a007 Real Root Of -522*x^4+381*x^3+27*x^2+699*x-216 2971254430274585 m001 (PlouffeB+ZetaQ(3))/(gamma(2)+GAMMA(13/24)) 2971254445346255 r005 Re(z^2+c),c=-7/20+3/10*I,n=34 2971254446298636 r009 Re(z^3+c),c=-5/27+43/58*I,n=14 2971254447239210 m001 Ei(1)^BesselK(0,1)*Ei(1)^GlaisherKinkelin 2971254458230439 r009 Im(z^3+c),c=-7/20+11/45*I,n=24 2971254463405928 r005 Im(z^2+c),c=-91/106+1/5*I,n=46 2971254466513813 r009 Re(z^3+c),c=-43/110+15/47*I,n=28 2971254467534083 b008 30*Pi^2+Coth[2] 2971254484689290 m002 -Pi^4+Pi^9+Pi^2*Csch[Pi] 2971254507073278 r009 Im(z^3+c),c=-7/20+11/45*I,n=25 2971254515650696 s002 sum(A160839[n]/((2*n+1)!),n=1..infinity) 2971254517840323 a007 Real Root Of 137*x^4-560*x^3+161*x^2-913*x+27 2971254520345363 r005 Im(z^2+c),c=-47/74+2/57*I,n=21 2971254522890343 a007 Real Root Of 827*x^4+601*x^3-137*x^2-899*x+257 2971254526874914 a007 Real Root Of -250*x^4-760*x^3+196*x^2+620*x-339 2971254527181428 m005 (1/2*5^(1/2)+2/7)/(5/7*Catalan-2/11) 2971254541130319 a007 Real Root Of 207*x^4+824*x^3+707*x^2+431*x+520 2971254549420810 m001 FeigenbaumD/exp(Conway)^2*GAMMA(3/4)^2 2971254551252635 m002 -2+Pi^4-Pi^9+Log[Pi] 2971254552222631 m001 Zeta(5)^2/exp(FeigenbaumKappa)/cos(Pi/12)^2 2971254557742213 r009 Re(z^3+c),c=-12/31+5/16*I,n=32 2971254561610980 r009 Re(z^3+c),c=-1/20+31/53*I,n=45 2971254565939883 a007 Real Root Of 226*x^4+528*x^3-481*x^2+75*x+705 2971254578104316 k002 Champernowne real with 141/2*n^2-339/2*n+128 2971254588563513 a001 4052739537881/3571*123^(1/5) 2971254596809137 r009 Im(z^3+c),c=-59/122+5/39*I,n=31 2971254611205647 h005 exp(cos(Pi*23/55)/cos(Pi*17/40)) 2971254616661226 a007 Real Root Of 285*x^4+617*x^3-758*x^2-322*x-293 2971254619418686 a001 1364/89*17711^(7/13) 2971254624124721 k003 Champernowne real with 11*n^3-77/2*n^2+91/2*n-16 2971254630415746 r005 Re(z^2+c),c=-8/21+3/29*I,n=14 2971254649885899 r008 a(0)=3,K{-n^6,-63+33*n^3-14*n^2+79*n} 2971254654239183 r009 Im(z^3+c),c=-7/20+11/45*I,n=28 2971254654654078 r008 a(0)=3,K{-n^6,-53+64*n-9*n^2+33*n^3} 2971254654706165 a007 Real Root Of 99*x^4-577*x^3+57*x^2-672*x+209 2971254656533033 r008 a(0)=3,K{-n^6,-49+58*n-7*n^2+33*n^3} 2971254657920886 r009 Im(z^3+c),c=-7/20+11/45*I,n=29 2971254665687047 r008 a(0)=3,K{-n^6,-11-5*n+21*n^2+30*n^3} 2971254666731191 m001 (gamma(3)+PlouffeB)/(3^(1/3)-Zeta(1,-1)) 2971254669631288 r009 Im(z^3+c),c=-7/20+11/45*I,n=32 2971254669908100 r009 Im(z^3+c),c=-7/20+11/45*I,n=33 2971254670839877 r009 Im(z^3+c),c=-7/20+11/45*I,n=36 2971254670860630 r009 Im(z^3+c),c=-7/20+11/45*I,n=37 2971254670934766 r009 Im(z^3+c),c=-7/20+11/45*I,n=40 2971254670936317 r009 Im(z^3+c),c=-7/20+11/45*I,n=41 2971254670942215 r009 Im(z^3+c),c=-7/20+11/45*I,n=44 2971254670942330 r009 Im(z^3+c),c=-7/20+11/45*I,n=45 2971254670942800 r009 Im(z^3+c),c=-7/20+11/45*I,n=48 2971254670942808 r009 Im(z^3+c),c=-7/20+11/45*I,n=49 2971254670942845 r009 Im(z^3+c),c=-7/20+11/45*I,n=52 2971254670942846 r009 Im(z^3+c),c=-7/20+11/45*I,n=53 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=56 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=57 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=60 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=61 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=64 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=63 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=62 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=59 2971254670942849 r009 Im(z^3+c),c=-7/20+11/45*I,n=58 2971254670942850 r009 Im(z^3+c),c=-7/20+11/45*I,n=55 2971254670942850 r009 Im(z^3+c),c=-7/20+11/45*I,n=54 2971254670942861 r009 Im(z^3+c),c=-7/20+11/45*I,n=51 2971254670942863 r009 Im(z^3+c),c=-7/20+11/45*I,n=50 2971254670942996 r009 Im(z^3+c),c=-7/20+11/45*I,n=47 2971254670943027 r009 Im(z^3+c),c=-7/20+11/45*I,n=46 2971254670944691 r009 Im(z^3+c),c=-7/20+11/45*I,n=43 2971254670945114 r009 Im(z^3+c),c=-7/20+11/45*I,n=42 2971254670966025 r009 Im(z^3+c),c=-7/20+11/45*I,n=39 2971254670971701 r009 Im(z^3+c),c=-7/20+11/45*I,n=38 2971254671234530 r009 Im(z^3+c),c=-7/20+11/45*I,n=35 2971254671310353 r009 Im(z^3+c),c=-7/20+11/45*I,n=34 2971254674613628 r009 Im(z^3+c),c=-7/20+11/45*I,n=31 2971254675623493 r009 Im(z^3+c),c=-7/20+11/45*I,n=30 2971254691830745 r008 a(0)=3,K{-n^6,-3-2*n^2+39*n^3+n} 2971254707812088 m001 (GAMMA(3/4)-Champernowne)/(Pi+LambertW(1)) 2971254712144261 r008 a(0)=3,K{-n^6,33+42*n^3+7*n^2-47*n} 2971254712862669 r009 Re(z^3+c),c=-29/70+23/64*I,n=41 2971254717137306 r009 Im(z^3+c),c=-7/20+11/45*I,n=27 2971254717346854 h001 (1/7*exp(1)+1/6)/(1/6*exp(2)+7/11) 2971254718101759 m001 (FeigenbaumAlpha-LambertW(1))^exp(1/2) 2971254723714166 m005 (1/2*3^(1/2)-11/12)/(7/12*5^(1/2)+2/5) 2971254725203987 m001 KhinchinLevy^cos(1/5*Pi)+MasserGramainDelta 2971254727925056 r008 a(0)=3,K{-n^6,-17+58*n^3-66*n^2+60*n} 2971254730551255 r009 Im(z^3+c),c=-7/20+11/45*I,n=26 2971254744114150 a007 Real Root Of -287*x^4-992*x^3-296*x^2+17*x-989 2971254747241419 r008 a(0)=3,K{-n^6,33+60*n^3-47*n^2-11*n} 2971254778120369 m001 1/Tribonacci*exp(Backhouse)*GAMMA(5/6)^2 2971254780492027 r002 9th iterates of z^2 + 2971254792916473 a007 Real Root Of -178*x^4-677*x^3-547*x^2+320*x+127 2971254797038387 r009 Re(z^3+c),c=-12/31+5/16*I,n=31 2971254801753606 l006 ln(122/2381) 2971254819895729 m001 arctan(1/2)/(exp(1/exp(1))^Psi(2,1/3)) 2971254831513194 m005 (1/3*2^(1/2)-1/11)/(1/2*gamma-5/12) 2971254836926478 q001 1075/3618 2971254848665897 r002 56th iterates of z^2 + 2971254856605220 r005 Re(z^2+c),c=-21/34+20/81*I,n=2 2971254865568080 r005 Im(z^2+c),c=-69/94+5/8*I,n=4 2971254872373055 b008 -3+Csch[3*Sqrt[2]] 2971254881780479 r009 Re(z^3+c),c=-1/20+31/53*I,n=47 2971254883028244 r004 Im(z^2+c),c=-3/38-3/20*I,z(0)=I,n=4 2971254884680941 r009 Im(z^3+c),c=-25/58+31/63*I,n=3 2971254886054750 r005 Im(z^2+c),c=1/110+13/20*I,n=19 2971254888084173 r005 Re(z^2+c),c=5/16+3/22*I,n=26 2971254892005546 r005 Im(z^2+c),c=-9/34+28/61*I,n=23 2971254898827460 a001 11/8*610^(23/48) 2971254915858469 m001 (Bloch+ErdosBorwein)/(gamma(3)+ArtinRank2) 2971254918835152 r009 Im(z^3+c),c=-3/44+17/53*I,n=11 2971254921586679 m009 (1/4*Pi^2-2)/(3/4*Psi(1,3/4)-1/3) 2971254932075179 m001 TreeGrowth2nd^Ei(1)/(GaussAGM^Ei(1)) 2971254961921297 a007 Real Root Of -231*x^4-820*x^3-667*x^2-558*x+725 2971254969742984 m001 (1-cos(1))/(FeigenbaumB+TravellingSalesman) 2971254974978395 r005 Re(z^2+c),c=-7/20+3/10*I,n=24 2971254978594381 r009 Im(z^3+c),c=-11/122+53/64*I,n=60 2971254982272881 m005 (1/3*exp(1)+1/7)/(3/8*2^(1/2)+3) 2971254993733249 a001 610/3010349*199^(49/52) 2971254995953270 r009 Re(z^3+c),c=-1/20+31/53*I,n=49 2971255006528932 r009 Re(z^3+c),c=-41/102+21/62*I,n=19 2971255009506086 r009 Re(z^3+c),c=-1/20+31/53*I,n=52 2971255009840377 r009 Re(z^3+c),c=-1/20+31/53*I,n=54 2971255011532585 m002 5+(4*Pi^3*Tanh[Pi])/5 2971255011892650 a007 Real Root Of 385*x^4+651*x^3+294*x^2-754*x+178 2971255013292475 r005 Im(z^2+c),c=-37/90+19/39*I,n=13 2971255013479527 a003 -cos(1/5*Pi)-2^(1/2)-cos(3/8*Pi)-cos(8/21*Pi) 2971255013507851 r009 Re(z^3+c),c=-1/20+31/53*I,n=56 2971255014124067 a003 cos(Pi*38/105)-cos(Pi*41/89) 2971255016782465 r009 Re(z^3+c),c=-1/20+31/53*I,n=58 2971255018958802 r009 Re(z^3+c),c=-1/20+31/53*I,n=60 2971255020219465 r009 Re(z^3+c),c=-1/20+31/53*I,n=62 2971255020887702 r009 Re(z^3+c),c=-1/20+31/53*I,n=64 2971255022122389 r005 Re(z^2+c),c=-5/14+11/41*I,n=22 2971255022346125 r009 Re(z^3+c),c=-1/20+31/53*I,n=63 2971255023272711 r009 Re(z^3+c),c=-1/20+31/53*I,n=61 2971255023592470 r005 Re(z^2+c),c=-61/94+3/58*I,n=4 2971255024659694 r009 Re(z^3+c),c=-1/20+31/53*I,n=50 2971255024950917 r009 Re(z^3+c),c=-1/20+31/53*I,n=59 2971255027681217 r009 Re(z^3+c),c=-1/20+31/53*I,n=57 2971255027969049 r009 Re(z^3+c),c=-35/78+12/29*I,n=32 2971255029166800 r009 Re(z^3+c),c=-1/20+31/53*I,n=51 2971255029544940 r005 Re(z^2+c),c=-33/94+13/44*I,n=30 2971255031353720 r009 Re(z^3+c),c=-1/20+31/53*I,n=55 2971255034161941 r009 Re(z^3+c),c=-1/20+31/53*I,n=53 2971255056234613 r005 Re(z^2+c),c=15/82+31/61*I,n=3 2971255064521854 r009 Re(z^3+c),c=-29/70+23/64*I,n=39 2971255075332077 a007 Real Root Of 471*x^4-816*x^3-781*x^2-516*x+240 2971255080319522 a003 sin(Pi*19/74)/cos(Pi*27/64) 2971255088529040 r009 Re(z^3+c),c=-1/20+31/53*I,n=48 2971255089413545 m001 ln(GAMMA(5/24))^2*GAMMA(2/3)^2*exp(1)^2 2971255094813814 b008 29+E^(-2)+EulerGamma 2971255094839118 p004 log(27967/1433) 2971255096695708 r005 Re(z^2+c),c=-27/98+28/53*I,n=64 2971255130284186 m001 (BesselK(0,1)-ln(5))/(Lehmer+Magata) 2971255130704507 r009 Re(z^3+c),c=-45/118+7/20*I,n=5 2971255135918754 r005 Im(z^2+c),c=-13/48+19/41*I,n=22 2971255156438245 l006 ln(7483/10072) 2971255165743949 m002 -Pi^5+30/(Pi*ProductLog[Pi]) 2971255170362791 a007 Real Root Of -280*x^4-973*x^3-264*x^2+654*x+574 2971255179877999 r005 Re(z^2+c),c=-11/17+23/59*I,n=20 2971255185562462 m001 (ln(2)-ln(2+3^(1/2)))/(Backhouse+Cahen) 2971255185954520 q001 1/3365581 2971255193218449 h001 (-6*exp(1/3)+3)/(-exp(3)+2) 2971255195036245 h001 (1/8*exp(2)+7/8)/(2/11*exp(1)+1/9) 2971255198516699 a001 121393/7*521^(37/45) 2971255202016411 a007 Real Root Of -30*x^4+191*x^3+963*x^2+719*x+983 2971255204263969 m005 (1/3*gamma-2/3)/(10/11*exp(1)-7/8) 2971255204774804 r008 a(0)=3,K{-n^6,-14+17*n^3+59*n^2-27*n} 2971255209212116 a007 Real Root Of -995*x^4+357*x^3-411*x^2+948*x-247 2971255231312113 k006 concat of cont frac of 2971255231923291 a007 Real Root Of -379*x^4+746*x^3-726*x^2+284*x+171 2971255250512803 r008 a(0)=3,K{-n^6,4-28*n+29*n^2+30*n^3} 2971255252245050 r009 Im(z^3+c),c=-7/20+11/45*I,n=23 2971255257614749 a007 Real Root Of -153*x^4-338*x^3+348*x^2-92*x-287 2971255262060185 m001 (Shi(1)+arctan(1/2))/(-Kolakoski+Mills) 2971255264207768 r005 Im(z^2+c),c=-13/46+22/47*I,n=39 2971255264377639 m008 (5/6*Pi^5-2/5)/(1/6*Pi+1/3) 2971255272512539 r008 a(0)=3,K{-n^6,-26+45*n-28*n^2+44*n^3} 2971255276325323 r008 a(0)=3,K{-n^6,14-25*n+7*n^2+39*n^3} 2971255278494648 r009 Im(z^3+c),c=-3/44+17/53*I,n=14 2971255283077526 r009 Re(z^3+c),c=-1/20+31/53*I,n=46 2971255284558910 r009 Im(z^3+c),c=-3/44+17/53*I,n=16 2971255285490454 r009 Im(z^3+c),c=-3/44+17/53*I,n=18 2971255285561372 r009 Im(z^3+c),c=-3/44+17/53*I,n=20 2971255285563953 r009 Im(z^3+c),c=-3/44+17/53*I,n=23 2971255285564015 r009 Im(z^3+c),c=-3/44+17/53*I,n=25 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=27 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=29 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=32 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=34 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=36 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=38 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=39 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=41 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=43 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=45 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=47 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=48 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=50 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=52 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=54 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=56 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=57 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=59 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=61 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=63 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=64 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=62 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=60 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=58 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=55 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=53 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=51 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=49 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=46 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=44 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=42 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=40 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=37 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=35 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=30 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=33 2971255285564023 r009 Im(z^3+c),c=-3/44+17/53*I,n=31 2971255285564024 r009 Im(z^3+c),c=-3/44+17/53*I,n=28 2971255285564026 r009 Im(z^3+c),c=-3/44+17/53*I,n=26 2971255285564051 r009 Im(z^3+c),c=-3/44+17/53*I,n=24 2971255285564137 r009 Im(z^3+c),c=-3/44+17/53*I,n=22 2971255285564189 r009 Im(z^3+c),c=-3/44+17/53*I,n=21 2971255285579954 r009 Im(z^3+c),c=-3/44+17/53*I,n=19 2971255285854569 r009 Im(z^3+c),c=-3/44+17/53*I,n=17 2971255287321449 h002 exp(1/15*(5+15^(1/2)*6^(2/3))^(1/2)*15^(1/2)) 2971255288559688 r009 Im(z^3+c),c=-3/44+17/53*I,n=15 2971255290907157 r008 a(0)=3,K{-n^6,36-52*n+9*n^2+42*n^3} 2971255291866000 r005 Re(z^2+c),c=-15/19+3/23*I,n=10 2971255293008790 r008 a(0)=3,K{-n^6,6+5*n-24*n^2+48*n^3} 2971255293915065 r009 Im(z^3+c),c=-3/44+17/53*I,n=13 2971255303694239 m008 (1/4*Pi^6+4/5)/(1/6*Pi^2-5/6) 2971255308927828 a003 sin(Pi*9/98)/cos(Pi*4/43) 2971255312792806 l006 ln(6350/8547) 2971255317669101 r005 Im(z^2+c),c=25/86+7/54*I,n=60 2971255322860720 r009 Im(z^3+c),c=-3/44+17/53*I,n=12 2971255332021813 b008 -3+ArcCosh[196] 2971255342600054 m003 30+Sqrt[5]/16-Tanh[1/2+Sqrt[5]/2]^2/2 2971255349627890 m005 (1/2*exp(1)+6/11)/(7/10*3^(1/2)-4/7) 2971255351260179 m005 (25/4+1/4*5^(1/2))/(6/7*5^(1/2)+3/8) 2971255355638682 r008 a(0)=3,K{-n^6,48+77*n^3-90*n^2} 2971255357815515 m001 LambertW(1)^sin(1/5*Pi)*PrimesInBinary 2971255370446837 r005 Im(z^2+c),c=-89/122+22/61*I,n=9 2971255371436224 r005 Re(z^2+c),c=-45/118+5/49*I,n=17 2971255387846574 r005 Re(z^2+c),c=-7/94+41/63*I,n=15 2971255391427586 r005 Im(z^2+c),c=-10/31+18/37*I,n=24 2971255393745857 r005 Re(z^2+c),c=-33/94+13/44*I,n=44 2971255394219805 r009 Re(z^3+c),c=-13/58+27/43*I,n=2 2971255395938752 m002 2+Tanh[Pi]/Pi^2+Tanh[Pi]/Log[Pi] 2971255396985038 a007 Real Root Of -162*x^4+379*x^3+683*x^2+966*x-356 2971255400885523 p004 log(13681/701) 2971255405346910 s002 sum(A212569[n]/(n^2*10^n-1),n=1..infinity) 2971255408284447 g007 Psi(2,2/11)+Psi(2,1/11)+Psi(2,3/4)-Psi(2,2/5) 2971255409606343 r002 6th iterates of z^2 + 2971255414703759 m004 -36+Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 2971255415267681 a007 Real Root Of 290*x^4+518*x^3-993*x^2+341*x+765 2971255428891084 a007 Real Root Of 145*x^4+115*x^3+683*x^2-978*x-349 2971255429987824 r009 Im(z^3+c),c=-7/20+11/45*I,n=22 2971255431768559 r005 Re(z^2+c),c=-29/86+7/20*I,n=39 2971255439290914 r002 3th iterates of z^2 + 2971255441013764 r005 Re(z^2+c),c=-13/58+27/46*I,n=47 2971255443158649 r005 Re(z^2+c),c=-33/94+13/44*I,n=42 2971255456159511 a001 521/21*832040^(31/45) 2971255456926366 m005 (1/2*Pi+7/9)/(3/4*Zeta(3)-1/9) 2971255460888352 b008 Zeta[1/5,2/Pi] 2971255470442196 r005 Re(z^2+c),c=-10/19+29/63*I,n=27 2971255492542400 a007 Real Root Of 436*x^4+923*x^3-982*x^2+318*x-156 2971255501135619 m002 -4+Log[Pi]-Log[Pi]/Pi^2 2971255504574903 r005 Im(z^2+c),c=27/94+8/59*I,n=23 2971255522359075 r005 Re(z^2+c),c=-13/9+94/97*I,n=2 2971255533010719 r002 3th iterates of z^2 + 2971255534989455 m005 (-11/20+1/4*5^(1/2))/(3*Zeta(3)-4/7) 2971255537059848 l006 ln(5217/7022) 2971255545075817 s001 sum(exp(-3*Pi/4)^n*A035827[n],n=1..infinity) 2971255545165157 r002 5th iterates of z^2 + 2971255549692895 r005 Im(z^2+c),c=-39/74+10/23*I,n=18 2971255550773060 a003 cos(Pi*1/26)/sin(Pi*9/83) 2971255565651337 m002 -1+ProductLog[Pi]/2+Tanh[Pi]/6 2971255576978096 a007 Real Root Of 681*x^4-883*x^3+845*x^2-720*x-317 2971255581104916 k002 Champernowne real with 71*n^2-171*n+129 2971255581515151 r005 Re(z^2+c),c=-33/94+13/44*I,n=41 2971255590754795 m009 (3/4*Psi(1,1/3)+3/4)/(1/4*Pi^2+1/3) 2971255594342987 m001 (Chi(1)+Gompertz)/(Porter+ReciprocalFibonacci) 2971255598898957 m001 AlladiGrinstead^Zeta(1/2)+ln(5) 2971255600595750 a003 cos(Pi*3/44)/sin(Pi*8/75) 2971255626123356 r005 Re(z^2+c),c=3/13+19/55*I,n=3 2971255626564263 r005 Im(z^2+c),c=-17/36+14/27*I,n=39 2971255630234263 r005 Re(z^2+c),c=-33/94+13/44*I,n=46 2971255634365490 a007 Real Root Of 183*x^4+847*x^3+854*x^2+52*x+570 2971255641915786 r002 6th iterates of z^2 + 2971255648024636 a007 Real Root Of -420*x^4-910*x^3+915*x^2-406*x-420 2971255652752320 r005 Re(z^2+c),c=-33/94+13/44*I,n=49 2971255668844921 r005 Re(z^2+c),c=-17/44+19/34*I,n=50 2971255670321633 a007 Real Root Of 396*x^4+394*x^3+73*x^2-464*x+118 2971255671250322 r005 Im(z^2+c),c=-33/26+12/79*I,n=3 2971255673222390 q001 1964/661 2971255681819920 r005 Re(z^2+c),c=-33/94+13/44*I,n=51 2971255684300924 r005 Im(z^2+c),c=-29/106+33/62*I,n=13 2971255685779282 r005 Re(z^2+c),c=-23/86+32/59*I,n=51 2971255693265709 r005 Re(z^2+c),c=-33/94+13/44*I,n=47 2971255694100447 m001 (Sarnak+Totient)/(ln(2)+HeathBrownMoroz) 2971255694272647 r005 Re(z^2+c),c=-33/94+13/44*I,n=54 2971255695010442 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=36 2971255696749056 r005 Re(z^2+c),c=-33/94+13/44*I,n=56 2971255698494181 a007 Real Root Of 257*x^4+725*x^3+11*x^2+314*x-177 2971255700005146 r005 Re(z^2+c),c=-33/94+13/44*I,n=61 2971255700047466 r005 Re(z^2+c),c=-33/94+13/44*I,n=59 2971255700562504 r005 Re(z^2+c),c=-33/94+13/44*I,n=58 2971255700578071 r005 Re(z^2+c),c=-33/94+13/44*I,n=63 2971255700694566 r005 Re(z^2+c),c=-33/94+13/44*I,n=64 2971255701147600 r005 Re(z^2+c),c=-33/94+13/44*I,n=62 2971255701612191 r005 Re(z^2+c),c=-33/94+13/44*I,n=60 2971255702263210 r005 Im(z^2+c),c=-135/94+25/62*I,n=3 2971255702504544 r005 Re(z^2+c),c=-33/94+13/44*I,n=57 2971255704110520 r005 Re(z^2+c),c=-33/94+13/44*I,n=53 2971255705680778 r005 Re(z^2+c),c=-33/94+13/44*I,n=52 2971255706735218 r005 Re(z^2+c),c=-33/94+13/44*I,n=55 2971255718136048 m001 Psi(2,1/3)^Rabbit/(arctan(1/2)^Rabbit) 2971255720758530 m005 (1/2*2^(1/2)+5/12)/(1/12*Catalan-5/11) 2971255720772002 l006 ln(457/8919) 2971255736432689 r005 Re(z^2+c),c=-33/94+13/44*I,n=50 2971255737875632 a001 10610209857723/2*(1/2+1/2*5^(1/2))^61 2971255737875632 a001 3278735159921*(1/2+1/2*5^(1/2))^62 2971255737875632 a001 2504730781961/2*(1/2+1/2*5^(1/2))^64 2971255738818145 m009 (2/3*Psi(1,2/3)+3/4)/(4*Catalan+1/2*Pi^2+4/5) 2971255744169438 r005 Re(z^2+c),c=-33/94+13/44*I,n=48 2971255765890951 m001 (CareFree-Totient)/(sin(1/5*Pi)-Artin) 2971255770356456 a003 cos(Pi*17/84)/cos(Pi*57/116) 2971255772326387 m001 1/exp(GAMMA(1/24))^2*Rabbit^2/sin(1)^2 2971255772553952 r005 Re(z^2+c),c=-33/106+23/53*I,n=35 2971255783365253 a001 41/7*53316291173^(19/21) 2971255783783734 a007 Real Root Of -241*x^4-569*x^3+377*x^2-396*x-647 2971255795410067 r005 Re(z^2+c),c=-8/27+24/49*I,n=24 2971255795856640 r009 Re(z^3+c),c=-1/20+31/53*I,n=44 2971255797821491 h001 (-6*exp(2)-7)/(-9*exp(3)+8) 2971255807663776 r008 a(0)=3,K{-n^6,-53+63*n-8*n^2+33*n^3} 2971255817702821 m001 (Tetranacci-ZetaQ(4))/(ln(gamma)-Paris) 2971255821884414 r008 a(0)=3,K{-n^6,-3+30*n^3+26*n^2-18*n} 2971255822272763 r008 a(0)=0,K{-n^6,3+46*n-53*n^2+38*n^3} 2971255824449031 r008 a(0)=3,K{-n^6,3-27*n+29*n^2+30*n^3} 2971255833077458 r009 Re(z^3+c),c=-12/31+5/16*I,n=35 2971255835011800 a007 Real Root Of -452*x^4-85*x^3-836*x^2+730*x+292 2971255839216870 m001 1/5*5^(1/2)*(LaplaceLimit+ZetaQ(4)) 2971255843906232 r008 a(0)=3,K{-n^6,-3-n^2+39*n^3} 2971255864427854 r008 a(0)=3,K{-n^6,5+4*n-21*n^2+47*n^3} 2971255880401245 r008 a(0)=3,K{-n^6,41-46*n-9*n^2+49*n^3} 2971255884736596 r005 Im(z^2+c),c=2/15+7/26*I,n=13 2971255885761041 l006 ln(4084/5497) 2971255886733126 r005 Re(z^2+c),c=-33/94+13/44*I,n=45 2971255890931232 r008 a(0)=3,K{-n^6,9+24*n-58*n^2+60*n^3} 2971255894501300 r008 a(0)=3,K{-n^6,9+28*n-64*n^2+62*n^3} 2971255894632549 r005 Im(z^2+c),c=5/28+11/54*I,n=3 2971255899147476 r008 a(0)=3,K{-n^6,31+61*n^3-50*n^2-7*n} 2971255900289193 r008 a(0)=3,K{-n^6,41-24*n-42*n^2+60*n^3} 2971255912612777 m001 Pi/Psi(1,1/3)-3^(1/2)*Ei(1) 2971255914480666 r008 a(0)=3,K{-n^6,75+63*n^3-34*n^2-69*n} 2971255921134544 m001 (Psi(1,1/3)-Salem)/(-Weierstrass+ZetaP(3)) 2971255924774378 a007 Real Root Of 325*x^4+610*x^3-718*x^2+709*x-884 2971255927735038 a007 Real Root Of 40*x^4+28*x^3+193*x^2-597*x-194 2971255931608633 s002 sum(A043950[n]/(n^3*2^n-1),n=1..infinity) 2971255934159855 r008 a(0)=3,K{-n^6,77+76*n^3-72*n^2-46*n} 2971255939007983 m009 (1/4*Pi^2-5)/(40*Catalan+5*Pi^2-3/4) 2971255952583120 a001 1134903780*123^(1/5) 2971255959143870 r009 Re(z^3+c),c=-10/23+32/61*I,n=30 2971255963862451 m001 (FeigenbaumMu-ZetaP(3))/(ln(Pi)-gamma(3)) 2971255970170428 p003 LerchPhi(1/6,4,582/239) 2971255979990715 a007 Real Root Of -282*x^4-484*x^3+975*x^2+16*x+723 2971255991990757 m001 (Paris+ZetaP(4))/(1-HardyLittlewoodC5) 2971255992725642 a007 Real Root Of -217*x^4-324*x^3+702*x^2-817*x-211 2971255993381116 m001 (2^(1/3)-sin(1))/(FeigenbaumB+Stephens) 2971255994362151 m005 (1/5*gamma+2/5)/(5/6*exp(1)-4) 2971255996256645 m001 GAMMA(11/24)^2/Niven^2*exp(Pi) 2971255996525765 a001 53316291173/199*199^(5/11) 2971256001224637 r008 a(0)=3,K{-n^6,-4-33*n^3+54*n^2+28*n} 2971256003661624 m001 (Khinchin+ZetaQ(4))/(cos(1)-exp(1/exp(1))) 2971256006650674 r005 Im(z^2+c),c=-49/52+12/41*I,n=14 2971256008743455 a001 3/15127*123^(9/16) 2971256024706214 m001 (2^(1/2)+3^(1/2))/(Shi(1)+ZetaQ(4)) 2971256031430957 m001 cos(1/12*Pi)*(Pi*2^(1/2)/GAMMA(3/4)+ln(gamma)) 2971256031430957 m001 cos(Pi/12)*(GAMMA(1/4)+log(gamma)) 2971256032632639 r002 3th iterates of z^2 + 2971256037706538 r005 Re(z^2+c),c=13/70+19/51*I,n=63 2971256045781711 m006 (3*exp(Pi)+4/5)/(2/Pi-3) 2971256048657168 m002 -2+Pi^5-6*Coth[Pi]*Log[Pi] 2971256049737698 r005 Re(z^2+c),c=-3/106+23/36*I,n=20 2971256055434215 m002 -Pi^4+Pi^9+Tanh[Pi]/Log[Pi] 2971256055459089 l006 ln(335/6538) 2971256065319807 r005 Re(z^2+c),c=-33/94+13/44*I,n=43 2971256075594215 m001 1/2*Pi*2^(1/2)-LambertW(1)+ln(2+3^(1/2)) 2971256079685795 a007 Real Root Of 236*x^4+605*x^3-32*x^2+961*x+614 2971256088680818 r008 a(0)=3,K{-n^6,21+64*n-44*n^2-7*n^3} 2971256096801550 a001 1597/3*29^(24/47) 2971256097843907 r009 Re(z^3+c),c=-11/62+51/61*I,n=16 2971256108518949 m001 (arctan(1/3)+Backhouse)/(Kac-Trott2nd) 2971256116388170 r005 Re(z^2+c),c=-25/82+19/42*I,n=46 2971256118050989 r005 Re(z^2+c),c=-23/90+17/52*I,n=2 2971256124648845 r005 Im(z^2+c),c=-13/50+17/37*I,n=34 2971256129020591 m005 (1/2*Pi-1/9)/(2/5*exp(1)-6) 2971256139521747 m001 Ei(1)*(Ei(1,1)-KomornikLoreti) 2971256142825846 m001 exp(FransenRobinson)*Champernowne^2*Salem 2971256144350106 l006 ln(7035/9469) 2971256160390081 m005 (1/2*Pi+2)/(6/7*Catalan+5/12) 2971256160791704 r005 Im(z^2+c),c=-21/110+29/33*I,n=8 2971256161922421 m001 1/ln(Ei(1))/PisotVijayaraghavan^2/sqrt(3)^2 2971256163757835 r005 Re(z^2+c),c=-25/98+25/42*I,n=64 2971256168785541 m001 log(1+sqrt(2))/Khintchine^2/exp(sqrt(2)) 2971256169226941 m008 (1/4*Pi^4-1)/(4/5*Pi^4+2/3) 2971256178913598 h001 (1/3*exp(2)+2/5)/(3/11*exp(1)+2/9) 2971256190733754 m001 FransenRobinson/BesselI(0,1)*Totient 2971256202010166 r005 Re(z^2+c),c=-7/19+2/9*I,n=9 2971256210606568 a001 199/10946*4807526976^(7/13) 2971256215572195 a001 199/317811*2504730781961^(7/13) 2971256220164659 r005 Im(z^2+c),c=7/38+24/43*I,n=45 2971256229767235 a007 Real Root Of -32*x^4-959*x^3-241*x^2+52*x-736 2971256233909077 r009 Re(z^3+c),c=-25/58+19/49*I,n=50 2971256235371785 m001 GAMMA(11/24)^LandauRamanujan+ln(2+sqrt(3)) 2971256240094105 m001 OrthogonalArrays*(BesselK(1,1)-exp(1)) 2971256255198259 r005 Im(z^2+c),c=-1/118+7/20*I,n=17 2971256258438979 r005 Im(z^2+c),c=19/118+13/32*I,n=4 2971256258855990 m001 1/GAMMA(3/4)^2*Sierpinski*ln(sin(1)) 2971256261335662 h001 (4/5*exp(1)+2/7)/(1/6*exp(1)+3/8) 2971256268821023 a007 Real Root Of 21*x^4+649*x^3+750*x^2+164*x-522 2971256274511900 r009 Re(z^3+c),c=-35/78+8/31*I,n=4 2971256284690115 r005 Re(z^2+c),c=-13/34+2/23*I,n=16 2971256300011945 r005 Im(z^2+c),c=-11/14+26/239*I,n=22 2971256300905038 l006 ln(4609/4748) 2971256302120050 a007 Real Root Of 365*x^4+971*x^3-428*x^2-485*x-640 2971256303974018 r005 Im(z^2+c),c=-7/82+29/63*I,n=6 2971256306351116 b008 Pi-26*Sinh[Pi] 2971256306351116 m002 -Pi+26*Sinh[Pi] 2971256326478427 p001 sum(1/(457*n+346)/(16^n),n=0..infinity) 2971256328904828 a007 Real Root Of 67*x^4-169*x^3-877*x^2+327*x-941 2971256329089401 m001 (TwinPrimes+ZetaQ(4))/(ln(2^(1/2)+1)-Thue) 2971256339727425 a007 Real Root Of 874*x^4-643*x^3+562*x^2+176*x-21 2971256348768192 m001 (GAMMA(5/6)-Bloch)/(MertensB2+Salem) 2971256368582330 p004 log(25357/18839) 2971256372695906 r009 Re(z^3+c),c=-12/31+5/16*I,n=39 2971256379796131 a003 cos(Pi*36/89)/sin(Pi*50/107) 2971256381093903 m002 -Pi^4+Pi^9+Log[Pi]^(-1) 2971256381573528 r008 a(0)=3,K{-n^6,8+24*n^3+50*n^2-47*n} 2971256383359540 r008 a(0)=3,K{-n^6,-31*n+40*n^2+26*n^3} 2971256385747252 r005 Re(z^2+c),c=-9/25+19/59*I,n=10 2971256386006012 r008 a(0)=3,K{-n^6,27*n^3+37*n^2-29*n} 2971256392662610 m001 cosh(1)/ln(Conway)^2/exp(1)^2 2971256398142509 a001 322/3*5^(31/49) 2971256398876756 a007 Real Root Of -247*x^4-818*x^3-200*x^2-13*x-479 2971256409196838 r008 a(0)=3,K{-n^6,20-47*n+29*n^2+33*n^3} 2971256412376134 a001 1/2207*(1/2*5^(1/2)+1/2)^20*47^(8/21) 2971256414232389 r009 Im(z^3+c),c=-55/126+17/29*I,n=6 2971256415661403 p001 sum((-1)^n/(384*n+335)/(100^n),n=0..infinity) 2971256421387508 r005 Im(z^2+c),c=-61/46+1/52*I,n=28 2971256428052399 r009 Re(z^3+c),c=-12/31+5/16*I,n=36 2971256435546875 r005 Im(z^2+c),c=-35/64+7/25*I,n=3 2971256438892679 r009 Re(z^3+c),c=-12/31+5/16*I,n=38 2971256449967644 r008 a(0)=3,K{-n^6,40-45*n-9*n^2+49*n^3} 2971256457093958 r009 Re(z^3+c),c=-12/31+5/16*I,n=42 2971256458597669 r008 a(0)=3,K{-n^6,8+23*n-55*n^2+59*n^3} 2971256459195168 r008 a(0)=3,K{-n^6,28-13*n-36*n^2+56*n^3} 2971256459325311 a007 Real Root Of -485*x^4+911*x^3+933*x^2+308*x-194 2971256461026016 r002 8th iterates of z^2 + 2971256463926833 r008 a(0)=3,K{-n^6,8+29*n-64*n^2+62*n^3} 2971256466812364 r008 a(0)=3,K{-n^6,54+56*n^3-23*n^2-52*n} 2971256467769443 l004 Shi(646/117) 2971256474107427 r008 a(0)=3,K{-n^6,62+59*n^3-28*n^2-58*n} 2971256476279408 m001 Lehmer*exp(CareFree)^2*GAMMA(3/4) 2971256477370988 r008 a(0)=3,K{-n^6,62+61*n^3-34*n^2-54*n} 2971256479513267 r008 a(0)=3,K{-n^6,46-22*n-54*n^2+65*n^3} 2971256479974191 r009 Re(z^3+c),c=-12/31+5/16*I,n=43 2971256481544807 r009 Re(z^3+c),c=-12/31+5/16*I,n=46 2971256484465085 a007 Real Root Of 36*x^4-333*x^3-302*x^2-645*x-174 2971256486488642 a007 Real Root Of 145*x^4+191*x^3-556*x^2+468*x+8 2971256486679139 r009 Re(z^3+c),c=-12/31+5/16*I,n=49 2971256487390753 r009 Re(z^3+c),c=-12/31+5/16*I,n=50 2971256487649075 r009 Re(z^3+c),c=-12/31+5/16*I,n=45 2971256487702183 r009 Re(z^3+c),c=-12/31+5/16*I,n=53 2971256487995931 r009 Re(z^3+c),c=-12/31+5/16*I,n=56 2971256488006120 r009 Re(z^3+c),c=-12/31+5/16*I,n=57 2971256488033624 r009 Re(z^3+c),c=-12/31+5/16*I,n=60 2971256488048693 r009 Re(z^3+c),c=-12/31+5/16*I,n=64 2971256488049595 r009 Re(z^3+c),c=-12/31+5/16*I,n=63 2971256488051482 r009 Re(z^3+c),c=-12/31+5/16*I,n=61 2971256488059237 r009 Re(z^3+c),c=-12/31+5/16*I,n=62 2971256488062127 r009 Re(z^3+c),c=-12/31+5/16*I,n=59 2971256488086908 r009 Re(z^3+c),c=-12/31+5/16*I,n=58 2971256488099668 r009 Re(z^3+c),c=-12/31+5/16*I,n=54 2971256488144624 r009 Re(z^3+c),c=-12/31+5/16*I,n=52 2971256488189676 r009 Re(z^3+c),c=-12/31+5/16*I,n=55 2971256488808831 r009 Re(z^3+c),c=-12/31+5/16*I,n=51 2971256489867467 r009 Re(z^3+c),c=-12/31+5/16*I,n=47 2971256489887570 m001 (Salem+ZetaQ(3))/(Mills-Niven) 2971256490392603 r009 Re(z^3+c),c=-12/31+5/16*I,n=48 2971256494458577 r009 Im(z^3+c),c=-3/64+47/56*I,n=26 2971256496375501 r005 Im(z^2+c),c=-31/102+10/21*I,n=51 2971256500853718 r005 Im(z^2+c),c=-3/13+13/29*I,n=51 2971256502221237 l006 ln(2951/3972) 2971256503410554 r009 Re(z^3+c),c=-12/31+5/16*I,n=44 2971256514663716 r005 Re(z^2+c),c=-33/94+13/44*I,n=40 2971256514693846 a007 Real Root Of -740*x^4-376*x^3+972*x^2+898*x-337 2971256523590737 a007 Real Root Of 219*x^4+423*x^3-598*x^2+47*x-554 2971256523647855 m002 3+Cosh[Pi]+Pi^9*Tanh[Pi] 2971256524990762 r009 Re(z^3+c),c=-12/31+5/16*I,n=41 2971256533779698 m005 (1/2*Pi-7/8)/(6/7*3^(1/2)+6/7) 2971256534344462 r005 Re(z^2+c),c=-47/122+1/49*I,n=24 2971256534998258 a008 Real Root of x^4-x^3+29*x^2+2*x-2 2971256538326902 r009 Re(z^3+c),c=-12/31+5/16*I,n=40 2971256551638698 a001 89/47*39603^(2/47) 2971256570860165 a003 cos(Pi*1/84)-sin(Pi*28/113) 2971256574007484 r004 Im(z^2+c),c=-15/26-8/23*I,z(0)=-1,n=25 2971256580299639 r005 Im(z^2+c),c=25/86+7/54*I,n=42 2971256584105516 k002 Champernowne real with 143/2*n^2-345/2*n+130 2971256585470654 m001 FeigenbaumAlpha*(Salem+Trott) 2971256587173467 m009 (1/6*Psi(1,2/3)+1)/(24*Catalan+3*Pi^2-3/4) 2971256593387473 m001 1/TreeGrowth2nd/ln(FeigenbaumB)^2*BesselJ(1,1) 2971256602483461 m001 (Paris-ReciprocalFibonacci)/(Bloch+Kac) 2971256615292623 r005 Im(z^2+c),c=5/18+28/59*I,n=20 2971256616046554 a007 Real Root Of -352*x^4-767*x^3+859*x^2+31*x-176 2971256618389310 m001 (Artin+ThueMorse)/(Zeta(3)+exp(1/exp(1))) 2971256621511335 m001 (exp(1)+gamma)/(-Zeta(5)+GAMMA(23/24)) 2971256625688502 r008 a(0)=3,K{-n^6,36-25*n^3+41*n^2-19*n} 2971256627405398 m001 ln(Pi)/BesselJ(1,1)/ZetaQ(3) 2971256631641540 b008 Coth[Sinh[FresnelS[2]]] 2971256636181708 r009 Re(z^3+c),c=-55/122+12/29*I,n=28 2971256644936701 m001 (BesselI(1,1)*Otter+ZetaQ(3))/BesselI(1,1) 2971256654132379 p004 log(22307/16573) 2971256673318581 m001 CareFree-Sierpinski^ZetaQ(4) 2971256674717005 r005 Re(z^2+c),c=-4/13+4/9*I,n=55 2971256675620865 a007 Real Root Of -501*x^4+812*x^3+539*x^2+828*x-311 2971256675663631 a007 Real Root Of -302*x^4-576*x^3+910*x^2+168*x+894 2971256678109100 r005 Re(z^2+c),c=1/86+19/30*I,n=31 2971256678690168 a007 Real Root Of -291*x^4-602*x^3+996*x^2+530*x-329 2971256684486120 r002 41th iterates of z^2 + 2971256684491978 q001 889/2992 2971256689308946 a003 cos(Pi*1/51)-cos(Pi*23/91) 2971256694658946 r001 46i'th iterates of 2*x^2-1 of 2971256701131402 a005 (1/sin(80/209*Pi))^1011 2971256724073654 r005 Re(z^2+c),c=-8/23+17/55*I,n=32 2971256736344770 r008 a(0)=3,K{-n^6,29-6*n^3-43*n^2+54*n} 2971256740619865 a007 Real Root Of 356*x^4+787*x^3-540*x^2+895*x+324 2971256746875018 a003 cos(Pi*16/81)*cos(Pi*21/43) 2971256748695182 b008 67*Sqrt[59/3] 2971256759151897 a001 46/3*591286729879^(13/21) 2971256764979090 m001 (Totient-TravellingSalesman)/(Conway-Magata) 2971256773543212 l006 ln(213/4157) 2971256782812273 m001 (Lehmer+ZetaQ(2))/(Pi-cos(1/12*Pi)) 2971256785006803 r009 Re(z^3+c),c=-12/31+5/16*I,n=37 2971256791276924 m001 (Niven+Robbin)/(FeigenbaumC-MertensB2) 2971256794048021 r005 Im(z^2+c),c=37/122+4/39*I,n=4 2971256797351517 m001 (2^(1/3))*(gamma+exp(gamma)) 2971256831936413 r002 46th iterates of z^2 + 2971256838015246 m001 (2^(1/2)-exp(1/exp(1)))/(gamma(2)+MertensB2) 2971256841891373 a007 Real Root Of -145*x^4+74*x^3-489*x^2+780*x+278 2971256849975639 b008 -73*E^Sqrt[2]+Pi 2971256853817780 r009 Im(z^3+c),c=-5/18+13/47*I,n=3 2971256855600828 r005 Re(z^2+c),c=-33/94+13/44*I,n=36 2971256856893092 m001 GAMMA(13/24)^GolombDickman+ln(5) 2971256856893092 m001 ln(5)+GAMMA(13/24)^GolombDickman 2971256859122610 r008 a(0)=3,K{-n^6,-63+27*n+63*n^2+8*n^3} 2971256860067698 m001 (Porter+Rabbit)/(ln(3)-FeigenbaumC) 2971256861360972 m005 (1/2*Catalan+1/11)/(1/6*Catalan-2) 2971256861522563 r005 Im(z^2+c),c=-61/94+29/63*I,n=14 2971256864561238 r005 Im(z^2+c),c=-15/22+4/73*I,n=62 2971256889405471 r005 Im(z^2+c),c=41/110+4/21*I,n=27 2971256899621634 r008 a(0)=3,K{-n^6,-9+21*n+56*n^2-30*n^3} 2971256902080280 r005 Re(z^2+c),c=-77/78+14/47*I,n=20 2971256926780821 m002 -3+Pi^(-3)-ProductLog[Pi]/Pi^5 2971256926804956 l003 KelvinBei(1,20/21) 2971256928313960 a003 cos(Pi*11/69)-cos(Pi*10/33) 2971256928327389 m001 ReciprocalLucas^Zeta(1,-1)/ln(2)*ln(10) 2971256933385287 a001 1/5778*(1/2*5^(1/2)+1/2)^22*47^(8/21) 2971256943654744 r008 a(0)=3,K{-n^6,-63+34*n^3-15*n^2+79*n} 2971256948101815 r008 a(0)=3,K{-n^6,7+24*n^3+50*n^2-46*n} 2971256952486969 r008 a(0)=3,K{-n^6,-1+27*n^3+37*n^2-28*n} 2971256958474608 r008 a(0)=3,K{-n^6,-11-5*n+20*n^2+31*n^3} 2971256961813237 r008 a(0)=3,K{-n^6,3-28*n+30*n^2+30*n^3} 2971256977748631 m001 ArtinRank2*exp(-1/2*Pi)^Landau 2971256978225796 m001 (GAMMA(7/12)-cos(1))/(Cahen+FeigenbaumD) 2971256979243020 r005 Im(z^2+c),c=-57/74+14/59*I,n=3 2971256982510982 a009 13*15^(1/2)-13*2^(2/3) 2971256986552703 r005 Im(z^2+c),c=29/118+7/40*I,n=10 2971256992986039 a001 305/2*2^(51/53) 2971256998703031 r009 Re(z^3+c),c=-4/25+43/62*I,n=8 2971257002161867 r008 a(0)=3,K{-n^6,33+43*n^3+6*n^2-47*n} 2971257007903855 m005 (1/2*exp(1)-1/9)/(1/6*Zeta(3)+4) 2971257009399513 a001 1/15127*(1/2*5^(1/2)+1/2)^24*47^(8/21) 2971257011841028 r009 Re(z^3+c),c=-12/31+5/16*I,n=34 2971257013752117 a007 Real Root Of 117*x^4+105*x^3-768*x^2+17*x+466 2971257015284209 r002 7th iterates of z^2 + 2971257017041146 r008 a(0)=3,K{-n^6,-17+59*n^3-67*n^2+60*n} 2971257020116218 r008 a(0)=3,K{-n^6,-13+60*n^3-68*n^2+56*n} 2971257020489840 a001 1/39603*(1/2*5^(1/2)+1/2)^26*47^(8/21) 2971257022384293 a001 (1/2*5^(1/2)+1/2)^4*47^(8/21) 2971257023107910 a001 1/64079*(1/2*5^(1/2)+1/2)^27*47^(8/21) 2971257024922516 r008 a(0)=3,K{-n^6,27-12*n-36*n^2+56*n^3} 2971257027344038 a001 1/24476*(1/2*5^(1/2)+1/2)^25*47^(8/21) 2971257027696146 r005 Re(z^2+c),c=-23/21+9/29*I,n=6 2971257029300168 r009 Re(z^3+c),c=-1/20+31/53*I,n=42 2971257030135538 l006 ln(4769/6419) 2971257032885802 r002 28th iterates of z^2 + 2971257034722970 r008 a(0)=3,K{-n^6,31+61*n^3-49*n^2-8*n} 2971257039687625 r008 a(0)=3,K{-n^6,61+59*n^3-28*n^2-57*n} 2971257050013066 a007 Real Root Of -517*x^4+851*x^3+305*x^2+494*x-192 2971257056378890 a001 1/9349*(1/2*5^(1/2)+1/2)^23*47^(8/21) 2971257056966527 h001 (1/7*exp(2)+1/4)/(6/11*exp(2)+4/11) 2971257067064643 r005 Im(z^2+c),c=-9/16+47/114*I,n=36 2971257096728972 b008 ProductLog[1]+2*Zeta[3] 2971257096728972 m001 LambertW(1)+2*Zeta(3) 2971257098557044 m001 (Zeta(1,-1)+GAMMA(11/12))/(GAMMA(7/12)+Porter) 2971257099664675 h001 (-8*exp(2/3)-2)/(-8*exp(-2)+7) 2971257107582907 a005 (1/cos(25/152*Pi))^123 2971257117756960 r005 Im(z^2+c),c=-5/114+18/49*I,n=24 2971257135207585 r002 24th iterates of z^2 + 2971257144103129 r005 Re(z^2+c),c=3/11+4/39*I,n=39 2971257149675274 a001 76/28657*3^(3/29) 2971257155880248 a007 Real Root Of 495*x^4-573*x^3-993*x^2-669*x-130 2971257157224228 r005 Re(z^2+c),c=-1/10+41/51*I,n=36 2971257162358796 r005 Im(z^2+c),c=17/118+11/42*I,n=18 2971257177101254 m006 (5*ln(Pi)-3/4)/(2*Pi^2-3) 2971257188880767 a007 Real Root Of -216*x^4-378*x^3+785*x^2+151*x+438 2971257197452315 r002 6th iterates of z^2 + 2971257201470216 m001 (Si(Pi)+FeigenbaumKappa)/(-Kac+Niven) 2971257203399167 r009 Re(z^3+c),c=-12/31+5/16*I,n=29 2971257229370527 m001 StronglyCareFree^Pi*MasserGramainDelta^Pi 2971257237149485 r004 Im(z^2+c),c=-11/24+1/20*I,z(0)=-1,n=25 2971257238839225 l006 ln(517/10090) 2971257248784270 a007 Real Root Of 128*x^4+100*x^3-566*x^2+510*x-841 2971257248826879 a001 2/305*2584^(5/26) 2971257255386743 a001 1/3571*(1/2*5^(1/2)+1/2)^21*47^(8/21) 2971257260080945 a007 Real Root Of 460*x^4+960*x^3-913*x^2+729*x-444 2971257266643058 l006 ln(6587/8866) 2971257271947089 a001 1/15129*(1/2*5^(1/2)+1/2)^14*123^(8/23) 2971257291724038 a007 Real Root Of 754*x^4-947*x^3+666*x^2+308*x+2 2971257296432713 r009 Im(z^3+c),c=-3/44+17/53*I,n=10 2971257301928024 m005 (1/2*Zeta(3)+6/11)/(1/10*2^(1/2)-4) 2971257304774529 r002 36th iterates of z^2 + 2971257309303771 r009 Im(z^3+c),c=-12/25+9/64*I,n=56 2971257309964975 a003 cos(Pi*26/103)-sin(Pi*47/97) 2971257315972482 a003 sin(Pi*21/85)-sin(Pi*11/23) 2971257316119131 h001 (6/11*exp(2)+1/9)/(1/4*exp(1)+5/7) 2971257316203929 a001 14930208*18^(5/21) 2971257321509708 r005 Re(z^2+c),c=-19/50+1/23*I,n=7 2971257361789119 m001 Niven*(HardyLittlewoodC5+MertensB3) 2971257388432161 r005 Re(z^2+c),c=-9/38+31/49*I,n=4 2971257393574330 a007 Real Root Of -156*x^4-594*x^3-528*x^2-605*x-559 2971257394717994 a007 Real Root Of 333*x^4+823*x^3-199*x^2+633*x-728 2971257411341772 m008 (1/4*Pi^4-2/3)/(5/6*Pi^6-4) 2971257424285871 a007 Real Root Of 360*x^4+771*x^3-646*x^2+524*x-574 2971257430081486 m001 Pi^(GAMMA(5/6)/KhinchinLevy) 2971257435854146 m005 (1/2*Zeta(3)-1/3)/(3/11*3^(1/2)+3/7) 2971257442400478 b008 3/2^(1/72) 2971257447472992 a007 Real Root Of -941*x^4-381*x^3+636*x^2+842*x-289 2971257472589549 r009 Re(z^3+c),c=-55/122+27/64*I,n=46 2971257476550495 r009 Re(z^3+c),c=-5/64+34/43*I,n=18 2971257484859371 r008 a(0)=3,K{-n^6,-14+18*n^3+58*n^2-27*n} 2971257485029940 q001 2481/835 2971257485239775 r002 15th iterates of z^2 + 2971257497998008 p001 sum((-1)^n/(527*n+514)/n/(32^n),n=1..infinity) 2971257504692036 r008 a(0)=3,K{-n^6,-8-24*n+43*n^2+24*n^3} 2971257505723053 m005 (1/3*3^(1/2)+1/8)/(Pi-7/9) 2971257508866943 r005 Re(z^2+c),c=2/25+10/47*I,n=21 2971257510092264 r005 Re(z^2+c),c=-43/64+25/64*I,n=9 2971257512224171 r002 23th iterates of z^2 + 2971257512456801 m006 (4/5*Pi^2-1)/(1/2*Pi+3/4) 2971257512456801 m008 (4/5*Pi^2-1)/(1/2*Pi+3/4) 2971257513489064 a001 76/21*46368^(16/39) 2971257539410094 a003 sin(Pi*1/72)*sin(Pi*26/109) 2971257554427218 r009 Re(z^3+c),c=-7/52+3/4*I,n=25 2971257559909588 r005 Im(z^2+c),c=25/118+10/47*I,n=11 2971257564852421 l006 ln(304/5933) 2971257565137620 m001 FeigenbaumD*(ArtinRank2+HardyLittlewoodC5) 2971257569363578 r009 Im(z^3+c),c=-31/114+17/61*I,n=14 2971257570067126 r005 Im(z^2+c),c=-57/74+6/35*I,n=10 2971257577177980 r009 Re(z^3+c),c=-29/70+23/64*I,n=42 2971257577231101 a003 cos(Pi*15/59)-sin(Pi*43/92) 2971257578513896 r008 a(0)=3,K{-n^6,40-46*n-8*n^2+49*n^3} 2971257587106116 k002 Champernowne real with 72*n^2-174*n+131 2971257591416507 a007 Real Root Of 162*x^4+321*x^3-264*x^2+823*x+570 2971257592149838 r008 a(0)=3,K{-n^6,8+28*n-63*n^2+62*n^3} 2971257592334589 m001 1/GAMMA(11/24)*exp(BesselJ(1,1))^2*cosh(1)^2 2971257595416506 a007 Real Root Of 192*x^4+688*x^3+581*x^2+431*x-766 2971257596644759 r008 a(0)=3,K{-n^6,30+61*n^3-49*n^2-7*n} 2971257599731274 m001 (-Rabbit+Stephens)/(1+ln(gamma)) 2971257614627040 m001 LaplaceLimit^2*exp(LandauRamanujan)^2*Porter 2971257623586321 m001 exp(FeigenbaumB)/GolombDickman^2*Rabbit^2 2971257626917328 r008 a(0)=3,K{-n^6,48+78*n^3-91*n^2} 2971257630216813 a007 Real Root Of 427*x^4+999*x^3-771*x^2-196*x-851 2971257630519093 a007 Real Root Of -174*x^4-595*x^3-447*x^2-306*x+991 2971257636127722 k003 Champernowne real with 23/2*n^3-83/2*n^2+51*n-19 2971257644516684 m001 (BesselI(1,2)-BesselJ(1,1)*Cahen)/BesselJ(1,1) 2971257673577359 m001 (Totient+ZetaP(2)*ZetaQ(3))/ZetaP(2) 2971257679632340 r005 Re(z^2+c),c=-29/86+7/20*I,n=37 2971257681823241 m001 Catalan/FeigenbaumAlpha*exp(GAMMA(5/24)) 2971257685585541 r005 Im(z^2+c),c=3/64+17/53*I,n=16 2971257688183249 r005 Re(z^2+c),c=-37/118+17/39*I,n=14 2971257697477379 r005 Re(z^2+c),c=-3/118+7/11*I,n=6 2971257702977616 r009 Re(z^3+c),c=-12/31+5/16*I,n=33 2971257710353237 h001 (7/8*exp(1)+3/10)/(1/12*exp(2)+2/7) 2971257715674557 m009 (3/5*Psi(1,1/3)-1)/(3/4*Psi(1,2/3)-4) 2971257723512777 v002 sum(1/(5^n*(16*n^2-17*n+8)),n=1..infinity) 2971257730610023 r009 Re(z^3+c),c=-9/52+52/57*I,n=10 2971257730850866 r005 Re(z^2+c),c=11/46+3/7*I,n=50 2971257732812950 m001 (Trott+ThueMorse)/(ln(2^(1/2)+1)+Landau) 2971257735119297 r002 7th iterates of z^2 + 2971257749269769 a001 2/514229*2971215073^(7/23) 2971257750306959 a007 Real Root Of 187*x^4+933*x^3+976*x^2-363*x+204 2971257751082350 a001 2/17711*46368^(7/23) 2971257758418437 r008 a(0)=3,K{-n^6,-8-43*n^3+50*n^2+35*n} 2971257764384411 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=33 2971257765516764 r008 a(0)=3,K{-n^6,37-4*n^3-45*n^2+46*n} 2971257778370962 r005 Re(z^2+c),c=-15/19+1/58*I,n=64 2971257782551568 m006 (2*Pi+1/5)/(2/5*exp(2*Pi)+4) 2971257793937714 m001 (BesselK(1,1)+GAMMA(19/24))/(MertensB1-Thue) 2971257799172751 m005 (1/3*Pi-1/6)/(5/8*Pi+1) 2971257799301163 m001 (ln(5)+gamma(1))/(DuboisRaymond+FellerTornier) 2971257807488318 m001 (FeigenbaumB-TwinPrimes)/(ln(Pi)-BesselI(1,1)) 2971257808637547 r005 Re(z^2+c),c=2/25+10/47*I,n=20 2971257812139107 m001 (Psi(1,1/3)-exp(Pi))/(-Ei(1)+Backhouse) 2971257815331684 a007 Real Root Of -845*x^4-962*x^3-679*x^2+938*x+320 2971257867680636 b008 9*Pi+ArcCot[2/15] 2971257884391083 m001 (exp(Pi)+Zeta(1/2))/(exp(-1/2*Pi)+Zeta(1,2)) 2971257885276074 m001 ln(GaussKuzminWirsing)^2/ErdosBorwein^2/Si(Pi) 2971257887052475 l006 ln(1818/2447) 2971257892331615 r005 Im(z^2+c),c=27/106+4/19*I,n=6 2971257896756312 m005 (1/3*Pi+1/3)/(1/4*2^(1/2)-9/11) 2971257902769195 a007 Real Root Of 165*x^4+558*x^3-39*x^2-512*x+600 2971257905876728 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=34 2971257907082732 m001 GAMMA(1/12)/(BesselI(0,2)+BesselI(1,2)) 2971257911133035 g006 2*Psi(1,2/11)+Psi(1,4/7)-Psi(1,1/6) 2971257917401625 a007 Real Root Of -342*x^4-876*x^3+562*x^2+150*x-839 2971257921858348 r005 Re(z^2+c),c=-47/122+1/47*I,n=18 2971257922370164 m005 (3/4*2^(1/2)+2/5)/(Catalan+4) 2971257926544995 m005 (-23/4+1/4*5^(1/2))/(7/10*5^(1/2)+2/11) 2971257930652306 m001 (ErdosBorwein-HeathBrownMoroz)/cos(1) 2971257932064203 q001 796/2679 2971257945144224 p001 sum((-1)^n/(451*n+331)/(25^n),n=0..infinity) 2971257948183279 r005 Re(z^2+c),c=2/7+18/37*I,n=37 2971257950939596 s002 sum(A217059[n]/(n*2^n-1),n=1..infinity) 2971257988356065 a009 1/7*(6+12^(1/4))*7^(1/2) 2971257990590926 r005 Re(z^2+c),c=-15/56+5/9*I,n=45 2971257991558140 l006 ln(395/7709) 2971257999749081 a007 Real Root Of -281*x^4-570*x^3+811*x^2+400*x+978 2971258000614811 m005 (3*gamma+1/3)/(2*Pi+2/3) 2971258001072917 r005 Im(z^2+c),c=-17/52+31/64*I,n=48 2971258001262691 m001 (Porter-Rabbit)/(ln(Pi)+OrthogonalArrays) 2971258010821000 r005 Re(z^2+c),c=-29/66+23/45*I,n=28 2971258015092193 r008 a(0)=3,K{-n^6,-53+15*n^3+48*n^2+25*n} 2971258021699113 a001 76/1346269*1346269^(17/28) 2971258050104631 r002 46th iterates of z^2 + 2971258052349972 r008 a(0)=3,K{-n^6,4+19*n+53*n^2-42*n^3} 2971258053360310 a007 Real Root Of 251*x^4+686*x^3+70*x^2+548*x-558 2971258053868214 a001 1/167732*(1/2*5^(1/2)+1/2)^29*2207^(4/21) 2971258065639834 r005 Re(z^2+c),c=-11/58+25/41*I,n=42 2971258070554546 a001 3461452808002/5*591286729879^(11/15) 2971258070901226 r008 a(0)=3,K{-n^6,7+24*n^3+51*n^2-47*n} 2971258070923203 r008 a(0)=3,K{-n^6,-53+63*n-9*n^2+34*n^3} 2971258073916404 r005 Im(z^2+c),c=9/32+10/17*I,n=32 2971258075175865 r008 a(0)=3,K{-n^6,-1+27*n^3+38*n^2-29*n} 2971258104972581 r008 a(0)=3,K{-n^6,-3-2*n^2+40*n^3} 2971258127554339 r005 Re(z^2+c),c=-9/25+15/59*I,n=15 2971258130919867 r005 Im(z^2+c),c=-13/44+26/55*I,n=38 2971258136942616 r008 a(0)=3,K{-n^6,45+48*n^3-2*n^2-56*n} 2971258145867297 r008 a(0)=3,K{-n^6,27-13*n-35*n^2+56*n^3} 2971258148135171 m001 (exp(1)+gamma(3))/(PlouffeB+TreeGrowth2nd) 2971258160295537 r008 a(0)=3,K{-n^6,61+59*n^3-27*n^2-58*n} 2971258167790097 a009 1/11*(17-11^(1/2)*10^(1/3))*11^(1/2) 2971258169268329 r005 Im(z^2+c),c=-3/8+24/61*I,n=6 2971258169435880 r005 Re(z^2+c),c=-5/6+72/181*I,n=2 2971258181164525 a007 Real Root Of -29*x^4-879*x^3-499*x^2+503*x+757 2971258189733839 m001 cos(1)^LandauRamanujan*PlouffeB 2971258196857507 m001 (ln(Pi)+PlouffeB)/(Psi(2,1/3)+sin(1/5*Pi)) 2971258204959034 m002 -2/Pi^4-Pi^2+Pi^5+Tanh[Pi] 2971258205240553 m005 (1/2*Pi-3/8)/(1/7*exp(1)-3/7) 2971258214377140 r005 Re(z^2+c),c=-33/94+13/44*I,n=35 2971258219322057 m001 exp(Pi)/GAMMA(7/12)*ReciprocalLucas 2971258220275412 a007 Real Root Of 373*x^4+941*x^3-524*x^2-414*x-992 2971258221573546 r002 18th iterates of z^2 + 2971258224191838 r005 Re(z^2+c),c=15/62+2/27*I,n=17 2971258225768782 a007 Real Root Of -955*x^4-x^3+886*x^2+748*x-293 2971258230949497 r005 Re(z^2+c),c=-33/94+13/44*I,n=38 2971258242613200 a007 Real Root Of -999*x^4-119*x^3+232*x^2+826*x-255 2971258244530053 h001 (-2*exp(2)+5)/(-3*exp(7)-1) 2971258249884766 m001 Zeta(3)^2*(2^(1/3))^2*exp(sin(Pi/12)) 2971258258468620 l006 ln(486/9485) 2971258260793392 a001 521/24157817*3^(7/24) 2971258276268637 m002 -2+Pi^6/E^Pi-Pi^2*Tanh[Pi] 2971258278668997 r005 Im(z^2+c),c=7/36+13/51*I,n=5 2971258294724325 r005 Re(z^2+c),c=2/25+10/47*I,n=25 2971258295627176 a007 Real Root Of -404*x^4-964*x^3+920*x^2+685*x+114 2971258303300561 a007 Real Root Of 375*x^4+494*x^3+501*x^2-625*x-19 2971258309253462 m005 (1/2*exp(1)+5/11)/(11/40+3/20*5^(1/2)) 2971258314322243 b008 ArcCot[Pi+ArcCot[8]] 2971258320378345 r005 Re(z^2+c),c=-17/48+11/39*I,n=20 2971258320575450 r005 Re(z^2+c),c=2/25+10/47*I,n=26 2971258321707776 a007 Real Root Of 279*x^4+514*x^3-624*x^2+853*x-219 2971258322551945 a007 Real Root Of 111*x^4+513*x^3+849*x^2+767*x-411 2971258323140351 r002 32th iterates of z^2 + 2971258327371090 r005 Re(z^2+c),c=2/25+10/47*I,n=29 2971258327753040 r005 Re(z^2+c),c=2/25+10/47*I,n=30 2971258328327318 r005 Re(z^2+c),c=2/25+10/47*I,n=34 2971258328347204 r005 Re(z^2+c),c=2/25+10/47*I,n=33 2971258328356775 r005 Re(z^2+c),c=2/25+10/47*I,n=35 2971258328356980 r005 Re(z^2+c),c=2/25+10/47*I,n=38 2971258328357805 r005 Re(z^2+c),c=2/25+10/47*I,n=39 2971258328358129 r005 Re(z^2+c),c=2/25+10/47*I,n=42 2971258328358136 r005 Re(z^2+c),c=2/25+10/47*I,n=43 2971258328358159 r005 Re(z^2+c),c=2/25+10/47*I,n=47 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=48 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=46 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=51 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=52 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=56 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=55 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=60 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=61 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=64 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=63 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=62 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=59 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=57 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=58 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=54 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=53 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=50 2971258328358160 r005 Re(z^2+c),c=2/25+10/47*I,n=49 2971258328358163 r005 Re(z^2+c),c=2/25+10/47*I,n=44 2971258328358165 r005 Re(z^2+c),c=2/25+10/47*I,n=45 2971258328358258 r005 Re(z^2+c),c=2/25+10/47*I,n=41 2971258328358363 r005 Re(z^2+c),c=2/25+10/47*I,n=40 2971258328359192 r005 Re(z^2+c),c=2/25+10/47*I,n=37 2971258328364417 r005 Re(z^2+c),c=2/25+10/47*I,n=36 2971258328491761 r005 Re(z^2+c),c=2/25+10/47*I,n=31 2971258328500032 r005 Re(z^2+c),c=2/25+10/47*I,n=32 2971258330700989 r005 Re(z^2+c),c=2/25+10/47*I,n=28 2971258333427828 r005 Re(z^2+c),c=-7/20+3/10*I,n=37 2971258334436163 r005 Re(z^2+c),c=2/25+10/47*I,n=27 2971258339173632 r005 Re(z^2+c),c=2/25+10/47*I,n=22 2971258343535773 m001 (ArtinRank2-KomornikLoreti)/(Ei(1)+Pi^(1/2)) 2971258346538237 r005 Re(z^2+c),c=2/25+10/47*I,n=24 2971258347296239 r008 a(0)=3,K{-n^6,32-40*n^2+40*n+n^3} 2971258349373285 m009 (2/5*Pi^2+1/5)/(1/3*Psi(1,3/4)-5/6) 2971258352119286 r009 Im(z^3+c),c=-43/106+10/47*I,n=10 2971258357812272 r005 Re(z^2+c),c=17/56+7/58*I,n=24 2971258362616783 r005 Im(z^2+c),c=-29/70+31/63*I,n=39 2971258374672327 r005 Im(z^2+c),c=-2/11+3/7*I,n=26 2971258378886574 m001 (-Magata+Trott2nd)/(5^(1/2)-ln(3)) 2971258386701312 r005 Im(z^2+c),c=-13/18+61/119*I,n=4 2971258389750439 m001 GAMMA(13/24)*KomornikLoreti/Paris 2971258395132152 a007 Real Root Of 174*x^4+167*x^3-945*x^2+169*x-336 2971258412861644 m001 (LambertW(1)+BesselI(0,1))/(-Kac+ZetaQ(3)) 2971258441188926 p004 log(11261/577) 2971258446073119 p001 sum(1/(451*n+268)/n/(5^n),n=1..infinity) 2971258463865654 r009 Im(z^3+c),c=-13/94+6/19*I,n=3 2971258465174161 m008 (1/6*Pi^4-5)/(2/5*Pi^2-1/6) 2971258473205647 r008 a(0)=3,K{-n^6,46-45*n^3+83*n^2-50*n} 2971258474934533 r009 Im(z^3+c),c=-29/70+11/54*I,n=20 2971258477828857 m001 (BesselI(0,2)*Kolakoski-ln(gamma))/Kolakoski 2971258485275678 m005 (1/2*3^(1/2)-7/10)/(11/12*3^(1/2)+4) 2971258491217328 r005 Im(z^2+c),c=-33/26+1/90*I,n=28 2971258492207807 a001 1/76*(1/2*5^(1/2)+1/2)^12*3571^(5/21) 2971258500271786 r005 Re(z^2+c),c=2/25+10/47*I,n=23 2971258502189638 r005 Im(z^2+c),c=-43/106+26/51*I,n=45 2971258505469354 r005 Im(z^2+c),c=-85/114+11/46*I,n=3 2971258515497185 m005 (1/3*gamma+1/11)/(6*3^(1/2)-6/7) 2971258529376359 m001 2*Pi/GAMMA(5/6)*GolombDickman^MertensB3 2971258531496695 a001 1/76*(1/2*5^(1/2)+1/2)^7*9349^(10/21) 2971258547066283 a001 1/1149652*(1/2*5^(1/2)+1/2)^17*15127^(20/21) 2971258547305569 a001 1/76*(1/2*5^(1/2)+1/2)^4*64079^(11/21) 2971258547774819 a001 1/76*(1/2*5^(1/2)+1/2)^15*39603^(1/21) 2971258548029186 a001 1/4870004*(1/2*5^(1/2)+1/2)^27*64079^(11/21) 2971258552736880 l006 ln(6139/8263) 2971258552822736 r005 Re(z^2+c),c=-75/122+15/43*I,n=23 2971258559340449 r008 a(0)=3,K{-n^6,20-10*n+52*n^2-24*n^3} 2971258565491309 a001 1/710524*(1/2*5^(1/2)+1/2)^26*9349^(10/21) 2971258567851721 r008 a(0)=3,K{-n^6,-60+15*n^3+45*n^2+35*n} 2971258572302763 m001 ZetaP(4)+ZetaQ(2)^polylog(4,1/2) 2971258574371460 r005 Re(z^2+c),c=-47/122+1/49*I,n=26 2971258582965533 r008 a(0)=3,K{-n^6,-68+21*n^3+23*n^2+59*n} 2971258584281082 a003 sin(Pi*13/74)*sin(Pi*14/73) 2971258590106716 k002 Champernowne real with 145/2*n^2-351/2*n+132 2971258591027202 s002 sum(A254766[n]/((2*n)!),n=1..infinity) 2971258593288409 r009 Im(z^3+c),c=-23/66+13/53*I,n=13 2971258597122754 r008 a(0)=3,K{-n^6,-58+50*n+19*n^2+24*n^3} 2971258608138688 m001 Zeta(5)^2*ln(GAMMA(5/12))/sqrt(1+sqrt(3))^2 2971258619407574 a001 1/1364*(1/2*5^(1/2)+1/2)^19*47^(8/21) 2971258622920054 r008 a(0)=3,K{-n^6,22+20*n^3+71*n^2-78*n} 2971258633466409 p003 LerchPhi(1/1024,5,116/91) 2971258637853619 m001 (arctan(1/2)+LandauRamanujan)/(exp(1)+2^(1/2)) 2971258642741446 a007 Real Root Of -30*x^4-46*x^3-196*x^2-942*x+63 2971258662771003 r008 a(0)=3,K{-n^6,50+10*n^3-60*n^2+33*n} 2971258663876711 a001 1/76*(1/2*5^(1/2)+1/2)^13*2207^(4/21) 2971258671952428 q001 2998/1009 2971258673282148 r008 a(0)=3,K{-n^6,10-12*n-7*n^2+44*n^3} 2971258677250475 a007 Real Root Of -375*x^4-929*x^3+437*x^2-326*x+32 2971258683612339 s002 sum(A024432[n]/(n^3*2^n-1),n=1..infinity) 2971258694674673 m001 (MadelungNaCl+Robbin)/(GAMMA(2/3)-Landau) 2971258705817155 m005 (1/2*exp(1)+1/3)/(3*3^(1/2)+1/2) 2971258706139937 r005 Re(z^2+c),c=-37/98+37/60*I,n=56 2971258712206040 r008 a(0)=3,K{-n^6,44+60*n^3-38*n^2-31*n} 2971258725210372 a001 1/271396*(1/2*5^(1/2)+1/2)^29*3571^(5/21) 2971258727062810 a001 34/3*2207^(14/33) 2971258741855028 h001 (11/12*exp(2)+7/10)/(3/11*exp(2)+1/2) 2971258746314261 a001 1364/514229*2584^(42/47) 2971258749110503 a005 (1/sin(99/211*Pi))^1214 2971258750380456 m001 sqrt(2)*Tribonacci/exp(sqrt(5))^2 2971258753779988 r009 Im(z^3+c),c=-13/36+5/21*I,n=11 2971258757747471 r005 Im(z^2+c),c=19/90+8/35*I,n=5 2971258762910250 a008 Real Root of x^4-2*x^3-44*x^2-68*x+56 2971258767437066 a007 Real Root Of -4*x^4+270*x^3+654*x^2-714*x-501 2971258770519838 r005 Re(z^2+c),c=7/30+4/63*I,n=24 2971258770604277 a007 Real Root Of -84*x^4+37*x^3+860*x^2+144*x+353 2971258781793275 r002 9th iterates of z^2 + 2971258784746874 m002 -3-Pi^5+4*Sech[Pi]+Sinh[Pi] 2971258789896993 m001 BesselJ(0,1)*FeigenbaumDelta^2*exp(gamma) 2971258799532425 m002 -Pi^5+Pi*Csch[Pi]+Pi^2/Log[Pi] 2971258801426196 m001 (ln(2)+ErdosBorwein)/(MasserGramain-Sarnak) 2971258819291693 r005 Re(z^2+c),c=33/98+15/26*I,n=23 2971258828564743 m005 (1/2*gamma-5)/(9/11*2^(1/2)+3/7) 2971258832628766 r009 Re(z^3+c),c=-5/16+36/61*I,n=3 2971258832814221 l006 ln(4321/5816) 2971258835226744 m001 Porter*(Khinchin-TwinPrimes) 2971258836468062 a007 Real Root Of -57*x^4+152*x^3+285*x^2+790*x+214 2971258842108227 r009 Re(z^3+c),c=-21/50+17/46*I,n=25 2971258853910859 r009 Re(z^3+c),c=-33/70+29/62*I,n=63 2971258866981484 r005 Im(z^2+c),c=-109/126+11/54*I,n=19 2971258883480474 a007 Real Root Of 202*x^4+293*x^3-692*x^2+769*x+336 2971258891155325 m009 (4/5*Psi(1,2/3)+2/5)/(Psi(1,1/3)-1/2) 2971258903698376 a007 Real Root Of -284*x^4-962*x^3-96*x^2+590*x-499 2971258904777360 r009 Re(z^3+c),c=-15/34+17/42*I,n=44 2971258906145854 m001 1+MasserGramainDelta+ZetaR(2) 2971258914973471 a007 Real Root Of -190*x^4+798*x^3-949*x^2+33*x+116 2971258930768827 r005 Re(z^2+c),c=-25/82+24/53*I,n=30 2971258933614757 r005 Re(z^2+c),c=-7/22+10/17*I,n=54 2971258939559752 h001 (8/9*exp(1)+3/7)/(1/11*exp(2)+2/7) 2971258941277574 h001 (2/11*exp(1)+3/7)/(7/8*exp(1)+8/11) 2971258944522146 a007 Real Root Of -298*x^4-582*x^3+785*x^2-200*x+435 2971258948252107 a007 Real Root Of -174*x^4-417*x^3+40*x^2-453*x+924 2971258949498425 h001 (7/11*exp(2)+4/11)/(6/11*exp(1)+2/9) 2971258961175016 a007 Real Root Of 864*x^4-538*x^3+156*x^2-772*x-264 2971258978466556 m001 (Psi(2,1/3)+Chi(1))/(-GAMMA(5/6)+Otter) 2971258989749945 r009 Im(z^3+c),c=-7/18+6/25*I,n=5 2971259007547186 a007 Real Root Of -143*x^4-349*x^3+234*x^2-144*x-503 2971259015775062 r002 8th iterates of z^2 + 2971259015775062 r002 8th iterates of z^2 + 2971259028817877 a007 Real Root Of 312*x^4+339*x^3+529*x^2-725*x-22 2971259035882358 a003 sin(Pi*7/75)/sin(Pi*20/47) 2971259038378123 p004 log(29021/1487) 2971259065069238 m001 GAMMA(1/3)-GAMMA(13/24)+GAMMA(11/24) 2971259066269394 a003 sin(Pi*13/112)-sin(Pi*22/97) 2971259073956641 r005 Re(z^2+c),c=-21/122+25/42*I,n=28 2971259079669682 p004 log(32573/1669) 2971259080143151 r009 Im(z^3+c),c=-39/86+7/40*I,n=16 2971259084777109 l006 ln(6824/9185) 2971259099662527 a007 Real Root Of 291*x^4+695*x^3-504*x^2+268*x+796 2971259101911768 m001 gamma-ln(5)*Landau 2971259104714705 r004 Re(z^2+c),c=1/4-7/19*I,z(0)=exp(3/8*I*Pi),n=8 2971259109828612 m005 (1/2*5^(1/2)-5/7)/(9/10*3^(1/2)-1/5) 2971259111808544 r005 Im(z^2+c),c=25/86+7/54*I,n=59 2971259117196874 a005 (1/cos(10/149*Pi))^974 2971259129567293 r005 Re(z^2+c),c=-29/78+8/43*I,n=25 2971259139002311 r008 a(0)=3,K{-n^6,2+42*n+22*n^2-32*n^3} 2971259141984652 m005 (1/3*3^(1/2)+2/5)/(10/11*exp(1)+9/11) 2971259145141399 r005 Re(z^2+c),c=-11/15+15/38*I,n=7 2971259151261777 m001 (TreeGrowth2nd+ZetaP(3))/(BesselJ(0,1)+Conway) 2971259163574716 m001 ln(3)^Pi/ZetaP(2) 2971259166311470 r005 Re(z^2+c),c=-11/32+12/37*I,n=21 2971259173552775 r005 Re(z^2+c),c=-45/64+11/37*I,n=2 2971259174815803 r008 a(0)=3,K{-n^6,21+20*n^3+71*n^2-77*n} 2971259190743743 r005 Re(z^2+c),c=-47/122+1/49*I,n=28 2971259194459471 r008 a(0)=3,K{-n^6,3-28*n+29*n^2+31*n^3} 2971259201208749 r009 Im(z^3+c),c=-23/38+11/37*I,n=37 2971259201332553 g004 Im(GAMMA(-37/30+I*113/60)) 2971259205824913 r009 Im(z^3+c),c=-15/32+9/14*I,n=6 2971259206542584 r008 a(0)=3,K{-n^6,-7+n+3*n^2+38*n^3} 2971259216569974 a007 Real Root Of 347*x^4+937*x^3-393*x^2-623*x-848 2971259224656535 r008 a(0)=3,K{-n^6,9-11*n-7*n^2+44*n^3} 2971259231175803 r008 a(0)=3,K{-n^6,-7+50*n^3-33*n^2+25*n} 2971259237582931 m001 (Zeta(3)-OrthogonalArrays)/(ZetaP(4)-ZetaQ(3)) 2971259239156032 p004 log(28477/21157) 2971259253792460 r005 Im(z^2+c),c=-15/46+31/64*I,n=53 2971259259121355 a003 sin(Pi*1/106)/cos(Pi*1/43) 2971259263532824 a005 (1/cos(13/202*Pi))^1955 2971259265571876 m001 (-TwinPrimes+ZetaQ(4))/(sin(1)+exp(1/Pi)) 2971259297393509 a003 sin(Pi*7/83)/cos(Pi*42/89) 2971259298160249 h001 (8/11*exp(1)+1/8)/(5/6*exp(2)+11/12) 2971259307247013 r008 a(0)=3,K{-n^6,28-3*n+44*n^2-35*n^3} 2971259311403769 r005 Re(z^2+c),c=-49/114+7/20*I,n=3 2971259312649876 m001 1/GAMMA(19/24)/ln(OneNinth)^2/gamma 2971259320176972 r005 Re(z^2+c),c=1/16+23/62*I,n=5 2971259321874884 r005 Re(z^2+c),c=-11/14+3/31*I,n=14 2971259347633970 r009 Im(z^3+c),c=-5/106+47/56*I,n=44 2971259347747911 m005 (1/2*gamma-11/12)/(2/5*Pi+6/7) 2971259349235478 r005 Im(z^2+c),c=-27/106+17/37*I,n=21 2971259352607788 a007 Real Root Of -154*x^4-241*x^3+634*x^2+273*x+895 2971259365213975 m001 1/GAMMA(5/6)^2/exp(Lehmer)/Zeta(1/2) 2971259369915362 r005 Re(z^2+c),c=-47/122+1/49*I,n=30 2971259381706665 s002 sum(A088460[n]/(exp(n)),n=1..infinity) 2971259386586875 a003 cos(Pi*35/113)-cos(Pi*46/111) 2971259390013649 r005 Im(z^2+c),c=-29/52+2/39*I,n=23 2971259392171745 m008 (3/5*Pi^6+5/6)/(2*Pi^4-2/5) 2971259403634219 m006 (4/5*Pi+2/3)/(2*exp(2*Pi)-3/4) 2971259410918832 r005 Im(z^2+c),c=-31/114+25/41*I,n=27 2971259412476639 m001 GAMMA(13/24)^BesselI(1,1)+exp(1/2) 2971259417021528 m001 (exp(Pi)-sin(1))/(-ZetaP(4)+ZetaQ(4)) 2971259417035265 l006 ln(91/1776) 2971259419074083 r005 Re(z^2+c),c=-47/122+1/49*I,n=32 2971259423912446 m001 (Lehmer-TravellingSalesman)^gamma 2971259431302459 r005 Re(z^2+c),c=-47/122+1/49*I,n=34 2971259433085057 r005 Re(z^2+c),c=-47/122+1/49*I,n=37 2971259433158883 r005 Re(z^2+c),c=-47/122+1/49*I,n=39 2971259433324856 r005 Re(z^2+c),c=-47/122+1/49*I,n=41 2971259433432620 r005 Re(z^2+c),c=-47/122+1/49*I,n=43 2971259433487814 r005 Re(z^2+c),c=-47/122+1/49*I,n=45 2971259433513236 r005 Re(z^2+c),c=-47/122+1/49*I,n=47 2971259433524248 r005 Re(z^2+c),c=-47/122+1/49*I,n=49 2971259433528829 r005 Re(z^2+c),c=-47/122+1/49*I,n=51 2971259433530681 r005 Re(z^2+c),c=-47/122+1/49*I,n=53 2971259433531412 r005 Re(z^2+c),c=-47/122+1/49*I,n=55 2971259433531696 r005 Re(z^2+c),c=-47/122+1/49*I,n=57 2971259433531805 r005 Re(z^2+c),c=-47/122+1/49*I,n=59 2971259433531846 r005 Re(z^2+c),c=-47/122+1/49*I,n=61 2971259433531862 r005 Re(z^2+c),c=-47/122+1/49*I,n=63 2971259433531876 r005 Re(z^2+c),c=-47/122+1/49*I,n=64 2971259433531885 r005 Re(z^2+c),c=-47/122+1/49*I,n=62 2971259433531910 r005 Re(z^2+c),c=-47/122+1/49*I,n=60 2971259433531977 r005 Re(z^2+c),c=-47/122+1/49*I,n=58 2971259433532153 r005 Re(z^2+c),c=-47/122+1/49*I,n=56 2971259433532610 r005 Re(z^2+c),c=-47/122+1/49*I,n=54 2971259433533777 r005 Re(z^2+c),c=-47/122+1/49*I,n=52 2971259433536698 r005 Re(z^2+c),c=-47/122+1/49*I,n=50 2971259433543831 r005 Re(z^2+c),c=-47/122+1/49*I,n=48 2971259433560664 r005 Re(z^2+c),c=-47/122+1/49*I,n=46 2971259433598484 r005 Re(z^2+c),c=-47/122+1/49*I,n=44 2971259433677003 r005 Re(z^2+c),c=-47/122+1/49*I,n=42 2971259433769877 r005 Re(z^2+c),c=-47/122+1/49*I,n=36 2971259433817081 r005 Re(z^2+c),c=-47/122+1/49*I,n=40 2971259433978706 r005 Re(z^2+c),c=-47/122+1/49*I,n=38 2971259433995259 r005 Re(z^2+c),c=-47/122+1/49*I,n=35 2971259439711442 r005 Re(z^2+c),c=-47/122+1/49*I,n=33 2971259455799640 m005 (1/2*Catalan-3/11)/(1/11*Pi-10/11) 2971259463399066 m001 (KhinchinHarmonic+Magata)/(3^(1/2)+gamma(3)) 2971259464222905 r005 Re(z^2+c),c=-4/13+4/9*I,n=63 2971259464633772 r005 Re(z^2+c),c=-47/122+1/49*I,n=31 2971259481904247 m006 (5/6*ln(Pi)+3)/(1/4*exp(2*Pi)-4/5) 2971259486324481 r005 Im(z^2+c),c=-23/60+21/40*I,n=46 2971259486407795 a007 Real Root Of 312*x^4-927*x^3+53*x^2-601*x-210 2971259495472549 r005 Re(z^2+c),c=9/32+7/64*I,n=30 2971259497420974 r005 Re(z^2+c),c=-31/82+7/50*I,n=13 2971259499046133 m005 (1/2*Catalan-2/5)/(1/10*Catalan-1/9) 2971259502171925 r002 3th iterates of z^2 + 2971259509721048 q001 703/2366 2971259519183649 m002 5-Pi^(-2)+3*Pi^4 2971259519747786 l006 ln(2503/3369) 2971259525255728 m005 (3/4*Pi-1/5)/(5/3+5/2*5^(1/2)) 2971259542355636 r005 Im(z^2+c),c=-67/54+13/54*I,n=5 2971259551660151 a001 2/47*1364^(10/17) 2971259551709511 r005 Re(z^2+c),c=11/118+8/23*I,n=7 2971259557953940 a007 Real Root Of 433*x^4+907*x^3-813*x^2+842*x-277 2971259559331011 r005 Re(z^2+c),c=-47/122+1/49*I,n=29 2971259568537460 b008 1+BesselY[3,1/18] 2971259588651644 m005 (1/3*exp(1)-2/9)/(3/5*Pi+5/12) 2971259593107316 k002 Champernowne real with 73*n^2-177*n+133 2971259595085570 m001 BesselI(0,2)*GAMMA(3/4)^Conway 2971259617959179 a007 Real Root Of 832*x^4+336*x^3-620*x^2-882*x-205 2971259620799908 m005 (1/2*Zeta(3)+1/9)/(1/11*2^(1/2)+1/9) 2971259623676916 m001 (-GAMMA(1/3)+2/3)/(Pi^(1/2)+5) 2971259630788222 m001 exp(1)^Totient/GAMMA(17/24) 2971259650170244 r005 Re(z^2+c),c=-27/58+11/37*I,n=5 2971259650682389 a005 (1/cos(7/141*Pi))^1409 2971259654040240 m001 (GAMMA(5/24)+2)/(sqrt(1+sqrt(3))+1/2) 2971259663434407 m005 (1/2*Zeta(3)+9/10)/(7/8*gamma-5/11) 2971259664287638 r002 23th iterates of z^2 + 2971259668025280 r009 Im(z^3+c),c=-19/74+13/46*I,n=5 2971259670497283 r005 Im(z^2+c),c=5/18+7/48*I,n=26 2971259676688327 m005 (1/6*Catalan+3/4)/(1/6*gamma-2/5) 2971259678251444 h002 exp(11^(11/12)+6^(1/7)) 2971259678251444 h007 exp(11^(11/12)+6^(1/7)) 2971259682883139 m001 exp(GAMMA(1/3))^2/MertensB1/sqrt(1+sqrt(3))^2 2971259683822046 m001 Zeta(1,-1)^KhinchinHarmonic/Backhouse 2971259685875784 r002 14th iterates of z^2 + 2971259692555108 p001 sum((-1)^n/(483*n+331)/(24^n),n=0..infinity) 2971259708884669 m001 1/exp(GAMMA(23/24))^2*GAMMA(1/24)^2/cosh(1)^2 2971259724260661 r005 Im(z^2+c),c=-31/60+17/36*I,n=62 2971259727029931 m001 (-GAMMA(19/24)+Sarnak)/(Zeta(1,2)-gamma) 2971259748175573 m001 BesselJ(0,1)^Zeta(3)*HardyLittlewoodC5 2971259751606535 r008 a(0)=3,K{-n^6,14-41*n+29*n^2+33*n^3} 2971259752352129 r008 a(0)=3,K{-n^6,-32+44*n-18*n^2+41*n^3} 2971259758178042 a007 Real Root Of -32*x^4-948*x^3+61*x^2-655*x+215 2971259765634181 r005 Re(z^2+c),c=13/70+19/51*I,n=61 2971259774710214 a007 Real Root Of -572*x^4-523*x^3-680*x^2+721*x+265 2971259782220828 m001 (Sierpinski-Thue)/(GAMMA(23/24)-ErdosBorwein) 2971259782671632 r008 a(0)=3,K{-n^6,16-14*n-15*n^2+48*n^3} 2971259784523902 r008 a(0)=3,K{-n^6,4+10*n-30*n^2+51*n^3} 2971259791899842 m001 (Bloch+MasserGramain)/(Paris-Weierstrass) 2971259793483686 r008 a(0)=3,K{-n^6,40-46*n-9*n^2+50*n^3} 2971259794275357 r009 Re(z^3+c),c=-1/20+31/53*I,n=40 2971259802270431 m005 (1/2*3^(1/2)+3/4)/(5*Zeta(3)-4/7) 2971259802385919 a001 514229/123*76^(24/53) 2971259805590107 m001 (-Zeta(1,-1)+GAMMA(7/12))/(Ei(1)-Psi(2,1/3)) 2971259806369186 r008 a(0)=3,K{-n^6,8+28*n-64*n^2+63*n^3} 2971259807290968 r009 Im(z^3+c),c=-17/114+49/58*I,n=24 2971259808820941 m005 (1/2*Catalan+9/10)/(9/11*Pi+2) 2971259825840506 h001 (1/9*exp(2)+1/12)/(3/8*exp(2)+3/11) 2971259827643507 m001 (Artin-Chi(1))/(-MasserGramainDelta+MertensB1) 2971259833045930 r005 Im(z^2+c),c=-21/31+1/23*I,n=43 2971259835023867 r005 Im(z^2+c),c=-4/13+23/50*I,n=17 2971259876000535 r002 6th iterates of z^2 + 2971259876000535 r002 6th iterates of z^2 + 2971259879096516 m001 (PrimesInBinary+Sierpinski)/Psi(1,1/3) 2971259882217239 r005 Im(z^2+c),c=-7/40+20/47*I,n=24 2971259887865641 a001 1/29*(1/2*5^(1/2)+1/2)^23*47^(1/13) 2971259893565292 r005 Re(z^2+c),c=-47/122+1/49*I,n=27 2971259897973261 r005 Re(z^2+c),c=-27/98+28/55*I,n=29 2971259906656814 a007 Real Root Of -66*x^4+710*x^3-780*x^2+504*x-99 2971259909794513 a007 Real Root Of 116*x^4+92*x^3-517*x^2+991*x+881 2971259910079472 a007 Real Root Of -241*x^4-510*x^3+439*x^2-837*x-957 2971259924136111 r002 8th iterates of z^2 + 2971259933205471 r005 Im(z^2+c),c=-17/46+26/49*I,n=34 2971259935303948 r005 Im(z^2+c),c=-9/82+11/28*I,n=10 2971259946197728 h001 (7/11*exp(2)+1/10)/(2/11*exp(2)+3/11) 2971259947726041 p004 log(20707/1061) 2971259953290298 a007 Real Root Of -972*x^4+388*x^3+269*x^2+783*x-259 2971259955692737 m002 -5/Pi^4+Pi-Cosh[Pi]/Pi^4 2971259957341770 m005 (1/2*5^(1/2)-3/5)/(3/4*3^(1/2)+4/9) 2971259964568599 m005 (1/2*gamma-5/6)/(3/7*5^(1/2)+7/8) 2971259966491559 m001 (1+ln(2)/ln(10))/(-Kac+LandauRamanujan2nd) 2971259975381099 r009 Im(z^3+c),c=-45/106+9/46*I,n=34 2971259979224017 m001 Trott2nd*(LambertW(1)+polylog(4,1/2)) 2971259999894875 r005 Re(z^2+c),c=-109/90+13/55*I,n=15 2971260002868251 m001 (-Porter+Trott)/(LambertW(1)-Shi(1)) 2971260004850343 m001 1/exp(GAMMA(5/12))^2/ArtinRank2*Zeta(1/2) 2971260019325238 m001 (GAMMA(3/4)+ln(3))/(exp(1/Pi)-Lehmer) 2971260022453182 b008 ArcCot[Pi+Tanh[1/8]] 2971260039790723 m002 -E^Pi/3+Log[Pi]+Pi*Sinh[Pi] 2971260041315130 l006 ln(5691/7660) 2971260044669760 a007 Real Root Of 937*x^4+339*x^3+394*x^2-346*x-136 2971260074302790 r005 Re(z^2+c),c=-29/74+2/31*I,n=6 2971260082377599 m001 (Grothendieck-ZetaP(3))/(GAMMA(2/3)-Ei(1)) 2971260086419606 h001 (7/11*exp(2)+1/12)/(5/11*exp(1)+3/8) 2971260092154980 r005 Im(z^2+c),c=-37/114+15/31*I,n=60 2971260093340870 m001 (MadelungNaCl+Sarnak)/(Trott2nd-Thue) 2971260094993299 m001 (DuboisRaymond+ZetaQ(2))/(Chi(1)-gamma(3)) 2971260103272500 m002 -1+E^Pi/Pi^6+Pi^2-Pi^5 2971260105748427 p004 log(27271/20261) 2971260110337696 a001 3571/1346269*2584^(42/47) 2971260117930261 r009 Re(z^3+c),c=-3/23+42/59*I,n=15 2971260121501208 m005 (-9/44+1/4*5^(1/2))/(4*Pi-7/11) 2971260127021703 m001 GAMMA(13/24)^Si(Pi)+Bloch 2971260134794257 r005 Im(z^2+c),c=-95/106+1/35*I,n=4 2971260139016804 m001 Champernowne*Backhouse/ln(FeigenbaumC) 2971260140614629 m001 1/GaussKuzminWirsing^2*Backhouse*ln(cosh(1))^2 2971260149720491 m001 FeigenbaumMu^(LambertW(1)/LaplaceLimit) 2971260158350614 r005 Im(z^2+c),c=-5/8+69/185*I,n=47 2971260170693498 r002 11th iterates of z^2 + 2971260174549648 a007 Real Root Of -332*x^4-878*x^3+459*x^2+445*x+115 2971260176926351 r005 Im(z^2+c),c=-35/122+26/51*I,n=10 2971260182550168 s002 sum(A279317[n]/((10^n-1)/n),n=1..infinity) 2971260191645152 a007 Real Root Of -453*x^4-977*x^3+916*x^2-623*x-259 2971260206846570 r005 Im(z^2+c),c=-27/56+27/58*I,n=25 2971260208970045 a007 Real Root Of -115*x^4-x^3+966*x^2-115*x+67 2971260209481865 m001 (-5^(1/2)+polylog(4,1/2))/(Psi(2,1/3)-exp(1)) 2971260214848275 r002 63i'th iterates of 2*x/(1-x^2) of 2971260226693711 m005 (1/2*exp(1)+1/2)/(8/9*2^(1/2)+5) 2971260227855753 m001 (Bloch+ZetaQ(2))/(LambertW(1)+Zeta(3)) 2971260229162683 m001 1/ln(ArtinRank2)*GaussKuzminWirsing^2*Magata^2 2971260232206894 a007 Real Root Of -31*x^4-904*x^3+509*x^2+59*x+701 2971260232635693 r005 Re(z^2+c),c=-38/31+25/33*I,n=2 2971260233291852 p003 LerchPhi(1/5,3,277/182) 2971260236533143 r008 a(0)=3,K{-n^6,86-38*n^3+82*n^2-96*n} 2971260252213416 r008 a(0)=3,K{-n^6,-59+56*n+11*n^2+27*n^3} 2971260268751549 r008 a(0)=3,K{-n^6,21+20*n^3+72*n^2-78*n} 2971260269957834 r005 Im(z^2+c),c=19/62+25/59*I,n=40 2971260271863332 a007 Real Root Of 192*x^4+960*x^3+994*x^2-167*x+946 2971260272957559 m001 (ErdosBorwein+TwinPrimes)/(ln(2)-Backhouse) 2971260273191200 r005 Re(z^2+c),c=-3/8+4/31*I,n=8 2971260275349193 r008 a(0)=3,K{-n^6,7+25*n^3+50*n^2-47*n} 2971260279363535 r008 a(0)=3,K{-n^6,-1+28*n^3+37*n^2-29*n} 2971260296087984 r008 a(0)=3,K{-n^6,13-40*n+29*n^2+33*n^3} 2971260306950893 b008 Gamma[1/2,7/3]^2 2971260311085965 m005 (1/2*3^(1/2)+7/8)/(3/7*gamma-5/6) 2971260315548863 m001 (1-BesselJ(0,1))/(ln(gamma)+Totient) 2971260316091993 m005 (1/3*Zeta(3)+2/7)/(5/6*gamma-1/4) 2971260317379845 r008 a(0)=3,K{-n^6,9-12*n-6*n^2+44*n^3} 2971260319230374 r005 Re(z^2+c),c=-7/20+3/10*I,n=39 2971260319954654 r008 a(0)=3,K{-n^6,-1+9*n-20*n^2+47*n^3} 2971260321042307 l006 ln(5239/5397) 2971260326839358 r008 a(0)=3,K{-n^6,15-13*n-15*n^2+48*n^3} 2971260328673227 r008 a(0)=3,K{-n^6,3+11*n-30*n^2+51*n^3} 2971260337166499 p001 sum(1/(393*n+343)/(25^n),n=0..infinity) 2971260337543685 r008 a(0)=3,K{-n^6,45+49*n^3-3*n^2-56*n} 2971260342515674 m001 Salem/exp(GaussKuzminWirsing)^2*arctan(1/2) 2971260345976633 r008 a(0)=3,K{-n^6,27-13*n-36*n^2+57*n^3} 2971260346670013 h005 exp(cos(Pi*13/57)+cos(Pi*9/23)) 2971260355740716 m002 Pi^5+2/ProductLog[Pi]-Sinh[Pi]/ProductLog[Pi] 2971260357908051 h001 (-9*exp(3/2)+5)/(-6*exp(1/2)-2) 2971260359624347 r008 a(0)=3,K{-n^6,61+60*n^3-28*n^2-58*n} 2971260378854136 r005 Re(z^2+c),c=-4/13+4/9*I,n=64 2971260386425800 m001 FeigenbaumB/exp(Conway)*GAMMA(1/4)^2 2971260396630046 a001 199/377*9227465^(7/13) 2971260404036082 m001 (1-GAMMA(17/24))/(CopelandErdos+Sarnak) 2971260424482809 h002 exp(19/(11+12^(3/4))) 2971260427576683 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=38 2971260431872167 r005 Re(z^2+c),c=3/56+39/64*I,n=43 2971260432339950 a001 1926/726103*2584^(42/47) 2971260433254462 r005 Im(z^2+c),c=3/11+8/51*I,n=15 2971260450814190 l006 ln(3188/4291) 2971260458691854 r002 27th iterates of z^2 + 2971260464198533 r009 Im(z^3+c),c=-29/90+8/31*I,n=10 2971260470460268 r005 Re(z^2+c),c=-41/118+14/45*I,n=22 2971260470462158 m001 (GAMMA(17/24)+Magata)^CareFree 2971260491049044 a001 2/47*167761^(6/17) 2971260491086306 a001 2/47*28143753123^(3/17) 2971260491086559 a001 2/47*1860498^(5/17) 2971260495451670 a001 34/3*843^(16/33) 2971260496814892 a001 2/47*15127^(15/34) 2971260500805813 h001 (5/9*exp(1)+6/7)/(1/11*exp(2)+1/8) 2971260506330090 r005 Im(z^2+c),c=-37/28+1/64*I,n=4 2971260510361003 l006 ln(515/10051) 2971260528827531 r005 Im(z^2+c),c=-17/52+2/57*I,n=3 2971260530689212 m001 ln(2^(1/2)+1)/Psi(2,1/3)/ZetaQ(2) 2971260531500789 a003 cos(Pi*28/93)*cos(Pi*38/115) 2971260534713322 a001 2/47*5778^(25/51) 2971260543755614 m001 Gompertz^ErdosBorwein-Magata 2971260550952177 r005 Re(z^2+c),c=-19/70+26/29*I,n=6 2971260551009288 m001 OneNinth/ln(GlaisherKinkelin)^2/BesselJ(0,1)^2 2971260552395542 r005 Re(z^2+c),c=-19/52+7/31*I,n=17 2971260555523977 m001 (2*Pi/GAMMA(5/6))^BesselK(1,1)*Shi(1) 2971260555593702 a001 322/5*317811^(7/58) 2971260557938414 r008 a(0)=3,K{-n^6,69+9*n^3-16*n^2-24*n} 2971260567041711 a007 Real Root Of -304*x^4-652*x^3+968*x^2+352*x-909 2971260578480323 m001 3^(1/2)+ReciprocalLucas-Sarnak 2971260594254551 a007 Real Root Of 225*x^4+866*x^3+723*x^2+101*x-903 2971260596107917 k002 Champernowne real with 147/2*n^2-357/2*n+134 2971260629515801 s002 sum(A282226[n]/(2^n+1),n=1..infinity) 2971260636713574 p003 LerchPhi(1/64,4,176/73) 2971260641009995 a007 Real Root Of 281*x^4+759*x^3-490*x^2-546*x+712 2971260648130723 k003 Champernowne real with 12*n^3-89/2*n^2+113/2*n-22 2971260651023626 s001 sum(exp(-Pi/2)^n*A094035[n],n=1..infinity) 2971260652392732 v003 sum((1/6*n^3-n^2+149/6*n-7)/n^n,n=1..infinity) 2971260659874934 r008 a(0)=3,K{-n^6,12+45*n-23*n^3} 2971260663609992 m002 -E^Pi+Pi^5+Cosh[Pi]*Log[Pi]*ProductLog[Pi] 2971260666794527 a007 Real Root Of 103*x^4+132*x^3-663*x^2-734*x-893 2971260680297742 a009 1/18*4^(2/3)+1/18*4^(3/4) 2971260695835248 m002 2*Cosh[Pi]*Coth[Pi]+6*ProductLog[Pi] 2971260708148532 h001 (1/12*exp(2)+4/5)/(7/12*exp(2)+5/11) 2971260709188001 r005 Im(z^2+c),c=8/23+5/38*I,n=38 2971260710658531 r008 a(0)=3,K{-n^6,-88+6*n^3+60*n^2+57*n} 2971260711345504 m001 (Catalan-Zeta(1/2))/(-GAMMA(19/24)+Artin) 2971260718056973 m005 (1/2*exp(1)-9/11)/(5/8*Pi-1/7) 2971260724408585 a003 cos(Pi*22/119)-cos(Pi*22/69) 2971260727180258 r005 Im(z^2+c),c=-19/52+24/43*I,n=55 2971260727674285 r005 Re(z^2+c),c=13/70+19/51*I,n=59 2971260727837482 a001 1/29*(1/2*5^(1/2)+1/2)^28*18^(1/15) 2971260736637614 r009 Im(z^3+c),c=-4/21+13/43*I,n=7 2971260737686998 p004 log(32803/24371) 2971260745013305 l006 ln(424/8275) 2971260745245702 m001 PisotVijayaraghavan/FellerTornier*Sarnak 2971260749189041 p003 LerchPhi(1/25,2,29/158) 2971260758654659 r009 Re(z^3+c),c=-25/66+14/47*I,n=25 2971260769523079 m001 (gamma-ln(2^(1/2)+1))/(-Ei(1,1)+arctan(1/3)) 2971260771497059 a007 Real Root Of -276*x^4-721*x^3+548*x^2+826*x+215 2971260780860793 l006 ln(7061/9504) 2971260785147736 r005 Im(z^2+c),c=1/82+21/62*I,n=12 2971260790985313 r005 Re(z^2+c),c=-35/114+23/50*I,n=24 2971260794794522 m008 (1/5*Pi+4/5)/(5*Pi^6+1/6) 2971260797848919 a007 Real Root Of -377*x^4-767*x^3-794*x^2+458*x+189 2971260799192600 a001 7/377*6557470319842^(1/4) 2971260804254094 a005 (1/sin(74/183*Pi))^878 2971260805350761 a007 Real Root Of -43*x^4+203*x^3-631*x^2+93*x+89 2971260807819121 b008 3-2/E^(3*Sqrt[2]) 2971260811728514 m001 FeigenbaumDelta^GAMMA(19/24)/gamma(3) 2971260819069786 r005 Re(z^2+c),c=-9/28+23/57*I,n=34 2971260828794628 r009 Re(z^3+c),c=-7/19+10/37*I,n=7 2971260830202567 r005 Im(z^2+c),c=-5/23+23/52*I,n=23 2971260833425101 m001 ln(GAMMA(1/12))*FibonacciFactorial/Zeta(7) 2971260846204514 r008 a(0)=3,K{-n^6,8+38*n^3+12*n^2-23*n} 2971260851613759 r008 a(0)=3,K{-n^6,-18+30*n-22*n^2+45*n^3} 2971260852838140 r005 Re(z^2+c),c=-13/44+25/54*I,n=23 2971260860227685 a007 Real Root Of 81*x^4-131*x^3-938*x^2+610*x+344 2971260862791918 a007 Real Root Of -352*x^4-671*x^3+832*x^2-782*x+165 2971260872303335 r008 a(0)=3,K{-n^6,6+52*n^3-31*n^2+8*n} 2971260872306838 r008 a(0)=3,K{-n^6,-18+56*n^3-55*n^2+52*n} 2971260873142809 r005 Re(z^2+c),c=-17/62+16/29*I,n=30 2971260890714588 r005 Re(z^2+c),c=-35/114+25/56*I,n=43 2971260892852703 p003 LerchPhi(1/12,6,176/211) 2971260897462681 r008 a(0)=3,K{-n^6,44+61*n^3-39*n^2-31*n} 2971260900238385 m001 GAMMA(1/4)*ln(Salem)^2/LambertW(1)^2 2971260903013567 m005 (19/20+1/4*5^(1/2))/(10/11*2^(1/2)-7/9) 2971260904775409 m005 (1/3*Pi-3/4)/(1/3*2^(1/2)-4/7) 2971260908222779 r008 a(0)=3,K{-n^6,28+71*n^3-77*n^2+13*n} 2971260912337943 a001 18/75025*1346269^(14/41) 2971260912552809 a008 Real Root of (1+3*x+5*x^3+2*x^4-3*x^5) 2971260921442491 r005 Re(z^2+c),c=-19/70+15/28*I,n=34 2971260921696209 a007 Real Root Of -139*x^4-395*x^3+206*x^2+162*x-865 2971260925502008 a007 Real Root Of -374*x^4-900*x^3+366*x^2-583*x+578 2971260928032152 m001 1/FibonacciFactorial*DuboisRaymond/ln(Niven) 2971260944586496 r009 Re(z^3+c),c=-23/66+12/47*I,n=5 2971260950750198 r005 Im(z^2+c),c=-2/25+16/33*I,n=6 2971260953350540 a001 2207/832040*2584^(42/47) 2971260957887047 r005 Im(z^2+c),c=-5/31+21/50*I,n=30 2971260959122187 a001 11/14930352*591286729879^(10/21) 2971260959162510 a001 11/121393*24157817^(10/21) 2971260973845834 m005 (-11/42+1/6*5^(1/2))/(2/7*Catalan+1/9) 2971260974472629 m001 HardyLittlewoodC4/(GolombDickman^gamma(1)) 2971260975596996 a007 Real Root Of 349*x^4+995*x^3+119*x^2+678*x-137 2971260980741785 p003 LerchPhi(1/256,3,16/23) 2971260992407372 a007 Real Root Of -384*x^4-885*x^3+943*x^2+840*x+885 2971260994051522 r002 16th iterates of z^2 + 2971260999816274 m001 log(1+sqrt(2))^2*exp(Pi)*sqrt(1+sqrt(3)) 2971261017730736 m001 (Psi(2,1/3)+exp(1/Pi))^Sierpinski 2971261019448671 r005 Re(z^2+c),c=-47/122+1/49*I,n=25 2971261021944165 r005 Re(z^2+c),c=35/122+35/61*I,n=5 2971261033193215 a007 Real Root Of -x^4-294*x^3+926*x^2-843*x+858 2971261034761995 m001 (ln(Pi)+ArtinRank2)/(MertensB1-QuadraticClass) 2971261035052744 a007 Real Root Of -369*x^4-791*x^3+713*x^2-302*x+819 2971261040596334 r005 Re(z^2+c),c=-37/102+13/54*I,n=19 2971261043607322 h001 (2/11*exp(1)+1/2)/(10/11*exp(1)+7/8) 2971261049812074 b008 3*(3*Pi+Sin[1/2]) 2971261052533537 l006 ln(3873/5213) 2971261070822705 m005 (1/2*3^(1/2)-2/5)/(61/56+3/14*5^(1/2)) 2971261072036550 r005 Im(z^2+c),c=-31/82+32/61*I,n=39 2971261081202644 r005 Re(z^2+c),c=11/32+29/52*I,n=55 2971261083456870 a007 Real Root Of 358*x^4+867*x^3-281*x^2+722*x-534 2971261084803853 m001 (Trott+ZetaP(2))/(cos(1/12*Pi)+Lehmer) 2971261085050942 m005 (1/2*Pi+5/7)/(1/10*5^(1/2)+6/11) 2971261096880358 m002 2+3*Pi^6+Pi^4/Log[Pi] 2971261098146597 m001 (Pi^(1/2)+Otter)/(QuadraticClass+Rabbit) 2971261102432662 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=41 2971261105771660 r009 Im(z^3+c),c=-9/20+9/52*I,n=29 2971261107913905 l006 ln(333/6499) 2971261113206110 a007 Real Root Of 697*x^4+17*x^3+113*x^2-939*x-28 2971261116449203 m001 GAMMA(17/24)*ln(GAMMA(1/3))^2*cosh(1)^2 2971261120594716 m001 (Si(Pi)-gamma)/(-sin(1)+ThueMorse) 2971261121613441 k007 concat of cont frac of 2971261124440389 m001 (OneNinth-Salem)/(ln(2+3^(1/2))+BesselI(0,2)) 2971261133221045 r009 Re(z^3+c),c=-9/20+21/50*I,n=52 2971261133473074 a007 Real Root Of 247*x^4+679*x^3-146*x^2-7*x-172 2971261141511162 k007 concat of cont frac of 2971261163273130 a007 Real Root Of 21*x^4+607*x^3-499*x^2+178*x+813 2971261172152540 a007 Real Root Of -287*x^4-685*x^3+879*x^2+982*x-442 2971261172555972 m001 (Zeta(5)+Khinchin)/(Lehmer+TwinPrimes) 2971261180033785 m001 (3^(1/2)+arctan(1/3))/(-ln(2+3^(1/2))+Kac) 2971261185071162 a001 5/20633239*2^(5/17) 2971261196498945 m009 (1/2*Psi(1,1/3)+3)/(Psi(1,3/4)+1/6) 2971261199089434 a007 Real Root Of -231*x^4-680*x^3-353*x^2-999*x+315 2971261203648679 r005 Re(z^2+c),c=-119/118+16/57*I,n=22 2971261216017643 m001 (2/3)^Zeta(1/2)/((2/3)^GAMMA(3/4)) 2971261229421007 m001 1/Zeta(3)^2*exp((2^(1/3)))^2*sin(Pi/5)^2 2971261231111121 k008 concat of cont frac of 2971261241340385 a007 Real Root Of -207*x^4-450*x^3+472*x^2+262*x+941 2971261241561967 m005 (1/2*Zeta(3)+1/9)/(1/8*Pi-5/12) 2971261256888150 r005 Re(z^2+c),c=-2/7+30/53*I,n=44 2971261264710625 m001 (-Bloch+Niven)/(3^(1/2)-ln(2+3^(1/2))) 2971261275672210 a007 Real Root Of 37*x^4-143*x^3-822*x^2+71*x+833 2971261278650806 a001 11/987*987^(10/21) 2971261288604403 r005 Im(z^2+c),c=-17/52+16/33*I,n=45 2971261290952172 a007 Real Root Of 658*x^4-541*x^3-896*x^2-649*x+281 2971261291494802 r005 Im(z^2+c),c=-149/126+10/53*I,n=26 2971261293708796 r005 Re(z^2+c),c=-53/102+22/43*I,n=8 2971261296133692 s001 sum(exp(-Pi/2)^(n-1)*A019641[n],n=1..infinity) 2971261300503328 r009 Re(z^3+c),c=-9/46+47/64*I,n=32 2971261305306191 m001 1/exp(Riemann3rdZero)^2/MertensB1^2*OneNinth 2971261310099841 r008 a(0)=3,K{-n^6,-53+18*n^3+42*n^2+28*n} 2971261312075729 m001 1/ln(GAMMA(3/4))^2/BesselJ(1,1)*cos(1) 2971261315225460 r002 7th iterates of z^2 + 2971261339011708 m001 Trott^2*GaussKuzminWirsing/ln(sqrt(2))^2 2971261348413651 r009 Re(z^3+c),c=-37/94+12/37*I,n=11 2971261351880055 m001 (MasserGramain+Niven)/(5^(1/2)-exp(1/exp(1))) 2971261375285070 r008 a(0)=3,K{-n^6,13-41*n+30*n^2+33*n^3} 2971261380071893 m001 1/cos(1)^2*ln(Magata)^2*gamma 2971261380727597 m001 1/Pi^2*MadelungNaCl*exp(sin(Pi/12))^2 2971261383619636 r008 a(0)=3,K{-n^6,7+38*n^3+12*n^2-22*n} 2971261388974349 r008 a(0)=3,K{-n^6,-19+31*n-22*n^2+45*n^3} 2971261397567776 m001 (gamma(3)-sin(1))/(-LandauRamanujan2nd+Magata) 2971261405310059 r008 a(0)=3,K{-n^6,15-14*n-14*n^2+48*n^3} 2971261407101495 r008 a(0)=3,K{-n^6,3+10*n-29*n^2+51*n^3} 2971261409458178 r008 a(0)=3,K{-n^6,5+52*n^3-31*n^2+9*n} 2971261409461639 r008 a(0)=3,K{-n^6,-19+56*n^3-55*n^2+53*n} 2971261410095815 r009 Re(z^3+c),c=-17/50+9/40*I,n=8 2971261411012251 k007 concat of cont frac of 2971261413527111 k006 concat of cont frac of 2971261414801093 m001 (Pi+CopelandErdos)/(Robbin+Weierstrass) 2971261415768251 r008 a(0)=3,K{-n^6,45+49*n^3-2*n^2-57*n} 2971261416900583 r005 Re(z^2+c),c=-41/56+3/19*I,n=44 2971261425605505 r008 a(0)=3,K{-n^6,51-56*n-14*n^2+54*n^3} 2971261429274370 r008 a(0)=3,K{-n^6,53-55*n-19*n^2+56*n^3} 2971261431688217 a008 Real Root of x^4-2*x^3-8*x^2-40*x+164 2971261434372626 r008 a(0)=3,K{-n^6,49-41*n-33*n^2+60*n^3} 2971261438236328 a001 6/329*987^(17/42) 2971261439119292 a003 sin(Pi*10/49)/cos(Pi*27/62) 2971261440552795 a001 89/322*45537549124^(16/17) 2971261440552795 a001 89/322*14662949395604^(16/21) 2971261440552795 a001 89/322*(1/2+1/2*5^(1/2))^48 2971261440552795 a001 89/322*192900153618^(8/9) 2971261440552795 a001 89/322*73681302247^(12/13) 2971261440679043 r005 Re(z^2+c),c=-13/46+26/55*I,n=18 2971261442170854 a001 144/199*(1/2+1/2*5^(1/2))^46 2971261442170854 a001 144/199*10749957122^(23/24) 2971261444427445 a003 sin(Pi*31/87)/cos(Pi*39/97) 2971261456285383 r008 a(0)=3,K{-n^6,53+75*n^3-76*n^2-17*n} 2971261464699345 r008 a(0)=3,K{-n^6,87+76*n^3-62*n^2-66*n} 2971261469921780 m001 Magata^(3^(1/2))*Magata^MertensB2 2971261473393822 l006 ln(4558/6135) 2971261475337330 m001 1/Zeta(1/2)/ln(GAMMA(1/12))^2*sin(Pi/12) 2971261507590872 r005 Im(z^2+c),c=-4/3+5/148*I,n=53 2971261519891731 a007 Real Root Of -944*x^4+433*x^3-840*x^2+687*x+297 2971261523258723 m001 (Chi(1)+ln(gamma))/(-3^(1/3)+Bloch) 2971261526658607 m001 (Khinchin+RenyiParking)/(Ei(1,1)-exp(1/Pi)) 2971261536884374 r009 Re(z^3+c),c=-5/17+63/64*I,n=5 2971261542966275 r008 a(0)=3,K{-n^6,-26-9*n^3-2*n^2+73*n} 2971261548565735 r005 Re(z^2+c),c=-75/98+4/45*I,n=42 2971261550664349 m005 (1/3*2^(1/2)+3/7)/(5*gamma+1/7) 2971261566311866 a001 377/1364*76^(17/31) 2971261566812271 r009 Im(z^3+c),c=-45/82+16/47*I,n=12 2971261568436434 q001 61/2053 2971261571569745 a007 Real Root Of -903*x^4+319*x^3-659*x^2-214*x+10 2971261578176977 r005 Im(z^2+c),c=-27/20+1/55*I,n=10 2971261580995502 p004 log(25391/1301) 2971261597883749 r005 Im(z^2+c),c=-17/86+17/39*I,n=16 2971261599108517 k002 Champernowne real with 74*n^2-180*n+135 2971261605618404 m001 (arctan(1/2)-Ei(1,1))/(Magata-Sierpinski) 2971261613744491 a001 4181/123*322^(24/31) 2971261614267274 r005 Re(z^2+c),c=-7/20+3/10*I,n=42 2971261616616945 a007 Real Root Of 327*x^4+884*x^3-47*x^2+800*x+494 2971261620224020 r009 Re(z^3+c),c=-37/86+17/42*I,n=17 2971261622364895 a007 Real Root Of 770*x^4+190*x^3+845*x^2-934*x+27 2971261630579551 r009 Im(z^3+c),c=-14/31+10/59*I,n=19 2971261637247934 m003 -1/2+Sqrt[5]/8+30*Sin[1/2+Sqrt[5]/2]^2 2971261640116552 m001 (OneNinth-Totient)/PrimesInBinary 2971261653135369 a007 Real Root Of 34*x^4+109*x^3+294*x^2+616*x-556 2971261658421741 m002 -2+Pi^4-Pi^9+ProductLog[Pi] 2971261659550227 a003 cos(Pi*1/38)-sin(Pi*18/73) 2971261661146266 r009 Re(z^3+c),c=-41/90+10/21*I,n=34 2971261668281530 r005 Re(z^2+c),c=39/118+5/36*I,n=42 2971261676070163 a007 Real Root Of -287*x^4-873*x^3-15*x^2+219*x+252 2971261677123242 r009 Re(z^3+c),c=-4/25+55/63*I,n=4 2971261686116855 r005 Im(z^2+c),c=9/26+3/14*I,n=13 2971261687122176 m001 gamma(2)^PisotVijayaraghavan/Sarnak 2971261690229412 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=43 2971261691195672 m005 (1/2*Pi-5)/(1/12*exp(1)-1/9) 2971261702248567 r008 a(0)=3,K{-n^6,57-59*n+53*n^2-15*n^3} 2971261703133778 m001 1/Sierpinski^2*Robbin/exp(BesselK(1,1))^2 2971261724422788 p003 LerchPhi(1/5,2,73/124) 2971261734178198 r009 Im(z^3+c),c=-33/70+2/13*I,n=21 2971261743739430 l006 ln(242/4723) 2971261749300408 r008 a(0)=3,K{-n^6,30+20*n-25*n^2+11*n^3} 2971261753209821 r005 Re(z^2+c),c=-7/20+3/10*I,n=44 2971261767477607 r005 Im(z^2+c),c=-7/90+19/53*I,n=4 2971261776540833 m001 (Weierstrass+ZetaP(3))/(gamma+ln(5)) 2971261784282974 l006 ln(5243/7057) 2971261798303136 a007 Real Root Of 167*x^4+332*x^3-64*x^2+967*x-869 2971261798809263 a007 Real Root Of -165*x^4-330*x^3+726*x^2+988*x+730 2971261810423458 m001 FeigenbaumKappa*Totient^FeigenbaumD 2971261816535924 m002 -Pi^4+Pi^9+Tanh[Pi]/ProductLog[Pi] 2971261830593120 r005 Re(z^2+c),c=-11/34+15/44*I,n=7 2971261831811385 r008 a(0)=3,K{-n^6,-56+14*n^3+53*n^2+24*n} 2971261850419502 h003 exp(Pi*(1/14*(13+11^(1/2))^(1/2)*14^(1/2))) 2971261855450571 r005 Re(z^2+c),c=5/16+27/49*I,n=29 2971261861680857 r008 a(0)=3,K{-n^6,-54+41*n+24*n^2+24*n^3} 2971261871814180 a007 Real Root Of 142*x^4-7*x^3-786*x^2-998*x+365 2971261888785064 a007 Real Root Of 230*x^4+392*x^3-773*x^2+409*x+396 2971261895889776 m001 1/Niven^2*Bloch^2/ln(BesselK(1,1))^2 2971261898050447 h001 (11/12*exp(2)+1/3)/(6/11*exp(1)+10/11) 2971261907337874 r009 Re(z^3+c),c=-3/86+22/31*I,n=25 2971261910763227 r008 a(0)=3,K{-n^6,-44+64*n-28*n^2+43*n^3} 2971261924836698 r008 a(0)=3,K{-n^6,28+38*n^3+23*n^2-54*n} 2971261928361398 r009 Re(z^3+c),c=-11/34+11/57*I,n=13 2971261938346166 a007 Real Root Of 292*x^4+941*x^3+73*x^2-115*x+939 2971261940965482 r005 Im(z^2+c),c=19/110+7/29*I,n=13 2971261948300840 m005 (1/2*Catalan-2/3)/(5/9*2^(1/2)-1/12) 2971261949429258 r008 a(0)=3,K{-n^6,44+49*n^3-2*n^2-56*n} 2971261950546163 r008 a(0)=3,K{-n^6,6+56*n^3-42*n^2+15*n} 2971261954535246 m001 KhinchinLevy*Salem-ln(3) 2971261956676679 m001 (GAMMA(5/6)-Si(Pi))/(-Artin+FransenRobinson) 2971261959171120 r008 a(0)=3,K{-n^6,50-55*n-14*n^2+54*n^3} 2971261960296498 m001 Zeta(1/2)/KhintchineLevy*exp(log(1+sqrt(2))) 2971261960728950 m001 1/MadelungNaCl^2/ln(LaplaceLimit)/GAMMA(1/3) 2971261966748115 r009 Re(z^3+c),c=-12/31+5/16*I,n=30 2971261967537568 r005 Re(z^2+c),c=2/25+10/47*I,n=19 2971261968350428 r008 a(0)=3,K{-n^6,44+61*n^3-38*n^2-32*n} 2971261972293677 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=46 2971261983507754 m001 (-Rabbit+ZetaQ(3))/(gamma+Grothendieck) 2971261985617634 r009 Im(z^3+c),c=-7/20+11/45*I,n=19 2971261986733321 m001 (Pi+BesselI(0,1))/(GolombDickman+Thue) 2971261998990257 m001 (Khinchin+Mills)/(exp(1)-exp(1/Pi)) 2971262005699248 r005 Re(z^2+c),c=-7/24+15/31*I,n=28 2971262015165701 a001 521/2584*3^(6/17) 2971262019816749 a005 (1/sin(105/229*Pi))^1750 2971262023323581 l006 ln(5928/7979) 2971262024199002 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=48 2971262025222066 a007 Real Root Of -79*x^4-15*x^3+831*x^2+224*x-907 2971262027275651 r002 41th iterates of z^2 + 2971262032533998 m001 (Salem+Sarnak)/(ln(2)-MertensB3) 2971262032934994 m001 (3^(1/3)-5^(1/2))/(FeigenbaumB+Tribonacci) 2971262042595913 r005 Re(z^2+c),c=-15/106+42/43*I,n=5 2971262043566891 p001 sum(1/(411*n+34)/(8^n),n=0..infinity) 2971262044376764 m006 (2*Pi+4)/(3*Pi^2+5) 2971262044376764 m008 (2*Pi+4)/(3*Pi^2+5) 2971262048008716 r005 Re(z^2+c),c=-7/20+3/10*I,n=49 2971262051271204 m001 (2^(1/3)-3^(1/2))/(-BesselI(1,2)+ZetaQ(4)) 2971262054893984 a007 Real Root Of 367*x^4-324*x^3+749*x^2-934*x-355 2971262061450981 r005 Re(z^2+c),c=-7/20+3/10*I,n=47 2971262072570065 a007 Real Root Of -636*x^4+745*x^3-168*x^2+672*x+239 2971262078314550 a007 Real Root Of 271*x^4+731*x^3-412*x^2-292*x+823 2971262079930903 m001 Grothendieck*(5^(1/2))^HardyLittlewoodC3 2971262081621471 b008 Pi-(2*ArcTan[2])/13 2971262082303364 r005 Re(z^2+c),c=-7/20+3/10*I,n=46 2971262086807877 p002 log(1/11*(7+11^(2/3)*6^(3/4))^(1/2)*11^(1/3)) 2971262091389991 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=39 2971262095980785 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=53 2971262096434727 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=51 2971262097528060 r005 Re(z^2+c),c=-7/20+3/10*I,n=51 2971262099708378 m005 (1/2*Zeta(3)-5/12)/(1/2*gamma-10/11) 2971262101900044 r005 Re(z^2+c),c=-7/20+3/10*I,n=54 2971262108336724 r005 Re(z^2+c),c=-7/20+3/10*I,n=56 2971262109255619 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=55 2971262109282848 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=50 2971262109553584 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=58 2971262110416050 r005 Re(z^2+c),c=-7/20+3/10*I,n=52 2971262110783423 r005 Re(z^2+c),c=-7/20+3/10*I,n=59 2971262111241110 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=56 2971262111372119 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=60 2971262111420151 r005 Re(z^2+c),c=-7/20+3/10*I,n=61 2971262111863991 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=63 2971262112090683 r005 Re(z^2+c),c=-7/20+3/10*I,n=64 2971262112273703 r005 Re(z^2+c),c=-7/20+3/10*I,n=63 2971262112402419 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=61 2971262112554455 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=62 2971262112609387 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=64 2971262112618647 r005 Re(z^2+c),c=-7/20+3/10*I,n=62 2971262113144130 r005 Re(z^2+c),c=-7/20+3/10*I,n=58 2971262113169912 r005 Re(z^2+c),c=-7/20+3/10*I,n=57 2971262113601891 r005 Re(z^2+c),c=-7/20+3/10*I,n=60 2971262114154289 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=59 2971262114981872 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=57 2971262119894432 r005 Re(z^2+c),c=-7/20+3/10*I,n=55 2971262121585478 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=54 2971262121764983 r005 Re(z^2+c),c=-7/20+3/10*I,n=53 2971262124228545 b008 -3+EulerGamma/E^3 2971262131331111 k007 concat of cont frac of 2971262131476960 r005 Re(z^2+c),c=-6/19+5/12*I,n=22 2971262132565858 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=52 2971262134855159 r005 Im(z^2+c),c=-8/7+27/118*I,n=44 2971262142180994 r002 6th iterates of z^2 + 2971262143171385 r005 Im(z^2+c),c=-9/32+29/62*I,n=54 2971262151423827 r005 Re(z^2+c),c=-7/20+3/10*I,n=50 2971262151445455 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=49 2971262163752924 m002 -Pi^4+Pi^9+ProductLog[Pi]^(-1) 2971262163963202 a007 Real Root Of -312*x^4-397*x^3-214*x^2+970*x+29 2971262180962430 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=45 2971262182116096 a007 Real Root Of 471*x^4+989*x^3-861*x^2+945*x-358 2971262187493033 r005 Re(z^2+c),c=-7/20+3/10*I,n=48 2971262204397828 m001 (ThueMorse-ZetaQ(3))/(Zeta(5)+arctan(1/3)) 2971262211672977 a007 Real Root Of -366*x^4-788*x^3+830*x^2-338*x-476 2971262212842691 l006 ln(6613/8901) 2971262213203292 r005 Re(z^2+c),c=-1+19/101*I,n=34 2971262220125476 m001 Zeta(3)+ln(2+3^(1/2))+ZetaP(2) 2971262222375914 a007 Real Root Of 135*x^4+57*x^3-371*x^2-906*x-236 2971262223043903 m001 ln(5)^BesselI(0,2)*ln(5)^ZetaQ(3) 2971262224698007 m005 (1/2*Pi-6)/(4*gamma-9/11) 2971262228837502 r009 Re(z^3+c),c=-25/54+11/32*I,n=10 2971262230166882 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=44 2971262230252865 m009 (2*Psi(1,3/4)-2/5)/(1/6*Psi(1,3/4)-2) 2971262230271389 r005 Im(z^2+c),c=-13/36+31/60*I,n=36 2971262233895329 m005 (17/10+5/2*5^(1/2))/(-1/2+1/3*5^(1/2)) 2971262243123350 a007 Real Root Of -352*x^4-719*x^3+767*x^2-721*x-339 2971262244642713 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=47 2971262249046745 a001 1/6*(1/2*5^(1/2)+1/2)^31*18^(8/13) 2971262255511946 a007 Real Root Of 324*x^4-166*x^3-525*x^2-410*x+170 2971262256713265 m005 (1/3*3^(1/2)-2/9)/(9/10*3^(1/2)-4/11) 2971262270819050 a007 Real Root Of 385*x^4-542*x^3-295*x^2-891*x+302 2971262276757367 m001 (5^(1/2)-Psi(1,1/3))/(-CareFree+TreeGrowth2nd) 2971262278906956 r005 Re(z^2+c),c=-7/20+3/10*I,n=41 2971262282492040 l006 ln(393/7670) 2971262286959093 r005 Re(z^2+c),c=-7/20+3/10*I,n=45 2971262287615445 m001 (Psi(2,1/3)+ln(Pi))/(-Gompertz+PrimesInBinary) 2971262310789315 m001 HardHexagonsEntropy+(Pi^(1/2))^Kolakoski 2971262323696155 r005 Re(z^2+c),c=-4/11+4/17*I,n=16 2971262331662964 m001 GAMMA(1/3)^2/exp(TreeGrowth2nd)^2/Zeta(9) 2971262332673828 r008 a(0)=3,K{-n^6,-71+7*n^3+67*n^2+32*n} 2971262333082172 r009 Re(z^3+c),c=-19/54+32/51*I,n=21 2971262337244981 a007 Real Root Of -553*x^4-72*x^3+977*x^2+824*x+161 2971262345455126 r005 Re(z^2+c),c=-171/122+13/56*I,n=4 2971262363597662 m001 Niven^2/Cahen^2*exp((3^(1/3))) 2971262366784766 l006 ln(7298/9823) 2971262373683904 m001 (Pi^(1/2)-TwinPrimes)/(Pi+BesselK(1,1)) 2971262377791915 r009 Im(z^3+c),c=-61/114+17/57*I,n=27 2971262386926188 m008 (1/4*Pi^6-3/5)/(3/4*Pi^2+2/3) 2971262389791815 m008 (4/5*Pi^2-1/3)/(5/6*Pi^5-1/2) 2971262392836337 r008 a(0)=3,K{-n^6,-55+42*n+24*n^2+24*n^3} 2971262393957337 h002 exp(10^(1/4)/(11^(2/3)-3^(3/4))^(1/2)) 2971262397254239 r005 Im(z^2+c),c=-23/34+5/113*I,n=43 2971262403831629 r005 Re(z^2+c),c=-31/78+1/33*I,n=6 2971262405980221 h001 (7/11*exp(1)+2/5)/(8/9*exp(2)+3/5) 2971262410146370 m005 (1/2*exp(1)-8/9)/(11/12*exp(1)-10/11) 2971262411090861 m005 (1/2*Pi-1/10)/(4/5*2^(1/2)-7/11) 2971262414837287 m005 (1/2*gamma+1/6)/(5/8*exp(1)-1/6) 2971262417062066 r008 a(0)=3,K{-n^6,21+21*n^3+71*n^2-78*n} 2971262420298355 m005 (1/2*Zeta(3)-5)/(9/10*gamma-2) 2971262421636210 p004 log(18287/937) 2971262423275433 r008 a(0)=3,K{-n^6,-41+41*n+n^2+34*n^3} 2971262424140309 a007 Real Root Of -843*x^4-717*x^3-387*x^2+845*x+273 2971262424411516 a001 7/28657*2^(13/46) 2971262430639754 r002 10th iterates of z^2 + 2971262441409292 r008 a(0)=3,K{-n^6,-45+65*n-28*n^2+43*n^3} 2971262448839967 r008 a(0)=3,K{-n^6,7+38*n^3+13*n^2-23*n} 2971262454068247 r008 a(0)=3,K{-n^6,-19+30*n-21*n^2+45*n^3} 2971262462842807 r008 a(0)=3,K{-n^6,9-12*n-7*n^2+45*n^3} 2971262466309216 s001 sum(exp(-2*Pi/3)^n*A119146[n],n=1..infinity) 2971262467067229 r005 Im(z^2+c),c=-31/40+5/46*I,n=51 2971262467649609 m005 (1/2*Zeta(3)+10/11)/(11/12*exp(1)-3) 2971262467959158 r005 Re(z^2+c),c=-9/26+17/52*I,n=13 2971262474076714 r008 a(0)=3,K{-n^6,5+52*n^3-30*n^2+8*n} 2971262474080068 r008 a(0)=3,K{-n^6,-19+56*n^3-54*n^2+52*n} 2971262476696752 a007 Real Root Of -241*x^4-485*x^3+907*x^2+385*x-802 2971262481646398 a007 Real Root Of 663*x^4+337*x^3+930*x^2+163*x-30 2971262489576601 m001 (Lehmer-MertensB2)/(ln(2)+Kolakoski) 2971262498430774 r008 a(0)=3,K{-n^6,43+61*n^3-38*n^2-31*n} 2971262498839060 r005 Re(z^2+c),c=-43/122+11/38*I,n=27 2971262499208860 a007 Real Root Of -339*x^4-842*x^3+625*x^2+599*x+597 2971262501841136 a007 Real Root Of -185*x^4-503*x^3+189*x^2+244*x+281 2971262525958187 a007 Real Root Of -106*x^4+30*x^3+630*x^2-913*x+774 2971262526108294 m003 -3+ProductLog[1/2+Sqrt[5]/2]^2/20 2971262527587896 r008 a(0)=0,K{-n^6,4-4*n^3-3*n^2+35*n} 2971262529319741 m001 (GAMMA(7/12)+Sierpinski)/(exp(1/Pi)-gamma(2)) 2971262530378602 r005 Re(z^2+c),c=-9/29+24/55*I,n=36 2971262533013644 r005 Re(z^2+c),c=-93/118+1/39*I,n=34 2971262543903222 r009 Re(z^3+c),c=-12/31+5/16*I,n=27 2971262551662922 r009 Re(z^3+c),c=-7/38+52/53*I,n=46 2971262575909678 m005 (3/5*2^(1/2)-5/6)/(1/2*gamma-4/5) 2971262577238748 r005 Im(z^2+c),c=-29/94+2/45*I,n=17 2971262582938713 r005 Im(z^2+c),c=-8/27+29/64*I,n=14 2971262599313516 r002 61th iterates of z^2 + 2971262602109117 k002 Champernowne real with 149/2*n^2-363/2*n+136 2971262602784716 r009 Re(z^3+c),c=-53/114+13/29*I,n=33 2971262610466944 r008 a(0)=3,K{-n^6,20-14*n^3-23*n^2+51*n} 2971262615797185 m001 gamma(2)+Si(Pi)^(Pi^(1/2)) 2971262619717500 a007 Real Root Of 362*x^4+901*x^3-669*x^2-513*x-198 2971262621698236 r005 Re(z^2+c),c=-7/20+3/10*I,n=43 2971262628487721 a007 Real Root Of -796*x^4+345*x^3-57*x^2+237*x-7 2971262629155777 r009 Im(z^3+c),c=-11/29+9/38*I,n=4 2971262645700876 r002 45th iterates of z^2 + 2971262651744406 r005 Im(z^2+c),c=-16/17+11/42*I,n=30 2971262664644117 m001 TreeGrowth2nd^Porter*TreeGrowth2nd^Trott 2971262668928808 m001 (2^(1/2)-GAMMA(5/6))/(-Champernowne+Trott2nd) 2971262682143087 r005 Im(z^2+c),c=-23/118+10/23*I,n=19 2971262689275057 r009 Re(z^3+c),c=-5/8+19/64*I,n=18 2971262701357436 r005 Im(z^2+c),c=5/18+14/47*I,n=5 2971262715143865 s001 sum(exp(-Pi/4)^(n-1)*A240244[n],n=1..infinity) 2971262717660983 a001 1/39596*(1/2*5^(1/2)+1/2)^21*521^(13/21) 2971262718506318 r005 Re(z^2+c),c=-7/20+3/10*I,n=40 2971262719760576 m001 (FeigenbaumAlpha+FeigenbaumD)/KhinchinHarmonic 2971262729987419 m005 (1/3*2^(1/2)+1/4)/(1/2*Pi+6/7) 2971262744894127 m001 (BesselJ(1,1)-BesselI(1,2))/(Bloch-Thue) 2971262747861966 a007 Real Root Of 226*x^4+718*x^3+397*x^2+548*x-657 2971262765772974 m005 (1/3*Zeta(3)+1/3)/(9/11*Pi-1/10) 2971262766802578 m001 (MertensB2-Tribonacci)/(ln(3)+ln(5)) 2971262772719938 a001 6/7*591286729879^(5/9) 2971262781037177 m005 (1/2*gamma+6/11)/(7/9*Pi+4/11) 2971262786153797 a007 Real Root Of -177*x^4-246*x^3+874*x^2-86*x-629 2971262814467834 a007 Real Root Of -986*x^4+737*x^3-978*x^2+995*x+409 2971262815641975 m002 -Pi^4+Pi^9+ProductLog[Pi]/Log[Pi] 2971262817168193 a001 86267571272/199*199^(4/11) 2971262818688463 a009 1/14*3^(1/2)-1/14*3^(1/4) 2971262825854445 r009 Re(z^3+c),c=-45/122+7/13*I,n=4 2971262840858104 m001 BesselK(0,1)^2/ln(FibonacciFactorial)/cos(1)^2 2971262842374879 m001 Conway/PlouffeB*Trott 2971262852623253 q001 1127/3793 2971262866238069 m001 MertensB1^2/ln(Conway)^2*MadelungNaCl^2 2971262871252398 s002 sum(A053564[n]/(n*exp(pi*n)-1),n=1..infinity) 2971262878107843 m001 HardyLittlewoodC3^Salem/(Grothendieck^Salem) 2971262887304282 r008 a(0)=3,K{-n^6,-60+27*n+55*n^2+13*n^3} 2971262887767147 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=42 2971262890699240 m001 LambertW(1)^2*GAMMA(1/24)^2*exp(sin(Pi/12))^2 2971262901759553 r005 Re(z^2+c),c=2/25+10/47*I,n=18 2971262907296278 r005 Re(z^2+c),c=-7/20+3/10*I,n=35 2971262908476478 r005 Im(z^2+c),c=-11/19+1/51*I,n=10 2971262912399511 r005 Re(z^2+c),c=37/114+23/60*I,n=11 2971262914506640 m001 sin(1/12*Pi)+ln(2+3^(1/2))+HardHexagonsEntropy 2971262915393763 m001 (MasserGramain+Otter)/(ln(gamma)-LaplaceLimit) 2971262942970409 a007 Real Root Of 323*x^4+666*x^3-995*x^2-362*x+4 2971262947703227 r008 a(0)=3,K{-n^6,-68+37*n^3-21*n^2+87*n} 2971262950735284 r008 a(0)=3,K{-n^6,-42+42*n+n^2+34*n^3} 2971262960286325 r008 a(0)=3,K{-n^6,-40+47*n-10*n^2+38*n^3} 2971262960920216 r005 Im(z^2+c),c=11/90+17/52*I,n=4 2971262970631055 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=40 2971262970738148 a007 Real Root Of -511*x^4+885*x^3-545*x^2+528*x-128 2971262991230058 a005 (1/cos(12/229*Pi))^80 2971262995508116 m009 (3*Psi(1,1/3)-1/2)/(3*Psi(1,2/3)+5/6) 2971263013028080 r008 a(0)=3,K{-n^6,-12+62*n^3-68*n^2+53*n} 2971263013763124 b008 Pi+31*Tanh[Glaisher] 2971263014585459 m009 (1/8*Pi^2+2)/(3/5*Psi(1,2/3)-3/4) 2971263016656543 r008 a(0)=3,K{-n^6,50-56*n-13*n^2+54*n^3} 2971263020803226 r005 Re(z^2+c),c=-25/98+25/46*I,n=32 2971263025426467 m001 (FeigenbaumMu-TwinPrimes)/(ln(Pi)+Zeta(1,-1)) 2971263030601669 m002 5-E^Pi/Pi^2+Pi^5-Sinh[Pi] 2971263030858789 r008 a(0)=3,K{-n^6,11-2*n+54*n^2-31*n^3} 2971263043556533 a007 Real Root Of 283*x^4+418*x^3-954*x^2+621*x-825 2971263047329229 p004 log(18121/13463) 2971263056794617 r008 a(0)=3,K{-n^6,49-6*n-n^2-9*n^3} 2971263083984483 a007 Real Root Of -873*x^4-534*x^3+18*x^2+107*x+23 2971263084910730 m001 (exp(Pi)+Ei(1,1))/(Champernowne+LaplaceLimit) 2971263088663729 m001 (2^(1/3))^ln(2^(1/2)+1)+KhinchinHarmonic 2971263145922770 l006 ln(151/2947) 2971263157580808 m001 (GAMMA(2/3)-cos(1/12*Pi))/(Bloch+GaussAGM) 2971263164046829 r005 Re(z^2+c),c=-11/14+28/205*I,n=36 2971263171310898 g006 Psi(1,2/11)-Psi(1,5/12)-Psi(1,5/9)-Psi(1,1/7) 2971263172045104 m001 Salem/Kolakoski^2*ln(log(1+sqrt(2)))^2 2971263182051532 b008 3+20*E^5 2971263192118784 r009 Re(z^3+c),c=-55/126+25/63*I,n=28 2971263192519449 a001 46/1515744265389*377^(17/22) 2971263202896771 a003 sin(Pi*11/104)*sin(Pi*35/96) 2971263206881905 m002 -Pi^4/3+3*Pi^2*Tanh[Pi] 2971263209465894 m001 (gamma(2)+Paris)/(ln(3)+Ei(1)) 2971263211751330 p003 LerchPhi(1/5,2,394/205) 2971263213151112 k006 concat of cont frac of 2971263224338157 h001 (6/7*exp(2)+8/11)/(5/6*exp(1)+1/9) 2971263224370033 m005 (1/3*Zeta(3)+3/4)/(11/12*2^(1/2)-10/11) 2971263224834065 h001 (2/11*exp(2)+11/12)/(11/12*exp(2)+5/6) 2971263228233746 r009 Im(z^3+c),c=-13/126+23/28*I,n=32 2971263233590750 a003 cos(Pi*4/105)/cos(Pi*23/47) 2971263238972919 m009 (3/4*Psi(1,2/3)-2/5)/(Psi(1,2/3)-3) 2971263240604371 a001 4/317811*34^(26/29) 2971263262602789 a007 Real Root Of 168*x^4+109*x^3-926*x^2+915*x+659 2971263266443895 r009 Im(z^3+c),c=-3/86+23/29*I,n=2 2971263278144156 m001 LaplaceLimit^2/exp(Cahen)/log(1+sqrt(2))^2 2971263286947581 r009 Im(z^3+c),c=-31/114+17/61*I,n=17 2971263296360148 m002 -5-3*Pi^4+Tanh[Pi]/Pi^2 2971263301664491 r009 Im(z^3+c),c=-45/106+9/46*I,n=33 2971263308188261 a007 Real Root Of -384*x^4-986*x^3+755*x^2+749*x-375 2971263309602720 m001 (2^(1/2))^Shi(1)+GAMMA(7/12) 2971263310340384 m001 (MertensB2-exp(Pi))^Tribonacci 2971263312259992 m005 (1/3*Catalan+3/7)/(4/7*exp(1)+11/12) 2971263319627191 m005 (1/3*5^(1/2)-1/7)/(4/7*5^(1/2)+3/4) 2971263320382691 r009 Im(z^3+c),c=-23/44+1/6*I,n=59 2971263320889902 s002 sum(A104690[n]/(n^2*10^n+1),n=1..infinity) 2971263324799623 m001 (Landau-ZetaQ(4))/MasserGramainDelta 2971263326706171 a007 Real Root Of 938*x^4-982*x^3-293*x^2-871*x-266 2971263339333338 r005 Im(z^2+c),c=-47/122+18/35*I,n=54 2971263353273704 r005 Re(z^2+c),c=-47/98+22/43*I,n=55 2971263374098410 m008 (4/5*Pi-3/5)/(2/3*Pi^6+3) 2971263382458270 r009 Re(z^3+c),c=-15/52+17/25*I,n=9 2971263382892100 r002 17th iterates of z^2 + 2971263391262911 m001 FeigenbaumC^2*GolombDickman/exp(GAMMA(5/12))^2 2971263398623500 a007 Real Root Of 287*x^4-835*x^3-397*x^2-693*x-195 2971263404082488 m001 (Bloch-Porter)/(Pi+exp(-1/2*Pi)) 2971263407964113 r009 Re(z^3+c),c=-35/78+23/54*I,n=13 2971263408792071 m005 (1/2*5^(1/2)-7/8)/(6/7*3^(1/2)-2/3) 2971263419551170 a007 Real Root Of -372*x^4-876*x^3+408*x^2-934*x-362 2971263424654894 m001 3^(1/3)*KhinchinLevy/Stephens 2971263427176196 m001 exp(GAMMA(23/24))^2*Tribonacci^2*GAMMA(5/6) 2971263433404738 r008 a(0)=3,K{-n^6,-53+19*n^3+41*n^2+28*n} 2971263445913838 r008 a(0)=3,K{-n^6,-55+41*n+25*n^2+24*n^3} 2971263448152893 h001 (10/11*exp(2)+7/12)/(7/11*exp(1)+8/11) 2971263448985387 m001 (1+PisotVijayaraghavan)/(-Thue+ZetaP(4)) 2971263459310971 r008 a(0)=3,K{-n^6,-47+37*n+17*n^2+28*n^3} 2971263470045524 a007 Real Root Of -154*x^4-396*x^3+349*x^2+490*x-10 2971263471852854 r008 a(0)=3,K{-n^6,-69+37*n^3-21*n^2+88*n} 2971263474096228 r008 a(0)=3,K{-n^6,-9-20*n+36*n^2+28*n^3} 2971263478106886 l006 ln(5869/6046) 2971263478177798 r009 Re(z^3+c),c=-17/60+3/31*I,n=3 2971263484307327 r008 a(0)=3,K{-n^6,-41+48*n-10*n^2+38*n^3} 2971263485705055 r008 a(0)=3,K{-n^6,17-57*n+46*n^2+29*n^3} 2971263489669527 r005 Re(z^2+c),c=-5/48+23/40*I,n=11 2971263489843820 a003 -2^(1/2)+cos(3/7*Pi)-1/2*3^(1/2)-cos(2/15*Pi) 2971263493295521 r008 a(0)=3,K{-n^6,-45+64*n-27*n^2+43*n^3} 2971263494626378 r008 a(0)=3,K{-n^6,13-41*n+29*n^2+34*n^3} 2971263497290630 r008 a(0)=3,K{-n^6,-21+24*n-9*n^2+41*n^3} 2971263503717969 a007 Real Root Of -203*x^4-995*x^3-945*x^2+851*x+593 2971263508395085 b008 4*E^2+Pi/E^3 2971263517190539 r008 a(0)=3,K{-n^6,-17+38*n-37*n^2+51*n^3} 2971263522382099 r008 a(0)=3,K{-n^6,25+47*n^3-4*n^2-33*n} 2971263522951058 r008 a(0)=3,K{-n^6,15-14*n-15*n^2+49*n^3} 2971263523320363 m001 (Ei(1)-MertensB2)/(cos(1/5*Pi)-ln(3)) 2971263524643491 r008 a(0)=3,K{-n^6,3+10*n-30*n^2+52*n^3} 2971263527724600 a007 Real Root Of -466*x^4+825*x^3+921*x^2+746*x-23 2971263542996766 r009 Im(z^3+c),c=-31/114+17/61*I,n=18 2971263552332556 r008 a(0)=3,K{-n^6,39-20*n-48*n^2+64*n^3} 2971263559121093 a009 1/22*(11+22*3^(1/3))^(1/2) 2971263560104917 r005 Im(z^2+c),c=-11/52+43/53*I,n=63 2971263561541339 s002 sum(A092704[n]/((2*n)!),n=1..infinity) 2971263575162541 m001 (Grothendieck-ThueMorse)/(ZetaP(2)+ZetaQ(3)) 2971263582999534 r005 Im(z^2+c),c=-19/60+25/52*I,n=51 2971263588264809 m001 (GAMMA(7/12)+Gompertz)/(Pi^(1/2)-Shi(1)) 2971263605109717 k002 Champernowne real with 75*n^2-183*n+137 2971263605260646 r009 Im(z^3+c),c=-31/114+17/61*I,n=21 2971263605338772 r005 Re(z^2+c),c=-35/114+25/56*I,n=48 2971263608741336 m005 (-1/2+1/6*5^(1/2))/(5/6*2^(1/2)-3/4) 2971263611621333 r005 Im(z^2+c),c=-11/94+19/46*I,n=9 2971263612889909 r009 Im(z^3+c),c=-31/114+17/61*I,n=20 2971263613229511 m001 exp(Pi)/BesselK(1,1)^2/arctan(1/2)^2 2971263616167493 r009 Im(z^3+c),c=-31/114+17/61*I,n=24 2971263617009344 r009 Im(z^3+c),c=-31/114+17/61*I,n=27 2971263617022988 r009 Im(z^3+c),c=-31/114+17/61*I,n=28 2971263617027071 r009 Im(z^3+c),c=-31/114+17/61*I,n=25 2971263617040119 r009 Im(z^3+c),c=-31/114+17/61*I,n=31 2971263617041963 r009 Im(z^3+c),c=-31/114+17/61*I,n=34 2971263617042051 r009 Im(z^3+c),c=-31/114+17/61*I,n=35 2971263617042070 r009 Im(z^3+c),c=-31/114+17/61*I,n=38 2971263617042072 r009 Im(z^3+c),c=-31/114+17/61*I,n=37 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=41 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=44 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=45 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=48 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=42 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=51 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=52 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=55 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=54 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=58 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=61 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=62 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=64 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=63 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=59 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=60 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=57 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=56 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=53 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=50 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=49 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=47 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=46 2971263617042073 r009 Im(z^3+c),c=-31/114+17/61*I,n=43 2971263617042074 r009 Im(z^3+c),c=-31/114+17/61*I,n=40 2971263617042075 r009 Im(z^3+c),c=-31/114+17/61*I,n=39 2971263617042097 r009 Im(z^3+c),c=-31/114+17/61*I,n=36 2971263617042347 r009 Im(z^3+c),c=-31/114+17/61*I,n=33 2971263617042349 r009 Im(z^3+c),c=-31/114+17/61*I,n=32 2971263617043070 r009 Im(z^3+c),c=-31/114+17/61*I,n=30 2971263617052086 r009 Im(z^3+c),c=-31/114+17/61*I,n=29 2971263617196272 r009 Im(z^3+c),c=-31/114+17/61*I,n=26 2971263618291076 r009 Im(z^3+c),c=-31/114+17/61*I,n=23 2971263618977153 r009 Re(z^3+c),c=-19/34+26/51*I,n=11 2971263619120732 r002 31th iterates of z^2 + 2971263620456119 r009 Im(z^3+c),c=-31/114+17/61*I,n=22 2971263624132265 r009 Re(z^3+c),c=-37/82+29/57*I,n=48 2971263624576112 a007 Real Root Of 290*x^4+789*x^3-108*x^2+11*x-920 2971263628419831 a007 Real Root Of -329*x^4-806*x^3+530*x^2-214*x-815 2971263635977757 q001 7/23559 2971263646110896 r005 Im(z^2+c),c=-19/60+25/52*I,n=36 2971263653706524 r005 Im(z^2+c),c=-35/94+24/47*I,n=44 2971263655106326 a007 Real Root Of 280*x^4+852*x^3+185*x^2+264*x-323 2971263661911169 a007 Real Root Of -286*x^4-810*x^3+403*x^2+824*x-66 2971263681389161 r008 a(0)=3,K{-n^6,10+36*n+4*n^2-17*n^3} 2971263690903194 r009 Im(z^3+c),c=-31/114+17/61*I,n=19 2971263702005951 m001 1/Trott/exp(Niven)*sqrt(Pi) 2971263702299716 r008 a(0)=3,K{-n^6,16-5*n+41*n^2-23*n^3} 2971263703165824 a007 Real Root Of -50*x^4+707*x^3-997*x^2+367*x+216 2971263742036110 m001 (-BesselJ(1,1)+GaussAGM)/(Ei(1)-LambertW(1)) 2971263746069378 r002 8th iterates of z^2 + 2971263757236921 m001 gamma(2)-ln(2)*PrimesInBinary 2971263760848736 r005 Im(z^2+c),c=-37/122+21/44*I,n=34 2971263773349227 a001 987/3571*76^(17/31) 2971263781196724 m005 (1/2*Catalan-5/11)/(7/9*Catalan+4/9) 2971263784002923 m009 (16/3*Catalan+2/3*Pi^2-1/4)/(2/5*Psi(1,2/3)-5) 2971263785641678 a007 Real Root Of -192*x^4-204*x^3+963*x^2-604*x-683 2971263786681477 r002 2th iterates of z^2 + 2971263788341816 r005 Re(z^2+c),c=-31/114+4/5*I,n=3 2971263789057111 r005 Re(z^2+c),c=-10/13+3/56*I,n=46 2971263807380895 l006 ln(513/10012) 2971263818960171 r005 Re(z^2+c),c=-9/31+23/47*I,n=37 2971263824447417 m001 Zeta(3)^2*GAMMA(3/4)*exp(sin(Pi/12))^2 2971263825606263 a007 Real Root Of 277*x^4+800*x^3-262*x^2-290*x+847 2971263849416449 r009 Re(z^3+c),c=-29/74+11/37*I,n=7 2971263852943685 l006 ln(685/922) 2971263860530089 m001 (3^(1/2)+ArtinRank2)^FibonacciFactorial 2971263863587620 m001 (2^(1/2)-LambertW(1))/(ln(gamma)+GaussAGM) 2971263866850918 r005 Re(z^2+c),c=-31/110+24/55*I,n=10 2971263872529803 r005 Im(z^2+c),c=-43/110+31/59*I,n=51 2971263879221954 m005 (1/2*3^(1/2)-7/10)/(5/7*gamma-6) 2971263879256153 m001 Pi*Psi(1,1/3)-Shi(1)*Ei(1) 2971263879794149 r009 Im(z^3+c),c=-17/62+17/61*I,n=3 2971263886519255 a003 cos(Pi*23/80)*cos(Pi*31/91) 2971263890431628 r002 59i'th iterates of 2*x/(1-x^2) of 2971263893704654 a007 Real Root Of -680*x^4+668*x^3-74*x^2+240*x-77 2971263915370830 m002 -Pi^3/6+Pi^5-4/ProductLog[Pi] 2971263927486872 r009 Im(z^3+c),c=-13/32+11/54*I,n=7 2971263931765667 r005 Re(z^2+c),c=5/118+5/46*I,n=4 2971263934000973 a007 Real Root Of -279*x^4-567*x^3+705*x^2-481*x-781 2971263934945747 a007 Real Root Of 457*x^4+971*x^3-830*x^2+642*x-913 2971263950355664 r005 Re(z^2+c),c=-35/122+19/39*I,n=20 2971263959455113 m001 (cos(1)-ln(2)/ln(10))/(-GAMMA(13/24)+GaussAGM) 2971263960963795 r005 Im(z^2+c),c=-23/62+1/2*I,n=43 2971263966545787 m008 (5*Pi^5+1/5)/(1/6*Pi^5+1/2) 2971263967012947 r008 a(0)=3,K{-n^6,-32-2*n+49*n^2+20*n^3} 2971263969563644 r008 a(0)=3,K{-n^6,-20+19*n^3+58*n^2-22*n} 2971263970984150 m002 -Pi^3+3*Csch[Pi]*Log[Pi]+Tanh[Pi] 2971263974654922 m005 (5*gamma-1/3)/(3*Pi-5/6) 2971263976378510 a007 Real Root Of 187*x^4+201*x^3-821*x^2+965*x+813 2971263976947883 r009 Re(z^3+c),c=-35/82+25/59*I,n=11 2971263977044802 r008 a(0)=3,K{-n^6,-38+17*n+31*n^2+25*n^3} 2971263980280069 r008 a(0)=3,K{-n^6,-48+38*n+17*n^2+28*n^3} 2971263986811783 r002 47th iterates of z^2 + 2971263988253230 m001 (Chi(1)+sin(1))/(-BesselI(0,1)+FeigenbaumC) 2971263996399052 r008 a(0)=3,K{-n^6,-42+41*n+2*n^2+34*n^3} 2971264001462139 s001 sum(exp(-3*Pi)^(n-1)*A124595[n],n=1..infinity) 2971264003119788 m001 1/MadelungNaCl/Khintchine^2*exp(TwinPrimes)^2 2971264006375550 r002 22th iterates of z^2 + 2971264006403509 r008 a(0)=3,K{-n^6,16-56*n+46*n^2+29*n^3} 2971264007195875 m008 (1/3*Pi+5)/(1/4*Pi^4-4) 2971264017872580 r008 a(0)=3,K{-n^6,-22+25*n-9*n^2+41*n^3} 2971264018511107 r008 a(0)=3,K{-n^6,40+31*n^3+52*n^2-88*n} 2971264019478659 r005 Im(z^2+c),c=-91/110+1/60*I,n=33 2971264021565180 m001 (GaussAGM+ThueMorse)/(Pi+GAMMA(11/12)) 2971264038729375 r008 a(0)=3,K{-n^6,10+47*n^3-11*n^2-11*n} 2971264041272515 b008 (2*Sqrt[2/5])/5+E 2971264046614738 r008 a(0)=3,K{-n^6,-10+35*n-45*n^2+55*n^3} 2971264054944418 a007 Real Root Of 308*x^4+824*x^3-549*x^2-807*x+58 2971264055164569 r008 a(0)=3,K{-n^6,52+50*n^3+n^2-68*n} 2971264057456113 r009 Im(z^3+c),c=-8/15+19/56*I,n=51 2971264072326730 a001 1/4*(1/2*5^(1/2)+1/2)^16*29^(1/2) 2971264077448636 a003 cos(Pi*5/59)/cos(Pi*15/38) 2971264079656902 a001 317811/7*3571^(23/45) 2971264083292856 l006 ln(362/7065) 2971264089703571 r005 Re(z^2+c),c=5/23+2/49*I,n=7 2971264095351469 a001 2584/9349*76^(17/31) 2971264098859241 m001 cos(1/5*Pi)+MadelungNaCl+PrimesInBinary 2971264115161113 k006 concat of cont frac of 2971264120660847 a003 sin(Pi*8/63)*sin(Pi*28/101) 2971264121051780 a007 Real Root Of -208*x^4-876*x^3-743*x^2-161*x-686 2971264121621333 m008 (2*Pi^6+4/5)/(2/3*Pi^4-1/5) 2971264125444323 r005 Re(z^2+c),c=-23/82+15/29*I,n=55 2971264129678649 m001 (sin(1/5*Pi)+Khinchin)/(Robbin+TreeGrowth2nd) 2971264135015744 m005 (1/2*Catalan+3/4)/(2/7*Zeta(3)-3/4) 2971264142330959 a001 6765/24476*76^(17/31) 2971264145700366 a007 Real Root Of 3*x^4+890*x^3-408*x^2+539*x+380 2971264148781866 a007 Real Root Of -902*x^4+267*x^3+254*x^2+904*x-291 2971264149185174 a001 17711/64079*76^(17/31) 2971264149502391 m002 -3-Pi^4+6*Cosh[Pi]+Log[Pi] 2971264150185191 a001 46368/167761*76^(17/31) 2971264150331091 a001 121393/439204*76^(17/31) 2971264150352378 a001 317811/1149851*76^(17/31) 2971264150355483 a001 832040/3010349*76^(17/31) 2971264150356217 a001 1346269/4870847*76^(17/31) 2971264150357403 a001 514229/1860498*76^(17/31) 2971264150365534 a001 196418/710647*76^(17/31) 2971264150421263 a001 75025/271443*76^(17/31) 2971264150803235 a001 28657/103682*76^(17/31) 2971264153421312 a001 10946/39603*76^(17/31) 2971264166219921 a001 228826127/34*13^(11/19) 2971264170519187 b008 2/17+E^(-2)+E 2971264171365880 a001 4181/15127*76^(17/31) 2971264173207534 m002 -ProductLog[Pi]/8+5*Sech[Pi] 2971264176305378 r005 Im(z^2+c),c=-17/58+17/36*I,n=50 2971264176920555 m001 (exp(1/exp(1))+GaussAGM)/(Kolakoski-Trott2nd) 2971264177913424 m001 (KhinchinLevy-TwinPrimes)/(Ei(1)-Champernowne) 2971264181022667 r005 Re(z^2+c),c=-7/22+9/22*I,n=22 2971264200655600 a001 28657/7*39603^(28/45) 2971264211219279 m005 (-9/28+1/4*5^(1/2))/(3/10*Pi-1/7) 2971264211949113 m005 (19/42+1/6*5^(1/2))/(7/9*Pi+1/3) 2971264212483174 h001 (-2*exp(-2)+4)/(-6*exp(3)-5) 2971264220918502 a001 2504730781961/18*29^(10/11) 2971264238557796 a007 Real Root Of -298*x^4+850*x^3-184*x^2+950*x-286 2971264248539572 a007 Real Root Of -221*x^4-411*x^3+799*x^2+378*x+513 2971264266358841 m001 GAMMA(23/24)*ln(Si(Pi))/GAMMA(5/12) 2971264272304879 a007 Real Root Of -490*x^4-670*x^3-433*x^2+793*x-176 2971264278500108 r009 Im(z^3+c),c=-7/78+53/64*I,n=48 2971264278979591 m001 (FeigenbaumB+Otter)/(Paris+Salem) 2971264294359777 a001 1597/5778*76^(17/31) 2971264297515505 m001 (Paris-Sarnak)/(Khinchin-LandauRamanujan2nd) 2971264299760798 a001 2207/8*55^(1/54) 2971264326548453 r008 a(0)=3,K{-n^6,50+10*n-14*n^2-12*n^3} 2971264330576244 r005 Re(z^2+c),c=-43/98+2/61*I,n=4 2971264335558246 r009 Im(z^3+c),c=-7/20+11/45*I,n=18 2971264336159851 p001 sum(1/(563*n+367)/(5^n),n=0..infinity) 2971264338761775 m001 (Shi(1)-ln(2))/GAMMA(3/4) 2971264342855861 a001 233/1149851*199^(49/52) 2971264344560297 m001 (-Pi^(1/2)+Bloch)/(2^(1/2)-Si(Pi)) 2971264347223851 r005 Im(z^2+c),c=-61/98+13/29*I,n=62 2971264361514207 m001 (Ei(1)-Psi(1,1/3))/(FeigenbaumB+Tetranacci) 2971264367816091 q001 517/174 2971264367816091 r002 2th iterates of z^2 + 2971264367816091 r005 Im(z^2+c),c=-38/29+11/60*I,n=2 2971264378565849 r009 Im(z^3+c),c=-31/114+17/61*I,n=15 2971264382822776 r009 Re(z^3+c),c=-27/64+32/57*I,n=31 2971264387581378 a007 Real Root Of 341*x^4+798*x^3-677*x^2+27*x+412 2971264388378964 m001 GAMMA(1/3)^GAMMA(19/24)-exp(-1/2*Pi) 2971264415645879 a001 1346269/7*2207^(16/45) 2971264423886968 a007 Real Root Of 273*x^4+523*x^3-533*x^2+967*x+20 2971264431936973 r008 a(0)=3,K{-n^6,-71+8*n^3+66*n^2+32*n} 2971264434573384 a001 18/233*75025^(3/25) 2971264447964775 m001 (Backhouse+OneNinth)/(3^(1/3)-Catalan) 2971264454470245 m005 (1/2*2^(1/2)+5/9)/(7/12*2^(1/2)-2/5) 2971264473503426 r008 a(0)=3,K{-n^6,-53+19*n^3+42*n^2+27*n} 2971264484840060 r008 a(0)=3,K{-n^6,-33-n+49*n^2+20*n^3} 2971264485146929 r009 Im(z^3+c),c=-31/114+17/61*I,n=16 2971264485847477 a008 Real Root of x^2-x-87987 2971264494767008 r008 a(0)=3,K{-n^6,-39+18*n+31*n^2+25*n^3} 2971264499903350 m001 (-HardyLittlewoodC4+MertensB2)/(Chi(1)+ln(5)) 2971264501992162 m001 BesselI(0,2)^Otter/(Sarnak^Otter) 2971264505203403 a007 Real Root Of -235*x^4-427*x^3+595*x^2-615*x+35 2971264505839902 r002 4th iterates of z^2 + 2971264510993720 r008 a(0)=3,K{-n^6,-69+37*n^3-20*n^2+87*n} 2971264516108955 r004 Im(z^2+c),c=1/5+2/9*I,z(0)=exp(7/8*I*Pi),n=14 2971264518491123 r005 Im(z^2+c),c=-9/23+32/63*I,n=44 2971264523148012 r008 a(0)=3,K{-n^6,-41+47*n-9*n^2+38*n^3} 2971264523466248 r002 15th iterates of z^2 + 2971264524410254 a001 1/377*2584^(42/47) 2971264526030052 r009 Re(z^3+c),c=-11/40+2/39*I,n=4 2971264529691614 r009 Re(z^3+c),c=-29/70+23/64*I,n=29 2971264540892322 r008 a(0)=3,K{-n^6,7+39*n^3+12*n^2-23*n} 2971264545824226 r008 a(0)=3,K{-n^6,-19+30*n-22*n^2+46*n^3} 2971264551200196 r008 a(0)=3,K{-n^6,-25+47*n-37*n^2+50*n^3} 2971264556952978 m001 (5^(1/2)-Ei(1,1))/(sin(1/12*Pi)+Zeta(1,2)) 2971264560986338 a001 1/843*(1/2*5^(1/2)+1/2)^6*76^(14/23) 2971264564721739 r008 a(0)=3,K{-n^6,5+53*n^3-31*n^2+8*n} 2971264564724807 r008 a(0)=3,K{-n^6,-19+57*n^3-55*n^2+52*n} 2971264565297001 s002 sum(A039680[n]/(exp(pi*n)+1),n=1..infinity) 2971264565687275 r009 Re(z^3+c),c=-11/122+31/41*I,n=58 2971264572623377 r008 a(0)=3,K{-n^6,35+53*n^3-16*n^2-37*n} 2971264575816764 a007 Real Root Of 238*x^4-821*x^3+238*x^2-598*x-18 2971264578005494 r009 Im(z^3+c),c=-37/64+10/43*I,n=4 2971264592054074 r005 Im(z^2+c),c=-15/62+4/9*I,n=15 2971264592344608 r008 a(0)=3,K{-n^6,63-61*n-29*n^2+62*n^3} 2971264592649033 m001 (Khinchin+ZetaP(4))/(Artin-Conway) 2971264598648652 a007 Real Root Of 257*x^4+818*x^3+41*x^2-117*x+717 2971264598903583 b008 1/2+Sqrt[5+ArcTan[2]] 2971264608110317 k002 Champernowne real with 151/2*n^2-369/2*n+138 2971264612971845 r009 Re(z^3+c),c=-53/118+19/39*I,n=31 2971264628925989 s002 sum(A069165[n]/((10^n-1)/n),n=1..infinity) 2971264629166675 r009 Im(z^3+c),c=-21/34+16/53*I,n=9 2971264630378284 m001 1/ln(cosh(1))/GlaisherKinkelin*sqrt(1+sqrt(3)) 2971264631595983 m001 (Catalan+gamma(3))/(-PrimesInBinary+Sarnak) 2971264644256398 a007 Real Root Of 854*x^4+654*x^3+120*x^2-555*x-165 2971264647855651 a007 Real Root Of -52*x^4+427*x^3+45*x^2+859*x-270 2971264648232959 a007 Real Root Of -910*x^4-763*x^3-969*x^2+496*x+220 2971264659748599 m005 (1/2*5^(1/2)+7/9)/(-81/220+9/20*5^(1/2)) 2971264672961991 r005 Im(z^2+c),c=-19/26+13/71*I,n=41 2971264690263289 r005 Re(z^2+c),c=-47/122+1/49*I,n=23 2971264707865359 m001 (ArtinRank2+MasserGramain)/ZetaP(2) 2971264707963325 m001 (Paris+TwinPrimes)/(Pi-sin(1/5*Pi)) 2971264737279210 a001 196418/123*123^(4/31) 2971264737337187 r009 Re(z^3+c),c=-37/122+5/34*I,n=9 2971264738597282 r005 Im(z^2+c),c=-7/40+23/54*I,n=23 2971264740625842 m001 (sin(1/12*Pi)+HeathBrownMoroz)/ZetaQ(3) 2971264745348785 m001 1/exp(GAMMA(1/24))^2*Catalan*log(1+sqrt(2))^2 2971264753044594 r009 Im(z^3+c),c=-37/114+9/35*I,n=12 2971264754111668 l006 ln(211/4118) 2971264775572840 m001 GAMMA(19/24)^TreeGrowth2nd-StronglyCareFree 2971264776449843 m005 (1/3*Pi+1/2)/(9/11*2^(1/2)-7/11) 2971264784032298 a007 Real Root Of -994*x^4-68*x^3+210*x^2+525*x-165 2971264789276263 a009 11^(3/4)*(2^(1/3)+7^(2/3)) 2971264793812357 a005 (1/sin(16/207*Pi))^46 2971264816668896 r005 Im(z^2+c),c=-7/90+23/60*I,n=21 2971264835966023 r005 Im(z^2+c),c=29/90+9/64*I,n=7 2971264845105172 m001 Pi-1/3*ln(2)/ln(10)/GAMMA(3/4)*3^(2/3) 2971264906115997 r008 a(0)=3,K{-n^6,26+58*n-44*n^2-6*n^3} 2971264907364919 m002 -1+Pi^3-Cosh[Pi]/(4*Pi^2) 2971264920569069 a001 76/28657*1597^(19/58) 2971264921488602 m001 Catalan/(2^(1/3)+MasserGramainDelta) 2971264927520795 r005 Re(z^2+c),c=-6/25+49/60*I,n=16 2971264949493473 r005 Re(z^2+c),c=-19/70+17/31*I,n=50 2971264955455252 r005 Re(z^2+c),c=-47/60+1/8*I,n=16 2971264955699389 a001 3/2207*3571^(47/50) 2971264957996042 a003 sin(Pi*14/69)-sin(Pi*20/57) 2971264960794845 r005 Re(z^2+c),c=-7/20+3/10*I,n=36 2971264962194694 m001 5^(1/2)+sin(1)^Grothendieck 2971264970347361 a007 Real Root Of 326*x^4+671*x^3-658*x^2+652*x-61 2971264971164393 m001 3^(1/3)/(TwinPrimes-ZetaP(3)) 2971264981160551 a001 139583862445/322*123^(2/5) 2971264988198627 r008 a(0)=3,K{-n^6,-54+19*n^3+42*n^2+28*n} 2971264996169166 a007 Real Root Of 928*x^4-685*x^3+391*x^2-738*x-279 2971264997594039 m001 Zeta(1/2)^2*Conway/exp(sqrt(5)) 2971264998797350 r009 Im(z^3+c),c=-13/56+7/24*I,n=7 2971265006044663 m001 LaplaceLimit^2*GlaisherKinkelin^2*exp(sqrt(2)) 2971265008626319 r002 2th iterates of z^2 + 2971265013190037 r008 a(0)=3,K{-n^6,-48+37*n+18*n^2+28*n^3} 2971265023085787 r008 a(0)=3,K{-n^6,-58+64*n-5*n^2+34*n^3} 2971265027219023 r005 Im(z^2+c),c=-35/66+23/50*I,n=56 2971265030151981 a009 1/13*5^(1/2)+1/13*7^(1/4) 2971265038680869 r008 a(0)=3,K{-n^6,16-57*n+47*n^2+29*n^3} 2971265049878849 r008 a(0)=3,K{-n^6,-22+24*n-8*n^2+41*n^3} 2971265052092309 h001 (5/6*exp(2)+5/11)/(2/9*exp(2)+7/12) 2971265057612124 m001 (-Zeta(1,-1)+Backhouse)/(Psi(2,1/3)-ln(gamma)) 2971265065675178 r008 a(0)=3,K{-n^6,36+40*n^3+24*n^2-65*n} 2971265073044781 r008 a(0)=3,K{-n^6,32-49*n+7*n^2+45*n^3} 2971265084318449 a003 cos(Pi*11/103)/cos(Pi*27/68) 2971265092720180 m001 Backhouse*exp(Artin)^2*cos(Pi/12) 2971265093282535 r008 a(0)=3,K{-n^6,50-56*n-14*n^2+55*n^3} 2971265096173992 r008 a(0)=3,K{-n^6,20+62*n^3-50*n^2+3*n} 2971265096593845 r005 Re(z^2+c),c=-4/13+4/9*I,n=51 2971265105855663 r008 a(0)=3,K{-n^6,62-60*n-29*n^2+62*n^3} 2971265107225047 m001 (sin(1/5*Pi)-FransenRobinson)/(Lehmer-Totient) 2971265132879868 r004 Im(z^2+c),c=-27/22+2/11*I,z(0)=-1,n=21 2971265137372317 a001 610/2207*76^(17/31) 2971265142568999 a008 Real Root of x^4-5*x^2-7*x-13 2971265155963957 r009 Re(z^3+c),c=-9/20+21/46*I,n=23 2971265165432132 r002 31th iterates of z^2 + 2971265176270618 m001 (Champernowne-Weierstrass)/(cos(1/5*Pi)+Artin) 2971265179218091 s002 sum(A162148[n]/(n^3*2^n-1),n=1..infinity) 2971265189591373 r002 15th iterates of z^2 + 2971265191841180 m001 (BesselJ(0,1)*arctan(1/3)+Rabbit)/arctan(1/3) 2971265194057610 r005 Re(z^2+c),c=-7/20+3/10*I,n=38 2971265197489933 a001 121393/11*11^(19/46) 2971265201494926 r008 a(0)=3,K{-n^6,50-9*n^3-23*n^2+16*n} 2971265212387686 b008 -3+E^(-3+E)^(-1) 2971265220497801 m001 Artin^(2/3)*Artin^LambertW(1) 2971265225717437 r005 Im(z^2+c),c=-7/23+10/21*I,n=46 2971265235995291 m001 (2^(1/3)-ZetaP(2))/exp(1) 2971265243920495 a007 Real Root Of 93*x^4+9*x^3-676*x^2+438*x+257 2971265246038291 h001 (1/3*exp(1)+5/9)/(6/11*exp(2)+8/9) 2971265252981926 h001 (3/4*exp(1)+7/10)/(1/11*exp(2)+1/4) 2971265257921351 l006 ln(482/9407) 2971265258878271 a001 370248451/144*6557470319842^(16/17) 2971265258878271 a001 204284540899/36*1836311903^(16/17) 2971265270113221 m005 (1/2*Zeta(3)+2/5)/(3/5*exp(1)-5) 2971265272938185 r009 Re(z^3+c),c=-15/34+15/37*I,n=34 2971265278305886 a007 Real Root Of -182*x^4-500*x^3-115*x^2-914*x-631 2971265280513921 m005 (1/3*gamma+2/7)/(3/10*Pi+2/3) 2971265301746298 a001 591286729879/521*123^(1/5) 2971265329220357 a007 Real Root Of -236*x^4-92*x^3-476*x^2+574*x+212 2971265356709633 h001 (2/9*exp(2)+4/11)/(9/10*exp(2)+1/10) 2971265361626500 a007 Real Root Of 575*x^4+896*x^3+843*x^2-453*x-190 2971265361821416 m001 (GAMMA(23/24)+Khinchin)/(Trott+ZetaQ(4)) 2971265365319368 s002 sum(A016109[n]/((2^n-1)/n),n=1..infinity) 2971265371164301 a007 Real Root Of -437*x^4+557*x^3-212*x^2+812*x+278 2971265382284677 m005 (1/2*Pi+1/12)/(3/4*gamma-6) 2971265382327314 m002 5/E^Pi+4/(5*Pi^2) 2971265382331230 m001 (Gompertz-Trott2nd)/(Pi-FibonacciFactorial) 2971265383349520 l006 ln(7087/9539) 2971265395714313 r009 Im(z^3+c),c=-35/106+9/35*I,n=5 2971265400770364 m001 (ln(2)-TravellingSalesman)/gamma(1) 2971265412649256 a007 Real Root Of -330*x^4-838*x^3+235*x^2-634*x-220 2971265421241123 k006 concat of cont frac of 2971265424837104 r009 Re(z^3+c),c=-14/31+23/54*I,n=39 2971265426201913 r005 Im(z^2+c),c=-19/32+1/34*I,n=9 2971265426581081 r009 Re(z^3+c),c=-43/102+10/27*I,n=23 2971265428119030 r005 Re(z^2+c),c=-33/86+4/61*I,n=23 2971265429168411 a007 Real Root Of 934*x^4-375*x^3-208*x^2-297*x-87 2971265436305210 a001 18/591286729879*121393^(9/23) 2971265460062700 r008 a(0)=3,K{-n^6,-71+8*n^3+67*n^2+31*n} 2971265461817440 b008 Pi^2+3*CoshIntegral[7] 2971265470840409 m001 (ReciprocalLucas+ZetaP(4))/(sin(1/5*Pi)+Paris) 2971265481009002 r005 Re(z^2+c),c=-33/86+4/59*I,n=11 2971265484000993 r005 Re(z^2+c),c=-25/82+19/42*I,n=52 2971265494708962 r009 Re(z^3+c),c=-45/86+16/33*I,n=36 2971265497907763 r008 a(0)=3,K{-n^6,-59+35*n+40*n^2+19*n^3} 2971265506068932 m001 (GAMMA(23/24)+MertensB2)/(Catalan-ln(5)) 2971265511598737 r008 a(0)=3,K{-n^6,-33-2*n+50*n^2+20*n^3} 2971265512978285 a007 Real Root Of 296*x^4+611*x^3-872*x^2+12*x+691 2971265514887966 r008 a(0)=3,K{-n^6,-55+41*n+24*n^2+25*n^3} 2971265518745819 g005 GAMMA(1/11)*GAMMA(2/7)*GAMMA(5/6)/GAMMA(8/11) 2971265520882298 r005 Im(z^2+c),c=-27/106+19/31*I,n=42 2971265521279123 r008 a(0)=3,K{-n^6,-39+17*n+32*n^2+25*n^3} 2971265533434803 r008 a(0)=3,K{-n^6,29+19*n^3+84*n^2-97*n} 2971265537946484 h001 (8/11*exp(1)+2/11)/(7/8*exp(2)+4/5) 2971265547099584 l006 ln(6402/8617) 2971265559457622 r008 a(0)=3,K{-n^6,-45+64*n-28*n^2+44*n^3} 2971265575212101 r008 a(0)=3,K{-n^6,13-25*n+4*n^2+43*n^3} 2971265583589697 m001 (LaplaceLimit-Totient)/((1+3^(1/2))^(1/2)+Kac) 2971265584932173 a003 cos(Pi*18/119)*cos(Pi*23/47) 2971265592725244 r008 a(0)=3,K{-n^6,-7+33*n-48*n^2+57*n^3} 2971265593050338 a001 47/610*4807526976^(9/19) 2971265603221790 r008 a(0)=3,K{-n^6,47-52*n-15*n^2+55*n^3} 2971265606568100 r008 a(0)=3,K{-n^6,19+62*n^3-50*n^2+4*n} 2971265606653542 m001 GAMMA(23/24)-Artin^arctan(1/3) 2971265611110917 k002 Champernowne real with 76*n^2-186*n+139 2971265614027173 r009 Re(z^3+c),c=-1/20+31/53*I,n=38 2971265623970901 a007 Real Root Of -881*x^4+776*x^3+388*x^2+482*x+14 2971265630651733 m005 (1/2*gamma-1/9)/(3/11*3^(1/2)+1/8) 2971265639229634 r009 Re(z^3+c),c=-47/114+21/59*I,n=33 2971265640053760 r008 a(0)=3,K{-n^6,-19+47*n+51*n^2-45*n^3} 2971265648698333 r005 Re(z^2+c),c=-21/74+20/37*I,n=36 2971265650186279 l006 ln(271/5289) 2971265658185544 m001 Niven^GAMMA(5/6)+ln(Pi) 2971265666489699 a007 Real Root Of -601*x^4+487*x^3-368*x^2+643*x+241 2971265669147918 r005 Re(z^2+c),c=29/110+3/35*I,n=10 2971265670707795 r009 Re(z^3+c),c=-14/27+32/53*I,n=21 2971265673847237 s002 sum(A261825[n]/(exp(pi*n)+1),n=1..infinity) 2971265673847240 s002 sum(A261825[n]/(exp(pi*n)),n=1..infinity) 2971265673847243 s002 sum(A261825[n]/(exp(pi*n)-1),n=1..infinity) 2971265711163488 a009 1/19*(19*2^(2/3)+5^(1/3))^(1/2) 2971265715678460 m005 (1/3*5^(1/2)+1/5)/(3/7*Zeta(3)-5/6) 2971265716761641 a001 76/2971215073*3^(3/22) 2971265722464588 r005 Re(z^2+c),c=-9/34+33/62*I,n=26 2971265732430226 a007 Real Root Of -217*x^4-456*x^3+314*x^2-436*x+884 2971265734136660 r005 Re(z^2+c),c=-43/118+13/58*I,n=13 2971265745672598 m001 (Zeta(3)+3)/(-MadelungNaCl+1/3) 2971265749088386 a007 Real Root Of 14*x^4+389*x^3-786*x^2+470*x+224 2971265750090083 l006 ln(5717/7695) 2971265759442319 m001 (cos(1)-sin(1))/(-Ei(1)+QuadraticClass) 2971265774116374 m001 1/ln(LaplaceLimit)*ErdosBorwein/GAMMA(1/4)^2 2971265774669394 m002 (5*ProductLog[Pi]*Tanh[Pi])/18 2971265775203539 m001 FeigenbaumC-Salem^(Pi*2^(1/2)/GAMMA(3/4)) 2971265776884105 m001 ln(GAMMA(1/12))^2*Robbin^2/Zeta(1,2)^2 2971265778795637 m001 BesselJ(1,1)*KhinchinHarmonic/Sierpinski 2971265780021149 q001 1/3365569 2971265792930229 a007 Real Root Of 249*x^4+761*x^3+47*x^2-70*x-68 2971265801612974 a007 Real Root Of -64*x^4-177*x^3+46*x^2-274*x-875 2971265806550565 m001 1/exp(FeigenbaumDelta)*Cahen^2*BesselJ(0,1) 2971265812600911 r005 Im(z^2+c),c=-17/14+29/183*I,n=30 2971265814522470 m001 (DuboisRaymond-FeigenbaumB)/(3^(1/3)+CareFree) 2971265817186356 m005 (1/2*Catalan-2/7)/(41/90+1/18*5^(1/2)) 2971265831835499 m005 (1/2*5^(1/2)+1)/(1/4*gamma-6/7) 2971265832053425 m001 (OrthogonalArrays-Riemann3rdZero)/Kolakoski 2971265835298303 m001 ln(GAMMA(1/24))^2/FeigenbaumDelta/GAMMA(1/3)^2 2971265838212197 a007 Real Root Of 830*x^4-375*x^3+891*x^2-441*x-226 2971265842721279 r002 11th iterates of z^2 + 2971265844222267 s002 sum(A194908[n]/((2^n+1)/n),n=1..infinity) 2971265848082724 r005 Re(z^2+c),c=-115/82+6/55*I,n=9 2971265859474988 m001 (Totient-ThueMorse)/(Zeta(1/2)+Pi^(1/2)) 2971265866231973 r005 Im(z^2+c),c=-33/118+23/48*I,n=3 2971265868916502 r005 Re(z^2+c),c=-4/13+4/9*I,n=59 2971265873476875 r005 Im(z^2+c),c=31/106+8/63*I,n=36 2971265874191312 r005 Re(z^2+c),c=-4/11+4/17*I,n=24 2971265881415003 a007 Real Root Of -981*x^4+355*x^3-66*x^2+482*x+166 2971265889994845 r002 8th iterates of z^2 + 2971265902949868 m001 Tribonacci^2/exp(FeigenbaumD)*GAMMA(17/24) 2971265923318445 r005 Re(z^2+c),c=-9/14+142/229*I,n=3 2971265928889000 m001 GAMMA(2/3)^(Pi^(1/2))/(Khinchin^(Pi^(1/2))) 2971265928889000 m001 GAMMA(2/3)^sqrt(Pi)/(Khinchin^sqrt(Pi)) 2971265941133450 h001 (-9*exp(2/3)+2)/(-exp(2/3)+2) 2971265943254572 a003 sin(Pi*39/113)/cos(Pi*21/52) 2971265945701057 a007 Real Root Of -392*x^4-879*x^3+493*x^2-943*x+341 2971265950778541 b008 9/5+Cosh[EulerGamma] 2971265952290947 s002 sum(A004736[n]/((2^n+1)/n),n=1..infinity) 2971265953641786 a007 Real Root Of -619*x^4+816*x^3-220*x^2+925*x-272 2971265960563602 m001 (-Sierpinski+Trott)/(Si(Pi)-exp(1)) 2971265963606435 a001 305/38*18^(24/53) 2971265968769578 r008 a(0)=3,K{-n^6,-72+8*n^3+67*n^2+32*n} 2971265982355529 m001 (gamma(3)-TreeGrowth2nd)/(Trott2nd-ZetaP(3)) 2971265984148564 a007 Real Root Of 124*x^4+399*x^3-169*x^2-845*x-217 2971265991620116 r005 Re(z^2+c),c=-13/54+26/43*I,n=56 2971265995079280 m001 ln((3^(1/3)))^2/Artin^2*GAMMA(1/6)^2 2971266000773339 m001 exp(Zeta(3))*Sierpinski*sin(Pi/5)^2 2971266005526385 m001 BesselI(1,2)+GAMMA(19/24)*Salem 2971266006206882 r008 a(0)=3,K{-n^6,-60+36*n+40*n^2+19*n^3} 2971266008346272 l006 ln(5032/6773) 2971266008638378 m005 (1/3*exp(1)+1/10)/(5*gamma+1/2) 2971266016161599 a007 Real Root Of 889*x^4+34*x^3-665*x^2-497*x-95 2971266023092399 l006 ln(6499/6695) 2971266034436580 a001 1/203*(1/2*5^(1/2)+1/2)^31*7^(5/14) 2971266041365531 r008 a(0)=3,K{-n^6,28+19*n^3+84*n^2-96*n} 2971266049790303 m001 (ln(2)-ArtinRank2)/(Porter-ZetaQ(4)) 2971266050622597 r008 a(0)=3,K{-n^6,-42+41*n+n^2+35*n^3} 2971266053381119 m001 1/2*Landau^Artin/Pi*3^(1/2)*GAMMA(2/3) 2971266055393548 r008 a(0)=3,K{-n^6,2-35*n+38*n^2+30*n^3} 2971266062006388 r008 a(0)=3,K{-n^6,-2+34*n^3+24*n^2-21*n} 2971266064018743 a001 199/39088169*2971215073^(14/23) 2971266064126898 a001 199/46368*46368^(14/23) 2971266071953933 m001 FeigenbaumKappa^2/Niven/ln(Zeta(5)) 2971266073648442 b008 28+CoshIntegral[Pi/2] 2971266079748228 m005 (1/2*gamma+1/2)/(2*Zeta(3)+1/4) 2971266090551057 r008 a(0)=3,K{-n^6,10+48*n^3-12*n^2-11*n} 2971266092181650 r008 a(0)=3,K{-n^6,-14+35*n-39*n^2+53*n^3} 2971266096208257 m001 (2^(1/2)-LambertW(1))/(-Zeta(1,-1)+Khinchin) 2971266098005337 r008 a(0)=3,K{-n^6,2+13*n-34*n^2+54*n^3} 2971266100071642 r008 a(0)=3,K{-n^6,-8+34*n-48*n^2+57*n^3} 2971266105875226 m001 BesselK(0,1)^2*ln(KhintchineHarmonic)^2*cos(1) 2971266108078565 m005 (1/2*gamma-2/11)/(11/12*Pi+5/7) 2971266111061236 r002 33th iterates of z^2 + 2971266111902050 r008 a(0)=3,K{-n^6,-2+64*n^3-66*n^2+39*n} 2971266114728685 m001 (exp(Pi)*ZetaQ(4)+Trott)/ZetaQ(4) 2971266117421115 h001 (1/4*exp(2)+1/9)/(9/11*exp(2)+6/11) 2971266121597241 r009 Im(z^3+c),c=-45/106+9/46*I,n=38 2971266123722264 r008 a(0)=3,K{-n^6,62-61*n-28*n^2+62*n^3} 2971266130824637 a001 843/2*2178309^(17/28) 2971266142712102 m001 MadelungNaCl/exp(CareFree)/Niven^2 2971266149593535 a007 Real Root Of -664*x^4+785*x^3+285*x^2+375*x-152 2971266152616553 a007 Real Root Of -192*x^4-516*x^3-118*x^2-768*x+189 2971266156369744 m001 (Pi-polylog(4,1/2))/(QuadraticClass+ZetaQ(4)) 2971266159550291 a005 (1/sin(44/117*Pi))^606 2971266160088668 r002 10th iterates of z^2 + 2971266179464942 b008 Sqrt[FresnelS[5/9]] 2971266182507104 q001 941/3167 2971266184126855 m001 1/Ei(1)/ln(Conway)/sin(Pi/12)^2 2971266189238837 r005 Im(z^2+c),c=-27/22+4/117*I,n=48 2971266196286234 m003 37/72+Sqrt[5]/64+Sinh[1/2+Sqrt[5]/2] 2971266201271631 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=37 2971266206389036 m001 exp(1/exp(1))+GAMMA(2/3)^HardHexagonsEntropy 2971266206856830 a001 1/7*75025^(31/35) 2971266216204056 h001 (-5*exp(4)+9)/(-6*exp(5)+2) 2971266218287507 r005 Im(z^2+c),c=11/78+9/34*I,n=10 2971266221399584 l006 ln(331/6460) 2971266242322790 r005 Re(z^2+c),c=-33/98+24/61*I,n=10 2971266246702817 a007 Real Root Of 92*x^4+356*x^3+376*x^2+605*x+646 2971266250271890 a005 (1/sin(77/167*Pi))^1067 2971266258690967 r009 Im(z^3+c),c=-15/64+16/55*I,n=11 2971266264669435 r009 Im(z^3+c),c=-45/106+9/46*I,n=39 2971266270432888 r005 Im(z^2+c),c=25/78+4/49*I,n=64 2971266274515290 a003 sin(Pi*17/91)-sin(Pi*23/71) 2971266287089216 m002 2+E^Pi/4-Sinh[Pi]/ProductLog[Pi] 2971266293335709 m001 (GAMMA(19/24)+ArtinRank2)/(Stephens+ZetaQ(2)) 2971266305429427 r002 15th iterates of z^2 + 2971266310002354 m001 (-ArtinRank2+Trott2nd)/(exp(Pi)-sin(1/5*Pi)) 2971266310788577 s002 sum(A167288[n]/((2^n+1)/n),n=1..infinity) 2971266310788577 s002 sum(A167289[n]/((2^n+1)/n),n=1..infinity) 2971266311066126 m001 (Conway-MasserGramainDelta)/MadelungNaCl 2971266316133918 m001 ZetaP(2)^(3^(1/2))+exp(1) 2971266345543418 m005 (1/3*exp(1)-1/4)/(3/4*3^(1/2)+10/11) 2971266347010966 p001 sum(1/(382*n+347)/(16^n),n=0..infinity) 2971266347994440 l006 ln(4347/5851) 2971266348672135 r002 8th iterates of z^2 + 2971266349231759 r005 Re(z^2+c),c=-29/94+19/43*I,n=41 2971266352737622 r005 Re(z^2+c),c=35/106+1/7*I,n=45 2971266360426695 r008 a(0)=3,K{-n^6,36-13*n+13*n^2} 2971266361521387 m002 Pi+Sinh[Pi]+Pi^9*Tanh[Pi] 2971266363923882 m001 (1+Shi(1))/(BesselJ(0,1)+gamma(1)) 2971266370317223 m001 (sin(1/12*Pi)*Sarnak+ReciprocalLucas)/Sarnak 2971266385991316 r005 Re(z^2+c),c=-51/86+19/51*I,n=21 2971266387035675 a003 cos(Pi*23/83)*cos(Pi*41/118) 2971266399852168 r002 57th iterates of z^2 + 2971266403699919 m005 (-7/30+1/6*5^(1/2))/(4/5*3^(1/2)-11/12) 2971266407532545 p001 sum((-1)^n/(543*n+322)/(8^n),n=0..infinity) 2971266410795885 m001 (ln(3)-arctan(1/3))/(FeigenbaumB+Grothendieck) 2971266419011589 m002 -2-(4*E^Pi)/3+Pi 2971266425078265 r005 Im(z^2+c),c=37/126+14/55*I,n=6 2971266426573161 m001 Shi(1)/sin(1/12*Pi)/exp(1/Pi) 2971266429203099 m001 (1-3^(1/2))/(-Ei(1,1)+FeigenbaumD) 2971266435029744 m006 (1/3*exp(Pi)-2/3)/(1/5*Pi-3) 2971266442000345 a007 Real Root Of 268*x^4+727*x^3-476*x^2-644*x+471 2971266459178318 r009 Im(z^3+c),c=-45/106+9/46*I,n=28 2971266460974913 m001 (5^(1/2)+Ei(1))/(-Porter+ZetaP(4)) 2971266462606624 r008 a(0)=3,K{-n^6,56+29*n^3-67*n^2+18*n} 2971266464373625 m001 (exp(1/Pi)+FellerTornier)/(MadelungNaCl-Salem) 2971266478754633 m005 (3/5*gamma+2/3)/(3*2^(1/2)-5/6) 2971266485766506 m001 (1+ln(gamma))/(GAMMA(23/24)+Riemann1stZero) 2971266499412060 m001 (2^(1/2)-sin(1/12*Pi))/(Conway+Sierpinski) 2971266499467111 a007 Real Root Of 117*x^4+185*x^3-322*x^2+748*x+799 2971266502047788 m001 ReciprocalFibonacci/(Conway^arctan(1/2)) 2971266529528179 m003 36-Sin[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/4 2971266532220699 m001 (AlladiGrinstead+Lehmer)/Bloch 2971266534371749 m001 1/GAMMA(7/12)^2/Catalan^2/exp(cos(1)) 2971266537352552 r009 Re(z^3+c),c=-23/50+10/23*I,n=56 2971266552545194 r008 a(0)=3,K{-n^6,-69+38*n^3-21*n^2+87*n} 2971266554564461 m001 Robbin+Sierpinski^ln(2^(1/2)+1) 2971266555482897 m009 (1/4*Psi(1,2/3)-1)/(4/5*Psi(1,1/3)-1/5) 2971266561775556 r005 Re(z^2+c),c=25/74+9/56*I,n=18 2971266563991903 r008 a(0)=3,K{-n^6,-41+47*n-10*n^2+39*n^3} 2971266565013940 m001 GAMMA(1/12)/exp(TwinPrimes)*sqrt(5)^2 2971266566572034 r008 a(0)=3,K{-n^6,-3+34*n^3+24*n^2-20*n} 2971266573948402 r002 12th iterates of z^2 + 2971266583154801 a007 Real Root Of 339*x^4+949*x^3-110*x^2+379*x+569 2971266590524766 a001 47/10946*2178309^(9/31) 2971266594117153 r005 Re(z^2+c),c=-37/52+3/14*I,n=11 2971266596108347 m001 KomornikLoreti^LandauRamanujan2nd/Bloch 2971266596452809 r008 a(0)=3,K{-n^6,-15+36*n-39*n^2+53*n^3} 2971266599480023 s002 sum(A111304[n]/(n^3*pi^n-1),n=1..infinity) 2971266602220811 r008 a(0)=3,K{-n^6,1+14*n-34*n^2+54*n^3} 2971266610725244 r008 a(0)=3,K{-n^6,35+54*n^3-17*n^2-37*n} 2971266614111517 k002 Champernowne real with 153/2*n^2-375/2*n+140 2971266614837574 m006 (2/5*exp(2*Pi)-1/5)/(3/4*Pi^2-1/5) 2971266615986130 r008 a(0)=3,K{-n^6,-3+64*n^3-66*n^2+40*n} 2971266617304267 l006 ln(391/7631) 2971266618312575 r008 a(0)=3,K{-n^6,19+62*n^3-49*n^2+3*n} 2971266621768025 h001 (-6*exp(-1)-2)/(-7*exp(3)-1) 2971266638875735 r002 6th iterates of z^2 + 2971266643151337 m001 (Mills-ReciprocalLucas)/(exp(1/Pi)+GaussAGM) 2971266656632095 r009 Re(z^3+c),c=-5/12+4/11*I,n=28 2971266662640766 r005 Re(z^2+c),c=-4/13+4/9*I,n=60 2971266665144171 m001 (GAMMA(7/12)+Gompertz)^exp(1/exp(1)) 2971266666350033 r005 Re(z^2+c),c=-5/6+61/234*I,n=6 2971266670740915 r005 Re(z^2+c),c=35/118+21/40*I,n=9 2971266678834484 r005 Im(z^2+c),c=25/86+7/54*I,n=50 2971266698338121 b008 11+7*Pi*Csch[1] 2971266703686111 m005 (1/3*3^(1/2)+3/7)/(3*2^(1/2)-6/7) 2971266705586968 a003 cos(Pi*37/96)*cos(Pi*44/93) 2971266705607982 r009 Im(z^3+c),c=-15/62+28/37*I,n=10 2971266720274723 m004 100/Pi-Log[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi]/4 2971266728170744 r005 Re(z^2+c),c=3/82+14/51*I,n=11 2971266728910267 a007 Real Root Of 262*x^4+534*x^3-960*x^2-717*x-68 2971266740814529 b008 -3+Sech[3*Sqrt[2]] 2971266760179124 a001 3/233*144^(12/19) 2971266771171197 a007 Real Root Of 340*x^4+685*x^3-713*x^2+708*x-133 2971266801110126 r005 Im(z^2+c),c=-3/13+13/29*I,n=48 2971266814709217 l006 ln(3662/4929) 2971266815448987 r009 Re(z^3+c),c=-23/126+10/11*I,n=38 2971266820252731 r009 Im(z^3+c),c=-45/106+9/46*I,n=35 2971266826571708 s002 sum(A251172[n]/((pi^n+1)/n),n=1..infinity) 2971266832503586 g007 Psi(2,3/10)+Psi(2,1/6)-Psi(2,1/12)-Psi(2,5/11) 2971266832734096 a001 3/17711*4181^(43/48) 2971266858534844 a001 15127*610^(13/28) 2971266868975499 m001 BesselI(1,2)*(BesselI(0,1)+BesselK(1,1)) 2971266871782267 h002 exp(1/3*(11^(1/4)-7^(3/4))*3^(1/4)) 2971266877494957 r004 Re(z^2+c),c=-3/10-5/16*I,z(0)=-1,n=10 2971266885505900 r005 Re(z^2+c),c=-7/24+15/31*I,n=29 2971266892580864 a003 cos(Pi*32/79)/cos(Pi*52/111) 2971266904184645 r009 Re(z^3+c),c=-29/60+26/57*I,n=47 2971266907868358 l006 ln(451/8802) 2971266911344923 m001 (exp(Pi)+Catalan)/(-exp(1/Pi)+BesselI(1,1)) 2971266915779170 r009 Im(z^3+c),c=-15/29+10/21*I,n=48 2971266916277381 m001 (Ei(1,1)+2*Pi/GAMMA(5/6))/(Pi^(1/2)+ZetaP(3)) 2971266916360404 m001 GAMMA(11/24)^2*exp(Catalan)^2*GAMMA(5/6)^2 2971266922500600 a009 (4^(3/4)+6)^(1/2) 2971266922500600 b008 Sqrt[2*(3+Sqrt[2])] 2971266928568711 m001 (-Landau+ZetaQ(2))/(Chi(1)+AlladiGrinstead) 2971266938676462 r005 Re(z^2+c),c=3/10+27/61*I,n=52 2971266940812076 a007 Real Root Of -396*x^4-991*x^3+549*x^2+47*x+162 2971266970065856 m001 1/ln(Riemann2ndZero)/Niven*cosh(1) 2971266980569011 a001 3/12586269025*34^(1/16) 2971266985222282 a007 Real Root Of -132*x^4-127*x^3+480*x^2+558*x-17 2971266988039981 m001 3^(1/2)*MasserGramain+Si(Pi) 2971266999130236 m001 (Psi(2,1/3)+Zeta(5))/(-GAMMA(17/24)+Porter) 2971267001863097 m001 ln((3^(1/3)))*CopelandErdos^2*Zeta(1/2) 2971267005963298 r002 4th iterates of z^2 + 2971267008997059 r008 a(0)=3,K{-n^6,-48+9*n+59*n^2+15*n^3} 2971267010278218 r005 Im(z^2+c),c=7/78+31/59*I,n=7 2971267014202657 r008 a(0)=3,K{-n^6,-60+35*n+41*n^2+19*n^3} 2971267026358491 a007 Real Root Of -208*x^4-470*x^3+259*x^2-232*x+907 2971267032098274 a007 Real Root Of 770*x^4-698*x^3+264*x^2-772*x-277 2971267037206082 a001 1/6643838879*3^(13/21) 2971267040355189 b008 31/2+Sqrt[202] 2971267042733206 r008 a(0)=3,K{-n^6,-48+37*n+17*n^2+29*n^3} 2971267044930834 m001 LambertW(1)^Zeta(1,-1)-HardHexagonsEntropy 2971267048495242 r008 a(0)=3,K{-n^6,28+19*n^3+85*n^2-97*n} 2971267054051320 r009 Im(z^3+c),c=-45/106+9/46*I,n=43 2971267056526419 r005 Re(z^2+c),c=13/70+19/51*I,n=64 2971267058261047 r005 Re(z^2+c),c=5/22+3/55*I,n=3 2971267066730851 r008 a(0)=3,K{-n^6,16-57*n+46*n^2+30*n^3} 2971267068652307 r008 a(0)=3,K{-n^6,-32+39*n^3-5*n^2+33*n} 2971267076691228 r008 a(0)=3,K{-n^6,-36+49*n-22*n^2+44*n^3} 2971267077291182 r008 a(0)=3,K{-n^6,-22+24*n-9*n^2+42*n^3} 2971267077334631 m001 (MasserGramain+Thue)/(3^(1/2)-GAMMA(3/4)) 2971267085499497 r008 a(0)=3,K{-n^6,-18+46*n^3-19*n^2+26*n} 2971267092208381 r008 a(0)=3,K{-n^6,36+41*n^3+23*n^2-65*n} 2971267096535946 r008 a(0)=3,K{-n^6,10+48*n^3-11*n^2-12*n} 2971267105843965 r008 a(0)=3,K{-n^6,-8+33*n-47*n^2+57*n^3} 2971267110286942 r008 a(0)=3,K{-n^6,22-16*n-26*n^2+55*n^3} 2971267116043840 r005 Im(z^2+c),c=4/29+3/10*I,n=4 2971267120298772 l006 ln(6639/8936) 2971267130198163 l006 ln(511/9973) 2971267134070884 r001 32i'th iterates of 2*x^2-1 of 2971267134707073 a001 387002188980*47^(9/17) 2971267139515960 m004 -125*Pi+(27*Sqrt[5]*Pi)/2+Cos[Sqrt[5]*Pi] 2971267183071587 a001 4052739537881/11*18^(13/18) 2971267184197746 r009 Im(z^3+c),c=-45/106+9/46*I,n=44 2971267184345548 g006 Psi(1,1/5)-Psi(1,9/11)-Psi(1,5/8)-Psi(1,1/7) 2971267185856054 r005 Re(z^2+c),c=-33/86+3/44*I,n=13 2971267190544978 m005 (1/2*Zeta(3)+1/11)/(2/9*Zeta(3)-1/2) 2971267221173290 r005 Re(z^2+c),c=-31/90+15/44*I,n=13 2971267227804848 a001 1/5901*(1/2*5^(1/2)+1/2)^10*843^(1/19) 2971267233865890 a007 Real Root Of 566*x^4-893*x^3-871*x^2-734*x+314 2971267234418969 r009 Im(z^3+c),c=-31/114+17/61*I,n=13 2971267240073142 m001 Magata^ZetaP(2)/(Magata^(3^(1/3))) 2971267259532555 m001 GAMMA(1/24)^2*ln(MertensB1)^2*sqrt(3)^2 2971267261285468 r009 Im(z^3+c),c=-45/106+9/46*I,n=48 2971267265883130 b008 3+27*Sin[8] 2971267277402599 a005 (1/sin(67/229*Pi))^65 2971267295316917 r009 Im(z^3+c),c=-45/106+9/46*I,n=47 2971267296535523 a007 Real Root Of 291*x^4+985*x^3-37*x^2-838*x+994 2971267296764469 r009 Im(z^3+c),c=-45/106+9/46*I,n=49 2971267296940770 a001 9349/144*832040^(37/47) 2971267299343161 r009 Im(z^3+c),c=-45/106+9/46*I,n=53 2971267300890274 r009 Im(z^3+c),c=-45/106+9/46*I,n=52 2971267304966446 r009 Im(z^3+c),c=-45/106+9/46*I,n=57 2971267305390585 r009 Im(z^3+c),c=-45/106+9/46*I,n=58 2971267306049064 r009 Im(z^3+c),c=-45/106+9/46*I,n=62 2971267306217365 r009 Im(z^3+c),c=-45/106+9/46*I,n=63 2971267306330729 r009 Im(z^3+c),c=-45/106+9/46*I,n=61 2971267306408805 r009 Im(z^3+c),c=-45/106+9/46*I,n=64 2971267306630356 r009 Im(z^3+c),c=-45/106+9/46*I,n=54 2971267306658464 r009 Im(z^3+c),c=-45/106+9/46*I,n=59 2971267306872072 r009 Im(z^3+c),c=-45/106+9/46*I,n=60 2971267307303943 r009 Im(z^3+c),c=-45/106+9/46*I,n=56 2971267309780971 r009 Im(z^3+c),c=-45/106+9/46*I,n=55 2971267316356402 m005 (1/3*3^(1/2)-1/3)/(6*2^(1/2)-3/11) 2971267317049482 r009 Im(z^3+c),c=-45/106+9/46*I,n=51 2971267324663098 s002 sum(A228079[n]/(16^n-1),n=1..infinity) 2971267324890854 r009 Im(z^3+c),c=-45/106+9/46*I,n=50 2971267342112384 r005 Re(z^2+c),c=-13/36+20/59*I,n=8 2971267346239414 m005 (4/5*gamma-1/5)/(5/6*gamma+2/5) 2971267346239414 m007 (-4/5*gamma+1/5)/(-5/6*gamma-2/5) 2971267349564323 a001 3571/21*377^(47/54) 2971267351260479 a007 Real Root Of -80*x^4+49*x^3-596*x^2+392*x+171 2971267361268286 m001 (Chi(1)-polylog(4,1/2))/(-MertensB1+Totient) 2971267375369348 a007 Real Root Of 708*x^4+870*x^3-377*x^2-840*x-199 2971267386913722 r009 Im(z^3+c),c=-45/106+9/46*I,n=42 2971267387755275 r009 Im(z^3+c),c=-45/106+9/46*I,n=45 2971267392107396 r009 Im(z^3+c),c=-45/106+9/46*I,n=46 2971267393504345 m001 TreeGrowth2nd^2/exp(RenyiParking)^2/Zeta(1/2) 2971267410328953 r005 Im(z^2+c),c=-83/106+19/60*I,n=4 2971267413179065 a007 Real Root Of -285*x^4-496*x^3+717*x^2-753*x+635 2971267419611374 a007 Real Root Of -626*x^4+403*x^3+705*x^2+761*x+22 2971267427084927 a007 Real Root Of -372*x^4-949*x^3+230*x^2-391*x+908 2971267434907098 b008 Csch[(27+E)^(-1)] 2971267438675498 m001 1/Riemann1stZero^2*ln(Bloch)^2*GAMMA(23/24)^2 2971267440274968 r009 Re(z^3+c),c=-7/48+41/49*I,n=52 2971267449454355 a007 Real Root Of 276*x^4+633*x^3-265*x^2+814*x-149 2971267452683606 b008 Cosh[2-ArcCsch[4]] 2971267458785545 m002 -6/Pi^5-Pi^2+Pi^5+Tanh[Pi] 2971267487637527 a007 Real Root Of -337*x^3-824*x^2+333*x-576 2971267489426652 m001 Riemann1stZero^2/FeigenbaumDelta^2*exp(Salem) 2971267489771180 a007 Real Root Of -266*x^4-891*x^3-213*x^2+363*x+319 2971267496203681 l006 ln(2977/4007) 2971267499931228 m001 BesselI(1,1)/gamma(2)/ReciprocalLucas 2971267500448123 g002 Psi(10/11)+Psi(1/5)-Psi(7/12)-Psi(5/8) 2971267511770186 a003 cos(Pi*22/103)/cos(Pi*22/53) 2971267517129423 r009 Im(z^3+c),c=-9/44+51/56*I,n=8 2971267529297351 r008 a(0)=3,K{-n^6,-33-2*n+49*n^2+21*n^3} 2971267534354574 r009 Im(z^3+c),c=-45/106+9/46*I,n=40 2971267538393162 r008 a(0)=3,K{-n^6,-39+17*n+31*n^2+26*n^3} 2971267541692376 a007 Real Root Of 281*x^4+187*x^3-36*x^2-942*x-274 2971267544071165 r005 Im(z^2+c),c=-21/94+29/64*I,n=14 2971267547402182 g007 Psi(2,1/6)-Psi(2,7/12)-Psi(2,1/7)-Psi(2,2/5) 2971267552539900 a007 Real Root Of 308*x^4+800*x^3-109*x^2+721*x+84 2971267566982668 r008 a(0)=3,K{-n^6,-3+34*n^3+25*n^2-21*n} 2971267566988830 r008 a(0)=3,K{-n^6,-33+39*n^3-5*n^2+34*n} 2971267574348241 r008 a(0)=3,K{-n^6,-27+42*n^3-11*n^2+31*n} 2971267574350402 r008 a(0)=3,K{-n^6,-39+53*n-23*n^2+44*n^3} 2971267574948806 r008 a(0)=3,K{-n^6,-37+50*n-22*n^2+44*n^3} 2971267575719858 a007 Real Root Of 354*x^4-220*x^3-104*x^2-676*x-20 2971267582354094 m008 (1/3*Pi^4+4)/(2/5*Pi^5+1/3) 2971267585271020 r008 a(0)=3,K{-n^6,27-2*n+44*n^2-35*n^3} 2971267588139172 r008 a(0)=3,K{-n^6,-33+58*n-41*n^2+51*n^3} 2971267594601720 r008 a(0)=3,K{-n^6,9+48*n^3-11*n^2-11*n} 2971267596180451 r008 a(0)=3,K{-n^6,-15+35*n-38*n^2+53*n^3} 2971267601819972 r008 a(0)=3,K{-n^6,1+13*n-33*n^2+54*n^3} 2971267606772577 r008 a(0)=3,K{-n^6,-15+49*n-59*n^2+60*n^3} 2971267609963834 a001 682/31622993*3^(7/24) 2971267610136942 r008 a(0)=3,K{-n^6,35+54*n^3-16*n^2-38*n} 2971267615282990 r008 a(0)=3,K{-n^6,-3+64*n^3-65*n^2+39*n} 2971267617112117 k002 Champernowne real with 77*n^2-189*n+141 2971267617749673 r005 Re(z^2+c),c=-11/14+4/91*I,n=24 2971267628114959 a008 Real Root of x^4-x^3-21*x^2-27*x+1 2971267637846401 r005 Re(z^2+c),c=-2/3+57/200*I,n=29 2971267648231476 r005 Re(z^2+c),c=-7/30+28/47*I,n=56 2971267650954776 a001 119218851371/144*6557470319842^(14/17) 2971267662099853 m001 1/Catalan*ln(CareFree)*log(1+sqrt(2))^2 2971267664263165 p004 log(14657/751) 2971267665324484 m001 exp(GAMMA(2/3))^2*BesselJ(0,1)*sin(Pi/12) 2971267674458963 r002 28th iterates of z^2 + 2971267683068911 m001 Backhouse^(Ei(1)/ZetaQ(4)) 2971267698676399 p003 LerchPhi(1/256,3,72/223) 2971267700175789 r005 Re(z^2+c),c=-33/118+16/31*I,n=48 2971267700597764 h001 (-4*exp(2)+10)/(-12*exp(4)-3) 2971267700729172 r005 Im(z^2+c),c=-9/32+29/62*I,n=64 2971267705357345 m002 3*Cosh[Pi]-Cosh[Pi]/(2*Log[Pi]) 2971267710460448 m001 (Si(Pi)-exp(1/exp(1)))/(-CopelandErdos+Paris) 2971267715575972 a001 1/141*(1/2*5^(1/2)+1/2)^7*47^(2/21) 2971267720921174 a007 Real Root Of 207*x^4+369*x^3-426*x^2+785*x-361 2971267723075157 r005 Im(z^2+c),c=-8/7+27/118*I,n=50 2971267728417115 a001 29/121393*13^(57/58) 2971267734766928 m009 (2/5*Psi(1,1/3)+5)/(Psi(1,3/4)+1/2) 2971267738715282 m001 (gamma-ln(gamma))/(-GAMMA(19/24)+Kolakoski) 2971267749680058 m005 (1/3*Catalan+1/6)/(8/11*Zeta(3)+5/7) 2971267753323467 r005 Im(z^2+c),c=37/118+5/54*I,n=52 2971267762323371 r004 Re(z^2+c),c=-4/11+4/17*I,z(0)=-1,n=28 2971267763257015 r005 Re(z^2+c),c=-53/52+7/62*I,n=18 2971267776933042 m005 (1/3*Pi-1/2)/(5/7*exp(1)-1/10) 2971267781266892 a007 Real Root Of -384*x^4-957*x^3+526*x^2-383*x-956 2971267785032679 r008 a(0)=3,K{-n^6,35+7*n^3-10*n^2+4*n} 2971267821554526 r008 a(0)=3,K{-n^6,62+20*n^3-84*n^2+35*n} 2971267829486940 a007 Real Root Of -276*x^4-946*x^3-698*x^2-839*x+366 2971267829852993 a005 (1/cos(29/173*Pi))^134 2971267838703792 m001 (-GaussAGM+KomornikLoreti)/(Si(Pi)+GAMMA(2/3)) 2971267840335480 r005 Im(z^2+c),c=17/118+11/42*I,n=15 2971267849443051 r005 Im(z^2+c),c=-21/74+5/11*I,n=14 2971267854546607 m001 (KhinchinHarmonic+ZetaP(3))/MasserGramain 2971267868934973 r009 Im(z^3+c),c=-49/90+13/48*I,n=33 2971267876332809 m005 (1/2*3^(1/2)-2/11)/(5*gamma-7/12) 2971267884187282 r009 Im(z^3+c),c=-45/106+9/46*I,n=41 2971267897374863 a007 Real Root Of 350*x^4+722*x^3-953*x^2-24*x+2 2971267901755594 a007 Real Root Of 152*x^4+398*x^3-198*x^2-99*x+47 2971267908367622 r005 Re(z^2+c),c=7/30+4/63*I,n=25 2971267923852918 m004 -2+95*Pi+Sin[Sqrt[5]*Pi] 2971267928317868 m001 (5^(1/2)+Conway)^FeigenbaumD 2971267928570875 a007 Real Root Of 33*x^4-915*x^3+57*x^2-674*x+20 2971267931455599 r005 Im(z^2+c),c=25/86+7/54*I,n=53 2971267935876437 a007 Real Root Of -214*x^4-934*x^3-832*x^2-93*x-752 2971267945027390 a007 Real Root Of -229*x^4+693*x^3+806*x^2+853*x-341 2971267958770631 s002 sum(A235453[n]/(n*exp(n)+1),n=1..infinity) 2971267968579143 a001 1/521*(1/2*5^(1/2)+1/2)^17*47^(8/21) 2971267969848127 l006 ln(5269/7092) 2971267972281520 r005 Im(z^2+c),c=3/10+5/43*I,n=36 2971267972589190 a007 Real Root Of -334*x^4-790*x^3+771*x^2+336*x-499 2971267974221048 r008 a(0)=3,K{-n^6,-90+11*n^3+51*n^2+63*n} 2971267978640843 r005 Im(z^2+c),c=-27/86+12/25*I,n=53 2971268006906758 m005 (3/5*Pi+2/5)/(21/10+5/2*5^(1/2)) 2971268009182949 a001 46347*9349^(41/58) 2971268022895892 r005 Re(z^2+c),c=9/40+22/47*I,n=37 2971268024165779 r008 a(0)=3,K{-n^6,-12+17*n^3+72*n^2-42*n} 2971268027177289 a007 Real Root Of -476*x^4-309*x^3-301*x^2+410*x+144 2971268031202346 m001 (-GAMMA(5/6)+Riemann1stZero)/(2^(1/2)-Si(Pi)) 2971268034732593 a001 123/196418*75025^(47/49) 2971268036515901 m005 (1/2*gamma+1/3)/(1/4*exp(1)-8/9) 2971268036769705 r009 Re(z^3+c),c=-19/48+17/52*I,n=17 2971268044358310 m005 (2/3*Catalan-3)/(2/15+3/10*5^(1/2)) 2971268059137881 r005 Im(z^2+c),c=-59/60+10/39*I,n=3 2971268062282411 m002 -1+Pi^2/3-Pi^3-Tanh[Pi] 2971268062847150 m005 (1/3*gamma-3/4)/(6*Pi-1/12) 2971268064931308 a007 Real Root Of -347*x^4-649*x^3-857*x^2+884*x+324 2971268069546580 r008 a(0)=3,K{-n^6,-40+54*n-23*n^2+44*n^3} 2971268072399707 a007 Real Root Of -147*x^4-650*x^3-526*x^2+228*x-272 2971268077077240 r008 a(0)=3,K{-n^6,34+36*n^3+38*n^2-73*n} 2971268083201876 r008 a(0)=3,K{-n^6,-34+59*n-41*n^2+51*n^3} 2971268085893850 r008 a(0)=3,K{-n^6,36+41*n^3+24*n^2-66*n} 2971268086727748 r005 Im(z^2+c),c=-3/13+13/29*I,n=43 2971268101658269 r008 a(0)=3,K{-n^6,-16+50*n-59*n^2+60*n^3} 2971268104991094 r008 a(0)=3,K{-n^6,34+54*n^3-16*n^2-37*n} 2971268107006008 r005 Im(z^2+c),c=-9/34+20/43*I,n=21 2971268109631408 r008 a(0)=3,K{-n^6,18-n-42*n^2+60*n^3} 2971268116751230 r008 a(0)=3,K{-n^6,26-5*n-50*n^2+64*n^3} 2971268118269792 l006 ln(7129/7344) 2971268123108316 r008 a(0)=3,K{-n^6,62-61*n-29*n^2+63*n^3} 2971268127590920 r008 a(0)=3,K{-n^6,54+68*n^3-48*n^2-39*n} 2971268131502695 r002 8th iterates of z^2 + 2971268132045362 a001 1/2207*(1/2*5^(1/2)+1/2)^8*76^(14/23) 2971268154130477 r005 Re(z^2+c),c=-13/46+32/63*I,n=40 2971268156336616 p004 log(10177/7561) 2971268159550045 r005 Im(z^2+c),c=-13/122+21/53*I,n=17 2971268160752867 r002 11th iterates of z^2 + 2971268164497759 m001 1/Riemann3rdZero/exp(Rabbit)/Robbin 2971268174691917 r005 Im(z^2+c),c=-37/98+23/45*I,n=49 2971268177272937 r005 Re(z^2+c),c=7/15+8/35*I,n=4 2971268185070217 r009 Re(z^3+c),c=-53/118+11/42*I,n=4 2971268189079107 m001 BesselK(0,1)*(Zeta(1,-1)-cos(1)) 2971268220142712 h001 (4/5*exp(1)+5/12)/(1/11*exp(1)+5/8) 2971268228464764 m001 exp(OneNinth)/TreeGrowth2nd*GAMMA(19/24) 2971268230556211 a007 Real Root Of 429*x^4+862*x^3-973*x^2+555*x-586 2971268231936291 m001 (TreeGrowth2nd+ZetaQ(2))/(1+Robbin) 2971268241078678 a007 Real Root Of 140*x^4+197*x^3-436*x^2+524*x-338 2971268243774755 m001 (2^(1/3)+Shi(1))/(-GAMMA(7/12)+ErdosBorwein) 2971268249103354 m001 (Pi-Psi(1,1/3))/(ErdosBorwein-Riemann3rdZero) 2971268275463037 m001 GAMMA(19/24)/ln(GAMMA(1/4))^2/cosh(1)^2 2971268280046206 m002 -Pi^4+Pi^9+Tanh[Pi]^2 2971268284099022 v002 sum(1/(5^n+(5*n^2+39*n+9)),n=1..infinity) 2971268284629399 r005 Im(z^2+c),c=-5/8+5/196*I,n=5 2971268287633197 a001 28657/7*843^(44/45) 2971268291583298 m001 1/exp(Ei(1))/Rabbit^2/Zeta(9)^2 2971268292713853 r005 Re(z^2+c),c=-11/36+24/53*I,n=32 2971268305702850 s002 sum(A040369[n]/(64^n),n=1..infinity) 2971268309215859 m001 (GAMMA(23/24)-Paris)/(GAMMA(3/4)+Ei(1)) 2971268312294013 r009 Re(z^3+c),c=-43/114+13/44*I,n=13 2971268316794575 a007 Real Root Of -291*x^4-615*x^3+582*x^2-651*x-524 2971268334402247 r005 Im(z^2+c),c=-13/54+1/24*I,n=16 2971268347432060 b008 -3+ArcSinh[196] 2971268349376071 b008 EulerGamma*(4+Sqrt[ArcCosh[2]]) 2971268374643520 r005 Im(z^2+c),c=-115/86+8/19*I,n=4 2971268375296128 m001 (-Zeta(1,2)+LandauRamanujan)/(2^(1/2)-sin(1)) 2971268376439046 m001 (ln(5)-GaussAGM)/(HeathBrownMoroz-Trott2nd) 2971268377561129 m001 KhintchineLevy*ln(Artin)^2*sin(Pi/12) 2971268382053272 r005 Re(z^2+c),c=-29/94+11/38*I,n=2 2971268386625721 m001 (BesselK(1,1)+Gompertz)/(Kac+Magata) 2971268392594097 a007 Real Root Of 337*x^4+976*x^3-304*x^2-462*x+647 2971268395234758 q001 424/1427 2971268395635495 r005 Re(z^2+c),c=-8/21+5/34*I,n=9 2971268420597150 r009 Re(z^3+c),c=-17/64+37/58*I,n=3 2971268432723005 r009 Im(z^3+c),c=-33/118+8/29*I,n=12 2971268432958723 p004 log(28687/21313) 2971268442174123 a007 Real Root Of -374*x^4-218*x^3+933*x^2+987*x-367 2971268443980548 a001 2207/89*2^(6/23) 2971268449350242 r005 Re(z^2+c),c=-31/98+13/31*I,n=31 2971268452853124 r005 Re(z^2+c),c=-29/78+11/59*I,n=18 2971268461399559 m001 BesselJ(0,1)*TreeGrowth2nd^2*ln(Zeta(9)) 2971268471350405 m001 1/exp(Robbin)^2*Niven*cos(Pi/5)^2 2971268471477970 r002 33th iterates of z^2 + 2971268473012011 m001 (Backhouse-Weierstrass)/(3^(1/3)-Pi^(1/2)) 2971268473652460 r005 Re(z^2+c),c=-81/86+8/59*I,n=8 2971268476914052 r005 Im(z^2+c),c=-75/64+12/59*I,n=17 2971268482085248 r005 Re(z^2+c),c=-7/24+39/46*I,n=14 2971268485324093 b008 Log[-3+13*Sqrt[3]] 2971268487084737 m001 (GAMMA(7/12)-GaussAGM)/(Zeta(3)-GAMMA(3/4)) 2971268511089668 h001 (2/9*exp(2)+4/11)/(6/7*exp(2)+5/12) 2971268515838098 m001 Conway^cos(1/5*Pi)+3^(1/2) 2971268518305653 r005 Im(z^2+c),c=-97/78+18/61*I,n=5 2971268519129653 m005 (1/2*exp(1)+3/5)/(5*Zeta(3)+7/12) 2971268519253166 r005 Re(z^2+c),c=-6/23+5/9*I,n=54 2971268519813617 r008 a(0)=3,K{-n^6,-29-9*n+52*n^2+21*n^3} 2971268524424986 a007 Real Root Of -x^4-30*x^3+x^2+259*x-724 2971268528406228 m001 (Shi(1)-Si(Pi))/(GAMMA(13/24)+MertensB2) 2971268531451256 r008 a(0)=3,K{-n^6,-21+25*n^3+44*n^2-13*n} 2971268535815438 a007 Real Root Of 987*x^4-557*x^3+966*x^2-587*x-282 2971268537964190 r005 Re(z^2+c),c=-31/46+18/49*I,n=11 2971268541354850 r005 Re(z^2+c),c=7/122+39/64*I,n=63 2971268545260851 r008 a(0)=3,K{-n^6,85-38*n^3+82*n^2-95*n} 2971268551383947 r008 a(0)=3,K{-n^6,-45+51*n-10*n^2+39*n^3} 2971268555098876 r008 a(0)=3,K{-n^6,-33+39*n^3-4*n^2+33*n} 2971268562875175 r008 a(0)=3,K{-n^6,-37+49*n-21*n^2+44*n^3} 2971268571226986 a007 Real Root Of 226*x^4+377*x^3-785*x^2+241*x-79 2971268574260268 a007 Real Root Of 297*x^4+837*x^3+28*x^2+666*x+539 2971268575364832 r005 Im(z^2+c),c=-15/46+29/59*I,n=29 2971268577893403 r008 a(0)=3,K{-n^6,35+41*n^3+24*n^2-65*n} 2971268581249631 m005 (-1/66+1/6*5^(1/2))/(1+1/11*5^(1/2)) 2971268585048580 l006 ln(2292/3085) 2971268591997578 r005 Re(z^2+c),c=-4/13+4/9*I,n=62 2971268597267372 m001 LaplaceLimit-Zeta(1,-1)^Trott2nd 2971268601407441 r008 a(0)=3,K{-n^6,17-42*n^2+60*n^3} 2971268602218281 a009 7^(1/3)*(2^(2/3)-4)^(1/2) 2971268602818505 a007 Real Root Of 803*x^4-994*x^3+901*x^2-982*x-30 2971268605858077 r008 a(0)=3,K{-n^6,19+63*n^3-50*n^2+3*n} 2971268610051191 m001 (-GolombDickman+Kolakoski)/(2^(1/2)-sin(1)) 2971268610992071 r005 Re(z^2+c),c=-97/126+3/64*I,n=62 2971268618805285 r008 a(0)=3,K{-n^6,39+70*n^3-61*n^2-13*n} 2971268620112717 k002 Champernowne real with 155/2*n^2-381/2*n+142 2971268626841903 s002 sum(A135145[n]/(n^3*exp(n)-1),n=1..infinity) 2971268638357534 r008 a(0)=3,K{-n^6,79+81*n^3-74*n^2-51*n} 2971268645626079 m005 (1/3*5^(1/2)-2/5)/(107/144+3/16*5^(1/2)) 2971268650294461 s002 sum(A040370[n]/(64^n),n=1..infinity) 2971268650559536 m001 (arctan(1/2)+gamma(1))/(Bloch-KomornikLoreti) 2971268651448842 m002 -Pi^4+Pi^9+Tanh[Pi] 2971268652968530 r005 Im(z^2+c),c=3/17+11/46*I,n=16 2971268653056570 a001 1/5778*(1/2*5^(1/2)+1/2)^10*76^(14/23) 2971268654997452 r009 Im(z^3+c),c=-45/106+9/46*I,n=37 2971268672944634 m005 (1/2*Zeta(3)-2/5)/(6/7*gamma+2/11) 2971268673959857 m001 (GAMMA(13/24)+FeigenbaumMu)/(Paris+ZetaP(4)) 2971268679560436 a001 199/46368*610^(37/56) 2971268693530449 r005 Im(z^2+c),c=-6/31+27/62*I,n=17 2971268697277905 r005 Im(z^2+c),c=-41/60+1/28*I,n=41 2971268697407172 m009 (4*Psi(1,2/3)-1/5)/(3/5*Psi(1,1/3)-2) 2971268715513728 a003 sin(Pi*7/115)/cos(Pi*12/43) 2971268717208691 p004 log(33013/24527) 2971268719671337 r005 Re(z^2+c),c=-9/31+29/59*I,n=61 2971268726861638 b008 -3+(-2+E)/25 2971268729071096 a001 1/15127*(1/2*5^(1/2)+1/2)^12*76^(14/23) 2971268730454510 m001 1/ln(BesselK(1,1))^2/LandauRamanujan^2/sqrt(5) 2971268740161466 a001 1/39603*(1/2*5^(1/2)+1/2)^14*76^(14/23) 2971268742779548 a001 1/64079*(1/2*5^(1/2)+1/2)^15*76^(14/23) 2971268747015692 a001 1/24476*(1/2*5^(1/2)+1/2)^13*76^(14/23) 2971268750527762 m005 (1/3*exp(1)-2/9)/(exp(1)-5/12) 2971268751410438 a003 sin(Pi*1/109)/sin(Pi*35/83) 2971268756331569 r009 Re(z^3+c),c=-3/52+31/55*I,n=8 2971268763310785 m001 Pi+Psi(2,1/3)*gamma-Zeta(5) 2971268770803798 b008 ArcCot[31+Sqrt[7]] 2971268775034426 m001 MinimumGamma/(5^(1/2)+FeigenbaumD) 2971268776050659 a001 1/9349*(1/2*5^(1/2)+1/2)^11*76^(14/23) 2971268792861581 m001 (1+ln(2)/ln(10))/(-gamma(3)+TreeGrowth2nd) 2971268801375616 l006 ln(60/1171) 2971268816534819 a007 Real Root Of 183*x^4+193*x^3-923*x^2+73*x-835 2971268817355482 r005 Im(z^2+c),c=-4/19+41/59*I,n=33 2971268824776216 m005 (1/3*exp(1)-1/9)/(3/7*Catalan-1/8) 2971268828876247 r005 Re(z^2+c),c=-67/74+12/55*I,n=52 2971268832515287 r005 Im(z^2+c),c=-13/54+19/42*I,n=25 2971268838624245 m001 (ln(2)+exp(-1/2*Pi))/(Otter+ZetaP(4)) 2971268855083655 m009 (3/4*Psi(1,2/3)+2)/(16/3*Catalan+2/3*Pi^2+3) 2971268861715624 r004 Im(z^2+c),c=1/12+3/10*I,z(0)=I,n=21 2971268869720253 a001 3/7*(1/2*5^(1/2)+1/2)^16*7^(10/17) 2971268882827033 a007 Real Root Of 161*x^4+613*x^3+299*x^2-113*x+556 2971268888470173 m001 1/Catalan^2*MertensB1/exp(sinh(1))^2 2971268898790772 b008 LogBarnesG[1+(4*Pi)/3] 2971268900350382 s002 sum(A010635[n]/((exp(n)-1)/n),n=1..infinity) 2971268923873351 m005 (1/2*Zeta(3)-3/11)/(1/9+4/9*5^(1/2)) 2971268926269388 b008 Pi^2+3*SinhIntegral[7] 2971268934232366 m001 Conway-ln(2+3^(1/2))*LandauRamanujan 2971268937482529 m001 1/BesselJ(1,1)*ln(Magata)/Zeta(1,2) 2971268938735624 m001 (Rabbit+Riemann1stZero)/(Catalan-cos(1/12*Pi)) 2971268940568252 m002 -Pi^5+Pi^2/Log[Pi]+Pi*Sech[Pi] 2971268948529254 r005 Re(z^2+c),c=-5/38+25/27*I,n=9 2971268973989418 a001 3571/165580141*3^(7/24) 2971268975059296 a001 1/3571*(1/2*5^(1/2)+1/2)^9*76^(14/23) 2971268983958342 m001 ln(GolombDickman)^2/Conway*KhintchineHarmonic 2971268988181064 m005 (1/2*Catalan-1/8)/(5/9*gamma+4/5) 2971268988539090 a007 Real Root Of -950*x^4+157*x^3-665*x^2+568*x+239 2971268992183051 a007 Real Root Of -681*x^4+399*x^3-102*x^2+132*x+64 2971268993488978 a007 Real Root Of 847*x^4-310*x^3+75*x^2-734*x+213 2971268995478952 r008 a(0)=3,K{-n^6,-60+35*n+40*n^2+20*n^3} 2971268999792802 a001 13/54018521*18^(20/23) 2971269000602536 m001 (Chi(1)-GAMMA(3/4))/(-gamma(3)+Mills) 2971269009376105 r008 a(0)=3,K{-n^6,-30-8*n+52*n^2+21*n^3} 2971269024241220 m002 -1+Pi^4-Pi^9 2971269027717252 r008 a(0)=3,K{-n^6,28+20*n^3+84*n^2-97*n} 2971269028904557 a007 Real Root Of 221*x^4+500*x^3-582*x^2-141*x+610 2971269034939705 r008 a(0)=3,K{-n^6,2+28*n^3+47*n^2-42*n} 2971269036791956 m002 Pi^5-Cosh[Pi]+Cosh[Pi]/(4*ProductLog[Pi]) 2971269049674649 r008 a(0)=3,K{-n^6,-10-4*n+11*n^2+38*n^3} 2971269051430770 r008 a(0)=3,K{-n^6,-40+53*n-22*n^2+44*n^3} 2971269060902977 r005 Im(z^2+c),c=-31/102+10/21*I,n=57 2971269062627775 r008 a(0)=3,K{-n^6,-18+47*n^3-20*n^2+26*n} 2971269064776370 r008 a(0)=3,K{-n^6,-34+58*n-40*n^2+51*n^3} 2971269077540394 m005 (1/2*3^(1/2)+3/8)/(37/11+4/11*5^(1/2)) 2971269078248718 h001 (8/11*exp(1)+1/10)/(10/11*exp(2)+3/11) 2971269081876467 r008 a(0)=3,K{-n^6,-8+33*n-48*n^2+58*n^3} 2971269082823985 r008 a(0)=3,K{-n^6,-16+49*n-58*n^2+60*n^3} 2971269086596570 a005 (1/cos(4/203*Pi))^568 2971269089721368 m001 ln(Niven)^2*CareFree^2*Riemann2ndZero 2971269092687376 r005 Im(z^2+c),c=3/10+5/43*I,n=60 2971269094660388 m001 1/exp(Zeta(1/2))/FeigenbaumD/cos(1) 2971269099274970 m005 (1/3*3^(1/2)+1/4)/(6/7*exp(1)+5/11) 2971269100841488 b008 Pi-PolyLog[3,1/6] 2971269102699905 a001 8/3571*2^(11/27) 2971269106317390 m001 (Tribonacci+ZetaP(3))/(Conway-Kac) 2971269106334759 m001 1/BesselJ(0,1)*MadelungNaCl/ln(arctan(1/2)) 2971269108629746 l006 ln(6191/8333) 2971269114185597 r002 16i'th iterates of 2*x/(1-x^2) of 2971269118383337 r008 a(0)=3,K{-n^6,54+77*n^3-74*n^2-22*n} 2971269126792519 r008 a(0)=3,K{-n^6,78+81*n^3-74*n^2-50*n} 2971269140414872 a007 Real Root Of 88*x^4-59*x^3-603*x^2+976*x-183 2971269148829819 m001 (2^(1/3))-Khinchin+GAMMA(5/24) 2971269148829819 m001 2^(1/3)+Pi*csc(5/24*Pi)/GAMMA(19/24)-Khinchin 2971269150523818 r005 Im(z^2+c),c=-59/114+9/31*I,n=3 2971269152638324 a008 Real Root of (1+3*x-3*x^2-5*x^3+5*x^4+6*x^5) 2971269158606531 a007 Real Root Of -738*x^4-898*x^3-155*x^2+724*x+211 2971269172998069 a001 9349/433494437*3^(7/24) 2971269192613551 r008 a(0)=3,K{-n^6,-29+33*n+61*n^2-29*n^3} 2971269200646463 a005 (1/sin(18/227*Pi))^9 2971269202033040 a001 12238/567451585*3^(7/24) 2971269204234269 a001 76/5*2178309^(11/54) 2971269206269185 a001 64079/2971215073*3^(7/24) 2971269206887230 a001 167761/7778742049*3^(7/24) 2971269206977402 a001 219602/10182505537*3^(7/24) 2971269206990558 a001 1149851/53316291173*3^(7/24) 2971269206992477 a001 3010349/139583862445*3^(7/24) 2971269206992757 a001 3940598/182717648081*3^(7/24) 2971269206992798 a001 20633239/956722026041*3^(7/24) 2971269206992804 a001 54018521/2504730781961*3^(7/24) 2971269206992805 a001 70711162/3278735159921*3^(7/24) 2971269206992805 a001 4868641/225749145909*3^(7/24) 2971269206992805 a001 87403803/4052739537881*3^(7/24) 2971269206992808 a001 16692641/774004377960*3^(7/24) 2971269206992823 a001 12752043/591286729879*3^(7/24) 2971269206992930 a001 4870847/225851433717*3^(7/24) 2971269206993663 a001 930249/43133785636*3^(7/24) 2971269206998689 a001 710647/32951280099*3^(7/24) 2971269207033131 a001 271443/12586269025*3^(7/24) 2971269207269203 a001 1/46368*3^(7/24) 2971269208887267 a001 39603/1836311903*3^(7/24) 2971269209691067 a007 Real Root Of 258*x^4+859*x^3-62*x^2-992*x+24 2971269212419782 r005 Im(z^2+c),c=-31/102+21/44*I,n=23 2971269212482681 a001 2/89*3^(15/59) 2971269216202656 r005 Im(z^2+c),c=-65/122+1/19*I,n=34 2971269217435207 m001 cosh(1)^2*exp(Khintchine)/sinh(1) 2971269217446522 m001 BesselK(1,1)^Otter/(BesselK(1,1)^BesselI(1,1)) 2971269219977639 a001 15127/701408733*3^(7/24) 2971269251692169 m001 ZetaQ(4)*(DuboisRaymond+ErdosBorwein) 2971269254478725 r009 Re(z^3+c),c=-15/38+16/51*I,n=6 2971269259674459 a007 Real Root Of 289*x^4+646*x^3-470*x^2+730*x+739 2971269262844793 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=35 2971269270365019 r002 4th iterates of z^2 + 2971269271867126 r005 Im(z^2+c),c=-9/8+73/237*I,n=10 2971269281892753 r004 Im(z^2+c),c=-1/11+9/23*I,z(0)=I,n=16 2971269286257488 m001 1/Riemann1stZero^2/exp(Cahen)^2*arctan(1/2)^2 2971269288706348 g007 Psi(2,6/7)+Psi(2,1/6)-Psi(2,7/12)-Psi(2,1/4) 2971269288999193 m005 (1/3*3^(1/2)-1/10)/(-8/15+1/6*5^(1/2)) 2971269295992179 a001 2889/133957148*3^(7/24) 2971269301127900 m001 (RenyiParking-Trott2nd)/(FeigenbaumC+Lehmer) 2971269312507058 m001 (2*Pi/GAMMA(5/6)+TravellingSalesman)^Lehmer 2971269319166950 r009 Im(z^3+c),c=-39/82+7/48*I,n=59 2971269321806160 r005 Re(z^2+c),c=-71/90+1/48*I,n=52 2971269335200218 m001 (Zeta(3)-ln(2)/ln(10))/(Otter+ZetaP(4)) 2971269343975996 m001 1/PisotVijayaraghavan/Magata*ln((3^(1/3)))^2 2971269349860029 r009 Im(z^3+c),c=-55/122+5/29*I,n=41 2971269361004388 a007 Real Root Of -271*x^4-605*x^3+482*x^2-465*x-385 2971269362563436 r005 Im(z^2+c),c=-57/86+3/53*I,n=49 2971269367010996 r005 Re(z^2+c),c=-17/54+19/45*I,n=28 2971269371671986 a007 Real Root Of 719*x^4-138*x^3-597*x^2-112*x+84 2971269396837268 r008 a(0)=3,K{-n^6,15+59*n-39*n^2-2*n^3} 2971269397033598 m002 -2+Pi^4-Pi^9+Tanh[Pi] 2971269398428540 m002 -Pi^4+Pi^9+Coth[Pi] 2971269400967981 m005 (1/2*2^(1/2)-1/3)/(4/5*exp(1)-11/12) 2971269415007513 r009 Re(z^3+c),c=-57/122+15/34*I,n=41 2971269415197491 m005 (1/3*5^(1/2)-2/9)/(4/5*3^(1/2)+3/8) 2971269416413276 l006 ln(3899/5248) 2971269419861790 m001 FeigenbaumD^2*Khintchine/ln(GAMMA(23/24))^2 2971269421506649 m003 3*Csc[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2]/15 2971269428828516 a007 Real Root Of 215*x^4+675*x^3+151*x^2+31*x-292 2971269431611863 r005 Im(z^2+c),c=-37/64+8/21*I,n=15 2971269432169331 r005 Re(z^2+c),c=-11/19+11/27*I,n=21 2971269444103143 a001 20633239/34*21^(12/23) 2971269444453385 r005 Re(z^2+c),c=-11/52+34/55*I,n=27 2971269453332284 r005 Im(z^2+c),c=-9/32+29/62*I,n=61 2971269457598494 m002 3*Pi^2+(3*ProductLog[Pi])/Pi^3 2971269464365881 m001 ln(Pi)/(GAMMA(1/3)+GAMMA(19/24)) 2971269466325093 r005 Im(z^2+c),c=-37/30+1/89*I,n=11 2971269471409803 m005 (1/2*5^(1/2)+5)/(4/11*Pi+11/12) 2971269472882377 r005 Re(z^2+c),c=-9/28+4/7*I,n=9 2971269489955772 m001 (1-polylog(4,1/2))/(-Niven+StolarskyHarborth) 2971269489965390 r008 a(0)=3,K{-n^6,-47+21*n^3+44*n^2+17*n} 2971269491109394 m001 Ei(1,1)+exp(1/exp(1))*ZetaQ(2) 2971269492552463 a007 Real Root Of 362*x^4-525*x^3-713*x^2-347*x+177 2971269494376232 r005 Re(z^2+c),c=-7/25+27/53*I,n=32 2971269499080956 r009 Re(z^3+c),c=-55/122+8/19*I,n=59 2971269515585658 m001 (Pi^(1/2)*LaplaceLimit+Kolakoski)/LaplaceLimit 2971269516585166 h002 exp(1/19*(5-5^(1/2)*19^(1/2))*19^(1/2)) 2971269519795075 m002 (-2*Csch[Pi])/Pi^2+3*Tanh[Pi] 2971269520464056 m005 (1/2*exp(1)+7/11)/(1/12*Zeta(3)+4/7) 2971269524485624 a001 2207/5*377^(9/28) 2971269527336347 s002 sum(A040368[n]/(64^n),n=1..infinity) 2971269531401035 r009 Re(z^3+c),c=-5/27+40/41*I,n=34 2971269532914309 r008 a(0)=3,K{-n^6,-3+35*n^3+24*n^2-21*n} 2971269546349509 m006 (4/5*ln(Pi)+3/5)/(1/2*Pi^2+1/6) 2971269556118740 a007 Real Root Of 502*x^4-338*x^3+647*x^2-835*x-318 2971269560509187 r008 a(0)=3,K{-n^6,-15+35*n-39*n^2+54*n^3} 2971269565848493 r008 a(0)=3,K{-n^6,1+13*n-34*n^2+55*n^3} 2971269567051412 a007 Real Root Of 789*x^4-392*x^3+62*x^2-559*x-188 2971269568004070 m005 (1/2*Zeta(3)-1/6)/(4/9*2^(1/2)+5/6) 2971269574712091 a001 1/123*(1/2*5^(1/2)+1/2)^2*521^(15/19) 2971269576410296 r008 a(0)=3,K{-n^6,17-n-41*n^2+60*n^3} 2971269578606839 r008 a(0)=3,K{-n^6,-3+65*n^3-66*n^2+39*n} 2971269579498616 a001 1/521*2^(29/46) 2971269581539536 a007 Real Root Of -388*x^4+909*x^3+603*x^2+646*x-266 2971269587528835 a001 233/11*29^(40/51) 2971269589452608 m001 exp(GAMMA(17/24))^2/Sierpinski*sin(Pi/5) 2971269597278945 r008 a(0)=3,K{-n^6,65+69*n^3-44*n^2-55*n} 2971269598072329 r005 Re(z^2+c),c=-3/10+7/15*I,n=40 2971269603917709 r008 a(0)=3,K{-n^6,53+77*n^3-74*n^2-21*n} 2971269620623905 r005 Re(z^2+c),c=-29/70+18/37*I,n=10 2971269622915764 r005 Re(z^2+c),c=-21/58+25/46*I,n=29 2971269623113317 k002 Champernowne real with 78*n^2-192*n+143 2971269624201509 a007 Real Root Of -22*x^4+133*x^3+30*x^2-454*x-690 2971269637826277 a001 139583862445/199*199^(3/11) 2971269650168278 h001 (4/7*exp(1)+5/11)/(5/6*exp(2)+3/5) 2971269653256315 r005 Re(z^2+c),c=-15/62+23/40*I,n=36 2971269659509477 m001 (Ei(1,1)-FeigenbaumKappa)/(Trott+Trott2nd) 2971269672611580 r009 Re(z^3+c),c=-17/48+25/34*I,n=13 2971269684981883 r005 Im(z^2+c),c=-55/86+19/43*I,n=20 2971269685577858 r005 Re(z^2+c),c=-29/82+7/25*I,n=13 2971269688621867 a007 Real Root Of 236*x^4+701*x^3-248*x^2-498*x+704 2971269690156270 a009 16*(2^(2/3)+12^(1/4))^(1/2) 2971269698795750 a001 7/377*46368^(8/31) 2971269701335641 a007 Real Root Of -249*x^4-846*x^3-591*x^2-800*x+56 2971269710053347 m001 1/GAMMA(1/24)*exp(GolombDickman)^2*sqrt(2)^2 2971269720611970 p004 log(18131/929) 2971269724065195 a008 Real Root of (1+x+6*x^2-2*x^3-6*x^4+2*x^5) 2971269736496446 m005 (-11/4+1/4*5^(1/2))/(3/7*Zeta(3)+2/9) 2971269737054115 r009 Im(z^3+c),c=-5/106+47/56*I,n=42 2971269748595461 a007 Real Root Of 358*x^4+899*x^3-781*x^2-617*x+741 2971269762488062 l006 ln(5506/7411) 2971269763980375 a007 Real Root Of -234*x^4-684*x^3+159*x^2+421*x+143 2971269769412905 m006 (4*ln(Pi)-4)/(5/6*exp(Pi)+1/5) 2971269772836148 h001 (1/12*exp(2)+1/4)/(3/8*exp(2)+1/7) 2971269793855117 a001 64079/3*2^(10/21) 2971269794578737 a001 1/3*(1/2*5^(1/2)+1/2)^23*4^(5/21) 2971269795758511 r009 Re(z^3+c),c=-5/14+17/60*I,n=5 2971269797378235 r005 Im(z^2+c),c=-13/106+21/52*I,n=14 2971269801146688 a001 4181/199*2^(1/2) 2971269809765038 r005 Re(z^2+c),c=-25/74+8/23*I,n=30 2971269815959683 a001 591286729879/843*123^(3/10) 2971269817003591 a001 2207/102334155*3^(7/24) 2971269817836398 m001 (Si(Pi)+cos(1/12*Pi))/(FellerTornier+Kac) 2971269837220809 b008 7/5-22*Sqrt[2] 2971269839756886 m002 -3/Pi^3-Pi^2+Pi^5+ProductLog[Pi] 2971269843670802 m005 (1/2*Catalan-1/11)/(9/10+3/20*5^(1/2)) 2971269846597965 r009 Im(z^3+c),c=-3/10+61/62*I,n=2 2971269848181174 r005 Re(z^2+c),c=19/58+5/38*I,n=37 2971269850754880 a007 Real Root Of 232*x^4+622*x^3-402*x^2-775*x-520 2971269850871438 m001 BesselK(1,1)^2/exp(RenyiParking)*sqrt(3) 2971269854785666 m001 BesselK(1,1)^cos(1)/(BesselK(1,1)^Khinchin) 2971269858644092 r005 Re(z^2+c),c=-17/60+28/55*I,n=43 2971269867061021 g005 2*Pi*GAMMA(3/5)/GAMMA(2/7) 2971269873206977 l006 ln(7759/7993) 2971269873206977 p004 log(7993/7759) 2971269877497660 m001 (Zeta(3)+FeigenbaumKappa)/(Thue+ZetaQ(4)) 2971269877709337 m001 1/exp(Lehmer)^2/CareFree/Zeta(1/2) 2971269919960690 r008 a(0)=3,K{-n^6,-94+8*n^3+60*n^2+61*n} 2971269929135088 h005 exp(cos(Pi*14/51)+cos(Pi*16/45)) 2971269938874648 r005 Im(z^2+c),c=-35/44+7/58*I,n=18 2971269940264341 h001 (3/10*exp(2)+9/10)/(1/3*exp(1)+1/7) 2971269945582825 m001 ln(2^(1/2)+1)+MertensB1^ln(gamma) 2971269951287729 m005 (1/2*gamma-5/6)/(4/7*5^(1/2)+5/9) 2971269952189391 l006 ln(7113/9574) 2971269956425150 r005 Im(z^2+c),c=-8/15+14/25*I,n=4 2971269959391576 m002 -Pi^5+10*Coth[Pi]-Log[Pi] 2971269959617827 r005 Re(z^2+c),c=23/70+8/61*I,n=37 2971269970166328 m001 Salem*(2^(1/3)+BesselI(0,1)) 2971269979372333 p001 sum(1/(118*n+37)/(3^n),n=0..infinity) 2971269980282740 r008 a(0)=3,K{-n^6,-12+18*n^3+71*n^2-42*n} 2971269980288738 r008 a(0)=3,K{-n^6,-30-9*n+53*n^2+21*n^3} 2971269999481033 m001 (2^(1/3))^LambertW(1)+FeigenbaumC 2971270004147676 a007 Real Root Of -761*x^4-335*x^3-338*x^2+64*x+46 2971270006290194 m001 (Khinchin-Sarnak)/(GAMMA(3/4)-BesselI(1,1)) 2971270012123081 r005 Im(z^2+c),c=-17/62+20/43*I,n=30 2971270012601068 r008 a(0)=3,K{-n^6,8-46*n+42*n^2+31*n^3} 2971270014065173 a007 Real Root Of -495*x^4-613*x^3+248*x^2+855*x-256 2971270015368264 m001 Zeta(1/2)*GAMMA(7/12)/exp(Zeta(7))^2 2971270015765140 b008 Pi+40*Sinh[5] 2971270032299948 r008 a(0)=3,K{-n^6,-18+47*n^3-19*n^2+25*n} 2971270039520057 r008 a(0)=3,K{-n^6,-26+49*n-41*n^2+53*n^3} 2971270051101264 a007 Real Root Of -388*x^4+969*x^3+496*x^2+760*x-292 2971270061847662 r008 a(0)=3,K{-n^6,46-51*n-17*n^2+57*n^3} 2971270065192034 m001 (2^(1/2)-Zeta(5))/(-KhinchinHarmonic+PlouffeB) 2971270079742584 r009 Re(z^3+c),c=-27/56+18/37*I,n=20 2971270081596480 r005 Re(z^2+c),c=3/29+11/40*I,n=5 2971270095096258 r008 a(0)=3,K{-n^6,78+81*n^3-73*n^2-51*n} 2971270097914527 m001 (Ei(1,1)-gamma)/(-Landau+MadelungNaCl) 2971270133175763 r008 a(0)=3,K{-n^6,-7+20*n+54*n^2-29*n^3} 2971270157681406 a007 Real Root Of -222*x^4-452*x^3+414*x^2-268*x+995 2971270161290322 q001 1179/3968 2971270162409566 r005 Im(z^2+c),c=-37/110+21/43*I,n=55 2971270166361382 a001 14662949395604*3^(9/14) 2971270169648474 a007 Real Root Of -226*x^4-321*x^3+634*x^2-969*x+718 2971270170922715 m001 (sin(1)+GaussAGM)/(-LaplaceLimit+Paris) 2971270182239359 r005 Re(z^2+c),c=-19/24+11/61*I,n=6 2971270192746671 r009 Im(z^3+c),c=-5/74+51/61*I,n=4 2971270209748876 m001 (ln(2+3^(1/2))+BesselI(1,1))/(3^(1/2)-ln(3)) 2971270219617756 r005 Re(z^2+c),c=-8/29+29/55*I,n=53 2971270225272262 m001 (BesselK(0,1)-exp(1))/(-MertensB1+MertensB2) 2971270228385491 a001 29/6765*34^(28/51) 2971270237221501 a007 Real Root Of 224*x^4+849*x^3+386*x^2-625*x-453 2971270247769928 r005 Re(z^2+c),c=-31/106+11/23*I,n=21 2971270248625713 b008 -3+Zeta[Pi,1+Pi] 2971270263525915 h001 (1/6*exp(2)+3/11)/(5/8*exp(2)+4/9) 2971270264646747 m001 MadelungNaCl^2*Si(Pi)^2/exp((2^(1/3))) 2971270266074174 a007 Real Root Of 5*x^4-474*x^3+981*x^2+821*x+944 2971270272024569 r009 Re(z^3+c),c=-23/78+1/8*I,n=9 2971270282483407 m001 (Pi-polylog(4,1/2))^GAMMA(5/6) 2971270282483407 m001 (polylog(4,1/2)-Pi)^GAMMA(5/6) 2971270287063033 a001 11592/19*7^(48/59) 2971270295650070 r005 Re(z^2+c),c=-61/78+3/47*I,n=26 2971270313292467 m001 1/exp(OneNinth)^2*LaplaceLimit^2*Catalan^2 2971270314060839 r005 Im(z^2+c),c=-43/60+13/62*I,n=5 2971270324663495 a007 Real Root Of 169*x^4+447*x^3+52*x^2-406*x+103 2971270329427576 r005 Im(z^2+c),c=-5/8+89/253*I,n=44 2971270339085507 a001 1/1364*(1/2*5^(1/2)+1/2)^7*76^(14/23) 2971270343959762 s002 sum(A281631[n]/((2^n-1)/n),n=1..infinity) 2971270350446481 r005 Re(z^2+c),c=-21/74+35/61*I,n=8 2971270352184128 r009 Re(z^3+c),c=-33/70+20/49*I,n=10 2971270367352050 m001 log(1+sqrt(2))*FeigenbaumAlpha^2*exp(sin(1))^2 2971270378488789 s002 sum(A174496[n]/(pi^n+1),n=1..infinity) 2971270389579797 m005 (1/2*Pi+1/5)/(7/8*gamma+1/11) 2971270392446244 m001 (BesselI(0,2)+Tribonacci)/(gamma+cos(1/5*Pi)) 2971270392817665 a007 Real Root Of -374*x^4-709*x^3+936*x^2-473*x+883 2971270401260839 r008 a(0)=3,K{-n^6,-95+8*n^3+60*n^2+62*n} 2971270402114100 r005 Im(z^2+c),c=-89/118+1/45*I,n=5 2971270408322578 a003 cos(Pi*7/93)/cos(Pi*47/96) 2971270412449366 r005 Im(z^2+c),c=3/122+14/41*I,n=7 2971270415477598 s002 sum(A174496[n]/(pi^n),n=1..infinity) 2971270416569871 a007 Real Root Of -716*x^4+620*x^3+496*x^2+959*x+263 2971270439240294 m001 1/MertensB1/Cahen^2*ln(LambertW(1))^2 2971270441746347 m001 1/GAMMA(13/24)^3*ln(Pi)^2 2971270452466411 s002 sum(A174496[n]/(pi^n-1),n=1..infinity) 2971270458268478 m001 (Pi+ReciprocalFibonacci)/(Riemann2ndZero+Thue) 2971270461157562 m001 (Tetranacci-Tribonacci)/(3^(1/3)+GAMMA(7/12)) 2971270466786199 r005 Re(z^2+c),c=-27/98+26/49*I,n=50 2971270466908664 h002 exp(1/6*(5-6^(1/2)*11^(2/3))^(1/2)*6^(1/2)) 2971270470788415 m001 Otter^AlladiGrinstead+LambertW(1) 2971270476647477 m001 (exp(1)+Ei(1))/(ln(2+3^(1/2))+CopelandErdos) 2971270477401892 r008 a(0)=3,K{-n^6,-49+41*n+11*n^2+32*n^3} 2971270479116773 l006 ln(509/9934) 2971270481725081 m002 -4+Pi/4-Pi^5*Csch[Pi] 2971270482463813 m001 (HeathBrownMoroz-ZetaQ(2))/(Pi-exp(1/Pi)) 2971270485360579 a007 Real Root Of -195*x^4-372*x^3+628*x^2+109*x+220 2971270486188735 m001 1/GAMMA(11/24)/ln(Khintchine)*LambertW(1) 2971270492951310 r008 a(0)=3,K{-n^6,7-45*n+42*n^2+31*n^3} 2971270497060220 r008 a(0)=3,K{-n^6,-33+40*n^3-5*n^2+33*n} 2971270502775640 m001 (exp(1/Pi)-CareFree)/(Kolakoski+MinimumGamma) 2971270504310884 a001 3/89*196418^(5/28) 2971270504404238 r008 a(0)=3,K{-n^6,-37+49*n-22*n^2+45*n^3} 2971270507621079 r005 Re(z^2+c),c=-1/4+23/40*I,n=60 2971270511629958 m005 (1/3*Catalan-1/12)/(1/11*exp(1)+1/2) 2971270512460947 r008 a(0)=3,K{-n^6,-19+47*n^3-19*n^2+26*n} 2971270517373910 a007 Real Root Of 827*x^4-280*x^3+360*x^2-826*x-291 2971270519612812 r008 a(0)=3,K{-n^6,-27+50*n-41*n^2+53*n^3} 2971270523053348 r009 Re(z^3+c),c=-43/110+15/47*I,n=31 2971270533232523 r009 Re(z^3+c),c=-21/52+14/41*I,n=27 2971270535186470 r008 a(0)=3,K{-n^6,33+54*n^3-14*n^2-38*n} 2971270541733174 r008 a(0)=3,K{-n^6,45-50*n-17*n^2+57*n^3} 2971270544116138 a003 cos(Pi*20/101)-sin(Pi*22/69) 2971270546787583 a007 Real Root Of 348*x^4+677*x^3-756*x^2+645*x-774 2971270552363933 b008 2/7+Zeta[Glaisher,Pi] 2971270552838088 a005 (1/cos(19/224*Pi))^1376 2971270557396467 r008 a(0)=3,K{-n^6,39+71*n^3-62*n^2-13*n} 2971270561176642 r005 Re(z^2+c),c=-11/36+11/26*I,n=15 2971270566518707 r008 a(0)=3,K{-n^6,53+77*n^3-73*n^2-22*n} 2971270569556650 a005 (1/sin(106/223*Pi))^1895 2971270570582908 r005 Re(z^2+c),c=-35/102+20/61*I,n=30 2971270584165440 a001 521/8*956722026041^(7/18) 2971270596485167 b008 1-14*Cos[5] 2971270602155461 l006 ln(1607/2163) 2971270620963502 r009 Im(z^3+c),c=-31/98+6/23*I,n=14 2971270626113918 k002 Champernowne real with 157/2*n^2-387/2*n+144 2971270627222256 a007 Real Root Of 124*x^4+212*x^3-112*x^2+841*x-616 2971270627512023 r009 Re(z^3+c),c=-1/6+26/43*I,n=4 2971270631261639 h001 (2/9*exp(2)+7/8)/(1/11*exp(1)+3/5) 2971270635546059 a007 Real Root Of -388*x^4+10*x^3+178*x^2+993*x-308 2971270643164717 r005 Im(z^2+c),c=-29/62+17/33*I,n=59 2971270643367951 m001 (5^(1/2)-ln(Pi))/(KhinchinHarmonic+Tetranacci) 2971270648274353 a007 Real Root Of 356*x^4+225*x^3-964*x^2-776*x+307 2971270668210071 r005 Im(z^2+c),c=-5/6+67/249*I,n=4 2971270668931734 s002 sum(A100041[n]/(exp(pi*n)+1),n=1..infinity) 2971270677733919 r002 30th iterates of z^2 + 2971270680534117 r009 Re(z^3+c),c=-10/23+13/33*I,n=42 2971270682913214 m002 Pi+Cosh[Pi]+Pi^9*Tanh[Pi] 2971270683485850 r009 Im(z^3+c),c=-45/106+9/46*I,n=36 2971270683774795 a009 1/5*(14^(1/2)-2^(1/2)*5^(3/4))^(1/2)*5^(1/4) 2971270696386557 r009 Im(z^3+c),c=-49/106+8/49*I,n=22 2971270703313596 l006 ln(449/8763) 2971270717219830 m001 (Si(Pi)+Khinchin)/(-Lehmer+TreeGrowth2nd) 2971270718232044 q001 2689/905 2971270734501208 h001 (7/11*exp(1)+1/7)/(7/9*exp(2)+5/9) 2971270740846794 a001 322/139583862445*317811^(13/23) 2971270742587242 a007 Real Root Of -266*x^4-799*x^3+281*x^2+888*x-69 2971270747442743 a007 Real Root Of -517*x^4-736*x^3-350*x^2+997*x-242 2971270766401055 h001 (-2*exp(1/3)+7)/(-8*exp(1/3)-3) 2971270766843410 r005 Re(z^2+c),c=-31/106+27/56*I,n=34 2971270788432948 r005 Im(z^2+c),c=-67/126+31/61*I,n=10 2971270796623734 m001 Pi*(1/2*2^(1/2)-(1+3^(1/2))^(1/2)) 2971270800906069 m001 (BesselI(0,2)+Magata)/(MinimumGamma+ZetaP(2)) 2971270807014073 m001 BesselJZeros(0,1)^sqrt(5)*Ei(1)^sqrt(5) 2971270818886950 m005 (1/2*5^(1/2)-4/7)/(11/12*Catalan+1) 2971270822855512 b008 ArcCoth[5/2+Tanh[2]] 2971270823645576 m001 (GAMMA(3/4)+Zeta(1/2))^Chi(1) 2971270826071155 m001 (Otter+Thue)/(arctan(1/2)-MadelungNaCl) 2971270828489532 m001 (KhinchinLevy+MasserGramain)/(Zeta(5)-ln(3)) 2971270829140989 m001 BesselJ(1,1)^2*Porter*exp(GAMMA(19/24))^2 2971270835657235 a001 1/15449*(1/2*5^(1/2)+1/2)^6*2207^(8/19) 2971270839459166 m001 Zeta(9)*exp(Ei(1))^2*sin(Pi/12)^2 2971270846314568 m005 (-15/4+1/4*5^(1/2))/(7/9*gamma+5/8) 2971270850957857 r005 Re(z^2+c),c=-55/86+14/39*I,n=34 2971270881063882 a003 sin(Pi*3/37)/cos(Pi*8/45) 2971270900349076 r005 Re(z^2+c),c=7/60+18/31*I,n=20 2971270911793473 m001 1+Zeta(3)*GAMMA(13/24) 2971270915458265 a001 233/843*76^(17/31) 2971270924917855 r005 Re(z^2+c),c=-43/42+5/17*I,n=16 2971270935760629 b008 ProductLog[(1/2+Pi)^Pi] 2971270936799568 r005 Im(z^2+c),c=-13/60+27/61*I,n=32 2971270938211622 a005 (1/sin(52/123*Pi))^1663 2971270939425056 r008 a(0)=3,K{-n^6,-12+18*n^3+72*n^2-43*n} 2971270939772919 s001 sum(exp(-2*Pi/3)^n*A211152[n],n=1..infinity) 2971270941408974 r005 Im(z^2+c),c=-89/74+15/38*I,n=3 2971270941424916 a007 Real Root Of 460*x^4+966*x^3-979*x^2+619*x-31 2971270943017669 p001 sum(1/(398*n+339)/(64^n),n=0..infinity) 2971270948019356 m005 (1/2*Zeta(3)+5/9)/(5/12*2^(1/2)-1/5) 2971270952389206 r008 a(0)=3,K{-n^6,-28-n+37*n^2+27*n^3} 2971270953721108 r005 Im(z^2+c),c=-25/82+25/42*I,n=21 2971270965625091 r008 a(0)=3,K{-n^6,2+29*n^3+46*n^2-42*n} 2971270969815064 r008 a(0)=3,K{-n^6,-26+14*n+11*n^2+36*n^3} 2971270974648799 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=28 2971270979793773 r009 Re(z^3+c),c=-23/48+8/39*I,n=4 2971270981193284 r008 a(0)=3,K{-n^6,-40+53*n-23*n^2+45*n^3} 2971270982061840 m002 -6-E^Pi/8+Pi^5 2971270984586797 m009 (4*Psi(1,2/3)-3/4)/(1/5*Psi(1,2/3)-1) 2971270986315659 m001 (gamma(2)+CareFree)/(Conway+MertensB2) 2971270991740132 h002 exp(9/(6^(1/3)+12^(3/4))) 2971270993811597 r008 a(0)=3,K{-n^6,-34+58*n-41*n^2+52*n^3} 2971270994253656 m005 (1/2*exp(1)-3/7)/(4/5*2^(1/2)-9/11) 2971270996671317 l006 ln(389/7592) 2971270999170333 h003 exp(Pi*(1/15*(10^(3/4)-3^(1/3))*15^(1/2))) 2971271000218743 r008 a(0)=3,K{-n^6,-2+8*n-22*n^2+51*n^3} 2971271000783892 r008 a(0)=3,K{-n^6,19-14*n^3-23*n^2+52*n} 2971271010903036 r008 a(0)=3,K{-n^6,-16+49*n-59*n^2+61*n^3} 2971271012233763 r008 a(0)=3,K{-n^6,32+54*n^3-14*n^2-37*n} 2971271014429906 r008 a(0)=3,K{-n^6,42+54*n^3-9*n^2-52*n} 2971271015542490 m001 1/ln(Paris)^2/Niven*exp(1) 2971271018446252 s002 sum(A078342[n]/(exp(n)),n=1..infinity) 2971271024910678 r008 a(0)=3,K{-n^6,32+64*n^3-44*n^2-17*n} 2971271025928945 m005 (1/2*2^(1/2)+2)/(4*5^(1/2)+1/6) 2971271031101276 m001 HardHexagonsEntropy/(FeigenbaumDelta+Trott2nd) 2971271037872190 r005 Re(z^2+c),c=-33/94+13/44*I,n=33 2971271046404650 m001 1/exp(1)^2/ln(Porter)*sin(1) 2971271050156111 a007 Real Root Of -989*x^4+292*x^3-256*x^2+929*x+314 2971271052428198 m001 Conway-FransenRobinson-Porter 2971271060374337 b008 1-20*Cot[EulerGamma] 2971271062485378 a007 Real Root Of -565*x^4-87*x^3-203*x^2+572*x+190 2971271077082794 q001 1/3365563 2971271080281745 m001 (cos(1)-ln(2)/ln(10))/(-Thue+ZetaQ(2)) 2971271082220192 a007 Real Root Of 385*x^4+893*x^3-726*x^2+170*x+332 2971271087811418 m005 (1/2*Zeta(3)-4/7)/(1/6*gamma+9/10) 2971271088648616 m001 (2^(1/2)-arctan(1/2))/(-exp(-1/2*Pi)+Magata) 2971271116767379 r009 Re(z^3+c),c=-75/122+26/53*I,n=29 2971271119605931 m005 (1/2*gamma-5)/(10/11*2^(1/2)+3/10) 2971271123243024 a001 1/40446*(1/2*5^(1/2)+1/2)^10*5778^(5/19) 2971271125858335 m001 1/MinimumGamma^2*ln(LaplaceLimit)*cosh(1) 2971271133113342 k008 concat of cont frac of 2971271144779675 m001 (Si(Pi)*Rabbit+Kolakoski)/Rabbit 2971271153089334 q001 755/2541 2971271159734124 r005 Im(z^2+c),c=-51/118+13/28*I,n=18 2971271185401145 m005 (1/3*Pi-3/5)/(4/7*Zeta(3)+9/11) 2971271185404488 a001 1/105889*(1/2*5^(1/2)+1/2)^2*15127^(14/19) 2971271188023884 a001 1/277221*(1/2*5^(1/2)+1/2)^6*39603^(11/19) 2971271189050064 a001 1/448553*(1/2*5^(1/2)+1/2)^4*64079^(13/19) 2971271191954037 a001 1/171332*(1/2*5^(1/2)+1/2)^10*24476^(7/19) 2971271196632123 m001 (arctan(1/3)-Otter)/(Trott2nd+Thue) 2971271196768549 p001 sum(1/(413*n+409)/(3^n),n=0..infinity) 2971271197380547 a001 38/3278735159921*55^(17/21) 2971271209580141 b008 -1+EulerGamma+ArcCoth[8] 2971271218592109 r005 Re(z^2+c),c=-11/29+4/29*I,n=11 2971271223691652 a003 sin(Pi*10/119)/cos(Pi*10/63) 2971271223839614 a007 Real Root Of -834*x^4+382*x^3+361*x^2+644*x+176 2971271231163402 l006 ln(7350/9893) 2971271255757171 m005 (1/2*5^(1/2)-3/7)/(1/4*exp(1)-3) 2971271267532837 p004 log(37409/27793) 2971271270502910 a007 Real Root Of -255*x^4-648*x^3+401*x^2+304*x+240 2971271274664967 a001 1/24997*(1/2*5^(1/2)+1/2)^3*3571^(12/19) 2971271275285956 a007 Real Root Of 549*x^4+389*x^3+939*x^2-165*x-126 2971271276829513 m001 ((1+3^(1/2))^(1/2)-MertensB3)/(Zeta(5)-ln(Pi)) 2971271280375789 a008 Real Root of (-4+3*x^2+5*x^3+x^4-x^5) 2971271288333360 a001 124/615*3^(6/17) 2971271290646176 m001 (cos(1)+GAMMA(23/24))/(-Kac+Paris) 2971271297167139 m002 (4*E^Pi)/Pi+Tanh[Pi]/4 2971271297189899 r005 Re(z^2+c),c=-8/9+53/119*I,n=2 2971271298382493 a003 cos(Pi*17/67)-sin(Pi*49/104) 2971271304573552 m001 1/exp(Si(Pi))*Conway^2*GAMMA(11/12)^2 2971271308366161 p004 log(17623/13093) 2971271337462071 m001 RenyiParking+Sierpinski^sin(1) 2971271342591659 r005 Im(z^2+c),c=1/20+31/55*I,n=10 2971271356099775 r008 a(0)=3,K{-n^6,-95+8*n^3+61*n^2+61*n} 2971271357972923 a007 Real Root Of -109*x^4+584*x^3+599*x^2+958*x-352 2971271362399728 m001 1/ln(Robbin)^2*Artin^2*BesselK(1,1)^2 2971271364558388 l006 ln(8389/8642) 2971271380638312 m001 ZetaP(2)/MertensB3*ZetaQ(3) 2971271381347032 r009 Re(z^3+c),c=-8/19+15/31*I,n=13 2971271388909410 r005 Im(z^2+c),c=3/16+3/13*I,n=21 2971271391305194 m001 ZetaP(3)^(LambertW(1)*FibonacciFactorial) 2971271395058317 r008 a(0)=3,K{-n^6,-59+25*n+52*n^2+17*n^3} 2971271397028676 l006 ln(329/6421) 2971271401892560 m005 (1/3*exp(1)-1/4)/(4/9*exp(1)+1) 2971271403367731 a001 123/121393*34^(18/59) 2971271407171711 l006 ln(5743/7730) 2971271412321679 m001 (Catalan-exp(1))/(-LambertW(1)+GAMMA(19/24)) 2971271412776223 m001 (-GAMMA(7/12)+GAMMA(17/24))/(Ei(1)-Psi(1,1/3)) 2971271412783555 s002 sum(A035814[n]/((exp(n)+1)*n),n=1..infinity) 2971271414299037 r008 a(0)=3,K{-n^6,-13+18*n^3+72*n^2-42*n} 2971271414900888 p001 sum((-1)^n/(223*n+104)/n/(10^n),n=1..infinity) 2971271427134111 r008 a(0)=3,K{-n^6,-29+37*n^2+27*n^3} 2971271428426725 r008 a(0)=3,K{-n^6,-19+26*n^3+45*n^2-17*n} 2971271428464326 m001 GAMMA(2/3)+exp(1/Pi)*Salem 2971271432886302 r008 a(0)=3,K{-n^6,-41+28*n+16*n^2+32*n^3} 2971271433516413 r008 a(0)=3,K{-n^6,-57+35*n^3-n^2+58*n} 2971271445547328 r008 a(0)=3,K{-n^6,7-46*n+43*n^2+31*n^3} 2971271451133531 k007 concat of cont frac of 2971271459614759 m001 BesselK(1,1)^2*KhintchineLevy^2/ln(GAMMA(1/6)) 2971271460100192 r002 3th iterates of z^2 + 2971271460279007 r005 Re(z^2+c),c=4/17+5/11*I,n=46 2971271463437561 m001 1/BesselJ(1,1)/ln(Cahen)/log(2+sqrt(3))^2 2971271468791757 a007 Real Root Of -355*x^4-857*x^3+678*x^2+243*x-75 2971271471610704 r008 a(0)=3,K{-n^6,-27+49*n-40*n^2+53*n^3} 2971271473541692 r008 a(0)=3,K{-n^6,29+45*n^3+12*n^2-51*n} 2971271474504448 r008 a(0)=3,K{-n^6,-3+9*n-22*n^2+51*n^3} 2971271477343361 r008 a(0)=3,K{-n^6,-3+53*n^3-28*n^2+13*n} 2971271480174848 s002 sum(A007696[n]/(exp(pi*n)+1),n=1..infinity) 2971271482009260 m001 (sqrt(5)*Si(Pi)+FeigenbaumAlpha)/sqrt(5) 2971271482009260 m001 1/5*(5^(1/2)*Si(Pi)+FeigenbaumAlpha)*5^(1/2) 2971271488276382 r002 14th iterates of z^2 + 2971271492418636 r008 a(0)=3,K{-n^6,17-n-42*n^2+61*n^3} 2971271493253311 r008 a(0)=3,K{-n^6,45-51*n-16*n^2+57*n^3} 2971271496550130 r008 a(0)=3,K{-n^6,37-31*n-32*n^2+61*n^3} 2971271497463416 r009 Im(z^3+c),c=-39/118+28/39*I,n=30 2971271498969712 r008 a(0)=3,K{-n^6,31+64*n^3-44*n^2-16*n} 2971271504320741 m005 (1/5*gamma-1/4)/(1/3*2^(1/2)-5) 2971271504875925 b008 5*RiemannR[285] 2971271506950584 m001 (BesselI(1,1)-MadelungNaCl)/(Pi+Chi(1)) 2971271508588332 r008 a(0)=3,K{-n^6,39+71*n^3-61*n^2-14*n} 2971271526259951 a007 Real Root Of -883*x^4-125*x^3-293*x^2+860*x+285 2971271539247660 m001 Artin-Champernowne^FibonacciFactorial 2971271539758445 r005 Re(z^2+c),c=-17/60+24/47*I,n=46 2971271565002667 m005 (1/3*gamma-1/12)/(3/4*gamma-4/5) 2971271571992272 s003 concatenated sequence A189313 2971271572390458 a007 Real Root Of -420*x^4-807*x^3+913*x^2-902*x+826 2971271572525600 r005 Re(z^2+c),c=-11/34+23/58*I,n=38 2971271572908374 m001 ln(cos(1))/Porter*sin(1)^2 2971271582135134 m001 RenyiParking^2/MadelungNaCl^2*ln(Salem) 2971271584624860 h001 (1/5*exp(1)+2/11)/(5/7*exp(1)+1/2) 2971271586748563 m001 (-ln(Pi)+GaussKuzminWirsing)/(3^(1/2)+ln(3)) 2971271599167460 a008 Real Root of x^4-x^3-36*x^2-221*x-443 2971271601507468 m002 -6-Pi+Pi^5+Tanh[Pi]/4 2971271615290090 r009 Im(z^3+c),c=-9/19+4/27*I,n=54 2971271628938883 m001 (-HardyLittlewoodC5+Robbin)/(Chi(1)-gamma(2)) 2971271629114518 k002 Champernowne real with 79*n^2-195*n+145 2971271633493871 r005 Im(z^2+c),c=-13/54+1/24*I,n=18 2971271639244480 m001 1/BesselJ(0,1)*Paris/ln(GAMMA(11/24))^2 2971271640891266 m001 ln(GAMMA(1/4))*Porter^2/cos(Pi/12)^2 2971271657272111 m001 (-KhinchinLevy+PlouffeB)/(cos(1)-ln(2)/ln(10)) 2971271660179647 r005 Im(z^2+c),c=-71/78+15/59*I,n=43 2971271660453557 a007 Real Root Of 761*x^4-763*x^3-87*x^2-997*x+318 2971271665817723 m001 1/ln(GAMMA(3/4))*GAMMA(17/24)/GAMMA(5/12) 2971271678366247 m005 (1/2*Zeta(3)-10/11)/(37/40+1/20*5^(1/2)) 2971271686559483 r009 Re(z^3+c),c=-43/110+15/47*I,n=27 2971271697601214 r005 Im(z^2+c),c=-113/90+6/17*I,n=8 2971271710612334 h001 (-6*exp(3)-12)/(-exp(4)+10) 2971271719952427 l006 ln(4136/5567) 2971271737479914 r009 Re(z^3+c),c=-3/86+13/51*I,n=8 2971271741972815 r005 Re(z^2+c),c=19/56+15/56*I,n=13 2971271744736984 r009 Im(z^3+c),c=-51/94+10/29*I,n=62 2971271749835240 r005 Re(z^2+c),c=-5/18+13/25*I,n=43 2971271766547268 r005 Re(z^2+c),c=-27/70+11/49*I,n=7 2971271777202146 m001 LaplaceLimit^2/ArtinRank2/ln(cos(Pi/5)) 2971271781686577 r002 58th iterates of z^2 + 2971271786738297 r005 Re(z^2+c),c=-3/8+4/41*I,n=5 2971271790727535 h005 exp(cos(Pi*1/38)/cos(Pi*7/53)) 2971271795641521 m001 (Ei(1,1)+Riemann2ndZero)/(Sarnak-ZetaQ(3)) 2971271795985901 m001 (3^(1/3)+Zeta(1,2))/(Bloch+FibonacciFactorial) 2971271798467794 h001 (11/12*exp(2)+2/5)/(7/9*exp(1)+3/10) 2971271802087694 a007 Real Root Of -572*x^4-330*x^3+530*x^2+479*x-176 2971271806652274 a008 Real Root of x^5-22*x^4+30*x^3+284*x^2-175*x-294 2971271809418640 m005 (1/2*Zeta(3)+6/7)/(2/5*Catalan-6/7) 2971271815286017 r005 Re(z^2+c),c=-23/78+26/61*I,n=10 2971271817577103 r008 a(0)=3,K{-n^6,-11+34*n+36*n^2-22*n^3} 2971271825786613 s001 sum(exp(-Pi/2)^n*A239799[n],n=1..infinity) 2971271832815585 m005 (1/2*gamma+3/7)/(3/4*exp(1)+3/8) 2971271838004920 a007 Real Root Of 202*x^4+739*x^3+534*x^2+510*x+442 2971271848018032 m004 (5*Pi)/3+25*Sqrt[5]*Pi+25*Pi*Csc[Sqrt[5]*Pi] 2971271851597049 a001 1/49*(1/2*5^(1/2)+1/2)^17*7^(13/18) 2971271855316365 m005 (1/2*gamma-4/11)/(4/5*gamma-5/7) 2971271865710714 r008 a(0)=3,K{-n^6,-46+14*n^3+68*n^2-n} 2971271866677936 m005 (1/2*Pi+8/11)/(17/48+3/16*5^(1/2)) 2971271867271558 r008 a(0)=3,K{-n^6,-60+26*n+52*n^2+17*n^3} 2971271868040704 r008 a(0)=3,K{-n^6,-52+12*n+59*n^2+16*n^3} 2971271871774700 r005 Re(z^2+c),c=-7/22+12/29*I,n=31 2971271873534032 m009 (2/5*Psi(1,2/3)-2)/(1/6*Psi(1,2/3)-1/4) 2971271879246125 r008 a(0)=3,K{-n^6,-64+44*n+32*n^2+23*n^3} 2971271879653880 a007 Real Root Of -26*x^4-790*x^3-516*x^2+83*x-236 2971271886069329 a007 Real Root Of -594*x^4-948*x^3-357*x^2+865*x-196 2971271889077821 r008 a(0)=3,K{-n^6,-30-9*n+52*n^2+22*n^3} 2971271892779235 a007 Real Root Of -361*x^4-728*x^3+985*x^2+146*x+778 2971271893189569 m005 (1/2*Zeta(3)-3)/(1/11*Zeta(3)-11/12) 2971271906244192 m001 (Otter+TwinPrimes)/(GolombDickman+Lehmer) 2971271906649763 a007 Real Root Of 96*x^4+137*x^3-413*x^2+296*x+637 2971271912595739 r008 a(0)=3,K{-n^6,2+29*n^3+47*n^2-43*n} 2971271925985186 m001 (1-Conway)/(-MinimumGamma+TreeGrowth2nd) 2971271939674502 a007 Real Root Of 231*x^4+790*x^3+674*x^2+772*x-938 2971271951733105 m001 (GlaisherKinkelin-Si(Pi))/(-Tetranacci+Trott) 2971271958169911 r008 a(0)=3,K{-n^6,32+54*n^3-13*n^2-38*n} 2971271961743980 r002 5th iterates of z^2 + 2971271967785464 r008 a(0)=3,K{-n^6,36-30*n-32*n^2+61*n^3} 2971271969143021 r005 Im(z^2+c),c=-13/54+1/24*I,n=20 2971271971167725 m001 1/Lehmer^2*exp(GlaisherKinkelin)/sin(Pi/5)^2 2971271972839934 r005 Im(z^2+c),c=-13/54+1/24*I,n=21 2971271974640221 r005 Im(z^2+c),c=-13/54+1/24*I,n=23 2971271975983830 l006 ln(269/5250) 2971271976670123 r005 Re(z^2+c),c=25/106+1/15*I,n=23 2971271977642848 r005 Im(z^2+c),c=-13/54+1/24*I,n=25 2971271978544403 r005 Im(z^2+c),c=-13/54+1/24*I,n=27 2971271978747751 r005 Im(z^2+c),c=-13/54+1/24*I,n=29 2971271978787482 r005 Im(z^2+c),c=-13/54+1/24*I,n=31 2971271978794500 r005 Im(z^2+c),c=-13/54+1/24*I,n=33 2971271978795636 r005 Im(z^2+c),c=-13/54+1/24*I,n=35 2971271978795803 r005 Im(z^2+c),c=-13/54+1/24*I,n=37 2971271978795825 r005 Im(z^2+c),c=-13/54+1/24*I,n=39 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=41 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=44 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=42 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=46 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=48 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=50 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=52 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=54 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=56 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=58 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=60 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=62 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=63 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=64 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=61 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=59 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=57 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=55 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=53 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=51 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=49 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=47 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=45 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=43 2971271978795828 r005 Im(z^2+c),c=-13/54+1/24*I,n=40 2971271978795836 r005 Im(z^2+c),c=-13/54+1/24*I,n=38 2971271978795898 r005 Im(z^2+c),c=-13/54+1/24*I,n=36 2971271978796339 r005 Im(z^2+c),c=-13/54+1/24*I,n=34 2971271978799193 r005 Im(z^2+c),c=-13/54+1/24*I,n=32 2971271978816082 r005 Im(z^2+c),c=-13/54+1/24*I,n=30 2971271978907257 r005 Im(z^2+c),c=-13/54+1/24*I,n=28 2971271979345291 r005 Im(z^2+c),c=-13/54+1/24*I,n=26 2971271979715650 r008 a(0)=3,K{-n^6,38+71*n^3-61*n^2-13*n} 2971271981082925 r005 Im(z^2+c),c=-13/54+1/24*I,n=24 2971271985184633 r005 Im(z^2+c),c=-13/54+1/24*I,n=22 2971271989464744 l006 ln(6665/8971) 2971271997772423 r008 a(0)=3,K{-n^6,78+82*n^3-74*n^2-51*n} 2971272004272607 r005 Re(z^2+c),c=-35/102+19/56*I,n=15 2971272006216097 r005 Im(z^2+c),c=-75/98+6/53*I,n=18 2971272030492047 m001 (CareFree-ln(3))^Conway 2971272039527413 m005 (1/2*Zeta(3)+5/6)/(9/10*Pi+2) 2971272048718796 r005 Re(z^2+c),c=-9/26+17/54*I,n=21 2971272061768307 r005 Im(z^2+c),c=-13/54+1/24*I,n=19 2971272064830413 m002 3*Pi^2+(6*Csch[Pi])/5 2971272065085411 m005 (1/2*Catalan-5)/(2/3*Zeta(3)+8/11) 2971272069697008 m001 (3^(1/3)+Porter)/(Catalan-Ei(1)) 2971272076276012 r009 Im(z^3+c),c=-73/114+16/33*I,n=10 2971272078880531 m001 Si(Pi)*(GAMMA(5/6)+PlouffeB) 2971272082313610 m001 (arctan(1/2)+PlouffeB)/(BesselI(0,1)+Ei(1)) 2971272082475482 r004 Re(z^2+c),c=-4/11+4/17*I,z(0)=-1,n=30 2971272095517433 a007 Real Root Of -912*x^4-923*x^3-683*x^2+425*x-12 2971272120796946 m001 MadelungNaCl^2/Champernowne*ln(sqrt(2))^2 2971272132331529 m001 (Kac-Mills)/(Ei(1,1)-gamma(2)) 2971272136366089 r009 Re(z^3+c),c=-1/21+28/53*I,n=12 2971272143980026 r005 Im(z^2+c),c=-45/94+13/29*I,n=23 2971272146858552 m001 GAMMA(2/3)-exp(1/2)^BesselK(1,1) 2971272168410819 r005 Im(z^2+c),c=-11/78+12/29*I,n=12 2971272182697602 a007 Real Root Of 144*x^4+168*x^3-540*x^2+825*x+402 2971272202905716 m001 1/exp(GAMMA(1/3))^2/Conway^2/cos(Pi/12)^2 2971272203347903 r005 Im(z^2+c),c=-97/86+1/30*I,n=10 2971272211237803 r009 Re(z^3+c),c=-47/110+17/38*I,n=13 2971272214977567 a007 Real Root Of 177*x^4+394*x^3-605*x^2-771*x-410 2971272215049913 a001 1201881744/19*76^(8/9) 2971272217074347 r005 Re(z^2+c),c=-4/11+4/17*I,n=26 2971272221094045 r005 Im(z^2+c),c=-31/98+25/52*I,n=62 2971272229822161 q001 1086/3655 2971272261054597 m001 (Rabbit-Trott)/(gamma(1)-BesselI(0,2)) 2971272278552295 m001 Magata^Khinchin*Magata^StolarskyHarborth 2971272281526809 a001 1/9548*(1/2*5^(1/2)+1/2)^7*1364^(6/19) 2971272283710679 r005 Im(z^2+c),c=-61/78+9/38*I,n=6 2971272290898059 m001 (3^(1/2)-BesselK(0,1))/(gamma(2)+ZetaQ(2)) 2971272300899451 h001 (7/10*exp(2)+1/8)/(1/7*exp(2)+8/11) 2971272306787616 h001 (2/11*exp(2)+2/11)/(3/5*exp(2)+7/10) 2971272315944939 r005 Re(z^2+c),c=27/106+2/23*I,n=17 2971272329322485 r005 Im(z^2+c),c=4/21+15/58*I,n=5 2971272337413954 r008 a(0)=3,K{-n^6,-53+13*n+59*n^2+16*n^3} 2971272350786572 m005 (1/2*Zeta(3)-1/3)/(40/99+2/9*5^(1/2)) 2971272353501398 h001 (-7*exp(1/3)-4)/(-7*exp(2/3)+9) 2971272357067866 a008 Real Root of x^4-x^3+10*x^2-35*x-36 2971272358184366 h001 (1/8*exp(2)+1/3)/(6/11*exp(2)+1/5) 2971272368723941 r008 a(0)=3,K{-n^6,-29-n+38*n^2+27*n^3} 2971272374469505 l006 ln(478/9329) 2971272376765293 r008 a(0)=3,K{-n^6,9-62*n+63*n^2+25*n^3} 2971272381526518 r008 a(0)=3,K{-n^6,1+29*n^3+47*n^2-42*n} 2971272382696957 r008 a(0)=3,K{-n^6,-13-15*n+31*n^2+32*n^3} 2971272399947125 r005 Im(z^2+c),c=-15/118+15/37*I,n=32 2971272401152793 r008 a(0)=3,K{-n^6,71-17*n^3+12*n^2-32*n} 2971272403320712 m001 1/GolombDickman/ln(Si(Pi))^2*CareFree 2971272403774880 m001 Magata*exp(CopelandErdos)^2/FeigenbaumKappa^2 2971272415024942 r008 a(0)=3,K{-n^6,-3+8*n-21*n^2+51*n^3} 2971272426340716 r005 Re(z^2+c),c=-17/58+16/33*I,n=40 2971272430232996 l006 ln(2529/3404) 2971272430482026 r008 a(0)=3,K{-n^6,43-53*n-10*n^2+55*n^3} 2971272438968274 r008 a(0)=3,K{-n^6,31+64*n^3-43*n^2-17*n} 2971272452965994 a007 Real Root Of 448*x^4+980*x^3-657*x^2+889*x-769 2971272453659220 r009 Im(z^3+c),c=-47/118+9/43*I,n=7 2971272455795045 r005 Re(z^2+c),c=-65/102+1/49*I,n=4 2971272458148667 r008 a(0)=3,K{-n^6,53+78*n^3-74*n^2-22*n} 2971272458406790 a001 21/29*2537720636^(17/21) 2971272458406790 a001 21/29*45537549124^(5/7) 2971272462228915 m001 (Porter-Thue)/(polylog(4,1/2)+GAMMA(7/12)) 2971272464600994 r002 30th iterates of z^2 + 2971272467430871 r005 Im(z^2+c),c=4/17+4/21*I,n=17 2971272468340235 a007 Real Root Of 805*x^4-27*x^3+933*x^2-958*x-374 2971272469706591 a007 Real Root Of 167*x^4-732*x^3+64*x^2+51*x-11 2971272472567440 r009 Re(z^3+c),c=-1/58+39/47*I,n=23 2971272474286141 m001 Sarnak*(Zeta(1/2)+2*Pi/GAMMA(5/6)) 2971272485182322 m005 (1/2*exp(1)-5/8)/(1/2*Pi+9/10) 2971272486008050 m001 (MertensB1+Otter)/(CareFree-KomornikLoreti) 2971272498866315 m002 -2/Pi^3+Pi^3-Log[Pi]*ProductLog[Pi] 2971272502728570 m005 (19/20+1/4*5^(1/2))/(13/3+1/3*5^(1/2)) 2971272520716581 b008 E^(-2)-(8*E)/7 2971272542150826 a001 1/597*(1/2*5^(1/2)+1/2)^10*3^(1/3) 2971272542700657 m001 1/Porter^2/Lehmer*ln(cos(1))^2 2971272543661674 r005 Im(z^2+c),c=-21/52+10/29*I,n=3 2971272547808632 a007 Real Root Of 769*x^4+328*x^3+533*x^2-712*x-256 2971272568088271 m001 (BesselI(0,2)+Niven)/(Riemann1stZero-Sarnak) 2971272587537115 a008 Real Root of x^4+x^2-8*x-63 2971272589753512 m009 (1/3*Psi(1,3/4)+2/5)/(2/5*Pi^2+1/4) 2971272594855782 m001 (Pi+Psi(2,1/3))/(MertensB2+TravellingSalesman) 2971272611147786 a007 Real Root Of -110*x^4+492*x^3-836*x^2+964*x+374 2971272616010739 m001 (Ei(1,1)+MertensB2)/(2^(1/3)-Chi(1)) 2971272624904232 a007 Real Root Of -536*x^4-436*x^3+126*x^2+769*x-224 2971272629827909 a001 322*(1/2*5^(1/2)+1/2)^9*3^(3/17) 2971272632115118 k002 Champernowne real with 159/2*n^2-393/2*n+146 2971272641270248 a001 3571/17711*3^(6/17) 2971272647560432 l006 ln(9019/9291) 2971272657085549 a001 3/2207*4^(22/39) 2971272660785768 a007 Real Root Of -301*x^4-691*x^3+409*x^2-471*x+324 2971272661021923 m001 (Zeta(5)+Pi^(1/2))/(CopelandErdos+Rabbit) 2971272661539658 r005 Re(z^2+c),c=-23/66+15/49*I,n=18 2971272664490108 r005 Re(z^2+c),c=-5/24+11/16*I,n=34 2971272664561879 m001 1/gamma/GAMMA(1/6)^2*ln(sin(Pi/5)) 2971272669921642 a007 Real Root Of -232*x^4-905*x^3-797*x^2-626*x-481 2971272675544248 r005 Re(z^2+c),c=-29/78+5/27*I,n=17 2971272678353325 h001 (8/9*exp(2)+5/8)/(6/7*exp(1)+1/11) 2971272684743788 a007 Real Root Of 393*x^4+733*x^3-980*x^2+859*x-199 2971272697935527 m005 (1/3*gamma+3/4)/(1/7*Zeta(3)+3) 2971272698270267 r005 Im(z^2+c),c=5/32+14/53*I,n=4 2971272705496561 r002 7th iterates of z^2 + 2971272705642341 r005 Re(z^2+c),c=-27/70+1/54*I,n=12 2971272712382984 a007 Real Root Of -405*x^4+376*x^3+808*x^2+397*x-196 2971272729382627 b008 4+E^Coth[Pi^(-1)] 2971272729614469 a007 Real Root Of -231*x^4-424*x^3+532*x^2-817*x-242 2971272732839495 r005 Im(z^2+c),c=-41/118+32/55*I,n=56 2971272737239276 m001 (BesselI(1,1)+ZetaQ(4))/(cos(1/5*Pi)+ln(3)) 2971272739375963 r009 Im(z^3+c),c=-31/82+8/33*I,n=5 2971272745970865 r009 Re(z^3+c),c=-1/18+35/51*I,n=45 2971272754112046 r002 14th iterates of z^2 + 2971272756864337 r005 Re(z^2+c),c=-53/118+19/50*I,n=3 2971272759537960 r005 Re(z^2+c),c=-33/94+13/44*I,n=31 2971272771643445 r008 a(0)=3,K{-n^6,5+32*n+7*n^2-8*n^3} 2971272772923461 b008 38-5*ArcCosh[E] 2971272774902061 r009 Re(z^3+c),c=-19/48+19/58*I,n=21 2971272797155631 a007 Real Root Of -234*x^4-543*x^3+720*x^2+523*x-808 2971272803377383 r005 Im(z^2+c),c=-31/106+25/53*I,n=38 2971272803982970 r008 a(0)=3,K{-n^6,-60+25*n+53*n^2+17*n^3} 2971272810880561 r005 Im(z^2+c),c=13/82+20/49*I,n=4 2971272811445809 h002 exp(4^(2/3)/(7^(1/2)-8)^(1/2)) 2971272814213175 r005 Im(z^2+c),c=-18/23+7/62*I,n=18 2971272824548412 r005 Re(z^2+c),c=-109/78+31/61*I,n=2 2971272828067009 m005 (1/3*gamma-1/5)/(5/8*exp(1)+6/7) 2971272838661079 a001 9349/46368*3^(6/17) 2971272838707897 r008 a(0)=3,K{-n^6,-36+30*n^3+26*n^2+15*n} 2971272843782448 m001 exp(FeigenbaumD)*Khintchine/GAMMA(1/12)^2 2971272846636116 r005 Im(z^2+c),c=-9/32+29/62*I,n=62 2971272847353808 m001 polylog(4,1/2)^Catalan*Landau 2971272848751346 m001 (Conway+Otter)/(Ei(1,1)-(1+3^(1/2))^(1/2)) 2971272852151846 m001 (CareFree+ZetaQ(4))/(Pi-BesselJ(0,1)) 2971272854471229 r008 a(0)=3,K{-n^6,-18+17*n^2+36*n^3} 2971272854475371 r008 a(0)=3,K{-n^6,-42+40*n^3-7*n^2+44*n} 2971272855396575 a007 Real Root Of -356*x^4+95*x^3+450*x^2+712*x-251 2971272858308190 r008 a(0)=3,K{-n^6,-16+38*n^3+12*n^2+n} 2971272859246994 m001 PrimesInBinary*ReciprocalLucas/Trott2nd 2971272860995296 r008 a(0)=3,K{-n^6,-48+63*n-25*n^2+45*n^3} 2971272862608313 m001 1/RenyiParking*ln(Rabbit)/cosh(1) 2971272864143238 r008 a(0)=3,K{-n^6,6-32*n+23*n^2+38*n^3} 2971272864383316 r008 a(0)=3,K{-n^6,6-8*n^2+9*n} 2971272865892774 a001 3571/144*2178309^(17/35) 2971272867460013 a001 24476/121393*3^(6/17) 2971272871661721 a001 64079/317811*3^(6/17) 2971272871996185 s001 sum(exp(-4*Pi)^n*A252276[n],n=1..infinity) 2971272872274742 a001 15251/75640*3^(6/17) 2971272872364180 a001 439204/2178309*3^(6/17) 2971272872377229 a001 1149851/5702887*3^(6/17) 2971272872379133 a001 3010349/14930352*3^(6/17) 2971272872379411 a001 7881196/39088169*3^(6/17) 2971272872379451 a001 1875749/9303105*3^(6/17) 2971272872379457 a001 54018521/267914296*3^(6/17) 2971272872379458 a001 141422324/701408733*3^(6/17) 2971272872379458 a001 370248451/1836311903*3^(6/17) 2971272872379458 a001 969323029/4807526976*3^(6/17) 2971272872379458 a001 230701876/1144206275*3^(6/17) 2971272872379458 a001 6643838879/32951280099*3^(6/17) 2971272872379458 a001 17393796001/86267571272*3^(6/17) 2971272872379458 a001 45537549124/225851433717*3^(6/17) 2971272872379458 a001 119218851371/591286729879*3^(6/17) 2971272872379458 a001 28374454999/140728068720*3^(6/17) 2971272872379458 a001 1322157322203/6557470319842*3^(6/17) 2971272872379458 a001 505019158607/2504730781961*3^(6/17) 2971272872379458 a001 192900153618/956722026041*3^(6/17) 2971272872379458 a001 73681302247/365435296162*3^(6/17) 2971272872379458 a001 28143753123/139583862445*3^(6/17) 2971272872379458 a001 10749957122/53316291173*3^(6/17) 2971272872379458 a001 4106118243/20365011074*3^(6/17) 2971272872379458 a001 1568397607/7778742049*3^(6/17) 2971272872379458 a001 599074578/2971215073*3^(6/17) 2971272872379458 a001 228826127/1134903170*3^(6/17) 2971272872379459 a001 87403803/433494437*3^(6/17) 2971272872379461 a001 33385282/165580141*3^(6/17) 2971272872379476 a001 12752043/63245986*3^(6/17) 2971272872379582 a001 4870847/24157817*3^(6/17) 2971272872380310 a001 1860498/9227465*3^(6/17) 2971272872385294 a001 710647/3524578*3^(6/17) 2971272872419456 a001 271443/1346269*3^(6/17) 2971272872653609 a001 103682/514229*3^(6/17) 2971272873222362 r008 a(0)=3,K{-n^6,12+43*n^3+11*n^2-31*n} 2971272874258519 a001 39603/196418*3^(6/17) 2971272883460610 r009 Re(z^3+c),c=-37/94+23/49*I,n=7 2971272883587360 r008 a(0)=3,K{-n^6,20-31*n-3*n^2+49*n^3} 2971272885258733 a001 15127/75025*3^(6/17) 2971272886454392 m001 1/ln(Champernowne)*ErdosBorwein/Sierpinski 2971272887352747 l006 ln(209/4079) 2971272888040584 r009 Im(z^3+c),c=-13/29+7/40*I,n=22 2971272888760095 m005 (1/2*Catalan+3/7)/(4/7*gamma-3/10) 2971272896153759 r008 a(0)=3,K{-n^6,42+55*n^3-10*n^2-52*n} 2971272898090992 r005 Im(z^2+c),c=1/18+23/48*I,n=3 2971272902215895 r008 a(0)=3,K{-n^6,36-31*n-31*n^2+61*n^3} 2971272906703095 a001 3/1364*2^(23/53) 2971272921490564 l006 ln(5980/8049) 2971272931313643 g006 Psi(1,3/11)+Psi(1,1/5)-Psi(1,4/11)-Psi(1,3/4) 2971272936260739 m005 (1/2*5^(1/2)-6/11)/(3/4*5^(1/2)+1/4) 2971272936680052 m001 BesselI(1,2)*(Landau+PisotVijayaraghavan) 2971272943043593 m001 (FeigenbaumB+Kolakoski)/(3^(1/2)-BesselI(0,2)) 2971272945723735 a001 199/5*196418^(30/41) 2971272954226882 m001 1/exp(GAMMA(7/12))/GAMMA(1/3)^2/Zeta(7)^2 2971272955262134 m001 1/sin(1)/FeigenbaumD^2*exp(sin(Pi/5)) 2971272955568510 m005 (1/2*Zeta(3)-2/5)/(7/12*exp(1)-10/11) 2971272957254873 r002 35th iterates of z^2 + 2971272957254873 r002 35th iterates of z^2 + 2971272957273018 m001 1/ArtinRank2/Backhouse*exp(Magata) 2971272960655321 a001 5778/28657*3^(6/17) 2971272968631542 m006 (1/5*ln(Pi)+3/5)/(1/3*Pi^2-1/2) 2971272972483406 r009 Im(z^3+c),c=-13/50+13/46*I,n=6 2971272975553768 m002 -Pi^3/4+Pi^5*Tanh[Pi] 2971272999747005 m008 (3*Pi^6+1/3)/(1/2*Pi-3/5) 2971273012514046 r009 Re(z^3+c),c=-49/110+25/61*I,n=35 2971273014264685 a005 (1/cos(4/135*Pi))^251 2971273019342954 a007 Real Root Of -107*x^4+25*x^3+947*x^2-313*x-295 2971273027533454 m005 (1/2*Pi+6)/(7/11*exp(1)+9/11) 2971273031642000 r005 Re(z^2+c),c=-33/82+7/64*I,n=4 2971273062147369 r002 34th iterates of z^2 + 2971273084319564 r005 Re(z^2+c),c=-9/13+17/61*I,n=35 2971273101544458 r005 Re(z^2+c),c=-7/24+21/43*I,n=51 2971273107098980 r005 Re(z^2+c),c=-31/86+8/31*I,n=2 2971273116483737 r005 Re(z^2+c),c=-49/34+71/122*I,n=2 2971273116658155 a005 (1/cos(3/32*Pi))^234 2971273125751569 r005 Re(z^2+c),c=-47/122+1/50*I,n=19 2971273126411511 a003 cos(Pi*13/113)/cos(Pi*41/103) 2971273128321375 a007 Real Root Of -137*x^4+865*x^3+179*x^2+914*x-309 2971273134182992 m001 (Paris+Salem)/(TreeGrowth2nd-Trott) 2971273149531304 m005 (1/2*Pi+4/5)/(43/18+5/2*5^(1/2)) 2971273157033354 r005 Im(z^2+c),c=-13/54+1/24*I,n=17 2971273166496848 r005 Im(z^2+c),c=5/18+10/17*I,n=8 2971273190121614 k007 concat of cont frac of 2971273193956672 r008 a(0)=0,K{-n^6,30-58*n-34*n^2+31*n^3} 2971273203041631 h001 (-9*exp(2)-9)/(-7*exp(1/2)+9) 2971273208563184 r002 7th iterates of z^2 + 2971273211000971 s001 sum(exp(-Pi)^n*A070640[n],n=1..infinity) 2971273211000971 s002 sum(A070640[n]/(exp(pi*n)),n=1..infinity) 2971273211488579 m005 (1/2*5^(1/2)+5/11)/(5/7*Catalan-1/8) 2971273215398415 m008 (3/4*Pi^5-1/5)/(4/5*Pi^4-3/4) 2971273234199394 r008 a(0)=3,K{-n^6,-95+9*n^3+60*n^2+61*n} 2971273239548852 r005 Re(z^2+c),c=-47/122+1/48*I,n=20 2971273240323749 r005 Re(z^2+c),c=-13/34+3/34*I,n=21 2971273267690623 a001 3571/13*5^(2/41) 2971273268510833 r008 a(0)=3,K{-n^6,-53+12*n+60*n^2+16*n^3} 2971273268595320 r009 Re(z^3+c),c=-55/122+27/64*I,n=43 2971273270729733 r008 a(0)=3,K{-n^6,-53+14*n+57*n^2+17*n^3} 2971273271537138 b008 29-5*Tan[3] 2971273278596849 r009 Im(z^3+c),c=-23/86+55/61*I,n=4 2971273281499354 l006 ln(3451/4645) 2971273285503814 r008 a(0)=3,K{-n^6,-41+22*n^3+48*n^2+6*n} 2971273289309556 r005 Im(z^2+c),c=5/66+7/23*I,n=14 2971273292109731 r008 a(0)=3,K{-n^6,-45+20*n+34*n^2+26*n^3} 2971273304060243 m001 Thue/(exp(-1/2*Pi)+StolarskyHarborth) 2971273307200350 m001 1/BesselK(0,1)^2/exp(Bloch)^2/exp(1)^2 2971273311694069 m007 (-1/3*gamma-3/4)/(-2*gamma-6*ln(2)+Pi-1) 2971273318303959 r008 a(0)=3,K{-n^6,7-46*n+42*n^2+32*n^3} 2971273321559997 r008 a(0)=3,K{-n^6,-17+38*n^3+12*n^2+2*n} 2971273324221628 r008 a(0)=3,K{-n^6,-49+64*n-25*n^2+45*n^3} 2971273329389111 r008 a(0)=3,K{-n^6,-5-10*n+9*n^2+41*n^3} 2971273330765396 m001 1/FeigenbaumDelta/Artin^2*exp(LaplaceLimit) 2971273336335424 r008 a(0)=3,K{-n^6,-1-8*n-n^2+45*n^3} 2971273337217831 r008 a(0)=3,K{-n^6,-28-52*n^3+68*n^2+46*n} 2971273342686192 m001 (2^(1/3)+GAMMA(2/3))/(-Niven+Sierpinski) 2971273342960656 r008 a(0)=3,K{-n^6,-27+49*n-41*n^2+54*n^3} 2971273347246927 a001 4/5*34^(16/43) 2971273348393117 r008 a(0)=3,K{-n^6,-3+54*n^3-29*n^2+13*n} 2971273356989472 r008 a(0)=3,K{-n^6,37-47*n-9*n^2+54*n^3} 2971273358505764 a007 Real Root Of -822*x^4-369*x^3+565*x^2+381*x-147 2971273359873211 r008 a(0)=3,K{-n^6,27+58*n^3-26*n^2-24*n} 2971273363486933 r008 a(0)=3,K{-n^6,45-51*n-17*n^2+58*n^3} 2971273366230358 r008 a(0)=3,K{-n^6,41-39*n-28*n^2+61*n^3} 2971273370870157 a007 Real Root Of 580*x^4+252*x^3+690*x^2-993*x+223 2971273382584300 p001 sum(1/(317*n+34)/(10^n),n=0..infinity) 2971273387025023 a001 1548008755920/2207*123^(3/10) 2971273388068933 a001 843/39088169*3^(7/24) 2971273414595442 m004 (25*Pi)/4+Sqrt[5]*Pi+2*ProductLog[Sqrt[5]*Pi] 2971273417537183 a007 Real Root Of -579*x^4-725*x^3+156*x^2+467*x-129 2971273418926848 r005 Im(z^2+c),c=-9/14+11/30*I,n=23 2971273419968956 r005 Im(z^2+c),c=2/7+12/41*I,n=5 2971273427662122 r005 Im(z^2+c),c=35/118+13/30*I,n=52 2971273451914592 r009 Re(z^3+c),c=-39/82+19/42*I,n=47 2971273455546917 r005 Re(z^2+c),c=-37/102+6/25*I,n=27 2971273475933223 r005 Im(z^2+c),c=-7/27+17/37*I,n=38 2971273477431224 a001 2207/10946*3^(6/17) 2971273480425239 r005 Im(z^2+c),c=-137/102+1/60*I,n=47 2971273482198610 a001 1/8*10946^(10/17) 2971273505085209 m001 (exp(-1/2*Pi)-GaussAGM)/(PlouffeB-Sierpinski) 2971273512100756 m001 (exp(1)-polylog(4,1/2))/(-Kolakoski+ZetaQ(2)) 2971273517411784 m001 GAMMA(23/24)+Magata-MinimumGamma 2971273519857213 m001 1/Niven^2/MadelungNaCl^2/ln(cos(1))^2 2971273522972239 r005 Re(z^2+c),c=-19/94+20/37*I,n=13 2971273529096589 m002 -10*Coth[Pi]+Pi^5*Coth[Pi] 2971273537296316 a007 Real Root Of -114*x^4+60*x^3+859*x^2-779*x+561 2971273548876112 r005 Im(z^2+c),c=-23/31+1/54*I,n=26 2971273551704264 r005 Im(z^2+c),c=-17/26+30/91*I,n=34 2971273572151750 l006 ln(358/6987) 2971273577342949 m001 FransenRobinson-Salem+Totient 2971273583093156 a007 Real Root Of -226*x^4-609*x^3+196*x^2+359*x+976 2971273586633102 r008 a(0)=3,K{-n^6,29-6*n^3-42*n^2+53*n} 2971273587766092 r002 11i'th iterates of 2*x/(1-x^2) of 2971273602752404 m001 (HeathBrownMoroz-Thue)/(3^(1/3)+exp(1/exp(1))) 2971273633933092 m005 (1/3*3^(1/2)-1/7)/(2/5*exp(1)+3/8) 2971273634512799 p004 log(16417/12197) 2971273635115718 k002 Champernowne real with 80*n^2-198*n+147 2971273635644388 r002 3th iterates of z^2 + 2971273649526664 a007 Real Root Of 29*x^4+835*x^3-801*x^2-264*x-269 2971273660269765 a007 Real Root Of 49*x^4+77*x^3-379*x^2-359*x+480 2971273673098938 a001 4/21*17711^(1/22) 2971273677186255 a007 Real Root Of -826*x^4+988*x^3+256*x^2-7*x-40 2971273687408758 m001 OrthogonalArrays^Chi(1)*5^(1/2) 2971273689177861 p004 log(23869/1223) 2971273691911417 r002 32th iterates of z^2 + 2971273697786936 m001 Riemann2ndZero*Magata/exp(TreeGrowth2nd)^2 2971273714700313 r005 Re(z^2+c),c=-87/122+9/64*I,n=4 2971273728727796 r005 Im(z^2+c),c=-29/74+21/41*I,n=26 2971273740238262 a003 cos(Pi*29/71)/cos(Pi*54/115) 2971273762606062 r005 Re(z^2+c),c=-33/86+4/61*I,n=25 2971273763023591 l006 ln(9649/9940) 2971273766130317 r005 Re(z^2+c),c=-8/29+29/54*I,n=41 2971273771417176 a007 Real Root Of 615*x^4-36*x^3-443*x^2-458*x+14 2971273773804974 l006 ln(4373/5886) 2971273784452191 m001 (2^(1/3)-Zeta(5))/(-ZetaP(4)+ZetaQ(4)) 2971273788815306 b008 E+SinIntegral[Pi/4]/3 2971273794769277 r008 a(0)=3,K{-n^6,-28+48*n^3-23*n^2+38*n} 2971273796698536 r008 a(0)=3,K{-n^6,-2-7*n-n^2+45*n^3} 2971273797355378 m001 Zeta(7)/ln(Zeta(3))^2/Zeta(9) 2971273800930041 m001 (FeigenbaumC-MertensB3)/(ln(gamma)-GAMMA(5/6)) 2971273805633105 m001 (QuadraticClass-Riemann2ndZero)/(Conway-Kac) 2971273809961384 r008 a(0)=3,K{-n^6,-34+60*n^3-62*n^2+71*n} 2971273812544817 r008 a(0)=3,K{-n^6,26+52*n^3-8*n^2-35*n} 2971273815825567 r005 Im(z^2+c),c=33/94+22/61*I,n=20 2971273817163228 r008 a(0)=3,K{-n^6,36-46*n-9*n^2+54*n^3} 2971273817575554 r008 a(0)=3,K{-n^6,32+55*n^3-14*n^2-38*n} 2971273819615353 r008 a(0)=3,K{-n^6,42+55*n^3-9*n^2-53*n} 2971273821225797 r008 a(0)=3,K{-n^6,32-32*n-23*n^2+58*n^3} 2971273826321039 r008 a(0)=3,K{-n^6,40-38*n-28*n^2+61*n^3} 2971273826780918 a007 Real Root Of -175*x^4-763*x^3-848*x^2-435*x-181 2971273837803596 a007 Real Root Of 431*x^4+923*x^3-990*x^2+146*x-207 2971273845759840 m001 (ln(2)-gamma(3))/(ErdosBorwein-Tribonacci) 2971273848362689 p004 log(30671/22787) 2971273849008893 a007 Real Root Of 183*x^4+347*x^3-577*x^2+282*x+771 2971273854445482 l006 ln(507/9895) 2971273859293514 m001 (Lehmer-Rabbit)^GAMMA(13/24) 2971273860457046 r009 Re(z^3+c),c=-11/26+20/53*I,n=21 2971273862781513 r002 54th iterates of z^2 + 2971273866141202 m001 (Pi+Kolakoski)/PisotVijayaraghavan 2971273869874117 r009 Im(z^3+c),c=-57/122+9/47*I,n=10 2971273871724482 m001 1/(2^(1/3))/OneNinth^2*ln(GAMMA(11/24))^2 2971273876544973 r005 Re(z^2+c),c=-5/54+35/54*I,n=44 2971273891154489 r008 a(0)=3,K{-n^6,35-7*n^3+17*n^2-10*n} 2971273893055259 p001 sum(1/(497*n+31)/n/(64^n),n=1..infinity) 2971273894273872 r005 Im(z^2+c),c=3/122+16/45*I,n=4 2971273908037153 a001 4052739537881/5778*123^(3/10) 2971273909370840 m009 (1/5*Pi^2+3/4)/(4*Psi(1,3/4)-1) 2971273909822090 m005 (1/2*2^(1/2)-6)/(7/11*gamma-6/11) 2971273921071336 m005 (1/2*Catalan+4)/(1/2*2^(1/2)-6/7) 2971273922492251 r002 14th iterates of z^2 + 2971273922592143 m002 (-5*ProductLog[Pi])/Pi^5+3*Tanh[Pi] 2971273927911294 h001 (-6*exp(8)+9)/(-4*exp(5)-8) 2971273945810602 a007 Real Root Of -49*x^4+623*x^3+263*x^2+907*x+263 2971273951335208 a007 Real Root Of -805*x^4+669*x^3+35*x^2+499*x+169 2971273955519977 m001 (TwinPrimes-Weierstrass)/(GAMMA(17/24)-Robbin) 2971273956775234 m002 -3-30/Pi^3+Tanh[Pi] 2971273964775663 h003 exp(Pi*(13^(1/5)+18^(3/2))) 2971273964775663 h008 exp(Pi*(13^(1/5)+18^(3/2))) 2971273964930620 a001 76/121393*13^(17/28) 2971273966801342 r005 Re(z^2+c),c=-5/29+17/27*I,n=57 2971273967946053 r005 Im(z^2+c),c=-29/98+19/39*I,n=18 2971273972805022 a003 cos(Pi*12/79)/cos(Pi*48/119) 2971273981278536 a003 sin(Pi*1/110)/cos(Pi*9/101) 2971273982755599 a001 4/55*121393^(39/43) 2971273984051813 a001 1515744265389/2161*123^(3/10) 2971273984234716 a007 Real Root Of -165*x^4-273*x^3+371*x^2-600*x+641 2971273996712700 m001 DuboisRaymond+FeigenbaumDelta^LaplaceLimit 2971273997815629 r005 Im(z^2+c),c=-31/86+31/52*I,n=56 2971274019278598 h001 (2/11*exp(2)+9/11)/(9/10*exp(2)+5/8) 2971274027436760 r009 Re(z^3+c),c=-25/66+14/47*I,n=29 2971274027536039 m001 (3^(1/3))*GAMMA(1/6)^BesselK(0,1) 2971274027536039 m001 3^(1/3)*(2*Pi/GAMMA(5/6))^BesselK(0,1) 2971274031031459 a001 6557470319842/9349*123^(3/10) 2971274042656322 m001 1/exp(PisotVijayaraghavan)^2/Artin^2*sin(Pi/5) 2971274044123700 m001 (ln(2)/ln(10))^CareFree/exp(1/exp(1)) 2971274058141644 a007 Real Root Of 584*x^4+459*x^3+969*x^2-508*x-229 2971274059435010 a007 Real Root Of -240*x^4-368*x^3+802*x^2-372*x+867 2971274062311853 m009 (3/5*Psi(1,2/3)+5/6)/(3*Psi(1,2/3)-1/5) 2971274068477007 m005 (-23/12+1/12*5^(1/2))/(4*2^(1/2)+1/6) 2971274073244220 m001 (FeigenbaumKappa+Stephens)/(gamma(1)-gamma) 2971274079442671 s002 sum(A035814[n]/(n*exp(n)+1),n=1..infinity) 2971274083784744 h001 (6/7*exp(2)+3/7)/(1/2*exp(1)+11/12) 2971274094663638 l006 ln(5295/7127) 2971274096137691 r009 Re(z^3+c),c=-19/42+27/64*I,n=44 2971274102079395 r005 Re(z^2+c),c=-31/25+1/46*I,n=2 2971274110663582 m001 1/LambertW(1)^2/Lehmer^2/ln(sin(1))^2 2971274121039213 m007 (-4/5*gamma+5)/(-3/4*gamma-3/2*ln(2)+3) 2971274144061228 r008 a(0)=3,K{-n^6,43+7*n^3-6*n^2-8*n} 2971274176870872 r005 Im(z^2+c),c=-41/98+25/48*I,n=64 2971274186397517 r005 Im(z^2+c),c=17/64+4/25*I,n=25 2971274195657822 r008 a(0)=3,K{-n^6,-45+18*n^3+59*n^2+3*n} 2971274215950227 r008 a(0)=3,K{-n^6,-43+20*n+30*n^2+28*n^3} 2971274220195730 r008 a(0)=3,K{-n^6,-29-n+37*n^2+28*n^3} 2971274220540899 m005 (1/3*gamma+3/5)/(3/5*Zeta(3)-5/11) 2971274222925876 a007 Real Root Of 244*x^4+645*x^3-263*x^2-119*x-130 2971274230040448 a001 2504730781961/3571*123^(3/10) 2971274232102834 m001 1/FeigenbaumKappa*ln(Salem)^2/cos(Pi/5)^2 2971274238993654 r005 Re(z^2+c),c=4/15+4/41*I,n=35 2971274240362514 r008 a(0)=3,K{-n^6,-17+38*n^3+13*n^2+n} 2971274242964806 r008 a(0)=3,K{-n^6,-49+63*n-24*n^2+45*n^3} 2971274245014039 m001 Robbin^Otter+gamma(3) 2971274255281074 r008 a(0)=3,K{-n^6,31+40*n^3+31*n^2-67*n} 2971274257159046 r008 a(0)=3,K{-n^6,15-35*n+11*n^2+44*n^3} 2971274262281045 r008 a(0)=3,K{-n^6,-20+40*n+7*n^2-12*n^3} 2971274262313229 r009 Im(z^3+c),c=-27/62+11/59*I,n=27 2971274263736588 m005 (1/2*gamma+1/5)/(5/11*3^(1/2)+6/7) 2971274263976358 r008 a(0)=3,K{-n^6,-3+8*n-22*n^2+52*n^3} 2971274266609332 r008 a(0)=3,K{-n^6,-3+54*n^3-28*n^2+12*n} 2971274269362206 a008 Real Root of (-2+5*x+6*x^2-2*x^4+4*x^8) 2971274277045187 r008 a(0)=3,K{-n^6,41+55*n^3-9*n^2-52*n} 2971274278641162 r008 a(0)=3,K{-n^6,31-31*n-23*n^2+58*n^3} 2971274286701133 r008 a(0)=3,K{-n^6,31+65*n^3-44*n^2-17*n} 2971274308901776 a007 Real Root Of 25*x^4-291*x^3-930*x^2+295*x-495 2971274314208802 r005 Im(z^2+c),c=-11/36+15/29*I,n=21 2971274320353666 l006 ln(6217/8368) 2971274324789717 r002 62th iterates of z^2 + 2971274326844919 r005 Re(z^2+c),c=-19/30+13/37*I,n=48 2971274327333668 m001 Pi+ln(2)/ln(10)*(cos(1/5*Pi)-exp(1/Pi)) 2971274333882308 b008 9*(327+Pi) 2971274368617786 m001 (FeigenbaumAlpha+Niven)/(2^(1/2)+gamma(3)) 2971274369611964 r005 Re(z^2+c),c=-41/122+17/48*I,n=31 2971274380239405 r005 Im(z^2+c),c=-23/110+34/57*I,n=20 2971274419579808 r009 Im(z^3+c),c=-4/23+15/49*I,n=6 2971274428087339 h005 exp(cos(Pi*8/51)/cos(Pi*1/5)) 2971274431868991 r005 Im(z^2+c),c=-17/22+1/81*I,n=38 2971274440621922 b008 1/9+Sqrt[10]/17 2971274451605208 r009 Re(z^3+c),c=-43/110+15/47*I,n=32 2971274453861949 r008 a(0)=3,K{-n^6,-8-43*n^3+51*n^2+34*n} 2971274460557640 a007 Real Root Of -337*x^4-786*x^3+608*x^2-400*x-908 2971274461967792 r005 Re(z^2+c),c=5/32+16/35*I,n=45 2971274479548617 r005 Re(z^2+c),c=11/86+7/16*I,n=13 2971274481873755 r009 Re(z^3+c),c=-37/78+28/53*I,n=33 2971274487748072 l006 ln(7139/9609) 2971274490310010 m001 1/GAMMA(1/4)/ln(BesselJ(1,1))^2/GAMMA(19/24)^2 2971274500831778 r005 Re(z^2+c),c=-4/13+4/9*I,n=47 2971274503738928 r009 Re(z^3+c),c=-25/66+14/47*I,n=28 2971274508966051 a007 Real Root Of -273*x^4-512*x^3+982*x^2+66*x-626 2971274515025941 a007 Real Root Of -961*x^4+645*x^3-709*x^2+976*x+377 2971274522628711 h002 exp((15^(1/2)+5^(1/3))^(1/2)*19^(1/2)) 2971274523471125 r005 Im(z^2+c),c=-45/82+24/55*I,n=51 2971274526800907 a008 Real Root of (3+12*x+7*x^2+2*x^3) 2971274531496692 m001 (5^(1/2)+arctan(1/3))/(Zeta(1,2)+ZetaP(4)) 2971274532707950 l006 ln(149/2908) 2971274542038796 a007 Real Root Of -202*x^4-450*x^3+447*x^2+161*x+472 2971274552981623 r005 Im(z^2+c),c=-9/118+23/33*I,n=27 2971274560801227 s002 sum(A035814[n]/(n*exp(n)-1),n=1..infinity) 2971274564294474 a003 cos(Pi*8/101)-sin(Pi*49/101) 2971274584829754 s002 sum(A252207[n]/(10^n+1),n=1..infinity) 2971274595512925 a001 4181/843*7^(23/25) 2971274597794273 a007 Real Root Of 234*x^4+522*x^3-424*x^2+448*x+529 2971274600556786 a007 Real Root Of 520*x^4+961*x^3+414*x^2-729*x-232 2971274622704641 m005 (1/2*Zeta(3)+9/10)/(7/8*Zeta(3)+4) 2971274622788824 r009 Re(z^3+c),c=-53/118+23/55*I,n=61 2971274630623916 m001 LaplaceLimit*CareFree^2/exp(Zeta(3))^2 2971274630832950 m001 (Psi(2,1/3)+Bloch)/Tribonacci 2971274638116318 k002 Champernowne real with 161/2*n^2-399/2*n+148 2971274646266970 r008 a(0)=3,K{-n^6,-60+25*n+52*n^2+18*n^3} 2971274654145390 m005 (1/3*Pi-2/9)/(2/11*Catalan+1/9) 2971274658809930 a007 Real Root Of 120*x^4+280*x^3-230*x^2-20*x-37 2971274660711967 r009 Re(z^3+c),c=-51/122+19/52*I,n=26 2971274663499359 r005 Im(z^2+c),c=-13/94+16/39*I,n=29 2971274667001814 m002 30-(Coth[Pi]*Log[Pi])/4 2971274671253208 r008 a(0)=3,K{-n^6,-44+21*n+30*n^2+28*n^3} 2971274675361782 m001 (Otter+Stephens)/(gamma(3)+KhinchinLevy) 2971274680019056 r009 Re(z^3+c),c=-35/82+7/22*I,n=7 2971274681941529 a007 Real Root Of 370*x^4+919*x^3-442*x^2+338*x+175 2971274682554004 r009 Re(z^3+c),c=-41/94+21/53*I,n=38 2971274684206655 a001 11/18*(1/2*5^(1/2)+1/2)^13*18^(17/22) 2971274685816876 q001 1655/557 2971274687981318 r008 a(0)=3,K{-n^6,-46+44*n-n^2+38*n^3} 2971274695952789 r008 a(0)=3,K{-n^6,-34+32*n-4*n^2+41*n^3} 2971274696983237 r008 a(0)=3,K{-n^6,-30+26*n-2*n^2+41*n^3} 2971274700887049 r005 Re(z^2+c),c=-9/32+18/35*I,n=64 2971274702771571 m005 (-11/20+1/4*5^(1/2))/(6*gamma-3/7) 2971274706708716 a001 3/8*34^(27/46) 2971274709421905 m001 MinimumGamma^((1+3^(1/2))^(1/2))+ln(3) 2971274709746731 r008 a(0)=3,K{-n^6,-2-8*n+45*n^3} 2971274721004266 r008 a(0)=3,K{-n^6,5*n-23*n^2+53*n^3} 2971274721435942 r008 a(0)=3,K{-n^6,-4+54*n^3-28*n^2+13*n} 2971274729773761 r008 a(0)=3,K{-n^6,36-47*n-8*n^2+54*n^3} 2971274738740526 r008 a(0)=3,K{-n^6,40-39*n-27*n^2+61*n^3} 2971274739116499 r008 a(0)=3,K{-n^6,36-31*n-32*n^2+62*n^3} 2971274743067642 m001 exp(Rabbit)^2*LaplaceLimit*Trott 2971274750490672 p004 log(30817/1579) 2971274751275398 m001 (MertensB2+Stephens)/(Psi(2,1/3)+Catalan) 2971274754435709 a001 7/11*(1/2*5^(1/2)+1/2)^16*11^(5/16) 2971274789590583 h001 (-9*exp(1/3)-2)/(-2*exp(-3)+5) 2971274808743421 m001 (Kac-LandauRamanujan2nd)/(Trott2nd-ZetaP(3)) 2971274810866502 m007 (-1/2*gamma-2/5)/(-1/2*gamma-ln(2)+3/4) 2971274821553560 m001 (Psi(1,1/3)+Chi(1))/(-OneNinth+PlouffeB) 2971274822669907 b008 -5+CoshIntegral[ArcCosh[3]] 2971274826449666 m005 (1/2*Zeta(3)-5/11)/(1/12*Catalan+5/12) 2971274834616253 m007 (-1/6*gamma-1/3*ln(2)+3/4)/(-gamma+2) 2971274836371435 a007 Real Root Of -371*x^4-990*x^3+185*x^2-324*x+351 2971274842491402 r008 a(0)=3,K{-n^6,-2+27*n+38*n^2-24*n^3} 2971274857731300 r009 Im(z^3+c),c=-23/54+9/46*I,n=15 2971274872408634 r009 Re(z^3+c),c=-43/110+15/47*I,n=35 2971274872729622 r002 60i'th iterates of 2*x/(1-x^2) of 2971274873947274 a007 Real Root Of 16*x^4+484*x^3+241*x^2-428*x+6 2971274882620360 m001 GAMMA(23/24)/Lehmer*exp(cos(1)) 2971274894186942 m001 cos(Pi/5)^2/exp(DuboisRaymond)^2*sin(Pi/12)^2 2971274894465551 m005 (1/2*2^(1/2)-9/11)/(2/7*Catalan-4) 2971274907256465 m005 (1/2*Pi+5/6)/(9/10*Zeta(3)-3/11) 2971274936084645 m005 (1/2*5^(1/2)+6/11)/(1/12*exp(1)+1/3) 2971274939611867 a001 2207/34*121393^(18/25) 2971274939656777 a007 Real Root Of 239*x^4-808*x^3-855*x^2-667*x+293 2971274953990512 r005 Re(z^2+c),c=-31/94+8/29*I,n=2 2971274957998979 m001 ln(FeigenbaumKappa)*Paris^2*Zeta(9)^2 2971274965717161 h001 (4/11*exp(1)+1/9)/(4/9*exp(2)+5/12) 2971274972419524 m005 (-11/4+1/4*5^(1/2))/(1/5*2^(1/2)+5/11) 2971274977087821 m001 1/GAMMA(5/12)/exp(GAMMA(1/6))*sqrt(1+sqrt(3)) 2971274981334674 r009 Re(z^3+c),c=-35/86+22/39*I,n=7 2971274999729158 b008 -5/8+Pi*Log[Pi] 2971274999729158 m002 -5/8+Pi*Log[Pi] 2971275016555309 a007 Real Root Of 628*x^4-998*x^3-268*x^2-527*x-164 2971275022872031 m005 (1/3*exp(1)+2/3)/(4*2^(1/2)-4/11) 2971275024668057 m001 (-Rabbit+Riemann3rdZero)/(2^(1/2)-Gompertz) 2971275031974975 m001 (Cahen+MertensB2)/(GAMMA(2/3)-Psi(2,1/3)) 2971275035245710 r005 Re(z^2+c),c=-43/34+13/67*I,n=2 2971275047372548 a007 Real Root Of -356*x^4+875*x^3-385*x^2+563*x+227 2971275048460517 m005 (1/2*3^(1/2)-7/9)/(1/9*5^(1/2)-6/11) 2971275050958942 a001 2207*317811^(55/59) 2971275096616802 r005 Re(z^2+c),c=3/38+23/52*I,n=5 2971275098156681 a001 1/6*521^(29/35) 2971275099791943 a001 7/2584*2^(2/15) 2971275099833985 r008 a(0)=3,K{-n^6,-53+12*n+59*n^2+17*n^3} 2971275103292465 r008 a(0)=3,K{-n^6,-37+16*n^3+70*n^2-14*n} 2971275112627632 r008 a(0)=3,K{-n^6,-57+32*n+36*n^2+24*n^3} 2971275112629304 r008 a(0)=3,K{-n^6,-63+43*n+30*n^2+25*n^3} 2971275115829258 r008 a(0)=3,K{-n^6,-41+23*n^3+47*n^2+6*n} 2971275125311703 r005 Im(z^2+c),c=-15/118+15/37*I,n=30 2971275130344456 h001 (6/11*exp(2)+2/3)/(1/11*exp(2)+10/11) 2971275137641350 r009 Re(z^3+c),c=-5/122+26/35*I,n=56 2971275139329163 r005 Re(z^2+c),c=-27/94+15/31*I,n=21 2971275143652230 r008 a(0)=3,K{-n^6,-35+38*n^3+5*n^2+27*n} 2971275149360596 r008 a(0)=3,K{-n^6,-31+27*n-2*n^2+41*n^3} 2971275153308725 m001 1/3*(3^(1/2)*FeigenbaumMu-Zeta(5))*3^(1/2) 2971275154509110 r005 Im(z^2+c),c=-25/98+11/17*I,n=16 2971275160132724 r008 a(0)=3,K{-n^6,-5+44*n^3+2*n^2-6*n} 2971275164312885 r008 a(0)=3,K{-n^6,-17+22*n-19*n^2+49*n^3} 2971275164414909 m001 BesselJ(1,1)/(MertensB3+ZetaR(2)) 2971275165223297 r008 a(0)=3,K{-n^6,-7+48*n^3-11*n^2+5*n} 2971275166125022 r008 a(0)=3,K{-n^6,27-56*n+21*n^2+43*n^3} 2971275172856670 r009 Im(z^3+c),c=-9/86+15/47*I,n=2 2971275174105752 a001 14930352/7*2^(11/23) 2971275176956687 r008 a(0)=3,K{-n^6,5+55*n^3-26*n^2+n} 2971275183836163 r008 a(0)=3,K{-n^6,39-50*n-9*n^2+55*n^3} 2971275185792205 r008 a(0)=3,K{-n^6,31-32*n-22*n^2+58*n^3} 2971275191657981 m001 GAMMA(7/12)^2*Catalan^2*exp(exp(1)) 2971275193760418 m001 (Psi(2,1/3)+3^(1/3))/(-Otter+Riemann2ndZero) 2971275193960016 h001 (9/10*exp(2)+2/9)/(7/12*exp(1)+8/11) 2971275196983840 m001 Si(Pi)^2*FeigenbaumDelta/exp(Zeta(1/2))^2 2971275197302678 a007 Real Root Of -474*x^4-552*x^3-192*x^2+336*x+106 2971275201541269 a007 Real Root Of 303*x^4+671*x^3-647*x^2+110*x+24 2971275217976272 r005 Im(z^2+c),c=-97/110+12/55*I,n=19 2971275219783859 m001 (Gompertz+Trott)/(sin(1)+Zeta(3)) 2971275219896080 a003 cos(Pi*42/107)-cos(Pi*45/92) 2971275220370806 r008 a(0)=3,K{-n^6,46-45*n^3+84*n^2-51*n} 2971275234086842 r005 Re(z^2+c),c=-37/58+1/43*I,n=4 2971275255489486 m005 (1/24+1/6*5^(1/2))/(233/220+3/20*5^(1/2)) 2971275260865787 m001 Catalan*(GAMMA(17/24)-ln(5)) 2971275277248206 r009 Im(z^3+c),c=-35/74+7/47*I,n=59 2971275281703954 a007 Real Root Of -632*x^4-403*x^3-335*x^2+845*x-206 2971275284791913 r005 Im(z^2+c),c=-9/14+65/206*I,n=16 2971275287206055 v003 sum((5/6*n^3+73/6*n+6)/(n!+2),n=1..infinity) 2971275287429851 m002 -3/Pi^4+Tanh[Pi]/(3*Pi^5) 2971275288527342 r005 Re(z^2+c),c=-39/122+9/22*I,n=34 2971275288964834 r005 Im(z^2+c),c=29/102+4/29*I,n=29 2971275293834129 r008 a(0)=3,K{-n^6,4-28*n^3+52*n^2} 2971275296865981 r009 Re(z^3+c),c=-19/50+17/57*I,n=11 2971275297363496 m001 Backhouse+FeigenbaumD^BesselK(0,1) 2971275301455392 p004 log(34429/25579) 2971275304120792 m001 Si(Pi)^GAMMA(23/24)*Zeta(1,-1)^GAMMA(23/24) 2971275313317889 m005 (1/2*5^(1/2)+1/3)/(4/11*exp(1)-1/2) 2971275316333071 a007 Real Root Of -262*x^4-486*x^3+622*x^2-424*x+921 2971275331481845 a003 sin(Pi*1/111)/cos(Pi*7/71) 2971275335468717 r002 10th iterates of z^2 + 2971275363028692 m001 (GaussAGM-KhinchinLevy)/(Landau-Robbin) 2971275363896504 m001 (Artin-Mills)/(Paris-ThueMorse) 2971275398035636 a007 Real Root Of 333*x^4-540*x^3-628*x^2-74*x+89 2971275401609408 r005 Im(z^2+c),c=-27/86+35/59*I,n=62 2971275409674421 m001 BesselK(1,1)*Champernowne^2*exp(sinh(1)) 2971275411754966 m001 1/MertensB1/exp(CopelandErdos)/Zeta(7)^2 2971275415810779 r005 Im(z^2+c),c=11/60+11/47*I,n=15 2971275420890663 m005 (1/2*3^(1/2)-1/3)/(31/36+5/12*5^(1/2)) 2971275421283666 l006 ln(387/7553) 2971275426841769 m001 FeigenbaumAlpha+Stephens^exp(1/Pi) 2971275435415279 r005 Re(z^2+c),c=3/110+38/61*I,n=15 2971275444504544 a001 322/121393*832040^(9/26) 2971275461303871 r005 Im(z^2+c),c=-127/122+19/56*I,n=7 2971275512031335 r005 Re(z^2+c),c=-71/58+9/62*I,n=28 2971275519362626 r009 Re(z^3+c),c=-25/66+14/47*I,n=32 2971275520570095 m005 (17/66+1/6*5^(1/2))/(3/8*gamma-3/7) 2971275522934296 m005 (41/36+1/4*5^(1/2))/(1/11*Pi-6) 2971275548307189 a007 Real Root Of -897*x^4+914*x^3+334*x^2+759*x+227 2971275552015104 r005 Re(z^2+c),c=4/19+1/60*I,n=18 2971275559587350 m001 (OneNinth-TwinPrimes)/(Cahen-FeigenbaumAlpha) 2971275562702796 r008 a(0)=3,K{-n^6,-58+33*n+36*n^2+24*n^3} 2971275562704447 r008 a(0)=3,K{-n^6,-64+44*n+30*n^2+25*n^3} 2971275568347565 m005 (-9/28+1/4*5^(1/2))/(6/11*Catalan+3/10) 2971275574437345 r008 a(0)=3,K{-n^6,-44+20*n+31*n^2+28*n^3} 2971275575390247 r002 9th iterates of z^2 + 2971275576144773 m001 (Weierstrass+ZetaP(2))/(GAMMA(3/4)+Ei(1)) 2971275585849607 r008 a(0)=3,K{-n^6,70-46*n^3+99*n^2-89*n} 2971275593873814 h001 (4/9*exp(1)+7/8)/(7/8*exp(2)+6/11) 2971275594069072 a001 956722026041/1364*123^(3/10) 2971275596721571 m001 KhintchineLevy/exp(Si(Pi))^2*Zeta(7)^2 2971275598920786 a007 Real Root Of -257*x^4-583*x^3+555*x^2-65*x-355 2971275603056142 r008 a(0)=3,K{-n^6,2-29*n+24*n^2+38*n^3} 2971275611478454 a005 (1/sin(90/193*Pi))^1426 2971275613571044 a007 Real Root Of -300*x^4-699*x^3+657*x^2+461*x+616 2971275613897948 r008 a(0)=3,K{-n^6,-18+23*n-19*n^2+49*n^3} 2971275615693505 r008 a(0)=3,K{-n^6,26-55*n+21*n^2+43*n^3} 2971275616480133 l006 ln(922/1241) 2971275617845878 r008 a(0)=3,K{-n^6,-33-31*n^3+25*n^2+72*n} 2971275620521177 r008 a(0)=3,K{-n^6,48+43*n^3+32*n^2-88*n} 2971275626017384 r008 a(0)=3,K{-n^6,-34+61*n^3-63*n^2+71*n} 2971275631557635 m005 (1/2*Pi+7/10)/(5*2^(1/2)+4/7) 2971275633244617 r008 a(0)=3,K{-n^6,38-49*n-9*n^2+55*n^3} 2971275634800380 r008 a(0)=3,K{-n^6,-2+63*n^3-53*n^2+27*n} 2971275641116918 k002 Champernowne real with 81*n^2-201*n+149 2971275643823821 m002 -Pi^4+Pi^9+Log[Pi]/ProductLog[Pi] 2971275649958937 m005 (-23/36+1/4*5^(1/2))/(9/10*Catalan-5/9) 2971275677318249 a003 cos(Pi*25/81)*cos(Pi*23/71) 2971275685086483 m005 (3/4*2^(1/2)-5)/(5*exp(1)-1/3) 2971275685092520 m008 (1/5*Pi^4-5/6)/(2*Pi^3+3/4) 2971275691340011 s002 sum(A090095[n]/((2*n)!),n=1..infinity) 2971275700126897 m001 1/MinimumGamma/exp(Kolakoski)^2*GAMMA(5/12) 2971275712218666 m001 Backhouse*(ln(2+3^(1/2))+Sarnak) 2971275713059502 m001 (GAMMA(5/6)*Khinchin+FellerTornier)/GAMMA(5/6) 2971275716645910 m001 exp(Lehmer)/GaussKuzminWirsing^2/TwinPrimes 2971275728114958 p004 log(16843/863) 2971275739024449 r005 Re(z^2+c),c=-25/114+33/47*I,n=25 2971275740291138 m001 ln(OneNinth)*FeigenbaumKappa/Zeta(7)^2 2971275742030454 m001 (exp(Pi)+ln(gamma))/(-Conway+Landau) 2971275750913772 a007 Real Root Of -238*x^4-620*x^3+159*x^2-427*x-386 2971275776811404 s002 sum(A185008[n]/(n*pi^n-1),n=1..infinity) 2971275796459379 r002 13th iterates of z^2 + 2971275813346388 r005 Im(z^2+c),c=-9/32+22/47*I,n=35 2971275818452647 a001 521*(1/2*5^(1/2)+1/2)^11*3^(23/24) 2971275830245676 r009 Re(z^3+c),c=-35/62+24/43*I,n=9 2971275831201404 r009 Re(z^3+c),c=-23/82+13/21*I,n=3 2971275837476338 r005 Re(z^2+c),c=11/38+24/49*I,n=29 2971275840328929 a007 Real Root Of 329*x^4+711*x^3-670*x^2+487*x+370 2971275840790925 a007 Real Root Of -815*x^4-499*x^3+748*x^2+799*x-284 2971275848641746 r002 52th iterates of z^2 + 2971275871364219 a001 1/8*14930352^(8/17) 2971275875355198 m005 (-1/3+1/6*5^(1/2))/(5/11*Zeta(3)+7/9) 2971275877165796 m006 (5/6*Pi^2+1/2)/(1/5/Pi-3) 2971275887176481 r005 Im(z^2+c),c=-12/31+30/61*I,n=34 2971275891573325 a007 Real Root Of -367*x^4-552*x^3+9*x^2+924*x-258 2971275892546853 m001 cos(1)/(Ei(1)-ZetaP(4)) 2971275894037644 r009 Re(z^3+c),c=-25/66+14/47*I,n=33 2971275898814641 r005 Re(z^2+c),c=-13/34+4/45*I,n=17 2971275900423340 r009 Re(z^3+c),c=-43/110+15/47*I,n=38 2971275901593923 r005 Im(z^2+c),c=-47/90+16/35*I,n=54 2971275902211385 a007 Real Root Of 870*x^4-754*x^3+823*x^2+307*x-8 2971275905075790 m004 3+(100*Tan[Sqrt[5]*Pi]^2)/Pi 2971275909865529 a007 Real Root Of -475*x^4+114*x^3+214*x^2+731*x+205 2971275910004149 a003 sin(Pi*11/89)*sin(Pi*27/94) 2971275910707588 r005 Re(z^2+c),c=-33/106+23/53*I,n=53 2971275924272285 a005 (1/sin(59/155*Pi))^175 2971275930693241 r002 12th iterates of z^2 + 2971275935951149 r005 Re(z^2+c),c=-11/32+13/40*I,n=24 2971275936353409 m001 1/ArtinRank2*Conway/ln(GAMMA(17/24))^2 2971275936987730 r009 Re(z^3+c),c=-25/66+14/47*I,n=36 2971275938437349 m005 (1/2*5^(1/2)-7/11)/(-7/18+1/6*5^(1/2)) 2971275945503261 m001 (sin(1/12*Pi)-gamma(3))/(PlouffeB-Totient) 2971275954755825 m001 (Porter+Trott2nd)/(ArtinRank2-DuboisRaymond) 2971275977576464 l006 ln(238/4645) 2971275978558563 a007 Real Root Of 27*x^4-170*x^3-984*x^2-544*x+507 2971275979190858 m001 (3^(1/2)+Zeta(5))/(-gamma(1)+Thue) 2971275988173799 a007 Real Root Of 771*x^4-661*x^3+417*x^2-806*x+214 2971275989809109 m002 -Pi^4+Pi^9+ProductLog[Pi]*Tanh[Pi] 2971275997355337 m002 -Pi^2+ProductLog[Pi]-(Pi^4*ProductLog[Pi])/5 2971275999622386 r005 Re(z^2+c),c=-3/110+38/53*I,n=24 2971276013903332 r008 a(0)=3,K{-n^6,-41+23*n^3+48*n^2+5*n} 2971276015847562 r009 Re(z^3+c),c=-25/66+14/47*I,n=39 2971276017496761 r009 Re(z^3+c),c=-25/66+14/47*I,n=40 2971276017578892 r008 a(0)=3,K{-n^6,-35-2*n+48*n^2+24*n^3} 2971276018907171 m001 (Ei(1)+Conway)/OneNinth 2971276019847233 a007 Real Root Of 653*x^4+67*x^3-129*x^2-781*x-224 2971276024833578 r009 Re(z^3+c),c=-25/66+14/47*I,n=43 2971276027591166 r009 Re(z^3+c),c=-25/66+14/47*I,n=47 2971276027652404 r009 Re(z^3+c),c=-25/66+14/47*I,n=44 2971276028031043 r009 Re(z^3+c),c=-25/66+14/47*I,n=50 2971276028033637 r009 Re(z^3+c),c=-25/66+14/47*I,n=46 2971276028067635 r009 Re(z^3+c),c=-25/66+14/47*I,n=51 2971276028100915 r009 Re(z^3+c),c=-25/66+14/47*I,n=54 2971276028118557 r009 Re(z^3+c),c=-25/66+14/47*I,n=58 2971276028120226 r009 Re(z^3+c),c=-25/66+14/47*I,n=57 2971276028120822 r009 Re(z^3+c),c=-25/66+14/47*I,n=55 2971276028120932 r009 Re(z^3+c),c=-25/66+14/47*I,n=61 2971276028121306 r009 Re(z^3+c),c=-25/66+14/47*I,n=62 2971276028121605 r009 Re(z^3+c),c=-25/66+14/47*I,n=64 2971276028121862 r009 Re(z^3+c),c=-25/66+14/47*I,n=63 2971276028122528 r009 Re(z^3+c),c=-25/66+14/47*I,n=60 2971276028122680 r009 Re(z^3+c),c=-25/66+14/47*I,n=59 2971276028129850 r009 Re(z^3+c),c=-25/66+14/47*I,n=56 2971276028133731 r009 Re(z^3+c),c=-25/66+14/47*I,n=53 2971276028167857 r009 Re(z^3+c),c=-25/66+14/47*I,n=52 2971276028260472 r009 Re(z^3+c),c=-25/66+14/47*I,n=48 2971276028303424 r009 Re(z^3+c),c=-25/66+14/47*I,n=49 2971276028927071 r005 Re(z^2+c),c=-13/44+30/53*I,n=41 2971276029510376 r009 Re(z^3+c),c=-25/66+14/47*I,n=45 2971276029803051 r005 Re(z^2+c),c=-1/9+40/47*I,n=54 2971276030949853 r009 Re(z^3+c),c=-25/66+14/47*I,n=42 2971276033569913 r005 Re(z^2+c),c=9/118+9/26*I,n=15 2971276035049838 r009 Re(z^3+c),c=-25/66+14/47*I,n=41 2971276036352417 r008 a(0)=3,K{-n^6,-46*n+51*n^2+29*n^3+1} 2971276036390164 r009 Re(z^3+c),c=-25/66+14/47*I,n=35 2971276041654649 r005 Re(z^2+c),c=-33/106+23/53*I,n=48 2971276042770971 r009 Re(z^3+c),c=-25/66+14/47*I,n=37 2971276046675222 r008 a(0)=3,K{-n^6,-31+26*n-n^2+41*n^3} 2971276047170029 r008 a(0)=3,K{-n^6,-17+39*n^3+12*n^2+n} 2971276049632355 r008 a(0)=3,K{-n^6,-49+63*n-25*n^2+46*n^3} 2971276051284640 r004 Im(z^2+c),c=-1/8+11/24*I,z(0)=I,n=13 2971276057214175 r008 a(0)=3,K{-n^6,-23+26*n-15*n^2+47*n^3} 2971276058601838 a001 6/7*46368^(22/29) 2971276061181054 r009 Re(z^3+c),c=-25/66+14/47*I,n=38 2971276067416998 r008 a(0)=3,K{-n^6,47+43*n^3+32*n^2-87*n} 2971276068565683 r005 Im(z^2+c),c=-45/58+3/26*I,n=17 2971276069961485 r008 a(0)=3,K{-n^6,-13+55*n^3-34*n^2+27*n} 2971276072252346 r005 Im(z^2+c),c=-59/56+2/61*I,n=11 2971276077323749 m005 (1/2*exp(1)+1/5)/(3/7*gamma+5) 2971276078029092 r005 Re(z^2+c),c=-21/17+9/50*I,n=4 2971276083148672 r009 Re(z^3+c),c=-43/110+15/47*I,n=39 2971276083640404 a007 Real Root Of -268*x^4-379*x^3+982*x^2-695*x+212 2971276085936585 a003 cos(Pi*8/115)-sin(Pi*24/101) 2971276091121259 r005 Im(z^2+c),c=-19/21+3/13*I,n=17 2971276101854570 m001 Artin-Robbin^cos(1/12*Pi) 2971276111772422 a007 Real Root Of -379*x^4-797*x^3+967*x^2+39*x+212 2971276122914445 m001 gamma(3)*GAMMA(5/6)+Trott2nd 2971276132813215 r009 Re(z^3+c),c=-43/110+15/47*I,n=42 2971276133572570 m001 1/GAMMA(1/12)^2*KhintchineLevy/ln(gamma)^2 2971276139854578 a009 1/21*7^(1/3)+1/21*9^(2/3) 2971276151629538 r005 Re(z^2+c),c=-9/8+5/21*I,n=46 2971276152059714 r005 Re(z^2+c),c=-87/110+8/59*I,n=10 2971276153250340 r005 Im(z^2+c),c=9/26+5/64*I,n=13 2971276156195275 m001 1/exp(Riemann2ndZero)^2/MertensB1/sin(1)^2 2971276158914233 r009 Re(z^3+c),c=-43/110+15/47*I,n=34 2971276177281357 m001 FransenRobinson+Stephens-ThueMorse 2971276195373476 m001 BesselK(0,1)^gamma(2)+ReciprocalLucas 2971276197414558 r008 a(0)=3,K{-n^6,16-8*n^3+25*n^2+3*n} 2971276197677184 r009 Re(z^3+c),c=-43/110+15/47*I,n=45 2971276201743495 h001 (4/11*exp(1)+9/11)/(7/9*exp(2)+1/3) 2971276201816612 m001 Niven^(Thue/BesselK(0,1)) 2971276205359866 r009 Re(z^3+c),c=-43/110+15/47*I,n=46 2971276206736508 r002 38th iterates of z^2 + 2971276208146617 m005 (1/2*gamma+3/10)/(10/11*Pi-7/8) 2971276209300472 r008 a(0)=3,K{-n^6,32-10*n+47*n^2-35*n^3} 2971276209763937 r009 Re(z^3+c),c=-43/110+15/47*I,n=49 2971276211867340 r005 Re(z^2+c),c=-11/14+25/147*I,n=6 2971276213803244 r009 Re(z^3+c),c=-43/110+15/47*I,n=52 2971276214063441 r009 Re(z^3+c),c=-43/110+15/47*I,n=53 2971276214409773 r009 Re(z^3+c),c=-43/110+15/47*I,n=56 2971276214658286 r009 Re(z^3+c),c=-43/110+15/47*I,n=59 2971276214661750 r009 Re(z^3+c),c=-43/110+15/47*I,n=60 2971276214687201 r009 Re(z^3+c),c=-43/110+15/47*I,n=63 2971276214704929 r009 Re(z^3+c),c=-43/110+15/47*I,n=64 2971276214714692 r009 Re(z^3+c),c=-43/110+15/47*I,n=62 2971276214730670 r009 Re(z^3+c),c=-43/110+15/47*I,n=57 2971276214737234 r009 Re(z^3+c),c=-43/110+15/47*I,n=61 2971276214829214 r009 Re(z^3+c),c=-43/110+15/47*I,n=58 2971276214829651 r009 Re(z^3+c),c=-43/110+15/47*I,n=55 2971276215286049 r009 Re(z^3+c),c=-43/110+15/47*I,n=54 2971276215479965 r009 Re(z^3+c),c=-43/110+15/47*I,n=50 2971276216043249 r009 Re(z^3+c),c=-43/110+15/47*I,n=48 2971276216698665 r009 Re(z^3+c),c=-43/110+15/47*I,n=51 2971276221215800 m001 Tribonacci*(ErdosBorwein+ZetaQ(3)) 2971276224274957 r009 Re(z^3+c),c=-43/110+15/47*I,n=41 2971276224918991 r009 Re(z^3+c),c=-43/110+15/47*I,n=47 2971276233199461 r009 Re(z^3+c),c=-43/110+15/47*I,n=43 2971276239027050 s002 sum(A188830[n]/(10^n-1),n=1..infinity) 2971276246186689 r009 Re(z^3+c),c=-43/110+15/47*I,n=44 2971276246881609 m005 (5*gamma-1/3)/(5*exp(1)-5) 2971276249830308 m001 (exp(1/exp(1))+BesselJ(1,1))/(Robbin-Trott2nd) 2971276250691663 r008 a(0)=3,K{-n^6,6-11*n^3-16*n^2+54*n} 2971276255100689 r009 Re(z^3+c),c=-25/66+14/47*I,n=34 2971276257324487 r005 Im(z^2+c),c=4/15+3/19*I,n=13 2971276257459327 r005 Re(z^2+c),c=-7/23+5/11*I,n=30 2971276259548746 a007 Real Root Of -456*x^4-984*x^3+816*x^2-891*x-122 2971276277140587 b008 Log[29/2]/9 2971276290402298 m001 (Pi^(1/2)+Robbin)/(Zeta(1/2)+BesselI(0,2)) 2971276296927912 b008 -10+E^8+Pi^(-1) 2971276305649827 a001 4181/18*521^(38/49) 2971276313751456 m002 Pi^5*Csch[Pi]+Log[Pi]+ProductLog[Pi]+Tanh[Pi] 2971276316243790 r002 6th iterates of z^2 + 2971276325699260 v003 sum((19/2*n^2-55/2*n+40)/n^n,n=1..infinity) 2971276334490729 r005 Re(z^2+c),c=-33/29+16/59*I,n=28 2971276336104150 m006 (4*Pi-3)/(3/5*exp(2*Pi)+2/3) 2971276346707367 m002 Pi^3-Cosh[Pi]/Pi^4-Cosh[Pi]/Pi^2 2971276355170064 a007 Real Root Of 131*x^4+231*x^3-335*x^2+372*x-88 2971276358350785 m001 (arctan(1/2)-sin(1))/(-GlaisherKinkelin+Trott) 2971276369629777 a003 sin(Pi*28/73)-sin(Pi*12/29) 2971276369718846 r005 Re(z^2+c),c=-47/122+1/49*I,n=21 2971276371386490 m005 (1/3*Zeta(3)-3/5)/(1/12*5^(1/2)-6/7) 2971276375077350 m001 Zeta(1,-1)^ln(2+3^(1/2))-CopelandErdos 2971276382861704 a007 Real Root Of -271*x^4+340*x^3-897*x^2+356*x+196 2971276390060700 m002 -Pi^4+Pi^9+ProductLog[Pi] 2971276391853948 r009 Re(z^3+c),c=-43/110+15/47*I,n=40 2971276392867636 r002 8th iterates of z^2 + 2971276396919195 m001 Zeta(3)/(Landau^Psi(2,1/3)) 2971276400367309 r005 Im(z^2+c),c=1/22+11/30*I,n=3 2971276425431223 r005 Re(z^2+c),c=17/60+8/17*I,n=13 2971276430391605 r009 Re(z^3+c),c=-53/118+9/20*I,n=26 2971276431301983 h001 (5/8*exp(2)+4/11)/(2/7*exp(1)+9/10) 2971276455598738 r008 a(0)=3,K{-n^6,-58+32*n+37*n^2+24*n^3} 2971276455600333 r008 a(0)=3,K{-n^6,-64+43*n+31*n^2+25*n^3} 2971276458500018 a001 225851433717/199*199^(2/11) 2971276458695359 r008 a(0)=3,K{-n^6,-42+23*n^3+48*n^2+6*n} 2971276464340863 a001 24476/233*514229^(21/22) 2971276468214821 r008 a(0)=3,K{-n^6,-16-31*n+58*n^2+24*n^3} 2971276469298495 a001 1/233*20365011074^(21/22) 2971276473454642 r005 Im(z^2+c),c=-25/18+12/251*I,n=5 2971276474433934 r008 a(0)=3,K{-n^6,-18-20*n+45*n^2+28*n^3} 2971276479207823 a007 Real Root Of -296*x^4+926*x^3-8*x^2+201*x-81 2971276479336064 r008 a(0)=3,K{-n^6,-24-3*n+30*n^2+32*n^3} 2971276480929752 r008 a(0)=3,K{-n^6,-45*n+51*n^2+29*n^3} 2971276483560734 r008 a(0)=3,K{-n^6,-38+28*n+8*n^2+37*n^3} 2971276499411045 m001 (1+MasserGramain)/(-OneNinth+Robbin) 2971276500545863 r008 a(0)=3,K{-n^6,-22-24*n^3-13*n^2+93*n} 2971276501597583 r008 a(0)=3,K{-n^6,-24+27*n-15*n^2+47*n^3} 2971276505202224 r008 a(0)=3,K{-n^6,-2-8*n-n^2+46*n^3} 2971276505205628 m001 (ln(2)+exp(1/exp(1)))/(gamma(2)-Rabbit) 2971276505648074 r008 a(0)=3,K{-n^6,-18+22*n-18*n^2+49*n^3} 2971276506582707 a001 2207/8*17711^(56/59) 2971276507353358 r005 Im(z^2+c),c=-2/31+20/53*I,n=15 2971276507405216 r008 a(0)=3,K{-n^6,26-56*n+22*n^2+43*n^3} 2971276512977324 r008 a(0)=3,K{-n^6,-14+26*n-31*n^2+54*n^3} 2971276514229061 r008 a(0)=3,K{-n^6,-14+55*n^3-34*n^2+28*n} 2971276517510231 r008 a(0)=3,K{-n^6,-34+61*n^3-62*n^2+70*n} 2971276524203677 r008 a(0)=3,K{-n^6,36-47*n-9*n^2+55*n^3} 2971276524586630 r008 a(0)=3,K{-n^6,38-50*n-8*n^2+55*n^3} 2971276531951193 m002 -Pi^3/4+Pi^5-Log[Pi]*Tanh[Pi] 2971276532724710 r008 a(0)=3,K{-n^6,40-39*n-28*n^2+62*n^3} 2971276535202832 r008 a(0)=3,K{-n^6,42-38*n-33*n^2+64*n^3} 2971276535554653 r005 Re(z^2+c),c=19/62+11/20*I,n=61 2971276550390465 m005 (1/2*5^(1/2)-7/11)/(91/132+5/12*5^(1/2)) 2971276553655239 a007 Real Root Of 252*x^4+900*x^3+656*x^2+793*x+532 2971276562640674 a001 4/514229*196418^(20/41) 2971276563157796 m001 1/GAMMA(3/4)^2*(2^(1/3))/ln(sin(Pi/5))^2 2971276564379015 a007 Real Root Of -12*x^4-348*x^3+283*x^2+839*x-551 2971276572251908 a002 15^(1/7)+17^(1/7) 2971276580474342 r002 11th iterates of z^2 + 2971276595744680 q001 2793/940 2971276595860760 p004 log(33223/24683) 2971276598742318 m001 (ArtinRank2-CareFree)/(Zeta(3)-GAMMA(3/4)) 2971276600140841 s002 sum(A061176[n]/(n^2*exp(n)+1),n=1..infinity) 2971276600504823 r008 a(0)=3,K{-n^6,2+14*n+31*n^2-11*n^3} 2971276602306393 r005 Re(z^2+c),c=-47/122+1/29*I,n=12 2971276603849883 r005 Re(z^2+c),c=-23/60+4/55*I,n=23 2971276612969046 r009 Re(z^3+c),c=-43/110+15/47*I,n=36 2971276613955358 r005 Im(z^2+c),c=-17/48+24/47*I,n=28 2971276615950331 m001 sin(Pi/5)^2/Zeta(3)^2/ln(sqrt(5)) 2971276621678017 r009 Re(z^3+c),c=-25/66+14/47*I,n=31 2971276626291212 r005 Re(z^2+c),c=-29/74+17/62*I,n=3 2971276628147069 a007 Real Root Of 490*x^4-837*x^3+762*x^2-922*x-367 2971276628531385 a007 Real Root Of -71*x^4+108*x^3+775*x^2-179*x+993 2971276635940935 l006 ln(327/6382) 2971276643024561 m001 (Zeta(1,2)*LaplaceLimit+Magata)/Zeta(1,2) 2971276644117518 k002 Champernowne real with 163/2*n^2-405/2*n+150 2971276645636657 h001 (4/9*exp(2)+1/10)/(1/7*exp(2)+1/12) 2971276645875281 r005 Re(z^2+c),c=-33/86+4/61*I,n=27 2971276658902356 r002 60th iterates of z^2 + 2971276660000553 m008 (3/4*Pi^5+5)/(4/5*Pi^4+1) 2971276665963566 r005 Re(z^2+c),c=-5/23+11/19*I,n=36 2971276672550148 m001 (1+3^(1/2))^(1/2)*Backhouse*Champernowne 2971276674384655 r009 Re(z^3+c),c=-29/70+23/64*I,n=38 2971276677944758 m001 (exp(1/Pi)-FeigenbaumKappa)/(Landau+OneNinth) 2971276689079003 r002 6th iterates of z^2 + 2971276689630524 r004 Im(z^2+c),c=-2/11+3/7*I,z(0)=I,n=47 2971276691307995 m005 (1/2*Pi-1/11)/(3/8*exp(1)-6) 2971276701200446 m001 GAMMA(5/6)^2/exp(GAMMA(13/24))*Zeta(3) 2971276702417410 h001 (-4*exp(1/3)-2)/(-9*exp(-3)+3) 2971276704280826 r009 Re(z^3+c),c=-43/110+15/47*I,n=37 2971276734161511 p001 sum((-1)^n/(457*n+336)/(256^n),n=0..infinity) 2971276741572636 a007 Real Root Of 141*x^4+12*x^3-860*x^2+990*x-141 2971276742440109 m001 (Rabbit-ZetaQ(3))/(Gompertz-Otter) 2971276748037235 r005 Re(z^2+c),c=-29/78+8/43*I,n=27 2971276748695679 a009 2^(3/4)+1/5*12^(3/4) 2971276757140559 m001 BesselI(0,2)/(ln(2)+Zeta(1/2)) 2971276769691761 a001 38/98209*987^(17/27) 2971276779682380 a003 -1/2+2*cos(8/27*Pi)-cos(1/24*Pi) 2971276783172928 r005 Re(z^2+c),c=-19/50+5/41*I,n=13 2971276785824551 m001 (Catalan+ln(Pi))/(-MasserGramain+Totient) 2971276791809982 m002 -Pi^4+Pi^9+Coth[Pi]*ProductLog[Pi] 2971276820787000 l006 ln(6691/9006) 2971276823021810 a001 521/514229*4181^(4/31) 2971276847198758 m005 (1/2*Zeta(3)+6/7)/(3/11*gamma+1/3) 2971276849120955 m001 (BesselI(0,1)+ln(2)*ln(Pi))/ln(2) 2971276849476353 p001 sum((-1)^n/(203*n+71)/n/(12^n),n=1..infinity) 2971276853496204 s002 sum(A194661[n]/(exp(n)+1),n=1..infinity) 2971276862539011 m001 (gamma(2)+GaussAGM)/(5^(1/2)+cos(1)) 2971276873377474 a007 Real Root Of 313*x^4+594*x^3-977*x^2+253*x+563 2971276874552260 a007 Real Root Of -323*x^4-809*x^3+702*x^2+701*x-161 2971276880281047 r005 Im(z^2+c),c=-19/16+4/101*I,n=37 2971276883235728 r005 Im(z^2+c),c=23/82+1/7*I,n=36 2971276902777915 m005 (1/2*Catalan+5/11)/(10/11*exp(1)+3/5) 2971276910326804 r008 a(0)=3,K{-n^6,-17-30*n+58*n^2+24*n^3} 2971276912541208 m001 (GAMMA(3/4)*Lehmer+MertensB2)/Lehmer 2971276920370892 r009 Re(z^3+c),c=-13/28+4/9*I,n=41 2971276921342490 r008 a(0)=3,K{-n^6,-25-2*n+30*n^2+32*n^3} 2971276922413806 r005 Im(z^2+c),c=29/98+6/49*I,n=40 2971276925527465 r008 a(0)=3,K{-n^6,-39+29*n+8*n^2+37*n^3} 2971276927877470 a007 Real Root Of 471*x^4+465*x^3-815*x^2-969*x+344 2971276928738470 a003 sin(Pi*11/97)*sin(Pi*37/114) 2971276929590310 r008 a(0)=3,K{-n^6,-35+39*n^3+4*n^2+27*n} 2971276940808805 m001 (GolombDickman-MertensB3)/(ln(3)+GAMMA(17/24)) 2971276947514774 m005 (1/2*2^(1/2)-7/12)/(1/7*Catalan+2/7) 2971276950552151 m005 (1/2*exp(1)-1/4)/(2/9*Zeta(3)-4) 2971276953834285 r008 a(0)=3,K{-n^6,47+43*n^3+33*n^2-88*n} 2971276959166098 r008 a(0)=3,K{-n^6,-35+61*n^3-62*n^2+71*n} 2971276966572117 r005 Re(z^2+c),c=-7/110+17/27*I,n=46 2971276969545247 r008 a(0)=3,K{-n^6,31-32*n-23*n^2+59*n^3} 2971276970834422 m001 (Ei(1)+BesselI(0,2))/(Mills+Paris) 2971276986773671 r009 Re(z^3+c),c=-25/66+14/47*I,n=26 2971276991775573 r005 Re(z^2+c),c=-41/122+17/48*I,n=35 2971277011890491 r002 13th iterates of z^2 + 2971277012601183 l006 ln(416/8119) 2971277013258980 l006 ln(5769/7765) 2971277017857376 m001 BesselI(0,1)+Niven 2971277019465918 a001 843/4181*3^(6/17) 2971277019629663 a007 Real Root Of 324*x^4+852*x^3-387*x^2+32*x+608 2971277022140457 r002 23th iterates of z^2 + 2971277022445672 r009 Re(z^3+c),c=-25/66+14/47*I,n=30 2971277027971230 r009 Im(z^3+c),c=-15/29+13/60*I,n=18 2971277029226757 m002 3*Pi^2+Cosh[Pi]/(Pi^4*Log[Pi]) 2971277036836456 a008 Real Root of x^2-x-88582 2971277051175295 r002 4th iterates of z^2 + 2971277051236793 s002 sum(A143973[n]/((exp(n)-1)/n),n=1..infinity) 2971277051911620 r009 Im(z^3+c),c=-37/114+13/51*I,n=6 2971277058328096 m001 (cos(1)-sin(1))/(-ln(2)+Kolakoski) 2971277068237431 r005 Re(z^2+c),c=-11/50+15/29*I,n=13 2971277082862377 p004 log(34213/1753) 2971277095164658 m002 -Pi^3+Pi^3/E^Pi-ProductLog[Pi]/E^Pi 2971277097084936 p001 sum(1/(181*n+34)/(16^n),n=0..infinity) 2971277100137077 m002 1-E^Pi+(Pi^6*Tanh[Pi])/3 2971277101676666 m005 (1/2*3^(1/2)+1/9)/(1/2*gamma+3) 2971277102683337 r009 Re(z^3+c),c=-1/20+31/53*I,n=36 2971277123770585 a001 1/123*(1/2*5^(1/2)+1/2)^2*1364^(13/19) 2971277127205506 m001 ln(GAMMA(11/12))^2*FeigenbaumD^2/sin(1)^2 2971277128415165 m002 -5-Pi^2+Pi^5+6*Tanh[Pi] 2971277149286831 r005 Im(z^2+c),c=3/82+18/55*I,n=11 2971277184346980 a007 Real Root Of 550*x^4-885*x^3+30*x^2-888*x-294 2971277189515666 r005 Im(z^2+c),c=-31/94+30/61*I,n=31 2971277210421906 r005 Re(z^2+c),c=-25/86+26/53*I,n=61 2971277213850289 m001 cos(Pi/5)^2/GAMMA(7/24)^2/exp(sin(1)) 2971277218276620 a001 20633239/233*63245986^(17/24) 2971277225021194 m006 (1/5*ln(Pi)-5)/(3*exp(2*Pi)-3/4) 2971277229653856 r009 Re(z^3+c),c=-53/122+24/61*I,n=52 2971277236783951 a008 Real Root of x^4-6*x^2-x-22 2971277239426982 a007 Real Root Of -313*x^4-771*x^3+777*x^2+884*x-62 2971277250731939 a001 47/3524578*21^(5/19) 2971277251879056 m001 exp(Pi)^StronglyCareFree/(exp(Pi)^Ei(1)) 2971277256497941 l006 ln(505/9856) 2971277271186339 p003 LerchPhi(1/25,6,311/173) 2971277274844719 r005 Re(z^2+c),c=-11/38+13/28*I,n=18 2971277278955285 l006 ln(4847/6524) 2971277290364934 a007 Real Root Of -203*x^4-597*x^3+175*x^2+308*x-468 2971277291881892 m002 (-4*Pi^2)/5+Pi^5-Tanh[Pi] 2971277292631275 r005 Re(z^2+c),c=4/15+4/41*I,n=37 2971277298769196 m001 (-BesselI(1,1)+GolombDickman)/(2^(1/2)+gamma) 2971277300310645 r005 Im(z^2+c),c=-1/9+16/39*I,n=9 2971277307276241 a001 5778/233*6557470319842^(17/24) 2971277316642222 a007 Real Root Of 421*x^4+854*x^3+493*x^2-628*x-211 2971277319824406 m001 (Niven+Robbin)/(gamma+Ei(1,1)) 2971277329066226 m009 (1/5*Psi(1,2/3)-1/4)/(5*Psi(1,3/4)-1/2) 2971277334079437 a007 Real Root Of -177*x^4-575*x^3-492*x^2-973*x+165 2971277337931974 r002 7th iterates of z^2 + 2971277339108335 m005 (1/2*Zeta(3)+1/2)/(-23/5+2/5*5^(1/2)) 2971277343871347 r005 Im(z^2+c),c=-149/126+2/51*I,n=29 2971277345276462 r008 a(0)=3,K{-n^6,-28+23*n^3+56*n^2-16*n} 2971277351007526 r008 a(0)=3,K{-n^6,-44+20*n+30*n^2+29*n^3} 2971277355436382 a001 55/2*64079^(11/26) 2971277356580467 a001 55/2*39603^(23/52) 2971277357705788 r005 Re(z^2+c),c=13/106+12/29*I,n=19 2971277360260259 r008 a(0)=3,K{-n^6,-34+33*n^3+23*n^2+13*n} 2971277362867794 r008 a(0)=3,K{-n^6,-46*n+52*n^2+29*n^3} 2971277363907149 r008 a(0)=3,K{-n^6,-44+36*n+6*n^2+37*n^3} 2971277366192152 a007 Real Root Of 293*x^4+440*x^3-953*x^2+923*x-139 2971277375639306 m001 Riemann1stZero/Otter/ln(5) 2971277383083712 r008 a(0)=3,K{-n^6,-24+26*n-14*n^2+47*n^3} 2971277395446784 r008 a(0)=3,K{-n^6,-14+55*n^3-33*n^2+27*n} 2971277403165153 m009 (3*Psi(1,1/3)+2)/(1/12*Pi^2-5/6) 2971277407819091 r008 a(0)=3,K{-n^6,-10+65*n^3-61*n^2+41*n} 2971277412851308 a008 Real Root of (-5+6*x-4*x^2-5*x^3-x^4+x^5) 2971277415112170 m001 Riemann1stZero^2/ln(Niven)/(2^(1/3)) 2971277418430194 h001 (7/10*exp(1)+1/9)/(6/7*exp(2)+4/9) 2971277425521831 r005 Re(z^2+c),c=-19/98+37/57*I,n=59 2971277430151314 r005 Re(z^2+c),c=-47/106+13/35*I,n=3 2971277435299461 m001 (Pi^(1/2)-Otter)/(Weierstrass-ZetaP(4)) 2971277438795439 a007 Real Root Of -709*x^4-750*x^3-279*x^2+621*x+195 2971277445360395 r009 Im(z^3+c),c=-47/98+9/64*I,n=52 2971277471942124 m001 (Landau-ThueMorse)/(FeigenbaumB+FeigenbaumMu) 2971277480438678 r009 Im(z^3+c),c=-1/10+23/28*I,n=32 2971277494855874 p004 log(24923/1277) 2971277505589541 r005 Re(z^2+c),c=-31/106+25/53*I,n=13 2971277505707170 m001 (MasserGramain+StolarskyHarborth)/(Pi-ln(2)) 2971277506924725 r005 Im(z^2+c),c=-101/102+15/56*I,n=22 2971277523270786 m001 1/Zeta(5)^2*exp(sqrt(3))^2 2971277525885012 a007 Real Root Of -298*x^4-617*x^3+767*x^2+183*x+814 2971277526291286 r005 Im(z^2+c),c=5/14+3/47*I,n=25 2971277537579872 r009 Re(z^3+c),c=-19/70+1/59*I,n=5 2971277553227061 r005 Im(z^2+c),c=-17/14+70/219*I,n=13 2971277563656464 r005 Re(z^2+c),c=-33/86+4/61*I,n=29 2971277583855315 a008 Real Root of x^4-x^3-15*x^2-26*x-49 2971277609498850 a007 Real Root Of -208*x^4-712*x^3-569*x^2-930*x-205 2971277612222924 a003 cos(Pi*17/94)-cos(Pi*37/117) 2971277613804676 m002 -(Pi^2/E^Pi)-Pi^3+Pi^5*ProductLog[Pi] 2971277624134385 m001 (BesselJ(0,1)-Catalan)/(-ln(2^(1/2)+1)+Artin) 2971277624754584 s001 sum(exp(-3*Pi/4)^n*A097013[n],n=1..infinity) 2971277626164178 m001 GAMMA(19/24)/GAMMA(11/12)^2*exp(Zeta(5)) 2971277630752617 m001 (MadelungNaCl+Niven)/(Rabbit+ZetaP(2)) 2971277637341967 m005 (1/2*Pi+5/6)/(4/7*Catalan+2/7) 2971277638893013 m001 1/exp(BesselK(1,1))/Conway/sqrt(2) 2971277640173111 r009 Im(z^3+c),c=-29/62+5/33*I,n=25 2971277647118118 k002 Champernowne real with 82*n^2-204*n+151 2971277649389237 q001 9/3029 2971277654656064 r005 Re(z^2+c),c=-5/94+33/37*I,n=6 2971277654741889 m001 Catalan^2/ln(Backhouse)^2*sqrt(5)^2 2971277668802048 m001 ln(2)^Otter/(gamma(3)^Otter) 2971277669478070 l006 ln(3925/5283) 2971277674276257 r005 Re(z^2+c),c=1/3+17/52*I,n=24 2971277691360497 r005 Im(z^2+c),c=3/11+7/46*I,n=31 2971277733028559 m001 GAMMA(3/4)^(Pi*Niven) 2971277734806345 a001 7/6765*86267571272^(2/15) 2971277743691044 m001 (GAMMA(2/3)-Zeta(1/2))/(BesselI(1,2)-Cahen) 2971277745522464 r005 Re(z^2+c),c=-41/122+17/48*I,n=38 2971277749364949 r009 Re(z^3+c),c=-53/122+24/61*I,n=49 2971277753175453 m001 (-HardHexagonsEntropy+Kac)/(1+BesselI(1,2)) 2971277754151094 a007 Real Root Of -333*x^4-640*x^3+805*x^2-995*x-897 2971277754590150 r009 Im(z^3+c),c=-35/106+14/55*I,n=9 2971277760190979 r008 a(0)=3,K{-n^6,28-10*n^3+13*n^2-6*n} 2971277763949522 r005 Im(z^2+c),c=-55/122+27/52*I,n=33 2971277769347034 r002 10th iterates of z^2 + 2971277770718701 r009 Re(z^3+c),c=-9/17+11/54*I,n=27 2971277786187330 m001 Chi(1)/(cos(1)+BesselI(0,2)) 2971277787437908 r008 a(0)=3,K{-n^6,-17-31*n+59*n^2+24*n^3} 2971277798206193 r008 a(0)=3,K{-n^6,-25-3*n+31*n^2+32*n^3} 2971277798960653 b008 -2+Sin[2*Sqrt[5]] 2971277802298349 r008 a(0)=3,K{-n^6,-39+28*n+9*n^2+37*n^3} 2971277806271734 r008 a(0)=3,K{-n^6,-35+39*n^3+5*n^2+26*n} 2971277810821106 a001 7/2584*63245986^(2/15) 2971277811555250 r008 a(0)=3,K{-n^6,-31+26*n-2*n^2+42*n^3} 2971277814362587 m001 FellerTornier-LambertW(1)^Tribonacci 2971277814516813 a007 Real Root Of -99*x^4-222*x^3+110*x^2-116*x+577 2971277816853280 a007 Real Root Of -269*x^4-489*x^3+800*x^2-60*x+898 2971277821536460 r008 a(0)=3,K{-n^6,7-29*n+14*n^2+43*n^3} 2971277825966758 r005 Re(z^2+c),c=-33/86+4/61*I,n=31 2971277828969081 r005 Re(z^2+c),c=-7/9+7/125*I,n=36 2971277832030447 r008 a(0)=3,K{-n^6,-9+54*n^3-27*n^2+17*n} 2971277835106871 h001 (1/8*exp(2)+3/4)/(3/4*exp(2)+1/11) 2971277836463565 r005 Im(z^2+c),c=-41/122+20/41*I,n=53 2971277838908007 a007 Real Root Of -95*x^4-279*x^3-213*x^2-582*x+237 2971277844293660 r008 a(0)=3,K{-n^6,-11+65*n^3-61*n^2+42*n} 2971277844429154 r005 Im(z^2+c),c=-43/58+9/64*I,n=45 2971277854680694 a007 Real Root Of 954*x^4-379*x^3+962*x^2-699*x-310 2971277869488689 r005 Im(z^2+c),c=-23/56+28/55*I,n=54 2971277886074819 r005 Re(z^2+c),c=-33/86+4/61*I,n=36 2971277887683792 r005 Re(z^2+c),c=-33/86+4/61*I,n=34 2971277888465435 r005 Re(z^2+c),c=-33/86+4/61*I,n=38 2971277888798074 r005 Re(z^2+c),c=-33/86+4/61*I,n=33 2971277890329937 r005 Re(z^2+c),c=-33/86+4/61*I,n=40 2971277891311899 r005 Re(z^2+c),c=-33/86+4/61*I,n=42 2971277891750634 r005 Re(z^2+c),c=-33/86+4/61*I,n=44 2971277891927368 r005 Re(z^2+c),c=-33/86+4/61*I,n=46 2971277891992970 r005 Re(z^2+c),c=-33/86+4/61*I,n=48 2971277892015522 r005 Re(z^2+c),c=-33/86+4/61*I,n=50 2971277892022648 r005 Re(z^2+c),c=-33/86+4/61*I,n=52 2971277892024663 r005 Re(z^2+c),c=-33/86+4/61*I,n=54 2971277892025098 r005 Re(z^2+c),c=-33/86+4/61*I,n=59 2971277892025105 r005 Re(z^2+c),c=-33/86+4/61*I,n=57 2971277892025119 r005 Re(z^2+c),c=-33/86+4/61*I,n=61 2971277892025134 r005 Re(z^2+c),c=-33/86+4/61*I,n=63 2971277892025135 r005 Re(z^2+c),c=-33/86+4/61*I,n=56 2971277892025156 r005 Re(z^2+c),c=-33/86+4/61*I,n=64 2971277892025168 r005 Re(z^2+c),c=-33/86+4/61*I,n=62 2971277892025187 r005 Re(z^2+c),c=-33/86+4/61*I,n=60 2971277892025202 r005 Re(z^2+c),c=-33/86+4/61*I,n=58 2971277892025305 r005 Re(z^2+c),c=-33/86+4/61*I,n=55 2971277892026312 r005 Re(z^2+c),c=-33/86+4/61*I,n=53 2971277892030165 r005 Re(z^2+c),c=-33/86+4/61*I,n=51 2971277892042990 r005 Re(z^2+c),c=-33/86+4/61*I,n=49 2971277892081831 r005 Re(z^2+c),c=-33/86+4/61*I,n=47 2971277892190546 r005 Re(z^2+c),c=-33/86+4/61*I,n=45 2971277892472108 r005 Re(z^2+c),c=-33/86+4/61*I,n=43 2971277893138613 r005 Re(z^2+c),c=-33/86+4/61*I,n=41 2971277894529436 r005 Re(z^2+c),c=-33/86+4/61*I,n=39 2971277896822138 r005 Re(z^2+c),c=-33/86+4/61*I,n=37 2971277898346344 r005 Re(z^2+c),c=-33/86+4/61*I,n=35 2971277900686652 a007 Real Root Of -368*x^4-989*x^3-43*x^2-939*x+329 2971277902682344 s001 sum(exp(-Pi/2)^n*A137903[n],n=1..infinity) 2971277904066037 m001 (ln(2)/ln(10))^FeigenbaumC-StolarskyHarborth 2971277908797879 a007 Real Root Of -283*x^4-992*x^3-799*x^2-885*x+460 2971277909406933 r005 Re(z^2+c),c=-41/114+11/43*I,n=25 2971277914744280 r005 Re(z^2+c),c=-33/86+4/61*I,n=32 2971277917638155 r005 Im(z^2+c),c=-13/18+44/85*I,n=4 2971277920049541 a007 Real Root Of -308*x^4-710*x^3+389*x^2-756*x-299 2971277920263063 m005 (1/2*Pi-1)/(11/12*3^(1/2)+1/3) 2971277924146051 m001 BesselI(0,2)+Landau+ZetaR(2) 2971277924608855 r008 a(0)=3,K{-n^6,-11-11*n^3+3*n^2+39*n} 2971277936156539 a007 Real Root Of 867*x^4+58*x^3-396*x^2-827*x-216 2971277942697452 l006 ln(6928/9325) 2971277959630636 a001 1/271461*(1/2*5^(1/2)+1/2)^19*2207^(11/19) 2971277964734380 a007 Real Root Of 277*x^4-410*x^3-772*x^2-610*x+258 2971277968313574 r002 3th iterates of z^2 + 2971277971065551 a001 144/9349*29^(8/41) 2971277977441448 a007 Real Root Of 360*x^4+935*x^3-112*x^2+954*x+291 2971277996420881 a001 1/103689*(1/2*5^(1/2)+1/2)^13*843^(18/19) 2971277997968291 m001 (-Conway+Lehmer)/(cos(1)-ln(2)/ln(10)) 2971278006833111 a007 Real Root Of 117*x^4+44*x^3-958*x^2-221*x-164 2971278013872504 m005 (1/2*3^(1/2)-1/7)/(4*gamma+1/8) 2971278016225301 a001 3571/233*233^(31/57) 2971278020995671 r005 Re(z^2+c),c=-17/56+20/41*I,n=22 2971278027258060 m001 (ln(3)+Pi^(1/2))/(Kac+PolyaRandomWalk3D) 2971278046416750 m005 (1/3*3^(1/2)-3/7)/(1/8*gamma+3/7) 2971278047043070 r005 Re(z^2+c),c=-33/86+4/61*I,n=30 2971278050681144 p004 log(13367/9931) 2971278066333350 a007 Real Root Of -255*x^4-865*x^3-412*x^2-34*x+721 2971278083996001 a007 Real Root Of 155*x^4+412*x^3-252*x^2-478*x-469 2971278085943565 r005 Re(z^2+c),c=17/118+29/44*I,n=9 2971278104340177 m001 1/ln(Khintchine)*GaussKuzminWirsing^2/Pi 2971278122838085 s002 sum(A120713[n]/((2^n-1)/n),n=1..infinity) 2971278122911070 m006 (3/5*exp(2*Pi)-3/5)/(1/5*exp(2*Pi)+5/6) 2971278123360585 r005 Re(z^2+c),c=-43/62+7/19*I,n=33 2971278130634408 a001 1/123*(1/2*5^(1/2)+1/2)^6*3571^(7/19) 2971278132093304 b008 26+Sqrt[Pi]*ArcSinh[4] 2971278137548952 a001 10946/2207*7^(23/25) 2971278178457715 m002 -6+Pi^5-2/Log[Pi]-Log[Pi] 2971278184828961 m001 BesselJ(1,1)^gamma(3)/ReciprocalFibonacci 2971278192755852 m001 (2^(1/3)-Backhouse)/(-Cahen+Conway) 2971278193057065 a001 1/710694*(1/2*5^(1/2)+1/2)^17*5778^(14/19) 2971278204578373 a001 51841/4*1597^(14/19) 2971278205559724 m001 1/Cahen^2/exp(Backhouse)^2/Riemann2ndZero^2 2971278206910223 a001 1/1860621*(1/2*5^(1/2)+1/2)^27*15127^(5/19) 2971278212205693 r008 a(0)=3,K{-n^6,-58+32*n+36*n^2+25*n^3} 2971278212207133 r008 a(0)=3,K{-n^6,-64+43*n+30*n^2+26*n^3} 2971278212618235 s002 sum(A071122[n]/(exp(n)),n=1..infinity) 2971278213627681 h001 (5/8*exp(2)+7/9)/(6/11*exp(1)+1/3) 2971278215381227 a001 1/4871169*(1/2*5^(1/2)+1/2)^25*39603^(8/19) 2971278216249512 a001 1/123*(1/2*5^(1/2)+1/2)^5*64079^(6/19) 2971278216973134 a001 1/7881717*(1/2*5^(1/2)+1/2)^28*64079^(6/19) 2971278217275694 a001 1/123*(1/2*5^(1/2)+1/2)^3*39603^(8/19) 2971278218305311 a001 1/3010548*(1/2*5^(1/2)+1/2)^20*24476^(12/19) 2971278219895096 a001 1/123*(1/2*5^(1/2)+1/2)^7*15127^(5/19) 2971278231161626 a007 Real Root Of -187*x^4-350*x^3+732*x^2+90*x-801 2971278233477077 r002 3th iterates of z^2 + 2971278239329286 a007 Real Root Of 223*x^4+362*x^3-862*x^2-140*x-691 2971278240574127 r008 a(0)=3,K{-n^6,-36+39*n^3+5*n^2+27*n} 2971278241425750 r005 Im(z^2+c),c=-43/60+4/59*I,n=49 2971278242339322 r009 Im(z^3+c),c=-47/90+11/61*I,n=44 2971278252246013 a005 (1/sin(56/127*Pi))^595 2971278256563771 r008 a(0)=3,K{-n^6,-2+45*n^3+4*n^2-12*n} 2971278259543429 r008 a(0)=3,K{-n^6,-18+22*n-19*n^2+50*n^3} 2971278260633926 a001 199/233*55^(14/45) 2971278261210352 r008 a(0)=3,K{-n^6,26-56*n+21*n^2+44*n^3} 2971278263449269 a001 1/8*2504730781961^(6/17) 2971278266098981 r008 a(0)=3,K{-n^6,-10+54*n^3-27*n^2+18*n} 2971278266395604 r005 Re(z^2+c),c=-13/34+1/10*I,n=11 2971278273083026 r008 a(0)=3,K{-n^6,14-14*n-21*n^2+56*n^3} 2971278276046698 r002 7i'th iterates of 2*x/(1-x^2) of 2971278277525506 r008 a(0)=3,K{-n^6,38-50*n-9*n^2+56*n^3} 2971278299802360 l006 ln(3003/4042) 2971278312831600 a007 Real Root Of -241*x^4-605*x^3+239*x^2-321*x-150 2971278322094126 m001 1/Trott/Conway^2/ln(sin(Pi/12))^2 2971278328953200 r005 Im(z^2+c),c=-35/82+12/23*I,n=27 2971278331797280 a001 1/141*46368^(2/15) 2971278349508443 a001 73681302247/233*610^(17/24) 2971278355597583 m001 (Stephens+ThueMorse)/(Cahen+FeigenbaumD) 2971278362542363 m001 (gamma(2)-Artin)/(GlaisherKinkelin+ZetaQ(3)) 2971278363638513 a001 1/439233*(1/2*5^(1/2)+1/2)^23*3571^(7/19) 2971278364404194 r005 Re(z^2+c),c=-7/24+23/47*I,n=41 2971278367246759 m001 (-ArtinRank2+ZetaQ(3))/(cos(1/5*Pi)-gamma) 2971278376498908 a001 1/966*(1/2*5^(1/2)+1/2)*3^(12/23) 2971278396400315 m001 (Pi+LambertW(1))/(exp(-1/2*Pi)-Backhouse) 2971278396508965 l006 ln(89/1737) 2971278396920168 r002 20th iterates of z^2 + 2971278406085002 r005 Im(z^2+c),c=-23/31+20/51*I,n=4 2971278411567770 m005 (1/2*exp(1)-1/9)/(4/11*Zeta(3)-6/7) 2971278423755428 m001 (-MertensB1+ZetaQ(2))/(1-ln(2)/ln(10)) 2971278432991127 m001 (Sarnak+ZetaP(3))/(2^(1/2)+ln(5)) 2971278433268400 r005 Re(z^2+c),c=-8/27+9/19*I,n=21 2971278444048355 r005 Im(z^2+c),c=7/23+7/64*I,n=56 2971278482875748 r005 Re(z^2+c),c=-13/46+24/47*I,n=51 2971278488616778 m001 (FellerTornier+MertensB1)/(1+cos(1/12*Pi)) 2971278489697579 m001 (-Niven+OneNinth)/(Psi(2,1/3)+FeigenbaumKappa) 2971278499791139 m001 (Riemann2ndZero+Sierpinski)/Kolakoski 2971278523616195 m005 (1/2*Pi+7/10)/(4*3^(1/2)+5/7) 2971278533954439 r005 Im(z^2+c),c=-18/29+23/60*I,n=48 2971278538224716 m001 ln(2)^arctan(1/2)+GAMMA(5/12) 2971278538224716 m001 ln(2)^arctan(1/2)+Pi*csc(5/12*Pi)/GAMMA(7/12) 2971278545671921 r005 Re(z^2+c),c=-33/86+4/61*I,n=28 2971278554273847 r005 Re(z^2+c),c=-37/122+21/50*I,n=10 2971278565164081 a007 Real Root Of 619*x^4-500*x^3+774*x^2-616*x-19 2971278566573478 m001 Sarnak/Pi/csc(5/12*Pi)*GAMMA(7/12)/ln(Pi) 2971278569643219 a001 1/123*(1/2*5^(1/2)+1/2)^3*2207^(11/19) 2971278573959742 m001 (FellerTornier-Otter)/(BesselI(1,2)-CareFree) 2971278601860140 m005 (1/2*exp(1)+10/11)/(1/9*Pi-3/11) 2971278605175977 a007 Real Root Of 256*x^4+487*x^3-787*x^2+304*x+673 2971278619990707 r009 Re(z^3+c),c=-7/36+50/53*I,n=56 2971278630827019 r008 a(0)=3,K{-n^6,-49+16*n^3+68*n^2} 2971278642114625 a007 Real Root Of 363*x^4+960*x^3+63*x^2+988*x-731 2971278650118718 k002 Champernowne real with 165/2*n^2-411/2*n+152 2971278654325755 a001 28657/5778*7^(23/25) 2971278655579829 r002 3th iterates of z^2 + 2971278663852024 a007 Real Root Of 407*x^4+849*x^3-975*x^2+40*x-725 2971278669454935 m001 (FeigenbaumMu+OneNinth)/(Catalan+arctan(1/3)) 2971278691338157 r005 Re(z^2+c),c=-17/52+22/57*I,n=28 2971278697272113 r008 a(0)=3,K{-n^6,47+44*n^3+32*n^2-88*n} 2971278700025369 r008 a(0)=3,K{-n^6,-11+23*n-33*n^2+56*n^3} 2971278702761381 r005 Im(z^2+c),c=1/25+20/51*I,n=3 2971278704595786 r008 a(0)=3,K{-n^6,13-13*n-21*n^2+56*n^3} 2971278705102720 m001 (Stephens-Weierstrass)/(arctan(1/3)-Robbin) 2971278706013333 m001 CopelandErdos+Ei(1,1)^Tribonacci 2971278710078709 r008 a(0)=3,K{-n^6,-11+65*n^3-60*n^2+41*n} 2971278717833621 m001 (Conway+Kac)/(Trott-TwinPrimes) 2971278720804670 a001 1/167772*(1/2*5^(1/2)+1/2)^17*1364^(13/19) 2971278723145814 m004 -25*Pi*Log[Sqrt[5]*Pi]^2+2*Sin[Sqrt[5]*Pi] 2971278725964997 a007 Real Root Of 897*x^4+413*x^3+475*x^2-868*x-296 2971278727714269 r002 5th iterates of z^2 + 2971278729722490 a001 75025/15127*7^(23/25) 2971278731501750 r008 a(0)=3,K{-n^6,25+81*n^3-90*n^2+19*n} 2971278734322091 r005 Re(z^2+c),c=39/122+5/37*I,n=57 2971278740722725 a001 196418/39603*7^(23/25) 2971278742327638 a001 514229/103682*7^(23/25) 2971278742561792 a001 1346269/271443*7^(23/25) 2971278742617068 a001 2178309/439204*7^(23/25) 2971278742706507 a001 75640/15251*7^(23/25) 2971278743319529 a001 317811/64079*7^(23/25) 2971278747521245 a001 121393/24476*7^(23/25) 2971278753343941 m005 (1/2*exp(1)-5/9)/(9/11*5^(1/2)+7/8) 2971278759759152 r009 Re(z^3+c),c=-17/82+23/42*I,n=2 2971278764697036 m001 ln(3)^Zeta(1,2)/GAMMA(7/24) 2971278764697036 m001 ln(3)^Zeta(1,2)/Pi/csc(7/24*Pi)*GAMMA(17/24) 2971278770521965 a009 1/6*(4*6^(1/2)-4^(2/3))*6^(1/2) 2971278772336035 a005 (1/cos(7/78*Pi))^370 2971278775894462 r005 Re(z^2+c),c=-19/26+32/101*I,n=2 2971278776320236 a001 46368/9349*7^(23/25) 2971278785645619 m001 (GAMMA(23/24)-Conway)/(exp(1/Pi)-BesselJ(1,1)) 2971278786431530 l006 ln(5084/6843) 2971278792263480 s002 sum(A271754[n]/(exp(pi*n)-1),n=1..infinity) 2971278793514749 a007 Real Root Of -356*x^4-818*x^3+559*x^2-326*x+386 2971278795708290 r005 Re(z^2+c),c=-15/14+37/171*I,n=2 2971278797601315 r005 Im(z^2+c),c=-9/26+19/48*I,n=6 2971278803076343 a007 Real Root Of -300*x^4-982*x^3-83*x^2+443*x-328 2971278809205362 r005 Im(z^2+c),c=-27/70+17/33*I,n=44 2971278819460994 a005 (1/cos(16/111*Pi))^292 2971278832589022 b008 ArcCsch[5]+4*Log[2] 2971278832589022 b008 ArcCsch[5]+Log[16] 2971278838058291 r005 Im(z^2+c),c=-25/27+1/40*I,n=11 2971278842135438 m007 (-1/4*gamma-4/5)/(-3/5*gamma-6/5*ln(2)-2) 2971278845307520 m005 (1/3*gamma-1/11)/(4/7*Catalan-2/11) 2971278852323536 a001 76*(1/2*5^(1/2)+1/2)*199^(1/6) 2971278856343497 m005 (1/2*gamma-2/3)/(3/11*3^(1/2)+4/5) 2971278866658107 a007 Real Root Of -263*x^4-627*x^3+543*x^2+437*x+556 2971278867024158 m006 (1/5*exp(Pi)+2)/(exp(Pi)-5/6) 2971278875121886 m001 2*Pi/GAMMA(5/6)-Backhouse*Grothendieck 2971278893520600 r009 Re(z^3+c),c=-3/86+13/51*I,n=10 2971278894817551 a007 Real Root Of -202*x^4+244*x^3+425*x^2+295*x-130 2971278899011042 a007 Real Root Of 674*x^4-264*x^3+884*x^2-356*x-196 2971278912826050 a003 sin(Pi*9/106)-sin(Pi*18/95) 2971278916687956 r005 Re(z^2+c),c=23/82+7/64*I,n=22 2971278921402842 r005 Re(z^2+c),c=-37/110+11/23*I,n=13 2971278921660975 r005 Im(z^2+c),c=-7/8+5/237*I,n=21 2971278922133164 r005 Re(z^2+c),c=-7/20+3/10*I,n=33 2971278924330692 r005 Im(z^2+c),c=-1/16+21/55*I,n=9 2971278927332185 r009 Re(z^3+c),c=-7/50+33/40*I,n=18 2971278927747622 a007 Real Root Of 9*x^4-550*x^3+227*x^2-466*x-173 2971278942666852 m005 (1/3*5^(1/2)+3/4)/(2/9*gamma+3/8) 2971278943733944 m008 (3/4*Pi^4-1/6)/(4/5*Pi^5+1/2) 2971278952953680 b008 3*JacobiCD[E,-1/2] 2971278966004493 a001 271443*2^(3/23) 2971278973711475 a001 17711/3571*7^(23/25) 2971278975948994 r009 Re(z^3+c),c=-31/110+1/12*I,n=5 2971278981843457 r005 Re(z^2+c),c=-10/27+9/46*I,n=21 2971278990361772 a001 2/21*121393^(26/53) 2971278990387894 l006 ln(7165/9644) 2971278993032643 a007 Real Root Of -315*x^4-874*x^3+159*x^2+84*x+471 2971279000538876 m001 (Landau+Sarnak)/(Backhouse+FransenRobinson) 2971279002827048 a007 Real Root Of -317*x^4-691*x^3+971*x^2+383*x-853 2971279023990656 m001 (Lehmer-Tribonacci)/(FeigenbaumMu+Kac) 2971279033923990 r009 Re(z^3+c),c=-3/86+13/51*I,n=12 2971279034259123 r009 Re(z^3+c),c=-3/86+13/51*I,n=13 2971279034487271 r009 Re(z^3+c),c=-3/86+13/51*I,n=15 2971279034514755 r009 Re(z^3+c),c=-3/86+13/51*I,n=17 2971279034516058 r009 Re(z^3+c),c=-3/86+13/51*I,n=19 2971279034516103 r009 Re(z^3+c),c=-3/86+13/51*I,n=21 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=23 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=26 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=25 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=28 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=30 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=32 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=34 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=36 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=39 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=41 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=43 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=45 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=47 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=49 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=52 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=54 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=55 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=56 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=57 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=58 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=59 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=60 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=53 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=51 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=50 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=48 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=46 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=44 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=42 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=38 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=40 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=37 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=35 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=33 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=31 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=29 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=27 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=24 2971279034516104 r009 Re(z^3+c),c=-3/86+13/51*I,n=22 2971279034516112 r009 Re(z^3+c),c=-3/86+13/51*I,n=20 2971279034516362 r009 Re(z^3+c),c=-3/86+13/51*I,n=18 2971279034522658 r009 Re(z^3+c),c=-3/86+13/51*I,n=16 2971279034623310 r009 Re(z^3+c),c=-3/86+13/51*I,n=14 2971279035052042 m005 (1/2*Zeta(3)+1/10)/(2/3*Zeta(3)-7/9) 2971279043936229 s002 sum(A040367[n]/(64^n),n=1..infinity) 2971279048257517 r005 Re(z^2+c),c=-3/86+21/34*I,n=8 2971279048407186 r009 Re(z^3+c),c=-67/126+13/45*I,n=31 2971279049137351 r009 Re(z^3+c),c=-3/86+13/51*I,n=11 2971279065613363 r005 Im(z^2+c),c=-17/14+83/231*I,n=4 2971279069215777 m009 (Psi(1,2/3)-3/5)/(3*Psi(1,3/4)+2/3) 2971279072716299 m001 3^(1/2)-MadelungNaCl-Otter 2971279075600454 r008 a(0)=3,K{-n^6,-60+26*n^3+33*n^2+36*n} 2971279077315587 m001 (3^(1/2)+Catalan)/(-gamma(2)+QuadraticClass) 2971279082498923 r005 Re(z^2+c),c=-29/94+19/30*I,n=26 2971279085244902 a001 521/4181*987^(23/50) 2971279097352923 r008 a(0)=3,K{-n^6,-26+n+26*n^2+34*n^3} 2971279097839843 r008 a(0)=3,K{-n^6,-46*n+51*n^2+30*n^3} 2971279116959135 r005 Re(z^2+c),c=9/70+19/54*I,n=16 2971279116988877 r008 a(0)=3,K{-n^6,-24+26*n-15*n^2+48*n^3} 2971279117159048 a003 cos(Pi*1/105)-cos(Pi*30/119) 2971279125327887 a009 1/7*(11^(1/4)+11^(3/4))*7^(1/2) 2971279127167005 r008 a(0)=3,K{-n^6,-10+54*n^3-26*n^2+17*n} 2971279128721308 r008 a(0)=3,K{-n^6,-14+56*n^3-34*n^2+27*n} 2971279129106572 r008 a(0)=3,K{-n^6,-12+24*n-33*n^2+56*n^3} 2971279129424341 p004 log(30661/1571) 2971279138927424 a001 29/75025*28657^(11/26) 2971279140109350 r005 Re(z^2+c),c=-13/34+2/19*I,n=7 2971279142318417 m001 1/ln(GAMMA(1/4))^2*ArtinRank2^2/Pi^2 2971279149519890 r009 Re(z^3+c),c=-5/18+1/20*I,n=2 2971279151763948 a001 692308042361/233 2971279160998918 r005 Re(z^2+c),c=-43/102+10/39*I,n=5 2971279161091943 m001 Otter^Champernowne*Otter^ln(2^(1/2)+1) 2971279167263407 s001 sum(exp(-Pi)^(n-1)*A188361[n],n=1..infinity) 2971279167917402 p001 sum((-1)^n/(485*n+321)/(8^n),n=0..infinity) 2971279168735270 m005 (1/3*Catalan+2/7)/(7/9*5^(1/2)+1/4) 2971279182951621 m005 (1/3*gamma-1/12)/(3/5*Catalan-11/12) 2971279190303343 a001 7/3*3^(11/50) 2971279199716599 a001 9/416020*377^(39/47) 2971279202065611 m001 (Tetranacci-Totient)/(ln(2)+GAMMA(17/24)) 2971279204209391 m001 (Magata-arctan(1/2))^Pi 2971279208090976 a007 Real Root Of -56*x^4+50*x^3+588*x^2-97*x+197 2971279210110198 r005 Im(z^2+c),c=-29/94+11/23*I,n=39 2971279210132092 m002 -2+Pi^5+5/ProductLog[Pi]-Sinh[Pi] 2971279216240732 a003 sin(Pi*5/54)/sin(Pi*42/101) 2971279222532042 a009 11^(3/4)-7^(1/4)-3^(1/3) 2971279234016831 r008 a(0)=3,K{-n^6,38-6*n^3+7*n^2-2*n} 2971279237951758 m001 FransenRobinson+sin(1/12*Pi)^Totient 2971279240474434 r005 Im(z^2+c),c=3/14+9/44*I,n=9 2971279241592128 m001 (Artin+Trott)/(ln(2)+BesselK(1,1)) 2971279250628248 r009 Re(z^3+c),c=-43/110+15/47*I,n=33 2971279252462963 r005 Im(z^2+c),c=-9/8+19/70*I,n=25 2971279272043654 m006 (1/5*exp(2*Pi)-1)/(1/2*Pi+2) 2971279276840875 a001 4/2971215073*317811^(15/19) 2971279276845520 a001 4/4052739537881*2971215073^(15/19) 2971279297067009 a007 Real Root Of -354*x^4-794*x^3+953*x^2+449*x-316 2971279300362942 r002 4th iterates of z^2 + 2971279301523452 r005 Re(z^2+c),c=1/19+32/53*I,n=3 2971279312530106 m006 (1/2*Pi+1/3)/(1/2/Pi-4/5) 2971279322813643 m005 (1/2*3^(1/2)-8/11)/(3/11*5^(1/2)-1/7) 2971279325434362 m005 (1/2*Pi+2/5)/(1/8*Catalan-7/9) 2971279334082495 m005 (1/2*Pi-7/10)/(7/8*Pi+2/11) 2971279344419154 m001 (GaussAGM-exp(Pi))/(Stephens+ZetaP(3)) 2971279348753399 r005 Re(z^2+c),c=-23/74+4/15*I,n=4 2971279349831411 m001 cos(Pi/12)*GAMMA(5/6)^2*exp(log(1+sqrt(2))) 2971279359724974 m002 -Pi^5+(E^Pi*ProductLog[Pi]^2)/3 2971279360991370 r005 Im(z^2+c),c=-7/19+29/57*I,n=39 2971279366250530 m001 LandauRamanujan*Kolakoski^2/ln(Salem) 2971279369797868 r009 Re(z^3+c),c=-17/86+40/59*I,n=11 2971279373368146 q001 1138/383 2971279405489345 a007 Real Root Of -372*x^4+512*x^3-572*x^2+428*x+194 2971279437455021 r009 Im(z^3+c),c=-25/44+13/43*I,n=37 2971279448550876 r005 Im(z^2+c),c=5/42+7/25*I,n=8 2971279450441389 m001 GAMMA(11/24)^2/GAMMA(1/4)/ln(sqrt(2)) 2971279457474588 a003 cos(Pi*2/47)/cos(Pi*38/97) 2971279461292255 r008 a(0)=3,K{-n^6,-75+7*n^3+83*n^2+20*n} 2971279463383144 a007 Real Root Of 273*x^4+652*x^3-763*x^2-554*x+915 2971279469964171 h002 exp(1/10*(6^(1/3)+7^(1/4))*10^(1/2)) 2971279472715451 r008 a(0)=3,K{-n^6,-85+14*n^3+57*n^2+49*n} 2971279480486750 r009 Re(z^3+c),c=-1/52+41/53*I,n=10 2971279488664740 l006 ln(2081/2801) 2971279488664740 p004 log(2801/2081) 2971279493107109 m001 Tribonacci^Grothendieck+ZetaQ(3) 2971279504904168 r005 Re(z^2+c),c=-13/40+24/43*I,n=35 2971279513109956 r008 a(0)=3,K{-n^6,-17-31*n+58*n^2+25*n^3} 2971279517210944 r005 Im(z^2+c),c=-5/8+9/221*I,n=23 2971279523291370 r008 a(0)=3,K{-n^6,-25-3*n+30*n^2+33*n^3} 2971279524269643 r008 a(0)=3,K{-n^6,-27+2*n+26*n^2+34*n^3} 2971279525241827 r008 a(0)=3,K{-n^6,-35+36*n^3+16*n^2+18*n} 2971279527163760 r008 a(0)=3,K{-n^6,-39+28*n+8*n^2+38*n^3} 2971279532800803 r005 Im(z^2+c),c=-107/114+7/29*I,n=61 2971279539316642 r005 Re(z^2+c),c=3/98+39/59*I,n=3 2971279550277608 r008 a(0)=3,K{-n^6,-29+45*n-35*n^2+54*n^3} 2971279555937425 m001 (GAMMA(2/3)+sin(1/12*Pi))/(Psi(2,1/3)+Chi(1)) 2971279557253098 r008 a(0)=3,K{-n^6,-17+35*n-41*n^2+58*n^3} 2971279560593667 r008 a(0)=3,K{-n^6,13-14*n-20*n^2+56*n^3} 2971279560957485 r008 a(0)=3,K{-n^6,39-61*n+5*n^2+52*n^3} 2971279572093092 r008 a(0)=3,K{-n^6,31+64*n^3-35*n^2-25*n} 2971279572898080 r005 Im(z^2+c),c=-25/48+23/51*I,n=11 2971279599266403 a007 Real Root Of -338*x^4+809*x^3+889*x^2+269*x-177 2971279600083063 r002 58i'th iterates of 2*x/(1-x^2) of 2971279600211422 a009 11^(1/2)/(8+10^(1/2)) 2971279605126471 a007 Real Root Of -752*x^4+662*x^3-146*x^2+528*x+193 2971279611076242 l006 ln(474/9251) 2971279614423245 m005 (1/2*Zeta(3)+5/11)/(5/8*3^(1/2)-8/11) 2971279620486262 r005 Re(z^2+c),c=-143/118+13/31*I,n=5 2971279625484038 a007 Real Root Of 192*x^4+168*x^3-973*x^2+806*x+427 2971279626698089 r005 Im(z^2+c),c=23/66+3/19*I,n=22 2971279630622618 r002 56th iterates of z^2 + 2971279631982404 m001 1/TreeGrowth2nd/ln(KhintchineLevy)*sqrt(5) 2971279633508160 b008 Pi+ArcCoth[1-4*Sqrt[3]] 2971279653119318 k002 Champernowne real with 83*n^2-207*n+153 2971279667911828 m001 (BesselI(0,2)-GAMMA(17/24))/(Khinchin+Robbin) 2971279668567089 m001 GAMMA(5/6)*MertensB3+Porter 2971279669691944 m001 (exp(Pi)-ln(2+3^(1/2)))/(Sarnak+Trott) 2971279672381010 r005 Re(z^2+c),c=9/32+7/64*I,n=28 2971279688293953 a001 1/521*(1/2*5^(1/2)+1/2)^5*76^(14/23) 2971279694747094 r009 Im(z^3+c),c=-13/82+17/55*I,n=5 2971279712368683 m001 (gamma-GaussAGM(1,1/sqrt(2)))^Khinchin 2971279717825006 l004 Ci(244/99) 2971279724346039 r005 Im(z^2+c),c=-7/10+32/127*I,n=51 2971279737245057 r005 Re(z^2+c),c=17/52+13/31*I,n=13 2971279740246298 m005 (1/2*Zeta(3)+1/9)/(8/9*3^(1/2)+6/7) 2971279740588867 m002 6+6*Pi^5+Pi^4*Cosh[Pi] 2971279749955469 m001 (1-HardHexagonsEntropy)/(-Totient+ZetaQ(3)) 2971279760665653 r009 Im(z^3+c),c=-45/106+9/46*I,n=32 2971279764947983 a007 Real Root Of -328*x^4+977*x^3-2*x^2+660*x-219 2971279769966904 m006 (4/Pi-4/5)/(2/3*exp(Pi)+1/2) 2971279783316601 m001 (sin(1)+GAMMA(7/12))/(-FeigenbaumAlpha+Niven) 2971279804264721 a007 Real Root Of 79*x^4-145*x^3-969*x^2+304*x-503 2971279811557932 r005 Im(z^2+c),c=-21/16+3/98*I,n=37 2971279815812326 r009 Im(z^3+c),c=-33/74+1/27*I,n=33 2971279816693484 a007 Real Root Of 507*x^4-157*x^3+937*x^2-694*x-297 2971279818055217 a001 8/6643838879*18^(5/16) 2971279819320190 m001 ln(GaussKuzminWirsing)*Conway^2*Porter 2971279820648297 m001 exp(GAMMA(2/3))^2*TwinPrimes*sqrt(3)^2 2971279827355486 r005 Re(z^2+c),c=-17/58+31/64*I,n=64 2971279828385387 m004 5*Pi+(25*Cos[Sqrt[5]*Pi])/Pi+6*Sec[Sqrt[5]*Pi] 2971279830592179 a001 1/3647*(1/2*5^(1/2)+1/2)^7*521^(4/19) 2971279835383598 l006 ln(6049/6067) 2971279842616257 m005 (1/2*Pi+1/6)/(3/4*3^(1/2)-5/7) 2971279847958556 r005 Re(z^2+c),c=-5/4+2/185*I,n=6 2971279849373710 r005 Im(z^2+c),c=-4/7+13/27*I,n=41 2971279851347173 a007 Real Root Of 281*x^4+524*x^3-836*x^2+151*x-327 2971279856624834 m001 1/ln(ArtinRank2)*Bloch^2/(3^(1/3))^2 2971279857246075 a001 21/14662949395604*11^(7/23) 2971279858823022 r005 Im(z^2+c),c=-4/25+21/50*I,n=20 2971279861676942 m001 HardyLittlewoodC4/((2^(1/3))^ZetaR(2)) 2971279865100801 a007 Real Root Of -279*x^4-473*x^3+687*x^2-973*x+382 2971279869378529 a007 Real Root Of -71*x^4+299*x^3+951*x^2+992*x-386 2971279871470434 m001 (-FeigenbaumB+Thue)/(Psi(1,1/3)-ln(3)) 2971279875615233 r002 14th iterates of z^2 + 2971279875930032 r005 Im(z^2+c),c=39/122+1/15*I,n=54 2971279877006294 r005 Re(z^2+c),c=-29/24+7/38*I,n=4 2971279882854579 a007 Real Root Of -469*x^4+922*x^3+65*x^2+790*x-261 2971279886381383 r008 a(0)=3,K{-n^6,-76+7*n^3+83*n^2+21*n} 2971279891846129 l006 ln(385/7514) 2971279895145683 m001 1/GAMMA(23/24)^2/exp(Kolakoski)/Zeta(3)^2 2971279897409982 m005 (1/2*2^(1/2)-1/11)/(51/44+9/22*5^(1/2)) 2971279897690806 r008 a(0)=3,K{-n^6,-86+14*n^3+57*n^2+50*n} 2971279898865278 r005 Re(z^2+c),c=-11/14+7/230*I,n=62 2971279909924939 a001 34/3571*199^(13/20) 2971279917815843 a007 Real Root Of -250*x^4-511*x^3+969*x^2+671*x-480 2971279920503257 r008 a(0)=3,K{-n^6,-62+30*n+45*n^2+22*n^3} 2971279929077896 r008 a(0)=3,K{-n^6,-44+24*n^3+48*n^2+7*n} 2971279945493712 m001 (cos(1/12*Pi)-sin(1/12*Pi))/(Otter-Stephens) 2971279950065653 m001 GAMMA(1/3)*(GAMMA(23/24)-Zeta(5)) 2971279956819387 a007 Real Root Of 292*x^4+660*x^3-378*x^2+977*x+794 2971279959874637 r009 Re(z^3+c),c=-31/70+11/27*I,n=45 2971279961187260 r008 a(0)=3,K{-n^6,-16+41*n^3+11*n^2-n} 2971279968547742 r005 Re(z^2+c),c=-29/102+32/59*I,n=36 2971279970987549 l006 ln(7402/9963) 2971279974520451 r008 a(0)=3,K{-n^6,30+44*n^3+25*n^2-64*n} 2971279974525787 r008 a(0)=3,K{-n^6,-30+46*n-35*n^2+54*n^3} 2971279976006034 a007 Real Root Of -112*x^4-148*x^3+469*x^2-360*x-363 2971279980313931 r008 a(0)=3,K{-n^6,-12+23*n-32*n^2+56*n^3} 2971279981439712 r008 a(0)=3,K{-n^6,-18+36*n-41*n^2+58*n^3} 2971279983565566 p004 log(28319/1451) 2971279985111667 r008 a(0)=3,K{-n^6,38-60*n+5*n^2+52*n^3} 2971279994294506 s002 sum(A204784[n]/((exp(n)+1)*n),n=1..infinity) 2971279995637918 a001 1836311903/199*521^(12/13) 2971279996150824 r008 a(0)=3,K{-n^6,30+64*n^3-35*n^2-24*n} 2971279996612505 a007 Real Root Of 263*x^4-979*x^3+534*x^2-61*x-93 2971279996932695 a007 Real Root Of -326*x^4-718*x^3+863*x^2+338*x-40 2971280014260705 m001 FeigenbaumDelta-Si(Pi)^Thue 2971280019194278 p003 LerchPhi(1/64,6,381/212) 2971280024325928 m001 (Mills+Totient)/(3^(1/2)-sin(1)) 2971280072475704 m001 BesselK(1,1)^2*TwinPrimes^2/ln(sin(Pi/5)) 2971280106578045 m002 -5*Pi+Cosh[Pi]+Log[Pi] 2971280108577254 m001 1/exp(Catalan)*FeigenbaumB^2/cos(Pi/12)^2 2971280111515576 r009 Re(z^3+c),c=-3/86+13/51*I,n=9 2971280113756587 r005 Re(z^2+c),c=-15/14+89/248*I,n=4 2971280116253461 p001 sum(1/(424*n+343)/(24^n),n=0..infinity) 2971280117622327 m001 GolombDickman*(BesselJ(1,1)-Catalan) 2971280121116206 m005 (2/3*2^(1/2)+3/5)/(1/3*gamma+5) 2971280136204639 m001 (Si(Pi)-Zeta(3))/(exp(-1/2*Pi)+Trott) 2971280138178453 r005 Re(z^2+c),c=-29/78+8/43*I,n=30 2971280139793926 m001 MadelungNaCl^Artin/PrimesInBinary 2971280150562236 r009 Re(z^3+c),c=-12/29+14/39*I,n=22 2971280159620087 l006 ln(5321/7162) 2971280190997858 r005 Re(z^2+c),c=-33/86+4/61*I,n=26 2971280195542377 a007 Real Root Of -529*x^4-272*x^3+401*x^2+851*x-277 2971280197190360 m005 (1/5*Catalan+2)/(5/6*exp(1)-3) 2971280224006894 r002 6th iterates of z^2 + 2971280241591825 a003 cos(Pi*32/105)-sin(Pi*26/77) 2971280250134163 r009 Re(z^3+c),c=-23/50+7/16*I,n=54 2971280256552295 l004 sinh(749/80*Pi) 2971280256552295 l004 cosh(749/80*Pi) 2971280263180678 r005 Im(z^2+c),c=-25/66+21/43*I,n=32 2971280272984999 m001 ln(3)/(Champernowne^PlouffeB) 2971280276592025 m001 (RenyiParking-ZetaP(3))/(Conway+GolombDickman) 2971280290081487 r009 Re(z^3+c),c=-13/29+21/50*I,n=36 2971280308498729 m005 (1/2*gamma+5/8)/(8/11*gamma-8/11) 2971280314871535 m001 (Shi(1)-Zeta(3))/(Conway+FeigenbaumMu) 2971280317717402 m001 GAMMA(2/3)/Magata*RenyiParking 2971280326651863 a001 615/124*7^(23/25) 2971280329660745 m005 (1/3*Pi+3/5)/(7/12*5^(1/2)-3/4) 2971280336867811 a007 Real Root Of -387*x^4-898*x^3+377*x^2-832*x+807 2971280341457205 l006 ln(296/5777) 2971280342838612 r008 a(0)=3,K{-n^6,-63+31*n+45*n^2+22*n^3} 2971280344795299 a007 Real Root Of 9*x^4+268*x^3+11*x^2-194*x-136 2971280370205886 m001 ln((2^(1/3)))^2/Trott^2/GAMMA(7/12) 2971280371300733 r008 a(0)=3,K{-n^6,-27+n+27*n^2+34*n^3} 2971280377165053 m001 (ln(5)+Salem)/Zeta(1,2) 2971280400637144 a007 Real Root Of -150*x^4-639*x^3-612*x^2+181*x+870 2971280411762595 r005 Re(z^2+c),c=11/50+7/17*I,n=51 2971280412229188 m001 ln(GAMMA(1/24))^2*Salem^2/arctan(1/2) 2971280413008623 m001 1/BesselK(1,1)*FeigenbaumD/exp(GAMMA(2/3))^2 2971280413144419 r008 a(0)=3,K{-n^6,-11+66*n^3-61*n^2+41*n} 2971280415548491 r005 Im(z^2+c),c=-17/30+12/29*I,n=13 2971280418646180 r009 Re(z^3+c),c=-41/86+11/37*I,n=7 2971280422050961 a007 Real Root Of -241*x^4-707*x^3+85*x^2-114*x-851 2971280427887992 m001 (-PlouffeB+Stephens)/(BesselK(0,1)+Otter) 2971280431815111 m007 (-gamma-3*ln(2)+1/2*Pi-1/3)/(-1/4*gamma-1/3) 2971280446892006 a007 Real Root Of 285*x^4+572*x^3-747*x^2+486*x+830 2971280464243150 m001 (Paris-Sarnak)/(Conway-Magata) 2971280474498115 m001 1/FeigenbaumD*ln(Porter)*(3^(1/3))^2 2971280476099899 m005 (1/2*Pi+3/11)/(5/6*Catalan-1/7) 2971280489421706 r005 Im(z^2+c),c=-17/106+8/19*I,n=17 2971280490072305 m001 (cos(1/12*Pi)-Kac)/(Khinchin-Riemann1stZero) 2971280497296863 r008 a(0)=3,K{-n^6,49+6*n^3-68*n^2+47*n} 2971280497590576 m005 (1/3*3^(1/2)+2/9)/(5/12*Pi-4) 2971280510979911 a001 123/86267571272*63245986^(15/22) 2971280520953184 a001 1/64083*(1/2*5^(1/2)+1/2)^15*521^(15/19) 2971280525063004 a007 Real Root Of -311*x^4-508*x^3+543*x^2+797*x-269 2971280540266123 a001 39603/5*2584^(43/57) 2971280541202124 r005 Re(z^2+c),c=-25/82+19/42*I,n=38 2971280549062387 r005 Re(z^2+c),c=-29/78+8/43*I,n=32 2971280567391068 h001 (7/10*exp(2)+7/9)/(7/11*exp(1)+3/11) 2971280570609721 a007 Real Root Of -379*x^4-894*x^3+527*x^2-445*x+114 2971280583930697 a007 Real Root Of -443*x^4-996*x^3+998*x^2+371*x+693 2971280584346340 m005 (1/2*5^(1/2)-8/9)/(179/264+1/24*5^(1/2)) 2971280590563913 l006 ln(3240/4361) 2971280598753667 m001 (-Zeta(1,2)+ReciprocalLucas)/(2^(1/3)-5^(1/2)) 2971280614194985 r005 Im(z^2+c),c=-5/8+14/251*I,n=44 2971280625741157 r005 Re(z^2+c),c=-5/17+29/57*I,n=25 2971280648607001 r002 59th iterates of z^2 + 2971280648634020 m001 Salem^Sarnak/(Trott^Sarnak) 2971280654811920 m001 (Zeta(1,-1)-ZetaP(2))/exp(-1/2*Pi) 2971280656119919 k002 Champernowne real with 167/2*n^2-417/2*n+154 2971280667547230 m001 (Chi(1)-FeigenbaumC)/(FeigenbaumD+TwinPrimes) 2971280668511638 a001 15127/8*121393^(4/17) 2971280669846459 a001 123/63245986*1597^(15/22) 2971280682725265 m006 (1/2*exp(Pi)-2)/(3/5*exp(2*Pi)+4/5) 2971280685328081 h001 (5/9*exp(2)+3/7)/(1/2*exp(1)+1/6) 2971280685592782 l006 ln(503/9817) 2971280685592782 p004 log(9817/503) 2971280698950103 m001 HardyLittlewoodC3*(FeigenbaumDelta+ZetaQ(3)) 2971280708382999 r005 Im(z^2+c),c=-4/27+25/38*I,n=48 2971280712694758 r002 9th iterates of z^2 + 2971280714310871 m006 (1/2*Pi^2+1/4)/(1/3*exp(2*Pi)-4) 2971280724972457 a007 Real Root Of -113*x^4+964*x^3+950*x^2+800*x+180 2971280730034835 r008 a(0)=3,K{-n^6,-76+7*n^3+84*n^2+20*n} 2971280731095100 r002 32th iterates of z^2 + 2971280734024579 a007 Real Root Of -457*x^4+220*x^3-654*x^2+582*x+240 2971280736761481 r005 Im(z^2+c),c=-3/50+25/61*I,n=6 2971280741073309 r008 a(0)=3,K{-n^6,-86+14*n^3+58*n^2+49*n} 2971280763933753 r002 17th iterates of z^2 + 2971280772280300 r008 a(0)=3,K{-n^6,-60+27*n^3+32*n^2+36*n} 2971280787208640 m001 Riemann1stZero/Porter^2*ln(Trott) 2971280789267295 a001 21/29*521^(19/32) 2971280789957798 m001 (Robbin+ZetaQ(4))/(Conway+Riemann2ndZero) 2971280792380691 r008 a(0)=3,K{-n^6,-4-40*n+48*n^2+31*n^3} 2971280793318899 r008 a(0)=3,K{-n^6,-54+40*n^3-4*n^2+53*n} 2971280796218845 r009 Re(z^3+c),c=-13/54+32/45*I,n=10 2971280804002676 r008 a(0)=3,K{-n^6,-48+47*n^3-22*n^2+58*n} 2971280805007048 r009 Re(z^3+c),c=-9/29+10/61*I,n=10 2971280808310907 r002 44th iterates of z^2 + 2971280811863903 r008 a(0)=3,K{-n^6,-10+n-3*n^2+47*n^3} 2971280816200219 r008 a(0)=3,K{-n^6,-30+45*n-34*n^2+54*n^3} 2971280817354943 h002 exp(1/2*(6-7^(1/2))^(1/2)*2^(1/4)) 2971280821128189 r008 a(0)=3,K{-n^6,-10+55*n^3-27*n^2+17*n} 2971280822971649 r008 a(0)=3,K{-n^6,-18+35*n-40*n^2+58*n^3} 2971280823199586 r005 Re(z^2+c),c=-29/78+8/43*I,n=20 2971280826568698 r008 a(0)=3,K{-n^6,38-61*n+6*n^2+52*n^3} 2971280827979134 r008 a(0)=3,K{-n^6,28-40*n-8*n^2+55*n^3} 2971280837196092 a007 Real Root Of -780*x^4-982*x^3-469*x^2+486*x-14 2971280837657985 a001 2971215073/199*521^(11/13) 2971280849506088 r005 Re(z^2+c),c=-19/86+24/43*I,n=22 2971280859698299 a003 sin(Pi*13/75)*sin(Pi*7/36) 2971280869441483 a007 Real Root Of 402*x^4-785*x^3-368*x^2-330*x+148 2971280869561141 m005 (1/2*gamma+5/6)/(9/11*exp(1)-6) 2971280873512595 r005 Im(z^2+c),c=43/122+27/40*I,n=6 2971280873672883 m001 (-ln(5)+HeathBrownMoroz)/(1+Psi(2,1/3)) 2971280878358793 r009 Im(z^3+c),c=-6/31+16/53*I,n=6 2971280887045920 a001 1/123*(1/2*5^(1/2)+1/2)^18*11^(10/13) 2971280887334645 r005 Im(z^2+c),c=-10/29+29/59*I,n=57 2971280904545302 r005 Im(z^2+c),c=1/16+6/19*I,n=7 2971280910360641 b008 Sqrt[Pi]*Log[60]^2 2971280921316916 m002 -23/4-Pi+Pi^5 2971280925622728 a007 Real Root Of -290*x^4+658*x^3-194*x^2+687*x-202 2971280929948438 p003 LerchPhi(1/100,7,101/118) 2971280942692566 m001 ln(BesselK(1,1))/Paris/sqrt(3) 2971280949363889 r005 Re(z^2+c),c=-2/23+40/63*I,n=26 2971280954184540 a007 Real Root Of 322*x^4+748*x^3-500*x^2+44*x-931 2971280955174411 m005 (1/2*Pi+10/11)/(5/8*Zeta(3)+1/12) 2971280956238732 r005 Re(z^2+c),c=13/70+19/51*I,n=60 2971280963781921 r009 Re(z^3+c),c=-3/58+13/21*I,n=34 2971280966014971 m005 (1/3*Pi+1/3)/(3/10*2^(1/2)-8/9) 2971280977240293 m005 (1/2*gamma+3)/(3/11*Pi+1/4) 2971280983055184 r005 Re(z^2+c),c=-11/31+13/50*I,n=11 2971280988255925 m001 (cos(1/5*Pi)-ln(2))/(cos(1/12*Pi)-Stephens) 2971280991735537 r005 Re(z^2+c),c=-59/44+2/5*I,n=2 2971280998235458 m001 (GAMMA(23/24)+Cahen)/(Psi(2,1/3)-Shi(1)) 2971280999257024 m002 (-4*Sech[Pi])/Pi^2+Tanh[Pi]/3 2971281009976971 a007 Real Root Of 18*x^4+510*x^3-734*x^2+140*x+817 2971281012602600 v002 sum(1/(5^n+(18*n^2-40*n+86)),n=1..infinity) 2971281014515941 a003 sin(Pi*1/56)*sin(Pi*8/45) 2971281017981752 r009 Im(z^3+c),c=-55/122+5/29*I,n=35 2971281038815904 r009 Re(z^3+c),c=-21/52+4/13*I,n=7 2971281043624163 r005 Im(z^2+c),c=-9/32+29/62*I,n=42 2971281057098765 r002 3th iterates of z^2 + 2971281057941038 r004 Re(z^2+c),c=-7/20+3/10*I,z(0)=-1,n=32 2971281059276502 b008 3*Pi^2+AiryBi[-1] 2971281069870112 a003 cos(Pi*17/86)*cos(Pi*8/21) 2971281076759424 r005 Im(z^2+c),c=-15/118+15/37*I,n=35 2971281078000810 m005 (1/2*5^(1/2)+1/9)/(1/6*3^(1/2)+1/8) 2971281087425542 m001 Sierpinski/MertensB1/exp(Zeta(3)) 2971281087450198 r009 Re(z^3+c),c=-3/98+47/63*I,n=28 2971281089181282 b008 17/9+Sec[Pi/8] 2971281108851756 m001 GAMMA(1/4)/ln(Paris)^2*GAMMA(5/24) 2971281111830563 l006 ln(4399/5921) 2971281117123099 m001 (Rabbit-TwinPrimes)/(GAMMA(17/24)-Otter) 2971281122763661 r005 Im(z^2+c),c=-111/94+2/51*I,n=33 2971281124120122 m005 (1/2*2^(1/2)+1)/(1/3*5^(1/2)+5) 2971281130445616 a005 (1/sin(37/101*Pi))^240 2971281134500579 m001 GAMMA(11/24)^2*Robbin/ln(Zeta(7)) 2971281142008272 r009 Im(z^3+c),c=-63/110+11/47*I,n=16 2971281146404661 m001 (BesselJ(1,1)-MadelungNaCl)/BesselJ(1,1) 2971281164660670 r008 a(0)=3,K{-n^6,-45+10*n^3+91*n^2-21*n} 2971281166279324 m001 FeigenbaumKappa^ln(5)+Totient 2971281177689826 l006 ln(207/4040) 2971281178268819 a007 Real Root Of 181*x^4+357*x^3-427*x^2+452*x+370 2971281179205035 r005 Re(z^2+c),c=-29/78+8/43*I,n=34 2971281180914387 r008 a(0)=3,K{-n^6,-63+30*n+46*n^2+22*n^3} 2971281181211112 k006 concat of cont frac of 2971281182214140 m001 (exp(1)*GAMMA(17/24)-Khinchin)/exp(1) 2971281184330317 m001 (5^(1/2)-ln(Pi))/(-OneNinth+Weierstrass) 2971281200683684 m001 GAMMA(2/3)+FransenRobinson*Stephens 2971281206853249 r009 Re(z^3+c),c=-25/66+14/47*I,n=24 2971281209670160 r008 a(0)=3,K{-n^6,-5-39*n+48*n^2+31*n^3} 2971281209866611 r002 18th iterates of z^2 + 2971281210830221 s001 sum(exp(-Pi/3)^(n-1)*A026859[n],n=1..infinity) 2971281212322938 r005 Re(z^2+c),c=-19/74+25/46*I,n=35 2971281216865716 r009 Re(z^3+c),c=-23/86+29/34*I,n=2 2971281219448880 a005 (1/sin(97/219*Pi))^1207 2971281220962991 g006 Psi(1,11/12)+Psi(1,8/11)+Psi(1,6/7)-Psi(1,3/5) 2971281223930725 m001 1/Rabbit*MertensB1^2/exp(Salem) 2971281226566850 r008 a(0)=3,K{-n^6,13-46*n+27*n^2+41*n^3} 2971281228181996 r008 a(0)=3,K{-n^6,-27+30*n-17*n^2+49*n^3} 2971281232502613 r008 a(0)=3,K{-n^6,13+46*n^3+12*n^2-36*n} 2971281232802217 m001 sin(1)/FeigenbaumDelta*exp(1/2) 2971281233055429 a001 1/123*(1/2*5^(1/2)+1/2)^11*322^(2/19) 2971281244605551 r008 a(0)=3,K{-n^6,13-14*n-21*n^2+57*n^3} 2971281244952397 r008 a(0)=3,K{-n^6,27-39*n-8*n^2+55*n^3} 2971281245990212 r008 a(0)=3,K{-n^6,15+58*n^3-23*n^2-15*n} 2971281255548522 r008 a(0)=3,K{-n^6,31+65*n^3-36*n^2-25*n} 2971281260251877 m005 (1/2*gamma+1/11)/(3/10*Zeta(3)+11/12) 2971281260300342 a007 Real Root Of 543*x^4+174*x^3-732*x^2-741*x+276 2971281264743310 m001 (Magata+MasserGramain)/(GAMMA(2/3)-exp(1)) 2971281265549380 a001 2207/8*433494437^(4/17) 2971281292110203 a009 2+16*3^(1/2) 2971281292181583 m005 (1/2*2^(1/2)+8/9)/(2/11*3^(1/2)+2/9) 2971281296023564 q001 807/2716 2971281306344551 h002 exp(23^(1/2)/(13^(1/2)-23)^(1/2)) 2971281323271260 a007 Real Root Of -991*x^4-488*x^3-614*x^2+289*x+135 2971281329971377 r005 Im(z^2+c),c=-3/13+13/29*I,n=45 2971281333224337 r004 Im(z^2+c),c=3/38-5/12*I,z(0)=exp(1/8*I*Pi),n=9 2971281341689984 m005 (4/5*gamma+1/6)/(3/5*Pi-4) 2971281342017307 a008 Real Root of x^2-x-87988 2971281344441632 m001 1/ln(GAMMA(11/24))*Bloch^2*Zeta(1,2)^2 2971281361439043 r005 Re(z^2+c),c=3/122+43/62*I,n=3 2971281361605702 m001 (Si(Pi)+gamma)/(-Zeta(5)+Ei(1,1)) 2971281365155627 r005 Im(z^2+c),c=-13/15+1/5*I,n=6 2971281370834364 r005 Im(z^2+c),c=2/23+14/47*I,n=11 2971281371780303 a001 55/2207*199^(28/31) 2971281372959096 m001 (CareFree+StolarskyHarborth)/(Zeta(3)+3^(1/3)) 2971281377911109 m005 (1/3*5^(1/2)-1/7)/(6/7*5^(1/2)+1/9) 2971281403821122 a001 47/55*10610209857723^(11/19) 2971281413138822 k008 concat of cont frac of 2971281415699558 l006 ln(5558/7481) 2971281436033748 m002 -1/6-Pi^2+Pi^5+Log[Pi] 2971281436601324 a007 Real Root Of -335*x^4-650*x^3+746*x^2-560*x+810 2971281441868780 a009 2^(2/3)-7^(1/3)-7^(1/2) 2971281443606956 r005 Re(z^2+c),c=-4/13+4/9*I,n=57 2971281447355028 r005 Im(z^2+c),c=-11/78+45/58*I,n=3 2971281460115283 r008 a(0)=0,K{-n^6,5+23*n^3-7*n^2+13*n} 2971281462869520 r002 51th iterates of z^2 + 2971281464851515 r009 Re(z^3+c),c=-9/20+13/31*I,n=50 2971281474769225 m001 (Tribonacci-ZetaQ(3))/(gamma(1)-Landau) 2971281476622988 m001 (gamma(2)+Cahen)/(Kac-ThueMorse) 2971281476873975 m001 ErdosBorwein*(KhinchinLevy+LaplaceLimit) 2971281487342297 r005 Re(z^2+c),c=-29/78+8/43*I,n=36 2971281487916689 a007 Real Root Of -64*x^4-21*x^3+136*x^2-913*x+524 2971281492349935 m001 (BesselJ(1,1)+Niven)/(Sarnak-ZetaQ(4)) 2971281497108943 m001 (GAMMA(2/3)-gamma)/(-ArtinRank2+Sarnak) 2971281499372959 r009 Re(z^3+c),c=-11/34+11/57*I,n=14 2971281502913078 m002 -(Sinh[Pi]/Pi^3)+(E^Pi*Tanh[Pi])/Pi^5 2971281504701089 r005 Re(z^2+c),c=-29/78+8/43*I,n=39 2971281509054160 m005 (1/3*3^(1/2)-1/4)/(5/6*Zeta(3)+1/10) 2971281510575781 a005 (1/sin(53/149*Pi))^486 2971281511870094 a007 Real Root Of 9*x^4-94*x^3-323*x^2+220*x+338 2971281512635308 p004 log(14423/739) 2971281514705947 m002 5+3*Pi^4-Csch[Pi]*Log[Pi] 2971281519000888 r005 Re(z^2+c),c=-29/78+8/43*I,n=41 2971281520624027 a003 cos(Pi*12/47)-sin(Pi*35/76) 2971281526630016 a007 Real Root Of 997*x^4-530*x^3+171*x^2-721*x-251 2971281528730161 r005 Re(z^2+c),c=-29/78+8/43*I,n=37 2971281530676258 a001 109801/2*28657^(7/18) 2971281531535055 r005 Re(z^2+c),c=-29/78+8/43*I,n=43 2971281536189398 r005 Re(z^2+c),c=-29/78+8/43*I,n=48 2971281536295512 r005 Re(z^2+c),c=-29/78+8/43*I,n=46 2971281536367204 r005 Im(z^2+c),c=-21/106+17/31*I,n=11 2971281536552938 r005 Re(z^2+c),c=-29/78+8/43*I,n=50 2971281536646234 r005 Re(z^2+c),c=-29/78+8/43*I,n=45 2971281536787725 r005 Re(z^2+c),c=-29/78+8/43*I,n=52 2971281536842665 r005 Re(z^2+c),c=-29/78+8/43*I,n=55 2971281536846484 r005 Re(z^2+c),c=-29/78+8/43*I,n=57 2971281536854529 r005 Re(z^2+c),c=-29/78+8/43*I,n=59 2971281536858700 r005 Re(z^2+c),c=-29/78+8/43*I,n=61 2971281536859109 r005 Re(z^2+c),c=-29/78+8/43*I,n=64 2971281536859502 r005 Re(z^2+c),c=-29/78+8/43*I,n=62 2971281536859855 r005 Re(z^2+c),c=-29/78+8/43*I,n=63 2971281536861904 r005 Re(z^2+c),c=-29/78+8/43*I,n=60 2971281536867568 r005 Re(z^2+c),c=-29/78+8/43*I,n=54 2971281536868173 r005 Re(z^2+c),c=-29/78+8/43*I,n=58 2971281536876252 r005 Re(z^2+c),c=-29/78+8/43*I,n=56 2971281536877355 r005 Re(z^2+c),c=-29/78+8/43*I,n=53 2971281537025057 r005 Re(z^2+c),c=-29/78+8/43*I,n=51 2971281537347283 r005 Re(z^2+c),c=-29/78+8/43*I,n=49 2971281537616769 r005 Re(z^2+c),c=-29/78+8/43*I,n=47 2971281538865047 r005 Re(z^2+c),c=-29/78+8/43*I,n=44 2971281543395139 a001 15127/8*165580141^(7/18) 2971281545660778 m001 GaussKuzminWirsing*ln(Champernowne)^2*sqrt(5) 2971281547464269 r005 Re(z^2+c),c=-29/78+8/43*I,n=42 2971281553200165 m001 1/ln(Sierpinski)*FeigenbaumC^2*sin(1) 2971281554909906 r008 a(0)=3,K{-n^6,-33-18*n^3+25*n^2+62*n} 2971281556247352 a003 cos(Pi*40/99)/sin(Pi*41/84) 2971281557803900 r002 7th iterates of z^2 + 2971281558571120 r002 2th iterates of z^2 + 2971281558966726 b008 94*Pi+ArcSinh[3] 2971281562705029 a001 2/47*322^(25/34) 2971281562914647 r005 Re(z^2+c),c=-29/78+8/43*I,n=40 2971281566705273 r005 Re(z^2+c),c=-29/78+8/43*I,n=38 2971281580021427 r008 a(0)=3,K{-n^6,-46+10*n^3+91*n^2-20*n} 2971281587663360 m002 Sinh[Pi]/Pi^6+(Log[Pi]*Tanh[Pi])/4 2971281588681080 a007 Real Root Of 929*x^4-152*x^3+178*x^2-986*x+274 2971281590658235 b008 2/5+17^(1/3) 2971281596436925 b008 EulerGamma-23*ArcCosh[2] 2971281604340969 r008 a(0)=3,K{-n^6,-40-3*n+55*n^2+23*n^3} 2971281605406716 r008 a(0)=3,K{-n^6,-60+27*n^3+33*n^2+35*n} 2971281614705019 l006 ln(6717/9041) 2971281619471991 r008 a(0)=3,K{-n^6,-76+39*n^3-11*n^2+83*n} 2971281620893614 r008 a(0)=3,K{-n^6,-64+63*n-2*n^2+38*n^3} 2971281621909135 a007 Real Root Of 9*x^4-955*x^3-554*x^2+3*x+73 2971281621931542 s002 sum(A105352[n]/(n^3*pi^n+1),n=1..infinity) 2971281625941740 a007 Real Root Of 368*x^4+902*x^3-553*x^2-260*x-912 2971281630455391 m001 (5^(1/2))^GAMMA(2/3)-gamma(3) 2971281642953751 r008 a(0)=3,K{-n^6,-28+31*n-17*n^2+49*n^3} 2971281647236263 r008 a(0)=3,K{-n^6,12+46*n^3+12*n^2-35*n} 2971281654879007 m006 (Pi^2+3/5)/(1/6*Pi+3) 2971281654879007 m008 (Pi^2+3/5)/(1/6*Pi+3) 2971281655014803 r008 a(0)=3,K{-n^6,-12+23*n-33*n^2+57*n^3} 2971281655716855 m008 (1/5*Pi^4+3)/(4*Pi-5) 2971281658449922 m005 (1/2*Pi-7/10)/(3/8*5^(1/2)-6/11) 2971281659120519 k002 Champernowne real with 84*n^2-210*n+155 2971281662189523 r005 Re(z^2+c),c=23/86+9/44*I,n=2 2971281667607421 r005 Im(z^2+c),c=-11/70+23/55*I,n=24 2971281670083057 r008 a(0)=3,K{-n^6,30+65*n^3-36*n^2-24*n} 2971281674425486 m001 OneNinth*ln(Lehmer)^2*Zeta(7) 2971281675253325 r005 Re(z^2+c),c=-11/106+36/55*I,n=60 2971281679678291 a001 4807526976/199*521^(10/13) 2971281689324162 a008 Real Root of (2+6*x-2*x^2+2*x^3+3*x^4+5*x^5) 2971281690076163 r005 Im(z^2+c),c=-13/19+15/56*I,n=42 2971281701184456 r005 Re(z^2+c),c=-29/78+8/43*I,n=35 2971281706687562 a001 1/439204*521^(2/47) 2971281710113437 r005 Im(z^2+c),c=3/106+17/52*I,n=6 2971281723964869 r005 Im(z^2+c),c=-81/110+8/39*I,n=46 2971281734655768 m001 (-Cahen+Stephens)/(Catalan+GAMMA(2/3)) 2971281740426754 r005 Im(z^2+c),c=-8/21+29/55*I,n=49 2971281742215036 m001 (LaplaceLimit*Sarnak+Riemann2ndZero)/Sarnak 2971281744583091 a007 Real Root Of 297*x^4+581*x^3-859*x^2+192*x+246 2971281748873888 m001 LambertW(1)+GAMMA(13/24)+LandauRamanujan 2971281748873888 m001 LambertW(1)+LandauRamanujan+GAMMA(13/24) 2971281749290305 r009 Im(z^3+c),c=-29/106+10/39*I,n=2 2971281749645602 r002 15th iterates of z^2 + 2971281751949087 r005 Re(z^2+c),c=7/30+4/63*I,n=23 2971281760251390 r005 Re(z^2+c),c=-3/8+17/45*I,n=8 2971281771686242 m001 1/Conway*Backhouse^2*ln(sin(Pi/12))^2 2971281776857778 m005 (1/3*5^(1/2)+3/5)/(1/5*5^(1/2)-9/10) 2971281777686822 m003 8+Sqrt[5]/4-Tan[1/2+Sqrt[5]/2] 2971281779285497 a007 Real Root Of -512*x^4+74*x^3-721*x^2-214*x+6 2971281784077881 r005 Im(z^2+c),c=-21/74+15/32*I,n=48 2971281792517514 a001 12586269025/843*18^(5/21) 2971281803726983 b008 24+Pi*ArcSinh[3] 2971281808154818 s001 sum(exp(-Pi/2)^(n-1)*A089200[n],n=1..infinity) 2971281830396743 r005 Re(z^2+c),c=-7/29+7/12*I,n=61 2971281852201363 a007 Real Root Of -402*x^4+403*x^3-854*x^2+572*x-102 2971281861193308 r009 Re(z^3+c),c=-25/66+14/47*I,n=27 2971281863030134 a007 Real Root Of -296*x^4-560*x^3+811*x^2-98*x+930 2971281865460288 m008 (1/4*Pi^6+1/4)/(5/6*Pi^4-1/5) 2971281880333564 r002 35i'th iterates of 2*x/(1-x^2) of 2971281883764042 r008 a(0)=3,K{-n^6,-6-3*n^3+4*n^2+3*n} 2971281900637014 a001 1/1149851*1364^(8/47) 2971281905854877 a007 Real Root Of -537*x^4+492*x^3-887*x^2-348*x-8 2971281914104198 m001 (Magata+Otter)/(Chi(1)+Conway) 2971281934057544 a001 2207/3*514229^(9/32) 2971281939304159 l006 ln(325/6343) 2971281941829478 m001 (Conway+PisotVijayaraghavan)/(Rabbit+ZetaP(3)) 2971281943406686 r009 Im(z^3+c),c=-5/17+38/39*I,n=32 2971281958970402 a007 Real Root Of 174*x^4+624*x^3+584*x^2+623*x-498 2971281965762277 m005 (1/3*3^(1/2)-1/8)/(4/7*2^(1/2)+5/7) 2971281979989470 a005 (1/sin(77/191*Pi))^219 2971281986046628 a003 cos(Pi*22/87)-sin(Pi*57/119) 2971281989643550 r005 Re(z^2+c),c=-33/106+23/53*I,n=55 2971281990696035 m001 1/exp(GAMMA(2/3))^2*GAMMA(13/24)*exp(1) 2971281994618253 a007 Real Root Of -26*x^4-778*x^3-183*x^2-624*x-381 2971281999848280 m006 (5/6/Pi-2/5)/(1/2*Pi^2-2/5) 2971282008363588 m005 (1/3*2^(1/2)-1/11)/(4/7*exp(1)-3/11) 2971282011794360 m001 GAMMA(1/24)^2/FeigenbaumD/exp(GAMMA(11/24)) 2971282018189481 r008 a(0)=3,K{-n^6,-61+27*n^3+33*n^2+36*n} 2971282029415703 m001 (-DuboisRaymond+Trott)/(Backhouse-Chi(1)) 2971282030694700 r008 a(0)=3,K{-n^6,-47+33*n^3+22*n^2+27*n} 2971282031970128 m001 (FeigenbaumDelta-sin(1/12*Pi))/ZetaR(2) 2971282032124837 r008 a(0)=3,K{-n^6,-77+39*n^3-11*n^2+84*n} 2971282037667706 r008 a(0)=3,K{-n^6,-5-40*n+49*n^2+31*n^3} 2971282038122956 r008 a(0)=3,K{-n^6,-27+n+26*n^2+35*n^3} 2971282051282051 q001 2897/975 2971282051330703 a007 Real Root Of -407*x^4-827*x^3+979*x^2-359*x+319 2971282057727803 r008 a(0)=3,K{-n^6,13+44*n^3+19*n^2-41*n} 2971282059643501 r008 a(0)=3,K{-n^6,-25+32*n-24*n^2+52*n^3} 2971282072215201 r008 a(0)=3,K{-n^6,27-40*n-7*n^2+55*n^3} 2971282077161162 m004 -1125*Pi+Cosh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2971282078085118 r009 Im(z^3+c),c=-27/52+10/49*I,n=23 2971282080931745 m001 (CareFree-RenyiParking)/(cos(1/5*Pi)+Cahen) 2971282082600195 r008 a(0)=3,K{-n^6,31+65*n^3-35*n^2-26*n} 2971282096097998 a007 Real Root Of 287*x^4+990*x^3+670*x^2+976*x+585 2971282101103010 m001 (StronglyCareFree-ZetaQ(3))/(Artin-Otter) 2971282115641777 m005 (1/2*Zeta(3)-3/4)/(2/3*Zeta(3)-3/10) 2971282121935322 r005 Im(z^2+c),c=-87/70+13/41*I,n=9 2971282125595910 m001 (3^(1/3))^2/exp(Salem)^2*GAMMA(3/4)^2 2971282126446726 a001 2584/11*2^(20/59) 2971282127250447 r005 Im(z^2+c),c=-51/52+1/35*I,n=6 2971282127887140 m001 exp(1/Pi)*BesselI(1,1)/MertensB1 2971282137411625 b008 1/3+39*Cosh[E] 2971282168924049 a007 Real Root Of 101*x^4+288*x^3+186*x^2+888*x+679 2971282174130625 a001 1/1149851*15127^(6/47) 2971282174748020 m001 (-Ei(1)+PrimesInBinary)/(2^(1/2)-Catalan) 2971282176562081 r005 Re(z^2+c),c=-29/78+8/43*I,n=33 2971282183781563 v002 sum(1/(2^n*(23/2*n^2+35/2*n-9)),n=1..infinity) 2971282194683920 a007 Real Root Of -863*x^4+958*x^3+671*x^2+607*x-258 2971282205470103 a007 Real Root Of -260*x^4-833*x^3-417*x^2-476*x+681 2971282207989844 m001 (GAMMA(2/3)+gamma(2))/(Khinchin+Tribonacci) 2971282216354541 m005 (1/2*exp(1)+4/7)/(1/8*Zeta(3)-4/5) 2971282224493509 r005 Re(z^2+c),c=37/106+5/13*I,n=44 2971282233561545 a003 cos(Pi*17/44)-cos(Pi*29/60) 2971282242131213 k008 concat of cont frac of 2971282249912451 m001 Riemann2ndZero^(Khinchin*PrimesInBinary) 2971282273052894 r005 Re(z^2+c),c=-8/25+11/14*I,n=3 2971282275176477 m001 GAMMA(11/12)^AlladiGrinstead-RenyiParking 2971282282558478 r005 Re(z^2+c),c=-15/44+29/59*I,n=13 2971282289639081 p004 log(30881/22943) 2971282295182441 l006 ln(443/8646) 2971282301607866 r005 Im(z^2+c),c=13/126+17/59*I,n=18 2971282307134116 r005 Re(z^2+c),c=-15/22+21/82*I,n=33 2971282322375678 r005 Re(z^2+c),c=-2/7+15/29*I,n=16 2971282325624359 r005 Re(z^2+c),c=-55/78+5/18*I,n=13 2971282332373928 r009 Im(z^3+c),c=-3/32+19/59*I,n=2 2971282332660484 m001 1/Zeta(9)^2*Zeta(1,2)^2/exp(cos(1))^2 2971282342905885 q001 1045/3517 2971282352431376 r005 Re(z^2+c),c=-31/118+25/46*I,n=38 2971282363078808 r005 Im(z^2+c),c=-11/28+31/60*I,n=56 2971282370271936 m005 (1/3*Pi+2/7)/(3/10*5^(1/2)-2/9) 2971282376219823 h001 (2/5*exp(2)+5/7)/(1/4*exp(1)+5/9) 2971282376996374 h002 exp(1/11*(10^(1/2)+11^(1/3))*11^(1/3)) 2971282378177553 r005 Im(z^2+c),c=-1/5+17/39*I,n=29 2971282382216003 r008 a(0)=3,K{-n^6,-14+53*n+13*n^2-15*n^3} 2971282390888286 r008 a(0)=3,K{-n^6,-76+8*n^3+83*n^2+20*n} 2971282398220434 m001 (2^(1/3))^2*CareFree*exp(GAMMA(13/24))^2 2971282399284539 r005 Re(z^2+c),c=-29/78+8/43*I,n=29 2971282401275624 r008 a(0)=3,K{-n^6,-86+15*n^3+57*n^2+49*n} 2971282404367625 r008 a(0)=3,K{-n^6,-46+10*n^3+92*n^2-21*n} 2971282406603078 a007 Real Root Of 166*x^4+370*x^3-19*x^2+839*x-572 2971282410186767 p003 LerchPhi(1/12,5,65/203) 2971282417862555 m001 (cos(1/12*Pi)+Totient)^Conway 2971282423497545 a007 Real Root Of 99*x^4+171*x^3-598*x^2-599*x+269 2971282425125750 a007 Real Root Of -972*x^4+733*x^3+755*x^2+699*x-286 2971282439137916 r008 a(0)=3,K{-n^6,-32+29*n^3+42*n^2-4*n} 2971282442720028 m001 gamma(3)/(GAMMA(7/12)^Psi(2,1/3)) 2971282444318366 r005 Re(z^2+c),c=-23/18+44/183*I,n=2 2971282446131324 m001 5^(1/2)-Bloch-Porter 2971282450629463 r008 a(0)=3,K{-n^6,-54+41*n^3-5*n^2+53*n} 2971282453611710 r005 Re(z^2+c),c=-29/78+8/43*I,n=28 2971282465916018 r008 a(0)=3,K{-n^6,-28+30*n-16*n^2+49*n^3} 2971282470110083 r008 a(0)=3,K{-n^6,12+46*n^3+13*n^2-36*n} 2971282472341557 r008 a(0)=3,K{-n^6,-30+45*n-35*n^2+55*n^3} 2971282478778288 r008 a(0)=3,K{-n^6,-18+35*n-41*n^2+59*n^3} 2971282482199737 r008 a(0)=3,K{-n^6,38-61*n+5*n^2+53*n^3} 2971282488412893 m001 BesselI(0,2)^(5^(1/2)/Landau) 2971282492497096 r008 a(0)=3,K{-n^6,30+65*n^3-35*n^2-25*n} 2971282495338708 r005 Re(z^2+c),c=-9/25+15/59*I,n=22 2971282497375924 a001 3/7*(1/2*5^(1/2)+1/2)^8*7^(1/5) 2971282497757437 r008 a(0)=3,K{-n^6,50-9*n^3-22*n^2+15*n} 2971282498421494 g007 Psi(2,1/4)-Psi(2,10/11)-Psi(2,1/11)-Psi(2,1/6) 2971282498465240 r008 a(0)=3,K{-n^6,-8+78*n^3-93*n^2+58*n} 2971282503079886 m001 Champernowne/LandauRamanujan*Tribonacci 2971282503267845 m001 1/Zeta(1,2)^2*TwinPrimes/exp(arctan(1/2))^2 2971282503367759 m001 1/sin(Pi/5)^2*ln(Backhouse)*sqrt(1+sqrt(3))^2 2971282507363634 a007 Real Root Of -399*x^4-860*x^3+971*x^2-309*x-951 2971282521698835 a001 7778742049/199*521^(9/13) 2971282526935063 a007 Real Root Of -719*x^4+561*x^3+242*x^2+584*x-204 2971282532689756 r005 Re(z^2+c),c=-10/19+17/37*I,n=29 2971282534140986 a007 Real Root Of 260*x^4-63*x^3+588*x^2-937*x-334 2971282554114483 q001 2/67311 2971282556773432 r005 Im(z^2+c),c=-23/32+7/29*I,n=29 2971282563961895 m001 1/Tribonacci*Champernowne*exp(Ei(1))^2 2971282569038310 l006 ln(1159/1560) 2971282571947184 m001 GAMMA(17/24)/exp(Backhouse)/Zeta(7) 2971282585013652 r005 Im(z^2+c),c=-13/54+1/24*I,n=15 2971282593970431 a005 (1/sin(88/203*Pi))^259 2971282598013873 m001 (GAMMA(23/24)-cos(1))/(ErdosBorwein+Trott2nd) 2971282598177757 m001 (-Ei(1)+GAMMA(7/12))/(Psi(1,1/3)+5^(1/2)) 2971282599359983 a007 Real Root Of -836*x^4-317*x^3-590*x^2+794*x-169 2971282599388253 m001 (Kac-Thue)/(arctan(1/2)+arctan(1/3)) 2971282615563527 m005 (1/2*gamma-6)/(1/3*Pi+7/8) 2971282618640734 r008 a(0)=3,K{-n^6,34-33*n+62*n^2-25*n^3} 2971282625496650 a003 cos(Pi*43/101)+cos(Pi*57/119) 2971282628070478 r005 Re(z^2+c),c=-38/31+13/57*I,n=8 2971282629101097 r009 Re(z^3+c),c=-47/74+28/43*I,n=3 2971282630788935 m002 1/(Pi*ProductLog[Pi])+Pi^3*Sech[Pi] 2971282640889814 m001 (BesselJ(0,1)-Catalan)/(-FeigenbaumB+Totient) 2971282644396468 m001 arctan(1/2)^2/ln(BesselJ(1,1))/log(1+sqrt(2)) 2971282645839365 m001 3^(1/3)*(FransenRobinson-RenyiParking) 2971282646669279 m001 (cos(1/12*Pi)+GAMMA(19/24))/(Cahen+ZetaP(4)) 2971282659862562 a003 sin(Pi*32/87)/cos(Pi*25/51) 2971282662121119 k002 Champernowne real with 169/2*n^2-423/2*n+156 2971282689536131 m005 (1/2*2^(1/2)-7/11)/(3/8*gamma-5/11) 2971282697474537 a007 Real Root Of -285*x^4-994*x^3-535*x^2-407*x-347 2971282706611531 r009 Im(z^3+c),c=-63/110+11/47*I,n=40 2971282707048132 r009 Im(z^3+c),c=-63/110+11/47*I,n=64 2971282707055539 r009 Im(z^3+c),c=-63/110+11/47*I,n=52 2971282714375411 m001 (Landau-Salem)/(AlladiGrinstead-Gompertz) 2971282717518811 r002 3th iterates of z^2 + 2971282720959101 r008 a(0)=3,K{-n^6,60-10*n^3-14*n^2-2*n} 2971282727748248 m006 (3/5*exp(Pi)+3/5)/(5*Pi^2-3/5) 2971282730582650 a007 Real Root Of 18*x^4-117*x^3-269*x^2+862*x+464 2971282733203590 r009 Im(z^3+c),c=-63/110+11/47*I,n=28 2971282737469736 m001 (Chi(1)+gamma)/(FeigenbaumKappa+Magata) 2971282740564599 r005 Re(z^2+c),c=7/44+6/13*I,n=50 2971282743304373 m001 (StronglyCareFree-Thue)^(2^(1/2)) 2971282746628212 m001 1/GAMMA(5/24)^2*ln(Backhouse)*GAMMA(7/12) 2971282758477958 m002 -Pi^6/6+Pi^7/E^Pi 2971282764336815 a007 Real Root Of 102*x^4-690*x^3-583*x^2-270*x+149 2971282817150687 a007 Real Root Of -209*x^4-600*x^3-209*x^2-697*x+325 2971282828980036 r005 Re(z^2+c),c=-8/31+31/55*I,n=55 2971282829352865 m005 (1/3*Zeta(3)-1/8)/(3/11*Zeta(3)+3/5) 2971282830519189 r008 a(0)=3,K{-n^6,-63+30*n+45*n^2+23*n^3} 2971282847674061 r005 Re(z^2+c),c=-29/78+8/43*I,n=31 2971282850974778 r008 a(0)=3,K{-n^6,-77+39*n^3-10*n^2+83*n} 2971282853972744 r005 Im(z^2+c),c=-37/94+31/59*I,n=59 2971282855010072 p004 log(20161/1033) 2971282861680320 r005 Re(z^2+c),c=7/90+37/59*I,n=35 2971282863957775 m005 (1/2*Catalan+1/7)/(gamma-3/8) 2971282868764914 r002 37th iterates of z^2 + 2971282869839498 r008 a(0)=3,K{-n^6,-25+17*n-2*n^2+45*n^3} 2971282875321156 m001 (ln(2)/ln(10)+3^(1/2))/(-exp(1/Pi)+Mills) 2971282884330259 m005 (1/3*5^(1/2)-2/5)/(4*exp(1)+3/4) 2971282884628221 m004 2*Cot[Sqrt[5]*Pi]+(7*Sin[Sqrt[5]*Pi])/6 2971282889522366 r005 Im(z^2+c),c=-4/25+19/48*I,n=7 2971282892088654 s001 sum(exp(-Pi)^n*A039680[n],n=1..infinity) 2971282892088654 s002 sum(A039680[n]/(exp(pi*n)),n=1..infinity) 2971282892213794 r008 a(0)=3,K{-n^6,15+59*n^3-24*n^2-15*n} 2971282893190468 r008 a(0)=3,K{-n^6,39-57*n-3*n^2+56*n^3} 2971282895048317 r005 Im(z^2+c),c=11/94+1/3*I,n=4 2971282898263029 r008 a(0)=3,K{-n^6,41+61*n^3-17*n^2-50*n} 2971282898265521 r008 a(0)=3,K{-n^6,-7+69*n^3-65*n^2+38*n} 2971282900105621 r008 a(0)=3,K{-n^6,29+65*n^3-35*n^2-24*n} 2971282900235137 a007 Real Root Of 369*x^4+907*x^3-903*x^2-950*x+181 2971282903335844 a003 cos(Pi*29/74)-cos(Pi*43/107) 2971282905371221 r005 Re(z^2+c),c=-39/34+46/113*I,n=2 2971282908076690 r005 Re(z^2+c),c=-21/122+37/62*I,n=20 2971282913389642 m008 (1/2*Pi^2-1/3)/(5*Pi^3-1/6) 2971282929548812 h001 (-4*exp(2)+7)/(-5*exp(1)+6) 2971282933488419 m001 GAMMA(1/24)^2/LandauRamanujan^2/exp(gamma)^2 2971282948620829 r009 Re(z^3+c),c=-7/15+11/24*I,n=57 2971282966693469 m004 -1125*Pi+Sinh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2971282971279817 a007 Real Root Of -438*x^4+581*x^3-960*x^2+978*x+394 2971282974727585 a001 47/7*(1/2*5^(1/2)+1/2)^21*7^(7/23) 2971282978721178 r005 Im(z^2+c),c=-9/16+25/51*I,n=5 2971282983062643 a007 Real Root Of -307*x^4-785*x^3+149*x^2-493*x+556 2971283005841473 r005 Re(z^2+c),c=7/26+4/45*I,n=10 2971283007385516 a007 Real Root Of 94*x^4-230*x^3-764*x^2-911*x-210 2971283008008974 a007 Real Root Of 202*x^4+653*x^3+565*x^2-810*x-275 2971283025370457 a007 Real Root Of 17*x^4+527*x^3+627*x^2-703*x-430 2971283026196977 a001 11*(1/2*5^(1/2)+1/2)^23*11^(3/5) 2971283027248137 a001 4/55*610^(15/16) 2971283028306641 a005 (1/cos(19/239*Pi))^1861 2971283034417711 h001 (1/10*exp(1)+3/8)/(8/11*exp(1)+1/5) 2971283035670978 m001 1/arctan(1/2)*GAMMA(19/24)^2 2971283038590345 r005 Im(z^2+c),c=-25/34+1/67*I,n=21 2971283047665469 a001 271443/8*102334155^(2/17) 2971283047716159 a001 710647/8*28657^(2/17) 2971283047901543 a001 51841/4*365435296162^(2/17) 2971283049368251 r002 41th iterates of z^2 + 2971283052014785 m001 exp(1/Pi)^exp(1/2)*exp(1/Pi)^sqrt(Pi) 2971283061612582 m005 (1/2*Zeta(3)+3/4)/(1/6*exp(1)-5) 2971283064630320 m001 (GaussKuzminWirsing*Totient-ZetaQ(3))/Totient 2971283067798966 r009 Im(z^3+c),c=-23/110+14/47*I,n=9 2971283070483229 m002 -Pi^4+Pi^9+Log[Pi]*Tanh[Pi] 2971283078110496 m005 (-19/36+1/4*5^(1/2))/(2/3*Zeta(3)+1/4) 2971283083186623 r005 Im(z^2+c),c=-35/66+25/61*I,n=6 2971283091836497 a007 Real Root Of -205*x^4-340*x^3+880*x^2+184*x-163 2971283093611807 a007 Real Root Of 179*x^4+384*x^3-351*x^2+249*x-40 2971283101002775 r008 a(0)=3,K{-n^6,-9-43*n^3+51*n^2+35*n} 2971283105835780 m001 (Zeta(1,2)+Champernowne)/(MertensB2+Niven) 2971283111040190 p004 log(15919/11827) 2971283111513281 k006 concat of cont frac of 2971283112516466 r005 Re(z^2+c),c=-11/34+23/58*I,n=40 2971283119590526 r005 Re(z^2+c),c=-29/30+29/97*I,n=6 2971283120528815 r009 Im(z^3+c),c=-43/94+1/24*I,n=54 2971283120626075 r009 Re(z^3+c),c=-49/106+23/53*I,n=38 2971283121136091 r005 Re(z^2+c),c=-7/82+33/53*I,n=24 2971283134784660 p001 sum(1/(420*n+353)/(10^n),n=0..infinity) 2971283142096825 m001 GAMMA(5/6)-QuadraticClass^MinimumGamma 2971283144826809 m001 (ln(2+3^(1/2))+ZetaQ(2))/(exp(1)+Ei(1)) 2971283158887782 a007 Real Root Of -39*x^4+316*x^3+914*x^2-807*x+862 2971283160413673 p003 LerchPhi(1/64,5,287/142) 2971283166145063 r005 Im(z^2+c),c=-11/32+9/17*I,n=23 2971283171940253 r005 Re(z^2+c),c=-3/11+33/61*I,n=50 2971283173126079 m009 (4*Psi(1,1/3)+1/2)/(2/3*Psi(1,2/3)-2/3) 2971283173459696 r005 Re(z^2+c),c=-11/30+11/48*I,n=12 2971283175541204 r005 Re(z^2+c),c=-35/106+32/55*I,n=51 2971283176197702 m005 (1/2*2^(1/2)+3/10)/(1/7*exp(1)-8/11) 2971283179176771 a001 29/2178309*3^(19/26) 2971283185264370 a001 123/10946*5^(29/48) 2971283185927974 a007 Real Root Of -321*x^4-705*x^3+860*x^2+680*x+954 2971283204764224 a007 Real Root Of 753*x^4-388*x^3+976*x^2-144*x-145 2971283226240047 r005 Im(z^2+c),c=-31/102+10/21*I,n=52 2971283237833178 r002 22th iterates of z^2 + 2971283241957173 a007 Real Root Of 225*x^4+419*x^3-961*x^2-686*x-100 2971283248786008 m001 (exp(1/Pi)+Otter)/(QuadraticClass+Stephens) 2971283249854458 a007 Real Root Of 189*x^4-214*x^3-5*x^2-725*x+220 2971283255817184 r008 a(0)=3,K{-n^6,-34+2*n+36*n^2+31*n^3} 2971283258557246 r008 a(0)=3,K{-n^6,-34+33*n^3+30*n^2+6*n} 2971283261087435 r005 Im(z^2+c),c=-17/44+19/37*I,n=44 2971283264733006 r008 a(0)=3,K{-n^6,-54+41*n^3-4*n^2+52*n} 2971283265757044 m001 Pi^(1/2)*ZetaQ(3)+Otter 2971283267693667 a007 Real Root Of 304*x^4+949*x^3+319*x^2+811*x+793 2971283269372036 r008 a(0)=3,K{-n^6,4-47*n+43*n^2+35*n^3} 2971283271013398 a007 Real Root Of 523*x^4+805*x^3+224*x^2-674*x-203 2971283272340532 a003 cos(Pi*5/66)/cos(Pi*13/33) 2971283275187474 h001 (3/4*exp(1)+2/11)/(11/12*exp(2)+7/10) 2971283275355020 l006 ln(118/2303) 2971283275439327 r008 a(0)=3,K{-n^6,-26+18*n-2*n^2+45*n^3} 2971283279189416 a001 365435296162/199*199^(1/11) 2971283289539624 r008 a(0)=3,K{-n^6,-16+56*n^3-30*n^2+25*n} 2971283298588174 r008 a(0)=3,K{-n^6,38-56*n-3*n^2+56*n^3} 2971283303620268 r008 a(0)=3,K{-n^6,-8+69*n^3-65*n^2+39*n} 2971283303890195 m005 (1/2*3^(1/2)-5/9)/(2/9*Zeta(3)+7/9) 2971283307537627 r008 a(0)=3,K{-n^6,72*n^3-70*n^2+33*n} 2971283308255208 r005 Im(z^2+c),c=19/62+5/46*I,n=35 2971283309349452 m004 -Pi+ProductLog[Sqrt[5]*Pi]-Sec[Sqrt[5]*Pi] 2971283325451879 r009 Im(z^3+c),c=-9/17+12/49*I,n=21 2971283326609986 h001 (-9*exp(2/3)-5)/(-4*exp(1/3)-2) 2971283333962242 r002 49th iterates of z^2 + 2971283337868985 r005 Im(z^2+c),c=-15/118+15/37*I,n=33 2971283339270455 r009 Im(z^3+c),c=-4/7+11/37*I,n=5 2971283348431026 r005 Im(z^2+c),c=-5/62+23/60*I,n=10 2971283356787807 a003 cos(Pi*3/71)-cos(Pi*11/43) 2971283358438528 m001 ln(2)/(FransenRobinson-Weierstrass) 2971283363719618 a001 12586269025/199*521^(8/13) 2971283372476296 h001 (4/7*exp(2)+1/12)/(1/12*exp(2)+5/6) 2971283380273677 a007 Real Root Of -316*x^4-865*x^3-3*x^2-463*x+590 2971283380551708 a003 sin(Pi*10/107)/sin(Pi*47/110) 2971283394802815 r005 Im(z^2+c),c=7/48+12/47*I,n=7 2971283397018672 m002 -Pi^2+ProductLog[Pi]+E^Pi*Log[Pi]*Sinh[Pi] 2971283398801404 m001 1/TwinPrimes*ln(Si(Pi))/Pi 2971283400281522 a003 cos(Pi*13/103)*cos(Pi*36/91) 2971283403422866 b008 1/3+7*BesselY[0,3] 2971283407071387 r005 Im(z^2+c),c=-13/42+11/23*I,n=57 2971283424886899 b008 3*(3*Pi+Erfc[1/2]) 2971283429987728 r005 Im(z^2+c),c=-31/98+25/52*I,n=57 2971283430990294 m001 Paris^LandauRamanujan-Pi 2971283446620358 m008 (2/5*Pi^2+3/5)/(5*Pi^5+1/2) 2971283453403662 a007 Real Root Of -923*x^4+247*x^3-315*x^2+621*x+226 2971283456590948 r009 Im(z^3+c),c=-23/78+46/47*I,n=37 2971283460465945 l006 ln(7191/9679) 2971283461960749 m002 3+Pi^5*Csch[Pi]+ProductLog[Pi]/5 2971283479113570 r009 Re(z^3+c),c=-73/122+23/42*I,n=53 2971283479241509 m005 (1/2*Pi+3/8)/(1/12*Pi-11/12) 2971283484890376 r005 Im(z^2+c),c=-73/106+11/39*I,n=53 2971283486672078 r005 Im(z^2+c),c=-31/90+27/55*I,n=59 2971283497229805 m002 -Pi^4+Pi^9+Log[Pi] 2971283504405744 a002 12^(1/5)+17^(1/10) 2971283505331324 r009 Re(z^3+c),c=-12/31+5/16*I,n=26 2971283519707203 a007 Real Root Of -404*x^4-900*x^3+679*x^2-679*x-132 2971283537221391 r005 Re(z^2+c),c=-59/52+3/13*I,n=28 2971283537741465 a001 19/208010*28657^(19/56) 2971283550018184 m005 (3/5*Catalan-1/6)/(3/4*exp(1)-3/4) 2971283557710495 h001 (-12*exp(1)-2)/(-6*exp(3)+4) 2971283559864508 r005 Re(z^2+c),c=-6/29+31/34*I,n=7 2971283575023564 m001 PlouffeB^ZetaQ(4)/(PlouffeB^Porter) 2971283596805653 r009 Re(z^3+c),c=-5/17+16/23*I,n=63 2971283607021819 r009 Im(z^3+c),c=-21/34+19/35*I,n=9 2971283620434465 a009 13*(3+11^(1/3))^(1/2) 2971283631746544 l006 ln(6032/8119) 2971283650089321 h001 (5/6*exp(2)+5/8)/(6/11*exp(1)+4/5) 2971283653862633 m001 Pi/(ln(3)^Lehmer) 2971283654369352 h001 (3/4*exp(1)+6/11)/(1/6*exp(1)+5/12) 2971283659349792 m001 1/exp(GAMMA(19/24))^2*MertensB1/sin(1) 2971283665121719 k002 Champernowne real with 85*n^2-213*n+157 2971283667312539 r008 a(0)=3,K{-n^6,-5-40*n+48*n^2+32*n^3} 2971283668174552 r008 a(0)=3,K{-n^6,-55+41*n^3-4*n^2+53*n} 2971283669019103 r008 a(0)=3,K{-n^6,-9-30*n+40*n^2+34*n^3} 2971283672772271 r008 a(0)=3,K{-n^6,3-46*n+43*n^2+35*n^3} 2971283674003749 r008 a(0)=3,K{-n^6,-45+44*n-8*n^2+44*n^3} 2971283679036621 m001 (1-Si(Pi))/(-PolyaRandomWalk3D+ZetaQ(2)) 2971283679174789 r008 a(0)=3,K{-n^6,-13+43*n^3+11*n^2-6*n} 2971283682230017 m001 CopelandErdos^GAMMA(23/24)/LandauRamanujan 2971283682237750 r005 Re(z^2+c),c=-8/23+17/55*I,n=37 2971283692763608 r008 a(0)=3,K{-n^6,-17+56*n^3-30*n^2+26*n} 2971283694265008 a007 Real Root Of -213*x^4-893*x^3-356*x^2+925*x-932 2971283694821226 r008 a(0)=3,K{-n^6,-5+56*n^3-24*n^2+8*n} 2971283696072379 r009 Re(z^3+c),c=-43/110+15/47*I,n=30 2971283697838967 r008 a(0)=3,K{-n^6,-5+14*n-33*n^2+59*n^3} 2971283700128078 r008 a(0)=3,K{-n^6,27-40*n-8*n^2+56*n^3} 2971283701096085 r008 a(0)=3,K{-n^6,15+59*n^3-23*n^2-16*n} 2971283709188385 r009 Re(z^3+c),c=-31/90+4/17*I,n=10 2971283714639837 r008 a(0)=3,K{-n^6,41-33*n+53*n^2-22*n^3} 2971283716738242 m002 -Pi^2+Pi^5+Pi^2*Csch[Pi]*Log[Pi] 2971283731259497 a007 Real Root Of -313*x^4-861*x^3+501*x^2+600*x-830 2971283740450026 m001 log(1+sqrt(2))/exp((2^(1/3)))/sin(1) 2971283752803921 a007 Real Root Of 75*x^4-43*x^3+77*x^2-573*x+164 2971283765886527 m001 (2^(1/3))^2*DuboisRaymond^2*ln(GAMMA(13/24)) 2971283783783783 q001 1759/592 2971283785405702 r005 Im(z^2+c),c=1/36+35/58*I,n=6 2971283800501011 r005 Im(z^2+c),c=-25/52+3/59*I,n=28 2971283811141610 m001 (Backhouse-Magata)/(GAMMA(2/3)-ArtinRank2) 2971283825640181 h001 (-4*exp(2)+6)/(-11*exp(2)+2) 2971283826767940 m001 1/Zeta(1/2)^2/ln(GAMMA(11/12))/cos(1)^2 2971283828050289 a007 Real Root Of 689*x^4-872*x^3-132*x^2-407*x-12 2971283834905738 r005 Re(z^2+c),c=-15/118+29/46*I,n=62 2971283851618546 r008 a(0)=3,K{-n^6,55-47*n^3+95*n^2-69*n} 2971283878053216 r005 Im(z^2+c),c=37/122+13/62*I,n=7 2971283884502293 l006 ln(4873/6559) 2971283892520976 a007 Real Root Of -787*x^4+506*x^3+41*x^2+344*x+118 2971283892998744 r005 Im(z^2+c),c=-9/8+52/219*I,n=26 2971283894640538 m005 (1/3*gamma+1/7)/(7/11*Catalan+6/11) 2971283895174771 m008 (4/5*Pi-1/4)/(1/4*Pi^5-1/3) 2971283901932836 a001 39603/55*6765^(9/56) 2971283925573213 m002 -Pi^4+Pi^9+Coth[Pi]*Log[Pi] 2971283942129655 m001 TreeGrowth2nd^GaussKuzminWirsing-cos(1/5*Pi) 2971283949250097 r005 Re(z^2+c),c=-6/23+9/16*I,n=62 2971283958046488 m001 1/ln(cos(Pi/5))^2*Salem/log(1+sqrt(2)) 2971283958336541 m001 (-Salem+ZetaQ(4))/(MertensB1-ln(2)/ln(10)) 2971283969963244 a007 Real Root Of -980*x^4-294*x^3-712*x^2+169*x+113 2971283974219648 m001 (BesselI(0,1)-exp(Pi))/(cos(1/5*Pi)+gamma(1)) 2971283980298987 r002 12th iterates of z^2 + 2971284011288673 m001 (arctan(1/3)+Kac)/(Kolakoski-PlouffeB) 2971284027313374 r008 a(0)=3,K{-n^6,-46+11*n^3+91*n^2-21*n} 2971284056007290 r008 a(0)=3,K{-n^6,-20+25*n^3+62*n^2-32*n} 2971284059712542 r008 a(0)=3,K{-n^6,-22-23*n+52*n^2+28*n^3} 2971284060169703 r008 a(0)=3,K{-n^6,-32+30*n^3+41*n^2-4*n} 2971284063642535 r005 Re(z^2+c),c=-47/122+1/53*I,n=17 2971284074750634 r008 a(0)=3,K{-n^6,-12+38*n^3+27*n^2-18*n} 2971284075158002 r008 a(0)=3,K{-n^6,-46+45*n-8*n^2+44*n^3} 2971284075507660 m005 (1/2*3^(1/2)-3/8)/(4/9*exp(1)+4/9) 2971284078235821 a001 230701876/5*6765^(11/15) 2971284078680052 a005 (1/sin(85/229*Pi))^587 2971284080166140 m005 (1/3*Zeta(3)+1/10)/(2/11*3^(1/2)-2) 2971284080284657 r008 a(0)=3,K{-n^6,-26+17*n-n^2+45*n^3} 2971284084633433 r009 Re(z^3+c),c=-37/110+16/25*I,n=13 2971284085569328 r008 a(0)=3,K{-n^6,-28+30*n-17*n^2+50*n^3} 2971284087034457 a001 64079/55*12586269025^(11/15) 2971284087758104 a001 12752043/55*9227465^(11/15) 2971284087882585 m001 (Trott-Weierstrass)/(ln(gamma)+BesselI(1,1)) 2971284089225588 m005 (1/2*2^(1/2)+7/9)/(4/11*Catalan+1/6) 2971284089555092 r008 a(0)=3,K{-n^6,12+47*n^3+12*n^2-36*n} 2971284094439859 r008 a(0)=3,K{-n^6,-32+59*n^3-46*n^2+54*n} 2971284095794457 r008 a(0)=3,K{-n^6,-6+56*n^3-24*n^2+9*n} 2971284095795249 r008 a(0)=3,K{-n^6,-18+58*n^3-36*n^2+31*n} 2971284095858389 a007 Real Root Of 337*x^4+949*x^3-327*x^2-230*x+831 2971284102015916 r008 a(0)=3,K{-n^6,14+59*n^3-23*n^2-15*n} 2971284102965135 r008 a(0)=3,K{-n^6,38-57*n-2*n^2+56*n^3} 2971284107898248 r008 a(0)=3,K{-n^6,-8+69*n^3-64*n^2+38*n} 2971284117179628 r005 Im(z^2+c),c=-41/34+1/19*I,n=20 2971284119746984 r009 Im(z^3+c),c=-45/106+9/46*I,n=31 2971284140293920 r005 Im(z^2+c),c=-7/10+10/29*I,n=11 2971284141121149 r005 Im(z^2+c),c=-15/56+25/54*I,n=35 2971284142053726 l006 ln(501/9778) 2971284149678508 r009 Im(z^3+c),c=-15/32+7/43*I,n=17 2971284160897296 r005 Re(z^2+c),c=-31/82+2/17*I,n=6 2971284164920418 a007 Real Root Of 852*x^4-484*x^3-699*x^2-984*x-250 2971284179450952 m001 1/FeigenbaumB^2*Conway^2*ln(GAMMA(5/6)) 2971284185065325 r005 Re(z^2+c),c=-25/56+13/22*I,n=10 2971284191904524 s001 sum(exp(-Pi/3)^n*A060062[n],n=1..infinity) 2971284192763026 h001 (-9*exp(1/2)-8)/(-6*exp(2/3)+4) 2971284205740640 a001 20365011074/199*521^(7/13) 2971284221497754 r008 a(0)=3,K{-n^6,92+14*n^3-16*n^2-53*n} 2971284223746260 m008 (4/5*Pi^6+1/2)/(5/6*Pi^5+4) 2971284226153556 a001 1/141*34^(13/32) 2971284245765504 r005 Im(z^2+c),c=-15/118+15/37*I,n=38 2971284250914610 r009 Im(z^3+c),c=-49/102+7/53*I,n=32 2971284267603332 a009 1/7+4^(3/4) 2971284267603332 b008 (1/14+Sqrt[2])/5 2971284269899738 r008 a(0)=3,K{-n^6,69-46*n^3+99*n^2-88*n} 2971284277875362 a007 Real Root Of 37*x^4-107*x^3-941*x^2-908*x-81 2971284283079611 s002 sum(A275782[n]/(pi^n+1),n=1..infinity) 2971284288487929 r009 Re(z^3+c),c=-43/110+15/47*I,n=29 2971284288760411 m002 5+Pi^2+Pi^9*Tanh[Pi] 2971284291698673 a007 Real Root Of -345*x^4-792*x^3+391*x^2-677*x+651 2971284295009192 l006 ln(3714/4999) 2971284298433146 m002 -Pi^4+Pi^9+ProductLog[Pi]^2 2971284300680958 r005 Re(z^2+c),c=-45/122+8/39*I,n=24 2971284300971314 r005 Re(z^2+c),c=31/90+11/34*I,n=11 2971284306667472 m001 (Shi(1)+Zeta(5))/(-ln(Pi)+TreeGrowth2nd) 2971284311667244 a007 Real Root Of 216*x^4+454*x^3-563*x^2-169*x-458 2971284312688788 m001 (Bloch+FellerTornier)/(GaussAGM+Tribonacci) 2971284322950544 a007 Real Root Of -192*x^4-278*x^3+883*x^2-37*x-233 2971284345812950 r005 Im(z^2+c),c=-31/122+29/64*I,n=20 2971284350915050 a007 Real Root Of 258*x^4+481*x^3-974*x^2-650*x-824 2971284354960168 r005 Im(z^2+c),c=-2/11+3/7*I,n=37 2971284377293115 r005 Im(z^2+c),c=-17/16+23/89*I,n=9 2971284385106787 m001 Zeta(5)-sin(1/5*Pi)^LambertW(1) 2971284385106787 m001 Zeta(5)-sin(Pi/5)^LambertW(1) 2971284400828057 r009 Im(z^3+c),c=-35/66+18/59*I,n=16 2971284404310496 a007 Real Root Of 683*x^4+386*x^3+77*x^2-945*x+28 2971284405798774 r005 Re(z^2+c),c=-37/106+17/56*I,n=18 2971284408486155 r002 51th iterates of z^2 + 2971284409078241 l006 ln(383/7475) 2971284416676485 m001 Porter/(LandauRamanujan2nd^Conway) 2971284428695441 m001 Weierstrass/(DuboisRaymond+OrthogonalArrays) 2971284433112471 r009 Re(z^3+c),c=-5/27+62/63*I,n=62 2971284433418816 r008 a(0)=3,K{-n^6,-59+17*n^3+67*n^2+10*n} 2971284435479799 h001 (7/10*exp(2)+11/12)/(5/12*exp(1)+11/12) 2971284442498451 r005 Im(z^2+c),c=-37/102+14/25*I,n=37 2971284451231230 p004 log(30059/29179) 2971284455744963 r009 Im(z^3+c),c=-11/60+34/39*I,n=58 2971284462218261 a003 sin(Pi*5/79)-sin(Pi*14/85) 2971284462802583 r008 a(0)=3,K{-n^6,-77+40*n^3-11*n^2+83*n} 2971284464737571 m001 (Pi-3^(1/3))/(Kac-ZetaQ(2)) 2971284467437121 r005 Re(z^2+c),c=37/110+3/23*I,n=28 2971284467948067 r008 a(0)=3,K{-n^6,-41+25*n+13*n^2+38*n^3} 2971284468781890 r008 a(0)=3,K{-n^6,-7+33*n^3+45*n^2-36*n} 2971284473288767 r008 a(0)=3,K{-n^6,3-47*n+44*n^2+35*n^3} 2971284473692066 r008 a(0)=3,K{-n^6,-13+38*n^3+27*n^2-17*n} 2971284474092086 r008 a(0)=3,K{-n^6,-11-20*n+28*n^2+38*n^3} 2971284481487682 r005 Im(z^2+c),c=-37/114+25/43*I,n=37 2971284485087702 r009 Re(z^3+c),c=-1/24+22/53*I,n=11 2971284488463940 r005 Im(z^2+c),c=13/62+13/61*I,n=24 2971284492870384 r008 a(0)=3,K{-n^6,-17+56*n^3-29*n^2+25*n} 2971284494216334 r008 a(0)=3,K{-n^6,27+50*n^3+11*n^2-53*n} 2971284494554041 r008 a(0)=3,K{-n^6,-19+58*n^3-36*n^2+32*n} 2971284498086513 a007 Real Root Of -232*x^4-455*x^3+467*x^2-653*x+84 2971284500404214 r008 a(0)=3,K{-n^6,41+54*n^3+6*n^2-66*n} 2971284501974994 r008 a(0)=3,K{-n^6,45+55*n^3+5*n^2-70*n} 2971284513695595 a007 Real Root Of -361*x^4+459*x^3-964*x^2+91*x+127 2971284525771899 r005 Re(z^2+c),c=-11/34+23/58*I,n=33 2971284526132491 a005 (1/cos(3/226*Pi))^1252 2971284538641180 a007 Real Root Of -247*x^4-603*x^3+574*x^2+745*x+580 2971284540444328 a007 Real Root Of 365*x^4+317*x^3-85*x^2-949*x-269 2971284544048187 h001 (1/8*exp(1)+4/7)/(2/5*exp(2)+1/9) 2971284547031892 m001 (1-Chi(1))/(-Catalan+MinimumGamma) 2971284551977437 b008 9*(Pi+ArcCsc[2*Pi]) 2971284551996863 m001 1/exp(1)*ln(Zeta(9))^3 2971284569089795 r005 Re(z^2+c),c=-9/25+9/58*I,n=3 2971284574889591 a007 Real Root Of 20*x^4+617*x^3+648*x^2-792*x+977 2971284579448784 r009 Im(z^3+c),c=-15/34+31/64*I,n=3 2971284593659097 m001 1/GAMMA(1/24)*OneNinth*ln(sqrt(5))^2 2971284595764828 r005 Re(z^2+c),c=6/25+17/38*I,n=39 2971284608583814 m005 (1/2*5^(1/2)-8/11)/(1/2*Catalan+6/7) 2971284614103154 l006 ln(6269/8438) 2971284614340217 r005 Re(z^2+c),c=-41/29+1/18*I,n=11 2971284622706187 a001 43133785636/161*123^(1/2) 2971284635048931 r009 Im(z^3+c),c=-25/74+14/55*I,n=5 2971284644029127 r005 Re(z^2+c),c=17/118+31/49*I,n=42 2971284646037388 a003 cos(Pi*1/92)/cos(Pi*34/87) 2971284655101929 a007 Real Root Of 421*x^4+948*x^3-554*x^2+767*x-776 2971284667734925 b008 (19*ProductLog[3/4])/3 2971284668122319 k002 Champernowne real with 171/2*n^2-429/2*n+158 2971284672495018 a007 Real Root Of -413*x^4-278*x^3-967*x^2+487*x+226 2971284672937024 m008 (4*Pi^2-1/4)/(2/5*Pi^3+4/5) 2971284675455001 r005 Re(z^2+c),c=-21/62+11/32*I,n=24 2971284684196074 a007 Real Root Of 249*x^4-273*x^3+661*x^2-475*x+88 2971284685303044 m005 (1/3*2^(1/2)-1/7)/(7/12*Catalan+4/7) 2971284685613133 a003 cos(Pi*31/113)-sin(Pi*27/68) 2971284687115943 a007 Real Root Of 29*x^4+866*x^3+103*x^2-763*x-87 2971284691044054 m002 -9+Pi^5+ProductLog[Pi]/Pi^2 2971284706236602 m005 (1/2*Zeta(3)-11/12)/(26/35+1/7*5^(1/2)) 2971284718503591 r005 Re(z^2+c),c=13/70+19/51*I,n=55 2971284728733409 m008 (3/5*Pi^4-1/2)/(2*Pi^4+1/5) 2971284729785834 m005 (1/2*gamma-9/10)/(2/11*exp(1)-7/10) 2971284732076523 a001 98209/9*3571^(6/49) 2971284740065243 m001 cosh(1)*CopelandErdos^2*ln(sqrt(2)) 2971284762636573 a007 Real Root Of 824*x^4+208*x^3-392*x^2-682*x-169 2971284763347852 a001 75025/18*15127^(10/49) 2971284766248016 a001 5473/9*39603^(18/49) 2971284767364372 a007 Real Root Of 709*x^4-765*x^3-542*x^2-241*x+134 2971284768286353 m001 (Robbin-ZetaP(3))/(Zeta(5)+BesselK(1,1)) 2971284769859969 p001 sum(1/(349*n+244)/n/(6^n),n=1..infinity) 2971284773420368 r002 11th iterates of z^2 + 2971284776436424 m001 (3^(1/3))/(GAMMA(7/24)+sqrt(Pi)) 2971284776549093 a001 4181/18*9349^(26/49) 2971284795933677 m005 (1/2*5^(1/2)+9/11)/(2/11*Catalan-9/11) 2971284801554536 a001 18*(1/2*5^(1/2)+1/2)^8*18^(10/23) 2971284805511199 a001 5473/9*5778^(22/49) 2971284811936701 a007 Real Root Of -619*x^4-347*x^3-352*x^2+939*x-234 2971284818030930 r008 a(0)=3,K{-n^6,27-3*n+45*n^2-35*n^3} 2971284820833484 r008 a(0)=3,K{-n^6,49+8*n^3-54*n^2+30*n} 2971284825181797 a007 Real Root Of -322*x^4-705*x^3+636*x^2-450*x-348 2971284837801764 m001 Niven^KomornikLoreti*ln(Pi) 2971284842683047 r005 Re(z^2+c),c=-17/60+21/41*I,n=44 2971284856558839 r008 a(0)=3,K{-n^6,-32+30*n^3+42*n^2-5*n} 2971284858369262 a001 305/9*1364^(46/49) 2971284859637883 r008 a(0)=3,K{-n^6,-42+34*n^3+25*n^2+18*n} 2971284862214262 r008 a(0)=3,K{-n^6,-24+33*n^3+37*n^2-11*n} 2971284865568578 r008 a(0)=3,K{-n^6,-8+33*n^3+45*n^2-35*n} 2971284868729950 a007 Real Root Of 2*x^4+594*x^3-78*x^2-492*x-889 2971284870831861 r008 a(0)=3,K{-n^6,-12-19*n+28*n^2+38*n^3} 2971284871230721 r008 a(0)=3,K{-n^6,-46+44*n-7*n^2+44*n^3} 2971284873371512 r009 Re(z^3+c),c=-12/29+21/41*I,n=10 2971284875719725 a001 4*47^(25/48) 2971284878125954 r008 a(0)=3,K{-n^6,-16+n+5*n^2+45*n^3} 2971284884284232 r008 a(0)=3,K{-n^6,-42+55*n^3-38*n^2+60*n} 2971284891446589 r008 a(0)=3,K{-n^6,-6+56*n^3-23*n^2+8*n} 2971284894698059 r008 a(0)=3,K{-n^6,26-44*n-n^2+54*n^3} 2971284913905525 l006 ln(265/5172) 2971284914093224 r008 a(0)=3,K{-n^6,31-9*n+47*n^2-35*n^3} 2971284918220979 r005 Re(z^2+c),c=-23/60+4/55*I,n=25 2971284919443736 r005 Re(z^2+c),c=21/94+1/52*I,n=3 2971284919571942 p003 LerchPhi(1/512,2,156/85) 2971284943294052 a001 365435296162/521*123^(3/10) 2971284944483564 m001 Zeta(7)/OneNinth*exp(gamma)^2 2971284948672610 r005 Im(z^2+c),c=-29/50+17/41*I,n=20 2971284968085992 m005 (1/2*5^(1/2)-8/9)/(2/11*Pi+1/5) 2971284974080678 r005 Im(z^2+c),c=-31/26+28/113*I,n=15 2971285001552159 r004 Re(z^2+c),c=-13/34+1/11*I,z(0)=-1,n=17 2971285005738761 m002 -1/6-Pi^2+Pi^5*Coth[Pi] 2971285013597754 b008 -4+Pi*ArcCsch[3] 2971285018782160 m001 (ln(gamma)-sin(1/12*Pi))/(Pi-BesselK(0,1)) 2971285022569440 m001 (HeathBrownMoroz+TwinPrimes)/(GaussAGM-Shi(1)) 2971285027019759 r005 Im(z^2+c),c=29/94+47/61*I,n=3 2971285037608468 m001 (Shi(1)-exp(1))/(-MertensB2+PlouffeB) 2971285047761900 a001 32951280099/199*521^(6/13) 2971285048533446 m001 GAMMA(13/24)/(Chi(1)^ReciprocalFibonacci) 2971285055677597 r002 13th iterates of z^2 + 2971285055772097 m001 (Bloch+KhinchinLevy)/(Psi(2,1/3)-ln(2)) 2971285056097017 m001 Pi-Psi(1,1/3)*BesselK(0,1)*cos(1/5*Pi) 2971285063581621 r005 Re(z^2+c),c=-8/23+17/55*I,n=35 2971285077944613 l006 ln(2555/3439) 2971285078376163 h001 (-4*exp(7)+5)/(-8*exp(1)+7) 2971285112362979 r008 a(0)=3,K{-n^6,9+34*n+21*n^2-30*n^3} 2971285118987088 r005 Re(z^2+c),c=-3/50+29/46*I,n=14 2971285125509238 a007 Real Root Of -220*x^4-528*x^3-424*x^2+800*x+263 2971285128661400 m005 (1/2*gamma-5/11)/(-14/45+7/18*5^(1/2)) 2971285133528718 h001 (9/11*exp(2)+1/11)/(4/9*exp(1)+6/7) 2971285140799945 r005 Re(z^2+c),c=-33/86+4/61*I,n=24 2971285143658402 a005 (1/sin(86/233*Pi))^806 2971285151901776 r009 Im(z^3+c),c=-5/106+47/56*I,n=40 2971285154440580 m001 gamma^GAMMA(19/24)*gamma^MertensB2 2971285161103670 a007 Real Root Of -91*x^4+42*x^3+897*x^2-22*x+210 2971285167678334 a001 1364*(1/2*5^(1/2)+1/2)^9*3^(23/24) 2971285174096390 a001 89/1149851*11^(23/41) 2971285175644048 m006 (4*Pi^2+1/5)/(1/4*exp(2*Pi)-1/3) 2971285175827219 r005 Im(z^2+c),c=-37/64+2/59*I,n=11 2971285182235481 r005 Re(z^2+c),c=-37/98+7/52*I,n=12 2971285183839946 r005 Im(z^2+c),c=-2/7+23/49*I,n=49 2971285183975771 a007 Real Root Of -523*x^4+297*x^3-306*x^2+940*x-256 2971285186173856 a007 Real Root Of 131*x^4-811*x^3-598*x^2-244*x-42 2971285190834337 r002 49th iterates of z^2 + 2971285206316845 m005 (4*gamma+3/5)/(1/4*Catalan+3/4) 2971285208822308 m001 1/BesselK(1,1)^2/Niven^2/exp(sqrt(3))^2 2971285209884815 m002 5+3*Pi^4-Log[Pi]*Sech[Pi] 2971285221876971 a007 Real Root Of -227*x^4+540*x^3-669*x^2+626*x+261 2971285222217704 r002 43th iterates of z^2 + 2971285228537411 s002 sum(A211267[n]/(pi^n+1),n=1..infinity) 2971285234265784 b008 ArcCsch[E+FresnelS[Pi]] 2971285234948905 r005 Re(z^2+c),c=-9/28+23/43*I,n=27 2971285238421246 m005 (1/2*3^(1/2)+1/8)/(9/10*exp(1)+8/9) 2971285246800316 p002 log(9^(3/4)/(24+3^(1/3))^(1/2)) 2971285251245333 r008 a(0)=3,K{-n^6,-33+30*n^3+42*n^2-4*n} 2971285254296801 r008 a(0)=3,K{-n^6,-43+34*n^3+25*n^2+19*n} 2971285256850215 r008 a(0)=3,K{-n^6,-25+33*n^3+37*n^2-10*n} 2971285258765160 r009 Re(z^3+c),c=-13/64+27/38*I,n=5 2971285265391660 r008 a(0)=3,K{-n^6,-13+38*n^3+28*n^2-18*n} 2971285268807931 m001 (exp(Pi)+ln(5))/(-GaussAGM+ZetaQ(4)) 2971285272252297 r008 a(0)=3,K{-n^6,-13+44*n^3+10*n^2-6*n} 2971285272622102 r008 a(0)=3,K{-n^6,-17+2*n+5*n^2+45*n^3} 2971285273950687 r009 Im(z^3+c),c=-13/126+19/60*I,n=4 2971285274936073 r008 a(0)=3,K{-n^6,45-16*n+8*n^2-2*n^3} 2971285275805394 a001 7/144*139583862445^(1/4) 2971285285829178 r008 a(0)=3,K{-n^6,-19+58*n^3-35*n^2+31*n} 2971285286179449 a001 6643838879/3*832040^(4/21) 2971285286179613 a001 969323029/3*20365011074^(4/21) 2971285289484146 m001 (ln(Pi)*exp(1/exp(1))+MadelungNaCl)/ln(Pi) 2971285290317156 r008 a(0)=3,K{-n^6,3+59*n^3-27*n^2} 2971285294165157 r005 Im(z^2+c),c=-1/20+5/14*I,n=4 2971285299619912 r008 a(0)=3,K{-n^6,47-60*n-14*n^2+62*n^3} 2971285305024662 r009 Re(z^3+c),c=-59/106+17/57*I,n=40 2971285305072462 a007 Real Root Of 776*x^4-577*x^3+282*x^2-972*x+273 2971285309518184 a007 Real Root Of 868*x^4+385*x^3-284*x^2-766*x+23 2971285310239535 r005 Im(z^2+c),c=-43/58+1/8*I,n=40 2971285319396656 a001 2139295485799/21*34^(22/23) 2971285320890390 m001 (5^(1/2)+ln(5))/(KhinchinLevy+OneNinth) 2971285326992717 a007 Real Root Of 260*x^4+376*x^3+927*x^2-663*x-271 2971285337495126 r005 Im(z^2+c),c=-45/122+13/28*I,n=16 2971285338103053 r005 Im(z^2+c),c=-23/114+3/7*I,n=12 2971285341030363 r005 Re(z^2+c),c=-5/18+32/61*I,n=55 2971285363597249 a001 32951280099/2207*18^(5/21) 2971285380297219 m005 (1/2*Zeta(3)+7/9)/(-44/9+1/9*5^(1/2)) 2971285383198622 l006 ln(412/8041) 2971285383552927 r005 Im(z^2+c),c=-11/18+39/98*I,n=30 2971285386653886 r005 Im(z^2+c),c=25/74+5/43*I,n=32 2971285389123106 m001 (Rabbit-Trott)/(BesselI(1,1)+KomornikLoreti) 2971285390312131 r005 Im(z^2+c),c=-15/118+15/37*I,n=41 2971285390367980 h001 (7/12*exp(1)+1/3)/(6/7*exp(2)+1/8) 2971285392868316 a007 Real Root Of -409*x^4+173*x^3-584*x^2+726*x+275 2971285401401055 a007 Real Root Of -707*x^4+298*x^3+563*x^2+387*x-167 2971285418832221 m001 exp(BesselJ(0,1))*Salem*sinh(1) 2971285424207651 r005 Re(z^2+c),c=-7/26+28/51*I,n=53 2971285424958080 m001 (ZetaQ(2)+ZetaQ(4))/(Shi(1)+AlladiGrinstead) 2971285432913179 r005 Re(z^2+c),c=-7/23+5/11*I,n=37 2971285437956911 m001 GAMMA(11/12)^Conway-StronglyCareFree 2971285439715969 a001 5/4*3461452808002^(10/17) 2971285439715969 a001 5/4*28143753123^(12/17) 2971285439715969 a001 5/4*228826127^(15/17) 2971285453316068 a007 Real Root Of 95*x^4-17*x^3-903*x^2+22*x+187 2971285454219728 a001 1597/18*2207^(37/49) 2971285460078509 r005 Im(z^2+c),c=-15/118+15/37*I,n=36 2971285467130427 r002 37th iterates of z^2 + 2971285502508640 p003 LerchPhi(1/16,4,289/213) 2971285507362397 b008 2+ArcSinh[(4*Sqrt[2])/5] 2971285508452389 m001 Ei(1)^Sierpinski/(Ei(1)^QuadraticClass) 2971285521557378 a005 (1/sin(80/177*Pi))^700 2971285522725539 m009 (4/5*Psi(1,3/4)+1)/(1/2*Psi(1,3/4)-1/4) 2971285522980936 m001 (ln(Pi)+Kolakoski)/(Stephens+ZetaP(4)) 2971285524889276 l006 ln(6506/8757) 2971285531429173 a007 Real Root Of 153*x^4-409*x^3-902*x^2-686*x+293 2971285538630410 m001 arctan(1/2)^2*exp(ArtinRank2)^2/cos(1)^2 2971285539586019 m001 (Kac+Kolakoski)/(Zeta(1,-1)+Cahen) 2971285539937092 m001 (Landau+MasserGramain)/(exp(1)+GAMMA(17/24)) 2971285543218615 m001 FeigenbaumD^PlouffeB/(FeigenbaumD^Niven) 2971285544673589 r005 Re(z^2+c),c=-33/118+29/56*I,n=59 2971285557508632 a007 Real Root Of -422*x^4-893*x^3+798*x^2-852*x-110 2971285558837559 m006 (4/5/Pi-3)/(4*exp(Pi)-1/6) 2971285573237463 a003 sin(Pi*5/81)/cos(Pi*19/69) 2971285579325183 m005 (1/2*Catalan+2/9)/(5/12*2^(1/2)-9/11) 2971285593512463 r005 Re(z^2+c),c=-41/56+15/53*I,n=41 2971285596384210 m001 (ln(3)+FeigenbaumB)/(Si(Pi)-Zeta(3)) 2971285596681936 m002 -Cosh[Pi]+Cosh[Pi]/ProductLog[Pi]+Tanh[Pi]/2 2971285598940652 r005 Re(z^2+c),c=-5/19+14/25*I,n=59 2971285621235926 r005 Re(z^2+c),c=5/106+11/18*I,n=49 2971285630063127 m001 exp(1/Pi)/Gompertz/StronglyCareFree 2971285630537978 r009 Re(z^3+c),c=-13/29+17/41*I,n=38 2971285638763120 a003 sin(Pi*7/80)/sin(Pi*11/30) 2971285641560954 r008 a(0)=3,K{-n^6,-20+26*n^3+61*n^2-32*n} 2971285653024006 r008 a(0)=3,K{-n^6,-8+33*n^3+46*n^2-36*n} 2971285656382872 m001 (-gamma+FeigenbaumC)/(2^(1/3)-Chi(1)) 2971285658177697 r008 a(0)=3,K{-n^6,-12-20*n+29*n^2+38*n^3} 2971285658562687 a007 Real Root Of -154*x^4-223*x^3+631*x^2-325*x-383 2971285663853515 r008 a(0)=3,K{-n^6,-6+42*n^3+20*n^2-21*n} 2971285664591339 r008 a(0)=3,K{-n^6,-26+17*n-2*n^2+46*n^3} 2971285666047614 r008 a(0)=3,K{-n^6,-6+44*n^3+14*n^2-17*n} 2971285666468740 a005 (1/cos(7/228*Pi))^728 2971285668906012 r008 a(0)=3,K{-n^6,22+42*n^3+34*n^2-63*n} 2971285671122919 k002 Champernowne real with 86*n^2-216*n+159 2971285677263837 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+Ei(1,1)*MertensB3 2971285682190323 r008 a(0)=3,K{-n^6,-18+37*n-46*n^2+62*n^3} 2971285686169918 r008 a(0)=3,K{-n^6,38-57*n-3*n^2+57*n^3} 2971285690871307 r008 a(0)=3,K{-n^6,-8+70*n^3-65*n^2+38*n} 2971285694619961 a007 Real Root Of 217*x^4-465*x^3+421*x^2-821*x-295 2971285726885614 m001 (Si(Pi)+Zeta(3))/(sin(1/5*Pi)+BesselJ(1,1)) 2971285732684160 h001 (5/6*exp(2)+5/11)/(7/9*exp(1)+1/9) 2971285750490957 r008 a(0)=3,K{-n^6,25-17*n+52*n^2-28*n^3} 2971285762464276 a007 Real Root Of 763*x^4-328*x^3+73*x^2-457*x+132 2971285763293028 r005 Re(z^2+c),c=-10/29+14/31*I,n=6 2971285778650724 a007 Real Root Of -342*x^4-885*x^3+581*x^2+583*x+44 2971285782052428 p004 log(30427/1559) 2971285783390837 r005 Re(z^2+c),c=-33/106+23/53*I,n=58 2971285790062860 r009 Re(z^3+c),c=-45/122+15/47*I,n=5 2971285799646657 r005 Im(z^2+c),c=-15/118+15/37*I,n=44 2971285803742273 r005 Re(z^2+c),c=15/52+2/17*I,n=20 2971285813915743 l006 ln(3951/5318) 2971285817765283 a001 64079/610*514229^(21/22) 2971285818491787 a001 1364/317811*20365011074^(21/22) 2971285823088313 m001 (Pi+sin(1))/(Kac+TravellingSalesman) 2971285826977648 r009 Re(z^3+c),c=-33/74+9/22*I,n=28 2971285831843520 r005 Re(z^2+c),c=-17/44+7/33*I,n=7 2971285841437447 a007 Real Root Of -256*x^4-481*x^3+485*x^2-768*x+772 2971285846130666 r005 Re(z^2+c),c=-39/86+21/40*I,n=48 2971285852045142 r008 a(0)=3,K{-n^6,85-38*n^3+83*n^2-96*n} 2971285856551799 m005 (1/2*Pi-5)/(11/12*gamma+5/8) 2971285863545218 r009 Re(z^3+c),c=-4/9+11/27*I,n=28 2971285869250128 r008 a(0)=3,K{-n^6,36+27*n-46*n^2+19*n^3} 2971285878202691 r002 5th iterates of z^2 + 2971285879268976 r005 Im(z^2+c),c=27/86+2/21*I,n=44 2971285883279668 r009 Im(z^3+c),c=-57/118+6/61*I,n=30 2971285884611478 a001 43133785636/2889*18^(5/21) 2971285889783399 a001 53316291173/199*521^(5/13) 2971285892634207 q001 119/4005 2971285892634207 q001 238/801 2971285892634207 r002 2th iterates of z^2 + 2971285892634207 r005 Im(z^2+c),c=-13/9+14/89*I,n=2 2971285912505818 r005 Im(z^2+c),c=-4/31+23/57*I,n=13 2971285915185867 r009 Re(z^3+c),c=-31/90+45/62*I,n=55 2971285916406215 r005 Re(z^2+c),c=-83/66+1/32*I,n=14 2971285916900355 a001 89/843*312119004989^(10/11) 2971285916900355 a001 89/843*(1/2+1/2*5^(1/2))^50 2971285916900355 a001 89/843*3461452808002^(5/6) 2971285918788944 a001 377/199*312119004989^(4/5) 2971285918788944 a001 377/199*(1/2+1/2*5^(1/2))^44 2971285918788944 a001 377/199*23725150497407^(11/16) 2971285918788944 a001 377/199*73681302247^(11/13) 2971285918788944 a001 377/199*10749957122^(11/12) 2971285918788944 a001 377/199*4106118243^(22/23) 2971285922707399 a007 Real Root Of -625*x^4-836*x^3-406*x^2+169*x+69 2971285940742512 m005 (2/3*Pi+1/4)/(23/10+5/2*5^(1/2)) 2971285944487248 m001 (Si(Pi)+gamma(2))/(-MertensB1+QuadraticClass) 2971285944757059 r005 Im(z^2+c),c=-15/118+15/37*I,n=47 2971285948716015 m001 MadelungNaCl/(exp(1/Pi)^GAMMA(1/6)) 2971285950941697 r005 Im(z^2+c),c=-15/118+15/37*I,n=39 2971285960297150 a007 Real Root Of 245*x^4+614*x^3-376*x^2+104*x+639 2971285960626445 a001 32264490531/2161*18^(5/21) 2971285965129227 r009 Im(z^3+c),c=-5/106+47/56*I,n=34 2971285967158065 r009 Im(z^3+c),c=-29/106+1/46*I,n=7 2971285971716880 a001 591286729879/39603*18^(5/21) 2971285973334952 a001 774004377960/51841*18^(5/21) 2971285973571026 a001 4052739537881/271443*18^(5/21) 2971285973605469 a001 1515744265389/101521*18^(5/21) 2971285973626755 a001 3278735159921/219602*18^(5/21) 2971285973716928 a001 2504730781961/167761*18^(5/21) 2971285974334976 a001 956722026041/64079*18^(5/21) 2971285978571145 a001 182717648081/12238*18^(5/21) 2971285980156256 a001 4250681/7*13^(13/21) 2971285981763955 r008 a(0)=3,K{-n^6,25*n^3-82*n^2+93*n} 2971285983401159 m001 (5^(1/2)-gamma)/(-ln(gamma)+ZetaQ(3)) 2971285986997747 r005 Im(z^2+c),c=-49/114+21/41*I,n=18 2971285995787329 r005 Im(z^2+c),c=-15/118+15/37*I,n=50 2971286007606280 a001 139583862445/9349*18^(5/21) 2971286013599592 r005 Im(z^2+c),c=-15/118+15/37*I,n=53 2971286015198948 m001 (Salem-Stephens)/(FeigenbaumD-LaplaceLimit) 2971286019773518 r005 Im(z^2+c),c=-15/118+15/37*I,n=56 2971286021899170 r005 Im(z^2+c),c=-15/118+15/37*I,n=59 2971286022626287 r005 Im(z^2+c),c=-15/118+15/37*I,n=62 2971286023074917 r005 Im(z^2+c),c=-15/118+15/37*I,n=64 2971286023142942 r005 Im(z^2+c),c=-15/118+15/37*I,n=63 2971286023261192 r005 Im(z^2+c),c=-15/118+15/37*I,n=61 2971286023372158 r005 Im(z^2+c),c=-15/118+15/37*I,n=60 2971286023880043 r005 Im(z^2+c),c=-15/118+15/37*I,n=58 2971286023940310 r005 Im(z^2+c),c=-15/118+15/37*I,n=57 2971286025286615 r005 Im(z^2+c),c=-15/118+15/37*I,n=54 2971286025898965 r005 Im(z^2+c),c=-15/118+15/37*I,n=55 2971286028259010 r005 Im(z^2+c),c=-15/118+15/37*I,n=51 2971286032388252 r005 Im(z^2+c),c=-15/118+15/37*I,n=52 2971286034020366 r005 Im(z^2+c),c=-15/118+15/37*I,n=48 2971286037435346 m002 -Pi^4+Pi^9+Sinh[Pi]/Pi^2 2971286037564694 r008 a(0)=3,K{-n^6,-43+34*n^3+26*n^2+18*n} 2971286038928413 r005 Im(z^2+c),c=-15/118+15/37*I,n=42 2971286040064316 r008 a(0)=3,K{-n^6,-25+33*n^3+38*n^2-11*n} 2971286042025156 r005 Im(z^2+c),c=-15/118+15/37*I,n=45 2971286043317865 r008 a(0)=3,K{-n^6,3+31*n^3+58*n^2-57*n} 2971286049192530 r008 a(0)=3,K{-n^6,3-47*n+43*n^2+36*n^3} 2971286052986735 r005 Im(z^2+c),c=-15/118+15/37*I,n=49 2971286055147564 r008 a(0)=3,K{-n^6,-13+44*n^3+11*n^2-7*n} 2971286055509832 r008 a(0)=3,K{-n^6,-17+n+6*n^2+45*n^3} 2971286059063199 r008 a(0)=3,K{-n^6,21+42*n^3+34*n^2-62*n} 2971286067807499 r008 a(0)=3,K{-n^6,-17+57*n^3-30*n^2+25*n} 2971286068055499 m005 (1/2*Catalan+1/4)/(2/5*3^(1/2)-5/11) 2971286072234772 r008 a(0)=3,K{-n^6,-19+38*n-46*n^2+62*n^3} 2971286074417633 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)*Conway^(2^(1/3)) 2971286077071662 r008 a(0)=3,K{-n^6,31-43*n-12*n^2+59*n^3} 2971286086076377 a007 Real Root Of -103*x^4+503*x^3-99*x^2+48*x+37 2971286093941294 r005 Re(z^2+c),c=-41/30+109/122*I,n=2 2971286102706250 r005 Im(z^2+c),c=-8/23+27/55*I,n=48 2971286104057584 m004 3+(150*Sqrt[5])/Pi+Sinh[Sqrt[5]*Pi]/3 2971286113530248 a007 Real Root Of 16*x^4+469*x^3-173*x^2+528*x+385 2971286117667142 r005 Im(z^2+c),c=-15/118+15/37*I,n=46 2971286136303479 h001 (1/5*exp(1)+5/7)/(5/11*exp(2)+7/8) 2971286150561766 r005 Re(z^2+c),c=-1/5+13/21*I,n=40 2971286152697359 r005 Re(z^2+c),c=-3/10+23/51*I,n=18 2971286155232368 m009 (1/6*Psi(1,3/4)+4/5)/(4*Psi(1,1/3)+4/5) 2971286165590726 l006 ln(5347/7197) 2971286172252577 a001 1364/1346269*4181^(4/31) 2971286180143203 m001 GAMMA(1/4)*ln(Magata)^2/GAMMA(2/3)^2 2971286184771623 r005 Im(z^2+c),c=-45/94+17/35*I,n=40 2971286198591499 m005 (1/2*gamma-5)/(4/5*3^(1/2)+1/5) 2971286204016574 r002 15th iterates of z^2 + 2971286205386596 m001 (Ei(1,1)+Otter*Riemann1stZero)/Riemann1stZero 2971286206616072 a001 53316291173/3571*18^(5/21) 2971286223787321 a003 sin(Pi*8/77)*sin(Pi*20/53) 2971286229202628 l006 ln(147/2869) 2971286235481841 r001 4i'th iterates of 2*x^2-1 of 2971286235928166 r005 Re(z^2+c),c=1/3+7/48*I,n=12 2971286242427197 m001 (Psi(1,1/3)+2^(1/3))/(Magata+PrimesInBinary) 2971286244740825 m001 (-Pi^(1/2)+Thue)/(5^(1/2)+Chi(1)) 2971286251644895 r009 Re(z^3+c),c=-37/102+7/26*I,n=10 2971286270028356 a001 2/1346269*46368^(2/31) 2971286273803132 m001 FellerTornier^Thue-StolarskyHarborth 2971286285813447 a007 Real Root Of 334*x^4-674*x^3+675*x^2+252*x-5 2971286286512238 r005 Re(z^2+c),c=-26/21+3/52*I,n=24 2971286299991208 l003 FresnelS(88/103) 2971286301399729 r005 Re(z^2+c),c=9/32+6/55*I,n=34 2971286318834780 r005 Im(z^2+c),c=-15/118+15/37*I,n=43 2971286320442361 r005 Im(z^2+c),c=-25/56+2/19*I,n=4 2971286324762402 m001 Shi(1)^MasserGramainDelta-OrthogonalArrays 2971286347561297 a003 sin(Pi*17/99)-sin(Pi*31/103) 2971286349199384 h003 exp(Pi*(6^(10/7)-18^(5/6))) 2971286349199384 h008 exp(Pi*(6^(10/7)-18^(5/6))) 2971286357186593 a001 305/9*64079^(30/49) 2971286357354772 h001 (4/7*exp(1)+3/11)/(9/11*exp(2)+1/10) 2971286371651504 l006 ln(6743/9076) 2971286376785620 r005 Im(z^2+c),c=-21/59*I,n=4 2971286385571730 r005 Im(z^2+c),c=-121/106+1/27*I,n=17 2971286387711321 h001 (1/12*exp(1)+7/11)/(3/11*exp(2)+8/9) 2971286389875830 r005 Im(z^2+c),c=-39/122+27/56*I,n=55 2971286398159573 r002 48th iterates of z^2 + 2971286417098580 m001 (-Stephens+Trott)/(gamma+PisotVijayaraghavan) 2971286419036558 m001 1/Lehmer*GaussKuzminWirsing/ln(TwinPrimes)^2 2971286420662723 r008 a(0)=3,K{-n^6,-20+26*n^3+62*n^2-33*n} 2971286421699331 r005 Im(z^2+c),c=-9/86+53/61*I,n=3 2971286434236965 r008 a(0)=3,K{-n^6,28+29*n^3+77*n^2-99*n} 2971286435951108 a003 2*cos(11/30*Pi)-2*cos(2/27*Pi)+cos(5/27*Pi) 2971286438443939 r008 a(0)=3,K{-n^6,-46+44*n-8*n^2+45*n^3} 2971286443212639 r008 a(0)=3,K{-n^6,-14+44*n^3+11*n^2-6*n} 2971286450512335 r008 a(0)=3,K{-n^6,4-25*n+8*n^2+48*n^3} 2971286453704886 m005 (1/2*exp(1)+1/9)/(7/8*Zeta(3)-6) 2971286457667925 r008 a(0)=3,K{-n^6,-6+57*n^3-24*n^2+8*n} 2971286457669344 r008 a(0)=3,K{-n^6,-30+52*n-48*n^2+61*n^3} 2971286464951260 r008 a(0)=3,K{-n^6,30-42*n-12*n^2+59*n^3} 2971286464951563 r008 a(0)=3,K{-n^6,24-31*n-18*n^2+60*n^3} 2971286466452290 b008 E^(1+ArcSec[Pi])*Pi 2971286475283881 m002 -Pi^4+Pi^9+Cosh[Pi]/Pi^2 2971286475750659 r005 Re(z^2+c),c=-35/106+19/61*I,n=6 2971286483770533 r005 Re(z^2+c),c=-61/106+25/54*I,n=22 2971286497787639 s002 sum(A257538[n]/(n^3*pi^n+1),n=1..infinity) 2971286498540130 m001 1/Conway^2/ln(Cahen)*Bloch^2 2971286499462921 r008 a(0)=3,K{-n^6,92+96*n^3-92*n^2-61*n} 2971286502846623 a003 sin(Pi*16/119)*sin(Pi*8/31) 2971286505793090 m001 (gamma(2)-GolombDickman*Otter)/GolombDickman 2971286515285340 m001 (2^(1/2)-GAMMA(3/4))/(-MasserGramain+Trott) 2971286515928469 p003 LerchPhi(1/512,4,542/225) 2971286525167225 m001 (Psi(1,1/3)+ZetaP(3))^Backhouse 2971286525476885 m005 (1/3*Pi-3/5)/(7/8*gamma+1) 2971286531711979 a001 3571*(1/2*5^(1/2)+1/2)^7*3^(23/24) 2971286536850718 h003 exp(Pi*(18/(21-9^(2/3)))) 2971286549687154 r005 Im(z^2+c),c=-45/74+21/55*I,n=38 2971286550982979 r009 Re(z^3+c),c=-11/70+10/13*I,n=17 2971286551496501 m001 (KomornikLoreti+Tetranacci)/(2^(1/3)+gamma(2)) 2971286566375254 s001 sum(exp(-Pi/3)^n*A283076[n],n=1..infinity) 2971286567467249 a001 54018521/610*63245986^(17/24) 2971286568665548 s002 sum(A065389[n]/((exp(n)+1)/n),n=1..infinity) 2971286576476751 b008 3-Coth[3]/35 2971286580452160 a001 15127/610*6557470319842^(17/24) 2971286580725610 m001 (1+3^(1/2))^(1/2)*(Cahen-arctan(1/2)) 2971286580725610 m001 sqrt(1+sqrt(3))*(Cahen-arctan(1/2)) 2971286591768914 r009 Re(z^3+c),c=-53/118+23/51*I,n=19 2971286594510203 a007 Real Root Of 252*x^4-918*x^3+908*x^2-595*x-283 2971286608428381 r005 Im(z^2+c),c=-15/94+25/57*I,n=8 2971286615965940 a003 sin(Pi*11/115)/sin(Pi*17/36) 2971286616287701 b008 2^(-1/3)+Pi*Log[2] 2971286639588704 r005 Im(z^2+c),c=-2/25+17/44*I,n=12 2971286640204002 r009 Re(z^3+c),c=-3/62+39/61*I,n=17 2971286647641837 r005 Re(z^2+c),c=-55/82+2/23*I,n=4 2971286650261430 m006 (2/Pi+3)/(1/5*Pi^2-3/4) 2971286674123519 k002 Champernowne real with 173/2*n^2-435/2*n+160 2971286676169385 a007 Real Root Of -223*x^4-769*x^3-295*x^2+287*x+666 2971286676211227 r005 Re(z^2+c),c=-121/86+4/17*I,n=4 2971286681125644 m001 (1+Thue)/(ZetaQ(2)+ZetaQ(3)) 2971286709543796 a001 322/3*3^(38/41) 2971286711812786 r005 Im(z^2+c),c=-1/48+35/44*I,n=51 2971286717057918 r005 Re(z^2+c),c=-19/58+23/60*I,n=37 2971286717267547 r005 Re(z^2+c),c=-17/24+14/41*I,n=29 2971286724928508 m002 (E^Pi*Pi^3)/3+5*Cosh[Pi] 2971286730721806 a001 9349*(1/2*5^(1/2)+1/2)^5*3^(23/24) 2971286731805136 a001 86267571272/199*521^(4/13) 2971286733986719 p004 log(26953/1381) 2971286759756948 a001 24476*(1/2*5^(1/2)+1/2)^3*3^(23/24) 2971286762654028 p001 sum(1/(578*n+35)/(2^n),n=0..infinity) 2971286763993118 a001 64079*(1/2*5^(1/2)+1/2)*3^(23/24) 2971286764716742 a001 (1/2*5^(1/2)+1/2)^24*3^(23/24) 2971286764993142 a001 103682*3^(23/24) 2971286766611215 a001 39603*(1/2*5^(1/2)+1/2)^2*3^(23/24) 2971286769693299 a001 19/11592*832040^(41/57) 2971286774396417 r005 Re(z^2+c),c=-8/23+17/55*I,n=34 2971286774660224 a007 Real Root Of -980*x^4+805*x^3+367*x^2+515*x+15 2971286777701653 a001 15127*(1/2*5^(1/2)+1/2)^4*3^(23/24) 2971286779024731 m005 (1/2*Pi-2/11)/(10/11*2^(1/2)-9/11) 2971286806816490 r008 a(0)=3,K{-n^6,-21+26*n^3+62*n^2-32*n} 2971286814919110 h001 (1/10*exp(1)+4/7)/(1/3*exp(2)+3/8) 2971286817609084 m005 (1/2*Zeta(3)-1/5)/(1/4*3^(1/2)+11/12) 2971286817861729 m001 exp(GAMMA(7/24))/GAMMA(13/24)*sqrt(5) 2971286818334565 r008 a(0)=3,K{-n^6,-37+16*n+18*n^2+38*n^3} 2971286820271009 r008 a(0)=3,K{-n^6,27+29*n^3+77*n^2-98*n} 2971286824065994 r008 a(0)=3,K{-n^6,-13+39*n^3+27*n^2-18*n} 2971286833361089 r008 a(0)=3,K{-n^6,21+42*n^3+35*n^2-63*n} 2971286833853739 m001 (sin(1)+3^(1/3))/(TravellingSalesman+ZetaQ(2)) 2971286837403327 r008 a(0)=3,K{-n^6,-15+11*n-13*n^2+52*n^3} 2971286843273575 m001 TwinPrimes/(Khinchin-arctan(1/2)) 2971286843502175 r008 a(0)=3,K{-n^6,-19+59*n^3-36*n^2+31*n} 2971286843502875 r008 a(0)=3,K{-n^6,-31+53*n-48*n^2+61*n^3} 2971286846271357 r008 a(0)=3,K{-n^6,-19+37*n-45*n^2+62*n^3} 2971286847456691 a007 Real Root Of -164*x^4-726*x^3-552*x^2+575*x+320 2971286850050185 p003 LerchPhi(1/16,4,133/55) 2971286853716643 a001 5778*(1/2*5^(1/2)+1/2)^6*3^(23/24) 2971286865422442 r005 Im(z^2+c),c=-161/118+3/26*I,n=4 2971286867457684 a007 Real Root Of 961*x^4+284*x^3+499*x^2-242*x-116 2971286885441686 a003 -1-2*cos(3/8*Pi)-cos(7/24*Pi)-cos(8/27*Pi) 2971286892316312 m005 (-1/66+1/6*5^(1/2))/(11/12*Catalan+4/11) 2971286917263120 m001 1/Pi/ln(GAMMA(23/24))*cosh(1)^2 2971286917788710 r009 Im(z^3+c),c=-29/46+26/47*I,n=3 2971286918334293 r005 Re(z^2+c),c=-31/44+11/58*I,n=32 2971286918720036 a007 Real Root Of -217*x^4-209*x^3+214*x^2+911*x+248 2971286939138589 r005 Im(z^2+c),c=-15/118+15/37*I,n=40 2971286939470563 r002 5th iterates of z^2 + 2971286942887415 m001 1/3*Gompertz^GAMMA(17/24)*3^(1/2) 2971286960244327 a007 Real Root Of -438*x^4-907*x^3+998*x^2-777*x-773 2971286970805551 l006 ln(470/9173) 2971286973816633 m005 (1/2*exp(1)+2)/(5*5^(1/2)+1/8) 2971286979319097 h001 (-8*exp(3)-11)/(-2*exp(2)+9) 2971286982015061 m002 E^Pi-Log[Pi]+(Pi^6*Log[Pi])/4 2971286985434509 r005 Im(z^2+c),c=-7/82+14/39*I,n=4 2971286998113121 m001 Psi(1,1/3)^Landau-cos(1) 2971287002228942 s002 sum(A236831[n]/(n^2*exp(n)+1),n=1..infinity) 2971287013757164 m001 (Stephens-ZetaQ(3))/(ln(Pi)+LandauRamanujan) 2971287017803658 r008 a(0)=3,K{-n^6,53+11*n-33*n^2+6*n^3} 2971287032662588 m001 FeigenbaumKappa-Zeta(3)*exp(1/Pi) 2971287046254013 a007 Real Root Of 943*x^4-704*x^3-491*x^2-860*x-238 2971287051368962 m005 (1/2*exp(1)+9/10)/(1/11*2^(1/2)-8/9) 2971287058524208 m001 (Kac-OneNinth)/(BesselJ(1,1)+Conway) 2971287071378951 m001 FeigenbaumDelta^FeigenbaumD*PlouffeB 2971287072211701 m009 (5/2*Pi^2+5/6)/(3/5*Psi(1,3/4)-2/3) 2971287084696109 m001 1/GAMMA(19/24)^2/exp(BesselJ(1,1))^2*Pi^2 2971287089930854 r008 a(0)=3,K{-n^6,90+20*n^3-72*n^2-5*n} 2971287100566739 m005 (1/2*3^(1/2)+5)/(-5/14+1/14*5^(1/2)) 2971287124762719 m001 (GAMMA(2/3)+Grothendieck)/GAMMA(11/12) 2971287126380957 r005 Im(z^2+c),c=-127/110+15/52*I,n=22 2971287127360474 r005 Re(z^2+c),c=-27/82+17/45*I,n=41 2971287127451024 r005 Im(z^2+c),c=-7/10+22/113*I,n=7 2971287128712871 q001 3001/1010 2971287129192559 m001 (Pi-exp(1/exp(1)))/(LandauRamanujan2nd-Trott) 2971287143413367 s002 sum(A246629[n]/(n^3*pi^n-1),n=1..infinity) 2971287147349081 a001 47/29*(1/2*5^(1/2)+1/2)^19*29^(1/5) 2971287160466115 m001 Bloch*FeigenbaumD+Niven 2971287160911475 l006 ln(1396/1879) 2971287175793960 r005 Im(z^2+c),c=-9/29+31/52*I,n=62 2971287182182775 a007 Real Root Of 395*x^4+953*x^3-864*x^2-365*x+755 2971287182416435 a001 167761/1597*514229^(21/22) 2971287182520705 a001 3571/832040*20365011074^(21/22) 2971287192576252 r008 a(0)=3,K{-n^6,-26-21*n+54*n^2+28*n^3} 2971287194183041 a003 -1/2-2*cos(1/12*Pi)+cos(11/27*Pi)-cos(4/21*Pi) 2971287195198483 v003 sum((4/3*n^3+n^2+35/3*n+2)/n^n,n=1..infinity) 2971287202293005 r008 a(0)=3,K{-n^6,-38+17*n+18*n^2+38*n^3} 2971287203449463 r008 a(0)=3,K{-n^6,-8+34*n^3+45*n^2-36*n} 2971287205768203 a007 Real Root Of -504*x^4-961*x^3-996*x^2+819*x+310 2971287208343474 r008 a(0)=3,K{-n^6,-12-20*n+28*n^2+39*n^3} 2971287213032136 r008 a(0)=3,K{-n^6,2-37*n+29*n^2+41*n^3} 2971287215478320 r008 a(0)=3,K{-n^6,-8-14*n+12*n^2+45*n^3} 2971287217220928 a007 Real Root Of 193*x^4+261*x^3-945*x^2-156*x-317 2971287218542516 r008 a(0)=3,K{-n^6,10+45*n^3+21*n^2-41*n} 2971287234694908 r008 a(0)=3,K{-n^6,30-43*n-11*n^2+59*n^3} 2971287242427153 r008 a(0)=3,K{-n^6,62+63*n^3-7*n^2-83*n} 2971287266638051 m005 (1/2*Zeta(3)+4/11)/(6/7*exp(1)+11/12) 2971287274807165 a001 21/29*9349^(13/32) 2971287276998782 m001 (ln(2)+Otter)^Zeta(1,2) 2971287280707482 m005 (1/2*Pi-5)/(1/5*Zeta(3)-1/8) 2971287284898320 r005 Im(z^2+c),c=-75/98+1/51*I,n=16 2971287308315058 l006 ln(323/6304) 2971287318840896 r005 Im(z^2+c),c=-19/94+24/31*I,n=33 2971287327366460 r005 Re(z^2+c),c=-33/86+3/47*I,n=12 2971287330356204 a007 Real Root Of 394*x^4+823*x^3-974*x^2+154*x-64 2971287339419733 m001 (Mills+ZetaP(3))/(ln(Pi)-MasserGramain) 2971287362132470 a001 2/31622993*121393^(13/18) 2971287362161594 a001 4/32951280099*701408733^(13/18) 2971287374406793 r009 Im(z^3+c),c=-21/46+1/6*I,n=30 2971287374731133 a001 2207*(1/2*5^(1/2)+1/2)^8*3^(23/24) 2971287376983892 r002 33th iterates of z^2 + 2971287381516460 a001 439204/4181*514229^(21/22) 2971287381529843 a001 9349/2178309*20365011074^(21/22) 2971287384855521 a007 Real Root Of -3*x^4+378*x^3-862*x^2-393*x-904 2971287390855281 r009 Im(z^3+c),c=-9/19+4/27*I,n=29 2971287391638573 m001 (-BesselJ(0,1)+ZetaP(4))/(2^(1/3)+Shi(1)) 2971287392122442 a003 cos(Pi*43/96)+cos(Pi*16/35) 2971287401275839 r005 Re(z^2+c),c=-9/28+25/62*I,n=40 2971287410564764 a001 1149851/10946*514229^(21/22) 2971287410564884 a001 24476/5702887*20365011074^(21/22) 2971287413502474 r008 a(0)=3,K{-n^6,34+7*n^3-10*n^2+5*n} 2971287414801040 a001 64079/14930352*20365011074^(21/22) 2971287414802854 a001 3010349/28657*514229^(21/22) 2971287415419087 a001 167761/39088169*20365011074^(21/22) 2971287415421184 a001 7881196/75025*514229^(21/22) 2971287415509258 a001 439204/102334155*20365011074^(21/22) 2971287415511397 a001 20633239/196418*514229^(21/22) 2971287415522414 a001 1149851/267914296*20365011074^(21/22) 2971287415524334 a001 3010349/701408733*20365011074^(21/22) 2971287415524558 a001 54018521/514229*514229^(21/22) 2971287415524614 a001 7881196/1836311903*20365011074^(21/22) 2971287415524655 a001 20633239/4807526976*20365011074^(21/22) 2971287415524661 a001 54018521/12586269025*20365011074^(21/22) 2971287415524661 a001 271444/63246219*20365011074^(21/22) 2971287415524662 a001 370248451/86267571272*20365011074^(21/22) 2971287415524662 a001 969323029/225851433717*20365011074^(21/22) 2971287415524662 a001 2537720636/591286729879*20365011074^(21/22) 2971287415524662 a001 6643838879/1548008755920*20365011074^(21/22) 2971287415524662 a001 17393796001/4052739537881*20365011074^(21/22) 2971287415524662 a001 45537549124/10610209857723*20365011074^(21/22) 2971287415524662 a001 28143753123/6557470319842*20365011074^(21/22) 2971287415524662 a001 10749957122/2504730781961*20365011074^(21/22) 2971287415524662 a001 4106118243/956722026041*20365011074^(21/22) 2971287415524662 a001 1568397607/365435296162*20365011074^(21/22) 2971287415524662 a001 599074578/139583862445*20365011074^(21/22) 2971287415524662 a001 228826127/53316291173*20365011074^(21/22) 2971287415524662 a001 87403803/20365011074*20365011074^(21/22) 2971287415524664 a001 33385282/7778742049*20365011074^(21/22) 2971287415524680 a001 12752043/2971215073*20365011074^(21/22) 2971287415524787 a001 4870847/1134903170*20365011074^(21/22) 2971287415525520 a001 1860498/433494437*20365011074^(21/22) 2971287415526479 a001 141422324/1346269*514229^(21/22) 2971287415526759 a001 370248451/3524578*514229^(21/22) 2971287415526800 a001 969323029/9227465*514229^(21/22) 2971287415526806 a001 2537720636/24157817*514229^(21/22) 2971287415526807 a001 6643838879/63245986*514229^(21/22) 2971287415526807 a001 17393796001/165580141*514229^(21/22) 2971287415526807 a001 45537549124/433494437*514229^(21/22) 2971287415526807 a001 119218851371/1134903170*514229^(21/22) 2971287415526807 a001 312119004989/2971215073*514229^(21/22) 2971287415526807 a001 817138163596/7778742049*514229^(21/22) 2971287415526807 a001 2139295485799/20365011074*514229^(21/22) 2971287415526807 a001 5600748293801/53316291173*514229^(21/22) 2971287415526807 a001 14662949395604/139583862445*514229^(21/22) 2971287415526807 a001 23725150497407/225851433717*514229^(21/22) 2971287415526807 a001 9062201101803/86267571272*514229^(21/22) 2971287415526807 a001 3461452808002/32951280099*514229^(21/22) 2971287415526807 a001 1322157322203/12586269025*514229^(21/22) 2971287415526807 a001 10745088481/102287808*514229^(21/22) 2971287415526807 a001 192900153618/1836311903*514229^(21/22) 2971287415526807 a001 73681302247/701408733*514229^(21/22) 2971287415526807 a001 28143753123/267914296*514229^(21/22) 2971287415526807 a001 10749957122/102334155*514229^(21/22) 2971287415526807 a001 4106118243/39088169*514229^(21/22) 2971287415526809 a001 1568397607/14930352*514229^(21/22) 2971287415526825 a001 599074578/5702887*514229^(21/22) 2971287415526932 a001 4868641/46347*514229^(21/22) 2971287415527666 a001 87403803/832040*514229^(21/22) 2971287415530545 a001 710647/165580141*20365011074^(21/22) 2971287415532693 a001 33385282/317811*514229^(21/22) 2971287415564988 a001 271443/63245986*20365011074^(21/22) 2971287415567151 a001 12752043/121393*514229^(21/22) 2971287415801061 a001 103682/24157817*20365011074^(21/22) 2971287415803332 a001 4870847/46368*514229^(21/22) 2971287416394233 a003 sin(Pi*9/109)/cos(Pi*16/95) 2971287417271272 a007 Real Root Of 188*x^4-656*x^3-329*x^2-832*x+292 2971287417419128 a001 39603/9227465*20365011074^(21/22) 2971287417422138 a001 1860498/17711*514229^(21/22) 2971287426831706 a001 13*3571^(52/55) 2971287428509527 a001 15127/3524578*20365011074^(21/22) 2971287428517604 a001 710647/6765*514229^(21/22) 2971287429183156 m005 (1/2*2^(1/2)+6)/(4/11*Pi-11/12) 2971287431492067 a001 1364/3*591286729879^(11/19) 2971287432361160 r005 Im(z^2+c),c=-19/30+25/73*I,n=39 2971287452993540 r005 Im(z^2+c),c=-89/118+8/45*I,n=7 2971287457240084 a007 Real Root Of 198*x^4+575*x^3+5*x^2-154*x-851 2971287463086789 r005 Re(z^2+c),c=-23/60+4/55*I,n=27 2971287466174595 r005 Re(z^2+c),c=-13/28+22/47*I,n=8 2971287468465040 a001 9062201101803/233*2971215073^(7/23) 2971287474696075 a001 9349/89*46368^(3/31) 2971287482564673 m001 (Trott2nd-ZetaQ(4))/(Mills-TreeGrowth2nd) 2971287486177852 m001 (Sarnak-ZetaP(3))/(ln(2^(1/2)+1)+cos(1/12*Pi)) 2971287500264368 r005 Re(z^2+c),c=-37/102+6/25*I,n=23 2971287504524253 a001 5778/1346269*20365011074^(21/22) 2971287504567055 a001 271443/2584*514229^(21/22) 2971287509236287 a007 Real Root Of -183*x^4+728*x^3+27*x^2+989*x+312 2971287515556344 r009 Im(z^3+c),c=-19/34+6/13*I,n=24 2971287516453392 h005 exp(cos(Pi*1/28)/sin(Pi*15/41)) 2971287519622452 m005 (1/5*gamma+3/4)/(2/5*exp(1)-4) 2971287520094549 m001 1/ln(LambertW(1))^2/Kolakoski/log(2+sqrt(3)) 2971287523567907 m002 Pi^5-Cosh[Pi]*Coth[Pi]+Pi/Log[Pi] 2971287525547425 h001 (1/11*exp(1)+7/10)/(3/8*exp(2)+5/12) 2971287536066552 r008 a(0)=3,K{-n^6,18+17*n+n^2} 2971287537114088 a001 2/121393*21^(19/20) 2971287540805146 a001 1/10959*121393^(38/55) 2971287552061361 m001 (sin(1/5*Pi)+FeigenbaumMu)^LandauRamanujan 2971287555620450 a007 Real Root Of -76*x^4-54*x^3+824*x^2+607*x-964 2971287562355281 m001 BesselJ(0,1)^(CopelandErdos/Trott) 2971287564428318 a001 9349/610*233^(31/57) 2971287566196732 b008 -4+Sqrt[Sec[1/3]] 2971287570650194 a001 10182505537/682*18^(5/21) 2971287573827112 a001 139583862445/199*521^(3/13) 2971287574544340 r008 a(0)=3,K{-n^6,-27-20*n+54*n^2+28*n^3} 2971287575305659 m001 exp(GAMMA(2/3))*GaussKuzminWirsing^2/Zeta(3) 2971287579057551 r008 a(0)=3,K{-n^6,-35+33*n^3+35*n^2+2*n} 2971287579860632 r008 a(0)=3,K{-n^6,-43+35*n^3+25*n^2+18*n} 2971287582232504 r008 a(0)=3,K{-n^6,-25+34*n^3+37*n^2-11*n} 2971287584562461 r008 a(0)=3,K{-n^6,-61+59*n-5*n^2+42*n^3} 2971287585320914 r008 a(0)=3,K{-n^6,3+32*n^3+57*n^2-57*n} 2971287586456593 r008 a(0)=3,K{-n^6,27+29*n^3+78*n^2-99*n} 2971287586611429 m004 3+E^(Sqrt[5]*Pi)/6+(150*Sqrt[5])/Pi 2971287591983296 r008 a(0)=3,K{-n^6,9-56*n+45*n^2+37*n^3} 2971287595141509 m001 FeigenbaumKappa*Khinchin^Kolakoski 2971287596905038 r008 a(0)=3,K{-n^6,-17+n+5*n^2+46*n^3} 2971287600210210 g006 Psi(1,2/11)+Psi(1,5/6)-Psi(1,9/10)-Psi(1,6/7) 2971287609222051 r008 a(0)=3,K{-n^6,-31+52*n-47*n^2+61*n^3} 2971287610889495 r005 Re(z^2+c),c=25/106+1/15*I,n=24 2971287615734485 r008 a(0)=3,K{-n^6,-35+69*n^3-73*n^2+74*n} 2971287617718347 r008 a(0)=3,K{-n^6,15+63*n^3-30*n^2-13*n} 2971287618092452 r009 Im(z^3+c),c=-1/32+42/53*I,n=2 2971287623709021 r008 a(0)=3,K{-n^6,41+66*n^3-26*n^2-46*n} 2971287626209680 l006 ln(499/9739) 2971287626209680 p004 log(9739/499) 2971287640651576 a001 98209/2*76^(18/19) 2971287649240047 m002 -Pi^2+Pi^5+Log[Pi]-Tanh[Pi]/6 2971287658245852 r008 a(0)=3,K{-n^6,62-25*n-5*n^3} 2971287663213878 a007 Real Root Of 101*x^4+66*x^3-428*x^2+894*x+294 2971287677124119 k002 Champernowne real with 87*n^2-219*n+161 2971287680239196 m001 ErdosBorwein/ln(Artin)^2/RenyiParking^2 2971287696958135 r005 Im(z^2+c),c=-7/34+11/25*I,n=19 2971287698702626 a001 96450076809/305*610^(17/24) 2971287699364224 g007 2*Psi(2,1/9)+Psi(2,1/3)-Psi(2,7/8) 2971287722726347 a007 Real Root Of -66*x^4+101*x^3+602*x^2-978*x-427 2971287739795692 r005 Re(z^2+c),c=17/54+33/59*I,n=60 2971287741649480 r005 Im(z^2+c),c=-37/36+19/55*I,n=8 2971287758380825 r005 Im(z^2+c),c=5/56+17/57*I,n=5 2971287761505748 m001 (2^(1/3)+exp(1))/(-BesselI(0,1)+gamma(1)) 2971287788744412 a007 Real Root Of 48*x^4-34*x^3+336*x^2-707*x-241 2971287801131017 r005 Re(z^2+c),c=-7/29+27/52*I,n=16 2971287805819742 m001 (BesselK(1,1)-ArtinRank2)/(MertensB1+Otter) 2971287810250748 r005 Re(z^2+c),c=27/106+2/23*I,n=23 2971287849598658 m005 (1/2*3^(1/2)+3/7)/(1/6*2^(1/2)+1/5) 2971287849661567 m001 (ErdosBorwein+Trott)/(Catalan+Zeta(1/2)) 2971287853958457 r009 Im(z^3+c),c=-19/66+10/37*I,n=3 2971287855896990 s001 sum(exp(-Pi/2)^(n-1)*A236303[n],n=1..infinity) 2971287881678604 r005 Im(z^2+c),c=-13/50+24/53*I,n=17 2971287886055506 l005 sech(547/84) 2971287891351183 g006 -Psi(1,11/12)-2*Psi(1,1/11)-Psi(1,1/7) 2971287892005816 a005 (1/cos(11/194*Pi))^357 2971287895228138 m001 (-2*Pi/GAMMA(5/6)+OneNinth)/(2^(1/3)+gamma) 2971287898334169 l006 ln(7217/9714) 2971287906193305 m002 30/Pi^3+E^Pi*Csch[Pi] 2971287910120745 r005 Re(z^2+c),c=-7/20+3/10*I,n=31 2971287926879338 a007 Real Root Of 202*x^4-755*x^3+99*x^2-345*x+112 2971287931500697 a001 141422324/1597*63245986^(17/24) 2971287933395171 a001 39603/1597*6557470319842^(17/24) 2971287940410036 r005 Re(z^2+c),c=-35/118+19/40*I,n=55 2971287956103670 r008 a(0)=3,K{-n^6,-68+36*n^3+10*n^2+57*n} 2971287961683302 r008 a(0)=3,K{-n^6,-16+32*n^3+48*n^2-29*n} 2971287964380530 r008 a(0)=3,K{-n^6,-38+16*n+19*n^2+38*n^3} 2971287964382965 r008 a(0)=3,K{-n^6,-62+60*n-5*n^2+42*n^3} 2971287965894446 r008 a(0)=3,K{-n^6,-60+43*n^3-7*n^2+59*n} 2971287966639499 r008 a(0)=3,K{-n^6,-26-2*n+25*n^2+38*n^3} 2971287971739760 r008 a(0)=3,K{-n^6,8-55*n+45*n^2+37*n^3} 2971287976455624 r005 Im(z^2+c),c=-27/50+19/52*I,n=8 2971287976827515 a007 Real Root Of -219*x^4-496*x^3+451*x^2+96*x+362 2971287990782304 p001 sum(1/(482*n+341)/(32^n),n=0..infinity) 2971287995327539 m001 FellerTornier^(FeigenbaumB/StronglyCareFree) 2971287997258848 r008 a(0)=3,K{-n^6,14+63*n^3-30*n^2-12*n} 2971288003200625 r008 a(0)=3,K{-n^6,40+66*n^3-26*n^2-45*n} 2971288010051852 a007 Real Root Of -55*x^4-339*x^3-730*x^2-870*x-746 2971288011580391 m005 (1/2*Pi+1/8)/(2/7*2^(1/2)+1/6) 2971288020054825 p003 LerchPhi(1/12,5,407/201) 2971288021767471 m001 1/Niven^2/MertensB1^2*ln(arctan(1/2))^2 2971288025536939 a001 2207/514229*20365011074^(21/22) 2971288025817856 a001 2206/21*514229^(21/22) 2971288026772897 r005 Im(z^2+c),c=-3/13+13/29*I,n=42 2971288029962175 r008 a(0)=3,K{-n^6,86+98*n^3-99*n^2-50*n} 2971288036295926 r005 Im(z^2+c),c=31/114+7/48*I,n=11 2971288036931780 r009 Im(z^3+c),c=-53/118+4/23*I,n=29 2971288062240529 a008 Real Root of x^4+11*x^2-2*x-181 2971288075183856 l006 ln(5821/7835) 2971288104299138 r008 a(0)=3,K{-n^6,45-20*n^3+9*n^2} 2971288108618885 r009 Re(z^3+c),c=-7/118+27/44*I,n=12 2971288128382643 a001 2/39603*7^(51/56) 2971288129273027 r005 Re(z^2+c),c=-5/14+1/4*I,n=8 2971288130510600 a001 370248451/4181*63245986^(17/24) 2971288130787000 a001 103682/4181*6557470319842^(17/24) 2971288131781373 r005 Re(z^2+c),c=-23/60+4/55*I,n=29 2971288134306328 a007 Real Root Of -447*x^4+479*x^3-235*x^2+556*x+202 2971288137230847 m001 (ArtinRank2-FeigenbaumB)/(ZetaP(2)+ZetaQ(4)) 2971288144009138 h001 (1/12*exp(2)+1/12)/(1/5*exp(2)+7/8) 2971288155680435 r005 Re(z^2+c),c=-25/86+26/53*I,n=48 2971288159545756 a001 969323029/10946*63245986^(17/24) 2971288159586082 a001 271443/10946*6557470319842^(17/24) 2971288163781928 a001 2537720636/28657*63245986^(17/24) 2971288163787812 a001 710647/28657*6557470319842^(17/24) 2971288164399977 a001 6643838879/75025*63245986^(17/24) 2971288164400836 a001 1860498/75025*6557470319842^(17/24) 2971288164490149 a001 17393796001/196418*63245986^(17/24) 2971288164490275 a001 4870847/196418*6557470319842^(17/24) 2971288164503305 a001 45537549124/514229*63245986^(17/24) 2971288164503324 a001 12752043/514229*6557470319842^(17/24) 2971288164505225 a001 119218851371/1346269*63245986^(17/24) 2971288164505227 a001 33385282/1346269*6557470319842^(17/24) 2971288164505505 a001 312119004989/3524578*63245986^(17/24) 2971288164505505 a001 87403803/3524578*6557470319842^(17/24) 2971288164505546 a001 228826127/9227465*6557470319842^(17/24) 2971288164505546 a001 817138163596/9227465*63245986^(17/24) 2971288164505552 a001 599074578/24157817*6557470319842^(17/24) 2971288164505552 a001 2139295485799/24157817*63245986^(17/24) 2971288164505552 a001 1568397607/63245986*6557470319842^(17/24) 2971288164505553 a001 5600748293801/63245986*63245986^(17/24) 2971288164505553 a001 4106118243/165580141*6557470319842^(17/24) 2971288164505553 a001 10749957122/433494437*6557470319842^(17/24) 2971288164505553 a001 28143753123/1134903170*6557470319842^(17/24) 2971288164505553 a001 73681302247/2971215073*6557470319842^(17/24) 2971288164505553 a001 192900153618/7778742049*6557470319842^(17/24) 2971288164505553 a001 505019158607/20365011074*6557470319842^(17/24) 2971288164505553 a001 817138163596/32951280099*6557470319842^(17/24) 2971288164505553 a001 28374454999/1144206275*6557470319842^(17/24) 2971288164505553 a001 119218851371/4807526976*6557470319842^(17/24) 2971288164505553 a001 45537549124/1836311903*6557470319842^(17/24) 2971288164505553 a001 17393796001/701408733*6557470319842^(17/24) 2971288164505553 a001 6643838879/267914296*6557470319842^(17/24) 2971288164505553 a001 230701876/9303105*6557470319842^(17/24) 2971288164505553 a001 14662949395604/165580141*63245986^(17/24) 2971288164505553 a001 23725150497407/267914296*63245986^(17/24) 2971288164505553 a001 3020733700601/34111385*63245986^(17/24) 2971288164505553 a001 969323029/39088169*6557470319842^(17/24) 2971288164505553 a001 3461452808002/39088169*63245986^(17/24) 2971288164505555 a001 370248451/14930352*6557470319842^(17/24) 2971288164505555 a001 440719107401/4976784*63245986^(17/24) 2971288164505571 a001 141422324/5702887*6557470319842^(17/24) 2971288164505571 a001 505019158607/5702887*63245986^(17/24) 2971288164505677 a001 54018521/2178309*6557470319842^(17/24) 2971288164505678 a001 64300051206/726103*63245986^(17/24) 2971288164506404 a001 1875749/75640*6557470319842^(17/24) 2971288164506411 a001 73681302247/832040*63245986^(17/24) 2971288164511388 a001 7881196/317811*6557470319842^(17/24) 2971288164511436 a001 9381251041/105937*63245986^(17/24) 2971288164545551 a001 3010349/121393*6557470319842^(17/24) 2971288164545879 a001 10749957122/121393*63245986^(17/24) 2971288164779705 a001 1149851/46368*6557470319842^(17/24) 2971288164781953 a001 1368706081/15456*63245986^(17/24) 2971288166384623 a001 439204/17711*6557470319842^(17/24) 2971288166400027 a001 1568397607/17711*63245986^(17/24) 2971288177384894 a001 15251/615*6557470319842^(17/24) 2971288177490469 a001 199691526/2255*63245986^(17/24) 2971288184092500 r005 Re(z^2+c),c=-23/60+4/55*I,n=32 2971288184907369 r005 Re(z^2+c),c=-19/62+9/17*I,n=17 2971288189600176 g005 GAMMA(8/11)*GAMMA(2/11)/GAMMA(8/9)/GAMMA(4/9) 2971288194212109 v003 sum((21/2*n^2-29/2*n+20)/(n!+2),n=1..infinity) 2971288197040573 r005 Re(z^2+c),c=-23/60+4/55*I,n=34 2971288209618297 l006 ln(176/3435) 2971288211230735 r005 Re(z^2+c),c=-23/60+4/55*I,n=36 2971288214221258 m001 (RenyiParking-Zeta(1,2))/LambertW(1) 2971288218632275 r009 Im(z^3+c),c=-19/44+11/58*I,n=24 2971288219325016 r005 Re(z^2+c),c=-23/60+4/55*I,n=38 2971288221596331 a007 Real Root Of -28*x^4-801*x^3+929*x^2+303*x+997 2971288223053067 r005 Re(z^2+c),c=-23/60+4/55*I,n=40 2971288224355706 r005 Re(z^2+c),c=-23/60+4/55*I,n=30 2971288224566485 r005 Re(z^2+c),c=-23/60+4/55*I,n=42 2971288225123093 r005 Re(z^2+c),c=-23/60+4/55*I,n=44 2971288225309210 r005 Re(z^2+c),c=-23/60+4/55*I,n=46 2971288225364838 r005 Re(z^2+c),c=-23/60+4/55*I,n=48 2971288225378884 r005 Re(z^2+c),c=-23/60+4/55*I,n=50 2971288225379090 r005 Re(z^2+c),c=-23/60+4/55*I,n=53 2971288225379504 r005 Re(z^2+c),c=-23/60+4/55*I,n=55 2971288225379684 r005 Re(z^2+c),c=-23/60+4/55*I,n=51 2971288225379867 r005 Re(z^2+c),c=-23/60+4/55*I,n=57 2971288225380064 r005 Re(z^2+c),c=-23/60+4/55*I,n=59 2971288225380152 r005 Re(z^2+c),c=-23/60+4/55*I,n=61 2971288225380187 r005 Re(z^2+c),c=-23/60+4/55*I,n=63 2971288225380215 r005 Re(z^2+c),c=-23/60+4/55*I,n=64 2971288225380237 r005 Re(z^2+c),c=-23/60+4/55*I,n=62 2971288225380293 r005 Re(z^2+c),c=-23/60+4/55*I,n=60 2971288225380427 r005 Re(z^2+c),c=-23/60+4/55*I,n=58 2971288225380702 r005 Re(z^2+c),c=-23/60+4/55*I,n=56 2971288225381134 r005 Re(z^2+c),c=-23/60+4/55*I,n=54 2971288225381301 r005 Re(z^2+c),c=-23/60+4/55*I,n=52 2971288225385991 r005 Re(z^2+c),c=-23/60+4/55*I,n=49 2971288225414726 r005 Re(z^2+c),c=-23/60+4/55*I,n=47 2971288225518135 r005 Re(z^2+c),c=-23/60+4/55*I,n=45 2971288225844014 r005 Re(z^2+c),c=-23/60+4/55*I,n=43 2971288226772616 r005 Re(z^2+c),c=-23/60+4/55*I,n=41 2971288229119258 r005 Re(z^2+c),c=-41/122+17/48*I,n=21 2971288229179807 r005 Re(z^2+c),c=-23/60+4/55*I,n=39 2971288234778271 r005 Re(z^2+c),c=-23/60+4/55*I,n=37 2971288234912460 r005 Re(z^2+c),c=-17/58+31/64*I,n=60 2971288236995422 m001 (DuboisRaymond+Khinchin)/(Kolakoski+ZetaP(3)) 2971288245904375 r005 Re(z^2+c),c=-23/60+4/55*I,n=35 2971288251081065 m001 (Zeta(3)+ln(2))/(DuboisRaymond-FeigenbaumB) 2971288252781873 a001 64079/2584*6557470319842^(17/24) 2971288253505498 a001 228826127/2584*63245986^(17/24) 2971288257241279 a007 Real Root Of 8*x^4+251*x^3+425*x^2+920*x+930 2971288260430692 r005 Re(z^2+c),c=-23/60+4/55*I,n=31 2971288261781710 r005 Re(z^2+c),c=-23/60+4/55*I,n=33 2971288261974541 s002 sum(A252745[n]/(n*exp(pi*n)+1),n=1..infinity) 2971288269821567 a001 1/1149851*322^(10/47) 2971288294051332 r009 Im(z^3+c),c=-8/13+23/57*I,n=4 2971288297849351 h001 (3/5*exp(1)+1/2)/(10/11*exp(2)+5/11) 2971288332727424 r008 a(0)=3,K{-n^6,-27-21*n+55*n^2+28*n^3} 2971288342912626 r008 a(0)=3,K{-n^6,-59+55*n-3*n^2+42*n^3} 2971288343280493 r008 a(0)=3,K{-n^6,3+32*n^3+58*n^2-58*n} 2971288343659630 r008 a(0)=3,K{-n^6,-61+43*n^3-7*n^2+60*n} 2971288344398254 r008 a(0)=3,K{-n^6,-27-n+25*n^2+38*n^3} 2971288344716808 h001 (-4*exp(-2)-8)/(-8*exp(1)-7) 2971288350822740 a007 Real Root Of -207*x^4-850*x^3-942*x^2-856*x-390 2971288354933282 m001 (2^(1/3)-ln(2))/(-MertensB1+ZetaP(2)) 2971288357942231 r008 a(0)=3,K{-n^6,21+43*n^3+34*n^2-63*n} 2971288363618697 l006 ln(4425/5956) 2971288363661688 a007 Real Root Of 219*x^4+539*x^3-508*x^2-646*x-365 2971288370237271 r008 a(0)=3,K{-n^6,-19+37*n-46*n^2+63*n^3} 2971288374482360 r008 a(0)=3,K{-n^6,35-52*n-7*n^2+59*n^3} 2971288379306575 a001 1/987*4181^(4/31) 2971288383863793 m001 FellerTornier^RenyiParking/exp(1/exp(1)) 2971288390102357 p004 log(31481/1613) 2971288390492904 m001 (Pi^(1/2)+TwinPrimes)/(cos(1/5*Pi)-gamma(2)) 2971288391351769 r005 Im(z^2+c),c=-17/62+13/29*I,n=7 2971288399094499 a007 Real Root Of 475*x^4+542*x^3+149*x^2-745*x-224 2971288399674442 r005 Re(z^2+c),c=31/106+5/42*I,n=21 2971288399874591 a007 Real Root Of -221*x^4-809*x^3-805*x^2-953*x+279 2971288407203443 r008 a(0)=3,K{-n^6,85+98*n^3-99*n^2-49*n} 2971288415849327 a001 225851433717/199*521^(2/13) 2971288424277714 r005 Im(z^2+c),c=-21/62+24/49*I,n=20 2971288432223192 r002 8th iterates of z^2 + 2971288436343190 m001 2^(1/2)-ln(2^(1/2)+1)-CopelandErdos 2971288436777156 h001 (-2*exp(-2)-5)/(-5*exp(2/3)-8) 2971288441645497 r009 Re(z^3+c),c=-37/94+10/31*I,n=13 2971288451978418 m005 (1/2*exp(1)-2/7)/(3/11*3^(1/2)-1/9) 2971288454646119 r005 Re(z^2+c),c=-37/102+11/46*I,n=18 2971288463516026 a001 682/5473*987^(23/50) 2971288467926381 m005 (1/2*Catalan+6/7)/(1/11*Zeta(3)+1/3) 2971288492597624 m005 (1/2*Catalan-8/11)/(4/7*Pi-8/9) 2971288496408923 m001 1/exp(FransenRobinson)/sin(Pi/5)^3 2971288497666379 m005 (1/2*exp(1)+4/7)/(10/11*gamma+1/8) 2971288500960655 a001 906242992793/305 2971288503269210 r005 Re(z^2+c),c=-19/50+7/60*I,n=16 2971288504629475 r005 Im(z^2+c),c=-35/29+13/35*I,n=5 2971288506001640 r005 Re(z^2+c),c=-15/56+19/34*I,n=45 2971288507361482 r008 a(0)=3,K{-n^6,19-14*n^3-22*n^2+51*n} 2971288520930030 h003 exp(Pi*(11/(9+2^(1/4)))) 2971288521890529 r005 Re(z^2+c),c=-8/23+17/55*I,n=39 2971288527776241 m001 Pi/Psi(1,1/3)-Si(Pi)*Pi^(1/2) 2971288535971377 r005 Re(z^2+c),c=-23/60+4/55*I,n=28 2971288555069882 m001 PlouffeB*(BesselI(1,2)-cos(1/12*Pi)) 2971288555702430 m001 ln(2+3^(1/2))*(ln(2^(1/2)+1)+exp(1/Pi)) 2971288555702430 m001 ln(2+sqrt(3))*(ln(1+sqrt(2))+exp(1/Pi)) 2971288579546358 a007 Real Root Of 869*x^4+493*x^3-868*x^2-845*x+308 2971288587408515 r008 a(0)=3,K{-n^6,35+58*n-10*n^2-14*n^3} 2971288588864090 l006 ln(7454/10033) 2971288603566669 a001 13/5778*18^(25/28) 2971288604774859 a009 1/276*5^(1/3)*23^(1/2) 2971288609323591 a001 3524667*1364^(14/15) 2971288616165013 m001 Gompertz*(2^(1/2)-Catalan) 2971288621255515 h001 (-4*exp(3/2)-6)/(-7*exp(-2)+9) 2971288626857230 m002 -E^Pi-6/Pi^3+Pi^6/3 2971288636944926 a007 Real Root Of 541*x^4-654*x^3-647*x^2-195*x+128 2971288638306457 r005 Re(z^2+c),c=-11/14+5/119*I,n=30 2971288643310656 a001 5/4870847*4^(23/30) 2971288650346490 r002 3th iterates of z^2 + 2971288652868480 a007 Real Root Of 99*x^4-45*x^3+744*x^2-570*x-237 2971288663140389 r005 Im(z^2+c),c=-21/118+44/47*I,n=3 2971288667825558 r002 58th iterates of z^2 + 2971288680124719 k002 Champernowne real with 175/2*n^2-441/2*n+162 2971288680270441 r005 Im(z^2+c),c=31/122+5/29*I,n=31 2971288698598028 a007 Real Root Of 342*x^4+926*x^3-445*x^2-729*x-603 2971288714984900 m004 -5-(25*E^(Sqrt[5]*Pi))/(3*Pi)+5*Pi 2971288715792915 a001 1134903170/199*1364^(13/15) 2971288717140737 m002 -E^Pi+Pi^3*Tanh[Pi]-Pi^5*Tanh[Pi] 2971288718286758 r008 a(0)=3,K{-n^6,-62+59*n-4*n^2+42*n^3} 2971288718658592 r008 a(0)=3,K{-n^6,-60+56*n-3*n^2+42*n^3} 2971288719023297 r008 a(0)=3,K{-n^6,2+32*n^3+58*n^2-57*n} 2971288719123657 m001 ZetaP(3)*ZetaQ(3)^Artin 2971288722999741 m001 (LaplaceLimit-Trott2nd)/(sin(1/5*Pi)-Artin) 2971288725493974 r008 a(0)=3,K{-n^6,8-56*n+46*n^2+37*n^3} 2971288726397537 r005 Re(z^2+c),c=-17/60+20/41*I,n=21 2971288734091348 q001 1/3365543 2971288737599111 r005 Im(z^2+c),c=-31/94+16/33*I,n=40 2971288740154855 r005 Re(z^2+c),c=-8/23+17/55*I,n=42 2971288744015360 r008 a(0)=3,K{-n^6,-14+23*n-34*n^2+60*n^3} 2971288745465767 r008 a(0)=3,K{-n^6,-28+52*n-53*n^2+64*n^3} 2971288745545690 a001 1/48*2^(21/41) 2971288745619158 m001 (Zeta(1/2)-GAMMA(13/24))/(MertensB2+ZetaQ(3)) 2971288750237687 r008 a(0)=3,K{-n^6,30-43*n-12*n^2+60*n^3} 2971288750512098 r008 a(0)=3,K{-n^6,14+63*n^3-29*n^2-13*n} 2971288756341263 r008 a(0)=3,K{-n^6,40+66*n^3-25*n^2-46*n} 2971288765998025 m005 (1/2+1/2*5^(1/2))/(6/11*Zeta(3)-1/9) 2971288769560558 a001 24476/987*6557470319842^(17/24) 2971288774520356 a001 29134601/329*63245986^(17/24) 2971288774538176 a007 Real Root Of -810*x^4+187*x^3-157*x^2+794*x+261 2971288780115536 r005 Re(z^2+c),c=-27/82+17/45*I,n=38 2971288785433857 m001 GAMMA(1/12)^2/Salem^2*exp(LambertW(1))^2 2971288791079687 r005 Im(z^2+c),c=-13/60+27/61*I,n=24 2971288791370848 r002 38th iterates of z^2 + 2971288794889512 m001 (LambertW(1)+GAMMA(23/24))/(-CareFree+Rabbit) 2971288797489582 r005 Im(z^2+c),c=-1/48+35/44*I,n=33 2971288798268976 m001 (Pi+ln(2^(1/2)+1))/(GAMMA(7/12)-ZetaP(3)) 2971288805661224 r009 Im(z^3+c),c=-37/94+13/61*I,n=4 2971288821892008 s001 sum(exp(-Pi)^n*A132472[n],n=1..infinity) 2971288821892008 s002 sum(A132472[n]/(exp(pi*n)),n=1..infinity) 2971288822262242 a001 1836311903/199*1364^(4/5) 2971288823378219 r002 50th iterates of z^2 + 2971288828814125 r005 Im(z^2+c),c=13/56+6/31*I,n=22 2971288836826770 r005 Im(z^2+c),c=-15/118+15/37*I,n=37 2971288858653146 m001 FeigenbaumAlpha/HardyLittlewoodC4/Trott2nd 2971288861937889 r002 32th iterates of z^2 + 2971288866893943 m001 ln(Pi)^Pi/(AlladiGrinstead^Pi) 2971288907657760 m001 (Pi^(1/2))^Mills+Thue 2971288910965072 r005 Im(z^2+c),c=3/56+13/41*I,n=16 2971288912979144 h001 (4/11*exp(1)+8/9)/(9/11*exp(2)+3/11) 2971288913928010 m005 (1/2*Zeta(3)+7/10)/(1/9*Zeta(3)-4/7) 2971288917920161 l006 ln(3029/4077) 2971288917966262 a001 76/843*(1/2*5^(1/2)+1/2)^11*843^(5/12) 2971288920812022 m001 GAMMA(11/24)*exp(Rabbit)^2/GAMMA(13/24)^2 2971288928666702 r005 Im(z^2+c),c=-37/118+18/31*I,n=43 2971288928731574 a001 2971215073/199*1364^(11/15) 2971288949358416 r005 Im(z^2+c),c=-1/10+24/61*I,n=24 2971288957497387 a001 24476/1597*233^(31/57) 2971288964100572 a008 Real Root of x^4-x^3+2*x^2-22*x-4 2971288966128773 m009 (3*Psi(1,1/3)+2/3)/(4*Psi(1,3/4)+1/4) 2971288968523139 r002 8th iterates of z^2 + 2971288969128631 m001 (-Artin+MertensB2)/(2^(1/2)+AlladiGrinstead) 2971288973714633 l006 ln(381/7436) 2971288973747487 r008 a(0)=3,K{-n^6,65+32*n^3-71*n^2+10*n} 2971288998545218 r005 Im(z^2+c),c=-9/32+29/62*I,n=58 2971288999620543 m001 ln(Riemann1stZero)/Khintchine^2*cos(Pi/5) 2971289000817662 a001 322/121393*2584^(42/47) 2971289001927964 r005 Re(z^2+c),c=-43/122+5/54*I,n=3 2971289003949104 r009 Re(z^3+c),c=-43/98+8/23*I,n=10 2971289008592282 r009 Re(z^3+c),c=-55/122+8/19*I,n=62 2971289010408958 a007 Real Root Of 648*x^4-933*x^3+458*x^2+397*x+48 2971289013974912 r008 a(0)=3,K{-n^6,42-3*n^3+11*n^2-13*n} 2971289021014105 a001 54018521/3*6765^(11/19) 2971289023564431 m001 (ln(gamma)+Tribonacci*ZetaQ(4))/Tribonacci 2971289028572018 a001 90481*63245986^(11/19) 2971289035200909 a001 4807526976/199*1364^(2/3) 2971289036561096 r009 Im(z^3+c),c=-3/44+17/53*I,n=8 2971289042821087 s002 sum(A074250[n]/((10^n+1)/n),n=1..infinity) 2971289043090877 r009 Im(z^3+c),c=-49/122+10/47*I,n=16 2971289043698900 a007 Real Root Of -40*x^4+132*x^3+589*x^2-440*x+73 2971289052899265 m001 GAMMA(1/3)-ln(1+sqrt(2))+GAMMA(19/24) 2971289062500000 r005 Im(z^2+c),c=-23/16+33/80*I,n=3 2971289062736592 a001 505019158607/1597*610^(17/24) 2971289069165274 m004 3+(150*Sqrt[5])/Pi+Cosh[Sqrt[5]*Pi]/3 2971289071396549 s001 sum(exp(-Pi/3)^n*A236568[n],n=1..infinity) 2971289083190223 a007 Real Root Of 231*x^4+388*x^3-737*x^2+237*x-616 2971289087945874 m004 5+125*Pi*Cos[Sqrt[5]*Pi]+5/Log[Sqrt[5]*Pi] 2971289088270574 r008 a(0)=3,K{-n^6,-71+40*n^3-2*n^2+68*n} 2971289092196193 r005 Re(z^2+c),c=-43/102+3/40*I,n=4 2971289093494252 r008 a(0)=3,K{-n^6,-61+43*n^3-6*n^2+59*n} 2971289094217856 r008 a(0)=3,K{-n^6,-27-2*n+26*n^2+38*n^3} 2971289094943370 r008 a(0)=3,K{-n^6,-65+45*n^3-14*n^2+69*n} 2971289095294130 r008 a(0)=3,K{-n^6,27+30*n^3+77*n^2-99*n} 2971289096987106 a007 Real Root Of -834*x^4+801*x^3-41*x^2+464*x+169 2971289107050298 r005 Im(z^2+c),c=29/94+18/43*I,n=35 2971289107516463 m001 cos(Pi/5)^2/BesselK(0,1)^2*ln(sqrt(5)) 2971289110866749 m001 Grothendieck*HardyLittlewoodC3+Tribonacci 2971289113191690 a007 Real Root Of -275*x^4-228*x^3+821*x^2+682*x-267 2971289116078348 r008 a(0)=3,K{-n^6,-1+56*n^3-15*n^2-5*n} 2971289116957944 r008 a(0)=3,K{-n^6,-31+52*n-48*n^2+62*n^3} 2971289120122574 r002 43th iterates of z^2 + 2971289123536774 a003 cos(Pi*22/107)*cos(Pi*39/103) 2971289128901981 r009 Re(z^3+c),c=-71/118+10/33*I,n=63 2971289135147842 r005 Re(z^2+c),c=7/30+4/63*I,n=26 2971289138357047 m005 (1/2*Pi+1/10)/(1/3*2^(1/2)+1/11) 2971289141670248 a001 7778742049/199*1364^(3/5) 2971289148839933 m001 TwinPrimes/exp(MertensB1)^2/log(2+sqrt(3)) 2971289155829975 r008 a(0)=3,K{-n^6,85+98*n^3-98*n^2-50*n} 2971289156230587 r008 a(0)=3,K{-n^6,-32-35*n+39*n^2-10*n^3} 2971289160743532 a001 64079/4181*233^(31/57) 2971289163092548 m001 (1+BesselI(0,2))/(-ReciprocalLucas+Thue) 2971289163130399 h001 (7/8*exp(2)+3/10)/(8/11*exp(1)+3/10) 2971289170691752 r004 Re(z^2+c),c=1/12+5/14*I,z(0)=I,n=25 2971289192522824 m005 (1/2*Pi-2/7)/(4/7*Catalan-1/11) 2971289198868634 r005 Im(z^2+c),c=-11/54+7/16*I,n=39 2971289213582075 m001 (arctan(1/3)+Conway)/(Psi(2,1/3)+BesselK(0,1)) 2971289229060474 r005 Re(z^2+c),c=25/118+7/18*I,n=20 2971289230668385 a001 3/55*987^(53/58) 2971289230822255 m001 BesselJ(0,1)+ln(2^(1/2)+1)+PisotVijayaraghavan 2971289238884050 a007 Real Root Of 268*x^4+800*x^3-322*x^2-846*x+426 2971289240943713 a001 196418/29*521^(13/55) 2971289248139591 a001 12586269025/199*1364^(8/15) 2971289250025875 m001 1/ln(Zeta(7))*Riemann2ndZero*sinh(1) 2971289257871780 a001 365435296162/199*521^(1/13) 2971289261746571 a001 1322157322203/4181*610^(17/24) 2971289266370482 m005 (1/2*gamma-1/6)/(1/4*Pi-3/8) 2971289272293578 r009 Re(z^3+c),c=-21/44+29/64*I,n=47 2971289273617264 m005 (1/2*Catalan+1/11)/(10/11*3^(1/2)+3/11) 2971289274106175 q001 1097/3692 2971289275529591 r008 a(0)=3,K{-n^6,55-9*n+5*n^2-17*n^3} 2971289286356571 a001 39603/2584*233^(31/57) 2971289290781737 a001 1730726404001/5473*610^(17/24) 2971289295017911 a001 9062201101803/28657*610^(17/24) 2971289295635961 a001 23725150497407/75025*610^(17/24) 2971289296017936 a001 3665737348901/11592*610^(17/24) 2971289297636011 a001 5600748293801/17711*610^(17/24) 2971289308726458 a001 2139295485799/6765*610^(17/24) 2971289320586224 m001 1/MadelungNaCl^2/ln(CopelandErdos)^2*Ei(1) 2971289339656988 m001 Psi(2,1/3)*BesselJ(0,1)*CareFree 2971289349990174 p004 log(34877/1787) 2971289354608938 a001 20365011074/199*1364^(7/15) 2971289384741515 a001 204284540899/646*610^(17/24) 2971289394627896 a007 Real Root Of 294*x^4-151*x^3+235*x^2-801*x-265 2971289407756198 r005 Re(z^2+c),c=-7/12+55/82*I,n=6 2971289415260218 r005 Re(z^2+c),c=-21/62+40/63*I,n=14 2971289437542066 r008 a(0)=3,K{-n^6,-30+15*n^3+94*n^2-44*n} 2971289444042821 l006 ln(4662/6275) 2971289446388722 r008 a(0)=3,K{-n^6,-62+27*n^3+42*n^2+28*n} 2971289454405671 r005 Re(z^2+c),c=-8/23+17/55*I,n=44 2971289457537279 a001 365435296162/843*123^(2/5) 2971289460049241 r008 a(0)=3,K{-n^6,-72+40*n^3-2*n^2+69*n} 2971289461078288 a001 32951280099/199*1364^(2/5) 2971289464502428 r008 a(0)=3,K{-n^6,-60+55*n-2*n^2+42*n^3} 2971289465225669 r008 a(0)=3,K{-n^6,-38+16*n+18*n^2+39*n^3} 2971289477056964 r005 Re(z^2+c),c=-8/23+17/55*I,n=40 2971289477751046 a001 9/98209*144^(7/10) 2971289480394712 m009 (1/2*Psi(1,3/4)+1/6)/(3/5*Psi(1,2/3)+3) 2971289481016362 m001 (ln(3)-Bloch)/(PlouffeB-Sierpinski) 2971289483755711 r008 a(0)=3,K{-n^6,32+46*n^3+32*n^2-75*n} 2971289485558289 r008 a(0)=3,K{-n^6,26-60*n+20*n^2+49*n^3} 2971289487985047 a001 89/2207*(1/2+1/2*5^(1/2))^52 2971289487985047 a001 89/2207*23725150497407^(13/16) 2971289487985047 a001 89/2207*505019158607^(13/14) 2971289489879396 a001 987/199*2537720636^(14/15) 2971289489879396 a001 987/199*17393796001^(6/7) 2971289489879396 a001 987/199*45537549124^(14/17) 2971289489879396 a001 987/199*817138163596^(14/19) 2971289489879396 a001 987/199*14662949395604^(2/3) 2971289489879396 a001 987/199*(1/2+1/2*5^(1/2))^42 2971289489879396 a001 987/199*505019158607^(3/4) 2971289489879396 a001 987/199*192900153618^(7/9) 2971289489879396 a001 987/199*10749957122^(7/8) 2971289489879396 a001 987/199*4106118243^(21/23) 2971289489879396 a001 987/199*1568397607^(21/22) 2971289491621383 r008 a(0)=3,K{-n^6,-10+20*n-37*n^2+62*n^3} 2971289497060451 r008 a(0)=3,K{-n^6,6+66*n^3-41*n^2+4*n} 2971289499659204 m001 ln(Pi)^KhinchinHarmonic+Niven 2971289515644617 m001 (arctan(1/2)-BesselI(0,2))/(Paris-Rabbit) 2971289518416107 r009 Im(z^3+c),c=-39/70+17/58*I,n=49 2971289530211849 a003 cos(Pi*7/97)-cos(Pi*5/19) 2971289537264895 m001 (Otter+Trott)/(2^(1/3)-MertensB1) 2971289538280293 a003 sin(Pi*4/103)/sin(Pi*9/67) 2971289540288617 a001 1/29*(1/2*5^(1/2)+1/2)^18*11^(1/6) 2971289543710137 m001 GAMMA(11/12)/Backhouse*HardyLittlewoodC5 2971289545928837 m001 1/FeigenbaumD/CareFree^2/exp(arctan(1/2))^2 2971289546074033 p004 log(21023/15619) 2971289553209284 a007 Real Root Of -168*x^4-373*x^3+522*x^2+292*x-431 2971289567547643 a001 53316291173/199*1364^(1/3) 2971289571677755 m001 (Totient+ZetaP(4))/(ln(gamma)-gamma(1)) 2971289599876670 a001 2584/521*7^(23/25) 2971289608368850 m001 1/Zeta(1/2)*ln(PisotVijayaraghavan)*cosh(1) 2971289626508022 a007 Real Root Of -898*x^4+447*x^3-702*x^2+923*x-217 2971289629718826 l006 ln(205/4001) 2971289630526731 r005 Re(z^2+c),c=-8/23+17/55*I,n=47 2971289631976661 p001 sum((-1)^n/(389*n+319)/(8^n),n=0..infinity) 2971289634196147 m001 ln(GAMMA(7/24))*GAMMA(1/3)^2/exp(1) 2971289635011664 g007 Psi(2,1/11)+Psi(2,1/6)-Psi(2,3/11)-Psi(2,3/7) 2971289639050115 a001 1/3*(1/2*5^(1/2)+1/2)^4*18^(1/11) 2971289648385369 m005 (1/3*Pi+2/11)/(10/11*gamma-1/9) 2971289674017001 a001 86267571272/199*1364^(4/15) 2971289683125319 k002 Champernowne real with 88*n^2-222*n+163 2971289688687262 m001 (1+3^(1/2))^(1/2)*(Magata-ln(5)) 2971289691060759 r005 Im(z^2+c),c=-51/98+23/38*I,n=35 2971289697200165 l006 ln(6295/8473) 2971289698581530 a007 Real Root Of 424*x^4+993*x^3-89*x^2-907*x+248 2971289700572377 r005 Re(z^2+c),c=-5/34+55/64*I,n=31 2971289714347645 r005 Re(z^2+c),c=-41/102+6/13*I,n=13 2971289718341862 m009 (2/5*Pi^2+3)/(6*Psi(1,2/3)+5) 2971289719189322 r005 Im(z^2+c),c=-5/17+26/55*I,n=45 2971289722841319 r005 Re(z^2+c),c=-8/23+17/55*I,n=49 2971289731677691 m001 Grothendieck^Tribonacci+ZetaP(4) 2971289731851162 l006 ln(630/649) 2971289739331983 r009 Re(z^3+c),c=-21/46+26/61*I,n=41 2971289744476217 r002 15th iterates of z^2 + 2971289759963832 r002 31th iterates of z^2 + 2971289777156892 r005 Re(z^2+c),c=-8/23+17/55*I,n=52 2971289777210795 h001 (1/11*exp(1)+5/7)/(7/8*exp(1)+6/7) 2971289780486363 a001 139583862445/199*1364^(1/5) 2971289780580344 r005 Re(z^2+c),c=-6/25+32/49*I,n=4 2971289784364119 a007 Real Root Of -81*x^4-132*x^3+157*x^2-394*x+294 2971289786216739 r005 Re(z^2+c),c=-8/23+17/55*I,n=54 2971289793654334 r001 34i'th iterates of 2*x^2-1 of 2971289794556747 m001 GAMMA(5/12)*exp(MertensB1)*Zeta(5)^2 2971289795419893 m008 (1/5*Pi^5-5/6)/(2/3*Pi^5-5/6) 2971289796584515 m008 (3*Pi+2)/(4*Pi^6-1/2) 2971289798369189 a007 Real Root Of -303*x^4-882*x^3+192*x^2+522*x+336 2971289798756867 m001 ln(Catalan)^2/Champernowne^2*sin(Pi/5) 2971289799446777 r005 Re(z^2+c),c=-8/23+17/55*I,n=57 2971289799617011 r005 Re(z^2+c),c=-8/23+17/55*I,n=59 2971289802236299 r005 Re(z^2+c),c=-8/23+17/55*I,n=64 2971289802370245 r005 Re(z^2+c),c=-8/23+17/55*I,n=61 2971289802470132 r005 Re(z^2+c),c=-8/23+17/55*I,n=62 2971289802586088 r005 Re(z^2+c),c=-8/23+17/55*I,n=56 2971289803443737 r005 Re(z^2+c),c=-8/23+17/55*I,n=63 2971289804539717 r005 Re(z^2+c),c=-8/23+17/55*I,n=60 2971289806928365 r005 Re(z^2+c),c=-8/23+17/55*I,n=58 2971289807541057 r008 a(0)=3,K{-n^6,-31+15*n^3+94*n^2-43*n} 2971289810034931 r005 Re(z^2+c),c=-8/23+17/55*I,n=55 2971289814054528 r005 Re(z^2+c),c=-8/23+17/55*I,n=51 2971289814828332 a007 Real Root Of -84*x^4+78*x^3+704*x^2-590*x+625 2971289816308899 r008 a(0)=3,K{-n^6,-63+27*n^3+42*n^2+29*n} 2971289818462060 a001 2161/141*233^(31/57) 2971289825793300 m001 (MertensB2+Rabbit)/(arctan(1/2)+Champernowne) 2971289826026169 r008 a(0)=3,K{-n^6,-27-21*n+54*n^2+29*n^3} 2971289826028263 r008 a(0)=3,K{-n^6,-45+32*n^3+36*n^2+12*n} 2971289827233581 r005 Re(z^2+c),c=-8/23+17/55*I,n=50 2971289827645928 r005 Re(z^2+c),c=-8/23+17/55*I,n=53 2971289831787359 a001 3571/28657*987^(23/50) 2971289836335707 r005 Im(z^2+c),c=-5/6+31/157*I,n=25 2971289842639837 r005 Re(z^2+c),c=-8/23+17/55*I,n=45 2971289854445176 r005 Re(z^2+c),c=25/78+8/63*I,n=21 2971289855143622 r008 a(0)=3,K{-n^6,25-59*n+20*n^2+49*n^3} 2971289860319706 r008 a(0)=3,K{-n^6,7+58*n^3-16*n^2-14*n} 2971289864994990 a001 4745149914397/1597 2971289866551784 r008 a(0)=3,K{-n^6,5+66*n^3-41*n^2+5*n} 2971289872578221 r005 Re(z^2+c),c=-23/60+4/55*I,n=26 2971289880595624 a001 267914296/199*3571^(16/17) 2971289881942682 a003 cos(Pi*1/40)/sin(Pi*11/101) 2971289886955729 a001 225851433717/199*1364^(2/15) 2971289894301802 a001 433494437/199*3571^(15/17) 2971289896682594 r008 a(0)=3,K{-n^6,99+96*n^3-84*n^2-76*n} 2971289900564109 r005 Re(z^2+c),c=-17/62+31/58*I,n=55 2971289901557971 m001 1/ln(Niven)*ErdosBorwein*Pi^2 2971289905756572 a001 312119004989/987*610^(17/24) 2971289905923591 r005 Im(z^2+c),c=4/13+7/64*I,n=25 2971289906468446 a007 Real Root Of 40*x^4-119*x^3-727*x^2-279*x-650 2971289908007979 a001 3524667*3571^(14/17) 2971289909215327 m001 1/exp(GAMMA(19/24))^2*LaplaceLimit/Zeta(1/2)^2 2971289909464185 m005 (1/5*gamma-3/5)/(5*Pi+3/5) 2971289909982548 a007 Real Root Of -176*x^4-226*x^3+663*x^2-723*x-212 2971289910685815 r005 Re(z^2+c),c=-1/54+13/14*I,n=7 2971289920570263 r005 Im(z^2+c),c=-9/8+70/253*I,n=16 2971289921714157 a001 1134903170/199*3571^(13/17) 2971289924927388 m005 (1/2*gamma-5/6)/(6/7*5^(1/2)-1/12) 2971289927373705 a007 Real Root Of -376*x^4-364*x^3-831*x^2+748*x+289 2971289930900396 r005 Re(z^2+c),c=-8/23+17/55*I,n=46 2971289932857116 r009 Re(z^3+c),c=-1/56+47/64*I,n=15 2971289935420335 a001 1836311903/199*3571^(12/17) 2971289939564515 a007 Real Root Of 61*x^4-195*x^3-987*x^2+486*x+288 2971289943086712 r005 Re(z^2+c),c=-8/23+17/55*I,n=48 2971289949126512 a001 2971215073/199*3571^(11/17) 2971289962832690 a001 4807526976/199*3571^(10/17) 2971289968818051 a007 Real Root Of -262*x^4+736*x^3-577*x^2-526*x-84 2971289968974269 m001 1/Zeta(1/2)^2/exp(BesselJ(1,1))^2/cos(Pi/5)^2 2971289976538868 a001 7778742049/199*3571^(9/17) 2971289990245046 a001 12586269025/199*3571^(8/17) 2971289993425098 a001 365435296162/199*1364^(1/15) 2971289994455409 r005 Re(z^2+c),c=-11/28+13/47*I,n=3 2971290001336042 b008 1+Pi*ProductLog[Sinh[1]] 2971290003951224 a001 20365011074/199*3571^(7/17) 2971290008999999 a001 89/5778*14662949395604^(6/7) 2971290008999999 a001 89/5778*(1/2+1/2*5^(1/2))^54 2971290010894472 a001 2584/199*2537720636^(8/9) 2971290010894472 a001 2584/199*312119004989^(8/11) 2971290010894472 a001 2584/199*(1/2+1/2*5^(1/2))^40 2971290010894472 a001 2584/199*23725150497407^(5/8) 2971290010894472 a001 2584/199*73681302247^(10/13) 2971290010894472 a001 2584/199*28143753123^(4/5) 2971290010894472 a001 2584/199*10749957122^(5/6) 2971290010894472 a001 2584/199*4106118243^(20/23) 2971290010894472 a001 2584/199*1568397607^(10/11) 2971290010894472 a001 2584/199*599074578^(20/21) 2971290017657402 a001 32951280099/199*3571^(6/17) 2971290019273174 m001 1/GAMMA(1/3)*exp(MinimumGamma)^2/GAMMA(7/12)^2 2971290028048003 a007 Real Root Of 303*x^4+603*x^3-774*x^2+120*x-609 2971290031363580 a001 53316291173/199*3571^(5/17) 2971290031415456 a001 9349/75025*987^(23/50) 2971290045069758 a001 86267571272/199*3571^(4/17) 2971290058775937 a001 139583862445/199*3571^(3/17) 2971290060540803 a001 12238/98209*987^(23/50) 2971290062955586 a001 1/24477*(1/2*5^(1/2)+1/2)^14*199^(16/19) 2971290064005022 a001 12422963757605/4181 2971290064790134 a001 64079/514229*987^(23/50) 2971290067416365 a001 13201/105937*987^(23/50) 2971290067688706 a001 102334155/199*9349^(18/19) 2971290069477915 a001 165580141/199*9349^(17/19) 2971290071267124 a001 267914296/199*9349^(16/19) 2971290072482115 a001 225851433717/199*3571^(2/17) 2971290073056334 a001 433494437/199*9349^(15/19) 2971290074845543 a001 3524667*9349^(14/19) 2971290076634752 a001 1134903170/199*9349^(13/19) 2971290078423961 a001 1836311903/199*9349^(12/19) 2971290078541257 a001 15127/121393*987^(23/50) 2971290080213170 a001 2971215073/199*9349^(11/19) 2971290082002380 a001 4807526976/199*9349^(10/19) 2971290083791589 a001 7778742049/199*9349^(9/19) 2971290084445375 b008 Log[ArcCot[39/2]] 2971290085015072 a001 89/15127*14662949395604^(8/9) 2971290085015072 a001 89/15127*(1/2+1/2*5^(1/2))^56 2971290085580798 a001 12586269025/199*9349^(8/19) 2971290086188293 a001 365435296162/199*3571^(1/17) 2971290086909547 a001 6765/199*817138163596^(2/3) 2971290086909547 a001 6765/199*(1/2+1/2*5^(1/2))^38 2971290086909547 a001 6765/199*10749957122^(19/24) 2971290086909547 a001 6765/199*4106118243^(19/23) 2971290086909547 a001 6765/199*1568397607^(19/22) 2971290086909547 a001 6765/199*599074578^(19/21) 2971290086909547 a001 6765/199*228826127^(19/20) 2971290087370007 a001 20365011074/199*9349^(7/19) 2971290089159217 a001 32951280099/199*9349^(6/19) 2971290090948426 a001 53316291173/199*9349^(5/19) 2971290092737635 a001 86267571272/199*9349^(4/19) 2971290093040197 a001 16261870679209/5473 2971290094526844 a001 139583862445/199*9349^(3/19) 2971290095170852 a001 39088169/199*24476^(20/21) 2971290095407034 a001 63245986/199*24476^(19/21) 2971290095643215 a001 102334155/199*24476^(6/7) 2971290095879396 a001 165580141/199*24476^(17/21) 2971290096105522 a001 89/39603*(1/2+1/2*5^(1/2))^58 2971290096115577 a001 267914296/199*24476^(16/21) 2971290096316053 a001 225851433717/199*9349^(2/19) 2971290096351758 a001 433494437/199*24476^(5/7) 2971290096587939 a001 3524667*24476^(2/3) 2971290096824119 a001 1134903170/199*24476^(13/21) 2971290097060300 a001 1836311903/199*24476^(4/7) 2971290097276372 a001 85148260317649/28657 2971290097296481 a001 2971215073/199*24476^(11/21) 2971290097532662 a001 4807526976/199*24476^(10/21) 2971290097723597 a001 89/103682*14662949395604^(20/21) 2971290097723597 a001 89/103682*(1/2+1/2*5^(1/2))^60 2971290097768843 a001 7778742049/199*24476^(3/7) 2971290097894421 a001 222921039594529/75025 2971290097959671 a001 89/271443*(1/2+1/2*5^(1/2))^62 2971290097984594 a001 17165142896057/5777 2971290097994113 a001 89/710647*(1/2+1/2*5^(1/2))^64 2971290097999997 a001 89*141422324^(12/13) 2971290097999997 a001 89*2537720636^(4/5) 2971290097999997 a001 89*45537549124^(12/17) 2971290097999997 a001 89*14662949395604^(4/7) 2971290097999997 a001 89*(1/2+1/2*5^(1/2))^36 2971290097999997 a001 89*505019158607^(9/14) 2971290097999997 a001 89*192900153618^(2/3) 2971290097999997 a001 89*73681302247^(9/13) 2971290097999997 a001 89*10749957122^(3/4) 2971290097999997 a001 89*4106118243^(18/23) 2971290097999997 a001 89*1568397607^(9/11) 2971290097999997 a001 89*599074578^(6/7) 2971290097999997 a001 89*228826127^(9/10) 2971290097999997 a001 89*87403803^(18/19) 2971290098005024 a001 12586269025/199*24476^(8/21) 2971290098005880 a001 314769559112449/105937 2971290098015400 a001 89/439204*(1/2+1/2*5^(1/2))^63 2971290098040323 a001 360693818871409/121393 2971290098105263 a001 365435296162/199*9349^(1/19) 2971290098105572 a001 89/167761*(1/2+1/2*5^(1/2))^61 2971290098241205 a001 20365011074/199*24476^(1/3) 2971290098276397 a001 956755411645/322 2971290098286252 r005 Im(z^2+c),c=-3/50+3/8*I,n=20 2971290098477386 a001 32951280099/199*24476^(2/7) 2971290098713567 a001 53316291173/199*24476^(5/21) 2971290098723622 a001 89/64079*(1/2+1/2*5^(1/2))^59 2971290098949748 a001 86267571272/199*24476^(4/21) 2971290099185929 a001 139583862445/199*24476^(1/7) 2971290099202306 a001 14930352/199*64079^(22/23) 2971290099233772 a001 24157817/199*64079^(21/23) 2971290099265232 a001 39088169/199*64079^(20/23) 2971290099296695 a001 63245986/199*64079^(19/23) 2971290099328157 a001 102334155/199*64079^(18/23) 2971290099359619 a001 165580141/199*64079^(17/23) 2971290099391081 a001 267914296/199*64079^(16/23) 2971290099422110 a001 225851433717/199*24476^(2/21) 2971290099422542 a001 433494437/199*64079^(15/23) 2971290099454004 a001 3524667*64079^(14/23) 2971290099485466 a001 1134903170/199*64079^(13/23) 2971290099516928 a001 1836311903/199*64079^(12/23) 2971290099548390 a001 2971215073/199*64079^(11/23) 2971290099579852 a001 4807526976/199*64079^(10/23) 2971290099611314 a001 7778742049/199*64079^(9/23) 2971290099618072 a001 46368/199*45537549124^(2/3) 2971290099618072 a001 46368/199*(1/2+1/2*5^(1/2))^34 2971290099618072 a001 46368/199*10749957122^(17/24) 2971290099618072 a001 46368/199*4106118243^(17/23) 2971290099618072 a001 46368/199*1568397607^(17/22) 2971290099618072 a001 46368/199*599074578^(17/21) 2971290099618072 a001 46368/199*228826127^(17/20) 2971290099618072 a001 46368/199*87403803^(17/19) 2971290099618074 a001 46368/199*33385282^(17/18) 2971290099642776 a001 12586269025/199*64079^(8/23) 2971290099658291 a001 365435296162/199*24476^(1/21) 2971290099674238 a001 20365011074/199*64079^(7/23) 2971290099705700 a001 32951280099/199*64079^(6/23) 2971290099737162 a001 53316291173/199*64079^(5/23) 2971290099768624 a001 86267571272/199*64079^(4/23) 2971290099800086 a001 139583862445/199*64079^(3/23) 2971290099810011 a001 39088169/199*167761^(4/5) 2971290099831127 a001 433494437/199*167761^(3/5) 2971290099831548 a001 225851433717/199*64079^(2/23) 2971290099852242 a001 4807526976/199*167761^(2/5) 2971290099854146 a001 121393/199*(1/2+1/2*5^(1/2))^32 2971290099854146 a001 121393/199*23725150497407^(1/2) 2971290099854146 a001 121393/199*505019158607^(4/7) 2971290099854146 a001 121393/199*73681302247^(8/13) 2971290099854146 a001 121393/199*10749957122^(2/3) 2971290099854146 a001 121393/199*4106118243^(16/23) 2971290099854146 a001 121393/199*1568397607^(8/11) 2971290099854146 a001 121393/199*599074578^(16/21) 2971290099854146 a001 121393/199*228826127^(4/5) 2971290099854146 a001 121393/199*87403803^(16/19) 2971290099854148 a001 121393/199*33385282^(8/9) 2971290099854163 a001 121393/199*12752043^(16/17) 2971290099863010 a001 365435296162/199*64079^(1/23) 2971290099873357 a001 53316291173/199*167761^(1/5) 2971290099880762 a001 5702887/199*439204^(8/9) 2971290099882493 a001 24157817/199*439204^(7/9) 2971290099884203 a001 102334155/199*439204^(2/3) 2971290099885915 a001 433494437/199*439204^(5/9) 2971290099887626 a001 1836311903/199*439204^(4/9) 2971290099888545 a001 317811/199*7881196^(10/11) 2971290099888582 a001 317811/199*20633239^(6/7) 2971290099888588 a001 317811/199*141422324^(10/13) 2971290099888588 a001 317811/199*2537720636^(2/3) 2971290099888588 a001 317811/199*45537549124^(10/17) 2971290099888588 a001 317811/199*312119004989^(6/11) 2971290099888588 a001 317811/199*14662949395604^(10/21) 2971290099888588 a001 317811/199*(1/2+1/2*5^(1/2))^30 2971290099888588 a001 317811/199*192900153618^(5/9) 2971290099888588 a001 317811/199*28143753123^(3/5) 2971290099888588 a001 317811/199*10749957122^(5/8) 2971290099888588 a001 317811/199*4106118243^(15/23) 2971290099888588 a001 317811/199*1568397607^(15/22) 2971290099888588 a001 317811/199*599074578^(5/7) 2971290099888588 a001 317811/199*228826127^(3/4) 2971290099888589 a001 317811/199*87403803^(15/19) 2971290099888591 a001 317811/199*33385282^(5/6) 2971290099888604 a001 317811/199*12752043^(15/17) 2971290099888706 a001 317811/199*4870847^(15/16) 2971290099889337 a001 7778742049/199*439204^(1/3) 2971290099891049 a001 32951280099/199*439204^(2/9) 2971290099892760 a001 139583862445/199*439204^(1/9) 2971290099893608 a001 832040/199*20633239^(4/5) 2971290099893613 a001 832040/199*17393796001^(4/7) 2971290099893613 a001 832040/199*14662949395604^(4/9) 2971290099893613 a001 832040/199*(1/2+1/2*5^(1/2))^28 2971290099893613 a001 832040/199*73681302247^(7/13) 2971290099893613 a001 832040/199*10749957122^(7/12) 2971290099893613 a001 832040/199*4106118243^(14/23) 2971290099893613 a001 832040/199*1568397607^(7/11) 2971290099893613 a001 832040/199*599074578^(2/3) 2971290099893614 a001 832040/199*228826127^(7/10) 2971290099893614 a001 832040/199*87403803^(14/19) 2971290099893616 a001 832040/199*33385282^(7/9) 2971290099893629 a001 832040/199*12752043^(14/17) 2971290099893723 a001 832040/199*4870847^(7/8) 2971290099894347 a001 2178309/199*141422324^(2/3) 2971290099894347 a001 2178309/199*(1/2+1/2*5^(1/2))^26 2971290099894347 a001 2178309/199*73681302247^(1/2) 2971290099894347 a001 2178309/199*10749957122^(13/24) 2971290099894347 a001 2178309/199*4106118243^(13/23) 2971290099894347 a001 2178309/199*1568397607^(13/22) 2971290099894347 a001 2178309/199*599074578^(13/21) 2971290099894347 a001 2178309/199*228826127^(13/20) 2971290099894347 a001 2178309/199*87403803^(13/19) 2971290099894349 a001 2178309/199*33385282^(13/18) 2971290099894361 a001 2178309/199*12752043^(13/17) 2971290099894415 a001 832040/199*1860498^(14/15) 2971290099894419 a001 5702887/199*7881196^(8/11) 2971290099894437 a001 14930352/199*7881196^(2/3) 2971290099894442 a001 24157817/199*7881196^(7/11) 2971290099894446 a001 102334155/199*7881196^(6/11) 2971290099894448 a001 2178309/199*4870847^(13/16) 2971290099894450 a001 433494437/199*7881196^(5/11) 2971290099894453 a001 5702887/199*141422324^(8/13) 2971290099894454 a001 5702887/199*2537720636^(8/15) 2971290099894454 a001 5702887/199*45537549124^(8/17) 2971290099894454 a001 5702887/199*14662949395604^(8/21) 2971290099894454 a001 5702887/199*(1/2+1/2*5^(1/2))^24 2971290099894454 a001 5702887/199*192900153618^(4/9) 2971290099894454 a001 5702887/199*73681302247^(6/13) 2971290099894454 a001 5702887/199*10749957122^(1/2) 2971290099894454 a001 5702887/199*4106118243^(12/23) 2971290099894454 a001 5702887/199*1568397607^(6/11) 2971290099894454 a001 5702887/199*599074578^(4/7) 2971290099894454 a001 5702887/199*228826127^(3/5) 2971290099894454 a001 5702887/199*87403803^(12/19) 2971290099894454 a001 1836311903/199*7881196^(4/11) 2971290099894455 a001 5702887/199*33385282^(2/3) 2971290099894456 a001 2971215073/199*7881196^(1/3) 2971290099894459 a001 7778742049/199*7881196^(3/11) 2971290099894463 a001 32951280099/199*7881196^(2/11) 2971290099894466 a001 5702887/199*12752043^(12/17) 2971290099894467 a001 39088169/199*20633239^(4/7) 2971290099894468 a001 139583862445/199*7881196^(1/11) 2971290099894469 a001 24157817/199*20633239^(3/5) 2971290099894469 a001 433494437/199*20633239^(3/7) 2971290099894469 a001 3524667*20633239^(2/5) 2971290099894469 a001 14930352/199*312119004989^(2/5) 2971290099894469 a001 14930352/199*(1/2+1/2*5^(1/2))^22 2971290099894469 a001 14930352/199*10749957122^(11/24) 2971290099894469 a001 14930352/199*4106118243^(11/23) 2971290099894469 a001 14930352/199*1568397607^(1/2) 2971290099894469 a001 14930352/199*599074578^(11/21) 2971290099894469 a001 14930352/199*228826127^(11/20) 2971290099894469 a001 14930352/199*87403803^(11/19) 2971290099894470 a001 4807526976/199*20633239^(2/7) 2971290099894470 a001 20365011074/199*20633239^(1/5) 2971290099894471 a001 14930352/199*33385282^(11/18) 2971290099894471 a001 53316291173/199*20633239^(1/7) 2971290099894471 a001 39088169/199*2537720636^(4/9) 2971290099894471 a001 39088169/199*(1/2+1/2*5^(1/2))^20 2971290099894471 a001 39088169/199*23725150497407^(5/16) 2971290099894471 a001 39088169/199*505019158607^(5/14) 2971290099894471 a001 39088169/199*73681302247^(5/13) 2971290099894471 a001 39088169/199*28143753123^(2/5) 2971290099894471 a001 39088169/199*10749957122^(5/12) 2971290099894471 a001 39088169/199*4106118243^(10/23) 2971290099894471 a001 39088169/199*1568397607^(5/11) 2971290099894471 a001 39088169/199*599074578^(10/21) 2971290099894472 a001 39088169/199*228826127^(1/2) 2971290099894472 a001 39088169/199*87403803^(10/19) 2971290099894472 a001 102334155/199*141422324^(6/13) 2971290099894472 a001 102334155/199*2537720636^(2/5) 2971290099894472 a001 102334155/199*45537549124^(6/17) 2971290099894472 a001 102334155/199*14662949395604^(2/7) 2971290099894472 a001 102334155/199*(1/2+1/2*5^(1/2))^18 2971290099894472 a001 102334155/199*192900153618^(1/3) 2971290099894472 a001 102334155/199*10749957122^(3/8) 2971290099894472 a001 102334155/199*4106118243^(9/23) 2971290099894472 a001 102334155/199*1568397607^(9/22) 2971290099894472 a001 433494437/199*141422324^(5/13) 2971290099894472 a001 102334155/199*599074578^(3/7) 2971290099894472 a001 1134903170/199*141422324^(1/3) 2971290099894472 a001 1836311903/199*141422324^(4/13) 2971290099894472 a001 7778742049/199*141422324^(3/13) 2971290099894472 a001 102334155/199*228826127^(9/20) 2971290099894472 a001 32951280099/199*141422324^(2/13) 2971290099894472 a001 139583862445/199*141422324^(1/13) 2971290099894472 a001 267914296/199*(1/2+1/2*5^(1/2))^16 2971290099894472 a001 267914296/199*23725150497407^(1/4) 2971290099894472 a001 267914296/199*73681302247^(4/13) 2971290099894472 a001 267914296/199*10749957122^(1/3) 2971290099894472 a001 267914296/199*4106118243^(8/23) 2971290099894472 a001 267914296/199*1568397607^(4/11) 2971290099894472 a001 267914296/199*599074578^(8/21) 2971290099894472 a001 3524667*17393796001^(2/7) 2971290099894472 a001 3524667*14662949395604^(2/9) 2971290099894472 a001 3524667*(1/2+1/2*5^(1/2))^14 2971290099894472 a001 3524667*10749957122^(7/24) 2971290099894472 a001 3524667*4106118243^(7/23) 2971290099894472 a001 3524667*1568397607^(7/22) 2971290099894472 a001 1836311903/199*2537720636^(4/15) 2971290099894472 a001 1836311903/199*45537549124^(4/17) 2971290099894472 a001 1836311903/199*817138163596^(4/19) 2971290099894472 a001 1836311903/199*14662949395604^(4/21) 2971290099894472 a001 1836311903/199*(1/2+1/2*5^(1/2))^12 2971290099894472 a001 1836311903/199*192900153618^(2/9) 2971290099894472 a001 1836311903/199*73681302247^(3/13) 2971290099894472 a001 1836311903/199*10749957122^(1/4) 2971290099894472 a001 1836311903/199*4106118243^(6/23) 2971290099894472 a001 4807526976/199*2537720636^(2/9) 2971290099894472 a001 7778742049/199*2537720636^(1/5) 2971290099894472 a001 32951280099/199*2537720636^(2/15) 2971290099894472 a001 53316291173/199*2537720636^(1/9) 2971290099894472 a001 139583862445/199*2537720636^(1/15) 2971290099894472 a001 4807526976/199*312119004989^(2/11) 2971290099894472 a001 4807526976/199*(1/2+1/2*5^(1/2))^10 2971290099894472 a001 4807526976/199*28143753123^(1/5) 2971290099894472 a001 4807526976/199*10749957122^(5/24) 2971290099894472 a001 12586269025/199*(1/2+1/2*5^(1/2))^8 2971290099894472 a001 12586269025/199*23725150497407^(1/8) 2971290099894472 a001 12586269025/199*505019158607^(1/7) 2971290099894472 a001 12586269025/199*73681302247^(2/13) 2971290099894472 a001 32951280099/199*45537549124^(2/17) 2971290099894472 a001 32951280099/199*14662949395604^(2/21) 2971290099894472 a001 32951280099/199*(1/2+1/2*5^(1/2))^6 2971290099894472 a001 86267571272/199*(1/2+1/2*5^(1/2))^4 2971290099894472 a001 86267571272/199*23725150497407^(1/16) 2971290099894472 a001 139583862445/199*45537549124^(1/17) 2971290099894472 a001 225851433717/199*(1/2+1/2*5^(1/2))^2 2971290099894472 a001 591286729879/199 2971290099894472 a001 20365011074/199*17393796001^(1/7) 2971290099894472 a001 139583862445/199*14662949395604^(1/21) 2971290099894472 a001 139583862445/199*(1/2+1/2*5^(1/2))^3 2971290099894472 a001 53316291173/199*312119004989^(1/11) 2971290099894472 a001 53316291173/199*(1/2+1/2*5^(1/2))^5 2971290099894472 a001 12586269025/199*10749957122^(1/6) 2971290099894472 a001 53316291173/199*28143753123^(1/10) 2971290099894472 a001 225851433717/199*10749957122^(1/24) 2971290099894472 a001 20365011074/199*14662949395604^(1/9) 2971290099894472 a001 20365011074/199*(1/2+1/2*5^(1/2))^7 2971290099894472 a001 139583862445/199*10749957122^(1/16) 2971290099894472 a001 86267571272/199*10749957122^(1/12) 2971290099894472 a001 32951280099/199*10749957122^(1/8) 2971290099894472 a001 225851433717/199*4106118243^(1/23) 2971290099894472 a001 7778742049/199*45537549124^(3/17) 2971290099894472 a001 7778742049/199*817138163596^(3/19) 2971290099894472 a001 7778742049/199*14662949395604^(1/7) 2971290099894472 a001 7778742049/199*(1/2+1/2*5^(1/2))^9 2971290099894472 a001 7778742049/199*192900153618^(1/6) 2971290099894472 a001 4807526976/199*4106118243^(5/23) 2971290099894472 a001 7778742049/199*10749957122^(3/16) 2971290099894472 a001 86267571272/199*4106118243^(2/23) 2971290099894472 a001 32951280099/199*4106118243^(3/23) 2971290099894472 a001 12586269025/199*4106118243^(4/23) 2971290099894472 a001 225851433717/199*1568397607^(1/22) 2971290099894472 a001 2971215073/199*312119004989^(1/5) 2971290099894472 a001 2971215073/199*(1/2+1/2*5^(1/2))^11 2971290099894472 a001 86267571272/199*1568397607^(1/11) 2971290099894472 a001 1836311903/199*1568397607^(3/11) 2971290099894472 a001 32951280099/199*1568397607^(3/22) 2971290099894472 a001 12586269025/199*1568397607^(2/11) 2971290099894472 a001 4807526976/199*1568397607^(5/22) 2971290099894472 a001 2971215073/199*1568397607^(1/4) 2971290099894472 a001 225851433717/199*599074578^(1/21) 2971290099894472 a001 1134903170/199*(1/2+1/2*5^(1/2))^13 2971290099894472 a001 1134903170/199*73681302247^(1/4) 2971290099894472 a001 139583862445/199*599074578^(1/14) 2971290099894472 a001 86267571272/199*599074578^(2/21) 2971290099894472 a001 32951280099/199*599074578^(1/7) 2971290099894472 a001 20365011074/199*599074578^(1/6) 2971290099894472 a001 3524667*599074578^(1/3) 2971290099894472 a001 12586269025/199*599074578^(4/21) 2971290099894472 a001 7778742049/199*599074578^(3/14) 2971290099894472 a001 4807526976/199*599074578^(5/21) 2971290099894472 a001 1836311903/199*599074578^(2/7) 2971290099894472 a001 225851433717/199*228826127^(1/20) 2971290099894472 a001 433494437/199*2537720636^(1/3) 2971290099894472 a001 433494437/199*45537549124^(5/17) 2971290099894472 a001 433494437/199*312119004989^(3/11) 2971290099894472 a001 433494437/199*14662949395604^(5/21) 2971290099894472 a001 433494437/199*(1/2+1/2*5^(1/2))^15 2971290099894472 a001 433494437/199*192900153618^(5/18) 2971290099894472 a001 433494437/199*28143753123^(3/10) 2971290099894472 a001 433494437/199*10749957122^(5/16) 2971290099894472 a001 86267571272/199*228826127^(1/10) 2971290099894472 a001 433494437/199*599074578^(5/14) 2971290099894472 a001 53316291173/199*228826127^(1/8) 2971290099894472 a001 32951280099/199*228826127^(3/20) 2971290099894472 a001 12586269025/199*228826127^(1/5) 2971290099894472 a001 4807526976/199*228826127^(1/4) 2971290099894472 a001 267914296/199*228826127^(2/5) 2971290099894472 a001 1836311903/199*228826127^(3/10) 2971290099894472 a001 3524667*228826127^(7/20) 2971290099894472 a001 225851433717/199*87403803^(1/19) 2971290099894472 a001 165580141/199*45537549124^(1/3) 2971290099894472 a001 165580141/199*(1/2+1/2*5^(1/2))^17 2971290099894472 a001 433494437/199*228826127^(3/8) 2971290099894472 a001 86267571272/199*87403803^(2/19) 2971290099894472 a001 32951280099/199*87403803^(3/19) 2971290099894472 a001 12586269025/199*87403803^(4/19) 2971290099894472 a001 4807526976/199*87403803^(5/19) 2971290099894472 a001 1836311903/199*87403803^(6/19) 2971290099894472 a001 102334155/199*87403803^(9/19) 2971290099894472 a001 3524667*87403803^(7/19) 2971290099894472 a001 225851433717/199*33385282^(1/18) 2971290099894472 a001 63245986/199*817138163596^(1/3) 2971290099894472 a001 63245986/199*(1/2+1/2*5^(1/2))^19 2971290099894472 a001 267914296/199*87403803^(8/19) 2971290099894472 a001 139583862445/199*33385282^(1/12) 2971290099894472 a001 86267571272/199*33385282^(1/9) 2971290099894472 a001 63245986/199*87403803^(1/2) 2971290099894472 a001 32951280099/199*33385282^(1/6) 2971290099894472 a001 12586269025/199*33385282^(2/9) 2971290099894473 a001 7778742049/199*33385282^(1/4) 2971290099894473 a001 4807526976/199*33385282^(5/18) 2971290099894473 a001 1836311903/199*33385282^(1/3) 2971290099894473 a001 24157817/199*141422324^(7/13) 2971290099894473 a001 24157817/199*2537720636^(7/15) 2971290099894473 a001 24157817/199*17393796001^(3/7) 2971290099894473 a001 24157817/199*45537549124^(7/17) 2971290099894473 a001 24157817/199*14662949395604^(1/3) 2971290099894473 a001 24157817/199*(1/2+1/2*5^(1/2))^21 2971290099894473 a001 24157817/199*192900153618^(7/18) 2971290099894473 a001 24157817/199*10749957122^(7/16) 2971290099894473 a001 24157817/199*599074578^(1/2) 2971290099894473 a001 3524667*33385282^(7/18) 2971290099894473 a001 225851433717/199*12752043^(1/17) 2971290099894473 a001 39088169/199*33385282^(5/9) 2971290099894473 a001 433494437/199*33385282^(5/12) 2971290099894473 a001 267914296/199*33385282^(4/9) 2971290099894473 a001 102334155/199*33385282^(1/2) 2971290099894474 a001 86267571272/199*12752043^(2/17) 2971290099894474 a001 24157817/199*33385282^(7/12) 2971290099894475 a001 32951280099/199*12752043^(3/17) 2971290099894476 a001 12586269025/199*12752043^(4/17) 2971290099894477 a001 4807526976/199*12752043^(5/17) 2971290099894478 a001 1836311903/199*12752043^(6/17) 2971290099894479 a001 9227465/199*(1/2+1/2*5^(1/2))^23 2971290099894479 a001 9227465/199*4106118243^(1/2) 2971290099894479 a001 3524667*12752043^(7/17) 2971290099894480 a001 225851433717/199*4870847^(1/16) 2971290099894480 a001 267914296/199*12752043^(8/17) 2971290099894481 a001 14930352/199*12752043^(11/17) 2971290099894481 a001 165580141/199*12752043^(1/2) 2971290099894481 a001 102334155/199*12752043^(9/17) 2971290099894482 a001 39088169/199*12752043^(10/17) 2971290099894488 a001 86267571272/199*4870847^(1/8) 2971290099894495 a001 32951280099/199*4870847^(3/16) 2971290099894503 a001 12586269025/199*4870847^(1/4) 2971290099894511 a001 4807526976/199*4870847^(5/16) 2971290099894515 a001 3524578/199*20633239^(5/7) 2971290099894519 a001 1836311903/199*4870847^(3/8) 2971290099894520 a001 3524578/199*2537720636^(5/9) 2971290099894520 a001 3524578/199*312119004989^(5/11) 2971290099894520 a001 3524578/199*(1/2+1/2*5^(1/2))^25 2971290099894520 a001 3524578/199*3461452808002^(5/12) 2971290099894520 a001 3524578/199*28143753123^(1/2) 2971290099894520 a001 3524578/199*228826127^(5/8) 2971290099894527 a001 3524667*4870847^(7/16) 2971290099894529 a001 225851433717/199*1860498^(1/15) 2971290099894534 a001 267914296/199*4870847^(1/2) 2971290099894542 a001 102334155/199*4870847^(9/16) 2971290099894548 a001 5702887/199*4870847^(3/4) 2971290099894550 a001 39088169/199*4870847^(5/8) 2971290099894555 a001 14930352/199*4870847^(11/16) 2971290099894558 a001 139583862445/199*1860498^(1/10) 2971290099894586 a001 86267571272/199*1860498^(2/15) 2971290099894615 a001 53316291173/199*1860498^(1/6) 2971290099894644 a001 32951280099/199*1860498^(1/5) 2971290099894701 a001 12586269025/199*1860498^(4/15) 2971290099894729 a001 7778742049/199*1860498^(3/10) 2971290099894758 a001 4807526976/199*1860498^(1/3) 2971290099894761 a001 1346269/199*7881196^(9/11) 2971290099894800 a001 1346269/199*141422324^(9/13) 2971290099894800 a001 1346269/199*2537720636^(3/5) 2971290099894800 a001 1346269/199*45537549124^(9/17) 2971290099894800 a001 1346269/199*817138163596^(9/19) 2971290099894800 a001 1346269/199*14662949395604^(3/7) 2971290099894800 a001 1346269/199*(1/2+1/2*5^(1/2))^27 2971290099894800 a001 1346269/199*192900153618^(1/2) 2971290099894800 a001 1346269/199*10749957122^(9/16) 2971290099894800 a001 1346269/199*599074578^(9/14) 2971290099894802 a001 1346269/199*33385282^(3/4) 2971290099894815 a001 1836311903/199*1860498^(2/5) 2971290099894872 a001 3524667*1860498^(7/15) 2971290099894892 a001 225851433717/199*710647^(1/14) 2971290099894901 a001 433494437/199*1860498^(1/2) 2971290099894930 a001 267914296/199*1860498^(8/15) 2971290099894987 a001 102334155/199*1860498^(3/5) 2971290099895044 a001 39088169/199*1860498^(2/3) 2971290099895074 a001 24157817/199*1860498^(7/10) 2971290099895091 a001 2178309/199*1860498^(13/15) 2971290099895099 a001 14930352/199*1860498^(11/15) 2971290099895140 a001 5702887/199*1860498^(4/5) 2971290099895235 a001 3524578/199*1860498^(5/6) 2971290099895312 a001 86267571272/199*710647^(1/7) 2971290099895572 a001 1346269/199*1860498^(9/10) 2971290099895733 a001 32951280099/199*710647^(3/14) 2971290099895943 a001 20365011074/199*710647^(1/4) 2971290099896153 a001 12586269025/199*710647^(2/7) 2971290099896573 a001 4807526976/199*710647^(5/14) 2971290099896719 a001 514229/199*(1/2+1/2*5^(1/2))^29 2971290099896719 a001 514229/199*1322157322203^(1/2) 2971290099896993 a001 1836311903/199*710647^(3/7) 2971290099897414 a001 3524667*710647^(1/2) 2971290099897574 a001 225851433717/199*271443^(1/13) 2971290099897834 a001 267914296/199*710647^(4/7) 2971290099898254 a001 102334155/199*710647^(9/14) 2971290099898674 a001 39088169/199*710647^(5/7) 2971290099898886 a001 24157817/199*710647^(3/4) 2971290099899092 a001 14930352/199*710647^(11/14) 2971290099899497 a001 5702887/199*710647^(6/7) 2971290099899810 a001 2178309/199*710647^(13/14) 2971290099900676 a001 86267571272/199*271443^(2/13) 2971290099903778 a001 32951280099/199*271443^(3/13) 2971290099905989 a001 365435296162/199*103682^(1/24) 2971290099906880 a001 12586269025/199*271443^(4/13) 2971290099909875 a001 196418/199*(1/2+1/2*5^(1/2))^31 2971290099909875 a001 196418/199*9062201101803^(1/2) 2971290099909982 a001 4807526976/199*271443^(5/13) 2971290099913084 a001 1836311903/199*271443^(6/13) 2971290099914635 a001 1134903170/199*271443^(1/2) 2971290099916186 a001 3524667*271443^(7/13) 2971290099917505 a001 225851433717/199*103682^(1/12) 2971290099919288 a001 267914296/199*271443^(8/13) 2971290099922390 a001 102334155/199*271443^(9/13) 2971290099925492 a001 39088169/199*271443^(10/13) 2971290099928591 a001 14930352/199*271443^(11/13) 2971290099929022 a001 139583862445/199*103682^(1/8) 2971290099931678 a001 5702887/199*271443^(12/13) 2971290099940539 a001 86267571272/199*103682^(1/6) 2971290099952055 a001 53316291173/199*103682^(5/24) 2971290099963572 a001 32951280099/199*103682^(1/4) 2971290099975089 a001 20365011074/199*103682^(7/24) 2971290099980584 a001 365435296162/199*39603^(1/22) 2971290099986605 a001 12586269025/199*103682^(1/3) 2971290099998122 a001 7778742049/199*103682^(3/8) 2971290100000047 a001 75025/199*141422324^(11/13) 2971290100000047 a001 75025/199*2537720636^(11/15) 2971290100000047 a001 75025/199*45537549124^(11/17) 2971290100000047 a001 75025/199*312119004989^(3/5) 2971290100000047 a001 75025/199*14662949395604^(11/21) 2971290100000047 a001 75025/199*(1/2+1/2*5^(1/2))^33 2971290100000047 a001 75025/199*192900153618^(11/18) 2971290100000047 a001 75025/199*10749957122^(11/16) 2971290100000047 a001 75025/199*1568397607^(3/4) 2971290100000047 a001 75025/199*599074578^(11/14) 2971290100000050 a001 75025/199*33385282^(11/12) 2971290100009639 a001 4807526976/199*103682^(5/12) 2971290100021155 a001 2971215073/199*103682^(11/24) 2971290100032672 a001 1836311903/199*103682^(1/2) 2971290100044189 a001 1134903170/199*103682^(13/24) 2971290100055705 a001 3524667*103682^(7/12) 2971290100066697 a001 225851433717/199*39603^(1/11) 2971290100067222 a001 433494437/199*103682^(5/8) 2971290100078739 a001 267914296/199*103682^(2/3) 2971290100090255 a001 165580141/199*103682^(17/24) 2971290100101772 a001 102334155/199*103682^(3/4) 2971290100113289 a001 63245986/199*103682^(19/24) 2971290100124805 a001 39088169/199*103682^(5/6) 2971290100136323 a001 24157817/199*103682^(7/8) 2971290100147836 a001 14930352/199*103682^(11/12) 2971290100152809 a001 139583862445/199*39603^(3/22) 2971290100159362 a001 9227465/199*103682^(23/24) 2971290100238922 a001 86267571272/199*39603^(2/11) 2971290100325034 a001 53316291173/199*39603^(5/22) 2971290100411147 a001 32951280099/199*39603^(3/11) 2971290100497259 a001 20365011074/199*39603^(7/22) 2971290100543718 a001 365435296162/199*15127^(1/20) 2971290100583372 a001 12586269025/199*39603^(4/11) 2971290100618097 a001 28657/199*2537720636^(7/9) 2971290100618097 a001 28657/199*17393796001^(5/7) 2971290100618097 a001 28657/199*312119004989^(7/11) 2971290100618097 a001 28657/199*14662949395604^(5/9) 2971290100618097 a001 28657/199*(1/2+1/2*5^(1/2))^35 2971290100618097 a001 28657/199*505019158607^(5/8) 2971290100618097 a001 28657/199*28143753123^(7/10) 2971290100618097 a001 28657/199*599074578^(5/6) 2971290100618097 a001 28657/199*228826127^(7/8) 2971290100669484 a001 7778742049/199*39603^(9/22) 2971290100755597 a001 4807526976/199*39603^(5/11) 2971290100841709 a001 2971215073/199*39603^(1/2) 2971290100927822 a001 1836311903/199*39603^(6/11) 2971290101013934 a001 1134903170/199*39603^(13/22) 2971290101100047 a001 3524667*39603^(7/11) 2971290101186159 a001 433494437/199*39603^(15/22) 2971290101192964 a001 225851433717/199*15127^(1/10) 2971290101272272 a001 267914296/199*39603^(8/11) 2971290101358384 a001 165580141/199*39603^(17/22) 2971290101444497 a001 102334155/199*39603^(9/11) 2971290101530610 a001 63245986/199*39603^(19/22) 2971290101616721 a001 39088169/199*39603^(10/11) 2971290101702835 a001 24157817/199*39603^(21/22) 2971290101842211 a001 139583862445/199*15127^(3/20) 2971290102491457 a001 86267571272/199*15127^(1/5) 2971290102959797 a001 89/24476*14662949395604^(19/21) 2971290102959797 a001 89/24476*(1/2+1/2*5^(1/2))^57 2971290103140703 a001 53316291173/199*15127^(1/4) 2971290103789949 a001 32951280099/199*15127^(3/10) 2971290104439196 a001 20365011074/199*15127^(7/20) 2971290104838916 a001 365435296162/199*5778^(1/18) 2971290104854272 a001 10946/199*(1/2+1/2*5^(1/2))^37 2971290105088442 a001 12586269025/199*15127^(2/5) 2971290105737688 a001 7778742049/199*15127^(9/20) 2971290106386934 a001 4807526976/199*15127^(1/2) 2971290107036181 a001 2971215073/199*15127^(11/20) 2971290107685427 a001 1836311903/199*15127^(3/5) 2971290108334673 a001 1134903170/199*15127^(13/20) 2971290108983919 a001 3524667*15127^(7/10) 2971290109633166 a001 433494437/199*15127^(3/4) 2971290109783361 a001 225851433717/199*5778^(1/9) 2971290110282412 a001 267914296/199*15127^(4/5) 2971290110931658 a001 165580141/199*15127^(17/20) 2971290110984922 a001 6700259200271/2255 2971290111580904 a001 102334155/199*15127^(9/10) 2971290112230151 a001 63245986/199*15127^(19/20) 2971290114727805 a001 139583862445/199*5778^(1/6) 2971290119672249 a001 86267571272/199*5778^(2/9) 2971290120173561 r005 Re(z^2+c),c=-23/74+17/39*I,n=37 2971290124616694 a001 53316291173/199*5778^(5/18) 2971290129561138 a001 32951280099/199*5778^(1/3) 2971290130268198 a007 Real Root Of -95*x^4-101*x^3+233*x^2-936*x-83 2971290131994972 a001 89/9349*(1/2+1/2*5^(1/2))^55 2971290131994972 a001 89/9349*3461452808002^(11/12) 2971290133672676 r009 Im(z^3+c),c=-49/90+14/51*I,n=13 2971290133889447 a001 4181/199*2537720636^(13/15) 2971290133889447 a001 4181/199*45537549124^(13/17) 2971290133889447 a001 4181/199*14662949395604^(13/21) 2971290133889447 a001 4181/199*(1/2+1/2*5^(1/2))^39 2971290133889447 a001 4181/199*192900153618^(13/18) 2971290133889447 a001 4181/199*73681302247^(3/4) 2971290133889447 a001 4181/199*10749957122^(13/16) 2971290133889447 a001 4181/199*599074578^(13/14) 2971290134505583 a001 20365011074/199*5778^(7/18) 2971290137457523 m001 1/GAMMA(3/4)/Backhouse^2/exp(sin(Pi/12)) 2971290138020410 a001 365435296162/199*2207^(1/16) 2971290139450027 a001 12586269025/199*5778^(4/9) 2971290144394472 a001 7778742049/199*5778^(1/2) 2971290145316465 r009 Re(z^3+c),c=-4/9+19/52*I,n=7 2971290148053008 r009 Re(z^3+c),c=-11/34+11/57*I,n=18 2971290149338916 a001 4807526976/199*5778^(5/9) 2971290154283360 a001 2971215073/199*5778^(11/18) 2971290154792405 a001 321/2576*987^(23/50) 2971290159227805 a001 1836311903/199*5778^(2/3) 2971290164172249 a001 1134903170/199*5778^(13/18) 2971290166085992 r005 Re(z^2+c),c=-29/114+17/33*I,n=18 2971290169116694 a001 3524667*5778^(7/9) 2971290174061138 a001 433494437/199*5778^(5/6) 2971290176146349 a001 225851433717/199*2207^(1/8) 2971290176193732 r002 63th iterates of z^2 + 2971290179005583 a001 267914296/199*5778^(8/9) 2971290180076558 r005 Re(z^2+c),c=35/114+7/51*I,n=17 2971290183950027 a001 165580141/199*5778^(17/18) 2971290186087247 m005 (1/24+1/6*5^(1/2))/(9/10*gamma+7/8) 2971290193516561 r008 a(0)=3,K{-n^6,-66+35*n^3+17*n^2+49*n} 2971290198060079 r008 a(0)=3,K{-n^6,-72+40*n^3-n^2+68*n} 2971290199052413 l006 ln(439/8568) 2971290203133341 r008 a(0)=3,K{-n^6,-62+59*n-5*n^2+43*n^3} 2971290209985977 r008 a(0)=3,K{-n^6,8-56*n+45*n^2+38*n^3} 2971290210999654 q001 859/2891 2971290211383866 r005 Re(z^2+c),c=-19/50+8/61*I,n=11 2971290213196270 a007 Real Root Of -326*x^4-780*x^3+891*x^2+913*x-205 2971290214272289 a001 139583862445/199*2207^(3/16) 2971290224096374 a001 610/7*521^(10/51) 2971290226505799 r008 a(0)=3,K{-n^6,-28+46*n-45*n^2+62*n^3} 2971290227902767 r008 a(0)=3,K{-n^6,6+58*n^3-16*n^2-13*n} 2971290233823395 r008 a(0)=3,K{-n^6,14+64*n^3-30*n^2-13*n} 2971290239388822 r008 a(0)=3,K{-n^6,40+67*n^3-26*n^2-46*n} 2971290242370043 m001 (sin(1/12*Pi)-LaplaceLimit)/(OneNinth-Porter) 2971290244546729 a007 Real Root Of -470*x^4+401*x^3+684*x^2+642*x-258 2971290252398229 a001 86267571272/199*2207^(1/4) 2971290263978727 r008 a(0)=3,K{-n^6,98+96*n^3-84*n^2-75*n} 2971290268050085 m001 (OrthogonalArrays+Robbin)/(ln(2)+gamma(3)) 2971290284138690 m001 (Cahen+Tribonacci)/(ln(2)-GAMMA(7/12)) 2971290290524169 a001 53316291173/199*2207^(5/16) 2971290292707337 m001 (Pi-Cahen)/(DuboisRaymond+MasserGramain) 2971290296197771 a001 1/620166*11^(13/51) 2971290298177690 a007 Real Root Of -126*x^4-379*x^3+10*x^2+334*x+783 2971290308398635 m001 Zeta(9)^2/ln(GAMMA(19/24))^2/log(2+sqrt(3)) 2971290314008935 r005 Re(z^2+c),c=-89/110+29/54*I,n=5 2971290325346453 a001 1/87*(1/2*5^(1/2)+1/2)^11*3^(5/21) 2971290328650110 a001 32951280099/199*2207^(3/8) 2971290331005040 a001 89/3571*(1/2+1/2*5^(1/2))^53 2971290332899497 a001 1597/199*(1/2+1/2*5^(1/2))^41 2971290333483226 h001 (-7*exp(3/2)-3)/(-3*exp(2/3)+7) 2971290343301198 r005 Re(z^2+c),c=37/106+16/43*I,n=12 2971290347441291 m009 (1/6*Psi(1,3/4)+4/5)/(5/6*Psi(1,3/4)+2) 2971290351917008 m005 (1/2*Zeta(3)-1/6)/(4/7*Pi-1/3) 2971290352604825 r009 Re(z^3+c),c=-11/34+11/57*I,n=17 2971290360800498 m001 Porter^FeigenbaumD+ZetaP(3) 2971290362116241 m001 GAMMA(11/12)/(HardyLittlewoodC4-LaplaceLimit) 2971290362938981 m001 (GAMMA(7/12)+FeigenbaumDelta)/(Trott-ZetaQ(3)) 2971290366776052 a001 20365011074/199*2207^(7/16) 2971290370669248 a007 Real Root Of 279*x^4+638*x^3-300*x^2+957*x+482 2971290383157963 m001 MadelungNaCl^(Backhouse*Totient) 2971290387548383 m001 exp(Pi)^(Champernowne*FransenRobinson) 2971290387905271 p001 sum(1/(573*n+34)/(6^n),n=0..infinity) 2971290398544672 a001 365435296162/199*843^(1/14) 2971290404290583 h005 exp(cos(Pi*5/33)/cos(Pi*10/51)) 2971290404901994 a001 12586269025/199*2207^(1/2) 2971290408058238 m001 gamma/Si(Pi)/exp(sinh(1))^2 2971290419931015 l006 ln(1633/2198) 2971290431953521 m001 Pi*(1-exp(gamma))-polylog(4,1/2) 2971290441572406 m001 1/exp(FeigenbaumB)^2/Si(Pi)*Niven^2 2971290443027936 a001 7778742049/199*2207^(9/16) 2971290445313429 a007 Real Root Of 292*x^4+586*x^3-989*x^2-313*x+414 2971290445714030 r005 Re(z^2+c),c=-17/13+1/56*I,n=36 2971290450649682 a001 76/377*21^(38/43) 2971290456727377 r005 Re(z^2+c),c=19/62+23/54*I,n=19 2971290458774555 m001 (exp(1/exp(1))-ArtinRank2)/(ZetaP(3)+ZetaP(4)) 2971290459130277 r002 19th iterates of z^2 + 2971290464506269 m001 ln(Salem)^2*Riemann1stZero^2/sqrt(Pi) 2971290470519504 m001 1/exp(GAMMA(5/6))^2*Paris^2*cos(1)^2 2971290481153879 a001 4807526976/199*2207^(5/8) 2971290483400552 m001 (BesselJ(1,1)+FeigenbaumDelta)/(Landau+Salem) 2971290494148971 r005 Im(z^2+c),c=11/70+34/59*I,n=18 2971290504693692 a007 Real Root Of 387*x^4+256*x^3+72*x^2-856*x-257 2971290504812779 m005 (1/2*Zeta(3)+3/10)/(7/10*Pi+5/6) 2971290509273066 a005 (1/cos(14/233*Pi))^1217 2971290512481714 r005 Im(z^2+c),c=2/9+10/59*I,n=4 2971290519279823 a001 2971215073/199*2207^(11/16) 2971290531612780 m001 Zeta(3)/(FeigenbaumMu+PlouffeB) 2971290542106848 r008 a(0)=3,K{-n^6,-31+15*n^3+95*n^2-44*n} 2971290542366642 m001 (ZetaP(2)+ZetaQ(4))/(Pi-FeigenbaumDelta) 2971290546136936 r005 Re(z^2+c),c=-8/23+17/55*I,n=43 2971290550688546 r008 a(0)=3,K{-n^6,-63+27*n^3+43*n^2+28*n} 2971290557405767 a001 1836311903/199*2207^(3/4) 2971290557974598 m001 1/ln(GolombDickman)^2*Artin/LambertW(1) 2971290559476734 m005 (-11/4+1/4*5^(1/2))/(7/10*gamma+1/3) 2971290564501383 m005 (1/3*exp(1)-1/6)/(5/9*Zeta(3)-11/12) 2971290565407749 r008 a(0)=3,K{-n^6,-47+24*n+21*n^2+37*n^3} 2971290566131928 r008 a(0)=3,K{-n^6,-55+39*n^3+11*n^2+40*n} 2971290570374062 r008 a(0)=3,K{-n^6,-61+44*n^3-7*n^2+59*n} 2971290571062059 r008 a(0)=3,K{-n^6,-27-2*n+25*n^2+39*n^3} 2971290571751728 r008 a(0)=3,K{-n^6,-65+46*n^3-15*n^2+69*n} 2971290571974391 m001 Si(Pi)^FeigenbaumD/(Si(Pi)^Catalan) 2971290574786156 r008 a(0)=3,K{-n^6,-59+48*n^3-18*n^2+64*n} 2971290575448518 r008 a(0)=3,K{-n^6,-55+58*n-16*n^2+48*n^3} 2971290578655175 r005 Re(z^2+c),c=-67/118+5/12*I,n=14 2971290585206606 r008 a(0)=3,K{-n^6,-35+42*n-27*n^2+55*n^3} 2971290586825513 r009 Im(z^3+c),c=-23/56+13/63*I,n=28 2971290588162353 r008 a(0)=3,K{-n^6,-27+57*n^3-29*n^2+34*n} 2971290588740209 r008 a(0)=3,K{-n^6,25-60*n+21*n^2+49*n^3} 2971290589891356 r008 a(0)=3,K{-n^6,27-61*n+19*n^2+50*n^3} 2971290591875143 r008 a(0)=3,K{-n^6,-1+57*n^3-16*n^2-5*n} 2971290592156419 r008 a(0)=3,K{-n^6,-29+47*n-45*n^2+62*n^3} 2971290593267700 r008 a(0)=3,K{-n^6,-27+46*n-47*n^2+63*n^3} 2971290593817815 r008 a(0)=3,K{-n^6,-11+18*n-33*n^2+61*n^3} 2971290595531711 a001 1134903170/199*2207^(13/16) 2971290597970772 r002 50th iterates of z^2 + 2971290599931005 r008 a(0)=3,K{-n^6,5+66*n^3-40*n^2+4*n} 2971290616891511 p004 log(31091/23099) 2971290626351020 r005 Im(z^2+c),c=1/4+3/17*I,n=23 2971290629877367 r008 a(0)=3,K{-n^6,85+99*n^3-99*n^2-50*n} 2971290633657656 a001 3524667*2207^(7/8) 2971290653008318 a007 Real Root Of -214*x^4-962*x^3-698*x^2+831*x+76 2971290654080662 r005 Im(z^2+c),c=-5/58+12/31*I,n=20 2971290667741949 r009 Re(z^3+c),c=-11/34+11/57*I,n=19 2971290668092073 h001 (3/7*exp(1)+5/9)/(8/11*exp(2)+5/12) 2971290670706753 a001 18*1597^(9/13) 2971290671762484 r008 a(0)=0,K{-n^6,-38-37*n^3+n^2+77*n} 2971290671783601 a001 433494437/199*2207^(15/16) 2971290677425550 a001 2207/17711*987^(23/50) 2971290677809243 m002 6*Pi^3+Pi^4*Log[Pi]*Tanh[Pi] 2971290680963666 r009 Re(z^3+c),c=-11/34+11/57*I,n=22 2971290686125920 k002 Champernowne real with 177/2*n^2-447/2*n+164 2971290687280758 m001 GAMMA(11/12)+Stephens+Totient 2971290689391891 r009 Re(z^3+c),c=-11/34+11/57*I,n=23 2971290696422349 r009 Re(z^3+c),c=-11/34+11/57*I,n=27 2971290696719664 r009 Re(z^3+c),c=-11/34+11/57*I,n=28 2971290696730717 r009 Re(z^3+c),c=-11/34+11/57*I,n=26 2971290696765015 r009 Re(z^3+c),c=-11/34+11/57*I,n=31 2971290696767476 r009 Re(z^3+c),c=-11/34+11/57*I,n=32 2971290696772711 r009 Re(z^3+c),c=-11/34+11/57*I,n=36 2971290696772869 r009 Re(z^3+c),c=-11/34+11/57*I,n=37 2971290696772920 r009 Re(z^3+c),c=-11/34+11/57*I,n=41 2971290696772920 r009 Re(z^3+c),c=-11/34+11/57*I,n=40 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=45 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=46 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=42 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=50 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=49 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=51 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=54 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=55 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=59 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=60 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=63 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=64 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=62 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=58 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=61 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=56 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=57 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=53 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=52 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=48 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=47 2971290696772923 r009 Re(z^3+c),c=-11/34+11/57*I,n=44 2971290696772924 r009 Re(z^3+c),c=-11/34+11/57*I,n=43 2971290696772940 r009 Re(z^3+c),c=-11/34+11/57*I,n=39 2971290696772955 r009 Re(z^3+c),c=-11/34+11/57*I,n=38 2971290696773013 r009 Re(z^3+c),c=-11/34+11/57*I,n=35 2971290696773513 r009 Re(z^3+c),c=-11/34+11/57*I,n=33 2971290696774091 r009 Re(z^3+c),c=-11/34+11/57*I,n=34 2971290696793704 r009 Re(z^3+c),c=-11/34+11/57*I,n=30 2971290696832067 r009 Re(z^3+c),c=-11/34+11/57*I,n=29 2971290697194901 a001 225851433717/199*843^(1/7) 2971290697827297 l006 ln(234/4567) 2971290698529533 r009 Re(z^3+c),c=-11/34+11/57*I,n=25 2971290698566474 r009 Re(z^3+c),c=-11/34+11/57*I,n=24 2971290698616667 r005 Im(z^2+c),c=-69/82+1/55*I,n=23 2971290698791124 r002 24th iterates of z^2 + 2971290703683200 r009 Re(z^3+c),c=-21/110+41/42*I,n=48 2971290708015197 a001 977554642937/329 2971290710225611 r005 Im(z^2+c),c=-115/94+7/50*I,n=25 2971290720357511 r009 Re(z^3+c),c=-11/34+11/57*I,n=21 2971290721313354 m001 (ln(5)+gamma(2))/(OneNinth-ZetaQ(2)) 2971290727054679 m001 arctan(1/3)+ln(2+3^(1/2))+MertensB3 2971290736595976 a008 Real Root of x^4-x^3-4*x^2-21*x+46 2971290747634320 m005 (1/2*3^(1/2)+9/11)/(-19/144+5/16*5^(1/2)) 2971290758571659 r005 Re(z^2+c),c=-17/86+16/29*I,n=11 2971290768672108 m001 (exp(1/exp(1))-sin(1))/(ArtinRank2+MertensB3) 2971290769279626 a007 Real Root Of 146*x^4-834*x^3-237*x^2-868*x-260 2971290774205770 a007 Real Root Of -38*x^4+980*x^3+49*x^2+849*x-282 2971290775008648 r002 58th iterates of z^2 + 2971290798877000 r009 Re(z^3+c),c=-11/34+11/57*I,n=20 2971290802294226 r005 Re(z^2+c),c=2/9+3/64*I,n=17 2971290815824191 p003 LerchPhi(1/32,2,229/124) 2971290818205049 a007 Real Root Of 326*x^4+215*x^3+731*x^2-675*x-262 2971290834920224 r005 Re(z^2+c),c=-8/23+17/55*I,n=41 2971290842611056 r002 10th iterates of z^2 + 2971290843157317 h001 (1/12*exp(1)+3/10)/(2/11*exp(2)+3/7) 2971290863283418 a007 Real Root Of -330*x^4-709*x^3+953*x^2+178*x-762 2971290867642456 m001 (-GaussAGM+Tetranacci)/(5^(1/2)+3^(1/3)) 2971290868694644 r005 Re(z^2+c),c=-9/11+11/48*I,n=6 2971290893962101 r005 Im(z^2+c),c=-7/26+20/51*I,n=4 2971290901698526 a001 521/89*13^(19/30) 2971290907173762 r005 Re(z^2+c),c=-27/29+7/40*I,n=20 2971290911358251 r005 Re(z^2+c),c=-137/110+5/54*I,n=2 2971290917914944 r009 Re(z^3+c),c=-11/40+33/46*I,n=13 2971290923439975 r008 a(0)=3,K{-n^6,-56+33*n^3+29*n^2+29*n} 2971290923970513 a007 Real Root Of -45*x^4+165*x^3+930*x^2-97*x-663 2971290924944357 r008 a(0)=3,K{-n^6,-18-38*n+63*n^2+28*n^3} 2971290929349566 r008 a(0)=3,K{-n^6,-12-41*n+57*n^2+31*n^3} 2971290930482865 m001 (GAMMA(5/6)+CareFree)/(Kac-ZetaQ(3)) 2971290933587467 r008 a(0)=3,K{-n^6,-60+55*n-3*n^2+43*n^3} 2971290935361001 m001 Rabbit^2/ln(LaplaceLimit)^2/Zeta(9) 2971290936195368 r009 Re(z^3+c),c=-53/122+24/61*I,n=55 2971290939308788 r008 a(0)=3,K{-n^6,-56+59*n-16*n^2+48*n^3} 2971290945545544 m001 (3^(1/2)-ln(Pi))/(-3^(1/3)+GAMMA(13/24)) 2971290945817577 a001 843*(1/2*5^(1/2)+1/2)^10*3^(23/24) 2971290953420313 a007 Real Root Of -363*x^4-872*x^3-438*x^2+496*x+166 2971290953631905 r008 a(0)=3,K{-n^6,26-60*n+19*n^2+50*n^3} 2971290954198530 r008 a(0)=3,K{-n^6,12+53*n^3+3*n^2-33*n} 2971290956706419 r008 a(0)=3,K{-n^6,-30+63*n^3-48*n^2+50*n} 2971290957525502 r008 a(0)=3,K{-n^6,6+58*n^3-15*n^2-14*n} 2971290957526356 r008 a(0)=3,K{-n^6,-12+19*n-33*n^2+61*n^3} 2971290968716880 r008 a(0)=3,K{-n^6,22+7*n+18*n^2-16*n^3} 2971290982835175 r005 Re(z^2+c),c=-27/74+8/35*I,n=26 2971290982969829 m001 Si(Pi)/(Sarnak^MinimumGamma) 2971290992943614 r008 a(0)=3,K{-n^6,98+96*n^3-83*n^2-76*n} 2971290995845161 a001 139583862445/199*843^(3/14) 2971291007376314 m005 (1/2*Zeta(3)+1)/(1/7*exp(1)+5) 2971291008517459 a001 76/843*(1/2*5^(1/2)+1/2)^4*843^(11/12) 2971291021327084 a007 Real Root Of 355*x^4+876*x^3-245*x^2+608*x-721 2971291021556148 a007 Real Root Of 333*x^4+974*x^3+99*x^2+660*x+682 2971291028295163 r005 Im(z^2+c),c=-11/14+73/233*I,n=4 2971291036030840 m001 BesselI(0,2)*(3^(1/3))^Sarnak 2971291042462582 r005 Im(z^2+c),c=-26/31+1/53*I,n=13 2971291043186319 m001 1/ln(DuboisRaymond)^2/Conway^2/exp(1)^2 2971291064964664 a007 Real Root Of 178*x^4-515*x^3+635*x^2-717*x-284 2971291073418371 m001 1/FeigenbaumC^2/Kolakoski^2/exp(arctan(1/2)) 2971291079218680 m001 (cos(1/12*Pi)+(1+3^(1/2))^(1/2))/ln(2^(1/2)+1) 2971291079218680 m001 (cos(Pi/12)+sqrt(1+sqrt(3)))/ln(1+sqrt(2)) 2971291082232245 m009 (2*Psi(1,3/4)+2)/(5/2*Pi^2-5/6) 2971291088008032 r002 39th iterates of z^2 + 2971291088038269 a003 cos(Pi*22/93)-cos(Pi*27/76) 2971291091319563 r009 Re(z^3+c),c=-12/31+5/16*I,n=20 2971291092052508 l006 ln(6769/9111) 2971291105569582 a001 8/29*2^(3/28) 2971291114249577 r005 Re(z^2+c),c=-25/26+6/65*I,n=22 2971291114530436 a007 Real Root Of -328*x^4-876*x^3+187*x^2-135*x+534 2971291118011199 m001 (Ei(1,1)+GAMMA(11/12))/(TreeGrowth2nd-Trott) 2971291128818458 a007 Real Root Of -179*x^4-514*x^3-74*x^2-249*x+382 2971291138394845 l006 ln(497/9700) 2971291145500780 a001 9349/2*233^(19/56) 2971291170359272 a001 1597/7*843^(2/51) 2971291172333379 r005 Im(z^2+c),c=-61/74+7/39*I,n=39 2971291181240125 a007 Real Root Of 129*x^4+314*x^3+190*x^2-865*x+231 2971291182504330 m001 (arctan(1/3)-cos(1/5*Pi))/GAMMA(13/24) 2971291188034573 a007 Real Root Of 134*x^4-597*x^3-890*x^2-972*x+382 2971291200342130 m001 (-FeigenbaumAlpha+ZetaQ(3))/(gamma(3)-sin(1)) 2971291201796330 b008 2-5/E^(7/9) 2971291218945060 m002 -Pi^2+Pi^5*Coth[Pi]-Tanh[Pi]/6 2971291220868229 p004 log(22937/17041) 2971291233405929 r002 33i'th iterates of 2*x/(1-x^2) of 2971291249699152 r009 Re(z^3+c),c=-59/86+47/59*I,n=2 2971291263570429 a003 sin(Pi*12/113)*sin(Pi*38/105) 2971291268218286 a001 76*(1/2*5^(1/2)+1/2)^2*1364^(1/18) 2971291275443655 a007 Real Root Of -207*x^4-807*x^3-251*x^2+797*x-451 2971291278745419 r002 10th iterates of z^2 + 2971291278786533 r005 Re(z^2+c),c=-23/58+7/34*I,n=5 2971291286871638 s002 sum(A178194[n]/(n*2^n+1),n=1..infinity) 2971291287011789 r008 a(0)=3,K{-n^6,-19-37*n+63*n^2+28*n^3} 2971291287801558 a001 987/29*5778^(43/55) 2971291290176643 r008 a(0)=3,K{-n^6,43-40*n+65*n^2-27*n^3} 2971291294495451 a001 86267571272/199*843^(2/7) 2971291297614993 r008 a(0)=3,K{-n^6,-13-28*n+39*n^2+37*n^3} 2971291297955097 r008 a(0)=3,K{-n^6,-65+46*n^3-14*n^2+68*n} 2971291305754679 l006 ln(5136/6913) 2971291308727646 m001 GAMMA(2/3)+FeigenbaumC^Kolakoski 2971291314020996 a001 2178309/76*76^(27/50) 2971291315813624 r005 Im(z^2+c),c=-27/46+15/56*I,n=3 2971291316244615 r009 Im(z^3+c),c=-43/110+13/59*I,n=13 2971291317685715 r008 a(0)=3,K{-n^6,-1+57*n^3-15*n^2-6*n} 2971291317961619 r008 a(0)=3,K{-n^6,-29+46*n-44*n^2+62*n^3} 2971291320375061 b008 -29/3+E^8 2971291336366863 m001 1/MadelungNaCl*exp(ArtinRank2)*Sierpinski 2971291344498910 a001 76/15127*(1/2*5^(1/2)+1/2)^22*15127^(1/24) 2971291347745142 a001 76/15127*(1/2*5^(1/2)+1/2)^17*15127^(7/24) 2971291350991375 a001 76/15127*(1/2*5^(1/2)+1/2)^12*15127^(13/24) 2971291354237607 a001 76/15127*(1/2*5^(1/2)+1/2)^7*15127^(19/24) 2971291355001534 m001 (MadelungNaCl+MertensB3)/(Zeta(3)+Zeta(1,-1)) 2971291355206198 a001 76/39603*(1/2*5^(1/2)+1/2)^23*39603^(1/12) 2971291356153436 a001 76/39603*(1/2*5^(1/2)+1/2)^12*39603^(7/12) 2971291356300378 a007 Real Root Of -926*x^4+461*x^3+948*x^2+338*x-189 2971291357100674 a001 76*(1/2*5^(1/2)+1/2)*39603^(1/12) 2971291357218346 a001 19/6119*(1/2*5^(1/2)+1/2)^4*24476^(17/18) 2971291357483840 a001 76*(1/2*5^(1/2)+1/2)^2*15127^(1/24) 2971291357545822 a001 76/64079*(1/2*5^(1/2)+1/2)^22*64079^(1/6) 2971291358871613 a001 19/6119*(1/2*5^(1/2)+1/2)^11*24476^(11/18) 2971291360524881 a001 19/6119*(1/2*5^(1/2)+1/2)^18*24476^(5/18) 2971291362608633 a001 76/9349*(1/2*5^(1/2)+1/2)^6*9349^(5/6) 2971291386419134 m001 2*Pi/GAMMA(5/6)/ln(3)/Niven 2971291389670548 h001 (1/7*exp(2)+5/9)/(7/10*exp(2)+1/4) 2971291401354869 m001 (TwinPrimes+ZetaQ(3))/(cos(1/5*Pi)+3^(1/3)) 2971291408994928 m008 (3/4*Pi^6+4)/(4/5*Pi^5-4/5) 2971291419790387 m001 (GAMMA(7/12)+CareFree)^FeigenbaumKappa 2971291425456871 m005 (1/3*gamma+2/11)/(21/22+3/22*5^(1/2)) 2971291426893289 a003 cos(Pi*29/101)-cos(Pi*17/43) 2971291428210632 r008 a(0)=3,K{-n^6,49-9*n^3-22*n^2+16*n} 2971291450503530 r005 Re(z^2+c),c=-13/44+12/25*I,n=38 2971291452352206 a007 Real Root Of -185*x^4-302*x^3+938*x^2+705*x+311 2971291458680883 h001 (2/3*exp(1)+2/11)/(8/9*exp(2)+1/7) 2971291462802375 r005 Re(z^2+c),c=-33/106+23/53*I,n=63 2971291464766145 m001 1/exp(Zeta(7))*BesselJ(1,1)/cos(1) 2971291471467248 a001 3/1346269*2^(22/53) 2971291489102503 r005 Im(z^2+c),c=-29/27+13/50*I,n=62 2971291490864711 r005 Im(z^2+c),c=-29/102+1/23*I,n=14 2971291494938565 m001 PisotVijayaraghavan*(Porter+StronglyCareFree) 2971291503351137 s002 sum(A033521[n]/(n^3*exp(n)+1),n=1..infinity) 2971291508622799 a007 Real Root Of -591*x^4+658*x^3+432*x^2+381*x-164 2971291509602684 s002 sum(A033521[n]/(n^3*exp(n)-1),n=1..infinity) 2971291510123308 m001 Zeta(1,2)*Conway/exp(sqrt(2)) 2971291516095564 r009 Re(z^3+c),c=-55/118+26/57*I,n=45 2971291518836337 r009 Im(z^3+c),c=-3/23+16/51*I,n=8 2971291530382538 l006 ln(263/5133) 2971291536195781 a007 Real Root Of 157*x^4+493*x^3+12*x^2-404*x-611 2971291545237838 a007 Real Root Of 392*x^4+917*x^3-761*x^2-223*x-443 2971291551113752 a001 76/3571*(1/2*5^(1/2)+1/2)^17*3571^(1/6) 2971291555425789 m001 (MertensB2-TravellingSalesman)/OneNinth 2971291558831550 r005 Im(z^2+c),c=-45/74+16/61*I,n=3 2971291560536144 a007 Real Root Of 414*x^4+974*x^3-402*x^2+753*x-932 2971291561342814 k006 concat of cont frac of 2971291564603233 a007 Real Root Of -229*x^4-402*x^3+852*x^2-251*x-964 2971291580422196 r009 Im(z^3+c),c=-5/27+17/56*I,n=9 2971291593145771 a001 53316291173/199*843^(5/14) 2971291596611009 a001 843/196418*20365011074^(21/22) 2971291598528917 a001 39603/377*514229^(21/22) 2971291599917423 r005 Re(z^2+c),c=-35/102+20/61*I,n=27 2971291600956575 r005 Im(z^2+c),c=-15/86+20/47*I,n=31 2971291605607204 r002 8th iterates of z^2 + 2971291610158819 m005 (1/2*Zeta(3)-4/9)/(2*exp(1)-1/6) 2971291617360114 r005 Im(z^2+c),c=-18/29+1/18*I,n=59 2971291627247283 r005 Re(z^2+c),c=-4/13+4/9*I,n=54 2971291633025645 r009 Re(z^3+c),c=-21/50+33/64*I,n=15 2971291645327276 r008 a(0)=3,K{-n^6,-72+35*n^3+16*n^2+56*n} 2971291647915521 r008 a(0)=3,K{-n^6,-52+24*n+29*n^2+34*n^3} 2971291651867000 r008 a(0)=3,K{-n^6,-72+41*n^3-2*n^2+68*n} 2971291655759553 a001 514229/47*521^(19/36) 2971291656484425 m001 (Pi-sin(1))/(KhinchinLevy-ThueMorse) 2971291657691296 r008 a(0)=3,K{-n^6,-14-27*n+39*n^2+37*n^3} 2971291658028529 r008 a(0)=3,K{-n^6,-66+46*n^3-14*n^2+69*n} 2971291661621427 r008 a(0)=3,K{-n^6,-56+58*n-15*n^2+48*n^3} 2971291662257252 r008 a(0)=3,K{-n^6,2+39*n^3+41*n^2-47*n} 2971291667043155 m001 (MertensB2+TwinPrimes)/(Zeta(3)-Pi^(1/2)) 2971291669809341 m002 -4+Pi^3-Pi^3*Coth[Pi]+Log[Pi] 2971291675666113 r008 a(0)=3,K{-n^6,26-61*n+20*n^2+50*n^3} 2971291675717507 r009 Im(z^3+c),c=-15/122+17/54*I,n=8 2971291677049038 r008 a(0)=3,K{-n^6,-10*n-11*n^2+56*n^3} 2971291677596154 r008 a(0)=3,K{-n^6,-2+57*n^3-15*n^2-5*n} 2971291679486428 r008 a(0)=3,K{-n^6,-12+18*n-32*n^2+61*n^3} 2971291689126520 k002 Champernowne real with 89*n^2-225*n+165 2971291695041055 a001 89/1364*817138163596^(17/19) 2971291695041055 a001 89/1364*14662949395604^(17/21) 2971291695041055 a001 89/1364*(1/2+1/2*5^(1/2))^51 2971291695041055 a001 89/1364*192900153618^(17/18) 2971291695596363 s002 sum(A132200[n]/(n^3*pi^n+1),n=1..infinity) 2971291696934673 a001 610/199*(1/2+1/2*5^(1/2))^43 2971291700803457 h001 (-2*exp(4)-8)/(-exp(6)+9) 2971291700846790 s002 sum(A272696[n]/(n^2*pi^n-1),n=1..infinity) 2971291705116337 r005 Im(z^2+c),c=-31/102+19/42*I,n=14 2971291706336156 b008 7*Sqrt[2]-4*Sqrt[3] 2971291718700710 l006 ln(3503/4715) 2971291719898972 a007 Real Root Of -493*x^4+523*x^3+546*x^2+481*x-201 2971291727237413 m009 (2/3*Psi(1,2/3)-1/2)/(3*Psi(1,2/3)-4) 2971291737757009 r002 9th iterates of z^2 + 2971291738003701 r009 Re(z^3+c),c=-29/54+17/61*I,n=3 2971291745329629 m005 (13/42+1/6*5^(1/2))/(103/77+3/7*5^(1/2)) 2971291746987139 r005 Re(z^2+c),c=-7/20+3/8*I,n=10 2971291752546507 r005 Im(z^2+c),c=-41/52+1/39*I,n=8 2971291759937400 r002 21th iterates of z^2 + 2971291764956834 r005 Re(z^2+c),c=-25/66+7/54*I,n=19 2971291782285281 h001 (1/10*exp(1)+3/11)/(1/8*exp(2)+10/11) 2971291790927952 a001 7/75025*1134903170^(1/18) 2971291791073854 a001 7/121393*6557470319842^(1/18) 2971291791310783 a001 1/6624*196418^(1/18) 2971291798052533 r005 Im(z^2+c),c=-31/27+2/9*I,n=14 2971291800565419 a001 19/341*(1/2*5^(1/2)+1/2)^7*1364^(13/18) 2971291812606999 a001 76/28657*377^(35/44) 2971291816144391 a001 17*2^(29/36) 2971291816432633 a007 Real Root Of -201*x^4-298*x^3+645*x^2-521*x+607 2971291819451767 m008 (2*Pi^2-2/3)/(2/3*Pi^4-3/4) 2971291824520716 a001 10959*9349^(6/55) 2971291843369422 m001 exp(HardHexagonsEntropy)^2*CareFree*sin(Pi/12) 2971291859614970 a001 4181/29*24476^(29/55) 2971291860923619 r004 Re(z^2+c),c=-1/3+5/12*I,z(0)=exp(7/8*I*Pi),n=8 2971291866028708 q001 621/209 2971291866028708 r002 2th iterates of z^2 + 2971291866028708 r002 2th iterates of z^2 + 2971291870286363 r005 Im(z^2+c),c=-9/38+23/50*I,n=16 2971291878223255 a007 Real Root Of -876*x^4+200*x^3+793*x^2+463*x-206 2971291889685139 r009 Re(z^3+c),c=-8/15+1/2*I,n=11 2971291891796120 a001 32951280099/199*843^(3/7) 2971291891954703 m001 sin(1/5*Pi)^ln(2)*sin(1/5*Pi)^BesselI(1,2) 2971291891954703 m001 sin(Pi/5)^ln(2)*sin(Pi/5)^BesselI(1,2) 2971291894102378 m002 -3-Pi^5+ProductLog[Pi]/Pi+Sinh[Pi] 2971291905380174 r005 Im(z^2+c),c=-9/32+29/62*I,n=63 2971291909749750 m001 (Shi(1)+arctan(1/3))/(-Trott+Weierstrass) 2971291917263799 r005 Im(z^2+c),c=-11/52+22/49*I,n=14 2971291926551312 r009 Re(z^3+c),c=-13/31+11/30*I,n=19 2971291929103497 m002 -Pi^4+Pi^9+Log[Pi]*ProductLog[Pi] 2971291933740745 h001 (8/9*exp(2)+4/7)/(1/4*exp(2)+5/9) 2971291936693117 p001 sum((-1)^n/(450*n+187)/n/(5^n),n=1..infinity) 2971291950394960 a001 843/832040*4181^(4/31) 2971291951972340 b008 BarnesG[InverseGudermannian[1/4]] 2971291973146978 m001 1/ln(Robbin)/Kolakoski/GAMMA(23/24) 2971291974147417 m001 gamma^(ln(2+3^(1/2))/Gompertz) 2971291982410379 m009 (1/3*Psi(1,2/3)-4)/(3*Psi(1,2/3)+5/6) 2971291983335159 m005 (1/2*Pi+6/7)/(9/11*3^(1/2)-3/5) 2971291983471461 a001 121393/29*2207^(14/55) 2971291985116071 r008 a(0)=3,K{-n^6,9-15*n^3+10*n^2+38*n} 2971291985233361 b008 -1+EulerGamma+Tan[1/8] 2971291989379943 r008 a(0)=3,K{-n^6,-31+16*n^3+94*n^2-44*n} 2971291997516123 r008 a(0)=3,K{-n^6,-63+28*n^3+42*n^2+28*n} 2971292003623467 r008 a(0)=3,K{-n^6,-73+35*n^3+16*n^2+57*n} 2971292005822767 r008 a(0)=3,K{-n^6,-19-38*n+64*n^2+28*n^3} 2971292010655842 h005 exp(cos(Pi*3/55)/cos(Pi*7/50)) 2971292012182347 r008 a(0)=3,K{-n^6,-55+40*n^3+10*n^2+40*n} 2971292017156823 a001 29/3*8^(27/50) 2971292020410256 r008 a(0)=3,K{-n^6,1+39*n^3+41*n^2-46*n} 2971292020414587 r008 a(0)=3,K{-n^6,-59+49*n^3-19*n^2+64*n} 2971292020415010 r008 a(0)=3,K{-n^6,-65+50*n^3-25*n^2+75*n} 2971292024435046 r002 2th iterates of z^2 + 2971292033157718 r008 a(0)=3,K{-n^6,-27+58*n^3-30*n^2+34*n} 2971292033708823 r008 a(0)=3,K{-n^6,25-60*n+20*n^2+50*n^3} 2971292035080528 r008 a(0)=3,K{-n^6,-1-9*n-11*n^2+56*n^3} 2971292044388527 r008 a(0)=3,K{-n^6,5+67*n^3-41*n^2+4*n} 2971292057303157 v003 sum((1/2*n^3-5/2*n+12)/n^(n-2),n=1..infinity) 2971292058901339 h001 (3/10*exp(1)+5/12)/(1/10*exp(1)+1/7) 2971292075109320 a007 Real Root Of 21*x^4-159*x^3-341*x^2-881*x-236 2971292081383775 m005 (1/3*gamma-1/3)/(25/18+3/2*5^(1/2)) 2971292086154073 b008 3/E^(1/104) 2971292094732028 m005 (1/2*2^(1/2)-1)/(23/198+7/18*5^(1/2)) 2971292098211536 m001 (BesselJ(0,1)+Porter)/(-Salem+Tetranacci) 2971292101897912 m005 (1/2*Catalan+2/11)/(1/4*3^(1/2)-5/11) 2971292113340644 r005 Re(z^2+c),c=-16/21+4/49*I,n=8 2971292113431909 l006 ln(5373/7232) 2971292129433902 b008 1/3-80*(1+E) 2971292131815315 h001 (-6*exp(3)-6)/(-8*exp(4)+11) 2971292141836105 a008 Real Root of x^4-x^3-22*x^2-33*x-8 2971292148723942 a007 Real Root Of -975*x^4-710*x^3+408*x^2+556*x-175 2971292157619136 r005 Re(z^2+c),c=-33/106+23/53*I,n=61 2971292172329087 r005 Re(z^2+c),c=9/29+24/43*I,n=61 2971292178714567 m005 (47/44+1/4*5^(1/2))/(1/6*Pi-6) 2971292179467986 m005 (1/2*5^(1/2)-2/9)/(7/9*Pi+4/7) 2971292186631328 a005 (1/cos(4/185*Pi))^1469 2971292190446500 a001 20365011074/199*843^(1/2) 2971292197566717 l006 ln(292/5699) 2971292212053899 m001 1/Riemann2ndZero^2*Rabbit^2*ln(sinh(1))^2 2971292212226831 p001 sum(1/(565*n+361)/(6^n),n=0..infinity) 2971292220813608 m005 (1/2*5^(1/2)+4/11)/(6/11*2^(1/2)-3/11) 2971292228103480 r002 5th iterates of z^2 + 2971292228410940 m001 (ln(3)-FeigenbaumDelta)/(Kac+Stephens) 2971292229177087 r005 Re(z^2+c),c=-13/82+9/13*I,n=18 2971292233669529 m001 (Porter-Salem)/(exp(-1/2*Pi)-KhinchinLevy) 2971292244877772 a003 sin(Pi*7/73)/sin(Pi*43/89) 2971292246610030 s002 sum(A202480[n]/(n^2*exp(n)+1),n=1..infinity) 2971292261180871 a007 Real Root Of -820*x^4-419*x^3+880*x^2+839*x+167 2971292262450762 r005 Re(z^2+c),c=-17/18+51/227*I,n=36 2971292265518242 q001 1/3365539 2971292271777007 a007 Real Root Of 751*x^4-741*x^3-737*x^2-819*x+322 2971292274155776 m001 (GAMMA(7/12)+Tetranacci)/(sin(1)+arctan(1/3)) 2971292275901380 a007 Real Root Of -238*x^4-666*x^3+244*x^2+444*x+245 2971292286929886 m001 (HeathBrownMoroz+Kolakoski)/(exp(1/Pi)+Conway) 2971292286941199 a007 Real Root Of 79*x^4+213*x^3-36*x^2+26*x-175 2971292295777356 m001 1/ln(sin(Pi/5))^2*KhintchineLevy/sqrt(2) 2971292304339454 l006 ln(7243/9749) 2971292304339454 p004 log(9749/7243) 2971292311619240 a001 9349/377*6557470319842^(17/24) 2971292314748845 a001 1/12*(1/2*5^(1/2)+1/2)^6*3^(5/8) 2971292319599825 m001 1/Khintchine^2/ln(FransenRobinson)^2/Robbin^2 2971292332912648 a001 19/341*(1/2*5^(1/2)+1/2)^12*1364^(7/18) 2971292338193357 m001 GAMMA(13/24)*ZetaQ(4)^Pi 2971292340653443 a007 Real Root Of 342*x^4+729*x^3-914*x^2-39*x+420 2971292345614243 a001 33385282/377*63245986^(17/24) 2971292346135351 m001 Conway*(BesselJ(1,1)+Tribonacci) 2971292348953573 r005 Re(z^2+c),c=-55/106+19/39*I,n=61 2971292359051809 a007 Real Root Of -368*x^4-840*x^3+855*x^2+131*x-511 2971292362344953 h001 (1/10*exp(2)+1/3)/(5/11*exp(2)+1/4) 2971292372530631 r008 a(0)=3,K{-n^6,-14-28*n+40*n^2+37*n^3} 2971292376698024 r008 a(0)=3,K{-n^6,-66+50*n^3-25*n^2+76*n} 2971292381892648 r008 a(0)=3,K{-n^6,-56+54*n^3-32*n^2+69*n} 2971292393497293 a007 Real Root Of 20*x^4+609*x^3+419*x^2-549*x+474 2971292393904832 r008 a(0)=3,K{-n^6,-30+64*n^3-49*n^2+50*n} 2971292394686528 r008 a(0)=3,K{-n^6,6+59*n^3-16*n^2-14*n} 2971292397346541 a003 sin(Pi*3/28)*sin(Pi*26/73) 2971292397787436 r005 Im(z^2+c),c=-8/23+31/63*I,n=50 2971292417842197 r009 Im(z^3+c),c=-9/22+11/53*I,n=28 2971292418694695 m005 (1/2*exp(1)+5/11)/(9/10*gamma+1/11) 2971292428569650 r008 a(0)=3,K{-n^6,98+97*n^3-84*n^2-76*n} 2971292434713183 r005 Im(z^2+c),c=-33/122+10/19*I,n=3 2971292441844212 r002 12th iterates of z^2 + 2971292444907235 r005 Re(z^2+c),c=-13/38+18/55*I,n=16 2971292459507829 m005 (1/2*3^(1/2)+5/12)/(-1/2+5/12*5^(1/2)) 2971292464552121 r005 Re(z^2+c),c=-83/122+1/10*I,n=4 2971292473058037 m005 (1/3*exp(1)+1/12)/(6/7*exp(1)+1) 2971292476156319 m005 (1/2*Pi-2/3)/(1/8*Zeta(3)-5/11) 2971292483591053 m001 sin(1)+LaplaceLimit+Porter 2971292488027550 a001 365435296162/199*322^(1/12) 2971292489096910 a001 12586269025/199*843^(4/7) 2971292502689192 m001 GAMMA(1/24)^2*Champernowne^2/ln(sin(Pi/5))^2 2971292503637715 m008 (5/6*Pi-1/3)/(4/5*Pi^6-1/5) 2971292506289659 a001 5778*5702887^(2/19) 2971292506559658 h001 (1/5*exp(1)+9/10)/(4/7*exp(2)+7/11) 2971292510762084 r009 Im(z^3+c),c=-13/28+10/63*I,n=31 2971292515496770 r002 15th iterates of z^2 + 2971292523312223 a007 Real Root Of 304*x^4+742*x^3-200*x^2+737*x-275 2971292535314300 a001 3/3010349*7^(32/57) 2971292545995750 r005 Re(z^2+c),c=-83/122+7/34*I,n=15 2971292558364112 m001 cos(Pi/5)/GAMMA(19/24)/exp(sin(1)) 2971292559622048 a007 Real Root Of -122*x^4+506*x^3-773*x^2+59*x+100 2971292568965271 r005 Re(z^2+c),c=-7/25+31/60*I,n=35 2971292573977052 a007 Real Root Of 736*x^4+572*x^3-175*x^2-551*x-139 2971292598384113 a001 15127*610^(2/19) 2971292600443724 r002 22th iterates of z^2 + 2971292607771350 r005 Re(z^2+c),c=-5/6+41/143*I,n=4 2971292610218116 b008 3+25*ExpIntegralEi[-5] 2971292612429579 r009 Re(z^3+c),c=-33/70+23/52*I,n=53 2971292617613862 m001 KhinchinLevy-sin(1)*exp(1/Pi) 2971292629008998 a007 Real Root Of 357*x^4+932*x^3-452*x^2+107*x+931 2971292639384066 m005 (1/2*gamma+6)/(4/5*Zeta(3)-3/4) 2971292641596815 m005 (1/3*3^(1/2)+2/11)/(2*3^(1/2)-10/11) 2971292644138360 r005 Re(z^2+c),c=-33/106+23/53*I,n=60 2971292647076696 r009 Re(z^3+c),c=-25/54+17/38*I,n=54 2971292658508770 m005 (1/3*Zeta(3)-3/4)/(9/10*Catalan-2) 2971292665623212 a001 843/2*6765^(29/39) 2971292684965788 m005 (1/3*2^(1/2)-1/11)/(1/4*Zeta(3)-3/7) 2971292685031600 m001 (-Zeta(1/2)+TravellingSalesman)/(1-3^(1/2)) 2971292692127120 k002 Champernowne real with 179/2*n^2-453/2*n+166 2971292699724032 p004 log(34919/25943) 2971292701449255 r008 a(0)=3,K{-n^6,-71+23*n^3+54*n^2+29*n} 2971292714980162 r008 a(0)=3,K{-n^6,-73+35*n^3+17*n^2+56*n} 2971292719500966 m001 (KhinchinLevy+MertensB1)/(Conway+FeigenbaumMu) 2971292720808698 a003 cos(Pi*25/62)*cos(Pi*37/79) 2971292723366437 r008 a(0)=3,K{-n^6,-55+40*n^3+11*n^2+39*n} 2971292725156938 h002 exp(12^(10/9)+17^(5/6)) 2971292725156938 h007 exp(12^(10/9)+17^(5/6)) 2971292727768004 m001 GAMMA(5/24)^2*exp(GAMMA(1/3))^2/sinh(1)^2 2971292731431594 r008 a(0)=3,K{-n^6,1+39*n^3+42*n^2-47*n} 2971292731435806 r008 a(0)=3,K{-n^6,-59+49*n^3-18*n^2+63*n} 2971292734998085 m001 Zeta(1/2)^TwinPrimes/exp(-Pi) 2971292734998085 m001 exp(Pi)*Zeta(1/2)^TwinPrimes 2971292740605324 r008 a(0)=3,K{-n^6,-21+14*n-11*n^2+53*n^3} 2971292743932949 r008 a(0)=3,K{-n^6,-27+58*n^3-29*n^2+33*n} 2971292744200152 l006 ln(321/6265) 2971292745819292 r008 a(0)=3,K{-n^6,-1-10*n-10*n^2+56*n^3} 2971292747670354 r008 a(0)=3,K{-n^6,-29+46*n-45*n^2+63*n^3} 2971292749044913 r005 Re(z^2+c),c=-19/58+19/47*I,n=16 2971292755193870 r008 a(0)=3,K{-n^6,7+67*n^3-39*n^2} 2971292771217885 m001 1/Lehmer^2/ln(FibonacciFactorial)*Zeta(1/2)^2 2971292774126149 a001 3/8*832040^(17/53) 2971292777439736 r009 Im(z^3+c),c=-9/34+37/52*I,n=56 2971292787747350 a001 7778742049/199*843^(9/14) 2971292811599619 a007 Real Root Of 313*x^4+641*x^3+441*x^2-752*x-248 2971292827854472 a007 Real Root Of -626*x^4+258*x^3+61*x^2+827*x-253 2971292844299678 a008 Real Root of x^4-2*x^3-31*x^2-60*x-35 2971292845550463 m001 (cos(1)+BesselJ(1,1))/(-Magata+OneNinth) 2971292851127752 m001 ln(2^(1/2)+1)*Rabbit*Weierstrass 2971292852866835 l006 ln(1870/2517) 2971292858924805 a001 5/18*29^(1/50) 2971292865259973 a001 19/341*(1/2*5^(1/2)+1/2)^17*1364^(1/18) 2971292866207997 r009 Im(z^3+c),c=-27/58+3/19*I,n=32 2971292881899842 r009 Im(z^3+c),c=-19/42+7/41*I,n=28 2971292887897028 a007 Real Root Of -273*x^4-585*x^3+813*x^2+597*x+529 2971292898704298 r009 Im(z^3+c),c=-59/122+6/53*I,n=33 2971292903177673 r005 Re(z^2+c),c=-23/70+11/29*I,n=27 2971292912015824 r005 Re(z^2+c),c=-27/98+33/58*I,n=50 2971292926266883 m001 1/2*(3^(1/2))^Catalan/Pi*GAMMA(5/6) 2971292926266883 m001 sqrt(3)^Catalan/GAMMA(1/6) 2971292933428563 r005 Im(z^2+c),c=-3/8+6/11*I,n=52 2971292936928573 m001 Cahen^ArtinRank2+5^(1/2) 2971292942301042 r005 Im(z^2+c),c=13/126+17/59*I,n=19 2971292947861858 m001 Ei(1)^GAMMA(7/12)*Ei(1)^ZetaP(3) 2971292948956538 r008 a(0)=3,K{-n^6,37-3*n^3-46*n^2+46*n} 2971292955345346 p001 sum((-1)^n/(325*n+209)/n/(6^n),n=1..infinity) 2971292972182158 m005 (1/2*exp(1)-11/12)/(7/9*5^(1/2)-1/4) 2971292984555337 m005 (-7/12+1/4*5^(1/2))/(5/6*3^(1/2)-5/8) 2971292985479549 m001 exp(GAMMA(1/4))/Trott^2/Zeta(5)^2 2971292989833316 a007 Real Root Of 164*x^4-898*x^3-584*x^2-640*x+264 2971293007222039 r002 8th iterates of z^2 + 2971293016452567 m005 (1/3*Catalan+1/6)/(5/8*Pi-3/8) 2971293021221918 r005 Im(z^2+c),c=-99/118+4/19*I,n=32 2971293027305143 a001 2207*53316291173^(2/19) 2971293028626226 a001 956722026041/2207*123^(2/5) 2971293034088377 m001 GAMMA(1/12)/exp(1/exp(1))/GAMMA(1/3) 2971293038315686 r009 Im(z^3+c),c=-31/74+27/44*I,n=43 2971293044516527 a001 121393/29*843^(16/55) 2971293045814416 m001 GAMMA(2/3)^2/RenyiParking*ln(GAMMA(5/6)) 2971293048939005 a007 Real Root Of -235*x^4-857*x^3-674*x^2-725*x-368 2971293054288468 r008 a(0)=3,K{-n^6,-72+23*n^3+54*n^2+30*n} 2971293056473435 a007 Real Root Of -29*x^4-892*x^3-887*x^2+384*x-990 2971293056480335 m001 ((1+3^(1/2))^(1/2)-OrthogonalArrays)/Chi(1) 2971293056867918 p004 log(19927/1021) 2971293076017916 r008 a(0)=3,K{-n^6,-56+40*n^3+11*n^2+40*n} 2971293083132009 r009 Re(z^3+c),c=-1/26+34/59*I,n=7 2971293084020057 r008 a(0)=3,K{-n^6,-60+49*n^3-18*n^2+64*n} 2971293084020464 r008 a(0)=3,K{-n^6,-66+50*n^3-24*n^2+75*n} 2971293084633081 r008 a(0)=3,K{-n^6,-56+58*n-16*n^2+49*n^3} 2971293084633884 r008 a(0)=3,K{-n^6,-68+51*n^3-28*n^2+80*n} 2971293086397820 a001 4807526976/199*843^(5/7) 2971293087640149 r008 a(0)=3,K{-n^6,-6+44*n^3+24*n^2-27*n} 2971293090353691 m005 (7/8+1/4*5^(1/2))/(4/11*gamma+3/11) 2971293093114417 r008 a(0)=3,K{-n^6,-22+15*n-11*n^2+53*n^3} 2971293095090894 r008 a(0)=3,K{-n^6,27+53*n-58*n^2+16*n^3} 2971293096415090 r008 a(0)=3,K{-n^6,-28+58*n^3-29*n^2+34*n} 2971293098019717 r008 a(0)=3,K{-n^6,26-61*n+19*n^2+51*n^3} 2971293100897611 r008 a(0)=3,K{-n^6,-30+64*n^3-48*n^2+49*n} 2971293101665436 r008 a(0)=3,K{-n^6,-12+18*n-33*n^2+62*n^3} 2971293104756196 r005 Re(z^2+c),c=6/17+3/47*I,n=19 2971293115186532 p004 log(33589/1721) 2971293153179047 m001 1/ln(Robbin)/MertensB1^2*Catalan^2 2971293160709485 a007 Real Root Of -96*x^4-26*x^3+532*x^2-461*x+734 2971293162331682 m001 (exp(1)+Catalan)/(-CareFree+Tetranacci) 2971293175836631 r005 Im(z^2+c),c=-9/22+31/61*I,n=55 2971293181326891 a001 76/521*(1/2*5^(1/2)+1/2)^5*521^(5/6) 2971293194679176 a003 sin(Pi*2/27)/sin(Pi*28/99) 2971293196473761 r009 Re(z^3+c),c=-11/34+11/57*I,n=16 2971293198739180 r002 60th iterates of z^2 + 2971293200248389 l006 ln(350/6831) 2971293214803538 r002 28th iterates of z^2 + 2971293219146638 r009 Re(z^3+c),c=-43/126+7/32*I,n=3 2971293225926718 r005 Re(z^2+c),c=-3/10+23/49*I,n=30 2971293230797153 m001 PrimesInBinary^2*exp(FeigenbaumAlpha)*sqrt(2) 2971293235658508 a007 Real Root Of 22*x^4+640*x^3-394*x^2+400*x+755 2971293239062494 a007 Real Root Of -868*x^4+474*x^3+138*x^2+889*x-282 2971293245005296 m001 (Psi(1,1/3)+ln(2)/ln(10))/(Landau+Otter) 2971293250924922 r005 Re(z^2+c),c=-29/78+8/43*I,n=26 2971293255636939 a007 Real Root Of -309*x^4-631*x^3+616*x^2-569*x+403 2971293257477105 r009 Re(z^3+c),c=-23/78+8/59*I,n=3 2971293263399239 r005 Re(z^2+c),c=-41/122+17/48*I,n=36 2971293282036105 q001 1004/3379 2971293285343749 a001 1/39603*18^(29/34) 2971293286013187 g002 Psi(11/12)+Psi(5/11)+Psi(4/5)-Psi(9/11) 2971293318077781 m005 (1/2*gamma+5/7)/(3/10*3^(1/2)-6/7) 2971293318745973 r008 a(0)=3,K{-n^6,42+7*n^3-6*n^2-7*n} 2971293322269294 m005 (1/2+1/2*5^(1/2))/(1/10*exp(1)+3/11) 2971293381513348 r005 Im(z^2+c),c=-3/28+22/61*I,n=4 2971293385048320 a001 2971215073/199*843^(11/14) 2971293393642395 a001 2/17*4181^(1/9) 2971293396288271 a007 Real Root Of -298*x^4-893*x^3-598*x^2+903*x+300 2971293401909331 g004 Re(GAMMA(161/60+I*7/3)) 2971293414783776 a007 Real Root Of 889*x^4-823*x^3+932*x^2-906*x-380 2971293415741864 s002 sum(A184209[n]/(n*10^n-1),n=1..infinity) 2971293416668699 a007 Real Root Of -387*x^4-952*x^3+572*x^2+41*x+263 2971293420615612 r005 Re(z^2+c),c=-33/64+14/43*I,n=7 2971293422107492 r008 a(0)=3,K{-n^6,-19-38*n+63*n^2+29*n^3} 2971293423924197 r005 Re(z^2+c),c=-31/82+7/47*I,n=11 2971293434165604 r008 a(0)=3,K{-n^6,-59+60*n-14*n^2+48*n^3} 2971293436514210 a007 Real Root Of 535*x^4-742*x^3+168*x^2-685*x-242 2971293439246626 m008 (3/5*Pi^6-1/5)/(2*Pi^4-3/4) 2971293441384550 r008 a(0)=3,K{-n^6,20-19*n^3+21*n^2+25*n} 2971293448652787 r002 33th iterates of z^2 + 2971293451518319 r008 a(0)=3,K{-n^6,-31+64*n^3-48*n^2+50*n} 2971293454529765 r005 Im(z^2+c),c=1/9+20/59*I,n=4 2971293460254333 r005 Im(z^2+c),c=-63/106+5/8*I,n=18 2971293465572358 a001 5778/377*233^(31/57) 2971293473448506 r005 Re(z^2+c),c=-8/23+17/55*I,n=38 2971293476851816 a001 119218851371/377*610^(17/24) 2971293509665723 r005 Re(z^2+c),c=-10/7+6/119*I,n=4 2971293516602238 r005 Re(z^2+c),c=-47/122+1/48*I,n=22 2971293519806274 r008 a(0)=3,K{-n^6,-61-45*n^3+71*n^2+63*n} 2971293521048796 r008 a(0)=3,K{-n^6,8-21*n^3+71*n^2-22*n} 2971293521232436 m001 GAMMA(17/24)-GAMMA(7/12)*MasserGramain 2971293532135570 m001 (BesselJ(0,1)+Conway)/(-Sarnak+Trott2nd) 2971293532357784 l006 ln(5847/7870) 2971293538834356 r009 Re(z^3+c),c=-23/52+11/27*I,n=37 2971293549641799 a001 2504730781961/5778*123^(2/5) 2971293551728841 s002 sum(A220810[n]/(2^n-1),n=1..infinity) 2971293563515504 a007 Real Root Of -15*x^4-442*x^3+102*x^2-249*x-547 2971293564160231 r005 Re(z^2+c),c=-35/94+11/61*I,n=15 2971293575203805 r005 Re(z^2+c),c=-13/40+20/51*I,n=28 2971293586505441 l006 ln(379/7397) 2971293591824278 r009 Re(z^3+c),c=-47/106+22/53*I,n=27 2971293600168410 m001 (2^(1/2)+Shi(1))/(sin(1)+gamma(2)) 2971293601377177 m001 GAMMA(1/12)*Salem^2/exp(Pi)^2 2971293604733317 r005 Re(z^2+c),c=-31/106+17/35*I,n=50 2971293615751788 a007 Real Root Of 400*x^4+294*x^3-471*x^2-297*x+119 2971293625656962 a001 6557470319842/15127*123^(2/5) 2971293630872030 r005 Re(z^2+c),c=-25/26+6/65*I,n=30 2971293632528280 h001 (7/12*exp(1)+1/3)/(3/4*exp(2)+11/12) 2971293638093657 r008 a(0)=3,K{-n^6,32-4*n^3-2*n^2+25*n} 2971293643601708 a001 10610209857723/24476*123^(2/5) 2971293644175659 r009 Im(z^3+c),c=-29/94+9/34*I,n=5 2971293652097002 m001 (BesselK(0,1)-ErdosBorwein)/(MertensB2+Otter) 2971293652989587 a007 Real Root Of 433*x^4+945*x^3-796*x^2+884*x+694 2971293656921283 m001 GAMMA(2/3)*(Paris-ZetaP(4)) 2971293665293989 a001 329/6*7^(33/38) 2971293670014541 m005 (49/12+1/12*5^(1/2))/(3/4*Catalan+3/4) 2971293672636918 a001 4052739537881/9349*123^(2/5) 2971293674311359 r005 Re(z^2+c),c=-45/118+6/59*I,n=19 2971293683698850 a001 1836311903/199*843^(6/7) 2971293684970987 a007 Real Root Of -387*x^4-745*x^3+837*x^2-986*x+302 2971293693757227 r009 Re(z^3+c),c=-23/52+24/59*I,n=49 2971293695127720 k002 Champernowne real with 90*n^2-228*n+167 2971293701457377 a003 sin(Pi*1/69)*sin(Pi*12/53) 2971293705471472 r005 Im(z^2+c),c=-131/110+4/25*I,n=36 2971293705955490 r005 Re(z^2+c),c=-25/86+27/55*I,n=54 2971293727677266 m001 ln(Kolakoski)^2*GlaisherKinkelin*Robbin^2 2971293749626210 r005 Re(z^2+c),c=7/62+3/11*I,n=13 2971293754892595 r008 a(0)=3,K{-n^6,-72+23*n^3+55*n^2+29*n} 2971293760822116 s002 sum(A126356[n]/((exp(n)-1)/n),n=1..infinity) 2971293765658147 r009 Re(z^3+c),c=-17/30+11/42*I,n=40 2971293766015311 a009 3^(2/3)*(13^(1/2)-6^(1/4))^(1/2) 2971293767393199 a001 199/832040*610^(11/28) 2971293769091740 a007 Real Root Of 363*x^4-968*x^3-908*x^2-950*x+385 2971293773240458 m005 (1/2*gamma-6/11)/(4*5^(1/2)-3/10) 2971293774540816 a007 Real Root Of 100*x^4-41*x^3-923*x^2+65*x-528 2971293775135708 r009 Im(z^3+c),c=-31/98+6/23*I,n=13 2971293777152818 r008 a(0)=3,K{-n^6,-32+37*n^3+33*n^2-3*n} 2971293779394086 r005 Im(z^2+c),c=-13/58+21/32*I,n=5 2971293780958021 r008 a(0)=3,K{-n^6,-14-28*n+39*n^2+38*n^3} 2971293782142503 m005 (1/2*gamma+6/11)/(7/8*exp(1)+3/7) 2971293783115990 r008 a(0)=3,K{-n^6,-60+61*n-14*n^2+48*n^3} 2971293786777342 m001 (1-DuboisRaymond)/(-FeigenbaumMu+Thue) 2971293790720802 r008 a(0)=3,K{-n^6,-14-6*n+6*n^2+49*n^3} 2971293792944396 r008 a(0)=3,K{-n^6,-22+14*n-10*n^2+53*n^3} 2971293794062597 r005 Re(z^2+c),c=25/78+10/49*I,n=9 2971293800375342 m001 Trott2nd/Zeta(3)/ZetaP(4) 2971293802301760 r005 Im(z^2+c),c=-25/82+13/20*I,n=40 2971293803320229 b008 11+2*E^Sqrt[5] 2971293808640455 g005 1/GAMMA(11/12)/GAMMA(7/11)^2/GAMMA(5/9) 2971293809637569 b008 -4+E^(3/106) 2971293816834655 r005 Im(z^2+c),c=-17/70+29/64*I,n=33 2971293836300441 a008 Real Root of x^2-x-88583 2971293851856906 l006 ln(3977/5353) 2971293854325670 r005 Re(z^2+c),c=-43/29+11/17*I,n=2 2971293857818607 m005 (-1/20+1/4*5^(1/2))/(4/11*5^(1/2)+9/10) 2971293871646907 a007 Real Root Of 307*x^4+737*x^3-819*x^2-730*x+466 2971293871647223 a001 1548008755920/3571*123^(2/5) 2971293872277672 h001 (11/12*exp(2)+1/12)/(3/10*exp(2)+1/11) 2971293876651816 b008 21/83+E 2971293877053954 r009 Re(z^3+c),c=-5/27+30/41*I,n=16 2971293879713747 a007 Real Root Of 252*x^4+462*x^3-738*x^2+312*x-80 2971293881252436 r005 Re(z^2+c),c=-31/106+27/53*I,n=30 2971293884220924 a007 Real Root Of -148*x^4+860*x^3-118*x^2-24*x+27 2971293887141806 m008 (1/2*Pi^3-1/5)/(1/6*Pi^5+1/2) 2971293892369615 r005 Im(z^2+c),c=11/102+14/41*I,n=4 2971293893561938 r009 Im(z^3+c),c=-31/114+17/61*I,n=12 2971293904470954 a001 1/55*13^(9/47) 2971293908648858 a007 Real Root Of 304*x^4+477*x^3-946*x^2+965*x+37 2971293911859123 r005 Re(z^2+c),c=-25/94+29/52*I,n=61 2971293911897595 a001 39603/233*514229^(26/35) 2971293917853283 l006 ln(408/7963) 2971293920812972 m002 -4*Pi+Pi^5+Sinh[Pi]/Pi 2971293922273837 a007 Real Root Of -560*x^4-421*x^3+242*x^2+542*x+133 2971293925369525 m001 (FeigenbaumAlpha+Otter)/(2^(1/3)+gamma) 2971293930717582 a001 47/832040*53316291173^(8/15) 2971293932611200 a001 47/17711*39088169^(8/15) 2971293946567771 r005 Re(z^2+c),c=1/25+29/52*I,n=6 2971293952451834 r005 Re(z^2+c),c=-17/14+77/188*I,n=5 2971293955732690 a007 Real Root Of 229*x^4+398*x^3-825*x^2+205*x+484 2971293960545727 m001 Otter/(Zeta(1,2)^StolarskyHarborth) 2971293968055804 m001 (Catalan+Ei(1))/(arctan(1/3)+GolombDickman) 2971293975980486 a007 Real Root Of 26*x^4+789*x^3+474*x^2-482*x-919 2971293977171680 a007 Real Root Of -356*x^4-796*x^3+567*x^2-477*x+444 2971293982349410 a001 1134903170/199*843^(13/14) 2971293982761163 b008 5*(3+ArcCsc[3]^(-1)) 2971294007011824 r005 Im(z^2+c),c=-5/21+26/57*I,n=19 2971294019458095 a007 Real Root Of 101*x^4+233*x^3+126*x^2+989*x+66 2971294020625117 r002 59th iterates of z^2 + 2971294049638837 m001 (Ei(1,1)+Backhouse)/(BesselI(0,1)-Psi(2,1/3)) 2971294059519585 r005 Re(z^2+c),c=25/102+23/52*I,n=60 2971294078282247 s002 sum(A246457[n]/((2^n-1)/n),n=1..infinity) 2971294095113328 m005 (1/2*Zeta(3)-8/9)/(4/11*2^(1/2)+5/11) 2971294099485408 r009 Re(z^3+c),c=-14/29+22/39*I,n=39 2971294101430717 a003 cos(Pi*1/75)-sin(Pi*27/109) 2971294104503805 m005 (1/2*5^(1/2)+1/9)/(-61/88+1/8*5^(1/2)) 2971294110389865 r002 28th iterates of z^2 + 2971294116700798 r008 a(0)=3,K{-n^6,-73+36*n^3+16*n^2+56*n} 2971294121225005 m001 Gompertz+Grothendieck*MertensB3 2971294123772480 m001 (cos(1/5*Pi)-Kolakoski)/(Otter+Tetranacci) 2971294127176451 a007 Real Root Of -214*x^4-736*x^3-199*x^2+554*x+776 2971294132354756 r008 a(0)=3,K{-n^6,1+40*n^3+41*n^2-47*n} 2971294136031952 r005 Im(z^2+c),c=-17/46+13/23*I,n=36 2971294137810701 r008 a(0)=3,K{-n^6,-15-5*n+6*n^2+49*n^3} 2971294141292731 r009 Im(z^3+c),c=-19/78+17/59*I,n=13 2971294141634785 r008 a(0)=3,K{-n^6,7+50*n^3+14*n^2-36*n} 2971294146074521 r008 a(0)=3,K{-n^6,-1-10*n-11*n^2+57*n^3} 2971294149809618 r009 Re(z^3+c),c=-11/94+41/55*I,n=40 2971294155027989 r008 a(0)=3,K{-n^6,31-44*n-16*n^2+64*n^3} 2971294158910047 l006 ln(6084/8189) 2971294166513171 m005 (1/2*5^(1/2)+1/8)/(5/12*Catalan-4/5) 2971294182969106 a007 Real Root Of -146*x^4-194*x^3+676*x^2-257*x-441 2971294189141343 m003 -39/10+Sqrt[5]/512+Tanh[1/2+Sqrt[5]/2] 2971294199372959 r005 Re(z^2+c),c=33/98+5/41*I,n=29 2971294202331556 m001 1/Sierpinski*Si(Pi)/exp(BesselJ(1,1))^2 2971294205223519 l006 ln(437/8529) 2971294207543343 r005 Re(z^2+c),c=-13/98+55/57*I,n=8 2971294210067085 a007 Real Root Of -688*x^4+786*x^3+423*x^2+570*x+158 2971294230266281 r005 Re(z^2+c),c=37/114+15/38*I,n=47 2971294231902776 m005 (-19/36+1/4*5^(1/2))/(5*5^(1/2)-2/3) 2971294257122911 r005 Im(z^2+c),c=-7/90+23/60*I,n=22 2971294257467449 m001 Pi*(1+3^(1/2))^(1/2)/ZetaP(3) 2971294259606429 a001 281/2255*987^(23/50) 2971294271630404 m001 (Psi(1,1/3)-arctan(1/3))/(CareFree+Sierpinski) 2971294274272767 m001 1/GAMMA(3/4)/ln(Riemann1stZero)/Zeta(5) 2971294276354432 m002 -Cosh[Pi]+Pi^2/Log[Pi]-ProductLog[Pi]/Pi^6 2971294279111405 a001 1120177943225/377 2971294282537248 a007 Real Root Of -316*x^4+834*x^3+885*x^2+365*x-206 2971294291163653 m001 (3^(1/3))^2/exp(Cahen)*exp(1) 2971294303782073 a001 9/5473*55^(13/18) 2971294307328574 m001 sqrt(5)^(GAMMA(1/6)/exp(sqrt(2))) 2971294316572817 s002 sum(A034049[n]/(pi^n),n=1..infinity) 2971294317336455 a007 Real Root Of 761*x^4-770*x^3+767*x^2-852*x-347 2971294318280381 a007 Real Root Of 121*x^4+94*x^3-588*x^2+412*x-550 2971294326765032 m008 (2*Pi^3-5)/(1/5*Pi^6-2/5) 2971294334941484 r005 Im(z^2+c),c=13/62+13/61*I,n=28 2971294339005740 m005 (1/2*exp(1)+1/12)/(-1/44+5/22*5^(1/2)) 2971294349383587 r009 Im(z^3+c),c=-35/74+7/47*I,n=60 2971294356228848 m001 GAMMA(5/12)^2/MertensB1*exp(cos(1)) 2971294361936966 m001 1/ln(Rabbit)*Champernowne^2*Sierpinski^2 2971294385317743 v002 sum(1/(5^n*(3*n^3-7*n^2+n+11)),n=1..infinity) 2971294388823873 m005 (1/2*3^(1/2)-3/7)/(9/11*gamma+1) 2971294391647161 m001 (BesselK(0,1)+Ei(1))/(-3^(1/3)+LaplaceLimit) 2971294397539725 r005 Re(z^2+c),c=-7/12+28/79*I,n=14 2971294403672515 m005 (1/2*Catalan-1/10)/(4/7*Pi-3) 2971294408226452 m001 (exp(1)+Mills)/(-Sarnak+Thue) 2971294420615373 r005 Re(z^2+c),c=-25/26+6/65*I,n=28 2971294451931731 r009 Re(z^3+c),c=-51/110+8/17*I,n=50 2971294456826576 l006 ln(466/9095) 2971294457272188 r005 Im(z^2+c),c=7/20+13/43*I,n=26 2971294459775359 r005 Re(z^2+c),c=23/90+5/57*I,n=26 2971294464275473 a001 3/4181*1836311903^(5/7) 2971294464882758 r008 a(0)=3,K{-n^6,-28+31*n^3+54*n^2-22*n} 2971294475934268 r008 a(0)=3,K{-n^6,-60+60*n-13*n^2+48*n^3} 2971294476214227 r005 Re(z^2+c),c=-17/22+5/61*I,n=60 2971294477709337 r008 a(0)=3,K{-n^6,-66+51*n^3-25*n^2+75*n} 2971294479424169 a007 Real Root Of 108*x^4+465*x^3+530*x^2+137*x-492 2971294481016597 r005 Re(z^2+c),c=23/126+17/35*I,n=61 2971294485301354 r008 a(0)=3,K{-n^6,36+43*n^3+50*n^2-94*n} 2971294486909983 r008 a(0)=3,K{-n^6,6+50*n^3+14*n^2-35*n} 2971294493853424 r005 Im(z^2+c),c=-9/8+9/247*I,n=19 2971294494045926 m001 (-CareFree+Mills)/(1+GAMMA(23/24)) 2971294495989474 r008 a(0)=3,K{-n^6,18+60*n^3-10*n^2-33*n} 2971294498268251 a001 3/514229*1548008755920^(5/7) 2971294498546899 a001 1/15456*53316291173^(5/7) 2971294506892013 r005 Re(z^2+c),c=-13/34+3/34*I,n=23 2971294514847124 m005 (exp(1)+2/3)/(5*gamma-3) 2971294519478260 m001 ln(Riemann3rdZero)^2*Magata*sin(1) 2971294522300214 r005 Re(z^2+c),c=3/29+28/41*I,n=4 2971294526305890 p004 log(22369/16619) 2971294531528895 a001 73681302247/55*2584^(11/16) 2971294533876694 p004 log(27851/1427) 2971294539903389 m001 (2^(1/2)+sin(1/12*Pi))/(-Paris+Robbin) 2971294542456487 r005 Re(z^2+c),c=-23/60+4/55*I,n=24 2971294547242059 a001 48/90481*1364^(29/52) 2971294558587114 m001 RenyiParking^2*ln(LaplaceLimit)^2*Pi 2971294561107182 a007 Real Root Of 240*x^4+492*x^3-487*x^2+323*x-541 2971294562487101 r005 Im(z^2+c),c=-25/114+21/32*I,n=6 2971294566584450 a007 Real Root Of -518*x^4-194*x^3-283*x^2+569*x+193 2971294569976877 m006 (1/5*Pi^2+1/6)/(1/4/Pi-4/5) 2971294572943715 a007 Real Root Of 210*x^4+366*x^3-886*x^2-560*x-609 2971294574209240 r005 Re(z^2+c),c=-29/106+28/53*I,n=27 2971294581725357 a001 24476/233*3^(53/56) 2971294584426521 a007 Real Root Of -338*x^4+997*x^3+156*x^2+450*x-171 2971294584960696 m001 GAMMA(2/3)*exp(-1/2*Pi)*GAMMA(11/12) 2971294587088040 r009 Re(z^3+c),c=-59/114+19/52*I,n=20 2971294588381729 m001 Catalan*GAMMA(1/3)+polylog(4,1/2) 2971294592716475 a001 370248451/55*5702887^(11/16) 2971294592717346 a001 1860498/55*12586269025^(11/16) 2971294599923668 r005 Im(z^2+c),c=-15/118+15/37*I,n=34 2971294610349710 m001 (-Kac+Magata)/(Grothendieck-exp(1)) 2971294612139645 r005 Re(z^2+c),c=-7/10+65/174*I,n=18 2971294613315335 m001 ln(3)*((2^(1/3))+exp(1/exp(1))) 2971294613315335 m001 ln(3)*(2^(1/3)+exp(1/exp(1))) 2971294615214820 a007 Real Root Of -30*x^4-862*x^3+902*x^2+886*x+913 2971294627804127 m001 (-Gompertz+MasserGramain)/(Chi(1)+sin(1)) 2971294630541111 m001 Grothendieck/(polylog(4,1/2)^StronglyCareFree) 2971294645601279 m001 (LambertW(1)-gamma)/(CareFree+Khinchin) 2971294646904239 m008 (3/5*Pi^6+5)/(2*Pi^4+1) 2971294649430516 m001 StolarskyHarborth^(ln(2)*ArtinRank2) 2971294656723007 a007 Real Root Of -355*x^4-813*x^3+418*x^2-666*x+674 2971294671068075 p001 sum((-1)^n/(386*n+335)/(100^n),n=0..infinity) 2971294678002130 h001 (1/5*exp(1)+1/12)/(5/9*exp(1)+3/5) 2971294678948819 l006 ln(495/9661) 2971294679220192 m001 (-GolombDickman+Landau)/(FeigenbaumMu-sin(1)) 2971294684693949 h001 (-9*exp(6)+8)/(-3*exp(6)-9) 2971294692071679 m005 (1/2*Zeta(3)-5/6)/(-7/8+1/24*5^(1/2)) 2971294696946001 a003 sin(Pi*9/115)/cos(Pi*7/36) 2971294698128320 k002 Champernowne real with 181/2*n^2-459/2*n+168 2971294702798904 s002 sum(A154070[n]/(64^n),n=1..infinity) 2971294703332646 r009 Re(z^3+c),c=-11/34+11/57*I,n=15 2971294711029086 r004 Im(z^2+c),c=-2/11+3/7*I,z(0)=I,n=42 2971294734726845 a001 199/121393*53316291173^(4/19) 2971294736580993 a001 1/89*5702887^(4/19) 2971294738478290 l006 ln(2107/2836) 2971294739147073 s002 sum(A031590[n]/((exp(n)+1)*n),n=1..infinity) 2971294747384169 a007 Real Root Of 233*x^4+540*x^3-238*x^2+408*x-682 2971294755021853 a007 Real Root Of -374*x^4-823*x^3+482*x^2-994*x+353 2971294756629527 a007 Real Root Of -338*x^4-213*x^3-178*x^2+997*x+309 2971294768671940 m006 (3/5*exp(2*Pi)-3)/(2*exp(2*Pi)+1/4) 2971294795674292 a007 Real Root Of 362*x^4+872*x^3-616*x^2-60*x-81 2971294802781017 r008 a(0)=3,K{-n^6,-45-3*n+55*n^2+28*n^3} 2971294804515547 r008 a(0)=3,K{-n^6,-23+26*n^3+72*n^2-40*n} 2971294809227382 r008 a(0)=3,K{-n^6,-19+30*n^3+62*n^2-38*n} 2971294812146463 r008 a(0)=3,K{-n^6,-43+37*n^3+29*n^2+12*n} 2971294815056451 s002 sum(A110757[n]/(n^3*pi^n+1),n=1..infinity) 2971294819873308 r005 Im(z^2+c),c=-3/11+10/17*I,n=3 2971294820701913 r008 a(0)=3,K{-n^6,-5+40*n^3+39*n^2-39*n} 2971294825824437 r008 a(0)=3,K{-n^6,1+45*n^3+27*n^2-38*n} 2971294826926464 r008 a(0)=3,K{-n^6,-15-6*n+7*n^2+49*n^3} 2971294828298278 m005 (1/2*3^(1/2)-1)/(1/8*exp(1)+1/9) 2971294837047321 m001 gamma^2/exp(GAMMA(5/24))/sinh(1)^2 2971294839672889 m001 GAMMA(7/24)^2*exp(Magata)*Zeta(5) 2971294842915783 r008 a(0)=3,K{-n^6,29-44*n-13*n^2+63*n^3} 2971294844259458 m007 (-1/5*gamma+3)/(-4/5*gamma-8/5*ln(2)+3/5) 2971294853797602 r008 a(0)=3,K{-n^6,65+74*n^3-28*n^2-76*n} 2971294873143950 a001 123/10946*610^(24/47) 2971294876162547 a001 225851433717/199*322^(1/6) 2971294882137341 a007 Real Root Of -46*x^4+197*x^3+788*x^2-339*x+789 2971294907315677 a001 1/1368*(1/2*5^(1/2)+1/2)^7*18^(21/23) 2971294909526660 a007 Real Root Of -307*x^4-852*x^3-100*x^2-811*x+52 2971294910364624 r002 53th iterates of z^2 + 2971294918200127 r009 Re(z^3+c),c=-15/34+16/41*I,n=12 2971294933893599 r009 Re(z^3+c),c=-8/27+40/57*I,n=58 2971294937559537 p004 log(31247/1601) 2971294937946840 m005 (1/3*Zeta(3)-3/4)/(1/8*exp(1)-2/9) 2971294942250036 r005 Im(z^2+c),c=17/46+11/45*I,n=58 2971294944595256 m002 -Pi^5+Pi^2/Log[Pi]+ProductLog[Pi]/4 2971294945938791 r005 Im(z^2+c),c=-1/74+6/17*I,n=13 2971294948102254 a007 Real Root Of -239*x^4-540*x^3+588*x^2+242*x-9 2971294953364027 m005 (1/2*2^(1/2)+1)/(5/9*Pi+4) 2971294958062099 r005 Re(z^2+c),c=21/74+1/9*I,n=36 2971294960042968 r005 Im(z^2+c),c=-101/94+2/59*I,n=13 2971294972213588 m001 (Ei(1)+FeigenbaumMu)/Tribonacci 2971294973471255 m005 (1/2*2^(1/2)+3/11)/(9/11*Pi+8/11) 2971294977364332 a001 1364/13*196418^(15/23) 2971294989580994 m001 (exp(1/Pi)-Cahen)/(Champernowne-Sierpinski) 2971295004837420 r005 Re(z^2+c),c=-43/114+7/45*I,n=11 2971295014203143 m001 HardyLittlewoodC5/Kolakoski*Stephens 2971295020691441 m005 (1/2*gamma+1/5)/(2/5*5^(1/2)+3/4) 2971295026271437 r005 Im(z^2+c),c=-17/50+20/41*I,n=43 2971295028494675 a007 Real Root Of -532*x^4-598*x^3-449*x^2+880*x-202 2971295036020765 m005 (1/2*Zeta(3)+4/5)/(Catalan-4/9) 2971295040112763 m001 GAMMA(3/4)^Zeta(1/2)/Riemann3rdZero 2971295063876615 r002 33th iterates of z^2 + 2971295073000685 a007 Real Root Of -625*x^4+658*x^3+852*x^2+247*x-161 2971295089608082 m005 1/6*5^(1/2)/(5/7*Catalan+3/5) 2971295095951691 r002 3th iterates of z^2 + 2971295132398117 m005 (exp(1)+4)/(2/3*Pi+1/6) 2971295135695465 r008 a(0)=3,K{-n^6,-72+24*n^3+54*n^2+29*n} 2971295144521226 a007 Real Root Of -354*x^4-871*x^3+237*x^2-960*x-201 2971295146476942 r008 a(0)=3,K{-n^6,-24+26*n^3+72*n^2-39*n} 2971295149506117 r008 a(0)=3,K{-n^6,-30-22*n+57*n^2+30*n^3} 2971295159906113 a001 199/2584*610^(4/19) 2971295162529335 r008 a(0)=3,K{-n^6,-6+40*n^3+39*n^2-38*n} 2971295169424337 m005 (1/2*2^(1/2)+5/6)/(1/9*Catalan+5/12) 2971295171904007 r008 a(0)=3,K{-n^6,-22+14*n-11*n^2+54*n^3} 2971295172425147 r008 a(0)=3,K{-n^6,6+50*n^3+15*n^2-36*n} 2971295177443339 m001 (ThueMorse-ZetaQ(4))/(FellerTornier-Niven) 2971295178666529 r005 Re(z^2+c),c=-33/106+23/53*I,n=64 2971295179672929 r008 a(0)=3,K{-n^6,28-57*n+8*n^2+56*n^3} 2971295179912358 r008 a(0)=3,K{-n^6,30-60*n+9*n^2+56*n^3} 2971295188819921 m001 1/ln(PrimesInBinary)*Si(Pi)/sin(1)^2 2971295191505470 m001 (arctan(1/3)+GAMMA(7/12))/(MertensB3-Rabbit) 2971295195364202 r008 a(0)=3,K{-n^6,64+74*n^3-28*n^2-75*n} 2971295198365098 b008 -4+ArcCos[(-2+E)^2] 2971295208354325 h001 (-7*exp(3)-6)/(-9*exp(4)-2) 2971295209094013 r005 Re(z^2+c),c=-11/30+12/55*I,n=17 2971295211525074 m001 (gamma(3)+ArtinRank2)/(Porter-Riemann3rdZero) 2971295212636822 v004 sum(1/(4+n^2-2*n)/cosh(Pi*n),n=1..infinity) 2971295225348890 m001 (Pi+ln(3))/(GAMMA(7/12)-Otter) 2971295235684864 a001 591286729879/1364*123^(2/5) 2971295238263180 a001 843/34*317811^(17/45) 2971295239184908 m005 (1/2*Catalan+5/6)/(4/9*gamma-3/10) 2971295240136818 r005 Re(z^2+c),c=-16/25+11/34*I,n=27 2971295252047882 m004 4+(5*E^(Sqrt[5]*Pi))/Pi+375*Pi 2971295254750022 r005 Re(z^2+c),c=-19/70+33/59*I,n=50 2971295256884050 m006 (Pi+1/4)/(3/4*ln(Pi)-2) 2971295258261828 a007 Real Root Of 303*x^4-743*x^3-16*x^2-328*x+116 2971295265197104 a009 23/9+1/9*14^(1/2) 2971295266158644 m001 (Lehmer-MertensB2)/(Tetranacci-TreeGrowth2nd) 2971295272295520 b008 Sech[4+E/13] 2971295272885636 r005 Re(z^2+c),c=-35/118+19/40*I,n=52 2971295276156393 l006 ln(6558/8827) 2971295280427743 a007 Real Root Of -521*x^4+637*x^3-876*x^2+491*x+244 2971295290290157 r005 Re(z^2+c),c=17/52+16/39*I,n=14 2971295306322942 r005 Re(z^2+c),c=-21/106+13/20*I,n=21 2971295306373036 m005 (1/2*exp(1)+3/4)/(4/11*Zeta(3)+3/11) 2971295320690560 m001 (-Rabbit+Totient)/(GAMMA(13/24)-Si(Pi)) 2971295333657723 a007 Real Root Of -451*x^4+452*x^3+44*x^2+907*x-27 2971295341302078 h001 (8/9*exp(2)+1/5)/(1/5*exp(2)+4/5) 2971295348287219 a001 8/321*9349^(1/52) 2971295349078896 s002 sum(A022558[n]/(n^2*pi^n+1),n=1..infinity) 2971295349082347 m001 1/Bloch/FeigenbaumDelta^2/exp(Lehmer)^2 2971295362880819 a003 cos(Pi*11/41)-sin(Pi*33/80) 2971295374185696 m001 Catalan-MasserGramainDelta^arctan(1/3) 2971295376616112 v003 sum((7/6*n^3+n^2-13/6*n+20)/n^n,n=1..infinity) 2971295378151529 m001 arctan(1/2)*TreeGrowth2nd^2/ln(gamma)^2 2971295379323455 l003 KelvinHei(2,71/117) 2971295379800572 m001 (-sin(1/12*Pi)+Trott)/(1+Zeta(1,-1)) 2971295382235467 a007 Real Root Of 287*x^4+964*x^3+511*x^2+649*x+335 2971295398069454 a007 Real Root Of -900*x^4-568*x^3+9*x^2+460*x+128 2971295405998610 m001 GAMMA(5/6)+exp(Pi)^DuboisRaymond 2971295446496758 a007 Real Root Of 252*x^4-618*x^3-471*x^2-115*x+90 2971295457947169 m001 (Conway-Magata)/(GAMMA(3/4)-polylog(4,1/2)) 2971295475994267 m001 Robbin*exp(Niven)/GAMMA(3/4) 2971295479326670 r008 a(0)=3,K{-n^6,-61+14*n+57*n^2+25*n^3} 2971295481233916 a007 Real Root Of 341*x^4+836*x^3-331*x^2+717*x+404 2971295484196827 m002 -1+2/Pi^4+Pi^2-Pi^5 2971295489697128 r008 a(0)=3,K{-n^6,-31-21*n+57*n^2+30*n^3} 2971295492777363 a007 Real Root Of 882*x^4-497*x^3+691*x^2+168*x-31 2971295493571005 r005 Re(z^2+c),c=-33/106+23/53*I,n=56 2971295494672575 m001 exp(GAMMA(1/4))^2*(3^(1/3))^2/Pi^2 2971295500283214 r008 a(0)=3,K{-n^6,-17+39*n^3+37*n^2-24*n} 2971295509380312 m001 LaplaceLimit^MertensB3/DuboisRaymond 2971295513401356 m001 (Artin+Backhouse)/(BesselK(0,1)-Zeta(5)) 2971295513429227 r005 Im(z^2+c),c=-91/102+1/5*I,n=6 2971295518429922 m002 5/Log[Pi]-Log[Pi]+E^Pi*Log[Pi] 2971295518759087 r002 6th iterates of z^2 + 2971295519619717 r008 a(0)=3,K{-n^6,27-56*n+8*n^2+56*n^3} 2971295519857266 r008 a(0)=3,K{-n^6,29-59*n+9*n^2+56*n^3} 2971295524923845 r008 a(0)=3,K{-n^6,-5+69*n^3-47*n^2+18*n} 2971295530680705 l006 ln(4451/5991) 2971295531024168 a007 Real Root Of 700*x^4+141*x^3+989*x^2-269*x-169 2971295546836183 a007 Real Root Of -947*x^4+374*x^3+731*x^2+929*x-343 2971295562056702 h001 (-9*exp(1/2)+6)/(-8*exp(1)-8) 2971295568852852 h002 exp(1/3*(15-3*3^(1/3))^(1/2)) 2971295571817323 r009 Im(z^3+c),c=-45/74+12/43*I,n=5 2971295577967416 q001 383/1289 2971295588810894 r005 Im(z^2+c),c=-17/26+43/127*I,n=62 2971295598772328 r005 Im(z^2+c),c=-127/106+1/34*I,n=22 2971295601916677 a005 (1/cos(3/64*Pi))^1158 2971295602879927 a008 Real Root of (-5+3*x+2*x^2+6*x^3-x^4-x^5) 2971295610401092 m005 (1/2*2^(1/2)+1/12)/(5*3^(1/2)-6) 2971295628665925 m001 (QuadraticClass+StolarskyHarborth)/(Pi+Paris) 2971295637016460 m001 RenyiParking*Champernowne*ln(Riemann3rdZero) 2971295645267309 a007 Real Root Of -543*x^4+597*x^3+56*x^2+931*x-293 2971295653822432 a003 cos(Pi*48/119)*sin(Pi*33/71) 2971295657054806 m001 (Zeta(5)-Conway)/(CopelandErdos+Robbin) 2971295666336530 s002 sum(A023122[n]/((2^n+1)/n),n=1..infinity) 2971295673194035 h001 (10/11*exp(2)+3/8)/(7/9*exp(1)+3/11) 2971295681363924 r005 Im(z^2+c),c=-13/12+19/73*I,n=8 2971295701128920 k002 Champernowne real with 91*n^2-231*n+169 2971295705644260 m001 (Conway+Porter)/(cos(1/5*Pi)+Champernowne) 2971295709860283 r005 Im(z^2+c),c=-7/26+6/13*I,n=25 2971295712080000 m001 1/(2^(1/3))^2/Backhouse^2 2971295713895045 m005 (1/2*5^(1/2)+5/9)/(-31/72+4/9*5^(1/2)) 2971295716393436 m005 (1/3*3^(1/2)+1/2)/(8/9*Pi+5/6) 2971295720368378 a007 Real Root Of -539*x^4-730*x^3+113*x^2+932*x+252 2971295726688913 m001 (-FellerTornier+Trott)/(sin(1)+exp(-1/2*Pi)) 2971295734429277 r005 Im(z^2+c),c=-13/106+42/55*I,n=18 2971295743546351 r002 4th iterates of z^2 + 2971295744665166 m005 (1/2*Catalan-1/2)/(1/4*gamma-2/7) 2971295755188959 m005 (21/4+1/4*5^(1/2))/(2/3*exp(1)+1/7) 2971295759890340 m001 ln(2)/ln(10)/(GAMMA(5/6)^OneNinth) 2971295763506288 r005 Im(z^2+c),c=3/16+13/56*I,n=11 2971295770840568 r002 34th iterates of z^2 + 2971295771813146 h001 (8/9*exp(2)+7/9)/(1/4*exp(2)+5/8) 2971295772324288 a007 Real Root Of -432*x^4+743*x^3+41*x^2+886*x-283 2971295776327564 l006 ln(6795/9146) 2971295778858470 r005 Im(z^2+c),c=-7/24+17/36*I,n=37 2971295801074114 a007 Real Root Of -358*x^4-739*x^3+894*x^2-226*x-46 2971295805945987 a001 3/75025*1346269^(12/19) 2971295806051355 a001 3/24157817*12586269025^(12/19) 2971295807356763 m005 (1/3*exp(1)-3/5)/(4*exp(1)-4/7) 2971295813838371 a007 Real Root Of 903*x^4+95*x^3-493*x^2-451*x+168 2971295814564851 r009 Im(z^3+c),c=-31/64+6/43*I,n=27 2971295817873400 r008 a(0)=3,K{-n^6,-62+15*n+57*n^2+25*n^3} 2971295825513040 r008 a(0)=3,K{-n^6,-24+26*n^3+73*n^2-40*n} 2971295826515156 r008 a(0)=3,K{-n^6,-54+32*n^3+40*n^2+17*n} 2971295833949485 m001 (-gamma(3)+BesselJ(1,1))/(BesselK(0,1)-Ei(1)) 2971295836636750 r009 Re(z^3+c),c=-1/18+43/62*I,n=58 2971295841251395 r008 a(0)=3,K{-n^6,-6+40*n^3+40*n^2-39*n} 2971295841254751 r008 a(0)=3,K{-n^6,-60+60*n-14*n^2+49*n^3} 2971295843885823 m001 (Pi-ln(2)/ln(10))/(LambertW(1)-LaplaceLimit) 2971295845797676 g002 Psi(7/9)+Psi(2/5)-Psi(10/11)-Psi(2/11) 2971295846235243 r008 a(0)=3,K{-n^6,6+44*n^3+34*n^2-49*n} 2971295852738803 m006 (1/2*exp(2*Pi)-1/3)/(1/6*exp(2*Pi)+3/4) 2971295858418844 m005 (-4/5+1/5*5^(1/2))/(1/4*Pi-2/3) 2971295860395718 r008 a(0)=3,K{-n^6,18+61*n^3-11*n^2-33*n} 2971295863100348 r008 a(0)=3,K{-n^6,-6+69*n^3-47*n^2+19*n} 2971295873482339 r008 a(0)=3,K{-n^6,64+74*n^3-27*n^2-76*n} 2971295879924254 a005 (1/cos(4/107*Pi))^1490 2971295886975077 r008 a(0)=3,K{-n^6,90+95*n^3-77*n^2-73*n} 2971295887658594 a003 sin(Pi*3/71)-sin(Pi*13/92) 2971295888168326 a001 3/34*9227465^(13/20) 2971295889991394 s002 sum(A022051[n]/((2*n+1)!),n=1..infinity) 2971295890471148 a007 Real Root Of 951*x^4+61*x^3+768*x^2-772*x-303 2971295891185826 m001 (Pi-2^(1/2))/(DuboisRaymond-StronglyCareFree) 2971295896894317 m001 Mills*(AlladiGrinstead-LandauRamanujan2nd) 2971295904378226 m001 ln(2+3^(1/2))*(1+3^(1/2))^(1/2)+Kolakoski 2971295908606944 a007 Real Root Of -155*x^4-421*x^3+245*x^2+157*x-659 2971295915849055 p001 sum((-1)^n/(587*n+327)/(12^n),n=0..infinity) 2971295922320460 m001 PrimesInBinary*exp(Khintchine)^2*gamma^2 2971295925345373 p001 sum((-1)^n/(431*n+285)/(2^n),n=0..infinity) 2971295931273558 m001 (BesselK(0,1)-PlouffeB)/(-Tribonacci+ZetaQ(4)) 2971295940157959 a007 Real Root Of 706*x^4+49*x^3-637*x^2-749*x+272 2971295962635319 a007 Real Root Of -196*x^4+569*x^3-202*x^2+789*x-230 2971295967360823 a007 Real Root Of 102*x^4+309*x^3-61*x^2-521*x-854 2971295969730637 m005 (1/2*3^(1/2)-1/3)/(6/7*Pi-9/10) 2971295973616435 r009 Im(z^3+c),c=-1/21+39/49*I,n=2 2971295975094348 r005 Re(z^2+c),c=-12/31+4/47*I,n=6 2971296013526757 a008 Real Root of x^2-88286 2971296024718111 m001 (5^(1/2)-ln(Pi)*Landau)/Landau 2971296025525511 r005 Re(z^2+c),c=7/52+43/64*I,n=60 2971296030498872 a007 Real Root Of 805*x^4+571*x^3+674*x^2-906*x-320 2971296034023758 a007 Real Root Of -107*x^4+21*x^3+876*x^2-242*x+438 2971296035628568 r005 Re(z^2+c),c=-19/66+10/19*I,n=33 2971296056874144 r005 Im(z^2+c),c=-67/114+24/59*I,n=59 2971296066426379 a007 Real Root Of 644*x^4+728*x^3+805*x^2-980*x+196 2971296066622836 r002 52i'th iterates of 2*x/(1-x^2) of 2971296066808945 m009 (24*Catalan+3*Pi^2-1/3)/(6*Psi(1,3/4)+2) 2971296079891651 g007 Psi(2,2/11)+Psi(2,1/11)-Psi(2,9/10)-Psi(2,4/9) 2971296106182278 p004 log(31231/23203) 2971296114750948 a001 843*610^(11/56) 2971296125057047 v002 sum(1/(5^n+(23/2*n^2-3/2*n+48)),n=1..infinity) 2971296128456147 m005 (5*Pi-2/5)/(3/5*2^(1/2)-1/3) 2971296136010278 r005 Re(z^2+c),c=-27/98+19/36*I,n=62 2971296142313536 r004 Im(z^2+c),c=-2/11+3/7*I,z(0)=I,n=50 2971296144668677 m001 GAMMA(17/24)^FeigenbaumB/PrimesInBinary 2971296153169427 m001 FeigenbaumC-HardHexagonsEntropy-Magata 2971296154056440 m001 1/GAMMA(5/6)^2*BesselK(1,1)/exp(arctan(1/2)) 2971296163270105 r008 a(0)=3,K{-n^6,-55+32*n^3+40*n^2+18*n} 2971296165220601 r008 a(0)=3,K{-n^6,-31-22*n+58*n^2+30*n^3} 2971296170344174 a007 Real Root Of 184*x^4+595*x^3+304*x^2+336*x-419 2971296170541099 r005 Im(z^2+c),c=-37/60+19/52*I,n=14 2971296170856562 r008 a(0)=3,K{-n^6,-43+38*n^3+28*n^2+12*n} 2971296173198050 m001 (1-2*Pi/GAMMA(5/6))/(CareFree+FeigenbaumB) 2971296179566241 r008 a(0)=3,K{-n^6,-55+54*n-14*n^2+50*n^3} 2971296180939158 r008 a(0)=3,K{-n^6,-15+45*n^3+21*n^2-16*n} 2971296181754110 r008 a(0)=3,K{-n^6,-9+45*n^3+24*n^2-25*n} 2971296182829103 r008 a(0)=3,K{-n^6,5+44*n^3+34*n^2-48*n} 2971296184943757 r008 a(0)=3,K{-n^6,-15-6*n+6*n^2+50*n^3} 2971296187532299 a007 Real Root Of 317*x^4+885*x^3-45*x^2+92*x-822 2971296194573447 r008 a(0)=3,K{-n^6,27-57*n+9*n^2+56*n^3} 2971296194806645 r008 a(0)=3,K{-n^6,29-60*n+10*n^2+56*n^3} 2971296196601658 a005 (1/cos(23/114*Pi))^101 2971296199051625 m001 (Otter-Riemann3rdZero)^Sierpinski 2971296207779994 r008 a(0)=3,K{-n^6,-17+43*n+20*n^2-10*n^3} 2971296218633482 m001 exp(MinimumGamma)^2/Cahen/Paris^2 2971296229329237 r005 Re(z^2+c),c=-29/110+11/20*I,n=54 2971296234564156 r009 Re(z^3+c),c=-13/34+33/49*I,n=49 2971296242784102 l006 ln(2344/3155) 2971296251706600 p001 sum((-1)^n/(452*n+33)/(3^n),n=0..infinity) 2971296262250329 p001 sum((-1)^n/(529*n+512)/n/(32^n),n=1..infinity) 2971296262983439 r005 Re(z^2+c),c=-37/122+16/35*I,n=43 2971296271192816 m009 (6*Psi(1,3/4)+3/5)/(1/2*Pi^2+2/5) 2971296275346968 r005 Im(z^2+c),c=-29/54+27/59*I,n=23 2971296291661955 m003 -5-6*E^(1/2+Sqrt[5]/2)+6*Tanh[1/2+Sqrt[5]/2] 2971296300484670 h001 (5/9*exp(1)+3/4)/(11/12*exp(2)+5/6) 2971296303556705 r008 a(0)=3,K{-n^6,-26-20*n^3+35*n^2+47*n} 2971296315665069 r009 Re(z^3+c),c=-13/70+44/49*I,n=10 2971296322741923 a007 Real Root Of -23*x^4-666*x^3+508*x^2-257*x+266 2971296323660715 a007 Real Root Of 19*x^4+562*x^3-84*x^2-245*x+85 2971296332455975 m001 (CareFree+HardyLittlewoodC5)/(Kolakoski+Otter) 2971296340932193 m006 (3*ln(Pi)-1/4)/(2*exp(2*Pi)+2/3) 2971296349217796 r009 Re(z^3+c),c=-2/13+43/46*I,n=4 2971296349277776 a003 cos(Pi*4/55)-sin(Pi*35/89) 2971296364477917 r005 Im(z^2+c),c=-19/32+3/55*I,n=41 2971296379181698 s002 sum(A033910[n]/((3*n+1)!),n=1..infinity) 2971296390838483 r009 Re(z^3+c),c=-5/9+35/53*I,n=8 2971296399754819 a001 3010349/5*121393^(3/22) 2971296399766529 a001 710647/5*4807526976^(3/22) 2971296411446467 r008 a(0)=3,K{-n^6,61-27*n-9*n^2+11*n^3} 2971296427154624 m001 (Artin-GaussAGM)/(ReciprocalLucas-ThueMorse) 2971296432075873 r005 Re(z^2+c),c=-33/106+23/53*I,n=52 2971296452110097 r005 Im(z^2+c),c=-75/98+3/17*I,n=7 2971296463518232 r005 Im(z^2+c),c=-37/122+29/61*I,n=36 2971296467670771 a007 Real Root Of -398*x^4-174*x^3-252*x^2+657*x+216 2971296480289999 r009 Im(z^3+c),c=-1/17+9/28*I,n=9 2971296489729856 m001 GAMMA(3/4)*(2*Pi/GAMMA(5/6)-Pi) 2971296489729856 m001 GAMMA(3/4)*(GAMMA(1/6)-Pi) 2971296490176080 r008 a(0)=3,K{-n^6,-62+14*n+58*n^2+25*n^3} 2971296506144132 r008 a(0)=3,K{-n^6,-36-n+35*n^2+37*n^3} 2971296510168437 m001 GAMMA(1/6)^sqrt(3)/(exp(-1/2*Pi)^sqrt(3)) 2971296513297645 r009 Re(z^3+c),c=-25/58+19/49*I,n=47 2971296513421246 m005 (1/3*exp(1)+5/6)/(5/2+3/2*5^(1/2)) 2971296514482569 r008 a(0)=3,K{-n^6,-56+55*n-14*n^2+50*n^3} 2971296521613077 r008 a(0)=3,K{-n^6,-44+57*n^3-29*n^2+51*n} 2971296523369375 r008 a(0)=3,K{-n^6,6+51*n^3+14*n^2-36*n} 2971296523867055 r008 a(0)=3,K{-n^6,-32+58*n^3-26*n^2+35*n} 2971296531882448 r008 a(0)=3,K{-n^6,18+61*n^3-10*n^2-34*n} 2971296534538130 r008 a(0)=3,K{-n^6,-6+69*n^3-46*n^2+18*n} 2971296537477982 m002 -1+Pi^3-Log[Pi]+Pi^2*Sech[Pi] 2971296538371782 m001 (Paris+StronglyCareFree)/(GaussAGM-cos(1)) 2971296544338346 m001 ln(Riemann1stZero)*Conway^2*TwinPrimes 2971296553084699 m001 (-QuadraticClass+Trott2nd)/(2^(1/2)-Zeta(1/2)) 2971296554555128 p003 LerchPhi(1/2,2,9/155) 2971296554899111 r005 Re(z^2+c),c=13/42+9/49*I,n=9 2971296574397968 a001 1/13*12586269025^(15/23) 2971296585196347 m001 (1-sin(1/5*Pi))/(-MertensB1+Riemann1stZero) 2971296585781132 p004 log(23159/22481) 2971296588564471 r005 Im(z^2+c),c=-31/82+3/64*I,n=13 2971296593587243 r005 Re(z^2+c),c=-27/110+17/32*I,n=21 2971296597841279 r005 Im(z^2+c),c=-5/74+14/37*I,n=17 2971296601859391 a007 Real Root Of 203*x^4-974*x^3-281*x^2-322*x-98 2971296605506158 a007 Real Root Of 209*x^4+520*x^3-184*x^2+382*x+110 2971296607035715 m001 GAMMA(19/24)^sin(1)/(arctan(1/3)^sin(1)) 2971296612636832 r005 Im(z^2+c),c=9/98+18/61*I,n=13 2971296618665208 m001 (ln(2+3^(1/2))+Conway)/(5^(1/2)-GAMMA(2/3)) 2971296627126717 m001 sin(1)/(Pi*csc(5/12*Pi)/GAMMA(7/12)+CareFree) 2971296628314446 a007 Real Root Of 141*x^4+369*x^3-73*x^2-66*x-862 2971296636503457 p004 log(32507/24151) 2971296646627812 g006 Psi(1,4/9)-2*Psi(1,1/12)-Psi(1,3/10) 2971296649482117 r005 Im(z^2+c),c=-17/56+10/21*I,n=50 2971296664630763 r009 Re(z^3+c),c=-47/122+4/13*I,n=11 2971296670819202 a007 Real Root Of 724*x^4+729*x^3+191*x^2-830*x-250 2971296671862761 a003 cos(Pi*1/62)-sin(Pi*25/101) 2971296678823728 l006 ln(7269/9784) 2971296683356317 m005 (1/2*gamma-3)/(1/2*Catalan+5/11) 2971296690510125 a007 Real Root Of -893*x^4+114*x^3-628*x^2+759*x-22 2971296693263054 m001 (BesselJ(1,1)-Chi(1))/(GAMMA(17/24)+ZetaQ(2)) 2971296704129520 k002 Champernowne real with 183/2*n^2-465/2*n+170 2971296714202673 r009 Re(z^3+c),c=-19/42+8/19*I,n=41 2971296717330225 m001 (Artin+PolyaRandomWalk3D)/(2^(1/3)+ln(Pi)) 2971296721985052 h001 (4/5*exp(2)+5/9)/(3/5*exp(1)+6/11) 2971296734481262 m001 KhinchinLevy^ZetaQ(2)-Mills 2971296737841737 r005 Re(z^2+c),c=-5/8+110/203*I,n=5 2971296764176396 m005 (1/2*5^(1/2)-3/5)/(7/9*Pi-7/10) 2971296772805354 r005 Re(z^2+c),c=-8/23+17/55*I,n=29 2971296778695645 a001 75025/322*24476^(29/31) 2971296806179699 s002 sum(A267059[n]/(n!^2),n=1..infinity) 2971296813344307 m001 (3^(1/3)-FibonacciFactorial)/(Sarnak+ZetaQ(4)) 2971296815293124 a007 Real Root Of 236*x^4+339*x^3-880*x^2+631*x+142 2971296817687916 a001 23725150497407/610*2971215073^(7/23) 2971296831999403 r008 a(0)=3,K{-n^6,-55+32*n^3+41*n^2+17*n} 2971296839437365 r008 a(0)=3,K{-n^6,-43+38*n^3+29*n^2+11*n} 2971296842290660 m005 (1/2*5^(1/2)-4/7)/(7/11*5^(1/2)+5/12) 2971296848174013 r009 Im(z^3+c),c=-19/46+9/55*I,n=3 2971296849137065 m001 (exp(-1/2*Pi)-Bloch)/(GaussAGM+ZetaQ(2)) 2971296851181271 r008 a(0)=3,K{-n^6,5+44*n^3+35*n^2-49*n} 2971296854781544 r008 a(0)=3,K{-n^6,-45+57*n^3-29*n^2+52*n} 2971296857260532 r008 a(0)=3,K{-n^6,17+50*n^3+23*n^2-55*n} 2971296858715935 r008 a(0)=3,K{-n^6,17+52*n^3+17*n^2-51*n} 2971296864970559 r008 a(0)=3,K{-n^6,17+61*n^3-10*n^2-33*n} 2971296869736720 r008 a(0)=3,K{-n^6,7+70*n^3-42*n^2} 2971296871606672 r008 a(0)=3,K{-n^6,31+69*n^3-27*n^2-38*n} 2971296875663819 m001 1/CareFree^2/ErdosBorwein^2/exp(cos(Pi/12)) 2971296876855601 r005 Re(z^2+c),c=-43/56+2/43*I,n=62 2971296886352022 l006 ln(4925/6629) 2971296888314885 a007 Real Root Of -328*x^4-692*x^3-926*x^2+612*x+248 2971296898050596 a007 Real Root Of -135*x^4+280*x^3+410*x^2+871*x+231 2971296901587112 a007 Real Root Of 983*x^4-913*x^3+357*x^2-777*x-294 2971296908245056 a007 Real Root Of 592*x^4-870*x^3+375*x^2-503*x-210 2971296919912859 a001 7778742049/521*18^(5/21) 2971296924424610 r005 Re(z^2+c),c=-1/11+13/16*I,n=45 2971296928048109 r005 Re(z^2+c),c=-1/102+20/27*I,n=28 2971296928840798 a001 28657/4*11^(35/59) 2971296932292852 m001 1/sinh(1)*exp(Artin)^2*sqrt(1+sqrt(3)) 2971296936043293 m001 (3^(1/3)+Landau)/(OneNinth-StronglyCareFree) 2971296947580952 h001 (-9*exp(4)+8)/(-8*exp(3)-2) 2971296960285452 r005 Re(z^2+c),c=-8/23+17/55*I,n=36 2971296962218461 m001 Psi(1,1/3)^sinh(1)*ReciprocalLucas 2971296968761141 g002 Psi(8/11)+Psi(1/7)-Psi(8/9)-Psi(2/9) 2971296969912559 r005 Im(z^2+c),c=21/58+13/47*I,n=49 2971296970811000 r002 4th iterates of z^2 + 2971296977946554 h001 (7/10*exp(1)+9/11)/(1/12*exp(2)+3/10) 2971296985659716 r002 2th iterates of z^2 + 2971296996227576 h001 (-8*exp(4)-5)/(-8*exp(3)+12) 2971296996932069 r005 Re(z^2+c),c=-37/106+32/61*I,n=13 2971297006624615 p004 log(27773/1423) 2971297026961959 m001 (ln(2)/ln(10)+gamma)/Otter 2971297035796745 a003 sin(Pi*5/67)/cos(Pi*3/14) 2971297050414793 r005 Re(z^2+c),c=-12/29+20/43*I,n=13 2971297060480379 r002 2th iterates of z^2 + 2971297067621700 r005 Re(z^2+c),c=-41/122+17/48*I,n=43 2971297069086596 r009 Re(z^3+c),c=-29/78+19/50*I,n=4 2971297069736357 m001 (Zeta(5)+BesselI(1,2))/(Bloch+ThueMorse) 2971297072872660 r005 Im(z^2+c),c=-19/102+21/52*I,n=7 2971297074218063 a007 Real Root Of -221*x^4-430*x^3+871*x^2+698*x+330 2971297080238344 m001 1/GAMMA(1/4)*Backhouse/ln(sin(Pi/12)) 2971297081753392 m001 ln(Pi)^Pi+(3^(1/3)) 2971297081753392 m001 ln(Pi)^Pi+3^(1/3) 2971297082993375 r009 Re(z^3+c),c=-23/58+8/15*I,n=12 2971297109435683 a007 Real Root Of -988*x^4-426*x^3+623*x^2+915*x-308 2971297111087430 a007 Real Root Of -122*x^4-274*x^3+154*x^2-630*x-910 2971297120426261 a003 sin(Pi*5/57)/cos(Pi*5/38) 2971297129400955 r002 19th iterates of z^2 + 2971297135179477 a005 (1/cos(19/236*Pi))^1458 2971297138426411 r005 Re(z^2+c),c=-4/27+27/43*I,n=61 2971297138920295 g006 Psi(1,5/12)+Psi(1,4/9)-Psi(1,5/8)-Psi(1,3/7) 2971297158846300 m001 Khintchine*exp(GolombDickman)*Lehmer 2971297161784820 a007 Real Root Of -311*x^4+692*x^3-59*x^2+657*x+221 2971297163990425 r008 a(0)=3,K{-n^6,-24+27*n^3+72*n^2-40*n} 2971297168623496 r008 a(0)=3,K{-n^6,14-9*n+40*n^2-10*n^3} 2971297171051200 r008 a(0)=3,K{-n^6,-44+38*n^3+29*n^2+12*n} 2971297178980981 r008 a(0)=3,K{-n^6,-6+41*n^3+39*n^2-39*n} 2971297179524847 r008 a(0)=3,K{-n^6,-56+54*n-13*n^2+50*n^3} 2971297183957360 r009 Re(z^3+c),c=-33/62+11/64*I,n=29 2971297183994675 r008 a(0)=3,K{-n^6,-46+47*n-20*n^2+54*n^3} 2971297184341603 m001 (FeigenbaumD-Landau)/(MertensB3-Totient) 2971297191006925 r005 Im(z^2+c),c=-27/86+12/25*I,n=55 2971297195044332 r008 a(0)=3,K{-n^6,-38+68*n^3-58*n^2+63*n} 2971297195120485 a003 cos(Pi*1/90)-cos(Pi*29/115) 2971297201111307 r008 a(0)=3,K{-n^6,6+70*n^3-42*n^2+n} 2971297202966992 r008 a(0)=3,K{-n^6,30+69*n^3-27*n^2-37*n} 2971297203836081 m001 FeigenbaumB/MertensB3/Riemann2ndZero 2971297209788945 r008 a(0)=3,K{-n^6,64+75*n^3-28*n^2-76*n} 2971297215655836 r008 a(0)=3,K{-n^6,51-21*n+7*n^2-7*n^3} 2971297245788038 r009 Im(z^3+c),c=-7/13+11/39*I,n=44 2971297253543822 a007 Real Root Of 349*x^4+990*x^3+36*x^2+756*x+696 2971297264299464 a001 139583862445/199*322^(1/4) 2971297284218897 a001 75025/47*3571^(23/36) 2971297291659591 m001 (FeigenbaumDelta+ZetaQ(4))/(ArtinRank2-cos(1)) 2971297294674755 a007 Real Root Of 86*x^4+30*x^3-677*x^2-323*x-899 2971297295317906 r002 6th iterates of z^2 + 2971297297090910 s002 sum(A013461[n]/(n^3*pi^n-1),n=1..infinity) 2971297308320612 m001 (Ei(1)+BesselI(0,2))/(Chi(1)+LambertW(1)) 2971297312626943 a007 Real Root Of 327*x^4+657*x^3-856*x^2-28*x-779 2971297319618166 a007 Real Root Of 590*x^4+287*x^3+488*x^2+51*x-25 2971297325013478 a007 Real Root Of -190*x^4-221*x^3+873*x^2-255*x+547 2971297328320303 m002 15+Pi^9*Tanh[Pi] 2971297330096041 r005 Im(z^2+c),c=-23/90+11/24*I,n=30 2971297332646798 a007 Real Root Of 223*x^4+379*x^3-988*x^2-238*x+576 2971297350205737 a007 Real Root Of 402*x^4+905*x^3-624*x^2+898*x+584 2971297359357060 q001 2588/871 2971297364171794 a007 Real Root Of 367*x^4-865*x^3+689*x^2-976*x+249 2971297374506115 m001 GAMMA(1/6)^2*CopelandErdos^2*ln(sin(1)) 2971297377312508 r005 Im(z^2+c),c=-87/118+9/62*I,n=32 2971297404007960 a007 Real Root Of -274*x^4-942*x^3-197*x^2+524*x-58 2971297405378373 r009 Re(z^3+c),c=-31/86+14/53*I,n=11 2971297420704266 a001 514229/47*9349^(13/36) 2971297424088650 a001 41/329*86267571272^(5/23) 2971297441794352 m001 (-Kolakoski+Riemann3rdZero)/(Si(Pi)-Zeta(5)) 2971297451063575 p004 log(20563/19961) 2971297453148196 r005 Re(z^2+c),c=23/114+6/13*I,n=21 2971297456410695 r008 a(0)=0,K{-n^6,39+10*n^3+49*n^2-64*n} 2971297460130607 m001 exp(GAMMA(5/12))^2*PisotVijayaraghavan/Pi 2971297470824363 l006 ln(2581/3474) 2971297486063781 r005 Re(z^2+c),c=-7/24+21/43*I,n=40 2971297496797750 r008 a(0)=3,K{-n^6,-31-22*n+57*n^2+31*n^3} 2971297504460488 m001 ln(3)^BesselK(1,1)*FransenRobinson 2971297507782582 r008 a(0)=3,K{-n^6,-27-4*n+23*n^2+43*n^3} 2971297509402759 r008 a(0)=3,K{-n^6,-33+11*n+11*n^2+46*n^3} 2971297516345402 r008 a(0)=3,K{-n^6,-45+57*n^3-28*n^2+51*n} 2971297516591784 r008 a(0)=3,K{-n^6,-37+37*n-21*n^2+56*n^3} 2971297517723986 a007 Real Root Of 27*x^4-165*x^3+676*x^2-669*x-263 2971297519018821 r008 a(0)=3,K{-n^6,7-37*n+13*n^2+52*n^3} 2971297519299971 m002 -12+Pi^3/(3*Log[Pi]) 2971297519497456 r008 a(0)=3,K{-n^6,-19+12*n-15*n^2+57*n^3} 2971297519558782 r005 Re(z^2+c),c=-33/106+23/53*I,n=62 2971297524799285 r008 a(0)=3,K{-n^6,27-57*n+8*n^2+57*n^3} 2971297524848663 a005 (1/cos(7/218*Pi))^1569 2971297525022235 r008 a(0)=3,K{-n^6,29-60*n+9*n^2+57*n^3} 2971297529002772 m001 exp(Catalan)/MertensB1/LambertW(1)^2 2971297532054284 r008 a(0)=3,K{-n^6,29+68*n^3-24*n^2-38*n} 2971297533760710 r005 Re(z^2+c),c=-15/52+29/57*I,n=33 2971297549202886 a001 7/4181*2^(24/29) 2971297551027717 a007 Real Root Of -250*x^4-573*x^3+158*x^2-767*x+781 2971297555606592 m001 (GAMMA(23/24)+Niven)/(Trott-ZetaQ(4)) 2971297556197402 r005 Im(z^2+c),c=-51/110+7/57*I,n=4 2971297560457863 m001 (GAMMA(11/12)-Shi(1))/(Paris+Weierstrass) 2971297562674322 q001 1/3365533 2971297562676993 m001 (BesselK(0,1)+Khinchin)/(MertensB2+Trott) 2971297564762842 h001 (2/3*exp(2)+1/4)/(2/9*exp(2)+1/10) 2971297567834886 m001 (MertensB1-Rabbit)/(Zeta(5)+Bloch) 2971297567929185 a007 Real Root Of 357*x^4+693*x^3-873*x^2+673*x+60 2971297574516816 s002 sum(A128892[n]/((exp(n)+1)/n),n=1..infinity) 2971297577704538 a007 Real Root Of 970*x^4-767*x^3-244*x^2-767*x+262 2971297583466452 m001 CopelandErdos^Bloch/(CopelandErdos^GAMMA(3/4)) 2971297584063477 r005 Re(z^2+c),c=-11/42+6/11*I,n=19 2971297588306519 a003 cos(Pi*11/100)*cos(Pi*35/88) 2971297591413495 m005 (1/2*2^(1/2)-1/4)/(3/8*3^(1/2)+8/9) 2971297597521998 a007 Real Root Of 143*x^4+481*x^3+376*x^2+425*x-585 2971297599886336 r005 Re(z^2+c),c=-7/24+15/31*I,n=34 2971297603961314 m001 (2^(1/3)+3^(1/2))/(gamma(3)+Paris) 2971297606264330 m001 exp(GAMMA(5/12))*FeigenbaumAlpha*sqrt(2) 2971297616522584 a007 Real Root Of -254*x^4-575*x^3+308*x^2-383*x+857 2971297618641551 a007 Real Root Of -215*x^4-288*x^3-246*x^2+815*x+258 2971297618838909 r005 Re(z^2+c),c=-27/74+8/35*I,n=23 2971297622769465 r005 Re(z^2+c),c=-11/18+49/96*I,n=10 2971297653753170 m002 4+Pi^2+4*ProductLog[Pi]+Sinh[Pi] 2971297665117339 b008 26+ArcCosh[41/2] 2971297670008772 m001 (GAMMA(23/24)-Magata)/(RenyiParking+ZetaQ(2)) 2971297670686237 r005 Re(z^2+c),c=-37/102+6/25*I,n=22 2971297684471985 m005 (1/3*2^(1/2)-1/10)/(6*5^(1/2)-11/12) 2971297685536100 r005 Re(z^2+c),c=-11/38+31/63*I,n=42 2971297689205209 r005 Im(z^2+c),c=-5/4+11/117*I,n=20 2971297707130120 k002 Champernowne real with 92*n^2-234*n+171 2971297727810898 r005 Im(z^2+c),c=-13/18+59/114*I,n=4 2971297740837792 a007 Real Root Of 771*x^4-542*x^3-537*x^2-947*x+337 2971297745638706 a007 Real Root Of 357*x^4+916*x^3-62*x^2+876*x-647 2971297752194766 r002 5th iterates of z^2 + 2971297757441445 r005 Im(z^2+c),c=43/122+23/61*I,n=9 2971297764087981 r005 Re(z^2+c),c=-13/50+24/43*I,n=60 2971297764449872 a007 Real Root Of -281*x^4-832*x^3+371*x^2+856*x-655 2971297770508159 a007 Real Root Of -454*x^4-938*x^3+994*x^2-903*x-678 2971297773997592 r005 Im(z^2+c),c=-5/17+26/55*I,n=35 2971297775749730 b008 DedekindEta[I*(1+2*Pi)]/5 2971297777271821 a007 Real Root Of -258*x^4-632*x^3+258*x^2-245*x+525 2971297780653261 m001 GAMMA(17/24)^2/exp(LandauRamanujan)/sin(Pi/12) 2971297783201303 r005 Re(z^2+c),c=-41/122+17/48*I,n=40 2971297796674967 r005 Im(z^2+c),c=-29/52+19/61*I,n=5 2971297797261465 m001 (ln(5)+Ei(1,1))/(BesselJ(1,1)-GAMMA(11/12)) 2971297809857641 r009 Re(z^3+c),c=-1/32+41/63*I,n=9 2971297812365325 m001 exp(log(1+sqrt(2)))^2*Conway^2*sqrt(3)^2 2971297815538838 r008 a(0)=3,K{-n^6,-62+14*n+57*n^2+26*n^3} 2971297819661333 m005 (1/4*gamma-3)/(1/15+2/5*5^(1/2)) 2971297819672632 r009 Im(z^3+c),c=-33/70+8/55*I,n=25 2971297836021709 r008 a(0)=3,K{-n^6,-28-3*n+23*n^2+43*n^3} 2971297840435257 a002 11^(10/3)+5^(3/2) 2971297841913737 a007 Real Root Of -688*x^4+763*x^3+144*x^2+894*x-293 2971297844760831 r008 a(0)=3,K{-n^6,-32+55*n^3-15*n^2+27*n} 2971297844761097 r008 a(0)=3,K{-n^6,-38+38*n-21*n^2+56*n^3} 2971297845214302 r005 Re(z^2+c),c=-17/54+25/59*I,n=27 2971297847169131 r008 a(0)=3,K{-n^6,6-36*n+13*n^2+52*n^3} 2971297847644028 r008 a(0)=3,K{-n^6,-20+13*n-15*n^2+57*n^3} 2971297857847029 r008 a(0)=3,K{-n^6,-6+70*n^3-47*n^2+18*n} 2971297859086489 r008 a(0)=3,K{-n^6,6+70*n^3-41*n^2} 2971297860104198 r008 a(0)=3,K{-n^6,28+68*n^3-24*n^2-37*n} 2971297860909281 r008 a(0)=3,K{-n^6,30+69*n^3-26*n^2-38*n} 2971297864514916 a001 161/7465176*3^(7/24) 2971297864733782 r005 Im(z^2+c),c=-31/114+13/28*I,n=43 2971297868851841 m001 Pi^(1/2)-Riemann1stZero^sin(1/5*Pi) 2971297898386497 m001 (ln(Pi)+Lehmer)/(Stephens+ZetaQ(3)) 2971297899520694 m001 Tribonacci^2/exp(MadelungNaCl)^2/sin(Pi/5)^2 2971297901481812 a007 Real Root Of -175*x^4+180*x^3+66*x^2+578*x+172 2971297902622412 m001 (Zeta(1/2)+2*Pi/GAMMA(5/6))/(Conway-Khinchin) 2971297906446962 m001 (BesselI(0,2)+Cahen)/(FellerTornier-Mills) 2971297912729211 r005 Im(z^2+c),c=-20/31+13/40*I,n=41 2971297914554245 m001 Bloch*Ei(1,1)^MasserGramainDelta 2971297921199347 r005 Re(z^2+c),c=-19/50+7/59*I,n=15 2971297927618855 h001 (1/11*exp(1)+11/12)/(1/2*exp(2)+2/9) 2971297930548186 r005 Im(z^2+c),c=-9/28+15/31*I,n=39 2971297932119609 m001 (ln(2^(1/2)+1)+gamma(1))/(BesselK(0,1)-ln(2)) 2971297933492416 a003 sin(Pi*1/108)/cos(Pi*4/61) 2971297937445257 a001 41/15456*2^(9/55) 2971297963444293 r009 Re(z^3+c),c=-23/66+13/54*I,n=8 2971297963805848 h001 (11/12*exp(1)+11/12)/(1/11*exp(1)+9/10) 2971297982353944 r002 52th iterates of z^2 + 2971297985824082 m001 (-Artin+Porter)/(1+2/3*Pi*3^(1/2)/GAMMA(2/3)) 2971297988260583 r005 Re(z^2+c),c=11/42+5/59*I,n=10 2971297991107777 h001 (3/7*exp(2)+5/6)/(1/4*exp(1)+2/3) 2971298003376403 m006 (4/5*exp(2*Pi)-5/6)/(1/3/Pi-1/4) 2971298003983489 l006 ln(5399/7267) 2971298019859514 m002 3-(E^Pi*Sech[Pi]^2)/6 2971298023496352 r005 Re(z^2+c),c=11/74+5/11*I,n=28 2971298025598882 m001 (Mills+Riemann2ndZero)/(2^(1/2)-LaplaceLimit) 2971298027485462 m001 Zeta(1,2)^ArtinRank2/arctan(1/3) 2971298033422639 r005 Re(z^2+c),c=-29/118+33/59*I,n=38 2971298034049543 m006 (3/5*exp(2*Pi)+1/3)/(4/5*ln(Pi)+1/6) 2971298039187853 a007 Real Root Of -120*x^4-166*x^3+697*x^2+216*x-513 2971298043398625 r009 Re(z^3+c),c=-19/46+16/51*I,n=7 2971298052335553 r009 Im(z^3+c),c=-5/14+13/61*I,n=3 2971298053620798 m001 1/ln(Khintchine)*DuboisRaymond/LaplaceLimit 2971298057858111 a007 Real Root Of 89*x^4+127*x^3-421*x^2+220*x+765 2971298078895432 r005 Im(z^2+c),c=-103/78+1/50*I,n=34 2971298088121461 p003 LerchPhi(1/10,3,77/51) 2971298088853968 h001 (5/9*exp(1)+2/9)/(7/9*exp(2)+1/12) 2971298102592375 m001 1/ln(10)/MinimumGamma 2971298108284409 q001 911/3066 2971298112219459 a001 47/377*28657^(8/15) 2971298119953145 m002 -3+(2*Tanh[Pi])/(3*E^Pi) 2971298134260364 r005 Im(z^2+c),c=-11/46+14/31*I,n=38 2971298147213686 m001 gamma(2)^arctan(1/2)+Otter 2971298148187364 m001 FeigenbaumB^2*Cahen/exp(GAMMA(2/3))^2 2971298150292846 r008 a(0)=3,K{-n^6,-55+33*n^3+40*n^2+17*n} 2971298152560808 m001 RenyiParking/(Salem+Totient) 2971298153059692 r009 Re(z^3+c),c=-1/20+31/53*I,n=34 2971298155756840 a007 Real Root Of -11*x^4-313*x^3+383*x^2-831*x+303 2971298168577438 r008 a(0)=3,K{-n^6,5+45*n^3+34*n^2-49*n} 2971298173844132 r005 Re(z^2+c),c=-13/34+3/34*I,n=26 2971298178999645 a007 Real Root Of -418*x^4+833*x^3-636*x^2+712*x-174 2971298179671206 r005 Re(z^2+c),c=-25/26+6/65*I,n=32 2971298185301872 r008 a(0)=3,K{-n^6,-9+72*n^3-54*n^2+26*n} 2971298188906061 b008 1+21*Tan[3/2] 2971298198091351 a008 Real Root of x^2-x-87989 2971298198540024 m002 -1-Pi^4/5+Pi^5+Cosh[Pi] 2971298202141438 p001 sum((-1)^n/(610*n+323)/(8^n),n=0..infinity) 2971298203310438 m001 (Pi^(1/2)-Kac)/(Magata+ZetaP(2)) 2971298204153913 r005 Re(z^2+c),c=-25/82+19/42*I,n=47 2971298247183117 a001 123/89*377^(4/31) 2971298248216708 l006 ln(29/566) 2971298251092452 r005 Re(z^2+c),c=-4/13+4/9*I,n=52 2971298285012867 r005 Im(z^2+c),c=-31/54+5/11*I,n=43 2971298296089760 r005 Re(z^2+c),c=-13/34+3/34*I,n=28 2971298304229025 r002 4th iterates of z^2 + 2971298316506836 r005 Im(z^2+c),c=19/94+11/57*I,n=4 2971298319149033 a007 Real Root Of -28*x^4-854*x^3-649*x^2+183*x+344 2971298320517666 r009 Re(z^3+c),c=-7/114+31/44*I,n=35 2971298325990375 a007 Real Root Of 108*x^4+430*x^3+342*x^2+194*x+419 2971298342492499 r005 Im(z^2+c),c=-8/27+26/49*I,n=10 2971298345647681 r005 Re(z^2+c),c=13/34+11/52*I,n=18 2971298355949777 h001 (1/6*exp(2)+9/11)/(11/12*exp(2)+1/8) 2971298358920222 s002 sum(A051081[n]/(exp(n)+1),n=1..infinity) 2971298358921276 s002 sum(A051093[n]/(exp(n)+1),n=1..infinity) 2971298360508068 m005 (15/44+1/4*5^(1/2))/(3/7*Zeta(3)-6/11) 2971298363187885 m001 (2^(1/2)-Kac)/(KhinchinLevy+Porter) 2971298368920840 h001 (-9*exp(1)+2)/(-9*exp(1/3)+5) 2971298374596319 h001 (-6*exp(-2)-5)/(-9*exp(1/3)-7) 2971298379952845 r009 Re(z^3+c),c=-13/29+5/12*I,n=63 2971298417541317 r005 Im(z^2+c),c=-9/98+12/31*I,n=10 2971298417657457 m001 (BesselJ(0,1)-CopelandErdos)/(Mills+PlouffeB) 2971298428124839 a007 Real Root Of 30*x^4-203*x^3-668*x^2+836*x+718 2971298433062340 m001 FeigenbaumD^2*exp(Rabbit)^2/Zeta(9) 2971298433563818 m001 exp(1)+(ln(2)/ln(10))^ln(Pi) 2971298446204851 a007 Real Root Of 246*x^4-760*x^3-874*x^2-760*x+321 2971298448178682 a007 Real Root Of 193*x^4+820*x^3+983*x^2+690*x-161 2971298450776519 m001 Otter/(ln(gamma)^ZetaQ(3)) 2971298453485541 r008 a(0)=3,K{-n^6,50-16*n^3} 2971298462016915 r005 Re(z^2+c),c=-13/48+34/47*I,n=7 2971298470417367 m001 ln(Catalan)^2*Bloch^2*sqrt(3) 2971298483805549 r005 Im(z^2+c),c=-5/38+11/27*I,n=21 2971298487855274 r008 a(0)=3,K{-n^6,-28-4*n+24*n^2+43*n^3} 2971298489172557 r008 a(0)=3,K{-n^6,-54+47*n-7*n^2+49*n^3} 2971298490209768 r008 a(0)=3,K{-n^6,-28+2*n+15*n^2+46*n^3} 2971298490468953 r008 a(0)=3,K{-n^6,-56+54*n-14*n^2+51*n^3} 2971298492302734 l006 ln(2818/3793) 2971298496431892 r008 a(0)=3,K{-n^6,-38+37*n-20*n^2+56*n^3} 2971298498563014 r008 a(0)=3,K{-n^6,-14+55*n^3-5*n^2-n} 2971298498795759 r008 a(0)=3,K{-n^6,6-37*n+14*n^2+52*n^3} 2971298499261969 r008 a(0)=3,K{-n^6,-20+12*n-14*n^2+57*n^3} 2971298500036573 r005 Im(z^2+c),c=-39/74+2/49*I,n=11 2971298511498452 r008 a(0)=3,K{-n^6,28+68*n^3-23*n^2-38*n} 2971298522694628 r005 Re(z^2+c),c=-7/25+29/56*I,n=58 2971298525411463 r009 Re(z^3+c),c=-13/25+9/59*I,n=30 2971298540117598 r005 Im(z^2+c),c=-21/58+12/19*I,n=32 2971298549808618 a001 7/6*14662949395604^(9/16) 2971298564620974 a007 Real Root Of -415*x^4-933*x^3+558*x^2-986*x+16 2971298565421784 m001 (Pi+5)/(-2^(1/3)+4) 2971298587339598 m009 (1/2*Psi(1,3/4)-2/3)/(1/8*Pi^2+4/5) 2971298618215325 r005 Im(z^2+c),c=-41/40+1/32*I,n=6 2971298633633781 r005 Re(z^2+c),c=-13/34+3/34*I,n=30 2971298638034807 s002 sum(A281756[n]/(n!^3),n=1..infinity) 2971298638034807 s002 sum(A280463[n]/(n!^3),n=1..infinity) 2971298638114589 s002 sum(A282261[n]/(n!^3),n=1..infinity) 2971298643025634 m005 (1/4+1/6*5^(1/2))/(5/9*gamma-1/9) 2971298647427568 a007 Real Root Of -305*x^4-892*x^3-226*x^2-837*x-118 2971298665693673 s002 sum(A282006[n]/(n!^3),n=1..infinity) 2971298679298307 r009 Im(z^3+c),c=-19/78+17/59*I,n=16 2971298679388099 a001 3/377*63245986^(5/7) 2971298680499375 r009 Re(z^3+c),c=-15/44+23/36*I,n=26 2971298681088456 p001 sum(1/(475*n+243)/n/(5^n),n=1..infinity) 2971298685699972 m005 (1/2*3^(1/2)-1/7)/(9/10*3^(1/2)+7/8) 2971298695165051 a007 Real Root Of 27*x^4-853*x^3-394*x^2-593*x-164 2971298695768819 r005 Re(z^2+c),c=-17/18+13/99*I,n=8 2971298710130720 k002 Champernowne real with 185/2*n^2-471/2*n+172 2971298713388327 r005 Im(z^2+c),c=-39/106+2/59*I,n=3 2971298723739176 b008 ArcSech[InverseEllipticNomeQ[E^(-5)]] 2971298728279086 m001 Cahen-ln(2)/ln(10)*5^(1/2) 2971298737325336 a007 Real Root Of -820*x^4+117*x^3+410*x^2+61*x-51 2971298740395066 m001 (Zeta(1,-1)+Pi^(1/2))/(Psi(2,1/3)+Zeta(5)) 2971298757761559 r005 Re(z^2+c),c=9/56+18/29*I,n=4 2971298758542736 m001 ErdosBorwein^MertensB1+Tribonacci 2971298779005209 r004 Re(z^2+c),c=-23/26+3/10*I,z(0)=-1,n=15 2971298783567009 m001 ln(GAMMA(7/24))^2*GAMMA(2/3)/gamma 2971298793541520 r008 a(0)=3,K{-n^6,-61+28*n^3+53*n^2+15*n} 2971298796059038 r008 a(0)=3,K{-n^6,-57+13*n+49*n^2+30*n^3} 2971298806892155 r008 a(0)=3,K{-n^6,-1+33*n^3+68*n^2-65*n} 2971298812513422 r008 a(0)=3,K{-n^6,-55+48*n-7*n^2+49*n^3} 2971298814023067 r005 Im(z^2+c),c=-19/98+23/53*I,n=16 2971298820427148 r008 a(0)=3,K{-n^6,-45+58*n^3-29*n^2+51*n} 2971298824569232 r008 a(0)=3,K{-n^6,-27+30*n-29*n^2+61*n^3} 2971298832482933 r002 18th iterates of z^2 + 2971298832870263 r008 a(0)=3,K{-n^6,27+65*n^3-14*n^2-43*n} 2971298838227690 r002 8th iterates of z^2 + 2971298839811579 r008 a(0)=3,K{-n^6,57+72*n^3-20*n^2-74*n} 2971298847444280 r005 Re(z^2+c),c=-13/34+3/34*I,n=32 2971298848282842 r005 Im(z^2+c),c=8/29+22/53*I,n=9 2971298854296442 m001 (AlladiGrinstead+Champernowne)/(Pi-gamma(3)) 2971298861301772 a007 Real Root Of -522*x^4+450*x^3-301*x^2+574*x+213 2971298861986194 a003 sin(Pi*7/66)*sin(Pi*37/102) 2971298863559889 r009 Im(z^3+c),c=-19/78+17/59*I,n=17 2971298883105419 r009 Re(z^3+c),c=-19/102+45/46*I,n=64 2971298887816856 r009 Im(z^3+c),c=-19/78+17/59*I,n=19 2971298889343639 m001 GolombDickman/(FeigenbaumD-LandauRamanujan2nd) 2971298891286952 r009 Im(z^3+c),c=-19/78+17/59*I,n=20 2971298891602221 m005 (1/2*5^(1/2)-3/5)/(4/9*gamma-2) 2971298891730560 r005 Im(z^2+c),c=-17/70+27/64*I,n=6 2971298892965409 a007 Real Root Of 43*x^4-126*x^3-642*x^2+316*x-50 2971298894859538 r009 Im(z^3+c),c=-19/78+17/59*I,n=23 2971298895084071 r009 Im(z^3+c),c=-19/78+17/59*I,n=22 2971298895142972 r009 Im(z^3+c),c=-19/78+17/59*I,n=26 2971298895161097 r009 Im(z^3+c),c=-19/78+17/59*I,n=29 2971298895162081 r009 Im(z^3+c),c=-19/78+17/59*I,n=32 2971298895162120 r009 Im(z^3+c),c=-19/78+17/59*I,n=33 2971298895162126 r009 Im(z^3+c),c=-19/78+17/59*I,n=35 2971298895162127 r009 Im(z^3+c),c=-19/78+17/59*I,n=36 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=39 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=38 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=42 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=45 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=48 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=49 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=51 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=52 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=55 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=54 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=58 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=61 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=64 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=62 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=63 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=60 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=59 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=57 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=56 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=53 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=50 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=46 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=47 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=44 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=43 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=41 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=40 2971298895162128 r009 Im(z^3+c),c=-19/78+17/59*I,n=37 2971298895162137 r009 Im(z^3+c),c=-19/78+17/59*I,n=34 2971298895162160 r009 Im(z^3+c),c=-19/78+17/59*I,n=30 2971298895162270 r009 Im(z^3+c),c=-19/78+17/59*I,n=31 2971298895163958 r009 Im(z^3+c),c=-19/78+17/59*I,n=28 2971298895165495 r009 Im(z^3+c),c=-19/78+17/59*I,n=27 2971298895177346 r009 Im(z^3+c),c=-19/78+17/59*I,n=25 2971298895262141 r009 Im(z^3+c),c=-19/78+17/59*I,n=24 2971298897375826 r009 Im(z^3+c),c=-19/78+17/59*I,n=21 2971298898206916 s002 sum(A280099[n]/(n!^3),n=1..infinity) 2971298899003063 s002 sum(A282385[n]/(n!^3),n=1..infinity) 2971298905416169 r009 Re(z^3+c),c=-53/110+22/49*I,n=46 2971298909821969 a007 Real Root Of -280*x^4-827*x^3-178*x^2-742*x-503 2971298910237694 a007 Real Root Of 278*x^4+547*x^3-460*x^2+967*x-385 2971298910451915 r005 Re(z^2+c),c=-33/86+4/61*I,n=22 2971298919834355 a007 Real Root Of -768*x^4+103*x^3+276*x^2+656*x-216 2971298925021596 s002 sum(A282482[n]/(n!^3),n=1..infinity) 2971298936142603 r009 Im(z^3+c),c=-19/78+17/59*I,n=18 2971298939267144 v002 sum(1/(5^n*(4*n^2+20*n-17)),n=1..infinity) 2971298941210529 l006 ln(5873/7905) 2971298948149673 r005 Re(z^2+c),c=-13/34+3/34*I,n=34 2971298948683549 r009 Im(z^3+c),c=-14/29+3/23*I,n=37 2971298949412342 m001 (-Magata+MertensB2)/(GAMMA(13/24)-sin(1)) 2971298951879905 s002 sum(A139810[n]/(10^n+1),n=1..infinity) 2971298951885848 s002 sum(A139810[n]/(10^n-1),n=1..infinity) 2971298965058870 a007 Real Root Of -206*x^4+12*x^3-611*x^2+475*x+197 2971298970812431 r005 Im(z^2+c),c=29/86+6/17*I,n=34 2971298988262088 r005 Re(z^2+c),c=-13/34+3/34*I,n=36 2971299002164407 r005 Re(z^2+c),c=-13/34+3/34*I,n=38 2971299005339092 r002 3th iterates of z^2 + 2971299006287175 r005 Re(z^2+c),c=-13/34+3/34*I,n=40 2971299007028735 r005 Re(z^2+c),c=-13/34+3/34*I,n=43 2971299007047497 r005 Re(z^2+c),c=-13/34+3/34*I,n=45 2971299007110757 r005 Re(z^2+c),c=-13/34+3/34*I,n=47 2971299007151382 r005 Re(z^2+c),c=-13/34+3/34*I,n=49 2971299007170633 r005 Re(z^2+c),c=-13/34+3/34*I,n=51 2971299007178334 r005 Re(z^2+c),c=-13/34+3/34*I,n=53 2971299007181014 r005 Re(z^2+c),c=-13/34+3/34*I,n=55 2971299007181813 r005 Re(z^2+c),c=-13/34+3/34*I,n=57 2971299007181963 r005 Re(z^2+c),c=-13/34+3/34*I,n=60 2971299007181966 r005 Re(z^2+c),c=-13/34+3/34*I,n=62 2971299007181977 r005 Re(z^2+c),c=-13/34+3/34*I,n=64 2971299007182000 r005 Re(z^2+c),c=-13/34+3/34*I,n=59 2971299007182010 r005 Re(z^2+c),c=-13/34+3/34*I,n=63 2971299007182021 r005 Re(z^2+c),c=-13/34+3/34*I,n=61 2971299007182038 r005 Re(z^2+c),c=-13/34+3/34*I,n=58 2971299007182441 r005 Re(z^2+c),c=-13/34+3/34*I,n=56 2971299007183937 r005 Re(z^2+c),c=-13/34+3/34*I,n=54 2971299007188560 r005 Re(z^2+c),c=-13/34+3/34*I,n=52 2971299007200958 r005 Re(z^2+c),c=-13/34+3/34*I,n=50 2971299007229645 r005 Re(z^2+c),c=-13/34+3/34*I,n=48 2971299007241843 r005 Re(z^2+c),c=-13/34+3/34*I,n=42 2971299007283275 r005 Re(z^2+c),c=-13/34+3/34*I,n=46 2971299007342269 r005 Re(z^2+c),c=-13/34+3/34*I,n=44 2971299007406734 r005 Re(z^2+c),c=-13/34+3/34*I,n=41 2971299009477475 r005 Re(z^2+c),c=-13/34+3/34*I,n=39 2971299013559242 s002 sum(A286205[n]/(n!^3),n=1..infinity) 2971299013559242 s002 sum(A286500[n]/(n!^3),n=1..infinity) 2971299013559242 s002 sum(A287099[n]/(n!^3),n=1..infinity) 2971299013559242 s002 sum(A287187[n]/(n!^3),n=1..infinity) 2971299017220416 r005 Re(z^2+c),c=-13/34+3/34*I,n=37 2971299022077049 a001 (2+3^(1/2))^(555/58) 2971299025579036 a001 521/18*(1/2*5^(1/2)+1/2)^30*18^(13/22) 2971299028808846 a007 Real Root Of -30*x^4-919*x^3-791*x^2+877*x+116 2971299029419517 a007 Real Root Of -30*x^4+101*x^3+337*x^2-677*x+1 2971299029810312 a007 Real Root Of -147*x^4-394*x^3-78*x^2-910*x-893 2971299041249708 r005 Re(z^2+c),c=-13/34+3/34*I,n=35 2971299047579643 m009 (1/5*Psi(1,2/3)+6)/(2/5*Psi(1,2/3)+1) 2971299047766604 r005 Re(z^2+c),c=3/16+17/30*I,n=15 2971299064264954 r005 Im(z^2+c),c=-23/62+1/2*I,n=60 2971299065505183 r005 Re(z^2+c),c=-25/26+6/65*I,n=40 2971299073697598 r009 Im(z^3+c),c=-55/122+5/29*I,n=42 2971299074712063 a007 Real Root Of 332*x^4+931*x^3+133*x^2+789*x-285 2971299078098212 r005 Im(z^2+c),c=-47/42+13/50*I,n=52 2971299079431785 m001 (PrimesInBinary+TwinPrimes)/(ln(3)+Zeta(1/2)) 2971299080485991 r009 Im(z^3+c),c=-19/78+17/59*I,n=14 2971299093655589 q001 1967/662 2971299099361223 r005 Re(z^2+c),c=-25/26+6/65*I,n=42 2971299101346456 r005 Re(z^2+c),c=-17/62+28/33*I,n=8 2971299105960368 r005 Re(z^2+c),c=-13/34+3/34*I,n=33 2971299106359903 m001 (Pi*2^(1/2)/GAMMA(3/4))^Lehmer/(gamma^Lehmer) 2971299106359903 m001 GAMMA(1/4)^Lehmer/(gamma^Lehmer) 2971299108104331 m001 (PlouffeB+Robbin)/(FeigenbaumDelta-sin(1)) 2971299111975653 m001 Riemann1stZero*Riemann2ndZero-Trott 2971299115431212 r008 a(0)=3,K{-n^6,-62+28*n^3+53*n^2+16*n} 2971299115784558 r005 Re(z^2+c),c=-25/26+6/65*I,n=50 2971299115945364 r005 Re(z^2+c),c=-25/26+6/65*I,n=52 2971299116157175 r005 Re(z^2+c),c=-25/26+6/65*I,n=54 2971299116161340 r005 Re(z^2+c),c=-25/26+6/65*I,n=62 2971299116161861 r005 Re(z^2+c),c=-25/26+6/65*I,n=60 2971299116163260 r005 Re(z^2+c),c=-25/26+6/65*I,n=64 2971299116174865 r005 Re(z^2+c),c=-25/26+6/65*I,n=58 2971299116196618 r005 Re(z^2+c),c=-25/26+6/65*I,n=56 2971299116799135 r005 Re(z^2+c),c=-25/26+6/65*I,n=48 2971299117928068 r008 a(0)=3,K{-n^6,-58+14*n+49*n^2+30*n^3} 2971299118727751 m001 (Magata+Sarnak)/(BesselJ(1,1)-ln(2)/ln(10)) 2971299119099062 r005 Re(z^2+c),c=-25/26+6/65*I,n=44 2971299119273958 r002 46th iterates of z^2 + 2971299119755277 r005 Re(z^2+c),c=-25/26+6/65*I,n=46 2971299123444440 a007 Real Root Of -32*x^4-954*x^3-106*x^2-356*x-526 2971299123758912 r005 Re(z^2+c),c=-25/26+6/65*I,n=38 2971299126767967 a007 Real Root Of -877*x^4+688*x^3+596*x^2+615*x+155 2971299128673516 r008 a(0)=3,K{-n^6,-2+33*n^3+68*n^2-64*n} 2971299130442223 m001 (-MadelungNaCl+Stephens)/(2^(1/3)+FeigenbaumD) 2971299130948301 r005 Im(z^2+c),c=13/62+13/61*I,n=29 2971299143954284 r008 a(0)=3,K{-n^6,-42+60*n^3-33*n^2+50*n} 2971299149053749 r008 a(0)=3,K{-n^6,22-52*n+8*n^2+57*n^3} 2971299156036936 r008 a(0)=3,K{-n^6,6+71*n^3-42*n^2} 2971299157782493 r008 a(0)=3,K{-n^6,30+70*n^3-27*n^2-38*n} 2971299161338813 r008 a(0)=3,K{-n^6,56+72*n^3-20*n^2-73*n} 2971299169261326 m001 CareFree+ErdosBorwein+TwinPrimes 2971299170343332 a007 Real Root Of -247*x^4-452*x^3+802*x^2-151*x-134 2971299235872136 h001 (9/11*exp(1)+5/7)/(1/10*exp(2)+1/4) 2971299241326727 m005 (1/3*Pi-2/11)/(9/10*5^(1/2)+9/10) 2971299243010719 a001 1762289/9*11^(4/23) 2971299256425836 r005 Re(z^2+c),c=-13/34+3/34*I,n=31 2971299265607992 r002 5th iterates of z^2 + 2971299269528118 m005 (2*exp(1)-3/5)/(11/15+2/5*5^(1/2)) 2971299272831683 r005 Re(z^2+c),c=5/82+31/61*I,n=4 2971299286171341 m001 (5^(1/2))^Si(Pi)-Porter 2971299307851822 m001 (ln(gamma)+ln(Pi))/(Magata-OrthogonalArrays) 2971299315819998 h001 (1/3*exp(2)+3/11)/(1/10*exp(2)+2/11) 2971299320810769 m005 (1/3*5^(1/2)-2/3)/(3*gamma+11/12) 2971299328807959 m001 (gamma(1)+Zeta(1,2))/(Pi+sin(1/12*Pi)) 2971299333848264 a005 (1/sin(54/133*Pi))^1482 2971299348071228 r009 Re(z^3+c),c=-37/86+17/44*I,n=45 2971299352729637 m001 1/BesselK(1,1)^2/Artin*ln(Zeta(9))^2 2971299355293053 l006 ln(3055/4112) 2971299369286742 m001 (-ln(Pi)+Weierstrass)/(1-GAMMA(3/4)) 2971299379212990 r005 Re(z^2+c),c=-13/34+3/34*I,n=25 2971299380966465 m001 (GAMMA(2/3)-GAMMA(7/12))/(Gompertz-ZetaQ(3)) 2971299381599145 a007 Real Root Of 946*x^4+806*x^3-488*x^2-964*x+301 2971299384099803 m001 (BesselI(0,1)+Landau)/(-MertensB3+Sarnak) 2971299390369776 a007 Real Root Of 916*x^4-876*x^3-60*x^2-391*x-141 2971299396363210 b008 37*ExpIntegralEi[Khinchin] 2971299402696709 r005 Im(z^2+c),c=-33/118+22/47*I,n=32 2971299417369682 a007 Real Root Of 270*x^4+763*x^3+216*x^2+884*x-310 2971299423149111 b008 1-19*(-17+Sqrt[2]) 2971299430558427 m001 (arctan(1/2)-Niven)/(Pi+Zeta(5)) 2971299436699462 r009 Re(z^3+c),c=-8/21+19/63*I,n=18 2971299447385551 r005 Re(z^2+c),c=-25/26+6/65*I,n=36 2971299454648991 r008 a(0)=3,K{-n^6,-55+47*n-6*n^2+49*n^3} 2971299458767917 b008 -3+SphericalBesselJ[2,2/3] 2971299461484291 r008 a(0)=3,K{-n^6,-41+40*n-20*n^2+56*n^3} 2971299466923222 r008 a(0)=3,K{-n^6,-29+62*n^3-32*n^2+34*n} 2971299467766730 a007 Real Root Of 147*x^4+165*x^3-577*x^2+858*x+514 2971299472262688 a003 sin(Pi*6/59)*sin(Pi*47/119) 2971299477400920 a007 Real Root Of 594*x^4-867*x^3-740*x^2-572*x-132 2971299488370159 r005 Im(z^2+c),c=5/64+14/27*I,n=3 2971299488676480 r008 a(0)=3,K{-n^6,75+83*n^3-43*n^2-80*n} 2971299511261080 r009 Im(z^3+c),c=-23/56+13/63*I,n=29 2971299519921891 m001 FeigenbaumMu-LambertW(1)*GAMMA(11/12) 2971299520711099 m009 (6*Psi(1,2/3)+5/6)/(1/4*Pi^2+4) 2971299539788427 r009 Im(z^3+c),c=-19/78+17/59*I,n=15 2971299540096555 r005 Re(z^2+c),c=-13/34+3/34*I,n=29 2971299563228192 m001 (BesselI(1,1)+Sierpinski)^Otter 2971299572300941 a007 Real Root Of 51*x^4-212*x^3-743*x^2+948*x-160 2971299580020479 r008 a(0)=3,K{-n^6,3+22*n^3-71*n^2+82*n} 2971299601074578 m001 ln(Rabbit)^2*Kolakoski/Pi 2971299606206068 r005 Re(z^2+c),c=-1/62+23/29*I,n=15 2971299618695513 a005 (1/sin(64/169*Pi))^757 2971299640227742 r005 Re(z^2+c),c=-13/44+11/23*I,n=49 2971299645191788 a008 Real Root of (14+16*x-17*x^2-7*x^3) 2971299645649106 m001 (Robbin+ZetaQ(4))/(GAMMA(13/24)+Lehmer) 2971299652438300 a001 86267571272/199*322^(1/3) 2971299659809573 r005 Re(z^2+c),c=-7/10+11/68*I,n=17 2971299671113624 a007 Real Root Of 311*x^4+984*x^3+125*x^2-473*x-937 2971299672726707 r002 62i'th iterates of 2*x/(1-x^2) of 2971299672935707 m001 (-LaplaceLimit+Lehmer)/(BesselK(1,1)-Chi(1)) 2971299684543112 a007 Real Root Of -562*x^4+663*x^3-970*x^2+352*x+212 2971299692109221 m005 (1/2*2^(1/2)+6/7)/(-127/22+5/22*5^(1/2)) 2971299699349191 m001 OneNinth/Tribonacci*ln(BesselK(1,1)) 2971299705658724 r005 Re(z^2+c),c=-25/26+6/65*I,n=34 2971299713131320 k002 Champernowne real with 93*n^2-237*n+173 2971299735435497 m001 (2^(1/3)+sin(1))/(-Conway+Gompertz) 2971299736660801 p004 log(23167/1187) 2971299737270403 m001 (OneNinth+Stephens)/(ln(Pi)-exp(1/Pi)) 2971299738451485 l006 ln(6347/8543) 2971299751173529 h001 (5/11*exp(1)+7/8)/(1/5*exp(1)+1/6) 2971299754751263 r008 a(0)=3,K{-n^6,-62+28*n^3+54*n^2+15*n} 2971299757199411 r008 a(0)=3,K{-n^6,-58+13*n+50*n^2+30*n^3} 2971299767738889 r008 a(0)=3,K{-n^6,-2+33*n^3+69*n^2-65*n} 2971299769074661 r008 a(0)=3,K{-n^6,-34+40*n^3+32*n^2-3*n} 2971299771229196 s002 sum(A176444[n]/((pi^n+1)/n),n=1..infinity) 2971299772678847 a007 Real Root Of -122*x^4+26*x^3+877*x^2-816*x+24 2971299772956702 r008 a(0)=3,K{-n^6,-28-4*n+23*n^2+44*n^3} 2971299779321368 r009 Re(z^3+c),c=-13/21+25/48*I,n=42 2971299780223423 r008 a(0)=3,K{-n^6,-4+50*n^3+17*n^2-28*n} 2971299780257377 a007 Real Root Of 27*x^4-59*x^3-679*x^2-996*x-617 2971299781147274 r008 a(0)=3,K{-n^6,-38+37*n-21*n^2+57*n^3} 2971299783406681 r008 a(0)=3,K{-n^6,6-37*n+13*n^2+53*n^3} 2971299783852348 r008 a(0)=3,K{-n^6,-20+12*n-15*n^2+58*n^3} 2971299783923774 r009 Re(z^3+c),c=-27/98+41/58*I,n=13 2971299784514971 r008 a(0)=3,K{-n^6,-26+25*n-24*n^2+60*n^3} 2971299786038063 r008 a(0)=3,K{-n^6,12-40*n+7*n^2+56*n^3} 2971299787429927 a001 17/161*969323029^(1/20) 2971299788167888 r008 a(0)=3,K{-n^6,-52+70*n^3-67*n^2+84*n} 2971299793020867 a007 Real Root Of -265*x^4-562*x^3+740*x^2+365*x+464 2971299795561759 r008 a(0)=3,K{-n^6,28+69*n^3-24*n^2-38*n} 2971299797069198 r008 a(0)=3,K{-n^6,32+71*n^3-28*n^2-40*n} 2971299798868981 r005 Im(z^2+c),c=-29/122+37/59*I,n=51 2971299799814040 r008 a(0)=3,K{-n^6,56+72*n^3-19*n^2-74*n} 2971299801268839 r005 Im(z^2+c),c=-5/29+11/26*I,n=15 2971299806980602 r008 a(0)=3,K{-n^6,74+83*n^3-43*n^2-79*n} 2971299814804771 r009 Im(z^3+c),c=-6/13+7/41*I,n=16 2971299819360963 m001 (-BesselK(1,1)+Kolakoski)/(GAMMA(3/4)-gamma) 2971299820468922 r005 Im(z^2+c),c=-6/31+33/58*I,n=8 2971299836164256 m001 1/exp(GAMMA(1/6))^2*MertensB1*log(1+sqrt(2))^2 2971299840212020 r008 a(0)=3,K{-n^6,34+11*n-19*n^2+10*n^3} 2971299858211676 a007 Real Root Of -315*x^4-596*x^3+796*x^2-683*x-139 2971299861624799 a007 Real Root Of -181*x^4-730*x^3-155*x^2+930*x-910 2971299861684103 r005 Re(z^2+c),c=-13/34+3/34*I,n=27 2971299862843946 a007 Real Root Of -331*x^4+942*x^3+484*x^2+788*x-299 2971299863303317 r005 Re(z^2+c),c=-2/11+27/52*I,n=8 2971299871118608 r005 Im(z^2+c),c=7/23+2/29*I,n=16 2971299874400373 a007 Real Root Of 150*x^4+63*x^3-820*x^2+677*x-788 2971299876671934 a007 Real Root Of -505*x^4-538*x^3-31*x^2+632*x-167 2971299881437622 m001 1/Champernowne^2*ln(Artin)^2/MinimumGamma^2 2971299895783354 r005 Re(z^2+c),c=-41/122+17/48*I,n=41 2971299900269196 m001 (LandauRamanujan+1)/(-Zeta(1,2)+5) 2971299912883751 r005 Re(z^2+c),c=-47/122+1/48*I,n=24 2971299914646599 s002 sum(A200426[n]/(n^3*exp(n)-1),n=1..infinity) 2971299924956546 r005 Im(z^2+c),c=-13/18+20/39*I,n=4 2971299925121480 h005 exp(cos(Pi*9/43)+cos(Pi*21/52)) 2971299930753224 r005 Re(z^2+c),c=-11/40+33/62*I,n=55 2971299932388749 a007 Real Root Of 724*x^4-164*x^3+564*x^2-650*x+142 2971299943725379 q001 528/1777 2971299950653388 r005 Im(z^2+c),c=-67/106+23/60*I,n=13 2971299953739985 m001 (1+Riemann3rdZero)/(Trott+ZetaP(4)) 2971299958915804 a007 Real Root Of -692*x^4+488*x^3-658*x^2+588*x+251 2971299959751914 a007 Real Root Of 248*x^4+790*x^3+348*x^2+803*x+707 2971299983303998 r005 Re(z^2+c),c=27/110+5/64*I,n=16 2971299985417274 r005 Im(z^2+c),c=-25/98+19/49*I,n=4 2971299991891355 a007 Real Root Of 170*x^4+313*x^3-683*x^2-483*x-445 2971299992161279 s002 sum(A066995[n]/(n!^2),n=1..infinity)