3141500001640877 s004 Continued Fraction of A277171 3141500001640877 s004 Continued fraction of A277171 3141500033621141 a001 34/199*1322157322203^(15/22) 3141500041229682 b008 E*CosIntegral[(5*Pi)/22] 3141500044975830 r005 Re(z^2+c),c=-17/44+9/52*I,n=6 3141500048087460 b008 3*Sqrt[2]*JacobiCN[1,2] 3141500060483350 r005 Re(z^2+c),c=-53/42+3/53*I,n=6 3141500062197598 m002 -Pi^5+4*Pi^2*Csch[Pi]-Sinh[Pi] 3141500068598718 k001 Champernowne real with 1859*n+1282 3141500072991998 p004 log(36073/1559) 3141500084847462 p001 sum((-1)^n/(526*n+287)/(3^n),n=0..infinity) 3141500088255561 r005 Re(z^2+c),c=9/50+17/47*I,n=24 3141500089696866 m001 (Zeta(1/2)-ln(2)*MertensB2)/ln(2) 3141500098854090 m005 (1/2*exp(1)-2)/(3/7*exp(1)+7/8) 3141500102279181 m001 (sin(1/5*Pi)+FeigenbaumC)/(Grothendieck-Niven) 3141500108018812 k002 Champernowne real with 221/2*n^2-387/2*n+86 3141500109459545 r005 Im(z^2+c),c=-14/25+13/27*I,n=41 3141500110217310 a007 Real Root Of 92*x^4+108*x^3-544*x^2+300*x+699 3141500125716496 a001 89/76*4106118243^(17/22) 3141500154095658 r005 Im(z^2+c),c=-11/86+20/37*I,n=9 3141500156335023 r005 Re(z^2+c),c=-11/32+23/42*I,n=40 3141500161141116 m001 1/exp(GAMMA(1/4))^2*LaplaceLimit^2*Zeta(7) 3141500165923418 l006 ln(4763/6521) 3141500168618721 k001 Champernowne real with 1860*n+1281 3141500172270021 m001 MertensB2*PrimesInBinary^GAMMA(2/3) 3141500173552376 a007 Real Root Of 254*x^4+911*x^3+x^2-999*x+357 3141500175763823 m008 (5*Pi^6+3)/(5*Pi^5+1) 3141500179234930 m001 (Psi(2,1/3)+Zeta(3))/(-RenyiParking+Stephens) 3141500184243984 r005 Im(z^2+c),c=-6/23+26/53*I,n=57 3141500186554120 m001 (ln(2+3^(1/2))+Artin)/(Champernowne-Robbin) 3141500190889060 m001 (ln(gamma)+gamma(1))/(KhinchinLevy+Kolakoski) 3141500201608999 r005 Re(z^2+c),c=23/82+5/52*I,n=22 3141500202676930 b008 CosIntegral[9+Sin[1]] 3141500212637662 m005 (1/2*5^(1/2)-5/7)/(4*Pi+2/7) 3141500215505756 m005 (1/2*5^(1/2)+7/12)/(71/16+7/16*5^(1/2)) 3141500231264344 r005 Im(z^2+c),c=-41/114+22/41*I,n=37 3141500235567278 a007 Real Root Of -740*x^4+585*x^3-502*x^2+220*x+144 3141500236658699 r002 4th iterates of z^2 + 3141500236843062 m001 1/Kolakoski*ln(ArtinRank2)*FeigenbaumB^2 3141500239989361 l006 ln(166/3841) 3141500241076198 a007 Real Root Of 720*x^4-732*x^3+875*x^2-872*x-390 3141500242368311 a007 Real Root Of -191*x^4-774*x^3-223*x^2+947*x-218 3141500248365636 r005 Re(z^2+c),c=-33/94+17/42*I,n=46 3141500254248222 r004 Im(z^2+c),c=1/3-3/19*I,z(0)=exp(3/8*I*Pi),n=18 3141500268638724 k001 Champernowne real with 1861*n+1280 3141500274141395 m001 (Zeta(3)+exp(1/Pi))/(DuboisRaymond+Kac) 3141500274440256 m002 Pi-Log[Pi]/E^(3*Pi) 3141500274644542 l004 Chi(766/91) 3141500284494485 m001 (Pi+ln(2)/ln(10))*(ln(2)+Ei(1,1)) 3141500295294266 r005 Im(z^2+c),c=-1/25+23/58*I,n=9 3141500295410596 a007 Real Root Of -303*x^4+320*x^3+611*x^2+935*x-361 3141500323489303 m001 (BesselK(0,1)-ln(3))/(-Cahen+Thue) 3141500330291542 r009 Im(z^3+c),c=-9/86+20/59*I,n=7 3141500337050511 m001 1/ArtinRank2/ln(Bloch)^2/cos(Pi/5) 3141500343293637 r005 Im(z^2+c),c=-13/98+17/39*I,n=34 3141500345090184 s001 sum(exp(-3*Pi/4)^n*A242715[n],n=1..infinity) 3141500350451210 a007 Real Root Of 860*x^4+41*x^3+458*x^2-703*x+166 3141500364919361 m001 (Shi(1)+Artin)/(Pi+2^(1/2)) 3141500367460003 r005 Re(z^2+c),c=-3/7+5/19*I,n=2 3141500368658727 k001 Champernowne real with 1862*n+1279 3141500379796742 b008 7/4+Tan[Sqrt[Pi]] 3141500380963573 r005 Re(z^2+c),c=-19/52+25/44*I,n=56 3141500384078053 m005 (1/2*5^(1/2)-1/11)/(11/12*exp(1)+7/9) 3141500387417506 r009 Re(z^3+c),c=-37/90+13/24*I,n=6 3141500396629669 a007 Real Root Of -312*x^4-757*x^3+641*x^2-172*x+52 3141500399300988 a007 Real Root Of -244*x^4+336*x^3-972*x^2+889*x+388 3141500411807265 a007 Real Root Of 298*x^4+793*x^3-540*x^2+10*x+922 3141500412791237 r005 Re(z^2+c),c=-23/102+38/63*I,n=44 3141500414749818 r005 Re(z^2+c),c=-19/46+1/51*I,n=14 3141500418252775 a007 Real Root Of -97*x^4-270*x^3+30*x^2-336*x-275 3141500419536981 m005 (3*Pi+1/3)/(3/4*Pi+3/4) 3141500419536981 m006 (1/3/Pi+3)/(3/4/Pi+3/4) 3141500419536981 m008 (3*Pi+1/3)/(3/4*Pi+3/4) 3141500420997788 l006 ln(6012/8231) 3141500421133783 a007 Real Root Of -237*x^4-369*x^3+875*x^2-972*x-46 3141500428584933 m005 (1/2*exp(1)-10/11)/(7/12*Pi-2/5) 3141500445811746 b008 Pi*ModularLambda[I/5*2^(1/4)] 3141500450210493 m001 (Magata-OneNinth)/(GAMMA(19/24)-Champernowne) 3141500450354928 r005 Re(z^2+c),c=2/13+26/57*I,n=34 3141500451382655 m002 E^Pi/Log[Pi]+Cosh[Pi]/Log[Pi]+ProductLog[Pi] 3141500459123945 a007 Real Root Of -967*x^4-820*x^3-811*x^2+245*x+141 3141500468678730 k001 Champernowne real with 1863*n+1278 3141500471854427 b008 Gamma[17/2,29] 3141500474608981 r005 Re(z^2+c),c=25/82+3/31*I,n=18 3141500475577885 r009 Im(z^3+c),c=-107/122+2/21*I,n=2 3141500478666515 m005 (1/2*Catalan-2/5)/(9/11*3^(1/2)+3/7) 3141500496201288 m001 1/CareFree^2*Champernowne*ln(log(1+sqrt(2))) 3141500498811278 a005 (1/cos(71/235*Pi))^66 3141500500314593 a007 Real Root Of 206*x^4+272*x^3-989*x^2+378*x-683 3141500511521953 l004 Shi(766/91) 3141500511828859 a001 123/17711*28657^(5/34) 3141500514335284 m009 (6*Psi(1,3/4)+1/3)/(3/10*Pi^2+2) 3141500515096787 m001 (HardHexagonsEntropy+ZetaQ(2))/(exp(1)+Ei(1)) 3141500521450739 a007 Real Root Of 300*x^4-363*x^3-553*x^2-586*x+247 3141500521646854 m001 HardyLittlewoodC5^Shi(1)/(GAMMA(3/4)^Shi(1)) 3141500522411685 r009 Im(z^3+c),c=-31/66+7/39*I,n=51 3141500529333355 m001 Si(Pi)+ln(2+3^(1/2))-Trott2nd 3141500532597885 r005 Im(z^2+c),c=1/5+12/49*I,n=11 3141500540469339 m001 (Gompertz-exp(1/exp(1))*Paris)/exp(1/exp(1)) 3141500550144802 m001 (3^(1/3)-Psi(2,1/3))/(cos(1/12*Pi)+GaussAGM) 3141500558451226 a001 1/966*(1/2*5^(1/2)+1/2)^6*3^(11/23) 3141500568698733 k001 Champernowne real with 1864*n+1277 3141500570265148 m001 (GAMMA(2/3)-Si(Pi))/(ln(Pi)+TreeGrowth2nd) 3141500572848431 m001 ln(Khintchine)^2*ArtinRank2^2*Robbin 3141500575755459 r005 Re(z^2+c),c=-1/3+28/61*I,n=54 3141500577615026 m005 (1/3*Zeta(3)-1/7)/(7/10*gamma+5/12) 3141500587860614 m002 -Pi+1/(Pi^8*Log[Pi]) 3141500588318983 l006 ln(7261/9941) 3141500590381076 h001 (-6*exp(-3)-7)/(-5*exp(-2)+3) 3141500609452039 a007 Real Root Of 495*x^4-523*x^3-679*x^2-664*x+287 3141500646163114 h001 (-5*exp(1/3)-4)/(-5*exp(2)+2) 3141500653974779 m001 1/ln(GAMMA(1/6))*Ei(1)^2*GAMMA(3/4)^2 3141500657668277 a001 233/11*2^(29/51) 3141500663346390 a001 843/139583862445*317811^(6/7) 3141500663351729 a001 843/2504730781961*9227465^(6/7) 3141500667846513 a001 843/7778742049*10946^(6/7) 3141500668718736 k001 Champernowne real with 1865*n+1276 3141500690423649 r005 Re(z^2+c),c=43/122+4/21*I,n=27 3141500691347562 a007 Real Root Of -277*x^4-808*x^3-100*x^2-913*x+47 3141500695474630 r005 Re(z^2+c),c=-19/50+18/61*I,n=41 3141500697201193 m001 FeigenbaumKappa/FeigenbaumC*ln(GAMMA(7/12)) 3141500698089731 s002 sum(A062258[n]/(n^2*pi^n+1),n=1..infinity) 3141500705960936 a007 Real Root Of 254*x^4-505*x^3+46*x^2-730*x-252 3141500708117882 a007 Real Root Of 28*x^4+892*x^3+392*x^2+106*x+282 3141500713272406 m001 (ln(5)+ln(2+3^(1/2)))/(exp(-1/2*Pi)+Sarnak) 3141500714053211 r002 13th iterates of z^2 + 3141500723205437 r005 Im(z^2+c),c=-17/30+5/88*I,n=53 3141500730144637 m005 (1/2*3^(1/2)-3)/(2/11*5^(1/2)+3/11) 3141500735338822 a001 4181/18*2207^(2/51) 3141500746453134 r005 Re(z^2+c),c=23/86+5/59*I,n=51 3141500755656661 r004 Im(z^2+c),c=1/26+7/20*I,z(0)=I,n=25 3141500759062244 a007 Real Root Of -453*x^4-948*x^3-812*x^2+738*x+287 3141500761844180 r005 Re(z^2+c),c=-11/31+9/22*I,n=16 3141500765469028 m001 (Rabbit+ZetaP(4))/(exp(1/Pi)+GAMMA(5/6)) 3141500768738739 k001 Champernowne real with 1866*n+1275 3141500772261391 r005 Re(z^2+c),c=-5/6+39/205*I,n=44 3141500774673484 r009 Im(z^3+c),c=-23/52+8/39*I,n=44 3141500776827152 m001 (GAMMA(17/24)+MertensB2)/(Robbin+ZetaP(4)) 3141500777000233 r005 Re(z^2+c),c=23/86+5/59*I,n=42 3141500782233515 a007 Real Root Of 2*x^4+631*x^3+851*x^2+892*x-447 3141500803841920 m002 -18+Pi^2-Pi^5 3141500811140888 r005 Re(z^2+c),c=-23/56+3/40*I,n=24 3141500840652569 a007 Real Root Of 338*x^4+913*x^3-709*x^2-763*x-14 3141500841256773 l006 ln(433/10019) 3141500845053423 m001 (Landau+PlouffeB)/(Backhouse+KomornikLoreti) 3141500847953620 b008 -1/27*1/E^6+Pi 3141500848968996 m005 (1/2*gamma+7/9)/(gamma-11/12) 3141500858812586 a007 Real Root Of -231*x^4-491*x^3+199*x^2+808*x-256 3141500864857441 a007 Real Root Of -905*x^4+30*x^3-19*x^2+988*x+322 3141500868758742 k001 Champernowne real with 1867*n+1274 3141500883572825 m001 (2^(1/3)-GAMMA(17/24))/(-MinimumGamma+Robbin) 3141500888994017 a003 sin(Pi*2/99)*sin(Pi*16/97) 3141500893143853 m001 Kolakoski^Conway/(ZetaQ(4)^Conway) 3141500905278072 a007 Real Root Of -159*x^4-223*x^3+678*x^2-454*x+455 3141500913527646 m001 (Otter+Trott2nd)/(OneNinth-Shi(1)) 3141500917556094 r002 13th iterates of z^2 + 3141500931074635 m002 -Pi+Tanh[Pi]/(Pi^8*Log[Pi]) 3141500936675334 m002 2+Pi+Pi^5+3*Tanh[Pi] 3141500938764991 m001 (Kolakoski+Trott2nd)/(2^(1/2)+Zeta(3)) 3141500947076740 a003 cos(Pi*31/77)/sin(Pi*29/71) 3141500951606588 a003 sin(Pi*3/56)/cos(Pi*26/81) 3141500957624376 r005 Im(z^2+c),c=-23/78+20/39*I,n=29 3141500965621729 a007 Real Root Of 28*x^4-778*x^3-66*x^2-349*x+140 3141500968771635 m001 1/TreeGrowth2nd^2/MertensB1*exp(arctan(1/2)) 3141500968778745 k001 Champernowne real with 1868*n+1273 3141500972073636 r002 5th iterates of z^2 + 3141500974680145 m003 -7/2+(5*Sqrt[5])/8-1/(2*Log[1/2+Sqrt[5]/2]) 3141500985547025 m005 (1/20+1/4*5^(1/2))/(11/12*5^(1/2)-1/9) 3141500991724209 a007 Real Root Of 126*x^4+288*x^3-304*x^2+388*x+876 3141500993996655 m005 (1/2*Pi+5/6)/(7/12*gamma+3/7) 3141500994239009 r005 Im(z^2+c),c=-7/10+45/209*I,n=22 3141500996092568 r005 Re(z^2+c),c=-19/50+18/61*I,n=39 3141501000074900 m001 (Khinchin+ThueMorse)/(1-ln(3)) 3141501004254775 r009 Re(z^3+c),c=-23/56+17/55*I,n=19 3141501010349441 a001 13201*196418^(22/49) 3141501023494714 m005 (5*Pi+3/5)/(2/5*gamma-3/4) 3141501029642583 r009 Re(z^3+c),c=-15/34+24/53*I,n=13 3141501032238989 m001 (2^(1/2)+polylog(4,1/2))/(-Kac+Trott) 3141501035132306 m001 (Champernowne+Stephens)/(5^(1/2)+gamma(2)) 3141501036176496 r005 Im(z^2+c),c=-1/90+23/61*I,n=17 3141501037499807 r005 Im(z^2+c),c=-61/58+13/42*I,n=7 3141501038267576 q001 1059/3371 3141501045398243 m004 -10000*Pi+Tan[Sqrt[5]*Pi] 3141501048817385 a001 521/2*121393^(20/33) 3141501054310456 r005 Re(z^2+c),c=-10/21+18/41*I,n=15 3141501057186145 r005 Re(z^2+c),c=25/114+1/64*I,n=6 3141501057667393 m001 gamma(2)^(3^(1/3)*polylog(4,1/2)) 3141501060695520 r005 Re(z^2+c),c=-5/9+25/59*I,n=31 3141501065979018 r002 5th iterates of z^2 + 3141501068798748 k001 Champernowne real with 1869*n+1272 3141501072039188 m005 (1/2*5^(1/2)-3)/(1/9*Pi+1/4) 3141501078092452 m001 BesselK(1,1)/(Tribonacci+ZetaP(4)) 3141501079406276 r009 Re(z^3+c),c=-37/86+18/53*I,n=31 3141501079576780 b008 31*Coth[Sqrt[2*Pi]] 3141501081402342 r005 Im(z^2+c),c=-31/42+1/62*I,n=58 3141501083195943 g004 Im(GAMMA(2/3+I*21/20)) 3141501089116924 m001 1/ln(GAMMA(17/24))*Conway^2*arctan(1/2) 3141501098544210 a007 Real Root Of -493*x^4+881*x^3-151*x^2+918*x-296 3141501099122898 r009 Im(z^3+c),c=-11/26+7/24*I,n=4 3141501103011594 r005 Im(z^2+c),c=-23/118+13/24*I,n=6 3141501106980801 m008 (2/3*Pi-3/5)/(1/2*Pi^6-5) 3141501108318872 k002 Champernowne real with 111*n^2-195*n+87 3141501108466562 m001 1/ln(Catalan)^2*FeigenbaumAlpha^2/sin(Pi/12) 3141501110635485 r005 Im(z^2+c),c=23/94+20/41*I,n=24 3141501111711111 k008 concat of cont frac of 3141501114214332 k007 concat of cont frac of 3141501115721131 k006 concat of cont frac of 3141501121151700 r002 35th iterates of z^2 + 3141501127211457 m001 (GAMMA(17/24)+Salem)/(ZetaP(4)+ZetaQ(4)) 3141501132634167 r005 Re(z^2+c),c=-9/22+3/31*I,n=16 3141501134487716 r009 Re(z^3+c),c=-25/56+9/17*I,n=53 3141501137406902 a007 Real Root Of -724*x^4-597*x^3+847*x^2+853*x-326 3141501148215262 m001 Zeta(9)^2/Paris/exp(sin(Pi/5))^2 3141501158333958 a007 Real Root Of -436*x^4-953*x^3+960*x^2-818*x+875 3141501161186778 m001 Pi-Trott2nd^Sierpinski 3141501167611478 m001 (gamma(1)-Khinchin)/(Paris-Trott) 3141501168818751 k001 Champernowne real with 1870*n+1271 3141501211151165 k007 concat of cont frac of 3141501215078277 l006 ln(267/6178) 3141501218825665 r005 Re(z^2+c),c=-39/110+11/28*I,n=34 3141501219268784 r005 Im(z^2+c),c=-37/90+6/11*I,n=26 3141501229517042 m005 (1/2*gamma+1)/(11/12*Zeta(3)+3) 3141501235798863 m002 -(E^Pi/Pi^2)+Pi^5-ProductLog[Pi]+Sinh[Pi] 3141501240986610 r009 Re(z^3+c),c=-51/118+12/35*I,n=40 3141501244485913 r009 Re(z^3+c),c=-10/19+25/51*I,n=50 3141501251715111 k007 concat of cont frac of 3141501253058123 m001 Pi-ZetaQ(3)^ReciprocalLucas 3141501256491579 m001 ZetaQ(4)/(Zeta(1,2)+ThueMorse) 3141501262157441 m005 (1/2*3^(1/2)+7/8)/(1/2*Catalan-6) 3141501262343425 a005 (1/cos(57/164*Pi))^52 3141501268838754 k001 Champernowne real with 1871*n+1270 3141501270753666 a007 Real Root Of -904*x^4+930*x^3+238*x^2+894*x+295 3141501270948946 r005 Re(z^2+c),c=9/86+24/61*I,n=33 3141501275450727 l006 ln(8711/8989) 3141501278222997 a007 Real Root Of -759*x^4-82*x^3+241*x^2+907*x+266 3141501282121715 k009 concat of cont frac of 3141501287237320 r005 Re(z^2+c),c=-23/66+19/46*I,n=50 3141501297016872 m001 (ln(2)+Cahen)/(FeigenbaumDelta-PrimesInBinary) 3141501303325027 a008 Real Root of x^5-x^4-14*x^3+18*x^2+20*x-15 3141501307610069 h001 (6/7*exp(1)+8/9)/(1/10*exp(2)+2/7) 3141501318738441 m001 (Bloch-Psi(1,1/3))/(OneNinth+Otter) 3141501321680153 a001 47/233*4807526976^(11/13) 3141501326159772 r005 Re(z^2+c),c=-23/30+5/81*I,n=38 3141501327687287 r005 Re(z^2+c),c=-17/52+8/17*I,n=18 3141501333272640 m002 Pi^5+30*Pi*Sech[Pi] 3141501341678886 m001 1/LandauRamanujan*MertensB1^2/ln(Niven)^2 3141501345228110 k006 concat of cont frac of 3141501346287434 a007 Real Root Of 133*x^4-360*x^3+808*x^2-410*x-221 3141501355539161 b008 -4+Cos[7/13] 3141501360967792 r005 Im(z^2+c),c=3/106+11/18*I,n=36 3141501365195649 r009 Re(z^3+c),c=-31/70+23/64*I,n=37 3141501368858757 k001 Champernowne real with 1872*n+1269 3141501388208895 m001 1/ln(arctan(1/2))^2*Riemann2ndZero^2/cosh(1)^2 3141501393640649 m004 -10*Pi+Csch[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 3141501393711278 l006 ln(1249/1710) 3141501393712860 m004 -10*Pi+2/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141501393785071 m004 -10*Pi+Sech[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 3141501394493021 m001 (-Sarnak+StronglyCareFree)/(1+LaplaceLimit) 3141501396012772 r005 Im(z^2+c),c=17/66+11/58*I,n=39 3141501410647609 m005 (1/2+1/6*5^(1/2))/(2/7*5^(1/2)-11/12) 3141501415224102 k008 concat of cont frac of 3141501415864665 a007 Real Root Of -137*x^4+968*x^3-647*x^2+410*x+224 3141501424633242 r005 Re(z^2+c),c=-15/31+5/17*I,n=7 3141501434841867 a007 Real Root Of -340*x^4-709*x^3+960*x^2-519*x+29 3141501440225803 m001 Salem*ln(FibonacciFactorial)/BesselJ(0,1) 3141501440852016 m005 (1/3*5^(1/2)-2/9)/(5/6*exp(1)-3/5) 3141501447590562 r005 Re(z^2+c),c=-7/82+33/53*I,n=17 3141501454370838 r005 Re(z^2+c),c=-7/11+18/47*I,n=39 3141501457671965 r005 Im(z^2+c),c=-125/126+13/48*I,n=51 3141501465006270 r005 Im(z^2+c),c=-17/70+29/60*I,n=44 3141501465393237 b008 -1/10*1/E^7+Pi 3141501468878760 k001 Champernowne real with 1873*n+1268 3141501481831121 k008 concat of cont frac of 3141501485247861 r005 Re(z^2+c),c=-15/38+5/23*I,n=17 3141501493358344 m005 (1/2*Catalan-7/11)/(2/5*3^(1/2)-1/8) 3141501506833088 b008 Pi*LogGamma[27*Sqrt[2]] 3141501508515527 m005 (1/3*2^(1/2)-1/11)/(2/9*5^(1/2)+5/7) 3141501518317944 k008 concat of cont frac of 3141501567135075 h001 (2/5*exp(2)+3/4)/(1/4*exp(1)+1/2) 3141501568898763 k001 Champernowne real with 1874*n+1267 3141501574497390 a007 Real Root Of 571*x^4-796*x^3+340*x^2-806*x-317 3141501586803373 m005 (1/2*exp(1)+4/5)/(5/11*3^(1/2)-1/10) 3141501591551131 k006 concat of cont frac of 3141501612529179 a001 610/7*4^(37/40) 3141501623500106 r005 Re(z^2+c),c=-41/32+7/54*I,n=6 3141501631585681 m005 (1/2*5^(1/2)-4/7)/(7/10*2^(1/2)+3/4) 3141501635876452 a007 Real Root Of 258*x^4+796*x^3+23*x^2+486*x+850 3141501637329271 r005 Im(z^2+c),c=-109/90+1/6*I,n=34 3141501640376036 r005 Re(z^2+c),c=-21/58+11/30*I,n=31 3141501640992870 a003 sin(Pi*5/112)/sin(Pi*16/109) 3141501646123188 r009 Re(z^3+c),c=-59/98+25/47*I,n=53 3141501654927857 l006 ln(368/8515) 3141501658654896 r002 32th iterates of z^2 + 3141501668918766 k001 Champernowne real with 1875*n+1266 3141501702655034 a007 Real Root Of -338*x^4-706*x^3+945*x^2-542*x+3 3141501729856757 m001 BesselI(1,2)^FeigenbaumAlpha-ZetaQ(2) 3141501734595113 r002 22th iterates of z^2 + 3141501740629646 r009 Re(z^3+c),c=-29/118+49/53*I,n=11 3141501749863729 m001 (QuadraticClass-ln(Pi))/Chi(1) 3141501755631992 r009 Im(z^3+c),c=-3/7+8/37*I,n=21 3141501768916058 m005 (-1/2+1/4*5^(1/2))/(5/9*5^(1/2)+7/11) 3141501768938769 k001 Champernowne real with 1876*n+1265 3141501770579687 r009 Im(z^3+c),c=-15/32+3/44*I,n=27 3141501771111611 r005 Re(z^2+c),c=-17/60+11/23*I,n=5 3141501777705793 r005 Im(z^2+c),c=-31/102+19/45*I,n=6 3141501788874277 m001 (gamma(3)+CareFree)/(Porter+Riemann2ndZero) 3141501792143944 r005 Re(z^2+c),c=-2/3+35/107*I,n=20 3141501800727712 a007 Real Root Of 138*x^4+339*x^3-168*x^2+337*x-214 3141501802634389 r005 Im(z^2+c),c=-7/94+17/29*I,n=12 3141501805549934 m002 -2-Pi^3+ProductLog[Pi]+6*Sech[Pi] 3141501807315695 r005 Im(z^2+c),c=15/62+29/50*I,n=8 3141501823679347 m001 1/2*GAMMA(3/4)/Pi*3^(1/2)*GAMMA(2/3)/Backhouse 3141501823679347 m001 GAMMA(3/4)/GAMMA(1/3)/Backhouse 3141501824795548 r005 Im(z^2+c),c=-9/10+19/74*I,n=7 3141501844647996 a008 Real Root of x^4-x^3+10*x^2-43*x-30 3141501853461919 m001 1/ln(Robbin)*Niven/GAMMA(1/4)^2 3141501853730268 b008 -2/E^10+Pi 3141501857385810 m009 (6*Psi(1,2/3)+3/5)/(1/2*Psi(1,3/4)-2/3) 3141501859943481 b008 21*ExpIntegralEi[12] 3141501862614130 m008 (4*Pi^5+3/4)/(4*Pi^4+1/4) 3141501863727636 r005 Re(z^2+c),c=-11/31+20/51*I,n=53 3141501864169022 r005 Re(z^2+c),c=-9/25+25/62*I,n=18 3141501868958772 k001 Champernowne real with 1877*n+1264 3141501872556780 r005 Re(z^2+c),c=-4/17+27/44*I,n=21 3141501882089407 r005 Re(z^2+c),c=-17/46+21/62*I,n=38 3141501882377486 m002 -1/(36*Pi^5)+Pi 3141501884739061 a007 Real Root Of 371*x^4-282*x^3+228*x^2-427*x-169 3141501888014517 a007 Real Root Of 326*x^4+896*x^3-389*x^2+109*x+209 3141501891037716 r009 Re(z^3+c),c=-29/60+9/20*I,n=55 3141501891144774 r005 Im(z^2+c),c=-9/16+41/98*I,n=13 3141501895580794 m001 Riemann3rdZero/(ArtinRank2+Paris) 3141501897928992 m001 1/exp(LandauRamanujan)/Bloch/Pi 3141501902014996 r002 38th iterates of z^2 + 3141501902787310 r005 Re(z^2+c),c=-25/82+17/29*I,n=46 3141501907436694 a003 cos(Pi*7/27)-cos(Pi*39/103) 3141501911884762 p001 sum((-1)^n/(395*n+314)/(32^n),n=0..infinity) 3141501914335334 r005 Im(z^2+c),c=-37/118+22/43*I,n=58 3141501920380058 m005 (1/3*3^(1/2)+1/4)/(2/5*Catalan-3) 3141501937378516 r009 Im(z^3+c),c=-11/26+23/48*I,n=3 3141501939311380 m001 (FeigenbaumC+Lehmer)/(Chi(1)-ln(5)) 3141501947966887 m005 (1/2*3^(1/2)+4/5)/(-43/60+1/12*5^(1/2)) 3141501948439887 m001 (Ei(1)+LandauRamanujan*Robbin)/LandauRamanujan 3141501955309723 b008 Pi-(3*Erfc[E])/4 3141501956213015 s002 sum(A050665[n]/((10^n+1)/n),n=1..infinity) 3141501968978775 k001 Champernowne real with 1878*n+1263 3141501977561545 r005 Re(z^2+c),c=-8/23+22/53*I,n=42 3141501987522216 r005 Im(z^2+c),c=17/66+11/58*I,n=37 3141501996238647 r002 30th iterates of z^2 + 3141502000716590 a007 Real Root Of -335*x^4-879*x^3+609*x^2+227*x+79 3141502003789114 r002 20th iterates of z^2 + 3141502032370121 r009 Im(z^3+c),c=-31/70+1/16*I,n=6 3141502032492402 a007 Real Root Of -81*x^4+83*x^3+784*x^2-906*x-121 3141502032727662 r005 Re(z^2+c),c=37/114+30/59*I,n=53 3141502044476485 m001 (-gamma(3)+AlladiGrinstead)/(3^(1/2)+Chi(1)) 3141502049984454 a007 Real Root Of 323*x^4+898*x^3-138*x^2+794*x+238 3141502054684094 r005 Im(z^2+c),c=-19/31+1/60*I,n=6 3141502057191577 a007 Real Root Of 270*x^4-865*x^3-97*x^2-416*x-13 3141502058775581 r009 Re(z^3+c),c=-10/17+15/29*I,n=35 3141502068998778 k001 Champernowne real with 1879*n+1262 3141502090686459 r005 Im(z^2+c),c=-5/23+26/55*I,n=53 3141502091531775 m003 -3+6*Cos[1/2+Sqrt[5]/2]-3*Cot[1/2+Sqrt[5]/2] 3141502096098996 m001 LandauRamanujan/exp(Backhouse)^2/GAMMA(1/12)^2 3141502108618932 k002 Champernowne real with 223/2*n^2-393/2*n+88 3141502112121512 k007 concat of cont frac of 3141502121088462 a007 Real Root Of 191*x^4+378*x^3-497*x^2+627*x-9 3141502123069587 r005 Im(z^2+c),c=-5/6+23/108*I,n=21 3141502123211261 k007 concat of cont frac of 3141502129153716 m001 (ThueMorse-ZetaQ(3))/GAMMA(17/24) 3141502134779382 a003 cos(Pi*4/79)/cos(Pi*45/113) 3141502134883011 a001 843/4181*21^(46/51) 3141502141193169 m001 GAMMA(1/3)^2/exp((2^(1/3)))*cosh(1) 3141502143141014 k007 concat of cont frac of 3141502145179209 m001 Pi-ZetaP(4)^(Pi*2^(1/2)/GAMMA(3/4)) 3141502150731382 a005 (1/cos(11/140*Pi))^112 3141502151112131 k007 concat of cont frac of 3141502158450023 r005 Im(z^2+c),c=-2/3+58/217*I,n=16 3141502167551677 a007 Real Root Of -675*x^4-938*x^3-743*x^2+147*x+97 3141502169018781 k001 Champernowne real with 1880*n+1261 3141502173684948 r009 Re(z^3+c),c=-9/16+14/39*I,n=21 3141502177201683 p003 LerchPhi(1/125,6,188/155) 3141502177283225 a008 Real Root of x^4-10*x^2-5*x+17 3141502182835203 r009 Re(z^3+c),c=-29/60+18/43*I,n=23 3141502188824394 r005 Im(z^2+c),c=-43/122+32/59*I,n=55 3141502206576356 h001 (3/4*exp(2)+3/4)/(7/10*exp(1)+1/10) 3141502210133917 m001 HeathBrownMoroz^OrthogonalArrays-Pi 3141502211609251 r009 Im(z^3+c),c=-1/20+11/32*I,n=9 3141502220765647 m002 -Pi+Tanh[Pi]/(36*Pi^5) 3141502221312545 k006 concat of cont frac of 3141502224011462 r009 Re(z^3+c),c=-10/17+15/29*I,n=32 3141502231990560 m001 exp(1)^GolombDickman/(exp(1)^Grothendieck) 3141502231990560 m001 exp(GolombDickman-Grothendieck) 3141502233923263 m001 GAMMA(23/24)/GAMMA(2/3)*PrimesInBinary 3141502243800678 a001 1/46347*55^(3/32) 3141502246607323 r005 Re(z^2+c),c=-49/122+4/23*I,n=13 3141502249469193 m002 -Pi+(Coth[Pi]*Csch[Pi])/Pi^6 3141502251685511 m005 (1/2*Zeta(3)+7/10)/(1/10*2^(1/2)+4) 3141502267999348 m003 -3+3*Cos[1/2+Sqrt[5]/2]*Sin[1/2+Sqrt[5]/2] 3141502269038784 k001 Champernowne real with 1881*n+1260 3141502282886912 a007 Real Root Of 166*x^4-621*x^3-670*x^2-456*x-98 3141502293137379 m001 1/3*ln(2^(1/2)+1)*3^(2/3)/DuboisRaymond 3141502295216003 r005 Re(z^2+c),c=-31/102+33/62*I,n=47 3141502295573358 r005 Im(z^2+c),c=9/118+15/46*I,n=10 3141502296451777 l006 ln(6478/8869) 3141502330619691 r002 54th iterates of z^2 + 3141502334400035 h001 (-3*exp(2)-2)/(-7*exp(1/3)+9) 3141502356357371 a007 Real Root Of -192*x^4-258*x^3+813*x^2-678*x+548 3141502361427456 m005 (-1/12+1/4*5^(1/2))/(8/9*Catalan+7/10) 3141502367272334 r009 Re(z^3+c),c=-29/66+17/48*I,n=33 3141502368782334 r005 Im(z^2+c),c=7/23+7/53*I,n=44 3141502369058787 k001 Champernowne real with 1882*n+1259 3141502391911966 a001 7/13201*11^(23/31) 3141502404449318 b008 17/6+ArcCot[Pi] 3141502406947913 m001 2*Pi/GAMMA(5/6)*Cahen-TreeGrowth2nd 3141502418293710 m002 -Pi+(2*Coth[Pi])/(E^Pi*Pi^6) 3141502439167334 m001 (-Landau+Mills)/(Si(Pi)+gamma) 3141502442760160 m001 (2^(1/3)-Pi^(1/2))/(-FransenRobinson+Salem) 3141502445686988 r005 Re(z^2+c),c=-115/122+2/13*I,n=60 3141502450828457 m001 (2^(1/2)+3^(1/2))/(-Cahen+Landau) 3141502465526515 m005 (1/2*3^(1/2)-9/11)/(7/11*5^(1/2)+1/10) 3141502469078790 k001 Champernowne real with 1883*n+1258 3141502492658296 r005 Re(z^2+c),c=-41/118+21/55*I,n=14 3141502500314284 r009 Re(z^3+c),c=-49/106+23/59*I,n=61 3141502502716618 b008 Pi*Cos[1/132] 3141502504441226 b008 Pi*Sech[1/132] 3141502512080544 l006 ln(5229/7159) 3141502538904209 l006 ln(8805/9086) 3141502543944968 m001 ln(GAMMA(1/24))/OneNinth/cos(Pi/12)^2 3141502551975192 m001 TwinPrimes^ReciprocalLucas*Rabbit 3141502552828958 m002 -5-Pi-Pi^5+ProductLog[Pi]/Pi^4 3141502554783291 r005 Re(z^2+c),c=-11/27+3/25*I,n=27 3141502557435425 r005 Im(z^2+c),c=-7/66+23/51*I,n=9 3141502569098793 k001 Champernowne real with 1884*n+1257 3141502571023972 m001 ln(BesselJ(0,1))/TreeGrowth2nd/BesselJ(1,1)^2 3141502577410933 r005 Im(z^2+c),c=-15/22+30/97*I,n=21 3141502581560419 m002 2+Pi^(-6)+Log[Pi]*Tanh[Pi] 3141502586488863 m002 -Pi+Csch[Pi]/Pi^6 3141502586775397 a001 521/610*317811^(39/47) 3141502587567596 m001 ln(GAMMA(2/3))/Kolakoski^2/GAMMA(7/12) 3141502588503259 r005 Im(z^2+c),c=-47/66+3/16*I,n=53 3141502591217774 r005 Re(z^2+c),c=-23/60+13/58*I,n=8 3141502614566470 m002 Pi-(E^Pi*Log[Pi])/Pi^11 3141502617076644 r005 Re(z^2+c),c=-19/94+38/61*I,n=33 3141502647776571 r009 Im(z^3+c),c=-37/78+11/63*I,n=49 3141502649173975 r005 Im(z^2+c),c=-5/18+24/47*I,n=21 3141502652391975 r005 Re(z^2+c),c=-43/60+17/24*I,n=3 3141502657500651 r005 Re(z^2+c),c=-41/102+9/53*I,n=23 3141502661017556 a007 Real Root Of 973*x^4-678*x^3+894*x^2-90*x-147 3141502661169963 a007 Real Root Of -276*x^4-994*x^3-286*x^2+51*x-953 3141502664029206 a007 Real Root Of 330*x^4+799*x^3-992*x^2-676*x+297 3141502666646980 m001 GAMMA(1/4)-GAMMA(19/24)*ThueMorse 3141502666646980 m001 GAMMA(19/24)*ThueMorse-Pi*2^(1/2)/GAMMA(3/4) 3141502669118796 k001 Champernowne real with 1885*n+1256 3141502681507221 m001 1/Paris^2*Niven^2*exp(Salem)^2 3141502681768032 m005 (-1/4+1/4*5^(1/2))/(11/12*gamma+5/11) 3141502682051943 a007 Real Root Of -825*x^4-440*x^3-792*x^2-110*x+38 3141502682235856 r005 Re(z^2+c),c=-37/94+7/31*I,n=28 3141502683231101 k007 concat of cont frac of 3141502696330578 a005 (1/cos(11/195*Pi))^1677 3141502702130139 m002 -Pi^3-Cosh[Pi]+Pi^3*Sinh[Pi]*Tanh[Pi] 3141502702955174 r005 Im(z^2+c),c=-1/15+15/37*I,n=16 3141502706404581 q001 1/318319 3141502721773446 s002 sum(A248835[n]/(2^n+1),n=1..infinity) 3141502738526194 r009 Re(z^3+c),c=-10/17+15/29*I,n=41 3141502750202139 a001 75025/47*2^(42/43) 3141502754684016 m002 -2/(E^Pi*Pi^6)+Pi 3141502769138799 k001 Champernowne real with 1886*n+1255 3141502790222368 m005 (1/2*exp(1)-5/6)/(8/9*2^(1/2)+5/12) 3141502795983466 r005 Re(z^2+c),c=-71/74+5/53*I,n=16 3141502799822636 r009 Re(z^3+c),c=-3/82+13/50*I,n=3 3141502803511137 a001 103682/377*21^(4/5) 3141502812135331 k007 concat of cont frac of 3141502817697598 l006 ln(101/2337) 3141502820675665 r005 Im(z^2+c),c=-25/114+26/55*I,n=29 3141502839550209 m005 (1/2*exp(1)-9/11)/(1/3*Pi-7/8) 3141502852040530 b008 Sqrt[2*Pi]*ArcCsc[8] 3141502863046149 l006 ln(3980/5449) 3141502866249600 r009 Im(z^3+c),c=-14/29+10/51*I,n=15 3141502867024563 m001 (Zeta(3)+Lehmer)/(MadelungNaCl-Salem) 3141502869158802 k001 Champernowne real with 1887*n+1254 3141502871709464 a003 cos(Pi*11/40)*cos(Pi*19/56) 3141502874854083 a007 Real Root Of -505*x^4+186*x^3+861*x^2+377*x+11 3141502886346152 m001 (ln(2)/ln(10)+Psi(2,1/3))/(-Pi^(1/2)+Trott2nd) 3141502893953564 a001 29/144*17711^(1/22) 3141502894031563 r005 Im(z^2+c),c=-7/10+49/136*I,n=13 3141502894812185 r002 41th iterates of z^2 + 3141502900148854 m001 1/exp(GAMMA(7/12))^2/GAMMA(1/24)^2/exp(1) 3141502915922594 a001 15127/5*2584^(13/22) 3141502918650598 r005 Im(z^2+c),c=-13/50+25/51*I,n=63 3141502920946157 m002 6/E^Pi-(Cosh[Pi]*Log[Pi])/E^Pi 3141502922252151 m002 -Pi+Sech[Pi]/Pi^6 3141502930265942 m001 1/GAMMA(7/12)/Riemann3rdZero*ln(sqrt(2))^2 3141502953287148 a001 9349/34*165580141^(8/13) 3141502955306709 a007 Real Root Of 141*x^4+735*x^3+765*x^2-620*x-443 3141502962901106 r005 Re(z^2+c),c=-11/52+16/25*I,n=26 3141502964064126 r009 Im(z^3+c),c=-8/17+5/28*I,n=60 3141502969178805 k001 Champernowne real with 1888*n+1253 3141502970488441 r005 Re(z^2+c),c=-55/122+38/61*I,n=10 3141502977576196 m002 Pi^3/E^Pi+(Pi^3*Sinh[Pi])/Log[Pi] 3141502989209440 a001 219602/17*317811^(8/13) 3141502992684925 m001 1/exp(Riemann1stZero)^2*MinimumGamma^2/Ei(1)^2 3141503011338698 r005 Re(z^2+c),c=-6/19+32/63*I,n=45 3141503017828760 m001 1/MertensB1*ln(ErdosBorwein)/gamma 3141503027195093 b008 ArcCosh[Pi*ArcSinh[20]] 3141503029483501 a001 29/3*233^(8/37) 3141503030373381 m005 (1/2*Catalan-2/11)/(7/9*Catalan+1/6) 3141503039876524 r005 Im(z^2+c),c=-2/3+74/231*I,n=57 3141503046716316 q001 464/1477 3141503046716316 r005 Im(z^2+c),c=-15/14+58/211*I,n=2 3141503051302639 r009 Im(z^3+c),c=-57/94+9/37*I,n=13 3141503068244710 m001 (ln(5)-GlaisherKinkelin)/(Trott2nd+ZetaP(4)) 3141503069198808 k001 Champernowne real with 1889*n+1252 3141503072714490 r005 Im(z^2+c),c=31/114+17/40*I,n=9 3141503072866728 r005 Re(z^2+c),c=23/86+5/59*I,n=59 3141503079188288 a005 (1/cos(3/212*Pi))^1158 3141503089820285 m002 -Pi+(2*Tanh[Pi])/(E^Pi*Pi^6) 3141503091371007 p004 log(33013/24113) 3141503100763903 r005 Im(z^2+c),c=-37/114+33/64*I,n=64 3141503104105934 m001 GAMMA(23/24)+FeigenbaumMu*Lehmer 3141503106863385 r009 Im(z^3+c),c=-31/66+7/39*I,n=63 3141503108918992 k002 Champernowne real with 112*n^2-198*n+89 3141503116341222 k007 concat of cont frac of 3141503136507495 l006 ln(6711/9188) 3141503157513780 m001 (2^(1/3)-ln(5))/(-Lehmer+Niven) 3141503166261658 m008 (5/6*Pi^2+5/6)/(3*Pi^6-5/6) 3141503167632657 m001 Mills/sin(1/5*Pi)*Riemann1stZero 3141503169218811 k001 Champernowne real with 1890*n+1251 3141503170191611 r005 Re(z^2+c),c=-9/17+1/22*I,n=4 3141503173946431 r005 Re(z^2+c),c=23/86+5/59*I,n=60 3141503193726994 m001 TreeGrowth2nd/ln(Rabbit)^2*Catalan^2 3141503218482823 r005 Re(z^2+c),c=23/86+5/59*I,n=58 3141503223302329 m008 (1/4*Pi^4-1/3)/(4/5*Pi^2-1/4) 3141503226005071 a007 Real Root Of 473*x^4-951*x^3-205*x^2-653*x-219 3141503231421536 k006 concat of cont frac of 3141503243992539 m008 (4/5*Pi^5+2/5)/(3/4*Pi^4+5) 3141503251566302 r005 Im(z^2+c),c=-31/94+31/59*I,n=31 3141503252132942 b008 -36+Log[98] 3141503256763738 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^6 3141503262801378 r002 17th iterates of z^2 + 3141503269238814 k001 Champernowne real with 1891*n+1250 3141503275677762 r009 Re(z^3+c),c=-43/94+23/60*I,n=34 3141503293782109 m002 -3/Pi^2+Pi^5+Pi^4*Csch[Pi] 3141503323828634 m001 GAMMA(1/12)^sin(Pi/12)+(2^(1/3)) 3141503330261785 m001 (Otter-Sierpinski)/(exp(1/Pi)-DuboisRaymond) 3141503337644473 r009 Im(z^3+c),c=-29/106+25/34*I,n=21 3141503356360951 r002 7th iterates of z^2 + 3141503357907448 m005 (1/2*Pi+6/11)/(7/11*3^(1/2)-3/7) 3141503364506940 m001 (Backhouse+Riemann2ndZero)/(Robbin+ZetaQ(2)) 3141503368057231 r009 Re(z^3+c),c=-19/42+19/58*I,n=10 3141503369258817 k001 Champernowne real with 1892*n+1249 3141503370966802 r009 Re(z^3+c),c=-10/17+15/29*I,n=47 3141503374633390 r005 Re(z^2+c),c=23/86+5/59*I,n=52 3141503375384194 r005 Re(z^2+c),c=-29/106+35/58*I,n=3 3141503380859986 m001 (Kac+ZetaQ(2))/(cos(1/5*Pi)+GAMMA(2/3)) 3141503382725628 m003 23/8+Sqrt[5]/64+Log[1/2+Sqrt[5]/2]^2 3141503388724586 r005 Re(z^2+c),c=23/86+5/59*I,n=61 3141503393690473 m005 (1/2*3^(1/2)-4/9)/(7/10*Pi-6/7) 3141503396689817 m005 (1/2*Catalan+2)/(3/11*gamma+5/8) 3141503412971192 r005 Re(z^2+c),c=-11/82+11/18*I,n=26 3141503415053582 a001 13/711491*18^(3/16) 3141503421578610 r005 Re(z^2+c),c=-3/13+41/54*I,n=45 3141503423676433 a001 5/521*64079^(3/28) 3141503437645529 a007 Real Root Of 428*x^4+978*x^3-762*x^2+937*x-901 3141503463308539 a007 Real Root Of -303*x^4-766*x^3+423*x^2-793*x-903 3141503466862940 m005 (1/2*3^(1/2)-1/8)/(7/10*Catalan-3) 3141503469278820 k001 Champernowne real with 1893*n+1248 3141503492681964 r005 Im(z^2+c),c=-26/31+9/43*I,n=31 3141503493399638 m001 (-ln(gamma)+Paris)/(Chi(1)+GAMMA(3/4)) 3141503503573209 m005 (1/2*Catalan+7/10)/(5*gamma+4/5) 3141503508378645 m005 (1/3*Catalan-1/3)/(1/5*5^(1/2)+4/9) 3141503508621117 r009 Re(z^3+c),c=-10/17+15/29*I,n=53 3141503522851338 r009 Re(z^3+c),c=-10/17+15/29*I,n=62 3141503524469096 r009 Re(z^3+c),c=-10/17+15/29*I,n=59 3141503524808991 r005 Im(z^2+c),c=-10/29+23/55*I,n=3 3141503526288111 r009 Re(z^3+c),c=-10/17+15/29*I,n=56 3141503527960394 a001 3571/377*4181^(35/36) 3141503535034087 l006 ln(2731/3739) 3141503535034087 p004 log(3739/2731) 3141503540244600 r005 Re(z^2+c),c=-3/8+14/41*I,n=15 3141503543199393 r005 Re(z^2+c),c=-19/50+18/61*I,n=43 3141503545640999 m001 Conway^2/Artin*ln(Zeta(7))^2 3141503546776325 r005 Re(z^2+c),c=-4/11+13/36*I,n=36 3141503548548217 s002 sum(A050292[n]/(n^2*pi^n-1),n=1..infinity) 3141503551042334 r005 Im(z^2+c),c=-19/74+22/45*I,n=63 3141503558362138 r005 Re(z^2+c),c=-2/3+71/225*I,n=49 3141503561538915 a001 7/377*5702887^(2/11) 3141503569298823 k001 Champernowne real with 1894*n+1247 3141503577493617 r009 Re(z^3+c),c=-10/17+15/29*I,n=50 3141503589734356 r005 Re(z^2+c),c=-1/122+26/47*I,n=2 3141503590028292 m002 -Pi+(Sech[Pi]*Tanh[Pi]^2)/Pi^6 3141503590776330 a007 Real Root Of 177*x^4+415*x^3-339*x^2+384*x+179 3141503596081642 r002 4th iterates of z^2 + 3141503597695410 r005 Re(z^2+c),c=23/86+5/59*I,n=62 3141503613433162 a007 Real Root Of -248*x^4-897*x^3-481*x^2-187*x+504 3141503646899758 m001 (Zeta(3)+sin(1/5*Pi))/(Psi(2,1/3)-Si(Pi)) 3141503654492650 r009 Im(z^3+c),c=-25/62+34/53*I,n=3 3141503661201249 r005 Re(z^2+c),c=-51/118+17/31*I,n=33 3141503664268349 r005 Im(z^2+c),c=-3/4+18/155*I,n=17 3141503669318826 k001 Champernowne real with 1895*n+1246 3141503682677884 a007 Real Root Of -375*x^4-910*x^3+779*x^2-233*x-109 3141503686765347 m004 ProductLog[Sqrt[5]*Pi]^(-2)+2*Sec[Sqrt[5]*Pi] 3141503689805151 r005 Re(z^2+c),c=23/86+5/59*I,n=57 3141503689980988 a007 Real Root Of -631*x^4-375*x^3-808*x^2+31*x+84 3141503691362626 b008 Log[E+(13*Pi)/2] 3141503695516412 a001 34/2207*199^(7/52) 3141503696565615 m001 1/exp(gamma)/KomornikLoreti 3141503700147929 m004 -100*Pi+5*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141503700218315 m004 -10*Pi+Coth[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141503700288700 m004 -10*Pi+Csch[Sqrt[5]*Pi]/2 3141503700359086 m004 -10*Pi+Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 3141503700429472 m004 -10*Pi+Sech[Sqrt[5]*Pi]/2 3141503700499858 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141503700570243 m004 -10*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/2 3141503700640629 m004 -10*Pi+Tanh[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141503716187054 a001 7/144*377^(26/37) 3141503716616725 r002 40th iterates of z^2 + 3141503716616725 r002 40th iterates of z^2 + 3141503720428904 r005 Im(z^2+c),c=-13/98+27/62*I,n=22 3141503722611411 a005 (1/cos(1/16*Pi))^59 3141503730026497 r009 Re(z^3+c),c=-5/94+13/22*I,n=39 3141503730843897 r005 Re(z^2+c),c=23/86+5/59*I,n=63 3141503753042523 m006 (2/3*exp(Pi)-3/5)/(1/3*Pi-1) 3141503767752890 r005 Im(z^2+c),c=-41/102+28/53*I,n=63 3141503769338829 k001 Champernowne real with 1896*n+1245 3141503772213952 r005 Re(z^2+c),c=23/86+5/59*I,n=64 3141503774368899 m001 GAMMA(1/12)^2/OneNinth^2*ln(log(2+sqrt(3))) 3141503775665996 l006 ln(8899/9183) 3141503783229051 m002 -Pi+ProductLog[Pi]/(4*Pi^7) 3141503796192462 r005 Re(z^2+c),c=8/21+5/19*I,n=6 3141503802839821 r005 Im(z^2+c),c=55/122+20/53*I,n=12 3141503812256362 m001 exp(-Pi)^ln(2+sqrt(3))*exp(-Pi)^polylog(4,1/2) 3141503818218142 a007 Real Root Of 207*x^4+476*x^3-353*x^2+713*x+320 3141503831681640 m005 (1/3*3^(1/2)-1/3)/(-2/55+4/11*5^(1/2)) 3141503838433939 r005 Re(z^2+c),c=37/126+5/48*I,n=38 3141503862032228 a007 Real Root Of 294*x^4+985*x^3+44*x^2-186*x+885 3141503868115478 m005 (3/5*2^(1/2)+3/5)/(-13/30+2/5*5^(1/2)) 3141503869358832 k001 Champernowne real with 1897*n+1244 3141503872348904 m001 (Rabbit-TwinPrimes)/(Zeta(5)+Landau) 3141503878998125 m001 Pi-ZetaQ(4)^Backhouse 3141503882309252 s002 sum(A072001[n]/(10^n+1),n=1..infinity) 3141503883258132 m001 Pi-ZetaQ(2)*ZetaQ(4) 3141503892315754 s001 sum(exp(-3*Pi/4)^n*A223628[n],n=1..infinity) 3141503894972290 a005 (1/cos(5/64*Pi))^416 3141503897147100 r009 Re(z^3+c),c=-10/17+15/29*I,n=44 3141503899357026 m001 (Pi*exp(Pi)-gamma(3))/exp(Pi) 3141503919124745 r009 Im(z^3+c),c=-13/27+11/24*I,n=3 3141503920188443 l006 ln(6944/9507) 3141503926926182 m002 -1/(5*E^Pi*Pi^4)+Pi 3141503931356338 r005 Re(z^2+c),c=-19/50+18/61*I,n=46 3141503955318532 r005 Im(z^2+c),c=-17/46+17/32*I,n=59 3141503969378835 k001 Champernowne real with 1898*n+1243 3141503969452795 m001 BesselK(1,1)^Mills/(Zeta(1/2)^Mills) 3141503984469385 m001 (Catalan+2*Pi/GAMMA(5/6))/(Sarnak+Totient) 3141503989196613 m001 CareFree*Cahen^FeigenbaumC 3141503991882809 m001 (Robbin+Tribonacci)/(arctan(1/2)-Landau) 3141504017007636 a008 Real Root of (2+2*x+13*x^2+4*x^3) 3141504028323600 a001 20633239/34*610^(8/13) 3141504028587633 r009 Re(z^3+c),c=-10/19+25/51*I,n=62 3141504029701439 r005 Im(z^2+c),c=-129/118+6/19*I,n=3 3141504041265453 m001 (5^(1/2)+ErdosBorwein)/(PlouffeB+RenyiParking) 3141504043020664 r009 Im(z^3+c),c=-23/52+8/39*I,n=39 3141504052290613 m001 Chi(1)+2*Pi/GAMMA(5/6)+Riemann3rdZero 3141504053708796 r005 Re(z^2+c),c=9/32+17/28*I,n=4 3141504063887037 r009 Re(z^3+c),c=-13/25+24/55*I,n=25 3141504065298116 m001 Weierstrass/(MadelungNaCl-CopelandErdos) 3141504069398838 k001 Champernowne real with 1899*n+1242 3141504076780592 s002 sum(A017045[n]/(n^2*2^n+1),n=1..infinity) 3141504079935786 l006 ln(339/7844) 3141504079956018 r005 Im(z^2+c),c=7/38+16/63*I,n=13 3141504102874099 a007 Real Root Of 273*x^4+965*x^3+297*x^2+16*x+448 3141504109219052 k002 Champernowne real with 225/2*n^2-399/2*n+90 3141504111111212 k007 concat of cont frac of 3141504112857601 a001 2207/8*2178309^(43/45) 3141504117971308 k002 Champernowne real with 125/2*n^2-353/2*n+117 3141504120856291 r005 Im(z^2+c),c=-35/122+20/39*I,n=27 3141504125704600 m005 (1/3*Catalan+3/7)/(5/7*Zeta(3)-5/8) 3141504126726340 b008 -1/28*1/E^6+Pi 3141504130489105 m001 (Porter+ZetaP(2))/(2*Pi/GAMMA(5/6)+Landau) 3141504156305681 r005 Re(z^2+c),c=-37/26+39/49*I,n=2 3141504160331133 m001 GAMMA(23/24)+StronglyCareFree+Totient 3141504162593637 r002 43th iterates of z^2 + 3141504168774423 r005 Re(z^2+c),c=-7/17+3/56*I,n=14 3141504169418841 k001 Champernowne real with 1900*n+1241 3141504169857684 l006 ln(4213/5768) 3141504177195785 m005 (3*exp(1)+5)/(5/6+3/2*5^(1/2)) 3141504178211368 k003 Champernowne real with n^3+113/2*n^2-331/2*n+111 3141504191313626 a003 1/2+2*cos(1/18*Pi)+cos(8/27*Pi)+cos(10/21*Pi) 3141504197745863 m009 (1/5*Psi(1,1/3)+1/5)/(Psi(1,2/3)+4) 3141504231186301 m005 (1/2*5^(1/2)-7/9)/(1/3*Catalan+7/9) 3141504234429848 m001 BesselI(1,2)^Ei(1)*Conway 3141504241734304 r005 Re(z^2+c),c=-19/50+18/61*I,n=48 3141504242447657 a001 13201/7*514229^(32/35) 3141504252823064 r005 Im(z^2+c),c=-63/74+1/5*I,n=49 3141504257692422 m002 -Pi+Tanh[Pi]/(5*E^Pi*Pi^4) 3141504268571458 k003 Champernowne real with 5/2*n^3+95/2*n^2-149*n+102 3141504269410034 m001 (3^(1/2))^Shi(1)+GAMMA(2/3) 3141504269438844 k001 Champernowne real with 1901*n+1240 3141504273238941 s002 sum(A040782[n]/(10^n-1),n=1..infinity) 3141504286465493 r005 Re(z^2+c),c=-11/31+20/51*I,n=56 3141504298691488 k003 Champernowne real with 3*n^3+89/2*n^2-287/2*n+99 3141504298834837 a007 Real Root Of -938*x^4-54*x^3-679*x^2-97*x+44 3141504299258134 g005 GAMMA(6/7)/GAMMA(9/11)/GAMMA(8/11)/GAMMA(4/11) 3141504310694404 r009 Im(z^3+c),c=-21/40+3/14*I,n=36 3141504311307537 a007 Real Root Of -789*x^4-649*x^3-423*x^2-36*x+18 3141504311426240 r005 Re(z^2+c),c=-5/4+75/211*I,n=5 3141504314007124 m001 gamma^Catalan/(Zeta(1,-1)^Catalan) 3141504319312173 a001 29/13*610^(27/35) 3141504323159695 b008 Pi+ExpIntegralEi[-5]/13 3141504328811518 k003 Champernowne real with 7/2*n^3+83/2*n^2-138*n+96 3141504343424531 r005 Re(z^2+c),c=-89/114+4/33*I,n=16 3141504358931548 k003 Champernowne real with 4*n^3+77/2*n^2-265/2*n+93 3141504364824845 m001 exp(1)^2*FibonacciFactorial*ln(sqrt(2)) 3141504369458847 k001 Champernowne real with 1902*n+1239 3141504372198907 a007 Real Root Of -697*x^4-89*x^3+443*x^2+426*x-168 3141504375734568 r005 Re(z^2+c),c=-19/50+13/32*I,n=13 3141504386409795 a001 6/3536736619241*121393^(1/19) 3141504389051578 k003 Champernowne real with 9/2*n^3+71/2*n^2-127*n+90 3141504391656383 p003 LerchPhi(1/32,2,343/191) 3141504399358493 r008 a(0)=3,K{-n^6,19-54*n+38*n^2-9*n^3} 3141504402241608 a008 Real Root of x^4-x^3-13*x^2-77*x-242 3141504407782721 a007 Real Root Of 895*x^4-705*x^3+871*x^2-358*x-229 3141504412615087 r005 Re(z^2+c),c=-31/34+7/26*I,n=40 3141504417313844 m004 -2/3-100*Pi+Sin[Sqrt[5]*Pi] 3141504419171608 k003 Champernowne real with 5*n^3+65/2*n^2-243/2*n+87 3141504422942473 m001 GAMMA(5/12)/ln(Catalan)^2/Zeta(1,2)^2 3141504426405905 a001 28657/843*29^(35/53) 3141504429068255 s002 sum(A254902[n]/(n^3*2^n+1),n=1..infinity) 3141504430896504 r005 Re(z^2+c),c=23/86+5/59*I,n=56 3141504437390911 r005 Re(z^2+c),c=-19/50+18/61*I,n=38 3141504438371920 r005 Re(z^2+c),c=21/106+27/59*I,n=23 3141504439465760 m005 (1/2*2^(1/2)-5/7)/(8/11*2^(1/2)-4/5) 3141504440055016 r002 55th iterates of z^2 + 3141504446147405 r005 Im(z^2+c),c=7/62+18/59*I,n=23 3141504449291638 k003 Champernowne real with 11/2*n^3+59/2*n^2-116*n+84 3141504449847099 m008 (1/5*Pi^5+1/4)/(3/4*Pi-2/5) 3141504451613435 r005 Im(z^2+c),c=-39/34+28/115*I,n=32 3141504451670172 r005 Re(z^2+c),c=23/86+5/59*I,n=47 3141504453874205 h001 (5/11*exp(2)+3/8)/(1/10*exp(1)+11/12) 3141504457154854 m001 (Pi+Pi^(1/2))/(Gompertz-TreeGrowth2nd) 3141504465442029 r005 Re(z^2+c),c=-17/54+17/33*I,n=46 3141504469478850 k001 Champernowne real with 1903*n+1238 3141504474283174 l006 ln(5695/7797) 3141504479411668 k003 Champernowne real with 6*n^3+53/2*n^2-221/2*n+81 3141504491514279 a007 Real Root Of 231*x^4+627*x^3-248*x^2-6*x-631 3141504504931900 a005 (1/sin(65/157*Pi))^1527 3141504505336349 m008 (5*Pi^2-5/6)/(5*Pi^3-3/5) 3141504507918970 a007 Real Root Of 371*x^4+533*x^3-708*x^2-994*x+362 3141504509531698 k003 Champernowne real with 13/2*n^3+47/2*n^2-105*n+78 3141504513613125 m001 FeigenbaumC*(Bloch-Cahen) 3141504520448909 r005 Re(z^2+c),c=-19/50+18/61*I,n=53 3141504527426571 r005 Re(z^2+c),c=-19/50+18/61*I,n=51 3141504539651728 k003 Champernowne real with 7*n^3+41/2*n^2-199/2*n+75 3141504540587402 r005 Im(z^2+c),c=37/114+5/49*I,n=60 3141504541729471 m002 Pi-(Csch[Pi]^2*Log[Pi])/Pi^4 3141504548832171 r005 Re(z^2+c),c=-18/23+1/58*I,n=46 3141504550035081 a001 8/3571*76^(25/41) 3141504568776404 r009 Im(z^3+c),c=-59/122+8/51*I,n=25 3141504569498853 k001 Champernowne real with 1904*n+1237 3141504569771758 k003 Champernowne real with 15/2*n^3+35/2*n^2-94*n+72 3141504576559455 r005 Im(z^2+c),c=-31/122+20/41*I,n=64 3141504578933559 r005 Im(z^2+c),c=9/26+5/39*I,n=46 3141504580676888 r005 Re(z^2+c),c=-19/50+18/61*I,n=55 3141504586832061 r009 Re(z^3+c),c=-45/118+6/23*I,n=23 3141504589112511 r005 Re(z^2+c),c=-19/50+18/61*I,n=58 3141504594395794 r009 Re(z^3+c),c=-27/58+24/61*I,n=46 3141504595638914 r005 Re(z^2+c),c=-19/50+18/61*I,n=60 3141504598848380 r005 Re(z^2+c),c=-19/50+18/61*I,n=50 3141504599891788 k003 Champernowne real with 8*n^3+29/2*n^2-177/2*n+69 3141504600401599 m001 (Zeta(1,-1)+HardyLittlewoodC4)/ZetaP(2) 3141504601729944 r005 Re(z^2+c),c=-19/50+18/61*I,n=63 3141504601764137 m008 (1/6*Pi^2+2)/(2/5*Pi^3-4/5) 3141504603211512 r005 Re(z^2+c),c=-19/50+18/61*I,n=62 3141504603976379 m005 (1/3*2^(1/2)+2/5)/(3/5*Pi+8/9) 3141504604048877 r005 Re(z^2+c),c=-19/50+18/61*I,n=56 3141504605394165 r005 Re(z^2+c),c=-19/50+18/61*I,n=64 3141504606637460 r005 Re(z^2+c),c=-19/50+18/61*I,n=61 3141504614336241 r005 Re(z^2+c),c=-19/50+18/61*I,n=57 3141504615396247 r005 Re(z^2+c),c=-19/50+18/61*I,n=59 3141504615591006 l006 ln(238/5507) 3141504621001181 k003 Champernowne real with 17/2*n^3+23/2*n^2-83*n+66 3141504628826263 m001 (LambertW(1)-exp(Pi))/(Rabbit+ZetaQ(3)) 3141504630786122 r005 Re(z^2+c),c=-19/50+18/61*I,n=44 3141504631172350 a007 Real Root Of 708*x^4+167*x^3-26*x^2-703*x-220 3141504638084757 r009 Im(z^3+c),c=-31/66+7/39*I,n=61 3141504651013184 k003 Champernowne real with 9*n^3+17/2*n^2-155/2*n+63 3141504652985216 l006 ln(7177/9826) 3141504654648940 r005 Im(z^2+c),c=-9/14+16/61*I,n=7 3141504656051709 r005 Re(z^2+c),c=-19/50+18/61*I,n=54 3141504657816692 r005 Im(z^2+c),c=-7/60+3/7*I,n=28 3141504657837376 m004 -Cosh[Sqrt[5]*Pi]^2+625*Pi*Tan[Sqrt[5]*Pi] 3141504665309501 m001 1/exp(GAMMA(11/24))*Lehmer/sqrt(1+sqrt(3))^2 3141504669518856 k001 Champernowne real with 1905*n+1236 3141504677738776 m001 (ln(gamma)-gamma(3))/(Conway+ZetaP(2)) 3141504681025187 k003 Champernowne real with 19/2*n^3+11/2*n^2-72*n+60 3141504682968573 m001 Sierpinski*MinimumGamma*ln(Zeta(7)) 3141504689435587 r009 Re(z^3+c),c=-13/36+12/53*I,n=11 3141504691537716 a007 Real Root Of -183*x^4-839*x^3-990*x^2-736*x-730 3141504695906020 m001 (Pi-Psi(1,1/3))/(Bloch-Khinchin) 3141504700135126 r009 Im(z^3+c),c=-37/90+14/61*I,n=17 3141504701059483 r005 Re(z^2+c),c=-19/50+18/61*I,n=52 3141504711037190 k003 Champernowne real with 10*n^3+5/2*n^2-133/2*n+57 3141504715500248 r009 Im(z^3+c),c=-7/74+40/49*I,n=60 3141504717798946 a007 Real Root Of -158*x^4-450*x^3+297*x^2+218*x-809 3141504726806466 m001 (1-Si(Pi))/(-gamma(2)+MertensB1) 3141504732675636 a007 Real Root Of -331*x^4-821*x^3+456*x^2-795*x-213 3141504733432984 q001 1261/4014 3141504737294464 m002 -Pi+3/(Pi^9*Log[Pi]) 3141504741049193 k003 Champernowne real with 21/2*n^3-1/2*n^2-61*n+54 3141504746081569 m001 Pi*GAMMA(23/24)-StolarskyHarborth 3141504746251649 a007 Real Root Of 266*x^4+547*x^3-808*x^2+528*x+684 3141504758285750 r005 Re(z^2+c),c=-19/50+18/61*I,n=49 3141504766176629 m001 (Champernowne-ZetaQ(2))/(Ei(1)+arctan(1/3)) 3141504769538859 k001 Champernowne real with 1906*n+1235 3141504771061196 k003 Champernowne real with 11*n^3-7/2*n^2-111/2*n+51 3141504781500406 a007 Real Root Of -988*x^4-642*x^3-32*x^2+567*x+171 3141504790913050 r005 Im(z^2+c),c=-2/11+24/43*I,n=11 3141504801073199 k003 Champernowne real with 23/2*n^3-13/2*n^2-50*n+48 3141504815268978 r005 Re(z^2+c),c=-17/74+31/52*I,n=44 3141504822463781 r005 Im(z^2+c),c=-23/70+23/44*I,n=45 3141504830981210 h001 (2/7*exp(2)+10/11)/(1/11*exp(1)+5/7) 3141504831085202 k003 Champernowne real with 12*n^3-19/2*n^2-89/2*n+45 3141504834632863 m001 (2*Pi/GAMMA(5/6))^(sin(1/5*Pi)/QuadraticClass) 3141504835816495 m008 (5*Pi^3-4)/(5*Pi^6+2/3) 3141504854389889 r004 Im(z^2+c),c=-41/42+6/23*I,z(0)=-1,n=52 3141504856530007 a005 (1/cos(37/182*Pi))^194 3141504865279411 m005 (1/3*exp(1)-2/7)/(5/8*Catalan-3/8) 3141504869558862 k001 Champernowne real with 1907*n+1234 3141504870203771 m002 Pi-(Csch[Pi]*Log[Pi]*Sech[Pi])/Pi^4 3141504871304986 r009 Re(z^3+c),c=-10/17+15/29*I,n=38 3141504884992848 m005 (13/12+5/12*5^(1/2))/(2^(1/2)+5) 3141504885742515 m001 sin(1/5*Pi)*StronglyCareFree+Khinchin 3141504895525780 r005 Im(z^2+c),c=31/94+21/53*I,n=64 3141504898137458 r005 Re(z^2+c),c=-49/48+7/25*I,n=36 3141504921574147 m001 1/GAMMA(11/12)/exp(Niven)^2*Zeta(9)^2 3141504924122681 r005 Im(z^2+c),c=-35/114+31/58*I,n=29 3141504925144845 r009 Re(z^3+c),c=-33/56+15/29*I,n=5 3141504951114762 m001 (-2^(1/2)+2/3)/(GAMMA(1/24)+1/3) 3141504954191545 a007 Real Root Of -702*x^4+81*x^3-142*x^2+992*x+335 3141504968316263 r005 Im(z^2+c),c=-1/8+16/37*I,n=35 3141504969578865 k001 Champernowne real with 1908*n+1233 3141504974681566 a001 55/2*521^(1/47) 3141504986573079 l006 ln(8993/9280) 3141504994378759 m009 (1/2*Psi(1,1/3)+1)/(6*Psi(1,3/4)+4) 3141504997607180 r009 Im(z^3+c),c=-23/66+4/15*I,n=7 3141505002602965 a005 (1/sin(81/175*Pi))^1855 3141505007523614 r005 Im(z^2+c),c=-21/94+12/25*I,n=22 3141505021850886 m001 (ln(Pi)+BesselI(1,1))/(Psi(2,1/3)+ln(2)) 3141505024568411 m001 ZetaP(3)/(Trott-LambertW(1)) 3141505030609250 r005 Re(z^2+c),c=-19/52+16/45*I,n=17 3141505037302335 a007 Real Root Of -263*x^4-668*x^3+245*x^2-794*x-7 3141505041665264 m001 Tribonacci/Riemann1stZero*exp(log(1+sqrt(2))) 3141505043011489 r005 Re(z^2+c),c=23/86+5/59*I,n=53 3141505058885547 p004 log(24029/17551) 3141505069598868 k001 Champernowne real with 1909*n+1232 3141505094777374 a007 Real Root Of -170*x^4-287*x^3+769*x^2-66*x-137 3141505099823078 l006 ln(375/8677) 3141505099867358 r002 18th iterates of z^2 + 3141505109519112 k002 Champernowne real with 113*n^2-201*n+91 3141505112811931 k009 concat of cont frac of 3141505120841225 a007 Real Root Of 9*x^4+294*x^3+335*x^2-578*x+471 3141505122241219 k006 concat of cont frac of 3141505126582199 r005 Re(z^2+c),c=-19/50+18/61*I,n=45 3141505155593058 a007 Real Root Of 84*x^4-625*x^3+739*x^2-945*x-390 3141505169618871 k001 Champernowne real with 1910*n+1231 3141505172428028 r005 Re(z^2+c),c=-19/50+18/61*I,n=47 3141505173692445 b008 Pi*Cos[1/134] 3141505175316375 b008 Pi*Sech[1/134] 3141505175853760 a007 Real Root Of 291*x^4+908*x^3+6*x^2-136*x-678 3141505194032397 r005 Re(z^2+c),c=23/86+5/59*I,n=55 3141505197453543 m002 Pi-(Log[Pi]*Sech[Pi]^2)/Pi^4 3141505199195348 m001 Zeta(3)^2*FeigenbaumD^2*ln(gamma)^2 3141505206444478 m005 (11/28+1/4*5^(1/2))/(3/7*2^(1/2)-10/11) 3141505213639380 m002 -3-4*Pi^4+Pi^5*Sinh[Pi] 3141505214895884 r009 Re(z^3+c),c=-33/82+13/44*I,n=21 3141505227916430 m001 (-Conway+Stephens)/(BesselK(0,1)+Ei(1)) 3141505237436473 r002 5th iterates of z^2 + 3141505242269658 r005 Im(z^2+c),c=-3/122+29/46*I,n=12 3141505250883114 a001 322/121393*377^(5/12) 3141505254309537 r005 Im(z^2+c),c=-29/90+27/46*I,n=54 3141505258507653 a007 Real Root Of -374*x^4-977*x^3+900*x^2+882*x+25 3141505259836619 m001 (gamma(1)+Lehmer)/(Niven-ReciprocalFibonacci) 3141505261269404 a007 Real Root Of -198*x^4-627*x^3+86*x^2+65*x-799 3141505264183494 a007 Real Root Of 432*x^4-551*x^3+801*x^2-626*x-297 3141505264579613 p004 log(32371/1399) 3141505269638874 k001 Champernowne real with 1911*n+1230 3141505274198107 a007 Real Root Of -260*x^4+913*x^3-43*x^2+821*x+293 3141505292805973 a007 Real Root Of 231*x^4+589*x^3-230*x^2+572*x-171 3141505310965138 a001 1346269/2*7^(19/24) 3141505311665516 m001 (1-BesselI(1,2))/(Pi^(1/2)+OneNinth) 3141505335908380 a003 sin(Pi*1/100)/sin(Pi*47/95) 3141505339697825 l006 ln(1482/2029) 3141505364148064 m005 (1/2*Pi+2)/(1/8*5^(1/2)+6/7) 3141505369658877 k001 Champernowne real with 1912*n+1229 3141505389712202 a007 Real Root Of -174*x^4-424*x^3+126*x^2-991*x-555 3141505400861249 b008 Pi/(1/6)!! 3141505412652740 a007 Real Root Of 276*x^4+626*x^3-426*x^2+872*x-530 3141505426723252 a003 sin(Pi*3/23)*sin(Pi*24/83) 3141505465330002 m005 (1/3*2^(1/2)+1/11)/(7/10*2^(1/2)+4/5) 3141505469678880 k001 Champernowne real with 1913*n+1228 3141505470065212 a001 2/89*2^(29/60) 3141505479248117 a001 4870847/13*233^(13/16) 3141505486442097 r005 Im(z^2+c),c=-9/34+31/63*I,n=58 3141505487303795 r002 3th iterates of z^2 + 3141505488521802 a007 Real Root Of 260*x^4+925*x^3+283*x^2-480*x-946 3141505490181719 a009 1/2*(17*2^(1/2)-7^(3/4))^(1/2)*2^(1/2) 3141505503218352 a007 Real Root Of -341*x^4+260*x^3-797*x^2-137*x+47 3141505519642244 r005 Im(z^2+c),c=-11/90+25/58*I,n=25 3141505522110547 b008 Pi+7*ExpIntegralEi[-9] 3141505555523155 r005 Re(z^2+c),c=23/86+5/59*I,n=54 3141505569698883 k001 Champernowne real with 1914*n+1227 3141505587834152 r005 Re(z^2+c),c=-19/50+18/61*I,n=32 3141505591388398 a007 Real Root Of 50*x^4-290*x^3+728*x^2-712*x-305 3141505599049771 m001 1/Lehmer/ln(Artin)*FeigenbaumC 3141505601472246 r005 Re(z^2+c),c=17/52+5/57*I,n=27 3141505602028914 m005 (1/2*Zeta(3)+1/9)/(8/9*3^(1/2)+8/11) 3141505603989181 r002 3th iterates of z^2 + 3141505607988282 m001 (ln(Pi)-MertensB1)/(Zeta(3)+ln(5)) 3141505614710452 r009 Im(z^3+c),c=-19/40+4/23*I,n=58 3141505615684965 m001 1/exp(GAMMA(1/4))^2/Conway/sqrt(3) 3141505629024610 a007 Real Root Of -387*x^4-378*x^3+81*x^2+837*x+247 3141505638609786 r005 Re(z^2+c),c=-39/70+27/58*I,n=43 3141505639024396 r005 Re(z^2+c),c=-11/30+21/59*I,n=18 3141505650275654 m001 1/exp(1)*Conway^2*ln(sqrt(1+sqrt(3))) 3141505651341524 a007 Real Root Of -27*x^4-817*x^3+963*x^2-553*x-245 3141505653910273 m001 (gamma(2)+FeigenbaumMu)/(MertensB2+Paris) 3141505661263044 a001 3665737348901/36*5^(7/10) 3141505666752747 r009 Re(z^3+c),c=-19/36+19/63*I,n=34 3141505667700347 a007 Real Root Of -3*x^4-941*x^3+454*x^2-644*x+247 3141505669718886 k001 Champernowne real with 1915*n+1226 3141505673383423 s002 sum(A196492[n]/(n^2*pi^n+1),n=1..infinity) 3141505676614861 m001 1/GAMMA(2/3)/(2^(1/3))^2/ln(GAMMA(5/24)) 3141505676675132 s002 sum(A196492[n]/(n^2*pi^n-1),n=1..infinity) 3141505684451647 h001 (9/11*exp(2)+2/3)/(4/7*exp(1)+7/12) 3141505699956157 a007 Real Root Of -562*x^4+40*x^3-170*x^2+764*x-219 3141505707698610 r002 5th iterates of z^2 + 3141505714084897 a007 Real Root Of 555*x^4+148*x^3-42*x^2-956*x-297 3141505715411903 q001 797/2537 3141505717198512 p003 LerchPhi(1/5,3,342/229) 3141505736905298 r009 Im(z^3+c),c=-8/17+5/28*I,n=59 3141505741922717 a007 Real Root Of -653*x^4+766*x^3-655*x^2+908*x+380 3141505743691050 m001 (GAMMA(3/4)-Landau)/(MinimumGamma+Rabbit) 3141505766100352 r005 Im(z^2+c),c=-47/110+23/50*I,n=16 3141505769738889 k001 Champernowne real with 1916*n+1225 3141505780363148 g001 GAMMA(1/3,99/115) 3141505782397920 m005 (1/2*gamma+5/6)/(1/9*2^(1/2)+1/5) 3141505801050456 m001 (BesselI(1,1)+FeigenbaumMu)/(Lehmer+Sarnak) 3141505805327848 a007 Real Root Of -376*x^4-930*x^3+677*x^2-551*x-624 3141505811596853 m002 Pi-Cosh[Pi]/(6*E^Pi*Pi^6) 3141505814616580 m001 ln(Sierpinski)/KhintchineHarmonic/sqrt(3) 3141505824442795 r002 5th iterates of z^2 + 3141505834651964 r002 3th iterates of z^2 + 3141505838106391 a007 Real Root Of 622*x^4-614*x^3-721*x^2-146*x+130 3141505846727661 b008 Pi+ExpIntegralEi[-2*Pi]/3 3141505869758892 k001 Champernowne real with 1917*n+1224 3141505877313718 r005 Re(z^2+c),c=27/94+4/63*I,n=10 3141505882824384 r005 Re(z^2+c),c=5/23+1/61*I,n=17 3141505888379945 m001 FeigenbaumB^2/CopelandErdos/exp(sqrt(5)) 3141505889343011 a007 Real Root Of -38*x^4+232*x^3-478*x^2+803*x+307 3141505899233543 a001 29/5*225851433717^(10/13) 3141505903028568 r005 Im(z^2+c),c=-2/11+27/59*I,n=47 3141505908720904 r005 Re(z^2+c),c=8/27+3/29*I,n=26 3141505908915285 r005 Im(z^2+c),c=13/64+8/33*I,n=10 3141505915918845 m001 sin(1/5*Pi)*PrimesInBinary/StronglyCareFree 3141505922571799 r009 Re(z^3+c),c=-41/90+21/64*I,n=10 3141505939079553 m005 (1/2*2^(1/2)+3/11)/(5/7*Pi+7/8) 3141505940739805 m005 (1/2*2^(1/2)-5/7)/(9/10*5^(1/2)+3/11) 3141505941043201 l006 ln(137/3170) 3141505948634887 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/4 3141505948703493 m004 10*Pi-Log[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141505948772100 m004 10*Pi-(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/4 3141505956303413 m005 (1/2*5^(1/2)-5)/(1/6*2^(1/2)+1) 3141505959286616 m001 Pi-(ln(2)/ln(10)-sin(1/12*Pi))*gamma(3) 3141505966660461 m001 GAMMA(23/24)^2/TwinPrimes^2/ln(arctan(1/2)) 3141505969778895 k001 Champernowne real with 1918*n+1223 3141505973467018 m002 -1/(12*Pi^6)+Pi 3141505982470010 m001 ln(Zeta(5))/OneNinth^2*Zeta(9)^2 3141506009891437 m002 -Pi+ProductLog[Pi]/E^(3*Pi) 3141506013981437 r005 Im(z^2+c),c=-9/38+25/52*I,n=54 3141506015371469 r005 Re(z^2+c),c=17/82+15/38*I,n=34 3141506017876582 r009 Re(z^3+c),c=-23/58+15/43*I,n=5 3141506041866200 r009 Im(z^3+c),c=-31/66+7/39*I,n=56 3141506047384645 p001 sum((-1)^n/(355*n+316)/(64^n),n=0..infinity) 3141506049334442 m001 (GAMMA(13/24)+Paris)/(Ei(1,1)-Psi(2,1/3)) 3141506059894570 r009 Re(z^3+c),c=-41/98+28/41*I,n=6 3141506060625527 a003 cos(Pi*5/47)/cos(Pi*29/72) 3141506069798898 k001 Champernowne real with 1919*n+1222 3141506070809010 k005 Champernowne real with floor(sqrt(2)*(7*n+15)) 3141506077624890 r008 a(0)=3,K{-n^6,-5-4*n^2} 3141506081911888 r005 Im(z^2+c),c=-23/31+13/56*I,n=10 3141506104463545 r004 Im(z^2+c),c=-1/38+5/13*I,z(0)=I,n=13 3141506109819172 k002 Champernowne real with 227/2*n^2-405/2*n+92 3141506110483518 a007 Real Root Of 11*x^4+353*x^3+222*x^2-334*x+906 3141506118479547 r009 Im(z^3+c),c=-25/54+8/45*I,n=14 3141506135337183 m002 Pi-Sinh[Pi]/(6*E^Pi*Pi^6) 3141506139654979 l006 ln(6161/8435) 3141506169818901 k001 Champernowne real with 1920*n+1221 3141506172427817 l006 ln(9087/9377) 3141506181750816 r009 Re(z^3+c),c=-67/114+21/37*I,n=36 3141506213495895 r005 Re(z^2+c),c=-17/110+19/21*I,n=6 3141506216489286 r005 Re(z^2+c),c=21/94+24/53*I,n=26 3141506218592021 m002 -Pi^3/6+Pi^6/3-Log[Pi] 3141506218871926 a008 Real Root of x^4-2*x^2-40*x+48 3141506220720798 m001 1/ln(GAMMA(3/4))^2/GAMMA(1/12)/sin(Pi/12)^2 3141506226980842 m001 (Artin+ZetaQ(4))/((1+3^(1/2))^(1/2)-Pi^(1/2)) 3141506231140814 m002 5/2+E^Pi+Sinh[Pi]/2 3141506269838904 k001 Champernowne real with 1921*n+1220 3141506278297718 a001 161/305*196418^(6/41) 3141506278800432 r009 Im(z^3+c),c=-8/17+5/28*I,n=51 3141506296603909 m002 -Pi+Tanh[Pi]/(12*Pi^6) 3141506307860014 m001 QuadraticClass+(2*Pi/GAMMA(5/6))^Weierstrass 3141506339761902 b008 EulerGamma+LogGamma[2/27] 3141506340307304 r005 Re(z^2+c),c=-43/106+4/29*I,n=25 3141506344902339 r005 Re(z^2+c),c=-15/56+33/58*I,n=43 3141506347280092 a001 233/18*521^(26/51) 3141506350757648 r005 Im(z^2+c),c=-7/20+34/61*I,n=58 3141506352366254 r002 40th iterates of z^2 + 3141506354954794 a001 2/843*322^(17/38) 3141506360694942 m004 3+Sech[Sqrt[5]*Pi]+25*Pi*Sech[Sqrt[5]*Pi] 3141506362102658 m004 3+2/E^(Sqrt[5]*Pi)+25*Pi*Sech[Sqrt[5]*Pi] 3141506363510375 m004 3+Csch[Sqrt[5]*Pi]+25*Pi*Sech[Sqrt[5]*Pi] 3141506369858907 k001 Champernowne real with 1922*n+1219 3141506373246124 s002 sum(A005374[n]/(n^2*pi^n-1),n=1..infinity) 3141506374296563 a007 Real Root Of -696*x^4+200*x^3+827*x^2+923*x-371 3141506377396319 a007 Real Root Of -85*x^4-149*x^3+395*x^2+233*x+493 3141506391085916 m001 (-Robbin+ZetaQ(2))/(5^(1/2)-ln(2)/ln(10)) 3141506392914315 r005 Re(z^2+c),c=-47/118+12/59*I,n=14 3141506393028871 l006 ln(4679/6406) 3141506401021258 r005 Im(z^2+c),c=-11/30+9/17*I,n=46 3141506402698259 m001 Rabbit*Champernowne/exp(GAMMA(23/24)) 3141506411538284 r005 Re(z^2+c),c=23/106+19/41*I,n=52 3141506411593786 m001 Trott2nd/(polylog(4,1/2)^exp(-1/2*Pi)) 3141506413909694 a007 Real Root Of -225*x^4-603*x^3+248*x^2-522*x-868 3141506415380261 r005 Re(z^2+c),c=-19/56+15/34*I,n=40 3141506438925495 r009 Im(z^3+c),c=-16/31+13/27*I,n=9 3141506451318490 a007 Real Root Of 217*x^4+415*x^3-501*x^2+894*x-516 3141506464885025 b008 Pi*Cos[1/135] 3141506466461372 b008 Pi*Sech[1/135] 3141506469863064 r005 Im(z^2+c),c=-43/40+14/51*I,n=28 3141506469878910 k001 Champernowne real with 1923*n+1218 3141506483004162 r005 Im(z^2+c),c=39/122+5/13*I,n=28 3141506492792966 s001 sum(exp(-Pi/2)^n*A162689[n],n=1..infinity) 3141506501653739 b008 1/7+Pi*Erf[Sqrt[2]] 3141506508798939 r005 Re(z^2+c),c=-19/46+1/19*I,n=10 3141506511162205 r005 Re(z^2+c),c=-41/102+9/53*I,n=26 3141506513981532 h001 (4/5*exp(2)+3/4)/(1/6*exp(2)+8/9) 3141506519078657 m005 (1/6*Pi+3/4)/(7/10+3/2*5^(1/2)) 3141506522510255 r009 Re(z^3+c),c=-23/48+6/17*I,n=17 3141506525255972 b008 KelvinBei[0,Sqrt[Pi]/5] 3141506534633467 r005 Re(z^2+c),c=-17/42+5/34*I,n=18 3141506553702139 m001 (Catalan+sin(1/12*Pi))/Artin 3141506553702139 m001 (Catalan+sin(Pi/12))/Artin 3141506569898913 k001 Champernowne real with 1924*n+1217 3141506578969700 r005 Im(z^2+c),c=-8/31+30/61*I,n=10 3141506581818519 m004 3+25*Pi*Csch[Sqrt[5]*Pi]+Sech[Sqrt[5]*Pi] 3141506583226234 m004 3+2/E^(Sqrt[5]*Pi)+25*Pi*Csch[Sqrt[5]*Pi] 3141506584633952 m004 3+Csch[Sqrt[5]*Pi]+25*Pi*Csch[Sqrt[5]*Pi] 3141506593678181 m001 (Landau+MertensB2)/(Champernowne-Kac) 3141506603010348 a007 Real Root Of -144*x^4-445*x^3-267*x^2-606*x+960 3141506605533507 r009 Re(z^3+c),c=-10/19+25/51*I,n=29 3141506625985009 r005 Im(z^2+c),c=7/110+9/17*I,n=7 3141506626243008 s001 sum(exp(-Pi/2)^(n-1)*A036364[n],n=1..infinity) 3141506634616846 b008 -14/E^12+Pi 3141506637477957 r009 Im(z^3+c),c=-47/110+5/23*I,n=26 3141506645843856 m002 -Pi+(3*Csch[Pi])/Pi^7 3141506654813577 a007 Real Root Of 150*x^4-862*x^3+583*x^2-698*x-305 3141506669918916 k001 Champernowne real with 1925*n+1216 3141506674328290 a007 Real Root Of 678*x^4+254*x^3+924*x^2+178*x-34 3141506674615810 m001 (-QuadraticClass+ZetaQ(2))/(2^(1/3)+exp(1/Pi)) 3141506677662752 m001 exp(GAMMA(11/12))^2*CopelandErdos^2/Zeta(1/2) 3141506681470371 r005 Im(z^2+c),c=-13/50+25/51*I,n=55 3141506682225617 r005 Re(z^2+c),c=-49/122+6/35*I,n=19 3141506698341774 r005 Im(z^2+c),c=-43/122+6/11*I,n=55 3141506704450843 r005 Im(z^2+c),c=-3/16+27/61*I,n=10 3141506730943327 r005 Re(z^2+c),c=19/70+4/45*I,n=16 3141506747108095 r009 Re(z^3+c),c=-65/122+17/44*I,n=48 3141506763025372 s002 sum(A209283[n]/(n*2^n+1),n=1..infinity) 3141506763256208 r009 Im(z^3+c),c=-7/48+34/45*I,n=43 3141506769938919 k001 Champernowne real with 1926*n+1215 3141506771100009 r005 Re(z^2+c),c=-11/40+29/50*I,n=19 3141506789832510 r009 Re(z^3+c),c=-1/24+19/52*I,n=11 3141506790628452 r005 Re(z^2+c),c=37/94+7/34*I,n=58 3141506794400023 r005 Re(z^2+c),c=-1/3+14/31*I,n=14 3141506799863605 m006 (1/3*Pi^2-3/5)/(4/5*Pi^2+2/3) 3141506799863605 m008 (1/3*Pi^2-3/5)/(4/5*Pi^2+2/3) 3141506799863605 m009 (5/12*Pi^2-3/4)/(Pi^2+5/6) 3141506806458396 m002 -6/(E^Pi*Pi^7)+Pi 3141506811231581 q001 113/3597 3141506820197349 a007 Real Root Of -192*x^4-815*x^3-846*x^2-867*x-942 3141506826698109 r005 Re(z^2+c),c=-11/31+20/51*I,n=58 3141506832730711 m001 (Cahen-Riemann1stZero)^TreeGrowth2nd 3141506833002228 m001 cos(Pi/5)^2*ln(MinimumGamma)^2*gamma^2 3141506869533005 r002 53th iterates of z^2 + 3141506869958922 k001 Champernowne real with 1927*n+1214 3141506874974936 r005 Im(z^2+c),c=13/114+1/43*I,n=7 3141506881310538 l006 ln(3197/4377) 3141506901229384 v003 sum((4*n^3-14*n^2+31*n-2)/n^n,n=1..infinity) 3141506909408730 s002 sum(A168146[n]/(n^3*pi^n+1),n=1..infinity) 3141506912368429 a009 6^(3/4)*(10^(1/3)+11^(3/4)) 3141506925367328 m001 (-cos(1)+arctan(1/2))/(exp(Pi)+2^(1/3)) 3141506926692179 m008 (3/5*Pi^3-3/4)/(2*Pi-3/5) 3141506931246610 a007 Real Root Of 252*x^4+517*x^3-808*x^2-97*x-846 3141506937087634 r002 4th iterates of z^2 + 3141506947835593 r005 Im(z^2+c),c=35/106+11/58*I,n=13 3141506958647242 l006 ln(310/7173) 3141506966474177 m002 -Pi+(3*Sech[Pi])/Pi^7 3141506969978925 k001 Champernowne real with 1928*n+1213 3141506976107434 m005 (1/3*Catalan-1/3)/(4/11*Zeta(3)+5/11) 3141506984315721 m001 Pi-ZetaQ(4)^MinimumGamma 3141506985535664 m005 (2/3*Catalan-5)/(19/20+1/5*5^(1/2)) 3141506987608319 m002 4/Pi^2+Pi^3+ProductLog[Pi]/Pi^5 3141507020251482 a007 Real Root Of -186*x^4+923*x^3-923*x^2+628*x-133 3141507027211143 m005 (1/3*5^(1/2)+3/7)/(2*3^(1/2)+3/11) 3141507044251138 m001 GAMMA(17/24)/Rabbit^2/exp(GAMMA(5/24)) 3141507053118388 a007 Real Root Of 171*x^4+218*x^3-986*x^2+321*x+843 3141507069889041 m006 (1/4*ln(Pi)-2)/(2/3/Pi+1/3) 3141507069998928 k001 Champernowne real with 1929*n+1212 3141507083148502 r005 Re(z^2+c),c=-19/50+18/61*I,n=42 3141507084116979 m005 (1/2*5^(1/2)-3/11)/(5/8*Pi+8/11) 3141507086095690 m001 2^(1/3)*(Riemann3rdZero-ZetaP(4)) 3141507089120041 m008 (1/6*Pi^5-2/5)/(5*Pi+2/5) 3141507092752081 a001 322/1346269*121393^(5/12) 3141507092770193 a001 322/165580141*12586269025^(5/12) 3141507092770193 a001 322/1836311903*4052739537881^(5/12) 3141507092770195 a001 161/7465176*39088169^(5/12) 3141507109125424 s002 sum(A276952[n]/(n^2*pi^n-1),n=1..infinity) 3141507110119232 k002 Champernowne real with 114*n^2-204*n+93 3141507120917186 r009 Re(z^3+c),c=-45/106+15/44*I,n=9 3141507125317330 m001 1/Niven/exp(FeigenbaumAlpha)*cos(Pi/5)^2 3141507132412534 k007 concat of cont frac of 3141507156212600 r005 Im(z^2+c),c=-13/34+22/37*I,n=16 3141507170018931 k001 Champernowne real with 1930*n+1211 3141507190722818 a001 987/54018521*18^(3/16) 3141507208971164 r005 Re(z^2+c),c=-17/40+14/53*I,n=2 3141507219260605 a001 12752043/34*701408733^(5/23) 3141507220400572 a001 70711162/17*10946^(5/23) 3141507224832784 b008 Pi-ExpIntegralE[4,7] 3141507232274544 r005 Re(z^2+c),c=-11/31+20/51*I,n=61 3141507232852205 r009 Im(z^3+c),c=-11/23+6/35*I,n=22 3141507233322561 m001 (Grothendieck+RenyiParking)/(Thue-ZetaQ(2)) 3141507234227087 r005 Re(z^2+c),c=-7/9+2/61*I,n=58 3141507235367028 m001 Lehmer^2*exp(FeigenbaumDelta)*Catalan^2 3141507236070135 r002 23th iterates of z^2 + 3141507270038934 k001 Champernowne real with 1931*n+1210 3141507274372265 r005 Im(z^2+c),c=43/126+13/37*I,n=58 3141507275786737 a007 Real Root Of -828*x^4+377*x^3-588*x^2+510*x+238 3141507280343362 r009 Re(z^3+c),c=-11/58+37/40*I,n=56 3141507281040570 a007 Real Root Of -95*x^4+828*x^3+180*x^2+662*x-21 3141507300559602 m001 Bloch/(Si(Pi)^TwinPrimes) 3141507307256611 r005 Im(z^2+c),c=-23/18+1/79*I,n=48 3141507325118758 m001 (Lehmer-OneNinth)/(Porter+ZetaP(4)) 3141507326006239 a007 Real Root Of -185*x^4-437*x^3+331*x^2-427*x-138 3141507333999709 l006 ln(9181/9474) 3141507343026982 s002 sum(A038487[n]/((10^n+1)/n),n=1..infinity) 3141507344027816 m001 GAMMA(5/6)/Kolakoski/ZetaP(2) 3141507344074156 a007 Real Root Of -334*x^4+246*x^3-992*x^2+284*x+198 3141507346430614 l006 ln(4912/6725) 3141507368242495 a007 Real Root Of 38*x^4-450*x^3-11*x^2-921*x+304 3141507370058937 k001 Champernowne real with 1932*n+1209 3141507373019022 m001 2^(1/3)+5^(1/2)*sin(1) 3141507373019022 m001 sqrt(5)*sin(1)+(2^(1/3)) 3141507411800692 s002 sum(A081609[n]/(n^2*pi^n-1),n=1..infinity) 3141507420415351 h001 (-7*exp(1)-6)/(-12*exp(2)+9) 3141507438824981 m001 Zeta(7)^2*ln(Sierpinski)^2/cos(1)^2 3141507438998285 m001 GAMMA(1/4)^2*exp(Rabbit)*sinh(1) 3141507440243588 r005 Im(z^2+c),c=-16/23+13/46*I,n=11 3141507444679024 m005 (1/2*Pi+3/7)/(2^(1/2)-7/9) 3141507447035405 a007 Real Root Of -199*x^4+726*x^3-200*x^2+948*x+342 3141507470078940 k001 Champernowne real with 1933*n+1208 3141507470986763 m008 (1/2*Pi^4+1/4)/(5*Pi^3+4/5) 3141507477431047 r005 Re(z^2+c),c=1/52+31/50*I,n=15 3141507492124654 r005 Im(z^2+c),c=-35/94+27/46*I,n=53 3141507504137340 r005 Im(z^2+c),c=-13/36+21/40*I,n=61 3141507517265905 m001 Backhouse/(HeathBrownMoroz^Si(Pi)) 3141507532027935 m001 (2^(1/2)-ln(3))/(-exp(1/exp(1))+BesselJ(1,1)) 3141507535554928 a009 22/(7^(2/3)+5^(3/4)) 3141507538009530 r005 Im(z^2+c),c=-23/98+12/25*I,n=41 3141507558707685 m001 (2^(1/2)+5^(1/2))/(-Landau+Niven) 3141507570098943 k001 Champernowne real with 1934*n+1207 3141507570814020 l006 ln(6627/9073) 3141507571918094 m001 MadelungNaCl^2*Bloch^2*exp(BesselJ(0,1))^2 3141507579360872 r009 Re(z^3+c),c=-25/86+1/28*I,n=2 3141507582320870 r005 Im(z^2+c),c=-5/4+2/251*I,n=58 3141507595149005 r005 Im(z^2+c),c=-75/58+30/59*I,n=3 3141507602471071 a007 Real Root Of 232*x^4+911*x^3+629*x^2-891*x-316 3141507622303797 m008 (4*Pi^6-3/5)/(1/5*Pi^2-3/4) 3141507625675425 a007 Real Root Of 504*x^4+467*x^3-611*x^2-621*x+236 3141507631526032 a007 Real Root Of -773*x^4+845*x^3+483*x^2+229*x+58 3141507647263569 r002 2th iterates of z^2 + 3141507653372304 m001 (Weierstrass+ZetaQ(2))/(1-FeigenbaumD) 3141507666115662 r005 Im(z^2+c),c=11/56+12/49*I,n=12 3141507667403742 h001 (3/8*exp(1)+1/6)/(5/11*exp(2)+5/12) 3141507670118946 k001 Champernowne real with 1935*n+1206 3141507700083448 m001 GAMMA(2/3)+GAMMA(19/24)^GAMMA(1/4) 3141507708174285 r005 Re(z^2+c),c=-7/17+3/56*I,n=23 3141507708573209 r009 Re(z^3+c),c=-41/98+19/59*I,n=19 3141507709444354 m004 -100*Pi+(15*Csch[Sqrt[5]*Pi])/Pi 3141507709511567 m004 -30/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141507709578781 m004 -100*Pi+(15*Sech[Sqrt[5]*Pi])/Pi 3141507722776882 r009 Re(z^3+c),c=-10/19+25/51*I,n=59 3141507724379494 m001 1/Catalan*ln(BesselJ(0,1))*Zeta(5)^2 3141507727700432 b008 Pi*Cos[1/136] 3141507728525409 m005 (27/44+1/4*5^(1/2))/(4/5*Catalan+3) 3141507729230925 b008 Pi*Sech[1/136] 3141507733223168 r005 Re(z^2+c),c=-63/62+8/59*I,n=30 3141507741585535 a001 646/35355581*18^(3/16) 3141507742415846 m001 1/BesselK(0,1)^2/Paris*ln(sqrt(3)) 3141507747091944 r005 Im(z^2+c),c=-41/114+21/38*I,n=60 3141507748582200 m001 (sin(1/5*Pi)+ln(5))/(Champernowne+Stephens) 3141507750289654 a007 Real Root Of 330*x^4+730*x^3-729*x^2+468*x-844 3141507764494794 l006 ln(173/4003) 3141507764494794 p004 log(4003/173) 3141507767446118 r009 Im(z^3+c),c=-7/36+11/34*I,n=6 3141507770138949 k001 Champernowne real with 1936*n+1205 3141507771644540 r002 21th iterates of z^2 + 3141507775037102 r009 Re(z^3+c),c=-18/31+8/47*I,n=4 3141507775765441 r005 Re(z^2+c),c=9/106+7/32*I,n=11 3141507783702636 r005 Re(z^2+c),c=41/106+19/42*I,n=7 3141507812325778 r009 Im(z^3+c),c=-15/86+19/58*I,n=11 3141507813658327 m001 Pi+gamma(2)*ZetaQ(3) 3141507818510884 m001 (LambertW(1)-Zeta(5))/(Zeta(1/2)+Otter) 3141507821955322 a001 6765/370248451*18^(3/16) 3141507823439721 a007 Real Root Of -561*x^4-189*x^3+796*x^2+464*x-213 3141507823563046 m005 (1/2*Catalan+4/11)/(2/5*3^(1/2)-2/3) 3141507828449875 r005 Im(z^2+c),c=-31/118+28/57*I,n=53 3141507833681116 a001 17711/969323029*18^(3/16) 3141507835391887 a001 11592/634430159*18^(3/16) 3141507835641485 a001 121393/6643838879*18^(3/16) 3141507835677901 a001 10959/599786069*18^(3/16) 3141507835683214 a001 208010/11384387281*18^(3/16) 3141507835683989 a001 2178309/119218851371*18^(3/16) 3141507835684102 a001 5702887/312119004989*18^(3/16) 3141507835684118 a001 3732588/204284540899*18^(3/16) 3141507835684121 a001 39088169/2139295485799*18^(3/16) 3141507835684121 a001 102334155/5600748293801*18^(3/16) 3141507835684121 a001 10946/599074579*18^(3/16) 3141507835684121 a001 433494437/23725150497407*18^(3/16) 3141507835684121 a001 165580141/9062201101803*18^(3/16) 3141507835684121 a001 31622993/1730726404001*18^(3/16) 3141507835684122 a001 24157817/1322157322203*18^(3/16) 3141507835684128 a001 9227465/505019158607*18^(3/16) 3141507835684172 a001 1762289/96450076809*18^(3/16) 3141507835684468 a001 1346269/73681302247*18^(3/16) 3141507835686497 a001 514229/28143753123*18^(3/16) 3141507835700407 a001 98209/5374978561*18^(3/16) 3141507835795745 a001 75025/4106118243*18^(3/16) 3141507836449201 a001 28657/1568397607*18^(3/16) 3141507840928056 a001 5473/299537289*18^(3/16) 3141507842041448 a007 Real Root Of 92*x^4+202*x^3-470*x^2-647*x-92 3141507847352402 a007 Real Root Of 331*x^4+999*x^3-218*x^2-419*x-431 3141507850740774 m001 ln(RenyiParking)/MertensB1^2/GAMMA(2/3) 3141507870158952 k001 Champernowne real with 1937*n+1204 3141507871626583 a001 4181/228826127*18^(3/16) 3141507872900165 r005 Re(z^2+c),c=-157/126+10/41*I,n=6 3141507876953581 a007 Real Root Of 257*x^4+744*x^3-107*x^2+160*x-406 3141507885346130 m005 (1/3*3^(1/2)-1/10)/(9/10*gamma+1) 3141507886211686 m001 FeigenbaumB/Zeta(1,-1)*GolombDickman 3141507895638609 m005 (19/42+1/6*5^(1/2))/(1/7*Zeta(3)+1/11) 3141507905493246 r005 Im(z^2+c),c=6/19+4/35*I,n=59 3141507925867207 m002 -3/(5*E^Pi*Pi^5)+Pi 3141507928498103 b008 Pi*ModularLambda[(2*I)/15*Sqrt[Pi]] 3141507941931122 a001 199/89*2^(26/53) 3141507960257637 m001 CopelandErdos/BesselI(0,1)/Lehmer 3141507961728131 a001 7/233*196418^(55/58) 3141507970178955 k001 Champernowne real with 1938*n+1203 3141507975405725 b008 Pi*Erf[1/4+E] 3141507976273917 m001 (-Ei(1)+exp(-1/2*Pi))/(Psi(2,1/3)+2^(1/2)) 3141507978965980 s002 sum(A259330[n]/((exp(n)+1)*n),n=1..infinity) 3141507978965980 s002 sum(A001537[n]/((exp(n)+1)*n),n=1..infinity) 3141507983617122 m001 Salem/LandauRamanujan2nd/Cahen 3141507990598593 r005 Re(z^2+c),c=-29/78+2/23*I,n=3 3141508004145377 a007 Real Root Of 211*x^4+386*x^3-729*x^2+354*x-277 3141508013377210 m001 (sin(1)+ln(5))/(HeathBrownMoroz+ZetaP(4)) 3141508013536871 m002 Pi-Log[Pi]/(6*E^Pi*Pi^4) 3141508025731177 r002 25th iterates of z^2 + 3141508026466433 a007 Real Root Of 710*x^4-462*x^3-665*x^2-280*x+161 3141508030101154 m006 (1/5*ln(Pi)+2/3)/(1/3*ln(Pi)-2/3) 3141508035860707 r009 Re(z^3+c),c=-3/22+33/47*I,n=10 3141508040074903 r009 Im(z^3+c),c=-29/60+29/57*I,n=60 3141508043166645 r005 Im(z^2+c),c=-31/122+20/41*I,n=61 3141508043469207 a007 Real Root Of 301*x^4+729*x^3-602*x^2+389*x+448 3141508060906580 a001 7/199*(1/2*5^(1/2)+1/2)^4*199^(1/20) 3141508070198958 k001 Champernowne real with 1939*n+1202 3141508076175677 a001 233/4870847*18^(28/43) 3141508077045487 a007 Real Root Of 30*x^4+928*x^3-476*x^2-692*x-51 3141508080919094 m001 (-Niven+Totient)/(sin(1)+arctan(1/3)) 3141508082037418 a001 1597/87403803*18^(3/16) 3141508108292701 a003 cos(Pi*16/85)*cos(Pi*32/85) 3141508110419292 k002 Champernowne real with 229/2*n^2-411/2*n+94 3141508117923559 m001 polylog(4,1/2)^exp(Pi)*Catalan^exp(Pi) 3141508120179878 r005 Im(z^2+c),c=-7/26+18/37*I,n=23 3141508130494697 m001 1/Lehmer^2/ErdosBorwein^2*ln(Niven)^2 3141508138381655 m001 (Bloch+Porter)/(BesselJ(1,1)-Shi(1)) 3141508142480237 m005 (1/2*Zeta(3)-5/12)/(1/9*exp(1)-8/9) 3141508142866456 m002 -2/Pi^6+2*ProductLog[Pi]+Tanh[Pi] 3141508143456507 r005 Re(z^2+c),c=-45/106+19/46*I,n=8 3141508146053449 m001 (Pi^(1/2)-Tetranacci)/(TreeGrowth2nd+ZetaQ(2)) 3141508153223617 a007 Real Root Of -255*x^4-545*x^3+816*x^2+103*x+210 3141508157542773 m001 1/OneNinth/ErdosBorwein/ln(Zeta(3)) 3141508159467531 r009 Im(z^3+c),c=-5/29+16/19*I,n=54 3141508165372734 r005 Im(z^2+c),c=-3/13+11/23*I,n=46 3141508165733232 m005 (1/2*gamma-8/11)/(11/12*Catalan-7/10) 3141508168889343 m001 HeathBrownMoroz^(2^(1/2))-Pi 3141508170218961 k001 Champernowne real with 1940*n+1201 3141508174418101 a001 121393/18*7^(34/43) 3141508178394212 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(Pi^6*Log[Pi]) 3141508182861680 r005 Re(z^2+c),c=-11/31+20/51*I,n=63 3141508183958085 r005 Im(z^2+c),c=13/48+10/57*I,n=26 3141508201416817 a001 75025/2207*29^(35/53) 3141508201717722 a007 Real Root Of -244*x^4-655*x^3+555*x^2+336*x-964 3141508202131580 m008 (4/5*Pi-1/4)/(3/4*Pi^6-3/5) 3141508202978876 m002 -Pi^5+Pi*Csch[Pi]-Pi^4*Sech[Pi] 3141508204728592 m002 -Pi+(E^Pi*ProductLog[Pi])/Pi^11 3141508208331050 m005 (1/2*exp(1)+9/10)/(2/9*5^(1/2)+2/9) 3141508213479467 l006 ln(1715/2348) 3141508221255823 r005 Re(z^2+c),c=13/56+14/27*I,n=15 3141508226079532 m002 Pi^3+(3*Pi*Coth[Pi])/E^Pi 3141508227519117 h001 (8/11*exp(2)+3/10)/(1/3*exp(1)+9/10) 3141508236040468 a007 Real Root Of 452*x^4+785*x^3+826*x^2+126*x-22 3141508237101363 m001 1/Catalan^3*exp(log(1+sqrt(2))) 3141508238951902 r005 Im(z^2+c),c=-27/58+20/41*I,n=38 3141508261122237 a007 Real Root Of -156*x^4-332*x^3+629*x^2+422*x+19 3141508267830532 a007 Real Root Of 69*x^4-794*x^3+798*x^2-983*x+254 3141508270238964 k001 Champernowne real with 1941*n+1200 3141508285280348 a001 2584/11*2^(13/31) 3141508296959634 a007 Real Root Of -988*x^4-495*x^3+598*x^2+350*x-144 3141508297701204 r005 Re(z^2+c),c=-8/31+17/29*I,n=33 3141508312640388 m001 (arctan(1/3)+Artin)/(FeigenbaumKappa+Thue) 3141508327578658 a007 Real Root Of 300*x^4-188*x^3+355*x^2-319*x-144 3141508331251891 m005 (1/3*Pi-2/3)/(-1/2+5/18*5^(1/2)) 3141508336503566 m001 (-Kac+Sierpinski)/(ln(2)/ln(10)+FellerTornier) 3141508336730120 m001 gamma/(RenyiParking-Sierpinski) 3141508344100954 m001 ln(CareFree)*Conway^2/Ei(1) 3141508351380728 m001 (PolyaRandomWalk3D+Sarnak)/(Catalan-gamma) 3141508354498857 m001 GAMMA(17/24)*(Ei(1)-ln(gamma)) 3141508354498857 m001 GAMMA(17/24)*(Ei(1)-log(gamma)) 3141508356590575 a007 Real Root Of -300*x^4-875*x^3+17*x^2-894*x-885 3141508368738550 r005 Re(z^2+c),c=-69/58+36/49*I,n=2 3141508370258967 k001 Champernowne real with 1942*n+1199 3141508415575640 b008 4/3+EulerGamma+ArcSec[3] 3141508418454372 l006 ln(382/8839) 3141508422245797 m001 (-Tribonacci+ZetaP(2))/(3^(1/2)+FeigenbaumD) 3141508432274378 m005 (1/2*exp(1)-7/10)/(5/7*Catalan-4/9) 3141508433047171 r009 Im(z^3+c),c=-1/11+16/47*I,n=3 3141508446401199 r005 Im(z^2+c),c=-1/27+16/41*I,n=22 3141508450294077 a001 76/5*610^(17/36) 3141508450367642 a007 Real Root Of -305*x^4-767*x^3+244*x^2-803*x+996 3141508450401357 m001 ln(ArtinRank2*ReciprocalLucas) 3141508470278970 k001 Champernowne real with 1943*n+1198 3141508472027057 l006 ln(9275/9571) 3141508485440998 m001 (Artin-Robbin)/Catalan 3141508491862865 r005 Im(z^2+c),c=-19/14+6/197*I,n=18 3141508493311302 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(Pi^6*Log[Pi]) 3141508497824867 r005 Im(z^2+c),c=-33/62+18/37*I,n=44 3141508505700463 m005 (1/2*3^(1/2)-6/11)/(155/176+1/16*5^(1/2)) 3141508508390423 m001 Pi*Psi(1,1/3)-sin(1)+cos(1) 3141508540962290 r005 Re(z^2+c),c=2/9+28/59*I,n=37 3141508552693248 r009 Re(z^3+c),c=-45/86+24/49*I,n=38 3141508557136072 m001 (5^(1/2)-Rabbit*ZetaQ(3))/Rabbit 3141508564378190 r005 Re(z^2+c),c=-11/31+20/51*I,n=64 3141508568455684 p003 LerchPhi(1/256,6,157/190) 3141508570298973 k001 Champernowne real with 1944*n+1197 3141508587518178 m001 1/Kolakoski/ln(Conway)*Robbin 3141508587817329 r005 Im(z^2+c),c=-13/38+3/62*I,n=24 3141508591133684 m001 sin(Pi/5)^(GAMMA(7/24)/sqrt(2)) 3141508594207693 m001 (3^(1/3)+MadelungNaCl*MertensB2)/MertensB2 3141508605473880 a007 Real Root Of 597*x^4-664*x^3+482*x^2-445*x+107 3141508605727787 a003 cos(Pi*37/93)*sin(Pi*41/87) 3141508630387317 a003 cos(Pi*21/80)-sin(Pi*55/119) 3141508637195470 r009 Re(z^3+c),c=-23/122+57/58*I,n=34 3141508637436303 m005 (1/2*Pi-1/9)/(1/4*2^(1/2)-5) 3141508650228071 r004 Re(z^2+c),c=9/26+18/23*I,z(0)=I,n=3 3141508651265615 b008 8-(29*E)/2 3141508651265615 v003 sum((1/2*n^2+11/2*n+8)/n!,n=1..infinity) 3141508658681905 r005 Re(z^2+c),c=29/90+9/22*I,n=28 3141508660602519 m001 Paris^GAMMA(3/4)*BesselK(1,1)^GAMMA(3/4) 3141508670318976 k001 Champernowne real with 1945*n+1196 3141508671168279 r005 Re(z^2+c),c=-11/31+20/51*I,n=59 3141508671974380 m004 -100*Pi*Coth[Sqrt[5]*Pi]+5*Csch[Sqrt[5]*Pi] 3141508672115152 m004 -100*Pi*Coth[Sqrt[5]*Pi]+5*Sech[Sqrt[5]*Pi] 3141508673647461 m005 (1/2*3^(1/2)-8/11)/(1/5*5^(1/2)-8/9) 3141508687634765 a007 Real Root Of -11*x^4+733*x^3-745*x^2-103*x+64 3141508698325379 m001 GAMMA(11/12)+GolombDickman+MinimumGamma 3141508704439352 r005 Re(z^2+c),c=-19/50+8/27*I,n=22 3141508708305321 a007 Real Root Of 256*x^4+595*x^3-528*x^2+367*x-123 3141508712509206 m001 (ln(5)-Zeta(1/2))/(GAMMA(13/24)-LaplaceLimit) 3141508719648598 r004 Re(z^2+c),c=1/3+3/22*I,z(0)=exp(5/8*I*Pi),n=37 3141508725332493 m005 (1/2*gamma-8/9)/(5/6*Zeta(3)+10/11) 3141508730571661 p004 log(33829/24709) 3141508731401750 r005 Im(z^2+c),c=-11/40+30/61*I,n=28 3141508735505295 m004 -1+1000*Pi+Tan[Sqrt[5]*Pi] 3141508737087829 m004 -1000*Pi-Tan[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141508743665223 m001 (exp(-1/2*Pi)+ZetaP(4))/(Psi(1,1/3)-Zeta(5)) 3141508745532008 a003 cos(Pi*31/111)*cos(Pi*36/107) 3141508751160141 r009 Im(z^3+c),c=-11/18+19/64*I,n=45 3141508752184245 a001 98209/2889*29^(35/53) 3141508760122215 r002 57th iterates of z^2 + 3141508761004956 m001 (Stephens-Trott)/(LandauRamanujan+MertensB2) 3141508765531782 m002 -Pi+Csch[Pi]/(Pi^6*ProductLog[Pi]) 3141508770338979 k001 Champernowne real with 1946*n+1195 3141508787932817 b008 -1/4*1/E^8+Pi 3141508800347382 a007 Real Root Of 89*x^4-555*x^3-894*x^2-965*x-233 3141508801624247 m008 (5*Pi^6+1/2)/(5*Pi^5+1/5) 3141508806817975 r005 Im(z^2+c),c=15/82+11/43*I,n=21 3141508811892478 r005 Im(z^2+c),c=-5/54+54/55*I,n=7 3141508812415111 k007 concat of cont frac of 3141508813922672 l006 ln(7093/9711) 3141508815712388 a001 11/5*86267571272^(13/14) 3141508832540146 a001 514229/15127*29^(35/53) 3141508832933423 m001 (-Conway+ReciprocalLucas)/(1+ln(3)) 3141508844263915 a001 1346269/39603*29^(35/53) 3141508847031521 a001 2178309/64079*29^(35/53) 3141508850442917 r002 54th iterates of z^2 + 3141508851509602 a001 208010/6119*29^(35/53) 3141508860950086 r005 Re(z^2+c),c=4/19+26/57*I,n=23 3141508870358982 k001 Champernowne real with 1947*n+1194 3141508870612005 r005 Im(z^2+c),c=-47/52+13/53*I,n=4 3141508876147790 r005 Re(z^2+c),c=-19/56+10/39*I,n=4 3141508882202826 a001 317811/9349*29^(35/53) 3141508919397002 r005 Re(z^2+c),c=-43/110+5/28*I,n=8 3141508922187926 m002 -Pi+2/(E^Pi*Pi^6*ProductLog[Pi]) 3141508951514950 r005 Re(z^2+c),c=-137/126+7/23*I,n=6 3141508959769872 l006 ln(209/4836) 3141508970378985 k001 Champernowne real with 1948*n+1193 3141508973932399 r009 Im(z^3+c),c=-19/42+10/51*I,n=23 3141509005399068 l006 ln(5378/7363) 3141509027389941 a007 Real Root Of 221*x^4+419*x^3-961*x^2-146*x+491 3141509040659831 a007 Real Root Of 411*x^4-496*x^3+603*x^2-255*x-159 3141509046444977 r005 Im(z^2+c),c=-11/8+5/222*I,n=14 3141509066481479 r005 Re(z^2+c),c=-83/86+1/16*I,n=12 3141509067055198 m005 (1/2*Zeta(3)-7/12)/(7/11*gamma-6) 3141509070398988 k001 Champernowne real with 1949*n+1192 3141509078260068 m002 -Pi+Sech[Pi]/(Pi^6*ProductLog[Pi]) 3141509079739377 m006 (3/4*ln(Pi)+2/5)/(3/4*exp(2*Pi)-1) 3141509080091288 a007 Real Root Of 84*x^4-417*x^3-517*x^2-281*x-51 3141509092577332 a001 121393/3571*29^(35/53) 3141509101367622 a005 (1/sin(65/181*Pi))^284 3141509110719352 k002 Champernowne real with 115*n^2-207*n+95 3141509115038767 m001 (BesselI(1,2)-BesselJ(0,1))/(-Gompertz+Thue) 3141509131959450 m001 Magata/sin(1)*StronglyCareFree 3141509136059837 a008 Real Root of x^4-43*x^2-21*x+261 3141509136882382 m001 1/exp(Riemann3rdZero)^2*Porter/log(1+sqrt(2)) 3141509138466810 m001 Ei(1,1)^(OrthogonalArrays/Tribonacci) 3141509145085842 b008 -5/E^11+Pi 3141509156160985 b008 Pi*ModularLambda[I*(-2+Sqrt[5])] 3141509156714573 m001 FeigenbaumD*exp(Riemann1stZero)/Trott^2 3141509158435944 s001 sum(exp(-Pi/2)^n*A067418[n],n=1..infinity) 3141509160377844 r005 Im(z^2+c),c=-17/82+15/29*I,n=14 3141509170418991 k001 Champernowne real with 1950*n+1191 3141509194614036 a007 Real Root Of 505*x^4+448*x^3-380*x^2-514*x-115 3141509198879428 m001 TwinPrimes/exp(Si(Pi))^2*GAMMA(11/24) 3141509202449583 r005 Re(z^2+c),c=35/106+7/57*I,n=54 3141509223496630 r005 Re(z^2+c),c=-19/50+18/61*I,n=40 3141509230324909 b008 3+43*(5+Sqrt[5]) 3141509234203744 p001 sum((-1)^n/(368*n+267)/(2^n),n=0..infinity) 3141509236906652 a003 sin(Pi*1/25)*sin(Pi*5/62) 3141509247138076 m005 (1/2*gamma-5/9)/(64/99+1/11*5^(1/2)) 3141509251204158 p001 sum(1/(565*n+322)/(32^n),n=0..infinity) 3141509259431697 a003 cos(Pi*5/52)/cos(Pi*47/117) 3141509266884367 h001 (3/4*exp(2)+3/5)/(2/3*exp(1)+1/7) 3141509270438994 k001 Champernowne real with 1951*n+1190 3141509273136819 r005 Re(z^2+c),c=-37/90+4/59*I,n=25 3141509279118010 m002 -Pi^3+ProductLog[Pi]/Pi^2-6*Sech[Pi] 3141509283399924 r005 Im(z^2+c),c=-10/21+3/56*I,n=29 3141509289038108 r005 Im(z^2+c),c=-17/50+23/44*I,n=53 3141509306767349 s002 sum(A241864[n]/(n^2*exp(n)+1),n=1..infinity) 3141509316118312 m001 (GlaisherKinkelin-Porter)/(Tetranacci-Totient) 3141509328532172 m004 (7*Sqrt[5]*Pi)/2+125*Pi*Cos[Sqrt[5]*Pi] 3141509330307971 r005 Re(z^2+c),c=-51/118+2/53*I,n=6 3141509342977283 r002 10th iterates of z^2 + 3141509358414093 r005 Re(z^2+c),c=-1/31+25/47*I,n=2 3141509360747646 r005 Im(z^2+c),c=19/78+11/54*I,n=23 3141509370458997 k001 Champernowne real with 1952*n+1189 3141509372992426 m001 ArtinRank2^(GAMMA(7/12)/PlouffeB) 3141509376172215 l006 ln(3663/5015) 3141509381709725 m001 1/Khintchine*ln(MertensB1)^2/Zeta(1/2)^2 3141509389822527 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(Pi^6*ProductLog[Pi]) 3141509404021992 a001 843/34*5^(5/34) 3141509417425505 r009 Re(z^3+c),c=-6/13+31/61*I,n=63 3141509418097892 m008 (3*Pi^6-3/5)/(3*Pi^5-1/6) 3141509428686403 r009 Im(z^3+c),c=-37/78+11/63*I,n=57 3141509432907446 m001 (BesselI(1,1)-Psi(2,1/3))/(Gompertz+Salem) 3141509433962264 q001 333/1060 3141509446055971 a001 3/47*9349^(53/57) 3141509455825386 r005 Im(z^2+c),c=39/110+16/59*I,n=16 3141509461468869 r009 Im(z^3+c),c=-35/58+5/22*I,n=25 3141509470479000 k001 Champernowne real with 1953*n+1188 3141509479476172 a001 3/47*119218851371^(1/3) 3141509491603284 a001 3/47*15127^(53/60) 3141509492085724 m001 (Bloch+Khinchin*MertensB2)/MertensB2 3141509494838089 m005 (1/3*5^(1/2)-1/2)/(5/6*gamma+3/10) 3141509495818035 r005 Im(z^2+c),c=19/58+4/41*I,n=62 3141509505818704 m001 (Pi-gamma)/(cos(1/12*Pi)-Grothendieck) 3141509506237958 m001 (FeigenbaumAlpha-Kolakoski*ZetaQ(3))/Kolakoski 3141509512928941 r005 Im(z^2+c),c=-39/110+17/30*I,n=32 3141509521111182 k007 concat of cont frac of 3141509524214735 a001 305/16692641*18^(3/16) 3141509526008546 a003 sin(Pi*5/72)/cos(Pi*8/31) 3141509526397671 r005 Re(z^2+c),c=7/25+26/55*I,n=37 3141509530100118 m001 (-Grothendieck+Niven)/(2^(1/2)+Zeta(5)) 3141509543693699 a007 Real Root Of 317*x^4+869*x^3-199*x^2+630*x+10 3141509546036228 m001 1/FeigenbaumB*exp(ArtinRank2)^2/cosh(1) 3141509552981140 h001 (-exp(3)-4)/(-12*exp(2)+12) 3141509570499003 k001 Champernowne real with 1954*n+1187 3141509571832240 a001 3/47*5778^(53/54) 3141509583551089 a009 1/7*(7^(1/3)*4^(2/3)+2^(1/4))*7^(2/3) 3141509587218536 l006 ln(9369/9668) 3141509588783213 a007 Real Root Of -970*x^4-216*x^3+763*x^2+738*x-291 3141509593112255 r005 Im(z^2+c),c=-51/86+3/52*I,n=52 3141509608034210 a001 9349/233*6765^(7/30) 3141509629206090 m005 (1/2*2^(1/2)+7/8)/(2/5*gamma+3/11) 3141509640920158 l004 Pi/cosh(151/20*Pi) 3141509640920158 l004 Pi/sinh(151/20*Pi) 3141509643984288 a007 Real Root Of -733*x^4+119*x^3+689*x^2+463*x-210 3141509658399799 r009 Re(z^3+c),c=-10/23+31/57*I,n=6 3141509660555574 h001 (2/5*exp(2)+5/6)/(1/3*exp(1)+3/10) 3141509666422511 h001 (5/7*exp(2)+7/11)/(5/12*exp(1)+3/4) 3141509670519006 k001 Champernowne real with 1955*n+1186 3141509675337223 m001 (HeathBrownMoroz-Lehmer)/(ln(2)-ln(2^(1/2)+1)) 3141509678605711 r005 Re(z^2+c),c=27/98+25/51*I,n=29 3141509682490811 r005 Re(z^2+c),c=-11/31+20/51*I,n=54 3141509682666784 r009 Re(z^3+c),c=-11/23+33/53*I,n=2 3141509685861368 s002 sum(A285502[n]/(n^2*pi^n+1),n=1..infinity) 3141509696081337 r005 Re(z^2+c),c=-7/20+20/49*I,n=50 3141509712573456 r009 Im(z^3+c),c=-23/52+8/39*I,n=40 3141509722726470 m005 (1/2*Zeta(3)-4/11)/(1/12*3^(1/2)-9/10) 3141509731548781 l006 ln(5611/7682) 3141509732320288 a007 Real Root Of -953*x^4+735*x^3+10*x^2+404*x+158 3141509734585849 r005 Re(z^2+c),c=-11/31+20/51*I,n=62 3141509738684257 s004 Continued Fraction of A033089 3141509738684257 s004 Continued fraction of A033089 3141509747689343 m005 (1/2*gamma+5/11)/(5/8*exp(1)+2/3) 3141509755229288 b008 -1/11*1/E^7+Pi 3141509758419982 a007 Real Root Of 9*x^4+259*x^3-716*x^2+912*x-626 3141509760424184 r009 Re(z^3+c),c=-67/118+7/45*I,n=9 3141509768808582 a003 cos(Pi*15/67)*cos(Pi*27/74) 3141509768965574 s002 sum(A259849[n]/((3*n+1)!),n=1..infinity) 3141509769533534 m001 (-MertensB3+RenyiParking)/(5^(1/2)-Artin) 3141509770539009 k001 Champernowne real with 1956*n+1185 3141509770987963 h001 (-9*exp(6)+2)/(-6*exp(3)+5) 3141509773361385 r005 Re(z^2+c),c=-11/31+20/51*I,n=60 3141509788940273 b008 ArcSin[(6*Pi)/61] 3141509803779576 l006 ln(245/5669) 3141509817731735 r005 Im(z^2+c),c=-145/118+7/38*I,n=6 3141509817831027 a001 2/6765*5^(2/53) 3141509820291808 a007 Real Root Of -620*x^4-18*x^3-770*x^2+963*x+384 3141509830968326 m001 (Otter+ZetaP(3))/(GAMMA(13/24)-Cahen) 3141509842947009 a005 (1/cos(17/169*Pi))^1428 3141509853510568 m005 (1/2*2^(1/2)-7/12)/(3/4*2^(1/2)-2/3) 3141509859514708 m001 (OneNinth+Thue)/(Si(Pi)+GAMMA(3/4)) 3141509870559012 k001 Champernowne real with 1957*n+1184 3141509880169748 m002 -1/(4*Pi^7)+Pi 3141509894753146 r005 Im(z^2+c),c=37/94+5/34*I,n=7 3141509908989278 r005 Re(z^2+c),c=-37/102+13/33*I,n=15 3141509918931464 r009 Re(z^3+c),c=-49/122+33/41*I,n=2 3141509922053206 m001 Pi-ZetaQ(4)^Porter 3141509939842028 r005 Re(z^2+c),c=-47/114+1/26*I,n=19 3141509948868323 m005 (1/2*2^(1/2)+4/9)/(1/12*3^(1/2)+2/9) 3141509953992795 p004 log(29101/28201) 3141509959348705 b008 ArcCot[3]^(1/3+E) 3141509963607007 a003 sin(Pi*11/103)*sin(Pi*25/62) 3141509970579015 k001 Champernowne real with 1958*n+1183 3141509971380990 a008 Real Root of x^2-x-99005 3141509982415794 r005 Re(z^2+c),c=-41/122+23/51*I,n=40 3141509983741997 r005 Im(z^2+c),c=-8/23+9/16*I,n=23 3141509991296172 h001 (-7*exp(3)-10)/(-9*exp(4)+12) 3141510012241766 m002 -Pi+(Csch[Pi]^2*ProductLog[Pi])/Pi^4 3141510022045405 a007 Real Root Of 163*x^4+163*x^3-902*x^2+922*x+976 3141510028517237 b008 -1/30*1/E^6+Pi 3141510050205800 r005 Im(z^2+c),c=3/52+20/59*I,n=12 3141510065085086 r005 Im(z^2+c),c=17/66+11/58*I,n=44 3141510068763379 a007 Real Root Of -271*x^4-956*x^3-292*x^2+41*x-234 3141510070599018 k001 Champernowne real with 1959*n+1182 3141510071100145 m005 (13/42+1/6*5^(1/2))/(2*2^(1/2)-5) 3141510073752985 a007 Real Root Of -364*x^4-368*x^3-525*x^2+525*x+17 3141510074354173 a001 41/105937*4181^(29/55) 3141510075788720 p004 log(30011/1297) 3141510084535356 r005 Re(z^2+c),c=-8/15+23/49*I,n=3 3141510090561762 r005 Im(z^2+c),c=-31/30+17/66*I,n=53 3141510093345566 r005 Im(z^2+c),c=-13/38+3/62*I,n=27 3141510095784662 r005 Im(z^2+c),c=-13/38+3/62*I,n=29 3141510102540977 a001 55/76*1364^(12/59) 3141510110112511 k007 concat of cont frac of 3141510110473612 h001 (5/12*exp(1)+3/10)/(7/12*exp(2)+1/4) 3141510111019413 k002 Champernowne real with 231/2*n^2-417/2*n+96 3141510111113317 k008 concat of cont frac of 3141510111314153 k006 concat of cont frac of 3141510112213111 k007 concat of cont frac of 3141510113231121 k007 concat of cont frac of 3141510114114121 k007 concat of cont frac of 3141510114321122 k006 concat of cont frac of 3141510114566165 m002 5-Pi^(-4)+Pi+Pi^5 3141510120386272 r005 Im(z^2+c),c=-7/38+28/61*I,n=9 3141510121101112 k007 concat of cont frac of 3141510121111011 k009 concat of cont frac of 3141510122643189 r005 Im(z^2+c),c=17/52+2/21*I,n=51 3141510124611111 k006 concat of cont frac of 3141510132116112 k009 concat of cont frac of 3141510132211122 k009 concat of cont frac of 3141510134371869 s004 Continued Fraction of A197594 3141510134371869 s004 Continued fraction of A197594 3141510142853116 r005 Re(z^2+c),c=-35/118+27/56*I,n=5 3141510147478117 r005 Im(z^2+c),c=-13/38+3/62*I,n=31 3141510157115868 s004 Continued Fraction of A077775 3141510157115868 s004 Continued fraction of A077775 3141510157212765 m001 (BesselK(1,1)-GAMMA(11/12))/(ln(5)+Zeta(1,-1)) 3141510162221514 m001 (BesselK(0,1)-RenyiParking)^MertensB2 3141510162650841 r005 Im(z^2+c),c=-13/38+3/62*I,n=26 3141510170619021 k001 Champernowne real with 1960*n+1181 3141510171452483 a007 Real Root Of -259*x^4-732*x^3-10*x^2-602*x+739 3141510171471894 b008 Pi*Cos[1/138] 3141510172545993 r002 24th iterates of z^2 + 3141510172915574 b008 Pi*Sech[1/138] 3141510175600556 m001 (Chi(1)-GAMMA(23/24))/(-Kac+Trott2nd) 3141510177032037 r005 Im(z^2+c),c=-13/38+3/62*I,n=33 3141510185381465 s002 sum(A025207[n]/(n^3*exp(n)-1),n=1..infinity) 3141510186521115 k006 concat of cont frac of 3141510187831121 k006 concat of cont frac of 3141510188742749 m002 -Pi+Tanh[Pi]/(4*Pi^7) 3141510189526900 r005 Im(z^2+c),c=-13/38+3/62*I,n=35 3141510194135791 r005 Im(z^2+c),c=-13/38+3/62*I,n=37 3141510194143174 a007 Real Root Of -135*x^4+50*x^3-227*x^2+292*x+117 3141510195696394 r005 Im(z^2+c),c=-13/38+3/62*I,n=39 3141510196186752 r002 33th iterates of z^2 + 3141510196191744 r005 Im(z^2+c),c=-13/38+3/62*I,n=41 3141510196340424 r005 Im(z^2+c),c=-13/38+3/62*I,n=43 3141510196382693 r005 Im(z^2+c),c=-13/38+3/62*I,n=45 3141510196394022 r005 Im(z^2+c),c=-13/38+3/62*I,n=47 3141510196396848 r005 Im(z^2+c),c=-13/38+3/62*I,n=49 3141510196397483 r005 Im(z^2+c),c=-13/38+3/62*I,n=51 3141510196397600 r005 Im(z^2+c),c=-13/38+3/62*I,n=56 3141510196397600 r005 Im(z^2+c),c=-13/38+3/62*I,n=54 3141510196397602 r005 Im(z^2+c),c=-13/38+3/62*I,n=53 3141510196397603 r005 Im(z^2+c),c=-13/38+3/62*I,n=58 3141510196397605 r005 Im(z^2+c),c=-13/38+3/62*I,n=60 3141510196397606 r005 Im(z^2+c),c=-13/38+3/62*I,n=62 3141510196397606 r005 Im(z^2+c),c=-13/38+3/62*I,n=64 3141510196397607 r005 Im(z^2+c),c=-13/38+3/62*I,n=63 3141510196397607 r005 Im(z^2+c),c=-13/38+3/62*I,n=61 3141510196397609 r005 Im(z^2+c),c=-13/38+3/62*I,n=59 3141510196397612 r005 Im(z^2+c),c=-13/38+3/62*I,n=57 3141510196397615 r005 Im(z^2+c),c=-13/38+3/62*I,n=55 3141510196397645 r005 Im(z^2+c),c=-13/38+3/62*I,n=52 3141510196397928 r005 Im(z^2+c),c=-13/38+3/62*I,n=50 3141510196399290 r005 Im(z^2+c),c=-13/38+3/62*I,n=48 3141510196405007 r005 Im(z^2+c),c=-13/38+3/62*I,n=46 3141510196427065 r005 Im(z^2+c),c=-13/38+3/62*I,n=44 3141510196506890 r005 Im(z^2+c),c=-13/38+3/62*I,n=42 3141510196780108 r005 Im(z^2+c),c=-13/38+3/62*I,n=40 3141510197665813 r005 Im(z^2+c),c=-13/38+3/62*I,n=38 3141510200371963 r005 Im(z^2+c),c=-13/38+3/62*I,n=36 3141510208058306 r005 Im(z^2+c),c=-13/38+3/62*I,n=34 3141510211451183 k008 concat of cont frac of 3141510221111381 k007 concat of cont frac of 3141510221126114 k007 concat of cont frac of 3141510222214112 k008 concat of cont frac of 3141510224034416 m005 (1/2*2^(1/2)-6/11)/(5/11*3^(1/2)-3/11) 3141510227713501 r005 Im(z^2+c),c=-13/38+3/62*I,n=32 3141510239191667 a007 Real Root Of 316*x^4+171*x^3+457*x^2-670*x+157 3141510263668156 m005 (23/28+1/4*5^(1/2))/(3/8*2^(1/2)-1/11) 3141510269218148 r005 Im(z^2+c),c=-13/38+3/62*I,n=30 3141510270639024 k001 Champernowne real with 1961*n+1180 3141510277360185 m007 (-1/3*gamma-2/3*ln(2)+2/5)/(-5/6*gamma+2/5) 3141510285997314 m002 -E^Pi/(3*Pi^10)+Pi 3141510310326240 r005 Re(z^2+c),c=-11/31+20/51*I,n=35 3141510311592673 m001 (3^(1/3)-sin(1))/(Zeta(1,2)+GAMMA(5/6)) 3141510311627422 k006 concat of cont frac of 3141510314541745 s004 Continued Fraction of A193831 3141510314541745 s004 Continued fraction of A193831 3141510316510853 m004 (-5*Pi)/4+(75*Csc[Sqrt[5]*Pi])/Pi 3141510317481749 p003 LerchPhi(1/25,4,481/202) 3141510317728119 r005 Im(z^2+c),c=-13/38+3/62*I,n=28 3141510320322413 m002 -Pi+(Csch[Pi]*ProductLog[Pi]*Sech[Pi])/Pi^4 3141510334718800 r009 Im(z^3+c),c=-37/86+15/58*I,n=5 3141510350606429 r005 Re(z^2+c),c=4/29+25/43*I,n=46 3141510356156554 h001 (2/9*exp(2)+3/7)/(9/11*exp(2)+6/11) 3141510370659027 k001 Champernowne real with 1962*n+1179 3141510377613276 a003 sin(Pi*10/113)/cos(Pi*11/68) 3141510380387068 b008 -2/(3*E^9)+Pi 3141510381100141 k009 concat of cont frac of 3141510394949013 r005 Re(z^2+c),c=-31/94+23/49*I,n=58 3141510397693262 a007 Real Root Of 100*x^4-571*x^3-276*x^2-398*x+169 3141510399795338 l006 ln(1948/2667) 3141510402503288 m001 BesselI(0,2)+ArtinRank2^ThueMorse 3141510407899157 p001 sum(1/(607*n+32)/(10^n),n=0..infinity) 3141510411734593 r005 Im(z^2+c),c=-1/8+16/37*I,n=36 3141510413111392 k006 concat of cont frac of 3141510426622062 a007 Real Root Of 202*x^4+325*x^3-857*x^2+675*x+980 3141510431530104 l006 ln(281/6502) 3141510440812707 m001 Thue*(GAMMA(23/24)-TwinPrimes) 3141510443677232 r005 Im(z^2+c),c=-67/114+29/59*I,n=25 3141510448065517 a001 55/76*15127^(9/59) 3141510449241199 h001 (-4*exp(-3)-1)/(-2*exp(3)+2) 3141510461920218 a001 55/76*5778^(10/59) 3141510470679030 k001 Champernowne real with 1963*n+1178 3141510497274159 m002 -5-Pi-Pi^5+Tanh[Pi]/Pi^4 3141510498194366 m001 AlladiGrinstead-BesselK(0,1)*Salem 3141510506015765 a007 Real Root Of -865*x^4-38*x^3-123*x^2+107*x+53 3141510512111411 k006 concat of cont frac of 3141510513043704 r005 Re(z^2+c),c=7/110+15/47*I,n=7 3141510516069921 a007 Real Root Of 246*x^4+593*x^3-390*x^2+388*x-507 3141510520587687 m005 (5/6*2^(1/2)+3/4)/(5/3+2*5^(1/2)) 3141510527531197 m005 (1/2*5^(1/2)-1/2)/(7/10*Catalan-4/9) 3141510534506406 a001 11592/341*29^(35/53) 3141510535876967 m001 (Pi*Riemann3rdZero-gamma(3))/Riemann3rdZero 3141510538959011 h002 exp(13-9^(2/3)+2^(3/4)) 3141510549192491 m001 (Conway+Porter)/(5^(1/2)-GAMMA(2/3)) 3141510553981855 b008 (14/5)^(1/3)+Sqrt[3] 3141510554689956 m001 1/BesselJ(1,1)*MertensB1^2/ln(GAMMA(13/24)) 3141510558613216 p004 log(32323/23609) 3141510559861895 m001 1/ln(GAMMA(17/24))/FeigenbaumDelta/exp(1) 3141510565089925 a008 Real Root of x^4+6*x^2-14*x-5 3141510570699033 k001 Champernowne real with 1964*n+1177 3141510599414195 r005 Re(z^2+c),c=-27/70+16/29*I,n=39 3141510605639925 m005 (1/2*Zeta(3)+5/7)/(4/11*5^(1/2)-5) 3141510609334704 r009 Re(z^3+c),c=-45/122+5/8*I,n=42 3141510622907419 m001 (BesselK(0,1)-Ei(1,1))/(BesselI(1,1)+ZetaP(4)) 3141510627254558 m002 -Pi+(ProductLog[Pi]*Sech[Pi]^2)/Pi^4 3141510632476130 b008 Pi+ExpIntegralEi[-5]/14 3141510653911103 r005 Re(z^2+c),c=-13/36+13/36*I,n=16 3141510665523791 r005 Im(z^2+c),c=-9/10+34/155*I,n=28 3141510668024715 r005 Im(z^2+c),c=-13/38+3/62*I,n=25 3141510670719036 k001 Champernowne real with 1965*n+1176 3141510671113413 k006 concat of cont frac of 3141510680254661 l006 ln(9463/9765) 3141510680753888 b008 -33+10^(1/5) 3141510691708360 s002 sum(A100392[n]/((pi^n+1)/n),n=1..infinity) 3141510696593423 r009 Re(z^3+c),c=-7/15+21/53*I,n=59 3141510712678649 m005 (1/2*gamma-9/11)/(2/9*2^(1/2)-2) 3141510717719951 p003 LerchPhi(1/10,3,13/41) 3141510732807589 a007 Real Root Of -504*x^4+325*x^3-589*x^2+423*x+206 3141510734182544 m001 ln(2+3^(1/2))/cos(1)/StronglyCareFree 3141510758849370 a007 Real Root Of 245*x^4+464*x^3-954*x^2+225*x+645 3141510770739039 k001 Champernowne real with 1966*n+1175 3141510778763504 m005 (31/6+1/6*5^(1/2))/(4/5*Pi-3/4) 3141510782864960 a007 Real Root Of 36*x^4-424*x^3+728*x^2-675*x+153 3141510786733264 m001 (Cahen-MadelungNaCl)/(Magata+OneNinth) 3141510792176196 r005 Re(z^2+c),c=-2/7+22/53*I,n=7 3141510793826566 h001 (-4*exp(-2)-9)/(-7*exp(3/2)+1) 3141510807808255 m005 (1/3*3^(1/2)-2/11)/(6/11*Pi-5/11) 3141510831638605 r005 Re(z^2+c),c=-41/110+11/38*I,n=9 3141510845145322 s004 Continued Fraction of A023370 3141510845145322 s004 Continued fraction of A023370 3141510862579905 b008 Pi*ModularLambda[I/3/Sqrt[2]] 3141510870759042 k001 Champernowne real with 1967*n+1174 3141510872869432 r005 Re(z^2+c),c=-13/42+23/44*I,n=52 3141510876090756 a007 Real Root Of -74*x^4+263*x^3-988*x^2+669*x+22 3141510876521824 m005 (1/3*gamma-3/8)/(1/6*Catalan+3/7) 3141510881432705 m001 (3^(1/3)-sin(1))/(arctan(1/3)+BesselI(1,2)) 3141510883889471 r005 Re(z^2+c),c=-31/56+2/45*I,n=4 3141510898029752 h001 (2/3*exp(1)+5/11)/(7/8*exp(2)+3/4) 3141510909739239 r005 Im(z^2+c),c=-2/3+9/29*I,n=27 3141510916699801 l006 ln(317/7335) 3141510916815911 a007 Real Root Of -746*x^4-384*x^3-857*x^2+605*x+270 3141510921211243 k007 concat of cont frac of 3141510940565922 s004 Continued Fraction of A290470 3141510940740126 s004 Continued Fraction of A268061 3141510940740126 s004 Continued fraction of A268061 3141510944069920 a007 Real Root Of -118*x^4-182*x^3+426*x^2-425*x+311 3141510944306333 m001 (GAMMA(7/12)-Pi^(1/2))/StronglyCareFree 3141510956151028 r009 Re(z^3+c),c=-5/94+13/22*I,n=41 3141510962431365 r009 Re(z^3+c),c=-17/28+29/64*I,n=3 3141510964974441 m001 cos(1/5*Pi)*Landau*TravellingSalesman 3141510966517976 r005 Im(z^2+c),c=-57/98+1/19*I,n=23 3141510969123989 r009 Im(z^3+c),c=-31/66+7/39*I,n=58 3141510970779045 k001 Champernowne real with 1968*n+1173 3141511004253232 m001 cos(1/5*Pi)*CopelandErdos+Champernowne 3141511010141113 k006 concat of cont frac of 3141511011412234 k007 concat of cont frac of 3141511012111132 k006 concat of cont frac of 3141511012731525 k006 concat of cont frac of 3141511013432111 k006 concat of cont frac of 3141511016798990 l006 ln(6077/8320) 3141511017320594 r009 Re(z^3+c),c=-17/36+17/36*I,n=50 3141511020886263 m001 Pi+Zeta(1,-1)^FeigenbaumAlpha 3141511029902755 a007 Real Root Of -85*x^4-89*x^3+731*x^2+832*x+919 3141511032112511 k008 concat of cont frac of 3141511032181812 k007 concat of cont frac of 3141511032411101 k007 concat of cont frac of 3141511037261226 b008 E^2*Cosh[Sqrt[2]*Pi] 3141511046465386 m002 Pi^4/4+25*Cosh[Pi] 3141511050972776 m001 1/GAMMA(1/24)*ln(Niven)*sinh(1)^2 3141511059423405 r005 Im(z^2+c),c=-1/36+12/31*I,n=13 3141511061131113 k007 concat of cont frac of 3141511061133331 k006 concat of cont frac of 3141511065511373 k009 concat of cont frac of 3141511066194674 m001 (FeigenbaumB-exp(1))/(-Salem+Stephens) 3141511069124131 k006 concat of cont frac of 3141511070455015 m001 (Rabbit+ZetaP(4))/(exp(Pi)+Ei(1)) 3141511070799048 k001 Champernowne real with 1969*n+1172 3141511081232405 r005 Im(z^2+c),c=-39/46+1/46*I,n=12 3141511082980000 b008 1-(5*Log[12])/3 3141511085228833 m001 (-Sierpinski+ZetaP(4))/(Shi(1)-sin(1/12*Pi)) 3141511101181812 k009 concat of cont frac of 3141511101211116 k006 concat of cont frac of 3141511101252581 k007 concat of cont frac of 3141511101403619 h003 exp(Pi*(12^(1/3)*(19^(1/2)-9))) 3141511103181561 k006 concat of cont frac of 3141511104787221 m001 (-3^(1/3)+cos(1/12*Pi))/(Zeta(3)-exp(1)) 3141511107511221 k007 concat of cont frac of 3141511108354038 a007 Real Root Of -282*x^4-666*x^3+959*x^2+569*x-859 3141511108930568 m001 ln(GAMMA(2/3))^2*BesselJ(1,1)*log(1+sqrt(2))^2 3141511110142111 k007 concat of cont frac of 3141511111012113 k007 concat of cont frac of 3141511111023915 k008 concat of cont frac of 3141511111042111 k007 concat of cont frac of 3141511111102321 k009 concat of cont frac of 3141511111112232 k008 concat of cont frac of 3141511111122212 k008 concat of cont frac of 3141511111132221 k007 concat of cont frac of 3141511111151131 k006 concat of cont frac of 3141511111186912 k008 concat of cont frac of 3141511111192412 k007 concat of cont frac of 3141511111211211 k007 concat of cont frac of 3141511111235721 k006 concat of cont frac of 3141511111252498 k006 concat of cont frac of 3141511111262114 k007 concat of cont frac of 3141511111319131 k006 concat of cont frac of 3141511111319473 k002 Champernowne real with 116*n^2-210*n+97 3141511111325615 k006 concat of cont frac of 3141511111352816 k006 concat of cont frac of 3141511111412912 k009 concat of cont frac of 3141511111619111 k007 concat of cont frac of 3141511111622521 k008 concat of cont frac of 3141511111851621 k006 concat of cont frac of 3141511112116821 k009 concat of cont frac of 3141511112117122 k007 concat of cont frac of 3141511112131614 k006 concat of cont frac of 3141511112144273 k007 concat of cont frac of 3141511112171939 k008 concat of cont frac of 3141511112213415 k007 concat of cont frac of 3141511112222118 k007 concat of cont frac of 3141511112241211 k006 concat of cont frac of 3141511112255112 k006 concat of cont frac of 3141511112261101 k009 concat of cont frac of 3141511112311665 k007 concat of cont frac of 3141511112433214 k008 concat of cont frac of 3141511112492211 k007 concat of cont frac of 3141511113112590 a001 64079/2*2971215073^(6/19) 3141511113113912 k006 concat of cont frac of 3141511113141315 k006 concat of cont frac of 3141511113171111 k008 concat of cont frac of 3141511113171511 k006 concat of cont frac of 3141511113182121 k007 concat of cont frac of 3141511113234232 k007 concat of cont frac of 3141511113312230 k006 concat of cont frac of 3141511113873331 a001 1149851/2*317811^(6/19) 3141511114152121 k006 concat of cont frac of 3141511114158111 k006 concat of cont frac of 3141511114171666 k007 concat of cont frac of 3141511114516131 k007 concat of cont frac of 3141511115713412 k006 concat of cont frac of 3141511115822162 k009 concat of cont frac of 3141511118111921 k006 concat of cont frac of 3141511118124414 k007 concat of cont frac of 3141511119624740 m005 (1+1/4*5^(1/2))/(4/9*Pi-9/10) 3141511120134912 k009 concat of cont frac of 3141511121031221 k007 concat of cont frac of 3141511121116621 k006 concat of cont frac of 3141511121281211 k007 concat of cont frac of 3141511121411248 k007 concat of cont frac of 3141511121412510 k008 concat of cont frac of 3141511121641612 k008 concat of cont frac of 3141511122199244 k006 concat of cont frac of 3141511122511254 k007 concat of cont frac of 3141511122613131 k007 concat of cont frac of 3141511123102214 k008 concat of cont frac of 3141511123112229 k006 concat of cont frac of 3141511123123221 k008 concat of cont frac of 3141511123752132 k007 concat of cont frac of 3141511124213321 k009 concat of cont frac of 3141511124253227 k008 concat of cont frac of 3141511124411811 k007 concat of cont frac of 3141511125214324 k008 concat of cont frac of 3141511126234162 k009 concat of cont frac of 3141511127198222 k006 concat of cont frac of 3141511129118111 k009 concat of cont frac of 3141511130131331 k008 concat of cont frac of 3141511131112011 k007 concat of cont frac of 3141511131122122 k007 concat of cont frac of 3141511131151311 k008 concat of cont frac of 3141511131197122 k007 concat of cont frac of 3141511131211148 k006 concat of cont frac of 3141511131215744 k008 concat of cont frac of 3141511131811316 k008 concat of cont frac of 3141511132131161 k006 concat of cont frac of 3141511132210510 k009 concat of cont frac of 3141511132211122 k007 concat of cont frac of 3141511133113142 k006 concat of cont frac of 3141511133218514 k007 concat of cont frac of 3141511134211211 k008 concat of cont frac of 3141511134475127 k007 concat of cont frac of 3141511141114310 k007 concat of cont frac of 3141511141121621 k007 concat of cont frac of 3141511141129112 k006 concat of cont frac of 3141511141217214 k006 concat of cont frac of 3141511141232321 k008 concat of cont frac of 3141511142018621 k006 concat of cont frac of 3141511142141413 k006 concat of cont frac of 3141511142226416 k009 concat of cont frac of 3141511143282111 k007 concat of cont frac of 3141511145125119 k006 concat of cont frac of 3141511146320560 r002 54th iterates of z^2 + 3141511146680616 r009 Re(z^3+c),c=-43/102+15/46*I,n=27 3141511149111431 k006 concat of cont frac of 3141511152332861 k006 concat of cont frac of 3141511160611211 k008 concat of cont frac of 3141511160763538 a007 Real Root Of 123*x^4+162*x^3-416*x^2+600*x-967 3141511161361611 k007 concat of cont frac of 3141511161411522 k006 concat of cont frac of 3141511161541113 k006 concat of cont frac of 3141511161611354 k007 concat of cont frac of 3141511165079338 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/2 3141511165143817 m004 -10*Pi+Tan[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141511165208296 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/2 3141511165216111 k007 concat of cont frac of 3141511167162211 k006 concat of cont frac of 3141511170138431 k009 concat of cont frac of 3141511170794150 r002 3th iterates of z^2 + 3141511170819051 k001 Champernowne real with 1970*n+1171 3141511171136131 k009 concat of cont frac of 3141511171628831 k008 concat of cont frac of 3141511171685320 k006 concat of cont frac of 3141511171711111 k007 concat of cont frac of 3141511172133133 k008 concat of cont frac of 3141511175111211 k007 concat of cont frac of 3141511175546112 k007 concat of cont frac of 3141511181216211 k007 concat of cont frac of 3141511181321643 k006 concat of cont frac of 3141511182421201 k008 concat of cont frac of 3141511183881032 k009 concat of cont frac of 3141511184123111 k009 concat of cont frac of 3141511187140437 r009 Im(z^3+c),c=-13/60+36/47*I,n=7 3141511190126645 k008 concat of cont frac of 3141511191314239 k007 concat of cont frac of 3141511192413222 k007 concat of cont frac of 3141511194912148 r009 Re(z^3+c),c=-31/54+10/43*I,n=47 3141511195829121 k006 concat of cont frac of 3141511209835106 m001 (Porter+ZetaQ(3))/(LambertW(1)-Zeta(5)) 3141511211047119 k006 concat of cont frac of 3141511211134312 k008 concat of cont frac of 3141511211223124 k007 concat of cont frac of 3141511211224121 k007 concat of cont frac of 3141511211453215 k006 concat of cont frac of 3141511211521412 k007 concat of cont frac of 3141511211611235 k006 concat of cont frac of 3141511211677346 k007 concat of cont frac of 3141511212215115 k007 concat of cont frac of 3141511212216757 k006 concat of cont frac of 3141511212232915 k006 concat of cont frac of 3141511212251132 k009 concat of cont frac of 3141511212464323 k006 concat of cont frac of 3141511212651761 k008 concat of cont frac of 3141511213111361 k007 concat of cont frac of 3141511214311411 k007 concat of cont frac of 3141511214422310 k007 concat of cont frac of 3141511214923123 k007 concat of cont frac of 3141511216321114 k006 concat of cont frac of 3141511216463087 m002 -12-E^Pi+4/ProductLog[Pi] 3141511217711913 k009 concat of cont frac of 3141511218311111 k007 concat of cont frac of 3141511221076580 r005 Re(z^2+c),c=-57/56+5/39*I,n=22 3141511221121813 k008 concat of cont frac of 3141511221419151 k008 concat of cont frac of 3141511221682611 k008 concat of cont frac of 3141511222221424 k006 concat of cont frac of 3141511223114161 k008 concat of cont frac of 3141511227151367 m001 1/GAMMA(3/4)^2/FransenRobinson/ln(GAMMA(5/12)) 3141511228221256 k007 concat of cont frac of 3141511228816713 k007 concat of cont frac of 3141511229315173 r005 Im(z^2+c),c=-25/48+21/46*I,n=42 3141511230111121 k007 concat of cont frac of 3141511231111761 k006 concat of cont frac of 3141511231262165 k007 concat of cont frac of 3141511232221142 k007 concat of cont frac of 3141511233842423 k007 concat of cont frac of 3141511237515511 k007 concat of cont frac of 3141511240551268 r005 Im(z^2+c),c=17/66+11/58*I,n=45 3141511241112461 k008 concat of cont frac of 3141511241311143 k006 concat of cont frac of 3141511244830440 b008 Pi*ModularLambda[(3*I)/40*Pi] 3141511245154111 k008 concat of cont frac of 3141511251111117 k008 concat of cont frac of 3141511251222310 k007 concat of cont frac of 3141511252111415 k009 concat of cont frac of 3141511257135015 s003 concatenated sequence A016474 3141511259613291 k009 concat of cont frac of 3141511260093080 m001 1/Cahen/exp(Backhouse)^2/GAMMA(13/24)^2 3141511262411113 k007 concat of cont frac of 3141511264423115 k007 concat of cont frac of 3141511270839054 k001 Champernowne real with 1971*n+1170 3141511274114213 k008 concat of cont frac of 3141511278162912 k007 concat of cont frac of 3141511285071553 r009 Re(z^3+c),c=-12/31+11/41*I,n=11 3141511286121212 k006 concat of cont frac of 3141511291131121 k007 concat of cont frac of 3141511294686639 r005 Im(z^2+c),c=-8/31+30/61*I,n=30 3141511295941352 r005 Im(z^2+c),c=11/38+27/59*I,n=50 3141511301131161 k008 concat of cont frac of 3141511302911204 l006 ln(353/8168) 3141511304522346 a003 sin(Pi*7/39)*sin(Pi*1/5) 3141511307892005 l006 ln(4129/5653) 3141511307892005 p004 log(5653/4129) 3141511310321112 k006 concat of cont frac of 3141511311111115 k006 concat of cont frac of 3141511311112241 k006 concat of cont frac of 3141511311231222 k006 concat of cont frac of 3141511311332741 k008 concat of cont frac of 3141511311421228 k007 concat of cont frac of 3141511311711962 k006 concat of cont frac of 3141511311712112 k007 concat of cont frac of 3141511312236334 k007 concat of cont frac of 3141511312281121 k007 concat of cont frac of 3141511313111711 k007 concat of cont frac of 3141511313132927 h003 exp(Pi*(14/(12^(2/3)-18))) 3141511313690004 a007 Real Root Of 368*x^4+998*x^3-631*x^2-427*x-15 3141511314127111 k007 concat of cont frac of 3141511315121632 k009 concat of cont frac of 3141511318124231 k006 concat of cont frac of 3141511318741228 k009 concat of cont frac of 3141511321381616 k007 concat of cont frac of 3141511321812174 a009 1/7*(3^(1/2)+5^(1/2)*7^(1/3))*7^(2/3) 3141511322311112 k008 concat of cont frac of 3141511322421224 k008 concat of cont frac of 3141511323244847 p003 LerchPhi(1/100,4,511/215) 3141511324110212 k006 concat of cont frac of 3141511330564450 r005 Re(z^2+c),c=7/23+4/41*I,n=18 3141511331201361 k008 concat of cont frac of 3141511331210112 k007 concat of cont frac of 3141511331711141 k006 concat of cont frac of 3141511332546304 a007 Real Root Of -98*x^4-248*x^3+25*x^2-328*x+579 3141511337112471 k008 concat of cont frac of 3141511341123414 k008 concat of cont frac of 3141511341221211 k007 concat of cont frac of 3141511341311010 k008 concat of cont frac of 3141511342131415 k006 concat of cont frac of 3141511348770257 r009 Re(z^3+c),c=-7/15+9/23*I,n=36 3141511350479649 r005 Re(z^2+c),c=-19/52+11/31*I,n=35 3141511351111114 k007 concat of cont frac of 3141511352611181 k007 concat of cont frac of 3141511354460576 r005 Re(z^2+c),c=-11/29+15/29*I,n=18 3141511363355822 a007 Real Root Of -339*x^4-746*x^3+782*x^2-401*x+912 3141511365985778 r002 25th iterates of z^2 + 3141511370859057 k001 Champernowne real with 1972*n+1169 3141511371121172 k008 concat of cont frac of 3141511371123113 k007 concat of cont frac of 3141511371639226 m006 (3/5/Pi-5)/(5*Pi-2/5) 3141511380138518 m001 sinh(1)^exp(Pi)/(sinh(1)^KomornikLoreti) 3141511389318200 r005 Re(z^2+c),c=1/20+16/27*I,n=16 3141511391221116 k007 concat of cont frac of 3141511392517962 m001 (Rabbit+Trott)/(Chi(1)+Backhouse) 3141511396646700 a001 281*13^(1/23) 3141511410411331 k008 concat of cont frac of 3141511411134131 k006 concat of cont frac of 3141511411191412 k007 concat of cont frac of 3141511411421512 k007 concat of cont frac of 3141511411523171 k006 concat of cont frac of 3141511412602923 m001 1/Paris*exp(Bloch)*GAMMA(5/24)^2 3141511413912011 k007 concat of cont frac of 3141511414942134 k006 concat of cont frac of 3141511415201111 k007 concat of cont frac of 3141511417111511 k007 concat of cont frac of 3141511417141111 k008 concat of cont frac of 3141511417851114 k007 concat of cont frac of 3141511423231221 k007 concat of cont frac of 3141511424116211 k007 concat of cont frac of 3141511426211833 k009 concat of cont frac of 3141511429251824 r005 Im(z^2+c),c=-19/54+2/41*I,n=19 3141511431111151 k006 concat of cont frac of 3141511431112115 k008 concat of cont frac of 3141511431333441 k006 concat of cont frac of 3141511431582112 k007 concat of cont frac of 3141511434727972 m009 (3/4*Psi(1,2/3)-2/3)/(24*Catalan+3*Pi^2+1/3) 3141511435131153 k006 concat of cont frac of 3141511435724111 m005 (1/2*3^(1/2)-4/11)/(7/11*Pi-2/5) 3141511437042123 r005 Im(z^2+c),c=-7/10+30/169*I,n=21 3141511441131112 k007 concat of cont frac of 3141511452031241 k007 concat of cont frac of 3141511452178021 r005 Re(z^2+c),c=-15/44+26/59*I,n=23 3141511461842918 m001 Sierpinski^2*MinimumGamma*ln(LambertW(1))^2 3141511463166436 r009 Re(z^3+c),c=-1/18+40/63*I,n=42 3141511470879060 k001 Champernowne real with 1973*n+1168 3141511477095514 m004 10*Pi-Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi]^2 3141511477223979 m004 10*Pi-Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi]^2 3141511480625849 b008 BesselK[1,123/2] 3141511481421435 m005 (1/2*5^(1/2)+1/4)/(-4/55+5/22*5^(1/2)) 3141511482112163 k008 concat of cont frac of 3141511492818795 m002 -5-2/Pi^6+Pi*Cosh[Pi] 3141511495754233 m005 (1/2*exp(1)+2)/(3/4*gamma+7/11) 3141511502502444 b008 5*Sqrt[Pi*ArcCoth[8]] 3141511508540873 r009 Re(z^3+c),c=-17/29+33/64*I,n=17 3141511511132422 k007 concat of cont frac of 3141511511412161 k008 concat of cont frac of 3141511511934138 m001 (Landau+PolyaRandomWalk3D)/(5^(1/2)+gamma) 3141511513511111 k009 concat of cont frac of 3141511514111132 k009 concat of cont frac of 3141511515269023 m005 (1/2*Catalan-5/12)/(3/7*Zeta(3)+4/5) 3141511515336037 r005 Re(z^2+c),c=-35/46+2/45*I,n=12 3141511517371514 k006 concat of cont frac of 3141511521111122 k007 concat of cont frac of 3141511521812312 k008 concat of cont frac of 3141511523291241 k006 concat of cont frac of 3141511524069951 m001 (FeigenbaumDelta+Robbin)/(Pi-exp(1/exp(1))) 3141511525117112 k009 concat of cont frac of 3141511528051105 r004 Im(z^2+c),c=3/7-5/17*I,z(0)=exp(5/12*I*Pi),n=5 3141511528324322 k006 concat of cont frac of 3141511529239312 k007 concat of cont frac of 3141511531111111 k006 concat of cont frac of 3141511535218787 a007 Real Root Of 189*x^4+463*x^3-735*x^2-729*x+910 3141511537121112 k006 concat of cont frac of 3141511537933026 k008 concat of cont frac of 3141511547126589 r005 Re(z^2+c),c=-23/114+31/51*I,n=34 3141511556307347 r005 Im(z^2+c),c=-37/110+12/23*I,n=53 3141511558712392 k006 concat of cont frac of 3141511561392591 m001 1/BesselK(1,1)^2*Rabbit^2/exp(Ei(1))^2 3141511562101111 k007 concat of cont frac of 3141511566796969 a003 sin(Pi*13/119)*sin(Pi*23/60) 3141511570899063 k001 Champernowne real with 1974*n+1167 3141511571124146 k009 concat of cont frac of 3141511588236253 l006 ln(6310/8639) 3141511588826656 h005 exp(cos(Pi*4/23)+cos(Pi*13/32)) 3141511591219145 k008 concat of cont frac of 3141511602393132 m001 (Landau+MertensB2)/(arctan(1/2)-cos(1/12*Pi)) 3141511609442064 r005 Im(z^2+c),c=2/27+9/26*I,n=3 3141511611120337 k007 concat of cont frac of 3141511611311211 k009 concat of cont frac of 3141511611512371 k007 concat of cont frac of 3141511613195350 r005 Re(z^2+c),c=-11/31+20/51*I,n=55 3141511613211118 k007 concat of cont frac of 3141511615125311 k008 concat of cont frac of 3141511617638638 l006 ln(389/9001) 3141511617638638 p004 log(9001/389) 3141511620873089 b008 Gamma[213/5] 3141511621119263 k006 concat of cont frac of 3141511621511114 k006 concat of cont frac of 3141511621835131 k009 concat of cont frac of 3141511624122811 k007 concat of cont frac of 3141511633211352 k007 concat of cont frac of 3141511634926753 r005 Re(z^2+c),c=-39/34+19/86*I,n=60 3141511635248913 m001 (cos(1/5*Pi)-Artin)/(Kac-LandauRamanujan) 3141511635825501 m001 (-Landau+OneNinth)/(gamma+AlladiGrinstead) 3141511651211313 k007 concat of cont frac of 3141511666622058 a007 Real Root Of 556*x^4-182*x^3+812*x^2-601*x-280 3141511670800227 a001 1875749/5*701408733^(18/23) 3141511670919066 k001 Champernowne real with 1975*n+1166 3141511673289667 a007 Real Root Of 307*x^4+874*x^3-75*x^2+579*x-245 3141511674904188 a001 119218851371/55*10946^(18/23) 3141511677073950 m002 Pi-(Csch[Pi]*Log[Pi])/(4*Pi^5) 3141511681116114 m009 (16/3*Catalan+2/3*Pi^2+1/4)/(1/2*Psi(1,3/4)-5) 3141511683423499 a007 Real Root Of -809*x^4+95*x^3-279*x^2+549*x-140 3141511684010165 r005 Re(z^2+c),c=-49/40+7/64*I,n=40 3141511694312111 k006 concat of cont frac of 3141511696728236 m001 (Niven+Tetranacci)/(arctan(1/3)+GaussAGM) 3141511698270470 m001 ln(Pi)*(LaplaceLimit-Magata) 3141511703275788 a007 Real Root Of -586*x^4+822*x^3+620*x^2+172*x-135 3141511710845157 m005 (1/2*gamma-5/9)/(1/8*Zeta(3)-1) 3141511711112111 k008 concat of cont frac of 3141511711411222 k006 concat of cont frac of 3141511711476758 s004 Continued Fraction of A078161 3141511711476758 s004 Continued fraction of A078161 3141511713151296 k008 concat of cont frac of 3141511714405175 m001 1/BesselK(0,1)^2/Cahen^2/ln(cosh(1)) 3141511716443194 r005 Im(z^2+c),c=11/32+11/57*I,n=14 3141511718131211 k006 concat of cont frac of 3141511721122241 k007 concat of cont frac of 3141511722224149 k006 concat of cont frac of 3141511722311412 k008 concat of cont frac of 3141511724311210 k006 concat of cont frac of 3141511739556067 m005 (1/2*gamma-2)/(1/10*Catalan-7/11) 3141511741253112 k007 concat of cont frac of 3141511744581476 m001 (DuboisRaymond-exp(Pi))/(-Mills+Stephens) 3141511750230487 r002 3th iterates of z^2 + 3141511751278126 r009 Re(z^3+c),c=-15/34+22/61*I,n=22 3141511751789175 l006 ln(9557/9862) 3141511753141103 k006 concat of cont frac of 3141511760000917 s002 sum(A239525[n]/(64^n),n=1..infinity) 3141511761325112 a003 sin(Pi*1/108)/sin(Pi*29/77) 3141511761342591 a007 Real Root Of -474*x^4-93*x^3-783*x^2+487*x+232 3141511763584742 m001 ln(GolombDickman)^2/Backhouse^2/gamma^2 3141511770939069 k001 Champernowne real with 1976*n+1165 3141511800970352 r005 Im(z^2+c),c=-9/14+7/188*I,n=23 3141511802833629 r009 Im(z^3+c),c=-37/102+11/42*I,n=8 3141511811121175 k007 concat of cont frac of 3141511814196657 m009 (6*Psi(1,1/3)+1/4)/(Psi(1,2/3)-5) 3141511821124105 k007 concat of cont frac of 3141511827161057 a007 Real Root Of -644*x^4+212*x^3+453*x^2+904*x-329 3141511828292956 m002 Pi-Log[Pi]/(2*E^Pi*Pi^5) 3141511830733308 r009 Im(z^3+c),c=-15/118+35/43*I,n=2 3141511831295123 k006 concat of cont frac of 3141511832481312 k007 concat of cont frac of 3141511833121608 r005 Re(z^2+c),c=-31/94+25/52*I,n=32 3141511834376219 s004 Continued Fraction of A192472 3141511834376219 s004 Continued fraction of A192472 3141511835777594 r005 Im(z^2+c),c=-3/74+35/43*I,n=12 3141511839824486 m001 Rabbit^Backhouse*polylog(4,1/2) 3141511855886404 r005 Re(z^2+c),c=-19/50+18/61*I,n=37 3141511858416296 p004 log(17597/12853) 3141511870959072 k001 Champernowne real with 1977*n+1164 3141511879047467 l006 ln(425/9834) 3141511882731049 m001 (GAMMA(23/24)+Sarnak)/(LambertW(1)-Psi(2,1/3)) 3141511884070604 m008 (5*Pi^6+2/5)/(5*Pi^5+1/6) 3141511891033165 a008 Real Root of (1+4*x+3*x^2+2*x^3+2*x^4-x^5) 3141511892095877 r002 36th iterates of z^2 + 3141511901647920 q001 1201/3823 3141511903347193 m001 FeigenbaumC+GaussAGM+PlouffeB 3141511909277030 m005 (1/3*3^(1/2)+3/7)/(1/7*2^(1/2)+3) 3141511911139341 k009 concat of cont frac of 3141511911178337 k007 concat of cont frac of 3141511911412171 k007 concat of cont frac of 3141511911899840 r005 Im(z^2+c),c=-5/12+27/47*I,n=10 3141511912112623 k007 concat of cont frac of 3141511912361538 k008 concat of cont frac of 3141511913214192 k006 concat of cont frac of 3141511921618111 k007 concat of cont frac of 3141511924646441 k006 concat of cont frac of 3141511928469964 r005 Im(z^2+c),c=23/78+10/63*I,n=14 3141511929787000 r009 Im(z^3+c),c=-19/40+4/23*I,n=49 3141511938123656 m006 (2/3*Pi-5/6)/(3/4*exp(2*Pi)-1/5) 3141511939144962 r005 Re(z^2+c),c=-31/98+28/55*I,n=48 3141511944750147 m008 (3*Pi^5+1/2)/(3*Pi^4+1/6) 3141511948682344 r005 Im(z^2+c),c=-15/16+19/63*I,n=14 3141511953312311 k008 concat of cont frac of 3141511954072222 m002 -E^(-3*Pi)+Pi 3141511970751492 s004 Continued Fraction of A217092 3141511970751492 s004 Continued fraction of A217092 3141511970979075 k001 Champernowne real with 1978*n+1163 3141511971104645 s004 Continued Fraction of A338852 3141511978948229 m002 Pi-(Log[Pi]*Sech[Pi])/(4*Pi^5) 3141511985124915 r005 Im(z^2+c),c=-11/40+23/38*I,n=58 3141511989575874 m001 1/MinimumGamma^2*Magata/ln(BesselK(1,1)) 3141511994163476 m001 1/3*BesselJ(1,1)/FeigenbaumDelta 3141511998215738 r005 Re(z^2+c),c=-19/70+21/37*I,n=26 3141512009863642 m001 (ln(2^(1/2)+1)+Kolakoski)/(Magata+Tetranacci) 3141512011151219 k006 concat of cont frac of 3141512011711432 k008 concat of cont frac of 3141512013162111 k008 concat of cont frac of 3141512022231112 k007 concat of cont frac of 3141512026092067 m001 (FeigenbaumMu-GlaisherKinkelin)/gamma(1) 3141512029442013 m001 1/ln(Catalan)^2/Cahen^2*Zeta(9) 3141512030501963 m001 (cos(1)-ln(Pi))/(-Zeta(1/2)+arctan(1/2)) 3141512032462741 r009 Re(z^3+c),c=-51/118+12/35*I,n=30 3141512032896398 b008 Pi-(2*Erfc[E])/3 3141512037883860 m001 (5^(1/2)+ln(2))/(-Artin+Mills) 3141512053085167 p001 sum(1/(542*n+463)/n/(32^n),n=1..infinity) 3141512065684913 a007 Real Root Of -107*x^4+691*x^3-998*x^2-89*x+93 3141512070036050 h001 (1/7*exp(1)+1/10)/(2/7*exp(1)+7/9) 3141512070999078 k001 Champernowne real with 1979*n+1162 3141512074982468 m001 (ln(3)+ln(5))/(GaussAGM+Trott2nd) 3141512085170870 m001 BesselK(0,1)^Niven/gamma(1) 3141512091784783 a001 3*(1/2*5^(1/2)+1/2)^7*29^(8/21) 3141512096231038 a001 89*7^(35/54) 3141512099628834 p004 log(10667/461) 3141512101217211 k007 concat of cont frac of 3141512101331121 k007 concat of cont frac of 3141512108212511 k008 concat of cont frac of 3141512109310773 r005 Im(z^2+c),c=-29/110+21/38*I,n=22 3141512111111203 k006 concat of cont frac of 3141512111112112 k007 concat of cont frac of 3141512111114811 k006 concat of cont frac of 3141512111121213 k007 concat of cont frac of 3141512111123121 k009 concat of cont frac of 3141512111238261 k007 concat of cont frac of 3141512111317216 k006 concat of cont frac of 3141512111418221 k008 concat of cont frac of 3141512111431146 k007 concat of cont frac of 3141512111619533 k002 Champernowne real with 233/2*n^2-423/2*n+98 3141512112252122 k009 concat of cont frac of 3141512112522514 k009 concat of cont frac of 3141512112853221 k006 concat of cont frac of 3141512113111361 k007 concat of cont frac of 3141512113131273 k007 concat of cont frac of 3141512113311128 k008 concat of cont frac of 3141512113913351 k006 concat of cont frac of 3141512114111312 k007 concat of cont frac of 3141512114113336 k006 concat of cont frac of 3141512114113411 k008 concat of cont frac of 3141512114121112 k009 concat of cont frac of 3141512114748700 m001 GAMMA(5/24)/ln(5)*GAMMA(1/12) 3141512115311111 k007 concat of cont frac of 3141512117141915 k008 concat of cont frac of 3141512117331222 k007 concat of cont frac of 3141512118191011 k008 concat of cont frac of 3141512118345111 k009 concat of cont frac of 3141512118975066 l006 ln(2181/2986) 3141512121111151 k006 concat of cont frac of 3141512121212831 k007 concat of cont frac of 3141512121221593 k006 concat of cont frac of 3141512121261211 k007 concat of cont frac of 3141512121292132 k006 concat of cont frac of 3141512122111416 k007 concat of cont frac of 3141512122161121 k007 concat of cont frac of 3141512122313112 k006 concat of cont frac of 3141512125313498 k008 concat of cont frac of 3141512126007687 m009 (2/3*Psi(1,1/3)-1/2)/(2/5*Psi(1,3/4)-3) 3141512126112212 k008 concat of cont frac of 3141512131322111 k006 concat of cont frac of 3141512132711932 k007 concat of cont frac of 3141512132715212 k006 concat of cont frac of 3141512133218123 k007 concat of cont frac of 3141512138421113 k006 concat of cont frac of 3141512138509728 m005 (1/2*exp(1)-5/12)/(1/11*2^(1/2)-3/7) 3141512141028968 r005 Im(z^2+c),c=1/126+11/30*I,n=16 3141512141111111 k006 concat of cont frac of 3141512141111113 k007 concat of cont frac of 3141512141144718 k006 concat of cont frac of 3141512141151124 k007 concat of cont frac of 3141512141211115 k009 concat of cont frac of 3141512141231911 k007 concat of cont frac of 3141512141684175 k007 concat of cont frac of 3141512142215115 k008 concat of cont frac of 3141512143833721 a007 Real Root Of 848*x^4-680*x^3+826*x^2-989*x+242 3141512143991913 k006 concat of cont frac of 3141512148125263 m001 (gamma(3)-ThueMorse)/Mills 3141512151111631 k009 concat of cont frac of 3141512151114131 k007 concat of cont frac of 3141512151121211 k007 concat of cont frac of 3141512151613213 k007 concat of cont frac of 3141512151624211 k008 concat of cont frac of 3141512155128168 a007 Real Root Of 208*x^4+962*x^3+734*x^2-458*x+884 3141512158226956 r005 Re(z^2+c),c=-47/114+1/25*I,n=16 3141512159530683 m002 -Pi+ProductLog[Pi]/Pi^6-Tanh[Pi]/Pi^6 3141512160899954 a007 Real Root Of 353*x^4-982*x^3-246*x^2-849*x+318 3141512161118106 k008 concat of cont frac of 3141512161211320 k006 concat of cont frac of 3141512161311122 k006 concat of cont frac of 3141512162539422 k008 concat of cont frac of 3141512165113181 k006 concat of cont frac of 3141512171019081 k001 Champernowne real with 1980*n+1161 3141512171116132 k007 concat of cont frac of 3141512176765968 m001 exp(CopelandErdos)^2/Conway^2*gamma^2 3141512181112112 k006 concat of cont frac of 3141512181287592 m006 (2*ln(Pi)-5)/(1/5*exp(Pi)+4) 3141512181821112 k006 concat of cont frac of 3141512188440363 r005 Im(z^2+c),c=-75/62+5/18*I,n=7 3141512193318101 k007 concat of cont frac of 3141512198252837 m001 Zeta(1/2)^2/exp(GAMMA(13/24))/log(2+sqrt(3)) 3141512203411111 k009 concat of cont frac of 3141512211625111 k006 concat of cont frac of 3141512212151121 k008 concat of cont frac of 3141512212185113 k008 concat of cont frac of 3141512212272111 k007 concat of cont frac of 3141512214111535 k006 concat of cont frac of 3141512214490703 m005 (1/2*gamma+1/9)/(3/11*3^(1/2)+4/5) 3141512215141336 k006 concat of cont frac of 3141512216121155 k006 concat of cont frac of 3141512216139112 k007 concat of cont frac of 3141512221123311 k006 concat of cont frac of 3141512221462123 k007 concat of cont frac of 3141512222642124 k007 concat of cont frac of 3141512224511311 k007 concat of cont frac of 3141512225811211 k006 concat of cont frac of 3141512226837210 k006 concat of cont frac of 3141512228121212 k009 concat of cont frac of 3141512231212113 k007 concat of cont frac of 3141512231511212 k006 concat of cont frac of 3141512232411111 k007 concat of cont frac of 3141512234692607 a001 199/55*34^(19/31) 3141512241113221 k007 concat of cont frac of 3141512251124131 k007 concat of cont frac of 3141512252411112 k009 concat of cont frac of 3141512254913873 m002 -Pi+Tanh[Pi]/E^(3*Pi) 3141512260550146 r009 Im(z^3+c),c=-31/66+7/39*I,n=62 3141512263513220 m001 1/LandauRamanujan^2*ln(Conway)/Zeta(3)^2 3141512263665959 m001 Paris^FeigenbaumMu*GAMMA(3/4) 3141512268202348 a001 2/7778742049*55^(1/20) 3141512271039084 k001 Champernowne real with 1981*n+1160 3141512272302606 a007 Real Root Of 884*x^4+172*x^3+380*x^2-701*x-261 3141512283139254 r005 Re(z^2+c),c=-11/31+20/51*I,n=57 3141512283217512 k006 concat of cont frac of 3141512291380925 m001 (Kac+Khinchin)/(Ei(1,1)+GaussAGM) 3141512296673640 s004 Continued Fraction of A137170 3141512296673640 s004 Continued fraction of A137170 3141512297009172 s004 Continued Fraction of A222813 3141512297009172 s004 Continued fraction of A222813 3141512297198989 s004 Continued Fraction of A229006 3141512297198989 s004 Continued fraction of A229006 3141512297352819 s004 Continued Fraction of A283091 3141512297352819 s004 Continued fraction of A283091 3141512297352819 s004 Continued Fraction of A277716 3141512297352819 s004 Continued fraction of A277716 3141512297460293 s004 Continued Fraction of A024876 3141512297460293 s004 Continued fraction of A024876 3141512311121242 k006 concat of cont frac of 3141512311694118 k007 concat of cont frac of 3141512311841296 r005 Im(z^2+c),c=-77/114+7/15*I,n=19 3141512312311041 k007 concat of cont frac of 3141512315477745 r005 Re(z^2+c),c=-43/118+19/53*I,n=35 3141512321014454 k009 concat of cont frac of 3141512321119117 k007 concat of cont frac of 3141512324142114 k009 concat of cont frac of 3141512332321121 k006 concat of cont frac of 3141512334254214 k007 concat of cont frac of 3141512336114261 m001 KhinchinLevy^Psi(2,1/3)-Pi 3141512340924494 m005 (1/3*5^(1/2)+3/4)/(11/12*Catalan-4/11) 3141512341112314 k006 concat of cont frac of 3141512342185562 k007 concat of cont frac of 3141512346417777 m001 exp(Zeta(5))/BesselJ(1,1)^2/arctan(1/2) 3141512351251419 k006 concat of cont frac of 3141512361348376 r009 Im(z^3+c),c=-7/40+19/58*I,n=5 3141512371059087 k001 Champernowne real with 1982*n+1159 3141512371811213 k006 concat of cont frac of 3141512374637413 a008 Real Root of x^2-98691 3141512385853822 a001 9/161*(1/2*5^(1/2)+1/2)^14*322^(8/11) 3141512386974068 h001 (1/12*exp(2)+1/10)/(2/9*exp(2)+7/11) 3141512389697843 r005 Re(z^2+c),c=-19/54+25/62*I,n=31 3141512404687917 r005 Im(z^2+c),c=-27/26+39/116*I,n=30 3141512407304934 a007 Real Root Of 424*x^4-165*x^3+50*x^2-913*x-301 3141512407755807 m001 (-Rabbit+Salem)/(sin(1)+Cahen) 3141512411111428 k007 concat of cont frac of 3141512411381531 k008 concat of cont frac of 3141512412177244 a007 Real Root Of -117*x^4-92*x^3+665*x^2-667*x-115 3141512421116315 k006 concat of cont frac of 3141512421130111 k007 concat of cont frac of 3141512422121111 k009 concat of cont frac of 3141512422159491 k008 concat of cont frac of 3141512425573139 a001 494493258286/3*20365011074^(7/22) 3141512429220968 r005 Re(z^2+c),c=29/82+6/19*I,n=37 3141512431251191 k007 concat of cont frac of 3141512431423114 k008 concat of cont frac of 3141512440981552 r005 Re(z^2+c),c=-17/46+19/56*I,n=27 3141512442311126 k009 concat of cont frac of 3141512444508437 a001 2889/4*1346269^(5/48) 3141512452351801 a001 2/341*47^(17/39) 3141512455799158 m005 (-1/44+1/4*5^(1/2))/(1/2*2^(1/2)+1) 3141512456596618 a007 Real Root Of 471*x^4-327*x^3-495*x^2-21*x+61 3141512463347329 m002 -5*Pi^2+18*Tanh[Pi] 3141512465752072 r005 Im(z^2+c),c=-29/94+26/51*I,n=56 3141512470029640 a001 196418/123*2^(41/42) 3141512471079090 k001 Champernowne real with 1983*n+1158 3141512471271239 k006 concat of cont frac of 3141512476928849 m001 (ln(gamma)*Bloch-Porter)/ln(gamma) 3141512477107445 m005 (1/3*3^(1/2)-1/5)/(3/8*exp(1)+2/11) 3141512481916589 a007 Real Root Of 141*x^4+184*x^3-985*x^2-795*x-805 3141512486059951 a001 (5+5^(1/2))^(431/19) 3141512490542363 m001 (RenyiParking+Trott2nd)/(exp(Pi)+GAMMA(7/12)) 3141512503778662 r005 Im(z^2+c),c=-49/102+30/61*I,n=53 3141512510515187 r005 Im(z^2+c),c=-23/102+10/21*I,n=39 3141512511232816 k006 concat of cont frac of 3141512511260800 b008 Pi*Cos[1/140] 3141512512211164 k007 concat of cont frac of 3141512512623736 b008 Pi*Sech[1/140] 3141512515141113 k007 concat of cont frac of 3141512517117234 k007 concat of cont frac of 3141512522111115 k008 concat of cont frac of 3141512534084205 m001 (Paris-Rabbit)/(Magata-MinimumGamma) 3141512542811121 k006 concat of cont frac of 3141512543040641 a007 Real Root Of -836*x^4+694*x^3-532*x^2+999*x+396 3141512553040687 r005 Re(z^2+c),c=-23/66+21/53*I,n=6 3141512554240987 r005 Re(z^2+c),c=-47/118+11/56*I,n=25 3141512558943382 a001 18/17711*196418^(5/54) 3141512568124101 r005 Im(z^2+c),c=8/25+7/59*I,n=33 3141512571099093 k001 Champernowne real with 1984*n+1157 3141512580824930 r002 42th iterates of z^2 + 3141512587650896 a007 Real Root Of 437*x^4+291*x^3+76*x^2-577*x-184 3141512589817394 a005 (1/cos(9/55*Pi))^158 3141512589902417 r002 28th iterates of z^2 + 3141512593126518 r005 Im(z^2+c),c=1/42+21/62*I,n=5 3141512594282096 a007 Real Root Of -26*x^4+835*x^3-554*x^2+554*x-145 3141512595008081 a007 Real Root Of -217*x^4-505*x^3+540*x^2-179*x-413 3141512595682157 m004 -9/E^(Sqrt[5]*Pi)+100*Pi 3141512602276944 m009 (2/5*Pi^2+1/3)/(1/5*Psi(1,2/3)+3/4) 3141512602640571 s004 Continued Fraction of A027965 3141512602640571 s004 Continued fraction of A027965 3141512602784423 s004 Continued Fraction of A023552 3141512602784423 s004 Continued fraction of A023552 3141512610167939 a003 cos(Pi*31/118)-cos(Pi*45/118) 3141512611221123 k007 concat of cont frac of 3141512613127191 k007 concat of cont frac of 3141512613211108 k006 concat of cont frac of 3141512613213811 l006 ln(6776/9277) 3141512629956079 r005 Im(z^2+c),c=-9/8+51/206*I,n=56 3141512636344804 m001 (Paris+Trott2nd)/(GaussAGM-Kolakoski) 3141512638596243 m001 BesselJ(0,1)*ln(Magata)^2*sqrt(1+sqrt(3))^2 3141512646681372 h001 (1/3*exp(1)+1/5)/(3/8*exp(2)+3/4) 3141512651620890 m001 (ln(3)+2*Pi/GAMMA(5/6))/(2^(1/2)-Zeta(3)) 3141512653964333 r005 Im(z^2+c),c=-21/110+6/13*I,n=48 3141512671119096 k001 Champernowne real with 1985*n+1156 3141512681766054 m001 1/Tribonacci/exp(MertensB1)^2/GAMMA(23/24) 3141512705778476 m005 (1/2*Catalan-2/7)/(-23/60+5/12*5^(1/2)) 3141512706913661 a007 Real Root Of -153*x^4-474*x^3+100*x^2+231*x-55 3141512711421422 k006 concat of cont frac of 3141512712111115 k006 concat of cont frac of 3141512713031154 m001 (sin(1/12*Pi)+Zeta(1,2))/(Backhouse+CareFree) 3141512713786116 m001 cosh(1)*exp(FeigenbaumKappa)^2/exp(1)^2 3141512717710702 s004 Continued fraction of A213215 3141512718290976 s004 Continued Fraction of A324719 3141512718290976 s004 Continued Fraction of A353578 3141512718711122 k008 concat of cont frac of 3141512719380985 s004 Continued Fraction of A097080 3141512719380985 s004 Continued fraction of A097080 3141512720275827 s004 Continued fraction of A143701 3141512720275827 s004 Continued Fraction of A147638 3141512720275827 s004 Continued fraction of A147638 3141512722117126 k009 concat of cont frac of 3141512731868786 b008 Pi*ModularLambda[(4*I)/17] 3141512736600473 m001 (Kolakoski-Landau)/(GAMMA(19/24)-Artin) 3141512741296415 r005 Re(z^2+c),c=-7/40+45/53*I,n=9 3141512753675437 m005 (1/2*5^(1/2)-10/11)/(4/11*gamma-7/8) 3141512757002732 r005 Re(z^2+c),c=-27/74+5/14*I,n=30 3141512759489771 h001 (-7*exp(3)-11)/(-3*exp(3)+12) 3141512771139099 k001 Champernowne real with 1986*n+1155 3141512779071782 m001 1/ArtinRank2^2*ErdosBorwein/exp(Salem)^2 3141512802450349 l006 ln(9651/9959) 3141512803225531 a007 Real Root Of -196*x^4-457*x^3+714*x^2+467*x-658 3141512808235896 r002 6th iterates of z^2 + 3141512818343112 k006 concat of cont frac of 3141512818431520 m006 (3*Pi-2/5)/(5/6*ln(Pi)-2/3) 3141512819344424 a007 Real Root Of 122*x^4-50*x^3+999*x^2-973*x-407 3141512821077352 s002 sum(A241046[n]/((2*n+1)!),n=1..infinity) 3141512834956113 a007 Real Root Of 67*x^4+64*x^3-259*x^2+448*x-578 3141512846057028 s004 Continued Fraction of A303220 3141512847802422 l006 ln(4595/6291) 3141512848353239 q001 868/2763 3141512859514205 a007 Real Root Of 241*x^4+641*x^3-93*x^2+734*x-376 3141512871159102 k001 Champernowne real with 1987*n+1154 3141512871311311 k007 concat of cont frac of 3141512881436966 m001 1/GAMMA(5/12)^2/ln(GolombDickman)*sin(Pi/12)^2 3141512885014371 r005 Im(z^2+c),c=-67/94+3/56*I,n=57 3141512886969901 a007 Real Root Of 278*x^4+588*x^3+818*x^2+163*x-14 3141512888827858 r005 Im(z^2+c),c=-17/54+16/31*I,n=40 3141512892793740 r005 Re(z^2+c),c=-10/27+15/44*I,n=17 3141512895309412 a001 47/46368*2504730781961^(11/13) 3141512903366084 r005 Re(z^2+c),c=-49/118+2/33*I,n=8 3141512911103311 k006 concat of cont frac of 3141512921214113 k008 concat of cont frac of 3141512927031064 a007 Real Root Of 9*x^4-446*x^3-208*x^2-292*x+126 3141512929804515 a007 Real Root Of -372*x^4-971*x^3+773*x^2+764*x+899 3141512930302187 m001 1/Riemann3rdZero/FransenRobinson^2/ln(sinh(1)) 3141512960640468 a007 Real Root Of -18*x^4+365*x^3-822*x^2-331*x-411 3141512971179105 k001 Champernowne real with 1988*n+1153 3141512974547611 k007 concat of cont frac of 3141512984075823 p003 LerchPhi(1/5,6,625/238) 3141512992740348 r005 Im(z^2+c),c=-7/6+63/170*I,n=3 3141512995859963 m001 1/sin(1)^2*Si(Pi)*ln(sqrt(2))^2 3141512999187884 a007 Real Root Of -411*x^4-977*x^3+962*x^2-86*x-24 3141513004014196 r005 Im(z^2+c),c=25/114+13/57*I,n=12 3141513012505355 m005 (1/3*exp(1)-1/12)/(5/7*Pi+3/8) 3141513013112412 k007 concat of cont frac of 3141513013211096 k007 concat of cont frac of 3141513018258442 a001 1/329*2^(1/21) 3141513019578037 m008 (3/5*Pi^6-4/5)/(3/5*Pi^5-1/4) 3141513020450764 m001 (DuboisRaymond+Robbin)/(Cahen-Catalan) 3141513041079010 r005 Im(z^2+c),c=17/66+11/58*I,n=43 3141513054701850 m002 -15-Pi^5+6*Log[Pi] 3141513060392314 m001 BesselJ(0,1)/ln(Champernowne)^2/GAMMA(1/6) 3141513071199108 k001 Champernowne real with 1989*n+1152 3141513074592604 l006 ln(7009/9596) 3141513100632410 a001 4*(1/2*5^(1/2)+1/2)^28*199^(8/9) 3141513110810514 k006 concat of cont frac of 3141513111111411 k006 concat of cont frac of 3141513111211241 k008 concat of cont frac of 3141513111213211 k007 concat of cont frac of 3141513111218321 k007 concat of cont frac of 3141513111321515 k006 concat of cont frac of 3141513111331331 k006 concat of cont frac of 3141513111662112 k006 concat of cont frac of 3141513111919593 k002 Champernowne real with 117*n^2-213*n+99 3141513111922911 k007 concat of cont frac of 3141513112114111 k007 concat of cont frac of 3141513112114644 k009 concat of cont frac of 3141513114142124 k006 concat of cont frac of 3141513114519235 k007 concat of cont frac of 3141513115611221 k007 concat of cont frac of 3141513116513723 k008 concat of cont frac of 3141513117421311 k006 concat of cont frac of 3141513117937374 m008 (5*Pi^6-3/4)/(5*Pi^5-1/5) 3141513118121112 k006 concat of cont frac of 3141513120165121 k006 concat of cont frac of 3141513120722311 k006 concat of cont frac of 3141513121035611 k006 concat of cont frac of 3141513121126112 k009 concat of cont frac of 3141513121141219 k007 concat of cont frac of 3141513121311214 k007 concat of cont frac of 3141513121811342 k006 concat of cont frac of 3141513121827311 k006 concat of cont frac of 3141513122011101 k006 concat of cont frac of 3141513122982736 m001 (cos(1)*Sarnak+Mills)/cos(1) 3141513123578698 b008 Pi-Zeta[7,4] 3141513123611531 k009 concat of cont frac of 3141513125717087 r005 Im(z^2+c),c=53/110+29/64*I,n=4 3141513127843738 s004 Continued Fraction of A001213 3141513127843738 s004 Continued fraction of A001213 3141513128694393 s004 Continued Fraction of A114221 3141513128694393 s004 Continued fraction of A114221 3141513130164296 a007 Real Root Of -117*x^4+510*x^3-379*x^2+935*x-271 3141513132231530 m001 BesselJ(1,1)^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141513132231530 m001 BesselJ(1,1)^GAMMA(1/12)-Pi 3141513132694141 k008 concat of cont frac of 3141513135845966 m001 (1-3^(1/3))/(RenyiParking+TwinPrimes) 3141513136769137 r009 Re(z^3+c),c=-1/12+43/59*I,n=14 3141513141156112 k006 concat of cont frac of 3141513141222141 k008 concat of cont frac of 3141513141293232 k006 concat of cont frac of 3141513141515121 k008 concat of cont frac of 3141513142329612 k007 concat of cont frac of 3141513144302113 k007 concat of cont frac of 3141513145042586 r002 5th iterates of z^2 + 3141513147181111 k008 concat of cont frac of 3141513147685363 r005 Im(z^2+c),c=-11/25+25/48*I,n=62 3141513151221211 k006 concat of cont frac of 3141513151321222 k009 concat of cont frac of 3141513160094991 a001 505019158607/34*3^(15/22) 3141513161432311 k007 concat of cont frac of 3141513162166151 k006 concat of cont frac of 3141513162843111 k008 concat of cont frac of 3141513163384295 m006 (2*ln(Pi)+2/5)/(1/3/Pi+3/4) 3141513167236118 a007 Real Root Of 730*x^4-652*x^3-229*x^2-141*x+80 3141513171219111 k001 Champernowne real with 1990*n+1151 3141513172532923 k008 concat of cont frac of 3141513174130712 k006 concat of cont frac of 3141513181222211 k006 concat of cont frac of 3141513192121111 k009 concat of cont frac of 3141513206614453 r005 Re(z^2+c),c=19/52+10/41*I,n=18 3141513210319751 k007 concat of cont frac of 3141513211114111 k006 concat of cont frac of 3141513211219111 k009 concat of cont frac of 3141513211538278 a007 Real Root Of -364*x^4-807*x^3-831*x^2+810*x+315 3141513212143291 k007 concat of cont frac of 3141513212180117 m003 -5/2+(5*Sqrt[5])/16-Tan[1/2+Sqrt[5]/2]/10 3141513213113412 k006 concat of cont frac of 3141513214113571 k008 concat of cont frac of 3141513214931215 k006 concat of cont frac of 3141513217216391 k007 concat of cont frac of 3141513221116312 k009 concat of cont frac of 3141513221292111 k009 concat of cont frac of 3141513221812442 a003 cos(Pi*1/102)*cos(Pi*45/113) 3141513228321592 k007 concat of cont frac of 3141513229203326 a007 Real Root Of -225*x^4-460*x^3+457*x^2-755*x+771 3141513231175741 k006 concat of cont frac of 3141513231214111 k007 concat of cont frac of 3141513231628111 a003 sin(Pi*11/109)/sin(Pi*41/89) 3141513232222722 k006 concat of cont frac of 3141513236054244 r005 Im(z^2+c),c=17/66+11/58*I,n=50 3141513245313131 k008 concat of cont frac of 3141513246317063 m001 FeigenbaumAlpha/sin(1/5*Pi)/FeigenbaumKappa 3141513251606152 a003 sin(Pi*1/70)*sin(Pi*20/81) 3141513252214224 k007 concat of cont frac of 3141513254536228 r005 Im(z^2+c),c=-13/48+25/51*I,n=14 3141513255138229 m003 2/3+(3*Sqrt[5])/128+Sinh[1/2+Sqrt[5]/2] 3141513257282074 r005 Re(z^2+c),c=-41/106+13/48*I,n=14 3141513261480556 a007 Real Root Of -619*x^4+391*x^3+539*x^2+683*x-22 3141513268498558 m002 -Pi+ProductLog[Pi]/(6*E^Pi*Pi^4) 3141513271239114 k001 Champernowne real with 1991*n+1150 3141513273328153 m002 Pi-Log[Pi]/(15*Pi^6) 3141513283118350 m005 (17/4+1/4*5^(1/2))/(5*Pi-2/5) 3141513286249246 s004 Continued Fraction of A322971 3141513286254464 s004 Continued Fraction of A077790 3141513286254464 s004 Continued fraction of A077790 3141513287048655 s004 Continued Fraction of A069119 3141513287048655 s004 Continued fraction of A069119 3141513287049411 s004 Continued Fraction of A165469 3141513287049411 s004 Continued fraction of A165469 3141513293285740 b008 Pi+ExpIntegralEi[-22/3] 3141513293987037 r005 Re(z^2+c),c=33/106+31/56*I,n=52 3141513294316357 a007 Real Root Of -274*x^4-651*x^3+517*x^2-152*x+924 3141513297053292 r005 Im(z^2+c),c=17/66+11/58*I,n=51 3141513301121516 k006 concat of cont frac of 3141513302679862 r005 Re(z^2+c),c=23/86+5/59*I,n=37 3141513311833114 k008 concat of cont frac of 3141513312114211 k009 concat of cont frac of 3141513314412485 m001 1/Riemann3rdZero*exp(Rabbit)/sin(Pi/12) 3141513318011291 k009 concat of cont frac of 3141513318598717 m001 (2^(1/3)+Khinchin)/(-MertensB3+ZetaP(4)) 3141513321911113 k008 concat of cont frac of 3141513323564612 k008 concat of cont frac of 3141513329783979 r005 Im(z^2+c),c=-9/40+29/61*I,n=24 3141513335815413 k007 concat of cont frac of 3141513362236472 m001 (2^(1/3))/exp(Porter)^2/Zeta(1/2)^2 3141513364752024 l006 ln(3496/3507) 3141513371259117 k001 Champernowne real with 1992*n+1149 3141513373211745 m001 (GAMMA(13/24)-GAMMA(5/24))^GAMMA(5/6) 3141513379062217 r002 19th iterates of z^2 + 3141513383482263 a007 Real Root Of 66*x^4+85*x^3-564*x^2-941*x+348 3141513389398605 m005 (1/2*2^(1/2)-1/12)/(5/11*exp(1)+3/4) 3141513389420890 m001 FeigenbaumAlpha+ZetaP(2)^BesselI(1,1) 3141513415213151 k008 concat of cont frac of 3141513416412414 k008 concat of cont frac of 3141513419214171 k007 concat of cont frac of 3141513429027687 h001 (7/10*exp(2)+5/11)/(5/11*exp(1)+5/9) 3141513439901892 a007 Real Root Of 970*x^4+356*x^3+753*x^2-788*x+24 3141513441912191 k007 concat of cont frac of 3141513442901546 k009 concat of cont frac of 3141513446448871 r005 Re(z^2+c),c=-27/70+15/56*I,n=23 3141513454195735 m005 (1/2*gamma-7/10)/(2/5*exp(1)+2/9) 3141513454281361 k006 concat of cont frac of 3141513458494126 m001 (ln(5)+Zeta(1,2))/(FeigenbaumB+Mills) 3141513458649473 a003 cos(Pi*28/113)*cos(Pi*39/110) 3141513459373632 s004 Continued Fraction of A015821 3141513459373632 s004 Continued fraction of A015821 3141513461632164 k007 concat of cont frac of 3141513466338518 r009 Re(z^3+c),c=-51/98+16/45*I,n=49 3141513471031525 k009 concat of cont frac of 3141513471279120 k001 Champernowne real with 1993*n+1148 3141513477765840 a003 sin(Pi*9/98)/sin(Pi*22/61) 3141513486299392 r005 Re(z^2+c),c=-31/40+5/29*I,n=6 3141513495182217 a007 Real Root Of 875*x^4-801*x^3-340*x^2-650*x-204 3141513495422198 r005 Re(z^2+c),c=-7/6+53/251*I,n=4 3141513506283098 l006 ln(2414/3305) 3141513512313122 k007 concat of cont frac of 3141513513242121 k006 concat of cont frac of 3141513524775832 r005 Re(z^2+c),c=-23/70+13/23*I,n=33 3141513531548630 m001 (3^(1/2)+Zeta(3))/(Zeta(1,-1)+sin(1/12*Pi)) 3141513537751598 r008 a(0)=0,K{-n^6,29-43*n+45*n^2-63*n^3} 3141513538173176 a001 167761/21*17711^(11/13) 3141513538208946 r009 Re(z^3+c),c=-10/19+25/51*I,n=56 3141513548161662 h001 (7/9*exp(1)+11/12)/(1/8*exp(1)+5/8) 3141513551810830 r005 Im(z^2+c),c=-37/66+3/53*I,n=59 3141513553902591 a007 Real Root Of 909*x^4-398*x^3+88*x^2-793*x-279 3141513556382925 m001 1/Conway/Champernowne^2*exp(FeigenbaumC) 3141513562385275 q001 1/3183179 3141513570568237 m001 (Trott+ZetaP(2))/(BesselK(0,1)-Ei(1)) 3141513571299123 k001 Champernowne real with 1994*n+1147 3141513575229459 h001 (2/5*exp(2)+7/8)/(3/8*exp(1)+1/5) 3141513575351962 r005 Re(z^2+c),c=-13/32+11/54*I,n=9 3141513580680419 a007 Real Root Of 26*x^4+804*x^3-423*x^2-637*x+802 3141513585158195 r005 Im(z^2+c),c=7/48+24/41*I,n=21 3141513598640318 r002 55i'th iterates of 2*x/(1-x^2) of 3141513605263520 m004 -45*Sqrt[5]*Pi+3/ProductLog[Sqrt[5]*Pi] 3141513619368680 m005 (1/2*Catalan+1/8)/(37/35+5/14*5^(1/2)) 3141513622541221 k007 concat of cont frac of 3141513641380278 m004 -100*Pi+3*Csc[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141513641442798 m004 -100*Pi+(6*Csc[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141513641491977 a007 Real Root Of 196*x^4+472*x^3-541*x^2-373*x-289 3141513641505317 m004 -100*Pi+3*Csc[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141513643995575 b008 Pi*Cos[1/141] 3141513644836674 r005 Im(z^2+c),c=-39/34+28/115*I,n=44 3141513645320256 b008 Pi*Sech[1/141] 3141513650748575 s004 Continued Fraction of A077777 3141513650748575 s004 Continued fraction of A077777 3141513652299355 s004 Continued Fraction of A324727 3141513659135395 a003 cos(Pi*32/105)*cos(Pi*37/117) 3141513671319126 k001 Champernowne real with 1995*n+1146 3141513675004395 a001 1926*6765^(26/31) 3141513677307397 m001 1/GAMMA(19/24)*Catalan*ln(Zeta(9))^2 3141513686635899 r005 Im(z^2+c),c=-17/78+23/48*I,n=19 3141513691259956 r005 Im(z^2+c),c=17/66+11/58*I,n=57 3141513692552962 s001 sum(exp(-Pi/2)^(n-1)*A026112[n],n=1..infinity) 3141513694575724 r005 Im(z^2+c),c=17/66+11/58*I,n=52 3141513704014834 m002 Pi-(E^Pi*Coth[Pi])/Pi^11 3141513704509549 r005 Im(z^2+c),c=17/66+11/58*I,n=56 3141513711241212 k007 concat of cont frac of 3141513711876533 p004 log(20149/14717) 3141513717594298 m001 cos(1)^2/ln(Paris)^2/sqrt(3) 3141513730866648 r005 Im(z^2+c),c=1/52+16/47*I,n=5 3141513738620947 r005 Im(z^2+c),c=-13/50+25/51*I,n=62 3141513742113212 k007 concat of cont frac of 3141513745102900 a007 Real Root Of -176*x^4+89*x^3-10*x^2+646*x-203 3141513746734478 m001 (MertensB3-Riemann2ndZero)/(ln(3)-Bloch) 3141513748519242 r005 Im(z^2+c),c=17/66+11/58*I,n=58 3141513762041544 r005 Im(z^2+c),c=17/66+11/58*I,n=63 3141513768094191 r005 Im(z^2+c),c=17/66+11/58*I,n=62 3141513769533000 r005 Im(z^2+c),c=17/66+11/58*I,n=64 3141513771339129 k001 Champernowne real with 1996*n+1145 3141513772077825 r005 Re(z^2+c),c=23/86+5/59*I,n=46 3141513783063381 m001 (exp(1/2)+GAMMA(5/12))/Zeta(3) 3141513790363885 r005 Im(z^2+c),c=17/66+11/58*I,n=61 3141513790771806 a007 Real Root Of -554*x^4-812*x^3+250*x^2+544*x-165 3141513801213526 r005 Im(z^2+c),c=17/66+11/58*I,n=59 3141513804221917 m001 (Shi(1)+Conway)^MertensB3 3141513811381930 r005 Im(z^2+c),c=17/66+11/58*I,n=60 3141513812111216 k006 concat of cont frac of 3141513814398341 r005 Im(z^2+c),c=17/66+11/58*I,n=46 3141513827306121 r005 Im(z^2+c),c=17/66+11/58*I,n=55 3141513830468314 a007 Real Root Of 376*x^4+981*x^3-637*x^2+259*x+893 3141513832842216 l006 ln(9745/10056) 3141513836292112 k006 concat of cont frac of 3141513836989350 r009 Re(z^3+c),c=-55/118+19/48*I,n=64 3141513841819574 m005 (1/2*3^(1/2)+4/11)/(1/4*Zeta(3)+1/11) 3141513851448644 m002 -Pi+(2*Cosh[Pi])/Pi^11 3141513855907869 r005 Re(z^2+c),c=-49/86+5/18*I,n=7 3141513856871162 m005 (13/36+1/4*5^(1/2))/(1/2*2^(1/2)-1) 3141513859286911 m005 (1/3*Catalan-2/3)/(7/11*5^(1/2)-3/11) 3141513860329506 r005 Im(z^2+c),c=-49/34+15/37*I,n=3 3141513861157731 h001 (1/6*exp(1)+1/11)/(1/6*exp(2)+1/2) 3141513868832892 r005 Im(z^2+c),c=17/66+11/58*I,n=49 3141513871359132 k001 Champernowne real with 1997*n+1144 3141513878331467 r009 Re(z^3+c),c=-9/22+19/62*I,n=20 3141513879582586 r005 Re(z^2+c),c=33/82+19/60*I,n=23 3141513884987680 m008 (5*Pi^5-2/3)/(5*Pi^4-1/5) 3141513886913458 a003 sin(Pi*4/19)-sin(Pi*21/94) 3141513891912111 k007 concat of cont frac of 3141513891935392 r002 48th iterates of z^2 + 3141513896112260 m001 (1+Zeta(1,2))/(-ArtinRank2+Khinchin) 3141513899051371 r005 Re(z^2+c),c=-37/114+17/35*I,n=45 3141513913805037 a001 1364/1597*317811^(39/47) 3141513915511121 k007 concat of cont frac of 3141513915714461 a007 Real Root Of 997*x^4+467*x^3+821*x^2-639*x-277 3141513921111439 k009 concat of cont frac of 3141513921211264 k007 concat of cont frac of 3141513922012131 k008 concat of cont frac of 3141513938557807 r005 Im(z^2+c),c=7/40+11/42*I,n=19 3141513941127936 m005 (-19/36+1/4*5^(1/2))/(7/9*gamma+6/11) 3141513943914799 m004 -100*Pi+6*Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141513944039360 m004 -100*Pi+6*Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141513959891394 p004 log(27397/20011) 3141513968397438 a007 Real Root Of -385*x^4-869*x^3+874*x^2-747*x-416 3141513971379135 k001 Champernowne real with 1998*n+1143 3141513973805118 m002 -Pi+Csch[Pi]/(Pi^6*Log[Pi]) 3141513975986939 r005 Im(z^2+c),c=17/66+11/58*I,n=53 3141513979658992 m001 GAMMA(7/12)*(OrthogonalArrays-ln(5)) 3141513979671882 r005 Im(z^2+c),c=17/66+11/58*I,n=54 3141513987363856 m001 (sin(1/12*Pi)-LaplaceLimit)/(Rabbit+Stephens) 3141513998332831 m002 -(E^Pi/Pi^11)+Pi 3141514002943207 r005 Re(z^2+c),c=-9/22+1/56*I,n=9 3141514019159074 m007 (-4*gamma-12*ln(2)+2*Pi-3)/(-3/4*gamma+2/3) 3141514022149490 m005 (2/5*gamma-1/2)/(2/5*Pi-2/5) 3141514028688616 a007 Real Root Of 280*x^4+666*x^3-827*x^2-640*x-472 3141514042556164 a007 Real Root Of -736*x^4+947*x^3-101*x^2+394*x-136 3141514048075722 r005 Re(z^2+c),c=-33/106+29/56*I,n=63 3141514048713270 r005 Re(z^2+c),c=-27/22+67/87*I,n=2 3141514050124168 r005 Re(z^2+c),c=-37/114+25/56*I,n=17 3141514050257044 r009 Re(z^3+c),c=-35/86+10/33*I,n=20 3141514052602837 m001 1/KhintchineHarmonic/Si(Pi)^2*exp(Porter)^2 3141514056273926 r005 Re(z^2+c),c=-7/19+1/56*I,n=3 3141514066849881 m002 -(Pi*Coth[Pi])+ProductLog[Pi]^2/Pi^4 3141514071399138 k001 Champernowne real with 1999*n+1142 3141514074839949 a007 Real Root Of 352*x^4+754*x^3-878*x^2+576*x-433 3141514088993561 a007 Real Root Of 138*x^4-865*x^3+863*x^2-139*x-157 3141514089728466 r009 Re(z^3+c),c=-31/82+12/47*I,n=20 3141514091326125 s004 Continued Fraction of A089432 3141514091326125 s004 Continued fraction of A089432 3141514092644949 r005 Re(z^2+c),c=-79/110+4/45*I,n=6 3141514092890255 s004 Continued Fraction of A186300 3141514092890255 s004 Continued fraction of A186300 3141514095664167 s004 Continued Fraction of A144751 3141514095664167 s004 Continued fraction of A144751 3141514098211128 s001 sum(1/10^(n-1)*A012207[n]/n^n,n=1..infinity) 3141514098399111 b008 Pi*ModularLambda[I/42*Pi^2] 3141514104133032 l006 ln(5061/6929) 3141514111111411 k007 concat of cont frac of 3141514111112366 k006 concat of cont frac of 3141514111119122 k007 concat of cont frac of 3141514111419212 k007 concat of cont frac of 3141514111431327 k008 concat of cont frac of 3141514112211112 k006 concat of cont frac of 3141514112219653 k002 Champernowne real with 235/2*n^2-429/2*n+100 3141514112311911 k006 concat of cont frac of 3141514112433156 r009 Im(z^3+c),c=-15/31+4/25*I,n=25 3141514112511615 k007 concat of cont frac of 3141514113132126 k007 concat of cont frac of 3141514113827995 b008 Pi*KelvinBer[0,1/5] 3141514114118613 k009 concat of cont frac of 3141514114131182 k008 concat of cont frac of 3141514116116111 k009 concat of cont frac of 3141514116413121 k008 concat of cont frac of 3141514118102123 k008 concat of cont frac of 3141514118634121 k008 concat of cont frac of 3141514119300327 l004 Ssi(394/51) 3141514120735110 m002 -Pi+2/(E^Pi*Pi^6*Log[Pi]) 3141514121111122 k007 concat of cont frac of 3141514121130733 k006 concat of cont frac of 3141514122243273 k009 concat of cont frac of 3141514122413111 k007 concat of cont frac of 3141514125374015 r005 Re(z^2+c),c=-7/78+27/56*I,n=2 3141514125799011 r005 Im(z^2+c),c=21/86+13/64*I,n=30 3141514129115212 k008 concat of cont frac of 3141514129352640 s002 sum(A278269[n]/((exp(n)+1)/n),n=1..infinity) 3141514134656314 k006 concat of cont frac of 3141514137412235 m001 (5^(1/2)+sin(1))/(gamma(2)+OneNinth) 3141514138661393 a007 Real Root Of -334*x^4+803*x^3+733*x^2+729*x-323 3141514139083141 k006 concat of cont frac of 3141514139130264 a007 Real Root Of 52*x^4+68*x^3+45*x^2+824*x-812 3141514141028580 r009 Im(z^3+c),c=-17/38+7/40*I,n=8 3141514141111911 k007 concat of cont frac of 3141514145217019 m002 -Pi+(2*Sinh[Pi])/Pi^11 3141514147722222 k009 concat of cont frac of 3141514148031318 k002 Champernowne real with 63*n^2-178*n+118 3141514151142513 k007 concat of cont frac of 3141514152412121 k009 concat of cont frac of 3141514154369163 a007 Real Root Of 41*x^4+2*x^3+355*x^2-982*x+273 3141514161011261 k006 concat of cont frac of 3141514168111338 k003 Champernowne real with 1/3*n^3+61*n^2-523/3*n+116 3141514168216078 m001 (exp(1/Pi)-MadelungNaCl)/KhinchinLevy 3141514171419141 k001 Champernowne real with 2000*n+1141 3141514174423151 k007 concat of cont frac of 3141514177572558 r008 a(0)=0,K{-n^6,-1-21*n+2*n^2+52*n^3} 3141514178151348 k003 Champernowne real with 1/2*n^3+60*n^2-345/2*n+115 3141514182955497 r009 Re(z^3+c),c=-5/94+13/22*I,n=43 3141514184317430 m001 (Pi*Riemann2ndZero-ZetaQ(4))/Riemann2ndZero 3141514187116847 k007 concat of cont frac of 3141514188191358 k003 Champernowne real with 2/3*n^3+59*n^2-512/3*n+114 3141514188344131 a001 2139295485799/21*5702887^(7/19) 3141514188344138 a001 10525900321/3*53316291173^(7/19) 3141514189133209 a008 Real Root of (-3+7*x+9*x^2-9*x^4+4*x^8) 3141514208271378 k003 Champernowne real with n^3+57*n^2-167*n+112 3141514209460966 a007 Real Root Of 350*x^4-243*x^3+877*x^2-495*x-253 3141514211181212 k007 concat of cont frac of 3141514211411124 k006 concat of cont frac of 3141514211511132 k006 concat of cont frac of 3141514212582131 k006 concat of cont frac of 3141514217631777 m001 (Si(Pi)+FeigenbaumMu)/(-Sierpinski+Thue) 3141514218311388 k003 Champernowne real with 7/6*n^3+56*n^2-991/6*n+111 3141514221111413 k009 concat of cont frac of 3141514225805206 m005 (1/2*2^(1/2)-7/9)/(8/9*exp(1)-1/6) 3141514228351398 k003 Champernowne real with 4/3*n^3+55*n^2-490/3*n+110 3141514238391408 k003 Champernowne real with 3/2*n^3+54*n^2-323/2*n+109 3141514246722158 a007 Real Root Of -108*x^4-89*x^3+94*x^2+702*x-226 3141514248431418 k003 Champernowne real with 5/3*n^3+53*n^2-479/3*n+108 3141514249217447 m005 (3/4*exp(1)-4/5)/(1/4*gamma+1/4) 3141514250715340 s002 sum(A176851[n]/(10^n-1),n=1..infinity) 3141514251112411 k007 concat of cont frac of 3141514251121519 k006 concat of cont frac of 3141514256464306 m001 (exp(1)+Backhouse)/(CareFree+GolombDickman) 3141514257211321 k007 concat of cont frac of 3141514263511841 k007 concat of cont frac of 3141514267117358 m002 -Pi+Sech[Pi]/(Pi^6*Log[Pi]) 3141514268511438 k003 Champernowne real with 2*n^3+51*n^2-156*n+106 3141514271439144 k001 Champernowne real with 2001*n+1140 3141514274451009 a007 Real Root Of -158*x^4-497*x^3-79*x^2-366*x-390 3141514275516063 r009 Im(z^3+c),c=-1/3+8/29*I,n=5 3141514288591458 k003 Champernowne real with 7/3*n^3+49*n^2-457/3*n+104 3141514291197482 m001 (-sin(1)+MertensB2)/(Catalan-ln(2)/ln(10)) 3141514291553634 m002 -Pi+(E^Pi*Tanh[Pi])/Pi^11 3141514296762630 m001 1/Zeta(5)*RenyiParking^2*exp(log(1+sqrt(2)))^2 3141514298631468 k003 Champernowne real with 5/2*n^3+48*n^2-301/2*n+103 3141514299257511 r002 27i'th iterates of 2*x/(1-x^2) of 3141514301182379 m008 (2/5*Pi^6-1/6)/(4*Pi^5-1/2) 3141514307767716 m001 (Chi(1)+Cahen*Tribonacci)/Cahen 3141514308671478 k003 Champernowne real with 8/3*n^3+47*n^2-446/3*n+102 3141514312416130 k007 concat of cont frac of 3141514313111143 k009 concat of cont frac of 3141514315417808 m001 Riemann3rdZero/exp(Bloch)^2/GAMMA(1/6)^2 3141514316839512 r005 Re(z^2+c),c=-11/32+34/59*I,n=64 3141514319757963 m001 (Niven+PrimesInBinary)/(3^(1/2)-Shi(1)) 3141514321113141 k007 concat of cont frac of 3141514323784384 m001 (Stephens-StolarskyHarborth)/(OneNinth+Porter) 3141514326975887 a003 cos(Pi*14/97)*cos(Pi*17/44) 3141514328751498 k003 Champernowne real with 3*n^3+45*n^2-145*n+100 3141514338791508 k003 Champernowne real with 19/6*n^3+44*n^2-859/6*n+99 3141514341028094 s002 sum(A279914[n]/(n^3*pi^n+1),n=1..infinity) 3141514344861931 p003 LerchPhi(1/256,5,237/188) 3141514348831518 k003 Champernowne real with 10/3*n^3+43*n^2-424/3*n+98 3141514348929169 r005 Im(z^2+c),c=15/82+11/43*I,n=25 3141514349102587 r005 Re(z^2+c),c=-45/122+14/41*I,n=33 3141514352656588 r002 3th iterates of z^2 + 3141514357724216 k007 concat of cont frac of 3141514358534374 a009 (6^(1/2)-9)*23^(1/2) 3141514358871528 k003 Champernowne real with 7/2*n^3+42*n^2-279/2*n+97 3141514359478361 r009 Im(z^3+c),c=-29/94+51/53*I,n=4 3141514361407696 a007 Real Root Of -136*x^4-482*x^3-414*x^2-687*x+230 3141514361454271 m001 (OneNinth+Sarnak)/(BesselI(1,2)+GAMMA(11/12)) 3141514368911538 k003 Champernowne real with 11/3*n^3+41*n^2-413/3*n+96 3141514373556984 a007 Real Root Of -119*x^4+776*x^3-502*x^2+957*x-274 3141514375574600 m001 (BesselK(0,1)-Zeta(1,-1)*Gompertz)/Zeta(1,-1) 3141514375649989 r005 Im(z^2+c),c=-25/118+8/17*I,n=33 3141514378121652 a007 Real Root Of -321*x^4-906*x^3+633*x^2+986*x+26 3141514378951548 k003 Champernowne real with 23/6*n^3+40*n^2-815/6*n+95 3141514388289419 a001 34/15127*1364^(19/52) 3141514388991558 k003 Champernowne real with 4*n^3+39*n^2-134*n+94 3141514389298786 a007 Real Root Of 751*x^4-318*x^3-531*x^2-901*x+338 3141514394979758 r005 Re(z^2+c),c=-27/98+39/64*I,n=44 3141514397204007 r009 Im(z^3+c),c=-6/29+19/26*I,n=52 3141514399031568 k003 Champernowne real with 25/6*n^3+38*n^2-793/6*n+93 3141514403851529 r005 Re(z^2+c),c=-11/17+7/64*I,n=4 3141514409071578 k003 Champernowne real with 13/3*n^3+37*n^2-391/3*n+92 3141514409579273 b008 Pi-AiryAi[2+Pi] 3141514415141321 k006 concat of cont frac of 3141514419111588 k003 Champernowne real with 9/2*n^3+36*n^2-257/2*n+91 3141514425056543 a007 Real Root Of 761*x^4-650*x^3-775*x^2-620*x+284 3141514427310887 m001 (2^(1/3)*ZetaP(3)+Psi(2,1/3))/ZetaP(3) 3141514429151598 k003 Champernowne real with 14/3*n^3+35*n^2-380/3*n+90 3141514439191608 k003 Champernowne real with 29/6*n^3+34*n^2-749/6*n+89 3141514444556908 b008 Pi*(1+2*ExpIntegralEi[-9]) 3141514449231618 k003 Champernowne real with 5*n^3+33*n^2-123*n+88 3141514451743417 b008 InverseJacobiDS[2,11] 3141514451743417 b008 InverseJacobiSD[1/2,11] 3141514459271628 k003 Champernowne real with 31/6*n^3+32*n^2-727/6*n+87 3141514467579350 m001 BesselI(1,2)-DuboisRaymond+KhinchinHarmonic 3141514469311638 k003 Champernowne real with 16/3*n^3+31*n^2-358/3*n+86 3141514477565748 r005 Im(z^2+c),c=-13/38+3/62*I,n=23 3141514479351648 k003 Champernowne real with 11/2*n^3+30*n^2-235/2*n+85 3141514481917873 r005 Re(z^2+c),c=-31/66+4/45*I,n=4 3141514483124926 m001 1/LambertW(1)^2*RenyiParking*ln(sin(Pi/12)) 3141514483691068 m001 gamma(2)-Sierpinski^Zeta(3) 3141514489245543 r005 Im(z^2+c),c=-6/19+21/41*I,n=55 3141514489391658 k003 Champernowne real with 17/3*n^3+29*n^2-347/3*n+84 3141514493272140 r008 a(0)=0,K{-n^6,-7+50*n^3+5*n^2-16*n} 3141514493272140 r008 a(0)=0,K{-n^6,7+16*n-5*n^2-50*n^3} 3141514493513191 m004 (20*Csc[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/(3*Pi) 3141514496858974 a005 (1/cos(19/172*Pi))^618 3141514499431668 k003 Champernowne real with 35/6*n^3+28*n^2-683/6*n+83 3141514509471678 k003 Champernowne real with 6*n^3+27*n^2-112*n+82 3141514519511688 k003 Champernowne real with 37/6*n^3+26*n^2-661/6*n+81 3141514520192695 r005 Im(z^2+c),c=-93/106+11/50*I,n=19 3141514522091874 r005 Re(z^2+c),c=5/126+53/59*I,n=3 3141514524192401 k008 concat of cont frac of 3141514526216123 k006 concat of cont frac of 3141514527298664 h001 (3/5*exp(1)+7/11)/(10/11*exp(2)+1/2) 3141514529551698 k003 Champernowne real with 19/3*n^3+25*n^2-325/3*n+80 3141514536284512 m004 -(Pi*Cos[Sqrt[5]*Pi])+5*Cot[Sqrt[5]*Pi] 3141514539591708 k003 Champernowne real with 13/2*n^3+24*n^2-213/2*n+79 3141514541377828 r005 Im(z^2+c),c=-69/106+21/64*I,n=10 3141514543345322 m001 CopelandErdos^2*ln(Cahen)^2*Niven^2 3141514543594113 m004 -100*Pi+(5*Sqrt[5]*Pi)/(4*E^(Sqrt[5]*Pi)) 3141514548955882 a007 Real Root Of -342*x^4-907*x^3+347*x^2-646*x-264 3141514549631718 k003 Champernowne real with 20/3*n^3+23*n^2-314/3*n+78 3141514550987595 a007 Real Root Of -15*x^4+872*x^3+668*x^2+112*x-128 3141514559336153 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(Pi^6*Log[Pi]) 3141514559671728 k003 Champernowne real with 41/6*n^3+22*n^2-617/6*n+77 3141514564279198 r009 Im(z^3+c),c=-3/29+17/50*I,n=3 3141514569711738 k003 Champernowne real with 7*n^3+21*n^2-101*n+76 3141514575704469 a001 15127/233*4181^(43/58) 3141514576966404 r005 Re(z^2+c),c=9/52+19/34*I,n=29 3141514579751748 k003 Champernowne real with 43/6*n^3+20*n^2-595/6*n+75 3141514582947503 r005 Re(z^2+c),c=-13/40+27/56*I,n=52 3141514587093022 r005 Im(z^2+c),c=-9/14+45/124*I,n=8 3141514588666518 a007 Real Root Of 238*x^4+596*x^3-811*x^2-842*x+656 3141514589791758 k003 Champernowne real with 22/3*n^3+19*n^2-292/3*n+74 3141514594199801 r005 Im(z^2+c),c=-15/56+31/63*I,n=34 3141514595147125 h001 (-4*exp(3)+3)/(-12*exp(1)+8) 3141514599831768 k003 Champernowne real with 15/2*n^3+18*n^2-191/2*n+73 3141514609871778 k003 Champernowne real with 23/3*n^3+17*n^2-281/3*n+72 3141514611352921 k008 concat of cont frac of 3141514611614349 h001 (8/11*exp(1)+1/10)/(4/5*exp(2)+7/10) 3141514614171527 k007 concat of cont frac of 3141514619911788 k003 Champernowne real with 47/6*n^3+16*n^2-551/6*n+71 3141514629951798 k003 Champernowne real with 8*n^3+15*n^2-90*n+70 3141514630346777 b008 Pi+ExpIntegralEi[-3*Sqrt[6]] 3141514639572814 m001 1/ln(BesselK(1,1))/FeigenbaumD/GAMMA(7/12)^2 3141514639991808 k003 Champernowne real with 49/6*n^3+14*n^2-529/6*n+69 3141514641003181 k003 Champernowne real with 25/3*n^3+13*n^2-259/3*n+68 3141514648424087 r005 Re(z^2+c),c=-13/32+7/53*I,n=23 3141514649357686 l006 ln(2647/3624) 3141514651007182 k003 Champernowne real with 17/2*n^3+12*n^2-169/2*n+67 3141514653638173 h003 exp(Pi*(1/14*(-236)^(1/2))) 3141514656098694 r005 Re(z^2+c),c=-23/56+4/53*I,n=21 3141514661011183 k003 Champernowne real with 26/3*n^3+11*n^2-248/3*n+66 3141514670204146 a007 Real Root Of -745*x^4+151*x^3-998*x^2+874*x+385 3141514670797787 r005 Im(z^2+c),c=-19/86+17/39*I,n=7 3141514671015184 k003 Champernowne real with 53/6*n^3+10*n^2-485/6*n+65 3141514674062213 k008 concat of cont frac of 3141514680958738 a001 7*521^(6/25) 3141514681019185 k003 Champernowne real with 9*n^3+9*n^2-79*n+64 3141514682128287 r005 Re(z^2+c),c=-1/4+21/37*I,n=18 3141514691023186 k003 Champernowne real with 55/6*n^3+8*n^2-463/6*n+63 3141514699468337 a003 sin(Pi*11/118)/cos(Pi*4/31) 3141514701027187 k003 Champernowne real with 28/3*n^3+7*n^2-226/3*n+62 3141514703710732 l006 ln(36/833) 3141514711031188 k003 Champernowne real with 19/2*n^3+6*n^2-147/2*n+61 3141514711921111 k007 concat of cont frac of 3141514712118624 k008 concat of cont frac of 3141514712808988 r009 Im(z^3+c),c=-8/19+15/61*I,n=4 3141514719801568 a007 Real Root Of -116*x^4+881*x^3-765*x^2+640*x+305 3141514721035189 k003 Champernowne real with 29/3*n^3+5*n^2-215/3*n+60 3141514722162166 k008 concat of cont frac of 3141514725495986 m001 Pi-gamma(3)^GAMMA(7/12) 3141514731039190 k003 Champernowne real with 59/6*n^3+4*n^2-419/6*n+59 3141514741043191 k003 Champernowne real with 10*n^3+3*n^2-68*n+58 3141514741122218 k009 concat of cont frac of 3141514745215224 k007 concat of cont frac of 3141514751047192 k003 Champernowne real with 61/6*n^3+2*n^2-397/6*n+57 3141514757596272 a007 Real Root Of -189*x^4-770*x^3-352*x^2+803*x+532 3141514758438660 m005 (7/20+1/4*5^(1/2))/(2/3*Catalan-9/10) 3141514761051193 k003 Champernowne real with 31/3*n^3+n^2-193/3*n+56 3141514767177313 m001 Mills/ErdosBorwein/sin(1/12*Pi) 3141514771055194 k003 Champernowne real with 21/2*n^3-125/2*n+55 3141514776562670 m005 (1/2*Pi+3/5)/(5/12*Pi-2) 3141514781059195 k003 Champernowne real with 32/3*n^3-n^2-182/3*n+54 3141514781466823 m001 LambertW(1)^2*BesselK(0,1)*exp(sin(1)) 3141514785554182 a008 Real Root of x^2-x-98377 3141514791063196 k003 Champernowne real with 65/6*n^3-2*n^2-353/6*n+53 3141514791246250 m001 (2^(1/3))-Si(Pi)^BesselJZeros(0,1) 3141514794555860 m005 (1/2*Catalan+4/9)/(5/8*Pi+10/11) 3141514799265147 m001 GAMMA(17/24)*(CopelandErdos+ZetaQ(3)) 3141514801067197 k003 Champernowne real with 11*n^3-3*n^2-57*n+52 3141514811071198 k003 Champernowne real with 67/6*n^3-4*n^2-331/6*n+51 3141514811198826 r002 45th iterates of z^2 + 3141514815498872 m001 (Catalan+2*Pi/GAMMA(5/6))/(Gompertz+Porter) 3141514821075199 k003 Champernowne real with 34/3*n^3-5*n^2-160/3*n+50 3141514826316531 k006 concat of cont frac of 3141514831079200 k003 Champernowne real with 23/2*n^3-6*n^2-103/2*n+49 3141514834433711 k006 concat of cont frac of 3141514839702137 r005 Im(z^2+c),c=-9/31+30/59*I,n=29 3141514841083201 k003 Champernowne real with 35/3*n^3-7*n^2-149/3*n+48 3141514842795202 a007 Real Root Of -225*x^4-376*x^3+752*x^2-677*x+709 3141514847670697 a007 Real Root Of 22*x^4+664*x^3-821*x^2+982*x-135 3141514848889609 r002 5th iterates of z^2 + 3141514850611620 r005 Im(z^2+c),c=-39/106+11/20*I,n=49 3141514851087202 k003 Champernowne real with 71/6*n^3-8*n^2-287/6*n+47 3141514861091203 k003 Champernowne real with 12*n^3-9*n^2-46*n+46 3141514861667792 m001 PisotVijayaraghavan/Gompertz*2^(1/2) 3141514871264357 m001 (-Zeta(1/2)+GAMMA(17/24))/(2^(1/2)-cos(1)) 3141514878993883 m002 Pi-Cosh[Pi]/(5*Pi^9) 3141514881300982 a001 17/51841*3571^(29/52) 3141514887784804 m001 OrthogonalArrays*(LandauRamanujan-exp(Pi)) 3141514888256575 r005 Im(z^2+c),c=17/66+11/58*I,n=48 3141514892750611 a007 Real Root Of 356*x^4+980*x^3-786*x^2-988*x+363 3141514893964905 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)*ZetaR(2)-ZetaQ(4) 3141514907362520 s002 sum(A191229[n]/(n^3*exp(n)+1),n=1..infinity) 3141514914538992 a001 2/28657*46368^(29/51) 3141514919260781 r005 Re(z^2+c),c=-13/34+33/64*I,n=26 3141514923135260 a007 Real Root Of -125*x^4-360*x^3+86*x^2-288*x-740 3141514941649207 m001 (-FeigenbaumKappa+Robbin)/(Shi(1)-exp(Pi)) 3141514952345577 r005 Re(z^2+c),c=11/54+14/25*I,n=26 3141514957211017 k007 concat of cont frac of 3141514964374385 r008 a(0)=0,K{-n^6,51-53*n^3+26*n^2-56*n} 3141514969054234 r005 Re(z^2+c),c=19/66+19/41*I,n=12 3141514971881217 r005 Re(z^2+c),c=-17/44+13/49*I,n=24 3141514972064080 m004 -100*Pi+4*Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141514972187014 m004 -100*Pi+4*Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141514973576042 q001 107/3406 3141514984082149 r005 Im(z^2+c),c=-21/58+3/5*I,n=31 3141514984531644 a005 (1/cos(23/178*Pi))^258 3141514990291231 m008 (3/4*Pi^5+3/4)/(2/3*Pi^2+3/4) 3141514993438177 r005 Im(z^2+c),c=23/74+6/49*I,n=50 3141514994886001 a001 34/15127*9349^(15/52) 3141515001837330 m001 (1-Psi(2,1/3))/(Niven+StolarskyHarborth) 3141515005834468 a001 38*2504730781961^(4/17) 3141515007618116 m001 (Rabbit+Tribonacci)/((1+3^(1/2))^(1/2)-sin(1)) 3141515011610006 m001 GAMMA(1/6)/GAMMA(1/4)^2*exp(Zeta(9))^2 3141515013205976 r005 Re(z^2+c),c=13/36+8/59*I,n=63 3141515016413443 a007 Real Root Of 274*x^4+602*x^3-992*x^2-347*x+677 3141515017630206 a001 34/64079*24476^(21/52) 3141515018467006 a001 17/930249*64079^(35/52) 3141515028089303 r005 Re(z^2+c),c=-11/31+20/51*I,n=49 3141515032414298 r009 Re(z^3+c),c=-47/118+19/32*I,n=5 3141515053114515 a007 Real Root Of 703*x^4-944*x^3+116*x^2-433*x+147 3141515068972542 m008 (5*Pi^6+2/3)/(5*Pi^5+1/4) 3141515070274024 r005 Im(z^2+c),c=-99/86+7/29*I,n=26 3141515070862833 a003 cos(Pi*1/22)*sin(Pi*11/107) 3141515077200681 m005 (1/2*3^(1/2)+5)/(5/9*5^(1/2)+5/8) 3141515098041889 m001 (GAMMA(19/24)-cos(1))/(-Riemann2ndZero+Thue) 3141515104455816 a007 Real Root Of -299*x^4-972*x^3-240*x^2-199*x+730 3141515110131317 k007 concat of cont frac of 3141515111063115 k006 concat of cont frac of 3141515111144121 k007 concat of cont frac of 3141515112519713 k002 Champernowne real with 118*n^2-216*n+101 3141515112831311 k006 concat of cont frac of 3141515114111671 k009 concat of cont frac of 3141515115227171 k007 concat of cont frac of 3141515121104030 r005 Im(z^2+c),c=-13/74+23/37*I,n=35 3141515121121232 k007 concat of cont frac of 3141515121211235 k006 concat of cont frac of 3141515121216691 k009 concat of cont frac of 3141515121612631 k007 concat of cont frac of 3141515131412827 k007 concat of cont frac of 3141515134352227 k006 concat of cont frac of 3141515137153121 k009 concat of cont frac of 3141515138783561 b008 Pi*FresnelC[1/10] 3141515141423137 m005 (3*Catalan-5/6)/(2/3*Pi+4) 3141515142192114 k006 concat of cont frac of 3141515146767639 m001 (1/2*Pi*2^(2/3)-Zeta(5))/arctan(1/2) 3141515147161135 r005 Im(z^2+c),c=-61/118+31/63*I,n=21 3141515148612586 l006 ln(5527/7567) 3141515149001415 r002 50th iterates of z^2 + 3141515151081580 r008 a(0)=0,K{-n^6,-7+44*n^3+23*n^2-28*n} 3141515151292155 k006 concat of cont frac of 3141515157098961 a007 Real Root Of -377*x^4-968*x^3+916*x^2+688*x-171 3141515161924979 a007 Real Root Of 710*x^4-772*x^3+740*x^2-764*x+184 3141515161963111 k009 concat of cont frac of 3141515168931648 m002 Pi-Sinh[Pi]/(5*Pi^9) 3141515171155273 m001 Sierpinski+ThueMorse^Robbin 3141515172445788 r009 Im(z^3+c),c=-8/17+5/28*I,n=64 3141515179696512 m001 ln(Si(Pi))*Conway^2*sqrt(3)^2 3141515180513629 a001 2/2207*322^(35/57) 3141515185921411 k007 concat of cont frac of 3141515190072094 m002 -4+5*Log[Pi]*ProductLog[Pi]+Tanh[Pi] 3141515190414920 b008 EulerGamma+Coth[7/17] 3141515192584272 b008 -1/32*1/E^6+Pi 3141515196571968 a001 66978574/19*123^(5/11) 3141515201239099 r002 61i'th iterates of 2*x/(1-x^2) of 3141515205761580 r005 Im(z^2+c),c=17/66+11/58*I,n=47 3141515206693010 p003 LerchPhi(1/512,3,155/227) 3141515211211101 k006 concat of cont frac of 3141515211305170 r009 Re(z^3+c),c=-75/118+35/44*I,n=2 3141515211311171 k006 concat of cont frac of 3141515212121322 k007 concat of cont frac of 3141515216270546 r005 Im(z^2+c),c=9/28+2/29*I,n=47 3141515221131111 k007 concat of cont frac of 3141515221211131 k008 concat of cont frac of 3141515221231711 k007 concat of cont frac of 3141515223416410 k007 concat of cont frac of 3141515223953635 b008 59/2+ProductLog[13] 3141515226798316 r009 Re(z^3+c),c=-10/19+25/51*I,n=53 3141515243093459 a007 Real Root Of 4*x^4-182*x^3-643*x^2-145*x-142 3141515245484112 k008 concat of cont frac of 3141515249870008 a007 Real Root Of -209*x^4-324*x^3+998*x^2-345*x-622 3141515250185724 r005 Re(z^2+c),c=-7/23+31/58*I,n=64 3141515263427539 r002 4th iterates of z^2 + 3141515271171611 k009 concat of cont frac of 3141515281311551 k007 concat of cont frac of 3141515296050148 r005 Re(z^2+c),c=-7/18+5/21*I,n=13 3141515296191252 a003 sin(Pi*12/119)/sin(Pi*39/85) 3141515304910199 m001 BesselJ(1,1)/(Zeta(3)^FeigenbaumC) 3141515312191261 k009 concat of cont frac of 3141515312221631 k006 concat of cont frac of 3141515315056194 r005 Im(z^2+c),c=-19/106+21/46*I,n=46 3141515316111112 k007 concat of cont frac of 3141515320550706 m001 ArtinRank2/ErdosBorwein*Sarnak 3141515322711172 s004 Continued fraction of A143703 3141515323923257 m005 (1/3*exp(1)-1/10)/(3/4*5^(1/2)+8/9) 3141515340672319 r005 Im(z^2+c),c=11/54+11/46*I,n=19 3141515341484839 r008 a(0)=3,K{-n^6,8-6*n^3-6*n^2-4*n} 3141515355365323 r005 Im(z^2+c),c=-19/106+21/46*I,n=45 3141515361114111 k008 concat of cont frac of 3141515374927979 p001 sum((-1)^n/(432*n+271)/(2^n),n=0..infinity) 3141515385053141 r005 Im(z^2+c),c=-7/102+32/45*I,n=9 3141515399761564 m001 BesselI(0,2)-Sierpinski-ZetaQ(3) 3141515402235375 m001 Pi/Psi(1,1/3)+exp(1/exp(1))*gamma(3) 3141515411029027 m001 (3^(1/3)+FellerTornier)/(Psi(2,1/3)-Shi(1)) 3141515411119323 k007 concat of cont frac of 3141515413071966 r009 Re(z^3+c),c=-19/46+5/16*I,n=36 3141515413271153 k007 concat of cont frac of 3141515416221271 k006 concat of cont frac of 3141515425649228 a001 123/433494437*55^(3/5) 3141515431100805 m002 -(E^Pi/Pi^6)+Pi^3+5*Csch[Pi] 3141515438180951 m001 (Sarnak-Totient)/(GAMMA(7/12)-MertensB3) 3141515450770677 r005 Im(z^2+c),c=-53/118+19/37*I,n=64 3141515457059067 m005 (1/2*Zeta(3)-6)/(3/8*5^(1/2)-2/3) 3141515458702963 p004 log(23339/17047) 3141515465349127 m001 (ln(3)-FeigenbaumC)/(FransenRobinson-PlouffeB) 3141515479055526 r005 Re(z^2+c),c=-65/54+8/53*I,n=28 3141515481364428 a007 Real Root Of 365*x^4+870*x^3-799*x^2+162*x-183 3141515489850091 m005 (1/5*2^(1/2)+4)/(5/6*Catalan+3/5) 3141515506526157 r009 Re(z^3+c),c=-5/94+13/22*I,n=45 3141515522749192 m001 (1-ln(2))/(cos(1/12*Pi)+Trott) 3141515525121318 m001 (StronglyCareFree-ZetaP(4))/(Pi-Catalan) 3141515526708869 r009 Im(z^3+c),c=-29/56+11/61*I,n=44 3141515527047342 a007 Real Root Of -150*x^4+781*x^3+658*x^2+803*x+213 3141515560944598 b008 30+Zeta[7/3] 3141515566397259 a001 3571/4181*317811^(39/47) 3141515568907861 a005 (1/sin(61/235*Pi))^214 3141515570053299 m001 (2^(1/2)+Cahen)/(-FeigenbaumC+Salem) 3141515573070329 r005 Im(z^2+c),c=-95/122+7/61*I,n=18 3141515580345063 m008 (1/2*Pi^6+1/4)/(5*Pi^5+5/6) 3141515584706120 r005 Re(z^2+c),c=-13/36+10/27*I,n=43 3141515585934465 a007 Real Root Of -153*x^4-214*x^3+803*x^2-363*x-798 3141515595037174 m001 (StronglyCareFree+ZetaP(4))/(ln(2)-Magata) 3141515596668965 b008 5*E^6*Tan[1] 3141515607476355 l006 ln(2880/3943) 3141515626578007 a003 sin(Pi*7/47)*sin(Pi*13/53) 3141515631255121 k007 concat of cont frac of 3141515648151291 k008 concat of cont frac of 3141515655911698 s002 sum(A034906[n]/(n^3*exp(n)+1),n=1..infinity) 3141515661890427 r005 Im(z^2+c),c=19/78+11/54*I,n=30 3141515665768719 b008 Pi+(2*ExpIntegralEi[-7])/3 3141515673357818 r005 Re(z^2+c),c=-115/122+2/13*I,n=42 3141515674732966 a003 sin(Pi*19/79)-sin(Pi*46/93) 3141515675481099 r005 Im(z^2+c),c=-27/62+17/49*I,n=3 3141515681841775 m002 -Pi+Csch[Pi]^2/Pi^4 3141515691112752 k007 concat of cont frac of 3141515692303580 r005 Im(z^2+c),c=-9/14+57/173*I,n=10 3141515708136479 r005 Re(z^2+c),c=-37/94+7/31*I,n=25 3141515716057490 m001 (sin(1)+Pi^(1/2))/(CopelandErdos+Gompertz) 3141515716175919 a007 Real Root Of 293*x^4-491*x^3-419*x^2-507*x-136 3141515721329254 k007 concat of cont frac of 3141515734557149 a001 3/55*10610209857723^(19/23) 3141515737698607 s004 Continued Fraction of A295930 3141515753189874 r005 Re(z^2+c),c=4/17+9/19*I,n=8 3141515765311645 r005 Re(z^2+c),c=-41/54+27/35*I,n=3 3141515779541067 r009 Im(z^3+c),c=-11/27+13/56*I,n=17 3141515781216712 k009 concat of cont frac of 3141515805889412 a007 Real Root Of 285*x^4+848*x^3-279*x^2-530*x-379 3141515807507233 a001 9349/10946*317811^(39/47) 3141515811431162 k006 concat of cont frac of 3141515816122371 k006 concat of cont frac of 3141515821372298 a001 123/13*2178309^(5/9) 3141515825582107 m002 -Pi+(2*Csch[Pi])/(E^Pi*Pi^4) 3141515827233705 r005 Im(z^2+c),c=-1/8+16/37*I,n=38 3141515828070304 a007 Real Root Of 61*x^4+138*x^3-92*x^2+529*x+907 3141515842684705 a001 24476/28657*317811^(39/47) 3141515849532545 m002 -Pi+(2*Log[Pi])/Pi^9 3141515850988979 a001 13201/15456*317811^(39/47) 3141515864425578 a001 15127/17711*317811^(39/47) 3141515870347047 r002 28th iterates of z^2 + 3141515877868410 m001 (gamma(1)+FransenRobinson)/(GaussAGM-Niven) 3141515879807656 a007 Real Root Of -763*x^4-693*x^3-833*x^2+95*x+98 3141515888348608 m005 (25/36+1/4*5^(1/2))/(1/8*2^(1/2)+2/9) 3141515900840564 a001 1322157322203/55*317811^(5/13) 3141515900842956 a001 10749957122/55*86267571272^(5/13) 3141515900842956 a001 119218851371/55*165580141^(5/13) 3141515905136535 r009 Re(z^3+c),c=-47/102+19/50*I,n=26 3141515908983812 m005 (1/3*Catalan-2/7)/(-4/33+1/3*5^(1/2)) 3141515912702492 r009 Im(z^3+c),c=-27/62+6/23*I,n=4 3141515913886783 p001 sum((-1)^n/(444*n+317)/(100^n),n=0..infinity) 3141515915756116 r009 Im(z^3+c),c=-21/106+47/54*I,n=26 3141515918204951 r009 Re(z^3+c),c=-4/27+42/55*I,n=24 3141515925591378 r005 Re(z^2+c),c=-21/58+13/42*I,n=9 3141515946358266 r005 Re(z^2+c),c=-11/31+20/51*I,n=50 3141515954428407 m001 1/Kolakoski/Khintchine^2*exp(sin(Pi/5)) 3141515955718598 a003 cos(Pi*3/112)/cos(Pi*29/73) 3141515956521395 a001 1926/2255*317811^(39/47) 3141515959317031 m005 (-17/28+1/4*5^(1/2))/(2*Catalan-3/10) 3141515968786585 m002 -Pi+(Csch[Pi]*Sech[Pi])/Pi^4 3141515969054011 m002 -4/(E^(2*Pi)*Pi^4)+Pi 3141515969543067 r005 Im(z^2+c),c=1/36+21/59*I,n=25 3141515970435871 m001 1/Sierpinski^2*KhintchineHarmonic/ln(Zeta(7)) 3141515978366409 s002 sum(A203397[n]/(n^2*exp(n)+1),n=1..infinity) 3141515980671275 r005 Re(z^2+c),c=-8/23+22/53*I,n=45 3141515985141868 m005 (1/2*exp(1)+2/9)/(7/12*gamma+1/6) 3141515985886562 r005 Im(z^2+c),c=-7/17+4/7*I,n=10 3141515986486360 r005 Re(z^2+c),c=-25/82+15/28*I,n=59 3141515986624887 r009 Im(z^3+c),c=-1/20+11/32*I,n=11 3141515987361461 r009 Re(z^3+c),c=-5/94+13/22*I,n=47 3141515993821968 a003 cos(Pi*17/69)/cos(Pi*34/69) 3141515996550440 a007 Real Root Of -7*x^4-216*x^3+149*x^2+842*x+507 3141516003015217 r009 Re(z^3+c),c=-5/94+13/22*I,n=50 3141516009316523 r009 Re(z^3+c),c=-5/94+13/22*I,n=52 3141516029660220 r009 Re(z^3+c),c=-5/94+13/22*I,n=54 3141516029814639 m001 (ln(gamma)-arctan(1/2))/(cos(1/12*Pi)-Cahen) 3141516030571881 m001 ln(5)^(Pi*2^(1/2)/GAMMA(3/4))/KomornikLoreti 3141516030660060 l006 ln(5993/8205) 3141516034173581 r005 Im(z^2+c),c=-37/122+18/35*I,n=26 3141516037173373 m002 -Pi^(-6)-Pi+ProductLog[Pi]/Pi^6 3141516040847853 r005 Im(z^2+c),c=-17/36+25/48*I,n=14 3141516043371276 r005 Im(z^2+c),c=-5/54+12/29*I,n=11 3141516047276469 r009 Re(z^3+c),c=-5/94+13/22*I,n=56 3141516053038395 m005 (1/2*Catalan+2/7)/(7/11*gamma+2) 3141516059014849 r009 Re(z^3+c),c=-5/94+13/22*I,n=58 3141516064096186 r009 Re(z^3+c),c=-5/94+13/22*I,n=48 3141516065877571 r009 Re(z^3+c),c=-5/94+13/22*I,n=60 3141516069549872 r009 Re(z^3+c),c=-5/94+13/22*I,n=62 3141516070809099 k005 Champernowne real with floor(log(2)*(14*n+32)) 3141516071377632 r009 Re(z^3+c),c=-5/94+13/22*I,n=64 3141516071685023 r009 Im(z^3+c),c=-19/46+13/57*I,n=26 3141516072294381 r009 Im(z^3+c),c=-11/28+35/58*I,n=24 3141516074935397 r009 Re(z^3+c),c=-5/94+13/22*I,n=63 3141516075438139 r005 Re(z^2+c),c=-1/3+29/61*I,n=29 3141516077548546 r009 Re(z^3+c),c=-5/94+13/22*I,n=61 3141516082133842 r005 Re(z^2+c),c=-10/27+10/31*I,n=14 3141516082617580 r009 Re(z^3+c),c=-5/94+13/22*I,n=59 3141516091323876 r009 Re(z^3+c),c=-43/90+26/63*I,n=62 3141516091708517 r009 Re(z^3+c),c=-5/94+13/22*I,n=57 3141516101212121 k006 concat of cont frac of 3141516106134117 k007 concat of cont frac of 3141516106392741 r009 Re(z^3+c),c=-5/94+13/22*I,n=55 3141516111110142 k006 concat of cont frac of 3141516111152219 k006 concat of cont frac of 3141516111363481 k007 concat of cont frac of 3141516111931462 k008 concat of cont frac of 3141516111991064 m002 -Pi+(2*Sech[Pi])/(E^Pi*Pi^4) 3141516112211113 k006 concat of cont frac of 3141516112213238 k009 concat of cont frac of 3141516112819773 k002 Champernowne real with 237/2*n^2-435/2*n+102 3141516113248277 k007 concat of cont frac of 3141516115722753 m005 (1/3*2^(1/2)-1/12)/(1/5*3^(1/2)+8/9) 3141516121112621 k007 concat of cont frac of 3141516121616244 k008 concat of cont frac of 3141516126287696 r009 Re(z^3+c),c=-5/94+13/22*I,n=53 3141516126304247 r009 Re(z^3+c),c=-5/94+13/22*I,n=49 3141516131611213 k008 concat of cont frac of 3141516141131524 k007 concat of cont frac of 3141516141221211 k008 concat of cont frac of 3141516142161121 k006 concat of cont frac of 3141516143219023 r009 Re(z^3+c),c=-5/94+13/22*I,n=51 3141516152917425 m005 (1/2*3^(1/2)+6)/(1/6*Pi-6/11) 3141516153917526 k007 concat of cont frac of 3141516154488499 m001 (FeigenbaumD+Magata)/(Shi(1)+ln(2^(1/2)+1)) 3141516157997092 s002 sum(A069798[n]/(n!^3),n=1..infinity) 3141516158947845 m001 (MertensB1+ZetaP(4))/OneNinth 3141516159822159 m001 (cos(1/5*Pi)-ln(2)/ln(10))/(3^(1/3)+ZetaP(3)) 3141516161222239 k007 concat of cont frac of 3141516164083034 a007 Real Root Of 2*x^4+629*x^3+216*x^2-908*x+21 3141516167013871 r005 Re(z^2+c),c=1/36+37/49*I,n=3 3141516170809010 k005 Champernowne real with floor(gamma*(17*n+38)) 3141516171106120 k008 concat of cont frac of 3141516171819110 k005 Champernowne real with floor(log(3)*(9*n+20)) 3141516171819110 k001 Champernowne real with 10*n+21 3141516171819110 k005 Champernowne real with floor(Catalan*(11*n+23)) 3141516171822242 s003 concatenated sequence A242868 3141516178597452 a003 sin(Pi*7/73)/sin(Pi*24/61) 3141516181175036 m001 exp(RenyiParking)*ArtinRank2*Zeta(1/2)^2 3141516191957672 r005 Re(z^2+c),c=-17/44+9/34*I,n=23 3141516211211142 k006 concat of cont frac of 3141516214111221 k007 concat of cont frac of 3141516217327683 r005 Im(z^2+c),c=43/110+4/27*I,n=24 3141516221112131 k006 concat of cont frac of 3141516225193450 a007 Real Root Of 364*x^4+886*x^3-889*x^2-507*x-803 3141516226932172 s004 Continued Fraction of A332374 3141516229118312 k007 concat of cont frac of 3141516229328506 m002 -(Pi^2*Log[Pi])+Pi^3/(2*ProductLog[Pi]) 3141516231821221 k008 concat of cont frac of 3141516233131111 k007 concat of cont frac of 3141516233381020 a001 47/4181*89^(23/31) 3141516243211122 k007 concat of cont frac of 3141516247511410 m001 (GAMMA(5/6)+Cahen)/(Khinchin+Otter) 3141516254661687 m002 -Pi+Sech[Pi]^2/Pi^4 3141516256717126 a007 Real Root Of -269*x^4-694*x^3+540*x^2+499*x+922 3141516263424589 a001 161/4*10946^(53/55) 3141516272839310 k005 Champernowne real with floor(gamma*(18*n+36)) 3141516272839310 k005 Champernowne real with floor(log(2)*(15*n+30)) 3141516272839310 k005 Champernowne real with floor(sqrt(3)*(6*n+12)) 3141516282872232 m008 (1/3*Pi^6+3/4)/(3*Pi+4/5) 3141516288148812 a007 Real Root Of -206*x^4-625*x^3-25*x^2-343*x-144 3141516299660961 m002 -5+3*Coth[Pi]-ProductLog[Pi]^2 3141516309995895 m006 (4*exp(Pi)+1/5)/(1/3*Pi-4) 3141516317834513 m005 (1/2*Catalan+1)/(2*3^(1/2)-3) 3141516323477298 a001 11/5702887*121393^(1/24) 3141516323479047 a001 11/9227465*12586269025^(1/24) 3141516331157311 k007 concat of cont frac of 3141516333641203 r009 Re(z^3+c),c=-5/94+13/22*I,n=46 3141516342425260 a007 Real Root Of -906*x^4+215*x^3+644*x^2+629*x-259 3141516375577370 a007 Real Root Of -162*x^4-555*x^3-212*x^2-69*x+447 3141516391311714 k006 concat of cont frac of 3141516409323968 r005 Im(z^2+c),c=-5/23+26/55*I,n=56 3141516414539525 h001 (3/4*exp(1)+7/11)/(1/12*exp(1)+5/8) 3141516415203054 r005 Re(z^2+c),c=31/114+24/55*I,n=11 3141516422169542 l006 ln(3113/4262) 3141516423517758 m001 1/Rabbit*ln(Lehmer)/GAMMA(1/24) 3141516423808347 q001 1272/4049 3141516424358632 a007 Real Root Of 261*x^4+640*x^3-434*x^2+562*x+470 3141516432798839 a007 Real Root Of -586*x^4+793*x^3+978*x^2+629*x-313 3141516436274179 m001 cos(1)*ln(TreeGrowth2nd)*sin(1)^2 3141516437693011 r005 Re(z^2+c),c=-29/118+36/59*I,n=25 3141516440806843 a001 18*(1/2*5^(1/2)+1/2)^6*521^(4/11) 3141516443032841 p001 sum((-1)^n/(383*n+268)/(2^n),n=0..infinity) 3141516446622372 m003 -5/16+(Sqrt[5]*Cot[1/2+Sqrt[5]/2])/64 3141516448745547 a007 Real Root Of -211*x^4-321*x^3+777*x^2-846*x+273 3141516460039191 a001 47/2584*2971215073^(20/23) 3141516467241390 s002 sum(A268166[n]/(exp(2*pi*n)+1),n=1..infinity) 3141516473872127 a005 (1/sin(60/179*Pi))^254 3141516482336690 r005 Im(z^2+c),c=-8/13+5/37*I,n=4 3141516482601405 m001 (ln(3)+Magata)/(MinimumGamma-Trott2nd) 3141516487450062 m001 Bloch^cos(1/12*Pi)-Pi*2^(1/2)/GAMMA(3/4) 3141516500158904 a001 144/2207*7^(21/26) 3141516514200988 r005 Re(z^2+c),c=-47/118+11/56*I,n=21 3141516519271107 m004 -4*Csch[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141516519383724 m004 -4*Sech[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141516526435719 m006 (4/5*Pi+3)/(1/3*exp(2*Pi)-3) 3141516537028511 k006 concat of cont frac of 3141516539471067 m002 -Pi+(Sech[Pi]^2*Tanh[Pi])/Pi^4 3141516541714723 k007 concat of cont frac of 3141516550279369 a001 14662949395604/55*610^(5/13) 3141516558069141 r005 Re(z^2+c),c=-7/20+20/49*I,n=47 3141516587755532 a001 2207/2584*317811^(39/47) 3141516588002827 m001 MasserGramainDelta/LaplaceLimit/ZetaQ(3) 3141516588403064 m001 Shi(1)^Niven/(cos(1)^Niven) 3141516599094900 r005 Im(z^2+c),c=-29/94+28/55*I,n=60 3141516607415769 m001 Sierpinski^(Pi^(1/2))/(Sierpinski^LambertW(1)) 3141516607469647 a007 Real Root Of 320*x^4+662*x^3-765*x^2+702*x-888 3141516611121211 k007 concat of cont frac of 3141516616161214 k006 concat of cont frac of 3141516623123221 k006 concat of cont frac of 3141516643095269 p004 log(14323/619) 3141516647459382 m005 (31/44+1/4*5^(1/2))/(7/11*3^(1/2)-7/10) 3141516654944988 g007 Psi(2,1/7)-Psi(2,5/11)-Psi(2,3/11)-Psi(2,1/5) 3141516658266905 r005 Im(z^2+c),c=-7/36+25/54*I,n=35 3141516661154585 s002 sum(A164606[n]/(n*pi^n+1),n=1..infinity) 3141516661632894 a007 Real Root Of -504*x^4-644*x^3+746*x^2+964*x-31 3141516663425997 b008 -1/12*1/E^7+Pi 3141516677236396 m004 -100*Pi+(6*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3141516677356631 m004 -100*Pi+(6*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3141516678445547 r001 6i'th iterates of 2*x^2-1 of 3141516694805894 h001 (-6*exp(5)+3)/(-7*exp(6)-1) 3141516697096260 p004 log(35053/25603) 3141516699918494 r005 Re(z^2+c),c=-17/44+8/43*I,n=4 3141516701902511 a007 Real Root Of -564*x^4-479*x^3-389*x^2+888*x+308 3141516702227554 a007 Real Root Of -909*x^4+651*x^3-358*x^2+193*x+125 3141516703334157 a007 Real Root Of 331*x^4+858*x^3-825*x^2-814*x-53 3141516703987451 r005 Re(z^2+c),c=-3/8+7/59*I,n=3 3141516704581302 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(4*Pi^5) 3141516714791399 r005 Re(z^2+c),c=-23/54+13/61*I,n=7 3141516719162514 m001 1/ln(FeigenbaumB)/FibonacciFactorial/sqrt(2) 3141516721968533 a003 sin(Pi*5/71)/sin(Pi*16/65) 3141516732337311 m005 (1/2*5^(1/2)+5/7)/(7/12*Pi+4) 3141516742825093 r005 Im(z^2+c),c=-7/36+25/54*I,n=26 3141516763649561 m006 (5*ln(Pi)-1/6)/(3/4*exp(Pi)+1/3) 3141516767705002 a007 Real Root Of 135*x^4-696*x^3-538*x^2-766*x+314 3141516770263022 m003 -3+6*E^(1/2+Sqrt[5]/2)+2/Log[1/2+Sqrt[5]/2] 3141516785432623 l006 ln(6459/8843) 3141516796713650 r009 Re(z^3+c),c=-12/29+16/51*I,n=26 3141516797737642 r005 Im(z^2+c),c=-7/6+7/172*I,n=29 3141516802105978 r005 Re(z^2+c),c=-7/9+7/100*I,n=18 3141516804123221 k008 concat of cont frac of 3141516809108218 a001 843/34*2^(14/41) 3141516810095215 m001 Pi+(1-Zeta(5))*gamma(3) 3141516810822282 r005 Re(z^2+c),c=-11/50+29/48*I,n=50 3141516812163232 a007 Real Root Of -637*x^4+892*x^3+684*x^2+731*x+196 3141516814276775 a007 Real Root Of -446*x^4+446*x^3-774*x^2+759*x+333 3141516815258237 r005 Re(z^2+c),c=2/19+11/26*I,n=9 3141516820184878 a003 cos(Pi*11/106)*cos(Pi*31/79) 3141516828320744 r005 Re(z^2+c),c=7/32+1/46*I,n=12 3141516832654143 s003 concatenated sequence A195864 3141516846411726 m002 -Pi+ProductLog[Pi]/(2*E^Pi*Pi^5) 3141516847153659 p001 sum((-1)^n/(220*n+163)/n/(8^n),n=1..infinity) 3141516851023650 m002 Pi-Log[Pi]/(5*Pi^7) 3141516857311579 r005 Im(z^2+c),c=29/110+6/37*I,n=3 3141516857662497 r005 Im(z^2+c),c=5/54+6/19*I,n=10 3141516861029734 r005 Im(z^2+c),c=-125/114+1/27*I,n=25 3141516867218719 m002 -6-Cosh[Pi]+4*Pi^6*Sech[Pi] 3141516868512439 m005 (-9/28+1/4*5^(1/2))/(7/11*5^(1/2)-2/3) 3141516875161171 m001 (MadelungNaCl-Otter)/(sin(1/12*Pi)-Cahen) 3141516893562693 a007 Real Root Of 877*x^4-132*x^3-520*x^2-949*x+345 3141516899746185 r005 Re(z^2+c),c=-15/94+33/53*I,n=34 3141516901934135 b008 Pi*KelvinBer[0,1/6]^2 3141516904778971 m006 (2/5*exp(2*Pi)+2/5)/(1/Pi-1/4) 3141516912211712 k007 concat of cont frac of 3141516919986552 a001 2207/55*55^(19/37) 3141516932212612 k007 concat of cont frac of 3141516943412832 m001 (ln(gamma)-ln(3))/(Magata+Tribonacci) 3141516947632284 a007 Real Root Of -259*x^4-506*x^3+749*x^2-477*x+648 3141516969758126 a005 (1/cos(15/97*Pi))^440 3141516982006887 a003 cos(Pi*11/26)/cos(Pi*49/103) 3141516987713416 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(4*Pi^5) 3141516989648412 g006 Psi(1,5/7)+Psi(1,1/6)-Psi(1,5/11)-Psi(1,7/10) 3141516992402520 a007 Real Root Of 389*x^4-927*x^3-738*x^2-962*x+400 3141517007369771 r005 Re(z^2+c),c=35/102+21/58*I,n=45 3141517013843941 r009 Re(z^3+c),c=-27/58+21/52*I,n=34 3141517025530043 r005 Re(z^2+c),c=31/90+8/49*I,n=29 3141517035370553 r002 18th iterates of z^2 + 3141517041162895 m005 (1/2*gamma-1/12)/(4/9*Zeta(3)+6) 3141517048303275 a007 Real Root Of 267*x^4+707*x^3-42*x^2+900*x-844 3141517060158671 m001 1/MadelungNaCl/FransenRobinson^2/ln((2^(1/3))) 3141517066334215 m005 (37/36+1/4*5^(1/2))/(3/4*2^(1/2)-5/9) 3141517072815304 m001 Mills^Magata/(Weierstrass^Magata) 3141517085892454 s002 sum(A164606[n]/(n*pi^n-1),n=1..infinity) 3141517102391904 m001 (LandauRamanujan+MertensB1)/(Pi+Champernowne) 3141517104748278 a001 1926/7*46368^(20/23) 3141517107373095 a001 3020733700601/48*4052739537881^(10/13) 3141517111215171 k006 concat of cont frac of 3141517111421144 k008 concat of cont frac of 3141517112141115 k007 concat of cont frac of 3141517112209499 r005 Im(z^2+c),c=17/66+11/58*I,n=40 3141517113119833 k002 Champernowne real with 119*n^2-219*n+103 3141517113361202 k007 concat of cont frac of 3141517121935202 m006 (1/6/Pi+5)/(3*exp(2*Pi)+2) 3141517122561244 k008 concat of cont frac of 3141517123399728 l006 ln(3346/4581) 3141517124611101 k006 concat of cont frac of 3141517129333664 r005 Re(z^2+c),c=-1/3+34/59*I,n=40 3141517134120211 k007 concat of cont frac of 3141517141668496 r002 3th iterates of z^2 + 3141517142743878 r009 Re(z^3+c),c=-27/56+14/31*I,n=57 3141517144006072 a007 Real Root Of -512*x^4-506*x^3+200*x^2+985*x+279 3141517144313252 k006 concat of cont frac of 3141517145871435 a007 Real Root Of 308*x^4-552*x^3+491*x^2-851*x+233 3141517146765659 r009 Re(z^3+c),c=-5/94+13/22*I,n=44 3141517149701491 r009 Im(z^3+c),c=-41/118+16/59*I,n=5 3141517150634260 m009 (1/10*Pi^2+3)/(1/5*Psi(1,1/3)-3/4) 3141517157811121 k008 concat of cont frac of 3141517161401946 a001 11/196418*610^(27/43) 3141517166711113 k009 concat of cont frac of 3141517172511231 k007 concat of cont frac of 3141517181211221 k006 concat of cont frac of 3141517186977569 a005 (1/cos(3/181*Pi))^844 3141517187114311 k007 concat of cont frac of 3141517187203325 r005 Re(z^2+c),c=-7/10+13/236*I,n=6 3141517193811700 m001 (-Porter+Tetranacci)/(sin(1)+GolombDickman) 3141517196833370 m001 (FeigenbaumMu+Kac)/(PisotVijayaraghavan+Trott) 3141517197485744 a007 Real Root Of -220*x^4-472*x^3+588*x^2-438*x-385 3141517215381198 s002 sum(A050840[n]/((2^n+1)/n),n=1..infinity) 3141517215529728 m009 (6*Catalan+3/4*Pi^2-1/4)/(1/5*Pi^2-6) 3141517215648114 k007 concat of cont frac of 3141517241713031 b008 ArcCosh[6+Sqrt[6]+Pi] 3141517251049977 r005 Re(z^2+c),c=-15/46+29/51*I,n=51 3141517258585879 m001 TreeGrowth2nd*(GAMMA(5/6)-PrimesInBinary) 3141517262162126 k006 concat of cont frac of 3141517267175202 r005 Re(z^2+c),c=-4/11+17/47*I,n=28 3141517278741397 a007 Real Root Of -x^4-5*x^3+828*x^2-51*x+211 3141517282383583 r009 Re(z^3+c),c=-49/114+20/59*I,n=31 3141517284625997 r005 Re(z^2+c),c=19/62+23/45*I,n=37 3141517287669793 b008 E+ArcCosh[12/11] 3141517291313312 k006 concat of cont frac of 3141517301910300 a001 281/7*46368^(9/47) 3141517307267254 m001 (GAMMA(17/24)-sin(1))/(CopelandErdos+Salem) 3141517310810885 a007 Real Root Of 369*x^4-787*x^3+371*x^2-918*x-353 3141517316221410 m001 (ln(2)+OneNinth)/(Rabbit+Tribonacci) 3141517322344105 b008 Pi+2*ExpIntegralEi[-8] 3141517336027769 r005 Re(z^2+c),c=-37/114+15/31*I,n=64 3141517352524086 r009 Re(z^3+c),c=-25/58+14/41*I,n=26 3141517353044200 a008 Real Root of (2+4*x-6*x^2+6*x^3+2*x^4-5*x^5) 3141517354045814 m001 1/BesselK(1,1)/exp(TwinPrimes)^2*sin(1)^2 3141517355210293 m002 -Pi^(-1)-Pi+Pi^5+Cosh[Pi] 3141517363126182 k006 concat of cont frac of 3141517383709000 r005 Re(z^2+c),c=-15/23+16/51*I,n=11 3141517403088052 m002 -Pi+(6*Cosh[Pi])/Pi^12 3141517405667316 h001 (2/5*exp(2)+11/12)/(5/12*exp(1)+1/10) 3141517415981981 a007 Real Root Of 319*x^4+980*x^3-60*x^2+229*x+625 3141517417861057 r005 Im(z^2+c),c=-19/106+21/46*I,n=48 3141517421513178 r009 Im(z^3+c),c=-67/122+29/64*I,n=9 3141517423294986 r005 Im(z^2+c),c=13/86+7/29*I,n=3 3141517427361121 r002 44th iterates of z^2 + 3141517436508136 m008 (1/2*Pi^6-1/5)/(5*Pi^5-3/5) 3141517437426518 m001 (2^(1/3)*exp(1/exp(1))+exp(1))/exp(1/exp(1)) 3141517437426518 m001 (exp(1)+(2^(1/3))*exp(1/exp(1)))/exp(1/exp(1)) 3141517438624198 l006 ln(6925/9481) 3141517443452521 m001 arctan(1/2)^2*ln(GAMMA(1/4))/log(1+sqrt(2)) 3141517459496208 m001 (Porter+QuadraticClass)/RenyiParking 3141517461101429 k006 concat of cont frac of 3141517476555839 q001 737/2346 3141517476555839 r002 2th iterates of z^2 + 3141517485834435 m001 (-ln(2^(1/2)+1)+FeigenbaumC)/(2^(1/2)+ln(5)) 3141517492083467 a007 Real Root Of -318*x^4+541*x^3-479*x^2+859*x+337 3141517511111213 k007 concat of cont frac of 3141517511237930 b008 23+7*ProductLog[4] 3141517513500884 m002 -6+Pi-3/(Pi^2*ProductLog[Pi]) 3141517518398265 a003 sin(Pi*10/99)-sin(Pi*14/65) 3141517529676829 r005 Re(z^2+c),c=-12/31+11/42*I,n=21 3141517540104826 a007 Real Root Of -213*x^4-488*x^3+383*x^2-525*x+187 3141517543352119 m002 (-3*E^Pi)/Pi^12+Pi 3141517552061542 h001 (3/10*exp(2)+1/10)/(7/8*exp(2)+10/11) 3141517552646787 m001 Pi-gamma(2)^GAMMA(7/12) 3141517554136232 v003 sum((n^3+3*n^2-9*n+19)/n^(n-1),n=1..infinity) 3141517564698177 p001 sum(1/(359*n+53)/n/(8^n),n=1..infinity) 3141517567785661 m001 (TwinPrimes-ZetaP(4))/(polylog(4,1/2)+Totient) 3141517571996390 r005 Re(z^2+c),c=35/82+15/46*I,n=3 3141517580965495 m001 (ln(5)-GAMMA(5/6))/(ErdosBorwein-ZetaP(4)) 3141517593737751 m001 (2^(1/2)+GAMMA(19/24))/(-GaussAGM+Trott) 3141517597672352 m002 -Pi+(5*Csch[Pi])/(6*Pi^6) 3141517600015628 r005 Im(z^2+c),c=25/78+5/47*I,n=58 3141517600336298 r009 Re(z^3+c),c=-31/36+21/31*I,n=2 3141517606187657 m008 (2*Pi^5-4/5)/(2*Pi^4-1/4) 3141517613101327 k007 concat of cont frac of 3141517620765549 a007 Real Root Of -142*x^4-647*x^3-653*x^2-125*x-177 3141517625937274 a003 -1+cos(2/7*Pi)+2*cos(3/7*Pi)-cos(3/8*Pi) 3141517629242834 m001 3^(1/3)*MertensB3-5^(1/2) 3141517641541102 k007 concat of cont frac of 3141517670568582 r005 Re(z^2+c),c=-31/82+13/43*I,n=21 3141517677272442 r001 59i'th iterates of 2*x^2-1 of 3141517679284384 m001 (GAMMA(7/24)+4)/(-GAMMA(3/4)+1) 3141517680922081 m001 ArtinRank2*Champernowne/exp(Zeta(7)) 3141517682565333 l006 ln(403/9325) 3141517683616187 m002 -Pi+(6*Sinh[Pi])/Pi^12 3141517684521479 r005 Re(z^2+c),c=-29/74+13/58*I,n=13 3141517686996672 m004 -Sin[Sqrt[5]*Pi]+(25*Tan[Sqrt[5]*Pi])/6 3141517688913390 r009 Re(z^3+c),c=-31/58+1/6*I,n=34 3141517693343632 m001 ln(Khintchine)/Bloch^2*sin(1)^2 3141517694863507 m008 (3*Pi^4-4)/(3*Pi-1/4) 3141517698028434 r002 2th iterates of z^2 + 3141517699220502 m001 1/FeigenbaumC^2*Magata/exp(GAMMA(19/24)) 3141517704713363 m001 exp(Riemann1stZero)*Khintchine/Salem 3141517723493269 a007 Real Root Of -375*x^4+719*x^3-314*x^2+570*x+236 3141517733326921 l006 ln(3579/4900) 3141517737834979 m002 -5/(3*E^Pi*Pi^6)+Pi 3141517742701007 a001 521/55*144^(31/44) 3141517752943501 r009 Im(z^3+c),c=-1/20+11/32*I,n=13 3141517753211113 k006 concat of cont frac of 3141517781637470 a001 89/18*199^(40/51) 3141517789544772 m001 Catalan+BesselJ(0,1)-Zeta(1/2) 3141517789555240 m005 (1/2*Zeta(3)-1/8)/(145/168+7/24*5^(1/2)) 3141517790407749 r005 Re(z^2+c),c=-51/118+27/64*I,n=8 3141517797009293 m001 (2^(1/3))^2/ln(FeigenbaumKappa)*BesselK(1,1) 3141517801759905 b008 E^(-19/2)-Pi 3141517815122912 k007 concat of cont frac of 3141517816131626 k006 concat of cont frac of 3141517844829338 m001 5^(1/2)*Conway^GlaisherKinkelin 3141517850130728 a007 Real Root Of -926*x^4+243*x^3+461*x^2+939*x-339 3141517856012570 m001 (cos(1/5*Pi)+Magata*ZetaP(4))/Magata 3141517858140732 a001 341/2*46368^(16/59) 3141517864824322 r005 Re(z^2+c),c=33/118+5/53*I,n=32 3141517868198270 a007 Real Root Of -207*x^4-409*x^3+938*x^2+743*x+558 3141517873598851 p004 log(19919/14549) 3141517877475091 m002 -Pi+(5*Sech[Pi])/(6*Pi^6) 3141517884567387 b008 Erf[(1+E)/13] 3141517890379639 r009 Re(z^3+c),c=-19/44+15/44*I,n=21 3141517906574174 m001 1/GAMMA(1/3)^2/ln(Backhouse)^2/Pi 3141517911460551 a007 Real Root Of 200*x^4+688*x^3+545*x^2+861*x-823 3141517912690767 a007 Real Root Of 278*x^4+810*x^3+91*x^2+784*x-399 3141517917578260 r005 Re(z^2+c),c=-55/86+17/44*I,n=9 3141517920815889 m005 (1/3*5^(1/2)+1/9)/(7/12*Zeta(3)-3/7) 3141517922203925 r009 Im(z^3+c),c=-1/20+11/32*I,n=15 3141517929029482 m001 Rabbit^2/ln(Porter)^2*Catalan 3141517934782012 r009 Im(z^3+c),c=-1/20+11/32*I,n=17 3141517935384365 r009 Im(z^3+c),c=-1/20+11/32*I,n=20 3141517935394400 r009 Im(z^3+c),c=-1/20+11/32*I,n=22 3141517935396748 r009 Im(z^3+c),c=-1/20+11/32*I,n=24 3141517935397040 r009 Im(z^3+c),c=-1/20+11/32*I,n=26 3141517935397068 r009 Im(z^3+c),c=-1/20+11/32*I,n=28 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=30 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=33 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=35 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=37 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=39 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=41 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=43 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=46 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=48 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=50 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=52 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=54 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=56 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=59 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=61 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=63 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=64 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=62 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=60 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=58 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=57 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=55 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=53 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=51 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=49 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=47 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=45 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=44 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=42 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=40 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=38 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=36 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=34 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=32 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=31 3141517935397070 r009 Im(z^3+c),c=-1/20+11/32*I,n=29 3141517935397078 r009 Im(z^3+c),c=-1/20+11/32*I,n=27 3141517935397170 r009 Im(z^3+c),c=-1/20+11/32*I,n=25 3141517935398035 r009 Im(z^3+c),c=-1/20+11/32*I,n=23 3141517935403615 r009 Im(z^3+c),c=-1/20+11/32*I,n=21 3141517935406642 r009 Im(z^3+c),c=-1/20+11/32*I,n=19 3141517935475922 r009 Im(z^3+c),c=-1/20+11/32*I,n=18 3141517938495146 r009 Im(z^3+c),c=-1/20+11/32*I,n=16 3141517945416859 m006 (1/6*Pi+3/5)/(2/3*exp(2*Pi)+2/3) 3141517958131505 r008 a(0)=0,K{-n^6,-27+25*n^3+70*n^2-36*n} 3141517959422308 r009 Re(z^3+c),c=-10/17+15/29*I,n=29 3141517960618232 a001 281/7*9227465^(11/13) 3141517966465429 r005 Im(z^2+c),c=5/82+3/7*I,n=3 3141517968597186 m001 1/ln(LambertW(1))/FeigenbaumDelta/Zeta(3) 3141517969464725 b008 Pi+6*ExpIntegralEi[-9] 3141517974768576 l006 ln(367/8492) 3141517983055108 r002 6th iterates of z^2 + 3141517986278829 r009 Im(z^3+c),c=-1/20+11/32*I,n=14 3141517986538462 m001 (Conway-Ei(1)*sin(1/12*Pi))/sin(1/12*Pi) 3141518003498112 m004 -10*Pi+Tan[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141518005339420 r005 Re(z^2+c),c=-3/10+11/19*I,n=57 3141518015410417 m005 (1/3*Zeta(3)-1/10)/(1/9*2^(1/2)+4/5) 3141518017241915 a007 Real Root Of -256*x^4-653*x^3+392*x^2-106*x+487 3141518020832499 a007 Real Root Of -27*x^4-826*x^3+690*x^2-238*x+149 3141518027125852 a007 Real Root Of -204*x^4+62*x^3+207*x^2+801*x-272 3141518028401232 m001 GaussAGM(1,1/sqrt(2))-ln(3)^BesselI(1,2) 3141518037125351 a001 6/281*(1/2*5^(1/2)+1/2)^19*843^(9/22) 3141518045730806 a007 Real Root Of 672*x^4-513*x^3-543*x^2-901*x+346 3141518051169644 m004 -2+25*Sqrt[5]*Pi-4*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 3141518060911293 r005 Re(z^2+c),c=-37/98+7/23*I,n=21 3141518064924301 a001 4/377*34^(49/51) 3141518066335701 m001 1/GAMMA(1/12)*ln(FeigenbaumC)^2*Pi^2 3141518070235670 m001 1/cos(Pi/12)/Pi/exp(sinh(1))^2 3141518070512290 m008 (3/5*Pi^3+3/5)/(2*Pi^5-3/4) 3141518079846632 a001 7/55*5^(32/57) 3141518087896436 a005 (1/sin(88/193*Pi))^359 3141518090556540 a007 Real Root Of 372*x^4+908*x^3-930*x^2-454*x-329 3141518098207296 s002 sum(A006479[n]/((exp(n)+1)/n),n=1..infinity) 3141518104244527 b008 Pi+ExpIntegralEi[-E^2] 3141518104518142 m001 (-KhinchinHarmonic+Porter)/(2^(1/3)-Artin) 3141518111111211 k006 concat of cont frac of 3141518111666248 r005 Im(z^2+c),c=-9/8+31/137*I,n=6 3141518113419893 k002 Champernowne real with 239/2*n^2-441/2*n+104 3141518114120331 r005 Re(z^2+c),c=-5/16+24/41*I,n=54 3141518114127112 k009 concat of cont frac of 3141518115261211 k008 concat of cont frac of 3141518120108944 a007 Real Root Of -273*x^4+860*x^3-320*x^2+387*x-114 3141518131321612 k008 concat of cont frac of 3141518131591157 m001 (-Khinchin+Sierpinski)/(exp(Pi)+Psi(2,1/3)) 3141518132281104 k006 concat of cont frac of 3141518132628447 a007 Real Root Of -146*x^4-333*x^3+280*x^2-464*x-325 3141518133125512 k009 concat of cont frac of 3141518135731864 r002 3th iterates of z^2 + 3141518137111241 k007 concat of cont frac of 3141518142111122 k006 concat of cont frac of 3141518149200629 a001 55/76*322^(15/59) 3141518162442214 k009 concat of cont frac of 3141518171631211 k008 concat of cont frac of 3141518174120112 k008 concat of cont frac of 3141518181216222 k007 concat of cont frac of 3141518201730478 m002 -Pi+ProductLog[Pi]/(15*Pi^6) 3141518206313513 a007 Real Root Of -257*x^4-792*x^3+342*x^2+966*x+136 3141518212304669 r001 36i'th iterates of 2*x^2-1 of 3141518212348242 h001 (9/11*exp(1)+1/10)/(1/8*exp(1)+2/5) 3141518215126427 k007 concat of cont frac of 3141518216114126 k006 concat of cont frac of 3141518224250215 r009 Im(z^3+c),c=-11/40+41/60*I,n=12 3141518226486722 m001 (OneNinth+TwinPrimes)/(Pi-ArtinRank2) 3141518234594506 m002 Pi-Log[Pi]/(16*Pi^6) 3141518237927161 k007 concat of cont frac of 3141518240360286 m001 GAMMA(13/24)/(StolarskyHarborth^Salem) 3141518251214216 k006 concat of cont frac of 3141518268693205 l006 ln(3812/5219) 3141518282665179 m001 KhintchineLevy/exp(Cahen)*Rabbit^2 3141518311112051 k007 concat of cont frac of 3141518314214121 k007 concat of cont frac of 3141518320413224 a001 19/66978574*13^(15/16) 3141518320447428 r009 Im(z^3+c),c=-2/13+41/55*I,n=46 3141518321115220 k007 concat of cont frac of 3141518322482324 k007 concat of cont frac of 3141518323999322 m005 (1/3*2^(1/2)+3/5)/(3/8*Zeta(3)-5/12) 3141518330532530 l006 ln(331/7659) 3141518331770230 r005 Im(z^2+c),c=-13/58+40/57*I,n=23 3141518340085713 r005 Im(z^2+c),c=15/58+10/53*I,n=26 3141518344014704 m002 -Pi^5+Pi*Sech[Pi]-Pi^4*Sech[Pi] 3141518357840332 r005 Im(z^2+c),c=-5/102+21/53*I,n=27 3141518370051489 a003 cos(Pi*21/109)/cos(Pi*59/120) 3141518378217974 m005 (1/2*Zeta(3)+3)/(5/7*3^(1/2)-1/11) 3141518383429192 h001 (4/11*exp(2)+1/3)/(1/11*exp(1)+5/7) 3141518385264029 r008 a(0)=0,K{-n^6,39-24*n^3-67*n^2+20*n} 3141518385540928 m001 (Stephens-Tetranacci)/(GAMMA(23/24)-Backhouse) 3141518411430821 k008 concat of cont frac of 3141518415908586 a007 Real Root Of -227*x^4-424*x^3+930*x^2-83*x-475 3141518416908765 r005 Im(z^2+c),c=-55/86+19/64*I,n=14 3141518421174450 m001 (3^(1/3))^2*DuboisRaymond/ln(GAMMA(1/4)) 3141518422438379 r005 Im(z^2+c),c=23/118+35/62*I,n=27 3141518422882200 b008 Sec[3/2]/45 3141518427164592 r009 Re(z^3+c),c=-27/58+15/38*I,n=45 3141518445765142 a007 Real Root Of 304*x^4-461*x^3+150*x^2-3*x-33 3141518471512352 k006 concat of cont frac of 3141518471946665 r005 Re(z^2+c),c=-8/21+16/55*I,n=29 3141518492555400 r002 3th iterates of z^2 + 3141518492744309 m005 (1/2*3^(1/2)+4)/(2/3*Pi-6/11) 3141518495491895 p004 log(36629/1583) 3141518502902301 a001 55/1860498*2^(5/57) 3141518511117121 k007 concat of cont frac of 3141518514313134 k006 concat of cont frac of 3141518516274031 a001 4/956722026041*139583862445^(7/16) 3141518516274031 a001 4/32951280099*63245986^(7/16) 3141518516608754 a001 2/567451585*28657^(7/16) 3141518518548831 r005 Im(z^2+c),c=33/122+22/57*I,n=5 3141518521321792 r005 Re(z^2+c),c=5/26+23/61*I,n=46 3141518525897537 m004 -5/(6*E^(Sqrt[5]*Pi))+10*Pi 3141518526572744 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*FeigenbaumB/Rabbit 3141518532829730 m005 (1/2*Zeta(3)+9/10)/(7/10*Zeta(3)-4/11) 3141518538484538 h001 (10/11*exp(2)+7/12)/(5/8*exp(1)+5/8) 3141518550086542 r009 Im(z^3+c),c=-1/20+11/32*I,n=12 3141518587406233 a007 Real Root Of -292*x^4-784*x^3+385*x^2+71*x+557 3141518592530118 m005 (1/3*Catalan+2/7)/(4/5*2^(1/2)+3/4) 3141518592556743 h001 (6/11*exp(2)+3/10)/(5/11*exp(1)+1/7) 3141518597893262 m005 (1/2*Pi+4/7)/(1/2*Pi-8/9) 3141518600305616 m004 -150/Pi-Sqrt[5]*Pi+25*Pi*Cos[Sqrt[5]*Pi] 3141518602351433 r005 Im(z^2+c),c=-9/14+58/177*I,n=32 3141518610522875 a003 sin(Pi*3/113)*sin(Pi*8/65) 3141518620104870 a003 sin(Pi*5/54)/sin(Pi*26/71) 3141518641756591 r005 Re(z^2+c),c=-11/31+33/59*I,n=22 3141518642428682 a007 Real Root Of 320*x^4+793*x^3-136*x^2-889*x+265 3141518657233395 a001 196418/11*7^(9/31) 3141518666629811 a007 Real Root Of 582*x^4+196*x^3+797*x^2-152*x-126 3141518675889754 h001 (1/6*exp(1)+3/11)/(8/11*exp(1)+1/3) 3141518676172041 p004 log(34963/1511) 3141518690116815 m001 1/exp(Champernowne)/Backhouse/GAMMA(11/24) 3141518699562472 a007 Real Root Of -585*x^4+208*x^3+301*x^2+944*x+279 3141518708831879 a007 Real Root Of -310*x^4-801*x^3+592*x^2-86*x-753 3141518710117863 r005 Re(z^2+c),c=-17/42+6/41*I,n=25 3141518714703451 m002 -1/(6*E^Pi*Pi^4)+Pi 3141518727554917 m002 Pi-Log[Pi]/Pi^6+ProductLog[Pi]/Pi^6 3141518742383150 l006 ln(4045/5538) 3141518750495554 r009 Re(z^3+c),c=-27/56+15/37*I,n=42 3141518759942015 m001 (Paris+TreeGrowth2nd)/(ErdosBorwein+OneNinth) 3141518766910386 m001 (Conway+Magata)/(PisotVijayaraghavan+ZetaP(3)) 3141518770799343 b008 2+(3*Cosh[E])/20 3141518773126832 l006 ln(295/6826) 3141518795396966 m005 (1/2*exp(1)-7/12)/(1/6*exp(1)-7/10) 3141518801123797 m001 1/exp(sqrt(1+sqrt(3)))*Niven^2/sqrt(Pi) 3141518809223870 m001 (HardyLittlewoodC4-exp(1))/(Lehmer+ZetaP(3)) 3141518831466222 h001 (-5*exp(2)+9)/(-2*exp(2/3)-5) 3141518837707742 a003 cos(Pi*14/89)-cos(Pi*33/107) 3141518861207920 r005 Im(z^2+c),c=-31/118+18/37*I,n=18 3141518876767827 r005 Re(z^2+c),c=13/102+17/40*I,n=36 3141518881007148 r002 33i'th iterates of 2*x/(1-x^2) of 3141518884753030 a007 Real Root Of 185*x^4-388*x^3-926*x^2-729*x-22 3141518885787669 p001 sum(1/(385*n+174)/n/(6^n),n=1..infinity) 3141518887495035 r005 Re(z^2+c),c=-11/29+5/17*I,n=18 3141518891239626 r009 Re(z^3+c),c=-8/21+13/51*I,n=8 3141518902643024 q001 939/2989 3141518902988820 m005 (1/2*2^(1/2)-7/8)/(6/11*Zeta(3)-6) 3141518903030068 m001 GAMMA(2/3)*gamma(2)-ln(2)/ln(10) 3141518907632039 h001 (-2*exp(1/3)-7)/(-3*exp(2)-9) 3141518910631524 r005 Im(z^2+c),c=-17/26+6/101*I,n=48 3141518910771398 m008 (1/5*Pi^4+4)/(5/6*Pi^2-3/4) 3141518916701985 m004 10000*Pi-Cos[Sqrt[5]*Pi] 3141518917537460 a007 Real Root Of 664*x^4-699*x^3-815*x^2-711*x+319 3141518919421132 k009 concat of cont frac of 3141518923041553 b008 -12/E^12+Pi 3141518924756686 a001 29/34*317811^(35/54) 3141518946728814 m001 (-Riemann2ndZero+Totient)/(GAMMA(3/4)-Si(Pi)) 3141518951299414 a003 cos(Pi*7/22)-sin(Pi*31/95) 3141518962246573 b008 Pi-2*Zeta[9,Pi] 3141518990341983 m002 -Pi+Tanh[Pi]/(6*E^Pi*Pi^4) 3141518992265174 a001 8/3010349*47^(34/53) 3141519009638366 r004 Re(z^2+c),c=-2/5+3/16*I,z(0)=-1,n=20 3141519055890048 r005 Im(z^2+c),c=-1/8+16/37*I,n=39 3141519067284163 r009 Re(z^3+c),c=-45/118+6/23*I,n=24 3141519071568993 r005 Re(z^2+c),c=-11/27+3/25*I,n=25 3141519076061225 a007 Real Root Of -333*x^4-860*x^3+734*x^2+320*x-468 3141519083440350 a003 cos(Pi*8/103)-sin(Pi*18/79) 3141519093985643 m001 (GAMMA(3/4)+Ei(1))/(cos(1/12*Pi)+Trott2nd) 3141519103502956 a003 sin(Pi*9/89)/sin(Pi*55/118) 3141519111112163 k007 concat of cont frac of 3141519111511512 k006 concat of cont frac of 3141519111551111 k009 concat of cont frac of 3141519112211133 k007 concat of cont frac of 3141519113719953 k002 Champernowne real with 120*n^2-222*n+105 3141519122915116 k006 concat of cont frac of 3141519129358648 m005 (1/3*Catalan-1/4)/(2/3*2^(1/2)+9/11) 3141519131337094 b008 2+3*ArcCot[5/2] 3141519131351373 k009 concat of cont frac of 3141519144570539 a003 cos(Pi*49/99)-cos(Pi*50/101) 3141519145637251 r005 Re(z^2+c),c=11/78+31/45*I,n=8 3141519150984740 m002 -Pi+(3*Csch[Pi]^2)/Pi^5 3141519164474313 l006 ln(4278/5857) 3141519199270304 r009 Im(z^3+c),c=-7/13+8/47*I,n=42 3141519202805368 m005 (1/2*3^(1/2)+9/11)/(2/7*5^(1/2)-6) 3141519209836633 r005 Im(z^2+c),c=-6/31+34/53*I,n=35 3141519211121329 k006 concat of cont frac of 3141519224833823 m006 (1/4*exp(2*Pi)+5/6)/(4/5*exp(2*Pi)+2/5) 3141519234436354 m001 LaplaceLimit^exp(Pi)-Pi 3141519238584199 r009 Re(z^3+c),c=-5/94+13/22*I,n=42 3141519243572714 r005 Im(z^2+c),c=-19/106+21/46*I,n=42 3141519261904468 p001 sum((-1)^n/(563*n+422)/n/(32^n),n=1..infinity) 3141519266030679 m001 1/5*(5^(1/2)*MasserGramain-exp(1/Pi))*5^(1/2) 3141519288043891 r009 Re(z^3+c),c=-41/94+5/19*I,n=3 3141519288246646 m002 -Pi+(6*Csch[Pi])/(E^Pi*Pi^5) 3141519300139613 m001 (Otter+StronglyCareFree)/(Cahen-FeigenbaumC) 3141519307788024 b008 3+ArcCsc[4*Sqrt[Pi]] 3141519311117630 m002 -Pi+(6*Log[Pi])/Pi^10 3141519323520165 a003 sin(Pi*25/109)-sin(Pi*44/103) 3141519335343669 m001 OneNinth^2*ln(GaussKuzminWirsing)/GAMMA(5/24) 3141519338209606 m005 (1/2*Pi-8/11)/(2/11*3^(1/2)-3) 3141519338758647 l006 ln(259/5993) 3141519342131600 r009 Im(z^3+c),c=-59/126+8/61*I,n=3 3141519364833067 r005 Im(z^2+c),c=-15/26+31/47*I,n=13 3141519367680070 r005 Im(z^2+c),c=-23/98+12/25*I,n=38 3141519372676615 r004 Re(z^2+c),c=-15/38+5/23*I,z(0)=-1,n=21 3141519374648547 m001 ln(2)/ln(10)*Ei(1,1)/Riemann2ndZero 3141519394467530 m002 Pi-E^Pi/(Pi^11*ProductLog[Pi]) 3141519396518066 a001 55/3*29^(27/32) 3141519399134176 r009 Im(z^3+c),c=-23/52+8/39*I,n=36 3141519399792370 m001 (3^(1/2)-BesselJ(1,1)*Kolakoski)/BesselJ(1,1) 3141519407275949 m001 (Niven+ZetaP(4))/(gamma(3)+BesselI(1,1)) 3141519409045123 a001 233/12752043*18^(3/16) 3141519411525121 k006 concat of cont frac of 3141519411709239 r005 Im(z^2+c),c=-23/66+27/52*I,n=46 3141519421151191 k006 concat of cont frac of 3141519424996850 m002 -Pi+(3*Csch[Pi]*Sech[Pi])/Pi^5 3141519425058299 r005 Im(z^2+c),c=-10/29+18/35*I,n=33 3141519431735489 b008 Pi+BesselY[4,16] 3141519432411278 r005 Im(z^2+c),c=-13/50+27/55*I,n=32 3141519436687618 a001 29/433494437*139583862445^(3/20) 3141519436687619 a001 29/102334155*9227465^(3/20) 3141519445786215 r005 Im(z^2+c),c=17/66+11/58*I,n=42 3141519454454589 a005 (1/cos(20/173*Pi))^1041 3141519457729436 r002 4th iterates of z^2 + 3141519458201490 a007 Real Root Of -182*x^4-256*x^3+192*x^2+863*x+246 3141519465075180 m004 (2*Csc[Sqrt[5]*Pi])/(3*Pi) 3141519470719502 r005 Re(z^2+c),c=-17/56+6/11*I,n=60 3141519472791000 r002 22th iterates of z^2 + 3141519476812183 a007 Real Root Of -837*x^4-313*x^3+135*x^2+719*x+211 3141519495325498 m001 (ln(2)-MasserGramain)/(Rabbit-Thue) 3141519498569318 r005 Im(z^2+c),c=9/34+24/61*I,n=4 3141519501215332 k007 concat of cont frac of 3141519503568396 a007 Real Root Of 253*x^4-919*x^3+944*x^2-910*x-410 3141519508607182 r005 Re(z^2+c),c=-115/122+2/13*I,n=58 3141519513469162 r005 Im(z^2+c),c=-8/23+17/32*I,n=44 3141519515628104 r005 Re(z^2+c),c=-49/122+3/25*I,n=5 3141519523563520 a001 12238/305*6765^(7/30) 3141519538682335 m008 (3/4*Pi^3+3/4)/(4/5*Pi^6-5) 3141519539014311 m008 (1/2*Pi^5-3/5)/(5*Pi^2-5/6) 3141519542962161 l006 ln(4511/6176) 3141519561747053 m002 -Pi+(6*Sech[Pi])/(E^Pi*Pi^5) 3141519572232354 m001 Zeta(1,2)/FeigenbaumB^2*exp(Zeta(1/2)) 3141519592560109 m001 1/exp(Ei(1))^2*LandauRamanujan^2*cosh(1)^2 3141519595195131 m001 (Zeta(3)-CareFree)/(Niven+Riemann1stZero) 3141519614994126 a007 Real Root Of -306*x^4+532*x^3-767*x^2-217*x+27 3141519631472110 k007 concat of cont frac of 3141519640191881 r009 Re(z^3+c),c=-45/118+6/23*I,n=27 3141519645235742 b008 -32+5^(-1/3) 3141519653221268 a008 Real Root of x^4-x^3-38*x^2-45*x+450 3141519656304473 h001 (-7*exp(1/2)-5)/(-7*exp(-2)+1) 3141519657955677 a007 Real Root Of -215*x^4-935*x^3-670*x^2+258*x-625 3141519661259080 m001 1/Rabbit/ln(PisotVijayaraghavan)^2/LambertW(1) 3141519664130017 m005 (1/2*Catalan+4/7)/(7/9*Pi+5/6) 3141519672355793 a007 Real Root Of -374*x^4-399*x^3-432*x^2+922*x-231 3141519678306437 m005 (1/2*gamma+9/10)/(3/8*gamma-4) 3141519684175991 r005 Re(z^2+c),c=-42/31+20/49*I,n=2 3141519689968087 a001 29/24157817*610^(3/20) 3141519697987463 m002 -Pi+(3*Sech[Pi]^2)/Pi^5 3141519698894850 m005 (1/3*3^(1/2)+1/8)/(1/6*2^(1/2)+2) 3141519702063315 a007 Real Root Of 190*x^4+454*x^3-187*x^2+506*x-995 3141519702832510 m009 (1/4*Psi(1,3/4)+4)/(2/5*Psi(1,2/3)+1/4) 3141519705139282 r005 Re(z^2+c),c=-35/82+5/24*I,n=5 3141519736087295 m001 PisotVijayaraghavan^exp(Pi)*gamma(1)^exp(Pi) 3141519743185729 m005 (1/2*3^(1/2)-5/6)/(3/8*3^(1/2)-6/11) 3141519767220194 m001 1/BesselK(1,1)^2*FeigenbaumC^2/exp(cos(1))^2 3141519785878979 r005 Re(z^2+c),c=-151/118+3/50*I,n=22 3141519804911773 a001 11/8*317811^(3/46) 3141519806554785 a007 Real Root Of 117*x^4+220*x^3-356*x^2+279*x-185 3141519813796511 a007 Real Root Of 26*x^4+791*x^3-838*x^2-837*x+984 3141519817654788 r005 Im(z^2+c),c=17/74+10/47*I,n=10 3141519820002308 m005 (4/5*gamma-3/4)/(3*Pi-1/4) 3141519821750352 r009 Re(z^3+c),c=-19/46+5/16*I,n=35 3141519823788546 q001 1141/3632 3141519824468163 h001 (-8*exp(7)-6)/(-5*exp(2)+9) 3141519826751341 m006 (3/4*exp(Pi)-1/6)/(1/4*ln(Pi)-5/6) 3141519828292315 a001 199/29*(1/2*5^(1/2)+1/2)^5*29^(8/19) 3141519859391928 r005 Im(z^2+c),c=5/78+35/58*I,n=44 3141519869956666 r002 20th iterates of z^2 + 3141519884271385 l006 ln(4744/6495) 3141519891401389 m005 (1/2*5^(1/2)+3/8)/(10/11*gamma-1) 3141519892237874 r005 Re(z^2+c),c=-11/14+33/244*I,n=32 3141519918641496 p004 log(26633/1151) 3141519925165916 a007 Real Root Of 570*x^4-45*x^3+875*x^2-763*x-333 3141519926814681 k006 concat of cont frac of 3141519929437472 m001 Lehmer-QuadraticClass^StronglyCareFree 3141519932412984 a003 sin(Pi*7/60)*sin(Pi*33/97) 3141519965789134 a005 (1/cos(5/184*Pi))^1576 3141519971383691 r009 Re(z^3+c),c=-5/102+38/55*I,n=12 3141519995444867 r009 Im(z^3+c),c=-19/46+13/57*I,n=27 3141520000372049 m001 (Khinchin+Totient)/(GAMMA(2/3)+gamma(1)) 3141520001156033 r009 Im(z^3+c),c=-10/29*I,n=5 3141520001518152 r009 Re(z^3+c),c=-8/27+3/35*I,n=5 3141520003026856 m001 (Si(Pi)+Chi(1))/(-sin(1/5*Pi)+Gompertz) 3141520011493459 m008 (4*Pi^5+3/5)/(4*Pi^4+1/5) 3141520012581900 r005 Re(z^2+c),c=-16/25+22/59*I,n=5 3141520022400448 r009 Re(z^3+c),c=-4/21+21/22*I,n=38 3141520029694052 a005 (1/cos(9/190*Pi))^103 3141520033676590 a001 18/2207*(1/2*5^(1/2)+1/2)^26*2207^(1/22) 3141520042654871 p004 log(13309/9721) 3141520046572528 r009 Re(z^3+c),c=-1/21+22/43*I,n=9 3141520047952120 r009 Im(z^3+c),c=-15/86+19/58*I,n=14 3141520049492164 m005 (5/12+1/4*5^(1/2))/(7/8*exp(1)+8/11) 3141520051538657 m001 (LambertW(1)-exp(sqrt(2)))/GAMMA(5/6) 3141520056071201 r005 Im(z^2+c),c=-22/19+14/59*I,n=44 3141520073221416 r005 Im(z^2+c),c=-17/42+27/46*I,n=60 3141520087015489 l006 ln(223/5160) 3141520087305802 m005 (1/2*Zeta(3)+6/11)/(7/11*Zeta(3)-2/5) 3141520088295820 r005 Im(z^2+c),c=-19/106+21/46*I,n=51 3141520088520041 a007 Real Root Of -2*x^4+956*x^3+973*x^2+781*x-371 3141520093052253 m005 (1/2*Zeta(3)+5/6)/(-115/198+1/18*5^(1/2)) 3141520094965737 b008 Pi-(3*Erfc[E])/5 3141520095216269 r005 Re(z^2+c),c=9/29+4/31*I,n=18 3141520106459824 a007 Real Root Of -292*x^4-253*x^3+63*x^2+510*x+149 3141520106619109 m001 (GAMMA(3/4)-cos(1))/(Niven+PlouffeB) 3141520111331311 k009 concat of cont frac of 3141520119123619 k006 concat of cont frac of 3141520122112246 k007 concat of cont frac of 3141520122591661 k007 concat of cont frac of 3141520123098872 r009 Re(z^3+c),c=-1/42+22/29*I,n=10 3141520123704123 a003 sin(Pi*3/91)/cos(Pi*35/89) 3141520124228427 a003 cos(Pi*6/59)-cos(Pi*25/89) 3141520128462234 m005 (1/2*Zeta(3)-1/5)/(3/4*Zeta(3)+3/8) 3141520129429381 m001 Zeta(1,2)*(MadelungNaCl-exp(gamma)) 3141520133319128 r002 22th iterates of z^2 + 3141520134909903 a007 Real Root Of 203*x^4+403*x^3-745*x^2+184*x+653 3141520148210114 k007 concat of cont frac of 3141520159563751 m004 2+ProductLog[Sqrt[5]*Pi]^2/5+Sin[Sqrt[5]*Pi] 3141520166129882 m005 (1/3*2^(1/2)-1/11)/(4*Pi-5/11) 3141520174747995 r005 Im(z^2+c),c=-27/74+22/39*I,n=36 3141520176270712 r009 Re(z^3+c),c=-41/118+32/47*I,n=15 3141520181658499 a007 Real Root Of -26*x^4-807*x^3+292*x^2-472*x+686 3141520183776987 m001 (-gamma(1)+gamma(2))/(LambertW(1)+3^(1/3)) 3141520185925412 m001 (KhinchinLevy-MertensB3)/(PlouffeB-Trott) 3141520193623576 l006 ln(4977/6814) 3141520194684573 r005 Im(z^2+c),c=-55/46+1/26*I,n=21 3141520194950085 m001 Riemann2ndZero^Khinchin*ln(2^(1/2)+1) 3141520211084228 a005 (1/cos(8/143*Pi))^667 3141520221558819 r005 Re(z^2+c),c=-131/110+15/49*I,n=26 3141520233143308 m001 (5^(1/2)+Ei(1))/(gamma(2)+PisotVijayaraghavan) 3141520247447024 a001 6/281*(1/2*5^(1/2)+1/2)^12*843^(10/11) 3141520252853357 a001 86267571272/3*7^(1/22) 3141520255974309 a007 Real Root Of 247*x^4+88*x^3-836*x^2-645*x+280 3141520259353929 a007 Real Root Of 21*x^4+645*x^3-477*x^2-428*x+955 3141520270590554 a003 sin(Pi*3/92)+sin(Pi*7/103) 3141520271933552 m004 -100*Pi+3*Csch[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3141520271990826 m004 -100*Pi+(6*Sec[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141520272048099 m004 -100*Pi+3*Sec[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141520272098277 h001 (1/2*exp(2)+1/7)/(2/11*exp(1)+8/11) 3141520296747832 b008 ArcSec[-2+E+EulerGamma^2] 3141520300379150 a007 Real Root Of 187*x^4+881*x^3+687*x^2-641*x+307 3141520333882787 m006 (2*ln(Pi)+2/3)/(3/5/Pi+3/4) 3141520335359604 r005 Im(z^2+c),c=-51/52+9/35*I,n=6 3141520338632075 m005 (1/3*Catalan-3/5)/(3/7*Catalan+6/11) 3141520342316973 a001 18*(1/2*5^(1/2)+1/2)^8*1364^(2/11) 3141520345469497 r005 Im(z^2+c),c=35/106+23/56*I,n=22 3141520347408566 m001 1/ln(sin(1))^2*FransenRobinson/sqrt(3)^2 3141520348579522 m008 (5/6*Pi^6-2)/(5/6*Pi^3-2/5) 3141520355273603 r005 Im(z^2+c),c=-113/94+17/64*I,n=9 3141520356158478 a001 18/2207*(1/2*5^(1/2)+1/2)^18*2207^(6/11) 3141520363965518 r005 Im(z^2+c),c=3/82+25/41*I,n=30 3141520376787016 a001 208010/19*199^(26/41) 3141520390412226 a007 Real Root Of -37*x^4+44*x^3+346*x^2-553*x-184 3141520393151615 m005 (1/2*Catalan+1/7)/(2/3*Pi-2/11) 3141520398961794 h001 (4/5*exp(2)+3/11)/(2/11*exp(2)+5/8) 3141520400768641 a007 Real Root Of -503*x^4-629*x^3-531*x^2+876*x+313 3141520401016353 r009 Im(z^3+c),c=-53/114+7/38*I,n=37 3141520413025840 m001 exp(Pi)*FeigenbaumKappa^2*exp(1)^2 3141520417670941 a001 17711/521*29^(35/53) 3141520440041055 a007 Real Root Of 25*x^4+78*x^3+60*x^2-456*x-147 3141520443889355 r005 Re(z^2+c),c=-11/26+9/34*I,n=2 3141520459995342 r009 Im(z^3+c),c=-15/86+19/58*I,n=16 3141520460615962 m005 (1/2*5^(1/2)-4/7)/(4/9*2^(1/2)-5/11) 3141520462078273 r009 Re(z^3+c),c=-19/46+5/16*I,n=39 3141520464064888 m001 exp((3^(1/3)))^2*(2^(1/3))/GAMMA(1/3)^2 3141520470764462 m001 ArtinRank2^exp(1/Pi)*ArtinRank2^Tribonacci 3141520475306255 l006 ln(5210/7133) 3141520478000863 r005 Im(z^2+c),c=-1/8+16/37*I,n=41 3141520479206174 m001 (ln(gamma)+sin(1/12*Pi))/(Psi(1,1/3)-sin(1)) 3141520486009918 r009 Im(z^3+c),c=-23/86+16/53*I,n=8 3141520490125294 r009 Im(z^3+c),c=-15/86+19/58*I,n=17 3141520493467643 r005 Re(z^2+c),c=-7/31+21/40*I,n=7 3141520493540327 r009 Im(z^3+c),c=-15/86+19/58*I,n=19 3141520496249534 r009 Im(z^3+c),c=-15/86+19/58*I,n=22 3141520496367661 r009 Im(z^3+c),c=-15/86+19/58*I,n=24 3141520496369241 r009 Im(z^3+c),c=-15/86+19/58*I,n=25 3141520496371581 r009 Im(z^3+c),c=-15/86+19/58*I,n=27 3141520496372130 r009 Im(z^3+c),c=-15/86+19/58*I,n=30 3141520496372159 r009 Im(z^3+c),c=-15/86+19/58*I,n=33 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=35 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=32 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=36 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=38 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=41 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=43 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=44 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=46 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=49 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=52 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=51 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=54 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=57 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=55 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=60 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=62 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=63 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=64 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=61 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=59 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=58 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=56 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=53 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=50 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=48 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=47 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=45 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=42 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=40 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=39 3141520496372160 r009 Im(z^3+c),c=-15/86+19/58*I,n=37 3141520496372161 r009 Im(z^3+c),c=-15/86+19/58*I,n=34 3141520496372168 r009 Im(z^3+c),c=-15/86+19/58*I,n=31 3141520496372196 r009 Im(z^3+c),c=-15/86+19/58*I,n=28 3141520496372215 r009 Im(z^3+c),c=-15/86+19/58*I,n=29 3141520496374120 r009 Im(z^3+c),c=-15/86+19/58*I,n=26 3141520496413163 r009 Im(z^3+c),c=-15/86+19/58*I,n=23 3141520496516579 r009 Im(z^3+c),c=-15/86+19/58*I,n=21 3141520496802029 r009 Im(z^3+c),c=-15/86+19/58*I,n=20 3141520500616314 m001 arctan(1/2)^Salem*StronglyCareFree 3141520501660278 a009 1/11*(23^(1/2)+10^(3/4))*11^(1/2) 3141520503879789 r009 Im(z^3+c),c=-15/86+19/58*I,n=18 3141520505351553 r005 Re(z^2+c),c=-34/29+11/53*I,n=4 3141520518571335 a003 cos(Pi*6/91)-cos(Pi*18/67) 3141520534223411 h001 (-11*exp(1)-7)/(-8*exp(1)+10) 3141520537344629 a001 18*(1/2*5^(1/2)+1/2)^3*3571^(5/11) 3141520538362034 a001 1/11*(1/2*5^(1/2)+1/2)^15*3^(11/13) 3141520541222829 a007 Real Root Of -858*x^4+166*x^3-160*x^2+919*x+318 3141520541871145 r005 Im(z^2+c),c=-61/98+1/17*I,n=59 3141520549079956 m004 -100*Pi+6*Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141520549194064 m004 -100*Pi+6*Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141520559694523 l006 ln(410/9487) 3141520560742652 r005 Im(z^2+c),c=21/74+5/32*I,n=18 3141520565336229 r005 Im(z^2+c),c=-5/23+26/55*I,n=58 3141520571754354 m005 (1/3*Catalan+1/11)/(9/16+5/16*5^(1/2)) 3141520583468266 r005 Im(z^2+c),c=-43/122+27/49*I,n=7 3141520585165472 a001 1/321*(1/2*5^(1/2)+1/2)^23*5778^(7/22) 3141520585480879 r005 Im(z^2+c),c=5/56+8/25*I,n=21 3141520590096884 m005 (1/2*exp(1)-10/11)/(5/7*gamma-5/9) 3141520592016915 r009 Im(z^3+c),c=-10/21+6/35*I,n=33 3141520599909049 m002 -Pi+(4*Csch[Pi])/(5*Pi^6) 3141520601916935 r002 10th iterates of z^2 + 3141520608884207 a007 Real Root Of -167*x^4+358*x^3-639*x^2-289*x-15 3141520617988664 m002 -Pi+(2*ProductLog[Pi])/Pi^9 3141520619712351 r005 Re(z^2+c),c=-11/31+20/51*I,n=52 3141520632214956 a001 1/321*(1/2*5^(1/2)+1/2)^14*5778^(9/11) 3141520632647834 m001 BesselJ(0,1)^2/Artin*ln(Zeta(9)) 3141520633574914 m001 FeigenbaumDelta*Stephens+ZetaP(2) 3141520637099360 b008 Pi+ExpIntegralEi[-6]/5 3141520637467121 a001 18/15127*(1/2*5^(1/2)+1/2)^28*15127^(3/22) 3141520644331548 a001 18/15127*(1/2*5^(1/2)+1/2)^18*15127^(7/11) 3141520644835403 a007 Real Root Of -886*x^4+713*x^3-371*x^2+696*x+286 3141520644847523 a003 sin(Pi*11/48)/cos(Pi*45/104) 3141520646056349 a001 18*(1/2*5^(1/2)+1/2)^9*9349^(1/11) 3141520647893689 a001 18*(1/2*5^(1/2)+1/2)^5*24476^(3/11) 3141520649532518 a001 18/64079*(1/2*5^(1/2)+1/2)^17*64079^(8/11) 3141520651195976 a001 18*(1/2*5^(1/2)+1/2)^8*15127^(3/22) 3141520653137645 a001 9/12238*(1/2*5^(1/2)+1/2)^26*24476^(3/11) 3141520661233103 m005 (5/18+1/6*5^(1/2))/(5/7*3^(1/2)+5/6) 3141520662395948 r005 Im(z^2+c),c=17/54+44/57*I,n=3 3141520678640399 a001 18*(1/2*5^(1/2)+1/2)^10*2207^(1/22) 3141520679264440 a001 18*(1/2*5^(1/2)+1/2)^5*5778^(7/22) 3141520681998958 a001 18/9349*(1/2*5^(1/2)+1/2)^28*9349^(1/11) 3141520687794552 r009 Im(z^3+c),c=-15/86+19/58*I,n=15 3141520689667607 r009 Im(z^3+c),c=-15/86+19/58*I,n=13 3141520704876870 a005 (1/cos(13/173*Pi))^450 3141520712202255 r005 Re(z^2+c),c=17/114+24/53*I,n=63 3141520718012198 m001 (ArtinRank2+Kac)/(ThueMorse+ZetaQ(3)) 3141520718027399 a001 9349/233*12586269025^(3/16) 3141520720424017 r008 a(0)=3,K{-n^6,-5+4*n^3-4*n^2-4*n} 3141520728101486 m001 MertensB1*ln(Backhouse)^2/sinh(1) 3141520731508487 m001 (-Lehmer+Sarnak)/(2^(1/2)-FeigenbaumC) 3141520732872790 l006 ln(5443/7452) 3141520736214827 a001 167761/233*2584^(3/16) 3141520747846148 r009 Re(z^3+c),c=-19/46+5/16*I,n=24 3141520753100939 m001 1/exp(GlaisherKinkelin)^2*CopelandErdos/gamma 3141520755973018 a001 39603/233*5702887^(3/16) 3141520761881068 m001 sin(1/5*Pi)/(Champernowne+MadelungNaCl) 3141520764372945 m002 6+Pi^5+(2*Log[Pi])/ProductLog[Pi] 3141520765376992 r005 Im(z^2+c),c=-4/3+5/217*I,n=42 3141520767493449 m005 (1/2*Zeta(3)-1/9)/(5/11*2^(1/2)+11/12) 3141520774890041 a007 Real Root Of -757*x^4+31*x^3-238*x^2+599*x+220 3141520783698941 a001 18/3571*(1/2*5^(1/2)+1/2)^20*3571^(5/11) 3141520788833930 g007 Psi(2,2/11)+Psi(2,3/10)-Psi(2,7/11)-Psi(2,2/7) 3141520792346151 m001 Paris/(Pi-ZetaQ(4)) 3141520818740081 r002 27th iterates of z^2 + 3141520836335464 m005 (1/2*2^(1/2)-7/9)/(7/12*2^(1/2)-3/5) 3141520838441289 g006 Psi(1,3/5)+1/2*Pi^2-Psi(1,8/11)-Psi(1,1/6) 3141520840203697 m005 (1/2*3^(1/2)-4)/(2/7*Pi+1/10) 3141520854908411 m001 (exp(1/Pi)-Cahen)/(FeigenbaumAlpha-ZetaP(3)) 3141520861987455 r005 Im(z^2+c),c=-73/106+1/37*I,n=3 3141520864125701 r005 Re(z^2+c),c=-5/17+19/40*I,n=12 3141520868519679 m002 -Pi+(4*Sech[Pi])/(5*Pi^6) 3141520871251248 s002 sum(A266407[n]/(2^n-1),n=1..infinity) 3141520878584686 a008 Real Root of x^4-2*x^3-10*x^2-2*x-67 3141520889964689 r009 Re(z^3+c),c=-11/23+19/47*I,n=42 3141520891979469 m001 Magata^2*ln(Lehmer)/GAMMA(5/24)^2 3141520892092335 a007 Real Root Of 344*x^4+410*x^3-8*x^2-583*x-173 3141520892462144 s001 sum(exp(-Pi)^(n-1)*A160733[n],n=1..infinity) 3141520905889713 m001 (FeigenbaumDelta-Kac)/(gamma(3)+GAMMA(17/24)) 3141520906117232 a007 Real Root Of 27*x^4+876*x^3+857*x^2-496*x+217 3141520908520206 a001 1346269/11*4^(17/25) 3141520911913131 k008 concat of cont frac of 3141520914299546 a001 281/329*317811^(39/47) 3141520916350736 m001 BesselI(1,1)^Sierpinski/gamma(1) 3141520920353167 a001 199/144*956722026041^(4/11) 3141520923468812 m001 exp(-1/2*Pi)^(GAMMA(11/24)/exp(-Pi)) 3141520923468812 m001 exp(-1/2*Pi)^(exp(Pi)*GAMMA(11/24)) 3141520927991331 a007 Real Root Of -172*x^4-257*x^3+648*x^2-654*x+335 3141520932350292 r008 a(0)=0,K{-n^6,-36+32*n^3+64*n^2-63*n} 3141520934722438 r005 Re(z^2+c),c=-37/90+4/59*I,n=27 3141520969293089 l006 ln(5676/7771) 3141520992749627 m008 (2/3*Pi^6-4/5)/(2/3*Pi^5-1/4) 3141520995182795 r002 12th iterates of z^2 + 3141521001122353 a001 18*(1/2*5^(1/2)+1/2)^2*2207^(6/11) 3141521007362312 k006 concat of cont frac of 3141521011251142 k007 concat of cont frac of 3141521012454072 r005 Re(z^2+c),c=-45/122+14/41*I,n=36 3141521019815113 r005 Re(z^2+c),c=-23/16+5/74*I,n=4 3141521023010664 a007 Real Root Of -190*x^4-519*x^3+392*x^2+451*x-37 3141521025171111 k006 concat of cont frac of 3141521044572401 r005 Im(z^2+c),c=-1/44+18/47*I,n=20 3141521050945605 r009 Im(z^3+c),c=-15/56+16/53*I,n=11 3141521051537591 b008 38-5*ArcCosh[2] 3141521055149174 m001 TreeGrowth2nd*PrimesInBinary^2*ln(TwinPrimes) 3141521057470210 r005 Im(z^2+c),c=-13/106+22/51*I,n=30 3141521060182600 m001 (Porter+StronglyCareFree)/(Bloch-Landau) 3141521062726871 a007 Real Root Of -499*x^4-377*x^3+288*x^2+984*x-321 3141521070773431 m005 (1/2*Zeta(3)+3/10)/(8/11*Pi+7/12) 3141521072521846 h001 (3/10*exp(1)+1/7)/(4/11*exp(2)+4/11) 3141521102111114 k009 concat of cont frac of 3141521102814418 r002 10th iterates of z^2 + 3141521103515121 k006 concat of cont frac of 3141521104262131 k006 concat of cont frac of 3141521111110122 k007 concat of cont frac of 3141521111211246 k006 concat of cont frac of 3141521111212215 k008 concat of cont frac of 3141521111243215 k008 concat of cont frac of 3141521111441719 k007 concat of cont frac of 3141521111712111 k007 concat of cont frac of 3141521112118214 k007 concat of cont frac of 3141521112132632 k007 concat of cont frac of 3141521113111121 k008 concat of cont frac of 3141521113144121 k006 concat of cont frac of 3141521113231512 k006 concat of cont frac of 3141521114221111 k009 concat of cont frac of 3141521114313629 m002 -5/(E^Pi*Pi^7)+Pi 3141521115112195 k007 concat of cont frac of 3141521117257255 m005 (1/4*gamma-3)/(7/2+5/2*5^(1/2)) 3141521117890931 m001 (CopelandErdos+GaussAGM)/Magata 3141521118213110 k007 concat of cont frac of 3141521119712711 k007 concat of cont frac of 3141521120111131 k008 concat of cont frac of 3141521121121373 k006 concat of cont frac of 3141521122111239 k008 concat of cont frac of 3141521122221421 k006 concat of cont frac of 3141521122261481 k006 concat of cont frac of 3141521122715241 k007 concat of cont frac of 3141521123370298 l006 ln(187/4327) 3141521124014191 k007 concat of cont frac of 3141521126180341 r009 Re(z^3+c),c=-51/98+7/45*I,n=30 3141521131217111 k008 concat of cont frac of 3141521131415318 k007 concat of cont frac of 3141521132222430 k008 concat of cont frac of 3141521132311411 k006 concat of cont frac of 3141521134312012 k007 concat of cont frac of 3141521141132141 k007 concat of cont frac of 3141521141511895 k006 concat of cont frac of 3141521142171114 k009 concat of cont frac of 3141521143212133 k006 concat of cont frac of 3141521144115311 k006 concat of cont frac of 3141521150219102 k007 concat of cont frac of 3141521151111211 k007 concat of cont frac of 3141521151112321 k008 concat of cont frac of 3141521151114186 k008 concat of cont frac of 3141521151604113 k007 concat of cont frac of 3141521152030015 h001 (5/9*exp(2)+11/12)/(3/11*exp(1)+6/7) 3141521156531122 k006 concat of cont frac of 3141521157602468 m001 (GAMMA(2/3)-ln(5))/(exp(1/Pi)-Backhouse) 3141521161183132 k007 concat of cont frac of 3141521162132136 k007 concat of cont frac of 3141521166754876 m001 CopelandErdos/(cos(1/5*Pi)^FeigenbaumKappa) 3141521171531110 k007 concat of cont frac of 3141521175591841 r009 Re(z^3+c),c=-19/46+5/16*I,n=33 3141521183691752 m001 Paris/exp(ArtinRank2)^2*GAMMA(17/24) 3141521187068627 l006 ln(5909/8090) 3141521190426359 r005 Re(z^2+c),c=39/106+9/41*I,n=55 3141521192983168 r002 5th iterates of z^2 + 3141521199258044 r005 Im(z^2+c),c=-21/82+21/43*I,n=42 3141521202097097 m001 Weierstrass^(FeigenbaumAlpha/ln(5)) 3141521211221617 k006 concat of cont frac of 3141521211371111 k008 concat of cont frac of 3141521211816112 k007 concat of cont frac of 3141521212111411 k009 concat of cont frac of 3141521212111421 k006 concat of cont frac of 3141521212133103 k008 concat of cont frac of 3141521212184121 k006 concat of cont frac of 3141521213114031 k007 concat of cont frac of 3141521214411311 k007 concat of cont frac of 3141521214514312 k007 concat of cont frac of 3141521215432192 k006 concat of cont frac of 3141521217112342 k006 concat of cont frac of 3141521219723120 k007 concat of cont frac of 3141521221442781 k007 concat of cont frac of 3141521221664312 k008 concat of cont frac of 3141521222427104 a007 Real Root Of 422*x^4-463*x^3-876*x^2-523*x+261 3141521223151141 k008 concat of cont frac of 3141521226342356 r005 Im(z^2+c),c=-15/16+14/59*I,n=54 3141521229911112 k006 concat of cont frac of 3141521231111141 k007 concat of cont frac of 3141521231325111 k009 concat of cont frac of 3141521233161413 k009 concat of cont frac of 3141521246082663 m001 Rabbit^2/exp(MinimumGamma)*GAMMA(13/24)^2 3141521250599227 a001 2/64079*123^(23/24) 3141521251413120 k006 concat of cont frac of 3141521252970040 s001 sum(exp(-4*Pi)^(n-1)*A277171[n],n=1..infinity) 3141521253358813 a007 Real Root Of -42*x^4+828*x^3+210*x^2+121*x-84 3141521257611578 h001 (6/11*exp(1)+7/12)/(7/8*exp(2)+1/9) 3141521284945377 p003 LerchPhi(1/2,6,249/139) 3141521287448744 a005 (1/sin(65/171*Pi))^903 3141521289464108 m005 (1/2*exp(1)-6)/(106/99+2/11*5^(1/2)) 3141521294394291 m001 Zeta(5)*(FeigenbaumMu-cos(1)) 3141521295153931 k007 concat of cont frac of 3141521299542718 r002 13th iterates of z^2 + 3141521300826889 r005 Im(z^2+c),c=-27/82+13/25*I,n=40 3141521302151312 k009 concat of cont frac of 3141521302194473 a007 Real Root Of 8*x^4+244*x^3-208*x^2+662*x-928 3141521307682112 a007 Real Root Of -257*x^4-430*x^3+909*x^2-742*x+398 3141521311148614 k007 concat of cont frac of 3141521311241153 k006 concat of cont frac of 3141521312112123 k007 concat of cont frac of 3141521315589209 r005 Im(z^2+c),c=1/36+21/59*I,n=24 3141521321113172 k009 concat of cont frac of 3141521321119122 k007 concat of cont frac of 3141521322711912 b008 11+14*Sec[3] 3141521328591668 m001 (BesselI(1,2)+Otter)/(Chi(1)-ln(2)) 3141521331603663 r005 Im(z^2+c),c=-7/27+25/51*I,n=41 3141521339816689 b008 Pi*Cos[E^(-5)] 3141521340895882 b008 Pi*Sech[E^(-5)] 3141521343004003 r005 Re(z^2+c),c=9/38+1/18*I,n=3 3141521349466596 m001 (Zeta(1,2)+Gompertz)/(cos(1/5*Pi)-Ei(1)) 3141521356507985 m001 Pi-gamma(3)^cosh(1) 3141521361154232 k006 concat of cont frac of 3141521361161111 k006 concat of cont frac of 3141521365462852 a007 Real Root Of -633*x^4+859*x^3-362*x^2+931*x+361 3141521368594991 m001 (Pi*exp(Pi)-ZetaQ(4))/exp(Pi) 3141521379551238 h005 exp(cos(Pi*5/31)/cos(Pi*15/31)) 3141521385186360 m005 (1/2*3^(1/2)+7/9)/(5*Zeta(3)-7/9) 3141521386682913 a007 Real Root Of 305*x^4+782*x^3-196*x^2+936*x-587 3141521388321302 l006 ln(6142/8409) 3141521391179709 a001 3/101521*123^(32/33) 3141521394502230 m005 (1/3*2^(1/2)-1/4)/(1/11*2^(1/2)-5/6) 3141521399663326 m005 (1/2*Pi+1/8)/(5*Catalan+9/11) 3141521411111312 k006 concat of cont frac of 3141521411113251 k008 concat of cont frac of 3141521411116914 k007 concat of cont frac of 3141521411214141 k006 concat of cont frac of 3141521411711121 k006 concat of cont frac of 3141521413469160 m008 (5*Pi^4+2/5)/(3/5*Pi-1/3) 3141521414291308 b008 Pi*ModularLambda[(2*I)/7*Sqrt[2/3]] 3141521417551252 k007 concat of cont frac of 3141521422142231 k007 concat of cont frac of 3141521423221233 k008 concat of cont frac of 3141521426583121 m001 1/MinimumGamma^2*Khintchine*exp(Catalan) 3141521431957016 m001 (Pi*csc(1/12*Pi)+Riemann2ndZero)/GAMMA(11/12) 3141521440169145 a007 Real Root Of -386*x^4+621*x^3-106*x^2+772*x+276 3141521442316052 k007 concat of cont frac of 3141521450234992 m001 (ln(Pi)+FeigenbaumD)/(MinimumGamma-Totient) 3141521451016211 k008 concat of cont frac of 3141521454133132 k006 concat of cont frac of 3141521458151321 k006 concat of cont frac of 3141521462753654 r005 Im(z^2+c),c=-5/23+26/55*I,n=61 3141521471272778 m001 (gamma(2)+GAMMA(13/24))/(Grothendieck+Magata) 3141521483328256 p004 log(17137/12517) 3141521484678798 r005 Im(z^2+c),c=-59/94+3/8*I,n=20 3141521487020465 m001 (3^(1/3)-GaussAGM)/(KhinchinLevy+RenyiParking) 3141521490836301 m004 -100*Pi+4*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141521490948919 m004 -10*Pi+(2*Csch[Sqrt[5]*Pi])/5 3141521491005228 m004 -4/(5*E^(Sqrt[5]*Pi))+10*Pi 3141521491061536 m004 -10*Pi+(2*Sech[Sqrt[5]*Pi])/5 3141521491174153 m004 -100*Pi+4*Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3141521492681045 r005 Re(z^2+c),c=-21/62+5/14*I,n=9 3141521494091978 a001 5600748293801/55*139583862445^(16/17) 3141521495264085 a005 (1/cos(7/216*Pi))^664 3141521508274969 m001 ln(GAMMA(5/24))^2*OneNinth^2/cos(Pi/5) 3141521508760570 a003 cos(Pi*1/27)-sin(Pi*24/101) 3141521511112412 k007 concat of cont frac of 3141521516648535 a009 1/11*(1-11^(2/3)*5^(3/4))*11^(1/3) 3141521519117192 k006 concat of cont frac of 3141521519244978 p003 LerchPhi(1/512,4,525/221) 3141521521944113 k008 concat of cont frac of 3141521537989166 p001 sum((-1)^n/(418*n+313)/(25^n),n=0..infinity) 3141521542081551 m001 (Thue-ZetaQ(2))/(GAMMA(7/12)+MertensB2) 3141521557301199 m002 -Pi+ProductLog[Pi]/(5*Pi^7) 3141521574862798 l006 ln(6375/8728) 3141521580157444 a007 Real Root Of 270*x^4+808*x^3+102*x^2+695*x-70 3141521587321383 m001 (ln(gamma)-GAMMA(5/6))/(Pi^(1/2)+FeigenbaumMu) 3141521593563933 r005 Im(z^2+c),c=4/13+17/41*I,n=49 3141521608802696 b008 E^(-1/4)+2*E^(1/6) 3141521612226862 m001 (Khinchin-Riemann2ndZero)/(GAMMA(11/12)-Bloch) 3141521612737275 h001 (9/11*exp(2)+9/10)/(1/4*exp(2)+4/11) 3141521619285110 k008 concat of cont frac of 3141521622094766 m001 (cos(1/12*Pi)-exp(1/Pi))/(gamma(3)-Conway) 3141521641321712 k006 concat of cont frac of 3141521666832728 r009 Re(z^3+c),c=-9/50+59/61*I,n=14 3141521668472555 r005 Re(z^2+c),c=-26/21+6/37*I,n=46 3141521670577627 r005 Im(z^2+c),c=-5/28+23/44*I,n=5 3141521680975873 r005 Re(z^2+c),c=23/86+5/59*I,n=43 3141521699457683 m001 (Zeta(5)*Cahen+GAMMA(2/3))/Cahen 3141521711219721 k007 concat of cont frac of 3141521711327361 k009 concat of cont frac of 3141521711444157 r005 Im(z^2+c),c=37/102+9/28*I,n=11 3141521712163391 k007 concat of cont frac of 3141521718213475 a007 Real Root Of 200*x^4+429*x^3-679*x^2-402*x-741 3141521721604134 m001 (ln(5)-sin(1))/(-BesselI(1,1)+Riemann3rdZero) 3141521722142513 k006 concat of cont frac of 3141521731364313 k007 concat of cont frac of 3141521740334438 a008 Real Root of (-3+4*x-5*x^2-5*x^3+2*x^4) 3141521743950059 r009 Im(z^3+c),c=-33/64+4/31*I,n=51 3141521746360210 m001 HeathBrownMoroz*ZetaQ(2)-Pi 3141521746942907 r005 Re(z^2+c),c=-29/82+21/53*I,n=41 3141521748076620 r005 Im(z^2+c),c=-73/122+2/37*I,n=27 3141521748249276 l006 ln(6608/9047) 3141521748945173 r005 Im(z^2+c),c=-33/32+6/23*I,n=19 3141521751107134 m001 1/GAMMA(1/24)*Trott^2/ln(log(1+sqrt(2)))^2 3141521751117121 k007 concat of cont frac of 3141521754715836 r002 6th iterates of z^2 + 3141521759066793 r009 Re(z^3+c),c=-29/78+12/49*I,n=14 3141521761711322 k006 concat of cont frac of 3141521767966175 m005 (1/2*Pi-6)/(7/9*Catalan-4/7) 3141521768763757 r009 Re(z^3+c),c=-45/118+6/23*I,n=31 3141521782056995 r005 Im(z^2+c),c=-25/78+18/35*I,n=55 3141521786286585 m001 (arctan(1/3)-gamma)/(-GAMMA(17/24)+Bloch) 3141521787373392 m001 Pi-(2^(1/3)-GAMMA(3/4))*gamma(3) 3141521799598828 a007 Real Root Of 127*x^4+76*x^3-985*x^2+236*x+449 3141521807118592 l006 ln(338/7821) 3141521815558418 a001 20633239/89*34^(17/23) 3141521821611121 k008 concat of cont frac of 3141521829149347 m001 (GAMMA(2/3)+GolombDickman)/(Stephens+ZetaQ(2)) 3141521830035929 m001 arctan(1/3)/(GAMMA(23/24)-ZetaQ(4)) 3141521830211600 r009 Re(z^3+c),c=-19/46+5/16*I,n=40 3141521831196168 a007 Real Root Of 29*x^4+904*x^3-216*x^2+161*x-79 3141521832099031 b008 -1/35*1/E^6+Pi 3141521841913161 k009 concat of cont frac of 3141521842121051 k006 concat of cont frac of 3141521842883961 m005 (1/2*gamma+1/7)/(5*exp(1)+1/7) 3141521845394901 m001 Pi-Robbin^exp(Pi) 3141521857986775 r009 Re(z^3+c),c=-45/118+6/23*I,n=28 3141521858930906 r002 54th iterates of z^2 + 3141521859943481 b008 2+21*ExpIntegralEi[12] 3141521862670970 r002 23th iterates of z^2 + 3141521864311573 a001 13201/329*6765^(7/30) 3141521866255190 m005 (1/2*Pi+5)/(1/10*Catalan+2) 3141521866857938 m004 -25/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141521872665706 a001 13/2207*47^(10/23) 3141521900335672 r005 Im(z^2+c),c=-5/42+22/41*I,n=9 3141521909824890 l006 ln(6841/9366) 3141521912415111 k008 concat of cont frac of 3141521915054140 m002 -Pi+Csch[Pi]/(4*Pi^5) 3141521915300830 m002 Pi-Cosh[Pi]/(E^(2*Pi)*Pi^5) 3141521919660602 s002 sum(A169580[n]/(n^3*exp(n)+1),n=1..infinity) 3141521926641648 r009 Re(z^3+c),c=-5/16+5/39*I,n=5 3141521930492697 r009 Im(z^3+c),c=-14/29+5/29*I,n=26 3141521931151691 k007 concat of cont frac of 3141521935152221 k007 concat of cont frac of 3141521941456362 a007 Real Root Of -29*x^4-900*x^3+370*x^2+702*x-777 3141521944644655 a001 3*6765^(41/52) 3141521948747234 r009 Re(z^3+c),c=-7/13+7/27*I,n=57 3141521952173870 a007 Real Root Of 843*x^4-381*x^3+440*x^2-687*x+176 3141521961191593 k009 concat of cont frac of 3141521972162999 m002 Pi^2/18-Cosh[Pi]/Pi 3141521980681703 a007 Real Root Of 232*x^4+751*x^3-213*x^2-879*x+28 3141521986506637 r005 Re(z^2+c),c=-93/122+2/21*I,n=28 3141521989792144 m001 KhinchinHarmonic*(PisotVijayaraghavan-ln(Pi)) 3141521990248168 m001 (-KomornikLoreti+RenyiParking)/(2^(1/2)+Ei(1)) 3141521999781302 m001 (ln(gamma)-3^(1/3))/(gamma(2)-GolombDickman) 3141522006045142 r005 Im(z^2+c),c=-83/64+3/25*I,n=6 3141522011864229 r005 Im(z^2+c),c=-19/106+21/46*I,n=54 3141522013111321 k006 concat of cont frac of 3141522014395416 m001 ln(5)/(1+3^(1/2))^(1/2)*FellerTornier 3141522022852203 a007 Real Root Of 612*x^4-242*x^3-818*x^2-577*x-114 3141522030855219 a001 9/682*(1/2*5^(1/2)+1/2)^23*1364^(2/11) 3141522040784439 r009 Re(z^3+c),c=-19/46+5/16*I,n=43 3141522047154305 m002 -1/(2*E^Pi*Pi^5)+Pi 3141522049145625 r009 Im(z^3+c),c=-33/82+39/61*I,n=3 3141522058323099 m001 Shi(1)/(ZetaP(3)^GolombDickman) 3141522060448032 r005 Im(z^2+c),c=-29/118+31/64*I,n=48 3141522060756703 l006 ln(7074/9685) 3141522061272253 r009 Im(z^3+c),c=-15/86+19/58*I,n=9 3141522061747036 m002 6+(5*Pi^2)/E^Pi+Pi^5 3141522065089024 m002 2/5+3*Pi^4*ProductLog[Pi] 3141522066042746 r009 Re(z^3+c),c=-45/118+6/23*I,n=35 3141522071213818 m001 (-GAMMA(3/4)+gamma(1))/(exp(1)+2^(1/2)) 3141522084294673 r009 Re(z^3+c),c=-35/78+23/62*I,n=28 3141522098518920 m001 TreeGrowth2nd/(Mills^(2^(1/3))) 3141522101189192 r009 Re(z^3+c),c=-45/118+6/23*I,n=32 3141522107067328 r009 Re(z^3+c),c=-45/118+6/23*I,n=39 3141522111117124 k006 concat of cont frac of 3141522111332333 k007 concat of cont frac of 3141522111411751 k007 concat of cont frac of 3141522112415063 r009 Re(z^3+c),c=-45/118+6/23*I,n=38 3141522112518177 k006 concat of cont frac of 3141522112662111 r009 Re(z^3+c),c=-45/118+6/23*I,n=43 3141522113105134 r008 a(0)=3,K{-n^6,37-63*n+27*n^2} 3141522113220480 r009 Re(z^3+c),c=-45/118+6/23*I,n=42 3141522113416010 r009 Re(z^3+c),c=-45/118+6/23*I,n=47 3141522113467632 r009 Re(z^3+c),c=-45/118+6/23*I,n=46 3141522113516341 r009 Re(z^3+c),c=-45/118+6/23*I,n=51 3141522113519909 r009 Re(z^3+c),c=-45/118+6/23*I,n=50 3141522113523326 k007 concat of cont frac of 3141522113529518 r009 Re(z^3+c),c=-45/118+6/23*I,n=55 3141522113529519 r009 Re(z^3+c),c=-45/118+6/23*I,n=54 3141522113531157 r009 Re(z^3+c),c=-45/118+6/23*I,n=58 3141522113531224 r009 Re(z^3+c),c=-45/118+6/23*I,n=59 3141522113531423 r009 Re(z^3+c),c=-45/118+6/23*I,n=62 3141522113531441 r009 Re(z^3+c),c=-45/118+6/23*I,n=63 3141522113531491 r009 Re(z^3+c),c=-45/118+6/23*I,n=64 3141522113531560 r009 Re(z^3+c),c=-45/118+6/23*I,n=61 3141522113531597 r009 Re(z^3+c),c=-45/118+6/23*I,n=60 3141522113532170 r009 Re(z^3+c),c=-45/118+6/23*I,n=57 3141522113532260 r009 Re(z^3+c),c=-45/118+6/23*I,n=56 3141522113536256 r009 Re(z^3+c),c=-45/118+6/23*I,n=52 3141522113536919 r009 Re(z^3+c),c=-45/118+6/23*I,n=53 3141522113558943 r009 Re(z^3+c),c=-45/118+6/23*I,n=48 3141522113573342 r009 Re(z^3+c),c=-45/118+6/23*I,n=49 3141522113675449 r009 Re(z^3+c),c=-45/118+6/23*I,n=44 3141522113848808 r009 Re(z^3+c),c=-45/118+6/23*I,n=45 3141522113865863 r009 Re(z^3+c),c=-45/118+6/23*I,n=34 3141522114158905 r009 Re(z^3+c),c=-45/118+6/23*I,n=40 3141522114211111 k006 concat of cont frac of 3141522114978286 r009 Re(z^3+c),c=-45/118+6/23*I,n=36 3141522115332111 k007 concat of cont frac of 3141522115905686 r009 Re(z^3+c),c=-45/118+6/23*I,n=41 3141522121113157 k009 concat of cont frac of 3141522121131219 k007 concat of cont frac of 3141522121241414 k006 concat of cont frac of 3141522121361218 k007 concat of cont frac of 3141522121735314 s003 concatenated sequence A058361 3141522123631113 k009 concat of cont frac of 3141522125653014 k009 concat of cont frac of 3141522126122658 k006 concat of cont frac of 3141522126132121 k008 concat of cont frac of 3141522126161642 k007 concat of cont frac of 3141522126211222 k009 concat of cont frac of 3141522131078204 r009 Re(z^3+c),c=-45/118+6/23*I,n=37 3141522133111121 k007 concat of cont frac of 3141522139111114 k007 concat of cont frac of 3141522141247194 a007 Real Root Of -340*x^4-969*x^3+497*x^2+706*x+386 3141522141811125 k007 concat of cont frac of 3141522145241707 m001 GAMMA(17/24)*(1+exp(1/exp(1))) 3141522148641289 a001 2207/3*8^(37/53) 3141522152642131 k008 concat of cont frac of 3141522155146141 r002 6th iterates of z^2 + 3141522156411211 k007 concat of cont frac of 3141522159314341 k008 concat of cont frac of 3141522161111211 k008 concat of cont frac of 3141522162435147 m001 1/exp(Ei(1))/Sierpinski*cos(1) 3141522165454271 k008 concat of cont frac of 3141522171951724 r005 Im(z^2+c),c=-1/8+16/37*I,n=42 3141522175053609 a007 Real Root Of 663*x^4-408*x^3-14*x^2-222*x+7 3141522175485278 m005 (1/2*3^(1/2)-8/11)/(1/11*Pi-8/11) 3141522176053975 r009 Re(z^3+c),c=-33/82+13/44*I,n=25 3141522177622149 r009 Re(z^3+c),c=-45/118+6/23*I,n=30 3141522178762010 m002 -Pi+Sech[Pi]/(4*Pi^5) 3141522179007779 m002 Pi-Sinh[Pi]/(E^(2*Pi)*Pi^5) 3141522180188875 m005 (1/2*2^(1/2)-6/7)/(5/6*Catalan-2/7) 3141522183111216 k007 concat of cont frac of 3141522185483459 m001 (Cahen-ZetaP(4))/(GAMMA(2/3)-GAMMA(19/24)) 3141522191046500 r005 Im(z^2+c),c=15/64+11/34*I,n=5 3141522199231233 k006 concat of cont frac of 3141522202062918 l006 ln(7307/10004) 3141522203131826 k006 concat of cont frac of 3141522204172818 r005 Re(z^2+c),c=7/122+2/13*I,n=12 3141522208542005 m005 (1/3*gamma-1/3)/(3/10*5^(1/2)-2/9) 3141522210941076 a001 1/76*(1/2*5^(1/2)+1/2)^20*18^(3/19) 3141522211111021 k008 concat of cont frac of 3141522211131141 k008 concat of cont frac of 3141522211211663 k007 concat of cont frac of 3141522211321121 k006 concat of cont frac of 3141522216279003 m005 (1/2*2^(1/2)-8/11)/(8/9*Catalan-3/4) 3141522219272603 m001 GAMMA(7/12)/(sin(1/5*Pi)^FeigenbaumKappa) 3141522219622416 k009 concat of cont frac of 3141522221514396 k006 concat of cont frac of 3141522221732113 k009 concat of cont frac of 3141522222111932 k007 concat of cont frac of 3141522223131142 k008 concat of cont frac of 3141522231311711 k008 concat of cont frac of 3141522232736398 m001 FeigenbaumC/Champernowne^2*exp(GAMMA(1/6)) 3141522233400611 a007 Real Root Of 296*x^4+561*x^3+140*x^2-798*x-250 3141522234749940 r004 Re(z^2+c),c=-7/9-3/17*I,z(0)=-1,n=7 3141522241676220 r009 Re(z^3+c),c=-45/118+6/23*I,n=33 3141522242854559 s003 concatenated sequence A075654 3141522251003598 a007 Real Root Of -123*x^4-285*x^3-46*x^2-940*x+645 3141522251213121 k008 concat of cont frac of 3141522271173575 r009 Re(z^3+c),c=-39/98+17/59*I,n=19 3141522271254601 m001 Robbin^(Riemann1stZero/Sarnak) 3141522271711124 k008 concat of cont frac of 3141522287016203 m001 (Tetranacci+ZetaP(3))/(Zeta(1,-1)+GaussAGM) 3141522291212311 k007 concat of cont frac of 3141522294168303 r009 Re(z^3+c),c=-4/9+27/58*I,n=16 3141522299702198 v002 sum(1/(2^n*(7*n^2+28*n-16)),n=1..infinity) 3141522310369714 m002 -Pi+Tanh[Pi]/(2*E^Pi*Pi^5) 3141522310402586 r005 Im(z^2+c),c=-19/106+21/46*I,n=49 3141522311111212 k006 concat of cont frac of 3141522311521438 k007 concat of cont frac of 3141522313141222 k006 concat of cont frac of 3141522320170200 m003 1+Sqrt[5]+2*Cot[1/2+Sqrt[5]/2] 3141522322241113 k008 concat of cont frac of 3141522323797903 a003 sin(Pi*1/96)*sin(Pi*25/61) 3141522339936671 r009 Re(z^3+c),c=-43/110+13/47*I,n=14 3141522341113132 k007 concat of cont frac of 3141522342955453 m001 (ArtinRank2-MertensB3)/(Trott2nd+ZetaP(3)) 3141522368647449 g001 GAMMA(1/4,58/69) 3141522370557740 r005 Im(z^2+c),c=-47/86+14/37*I,n=5 3141522372218144 r005 Im(z^2+c),c=5/56+8/25*I,n=22 3141522376718001 m001 Pi*Psi(1,1/3)-ln(2)/ln(10) 3141522378806021 a007 Real Root Of 658*x^4+909*x^3+590*x^2-406*x-164 3141522387434551 a005 (1/cos(59/198*Pi))^11 3141522388293050 m005 (1/2*gamma-5/12)/(1/12*Catalan+4) 3141522399702341 r005 Re(z^2+c),c=-27/70+11/41*I,n=22 3141522410303111 k007 concat of cont frac of 3141522411721311 k006 concat of cont frac of 3141522421944111 k006 concat of cont frac of 3141522423637255 a007 Real Root Of 100*x^4+82*x^3-493*x^2+602*x-441 3141522426974498 r009 Im(z^3+c),c=-63/106+16/39*I,n=4 3141522434910001 s002 sum(A276883[n]/(n^2*pi^n+1),n=1..infinity) 3141522441411404 a007 Real Root Of -300*x^4-605*x^3+849*x^2-365*x+937 3141522441486796 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(4*Pi^5) 3141522446353140 m003 17/8+Sqrt[5]/8-6*Tanh[1/2+Sqrt[5]/2] 3141522451994604 r005 Im(z^2+c),c=-1/8+16/37*I,n=44 3141522452999588 a007 Real Root Of 351*x^4+816*x^3-865*x^2+2*x-345 3141522457770252 a001 18*(1/2*5^(1/2)+1/2)^5*843^(9/22) 3141522461187395 r002 11th iterates of z^2 + 3141522461507005 r009 Re(z^3+c),c=-11/26+15/46*I,n=17 3141522465101362 r005 Re(z^2+c),c=-25/118+6/11*I,n=10 3141522485809081 r009 Im(z^3+c),c=-10/21+5/29*I,n=43 3141522493162797 a007 Real Root Of -505*x^4-777*x^3-938*x^2-205*x+9 3141522498377345 r009 Re(z^3+c),c=-9/22+15/49*I,n=25 3141522499938780 m001 (Gompertz-Otter)/(Sarnak+Trott2nd) 3141522503427736 m001 HeathBrownMoroz^(3^(1/3))-Pi 3141522508823212 b008 -1/13*1/E^7+Pi 3141522511235666 r005 Im(z^2+c),c=43/110+13/48*I,n=41 3141522512913047 m001 GAMMA(1/12)*exp(Magata)^2*sqrt(3)^2 3141522516653566 a007 Real Root Of -575*x^4-350*x^3-29*x^2+644*x-183 3141522516780065 r005 Im(z^2+c),c=-29/62+11/19*I,n=7 3141522520894522 r009 Im(z^3+c),c=-8/17+5/28*I,n=56 3141522535111111 k007 concat of cont frac of 3141522542111624 k006 concat of cont frac of 3141522542120211 k008 concat of cont frac of 3141522545332567 m001 HeathBrownMoroz/(FeigenbaumMu+GolombDickman) 3141522595575330 m005 (1/2*Zeta(3)-7/9)/(8/11*5^(1/2)+4) 3141522596578763 m001 (sin(1)+gamma(1))/(-Landau+Riemann3rdZero) 3141522621121151 k006 concat of cont frac of 3141522625967276 m001 (Zeta(5)-DuboisRaymond)/(FeigenbaumD-ZetaQ(4)) 3141522629487150 r009 Re(z^3+c),c=-19/46+5/16*I,n=47 3141522629749683 m001 (Chi(1)-gamma)/(StronglyCareFree+ZetaQ(2)) 3141522643270929 r009 Re(z^3+c),c=-19/46+5/16*I,n=46 3141522650556194 m005 (23/44+1/4*5^(1/2))/(5/6*3^(1/2)+2) 3141522652354205 a001 2/12586269025*832040^(1/20) 3141522652354250 a001 1/10182505537*12586269025^(1/20) 3141522653879077 l006 ln(151/3494) 3141522654282385 a007 Real Root Of 222*x^4+751*x^3+141*x^2+214*x+942 3141522663292043 m001 (-TwinPrimes+ZetaP(4))/(cos(1)+ln(2+3^(1/2))) 3141522670878982 m001 Pi-(1-cos(1/12*Pi))*gamma(3) 3141522673312121 k006 concat of cont frac of 3141522674056970 r002 4th iterates of z^2 + 3141522678630361 m002 Pi^5+(Pi^4*Cosh[Pi])/(6*E^Pi) 3141522689924122 r005 Re(z^2+c),c=-37/66+26/63*I,n=26 3141522694792421 r005 Im(z^2+c),c=-1/56+16/43*I,n=8 3141522697647215 a007 Real Root Of -271*x^4-769*x^3+49*x^2-768*x-343 3141522705594549 m001 MinimumGamma*(ln(2+3^(1/2))+FeigenbaumB) 3141522711754595 r009 Re(z^3+c),c=-19/46+5/16*I,n=50 3141522711811012 k008 concat of cont frac of 3141522712107237 r004 Re(z^2+c),c=9/34-1/10*I,z(0)=exp(3/8*I*Pi),n=9 3141522732122121 k006 concat of cont frac of 3141522752943355 a001 322/165580141*377^(6/7) 3141522754442970 r009 Im(z^3+c),c=-29/60+2/25*I,n=45 3141522757034498 r009 Re(z^3+c),c=-19/46+5/16*I,n=54 3141522762923524 r009 Re(z^3+c),c=-19/46+5/16*I,n=51 3141522768988535 r009 Re(z^3+c),c=-19/46+5/16*I,n=57 3141522769591886 m001 (2^(1/2)+Zeta(3))/(-GAMMA(17/24)+ZetaP(2)) 3141522770265501 a007 Real Root Of -258*x^4-775*x^3+2*x^2-624*x-879 3141522770544929 r009 Re(z^3+c),c=-19/46+5/16*I,n=53 3141522770699335 r009 Re(z^3+c),c=-19/46+5/16*I,n=58 3141522771691184 r009 Re(z^3+c),c=-19/46+5/16*I,n=61 3141522773004514 r009 Re(z^3+c),c=-19/46+5/16*I,n=64 3141522773241797 r009 Re(z^3+c),c=-19/46+5/16*I,n=62 3141522773824879 r009 Re(z^3+c),c=-19/46+5/16*I,n=60 3141522773951946 r009 Re(z^3+c),c=-19/46+5/16*I,n=63 3141522775909632 r009 Re(z^3+c),c=-19/46+5/16*I,n=59 3141522778334656 r009 Re(z^3+c),c=-19/46+5/16*I,n=55 3141522780135258 r009 Re(z^3+c),c=-19/46+5/16*I,n=56 3141522789638506 a001 3/521*47^(26/59) 3141522789803965 m001 (exp(1)+DuboisRaymond)/(Weierstrass+ZetaP(2)) 3141522789830487 m004 -100*Pi+(5*Pi*Csch[Sqrt[5]*Pi])/4 3141522789885768 m004 -100*Pi+(5*Pi)/(2*E^(Sqrt[5]*Pi)) 3141522789941048 m004 -100*Pi+(5*Pi*Sech[Sqrt[5]*Pi])/4 3141522790175639 r005 Im(z^2+c),c=-21/110+6/13*I,n=51 3141522797923320 m001 FeigenbaumC^2/exp(Bloch)*GAMMA(3/4)^2 3141522803485230 a001 47/377*121393^(3/38) 3141522803650989 m001 ln(DuboisRaymond)^2/Conway/cos(Pi/5)^2 3141522806550856 r009 Re(z^3+c),c=-19/46+5/16*I,n=52 3141522808494656 r005 Re(z^2+c),c=-47/122+7/26*I,n=20 3141522819694227 m001 FeigenbaumD/BesselI(1,1)*Robbin 3141522822272711 r009 Re(z^3+c),c=-19/46+5/16*I,n=49 3141522829123122 k006 concat of cont frac of 3141522830893986 m002 -Pi^3-Pi*Coth[Pi]+Pi/Log[Pi] 3141522832769362 m002 1/3+E^Pi/Pi^5+Pi^3 3141522835618803 r005 Im(z^2+c),c=-31/24+4/33*I,n=6 3141522854971686 m002 -Pi+ProductLog[Pi]/(16*Pi^6) 3141522866924481 r005 Im(z^2+c),c=37/126+9/61*I,n=38 3141522869882468 r009 Re(z^3+c),c=-19/46+5/16*I,n=44 3141522870372421 m005 (1/2*5^(1/2)+11/12)/(5/6*gamma+1/6) 3141522872362099 r009 Re(z^3+c),c=-19/46+5/16*I,n=48 3141522875550591 a003 sin(Pi*21/65)/cos(Pi*45/109) 3141522879371605 r009 Re(z^3+c),c=-5/12+17/31*I,n=18 3141522884924577 a005 (1/cos(19/219*Pi))^1316 3141522901737568 m001 3^(1/2)*Zeta(3)/LaplaceLimit 3141522906271658 r005 Re(z^2+c),c=7/20+4/23*I,n=35 3141522921244112 k007 concat of cont frac of 3141522922757011 r009 Re(z^3+c),c=-19/46+5/16*I,n=42 3141522923033912 r002 34th iterates of z^2 + 3141522929161479 m005 (1/2*Catalan-3/5)/(1/4*Pi-1/3) 3141522941578179 r005 Im(z^2+c),c=-49/66+8/33*I,n=10 3141522945669496 m001 (gamma(3)+AlladiGrinstead)/(Zeta(3)+Zeta(1/2)) 3141522945769823 b008 29+Sqrt[35/6] 3141522948172155 r005 Im(z^2+c),c=-13/14+11/45*I,n=35 3141522948182648 a007 Real Root Of 548*x^4-643*x^3+404*x^2-442*x-204 3141522948615187 m001 (-Gompertz+PlouffeB)/(5^(1/2)+ErdosBorwein) 3141522974390804 a007 Real Root Of -136*x^4+537*x^3-150*x^2+475*x+182 3141522975169908 r005 Re(z^2+c),c=7/20+18/47*I,n=52 3141522980806447 r005 Re(z^2+c),c=-29/90+24/49*I,n=46 3141522996498085 b008 5/3+Sqrt[1+Sinh[1]] 3141522997078208 r005 Im(z^2+c),c=-5/23+26/55*I,n=64 3141523006268606 h001 (3/7*exp(1)+4/11)/(7/12*exp(2)+5/9) 3141523014842859 r005 Re(z^2+c),c=-11/38+35/57*I,n=52 3141523019729271 b008 Pi-7*AiryAi[6] 3141523024063780 r009 Re(z^3+c),c=-45/118+6/23*I,n=26 3141523030115395 m001 (Salem-Trott)/(arctan(1/2)-GaussAGM) 3141523032086832 h001 (-3*exp(1/3)+4)/(-7*exp(-2)-5) 3141523034503704 r009 Re(z^3+c),c=-5/12+16/51*I,n=14 3141523035439155 a008 Real Root of x^4+12*x^2-20*x-153 3141523037561757 s002 sum(A288552[n]/(n^2*pi^n+1),n=1..infinity) 3141523038356218 r009 Re(z^3+c),c=-45/118+6/23*I,n=29 3141523053079796 s002 sum(A000277[n]/(n^2*pi^n+1),n=1..infinity) 3141523066051483 r009 Im(z^3+c),c=-31/66+30/61*I,n=6 3141523073621636 r009 Re(z^3+c),c=-8/27+5/59*I,n=8 3141523077725904 m005 (1/3*exp(1)-3/4)/(8/11*gamma-11/12) 3141523084830777 r002 8i'th iterates of 2*x/(1-x^2) of 3141523091028189 r005 Im(z^2+c),c=-5/23+26/55*I,n=55 3141523094418755 a007 Real Root Of 373*x^4+973*x^3-708*x^2-460*x-621 3141523104922190 r005 Re(z^2+c),c=-17/44+31/55*I,n=60 3141523108445725 r009 Re(z^3+c),c=-8/25+43/62*I,n=30 3141523111212921 k006 concat of cont frac of 3141523116210444 k006 concat of cont frac of 3141523116312110 k007 concat of cont frac of 3141523119247286 r009 Re(z^3+c),c=-19/46+5/16*I,n=45 3141523120134884 m001 (ln(2)-Mills)/(ReciprocalLucas-Trott) 3141523121511131 k008 concat of cont frac of 3141523122792394 a007 Real Root Of -169*x^4+897*x^3+33*x^2+804*x-282 3141523123118712 k007 concat of cont frac of 3141523123702253 r005 Re(z^2+c),c=-31/46+13/50*I,n=24 3141523130887447 m001 (Pi+Zeta(5))/(gamma(2)+Totient) 3141523131313111 k007 concat of cont frac of 3141523137118111 k006 concat of cont frac of 3141523137272953 a008 Real Root of (12+15*x+16*x^2-7*x^3) 3141523140112621 k008 concat of cont frac of 3141523141355021 r005 Im(z^2+c),c=-19/106+21/46*I,n=57 3141523153321135 k006 concat of cont frac of 3141523157567815 a007 Real Root Of -190*x^4-486*x^3+576*x^2+513*x-635 3141523158298449 a007 Real Root Of -224*x^4-430*x^3+902*x^2+248*x+363 3141523165445570 a007 Real Root Of -491*x^4-12*x^3+201*x^2+885*x-28 3141523171221171 k007 concat of cont frac of 3141523179735954 r005 Re(z^2+c),c=-41/98+4/23*I,n=7 3141523184893664 m005 (1/2*Catalan-2/9)/(9/11*3^(1/2)-2/3) 3141523186095091 r005 Re(z^2+c),c=-39/56+18/59*I,n=13 3141523201956057 r005 Re(z^2+c),c=-11/34+25/43*I,n=60 3141523203866664 m001 Shi(1)*Riemann1stZero*Riemann2ndZero 3141523210488439 a007 Real Root Of -688*x^4-131*x^3+219*x^2+809*x-265 3141523212539656 a003 sin(Pi*7/109)/sin(Pi*24/109) 3141523225593419 r009 Re(z^3+c),c=-73/126+24/47*I,n=17 3141523227271423 k007 concat of cont frac of 3141523229251191 r005 Re(z^2+c),c=13/40+7/50*I,n=25 3141523231191215 k006 concat of cont frac of 3141523232682262 a007 Real Root Of 403*x^4-17*x^3-580*x^2-965*x+357 3141523237401845 r005 Re(z^2+c),c=-11/30+7/20*I,n=35 3141523241176111 k008 concat of cont frac of 3141523241273221 k007 concat of cont frac of 3141523243233414 s003 concatenated sequence A178363 3141523249501475 r002 30th iterates of z^2 + 3141523251932245 r005 Im(z^2+c),c=17/66+11/58*I,n=41 3141523252112291 k008 concat of cont frac of 3141523254246708 b008 Pi*GammaRegularized[1/2,0,9] 3141523263054555 s003 concatenated sequence A294997 3141523275464117 b008 Pi*InverseEllipticNomeQ[ArcCsch[2]] 3141523279301982 a007 Real Root Of -146*x^4+384*x^3+8*x^2+393*x+136 3141523283185141 r005 Im(z^2+c),c=-1/8+16/37*I,n=45 3141523283398197 r005 Im(z^2+c),c=-1/8+16/37*I,n=47 3141523289625868 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/5 3141523289680753 m004 -100*Pi+(4*Log[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141523289735639 m004 10*Pi-(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/5 3141523295901220 a007 Real Root Of 369*x^4-705*x^3-659*x^2-120*x+121 3141523299731784 r005 Im(z^2+c),c=-17/56+30/59*I,n=43 3141523299819847 a008 Real Root of x^4+29*x^2-188*x+207 3141523300326583 a007 Real Root Of 121*x^4+254*x^3-560*x^2-596*x-256 3141523309491573 m002 -1/(15*Pi^6)+Pi 3141523311112121 k007 concat of cont frac of 3141523318353432 r005 Im(z^2+c),c=-5/23+26/55*I,n=59 3141523328367847 m005 (1/2*2^(1/2)+7/10)/(1/4*5^(1/2)-1/9) 3141523329972892 r005 Re(z^2+c),c=-115/122+2/13*I,n=62 3141523337158805 m005 (4/5*exp(1)+2/3)/(2*gamma-1/4) 3141523340221582 l006 ln(417/9649) 3141523352059987 m001 (ln(5)+sin(1/12*Pi))/(Gompertz-ZetaQ(4)) 3141523365268865 a007 Real Root Of -588*x^4+508*x^3-979*x^2+509*x+278 3141523366142684 r009 Im(z^3+c),c=-15/86+19/58*I,n=12 3141523371166166 k006 concat of cont frac of 3141523379220332 m001 (Conway-StronglyCareFree)/(Zeta(1/2)-Ei(1,1)) 3141523382668707 m001 (1+BesselK(1,1))/(-CareFree+DuboisRaymond) 3141523398387915 a007 Real Root Of -853*x^4+525*x^3-932*x^2+603*x+306 3141523403640713 m001 1/MinimumGamma^2*exp(Si(Pi))^2*sqrt(1+sqrt(3)) 3141523406128246 r005 Re(z^2+c),c=23/86+5/59*I,n=45 3141523416828111 k006 concat of cont frac of 3141523427594200 r005 Im(z^2+c),c=-43/110+35/64*I,n=25 3141523431912925 a007 Real Root Of 189*x^4+660*x^3+213*x^2+78*x+197 3141523436172031 r005 Re(z^2+c),c=-1/122+39/61*I,n=4 3141523439822224 m006 (1/3*ln(Pi)+4)/(ln(Pi)+1/4) 3141523452026765 a007 Real Root Of 792*x^4-203*x^3+839*x^2-720*x-323 3141523452318752 m001 (ln(2)/ln(10)+BesselI(1,2))/(-OneNinth+Rabbit) 3141523460799270 m005 (1/2*2^(1/2)+5/6)/(3/11*Zeta(3)-9/11) 3141523472851981 r009 Re(z^3+c),c=-25/58+13/38*I,n=18 3141523477350213 a007 Real Root Of -155*x^4-788*x^3-801*x^2+714*x+814 3141523481111531 k007 concat of cont frac of 3141523482391511 k006 concat of cont frac of 3141523483457567 m001 (2^(1/2)+1)/(-ln(2)+MinimumGamma) 3141523487005481 r005 Re(z^2+c),c=-13/30+1/32*I,n=6 3141523488318638 m001 CopelandErdos^(GAMMA(5/6)*Rabbit) 3141523500628875 r005 Im(z^2+c),c=19/62+5/38*I,n=32 3141523507582719 m005 (1/2*Pi+3/4)/(1/5*Catalan+5/9) 3141523508396718 r005 Im(z^2+c),c=-27/74+6/11*I,n=57 3141523521201523 k009 concat of cont frac of 3141523544181136 r005 Im(z^2+c),c=-4/5+18/107*I,n=30 3141523565610037 r005 Im(z^2+c),c=-2/11+17/27*I,n=58 3141523565720041 m001 Champernowne^(Otter/Gompertz) 3141523567202918 m001 2^(1/3)+ReciprocalLucas-StolarskyHarborth 3141523568001086 m002 -Pi+Tanh[Pi]/(15*Pi^6) 3141523568193548 h001 (-8*exp(6)-8)/(-7*exp(5)+9) 3141523582823506 r005 Im(z^2+c),c=-31/122+20/41*I,n=59 3141523583346953 r005 Re(z^2+c),c=19/58+5/36*I,n=24 3141523587253317 m001 (GaussAGM-cos(1))/(Gompertz+PolyaRandomWalk3D) 3141523588364151 m001 exp(FeigenbaumDelta)*DuboisRaymond/TwinPrimes 3141523600983886 m001 (sin(1/12*Pi)+Lehmer)/(Mills+OrthogonalArrays) 3141523610674937 m005 (1/3*Catalan-3/4)/(7/12*Zeta(3)+5/7) 3141523611212111 k006 concat of cont frac of 3141523617536821 r002 56th iterates of z^2 + 3141523619514659 m001 HeathBrownMoroz^exp(1/exp(1))-Pi 3141523620793445 m001 (arctan(1/3)-cos(1))/(-CareFree+ZetaQ(3)) 3141523631221520 r005 Im(z^2+c),c=-1/8+16/37*I,n=50 3141523631711187 k006 concat of cont frac of 3141523636643765 r005 Im(z^2+c),c=-2/11+27/59*I,n=44 3141523638452547 r005 Re(z^2+c),c=-47/114+2/53*I,n=17 3141523638830902 m001 Zeta(3)/(HeathBrownMoroz^ln(gamma)) 3141523648689592 r005 Re(z^2+c),c=-29/82+7/30*I,n=4 3141523654827278 a001 3524578/843*47^(11/21) 3141523674304675 r005 Im(z^2+c),c=-1/8+16/37*I,n=48 3141523685553458 m001 (Khinchin-gamma)/(-OneNinth+ZetaP(3)) 3141523695074703 r005 Im(z^2+c),c=-35/58+5/18*I,n=3 3141523707253628 r005 Im(z^2+c),c=-13/18+30/119*I,n=12 3141523708920069 m002 Pi-Log[Pi]/(E^(2*Pi)*Pi^3) 3141523712335692 r009 Im(z^3+c),c=-1/20+11/32*I,n=10 3141523727725996 r005 Im(z^2+c),c=-19/106+21/46*I,n=60 3141523729836854 l006 ln(266/6155) 3141523742425684 b008 Pi*ModularLambda[(2*I)/27*Pi] 3141523743302279 r002 27th iterates of z^2 + 3141523746252308 m002 -Pi^5+Pi*ProductLog[Pi]-Sinh[Pi]*Tanh[Pi] 3141523750806287 m001 (Chi(1)-FransenRobinson)/(HeathBrownMoroz+Kac) 3141523755973031 m005 (1/2*2^(1/2)-1/8)/(317/264+7/24*5^(1/2)) 3141523771532141 a007 Real Root Of 5*x^4-805*x^3-811*x^2-343*x-10 3141523773806103 r005 Re(z^2+c),c=-37/94+7/31*I,n=26 3141523775875553 r005 Im(z^2+c),c=-1/8+16/37*I,n=53 3141523776489095 m001 sin(1)^Pi*cos(1) 3141523783690457 m001 MasserGramainDelta^Zeta(1,-1)+5^(1/2) 3141523785072072 r005 Im(z^2+c),c=-19/18+62/251*I,n=18 3141523788609227 m001 (Gompertz-LandauRamanujan2nd)/(Magata+Salem) 3141523799362663 b008 -1/36*1/E^6+Pi 3141523809730768 r005 Im(z^2+c),c=-1/8+16/37*I,n=51 3141523811112141 k006 concat of cont frac of 3141523835717246 r005 Im(z^2+c),c=-1/8+16/37*I,n=56 3141523839943645 a003 sin(Pi*13/97)*sin(Pi*12/43) 3141523842693959 r005 Im(z^2+c),c=1/70+18/47*I,n=4 3141523849029256 r002 36th iterates of z^2 + 3141523855641335 r005 Im(z^2+c),c=-1/8+16/37*I,n=54 3141523860355133 r005 Im(z^2+c),c=-1/8+16/37*I,n=59 3141523860923620 a007 Real Root Of 24*x^4+774*x^3+631*x^2+49*x-58 3141523861266978 m001 (Champernowne*Trott-Magata)/Trott 3141523864657803 m002 -Pi+(6*ProductLog[Pi])/Pi^10 3141523870454963 r005 Im(z^2+c),c=-1/8+16/37*I,n=62 3141523870767814 r005 Im(z^2+c),c=-1/8+16/37*I,n=57 3141523875552291 r005 Im(z^2+c),c=-1/8+16/37*I,n=60 3141523876972167 r005 Im(z^2+c),c=-1/8+16/37*I,n=63 3141523881438529 r005 Im(z^2+c),c=-1/8+16/37*I,n=64 3141523881886392 m005 (2/5*Pi-1/4)/(1/4*exp(1)-1) 3141523883990922 s002 sum(A131129[n]/((2^n+1)/n),n=1..infinity) 3141523887926503 r005 Im(z^2+c),c=-1/8+16/37*I,n=61 3141523904748062 r005 Im(z^2+c),c=-1/8+16/37*I,n=58 3141523911333311 k006 concat of cont frac of 3141523918401342 m001 1/ln(BesselJ(1,1))^2*Porter^2/Zeta(7)^2 3141523919665334 r009 Re(z^3+c),c=-29/62+8/17*I,n=23 3141523936488564 m001 1/FeigenbaumAlpha/ln(Artin)^2/GAMMA(1/4)^2 3141523942832842 m002 Pi-E^Pi/(Pi^11*Log[Pi]) 3141523948244915 r005 Im(z^2+c),c=-1/8+16/37*I,n=55 3141523965001246 r005 Im(z^2+c),c=-9/29+22/43*I,n=35 3141523977658337 r005 Im(z^2+c),c=39/118+23/61*I,n=24 3141523982713258 m001 (Pi*MertensB1-Zeta(1,-1))/Pi 3141523997324675 a001 46368/29*123^(8/57) 3141524003848492 r005 Im(z^2+c),c=-19/106+21/46*I,n=63 3141524005689180 r005 Im(z^2+c),c=-11/118+26/59*I,n=9 3141524006755763 a003 sin(Pi*1/100)/sin(Pi*46/93) 3141524013512342 r005 Re(z^2+c),c=-35/106+29/62*I,n=49 3141524025054868 a001 1/532*(1/2*5^(1/2)+1/2)^8*7^(15/23) 3141524034873184 r005 Re(z^2+c),c=-37/94+7/31*I,n=30 3141524037221467 m005 (1/3*Catalan-5)/(2/3*Pi-3/5) 3141524039357343 m004 (25*Pi)/4+(625*Csc[Sqrt[5]*Pi])/Pi 3141524046337550 r005 Re(z^2+c),c=-47/114+2/59*I,n=15 3141524060426299 r005 Im(z^2+c),c=-1/8+16/37*I,n=52 3141524062966606 r005 Im(z^2+c),c=-21/110+6/13*I,n=43 3141524063351888 l004 cosh(443/107) 3141524068491973 s002 sum(A137111[n]/(n^2*pi^n-1),n=1..infinity) 3141524075761997 p004 log(32603/1409) 3141524082975447 m006 (1/4/Pi-3/4)/(1/4*Pi^2-1/3) 3141524092854061 s002 sum(A053606[n]/((exp(n)+1)/n),n=1..infinity) 3141524099572722 a007 Real Root Of 344*x^4-486*x^3+320*x^2-50 3141524101383253 r009 Re(z^3+c),c=-13/64+37/40*I,n=62 3141524105754276 q001 101/3215 3141524105754276 q001 202/643 3141524113112507 r009 Re(z^3+c),c=-5/94+13/22*I,n=40 3141524124282141 k007 concat of cont frac of 3141524125355341 k006 concat of cont frac of 3141524126039340 p004 log(36277/26497) 3141524129276544 a001 843/89*34^(17/50) 3141524130052830 a007 Real Root Of -944*x^4+517*x^3-300*x^2+846*x-243 3141524131114112 k007 concat of cont frac of 3141524147124221 k006 concat of cont frac of 3141524156265994 l006 ln(381/8816) 3141524158197038 r009 Re(z^3+c),c=-19/46+5/16*I,n=41 3141524171990993 r005 Im(z^2+c),c=-19/106+21/46*I,n=62 3141524174403216 a007 Real Root Of 325*x^4-434*x^3-727*x^2-758*x-183 3141524178091328 k002 Champernowne real with 127/2*n^2-359/2*n+119 3141524182244254 m001 1/exp(Zeta(1/2))/BesselJ(1,1)^2/sin(1)^2 3141524192111211 k006 concat of cont frac of 3141524212151271 k008 concat of cont frac of 3141524213212145 k008 concat of cont frac of 3141524221421416 k007 concat of cont frac of 3141524222538887 m001 (Conway-Paris)/(PlouffeB+ReciprocalFibonacci) 3141524222819991 b008 Sqrt[2]+Cosh[8/7] 3141524226849415 s002 sum(A053606[n]/((exp(n)-1)/n),n=1..infinity) 3141524227364838 b008 -1+Csch[Cosh[EulerGamma]] 3141524236424312 r005 Im(z^2+c),c=41/106+11/53*I,n=36 3141524238331388 k003 Champernowne real with n^3+115/2*n^2-337/2*n+113 3141524242349909 a007 Real Root Of 368*x^4+958*x^3-477*x^2+613*x+492 3141524244852630 m005 (1/2*2^(1/2)-2/9)/(6*exp(1)-7/8) 3141524261191331 k006 concat of cont frac of 3141524261211515 k009 concat of cont frac of 3141524293458690 m002 (4*Cosh[Pi])/5+Pi^5*Tanh[Pi] 3141524302211491 r005 Re(z^2+c),c=37/118+18/35*I,n=9 3141524302424454 h001 (1/4*exp(1)+7/9)/(4/7*exp(2)+5/12) 3141524311086111 k008 concat of cont frac of 3141524312468843 m001 Catalan/Si(Pi)*HardyLittlewoodC3 3141524319739876 r005 Re(z^2+c),c=-25/32+1/44*I,n=34 3141524321311823 k007 concat of cont frac of 3141524325116102 k006 concat of cont frac of 3141524325732751 k008 concat of cont frac of 3141524328691478 k003 Champernowne real with 5/2*n^3+97/2*n^2-152*n+104 3141524330633602 s002 sum(A216095[n]/(n^2*pi^n+1),n=1..infinity) 3141524331546641 m001 1/GolombDickman/exp(Cahen)^2/KhintchineLevy^2 3141524333938798 a007 Real Root Of -64*x^4+595*x^3-997*x^2-358*x+5 3141524334599096 p002 log(13^(3/2)-14^(6/5)) 3141524342459139 m001 (ln(2^(1/2)+1)-Conway)/(Gompertz+RenyiParking) 3141524348507716 r005 Im(z^2+c),c=-19/106+21/46*I,n=59 3141524349018861 r005 Im(z^2+c),c=-1/8+16/37*I,n=49 3141524349250213 r005 Im(z^2+c),c=-19/106+21/46*I,n=64 3141524351911213 k006 concat of cont frac of 3141524355989839 s002 sum(A031461[n]/(n^2*pi^n+1),n=1..infinity) 3141524358747589 r005 Re(z^2+c),c=-25/62+10/61*I,n=4 3141524358811508 k003 Champernowne real with 3*n^3+91/2*n^2-293/2*n+101 3141524371393434 p003 LerchPhi(1/8,1,7/219) 3141524375098176 h001 (7/11*exp(1)+6/11)/(6/7*exp(2)+10/11) 3141524377139802 r005 Im(z^2+c),c=-9/34+31/63*I,n=56 3141524378299491 b008 Pi-2*ExpIntegralE[2,8] 3141524385008629 m001 Riemann1stZero^arctan(1/3)*Totient 3141524386024459 a005 (1/cos(31/231*Pi))^113 3141524388931538 k003 Champernowne real with 7/2*n^3+85/2*n^2-141*n+98 3141524390801257 m001 (MertensB1-Rabbit)/(Champernowne+Conway) 3141524401079436 v002 sum(1/(5^n+(9*n^2+8*n+36)),n=1..infinity) 3141524412855950 m001 (ln(3)-ln(Pi))/(GAMMA(11/12)+ThueMorse) 3141524414122378 h001 (11/12*exp(1)+2/9)/(1/10*exp(2)+1/8) 3141524416311314 k006 concat of cont frac of 3141524419051568 k003 Champernowne real with 4*n^3+79/2*n^2-271/2*n+95 3141524420979007 m001 (Sarnak-Stephens)/(KhinchinHarmonic+Otter) 3141524421222964 r002 43th iterates of z^2 + 3141524421222964 r002 43th iterates of z^2 + 3141524422411121 k007 concat of cont frac of 3141524431900489 m001 Salem/HardHexagonsEntropy/FeigenbaumD 3141524432490658 m001 (2^(1/3)+ln(2+3^(1/2)))/(DuboisRaymond+Kac) 3141524436645036 m004 (20*Coth[Sqrt[5]*Pi]*Csc[Sqrt[5]*Pi])/(3*Pi) 3141524438000078 r005 Im(z^2+c),c=-19/106+21/46*I,n=52 3141524438408780 m001 (Si(Pi)+BesselI(0,2))/(Mills+ZetaQ(3)) 3141524448824912 a001 39603/610*4181^(43/58) 3141524449171598 k003 Champernowne real with 9/2*n^3+73/2*n^2-130*n+92 3141524451042611 r009 Re(z^3+c),c=-35/118+5/51*I,n=2 3141524461272704 r005 Re(z^2+c),c=-11/48+14/23*I,n=28 3141524466602003 m001 (BesselJ(0,1)-exp(Pi))/(-exp(1/Pi)+Conway) 3141524479291628 k003 Champernowne real with 5*n^3+67/2*n^2-249/2*n+89 3141524479400804 m001 (Robbin-Trott)/(ln(Pi)+Zeta(1,2)) 3141524493584169 r005 Im(z^2+c),c=-19/106+21/46*I,n=61 3141524504362474 a005 (1/sin(67/167*Pi))^1293 3141524507304536 r005 Im(z^2+c),c=-57/58+11/47*I,n=4 3141524509411658 k003 Champernowne real with 11/2*n^3+61/2*n^2-119*n+86 3141524512114243 k009 concat of cont frac of 3141524516112161 k006 concat of cont frac of 3141524519972712 a007 Real Root Of -262*x^4-619*x^3+792*x^2+601*x+399 3141524529170773 a007 Real Root Of 193*x^4+791*x^3+758*x^2+479*x-250 3141524530437630 a007 Real Root Of 20*x^4+655*x^3+822*x^2-533*x-329 3141524531211864 m001 (Psi(1,1/3)+Zeta(1,-1))/(Sierpinski+Stephens) 3141524535883968 a007 Real Root Of -114*x^4+895*x^3-982*x^2+924*x-220 3141524539531688 k003 Champernowne real with 6*n^3+55/2*n^2-227/2*n+83 3141524549444746 m001 CopelandErdos*Totient-ZetaQ(4) 3141524550715596 r005 Im(z^2+c),c=-41/94+34/63*I,n=27 3141524553695149 b008 -3/(2*E^10)+Pi 3141524560324733 r005 Re(z^2+c),c=-11/31+20/51*I,n=45 3141524569138824 m005 (17/4+1/4*5^(1/2))/(2/5*5^(1/2)+7/11) 3141524569651718 k003 Champernowne real with 13/2*n^3+49/2*n^2-108*n+80 3141524573088777 v003 sum((7+11/2*n^2-3/2*n)/n^(n-1),n=1..infinity) 3141524586818005 r005 Im(z^2+c),c=-3/13+11/23*I,n=45 3141524598349019 m001 (2^(1/2)-Bloch)/(PrimesInBinary+Sierpinski) 3141524599771748 k003 Champernowne real with 7*n^3+43/2*n^2-205/2*n+77 3141524603758125 r005 Im(z^2+c),c=-7/82+38/39*I,n=12 3141524608793403 m001 GAMMA(7/12)*(Bloch-Riemann2ndZero) 3141524629891778 k003 Champernowne real with 15/2*n^3+37/2*n^2-97*n+74 3141524638509786 m001 ln(2)/ln(10)+exp(-Pi)*GaussKuzminWirsing 3141524640685567 a007 Real Root Of 101*x^4+187*x^3-251*x^2+371*x-397 3141524651001180 k003 Champernowne real with 8*n^3+31/2*n^2-183/2*n+71 3141524667910631 p001 sum(1/(401*n+331)/(12^n),n=0..infinity) 3141524672420010 a001 18/89*317811^(29/50) 3141524681013183 k003 Champernowne real with 17/2*n^3+25/2*n^2-86*n+68 3141524686295057 a001 4/233*2^(34/39) 3141524687092492 r005 Im(z^2+c),c=-19/106+21/46*I,n=58 3141524689426764 m001 (-FellerTornier+Salem)/(BesselJ(0,1)-Zeta(5)) 3141524697748290 m001 1/Robbin^2/CopelandErdos*exp(Salem) 3141524709057176 r005 Re(z^2+c),c=-11/14+21/55*I,n=2 3141524711025186 k003 Champernowne real with 9*n^3+19/2*n^2-161/2*n+65 3141524711579668 r005 Im(z^2+c),c=-29/94+24/47*I,n=42 3141524720757785 r009 Im(z^3+c),c=-5/21+5/16*I,n=4 3141524723482141 a001 123/196418*832040^(26/57) 3141524723987532 r005 Im(z^2+c),c=-7/110+23/57*I,n=18 3141524728571973 m001 ln(cos(1))^2*ArtinRank2/sin(1) 3141524736570507 r005 Im(z^2+c),c=23/78+6/41*I,n=29 3141524738921751 r002 23th iterates of z^2 + 3141524740054669 a007 Real Root Of -654*x^4+964*x^3+562*x^2+86*x-106 3141524741037189 k003 Champernowne real with 19/2*n^3+13/2*n^2-75*n+62 3141524743282511 k006 concat of cont frac of 3141524765285400 a007 Real Root Of -6*x^4-188*x^3+x^2-475*x-671 3141524768401204 a001 199/3*591286729879^(5/22) 3141524768515547 r005 Im(z^2+c),c=-31/50+18/47*I,n=61 3141524771049192 k003 Champernowne real with 10*n^3+7/2*n^2-139/2*n+59 3141524778035563 r005 Re(z^2+c),c=-4/13+32/57*I,n=57 3141524783863549 a007 Real Root Of 965*x^4+215*x^3-296*x^2-894*x+294 3141524793164154 m001 (exp(gamma)+5)/(-sin(1)+3) 3141524793260572 m001 Pi*exp(FeigenbaumAlpha)^2*sin(Pi/12)^2 3141524796283629 m008 (1/5*Pi^5+1/4)/(2*Pi^4+4/5) 3141524801061195 k003 Champernowne real with 21/2*n^3+1/2*n^2-64*n+56 3141524801197243 b008 31+FresnelS[7/2] 3141524805969080 m005 (1/2*Zeta(3)-5/9)/(5/8*Catalan+7/8) 3141524812459293 a007 Real Root Of -434*x^4+579*x^3-920*x^2+242*x+189 3141524812797070 r005 Im(z^2+c),c=-19/122+19/30*I,n=53 3141524813667200 r005 Im(z^2+c),c=-19/106+21/46*I,n=55 3141524821227367 r009 Im(z^3+c),c=-25/52+1/6*I,n=39 3141524824481407 h001 (-4*exp(2)-10)/(-5*exp(1)+1) 3141524831073198 k003 Champernowne real with 11*n^3-5/2*n^2-117/2*n+53 3141524832886612 r009 Re(z^3+c),c=-17/32+27/55*I,n=17 3141524836582953 a007 Real Root Of 12*x^4+348*x^3-897*x^2+421*x-105 3141524856894967 r005 Re(z^2+c),c=-33/82+1/6*I,n=20 3141524859319353 m006 (1/5*exp(2*Pi)+5)/(2/3*exp(2*Pi)-1/6) 3141524861085201 k003 Champernowne real with 23/2*n^3-11/2*n^2-53*n+50 3141524878222972 m001 1/(2^(1/3))^2/ln(ArtinRank2)/GAMMA(1/6) 3141524879748119 a007 Real Root Of 151*x^4+169*x^3-832*x^2+174*x-710 3141524887156215 p001 sum(1/(421*n+324)/(25^n),n=0..infinity) 3141524891097204 k003 Champernowne real with 12*n^3-17/2*n^2-95/2*n+47 3141524896573414 r002 7th iterates of z^2 + 3141524897981257 a007 Real Root Of -265*x^4-794*x^3+144*x^2+151*x+247 3141524903321084 m001 (Si(Pi)+3^(1/3))/(Gompertz+ZetaP(2)) 3141524907335951 m001 1/GAMMA(19/24)^2*exp(Porter)/Zeta(9) 3141524911641316 r005 Im(z^2+c),c=-19/106+21/46*I,n=56 3141524924640793 r009 Im(z^3+c),c=-43/106+11/47*I,n=13 3141524925889436 m001 (Ei(1,1)-Psi(2,1/3))/(-Pi^(1/2)+Trott) 3141524930935022 m008 (2/3*Pi^6+3/5)/(2/3*Pi^3-1/4) 3141524931770501 r005 Re(z^2+c),c=-25/44+19/45*I,n=17 3141524933435493 a001 521/14930352*121393^(7/9) 3141524933468652 a001 521/12586269025*701408733^(7/9) 3141524933468652 a001 521/10610209857723*4052739537881^(7/9) 3141524933468652 a001 521/365435296162*53316291173^(7/9) 3141524933468657 a001 521/433494437*9227465^(7/9) 3141524933779260 m001 (Pi^(1/2)+Conway)/(Catalan-Ei(1)) 3141524950758332 m001 Salem*GaussAGM(1,1/sqrt(2))/exp(gamma)^2 3141524950766313 r005 Im(z^2+c),c=17/98+27/43*I,n=7 3141524952737180 m006 (1/4*ln(Pi)+2/5)/(1/3*ln(Pi)-3/5) 3141524955185047 m001 (FeigenbaumC-gamma)/(Khinchin+Mills) 3141524966114275 a007 Real Root Of -123*x^4-473*x^3-215*x^2+211*x+100 3141524967768981 a007 Real Root Of -134*x^4-379*x^3-154*x^2-805*x+292 3141524968198999 a007 Real Root Of 193*x^4-165*x^3-661*x^2-963*x+371 3141524969795837 a007 Real Root Of 186*x^4+519*x^3-290*x^2-295*x-90 3141524983623875 r009 Im(z^3+c),c=-8/17+5/28*I,n=61 3141524983889081 r005 Im(z^2+c),c=-13/19+4/61*I,n=4 3141525001793973 m001 HardyLittlewoodC3*HardyLittlewoodC5+ZetaQ(2) 3141525002017660 m001 ln(3)-HardHexagonsEntropy^Zeta(5) 3141525002266635 a007 Real Root Of 102*x^4+235*x^3+86*x^2+824*x-909 3141525004330094 a007 Real Root Of 96*x^4+82*x^3-755*x^2-22*x+574 3141525007169834 a001 96450076809/4*4807526976^(12/19) 3141525016592048 a003 cos(Pi*4/71)/sin(Pi*7/69) 3141525032982603 r002 6th iterates of z^2 + 3141525042840215 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi]^2 3141525042947212 m004 -100*Pi+Log[Sqrt[5]*Pi]^2*Sech[Sqrt[5]*Pi] 3141525048663039 m001 1/exp(BesselJ(0,1))/MinimumGamma*Pi^2 3141525049256067 m001 Backhouse^Pi-FeigenbaumMu 3141525051046846 r009 Im(z^3+c),c=-21/94+6/19*I,n=9 3141525053680442 m005 (1/2*2^(1/2)-1/6)/(4/9*gamma-3/7) 3141525059341774 r005 Im(z^2+c),c=-9/50+1/2*I,n=11 3141525080343756 p004 log(33757/32713) 3141525080397078 a007 Real Root Of -302*x^4-673*x^3+667*x^2-455*x+537 3141525081023450 r005 Re(z^2+c),c=-47/110+7/52*I,n=4 3141525085144689 a007 Real Root Of -290*x^4-594*x^3+760*x^2-898*x-492 3141525088517217 r005 Im(z^2+c),c=15/82+11/43*I,n=24 3141525089603371 r005 Im(z^2+c),c=-1/8+16/37*I,n=46 3141525102802721 m001 1/GAMMA(19/24)*FibonacciFactorial/exp(Zeta(3)) 3141525103264096 m002 -Pi+(3*Csch[Pi])/(4*Pi^6) 3141525104560367 m004 10000*Pi-Sin[Sqrt[5]*Pi] 3141525104799365 b008 -4+(-1/7+E)/3 3141525111141711 k007 concat of cont frac of 3141525117343273 a007 Real Root Of -401*x^4-974*x^3+855*x^2-257*x-386 3141525121414013 k007 concat of cont frac of 3141525123083012 r005 Re(z^2+c),c=17/94+4/11*I,n=31 3141525123121331 k008 concat of cont frac of 3141525125075436 a001 521/514229*1597^(7/9) 3141525131125219 k009 concat of cont frac of 3141525131161211 k006 concat of cont frac of 3141525141232111 k007 concat of cont frac of 3141525142113226 k008 concat of cont frac of 3141525142614439 l006 ln(115/2661) 3141525156834024 a001 18/55*4181^(14/17) 3141525170071295 r005 Re(z^2+c),c=-11/14+25/178*I,n=10 3141525170258273 g001 GAMMA(2/3,75/77) 3141525181619520 r005 Im(z^2+c),c=-13/106+25/58*I,n=22 3141525202477474 r009 Re(z^3+c),c=-41/94+15/43*I,n=31 3141525207597779 a001 5/7*47^(57/58) 3141525212687472 r005 Re(z^2+c),c=31/82+5/24*I,n=52 3141525215714021 m005 (1/2*Pi+5/12)/(3/8*Pi-6/11) 3141525222134311 k007 concat of cont frac of 3141525222411211 k006 concat of cont frac of 3141525229410461 m002 -3/(2*E^Pi*Pi^6)+Pi 3141525233963961 a007 Real Root Of 758*x^4+373*x^3-711*x^2-811*x+306 3141525234375650 m001 (-cos(1)+GAMMA(7/12))/(2^(1/2)+3^(1/2)) 3141525236137097 m001 (Mills+Tribonacci)/(1+HeathBrownMoroz) 3141525240744748 m009 (3/4*Psi(1,1/3)-5/6)/(1/6*Pi^2+1/2) 3141525248184785 m005 (-19/36+1/4*5^(1/2))/(2/9*Zeta(3)+8/11) 3141525251815155 m001 (Pi^(1/2)-MertensB2)/(Rabbit-Weierstrass) 3141525269349240 a007 Real Root Of -517*x^4+187*x^3+549*x^2+223*x-125 3141525269362577 m002 Pi^3+Cosh[Pi]^2/(Pi^5*ProductLog[Pi]) 3141525283904377 m001 cos(1/5*Pi)/exp(1)*GAMMA(11/12) 3141525283904377 m001 cos(Pi/5)/exp(1)*GAMMA(11/12) 3141525284002396 m001 1/gamma^2/KhintchineHarmonic*ln(sin(Pi/12))^2 3141525293501551 m001 (Zeta(3)+Conway)/(LandauRamanujan2nd-Robbin) 3141525308926878 m002 -Pi+(2*Coth[Pi])/Pi^9 3141525311769404 a005 (1/sin(96/197*Pi))^1440 3141525323412323 m001 (gamma(3)+GAMMA(5/6))/(exp(1)+ln(2^(1/2)+1)) 3141525329664676 r005 Re(z^2+c),c=-37/90+4/59*I,n=29 3141525336431452 a001 7*322^(13/50) 3141525337108159 m001 Grothendieck^GAMMA(7/12)*Grothendieck^ZetaP(2) 3141525338318423 s002 sum(A070694[n]/(n^3*2^n-1),n=1..infinity) 3141525347765152 r005 Re(z^2+c),c=11/122+16/43*I,n=35 3141525354911829 r005 Re(z^2+c),c=-7/17+2/37*I,n=19 3141525355086561 m002 -Pi+(3*Sech[Pi])/(4*Pi^6) 3141525357444512 a007 Real Root Of -417*x^4-433*x^3+723*x^2+723*x-281 3141525365942405 m001 exp(Niven)^2/ErdosBorwein^2/GAMMA(11/24)^2 3141525370050593 m005 (1/2*2^(1/2)-5/8)/(6/11*Pi+9/10) 3141525370752291 m001 GAMMA(13/24)*ln(ErdosBorwein)^2/GAMMA(19/24) 3141525383617550 g002 2*Psi(5/12)+Psi(6/11)-Psi(3/10) 3141525391777350 m005 (1/3*exp(1)+1/10)/(1/5*3^(1/2)-2/3) 3141525408500425 m003 121/4+Sqrt[5]/2-Cos[1/2+Sqrt[5]/2] 3141525412122111 k007 concat of cont frac of 3141525413614032 r005 Re(z^2+c),c=-7/16+20/61*I,n=3 3141525422120183 k008 concat of cont frac of 3141525430333330 m001 (Magata+Salem)/(GaussAGM+GolombDickman) 3141525434454763 m002 Pi-(E^Pi*Csch[Pi])/Pi^9 3141525435200566 a007 Real Root Of 512*x^4+771*x^3+538*x^2-270*x-119 3141525441053546 a007 Real Root Of 68*x^4+185*x^3+5*x^2+147*x-475 3141525445493467 r005 Re(z^2+c),c=-29/102+33/62*I,n=29 3141525445983804 m005 (1/3*exp(1)-1/7)/(9/11*5^(1/2)+3/5) 3141525451107019 r005 Re(z^2+c),c=-33/94+17/42*I,n=43 3141525464302108 m001 1/Conway^2/exp(Cahen)^2*GAMMA(5/24)^2 3141525511213224 k006 concat of cont frac of 3141525512128642 m001 1/GAMMA(11/12)^2/Riemann3rdZero*exp(sqrt(5))^2 3141525518038990 r005 Im(z^2+c),c=-11/10+8/243*I,n=6 3141525528480750 r005 Im(z^2+c),c=1/78+22/61*I,n=9 3141525537596494 r005 Im(z^2+c),c=-53/118+19/41*I,n=18 3141525541110161 k007 concat of cont frac of 3141525559982649 m002 -2/Pi^9+Pi 3141525561064212 b008 -1/5*1/E^8+Pi 3141525561669013 m003 -49/12+Sqrt[5]/128+Tanh[1/2+Sqrt[5]/2] 3141525574778158 m001 Pi-TwinPrimes^exp(Pi) 3141525581894233 a007 Real Root Of -388*x^4-194*x^3-740*x^2-28*x+62 3141525584839470 m001 gamma(1)^GAMMA(13/24)/(gamma(1)^Otter) 3141525610000612 r009 Im(z^3+c),c=-4/23+19/58*I,n=7 3141525611910939 r005 Im(z^2+c),c=-37/118+28/53*I,n=19 3141525618312115 k006 concat of cont frac of 3141525627557751 r005 Im(z^2+c),c=-113/110+3/11*I,n=10 3141525631387811 m002 -E^Pi+(Pi^5*ProductLog[Pi]*Tanh[Pi])/6 3141525641769522 m001 Zeta(3)^2*GAMMA(17/24)*exp(sqrt(2))^2 3141525651728849 a001 15127/377*6765^(7/30) 3141525682536786 a007 Real Root Of 936*x^4-632*x^3+644*x^2-518*x-255 3141525682551338 m001 FeigenbaumB^2/exp(Cahen)/OneNinth^2 3141525685042575 m002 Pi-(E^Pi*Sech[Pi])/Pi^9 3141525688683125 r009 Re(z^3+c),c=-11/19+25/49*I,n=11 3141525689511320 r005 Re(z^2+c),c=-47/110+9/43*I,n=5 3141525696379516 m001 GaussKuzminWirsing^2*exp(Backhouse)^2*Si(Pi) 3141525699805356 m001 (Chi(1)*gamma(3)+MertensB1)/Chi(1) 3141525705135430 a007 Real Root Of 96*x^4+146*x^3-692*x^2-817*x-561 3141525716223097 m001 (3^(1/2)+FeigenbaumMu)/(-Kac+Kolakoski) 3141525717539910 a007 Real Root Of 183*x^4+700*x^3+254*x^2-727*x-912 3141525718690392 r005 Im(z^2+c),c=-41/106+29/56*I,n=45 3141525721177370 p001 sum(1/(515*n+342)/(6^n),n=0..infinity) 3141525722789351 m001 (Tetranacci-Thue)/(FellerTornier-LaplaceLimit) 3141525724060539 r009 Re(z^3+c),c=-19/46+5/16*I,n=38 3141525734331640 q001 3/95495 3141525742636913 a003 2*cos(1/27*Pi)+2*cos(5/18*Pi)-cos(11/24*Pi) 3141525757947131 r005 Re(z^2+c),c=-13/28+30/61*I,n=18 3141525760168553 l006 ln(9548/9551) 3141525763639509 m001 (Shi(1)+FeigenbaumDelta)/MasserGramainDelta 3141525764671237 h001 (-10*exp(3)-3)/(-10*exp(2)+9) 3141525771544472 m001 (Khinchin+LaplaceLimit)/(BesselJ(1,1)+Kac) 3141525775610206 m005 (1/2*Catalan-4/5)/(5/9*Catalan-2/5) 3141525777864229 r002 48th iterates of z^2 + 3141525780562453 m001 (Khinchin+MasserGramainDelta)/(Stephens+Thue) 3141525781253652 a001 41/726103*89^(13/34) 3141525784409204 a007 Real Root Of 241*x^4-561*x^3-781*x^2-469*x-90 3141525810102502 m002 -Pi+(2*Tanh[Pi])/Pi^9 3141525830077868 r009 Im(z^3+c),c=-53/114+9/49*I,n=28 3141525845952959 b008 Pi+2*Sec[3/2] 3141525846786632 b008 -4/E^11+Pi 3141525854867781 m001 (Cahen-Psi(1,1/3))/(Conway+Niven) 3141525870764297 a007 Real Root Of -144*x^4-467*x^3+222*x^2+885*x+136 3141525877354620 r005 Im(z^2+c),c=-5/23+26/55*I,n=62 3141525887609592 m005 (1/3*Catalan-3/4)/(3/10*exp(1)+3/5) 3141525893011536 b008 Pi+Sqrt[Pi]*ExpIntegralEi[-8] 3141525900942722 a007 Real Root Of -382*x^4-871*x^3+989*x^2-302*x-507 3141525911558286 a001 2/15127*322^(18/19) 3141525916509436 m001 (Magata+Weierstrass)/(1+CopelandErdos) 3141525938666763 m004 -3/(4*E^(Sqrt[5]*Pi))+10*Pi 3141525946593602 m001 (Gompertz+Kac)/(3^(1/3)-FeigenbaumC) 3141525950836799 r005 Re(z^2+c),c=4/13+29/51*I,n=37 3141525953140361 a007 Real Root Of 416*x^4+957*x^3-887*x^2+902*x+740 3141525955333112 r004 Re(z^2+c),c=-7/18+1/4*I,z(0)=-1,n=22 3141525959156793 m001 (2^(1/3))^Champernowne-TravellingSalesman 3141525970819715 m001 (GolombDickman+Kolakoski)/(Pi+exp(1/Pi)) 3141525987390185 r009 Re(z^3+c),c=-19/46+5/16*I,n=37 3141525990541973 a007 Real Root Of 27*x^4+858*x^3+308*x^2-4*x-627 3141525994406590 r005 Re(z^2+c),c=11/30+41/62*I,n=9 3141525994752408 r005 Im(z^2+c),c=15/86+16/61*I,n=25 3141526010078501 m001 GAMMA(7/12)^2/exp(Backhouse)/log(2+sqrt(3))^2 3141526025050857 a007 Real Root Of -206*x^4-476*x^3+362*x^2-522*x+94 3141526025141326 k006 concat of cont frac of 3141526027380270 m001 (Lehmer+ZetaQ(3))/(5^(1/2)-arctan(1/3)) 3141526027968711 a001 1/7*(1/2*5^(1/2)+1/2)^11*3^(1/11) 3141526028931433 l006 ln(424/9811) 3141526033070715 r005 Re(z^2+c),c=-53/82+16/57*I,n=20 3141526057953996 a007 Real Root Of 627*x^4-974*x^3+967*x^2-851*x+196 3141526074686664 a003 cos(Pi*2/97)*cos(Pi*41/103) 3141526093938188 m001 1/BesselK(0,1)*RenyiParking/exp(sqrt(3)) 3141526097721124 r004 Im(z^2+c),c=1/24+7/11*I,z(0)=I,n=30 3141526107044718 r005 Im(z^2+c),c=-33/106+26/51*I,n=39 3141526111572221 k007 concat of cont frac of 3141526111642421 k006 concat of cont frac of 3141526111991212 k006 concat of cont frac of 3141526115130864 a007 Real Root Of 25*x^4-433*x^3-575*x^2-691*x-174 3141526122150322 k007 concat of cont frac of 3141526128949009 m001 Pi-2^(1/3)+3^(1/2)/exp(1/Pi) 3141526148354210 a007 Real Root Of 445*x^4-525*x^3-199*x^2-433*x-137 3141526150476117 a005 (1/cos(39/236*Pi))^497 3141526151111201 k008 concat of cont frac of 3141526154036694 m005 (1/3*gamma+1/12)/(7/9*2^(1/2)-2/9) 3141526155214239 a005 (1/cos(5/88*Pi))^359 3141526161334969 a007 Real Root Of -972*x^4+690*x^3+17*x^2+240*x-89 3141526166099252 r009 Im(z^3+c),c=-65/126+13/46*I,n=5 3141526170808029 a001 1/267084832*12586269025^(4/21) 3141526170808482 a001 6/233802911*514229^(4/21) 3141526189507038 a007 Real Root Of -38*x^4-132*x^3-742*x^2+374*x+187 3141526193556705 b008 BesselJ[2,11/6] 3141526206312064 r005 Re(z^2+c),c=-13/36+10/27*I,n=45 3141526209364043 m009 (2/3*Psi(1,2/3)-3/4)/(2/5*Pi^2+1/6) 3141526211212831 k008 concat of cont frac of 3141526221360230 m001 (Pi^(1/2)-MertensB1)/(Rabbit-Robbin) 3141526224320646 m001 (Magata-Sierpinski)/(GaussAGM+Grothendieck) 3141526233096556 a001 199*(1/2*5^(1/2)+1/2)^2*47^(7/15) 3141526235394523 r009 Re(z^3+c),c=-17/64+7/10*I,n=43 3141526235744439 m001 (Paris-PlouffeB)/(Zeta(3)-gamma(3)) 3141526240057228 m005 (1/2*Zeta(3)+10/11)/(1/4*gamma-5/8) 3141526248761035 m001 (Magata+Trott)/(arctan(1/2)+GolombDickman) 3141526257364756 m001 ln(TwinPrimes)^2*Cahen^2*BesselJ(1,1) 3141526272501078 r005 Re(z^2+c),c=8/23+5/43*I,n=60 3141526274373706 m001 (Gompertz+Salem)/(Conway-Psi(2,1/3)) 3141526279317451 m001 1/GAMMA(1/6)^2*exp(GAMMA(1/12))^2 3141526280777012 r009 Im(z^3+c),c=-23/48+14/59*I,n=9 3141526284074802 r002 23th iterates of z^2 + 3141526290886241 a007 Real Root Of -301*x^4-880*x^3+263*x^2+309*x+409 3141526297844998 r005 Re(z^2+c),c=-61/102+21/52*I,n=47 3141526309607893 m001 (-CopelandErdos+Robbin)/(Catalan+BesselJ(1,1)) 3141526337281297 b008 Pi*ModularLambda[I*(-3/2+Sqrt[3])] 3141526344239294 a003 cos(Pi*35/114)-sin(Pi*39/113) 3141526351392563 m001 (Pi-exp(Pi)*BesselJ(0,1))/arctan(1/2) 3141526355567644 m001 GAMMA(23/24)*Thue-LambertW(1) 3141526358790307 l006 ln(309/7150) 3141526363456206 r005 Im(z^2+c),c=-25/78+29/59*I,n=11 3141526378264678 r005 Im(z^2+c),c=-11/42+27/55*I,n=53 3141526383087845 m001 (-Porter+Salem)/(Catalan-gamma(2)) 3141526386281562 b008 ArcCsch[3+Sech[E]] 3141526396268565 a007 Real Root Of 112*x^4+513*x^3+375*x^2-688*x-866 3141526396717801 r009 Re(z^3+c),c=-17/36+15/37*I,n=64 3141526406553717 r005 Im(z^2+c),c=-19/106+21/46*I,n=53 3141526417286438 m001 CareFree*Si(Pi)/ln(TwinPrimes) 3141526417707825 p003 LerchPhi(1/64,1,5/157) 3141526418226124 k008 concat of cont frac of 3141526419141211 k006 concat of cont frac of 3141526425141341 m005 (-9/44+1/4*5^(1/2))/(7/11*Catalan+6/11) 3141526425589658 r009 Re(z^3+c),c=-7/118+43/63*I,n=35 3141526425797494 r005 Re(z^2+c),c=7/122+2/13*I,n=13 3141526426908442 r005 Im(z^2+c),c=-61/110+16/35*I,n=53 3141526434853757 m002 -1/(5*Pi^7)+Pi 3141526437176834 a001 1/2529*(1/2*5^(1/2)+1/2)^8*3^(11/23) 3141526442813601 m005 (1/2*Zeta(3)+7/9)/(8/9*2^(1/2)-9/11) 3141526447862778 a007 Real Root Of -995*x^4+468*x^3-230*x^2-318*x-53 3141526453833219 h001 (-exp(3)-3)/(-7*exp(-3)-7) 3141526460125066 m001 Magata/(exp(-1/2*Pi)^(2^(1/2))) 3141526462634599 m004 -100*Pi*Coth[Sqrt[5]*Pi]+4*Csch[Sqrt[5]*Pi] 3141526462747216 m004 -100*Pi*Coth[Sqrt[5]*Pi]+4*Sech[Sqrt[5]*Pi] 3141526473034646 r005 Im(z^2+c),c=-10/31+24/47*I,n=41 3141526477911061 k002 Champernowne real with 1/2*n^2+17/2*n+22 3141526485467828 r005 Re(z^2+c),c=33/118+5/54*I,n=11 3141526486369274 g001 Re(GAMMA(56/15+I*233/60)) 3141526492191440 l006 ln(233/319) 3141526503371760 m002 Pi-Log[Pi]/(18*Pi^6) 3141526506702424 a007 Real Root Of 199*x^4+597*x^3+138*x^2+856*x+454 3141526507984011 m001 exp(BesselK(1,1))^2/DuboisRaymond*GAMMA(2/3)^2 3141526511231611 k007 concat of cont frac of 3141526517796468 a007 Real Root Of -58*x^4+111*x^3+559*x^2-861*x+869 3141526527871286 r009 Re(z^3+c),c=-29/74+35/57*I,n=57 3141526541751651 k007 concat of cont frac of 3141526542072863 a001 322/53316291173*317811^(6/7) 3141526542078201 a001 322/956722026041*9227465^(6/7) 3141526546573023 a001 322/2971215073*10946^(6/7) 3141526562140380 a007 Real Root Of 365*x^4+897*x^3-678*x^2+538*x+641 3141526563412071 m005 (1/3*3^(1/2)+2/5)/(5^(1/2)+7/8) 3141526569046948 a008 Real Root of x^4-x^3-22*x^2+2*x+95 3141526576639573 a007 Real Root Of 230*x^4-264*x^3+80*x^2-802*x+250 3141526579208735 b008 ArcCosh[25*ArcCot[2]] 3141526580135446 m002 -5+Pi^6/3-Log[Pi]^2 3141526581528112 a007 Real Root Of 260*x^4+362*x^3+748*x^2-980*x-373 3141526601861603 m001 gamma+Niven+Thue 3141526608657397 r005 Re(z^2+c),c=27/118+5/12*I,n=53 3141526618946341 r005 Re(z^2+c),c=-45/122+16/49*I,n=14 3141526620085940 a007 Real Root Of 450*x^4-576*x^3-493*x^2-337*x+168 3141526623365580 b008 -1/3+2*ArcSec[4]^2 3141526624838897 r009 Re(z^3+c),c=-25/58+29/47*I,n=35 3141526625089312 r005 Im(z^2+c),c=-6/19+27/59*I,n=3 3141526626931141 r005 Im(z^2+c),c=31/106+9/61*I,n=26 3141526635360866 r005 Im(z^2+c),c=23/98+7/33*I,n=27 3141526660387483 m001 Pi-Trott^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141526662074340 m001 (-Bloch+ZetaP(4))/(2^(1/3)-gamma(3)) 3141526667146999 r005 Re(z^2+c),c=-7/17+3/56*I,n=25 3141526674271557 b008 -36+Erfi[3/2] 3141526681712158 m002 -Pi+Tanh[Pi]/(5*Pi^7) 3141526693758407 a007 Real Root Of 7*x^4-915*x^3+625*x^2-684*x-305 3141526696572720 m001 (2^(1/2)-Lehmer)/(-Otter+PolyaRandomWalk3D) 3141526697858448 m001 1/KhintchineLevy^2*ln(LaplaceLimit)*Zeta(5)^2 3141526698867979 m001 (Pi*Riemann3rdZero-ZetaQ(4))/Riemann3rdZero 3141526699045800 m001 1/Zeta(5)^2*ln(GAMMA(7/24))/gamma^2 3141526713659907 h001 (-5*exp(3)+7)/(-exp(8)+7) 3141526718546864 a007 Real Root Of -17*x^4-506*x^3+901*x^2+621*x+262 3141526720052664 m001 ZetaQ(2)^Weierstrass/Kolakoski 3141526743970178 r005 Im(z^2+c),c=-6/13+15/28*I,n=38 3141526749231388 r005 Re(z^2+c),c=-17/36+16/53*I,n=7 3141526752029213 m001 (ln(2^(1/2)+1)-Khinchin)/(Paris+PlouffeB) 3141526752424232 a007 Real Root Of 789*x^4-399*x^3-514*x^2-960*x+357 3141526761570567 a007 Real Root Of -978*x^4-446*x^3-593*x^2+811*x+309 3141526768810522 r005 Re(z^2+c),c=25/82+4/41*I,n=18 3141526779214909 r005 Re(z^2+c),c=-5/44+7/11*I,n=50 3141526794428712 m001 ln(5)/(exp(1)+BesselJZeros(0,1)) 3141526810133964 m004 -100*Pi+(5*Csc[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141526817135201 a001 64079/13*2971215073^(4/21) 3141526817875878 a001 439204/13*121393^(4/21) 3141526818566389 m001 Riemann3rdZero^2*ln(Niven)^2/LambertW(1) 3141526819581792 b008 Pi*InverseEllipticNomeQ[1/2]^2 3141526822696526 b008 Pi+ExpIntegralEi[-15/2] 3141526829054465 a001 17711/76*76^(2/29) 3141526839731350 a007 Real Root Of -12*x^4-387*x^3-329*x^2-450*x-4 3141526847131665 m001 Ei(1)*ln(GlaisherKinkelin)^2*GAMMA(1/3) 3141526856911280 r005 Re(z^2+c),c=-37/90+4/59*I,n=31 3141526878317423 m001 (BesselK(0,1)+(1+3^(1/2))^(1/2))/TwinPrimes 3141526878317423 m001 (BesselK(0,1)+sqrt(1+sqrt(3)))/TwinPrimes 3141526878741363 a007 Real Root Of -148*x^4-206*x^3+615*x^2-402*x+696 3141526887564243 m005 (1/3*Catalan-3/4)/(7/12*5^(1/2)+1/9) 3141526897221151 a007 Real Root Of -79*x^4+360*x^3+675*x^2+713*x-301 3141526921974761 r005 Im(z^2+c),c=27/74+15/64*I,n=47 3141526925955325 m001 1+GlaisherKinkelin+Thue 3141526932098532 m001 (FellerTornier-Magata)/(arctan(1/3)-Conway) 3141526934652225 h001 (6/7*exp(2)+2/11)/(5/8*exp(1)+3/8) 3141526939364603 a007 Real Root Of -158*x^4-430*x^3+159*x^2-108*x+149 3141526949647996 m001 1-Backhouse-Khinchin 3141526950133761 a007 Real Root Of -159*x^4-281*x^3+401*x^2-869*x+87 3141526951685112 k006 concat of cont frac of 3141526955346053 m001 sin(1)*ln(5)+KomornikLoreti 3141526957355012 m001 (exp(Pi)+Landau)/(MasserGramain+OneNinth) 3141526957368849 a007 Real Root Of -20*x^4-622*x^3+214*x^2+475*x-784 3141526960569467 h001 (-4*exp(7)+1)/(-7*exp(3)+1) 3141526970032731 m001 1/KhintchineLevy/ln(MertensB1)*sqrt(5)^2 3141526985467772 r005 Im(z^2+c),c=-1/8+16/37*I,n=43 3141526990429371 a005 (1/sin(70/163*Pi))^697 3141526993053706 r005 Im(z^2+c),c=-9/8+59/221*I,n=14 3141526995705076 r005 Re(z^2+c),c=-19/14+15/224*I,n=26 3141526996411171 a001 1/7*39603^(27/53) 3141526997128880 m001 1/ln(Salem)*FransenRobinson/GAMMA(1/24)^2 3141527002159698 h001 (3/8*exp(2)+2/3)/(2/11*exp(1)+3/5) 3141527009854992 m001 Magata*QuadraticClass^Cahen 3141527021026956 h001 (5/9*exp(1)+6/7)/(10/11*exp(2)+9/11) 3141527031651899 r005 Re(z^2+c),c=-7/32+17/32*I,n=10 3141527053413611 r005 Re(z^2+c),c=-41/78+6/13*I,n=39 3141527053980808 a001 1/7*5778^(33/53) 3141527055362947 m005 (3/4*Catalan+2/3)/(4*gamma+2) 3141527062193965 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/2 3141527062245865 m004 -10*Pi+Cos[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141527062297766 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/2 3141527062344292 r009 Im(z^3+c),c=-57/118+4/49*I,n=63 3141527079461253 a007 Real Root Of -131*x^4-486*x^3-348*x^2-614*x-803 3141527079718603 l006 ln(194/4489) 3141527089127170 r005 Im(z^2+c),c=-17/26+17/49*I,n=16 3141527093670789 r005 Im(z^2+c),c=7/86+13/40*I,n=15 3141527094857958 m001 GAMMA(1/6)^2/exp(MertensB1)*log(2+sqrt(3)) 3141527095700453 a005 (1/cos(7/90*Pi))^1107 3141527112216217 k006 concat of cont frac of 3141527112303830 r005 Re(z^2+c),c=13/50+31/55*I,n=38 3141527112343122 k008 concat of cont frac of 3141527112810134 m001 1/ln(sin(Pi/12))/Niven/sinh(1)^2 3141527114212161 k006 concat of cont frac of 3141527115134461 k006 concat of cont frac of 3141527117116111 k006 concat of cont frac of 3141527124111191 k009 concat of cont frac of 3141527132381522 k007 concat of cont frac of 3141527147449808 r005 Im(z^2+c),c=-21/32+3/26*I,n=10 3141527150374920 r005 Im(z^2+c),c=-8/31+23/47*I,n=50 3141527150494393 a007 Real Root Of 392*x^4+958*x^3-514*x^2+772*x-981 3141527150698687 r002 27i'th iterates of 2*x/(1-x^2) of 3141527158233122 k006 concat of cont frac of 3141527169263782 r002 38th iterates of z^2 + 3141527195174258 p001 sum(1/(301*n+26)/n/(10^n),n=1..infinity) 3141527195831484 m001 FeigenbaumC/GAMMA(3/4)*Riemann2ndZero 3141527197761014 r005 Im(z^2+c),c=19/78+10/49*I,n=19 3141527211569390 r005 Im(z^2+c),c=-5/23+26/55*I,n=63 3141527212112322 k007 concat of cont frac of 3141527216565543 r005 Re(z^2+c),c=-11/30+29/50*I,n=22 3141527223605310 r009 Im(z^3+c),c=-19/40+4/23*I,n=52 3141527226368757 m005 (1/2*gamma-5/12)/(13/18+3/2*5^(1/2)) 3141527241804325 r005 Im(z^2+c),c=-9/46+19/41*I,n=32 3141527251415231 k006 concat of cont frac of 3141527254010928 m001 1/exp(Conway)/Champernowne^2/LambertW(1) 3141527254212481 k007 concat of cont frac of 3141527255705353 a001 12752043/2*21^(11/21) 3141527257200621 p003 LerchPhi(1/256,3,103/70) 3141527260456695 a003 cos(Pi*5/18)-sin(Pi*13/32) 3141527265593516 m001 (exp(1)+ln(3))/(polylog(4,1/2)+ArtinRank2) 3141527281424306 a007 Real Root Of -311*x^4-865*x^3+294*x^2-123*x+185 3141527291014503 r009 Im(z^3+c),c=-37/64+49/64*I,n=3 3141527295119396 r005 Im(z^2+c),c=-3/31+13/31*I,n=33 3141527302825065 a007 Real Root Of 324*x^4+908*x^3-433*x^2-356*x-251 3141527312411411 k006 concat of cont frac of 3141527315323779 a008 Real Root of x^4-11*x^2-13*x+52 3141527326791399 r005 Re(z^2+c),c=9/44+22/53*I,n=17 3141527332358280 r005 Re(z^2+c),c=-37/90+4/59*I,n=33 3141527341628600 m001 1/Zeta(1,2)*(2^(1/3))^2/exp(Zeta(1/2))^2 3141527368278052 m001 (Shi(1)+Kolakoski)/(PrimesInBinary+ZetaP(3)) 3141527392811545 r005 Re(z^2+c),c=21/94+12/25*I,n=44 3141527394722382 m001 (1+AlladiGrinstead)/Stephens 3141527401743591 m001 Pi-Trott2nd^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3141527403349288 m001 (2^(1/2)+sin(1))/(Landau+ZetaP(3)) 3141527406677209 m005 (1/2*exp(1)-1/6)/(1/6*3^(1/2)+1/11) 3141527413729215 k007 concat of cont frac of 3141527414817328 b008 Pi+Sqrt[3]*ExpIntegralEi[-8] 3141527415198691 r002 19i'th iterates of 2*x/(1-x^2) of 3141527430339924 r005 Re(z^2+c),c=-37/90+4/59*I,n=38 3141527430514714 a001 9227465/2207*47^(11/21) 3141527431661635 r005 Re(z^2+c),c=-37/90+4/59*I,n=36 3141527434736860 m001 (FeigenbaumB+Paris)/(GAMMA(2/3)+ln(5)) 3141527435614438 m001 (Trott+TwinPrimes)/(ln(gamma)+Khinchin) 3141527437960086 r005 Re(z^2+c),c=-37/90+4/59*I,n=40 3141527444084071 r005 Re(z^2+c),c=-37/90+4/59*I,n=42 3141527447604619 r005 Re(z^2+c),c=-37/90+4/59*I,n=44 3141527449347197 r005 Re(z^2+c),c=-37/90+4/59*I,n=46 3141527450130766 r005 Re(z^2+c),c=-37/90+4/59*I,n=48 3141527450457364 r005 Re(z^2+c),c=-37/90+4/59*I,n=50 3141527450584255 r005 Re(z^2+c),c=-37/90+4/59*I,n=52 3141527450629978 r005 Re(z^2+c),c=-37/90+4/59*I,n=54 3141527450644969 r005 Re(z^2+c),c=-37/90+4/59*I,n=56 3141527450649219 r005 Re(z^2+c),c=-37/90+4/59*I,n=58 3141527450649295 r005 Re(z^2+c),c=-37/90+4/59*I,n=61 3141527450649413 r005 Re(z^2+c),c=-37/90+4/59*I,n=63 3141527450649571 r005 Re(z^2+c),c=-37/90+4/59*I,n=59 3141527450649945 r005 Re(z^2+c),c=-37/90+4/59*I,n=64 3141527450650091 r005 Re(z^2+c),c=-37/90+4/59*I,n=62 3141527450650096 r005 Re(z^2+c),c=-37/90+4/59*I,n=60 3141527450651628 r005 Re(z^2+c),c=-37/90+4/59*I,n=57 3141527450659802 r005 Re(z^2+c),c=-37/90+4/59*I,n=55 3141527450686348 r005 Re(z^2+c),c=-37/90+4/59*I,n=53 3141527450763298 r005 Re(z^2+c),c=-37/90+4/59*I,n=51 3141527450968680 r005 Re(z^2+c),c=-37/90+4/59*I,n=49 3141527451201759 a007 Real Root Of 257*x^4+526*x^3-728*x^2+431*x-185 3141527451479068 r005 Re(z^2+c),c=-37/90+4/59*I,n=47 3141527452659677 r005 Re(z^2+c),c=-37/90+4/59*I,n=45 3141527453091940 m001 (MadelungNaCl-ln(5))/GAMMA(5/24) 3141527454703317 r005 Re(z^2+c),c=-37/90+4/59*I,n=35 3141527455171823 r005 Re(z^2+c),c=-37/90+4/59*I,n=43 3141527457326795 a008 Real Root of x^4-x^3-24*x+9 3141527459931105 r005 Re(z^2+c),c=-37/90+4/59*I,n=41 3141527462781429 m004 -100*Pi+4*Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141527462884596 m004 -100*Pi+4*Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141527463695629 a007 Real Root Of 496*x^4-830*x^3+930*x^2-470*x-270 3141527467240463 r005 Re(z^2+c),c=-37/90+4/59*I,n=39 3141527472882010 r005 Re(z^2+c),c=-37/90+4/59*I,n=37 3141527476077133 m001 1/ln(OneNinth)^2*Backhouse/cos(Pi/12)^2 3141527482580908 r002 12th iterates of z^2 + 3141527484865113 m001 RenyiParking^Otter+exp(1) 3141527485011399 m001 (3^(1/2)-sin(1/5*Pi))/(-Kac+MertensB1) 3141527485238256 r005 Re(z^2+c),c=-37/90+4/59*I,n=34 3141527500334113 r005 Im(z^2+c),c=-7/12+47/117*I,n=38 3141527513876590 m001 ReciprocalLucas^(Zeta(1,2)*FeigenbaumC) 3141527519163682 b008 -1/14*1/E^7+Pi 3141527519257523 s002 sum(A093417[n]/(n^3*exp(n)+1),n=1..infinity) 3141527535565494 a001 18*(1/2*5^(1/2)+1/2)^8*322^(5/22) 3141527538066250 m001 (MertensB1+ZetaP(2))/(BesselK(0,1)-exp(Pi)) 3141527549279310 r005 Im(z^2+c),c=-21/122+14/31*I,n=18 3141527557318995 m001 TravellingSalesman/KhinchinHarmonic/Conway 3141527565542747 a001 1/3278735159921*610^(4/11) 3141527607610660 r009 Im(z^3+c),c=-27/122+1/38*I,n=7 3141527608820688 r005 Im(z^2+c),c=47/122+17/54*I,n=21 3141527610376706 m005 (1/2*Zeta(3)+7/10)/(5/7*Zeta(3)-5) 3141527619049850 a001 1/16*(1/2*5^(1/2)+1/2)^26*4^(4/9) 3141527619317792 a007 Real Root Of 204*x^4+631*x^3-32*x^2-295*x-917 3141527621648213 m003 1/2+(9*Sqrt[5])/16-3*Log[1/2+Sqrt[5]/2] 3141527643497712 m002 -1/(16*Pi^6)+Pi 3141527688826520 r005 Im(z^2+c),c=-2/29+19/48*I,n=8 3141527690683439 m005 (1/2*exp(1)+2/11)/(-14/33+9/22*5^(1/2)) 3141527710628095 m001 1/ln(cos(Pi/12))^2/FeigenbaumD^2*exp(1) 3141527719464689 r005 Im(z^2+c),c=29/126+13/60*I,n=18 3141527721321212 k007 concat of cont frac of 3141527733115012 r005 Re(z^2+c),c=-43/110+6/25*I,n=20 3141527734318263 b008 -4+E^(3+ProductLog[1]) 3141527734586040 r005 Re(z^2+c),c=-37/90+4/59*I,n=32 3141527739117430 r005 Im(z^2+c),c=-31/50+9/34*I,n=5 3141527742126170 r005 Re(z^2+c),c=-125/126+2/29*I,n=12 3141527742760036 m005 (1/3*2^(1/2)-1/7)/(3/10*5^(1/2)+3/8) 3141527754532309 r005 Re(z^2+c),c=-33/118+22/39*I,n=46 3141527758285946 m001 1/cos(Pi/12)/exp(MadelungNaCl)^2 3141527765678728 r009 Re(z^3+c),c=-37/126+4/53*I,n=9 3141527771021743 a007 Real Root Of 114*x^4+223*x^3-359*x^2+436*x+723 3141527776139996 m001 (BesselK(1,1)-ln(2)/ln(10))/(Paris+Thue) 3141527783786169 m001 Riemann2ndZero^2/RenyiParking/ln(cosh(1))^2 3141527796121947 r005 Re(z^2+c),c=5/17+23/55*I,n=16 3141527803209435 a001 322/1597*21^(46/51) 3141527829715310 m001 (-Conway+ZetaQ(2))/(2^(1/3)+exp(1)) 3141527830685493 m001 (GaussAGM+Khinchin)/(3^(1/3)-arctan(1/3)) 3141527837098577 m005 (1/2*3^(1/2)-3/10)/(87/88+4/11*5^(1/2)) 3141527838437238 r002 17th iterates of z^2 + 3141527840306109 r009 Re(z^3+c),c=-41/98+33/56*I,n=46 3141527841426534 m002 Pi-Cosh[Pi]/(6*Pi^9) 3141527849091649 r005 Im(z^2+c),c=-19/94+9/23*I,n=4 3141527861584694 m001 1/ln(GAMMA(1/12))^2*GolombDickman/gamma^2 3141527862674501 s002 sum(A044872[n]/(n*2^n-1),n=1..infinity) 3141527872377119 m002 Pi-(Csch[Pi]*Log[Pi])/(5*Pi^5) 3141527872675636 r009 Im(z^3+c),c=-8/17+5/28*I,n=63 3141527878682798 r005 Im(z^2+c),c=-13/36+13/24*I,n=37 3141527885850380 m002 -Pi+Tanh[Pi]/(16*Pi^6) 3141527887415272 m001 exp(GAMMA(1/24))*Lehmer/cos(1)^2 3141527895713740 l006 ln(273/6317) 3141527898512221 m001 1/GAMMA(17/24)^2*Tribonacci*exp(Zeta(5)) 3141527900192406 r005 Re(z^2+c),c=-21/46+5/9*I,n=51 3141527906228403 m005 (1/2*2^(1/2)-7/8)/(2/7*Catalan+3/11) 3141527909631188 a007 Real Root Of 220*x^4+762*x^3+478*x^2+568*x-736 3141527912083366 r005 Re(z^2+c),c=25/82+1/9*I,n=56 3141527913809990 q001 1283/4084 3141527921453167 a007 Real Root Of -242*x^4-475*x^3+948*x^2+205*x+132 3141527922366177 a007 Real Root Of 540*x^4-593*x^3-891*x^2-455*x+244 3141527924591404 b008 Pi*Sin[1+EulerGamma] 3141527925427863 r005 Im(z^2+c),c=-19/22+1/47*I,n=27 3141527934722890 r009 Im(z^3+c),c=-13/29+1/5*I,n=28 3141527964809145 a001 341/36*4181^(35/36) 3141527968598063 a001 76/233*55^(13/23) 3141527969550734 r009 Im(z^3+c),c=-23/86+9/29*I,n=3 3141527974983862 h001 (-3*exp(3)+8)/(-7*exp(2/3)-3) 3141527978940025 a001 18*(1/2*5^(1/2)+1/2)^27*199^(16/23) 3141527981380845 a001 24157817/5778*47^(11/21) 3141527987127556 r005 Im(z^2+c),c=-21/110+6/13*I,n=54 3141527989418313 m002 -Pi+ProductLog[Pi]/(E^(2*Pi)*Pi^3) 3141527994402854 a005 (1/sin(103/211*Pi))^1652 3141528002493200 a001 4/28657*377^(21/23) 3141528005165180 r005 Im(z^2+c),c=-83/126+16/49*I,n=10 3141528014242203 a001 18/521*(1/2*5^(1/2)+1/2)^19*521^(4/11) 3141528028153013 m001 exp(GAMMA(1/12))^2*FeigenbaumKappa*cosh(1)^2 3141528028437230 r005 Re(z^2+c),c=23/86+5/59*I,n=44 3141528034624798 a007 Real Root Of 215*x^4+348*x^3-734*x^2+747*x-561 3141528038307514 r005 Im(z^2+c),c=-1/27+16/41*I,n=20 3141528054844807 m001 1/3*(3^(1/2)*Otter+arctan(1/3))*3^(1/2) 3141528061751147 a001 63245986/15127*47^(11/21) 3141528068395911 m001 1/Riemann2ndZero^2*exp(Bloch)^2*cos(1) 3141528071932623 a007 Real Root Of 214*x^4-360*x^3-822*x^2-445*x+230 3141528073477016 a001 165580141/39603*47^(11/21) 3141528075187798 a001 433494437/103682*47^(11/21) 3141528075437397 a001 1134903170/271443*47^(11/21) 3141528075473813 a001 2971215073/710647*47^(11/21) 3141528075479126 a001 7778742049/1860498*47^(11/21) 3141528075479902 a001 20365011074/4870847*47^(11/21) 3141528075480015 a001 53316291173/12752043*47^(11/21) 3141528075480031 a001 139583862445/33385282*47^(11/21) 3141528075480034 a001 365435296162/87403803*47^(11/21) 3141528075480034 a001 956722026041/228826127*47^(11/21) 3141528075480034 a001 2504730781961/599074578*47^(11/21) 3141528075480034 a001 6557470319842/1568397607*47^(11/21) 3141528075480034 a001 10610209857723/2537720636*47^(11/21) 3141528075480034 a001 4052739537881/969323029*47^(11/21) 3141528075480034 a001 1548008755920/370248451*47^(11/21) 3141528075480034 a001 591286729879/141422324*47^(11/21) 3141528075480035 a001 225851433717/54018521*47^(11/21) 3141528075480041 a001 86267571272/20633239*47^(11/21) 3141528075480085 a001 32951280099/7881196*47^(11/21) 3141528075480381 a001 12586269025/3010349*47^(11/21) 3141528075482410 a001 4807526976/1149851*47^(11/21) 3141528075496320 a001 1836311903/439204*47^(11/21) 3141528075591658 a001 701408733/167761*47^(11/21) 3141528076245119 a001 267914296/64079*47^(11/21) 3141528076514456 m005 (1/2*Pi-9/10)/(-5/8+3/8*5^(1/2)) 3141528080724002 a001 102334155/24476*47^(11/21) 3141528083041339 m002 Pi-Sinh[Pi]/(6*Pi^9) 3141528089667944 r009 Re(z^3+c),c=-21/82+59/62*I,n=11 3141528092718568 r005 Re(z^2+c),c=-79/126+17/60*I,n=2 3141528103955648 m001 (Shi(1)+GAMMA(5/6))/(-ArtinRank2+ZetaQ(4)) 3141528111023121 k008 concat of cont frac of 3141528111141234 k007 concat of cont frac of 3141528111422727 a001 4181*47^(11/21) 3141528112915113 k007 concat of cont frac of 3141528113876542 m002 Pi-(Log[Pi]*Sech[Pi])/(5*Pi^5) 3141528116876392 g001 GAMMA(2/5,80/91) 3141528123558942 m001 (GAMMA(19/24)+Kolakoski)/(GAMMA(3/4)-Si(Pi)) 3141528128511142 k008 concat of cont frac of 3141528129095476 m005 (1/2*Catalan-5/7)/(2/7*gamma-1/12) 3141528129426499 r005 Im(z^2+c),c=13/42+26/53*I,n=28 3141528152723123 r005 Re(z^2+c),c=-39/50+2/57*I,n=34 3141528156686311 r005 Re(z^2+c),c=-29/98+27/41*I,n=39 3141528161572307 a007 Real Root Of -185*x^4+767*x^3+365*x^2+711*x+22 3141528161597390 a007 Real Root Of -337*x^4-760*x^3+719*x^2-939*x-785 3141528162924952 a007 Real Root Of -65*x^4-23*x^3+661*x^2+216*x-227 3141528174286973 m001 Kolakoski^2/exp(CopelandErdos)/(2^(1/3))^2 3141528176687763 m002 4+Pi^5+(ProductLog[Pi]*Sinh[Pi])/3 3141528191717962 r005 Re(z^2+c),c=-25/86+21/37*I,n=42 3141528197804072 s002 sum(A206421[n]/(n^3*pi^n+1),n=1..infinity) 3141528209703525 m001 (gamma+LambertW(1))/(Ei(1)+MadelungNaCl) 3141528225212111 k006 concat of cont frac of 3141528227092945 r009 Re(z^3+c),c=-39/106+5/21*I,n=17 3141528230785632 m001 (-LandauRamanujan+Paris)/(2^(1/2)+CareFree) 3141528236951022 a001 89/710647*18^(7/22) 3141528240459421 r005 Im(z^2+c),c=-39/118+33/59*I,n=34 3141528248114982 a003 sin(Pi*5/59)-sin(Pi*19/97) 3141528268314073 a009 2^(1/3)/(11^(3/4)-6) 3141528275343052 a007 Real Root Of -121*x^4-494*x^3-170*x^2+642*x+164 3141528281674579 r002 2th iterates of z^2 + 3141528283741784 s002 sum(A190126[n]/(n^2*pi^n+1),n=1..infinity) 3141528285127209 m001 (2^(1/2)+HeathBrownMoroz)/(-ZetaQ(2)+ZetaQ(3)) 3141528286754389 a001 1/7*(1/2*5^(1/2)+1/2)^18*199^(11/16) 3141528291319392 r005 Re(z^2+c),c=-37/90+1/15*I,n=18 3141528294095353 m001 2^(1/3)/(GlaisherKinkelin-ln(2^(1/2)+1)) 3141528305839728 m002 Pi^3/4+Pi^5+Log[Pi]/3 3141528310693520 s002 sum(A079938[n]/((exp(n)+1)/n),n=1..infinity) 3141528311116821 k008 concat of cont frac of 3141528321431112 k009 concat of cont frac of 3141528321834935 a001 14930352/3571*47^(11/21) 3141528329080895 m001 (ln(2)-cos(1/12*Pi))/(exp(1/Pi)-MinimumGamma) 3141528337562249 m001 LaplaceLimit^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141528344173831 m002 -Pi+(6*Coth[Pi])/Pi^10 3141528345438048 l006 ln(352/8145) 3141528346964116 m001 ln(Niven)*KhintchineHarmonic^2*GAMMA(11/24) 3141528352909174 r005 Im(z^2+c),c=9/25+8/43*I,n=39 3141528356003047 m005 (1/3*5^(1/2)+1/7)/(5/7*Pi+7/12) 3141528366496692 a003 cos(Pi*23/67)/cos(Pi*47/104) 3141528369817907 a007 Real Root Of -112*x^4-75*x^3-266*x^2+883*x+28 3141528371419365 a005 (1/sin(79/175*Pi))^1083 3141528372491858 a007 Real Root Of -330*x^4-884*x^3+136*x^2-963*x+367 3141528383091770 m001 Pi-Trott2nd^FeigenbaumD 3141528384235102 m001 (GAMMA(11/12)-Landau)/(ln(2)-Zeta(1,2)) 3141528387888146 r002 23th iterates of z^2 + 3141528395177104 r005 Re(z^2+c),c=-47/122+5/12*I,n=13 3141528399151109 h001 (3/11*exp(2)+1/9)/(4/5*exp(2)+6/7) 3141528432591609 r009 Im(z^3+c),c=-37/78+11/63*I,n=58 3141528434045287 s001 sum(exp(-Pi/2)^n*A263330[n],n=1..infinity) 3141528434171894 a007 Real Root Of 822*x^4-469*x^3+553*x^2-719*x-303 3141528440949186 r005 Im(z^2+c),c=-39/34+28/115*I,n=62 3141528441827268 a003 cos(Pi*3/109)-sin(Pi*27/113) 3141528445598329 m001 (PlouffeB+PrimesInBinary)/(GAMMA(5/6)+Niven) 3141528451713161 k007 concat of cont frac of 3141528474415611 r005 Re(z^2+c),c=-41/122+17/38*I,n=28 3141528474569652 a007 Real Root Of -121*x^4-229*x^3+315*x^2-521*x-60 3141528479135257 p003 LerchPhi(1/32,6,138/167) 3141528519205404 m005 (1/2*3^(1/2)+5/6)/(1/12*5^(1/2)-8/11) 3141528552257068 m001 Khinchin^Si(Pi)/(Khinchin^ln(2)) 3141528567683147 r005 Im(z^2+c),c=-43/122+11/21*I,n=53 3141528576169755 m001 Pi+gamma(1)^ReciprocalFibonacci 3141528581557512 s002 sum(A204733[n]/(pi^n+1),n=1..infinity) 3141528583914432 m002 -6/Pi^10+Pi 3141528597056051 p001 sum(1/(359*n+32)/(16^n),n=0..infinity) 3141528601159046 r005 Re(z^2+c),c=-37/90+4/59*I,n=30 3141528611013361 k006 concat of cont frac of 3141528611585214 a007 Real Root Of 362*x^4+956*x^3-537*x^2+122*x+64 3141528625399593 q001 1081/3441 3141528630298120 l006 ln(431/9973) 3141528630298120 p004 log(9973/431) 3141528641414137 k006 concat of cont frac of 3141528649343940 m001 HeathBrownMoroz^Backhouse-Pi 3141528655168087 r005 Re(z^2+c),c=-31/90+23/54*I,n=49 3141528684252037 a001 13201/48*21^(4/5) 3141528685248132 a007 Real Root Of 30*x^4+970*x^3+836*x^2-890*x+879 3141528686302362 b008 Pi*InverseEllipticNomeQ[(2*Pi)/13] 3141528697126007 a007 Real Root Of 9*x^4+278*x^3-164*x^2-477*x-16 3141528707913142 r009 Re(z^3+c),c=-45/118+6/23*I,n=25 3141528711927219 r005 Re(z^2+c),c=-17/90+34/55*I,n=45 3141528724172330 a007 Real Root Of -225*x^4-505*x^3+719*x^2+176*x-285 3141528726988953 m001 1/ln(GAMMA(7/24))/sqrt(2)^3 3141528747112459 r005 Im(z^2+c),c=-21/86+21/47*I,n=9 3141528749277655 a007 Real Root Of -19*x^4-576*x^3+626*x^2-970*x-589 3141528749724505 a007 Real Root Of -620*x^4-139*x^3+671*x^2+341*x-163 3141528753072956 r005 Im(z^2+c),c=-1+61/212*I,n=46 3141528762638882 r009 Re(z^3+c),c=-23/50+17/44*I,n=32 3141528765099917 a007 Real Root Of -901*x^4+220*x^3-44*x^2+188*x+79 3141528768404760 r005 Im(z^2+c),c=-7/22+31/60*I,n=42 3141528796491197 a007 Real Root Of 100*x^4-267*x^3-321*x^2-312*x+137 3141528799189310 r009 Re(z^3+c),c=-1/19+30/61*I,n=6 3141528800845723 m005 (19/28+1/4*5^(1/2))/(1/7*Zeta(3)+2/9) 3141528803128440 m001 AlladiGrinstead/(BesselI(1,1)-Pi) 3141528803149691 m001 (ln(2)-ErdosBorwein)/(Porter-Salem) 3141528804370111 r002 13th iterates of z^2 + 3141528815045484 h001 (4/9*exp(2)+8/9)/(1/7*exp(2)+3/11) 3141528822761298 m002 -Pi+(6*Tanh[Pi])/Pi^10 3141528836779387 m005 (1/2*Zeta(3)-2/11)/(4*Pi+7/9) 3141528842054599 r005 Re(z^2+c),c=-27/82+11/19*I,n=32 3141528853131650 m006 (Pi^2-4)/(5/6*exp(Pi)-3/5) 3141528878369275 a007 Real Root Of -493*x^4-500*x^3-335*x^2+902*x-230 3141528880457735 m009 (1/8*Pi^2+2)/(48*Catalan+6*Pi^2-1/4) 3141528896338705 r009 Re(z^3+c),c=-53/114+27/34*I,n=2 3141528902170878 r005 Im(z^2+c),c=-23/98+25/52*I,n=17 3141528909827322 m005 (1/2*2^(1/2)+1/4)/(6*gamma-5/12) 3141528912927957 m001 Pi-Trott2nd^Khinchin 3141528916519977 a007 Real Root Of -78*x^4-109*x^3+54*x^2-953*x+691 3141528919603252 r005 Re(z^2+c),c=31/98+11/21*I,n=45 3141528919914289 a007 Real Root Of 331*x^4+967*x^3-68*x^2+420*x-268 3141528921531529 g006 Psi(1,3/10)+Psi(1,1/8)+Psi(1,2/7)-Psi(1,1/11) 3141528922977135 m005 (1/3*2^(1/2)-2/5)/(145/112+7/16*5^(1/2)) 3141528925619834 r005 Re(z^2+c),c=-7/10+71/220*I,n=2 3141528928134806 m005 (1/3*3^(1/2)+1/11)/(5/12*Pi+9/11) 3141528931575537 s002 sum(A278269[n]/((exp(n)-1)/n),n=1..infinity) 3141528933864842 m002 -1-4/Pi^2-Pi^3+Tanh[Pi] 3141528936264664 r005 Im(z^2+c),c=8/27+9/64*I,n=14 3141528941562811 r005 Re(z^2+c),c=-11/16+1/100*I,n=6 3141528945764893 r005 Re(z^2+c),c=-29/114+23/40*I,n=32 3141528963747647 m008 (3/4*Pi^6-4/5)/(3/4*Pi^5-1/4) 3141528964526993 m001 HeathBrownMoroz/Conway/arctan(1/3) 3141528970752863 m005 (1/2*3^(1/2)-1/2)/(1/9*5^(1/2)+11/12) 3141528971980454 m001 (GolombDickman-Gompertz)/(ln(3)-exp(-1/2*Pi)) 3141528972383527 r009 Im(z^3+c),c=-33/62+9/44*I,n=45 3141528982451089 m001 BesselK(0,1)^2/ArtinRank2^2/exp(GAMMA(3/4))^2 3141528991405530 a007 Real Root Of -293*x^4-695*x^3+680*x^2+223*x+980 3141528998139298 m001 BesselK(0,1)^ln(2)/ZetaP(3) 3141529001912764 a007 Real Root Of 565*x^4-254*x^3-152*x^2-228*x+89 3141529028572963 r002 42th iterates of z^2 + 3141529046124894 m001 (GAMMA(17/24)+ReciprocalLucas)/(Thue+ZetaP(3)) 3141529048554153 a007 Real Root Of 624*x^4-442*x^3-558*x^2-940*x+358 3141529049856365 b008 7*AiryBiPrime[1/25] 3141529051545388 m001 FeigenbaumC^(FeigenbaumB/TreeGrowth2nd) 3141529059131969 m001 1/CareFree/exp(MertensB1)^2*GAMMA(11/24)^2 3141529070845205 m006 (1/5*Pi^2-4)/(-1+1/6*Pi^2) 3141529070845205 m008 (1/5*Pi^2-4)/(-1+1/6*Pi^2) 3141529070845205 m009 (1/5*Pi^2-4)/(-1+1/6*Pi^2) 3141529076593634 m001 (Totient+ZetaP(3))/(5^(1/2)+Sierpinski) 3141529077680519 a007 Real Root Of -300*x^4-982*x^3-502*x^2-999*x+590 3141529081686767 a007 Real Root Of 603*x^4-224*x^3+289*x^2-626*x-238 3141529096694274 r002 50th iterates of z^2 + 3141529129616018 k006 concat of cont frac of 3141529129825693 a007 Real Root Of 365*x^4+780*x^3-971*x^2+311*x-808 3141529132152213 k007 concat of cont frac of 3141529145257969 m004 -3+(5*Pi)/4-3*Sec[Sqrt[5]*Pi] 3141529166409162 r005 Re(z^2+c),c=-35/82+5/37*I,n=4 3141529171293874 r005 Re(z^2+c),c=-10/31+26/55*I,n=25 3141529178025218 m001 gamma(1)^Lehmer/(Riemann3rdZero^Lehmer) 3141529179156172 r005 Im(z^2+c),c=-63/86+1/28*I,n=8 3141529195599093 h005 exp(cos(Pi*7/60)/cos(Pi*11/56)) 3141529201983335 m001 (Pi+sin(1/5*Pi))/(Salem+Trott) 3141529210113211 k006 concat of cont frac of 3141529215982391 r002 4th iterates of z^2 + 3141529218391276 a008 Real Root of x^4-x^3-8*x^2+11*x-22 3141529219992056 r005 Im(z^2+c),c=-89/74+11/36*I,n=11 3141529221560232 m002 -Pi+Pi^5+Cosh[Pi]-Tanh[Pi]/Pi 3141529233532219 r005 Re(z^2+c),c=23/86+3/34*I,n=13 3141529239471220 m005 (1/2*Pi+7/12)/(3/11*2^(1/2)+3/10) 3141529241621040 a007 Real Root Of 575*x^4-636*x^3-237*x^2-600*x+226 3141529244749847 m003 1/2+(17*Sqrt[5])/64+Sec[1/2+Sqrt[5]/2]/5 3141529246788169 r009 Im(z^3+c),c=-35/82+5/23*I,n=17 3141529252461128 r005 Re(z^2+c),c=-13/12+5/21*I,n=38 3141529265697513 r009 Re(z^3+c),c=-31/64+19/45*I,n=52 3141529272597031 r005 Re(z^2+c),c=-6/7+22/97*I,n=41 3141529286998911 p004 log(30713/22433) 3141529292809800 r005 Re(z^2+c),c=15/122+18/43*I,n=30 3141529311106126 b008 Pi-Erfc[2*Sqrt[2]] 3141529311637154 k006 concat of cont frac of 3141529320463220 a007 Real Root Of 706*x^4-873*x^3+857*x^2-321*x+1 3141529322435964 r005 Re(z^2+c),c=-17/60+7/12*I,n=56 3141529323339283 m002 Pi^3/5+Pi^5+Cosh[Pi]/6 3141529329198870 a007 Real Root Of 281*x^4-209*x^3-433*x^2-842*x-231 3141529332421911 k007 concat of cont frac of 3141529339961962 m004 -100*Pi+(5*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3141529340012060 m004 -(Sqrt[5]/(E^(Sqrt[5]*Pi)*Pi))+10*Pi 3141529340062158 m004 -100*Pi+(5*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3141529343934534 m005 (1/3*5^(1/2)-1/10)/(137/132+5/11*5^(1/2)) 3141529345557595 r009 Im(z^3+c),c=-19/36+21/53*I,n=31 3141529349471613 m001 (Magata+Porter)/(CopelandErdos-KomornikLoreti) 3141529351329686 r005 Im(z^2+c),c=4/9+5/54*I,n=3 3141529354321931 m002 Pi^3-Cosh[Pi]/(2*Pi^2)+Tanh[Pi] 3141529356269673 r005 Im(z^2+c),c=-39/34+28/115*I,n=56 3141529367675208 a003 cos(2/21*Pi)+2*cos(7/27*Pi)+2*cos(11/30*Pi) 3141529370008114 h001 (-4*exp(1/2)+7)/(-2*exp(2/3)-9) 3141529378013334 p001 sum((-1)^n/(448*n+313)/(24^n),n=0..infinity) 3141529388347540 m001 exp(sin(Pi/12))*Si(Pi)^2/sqrt(2) 3141529394747689 m005 (1/3*5^(1/2)-2/3)/(3/8*3^(1/2)-9/10) 3141529404215062 m005 (1/2*2^(1/2)-8/9)/(1/10*gamma-7/11) 3141529410365626 m001 ln(Zeta(7))/Magata/log(1+sqrt(2))^2 3141529415699901 m001 Artin-RenyiParking^GAMMA(17/24) 3141529424248778 r005 Re(z^2+c),c=21/74+9/19*I,n=18 3141529435405126 m001 exp(Riemann3rdZero)/Porter^2/OneNinth 3141529438060919 r009 Im(z^3+c),c=-17/86+51/59*I,n=34 3141529440714388 a001 7/144*28657^(2/11) 3141529443799203 r005 Im(z^2+c),c=-49/122+24/41*I,n=60 3141529455114356 k007 concat of cont frac of 3141529470749761 r005 Re(z^2+c),c=-19/50+18/61*I,n=33 3141529475193322 a007 Real Root Of 219*x^4+705*x^3-64*x^2-105*x+829 3141529475511121 k008 concat of cont frac of 3141529476474166 m005 (1/3*Pi+1/9)/(3*2^(1/2)-5/9) 3141529477413135 g002 Psi(5/12)+Psi(1/8)-Psi(11/12)-Psi(1/10) 3141529484784674 m002 Pi-Log[Pi]/(6*Pi^7) 3141529486504754 m001 (Porter+Totient)/(ln(5)-FeigenbaumAlpha) 3141529489877964 a003 -1/2-cos(7/15*Pi)-1/2*3^(1/2)-2*cos(5/27*Pi) 3141529515897621 m001 (LandauRamanujan+Robbin)/(ZetaP(2)+ZetaQ(4)) 3141529532585712 a007 Real Root Of -302*x^4-481*x^3-973*x^2+986*x-30 3141529535550895 r009 Im(z^3+c),c=-3/62+11/32*I,n=5 3141529543490419 m001 (ln(3)-arctan(1/2))/(GaussAGM+KhinchinLevy) 3141529545377250 m001 HeathBrownMoroz^(BesselK(0,1)*PrimesInBinary) 3141529552013499 r009 Im(z^3+c),c=-7/20+4/15*I,n=19 3141529552371860 m001 (3^(1/3)+Kac)/(GAMMA(3/4)-LambertW(1)) 3141529554010284 m002 -Pi+Pi^5*Csch[Pi]-E^Pi/Log[Pi] 3141529556732472 a007 Real Root Of 258*x^4+828*x^3+137*x^2+247*x-34 3141529573532790 m002 -4+2*Coth[Pi]-Coth[Pi]*Log[Pi] 3141529576314909 m005 (1/2*3^(1/2)+4/11)/(1/10*2^(1/2)+1/4) 3141529592717528 r009 Re(z^3+c),c=-23/52+9/23*I,n=7 3141529593860913 m001 log(1+sqrt(2))*Champernowne/exp(sqrt(Pi))^2 3141529600902961 m001 (Conway-PolyaRandomWalk3D)/(ln(5)+Backhouse) 3141529602750465 r005 Re(z^2+c),c=-39/118+22/47*I,n=45 3141529608633720 m001 HardyLittlewoodC4*(ln(5)-sin(1/5*Pi)) 3141529609328593 g001 abs(GAMMA(283/60+I*47/12)) 3141529612712928 p003 LerchPhi(1/2,4,163/216) 3141529620958174 r005 Im(z^2+c),c=-13/14+35/148*I,n=54 3141529628857727 m002 Pi^5+8/Log[Pi]+Log[Pi] 3141529629064799 m001 sin(Pi/5)*cosh(1)*exp(sqrt(Pi))^2 3141529650111805 m005 (1/3*3^(1/2)-1/7)/(11/12*5^(1/2)-2/3) 3141529655067547 r009 Re(z^3+c),c=-39/106+5/21*I,n=20 3141529658401116 r009 Im(z^3+c),c=-3/25+19/56*I,n=3 3141529660855750 r005 Im(z^2+c),c=-29/78+10/19*I,n=61 3141529662847789 m001 exp(1/exp(1))*(Riemann2ndZero+Sarnak) 3141529664045746 q001 879/2798 3141529665649645 m001 Trott/exp(ErdosBorwein)*Zeta(3)^2 3141529671879841 m001 exp(GAMMA(1/24))^2*MinimumGamma/GAMMA(11/12)^2 3141529717576179 r005 Re(z^2+c),c=-35/74+3/35*I,n=4 3141529719086505 r005 Re(z^2+c),c=-25/54+29/64*I,n=8 3141529738553798 a007 Real Root Of -181*x^4-260*x^3+818*x^2-505*x-91 3141529740654830 r005 Im(z^2+c),c=-19/30+50/107*I,n=7 3141529753744649 m001 exp(Robbin)^2*Bloch*sqrt(Pi) 3141529764022418 a001 5702887/1364*47^(11/21) 3141529789270595 m001 (gamma(1)+Riemann3rdZero)/(3^(1/3)-5^(1/2)) 3141529799426462 h001 (1/11*exp(1)+1/7)/(3/11*exp(1)+1/2) 3141529803378531 a001 123/5*17711^(1/40) 3141529805987506 r005 Im(z^2+c),c=-19/74+22/45*I,n=62 3141529810778990 m001 (exp(Pi)+2^(1/2))/(-cos(1/5*Pi)+Trott2nd) 3141529820058909 a007 Real Root Of 932*x^4-739*x^3-564*x^2-747*x-211 3141529828584376 m001 1/GAMMA(1/4)*TreeGrowth2nd^2*exp(sqrt(Pi)) 3141529835552461 r002 8th iterates of z^2 + 3141529838575786 b008 Pi-3*BesselJ[6,1] 3141529840891983 a007 Real Root Of -168*x^4+670*x^3+126*x^2+864*x-303 3141529852939863 b008 Pi-BesselK[2,9] 3141529862328434 a007 Real Root Of 363*x^4-278*x^3+709*x^2+115*x-46 3141529866462486 a007 Real Root Of 172*x^4-230*x^3+896*x^2-690*x-314 3141529869951205 m001 (ln(Pi)+BesselK(1,1))/(BesselI(1,2)-MertensB2) 3141529883050920 m001 (-Lehmer+Mills)/(BesselK(0,1)-exp(Pi)) 3141529891493704 a001 18/28657*196418^(7/53) 3141529892798828 m001 (3^(1/2)-Psi(2,1/3))/(-ln(2)+FeigenbaumAlpha) 3141529899547073 l006 ln(79/1828) 3141529904116780 m004 6+(5*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi]^2 3141529910030124 a001 3/1149851*199^(2/57) 3141529927702681 r009 Re(z^3+c),c=-27/64+16/49*I,n=35 3141529937594371 r005 Im(z^2+c),c=-19/106+21/46*I,n=50 3141529944838342 m002 -Pi+(5*Cosh[Pi])/Pi^12 3141529961160518 m001 (BesselK(0,1)-GAMMA(23/24))/(Lehmer+MertensB3) 3141529961727040 r008 a(0)=3,K{-n^6,-39-17*n^3+70*n^2-20*n} 3141529961747856 m001 (gamma(3)+Gompertz)/(Ei(1)-gamma(2)) 3141529969082363 a005 (1/sin(42/145*Pi))^112 3141529970052549 r005 Re(z^2+c),c=-37/90+2/13*I,n=9 3141529970184506 r005 Re(z^2+c),c=37/94+14/59*I,n=24 3141529973783088 r005 Im(z^2+c),c=9/50+8/31*I,n=24 3141529976786279 m008 (1/2*Pi^6-1/6)/(5*Pi^5-1/2) 3141529998658673 s002 sum(A008861[n]/(n^2*pi^n+1),n=1..infinity) 3141530000432038 a005 (1/cos(4/153*Pi))^339 3141530010179430 a007 Real Root Of 864*x^4-608*x^3+934*x^2-336*x-225 3141530016534858 h001 (-8*exp(-1)-1)/(-6*exp(3)-5) 3141530017417263 m001 (Zeta(3)+exp(-1/2*Pi))/(BesselJ(1,1)+ZetaQ(3)) 3141530037304912 a005 (1/sin(79/223*Pi))^180 3141530049026586 m001 StolarskyHarborth/(Artin^exp(1/Pi)) 3141530055210649 m005 (1/2*gamma+2/9)/(101/168+11/24*5^(1/2)) 3141530059530070 m001 (3^(1/3)-Ei(1,1))/(FeigenbaumMu+FellerTornier) 3141530083030316 m005 (1/2*Catalan+5/12)/(1/11*Catalan-1/9) 3141530085705692 m005 (1/3*Catalan+1/11)/(10/11*Catalan+3/7) 3141530092408671 h001 (-9*exp(-2)+3)/(-7*exp(2)-5) 3141530096818434 r005 Re(z^2+c),c=-19/26+4/99*I,n=8 3141530114132141 k006 concat of cont frac of 3141530115856471 m008 (5/6*Pi^3-4)/(1/4*Pi^3-4/5) 3141530128351543 m001 Pi*(1+gamma(2)*gamma(3)) 3141530129595921 m001 Pi/(1-gamma(2)*gamma(3)) 3141530130974314 h002 exp(11^(3/2)+15^(7/4)) 3141530130974314 h007 exp(11^(3/2)+15^(7/4)) 3141530136794556 r005 Re(z^2+c),c=-15/46+9/20*I,n=20 3141530158481156 m001 Bloch/(GaussKuzminWirsing^BesselI(1,2)) 3141530161286001 p003 LerchPhi(1/12,1,53/163) 3141530162931714 m002 -Pi+2/(Pi^9*ProductLog[Pi]) 3141530165543804 m004 -100*Pi+(Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/2 3141530165593249 m004 -100*Pi+(Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3141530165642693 m004 -100*Pi+(Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/2 3141530168381934 m001 (GAMMA(5/6)-GAMMA(17/24))/(Artin+Champernowne) 3141530178611788 m002 -Pi+(5*Sinh[Pi])/Pi^12 3141530180577175 r002 10th iterates of z^2 + 3141530184284008 m001 Pi-exp(-Pi)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141530184284008 m001 Pi-exp(-Pi)^GAMMA(7/24) 3141530185216437 m001 ln(LandauRamanujan)*Kolakoski^2/cos(1) 3141530191707438 m001 exp(1/2)-exp(gamma)^(1/2) 3141530196267098 a007 Real Root Of -270*x^4-737*x^3+601*x^2+638*x-479 3141530198624759 m001 (Niven-TwinPrimes)/(Cahen+FeigenbaumD) 3141530212157126 m002 4/Pi^2+Pi^3+Log[Pi]/Pi^5 3141530212867657 a001 1/6621*(1/2*5^(1/2)+1/2)^10*3^(11/23) 3141530222252194 a001 29/76*(1/2*5^(1/2)+1/2)^29*76^(5/11) 3141530229804523 m008 (4*Pi^6-3/5)/(4*Pi^5-1/6) 3141530247392485 m001 (gamma(2)+FeigenbaumB)/(Riemann3rdZero+Salem) 3141530252547877 r005 Im(z^2+c),c=-73/126+23/62*I,n=8 3141530255414496 a007 Real Root Of 281*x^4-994*x^3+156*x^2-710*x-272 3141530258306316 r005 Im(z^2+c),c=-53/110+26/49*I,n=24 3141530262173724 m001 (Mills+ZetaQ(2))/(GAMMA(19/24)-ErdosBorwein) 3141530264748391 a007 Real Root Of -374*x^4+525*x^3+729*x^2+934*x-378 3141530274178412 a007 Real Root Of -755*x^4+287*x^3+565*x^2+686*x+176 3141530276378175 a007 Real Root Of 209*x^4+875*x^3+829*x^2+421*x-87 3141530282725295 r005 Im(z^2+c),c=-47/122+10/19*I,n=55 3141530291064461 m001 (-Robbin+Totient)/(sin(1)+ln(2+3^(1/2))) 3141530291278015 r005 Re(z^2+c),c=-9/22+1/57*I,n=9 3141530292123099 b008 Pi-2*ExpIntegralE[3,8] 3141530294699517 m001 (BesselI(0,1)+ln(Pi))/(Lehmer+ZetaP(3)) 3141530299055847 b008 Pi+15*ExpIntegralEi[-10] 3141530302797352 m005 (1/2*5^(1/2)-7/11)/(26/33+1/3*5^(1/2)) 3141530332594437 r005 Im(z^2+c),c=-21/110+6/13*I,n=57 3141530346364602 r002 11th iterates of z^2 + 3141530353054402 r005 Re(z^2+c),c=-11/17+11/35*I,n=36 3141530355426042 m002 4+E^Pi+Log[Pi]+Pi*Tanh[Pi] 3141530365569519 m001 Sierpinski*FeigenbaumAlpha^2/exp(GAMMA(13/24)) 3141530368890378 a007 Real Root Of -245*x^4-107*x^3-748*x^2+898*x+355 3141530374670165 h005 exp(cos(Pi*1/53)/cos(Pi*7/43)) 3141530377911115 r005 Im(z^2+c),c=-5/23+26/55*I,n=60 3141530387576283 a001 1926/7*987^(1/52) 3141530404268872 m005 (1/2*2^(1/2)+1/7)/(-18/5+2/5*5^(1/2)) 3141530404323083 m001 (2^(1/2)-Cahen)/(-Riemann3rdZero+Weierstrass) 3141530414337864 m005 (23/66+1/6*5^(1/2))/(6/7*Catalan-5/9) 3141530416818903 b008 Pi+5*ExpIntegralEi[-9] 3141530421668430 r005 Re(z^2+c),c=3/58+40/47*I,n=4 3141530423514783 s002 sum(A184253[n]/(exp(n)+1),n=1..infinity) 3141530424849886 m001 (FeigenbaumMu+Sierpinski)/(BesselI(0,1)+ln(2)) 3141530425375253 a007 Real Root Of 208*x^4+574*x^3-444*x^2-438*x+543 3141530427551233 m001 GAMMA(5/24)^2*GAMMA(23/24)^2/ln(sqrt(5))^2 3141530432085875 r002 23th iterates of z^2 + 3141530473472039 r009 Im(z^3+c),c=-15/56+16/53*I,n=12 3141530491056945 r005 Im(z^2+c),c=-21/110+6/13*I,n=56 3141530498845365 r005 Im(z^2+c),c=9/32+9/56*I,n=19 3141530501202288 r005 Re(z^2+c),c=-11/36+31/54*I,n=47 3141530507567971 m004 -Pi+(25*Pi)/E^(2*Sqrt[5]*Pi) 3141530519514874 m001 exp(Cahen)^2/Backhouse^2*Tribonacci 3141530529039401 r009 Im(z^3+c),c=-29/54+20/61*I,n=23 3141530542301248 m005 (5/6*gamma-1/5)/(gamma-2/3) 3141530542301248 m007 (-5/6*gamma+1/5)/(-gamma+2/3) 3141530545659802 b008 Sqrt[3*Pi]+ArcCoth[14] 3141530550779987 a001 844/13*4181^(43/58) 3141530552018678 p004 log(21143/15443) 3141530562328533 m001 Si(Pi)*MertensB2+GAMMA(3/4) 3141530568135085 m005 (1/2*exp(1)-3/4)/(9/10*Zeta(3)+6/7) 3141530572257906 r009 Im(z^3+c),c=-43/110+26/43*I,n=24 3141530575341296 r005 Re(z^2+c),c=-10/27+29/62*I,n=16 3141530579695195 a003 cos(Pi*3/70)/cos(Pi*37/93) 3141530579818342 r005 Im(z^2+c),c=21/58+12/37*I,n=31 3141530598016152 r002 18th iterates of z^2 + 3141530601198844 r005 Im(z^2+c),c=-21/110+6/13*I,n=59 3141530607481981 m001 1/GAMMA(23/24)*exp(MinimumGamma)^2/gamma 3141530610373697 m002 -Pi+ProductLog[Pi]/(18*Pi^6) 3141530614817434 a007 Real Root Of -370*x^4+64*x^3+244*x^2+893*x-303 3141530620503754 r005 Re(z^2+c),c=-11/30+7/20*I,n=28 3141530621175849 a001 219602/305*2584^(3/16) 3141530632678272 m002 -Pi^2-Pi^5+Pi^7*Log[Pi] 3141530633131234 k006 concat of cont frac of 3141530633591775 a001 12238/305*12586269025^(3/16) 3141530635072455 r005 Im(z^2+c),c=1/60+21/58*I,n=18 3141530639127981 a001 51841/305*5702887^(3/16) 3141530645410035 r009 Re(z^3+c),c=-15/56+40/61*I,n=3 3141530656018169 m001 Pi-Robbin^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141530658016631 a007 Real Root Of 461*x^4-908*x^3-456*x^2-278*x+156 3141530660864132 m001 (Lehmer-Trott)/Si(Pi) 3141530676666082 r005 Re(z^2+c),c=-19/52+6/17*I,n=24 3141530681045052 m001 (LandauRamanujan+Otter)/(sin(1/5*Pi)+Gompertz) 3141530684785376 b008 -1/40*1/E^6+Pi 3141530697196558 r005 Re(z^2+c),c=17/44+11/36*I,n=24 3141530698859269 a007 Real Root Of 82*x^4-86*x^3-887*x^2+525*x-250 3141530699722888 r005 Re(z^2+c),c=-3/46+53/58*I,n=4 3141530701197513 m001 (TreeGrowth2nd+ZetaP(2))/(LambertW(1)-Magata) 3141530701274933 r005 Re(z^2+c),c=-43/106+7/51*I,n=16 3141530704376578 m001 (5^(1/2)+CareFree)/(-MertensB2+Paris) 3141530708572667 a007 Real Root Of 9*x^4+271*x^3-366*x^2+88*x+55 3141530715987714 m008 (4/5*Pi^3+4/5)/(1/4*Pi^5+5) 3141530726774408 a008 Real Root of x^2-x-98378 3141530727698598 r002 12th iterates of z^2 + 3141530741459127 r005 Re(z^2+c),c=7/44+25/54*I,n=41 3141530744491455 l006 ln(7372/10093) 3141530762532862 m002 Pi-Cosh[Pi]/(2*Pi^10) 3141530763734283 a001 1/17334*(1/2*5^(1/2)+1/2)^12*3^(11/23) 3141530773136258 m001 Khinchin+CopelandErdos^Landau 3141530775005976 m004 1000*Pi-Cos[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 3141530777240071 r005 Im(z^2+c),c=1/90+23/63*I,n=20 3141530790109673 a003 sin(Pi*4/119)/sin(Pi*11/101) 3141530796814547 m001 1/KhintchineLevy*Lehmer*ln(GAMMA(17/24))^2 3141530807308644 m001 (ln(Pi)+Ei(1,1))/(FeigenbaumAlpha+Tribonacci) 3141530812360846 m001 exp(1)^2/exp(Niven)^2/log(1+sqrt(2))^2 3141530844104656 a001 1/45381*(1/2*5^(1/2)+1/2)^14*3^(11/23) 3141530849200809 a007 Real Root Of -299*x^4-692*x^3+551*x^2-961*x-789 3141530854694077 a007 Real Root Of 163*x^4+413*x^3-272*x^2+411*x+904 3141530855830536 a001 1/118809*(1/2*5^(1/2)+1/2)^16*3^(11/23) 3141530858598641 a001 1/192237*(1/2*5^(1/2)+1/2)^17*3^(11/23) 3141530863077528 a001 1/73428*(1/2*5^(1/2)+1/2)^15*3^(11/23) 3141530863810694 m001 BesselI(1,2)/(log(gamma)+exp(-Pi)) 3141530867820861 r005 Im(z^2+c),c=-41/110+31/59*I,n=50 3141530877895434 m002 -E^Pi/(4*Pi^10)+Pi 3141530879473417 a008 Real Root of x^4-19*x^2-22*x+21 3141530879845578 r002 5th iterates of z^2 + 3141530883276395 l006 ln(7139/9774) 3141530889891125 h001 (5/7*exp(2)+2/3)/(3/7*exp(1)+8/11) 3141530893776281 a001 1/28047*(1/2*5^(1/2)+1/2)^13*3^(11/23) 3141530907415395 r005 Im(z^2+c),c=-21/110+6/13*I,n=62 3141530930917137 m001 exp(GAMMA(17/24))^2*Sierpinski/Zeta(5)^2 3141530947032347 m001 HardHexagonsEntropy-sin(1)*GAMMA(17/24) 3141530947167205 r005 Im(z^2+c),c=-3/13+11/23*I,n=48 3141530947673975 a007 Real Root Of 234*x^4+400*x^3-749*x^2+884*x-221 3141530948687749 b008 -1/2*1/E^9+Pi 3141530950027840 a003 sin(Pi*6/53)/cos(Pi*46/99) 3141530965271366 m001 HeathBrownMoroz^MinimumGamma-Pi 3141530988280744 m008 (1/2*Pi^6+1/5)/(5*Pi^5+2/3) 3141530989234472 r002 12th iterates of z^2 + 3141530993258005 m002 Pi-Sinh[Pi]/(2*Pi^10) 3141530995077886 r002 4th iterates of z^2 + 3141530996670324 a007 Real Root Of -32*x^4-989*x^3+487*x^2-766*x+365 3141531019327098 a007 Real Root Of 383*x^4+870*x^3-866*x^2+326*x-760 3141531031426202 l006 ln(6906/9455) 3141531033916131 k007 concat of cont frac of 3141531046484999 h001 (1/8*exp(2)+5/6)/(2/3*exp(2)+2/3) 3141531046645787 r005 Re(z^2+c),c=-11/42+27/46*I,n=57 3141531050970183 m001 GAMMA(17/24)*(Catalan+GAMMA(7/12)) 3141531060922325 m001 BesselI(0,2)^BesselI(1,2)-LambertW(1) 3141531061192002 a007 Real Root Of -387*x^4-921*x^3+821*x^2-492*x-509 3141531071051521 k008 concat of cont frac of 3141531091211311 k007 concat of cont frac of 3141531092171312 k008 concat of cont frac of 3141531094537613 a001 123/514229*144^(53/54) 3141531097552983 m008 (1/4*Pi^3+1/6)/(4/5*Pi^3+2/5) 3141531098063060 r005 Re(z^2+c),c=-2/3+80/247*I,n=11 3141531104188677 a001 1/10713*(1/2*5^(1/2)+1/2)^11*3^(11/23) 3141531110721782 k006 concat of cont frac of 3141531111111411 k007 concat of cont frac of 3141531111131181 k007 concat of cont frac of 3141531111131218 k006 concat of cont frac of 3141531111155213 k007 concat of cont frac of 3141531111272118 k008 concat of cont frac of 3141531111313031 k007 concat of cont frac of 3141531111412216 k007 concat of cont frac of 3141531112012811 k006 concat of cont frac of 3141531112111131 k006 concat of cont frac of 3141531112131201 k006 concat of cont frac of 3141531113233161 k006 concat of cont frac of 3141531115212112 k006 concat of cont frac of 3141531116421111 k007 concat of cont frac of 3141531117492014 a007 Real Root Of -424*x^4-973*x^3+822*x^2-893*x+213 3141531119834381 b008 Pi*Haversine[22] 3141531121532323 k007 concat of cont frac of 3141531122372413 k006 concat of cont frac of 3141531124171131 k008 concat of cont frac of 3141531124612311 k007 concat of cont frac of 3141531126211111 k006 concat of cont frac of 3141531131121148 k006 concat of cont frac of 3141531131145511 k007 concat of cont frac of 3141531131423171 k006 concat of cont frac of 3141531140425202 b008 Pi*ModularLambda[(3*I)/13] 3141531141227123 k006 concat of cont frac of 3141531150500985 m001 (sin(1)+cos(1))/(BesselI(1,2)+FransenRobinson) 3141531157823121 m005 (1/2*Zeta(3)+5/12)/(2/11*exp(1)-9/11) 3141531165927027 r005 Im(z^2+c),c=-31/82+21/40*I,n=42 3141531167968581 a007 Real Root Of 664*x^4-639*x^3+364*x^2-671*x-273 3141531168314184 k007 concat of cont frac of 3141531171122121 k007 concat of cont frac of 3141531179051241 a007 Real Root Of 880*x^4+591*x^3-117*x^2-975*x-285 3141531180962217 m001 Zeta(5)/exp(LaplaceLimit)*sin(Pi/5) 3141531183142222 k006 concat of cont frac of 3141531186851204 m001 (LaplaceLimit-Niven)/(ln(gamma)+ln(2^(1/2)+1)) 3141531189921141 k007 concat of cont frac of 3141531189921849 l006 ln(6673/9136) 3141531191343103 a007 Real Root Of 141*x^4+468*x^3+198*x^2+174*x-631 3141531200757958 r005 Im(z^2+c),c=-11/122+22/53*I,n=13 3141531202614228 k007 concat of cont frac of 3141531205213221 k007 concat of cont frac of 3141531211111111 k006 concat of cont frac of 3141531211466259 b008 -10/E^12+Pi 3141531212141238 k008 concat of cont frac of 3141531212216153 k007 concat of cont frac of 3141531213171111 k006 concat of cont frac of 3141531213514134 k006 concat of cont frac of 3141531216222103 k008 concat of cont frac of 3141531217111122 k008 concat of cont frac of 3141531221212159 k006 concat of cont frac of 3141531221462002 r005 Re(z^2+c),c=-37/90+4/59*I,n=28 3141531221634132 k006 concat of cont frac of 3141531222515222 k009 concat of cont frac of 3141531228455859 m005 (1/2*2^(1/2)+2/9)/(3/10*5^(1/2)-3/8) 3141531233421121 k008 concat of cont frac of 3141531241933642 r009 Im(z^3+c),c=-13/25+11/63*I,n=24 3141531243538833 m003 -3/2+(19*Sqrt[5])/32+3*Cot[1/2+Sqrt[5]/2] 3141531246475132 r005 Im(z^2+c),c=-21/110+6/13*I,n=60 3141531253907495 r009 Im(z^3+c),c=-4/21+1/36*I,n=4 3141531260906944 r009 Re(z^3+c),c=-51/106+26/55*I,n=11 3141531261845127 m005 (1/2*Zeta(3)-9/11)/(6*Zeta(3)-3/10) 3141531263241212 k007 concat of cont frac of 3141531264479734 a001 123*(1/2*5^(1/2)+1/2)^12*11^(19/22) 3141531274893268 m005 (1/2*Zeta(3)+3/7)/(9/10*Catalan-6/7) 3141531276424016 m006 (5/6*Pi^2+3/4)/(1/6*exp(Pi)-1) 3141531281115114 k007 concat of cont frac of 3141531284104134 m001 (ln(gamma)-arctan(1/3))/(Mills+Porter) 3141531285006891 m001 (StronglyCareFree+ZetaQ(4))/(exp(Pi)+ln(5)) 3141531288393738 r005 Re(z^2+c),c=-33/106+13/25*I,n=57 3141531288750617 r005 Im(z^2+c),c=-15/23+3/35*I,n=4 3141531291221211 k006 concat of cont frac of 3141531292113425 k009 concat of cont frac of 3141531295800369 r005 Im(z^2+c),c=-6/19+29/38*I,n=3 3141531300002184 m005 (1/2*3^(1/2)+4/7)/(3/10*Zeta(3)-9/11) 3141531311511144 k006 concat of cont frac of 3141531313111711 k009 concat of cont frac of 3141531315663947 r009 Im(z^3+c),c=-31/66+7/39*I,n=57 3141531316388658 m006 (1/5/Pi-1/3)/(Pi-4) 3141531319271151 r005 Re(z^2+c),c=-43/106+7/50*I,n=15 3141531322505800 q001 677/2155 3141531331659520 m001 StolarskyHarborth*ZetaR(2)^Niven 3141531332131305 k006 concat of cont frac of 3141531335378960 a005 (1/cos(7/180*Pi))^153 3141531340249554 b008 3*LogGamma[4*Pi^2] 3141531342535914 m002 3/Pi^2+Tanh[Pi]^2/Pi^4 3141531344893214 m001 cos(1)*exp(FibonacciFactorial)^2*sqrt(5)^2 3141531349897179 m005 (27/28+1/4*5^(1/2))/(3/5*2^(1/2)-4/11) 3141531352451507 r005 Re(z^2+c),c=29/118+19/37*I,n=11 3141531354123111 k009 concat of cont frac of 3141531354131214 k007 concat of cont frac of 3141531359132544 r002 26th iterates of z^2 + 3141531359886277 l006 ln(6440/8817) 3141531360595519 r005 Im(z^2+c),c=7/22+6/55*I,n=63 3141531364755285 a001 24476/47*(1/2*5^(1/2)+1/2)^32*47^(1/18) 3141531368132798 a007 Real Root Of 254*x^4+676*x^3-432*x^2-131*x+71 3141531369234174 a001 64079/47*(1/2*5^(1/2)+1/2)^30*47^(1/18) 3141531371533231 k006 concat of cont frac of 3141531372002279 a001 39603/47*(1/2*5^(1/2)+1/2)^31*47^(1/18) 3141531379671092 r005 Im(z^2+c),c=-21/110+6/13*I,n=53 3141531380828232 r005 Im(z^2+c),c=9/86+17/58*I,n=3 3141531411132111 k009 concat of cont frac of 3141531411257515 r005 Re(z^2+c),c=-17/62+31/57*I,n=29 3141531413143113 k008 concat of cont frac of 3141531421311311 k007 concat of cont frac of 3141531422114112 k006 concat of cont frac of 3141531422121121 k009 concat of cont frac of 3141531423350792 l006 ln(359/8307) 3141531425236629 m001 arctan(1/3)^gamma/Zeta(1,-1) 3141531428603248 r005 Re(z^2+c),c=7/122+2/13*I,n=17 3141531437223526 r005 Re(z^2+c),c=-19/50+18/61*I,n=35 3141531445154421 k007 concat of cont frac of 3141531449349673 r005 Im(z^2+c),c=-41/62+1/17*I,n=60 3141531455688410 r005 Re(z^2+c),c=19/48+12/35*I,n=24 3141531468281641 m001 FeigenbaumD*Tribonacci^sin(1/12*Pi) 3141531469447298 m001 (Zeta(5)-GAMMA(23/24))/(Champernowne+Magata) 3141531481615107 r005 Re(z^2+c),c=7/122+2/13*I,n=18 3141531493021291 r005 Re(z^2+c),c=7/122+2/13*I,n=21 3141531493131566 r005 Re(z^2+c),c=7/122+2/13*I,n=22 3141531493405140 r005 Re(z^2+c),c=7/122+2/13*I,n=26 3141531493407585 r005 Re(z^2+c),c=7/122+2/13*I,n=27 3141531493408314 r005 Re(z^2+c),c=7/122+2/13*I,n=31 3141531493408314 r005 Re(z^2+c),c=7/122+2/13*I,n=30 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=32 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=35 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=36 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=40 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=39 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=41 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=44 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=45 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=49 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=48 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=50 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=53 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=54 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=58 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=59 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=62 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=63 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=64 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=61 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=60 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=57 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=55 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=56 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=52 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=51 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=47 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=46 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=43 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=42 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=38 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=37 3141531493408329 r005 Re(z^2+c),c=7/122+2/13*I,n=34 3141531493408331 r005 Re(z^2+c),c=7/122+2/13*I,n=33 3141531493408445 r005 Re(z^2+c),c=7/122+2/13*I,n=29 3141531493408592 r005 Re(z^2+c),c=7/122+2/13*I,n=28 3141531493411402 r005 Re(z^2+c),c=7/122+2/13*I,n=25 3141531493416799 r005 Re(z^2+c),c=7/122+2/13*I,n=23 3141531493440319 r005 Re(z^2+c),c=7/122+2/13*I,n=24 3141531495449879 r005 Re(z^2+c),c=7/122+2/13*I,n=20 3141531499167848 r005 Re(z^2+c),c=7/122+2/13*I,n=19 3141531502850431 r005 Im(z^2+c),c=1/36+21/59*I,n=28 3141531503448500 r005 Re(z^2+c),c=-61/90+27/56*I,n=9 3141531506205888 a007 Real Root Of 809*x^4-581*x^3-860*x^2-783*x-187 3141531512314113 k008 concat of cont frac of 3141531515803837 m002 -Pi+(5*Csch[Pi])/(E^Pi*Pi^5) 3141531521181314 k006 concat of cont frac of 3141531521631537 k009 concat of cont frac of 3141531522371992 k007 concat of cont frac of 3141531526070384 r005 Re(z^2+c),c=7/122+2/13*I,n=16 3141531528042726 r005 Im(z^2+c),c=-21/110+6/13*I,n=63 3141531533161111 k006 concat of cont frac of 3141531534862991 m002 -Pi+(5*Log[Pi])/Pi^10 3141531542611041 l006 ln(6207/8498) 3141531558694269 m001 (Psi(2,1/3)+MertensB1)/(Mills+TreeGrowth2nd) 3141531568051185 m001 (GAMMA(23/24)+MertensB3)/(Stephens+ZetaP(3)) 3141531576989376 r005 Re(z^2+c),c=7/102+23/39*I,n=13 3141531577877374 b008 3*Pi^2+ProductLog[11] 3141531579474999 m001 (-DuboisRaymond+Kolakoski)/(1-cos(1/5*Pi)) 3141531598325246 a007 Real Root Of 156*x^4+538*x^3-40*x^2-781*x-573 3141531605433235 r005 Re(z^2+c),c=-49/122+5/29*I,n=25 3141531606342559 a007 Real Root Of -74*x^4-82*x^3+549*x^2+324*x+265 3141531612155712 k008 concat of cont frac of 3141531630493647 r002 5th iterates of z^2 + 3141531633479459 p003 LerchPhi(1/3,3,352/233) 3141531655602042 b008 27*Hyperfactorial[-1/3] 3141531658302384 r005 Im(z^2+c),c=5/24+14/59*I,n=10 3141531661866737 m001 exp(-1/2*Pi)^(Gompertz/cos(1/5*Pi)) 3141531665326023 r009 Im(z^3+c),c=-59/126+8/55*I,n=10 3141531666552516 s002 sum(A034151[n]/(n^3*10^n+1),n=1..infinity) 3141531666960710 m005 (1+1/4*5^(1/2))/(-63/220+7/20*5^(1/2)) 3141531668260193 s002 sum(A034151[n]/(n^3*10^n-1),n=1..infinity) 3141531686377268 a007 Real Root Of 53*x^4-715*x^3+600*x^2-492*x+117 3141531702626478 m001 1/Rabbit^2*exp(MinimumGamma)^2/Trott^2 3141531709771140 s002 sum(A011875[n]/(n^3*10^n+1),n=1..infinity) 3141531711121032 k006 concat of cont frac of 3141531711478818 s002 sum(A011875[n]/(n^3*10^n-1),n=1..infinity) 3141531712121321 k006 concat of cont frac of 3141531713222211 k009 concat of cont frac of 3141531725312623 k007 concat of cont frac of 3141531726050606 r009 Im(z^3+c),c=-17/60+8/27*I,n=11 3141531729240158 r005 Im(z^2+c),c=-21/110+6/13*I,n=64 3141531732736174 r005 Re(z^2+c),c=-23/70+26/55*I,n=56 3141531735308191 a009 12^(3/4)*(20+14^(1/2))^(1/2) 3141531739589189 l006 ln(5974/8179) 3141531743720843 m002 -Pi+(5*Sech[Pi])/(E^Pi*Pi^5) 3141531747632764 r005 Im(z^2+c),c=-3/10+11/21*I,n=18 3141531765162325 m001 Zeta(1/2)+gamma(3)+Pi^(1/2) 3141531768332126 r002 6th iterates of z^2 + 3141531774461132 b008 Sqrt[3]*Cosh[Zeta[3]] 3141531774695585 a007 Real Root Of -285*x^4-681*x^3+941*x^2+774*x-210 3141531783944735 r009 Im(z^3+c),c=-51/106+11/64*I,n=25 3141531787692797 r002 3th iterates of z^2 + 3141531803988861 a001 29/13*6765^(23/41) 3141531804250965 a007 Real Root Of -708*x^4+645*x^3+913*x^2+706*x-325 3141531821771216 k007 concat of cont frac of 3141531824331113 k008 concat of cont frac of 3141531827142916 r005 Im(z^2+c),c=-1/8+16/37*I,n=40 3141531831028330 m001 (1+Ei(1))/(sin(1/12*Pi)+LaplaceLimit) 3141531853280707 l006 ln(280/6479) 3141531859943481 b008 3+21*ExpIntegralEi[12] 3141531861458756 b008 -1/15*1/E^7+Pi 3141531866786748 a007 Real Root Of -772*x^4+816*x^3-569*x^2+242*x+165 3141531874953495 m001 (GAMMA(3/4)+ln(5))/(GAMMA(23/24)-Champernowne) 3141531891152322 m005 (1/2*Pi-1/9)/(1/7*Zeta(3)-7/11) 3141531894383000 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(5*Pi^5) 3141531894607735 r005 Re(z^2+c),c=7/122+2/13*I,n=14 3141531898728461 r002 9th iterates of z^2 + 3141531900303595 r009 Re(z^3+c),c=-45/118+6/23*I,n=22 3141531901523223 a007 Real Root Of -51*x^4+874*x^3+517*x^2+189*x-137 3141531911631101 k008 concat of cont frac of 3141531912146881 a007 Real Root Of 124*x^4+259*x^3-20*x^2+998*x-715 3141531912225314 k007 concat of cont frac of 3141531912369386 g001 abs(GAMMA(13/5+I*149/30)) 3141531920242122 k007 concat of cont frac of 3141531947886969 m001 Pi-ZetaP(3)^(2*Pi/GAMMA(5/6)) 3141531949158842 m001 (Khinchin+Totient)/(ln(3)-FibonacciFactorial) 3141531952556154 l006 ln(5741/7860) 3141531953464334 r002 3th iterates of z^2 + 3141531975808850 a003 -3^(1/2)+cos(3/8*Pi)-cos(1/12*Pi)-cos(4/21*Pi) 3141531989924032 a007 Real Root Of 848*x^4-841*x^3+128*x^2-398*x-172 3141531993350169 r009 Re(z^3+c),c=-47/78+11/36*I,n=39 3141532001217199 a007 Real Root Of -102*x^4-364*x^3-350*x^2-442*x+715 3141532002148445 a007 Real Root Of -83*x^4-24*x^3+535*x^2-397*x+813 3141532015039157 r005 Im(z^2+c),c=17/54+5/39*I,n=15 3141532024557092 m001 (3^(1/2)-GlaisherKinkelin)/(MertensB3+Paris) 3141532039105396 a007 Real Root Of -941*x^4+805*x^3-627*x^2+678*x+309 3141532039517520 a001 4/701408733*24157817^(21/23) 3141532056099092 p004 log(17609/761) 3141532063377426 a001 1149851/1597*2584^(3/16) 3141532068427688 r002 18th iterates of z^2 + 3141532071044172 s002 sum(A195317[n]/(n^2*exp(n)-1),n=1..infinity) 3141532076252583 r005 Re(z^2+c),c=13/60+15/37*I,n=43 3141532078394042 r005 Re(z^2+c),c=4/13+1/12*I,n=18 3141532080258337 a001 64079/1597*12586269025^(3/16) 3141532081066056 a001 271443/1597*5702887^(3/16) 3141532095937533 m005 (1/2*5^(1/2)+7/10)/(gamma-4/7) 3141532097928509 r002 35th iterates of z^2 + 3141532100622517 a007 Real Root Of 231*x^4+627*x^3-485*x^2-287*x+825 3141532110089991 r005 Re(z^2+c),c=7/122+2/13*I,n=15 3141532110876793 r005 Im(z^2+c),c=-17/56+15/29*I,n=27 3141532112131245 k006 concat of cont frac of 3141532112133113 k009 concat of cont frac of 3141532113121271 k006 concat of cont frac of 3141532113332962 m008 (4*Pi^5+1/2)/(4*Pi^4+1/6) 3141532114121182 k007 concat of cont frac of 3141532116211162 k007 concat of cont frac of 3141532120888692 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(5*Pi^5) 3141532121819134 k009 concat of cont frac of 3141532125671407 r005 Im(z^2+c),c=-39/34+29/119*I,n=14 3141532131161131 k007 concat of cont frac of 3141532132431427 r005 Im(z^2+c),c=19/118+17/31*I,n=18 3141532133241801 k007 concat of cont frac of 3141532135618112 k007 concat of cont frac of 3141532136116078 r005 Re(z^2+c),c=-11/16+31/101*I,n=58 3141532142216151 k007 concat of cont frac of 3141532144112921 k008 concat of cont frac of 3141532152112161 k009 concat of cont frac of 3141532153508878 m001 (exp(Pi)+3^(1/3))/(-BesselI(1,1)+Cahen) 3141532164642838 s002 sum(A034152[n]/(n^3*10^n+1),n=1..infinity) 3141532166350515 s002 sum(A034152[n]/(n^3*10^n-1),n=1..infinity) 3141532170714049 r009 Im(z^3+c),c=-31/102+17/59*I,n=15 3141532172357459 r005 Re(z^2+c),c=-1/82+27/37*I,n=12 3141532176658354 m001 FeigenbaumAlpha/arctan(1/2)*LandauRamanujan2nd 3141532181719596 r005 Im(z^2+c),c=-21/110+6/13*I,n=61 3141532183541015 l006 ln(5508/7541) 3141532188069746 b008 Pi-Erfc[E]/2 3141532188660972 m001 (Zeta(3)+Conway)/(FellerTornier+Weierstrass) 3141532189300961 a007 Real Root Of 159*x^4+315*x^3-408*x^2+585*x+144 3141532191167240 k007 concat of cont frac of 3141532204583576 s002 sum(A034153[n]/(n^3*10^n+1),n=1..infinity) 3141532204882864 s002 sum(A257594[n]/(n^3*10^n+1),n=1..infinity) 3141532206291253 s002 sum(A034153[n]/(n^3*10^n-1),n=1..infinity) 3141532206590541 s002 sum(A257594[n]/(n^3*10^n-1),n=1..infinity) 3141532207835297 s002 sum(A034154[n]/(n^3*10^n+1),n=1..infinity) 3141532208103553 s002 sum(A034155[n]/(n^3*10^n+1),n=1..infinity) 3141532208125942 s002 sum(A034156[n]/(n^3*10^n+1),n=1..infinity) 3141532208127830 s002 sum(A034157[n]/(n^3*10^n+1),n=1..infinity) 3141532208127991 s002 sum(A034158[n]/(n^3*10^n+1),n=1..infinity) 3141532208128005 s002 sum(A034159[n]/(n^3*10^n+1),n=1..infinity) 3141532208128006 s002 sum(A034160[n]/(n^3*10^n+1),n=1..infinity) 3141532208128006 s002 sum(A034161[n]/(n^3*10^n+1),n=1..infinity) 3141532208128006 s002 sum(A034162[n]/(n^3*10^n+1),n=1..infinity) 3141532208128006 s002 sum(A034163[n]/(n^3*10^n+1),n=1..infinity) 3141532208128006 s002 sum(A034092[n]/(n^3*10^n+1),n=1..infinity) 3141532209542974 s002 sum(A034154[n]/(n^3*10^n-1),n=1..infinity) 3141532209811231 s002 sum(A034155[n]/(n^3*10^n-1),n=1..infinity) 3141532209833620 s002 sum(A034156[n]/(n^3*10^n-1),n=1..infinity) 3141532209835508 s002 sum(A034157[n]/(n^3*10^n-1),n=1..infinity) 3141532209835668 s002 sum(A034158[n]/(n^3*10^n-1),n=1..infinity) 3141532209835682 s002 sum(A034159[n]/(n^3*10^n-1),n=1..infinity) 3141532209835683 s002 sum(A034160[n]/(n^3*10^n-1),n=1..infinity) 3141532209835683 s002 sum(A034161[n]/(n^3*10^n-1),n=1..infinity) 3141532209835683 s002 sum(A034162[n]/(n^3*10^n-1),n=1..infinity) 3141532209835683 s002 sum(A034163[n]/(n^3*10^n-1),n=1..infinity) 3141532209835683 s002 sum(A034092[n]/(n^3*10^n-1),n=1..infinity) 3141532212141221 k006 concat of cont frac of 3141532212812111 k006 concat of cont frac of 3141532213998326 r005 Re(z^2+c),c=17/54+2/15*I,n=9 3141532214112558 k007 concat of cont frac of 3141532221411123 k007 concat of cont frac of 3141532222515861 k007 concat of cont frac of 3141532232949754 r002 28th iterates of z^2 + 3141532245432425 r004 Im(z^2+c),c=-51/46+3/11*I,z(0)=-1,n=18 3141532251031831 a007 Real Root Of 739*x^4-671*x^3-714*x^2-977*x+391 3141532258206109 a007 Real Root Of 821*x^4+132*x^3-697*x^2-749*x+292 3141532273791911 a001 3010349/4181*2584^(3/16) 3141532285747014 s001 sum(exp(-Pi)^(n-1)*A049626[n],n=1..infinity) 3141532289283657 r005 Im(z^2+c),c=-37/66+3/53*I,n=61 3141532291016398 a007 Real Root Of -188*x^4-303*x^3+682*x^2-398*x+936 3141532291324255 a001 167761/4181*12586269025^(3/16) 3141532291442097 a001 710647/4181*5702887^(3/16) 3141532293563510 m008 (2*Pi^2-1/4)/(1/5*Pi^5+5/6) 3141532299876211 r005 Im(z^2+c),c=-1/78+17/45*I,n=26 3141532304490973 a001 3940598/5473*2584^(3/16) 3141532307552468 a003 cos(Pi*1/41)/sin(Pi*11/107) 3141532308969905 a001 20633239/28657*2584^(3/16) 3141532308997931 m002 4+Pi^5+Log[Pi]+3*Tanh[Pi] 3141532309502727 r005 Im(z^2+c),c=33/106+5/41*I,n=31 3141532309623373 a001 54018521/75025*2584^(3/16) 3141532309718712 a001 70711162/98209*2584^(3/16) 3141532309732622 a001 370248451/514229*2584^(3/16) 3141532309734652 a001 969323029/1346269*2584^(3/16) 3141532309734948 a001 1268860318/1762289*2584^(3/16) 3141532309734991 a001 6643838879/9227465*2584^(3/16) 3141532309734997 a001 17393796001/24157817*2584^(3/16) 3141532309734998 a001 22768774562/31622993*2584^(3/16) 3141532309734998 a001 119218851371/165580141*2584^(3/16) 3141532309734998 a001 312119004989/433494437*2584^(3/16) 3141532309734998 a001 408569081798/567451585*2584^(3/16) 3141532309734998 a001 2139295485799/2971215073*2584^(3/16) 3141532309734998 a001 5600748293801/7778742049*2584^(3/16) 3141532309734998 a001 7331474697802/10182505537*2584^(3/16) 3141532309734998 a001 23725150497407/32951280099*2584^(3/16) 3141532309734998 a001 9062201101803/12586269025*2584^(3/16) 3141532309734998 a001 10749853441/14930208*2584^(3/16) 3141532309734998 a001 1322157322203/1836311903*2584^(3/16) 3141532309734998 a001 505019158607/701408733*2584^(3/16) 3141532309734998 a001 96450076809/133957148*2584^(3/16) 3141532309734999 a001 10525900321/14619165*2584^(3/16) 3141532309734999 a001 28143753123/39088169*2584^(3/16) 3141532309735001 a001 5374978561/7465176*2584^(3/16) 3141532309735018 a001 4106118243/5702887*2584^(3/16) 3141532309735131 a001 224056801/311187*2584^(3/16) 3141532309735906 a001 299537289/416020*2584^(3/16) 3141532309741219 a001 228826127/317811*2584^(3/16) 3141532309777636 a001 87403803/121393*2584^(3/16) 3141532310027238 a001 103681/144*2584^(3/16) 3141532311319311 k006 concat of cont frac of 3141532311738038 a001 12752043/17711*2584^(3/16) 3141532313874395 r005 Im(z^2+c),c=-39/34+28/115*I,n=50 3141532318244565 m001 GaussAGM(1,1/sqrt(2))^exp(sqrt(2))/ln(5) 3141532320223516 s001 sum(exp(-Pi/2)^n*A252262[n],n=1..infinity) 3141532321411171 k007 concat of cont frac of 3141532322118360 a001 219602/5473*12586269025^(3/16) 3141532322135550 a001 930249/5473*5702887^(3/16) 3141532323464037 a001 4870847/6765*2584^(3/16) 3141532325446291 b008 (E*SinIntegral[Pi/9])/3 3141532326611159 a001 1149851/28657*12586269025^(3/16) 3141532326613664 a001 4870847/28657*5702887^(3/16) 3141532327266650 a001 3010349/75025*12586269025^(3/16) 3141532327267012 a001 12752043/75025*5702887^(3/16) 3141532327362285 a001 3940598/98209*12586269025^(3/16) 3141532327362335 a001 16692641/98209*5702887^(3/16) 3141532327376238 a001 20633239/514229*12586269025^(3/16) 3141532327376242 a001 87403803/514229*5702887^(3/16) 3141532327378271 a001 228826127/1346269*5702887^(3/16) 3141532327378273 a001 54018521/1346269*12586269025^(3/16) 3141532327378567 a001 299537289/1762289*5702887^(3/16) 3141532327378570 a001 70711162/1762289*12586269025^(3/16) 3141532327378610 a001 1568397607/9227465*5702887^(3/16) 3141532327378614 a001 370248451/9227465*12586269025^(3/16) 3141532327378616 a001 4106118243/24157817*5702887^(3/16) 3141532327378617 a001 5374978561/31622993*5702887^(3/16) 3141532327378617 a001 28143753123/165580141*5702887^(3/16) 3141532327378617 a001 73681302247/433494437*5702887^(3/16) 3141532327378618 a001 96450076809/567451585*5702887^(3/16) 3141532327378618 a001 505019158607/2971215073*5702887^(3/16) 3141532327378618 a001 1322157322203/7778742049*5702887^(3/16) 3141532327378618 a001 1730726404001/10182505537*5702887^(3/16) 3141532327378618 a001 9062201101803/53316291173*5702887^(3/16) 3141532327378618 a001 23725150497407/139583862445*5702887^(3/16) 3141532327378618 a001 192933544679/1135099622*5702887^(3/16) 3141532327378618 a001 5600748293801/32951280099*5702887^(3/16) 3141532327378618 a001 2139295485799/12586269025*5702887^(3/16) 3141532327378618 a001 204284540899/1201881744*5702887^(3/16) 3141532327378618 a001 312119004989/1836311903*5702887^(3/16) 3141532327378618 a001 119218851371/701408733*5702887^(3/16) 3141532327378618 a001 11384387281/66978574*5702887^(3/16) 3141532327378618 a001 17393796001/102334155*5702887^(3/16) 3141532327378618 a001 6643838879/39088169*5702887^(3/16) 3141532327378620 a001 969323029/24157817*12586269025^(3/16) 3141532327378620 a001 33391061/196452*5702887^(3/16) 3141532327378621 a001 1268860318/31622993*12586269025^(3/16) 3141532327378621 a001 6643838879/165580141*12586269025^(3/16) 3141532327378621 a001 17393796001/433494437*12586269025^(3/16) 3141532327378621 a001 22768774562/567451585*12586269025^(3/16) 3141532327378621 a001 119218851371/2971215073*12586269025^(3/16) 3141532327378621 a001 312119004989/7778742049*12586269025^(3/16) 3141532327378621 a001 408569081798/10182505537*12586269025^(3/16) 3141532327378621 a001 2139295485799/53316291173*12586269025^(3/16) 3141532327378621 a001 5600748293801/139583862445*12586269025^(3/16) 3141532327378621 a001 7331474697802/182717648081*12586269025^(3/16) 3141532327378621 a001 23725150497407/591286729879*12586269025^(3/16) 3141532327378621 a001 3020733700601/75283811239*12586269025^(3/16) 3141532327378621 a001 1730726404001/43133785636*12586269025^(3/16) 3141532327378621 a001 440719107401/10983760033*12586269025^(3/16) 3141532327378621 a001 505019158607/12586269025*12586269025^(3/16) 3141532327378621 a001 10716675201/267084832*12586269025^(3/16) 3141532327378621 a001 73681302247/1836311903*12586269025^(3/16) 3141532327378621 a001 9381251041/233802911*12586269025^(3/16) 3141532327378621 a001 5374978561/133957148*12586269025^(3/16) 3141532327378621 a001 1368706081/34111385*12586269025^(3/16) 3141532327378622 a001 1568397607/39088169*12586269025^(3/16) 3141532327378624 a001 33281921/829464*12586269025^(3/16) 3141532327378637 a001 969323029/5702887*5702887^(3/16) 3141532327378641 a001 228826127/5702887*12586269025^(3/16) 3141532327378750 a001 370248451/2178309*5702887^(3/16) 3141532327378754 a001 29134601/726103*12586269025^(3/16) 3141532327379525 a001 35355581/208010*5702887^(3/16) 3141532327379532 a001 16692641/416020*12586269025^(3/16) 3141532327384837 a001 54018521/317811*5702887^(3/16) 3141532327384861 a001 4250681/105937*12586269025^(3/16) 3141532327421247 a001 20633239/121393*5702887^(3/16) 3141532327421390 a001 4870847/121393*12586269025^(3/16) 3141532327670804 a001 1970299/11592*5702887^(3/16) 3141532327671765 a001 103361/2576*12586269025^(3/16) 3141532329381291 a001 3010349/17711*5702887^(3/16) 3141532329387862 a001 710647/17711*12586269025^(3/16) 3141532330846945 m001 (-Rabbit+ZetaQ(4))/(1-GAMMA(3/4)) 3141532331824289 m002 Pi-Log[Pi]/(2*Pi^8) 3141532335590654 m004 -100*Pi+(5*Sec[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141532340704384 r005 Im(z^2+c),c=-3/46+19/47*I,n=25 3141532341039106 a007 Real Root Of 269*x^4+791*x^3-293*x^2-171*x+678 3141532341105147 a001 1149851/6765*5702887^(3/16) 3141532341150164 a001 90481/2255*12586269025^(3/16) 3141532352336462 r009 Re(z^3+c),c=-14/27+11/58*I,n=14 3141532358274880 m001 TreeGrowth2nd^MadelungNaCl/(TreeGrowth2nd^Pi) 3141532367330208 r005 Im(z^2+c),c=-9/14+16/249*I,n=34 3141532376247150 h002 exp(15^(4/7)+19^(11/12)) 3141532376247150 h007 exp(15^(4/7)+19^(11/12)) 3141532397457556 m001 (-Stephens+TwinPrimes)/(2^(1/2)+BesselI(0,1)) 3141532403563223 r005 Re(z^2+c),c=-37/118+25/52*I,n=23 3141532403835228 a001 930249/1292*2584^(3/16) 3141532408093272 r009 Re(z^3+c),c=-19/58+33/47*I,n=9 3141532411404497 b008 (-1+Pi/E^4)/3 3141532411742782 a007 Real Root Of 924*x^4-674*x^3+713*x^2+160*x-50 3141532416218012 k008 concat of cont frac of 3141532421461654 a001 5779/34*5702887^(3/16) 3141532421770180 a001 51841/1292*12586269025^(3/16) 3141532425696229 m002 -(1/(E^(2*Pi)*Pi^3))+Pi 3141532431454125 k007 concat of cont frac of 3141532434931358 l006 ln(5275/7222) 3141532440254749 a007 Real Root Of -740*x^4+528*x^3-606*x^2+107*x+117 3141532442214007 a007 Real Root Of 274*x^4-258*x^3-685*x^2-153*x+121 3141532448890476 b008 -2/3+ArcCot[E] 3141532450859751 m001 cos(1/5*Pi)/(Niven^(Pi^(1/2))) 3141532451636506 a007 Real Root Of -27*x^4-875*x^3-830*x^2+378*x+527 3141532461013923 r002 20th iterates of z^2 + 3141532467376783 m001 (ln(3)-Lehmer)/(MertensB2+Stephens) 3141532469403203 r005 Im(z^2+c),c=-1/78+17/45*I,n=27 3141532476387470 r009 Re(z^3+c),c=-35/94+7/29*I,n=8 3141532496101122 r005 Re(z^2+c),c=-33/86+11/61*I,n=6 3141532496257379 b008 29*E^(2/25) 3141532509661344 a001 19/2*1346269^(5/59) 3141532510352345 m001 (Psi(1,1/3)*arctan(1/3)-ZetaP(4))/Psi(1,1/3) 3141532516404033 g001 Psi(3/11,23/67) 3141532524435001 a005 (1/cos(29/171*Pi))^162 3141532533332356 r005 Im(z^2+c),c=-9/8+51/206*I,n=44 3141532544737514 a003 cos(2/5*Pi)-3^(1/2)+cos(1/7*Pi)+cos(13/30*Pi) 3141532546377454 a001 1/4092*(1/2*5^(1/2)+1/2)^9*3^(11/23) 3141532548011015 a001 11/89*610^(8/55) 3141532566498262 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/2 3141532566545807 m004 -10*Pi+Sin[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141532566593352 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/2 3141532573146758 a007 Real Root Of 360*x^4+963*x^3-467*x^2+398*x+652 3141532587946550 q001 1152/3667 3141532591928132 m001 1/Paris^2/ln(Champernowne)^2/RenyiParking 3141532605023544 r005 Im(z^2+c),c=-117/86+1/61*I,n=10 3141532608855840 m002 -Pi+(2*Csch[Pi])/(3*Pi^6) 3141532611508174 m001 Gompertz/FeigenbaumD*Riemann1stZero 3141532621165021 l006 ln(201/4651) 3141532625143285 a003 sin(Pi*8/97)/cos(Pi*11/56) 3141532626691099 m001 (Trott+ThueMorse)/(Zeta(1/2)+FransenRobinson) 3141532639847766 b008 Pi+ExpIntegralEi[-6]/6 3141532650221226 m002 -Pi+Tanh[Pi]/(E^(2*Pi)*Pi^3) 3141532658841062 a001 3/3010349*3571^(8/57) 3141532661015425 r005 Im(z^2+c),c=-19/102+27/44*I,n=29 3141532661132223 k006 concat of cont frac of 3141532666329999 a007 Real Root Of 591*x^4-624*x^3+59*x^2-952*x-330 3141532671552232 r005 Im(z^2+c),c=5/122+22/63*I,n=10 3141532677121728 r009 Im(z^3+c),c=-13/29+9/44*I,n=9 3141532684264026 m001 1/TwinPrimes*exp(Khintchine)*sqrt(2) 3141532684991815 m001 (gamma(2)-polylog(4,1/2))/(Cahen+MertensB2) 3141532688300206 a007 Real Root Of -336*x^4-742*x^3+730*x^2-587*x+673 3141532691211313 k008 concat of cont frac of 3141532691477413 a007 Real Root Of -484*x^4+883*x^3+862*x^2+160*x-158 3141532693454408 a001 3/1149851*39603^(1/57) 3141532693950130 m001 (exp(Pi)+Khinchin)/(-Magata+Sierpinski) 3141532703236878 r005 Im(z^2+c),c=-49/118+15/34*I,n=11 3141532706777758 s002 sum(A165652[n]/(n^3*10^n+1),n=1..infinity) 3141532708485436 s002 sum(A165652[n]/(n^3*10^n-1),n=1..infinity) 3141532709556104 l006 ln(5042/6903) 3141532711111621 k009 concat of cont frac of 3141532712299968 r005 Re(z^2+c),c=-57/86+8/39*I,n=13 3141532712753504 m001 (Ei(1)-3^(1/3))/(cos(1/12*Pi)+PlouffeB) 3141532713112129 k007 concat of cont frac of 3141532717964898 r005 Re(z^2+c),c=-39/118+15/28*I,n=30 3141532720985942 m002 -4/(3*E^Pi*Pi^6)+Pi 3141532727389864 r005 Re(z^2+c),c=-35/106+17/36*I,n=37 3141532728149506 r002 22th iterates of z^2 + 3141532735260989 a003 sin(Pi*1/35)/cos(Pi*31/76) 3141532737301523 m005 (1/3*3^(1/2)-1/2)/(3*Catalan-2/7) 3141532739148583 m005 (1/3*5^(1/2)+2/9)/(6/7*exp(1)+3/4) 3141532753291503 m001 ln(2)-ln(Pi)^ZetaQ(2) 3141532758440958 m001 LandauRamanujan2nd/(GAMMA(5/6)+Sarnak) 3141532764792387 a007 Real Root Of 723*x^4-316*x^3+743*x^2-978*x+30 3141532793389325 a007 Real Root Of 905*x^4-153*x^3+851*x^2-237*x-172 3141532803130826 m001 (Zeta(1,-1)-MadelungNaCl)/(MertensB3-Sarnak) 3141532821364797 s002 sum(A059321[n]/(n^3*exp(n)+1),n=1..infinity) 3141532822521620 a007 Real Root Of -201*x^4+176*x^3+461*x^2+834*x-311 3141532828699408 r009 Re(z^3+c),c=-29/78+11/45*I,n=11 3141532831246185 k007 concat of cont frac of 3141532832698031 m002 -Pi+(2*Sech[Pi])/(3*Pi^6) 3141532837955937 r009 Re(z^3+c),c=-29/64+22/59*I,n=26 3141532851302810 b008 Pi+ExpIntegralEi[-9+Sqrt[2]] 3141532856611784 p004 log(13487/9851) 3141532857346503 m001 (Psi(2,1/3)+gamma(3))/(-FeigenbaumC+ZetaP(4)) 3141532858494268 r005 Im(z^2+c),c=-10/13+9/49*I,n=7 3141532860963331 g005 1/GAMMA(7/10)/GAMMA(6/7)/GAMMA(3/5)^2 3141532861962635 k006 concat of cont frac of 3141532862568984 r005 Re(z^2+c),c=17/52+7/43*I,n=16 3141532866299835 m001 (Zeta(1,-1)-HardyLittlewoodC5)/FeigenbaumC 3141532871981849 h001 (5/6*exp(1)+7/10)/(1/7*exp(1)+5/9) 3141532888470853 m006 (1/2*exp(Pi)+3/4)/(3/5*Pi^2-2) 3141532889159703 r005 Re(z^2+c),c=-11/31+22/53*I,n=16 3141532889723412 b008 3+(5*ArcCsch[2])/17 3141532900774341 r002 3th iterates of z^2 + 3141532923121131 k007 concat of cont frac of 3141532931323222 r005 Re(z^2+c),c=11/126+23/39*I,n=20 3141532935185539 r009 Im(z^3+c),c=-3/74+21/61*I,n=6 3141532937446924 m002 -6-Pi^5+Tanh[Pi]-Pi*Tanh[Pi] 3141532946310427 p001 sum(1/(541*n+464)/n/(32^n),n=1..infinity) 3141532947667021 r005 Im(z^2+c),c=-11/36+3/64*I,n=16 3141532948431846 m008 (4/5*Pi^6-4/5)/(4/5*Pi^5-1/4) 3141532954707681 a001 101521/141*2584^(3/16) 3141532954938858 m008 (1/3*Pi^2-1)/(3/4*Pi^4-1/6) 3141532965452432 p004 log(28901/1249) 3141532967423631 b008 Pi-6*AiryAi[6] 3141532972233458 a001 167761/987*5702887^(3/16) 3141532972453948 m001 1/TreeGrowth2nd*exp(Paris)^2/log(1+sqrt(2)) 3141532974348107 a001 13201/329*12586269025^(3/16) 3141532975475862 a007 Real Root Of 298*x^4-415*x^3-172*x^2-389*x-121 3141532979027565 r005 Im(z^2+c),c=-13/38+3/62*I,n=21 3141532979407011 m002 -Pi+6/(Pi^10*ProductLog[Pi]) 3141532980790677 a007 Real Root Of 635*x^4-40*x^3-102*x^2-766*x-238 3141532987456271 m001 (GolombDickman+Sarnak)/(TreeGrowth2nd-Trott) 3141532988566082 m005 (1/2*2^(1/2)-3/11)/(6/11*exp(1)-1/10) 3141532989373230 p001 sum(1/(495*n+32)/(12^n),n=0..infinity) 3141532991124211 k007 concat of cont frac of 3141533004420284 r005 Im(z^2+c),c=-13/50+26/49*I,n=13 3141533005048429 m001 (cos(1)+Niven)/TravellingSalesman 3141533006470222 r005 Re(z^2+c),c=-11/36+31/59*I,n=45 3141533008370007 a007 Real Root Of 169*x^4+221*x^3-606*x^2+976*x-562 3141533010376934 r005 Re(z^2+c),c=-37/50+5/26*I,n=13 3141533010792430 l006 ln(4809/6584) 3141533018922327 r005 Im(z^2+c),c=-5/6+19/101*I,n=52 3141533022356319 p001 sum((-1)^n/(445*n+317)/(100^n),n=0..infinity) 3141533022797165 a001 9349/3*701408733^(19/21) 3141533025109793 a007 Real Root Of 234*x^4+900*x^3+271*x^2-484*x+917 3141533034736686 m001 Psi(2,1/3)^BesselK(0,1)/(Psi(2,1/3)^Rabbit) 3141533036919251 r005 Re(z^2+c),c=-9/40+19/36*I,n=7 3141533040035711 a007 Real Root Of -116*x^4-412*x^3-457*x^2-989*x-72 3141533050916314 r005 Im(z^2+c),c=1/46+23/64*I,n=17 3141533051806175 r005 Im(z^2+c),c=1/90+23/63*I,n=21 3141533053215613 m001 exp(1/exp(1))*(Si(Pi)+FellerTornier) 3141533059432136 a001 29134601*28657^(19/21) 3141533061140824 m002 2+Log[Pi]-(Csch[Pi]*Log[Pi])/Pi^3 3141533066773496 a008 Real Root of (-2+8*x-5*x^2-2*x^4-3*x^8) 3141533080841443 r005 Re(z^2+c),c=-37/29+7/36*I,n=2 3141533081318176 b008 1/16+Sqrt[983] 3141533101331322 k008 concat of cont frac of 3141533106939233 r005 Im(z^2+c),c=-21/110+6/13*I,n=58 3141533107976099 m001 Pi-(2^(1/3)-BesselI(0,1))*gamma(2) 3141533111372121 k008 concat of cont frac of 3141533111512665 s002 sum(A216708[n]/(2^n+1),n=1..infinity) 3141533114228105 a009 1/7*(23+7^(7/12))^(1/2)*7^(3/4) 3141533114341286 k006 concat of cont frac of 3141533114812416 k006 concat of cont frac of 3141533115906025 m001 (Bloch+HardyLittlewoodC4)/(Otter-Weierstrass) 3141533116913436 r005 Im(z^2+c),c=-40/31+1/36*I,n=17 3141533118393563 m002 Pi-Log[Pi]/(20*Pi^6) 3141533120141129 k008 concat of cont frac of 3141533151124013 k008 concat of cont frac of 3141533153511673 m001 HeathBrownMoroz^Porter-Pi 3141533164778305 m001 (2/3)^(sqrt(3)*exp(1/2)) 3141533165689659 a007 Real Root Of -279*x^4-934*x^3-366*x^2-756*x-546 3141533166536499 m002 -4+Pi^6/3-Sinh[Pi]/5 3141533181144909 m001 (FeigenbaumB-ZetaQ(4))/(Zeta(3)+3^(1/3)) 3141533192951227 m001 (1+Catalan)/(-3^(1/3)+FeigenbaumB) 3141533197780342 r002 6th iterates of z^2 + 3141533198562740 m002 Pi^5*Coth[Pi]+8/Log[Pi] 3141533205404773 h001 (-8*exp(8)-1)/(-5*exp(1)+6) 3141533221516171 k008 concat of cont frac of 3141533224321304 a007 Real Root Of -600*x^4+91*x^3-274*x^2+677*x-21 3141533228283426 a003 sin(Pi*5/108)/cos(Pi*33/95) 3141533228944030 m005 (1/5*Catalan-2)/(2*Pi-1/2) 3141533229702411 a007 Real Root Of -288*x^4-666*x^3+724*x^2+167*x+782 3141533231023432 k007 concat of cont frac of 3141533234788839 r005 Im(z^2+c),c=25/106+9/41*I,n=5 3141533234953108 a007 Real Root Of -185*x^4-292*x^3-84*x^2+844*x-246 3141533260387718 a007 Real Root Of -829*x^4+131*x^3-185*x^2+820*x+288 3141533261115211 k006 concat of cont frac of 3141533261177803 p001 sum((-1)^n/(311*n+184)/n/(64^n),n=1..infinity) 3141533275870016 b008 Pi+21*ExpIntegralEi[12] 3141533276065942 k007 concat of cont frac of 3141533286822772 l006 ln(323/7474) 3141533296448492 r005 Im(z^2+c),c=-9/122+20/49*I,n=20 3141533296600482 m001 (BesselI(1,2)-BesselK(0,1))/(-Artin+ZetaQ(4)) 3141533297709063 m001 (Backhouse-MadelungNaCl)/(gamma(2)-Zeta(1,2)) 3141533301211513 k009 concat of cont frac of 3141533307569397 m001 Pi^(1/2)*(5^(1/2)-arctan(1/2)) 3141533307569397 m001 sqrt(Pi)*(arctan(1/2)-sqrt(5)) 3141533311067979 r009 Im(z^3+c),c=-10/21+5/29*I,n=39 3141533314867967 a007 Real Root Of -285*x^4-767*x^3+752*x^2+923*x-543 3141533330008638 r005 Im(z^2+c),c=-3/31+12/29*I,n=10 3141533331422224 k006 concat of cont frac of 3141533335233398 r005 Im(z^2+c),c=-2/21+18/43*I,n=22 3141533335992996 a005 (1/cos(10/143*Pi))^1656 3141533338705094 s001 sum(1/10^(n-1)*A221185[n],n=1..infinity) 3141533338705094 s001 sum(1/10^n*A221185[n],n=1..infinity) 3141533338705094 s003 concatenated sequence A221185 3141533342705348 l006 ln(4576/6265) 3141533344674286 m001 1/GAMMA(5/6)^2/ln(Robbin)*sqrt(1+sqrt(3)) 3141533348064805 m005 (1/3*Zeta(3)-1/11)/(1/10*5^(1/2)-1/8) 3141533351389065 m004 -10*Pi+Csch[Sqrt[5]*Pi]/3 3141533351435988 m004 -2/(3*E^(Sqrt[5]*Pi))+10*Pi 3141533351482912 m004 -10*Pi+Sech[Sqrt[5]*Pi]/3 3141533351576760 m004 -10*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/3 3141533354861091 m001 (-ln(3)+KomornikLoreti)/(Chi(1)+GAMMA(2/3)) 3141533365426675 b008 1/2-(2*(2+EulerGamma))/11 3141533368333927 m005 (1/3*exp(1)+3/7)/(1/9*5^(1/2)+4) 3141533384121061 r005 Im(z^2+c),c=-8/25+17/33*I,n=53 3141533387535695 g007 Psi(2,1/12)+Psi(2,6/11)+Psi(2,7/9)-Psi(2,2/11) 3141533394518212 k006 concat of cont frac of 3141533399197670 a007 Real Root Of -888*x^4+938*x^3-568*x^2+680*x-178 3141533405116788 r005 Re(z^2+c),c=-17/50+27/62*I,n=27 3141533405610278 a007 Real Root Of -675*x^4+289*x^3+874*x^2+588*x+114 3141533406682631 m002 -Pi+ProductLog[Pi]/(6*Pi^7) 3141533425634866 m001 1/exp(Tribonacci)^2*MinimumGamma/sinh(1) 3141533433191596 r005 Im(z^2+c),c=-91/82+2/53*I,n=28 3141533445698380 m008 (3/4*Pi^6-1/4)/(2/3*Pi+1/5) 3141533448017573 r002 16th iterates of z^2 + 3141533452308433 m005 (1/2*Pi+1/3)/(3/4*2^(1/2)-5/11) 3141533466817153 m009 (48*Catalan+6*Pi^2-1/3)/(1/4*Psi(1,1/3)+3/4) 3141533470982234 r005 Im(z^2+c),c=-15/62+55/63*I,n=16 3141533472350957 a005 (1/cos(22/199*Pi))^617 3141533474187336 m001 MadelungNaCl^MertensB2/LambertW(1) 3141533482045043 a001 521/1346269*317811^(27/38) 3141533483876231 r005 Im(z^2+c),c=-5/23+26/55*I,n=48 3141533497766491 a007 Real Root Of 21*x^4-625*x^3-159*x^2-898*x-286 3141533499452402 p003 LerchPhi(1/32,4,127/95) 3141533512437133 r005 Re(z^2+c),c=-3/118+22/29*I,n=51 3141533533907488 m005 (1/6*gamma-4)/(3*2^(1/2)-3) 3141533550499632 r005 Im(z^2+c),c=-11/52+16/23*I,n=29 3141533558450716 r009 Re(z^3+c),c=-21/58+13/57*I,n=11 3141533559275055 r002 5th iterates of z^2 + 3141533570583621 m005 (1/2*5^(1/2)+3/8)/(1/7*3^(1/2)-5) 3141533577551828 m001 FeigenbaumB*HardHexagonsEntropy^2*exp(Robbin) 3141533591209603 m001 GAMMA(23/24)/Niven*exp(sqrt(1+sqrt(3))) 3141533597175338 r005 Re(z^2+c),c=-19/52+11/31*I,n=32 3141533597945060 a007 Real Root Of 139*x^4+447*x^3+41*x^2+300*x+858 3141533603380525 r009 Im(z^3+c),c=-13/28+7/38*I,n=27 3141533605009278 a007 Real Root Of 174*x^4+371*x^3-830*x^2-793*x+255 3141533605801113 r005 Im(z^2+c),c=-7/60+3/7*I,n=17 3141533607774189 m001 (FransenRobinson+Salem)/(ln(Pi)+Champernowne) 3141533612321113 k006 concat of cont frac of 3141533620727318 m008 (1/4*Pi^2+4/5)/(1/3*Pi^5+2) 3141533635680824 b008 -1/42*1/E^6+Pi 3141533637674099 a007 Real Root Of 259*x^4+841*x^3-201*x^2-943*x-131 3141533643022526 a005 (1/cos(15/236*Pi))^1778 3141533670711706 m001 (GAMMA(1/3)+Si(Pi))/(3^(1/3)) 3141533670711706 m001 1/3*(Si(Pi)+2/3*Pi*3^(1/2)/GAMMA(2/3))*3^(2/3) 3141533680718332 m001 1/ln(GAMMA(1/12))^2*Cahen^2*GAMMA(5/12)^2 3141533681536726 r009 Re(z^3+c),c=-13/28+11/28*I,n=55 3141533689521817 r005 Im(z^2+c),c=19/64+5/34*I,n=23 3141533700930434 m001 BesselI(1,1)-Mills+Rabbit 3141533702383325 b008 Sech[15^(2/9)] 3141533710232211 l006 ln(4343/5946) 3141533713342388 m001 (PrimesInBinary+Thue)/(ln(2)-ln(3)) 3141533723331860 m001 (MertensB2-TreeGrowth2nd)/(ln(3)+Kolakoski) 3141533724650070 r005 Im(z^2+c),c=-47/70+15/41*I,n=6 3141533727634687 r005 Im(z^2+c),c=-17/26+4/81*I,n=35 3141533730649047 r005 Re(z^2+c),c=3/86+33/49*I,n=7 3141533732122589 m001 KomornikLoreti/GaussAGM*Porter 3141533733300936 r004 Im(z^2+c),c=5/8*I,z(0)=-1/2+1/2*I*3^(1/2),n=6 3141533739854088 a007 Real Root Of -759*x^4+595*x^3+512*x^2+969*x-366 3141533743656148 m001 1/ln(TreeGrowth2nd)^2*Artin^2/TwinPrimes 3141533746800673 m001 Backhouse/Pi^(1/2)/MertensB1 3141533751534037 m002 Pi-Log[Pi]^2/(E^Pi*Pi^6) 3141533752288658 m009 (1/12*Pi^2+3)/(4*Psi(1,3/4)+2) 3141533759353550 h001 (4/9*exp(1)+5/8)/(2/3*exp(2)+10/11) 3141533777359834 m001 Si(Pi)*FeigenbaumDelta^2*exp(GAMMA(23/24))^2 3141533790489795 m001 Magata^ZetaQ(3)/arctan(1/3) 3141533792957628 r002 5th iterates of z^2 + 3141533799288832 r009 Re(z^3+c),c=-27/58+17/43*I,n=35 3141533806012530 r005 Re(z^2+c),c=-89/126+3/44*I,n=6 3141533818501127 k006 concat of cont frac of 3141533856472547 r005 Im(z^2+c),c=-9/62+19/43*I,n=18 3141533857947845 r005 Re(z^2+c),c=-45/118+15/52*I,n=20 3141533859624782 r005 Im(z^2+c),c=-17/18+58/235*I,n=56 3141533868401722 m005 (39/44+1/4*5^(1/2))/(2/11*Pi-1/9) 3141533873930286 m001 StronglyCareFree/(2^(1/2)+GAMMA(11/12)) 3141533875267355 m001 FibonacciFactorial*(OneNinth+ZetaR(2)) 3141533884465477 m001 (arctan(1/2)+Grothendieck)/(Sarnak-ZetaQ(3)) 3141533914116133 k008 concat of cont frac of 3141533919002580 r009 Re(z^3+c),c=-13/24+8/31*I,n=41 3141533920141284 a007 Real Root Of 538*x^4-229*x^3+700*x^2-892*x+213 3141533921818537 m001 KhinchinHarmonic+(5^(1/2))^PrimesInBinary 3141533923721140 r005 Re(z^2+c),c=-21/16+40/47*I,n=2 3141533936133529 a009 1/14*(16+5^(3/4))^(1/2) 3141533942488770 r005 Im(z^2+c),c=2/23+19/23*I,n=3 3141533948807324 r005 Im(z^2+c),c=35/122+4/33*I,n=4 3141533956349839 m002 -6+Pi+Pi^5*ProductLog[Pi]-Sinh[Pi] 3141533965530298 m001 Pi-TwinPrimes^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141533980902053 r005 Im(z^2+c),c=17/58+4/27*I,n=51 3141533990877246 m001 Backhouse^(Lehmer/DuboisRaymond) 3141533997522507 h001 (1/5*exp(1)+6/7)/(6/11*exp(2)+3/7) 3141534009524614 m001 KhintchineHarmonic/ln(Cahen)/(2^(1/3)) 3141534012711054 a007 Real Root Of 20*x^4+631*x^3+115*x^2+982*x+855 3141534021889133 m001 (Backhouse+HeathBrownMoroz)/(Artin-Chi(1)) 3141534026343749 r002 16th iterates of z^2 + 3141534027140087 r002 2th iterates of z^2 + 3141534032385846 a001 36/19*39603^(14/29) 3141534042471384 a007 Real Root Of 291*x^4+771*x^3-297*x^2+447*x-104 3141534042726240 m002 -Pi+2/(Pi^9*Log[Pi]) 3141534064417453 r005 Re(z^2+c),c=-41/106+13/50*I,n=15 3141534079362902 m005 (1/2*2^(1/2)+4)/(5/12*2^(1/2)+10/11) 3141534085280321 m001 exp(Zeta(9))*FeigenbaumKappa/sinh(1) 3141534089097881 m001 (GAMMA(11/12)+1/3)/(BesselK(0,1)+4) 3141534114114351 k006 concat of cont frac of 3141534119429986 l006 ln(4110/5627) 3141534119776069 a001 1/13*987^(10/49) 3141534120281385 a007 Real Root Of 706*x^4-578*x^3+187*x^2-830*x-304 3141534121113811 k008 concat of cont frac of 3141534122585334 r005 Re(z^2+c),c=-25/21+16/57*I,n=6 3141534123030441 m002 -Pi^5-Cosh[Pi]+3*ProductLog[Pi]^2 3141534127707448 a009 1/7*(18*7^(1/3)+2^(3/4))^(1/2)*7^(2/3) 3141534129095645 r009 Re(z^3+c),c=-17/40+14/41*I,n=9 3141534142135433 a007 Real Root Of -242*x^4-626*x^3+585*x^2+785*x+855 3141534153818007 r005 Im(z^2+c),c=-13/70+6/13*I,n=20 3141534164582039 a007 Real Root Of 312*x^4+892*x^3-212*x^2+509*x+958 3141534170529198 a003 sin(Pi*19/97)/cos(Pi*15/34) 3141534170946361 r009 Im(z^3+c),c=-7/20+4/15*I,n=20 3141534177319934 m001 ln(2)/ln(10)/(Zeta(1,2)^Robbin) 3141534186015069 r005 Re(z^2+c),c=-23/42+1/23*I,n=4 3141534187902119 m001 (-MadelungNaCl+TwinPrimes)/(Si(Pi)+ln(5)) 3141534188986167 r005 Im(z^2+c),c=-15/44+34/59*I,n=64 3141534196311198 k008 concat of cont frac of 3141534208151338 k002 Champernowne real with 64*n^2-181*n+120 3141534210332425 k008 concat of cont frac of 3141534211107349 k006 concat of cont frac of 3141534223613522 r004 Im(z^2+c),c=-15/14+5/19*I,z(0)=-1,n=56 3141534225222823 h001 (3/11*exp(1)+1/4)/(2/5*exp(2)+1/5) 3141534228231358 k003 Champernowne real with 1/3*n^3+62*n^2-532/3*n+118 3141534230152656 a007 Real Root Of 342*x^4-262*x^3-850*x^2-609*x+280 3141534234372084 m001 KhintchineLevy*Si(Pi)^2/exp(sin(Pi/12)) 3141534238271368 k003 Champernowne real with 1/2*n^3+61*n^2-351/2*n+117 3141534246157386 r005 Re(z^2+c),c=-17/46+20/59*I,n=30 3141534248311378 k003 Champernowne real with 2/3*n^3+60*n^2-521/3*n+116 3141534253612480 m002 (Pi^3*Cosh[Pi])/Log[Pi]+2*Sech[Pi] 3141534254864543 a007 Real Root Of 226*x^4+310*x^3-951*x^2+719*x-757 3141534262351211 k007 concat of cont frac of 3141534267501855 m001 1/Tribonacci^2/exp(CareFree)*arctan(1/2)^2 3141534268391398 k003 Champernowne real with n^3+58*n^2-170*n+114 3141534282140348 r002 12th iterates of z^2 + 3141534283121121 k009 concat of cont frac of 3141534285878767 m001 (-GAMMA(7/12)+Tetranacci)/(2^(1/3)-gamma(2)) 3141534288471418 k003 Champernowne real with 4/3*n^3+56*n^2-499/3*n+112 3141534295100828 r005 Re(z^2+c),c=-35/106+19/34*I,n=46 3141534295725526 r005 Im(z^2+c),c=1/18+16/47*I,n=15 3141534297690646 r009 Im(z^3+c),c=-13/25+11/53*I,n=15 3141534298511428 k003 Champernowne real with 3/2*n^3+55*n^2-329/2*n+111 3141534308551438 k003 Champernowne real with 5/3*n^3+54*n^2-488/3*n+110 3141534309931326 m004 -3*Csch[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141534309973557 m004 -6/E^(Sqrt[5]*Pi)+100*Pi*Tanh[Sqrt[5]*Pi] 3141534310015789 m004 -3*Sech[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141534311075614 r005 Re(z^2+c),c=-5/24+33/40*I,n=54 3141534314141122 k006 concat of cont frac of 3141534328631458 k003 Champernowne real with 2*n^3+52*n^2-159*n+108 3141534343936031 a007 Real Root Of -363*x^4-907*x^3+642*x^2-337*x-159 3141534348711478 k003 Champernowne real with 7/3*n^3+50*n^2-466/3*n+106 3141534352492781 r009 Re(z^3+c),c=-59/126+15/38*I,n=12 3141534358751488 k003 Champernowne real with 5/2*n^3+49*n^2-307/2*n+105 3141534359284645 m001 GAMMA(23/24)/GAMMA(1/4)^2*ln(Zeta(9))^2 3141534368791498 k003 Champernowne real with 8/3*n^3+48*n^2-455/3*n+104 3141534373531831 m001 exp(GAMMA(1/12))*DuboisRaymond^2*sin(1) 3141534375617998 m001 (-Shi(1)+Kolakoski)/(3^(1/2)-Psi(1,1/3)) 3141534383520232 l006 ln(122/2823) 3141534386698957 r005 Re(z^2+c),c=-37/90+3/44*I,n=21 3141534388871518 k003 Champernowne real with 3*n^3+46*n^2-148*n+102 3141534391534391 q001 475/1512 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r002 2th iterates of z^2 + 3141534391534391 r005 Im(z^2+c),c=-49/48+19/63*I,n=2 3141534392445508 m004 -100*Pi+3*Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141534392491608 m004 -100*Pi+(6*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141534392537709 m004 -100*Pi+3*Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141534405607662 a003 sin(Pi*13/107)*sin(Pi*23/72) 3141534410419475 m001 Otter^Kolakoski+StronglyCareFree 3141534411325298 m001 (-Rabbit+Sarnak)/(1+Magata) 3141534415180482 r005 Im(z^2+c),c=4/11+9/37*I,n=24 3141534418991548 k003 Champernowne real with 7/2*n^3+43*n^2-285/2*n+99 3141534424466261 h001 (-exp(6)+2)/(-2*exp(2)+2) 3141534427314009 h001 (6/11*exp(2)+7/12)/(3/11*exp(1)+8/11) 3141534429031558 k003 Champernowne real with 11/3*n^3+42*n^2-422/3*n+98 3141534433496215 a003 cos(Pi*2/65)-sin(Pi*26/109) 3141534434473665 p002 log(19^(10/9)-7^(3/5)) 3141534439071568 k003 Champernowne real with 23/6*n^3+41*n^2-833/6*n+97 3141534447957338 r002 4th iterates of z^2 + 3141534449111578 k003 Champernowne real with 4*n^3+40*n^2-137*n+96 3141534456024777 b008 Pi+14*ExpIntegralEi[-10] 3141534459151588 k003 Champernowne real with 25/6*n^3+39*n^2-811/6*n+95 3141534459291131 m001 1/exp(GAMMA(19/24))/Niven/gamma 3141534469191598 k003 Champernowne real with 13/3*n^3+38*n^2-400/3*n+94 3141534470001524 a001 3/28657*377^(25/26) 3141534471359672 m001 (exp(1/exp(1))-gamma)/(-DuboisRaymond+Otter) 3141534475715763 r005 Im(z^2+c),c=25/94+11/61*I,n=23 3141534476588936 m005 (1/2*Catalan-2/3)/(1/6*2^(1/2)+3/7) 3141534479231608 k003 Champernowne real with 9/2*n^3+37*n^2-263/2*n+93 3141534489271618 k003 Champernowne real with 14/3*n^3+36*n^2-389/3*n+92 3141534492776835 m001 (-GaussKuzminWirsing+1/3)/(-GAMMA(11/12)+2) 3141534498989601 r005 Im(z^2+c),c=-1/6+28/57*I,n=8 3141534499311628 k003 Champernowne real with 29/6*n^3+35*n^2-767/6*n+91 3141534509351638 k003 Champernowne real with 5*n^3+34*n^2-126*n+90 3141534516191975 m008 (4*Pi^2-1)/(4*Pi^5+3/4) 3141534519391648 k003 Champernowne real with 31/6*n^3+33*n^2-745/6*n+89 3141534529431658 k003 Champernowne real with 16/3*n^3+32*n^2-367/3*n+88 3141534533949235 m008 (5*Pi^5+3/5)/(5*Pi^4+1/5) 3141534539471668 k003 Champernowne real with 11/2*n^3+31*n^2-241/2*n+87 3141534541941116 k007 concat of cont frac of 3141534548110032 m001 GlaisherKinkelin*(ln(gamma)+Kolakoski) 3141534549511678 k003 Champernowne real with 17/3*n^3+30*n^2-356/3*n+86 3141534552480989 a007 Real Root Of 208*x^4+552*x^3-291*x^2+227*x+440 3141534554938187 m001 (gamma(1)+Kolakoski)/(BesselK(0,1)-exp(1)) 3141534559551688 k003 Champernowne real with 35/6*n^3+29*n^2-701/6*n+85 3141534562099075 m001 cos(Pi/12)/exp(MinimumGamma)^2/sqrt(1+sqrt(3)) 3141534562752755 a007 Real Root Of -283*x^4-241*x^3+689*x^2+857*x-327 3141534563598265 r005 Re(z^2+c),c=-35/114+29/55*I,n=55 3141534565302050 a001 1926/7*3^(7/58) 3141534565654495 a007 Real Root Of -358*x^4-989*x^3+357*x^2-502*x-894 3141534569591698 k003 Champernowne real with 6*n^3+28*n^2-115*n+84 3141534577811690 l006 ln(3877/5308) 3141534579631708 k003 Champernowne real with 37/6*n^3+27*n^2-679/6*n+83 3141534584377738 a007 Real Root Of 346*x^4+933*x^3-455*x^2+207*x+367 3141534589671718 k003 Champernowne real with 19/3*n^3+26*n^2-334/3*n+82 3141534599711728 k003 Champernowne real with 13/2*n^3+25*n^2-219/2*n+81 3141534608556500 r005 Im(z^2+c),c=1/19+13/38*I,n=15 3141534609751738 k003 Champernowne real with 20/3*n^3+24*n^2-323/3*n+80 3141534617556765 m001 (Psi(2,1/3)-ln(2)/ln(10))/(-5^(1/2)+Bloch) 3141534619791748 k003 Champernowne real with 41/6*n^3+23*n^2-635/6*n+79 3141534623742137 h005 exp(cos(Pi*9/47)+cos(Pi*21/53)) 3141534627238863 s002 sum(A035034[n]/(n^3*pi^n+1),n=1..infinity) 3141534629831758 k003 Champernowne real with 7*n^3+22*n^2-104*n+78 3141534638000273 r009 Re(z^3+c),c=-5/94+13/22*I,n=38 3141534639871768 k003 Champernowne real with 43/6*n^3+21*n^2-613/6*n+77 3141534644899716 m001 AlladiGrinstead/GAMMA(3/4)*PlouffeB 3141534646432175 r005 Im(z^2+c),c=-1/23+24/61*I,n=24 3141534648168962 r005 Re(z^2+c),c=-7/9+5/46*I,n=44 3141534649820860 m001 -BesselK(1,1)/(Catalan+1) 3141534649820860 m001 BesselK(1,1)/(1+Catalan) 3141534649911778 k003 Champernowne real with 22/3*n^3+20*n^2-301/3*n+76 3141534659951788 k003 Champernowne real with 15/2*n^3+19*n^2-197/2*n+75 3141534662281972 r002 7th iterates of z^2 + 3141534662861537 r005 Re(z^2+c),c=7/62+25/64*I,n=11 3141534663591203 m001 (2^(1/2)-gamma)/(sin(1)+MasserGramainDelta) 3141534663988155 m005 (3/4*Pi+5)/(Pi-4/5) 3141534663988155 m006 (5/Pi+3/4)/(4/5/Pi-1) 3141534663988155 m008 (3/4*Pi+5)/(Pi-4/5) 3141534664992691 a001 29/102334155*144^(18/19) 3141534668269282 r005 Im(z^2+c),c=-27/31+11/50*I,n=41 3141534669991798 k003 Champernowne real with 23/3*n^3+18*n^2-290/3*n+74 3141534671003180 k003 Champernowne real with 47/6*n^3+17*n^2-569/6*n+73 3141534681007181 k003 Champernowne real with 8*n^3+16*n^2-93*n+72 3141534691011182 k003 Champernowne real with 49/6*n^3+15*n^2-547/6*n+71 3141534692836045 r005 Re(z^2+c),c=-17/52+10/21*I,n=44 3141534699014872 r005 Re(z^2+c),c=-11/31+20/51*I,n=40 3141534701015183 k003 Champernowne real with 25/3*n^3+14*n^2-268/3*n+70 3141534704352856 m001 Psi(1,1/3)^(Sarnak/MinimumGamma) 3141534711019184 k003 Champernowne real with 17/2*n^3+13*n^2-175/2*n+69 3141534721023185 k003 Champernowne real with 26/3*n^3+12*n^2-257/3*n+68 3141534724678855 m001 (3^(1/2)+Backhouse)/(-Porter+ZetaP(2)) 3141534726792290 r005 Im(z^2+c),c=-65/56+17/56*I,n=17 3141534726828389 m001 1/exp(TreeGrowth2nd)/Robbin/GAMMA(1/6)^2 3141534731027186 k003 Champernowne real with 53/6*n^3+11*n^2-503/6*n+67 3141534741031187 k003 Champernowne real with 9*n^3+10*n^2-82*n+66 3141534741676935 b008 3+Tanh[Khinchin]/7 3141534751035188 k003 Champernowne real with 55/6*n^3+9*n^2-481/6*n+65 3141534751627972 a007 Real Root Of 715*x^4+454*x^3-345*x^2-713*x+237 3141534759470026 m005 (1/3*Zeta(3)+1/9)/(5*Pi+7/12) 3141534760190099 m005 (1/3*Zeta(3)-1/10)/(2/11*2^(1/2)+7/10) 3141534761039189 k003 Champernowne real with 28/3*n^3+8*n^2-235/3*n+64 3141534761312659 r005 Im(z^2+c),c=-21/110+6/13*I,n=55 3141534763586219 m008 (3/5*Pi^3-2/5)/(3/5*Pi^4-1/2) 3141534765788501 m001 (GaussAGM+KomornikLoreti)/(1+Zeta(1,-1)) 3141534767552729 r005 Re(z^2+c),c=15/56+4/47*I,n=34 3141534770933436 m001 ln(Zeta(5))/MinimumGamma^2/cos(1) 3141534771043190 k003 Champernowne real with 19/2*n^3+7*n^2-153/2*n+63 3141534779832217 m005 (1/2*Pi+8/11)/(6/11*gamma+5/12) 3141534781047191 k003 Champernowne real with 29/3*n^3+6*n^2-224/3*n+62 3141534791051192 k003 Champernowne real with 59/6*n^3+5*n^2-437/6*n+61 3141534797542560 r005 Im(z^2+c),c=1/26+20/57*I,n=10 3141534801055193 k003 Champernowne real with 10*n^3+4*n^2-71*n+60 3141534811059194 k003 Champernowne real with 61/6*n^3+3*n^2-415/6*n+59 3141534818356109 a001 1364/39088169*121393^(7/9) 3141534818389271 a001 1364/32951280099*701408733^(7/9) 3141534818389271 a001 1364/956722026041*53316291173^(7/9) 3141534818389277 a001 682/567451585*9227465^(7/9) 3141534821063195 k003 Champernowne real with 31/3*n^3+2*n^2-202/3*n+58 3141534831067196 k003 Champernowne real with 21/2*n^3+n^2-131/2*n+57 3141534840788923 m008 (2*Pi^6+3/4)/(2*Pi^5+1/4) 3141534841071197 k003 Champernowne real with 32/3*n^3-191/3*n+56 3141534845062573 m001 (GaussAGM-OneNinth)/exp(Pi) 3141534845707680 r009 Re(z^3+c),c=-12/25+23/54*I,n=53 3141534848257150 r005 Im(z^2+c),c=-1/56+11/29*I,n=12 3141534850286522 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/6 3141534850332260 m004 10*Pi-Log[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141534850377998 m004 10*Pi-(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/6 3141534851075198 k003 Champernowne real with 65/6*n^3-n^2-371/6*n+55 3141534857404402 r005 Re(z^2+c),c=29/86+6/47*I,n=43 3141534861079199 k003 Champernowne real with 11*n^3-2*n^2-60*n+54 3141534866841276 m002 -1/(18*Pi^6)+Pi 3141534870704761 a009 7^(3/4)/(7^(2/3)-12^(1/3)) 3141534871083200 k003 Champernowne real with 67/6*n^3-3*n^2-349/6*n+53 3141534881087201 k003 Champernowne real with 34/3*n^3-4*n^2-169/3*n+52 3141534887000131 b008 5*(-1+ArcSinh[Sqrt[6]]) 3141534891091202 k003 Champernowne real with 23/2*n^3-5*n^2-109/2*n+51 3141534891514060 m001 FeigenbaumDelta^ln(2^(1/2)+1)-RenyiParking 3141534891514060 m001 RenyiParking-FeigenbaumDelta^ln(1+sqrt(2)) 3141534895026614 m001 exp(Paris)*LaplaceLimit^2/cosh(1) 3141534901095203 k003 Champernowne real with 35/3*n^3-6*n^2-158/3*n+50 3141534911099204 k003 Champernowne real with 71/6*n^3-7*n^2-305/6*n+49 3141534920049687 m001 Niven-exp(1/Pi)^Zeta(5) 3141534921103205 k003 Champernowne real with 12*n^3-8*n^2-49*n+48 3141534941201763 a007 Real Root Of 119*x^4+467*x^3+54*x^2-589*x+505 3141534954187617 m003 -71/2+Sqrt[5]/4-Tan[1/2+Sqrt[5]/2]/6 3141534956828404 r005 Re(z^2+c),c=21/62+19/41*I,n=4 3141534957712910 a007 Real Root Of -154*x^4-616*x^3-762*x^2-851*x+748 3141534967678127 m001 (GAMMA(23/24)+ArtinRank2)/(Stephens-Trott2nd) 3141534974526849 a001 710647/89*377^(13/21) 3141534985552301 m001 (cos(1)+sin(1/12*Pi))/(CareFree+Tribonacci) 3141534993882268 h001 (-8*exp(2/3)+2)/(-5*exp(-2)+5) 3141534995851018 s002 sum(A090366[n]/((exp(n)+1)*n),n=1..infinity) 3141534997657133 s002 sum(A090366[n]/(n*exp(n)+1),n=1..infinity) 3141535000121472 a003 cos(Pi*32/111)*cos(Pi*33/100) 3141535001104450 s002 sum(A090366[n]/(n*exp(n)-1),n=1..infinity) 3141535009998688 a001 1364/1346269*1597^(7/9) 3141535011801528 r005 Re(z^2+c),c=-49/118+15/41*I,n=10 3141535012659543 m001 1/GAMMA(7/24)*ln(CopelandErdos)*sin(Pi/12)^2 3141535013132416 r005 Im(z^2+c),c=-5/23+26/55*I,n=52 3141535017656614 r005 Re(z^2+c),c=25/122+18/35*I,n=29 3141535024117450 m005 (1/2*exp(1)+1/4)/(2/11*exp(1)-6/11) 3141535028207642 r005 Im(z^2+c),c=-5/6+31/139*I,n=12 3141535029256245 m001 (Catalan-ln(3))/(ln(Pi)+FeigenbaumDelta) 3141535031509035 m005 (1/2*exp(1)-1)/(3/11*Pi-2) 3141535040799439 m001 (cos(1)-sin(1/5*Pi))/(exp(-1/2*Pi)+Conway) 3141535047766135 l003 LambertW(40/93) 3141535051021710 l004 sinh(997/114) 3141535051767435 m001 (BesselJ(0,1)-ln(2))/(-BesselI(1,1)+Kolakoski) 3141535061788221 m002 -Pi^5-Cosh[Pi]/Log[Pi]+2*Tanh[Pi] 3141535062826407 m001 1/Ei(1)^2/exp(Artin)*GAMMA(13/24) 3141535075032598 r009 Re(z^3+c),c=-3/52+40/59*I,n=44 3141535082265870 m002 -Pi+Tanh[Pi]/(18*Pi^6) 3141535086886568 r005 Im(z^2+c),c=-27/106+21/43*I,n=32 3141535087505276 m005 (1/2*Pi+2/9)/(1/7*3^(1/2)-9/11) 3141535094811884 l006 ln(3644/4989) 3141535095079054 m001 FeigenbaumC*exp(1/exp(1))^Porter 3141535101119411 k006 concat of cont frac of 3141535102458146 m001 (cos(1/5*Pi)-ln(Pi))/(OneNinth-Salem) 3141535102682842 m001 Zeta(9)^2/exp(Pi)/sinh(1)^2 3141535113116006 a008 Real Root of (-4+5*x+5*x^2-6*x^3-5*x^4+2*x^5) 3141535118325316 p001 sum(1/(577*n+323)/(25^n),n=0..infinity) 3141535119944725 m001 (GAMMA(7/12)+Khinchin)/(Totient+ZetaQ(4)) 3141535135294164 a007 Real Root Of 15*x^4+502*x^3+953*x^2-449*x-642 3141535140187957 m002 -3/(E^(2*Pi)*Pi^4)+Pi 3141535141204331 m001 1/Bloch/exp(CopelandErdos)^2/BesselK(0,1) 3141535146034906 m001 Trott^2/KhintchineLevy^2/exp(GAMMA(13/24))^2 3141535162990706 m001 (RenyiParking-exp(Pi))/(-Sarnak+Trott) 3141535171591927 r002 12th iterates of z^2 + 3141535178183262 m005 (1/2*exp(1)-10/11)/(5/9*2^(1/2)-4/5) 3141535187735833 a007 Real Root Of -106*x^4-65*x^3+611*x^2-927*x-633 3141535196662852 r005 Im(z^2+c),c=27/122+11/49*I,n=16 3141535196747156 m001 1/Trott/GaussAGM(1,1/sqrt(2))/ln(sqrt(2)) 3141535201983984 r009 Re(z^3+c),c=-10/31+9/59*I,n=15 3141535210179567 l004 cosh(997/114) 3141535216994424 a005 (1/cos(16/229*Pi))^616 3141535220398190 m001 1/ln(Salem)^2*KhintchineHarmonic^2*exp(1) 3141535227149249 m001 1/ln(BesselJ(1,1))/FransenRobinson/sinh(1)^2 3141535234954058 m005 (1/2*Pi-2/9)/(2/7*2^(1/2)-5/6) 3141535240017110 r009 Re(z^3+c),c=-53/114+17/39*I,n=26 3141535245170255 r009 Re(z^3+c),c=-10/31+9/59*I,n=16 3141535249615420 l006 ln(409/9464) 3141535283975393 m001 (ln(Pi)+sin(1/12*Pi))/(gamma(1)-Artin) 3141535284061971 r005 Re(z^2+c),c=-25/74+22/49*I,n=34 3141535299794852 r005 Re(z^2+c),c=17/64+35/62*I,n=6 3141535299935952 r005 Re(z^2+c),c=27/82+5/38*I,n=40 3141535299963477 m005 (1/2*Catalan+3/5)/(4/5*gamma-1/8) 3141535305588998 a001 47/1346269*1597^(14/47) 3141535309775980 r009 Re(z^3+c),c=-39/82+16/39*I,n=64 3141535311692585 l005 168921/5041/(exp(411/71)^2-1) 3141535311843933 r005 Im(z^2+c),c=-21/110+6/13*I,n=50 3141535312311312 k006 concat of cont frac of 3141535312934295 m005 (1/2*Pi+1/7)/(5*Catalan+7/8) 3141535314117705 k007 concat of cont frac of 3141535315092501 m002 -Pi+(2*Csch[Pi])/Pi^7 3141535329479802 m002 -Pi+(5*ProductLog[Pi])/Pi^10 3141535338981689 m008 (5/6*Pi^6-4/5)/(5/6*Pi^5-1/4) 3141535340312764 m005 (17/4+1/4*5^(1/2))/(7/11*3^(1/2)+3/7) 3141535344001281 m005 (1/2*Pi+7/8)/(5*2^(1/2)+5/7) 3141535352224020 a007 Real Root Of 312*x^4+951*x^3-183*x^2-318*x-97 3141535357116992 m005 (1/2*Zeta(3)+8/9)/(3*2^(1/2)+1/2) 3141535360760281 m001 Champernowne^FeigenbaumDelta-Pi 3141535377223065 m001 1/GAMMA(17/24)^2/exp(Salem)^2/GAMMA(2/3)^2 3141535378923815 l006 ln(7055/9659) 3141535380229700 r005 Im(z^2+c),c=13/90+51/61*I,n=3 3141535422168861 m002 -4/(E^Pi*Pi^7)+Pi 3141535443516619 a003 cos(Pi*13/77)-cos(Pi*29/92) 3141535451785932 r005 Im(z^2+c),c=-125/114+1/27*I,n=30 3141535463514132 k006 concat of cont frac of 3141535473766848 a001 8/4106118243*521^(4/9) 3141535476850391 a001 1/29*(1/2*5^(1/2)+1/2)^27*4^(10/19) 3141535486736327 m001 (Pi+Shi(1))/(ln(2)+Cahen) 3141535500724618 r009 Re(z^3+c),c=-17/56+5/47*I,n=6 3141535512706894 m005 (1/3*2^(1/2)+1/8)/(6/11*gamma-1/8) 3141535512954392 h001 (3/4*exp(2)+1/10)/(5/9*exp(1)+2/7) 3141535519861496 r005 Re(z^2+c),c=-31/98+3/7*I,n=9 3141535521987328 r005 Re(z^2+c),c=-21/44+4/49*I,n=4 3141535523345130 m005 (1/5*Pi+1)/(1/5*Catalan+5) 3141535528473084 m001 exp(Tribonacci)^2*ArtinRank2/Zeta(1,2)^2 3141535528846049 m002 -Pi+(2*Sech[Pi])/Pi^7 3141535531542015 m005 (1/2*3^(1/2)+11/12)/(4/5*3^(1/2)-9/11) 3141535539626770 a007 Real Root Of -186*x^4-710*x^3-891*x^2+577*x+249 3141535541006728 s002 sum(A087790[n]/(2^n+1),n=1..infinity) 3141535553677381 r005 Re(z^2+c),c=-37/118+24/47*I,n=29 3141535554505023 m008 (5/6*Pi-1)/(1/6*Pi^5+1/2) 3141535558196740 a007 Real Root Of -124*x^4-223*x^3+792*x^2+831*x-42 3141535572430653 m001 1/GAMMA(13/24)^2*ln(Conway)^2*Zeta(3) 3141535588030614 m005 (1/2*Zeta(3)+2/9)/(3*gamma+8/9) 3141535617781092 l006 ln(287/6641) 3141535620737006 a007 Real Root Of 404*x^4-128*x^3+998*x^2-855*x-375 3141535623053699 r005 Re(z^2+c),c=-7/17+3/56*I,n=27 3141535632646447 h001 (1/4*exp(1)+1/3)/(9/10*exp(1)+7/9) 3141535639440463 m005 (1/2*exp(1)-4/7)/(8/11*2^(1/2)-7/9) 3141535646348534 a007 Real Root Of -156*x^4-309*x^3+286*x^2-881*x+24 3141535653916961 r005 Im(z^2+c),c=-123/122+19/59*I,n=10 3141535660966946 b008 -1/16*1/E^7+Pi 3141535661427471 m001 Lehmer/ln(ErdosBorwein)^2/Catalan^2 3141535671212132 k007 concat of cont frac of 3141535682442972 l006 ln(3411/4670) 3141535683142208 a007 Real Root Of 211*x^4+861*x^3+483*x^2-546*x-339 3141535687999243 m001 Pi^(1/2)/(Si(Pi)^FransenRobinson) 3141535691722208 m001 (FransenRobinson+ZetaQ(4))^(2*Pi/GAMMA(5/6)) 3141535699239863 m005 (1/3*Pi+3/7)/(1/9*gamma-1/9) 3141535702327339 r005 Re(z^2+c),c=-35/106+22/47*I,n=62 3141535706637804 r002 13th iterates of z^2 + 3141535712263203 r005 Im(z^2+c),c=-5/23+26/55*I,n=57 3141535713152626 m001 (HeathBrownMoroz-Pi*exp(Pi))/exp(Pi) 3141535714070020 r009 Re(z^3+c),c=-33/82+13/44*I,n=26 3141535719523673 a007 Real Root Of 317*x^4+318*x^3+80*x^2-719*x-227 3141535750682805 r002 23th iterates of z^2 + 3141535765607564 m001 (TwinPrimes+ZetaP(3))/(GAMMA(2/3)+Conway) 3141535766068139 a007 Real Root Of -5*x^4+641*x^3+201*x^2+948*x-30 3141535769146004 a005 (1/sin(83/193*Pi))^520 3141535776041813 m001 (gamma+Ei(1,1))/(CareFree+FeigenbaumC) 3141535788276393 p004 log(27701/20233) 3141535805046124 a007 Real Root Of -4*x^4-117*x^3+284*x^2+367*x-213 3141535806809837 r002 58th iterates of z^2 + 3141535821175702 b008 EulerGamma*(E^(5/6)+Pi) 3141535835959404 r009 Re(z^3+c),c=-41/90+11/29*I,n=54 3141535840074211 m005 (1/2*Pi+7/12)/(81/154+1/14*5^(1/2)) 3141535848928048 r005 Im(z^2+c),c=-13/22+5/102*I,n=21 3141535863126201 r005 Im(z^2+c),c=-83/122+19/44*I,n=20 3141535876351840 m005 (4/5*Pi+5)/(Pi-3/4) 3141535876351840 m006 (5/Pi+4/5)/(3/4/Pi-1) 3141535876351840 m008 (4/5*Pi+5)/(Pi-3/4) 3141535878702944 m002 4+Pi^5*Coth[Pi]+3*Tanh[Pi] 3141535882012992 a007 Real Root Of -786*x^4-535*x^3-715*x^2+902*x+345 3141535883368806 a007 Real Root Of 209*x^4-21*x^3+302*x^2-912*x-319 3141535887621144 r005 Im(z^2+c),c=-77/64+15/37*I,n=3 3141535888501959 m001 (ArtinRank2+OneNinth)/(Sarnak+Tribonacci) 3141535904179165 a007 Real Root Of -329*x^4-890*x^3+543*x^2+571*x+886 3141535906439385 m001 1/exp(sin(1))/Ei(1)*sinh(1)^2 3141535913788655 a007 Real Root Of 277*x^4+781*x^3-559*x^2-658*x+684 3141535914626301 a001 38/17*4181^(2/49) 3141535920160628 r005 Re(z^2+c),c=-17/50+18/41*I,n=40 3141535927305046 a003 cos(Pi*47/118)/sin(Pi*35/71) 3141535935475427 m004 5/3+5*Sqrt[5]*Pi-(25*Sin[Sqrt[5]*Pi])/Pi 3141535957432954 m005 (2/3+1/4*5^(1/2))/(3/4*Zeta(3)+3) 3141535962789196 r002 44th iterates of z^2 + 3141535971448156 r005 Im(z^2+c),c=1/94+15/41*I,n=14 3141535998351732 b008 -52+Sinh[1+E] 3141536007428188 l006 ln(6589/9021) 3141536013323688 m001 Pi-Trott2nd^exp(1) 3141536013687458 a003 cos(Pi*13/45)*cos(Pi*29/88) 3141536014806763 h001 (-2*exp(4)+6)/(-3*exp(7)+5) 3141536022581531 a001 1364/89*9227465^(13/21) 3141536024159500 m004 -100*Pi+(10*Csch[Sqrt[5]*Pi])/Pi 3141536024204309 m004 -20/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141536024249118 m004 -100*Pi+(10*Sech[Sqrt[5]*Pi])/Pi 3141536040324576 r005 Im(z^2+c),c=-17/30+72/115*I,n=8 3141536040979573 m001 (5^(1/2)-ln(3))/(-Zeta(1,2)+FeigenbaumD) 3141536042723567 a007 Real Root Of 224*x^4+525*x^3-518*x^2+363*x+712 3141536047278326 m001 Pi/(1+Ei(1,1))+BesselI(1,1) 3141536049627921 r005 Im(z^2+c),c=-7/36+20/43*I,n=20 3141536052118317 a001 4/2889*76^(7/37) 3141536062761271 m002 -Pi+Csch[Pi]/(5*Pi^5) 3141536062843857 m001 (ln(gamma)+ln(2^(1/2)+1))/(arctan(1/2)+Lehmer) 3141536076960967 m002 -Pi+ProductLog[Pi]/(2*Pi^8) 3141536077926237 r002 2th iterates of z^2 + 3141536090418700 q001 1223/3893 3141536093676360 m005 (1/2*Pi+3)/(6/7*exp(1)-7/8) 3141536095443236 m001 (Zeta(1/2)+GaussAGM)/(ln(gamma)-3^(1/3)) 3141536107306066 m001 BesselK(1,1)^2*Porter/exp(sqrt(2))^2 3141536113141033 r002 3th iterates of z^2 + 3141536118602032 r005 Im(z^2+c),c=-1/78+23/61*I,n=9 3141536130185603 a007 Real Root Of 245*x^4-583*x^3-164*x^2-567*x+210 3141536137575469 a007 Real Root Of 16*x^4-86*x^3-181*x^2-554*x-159 3141536138514162 k007 concat of cont frac of 3141536141149245 m001 (3^(1/2)-sin(1))/(GAMMA(3/4)+ln(5)) 3141536149151974 m001 GAMMA(2/3)^PisotVijayaraghavan/PlouffeB 3141536155155527 b008 Pi+(3*ExpIntegralEi[-8])/2 3141536157576425 r009 Im(z^3+c),c=-31/102+17/59*I,n=18 3141536160623312 k007 concat of cont frac of 3141536163514585 a007 Real Root Of -818*x^4+642*x^3-541*x^2+709*x+304 3141536163701543 r002 51th iterates of z^2 + 3141536166583342 m005 (4*Catalan-1/2)/(5*2^(1/2)+3) 3141536168441402 m002 -2/(5*E^Pi*Pi^5)+Pi 3141536169883583 m001 1/OneNinth^2/exp(FransenRobinson)^2 3141536171111611 k007 concat of cont frac of 3141536173838913 s003 concatenated sequence A103490 3141536187934974 m005 (1/3*3^(1/2)-1/10)/(3/5*2^(1/2)-5/6) 3141536188962456 r009 Im(z^3+c),c=-14/31+10/51*I,n=22 3141536192685073 r005 Re(z^2+c),c=-41/118+22/53*I,n=32 3141536203198793 a003 cos(Pi*18/97)*cos(Pi*43/114) 3141536204752694 a007 Real Root Of 149*x^4+273*x^3-677*x^2+86*x+903 3141536212154673 k009 concat of cont frac of 3141536213408447 a007 Real Root Of 277*x^4-949*x^3-754*x^2-407*x+229 3141536214152912 k009 concat of cont frac of 3141536239351218 m001 (exp(Pi)+Chi(1))/(-cos(1)+Conway) 3141536256897951 m001 1/GAMMA(5/6)^2*ln((2^(1/3)))/gamma 3141536256901640 m001 1/exp(Pi)/Robbin^2/sqrt(Pi)^2 3141536260185884 r005 Im(z^2+c),c=-1/27+16/41*I,n=23 3141536260546591 a001 3571/102334155*121393^(7/9) 3141536260579753 a001 3571/86267571272*701408733^(7/9) 3141536260579753 a001 3571/2504730781961*53316291173^(7/9) 3141536260579759 a001 3571/2971215073*9227465^(7/9) 3141536268903869 m001 Ei(1)/exp(KhintchineHarmonic)*GAMMA(7/24)^2 3141536272367376 m005 (1/2*exp(1)+3/4)/(7/9*2^(1/2)-3/7) 3141536273727566 m002 -Pi+Sech[Pi]/(5*Pi^5) 3141536281707193 a007 Real Root Of 141*x^4+233*x^3-888*x^2-984*x-837 3141536284129207 r005 Im(z^2+c),c=-37/118+23/45*I,n=62 3141536286405887 r005 Re(z^2+c),c=-37/118+19/37*I,n=64 3141536289325754 r005 Im(z^2+c),c=-19/54+23/56*I,n=3 3141536293289029 r009 Re(z^3+c),c=-10/31+9/59*I,n=17 3141536300546536 a007 Real Root Of -27*x^4-836*x^3+385*x^2+53*x+414 3141536309531815 a001 7/1836311903*6557470319842^(16/23) 3141536309532722 a001 7/832040*102334155^(16/23) 3141536314311101 k008 concat of cont frac of 3141536321123133 k007 concat of cont frac of 3141536338307682 a007 Real Root Of -188*x^4-363*x^3+713*x^2-213*x-649 3141536339326297 m001 (exp(1)-Riemann2ndZero)/(Pi-Psi(2,1/3)) 3141536347334834 m003 -63/2+(Sqrt[5]*Sinh[1/2+Sqrt[5]/2])/64 3141536350937623 r005 Re(z^2+c),c=-93/82+11/46*I,n=16 3141536356240188 l006 ln(3178/4351) 3141536357804855 m001 Robbin-StolarskyHarborth^BesselK(0,1) 3141536360939855 r005 Re(z^2+c),c=-127/110+1/5*I,n=38 3141536370956780 h001 (6/7*exp(2)+2/5)/(5/8*exp(1)+4/9) 3141536379861016 m001 (Kolakoski+MinimumGamma)/(Ei(1,1)+Zeta(1,2)) 3141536389987948 m001 Pi-gamma(3)*Trott2nd 3141536392846600 a001 24476/89*34^(2/53) 3141536407066662 m001 (Paris-Sarnak)/(GAMMA(17/24)+CareFree) 3141536411490936 r005 Im(z^2+c),c=-23/82+26/53*I,n=23 3141536429905934 m004 1+(3*Sqrt[5])/Pi+(Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3141536446959595 a007 Real Root Of 200*x^4-319*x^3-753*x^2-222*x+152 3141536451521236 a007 Real Root Of 782*x^4+488*x^3+x^2-669*x+21 3141536452189554 a001 3571/3524578*1597^(7/9) 3141536458290946 a007 Real Root Of 23*x^4+728*x^3+169*x^2-67*x-25 3141536463515254 r005 Re(z^2+c),c=-43/102+25/37*I,n=6 3141536466773683 m002 -5/(4*E^Pi*Pi^6)+Pi 3141536470093510 a007 Real Root Of -479*x^4+722*x^3+514*x^2+145*x-114 3141536470959347 a001 9349/267914296*121393^(7/9) 3141536470992509 a001 9349/225851433717*701408733^(7/9) 3141536470992509 a001 9349/6557470319842*53316291173^(7/9) 3141536470992514 a001 9349/7778742049*9227465^(7/9) 3141536473978352 a001 7/29*(1/2*5^(1/2)+1/2)^31*29^(10/23) 3141536474071683 r009 Re(z^3+c),c=-10/31+9/59*I,n=21 3141536483349530 r009 Re(z^3+c),c=-10/31+9/59*I,n=22 3141536483907395 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(5*Pi^5) 3141536488673613 r009 Re(z^3+c),c=-10/31+9/59*I,n=26 3141536488703168 r009 Re(z^3+c),c=-10/31+9/59*I,n=27 3141536488785218 r009 Re(z^3+c),c=-10/31+9/59*I,n=28 3141536488793796 r009 Re(z^3+c),c=-10/31+9/59*I,n=32 3141536488794601 r009 Re(z^3+c),c=-10/31+9/59*I,n=33 3141536488794756 r009 Re(z^3+c),c=-10/31+9/59*I,n=31 3141536488794952 r009 Re(z^3+c),c=-10/31+9/59*I,n=37 3141536488794956 r009 Re(z^3+c),c=-10/31+9/59*I,n=38 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=39 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=43 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=42 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=44 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=48 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=49 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=54 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=53 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=55 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=59 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=60 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=64 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=63 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=61 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=62 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=58 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=57 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=56 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=50 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=52 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=51 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=47 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=46 3141536488794962 r009 Re(z^3+c),c=-10/31+9/59*I,n=45 3141536488794963 r009 Re(z^3+c),c=-10/31+9/59*I,n=41 3141536488794963 r009 Re(z^3+c),c=-10/31+9/59*I,n=40 3141536488794979 r009 Re(z^3+c),c=-10/31+9/59*I,n=36 3141536488795046 r009 Re(z^3+c),c=-10/31+9/59*I,n=34 3141536488795055 r009 Re(z^3+c),c=-10/31+9/59*I,n=35 3141536488801126 r009 Re(z^3+c),c=-10/31+9/59*I,n=30 3141536488807954 r009 Re(z^3+c),c=-10/31+9/59*I,n=29 3141536489078517 r009 Re(z^3+c),c=-10/31+9/59*I,n=25 3141536489554354 r009 Re(z^3+c),c=-10/31+9/59*I,n=23 3141536489752690 m001 sin(1)^2/KhintchineHarmonic^2*ln(sin(Pi/12)) 3141536490021889 r009 Re(z^3+c),c=-10/31+9/59*I,n=24 3141536491174875 r009 Re(z^3+c),c=-10/31+9/59*I,n=20 3141536492531041 a007 Real Root Of 257*x^4+538*x^3-781*x^2-92*x-933 3141536501658154 a001 24476/701408733*121393^(7/9) 3141536501691316 a001 24476/591286729879*701408733^(7/9) 3141536501691322 a001 12238/10182505537*9227465^(7/9) 3141536505015286 m001 PlouffeB/(1+3^(1/2))^(1/2)/Catalan 3141536506137050 a001 1/28657*121393^(7/9) 3141536506170212 a001 64079/1548008755920*701408733^(7/9) 3141536506170217 a001 64079/53316291173*9227465^(7/9) 3141536506790512 a001 167761/4807526976*121393^(7/9) 3141536506823674 a001 167761/4052739537881*701408733^(7/9) 3141536506823679 a001 167761/139583862445*9227465^(7/9) 3141536506885850 a001 439204/12586269025*121393^(7/9) 3141536506899760 a001 1149851/32951280099*121393^(7/9) 3141536506901790 a001 3010349/86267571272*121393^(7/9) 3141536506902086 a001 7881196/225851433717*121393^(7/9) 3141536506902129 a001 20633239/591286729879*121393^(7/9) 3141536506902135 a001 54018521/1548008755920*121393^(7/9) 3141536506902136 a001 141422324/4052739537881*121393^(7/9) 3141536506902136 a001 370248451/10610209857723*121393^(7/9) 3141536506902136 a001 228826127/6557470319842*121393^(7/9) 3141536506902137 a001 87403803/2504730781961*121393^(7/9) 3141536506902139 a001 33385282/956722026041*121393^(7/9) 3141536506902156 a001 12752043/365435296162*121393^(7/9) 3141536506902269 a001 4870847/139583862445*121393^(7/9) 3141536506903044 a001 1860498/53316291173*121393^(7/9) 3141536506908357 a001 710647/20365011074*121393^(7/9) 3141536506919012 a001 439204/10610209857723*701408733^(7/9) 3141536506919018 a001 219602/182717648081*9227465^(7/9) 3141536506932928 a001 1149851/956722026041*9227465^(7/9) 3141536506934957 a001 3010349/2504730781961*9227465^(7/9) 3141536506935253 a001 3940598/3278735159921*9227465^(7/9) 3141536506935323 a001 4250681/3536736619241*9227465^(7/9) 3141536506935436 a001 4870847/4052739537881*9227465^(7/9) 3141536506936212 a001 1/832040*9227465^(7/9) 3141536506941525 a001 710647/591286729879*9227465^(7/9) 3141536506944773 a001 271443/7778742049*121393^(7/9) 3141536506977935 a001 271443/6557470319842*701408733^(7/9) 3141536506977941 a001 90481/75283811239*9227465^(7/9) 3141536507194373 a001 103682/2971215073*121393^(7/9) 3141536507227535 a001 103682/2504730781961*701408733^(7/9) 3141536507227541 a001 51841/43133785636*9227465^(7/9) 3141536508180905 m001 exp(Robbin)*ArtinRank2^2*gamma^2 3141536508905159 a001 39603/1134903170*121393^(7/9) 3141536508938321 a001 39603/956722026041*701408733^(7/9) 3141536508938327 a001 13201/10983760033*9227465^(7/9) 3141536514834882 r005 Re(z^2+c),c=-11/34+29/62*I,n=23 3141536517398085 r005 Re(z^2+c),c=41/126+2/35*I,n=31 3141536518958321 r002 48th iterates of z^2 + 3141536520631060 a001 15127/433494437*121393^(7/9) 3141536520664222 a001 15127/365435296162*701408733^(7/9) 3141536520664222 a001 2161/1515744265389*53316291173^(7/9) 3141536520664228 a001 15127/12586269025*9227465^(7/9) 3141536522558710 h001 (3/5*exp(1)+5/11)/(4/5*exp(2)+8/11) 3141536526292316 m001 (BesselI(0,2)+StolarskyHarborth)^MertensB3 3141536526869023 a005 (1/sin(72/161*Pi))^916 3141536530385112 l006 ln(165/3818) 3141536552969264 a007 Real Root Of 306*x^4+772*x^3-710*x^2-351*x+35 3141536554897390 r009 Im(z^3+c),c=-31/66+2/11*I,n=25 3141536556701072 r004 Re(z^2+c),c=-1/6-13/22*I,z(0)=I,n=9 3141536576197626 r009 Re(z^3+c),c=-10/31+9/59*I,n=19 3141536587767428 a007 Real Root Of 362*x^4-522*x^3+478*x^2-863*x-338 3141536591882810 m001 (Ei(1)-BesselI(0,2))/(Khinchin-MinimumGamma) 3141536599253825 r009 Re(z^3+c),c=-59/126+21/53*I,n=30 3141536601001581 a001 5778/165580141*121393^(7/9) 3141536601034743 a001 5778/139583862445*701408733^(7/9) 3141536601034743 a001 5778/4052739537881*53316291173^(7/9) 3141536601034749 a001 321/267084832*9227465^(7/9) 3141536609726098 p001 sum(1/(404*n+277)/n/(5^n),n=1..infinity) 3141536611909575 m001 GAMMA(17/24)/Lehmer/exp(cos(Pi/12))^2 3141536619390961 m005 (1/2*Zeta(3)+3)/(4/9*Pi-1/4) 3141536643147902 r009 Re(z^3+c),c=-10/31+9/59*I,n=18 3141536645978674 r005 Re(z^2+c),c=-19/110+21/34*I,n=46 3141536649708135 a001 199/144*196418^(26/41) 3141536662602366 a001 9349/9227465*1597^(7/9) 3141536678352039 a007 Real Root Of 333*x^4-430*x^3+393*x^2-575*x-236 3141536684337873 m002 -Pi+6/(Pi^10*Log[Pi]) 3141536693244929 r005 Im(z^2+c),c=23/90+2/11*I,n=10 3141536693301181 a001 24476/24157817*1597^(7/9) 3141536697780078 a001 64079/63245986*1597^(7/9) 3141536698433540 a001 167761/165580141*1597^(7/9) 3141536698528879 a001 439204/433494437*1597^(7/9) 3141536698542789 a001 1149851/1134903170*1597^(7/9) 3141536698544818 a001 3010349/2971215073*1597^(7/9) 3141536698545115 a001 7881196/7778742049*1597^(7/9) 3141536698545158 a001 20633239/20365011074*1597^(7/9) 3141536698545164 a001 54018521/53316291173*1597^(7/9) 3141536698545165 a001 141422324/139583862445*1597^(7/9) 3141536698545165 a001 370248451/365435296162*1597^(7/9) 3141536698545165 a001 969323029/956722026041*1597^(7/9) 3141536698545165 a001 2537720636/2504730781961*1597^(7/9) 3141536698545165 a001 6643838879/6557470319842*1597^(7/9) 3141536698545165 a001 4870846/4807525989*1597^(7/9) 3141536698545165 a001 4106118243/4052739537881*1597^(7/9) 3141536698545165 a001 1568397607/1548008755920*1597^(7/9) 3141536698545165 a001 599074578/591286729879*1597^(7/9) 3141536698545165 a001 228826127/225851433717*1597^(7/9) 3141536698545166 a001 87403803/86267571272*1597^(7/9) 3141536698545168 a001 33385282/32951280099*1597^(7/9) 3141536698545184 a001 12752043/12586269025*1597^(7/9) 3141536698545298 a001 4870847/4807526976*1597^(7/9) 3141536698546073 a001 1860498/1836311903*1597^(7/9) 3141536698551386 a001 710647/701408733*1597^(7/9) 3141536698587802 a001 271443/267914296*1597^(7/9) 3141536698837402 a001 103682/102334155*1597^(7/9) 3141536698931616 a007 Real Root Of 84*x^4-282*x^3+27*x^2-674*x+217 3141536700548189 a001 39603/39088169*1597^(7/9) 3141536703567394 m001 (Pi-3^(1/2))/(TreeGrowth2nd+ZetaQ(3)) 3141536712274093 a001 15127/14930352*1597^(7/9) 3141536728187601 a003 cos(Pi*19/48)*sin(Pi*35/81) 3141536730448841 a001 271443/377*2584^(3/16) 3141536731599028 l006 ln(6123/8383) 3141536743151809 b008 -1/6*1/E^8+Pi 3141536747284761 a001 64079/377*5702887^(3/16) 3141536756251790 m001 Porter/Bloch^2*exp(GAMMA(11/24))^2 3141536761778777 a001 15127/377*12586269025^(3/16) 3141536762582348 m004 -100*Pi+Pi*Csch[Sqrt[5]*Pi] 3141536762670797 m004 -100*Pi+Pi*Sech[Sqrt[5]*Pi] 3141536762792739 s002 sum(A163276[n]/(2^n+1),n=1..infinity) 3141536764418076 a007 Real Root Of 211*x^4-956*x^3+431*x^2-802*x+237 3141536783101121 k002 Champernowne real with n^2+7*n+23 3141536792644635 a001 5778/5702887*1597^(7/9) 3141536794489578 m008 (4/5*Pi^3-2/3)/(4/5*Pi^6-3/4) 3141536801256806 r005 Re(z^2+c),c=-29/94+19/36*I,n=59 3141536803502627 r005 Re(z^2+c),c=-37/94+9/38*I,n=14 3141536805241255 a007 Real Root Of -148*x^4+818*x^3-822*x^2-108*x+74 3141536814695307 m002 -Pi+ProductLog[Pi]/(20*Pi^6) 3141536833815010 m002 -E^Pi+Pi^3+Pi^5+ProductLog[Pi]/4 3141536850964203 r005 Im(z^2+c),c=-21/122+24/53*I,n=24 3141536879125176 a007 Real Root Of 330*x^4-195*x^3+876*x^2-437*x-233 3141536880211267 m004 Sqrt[5]/(6*Pi)-(5*Sqrt[5]*Tan[Sqrt[5]*Pi])/Pi 3141536898451842 m001 (ln(5)-FeigenbaumKappa)/(Paris+Rabbit) 3141536898746444 m001 BesselI(1,2)^(MinimumGamma/Lehmer) 3141536899177523 m001 (exp(Pi)-ln(2^(1/2)+1))/(-Ei(1)+KhinchinLevy) 3141536903764945 v003 sum((7/2*n^2+1/2*n+16)/(n!+1),n=1..infinity) 3141536912588017 m001 Pi-ZetaQ(4)^GAMMA(7/12) 3141536915818911 r005 Re(z^2+c),c=-75/122+28/51*I,n=5 3141536933941676 m007 (-5/6*gamma-5/3*ln(2)+3/4)/(-1/5*gamma-1/6) 3141536960603016 r009 Im(z^3+c),c=-31/66+7/39*I,n=53 3141536966918419 a007 Real Root Of 125*x^4+252*x^3-543*x^2-77*x+755 3141536975173632 h001 (4/9*exp(1)+7/10)/(8/11*exp(2)+7/10) 3141536983679984 r005 Re(z^2+c),c=-29/98+17/28*I,n=64 3141536989117421 g005 Pi^(1/2)*GAMMA(7/10)*GAMMA(5/8)/GAMMA(1/11) 3141536990010549 a007 Real Root Of -826*x^4-860*x^3-13*x^2+921*x+272 3141536992256222 m001 1/exp(Zeta(3))^2*Zeta(1/2)*cosh(1)^2 3141536992808663 r005 Re(z^2+c),c=11/50+26/57*I,n=52 3141536994537027 a007 Real Root Of -97*x^4+67*x^3+798*x^2-909*x+794 3141536995974548 m001 1/ln(CareFree)^2/MertensB1*Zeta(7) 3141537023689652 a001 199/121393*987^(5/53) 3141537024894320 m005 (1/2*Pi-4/11)/(3/11*gamma-4) 3141537027087028 r005 Re(z^2+c),c=-19/50+18/61*I,n=20 3141537028909964 r005 Re(z^2+c),c=-29/70+4/27*I,n=7 3141537050097656 m005 (1/3*Zeta(3)+1/7)/(4/5*exp(1)-4/9) 3141537054662016 r005 Re(z^2+c),c=2/17+13/47*I,n=11 3141537055927543 m001 ln(gamma)^(5^(1/2)*Sierpinski) 3141537068410098 m004 -10*Pi+25*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141537068586028 m004 -10*Pi+25*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141537078626048 r005 Re(z^2+c),c=-27/122+23/48*I,n=5 3141537098041849 s002 sum(A028232[n]/(n^3*2^n-1),n=1..infinity) 3141537102427562 m006 (3/5/Pi-3)/(1/6*exp(2*Pi)+1/6) 3141537111536438 a007 Real Root Of 218*x^4+294*x^3+465*x^2-325*x-141 3141537123623986 a008 Real Root of (10+17*x+3*x^2-3*x^3) 3141537133213128 k006 concat of cont frac of 3141537134039811 m005 (1/3*3^(1/2)+2/9)/(7/8*exp(1)+1/6) 3141537134073224 a007 Real Root Of 432*x^4-501*x^3-108*x^2-926*x-29 3141537135867860 m001 1/(3^(1/3))^2*Trott/ln(GAMMA(1/4))^2 3141537136655174 l006 ln(2945/4032) 3141537142111212 k008 concat of cont frac of 3141537151869327 a001 2207/63245986*121393^(7/9) 3141537151902489 a001 2207/53316291173*701408733^(7/9) 3141537151902489 a001 2207/1548008755920*53316291173^(7/9) 3141537151902495 a001 2207/1836311903*9227465^(7/9) 3141537157589682 m001 (Pi^(1/2)+Sierpinski)/(Tribonacci-ZetaP(2)) 3141537167424446 m001 exp(BesselJ(1,1))^2*Kolakoski*GAMMA(13/24) 3141537169256614 q001 748/2381 3141537170025474 s002 sum(A236717[n]/(16^n),n=1..infinity) 3141537171500368 m005 (1/2*Catalan-8/9)/(5*exp(1)+1/8) 3141537174937892 m005 (1/2*gamma+4/7)/(5/11*gamma-3) 3141537180295914 m001 (gamma(1)-Kolakoski)/(Magata-MasserGramain) 3141537182709035 r005 Im(z^2+c),c=1/20+18/31*I,n=7 3141537183552812 h001 (5/11*exp(2)+2/11)/(1/5*exp(1)+7/12) 3141537187349736 m001 OneNinth^(Pi*csc(5/24*Pi)/GAMMA(19/24))-Pi 3141537187349736 m001 OneNinth^GAMMA(5/24)-Pi 3141537190902560 r009 Im(z^3+c),c=-8/17+5/28*I,n=62 3141537191268706 r009 Re(z^3+c),c=-10/21+13/33*I,n=29 3141537205557274 r009 Re(z^3+c),c=-23/94+19/21*I,n=3 3141537207936736 m001 (CareFree-Grothendieck)/(Otter+Weierstrass) 3141537219841112 r005 Im(z^2+c),c=-21/110+6/13*I,n=52 3141537222560439 m005 (2/5*Catalan+5)/(-1/2+3/10*5^(1/2)) 3141537232575842 l006 ln(373/8631) 3141537243061002 r009 Im(z^3+c),c=-37/86+11/51*I,n=15 3141537251508627 m001 (-ArtinRank2+Niven)/(AlladiGrinstead-sin(1)) 3141537255815321 r005 Im(z^2+c),c=-14/19+7/29*I,n=48 3141537271955023 r005 Im(z^2+c),c=3/122+9/25*I,n=10 3141537279645530 h001 (3/7*exp(1)+4/7)/(5/8*exp(2)+10/11) 3141537285673263 b008 (3*FresnelS[1/10])/5 3141537292340112 s002 sum(A164302[n]/(exp(n)-1),n=1..infinity) 3141537294130038 r005 Re(z^2+c),c=-37/122+22/41*I,n=64 3141537294691132 m001 KhinchinHarmonic^Gompertz+MadelungNaCl 3141537304035099 r005 Im(z^2+c),c=25/114+12/53*I,n=17 3141537320010768 r009 Im(z^3+c),c=-31/102+17/59*I,n=17 3141537322086878 r005 Im(z^2+c),c=31/106+7/47*I,n=35 3141537324239646 m001 (ln(5)-ln(2+3^(1/2)))/(FeigenbaumB+Paris) 3141537330490570 r005 Im(z^2+c),c=1/36+21/59*I,n=32 3141537343512528 a001 1/987*1597^(7/9) 3141537355678613 b008 -9/E^12+Pi 3141537361772386 r005 Re(z^2+c),c=-23/66+19/46*I,n=29 3141537365821188 a007 Real Root Of -131*x^4-405*x^3-203*x^2-984*x-885 3141537367811105 m001 Zeta(1,2)+OrthogonalArrays^Robbin 3141537379050789 a007 Real Root Of -149*x^4-285*x^3+575*x^2+164*x+517 3141537382587780 m001 GAMMA(11/12)/(GAMMA(7/12)+FeigenbaumC) 3141537385028059 a001 36/19*843^(22/29) 3141537385763711 b008 Pi-Zeta[9,3] 3141537386830449 h005 exp(sin(Pi*10/49)/cos(Pi*13/40)) 3141537387942234 r005 Im(z^2+c),c=-125/114+1/27*I,n=29 3141537405705379 a007 Real Root Of -273*x^4-906*x^3-102*x^2+97*x-188 3141537406754249 a007 Real Root Of -103*x^4+87*x^3-551*x^2+868*x-220 3141537408526626 m002 -Pi+(Log[Pi]*ProductLog[Pi])/(E^Pi*Pi^6) 3141537414302019 m001 (DuboisRaymond-Riemann2ndZero)/(Zeta(5)-Artin) 3141537421810181 k007 concat of cont frac of 3141537429930200 m001 (FeigenbaumAlpha-Otter)^MinimumGamma 3141537431947533 r005 Im(z^2+c),c=-23/74+31/42*I,n=3 3141537459248334 r005 Re(z^2+c),c=-7/25+31/54*I,n=59 3141537464045941 m005 (1/2*Catalan-8/9)/(6*5^(1/2)+3/10) 3141537468920967 m001 (Ei(1)+polylog(4,1/2))/(ln(5)-sin(1)) 3141537470716858 h001 (7/10*exp(2)+4/9)/(2/11*exp(2)+4/9) 3141537471309763 m002 -1/(6*Pi^7)+Pi 3141537473690108 a007 Real Root Of 208*x^4-193*x^3+994*x^2-795*x+24 3141537475576350 m002 4/E^Pi+(Pi^3*Cosh[Pi])/Log[Pi] 3141537482383411 m001 1/exp(Porter)*Paris*sinh(1)^2 3141537489910909 p001 sum((-1)^n/(379*n+7)/n/(8^n),n=1..infinity) 3141537491103991 a007 Real Root Of 28*x^4+884*x^3+123*x^2-455*x-211 3141537492506471 a005 (1/cos(12/203*Pi))^66 3141537503192960 m005 (1/2*Catalan-3/4)/(1/6*gamma+5/6) 3141537515776708 r005 Im(z^2+c),c=-19/106+21/46*I,n=47 3141537522094868 m001 1/GAMMA(5/24)^2/Rabbit/exp(sin(1)) 3141537522395423 a003 cos(Pi*1/63)*cos(Pi*43/108) 3141537522977354 m009 (1/6*Psi(1,3/4)+3)/(6*Catalan+3/4*Pi^2-2) 3141537540665198 m001 GAMMA(17/24)-Psi(1,1/3)^Cahen 3141537548703561 m001 TreeGrowth2nd*Weierstrass^ZetaP(2) 3141537561322264 r009 Im(z^3+c),c=-5/66+13/38*I,n=5 3141537570208089 b008 -1/45*1/E^6+Pi 3141537575078133 l006 ln(5657/7745) 3141537581422224 k006 concat of cont frac of 3141537581693636 m005 (1/2*2^(1/2)+1/5)/(9/10*5^(1/2)+7/8) 3141537611285255 h005 exp(cos(Pi*1/41)+cos(Pi*24/53)) 3141537626369736 r005 Re(z^2+c),c=-27/122+31/53*I,n=25 3141537630598594 r005 Im(z^2+c),c=9/50+8/31*I,n=25 3141537638167596 r005 Im(z^2+c),c=-51/44+8/35*I,n=8 3141537645606357 m002 (-3*Coth[Pi])/Pi^4+4*Sech[Pi] 3141537646487514 m001 (PisotVijayaraghavan-gamma(3))/BesselK(0,1) 3141537652831073 m001 Pi*Psi(1,1/3)+ln(2)/ln(10)-BesselK(1,1) 3141537661889521 r005 Im(z^2+c),c=-41/114+3/61*I,n=14 3141537668020178 m005 (1/2*gamma-4/11)/(4/5*Pi-1/8) 3141537670406018 b008 11*ArcSinh[26/3] 3141537671580270 r005 Im(z^2+c),c=1/36+21/59*I,n=22 3141537677025097 m002 -Pi+Tanh[Pi]/(6*Pi^7) 3141537680464028 r009 Re(z^3+c),c=-15/74+25/46*I,n=2 3141537687202899 m005 (1/2*gamma-2/5)/(9/10*Zeta(3)-8/11) 3141537695008038 p003 LerchPhi(1/3,4,321/238) 3141537701847249 r002 39th iterates of z^2 + 3141537706660105 m001 (3^(1/2)-Robbin)/Magata 3141537715643628 r005 Im(z^2+c),c=29/86+5/54*I,n=46 3141537722854107 a001 199/6765*225851433717^(13/21) 3141537749777339 m009 (8/3*Catalan+1/3*Pi^2-1)/(3/4*Psi(1,3/4)-2/5) 3141537755937677 s002 sum(A158439[n]/(n^3*pi^n+1),n=1..infinity) 3141537756844312 m001 GlaisherKinkelin*exp(Cahen)/log(1+sqrt(2))^2 3141537757831963 a007 Real Root Of -184*x^4+496*x^3-859*x^2+901*x+385 3141537758587270 m006 (4/5*Pi^2+1/6)/(2/5*Pi-1) 3141537758587270 m008 (4/5*Pi^2+1/6)/(2/5*Pi-1) 3141537762203833 m004 (5*Pi)/2+(50*Csc[Sqrt[5]*Pi])/Pi 3141537782093581 a007 Real Root Of 13*x^4+417*x^3+299*x^2+879*x-834 3141537783732251 a005 (1/cos(5/138*Pi))^1595 3141537784466315 a001 1346269/199*18^(17/32) 3141537788858538 m001 1/exp(OneNinth)/FransenRobinson^2/GAMMA(1/4) 3141537789601791 l006 ln(208/4813) 3141537794211301 a007 Real Root Of 31*x^4+956*x^3-574*x^2-412*x-709 3141537806502689 a007 Real Root Of -318*x^4-989*x^3+4*x^2-6*x+252 3141537811327345 r005 Im(z^2+c),c=-25/18+18/193*I,n=5 3141537816473883 m001 1/GAMMA(1/3)/Riemann2ndZero/exp(sqrt(3)) 3141537818829976 m008 (1/4*Pi^5+2/3)/(4/5*Pi^5+5/6) 3141537835264388 r002 61i'th iterates of 2*x/(1-x^2) of 3141537845399850 r005 Im(z^2+c),c=1/36+21/59*I,n=31 3141537851995298 r005 Im(z^2+c),c=-1/78+17/45*I,n=24 3141537858320864 a001 21/76*47^(1/30) 3141537861746736 m001 (sin(1/12*Pi)-ln(2+3^(1/2)))/(Otter+ThueMorse) 3141537864043540 r005 Im(z^2+c),c=1/36+21/59*I,n=29 3141537896911725 a007 Real Root Of 158*x^4+545*x^3+403*x^2+610*x-553 3141537897620307 m004 -100*Pi+(6*Csch[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141537897706960 m004 -100*Pi+(6*Sech[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141537899358152 m002 -Pi+(6*Csch[Pi])/Pi^8 3141537902290687 r005 Im(z^2+c),c=-15/74+2/47*I,n=6 3141537908083112 b008 Sqrt[2]*(1+E^(1/5)) 3141537912371603 r005 Re(z^2+c),c=-15/22+51/127*I,n=5 3141537914218604 r005 Re(z^2+c),c=-11/28+12/37*I,n=7 3141537917149895 r005 Re(z^2+c),c=-13/36+10/27*I,n=48 3141537920938018 r009 Im(z^3+c),c=-55/106+29/63*I,n=26 3141537923898319 r005 Im(z^2+c),c=-15/22+85/116*I,n=4 3141537926114873 a007 Real Root Of -335*x^4-780*x^3+525*x^2-818*x+695 3141537926672360 r009 Re(z^3+c),c=-49/118+14/61*I,n=4 3141537930007750 m001 1/FeigenbaumD^2*Conway^2/exp(Zeta(7))^2 3141537936982641 r002 40th iterates of z^2 + 3141537948362276 r005 Im(z^2+c),c=-53/98+35/61*I,n=64 3141537950539517 p004 log(29873/1291) 3141537953931270 r005 Re(z^2+c),c=-23/60+8/29*I,n=16 3141537956585146 m001 (Trott2nd+ZetaQ(2))/Sierpinski 3141537963703097 a008 Real Root of x^4-x^3-28*x^2+57*x+327 3141537977648503 r005 Re(z^2+c),c=-45/118+15/52*I,n=21 3141537984755466 m001 Riemann2ndZero/exp(Porter)/cosh(1) 3141537993334834 a001 7*10610209857723^(5/14) 3141537994621017 a007 Real Root Of 332*x^4+949*x^3-276*x^2-175*x-740 3141538011610642 m001 ln(TwinPrimes)^2/Kolakoski^2*GAMMA(1/12) 3141538014250249 m005 (1/2*3^(1/2)-1/12)/(5/12*Zeta(3)-3/4) 3141538023297136 b008 Pi+ExpIntegralEi[-23/3] 3141538026382971 a007 Real Root Of -117*x^4-133*x^3+531*x^2-529*x+370 3141538046268094 a007 Real Root Of 184*x^4+553*x^3-167*x^2+2*x+878 3141538051167938 l006 ln(2712/3713) 3141538052294448 r002 45th iterates of z^2 + 3141538064737197 a003 sin(Pi*8/99)/cos(Pi*8/39) 3141538079467434 a009 10^(3/4)/(23^(1/2)-8)^(1/2) 3141538086995429 a007 Real Root Of -643*x^4-697*x^3-41*x^2+827*x+26 3141538088478353 r005 Im(z^2+c),c=-41/114+27/49*I,n=60 3141538093759799 a007 Real Root Of 306*x^4+556*x^3-947*x^2+942*x-261 3141538099164969 m001 (GAMMA(2/3)-Kolakoski)/(Mills+Weierstrass) 3141538103477755 m002 -Pi+(6*Sech[Pi])/Pi^8 3141538104359749 r009 Im(z^3+c),c=-31/102+17/59*I,n=21 3141538104593747 m001 (gamma+Grothendieck)/(Sarnak+Trott2nd) 3141538111154336 m005 (1/2*exp(1)+4)/(3/5*3^(1/2)+2/3) 3141538116160123 k006 concat of cont frac of 3141538117396690 r005 Im(z^2+c),c=1/36+21/59*I,n=35 3141538127420382 r005 Re(z^2+c),c=-41/106+26/49*I,n=6 3141538181721376 m001 (HardyLittlewoodC4-Porter)/(Pi-ln(gamma)) 3141538183786201 m005 (5/12+1/4*5^(1/2))/(3/7*2^(1/2)-11/12) 3141538184973500 p004 log(13063/12659) 3141538185833169 m001 AlladiGrinstead+FransenRobinson-PlouffeB 3141538193982747 m001 (Pi+ln(2^(1/2)+1))/(CopelandErdos-OneNinth) 3141538203547582 r005 Re(z^2+c),c=-25/66+27/52*I,n=26 3141538207920722 m001 (GAMMA(23/24)-Kolakoski)/(Salem-TreeGrowth2nd) 3141538209754714 a007 Real Root Of 32*x^4+995*x^3-309*x^2+445*x-167 3141538209992527 m001 Pi-ZetaQ(2)^ReciprocalFibonacci 3141538215913127 m002 3+Pi+Pi^5+2*Tanh[Pi] 3141538219556679 r005 Im(z^2+c),c=-43/90+38/63*I,n=55 3141538225325802 r005 Im(z^2+c),c=-153/118+1/34*I,n=49 3141538225907964 a007 Real Root Of -125*x^4-305*x^3+21*x^2-725*x+234 3141538227131806 s002 sum(A003279[n]/(exp(n)),n=1..infinity) 3141538231753349 r005 Re(z^2+c),c=-35/114+17/32*I,n=59 3141538232702819 r009 Re(z^3+c),c=-7/19+13/51*I,n=5 3141538245151578 a005 (1/sin(69/197*Pi))^50 3141538252384349 m001 DuboisRaymond+Otter-ZetaQ(3) 3141538256006998 r005 Re(z^2+c),c=11/122+16/43*I,n=32 3141538261744532 r005 Re(z^2+c),c=-26/27+9/49*I,n=32 3141538266144403 r002 63th iterates of z^2 + 3141538285876239 r002 25th iterates of z^2 + 3141538290645547 r005 Im(z^2+c),c=-29/110+8/11*I,n=6 3141538295759074 r005 Re(z^2+c),c=-57/44+11/42*I,n=2 3141538301021821 r005 Im(z^2+c),c=-8/31+23/47*I,n=40 3141538305212116 k007 concat of cont frac of 3141538327916156 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 3141538328002128 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 3141538328542385 r009 Im(z^3+c),c=-31/102+17/59*I,n=22 3141538330522580 m001 (5^(1/2)-gamma(3))/(HeathBrownMoroz+Rabbit) 3141538336114934 m001 ln((2^(1/3)))/Conway*sqrt(Pi) 3141538336580673 r009 Im(z^3+c),c=-31/102+17/59*I,n=25 3141538338862636 r009 Im(z^3+c),c=-31/102+17/59*I,n=24 3141538342018226 m005 (1/2*Zeta(3)+5/11)/(10/11*exp(1)+8/9) 3141538345217962 v002 sum(1/(5^n+(31*n^2-68*n+91)),n=1..infinity) 3141538345671575 m005 (1/2*Pi+7/8)/(4*3^(1/2)+6/7) 3141538346464672 r005 Re(z^2+c),c=-13/38+13/30*I,n=44 3141538346716325 r009 Im(z^3+c),c=-31/102+17/59*I,n=28 3141538347353365 a007 Real Root Of 506*x^4-97*x^3-12*x^2-717*x-232 3141538348088168 r009 Im(z^3+c),c=-31/102+17/59*I,n=31 3141538348099841 r009 Im(z^3+c),c=-31/102+17/59*I,n=32 3141538348137500 r009 Im(z^3+c),c=-31/102+17/59*I,n=29 3141538348151302 r009 Im(z^3+c),c=-31/102+17/59*I,n=35 3141538348159198 r009 Im(z^3+c),c=-31/102+17/59*I,n=38 3141538348159403 r009 Im(z^3+c),c=-31/102+17/59*I,n=39 3141538348159656 r009 Im(z^3+c),c=-31/102+17/59*I,n=42 3141538348159701 r009 Im(z^3+c),c=-31/102+17/59*I,n=45 3141538348159703 r009 Im(z^3+c),c=-31/102+17/59*I,n=46 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=49 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=52 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=53 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=56 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=59 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=60 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=63 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=62 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=64 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=61 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=55 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=58 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=57 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=54 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=50 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=51 3141538348159704 r009 Im(z^3+c),c=-31/102+17/59*I,n=48 3141538348159705 r009 Im(z^3+c),c=-31/102+17/59*I,n=47 3141538348159709 r009 Im(z^3+c),c=-31/102+17/59*I,n=43 3141538348159714 r009 Im(z^3+c),c=-31/102+17/59*I,n=44 3141538348159731 r009 Im(z^3+c),c=-31/102+17/59*I,n=41 3141538348159889 r009 Im(z^3+c),c=-31/102+17/59*I,n=40 3141538348160085 r009 Im(z^3+c),c=-31/102+17/59*I,n=36 3141538348161534 r009 Im(z^3+c),c=-31/102+17/59*I,n=37 3141538348166477 r009 Im(z^3+c),c=-31/102+17/59*I,n=34 3141538348189738 r009 Im(z^3+c),c=-31/102+17/59*I,n=33 3141538348494016 r009 Im(z^3+c),c=-31/102+17/59*I,n=30 3141538349706997 r009 Im(z^3+c),c=-31/102+17/59*I,n=27 3141538352933406 r009 Im(z^3+c),c=-31/102+17/59*I,n=26 3141538354887284 m002 4+Pi+Pi^5+Tanh[Pi]^2 3141538354958224 m001 GAMMA(2/3)^(3^(1/2))/ZetaQ(2) 3141538363738388 r005 Im(z^2+c),c=1/36+21/59*I,n=39 3141538367463243 r005 Im(z^2+c),c=1/36+21/59*I,n=36 3141538377742499 r005 Im(z^2+c),c=-105/122+11/51*I,n=17 3141538383981369 a007 Real Root Of -69*x^4+9*x^3+716*x^2-229*x-786 3141538387921915 m001 (Zeta(1,-1)-Mills)/(PrimesInBinary+ZetaQ(2)) 3141538399005083 r005 Im(z^2+c),c=1/36+21/59*I,n=38 3141538402681670 r005 Im(z^2+c),c=1/36+21/59*I,n=42 3141538408263634 r009 Im(z^3+c),c=-31/102+17/59*I,n=23 3141538412163628 r005 Im(z^2+c),c=1/36+21/59*I,n=43 3141538412913453 r005 Im(z^2+c),c=1/36+21/59*I,n=46 3141538414648136 h001 (9/11*exp(2)+5/6)/(4/7*exp(1)+7/11) 3141538414803810 r005 Im(z^2+c),c=1/36+21/59*I,n=49 3141538415026824 r005 Im(z^2+c),c=1/36+21/59*I,n=45 3141538415145343 r005 Im(z^2+c),c=1/36+21/59*I,n=50 3141538415220072 r005 Im(z^2+c),c=1/36+21/59*I,n=53 3141538415310318 r005 Im(z^2+c),c=1/36+21/59*I,n=56 3141538415321656 r005 Im(z^2+c),c=1/36+21/59*I,n=57 3141538415326827 r005 Im(z^2+c),c=1/36+21/59*I,n=60 3141538415331072 r005 Im(z^2+c),c=1/36+21/59*I,n=63 3141538415331394 r005 Im(z^2+c),c=1/36+21/59*I,n=64 3141538415332824 r005 Im(z^2+c),c=1/36+21/59*I,n=61 3141538415333077 r005 Im(z^2+c),c=1/36+21/59*I,n=59 3141538415333807 r005 Im(z^2+c),c=1/36+21/59*I,n=62 3141538415337760 r005 Im(z^2+c),c=1/36+21/59*I,n=52 3141538415343586 r005 Im(z^2+c),c=1/36+21/59*I,n=58 3141538415359286 r005 Im(z^2+c),c=1/36+21/59*I,n=54 3141538415370800 r005 Im(z^2+c),c=1/36+21/59*I,n=55 3141538415413153 k006 concat of cont frac of 3141538415599393 r005 Im(z^2+c),c=1/36+21/59*I,n=51 3141538416101034 r005 Im(z^2+c),c=1/36+21/59*I,n=47 3141538416124894 r005 Im(z^2+c),c=1/36+21/59*I,n=48 3141538421392302 r005 Im(z^2+c),c=1/36+21/59*I,n=44 3141538431171074 r005 Im(z^2+c),c=1/36+21/59*I,n=41 3141538435788583 r005 Im(z^2+c),c=1/36+21/59*I,n=40 3141538436992204 a007 Real Root Of 212*x^4+79*x^3-681*x^2-940*x+358 3141538444833992 a003 sin(Pi*2/11)*sin(Pi*15/76) 3141538445218983 r005 Re(z^2+c),c=-19/58+11/20*I,n=43 3141538446767299 r005 Re(z^2+c),c=-37/90+4/59*I,n=26 3141538456674756 a007 Real Root Of x^4+314*x^3-46*x^2+735*x+830 3141538458871297 m002 2+Pi/(2*E^Pi)+ProductLog[Pi] 3141538461538461 s002 sum(A062935[n]/(n*2^n+1),n=1..infinity) 3141538466228277 r005 Im(z^2+c),c=-11/114+1/27*I,n=8 3141538477498414 p001 sum((-1)^n/(472*n+285)/(3^n),n=0..infinity) 3141538478013447 r005 Re(z^2+c),c=-5/7+6/35*I,n=4 3141538501641186 p003 LerchPhi(1/12,4,79/187) 3141538503215192 a007 Real Root Of 173*x^4+636*x^3+410*x^2+622*x+776 3141538512153870 a007 Real Root Of 521*x^4-238*x^3-484*x^2-977*x+357 3141538517285511 r005 Re(z^2+c),c=-29/94+17/32*I,n=51 3141538519261087 m005 (1/2*5^(1/2)-8/11)/(71/120+7/24*5^(1/2)) 3141538535363278 m001 (ThueMorse+1/3)/(Artin+2) 3141538540738165 r005 Im(z^2+c),c=-49/122+9/17*I,n=58 3141538542553063 m001 (5^(1/2)+GAMMA(5/6))/(-MertensB1+MertensB3) 3141538547534265 r005 Re(z^2+c),c=-31/58+16/57*I,n=7 3141538550948956 r005 Im(z^2+c),c=1/36+21/59*I,n=37 3141538569996661 l006 ln(5191/7107) 3141538577400752 m001 GAMMA(7/24)^2/ln(Champernowne)/Zeta(3)^2 3141538601846039 r002 39th iterates of z^2 + 3141538604885211 m001 KhinchinLevy-Riemann3rdZero^KomornikLoreti 3141538612993707 b008 Pi+13*ExpIntegralEi[-10] 3141538613329235 m002 -Pi+(3*Csch[Pi])/(5*Pi^6) 3141538615965794 r005 Re(z^2+c),c=-19/48+8/37*I,n=16 3141538617372848 l006 ln(251/5808) 3141538622121766 r005 Im(z^2+c),c=15/86+16/61*I,n=29 3141538625485276 r009 Im(z^3+c),c=-7/114+24/29*I,n=16 3141538635604217 m001 BesselK(0,1)*cos(1)^PlouffeB 3141538636524583 r005 Im(z^2+c),c=-21/110+6/13*I,n=46 3141538644302922 m001 (LandauRamanujan-PisotVijayaraghavan)^2 3141538652698782 a003 cos(Pi*8/89)-cos(Pi*7/58) 3141538657117237 a007 Real Root Of 28*x^4+874*x^3-154*x^2+689*x-950 3141538662962222 m001 (exp(1/Pi)+gamma(3))/(TreeGrowth2nd-ZetaQ(4)) 3141538663853656 r005 Re(z^2+c),c=-11/31+20/51*I,n=44 3141538666552298 r005 Re(z^2+c),c=-19/16+74/101*I,n=2 3141538669245898 m002 Pi-(Csch[Pi]*Log[Pi])/(6*Pi^5) 3141538669253691 r005 Re(z^2+c),c=-5/8+79/217*I,n=21 3141538679074665 r009 Im(z^3+c),c=-31/102+17/59*I,n=20 3141538697006979 r005 Re(z^2+c),c=-7/17+2/35*I,n=12 3141538714246327 m002 -6/(5*E^Pi*Pi^6)+Pi 3141538717070061 a005 (1/cos(14/205*Pi))^645 3141538723514337 r005 Im(z^2+c),c=1/36+21/59*I,n=34 3141538729343222 r009 Re(z^3+c),c=-17/54+9/49*I,n=2 3141538736488687 a001 7*(1/2*5^(1/2)+1/2)^6*47^(5/21) 3141538759838701 r005 Re(z^2+c),c=-25/62+10/61*I,n=13 3141538768550107 r009 Re(z^3+c),c=-19/46+5/16*I,n=34 3141538770058568 m002 Pi-Log[Pi]/(3*E^Pi*Pi^5) 3141538777452368 r002 7th iterates of z^2 + 3141538800202422 m005 (1/3*Pi-3/4)/(5*3^(1/2)+4/5) 3141538801592704 m002 27*Cosh[Pi]*Coth[Pi] 3141538803996135 a005 (1/cos(14/209*Pi))^1806 3141538814787208 m002 -Pi+(3*Sech[Pi])/(5*Pi^6) 3141538821796615 b008 ProductLog[Sqrt[ArcCsc[2*E]]] 3141538825144466 r005 Im(z^2+c),c=-21/118+26/57*I,n=22 3141538825767899 r002 2th iterates of z^2 + 3141538828398143 m005 (-25/44+1/4*5^(1/2))/(1/11*Catalan-3/8) 3141538836047445 r005 Im(z^2+c),c=-125/114+1/27*I,n=36 3141538841005230 a007 Real Root Of 996*x^4-843*x^3+853*x^2-175*x-175 3141538846335787 r005 Im(z^2+c),c=-11/114+1/27*I,n=9 3141538846381989 r009 Im(z^3+c),c=-27/58+23/44*I,n=18 3141538852673477 r005 Im(z^2+c),c=-17/14+67/235*I,n=7 3141538854597262 r005 Im(z^2+c),c=21/86+11/54*I,n=18 3141538867209482 m001 Otter^Landau+Totient 3141538868912769 m001 (-Trott+TwinPrimes)/(sin(1)+GAMMA(3/4)) 3141538870495417 m002 Pi-(Log[Pi]*Sech[Pi])/(6*Pi^5) 3141538871016293 b008 JacobiAmplitude[3,-1/5] 3141538872270222 r009 Im(z^3+c),c=-7/20+4/15*I,n=23 3141538874693986 m005 (1/2*Catalan-3/10)/(1/11*exp(1)-3/4) 3141538874833727 b008 (7*E^(13/5))/3 3141538889675715 m001 (MertensB3+Paris)/(Pi+2^(1/2)) 3141538902618254 r009 Re(z^3+c),c=-13/54+45/59*I,n=13 3141538902884066 r009 Re(z^3+c),c=-15/38+15/53*I,n=20 3141538906491214 a007 Real Root Of -219*x^4-509*x^3+339*x^2-601*x+316 3141538914328733 r005 Im(z^2+c),c=-4/17+12/25*I,n=40 3141538918540688 a007 Real Root Of 25*x^4+789*x^3+106*x^2-253*x-472 3141538920164859 s002 sum(A190365[n]/(n^3*exp(n)-1),n=1..infinity) 3141538938943471 r005 Im(z^2+c),c=1/36+21/59*I,n=33 3141538964086749 r005 Re(z^2+c),c=33/94+9/47*I,n=4 3141538984310068 r005 Im(z^2+c),c=-75/64+14/61*I,n=42 3141539001773659 a007 Real Root Of 469*x^4+98*x^3-549*x^2-899*x+329 3141539009863895 b008 Pi*KelvinBer[0,2/11] 3141539013474172 b008 -1/17*1/E^7+Pi 3141539016573413 b008 Pi-BesselK[1,9] 3141539023980389 m005 (1/2*exp(1)+7/12)/(1/5*Catalan+6) 3141539025703590 m001 1/GAMMA(23/24)/Niven*ln(gamma) 3141539025703590 m001 ln(gamma)/GAMMA(23/24)/Niven 3141539026501849 m001 Riemann3rdZero^(PlouffeB*RenyiParking) 3141539031674934 r005 Im(z^2+c),c=-31/26+34/115*I,n=9 3141539040547536 r005 Im(z^2+c),c=-8/25+30/53*I,n=37 3141539044573765 r009 Re(z^3+c),c=-27/56+15/34*I,n=48 3141539045355946 a007 Real Root Of -29*x^4-883*x^3+891*x^2+299*x-391 3141539053710454 r005 Im(z^2+c),c=-125/114+1/27*I,n=35 3141539056673041 r005 Re(z^2+c),c=-8/25+23/47*I,n=33 3141539059825448 a007 Real Root Of -329*x^4-938*x^3+521*x^2+522*x-539 3141539062028797 r009 Im(z^3+c),c=-3/44+33/40*I,n=38 3141539062409824 m002 -Pi+(5*Coth[Pi])/Pi^10 3141539063583367 a007 Real Root Of 321*x^4+734*x^3-551*x^2+712*x-834 3141539071814529 s002 sum(A069907[n]/(n^3*10^n+1),n=1..infinity) 3141539073522206 s002 sum(A069907[n]/(n^3*10^n-1),n=1..infinity) 3141539073919634 r009 Re(z^3+c),c=-39/98+12/53*I,n=4 3141539078845436 m005 (5/6*Catalan-4/5)/(2*Catalan-3) 3141539080557885 r001 30i'th iterates of 2*x^2-1 of 3141539084602279 r009 Im(z^3+c),c=-31/102+17/59*I,n=19 3141539108362942 m001 BesselI(1,1)/(HardyLittlewoodC4^Magata) 3141539110083336 r002 46th iterates of z^2 + 3141539118375222 s001 sum(exp(-3*Pi/4)^n*A245441[n],n=1..infinity) 3141539119423633 r005 Im(z^2+c),c=-125/114+1/27*I,n=40 3141539125603297 m001 (BesselI(1,2)+4)/(-BesselI(0,2)+1/2) 3141539130022101 r009 Im(z^3+c),c=-55/106+7/48*I,n=64 3141539134701916 a007 Real Root Of -615*x^4+388*x^3+827*x^2+660*x-295 3141539137589811 l006 ln(2479/3394) 3141539138091420 a007 Real Root Of -306*x^4-913*x^3+62*x^2-21*x+820 3141539142166991 r005 Re(z^2+c),c=11/38+3/29*I,n=22 3141539142495331 a009 12*5^(1/2)+21^(1/2) 3141539142495331 b008 12*Sqrt[5]+Sqrt[21] 3141539143483625 m005 (1/2*gamma+5/7)/(4/9*exp(1)-8/9) 3141539156807609 m001 (1/3+OneNinth)^sqrt(2) 3141539168016727 r005 Re(z^2+c),c=-45/118+7/29*I,n=8 3141539171261117 k006 concat of cont frac of 3141539174918676 r002 45th iterates of z^2 + 3141539177316646 r005 Im(z^2+c),c=-125/114+1/27*I,n=39 3141539178840092 p001 sum((-1)^n/(564*n+421)/n/(32^n),n=1..infinity) 3141539181148437 r005 Im(z^2+c),c=-11/114+1/27*I,n=11 3141539192742093 r002 50th iterates of z^2 + 3141539197625530 r005 Re(z^2+c),c=-7/20+4/13*I,n=6 3141539203006379 l006 ln(294/6803) 3141539203529546 a001 7/1597*13^(43/56) 3141539210232189 r005 Im(z^2+c),c=-125/114+1/27*I,n=44 3141539210704715 h005 exp(sin(Pi*4/55)+sin(Pi*10/27)) 3141539210786087 r002 49th iterates of z^2 + 3141539212254732 a007 Real Root Of 297*x^4+833*x^3-658*x^2-921*x+499 3141539214054211 k007 concat of cont frac of 3141539218580959 r005 Im(z^2+c),c=-125/114+1/27*I,n=43 3141539220852876 r002 54th iterates of z^2 + 3141539223542805 r002 53th iterates of z^2 + 3141539223869944 r005 Im(z^2+c),c=-11/114+1/27*I,n=13 3141539225023243 r005 Im(z^2+c),c=-125/114+1/27*I,n=48 3141539225452979 r005 Im(z^2+c),c=-125/114+1/27*I,n=47 3141539225579525 r002 58th iterates of z^2 + 3141539225727776 r005 Im(z^2+c),c=-125/114+1/27*I,n=54 3141539225735769 r002 57th iterates of z^2 + 3141539225776239 r005 Im(z^2+c),c=-125/114+1/27*I,n=50 3141539225818203 r005 Im(z^2+c),c=-125/114+1/27*I,n=53 3141539225835479 r005 Im(z^2+c),c=-11/114+1/27*I,n=15 3141539225841830 r002 64th iterates of z^2 + 3141539225852943 r005 Im(z^2+c),c=-125/114+1/27*I,n=58 3141539225855610 r005 Im(z^2+c),c=-125/114+1/27*I,n=49 3141539225869151 r002 63th iterates of z^2 + 3141539225871922 r002 60th iterates of z^2 + 3141539225873597 r005 Im(z^2+c),c=-125/114+1/27*I,n=57 3141539225886157 r005 Im(z^2+c),c=-125/114+1/27*I,n=62 3141539225887704 r002 59th iterates of z^2 + 3141539225888762 r005 Im(z^2+c),c=-125/114+1/27*I,n=61 3141539225890567 r005 Im(z^2+c),c=-11/114+1/27*I,n=17 3141539225891003 r005 Im(z^2+c),c=-11/114+1/27*I,n=18 3141539225891060 r005 Im(z^2+c),c=-11/114+1/27*I,n=20 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=22 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=24 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=26 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=27 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=29 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=31 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=33 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=35 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=38 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=40 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=42 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=44 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=47 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=49 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=51 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=53 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=56 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=57 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=58 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=59 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=60 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=61 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=62 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=63 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=64 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=55 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=54 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=52 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=50 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=48 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=46 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=45 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=43 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=41 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=39 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=37 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=36 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=34 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=32 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=30 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=28 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=25 3141539225891073 r005 Im(z^2+c),c=-11/114+1/27*I,n=23 3141539225891076 r005 Im(z^2+c),c=-11/114+1/27*I,n=21 3141539225891117 r005 Im(z^2+c),c=-11/114+1/27*I,n=19 3141539225891684 r005 Im(z^2+c),c=-125/114+1/27*I,n=63 3141539225892337 r005 Im(z^2+c),c=-125/114+1/27*I,n=64 3141539225897937 r005 Im(z^2+c),c=-125/114+1/27*I,n=59 3141539225898076 r005 Im(z^2+c),c=-11/114+1/27*I,n=16 3141539225905885 r005 Im(z^2+c),c=-125/114+1/27*I,n=60 3141539225920218 r002 61th iterates of z^2 + 3141539225929848 r005 Im(z^2+c),c=-125/114+1/27*I,n=55 3141539225959106 r002 62th iterates of z^2 + 3141539225976625 r005 Im(z^2+c),c=-125/114+1/27*I,n=56 3141539225993326 r005 Im(z^2+c),c=-125/114+1/27*I,n=51 3141539226128044 r005 Im(z^2+c),c=-125/114+1/27*I,n=52 3141539226249542 r005 Im(z^2+c),c=-11/114+1/27*I,n=14 3141539226612204 r002 55th iterates of z^2 + 3141539226647552 a007 Real Root Of -739*x^4+746*x^3+251*x^2+784*x-287 3141539227410201 r002 56th iterates of z^2 + 3141539227654451 a007 Real Root Of -154*x^4-452*x^3+269*x^2+452*x-249 3141539228077172 r005 Im(z^2+c),c=-125/114+1/27*I,n=45 3141539229459847 r005 Im(z^2+c),c=-17/52+13/27*I,n=11 3141539230482419 r005 Im(z^2+c),c=-125/114+1/27*I,n=46 3141539232277618 r002 51th iterates of z^2 + 3141539236035184 r005 Im(z^2+c),c=-11/114+1/27*I,n=12 3141539238128557 a001 5600748293801/2*5^(1/14) 3141539239757507 r002 52th iterates of z^2 + 3141539240792808 a007 Real Root Of -476*x^4-92*x^3-429*x^2-150*x-3 3141539246116097 r005 Im(z^2+c),c=-125/114+1/27*I,n=41 3141539246678709 r005 Im(z^2+c),c=-5/13+47/59*I,n=5 3141539256744946 r002 47th iterates of z^2 + 3141539262193658 m002 -5/Pi^10+Pi 3141539269749927 r005 Im(z^2+c),c=-125/114+1/27*I,n=42 3141539275583326 r002 43th iterates of z^2 + 3141539280265053 m001 (exp(1)-ln(5))/(-ReciprocalLucas+Tetranacci) 3141539281524674 m004 -100*Pi+3*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141539281566906 m004 -100*Pi+(6*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141539281609137 m004 -100*Pi+3*Csch[Sqrt[5]*Pi] 3141539281651369 m004 -3/(5*E^(Sqrt[5]*Pi))+10*Pi 3141539281693600 m004 -100*Pi+3*Sech[Sqrt[5]*Pi] 3141539281735832 m004 -100*Pi+(6*Tanh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141539281778063 m004 -100*Pi+3*Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3141539283850534 r005 Im(z^2+c),c=-33/23+1/15*I,n=6 3141539287894549 r009 Im(z^3+c),c=-15/32+11/61*I,n=38 3141539294475632 r002 48th iterates of z^2 + 3141539299689952 r002 41th iterates of z^2 + 3141539300170995 m009 (3/4*Psi(1,2/3)+1/3)/(3*Psi(1,3/4)+3/4) 3141539312934707 m001 OneNinth-ln(2+sqrt(3))-GAMMA(11/24) 3141539326940393 r005 Im(z^2+c),c=-125/114+1/27*I,n=37 3141539326981151 m001 exp(GAMMA(1/12))/Backhouse*arctan(1/2) 3141539329943860 m008 (2/5*Pi^6-1/4)/(4*Pi-1/3) 3141539338283624 h001 (-11*exp(4)+1)/(-10*exp(3)+10) 3141539339431895 r009 Re(z^3+c),c=-4/11+3/13*I,n=11 3141539342509985 a007 Real Root Of 145*x^4+376*x^3-470*x^2-678*x+43 3141539347651415 r002 44th iterates of z^2 + 3141539350257586 r005 Re(z^2+c),c=-9/28+23/47*I,n=41 3141539353539749 r002 42th iterates of z^2 + 3141539358134083 s002 sum(A046869[n]/(n^3*exp(n)-1),n=1..infinity) 3141539386355132 b008 Pi+Sqrt[2]*ExpIntegralEi[-8] 3141539387205431 a001 4/233*144^(31/53) 3141539389055066 r005 Im(z^2+c),c=-11/114+1/27*I,n=10 3141539391344306 r005 Im(z^2+c),c=-125/114+1/27*I,n=31 3141539408023754 r005 Im(z^2+c),c=-34/31+1/27*I,n=13 3141539409451679 m001 HeathBrownMoroz+DuboisRaymond^Rabbit 3141539412033696 a001 10946/11*123^(33/46) 3141539412309441 r005 Im(z^2+c),c=-125/114+1/27*I,n=33 3141539414362737 m005 (1/2*Catalan-1/5)/(2/11*Pi+1/4) 3141539422257587 m005 (1/4*exp(1)+1)/(3/5*gamma+5) 3141539427676229 s002 sum(A179880[n]/(n^3*exp(n)+1),n=1..infinity) 3141539432748876 r005 Im(z^2+c),c=-1/15+17/42*I,n=20 3141539440588396 r009 Re(z^3+c),c=-17/36+11/27*I,n=43 3141539450131996 r005 Im(z^2+c),c=-125/114+1/27*I,n=38 3141539452958731 m002 -4-(5*Csch[Pi])/Pi+Tanh[Pi] 3141539461232714 m002 -Pi+(5*Tanh[Pi])/Pi^10 3141539462548333 r009 Re(z^3+c),c=-41/90+11/29*I,n=64 3141539465284431 r009 Im(z^3+c),c=-1/3+11/40*I,n=15 3141539480260018 r005 Im(z^2+c),c=-125/114+1/27*I,n=32 3141539480465254 r005 Im(z^2+c),c=-9/8+63/253*I,n=6 3141539480477047 a009 11^(2/3)*(5^(1/3)+10^(2/3)) 3141539501876629 a008 Real Root of (-5+3*x+6*x^2+x^3+3*x^4+x^5) 3141539504495614 p004 log(32983/24091) 3141539514966429 a007 Real Root Of 119*x^4+230*x^3-521*x^2-269*x-163 3141539521154142 k007 concat of cont frac of 3141539527777962 m001 (Tetranacci+Tribonacci)/(Zeta(1,2)-MertensB1) 3141539527903626 a007 Real Root Of -275*x^4+475*x^3+259*x^2+727*x-266 3141539532432831 m001 Pi-gamma(3)^BesselI(1,2) 3141539536733625 a007 Real Root Of -983*x^4-238*x^3-195*x^2+876*x-239 3141539537158315 r002 13th iterates of z^2 + 3141539546581468 l006 ln(7204/9863) 3141539593919438 m001 FeigenbaumB^2/Cahen/ln(Rabbit) 3141539594923732 r005 Re(z^2+c),c=-21/34+31/86*I,n=32 3141539596752953 r005 Re(z^2+c),c=-7/17+3/56*I,n=29 3141539608677820 r009 Re(z^3+c),c=-39/82+13/31*I,n=46 3141539615198154 r002 42th iterates of z^2 + 3141539619263775 m001 ((1+3^(1/2))^(1/2))^(FeigenbaumKappa/ZetaQ(2)) 3141539639190180 l006 ln(337/7798) 3141539643521775 m001 (2^(1/2)-cos(1))/(FeigenbaumD+Paris) 3141539644810532 s002 sum(A028388[n]/(n^3*exp(n)-1),n=1..infinity) 3141539647908497 r008 a(0)=1,K{-n^6,8-30*n+39*n^2-10*n^3} 3141539648958124 a001 2178309/521*47^(11/21) 3141539649392037 m001 (Landau+Trott)/(gamma+KhinchinLevy) 3141539659351086 r009 Re(z^3+c),c=-19/118+44/49*I,n=4 3141539671393275 r005 Im(z^2+c),c=-21/110+6/13*I,n=49 3141539671544329 a007 Real Root Of -22*x^4-723*x^3-983*x^2+549*x-453 3141539671606686 m001 GAMMA(1/12)^2*exp(FeigenbaumC)^2/GAMMA(13/24) 3141539673469207 m001 (BesselI(0,1)*ln(5)-GAMMA(13/24))/BesselI(0,1) 3141539674594727 r005 Im(z^2+c),c=-125/114+1/27*I,n=34 3141539675103496 a007 Real Root Of -172*x^4-337*x^3+532*x^2-503*x-526 3141539695268644 r002 1i'th iterates of 2*x/(1-x^2) of 3141539695268644 r002 2i'th iterates of 2*x/(1-x^2) of 3141539708081898 a003 sin(Pi*16/93)-sin(Pi*37/119) 3141539709560730 a007 Real Root Of -138*x^4+775*x^3+973*x^2+854*x-387 3141539713514133 k006 concat of cont frac of 3141539714356512 h001 (9/10*exp(2)+1/12)/(5/8*exp(1)+4/9) 3141539733095027 m001 Pi-ln(2)/ln(10)/Psi(2,1/3)*gamma(2) 3141539734343515 m001 (1+Robbin)/(ZetaP(2)+ZetaP(4)) 3141539761123385 r005 Im(z^2+c),c=-55/38+14/53*I,n=3 3141539761161422 l006 ln(4725/6469) 3141539766058151 a005 (1/cos(11/202*Pi))^391 3141539769090005 a007 Real Root Of -383*x^4-790*x^3+996*x^2-697*x+792 3141539773250707 m001 (3^(1/3)-Gompertz)/(OneNinth+Sierpinski) 3141539778153174 m005 (1/4*gamma-4)/(3/4*2^(1/2)+1/6) 3141539793772220 r009 Im(z^3+c),c=-7/20+4/15*I,n=24 3141539799430243 a001 75025/7*76^(39/50) 3141539808181902 p003 LerchPhi(1/4,3,68/99) 3141539814315173 a007 Real Root Of 964*x^4-216*x^3-915*x^2-953*x+387 3141539818603630 r005 Im(z^2+c),c=-43/66+2/19*I,n=14 3141539819923576 m009 (1/3*Pi^2-1/6)/(3*Psi(1,2/3)+3/4) 3141539823854073 s002 sum(A184366[n]/((pi^n-1)/n),n=1..infinity) 3141539826645437 b008 13/3+Sec[10] 3141539827693006 r009 Im(z^3+c),c=-39/70+14/47*I,n=9 3141539838942089 r005 Re(z^2+c),c=-3/38+23/38*I,n=11 3141539839682007 m001 (Pi+BesselI(0,1))/(GlaisherKinkelin-Khinchin) 3141539848786091 s002 sum(A191120[n]/(n^3*exp(n)+1),n=1..infinity) 3141539859988706 m002 Pi-Cosh[Pi]/(E^Pi*Pi^8) 3141539861848626 r005 Re(z^2+c),c=11/34+11/54*I,n=8 3141539870701567 r009 Im(z^3+c),c=-37/94+6/25*I,n=11 3141539882029231 m001 (1-ln(5))/(DuboisRaymond+KhinchinHarmonic) 3141539886283228 r009 Im(z^3+c),c=-8/17+5/28*I,n=58 3141539888774140 m001 (-ZetaP(3)+ZetaQ(2))/(3^(1/3)-Shi(1)) 3141539892459036 a001 3/2584*1346269^(14/25) 3141539899059793 h001 (1/8*exp(1)+3/8)/(7/11*exp(1)+6/11) 3141539904116780 m004 5+(5*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi]^2 3141539908111144 m001 (DuboisRaymond+ReciprocalFibonacci)^exp(1) 3141539908865181 r005 Im(z^2+c),c=-13/82+17/38*I,n=25 3141539910318931 m001 (Pi+GAMMA(2/3))/(ln(gamma)-QuadraticClass) 3141539910779752 a007 Real Root Of -32*x^4+61*x^3+225*x^2-859*x+89 3141539919150968 m001 1/PrimesInBinary*ln(CareFree)/GAMMA(13/24)^2 3141539926232693 a007 Real Root Of -57*x^4-228*x^3-27*x^2+584*x+584 3141539928169833 r005 Re(z^2+c),c=-10/31+21/43*I,n=47 3141539933980492 r005 Re(z^2+c),c=-7/12+33/62*I,n=3 3141539939724857 m001 RenyiParking*Bloch^2/exp(Riemann3rdZero)^2 3141539943726033 r009 Im(z^3+c),c=-51/110+9/49*I,n=23 3141539958393966 m002 -1/(2*Pi^8)+Pi 3141539961119381 r005 Im(z^2+c),c=-5/38+47/61*I,n=18 3141539973276849 a001 1836311903/47*29^(13/21) 3141539976658570 l006 ln(380/8793) 3141539978783450 m004 -100*Pi+2*Csc[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141539978825129 m004 -100*Pi+(4*Csc[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141539978866809 m004 -100*Pi+2*Csc[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141539981847024 r009 Im(z^3+c),c=-7/20+4/15*I,n=27 3141539982027141 a001 2/123*39603^(55/59) 3141539982913533 l006 ln(6971/9544) 3141539999192747 r005 Im(z^2+c),c=-11/56+16/41*I,n=4 3141540004697456 r005 Re(z^2+c),c=-49/106+19/35*I,n=30 3141540007904031 r005 Re(z^2+c),c=-43/122+9/22*I,n=21 3141540014694378 r005 Re(z^2+c),c=-5/78+41/61*I,n=45 3141540015342978 s002 sum(A062848[n]/(n^2*10^n+1),n=1..infinity) 3141540018052383 m001 (-CopelandErdos+ZetaP(3))/(sin(1)+ln(3)) 3141540024783730 r005 Im(z^2+c),c=17/66+11/58*I,n=36 3141540025399062 a001 47/233*121393^(27/43) 3141540035861522 m001 (BesselI(1,2)-Artin)/(PrimesInBinary-Trott2nd) 3141540043337739 r005 Re(z^2+c),c=-49/122+5/29*I,n=27 3141540047521790 r009 Im(z^3+c),c=-41/74+1/6*I,n=35 3141540051893217 a007 Real Root Of 189*x^4+265*x^3-846*x^2+759*x+541 3141540056799226 m002 Pi-Sinh[Pi]/(E^Pi*Pi^8) 3141540057986470 m001 ln(2+3^(1/2))-ln(3)-ReciprocalFibonacci 3141540067331667 r009 Re(z^3+c),c=-13/31+10/31*I,n=30 3141540081475794 r005 Im(z^2+c),c=-43/64+1/33*I,n=27 3141540086953204 r005 Im(z^2+c),c=-11/52+29/42*I,n=23 3141540087901942 a001 2207/2*1346269^(14/59) 3141540094204157 r009 Im(z^3+c),c=-7/20+4/15*I,n=31 3141540095530168 m001 HeathBrownMoroz/(FeigenbaumDelta-Weierstrass) 3141540098326988 r005 Im(z^2+c),c=-6/23+28/57*I,n=38 3141540099789672 r009 Im(z^3+c),c=-7/20+4/15*I,n=28 3141540101383549 r005 Re(z^2+c),c=-19/24+9/50*I,n=12 3141540103280667 r009 Im(z^3+c),c=-7/20+4/15*I,n=30 3141540104273360 r009 Im(z^3+c),c=-7/20+4/15*I,n=35 3141540104378101 r009 Im(z^3+c),c=-7/20+4/15*I,n=34 3141540105019733 r009 Im(z^3+c),c=-7/20+4/15*I,n=38 3141540105073802 r009 Im(z^3+c),c=-7/20+4/15*I,n=39 3141540105118572 r009 Im(z^3+c),c=-7/20+4/15*I,n=42 3141540105128457 r009 Im(z^3+c),c=-7/20+4/15*I,n=43 3141540105130069 r009 Im(z^3+c),c=-7/20+4/15*I,n=46 3141540105131215 r009 Im(z^3+c),c=-7/20+4/15*I,n=50 3141540105131298 r009 Im(z^3+c),c=-7/20+4/15*I,n=49 3141540105131298 r009 Im(z^3+c),c=-7/20+4/15*I,n=47 3141540105131316 r009 Im(z^3+c),c=-7/20+4/15*I,n=54 3141540105131317 r009 Im(z^3+c),c=-7/20+4/15*I,n=53 3141540105131324 r009 Im(z^3+c),c=-7/20+4/15*I,n=57 3141540105131324 r009 Im(z^3+c),c=-7/20+4/15*I,n=58 3141540105131325 r009 Im(z^3+c),c=-7/20+4/15*I,n=61 3141540105131325 r009 Im(z^3+c),c=-7/20+4/15*I,n=62 3141540105131325 r009 Im(z^3+c),c=-7/20+4/15*I,n=64 3141540105131325 r009 Im(z^3+c),c=-7/20+4/15*I,n=63 3141540105131325 r009 Im(z^3+c),c=-7/20+4/15*I,n=60 3141540105131325 r009 Im(z^3+c),c=-7/20+4/15*I,n=59 3141540105131327 r009 Im(z^3+c),c=-7/20+4/15*I,n=56 3141540105131328 r009 Im(z^3+c),c=-7/20+4/15*I,n=55 3141540105131343 r009 Im(z^3+c),c=-7/20+4/15*I,n=51 3141540105131356 r009 Im(z^3+c),c=-7/20+4/15*I,n=52 3141540105131702 r009 Im(z^3+c),c=-7/20+4/15*I,n=48 3141540105131804 r009 Im(z^3+c),c=-7/20+4/15*I,n=45 3141540105135391 r009 Im(z^3+c),c=-7/20+4/15*I,n=44 3141540105144903 r009 Im(z^3+c),c=-7/20+4/15*I,n=41 3141540105169902 r009 Im(z^3+c),c=-7/20+4/15*I,n=40 3141540105358945 r009 Im(z^3+c),c=-7/20+4/15*I,n=37 3141540105435137 r009 Im(z^3+c),c=-7/20+4/15*I,n=36 3141540106693135 r009 Im(z^3+c),c=-7/20+4/15*I,n=32 3141540107298392 m001 1/exp(GAMMA(11/24))/Salem^2/gamma^2 3141540108243666 r009 Im(z^3+c),c=-7/20+4/15*I,n=33 3141540108338326 p003 LerchPhi(1/64,2,213/119) 3141540110943370 m001 Pi^(2^(1/2))/ErdosBorwein 3141540124215112 k008 concat of cont frac of 3141540137096394 r005 Im(z^2+c),c=-109/110+10/37*I,n=27 3141540142368826 r009 Im(z^3+c),c=-7/20+4/15*I,n=29 3141540154837640 m002 -Pi+Tanh[Pi]/(2*Pi^8) 3141540159820902 r008 a(0)=3,K{-n^6,-40-4*n^3+31*n^2+7*n} 3141540161296762 r009 Im(z^3+c),c=-7/20+4/15*I,n=26 3141540164694815 m001 (2^(1/2)+ln(2))/(Cahen+Trott2nd) 3141540168367681 g006 Psi(1,6/11)+Psi(1,3/4)-Psi(1,8/11)-Psi(1,2/5) 3141540169325652 m001 (Zeta(5)+cos(1/5*Pi))/(Gompertz-ZetaQ(3)) 3141540176284787 r005 Im(z^2+c),c=-27/94+21/37*I,n=30 3141540179464286 a001 9349*(1/2*5^(1/2)+1/2)^31*64079^(16/19) 3141540180473130 m004 -100*Pi+4*Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141540180556171 m004 -100*Pi+4*Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141540182611795 b008 InverseJacobiDS[3,Sqrt[5]] 3141540182611795 b008 InverseJacobiSD[1/3,Sqrt[5]] 3141540183649288 b008 (-1+E^(-11))*Pi 3141540194411260 m001 (3^(1/2)-exp(1/exp(1)))/(-MertensB1+Salem) 3141540196652964 r005 Im(z^2+c),c=-3/16+30/49*I,n=8 3141540210163130 a001 24476*(1/2*5^(1/2)+1/2)^29*64079^(16/19) 3141540211698323 a001 64079*(1/2*5^(1/2)+1/2)^32*24476^(13/19) 3141540212388750 a001 24476*(1/2*5^(1/2)+1/2)^31*39603^(15/19) 3141540214642030 a001 64079*(1/2*5^(1/2)+1/2)^27*64079^(16/19) 3141540216867651 a001 64079*(1/2*5^(1/2)+1/2)^29*39603^(15/19) 3141540217410143 a001 39603*(1/2*5^(1/2)+1/2)^28*64079^(16/19) 3141540219607742 a001 682*10610209857723^(10/23) 3141540219635764 a001 39603*(1/2*5^(1/2)+1/2)^30*39603^(15/19) 3141540219795425 r005 Re(z^2+c),c=-19/50+15/58*I,n=8 3141540220528875 m005 (1/2*Catalan-2/5)/(2/5*Catalan-2/11) 3141540229136058 a001 15127*(1/2*5^(1/2)+1/2)^30*64079^(16/19) 3141540231361678 a001 15127*(1/2*5^(1/2)+1/2)^32*39603^(15/19) 3141540241222679 m001 GAMMA(23/24)+FransenRobinson^(2*Pi/GAMMA(5/6)) 3141540245516284 l006 ln(423/9788) 3141540246205864 m005 (1/2*exp(1)-10/11)/(4/7*Catalan-2/3) 3141540250152609 g007 Psi(2,1/12)+Psi(2,7/10)+Psi(2,4/7)-Psi(2,2/11) 3141540255897578 r005 Im(z^2+c),c=-9/44+36/61*I,n=6 3141540269841429 r002 15th iterates of z^2 + 3141540276634337 r005 Re(z^2+c),c=-115/122+2/13*I,n=64 3141540285302725 m001 (Conway+Paris)/(Chi(1)+Pi*2^(1/2)/GAMMA(3/4)) 3141540291542548 m001 GAMMA(5/6)^2*Ei(1)/ln(arctan(1/2)) 3141540293974032 b008 Pi*Sin[1/100] 3141540294323092 b008 Pi*Csch[1/100] 3141540296068287 b008 Pi*ArcCsch[100] 3141540296417314 b008 Pi*Sqrt[ArcCot[100]] 3141540309506674 a001 5778*(1/2*5^(1/2)+1/2)^32*64079^(16/19) 3141540361570252 b008 ArcCosh[1/3+E*(1+Pi)] 3141540365834907 m001 (Pi-ln(5))/(exp(-1/2*Pi)+FeigenbaumDelta) 3141540370189643 r005 Re(z^2+c),c=-23/62+20/59*I,n=17 3141540395295831 m001 BesselJ(0,1)/(Si(Pi)^exp(1/exp(1))) 3141540414286878 s003 concatenated sequence A034120 3141540416387305 r009 Re(z^3+c),c=-19/46+5/16*I,n=31 3141540425765597 m008 (3*Pi^6-5/6)/(3*Pi^5-1/4) 3141540430599757 a007 Real Root Of -192*x^4-514*x^3+451*x^2+411*x-395 3141540439977146 r002 29th iterates of z^2 + 3141540441763908 m001 Lehmer*Niven-PisotVijayaraghavan 3141540449422297 l006 ln(2246/3075) 3141540455886055 a007 Real Root Of 66*x^4-490*x^3-82*x^2-972*x+328 3141540458964264 r005 Im(z^2+c),c=-31/94+26/47*I,n=40 3141540465046610 a009 1/7*(14-4^(3/4)*7^(3/4))^(1/2)*7^(1/4) 3141540466191009 r002 38th iterates of z^2 + 3141540466191009 r002 38th iterates of z^2 + 3141540478428669 r005 Im(z^2+c),c=-13/114+21/46*I,n=9 3141540482617754 b008 -9+Erfc[1]^(-2) 3141540483682712 m001 Catalan^2*ln(Tribonacci)^2*Zeta(7) 3141540490521148 r008 a(0)=3,K{-n^6,-7+4*n^3-2*n^2+3*n} 3141540492582437 m001 (Conway-Salem)/(BesselI(0,2)+Pi^(1/2)) 3141540495295403 a001 1/89*832040^(23/25) 3141540501358927 r009 Im(z^3+c),c=-7/20+4/15*I,n=25 3141540526311170 r005 Re(z^2+c),c=7/86+19/53*I,n=21 3141540531817520 r005 Im(z^2+c),c=-35/114+13/22*I,n=57 3141540535313383 r009 Re(z^3+c),c=-25/52+13/33*I,n=33 3141540555687537 r005 Im(z^2+c),c=-9/29+24/47*I,n=50 3141540555837209 m001 Bloch^ln(Pi)+exp(1) 3141540557374908 a007 Real Root Of -359*x^4+687*x^3+823*x^2+210*x-165 3141540562796046 a001 8/1568397607*3571^(2/9) 3141540575447207 r005 Re(z^2+c),c=-19/26+9/83*I,n=6 3141540580259339 m004 -100*Pi+(5*Sqrt[5]*Pi)/(6*E^(Sqrt[5]*Pi)) 3141540581001481 a007 Real Root Of 310*x^4+802*x^3-624*x^2-448*x-578 3141540586965079 r009 Re(z^3+c),c=-41/90+11/29*I,n=49 3141540589586256 a001 8/312119004989*9349^(7/9) 3141540594938660 a007 Real Root Of -893*x^4+738*x^3-604*x^2+792*x+340 3141540605795757 a007 Real Root Of 183*x^4+466*x^3-341*x^2-148*x-476 3141540607799620 r005 Re(z^2+c),c=-35/94+19/56*I,n=13 3141540610484992 m001 gamma(3)^cos(1/12*Pi)/(gamma(3)^Ei(1)) 3141540617116747 a001 8/119218851371*64079^(5/9) 3141540617529393 a001 8/969323029*167761^(1/9) 3141540617541642 a001 4/96450076809*3010349^(4/9) 3141540617541795 a001 4/5374978561*20633239^(2/9) 3141540617541796 a001 2/3665737348901*370248451^(5/9) 3141540617541796 a001 8/4106118243*73681302247^(1/9) 3141540617541796 a001 8/9062201101803*17393796001^(4/9) 3141540617541796 a001 8/73681302247*119218851371^(2/9) 3141540617541796 a001 4/96450076809*9062201101803^(2/9) 3141540617541796 a001 8/1322157322203*23725150497407^(5/18) 3141540617541796 a001 8/9062201101803*505019158607^(7/18) 3141540617541796 a001 8/119218851371*4106118243^(5/18) 3141540617541796 a001 8/6643838879*5600748293801^(1/9) 3141540617541796 a001 2/634430159*969323029^(1/9) 3141540617541796 a001 8/28143753123*1568397607^(2/9) 3141540617541796 a001 8/969323029*28143753123^(1/18) 3141540617541796 a001 8/1322157322203*228826127^(4/9) 3141540617541796 a001 8/312119004989*87403803^(7/18) 3141540617541798 a001 8/1568397607*12752043^(1/9) 3141540617541803 a001 4/299537289*4870847^(1/18) 3141540617541808 a001 8/5600748293801*12752043^(11/18) 3141540617541870 a001 8/1322157322203*4870847^(5/9) 3141540617543524 a001 4/5374978561*710647^(5/18) 3141540617546634 a001 8/9062201101803*710647^(7/9) 3141540617551271 a001 8/4106118243*271443^(2/9) 3141540617572589 a001 8/2139295485799*271443^(13/18) 3141540618432030 a001 8/28143753123*39603^(4/9) 3141540619433543 a001 8/5600748293801*39603^(17/18) 3141540620220782 p001 sum(1/(532*n+335)/(8^n),n=0..infinity) 3141540622880829 a001 4/5374978561*15127^(7/18) 3141540623218052 m008 (3/4*Pi+2/3)/(Pi^6+5/6) 3141540629745300 a001 8/1322157322203*15127^(8/9) 3141540630658013 m004 -100*Pi+(3*Log[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141540635187807 r005 Im(z^2+c),c=-15/14+61/256*I,n=30 3141540635710463 m001 (-sin(1)+FeigenbaumAlpha)/(Psi(2,1/3)+5^(1/2)) 3141540642722117 r002 2th iterates of z^2 + 3141540645516128 m002 -1/(20*Pi^6)+Pi 3141540666510235 s001 sum(exp(-Pi)^(n-1)*A164075[n],n=1..infinity) 3141540675310116 r005 Im(z^2+c),c=-13/70+21/44*I,n=14 3141540689204905 a001 4/299537289*2207^(1/9) 3141540709596400 m002 2*Csch[Pi]+(Pi^3*Cosh[Pi])/Log[Pi] 3141540713106839 r005 Im(z^2+c),c=-19/26+29/113*I,n=30 3141540721162396 r005 Re(z^2+c),c=5/114+12/13*I,n=3 3141540721202956 m001 (exp(Pi)+2^(1/2))/(-cos(1/5*Pi)+BesselI(1,2)) 3141540726564904 r005 Re(z^2+c),c=-35/94+17/52*I,n=23 3141540726976665 p004 log(24551/1061) 3141540732654773 r002 4th iterates of z^2 + 3141540734484780 a007 Real Root Of 271*x^4+461*x^3-962*x^2+888*x+181 3141540744594893 r009 Re(z^3+c),c=-19/50+15/58*I,n=18 3141540749210484 a003 cos(Pi*29/105)-sin(Pi*39/95) 3141540751077610 m003 -21/5+Sqrt[5]/4+Sin[1/2+Sqrt[5]/2]/2 3141540761692942 a007 Real Root Of -69*x^4-208*x^3-148*x^2-526*x+80 3141540776728733 r005 Im(z^2+c),c=3/98+11/19*I,n=13 3141540794305969 m005 (1/3*2^(1/2)-3/7)/(7/12*exp(1)-2/9) 3141540803377381 a007 Real Root Of 36*x^4-85*x^3-849*x^2-778*x-207 3141540807892590 m001 ln(GAMMA(5/12))*MadelungNaCl*cosh(1)^2 3141540810714626 m001 1/exp(BesselK(1,1))*GlaisherKinkelin/sqrt(5) 3141540811506647 r005 Re(z^2+c),c=-13/36+10/27*I,n=50 3141540818921604 m005 (1/3*2^(1/2)-1/5)/(1/2*gamma-3/8) 3141540820228942 r005 Im(z^2+c),c=-37/98+15/26*I,n=16 3141540821536092 m005 (1/2*2^(1/2)-2/9)/(7/9*Pi-9/10) 3141540826001182 b008 Pi-(3*Erfc[E])/7 3141540830538537 h001 (-exp(6)+3)/(-8*exp(1)+9) 3141540835408374 r005 Im(z^2+c),c=-25/82+27/53*I,n=45 3141540838471201 m002 -Pi+ProductLog[Pi]^2/(E^Pi*Pi^6) 3141540839398262 m002 -Pi+Tanh[Pi]/(20*Pi^6) 3141540848135810 m005 (1/2*Zeta(3)-1/4)/(5/6*gamma+7/11) 3141540850420136 a007 Real Root Of -163*x^4-329*x^3+946*x^2+885*x-880 3141540863134782 a001 8/370248451*843^(1/18) 3141540866151169 m004 750*Pi-Sinh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi]^2 3141540868598933 a007 Real Root Of 299*x^4+787*x^3-771*x^2-668*x+788 3141540875046493 m004 750*Pi-Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi]^2 3141540894193743 m001 exp(Rabbit)^2/Magata*sin(Pi/12) 3141540897729438 r004 Im(z^2+c),c=-1/8+7/16*I,z(0)=I,n=19 3141540901586648 a001 7/377*1597^(16/23) 3141540912330025 a007 Real Root Of -106*x^4-181*x^3+452*x^2+149*x+720 3141540921285325 p003 LerchPhi(1/8,5,431/215) 3141540921957296 a007 Real Root Of -381*x^4-268*x^3-262*x^2+374*x+12 3141540923639689 r002 3th iterates of z^2 + 3141540923762594 m001 (MadelungNaCl+Tetranacci)/(gamma+Lehmer) 3141540927573027 a001 843/24157817*121393^(7/9) 3141540927606190 a001 843/20365011074*701408733^(7/9) 3141540927606190 a001 843/591286729879*53316291173^(7/9) 3141540927606195 a001 281/233802911*9227465^(7/9) 3141540941577883 a007 Real Root Of -509*x^4-260*x^3+538*x^2+650*x+148 3141540949350420 l006 ln(6505/8906) 3141540984422736 r009 Im(z^3+c),c=-5/11+7/36*I,n=29 3141540985363268 m001 gamma(2)^Tribonacci/(gamma(2)^Gompertz) 3141540993132345 m001 (LaplaceLimit+Salem)/(Bloch-Shi(1)) 3141541006069701 m002 Pi-(Coth[Pi]*Log[Pi])/(E^Pi*Pi^6) 3141541006909243 m001 ln(2^(1/2)+1)/(Ei(1,1)^Chi(1)) 3141541007377609 m002 -16-E^Pi+Pi^3-Pi^5 3141541011688913 a001 8/28143753123*2207^(11/18) 3141541014307890 m001 (Cahen+ThueMorse)/(Pi+Ei(1,1)) 3141541015949788 r009 Re(z^3+c),c=-10/31+9/59*I,n=14 3141541046558416 a007 Real Root Of -410*x^4-889*x^3+961*x^2-703*x+679 3141541067183438 a003 sin(Pi*2/13)-sin(Pi*27/95) 3141541072850182 p003 LerchPhi(1/10,1,65/199) 3141541074395502 r005 Im(z^2+c),c=6/19+4/39*I,n=32 3141541077263399 m005 (1/2*5^(1/2)+1/5)/(1/11*exp(1)-2/3) 3141541079043656 r005 Im(z^2+c),c=3/8+10/31*I,n=16 3141541079190090 r005 Re(z^2+c),c=-37/90+7/61*I,n=9 3141541080422169 m001 GAMMA(7/12)^2/GAMMA(5/24)/exp(sqrt(2))^2 3141541080542031 r005 Re(z^2+c),c=-61/90+19/42*I,n=10 3141541083154545 r009 Re(z^3+c),c=-13/32+11/35*I,n=9 3141541093024106 m001 (Rabbit+ZetaQ(3))/(Cahen-PrimesInBinary) 3141541100171462 r005 Re(z^2+c),c=-47/122+19/62*I,n=12 3141541100276754 s002 sum(A211048[n]/((2*n+1)!),n=1..infinity) 3141541102338710 m002 Pi-(Csch[Pi]*Log[Pi])/(2*Pi^6) 3141541102475116 m001 1/CareFree*ln(ArtinRank2)^2*Niven 3141541102511135 k006 concat of cont frac of 3141541103111141 k009 concat of cont frac of 3141541105213141 k007 concat of cont frac of 3141541106775621 m001 1/2*Totient/Salem/Pi*2^(1/2)*GAMMA(3/4) 3141541111118171 k007 concat of cont frac of 3141541111123231 k008 concat of cont frac of 3141541111131214 k007 concat of cont frac of 3141541111211412 k006 concat of cont frac of 3141541112121111 k007 concat of cont frac of 3141541112172155 k006 concat of cont frac of 3141541112213551 k007 concat of cont frac of 3141541113121348 k009 concat of cont frac of 3141541116266960 s002 sum(A253625[n]/(pi^n),n=1..infinity) 3141541118121438 k007 concat of cont frac of 3141541118341153 k008 concat of cont frac of 3141541119217234 a001 843/832040*1597^(7/9) 3141541121214241 k008 concat of cont frac of 3141541122201111 k006 concat of cont frac of 3141541126141824 k006 concat of cont frac of 3141541127912211 k007 concat of cont frac of 3141541131111913 k007 concat of cont frac of 3141541131112417 k009 concat of cont frac of 3141541131216117 k007 concat of cont frac of 3141541131412112 k006 concat of cont frac of 3141541132171138 k007 concat of cont frac of 3141541133901565 r005 Im(z^2+c),c=-3/31+13/31*I,n=36 3141541141112411 k007 concat of cont frac of 3141541142488424 m001 MasserGramainDelta^(FibonacciFactorial/Cahen) 3141541149112221 k009 concat of cont frac of 3141541151114171 k006 concat of cont frac of 3141541153341212 k008 concat of cont frac of 3141541161073311 k007 concat of cont frac of 3141541161121221 k008 concat of cont frac of 3141541165085217 a007 Real Root Of 162*x^4+437*x^3-407*x^2-711*x-447 3141541171315215 k006 concat of cont frac of 3141541173645556 m001 Zeta(7)/Salem^2/exp(sin(1)) 3141541185516763 m001 exp(GAMMA(7/24))^2/Champernowne^2*Zeta(7) 3141541188811144 r005 Im(z^2+c),c=-31/26+16/57*I,n=9 3141541191182706 r005 Im(z^2+c),c=-9/22+24/41*I,n=62 3141541191811292 k007 concat of cont frac of 3141541196129244 q001 1/3183151 3141541198607719 m002 -Pi+Log[Pi]/(E^Pi*Pi^6) 3141541206993814 r002 26th iterates of z^2 + 3141541207577960 m006 (1/4*ln(Pi)-3/4)/(1/6*Pi-2) 3141541211211181 k007 concat of cont frac of 3141541211312633 k008 concat of cont frac of 3141541212989425 l006 ln(4259/5831) 3141541213239484 b008 Pi+ExpIntegralEi[-6]/7 3141541218098255 r005 Re(z^2+c),c=-31/32+13/56*I,n=58 3141541221112611 k009 concat of cont frac of 3141541221422146 k007 concat of cont frac of 3141541221514311 k008 concat of cont frac of 3141541224360407 r009 Im(z^3+c),c=-33/70+11/62*I,n=29 3141541230957480 m001 ln(2+3^(1/2))/(Niven^Khinchin) 3141541236024385 a007 Real Root Of 232*x^4+839*x^3+414*x^2+80*x-419 3141541243415126 k008 concat of cont frac of 3141541250916866 r005 Im(z^2+c),c=-47/56+13/47*I,n=4 3141541252522131 k008 concat of cont frac of 3141541261443111 k008 concat of cont frac of 3141541261451143 k006 concat of cont frac of 3141541262101983 m008 (3*Pi^6+1)/(3*Pi^5+1/3) 3141541271332111 k009 concat of cont frac of 3141541273237634 r005 Re(z^2+c),c=-7/17+3/56*I,n=31 3141541278619519 k006 concat of cont frac of 3141541279529977 m005 (1/2*2^(1/2)-4/9)/(4*5^(1/2)-7/12) 3141541294517845 m002 Pi-(Log[Pi]*Sech[Pi])/(2*Pi^6) 3141541294816591 r005 Re(z^2+c),c=-11/118+33/52*I,n=63 3141541302899131 r005 Im(z^2+c),c=-41/114+16/29*I,n=60 3141541308435212 a003 sin(Pi*7/50)*sin(Pi*14/53) 3141541309091263 a001 1/76*3571^(5/47) 3141541313615121 k006 concat of cont frac of 3141541314973211 m006 (1/6/Pi+2)/(1/4*exp(Pi)+3/4) 3141541321611412 k009 concat of cont frac of 3141541327714469 r005 Re(z^2+c),c=-31/56+18/43*I,n=24 3141541328414127 k006 concat of cont frac of 3141541341943141 k006 concat of cont frac of 3141541344135771 r002 16th iterates of z^2 + 3141541348447873 p004 log(34667/25321) 3141541352238240 r009 Re(z^3+c),c=-31/90+10/51*I,n=13 3141541361215111 k006 concat of cont frac of 3141541362415126 m001 (BesselI(1,1)+1/2)/(-ln(5)+5) 3141541365025710 a001 121393/199*9349^(43/46) 3141541365506208 r005 Im(z^2+c),c=-1/4+17/35*I,n=37 3141541374186903 m001 Totient-ln(2)/ln(10)*Magata 3141541382011452 a008 Real Root of (2+5*x-6*x^2-6*x^3-3*x^4-2*x^5) 3141541383029403 a007 Real Root Of -132*x^4-557*x^3-697*x^2-999*x-672 3141541389838131 h001 (6/7*exp(2)+6/11)/(4/7*exp(1)+7/11) 3141541390427970 m002 -Pi+(Log[Pi]*Tanh[Pi])/(E^Pi*Pi^6) 3141541411117361 k006 concat of cont frac of 3141541412731141 k007 concat of cont frac of 3141541413052505 r005 Im(z^2+c),c=1/36+21/59*I,n=30 3141541413439631 k006 concat of cont frac of 3141541418128161 k007 concat of cont frac of 3141541418855955 r005 Im(z^2+c),c=-9/58+22/49*I,n=17 3141541419078770 m001 1/exp(Si(Pi))^2/Bloch*BesselK(1,1) 3141541421258200 m002 30+ProductLog[Pi]+ProductLog[Pi]/Pi 3141541426806411 p001 sum((-1)^n/(507*n+307)/(10^n),n=0..infinity) 3141541431218112 k008 concat of cont frac of 3141541431966109 r002 34th iterates of z^2 + 3141541443028988 a007 Real Root Of -590*x^4-320*x^3-372*x^2+571*x-127 3141541450585168 a007 Real Root Of 280*x^4+599*x^3-767*x^2+192*x-528 3141541460884022 a001 55/1860498*7^(1/32) 3141541461061164 k009 concat of cont frac of 3141541464550870 m001 Riemann2ndZero/(Gompertz-gamma(1)) 3141541466560160 a001 7/13*987^(11/43) 3141541467922481 a007 Real Root Of -963*x^4+745*x^3-482*x^2+802*x+332 3141541468293568 r005 Im(z^2+c),c=-25/22+5/128*I,n=24 3141541474940676 r005 Im(z^2+c),c=15/52+4/9*I,n=51 3141541481798744 r005 Re(z^2+c),c=-5/14+18/47*I,n=27 3141541483804835 m001 exp(TreeGrowth2nd)*Riemann3rdZero*cos(Pi/5) 3141541486422409 l006 ln(6272/8587) 3141541512422513 k006 concat of cont frac of 3141541515239724 m001 LaplaceLimit/FransenRobinson/exp(Zeta(7))^2 3141541517141991 k008 concat of cont frac of 3141541519906892 a007 Real Root Of 511*x^4+624*x^3-103*x^2-928*x-267 3141541532255685 r009 Im(z^3+c),c=-7/20+4/15*I,n=22 3141541534947034 a007 Real Root Of 674*x^4-311*x^3+113*x^2-952*x+291 3141541535103980 r009 Im(z^3+c),c=-19/46+13/57*I,n=31 3141541563080901 r005 Im(z^2+c),c=-153/118+1/34*I,n=61 3141541565151288 r002 8th iterates of z^2 + 3141541565717943 m001 sin(1/12*Pi)*Bloch^FransenRobinson 3141541581217213 r005 Re(z^2+c),c=-19/106+8/13*I,n=43 3141541588027340 m001 ln(GAMMA(17/24))*GAMMA(1/4)*sin(Pi/5)^2 3141541588295570 r009 Re(z^3+c),c=-10/31+9/59*I,n=12 3141541588970710 p003 LerchPhi(1/25,2,421/234) 3141541591876199 h001 (-exp(2)-6)/(-12*exp(1)-10) 3141541597743314 a007 Real Root Of 512*x^4-936*x^3+695*x^2-753*x+192 3141541612551530 r002 37th iterates of z^2 + 3141541612559008 a001 29/4181*121393^(4/31) 3141541633543930 m001 (Riemann1stZero-gamma(1))/ZetaP(2) 3141541639885188 a001 89/1322157322203*7^(19/24) 3141541641328299 r005 Re(z^2+c),c=-13/14+33/170*I,n=44 3141541641615677 a007 Real Root Of -536*x^4-170*x^3-443*x^2+539*x+213 3141541647709690 r009 Im(z^3+c),c=-31/126+17/55*I,n=11 3141541656564182 r009 Im(z^3+c),c=-27/58+9/49*I,n=38 3141541661078900 a007 Real Root Of -237*x^4+446*x^3-575*x^2+863*x+344 3141541664121311 k007 concat of cont frac of 3141541667075349 r005 Im(z^2+c),c=13/64+6/25*I,n=12 3141541678588805 r005 Im(z^2+c),c=-3/17+35/58*I,n=23 3141541688544800 r009 Im(z^3+c),c=-17/74+30/43*I,n=7 3141541691990782 m001 (GAMMA(19/24)-Gompertz)/(ln(2)+ln(Pi)) 3141541698309977 m006 (1/2*exp(2*Pi)+3)/(1/4*ln(Pi)-1/5) 3141541700381406 a007 Real Root Of -168*x^4-760*x^3-372*x^2+859*x-830 3141541707617546 r005 Im(z^2+c),c=-31/94+18/35*I,n=43 3141541707679940 r009 Re(z^3+c),c=-29/62+24/59*I,n=37 3141541720318324 m001 GAMMA(17/24)/Paris/PrimesInBinary 3141541721312132 k006 concat of cont frac of 3141541732162713 k007 concat of cont frac of 3141541740663580 r005 Re(z^2+c),c=-21/50+7/24*I,n=3 3141541746182536 h001 (3/7*exp(1)+6/11)/(5/7*exp(2)+1/6) 3141541752464123 a008 Real Root of x^2-x-99007 3141541761322331 k007 concat of cont frac of 3141541763633998 h001 (1/12*exp(1)+3/8)/(2/9*exp(2)+3/11) 3141541764118269 a007 Real Root Of 106*x^4+113*x^3+524*x^2-986*x-359 3141541769531553 m001 (BesselI(1,1)-MertensB2)/(Porter+Trott2nd) 3141541772276836 b008 Pi-BesselK[0,9] 3141541778791516 r009 Im(z^3+c),c=-59/106+19/64*I,n=12 3141541781312601 k006 concat of cont frac of 3141541782070999 r005 Im(z^2+c),c=-37/102+29/55*I,n=59 3141541789034614 r005 Im(z^2+c),c=-77/82+14/55*I,n=5 3141541795587066 r005 Im(z^2+c),c=-25/74+26/61*I,n=3 3141541799115701 a009 5+8*6^(2/3) 3141541816059975 m001 Pi-ZetaQ(4)^cosh(1) 3141541834171225 k006 concat of cont frac of 3141541843673915 m005 (1/2*5^(1/2)-5/8)/(5^(1/2)-2/3) 3141541849400889 a003 sin(Pi*3/44)/sin(Pi*22/93) 3141541849427718 a003 sin(Pi*1/109)+sin(Pi*7/76) 3141541850223348 a007 Real Root Of 56*x^4-56*x^3-899*x^2-690*x-486 3141541853925318 r005 Im(z^2+c),c=17/58+4/27*I,n=52 3141541861463007 r009 Re(z^3+c),c=-43/102+7/22*I,n=4 3141541865571783 r005 Re(z^2+c),c=-89/122+1/28*I,n=8 3141541867243793 a001 20633239/2*2584^(10/23) 3141541877261924 m001 (gamma(2)-HardyLittlewoodC5)/(Kac+Rabbit) 3141541877964387 a001 199/18*(1/2*5^(1/2)+1/2)^19*18^(5/13) 3141541888485155 b008 19+15*LogGamma[Pi] 3141541890782191 r009 Im(z^3+c),c=-3/11+18/59*I,n=4 3141541901277879 r009 Re(z^3+c),c=-51/118+25/61*I,n=5 3141541905717325 a001 17/9*9349^(33/59) 3141541908045048 a001 167761/2*165580141^(10/23) 3141541922166486 h001 (-8*exp(-3)-2)/(-7*exp(2/3)+6) 3141541926884939 r005 Im(z^2+c),c=-4/25+5/13*I,n=4 3141541929872093 b008 Zeta[Pi*SinIntegral[Pi/7]] 3141541937839739 a007 Real Root Of 5*x^4-970*x^3+857*x^2-784*x-361 3141541949439613 r005 Re(z^2+c),c=-7/17+3/56*I,n=33 3141541954894808 m001 2^(1/2)+Psi(2,1/3)^ZetaR(2) 3141541955208864 a007 Real Root Of 969*x^4+944*x^3+846*x^2-52*x-80 3141541956928269 h001 (-8*exp(3)+6)/(-9*exp(4)-1) 3141541973870071 m009 (6*Psi(1,2/3)+2/3)/(Psi(1,2/3)+3) 3141541976480256 r005 Im(z^2+c),c=-11/21+11/19*I,n=60 3141541993480595 b008 -1/18*1/E^7+Pi 3141542002301495 q001 273/869 3141542002301495 r002 2th iterates of z^2 + 3141542002687528 m004 -100*Pi+(4*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3141542002767685 m004 -100*Pi+(4*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3141542020917465 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(6*Pi^5) 3141542024017143 a003 cos(Pi*1/103)*cos(Pi*45/113) 3141542025630645 m001 1/exp(FeigenbaumB)*Artin^2/BesselJ(1,1)^2 3141542036099500 a007 Real Root Of -697*x^4+987*x^3-265*x^2+880*x+340 3141542054229600 m001 (Otter+Trott)/(BesselI(0,1)-arctan(1/3)) 3141542054585892 r008 a(0)=3,K{-n^6,-6+4*n^3-3*n^2+4*n} 3141542055375354 m001 Stephens^(Psi(1,1/3)*exp(-1/2*Pi)) 3141542062314989 a007 Real Root Of -18*x^4-125*x^3-569*x^2-984*x+402 3141542064937577 l006 ln(2013/2756) 3141542072860724 m001 Psi(2,1/3)^GAMMA(7/12)/MinimumGamma 3141542087452223 m003 -4+6*E^(1/2+Sqrt[5]/2)*Coth[1/2+Sqrt[5]/2]^2 3141542093419187 r005 Re(z^2+c),c=-2/3+17/134*I,n=4 3141542098673525 m001 (Conway+GlaisherKinkelin)/(Ei(1)-exp(1)) 3141542102431859 m004 -2+1000*Pi+Log[Sqrt[5]*Pi] 3141542104250416 m005 (1/2*Catalan+2/7)/(5/9*exp(1)+6/7) 3141542110872889 m005 (1/2*Zeta(3)+5)/(7/8*2^(1/2)+6/11) 3141542111311631 k007 concat of cont frac of 3141542115471081 m002 -Pi+ProductLog[Pi]/(3*E^Pi*Pi^5) 3141542116161123 h001 (10/11*exp(2)+5/7)/(5/8*exp(1)+2/3) 3141542117594422 r005 Re(z^2+c),c=-27/46+14/31*I,n=64 3141542119218312 k006 concat of cont frac of 3141542119770147 r005 Im(z^2+c),c=-6/19+22/43*I,n=23 3141542131128121 k007 concat of cont frac of 3141542131913721 k006 concat of cont frac of 3141542146762209 a007 Real Root Of -124*x^4-99*x^3+752*x^2-281*x+704 3141542148495179 s002 sum(A124325[n]/(n^2*pi^n+1),n=1..infinity) 3141542149328077 a007 Real Root Of 121*x^4+516*x^3+290*x^2-280*x+471 3141542151422391 k009 concat of cont frac of 3141542153546382 a007 Real Root Of -874*x^4-490*x^3-626*x^2+996*x+368 3141542155424072 m001 sin(1/12*Pi)^ThueMorse/MasserGramainDelta 3141542157485317 m001 CopelandErdos/(KomornikLoreti-Zeta(5)) 3141542158024635 m001 (ln(2^(1/2)+1)*gamma(3)+Cahen)/gamma(3) 3141542161212611 k007 concat of cont frac of 3141542164722228 k006 concat of cont frac of 3141542164937453 m005 (1/2*Pi+1/3)/(1/7*Zeta(3)-1/9) 3141542171211911 k007 concat of cont frac of 3141542174883855 m005 (1/3*Zeta(3)+2/3)/(5/8*5^(1/2)+2) 3141542183057663 q001 2/63663 3141542187122553 m001 (Chi(1)-ErdosBorwein)/(-GaussAGM+Thue) 3141542204037698 m001 (ln(2)/ln(10)+ln(2))/(FeigenbaumAlpha+Robbin) 3141542209672209 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(6*Pi^5) 3141542210441365 r005 Re(z^2+c),c=-7/17+3/56*I,n=35 3141542210615041 m001 (Pi^(1/2)+Trott2nd)/(BesselI(0,1)-ln(2)) 3141542220409697 m001 LambertW(1)^Shi(1)/ZetaP(3) 3141542221889894 m005 (1/2*2^(1/2)+4/9)/(7/8*Pi+11/12) 3141542225131181 k006 concat of cont frac of 3141542263815229 r005 Im(z^2+c),c=-7/26+1/2*I,n=22 3141542301398966 r005 Re(z^2+c),c=-37/94+7/31*I,n=32 3141542306546763 r005 Re(z^2+c),c=-7/17+3/56*I,n=37 3141542308848433 a001 317811/11*76^(27/49) 3141542317017314 r005 Im(z^2+c),c=-11/31+23/56*I,n=6 3141542317247831 r005 Im(z^2+c),c=-23/32+3/35*I,n=39 3141542325200867 a001 192900153618/89*20365011074^(19/24) 3141542327331362 r002 2th iterates of z^2 + 3141542327732937 r009 Re(z^3+c),c=-23/48+15/49*I,n=4 3141542331119222 k007 concat of cont frac of 3141542331671616 m001 1/exp(Artin)/GaussAGM(1,1/sqrt(2))/Sierpinski 3141542334238658 r005 Im(z^2+c),c=13/114+32/55*I,n=10 3141542340021091 r005 Re(z^2+c),c=-7/17+3/56*I,n=39 3141542341718923 m001 (-GAMMA(3/4)+2*Pi/GAMMA(5/6))/(sin(1)+cos(1)) 3141542350852813 r005 Re(z^2+c),c=-7/17+3/56*I,n=41 3141542353979280 r005 Re(z^2+c),c=-7/17+3/56*I,n=43 3141542354351492 r005 Re(z^2+c),c=-7/17+3/56*I,n=46 3141542354384784 r005 Re(z^2+c),c=-7/17+3/56*I,n=48 3141542354454767 r005 Re(z^2+c),c=-7/17+3/56*I,n=50 3141542354504113 r005 Re(z^2+c),c=-7/17+3/56*I,n=52 3141542354531499 r005 Re(z^2+c),c=-7/17+3/56*I,n=54 3141542354545024 r005 Re(z^2+c),c=-7/17+3/56*I,n=56 3141542354551224 r005 Re(z^2+c),c=-7/17+3/56*I,n=58 3141542354553911 r005 Re(z^2+c),c=-7/17+3/56*I,n=60 3141542354555022 r005 Re(z^2+c),c=-7/17+3/56*I,n=62 3141542354555461 r005 Re(z^2+c),c=-7/17+3/56*I,n=64 3141542354556138 r005 Re(z^2+c),c=-7/17+3/56*I,n=63 3141542354556840 r005 Re(z^2+c),c=-7/17+3/56*I,n=61 3141542354558577 r005 Re(z^2+c),c=-7/17+3/56*I,n=59 3141542354562685 r005 Re(z^2+c),c=-7/17+3/56*I,n=57 3141542354571914 r005 Re(z^2+c),c=-7/17+3/56*I,n=55 3141542354591375 r005 Re(z^2+c),c=-7/17+3/56*I,n=53 3141542354627639 r005 Re(z^2+c),c=-7/17+3/56*I,n=44 3141542354628841 r005 Re(z^2+c),c=-7/17+3/56*I,n=51 3141542354629024 m001 (GaussAGM-ZetaP(4))/(Ei(1)+polylog(4,1/2)) 3141542354690336 r005 Re(z^2+c),c=-7/17+3/56*I,n=49 3141542354695391 r005 Re(z^2+c),c=-7/17+3/56*I,n=45 3141542354756601 r005 Re(z^2+c),c=-7/17+3/56*I,n=47 3141542356190476 r005 Re(z^2+c),c=-7/17+3/56*I,n=42 3141542362118631 r005 Re(z^2+c),c=-7/17+3/56*I,n=40 3141542365479185 b008 BesselJ[0,1/28+Pi] 3141542368079519 r002 4th iterates of z^2 + 3141542381369817 r005 Re(z^2+c),c=-7/17+3/56*I,n=38 3141542394481047 m009 (3/10*Pi^2+5)/(5/2*Pi^2+2/3) 3141542422415010 r009 Im(z^3+c),c=-5/106+49/59*I,n=24 3141542423353373 r005 Im(z^2+c),c=-5/23+26/55*I,n=54 3141542430181776 a007 Real Root Of -509*x^4+534*x^3+301*x^2+494*x+147 3141542431322028 a001 1/1563*(1/2*5^(1/2)+1/2)^7*3^(11/23) 3141542438531313 r005 Re(z^2+c),c=-7/17+3/56*I,n=36 3141542445829906 s002 sum(A124325[n]/(n^2*pi^n-1),n=1..infinity) 3141542460707582 r002 51th iterates of z^2 + 3141542461867507 a001 3/89*46368^(7/11) 3141542462814932 m001 (1-Shi(1))/(-FeigenbaumMu+MadelungNaCl) 3141542463702329 a007 Real Root Of 243*x^4+493*x^3-615*x^2+494*x-762 3141542473006197 m005 (1/3*gamma-1/9)/(11/12*3^(1/2)+1) 3141542476960247 a007 Real Root Of 435*x^4+978*x^3-973*x^2+521*x-808 3141542485707849 b008 Pi*ModularLambda[(5*I)/7/Pi] 3141542486588632 m002 -Pi+(4*Cosh[Pi])/Pi^12 3141542488186031 a007 Real Root Of 280*x^4+718*x^3-589*x^2-485*x-722 3141542497141115 m009 (1/2*Psi(1,2/3)+3)/(2/3*Psi(1,2/3)-3/5) 3141542497142361 r005 Im(z^2+c),c=-3/31+13/31*I,n=31 3141542503966988 r005 Im(z^2+c),c=-1/66+22/35*I,n=64 3141542513056460 m008 (5*Pi^6+3/5)/(5*Pi^3-2) 3141542522005127 r002 4th iterates of z^2 + 3141542537723959 m005 (17/66+1/6*5^(1/2))/(4/9*5^(1/2)-3) 3141542547234765 m001 (polylog(4,1/2)+MinimumGamma)/(Rabbit-Totient) 3141542548487422 b008 -3/E^11+Pi 3141542559647484 a007 Real Root Of -381*x^4+92*x^3-978*x^2+213*x+170 3141542561368322 a007 Real Root Of 319*x^4+968*x^3-253*x^2-721*x-827 3141542569935148 a003 sin(Pi*10/59)*sin(Pi*24/113) 3141542573708191 r009 Im(z^3+c),c=-43/114+31/49*I,n=52 3141542580098011 m002 (-2*E^Pi)/Pi^12+Pi 3141542583369257 r005 Re(z^2+c),c=41/118+14/33*I,n=52 3141542594055804 m001 (3^(1/3))^(Khinchin/Thue) 3141542597904856 r005 Re(z^2+c),c=-7/17+3/56*I,n=34 3141542618511131 k007 concat of cont frac of 3141542621465030 l006 ln(43/995) 3141542627959500 r005 Re(z^2+c),c=-37/90+4/59*I,n=11 3141542633080462 m001 GaussAGM/(ln(2+3^(1/2))+Totient) 3141542635748999 r005 Re(z^2+c),c=-29/42+1/36*I,n=6 3141542643407673 m008 (3*Pi^5-4/5)/(3*Pi^4-1/4) 3141542656784874 r005 Re(z^2+c),c=-11/27+3/25*I,n=23 3141542660889158 r005 Im(z^2+c),c=7/52+9/17*I,n=4 3141542660997751 r005 Im(z^2+c),c=15/86+16/61*I,n=28 3141542665750292 r005 Im(z^2+c),c=-11/42+27/59*I,n=7 3141542667409101 m001 (BesselI(1,1)+BesselI(0,2))/(Pi-5^(1/2)) 3141542668231886 a001 73681302247/89*317811^(2/19) 3141542668232540 a001 28143753123/89*2971215073^(2/19) 3141542668895084 m001 (BesselK(0,1)-CareFree)/(Kolakoski+OneNinth) 3141542673607389 m002 -Pi+(4*Sinh[Pi])/Pi^12 3141542673974074 a007 Real Root Of 386*x^4+930*x^3-704*x^2+269*x-970 3141542685350226 a001 18*(1/2*5^(1/2)+1/2)^2*322^(8/11) 3141542689885374 l006 ln(5806/7949) 3141542690334674 a007 Real Root Of -27*x^4+270*x^3+905*x^2-950*x-915 3141542698595865 m005 (1/2*Pi-4/5)/(-1/2+1/3*5^(1/2)) 3141542705243074 m001 1/CopelandErdos*exp(Conway)^2/FeigenbaumC 3141542705610801 a007 Real Root Of -442*x^4+633*x^3+711*x^2+787*x+201 3141542706240358 m009 (32*Catalan+4*Pi^2+1/2)/(1/5*Psi(1,2/3)-5/6) 3141542706673060 r005 Re(z^2+c),c=-117/118+5/22*I,n=58 3141542709355039 r005 Im(z^2+c),c=-1/78+17/45*I,n=30 3141542712857661 r005 Re(z^2+c),c=-23/74+32/61*I,n=54 3141542715921633 m008 (5*Pi^6-3/5)/(5*Pi^5-1/6) 3141542742750046 m006 (1/5/Pi+5/6)/(ln(Pi)-4) 3141542756632556 a007 Real Root Of -304*x^4-778*x^3+392*x^2-445*x+222 3141542760167036 r005 Re(z^2+c),c=-21/52+9/64*I,n=12 3141542761926740 m001 (ln(3)+Kac)/(Sarnak-ZetaP(3)) 3141542769962637 b008 Pi+12*ExpIntegralEi[-10] 3141542785625110 m001 (GaussAGM+Otter)/(3^(1/3)-CopelandErdos) 3141542789554423 a007 Real Root Of -275*x^4-635*x^3+569*x^2-340*x+414 3141542789855718 r009 Re(z^3+c),c=-23/50+19/39*I,n=34 3141542795984419 a007 Real Root Of 666*x^4-979*x^3-925*x^2-547*x+287 3141542800260135 m001 (FellerTornier-ZetaQ(2))^ln(2^(1/2)+1) 3141542804195433 m001 (MertensB2+StronglyCareFree)/(Zeta(3)-Kac) 3141542804397319 m001 (Ei(1)-Psi(1,1/3))/(gamma(1)+FeigenbaumD) 3141542828034152 m001 (exp(1)+FransenRobinson)/(Niven+ZetaQ(2)) 3141542844822003 m001 1/Tribonacci*exp(CareFree)^2/sin(1)^2 3141542863191162 a007 Real Root Of 221*x^4+829*x^3+190*x^2-500*x+731 3141542864173081 b008 Pi+4*ExpIntegralEi[-9] 3141542871151612 k008 concat of cont frac of 3141542886915253 a007 Real Root Of -355*x^4-716*x^3+966*x^2-649*x+806 3141542889229389 r002 21th iterates of z^2 + 3141542891446932 a001 377/18*2^(31/53) 3141542899339921 m005 (1/2*3^(1/2)-2/3)/(1/5*Zeta(3)-7/8) 3141542910388414 m001 1/GAMMA(1/6)*LaplaceLimit/ln(cos(1))^2 3141542915117991 b008 Pi-5*AiryAi[6] 3141542916886740 a007 Real Root Of 280*x^4+667*x^3-509*x^2+651*x+476 3141542917604032 m002 E^Pi*Log[Pi]+(Pi^2*Sinh[Pi])/E^Pi 3141542925104141 m002 -Pi+5/(Pi^10*ProductLog[Pi]) 3141542928728864 m001 BesselK(0,1)/(LandauRamanujan+Stephens) 3141542930170611 a001 377/5778*7^(21/26) 3141542936693657 m004 -Pi+5*Pi*Csch[Sqrt[5]*Pi]^2 3141542936772335 m004 -Pi+5*Pi*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141542936851014 m004 -Pi+5*Pi*Sech[Sqrt[5]*Pi]^2 3141542942624461 a007 Real Root Of -902*x^4+189*x^3-26*x^2+741*x+250 3141542949746515 a007 Real Root Of 250*x^4+492*x^3-721*x^2+407*x-702 3141542951002501 r002 3th iterates of z^2 + 3141542953391236 a007 Real Root Of -232*x^4-383*x^3+876*x^2-764*x-323 3141542954582897 m002 -Pi^2-Pi^5+2/ProductLog[Pi]^2 3141542961583466 r009 Re(z^3+c),c=-39/106+5/21*I,n=21 3141542991606350 r009 Re(z^3+c),c=-31/82+12/47*I,n=23 3141542992909104 m005 (1/2*exp(1)+7/12)/(2*Pi-1/10) 3141543006856676 m001 (HeathBrownMoroz-Magata)/Trott 3141543009182346 r002 25th iterates of z^2 + 3141543013330288 m005 (-1/28+1/4*5^(1/2))/(5/7*3^(1/2)+3/7) 3141543020368256 r005 Re(z^2+c),c=-7/17+3/56*I,n=32 3141543021554200 l006 ln(3793/5193) 3141543031568310 m001 exp(FeigenbaumB)^2*Bloch*(2^(1/3)) 3141543040926268 m002 Pi-Log[Pi]/(24*Pi^6) 3141543055100626 g006 Psi(1,5/12)+2*Psi(1,2/5)+Psi(1,1/3) 3141543058134753 m005 (1/2*Pi+3/7)/(9/10*2^(1/2)-7/11) 3141543067315342 m001 (-cos(1/12*Pi)+exp(1/Pi))/(Chi(1)+arctan(1/2)) 3141543073472515 a001 4/5374978561*843^(5/9) 3141543077024121 r005 Re(z^2+c),c=17/74+23/54*I,n=39 3141543087491141 m009 (5/6*Psi(1,3/4)-2)/(1/6*Psi(1,3/4)-4/5) 3141543093790794 r005 Im(z^2+c),c=-17/86+17/38*I,n=10 3141543106106462 r002 17th iterates of z^2 + 3141543111113231 k006 concat of cont frac of 3141543111114031 k007 concat of cont frac of 3141543111211416 k007 concat of cont frac of 3141543111431313 k008 concat of cont frac of 3141543116723475 a001 726103/41*2^(43/52) 3141543117912543 h001 (-4*exp(1)-5)/(-7*exp(-2)+6) 3141543121142111 k007 concat of cont frac of 3141543141191471 k007 concat of cont frac of 3141543141215051 k008 concat of cont frac of 3141543141261123 k006 concat of cont frac of 3141543141543141 k006 concat of cont frac of 3141543142111231 k007 concat of cont frac of 3141543159759005 m001 (BesselI(1,1)-FeigenbaumDelta)/Mills 3141543170133724 r005 Re(z^2+c),c=-87/122+7/40*I,n=32 3141543182172128 k006 concat of cont frac of 3141543183525408 m005 (1/2*Catalan+1/10)/(2/3*2^(1/2)+5/6) 3141543185249111 m001 1/MertensB1^2*exp(Conway)^2/Kolakoski^2 3141543187178258 r005 Re(z^2+c),c=31/102+3/26*I,n=21 3141543188011893 r005 Im(z^2+c),c=-11/90+13/21*I,n=21 3141543189434302 r005 Re(z^2+c),c=-1/58+35/44*I,n=36 3141543190523094 m005 (1/3*Catalan-1/5)/(7/9*Pi+10/11) 3141543205296628 m004 -5/E^(Sqrt[5]*Pi)+100*Pi*Tanh[Sqrt[5]*Pi] 3141543218096592 m001 (2^(1/3)-LambertW(1))/(Artin+FeigenbaumC) 3141543222005348 m001 FeigenbaumD*GAMMA(3/4)^StronglyCareFree 3141543233034306 m002 -E^Pi/(5*Pi^10)+Pi 3141543244541928 a007 Real Root Of -127*x^4-434*x^3-257*x^2-710*x-780 3141543251553497 m001 (GAMMA(2/3)+3^(1/3))/(Zeta(1,-1)+GAMMA(11/12)) 3141543256132111 k007 concat of cont frac of 3141543273540433 a001 123/139583862445*377^(3/14) 3141543279490965 r002 6th iterates of z^2 + 3141543297632528 m001 (Niven+Trott2nd)/(gamma(1)+GolombDickman) 3141543309938488 m001 (Otter+ZetaP(2))/(LaplaceLimit-MadelungNaCl) 3141543310026644 a007 Real Root Of -82*x^4-259*x^3-50*x^2+90*x+733 3141543334116990 r005 Im(z^2+c),c=-13/14+27/113*I,n=4 3141543359869986 m001 Robbin^2*exp(Riemann3rdZero)^2*GAMMA(2/3) 3141543367089663 l006 ln(5573/7630) 3141543371149341 r005 Re(z^2+c),c=5/17+5/49*I,n=25 3141543373170507 m001 (-Weierstrass+ZetaQ(2))/(1+PolyaRandomWalk3D) 3141543376048151 r005 Re(z^2+c),c=-67/86+2/51*I,n=36 3141543388177508 r009 Im(z^3+c),c=-11/56+13/15*I,n=34 3141543389605189 g007 Psi(2,7/8)+Psi(2,4/5)-Psi(2,2/11)-Psi(13/10) 3141543391697491 r009 Re(z^3+c),c=-13/28+24/61*I,n=47 3141543391889031 m001 Si(Pi)/(Weierstrass^Rabbit) 3141543412974293 a003 cos(Pi*28/71)*sin(Pi*17/41) 3141543413611116 k007 concat of cont frac of 3141543424410768 r005 Im(z^2+c),c=-27/46+8/21*I,n=24 3141543441675309 m005 (4/5*Catalan+3/4)/(1/3*Catalan+1/6) 3141543450403523 m001 Mills*(LandauRamanujan2nd+MasserGramainDelta) 3141543454507862 r002 5th iterates of z^2 + 3141543477998828 m009 (1/2*Psi(1,2/3)-3/5)/(4/5*Psi(1,3/4)-5) 3141543479151719 m001 (Pi+BesselI(0,1)*TwinPrimes)/BesselI(0,1) 3141543479348336 m001 1/Catalan^2/exp(Sierpinski)^2*arctan(1/2) 3141543480245821 r005 Re(z^2+c),c=-31/102+32/61*I,n=39 3141543499890966 b008 -8/E^12+Pi 3141543509110178 b008 E^(3/2)^(1/3) 3141543509110178 m001 exp(1)^((3^(1/3))/(2^(1/3))) 3141543509110178 m001 exp(1)^(1/2*3^(1/3)*2^(2/3)) 3141543509110178 m001 exp(1/2*3^(1/3)*2^(2/3)) 3141543520424503 r009 Re(z^3+c),c=-57/110+22/63*I,n=39 3141543521510260 a007 Real Root Of 507*x^4+138*x^3+629*x^2-612*x-255 3141543532473475 s001 sum(exp(-Pi/2)^n*A255681[n],n=1..infinity) 3141543539076635 m008 (Pi^6+1/5)/(3*Pi^2+1) 3141543540125696 m001 1/GlaisherKinkelin/ln(Artin)^2*GolombDickman^2 3141543545332010 l006 ln(7353/10067) 3141543546450976 r005 Im(z^2+c),c=-13/46+1/2*I,n=43 3141543551363916 m001 Chi(1)-MasserGramainDelta^CopelandErdos 3141543551560688 m005 (1/2*5^(1/2)+3/7)/(3/7*3^(1/2)-1/4) 3141543560551692 m001 (gamma(3)*QuadraticClass+Cahen)/gamma(3) 3141543569809367 m001 (cos(1/5*Pi)-Riemann2ndZero)/Cahen 3141543571327961 a007 Real Root Of 136*x^4+89*x^3-20*x^2-587*x-181 3141543617086834 a001 11/1597*89^(40/47) 3141543621895468 m001 (Champernowne+Otter)/(GAMMA(2/3)-Artin) 3141543647714597 r005 Im(z^2+c),c=-11/114+18/43*I,n=17 3141543648972890 a007 Real Root Of -153*x^4-289*x^3+232*x^2-965*x+621 3141543650021335 r002 10th iterates of z^2 + 3141543651853091 m002 -Pi+(2*Csch[Pi]^2)/Pi^5 3141543690319634 a001 599074578/233*55^(1/20) 3141543696021759 a007 Real Root Of -241*x^4-997*x^3-529*x^2+458*x-778 3141543721231513 k009 concat of cont frac of 3141543721412442 k006 concat of cont frac of 3141543723660109 r005 Re(z^2+c),c=-21/62+16/31*I,n=27 3141543724364600 r005 Im(z^2+c),c=-9/46+24/37*I,n=9 3141543740392146 m002 -3*Cosh[Pi]+Pi*ProductLog[Pi]*Tanh[Pi] 3141543740601568 m001 (Psi(2,1/3)-exp(Pi))/(-Paris+Riemann3rdZero) 3141543742890605 a008 Real Root of x^4-17*x^2-68*x+284 3141543743361028 m002 -Pi+(4*Csch[Pi])/(E^Pi*Pi^5) 3141543746999988 m001 Lehmer-Zeta(1/2)*KhinchinHarmonic 3141543747923150 r005 Im(z^2+c),c=5/106+21/34*I,n=6 3141543756202354 r008 a(0)=0,K{-n^6,-60+13*n-8*n^2+52*n^3} 3141543758608351 m002 -Pi+(4*Log[Pi])/Pi^10 3141543760483520 m004 -100*Pi+3*Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141543760522207 m004 -100*Pi+(6*Tan[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141543760560895 m004 -100*Pi+3*Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141543798994095 r009 Im(z^3+c),c=-7/20+4/15*I,n=21 3141543803009847 m001 ln(Porter)*FransenRobinson*cos(1)^2 3141543804087206 m002 -Pi^2+3*Pi^6+E^Pi*Sinh[Pi] 3141543811227152 k007 concat of cont frac of 3141543820387292 m001 (1-GaussAGM)/(-KhinchinLevy+TwinPrimes) 3141543825849676 r002 62th iterates of z^2 + 3141543826600788 a007 Real Root Of -231*x^4-662*x^3-4*x^2-907*x-835 3141543834527831 m002 -Pi+(2*Csch[Pi]*Sech[Pi])/Pi^5 3141543848491445 m001 1/ln(Riemann3rdZero)^2*Backhouse*sqrt(5) 3141543849518149 p001 sum((-1)^n/(103*n+92)/n/(16^n),n=0..infinity) 3141543859722423 a007 Real Root Of 268*x^4+803*x^3-362*x^2-668*x+267 3141543866201863 a007 Real Root Of 364*x^4+856*x^3-860*x^2+346*x+660 3141543903245194 r005 Im(z^2+c),c=-77/90+9/35*I,n=9 3141543909236743 r005 Im(z^2+c),c=-31/122+20/41*I,n=51 3141543910955814 m001 Si(Pi)-ln(2)/ln(10)+BesselI(1,2) 3141543921909849 m001 (FeigenbaumMu+ZetaQ(3))/(BesselJ(0,1)+Artin) 3141543922331872 a003 sin(Pi*1/100)/sin(Pi*45/91) 3141543923525883 m001 GaussKuzminWirsing*(3^(1/2)-ArtinRank2) 3141543925694633 m002 -Pi+(4*Sech[Pi])/(E^Pi*Pi^5) 3141543932613223 m002 Pi^5+Pi*Coth[Pi]+5*Tanh[Pi] 3141543944657356 r005 Im(z^2+c),c=15/86+16/61*I,n=30 3141543954941604 m001 (cos(1)-ln(Pi))/(-Grothendieck+Riemann2ndZero) 3141543971889273 m001 Artin^Psi(1,1/3)-Pi 3141543992095539 b008 Pi-Erfc[Khinchin]/3 3141543994342158 a007 Real Root Of -531*x^4-791*x^3+596*x^2+945*x-326 3141544008681387 a008 Real Root of x^4-27*x^2-57*x-10 3141544013220229 r005 Im(z^2+c),c=-55/98+13/29*I,n=48 3141544015310067 r005 Re(z^2+c),c=-41/94+19/34*I,n=33 3141544015488543 r005 Re(z^2+c),c=-65/58+17/58*I,n=16 3141544016521573 m002 -Pi+(2*Sech[Pi]^2)/Pi^5 3141544018449138 m005 (4*2^(1/2)-5/6)/(1/4*Pi+3/4) 3141544033930132 r005 Im(z^2+c),c=-3/31+13/31*I,n=34 3141544039427259 m001 (Si(Pi)+cos(1))/(-GAMMA(2/3)+Lehmer) 3141544043006709 a007 Real Root Of -15*x^4+135*x^3+481*x^2-4*x+887 3141544046335399 a008 Real Root of x^4-x^3-x^2+25*x-40 3141544054624410 r009 Re(z^3+c),c=-31/98+39/50*I,n=4 3141544056332020 r009 Re(z^3+c),c=-23/60+17/64*I,n=10 3141544067001487 a001 7/7778742049*39088169^(7/15) 3141544067001487 a001 1/32264490531*53316291173^(7/15) 3141544067358528 a001 7/267914296*28657^(7/15) 3141544090931846 r005 Re(z^2+c),c=-7/17+3/56*I,n=30 3141544096812256 m005 (1/2*exp(1)-8/11)/(5/11*Pi+7/12) 3141544101129081 r005 Re(z^2+c),c=-57/106+19/40*I,n=3 3141544102674639 m004 -100*Pi+(5*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141544103390753 l006 ln(1780/2437) 3141544111141101 k008 concat of cont frac of 3141544113228416 k007 concat of cont frac of 3141544113927508 r002 2th iterates of z^2 + 3141544117197821 r005 Re(z^2+c),c=-27/86+21/41*I,n=57 3141544122458419 a007 Real Root Of 163*x^4+329*x^3-544*x^2+58*x-125 3141544129579312 m005 (1/3*3^(1/2)+1/7)/(8/9*Pi-1/2) 3141544140440913 r005 Im(z^2+c),c=-1/26+25/64*I,n=15 3141544147045086 r005 Re(z^2+c),c=-13/36+10/27*I,n=53 3141544162366965 r005 Im(z^2+c),c=-1/8+16/37*I,n=37 3141544164395540 m001 ThueMorse*(LambertW(1)+DuboisRaymond) 3141544164475407 a007 Real Root Of -332*x^4-806*x^3+561*x^2-468*x+341 3141544165641891 m001 ZetaP(2)*(3^(1/3)-RenyiParking) 3141544172845148 b008 Pi*Sech[1/180] 3141544180029221 m001 ZetaP(3)^(TreeGrowth2nd/LaplaceLimit) 3141544184176490 a007 Real Root Of -414*x^4-923*x^3+843*x^2-859*x+689 3141544188659928 p003 LerchPhi(1/2,3,83/120) 3141544201979266 m001 (5^(1/2)+Catalan)/(-PlouffeB+Stephens) 3141544209209291 r005 Re(z^2+c),c=2/5+17/55*I,n=8 3141544209485211 r005 Im(z^2+c),c=1/36+21/59*I,n=27 3141544212161521 k007 concat of cont frac of 3141544212657243 m002 -Pi+(Coth[Pi]*ProductLog[Pi])/(E^Pi*Pi^6) 3141544213818983 r009 Im(z^3+c),c=-1/20+11/32*I,n=6 3141544216158995 m005 (1/2*exp(1)+3/10)/(5/8*gamma-8/9) 3141544217242377 m008 (5*Pi^5+1/2)/(5*Pi^4+1/6) 3141544217846471 s002 sum(A016468[n]/((exp(n)-1)/n),n=1..infinity) 3141544220828569 a001 123/591286729879*317811^(3/14) 3141544220829902 a001 123/2504730781961*267914296^(3/14) 3141544220829902 a001 41/3536736619241*225851433717^(3/14) 3141544223900655 h005 exp(cos(Pi*10/43)/cos(Pi*14/51)) 3141544225781694 r002 3th iterates of z^2 + 3141544233797500 r005 Im(z^2+c),c=-7/54+13/24*I,n=9 3141544238211348 k002 Champernowne real with 129/2*n^2-365/2*n+121 3141544245560911 m001 PrimesInBinary/(Gompertz+Sarnak) 3141544246398074 r005 Im(z^2+c),c=-1/48+31/50*I,n=35 3141544253294817 m004 -100*Pi*Coth[Sqrt[5]*Pi]+3*Csch[Sqrt[5]*Pi] 3141544253337049 m004 -6/E^(Sqrt[5]*Pi)+100*Pi*Coth[Sqrt[5]*Pi] 3141544253379280 m004 -100*Pi*Coth[Sqrt[5]*Pi]+3*Sech[Sqrt[5]*Pi] 3141544266950314 a007 Real Root Of -143*x^4-648*x^3-682*x^2+61*x+760 3141544270170855 r005 Im(z^2+c),c=-25/29+2/9*I,n=31 3141544274295179 r005 Im(z^2+c),c=7/110+11/29*I,n=3 3141544281173756 b008 Pi-(2*Erfc[E])/5 3141544288574109 m004 10*Pi-Cos[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141544298451408 k003 Champernowne real with n^3+117/2*n^2-343/2*n+115 3141544300282548 r002 38th iterates of z^2 + 3141544302949296 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(2*Pi^6) 3141544305110206 r005 Im(z^2+c),c=-17/98+25/56*I,n=13 3141544306635540 m001 (exp(1)-ln(2^(1/2)+1))/(Stephens+ZetaQ(3)) 3141544310631201 b008 -30+Pi*Tan[E] 3141544315112311 k007 concat of cont frac of 3141544317355835 m001 (exp(1)+Zeta(1,-1))/(-Artin+KhinchinLevy) 3141544325428180 s002 sum(A201077[n]/((exp(n)-1)/n),n=1..infinity) 3141544328632481 m001 1/Paris*ln(Si(Pi))^2/GAMMA(3/4) 3141544330790236 a007 Real Root Of -257*x^4-433*x^3+949*x^2-901*x-589 3141544331890509 a001 832040/29*76^(21/38) 3141544340906943 r005 Im(z^2+c),c=15/86+16/61*I,n=34 3141544346900318 a009 312+10^(1/3) 3141544348041707 m002 -Pi^5+ProductLog[Pi]/4-Pi^4*Sech[Pi] 3141544350231753 m001 (3^(1/3)-exp(1))/(BesselI(0,2)+Grothendieck) 3141544359032455 r005 Im(z^2+c),c=-7/6+6/173*I,n=9 3141544370003249 a007 Real Root Of 587*x^4-597*x^3+758*x^2-280*x-187 3141544377636851 r005 Re(z^2+c),c=-37/94+7/31*I,n=35 3141544377860338 m001 ln(1+sqrt(2))*polylog(4,1/2)+Khinchin 3141544377860338 m001 ln(2^(1/2)+1)*polylog(4,1/2)+Khinchin 3141544387133539 m005 (1/2*Pi+2)/(4/7*exp(1)-5/12) 3141544388811498 k003 Champernowne real with 5/2*n^3+99/2*n^2-155*n+106 3141544393241348 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^6) 3141544398291444 a007 Real Root Of -228*x^4-746*x^3+23*x^2+118*x-778 3141544399152299 m004 -100*Pi+2*Csch[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3141544399190481 m004 -100*Pi+(4*Sec[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141544399228663 m004 -100*Pi+2*Sec[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141544408089314 a001 4/2889*7^(8/19) 3141544412006137 r005 Re(z^2+c),c=-7/18+17/32*I,n=34 3141544418931528 k003 Champernowne real with 3*n^3+93/2*n^2-299/2*n+103 3141544431089991 a007 Real Root Of 351*x^4-6*x^3-805*x^2-550*x+249 3141544435136105 m001 exp(-1/2*Pi)^MertensB1*exp(-1/2*Pi)^PlouffeB 3141544449051558 k003 Champernowne real with 7/2*n^3+87/2*n^2-144*n+100 3141544452101730 a007 Real Root Of -605*x^4-435*x^3+439*x^2+619*x+19 3141544458428120 a007 Real Root Of -253*x^4-560*x^3+850*x^2+605*x+792 3141544459542286 m001 exp(Trott)*FeigenbaumB*GAMMA(11/24)^2 3141544477566020 r005 Re(z^2+c),c=-19/58+29/57*I,n=32 3141544477871914 r005 Im(z^2+c),c=15/86+16/61*I,n=33 3141544479171588 k003 Champernowne real with 4*n^3+81/2*n^2-277/2*n+97 3141544482697000 r005 Im(z^2+c),c=-29/26+4/105*I,n=16 3141544483196798 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(2*Pi^6) 3141544491713586 r008 a(0)=3,K{-n^6,9+7*n^3+21*n^2-43*n} 3141544509291618 k003 Champernowne real with 9/2*n^3+75/2*n^2-133*n+94 3141544514379202 r009 Im(z^3+c),c=-45/86+19/60*I,n=19 3141544517979873 r005 Im(z^2+c),c=-2/19+8/19*I,n=11 3141544523631502 m005 (1/2*exp(1)+1/10)/(1/4*2^(1/2)-2/5) 3141544532135967 m005 (1/2*3^(1/2)+2/11)/(1/6*Pi-6/7) 3141544533674594 a007 Real Root Of 155*x^3-560*x^2+283*x-168 3141544533974984 r009 Im(z^3+c),c=-43/126+16/59*I,n=11 3141544539411648 k003 Champernowne real with 5*n^3+69/2*n^2-255/2*n+91 3141544541509578 m008 (2/3*Pi^2-1/4)/(1/5*Pi^4+2/3) 3141544548727118 m001 (Conway+Niven)/(Paris+Thue) 3141544557264009 m001 Pi-gamma(3)^ErdosBorwein 3141544563298407 r005 Re(z^2+c),c=-23/58+5/23*I,n=12 3141544564854852 r005 Re(z^2+c),c=-9/40+38/63*I,n=28 3141544564917271 m001 exp(Salem)*Champernowne/GAMMA(5/6)^2 3141544569531678 k003 Champernowne real with 11/2*n^3+63/2*n^2-122*n+88 3141544571637175 p001 sum((-1)^n/(361*n+293)/(5^n),n=0..infinity) 3141544573152248 m002 -Pi+(ProductLog[Pi]*Tanh[Pi])/(E^Pi*Pi^6) 3141544574983345 m005 (11/28+1/4*5^(1/2))/(6/7*exp(1)+7/10) 3141544581222312 k006 concat of cont frac of 3141544581375179 r005 Re(z^2+c),c=7/22+19/46*I,n=41 3141544583916568 m004 -100*Pi+4*Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141544583992640 m004 -100*Pi+4*Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141544588446243 r009 Re(z^3+c),c=-39/86+25/47*I,n=64 3141544590114421 m001 FeigenbaumB*exp(Kolakoski)*Niven 3141544594435608 a007 Real Root Of -214*x^4+57*x^3-841*x^2+260*x+9 3141544599651708 k003 Champernowne real with 6*n^3+57/2*n^2-233/2*n+85 3141544605266180 s002 sum(A268680[n]/(n^2*pi^n-1),n=1..infinity) 3141544608110961 a002 5^(7/4)+6^(3/2) 3141544613752664 r002 53th iterates of z^2 + 3141544623142385 a001 1/10959*75025^(37/51) 3141544624516504 m001 ZetaP(2)-ln(2+3^(1/2))*LandauRamanujan2nd 3141544629771738 k003 Champernowne real with 13/2*n^3+51/2*n^2-111*n+82 3141544659891768 k003 Champernowne real with 7*n^3+45/2*n^2-211/2*n+79 3141544669181776 r005 Re(z^2+c),c=-5/8+17/188*I,n=4 3141544671370135 r005 Im(z^2+c),c=-33/38+13/54*I,n=10 3141544675480792 r005 Re(z^2+c),c=-7/9+5/117*I,n=22 3141544681001179 k003 Champernowne real with 15/2*n^3+39/2*n^2-100*n+76 3141544691647230 r002 13th iterates of z^2 + 3141544692206279 a007 Real Root Of 105*x^4-278*x^3-380*x^2-544*x+216 3141544699209790 l006 ln(6887/9429) 3141544711013182 k003 Champernowne real with 8*n^3+33/2*n^2-189/2*n+73 3141544712221101 k007 concat of cont frac of 3141544724156636 r005 Im(z^2+c),c=-29/114+18/37*I,n=31 3141544728670742 m002 Pi-Log[Pi]/(E^Pi*Pi^6*ProductLog[Pi]) 3141544730357235 b008 -1/7*1/E^8+Pi 3141544741025185 k003 Champernowne real with 17/2*n^3+27/2*n^2-89*n+70 3141544741296170 r002 37th iterates of z^2 + 3141544745496507 r005 Im(z^2+c),c=-19/106+21/46*I,n=39 3141544748288464 h001 (5/11*exp(1)+7/10)/(4/5*exp(2)+1/4) 3141544748458670 m001 1/exp(Riemann3rdZero)^2/Magata^2*GAMMA(11/24) 3141544750200106 r005 Im(z^2+c),c=-67/60+13/53*I,n=14 3141544751167622 m001 GAMMA(1/4)^2*FransenRobinson^2*ln(GAMMA(2/3)) 3141544760153523 a005 (1/cos(7/59*Pi))^534 3141544762947317 m005 (1/4*Pi+5/6)/(1/6*Catalan+5) 3141544767486796 m001 (2^(1/2)+BesselK(1,1))/(-Cahen+ZetaQ(4)) 3141544771037188 k003 Champernowne real with 9*n^3+21/2*n^2-167/2*n+67 3141544777285831 a003 cos(Pi*6/55)*cos(Pi*38/97) 3141544789622972 r005 Im(z^2+c),c=-22/21+9/37*I,n=32 3141544793141367 m001 Pi-gamma(2)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141544801049191 k003 Champernowne real with 19/2*n^3+15/2*n^2-78*n+64 3141544815878542 m004 5*Pi+125*Pi*Cos[Sqrt[5]*Pi]+6*Csc[Sqrt[5]*Pi] 3141544818253163 m001 BesselK(0,1)^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141544818253163 m001 BesselK(0,1)^GAMMA(1/12)-Pi 3141544831061194 k003 Champernowne real with 10*n^3+9/2*n^2-145/2*n+61 3141544839959631 r005 Re(z^2+c),c=-27/74+7/20*I,n=19 3141544849218626 r005 Im(z^2+c),c=17/114+16/57*I,n=19 3141544855697645 r005 Re(z^2+c),c=41/122+25/59*I,n=17 3141544859383134 r009 Re(z^3+c),c=-15/62+59/61*I,n=26 3141544861073197 k003 Champernowne real with 21/2*n^3+3/2*n^2-67*n+58 3141544867619060 m001 (FeigenbaumKappa+Sarnak)/(TwinPrimes+ZetaQ(4)) 3141544867702886 m005 (1/4*Pi+1)/(2*Pi-3/5) 3141544867702886 m006 (1/4*Pi+1)/(2*Pi-3/5) 3141544867702886 m008 (1/4*Pi+1)/(2*Pi-3/5) 3141544868372143 r005 Re(z^2+c),c=29/94+6/53*I,n=47 3141544886961949 a007 Real Root Of -896*x^4+848*x^3-30*x^2+466*x-161 3141544891085200 k003 Champernowne real with 11*n^3-3/2*n^2-123/2*n+55 3141544899226528 m008 (Pi^6-4/5)/(Pi^5-1/4) 3141544904690406 a007 Real Root Of -445*x^4-951*x^3-309*x^2+887*x+284 3141544906877274 l006 ln(5107/6992) 3141544907720548 r009 Re(z^3+c),c=-49/122+17/62*I,n=7 3141544909864292 a007 Real Root Of 245*x^4+887*x^3+625*x^2+931*x+394 3141544915252411 k006 concat of cont frac of 3141544917713088 r002 19th iterates of z^2 + 3141544920619190 r005 Im(z^2+c),c=-37/66+3/53*I,n=63 3141544921097203 k003 Champernowne real with 23/2*n^3-9/2*n^2-56*n+52 3141544923077989 m001 GolombDickman^TravellingSalesman*TreeGrowth2nd 3141544928513073 r009 Re(z^3+c),c=-4/9+9/25*I,n=24 3141544934946523 r005 Re(z^2+c),c=-13/36+10/27*I,n=55 3141544947914958 h001 (9/11*exp(2)+1/4)/(2/5*exp(1)+11/12) 3141544951109206 k003 Champernowne real with 12*n^3-15/2*n^2-101/2*n+49 3141544956705709 a007 Real Root Of -357*x^4-981*x^3+389*x^2-325*x-503 3141544961220751 r005 Im(z^2+c),c=15/86+16/61*I,n=38 3141544978659673 m002 2+Log[Pi]-(Log[Pi]*Sech[Pi])/Pi^3 3141544982473887 r009 Re(z^3+c),c=-21/74+1/60*I,n=5 3141544982858595 m001 Sarnak/KomornikLoreti*StronglyCareFree 3141544984883238 r005 Im(z^2+c),c=15/86+16/61*I,n=39 3141544988470819 a007 Real Root Of 118*x^4-16*x^3-899*x^2+976*x-51 3141545012357063 h001 (1/7*exp(1)+2/9)/(2/11*exp(2)+3/5) 3141545015154917 m001 MinimumGamma/(gamma(2)+Weierstrass) 3141545018739756 b008 7+3*Tan[5] 3141545020946420 m005 (1/2*Pi+11/12)/(3/10*5^(1/2)-3/4) 3141545022884561 m001 ln(2)^MasserGramain-Weierstrass 3141545025432809 m002 Pi-Log[Pi]/(25*Pi^6) 3141545028876854 m001 2^(1/2)*FeigenbaumD^Pi 3141545036533345 r005 Im(z^2+c),c=23/126+12/47*I,n=13 3141545044198032 r005 Im(z^2+c),c=15/86+16/61*I,n=43 3141545051284436 r005 Im(z^2+c),c=15/86+16/61*I,n=44 3141545052556447 r005 Im(z^2+c),c=21/74+6/35*I,n=14 3141545055287388 r009 Re(z^3+c),c=-39/106+5/21*I,n=24 3141545056147808 r005 Im(z^2+c),c=15/86+16/61*I,n=48 3141545056551971 h001 (1/3*exp(1)+4/11)/(3/7*exp(2)+7/8) 3141545057404166 r005 Im(z^2+c),c=15/86+16/61*I,n=49 3141545057688795 r005 Im(z^2+c),c=15/86+16/61*I,n=47 3141545057689759 r005 Im(z^2+c),c=15/86+16/61*I,n=53 3141545057782271 r005 Im(z^2+c),c=15/86+16/61*I,n=52 3141545057871998 r005 Im(z^2+c),c=15/86+16/61*I,n=57 3141545057872090 r005 Im(z^2+c),c=15/86+16/61*I,n=58 3141545057873796 r005 Im(z^2+c),c=15/86+16/61*I,n=54 3141545057890666 r005 Im(z^2+c),c=15/86+16/61*I,n=62 3141545057891924 r005 Im(z^2+c),c=15/86+16/61*I,n=63 3141545057894797 r005 Im(z^2+c),c=15/86+16/61*I,n=64 3141545057896126 r005 Im(z^2+c),c=15/86+16/61*I,n=59 3141545057896486 r005 Im(z^2+c),c=15/86+16/61*I,n=61 3141545057904023 r005 Im(z^2+c),c=15/86+16/61*I,n=60 3141545057928881 r005 Im(z^2+c),c=15/86+16/61*I,n=56 3141545057973598 r005 Im(z^2+c),c=15/86+16/61*I,n=55 3141545058290728 r005 Im(z^2+c),c=15/86+16/61*I,n=51 3141545058469287 r005 Im(z^2+c),c=15/86+16/61*I,n=50 3141545061491916 r005 Im(z^2+c),c=15/86+16/61*I,n=45 3141545061871319 r005 Im(z^2+c),c=15/86+16/61*I,n=46 3141545062841328 r005 Im(z^2+c),c=15/86+16/61*I,n=42 3141545063003506 r002 20th iterates of z^2 + 3141545063499919 a007 Real Root Of -339*x^4-655*x^3+974*x^2-705*x+884 3141545063611321 r002 4th iterates of z^2 + 3141545065961395 r005 Im(z^2+c),c=15/86+16/61*I,n=35 3141545071627637 a001 29/610*987^(31/51) 3141545074587672 r005 Im(z^2+c),c=15/86+16/61*I,n=40 3141545090460556 m001 1/Tribonacci^2*LandauRamanujan^2/ln(gamma) 3141545093840749 m005 (1/2*3^(1/2)+2/7)/(8/11*Catalan+3) 3141545094217703 r005 Im(z^2+c),c=15/86+16/61*I,n=41 3141545094685145 r005 Im(z^2+c),c=-55/106+26/47*I,n=49 3141545104538230 p004 log(37463/1619) 3141545110750945 q001 1163/3702 3141545112113261 k006 concat of cont frac of 3141545112214252 k007 concat of cont frac of 3141545114111902 k007 concat of cont frac of 3141545116861456 r005 Re(z^2+c),c=-13/44+21/52*I,n=7 3141545118208237 r005 Im(z^2+c),c=-11/28+17/31*I,n=34 3141545132313863 r005 Re(z^2+c),c=17/60+3/31*I,n=37 3141545135918607 r005 Im(z^2+c),c=-9/28+24/49*I,n=11 3141545138345057 s002 sum(A145114[n]/(n^2*pi^n+1),n=1..infinity) 3141545141606526 a007 Real Root Of 705*x^4-162*x^3+374*x^2-7*x-51 3141545144824596 r009 Re(z^3+c),c=-39/106+5/21*I,n=13 3141545147923674 r005 Im(z^2+c),c=7/44+25/42*I,n=4 3141545150264911 r009 Re(z^3+c),c=-19/122+22/29*I,n=59 3141545151120152 a007 Real Root Of 273*x^4+968*x^3+331*x^2+142*x+601 3141545155267846 r005 Im(z^2+c),c=15/86+16/61*I,n=37 3141545163978362 r005 Re(z^2+c),c=33/94+9/44*I,n=5 3141545168250887 r009 Im(z^3+c),c=-21/110+12/37*I,n=6 3141545168354938 m001 FeigenbaumKappa^2/Magata/exp(cos(1)) 3141545172286968 l006 ln(394/9117) 3141545174053278 a007 Real Root Of -827*x^4+173*x^3-723*x^2+892*x+365 3141545187486910 m001 (gamma+BesselK(0,1))/(Ei(1)+GlaisherKinkelin) 3141545204457350 r002 60th iterates of z^2 + 3141545211734973 h001 (7/10*exp(2)+3/7)/(1/7*exp(2)+8/11) 3141545212047195 m008 (2*Pi^2+2/5)/(2/3*Pi^4-5/6) 3141545222192299 m001 Pi-ZetaQ(2)^Magata 3141545235051107 a001 123*144^(10/53) 3141545239125888 a001 18/956722026041*3^(7/15) 3141545243705739 r005 Re(z^2+c),c=-51/106+13/44*I,n=7 3141545246887955 m001 TwinPrimes/(2^(1/3)+sin(1)) 3141545246887955 m001 TwinPrimes/(sin(1)+(2^(1/3))) 3141545249174819 r008 a(0)=3,K{-n^6,8-5*n^3-9*n^2-2*n} 3141545270066486 b008 Sqrt[ArcCot[Sqrt[102]]] 3141545276340206 m005 (1/2*Catalan-1/8)/(7/9*Zeta(3)+1/8) 3141545277838616 r005 Re(z^2+c),c=29/94+23/53*I,n=14 3141545295985158 a007 Real Root Of 200*x^4+769*x^3+474*x^2-177*x-872 3141545298631621 r002 44th iterates of z^2 + 3141545319548678 m001 1/ln(Ei(1))^2*Backhouse^2/GAMMA(17/24)^2 3141545325650607 m001 (5^(1/2)-ln(3))/(-Conway+Totient) 3141545330443060 r005 Re(z^2+c),c=-37/94+7/31*I,n=37 3141545330976394 m001 (BesselI(1,1)-Lehmer)/(Paris+StronglyCareFree) 3141545336755819 l006 ln(3327/4555) 3141545337934885 a007 Real Root Of 403*x^4+942*x^3-922*x^2+236*x-206 3141545345334123 r005 Im(z^2+c),c=-73/114+25/64*I,n=20 3141545346521680 m005 (1/3*2^(1/2)+1/5)/(5/7*3^(1/2)+9/10) 3141545357446078 a007 Real Root Of -424*x^4-22*x^3+796*x^2+908*x-359 3141545363142088 r005 Im(z^2+c),c=15/86+16/61*I,n=36 3141545366682306 m001 Pi-gamma(3)^ln(5) 3141545381020804 r005 Im(z^2+c),c=-10/9+42/109*I,n=5 3141545386401866 m001 PisotVijayaraghavan^2*ln(Magata)*Zeta(1/2) 3141545399750533 a003 sin(Pi*6/65)/cos(Pi*14/103) 3141545404662952 a007 Real Root Of -209*x^4-442*x^3+94*x^2+393*x-117 3141545405837788 r005 Re(z^2+c),c=9/29+18/35*I,n=9 3141545412970962 r002 6th iterates of z^2 + 3141545427382800 m001 (Kolakoski*Tribonacci+MertensB2)/Kolakoski 3141545438775418 p001 sum((-1)^n/(308*n+31)/(3^n),n=0..infinity) 3141545442963644 a007 Real Root Of 252*x^4+897*x^3+526*x^2+385*x-716 3141545455553860 r005 Im(z^2+c),c=-12/19+9/29*I,n=12 3141545461712606 r005 Im(z^2+c),c=-17/98+24/53*I,n=21 3141545470516217 r005 Im(z^2+c),c=-13/58+19/40*I,n=24 3141545477633480 m001 (BesselI(0,1)-GaussAGM)/(Kac+RenyiParking) 3141545484780377 l006 ln(351/8122) 3141545484994009 m001 FeigenbaumD^(LandauRamanujan/gamma(3)) 3141545494566024 m002 -Pi+Csch[Pi]/(6*Pi^5) 3141545497420898 m001 FeigenbaumAlpha^ErdosBorwein-GAMMA(3/4) 3141545504355005 a007 Real Root Of -281*x^4-762*x^3+55*x^2-712*x+965 3141545513598149 r002 10th iterates of z^2 + 3141545524407564 a007 Real Root Of 305*x^4+790*x^3-774*x^2-874*x-321 3141545536231214 b008 ArcCosh[-2+5*E] 3141545537980927 a001 199/21*5^(35/47) 3141545539387511 h005 exp(cos(Pi*2/41)+cos(Pi*9/20)) 3141545552858729 a007 Real Root Of 678*x^4-939*x^3-136*x^2-570*x+215 3141545581787551 r005 Im(z^2+c),c=-11/42+12/25*I,n=17 3141545582632801 m002 -1/(3*E^Pi*Pi^5)+Pi 3141545593260142 a007 Real Root Of -45*x^4+493*x^3+166*x^2+12*x-35 3141545624742707 b008 E+FresnelC[11/4] 3141545627684782 r009 Im(z^3+c),c=-51/122+11/49*I,n=19 3141545641290422 r005 Im(z^2+c),c=-3/17+15/29*I,n=5 3141545651988816 a001 41/15456*21^(1/18) 3141545656253370 r005 Im(z^2+c),c=3/20+7/25*I,n=15 3141545661984824 a003 cos(Pi*29/110)-sin(Pi*36/79) 3141545663485042 m001 1/ln(LambertW(1))^2/GAMMA(11/12)/Zeta(1,2) 3141545664448481 r005 Re(z^2+c),c=-8/23+29/59*I,n=19 3141545670371271 m002 -Pi+Sech[Pi]/(6*Pi^5) 3141545672315094 s002 sum(A131546[n]/(n^2*10^n+1),n=1..infinity) 3141545709293991 m001 Pi+2^(1/3)/Psi(2,1/3)*gamma(3) 3141545724815739 m005 (1/2*Zeta(3)+10/11)/(-7/18+7/18*5^(1/2)) 3141545726948829 r005 Re(z^2+c),c=9/74+17/28*I,n=40 3141545727273549 r005 Im(z^2+c),c=-3/31+13/31*I,n=39 3141545728286453 r005 Im(z^2+c),c=-43/70+7/18*I,n=28 3141545735964605 m001 (Ei(1,1)-cos(1))/(-Artin+HardHexagonsEntropy) 3141545745901326 a007 Real Root Of -229*x^4-767*x^3-95*x^2+359*x+590 3141545748525107 m001 Khintchine*GolombDickman/ln(Niven) 3141545753747977 r005 Re(z^2+c),c=-9/22+1/58*I,n=9 3141545754820972 r005 Re(z^2+c),c=33/106+1/27*I,n=59 3141545758109741 m002 -Pi+Tanh[Pi]/(3*E^Pi*Pi^5) 3141545786823917 r009 Re(z^3+c),c=-41/86+21/61*I,n=6 3141545787184550 l006 ln(4874/6673) 3141545788772303 p003 LerchPhi(1/2,4,584/237) 3141545816708761 r005 Im(z^2+c),c=-67/74+10/29*I,n=7 3141545819869425 m005 (1/2*exp(1)-4/5)/(4/5*Zeta(3)+9/11) 3141545829617109 r005 Im(z^2+c),c=-3/31+13/31*I,n=37 3141545845521128 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(6*Pi^5) 3141545860378096 m002 -Pi+(6*Csch[Pi]^2)/Pi^6 3141545873361337 r005 Re(z^2+c),c=-23/30+5/103*I,n=50 3141545884528296 l006 ln(308/7127) 3141545884745054 r005 Re(z^2+c),c=-13/36+10/27*I,n=58 3141545891937337 m001 1/KhintchineLevy^2/exp(FeigenbaumB)*Zeta(7)^2 3141545898511706 m001 Si(Pi)^GlaisherKinkelin-Zeta(1,2) 3141545903503912 r009 Im(z^3+c),c=-19/46+13/57*I,n=30 3141545915844704 r004 Im(z^2+c),c=17/38-1/7*I,z(0)=exp(3/8*I*Pi),n=3 3141545937784660 r005 Im(z^2+c),c=-5/23+26/55*I,n=51 3141545945066327 m005 (1/2*gamma-3/11)/(5/8*2^(1/2)-5/6) 3141545948055057 r005 Im(z^2+c),c=-11/50+6/13*I,n=15 3141545961172121 k007 concat of cont frac of 3141545999852224 a001 199/1597*987^(22/47) 3141546000657639 a007 Real Root Of -187*x^4-719*x^3-518*x^2-609*x-879 3141546000853007 a007 Real Root Of -13*x^4+248*x^3-438*x^2+767*x+292 3141546006562800 r009 Re(z^3+c),c=-29/66+18/43*I,n=5 3141546009646441 m005 (1/2*2^(1/2)+1/8)/(3^(1/2)+11/12) 3141546012546526 m002 -Pi+5/(Pi^10*Log[Pi]) 3141546020571302 l006 ln(6421/8791) 3141546034423315 a007 Real Root Of -307*x^4-863*x^3+605*x^2+610*x-909 3141546034819623 m002 -Pi+(6*Csch[Pi]*Sech[Pi])/Pi^6 3141546035724548 m001 Porter/ln(CopelandErdos)^2/sqrt(5) 3141546041593099 s002 sum(A128892[n]/(10^n-1),n=1..infinity) 3141546056622284 g007 Psi(2,4/9)+Psi(2,5/7)+Psi(2,3/4)-Psi(2,6/7) 3141546059136307 a001 1/7*(1/2*5^(1/2)+1/2)^20*29^(1/9) 3141546064242852 q001 89/2833 3141546077750255 m004 -100*Pi+(5*Pi*Csch[Sqrt[5]*Pi])/6 3141546077787109 m004 -100*Pi+(5*Pi)/(3*E^(Sqrt[5]*Pi)) 3141546077823963 m004 -100*Pi+(5*Pi*Sech[Sqrt[5]*Pi])/6 3141546098996171 r005 Re(z^2+c),c=-13/36+10/27*I,n=60 3141546103375470 a007 Real Root Of 162*x^4+755*x^3+864*x^2+210*x-238 3141546104328470 r005 Re(z^2+c),c=-23/62+25/38*I,n=11 3141546107693077 m001 1/FeigenbaumKappa*ln(Paris)^2/(2^(1/3)) 3141546108899245 m001 (Khinchin-ReciprocalLucas)/(Pi-sin(1)) 3141546108988823 r009 Re(z^3+c),c=-39/106+5/21*I,n=25 3141546113153651 k007 concat of cont frac of 3141546118779004 r005 Im(z^2+c),c=1/20+17/29*I,n=7 3141546121177721 m002 -Pi+ProductLog[Pi]/(24*Pi^6) 3141546123991185 h001 (5/7*exp(2)+3/10)/(4/7*exp(1)+2/9) 3141546138543584 a001 3010349/8*24157817^(15/16) 3141546140842035 m002 -2/(Pi^4*Log[Pi])+Tanh[Pi]/3 3141546143460178 a001 4106118243/8*10946^(15/16) 3141546148641887 a007 Real Root Of 170*x^4+484*x^3-338*x^2-824*x-805 3141546149035590 r002 6th iterates of z^2 + 3141546176512529 r005 Re(z^2+c),c=-85/74+9/37*I,n=54 3141546208610844 m002 -Pi+(6*Sech[Pi]^2)/Pi^6 3141546226590823 r005 Re(z^2+c),c=-53/118+28/53*I,n=46 3141546236843648 a007 Real Root Of 204*x^4+360*x^3-740*x^2+701*x+797 3141546245557285 a007 Real Root Of -970*x^4+32*x^3+704*x^2+401*x-187 3141546252361345 a001 199/89*3^(13/42) 3141546253390829 a007 Real Root Of 260*x^4+657*x^3-281*x^2+808*x+357 3141546256186222 a007 Real Root Of 98*x^4+455*x^3+179*x^2-580*x+973 3141546263536447 a001 1/126*(1/2*5^(1/2)+1/2)^12*18^(1/14) 3141546266155126 p004 log(25523/1103) 3141546284385856 r005 Re(z^2+c),c=-95/122+3/61*I,n=26 3141546289158587 m001 ZetaP(4)/(Riemann3rdZero-Gompertz) 3141546303068897 r005 Im(z^2+c),c=15/86+16/61*I,n=32 3141546307463509 a007 Real Root Of 261*x^4+613*x^3-696*x^2-62*x+258 3141546309524532 r009 Re(z^3+c),c=-3/29+35/51*I,n=12 3141546320530453 m001 1/Paris^2/ln(LaplaceLimit)^2/GAMMA(5/24)^2 3141546324412191 k008 concat of cont frac of 3141546329286554 a001 47/53316291173*1134903170^(17/18) 3141546329301938 a001 47/14930352*196418^(17/18) 3141546339328112 m005 (1/5*exp(1)+1/6)/(2/3*Pi+1/6) 3141546356031766 p001 sum(1/(377*n+323)/(32^n),n=0..infinity) 3141546369383907 r005 Re(z^2+c),c=-13/36+10/27*I,n=63 3141546370758415 r002 8th iterates of z^2 + 3141546383093604 m001 Conway-HeathBrownMoroz+Tribonacci 3141546398490056 r002 33th iterates of z^2 + 3141546399571960 m008 (2*Pi^6+3/5)/(2*Pi^5+1/5) 3141546414005482 l006 ln(265/6132) 3141546418634236 a007 Real Root Of -242*x^4-716*x^3+269*x^2+302*x-334 3141546419571622 m001 FeigenbaumC/ln(Lehmer)/GAMMA(11/12)^2 3141546426135807 a001 47/28657*5^(21/52) 3141546427574001 a007 Real Root Of 58*x^4+56*x^3-281*x^2+338*x-78 3141546437558103 b008 19+14*Sech[1/2] 3141546440913442 a007 Real Root Of -538*x^4+896*x^3+200*x^2+833*x+26 3141546451767436 r005 Re(z^2+c),c=13/54+25/42*I,n=5 3141546459867912 m005 (1/3*2^(1/2)+1/12)/(-1/7+1/7*5^(1/2)) 3141546460897149 b008 Pi+(2*ExpIntegralEi[-7])/5 3141546467572361 m001 GAMMA(13/24)+((1+3^(1/2))^(1/2))^cos(1/5*Pi) 3141546467572361 m001 GAMMA(13/24)+sqrt(1+sqrt(3))^cos(Pi/5) 3141546471721854 a003 cos(Pi*5/78)*sin(Pi*8/77) 3141546480804134 m001 Otter^AlladiGrinstead-exp(1) 3141546488834727 m001 (GAMMA(7/12)-cos(1))/(-GAMMA(19/24)+Thue) 3141546494543812 r005 Im(z^2+c),c=10/23+2/21*I,n=3 3141546502257201 r009 Im(z^3+c),c=-15/86+19/58*I,n=10 3141546512398242 m009 (2/3*Psi(1,2/3)+3)/(6*Psi(1,3/4)+4/5) 3141546516115224 r009 Re(z^3+c),c=-39/106+5/21*I,n=28 3141546516283035 r005 Re(z^2+c),c=-11/19+13/49*I,n=2 3141546519376287 m002 Pi^3/3+3*Pi^4+Cosh[Pi] 3141546522706349 m005 (1/2*5^(1/2)-5/7)/(8/11*2^(1/2)-9/10) 3141546523766581 r009 Re(z^3+c),c=-37/94+5/18*I,n=11 3141546536027276 r002 13th iterates of z^2 + 3141546558797362 r005 Im(z^2+c),c=-125/114+1/27*I,n=27 3141546561810593 r005 Re(z^2+c),c=-37/94+7/31*I,n=39 3141546563077191 r009 Re(z^3+c),c=-11/24+18/47*I,n=43 3141546568692965 r009 Re(z^3+c),c=-49/114+19/61*I,n=4 3141546572642300 a007 Real Root Of -123*x^4-149*x^3-46*x^2+684*x+216 3141546579446937 r009 Re(z^3+c),c=-13/42+6/49*I,n=10 3141546588315783 a005 (1/cos(19/227*Pi))^1086 3141546588568256 r009 Re(z^3+c),c=-39/106+5/21*I,n=29 3141546592980408 m001 (Bloch+Kolakoski)/(Shi(1)+Zeta(1/2)) 3141546594444715 l006 ln(8581/8608) 3141546621804320 m003 30+Sqrt[5]/2+(3*E^(-1/2-Sqrt[5]/2))/2 3141546628135926 r005 Re(z^2+c),c=-13/36+10/27*I,n=62 3141546630469776 m005 (1/2*3^(1/2)+2/9)/(2/9*Catalan+1/7) 3141546637213904 m001 (Trott2nd-Weierstrass)/(ln(2^(1/2)+1)+Landau) 3141546640963808 a003 sin(Pi*17/105)-sin(Pi*21/71) 3141546648629562 r009 Re(z^3+c),c=-39/106+5/21*I,n=32 3141546650898351 s002 sum(A044394[n]/(n^3*pi^n-1),n=1..infinity) 3141546652151617 r009 Re(z^3+c),c=-39/106+5/21*I,n=33 3141546652997572 m001 (Cahen-Kolakoski)/(Rabbit-Robbin) 3141546659926171 r009 Re(z^3+c),c=-39/106+5/21*I,n=37 3141546659978353 r009 Re(z^3+c),c=-39/106+5/21*I,n=36 3141546660824776 r009 Re(z^3+c),c=-39/106+5/21*I,n=41 3141546660872357 r009 Re(z^3+c),c=-39/106+5/21*I,n=40 3141546660924163 r009 Re(z^3+c),c=-39/106+5/21*I,n=45 3141546660933208 r009 Re(z^3+c),c=-39/106+5/21*I,n=44 3141546660934748 r009 Re(z^3+c),c=-39/106+5/21*I,n=49 3141546660935837 r009 Re(z^3+c),c=-39/106+5/21*I,n=53 3141546660935856 r009 Re(z^3+c),c=-39/106+5/21*I,n=50 3141546660935933 r009 Re(z^3+c),c=-39/106+5/21*I,n=54 3141546660935945 r009 Re(z^3+c),c=-39/106+5/21*I,n=57 3141546660935953 r009 Re(z^3+c),c=-39/106+5/21*I,n=58 3141546660935955 r009 Re(z^3+c),c=-39/106+5/21*I,n=61 3141546660935956 r009 Re(z^3+c),c=-39/106+5/21*I,n=62 3141546660935956 r009 Re(z^3+c),c=-39/106+5/21*I,n=64 3141546660935957 r009 Re(z^3+c),c=-39/106+5/21*I,n=63 3141546660935958 r009 Re(z^3+c),c=-39/106+5/21*I,n=60 3141546660935960 r009 Re(z^3+c),c=-39/106+5/21*I,n=59 3141546660935966 r009 Re(z^3+c),c=-39/106+5/21*I,n=56 3141546660935993 r009 Re(z^3+c),c=-39/106+5/21*I,n=55 3141546660936008 r009 Re(z^3+c),c=-39/106+5/21*I,n=52 3141546660936071 r009 Re(z^3+c),c=-39/106+5/21*I,n=48 3141546660936218 r009 Re(z^3+c),c=-39/106+5/21*I,n=46 3141546660936338 r009 Re(z^3+c),c=-39/106+5/21*I,n=51 3141546660939747 r009 Re(z^3+c),c=-39/106+5/21*I,n=47 3141546660950493 r009 Re(z^3+c),c=-39/106+5/21*I,n=42 3141546660972327 r009 Re(z^3+c),c=-39/106+5/21*I,n=43 3141546661189683 r009 Re(z^3+c),c=-39/106+5/21*I,n=38 3141546661272677 r009 Re(z^3+c),c=-39/106+5/21*I,n=39 3141546663931963 r009 Re(z^3+c),c=-39/106+5/21*I,n=35 3141546664416598 r009 Re(z^3+c),c=-39/106+5/21*I,n=34 3141546666430193 a005 (1/cos(25/133*Pi))^304 3141546667913614 a008 Real Root of x^2-x-98379 3141546672159341 m005 (1/2*exp(1)-8/11)/(9/11*5^(1/2)+2/11) 3141546673078783 a007 Real Root Of 359*x^4+743*x^3-950*x^2+850*x+115 3141546679619443 b008 1/32+Coth[1/3] 3141546686347642 r009 Re(z^3+c),c=-39/106+5/21*I,n=31 3141546687100206 r005 Re(z^2+c),c=-7/17+3/56*I,n=28 3141546703522390 r009 Re(z^3+c),c=-39/106+5/21*I,n=30 3141546704358202 m001 (-GAMMA(11/12)+Artin)/(exp(1/exp(1))-exp(Pi)) 3141546707722893 m003 24+6*Coth[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2] 3141546711115764 m001 Zeta(1/2)/Shi(1)/Pi/csc(5/24*Pi)*GAMMA(19/24) 3141546715677837 a009 1/2*(19-7^(1/2)*2^(1/3))^(1/2)*2^(2/3) 3141546719205805 r005 Re(z^2+c),c=-13/36+10/27*I,n=61 3141546720598025 a001 2/341*18^(18/31) 3141546733588345 r005 Im(z^2+c),c=9/52+5/19*I,n=17 3141546734655391 a001 89/29*3^(1/47) 3141546736423306 m001 GAMMA(1/4)^2*ln(LaplaceLimit)^2/sin(1)^2 3141546736840405 r005 Re(z^2+c),c=-17/46+21/62*I,n=36 3141546740368382 m001 (GAMMA(5/6)-GAMMA(7/12))/(Gompertz-Sarnak) 3141546749335018 r005 Re(z^2+c),c=-13/36+10/27*I,n=64 3141546752437479 r009 Re(z^3+c),c=-7/24+3/41*I,n=3 3141546754357439 m005 (3/5*exp(1)+1/6)/(5/4+2*5^(1/2)) 3141546755882856 l006 ln(1547/2118) 3141546769527198 m001 (Pi+cos(1/5*Pi))/(Salem+StolarskyHarborth) 3141546783513098 a001 2207/8*53316291173^(15/16) 3141546786109747 r005 Re(z^2+c),c=-33/94+17/42*I,n=44 3141546786185047 m006 (5*exp(2*Pi)+2/3)/(1/6*exp(2*Pi)-4) 3141546786258126 a001 141/2161*7^(21/26) 3141546788197060 r005 Re(z^2+c),c=7/114+29/54*I,n=11 3141546790309520 m001 FeigenbaumD/Paris^2/ln(Catalan) 3141546792719344 r005 Im(z^2+c),c=-21/110+6/13*I,n=47 3141546793613240 m001 FeigenbaumC^(GolombDickman/HeathBrownMoroz) 3141546794301800 m002 -Pi+(4*ProductLog[Pi])/Pi^10 3141546796940931 m001 ln(5)/(HardyLittlewoodC4^LambertW(1)) 3141546805596805 r009 Re(z^3+c),c=-10/19+20/43*I,n=35 3141546810968967 m003 -5/2+Sqrt[5]/2-30*Csc[1/2+Sqrt[5]/2] 3141546814534700 m005 (3/4*exp(1)+5/6)/(2^(1/2)-1/2) 3141546820021513 r005 Re(z^2+c),c=-13/36+10/27*I,n=57 3141546827542612 a005 (1/cos(3/176*Pi))^798 3141546832616510 r002 15th iterates of z^2 + 3141546835669107 m001 (Porter+Trott)/(gamma(1)+Landau) 3141546841438980 a003 -1/2+cos(11/24*Pi)-cos(1/18*Pi)-2*cos(4/27*Pi) 3141546843246451 m001 (Artin+Otter)/(ln(gamma)+ln(5)) 3141546844890162 m005 (1/2*gamma-3/10)/(5/11*gamma-5/8) 3141546850347050 r005 Im(z^2+c),c=23/74+7/57*I,n=39 3141546863169517 r009 Re(z^3+c),c=-39/106+5/21*I,n=27 3141546869536508 m005 (1/2*3^(1/2)+6/7)/(-97/132+1/12*5^(1/2)) 3141546887949028 m001 ln(Tribonacci)*LaplaceLimit^2*GAMMA(19/24) 3141546904326039 a007 Real Root Of 252*x^4+914*x^3+312*x^2-188*x+123 3141546918874056 r005 Im(z^2+c),c=-3/31+13/31*I,n=40 3141546920796508 r005 Re(z^2+c),c=-37/94+7/31*I,n=42 3141546926931566 b008 Pi+11*ExpIntegralEi[-10] 3141546943543460 r005 Re(z^2+c),c=-37/94+7/31*I,n=44 3141546946119041 m001 1/MinimumGamma/Kolakoski/exp(Zeta(7)) 3141546952180979 m001 1/Trott^2/exp(Magata)*GAMMA(11/12)^2 3141546958750189 r009 Im(z^3+c),c=-19/46+13/57*I,n=35 3141546960378097 m001 Gompertz/FibonacciFactorial*MasserGramain 3141546979828865 r005 Re(z^2+c),c=-11/32+17/37*I,n=18 3141546990372585 m001 (Si(Pi)+LambertW(1))/(-Grothendieck+Niven) 3141546993013532 a007 Real Root Of 549*x^4-234*x^3-760*x^2-656*x+283 3141546997827127 r009 Im(z^3+c),c=-61/106+31/50*I,n=51 3141546999994445 a003 sin(Pi*27/112)/cos(Pi*49/114) 3141547016729996 r005 Im(z^2+c),c=-23/110+23/49*I,n=33 3141547021409403 m008 (1/2*Pi^2+4/5)/(3/4*Pi^3-5) 3141547021409733 r005 Re(z^2+c),c=-37/94+7/31*I,n=46 3141547023615221 m004 -100*Pi+(5*Csch[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141547023651327 m004 -10*Pi+1/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141547023687432 m004 -100*Pi+(5*Sech[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141547025007687 a003 cos(Pi*7/78)*sin(Pi*7/66) 3141547025063426 m002 -Pi+(5*Csch[Pi])/Pi^8 3141547025299605 a008 Real Root of x^4+49*x^2-581 3141547026376309 m001 (-ErdosBorwein+Paris)/(Shi(1)-gamma) 3141547026459888 r005 Im(z^2+c),c=-23/106+26/55*I,n=36 3141547026925824 a001 4181/18*7^(9/58) 3141547044231933 r005 Im(z^2+c),c=13/58+40/59*I,n=3 3141547055179875 a003 cos(Pi*11/103)-cos(Pi*15/53) 3141547059232493 r005 Re(z^2+c),c=-37/94+7/31*I,n=51 3141547059491515 b008 -1/20*1/E^7+Pi 3141547060991307 r005 Re(z^2+c),c=-37/94+7/31*I,n=49 3141547063760116 r005 Re(z^2+c),c=-37/94+7/31*I,n=53 3141547065848072 r005 Re(z^2+c),c=-37/94+7/31*I,n=48 3141547066694904 r002 45th iterates of z^2 + 3141547067029651 r005 Re(z^2+c),c=-37/94+7/31*I,n=55 3141547067083649 r005 Re(z^2+c),c=-37/94+7/31*I,n=58 3141547067314352 r005 Re(z^2+c),c=-37/94+7/31*I,n=60 3141547067448611 r005 Re(z^2+c),c=-37/94+7/31*I,n=56 3141547067542213 r005 Re(z^2+c),c=-37/94+7/31*I,n=62 3141547067626230 r005 Re(z^2+c),c=-37/94+7/31*I,n=63 3141547067635733 r005 Re(z^2+c),c=-37/94+7/31*I,n=64 3141547067786184 r005 Re(z^2+c),c=-37/94+7/31*I,n=61 3141547068054111 r005 Re(z^2+c),c=-37/94+7/31*I,n=59 3141547068100706 r005 Re(z^2+c),c=-37/94+7/31*I,n=57 3141547069528225 r005 Re(z^2+c),c=-37/94+7/31*I,n=54 3141547071687133 b008 Erfc[E^(-2)]/27 3141547073829607 r005 Re(z^2+c),c=-37/94+7/31*I,n=52 3141547076772423 r005 Re(z^2+c),c=-37/94+7/31*I,n=50 3141547086365545 r005 Re(z^2+c),c=-37/94+7/31*I,n=47 3141547089111136 k002 Champernowne real with 3/2*n^2+11/2*n+24 3141547107317458 a007 Real Root Of 367*x^4+888*x^3-805*x^2-22*x-339 3141547109840732 a005 (1/cos(29/240*Pi))^452 3141547114354511 m006 (5/6*Pi^2-4/5)/(2/Pi-3) 3141547123899420 r005 Re(z^2+c),c=-13/36+10/27*I,n=56 3141547125419072 s001 sum(exp(-Pi/4)^n*A167358[n],n=1..infinity) 3141547130528396 r005 Im(z^2+c),c=-11/102+15/28*I,n=9 3141547131889178 m005 (25/36+1/4*5^(1/2))/(7/10*2^(1/2)+3) 3141547132064649 a007 Real Root Of 245*x^4+623*x^3-594*x^2-195*x+702 3141547132592013 r005 Re(z^2+c),c=-37/94+7/31*I,n=41 3141547146233582 r009 Re(z^3+c),c=-39/106+5/21*I,n=26 3141547148594988 l006 ln(222/5137) 3141547150957575 r005 Re(z^2+c),c=-37/94+7/31*I,n=45 3141547166671431 r002 25th iterates of z^2 + 3141547176070472 r005 Im(z^2+c),c=-2/27+24/59*I,n=14 3141547187001405 r005 Re(z^2+c),c=43/126+9/64*I,n=53 3141547187748864 r005 Im(z^2+c),c=-15/56+6/13*I,n=7 3141547189671719 r005 Re(z^2+c),c=-37/94+7/31*I,n=33 3141547195163094 m002 -Pi+(5*Sech[Pi])/Pi^8 3141547205771076 r005 Re(z^2+c),c=-37/94+7/31*I,n=40 3141547216478993 r005 Re(z^2+c),c=-37/34+57/89*I,n=2 3141547220192898 r005 Im(z^2+c),c=-1/34+17/44*I,n=17 3141547221460997 r005 Re(z^2+c),c=-37/94+7/31*I,n=43 3141547223120448 r005 Im(z^2+c),c=-3/31+13/31*I,n=42 3141547229212185 m001 Riemann2ndZero/GolombDickman^2/ln(GAMMA(1/6)) 3141547233037838 r005 Im(z^2+c),c=-15/86+14/31*I,n=15 3141547236848416 m005 (1/2*5^(1/2)-7/9)/(4/9*2^(1/2)+5/11) 3141547242880036 r005 Re(z^2+c),c=-13/36+10/27*I,n=59 3141547247658907 r009 Im(z^3+c),c=-15/29+26/57*I,n=16 3141547253231279 r009 Re(z^3+c),c=-11/32+7/36*I,n=8 3141547253660030 b008 E^(-10)-Pi 3141547272778940 m005 (1/2*Zeta(3)-4)/(3/7*2^(1/2)-5/7) 3141547272795493 m005 (1/2*Pi-5/12)/(2/11*Zeta(3)-2/11) 3141547276747362 a001 38*89^(8/17) 3141547276786819 s001 sum(exp(-2*Pi)^n*A159625[n],n=1..infinity) 3141547277266382 a007 Real Root Of 623*x^4+435*x^3+163*x^2-956*x-309 3141547291262207 m001 (Pi+cos(1/12*Pi))/(Landau+LandauRamanujan) 3141547307498182 a007 Real Root Of -254*x^4-656*x^3+676*x^2+773*x+158 3141547310461245 r005 Im(z^2+c),c=-7/8+7/32*I,n=43 3141547318094192 a008 Real Root of x^4-x^3-9*x^2-10*x-71 3141547324235190 r005 Re(z^2+c),c=-29/62+19/61*I,n=7 3141547326668890 a001 38/17*233^(16/33) 3141547330347406 m009 (1/6*Psi(1,3/4)+4)/(20/3*Catalan+5/6*Pi^2-1/4) 3141547333771668 a007 Real Root Of 121*x^4-496*x^3+600*x^2-666*x-285 3141547345168243 m001 (gamma(1)+FeigenbaumB)/(exp(Pi)+Zeta(5)) 3141547346243624 m001 (Catalan-ln(2))/(-ln(2^(1/2)+1)+BesselI(1,2)) 3141547348853729 a001 2584/39603*7^(21/26) 3141547358435895 m001 exp(GAMMA(1/12))*ArtinRank2^2*cos(Pi/5)^2 3141547364468293 r005 Im(z^2+c),c=-10/31+21/38*I,n=26 3141547368463301 r005 Im(z^2+c),c=11/102+4/13*I,n=11 3141547370007635 m001 (Pi*2^(1/2)/GAMMA(3/4)+Pi^(1/2))/(1-exp(1)) 3141547373144568 h001 (11/12*exp(2)+1/2)/(3/11*exp(2)+3/10) 3141547377638448 a007 Real Root Of -155*x^4+687*x^3+444*x^2+799*x+230 3141547387120527 m005 (1/2*5^(1/2)+8/9)/(1/7*exp(1)+6) 3141547404990293 r005 Im(z^2+c),c=-14/25+21/44*I,n=53 3141547406392635 r005 Im(z^2+c),c=15/86+16/61*I,n=31 3141547411529713 a007 Real Root Of -657*x^4-640*x^3-801*x^2+727*x+294 3141547419388528 m001 1/GAMMA(5/6)^2/Backhouse*exp(log(1+sqrt(2)))^2 3141547430935322 a001 6765/103682*7^(21/26) 3141547431617710 m001 (Ei(1,1)+PlouffeB)/(sin(1/5*Pi)-cos(1/5*Pi)) 3141547433838083 a007 Real Root Of -29*x^4-931*x^3-629*x^2-75*x-163 3141547438081399 r005 Re(z^2+c),c=-11/31+20/51*I,n=47 3141547439361737 m001 Trott2nd*(ln(Pi)+gamma(3)) 3141547442910865 a001 17711/271443*7^(21/26) 3141547444658073 a001 6624/101521*7^(21/26) 3141547444912987 a001 121393/1860498*7^(21/26) 3141547444950179 a001 317811/4870847*7^(21/26) 3141547444973164 a001 196418/3010349*7^(21/26) 3141547445070533 a001 75025/1149851*7^(21/26) 3141547445266661 a007 Real Root Of -295*x^4+240*x^3+835*x^2+694*x-305 3141547445737907 a001 28657/439204*7^(21/26) 3141547450312157 a001 10946/167761*7^(21/26) 3141547458289651 r005 Re(z^2+c),c=-59/114+7/23*I,n=5 3141547464189355 m001 Pi-Trott2nd*ZetaQ(4) 3141547467148444 r005 Im(z^2+c),c=-3/31+13/31*I,n=43 3141547480751757 r005 Re(z^2+c),c=-39/118+20/43*I,n=38 3141547481664536 a001 4181/64079*7^(21/26) 3141547497397566 a007 Real Root Of -248*x^4-748*x^3+165*x^2+276*x+203 3141547516024481 r005 Im(z^2+c),c=-13/50+16/33*I,n=18 3141547519658291 s002 sum(A044775[n]/(n^3*pi^n-1),n=1..infinity) 3141547524798148 h001 (-7*exp(1/3)-5)/(-6*exp(-3)+5) 3141547526683316 r005 Re(z^2+c),c=-13/36+10/27*I,n=52 3141547535941752 m002 -Pi+Coth[Pi]/(E^Pi*Pi^6) 3141547548735103 l006 ln(5955/8153) 3141547550006772 m002 Pi-(Cosh[Pi]*Log[Pi])/Pi^11 3141547550557896 r009 Re(z^3+c),c=-31/82+12/47*I,n=24 3141547551947894 a007 Real Root Of -131*x^4-80*x^3+683*x^2-980*x+460 3141547567907788 r002 22th iterates of z^2 + 3141547572190653 a007 Real Root Of -289*x^4+422*x^3-893*x^2+245*x+181 3141547574667818 m001 gamma(2)/(exp(1/exp(1))+GAMMA(13/24)) 3141547580831451 a007 Real Root Of -270*x^4+96*x^3+343*x^2+526*x+137 3141547581433004 m001 Ei(1)+exp(1/Pi)-Otter 3141547593152634 r009 Re(z^3+c),c=-1/23+25/62*I,n=11 3141547597177680 m001 (Shi(1)-gamma(2))/(-Magata+Trott) 3141547605529650 m001 sin(1)+GAMMA(13/24)+TwinPrimes 3141547605529650 m001 sin(1)+TwinPrimes+GAMMA(13/24) 3141547613221573 r002 3th iterates of z^2 + 3141547615651169 r002 31th iterates of z^2 + 3141547620039328 m002 -Pi+Csch[Pi]/(2*Pi^6) 3141547628093924 m005 (1/3*3^(1/2)+1/12)/(-3/7+2/7*5^(1/2)) 3141547631659562 m001 (2^(1/3)-gamma(3))/(-Salem+StronglyCareFree) 3141547634045261 m001 Pi+ln(2)/ln(10)*gamma(1)*gamma(3) 3141547634046610 l006 ln(401/9279) 3141547639943188 r009 Im(z^3+c),c=-51/98+9/53*I,n=60 3141547640676362 p004 log(36529/26681) 3141547642655050 r005 Im(z^2+c),c=-9/14+47/129*I,n=22 3141547648470632 m001 (Psi(1,1/3)+Shi(1))/(ln(gamma)+DuboisRaymond) 3141547655790231 r009 Re(z^3+c),c=-19/60+6/43*I,n=4 3141547660513231 m008 (4/5*Pi^5+1)/(5/6*Pi^2-2/5) 3141547680125098 r009 Im(z^3+c),c=-10/19+8/33*I,n=22 3141547694876891 r005 Im(z^2+c),c=-17/26+17/64*I,n=3 3141547696046058 r005 Im(z^2+c),c=-29/86+29/55*I,n=32 3141547696556936 a001 1597/24476*7^(21/26) 3141547698951226 r005 Im(z^2+c),c=-3/31+13/31*I,n=45 3141547704136905 m002 -(1/(E^Pi*Pi^6))+Pi 3141547718149491 m002 Pi-(Log[Pi]*Sinh[Pi])/Pi^11 3141547718972033 r005 Im(z^2+c),c=-3/31+13/31*I,n=46 3141547723297004 m001 (GAMMA(19/24)+Sarnak)/(gamma(3)+BesselK(1,1)) 3141547724768569 r005 Re(z^2+c),c=-11/38+43/57*I,n=4 3141547732010089 m001 (Pi+1-gamma)*ln(2^(1/2)+1) 3141547733913642 s001 sum(1/10^(n-1)*A128871[n]/n!^2,n=1..infinity) 3141547775496318 a001 123/2584*196418^(11/32) 3141547778575239 r002 7i'th iterates of 2*x/(1-x^2) of 3141547786886901 a007 Real Root Of -11*x^4-339*x^3+199*x^2-255*x-700 3141547787662830 m001 ln(GAMMA(5/12))/Conway^2/sqrt(2) 3141547787920972 m002 -Pi+Sech[Pi]/(2*Pi^6) 3141547797360765 m005 (1/2*Zeta(3)+3/4)/(1/12*3^(1/2)+2/7) 3141547811792916 r005 Im(z^2+c),c=-3/31+13/31*I,n=28 3141547824186725 r002 13th iterates of z^2 + 3141547826988814 l006 ln(4408/6035) 3141547828386120 r005 Im(z^2+c),c=-3/31+13/31*I,n=49 3141547828773785 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)/GaussAGM*Gompertz 3141547832331829 r009 Im(z^3+c),c=-19/46+13/57*I,n=36 3141547836780425 m001 (Stephens+ThueMorse)/(2^(1/2)+3^(1/2)) 3141547841223887 p003 LerchPhi(1/16,2,320/177) 3141547845795140 r005 Im(z^2+c),c=-3/31+13/31*I,n=48 3141547845987557 r005 Re(z^2+c),c=-13/17+2/45*I,n=58 3141547852557750 m001 FeigenbaumB/exp(Bloch)/sqrt(1+sqrt(3)) 3141547860525925 b008 -1/3+(49+Pi)^(-1) 3141547861507128 q001 617/1964 3141547871705039 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^6) 3141547874152972 r005 Im(z^2+c),c=-3/31+13/31*I,n=52 3141547878744664 r009 Im(z^3+c),c=-4/11+7/27*I,n=14 3141547879444097 m009 (2/5*Pi^2-1/3)/(4*Psi(1,2/3)-3/4) 3141547889261772 r005 Im(z^2+c),c=-3/31+13/31*I,n=51 3141547890123230 h001 (9/11*exp(1)+1/12)/(11/12*exp(2)+4/7) 3141547891117683 r009 Re(z^3+c),c=-8/17+9/19*I,n=44 3141547892765534 r005 Im(z^2+c),c=-3/31+13/31*I,n=55 3141547894561175 a001 18/28657*10946^(9/52) 3141547896743650 r005 Im(z^2+c),c=-1/78+17/45*I,n=33 3141547900169497 r005 Im(z^2+c),c=-3/31+13/31*I,n=58 3141547900457651 m001 (3^(1/2))^(2^(1/2))*exp(1/exp(1)) 3141547900457651 m001 sqrt(3)^sqrt(2)*exp(1/exp(1)) 3141547901347233 r005 Im(z^2+c),c=-3/31+13/31*I,n=54 3141547903061763 r005 Im(z^2+c),c=-3/31+13/31*I,n=61 3141547904174241 r005 Im(z^2+c),c=-3/31+13/31*I,n=64 3141547904363845 r005 Im(z^2+c),c=-3/31+13/31*I,n=57 3141547904384142 a007 Real Root Of -96*x^4-140*x^3-978*x^2+572*x-17 3141547904955832 r005 Im(z^2+c),c=-3/31+13/31*I,n=60 3141547904988000 r005 Im(z^2+c),c=-3/31+13/31*I,n=63 3141547905987030 r005 Im(z^2+c),c=-3/31+13/31*I,n=62 3141547907472967 g006 Psi(1,1/10)+Psi(1,4/5)+Psi(1,1/3)-Psi(1,1/9) 3141547908224162 r005 Im(z^2+c),c=-3/31+13/31*I,n=59 3141547914117116 l005 591/116/(exp(591/116)-1) 3141547914711994 r005 Im(z^2+c),c=-3/31+13/31*I,n=56 3141547915373291 s001 sum(exp(-4*Pi/5)^n*A207078[n],n=1..infinity) 3141547916877784 m005 (1/2*3^(1/2)-6)/(5/9*Pi-1/9) 3141547924780137 a007 Real Root Of -549*x^4-506*x^3-824*x^2+955*x+371 3141547927111776 a007 Real Root Of 232*x^4+479*x^3-769*x^2-129*x-562 3141547931780760 m001 (QuadraticClass-Salem)/(Zeta(5)-Paris) 3141547933303683 r005 Im(z^2+c),c=-3/31+13/31*I,n=53 3141547944340737 r005 Re(z^2+c),c=-15/22+18/95*I,n=13 3141547955176765 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(2*Pi^6) 3141547958695441 a007 Real Root Of 12*x^4-766*x^3+902*x^2-672*x-324 3141547962864125 r009 Im(z^3+c),c=-27/122+1/38*I,n=8 3141547967452049 a007 Real Root Of 410*x^4+953*x^3-654*x^2+941*x-977 3141547970414311 k009 concat of cont frac of 3141547978766797 a007 Real Root Of 67*x^4-14*x^3-493*x^2+795*x+403 3141547982474204 m002 -Pi+ProductLog[Pi]/(25*Pi^6) 3141547985988911 r005 Im(z^2+c),c=-3/31+13/31*I,n=50 3141547995605664 a007 Real Root Of -409*x^4+920*x^3-327*x^2+510*x+225 3141548017710750 r009 Re(z^3+c),c=-11/25+11/31*I,n=34 3141548019346739 r005 Im(z^2+c),c=-17/22+7/76*I,n=26 3141548019973962 p004 log(25847/1117) 3141548024339672 m002 -Pi+Pi^5-Pi*Csch[Pi]+Sinh[Pi] 3141548034039778 m001 (Rabbit-Totient)/(BesselI(1,2)+PrimesInBinary) 3141548038648492 m002 -Pi+Tanh[Pi]^2/(E^Pi*Pi^6) 3141548038691865 r005 Im(z^2+c),c=-8/31+31/48*I,n=56 3141548041803858 r009 Im(z^3+c),c=-19/46+13/57*I,n=39 3141548049994298 r005 Re(z^2+c),c=-12/31+11/32*I,n=8 3141548052903681 r005 Re(z^2+c),c=29/94+2/19*I,n=25 3141548053247948 r002 5th iterates of z^2 + 3141548054943252 l006 ln(7269/9952) 3141548055036634 m001 sin(1)*Paris^2/ln(sinh(1))^2 3141548057627355 r005 Re(z^2+c),c=-47/98+8/27*I,n=7 3141548086586225 r009 Im(z^3+c),c=-19/46+13/57*I,n=40 3141548109608497 a005 (1/cos(34/211*Pi))^524 3141548121293068 r009 Re(z^3+c),c=-39/106+5/21*I,n=23 3141548122208468 r005 Re(z^2+c),c=-37/94+7/31*I,n=38 3141548133703701 r005 Im(z^2+c),c=-3/31+13/31*I,n=47 3141548140482610 m001 (Lehmer+TwinPrimes)/(LambertW(1)-cos(1/12*Pi)) 3141548141531251 k007 concat of cont frac of 3141548145543064 m001 1/exp(DuboisRaymond)*ErdosBorwein/BesselK(0,1) 3141548145607526 r005 Im(z^2+c),c=-53/110+29/59*I,n=53 3141548152483153 m001 ln(1+sqrt(2))/(GAMMA(17/24)^exp(sqrt(2))) 3141548156247520 m001 (ln(2)-ln(3))/(Zeta(1,-1)+Backhouse) 3141548168754802 r005 Re(z^2+c),c=-9/28+34/55*I,n=58 3141548176904054 m004 -100*Pi+(5*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141548176939247 m004 -10*Pi+Csch[Sqrt[5]*Pi]/4 3141548176939247 m004 10*Pi-Cosh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141548176974440 m004 -1/(2*E^(Sqrt[5]*Pi))+10*Pi 3141548177009632 m004 -10*Pi+Sech[Sqrt[5]*Pi]/4 3141548177009632 m004 10*Pi-Sinh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141548177044825 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141548177080018 m004 -10*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/4 3141548186203595 r002 57th iterates of z^2 + 3141548194254174 r009 Im(z^3+c),c=-19/46+13/57*I,n=44 3141548203955774 a007 Real Root Of -225*x^4-530*x^3+314*x^2-496*x+826 3141548213158219 r009 Im(z^3+c),c=-19/46+13/57*I,n=43 3141548217041604 h001 (1/6*exp(1)+9/10)/(1/8*exp(1)+1/11) 3141548222692662 r009 Im(z^3+c),c=-19/46+13/57*I,n=48 3141548227882594 r009 Im(z^3+c),c=-19/46+13/57*I,n=49 3141548228582687 r009 Im(z^3+c),c=-19/46+13/57*I,n=52 3141548228948369 r009 Im(z^3+c),c=-19/46+13/57*I,n=53 3141548229480311 r009 Im(z^3+c),c=-19/46+13/57*I,n=57 3141548229556887 r009 Im(z^3+c),c=-19/46+13/57*I,n=56 3141548229628434 r009 Im(z^3+c),c=-19/46+13/57*I,n=61 3141548229658799 r009 Im(z^3+c),c=-19/46+13/57*I,n=62 3141548229670534 r009 Im(z^3+c),c=-19/46+13/57*I,n=60 3141548229672301 r009 Im(z^3+c),c=-19/46+13/57*I,n=64 3141548229682284 r009 Im(z^3+c),c=-19/46+13/57*I,n=63 3141548229686929 r009 Im(z^3+c),c=-19/46+13/57*I,n=58 3141548229752848 r009 Im(z^3+c),c=-19/46+13/57*I,n=59 3141548230041144 r009 Im(z^3+c),c=-19/46+13/57*I,n=54 3141548230045067 r009 Im(z^3+c),c=-19/46+13/57*I,n=55 3141548230241646 m001 (GAMMA(5/6)-KhinchinLevy)/Tribonacci 3141548230900518 r009 Im(z^3+c),c=-19/46+13/57*I,n=51 3141548231265008 r009 Im(z^3+c),c=-19/46+13/57*I,n=47 3141548231622797 r009 Im(z^3+c),c=-19/46+13/57*I,n=45 3141548232512310 r009 Im(z^3+c),c=-19/46+13/57*I,n=50 3141548236114774 l006 ln(179/4142) 3141548240816175 m001 1/GAMMA(23/24)*RenyiParking/exp(sin(1)) 3141548244065593 r009 Im(z^3+c),c=-19/46+13/57*I,n=32 3141548244747549 r009 Im(z^3+c),c=-23/52+8/39*I,n=35 3141548245805635 r009 Im(z^3+c),c=-19/46+13/57*I,n=46 3141548251933039 r009 Im(z^3+c),c=-11/32+17/63*I,n=14 3141548252203904 g002 -2*gamma-3*ln(3)+Psi(3/5)-Psi(4/11) 3141548259375474 r009 Re(z^3+c),c=-27/64+16/49*I,n=20 3141548271467398 a007 Real Root Of 820*x^4-801*x^3-489*x^2-794*x-234 3141548285929159 m001 ((1+3^(1/2))^(1/2)+Lehmer)/TravellingSalesman 3141548288992396 m001 (2^(1/2)+Si(Pi))/(Psi(1,1/3)+ln(2)/ln(10)) 3141548291764923 r009 Im(z^3+c),c=-19/46+13/57*I,n=41 3141548292654798 r005 Re(z^2+c),c=-25/74+9/17*I,n=22 3141548294485217 b008 Pi-2*BesselJ[8,2] 3141548303181553 r009 Im(z^3+c),c=-19/46+13/57*I,n=42 3141548324064848 a007 Real Root Of -73*x^4-23*x^3+390*x^2-963*x-477 3141548332996922 b008 Pi+ExpIntegralEi[(-5*Pi)/2] 3141548334771013 r005 Im(z^2+c),c=-13/38+33/62*I,n=47 3141548352863603 a007 Real Root Of 216*x^4+715*x^3+117*x^2-40*x-151 3141548381130127 p001 sum(1/(615*n+323)/(24^n),n=0..infinity) 3141548381333673 m005 (1/2*gamma-7/12)/(1/8*Pi+6/11) 3141548384238197 a007 Real Root Of -299*x^4-122*x^3+145*x^2+147*x+31 3141548389437803 p003 LerchPhi(1/10,4,545/228) 3141548390262328 m001 (-FeigenbaumMu+Trott2nd)/(BesselI(1,2)-exp(1)) 3141548395384315 a005 (1/cos(15/202*Pi))^964 3141548399125365 m001 (gamma(2)-Zeta(1,2))/(RenyiParking-ZetaP(2)) 3141548399342901 m008 (5*Pi^3-4)/(5*Pi^6+3/5) 3141548406157210 l006 ln(2861/3917) 3141548406157210 p004 log(3917/2861) 3141548412254392 a007 Real Root Of 901*x^4+473*x^3-880*x^2-900*x-190 3141548438511416 k006 concat of cont frac of 3141548445660661 m001 (BesselI(1,2)+MinimumGamma)^GAMMA(23/24) 3141548451803676 r005 Im(z^2+c),c=-49/102+13/28*I,n=16 3141548454853771 b008 3*(102+E) 3141548470284738 p004 log(23857/1031) 3141548478400705 b008 10/3+SphericalBesselJ[0,5] 3141548485180222 r009 Im(z^3+c),c=-19/46+13/57*I,n=38 3141548493408100 g007 Psi(2,6/11)+Psi(2,1/6)-Psi(2,9/10)-Psi(2,1/4) 3141548493830980 p001 sum((-1)^n/(613*n+315)/(32^n),n=0..infinity) 3141548494534622 m001 (MertensB2+Trott2nd)/(ArtinRank2+FeigenbaumD) 3141548495064219 m001 (Sierpinski+Totient)/(GaussAGM+PrimesInBinary) 3141548504512595 a007 Real Root Of -93*x^4-140*x^3+237*x^2-691*x+208 3141548505953861 r009 Re(z^3+c),c=-1/32+43/44*I,n=7 3141548517387157 a001 41/329*144^(8/43) 3141548527708302 m001 1/Salem/Artin^2/exp(TwinPrimes) 3141548528127748 r005 Re(z^2+c),c=-33/94+17/42*I,n=39 3141548536014997 r005 Re(z^2+c),c=-13/36+10/27*I,n=51 3141548543561302 r005 Im(z^2+c),c=-3/31+13/31*I,n=44 3141548543665174 r005 Im(z^2+c),c=-13/22+39/103*I,n=24 3141548543919907 r009 Re(z^3+c),c=-5/26+16/17*I,n=52 3141548544756356 s002 sum(A049473[n]/(n^2*pi^n-1),n=1..infinity) 3141548546071595 m001 (FeigenbaumMu-Thue)/(ln(3)-CopelandErdos) 3141548546170594 m001 1/ln(TreeGrowth2nd)^2/FeigenbaumB/LambertW(1) 3141548547321433 b008 2-79*CosIntegral[2] 3141548557704650 m001 Riemann1stZero/Niven*ln(cos(1))^2 3141548565808087 a007 Real Root Of 377*x^4-989*x^3+932*x^2-903*x-410 3141548566736853 m005 1/4*5^(1/2)/(2*gamma+5/8) 3141548571294416 r005 Im(z^2+c),c=-7/8+49/225*I,n=19 3141548572925846 m008 (5*Pi^5-3/4)/(5*Pi^2-2/3) 3141548575497576 r005 Re(z^2+c),c=33/118+5/53*I,n=31 3141548580618824 b008 5+(2-5*E)*Pi 3141548581202706 a009 1/2*(7^(1/2)-2^(1/3)*12^(2/3))*2^(2/3) 3141548581701811 h001 (-5*exp(4)+7)/(-12*exp(2)+4) 3141548589016845 m006 (1/6*Pi^2-2/3)/(ln(Pi)-5/6) 3141548598505599 m001 1/Porter/GlaisherKinkelin/exp(sqrt(2))^2 3141548600298874 a007 Real Root Of -479*x^4-188*x^3-393*x^2+832*x+299 3141548608613212 a001 1/18*(1/2*5^(1/2)+1/2)^26*4^(9/17) 3141548613506322 m001 ln(FeigenbaumKappa)*FransenRobinson/exp(1) 3141548616041827 m001 (Sierpinski-ZetaP(3))/(ln(2)+Zeta(1/2)) 3141548626515172 r005 Im(z^2+c),c=27/74+23/64*I,n=16 3141548628831300 a003 cos(Pi*31/111)/cos(Pi*10/23) 3141548639029554 r005 Im(z^2+c),c=15/86+16/61*I,n=23 3141548641006370 r005 Im(z^2+c),c=-33/98+32/55*I,n=43 3141548655809000 h003 exp(Pi*(17^(10/9)-13^(1/5))) 3141548655809000 h008 exp(Pi*(17^(10/9)-13^(1/5))) 3141548673510809 r005 Re(z^2+c),c=9/56+36/59*I,n=12 3141548673587764 m005 (1/2*Pi-3/4)/(-7/16+5/16*5^(1/2)) 3141548679931559 m002 Pi-(Csch[Pi]*Log[Pi])/(E^Pi*Pi^4) 3141548682501762 r009 Im(z^3+c),c=-19/46+13/57*I,n=34 3141548693639950 m002 Pi-Log[Pi]^2/Pi^9 3141548695161063 r005 Re(z^2+c),c=11/36+22/35*I,n=6 3141548705081783 a001 1597/7*2^(6/13) 3141548708248218 m005 (35/44+1/4*5^(1/2))/(19/70+1/14*5^(1/2)) 3141548711380032 r005 Im(z^2+c),c=-29/98+15/29*I,n=27 3141548724608042 r005 Im(z^2+c),c=-23/94+29/38*I,n=9 3141548729312672 r005 Im(z^2+c),c=-11/32+11/20*I,n=50 3141548731883283 m005 (3/5*Pi+2)/(4*Pi-1/5) 3141548731883283 m006 (2/Pi+3/5)/(1/5/Pi-4) 3141548731883283 m008 (3/5*Pi+2)/(4*Pi-1/5) 3141548733508604 m009 (4/3*Catalan+1/6*Pi^2-3)/(2/3*Psi(1,2/3)-2) 3141548737228441 r009 Im(z^3+c),c=-19/46+13/57*I,n=37 3141548741847336 r005 Im(z^2+c),c=-19/46+31/60*I,n=44 3141548744198451 s002 sum(A154951[n]/(n^2*pi^n-1),n=1..infinity) 3141548760156611 a003 cos(Pi*15/52)-sin(Pi*8/21) 3141548761231514 r005 Re(z^2+c),c=39/110+2/25*I,n=8 3141548769001748 l006 ln(7036/9633) 3141548774611830 m005 (1/3*gamma-1/5)/(8/9*Pi-3/8) 3141548782348621 m008 (3/4*Pi^5-1/2)/(1/3*Pi^2+4) 3141548784284678 m009 (3/4*Psi(1,2/3)+3)/(8*Catalan+Pi^2-1/3) 3141548797839794 a003 cos(Pi*9/71)-cos(Pi*26/89) 3141548805087276 r005 Re(z^2+c),c=-75/122+5/61*I,n=4 3141548810159239 m001 (QuadraticClass-Tetranacci)/(Artin+Otter) 3141548827580040 a007 Real Root Of 309*x^4-325*x^3-61*x^2-942*x-303 3141548830445999 m001 (FeigenbaumD+MertensB2)/(3^(1/3)-sin(1/12*Pi)) 3141548831313125 m001 KhintchineLevy^2*exp(CareFree)^2/GAMMA(2/3)^2 3141548836599158 m002 3/5+Pi^3-Log[Pi]/6 3141548839287234 a001 1/7*(1/2*5^(1/2)+1/2)^25*76^(1/16) 3141548843862005 m002 Pi-(Log[Pi]*Sech[Pi])/(E^Pi*Pi^4) 3141548851310325 a007 Real Root Of 188*x^4-392*x^3+210*x^2-628*x-232 3141548851570208 a008 Real Root of x^3+113*x-386 3141548854626521 m009 (2/5*Psi(1,1/3)+1/2)/(2/3*Psi(1,3/4)-1/4) 3141548855164042 a007 Real Root Of -217*x^4-188*x^3-729*x^2+464*x+214 3141548857617330 a007 Real Root Of 16*x^4+478*x^3-769*x^2+146*x-667 3141548869518478 m001 cos(Pi/5)/Salem/exp(cosh(1))^2 3141548876712068 r005 Re(z^2+c),c=41/126+17/43*I,n=29 3141548879191746 r005 Im(z^2+c),c=-16/29+10/23*I,n=46 3141548880986951 r005 Re(z^2+c),c=-11/27+3/25*I,n=21 3141548920619031 a001 2/28657*55^(19/20) 3141548925992574 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/3 3141548926061775 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/3 3141548929435821 r009 Re(z^3+c),c=-12/29+10/31*I,n=12 3141548938147898 r002 25th iterates of z^2 + 3141548946919976 a005 (1/sin(84/229*Pi))^370 3141548959731838 m001 (GAMMA(2/3)-ln(2))/(arctan(1/3)+Grothendieck) 3141548963059799 m001 1/exp(Rabbit)^2*Champernowne*GAMMA(23/24)^2 3141548966197792 m001 (Khinchin+Kolakoski)/(3^(1/2)-GolombDickman) 3141548976857838 m005 (1/2*3^(1/2)+2)/(5/7*gamma+1/2) 3141548979966950 a007 Real Root Of -641*x^4-758*x^3-782*x^2+917*x+348 3141548984888720 r009 Im(z^3+c),c=-31/102+17/59*I,n=16 3141548987807642 m001 (Cahen+FeigenbaumAlpha)/(Salem-ZetaP(3)) 3141549001295112 r005 Re(z^2+c),c=-13/36+10/27*I,n=54 3141549002556579 l006 ln(315/7289) 3141549017036464 m001 (Catalan+Champernowne)/(Sarnak+Sierpinski) 3141549017648021 l006 ln(4175/5716) 3141549023103711 m001 1/exp(GolombDickman)^2/Bloch/TreeGrowth2nd^2 3141549024588573 a007 Real Root Of 225*x^4+598*x^3+340*x^2-854*x+214 3141549026858859 r005 Re(z^2+c),c=-7/27+35/59*I,n=57 3141549041234690 r009 Re(z^3+c),c=-13/31+10/31*I,n=27 3141549052046786 m009 (3*Pi^2-1/5)/(Psi(1,2/3)-4) 3141549053762349 r005 Im(z^2+c),c=-33/62+11/25*I,n=22 3141549071970990 a007 Real Root Of -143*x^4-255*x^3+885*x^2+621*x-761 3141549074881007 a007 Real Root Of 85*x^4-61*x^3-901*x^2+278*x-405 3141549081015716 m001 (Pi-Backhouse)/(HardyLittlewoodC3-Paris) 3141549083107952 r005 Im(z^2+c),c=-35/114+16/31*I,n=27 3141549109418746 a007 Real Root Of 185*x^4+441*x^3-261*x^2+315*x-781 3141549114068608 v002 sum(1/(2^n*(23*n^2-55*n+54)),n=1..infinity) 3141549121868391 h001 (5/11*exp(1)+3/10)/(3/5*exp(2)+5/11) 3141549144026320 m005 (1/2*Pi+1/9)/(3/10*2^(1/2)+1/9) 3141549147803470 m008 (2/3*Pi^4-5/6)/(2*Pi^2+2/3) 3141549152232823 k007 concat of cont frac of 3141549156545012 r002 5th iterates of z^2 + 3141549159213070 r005 Re(z^2+c),c=1/106+5/23*I,n=15 3141549159930450 m001 1/Porter^2*exp(DuboisRaymond)*GAMMA(1/6) 3141549160707489 r009 Im(z^3+c),c=-35/86+13/60*I,n=2 3141549161449472 a007 Real Root Of 34*x^4-145*x^3-677*x^2+395*x+115 3141549162451340 r005 Re(z^2+c),c=-37/94+7/31*I,n=34 3141549169451373 a001 610/9349*7^(21/26) 3141549170297506 a001 3571/5*514229^(37/58) 3141549187288403 m001 (exp(Pi)+ArtinRank2)/(Paris+TwinPrimes) 3141549189924666 r005 Re(z^2+c),c=-15/22+27/97*I,n=13 3141549190409786 m005 (1/3*5^(1/2)+2/7)/(-37/99+2/11*5^(1/2)) 3141549192151490 m005 (1/2*5^(1/2)-5/7)/(9/10*5^(1/2)-8/11) 3141549201504576 a007 Real Root Of -434*x^4+920*x^3-793*x^2+557*x+286 3141549207913558 a001 34/123*18^(37/44) 3141549218895012 r009 Re(z^3+c),c=-33/82+19/32*I,n=47 3141549224079204 s002 sum(A018390[n]/(n^3*exp(n)+1),n=1..infinity) 3141549228490521 m001 (MadelungNaCl-Niven)/(Ei(1,1)+GAMMA(5/6)) 3141549230639052 b008 -1/21*1/E^7+Pi 3141549232564401 q001 7/22282 3141549232949730 m001 ErdosBorwein+MinimumGamma^GAMMA(5/6) 3141549240258804 m001 Weierstrass^Magata/(Weierstrass^Si(Pi)) 3141549241711506 p003 LerchPhi(1/5,2,338/181) 3141549247546692 a001 1/712854*(1/2*5^(1/2)+1/2)*18^(10/11) 3141549250314813 a001 1/1153422*(1/2*5^(1/2)+1/2)^2*18^(10/11) 3141549252585133 m001 (GAMMA(5/6)+FransenRobinson)/(Landau+Rabbit) 3141549259092307 r005 Re(z^2+c),c=-23/56+3/40*I,n=22 3141549265650529 m002 5/Pi^4+Pi^3+ProductLog[Pi]/3 3141549269095695 m001 Riemann1stZero^2*ln(Artin)/Riemann3rdZero^2 3141549277886139 a007 Real Root Of -358*x^4-933*x^3+861*x^2+506*x-965 3141549284449322 a005 (1/sin(54/143*Pi))^410 3141549301146643 m004 10*Pi-Log[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141549304226905 a007 Real Root Of -675*x^4-938*x^3-156*x^2+901*x-232 3141549313528405 m002 -1/(24*Pi^6)+Pi 3141549314244046 m001 (3^(1/3))*CareFree/exp(GAMMA(19/24)) 3141549320304005 r005 Re(z^2+c),c=-31/90+3/7*I,n=31 3141549323212586 a003 sin(Pi*7/74)/sin(Pi*34/89) 3141549324741950 r005 Im(z^2+c),c=-71/98+1/59*I,n=61 3141549336371856 l006 ln(5489/7515) 3141549350979066 m008 (1/3*Pi^6+3/4)/(5/6*Pi^2+2) 3141549357264821 m001 (GAMMA(5/6)+MertensB3)/(ZetaP(4)+ZetaQ(4)) 3141549359169901 r005 Im(z^2+c),c=19/86+15/49*I,n=5 3141549362812501 r002 7th iterates of z^2 + 3141549372818589 a007 Real Root Of 724*x^4-2*x^3-479*x^2-206*x+105 3141549375200561 r005 Im(z^2+c),c=-43/62+11/53*I,n=7 3141549382396646 r009 Im(z^3+c),c=-27/110+34/45*I,n=7 3141549386344107 m005 (1/2*gamma-5/7)/(gamma+7/9) 3141549397130837 m002 E^Pi/(18*Pi)+Pi^3 3141549398643745 a001 2/98209*196418^(11/49) 3141549411039756 m001 (exp(-1/2*Pi)-BesselI(1,2))/(Pi+2^(1/3)) 3141549411347706 b008 Pi+2*ExpIntegralEi[-17/2] 3141549416054992 r005 Im(z^2+c),c=-10/7+14/127*I,n=6 3141549418297661 m005 (1/5*gamma+5)/(1/5*Pi+1) 3141549420333933 m005 (1/2*3^(1/2)-7/8)/(5/9*2^(1/2)-1/2) 3141549435434920 r005 Im(z^2+c),c=-1/78+17/45*I,n=37 3141549438671351 m001 (Chi(1)+Riemann1stZero)/(Weierstrass+ZetaQ(4)) 3141549451476717 r005 Im(z^2+c),c=-1/78+17/45*I,n=36 3141549459768157 r005 Re(z^2+c),c=-37/94+7/31*I,n=36 3141549463458476 r005 Im(z^2+c),c=-19/28+1/55*I,n=26 3141549463930385 a007 Real Root Of 19*x^4+574*x^3-739*x^2-616*x+151 3141549465808841 m005 (1/2*Catalan+8/11)/(3*Zeta(3)+1/6) 3141549469564342 m005 (1/3*5^(1/2)-1/11)/(127/120+11/24*5^(1/2)) 3141549472121041 r005 Im(z^2+c),c=-1/9+23/55*I,n=5 3141549472475367 h001 (-2*exp(4)+5)/(-3*exp(2)-11) 3141549473659282 b008 FresnelC[(2*Sqrt[3])/11] 3141549475096851 m002 -Pi+Tanh[Pi]/(24*Pi^6) 3141549476226583 a001 281/726103*317811^(27/38) 3141549492811800 s002 sum(A164061[n]/((10^n-1)/n),n=1..infinity) 3141549495172597 r005 Im(z^2+c),c=-1/78+17/45*I,n=34 3141549495870938 a007 Real Root Of 19*x^4+599*x^3+95*x^2+921*x+459 3141549506963044 m005 (1/2*Zeta(3)+5/9)/(1/12*5^(1/2)+2/11) 3141549519001267 b008 EulerGamma*(-7+Tan[1]) 3141549523775347 r005 Im(z^2+c),c=-91/114+1/63*I,n=26 3141549525988885 q001 961/3059 3141549531320260 r005 Im(z^2+c),c=-33/56+3/44*I,n=20 3141549531972617 l006 ln(6803/9314) 3141549539838250 m005 (1/3*gamma-1/11)/(4/7*3^(1/2)-2/3) 3141549550688594 m006 (1/3/Pi-3)/(1/6*ln(Pi)-1/5) 3141549550882769 b008 1/3+Sqrt[5*(1+EulerGamma)] 3141549553028625 b008 3+ExpIntegralEi[2]/35 3141549553481855 r005 Re(z^2+c),c=-23/56+4/55*I,n=16 3141549568264383 a007 Real Root Of -731*x^4+474*x^3-535*x^2+571*x+254 3141549571446233 r009 Re(z^3+c),c=-19/46+14/61*I,n=4 3141549578206634 m001 (ln(gamma)+FeigenbaumDelta)/(Thue+ZetaP(2)) 3141549582989181 r005 Im(z^2+c),c=-139/114+1/27*I,n=52 3141549591826578 m001 (-GAMMA(11/12)+Mills)/(Shi(1)-sin(1/12*Pi)) 3141549595874536 a007 Real Root Of 417*x^4-12*x^3-858*x^2-573*x+261 3141549599643169 a007 Real Root Of -45*x^4-26*x^3+399*x^2+352*x+745 3141549602421827 r005 Im(z^2+c),c=-1/78+17/45*I,n=40 3141549622400848 m005 (1/2*exp(1)+4/9)/(-119/264+11/24*5^(1/2)) 3141549644103319 b008 -7/E^12+Pi 3141549664244707 p004 log(11113/8117) 3141549665535931 a001 8/199*9349^(50/51) 3141549665592287 m005 (1/3*exp(1)-2/5)/(6*exp(1)-1/5) 3141549669017251 r005 Im(z^2+c),c=-3/31+13/31*I,n=41 3141549682641098 m005 (1/2*3^(1/2)-1/11)/(3/4*Pi+1/9) 3141549684694983 r005 Im(z^2+c),c=-1/78+17/45*I,n=43 3141549694100888 a007 Real Root Of 18*x^4+569*x^3+133*x^2+724*x+653 3141549695654276 m001 GAMMA(7/12)*Artin*ln(gamma) 3141549695654276 m001 ln(gamma)*GAMMA(7/12)*Artin 3141549695654276 m001 log(gamma)*Artin*GAMMA(7/12) 3141549701270361 r009 Re(z^3+c),c=-37/82+19/51*I,n=54 3141549708428476 r005 Im(z^2+c),c=-1/78+17/45*I,n=47 3141549708974493 r005 Im(z^2+c),c=-1/78+17/45*I,n=46 3141549708976304 r005 Im(z^2+c),c=-1/78+17/45*I,n=44 3141549711146579 r005 Im(z^2+c),c=-1/78+17/45*I,n=50 3141549712450632 r005 Im(z^2+c),c=-1/78+17/45*I,n=53 3141549712816371 r005 Im(z^2+c),c=-1/78+17/45*I,n=57 3141549712818830 r005 Im(z^2+c),c=-1/78+17/45*I,n=54 3141549712829568 r005 Im(z^2+c),c=-1/78+17/45*I,n=56 3141549712860539 r005 Im(z^2+c),c=-1/78+17/45*I,n=60 3141549712881196 r005 Im(z^2+c),c=-1/78+17/45*I,n=63 3141549712886768 r005 Im(z^2+c),c=-1/78+17/45*I,n=64 3141549712895102 r005 Im(z^2+c),c=-1/78+17/45*I,n=61 3141549712897045 r005 Im(z^2+c),c=-1/78+17/45*I,n=62 3141549712897122 r005 Im(z^2+c),c=-1/78+17/45*I,n=59 3141549712942431 r005 Im(z^2+c),c=-1/78+17/45*I,n=58 3141549713106570 r005 Im(z^2+c),c=-1/78+17/45*I,n=55 3141549713366265 r005 Im(z^2+c),c=-1/78+17/45*I,n=51 3141549713408978 r005 Im(z^2+c),c=-1/78+17/45*I,n=49 3141549713453127 r005 Im(z^2+c),c=-1/78+17/45*I,n=52 3141549716399703 r005 Im(z^2+c),c=-1/78+17/45*I,n=48 3141549720209135 m005 (1/3*5^(1/2)-2/3)/(11/12*Pi-3/8) 3141549726758527 r005 Im(z^2+c),c=-1/78+17/45*I,n=45 3141549730024094 m002 -3/(E^Pi*Pi^7)+Pi 3141549738294010 a007 Real Root Of -65*x^4-28*x^3+220*x^2-988*x+188 3141549742138029 r005 Im(z^2+c),c=-1/78+17/45*I,n=39 3141549744884465 r005 Im(z^2+c),c=-1/78+17/45*I,n=41 3141549748067900 r005 Im(z^2+c),c=-1/78+17/45*I,n=42 3141549750196460 a001 47/5*317811^(2/21) 3141549752080072 m006 (3/5*exp(2*Pi)+1/2)/(3/5/Pi+5/6) 3141549758721410 m001 (Chi(1)-ln(2^(1/2)+1))/(-Kac+LandauRamanujan) 3141549763621364 m001 1/(3^(1/3))*Artin^2*exp(sin(Pi/5))^2 3141549768132206 a007 Real Root Of -377*x^4-968*x^3+348*x^2-882*x+503 3141549770793409 m004 -250/Pi+125*Pi+Log[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 3141549775045653 r009 Re(z^3+c),c=-13/21+18/59*I,n=11 3141549780645818 m002 -Pi+(4*Coth[Pi])/Pi^10 3141549781826461 r005 Im(z^2+c),c=-59/102+29/59*I,n=45 3141549785555190 r005 Re(z^2+c),c=-17/122+20/39*I,n=5 3141549800121774 a007 Real Root Of 345*x^4+895*x^3-756*x^2-243*x+843 3141549829912452 m001 (polylog(4,1/2)+ZetaP(2)*ZetaQ(4))/ZetaQ(4) 3141549830975202 m001 (sin(1/5*Pi)-cos(1/12*Pi))/(Salem+Trott2nd) 3141549848680032 r005 Im(z^2+c),c=-17/106+13/29*I,n=36 3141549851559018 r009 Re(z^3+c),c=-45/98+22/57*I,n=41 3141549863457279 r008 a(0)=3,K{-n^6,-6+30*n-62*n^2+32*n^3} 3141549877885449 a001 64300051206/7*6557470319842^(1/24) 3141549877885449 a001 312119004989/21*63245986^(1/24) 3141549904116780 m004 4+(5*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi]^2 3141549912732009 m005 (1/3*5^(1/2)+2/11)/(5/6*Pi+1/3) 3141549913743864 m001 (Zeta(1,2)+GAMMA(11/12))/(Artin+ZetaQ(4)) 3141549921119420 a007 Real Root Of -54*x^4-2*x^3+207*x^2-995*x+29 3141549926506192 r002 18th iterates of z^2 + 3141549934502207 a007 Real Root Of -143*x^4-237*x^3+594*x^2+20*x+781 3141549934655633 a007 Real Root Of 423*x^4-339*x^3-156*x^2-47*x-14 3141549939187682 r005 Im(z^2+c),c=-1/78+17/45*I,n=38 3141549940472885 m002 -4/Pi^10+Pi 3141549943119042 a007 Real Root Of -288*x^4+322*x^3+694*x^2+901*x-29 3141549947227951 r009 Im(z^3+c),c=-13/66+10/31*I,n=9 3141549948241815 a001 505019158607/21*610^(1/24) 3141549953748693 a005 (1/cos(27/139*Pi))^133 3141549956502701 h001 (-4*exp(1/3)+1)/(-4*exp(-2)+2) 3141549964977636 m005 (1/3*2^(1/2)-1/12)/(3/7*Pi-1/9) 3141549978530568 m005 (-1/20+1/4*5^(1/2))/(2/5*Pi+4/11) 3141549997851121 r009 Im(z^3+c),c=-9/52+20/61*I,n=11 3141550008858825 m001 (BesselK(0,1)-Zeta(5))/(-ln(5)+FeigenbaumMu) 3141550011328354 l006 ln(136/3147) 3141550032165550 m001 1/BesselK(1,1)*Cahen^2/exp(cosh(1))^2 3141550034474314 r009 Re(z^3+c),c=-49/110+4/11*I,n=38 3141550042682346 a007 Real Root Of -952*x^4+884*x^3+762*x^2+852*x-361 3141550055268432 r005 Im(z^2+c),c=-5/74+15/37*I,n=25 3141550065825225 a008 Real Root of (-5+x-6*x^2+5*x^3-4*x^4-2*x^5) 3141550071754081 m001 ln(GAMMA(1/4))^2*Artin^2*GAMMA(2/3) 3141550080277026 r005 Im(z^2+c),c=-17/94+29/64*I,n=15 3141550085899455 a007 Real Root Of -263*x^4-621*x^3+953*x^2+794*x-548 3141550086074002 p001 sum((-1)^n/(446*n+317)/(100^n),n=0..infinity) 3141550087464063 m001 1/5*(FeigenbaumC-GAMMA(5/6))*5^(1/2) 3141550093254939 m001 Pi^(1/2)+ArtinRank2*ReciprocalLucas 3141550096993060 m001 Pi+(ln(2)/ln(10)-arctan(1/3))*gamma(3) 3141550099704129 m002 -Pi+(4*Tanh[Pi])/Pi^10 3141550110249133 a007 Real Root Of 161*x^4+495*x^3+48*x^2+567*x+973 3141550119578457 a007 Real Root Of 212*x^4+592*x^3-371*x^2-197*x+748 3141550126095637 r005 Re(z^2+c),c=-13/36+10/27*I,n=47 3141550139402482 p004 log(36299/26513) 3141550148613682 r005 Im(z^2+c),c=-41/110+28/61*I,n=9 3141550150814173 m005 (1/2*exp(1)+8/11)/(1/9*gamma+3/5) 3141550164461217 m001 (Zeta(5)-ln(5))/(FeigenbaumMu-MadelungNaCl) 3141550171704338 m001 (Pi+GAMMA(3/4))/(GlaisherKinkelin+OneNinth) 3141550180970618 m001 Psi(2,1/3)*LandauRamanujan2nd+LaplaceLimit 3141550181550680 m004 -15/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141550182477262 a005 (1/cos(3/235*Pi))^1423 3141550184159978 m001 MadelungNaCl^FeigenbaumC*MadelungNaCl^Ei(1,1) 3141550210154676 a007 Real Root Of 268*x^4+753*x^3-375*x^2-449*x-467 3141550229815270 m001 HardyLittlewoodC5^(BesselK(1,1)/arctan(1/2)) 3141550231012198 r005 Im(z^2+c),c=-29/34+18/95*I,n=24 3141550247103998 r005 Im(z^2+c),c=-2/3+23/222*I,n=12 3141550249640196 m001 (3^(1/3)+GAMMA(17/24))/(2^(1/2)-Psi(1,1/3)) 3141550253019170 r002 10th iterates of z^2 + 3141550263088521 h005 exp(cos(Pi*1/39)/cos(Pi*9/55)) 3141550276371264 m001 (GAMMA(2/3)+Champernowne)/(MadelungNaCl+Otter) 3141550282367887 r005 Re(z^2+c),c=-29/30+60/113*I,n=2 3141550283208384 r005 Re(z^2+c),c=7/122+23/41*I,n=6 3141550296074154 r009 Re(z^3+c),c=-23/48+17/40*I,n=34 3141550299294534 m001 1/ln(sin(Pi/12))/Cahen*sqrt(1+sqrt(3))^2 3141550302346853 a001 1/12*(1/2*5^(1/2)+1/2)^15*4^(11/15) 3141550310710174 m005 (2/5*Pi-1/6)/(1/6*exp(1)-4/5) 3141550321566578 r005 Re(z^2+c),c=-35/94+19/58*I,n=31 3141550346926636 m001 (ln(Pi)+BesselK(1,1))/(Conway-RenyiParking) 3141550349059772 l006 ln(1314/1799) 3141550350307487 m002 -Pi+(Cosh[Pi]*ProductLog[Pi])/Pi^11 3141550353780910 a007 Real Root Of 81*x^4+101*x^3-358*x^2+452*x+195 3141550360399554 m005 (-1/18+1/6*5^(1/2))/(10/11*Zeta(3)-1/12) 3141550402367945 p001 sum(1/(215*n+32)/(25^n),n=0..infinity) 3141550406913510 a007 Real Root Of -300*x^4-967*x^3-221*x^2-335*x+368 3141550412034128 a007 Real Root Of -895*x^4+530*x^3+911*x^2+189*x-157 3141550440610291 a001 8/3571*2^(20/41) 3141550444868211 r005 Im(z^2+c),c=9/74+25/52*I,n=4 3141550460073158 r005 Re(z^2+c),c=-19/48+3/16*I,n=10 3141550476907709 h002 exp(11^(12/7)-6^(7/4)) 3141550476907709 h007 exp(11^(12/7)-6^(7/4)) 3141550489502765 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^Landau*Tribonacci 3141550491455992 m001 (ln(5)+Champernowne)/(HardyLittlewoodC4-Thue) 3141550494868297 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^6*Log[Pi]) 3141550501769155 m001 Salem*ln(Riemann1stZero)*Zeta(7) 3141550508010899 m002 -Pi+(ProductLog[Pi]*Sinh[Pi])/Pi^11 3141550508691237 r009 Im(z^3+c),c=-53/114+2/35*I,n=29 3141550518501800 a007 Real Root Of -267*x^4+270*x^3+148*x^2+610*x+188 3141550535778039 r002 3th iterates of z^2 + 3141550546812305 a007 Real Root Of -496*x^4+843*x^3+394*x^2+856*x+261 3141550547682286 m008 (2*Pi^3-3/5)/(2*Pi^4+2/3) 3141550554545301 r009 Im(z^3+c),c=-19/40+10/57*I,n=12 3141550560167498 r009 Im(z^3+c),c=-21/122+50/59*I,n=2 3141550568914216 a001 322/377*317811^(39/47) 3141550573259936 a007 Real Root Of -78*x^4-193*x^3+314*x^2+646*x+544 3141550576103437 m006 (1/6/Pi-1/3)/(3/5*Pi^2+3) 3141550592525218 r005 Im(z^2+c),c=-1/78+17/45*I,n=35 3141550592528712 r005 Im(z^2+c),c=-23/22+25/86*I,n=3 3141550597602823 m001 (GAMMA(3/4)-ZetaQ(2))/(Pi+sin(1/5*Pi)) 3141550630469295 s002 sum(A237962[n]/(exp(pi*n)+1),n=1..infinity) 3141550633376202 m001 PisotVijayaraghavan^exp(1)*FeigenbaumD^exp(1) 3141550638048949 r005 Im(z^2+c),c=-55/54+2/7*I,n=23 3141550639552117 r005 Im(z^2+c),c=-131/122+14/41*I,n=6 3141550639813896 m001 (GAMMA(23/24)+Otter)/(Tetranacci-TwinPrimes) 3141550659266067 m005 (1/2*gamma+5/6)/(2/11*2^(1/2)+1/10) 3141550672909167 a007 Real Root Of 175*x^4-811*x^3+725*x^2-672*x+163 3141550688888665 r005 Im(z^2+c),c=-2/3+20/171*I,n=12 3141550692590218 r005 Im(z^2+c),c=21/86+13/64*I,n=31 3141550696803879 r002 25th iterates of z^2 + 3141550703667345 m001 (Cahen+4)/(ln(Pi)+1/3) 3141550709035473 r009 Re(z^3+c),c=-37/82+19/51*I,n=53 3141550720547980 r005 Im(z^2+c),c=1/27+15/41*I,n=7 3141550720761305 b008 -1/8*1/E^8+Pi 3141550736525455 r005 Re(z^2+c),c=-11/31+13/30*I,n=6 3141550746627863 a007 Real Root Of -33*x^4-228*x^3-330*x^2+599*x+214 3141550758447544 r002 57th iterates of z^2 + 3141550765405609 r005 Re(z^2+c),c=-31/74+2/63*I,n=8 3141550770252480 m001 Pi-ZetaQ(3)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141550775344852 m005 (3*2^(1/2)-2)/(1/3*Pi-1/3) 3141550776913788 b008 Pi-2*BesselJ[6,1] 3141550783601517 a009 23^(1/2)/(5^(3/4)-6^(1/3)) 3141550787087096 m005 (1/12+1/6*5^(1/2))/(1/3*exp(1)+6/11) 3141550787888859 m002 -Pi+1/(E^Pi*Pi^6*ProductLog[Pi]) 3141550789472155 m001 1/FeigenbaumDelta^2/CopelandErdos*ln(sinh(1)) 3141550794881933 a007 Real Root Of 300*x^4-227*x^3-838*x^2-599*x+275 3141550797464416 a007 Real Root Of -465*x^4-203*x^3+875*x^2+584*x-259 3141550802844917 r005 Re(z^2+c),c=-19/46+1/50*I,n=14 3141550812842114 m005 (1/3*3^(1/2)-2/7)/(1/5*Pi+3/10) 3141550816423973 m005 (-29/8+3/8*5^(1/2))/(3/4*Catalan+1/5) 3141550816670702 a007 Real Root Of 510*x^4+15*x^3+54*x^2-26*x-18 3141550820777017 m008 (3*Pi^2+3/5)/(Pi^6+1/5) 3141550821819639 m001 (Porter-QuadraticClass)/(Trott2nd-ZetaQ(3)) 3141550822012798 m001 1/GAMMA(5/6)*exp(DuboisRaymond)*cos(1)^2 3141550822127180 m001 GlaisherKinkelin^PrimesInBinary-Kolakoski 3141550825744590 m003 2+Sqrt[5]/512+(3*ProductLog[1/2+Sqrt[5]/2])/2 3141550827139854 m001 HardHexagonsEntropy^FransenRobinson+Lehmer 3141550831233853 a001 182717648081*18^(3/16) 3141550832541933 m001 1/Rabbit^2/ln(LaplaceLimit)^2/GAMMA(11/24)^2 3141550846344203 m001 GolombDickman^Grothendieck/exp(1/Pi) 3141550853257614 m001 GaussAGM*GlaisherKinkelin/Magata 3141550856675593 b008 Pi*ModularLambda[I/14*Pi] 3141550866151169 m004 750*Pi-Cosh[Sqrt[5]*Pi]^2-Sinh[Sqrt[5]*Pi] 3141550869789782 h003 exp(Pi*(10^(1/3)/(10^(1/4)-14^(1/2)))) 3141550873606508 m008 (3*Pi^6-2/3)/(3*Pi^5-1/5) 3141550875046493 m004 750*Pi-Cosh[Sqrt[5]*Pi]-Cosh[Sqrt[5]*Pi]^2 3141550878824842 m002 -4+2*E^Pi-Pi^2-Tanh[Pi] 3141550881911397 l006 ln(365/8446) 3141550886015216 r009 Im(z^3+c),c=-27/122+1/38*I,n=9 3141550886735117 a007 Real Root Of 213*x^4+387*x^3-969*x^2-419*x-501 3141550898500387 p001 sum((-1)^n/(445*n+308)/(12^n),n=0..infinity) 3141550914482713 m005 (1/3*Catalan+1/12)/(5/8*Zeta(3)-7/8) 3141550917331625 r002 64th iterates of z^2 + 3141550921739742 m005 (1/2*gamma-2/9)/(9/10*Pi-5/7) 3141550923877556 a007 Real Root Of -236*x^4-643*x^3+257*x^2-259*x-299 3141550934689822 r005 Im(z^2+c),c=-45/86+13/29*I,n=27 3141550939469595 s002 sum(A193958[n]/(n^2*exp(n)+1),n=1..infinity) 3141550941693830 m005 (1/2*Zeta(3)+3/4)/(1/4*Zeta(3)+4) 3141550943961001 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^6*ProductLog[Pi]) 3141550966152366 a007 Real Root Of -325*x^4+849*x^3+944*x^2+295*x-209 3141550970540993 m001 MinimumGamma/exp(LaplaceLimit)^2*cos(Pi/5) 3141550973852372 a007 Real Root Of -327*x^4-865*x^3+373*x^2-526*x-302 3141550977286156 m001 1/exp(Robbin)/Conway/(2^(1/3)) 3141550991657978 m005 (1/2*3^(1/2)-4/7)/(-23/264+11/24*5^(1/2)) 3141550991708793 r009 Re(z^3+c),c=-31/82+12/47*I,n=27 3141550994892467 m004 -100*Pi+(Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/3 3141550994958393 m004 -100*Pi+(Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/3 3141551005799797 m001 Totient*(exp(Pi)+HardyLittlewoodC4) 3141551008595358 m001 Porter^2*GolombDickman^2*exp(TwinPrimes)^2 3141551020629737 r005 Re(z^2+c),c=-2/5+8/43*I,n=18 3141551035789758 a003 cos(Pi*3/22)*cos(Pi*19/49) 3141551036927210 r005 Re(z^2+c),c=-13/34+15/58*I,n=11 3141551038105261 r005 Im(z^2+c),c=-69/70+16/61*I,n=59 3141551041276786 a007 Real Root Of 226*x^4+933*x^3+497*x^2-822*x-573 3141551045064140 r005 Im(z^2+c),c=17/66+11/58*I,n=34 3141551047130861 m002 -1/(25*Pi^6)+Pi 3141551074537209 m006 (5/6*ln(Pi)-2/5)/(4/5*Pi-3/4) 3141551076536481 r009 Im(z^3+c),c=-7/82+50/61*I,n=40 3141551082918874 a007 Real Root Of -172*x^4-388*x^3+628*x^2+547*x+244 3141551083900496 b008 Pi+10*ExpIntegralEi[-10] 3141551090751686 a007 Real Root Of -302*x^4-850*x^3+399*x^2+418*x+437 3141551092794651 r005 Re(z^2+c),c=-17/60+27/47*I,n=45 3141551103464934 r005 Im(z^2+c),c=-79/86+13/54*I,n=55 3141551105171631 k006 concat of cont frac of 3141551110143771 k007 concat of cont frac of 3141551111111572 k006 concat of cont frac of 3141551111231974 k006 concat of cont frac of 3141551112111111 k006 concat of cont frac of 3141551112133611 k006 concat of cont frac of 3141551112451561 k007 concat of cont frac of 3141551121174124 k007 concat of cont frac of 3141551121311119 k006 concat of cont frac of 3141551131174281 k007 concat of cont frac of 3141551137564716 r009 Im(z^3+c),c=-7/16+32/53*I,n=6 3141551140928977 r005 Re(z^2+c),c=-17/44+9/34*I,n=25 3141551141031151 k008 concat of cont frac of 3141551141131011 k006 concat of cont frac of 3141551141131111 k007 concat of cont frac of 3141551141361224 k008 concat of cont frac of 3141551146345625 r009 Re(z^3+c),c=-27/64+19/46*I,n=7 3141551150334654 a007 Real Root Of 25*x^4+813*x^3+894*x^2+848*x+439 3141551153027306 m001 1/2*(Psi(2,1/3)-cos(1))*GAMMA(5/6) 3141551161867622 h003 exp(Pi*(12^(7/2)-18^(7/4))) 3141551161867622 h008 exp(Pi*(12^(7/2)-18^(7/4))) 3141551167272307 m001 (3^(1/2)-sin(1/12*Pi))/(-Conway+GaussAGM) 3141551171161244 k009 concat of cont frac of 3141551171311123 k006 concat of cont frac of 3141551177217620 k008 concat of cont frac of 3141551184432902 b008 Sqrt[2]+9*ArcSinh[14] 3141551194712201 r009 Re(z^3+c),c=-13/58+47/59*I,n=3 3141551202236569 m002 -Pi+Tanh[Pi]/(25*Pi^6) 3141551205314812 a007 Real Root Of -370*x^4-575*x^3+85*x^2+990*x+31 3141551211122913 k006 concat of cont frac of 3141551214504226 h001 (-3*exp(1)-2)/(-8*exp(6)-5) 3141551221136827 k008 concat of cont frac of 3141551222753131 h001 (5/11*exp(1)+7/8)/(1/10*exp(1)+2/5) 3141551223116891 m001 (-Bloch+OneNinth)/(ln(2)/ln(10)+Zeta(1/2)) 3141551226232480 l006 ln(6337/8676) 3141551226242924 r009 Im(z^3+c),c=-19/46+13/57*I,n=33 3141551227817153 r005 Im(z^2+c),c=4/27+16/57*I,n=12 3141551237224542 m001 (Conway-Lehmer)/(OrthogonalArrays+Thue) 3141551245112384 k007 concat of cont frac of 3141551245124311 k008 concat of cont frac of 3141551245954486 a007 Real Root Of 174*x^4-875*x^3+368*x^2-442*x-204 3141551251133412 k007 concat of cont frac of 3141551257072070 a007 Real Root Of -96*x^4-284*x^3-316*x^2-940*x+711 3141551260716113 r009 Im(z^3+c),c=-27/122+1/38*I,n=10 3141551263612315 k007 concat of cont frac of 3141551273112817 k007 concat of cont frac of 3141551275854391 a007 Real Root Of 340*x^4+960*x^3-576*x^2-687*x+174 3141551292917698 a007 Real Root Of 929*x^4+758*x^3+664*x^2+48*x-36 3141551293263564 m005 (1/3*Pi-1/9)/(1/7*2^(1/2)-1/2) 3141551300066843 r009 Im(z^3+c),c=-27/122+1/38*I,n=11 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=24 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=25 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=26 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=27 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=28 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=29 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=30 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=31 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=32 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=33 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=34 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=47 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=48 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=49 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=50 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=51 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=52 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=53 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=54 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=55 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=56 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=57 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=46 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=45 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=44 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=43 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=42 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=41 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=40 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=39 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=38 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=37 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=36 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=35 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=23 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=22 3141551301725219 r009 Im(z^3+c),c=-27/122+1/38*I,n=21 3141551301725221 r009 Im(z^3+c),c=-27/122+1/38*I,n=20 3141551301725230 r009 Im(z^3+c),c=-27/122+1/38*I,n=19 3141551301725287 r009 Im(z^3+c),c=-27/122+1/38*I,n=18 3141551301725637 r009 Im(z^3+c),c=-27/122+1/38*I,n=17 3141551301727612 r009 Im(z^3+c),c=-27/122+1/38*I,n=16 3141551301737850 r009 Im(z^3+c),c=-27/122+1/38*I,n=15 3141551301785200 r009 Im(z^3+c),c=-27/122+1/38*I,n=14 3141551301964137 r009 Im(z^3+c),c=-27/122+1/38*I,n=13 3141551302327203 r009 Im(z^3+c),c=-27/122+1/38*I,n=12 3141551302628866 r005 Re(z^2+c),c=-41/60+22/63*I,n=59 3141551305962157 r009 Re(z^3+c),c=-37/82+31/63*I,n=25 3141551310217562 a007 Real Root Of -855*x^4+946*x^3-399*x^2+506*x+236 3141551310962554 r005 Im(z^2+c),c=-27/122+29/61*I,n=13 3141551311214111 k008 concat of cont frac of 3141551321155737 k007 concat of cont frac of 3141551321232511 k007 concat of cont frac of 3141551324856854 r005 Im(z^2+c),c=-1/78+17/45*I,n=29 3141551334347627 r009 Re(z^3+c),c=-12/25+27/61*I,n=55 3141551335023221 r005 Im(z^2+c),c=1/60+21/58*I,n=21 3141551353279966 r009 Re(z^3+c),c=-29/66+17/48*I,n=35 3141551354307207 r009 Im(z^3+c),c=-61/102+33/64*I,n=42 3141551355243429 a007 Real Root Of 264*x^4-68*x^3+819*x^2-819*x+176 3141551367112251 k007 concat of cont frac of 3141551374124375 m001 Catalan^2*exp(CopelandErdos)^2*GAMMA(7/12)^2 3141551382278343 r005 Im(z^2+c),c=-39/106+28/53*I,n=64 3141551390258036 m001 (Pi^(1/2)-Conway)^GAMMA(7/12) 3141551391889186 a007 Real Root Of -349*x^4-709*x^3-688*x^2+903*x+333 3141551392885172 m002 Pi-Cosh[Pi]/(3*Pi^10) 3141551398407524 m001 1/ArtinRank2^2*Artin/ln(GAMMA(13/24))^2 3141551398938522 l006 ln(229/5299) 3141551401472486 a007 Real Root Of 190*x^4+733*x^3+391*x^2-191*x-239 3141551407307028 r002 9th iterates of z^2 + 3141551410079772 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(E^Pi*Pi^4) 3141551422937064 m002 -Pi+(Log[Pi]*ProductLog[Pi])/Pi^9 3141551431115111 k006 concat of cont frac of 3141551438243843 r005 Im(z^2+c),c=1/36+21/59*I,n=26 3141551439293926 m001 (-PlouffeB+Salem)/(Chi(1)-exp(Pi)) 3141551453965714 a007 Real Root Of 967*x^4-141*x^3-185*x^2-741*x+246 3141551454125350 m005 (1/2*3^(1/2)+2/9)/(1/3*2^(1/2)-1/8) 3141551455192284 r005 Im(z^2+c),c=27/98+8/47*I,n=27 3141551455697914 l006 ln(5023/6877) 3141551463370322 m001 (exp(1)+KhinchinHarmonic)^BesselJ(0,1) 3141551464739982 r005 Re(z^2+c),c=31/98+1/10*I,n=25 3141551469793553 m002 -E^Pi/(6*Pi^10)+Pi 3141551481043234 r005 Im(z^2+c),c=7/23+7/53*I,n=42 3141551488363837 m001 (exp(1)+Conway)/(-MertensB3+Riemann1stZero) 3141551491221177 k008 concat of cont frac of 3141551497758667 m005 (1/2*2^(1/2)+1/4)/(27/140+1/20*5^(1/2)) 3141551509359578 m001 exp(BesselJ(1,1))^2/PrimesInBinary*cos(1) 3141551516988431 b008 -1/3*1/E^9+Pi 3141551524025422 a007 Real Root Of -993*x^4+706*x^3-819*x^2-501*x-45 3141551524061799 m001 Sarnak/BesselJ(0,1)/ln(2)*ln(10) 3141551531331419 k007 concat of cont frac of 3141551545367340 a007 Real Root Of 115*x^4+372*x^3+92*x^2+230*x+147 3141551546701934 m002 Pi-Sinh[Pi]/(3*Pi^10) 3141551560859040 r005 Re(z^2+c),c=17/86+18/47*I,n=37 3141551563832434 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(E^Pi*Pi^4) 3141551577913448 m001 (Zeta(5)-Niven)/(Porter+TwinPrimes) 3141551579258168 a007 Real Root Of 308*x^4+792*x^3-560*x^2-123*x-304 3141551579631647 r002 9th iterates of z^2 + 3141551586382315 r009 Re(z^3+c),c=-59/98+25/47*I,n=62 3141551592451676 m001 (-ZetaP(3)+ZetaQ(3))/(Psi(2,1/3)+BesselI(0,2)) 3141551603496806 m001 Pi-Trott2nd^FransenRobinson 3141551611318091 a001 321/8*6765^(7/30) 3141551611441323 k006 concat of cont frac of 3141551618304687 m005 (1/3*Zeta(3)+1/6)/(35/33+1/3*5^(1/2)) 3141551643845646 r009 Re(z^3+c),c=-31/82+12/47*I,n=28 3141551669351822 m001 1/GAMMA(5/6)/exp(GolombDickman)^2/cos(Pi/5) 3141551669980819 r005 Im(z^2+c),c=-59/78+3/41*I,n=33 3141551683526896 m001 MasserGramain^exp(Pi)-Pi 3141551686034889 r002 7th iterates of z^2 + 3141551694923865 r005 Im(z^2+c),c=-53/110+25/47*I,n=59 3141551703509551 m001 1/LandauRamanujan^2/Artin^2*ln(GAMMA(19/24))^2 3141551705270418 m001 Trott/(Pi*2^(1/2)/GAMMA(3/4)-ZetaP(3)) 3141551705324780 a007 Real Root Of -981*x^4+830*x^3+753*x^2+947*x-388 3141551711811731 k009 concat of cont frac of 3141551712147110 k008 concat of cont frac of 3141551712509075 m001 (FeigenbaumMu-Landau)/(cos(1/5*Pi)-Pi^(1/2)) 3141551720742972 r005 Im(z^2+c),c=-6/31+27/43*I,n=32 3141551734153111 r005 Re(z^2+c),c=-35/114+6/19*I,n=4 3141551734355637 b008 2+Cosh[E^(-1)]^2 3141551740443261 r005 Im(z^2+c),c=-19/90+11/23*I,n=6 3141551741374709 h001 (7/12*exp(1)+1/7)/(7/11*exp(2)+4/5) 3141551751337038 a007 Real Root Of -360*x^4-936*x^3+296*x^2-914*x+252 3141551756448440 a005 (1/sin(104/235*Pi))^773 3141551764613020 b008 Pi*KelvinBer[0,1/7]^2 3141551800071463 r002 20th iterates of z^2 + 3141551803794557 m001 (Pi+sin(1))/(Backhouse-Riemann1stZero) 3141551817136364 a007 Real Root Of -195*x^4-728*x^3-648*x^2-653*x+766 3141551840001499 r005 Im(z^2+c),c=-9/13+1/31*I,n=44 3141551847133356 r005 Im(z^2+c),c=-1/78+17/45*I,n=31 3141551847750329 l006 ln(3709/5078) 3141551861970966 m009 (32*Catalan+4*Pi^2+2/3)/(3/10*Pi^2-3/4) 3141551874182390 a001 199*(1/2*5^(1/2)+1/2)^26*7^(19/21) 3141551874566187 m001 (5^(1/2))^KhinchinLevy+Landau 3141551882293657 b008 3+(1/7+Sqrt[2])/11 3141551900484787 r005 Im(z^2+c),c=-1/78+17/45*I,n=32 3141551907348970 m001 (gamma(1)+HardHexagonsEntropy)/BesselK(0,1) 3141551909334565 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/4 3141551909366805 m004 10*Pi-Tan[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141551909399044 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/4 3141551911322677 m001 1/exp(Robbin)^2/Kolakoski*Zeta(1,2) 3141551913440850 r009 Re(z^3+c),c=-39/106+5/21*I,n=22 3141551918348214 m001 (TravellingSalesman-ZetaQ(2))/(3^(1/3)+Robbin) 3141551945904864 r005 Im(z^2+c),c=-139/114+1/8*I,n=17 3141551947683331 r005 Re(z^2+c),c=-20/21+11/45*I,n=50 3141551956903638 m001 1/ln(Lehmer)*Backhouse*GAMMA(5/6) 3141551961141133 k008 concat of cont frac of 3141551975288717 m001 KhintchineHarmonic*exp(Artin)^2/GAMMA(19/24) 3141551985009319 l006 ln(322/7451) 3141551996427727 a007 Real Root Of 285*x^4+17*x^3-498*x^2-544*x-124 3141552003469512 m001 (ln(3)+FeigenbaumMu)/(MadelungNaCl-MertensB1) 3141552040465721 s002 sum(A172317[n]/(n^2*pi^n+1),n=1..infinity) 3141552048715168 m001 LambertW(1)^FeigenbaumD-ReciprocalFibonacci 3141552048915080 r009 Re(z^3+c),c=-15/34+1/45*I,n=10 3141552050538022 r009 Re(z^3+c),c=-31/82+12/47*I,n=31 3141552056756472 s002 sum(A234589[n]/(n^2*pi^n+1),n=1..infinity) 3141552065374770 m004 10*Pi-Sin[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141552082509106 r005 Re(z^2+c),c=3/16+35/57*I,n=4 3141552085824793 r005 Im(z^2+c),c=17/58+5/32*I,n=16 3141552094326538 m001 FransenRobinson^BesselI(0,1)/Salem 3141552100591544 m004 -2*Csch[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141552100619698 m004 -4/E^(Sqrt[5]*Pi)+100*Pi*Tanh[Sqrt[5]*Pi] 3141552100647853 m004 -2*Sech[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141552105227754 m001 Trott^2*exp(Conway)/GAMMA(19/24)^2 3141552110151137 r005 Im(z^2+c),c=-41/118+29/55*I,n=60 3141552111121212 k007 concat of cont frac of 3141552112114923 a007 Real Root Of -250*x^4-608*x^3+275*x^2-656*x+725 3141552112141211 k007 concat of cont frac of 3141552113414314 r002 62th iterates of z^2 + 3141552113629852 r005 Re(z^2+c),c=-49/110+17/39*I,n=8 3141552121111141 k009 concat of cont frac of 3141552132404338 a005 (1/cos(11/159*Pi))^1789 3141552133441311 k006 concat of cont frac of 3141552142658925 r009 Re(z^3+c),c=-31/82+12/47*I,n=32 3141552147218131 k006 concat of cont frac of 3141552170371432 l006 ln(6104/8357) 3141552175003745 a007 Real Root Of 726*x^4-350*x^3-168*x^2-575*x+201 3141552176212112 k006 concat of cont frac of 3141552181590391 r005 Im(z^2+c),c=-13/94+29/49*I,n=12 3141552190307738 r009 Re(z^3+c),c=-31/82+12/47*I,n=35 3141552199885491 m001 1/GAMMA(5/24)/GAMMA(3/4)/ln(arctan(1/2))^2 3141552203187372 r009 Re(z^3+c),c=-31/82+12/47*I,n=36 3141552203264047 a003 cos(Pi*11/38)-sin(Pi*25/66) 3141552207537710 a007 Real Root Of 30*x^4-895*x^3-681*x^2-956*x+395 3141552208712292 r009 Re(z^3+c),c=-31/82+12/47*I,n=39 3141552210497551 r009 Re(z^3+c),c=-31/82+12/47*I,n=40 3141552211130099 r009 Re(z^3+c),c=-31/82+12/47*I,n=43 3141552211375742 r009 Re(z^3+c),c=-31/82+12/47*I,n=44 3141552211447022 r009 Re(z^3+c),c=-31/82+12/47*I,n=47 3141552211480607 r009 Re(z^3+c),c=-31/82+12/47*I,n=48 3141552211488476 r009 Re(z^3+c),c=-31/82+12/47*I,n=51 3141552211493042 r009 Re(z^3+c),c=-31/82+12/47*I,n=52 3141552211493887 r009 Re(z^3+c),c=-31/82+12/47*I,n=55 3141552211494505 r009 Re(z^3+c),c=-31/82+12/47*I,n=56 3141552211494592 r009 Re(z^3+c),c=-31/82+12/47*I,n=59 3141552211494675 r009 Re(z^3+c),c=-31/82+12/47*I,n=60 3141552211494684 r009 Re(z^3+c),c=-31/82+12/47*I,n=63 3141552211494695 r009 Re(z^3+c),c=-31/82+12/47*I,n=64 3141552211494705 r009 Re(z^3+c),c=-31/82+12/47*I,n=62 3141552211494735 r009 Re(z^3+c),c=-31/82+12/47*I,n=61 3141552211494763 r009 Re(z^3+c),c=-31/82+12/47*I,n=58 3141552211494990 r009 Re(z^3+c),c=-31/82+12/47*I,n=57 3141552211495263 r009 Re(z^3+c),c=-31/82+12/47*I,n=54 3141552211496943 r009 Re(z^3+c),c=-31/82+12/47*I,n=53 3141552211499532 r009 Re(z^3+c),c=-31/82+12/47*I,n=50 3141552211511924 r009 Re(z^3+c),c=-31/82+12/47*I,n=49 3141552211535677 r009 Re(z^3+c),c=-31/82+12/47*I,n=46 3141552211626573 r009 Re(z^3+c),c=-31/82+12/47*I,n=45 3141552211839387 r009 Re(z^3+c),c=-31/82+12/47*I,n=42 3141552212502172 r009 Re(z^3+c),c=-31/82+12/47*I,n=41 3141552214374895 r009 Re(z^3+c),c=-31/82+12/47*I,n=38 3141552215711956 a003 sin(Pi*38/97)/cos(Pi*27/67) 3141552219174803 r009 Re(z^3+c),c=-31/82+12/47*I,n=37 3141552221163113 k006 concat of cont frac of 3141552222200761 m001 exp(1)*exp((3^(1/3)))*sqrt(1+sqrt(3))^2 3141552222221163 k007 concat of cont frac of 3141552223761111 k007 concat of cont frac of 3141552225597636 r002 26th iterates of z^2 + 3141552235423101 r009 Re(z^3+c),c=-31/82+12/47*I,n=34 3141552240941374 m002 Pi-Log[Pi]/(4*E^Pi*Pi^5) 3141552242111115 k006 concat of cont frac of 3141552245142244 k007 concat of cont frac of 3141552246722072 s002 sum(A116170[n]/(n^2*pi^n-1),n=1..infinity) 3141552247379469 a001 38/182717648081*102334155^(12/23) 3141552248147521 a007 Real Root Of -202*x^4-683*x^3+69*x^2+458*x-743 3141552262754213 m001 Pi-Trott^(5^(1/2)) 3141552265711087 m002 3-E^Pi-Cosh[Pi]+Tanh[Pi]/Pi 3141552269908869 r009 Re(z^3+c),c=-31/82+12/47*I,n=33 3141552277252698 m001 (gamma+LambertW(1))/(gamma(2)+Artin) 3141552278151443 k007 concat of cont frac of 3141552278291231 r005 Im(z^2+c),c=23/58+7/59*I,n=8 3141552281111542 k007 concat of cont frac of 3141552284215508 m001 exp(GAMMA(1/4))/KhintchineHarmonic*Zeta(1/2) 3141552286795669 r005 Im(z^2+c),c=-19/106+21/46*I,n=44 3141552291490839 m001 Bloch/exp(FeigenbaumDelta)*Rabbit 3141552298740646 a007 Real Root Of 593*x^4-551*x^3-649*x^2-349*x+185 3141552299939298 m001 (1+cos(1))/(-cos(1/12*Pi)+PlouffeB) 3141552302733006 a007 Real Root Of -231*x^4+474*x^3+407*x^2+988*x-363 3141552308407274 l006 ln(415/9603) 3141552309517360 m001 (-LambertW(1)+Conway)/(exp(Pi)+ln(2)/ln(10)) 3141552324443813 m001 (Totient+ZetaQ(3))/(ln(5)+FeigenbaumD) 3141552328137343 m001 (BesselI(1,1)-ZetaP(3))/(ln(gamma)-ln(2)) 3141552330535281 m001 (MertensB1+MertensB3)/(ln(2^(1/2)+1)-Artin) 3141552332996558 m001 (FellerTornier+Porter)/(ln(2)-Champernowne) 3141552335777369 p001 sum((-1)^n/(325*n+274)/n/(5^n),n=1..infinity) 3141552336796763 r009 Re(z^3+c),c=-55/118+7/17*I,n=30 3141552341372093 m001 (OneNinth+TwinPrimes)/(ln(5)+GaussAGM) 3141552343243095 b008 Pi-Erfc[E]/3 3141552344584391 m002 Pi*Coth[Pi]-(Coth[Pi]*Log[Pi])/Pi^4 3141552353853119 r002 21th iterates of z^2 + 3141552367571357 r005 Im(z^2+c),c=-8/11+28/57*I,n=6 3141552367593561 m001 (BesselI(0,2)-GAMMA(13/24))/(ln(3)-Zeta(1,2)) 3141552375142818 r008 a(0)=0,K{-n^6,97-22*n^3+44*n^2-88*n} 3141552375797372 r009 Re(z^3+c),c=-33/70+17/42*I,n=60 3141552375913438 a001 38/567451585*1597^(12/23) 3141552382539691 a001 4/1346269*13^(1/46) 3141552385616097 r005 Im(z^2+c),c=-17/74+8/17*I,n=18 3141552395085729 m005 (1/2*gamma+4/7)/(8/9*5^(1/2)+3/4) 3141552404487035 a009 3^(1/4)*(6^(2/3)-9)^(1/2) 3141552409279798 r009 Re(z^3+c),c=-31/82+12/47*I,n=30 3141552417002740 r009 Re(z^3+c),c=-10/31+9/59*I,n=13 3141552417635748 a007 Real Root Of -332*x^4-883*x^3+134*x^2-849*x+971 3141552429147822 m001 (BesselK(1,1)-Catalan)/(Artin+Kac) 3141552432376523 r002 11th iterates of z^2 + 3141552432572239 a001 123*(1/2*5^(1/2)+1/2)^13*18^(11/20) 3141552436218076 m001 (1/3-gamma*Artin)/Artin 3141552437914614 r005 Re(z^2+c),c=-43/110+13/63*I,n=3 3141552439079457 m002 Pi-Log[Pi]/(3*Pi^8) 3141552440840649 h001 (2/5*exp(1)+8/9)/(8/11*exp(2)+11/12) 3141552447859551 m001 exp(FeigenbaumD)^2/Magata*sqrt(5)^2 3141552455747370 r005 Im(z^2+c),c=-19/110+14/29*I,n=11 3141552461007546 m001 1/ln(GAMMA(5/12))^2*MertensB1/Zeta(1/2) 3141552496507335 a007 Real Root Of 974*x^4-782*x^3-59*x^2-517*x+183 3141552502351738 m005 (1/2*5^(1/2)+5)/(6*Pi+5/8) 3141552511415525 q001 344/1095 3141552511415525 r005 Im(z^2+c),c=-13/10+43/219*I,n=2 3141552519747447 m006 (5/6*Pi^2+1/5)/(1/Pi-3) 3141552519850173 m005 (1/2*2^(1/2)-1/5)/(8/9*Catalan+4/5) 3141552527951148 m001 exp(Catalan)^2/LaplaceLimit^2/GAMMA(5/12)^2 3141552530803493 r009 Re(z^3+c),c=-49/102+17/41*I,n=49 3141552540074387 r005 Re(z^2+c),c=-19/62+22/49*I,n=10 3141552545242651 a003 cos(Pi*19/110)*cos(Pi*35/92) 3141552551636580 m006 (2*Pi-1/3)/(2*Pi^2-4/5) 3141552551636580 m008 (2*Pi-1/3)/(2*Pi^2-4/5) 3141552560444489 m001 GlaisherKinkelin*ReciprocalLucas+GolombDickman 3141552562736308 a007 Real Root Of -360*x^4-780*x^3+923*x^2-799*x-738 3141552568900036 r005 Re(z^2+c),c=-2/3+119/132*I,n=3 3141552572724337 r009 Im(z^3+c),c=-11/126+26/33*I,n=22 3141552582063864 m004 -5*Sqrt[5]*Pi+(5*ProductLog[Sqrt[5]*Pi]^2)/Pi 3141552589694989 m001 (MertensB2+RenyiParking)/(Psi(2,1/3)-ln(5)) 3141552593143460 h001 (5/8*exp(1)+4/11)/(7/8*exp(2)+1/10) 3141552595528772 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/3 3141552595592166 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/3 3141552608493136 r005 Im(z^2+c),c=-7/10+14/75*I,n=36 3141552610653683 p002 log(14^(2/5)+15^(10/9)) 3141552614227235 m001 gamma(2)^FeigenbaumD*Kolakoski 3141552619786749 b008 9+2*Sqrt[17]*E 3141552620491056 a009 2^(2/3)-3^(3/4)+6^(3/4) 3141552627155297 r005 Re(z^2+c),c=-63/106+8/23*I,n=9 3141552644428441 b008 Pi+ExpIntegralEi[-6]/9 3141552649355191 a007 Real Root Of -260*x^4+960*x^3+411*x^2+841*x-332 3141552651169679 r005 Im(z^2+c),c=39/110+2/31*I,n=59 3141552653721109 r009 Re(z^3+c),c=-23/66+11/54*I,n=10 3141552654729101 r009 Re(z^3+c),c=-31/82+12/47*I,n=29 3141552654876682 r005 Im(z^2+c),c=-27/26+31/94*I,n=36 3141552654943403 p004 log(13907/601) 3141552657304806 a008 Real Root of x^4-x^3-x^2-32*x+44 3141552667960183 m001 1/cos(Pi/5)*exp(FeigenbaumDelta)^2*sqrt(5) 3141552669996326 l006 ln(2395/3279) 3141552670807683 m001 (arctan(1/2)+Sarnak)/(3^(1/2)-GAMMA(2/3)) 3141552684557021 r009 Re(z^3+c),c=-57/98+40/63*I,n=17 3141552693701284 r005 Re(z^2+c),c=-7/17+3/56*I,n=26 3141552694426630 m001 (Kac-Landau)/(TravellingSalesman-ZetaP(2)) 3141552694574557 r005 Im(z^2+c),c=9/82+25/57*I,n=4 3141552702376909 m005 (1/2*3^(1/2)+2)/(5/11*3^(1/2)+1/8) 3141552708745006 r005 Re(z^2+c),c=-17/106+37/54*I,n=60 3141552712251002 m001 Kolakoski^2*exp(FeigenbaumDelta)^2*Robbin^2 3141552715632298 r009 Re(z^3+c),c=-19/54+13/62*I,n=13 3141552726850716 m009 (1/5*Pi^2+5)/(5/6*Psi(1,2/3)-1/3) 3141552726950522 r005 Im(z^2+c),c=-3/31+13/31*I,n=38 3141552735411215 k009 concat of cont frac of 3141552736519775 m005 (1/2*Zeta(3)+8/9)/(1/3*gamma-2/3) 3141552750010786 m002 Pi^4/5+Cosh[Pi]+ProductLog[Pi]/Pi 3141552752592878 r005 Re(z^2+c),c=31/114+23/54*I,n=51 3141552754720089 r001 43i'th iterates of 2*x^2-1 of 3141552765569505 a007 Real Root Of 461*x^4-927*x^3+128*x^2-497*x-202 3141552772780246 p001 sum((-1)^n/(181*n+78)/n/(12^n),n=0..infinity) 3141552775569661 r009 Re(z^3+c),c=-39/82+23/55*I,n=23 3141552775619700 h001 (7/12*exp(1)+5/8)/(7/8*exp(2)+4/7) 3141552776958417 p001 sum((-1)^n/(589*n+308)/(10^n),n=0..infinity) 3141552797077604 r005 Im(z^2+c),c=-4/25+7/11*I,n=23 3141552797898477 m005 (Pi+4)/(3/4*2^(1/2)-5/6) 3141552811333311 k006 concat of cont frac of 3141552818325432 h001 (-12*exp(1)+12)/(-2*exp(1)+12) 3141552818325432 m005 (2/5*exp(1)-2/5)/(2/3*exp(1)-4) 3141552830427930 p002 log(12^(1/7)+13^(6/5)) 3141552837678416 p004 log(18211/787) 3141552842070747 r005 Im(z^2+c),c=-83/60+1/59*I,n=7 3141552843813110 k006 concat of cont frac of 3141552862812352 b008 Pi-4*AiryAi[6] 3141552870801272 m002 -Pi+4/(Pi^10*ProductLog[Pi]) 3141552876964994 r005 Re(z^2+c),c=-23/56+5/63*I,n=15 3141552879316284 r005 Re(z^2+c),c=-17/42+7/48*I,n=19 3141552880387597 b008 Pi*ModularLambda[I/2/Sqrt[5]] 3141552881318793 a001 8/123*1364^(12/55) 3141552883955962 m001 Salem/ln(GaussKuzminWirsing)/Pi 3141552887181681 r005 Im(z^2+c),c=27/64+19/64*I,n=6 3141552887478241 m001 (1-cos(1))/(MinimumGamma+ZetaQ(4)) 3141552889871351 a007 Real Root Of 66*x^4-847*x^3-717*x^2-298*x+190 3141552897320685 r005 Re(z^2+c),c=-10/29+32/59*I,n=22 3141552907319168 r005 Im(z^2+c),c=-5/36+18/41*I,n=23 3141552911619487 s002 sum(A085249[n]/((2^n-1)/n),n=1..infinity) 3141552918327548 m001 BesselI(0,2)/(TravellingSalesman+Trott) 3141552920821197 r005 Re(z^2+c),c=-23/58+11/53*I,n=22 3141552924708195 b008 2+ProductLog[3]^E 3141552932931886 m001 (GAMMA(5/6)+GAMMA(13/24))/(GAMMA(2/3)-3^(1/3)) 3141552933412604 a003 sin(Pi*7/99)-sin(Pi*7/39) 3141552933651844 m001 (Rabbit+RenyiParking)/(Artin-Chi(1)) 3141552936962870 r009 Im(z^3+c),c=-57/106+11/61*I,n=21 3141552963458973 m002 Pi-Log[Pi]/(30*Pi^6) 3141552965482228 m001 ln(FeigenbaumB)/FeigenbaumDelta^2/GAMMA(1/3) 3141552970795040 r005 Re(z^2+c),c=13/36+9/31*I,n=29 3141552981455845 a005 (1/cos(4/183*Pi))^1461 3141552984270873 a007 Real Root Of 317*x^4+755*x^3-386*x^2+888*x-869 3141552991125305 r005 Re(z^2+c),c=-45/118+17/59*I,n=23 3141552991344112 r009 Re(z^3+c),c=-1/32+43/44*I,n=13 3141552991639089 r009 Re(z^3+c),c=-1/32+43/44*I,n=15 3141552991654368 r009 Re(z^3+c),c=-1/32+43/44*I,n=21 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=27 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=29 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=35 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=37 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=41 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=43 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=49 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=51 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=57 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=59 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=61 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=63 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=55 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=53 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=47 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=45 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=39 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=33 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=31 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=23 3141552991654370 r009 Re(z^3+c),c=-1/32+43/44*I,n=25 3141552991654388 r009 Re(z^3+c),c=-1/32+43/44*I,n=19 3141552991655346 r009 Re(z^3+c),c=-1/32+43/44*I,n=17 3141553000733249 r009 Re(z^3+c),c=-1/32+43/44*I,n=11 3141553004843224 a008 Real Root of x^4-2*x^3-11*x^2-20*x+136 3141553019650915 r009 Re(z^3+c),c=-47/126+8/33*I,n=8 3141553025405659 m005 (1/3*3^(1/2)+1/7)/(7/10*5^(1/2)+8/11) 3141553030902204 m001 (-Sarnak+Trott2nd)/(sin(1)+exp(1/Pi)) 3141553039311195 q001 1/3183139 3141553050163521 a001 1/930249*521^(6/35) 3141553057805815 r009 Re(z^3+c),c=-1/32+43/44*I,n=9 3141553064428981 r009 Re(z^3+c),c=-29/86+27/41*I,n=53 3141553079977166 r005 Im(z^2+c),c=-11/40+14/29*I,n=20 3141553085857819 r009 Re(z^3+c),c=-31/78+7/20*I,n=2 3141553101038983 a007 Real Root Of 295*x^4+748*x^3-401*x^2+698*x+608 3141553105085408 m002 Pi-(Cosh[Pi]*Coth[Pi])/Pi^11 3141553112902294 r002 16th iterates of z^2 + 3141553114512211 k007 concat of cont frac of 3141553116252719 m001 HeathBrownMoroz^GAMMA(7/12)-Pi 3141553116637562 r005 Re(z^2+c),c=7/32+1/48*I,n=8 3141553117382986 m001 RenyiParking^Zeta(1/2)*Otter^Zeta(1/2) 3141553134078179 a007 Real Root Of 285*x^4+707*x^3-699*x^2-474*x-430 3141553137746757 a007 Real Root Of 796*x^4-37*x^3-111*x^2-922*x+294 3141553140312345 r005 Im(z^2+c),c=-9/34+23/47*I,n=28 3141553147516295 m004 -100*Pi+(3*Csc[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141553148350340 m001 Khintchine^2/FeigenbaumDelta^2*ln(Sierpinski) 3141553148660119 m004 -5/E^(Sqrt[5]*Pi)+100*Pi*Coth[Sqrt[5]*Pi] 3141553152891982 m008 (1/2*Pi^2-2)/(3*Pi^3+2/5) 3141553178201498 r009 Im(z^3+c),c=-43/90+5/23*I,n=10 3141553188333902 r005 Im(z^2+c),c=15/82+11/43*I,n=30 3141553188395614 a007 Real Root Of 328*x^4+971*x^3-414*x^2-539*x+550 3141553189449604 l006 ln(5871/8038) 3141553191792097 r002 23th iterates of z^2 + 3141553200592450 m001 1/Si(Pi)^2*Artin^2*ln(Catalan)^2 3141553205242997 h001 (1/11*exp(1)+1/9)/(2/7*exp(1)+4/11) 3141553229814099 a007 Real Root Of -826*x^4+704*x^2+266*x-145 3141553231737217 m001 ln(CareFree)/GlaisherKinkelin*GAMMA(1/12) 3141553244608028 a007 Real Root Of 279*x^4-571*x^3+783*x^2-975*x-404 3141553249730876 a001 8/123*33385282^(1/11) 3141553249770727 a001 8/123*103682^(3/22) 3141553251977439 a001 8/123*15127^(9/55) 3141553252519218 m002 -Pi+Cosh[Pi]/Pi^11 3141553257818605 r005 Im(z^2+c),c=-19/54+32/59*I,n=24 3141553261170018 r005 Im(z^2+c),c=-21/82+20/41*I,n=29 3141553265039411 m001 Zeta(1,2)^2*ln(FeigenbaumKappa)^2/sin(Pi/12) 3141553266839957 a001 8/123*5778^(2/11) 3141553270677685 b008 -4+Pi^(-2/15) 3141553272020681 m005 (1/2*gamma-11/12)/(5/8*3^(1/2)+11/12) 3141553278635502 m001 (HardyLittlewoodC4-Thue)/(ln(gamma)+Artin) 3141553298752296 m004 -100*Pi+3*Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141553298783436 m004 -100*Pi+(6*Cos[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141553298814576 m004 -100*Pi+3*Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141553299623758 r009 Re(z^3+c),c=-13/28+20/43*I,n=20 3141553303609103 r005 Re(z^2+c),c=-5/102+15/29*I,n=2 3141553314597465 r005 Im(z^2+c),c=-51/82+3/50*I,n=36 3141553322167238 a007 Real Root Of -274*x^4-21*x^3-915*x^2-157*x+43 3141553325961312 m002 -E^Pi/(2*Pi^11)+Pi 3141553326498073 r005 Re(z^2+c),c=-49/118+1/52*I,n=10 3141553334929132 r005 Re(z^2+c),c=-27/28+3/44*I,n=14 3141553344762177 m001 (exp(Pi)+ln(Pi))/(exp(-1/2*Pi)+BesselI(1,1)) 3141553348419199 r005 Im(z^2+c),c=15/82+11/43*I,n=29 3141553350421586 m001 (Khinchin-TreeGrowth2nd)/TravellingSalesman 3141553356273990 m001 Pi-Zeta(3)^Psi(2,1/3) 3141553366529946 a005 (1/sin(102/227*Pi))^90 3141553381397465 m001 FellerTornier^(BesselJ(0,1)/RenyiParking) 3141553381656675 a001 8/123*2207^(9/44) 3141553383463454 b008 Pi*Sqrt[KelvinBer[0,1/5]] 3141553387162451 m002 -Pi+1/(E^Pi*Pi^6*Log[Pi]) 3141553387963070 r005 Im(z^2+c),c=-8/31+23/47*I,n=48 3141553399403406 m002 -Pi+Sinh[Pi]/Pi^11 3141553422436423 r005 Re(z^2+c),c=-37/94+13/43*I,n=10 3141553428128419 l006 ln(93/2152) 3141553443135947 m001 (Mills+ZetaP(3))/(ln(Pi)+FeigenbaumMu) 3141553443812802 r009 Re(z^3+c),c=-15/118+45/61*I,n=62 3141553444918277 m001 (BesselI(1,2)-Sarnak)/(Sierpinski+ZetaP(3)) 3141553450411228 m006 (5/6*Pi^2+2/5)/(4/5/Pi-3) 3141553460980341 r005 Re(z^2+c),c=-13/36+10/27*I,n=46 3141553467925983 m008 (1/4*Pi^4-1/6)/(4/5*Pi^6+3/4) 3141553468722065 b008 Pi*GammaRegularized[2,0,14] 3141553472652143 r009 Im(z^3+c),c=-12/25+9/53*I,n=36 3141553473207790 b008 Pi-AiryAi[2*E] 3141553473304703 a007 Real Root Of -384*x^4-35*x^3+588*x^2+706*x-275 3141553482200090 a009 1/3*(15+3^(1/3)*6^(3/4))^(1/2)*3^(2/3) 3141553484009068 a001 29/144*832040^(50/57) 3141553485388881 m008 (4*Pi^6-5/6)/(4*Pi^5-1/4) 3141553488982213 m001 (exp(-1/2*Pi)-Gompertz*LaplaceLimit)/Gompertz 3141553494169124 m001 Pi-gamma(3)^GAMMA(13/24) 3141553518180319 m002 -(Pi^2/E^Pi)+(Pi^2*ProductLog[Pi])/E^Pi 3141553525897422 r009 Im(z^3+c),c=-1/25+21/61*I,n=9 3141553533175697 r005 Re(z^2+c),c=-2/29+40/63*I,n=13 3141553533544700 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^6*Log[Pi]) 3141553533688119 m001 (Mills-PrimesInBinary*ZetaQ(3))/PrimesInBinary 3141553534395928 r009 Im(z^3+c),c=-65/122+1/4*I,n=38 3141553538488190 a007 Real Root Of -695*x^4+265*x^3-278*x^2+613*x+235 3141553544721062 r005 Re(z^2+c),c=-5/48+45/56*I,n=21 3141553545740021 m002 -Pi+(Sinh[Pi]*Tanh[Pi])/Pi^11 3141553547358278 l006 ln(3476/4759) 3141553549073350 b008 Pi*(1+ExpIntegralEi[-9]) 3141553554920576 r009 Im(z^3+c),c=-7/24+19/29*I,n=5 3141553562746246 m001 FeigenbaumB/(ln(2+3^(1/2))+MertensB3) 3141553570241751 r005 Re(z^2+c),c=9/98+33/52*I,n=11 3141553575257543 a001 1568397607/610*55^(1/20) 3141553579013349 m001 1/exp(GAMMA(17/24))^2*Robbin^2*Zeta(1,2) 3141553585567236 m009 (5*Psi(1,3/4)-1/4)/(2*Catalan+1/4*Pi^2-1/3) 3141553589585097 m001 Salem^2/MertensB1^2*exp(TreeGrowth2nd) 3141553604796696 r005 Re(z^2+c),c=-35/118+11/19*I,n=27 3141553609923300 r005 Re(z^2+c),c=-41/110+15/46*I,n=24 3141553638978161 m001 (PlouffeB-Tetranacci)/(gamma(2)+Bloch) 3141553639582394 b008 Pi+5*ExpIntegralEi[-3*Pi] 3141553659246712 m002 -Pi+(5*Csch[Pi]^2)/Pi^6 3141553668875570 r005 Re(z^2+c),c=23/64+7/23*I,n=58 3141553669951475 m001 (MertensB3+StronglyCareFree)/(Pi+FeigenbaumMu) 3141553670666747 a007 Real Root Of -415*x^4-945*x^3+979*x^2-684*x-688 3141553676007192 a005 (1/cos(9/230*Pi))^1063 3141553682656871 m005 (1/2*Pi+7/10)/(4/11*Zeta(3)+2/7) 3141553688111022 r005 Im(z^2+c),c=-13/114+23/54*I,n=16 3141553688855426 m005 (1/2*Zeta(3)-6/7)/(7/10*5^(1/2)-3/4) 3141553714467587 m001 GAMMA(2/3)^2*ln(GAMMA(1/6))/Zeta(9) 3141553716657742 a007 Real Root Of -385*x^4-996*x^3+471*x^2-495*x+416 3141553719452769 m005 (25/4+1/4*5^(1/2))/(7/12*Pi-4) 3141553720962398 m001 (GAMMA(7/12)+QuadraticClass)/(ln(2)+Zeta(1/2)) 3141553726636215 m005 (1/2*Zeta(3)+6/7)/(4*Zeta(3)-1/6) 3141553750516263 r005 Re(z^2+c),c=-19/60+17/33*I,n=43 3141553771669787 r005 Re(z^2+c),c=-7/16+17/64*I,n=7 3141553781026701 r005 Im(z^2+c),c=-14/25+24/55*I,n=48 3141553791258069 m005 (1/2*2^(1/2)-3/4)/(5/6*Zeta(3)+4/11) 3141553793920164 a001 305/161*2^(27/37) 3141553804614651 m002 -Pi+(5*Csch[Pi]*Sech[Pi])/Pi^6 3141553812826936 m004 -100*Pi+2*Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141553812857670 m004 -100*Pi+(4*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141553812888403 m004 -100*Pi+2*Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141553837668629 m001 (cos(1/5*Pi)-ln(2))/(Zeta(1,2)+Mills) 3141553838911110 r009 Re(z^3+c),c=-31/82+12/47*I,n=26 3141553846188330 a001 47/377*21^(17/56) 3141553853958844 r005 Im(z^2+c),c=-3/98+8/19*I,n=6 3141553883256403 b008 (-10+E^(-9))*Pi 3141553885075992 a005 (1/sin(91/211*Pi))^833 3141553908266854 m001 Si(Pi)*(MertensB2+Robbin) 3141553910836807 a007 Real Root Of 290*x^4+808*x^3-337*x^2+234*x+866 3141553938723240 r009 Im(z^3+c),c=-6/13+9/49*I,n=14 3141553948754018 r005 Re(z^2+c),c=-17/22+3/74*I,n=56 3141553949440669 m002 -Pi+(5*Sech[Pi]^2)/Pi^6 3141553956711404 r005 Re(z^2+c),c=7/64+14/25*I,n=6 3141553958079352 m001 GAMMA(11/12)^2*ln(FeigenbaumD)^2/sin(Pi/5)^2 3141553962445996 m005 (1/2*Pi-7/10)/(-3/8+7/24*5^(1/2)) 3141553982783058 m002 -Pi+ProductLog[Pi]^2/Pi^9 3141553993763925 r009 Im(z^3+c),c=-8/15+6/37*I,n=17 3141553996959858 m001 (1-exp(-1/2*Pi))/(GAMMA(13/24)+QuadraticClass) 3141554008469038 l006 ln(4557/6239) 3141554009448715 m001 GAMMA(2/3)*GAMMA(1/12)^2/ln(GAMMA(5/12))^2 3141554014453623 r005 Re(z^2+c),c=-10/23+1/49*I,n=6 3141554016416305 h001 (9/10*exp(2)+4/5)/(4/7*exp(1)+9/11) 3141554040651598 r005 Re(z^2+c),c=-43/34+1/69*I,n=42 3141554048285945 b008 Pi*Sech[Csch[6]] 3141554049234721 b008 Pi*Sech[Sech[6]] 3141554059483197 m002 -5+E^Pi/2+E^Pi*ProductLog[Pi] 3141554074575356 a001 370248451/233*832040^(1/20) 3141554074575401 a001 228826127/233*12586269025^(1/20) 3141554078827037 m001 OrthogonalArrays^(Pi^(1/2))+ln(2+3^(1/2)) 3141554079382492 m001 (MertensB2+Trott2nd)/(Si(Pi)+GAMMA(7/12)) 3141554085812602 r009 Re(z^3+c),c=-43/90+12/29*I,n=54 3141554096660525 m005 (1/2*3^(1/2)+5/9)/(65/198+1/18*5^(1/2)) 3141554106476237 m008 (2*Pi^6+1/2)/(2*Pi^5+1/6) 3141554107865647 m002 Pi-(Coth[Pi]*Log[Pi])/Pi^9 3141554112186052 a003 sin(Pi*30/77)/cos(Pi*25/62) 3141554113181522 k008 concat of cont frac of 3141554115412112 k007 concat of cont frac of 3141554140612357 a007 Real Root Of -328*x^4-889*x^3+566*x^2+650*x+841 3141554147042946 m001 (Zeta(1,2)-BesselI(1,2))/(Landau+MertensB1) 3141554157221860 r005 Im(z^2+c),c=7/64+4/13*I,n=13 3141554159679256 b008 Pi+ExpIntegralEi[-7]/3 3141554165108900 a007 Real Root Of -833*x^4-6*x^3+592*x^2+754*x-287 3141554186399251 a007 Real Root Of 349*x^4+851*x^3-779*x^2-166*x-442 3141554186500747 m002 -Pi^5+3/Log[Pi]-Sinh[Pi]/ProductLog[Pi] 3141554188547399 m008 (4/5*Pi^4-1/6)/(1/4*Pi^4+2/5) 3141554200847666 r005 Re(z^2+c),c=1/17+14/23*I,n=53 3141554200903889 m001 (-LandauRamanujan+Salem)/(Si(Pi)-cos(1)) 3141554215589900 m001 (GAMMA(5/6)-Kac)/(MertensB1+Totient) 3141554221311313 k007 concat of cont frac of 3141554239585950 m002 -Pi+Csch[Pi]/(E^Pi*Pi^4) 3141554250436705 m008 (2*Pi^6-4/5)/(2*Pi^3-5/6) 3141554251561169 m002 -Pi+Log[Pi]/Pi^9 3141554259095628 p001 sum((-1)^n/(591*n+314)/(25^n),n=0..infinity) 3141554262439435 m001 BesselI(0,1)/(arctan(1/3)+StolarskyHarborth) 3141554267748801 m001 (Pi^(1/2)+Landau)/(MertensB1+PlouffeB) 3141554268271358 k002 Champernowne real with 65*n^2-184*n+122 3141554288351378 k003 Champernowne real with 1/3*n^3+63*n^2-541/3*n+120 3141554292757960 l006 ln(5638/7719) 3141554298391388 k003 Champernowne real with 1/2*n^3+62*n^2-357/2*n+119 3141554304284223 m001 exp(PrimesInBinary)/Khintchine^2/Sierpinski^2 3141554308431398 k003 Champernowne real with 2/3*n^3+61*n^2-530/3*n+118 3141554311321902 m002 -2/(E^(2*Pi)*Pi^4)+Pi 3141554311880055 a007 Real Root Of 205*x^4+789*x^3+219*x^2-500*x+763 3141554317812125 h001 (3/7*exp(1)+2/3)/(7/9*exp(2)+1/12) 3141554319543889 m006 (1/4*ln(Pi)-4/5)/(3/4*exp(Pi)-1) 3141554322191511 k006 concat of cont frac of 3141554328511418 k003 Champernowne real with n^3+59*n^2-173*n+116 3141554328571636 h001 (1/7*exp(2)+5/9)/(7/12*exp(2)+9/11) 3141554338890887 m006 (5/6*Pi^2+3/5)/(3/5/Pi-3) 3141554343879498 a001 47/46368*317811^(5/56) 3141554348591438 k003 Champernowne real with 4/3*n^3+57*n^2-508/3*n+114 3141554358631448 k003 Champernowne real with 3/2*n^3+56*n^2-335/2*n+113 3141554368671458 k003 Champernowne real with 5/3*n^3+55*n^2-497/3*n+112 3141554371706591 g006 Psi(1,1/11)-Psi(1,1/12)-Psi(1,8/9)-Psi(1,3/7) 3141554372512536 m001 (Zeta(1,-1)-ln(2+3^(1/2)))/Bloch 3141554380328042 g001 GAMMA(7/12,110/117) 3141554382790428 m002 -Pi+Sech[Pi]/(E^Pi*Pi^4) 3141554386812835 r005 Im(z^2+c),c=-16/29+34/61*I,n=9 3141554388054770 a007 Real Root Of -348*x^4-901*x^3+694*x^2+348*x+205 3141554388751478 k003 Champernowne real with 2*n^3+53*n^2-162*n+110 3141554392552444 r009 Im(z^3+c),c=-53/90+36/61*I,n=48 3141554394721005 m002 -Pi+(Log[Pi]*Tanh[Pi])/Pi^9 3141554400871215 r009 Im(z^3+c),c=-17/90+12/37*I,n=7 3141554404754878 m001 Pi+gamma(1)^Magata 3141554408831498 k003 Champernowne real with 7/3*n^3+51*n^2-475/3*n+108 3141554418871508 k003 Champernowne real with 5/2*n^3+50*n^2-313/2*n+107 3141554425232266 m001 Trott/ArtinRank2^2*exp(GAMMA(1/4))^2 3141554428911518 k003 Champernowne real with 8/3*n^3+49*n^2-464/3*n+106 3141554435006128 m008 (4/5*Pi^3-1/6)/(4/5*Pi^4+1/2) 3141554438952371 m001 (Zeta(5)+sin(1/12*Pi))/ThueMorse 3141554438952371 m001 (Zeta(5)+sin(Pi/12))/ThueMorse 3141554441298714 m001 (OrthogonalArrays+ZetaQ(4))/(Pi+MertensB3) 3141554447553636 r005 Re(z^2+c),c=-49/122+5/29*I,n=29 3141554448991538 k003 Champernowne real with 3*n^3+47*n^2-151*n+104 3141554453134317 m002 8+Pi/E^Pi+Pi^5 3141554455926616 r002 11th iterates of z^2 + 3141554466897325 m006 (2*exp(2*Pi)-1/5)/(5/Pi-5) 3141554471648516 m001 PrimesInBinary^2*ln(sin(Pi/12))^2 3141554479111568 k003 Champernowne real with 7/2*n^3+44*n^2-291/2*n+101 3141554479342439 a007 Real Root Of 22*x^4+697*x^3+211*x^2+823*x-760 3141554485570072 l006 ln(6719/9199) 3141554485570072 p004 log(9199/6719) 3141554492344854 a007 Real Root Of 224*x^4+765*x^3+392*x^2+328*x-938 3141554495572321 a001 144/64079*2^(29/60) 3141554496042001 m001 1/Sierpinski*exp(Si(Pi))^2*sqrt(2)^2 3141554499191588 k003 Champernowne real with 23/6*n^3+42*n^2-851/6*n+99 3141554509231598 k003 Champernowne real with 4*n^3+41*n^2-140*n+98 3141554515846853 r009 Re(z^3+c),c=-33/70+12/29*I,n=33 3141554519116949 a007 Real Root Of -86*x^4-110*x^3+462*x^2-336*x-649 3141554519271608 k003 Champernowne real with 25/6*n^3+40*n^2-829/6*n+97 3141554521426492 r005 Im(z^2+c),c=-17/98+25/41*I,n=26 3141554525461051 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(E^Pi*Pi^4) 3141554529274767 l006 ln(422/9765) 3141554529311618 k003 Champernowne real with 13/3*n^3+39*n^2-409/3*n+96 3141554534325216 k008 concat of cont frac of 3141554539351628 k003 Champernowne real with 9/2*n^3+38*n^2-269/2*n+95 3141554546294733 m001 (3^(1/3)-GAMMA(7/12))/(GAMMA(17/24)+Porter) 3141554549391638 k003 Champernowne real with 14/3*n^3+37*n^2-398/3*n+94 3141554549438488 r009 Re(z^3+c),c=-9/23+3/11*I,n=8 3141554550885770 m002 -5-Pi^4/E^Pi-Pi^5+ProductLog[Pi] 3141554559431648 k003 Champernowne real with 29/6*n^3+36*n^2-785/6*n+93 3141554564927538 a003 cos(Pi*25/96)-sin(Pi*56/117) 3141554567345194 m001 (Paris+Thue)/(FeigenbaumAlpha-FransenRobinson) 3141554568490386 m005 (1/2*Catalan-3/5)/(4/9*2^(1/2)-7/12) 3141554569471658 k003 Champernowne real with 5*n^3+35*n^2-129*n+92 3141554574467122 r005 Im(z^2+c),c=-31/102+19/40*I,n=14 3141554579511668 k003 Champernowne real with 31/6*n^3+34*n^2-763/6*n+91 3141554580818834 m001 (Psi(1,1/3)+ln(2+3^(1/2)))/(Niven+Tetranacci) 3141554581249108 r005 Re(z^2+c),c=-17/14+19/111*I,n=40 3141554583558232 m005 (1/2*exp(1)-3/11)/(-13/40+3/10*5^(1/2)) 3141554586874072 a008 Real Root of x^4-x^3+4*x^2+15*x-153 3141554589551678 k003 Champernowne real with 16/3*n^3+33*n^2-376/3*n+90 3141554595973652 r009 Im(z^3+c),c=-37/106+8/33*I,n=3 3141554599341161 m001 (Psi(1,1/3)+MadelungNaCl)/(-Paris+PlouffeB) 3141554599591688 k003 Champernowne real with 11/2*n^3+32*n^2-247/2*n+89 3141554606107291 m001 (-Sarnak+ZetaQ(4))/(Chi(1)-Zeta(1/2)) 3141554609631698 k003 Champernowne real with 17/3*n^3+31*n^2-365/3*n+88 3141554612637524 m001 (-TravellingSalesman+ZetaP(3))/(Shi(1)+Robbin) 3141554618565150 r005 Im(z^2+c),c=-31/74+21/40*I,n=60 3141554619671708 k003 Champernowne real with 35/6*n^3+30*n^2-719/6*n+87 3141554624774033 r005 Re(z^2+c),c=-21/34+32/89*I,n=32 3141554629711718 k003 Champernowne real with 6*n^3+29*n^2-118*n+86 3141554631259104 a007 Real Root Of -251*x^4-840*x^3-493*x^2-726*x+989 3141554633174226 m001 (KhinchinHarmonic-Magata)/(Niven-Salem) 3141554635026542 m001 (FeigenbaumC-ZetaQ(2))/(cos(1/5*Pi)-exp(1/Pi)) 3141554639751728 k003 Champernowne real with 37/6*n^3+28*n^2-697/6*n+85 3141554643150899 m005 (1/3*5^(1/2)+1/12)/(10/11*exp(1)+1/6) 3141554645209341 p003 LerchPhi(1/512,6,397/223) 3141554646969980 r005 Re(z^2+c),c=-17/22+7/53*I,n=8 3141554648688163 a007 Real Root Of 21*x^4+631*x^3-885*x^2+546*x-77 3141554649791738 k003 Champernowne real with 19/3*n^3+27*n^2-343/3*n+84 3141554652083002 m005 (-13/28+1/4*5^(1/2))/(3/4*Zeta(3)-3/5) 3141554658507895 b008 -1/24*1/E^7+Pi 3141554659831748 k003 Champernowne real with 13/2*n^3+26*n^2-225/2*n+83 3141554661983078 b008 Pi*(9+Erf[E]) 3141554664574008 r005 Re(z^2+c),c=8/21+10/53*I,n=30 3141554665413094 m004 -100*Pi+(3*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3141554665443153 m004 (-6*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141554665473212 m004 -100*Pi+(3*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3141554668540356 a007 Real Root Of 14*x^4-498*x^3+447*x^2-714*x-284 3141554669871758 k003 Champernowne real with 20/3*n^3+25*n^2-332/3*n+82 3141554679911768 k003 Champernowne real with 41/6*n^3+24*n^2-653/6*n+81 3141554681398186 r005 Im(z^2+c),c=-37/82+29/59*I,n=36 3141554685932254 a007 Real Root Of 236*x^4+390*x^3-935*x^2+661*x+409 3141554689951778 k003 Champernowne real with 7*n^3+23*n^2-107*n+80 3141554699991788 k003 Champernowne real with 43/6*n^3+22*n^2-631/6*n+79 3141554701003179 k003 Champernowne real with 22/3*n^3+21*n^2-310/3*n+78 3141554708446596 m005 (1/3*gamma+1/11)/(8/9*Zeta(3)-1/6) 3141554711007180 k003 Champernowne real with 15/2*n^3+20*n^2-203/2*n+77 3141554711923440 r005 Re(z^2+c),c=-1/10+53/59*I,n=19 3141554713054059 m001 1/gamma/cos(Pi/12)^2*exp(sqrt(2))^2 3141554714700176 r005 Im(z^2+c),c=-8/23+11/21*I,n=53 3141554721011181 k003 Champernowne real with 23/3*n^3+19*n^2-299/3*n+76 3141554724758174 r005 Re(z^2+c),c=-59/78+1/52*I,n=12 3141554731015182 k003 Champernowne real with 47/6*n^3+18*n^2-587/6*n+75 3141554736152646 r009 Im(z^3+c),c=-43/78+5/11*I,n=51 3141554741019183 k003 Champernowne real with 8*n^3+17*n^2-96*n+74 3141554748454363 m001 (MadelungNaCl+Rabbit)/(1-Grothendieck) 3141554750000759 m002 -Pi+ProductLog[Pi]/(4*E^Pi*Pi^5) 3141554751023184 k003 Champernowne real with 49/6*n^3+16*n^2-565/6*n+73 3141554753037948 m001 (exp(1/exp(1))-MertensB2)/(ZetaP(4)+ZetaQ(2)) 3141554761027185 k003 Champernowne real with 25/3*n^3+15*n^2-277/3*n+72 3141554771031186 k003 Champernowne real with 17/2*n^3+14*n^2-181/2*n+71 3141554771591753 r005 Im(z^2+c),c=-13/36+25/61*I,n=6 3141554772538655 a002 14^(1/6)-13^(1/12) 3141554777533641 b008 Pi*KelvinBer[0,1/6] 3141554778413506 m001 (Cahen-FeigenbaumAlpha)/(ln(2)-GAMMA(17/24)) 3141554781035187 k003 Champernowne real with 26/3*n^3+13*n^2-266/3*n+70 3141554783055373 r005 Im(z^2+c),c=-125/114+1/27*I,n=28 3141554787824074 m005 (1/3*gamma-1/9)/(5/7*gamma-3) 3141554791039188 k003 Champernowne real with 53/6*n^3+12*n^2-521/6*n+69 3141554792268294 r008 a(0)=0,K{-n^6,24+83*n^3-79*n^2+4*n} 3141554801043189 k003 Champernowne real with 9*n^3+11*n^2-85*n+68 3141554811047190 k003 Champernowne real with 55/6*n^3+10*n^2-499/6*n+67 3141554821051191 k003 Champernowne real with 28/3*n^3+9*n^2-244/3*n+66 3141554823942210 m003 -3+5*Cos[1/2+Sqrt[5]/2]-2*Cot[1/2+Sqrt[5]/2] 3141554831055192 k003 Champernowne real with 19/2*n^3+8*n^2-159/2*n+65 3141554840540840 l006 ln(329/7613) 3141554841059193 k003 Champernowne real with 29/3*n^3+7*n^2-233/3*n+64 3141554851063194 k003 Champernowne real with 59/6*n^3+6*n^2-455/6*n+63 3141554851343324 r005 Re(z^2+c),c=5/54+41/56*I,n=4 3141554859701334 b008 Csch[54/13] 3141554861067195 k003 Champernowne real with 10*n^3+5*n^2-74*n+62 3141554871071196 k003 Champernowne real with 61/6*n^3+4*n^2-433/6*n+61 3141554881075197 k003 Champernowne real with 31/3*n^3+3*n^2-211/3*n+60 3141554881173770 p003 LerchPhi(1/10,2,237/130) 3141554888507412 m001 Paris^(Pi*csc(5/24*Pi)/GAMMA(19/24))-Pi 3141554890308757 m001 (Ei(1,1)-exp(1/exp(1)))/(CopelandErdos-Kac) 3141554891079198 k003 Champernowne real with 21/2*n^3+2*n^2-137/2*n+59 3141554892995715 m001 Pi-ThueMorse^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141554892995715 m001 Pi-ThueMorse^GAMMA(1/12) 3141554901083199 k003 Champernowne real with 32/3*n^3+n^2-200/3*n+58 3141554911087200 k003 Champernowne real with 65/6*n^3-389/6*n+57 3141554920148144 r005 Re(z^2+c),c=21/82+20/39*I,n=59 3141554921091201 k003 Champernowne real with 11*n^3-n^2-63*n+56 3141554922601749 r009 Im(z^3+c),c=-11/118+17/21*I,n=36 3141554927190519 r009 Re(z^3+c),c=-3/62+5/7*I,n=29 3141554928764414 s001 sum(exp(-3*Pi/5)^n*A037111[n],n=1..infinity) 3141554929084284 r005 Re(z^2+c),c=-33/86+15/59*I,n=11 3141554931095202 k003 Champernowne real with 67/6*n^3-2*n^2-367/6*n+55 3141554934517858 r005 Re(z^2+c),c=-23/26+35/76*I,n=2 3141554935837242 m002 -Pi+ProductLog[Pi]/(3*Pi^8) 3141554940512603 r009 Re(z^3+c),c=-37/78+13/32*I,n=46 3141554941099203 k003 Champernowne real with 34/3*n^3-3*n^2-178/3*n+54 3141554947784244 h001 (8/11*exp(1)+1/6)/(9/11*exp(2)+7/9) 3141554949219535 r005 Re(z^2+c),c=-13/40+19/35*I,n=38 3141554949375519 a001 2971215073/123*18^(1/11) 3141554951103204 k003 Champernowne real with 23/2*n^3-4*n^2-115/2*n+53 3141554961107205 k003 Champernowne real with 35/3*n^3-5*n^2-167/3*n+52 3141554968486459 r005 Re(z^2+c),c=-33/94+18/43*I,n=21 3141554971111206 k003 Champernowne real with 71/6*n^3-6*n^2-323/6*n+51 3141554972540131 b008 Pi^InverseEllipticNomeQ[1/2] 3141554974233813 r005 Im(z^2+c),c=-55/122+1/19*I,n=27 3141554976938081 a009 1/16*(15^(1/2)-16*11^(1/4))^(1/2) 3141554981115207 k003 Champernowne real with 12*n^3-7*n^2-52*n+50 3141554987966949 b008 Pi+ExpIntegralEi[-8] 3141554988292653 m001 (Ei(1)-2*Pi/GAMMA(5/6))/(Lehmer+Stephens) 3141554993132319 r005 Im(z^2+c),c=-21/50+12/23*I,n=62 3141555013183535 q001 1/3183137 3141555017455747 a001 4106118243/1597*55^(1/20) 3141555018409411 m001 1/exp(Niven)^2*HardHexagonsEntropy/Porter 3141555027506391 m006 (2/5*ln(Pi)-3/4)/(2/3*ln(Pi)+1/6) 3141555028338922 m002 -Pi+(3*Cosh[Pi])/Pi^12 3141555030055593 s002 sum(A008862[n]/(n^2*pi^n+1),n=1..infinity) 3141555035061392 m002 -6+Pi^4-Cosh[Pi]^2+Sinh[Pi] 3141555036662495 r005 Re(z^2+c),c=-6/19+17/31*I,n=41 3141555053717160 m001 (Pi-exp(1))/(Riemann1stZero-TwinPrimes) 3141555083545338 m002 3+3/(2*Pi^2*ProductLog[Pi]) 3141555090989031 r009 Re(z^3+c),c=-1/17+15/23*I,n=20 3141555100265797 m001 ln(MinimumGamma)*ArtinRank2^2/sin(Pi/5) 3141555104424849 s002 sum(A252338[n]/(n*10^n-1),n=1..infinity) 3141555104521301 r005 Im(z^2+c),c=-2/31+21/52*I,n=23 3141555105635717 r005 Im(z^2+c),c=-11/54+50/59*I,n=9 3141555105674153 m005 (1/2*5^(1/2)-4/9)/(1/3*Catalan-1/11) 3141555112503560 q001 1103/3511 3141555113040942 m001 (Sierpinski-sin(1/5*Pi)*ln(2))/ln(2) 3141555116961390 a001 13201/7*610^(25/57) 3141555120740889 m001 (MadelungNaCl-Stephens)/(Pi+sin(1/5*Pi)) 3141555137306370 b008 Pi*ModularLambda[I/11*Sqrt[6]] 3141555144531402 a001 1/6*(1/2*5^(1/2)+1/2)^4*18^(7/20) 3141555145653198 r005 Im(z^2+c),c=-29/106+27/58*I,n=7 3141555153980285 m008 (4*Pi^5-4/5)/(4*Pi^4-1/4) 3141555163440346 m005 (1/2*3^(1/2)+3/8)/(5^(1/2)+12/7) 3141555168602990 m002 -Pi+(3*Sinh[Pi])/Pi^12 3141555168954559 m001 Pi-ZetaQ(4)^BesselI(1,2) 3141555172703281 m005 (1/2*gamma-4/7)/(1/8*Zeta(3)+3/4) 3141555179695970 g001 GAMMA(7/10,88/89) 3141555186385596 a007 Real Root Of 696*x^4-370*x^3+613*x^2-717*x-304 3141555187990978 m006 (5/6*Pi^2+4/5)/(2/5/Pi-3) 3141555195712386 m002 -5/(6*E^Pi*Pi^6)+Pi 3141555203477171 r005 Re(z^2+c),c=11/74+35/61*I,n=32 3141555209934269 a003 sin(Pi*8/65)*sin(Pi*21/67) 3141555212620027 r009 Im(z^3+c),c=-1/90+13/36*I,n=2 3141555217671316 m005 (1/2*exp(1)+1/6)/(4*2^(1/2)-4/5) 3141555224327076 m001 (ln(2)-ln(2+3^(1/2)))/(AlladiGrinstead+Salem) 3141555227869740 a001 10749957122/4181*55^(1/20) 3141555233071449 p004 log(35839/26177) 3141555240240067 r005 Re(z^2+c),c=5/16+14/27*I,n=45 3141555240869426 b008 Pi+9*ExpIntegralEi[-10] 3141555241358438 a003 sin(Pi*12/97)*sin(Pi*14/45) 3141555244274013 a007 Real Root Of -420*x^4+125*x^3-35*x^2+782*x-242 3141555253027679 m001 1/GAMMA(1/6)*OneNinth/ln(cos(1)) 3141555258568731 a001 28143753123/10946*55^(1/20) 3141555263047653 a001 73681302247/28657*55^(1/20) 3141555263701119 a001 192900153618/75025*55^(1/20) 3141555263796458 a001 505019158607/196418*55^(1/20) 3141555263810368 a001 1322157322203/514229*55^(1/20) 3141555263812398 a001 3461452808002/1346269*55^(1/20) 3141555263812694 a001 9062201101803/3524578*55^(1/20) 3141555263812737 a001 23725150497407/9227465*55^(1/20) 3141555263812764 a001 14662949395604/5702887*55^(1/20) 3141555263812877 a001 5600748293801/2178309*55^(1/20) 3141555263813652 a001 2139295485799/832040*55^(1/20) 3141555263818965 a001 817138163596/317811*55^(1/20) 3141555263855381 a001 312119004989/121393*55^(1/20) 3141555264104983 a001 119218851371/46368*55^(1/20) 3141555265793524 r005 Re(z^2+c),c=-13/36+10/27*I,n=49 3141555265815779 a001 45537549124/17711*55^(1/20) 3141555275748989 r009 Re(z^3+c),c=-61/126+17/45*I,n=23 3141555277541750 a001 17393796001/6765*55^(1/20) 3141555277695954 m001 (sin(1/12*Pi)-Bloch)/(GolombDickman+ZetaQ(2)) 3141555279996385 a005 (1/sin(66/175*Pi))^919 3141555284174667 m001 (ln(2)-Ei(1,1))/(ErdosBorwein-Paris) 3141555295897625 a007 Real Root Of 14*x^4-221*x^3-845*x^2+185*x+705 3141555311527259 b008 Pi+3*ExpIntegralEi[-9] 3141555326534512 h001 (1/7*exp(1)+4/11)/(8/11*exp(1)+5/12) 3141555340755180 m002 -Pi+4/(Pi^10*Log[Pi]) 3141555346159659 a007 Real Root Of 651*x^4-779*x^3-627*x^2-714*x+304 3141555356042885 b008 Pi-2*BesselK[1,10] 3141555357912754 a001 6643838879/2584*55^(1/20) 3141555359989765 r005 Im(z^2+c),c=-7/52+24/55*I,n=22 3141555363421742 r009 Re(z^3+c),c=-55/126+13/38*I,n=17 3141555365024552 a007 Real Root Of 209*x^4+692*x^3-154*x^2-713*x+378 3141555365330643 r009 Re(z^3+c),c=-11/52+23/31*I,n=23 3141555377658387 r005 Re(z^2+c),c=-51/64+16/41*I,n=2 3141555379964470 b008 -1/9*1/E^8+Pi 3141555382611908 a007 Real Root Of -173*x^4-251*x^3+877*x^2+182*x+985 3141555384496992 m001 (-Magata+ReciprocalLucas)/(Zeta(5)-gamma) 3141555393877523 m001 (Pi*Psi(2,1/3)+gamma(3))/Psi(2,1/3) 3141555393877523 m001 Pi+1/Psi(2,1/3)*gamma(3) 3141555397126543 l006 ln(236/5461) 3141555408527935 m001 GAMMA(23/24)/Si(Pi)*ln(LambertW(1)) 3141555408527935 m001 LambertW(1)/Si(Pi)*GAMMA(23/24) 3141555414752508 b008 1+14*ArcCsch[3/13] 3141555426226888 r009 Re(z^3+c),c=-39/106+5/21*I,n=19 3141555427660136 m002 -Pi+ProductLog[Pi]/(30*Pi^6) 3141555428839921 m001 (2^(1/2)-Chi(1))/(-ln(gamma)+GAMMA(17/24)) 3141555440282876 r005 Re(z^2+c),c=-11/28+7/29*I,n=14 3141555446887737 m005 (1/2*Zeta(3)+5)/(5/9*exp(1)+3/11) 3141555448627250 m001 (Lehmer+Thue)/(Conway-sin(1)) 3141555464592550 m001 (ln(3)-ln(Pi))/(FransenRobinson-Totient) 3141555466015858 r009 Im(z^3+c),c=-59/122+1/14*I,n=24 3141555466362593 m001 (OneNinth-Trott)/(Ei(1)+KhinchinLevy) 3141555469626061 r005 Im(z^2+c),c=3/52+20/59*I,n=18 3141555477027815 m002 -4+30*Log[Pi]+ProductLog[Pi] 3141555489773871 r002 3th iterates of z^2 + 3141555491189524 l006 ln(1081/1480) 3141555499643766 a007 Real Root Of 825*x^4-407*x^3+99*x^2-755*x+232 3141555500375221 r009 Im(z^3+c),c=-1/20+11/32*I,n=8 3141555502235853 r009 Re(z^3+c),c=-41/90+11/29*I,n=59 3141555503237916 m001 BesselJ(1,1)*Cahen^LandauRamanujan 3141555503237916 m001 Cahen^LandauRamanujan*BesselJ(1,1) 3141555508663467 r005 Im(z^2+c),c=5/102+39/64*I,n=50 3141555520699152 r005 Re(z^2+c),c=-79/122+2/9*I,n=11 3141555520928967 a007 Real Root Of 197*x^4-131*x^3-482*x^2-211*x+116 3141555549106209 l004 sinh(509/79) 3141555551723391 h001 (-3*exp(1/3)+7)/(-2*exp(2/3)+3) 3141555557964436 r005 Re(z^2+c),c=-3/8+16/51*I,n=18 3141555560680531 m009 (2/3*Psi(1,3/4)-5)/(2/5*Pi^2-5) 3141555565587104 p004 log(25153/1087) 3141555566172711 r009 Re(z^3+c),c=-31/82+12/47*I,n=25 3141555571051195 m001 Pi-gamma(3)^exp(1/2) 3141555584210029 r005 Re(z^2+c),c=-19/60+29/61*I,n=17 3141555607633224 r008 a(0)=0,K{-n^6,54+68*n^3-19*n^2-71*n} 3141555617684782 r002 20th iterates of z^2 + 3141555625071681 m001 (Lehmer-Paris)/(sin(1/12*Pi)-FeigenbaumC) 3141555638117749 a001 76/28657*89^(2/53) 3141555640974904 m005 (1/2*5^(1/2)+6)/(1/7*Pi-2/9) 3141555646602774 m001 Cahen^exp(Pi)-Pi 3141555654281732 m005 (1/2*exp(1)-1/3)/(3/4*Pi+10/11) 3141555654325839 m005 (1/2*2^(1/2)-5/7)/(4/9*Pi+8/9) 3141555657696862 m001 1/GAMMA(11/12)^2*Champernowne^2*exp(exp(1))^2 3141555670820651 r009 Im(z^3+c),c=-53/110+9/58*I,n=10 3141555685027795 a001 4/514229*6765^(13/31) 3141555698684439 r005 Re(z^2+c),c=-37/98+19/62*I,n=24 3141555703667077 r005 Re(z^2+c),c=-19/86+31/57*I,n=7 3141555708002764 a005 (1/cos(13/210*Pi))^1512 3141555710046050 r005 Im(z^2+c),c=-15/122+22/51*I,n=25 3141555710760647 r005 Im(z^2+c),c=13/36+11/49*I,n=19 3141555733719390 a007 Real Root Of 543*x^4+431*x^3+27*x^2-418*x+110 3141555756845332 h001 (4/7*exp(2)+5/12)/(2/7*exp(1)+7/10) 3141555757615937 h001 (7/10*exp(2)+5/7)/(5/9*exp(1)+4/11) 3141555764630549 m001 Paris*(Pi+exp(-Pi)) 3141555777704547 m008 (1/5*Pi^6-5/6)/(2/3*Pi^4-4) 3141555779877151 s002 sum(A140846[n]/(n*pi^n+1),n=1..infinity) 3141555788315673 b008 -6/E^12+Pi 3141555796523143 h001 (4/11*exp(1)+9/10)/(4/5*exp(2)+1/10) 3141555797235666 p004 log(31771/1373) 3141555799825134 r005 Im(z^2+c),c=-75/82+13/41*I,n=24 3141555801573866 m001 Riemann3rdZero/(Kolakoski-BesselI(1,2)) 3141555807918183 b008 Pi-Zeta[9,Pi] 3141555816465447 r005 Im(z^2+c),c=-65/98+20/49*I,n=53 3141555817243786 r005 Re(z^2+c),c=-31/106+11/20*I,n=42 3141555819807830 r005 Im(z^2+c),c=17/54+3/26*I,n=62 3141555824567414 m002 -6+Pi^2-Pi*Sinh[Pi]+Tanh[Pi] 3141555837959478 r005 Re(z^2+c),c=-35/94+19/58*I,n=24 3141555846180742 s002 sum(A157750[n]/(n*pi^n-1),n=1..infinity) 3141555847317757 r009 Re(z^3+c),c=-5/94+13/22*I,n=36 3141555851415984 m001 (sin(Pi/5)+4)/Zeta(1/2) 3141555865109495 m001 (Khinchin-RenyiParking)/(Zeta(5)-ln(3)) 3141555865913888 m001 exp(arctan(1/2))/Riemann3rdZero^2/cos(Pi/5) 3141555871104732 m002 Pi+Pi^5+Log[Pi]+Sinh[Pi]/3 3141555880283802 l006 ln(379/8770) 3141555889328702 r005 Im(z^2+c),c=-2/11+27/59*I,n=41 3141555891675758 a007 Real Root Of -314*x^4-953*x^3+74*x^2-196*x-309 3141555894554683 a007 Real Root Of -754*x^4+835*x^3+201*x^2+524*x-203 3141555894612948 b008 Pi+ExpIntegralEi[-7]/Pi 3141555906054266 m001 (ln(5)-Ei(1,1))/(arctan(1/3)-LandauRamanujan) 3141555908783918 a001 2537720636/987*55^(1/20) 3141555918003912 r005 Re(z^2+c),c=-37/114+29/59*I,n=35 3141555931273429 m009 (2/3*Psi(1,3/4)+3/5)/(2/3*Psi(1,1/3)-6) 3141555940927464 m001 (ln(2)/ln(10)+GaussAGM)/(Trott2nd+ZetaQ(3)) 3141555950264087 a007 Real Root Of 236*x^4+594*x^3-213*x^2+496*x-910 3141555955625054 m002 Pi-Cosh[Pi]/(Pi^11*ProductLog[Pi]) 3141555959838557 m005 (1/2*Catalan+1/11)/(1/3*Pi+7/10) 3141555962351060 a007 Real Root Of 59*x^4-447*x^3+738*x^2+112*x+477 3141555970918219 m002 -Pi+(3*Csch[Pi])/(E^Pi*Pi^5) 3141555982353711 m002 -Pi+(3*Log[Pi])/Pi^10 3141555983356888 h001 (1/10*exp(1)+7/11)/(9/10*exp(1)+4/9) 3141555996427299 m005 (1/3*5^(1/2)+2/11)/(9/11*exp(1)+8/11) 3141556000272834 m006 (5/6*Pi^2+1)/(1/5/Pi-3) 3141556005127149 r009 Im(z^3+c),c=-23/42+26/57*I,n=63 3141556032142241 m001 BesselK(0,1)^(sin(1)*BesselI(1,2)) 3141556032712549 m001 Gompertz^Si(Pi)*sin(1/12*Pi)^Si(Pi) 3141556035834089 r005 Im(z^2+c),c=-23/90+21/43*I,n=53 3141556036541230 s002 sum(A051535[n]/(n^2*pi^n+1),n=1..infinity) 3141556039153377 h001 (-exp(-2)-6)/(-9*exp(2/3)-2) 3141556039421008 m002 -6/(E^(2*Pi)*Pi^5)+Pi 3141556050646666 r009 Re(z^3+c),c=-3/122+51/59*I,n=5 3141556056985998 m005 (1/24+1/6*5^(1/2))/(4/5*gamma+6/7) 3141556059332486 m004 5*Pi+(100*Csc[Sqrt[5]*Pi])/(3*Pi) 3141556065927735 m001 (Champernowne+Weierstrass)/(Ei(1)-gamma(2)) 3141556077146815 m005 (1/2*2^(1/2)-2/7)/(3/11*exp(1)+3/5) 3141556085737711 h001 (11/12*exp(2)+7/12)/(3/10*exp(2)+1/8) 3141556091973647 m001 ZetaR(2)/(2*Pi/GAMMA(5/6)-sin(1)) 3141556092432269 m002 Pi-Sinh[Pi]/(Pi^11*ProductLog[Pi]) 3141556097438052 r005 Im(z^2+c),c=-7/9+5/46*I,n=52 3141556107668423 m002 -Pi+(3*Sech[Pi])/(E^Pi*Pi^5) 3141556112156113 k008 concat of cont frac of 3141556115208993 a001 521/21*610^(19/48) 3141556116340155 a007 Real Root Of -289*x^4-651*x^3+992*x^2+748*x+525 3141556124956713 m005 (1/2*Zeta(3)+1/11)/(1/11*gamma-3/11) 3141556136315049 r009 Im(z^3+c),c=-63/118+3/13*I,n=44 3141556138542518 r009 Re(z^3+c),c=-23/48+19/45*I,n=59 3141556141649588 r009 Im(z^3+c),c=-25/64+9/37*I,n=16 3141556146923356 m005 (1/2*Pi+5)/(2/7*3^(1/2)-2/7) 3141556147137434 r005 Im(z^2+c),c=-131/118+2/55*I,n=10 3141556149610135 m004 -100*Pi+(4*Csch[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141556149667904 m004 -100*Pi+(4*Sech[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141556150498062 r009 Re(z^3+c),c=-51/106+20/47*I,n=50 3141556150768699 m002 -Pi+(4*Csch[Pi])/Pi^8 3141556158688122 r005 Im(z^2+c),c=-1/70+23/61*I,n=11 3141556170979633 a003 sin(Pi*5/62)/cos(Pi*28/59) 3141556176812256 m001 1/Robbin^2*Kolakoski^2*exp(GAMMA(7/24)) 3141556178311171 b008 -1/25*1/E^7+Pi 3141556183149478 m009 (4*Catalan+1/2*Pi^2+1/5)/(1/4*Pi^2+1/3) 3141556188646241 r005 Im(z^2+c),c=-7/6+51/229*I,n=23 3141556213977770 b008 Pi*ModularLambda[(2*I)/9] 3141556218545088 m001 (-Sierpinski+ZetaQ(3))/(Ei(1)-Psi(1,1/3)) 3141556221123281 r005 Im(z^2+c),c=15/82+11/43*I,n=26 3141556223690447 m001 (OneNinth+ZetaP(3))/(CareFree+DuboisRaymond) 3141556225594406 a007 Real Root Of 531*x^4-18*x^3+675*x^2-626*x+19 3141556231958943 m001 (Kolakoski-ReciprocalLucas)/(gamma(3)-Artin) 3141556233017620 m001 ln(Lehmer)^2/MertensB1^2/GAMMA(5/6)^2 3141556236633534 r005 Im(z^2+c),c=4/13+7/55*I,n=54 3141556249416586 m001 cos(Pi/5)^2*GAMMA(23/24)*exp(cosh(1)) 3141556275065523 s001 sum(exp(-3*Pi/5)^n*A031169[n],n=1..infinity) 3141556277066644 m001 (MertensB3+ThueMorse)/(gamma(2)+BesselI(1,1)) 3141556286412730 a001 41/48*46368^(4/33) 3141556286848434 m002 -Pi+(4*Sech[Pi])/Pi^8 3141556289454841 m005 (1/3*Zeta(3)-1/10)/(3/11*2^(1/2)+4/7) 3141556291390728 q001 759/2416 3141556307309457 r009 Re(z^3+c),c=-21/52+14/47*I,n=17 3141556316246618 r005 Im(z^2+c),c=-41/52+1/55*I,n=18 3141556323102321 m005 (1/2*gamma-8/9)/(199/220+9/20*5^(1/2)) 3141556325844042 m001 Sierpinski^ArtinRank2+Zeta(3) 3141556327762249 m001 1/ln(GAMMA(3/4))*Champernowne/GAMMA(5/24)^2 3141556362912473 a007 Real Root Of x^4+315*x^3+267*x^2+549*x+904 3141556364341627 r005 Im(z^2+c),c=-31/118+26/53*I,n=25 3141556375209137 r009 Re(z^3+c),c=-1/86+11/14*I,n=31 3141556380638855 r005 Re(z^2+c),c=31/118+1/12*I,n=14 3141556399339680 a001 9349/144*4181^(43/58) 3141556412481649 l006 ln(7334/10041) 3141556415484647 r005 Re(z^2+c),c=-35/94+19/60*I,n=16 3141556435332954 a007 Real Root Of -276*x^4-749*x^3+501*x^2+274*x-423 3141556437215732 a007 Real Root Of -277*x^4-792*x^3+102*x^2-447*x+14 3141556447396379 m005 (1/3*Pi-3/8)/(1/4*Pi-4/7) 3141556449226658 m001 (Catalan-gamma)/(-MertensB1+Totient) 3141556457690360 a007 Real Root Of 248*x^4+544*x^3-616*x^2+240*x-456 3141556460085336 p004 log(28643/20921) 3141556462790309 m004 -100*Pi+(3*Sec[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141556464015248 a007 Real Root Of 218*x^4+864*x^3+719*x^2+712*x+695 3141556472746608 a007 Real Root Of 219*x^4+430*x^3-915*x^2-135*x+607 3141556501015186 m002 -Pi+(Coth[Pi]*ProductLog[Pi])/Pi^9 3141556510027885 a007 Real Root Of 227*x^4+352*x^3-765*x^2+925*x-741 3141556515332471 k007 concat of cont frac of 3141556515779378 m001 Pi-gamma(3)^((1+3^(1/2))^(1/2)) 3141556538780414 b008 Pi-AiryAi[5]/3 3141556541838441 a007 Real Root Of -378*x^4-846*x^3+806*x^2-578*x+818 3141556557575149 m001 HeathBrownMoroz*Trott2nd-Pi 3141556558093783 a001 2/1970299*76^(6/23) 3141556571751877 l006 ln(6253/8561) 3141556579108353 a007 Real Root Of -251*x^4-632*x^3+3*x^2+701*x+22 3141556582164394 m005 (3/20+1/4*5^(1/2))/(5/7*Catalan-3/7) 3141556584507864 m001 BesselI(0,2)+ln(2^(1/2)+1)^Salem 3141556584981362 a007 Real Root Of -309*x^4-71*x^3-810*x^2+717*x+306 3141556592910631 s001 sum(exp(-3*Pi/4)^n*A078287[n],n=1..infinity) 3141556597189058 a007 Real Root Of 255*x^4-283*x^3+797*x^2-102*x-4 3141556601334875 m004 -100*Pi+3*Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141556601363401 m004 -100*Pi+(6*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141556601391928 m004 -100*Pi+3*Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141556612189138 p003 LerchPhi(1/6,4,473/197) 3141556614601603 a001 15127/55*233^(21/47) 3141556622615041 a001 1/36*20365011074^(13/19) 3141556626749421 m002 -Pi+(2*Csch[Pi])/(5*Pi^6) 3141556635789228 m002 -Pi+ProductLog[Pi]/Pi^9 3141556638029546 r005 Im(z^2+c),c=-49/86+25/57*I,n=43 3141556644072344 m001 (CopelandErdos-Trott)/(sin(1/5*Pi)-Conway) 3141556645344576 b008 10*Pi+ExpIntegralEi[-6] 3141556645344576 b008 Pi+ExpIntegralEi[-6]/10 3141556647569910 r005 Im(z^2+c),c=-25/98+22/45*I,n=35 3141556657206795 r009 Im(z^3+c),c=-17/38+26/51*I,n=6 3141556664176094 m001 (exp(1)+GAMMA(19/24))/(Lehmer+MasserGramain) 3141556666047138 a007 Real Root Of -241*x^4-198*x^3-806*x^2+516*x+17 3141556667142931 r009 Re(z^3+c),c=-14/29+23/55*I,n=54 3141556677661704 l006 ln(143/3309) 3141556687113762 r005 Re(z^2+c),c=-35/106+29/62*I,n=44 3141556694027482 m002 -4/(5*E^Pi*Pi^6)+Pi 3141556696536919 m005 (1/2*5^(1/2)-2/5)/(1/11*Pi+2) 3141556699990147 m001 polylog(4,1/2)/exp(1/Pi)*GaussAGM 3141556703353591 r009 Re(z^3+c),c=-37/126+4/53*I,n=7 3141556708664233 r005 Im(z^2+c),c=19/78+11/54*I,n=31 3141556710553667 m001 HeathBrownMoroz^cosh(1)-Pi 3141556713801008 r002 8th iterates of z^2 + 3141556737856528 v004 sum((6+2*n^2-n)/(exp(Pi*n)+1),n=1..infinity) 3141556740164173 r009 Im(z^3+c),c=-27/52+5/28*I,n=49 3141556744046095 r005 Im(z^2+c),c=-19/74+22/45*I,n=58 3141556749795855 m007 (-1/4*gamma+3)/(-2/3*gamma-4/3*ln(2)+2/5) 3141556760808899 r005 Re(z^2+c),c=-43/34+7/60*I,n=8 3141556761054736 m002 -Pi+(2*Sech[Pi])/(5*Pi^6) 3141556762022277 m001 (3^(1/3)-CareFree)/(Rabbit-Weierstrass) 3141556770060844 m002 -Pi+(ProductLog[Pi]*Tanh[Pi])/Pi^9 3141556797600258 l006 ln(5172/7081) 3141556797846752 r002 25th iterates of z^2 + 3141556810648980 r002 41th iterates of z^2 + 3141556822331573 m001 1/KhintchineLevy*Cahen/ln(sin(1)) 3141556829050796 a007 Real Root Of -155*x^4+339*x^3-980*x^2+421*x+241 3141556838452484 m001 (GAMMA(11/12)-TreeGrowth2nd)/(Trott+ZetaQ(3)) 3141556846823346 r005 Re(z^2+c),c=5/48+13/51*I,n=9 3141556848962495 a007 Real Root Of 66*x^4-403*x^3-252*x^2-507*x+196 3141556867269109 a007 Real Root Of -34*x^4+716*x^3-971*x^2-68*x+97 3141556881736493 r005 Im(z^2+c),c=-29/66+1/19*I,n=16 3141556886127848 m002 Pi-Log[Pi]/(Pi^9*ProductLog[Pi]) 3141556924101203 r005 Im(z^2+c),c=-15/52+18/31*I,n=3 3141556925994535 m001 GAMMA(5/24)/exp(FeigenbaumAlpha)^2/Zeta(1,2) 3141556932644356 m001 (RenyiParking+Trott)/(2^(1/2)+1) 3141556934070940 m001 (Ei(1,1)-gamma(1))/(GAMMA(13/24)-Rabbit) 3141556939811663 r005 Re(z^2+c),c=-37/90+4/59*I,n=24 3141556941501596 a007 Real Root Of 942*x^4+123*x^3+724*x^2-564*x-254 3141556949814400 m001 GAMMA(19/24)-StronglyCareFree^Gompertz 3141556955507756 m001 (ln(gamma)+MertensB3)/(Robbin-ThueMorse) 3141556959394558 a007 Real Root Of -573*x^4+24*x^3+541*x^2+796*x+203 3141556960911266 m001 (-GAMMA(13/24)+Magata)/(GAMMA(5/6)-Psi(2,1/3)) 3141556961224831 m005 (1/2*Pi+8/9)/(9/11*5^(1/2)+6) 3141556989613950 r009 Im(z^3+c),c=-29/86+13/51*I,n=3 3141556992049058 a003 cos(Pi*16/69)-cos(Pi*39/109) 3141556995306568 m001 FeigenbaumMu-Gompertz^GAMMA(13/24) 3141557002691982 m001 GAMMA(23/24)*Bloch-Pi*2^(1/2)/GAMMA(3/4) 3141557003601076 m002 12+Pi^5-Cosh[Pi]/3 3141557008348090 r005 Im(z^2+c),c=-23/94+18/35*I,n=16 3141557010202540 r002 64th iterates of z^2 + 3141557012632626 m001 Pi/(Psi(1,1/3)+gamma*Zeta(1,-1)) 3141557029973996 a001 36/109801*47^(27/46) 3141557035671942 r005 Re(z^2+c),c=-27/22+22/117*I,n=4 3141557051252936 m005 (1/2*Catalan+7/12)/(5*gamma+3/7) 3141557072213047 m004 -100*Pi+2*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141557072241201 m004 -100*Pi+E^(Sqrt[5]*Pi)*Csch[Sqrt[5]*Pi]^2 3141557072241201 m004 -100*Pi+(4*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141557072269356 m004 -10*Pi+Csch[Sqrt[5]*Pi]/5 3141557072297510 m004 -2/(5*E^(Sqrt[5]*Pi))+10*Pi 3141557072320048 a001 15127/3*55^(21/46) 3141557072325664 m004 -10*Pi+Sech[Sqrt[5]*Pi]/5 3141557072353819 m004 -100*Pi+E^(Sqrt[5]*Pi)*Sech[Sqrt[5]*Pi]^2 3141557072353819 m004 -100*Pi+(4*Tanh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141557072381973 m004 -10*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/5 3141557073992705 m001 KhinchinHarmonic^(3^(1/2)*KhinchinLevy) 3141557082461881 r005 Re(z^2+c),c=-71/86+5/27*I,n=38 3141557093465160 b008 Pi-2*BesselK[0,10] 3141557094522408 r009 Im(z^3+c),c=-39/118+12/41*I,n=4 3141557108256800 m001 Paris*(Shi(1)+Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141557109564780 m003 3+Sqrt[5]/16+(Sqrt[5]*Csch[1/2+Sqrt[5]/2])/512 3141557110328551 r005 Re(z^2+c),c=-9/22+9/19*I,n=18 3141557111942113 k006 concat of cont frac of 3141557125540560 m005 (1/2*gamma-3/11)/(3/11*Zeta(3)-5/6) 3141557137835116 r009 Im(z^3+c),c=-23/114+9/28*I,n=9 3141557142804337 l006 ln(4091/5601) 3141557160819607 r005 Im(z^2+c),c=-19/74+22/45*I,n=51 3141557161249579 m001 sqrt(Pi)/(exp(sqrt(2))+GAMMA(7/12)) 3141557176017619 m001 HardyLittlewoodC5^Trott2nd-Robbin 3141557177126521 m001 (Ei(1,1)-GAMMA(19/24))/(MertensB3+Niven) 3141557179761263 m001 (gamma(1)+FeigenbaumMu)/(2^(1/2)-ln(2)/ln(10)) 3141557182121311 k008 concat of cont frac of 3141557191604509 m001 (GAMMA(7/12)-gamma)/(-Cahen+PolyaRandomWalk3D) 3141557197696583 m001 1/KhintchineLevy^2*Conway/ln(GAMMA(1/6))^2 3141557209255523 r005 Re(z^2+c),c=-13/38+10/23*I,n=34 3141557213098355 a007 Real Root Of -445*x^4+754*x^3+995*x^2+117*x-154 3141557222172046 m001 (ArtinRank2+Riemann1stZero)/(2^(1/3)-3^(1/2)) 3141557227756985 m001 (Lehmer+PlouffeB)/(Pi+sin(1/12*Pi)) 3141557232389624 r002 12th iterates of z^2 + 3141557233898211 m001 (GolombDickman+ZetaQ(3))/(sin(1)+GAMMA(19/24)) 3141557252107658 r008 a(0)=0,K{-n^6,8*n+19*n^2-59*n^3} 3141557261557662 r005 Im(z^2+c),c=-23/70+18/35*I,n=36 3141557266007849 r009 Re(z^3+c),c=-15/34+13/24*I,n=61 3141557269711261 a007 Real Root Of -264*x^4-975*x^3-778*x^2-785*x+697 3141557270659879 m001 (GAMMA(3/4)-Artin)/(Mills+OrthogonalArrays) 3141557276667649 m001 (Cahen+Niven)/RenyiParking 3141557281563281 m001 (Pi-GAMMA(2/3))/(2*Pi/GAMMA(5/6)+Champernowne) 3141557298880262 r005 Im(z^2+c),c=-79/94+1/47*I,n=9 3141557317050097 a001 199/8*75025^(25/58) 3141557317783409 r008 a(0)=0,K{-n^6,28-42*n+45*n^2-63*n^3} 3141557323533339 r002 3th iterates of z^2 + 3141557329732925 r005 Re(z^2+c),c=-33/118+35/61*I,n=49 3141557336801616 r005 Im(z^2+c),c=-11/114+1/27*I,n=7 3141557350372049 m002 -1/(4*E^Pi*Pi^5)+Pi 3141557358510747 r005 Re(z^2+c),c=7/26+29/57*I,n=39 3141557363288251 m002 Pi^6/3+6/Log[Pi]-Sinh[Pi] 3141557366282606 m001 LandauRamanujan^Shi(1)/(sin(1/12*Pi)^Shi(1)) 3141557368804701 a001 24476/233*46368^(47/49) 3141557385731337 a001 1/87*(1/2*5^(1/2)+1/2)^20*3^(7/13) 3141557391524508 r009 Re(z^3+c),c=-25/54+5/12*I,n=27 3141557392104155 a007 Real Root Of 255*x^4+559*x^3-517*x^2+698*x-211 3141557394233071 l006 ln(7101/9722) 3141557395121151 k002 Champernowne real with 2*n^2+4*n+25 3141557398983141 q001 1174/3737 3141557413644899 m001 ln(Ei(1))/MertensB1*GAMMA(17/24) 3141557419766819 m001 1/ln(gamma)/Backhouse^2/sqrt(1+sqrt(3))^2 3141557425138280 r005 Re(z^2+c),c=-17/56+28/47*I,n=27 3141557430002050 m002 3*E^(2*Pi)+Pi^9 3141557450314027 r005 Re(z^2+c),c=-19/82+36/61*I,n=11 3141557454796078 r002 33th iterates of z^2 + 3141557472368932 m002 -(Coth[Pi]*Log[Pi])-2*Tanh[Pi] 3141557474668967 m001 ThueMorse*(arctan(1/3)+TreeGrowth2nd) 3141557476725420 a005 (1/cos(9/119*Pi))^929 3141557481979754 m002 -Pi+Tanh[Pi]/(4*E^Pi*Pi^5) 3141557492732374 m001 FeigenbaumD/gamma(2)/ln(2^(1/2)+1) 3141557514339235 r009 Im(z^3+c),c=-49/90+9/32*I,n=13 3141557519052778 m005 (1/3*Pi-1/11)/(5/7*Pi+4/5) 3141557522499281 m001 BesselK(0,1)/ln(DuboisRaymond)^2*sqrt(2)^2 3141557523459242 m002 -1/(3*Pi^8)+Pi 3141557545409606 p004 log(17137/16607) 3141557551813913 m001 polylog(4,1/2)+KhinchinHarmonic^(3^(1/2)) 3141557561753294 m005 (29/36+1/4*5^(1/2))/(1/2*Zeta(3)-1/6) 3141557561819676 m001 FransenRobinson^arctan(1/3)+MadelungNaCl 3141557569111082 a007 Real Root Of 172*x^4+337*x^3-760*x^2-91*x+910 3141557572389450 r009 Re(z^3+c),c=-49/102+23/53*I,n=55 3141557574274549 a001 233/76*3^(1/45) 3141557577084230 l006 ln(336/7775) 3141557590993043 m001 (Rabbit-ZetaP(2))/(GAMMA(11/12)-CopelandErdos) 3141557591066590 r005 Im(z^2+c),c=15/82+11/43*I,n=34 3141557633449079 a007 Real Root Of -15*x^4+384*x^3+990*x^2-907*x+747 3141557641076228 p001 sum((-1)^n/(325*n+309)/(16^n),n=0..infinity) 3141557642797074 r005 Im(z^2+c),c=-49/78+1/17*I,n=64 3141557650892160 m001 (BesselJ(0,1)*GAMMA(13/24)-Mills)/GAMMA(13/24) 3141557654421691 m002 -Pi+Tanh[Pi]/(3*Pi^8) 3141557656979074 r002 16th iterates of z^2 + 3141557663844108 m001 (Chi(1)+KhinchinHarmonic)/(Paris+Sarnak) 3141557676397170 m006 (1/4/Pi-1/4)/(3*Pi-4) 3141557681068292 a007 Real Root Of -661*x^4+353*x^3-69*x^2+827*x+284 3141557684176117 p004 log(27791/1201) 3141557684258715 b008 ArcCosh[5*(2+Pi^(-1))] 3141557685683938 m002 -1+(Pi^3*Cosh[Pi]*Coth[Pi])/Log[Pi] 3141557709294141 r005 Im(z^2+c),c=15/82+11/43*I,n=35 3141557721737780 m004 -100*Pi+(5*Pi)/(4*E^(Sqrt[5]*Pi)) 3141557728942701 b008 Pi*ModularLambda[I/8*Sqrt[Pi]] 3141557731002035 a007 Real Root Of -810*x^4-156*x^3-151*x^2+823*x+26 3141557735958959 l006 ln(3010/4121) 3141557760207520 m001 ReciprocalFibonacci-cos(1/12*Pi)+RenyiParking 3141557770539462 a007 Real Root Of -225*x^4-889*x^3-528*x^2+343*x+641 3141557771818510 r005 Im(z^2+c),c=-21/58+1/18*I,n=6 3141557776886966 r002 35th iterates of z^2 + 3141557781265150 h001 (5/8*exp(2)+1/2)/(2/11*exp(2)+2/7) 3141557785710674 h001 (5/12*exp(1)+2/11)/(4/9*exp(2)+9/10) 3141557786717218 m001 (-Lehmer+ZetaQ(3))/(BesselI(0,2)-BesselK(0,1)) 3141557790171536 s002 sum(A203175[n]/(2^n-1),n=1..infinity) 3141557798667443 r009 Im(z^3+c),c=-55/118+12/61*I,n=11 3141557807119996 a007 Real Root Of 26*x^4+789*x^3-847*x^2+861*x+884 3141557818950636 a007 Real Root Of -845*x^4+201*x^3+3*x^2+843*x+279 3141557827688478 a005 (1/cos(1/92*Pi))^1963 3141557848200299 a007 Real Root Of 169*x^4+536*x^3-26*x^2+7*x+436 3141557858071909 a001 4/21*2584^(33/35) 3141557876546327 r009 Re(z^3+c),c=-27/50+17/60*I,n=16 3141557892230815 r002 31th iterates of z^2 + 3141557894241456 r005 Im(z^2+c),c=-15/118+10/23*I,n=5 3141557897268868 m005 (13/4+1/4*5^(1/2))/(9/10*5^(1/2)-4/5) 3141557903416706 r005 Im(z^2+c),c=1/114+22/35*I,n=23 3141557908677700 r005 Im(z^2+c),c=-9/14+130/189*I,n=5 3141557946331755 m005 (1/2*Zeta(3)-3/11)/(4/5*Zeta(3)-6/7) 3141557946388418 r005 Im(z^2+c),c=-5/8+31/86*I,n=51 3141557949418994 m008 (1/2*Pi^4-2/5)/(1/2*Pi^5+3/4) 3141557957872796 m001 Pi/(exp(Pi)-Zeta(3))*Ei(1,1) 3141557971607830 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3141557971635273 m004 10*Pi-Log[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141557971662716 m004 -100*Pi+Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141557972059415 m001 ((1+3^(1/2))^(1/2)-MertensB2)/(Ei(1)-gamma(1)) 3141557977360367 a007 Real Root Of 424*x^4-487*x^3+579*x^2-454*x-219 3141557981540683 m002 -1/(30*Pi^6)+Pi 3141557982574157 a007 Real Root Of -292*x^4-897*x^3-156*x^2-792*x-318 3141558008932915 r005 Re(z^2+c),c=-35/48+4/27*I,n=46 3141558020893822 r009 Im(z^3+c),c=-13/126+20/59*I,n=6 3141558041229490 p004 log(10883/7949) 3141558046064908 m001 Gompertz/(MinimumGamma-ReciprocalFibonacci) 3141558057828906 r005 Re(z^2+c),c=-7/19+1/57*I,n=3 3141558092133204 m003 -1/18+Sqrt[5]/4+2/ProductLog[1/2+Sqrt[5]/2] 3141558101864052 b008 Pi-(2*Erfc[E])/7 3141558110795439 m002 -Pi+Tanh[Pi]/(30*Pi^6) 3141558141514161 k006 concat of cont frac of 3141558141617943 h001 (-5*exp(3/2)+5)/(-4*exp(-2)-5) 3141558144316299 p004 log(24407/17827) 3141558144669684 a001 1/43133785636*34^(17/23) 3141558147915175 m002 -1+ProductLog[Pi]^2+3*Tanh[Pi] 3141558149712305 m001 Magata-sin(1)+Stephens 3141558165375499 m002 -Pi+Pi^5-Pi*Sech[Pi]+Sinh[Pi] 3141558176843797 m002 -2+E^Pi+4/Pi^2+Pi^2 3141558186697865 r005 Re(z^2+c),c=-49/74+7/57*I,n=4 3141558187586784 r002 4th iterates of z^2 + 3141558194423506 r005 Im(z^2+c),c=15/82+11/43*I,n=39 3141558196607725 a007 Real Root Of -712*x^4-304*x^3+728*x^2+460*x-200 3141558197435941 r009 Im(z^3+c),c=-12/25+1/6*I,n=34 3141558206536027 r009 Re(z^3+c),c=-37/82+19/51*I,n=57 3141558211174252 m005 (1/2*3^(1/2)-8/9)/(4/7*5^(1/2)+6) 3141558225048424 r005 Im(z^2+c),c=15/82+11/43*I,n=40 3141558227272064 l006 ln(4939/6762) 3141558234054615 m002 Pi-Cosh[Pi]/(Pi^11*Log[Pi]) 3141558235644274 r005 Re(z^2+c),c=1/106+5/23*I,n=16 3141558236387923 a007 Real Root Of -756*x^4-681*x^3-208*x^2+927*x+298 3141558243495217 l006 ln(193/4466) 3141558250961659 m001 (ln(Pi)-FellerTornier)/(GaussAGM+Grothendieck) 3141558259123798 m002 -Pi+(3*ProductLog[Pi])/Pi^10 3141558260837659 r002 6th iterates of z^2 + 3141558260837659 r002 6th iterates of z^2 + 3141558272758952 a003 sin(Pi*10/117)-sin(Pi*7/73) 3141558275723006 m001 exp(1)/(Catalan^exp(1/2)) 3141558276966940 r005 Im(z^2+c),c=15/82+11/43*I,n=44 3141558281175929 a007 Real Root Of -299*x^4-775*x^3+199*x^2-911*x+269 3141558281200520 r008 a(0)=0,K{-n^6,-6+50*n^3+5*n^2-17*n} 3141558282572188 r005 Im(z^2+c),c=15/82+11/43*I,n=45 3141558282987418 b008 Pi*Sech[Erfc[2]] 3141558285748442 r009 Im(z^3+c),c=-19/46+13/57*I,n=28 3141558286089071 m002 Pi-(Csch[Pi]*Log[Pi])/(3*Pi^6) 3141558287925189 r005 Im(z^2+c),c=15/82+11/43*I,n=49 3141558288820139 r005 Im(z^2+c),c=15/82+11/43*I,n=50 3141558289344365 r005 Im(z^2+c),c=15/82+11/43*I,n=54 3141558289476825 r005 Im(z^2+c),c=15/82+11/43*I,n=55 3141558289524248 r005 Im(z^2+c),c=15/82+11/43*I,n=59 3141558289541823 r005 Im(z^2+c),c=15/82+11/43*I,n=53 3141558289542902 r005 Im(z^2+c),c=15/82+11/43*I,n=60 3141558289543537 r005 Im(z^2+c),c=15/82+11/43*I,n=58 3141558289546609 r005 Im(z^2+c),c=15/82+11/43*I,n=64 3141558289548347 r005 Im(z^2+c),c=15/82+11/43*I,n=63 3141558289555751 r005 Im(z^2+c),c=15/82+11/43*I,n=62 3141558289558110 r005 Im(z^2+c),c=15/82+11/43*I,n=61 3141558289603680 r005 Im(z^2+c),c=15/82+11/43*I,n=57 3141558289610785 r005 Im(z^2+c),c=15/82+11/43*I,n=56 3141558289785500 m001 1/Niven*exp(FeigenbaumB)^2/Paris 3141558289843678 r005 Im(z^2+c),c=15/82+11/43*I,n=48 3141558289976079 r005 Im(z^2+c),c=15/82+11/43*I,n=51 3141558290021249 r005 Im(z^2+c),c=15/82+11/43*I,n=52 3141558291531307 h001 (2/9*exp(1)+1/11)/(2/3*exp(1)+2/5) 3141558292359445 r005 Im(z^2+c),c=15/82+11/43*I,n=46 3141558293588498 r005 Im(z^2+c),c=15/82+11/43*I,n=47 3141558294917106 r005 Im(z^2+c),c=15/82+11/43*I,n=43 3141558306426871 r005 Im(z^2+c),c=15/82+11/43*I,n=41 3141558313994104 m006 (2/5*Pi^2+1/4)/(1/4*exp(2*Pi)-1/4) 3141558323506287 r005 Im(z^2+c),c=15/82+11/43*I,n=42 3141558326283428 a007 Real Root Of 95*x^4+364*x^3+220*x^2-731*x-241 3141558329504661 m005 (1/2*gamma+2/11)/(1/8*Zeta(3)-3/10) 3141558333849232 a005 (1/sin(88/195*Pi))^489 3141558341315740 m005 (-31/12+5/12*5^(1/2))/(1/3*gamma+1/3) 3141558357502144 r005 Im(z^2+c),c=15/82+11/43*I,n=38 3141558362368019 m002 Pi-Sinh[Pi]/(Pi^11*Log[Pi]) 3141558362507980 a007 Real Root Of 385*x^4-600*x^3+770*x^2-696*x-317 3141558370718042 m001 (Zeta(1,-1)-Grothendieck)/(Landau+ZetaP(4)) 3141558373864622 r005 Im(z^2+c),c=15/82+11/43*I,n=36 3141558374068870 a001 103682/233*121393^(4/11) 3141558378436539 a007 Real Root Of 791*x^4+734*x^3-477*x^2-758*x-176 3141558384724999 m005 (-15/4+1/4*5^(1/2))/(1/9*Pi+2/3) 3141558387521155 a001 15127/233*24157817^(4/11) 3141558388984950 r008 a(0)=0,K{-n^6,42-47*n+28*n^2-55*n^3} 3141558391822129 r009 Im(z^3+c),c=-7/15+3/44*I,n=19 3141558392296390 a007 Real Root Of -2*x^4-628*x^3+100*x^2+653*x-573 3141558397713199 a001 28657/7*123^(46/51) 3141558412435893 m001 (Trott2nd-ZetaP(3))/(Kolakoski-RenyiParking) 3141558414208494 m002 Pi-(Log[Pi]*Sech[Pi])/(3*Pi^6) 3141558414441228 m002 -E^Pi/2-Pi^5+3*Log[Pi] 3141558423540833 m001 1/exp(FeigenbaumKappa)*Champernowne*Pi^2 3141558432615192 r005 Im(z^2+c),c=15/86+16/61*I,n=27 3141558436951248 p001 sum((-1)^n/(339*n+301)/(8^n),n=0..infinity) 3141558437877503 b008 1/11+2*(1/9+Sqrt[2]) 3141558442597107 l006 ln(6868/9403) 3141558446626528 m001 gamma(2)/(gamma(3)^Mills) 3141558465847222 m008 (1/4*Pi^5+1)/(2/3*Pi^3+4) 3141558469438631 m005 (1/2*2^(1/2)-2/3)/(-89/264+5/24*5^(1/2)) 3141558471733927 a001 10749957122*267914296^(4/23) 3141558477984890 a001 73681302247*4181^(4/23) 3141558478511138 b008 ArcCsch[2+(4*Sqrt[2])/5] 3141558479887979 m001 ln(LaplaceLimit)*CareFree*Trott 3141558480799334 m001 1/exp(Conway)*Backhouse*Kolakoski 3141558482425703 a007 Real Root Of -640*x^4+719*x^3+831*x^2+786*x-345 3141558485723059 r009 Re(z^3+c),c=-1/32+43/44*I,n=5 3141558497007870 m001 RenyiParking/ln(ArtinRank2)^2/GAMMA(2/3)^2 3141558500183665 r009 Re(z^3+c),c=-5/11+17/45*I,n=51 3141558501834709 a007 Real Root Of 21*x^4+679*x^3+616*x^2+358*x+848 3141558502740339 b008 Pi-3*ExpIntegralE[2,9] 3141558507062724 a005 (1/sin(39/157*Pi))^36 3141558515902531 r005 Im(z^2+c),c=15/82+11/43*I,n=31 3141558515944642 b008 Pi-ExpIntegralE[2,8] 3141558516582766 a005 (1/cos(16/225*Pi))^1235 3141558521712620 a007 Real Root Of 232*x^4+586*x^3-478*x^2-210*x-371 3141558550953942 v002 sum(1/(5^n+(10*n^2-23*n+76)),n=1..infinity) 3141558561987001 m001 1/Rabbit^2/LaplaceLimit*exp(sinh(1))^2 3141558563916527 p003 LerchPhi(1/2,6,125/222) 3141558569948625 r005 Im(z^2+c),c=15/82+11/43*I,n=37 3141558615492606 m001 BesselK(1,1)+Artin-Robbin 3141558617111740 m001 (Riemann1stZero-Zeta(1/2)*Bloch)/Bloch 3141558629087550 m001 Landau-PrimesInBinary^ZetaP(3) 3141558631955934 q001 3/95494 3141558636738132 h001 (2/7*exp(1)+2/5)/(5/12*exp(2)+2/3) 3141558642670016 a007 Real Root Of 190*x^4+532*x^3-63*x^2+610*x+526 3141558655417258 m008 (2/5*Pi^5+1/4)/(4*Pi^4+4/5) 3141558657088867 r005 Im(z^2+c),c=-4/27+32/57*I,n=9 3141558678331080 r005 Im(z^2+c),c=13/62+7/30*I,n=14 3141558678682091 r009 Im(z^3+c),c=-1/25+21/61*I,n=11 3141558689188824 r009 Re(z^3+c),c=-37/126+4/53*I,n=10 3141558693600079 a007 Real Root Of -789*x^4-254*x^3+808*x^2+898*x-29 3141558695980092 m005 (1/2*3^(1/2)-1/11)/(2/9*gamma-3/8) 3141558707605950 r009 Im(z^3+c),c=-23/94+13/42*I,n=13 3141558713768749 m001 (sin(1/5*Pi)+gamma(1))/(Trott-ZetaP(3)) 3141558716004757 r005 Im(z^2+c),c=-6/5+7/64*I,n=18 3141558748226016 a001 1597/11*29^(21/23) 3141558754629893 r005 Re(z^2+c),c=-113/118+4/39*I,n=16 3141558757059344 l006 ln(436/10089) 3141558767714180 r005 Re(z^2+c),c=25/122+18/55*I,n=4 3141558784365005 a007 Real Root Of 171*x^4+341*x^3-343*x^2+588*x-851 3141558804905784 a007 Real Root Of 182*x^4-26*x^3-176*x^2-247*x+94 3141558806400123 r005 Re(z^2+c),c=-33/94+17/42*I,n=51 3141558818618392 m005 (1/2*3^(1/2)-3/7)/(5*exp(1)+1/3) 3141558824382796 r002 51th iterates of z^2 + 3141558831300436 a007 Real Root Of -301*x^4-991*x^3-175*x^2+58*x+502 3141558833158831 b008 Cosh[E^(-1)+ArcSinh[2]] 3141558833943608 m001 Pi-ZetaQ(4)^ErdosBorwein 3141558845539599 a003 sin(Pi*2/87)/cos(Pi*26/61) 3141558848241753 m004 -100*Pi+Log[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141558849574790 m008 (2*Pi^6+1/4)/(2*Pi^3-4/5) 3141558850386801 m005 (-1/8+1/4*5^(1/2))/(5/7*Catalan+8/11) 3141558873130296 m001 (1-2^(1/3))/(-ln(2)+StronglyCareFree) 3141558880183661 b008 -1/27*1/E^7+Pi 3141558883401255 r005 Re(z^2+c),c=-21/50+1/61*I,n=8 3141558885182358 m001 (-Conway+ZetaQ(2))/(BesselJ(1,1)-Chi(1)) 3141558910927156 m005 (1/2*2^(1/2)+8/11)/(-115/198+1/18*5^(1/2)) 3141558914830751 a007 Real Root Of -123*x^4-349*x^3+314*x^2+749*x+414 3141558922119321 m001 1/exp(Tribonacci)/Magata^2/TwinPrimes^2 3141558924471936 m001 (gamma(2)+BesselJ(1,1))/(MasserGramain+Sarnak) 3141558924990717 a007 Real Root Of -979*x^4+387*x^3+620*x^2+851*x-331 3141558930986277 r002 3th iterates of z^2 + 3141558934099005 a001 13/76*47^(3/19) 3141558934807802 a007 Real Root Of 918*x^4-380*x^3-494*x^2-622*x+247 3141558941500127 m002 -3/(4*E^Pi*Pi^6)+Pi 3141558950222155 m009 (1/5*Psi(1,1/3)+3/5)/(1/8*Pi^2-2/5) 3141558962028548 s002 sum(A153831[n]/(n*exp(pi*n)-1),n=1..infinity) 3141558981258336 m002 -Pi+Coth[Pi]/Pi^9 3141558987819262 a001 710647/233*610^(4/11) 3141558993914031 l006 ln(1929/2641) 3141558999804027 m001 (-GAMMA(19/24)+Gompertz)/(1+Chi(1)) 3141559008697974 a007 Real Root Of -824*x^4+594*x^3+949*x^2+837*x-367 3141559012649450 m001 cos(1)^gamma*cos(1)^Conway 3141559018763815 a001 2207/233*4807526976^(4/11) 3141559020621864 r008 a(0)=0,K{-n^6,8-56*n+39*n^2+41*n^3} 3141559022846514 m001 (2^(1/2)+Zeta(1/2))/(Porter+ZetaQ(4)) 3141559026832844 m001 BesselK(0,1)/exp(1/Pi)*GAMMA(23/24) 3141559034405499 r005 Re(z^2+c),c=7/62+27/52*I,n=11 3141559036934515 r005 Im(z^2+c),c=15/82+11/43*I,n=33 3141559040358794 r009 Im(z^3+c),c=-19/28+24/47*I,n=7 3141559075877276 s002 sum(A039894[n]/(n*2^n-1),n=1..infinity) 3141559079256451 m003 -1/2+Sqrt[5]/2+64*Log[1/2+Sqrt[5]/2] 3141559081935789 a007 Real Root Of 349*x^4+693*x^3-942*x^2+789*x-732 3141559084315945 m001 (Tribonacci+Trott)/(BesselJ(0,1)-GAMMA(2/3)) 3141559088776307 m001 1/KhintchineLevy^2*FeigenbaumB*ln(sin(Pi/5)) 3141559100551869 r005 Im(z^2+c),c=-59/110+34/63*I,n=59 3141559101834589 r005 Im(z^2+c),c=-17/40+1/2*I,n=34 3141559106786221 m002 -Pi^(-9)+Pi 3141559107359915 m001 (Thue+TwinPrimes)/(BesselI(0,1)+FeigenbaumMu) 3141559108760601 m005 (1/2*3^(1/2)-1/4)/(7/8*Zeta(3)+10/11) 3141559118811123 k007 concat of cont frac of 3141559119776277 r005 Im(z^2+c),c=-43/106+31/58*I,n=35 3141559120161857 m001 (PlouffeB-Shi(1)*arctan(1/2))/arctan(1/2) 3141559121266044 r002 32th iterates of z^2 + 3141559130981986 a001 7/28657*2178309^(1/58) 3141559144375883 m009 (5*Psi(1,3/4)-1/3)/(16*Catalan+2*Pi^2+5) 3141559163695954 r005 Im(z^2+c),c=-5/42+17/37*I,n=9 3141559164951653 l006 ln(243/5623) 3141559175997506 m005 (1/2*3^(1/2)-5/8)/(1/7*Catalan+7/11) 3141559177196074 m001 (sin(1)+1/3)/Artin 3141559192398443 a007 Real Root Of 83*x^4-23*x^3-755*x^2+179*x-784 3141559194186321 m001 1/Champernowne^2/ln(CopelandErdos)^2 3141559202418284 p003 LerchPhi(1/2,2,199/97) 3141559210271179 r005 Re(z^2+c),c=-13/42+43/55*I,n=4 3141559217342505 r005 Re(z^2+c),c=-5/8+130/197*I,n=7 3141559219711591 r005 Im(z^2+c),c=-43/122+25/48*I,n=46 3141559221342133 k007 concat of cont frac of 3141559221799153 a001 19/2*139583862445^(6/19) 3141559231846147 m002 -Pi+Tanh[Pi]/Pi^9 3141559235227858 r005 Re(z^2+c),c=-27/62+11/43*I,n=7 3141559235462393 a001 305/38*521^(17/29) 3141559249154177 r009 Im(z^3+c),c=-8/17+5/28*I,n=57 3141559250188212 b008 -2/E^11+Pi 3141559252135078 r005 Im(z^2+c),c=7/66+23/37*I,n=45 3141559263009772 m001 exp(-1/2*Pi)^exp(1)/((3^(1/2))^exp(1)) 3141559263009772 m001 exp(-1/2*Pi)^exp(1)/(sqrt(3)^exp(1)) 3141559263814360 m001 1/exp(BesselJ(1,1))^2*RenyiParking/Pi^2 3141559264820804 a001 233/3571*7^(21/26) 3141559265335588 s003 concatenated sequence A066712 3141559279945353 b008 Sinh[(5*(2+EulerGamma))/2] 3141559289387819 r005 Im(z^2+c),c=-1+37/135*I,n=19 3141559326693252 r005 Re(z^2+c),c=-39/106+19/55*I,n=30 3141559333212687 m001 (Rabbit+Trott)/(BesselJ(0,1)+GAMMA(7/12)) 3141559348306762 r005 Im(z^2+c),c=-53/82+14/29*I,n=36 3141559356439860 m002 -Pi+Tanh[Pi]^2/Pi^9 3141559359885704 s002 sum(A270308[n]/((2^n-1)/n),n=1..infinity) 3141559362674309 m001 (Salem-Weierstrass)/(ErdosBorwein+Kac) 3141559376361761 a007 Real Root Of 435*x^4-475*x^3+501*x^2-960*x-370 3141559380160966 r009 Im(z^3+c),c=-9/22+8/31*I,n=5 3141559397838355 b008 Pi+8*ExpIntegralEi[-10] 3141559404498701 r009 Im(z^3+c),c=-39/86+10/61*I,n=9 3141559423081388 m001 Pi-ZetaQ(4)^ln(5) 3141559424678274 q001 415/1321 3141559425700936 r002 8th iterates of z^2 + 3141559440809745 m002 Pi+Pi^5*Coth[Pi]+Sinh[Pi]/3 3141559441312399 r001 16i'th iterates of 2*x^2-1 of 3141559442773518 a001 89*18^(24/55) 3141559449813966 m001 exp(gamma)^(Khinchin/GAMMA(2/3)) 3141559466278329 m001 1/GAMMA(1/6)*exp(GAMMA(1/12))*sqrt(Pi) 3141559467896066 m001 Ei(1)*Paris^StronglyCareFree 3141559469263598 a008 Real Root of (2+5*x+x^2+6*x^4-2*x^5) 3141559481384960 m001 Pi-Trott^BesselI(0,2) 3141559491488401 a007 Real Root Of 421*x^4+349*x^3-268*x^2-549*x+184 3141559492163183 p004 log(20809/15199) 3141559501385105 r005 Re(z^2+c),c=-43/110+13/54*I,n=22 3141559506255768 r005 Re(z^2+c),c=-37/94+7/31*I,n=31 3141559513007318 r005 Re(z^2+c),c=-9/29+20/39*I,n=29 3141559529440365 a007 Real Root Of 464*x^4-363*x^3+703*x^2-646*x-21 3141559535368309 a001 1/23184*514229^(15/46) 3141559551125632 r009 Re(z^3+c),c=-43/94+26/51*I,n=51 3141559556303911 v002 sum(1/(5^n+(15*n^2-30*n+74)),n=1..infinity) 3141559556446842 r005 Re(z^2+c),c=-43/102+9/47*I,n=7 3141559559775498 m001 (arctan(1/2)+Paris)/(Zeta(3)+sin(1/5*Pi)) 3141559564591412 l006 ln(6635/9084) 3141559566369525 r005 Im(z^2+c),c=1/27+7/20*I,n=12 3141559569299761 r008 a(0)=0,K{-n^6,-86+69*n^3-72*n^2+86*n} 3141559571645094 m001 (-arctan(1/3)+GaussAGM)/(Ei(1,1)-Si(Pi)) 3141559578480776 m002 Pi-Log[Pi]/(36*Pi^6) 3141559585027153 m006 (5/6*Pi^2+2)/(4/5/Pi+3) 3141559586570935 r005 Im(z^2+c),c=-1/70+35/47*I,n=15 3141559586679635 a007 Real Root Of 419*x^4+119*x^3+426*x^2-492*x-197 3141559594001042 p004 log(19183/829) 3141559594111309 m001 (1-Psi(1,1/3))/(CopelandErdos+ZetaQ(2)) 3141559611268043 r009 Im(z^3+c),c=-15/122+16/19*I,n=6 3141559612882456 m001 (Lehmer+Otter)/(ln(2)-CareFree) 3141559636490207 m005 (1/2*5^(1/2)+5/7)/(3*3^(1/2)+7/11) 3141559644109501 m001 BesselI(1,1)/(Paris+StolarskyHarborth) 3141559645378059 r008 a(0)=0,K{-n^6,-54+47*n-7*n^2+46*n^3} 3141559646465629 a001 1/930249*4^(41/53) 3141559657707601 a007 Real Root Of -142*x^4-280*x^3+283*x^2-671*x+249 3141559677513895 r005 Re(z^2+c),c=-13/36+10/27*I,n=42 3141559681226702 r005 Re(z^2+c),c=-35/34+5/86*I,n=12 3141559682124957 m001 1/cosh(1)^2*exp(MinimumGamma)*log(2+sqrt(3))^2 3141559683871276 r005 Im(z^2+c),c=-4/19+15/22*I,n=12 3141559684516250 a001 969323029/377*55^(1/20) 3141559689816381 m001 sin(1)*sin(1/5*Pi)*HardyLittlewoodC3 3141559692314772 m001 (FeigenbaumC-Porter)/(sin(1/5*Pi)-Bloch) 3141559717193152 r005 Im(z^2+c),c=-23/40+2/35*I,n=38 3141559736413342 b008 Pi*InverseEllipticNomeQ[1/2] 3141559739007899 m001 (exp(1/exp(1))-exp(1/Pi))/(Artin-Gompertz) 3141559740930440 r005 Re(z^2+c),c=-17/48+25/47*I,n=14 3141559747985692 a003 sin(Pi*5/49)*sin(Pi*48/101) 3141559756950841 r009 Im(z^3+c),c=-1/25+21/61*I,n=13 3141559758001396 m001 FeigenbaumAlpha*((1+3^(1/2))^(1/2))^ZetaP(2) 3141559767686206 m001 (3^(1/2)+BesselI(0,1))/(-Ei(1,1)+GAMMA(19/24)) 3141559771917373 l006 ln(293/6780) 3141559774776836 m005 (1/3*Zeta(3)+1/8)/(1/6*exp(1)-2/7) 3141559781441266 a007 Real Root Of 223*x^4-991*x^3-651*x^2-911*x+379 3141559784385686 m005 (1/2*Pi-1/6)/(1/6*exp(1)-9/10) 3141559784577894 r005 Im(z^2+c),c=-43/48+13/53*I,n=7 3141559789530009 a007 Real Root Of -914*x^4+69*x^3-372*x^2+784*x+25 3141559790930711 a001 29/3*24157817^(11/18) 3141559798513346 l006 ln(4706/6443) 3141559799137328 r005 Im(z^2+c),c=-7/12+28/65*I,n=30 3141559801593831 m001 (3^(1/2)+sin(1/12*Pi))/(gamma(2)+Cahen) 3141559818667735 m001 gamma(1)*(BesselI(0,1)-GaussAGM) 3141559818835091 r005 Re(z^2+c),c=4/27+14/31*I,n=63 3141559828087885 r005 Re(z^2+c),c=21/106+5/13*I,n=31 3141559829394509 a001 34/843*15127^(27/29) 3141559835044063 m002 Pi-(Csch[Pi]*Log[Pi])/Pi^7 3141559837552954 m001 exp(exp(1))*Ei(1)^2*gamma 3141559847340981 a007 Real Root Of -203*x^4-488*x^3+281*x^2-737*x-446 3141559856803089 m001 TreeGrowth2nd^2/MadelungNaCl/exp((2^(1/3))) 3141559857891879 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/4 3141559857917829 m004 10*Pi-Cos[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141559857943779 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/4 3141559867113260 a007 Real Root Of 717*x^4-330*x^3+887*x^2-819*x+173 3141559868665006 r005 Im(z^2+c),c=-13/70+25/46*I,n=5 3141559884729154 m001 (-FeigenbaumC+Thue)/(Catalan-GAMMA(3/4)) 3141559893903644 r009 Im(z^3+c),c=-1/25+21/61*I,n=15 3141559896137671 r005 Im(z^2+c),c=-31/98+30/59*I,n=38 3141559904116780 m004 3+(5*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi]^2 3141559905386273 m001 (Zeta(1,2)-exp(1))/(BesselJ(1,1)+Sarnak) 3141559907913633 r009 Im(z^3+c),c=-1/25+21/61*I,n=17 3141559909134001 r009 Im(z^3+c),c=-1/25+21/61*I,n=19 3141559909223688 r009 Im(z^3+c),c=-1/25+21/61*I,n=21 3141559909228756 r009 Im(z^3+c),c=-1/25+21/61*I,n=23 3141559909228823 r009 Im(z^3+c),c=-1/25+21/61*I,n=24 3141559909228839 r009 Im(z^3+c),c=-1/25+21/61*I,n=26 3141559909228850 r009 Im(z^3+c),c=-1/25+21/61*I,n=28 3141559909228851 r009 Im(z^3+c),c=-1/25+21/61*I,n=30 3141559909228851 r009 Im(z^3+c),c=-1/25+21/61*I,n=32 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=34 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=36 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=38 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=41 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=43 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=45 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=47 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=49 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=51 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=53 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=55 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=56 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=58 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=60 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=62 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=64 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=63 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=61 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=59 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=57 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=54 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=52 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=50 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=48 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=46 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=44 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=42 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=40 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=39 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=37 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=35 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=33 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=31 3141559909228852 r009 Im(z^3+c),c=-1/25+21/61*I,n=29 3141559909228856 r009 Im(z^3+c),c=-1/25+21/61*I,n=27 3141559909228877 r009 Im(z^3+c),c=-1/25+21/61*I,n=25 3141559909229801 r009 Im(z^3+c),c=-1/25+21/61*I,n=22 3141559909252110 r009 Im(z^3+c),c=-1/25+21/61*I,n=20 3141559909591016 r009 Im(z^3+c),c=-1/25+21/61*I,n=18 3141559913806962 r009 Im(z^3+c),c=-1/25+21/61*I,n=16 3141559916623922 a001 377/76*15127^(25/58) 3141559918821414 b008 Pi+ExpIntegralEi[-6]/11 3141559922807588 r005 Im(z^2+c),c=9/28+5/48*I,n=58 3141559944186820 a008 Real Root of (3+7*x-10*x^2-6*x^3) 3141559947104142 m005 (41/12+5/12*5^(1/2))/(5*exp(1)+1/4) 3141559954172709 r005 Re(z^2+c),c=3/23+31/52*I,n=47 3141559955494920 a005 (1/cos(11/152*Pi))^1987 3141559956545995 a007 Real Root Of -730*x^4+669*x^3-48*x^2+587*x+217 3141559957389100 m002 Pi-(Log[Pi]*Sech[Pi])/Pi^7 3141559958566973 r009 Im(z^3+c),c=-1/25+21/61*I,n=14 3141559983160656 m006 (2/5/Pi-4/5)/(4*exp(2*Pi)-3/4) 3141559992865385 a007 Real Root Of -267*x^4-786*x^3-97*x^2-977*x-475 3141559993023746 r005 Re(z^2+c),c=-27/70+4/15*I,n=15 3141559995543219 a007 Real Root Of 190*x^4+638*x^3+3*x^2-578*x-571 3141560001369439 m002 -Sinh[Pi]+(5*Sinh[Pi])/(6*Log[Pi]) 3141560001764155 a007 Real Root Of 276*x^4-727*x^3-592*x^2-459*x-111 3141560024594725 m001 (KhinchinLevy-sin(1))/(MasserGramain+ZetaP(2)) 3141560028797208 r005 Re(z^2+c),c=-9/25+15/43*I,n=14 3141560043284417 m001 (Catalan-Psi(1,1/3))/(-Ei(1,1)+gamma(1)) 3141560051335055 m009 (5*Psi(1,1/3)-3/4)/(1/5*Psi(1,3/4)-2/3) 3141560053152995 r005 Im(z^2+c),c=25/82+5/38*I,n=54 3141560058185611 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3141560058211402 m004 -100*Pi+(4*Tan[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141560058237194 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3141560060327557 a007 Real Root Of 24*x^4+765*x^3+330*x^2-521*x-206 3141560079429566 s002 sum(A241416[n]/(n^3*2^n+1),n=1..infinity) 3141560079741638 m001 (Zeta(5)-BesselI(1,2))/(KhinchinLevy+Stephens) 3141560086376737 b008 -1/28*1/E^7+Pi 3141560091292179 m001 (2^(1/3))^2/ln(CareFree)/(3^(1/3)) 3141560093560051 a007 Real Root Of 212*x^4+78*x^3+904*x^2-949*x-387 3141560095998586 r005 Re(z^2+c),c=-93/70+1/44*I,n=48 3141560098739743 m001 (Pi^(1/2)+GAMMA(23/24))/(ln(3)-exp(-1/2*Pi)) 3141560121977613 s003 concatenated sequence A354617 3141560125010067 a007 Real Root Of 45*x^4-99*x^3-590*x^2-688*x+277 3141560130302752 r005 Im(z^2+c),c=-11/94+11/24*I,n=9 3141560136608388 r005 Im(z^2+c),c=-29/46+1/17*I,n=43 3141560150640828 m001 (BesselK(0,1)-Chi(1))/(-ln(3)+cos(1/12*Pi)) 3141560152217039 r008 a(0)=3,K{-n^6,6+10*n-53*n^2+31*n^3} 3141560152755762 a007 Real Root Of -73*x^4+12*x^3+780*x^2+166*x+306 3141560163967455 r005 Re(z^2+c),c=-41/106+5/19*I,n=24 3141560165179220 r005 Re(z^2+c),c=-17/86+17/35*I,n=5 3141560166070577 m009 (1/4*Psi(1,1/3)-3/5)/(6*Psi(1,1/3)+2/3) 3141560184000474 m001 (Catalan-ArtinRank2)/(Pi-Psi(1,1/3)) 3141560189244093 m001 Niven^cos(1/12*Pi)+Porter 3141560195356449 r005 Re(z^2+c),c=-37/106+25/61*I,n=20 3141560197266146 r009 Im(z^3+c),c=-23/48+14/55*I,n=4 3141560201924935 l006 ln(343/7937) 3141560241211347 r009 Im(z^3+c),c=-7/16+7/33*I,n=14 3141560257898386 s002 sum(A238364[n]/(n^3*exp(n)+1),n=1..infinity) 3141560267108600 m001 (ln(gamma)+arctan(1/2))/(Paris+ZetaP(3)) 3141560275904346 m001 (HardyLittlewoodC3-Kac)/(Weierstrass-ZetaP(3)) 3141560305872414 m001 1/arctan(1/2)^2/FeigenbaumB^2*exp(cosh(1)) 3141560316330434 r005 Im(z^2+c),c=-8/25+17/33*I,n=48 3141560318005167 m005 (1/2*5^(1/2)-4/9)/(-17/48+1/16*5^(1/2)) 3141560323471058 m002 Pi-Log[Pi]/(5*E^Pi*Pi^5) 3141560325414709 m009 (1/4*Psi(1,1/3)-6)/(16/3*Catalan+2/3*Pi^2-2/5) 3141560326625035 r005 Re(z^2+c),c=-10/27+14/47*I,n=11 3141560326730392 m001 (3^(1/2)-gamma(1))/(-BesselK(1,1)+Trott2nd) 3141560329614121 m001 (2/3)^(2^(1/3))/(exp(-Pi)^(2^(1/3))) 3141560329614121 m001 exp(Pi)^(2^(1/3))*(2/3)^(2^(1/3)) 3141560346556440 m001 (2^(1/3)-Chi(1))/(-Kolakoski+TwinPrimes) 3141560356001686 m001 1/exp(Pi)^2/LaplaceLimit^2*exp(1)^2 3141560356415887 r009 Im(z^3+c),c=-1/25+21/61*I,n=12 3141560357415749 l006 ln(2777/3802) 3141560359137888 r005 Im(z^2+c),c=-29/34+2/75*I,n=3 3141560364067444 a007 Real Root Of -235*x^4-435*x^3+854*x^2-123*x+588 3141560369277302 m001 (3^(1/3))^TreeGrowth2nd/Artin 3141560386424131 m001 (Psi(2,1/3)+Ei(1,1))/ZetaP(3) 3141560389554871 a007 Real Root Of -244*x^4-952*x^3-510*x^2+352*x+389 3141560397196023 r005 Im(z^2+c),c=-65/106+3/52*I,n=37 3141560406475949 m001 (Porter+ZetaP(4))/(Pi+Pi^(1/2)) 3141560408198858 a003 cos(Pi*13/109)-cos(Pi*16/111) 3141560408308126 r005 Re(z^2+c),c=29/94+2/23*I,n=17 3141560419829461 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(3*Pi^6) 3141560420092066 m001 1/exp(cos(Pi/5))*PrimesInBinary/sin(Pi/5) 3141560420551158 m006 (1/4*exp(2*Pi)+1/2)/(4/5*exp(2*Pi)-2/3) 3141560422018140 r005 Re(z^2+c),c=-4/11+14/39*I,n=24 3141560434353098 r009 Im(z^3+c),c=-4/15+13/43*I,n=6 3141560435334839 a007 Real Root Of 59*x^4-97*x^3-736*x^2+357*x-369 3141560445100177 r005 Re(z^2+c),c=-9/22+1/59*I,n=9 3141560459988121 m001 Landau-LaplaceLimit^Artin 3141560460809097 a007 Real Root Of -28*x^4-856*x^3+752*x^2+321*x+776 3141560462293046 a007 Real Root Of 177*x^4+742*x^3+894*x^2+883*x-284 3141560465476049 r009 Im(z^3+c),c=-55/114+10/59*I,n=31 3141560477258436 r009 Im(z^3+c),c=-75/122+3/11*I,n=4 3141560480098421 r009 Re(z^3+c),c=-9/20+13/35*I,n=35 3141560482358707 m001 (Pi-3^(1/3))/(FeigenbaumMu+Tribonacci) 3141560498881812 m002 -Pi+(3*Coth[Pi])/Pi^10 3141560511861912 m003 6+5*E^(1/2+Sqrt[5]/2)+Sin[1/2+Sqrt[5]/2]/5 3141560522515694 l006 ln(393/9094) 3141560523014068 a007 Real Root Of -198*x^4-414*x^3+843*x^2+628*x+103 3141560534861036 m001 1/GAMMA(5/12)^2*GolombDickman^2/exp(Zeta(7)) 3141560539994463 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(3*Pi^6) 3141560542026660 r005 Im(z^2+c),c=-21/58+3/61*I,n=17 3141560542416925 m001 Cahen^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141560546267247 r005 Im(z^2+c),c=41/126+7/61*I,n=34 3141560547757458 m001 (-Grothendieck+RenyiParking)/(5^(1/2)+Shi(1)) 3141560563387741 r005 Im(z^2+c),c=15/82+11/43*I,n=32 3141560576554787 m001 (GAMMA(2/3)-ln(2))/(3^(1/3)+Robbin) 3141560593881511 m002 Pi^5+10/(Log[Pi]*ProductLog[Pi]) 3141560598517069 s002 sum(A085286[n]/(n^2*2^n+1),n=1..infinity) 3141560603494169 m006 (3/5*exp(Pi)-2/5)/(4/5*exp(2*Pi)+5/6) 3141560605456952 r005 Im(z^2+c),c=-143/126+4/13*I,n=7 3141560609444006 m001 exp(Riemann2ndZero)^2*MinimumGamma^2*cos(Pi/5) 3141560610446678 m008 (4/5*Pi^3-4/5)/(4/5*Pi^6-5) 3141560611988931 p004 log(28439/1229) 3141560616363538 m002 1+E^Pi+Pi^3/5+ProductLog[Pi] 3141560618752112 m002 -3/Pi^10+Pi 3141560619672117 m001 (CareFree+ZetaP(2))/(Pi+cos(1)) 3141560622690284 r009 Im(z^3+c),c=-17/82+8/25*I,n=8 3141560624867048 m005 (1/6*Catalan-2/5)/(4*exp(1)-3) 3141560630225522 m001 ln(GolombDickman)*FransenRobinson/BesselK(0,1) 3141560633597879 r005 Re(z^2+c),c=1/40+37/58*I,n=11 3141560639320940 r009 Im(z^3+c),c=-25/48+26/55*I,n=27 3141560642168080 a007 Real Root Of -903*x^4+23*x^3-186*x^2+949*x+326 3141560645598135 r008 a(0)=0,K{-n^6,-36+35*n^3+35*n^2-2*n} 3141560646133381 a008 Real Root of (16+7*x+15*x^2-6*x^3) 3141560655278824 r005 Re(z^2+c),c=-7/34+17/30*I,n=19 3141560663885559 r005 Im(z^2+c),c=15/44+8/59*I,n=10 3141560673163851 r009 Im(z^3+c),c=-83/94+5/53*I,n=2 3141560677925687 a007 Real Root Of 348*x^4-890*x^3+76*x^2-888*x-28 3141560687051261 s001 sum(exp(-Pi/2)^n*A097186[n],n=1..infinity) 3141560693837817 m001 1/GAMMA(1/24)/exp(CopelandErdos)*cos(Pi/12)^2 3141560697085076 m001 (OneNinth-Rabbit)/(Tetranacci-Trott) 3141560701488630 r005 Re(z^2+c),c=-19/14+10/247*I,n=44 3141560701546246 s002 sum(A106185[n]/(n^3*pi^n+1),n=1..infinity) 3141560708828509 m001 BesselK(0,1)*Porter^2*ln(cos(Pi/12)) 3141560709972195 r005 Im(z^2+c),c=-13/50+25/51*I,n=59 3141560718379622 a003 cos(Pi*4/83)*sin(Pi*7/68) 3141560723548927 a007 Real Root Of -367*x^4-135*x^3-136*x^2+529*x+179 3141560736902860 m008 (1/3*Pi^2-3)/(3*Pi^3-3/4) 3141560738175545 m002 -Pi+(3*Tanh[Pi])/Pi^10 3141560747419677 m001 Porter^FeigenbaumKappa-Zeta(1/2) 3141560748270490 r005 Im(z^2+c),c=1/82+39/61*I,n=48 3141560753793556 m001 (Artin+Gompertz)/(cos(1/5*Pi)+BesselI(0,2)) 3141560768255265 l006 ln(6402/8765) 3141560772129628 r009 Re(z^3+c),c=-17/38+11/30*I,n=31 3141560780314550 r005 Re(z^2+c),c=-19/34+41/92*I,n=41 3141560784541395 a003 cos(Pi*4/67)*cos(Pi*44/111) 3141560788046095 s002 sum(A105098[n]/(n*2^n+1),n=1..infinity) 3141560794950675 r009 Im(z^3+c),c=-3/82+14/41*I,n=3 3141560798504575 m001 (ln(2+3^(1/2))+Zeta(1,2))/(Bloch-Lehmer) 3141560804639787 r005 Re(z^2+c),c=-10/13+5/22*I,n=4 3141560817564838 m005 (1/2*3^(1/2)-1/5)/(10/11*3^(1/2)+6/11) 3141560825223148 a007 Real Root Of 358*x^4-38*x^3-296*x^2-586*x+211 3141560845229469 m008 (3/5*Pi^2+1/2)/(2/3*Pi^5+2/5) 3141560853849266 r005 Re(z^2+c),c=-21/34+31/111*I,n=2 3141560856915661 r005 Re(z^2+c),c=-1+85/234*I,n=4 3141560857860977 r005 Im(z^2+c),c=-7/10+9/202*I,n=10 3141560860690139 m006 (4*exp(Pi)-3)/(1/3*ln(Pi)-2/3) 3141560899555513 m001 GaussAGM(1,1/sqrt(2))*sqrt(Pi)+GAMMA(13/24) 3141560900585525 m001 (BesselI(1,1)-Salem)/DuboisRaymond 3141560909492824 m001 (-polylog(4,1/2)+Lehmer)/(Si(Pi)+cos(1)) 3141560926014060 m001 1/exp(LaplaceLimit)/GaussKuzminWirsing/cos(1) 3141560931450320 r002 5th iterates of z^2 + 3141560943489403 s003 concatenated sequence A277171 3141560944583588 r005 Im(z^2+c),c=-3/31+13/31*I,n=35 3141560947333400 b008 Pi+ExpIntegralEi[-3*E] 3141560954147855 m002 -(Pi^3*Coth[Pi])-Log[Pi]+Pi^2*Sech[Pi] 3141560955355120 a007 Real Root Of -413*x^4+379*x^3+104*x^2+382*x-138 3141560955530858 a007 Real Root Of -38*x^4-49*x^3+96*x^2-584*x-600 3141560968719854 a007 Real Root Of -73*x^4+246*x^3+412*x^2+934*x-341 3141560977676552 m001 (2^(1/3)-ln(2^(1/2)+1))/(Landau+Robbin) 3141560978593647 r005 Re(z^2+c),c=2/7+1/61*I,n=17 3141560992677878 m001 (polylog(4,1/2)+PlouffeB)/(BesselI(0,1)+Ei(1)) 3141560995942769 m004 -3/E^(Sqrt[5]*Pi)+100*Pi*Tanh[Sqrt[5]*Pi] 3141560996800926 m004 (-5*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141561013862475 r008 a(0)=3,K{-n^6,1+6*n^3-3*n^2-7*n} 3141561017011562 a007 Real Root Of -155*x^4-649*x^3-594*x^2+37*x+954 3141561023745886 a007 Real Root Of -109*x^4-193*x^3+141*x^2-901*x+411 3141561037238704 r009 Re(z^3+c),c=-29/56+3/34*I,n=41 3141561040584089 m001 (KhinchinHarmonic+Thue)/(Zeta(5)-exp(-1/2*Pi)) 3141561051719314 k008 concat of cont frac of 3141561059163500 m001 Artin*FeigenbaumDelta+HardHexagonsEntropy 3141561079308451 r005 Im(z^2+c),c=-13/10+4/133*I,n=25 3141561081905551 r005 Im(z^2+c),c=3/118+15/23*I,n=31 3141561082986656 l006 ln(3625/4963) 3141561096908309 s002 sum(A174405[n]/(n*2^n-1),n=1..infinity) 3141561102173711 k006 concat of cont frac of 3141561111212324 k006 concat of cont frac of 3141561111314135 k007 concat of cont frac of 3141561111652132 k007 concat of cont frac of 3141561113111211 k009 concat of cont frac of 3141561115922198 a007 Real Root Of 100*x^4-137*x^3+149*x^2-761*x-259 3141561116861122 k007 concat of cont frac of 3141561119222123 k009 concat of cont frac of 3141561121112116 k007 concat of cont frac of 3141561121121161 k006 concat of cont frac of 3141561121214121 k007 concat of cont frac of 3141561121411211 k006 concat of cont frac of 3141561125112212 k006 concat of cont frac of 3141561127890478 m005 (1/2*Pi+9/10)/(2/7*Pi-1/9) 3141561138264324 r005 Im(z^2+c),c=4/29+15/52*I,n=22 3141561138308512 a007 Real Root Of 286*x^4+601*x^3-946*x^2-274*x-748 3141561139904442 r005 Im(z^2+c),c=23/98+7/33*I,n=22 3141561144113111 k007 concat of cont frac of 3141561151098415 r008 a(0)=3,K{-n^6,13-49*n+23*n^2+7*n^3} 3141561151388514 r005 Re(z^2+c),c=-19/62+29/60*I,n=18 3141561155653911 k009 concat of cont frac of 3141561159123139 k006 concat of cont frac of 3141561159314128 k006 concat of cont frac of 3141561168384511 r005 Im(z^2+c),c=-61/94+4/15*I,n=3 3141561171606302 s002 sum(A136298[n]/(n^3*exp(n)+1),n=1..infinity) 3141561175113111 k007 concat of cont frac of 3141561177402985 r009 Im(z^3+c),c=-43/78+12/41*I,n=37 3141561189572814 m002 -Pi+ProductLog[Pi]/(Pi^9*Log[Pi]) 3141561190677048 r002 13th iterates of z^2 + 3141561194504467 r005 Re(z^2+c),c=-1/3+28/61*I,n=49 3141561197332111 k006 concat of cont frac of 3141561198769313 m001 exp(1/exp(1))^Psi(2,1/3)/(Ei(1)^Psi(2,1/3)) 3141561200558017 r005 Im(z^2+c),c=15/86+16/61*I,n=26 3141561204479341 a001 47/165580141*46368^(13/15) 3141561204732615 a001 47/86267571272*63245986^(13/15) 3141561207546128 m001 (GAMMA(23/24)+ArtinRank2)/(Bloch+ZetaP(4)) 3141561211912118 k007 concat of cont frac of 3141561214517162 k008 concat of cont frac of 3141561221053191 m001 (cos(1/12*Pi)+BesselI(1,1))/(Pi+3^(1/2)) 3141561221172122 k008 concat of cont frac of 3141561221410111 k007 concat of cont frac of 3141561223957742 m005 (1/3*gamma-3/7)/(2/7*gamma-11/12) 3141561229615925 m005 (1/2*exp(1)+5/7)/(11/12*2^(1/2)-7/11) 3141561233121124 k006 concat of cont frac of 3141561237925054 b008 Pi*JacobiSC[1/10,2] 3141561237977413 s002 sum(A276111[n]/(10^n+1),n=1..infinity) 3141561239632710 a007 Real Root Of 333*x^4+719*x^3+832*x^2-716*x-288 3141561241203707 m005 (1/2*gamma+5/7)/(3*Catalan+4/9) 3141561250639262 r009 Re(z^3+c),c=-43/114+10/39*I,n=9 3141561253120876 m001 (Lehmer+MasserGramain)/(Ei(1,1)-sin(1/12*Pi)) 3141561255809937 m001 (Gompertz-Kac)/(GAMMA(13/24)-CareFree) 3141561264124024 m001 ln(GAMMA(2/3))/Paris^2*Zeta(7) 3141561266825674 m001 (-Kac+ReciprocalLucas)/(cos(1)-cos(1/12*Pi)) 3141561269049223 m001 ln(GAMMA(7/24))^2*Riemann3rdZero/Zeta(7) 3141561275029268 m001 GAMMA(5/24)^exp(-1/2*Pi)+exp(gamma) 3141561288129617 a007 Real Root Of -657*x^4-819*x^3+22*x^2+715*x-195 3141561292973312 m005 (1/3*Zeta(3)+1/11)/(3/8*exp(1)+6/11) 3141561294172210 k007 concat of cont frac of 3141561299254518 m004 -4/3+(5*Sqrt[5])/Pi+Tan[Sqrt[5]*Pi] 3141561305370056 m001 1/Rabbit*Cahen*ln(sqrt(2)) 3141561315029664 r004 Im(z^2+c),c=-41/34-1/12*I,z(0)=-1,n=3 3141561316263092 m004 -4+(5*Pi)/Log[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 3141561320309197 m008 (5*Pi^6-5/6)/(5*Pi^5-1/4) 3141561321269879 r005 Im(z^2+c),c=-5/8+72/191*I,n=14 3141561329680820 r005 Im(z^2+c),c=19/106+15/58*I,n=22 3141561331151736 b008 (-3*E)/31+EulerGamma 3141561331685654 r009 Im(z^3+c),c=-31/70+9/44*I,n=26 3141561335413468 m001 (-Ei(1)+Cahen)/(exp(1)+BesselI(0,1)) 3141561335756107 r009 Im(z^3+c),c=-29/74+8/33*I,n=16 3141561337312996 a009 1/12*(3^(1/3)*12^(3/4)-9^(3/4))^(1/2)*12^(1/4) 3141561351937318 r002 11th iterates of z^2 + 3141561359818330 r005 Im(z^2+c),c=21/86+13/64*I,n=23 3141561377590077 p004 log(14879/643) 3141561387649487 a001 1/141*514229^(48/59) 3141561403287200 r009 Re(z^3+c),c=-23/54+1/3*I,n=23 3141561408260753 m002 -Pi+1/(Pi^9*ProductLog[Pi]) 3141561409566798 m004 -100*Pi+(Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/4 3141561409591521 m004 -100*Pi+(Sqrt[5]*Pi)/(2*E^(Sqrt[5]*Pi)) 3141561409616243 m004 -100*Pi+(Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/4 3141561411121112 k006 concat of cont frac of 3141561414098759 m001 BesselK(1,1)^2*ln(Riemann1stZero)^2/cos(Pi/5) 3141561433125580 a007 Real Root Of 14*x^4+432*x^3-216*x^2+951*x+637 3141561439446249 m005 (3/5*exp(1)-3)/(2/5*gamma-2/3) 3141561441527656 p001 sum((-1)^n/(481*n+304)/(8^n),n=0..infinity) 3141561442383874 b008 Pi+4*ExpIntegralEi[-3*Pi] 3141561442767116 r005 Im(z^2+c),c=-33/62+12/43*I,n=4 3141561443472241 m001 (3^(1/2)-FeigenbaumB)/(-Landau+Magata) 3141561445648902 r005 Re(z^2+c),c=-1/20+23/34*I,n=44 3141561458115328 m002 -Pi+(4*Csch[Pi]^2)/Pi^6 3141561467028876 m001 FeigenbaumD-ln(2^(1/2)+1)+Totient 3141561472856446 b008 Pi-ExpIntegralE[3,8] 3141561478382189 r005 Re(z^2+c),c=-27/74+5/14*I,n=22 3141561480668765 s002 sum(A145245[n]/(2^n+1),n=1..infinity) 3141561486120794 r009 Im(z^3+c),c=-31/64+11/51*I,n=6 3141561495169136 r008 a(0)=0,K{-n^6,62-33*n^3-28*n^2-33*n} 3141561497071506 a007 Real Root Of -526*x^4+68*x^3+888*x^2+415*x-215 3141561498255598 m001 (ln(2)+1/2)/(-Zeta(3)+5) 3141561500727343 r005 Im(z^2+c),c=-27/31+11/50*I,n=17 3141561502386433 m001 (Porter+ZetaQ(4))/(Artin-sin(1)) 3141561512707382 a007 Real Root Of 299*x^4+808*x^3-433*x^2-75*x-34 3141561513308402 a001 8/123*322^(3/11) 3141561513936046 r005 Re(z^2+c),c=-15/46+16/39*I,n=12 3141561524740959 m002 -Pi+Tanh[Pi]/(Pi^9*ProductLog[Pi]) 3141561533447262 l006 ln(4473/6124) 3141561535883104 a007 Real Root Of 343*x^4+937*x^3-338*x^2+241*x-265 3141561539943861 h001 (5/11*exp(2)+4/7)/(1/4*exp(1)+4/7) 3141561545929485 r002 12th iterates of z^2 + 3141561563504492 h001 (5/9*exp(1)+1/9)/(3/5*exp(2)+8/11) 3141561574409679 m002 -Pi+(4*Csch[Pi]*Sech[Pi])/Pi^6 3141561574684278 r009 Im(z^3+c),c=-47/118+39/62*I,n=51 3141561576649966 a005 (1/sin(67/145*Pi))^1455 3141561578474964 r005 Im(z^2+c),c=-31/74+34/61*I,n=62 3141561580578882 m004 -10*Pi+(125*Pi)/E^(2*Sqrt[5]*Pi) 3141561590166783 m005 (1/2*gamma+9/10)/(1/8*3^(1/2)-4) 3141561594486647 r005 Re(z^2+c),c=-9/10+107/226*I,n=2 3141561594821854 m001 (Magata+QuadraticClass)/(exp(1/Pi)+gamma(2)) 3141561598220202 r009 Re(z^3+c),c=-23/52+8/23*I,n=17 3141561612944243 m001 1/(2^(1/3))*GlaisherKinkelin/exp(sin(Pi/5))^2 3141561621654410 m001 (ln(Pi)-BesselK(1,1))^Ei(1) 3141561626585363 m001 HardyLittlewoodC5^ZetaQ(3)-Mills 3141561631981745 m002 -Pi+ProductLog[Pi]/(36*Pi^6) 3141561650880344 r005 Re(z^2+c),c=-29/90+23/47*I,n=52 3141561662568328 r005 Im(z^2+c),c=-23/74+18/35*I,n=40 3141561666144406 a007 Real Root Of -344*x^4-929*x^3+768*x^2+666*x-784 3141561668029794 r005 Re(z^2+c),c=-37/122+33/58*I,n=63 3141561686289216 s002 sum(A182383[n]/(pi^n-1),n=1..infinity) 3141561690270494 m002 -Pi+(4*Sech[Pi]^2)/Pi^6 3141561694317380 m005 (1/2*3^(1/2)+8/9)/(5/7*Zeta(3)-3/10) 3141561698572565 s001 sum(exp(-Pi/3)^(n-1)*A137379[n],n=1..infinity) 3141561702820249 a001 1/3*21^(14/19) 3141561708061328 m002 Pi-Cosh[Pi]/(4*Pi^10) 3141561719396709 r005 Im(z^2+c),c=-9/14+1/150*I,n=16 3141561725334822 h001 (7/10*exp(2)+1/2)/(1/7*exp(2)+3/4) 3141561729901528 r002 62th iterates of z^2 + 3141561749453592 a007 Real Root Of -259*x^4+895*x^3+745*x^2+682*x+171 3141561775679138 r008 a(0)=0,K{-n^6,-26+25*n^3+70*n^2-37*n} 3141561779983128 r005 Im(z^2+c),c=-13/60+37/58*I,n=26 3141561796680920 m005 (1/3*Pi+1/9)/(Pi+6/11) 3141561798143794 m001 Pi-Trott^UniversalParabolic 3141561799444175 m001 GAMMA(1/3)^2/Tribonacci^2*ln(GAMMA(5/24)) 3141561801138771 b008 -1/4*1/E^9+Pi 3141561814219809 m008 (5*Pi^6+1)/(5*Pi^5+1/3) 3141561823423899 m002 Pi-Sinh[Pi]/(4*Pi^10) 3141561835888311 a001 2/109801*199^(36/37) 3141561839259590 m004 -12-5*Sqrt[5]*Pi+25*Pi*Tanh[Sqrt[5]*Pi] 3141561840329359 l006 ln(5321/7285) 3141561841134611 k006 concat of cont frac of 3141561852451504 r002 3th iterates of z^2 + 3141561853175716 m001 ZetaR(2)^exp(1/Pi)*ZetaR(2)^Psi(1,1/3) 3141561872616046 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/Pi^7 3141561895391938 m001 1/Robbin*exp(Bloch)^2*cos(Pi/5) 3141561897626790 a007 Real Root Of -250*x^4-677*x^3+609*x^2+938*x+297 3141561903558295 m001 (Magata-Sarnak)/(BesselK(1,1)-Backhouse) 3141561908083609 m001 (5^(1/2)-MasserGramain)/(ZetaP(2)+ZetaQ(2)) 3141561921003427 a007 Real Root Of -416*x^4+255*x^3-754*x^2+680*x+300 3141561921756258 q001 1/318313 3141561932528026 b008 -5/E^12+Pi 3141561935365000 r009 Im(z^3+c),c=-9/52+20/61*I,n=14 3141561952792023 r005 Re(z^2+c),c=21/64+23/60*I,n=11 3141561955624115 a008 Real Root of (1+x-6*x^2+4*x^3+5*x^4+6*x^5) 3141561962738596 m001 1/exp(GAMMA(5/6))^2*GAMMA(3/4)^2*sqrt(2)^2 3141561971600593 a003 sin(Pi*12/109)*sin(Pi*20/53) 3141561976399534 a007 Real Root Of -312*x^4-649*x^3+195*x^2+991*x+275 3141561978618237 m005 (1/2*Catalan-7/11)/(5/9*Zeta(3)-1/10) 3141561987365170 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/Pi^7 3141561987937660 m001 Tribonacci^Conway/CareFree 3141561997982833 a007 Real Root Of -800*x^4-960*x^3+222*x^2+957*x-285 3141562009952722 r005 Im(z^2+c),c=-53/110+3/55*I,n=18 3141562021044672 r005 Im(z^2+c),c=-9/56+13/28*I,n=9 3141562043955035 m004 -100*Pi*Coth[Sqrt[5]*Pi]+2*Csch[Sqrt[5]*Pi] 3141562043983190 m004 -4/E^(Sqrt[5]*Pi)+100*Pi*Coth[Sqrt[5]*Pi] 3141562044011344 m004 -100*Pi*Coth[Sqrt[5]*Pi]+2*Sech[Sqrt[5]*Pi] 3141562044349259 a007 Real Root Of -570*x^4+100*x^3+14*x^2+327*x+110 3141562050600930 r005 Re(z^2+c),c=3/94+21/25*I,n=3 3141562054856842 r009 Re(z^3+c),c=-5/118+7/17*I,n=5 3141562061403696 a007 Real Root Of -803*x^4-660*x^3-858*x^2+732*x+302 3141562062842502 l006 ln(6169/8446) 3141562064156206 q001 901/2868 3141562068438908 m005 (1/2*3^(1/2)-7/10)/(1/8*gamma-1/8) 3141562072380019 r005 Re(z^2+c),c=17/44+11/53*I,n=10 3141562083050740 r005 Re(z^2+c),c=19/66+1/10*I,n=45 3141562083063148 m001 exp(BesselK(0,1))^2/Paris^2*log(2+sqrt(3)) 3141562083604183 m005 (1/2*gamma-9/11)/(10/11*3^(1/2)+1/9) 3141562099817938 a007 Real Root Of 282*x^4+655*x^3-551*x^2+429*x-374 3141562100738279 m001 (Artin+Grothendieck)/(MasserGramain-MertensB3) 3141562103489608 m001 sinh(1)^2*GAMMA(5/12)^2*ln(sqrt(1+sqrt(3))) 3141562111511641 k006 concat of cont frac of 3141562116611401 r005 Re(z^2+c),c=-17/52+21/44*I,n=60 3141562121112887 a007 Real Root Of -698*x^4-236*x^3-506*x^2+161*x+100 3141562123811512 k006 concat of cont frac of 3141562125990260 b008 Pi*ModularLambda[I/11*(1+Sqrt[2])] 3141562126508871 r009 Re(z^3+c),c=-1/30+6/41*I,n=6 3141562129131151 k007 concat of cont frac of 3141562131281664 r005 Re(z^2+c),c=8/29+5/56*I,n=19 3141562132685276 h001 (7/12*exp(1)+1/6)/(5/7*exp(2)+3/10) 3141562137371832 m001 1/(3^(1/3))*LaplaceLimit*exp(GAMMA(1/6))^2 3141562138268862 m001 Paris/PlouffeB/TwinPrimes 3141562141782472 m002 -5/(E^(2*Pi)*Pi^5)+Pi 3141562142992151 r005 Re(z^2+c),c=37/122+23/45*I,n=9 3141562154188610 m005 (1/2*2^(1/2)-7/12)/(5/6*gamma-7/8) 3141562154849386 r005 Re(z^2+c),c=-7/17+3/55*I,n=17 3141562164358442 s002 sum(A036701[n]/(n^2*pi^n-1),n=1..infinity) 3141562165949720 a007 Real Root Of 296*x^4+662*x^3-642*x^2+468*x-500 3141562189469525 r009 Re(z^3+c),c=-1/50+14/19*I,n=9 3141562207836887 m001 (ln(5)+ln(2^(1/2)+1))/(Kolakoski-ZetaQ(4)) 3141562213535770 r005 Im(z^2+c),c=-83/98+4/19*I,n=6 3141562216114111 k009 concat of cont frac of 3141562223882928 a001 11/2971215073*2584^(13/23) 3141562224362515 k007 concat of cont frac of 3141562230243307 m001 1/GAMMA(1/6)*CopelandErdos*exp(Zeta(9))^2 3141562231574497 l006 ln(7017/9607) 3141562232314234 r005 Im(z^2+c),c=1/34+16/45*I,n=14 3141562235098937 m001 Landau^(3^(1/2))-Robbin 3141562239104878 m001 (Si(Pi)-sin(1))/(-GAMMA(17/24)+ErdosBorwein) 3141562241722900 m001 exp(Pi)^ThueMorse/((3^(1/3))^ThueMorse) 3141562244220845 m001 1/BesselJ(0,1)/exp(TwinPrimes)/arctan(1/2)^2 3141562248535236 a007 Real Root Of -221*x^4-573*x^3+265*x^2-474*x-344 3141562248932458 r009 Re(z^3+c),c=-1/30+6/41*I,n=7 3141562251117363 r009 Re(z^3+c),c=-1/30+6/41*I,n=9 3141562251201246 r009 Re(z^3+c),c=-1/30+6/41*I,n=11 3141562251201669 r009 Re(z^3+c),c=-1/30+6/41*I,n=13 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=16 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=18 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=20 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=23 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=25 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=27 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=30 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=32 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=34 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=35 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=37 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=39 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=33 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=31 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=29 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=28 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=26 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=24 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=22 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=21 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=19 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=17 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=15 3141562251201670 r009 Re(z^3+c),c=-1/30+6/41*I,n=14 3141562251201692 r009 Re(z^3+c),c=-1/30+6/41*I,n=12 3141562251208273 r009 Re(z^3+c),c=-1/30+6/41*I,n=10 3141562251996433 r009 Re(z^3+c),c=-1/30+6/41*I,n=8 3141562255032717 a008 Real Root of x^3-x^2+105*x-351 3141562257524274 b008 -1/30*1/E^7+Pi 3141562275832024 m001 1/BesselK(1,1)^2*ln(Niven)*Zeta(1/2)^2 3141562277070008 a001 1/140728068720*165580141^(13/23) 3141562299600930 r009 Im(z^3+c),c=-9/52+20/61*I,n=16 3141562303459020 m005 (1/3*exp(1)+1/10)/(8/9*gamma-5/6) 3141562307180111 m001 1/GAMMA(11/12)*LaplaceLimit^2*ln(GAMMA(5/12)) 3141562311466220 r009 Im(z^3+c),c=-23/94+13/42*I,n=12 3141562314059363 r005 Re(z^2+c),c=-13/34+16/55*I,n=17 3141562314661929 s002 sum(A232748[n]/(n^2*pi^n-1),n=1..infinity) 3141562317255762 p001 sum(1/(605*n+32)/(10^n),n=0..infinity) 3141562319106745 m005 (1/2*3^(1/2)+9/11)/(5/11*Zeta(3)-3/5) 3141562323760185 m001 Artin-FeigenbaumB-FeigenbaumD 3141562327698250 m005 (1/3*exp(1)-1/4)/(8/11*Catalan-7/8) 3141562330718566 m002 -Pi+ProductLog[Pi]/(5*E^Pi*Pi^5) 3141562336057470 r009 Im(z^3+c),c=-9/52+20/61*I,n=17 3141562336941109 r009 Im(z^3+c),c=-9/52+20/61*I,n=19 3141562339616868 r009 Im(z^3+c),c=-9/52+20/61*I,n=22 3141562339719979 r009 Im(z^3+c),c=-9/52+20/61*I,n=24 3141562339724221 r009 Im(z^3+c),c=-9/52+20/61*I,n=25 3141562339725656 r009 Im(z^3+c),c=-9/52+20/61*I,n=27 3141562339726223 r009 Im(z^3+c),c=-9/52+20/61*I,n=30 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=33 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=32 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=35 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=38 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=41 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=43 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=44 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=46 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=49 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=51 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=52 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=54 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=57 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=60 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=59 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=62 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=63 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=64 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=61 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=58 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=56 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=55 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=53 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=50 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=48 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=47 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=45 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=40 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=42 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=39 3141562339726250 r009 Im(z^3+c),c=-9/52+20/61*I,n=36 3141562339726251 r009 Im(z^3+c),c=-9/52+20/61*I,n=37 3141562339726251 r009 Im(z^3+c),c=-9/52+20/61*I,n=34 3141562339726259 r009 Im(z^3+c),c=-9/52+20/61*I,n=31 3141562339726290 r009 Im(z^3+c),c=-9/52+20/61*I,n=29 3141562339726321 r009 Im(z^3+c),c=-9/52+20/61*I,n=28 3141562339728002 r009 Im(z^3+c),c=-9/52+20/61*I,n=26 3141562339767235 r009 Im(z^3+c),c=-9/52+20/61*I,n=23 3141562339821526 r009 Im(z^3+c),c=-9/52+20/61*I,n=21 3141562340240915 r009 Im(z^3+c),c=-9/52+20/61*I,n=20 3141562346441948 r009 Im(z^3+c),c=-9/52+20/61*I,n=18 3141562352958319 a001 9227465/47*199^(11/21) 3141562354265495 r005 Im(z^2+c),c=27/94+7/45*I,n=33 3141562362111229 k006 concat of cont frac of 3141562372984173 r009 Im(z^3+c),c=-51/98+10/51*I,n=29 3141562383989418 h001 (-4*exp(1/2)-1)/(-4*exp(1/3)+8) 3141562386969951 b008 -2/(3*E^10)+Pi 3141562399755726 r009 Im(z^3+c),c=-19/46+13/57*I,n=29 3141562403484075 m001 BesselJ(0,1)*GaussAGM+FeigenbaumAlpha 3141562404875260 a007 Real Root Of -755*x^4-209*x^3+557*x^2+407*x-169 3141562406903865 r009 Im(z^3+c),c=-9/52+20/61*I,n=13 3141562408815539 r005 Re(z^2+c),c=-37/90+27/44*I,n=6 3141562416074309 r005 Im(z^2+c),c=-5/118+26/55*I,n=6 3141562416291972 r005 Im(z^2+c),c=-75/106+4/29*I,n=33 3141562417692843 r005 Re(z^2+c),c=-11/19+3/10*I,n=9 3141562420604086 m005 (1/2*3^(1/2)-1/2)/(7/8*Catalan+4/11) 3141562420687369 r005 Im(z^2+c),c=-59/122+3/56*I,n=21 3141562420829770 b008 Pi-Erfc[E]/4 3141562420832720 h001 (1/7*exp(1)+2/11)/(1/6*exp(2)+7/12) 3141562422239464 b008 Pi*ModularLambda[I/45*Pi^2] 3141562422246557 a009 1/2*(14*2^(2/3)+7^(1/2))^(1/2)*2^(1/3) 3141562429572015 m001 OneNinth^FeigenbaumDelta-Pi 3141562431320351 r005 Re(z^2+c),c=1/106+5/23*I,n=19 3141562440840137 m008 (5/6*Pi^3-2/5)/(5/6*Pi^4-1/5) 3141562451672937 r005 Im(z^2+c),c=-37/106+8/15*I,n=55 3141562454203419 m005 (1/2*Zeta(3)+7/10)/(1/10*2^(1/2)-5/9) 3141562455379201 a007 Real Root Of 308*x^4+879*x^3+72*x^2+994*x-335 3141562456331568 m001 (3^(1/3)-cos(1))/(OrthogonalArrays+Porter) 3141562477514991 m005 (1/2*gamma+1/7)/(-1/9+1/9*5^(1/2)) 3141562489259272 a008 Real Root of x^4-2*x^3-28*x^2-56*x-59 3141562492707041 m002 Pi-Log[Pi]/(4*Pi^8) 3141562494319665 r005 Re(z^2+c),c=-13/14+43/171*I,n=46 3141562501199008 r008 a(0)=0,K{-n^6,-62+26*n^3+49*n^2+19*n} 3141562501334430 a007 Real Root Of -14*x^4+29*x^3-269*x^2+550*x-147 3141562503803367 r005 Re(z^2+c),c=-13/14+39/209*I,n=40 3141562511278121 k007 concat of cont frac of 3141562511639667 a007 Real Root Of -183*x^4-450*x^3+463*x^2+168*x-169 3141562517093502 b008 (8+SinIntegral[6])/3 3141562521639899 m001 (Riemann1stZero-ZetaP(2))/(exp(-1/2*Pi)-Cahen) 3141562524029814 a008 Real Root of (2+5*x-2*x^2+5*x^3-6*x^4+6*x^5) 3141562524470747 m005 (1/2*3^(1/2)+5/11)/(2/9*Catalan+4) 3141562526376255 r009 Im(z^3+c),c=-9/52+20/61*I,n=15 3141562532219639 m005 (1/2*Zeta(3)-1/2)/(1/8*Pi-5/7) 3141562532572356 m005 (1/2*2^(1/2)-10/11)/(-53/72+1/24*5^(1/2)) 3141562547711829 m001 (BesselI(0,1)-Zeta(1/2))/(Thue+ZetaQ(3)) 3141562559951507 a007 Real Root Of -537*x^4+133*x^3-228*x^2+879*x+308 3141562563049603 r005 Im(z^2+c),c=5/86+21/62*I,n=19 3141562572728627 m001 (gamma(1)+GolombDickman)/(MertensB2-Thue) 3141562591183927 m005 (1/2*Zeta(3)+5/12)/(7/9*gamma-1/8) 3141562597445630 r005 Im(z^2+c),c=-6/23+26/53*I,n=60 3141562608971802 a008 Real Root of x^2-x-98380 3141562610008045 a001 51841/72*2584^(3/16) 3141562610044028 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 3141562610067800 m004 10*Pi-Sin[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141562610091572 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 3141562611196111 a007 Real Root Of -800*x^4+652*x^3+795*x^2-6*x-89 3141562622115569 a001 6119/36*5702887^(3/16) 3141562623853747 r009 Re(z^3+c),c=-8/19+14/43*I,n=23 3141562626135510 r005 Im(z^2+c),c=-37/78+3/56*I,n=24 3141562627989760 m001 (2^(1/3)+ln(5))/(-Pi^(1/2)+Thue) 3141562629650660 m001 (ln(Pi)-arctan(1/2))/(polylog(4,1/2)-Khinchin) 3141562630051923 m009 (8/3*Catalan+1/3*Pi^2-1/6)/(6*Psi(1,2/3)-2/3) 3141562631222816 m002 -Pi+Csch[Pi]/(3*Pi^6) 3141562642133112 k007 concat of cont frac of 3141562647095784 a001 123/1134903170*121393^(1/11) 3141562647099660 a001 123/2971215073*4807526976^(1/11) 3141562647099660 a001 41/1602508992*956722026041^(1/11) 3141562647099661 a001 123/1836311903*24157817^(1/11) 3141562648542486 m001 (OneNinth-RenyiParking)/(CareFree+MertensB3) 3141562654154590 r005 Re(z^2+c),c=-2/7+22/41*I,n=23 3141562655096384 m001 1/exp(GAMMA(1/3))^2*Porter^2*GAMMA(1/6)^2 3141562656958274 m003 4/3-Log[1/2+Sqrt[5]/2]+6*Sech[1/2+Sqrt[5]/2] 3141562657753867 m008 (5*Pi^5-4/5)/(5*Pi^4-1/4) 3141562663962676 m005 (1/2*2^(1/2)+3)/(1/5*exp(1)+7/11) 3141562665065154 r005 Im(z^2+c),c=-37/34+3/82*I,n=16 3141562679496803 r005 Re(z^2+c),c=-17/32+50/61*I,n=3 3141562687287867 m002 -2/(3*E^Pi*Pi^6)+Pi 3141562696690039 m005 (1/2*3^(1/2)+5/7)/(6/7*Zeta(3)+4) 3141562706571050 a007 Real Root Of 212*x^4-746*x^3-129*x^2-791*x+25 3141562706625772 m005 (1/2*gamma-7/11)/(3/11*Catalan+6/7) 3141562721459825 a001 321/8*12586269025^(3/16) 3141562721765530 l006 ln(50/1157) 3141562727598517 m001 (Pi*Psi(2,1/3)+ZetaQ(4))/Psi(2,1/3) 3141562737451711 a007 Real Root Of -250*x^4+146*x^3-859*x^2+421*x+224 3141562743143912 m002 -Pi+Sech[Pi]/(3*Pi^6) 3141562747891985 b008 Pi*Cos[Pi/720] 3141562750490089 r005 Im(z^2+c),c=-11/36+31/60*I,n=27 3141562757999008 m005 (1/3*5^(1/2)-1/12)/(12/11+5/11*5^(1/2)) 3141562778238137 r005 Im(z^2+c),c=-61/98+4/33*I,n=4 3141562781571498 a007 Real Root Of -696*x^4-733*x^3+548*x^2+934*x-318 3141562788254330 a007 Real Root Of -192*x^4-517*x^3+318*x^2-110*x-812 3141562788833206 m001 (Catalan-cos(1))/(-ln(gamma)+MasserGramain) 3141562794457380 a001 521/377*956722026041^(4/11) 3141562797975947 s002 sum(A204733[n]/(pi^n),n=1..infinity) 3141562799364956 m005 (1/2*5^(1/2)-1/7)/(2*Zeta(3)+7/10) 3141562800605085 a001 41/233802911*610^(1/11) 3141562802216955 m001 1/exp(PisotVijayaraghavan)^2*Artin/sin(1) 3141562810506712 b008 Pi-3*AiryAi[6] 3141562811133111 k008 concat of cont frac of 3141562811134267 r005 Im(z^2+c),c=-4/15+29/52*I,n=14 3141562813370474 a007 Real Root Of 725*x^4+18*x^3+163*x^2-813*x-278 3141562813556605 a008 Real Root of (2+6*x-x^2+2*x^3+5*x^4+x^5) 3141562816498402 m002 -Pi+3/(Pi^10*ProductLog[Pi]) 3141562817569744 m005 (1/2*exp(1)-3)/(6*Catalan-3/11) 3141562823522922 m004 -5*Pi+6*Pi*Tanh[Sqrt[5]*Pi] 3141562826175425 a009 1/23*11^(2/3)+1/23*3^(3/4) 3141562837842014 m002 -E^Pi+Pi^3+Pi^5+Pi*Sech[Pi] 3141562840592457 r009 Re(z^3+c),c=-11/24+21/55*I,n=29 3141562854647775 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(3*Pi^6) 3141562868009055 a007 Real Root Of -2*x^4-62*x^3-3*x^2-927*x-388 3141562872765577 r009 Re(z^3+c),c=-47/98+24/59*I,n=33 3141562879548032 m001 (Champernowne+Kolakoski)/(Ei(1,1)-gamma(1)) 3141562888193437 a003 sin(Pi*1/105)/cos(Pi*8/81) 3141562889679068 r005 Re(z^2+c),c=-157/126+11/63*I,n=14 3141562891584249 a007 Real Root Of 369*x^4-535*x^3-776*x^2-848*x-210 3141562895719769 m001 (GAMMA(23/24)-DuboisRaymond)/(Mills+Totient) 3141562896691351 r005 Im(z^2+c),c=-113/122+11/43*I,n=3 3141562897673549 r005 Re(z^2+c),c=-49/122+5/29*I,n=31 3141562905815385 m005 (1/6*Pi-1/5)/(-1/12+1/12*5^(1/2)) 3141562914589838 a007 Real Root Of 529*x^4-742*x^3-996*x^2-738*x+348 3141562925341696 r002 24th iterates of z^2 + 3141562937712652 r005 Im(z^2+c),c=-17/82+30/59*I,n=14 3141562937856938 a005 (1/sin(73/159*Pi))^1809 3141562954682657 l003 KelvinKei(1,100/109) 3141562959001514 a007 Real Root Of -382*x^4+437*x^3+689*x^2+443*x-217 3141562967602072 m001 (Riemann1stZero+ZetaQ(2))/(Pi+exp(1/Pi)) 3141562970621670 m001 (Gompertz+KhinchinLevy)/(gamma+gamma(2)) 3141562973394796 r005 Re(z^2+c),c=19/66+1/10*I,n=37 3141562973478659 b008 1/5-E^Sqrt[2]/8 3141562980106029 r005 Re(z^2+c),c=1/106+5/23*I,n=23 3141562980334413 r009 Im(z^3+c),c=-1/25+21/61*I,n=10 3141562982065682 p003 LerchPhi(1/12,6,237/133) 3141562983950507 r005 Re(z^2+c),c=1/106+5/23*I,n=22 3141562990438542 r005 Re(z^2+c),c=1/106+5/23*I,n=20 3141562994401950 r005 Re(z^2+c),c=1/106+5/23*I,n=26 3141562995083360 r005 Re(z^2+c),c=1/106+5/23*I,n=27 3141562995295403 r005 Re(z^2+c),c=1/106+5/23*I,n=30 3141562995329328 r005 Re(z^2+c),c=1/106+5/23*I,n=33 3141562995329391 r005 Re(z^2+c),c=1/106+5/23*I,n=34 3141562995330208 r005 Re(z^2+c),c=1/106+5/23*I,n=37 3141562995330257 r005 Re(z^2+c),c=1/106+5/23*I,n=38 3141562995330267 r005 Re(z^2+c),c=1/106+5/23*I,n=41 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=44 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=45 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=48 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=49 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=52 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=55 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=56 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=59 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=60 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=63 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=62 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=64 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=61 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=58 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=57 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=51 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=53 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=54 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=50 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=47 3141562995330269 r005 Re(z^2+c),c=1/106+5/23*I,n=46 3141562995330270 r005 Re(z^2+c),c=1/106+5/23*I,n=42 3141562995330270 r005 Re(z^2+c),c=1/106+5/23*I,n=43 3141562995330270 r005 Re(z^2+c),c=1/106+5/23*I,n=40 3141562995330281 r005 Re(z^2+c),c=1/106+5/23*I,n=39 3141562995330386 r005 Re(z^2+c),c=1/106+5/23*I,n=36 3141562995330541 r005 Re(z^2+c),c=1/106+5/23*I,n=35 3141562995331497 r005 Re(z^2+c),c=1/106+5/23*I,n=31 3141562995336088 r005 Re(z^2+c),c=1/106+5/23*I,n=32 3141562995348682 r005 Re(z^2+c),c=1/106+5/23*I,n=29 3141562995520312 r005 Re(z^2+c),c=1/106+5/23*I,n=28 3141562997452730 r005 Re(z^2+c),c=1/106+5/23*I,n=25 3141562999192670 r005 Re(z^2+c),c=1/106+5/23*I,n=24 3141563002489429 m004 -10*Pi+Csch[Sqrt[5]*Pi]/6 3141563002512891 m004 -1/(3*E^(Sqrt[5]*Pi))+10*Pi 3141563002536353 m004 -10*Pi+Sech[Sqrt[5]*Pi]/6 3141563002559814 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141563002583276 m004 -10*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/6 3141563015064552 r009 Re(z^3+c),c=-47/122+11/46*I,n=3 3141563021499461 a007 Real Root Of 289*x^4+629*x^3-948*x^2-102*x+388 3141563026359177 m005 (1/2*gamma-2/5)/(7/12*Catalan-8/9) 3141563027845109 m001 (DuboisRaymond+Lehmer)/(Zeta(3)+Conway) 3141563031984218 h001 (2/5*exp(1)+11/12)/(9/11*exp(2)+1/3) 3141563046627177 m001 gamma(2)^Chi(1)*GAMMA(7/12) 3141563055398659 m001 (Khinchin+ZetaP(4))/(ln(3)-Ei(1,1)) 3141563060432356 s002 sum(A109401[n]/(n^2*pi^n-1),n=1..infinity) 3141563064642940 r005 Im(z^2+c),c=-3/13+23/48*I,n=27 3141563068725049 m001 (1-BesselI(0,1))/(GaussKuzminWirsing+Landau) 3141563069234595 r005 Im(z^2+c),c=-29/30+22/87*I,n=29 3141563073231301 m005 (1/2*exp(1)-5/9)/(9/10*5^(1/2)+6/11) 3141563073871183 a007 Real Root Of -107*x^4+3*x^3+37*x^2+425*x+131 3141563092556437 r005 Re(z^2+c),c=1/106+5/23*I,n=21 3141563093242826 r005 Re(z^2+c),c=-9/29+15/29*I,n=50 3141563110112452 k008 concat of cont frac of 3141563116174225 k008 concat of cont frac of 3141563118613638 r005 Re(z^2+c),c=11/94+15/43*I,n=39 3141563120482534 r002 20th iterates of z^2 + 3141563123560933 p004 log(35149/25673) 3141563141349400 m001 1/FeigenbaumDelta/FeigenbaumAlpha/exp(Zeta(9)) 3141563143106357 m001 Magata-sin(1/12*Pi)*GAMMA(23/24) 3141563146751241 s002 sum(A118655[n]/(n^2*pi^n+1),n=1..infinity) 3141563149623249 a007 Real Root Of -281*x^4+342*x^3-254*x^2+734*x+269 3141563159010041 a005 (1/sin(95/198*Pi))^568 3141563170737667 a007 Real Root Of -904*x^4-755*x^3-600*x^2+762*x+284 3141563172097549 m001 (Si(Pi)+ln(3))/(-Zeta(1,2)+ZetaQ(4)) 3141563174353571 r005 Im(z^2+c),c=-45/64+13/59*I,n=64 3141563179750950 a007 Real Root Of 134*x^4+33*x^3-917*x^2+635*x-984 3141563185073773 m001 Pi-ZetaQ(2)^FeigenbaumMu 3141563200718847 a005 (1/cos(13/141*Pi))^1001 3141563215412621 k006 concat of cont frac of 3141563237710614 m001 (5^(1/2)+sin(1/5*Pi))/(-Paris+ZetaQ(3)) 3141563241515504 p001 sum(1/(461*n+330)/(12^n),n=0..infinity) 3141563241778034 r005 Re(z^2+c),c=-23/60+18/55*I,n=8 3141563248162669 r005 Re(z^2+c),c=-17/60+13/24*I,n=16 3141563260652261 a007 Real Root Of -63*x^4+881*x^3-53*x^2+772*x-264 3141563267504397 m001 (GAMMA(2/3)-GaussAGM)/(Kolakoski+Thue) 3141563273819472 a007 Real Root Of 198*x^4+743*x^3+162*x^2-635*x+157 3141563276577619 a007 Real Root Of -315*x^4-850*x^3+608*x^2+286*x-774 3141563289579509 r009 Im(z^3+c),c=-7/20+4/15*I,n=18 3141563295607463 a001 3/11*817138163596^(13/14) 3141563297186853 r008 a(0)=0,K{-n^6,60+56*n^3-68*n^2-79*n} 3141563300540675 r005 Re(z^2+c),c=-13/42+21/41*I,n=39 3141563312126517 k009 concat of cont frac of 3141563331749655 m005 (1/2*2^(1/2)-1/2)/(4/9*Zeta(3)+1/8) 3141563338620327 r005 Re(z^2+c),c=-31/106+24/43*I,n=54 3141563339454872 r009 Re(z^3+c),c=-45/118+21/37*I,n=4 3141563343947060 a007 Real Root Of 137*x^4-450*x^3+394*x^2-803*x+226 3141563344188443 r009 Im(z^3+c),c=-21/44+6/35*I,n=53 3141563348158016 m002 -Pi+1/(Pi^9*Log[Pi]) 3141563370252230 a001 29/591286729879*1346269^(18/19) 3141563373240060 m001 (-GAMMA(17/24)+FeigenbaumD)/(exp(1)+3^(1/2)) 3141563374156071 m001 (Porter+Riemann1stZero)/(Zeta(5)-cos(1)) 3141563374470920 a003 cos(Pi*43/99)*cos(Pi*23/51) 3141563375180734 r002 6th iterates of z^2 + 3141563375277275 a007 Real Root Of -175*x^4+538*x^3+18*x^2+953*x+316 3141563375841591 m001 KhinchinHarmonic/PrimesInBinary/Totient 3141563393520542 a007 Real Root Of 130*x^4+585*x^3+779*x^2+578*x-397 3141563402819640 m001 (ln(5)-sin(1))/(Zeta(1,-1)+HardyLittlewoodC5) 3141563410623434 m001 (Artin-CopelandErdos)/BesselJ(1,1) 3141563413026696 a007 Real Root Of -29*x^4-884*x^3+844*x^2-215*x-932 3141563415211131 k006 concat of cont frac of 3141563415831584 m008 (4*Pi-5)/(1/4*Pi^6+1/2) 3141563430579863 m001 1/Tribonacci^2*FeigenbaumC^2/ln(GAMMA(1/24)) 3141563436477246 r008 a(0)=3,K{-n^6,-20-42*n+63*n^2-20*n^3} 3141563437649790 r005 Re(z^2+c),c=1/106+5/23*I,n=18 3141563439577696 r005 Im(z^2+c),c=2/29+20/43*I,n=3 3141563453301739 r009 Re(z^3+c),c=-53/114+13/33*I,n=64 3141563456693241 b008 Pi-Erfc[Khinchin]/5 3141563457406432 m002 -Pi+Tanh[Pi]/(Pi^9*Log[Pi]) 3141563459059884 l006 ln(848/1161) 3141563464307710 l004 Pi/cosh(331/105*Pi) 3141563477731583 r005 Im(z^2+c),c=3/70+8/23*I,n=14 3141563479680473 m001 (Lehmer+MertensB3)^MadelungNaCl 3141563480015236 l004 Pi/sinh(331/105*Pi) 3141563482831336 b008 13/17+Tan[E] 3141563503468604 a007 Real Root Of 260*x^4+538*x^3+792*x^2+86*x-37 3141563511709835 r005 Im(z^2+c),c=-19/74+22/45*I,n=64 3141563514053835 m005 1/6*5^(1/2)/(3/10*3^(1/2)+2/3) 3141563514403320 m001 (Pi*Champernowne-exp(1/Pi))/Pi 3141563517819217 a007 Real Root Of 151*x^4+263*x^3-812*x^2-644*x-563 3141563523040701 m004 -100*Pi+(3*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141563531568138 a007 Real Root Of 425*x^4+955*x^3-977*x^2+648*x-109 3141563532807755 m005 (1/2*5^(1/2)+6/7)/(1/11*Catalan+6/11) 3141563551843780 a007 Real Root Of 961*x^4-239*x^3+429*x^2-628*x+153 3141563554807285 b008 Pi+7*ExpIntegralEi[-10] 3141563586692189 r005 Re(z^2+c),c=-10/31+23/47*I,n=64 3141563591657307 a001 34/2207*64079^(26/29) 3141563593087135 m001 (CareFree+Kolakoski)/(Si(Pi)-exp(1/Pi)) 3141563596032911 m009 (1/2*Pi^2-5/6)/(4*Psi(1,2/3)+4/5) 3141563600555552 r009 Im(z^3+c),c=-2/21+38/47*I,n=36 3141563602305802 h001 (7/10*exp(2)+3/4)/(5/9*exp(1)+3/8) 3141563602359978 m001 (Champernowne-ln(2)/ln(10))/(-Lehmer+Trott2nd) 3141563603521797 m001 (BesselK(1,1)-GolombDickman)/(Lehmer-Mills) 3141563613178471 r005 Re(z^2+c),c=41/126+7/57*I,n=52 3141563625358457 h003 exp(Pi*(10^(7/2)-18^(7/5))) 3141563625358457 h008 exp(Pi*(10^(7/2)-18^(7/5))) 3141563642701348 r009 Im(z^3+c),c=-35/66+9/41*I,n=49 3141563654590808 m001 (Kolakoski+Porter)/(BesselI(1,1)-GAMMA(17/24)) 3141563658552677 r005 Re(z^2+c),c=-43/106+4/29*I,n=23 3141563659329338 a005 (1/cos(16/189*Pi))^1190 3141563674206044 b008 3/17+Zeta[-1/2] 3141563677310057 s002 sum(A050493[n]/((2^n-1)/n),n=1..infinity) 3141563683352271 m002 -Pi^6/3+2*Pi*Coth[Pi] 3141563694550523 r009 Re(z^3+c),c=-53/110+24/61*I,n=33 3141563738757472 a007 Real Root Of -29*x^4-882*x^3+903*x^2-283*x+716 3141563741286858 m008 (4*Pi^6+3/4)/(4*Pi^5+1/4) 3141563751961026 m004 10*Pi-Log[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141563760215535 m002 -1/(36*Pi^6)+Pi 3141563763265265 r005 Im(z^2+c),c=-13/106+22/51*I,n=29 3141563769553633 m001 1/exp(Zeta(1,2))/GAMMA(1/6)/Zeta(1/2) 3141563779219877 p004 log(36833/26903) 3141563785910800 m001 Zeta(1/2)^2*Tribonacci^2/exp(exp(1))^2 3141563787234600 a007 Real Root Of -966*x^4-11*x^3+947*x^2+211*x-150 3141563799122421 s002 sum(A208066[n]/(n^3*2^n-1),n=1..infinity) 3141563813812603 r005 Re(z^2+c),c=-9/26+19/45*I,n=28 3141563832748190 m001 Pi-gamma(1)^(Pi*2^(1/2)/GAMMA(3/4)) 3141563845116549 m001 (Trott-Thue)/(FransenRobinson-OneNinth) 3141563867927831 m002 -Pi+Tanh[Pi]/(36*Pi^6) 3141563870737116 r005 Im(z^2+c),c=27/74+11/63*I,n=54 3141563871950291 r005 Im(z^2+c),c=-17/46+13/33*I,n=3 3141563883835587 m001 (Champernowne+Otter)/(Paris+QuadraticClass) 3141563906144302 m005 (1/2*5^(1/2)-6/7)/(1/11*exp(1)+7/12) 3141563908362621 m001 (ln(2)+GAMMA(11/12))/GAMMA(1/6) 3141563908362621 m001 1/2*(ln(2)+GAMMA(11/12))/Pi*GAMMA(5/6) 3141563909902025 m005 (1/2*Catalan-7/11)/(2/3*2^(1/2)-3/8) 3141563910019116 r008 a(0)=0,K{-n^6,86-21*n^3-52*n^2-45*n} 3141563920422157 s002 sum(A145115[n]/(n^2*pi^n+1),n=1..infinity) 3141563924423640 b008 BesselJ[2,E]/15 3141563927214778 m005 (5/66+1/6*5^(1/2))/(2/3*3^(1/2)+3/11) 3141563927266902 m001 (Landau+Stephens)/(Pi+BesselK(0,1)) 3141563934633587 a007 Real Root Of 319*x^4+941*x^3+69*x^2+913*x+291 3141563953328648 a001 987/76*2207^(12/29) 3141563954382444 m005 (1/2*3^(1/2)-1/3)/(7/12*5^(1/2)-3) 3141563954555608 r005 Re(z^2+c),c=-3/52+15/19*I,n=51 3141563955830207 a007 Real Root Of -107*x^4-6*x^3+965*x^2+974*x-400 3141563959545939 a001 969323029/610*832040^(1/20) 3141563959545985 a001 299537289/305*12586269025^(1/20) 3141563959775618 a001 4181/76*1364^(7/29) 3141563972722663 m001 (5^(1/2)+LambertW(1))/(BesselJ(1,1)+ZetaP(2)) 3141563981069775 a007 Real Root Of -70*x^4+780*x^3-490*x^2+203*x+137 3141563981336083 b008 Pi-ExpIntegralE[4,8] 3141563982503806 m001 Zeta(3)*Zeta(5)+Ei(1) 3141563984341147 m002 -Pi+Csch[Pi]/Pi^7 3141563991793832 r005 Im(z^2+c),c=-79/58+1/53*I,n=31 3141563993278527 m002 Pi-(E^Pi*Log[Pi])/Pi^12 3141563995591889 r009 Re(z^3+c),c=-17/54+51/61*I,n=2 3141564016608504 r005 Im(z^2+c),c=-17/14+9/230*I,n=52 3141564018844173 m005 (1/2*exp(1)-7/8)/(5/6*Catalan+7/9) 3141564037879327 m002 -2/(E^Pi*Pi^7)+Pi 3141564048951459 a001 199/4052739537881*34^(10/19) 3141564051337704 m002 4/Pi^2+5/Pi+Log[Pi] 3141564060634317 a003 -cos(3/8*Pi)-2*cos(4/9*Pi)+2*cos(13/30*Pi) 3141564068679727 r005 Im(z^2+c),c=-61/70+6/29*I,n=6 3141564074432128 m001 Robbin^2/Rabbit^2*exp(GAMMA(17/24)) 3141564078896349 m001 (Sarnak+Trott)/(GAMMA(11/12)+GlaisherKinkelin) 3141564091217921 m002 -Pi+Sech[Pi]/Pi^7 3141564099013987 r005 Re(z^2+c),c=-21/44+22/63*I,n=7 3141564130475085 a001 7/28657*121393^(12/55) 3141564132228103 a003 cos(Pi*2/83)-sin(Pi*28/117) 3141564136981298 m001 Pi^(1/2)+ln(5)^TwinPrimes 3141564136981298 m001 ln(5)^TwinPrimes+sqrt(Pi) 3141564146576307 m001 (Artin-GlaisherKinkelin)/(KhinchinLevy+Niven) 3141564157278369 b008 -1/32*1/E^7+Pi 3141564164136123 m005 (1/3*Pi-1/7)/(-52/99+4/11*5^(1/2)) 3141564171937568 m001 GAMMA(5/24)^2/ln(FransenRobinson)^2*sqrt(3) 3141564173336512 m001 1/Trott^2/ln(GaussKuzminWirsing)*BesselJ(1,1) 3141564179946037 m001 (OneNinth+PrimesInBinary)/(Zeta(5)+Kac) 3141564191404209 r009 Re(z^3+c),c=-27/64+16/49*I,n=39 3141564192815893 m002 6+Pi^5+Tanh[Pi]+Log[Pi]*Tanh[Pi] 3141564197696266 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^7 3141564201150072 l003 KelvinHei(2,31/119) 3141564202805258 m005 (9/20+1/4*5^(1/2))/(7/8*exp(1)+5/6) 3141564206480199 r005 Im(z^2+c),c=-1+55/194*I,n=27 3141564206859780 r009 Re(z^3+c),c=-6/13+25/64*I,n=38 3141564214132233 k009 concat of cont frac of 3141564214421121 k006 concat of cont frac of 3141564221494387 r002 8th iterates of z^2 + 3141564232084062 r005 Re(z^2+c),c=-43/90+24/47*I,n=28 3141564244802372 a001 64079*(1/2*5^(1/2)+1/2)^32*123^(23/24) 3141564247829889 r005 Im(z^2+c),c=-93/94+3/11*I,n=30 3141564273477495 p004 log(12889/557) 3141564276641584 m001 (exp(1/Pi)+CopelandErdos)/(GAMMA(2/3)-sin(1)) 3141564280361573 a007 Real Root Of 116*x^4+156*x^3-341*x^2+987*x+4 3141564285596833 r005 Im(z^2+c),c=-1/78+17/45*I,n=28 3141564298331368 k002 Champernowne real with 131/2*n^2-371/2*n+123 3141564307224149 a003 cos(Pi*14/59)*cos(Pi*23/64) 3141564312729567 a001 6765/76*9349^(4/29) 3141564315112058 r009 Re(z^3+c),c=-7/20+13/63*I,n=12 3141564318034906 q001 486/1547 3141564318034906 r005 Im(z^2+c),c=-35/34+27/91*I,n=2 3141564332658079 a001 17711/76*5778^(1/29) 3141564338874646 m004 -100*Pi+(5*Csch[Sqrt[5]*Pi])/Pi 3141564338897051 m004 -10/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141564338919455 m004 -100*Pi+(5*Sech[Sqrt[5]*Pi])/Pi 3141564350073771 m001 1/Paris^2/ln(FeigenbaumDelta)^2/GAMMA(19/24)^2 3141564351844341 a007 Real Root Of -260*x^4-455*x^3+860*x^2-786*x+261 3141564357364337 m001 (GaussAGM-exp(Pi))/(-Gompertz+Mills) 3141564358571428 k003 Champernowne real with n^3+119/2*n^2-349/2*n+117 3141564365275380 m002 -Pi+ProductLog[Pi]/(4*Pi^8) 3141564366455248 a001 4181/76*24476^(5/29) 3141564372249658 p004 log(36353/1571) 3141564375191048 r005 Im(z^2+c),c=25/106+7/29*I,n=5 3141564375208262 r005 Re(z^2+c),c=-14/23+22/39*I,n=3 3141564389481826 m001 (LambertW(1)+GAMMA(3/4))/(gamma(1)+Cahen) 3141564390108632 r005 Im(z^2+c),c=-9/28+39/64*I,n=56 3141564395178181 m005 (1/3*Catalan+2/3)/(2/11*Catalan+1/7) 3141564404404720 r005 Re(z^2+c),c=1/8+19/45*I,n=27 3141564404760327 m001 FeigenbaumKappa/Riemann1stZero*ln(sqrt(Pi))^2 3141564409052603 g006 Psi(1,2/5)+1/2*Pi^2-Psi(1,5/12)-Psi(1,4/5) 3141564411015597 m002 -1/(5*E^Pi*Pi^5)+Pi 3141564414720490 g007 Psi(2,8/11)+Psi(2,2/11)-Psi(2,1/12)-Psi(2,4/9) 3141564425963091 a007 Real Root Of 54*x^4-130*x^3-632*x^2+672*x-942 3141564427664538 m004 4/3+(4*Sec[Sqrt[5]*Pi])/3 3141564429603728 m003 61/20+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/64 3141564430098403 a007 Real Root Of 675*x^4+630*x^3-336*x^2-956*x-3 3141564437276711 a007 Real Root Of -406*x^4-210*x^3-155*x^2+725*x-202 3141564446981222 a008 Real Root of x^4-x^3-9*x^2+3*x+13 3141564448152618 r005 Im(z^2+c),c=-13/22+25/73*I,n=10 3141564451872543 r009 Re(z^3+c),c=-5/13+6/23*I,n=8 3141564455119164 m001 exp(-1/2*Pi)/Robbin 3141564458913477 m005 (1/2*Pi+7/8)/(6*2^(1/2)-7/10) 3141564471456349 a001 208010/19*521^(22/41) 3141564475238412 a007 Real Root Of -290*x^4-808*x^3+165*x^2-620*x-381 3141564479051548 k003 Champernowne real with 3*n^3+95/2*n^2-305/2*n+105 3141564484451064 p004 log(34039/1471) 3141564485642249 a001 34/3571*39603^(57/58) 3141564493335217 m001 RenyiParking^2*exp(MertensB1)^2*gamma^2 3141564493643389 r002 27th iterates of z^2 + 3141564509171578 k003 Champernowne real with 7/2*n^3+89/2*n^2-147*n+102 3141564511860242 a001 75025/322*47^(25/37) 3141564512142982 a003 sin(Pi*14/93)-sin(Pi*26/93) 3141564516301761 m002 -Pi+Tanh[Pi]/(5*E^Pi*Pi^5) 3141564518815334 a007 Real Root Of -30*x^4-957*x^3-441*x^2+506*x+609 3141564521536793 p003 LerchPhi(1/256,4,163/217) 3141564524417103 a007 Real Root Of -791*x^4+363*x^3-956*x^2+539*x-16 3141564531270166 a007 Real Root Of 884*x^4+464*x^3-879*x^2-998*x-221 3141564539291608 k003 Champernowne real with 4*n^3+83/2*n^2-283/2*n+99 3141564539839631 m002 -6/Pi^5-Pi^4/3+ProductLog[Pi] 3141564551396351 m001 1/GAMMA(11/12)^2/LaplaceLimit*exp(sin(1)) 3141564552971918 h005 exp(cos(Pi*19/47)/cos(Pi*5/12)) 3141564558200761 p001 sum(1/(452*n+105)/n/(6^n),n=1..infinity) 3141564558283646 a001 2/17*4181^(13/33) 3141564564065944 m003 -2/5+(1025*Sqrt[5])/2048+Sinh[1/2+Sqrt[5]/2] 3141564569411638 k003 Champernowne real with 9/2*n^3+77/2*n^2-136*n+96 3141564570731485 r005 Im(z^2+c),c=-61/110+18/41*I,n=58 3141564587259505 m001 ZetaQ(2)/(Weierstrass-MasserGramain) 3141564599531668 k003 Champernowne real with 5*n^3+71/2*n^2-261/2*n+93 3141564600404293 r005 Re(z^2+c),c=-39/122+23/47*I,n=36 3141564604709197 r009 Re(z^3+c),c=-33/82+13/44*I,n=29 3141564606713562 m002 Pi-(Csch[Pi]^2*Log[Pi])/Pi^5 3141564617060172 s002 sum(A008863[n]/(n^2*pi^n+1),n=1..infinity) 3141564629651698 k003 Champernowne real with 11/2*n^3+65/2*n^2-125*n+90 3141564659771728 k003 Champernowne real with 6*n^3+59/2*n^2-239/2*n+87 3141564660595752 m002 Pi^2+Pi^5/15+Log[Pi] 3141564665422904 m001 (Porter-ThueMorse)/(ln(5)+MadelungNaCl) 3141564668963833 m002 -Pi+3/(Pi^10*Log[Pi]) 3141564673459300 b008 Zeta[-1/17,1/8] 3141564689891758 k003 Champernowne real with 13/2*n^3+53/2*n^2-114*n+84 3141564699207684 m001 (exp(1)+GAMMA(3/4))/(ln(2^(1/2)+1)+Artin) 3141564708086070 m004 -1000*Pi+5*Pi*Csch[Sqrt[5]*Pi] 3141564708108183 m004 -100*Pi+Pi/E^(Sqrt[5]*Pi) 3141564708130295 m004 -1000*Pi+5*Pi*Sech[Sqrt[5]*Pi] 3141564711001178 k003 Champernowne real with 7*n^3+47/2*n^2-217/2*n+81 3141564711270179 m002 Pi-(Csch[Pi]*Log[Pi]*Sech[Pi])/Pi^5 3141564722127229 r005 Im(z^2+c),c=9/29+7/57*I,n=53 3141564741013181 k003 Champernowne real with 15/2*n^3+41/2*n^2-103*n+78 3141564771025184 k003 Champernowne real with 8*n^3+35/2*n^2-195/2*n+75 3141564773861267 l006 ln(6551/8969) 3141564773861267 p004 log(8969/6551) 3141564779905738 m001 (-sin(1/5*Pi)+MertensB3)/(exp(Pi)+LambertW(1)) 3141564792803485 r005 Im(z^2+c),c=-9/46+17/31*I,n=6 3141564795771403 m005 (gamma-2/3)/(1/6*Catalan-3) 3141564796043165 a003 cos(Pi*22/75)/cos(Pi*32/73) 3141564801037187 k003 Champernowne real with 17/2*n^3+29/2*n^2-92*n+72 3141564810464704 r005 Re(z^2+c),c=-17/66+24/41*I,n=44 3141564815437017 m002 Pi-(Log[Pi]*Sech[Pi]^2)/Pi^5 3141564820037132 a001 1/123*(1/2*5^(1/2)+1/2)^22*11^(19/20) 3141564828287314 r005 Re(z^2+c),c=-37/114+16/33*I,n=42 3141564830971794 r005 Re(z^2+c),c=-33/94+17/42*I,n=49 3141564831049190 k003 Champernowne real with 9*n^3+23/2*n^2-173/2*n+69 3141564832767282 r005 Im(z^2+c),c=-43/110+17/33*I,n=42 3141564836440500 a001 7/620166*76^(13/55) 3141564836701125 m001 MinimumGamma/(Grothendieck-ln(2+3^(1/2))) 3141564845202801 r005 Re(z^2+c),c=39/106+13/56*I,n=36 3141564845360904 l006 ln(407/9418) 3141564852653061 h001 (10/11*exp(2)+2/5)/(4/5*exp(1)+1/11) 3141564860808411 m001 1/GAMMA(11/24)^2*Conway^2*exp(cos(Pi/12))^2 3141564861043928 m004 -Pi+(5*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141564861061193 k003 Champernowne real with 19/2*n^3+17/2*n^2-81*n+66 3141564878888102 m005 (1/3*Pi+1/7)/(3*2^(1/2)-5/11) 3141564879037988 m005 (1/3*2^(1/2)+1/10)/(7/6+7/24*5^(1/2)) 3141564891068536 a007 Real Root Of -255*x^4-971*x^3-411*x^2+371*x-46 3141564891073196 k003 Champernowne real with 10*n^3+11/2*n^2-151/2*n+63 3141564914863464 r005 Im(z^2+c),c=-8/21+9/17*I,n=55 3141564921085199 k003 Champernowne real with 21/2*n^3+5/2*n^2-70*n+60 3141564925928618 r005 Im(z^2+c),c=-39/34+28/115*I,n=38 3141564933183330 m001 exp(GAMMA(19/24))/Trott/GAMMA(7/24)^2 3141564951097202 k003 Champernowne real with 11*n^3-1/2*n^2-129/2*n+57 3141564952419254 m001 Conway^Pi*Conway^Salem 3141564969139540 a007 Real Root Of -370*x^4-960*x^3+645*x^2-276*x-958 3141564969363895 l006 ln(5703/7808) 3141564976260005 a007 Real Root Of 234*x^4+484*x^3-702*x^2+155*x-371 3141564977387389 r005 Re(z^2+c),c=-19/62+20/51*I,n=7 3141564979443747 r005 Re(z^2+c),c=-121/106+17/49*I,n=6 3141564981109205 k003 Champernowne real with 23/2*n^3-7/2*n^2-59*n+54 3141564987090031 m001 (Cahen-exp(Pi))/(GaussKuzminWirsing+ThueMorse) 3141564988411835 r002 2th iterates of z^2 + 3141564993326511 r005 Im(z^2+c),c=-27/118+27/56*I,n=13 3141564999246015 m001 Ei(1,1)^Zeta(3)-PlouffeB 3141565011121208 k003 Champernowne real with 12*n^3-13/2*n^2-107/2*n+51 3141565012296260 a003 sin(Pi*4/55)/cos(Pi*29/119) 3141565019942748 m005 (1/2*2^(1/2)-2)/(1/5*gamma+4) 3141565025531986 b008 28+Sqrt[35/3] 3141565029311120 r005 Im(z^2+c),c=-13/18+37/121*I,n=17 3141565030338193 m001 AlladiGrinstead*KhinchinLevy-MasserGramain 3141565036793587 m001 (3^(1/2)+Chi(1))/(LandauRamanujan+ZetaQ(2)) 3141565042398345 m005 (1/3*gamma-1/4)/(3/7*5^(1/2)+7/8) 3141565053114908 a007 Real Root Of -711*x^4-669*x^3-619*x^2+953*x+3 3141565056255772 m005 (1/3*5^(1/2)+1/4)/(9/11*Zeta(3)-2/3) 3141565062876316 a001 1/329*(1/2*5^(1/2)+1/2)^23*47^(13/18) 3141565087814203 m001 Zeta(7)^2*Zeta(1/2)^2/exp(cos(Pi/12))^2 3141565090847994 m001 (BesselJ(1,1)-ZetaQ(4))/HardHexagonsEntropy 3141565095697884 m001 MertensB1^sin(1)*cos(1/12*Pi)^sin(1) 3141565097921180 m001 (-OneNinth+Tribonacci)/(Psi(2,1/3)+gamma(3)) 3141565112587364 r005 Re(z^2+c),c=-10/29+29/59*I,n=24 3141565117140443 b008 E^(-21/2)-Pi 3141565121145321 k007 concat of cont frac of 3141565125739981 b008 JacobiSC[3/2,7/2] 3141565135652417 m008 (4/5*Pi^3-5/6)/(1/4*Pi^5-1/5) 3141565142782866 l006 ln(357/8261) 3141565144279526 m001 (MertensB1+PlouffeB)/(ln(5)-exp(1/Pi)) 3141565145803736 m001 ZetaQ(2)^Stephens+Otter 3141565154623635 b008 Pi*KelvinBer[0,2/13] 3141565176162683 r009 Im(z^3+c),c=-23/48+7/48*I,n=8 3141565177975752 r005 Re(z^2+c),c=-9/25+19/51*I,n=21 3141565178962082 r005 Im(z^2+c),c=-34/27+2/59*I,n=43 3141565189598363 r009 Re(z^3+c),c=-11/70+27/37*I,n=50 3141565190199186 r005 Re(z^2+c),c=-11/31+12/31*I,n=22 3141565194211381 r009 Re(z^3+c),c=-3/20+27/37*I,n=26 3141565194895833 m001 HardyLittlewoodC3^exp(Pi)-Pi 3141565195794519 a003 sin(Pi*1/100)/sin(Pi*44/89) 3141565207896813 m004 (25*Pi)/4+(25*Csc[Sqrt[5]*Pi])/Pi 3141565209149295 m001 (FeigenbaumB-Gompertz)/(Salem-Tetranacci) 3141565209807253 r005 Im(z^2+c),c=5/12+7/47*I,n=24 3141565211121915 k006 concat of cont frac of 3141565227982602 r005 Im(z^2+c),c=-13/17+5/54*I,n=36 3141565233161565 l006 ln(4855/6647) 3141565247251807 m001 (-GAMMA(5/6)+Landau)/(BesselJ(0,1)+ln(3)) 3141565252429482 m005 (1/2*Catalan-1/12)/(3/7*Catalan+4/5) 3141565265483736 m008 (2/3*Pi^3+2)/(3/4*Pi^6+3/5) 3141565268166659 m001 GAMMA(7/24)/ln(Champernowne)*Zeta(1/2)^2 3141565269561390 m001 Conway+Robbin+Salem 3141565271597415 m001 1/Paris^2*exp(CareFree)/Robbin 3141565275605050 m004 -100*Pi+(3*Csch[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141565275626713 m004 -100*Pi+6/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141565275648376 m004 -100*Pi+(3*Sech[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141565276473973 m002 -Pi+(3*Csch[Pi])/Pi^8 3141565285762999 r002 35th iterates of z^2 + 3141565291217610 a007 Real Root Of -556*x^4-11*x^3-417*x^2+910*x+29 3141565299626104 m005 (1/3*3^(1/2)-1/7)/(5/6*Catalan-5/8) 3141565306869207 m001 (HardyLittlewoodC3+RenyiParking)/(Pi+2^(1/3)) 3141565307413672 a007 Real Root Of 168*x^4+750*x^3+830*x^2+464*x+156 3141565311061114 m005 (1/2*3^(1/2)-2/7)/(3/7*5^(1/2)+8/9) 3141565317272957 r009 Re(z^3+c),c=-9/19+31/59*I,n=60 3141565317826386 m001 Pi-ZetaQ(4)^GAMMA(13/24) 3141565324025252 m005 (1/3*5^(1/2)-1/10)/(5^(1/2)-2/11) 3141565327599169 m002 -6/(E^Pi*Pi^8)+Pi 3141565328672435 m002 -4+Log[Pi]+Pi^5*ProductLog[Pi]-Sinh[Pi] 3141565353465036 r005 Re(z^2+c),c=-49/122+5/29*I,n=36 3141565356799656 r009 Im(z^3+c),c=-9/52+20/61*I,n=12 3141565368358795 r005 Im(z^2+c),c=-31/82+25/49*I,n=29 3141565376895600 r002 3th iterates of z^2 + 3141565377541999 r005 Re(z^2+c),c=-49/122+5/29*I,n=34 3141565378533774 m002 -Pi+(3*Sech[Pi])/Pi^8 3141565383017500 b008 Pi*Sech[1/240] 3141565386528784 r005 Re(z^2+c),c=-37/26+8/67*I,n=7 3141565392114905 p004 log(22469/971) 3141565399473491 a003 cos(Pi*31/116)/cos(Pi*19/44) 3141565401748911 a001 2537720636/1597*832040^(1/20) 3141565401748956 a001 1568397607/1597*12586269025^(1/20) 3141565443901292 m008 (1/2*Pi^5+1/4)/(5*Pi^4+4/5) 3141565456451363 m001 (GAMMA(17/24)+Niven)/(Psi(1,1/3)-gamma) 3141565457229020 r002 20th iterates of z^2 + 3141565458903799 a001 843/5*233^(22/41) 3141565472937743 a003 cos(Pi*31/117)-sin(Pi*53/118) 3141565474015496 r005 Re(z^2+c),c=25/82+5/52*I,n=18 3141565490752974 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/6 3141565490774468 m004 10*Pi-Tan[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141565490795961 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/6 3141565495410138 r005 Im(z^2+c),c=7/74+19/60*I,n=18 3141565510645888 a001 4181/76*843^(15/58) 3141565511585992 r005 Re(z^2+c),c=-35/122+26/47*I,n=35 3141565529636909 b008 -12/E^13+Pi 3141565537084808 l006 ln(307/7104) 3141565547449344 r009 Re(z^3+c),c=-31/82+12/47*I,n=22 3141565554861649 h001 (5/12*exp(1)+7/10)/(5/7*exp(2)+5/9) 3141565560569347 r005 Im(z^2+c),c=-13/10+106/205*I,n=3 3141565563916397 a001 55/23725150497407*322^(1/19) 3141565570517194 a008 Real Root of (1+4*x+x^2-6*x^3-x^4+6*x^5) 3141565582498664 r005 Re(z^2+c),c=-11/16+31/103*I,n=7 3141565608614039 l006 ln(4007/5486) 3141565608616095 m006 (1/4*exp(Pi)-1/6)/(3/5*exp(Pi)+4) 3141565611024035 r005 Re(z^2+c),c=-5/114+39/62*I,n=9 3141565612163599 a001 6643838879/4181*832040^(1/20) 3141565612163645 a001 4106118243/4181*12586269025^(1/20) 3141565626040930 r005 Re(z^2+c),c=-4/9+27/56*I,n=18 3141565633982304 r005 Re(z^2+c),c=-49/122+5/29*I,n=38 3141565642289928 m001 (Ei(1)+BesselI(1,2))/(Psi(1,1/3)+1) 3141565642862691 a001 17393796001/10946*832040^(1/20) 3141565642862736 a001 5374978561/5473*12586269025^(1/20) 3141565647341628 a001 45537549124/28657*832040^(1/20) 3141565647341674 a001 28143753123/28657*12586269025^(1/20) 3141565647833708 m001 1/GAMMA(1/12)*exp(GlaisherKinkelin)*Zeta(9) 3141565647995096 a001 119218851371/75025*832040^(1/20) 3141565647995142 a001 73681302247/75025*12586269025^(1/20) 3141565648090436 a001 312119004989/196418*832040^(1/20) 3141565648090481 a001 96450076809/98209*12586269025^(1/20) 3141565648104346 a001 817138163596/514229*832040^(1/20) 3141565648104391 a001 505019158607/514229*12586269025^(1/20) 3141565648106375 a001 2139295485799/1346269*832040^(1/20) 3141565648106421 a001 1322157322203/1346269*12586269025^(1/20) 3141565648106672 a001 5600748293801/3524578*832040^(1/20) 3141565648106715 a001 14662949395604/9227465*832040^(1/20) 3141565648106717 a001 1730726404001/1762289*12586269025^(1/20) 3141565648106725 a001 23725150497407/14930352*832040^(1/20) 3141565648106741 a001 9062201101803/5702887*832040^(1/20) 3141565648106760 a001 9062201101803/9227465*12586269025^(1/20) 3141565648106766 a001 23725150497407/24157817*12586269025^(1/20) 3141565648106770 a001 192933544679/196452*12586269025^(1/20) 3141565648106787 a001 5600748293801/5702887*12586269025^(1/20) 3141565648106854 a001 494493258286/311187*832040^(1/20) 3141565648106900 a001 2139295485799/2178309*12586269025^(1/20) 3141565648107630 a001 1322157322203/832040*832040^(1/20) 3141565648107675 a001 204284540899/208010*12586269025^(1/20) 3141565648112943 a001 505019158607/317811*832040^(1/20) 3141565648112988 a001 312119004989/317811*12586269025^(1/20) 3141565648149359 a001 192900153618/121393*832040^(1/20) 3141565648149405 a001 119218851371/121393*12586269025^(1/20) 3141565648398962 a001 10525900321/6624*832040^(1/20) 3141565648399007 a001 11384387281/11592*12586269025^(1/20) 3141565650109764 a001 28143753123/17711*832040^(1/20) 3141565650109809 a001 17393796001/17711*12586269025^(1/20) 3141565652454478 a007 Real Root Of -522*x^4+978*x^3+874*x^2+756*x-349 3141565657182232 r005 Re(z^2+c),c=-3/8+13/41*I,n=24 3141565661835773 a001 10749957122/6765*832040^(1/20) 3141565661835819 a001 6643838879/6765*12586269025^(1/20) 3141565672747104 m005 (1/3*Pi+1/12)/(3/8*Zeta(3)-1/11) 3141565680612882 r009 Re(z^3+c),c=-9/40+51/53*I,n=54 3141565682326101 m001 GaussKuzminWirsing/(GAMMA(3/4)-sin(Pi/12)) 3141565682326101 m001 GaussKuzminWirsing/(sin(1/12*Pi)-GAMMA(3/4)) 3141565683918060 m002 -3/(5*E^Pi*Pi^6)+Pi 3141565687924678 a001 3/5600748293801*7^(10/11) 3141565711824181 m002 Pi-Log[Pi]/(6*E^Pi*Pi^5) 3141565713387866 m001 (gamma(3)+FeigenbaumD)/(GolombDickman-Rabbit) 3141565713649567 r008 a(0)=0,K{-n^6,30-65*n^3+32*n^2+6*n} 3141565717814756 b008 Pi*ModularLambda[(2*I)/13*Sqrt[2]] 3141565729303568 r005 Im(z^2+c),c=13/44+7/37*I,n=6 3141565732767474 m001 1/GolombDickman/ln(ErdosBorwein)/Zeta(5)^2 3141565736214691 a007 Real Root Of -486*x^4-111*x^3+565*x^2+619*x-20 3141565738967056 m001 (Zeta(1/2)+GaussKuzminWirsing)/(Pi+cos(1)) 3141565742207043 a001 4106118243/2584*832040^(1/20) 3141565742207088 a001 33391061/34*12586269025^(1/20) 3141565744924559 r005 Im(z^2+c),c=39/110+4/63*I,n=11 3141565749854638 r005 Re(z^2+c),c=-17/46+21/62*I,n=33 3141565749933395 r005 Re(z^2+c),c=-37/90+3/44*I,n=11 3141565766683635 m005 (1/2*2^(1/2)-6)/(8/11*Pi-3/5) 3141565772682396 m002 -Pi+(E^Pi*ProductLog[Pi])/Pi^12 3141565780025328 b008 Pi-(2*Erfc[E])/9 3141565784966975 m001 (-OrthogonalArrays+ZetaQ(3))/(Bloch-Catalan) 3141565793896995 m005 (3/5*Pi-1/6)/(1/6*exp(1)-1) 3141565800841300 s002 sum(A172318[n]/(n^2*pi^n+1),n=1..infinity) 3141565801420620 s002 sum(A185532[n]/(n^3*10^n+1),n=1..infinity) 3141565805059711 h001 (3/4*exp(2)+4/9)/(2/5*exp(1)+9/11) 3141565806541635 s002 sum(A234590[n]/(n^2*pi^n+1),n=1..infinity) 3141565834958990 r005 Re(z^2+c),c=-49/122+5/29*I,n=40 3141565842035379 r005 Re(z^2+c),c=-7/17+3/56*I,n=24 3141565842910538 a007 Real Root Of -148*x^4-459*x^3+233*x^2+742*x+216 3141565850820379 m001 (-Kolakoski+RenyiParking)/(gamma+Catalan) 3141565851902358 m005 (1/2*5^(1/2)-7/9)/(4/11*Catalan+3/4) 3141565852290377 r002 3th iterates of z^2 + 3141565857087541 r005 Im(z^2+c),c=-77/94+1/52*I,n=16 3141565862984916 l006 ln(7166/9811) 3141565875946332 a007 Real Root Of 937*x^4+556*x^3-973*x^2-958*x-3 3141565880020628 m001 (Zeta(1,2)+Stephens)/(Psi(1,1/3)+2^(1/2)) 3141565889065695 m002 5+5/Pi^5+Pi^5*Sech[Pi] 3141565896647320 a001 17711/76*322^(3/58) 3141565897910609 r005 Im(z^2+c),c=15/82+11/43*I,n=28 3141565902258444 r002 13th iterates of z^2 + 3141565909540981 a001 305/38*3571^(13/29) 3141565916764851 m005 (1/2*Zeta(3)-6/11)/(217/220+7/20*5^(1/2)) 3141565919342065 r005 Re(z^2+c),c=-49/122+5/29*I,n=45 3141565921399587 r005 Re(z^2+c),c=-49/122+5/29*I,n=42 3141565924079369 r005 Re(z^2+c),c=-49/122+5/29*I,n=47 3141565925682851 r005 Re(z^2+c),c=-49/122+5/29*I,n=43 3141565928620306 r005 Re(z^2+c),c=-49/122+5/29*I,n=49 3141565930882761 r005 Re(z^2+c),c=-49/122+5/29*I,n=51 3141565931196770 r005 Re(z^2+c),c=-49/122+5/29*I,n=54 3141565931253916 r005 Re(z^2+c),c=-49/122+5/29*I,n=56 3141565931350350 r005 Re(z^2+c),c=-49/122+5/29*I,n=58 3141565931406796 r005 Re(z^2+c),c=-49/122+5/29*I,n=60 3141565931423251 r005 Re(z^2+c),c=-49/122+5/29*I,n=63 3141565931427663 r005 Re(z^2+c),c=-49/122+5/29*I,n=62 3141565931431357 r005 Re(z^2+c),c=-49/122+5/29*I,n=64 3141565931433491 r005 Re(z^2+c),c=-49/122+5/29*I,n=61 3141565931469844 r005 Re(z^2+c),c=-49/122+5/29*I,n=59 3141565931488796 r005 Re(z^2+c),c=-49/122+5/29*I,n=52 3141565931548499 r005 Re(z^2+c),c=-49/122+5/29*I,n=57 3141565931588544 r005 Re(z^2+c),c=-49/122+5/29*I,n=53 3141565931645231 r005 Re(z^2+c),c=-49/122+5/29*I,n=55 3141565932841952 r005 Re(z^2+c),c=-49/122+5/29*I,n=50 3141565936230994 r005 Re(z^2+c),c=-49/122+5/29*I,n=48 3141565941501908 r005 Re(z^2+c),c=-49/122+5/29*I,n=46 3141565943053477 r005 Re(z^2+c),c=-49/122+5/29*I,n=44 3141565948991009 a007 Real Root Of 212*x^4+580*x^3-20*x^2+865*x+248 3141565955217527 m001 (HardyLittlewoodC3+ZetaP(2))/(Si(Pi)+ln(5)) 3141565959420696 m008 (5*Pi^3+1/3)/(1/2*Pi^4+3/4) 3141565962690560 a001 3571/34*17711^(9/11) 3141565963485567 r005 Re(z^2+c),c=1/106+5/23*I,n=17 3141565967578349 m004 -100*Pi+(3*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141565967599465 m004 -100*Pi+(3*Csch[Sqrt[5]*Pi])/2 3141565967620581 m004 -3/E^(Sqrt[5]*Pi)+100*Pi 3141565967641697 m004 -100*Pi+(3*Sech[Sqrt[5]*Pi])/2 3141565967662812 m004 -100*Pi+(3*Tanh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141565973155389 r005 Re(z^2+c),c=-49/122+5/29*I,n=41 3141565991206522 r002 4th iterates of z^2 + 3141566027063294 m001 (exp(-1/2*Pi)-exp(1))/(GolombDickman+ZetaP(3)) 3141566027695176 r005 Re(z^2+c),c=-49/122+5/29*I,n=33 3141566051436585 a007 Real Root Of 146*x^4+211*x^3-637*x^2+687*x+766 3141566054067064 m002 Pi^3+Log[Pi]/Pi^3+Sinh[Pi]/Pi^3 3141566054461547 a001 5/24476*11^(7/39) 3141566058717055 r009 Im(z^3+c),c=-3/52+16/45*I,n=2 3141566062397503 a009 1/18*11^(1/4)+1/18*6^(3/4) 3141566066849027 r005 Re(z^2+c),c=-25/74+22/53*I,n=14 3141566080643824 a001 76/4181*701408733^(9/11) 3141566082583423 r005 Re(z^2+c),c=1/82+37/58*I,n=44 3141566084811373 l006 ln(257/5947) 3141566096973313 a001 89*47^(19/58) 3141566097329714 m001 (Zeta(1/2)-MasserGramain)/(MertensB2-Niven) 3141566097436140 a005 (1/cos(5/48*Pi))^1330 3141566101193651 r009 Re(z^3+c),c=-11/46+47/50*I,n=12 3141566101302599 m001 ln(2+3^(1/2))/ln(2^(1/2)+1)/PlouffeB 3141566112253812 r005 Re(z^2+c),c=-49/122+5/29*I,n=39 3141566112604539 m001 ln(5)+ArtinRank2+GaussAGM 3141566114350570 r005 Im(z^2+c),c=-25/36+7/31*I,n=22 3141566114906758 r005 Im(z^2+c),c=-113/118+13/51*I,n=39 3141566116593173 a001 76/317811*139583862445^(9/11) 3141566121212415 k008 concat of cont frac of 3141566124160970 m001 ln(Pi)^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Niven 3141566124317950 m001 (Catalan-gamma(2))/(ErdosBorwein+Totient) 3141566128002853 m001 (ZetaQ(2)-ZetaQ(3))/(BesselK(1,1)+FeigenbaumB) 3141566129361852 m005 (1/2*Pi-1/9)/(1/7*2^(1/2)-2/3) 3141566159947314 m001 (-Rabbit+RenyiParking)/(cos(1)+LaplaceLimit) 3141566160236700 m001 Porter^2*LandauRamanujan^2*exp(Catalan) 3141566163002267 r005 Im(z^2+c),c=-13/14+31/121*I,n=3 3141566163168303 m001 (1/3)^Si(Pi)*GAMMA(1/6)^Si(Pi) 3141566168316619 r009 Im(z^3+c),c=-51/98+11/51*I,n=27 3141566170305936 m001 KomornikLoreti+Totient^Zeta(5) 3141566170336142 m001 BesselJ(1,1)/(MertensB3^GAMMA(19/24)) 3141566172692132 r005 Im(z^2+c),c=-5/16+25/38*I,n=10 3141566178262704 m005 (2/3+1/6*5^(1/2))/(11/12*Pi+3/7) 3141566185638945 l006 ln(3159/4325) 3141566194805737 m001 (Pi-BesselI(0,1))/(Zeta(5)-TreeGrowth2nd) 3141566217111112 k007 concat of cont frac of 3141566230293162 r009 Im(z^3+c),c=-2/15+1/3*I,n=4 3141566232078805 a008 Real Root of x^5-x^4-8*x^3+6*x^2+9*x+2 3141566233350897 a003 cos(Pi*29/111)/cos(Pi*34/79) 3141566265060240 q001 1043/3320 3141566276048833 r009 Re(z^3+c),c=-1/30+6/41*I,n=5 3141566285388770 a001 13/123*3571^(17/41) 3141566290356424 a007 Real Root Of -24*x^4+345*x^3-774*x^2-58*x-538 3141566290747129 r002 16th iterates of z^2 + 3141566291738120 r005 Re(z^2+c),c=-55/102+1/23*I,n=4 3141566293080028 a001 224056801/141*832040^(1/20) 3141566293080074 a001 969323029/987*12586269025^(1/20) 3141566293111431 k007 concat of cont frac of 3141566299213127 m001 MertensB3-OrthogonalArrays^ZetaQ(2) 3141566300480838 a007 Real Root Of -173*x^4-256*x^3+821*x^2-7*x+789 3141566305991879 m002 -1/(4*Pi^8)+Pi 3141566316186621 m004 -100*Pi+Csc[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141566316207461 m004 -100*Pi+(2*Csc[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141566316228301 m004 -100*Pi+Csc[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141566316621655 r005 Im(z^2+c),c=-47/102+17/32*I,n=38 3141566327858518 a003 cos(Pi*13/59)*cos(Pi*26/71) 3141566334729584 r009 Im(z^3+c),c=-3/14+7/22*I,n=8 3141566342665578 m001 (exp(1/Pi)-gamma)/(ReciprocalLucas+Stephens) 3141566343798259 m001 MadelungNaCl/MertensB1/exp(GAMMA(7/12))^2 3141566344414693 m001 (polylog(4,1/2)-GAMMA(19/24))/(GaussAGM-Kac) 3141566348031708 m002 -Pi+(Csch[Pi]^2*ProductLog[Pi])/Pi^5 3141566348854607 g004 Im(GAMMA(1/5+I*37/10)) 3141566359511856 a007 Real Root Of -94*x^4+151*x^3+152*x^2+857*x-288 3141566364795636 m001 1-exp(Pi)^FeigenbaumC 3141566368341056 a007 Real Root Of 177*x^4-863*x^3+543*x^2-786*x-329 3141566370251476 r005 Im(z^2+c),c=1/106+15/41*I,n=16 3141566370324770 r005 Re(z^2+c),c=-49/122+5/29*I,n=37 3141566388743293 a007 Real Root Of -118*x^4+587*x^3-141*x^2+824*x-262 3141566394044609 m001 ln(HardHexagonsEntropy)^2*Cahen*GAMMA(5/24) 3141566397865522 r005 Re(z^2+c),c=7/122+2/13*I,n=11 3141566401593514 a007 Real Root Of 38*x^4-161*x^3-24*x^2-834*x-265 3141566404213716 m002 -Pi+Tanh[Pi]/(4*Pi^8) 3141566405019082 m001 (-GAMMA(3/4)+3)/(exp(1/2)+4) 3141566406250000 r005 Re(z^2+c),c=-21/50+17/64*I,n=2 3141566408551109 s002 sum(A242977[n]/(pi^n),n=1..infinity) 3141566417031462 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/5 3141566417052222 m004 -100*Pi+(4*Cos[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141566417072982 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/5 3141566419153467 r005 Im(z^2+c),c=1/21+10/29*I,n=18 3141566419212731 m008 (1/4*Pi^2-4)/(5*Pi^4+4/5) 3141566423145014 m001 MinimumGamma^2*ln(Cahen)^2/GAMMA(1/12)^2 3141566428831390 r005 Re(z^2+c),c=-33/34+26/95*I,n=14 3141566432955123 m001 HeathBrownMoroz^BesselI(1,2)-Pi 3141566435170806 m002 -E^Pi/(3*Pi^11)+Pi 3141566437674410 r005 Im(z^2+c),c=-101/102+14/43*I,n=26 3141566446096824 m002 -Pi+(Csch[Pi]*ProductLog[Pi]*Sech[Pi])/Pi^5 3141566448296025 r005 Re(z^2+c),c=9/25+22/63*I,n=54 3141566449130766 a007 Real Root Of -335*x^4-974*x^3-11*x^2-870*x-193 3141566450761438 h003 exp(Pi*(1/6*(22-7^(3/4))^(1/2)*6^(1/4))) 3141566474719966 b008 Pi*Sqrt[ArcCsch[100]] 3141566475647994 m005 (1/2*Catalan-5)/(11/12*gamma+11/12) 3141566482375606 m001 Pi+exp(Pi)*2^(1/3)-ln(2^(1/2)+1) 3141566486699694 r005 Re(z^2+c),c=-23/29+1/5*I,n=6 3141566494942814 m002 -16+E^Pi+Pi^5+Tanh[Pi] 3141566510517164 m001 Pi-gamma(3)^Niven 3141566526077022 a007 Real Root Of -133*x^4+711*x^3+640*x^2+882*x-361 3141566530388122 m001 Pi*(ln(2)/ln(10)-3^(1/2))+GAMMA(2/3) 3141566543796360 m002 -Pi+(ProductLog[Pi]*Sech[Pi]^2)/Pi^5 3141566546426782 m001 (-FeigenbaumB+PlouffeB)/(Psi(1,1/3)+2^(1/3)) 3141566556569549 p004 log(20047/19427) 3141566568228824 r005 Im(z^2+c),c=-7/16+33/64*I,n=46 3141566571312099 a007 Real Root Of 431*x^4-860*x^3+526*x^2-701*x-303 3141566579650170 a007 Real Root Of 439*x^4-93*x^3-962*x^2-479*x+16 3141566580695899 a007 Real Root Of -220*x^4+960*x^3-276*x^2+703*x+280 3141566583444722 s001 sum(exp(-Pi/4)^(n-1)*A171715[n],n=1..infinity) 3141566584634387 r002 19th iterates of z^2 + 3141566585132173 r005 Re(z^2+c),c=-49/122+5/29*I,n=35 3141566591891119 a007 Real Root Of -651*x^4+244*x^3-949*x^2+412*x+237 3141566599819348 b008 -1/35*1/E^7+Pi 3141566600967369 m001 Pi-exp(-Pi)^ReciprocalFibonacci 3141566608333401 l006 ln(5470/7489) 3141566611131747 k007 concat of cont frac of 3141566614896633 a007 Real Root Of 376*x^4+964*x^3-907*x^2-553*x+479 3141566615141403 r005 Im(z^2+c),c=-101/106+15/61*I,n=34 3141566616657216 r005 Im(z^2+c),c=31/110+7/43*I,n=20 3141566617357248 r005 Im(z^2+c),c=-5/23+26/55*I,n=49 3141566646830042 b008 Pi+ExpIntegralEi[-25/3] 3141566649687900 r002 23th iterates of z^2 + 3141566656110366 m001 GAMMA(1/12)^2*ln(TwinPrimes)^2*GAMMA(19/24)^2 3141566733745277 m005 (1/3*5^(1/2)-1/9)/(7/11*3^(1/2)+11/12) 3141566740619173 p003 LerchPhi(1/8,4,419/175) 3141566743302809 r005 Im(z^2+c),c=-109/126+12/55*I,n=5 3141566755133295 m001 (Mills+Niven)/(Artin-MertensB3) 3141566757867889 p004 log(34687/1499) 3141566760738031 r005 Im(z^2+c),c=-5/7+26/113*I,n=62 3141566765022831 m001 (Tribonacci+ZetaP(4))/(3^(1/3)-FeigenbaumB) 3141566767526771 a001 4181/7*11^(9/13) 3141566770652320 r009 Re(z^3+c),c=-29/74+5/18*I,n=15 3141566773398311 h005 exp(cos(Pi*5/53)/cos(Pi*5/27)) 3141566793161154 r008 a(0)=3,K{-n^6,22-18*n-39*n^2+29*n^3} 3141566794237420 m005 (13/42+1/6*5^(1/2))/(1/2*Zeta(3)-9/11) 3141566804796278 r005 Im(z^2+c),c=-13/74+29/63*I,n=17 3141566806631177 a001 322/9227465*121393^(7/9) 3141566806664347 a001 322/7778742049*701408733^(7/9) 3141566806664347 a001 161/3278735159921*4052739537881^(7/9) 3141566806664347 a001 46/32264490531*53316291173^(7/9) 3141566806664353 a001 161/133957148*9227465^(7/9) 3141566813413825 r005 Im(z^2+c),c=-29/82+21/40*I,n=45 3141566814862290 r005 Re(z^2+c),c=-47/64+2/21*I,n=37 3141566817540149 m001 Pi-ZetaQ(4)^exp(1/2) 3141566820591186 h001 (7/9*exp(2)+7/9)/(8/11*exp(1)+1/10) 3141566839380296 m001 Pi^2*exp(Cahen)^2*Zeta(1,2)^2 3141566841576432 r002 50th iterates of z^2 + 3141566850680374 r005 Im(z^2+c),c=-57/118+11/26*I,n=13 3141566856469664 q001 8/25465 3141566861553386 a007 Real Root Of 831*x^4-969*x^3-954*x^2-764*x-184 3141566877964251 m002 Pi-(Csch[Pi]*Log[Pi])/(4*Pi^6) 3141566878681074 s001 sum(exp(-Pi)^n*A230977[n],n=1..infinity) 3141566878681074 s002 sum(A230977[n]/(exp(pi*n)),n=1..infinity) 3141566887816963 r009 Im(z^3+c),c=-21/82+22/31*I,n=33 3141566894204986 m001 (Paris+ZetaQ(4))/(3^(1/2)-Zeta(1/2)) 3141566897139591 l006 ln(207/4790) 3141566902808321 m005 (1/2*5^(1/2)+3/5)/(5*Catalan+8/9) 3141566906742102 r005 Re(z^2+c),c=-1/74+28/45*I,n=44 3141566911348364 s001 sum(exp(-Pi/3)^n*A048835[n],n=1..infinity) 3141566912105644 a008 Real Root of x^4-x^3-33*x^2-115*x-164 3141566914659255 a007 Real Root Of 306*x^4+877*x^3-520*x^2-754*x+149 3141566915464012 a001 76/1346269*121393^(27/50) 3141566916161568 r005 Re(z^2+c),c=-49/122+5/29*I,n=32 3141566920276222 b008 ArcCoth[Sqrt[65/2]]^2 3141566923442538 m005 (1/2*3^(1/2)-1/12)/(1/8*Catalan-4/11) 3141566924816943 h001 (7/8*exp(1)+5/11)/(1/4*exp(1)+2/9) 3141566925324498 a007 Real Root Of 355*x^4-421*x^3+775*x^2+226*x-22 3141566926098756 m002 Pi-Log[Pi]/(2*E^Pi*Pi^6) 3141566937623264 a007 Real Root Of 316*x^4-672*x^3+606*x^2-507*x-243 3141566938675120 m001 (FeigenbaumDelta-Lehmer)/(Mills-ZetaQ(3)) 3141566940450943 m001 ln(Porter)/ErdosBorwein*log(2+sqrt(3)) 3141566953181867 m008 (3*Pi^6+1/2)/(3*Pi^5+1/6) 3141566953553478 m001 1/Tribonacci^2/Backhouse*exp(GAMMA(1/24)) 3141566953939431 m005 (1/2*exp(1)+2/11)/(5/12*gamma+1/4) 3141566954536260 m001 Totient^(2^(1/2))/(Gompertz^(2^(1/2))) 3141566958586685 a007 Real Root Of -301*x^4-629*x^3+821*x^2-635*x-281 3141566961707209 a007 Real Root Of -622*x^4+300*x^3+226*x^2+872*x+267 3141566962970069 m001 ReciprocalFibonacci-ZetaP(4)^Lehmer 3141566968226911 m001 (ArtinRank2-Grothendieck)/(MadelungNaCl+Niven) 3141566972421134 r005 Re(z^2+c),c=31/94+4/41*I,n=34 3141566974053819 m002 Pi-(Log[Pi]*Sech[Pi])/(4*Pi^6) 3141566974758007 m001 exp(GAMMA(7/24))*FibonacciFactorial*sinh(1) 3141566975403488 r002 5th iterates of z^2 + 3141566992343781 r009 Re(z^3+c),c=-29/60+5/62*I,n=19 3141566998282283 a001 322/317811*1597^(7/9) 3141567009767278 a007 Real Root Of -308*x^4-691*x^3+971*x^2+537*x+680 3141567014944653 h001 (8/11*exp(2)+3/4)/(7/12*exp(1)+4/11) 3141567030233036 r009 Re(z^3+c),c=-49/102+19/46*I,n=49 3141567038015101 m005 (1/2*Pi-4/11)/(1/11*3^(1/2)-4) 3141567042715297 r001 61i'th iterates of 2*x^2-1 of 3141567044366374 m001 Sierpinski*Totient-arctan(1/3) 3141567044484618 a007 Real Root Of 109*x^4+216*x^3-474*x^2-283*x-131 3141567067565122 r005 Im(z^2+c),c=-31/94+29/50*I,n=64 3141567083642569 m001 (MertensB1+RenyiParking)/(Ei(1)+ln(2+3^(1/2))) 3141567090868707 r002 19th iterates of z^2 + 3141567100293995 r005 Im(z^2+c),c=-59/78+14/31*I,n=6 3141567105215096 p001 sum((-1)^n/(447*n+317)/(100^n),n=0..infinity) 3141567150371609 r005 Re(z^2+c),c=-17/60+34/59*I,n=45 3141567157651190 m001 exp(cos(Pi/12))/OneNinth/log(1+sqrt(2))^2 3141567157927923 r005 Im(z^2+c),c=-11/30+15/32*I,n=14 3141567158546209 m004 -4+5*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi]/Pi 3141567171984706 m001 (Ei(1)*BesselI(1,1)+CareFree)/BesselI(1,1) 3141567173933162 r005 Im(z^2+c),c=25/82+8/61*I,n=43 3141567177927044 a007 Real Root Of 893*x^4+398*x^3-280*x^2-959*x-270 3141567181356723 a007 Real Root Of 67*x^4+235*x^3-53*x^2-192*x+680 3141567186131637 l006 ln(2311/3164) 3141567186185171 m001 (Artin-CareFree)/(FibonacciFactorial-ZetaP(3)) 3141567198352379 a007 Real Root Of 204*x^4+748*x^3+37*x^2-658*x+889 3141567211549686 r005 Re(z^2+c),c=-35/66+12/29*I,n=10 3141567227093541 a003 -1+cos(5/24*Pi)-cos(1/21*Pi)-2*cos(2/27*Pi) 3141567235602316 m005 (1/2*gamma-5/9)/(5/11*5^(1/2)-1/6) 3141567236266236 a008 Real Root of x^4+8*x^2-52*x-13 3141567238530107 p001 sum((-1)^n/(319*n+306)/(12^n),n=0..infinity) 3141567241762041 a007 Real Root Of 81*x^4-176*x^3-493*x^2-521*x+217 3141567249907481 r009 Re(z^3+c),c=-7/16+13/37*I,n=32 3141567274047213 r005 Im(z^2+c),c=29/78+1/51*I,n=6 3141567274293299 a007 Real Root Of -122*x^4-539*x^3-516*x^2+140*x+704 3141567275665901 r009 Re(z^3+c),c=-27/64+16/49*I,n=38 3141567278331693 a007 Real Root Of 701*x^4-883*x^3+219*x^2-599*x-244 3141567280841291 s002 sum(A267362[n]/(exp(pi*n)-1),n=1..infinity) 3141567301854501 m001 (Niven+Salem)/(Artin+Landau) 3141567302633117 s002 sum(A208849[n]/(n^2*pi^n+1),n=1..infinity) 3141567309476433 r009 Im(z^3+c),c=-7/18+11/45*I,n=12 3141567309896766 r005 Re(z^2+c),c=1/20+18/59*I,n=17 3141567315413269 k006 concat of cont frac of 3141567316584135 a007 Real Root Of 392*x^4+957*x^3-918*x^2-426*x-789 3141567323535194 b008 -1/36*1/E^7+Pi 3141567324832989 m005 (1/2*Zeta(3)-1/11)/(1/2*2^(1/2)+11/12) 3141567327961053 r009 Re(z^3+c),c=-41/106+17/63*I,n=19 3141567328138660 m004 -100*Pi+(2*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3141567328158700 m004 (-4*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141567328178739 m004 -100*Pi+(2*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3141567331597218 m001 1/exp(GAMMA(5/24))*BesselJ(0,1)/sqrt(3)^2 3141567331765849 r005 Im(z^2+c),c=1/110+13/34*I,n=4 3141567334071250 r009 Re(z^3+c),c=-23/60+14/53*I,n=23 3141567349614050 m005 (1/3*2^(1/2)+4)/(2/5*Pi+1/6) 3141567354850450 a007 Real Root Of -333*x^4-788*x^3+957*x^2+595*x+428 3141567356509881 r005 Re(z^2+c),c=15/44+5/43*I,n=53 3141567372029158 h001 (-6*exp(2)-9)/(-9*exp(3)+11) 3141567374296302 r009 Re(z^3+c),c=-1/29+17/33*I,n=3 3141567381023940 r005 Re(z^2+c),c=19/70+6/61*I,n=6 3141567384530437 m002 -Pi+ProductLog[Pi]/(6*E^Pi*Pi^5) 3141567404302285 a007 Real Root Of 837*x^4-253*x^3+828*x^2+206*x-33 3141567413781763 a001 46/3*46368^(22/31) 3141567417679411 m001 (GAMMA(3/4)+Magata)/(MertensB2+TreeGrowth2nd) 3141567418325586 a007 Real Root Of 115*x^4+337*x^3+66*x^2+616*x+531 3141567434572836 r009 Im(z^3+c),c=-1/25+21/61*I,n=8 3141567435712481 r002 14th iterates of z^2 + 3141567438805954 r005 Re(z^2+c),c=-23/56+3/31*I,n=9 3141567461580960 b008 73*7^(3/4) 3141567470572913 m001 exp(LaplaceLimit)^2/Khintchine^2*BesselK(1,1) 3141567470678623 l006 ln(364/8423) 3141567476073887 r005 Re(z^2+c),c=19/86+1/39*I,n=6 3141567481813848 r005 Im(z^2+c),c=-17/16+19/73*I,n=38 3141567488422178 m005 (1/5*gamma+1/3)/(5/6*2^(1/2)+1/4) 3141567490557797 r002 19th iterates of z^2 + 3141567492138684 a009 15^(1/2)/(1-4^(2/3))^(1/2) 3141567498752897 m001 Pi-ZetaQ(4)^((1+3^(1/2))^(1/2)) 3141567514874791 m001 (Artin+GaussAGM)/(exp(1)+GAMMA(5/6)) 3141567515259234 m001 (Porter+Robbin)/(Artin+GaussKuzminWirsing) 3141567523159573 m002 Pi-(E^Pi*Coth[Pi])/Pi^12 3141567525304127 r005 Re(z^2+c),c=-23/94+33/59*I,n=4 3141567533160068 a008 Real Root of (1+5*x+5*x^2-2*x^3-5*x^5) 3141567538689994 r005 Im(z^2+c),c=-39/110+33/61*I,n=36 3141567542316214 a005 (1/sin(41/169*Pi))^115 3141567543174563 b008 Pi+(2*ExpIntegralEi[-8])/3 3141567555589416 p003 LerchPhi(1/3,3,148/215) 3141567561591659 a007 Real Root Of -984*x^4-558*x^3+825*x^2+914*x+198 3141567564570824 b008 Pi*ModularLambda[I/8*Sqrt[3]] 3141567565133615 r009 Im(z^3+c),c=-23/94+13/42*I,n=16 3141567569113448 r002 44th iterates of z^2 + 3141567570089212 m002 -Pi+(2*Cosh[Pi])/Pi^12 3141567575925852 m001 (Lehmer+PisotVijayaraghavan)/(Cahen-CareFree) 3141567578135236 m001 Pi+2^(1/3)*gamma(2)*gamma(3) 3141567581212149 a007 Real Root Of -618*x^4-20*x^3+243*x^2+887*x-296 3141567587784541 m008 (5*Pi^6-2/3)/(5*Pi^5-1/5) 3141567593425121 a007 Real Root Of 263*x^4+556*x^3-725*x^2+617*x+715 3141567599095150 h001 (-6*exp(1)+12)/(-exp(1)-11) 3141567599095150 m005 (1/2*exp(1)-1)/(1/12*exp(1)+11/12) 3141567600594573 p004 log(31321/22877) 3141567601038607 b008 -3/(2*E^11)+Pi 3141567606685930 m001 Pi-ZetaQ(3)^(5^(1/2)) 3141567608315930 a007 Real Root Of -609*x^4+574*x^3-533*x^2+591*x+262 3141567608452942 s001 sum(exp(-Pi/4)^n*A107993[n],n=1..infinity) 3141567608971641 m001 Pi-ZetaQ(2)^(Pi*2^(1/2)/GAMMA(3/4)) 3141567610113116 k002 Champernowne real with 5/2*n^2+5/2*n+26 3141567613805048 r005 Re(z^2+c),c=-17/60+31/55*I,n=54 3141567615777156 g007 Psi(2,2/11)+Psi(2,3/10)-Psi(2,1/6)-Psi(2,2/3) 3141567616843902 m002 -(E^Pi/Pi^12)+Pi 3141567618119783 m001 (LaplaceLimit+ZetaP(3))/(FeigenbaumC+GaussAGM) 3141567627881052 s002 sum(A235925[n]/((pi^n+1)/n),n=1..infinity) 3141567630757316 r009 Im(z^3+c),c=-55/106+17/50*I,n=8 3141567634237929 v002 sum(1/(5^n+(17*n^2-15*n+50)),n=1..infinity) 3141567640124323 r002 33th iterates of z^2 + 3141567646334885 p002 log(1/7*(11^(1/4)+12^(1/4))^(1/2)*7^(2/3)) 3141567649768354 m009 (4/5*Psi(1,3/4)-3)/(4/5*Psi(1,1/3)-5) 3141567658371397 m004 -100*Pi+(Pi*Csch[Sqrt[5]*Pi])/Sqrt[5] 3141567658410953 m004 -100*Pi+(Pi*Sech[Sqrt[5]*Pi])/Sqrt[5] 3141567662199510 r005 Re(z^2+c),c=-45/118+13/45*I,n=30 3141567663272880 a007 Real Root Of 655*x^4-710*x^3+582*x^2-930*x-378 3141567663598591 m002 -Pi+(2*Sinh[Pi])/Pi^12 3141567664427166 m001 GAMMA(23/24)^2/Riemann3rdZero^2/exp(Pi)^2 3141567695906419 a007 Real Root Of -193*x^4-759*x^3-394*x^2+334*x+204 3141567698086989 a007 Real Root Of 822*x^4-277*x^3-370*x^2-544*x+208 3141567698428957 m001 (Artin+Weierstrass)/(2^(1/3)+3^(1/3)) 3141567700318166 a007 Real Root Of 615*x^4-853*x^3-522*x^2-920*x+361 3141567700838529 m005 (1/3*exp(1)+2/5)/(1/11*3^(1/2)+4) 3141567705532816 l006 ln(6085/8331) 3141567710178982 m002 -Pi+(E^Pi*Tanh[Pi])/Pi^12 3141567711776215 b008 Pi+6*ExpIntegralEi[-10] 3141567712808423 r002 15th iterates of z^2 + 3141567716751352 r005 Re(z^2+c),c=-43/106+7/43*I,n=11 3141567727688301 a007 Real Root Of 297*x^4-914*x^3+638*x^2+7*x-92 3141567728543478 a007 Real Root Of -564*x^4+563*x^3-818*x^2+192*x+164 3141567730226186 r005 Re(z^2+c),c=17/60+5/52*I,n=26 3141567734512094 m005 (1/2*3^(1/2)-7/10)/(8/11*Pi+3) 3141567737015059 m008 (1/4*Pi^2-5)/(5/6*Pi^6+5) 3141567756462488 m001 (FeigenbaumAlpha-Grothendieck)/(Otter-Robbin) 3141567758100328 a005 (1/cos(2/95*Pi))^1575 3141567758881437 b008 Pi+2*ExpIntegralEi[-9] 3141567784297175 r009 Re(z^3+c),c=-21/74+1/55*I,n=7 3141567784573896 m001 (-OrthogonalArrays+ThueMorse)/(2^(1/2)-ln(3)) 3141567795141725 m004 -10*Pi+25*Pi*Csch[Sqrt[5]*Pi]^2 3141567795161394 m004 -6*Pi+5*Pi*Coth[Sqrt[5]*Pi] 3141567795181064 m004 -10*Pi+25*Pi*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141567795200734 m004 -4*Pi+5*Pi*Tanh[Sqrt[5]*Pi] 3141567795220403 m004 -10*Pi+25*Pi*Sech[Sqrt[5]*Pi]^2 3141567801340481 a007 Real Root Of 267*x^4+873*x^3-202*x^2-728*x+767 3141567804583019 r005 Im(z^2+c),c=-7/48+19/43*I,n=35 3141567812918420 p003 LerchPhi(1/125,4,167/125) 3141567813448177 m005 (1/2*Catalan-3/4)/(139/176+1/16*5^(1/2)) 3141567813965978 b008 InverseJacobiDC[E,-1]/3 3141567820121760 r002 9th iterates of z^2 + 3141567834375700 r009 Re(z^3+c),c=-49/106+23/59*I,n=58 3141567837273001 l004 Chi(250/107) 3141567849999901 r004 Re(z^2+c),c=-11/30+7/20*I,z(0)=-1,n=40 3141567867502896 m001 ArtinRank2^(MasserGramainDelta/LambertW(1)) 3141567871472848 m001 1/ln(ArtinRank2)^2/Conway^2*FeigenbaumB^2 3141567875722412 r005 Im(z^2+c),c=-25/106+12/25*I,n=32 3141567888188074 a007 Real Root Of -134*x^4-492*x^3-249*x^2-199*x-370 3141567890860448 a007 Real Root Of -258*x^4-912*x^3-363*x^2-94*x+141 3141567894314051 m001 cos(1/12*Pi)^FeigenbaumC-GolombDickman 3141567897167021 m002 Pi-Cosh[Pi]/(5*Pi^10) 3141567902575812 s002 sum(A277918[n]/(n^3*exp(n)+1),n=1..infinity) 3141567908448207 a001 24476/5*196418^(41/57) 3141567912727258 r005 Re(z^2+c),c=-23/34+11/81*I,n=4 3141567914528738 m001 (exp(1)+Si(Pi))/(-Backhouse+HeathBrownMoroz) 3141567925938618 r005 Re(z^2+c),c=-4/11+7/20*I,n=16 3141567927845304 m001 (BesselK(1,1)+BesselI(0,2))/(Artin+Landau) 3141567937114312 r009 Im(z^3+c),c=-31/66+8/45*I,n=17 3141567940660379 r009 Im(z^3+c),c=-11/30+13/21*I,n=13 3141567943073876 m001 Grothendieck^(HardHexagonsEntropy/CareFree) 3141567946983284 m001 (CopelandErdos+Stephens)/(1-GAMMA(23/24)) 3141567953668207 a007 Real Root Of -305*x^4-665*x^3+713*x^2-927*x-859 3141567963902989 q001 557/1773 3141567971628975 b008 -1/5*1/E^9+Pi 3141567971951867 r009 Im(z^3+c),c=-15/34+1/39*I,n=19 3141567985478127 m005 (23/66+1/6*5^(1/2))/(4/11*Zeta(3)-2/3) 3141567989457078 m002 Pi-Sinh[Pi]/(5*Pi^10) 3141568002953704 m001 GAMMA(11/24)/GAMMA(1/4)^2/exp(cosh(1)) 3141568013344530 r005 Im(z^2+c),c=-11/28+27/52*I,n=40 3141568016027301 h001 (-5*exp(2/3)+9)/(-exp(1/2)+4) 3141568019366805 s002 sum(A260806[n]/(n^2*2^n+1),n=1..infinity) 3141568020258094 m005 (1/6*gamma-5)/(1/3*exp(1)-3/4) 3141568023586890 l006 ln(3774/5167) 3141568041443827 a007 Real Root Of -164*x^4-440*x^3+293*x^2+89*x-280 3141568041565544 r005 Im(z^2+c),c=15/82+1/61*I,n=14 3141568048530596 r009 Im(z^3+c),c=-17/58+47/64*I,n=32 3141568059786138 m005 (1/3*5^(1/2)+3/5)/(5/11*2^(1/2)-3/5) 3141568076740379 b008 -4/E^12+Pi 3141568101351709 r005 Im(z^2+c),c=9/50+8/31*I,n=29 3141568111418301 r009 Re(z^3+c),c=-63/122+25/51*I,n=14 3141568118608067 a007 Real Root Of 174*x^4+448*x^3-269*x^2+334*x+646 3141568137985114 g002 Psi(10/11)+Psi(7/11)-Psi(5/12)-Psi(4/11) 3141568140365987 b008 Pi*(1+ExpIntegralEi[-3*Pi]) 3141568141051151 k006 concat of cont frac of 3141568142572144 m005 (1/2*exp(1)-1/7)/(1/8*5^(1/2)-2/3) 3141568152721442 m002 -Pi+Csch[Pi]^2/Pi^5 3141568153428539 m005 (1/2*Zeta(3)-5/6)/(7/9*gamma-3/8) 3141568160972300 a007 Real Root Of 136*x^4-918*x^3-981*x^2-780*x+369 3141568162853097 a007 Real Root Of 497*x^4+223*x^3+295*x^2-767*x-268 3141568183816420 r005 Im(z^2+c),c=-13/50+25/51*I,n=64 3141568187676928 p001 sum(1/(596*n+345)/(5^n),n=0..infinity) 3141568191843225 m001 Pi-ZetaR(2)^(2*Pi/GAMMA(5/6)) 3141568198475410 m002 -Pi+(2*Csch[Pi])/(E^Pi*Pi^5) 3141568206099072 m002 -Pi+(2*Log[Pi])/Pi^10 3141568207056000 m004 -100*Pi+(3*Tan[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141568207813333 r009 Im(z^3+c),c=-11/32+17/63*I,n=13 3141568226250496 m001 1/exp(MinimumGamma)^2/Backhouse/sinh(1) 3141568226872893 l006 ln(157/3633) 3141568236527258 m009 (3/5*Psi(1,1/3)+3/5)/(2*Psi(1,1/3)+1) 3141568239944175 b008 1/3-12*Sqrt[7] 3141568243697243 m005 (1/2*Catalan-2/9)/(5/8*gamma-2/7) 3141568244058812 m002 -Pi+(Csch[Pi]*Sech[Pi])/Pi^5 3141568244108285 r002 13th iterates of z^2 + 3141568244143936 m002 -4/(E^(2*Pi)*Pi^5)+Pi 3141568252930983 r009 Im(z^3+c),c=-23/94+13/42*I,n=19 3141568258803379 a001 271443/610*121393^(4/11) 3141568260779289 a001 39603/610*24157817^(4/11) 3141568269694116 r009 Im(z^3+c),c=-23/94+13/42*I,n=15 3141568278607127 m001 Stephens*(Psi(2,1/3)+gamma) 3141568288468294 m001 1/exp(1)/ln(Trott)/sin(Pi/12) 3141568289642213 m002 -Pi+(2*Sech[Pi])/(E^Pi*Pi^5) 3141568295399006 a007 Real Root Of 174*x^4+641*x^3+457*x^2+328*x-554 3141568296636397 m001 2^(1/2)*ln(2^(1/2)+1)+Ei(1) 3141568296636397 m001 sqrt(2)*ln(1+sqrt(2))+Ei(1) 3141568300087645 a009 3^(1/3)/(24-5^(2/3))^(1/2) 3141568304032160 r009 Im(z^3+c),c=-23/94+13/42*I,n=22 3141568307688669 r009 Im(z^3+c),c=-23/94+13/42*I,n=25 3141568307941410 r009 Im(z^3+c),c=-23/94+13/42*I,n=28 3141568307958293 r009 Im(z^3+c),c=-23/94+13/42*I,n=31 3141568307959381 r009 Im(z^3+c),c=-23/94+13/42*I,n=34 3141568307959447 r009 Im(z^3+c),c=-23/94+13/42*I,n=35 3141568307959448 r009 Im(z^3+c),c=-23/94+13/42*I,n=37 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=38 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=40 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=41 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=43 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=44 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=47 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=46 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=50 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=49 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=53 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=56 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=59 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=62 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=63 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=64 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=61 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=60 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=58 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=57 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=55 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=54 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=52 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=51 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=48 3141568307959452 r009 Im(z^3+c),c=-23/94+13/42*I,n=45 3141568307959453 r009 Im(z^3+c),c=-23/94+13/42*I,n=42 3141568307959453 r009 Im(z^3+c),c=-23/94+13/42*I,n=39 3141568307959465 r009 Im(z^3+c),c=-23/94+13/42*I,n=32 3141568307959467 r009 Im(z^3+c),c=-23/94+13/42*I,n=36 3141568307959642 r009 Im(z^3+c),c=-23/94+13/42*I,n=33 3141568307961024 r009 Im(z^3+c),c=-23/94+13/42*I,n=29 3141568307961904 r009 Im(z^3+c),c=-23/94+13/42*I,n=30 3141568307989377 r009 Im(z^3+c),c=-23/94+13/42*I,n=27 3141568308001854 r009 Im(z^3+c),c=-23/94+13/42*I,n=26 3141568308296407 r009 Im(z^3+c),c=-23/94+13/42*I,n=24 3141568308840129 r009 Im(z^3+c),c=-23/94+13/42*I,n=23 3141568311262138 r009 Im(z^3+c),c=-23/94+13/42*I,n=21 3141568321203107 r009 Im(z^3+c),c=-7/20+4/15*I,n=17 3141568322842666 b008 Pi-Erfc[Khinchin]/6 3141568324183042 r009 Im(z^3+c),c=-23/94+13/42*I,n=20 3141568324416345 b008 Pi*GammaRegularized[1/2,0,10] 3141568325982193 m002 -E^Pi/6+Pi*Cosh[Pi]-Log[Pi] 3141568326352084 a001 199/75025*75025^(29/46) 3141568331078850 r009 Im(z^3+c),c=-23/94+13/42*I,n=18 3141568335055683 m002 -Pi+Sech[Pi]^2/Pi^5 3141568352876642 a001 2889/305*4807526976^(4/11) 3141568354708043 s002 sum(A219531[n]/(n^2*pi^n+1),n=1..infinity) 3141568361728529 r005 Im(z^2+c),c=-19/62+30/59*I,n=63 3141568377746420 r005 Im(z^2+c),c=-15/58+31/63*I,n=30 3141568393141783 l006 ln(5237/7170) 3141568393859971 g001 GAMMA(5/11,60/67) 3141568399719506 a007 Real Root Of 288*x^4+940*x^3+37*x^2-474*x-762 3141568400894677 r005 Im(z^2+c),c=-19/78+29/60*I,n=32 3141568421191376 r005 Re(z^2+c),c=39/106+6/31*I,n=26 3141568425713324 m002 -Pi+(Sech[Pi]^2*Tanh[Pi])/Pi^5 3141568467381774 b008 Pi-Erfc[E]/5 3141568478269544 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(4*Pi^6) 3141568488421149 m001 (-GAMMA(13/24)+1)/(Zeta(5)+1) 3141568502034607 a007 Real Root Of 923*x^4-413*x^3-239*x^2-21*x+34 3141568510440117 r009 Re(z^3+c),c=-9/31+1/37*I,n=2 3141568519210170 b008 (1+13*Sech[1])/3 3141568519218367 a007 Real Root Of 15*x^4+459*x^3-383*x^2+40*x-105 3141568523415570 m002 -Pi+ProductLog[Pi]/(2*E^Pi*Pi^6) 3141568524883591 m002 Pi-Log[Pi]/(5*Pi^8) 3141568526371046 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3141568526390137 m004 -100*Pi+(2*Sec[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141568526409228 m004 -100*Pi+Sec[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141568538457508 m001 (1+FeigenbaumAlpha)/(-RenyiParking+Thue) 3141568543778705 m009 (1/4*Psi(1,1/3)+3)/(6*Psi(1,2/3)-4/5) 3141568544982383 r009 Re(z^3+c),c=-45/118+6/23*I,n=21 3141568549214524 m001 Pi-Trott2nd^Otter 3141568549215786 m001 GAMMA(2/3)^Sierpinski*Bloch^Sierpinski 3141568568393295 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(4*Pi^6) 3141568585718787 r009 Im(z^3+c),c=-23/94+13/42*I,n=17 3141568591537858 a001 5/103682*123^(46/53) 3141568596602678 a007 Real Root Of -264*x^4-506*x^3+802*x^2-813*x-443 3141568597595523 m001 (-Cahen+Conway)/(2^(1/3)+sin(1)) 3141568598428786 r005 Im(z^2+c),c=-39/118+27/52*I,n=55 3141568601305981 l006 ln(6700/9173) 3141568604084233 m004 (250*Sech[Sqrt[5]*Pi])/Pi+3*Tanh[Sqrt[5]*Pi] 3141568615311139 r005 Re(z^2+c),c=-9/22+1/10*I,n=21 3141568618753181 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/5 3141568618772199 m004 -100*Pi+(4*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141568618791217 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/5 3141568623496115 r005 Re(z^2+c),c=-127/122+3/16*I,n=8 3141568624360774 m001 (FibonacciFactorial+Rabbit)^(3^(1/2)) 3141568624512760 a007 Real Root Of 915*x^4-667*x^3+145*x^2-586*x-228 3141568639095153 a007 Real Root Of 516*x^4+511*x^3-242*x^2-331*x+107 3141568658269330 r005 Im(z^2+c),c=5/118+8/23*I,n=18 3141568660239926 m001 (Sarnak+ZetaP(3))/(Zeta(5)+MasserGramainDelta) 3141568660766306 r005 Im(z^2+c),c=-9/38+25/52*I,n=51 3141568660809037 b008 Pi/Zeta[17] 3141568678219638 a007 Real Root Of 478*x^4-931*x^3+339*x^2-729*x-296 3141568680322323 r005 Im(z^2+c),c=19/60+7/62*I,n=57 3141568681362103 h001 (7/12*exp(2)+6/7)/(1/2*exp(1)+2/7) 3141568709940548 m004 -12+25*Pi-5*Sqrt[5]*Pi*Coth[Sqrt[5]*Pi] 3141568712066344 m005 (1/2*Pi-1/8)/(1/8*exp(1)-4/5) 3141568715966527 r002 33th iterates of z^2 + 3141568716106657 m004 500/(E^(Sqrt[5]*Pi)*Pi)+3*Tanh[Sqrt[5]*Pi] 3141568717227849 r009 Re(z^3+c),c=-53/114+13/33*I,n=58 3141568724629058 r005 Re(z^2+c),c=19/78+4/49*I,n=5 3141568727607881 a007 Real Root Of 713*x^4+669*x^3+196*x^2-915*x-293 3141568735314735 m001 (Pi+1)*(ln(2^(1/2)+1)-GAMMA(13/24)) 3141568735333311 a007 Real Root Of 846*x^4-583*x^3+428*x^2-622*x+163 3141568737500614 m001 1/BesselK(0,1)*Trott^2*ln(GAMMA(7/24)) 3141568742502336 m008 (1/3*Pi-3/5)/(1/6*Pi^4-2) 3141568743384353 r009 Im(z^3+c),c=-31/60+4/15*I,n=8 3141568744767743 b008 1/9+(15*Sqrt[2])/7 3141568749554580 m001 (Pi*Psi(2,1/3)+HeathBrownMoroz)/Psi(2,1/3) 3141568751388318 p003 LerchPhi(1/6,5,269/213) 3141568778059390 r005 Re(z^2+c),c=-79/64+3/31*I,n=62 3141568779187182 m005 (1/2*Catalan-4/11)/(1/11*3^(1/2)+1/7) 3141568781340726 a001 3/13*4181^(33/56) 3141568786112615 m009 (1/10*Pi^2-1/5)/(3/5*Psi(1,2/3)+2/3) 3141568786165269 m008 (2*Pi^6-4/5)/(2*Pi^5-1/4) 3141568788852803 m001 (3^(1/2)-Chi(1))/(-FeigenbaumMu+Sarnak) 3141568790907622 m001 GAMMA(11/24)^2/ln(Porter)^2/cos(Pi/5) 3141568796541484 m001 ln(BesselJ(0,1))/FeigenbaumC*arctan(1/2)^2 3141568810741667 r005 Re(z^2+c),c=-13/34+7/26*I,n=13 3141568815183845 r005 Im(z^2+c),c=1/13+19/58*I,n=19 3141568820407860 m001 (Bloch-Catalan)/(Riemann1stZero+ZetaQ(4)) 3141568826796243 r005 Re(z^2+c),c=-13/42+25/46*I,n=43 3141568828129258 m004 (250*Csch[Sqrt[5]*Pi])/Pi+3*Tanh[Sqrt[5]*Pi] 3141568831210344 m001 (2^(1/2)-AlladiGrinstead)/(Lehmer+MertensB3) 3141568853309183 r009 Re(z^3+c),c=-35/114+2/13*I,n=2 3141568855553684 a001 1/9338*(1/2*5^(1/2)+1/2)^28*29^(8/19) 3141568864960881 m001 1/exp(Zeta(1,2))/KhintchineLevy^2*sqrt(3) 3141568867640329 r005 Re(z^2+c),c=-13/24+34/63*I,n=35 3141568872799992 a001 930249/305*610^(4/11) 3141568880570350 r005 Im(z^2+c),c=-27/106+19/39*I,n=29 3141568880684106 l006 ln(421/9742) 3141568891595080 h003 exp(Pi*(1/11*(11^(2/3)+2^(3/4))*11^(1/4))) 3141568902594346 r005 Re(z^2+c),c=33/98+19/49*I,n=19 3141568903749180 a001 1364/987*956722026041^(4/11) 3141568905643145 a007 Real Root Of 11*x^4+345*x^3-27*x^2-304*x-656 3141568906839100 r009 Im(z^3+c),c=-3/122+10/29*I,n=8 3141568919607900 r004 Im(z^2+c),c=-1/6+9/20*I,z(0)=I,n=28 3141568932709501 m004 -100*Pi+(4*Csch[Sqrt[5]*Pi])/3 3141568932747041 m004 -100*Pi+(4*Sech[Sqrt[5]*Pi])/3 3141568940664016 m001 arctan(1/2)*GaussAGM+gamma(1) 3141568945512072 m002 -10-Pi^5+2/ProductLog[Pi] 3141568946963953 s002 sum(A145116[n]/(n^2*pi^n+1),n=1..infinity) 3141568974123483 r005 Re(z^2+c),c=-41/110+15/46*I,n=33 3141568985424422 r005 Im(z^2+c),c=17/58+4/27*I,n=46 3141568988743642 r005 Re(z^2+c),c=13/48+5/51*I,n=6 3141569006873416 r009 Re(z^3+c),c=-41/86+17/44*I,n=17 3141569022555447 h001 (2/11*exp(1)+2/5)/(9/10*exp(1)+2/5) 3141569055799402 r005 Im(z^2+c),c=-7/54+46/63*I,n=3 3141569055948881 a007 Real Root Of -214*x^4-849*x^3-452*x^2+27*x-933 3141569058833979 a007 Real Root Of -688*x^4-300*x^3+512*x^2+775*x-278 3141569062696895 a001 4/6765*89^(16/43) 3141569066625178 s001 sum(exp(-Pi/4)^n*A077468[n],n=1..infinity) 3141569068186319 m001 (Cahen-Sarnak)/(TravellingSalesman+Tribonacci) 3141569072980281 r005 Re(z^2+c),c=-17/50+14/31*I,n=26 3141569081827950 m001 HeathBrownMoroz^ErdosBorwein-Pi 3141569090463283 m005 (1/6+1/4*5^(1/2))/(11/12*exp(1)-2/11) 3141569092301426 m001 (-PlouffeB+Riemann3rdZero)/(Catalan-Chi(1)) 3141569094594446 a007 Real Root Of 197*x^4+571*x^3+260*x^2+974*x-991 3141569098152200 r005 Re(z^2+c),c=-17/38+4/9*I,n=15 3141569100113458 m001 1/ln(Lehmer)^2/GlaisherKinkelin^2*sqrt(2) 3141569118111297 m002 -1/(6*E^Pi*Pi^5)+Pi 3141569118872773 m002 -(E^Pi/Pi)+Pi^3/2+Pi^5 3141569123561523 s002 sum(A201665[n]/(n^2*2^n-1),n=1..infinity) 3141569134554627 p004 log(28069/1213) 3141569137228277 a007 Real Root Of 525*x^4-101*x^3-798*x^2-701*x+297 3141569141591332 k008 concat of cont frac of 3141569143977286 a007 Real Root Of -468*x^4+705*x^3-718*x^2+623*x+293 3141569161707950 r009 Re(z^3+c),c=-5/17+5/62*I,n=4 3141569167607489 r005 Re(z^2+c),c=-15/52+11/24*I,n=10 3141569174890470 m005 (-11/20+1/4*5^(1/2))/(3/11*gamma-4/9) 3141569182237621 r009 Re(z^3+c),c=-12/29+16/51*I,n=27 3141569188641761 a007 Real Root Of -284*x^4-589*x^3+869*x^2-159*x+325 3141569205849767 m002 -Pi+Tanh[Pi]/(6*E^Pi*Pi^5) 3141569224514618 m001 (BesselJ(0,1)+exp(1/Pi)*Sierpinski)/exp(1/Pi) 3141569232823679 r005 Re(z^2+c),c=-83/106+8/59*I,n=36 3141569236542494 m001 (exp(1)-gamma(1))/(GaussAGM+ZetaQ(2)) 3141569245185354 b008 Pi+3*ExpIntegralEi[-3*Pi] 3141569248285243 m001 exp(OneNinth)*Champernowne^2/cos(1) 3141569255476461 r005 Re(z^2+c),c=37/102+16/53*I,n=11 3141569256983944 m002 -Pi+(3*Csch[Pi]^2)/Pi^6 3141569258892832 a007 Real Root Of -31*x^4-971*x^3+96*x^2+159*x-255 3141569259905938 s002 sum(A247208[n]/(n^2*pi^n+1),n=1..infinity) 3141569261788247 r009 Re(z^3+c),c=-9/20+23/62*I,n=38 3141569269503450 l006 ln(264/6109) 3141569269702941 m001 Lehmer*exp(Si(Pi))/Zeta(3) 3141569273804506 b008 Sech[1+Pi*Coth[Pi]] 3141569286345256 b008 3+(9*Erfc[1])/10 3141569286345256 b008 30+9*Erfc[1] 3141569286345256 b008 39-9*Erf[1] 3141569300675766 m002 -Pi+(6*Csch[Pi])/(E^Pi*Pi^6) 3141569307955826 m002 -Pi+(6*Log[Pi])/Pi^11 3141569313704380 r002 30th iterates of z^2 + 3141569317381402 m001 (-Conway+QuadraticClass)/(exp(1)-exp(1/Pi)) 3141569330210129 r002 6th iterates of z^2 + 3141569330240139 r002 3th iterates of z^2 + 3141569334486923 m002 Pi-E^Pi/(Pi^12*ProductLog[Pi]) 3141569344204708 m002 -Pi+(3*Csch[Pi]*Sech[Pi])/Pi^6 3141569346456939 l006 ln(1463/2003) 3141569349999201 r005 Re(z^2+c),c=-27/86+23/45*I,n=58 3141569353757014 a001 305/161*18^(7/40) 3141569365688451 m004 -100*Pi+(5*Pi)/(6*E^(Sqrt[5]*Pi)) 3141569382613013 r009 Im(z^3+c),c=-27/50+21/64*I,n=33 3141569384955628 r005 Re(z^2+c),c=-13/27+16/63*I,n=2 3141569387733649 m002 -Pi+(6*Sech[Pi])/(E^Pi*Pi^6) 3141569389954772 r005 Im(z^2+c),c=-7/46+27/58*I,n=9 3141569390270536 m001 (ln(2)-CopelandErdos)/Backhouse 3141569405968656 a007 Real Root Of 170*x^4+108*x^3+762*x^2-788*x+24 3141569409757514 r005 Re(z^2+c),c=-19/48+13/61*I,n=18 3141569410884621 m001 GAMMA(7/24)/GAMMA(11/24)^2/exp(cos(Pi/12)) 3141569412266935 m005 (1/2*3^(1/2)+3/4)/(1/11*Pi-4/5) 3141569431100319 m002 -Pi+(3*Sech[Pi]^2)/Pi^6 3141569439396012 r009 Im(z^3+c),c=-9/52+20/61*I,n=9 3141569440266228 l006 ln(5085/5101) 3141569445219109 r009 Re(z^3+c),c=-7/122+46/61*I,n=45 3141569446105299 a001 121393/76*1364^(30/41) 3141569449573601 a007 Real Root Of 49*x^4+85*x^3+459*x^2-442*x-182 3141569456376016 m001 (Salem+Sierpinski)/(sin(1/12*Pi)-Backhouse) 3141569459172852 q001 1185/3772 3141569459172852 r002 2th iterates of z^2 + 3141569460645940 a007 Real Root Of -274*x^4+571*x^3+808*x^2+736*x-326 3141569462509233 s002 sum(A172319[n]/(n^2*pi^n+1),n=1..infinity) 3141569464043065 m001 exp(GAMMA(5/24))*Magata^2/sqrt(3)^2 3141569467534708 s002 sum(A234591[n]/(n^2*pi^n+1),n=1..infinity) 3141569479486530 m001 Pi-gamma(2)^(5^(1/2)) 3141569480793424 r002 3th iterates of z^2 + 3141569487102390 m001 Kolakoski*ln(Backhouse)*GAMMA(23/24)^2 3141569489094947 p003 LerchPhi(1/512,6,358/137) 3141569506716231 m001 HeathBrownMoroz^ln(5)-Pi 3141569513586377 m005 (1/2*Catalan-3/4)/(1/9*Zeta(3)-1/7) 3141569522802814 m008 (5*Pi^6+3/4)/(5*Pi^5+1/4) 3141569544162656 r005 Im(z^2+c),c=-7/36+21/46*I,n=9 3141569551981055 r009 Im(z^3+c),c=-23/58+7/27*I,n=5 3141569555275906 m001 (1-exp(1/Pi))/(-MasserGramain+Tribonacci) 3141569557243471 b008 Pi+ExpIntegralEi[-7]/5 3141569561846676 s002 sum(A221180[n]/(n^2*pi^n+1),n=1..infinity) 3141569566383184 r005 Im(z^2+c),c=-117/94+12/43*I,n=4 3141569575994586 a007 Real Root Of -736*x^4-699*x^3+290*x^2+284*x-89 3141569576233899 a007 Real Root Of 348*x^4-397*x^3-654*x^2-964*x-254 3141569580332852 r005 Im(z^2+c),c=27/110+15/56*I,n=5 3141569582593738 r005 Im(z^2+c),c=-31/26+16/69*I,n=13 3141569584511838 a007 Real Root Of 684*x^4-464*x^3-58*x^2-597*x+201 3141569588235723 m002 5+Pi^5+Log[Pi]+2*Tanh[Pi] 3141569602839312 a007 Real Root Of -905*x^4+987*x^3-533*x^2-51*x+76 3141569604296428 m001 (LaplaceLimit+MertensB2)/cos(1) 3141569605274720 r009 Re(z^3+c),c=-7/16+9/31*I,n=7 3141569616329590 r005 Re(z^2+c),c=-5/17+35/57*I,n=23 3141569622427836 m001 (ln(5)+exp(1/exp(1)))/(FeigenbaumC-Thue) 3141569635009932 m005 (5/18+1/6*5^(1/2))/(3/4*Pi-2/7) 3141569664072291 a007 Real Root Of 14*x^4+409*x^3-946*x^2+707*x+277 3141569664820090 r002 7th iterates of z^2 + 3141569664830190 m001 exp(Rabbit)/FibonacciFactorial*Ei(1) 3141569669577987 r005 Re(z^2+c),c=-31/90+14/29*I,n=19 3141569696938910 m001 (Backhouse-Cahen)/(Khinchin-Paris) 3141569700971907 a001 710647/1597*121393^(4/11) 3141569701273432 a001 103682/1597*24157817^(4/11) 3141569706446384 m001 (GAMMA(11/12)+Lehmer)/(Magata+Tribonacci) 3141569710724140 l006 ln(371/8585) 3141569714710260 a001 15127/1597*4807526976^(4/11) 3141569717174751 r005 Re(z^2+c),c=-8/23+23/59*I,n=6 3141569719906843 r009 Re(z^3+c),c=-67/110+31/60*I,n=14 3141569721778272 m001 1/log(2+sqrt(3))^2/ErdosBorwein*exp(sqrt(5))^2 3141569723945796 m002 -Pi+(2*ProductLog[Pi])/Pi^10 3141569727209880 m002 6+Pi^5+Log[Pi]+Tanh[Pi]^2 3141569738859022 a007 Real Root Of -696*x^4+101*x^3+521*x^2+892*x-328 3141569753045843 m001 Stephens/(GAMMA(13/24)^GAMMA(3/4)) 3141569754967630 r005 Re(z^2+c),c=11/86+26/61*I,n=23 3141569765944427 a003 cos(Pi*31/102)-sin(Pi*27/77) 3141569777049032 p003 LerchPhi(1/2,6,43/52) 3141569783060685 m001 (FeigenbaumB+Stephens)/(2^(1/2)-cos(1/12*Pi)) 3141569795081614 a001 3571/2584*956722026041^(4/11) 3141569795917655 r009 Im(z^3+c),c=-55/118+9/49*I,n=26 3141569799129466 a007 Real Root Of 819*x^4-729*x^3+49*x^2-806*x+263 3141569814931503 r005 Re(z^2+c),c=-13/18+31/92*I,n=2 3141569829355241 a007 Real Root Of 896*x^4+545*x^3+829*x^2-590*x-259 3141569830018250 m001 (Landau+Porter)/(1-GAMMA(13/24)) 3141569833694707 s002 sum(A219615[n]/(n^2*pi^n+1),n=1..infinity) 3141569834475418 a007 Real Root Of -141*x^4-344*x^3+227*x^2-120*x+451 3141569838620560 m004 -100*Pi+5/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141569855367558 r004 Re(z^2+c),c=-11/30+7/20*I,z(0)=-1,n=42 3141569856540654 b008 -1/40*1/E^7+Pi 3141569857622276 h001 (8/11*exp(1)+10/11)/(1/5*exp(1)+3/8) 3141569868050814 r005 Im(z^2+c),c=-59/90+22/63*I,n=49 3141569881930939 m002 -5/(E^Pi*Pi^8)+Pi 3141569884515690 m001 GAMMA(23/24)*GAMMA(13/24)/exp(Pi)^2 3141569886281376 p004 log(30707/1327) 3141569886356823 b008 Pi-2*ExpIntegralE[2,9] 3141569891251762 m004 -Csch[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141569891265840 m004 -2/E^(Sqrt[5]*Pi)+100*Pi*Tanh[Sqrt[5]*Pi] 3141569891279917 m004 -Sech[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141569894845546 m008 (3*Pi-1/6)/(1/3*Pi^4-3) 3141569899539424 m005 (1/3*Catalan+1/5)/(9/11*Zeta(3)+5/8) 3141569903762369 a007 Real Root Of -211*x^4-866*x^3-699*x^2-181*x+32 3141569904116780 m004 2+(5*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi]^2 3141569911381571 a001 1860498/4181*121393^(4/11) 3141569911438805 a001 271443/4181*24157817^(4/11) 3141569913399212 a001 39603/4181*4807526976^(4/11) 3141569925125237 a001 9349/6765*956722026041^(4/11) 3141569925794897 m001 (Kac-Trott)/(arctan(1/3)-polylog(4,1/2)) 3141569927052800 h001 (7/10*exp(1)+7/8)/(3/11*exp(1)+1/7) 3141569931551325 r005 Im(z^2+c),c=-17/40+31/60*I,n=52 3141569942079929 a001 4870847/10946*121393^(4/11) 3141569942101522 a001 710647/10946*24157817^(4/11) 3141569942387542 a001 51841/5473*4807526976^(4/11) 3141569943187345 r009 Re(z^3+c),c=-27/64+16/49*I,n=42 3141569944098346 a001 24476/17711*956722026041^(4/11) 3141569946558760 a001 12752043/28657*121393^(4/11) 3141569946575153 a001 1860498/28657*24157817^(4/11) 3141569946616882 a001 271443/28657*4807526976^(4/11) 3141569946866485 a001 64079/46368*956722026041^(4/11) 3141569947212212 a001 33385282/75025*121393^(4/11) 3141569947227847 a001 4870847/75025*24157817^(4/11) 3141569947233934 a001 710647/75025*4807526976^(4/11) 3141569947270351 a001 167761/121393*956722026041^(4/11) 3141569947307549 a001 87403803/196418*121393^(4/11) 3141569947321459 a001 228826127/514229*121393^(4/11) 3141569947323073 a001 12752043/196418*24157817^(4/11) 3141569947323488 a001 599074578/1346269*121393^(4/11) 3141569947323784 a001 1568397607/3524578*121393^(4/11) 3141569947323828 a001 4106118243/9227465*121393^(4/11) 3141569947323834 a001 10749957122/24157817*121393^(4/11) 3141569947323835 a001 28143753123/63245986*121393^(4/11) 3141569947323835 a001 73681302247/165580141*121393^(4/11) 3141569947323835 a001 192900153618/433494437*121393^(4/11) 3141569947323835 a001 505019158607/1134903170*121393^(4/11) 3141569947323835 a001 1322157322203/2971215073*121393^(4/11) 3141569947323835 a001 3461452808002/7778742049*121393^(4/11) 3141569947323835 a001 9062201101803/20365011074*121393^(4/11) 3141569947323835 a001 23725150497407/53316291173*121393^(4/11) 3141569947323835 a001 14662949395604/32951280099*121393^(4/11) 3141569947323835 a001 5600748293801/12586269025*121393^(4/11) 3141569947323835 a001 2139295485799/4807526976*121393^(4/11) 3141569947323835 a001 817138163596/1836311903*121393^(4/11) 3141569947323835 a001 1568437211/3524667*121393^(4/11) 3141569947323835 a001 119218851371/267914296*121393^(4/11) 3141569947323835 a001 45537549124/102334155*121393^(4/11) 3141569947323835 a001 17393796001/39088169*121393^(4/11) 3141569947323838 a001 6643838879/14930352*121393^(4/11) 3141569947323854 a001 2537720636/5702887*121393^(4/11) 3141569947323961 a001 930249/98209*4807526976^(4/11) 3141569947323967 a001 969323029/2178309*121393^(4/11) 3141569947324743 a001 370248451/832040*121393^(4/11) 3141569947329274 a001 439204/317811*956722026041^(4/11) 3141569947330056 a001 141422324/317811*121393^(4/11) 3141569947336967 a001 33385282/514229*24157817^(4/11) 3141569947337096 a001 4870847/514229*4807526976^(4/11) 3141569947337871 a001 1149851/832040*956722026041^(4/11) 3141569947338994 a001 87403803/1346269*24157817^(4/11) 3141569947339012 a001 12752043/1346269*4807526976^(4/11) 3141569947339125 a001 3010349/2178309*956722026041^(4/11) 3141569947339289 a001 228826127/3524578*24157817^(4/11) 3141569947339292 a001 16692641/1762289*4807526976^(4/11) 3141569947339308 a001 7881196/5702887*956722026041^(4/11) 3141569947339333 a001 599074578/9227465*24157817^(4/11) 3141569947339333 a001 87403803/9227465*4807526976^(4/11) 3141569947339335 a001 20633239/14930352*956722026041^(4/11) 3141569947339339 a001 228826127/24157817*4807526976^(4/11) 3141569947339339 a001 1568397607/24157817*24157817^(4/11) 3141569947339339 a001 54018521/39088169*956722026041^(4/11) 3141569947339339 a001 299537289/31622993*4807526976^(4/11) 3141569947339339 a001 141422324/102334155*956722026041^(4/11) 3141569947339340 a001 1568397607/165580141*4807526976^(4/11) 3141569947339340 a001 370248451/267914296*956722026041^(4/11) 3141569947339340 a001 4106118243/433494437*4807526976^(4/11) 3141569947339340 a001 969323029/701408733*956722026041^(4/11) 3141569947339340 a001 5374978561/567451585*4807526976^(4/11) 3141569947339340 a001 2537720636/1836311903*956722026041^(4/11) 3141569947339340 a001 28143753123/2971215073*4807526976^(4/11) 3141569947339340 a001 6643838879/4807526976*956722026041^(4/11) 3141569947339340 a001 73681302247/7778742049*4807526976^(4/11) 3141569947339340 a001 96450076809/10182505537*4807526976^(4/11) 3141569947339340 a001 505019158607/53316291173*4807526976^(4/11) 3141569947339340 a001 1322157322203/139583862445*4807526976^(4/11) 3141569947339340 a001 1730726404001/182717648081*4807526976^(4/11) 3141569947339340 a001 23725150497407/2504730781961*4807526976^(4/11) 3141569947339340 a001 2139295485799/225851433717*4807526976^(4/11) 3141569947339340 a001 204284540899/21566892818*4807526976^(4/11) 3141569947339340 a001 312119004989/32951280099*4807526976^(4/11) 3141569947339340 a001 17393796001/12586269025*956722026041^(4/11) 3141569947339340 a001 119218851371/12586269025*4807526976^(4/11) 3141569947339340 a001 45537549124/32951280099*956722026041^(4/11) 3141569947339340 a001 119218851371/86267571272*956722026041^(4/11) 3141569947339340 a001 312119004989/225851433717*956722026041^(4/11) 3141569947339340 a001 1322157322203/956722026041*956722026041^(4/11) 3141569947339340 a001 505019158607/365435296162*956722026041^(4/11) 3141569947339340 a001 192900153618/139583862445*956722026041^(4/11) 3141569947339340 a001 73681302247/53316291173*956722026041^(4/11) 3141569947339340 a001 28143753123/20365011074*956722026041^(4/11) 3141569947339340 a001 11384387281/1201881744*4807526976^(4/11) 3141569947339340 a001 10749957122/7778742049*956722026041^(4/11) 3141569947339340 a001 4106118243/2971215073*956722026041^(4/11) 3141569947339340 a001 17393796001/1836311903*4807526976^(4/11) 3141569947339340 a001 1568397607/1134903170*956722026041^(4/11) 3141569947339340 a001 6643838879/701408733*4807526976^(4/11) 3141569947339340 a001 599074578/433494437*956722026041^(4/11) 3141569947339340 a001 634430159/66978574*4807526976^(4/11) 3141569947339340 a001 228826127/165580141*956722026041^(4/11) 3141569947339340 a001 969323029/102334155*4807526976^(4/11) 3141569947339340 a001 4106118243/63245986*24157817^(4/11) 3141569947339340 a001 87403803/63245986*956722026041^(4/11) 3141569947339340 a001 10749957122/165580141*24157817^(4/11) 3141569947339340 a001 28143753123/433494437*24157817^(4/11) 3141569947339340 a001 370248451/39088169*4807526976^(4/11) 3141569947339340 a001 73681302247/1134903170*24157817^(4/11) 3141569947339340 a001 192900153618/2971215073*24157817^(4/11) 3141569947339340 a001 505019158607/7778742049*24157817^(4/11) 3141569947339340 a001 1322157322203/20365011074*24157817^(4/11) 3141569947339340 a001 3461452808002/53316291173*24157817^(4/11) 3141569947339340 a001 9062201101803/139583862445*24157817^(4/11) 3141569947339340 a001 23725150497407/365435296162*24157817^(4/11) 3141569947339340 a001 505618944676/7787980473*24157817^(4/11) 3141569947339340 a001 5600748293801/86267571272*24157817^(4/11) 3141569947339340 a001 2139295485799/32951280099*24157817^(4/11) 3141569947339340 a001 817138163596/12586269025*24157817^(4/11) 3141569947339340 a001 312119004989/4807526976*24157817^(4/11) 3141569947339340 a001 119218851371/1836311903*24157817^(4/11) 3141569947339340 a001 45537549124/701408733*24157817^(4/11) 3141569947339340 a001 599786069/9238424*24157817^(4/11) 3141569947339340 a001 6643838879/102334155*24157817^(4/11) 3141569947339340 a001 2537720636/39088169*24157817^(4/11) 3141569947339341 a001 33385282/24157817*956722026041^(4/11) 3141569947339342 a001 35355581/3732588*4807526976^(4/11) 3141569947339343 a001 969323029/14930352*24157817^(4/11) 3141569947339351 a001 12752043/9227465*956722026041^(4/11) 3141569947339358 a001 54018521/5702887*4807526976^(4/11) 3141569947339359 a001 370248451/5702887*24157817^(4/11) 3141569947339421 a001 4870847/3524578*956722026041^(4/11) 3141569947339465 a001 20633239/2178309*4807526976^(4/11) 3141569947339472 a001 141422324/2178309*24157817^(4/11) 3141569947339900 a001 1860498/1346269*956722026041^(4/11) 3141569947340197 a001 1970299/208010*4807526976^(4/11) 3141569947340246 a001 54018521/832040*24157817^(4/11) 3141569947343184 a001 710647/514229*956722026041^(4/11) 3141569947345214 a001 3010349/317811*4807526976^(4/11) 3141569947345553 a001 711491/10959*24157817^(4/11) 3141569947365691 a001 271443/196418*956722026041^(4/11) 3141569947366471 a001 54018521/121393*121393^(4/11) 3141569947379601 a001 1149851/121393*4807526976^(4/11) 3141569947381927 a001 7881196/121393*24157817^(4/11) 3141569947519954 a001 103682/75025*956722026041^(4/11) 3141569947615294 a001 109801/11592*4807526976^(4/11) 3141569947616068 a001 20633239/46368*121393^(4/11) 3141569947631233 a001 3010349/46368*24157817^(4/11) 3141569948577289 a001 39603/28657*956722026041^(4/11) 3141569949230758 a001 167761/17711*4807526976^(4/11) 3141569949326829 a001 39604/89*121393^(4/11) 3141569949340008 a001 1149851/17711*24157817^(4/11) 3141569952507798 r005 Re(z^2+c),c=6/19+4/41*I,n=18 3141569953624911 b008 -1/2*1/E^10+Pi 3141569955824372 a001 15127/10946*956722026041^(4/11) 3141569960303315 a001 64079/6765*4807526976^(4/11) 3141569961052124 a001 439204/6765*24157817^(4/11) 3141569961052559 a001 3010349/6765*121393^(4/11) 3141569972273286 r005 Im(z^2+c),c=-49/102+9/23*I,n=8 3141569974882024 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)/(Conway^gamma(1)) 3141569990076083 a007 Real Root Of -752*x^4+756*x^3-669*x^2-63*x+77 3141569999063163 m001 ((1+3^(1/2))^(1/2))^GAMMA(23/24)+Porter 3141569999474147 a003 cos(Pi*1/104)*cos(Pi*45/113) 3141569999995052 a007 Real Root Of -432*x^4+522*x^3+245*x^2+999*x-350 3141570005496613 a001 5778/4181*956722026041^(4/11) 3141570016776090 r005 Im(z^2+c),c=-27/118+20/41*I,n=19 3141570016860521 a007 Real Root Of 742*x^4+985*x^3+932*x^2-991*x-380 3141570017500179 h001 (10/11*exp(2)+3/7)/(4/5*exp(1)+1/10) 3141570017572913 a007 Real Root Of -537*x^4+988*x^3+244*x^2+877*x-325 3141570022938262 m002 -Pi+ProductLog[Pi]/(5*Pi^8) 3141570036195751 a001 6119/646*4807526976^(4/11) 3141570038617989 a007 Real Root Of 318*x^4+721*x^3-796*x^2+283*x+125 3141570039908916 m001 GAMMA(13/24)^cos(1/5*Pi)/Weierstrass 3141570041328164 a001 167761/2584*24157817^(4/11) 3141570041421908 a001 1149851/2584*121393^(4/11) 3141570050295723 b008 -10/E^13+Pi 3141570056530981 r009 Re(z^3+c),c=-31/66+13/25*I,n=21 3141570060098320 m005 (1/3*2^(1/2)-1/8)/(3/8*exp(1)-10/11) 3141570068824841 a001 599074578/377*832040^(1/20) 3141570068824886 a001 370248451/377*12586269025^(1/20) 3141570078108638 m005 (1/2*Catalan+5)/(8/11*5^(1/2)+1/9) 3141570078156210 r002 3th iterates of z^2 + 3141570085164025 r009 Re(z^3+c),c=-5/86+41/59*I,n=46 3141570089486700 b008 45/ProductLog[6] 3141570090262932 m001 Trott2nd^Grothendieck*Trott2nd^Zeta(1/2) 3141570103759282 a007 Real Root Of -179*x^4-260*x^3+972*x^2+6*x-200 3141570104818076 a001 55/439204*3^(36/43) 3141570107291122 b008 Gamma[(E*Pi)^EulerGamma] 3141570118454935 l006 ln(6467/8854) 3141570120272321 m001 (Ei(1)-Cahen)/(ZetaP(2)-ZetaQ(2)) 3141570124701196 m001 (1+GAMMA(5/6))/(Artin+GaussKuzminWirsing) 3141570125384996 a007 Real Root Of -345*x^4-864*x^3+896*x^2+556*x-280 3141570132173546 m001 (GAMMA(5/6)-Thue)/(Zeta(1/2)+BesselK(1,1)) 3141570135650231 a007 Real Root Of 2*x^4-784*x^3-924*x^2-199*x+178 3141570136814560 m002 -Pi+Csch[Pi]/(4*Pi^6) 3141570136893084 m002 Pi-Cosh[Pi]/(E^(2*Pi)*Pi^6) 3141570145044599 r005 Re(z^2+c),c=-41/106+33/50*I,n=14 3141570146746874 r005 Re(z^2+c),c=-6/19+30/59*I,n=56 3141570158758450 r009 Im(z^3+c),c=-17/106+37/49*I,n=11 3141570170435944 r005 Im(z^2+c),c=-15/58+20/41*I,n=28 3141570174296621 r009 Re(z^3+c),c=-37/126+4/53*I,n=11 3141570174489174 m001 1/GAMMA(1/4)^2*ln(BesselJ(0,1))*cosh(1) 3141570178807661 m005 (3/5*Pi-3/5)/(-3/2+5/2*5^(1/2)) 3141570178863349 m002 -1/(2*E^Pi*Pi^6)+Pi 3141570185188958 r005 Im(z^2+c),c=8/29+10/59*I,n=30 3141570190194760 m001 Pi-exp(-Pi)^Magata 3141570192635676 h001 (8/9*exp(2)+1/12)/(4/9*exp(1)+10/11) 3141570217872706 m001 GAMMA(5/12)^2*FeigenbaumC*ln(cos(1))^2 3141570220755382 m002 -Pi+Sech[Pi]/(4*Pi^6) 3141570220833613 m002 Pi-Sinh[Pi]/(E^(2*Pi)*Pi^6) 3141570221735873 r002 4th iterates of z^2 + 3141570229366634 r009 Re(z^3+c),c=-25/66+20/43*I,n=4 3141570231280927 a001 5/228826127*2^(11/21) 3141570262647416 m002 -Pi+Tanh[Pi]/(2*E^Pi*Pi^6) 3141570276601971 m006 (1/6*Pi^2-4/5)/(3/4*Pi+1/3) 3141570276601971 m008 (1/6*Pi^2-4/5)/(3/4*Pi+1/3) 3141570292055829 r005 Re(z^2+c),c=27/82+8/55*I,n=25 3141570304383279 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(4*Pi^6) 3141570305323976 a003 sin(Pi*17/90)/cos(Pi*35/79) 3141570311133730 m001 (OneNinth+ZetaP(3))/(gamma+arctan(1/3)) 3141570312140872 s002 sum(A145117[n]/(n^2*pi^n+1),n=1..infinity) 3141570312241739 m005 (1/2*Pi+1/9)/(1/4*2^(1/2)+2/11) 3141570313665960 m005 (1/2*Catalan+1/10)/(6/7*Pi-11/12) 3141570314157031 k006 concat of cont frac of 3141570315004444 a001 4870847/1597*610^(4/11) 3141570321600103 m003 2+(3*Coth[1/2+Sqrt[5]/2])/2-Log[1/2+Sqrt[5]/2] 3141570324390941 r005 Im(z^2+c),c=-3/106+18/35*I,n=6 3141570329498148 m001 Weierstrass/(LandauRamanujan+RenyiParking) 3141570333719887 r005 Re(z^2+c),c=9/86+12/47*I,n=20 3141570341043284 a007 Real Root Of -130*x^4-421*x^3-18*x^2+84*x+51 3141570344160973 l006 ln(5004/6851) 3141570345955197 a001 2207/1597*956722026041^(4/11) 3141570347414288 p001 sum((-1)^n/(313*n+182)/n/(64^n),n=1..infinity) 3141570351801896 m008 (1/3*Pi^2-1/5)/(1/3*Pi^3-1/2) 3141570360759001 r002 5th iterates of z^2 + 3141570369455994 r005 Im(z^2+c),c=-67/64+2/57*I,n=3 3141570381150774 a001 7*(1/2*5^(1/2)+1/2)^3*4^(1/24) 3141570385201170 r005 Re(z^2+c),c=-21/34+43/104*I,n=56 3141570387939784 m001 Pi-gamma(3)*Trott 3141570389708886 m001 FeigenbaumAlpha+HardHexagonsEntropy^Psi(1,1/3) 3141570406524036 r005 Re(z^2+c),c=-27/106+26/51*I,n=13 3141570408464229 a007 Real Root Of -285*x^4-636*x^3+606*x^2-405*x+788 3141570412617657 m001 1/ln(GAMMA(1/4))^2/Magata^2/sqrt(1+sqrt(3)) 3141570415264520 m004 -100*Pi+(5*Csch[Sqrt[5]*Pi])/4 3141570415282116 m004 -1/(4*E^(Sqrt[5]*Pi))+10*Pi 3141570415299713 m004 -100*Pi+(5*Sech[Sqrt[5]*Pi])/4 3141570415317309 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141570419212824 k007 concat of cont frac of 3141570419517915 m004 -Pi+Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141570419588287 m004 -Pi+Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141570420279214 m001 exp(1/exp(1))*(ln(5)+BesselI(1,1)) 3141570426272954 s002 sum(A219676[n]/(n^2*pi^n+1),n=1..infinity) 3141570437812102 r005 Im(z^2+c),c=9/50+8/31*I,n=30 3141570452268253 s002 sum(A172320[n]/(n^2*pi^n+1),n=1..infinity) 3141570457285685 s002 sum(A234592[n]/(n^2*pi^n+1),n=1..infinity) 3141570459566074 a007 Real Root Of 252*x^4+750*x^3+91*x^2+652*x-142 3141570474037505 b008 Pi-BesselJ[8,2] 3141570476274942 m001 GAMMA(11/12)^(2*Pi/GAMMA(5/6))-Zeta(5) 3141570476274942 m001 GAMMA(11/12)^GAMMA(1/6)-Zeta(5) 3141570488686678 a003 sin(Pi*1/116)/cos(Pi*11/65) 3141570501722790 h001 (7/12*exp(2)+7/10)/(2/7*exp(1)+9/11) 3141570511083377 m001 Pi-gamma(3)^(3^(1/2)) 3141570521426089 m001 1/MinimumGamma/exp(FeigenbaumB)*GAMMA(11/12) 3141570525419348 a001 12752043/4181*610^(4/11) 3141570527818143 m001 Zeta(1/2)*ArtinRank2+CareFree 3141570535734757 a003 cos(Pi*17/114)/cos(Pi*49/120) 3141570535778787 m001 GAMMA(11/12)+GlaisherKinkelin^Otter 3141570552377581 a001 2504730781961/123*18^(3/20) 3141570556118471 a001 16692641/5473*610^(4/11) 3141570556370349 a001 9349/987*4807526976^(4/11) 3141570560597413 a001 87403803/28657*610^(4/11) 3141570561250882 a001 228826127/75025*610^(4/11) 3141570561346222 a001 299537289/98209*610^(4/11) 3141570561360132 a001 1568397607/514229*610^(4/11) 3141570561362161 a001 4106118243/1346269*610^(4/11) 3141570561362457 a001 5374978561/1762289*610^(4/11) 3141570561362500 a001 28143753123/9227465*610^(4/11) 3141570561362507 a001 73681302247/24157817*610^(4/11) 3141570561362508 a001 96450076809/31622993*610^(4/11) 3141570561362508 a001 505019158607/165580141*610^(4/11) 3141570561362508 a001 1322157322203/433494437*610^(4/11) 3141570561362508 a001 1730726404001/567451585*610^(4/11) 3141570561362508 a001 9062201101803/2971215073*610^(4/11) 3141570561362508 a001 23725150497407/7778742049*610^(4/11) 3141570561362508 a001 3665737348901/1201881744*610^(4/11) 3141570561362508 a001 5600748293801/1836311903*610^(4/11) 3141570561362508 a001 2139295485799/701408733*610^(4/11) 3141570561362508 a001 204284540899/66978574*610^(4/11) 3141570561362508 a001 28374454999/9303105*610^(4/11) 3141570561362508 a001 119218851371/39088169*610^(4/11) 3141570561362511 a001 11384387281/3732588*610^(4/11) 3141570561362527 a001 17393796001/5702887*610^(4/11) 3141570561362640 a001 6643838879/2178309*610^(4/11) 3141570561363415 a001 1860499/610*610^(4/11) 3141570561368728 a001 969323029/317811*610^(4/11) 3141570561405145 a001 370248451/121393*610^(4/11) 3141570561654748 a001 35355581/11592*610^(4/11) 3141570563365551 a001 54018521/17711*610^(4/11) 3141570575091573 a001 1875749/615*610^(4/11) 3141570581702852 a007 Real Root Of -940*x^4+499*x^3+348*x^2+921*x-330 3141570582154977 m001 1/ln(cos(Pi/5))^2*Riemann3rdZero/sqrt(Pi) 3141570588166538 r009 Im(z^3+c),c=-37/78+11/63*I,n=52 3141570591548434 a001 64079/987*24157817^(4/11) 3141570592281738 a001 439204/987*121393^(4/11) 3141570592525733 a007 Real Root Of 825*x^4-225*x^3-652*x^2-693*x+281 3141570597414470 a007 Real Root Of 24*x^4+759*x^3+172*x^2+459*x+408 3141570608355702 r005 Re(z^2+c),c=-23/78+24/43*I,n=50 3141570609577968 a001 2178309/76*3571^(12/41) 3141570628838097 r005 Re(z^2+c),c=-13/36+10/27*I,n=41 3141570638784170 r002 13th iterates of z^2 + 3141570655462925 a001 1970299/646*610^(4/11) 3141570656077700 r005 Re(z^2+c),c=41/126+21/55*I,n=45 3141570656844147 a001 11592/19*9349^(28/41) 3141570657974084 m005 (3/5*gamma-2/3)/(5/6+1/12*5^(1/2)) 3141570665540361 p004 log(31091/22709) 3141570666264953 s002 sum(A220051[n]/(n^2*pi^n+1),n=1..infinity) 3141570670867306 m001 (BesselK(1,1)+Paris)/(2^(1/3)-Zeta(5)) 3141570677228245 b008 Pi+ExpIntegralEi[-6*Sqrt[2]] 3141570682317153 a001 208010/19*39603^(13/41) 3141570690642549 m008 (3*Pi^5-1/6)/(3/5*Pi^2-3) 3141570694798000 r005 Im(z^2+c),c=11/70+11/40*I,n=23 3141570705355637 r002 24th iterates of z^2 + 3141570707819820 m002 Pi-Log[Pi]/(E^(2*Pi)*Pi^4) 3141570714838416 r009 Re(z^3+c),c=-23/48+17/41*I,n=28 3141570735776395 s002 sum(A133025[n]/(n^2*pi^n+1),n=1..infinity) 3141570739018646 a001 121393/76*5778^(25/41) 3141570742425526 m001 cos(1/5*Pi)^(Psi(1,1/3)/exp(-Pi)) 3141570742425526 m001 cos(1/5*Pi)^(exp(Pi)*Psi(1,1/3)) 3141570747534433 a001 1/6*(1/2*5^(1/2)+1/2)^18*18^(9/22) 3141570753133967 r002 51th iterates of z^2 + 3141570756372466 l006 ln(3541/4848) 3141570757392680 m002 -Pi+(6*ProductLog[Pi])/Pi^11 3141570763666188 a001 5/199*521^(1/28) 3141570764277341 r005 Re(z^2+c),c=3/10+4/37*I,n=31 3141570771104638 h001 (1/3*exp(1)+1/4)/(3/8*exp(2)+10/11) 3141570776388425 a001 41/15456*196418^(18/31) 3141570782276568 m002 Pi-E^Pi/(Pi^12*Log[Pi]) 3141570784122226 a003 sin(Pi*3/16)*sin(Pi*22/115) 3141570785392696 q001 628/1999 3141570789791183 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/6 3141570789808484 m004 10*Pi-Cos[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141570789825784 m004 10*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/6 3141570793610545 m001 (1+FeigenbaumMu)/(Kolakoski+TwinPrimes) 3141570799342580 l006 ln(107/2476) 3141570807168007 a007 Real Root Of -618*x^4+937*x^3+908*x^2+590*x-298 3141570815937558 r009 Re(z^3+c),c=-1/6+35/48*I,n=37 3141570817338071 m001 (GAMMA(3/4)+gamma(1))/(AlladiGrinstead-Salem) 3141570827785111 g007 Psi(2,7/11)+Psi(2,2/11)-Psi(2,1/12)-Psi(2,3/7) 3141570832678321 s002 sum(A000079[n]/(n^2*pi^n+1),n=1..infinity) 3141570835128639 r005 Im(z^2+c),c=-113/122+12/49*I,n=25 3141570872729929 m001 (ln(Pi)+sin(1/12*Pi))/(Grothendieck+Khinchin) 3141570895639190 a007 Real Root Of -251*x^4-990*x^3-893*x^2-995*x-559 3141570923052942 a001 1597/76*24476^(39/41) 3141570923339601 m001 1/exp(Niven)/DuboisRaymond^2/GAMMA(7/12) 3141570923628145 a007 Real Root Of 192*x^4-697*x^3-579*x^2+6*x+75 3141570935334755 r005 Re(z^2+c),c=29/110+4/49*I,n=27 3141570935641759 r005 Im(z^2+c),c=-67/78+13/60*I,n=5 3141570939109499 h001 (1/9*exp(2)+7/11)/(4/7*exp(2)+5/12) 3141570939306260 m004 -3/E^(Sqrt[5]*Pi)+100*Pi*Coth[Sqrt[5]*Pi] 3141570948130752 m001 GAMMA(2/3)^polylog(4,1/2)*Khinchin 3141570948130752 m001 Khinchin*GAMMA(2/3)^polylog(4,1/2) 3141570953013543 m001 (FeigenbaumC+Kolakoski)/(Chi(1)-gamma(3)) 3141570954656843 a008 Real Root of x^4-x^3+29*x^2-188*x+238 3141570990909855 m005 (1/2*5^(1/2)+6/11)/(1/4+1/8*5^(1/2)) 3141570993553687 m008 (1/5*Pi^6+1/4)/(2*Pi^5+4/5) 3141571010242949 m001 (Artin+ZetaP(3))/(ln(Pi)+BesselK(1,1)) 3141571028902825 r005 Im(z^2+c),c=-43/114+31/59*I,n=58 3141571032468749 b008 Pi+ExpIntegralEi[-17/2] 3141571034813867 b008 -35+ArcSinh[18] 3141571038646266 a007 Real Root Of -30*x^4-931*x^3+339*x^2-696*x-765 3141571043491511 a001 317811/76*2207^(23/41) 3141571051028947 m001 Sierpinski^2/Magata*ln(GAMMA(19/24)) 3141571067111032 r009 Re(z^3+c),c=-51/106+7/17*I,n=48 3141571067264763 b008 Pi*ModularLambda[(3*I)/14] 3141571094139937 b008 Pi+Sqrt[3]*ExpIntegralEi[-9] 3141571102304784 m001 (DuboisRaymond-Robbin)/(ln(gamma)+Zeta(1,2)) 3141571110131122 k007 concat of cont frac of 3141571111133715 k007 concat of cont frac of 3141571111472211 k008 concat of cont frac of 3141571111722327 k006 concat of cont frac of 3141571112217195 m001 CopelandErdos/Artin/ln(Zeta(9)) 3141571113151216 k007 concat of cont frac of 3141571115172225 k007 concat of cont frac of 3141571118131761 k007 concat of cont frac of 3141571120122131 k007 concat of cont frac of 3141571122211241 k008 concat of cont frac of 3141571123467364 l006 ln(5619/7693) 3141571124381690 r002 24th iterates of z^2 + 3141571131211814 k007 concat of cont frac of 3141571132169704 a007 Real Root Of -259*x^4-791*x^3+282*x^2+476*x-585 3141571134203294 r005 Im(z^2+c),c=-35/26+7/115*I,n=15 3141571139294588 m001 (BesselK(1,1)+Porter)/(Trott-ZetaP(4)) 3141571141214211 k007 concat of cont frac of 3141571141571151 k006 concat of cont frac of 3141571143772786 b008 Pi-BesselK[2,10] 3141571145873995 m001 (ArtinRank2+Grothendieck)/(Landau-MertensB3) 3141571154110421 k006 concat of cont frac of 3141571166625162 s002 sum(A278646[n]/((2^n+1)/n),n=1..infinity) 3141571186000566 m001 1/exp(Ei(1))/Tribonacci^2/sqrt(2) 3141571196445875 r002 3th iterates of z^2 + 3141571200962425 m001 (LaplaceLimit-Paris)/(Zeta(1/2)+GAMMA(13/24)) 3141571201776044 h001 (1/11*exp(2)+7/12)/(5/11*exp(2)+7/11) 3141571201932970 a003 cos(Pi*41/103)*sin(Pi*35/73) 3141571206336476 a001 3010349/987*610^(4/11) 3141571207487308 a007 Real Root Of -464*x^4+974*x^3-507*x^2+335*x+190 3141571209173722 a001 1/48*2^(16/27) 3141571211206330 k006 concat of cont frac of 3141571211914121 k006 concat of cont frac of 3141571214472171 k006 concat of cont frac of 3141571217117805 m002 -Pi+(2*Coth[Pi])/Pi^10 3141571218085960 r005 Re(z^2+c),c=-19/52+12/35*I,n=16 3141571239377298 m001 exp(1)+Gompertz*Rabbit 3141571249887289 r009 Re(z^3+c),c=-1/122+46/59*I,n=58 3141571254856390 h001 (7/11*exp(1)+4/11)/(7/9*exp(2)+11/12) 3141571255712414 s002 sum(A097878[n]/(n^3*2^n-1),n=1..infinity) 3141571257074572 m002 Pi-(E^Pi*Csch[Pi])/Pi^10 3141571273717140 r005 Re(z^2+c),c=-41/106+28/51*I,n=19 3141571274082226 a003 sin(Pi*2/83)-sin(Pi*13/102) 3141571283149554 m005 (-21/8+3/8*5^(1/2))/(2*exp(1)+1/4) 3141571297031339 m002 -2/Pi^10+Pi 3141571301269144 r009 Re(z^3+c),c=-43/94+18/47*I,n=32 3141571303784060 a001 2/2504730781961*377^(13/21) 3141571304797531 m004 -100*Pi+(6*Csch[Sqrt[5]*Pi])/5 3141571304831316 m004 -100*Pi+(6*Sech[Sqrt[5]*Pi])/5 3141571311265360 s001 sum(1/10^(n-1)*A087514[n]/n!^2,n=1..infinity) 3141571317504282 a001 5778*46368^(17/29) 3141571319395951 m001 arctan(1/2)^GAMMA(2/3)-arctan(1/3) 3141571322711181 k006 concat of cont frac of 3141571328710226 m001 1/ln(Robbin)/Riemann1stZero*GAMMA(2/3)^2 3141571332102721 k008 concat of cont frac of 3141571333214038 r005 Im(z^2+c),c=-25/18+5/181*I,n=16 3141571336839150 m002 Pi-(E^Pi*Sech[Pi])/Pi^10 3141571340045983 a001 9/1292*1597^(29/35) 3141571343774021 m001 (Zeta(3)-sin(1)*BesselI(0,2))/BesselI(0,2) 3141571346494285 r005 Re(z^2+c),c=-29/82+17/43*I,n=32 3141571347979883 r005 Im(z^2+c),c=15/58+27/55*I,n=64 3141571348657736 m001 GAMMA(3/4)/Rabbit/ln(gamma) 3141571348657736 m001 GAMMA(3/4)/ln(gamma)/Rabbit 3141571356186075 m001 KhinchinLevy+MertensB3*Porter 3141571367402931 m001 (Artin+Gompertz)/(Grothendieck+Mills) 3141571369728707 r005 Im(z^2+c),c=29/82+5/31*I,n=9 3141571369784636 m002 1+Coth[Pi]*Log[Pi]+Tanh[Pi]^2 3141571376646961 m002 -Pi+(2*Tanh[Pi])/Pi^10 3141571385806469 a007 Real Root Of 984*x^4-476*x^3+455*x^2-830*x-330 3141571409397225 m001 (Zeta(5)-exp(-1/2*Pi))/(MertensB3+Mills) 3141571410671019 r005 Re(z^2+c),c=15/118+28/41*I,n=12 3141571412214134 k008 concat of cont frac of 3141571413336111 k008 concat of cont frac of 3141571435609802 r002 2th iterates of z^2 + 3141571437565874 r008 a(0)=3,K{-n^6,-8+7*n^3-2*n^2-2*n} 3141571451219915 k007 concat of cont frac of 3141571454348713 m001 (OrthogonalArrays-Salem)/(ln(3)-Artin) 3141571464748178 l004 cosh(509/79) 3141571467606417 a007 Real Root Of 383*x^4-87*x^3+963*x^2-998*x-415 3141571473387276 m005 (5/6*Pi-4/5)/(-1/6+1/3*5^(1/2)) 3141571482339900 r005 Re(z^2+c),c=-3/4+3/22*I,n=6 3141571484471444 a007 Real Root Of -147*x^4-322*x^3+297*x^2-457*x-32 3141571489916961 a007 Real Root Of -84*x^4-369*x^3-159*x^2+570*x+101 3141571490080364 r009 Im(z^3+c),c=-31/70+9/44*I,n=18 3141571496702017 p004 log(19073/13931) 3141571499498543 r005 Re(z^2+c),c=-11/29+17/57*I,n=31 3141571500992569 m001 (BesselI(0,1)-PlouffeB)/(Salem+Totient) 3141571503621034 r009 Re(z^3+c),c=-37/70+26/53*I,n=35 3141571507495731 r005 Im(z^2+c),c=-5/17+9/14*I,n=3 3141571517552321 k008 concat of cont frac of 3141571521821134 k007 concat of cont frac of 3141571535018247 m005 (1/3*Catalan+1/2)/(1/5*exp(1)-4/5) 3141571536288357 m001 BesselI(0,1)-GAMMA(3/4)^Zeta(5) 3141571575511462 m002 -1/(5*Pi^8)+Pi 3141571590488979 a007 Real Root Of -313*x^4-902*x^3+314*x^2-22*x-647 3141571603035020 m002 Pi^5+Cosh[Pi]-Log[Pi]-Sinh[Pi]/5 3141571610372366 m001 (PrimesInBinary+ZetaQ(3))/(Cahen+CareFree) 3141571624988295 m005 (1/2*Zeta(3)-1/10)/(2/7*exp(1)+9/11) 3141571642671260 s002 sum(A045239[n]/(n*2^n-1),n=1..infinity) 3141571651126174 m005 (1/2*gamma-8/9)/(9/10*Pi-11/12) 3141571654088931 m002 -Pi+Tanh[Pi]/(5*Pi^8) 3141571658642256 m001 (Salem+Trott2nd)/(FeigenbaumMu+MertensB1) 3141571658838888 m001 DuboisRaymond^Conway/(DuboisRaymond^Gompertz) 3141571663923341 m001 (Pi+FransenRobinson)/(MertensB2+Thue) 3141571671227271 r009 Re(z^3+c),c=-5/11+17/45*I,n=55 3141571671646064 a007 Real Root Of -163*x^4-195*x^3+850*x^2-142*x+996 3141571681347418 m001 Khinchin*(gamma+Lehmer) 3141571684518330 a007 Real Root Of 133*x^4-162*x^3+713*x^2-905*x-361 3141571689205902 a007 Real Root Of -908*x^4+464*x^3+933*x^2+189*x-157 3141571692880885 h001 (-5*exp(5)-7)/(-8*exp(8)+4) 3141571696334068 b008 Pi-2*ExpIntegralE[3,9] 3141571696870827 r005 Im(z^2+c),c=-6/29+28/45*I,n=5 3141571700101241 m001 LandauRamanujan/(Pi^(1/2)+TwinPrimes) 3141571700101241 m001 LandauRamanujan/(TwinPrimes+sqrt(Pi)) 3141571708606155 m001 (gamma(2)-gamma)/(ErdosBorwein+MertensB1) 3141571709515388 a003 sin(Pi*5/106)/cos(Pi*21/61) 3141571713608497 r005 Re(z^2+c),c=-19/52+4/11*I,n=18 3141571715251790 b008 -Pi+BesselJ[6,1] 3141571741338008 r005 Im(z^2+c),c=-5/18+36/59*I,n=13 3141571746764203 m001 (-Lehmer+2/3)/(-Cahen+3) 3141571748419573 r005 Re(z^2+c),c=23/70+5/53*I,n=33 3141571749012585 l006 ln(2078/2845) 3141571754722740 a007 Real Root Of 953*x^4-839*x^3+870*x^2-808*x-375 3141571756715166 m001 1/Catalan^2*exp(Magata)^2/sin(Pi/5)^2 3141571769152629 m004 2+(250*Sech[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 3141571775032065 a003 cos(Pi*24/91)/cos(Pi*36/73) 3141571786401950 m001 (GAMMA(3/4)-Si(Pi))/(MertensB3+Robbin) 3141571797033054 r002 37i'th iterates of 2*x/(1-x^2) of 3141571798009991 m001 BesselI(1,1)*AlladiGrinstead/Backhouse 3141571798663684 b008 Pi-Erfc[Khinchin]/7 3141571801053650 m005 (1/2*Zeta(3)+9/10)/(-37/77+3/7*5^(1/2)) 3141571805610127 a005 (1/cos(60/151*Pi))^3 3141571812167116 k008 concat of cont frac of 3141571824241130 m004 -100*Pi+(Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/6 3141571824257611 m004 -100*Pi+(Sqrt[5]*Pi)/(3*E^(Sqrt[5]*Pi)) 3141571824274093 m004 -100*Pi+(Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/6 3141571844764358 m001 (Shi(1)-sin(1))/(-Kolakoski+OneNinth) 3141571859284339 r005 Im(z^2+c),c=-1/82+19/30*I,n=41 3141571861269846 a007 Real Root Of 159*x^4+674*x^3+458*x^2-586*x-951 3141571867413321 k007 concat of cont frac of 3141571867800267 l006 ln(378/8747) 3141571868392967 m008 (5/6*Pi-1/3)/(3/4*Pi^4-1/3) 3141571868745144 b008 Pi+5*ExpIntegralEi[-10] 3141571872362813 k006 concat of cont frac of 3141571881175053 m004 2+500/(E^(Sqrt[5]*Pi)*Pi)+Tanh[Sqrt[5]*Pi] 3141571894355258 m001 exp(Zeta(7))*Robbin*sqrt(3) 3141571938785520 m001 (AlladiGrinstead+MasserGramainDelta)/Chi(1) 3141571948479689 a007 Real Root Of -363*x^4-868*x^3+530*x^2-910*x+356 3141571949848613 m001 (Salem-TreeGrowth2nd)/(Gompertz+MadelungNaCl) 3141571951694550 m005 (1+1/4*5^(1/2))/(5/12*exp(1)-7/11) 3141571967953494 a007 Real Root Of 30*x^4+49*x^3-16*x^2+106*x-912 3141571975128397 r005 Im(z^2+c),c=-83/126+16/53*I,n=34 3141571993197655 m004 2+(250*Csch[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 3141571997427905 m001 (Backhouse-MertensB2)/(Totient+ZetaQ(4)) 3141572005272365 r009 Re(z^3+c),c=-45/94+24/59*I,n=33 3141572019019410 m009 (3*Psi(1,2/3)-6)/(1/6*Psi(1,1/3)-2/3) 3141572023237483 m002 Pi-Cosh[Pi]/(6*Pi^10) 3141572025793196 m001 (Catalan-Psi(1,1/3))/(-Zeta(1/2)+MinimumGamma) 3141572027815109 r005 Im(z^2+c),c=3/62+21/61*I,n=17 3141572033089360 m002 Pi-(Csch[Pi]*Log[Pi])/(5*Pi^6) 3141572045330879 m002 ProductLog[Pi]^2+E^Pi*Sech[Pi]*Tanh[Pi] 3141572070344729 m002 -Pi+ProductLog[Pi]/(E^(2*Pi)*Pi^4) 3141572073521686 r005 Re(z^2+c),c=-13/16+23/99*I,n=6 3141572085289112 b008 -1/6*1/E^9+Pi 3141572097702803 r005 Re(z^2+c),c=7/122+31/54*I,n=8 3141572100145864 m002 Pi-Sinh[Pi]/(6*Pi^10) 3141572104605782 m001 GAMMA(13/24)^2*Riemann3rdZero^2/exp(Pi)^2 3141572106412181 m001 (arctan(1/2)+GAMMA(17/24))/GAMMA(1/6) 3141572106412181 m001 1/2*(arctan(1/2)+GAMMA(17/24))/Pi*GAMMA(5/6) 3141572109961014 m002 Pi-(Log[Pi]*Sech[Pi])/(5*Pi^6) 3141572111141114 k007 concat of cont frac of 3141572112113111 k006 concat of cont frac of 3141572119316903 a007 Real Root Of 35*x^4-227*x^3+422*x^2-888*x-328 3141572122684447 a003 cos(Pi*13/42)*cos(Pi*24/77) 3141572124611595 k006 concat of cont frac of 3141572128292319 r005 Im(z^2+c),c=-47/114+25/54*I,n=16 3141572132211136 k007 concat of cont frac of 3141572136202663 m001 BesselJ(1,1)/exp(Paris)^2/GAMMA(1/12) 3141572142288602 r009 Re(z^3+c),c=-29/60+11/35*I,n=11 3141572143141721 g006 Psi(1,5/11)+Psi(1,2/11)-Psi(1,5/8)-Psi(1,3/4) 3141572150138932 m001 exp(Sierpinski)/Lehmer^2/Zeta(3) 3141572165072731 a007 Real Root Of 340*x^4+993*x^3+106*x^2+853*x-696 3141572179554793 r005 Im(z^2+c),c=-3/4+134/197*I,n=4 3141572183266917 m002 -Pi+(6*Coth[Pi])/Pi^11 3141572196469265 m002 -6*Cosh[Pi]+(Pi^2*Cosh[Pi])/3 3141572202820092 r002 30th iterates of z^2 + 3141572202993296 m001 (CareFree+TreeGrowth2nd)/(gamma(2)+Artin) 3141572203749107 m005 (1/2*Zeta(3)-2/7)/(7/11*gamma+7/11) 3141572205439955 m001 (Shi(1)-gamma(1))/(-Kac+Robbin) 3141572207512395 m008 (5*Pi-1/4)/(1/2*Pi^4+1/2) 3141572209034883 b008 Pi*KelvinBer[0,1/7] 3141572209748593 r005 Im(z^2+c),c=8/27+7/48*I,n=24 3141572222324287 m005 (1/2*2^(1/2)+2)/(2/7*Catalan+3/5) 3141572223183511 k007 concat of cont frac of 3141572223361712 k008 concat of cont frac of 3141572229903785 r009 Im(z^3+c),c=-31/60+12/59*I,n=28 3141572230585032 m001 AlladiGrinstead/Chi(1)/HardyLittlewoodC4 3141572259578721 m002 -6/Pi^11+Pi 3141572262217199 l006 ln(6849/9377) 3141572267380404 m001 Pi-gamma(3)^KhinchinHarmonic 3141572273470589 m001 Pi-ZetaQ(3)^BesselI(0,2) 3141572281478299 m004 10*Pi-Tan[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141572288975781 m001 ln(arctan(1/2))*FibonacciFactorial*gamma^2 3141572289663319 l006 ln(271/6271) 3141572289663319 p004 log(6271/271) 3141572298467711 h001 (4/5*exp(1)+7/9)/(1/8*exp(1)+3/5) 3141572303394165 s002 sum(A051864[n]/(exp(n)),n=1..infinity) 3141572310625130 b008 -9/E^13+Pi 3141572310831544 m001 FeigenbaumMu-arctan(1/3)^RenyiParking 3141572327932807 r009 Re(z^3+c),c=-53/110+19/62*I,n=4 3141572335606040 m002 -Pi+(6*Tanh[Pi])/Pi^11 3141572340090126 a001 1/32264490531*514229^(10/19) 3141572345427115 p003 LerchPhi(1/5,5,283/224) 3141572347189203 m001 1/exp(Lehmer)^2/Backhouse/Sierpinski^2 3141572360028120 m001 MasserGramainDelta^(2*Pi/GAMMA(5/6))+Pi 3141572363193705 r005 Re(z^2+c),c=-49/122+5/29*I,n=30 3141572364976327 a007 Real Root Of 46*x^4+139*x^3+152*x^2+276*x-804 3141572368330930 m001 2^(1/3)-Pi*2^(1/2)/GAMMA(3/4)-StronglyCareFree 3141572369410076 m004 -25*Pi+5*Sqrt[5]*Pi+12*Coth[Sqrt[5]*Pi] 3141572376298254 m005 (29/60+1/12*5^(1/2))/(3*gamma+2/5) 3141572376352137 h001 (4/5*exp(2)+5/11)/(4/9*exp(1)+9/11) 3141572381366364 a007 Real Root Of 277*x^4+684*x^3-385*x^2+897*x+844 3141572389988836 p001 sum(1/(389*n+387)/(3^n),n=0..infinity) 3141572415594120 r009 Re(z^3+c),c=-45/118+25/58*I,n=4 3141572429152509 a001 1/103682*47^(19/21) 3141572431807828 a007 Real Root Of 229*x^4+505*x^3-472*x^2+564*x-218 3141572432169250 r002 7th iterates of z^2 + 3141572433742624 h002 exp(4^(3/4)*7^(3/4)-6^(1/3)) 3141572458250654 h001 (-5*exp(3)-5)/(-6*exp(4)-8) 3141572484155709 r005 Im(z^2+c),c=-21/52+26/49*I,n=58 3141572485742487 l006 ln(4771/6532) 3141572498416444 b008 Pi-Erfc[E]/6 3141572507219652 m001 GAMMA(17/24)*(exp(Pi)+Mills) 3141572511116131 k006 concat of cont frac of 3141572524382847 a007 Real Root Of 210*x^4+486*x^3-452*x^2+407*x+353 3141572536471772 r005 Re(z^2+c),c=-53/122+8/27*I,n=7 3141572537920296 m001 Pi-gamma(3)^MadelungNaCl 3141572539888113 a003 cos(Pi*1/109)-cos(Pi*27/104) 3141572545590242 a007 Real Root Of 152*x^4+312*x^3+646*x^2-829*x-316 3141572546334625 m002 Pi-Log[Pi]/(6*Pi^8) 3141572559361649 m001 Paris^FeigenbaumDelta-Pi 3141572569361902 r002 3th iterates of z^2 + 3141572569641623 m008 (2*Pi^4+3/5)/(1/5*Pi^5+1) 3141572572245866 r009 Re(z^3+c),c=-37/82+19/51*I,n=46 3141572572413965 a007 Real Root Of 253*x^4+767*x^3-321*x^2-541*x+606 3141572572848816 a007 Real Root Of 134*x^4+475*x^3+91*x^2-262*x-46 3141572591340432 r009 Re(z^3+c),c=-23/60+14/53*I,n=20 3141572595017340 m001 (MertensB3+ZetaP(4))/(Catalan+FeigenbaumMu) 3141572597663577 m001 (GAMMA(11/12)+Mills)/(MinimumGamma-Rabbit) 3141572605259096 m008 (3/5*Pi^3+5/6)/(1/5*Pi^5+2/3) 3141572610865504 a001 514229/29*29^(35/41) 3141572622827491 r009 Re(z^3+c),c=-37/126+4/53*I,n=18 3141572622958262 r009 Re(z^3+c),c=-37/126+4/53*I,n=17 3141572623767066 r009 Re(z^3+c),c=-37/126+4/53*I,n=19 3141572624274850 r009 Re(z^3+c),c=-37/126+4/53*I,n=20 3141572624439590 r009 Re(z^3+c),c=-37/126+4/53*I,n=21 3141572624462738 r009 Re(z^3+c),c=-37/126+4/53*I,n=27 3141572624462750 r009 Re(z^3+c),c=-37/126+4/53*I,n=28 3141572624462768 r009 Re(z^3+c),c=-37/126+4/53*I,n=29 3141572624462776 r009 Re(z^3+c),c=-37/126+4/53*I,n=30 3141572624462778 r009 Re(z^3+c),c=-37/126+4/53*I,n=31 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=37 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=38 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=39 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=40 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=47 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=46 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=48 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=49 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=50 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=56 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=57 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=58 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=59 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=60 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=64 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=63 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=62 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=61 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=55 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=54 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=53 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=52 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=51 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=45 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=44 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=41 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=43 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=42 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=36 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=35 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=34 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=33 3141572624462779 r009 Re(z^3+c),c=-37/126+4/53*I,n=32 3141572624462840 r009 Re(z^3+c),c=-37/126+4/53*I,n=26 3141572624463454 r009 Re(z^3+c),c=-37/126+4/53*I,n=25 3141572624465478 r009 Re(z^3+c),c=-37/126+4/53*I,n=24 3141572624469616 r009 Re(z^3+c),c=-37/126+4/53*I,n=23 3141572624471001 r009 Re(z^3+c),c=-37/126+4/53*I,n=22 3141572624559283 m004 10*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/6 3141572624575131 m004 10*Pi-Sin[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141572624590979 m004 10*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/6 3141572632244827 r009 Re(z^3+c),c=-37/126+4/53*I,n=16 3141572635065209 r002 48th iterates of z^2 + 3141572642241254 m005 (1/3*5^(1/2)-2/11)/(4/9*5^(1/2)+4/5) 3141572653589795 s001 sum(1/10^(n-1)*A216543[n],n=1..infinity) 3141572653589795 s001 sum(1/10^n*A216543[n],n=1..infinity) 3141572653589795 s003 concatenated sequence A216543 3141572656196688 m001 (Kac-Si(Pi))/(Landau+ReciprocalFibonacci) 3141572656247621 l006 ln(435/10066) 3141572667452515 r002 31th iterates of z^2 + 3141572675973115 r009 Re(z^3+c),c=-37/126+4/53*I,n=15 3141572679491817 a001 843/610*956722026041^(4/11) 3141572680811768 r005 Im(z^2+c),c=-81/70+13/55*I,n=32 3141572720625873 r005 Re(z^2+c),c=-7/9+9/125*I,n=22 3141572734159227 m001 (-FeigenbaumC+ZetaQ(2))/(Backhouse-Psi(2,1/3)) 3141572742448030 a007 Real Root Of -644*x^4-799*x^3+195*x^2+865*x+234 3141572746530514 r009 Re(z^3+c),c=-3/74+17/52*I,n=4 3141572751188322 m001 Pi+gamma(2)*gamma(3) 3141572758201072 b008 Pi-2*AiryAi[6] 3141572762195532 m002 -Pi+2/(Pi^10*ProductLog[Pi]) 3141572766847074 m004 -5*Pi+4*Pi*Coth[Sqrt[5]*Pi] 3141572766866744 m004 -15*Pi*Coth[Sqrt[5]*Pi]+25*Pi*Tanh[Sqrt[5]*Pi] 3141572774661139 m001 (2^(1/3))*exp(Riemann3rdZero)/cos(1)^2 3141572778146214 q001 1/3183119 3141572780438692 r009 Im(z^3+c),c=-4/9+6/29*I,n=14 3141572781053727 r009 Im(z^3+c),c=-15/44+25/38*I,n=20 3141572787402797 a005 (1/cos(73/202*Pi))^20 3141572788859399 m001 LaplaceLimit/(Zeta(1/2)+FeigenbaumMu) 3141572799834887 r005 Im(z^2+c),c=-1/54+8/21*I,n=9 3141572802018270 r009 Re(z^3+c),c=-37/126+4/53*I,n=14 3141572814575281 r005 Re(z^2+c),c=-37/118+15/29*I,n=51 3141572814778075 r005 Im(z^2+c),c=-47/90+25/56*I,n=32 3141572815331098 a001 55/6643838879*47^(17/18) 3141572818621566 a003 -2^(1/2)-cos(1/12*Pi)-cos(4/9*Pi)-cos(3/10*Pi) 3141572820496537 r009 Im(z^3+c),c=-23/94+13/42*I,n=14 3141572829130328 r009 Im(z^3+c),c=-12/31+14/57*I,n=12 3141572830282880 m005 (17/20+1/4*5^(1/2))/(3/5*Zeta(3)-3/11) 3141572840826858 r005 Im(z^2+c),c=17/66+11/58*I,n=35 3141572845079529 r009 Re(z^3+c),c=-7/15+13/29*I,n=16 3141572850311315 r009 Re(z^3+c),c=-37/126+4/53*I,n=12 3141572868531244 m001 GAMMA(1/24)^log(gamma)/(exp(-Pi)^log(gamma)) 3141572868531244 m001 exp(Pi)^log(gamma)*GAMMA(1/24)^log(gamma) 3141572877605976 r005 Im(z^2+c),c=-29/62+22/49*I,n=18 3141572893890958 m001 GolombDickman/Si(Pi)/exp(KhintchineLevy)^2 3141572910720390 r005 Re(z^2+c),c=-17/48+10/43*I,n=4 3141572923590044 m001 GAMMA(7/24)^2/GAMMA(23/24)/exp(cos(1))^2 3141572928467525 r005 Re(z^2+c),c=-11/32+3/7*I,n=39 3141572936818916 m001 (TwinPrimes-ZetaQ(2))/(GAMMA(2/3)+Stephens) 3141572938502422 r005 Re(z^2+c),c=-17/18+31/207*I,n=24 3141572944309998 r005 Im(z^2+c),c=-51/118+27/52*I,n=62 3141572945731439 r002 22th iterates of z^2 + 3141572953054505 m002 Pi-Cosh[Pi]/(2*Pi^11) 3141572962937707 m005 (1/3*5^(1/2)-1/7)/(3/7*Pi+4/7) 3141572963239388 a007 Real Root Of -215*x^4-444*x^3+540*x^2-815*x-714 3141572963414901 m001 Catalan^2*exp(Artin)^2*sqrt(Pi) 3141572973271821 r005 Re(z^2+c),c=9/26+5/51*I,n=42 3141572976186615 m004 -100*Pi+(3*Cos[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141572978877841 m002 -E^Pi+Pi^3+Pi^5+Pi*Csch[Pi] 3141572985581017 m005 (1/3*Pi+2/5)/(3/4*2^(1/2)-3/5) 3141572989775552 m002 -E^Pi/(4*Pi^11)+Pi 3141572990638138 b008 Pi+ExpIntegralEi[-10+Sqrt[2]] 3141572994782487 m001 (Grothendieck+Landau)/(exp(1/exp(1))-CareFree) 3141573009129939 r009 Re(z^3+c),c=-37/126+4/53*I,n=13 3141573013966510 m001 Catalan*(exp(gamma)+exp(1/2)) 3141573022917565 r009 Re(z^3+c),c=-25/86+4/59*I,n=3 3141573026496599 m002 Pi-Sinh[Pi]/(2*Pi^11) 3141573032318555 r005 Re(z^2+c),c=-43/122+23/58*I,n=24 3141573032807795 m001 (Thue-Weierstrass)/(Zeta(1/2)+FeigenbaumD) 3141573033707865 q001 699/2225 3141573035603271 m001 1/exp(GAMMA(1/3))^2*Sierpinski^2/Zeta(9) 3141573036650225 m002 Pi^3+E^Pi*Cosh[Pi]^2+ProductLog[Pi] 3141573049385533 b008 Pi+14*ExpIntegralEi[-11] 3141573054225456 l006 ln(2693/3687) 3141573056265306 m001 DuboisRaymond^Lehmer-ln(2) 3141573061302675 a001 123/4181*196418^(19/20) 3141573074290385 m005 (1/2*Catalan-11/12)/(4/5*Catalan+8/11) 3141573082072885 m001 (ArtinRank2-Conway)/(Tetranacci+ZetaQ(4)) 3141573083252893 m001 StolarskyHarborth^(sin(1/12*Pi)*Grothendieck) 3141573083288263 r005 Im(z^2+c),c=-19/74+22/45*I,n=59 3141573091169128 a007 Real Root Of 215*x^4+566*x^3-79*x^2+597*x-738 3141573091944589 m005 (1/2*Pi-1/9)/(11/12*Catalan-3/8) 3141573092566767 m001 (GolombDickman+RenyiParking)/(Pi+GAMMA(3/4)) 3141573097230411 a001 123/39088169*2971215073^(19/20) 3141573115801898 m001 exp(1)/(Chi(1)+Trott2nd) 3141573127642157 m004 3+(250*Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/Pi 3141573146697058 a001 1/9*(1/2*5^(1/2)+1/2)^30*3^(8/21) 3141573154241211 k008 concat of cont frac of 3141573156968547 m001 (Pi+KomornikLoreti)/(Rabbit+Thue) 3141573157940737 m002 5+Pi^5*Coth[Pi]+2*Tanh[Pi] 3141573163648426 a007 Real Root Of -441*x^4+436*x^3+229*x^2+820*x-26 3141573169409123 m001 (Conway-MadelungNaCl)/(Porter-ZetaQ(2)) 3141573175176852 a003 cos(Pi*26/109)-cos(Pi*37/102) 3141573190276299 r009 Re(z^3+c),c=-3/50+22/31*I,n=64 3141573192828104 m002 -Pi+(5*Csch[Pi])/(E^Pi*Pi^6) 3141573198894821 m002 -Pi+(5*Log[Pi])/Pi^11 3141573200113788 p003 LerchPhi(1/2,1,44/115) 3141573213819556 m005 (1/2*2^(1/2)-5/7)/(5/11*Pi+6/7) 3141573216852739 r009 Re(z^3+c),c=-21/44+12/29*I,n=59 3141573233208365 m004 -100*Pi+Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141573233223731 m004 -100*Pi+(2*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141573233239098 m004 -100*Pi+Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141573237744134 r005 Im(z^2+c),c=-23/74+28/55*I,n=49 3141573239664404 m004 3+(500*Tanh[Sqrt[5]*Pi])/(E^(Sqrt[5]*Pi)*Pi) 3141573239664493 m004 3+(125*E^(Sqrt[5]*Pi)*Sech[Sqrt[5]*Pi]^2)/Pi 3141573240814530 a007 Real Root Of 244*x^4+795*x^3+180*x^2+397*x+353 3141573253012671 r009 Re(z^3+c),c=-37/90+10/33*I,n=10 3141573261436504 r005 Im(z^2+c),c=-23/56+11/21*I,n=50 3141573262005531 l006 ln(164/3795) 3141573265007553 r005 Re(z^2+c),c=-8/23+12/29*I,n=30 3141573265376340 m002 -Pi+(5*Sech[Pi])/(E^Pi*Pi^6) 3141573275177052 a007 Real Root Of -10*x^4-327*x^3-404*x^2+12*x+908 3141573279710110 m009 (1/4*Psi(1,2/3)+2)/(3/2*Pi^2-6) 3141573296266887 r005 Im(z^2+c),c=17/106+3/11*I,n=13 3141573296914894 m002 6+Pi^5*Coth[Pi]+Tanh[Pi]^2 3141573313333594 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(5*Pi^6) 3141573319358571 m006 (1/6*exp(2*Pi)-4)/(1/3*exp(Pi)-5) 3141573328629552 m005 (2/3*Pi-3/5)/(-1/12+1/4*5^(1/2)) 3141573337788193 r005 Im(z^2+c),c=9/29+3/40*I,n=18 3141573337902218 m001 Shi(1)+MasserGramainDelta+MertensB1 3141573339631054 r005 Re(z^2+c),c=15/44+11/28*I,n=14 3141573341232595 a001 726103/41*3^(12/23) 3141573350977401 b008 (-1+E^(-12))*Pi 3141573351686828 m004 -3-(250*Sech[Sqrt[5]*Pi])/Pi 3141573361593617 r002 3th iterates of z^2 + 3141573363682095 r005 Re(z^2+c),c=-41/106+21/64*I,n=7 3141573364377363 m009 (5*Psi(1,2/3)+1/3)/(8/3*Catalan+1/3*Pi^2-3/4) 3141573370318047 a001 39603/377*46368^(47/49) 3141573377344559 a007 Real Root Of 418*x^4+977*x^3-720*x^2+914*x-446 3141573377409146 m008 (4*Pi^6+1/2)/(4*Pi^5+1/6) 3141573384076009 r009 Re(z^3+c),c=-25/56+15/41*I,n=29 3141573385432595 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(5*Pi^6) 3141573386472069 m001 (HardyLittlewoodC4+Landau)/(ln(3)+ln(5)) 3141573397177938 a007 Real Root Of 859*x^4-33*x^3-187*x^2-649*x+215 3141573406634524 b008 Pi+ExpIntegralEi[-7]/6 3141573420622927 a001 1/7*(1/2*5^(1/2)+1/2)^15*521^(13/16) 3141573432167942 r005 Im(z^2+c),c=-11/12+19/78*I,n=28 3141573452575481 m002 Pi-Log[Pi]/(2*Pi^9) 3141573454615507 r009 Re(z^3+c),c=-61/126+5/12*I,n=61 3141573457733944 r009 Im(z^3+c),c=-33/70+8/45*I,n=41 3141573463709252 m004 -3-500/(E^(Sqrt[5]*Pi)*Pi) 3141573468321580 r005 Im(z^2+c),c=9/50+8/31*I,n=34 3141573482188487 r005 Im(z^2+c),c=-19/74+22/45*I,n=61 3141573482455847 m002 -(1/(E^(2*Pi)*Pi^4))+Pi 3141573495718429 r005 Im(z^2+c),c=19/56+13/38*I,n=25 3141573497321492 r005 Re(z^2+c),c=-11/54+13/16*I,n=9 3141573505059336 a003 cos(Pi*5/102)/sin(Pi*11/108) 3141573506188813 l006 ln(6001/8216) 3141573511121291 k007 concat of cont frac of 3141573529749218 m008 (4*Pi^3+1)/(2/5*Pi^4+5/6) 3141573530941122 a007 Real Root Of 967*x^4+500*x^3-245*x^2-838*x-233 3141573533226261 a008 Real Root of x^2-x-99009 3141573553924373 m002 -Pi+Tanh[Pi]/(E^(2*Pi)*Pi^4) 3141573554799062 a007 Real Root Of 804*x^4+281*x^3+264*x^2-913*x-312 3141573560699136 b008 -1/36+Sinh[1+Pi] 3141573570604584 m005 (1/2*3^(1/2)+8/9)/(3/8*3^(1/2)-1/11) 3141573575731853 m004 -3-(250*Csch[Sqrt[5]*Pi])/Pi 3141573575942482 m001 Champernowne/OneNinth*Trott2nd 3141573583012646 r005 Re(z^2+c),c=-17/18-37/254*I,n=6 3141573606393972 r002 3th iterates of z^2 + 3141573616163477 m001 exp(GAMMA(17/24))^2/OneNinth*sin(Pi/12) 3141573623508335 r009 Re(z^3+c),c=-27/64+16/49*I,n=46 3141573624276731 a007 Real Root Of -209*x^4-395*x^3+636*x^2-634*x-158 3141573637002840 m005 (1/2*exp(1)+2/3)/(1/10*exp(1)-11/12) 3141573637444498 m001 (BesselI(1,1)+ThueMorse)/(2^(1/3)+Si(Pi)) 3141573652343999 m001 1/Kolakoski/FibonacciFactorial^2*exp(Robbin)^2 3141573653380220 r005 Im(z^2+c),c=-11/31+21/38*I,n=45 3141573655516348 a007 Real Root Of -490*x^4+334*x^3-804*x^2+842*x+359 3141573657040598 a007 Real Root Of -416*x^4-977*x^3-520*x^2+630*x+223 3141573658707463 m002 -Pi+6/(Pi^11*ProductLog[Pi]) 3141573659516473 m004 (-3*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141573660117992 a005 (1/cos(16/123*Pi))^576 3141573663134332 m004 -Pi+6*Csch[Sqrt[5]*Pi]^2 3141573663164385 m004 -Pi+6*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141573663194438 m004 -Pi+6*Sech[Sqrt[5]*Pi]^2 3141573669876796 h001 (1/12*exp(2)+11/12)/(3/5*exp(2)+4/9) 3141573680339429 a007 Real Root Of 668*x^4-277*x^3+107*x^2-434*x-162 3141573687754454 m004 3+(500*Coth[Sqrt[5]*Pi])/(E^(Sqrt[5]*Pi)*Pi) 3141573687754543 m004 3+(125*E^(Sqrt[5]*Pi)*Csch[Sqrt[5]*Pi]^2)/Pi 3141573695405295 m007 (-1/4*gamma-1/2*ln(2)+1/2)/(-1/6*gamma+3) 3141573696184988 m001 (Lehmer-Psi(1,1/3))/(Sierpinski+TreeGrowth2nd) 3141573704825798 a007 Real Root Of 301*x^4+696*x^3-738*x^2-44*x-594 3141573715216615 r005 Im(z^2+c),c=-11/114+7/13*I,n=9 3141573715504636 b008 Pi*Sqrt[KelvinBer[0,1/6]] 3141573723121311 k007 concat of cont frac of 3141573741964467 a007 Real Root Of 266*x^4+838*x^3+7*x^2+286*x+902 3141573742667638 m001 HeathBrownMoroz^GAMMA(13/24)-Pi 3141573747919371 m001 Pi-gamma(1)^FeigenbaumMu 3141573748493284 r005 Im(z^2+c),c=-8/25+22/43*I,n=46 3141573759017941 m001 (3^(1/2)+Zeta(1,-1))/(-FeigenbaumC+MertensB3) 3141573761539929 m001 Pi-ZetaQ(3)^UniversalParabolic 3141573768303084 m001 (MertensB3+ThueMorse)/(1-GAMMA(11/12)) 3141573777710635 m002 -6+Pi^5*ProductLog[Pi]-Pi^4*Sech[Pi] 3141573780421094 m001 (Ei(1)+cos(1/12*Pi))/(Kolakoski-Niven) 3141573787037160 m001 (Salem+Sierpinski)/(ln(3)+Paris) 3141573792516215 r005 Re(z^2+c),c=-11/29+17/57*I,n=34 3141573794713517 m002 -Pi+ProductLog[Pi]/(6*Pi^8) 3141573799777233 m004 3+(250*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/Pi 3141573803207113 a001 55/76*123^(18/59) 3141573806376139 m005 (1/2*Pi+7/11)/(1/5*3^(1/2)-5/12) 3141573810123152 a007 Real Root Of 703*x^4+577*x^3+246*x^2-951*x-312 3141573813855633 m001 (Riemann2ndZero-ZetaQ(4))/(ln(Pi)-PlouffeB) 3141573822157178 m001 ReciprocalLucas*(Shi(1)+Landau) 3141573822226629 m001 1/GAMMA(1/6)^2*exp(OneNinth)^2/GAMMA(5/6)^2 3141573832572074 r005 Im(z^2+c),c=-17/30+5/88*I,n=55 3141573861510994 b008 3*(-2+Csch[Catalan]) 3141573874126319 l006 ln(3308/4529) 3141573880015899 m001 Ei(1)^(2^(1/3))*OrthogonalArrays 3141573906081527 r005 Im(z^2+c),c=9/50+8/31*I,n=35 3141573907499300 m001 (GaussAGM+Gompertz)/(ln(2+3^(1/2))-Pi^(1/2)) 3141573908967225 a007 Real Root Of -541*x^4+367*x^3-851*x^2+854*x-26 3141573916431654 r005 Im(z^2+c),c=-73/126+19/52*I,n=12 3141573921742844 r009 Re(z^3+c),c=-25/56+23/63*I,n=43 3141573933084055 m001 Champernowne*Riemann3rdZero+ZetaQ(2) 3141573941644489 m001 TreeGrowth2nd/exp(FeigenbaumD)^2*GAMMA(7/12) 3141573946432859 l006 ln(385/8909) 3141573955533283 b008 Pi*ModularLambda[(2*I)/3/Pi] 3141573958394906 m001 exp(FeigenbaumD)^2/FeigenbaumB^2*Zeta(7)^2 3141573960562090 r004 Re(z^2+c),c=-7/18+6/23*I,z(0)=-1,n=18 3141573970964154 b008 31+Sqrt[14]/9 3141573982558526 b008 Pi+(3*ExpIntegralEi[-9])/2 3141573986629481 a007 Real Root Of 142*x^4+560*x^3+91*x^2-864*x-81 3141573989038922 a007 Real Root Of 467*x^4-893*x^3+191*x^2-467*x+151 3141573996059494 m001 (FibonacciFactorial-sin(1/5*Pi))^Sierpinski 3141573997172486 m002 -Pi+2/(Pi^10*Log[Pi]) 3141574001152810 r005 Im(z^2+c),c=31/98+5/42*I,n=32 3141574004816339 b008 Pi-BesselK[1,10] 3141574005004737 r005 Re(z^2+c),c=-19/102+13/22*I,n=25 3141574009827503 m004 -25*Pi+125*Pi*Tanh[Sqrt[5]*Pi]^3 3141574029223551 a007 Real Root Of -8*x^4+826*x^3-58*x^2+769*x+273 3141574038659346 r002 52th iterates of z^2 + 3141574048059400 m001 sin(1)^(3*sqrt(5)) 3141574055426535 m001 (Ei(1)-ln(2)/ln(10))/(-FeigenbaumB+Totient) 3141574060800853 m001 Backhouse*Champernowne*ZetaP(3) 3141574063687490 m001 1/ln(Zeta(9))/Catalan/sqrt(3) 3141574069666733 a007 Real Root Of 661*x^4-329*x^3-367*x^2-538*x+209 3141574075469186 r005 Re(z^2+c),c=-31/102+19/36*I,n=45 3141574076488035 a007 Real Root Of -12*x^4-360*x^3+541*x^2+256*x+856 3141574084746607 r005 Re(z^2+c),c=-15/26+3/55*I,n=4 3141574096751425 a007 Real Root Of 257*x^4+723*x^3-285*x^2+89*x+476 3141574113412132 k006 concat of cont frac of 3141574121704994 a001 3571/377*4807526976^(4/11) 3141574122159890 r005 Im(z^2+c),c=-35/54+3/58*I,n=35 3141574129391664 r005 Re(z^2+c),c=17/56+20/39*I,n=5 3141574134088078 m001 (ln(2^(1/2)+1)-Ei(1,1))/(FeigenbaumD-Stephens) 3141574134146254 m001 1/Magata^2*LaplaceLimit*exp(Niven) 3141574139155300 m001 cos(1)/exp(Trott)*sin(Pi/5) 3141574141223472 k007 concat of cont frac of 3141574148355601 m008 (5*Pi^6+3/5)/(5*Pi^5+1/5) 3141574151919458 m001 (ln(Pi)-GlaisherKinkelin)/(Gompertz-MertensB2) 3141574158734948 b008 Pi-Zeta[7,5] 3141574160534066 a007 Real Root Of 674*x^4-32*x^3+719*x^2-705*x-300 3141574173482764 r005 Im(z^2+c),c=-19/90+19/44*I,n=7 3141574179477294 l006 ln(7231/9900) 3141574183469941 r005 Im(z^2+c),c=9/50+8/31*I,n=39 3141574184130406 a009 1/2*6^(1/2)+1/2*6^(3/4) 3141574193894532 h001 (7/12*exp(2)+5/12)/(1/12*exp(2)+8/9) 3141574214359350 m001 GolombDickman^exp(Pi)-Pi 3141574220952733 b008 -3/E^12+Pi 3141574252736508 r005 Im(z^2+c),c=9/50+8/31*I,n=40 3141574256748814 r005 Im(z^2+c),c=-11/94+35/46*I,n=15 3141574262242296 k008 concat of cont frac of 3141574266357495 m001 TwinPrimes^2*Artin^2*exp(GAMMA(13/24)) 3141574274712500 r005 Im(z^2+c),c=9/50+8/31*I,n=44 3141574281720106 r005 Im(z^2+c),c=9/50+8/31*I,n=38 3141574283147704 r005 Im(z^2+c),c=9/50+8/31*I,n=43 3141574284710185 r005 Im(z^2+c),c=9/50+8/31*I,n=45 3141574285923890 r005 Im(z^2+c),c=9/50+8/31*I,n=49 3141574286506001 r005 Im(z^2+c),c=9/50+8/31*I,n=48 3141574287253851 r005 Im(z^2+c),c=9/50+8/31*I,n=54 3141574287270623 r005 Im(z^2+c),c=9/50+8/31*I,n=53 3141574287280929 r005 Im(z^2+c),c=9/50+8/31*I,n=50 3141574287401827 r005 Im(z^2+c),c=9/50+8/31*I,n=58 3141574287406138 r005 Im(z^2+c),c=9/50+8/31*I,n=59 3141574287421677 r005 Im(z^2+c),c=9/50+8/31*I,n=63 3141574287422922 r005 Im(z^2+c),c=9/50+8/31*I,n=64 3141574287426801 r005 Im(z^2+c),c=9/50+8/31*I,n=62 3141574287428028 r005 Im(z^2+c),c=9/50+8/31*I,n=60 3141574287429626 r005 Im(z^2+c),c=9/50+8/31*I,n=55 3141574287434006 r005 Im(z^2+c),c=9/50+8/31*I,n=61 3141574287449525 r005 Im(z^2+c),c=9/50+8/31*I,n=57 3141574287499551 r005 Im(z^2+c),c=9/50+8/31*I,n=56 3141574287696640 r005 Im(z^2+c),c=9/50+8/31*I,n=52 3141574288013892 r005 Im(z^2+c),c=9/50+8/31*I,n=51 3141574290173822 r005 Im(z^2+c),c=9/50+8/31*I,n=47 3141574291879327 r005 Im(z^2+c),c=9/50+8/31*I,n=46 3141574299198900 m005 (1/3*2^(1/2)+2/3)/(1/5*Catalan-6/11) 3141574313640154 r005 Im(z^2+c),c=9/50+8/31*I,n=42 3141574319391035 r005 Im(z^2+c),c=9/50+8/31*I,n=41 3141574328391378 k002 Champernowne real with 66*n^2-187*n+124 3141574328527109 a001 7/89*5^(37/43) 3141574336096644 p001 sum((-1)^n/(357*n+316)/(64^n),n=0..infinity) 3141574340154754 m001 (sin(1/5*Pi)-ln(2))/(exp(-1/2*Pi)-Landau) 3141574342510939 a001 2/2178309*34^(15/43) 3141574346505400 m002 -3/(E^(2*Pi)*Pi^5)+Pi 3141574348471398 k003 Champernowne real with 1/3*n^3+64*n^2-550/3*n+122 3141574358511408 k003 Champernowne real with 1/2*n^3+63*n^2-363/2*n+121 3141574360124643 m001 (Bloch+Gompertz)/(Khinchin+TravellingSalesman) 3141574362819463 a001 844/13*24157817^(4/11) 3141574364666186 a007 Real Root Of -366*x^4-808*x^3+783*x^2-872*x+131 3141574366346289 m001 (FellerTornier+Riemann1stZero)/(Pi-Zeta(1/2)) 3141574367936377 a001 167761/377*121393^(4/11) 3141574368551418 k003 Champernowne real with 2/3*n^3+62*n^2-539/3*n+120 3141574370445621 p001 sum((-1)^n/(129*n+13)/n/(2^n),n=0..infinity) 3141574375643461 m001 (ln(5)+Magata)^Rabbit 3141574383146079 a007 Real Root Of 2*x^4+628*x^3-96*x^2+918*x+125 3141574388631438 k003 Champernowne real with n^3+60*n^2-176*n+118 3141574398976376 r009 Re(z^3+c),c=-8/21+13/50*I,n=15 3141574401599964 m004 -100*Pi+(2*Csch[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141574401614406 m004 -100*Pi+4/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141574401628848 m004 -100*Pi+(2*Sech[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3141574402179246 m002 -Pi+(2*Csch[Pi])/Pi^8 3141574406758866 m002 -Pi+(5*ProductLog[Pi])/Pi^11 3141574407343735 a007 Real Root Of -218*x^4-638*x^3-107*x^2-841*x-133 3141574408711458 k003 Champernowne real with 4/3*n^3+58*n^2-517/3*n+116 3141574411218216 k008 concat of cont frac of 3141574415337136 m005 (-19/36+1/4*5^(1/2))/(7/11*5^(1/2)-3/7) 3141574415631976 r005 Re(z^2+c),c=-9/22+1/60*I,n=9 3141574418751468 k003 Champernowne real with 3/2*n^3+57*n^2-341/2*n+115 3141574420276074 a001 47/3*144^(7/50) 3141574420283620 s001 sum(1/10^(n-1)*A119659[n],n=1..infinity) 3141574420283620 s001 sum(1/10^n*A119659[n],n=1..infinity) 3141574424682368 m001 (Artin-MertensB2)/(Riemann2ndZero+ZetaQ(3)) 3141574426707539 m004 -11+25*Pi-5*Sqrt[5]*Pi-Tanh[Sqrt[5]*Pi] 3141574428759078 r009 Im(z^3+c),c=-3/82+14/39*I,n=2 3141574428791478 k003 Champernowne real with 5/3*n^3+56*n^2-506/3*n+114 3141574428998845 p004 log(23539/22811) 3141574429186723 m009 (3/2*Pi^2+1/2)/(2/5*Psi(1,1/3)+5/6) 3141574430830077 a001 38/98209*433494437^(13/19) 3141574430846363 a001 76/102334155*4052739537881^(13/19) 3141574436262710 m002 -4/(E^Pi*Pi^8)+Pi 3141574436959067 l006 ln(3923/5371) 3141574437760571 m001 GAMMA(2/3)^2*ln(Khintchine)*log(2+sqrt(3))^2 3141574438563193 r005 Im(z^2+c),c=-5/19+29/59*I,n=40 3141574446597537 r005 Im(z^2+c),c=7/74+19/60*I,n=9 3141574448871498 k003 Champernowne real with 2*n^3+54*n^2-165*n+112 3141574449685838 b008 Pi+13*ExpIntegralEi[-11] 3141574454333379 l006 ln(221/5114) 3141574457083557 m005 (1/2*2^(1/2)-3/8)/(1/9*2^(1/2)+9/10) 3141574468951518 k003 Champernowne real with 7/3*n^3+52*n^2-484/3*n+110 3141574470219113 m002 -Pi+(2*Sech[Pi])/Pi^8 3141574478991528 k003 Champernowne real with 5/2*n^3+51*n^2-319/2*n+109 3141574483724881 m002 30+Log[Pi]+Pi*Sech[Pi] 3141574489031538 k003 Champernowne real with 8/3*n^3+50*n^2-473/3*n+108 3141574489249522 s002 sum(A002521[n]/(n*pi^n-1),n=1..infinity) 3141574495649836 r005 Im(z^2+c),c=9/50+8/31*I,n=33 3141574498653770 m001 Zeta(1,-1)/(FeigenbaumDelta+Gompertz) 3141574499460781 r005 Im(z^2+c),c=-7/74+9/14*I,n=45 3141574500725278 r005 Im(z^2+c),c=9/50+8/31*I,n=36 3141574501155115 a007 Real Root Of -415*x^4-945*x^3+859*x^2-929*x-273 3141574506758448 r009 Re(z^3+c),c=-27/64+16/49*I,n=49 3141574509111558 k003 Champernowne real with 3*n^3+48*n^2-154*n+106 3141574510340738 r009 Re(z^3+c),c=-27/64+16/49*I,n=43 3141574511805225 r009 Re(z^3+c),c=-27/64+16/49*I,n=45 3141574526298492 r005 Im(z^2+c),c=9/50+8/31*I,n=37 3141574539231588 k003 Champernowne real with 7/2*n^3+45*n^2-297/2*n+103 3141574544578197 r005 Re(z^2+c),c=-19/50+12/25*I,n=16 3141574544828320 b008 Pi+ExpIntegralEi[-5*Sqrt[3]] 3141574559416380 r005 Im(z^2+c),c=-21/110+6/13*I,n=44 3141574563936461 a001 199/89*20365011074^(5/24) 3141574569351618 k003 Champernowne real with 4*n^3+42*n^2-143*n+100 3141574570954537 b008 -8/E^13+Pi 3141574573436167 m005 (1/3*Zeta(3)+1/9)/(7/8*Zeta(3)-8/9) 3141574579391628 k003 Champernowne real with 25/6*n^3+41*n^2-847/6*n+99 3141574586350295 r002 18th iterates of z^2 + 3141574588610530 a007 Real Root Of 295*x^4+736*x^3-924*x^2-746*x+861 3141574589431638 k003 Champernowne real with 13/3*n^3+40*n^2-418/3*n+98 3141574596330844 m005 (2/5*exp(1)-1/4)/(2*Catalan+5/6) 3141574599471648 k003 Champernowne real with 9/2*n^3+39*n^2-275/2*n+97 3141574602492023 r005 Im(z^2+c),c=43/126+23/55*I,n=58 3141574609511658 k003 Champernowne real with 14/3*n^3+38*n^2-407/3*n+96 3141574610015006 a003 sin(Pi*5/61)/sin(Pi*34/113) 3141574611370243 a007 Real Root Of -243*x^4-689*x^3+40*x^2-679*x-221 3141574614820985 m006 (2/Pi+1/2)/(5/6*Pi+1) 3141574619551668 k003 Champernowne real with 29/6*n^3+37*n^2-803/6*n+95 3141574626838738 m001 1/Zeta(1,2)^2/GlaisherKinkelin/ln(sin(Pi/5))^2 3141574627476597 m004 -100*Pi+(3*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141574629591678 k003 Champernowne real with 5*n^3+36*n^2-132*n+94 3141574639631688 k003 Champernowne real with 31/6*n^3+35*n^2-781/6*n+93 3141574640169607 m002 -Pi+Csch[Pi]/(5*Pi^6) 3141574641889357 m001 1/Zeta(7)/GAMMA(5/24)*exp(log(2+sqrt(3)))^2 3141574644689511 m002 -Pi+ProductLog[Pi]/(2*Pi^9) 3141574649671698 k003 Champernowne real with 16/3*n^3+34*n^2-385/3*n+92 3141574659711708 k003 Champernowne real with 11/2*n^3+33*n^2-253/2*n+91 3141574661595133 r002 32i'th iterates of 2*x/(1-x^2) of 3141574663391184 m001 Pi-ZetaQ(4)^Niven 3141574664527124 r002 19th iterates of z^2 + 3141574669751718 k003 Champernowne real with 17/3*n^3+32*n^2-374/3*n+90 3141574672099523 m001 Pi-gamma(3)*ZetaQ(3) 3141574672554712 r005 Im(z^2+c),c=-2/15+23/52*I,n=8 3141574672723041 b008 Pi+ExpIntegralEi[-26/3] 3141574673808637 m002 -2/(5*E^Pi*Pi^6)+Pi 3141574679791728 k003 Champernowne real with 35/6*n^3+31*n^2-737/6*n+89 3141574681407763 m001 GAMMA(1/3)/ln(Conway)/LambertW(1)^2 3141574689831738 k003 Champernowne real with 6*n^3+30*n^2-121*n+88 3141574699871748 k003 Champernowne real with 37/6*n^3+29*n^2-715/6*n+87 3141574707322264 m002 -Pi+Sech[Pi]/(5*Pi^6) 3141574709911758 k003 Champernowne real with 19/3*n^3+28*n^2-352/3*n+86 3141574710931443 r009 Re(z^3+c),c=-19/40+21/47*I,n=45 3141574712650353 m001 (Zeta(3)-(1+3^(1/2))^(1/2))/(Stephens+Thue) 3141574718279590 r002 10th iterates of z^2 + 3141574719951768 k003 Champernowne real with 13/2*n^3+27*n^2-231/2*n+85 3141574729991778 k003 Champernowne real with 20/3*n^3+26*n^2-341/3*n+84 3141574731003178 k003 Champernowne real with 41/6*n^3+25*n^2-671/6*n+83 3141574731237100 m001 1/MinimumGamma/exp(Champernowne)^2*sin(Pi/5) 3141574735525620 r005 Re(z^2+c),c=7/23+30/59*I,n=37 3141574737703584 m006 (5/6*exp(2*Pi)+1/5)/(2/5*ln(Pi)-3/5) 3141574738348404 m008 (1/2*Pi^3-1)/(1/5*Pi-1/6) 3141574741007179 k003 Champernowne real with 7*n^3+24*n^2-110*n+82 3141574751011180 k003 Champernowne real with 43/6*n^3+23*n^2-649/6*n+81 3141574761015181 k003 Champernowne real with 22/3*n^3+22*n^2-319/3*n+80 3141574770423033 m001 Pi-Trott*ZetaQ(4) 3141574771019182 k003 Champernowne real with 15/2*n^3+21*n^2-209/2*n+79 3141574773639775 m001 (StolarskyHarborth+Weierstrass)/(ln(Pi)+Kac) 3141574774224582 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(5*Pi^6) 3141574778642236 a001 11592/19*843^(38/41) 3141574779893021 m005 (27/44+1/4*5^(1/2))/(-47/72+1/8*5^(1/2)) 3141574781023183 k003 Champernowne real with 23/3*n^3+20*n^2-308/3*n+78 3141574791027184 k003 Champernowne real with 47/6*n^3+19*n^2-605/6*n+77 3141574801031185 k003 Champernowne real with 8*n^3+18*n^2-99*n+76 3141574811035186 k003 Champernowne real with 49/6*n^3+17*n^2-583/6*n+75 3141574813298019 a007 Real Root Of -900*x^4+390*x^3+963*x^2+871*x-372 3141574814858898 p001 sum(1/(539*n+466)/n/(32^n),n=1..infinity) 3141574815501922 m001 HeathBrownMoroz^exp(1/2)-Pi 3141574818658197 m001 (GAMMA(2/3)+CopelandErdos)/(ZetaP(2)+ZetaQ(2)) 3141574821039187 k003 Champernowne real with 25/3*n^3+16*n^2-286/3*n+74 3141574821370289 r005 Im(z^2+c),c=-19/74+28/57*I,n=30 3141574831043188 k003 Champernowne real with 17/2*n^3+15*n^2-187/2*n+73 3141574831444541 h005 exp(cos(Pi*4/47)+cos(Pi*23/52)) 3141574836020234 s002 sum(A288785[n]/(n^3*pi^n-1),n=1..infinity) 3141574838023584 m002 -Pi+6/(Pi^11*Log[Pi]) 3141574841047189 k003 Champernowne real with 26/3*n^3+14*n^2-275/3*n+72 3141574847239068 l006 ln(4538/6213) 3141574851051190 k003 Champernowne real with 53/6*n^3+13*n^2-539/6*n+71 3141574861055191 k003 Champernowne real with 9*n^3+12*n^2-88*n+70 3141574862901420 m004 -100*Pi+Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141574862915497 m004 -100*Pi+(2*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141574862943651 m004 -1/(5*E^(Sqrt[5]*Pi))+10*Pi 3141574862971806 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141574862985883 m004 -100*Pi+Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3141574863014037 m004 -100*Pi+Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi]^2 3141574867057021 r002 3th iterates of z^2 + 3141574867401060 q001 77/2451 3141574867401060 r002 2th iterates of z^2 + 3141574867401060 r002 2th iterates of z^2 + 3141574867401060 r002 2th iterates of z^2 + 3141574867401060 r005 Im(z^2+c),c=-79/114+35/43*I,n=2 3141574867807160 r002 17th iterates of z^2 + 3141574868773467 m001 (-Weierstrass+ZetaP(3))/(Psi(1,1/3)-cos(1)) 3141574871059192 k003 Champernowne real with 55/6*n^3+11*n^2-517/6*n+69 3141574873527477 b008 Pi-BesselK[0,10] 3141574881063193 k003 Champernowne real with 28/3*n^3+10*n^2-253/3*n+68 3141574882105314 h001 (-5*exp(3)+1)/(-8*exp(1/3)+8) 3141574883288495 r009 Re(z^3+c),c=-27/64+16/49*I,n=53 3141574885274206 m001 (Lehmer+Rabbit)/(Zeta(1/2)-Khinchin) 3141574891067194 k003 Champernowne real with 19/2*n^3+9*n^2-165/2*n+67 3141574893917537 r005 Re(z^2+c),c=29/94+3/37*I,n=18 3141574901071195 k003 Champernowne real with 29/3*n^3+8*n^2-242/3*n+66 3141574911075196 k003 Champernowne real with 59/6*n^3+7*n^2-473/6*n+65 3141574912434718 m002 4/Pi^2+3*Pi^4*ProductLog[Pi] 3141574917203806 r009 Re(z^3+c),c=-27/64+16/49*I,n=50 3141574921079197 k003 Champernowne real with 10*n^3+6*n^2-77*n+64 3141574927505974 h001 (5/11*exp(2)+3/4)/(3/7*exp(1)+1/7) 3141574928597558 r005 Im(z^2+c),c=-35/106+17/39*I,n=3 3141574931083198 k003 Champernowne real with 61/6*n^3+5*n^2-451/6*n+63 3141574934221026 m004 -4-(250*Sech[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 3141574938286738 r005 Re(z^2+c),c=-53/110+18/61*I,n=7 3141574941087199 k003 Champernowne real with 31/3*n^3+4*n^2-220/3*n+62 3141574951091200 k003 Champernowne real with 21/2*n^3+3*n^2-143/2*n+61 3141574952384027 a007 Real Root Of -180*x^4-317*x^3+961*x^2+651*x+265 3141574961095201 k003 Champernowne real with 32/3*n^3+2*n^2-209/3*n+60 3141574968220553 r005 Im(z^2+c),c=-9/106+12/29*I,n=19 3141574971099202 k003 Champernowne real with 65/6*n^3+n^2-407/6*n+59 3141574971230647 m001 (GaussAGM+Otter)^Thue 3141574976121629 r002 8th iterates of z^2 + 3141574981103203 k003 Champernowne real with 11*n^3-66*n+58 3141574982085164 a001 1149851/377*610^(4/11) 3141574984357698 m002 -Pi^2-Pi^5+20*Csch[Pi] 3141574991107204 k003 Champernowne real with 67/6*n^3-n^2-385/6*n+57 3141575001111205 k003 Champernowne real with 34/3*n^3-2*n^2-187/3*n+56 3141575001150787 a001 1/6624*89^(8/49) 3141575008556853 r009 Re(z^3+c),c=-27/64+16/49*I,n=56 3141575010171431 r002 8th iterates of z^2 + 3141575011115206 k003 Champernowne real with 23/2*n^3-3*n^2-121/2*n+55 3141575021119207 k003 Champernowne real with 35/3*n^3-4*n^2-176/3*n+54 3141575023617780 b008 -1/7*1/E^9+Pi 3141575024361651 r005 Im(z^2+c),c=-19/60+16/29*I,n=27 3141575027092042 m001 Porter*(Catalan+GAMMA(3/4)) 3141575031123208 k003 Champernowne real with 71/6*n^3-5*n^2-341/6*n+53 3141575040013387 r009 Re(z^3+c),c=-27/64+16/49*I,n=57 3141575041127209 k003 Champernowne real with 12*n^3-6*n^2-55*n+52 3141575042663388 r004 Im(z^2+c),c=-1/46+8/21*I,z(0)=I,n=13 3141575043381992 r002 15th iterates of z^2 + 3141575044609608 r009 Re(z^3+c),c=-27/64+16/49*I,n=60 3141575046243450 m004 -4-500/(E^(Sqrt[5]*Pi)*Pi)+Tanh[Sqrt[5]*Pi] 3141575047065618 m001 1/exp(Trott)/Bloch^2/sqrt(2) 3141575047413858 r009 Re(z^3+c),c=-27/64+16/49*I,n=52 3141575050342196 r005 Re(z^2+c),c=-31/40+3/55*I,n=34 3141575050372699 b008 Pi+Sqrt[2]*ExpIntegralEi[-9] 3141575051321615 m001 Bloch^gamma(2)-ln(2) 3141575057683491 b008 3+(1/4+Sqrt[3])/14 3141575059581981 m001 ln(sin(Pi/5))/Tribonacci^2*sqrt(2)^2 3141575061422676 r009 Re(z^3+c),c=-27/64+16/49*I,n=63 3141575062980137 r009 Re(z^3+c),c=-27/64+16/49*I,n=64 3141575070436329 r009 Re(z^3+c),c=-27/64+16/49*I,n=59 3141575072054333 r009 Re(z^3+c),c=-27/64+16/49*I,n=61 3141575075579042 m005 (1/3*Catalan+3/7)/(5^(1/2)+1/10) 3141575078121906 r009 Re(z^3+c),c=-27/64+16/49*I,n=62 3141575081537828 a007 Real Root Of -191*x^4-334*x^3+751*x^2-373*x-335 3141575088524517 m002 -1/(6*Pi^8)+Pi 3141575094399407 m001 BesselK(1,1)/Kolakoski*PrimesInBinary 3141575095388159 a005 (1/sin(60/133*Pi))^1848 3141575096344545 r005 Re(z^2+c),c=-13/31+7/39*I,n=7 3141575097287265 r009 Re(z^3+c),c=-23/52+23/64*I,n=21 3141575099060557 a003 sin(Pi*19/79)-sin(Pi*47/95) 3141575107062693 r009 Re(z^3+c),c=-27/64+16/49*I,n=58 3141575113236954 m001 FeigenbaumB^2*LandauRamanujan^2/ln(GAMMA(1/4)) 3141575117363443 r005 Im(z^2+c),c=19/126+29/51*I,n=43 3141575125368834 a007 Real Root Of -31*x^4-986*x^3-391*x^2-333*x-97 3141575131522142 r009 Re(z^3+c),c=-27/64+16/49*I,n=54 3141575135556248 r002 9th iterates of z^2 + 3141575136735441 r005 Re(z^2+c),c=-127/86+8/51*I,n=4 3141575148599209 r009 Re(z^3+c),c=-27/64+16/49*I,n=55 3141575154005742 m002 -Pi+Tanh[Pi]/(6*Pi^8) 3141575154480265 r005 Re(z^2+c),c=-19/46+1/28*I,n=12 3141575157720363 l006 ln(278/6433) 3141575158266051 m004 -4-(250*Csch[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 3141575159273994 m001 (Zeta(3)-cos(1/12*Pi))/(Backhouse-CareFree) 3141575159586901 l006 ln(5153/7055) 3141575162568186 m001 Psi(2,1/3)/(GAMMA(7/12)^PisotVijayaraghavan) 3141575172340951 m001 1/sqrt(1+sqrt(3))/ln(FeigenbaumC)*sqrt(Pi)^2 3141575179953446 a007 Real Root Of -544*x^4+642*x^3-462*x^2+459*x+215 3141575190129706 r005 Im(z^2+c),c=-41/114+19/34*I,n=60 3141575195568421 b008 Cosh[(5*(2+EulerGamma))/2] 3141575200325877 b008 Pi*KelvinBei[0,1/5]^2 3141575204861686 r005 Re(z^2+c),c=-47/114+2/51*I,n=18 3141575209298621 r005 Re(z^2+c),c=-7/10+33/151*I,n=39 3141575209804212 r009 Im(z^3+c),c=-51/94+15/46*I,n=12 3141575210836743 a001 2/75025*5^(5/49) 3141575224776551 m002 -Pi+(6*Csch[Pi])/Pi^9 3141575229674004 a007 Real Root Of -370*x^4-831*x^3+844*x^2-840*x-694 3141575238904420 m005 (1/2*exp(1)-1/10)/(1/5*exp(1)-1/7) 3141575249259293 g005 GAMMA(9/10)*GAMMA(2/7)/GAMMA(8/11)/GAMMA(1/9) 3141575260457880 a001 1/322*(1/2*5^(1/2)+1/2)^25*47^(7/15) 3141575287915380 r009 Im(z^3+c),c=-5/56+51/62*I,n=24 3141575289749839 m002 -Pi+(6*Sech[Pi])/Pi^9 3141575299021704 r009 Re(z^3+c),c=-4/21+29/30*I,n=36 3141575302100372 m001 HeathBrownMoroz^((1+3^(1/2))^(1/2))-Pi 3141575312598811 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/2 3141575312612533 m004 -100*Pi+Log[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141575312626254 m004 -100*Pi+(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/2 3141575322296757 r005 Re(z^2+c),c=-1/60+2/15*I,n=7 3141575324251647 r005 Im(z^2+c),c=-6/23+26/53*I,n=51 3141575329884965 a007 Real Root Of 102*x^4+265*x^3-401*x^2-690*x+71 3141575329912479 r005 Im(z^2+c),c=7/24+7/48*I,n=20 3141575340549005 r005 Im(z^2+c),c=-27/23+2/49*I,n=31 3141575344489195 r005 Im(z^2+c),c=-7/86+24/61*I,n=5 3141575349094880 m002 -Pi^3-ProductLog[Pi]+(2*Tanh[Pi])/3 3141575354722545 m001 (HardHexagonsEntropy+Magata)/GAMMA(7/12) 3141575355355936 a001 161/416020*317811^(27/38) 3141575355656739 m002 -6-Pi-Pi^5+Coth[Pi] 3141575367321691 m002 5+Pi+Pi^5-Log[Pi]/Pi^5 3141575375327116 r005 Im(z^2+c),c=23/106+13/57*I,n=18 3141575377726922 b008 Pi-Erfc[E]/7 3141575386332933 h001 (1/8*exp(1)+1/4)/(4/11*exp(1)+8/9) 3141575399541207 r009 Re(z^3+c),c=-71/114+13/24*I,n=31 3141575403019598 r005 Im(z^2+c),c=13/50+5/28*I,n=11 3141575404139990 m001 (Paris-ZetaQ(2))/(GAMMA(2/3)-gamma(1)) 3141575405327959 l006 ln(5768/7897) 3141575409263030 m001 Pi-gamma(3)^(Pi^(1/2)) 3141575413303877 r005 Re(z^2+c),c=-45/64+9/56*I,n=4 3141575415844770 r009 Re(z^3+c),c=-27/64+16/49*I,n=51 3141575431353813 r005 Im(z^2+c),c=27/106+21/58*I,n=5 3141575433066094 r009 Re(z^3+c),c=-23/78+5/59*I,n=2 3141575444088878 r009 Re(z^3+c),c=-11/28+9/32*I,n=13 3141575444714972 a007 Real Root Of 138*x^4+548*x^3+491*x^2+395*x-56 3141575446081543 r005 Re(z^2+c),c=7/50+27/61*I,n=31 3141575448168071 m005 1/4*5^(1/2)/(141/176+7/16*5^(1/2)) 3141575453432512 a007 Real Root Of 166*x^4+359*x^3-754*x^2-467*x+936 3141575469839432 m002 Pi-(Csch[Pi]*Log[Pi])/(6*Pi^6) 3141575471151431 m006 (2/3*exp(Pi)+1)/(1/5*ln(Pi)+5) 3141575472085571 m005 (1/3*Pi+1/3)/(5/8*2^(1/2)-4/9) 3141575474251865 r005 Re(z^2+c),c=-31/66+20/61*I,n=7 3141575479706693 m001 GAMMA(11/12)/Cahen/exp(sqrt(1+sqrt(3))) 3141575489392827 a008 Real Root of (-6+5*x+4*x^2+2*x^3+2*x^4-x^5) 3141575489526961 m001 ln(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24))*Niven 3141575489901545 m005 (1/2*Pi+7/8)/(5*3^(1/2)-7/8) 3141575495150919 m002 -4-Pi-Pi^5-Tanh[Pi] 3141575501929102 m002 Pi-Log[Pi]/(3*E^Pi*Pi^6) 3141575514233796 r005 Im(z^2+c),c=-1/8+16/37*I,n=34 3141575514903549 a007 Real Root Of -145*x^4-411*x^3-61*x^2-697*x-207 3141575518367974 m001 (Chi(1)+Ei(1))/(Trott+Thue) 3141575520937016 m001 Catalan/Otter/Paris 3141575532651803 s002 sum(A221991[n]/(n*2^n-1),n=1..infinity) 3141575533899143 m002 Pi-(Log[Pi]*Sech[Pi])/(6*Pi^6) 3141575552069679 r005 Im(z^2+c),c=9/50+8/31*I,n=31 3141575564819039 r002 64th iterates of z^2 + 3141575579670669 r005 Re(z^2+c),c=-49/122+5/29*I,n=23 3141575582322924 a007 Real Root Of 245*x^4+7*x^3+122*x^2-992*x+297 3141575589373260 a003 cos(Pi*5/17)-sin(Pi*24/65) 3141575594987397 m002 -Pi+(5*Coth[Pi])/Pi^11 3141575596873980 r005 Re(z^2+c),c=-31/114+29/53*I,n=29 3141575599542550 m005 (1/2*5^(1/2)+4)/(5*Pi+7/12) 3141575601530862 m005 (1/3*gamma-1/4)/(4/7*5^(1/2)+5/9) 3141575603714869 l006 ln(6383/8739) 3141575608540988 a007 Real Root Of 112*x^4-524*x^3-665*x^2-354*x+192 3141575610418001 m001 (-GAMMA(23/24)+Porter)/(2^(1/2)+gamma(2)) 3141575621397036 m001 ln(2+3^(1/2))^Salem/BesselJ(1,1) 3141575621745535 l006 ln(335/7752) 3141575628441296 m001 (-Trott+Weierstrass)/(ln(2)/ln(10)+Salem) 3141575642628931 r009 Re(z^3+c),c=-27/64+16/49*I,n=48 3141575646133970 r005 Im(z^2+c),c=5/94+15/44*I,n=13 3141575658580566 m002 -5/Pi^11+Pi 3141575658585699 r005 Im(z^2+c),c=-13/46+15/31*I,n=15 3141575660486039 b008 -11/3+Sqrt[Csch[2]] 3141575666101266 m001 Artin^(2^(1/2)*FeigenbaumB) 3141575677764666 a008 Real Root of x^4-2*x^3+13*x^2-12*x-126 3141575687385141 m001 (CopelandErdos+Otter)/(Stephens+TreeGrowth2nd) 3141575691823309 m005 (9/4+1/4*5^(1/2))/(5/8*Zeta(3)+1/7) 3141575703940214 r005 Re(z^2+c),c=-21/34+7/83*I,n=4 3141575709253420 a007 Real Root Of -853*x^4+105*x^3+351*x^2+135*x-72 3141575710423418 r005 Re(z^2+c),c=43/126+3/23*I,n=31 3141575716983681 r005 Re(z^2+c),c=19/106+5/12*I,n=36 3141575721936665 m002 -Pi+(5*Tanh[Pi])/Pi^11 3141575727782788 r005 Re(z^2+c),c=-41/118+17/40*I,n=23 3141575744129212 p003 LerchPhi(1/6,5,287/143) 3141575746648479 r002 30th iterates of z^2 + 3141575762328120 a007 Real Root Of 420*x^4-841*x^3-455*x^2-933*x+360 3141575767232400 l006 ln(6998/9581) 3141575775276767 a007 Real Root Of -182*x^4+949*x^3-58*x^2+726*x+265 3141575775416069 r005 Im(z^2+c),c=1/11+15/47*I,n=16 3141575779705769 m001 (Kac+MertensB1)/(OneNinth+ZetaP(3)) 3141575789532010 r009 Re(z^3+c),c=-27/64+16/49*I,n=47 3141575799185641 p004 log(16823/727) 3141575800590547 r005 Im(z^2+c),c=-13/58+29/61*I,n=37 3141575802739629 a007 Real Root Of -910*x^4-356*x^3+620*x^2+693*x-259 3141575815496375 r005 Im(z^2+c),c=-9/74+25/39*I,n=48 3141575817351235 m001 (Zeta(5)-BesselJ(1,1))/(Salem+Sarnak) 3141575822069953 r005 Im(z^2+c),c=3/34+17/53*I,n=15 3141575826744927 m002 -2+Coth[Pi]*Log[Pi]+ProductLog[Pi]/2 3141575827566003 a001 89/1860498*18^(28/43) 3141575830339492 m005 (1/2*3^(1/2)-2/7)/(1/3*Pi+4/5) 3141575838233197 a007 Real Root Of 291*x^4+948*x^3+403*x^2+716*x-680 3141575848864639 m002 Pi-Cosh[Pi]/(E^Pi*Pi^9) 3141575849986142 b008 Pi+12*ExpIntegralEi[-11] 3141575857119219 r009 Re(z^3+c),c=-39/106+5/21*I,n=15 3141575859016353 m001 (Thue+ZetaQ(4))/(MertensB2+Niven) 3141575868201199 r005 Re(z^2+c),c=-8/21+16/55*I,n=27 3141575871711218 r005 Re(z^2+c),c=-5/12+18/49*I,n=10 3141575877655643 r005 Im(z^2+c),c=3/26+16/53*I,n=10 3141575879347880 p003 LerchPhi(1/256,6,473/181) 3141575880188007 m002 -1/(2*Pi^9)+Pi 3141575880262636 b008 Pi*Sech[Pi^(-5)] 3141575882663388 a007 Real Root Of 223*x^4+894*x^3+936*x^2+766*x-834 3141575890906542 m005 (1/2*gamma+7/10)/(exp(1)+3/7) 3141575893976072 a007 Real Root Of 816*x^4-952*x^3-698*x^2-934*x-262 3141575895369340 m001 (Bloch+PolyaRandomWalk3D)/(Shi(1)+GAMMA(7/12)) 3141575895442648 m001 (Niven+ReciprocalLucas)/(GolombDickman+Landau) 3141575897922467 m001 Salem^2*GolombDickman^2/ln(GAMMA(1/6)) 3141575904856407 a008 Real Root of x^3+19*x-6 3141575911511374 m002 Pi-Sinh[Pi]/(E^Pi*Pi^9) 3141575922751902 a007 Real Root Of 590*x^4-981*x^3+876*x^2-606*x-313 3141575926747699 r001 58i'th iterates of 2*x^2-1 of 3141575927459832 a003 cos(Pi*17/117)/cos(Pi*42/103) 3141575942717970 m002 -Pi+Tanh[Pi]/(2*Pi^9) 3141575944758116 r005 Im(z^2+c),c=41/118+1/12*I,n=4 3141575946264818 r005 Im(z^2+c),c=-47/122+27/59*I,n=4 3141575950824481 l006 ln(392/9071) 3141575954120626 r005 Im(z^2+c),c=-7/11+16/57*I,n=7 3141575955280597 a001 233/76*5778^(31/58) 3141575957392349 r005 Im(z^2+c),c=-10/29+29/56*I,n=40 3141575960014909 m005 (1/2*exp(1)+1/6)/(4/9*2^(1/2)-1/7) 3141575969034781 r005 Im(z^2+c),c=-3/34+17/41*I,n=17 3141575976626927 r005 Re(z^2+c),c=3/28+13/36*I,n=7 3141575983936277 m001 Pi/Psi(2,1/3)-exp(1/exp(1))-GAMMA(13/24) 3141575994718616 a007 Real Root Of -16*x^4-517*x^3-449*x^2+83*x+882 3141575998099685 a007 Real Root Of 243*x^4+941*x^3+759*x^2+568*x-200 3141576015145731 a007 Real Root Of 140*x^4-634*x^3-698*x^2-983*x+396 3141576025714074 b008 Pi+4*ExpIntegralEi[-10] 3141576032675759 r005 Im(z^2+c),c=-19/60+33/64*I,n=42 3141576037596416 a008 Real Root of x^2-98695 3141576050369197 r009 Im(z^3+c),c=-5/54+50/63*I,n=2 3141576056328951 a003 sin(Pi*7/110)/sin(Pi*22/101) 3141576059853050 r009 Re(z^3+c),c=-23/50+7/19*I,n=16 3141576066014435 m001 (1-gamma)/(gamma(2)+FeigenbaumKappa) 3141576072459046 a007 Real Root Of 249*x^4+856*x^3+332*x^2+389*x+232 3141576074595470 a009 1/12*(15^(1/2)*12^(2/3)-6^(3/4))*12^(1/3) 3141576076527954 a009 1/10*(22*10^(1/3)-2^(2/3))^(1/2)*10^(2/3) 3141576088154688 s002 sum(A089765[n]/(n*2^n+1),n=1..infinity) 3141576091682674 m005 (1/2*Zeta(3)-1/6)/(3/5+7/20*5^(1/2)) 3141576094723230 m001 exp(sqrt(2))^BesselK(0,1)*sqrt(3) 3141576105705987 m001 (ErdosBorwein-Porter)/(PrimesInBinary-Thue) 3141576106226198 a007 Real Root Of 375*x^4+928*x^3-912*x^2-111*x+898 3141576106718274 a007 Real Root Of -549*x^4+472*x^3+62*x^2+271*x+99 3141576118839576 r009 Im(z^3+c),c=-23/48+8/47*I,n=27 3141576123626339 a001 1/5781*(1/2*5^(1/2)+1/2)^7*47^(10/21) 3141576141876137 a005 (1/sin(85/191*Pi))^230 3141576148171438 a007 Real Root Of 322*x^4+827*x^3-317*x^2+831*x+16 3141576148562363 r009 Im(z^3+c),c=-8/17+5/28*I,n=53 3141576148564466 r005 Re(z^2+c),c=-65/106+29/49*I,n=9 3141576156199563 b008 Pi+ExpIntegralEi[-7]/7 3141576166878219 a007 Real Root Of -680*x^4+81*x^3-637*x^2+818*x-190 3141576167495157 m004 -25*Pi+5*Sqrt[5]*Pi+12*Tanh[Sqrt[5]*Pi] 3141576168115055 r009 Re(z^3+c),c=-19/46+5/16*I,n=30 3141576171578499 r008 a(0)=0,K{-n^6,-28-65*n^3+3*n^2+93*n} 3141576179679518 m001 (Psi(1,1/3)+Artin)/(RenyiParking+Sierpinski) 3141576181823914 r002 63th iterates of z^2 + 3141576183147723 r005 Im(z^2+c),c=-17/54+28/53*I,n=11 3141576186608950 b008 Pi*KelvinBer[0,E^(-2)] 3141576189918944 a003 sin(Pi*3/73)/cos(Pi*34/93) 3141576191475802 r005 Im(z^2+c),c=-31/98+19/37*I,n=53 3141576197882089 r005 Re(z^2+c),c=3/44+36/61*I,n=13 3141576199044670 m006 (4/5*ln(Pi)+2)/(4*exp(Pi)+1/4) 3141576202220523 r005 Re(z^2+c),c=4/15+1/12*I,n=12 3141576209364115 m005 (1/2*exp(1)+8/9)/(89/14+5/14*5^(1/2)) 3141576209424536 m005 3/5*(Pi-4/5)*5^(1/2) 3141576224084451 r005 Im(z^2+c),c=17/60+9/56*I,n=35 3141576230450588 m001 (Kac+Sarnak)/(Artin-FeigenbaumDelta) 3141576231911131 k006 concat of cont frac of 3141576233946243 m001 BesselI(1,2)^(MertensB3/cos(1)) 3141576239773977 a007 Real Root Of -986*x^4+105*x^3+85*x^2+315*x-101 3141576244413881 r005 Im(z^2+c),c=-10/31+18/35*I,n=62 3141576248954833 m008 (5/6*Pi^2+2)/(1/3*Pi^6+5) 3141576255238927 m001 Pi-gamma(2)^BesselI(0,2) 3141576255753811 m004 10*Pi-Cos[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141576257267079 h001 (5/11*exp(1)+1/8)/(1/2*exp(2)+7/11) 3141576259588744 a007 Real Root Of -259*x^4-853*x^3-97*x^2-133*x-680 3141576261025291 m001 GAMMA(1/4)*ErdosBorwein^2/ln(sin(1))^2 3141576274960305 m002 Pi-Log[Pi]/(E^Pi*Pi^7) 3141576280762507 a001 2/199*1364^(3/19) 3141576284165039 a007 Real Root Of 767*x^4-635*x^3-918*x^2-599*x+291 3141576302380037 a008 Real Root of (-6+3*x-x^3-6*x^4+2*x^5) 3141576316069787 m001 (BesselI(1,2)-Bloch)/(FeigenbaumMu-ZetaQ(3)) 3141576323178928 m001 (GAMMA(19/24)+Stephens)/(sin(1/5*Pi)-ln(Pi)) 3141576347131212 k009 concat of cont frac of 3141576347359013 m005 (1/2*5^(1/2)+11/12)/(7/11*3^(1/2)-5/11) 3141576355887702 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141576355900598 m004 10*Pi-Tan[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141576355913493 m004 -100*Pi+Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141576356860778 s002 sum(A124401[n]/((pi^n+1)/n),n=1..infinity) 3141576381506176 r005 Im(z^2+c),c=9/50+8/31*I,n=32 3141576383298147 r005 Im(z^2+c),c=15/82+11/43*I,n=27 3141576390530980 r005 Im(z^2+c),c=13/46+5/29*I,n=14 3141576391483003 q001 841/2677 3141576405676271 r005 Re(z^2+c),c=-19/60+31/61*I,n=48 3141576415848468 r005 Im(z^2+c),c=-33/106+18/35*I,n=27 3141576419926264 m001 Pi-gamma(3)^Grothendieck 3141576427014936 r005 Re(z^2+c),c=-47/118+11/56*I,n=27 3141576442915241 r005 Im(z^2+c),c=37/118+2/17*I,n=60 3141576462919277 m005 (1/2*3^(1/2)-5/6)/(2/9*exp(1)-1/2) 3141576470467055 r009 Re(z^3+c),c=-27/64+16/49*I,n=36 3141576502858989 r005 Im(z^2+c),c=-11/60+28/61*I,n=23 3141576532331002 m001 ln(2)/ln(10)/(QuadraticClass+ZetaP(4)) 3141576533047925 r005 Re(z^2+c),c=7/26+5/58*I,n=35 3141576533891012 r005 Re(z^2+c),c=-7/6+48/101*I,n=2 3141576536709627 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(6*Pi^6) 3141576547378496 a001 2/199*2537720636^(1/19) 3141576558451753 r005 Im(z^2+c),c=-21/110+27/59*I,n=18 3141576559760159 a001 2/199*5778^(5/38) 3141576560647034 r002 15th iterates of z^2 + 3141576565752795 r005 Im(z^2+c),c=-19/110+17/44*I,n=4 3141576566806978 m002 -Pi+ProductLog[Pi]/(3*E^Pi*Pi^6) 3141576572914697 r005 Im(z^2+c),c=-13/24+27/49*I,n=44 3141576577842048 m001 (-Bloch+OneNinth)/(gamma-ln(2)) 3141576585643587 a007 Real Root Of -731*x^4+605*x^3+469*x^2+761*x-297 3141576596792128 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(6*Pi^6) 3141576596998972 m005 (1/3*gamma-1/9)/(9/11*exp(1)+4/11) 3141576611945455 m001 (Kac+Totient)/(GolombDickman+HeathBrownMoroz) 3141576618434351 m001 GAMMA(5/12)*exp(Trott)^2*Zeta(3)^2 3141576623214886 m001 1/ln(KhintchineHarmonic)^2*Cahen/TwinPrimes 3141576624200178 r005 Re(z^2+c),c=-10/23+25/42*I,n=11 3141576628162680 m001 ln(2^(1/2)+1)*BesselJ(1,1)/Champernowne 3141576630135927 m008 (Pi^5+1/3)/(1/4*Pi^3+2) 3141576631204493 r005 Im(z^2+c),c=1/56+17/45*I,n=7 3141576637674486 r005 Im(z^2+c),c=-25/22+19/77*I,n=14 3141576640547091 r002 56th iterates of z^2 + 3141576646894816 a001 1/60508*(1/2*5^(1/2)+1/2)^9*15127^(2/21) 3141576651497331 m001 Conway^PisotVijayaraghavan/ZetaP(2) 3141576655696440 a003 -1+1/2*3^(1/2)+2*cos(11/30*Pi)-cos(8/21*Pi) 3141576668520223 m001 Pi+gamma(2)*ZetaQ(4) 3141576674584668 a003 sin(Pi*10/99)/sin(Pi*25/54) 3141576686289888 r005 Re(z^2+c),c=-33/94+17/42*I,n=54 3141576693548048 a001 1/37396*(1/2*5^(1/2)+1/2)^9*9349^(1/21) 3141576695546582 m001 Zeta(3)^2*KhintchineLevy^2/ln(sqrt(5))^2 3141576715799407 p004 log(30013/1297) 3141576719024592 r005 Im(z^2+c),c=-5/8+70/211*I,n=13 3141576727816413 r005 Im(z^2+c),c=29/126+8/37*I,n=21 3141576734636876 a005 (1/cos(2/95*Pi))^523 3141576740624772 m001 GAMMA(19/24)-exp(-Pi)-exp(1/exp(1)) 3141576744140509 m008 (3*Pi^6-4/5)/(3*Pi^5-1/4) 3141576752865756 r005 Re(z^2+c),c=-35/86+5/61*I,n=7 3141576759367569 a007 Real Root Of -223*x^4-479*x^3+826*x^2+510*x+320 3141576761970374 m004 3+(75*Pi*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141576763565471 a003 sin(Pi*10/67)*sin(Pi*23/94) 3141576771015153 r005 Im(z^2+c),c=-5/44+26/61*I,n=11 3141576792762176 r005 Re(z^2+c),c=-13/38+4/7*I,n=56 3141576801901506 r005 Re(z^2+c),c=-31/90+23/54*I,n=46 3141576804397783 r005 Im(z^2+c),c=-49/74+14/43*I,n=10 3141576816435774 m001 (MertensB2-ZetaP(3))/(FellerTornier-Gompertz) 3141576817172915 r005 Re(z^2+c),c=-43/114+31/63*I,n=21 3141576824521185 m002 -Pi+5/(Pi^11*ProductLog[Pi]) 3141576828210242 m004 -Pi+5*Csch[Sqrt[5]*Pi]^2 3141576828235286 m004 -Pi+5*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141576828260331 m004 -Pi+5*Sech[Sqrt[5]*Pi]^2 3141576831283944 b008 -7/E^13+Pi 3141576847258449 a007 Real Root Of 61*x^4+73*x^3-24*x^2+915*x-567 3141576862277894 h001 (1/2*exp(2)+1/6)/(2/9*exp(1)+5/8) 3141576867836534 a007 Real Root Of 180*x^4+325*x^3-875*x^2-229*x+460 3141576877221463 m001 exp(1)+Trott+ThueMorse 3141576901645042 m001 FibonacciFactorial*ln(Cahen)^2*log(2+sqrt(3)) 3141576915890192 s002 sum(A280905[n]/((2^n-1)/n),n=1..infinity) 3141576916229960 m001 Pi-gamma(3)^KomornikLoreti 3141576918691781 r005 Re(z^2+c),c=-13/40+12/25*I,n=41 3141576922538400 m002 -E^Pi/(5*Pi^11)+Pi 3141576930400509 a007 Real Root Of 156*x^4+289*x^3-802*x^2-272*x+826 3141576937336151 s001 sum(exp(-Pi/3)^(n-1)*A154051[n],n=1..infinity) 3141576949280103 p001 sum((-1)^n/(318*n+67)/n/(8^n),n=1..infinity) 3141576952450283 m005 (5/66+1/6*5^(1/2))/(1/11*Pi-1/7) 3141576957560005 s002 sum(A165096[n]/(n^2*exp(n)+1),n=1..infinity) 3141576959082597 r005 Re(z^2+c),c=1/15+9/53*I,n=3 3141576962772150 m001 Chi(1)^cos(1/12*Pi)/FeigenbaumD 3141576976436215 m005 (1/2*3^(1/2)+9/11)/(2*5^(1/2)+8/9) 3141576982710467 r005 Im(z^2+c),c=1/64+14/39*I,n=9 3141576984907713 r005 Re(z^2+c),c=-19/48+7/31*I,n=12 3141576985704019 m005 (39/44+1/4*5^(1/2))/(2/7*gamma-5/8) 3141577005770651 a007 Real Root Of 23*x^4+702*x^3-622*x^2+768*x+447 3141577019837175 m001 1/GAMMA(5/24)*ln(Niven)*sin(Pi/12) 3141577019906013 a002 2^(7/3)-3^(7/12) 3141577020165265 a005 (1/sin(90/187*Pi))^1993 3141577020417826 m001 Zeta(1,-1)/ln(2+3^(1/2))*Riemann3rdZero 3141577022061554 m001 1/GAMMA(5/24)^2*ln((2^(1/3)))^2/Zeta(1,2)^2 3141577031590657 m004 -100*Pi+(Sqrt[5]*Pi)/(4*E^(Sqrt[5]*Pi)) 3141577037350698 m002 -2+Pi^2+Pi^5+ProductLog[Pi]/4 3141577047986833 b008 Pi+2*ExpIntegralEi[-3*Pi] 3141577052821919 m008 (1/4*Pi^5+5)/(2/3*Pi+1/2) 3141577055852560 m002 -Pi+(2*Csch[Pi]^2)/Pi^6 3141577066552794 a007 Real Root Of -343*x^4-938*x^3+449*x^2-274*x-965 3141577076420035 r005 Re(z^2+c),c=-33/94+17/42*I,n=48 3141577080601353 r005 Re(z^2+c),c=-35/94+20/61*I,n=32 3141577084980441 m002 -Pi+(4*Csch[Pi])/(E^Pi*Pi^6) 3141577086218271 s002 sum(A031102[n]/(n^3*pi^n+1),n=1..infinity) 3141577086415226 r005 Re(z^2+c),c=21/64+2/21*I,n=18 3141577089833815 m002 -Pi+(4*Log[Pi])/Pi^11 3141577095940182 m001 1/Paris*ln(LaplaceLimit)^2*FeigenbaumC 3141577101552154 a003 sin(Pi*1/102)/sin(Pi*31/71) 3141577113999736 m002 -Pi+(2*Csch[Pi]*Sech[Pi])/Pi^6 3141577116081264 m002 -2*E^Pi*Pi+Pi^2*Sinh[Pi] 3141577116468280 r005 Re(z^2+c),c=-43/34+4/63*I,n=10 3141577120898248 r009 Re(z^3+c),c=-12/25+6/31*I,n=4 3141577139554125 b008 Pi*KelvinBer[0,2/15] 3141577139630938 m005 (1/2*Pi-1/12)/(1/12*exp(1)-7/10) 3141577143019031 m002 -Pi+(4*Sech[Pi])/(E^Pi*Pi^6) 3141577145809487 m001 Zeta(1/2)/CareFree*exp(exp(1)) 3141577154775420 a007 Real Root Of -238*x^4+441*x^3-446*x^2+654*x+21 3141577163523028 r002 11th iterates of z^2 + 3141577165603006 a001 1/141*6765^(38/55) 3141577171930143 m002 -Pi+(2*Sech[Pi]^2)/Pi^6 3141577178450467 p001 sum((-1)^n/(422*n+295)/(5^n),n=0..infinity) 3141577210966001 r002 44th iterates of z^2 + 3141577214966393 a007 Real Root Of 149*x^4-108*x^3+867*x^2-871*x-364 3141577215900604 m001 (-GAMMA(11/12)+Landau)/(3^(1/2)-Ei(1)) 3141577217999377 m005 (1/2*Zeta(3)-6/11)/(5/12*exp(1)+7/11) 3141577224945847 m001 GAMMA(7/12)/ln(FibonacciFactorial)/cosh(1)^2 3141577226615899 g005 Pi^(1/2)*GAMMA(5/8)/GAMMA(4/11)/GAMMA(3/11) 3141577227364282 b008 -1/8*1/E^9+Pi 3141577232225388 m008 (5*Pi^6+1/2)/(5*Pi^5+1/6) 3141577239967262 r005 Im(z^2+c),c=-29/60+8/15*I,n=59 3141577241157385 r005 Im(z^2+c),c=25/82+5/38*I,n=55 3141577250286446 b008 Pi+11*ExpIntegralEi[-11] 3141577254484134 m001 1/KhintchineHarmonic*Cahen^2/ln(GAMMA(5/12)) 3141577259906854 p003 LerchPhi(1/12,2,425/234) 3141577262805515 m002 -Pi^3-(Pi^4*Csch[Pi])/6+Tanh[Pi] 3141577264217682 a007 Real Root Of 3*x^4-155*x^3+339*x^2+176*x+615 3141577271641434 r002 2th iterates of z^2 + 3141577272146285 b008 -32+ArcCsch[GoldenRatio] 3141577277262068 b008 Pi*GammaRegularized[2,0,15] 3141577277299697 b008 Pi*ModularLambda[I/15*Pi] 3141577279629007 a007 Real Root Of 804*x^4-27*x^3+918*x^2-553*x-273 3141577286976231 a001 18*(1/2*5^(1/2)+1/2)^8*123^(3/11) 3141577288485133 r005 Re(z^2+c),c=19/62+2/19*I,n=25 3141577291843772 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^7) 3141577319885482 m001 Pi-Trott2nd^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141577325767826 a007 Real Root Of 19*x^4-159*x^3-461*x^2+811*x+317 3141577333025514 r005 Im(z^2+c),c=-27/22+6/31*I,n=6 3141577365066654 r005 Im(z^2+c),c=1/110+33/58*I,n=6 3141577382745857 a005 (1/sin(82/213*Pi))^500 3141577383367781 m001 Zeta(1,-1)/Kolakoski/LaplaceLimit 3141577387033867 m005 (1/2*Zeta(3)-4)/(37/90+3/10*5^(1/2)) 3141577397275503 p001 sum(1/(436*n+351)/(5^n),n=0..infinity) 3141577398617979 a007 Real Root Of 110*x^4-9*x^3-861*x^2+962*x+526 3141577398629215 m001 Grothendieck/(GaussKuzminWirsing^PlouffeB) 3141577403299287 a001 3/2*832040^(23/41) 3141577407068308 a001 3/2161*199^(33/56) 3141577409541312 m001 exp(cos(Pi/12))/Lehmer^2/cosh(1)^2 3141577412582492 m001 1/ln((2^(1/3)))^2*Niven/Zeta(7)^2 3141577414992124 p003 LerchPhi(1/64,1,54/169) 3141577429020905 m003 1/2+(21*Sqrt[5])/64+5*Sech[1/2+Sqrt[5]/2] 3141577449462835 r009 Re(z^3+c),c=-55/122+16/43*I,n=39 3141577462432929 r005 Re(z^2+c),c=-21/52+34/63*I,n=44 3141577463035693 b008 3*(2/5+Sqrt[2])*EulerGamma 3141577463746419 a007 Real Root Of -768*x^4+2*x^3+463*x^2+301*x+9 3141577464358088 l006 ln(615/842) 3141577465918562 m005 (1/2*gamma-7/9)/(9/11*2^(1/2)+2/5) 3141577493265405 a007 Real Root Of -679*x^4-33*x^3+879*x^2+965*x+222 3141577505732180 m001 Pi-ZetaQ(4)^(3^(1/2)) 3141577515587374 m001 1/Catalan/exp(Si(Pi))*GAMMA(2/3)^2 3141577517321973 a001 4/3*55^(41/52) 3141577518783140 a007 Real Root Of 59*x^4-98*x^3-935*x^2-250*x-343 3141577520279872 b008 -1/3*1/E^10+Pi 3141577533557101 r009 Re(z^3+c),c=-31/82+12/47*I,n=21 3141577535587180 b008 QPochhammer[Pi/5,-5/6] 3141577535707599 r009 Im(z^3+c),c=-7/62+18/53*I,n=3 3141577541711437 r005 Re(z^2+c),c=-35/106+22/47*I,n=57 3141577543376320 h001 (1/10*exp(2)+4/9)/(3/7*exp(2)+3/5) 3141577557792013 m001 2*Pi/GAMMA(5/6)*(Psi(2,1/3)-ln(2+3^(1/2))) 3141577559482532 m005 (4/5*Pi-3/5)/(1/2+5/2*5^(1/2)) 3141577562392119 k007 concat of cont frac of 3141577569979449 m001 1/ln(sinh(1))^2/exp(1)^2/sqrt(1+sqrt(3)) 3141577571360894 a007 Real Root Of -323*x^4-951*x^3+329*x^2+495*x+284 3141577582045427 r005 Re(z^2+c),c=-13/36+10/27*I,n=44 3141577606302137 a007 Real Root Of -316*x^4-739*x^3-482*x^2+838*x+291 3141577615388688 m005 (1/2*Zeta(3)-7/9)/(3/7*Zeta(3)-4/7) 3141577631828796 m004 10*Pi-Sin[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141577642406305 m002 -Pi+Csch[Pi]/(6*Pi^6) 3141577644842493 m001 MasserGramainDelta^TreeGrowth2nd+Tribonacci 3141577645309956 m001 ln(gamma)/sin(1)/exp(-1/2*Pi) 3141577645309956 m001 log(gamma)/sin(1)/exp(-1/2*Pi) 3141577645978766 g005 GAMMA(2/9)*GAMMA(5/6)/GAMMA(7/8)/GAMMA(2/3) 3141577657754676 a007 Real Root Of -273*x^4-781*x^3+119*x^2-220*x+511 3141577659711709 a007 Real Root Of -399*x^4-974*x^3+807*x^2-361*x-433 3141577667539742 m001 FeigenbaumB^AlladiGrinstead+BesselI(0,2) 3141577670438830 m002 -1/(3*E^Pi*Pi^6)+Pi 3141577673413392 a007 Real Root Of 361*x^4-450*x^3-54*x^2-539*x+17 3141577678263864 q001 912/2903 3141577679310839 r005 Re(z^2+c),c=-39/106+11/29*I,n=15 3141577685562843 s002 sum(A077655[n]/((exp(n)-1)/n),n=1..infinity) 3141577689776572 m002 -5-Pi-Pi^5+ProductLog[Pi]/Pi^5 3141577698366852 m002 -Pi+Sech[Pi]/(6*Pi^6) 3141577698731781 a007 Real Root Of -97*x^4-512*x^3-673*x^2-238*x-532 3141577706310720 r005 Re(z^2+c),c=-31/86+19/51*I,n=31 3141577723559643 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi]^2 3141577723583270 m004 -100*Pi+Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi]^2 3141577726294875 m002 -Pi+Tanh[Pi]/(3*E^Pi*Pi^6) 3141577738520952 m004 -25*Pi+15*Pi*Coth[Sqrt[5]*Pi]^2 3141577738556357 m004 -20*Pi+30*Pi*Tanh[Sqrt[5]*Pi] 3141577738568159 m004 -5*Pi+15*Pi*Tanh[Sqrt[5]*Pi]^2 3141577738579961 m004 Pi*Tanh[Sqrt[5]*Pi]^3 3141577741735549 a001 10946/47*2^(19/44) 3141577744535723 m005 (47/40+3/8*5^(1/2))/(1/3*gamma-5/6) 3141577754118784 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(6*Pi^6) 3141577768315732 r009 Re(z^3+c),c=-5/102+17/33*I,n=13 3141577770579232 m001 (Zeta(3)+Cahen)/(GaussAGM-StronglyCareFree) 3141577779361971 m001 ln(Salem)^2/Riemann1stZero^2*cosh(1)^2 3141577792859875 m005 (1/2*2^(1/2)+6)/(exp(1)-7/12) 3141577794583160 r005 Re(z^2+c),c=-23/70+7/15*I,n=22 3141577798952304 g002 Psi(10/11)-Psi(9/11)-Psi(7/11)-Psi(3/5) 3141577807284619 m002 -Pi+5/(Pi^11*Log[Pi]) 3141577809460558 m005 (1/2*2^(1/2)+3/7)/(2*5^(1/2)-6/7) 3141577813278734 r005 Im(z^2+c),c=3/32+7/22*I,n=12 3141577824588216 r009 Re(z^3+c),c=-23/54+18/53*I,n=15 3141577825928201 m001 (3^(1/2)-MertensB3)/(Thue+ThueMorse) 3141577828039611 m004 -100*Pi+(5*Csch[Sqrt[5]*Pi])/6 3141577828051342 m004 -1/(6*E^(Sqrt[5]*Pi))+10*Pi 3141577828063073 m004 -100*Pi+(5*Sech[Sqrt[5]*Pi])/6 3141577828074804 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141577854140586 r005 Re(z^2+c),c=-41/102+7/44*I,n=12 3141577859509546 r005 Im(z^2+c),c=-19/106+21/46*I,n=41 3141577864445772 m005 (1/2*Pi+7/10)/(4*3^(1/2)+3/10) 3141577864774740 r005 Re(z^2+c),c=-33/94+17/42*I,n=56 3141577865854162 a001 1/12238*4^(34/35) 3141577873686441 r005 Re(z^2+c),c=-25/78+17/37*I,n=20 3141577884322559 a001 514229/47*4^(35/46) 3141577884882764 l006 ln(57/1319) 3141577887006970 m009 (2*Psi(1,2/3)-2/3)/(6*Psi(1,2/3)-1) 3141577901381791 r005 Im(z^2+c),c=-17/54+29/57*I,n=15 3141577908946296 b008 25*EllipticPi[1/2,-5] 3141577910714118 k002 Champernowne real with 3*n^2+n+27 3141577911111811 k006 concat of cont frac of 3141577931171511 k007 concat of cont frac of 3141577938120428 m001 HardHexagonsEntropy/(Lehmer-ZetaR(2)) 3141577949513679 m005 (1/2*2^(1/2)-5/11)/(2/5*3^(1/2)+1/9) 3141577997169550 r002 63th iterates of z^2 + 3141578004218984 a007 Real Root Of -228*x^4-471*x^3+897*x^2+232*x-519 3141578009628569 a007 Real Root Of -199*x^4+425*x^3+158*x^2+704*x-248 3141578016327837 r005 Re(z^2+c),c=23/60+10/49*I,n=58 3141578016368720 m005 (1/2*Catalan-3/5)/(Zeta(3)-3/4) 3141578017442228 r009 Re(z^3+c),c=-27/64+16/49*I,n=44 3141578033053976 a007 Real Root Of 721*x^4+323*x^3-301*x^2-765*x+253 3141578042234489 m001 (sin(1/5*Pi)+ln(gamma))/(BesselK(1,1)-Sarnak) 3141578045187117 r009 Im(z^3+c),c=-51/106+9/46*I,n=15 3141578051164422 r005 Im(z^2+c),c=-26/31+1/44*I,n=10 3141578055141517 b008 -10*Pi+Erfc[Khinchin] 3141578056002871 r005 Re(z^2+c),c=9/86+12/47*I,n=21 3141578056125051 m002 -Pi+(4*ProductLog[Pi])/Pi^11 3141578056819766 r005 Re(z^2+c),c=13/70+11/27*I,n=13 3141578062983670 m001 (Cahen-Niven)/(PrimesInBinary-ZetaP(4)) 3141578067180815 b008 Pi*JacobiDC[2,3] 3141578068199323 r002 30th iterates of z^2 + 3141578069364244 a007 Real Root Of -791*x^4-736*x^3+806*x^2+627*x-246 3141578094205174 m005 (27/28+1/4*5^(1/2))/(1/2*2^(1/2)-2/9) 3141578098739064 m005 (1/2*Catalan+10/11)/(6/11*gamma-3/4) 3141578099296936 m004 3*Coth[Sqrt[5]*Pi]+(250*Sech[Sqrt[5]*Pi])/Pi 3141578102280493 r005 Re(z^2+c),c=-43/110+7/29*I,n=23 3141578113610865 a001 76/2178309*46368^(9/44) 3141578129578758 m002 -Pi+(5*Csch[Pi])/Pi^9 3141578131059538 a001 18*(1/2*5^(1/2)+1/2)^29*521^(10/23) 3141578132585686 r005 Im(z^2+c),c=9/50+8/31*I,n=28 3141578132609952 m001 (-Grothendieck+ZetaQ(4))/(2^(1/3)-ln(2)) 3141578136770422 r005 Re(z^2+c),c=-10/27+15/44*I,n=20 3141578144141190 a001 3571/55*21^(29/56) 3141578148635115 m001 (-Zeta(5)+Trott)/(2^(1/2)+Si(Pi)) 3141578152111221 k007 concat of cont frac of 3141578165388629 b008 Pi+ExpIntegralEi[-5*Sqrt[Pi]] 3141578183723164 m002 -Pi+(5*Sech[Pi])/Pi^9 3141578187608503 a005 (1/sin(37/116*Pi))^168 3141578190643838 r005 Im(z^2+c),c=1/126+10/27*I,n=6 3141578201176574 a007 Real Root Of 98*x^4-56*x^3-800*x^2+958*x-377 3141578211319360 m004 500/(E^(Sqrt[5]*Pi)*Pi)+3*Coth[Sqrt[5]*Pi] 3141578211344049 m001 Pi-ZetaQ(3)*ZetaQ(4) 3141578212421291 m001 (Riemann2ndZero-Trott2nd)/(Zeta(5)-Niven) 3141578214897009 m005 (1/3*Zeta(3)-1/3)/(10/11*5^(1/2)+1/9) 3141578223647366 m001 Bloch/Grothendieck*KhinchinLevy 3141578227550886 r005 Im(z^2+c),c=-159/118+3/56*I,n=51 3141578230874787 a001 1597/843*2^(27/37) 3141578257319838 b008 Pi*ModularLambda[(2*I)/17*Sqrt[Pi]] 3141578273174680 r002 22th iterates of z^2 + 3141578273399343 m001 (polylog(4,1/2)-Kac)/(OneNinth-ZetaP(2)) 3141578296673415 m002 Pi-(Cosh[Pi]*Log[Pi])/Pi^12 3141578304614607 m005 (1/2*Zeta(3)-4)/(2*Catalan-3/4) 3141578323341962 m004 3*Coth[Sqrt[5]*Pi]+(250*Csch[Sqrt[5]*Pi])/Pi 3141578332231994 m001 (ln(2)+Conway)/(MasserGramain-Rabbit) 3141578342757463 m005 (5/6*Pi-3/5)/(1/12+1/4*5^(1/2)) 3141578345361859 m001 (PlouffeB+Tribonacci)/(Ei(1,1)+polylog(4,1/2)) 3141578345734560 m002 -(1/(E^Pi*Pi^7))+Pi 3141578350194905 m002 Pi-(Log[Pi]*Sinh[Pi])/Pi^12 3141578365003437 m006 (1/5/Pi+2)/(3/4*Pi^2-5/6) 3141578369022107 m001 HeathBrownMoroz*Trott-Pi 3141578369497547 m001 Pi-gamma(2)^UniversalParabolic 3141578390781211 b008 (-10+E^(-10))*Pi 3141578392949334 r005 Re(z^2+c),c=-33/86+11/58*I,n=4 3141578399073154 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^7) 3141578407097960 r009 Re(z^3+c),c=-13/30+12/23*I,n=12 3141578421061618 m004 -100*Pi+(4*Csch[Sqrt[5]*Pi])/5 3141578421084141 m004 -100*Pi+(4*Sech[Sqrt[5]*Pi])/5 3141578421528577 m003 5/2+Sqrt[5]/4+Csch[1/2+Sqrt[5]/2]/5 3141578441660737 m001 Psi(1,1/3)/(StolarskyHarborth^ZetaP(2)) 3141578442115624 m001 Shi(1)^FeigenbaumKappa-LandauRamanujan 3141578446172575 m005 (1/3*exp(1)-1/4)/(5/8*Catalan-4/11) 3141578454438866 b008 Pi*ModularLambda[(5*I)/24] 3141578455824819 a001 199/121393*17711^(16/53) 3141578469694842 a001 4*(1/2*5^(1/2)+1/2)^32*521^(4/9) 3141578472470371 r005 Re(z^2+c),c=-41/90+10/19*I,n=25 3141578492542980 h001 (1/5*exp(2)+5/6)/(11/12*exp(2)+7/12) 3141578496243422 m004 -5/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141578512434744 r009 Re(z^3+c),c=-1/86+37/47*I,n=26 3141578522403410 m005 (1/2*exp(1)-5)/(5/9*5^(1/2)-1/12) 3141578524022008 a001 521/377*196418^(26/41) 3141578538492108 m001 TravellingSalesman^(cos(1/12*Pi)*FeigenbaumMu) 3141578549305286 a001 2/11*11^(13/57) 3141578553558208 m001 1/MinimumGamma^2/ln(Artin)*TwinPrimes 3141578559131077 m001 Khinchin*Porter-Pi*2^(1/2)/GAMMA(3/4) 3141578563973082 a003 cos(Pi*43/108)*sin(Pi*46/95) 3141578568293529 a001 199/6765*13^(1/39) 3141578569832551 m001 (GAMMA(5/6)-Gompertz)/(MertensB2+TwinPrimes) 3141578569998159 r004 Im(z^2+c),c=-29/42+1/18*I,z(0)=-1,n=57 3141578585149824 m001 (gamma(1)-ArtinRank2)/(CareFree+MadelungNaCl) 3141578587357031 m001 (exp(Pi)+Zeta(1,2))/(-QuadraticClass+ZetaP(3)) 3141578605906464 r009 Im(z^3+c),c=-39/82+4/23*I,n=35 3141578641537038 m003 1/4+Sqrt[5]/256+(Sqrt[5]*E^(-1/2-Sqrt[5]/2))/8 3141578650369835 r005 Re(z^2+c),c=7/24+27/49*I,n=52 3141578650586750 b008 Pi+10*ExpIntegralEi[-11] 3141578654549295 a001 2/9227465*20365011074^(19/24) 3141578656339645 m002 Pi-(Csch[Pi]*Log[Pi])/(E^Pi*Pi^5) 3141578660703162 m002 Pi-Log[Pi]^2/Pi^10 3141578666307895 r005 Im(z^2+c),c=-6/17+35/62*I,n=63 3141578673662267 m001 1/exp(GAMMA(1/3))/DuboisRaymond^2*sqrt(3) 3141578678567019 a007 Real Root Of 845*x^4+47*x^3+529*x^2-764*x-299 3141578679324270 r005 Re(z^2+c),c=17/78+13/25*I,n=29 3141578680848988 m004 -1000*Pi+(5*Pi)/E^(Sqrt[5]*Pi) 3141578700842107 r002 8th iterates of z^2 + 3141578704171722 m002 -2-Pi+Coth[Pi]+Tanh[Pi] 3141578708520327 m002 Pi-(Log[Pi]*Sech[Pi])/(E^Pi*Pi^5) 3141578715264530 m005 (1/2*3^(1/2)-1/11)/(3/4*exp(1)+3/7) 3141578725210493 a003 sin(Pi*18/85)-sin(Pi*37/97) 3141578730384035 m001 1/TwinPrimes^2*ln(Champernowne)*cos(Pi/5)^2 3141578744150679 h001 (3/5*exp(2)+5/8)/(5/9*exp(1)+1/10) 3141578747992301 m001 Pi-ZetaQ(4)^KhinchinHarmonic 3141578757316860 m004 -10*Pi+(25*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141578761044035 a007 Real Root Of -135*x^4-376*x^3+47*x^2-508*x-568 3141578779162671 q001 983/3129 3141578781126093 r005 Im(z^2+c),c=9/62+17/60*I,n=15 3141578783709593 m009 (6*Psi(1,2/3)+3/5)/(2/3*Psi(1,2/3)+4) 3141578791427035 r009 Re(z^3+c),c=-39/98+11/38*I,n=12 3141578821332876 m001 Khintchine/ErdosBorwein^2*ln(gamma)^2 3141578823739924 m001 ((1+3^(1/2))^(1/2)+Mills)/(2^(1/3)-GAMMA(2/3)) 3141578824773393 a009 7^(3/4)*(2^(1/3)+11^(3/4)) 3141578830698753 r009 Re(z^3+c),c=-27/64+16/49*I,n=41 3141578831012818 h001 (11/12*exp(2)+5/7)/(3/10*exp(2)+1/6) 3141578838798007 m005 (1/2*2^(1/2)-3/10)/(5/7*2^(1/2)+2/7) 3141578841243876 a007 Real Root Of -369*x^4-827*x^3-888*x^2+622*x+261 3141578847314921 m005 (1/3*2^(1/2)-3/4)/(27/154+7/22*5^(1/2)) 3141578847363818 m001 (ThueMorse+ZetaQ(3))/(Niven-Tribonacci) 3141578848135843 m001 (2^(1/3)-ln(2))/(-Champernowne+Tetranacci) 3141578851376886 a001 76/377*46368^(13/19) 3141578853624850 m001 (LambertW(1)+ln(Pi))/(Landau+ZetaQ(4)) 3141578854838100 a007 Real Root Of 361*x^4+311*x^3+451*x^2-107*x-72 3141578856274004 r005 Re(z^2+c),c=-31/28+9/37*I,n=36 3141578856499088 m001 (1+3^(1/2))^(1/2)+Otter-Porter 3141578860428592 m002 -6+(5*ProductLog[Pi])/Log[Pi]+Tanh[Pi] 3141578861596993 r005 Im(z^2+c),c=-5/42+36/59*I,n=18 3141578878644640 m001 (Rabbit+ZetaP(4))/(ln(2+3^(1/2))+KhinchinLevy) 3141578904627414 a001 76/121393*144^(26/33) 3141578913508801 r005 Im(z^2+c),c=-5/27+29/49*I,n=8 3141578914204063 b008 Pi*ModularLambda[I/E^(Pi/2)] 3141578918807624 a007 Real Root Of 20*x^4+659*x^3+943*x^2-650*x+275 3141578927126267 a007 Real Root Of -18*x^4+147*x^3-510*x^2+977*x+362 3141578936456596 p001 sum((-1)^n/(566*n+419)/n/(32^n),n=1..infinity) 3141578939021093 m001 Pi-ZetaQ(4)^MadelungNaCl 3141578940324188 m001 (Zeta(5)-GAMMA(19/24))/(AlladiGrinstead-Artin) 3141578951307837 a001 8/9349*11^(32/59) 3141578957239906 m001 (MertensB1-Weierstrass)/(ZetaP(4)-ZetaQ(3)) 3141578957523636 m001 1/exp(Trott)/PrimesInBinary*log(2+sqrt(3)) 3141578964608253 m004 -100*Pi+3/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141578979379343 r002 8th iterates of z^2 + 3141578984804575 r002 34th iterates of z^2 + 3141578986134378 r005 Im(z^2+c),c=-7/58+29/63*I,n=9 3141578990594481 m002 -3/(E^Pi*Pi^8)+Pi 3141578997584287 a001 2/24157817*317811^(2/19) 3141578997584943 a001 1/31622993*2971215073^(2/19) 3141579000548523 m001 BesselK(1,1)^2/ln(FeigenbaumB)^2*cos(1)^2 3141579004154892 m001 1/ln(GAMMA(2/3))^2/BesselJ(0,1)/GAMMA(5/12)^2 3141579006707876 m002 -Pi+(4*Coth[Pi])/Pi^11 3141579020911519 s002 sum(A100499[n]/(exp(n)+1),n=1..infinity) 3141579024165705 m001 Robbin/(Ei(1,1)-ZetaQ(3)) 3141579024699255 r002 27th iterates of z^2 + 3141579028830007 a007 Real Root Of -650*x^4+421*x^3-393*x^2+831*x-229 3141579043909785 a007 Real Root Of -197*x^4-793*x^3-512*x^2-161*x-851 3141579051369018 m001 GAMMA(3/4)^Psi(2,1/3)-Pi 3141579057582411 m002 -4/Pi^11+Pi 3141579059468590 m001 OrthogonalArrays^ln(5)/ln(gamma) 3141579061479255 r002 18th iterates of z^2 + 3141579072182130 m004 10*Pi-Tan[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141579075033326 m004 -100*Pi+ProductLog[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141579083161925 r009 Re(z^3+c),c=-13/28+17/43*I,n=37 3141579091613351 b008 -6/E^13+Pi 3141579097465136 m001 (GAMMA(17/24)-Lehmer)/(Pi+Zeta(1,2)) 3141579098407422 m002 Pi^3+Log[Pi]-Sinh[Pi]/(5*Pi) 3141579108267291 m002 -Pi+(4*Tanh[Pi])/Pi^11 3141579126101977 l006 ln(7147/9785) 3141579146179722 r005 Im(z^2+c),c=-45/122+14/25*I,n=57 3141579173149568 r002 12th iterates of z^2 + 3141579183671775 r005 Re(z^2+c),c=-49/66+7/47*I,n=46 3141579187219858 m001 Pi-exp(-Pi)^FeigenbaumMu 3141579188036817 m002 -Pi+(Cosh[Pi]*ProductLog[Pi])/Pi^12 3141579191008329 m001 1/ln(FeigenbaumB)^2*DuboisRaymond/Tribonacci 3141579192654949 m001 (GAMMA(5/6)-ZetaP(2))/(ln(2)-Zeta(1/2)) 3141579194208815 a007 Real Root Of -312*x^4+874*x^3+292*x^2+486*x+154 3141579197976839 m002 2+ProductLog[Pi]/Pi^6+Log[Pi]*Tanh[Pi] 3141579213634672 m001 GAMMA(3/4)/Psi(1,1/3)*sin(1/12*Pi) 3141579214810313 a007 Real Root Of -489*x^4+656*x^3+976*x^2+360*x-225 3141579216050368 s001 sum(exp(-Pi/2)^(n-1)*A101185[n],n=1..infinity) 3141579216807560 b008 Pi-Erfc[E]/9 3141579225884325 h001 (7/9*exp(1)+1/9)/(6/7*exp(2)+3/4) 3141579230503776 a007 Real Root Of -18*x^4-581*x^3-475*x^2+387*x-119 3141579230742055 r005 Im(z^2+c),c=-11/17+3/46*I,n=34 3141579238235372 m002 -Pi+(ProductLog[Pi]*Sinh[Pi])/Pi^12 3141579246373651 h001 (3/5*exp(2)+2/11)/(1/8*exp(2)+6/11) 3141579262203955 r005 Im(z^2+c),c=-109/126+7/32*I,n=53 3141579265237884 a007 Real Root Of -699*x^4-574*x^3+227*x^2+876*x-273 3141579281732846 m001 (2^(1/3))+Si(Pi)^GAMMA(23/24) 3141579281732846 m001 2^(1/3)+Si(Pi)^GAMMA(23/24) 3141579282558254 l006 ln(6532/8943) 3141579285261462 r002 5i'th iterates of 2*x/(1-x^2) of 3141579286690417 r009 Re(z^3+c),c=-1/22+28/59*I,n=7 3141579288877396 r005 Re(z^2+c),c=4/11+9/50*I,n=40 3141579292073404 r009 Re(z^3+c),c=-2/7+1/27*I,n=6 3141579297882229 m001 (Artin+FeigenbaumKappa)/(Psi(2,1/3)-gamma(1)) 3141579299538172 a001 2/987*196418^(19/24) 3141579309483921 r005 Re(z^2+c),c=-4/13+26/49*I,n=62 3141579310594629 m004 -100*Pi+(3*Csch[Sqrt[5]*Pi])/4 3141579310605187 m004 -3/(2*E^(Sqrt[5]*Pi))+100*Pi 3141579310615745 m004 -100*Pi+(3*Sech[Sqrt[5]*Pi])/4 3141579323753941 m005 (1/3*3^(1/2)-1/8)/(2/5*5^(1/2)+6/11) 3141579329413095 m001 (-MadelungNaCl+1)/(GAMMA(1/24)+1/3) 3141579330106732 r005 Im(z^2+c),c=-2/11+27/59*I,n=36 3141579334274921 a001 1/3*(1/2*5^(1/2)+1/2)^18*4^(6/17) 3141579343173965 a007 Real Root Of -261*x^4-662*x^3+144*x^2-821*x+897 3141579344841316 a007 Real Root Of 356*x^4+804*x^3-692*x^2+640*x-908 3141579347642765 a007 Real Root Of -148*x^4-623*x^3-789*x^2-803*x+364 3141579354384459 r002 22th iterates of z^2 + 3141579367002364 r005 Im(z^2+c),c=-1/5+29/63*I,n=13 3141579367917001 r005 Re(z^2+c),c=-11/16+1/99*I,n=6 3141579370248391 m002 -16+Pi^2+3*Tanh[Pi] 3141579372716796 h001 (2/5*exp(2)+9/10)/(1/11*exp(2)+5/9) 3141579375517687 a001 3*11^(1/52) 3141579382029877 a007 Real Root Of -40*x^4+812*x^3-333*x^2+952*x-291 3141579382084604 b008 ArcSinh[2]^(-3*Pi) 3141579382478524 a007 Real Root Of -679*x^4+721*x^3+209*x^2+887*x+287 3141579391178472 r005 Re(z^2+c),c=-17/27+5/53*I,n=4 3141579400076981 m001 BesselI(0,1)*HardHexagonsEntropy+exp(1/Pi) 3141579401012718 s002 sum(A161193[n]/((2*n)!),n=1..infinity) 3141579403926547 m005 (1/2*gamma-3/4)/(4/9*3^(1/2)-11/12) 3141579405891368 m001 (FeigenbaumKappa-Mills)/(sin(1/12*Pi)+Conway) 3141579413268100 m001 (Backhouse+Mills)/(ln(2^(1/2)+1)-gamma(3)) 3141579413672716 m001 1/Tribonacci^2*exp(MertensB1)^2/(2^(1/3))^2 3141579413675547 r005 Im(z^2+c),c=-33/122+30/61*I,n=25 3141579414852954 r009 Im(z^3+c),c=-31/66+7/39*I,n=52 3141579417921512 b008 Pi+ExpIntegralEi[-4*Sqrt[5]] 3141579428375649 a001 1926*2^(12/17) 3141579429580409 r009 Re(z^3+c),c=-33/82+13/44*I,n=33 3141579430448712 m001 (GAMMA(5/6)-Artin)/(ArtinRank2+Niven) 3141579451369540 m003 -4+Sqrt[5]/8+(5*Log[1/2+Sqrt[5]/2]^2)/2 3141579471537971 l006 ln(5917/8101) 3141579484802293 m001 (MinimumGamma+Otter)/(ln(3)+HardyLittlewoodC4) 3141579484898627 m004 -100*Pi+Csc[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141579485254012 a007 Real Root Of -228*x^4-474*x^3+917*x^2+482*x-24 3141579503633547 a007 Real Root Of 118*x^4+138*x^3-812*x^2-281*x-84 3141579519899601 m002 Pi-Cosh[Pi]/(3*Pi^11) 3141579520764722 r009 Im(z^3+c),c=-23/106+20/63*I,n=8 3141579525372812 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(E^Pi*Pi^5) 3141579529465415 m002 -Pi+(Log[Pi]*ProductLog[Pi])/Pi^10 3141579532180814 m001 (BesselJ(0,1)+GAMMA(2/3))/(Paris+Stephens) 3141579533156476 a005 (1/sin(71/207*Pi))^263 3141579535310627 m004 -100*Pi+Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141579535321007 m004 10*Pi-Cos[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141579535331387 m004 -100*Pi+Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141579537742425 a007 Real Root Of 32*x^4+116*x^3-169*x^2-892*x+293 3141579544380299 m002 -E^Pi/(6*Pi^11)+Pi 3141579555577975 m001 (5^(1/2)+Zeta(5))/(BesselK(1,1)+TreeGrowth2nd) 3141579561003691 a007 Real Root Of 401*x^4-540*x^3-20*x^2-981*x+323 3141579568860997 m002 Pi-Sinh[Pi]/(3*Pi^11) 3141579574313804 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(E^Pi*Pi^5) 3141579578339767 p003 LerchPhi(1/16,1,54/167) 3141579593215156 r005 Re(z^2+c),c=13/48+5/57*I,n=25 3141579594086742 b008 Pi*(1+ExpIntegralEi[-10]) 3141579594677516 m006 (2/5*exp(2*Pi)-1/3)/(5/6/Pi-1/3) 3141579611868444 b008 Pi-2*BesselK[1,11] 3141579619575042 a001 76/5*34^(7/34) 3141579625928098 r005 Re(z^2+c),c=-29/74+6/25*I,n=10 3141579630086829 r009 Re(z^3+c),c=-13/40+27/40*I,n=26 3141579635116846 g006 Psi(1,5/9)+Psi(1,3/4)-Psi(1,7/11)-Psi(1,5/8) 3141579641779900 m005 (3/4*2^(1/2)-5/6)/(1/2+1/10*5^(1/2)) 3141579651848735 p003 LerchPhi(1/6,5,191/240) 3141579658973803 a007 Real Root Of 52*x^4-501*x^3+108*x^2-332*x-131 3141579662104834 r002 3th iterates of z^2 + 3141579691314280 m001 1/GAMMA(19/24)/MinimumGamma*exp(Zeta(1/2))^2 3141579699636199 a007 Real Root Of -739*x^4+875*x^3-340*x^2-6*x+66 3141579704358697 l006 ln(5302/7259) 3141579709865952 m005 (3/5*2^(1/2)+5/6)/(1/4*2^(1/2)+5) 3141579713251020 r005 Re(z^2+c),c=3/8+5/26*I,n=49 3141579723085595 r005 Im(z^2+c),c=39/118+4/47*I,n=13 3141579727125654 m001 Khintchine^2/ArtinRank2^2*ln(cos(Pi/5)) 3141579730068687 r009 Re(z^3+c),c=-33/82+13/44*I,n=30 3141579731743666 q001 1054/3355 3141579731743666 r005 Im(z^2+c),c=-123/122+17/55*I,n=2 3141579740739123 b008 -13/3+Cot[(2*Pi)/9] 3141579746217812 a001 4/39088169*21^(7/19) 3141579751125358 a007 Real Root Of -148*x^4+465*x^3+785*x^2+707*x-23 3141579752245833 l006 ln(406/9395) 3141579753910425 a009 1/7*(11+4^(2/3))*7^(1/4) 3141579755698963 a007 Real Root Of -154*x^4+687*x^3+259*x^2+158*x-95 3141579757773542 r005 Im(z^2+c),c=1/122+11/30*I,n=20 3141579758320416 m001 (FeigenbaumD-ZetaQ(3))/(exp(-1/2*Pi)+Cahen) 3141579760125953 r002 23th iterates of z^2 + 3141579771746025 r005 Re(z^2+c),c=-5/8+66/199*I,n=18 3141579772214166 m001 1/Si(Pi)/Bloch^2*exp(sin(Pi/12)) 3141579789844274 m002 Pi-Log[Pi]/(4*E^Pi*Pi^6) 3141579807498445 m001 Thue^exp(Pi)+ZetaQ(4) 3141579812735169 m005 (1/3*2^(1/2)-1/3)/(3/10*Catalan-5/7) 3141579821156125 r009 Re(z^3+c),c=-25/56+6/17*I,n=14 3141579822286280 b008 Pi+ExpIntegralEi[-7]/9 3141579824200473 m001 1/exp(Ei(1))*FeigenbaumKappa^2/Zeta(1,2)^2 3141579826958894 m004 -12+25*Pi-5*Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 3141579827978690 r005 Re(z^2+c),c=-37/118+32/63*I,n=42 3141579832222375 r002 6th iterates of z^2 + 3141579834615254 m004 -100*Pi*Coth[Sqrt[5]*Pi]+Csch[Sqrt[5]*Pi] 3141579834629331 m004 -2/E^(Sqrt[5]*Pi)+100*Pi*Coth[Sqrt[5]*Pi] 3141579834643408 m004 -100*Pi*Coth[Sqrt[5]*Pi]+Sech[Sqrt[5]*Pi] 3141579838161161 m001 FibonacciFactorial^Psi(2,1/3)-Pi 3141579844509196 g007 Psi(2,1/11)+Psi(2,1/7)-Psi(2,2/9)-Psi(2,3/7) 3141579852913585 m002 Pi-Log[Pi]/(3*Pi^9) 3141579856179331 r005 Re(z^2+c),c=37/122+9/62*I,n=10 3141579870666947 m002 -1-Pi+Log[Pi]/Pi^5+Tanh[Pi] 3141579875776693 r002 11th iterates of z^2 + 3141579885168444 m001 Pi+gamma(2)*HeathBrownMoroz 3141579891444662 m002 -E^Pi-Pi-Pi^2+Pi^5*Log[Pi] 3141579895408403 a007 Real Root Of -711*x^4+408*x^3-924*x^2+440*x+249 3141579902840138 r005 Im(z^2+c),c=-10/31+28/55*I,n=27 3141579904116780 m004 1+(5*E^(Sqrt[5]*Pi))/Pi-Sinh[Sqrt[5]*Pi]^2 3141579910421261 m001 TreeGrowth2nd/Artin/exp(TwinPrimes)^2 3141579911141647 r005 Im(z^2+c),c=-13/58+29/61*I,n=35 3141579923922045 r009 Im(z^3+c),c=-45/122+10/39*I,n=17 3141579931285919 a001 3571/8*987^(15/53) 3141579960361729 a007 Real Root Of 29*x^4+901*x^3-304*x^2+408*x+988 3141579962928409 r008 a(0)=3,K{-n^6,74+11*n^3-13*n^2-79*n} 3141579963985664 m005 (1/2*2^(1/2)-4)/(3/10*gamma+7/8) 3141579969941395 m001 (MertensB2+PrimesInBinary)/(exp(1)+Ei(1)) 3141579972010975 p004 log(33623/1453) 3141579978719670 m001 ReciprocalFibonacci^BesselK(1,1)/TwinPrimes 3141579986980524 r005 Re(z^2+c),c=-15/38+14/45*I,n=10 3141579990334907 m002 -Pi+4/(Pi^11*ProductLog[Pi]) 3141579990864227 m004 -100*Pi+(Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3141579990874246 m004 (-2*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+100*Pi 3141579990884266 m004 -100*Pi+(Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3141579992670919 a001 29/3*55^(5/17) 3141579993286152 m004 -Pi+4*Csch[Sqrt[5]*Pi]^2 3141579993306188 m004 -Pi+4*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141579993326223 m004 -Pi+4*Sech[Sqrt[5]*Pi]^2 3141579998278091 l006 ln(4687/6417) 3141579999705110 a001 89/18*39603^(20/51) 3141580003366501 m001 Pi+gamma(1)^FeigenbaumAlpha 3141580004841963 a001 89/18*15127^(22/51) 3141580024790959 a007 Real Root Of 890*x^4-709*x^3-243*x^2-311*x+135 3141580027281034 m001 Pi-gamma(3)^MasserGramainDelta 3141580033130833 m001 Pi+(2^(1/3)-BesselI(0,1))*gamma(3) 3141580047669787 r009 Im(z^3+c),c=-41/98+13/58*I,n=21 3141580050887055 b008 Pi+9*ExpIntegralEi[-11] 3141580055160047 m006 (2/5*exp(2*Pi)-1/2)/(3/4*Pi^2-3/5) 3141580057230300 l006 ln(349/8076) 3141580057731693 a007 Real Root Of -514*x^4-234*x^3-254*x^2+979*x+31 3141580057852452 r005 Re(z^2+c),c=-13/32+7/53*I,n=21 3141580064909863 m002 Pi-(Cosh[Pi]*Coth[Pi])/Pi^12 3141580096752281 m002 5-Pi^(-5)+Pi+Pi^5 3141580098382178 b008 Pi+ExpIntegralEi[-8]/3 3141580103888186 r005 Im(z^2+c),c=9/50+8/31*I,n=26 3141580111839503 m002 -Pi+Cosh[Pi]/Pi^12 3141580121803798 m002 -7+3*E^Pi-Pi^3 3141580124217494 a003 sin(Pi*12/89)*sin(Pi*18/65) 3141580124445351 m001 5^(1/2)+ln(2)*Mills 3141580133558774 m004 3+3/Log[Sqrt[5]*Pi]+(125*Sin[Sqrt[5]*Pi])/Pi 3141580135216847 m002 -E^Pi/(2*Pi^12)+Pi 3141580148010768 m001 (Lehmer+ZetaQ(4))/(ln(2)/ln(10)+BesselI(1,2)) 3141580153981626 h001 (-5*exp(6)+3)/(-8*exp(2)-5) 3141580155980595 m004 -1000*Pi+Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 3141580155990484 m004 -100*Pi+Pi/(Sqrt[5]*E^(Sqrt[5]*Pi)) 3141580156000373 m004 -1000*Pi+Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 3141580158594192 m002 -Pi+Sinh[Pi]/Pi^12 3141580161040679 m001 Pi-ZetaP(4)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141580167548697 b008 Pi-2*BesselK[0,11] 3141580182683004 b008 Pi+3*ExpIntegralEi[-10] 3141580183609388 m001 1/exp(GAMMA(5/24))*TwinPrimes/sin(Pi/12) 3141580185439507 m005 (1/2*5^(1/2)-5/9)/(3/4*Zeta(3)+8/9) 3141580187280714 m001 (FellerTornier+Lehmer)/(ln(2)/ln(10)+gamma(2)) 3141580190672839 a007 Real Root Of 882*x^4-909*x^3+370*x^2-728*x-302 3141580196647711 m005 (3/5*Pi+2/5)/(3/4*2^(1/2)-1/3) 3141580201733611 m005 (4/5*Catalan+1/2)/(1/3*gamma+1/5) 3141580205174583 m002 -Pi+(Sinh[Pi]*Tanh[Pi])/Pi^12 3141580206235615 b008 Pi+ExpIntegralEi[-9] 3141580218572019 m002 -5-Pi-Pi^5+Tanh[Pi]/Pi^5 3141580218628634 r005 Im(z^2+c),c=-21/52+16/31*I,n=47 3141580224365759 m004 -100*Pi+125*Pi*Csch[Sqrt[5]*Pi]^2 3141580224375594 m004 -10*Pi+(25*Pi*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141580224385428 m004 -Pi+(5*Pi)/E^(2*Sqrt[5]*Pi) 3141580224395263 m004 -10*Pi+(25*Pi*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141580224405098 m004 -100*Pi+125*Pi*Sech[Sqrt[5]*Pi]^2 3141580231397924 m001 (5^(1/2)-Grothendieck)/exp(1/exp(1)) 3141580241918129 a007 Real Root Of -359*x^4-885*x^3+913*x^2+719*x+777 3141580263107093 a007 Real Root Of x^4+316*x^3+580*x^2+417*x-180 3141580285190545 m006 (3/5*exp(2*Pi)-4/5)/(3/5*ln(Pi)+1/3) 3141580290391063 m005 (1/2*3^(1/2)-7/10)/(8/9*Catalan-2/7) 3141580291283015 b008 Pi*Erfc[E^(-4*Pi)] 3141580297583514 m001 Khinchin/(Catalan^KomornikLoreti) 3141580300003531 m001 (BesselK(0,1)+CopelandErdos)/(5^(1/2)-exp(Pi)) 3141580304968019 m005 (1/2*exp(1)+7/9)/(1/2*Catalan+2/9) 3141580309564121 m001 1/ln(GAMMA(3/4))^2*BesselK(1,1)/arctan(1/2) 3141580337524033 r005 Re(z^2+c),c=-5/7+12/95*I,n=23 3141580342134298 r002 5th iterates of z^2 + 3141580344289702 m002 -Pi+ProductLog[Pi]^2/Pi^10 3141580349454145 r005 Re(z^2+c),c=37/126+1/56*I,n=15 3141580352233765 r005 Re(z^2+c),c=-35/102+23/50*I,n=18 3141580365165086 b008 -2/E^12+Pi 3141580374374797 a001 377/167761*2^(29/60) 3141580378033702 a007 Real Root Of -183*x^4-221*x^3+736*x^2-991*x+596 3141580380979608 l006 ln(4072/5575) 3141580384104727 m002 Pi-(Coth[Pi]*Log[Pi])/Pi^10 3141580389197992 m001 HeathBrownMoroz^Niven-Pi 3141580394457493 a007 Real Root Of -195*x^4-457*x^3+455*x^2-227*x-379 3141580396848562 h001 (10/11*exp(2)+3/4)/(8/11*exp(1)+2/5) 3141580403643760 a001 987/76*322^(16/29) 3141580415695824 a007 Real Root Of 289*x^4+552*x^3-926*x^2+292*x-979 3141580416515578 m001 Artin^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141580416515578 m001 Artin^GAMMA(1/12)-Pi 3141580426032602 m002 -Pi+Csch[Pi]/(E^Pi*Pi^5) 3141580429844432 m002 -Pi+Log[Pi]/Pi^10 3141580440799745 h001 (5/11*exp(2)+9/10)/(1/7*exp(2)+3/10) 3141580448866864 m002 -2/(E^(2*Pi)*Pi^5)+Pi 3141580448942483 r005 Im(z^2+c),c=31/78+5/47*I,n=3 3141580449736646 a003 cos(Pi*13/59)-cos(Pi*29/83) 3141580451034638 r005 Im(z^2+c),c=1/90+17/47*I,n=9 3141580459045779 a007 Real Root Of -339*x^4+533*x^3-218*x^2+402*x-118 3141580466476513 r005 Im(z^2+c),c=-7/60+38/43*I,n=3 3141580467345805 r009 Re(z^3+c),c=-12/25+11/30*I,n=20 3141580471616003 m002 -Pi+Sech[Pi]/(E^Pi*Pi^5) 3141580475413623 m002 -Pi+(Log[Pi]*Tanh[Pi])/Pi^10 3141580479698091 a007 Real Root Of 496*x^4-46*x^3+793*x^2-740*x-317 3141580481283892 l006 ln(292/6757) 3141580490392996 a007 Real Root Of 302*x^4+647*x^3-835*x^2+510*x+487 3141580496584939 h001 (-6*exp(1)+7)/(-2*exp(3/2)+6) 3141580504392487 r005 Re(z^2+c),c=21/74+4/39*I,n=14 3141580517029473 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(E^Pi*Pi^5) 3141580521492391 r005 Re(z^2+c),c=-9/26+3/7*I,n=23 3141580554543535 m001 (Landau-Tribonacci)/(3^(1/3)+FeigenbaumD) 3141580555364049 m001 GAMMA(2/3)*ErdosBorwein+cos(1/12*Pi) 3141580560485783 b008 -10*Pi+Erfc[E] 3141580560485783 b008 Pi-Erfc[E]/10 3141580564088243 q001 1125/3581 3141580564088243 q001 9/28648 3141580576533116 m001 Pi-Trott^FeigenbaumAlpha 3141580578410293 m001 Niven^Sierpinski/(Niven^BesselJ(1,1)) 3141580578512396 r002 2th iterates of z^2 + 3141580585062415 m001 Ei(1,1)^polylog(4,1/2)+Khinchin 3141580587131363 r005 Im(z^2+c),c=-51/62+3/17*I,n=43 3141580588502682 m002 -Pi+ProductLog[Pi]/(4*E^Pi*Pi^6) 3141580589989965 m004 -100*Pi+Sec[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141580590722015 a007 Real Root Of -307*x^4-924*x^3+281*x^2+478*x-17 3141580598264329 r005 Re(z^2+c),c=-13/18+13/77*I,n=40 3141580602440416 r002 6th iterates of z^2 + 3141580607976110 r009 Im(z^3+c),c=-33/70+8/45*I,n=45 3141580608709842 g007 Psi(2,2/11)+Psi(2,5/8)+Psi(2,3/5)-Psi(2,3/8) 3141580614218906 m001 LaplaceLimit^(2*Pi/GAMMA(5/6)/Robbin) 3141580618134319 a007 Real Root Of 166*x^4+839*x^3+864*x^2-198*x+695 3141580618801953 m001 (Kolakoski-Trott2nd)/(ln(5)+FeigenbaumB) 3141580625024989 r005 Re(z^2+c),c=7/94+12/61*I,n=10 3141580625408805 r005 Re(z^2+c),c=2/21+19/60*I,n=6 3141580625598747 r002 29th iterates of z^2 + 3141580626783396 r005 Im(z^2+c),c=43/110+1/5*I,n=32 3141580631305095 m001 exp(1)*(Psi(1,1/3)+MinimumGamma) 3141580636171487 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141580636180996 m004 10*Pi-Sin[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141580636190505 m004 -100*Pi+Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141580637317057 m001 (ZetaQ(3)+ZetaQ(4))/(2^(1/2)-KhinchinHarmonic) 3141580647656271 m002 -Pi+ProductLog[Pi]/(3*Pi^9) 3141580655491554 m001 1/Bloch*ln(CopelandErdos)^2*Rabbit 3141580664249672 b008 Pi+ExpIntegralEi[-8]/Pi 3141580669327835 m001 Pi-gamma(3)^FeigenbaumC 3141580669337644 m001 (-Kolakoski+ZetaQ(4))/(DuboisRaymond-exp(1)) 3141580669366157 b008 Pi*KelvinBer[0,1/8] 3141580676834875 h001 (-3*exp(1)+3)/(-5*exp(3/2)+6) 3141580680182345 a008 Real Root of x^4-2*x^3+x^2-16*x+5 3141580696013382 r009 Re(z^3+c),c=-15/34+11/27*I,n=14 3141580700173303 l003 Fresnelf(46/55) 3141580702293270 a001 18/9227465*2^(11/16) 3141580708398949 a007 Real Root Of 362*x^4-605*x^3+370*x^2-911*x-345 3141580709123833 a003 sin(Pi*13/108)*sin(Pi*23/71) 3141580722315313 m008 (4*Pi^6-4/5)/(4*Pi^5-1/4) 3141580728153418 r005 Im(z^2+c),c=-33/23+3/53*I,n=7 3141580736427873 h001 (3/7*exp(1)+10/11)/(5/6*exp(2)+4/9) 3141580753600790 r009 Im(z^3+c),c=-25/44+19/31*I,n=21 3141580756657040 r005 Im(z^2+c),c=-13/86+4/9*I,n=26 3141580768020013 a007 Real Root Of -58*x^4-198*x^3+72*x^2+340*x-132 3141580776545654 m002 -Pi+4/(Pi^11*Log[Pi]) 3141580780975483 s002 sum(A061406[n]/((3*n+1)!),n=1..infinity) 3141580789351258 a007 Real Root Of -864*x^4-649*x^3-71*x^2+926*x-29 3141580793149647 m004 -100*Pi+(2*Csch[Sqrt[5]*Pi])/3 3141580793159032 m004 -4/(3*E^(Sqrt[5]*Pi))+100*Pi 3141580793168417 m004 -100*Pi+(2*Sech[Sqrt[5]*Pi])/3 3141580797122609 p001 sum((-1)^n/(447*n+31)/(2^n),n=0..infinity) 3141580801065888 m008 (3*Pi^2-4)/(1/4*Pi^3+2/5) 3141580805833184 p001 sum((-1)^n/(504*n+311)/(16^n),n=0..infinity) 3141580813628406 r009 Im(z^3+c),c=-29/74+8/33*I,n=19 3141580829235567 h001 (5/8*exp(2)+1/7)/(3/10*exp(1)+7/10) 3141580847984477 r005 Re(z^2+c),c=-7/17+3/55*I,n=15 3141580860441402 r005 Re(z^2+c),c=-23/56+7/58*I,n=7 3141580896269606 m001 (Sarnak-ln(2)/ln(10)*Psi(2,1/3))/Psi(2,1/3) 3141580897725151 r005 Im(z^2+c),c=-59/86+13/37*I,n=10 3141580899846234 l006 ln(3457/4733) 3141580899846234 p004 log(4733/3457) 3141580904604196 m001 (Robbin-TravellingSalesman)^ReciprocalLucas 3141580922493362 a001 2207/13*832040^(18/47) 3141580926603770 p004 log(23071/997) 3141580940071153 a007 Real Root Of -407*x^4+695*x^3+134*x^2+693*x+230 3141580957360622 m001 (MertensB3-PlouffeB)/(ln(2)-cos(1/12*Pi)) 3141580960624124 m001 Pi-ZetaQ(4)^(Pi^(1/2)) 3141580969783456 a007 Real Root Of -323*x^4-956*x^3+310*x^2+124*x-849 3141580970898083 r005 Im(z^2+c),c=-5/6+3/163*I,n=28 3141580972264813 m002 Pi-Cosh[Pi]/(Pi^12*ProductLog[Pi]) 3141580977132779 m002 -Pi+(3*Csch[Pi])/(E^Pi*Pi^6) 3141580980772809 m002 -Pi+(3*Log[Pi])/Pi^11 3141580983198898 r005 Im(z^2+c),c=9/50+8/31*I,n=21 3141580987297502 a007 Real Root Of -829*x^4-495*x^3+741*x^2+848*x+186 3141580991575955 h001 (7/10*exp(1)+1/10)/(3/4*exp(2)+5/6) 3141580996056594 a007 Real Root Of 324*x^4+634*x^3-913*x^2+667*x-796 3141580997106194 a001 1/3*322^(37/47) 3141580998937894 m002 -6/(E^(2*Pi)*Pi^6)+Pi 3141581006290665 m001 1/ln(Salem)*CareFree/sinh(1)^2 3141581012260557 m001 FeigenbaumKappa*FransenRobinson/ln(GAMMA(5/6)) 3141581015811903 m002 Pi-Sinh[Pi]/(Pi^12*ProductLog[Pi]) 3141581019346266 b008 Pi*ModularLambda[I/48*Pi^2] 3141581020661721 m002 -Pi+(3*Sech[Pi])/(E^Pi*Pi^6) 3141581025198639 r009 Re(z^3+c),c=-29/66+17/48*I,n=39 3141581025311111 k006 concat of cont frac of 3141581033490774 m001 1/Porter*exp(PisotVijayaraghavan)*GAMMA(3/4) 3141581034380965 m002 -Pi+(4*Csch[Pi])/Pi^9 3141581035755476 m001 gamma*Sierpinski/Weierstrass 3141581039957386 m001 (ln(3)+2*Pi/GAMMA(5/6))/(Artin+MadelungNaCl) 3141581043191431 p001 sum(1/(427*n+253)/n/(5^n),n=1..infinity) 3141581048172419 h001 (1/12*exp(1)+5/9)/(3/10*exp(2)+3/11) 3141581058149874 b008 1/4+InverseGudermannian[Pi/49] 3141581058669840 a007 Real Root Of -10*x^4-283*x^3+975*x^2-103*x+571 3141581061377459 r005 Re(z^2+c),c=-43/56+7/31*I,n=4 3141581061926265 m005 (1/2*Catalan-2/5)/(4/5*2^(1/2)+5/7) 3141581077696490 m002 -Pi+(4*Sech[Pi])/Pi^9 3141581080174056 a007 Real Root Of -72*x^4-207*x^3-43*x^2-46*x+875 3141581082534734 r009 Im(z^3+c),c=-11/102+21/25*I,n=6 3141581085818139 a007 Real Root Of 546*x^4-271*x^3-412*x^2-907*x-258 3141581092426157 r005 Re(z^2+c),c=-5/18+27/47*I,n=62 3141581092929139 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/3 3141581092947434 m004 -100*Pi+(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/3 3141581105416632 b008 10*Pi+ExpIntegralEi[-7] 3141581105416632 b008 Pi+ExpIntegralEi[-7]/10 3141581111048257 l006 ln(235/5438) 3141581111181161 k007 concat of cont frac of 3141581112315162 k007 concat of cont frac of 3141581113111211 k007 concat of cont frac of 3141581117532470 m001 HeathBrownMoroz*ZetaQ(3)-Pi 3141581124969846 m001 ln(cos(Pi/12))^2/cos(1)/sin(1)^2 3141581125356412 a007 Real Root Of 188*x^4+467*x^3-13*x^2+901*x-874 3141581130141111 k006 concat of cont frac of 3141581142778011 a007 Real Root Of 193*x^4-424*x^3+515*x^2-635*x-2 3141581144054333 r005 Im(z^2+c),c=-55/106+26/47*I,n=64 3141581145867884 m002 -Pi+(Coth[Pi]*ProductLog[Pi])/Pi^10 3141581150630136 r005 Re(z^2+c),c=-11/14+165/203*I,n=3 3141581151517978 a003 cos(Pi*47/118)/sin(Pi*34/69) 3141581151541502 m001 (Magata+OneNinth)/(BesselI(1,2)-Bloch) 3141581160540873 r005 Re(z^2+c),c=-8/15+2/45*I,n=4 3141581160898802 m005 (29/36+1/4*5^(1/2))/(gamma-1/7) 3141581161311311 k007 concat of cont frac of 3141581162229141 k008 concat of cont frac of 3141581162868396 b008 Pi-3*ExpIntegralE[2,10] 3141581166094276 a007 Real Root Of -17*x^4-551*x^3-521*x^2+325*x-555 3141581188767794 m002 -Pi+ProductLog[Pi]/Pi^10 3141581189114513 m001 Ei(1,1)^DuboisRaymond-StronglyCareFree 3141581189503302 a007 Real Root Of 247*x^4+436*x^3-809*x^2+831*x+54 3141581194094304 a007 Real Root Of -526*x^4-323*x^3-985*x^2+521*x+256 3141581207207565 b008 Pi-Zeta[10,Pi] 3141581212134214 k006 concat of cont frac of 3141581218922747 r005 Re(z^2+c),c=-33/118+24/43*I,n=27 3141581221211117 k007 concat of cont frac of 3141581222011240 k007 concat of cont frac of 3141581231507777 m002 -Pi+(ProductLog[Pi]*Tanh[Pi])/Pi^10 3141581235268493 l006 ln(6299/8624) 3141581238200500 a007 Real Root Of -222*x^4+810*x^3-283*x^2+63*x+75 3141581249274057 m001 Mills^Sierpinski/HardyLittlewoodC3 3141581250115546 m001 Pi-gamma(3)^Tribonacci 3141581251031091 r002 12th iterates of z^2 + 3141581255411673 r005 Im(z^2+c),c=-7/122+23/59*I,n=8 3141581261641332 r009 Im(z^3+c),c=-19/82+42/59*I,n=14 3141581268453052 m002 Pi-Log[Pi]/(Pi^10*ProductLog[Pi]) 3141581269973308 b008 Pi-ExpIntegralE[2,9] 3141581290951059 m005 (1/3*Pi-1/5)/(5/6*5^(1/2)+5/6) 3141581294266981 m001 1/GAMMA(1/4)/CareFree^2*exp(sqrt(3)) 3141581297609666 q001 1196/3807 3141581299813061 a007 Real Root Of 372*x^4-469*x^3+133*x^2+176*x+24 3141581303607352 b008 -1/4*1/E^10+Pi 3141581307236539 a007 Real Root Of -846*x^4+999*x^3+994*x^2+965*x-424 3141581312111512 k007 concat of cont frac of 3141581316071675 a007 Real Root Of -23*x^4-730*x^3-264*x^2-941*x+424 3141581316198029 m005 (-7/36+1/4*5^(1/2))/(4/9*5^(1/2)+1/6) 3141581320447367 h001 (1/5*exp(2)+1/2)/(9/11*exp(2)+1/4) 3141581329293832 a008 Real Root of x^4-x^3+21*x^2-153*x+207 3141581331312311 k006 concat of cont frac of 3141581333546298 m001 1/ln(FeigenbaumB)*LandauRamanujan^2*Pi^2 3141581337614737 h005 exp(cos(Pi*2/19)/cos(Pi*4/21)) 3141581341539320 r005 Im(z^2+c),c=-29/54+5/58*I,n=10 3141581347312900 m001 (KomornikLoreti+Thue)^Salem 3141581347730583 m001 Pi-exp(-Pi)^(Pi*2^(1/2)/GAMMA(3/4)) 3141581347730583 m001 Pi-exp(-Pi)^GAMMA(1/4) 3141581350832916 m001 (CareFree-MinimumGamma)/(Sierpinski-ZetaP(3)) 3141581350994473 m001 GAMMA(5/24)/GAMMA(5/12)^2/exp(GAMMA(5/6)) 3141581351942758 b008 -5/E^13+Pi 3141581354332346 r009 Re(z^3+c),c=-55/118+19/48*I,n=61 3141581354848736 r009 Re(z^3+c),c=-13/29+14/39*I,n=20 3141581355901182 m001 (gamma(2)+ZetaQ(3))/(exp(1)+sin(1/12*Pi)) 3141581360305475 m005 (1/2*3^(1/2)+4)/(7/12*gamma-2/11) 3141581363720300 m001 (GolombDickman+Khinchin)/(Bloch-gamma) 3141581366364542 a007 Real Root Of -364*x^4-902*x^3+500*x^2-906*x-292 3141581386684641 m001 MadelungNaCl^2*FeigenbaumDelta^2/ln(cos(Pi/5)) 3141581392847057 m005 (1/2*Catalan-7/12)/(4*Zeta(3)-9/11) 3141581397925797 a009 7^(2/3)*(12^(2/3)+5^(3/4)) 3141581402066116 m002 3+2*Pi+Pi^5-Log[Pi] 3141581403087851 r002 26th iterates of z^2 + 3141581403143929 r005 Im(z^2+c),c=-41/60+7/50*I,n=14 3141581411251221 k007 concat of cont frac of 3141581414114511 k007 concat of cont frac of 3141581415208386 r005 Re(z^2+c),c=29/110+2/27*I,n=11 3141581416226571 m002 -1/(4*E^Pi*Pi^6)+Pi 3141581426674761 r009 Im(z^3+c),c=-2/29+33/40*I,n=26 3141581431612119 k007 concat of cont frac of 3141581437298770 m001 Pi+ln(2)/ln(10)/Psi(2,1/3)*gamma(3) 3141581437971419 a007 Real Root Of -931*x^4-643*x^3+94*x^2+427*x+114 3141581438382031 r005 Im(z^2+c),c=-5/8+3/104*I,n=11 3141581444494052 r005 Re(z^2+c),c=13/44+2/39*I,n=12 3141581449562976 a007 Real Root Of 406*x^4-491*x^3-640*x^2-331*x-60 3141581451187359 b008 Pi+8*ExpIntegralEi[-11] 3141581458118604 m002 -Pi+Tanh[Pi]/(4*E^Pi*Pi^6) 3141581462064677 r005 Re(z^2+c),c=-29/78+13/38*I,n=12 3141581465014102 r005 Re(z^2+c),c=-9/62+29/34*I,n=6 3141581465581807 a007 Real Root Of -188*x^4-373*x^3+843*x^2+548*x+149 3141581466345320 m005 (1/2*gamma-2)/(6/11*3^(1/2)-2/5) 3141581467314716 m004 -125*Pi+225*Pi*Tanh[Sqrt[5]*Pi] 3141581471321935 m002 -1/(3*Pi^9)+Pi 3141581478603040 r005 Re(z^2+c),c=17/50+8/47*I,n=22 3141581498941927 a007 Real Root Of -349*x^4-881*x^3+515*x^2-595*x-273 3141581506789557 s001 sum(exp(-Pi/4)^n*A029624[n],n=1..infinity) 3141581513008578 m002 -Pi+Tanh[Pi]/(3*Pi^9) 3141581515041492 r009 Re(z^3+c),c=-45/94+16/37*I,n=52 3141581519122599 b008 -2/(3*E^11)+Pi 3141581534435954 m004 -5/(4*E^(Sqrt[5]*Pi))+100*Pi 3141581536553854 m004 -10*Pi+5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141581536589040 m004 -10*Pi+5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141581554819596 m001 (-StronglyCareFree+ZetaQ(3))/(3^(1/2)+Rabbit) 3141581556305146 l006 ln(413/9557) 3141581561431232 k006 concat of cont frac of 3141581562888666 a007 Real Root Of -207*x^4-410*x^3+789*x^2+142*x+110 3141581594530522 a007 Real Root Of -259*x^4-775*x^3-257*x^2-872*x+996 3141581595840092 m001 GAMMA(1/3)^LambertW(1)/GAMMA(1/6) 3141581607663353 r005 Im(z^2+c),c=-23/28+3/16*I,n=23 3141581616248249 a003 cos(Pi*7/107)-cos(Pi*29/108) 3141581625544524 p001 sum(1/(71*n+58)/n/(25^n),n=0..infinity) 3141581636130240 r009 Im(z^3+c),c=-63/118+15/46*I,n=23 3141581636593718 a007 Real Root Of 990*x^4-116*x^3-530*x^2-709*x+269 3141581643275076 l006 ln(2842/3891) 3141581644413241 k006 concat of cont frac of 3141581659858875 b008 Pi-Erfc[E]/11 3141581660018219 b008 (19*CoshIntegral[3])/3 3141581664417946 r005 Im(z^2+c),c=5/46+16/51*I,n=5 3141581669453950 m001 Pi-ZetaQ(4)^Grothendieck 3141581674462631 s002 sum(A258856[n]/(n^3*2^n+1),n=1..infinity) 3141581681191143 a007 Real Root Of -763*x^4-529*x^3-778*x^2+790*x+316 3141581685354188 m001 FellerTornier^Psi(1,1/3)-Pi 3141581697511468 m002 Pi-Cosh[Pi]/(Pi^12*Log[Pi]) 3141581698380876 a001 1/34*3^(3/50) 3141581705491237 m002 -Pi+(3*ProductLog[Pi])/Pi^11 3141581705731967 r009 Re(z^3+c),c=-41/90+11/29*I,n=61 3141581711333311 k006 concat of cont frac of 3141581718487478 a003 sin(Pi*15/89)*sin(Pi*25/117) 3141581721699138 m004 10*Pi-Cos[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141581726995477 m001 ZetaP(3)^BesselJ(0,1)/Chi(1) 3141581731315237 m001 exp(Trott)/PisotVijayaraghavan^2/GAMMA(2/3)^2 3141581735870099 r009 Im(z^3+c),c=-3/50+53/64*I,n=16 3141581738354893 m002 Pi-Sinh[Pi]/(Pi^12*Log[Pi]) 3141581751028277 m005 (1/2*5^(1/2)+6/11)/(1/6*3^(1/2)-9/11) 3141581765704477 m001 (exp(1)+exp(1/Pi))/((1+3^(1/2))^(1/2)-Otter) 3141581770555598 h001 (4/11*exp(1)+1/10)/(4/11*exp(2)+7/9) 3141581777088666 r005 Im(z^2+c),c=-35/54+19/60*I,n=32 3141581777621643 a001 55/123*5778^(27/55) 3141581796212072 a001 4181/2207*2^(27/37) 3141581799689019 m001 1/GAMMA(1/3)*ln(Tribonacci)*sinh(1)^2 3141581816498375 m008 (2/5*Pi^6+1/4)/(4*Pi^5+4/5) 3141581817760398 m001 1/TwinPrimes^2/FeigenbaumDelta*ln(Ei(1)) 3141581820769865 m001 (-GlaisherKinkelin+ZetaP(2))/(gamma-sin(1)) 3141581825397438 r009 Im(z^3+c),c=-23/52+16/49*I,n=4 3141581828419209 r005 Im(z^2+c),c=5/16+7/60*I,n=38 3141581832584123 m001 GAMMA(3/4)/(HardyLittlewoodC5^GAMMA(11/12)) 3141581836555852 m001 GAMMA(2/3)+Ei(1)-OneNinth 3141581841893109 a007 Real Root Of 7*x^4-309*x^3-989*x^2+217*x+180 3141581851149479 a007 Real Root Of x^4+314*x^3-48*x^2+533*x+143 3141581858804537 r005 Im(z^2+c),c=-7/8+33/140*I,n=59 3141581865653446 m001 1/exp(RenyiParking)^2/Conway^2*cosh(1)^2 3141581866426334 m001 (MadelungNaCl+Otter)/(Ei(1)-KhinchinHarmonic) 3141581869333384 m008 (3*Pi^4-4)/(3*Pi^5-3/5) 3141581892744334 a001 1/123*(1/2*5^(1/2)+1/2)^31*3^(5/22) 3141581904281055 a003 cos(Pi*23/107)-sin(Pi*19/63) 3141581913232345 m001 ln((3^(1/3)))^2/Sierpinski/GAMMA(17/24)^2 3141581919916288 r005 Im(z^2+c),c=-55/122+19/37*I,n=64 3141581923498328 a007 Real Root Of -736*x^4+957*x^3-301*x^2+498*x+223 3141581934232156 a007 Real Root Of 505*x^4+105*x^3+761*x^2-666*x-286 3141581935353799 m002 -Pi+Coth[Pi]/Pi^10 3141581939894531 p003 LerchPhi(1/10,4,106/141) 3141581941431633 k006 concat of cont frac of 3141581948369575 r005 Re(z^2+c),c=7/30+1/37*I,n=3 3141581948921398 q001 1267/4033 3141581949048211 a007 Real Root Of 415*x^4-529*x^3-838*x^2-73*x+118 3141581950882219 a007 Real Root Of 288*x^4+732*x^3-754*x^2-795*x-413 3141581954191412 a001 18/13*3^(44/59) 3141581959665212 m001 (Shi(1)*GAMMA(7/12)+Niven)/Shi(1) 3141581962986294 r005 Im(z^2+c),c=-13/70+23/50*I,n=23 3141581975310566 m002 -Pi^(-10)+Pi 3141581977516662 r009 Im(z^3+c),c=-11/60+34/39*I,n=44 3141581977910498 r009 Im(z^3+c),c=-1/25+21/61*I,n=7 3141581979193662 m004 -100*Pi+(3*Csch[Sqrt[5]*Pi])/5 3141581979202108 m004 -6/(5*E^(Sqrt[5]*Pi))+100*Pi 3141581979210554 m004 -100*Pi+(3*Sech[Sqrt[5]*Pi])/5 3141581980942087 m001 FransenRobinson+cos(1)^Grothendieck 3141581984845649 m001 Pi-arctan(1/3)^Psi(1,1/3) 3141581985211262 r005 Im(z^2+c),c=-1/7+26/59*I,n=26 3141582010458745 r005 Im(z^2+c),c=-7/12+2/37*I,n=25 3141582015118377 m002 -Pi+Tanh[Pi]/Pi^10 3141582016971041 m001 Pi-ZetaQ(4)^KomornikLoreti 3141582019765252 a007 Real Root Of 454*x^4-511*x^3+983*x^2-858*x+26 3141582022007352 s001 sum(exp(-3*Pi/4)^n*A184099[n],n=1..infinity) 3141582044736410 r005 Im(z^2+c),c=-15/58+23/47*I,n=42 3141582054777787 m002 -Pi+Tanh[Pi]^2/Pi^10 3141582057553593 r005 Re(z^2+c),c=-37/94+7/31*I,n=29 3141582058277446 r009 Re(z^3+c),c=-1/58+25/33*I,n=38 3141582063479342 m001 (Champernowne+Robbin)/(exp(Pi)+Si(Pi)) 3141582068867822 m004 5+(25*Pi)/4+5*Sec[Sqrt[5]*Pi] 3141582073247557 r005 Im(z^2+c),c=-23/90+21/43*I,n=50 3141582081646520 m001 gamma^2*Backhouse*ln(sqrt(5))^2 3141582083769897 r004 Re(z^2+c),c=-1/3-8/15*I,z(0)=exp(1/8*I*Pi),n=5 3141582085456574 a001 1/7*(1/2*5^(1/2)+1/2)^19*1364^(7/16) 3141582100547002 r005 Im(z^2+c),c=-5/6+9/47*I,n=7 3141582108741373 m001 Pi-gamma(3)^Si(Pi) 3141582111371231 k007 concat of cont frac of 3141582120225533 r009 Im(z^3+c),c=-3/38+41/51*I,n=18 3141582121211131 k007 concat of cont frac of 3141582135854728 m001 (-GAMMA(17/24)+Backhouse)/(Catalan+Zeta(1/2)) 3141582136919730 a007 Real Root Of 986*x^4-675*x^3-383*x^2-980*x+357 3141582144143995 l006 ln(178/4119) 3141582150285008 l006 ln(5069/6940) 3141582159022436 a007 Real Root Of -258*x^4+298*x^3-636*x^2+966*x+378 3141582162463206 r005 Im(z^2+c),c=-49/110+12/25*I,n=26 3141582163005291 a003 cos(Pi*16/111)-cos(Pi*28/93) 3141582168547373 m001 1/exp(Zeta(7))/OneNinth^2/Zeta(9) 3141582168641573 g001 abs(Psi(-119/24+I*35/8)) 3141582171397110 k008 concat of cont frac of 3141582171671315 k009 concat of cont frac of 3141582175727103 b008 -1+Pi+InverseEllipticNomeQ[1/2] 3141582181795162 m001 Zeta(9)^2*TwinPrimes^2/exp(log(2+sqrt(3)))^2 3141582184259529 m001 (Ei(1)+GAMMA(7/12))/(cos(1)-ln(gamma)) 3141582188913281 r005 Re(z^2+c),c=-5/74+35/57*I,n=21 3141582189186877 r005 Im(z^2+c),c=-13/50+25/51*I,n=58 3141582192157545 a009 1/10*(14^(1/2)-23*10^(1/3))^(1/2)*10^(2/3) 3141582195140241 g002 -Psi(1/12)-Psi(1/10)-Psi(5/7)-Psi(1/7) 3141582207122237 m002 Pi-(Csch[Pi]*Log[Pi])/Pi^8 3141582208013993 m001 1/(Backhouse^(Pi*csc(7/24*Pi)/GAMMA(17/24))) 3141582212555733 r009 Im(z^3+c),c=-21/44+9/52*I,n=30 3141582222814512 k006 concat of cont frac of 3141582228120111 k008 concat of cont frac of 3141582238923702 m004 -100*Pi+(Sqrt[5]*Pi)/(6*E^(Sqrt[5]*Pi)) 3141582246065872 m002 Pi-(Log[Pi]*Sech[Pi])/Pi^8 3141582249181942 b008 Pi*ModularLambda[I/2/Sqrt[6]] 3141582249700366 a007 Real Root Of -959*x^4-247*x^3+393*x^2+872*x+27 3141582263843634 a007 Real Root Of 672*x^4+285*x^3+937*x^2-792*x-339 3141582274949034 a007 Real Root Of 267*x^4-901*x^3-142*x^2-731*x+269 3141582283055174 a007 Real Root Of -197*x^4-472*x^3+85*x^2-979*x+640 3141582296346241 a003 cos(Pi*35/88)*sin(Pi*36/77) 3141582299104959 m001 Psi(2,1/3)^sin(1/12*Pi)+BesselJ(1,1) 3141582299685594 m001 KhintchineLevy/ErdosBorwein^2/exp(FeigenbaumD) 3141582304284478 a007 Real Root Of 86*x^4+109*x^3-601*x^2-425*x-401 3141582316388488 a001 5473/2889*2^(27/37) 3141582326850410 m001 exp(TwinPrimes)^2/Tribonacci*cosh(1) 3141582332314803 m001 (3^(1/2)-FeigenbaumKappa)/(-Mills+OneNinth) 3141582341627239 m001 (Paris+ThueMorse)/(FeigenbaumB+Kolakoski) 3141582347779824 l006 ln(7296/9989) 3141582351171402 b008 32+Zeta[1/12] 3141582354918252 k007 concat of cont frac of 3141582355879429 m001 (-FeigenbaumDelta+Landau)/(sin(1)+Bloch) 3141582362593378 m002 Pi-Log[Pi]/(5*E^Pi*Pi^6) 3141582371386929 m001 MadelungNaCl^(2/3*Pi*3^(1/2)/GAMMA(2/3)/Mills) 3141582373149140 r005 Re(z^2+c),c=15/62+2/33*I,n=17 3141582383270753 m005 (Catalan+3)/(1/2*Catalan-1/3) 3141582383306058 r005 Re(z^2+c),c=-33/94+17/42*I,n=59 3141582388611471 r009 Im(z^3+c),c=-19/44+13/50*I,n=4 3141582388982717 m001 HeathBrownMoroz^(3^(1/2))-Pi 3141582389621894 a007 Real Root Of 161*x^4+670*x^3+535*x^2-227*x-902 3141582391433670 r002 2th iterates of z^2 + 3141582392281220 a001 28657/15127*2^(27/37) 3141582393995282 m001 (FellerTornier-Robbin)/(ln(2)-Pi^(1/2)) 3141582398311174 m001 (Trott+ZetaQ(3))/(Chi(1)-MinimumGamma) 3141582402744820 a001 55/47*47^(47/55) 3141582403353820 a001 75025/39603*2^(27/37) 3141582404969291 a001 98209/51841*2^(27/37) 3141582405204985 a001 514229/271443*2^(27/37) 3141582405239372 a001 1346269/710647*2^(27/37) 3141582405247490 a001 2178309/1149851*2^(27/37) 3141582405260625 a001 208010/109801*2^(27/37) 3141582405350652 a001 317811/167761*2^(27/37) 3141582405967707 a001 121393/64079*2^(27/37) 3141582406658397 m001 Tribonacci^2*MadelungNaCl*ln(sin(Pi/5)) 3141582410197064 a001 11592/6119*2^(27/37) 3141582410898306 h001 (11/12*exp(2)+7/10)/(3/11*exp(2)+4/11) 3141582412167876 m001 1/Salem/ln(DuboisRaymond)/sqrt(1+sqrt(3)) 3141582412696602 a003 sin(Pi*9/61)/cos(Pi*5/11) 3141582413316112 k006 concat of cont frac of 3141582415477988 a007 Real Root Of 193*x^4+471*x^3-468*x^2-410*x-865 3141582418428355 m002 -Pi+(3*Coth[Pi])/Pi^11 3141582420452229 m005 (9/8+1/4*5^(1/2))/(1/10*Catalan+4/9) 3141582431295707 b008 Pi*Sqrt[KelvinBer[0,1/7]] 3141582436218129 m005 (1/2*Pi+1/4)/(6*Catalan+3/10) 3141582439185509 a001 17711/9349*2^(27/37) 3141582449914221 s001 sum(exp(-3*Pi/4)^n*A203564[n],n=1..infinity) 3141582451682321 a007 Real Root Of 372*x^4+985*x^3-813*x^2-474*x+840 3141582456584257 m002 -3/Pi^11+Pi 3141582471517800 r009 Re(z^3+c),c=-27/64+16/49*I,n=40 3141582474336131 r002 39th iterates of z^2 + 3141582484045772 r008 a(0)=3,K{-n^6,-9+n^3-n^2+7*n} 3141582494597916 m002 -Pi+(3*Tanh[Pi])/Pi^11 3141582513870853 m001 (exp(1)+Zeta(5))/(KhinchinLevy+ZetaQ(3)) 3141582520423172 b008 3+Tan[1]/11 3141582520518577 b008 Tanh[1+Sqrt[EulerGamma]]/3 3141582523269279 b008 Pi*ModularLambda[(2*I)/17*Sqrt[3]] 3141582525860803 a007 Real Root Of -804*x^4-747*x^3-90*x^2+730*x+23 3141582531484111 m001 Riemann1stZero*(GAMMA(17/24)-Zeta(1,2)) 3141582536816109 m001 (ln(5)-gamma(2))/(2*Pi/GAMMA(5/6)-ThueMorse) 3141582539316262 r009 Re(z^3+c),c=-23/60+19/61*I,n=5 3141582540683948 m001 1/exp(Magata)*FibonacciFactorial^2/(2^(1/3))^2 3141582547038521 m001 (Cahen-CareFree)/(PlouffeB+Porter) 3141582556340957 a005 (1/cos(12/155*Pi))^732 3141582582188634 m001 FeigenbaumDelta-ln(2^(1/2)+1)-MasserGramain 3141582587882236 a009 3^(1/4)/(3+2^(1/4)) 3141582588214088 a008 Real Root of x^4-8*x^2-18*x-75 3141582598683255 m001 (Paris-ZetaP(3))/(BesselI(1,2)+FeigenbaumB) 3141582600858134 r005 Re(z^2+c),c=35/114+23/45*I,n=57 3141582607298201 r005 Re(z^2+c),c=13/50+4/51*I,n=33 3141582612417897 a007 Real Root Of 118*x^4+166*x^3-380*x^2+902*x+237 3141582614515525 a007 Real Root Of -95*x^4-42*x^3+778*x^2-7*x+251 3141582616648479 p001 sum((-1)^n/(407*n+298)/(6^n),n=0..infinity) 3141582633858595 r005 Im(z^2+c),c=29/122+9/43*I,n=26 3141582637875285 a001 6765/3571*2^(27/37) 3141582638282129 m002 -Pi+ProductLog[Pi]/(Pi^10*Log[Pi]) 3141582639082462 m004 10*Pi-Sin[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141582645163440 r009 Re(z^3+c),c=-13/27+5/12*I,n=64 3141582650719259 m001 (Psi(2,1/3)-gamma(2))/(Bloch+GlaisherKinkelin) 3141582652742997 m001 (ln(5)+sin(1/12*Pi))/(gamma(3)+Lehmer) 3141582666408146 m001 (Stephens-Totient)/(ArtinRank2-Riemann3rdZero) 3141582685629425 a001 1/7*(1/2*5^(1/2)+1/2)^16*3571^(9/16) 3141582696598531 r005 Re(z^2+c),c=-95/82+3/10*I,n=38 3141582703577553 r005 Re(z^2+c),c=-83/110+1/7*I,n=6 3141582704991996 a001 199/2*233^(19/30) 3141582707892662 m002 -Pi+1/(Pi^10*ProductLog[Pi]) 3141582710218433 m004 -30*Pi+20*Pi*Coth[Sqrt[5]*Pi] 3141582710230235 m004 -5*Pi*Coth[Sqrt[5]*Pi]+15*Pi*Tanh[Sqrt[5]*Pi] 3141582710234169 m004 -10*Pi+20*Pi*Tanh[Sqrt[5]*Pi] 3141582710242037 m004 Pi*Tanh[Sqrt[5]*Pi]^2 3141582712189446 r009 Re(z^3+c),c=-16/31+5/16*I,n=22 3141582712464805 m005 (1/2*gamma+11/12)/(5/11*Catalan-4/5) 3141582712570475 a007 Real Root Of -597*x^4-113*x^3+105*x^2+831*x+26 3141582732411785 r005 Im(z^2+c),c=1/15+27/59*I,n=3 3141582742565669 a007 Real Root Of -637*x^4+925*x^3-695*x^2+842*x+368 3141582744969463 m002 -Pi+Tanh[Pi]/(Pi^10*ProductLog[Pi]) 3141582746562286 a007 Real Root Of x^4+313*x^3-363*x^2+276*x-299 3141582752326343 m005 (1/3*Pi-2/3)/(41/80+5/16*5^(1/2)) 3141582757599650 r005 Re(z^2+c),c=-5/31+39/62*I,n=28 3141582770927186 r005 Im(z^2+c),c=-3/31+13/31*I,n=32 3141582780100085 m005 (1/3*2^(1/2)+3/8)/(1/3*Pi-7/9) 3141582797308871 l006 ln(2227/3049) 3141582802949842 r009 Re(z^3+c),c=-7/19+22/35*I,n=34 3141582803322149 m002 Pi-Cosh[Pi]/(4*Pi^11) 3141582805689243 r005 Im(z^2+c),c=-13/90+7/11*I,n=21 3141582813353821 r005 Re(z^2+c),c=-7/20+20/49*I,n=45 3141582817467092 a001 1/7*(1/2*5^(1/2)+1/2)^22*9349^(3/16) 3141582821680014 m003 31/5+5*E^(1/2+Sqrt[5]/2) 3141582822567696 a001 1/7*(1/2*5^(1/2)+1/2)^19*24476^(5/16) 3141582823489185 a001 1/7*(1/2*5^(1/2)+1/2)^4*64079^(15/16) 3141582824254283 a001 1/448553*(1/2*5^(1/2)+1/2)^27*64079^(15/16) 3141582835569884 a007 Real Root Of 227*x^4+702*x^3-129*x^2-168*x+400 3141582840043196 m002 Pi-Sinh[Pi]/(4*Pi^11) 3141582855701543 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/Pi^8 3141582861398982 a001 10946/47*29^(4/45) 3141582881623720 m005 (-19/4+1/4*5^(1/2))/(161/176+3/16*5^(1/2)) 3141582889761865 r009 Re(z^3+c),c=-49/102+26/61*I,n=18 3141582891591141 r005 Re(z^2+c),c=-9/8+61/249*I,n=16 3141582892227323 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/Pi^8 3141582892480644 a007 Real Root Of -93*x^4-53*x^3+955*x^2+719*x+249 3141582894148009 b008 Pi*ModularLambda[I/11*Sqrt[5]] 3141582909436910 a001 377/1149851*47^(27/46) 3141582920450463 a007 Real Root Of 179*x^4+430*x^3-496*x^2-112*x+440 3141582923684831 r005 Re(z^2+c),c=11/114+17/30*I,n=3 3141582932062777 a007 Real Root Of -168*x^4-526*x^3-158*x^2-747*x-732 3141582932626933 a003 sin(Pi*32/95)/cos(Pi*39/95) 3141582941379877 m002 -5/(E^(2*Pi)*Pi^6)+Pi 3141582943406762 m004 -100*Pi+Cot[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141582951627598 m001 PlouffeB^Zeta(3)-ThueMorse 3141582952271066 r005 Im(z^2+c),c=-27/82+10/19*I,n=15 3141582954301667 r005 Im(z^2+c),c=29/82+5/57*I,n=44 3141582956108124 l006 ln(299/6919) 3141582963839412 m001 1/arctan(1/2)*Tribonacci/ln(log(1+sqrt(2))) 3141582970175549 a001 225749145909*9349^(19/24) 3141582980579002 m004 -100*Pi+Cos[Sqrt[5]*Pi]^2*Csch[Sqrt[5]*Pi] 3141582980594310 m004 -100*Pi+Cos[Sqrt[5]*Pi]^2*Sech[Sqrt[5]*Pi] 3141582981181013 m001 (Ei(1)+Ei(1,1))^GAMMA(7/12) 3141582985570583 m005 (1/2*Pi-7/12)/(3/11*Pi-4) 3141582993450989 r009 Im(z^3+c),c=-57/122+9/35*I,n=4 3141582994515637 m001 (BesselJZeros(0,1)+3)/(-BesselI(0,2)+4) 3141582997897459 a001 365435296162/47*64079^(23/24) 3141582998630659 a001 5702887/47*6643838879^(23/24) 3141582998630675 a001 6557470319842/47*20633239^(11/24) 3141582998630678 a001 956722026041/47*54018521^(13/24) 3141582998630678 a001 12586269025/47*370248451^(17/24) 3141582998630678 a001 1134903170/47*969323029^(19/24) 3141582998630678 a001 1836311903/47*5600748293801^(13/24) 3141582998630678 a001 32951280099/47*2139295485799^(11/24) 3141582998630678 a001 6557470319842/47*312119004989^(7/24) 3141582999927966 s003 concatenated sequence A276686 3141583001520104 m002 -Pi+ProductLog[Pi]/(5*E^Pi*Pi^6) 3141583001613372 m001 GAMMA(1/24)/ln(BesselK(0,1))^2*Zeta(9) 3141583022048865 r009 Re(z^3+c),c=-33/82+13/44*I,n=37 3141583038061366 a009 1/11*(11^(1/4)-4^(2/3))*11^(2/3) 3141583043385891 m005 (1/2*exp(1)-8/11)/(7/11*3^(1/2)+10/11) 3141583053082637 m002 Pi-Log[Pi]/(4*Pi^9) 3141583066680098 a001 18*(1/2*5^(1/2)+1/2)^28*3571^(9/23) 3141583072212561 k007 concat of cont frac of 3141583072465118 m001 (-CareFree+HeathBrownMoroz)/(5^(1/2)+gamma(3)) 3141583078396150 m001 (Zeta(1,2)+Gompertz)/(Psi(1,1/3)+BesselJ(0,1)) 3141583080266977 r005 Im(z^2+c),c=-141/122+15/49*I,n=4 3141583082827049 m001 Bloch/CopelandErdos/exp(Si(Pi)) 3141583101133014 r005 Im(z^2+c),c=-11/54+51/62*I,n=15 3141583104211834 a003 sin(Pi*13/114)-sin(Pi*25/108) 3141583108960159 m008 (5*Pi^6-4/5)/(5*Pi^5-1/4) 3141583111311151 k007 concat of cont frac of 3141583112415081 m002 Pi^7+(6*E^Pi)/Log[Pi] 3141583118613659 a003 sin(Pi*6/89)/cos(Pi*4/15) 3141583134311622 k007 concat of cont frac of 3141583142141783 k006 concat of cont frac of 3141583147566790 r005 Re(z^2+c),c=-37/122+32/59*I,n=24 3141583155868472 m001 (FeigenbaumDelta+GAMMA(17/24))^GAMMA(11/24) 3141583156148628 m002 -Pi+3/(Pi^11*ProductLog[Pi]) 3141583158362062 m004 -Pi+3*Csch[Sqrt[5]*Pi]^2 3141583158369576 m004 -6-Pi+6*Coth[Sqrt[5]*Pi] 3141583158377089 m004 -Pi+3*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141583158384602 m004 -6+Pi+6*Tanh[Sqrt[5]*Pi] 3141583158392115 m004 -Pi+3*Sech[Sqrt[5]*Pi]^2 3141583160107552 a007 Real Root Of -238*x^4+107*x^3+496*x^2+971*x-355 3141583162169518 a001 18*(1/2*5^(1/2)+1/2)^31*24476^(4/23) 3141583163778242 a001 18*(1/2*5^(1/2)+1/2)^27*39603^(8/23) 3141583164544253 m005 (1/2*exp(1)+3/4)/(11/12*2^(1/2)-5/8) 3141583169842278 m001 cos(Pi/12)/Lehmer^2/exp(sqrt(5))^2 3141583173826063 a001 18*(1/2*5^(1/2)+1/2)^19*15127^(18/23) 3141583178811849 h001 (3/7*exp(2)+7/10)/(1/6*exp(1)+7/9) 3141583190780609 m001 1/FeigenbaumD*Artin^2/ln(GAMMA(1/4))^2 3141583193935455 a007 Real Root Of 616*x^4-898*x^3+385*x^2-774*x-315 3141583194199929 r009 Re(z^3+c),c=-33/82+13/44*I,n=36 3141583219221211 k007 concat of cont frac of 3141583227174701 r009 Im(z^3+c),c=-15/38+7/36*I,n=3 3141583237894101 m001 1/sqrt(2)^2*exp(OneNinth)/sqrt(Pi) 3141583243403562 r002 16th iterates of z^2 + 3141583244354496 a007 Real Root Of 191*x^4+299*x^3-805*x^2+566*x+389 3141583244908348 a001 18*(1/2*5^(1/2)+1/2)^19*5778^(20/23) 3141583245086308 a001 2178309/76*322^(17/41) 3141583247023500 m001 (FibonacciFactorial+Porter)/(Robbin-Stephens) 3141583249501625 r005 Re(z^2+c),c=-17/46+13/44*I,n=9 3141583249989523 b008 Pi*KelvinBer[0,2/17] 3141583251820884 m002 -30*Log[Pi]+Pi/ProductLog[Pi] 3141583253809292 m001 (Lehmer-Otter)/(GAMMA(2/3)-BesselK(1,1)) 3141583256007509 a007 Real Root Of 4*x^4-224*x^3-353*x^2+989*x-744 3141583259003964 m001 HeathBrownMoroz^KhinchinHarmonic-Pi 3141583260633677 r005 Im(z^2+c),c=-37/66+3/53*I,n=64 3141583274781772 m001 1/ln(GAMMA(13/24))^2/Conway*Zeta(9) 3141583276709300 s002 sum(A095991[n]/(2^n+1),n=1..infinity) 3141583292272675 b008 Pi*ModularLambda[I*ArcCoth[5]] 3141583296992898 a007 Real Root Of 422*x^4-542*x^3-620*x^2-898*x+356 3141583298168646 r002 23th iterates of z^2 + 3141583300226056 l006 ln(420/9719) 3141583306451642 m001 ((1+3^(1/2))^(1/2)+Magata)/(ln(3)+Zeta(1,2)) 3141583320132390 r002 25th iterates of z^2 + 3141583325381139 m002 -Pi+1/(Pi^10*Log[Pi]) 3141583330771405 m001 ReciprocalLucas^BesselI(0,1)/RenyiParking 3141583333982540 r005 Re(z^2+c),c=-17/48+4/11*I,n=14 3141583337988688 l006 ln(6066/8305) 3141583350564530 p003 LerchPhi(1/256,4,354/149) 3141583354474331 a007 Real Root Of -648*x^4+499*x^3-996*x^2+665*x+329 3141583356220110 m001 1/Zeta(7)^2*Trott*exp(cos(1))^2 3141583356612303 b008 Pi*ModularLambda[(2*I)/Pi^2] 3141583360155990 m002 -Pi+Tanh[Pi]/(Pi^10*Log[Pi]) 3141583364799614 r005 Re(z^2+c),c=-113/114+3/11*I,n=36 3141583369358191 m001 BesselJ(0,1)^2/Kolakoski^2*ln(Zeta(3))^2 3141583373535468 r009 Re(z^3+c),c=-41/122+9/50*I,n=10 3141583374730937 p004 log(31957/1381) 3141583392555854 m001 HeathBrownMoroz^MadelungNaCl-Pi 3141583405716307 m001 (Zeta(5)-BesselJ(1,1))/(Conway+Gompertz) 3141583405792589 m001 Pi-Zeta(1,-1)^(2*Pi/GAMMA(5/6)) 3141583406648884 a007 Real Root Of -28*x^4-910*x^3-935*x^2+586*x-26 3141583428006365 g007 Psi(2,1/4)-Psi(2,7/10)-Psi(2,7/8)-Psi(2,1/6) 3141583431816352 m001 exp(DuboisRaymond)^2/Cahen^2*log(1+sqrt(2)) 3141583441844839 r005 Im(z^2+c),c=-23/94+29/60*I,n=34 3141583444957857 a007 Real Root Of 168*x^4+348*x^3-756*x^2-727*x-397 3141583452957087 r005 Im(z^2+c),c=2/13+5/18*I,n=14 3141583458924110 a003 cos(Pi*8/69)-cos(Pi*31/108) 3141583459607800 m001 exp(-1/2*Pi)*(2^(1/3))^KomornikLoreti 3141583463693809 a007 Real Root Of 952*x^4+824*x^3+791*x^2-389*x-184 3141583466116941 p001 sum(1/(225*n+32)/(24^n),n=0..infinity) 3141583471548663 a001 18*(1/2*5^(1/2)+1/2)^27*2207^(11/23) 3141583474293528 m001 1/ln(GAMMA(1/12))/ArtinRank2^2/GAMMA(1/3) 3141583499804329 m001 (Salem-TravellingSalesman)/(Zeta(1,-1)-Conway) 3141583501052022 a007 Real Root Of -321*x^4-968*x^3+246*x^2+182*x-602 3141583502704481 m001 ReciprocalLucas^PrimesInBinary/BesselK(0,1) 3141583518033774 a001 1/225749145909*63245986^(3/4) 3141583518033779 a001 47/2504730781961*9227465^(3/4) 3141583518034034 a001 47/591286729879*1346269^(3/4) 3141583518045988 a001 47/139583862445*196418^(3/4) 3141583518607597 a001 47/32951280099*28657^(3/4) 3141583518691918 r005 Re(z^2+c),c=-31/90+23/54*I,n=47 3141583527594878 m004 -100*Pi+Csch[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 3141583527602100 m004 -100*Pi+2/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141583527609321 m004 -100*Pi+Sech[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 3141583527884519 m002 -Pi+Csch[Pi]/Pi^8 3141583543170555 m005 (2*Pi-1)/(3/4+5/12*5^(1/2)) 3141583544926251 m002 -2/(E^Pi*Pi^8)+Pi 3141583544991269 a001 47/7778742049*4181^(3/4) 3141583556408609 r005 Im(z^2+c),c=-5/17+31/60*I,n=27 3141583556735694 r009 Re(z^3+c),c=-33/82+13/44*I,n=40 3141583561904453 m002 -Pi+Sech[Pi]/Pi^8 3141583562698555 s001 sum(exp(-3*Pi/5)^n*A125213[n],n=1..infinity) 3141583569821936 m004 -6+(25*Pi)/(18*ProductLog[Sqrt[5]*Pi]) 3141583570833236 r005 Im(z^2+c),c=-23/82+12/23*I,n=24 3141583572711344 r002 7th iterates of z^2 + 3141583578500631 a007 Real Root Of -547*x^4+301*x^3+595*x^2+655*x+20 3141583580104827 m001 1/BesselK(0,1)*BesselJ(1,1)/exp(Zeta(3)) 3141583581264167 s002 sum(A075463[n]/(n*pi^n+1),n=1..infinity) 3141583582599694 r005 Im(z^2+c),c=-7/40+5/11*I,n=30 3141583584016953 r005 Re(z^2+c),c=-25/48+15/53*I,n=7 3141583585584267 a001 4*(1/2*5^(1/2)+1/2)^23*9349^(7/9) 3141583588251825 a007 Real Root Of 29*x^4+908*x^3-95*x^2+34*x-26 3141583595797563 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^8 3141583600332715 m001 (GAMMA(5/6)-Champernowne)/(ln(5)+BesselI(1,2)) 3141583603967901 r005 Im(z^2+c),c=-1/24+50/59*I,n=9 3141583613115135 a001 4*(1/2*5^(1/2)+1/2)^25*64079^(5/9) 3141583613540190 a001 4*228826127^(17/18) 3141583613883173 r005 Im(z^2+c),c=-4/15+1/20*I,n=4 3141583614294839 r005 Im(z^2+c),c=-3/4+8/217*I,n=6 3141583614430436 a001 4*(1/2*5^(1/2)+1/2)^28*39603^(4/9) 3141583615431962 a001 4*(1/2*5^(1/2)+1/2)^17*39603^(17/18) 3141583618879296 a001 4*(1/2*5^(1/2)+1/2)^30*15127^(7/18) 3141583625743861 a001 4*(1/2*5^(1/2)+1/2)^20*15127^(8/9) 3141583640612778 r005 Re(z^2+c),c=-8/23+26/63*I,n=25 3141583641495881 r009 Im(z^3+c),c=-8/19+2/9*I,n=23 3141583649139652 m002 -Pi+ProductLog[Pi]/(4*Pi^9) 3141583651636487 l006 ln(3839/5256) 3141583652430213 a007 Real Root Of 18*x^4-247*x^3-984*x^2+185*x+881 3141583655102554 r005 Re(z^2+c),c=-29/74+12/43*I,n=10 3141583660610328 m003 -6+6*Csch[1/2+Sqrt[5]/2]+Sech[1/2+Sqrt[5]/2] 3141583663699215 m002 -1/(5*E^Pi*Pi^6)+Pi 3141583669006102 m007 (-2*gamma-6*ln(2)-Pi-3/5)/(-4/5*gamma+3/4) 3141583679657769 m002 -Pi^2-Pi^3+3*Pi*Coth[Pi] 3141583692044530 a007 Real Root Of -279*x^4-76*x^3-565*x^2+302*x+151 3141583694981865 r009 Re(z^3+c),c=-33/82+13/44*I,n=41 3141583697212842 m002 -Pi+Tanh[Pi]/(5*E^Pi*Pi^6) 3141583701172867 m001 (-Khinchin+MertensB1)/(Chi(1)-ln(5)) 3141583706975957 m001 1/PrimesInBinary/ln(Backhouse)^2*Tribonacci 3141583715121411 k006 concat of cont frac of 3141583725421593 m001 (2^(1/3)-Zeta(1/2))/(FellerTornier+Landau) 3141583725991812 m002 Pi-(Csch[Pi]^2*Log[Pi])/Pi^6 3141583727358871 r009 Re(z^3+c),c=-33/82+13/44*I,n=44 3141583745806689 m002 -Pi+3/(Pi^11*Log[Pi]) 3141583750404474 r009 Im(z^3+c),c=-23/66+13/45*I,n=4 3141583758252645 m004 -100*Pi+Coth[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141583758259684 m004 -100*Pi+Csch[Sqrt[5]*Pi]/2 3141583758266722 m004 -100*Pi+Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 3141583758273761 m004 -100*Pi+Sech[Sqrt[5]*Pi]/2 3141583758287838 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/2 3141583758294876 m004 -100*Pi+Tanh[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141583759273217 m002 Pi-(Csch[Pi]*Log[Pi]*Sech[Pi])/Pi^6 3141583760225674 a001 15127/3*1346269^(7/54) 3141583764997036 b008 Pi*ModularLambda[I*(-1+Zeta[3])] 3141583774177703 r009 Re(z^3+c),c=-33/82+13/44*I,n=48 3141583781142273 r009 Re(z^3+c),c=-33/82+13/44*I,n=47 3141583783022847 r009 Re(z^3+c),c=-33/82+13/44*I,n=51 3141583783033854 b008 Pi*ModularLambda[I/7*Sqrt[2]] 3141583783571052 m001 1/exp(GAMMA(19/24))^2*Magata/Zeta(5) 3141583783930007 r009 Re(z^3+c),c=-33/82+13/44*I,n=52 3141583784835069 r009 Re(z^3+c),c=-33/82+13/44*I,n=55 3141583785418036 r009 Re(z^3+c),c=-33/82+13/44*I,n=59 3141583785470797 r009 Re(z^3+c),c=-33/82+13/44*I,n=56 3141583785553052 r009 Re(z^3+c),c=-33/82+13/44*I,n=63 3141583785554128 r009 Re(z^3+c),c=-33/82+13/44*I,n=62 3141583785559752 r009 Re(z^3+c),c=-33/82+13/44*I,n=45 3141583785570046 r009 Re(z^3+c),c=-33/82+13/44*I,n=58 3141583785596467 r009 Re(z^3+c),c=-33/82+13/44*I,n=64 3141583785611777 r009 Re(z^3+c),c=-33/82+13/44*I,n=60 3141583785648798 r009 Re(z^3+c),c=-33/82+13/44*I,n=61 3141583785938610 r009 Re(z^3+c),c=-33/82+13/44*I,n=57 3141583786092215 r009 Re(z^3+c),c=-33/82+13/44*I,n=54 3141583787023904 r009 Re(z^3+c),c=-33/82+13/44*I,n=53 3141583787890642 r005 Im(z^2+c),c=-51/70+16/33*I,n=4 3141583789143809 m005 (1/3*Zeta(3)+1/8)/(11/12*Zeta(3)+4/7) 3141583789513638 r009 Re(z^3+c),c=-33/82+13/44*I,n=49 3141583790129636 r009 Re(z^3+c),c=-33/82+13/44*I,n=50 3141583792430551 m002 Pi-(Log[Pi]*Sech[Pi]^2)/Pi^6 3141583801932225 r005 Re(z^2+c),c=-33/94+17/42*I,n=61 3141583806944166 r009 Re(z^3+c),c=-33/82+13/44*I,n=43 3141583811646623 a007 Real Root Of -245*x^4+864*x^3-303*x^2+856*x+328 3141583812172565 r009 Re(z^3+c),c=-33/82+13/44*I,n=46 3141583812409728 a003 -cos(2/5*Pi)-2*cos(1/8*Pi)-cos(1/18*Pi) 3141583825475898 r005 Re(z^2+c),c=-51/50+4/39*I,n=6 3141583829182155 a007 Real Root Of -228*x^4-937*x^3-750*x^2-18*x+502 3141583833523896 r002 29th iterates of z^2 + 3141583837014953 r005 Im(z^2+c),c=3/52+38/61*I,n=62 3141583837610491 r002 61th iterates of z^2 + 3141583844608043 r005 Im(z^2+c),c=-9/106+19/46*I,n=17 3141583845323099 m001 (3^(1/2)+Conway)/(Kac+PolyaRandomWalk3D) 3141583865215942 r002 6th iterates of z^2 + 3141583865489247 r005 Re(z^2+c),c=29/102+30/61*I,n=55 3141583870390471 m001 exp(GAMMA(1/24))*Robbin^2*arctan(1/2) 3141583876624969 r005 Im(z^2+c),c=9/86+9/29*I,n=18 3141583881859254 m001 Champernowne^(2*Pi/GAMMA(5/6))-Pi 3141583886925986 h001 (1/12*exp(2)+5/7)/(5/11*exp(2)+7/8) 3141583890620208 m001 1/Kolakoski^2/Cahen^2/exp(Paris)^2 3141583904447396 r002 5th iterates of z^2 + 3141583904651680 a007 Real Root Of 517*x^4+8*x^3-525*x^2-132*x+88 3141583905242033 r009 Re(z^3+c),c=-33/82+13/44*I,n=42 3141583907934043 m005 (1/2*3^(1/2)+11/12)/(1/9*3^(1/2)+3/8) 3141583911766721 m001 (ln(5)+exp(1/Pi))/(Artin+Stephens) 3141583912926714 m005 (1/2*3^(1/2)-7/9)/(9/4+1/4*5^(1/2)) 3141583914668357 a007 Real Root Of -134*x^4-357*x^3+122*x^2-328*x-251 3141583914749609 m001 GAMMA(1/4)^2*exp(GAMMA(1/24))^2/Zeta(9) 3141583915127634 m001 FransenRobinson-sin(1/12*Pi)+Lehmer 3141583917956574 r005 Im(z^2+c),c=19/64+32/61*I,n=12 3141583926945714 b008 Pi*KelvinBei[0,1/5] 3141583929184984 r002 33th iterates of z^2 + 3141583933128381 s001 sum(1/10^(n-1)*A152040[n],n=1..infinity) 3141583933128381 s001 sum(1/10^n*A152040[n],n=1..infinity) 3141583933128381 s003 concatenated sequence A152040 3141583937545922 r005 Re(z^2+c),c=-33/74+14/29*I,n=18 3141583939183172 m002 -Pi+(3*Csch[Pi])/Pi^9 3141583939354463 m001 OneNinth-PlouffeB+ZetaQ(2) 3141583939828770 p001 sum((-1)^n/(614*n+315)/(32^n),n=0..infinity) 3141583954232639 m009 (1/5*Psi(1,1/3)+5/6)/(5/6*Psi(1,1/3)+2/3) 3141583955456827 m002 -6/(E^Pi*Pi^9)+Pi 3141583956314821 m001 HardHexagonsEntropy*ln(5)^Niven 3141583959242545 r005 Re(z^2+c),c=-25/56+5/13*I,n=10 3141583962844894 h001 (-3*exp(7)+1)/(-7*exp(5)-8) 3141583971669816 m002 -Pi+(3*Sech[Pi])/Pi^9 3141583973306204 m005 (5/6*Pi-2/5)/(1/3+1/6*5^(1/2)) 3141583982784033 m008 (1/2*Pi^6+1/4)/(5*Pi^5+4/5) 3141583983094302 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/4 3141583983101163 m004 -100*Pi+Log[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141583983108023 m004 -100*Pi+(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/4 3141583987181026 m005 (1/2*5^(1/2)+8/9)/(1/11*Catalan+5/9) 3141583999715981 a001 646/341*2^(27/37) 3141584000671065 l006 ln(5451/7463) 3141584002816280 s001 sum(exp(-Pi/4)^(n-1)*A011418[n],n=1..infinity) 3141584007692701 a001 4*(1/2*5^(1/2)+1/2)^28*2207^(11/18) 3141584008937983 m001 (Zeta(1,-1)-gamma(3))/(FeigenbaumDelta+Robbin) 3141584027255409 m005 (1/3*2^(1/2)-3/4)/(1/12*Pi+5/8) 3141584036576836 m009 (4/3*Catalan+1/6*Pi^2-1/2)/(1/2*Psi(1,2/3)+6) 3141584042776405 a001 1597/2*29^(24/59) 3141584043729862 a007 Real Root Of -301*x^4-942*x^3-110*x^2-387*x-18 3141584043815676 a007 Real Root Of -809*x^4-406*x^3-751*x^2+769*x+311 3141584059390335 r009 Re(z^3+c),c=-33/82+13/44*I,n=32 3141584067758655 r009 Re(z^3+c),c=-33/82+13/44*I,n=39 3141584072554410 r005 Im(z^2+c),c=-17/66+45/64*I,n=12 3141584077759447 m002 Pi-Log[Pi]/(6*E^Pi*Pi^6) 3141584079953955 p001 sum((-1)^n/(448*n+317)/(100^n),n=0..infinity) 3141584080936884 a007 Real Root Of -282*x^4+158*x^3-679*x^2+921*x+364 3141584088022795 b008 Pi*GammaRegularized[1/2,0,11] 3141584096591245 m001 1/Riemann1stZero/exp(GlaisherKinkelin)^2*gamma 3141584104220969 a007 Real Root Of -228*x^4-451*x^3+981*x^2+224*x-753 3141584104476475 m009 (1/4*Psi(1,2/3)+1/6)/(3*Psi(1,1/3)-3/5) 3141584116175211 k006 concat of cont frac of 3141584117702345 m001 arctan(1/2)^2/GAMMA(11/24)*ln(sin(Pi/5))^2 3141584125464173 g002 Psi(4/7)+Psi(4/5)+Psi(1/5)-Psi(2/9) 3141584126840503 r005 Re(z^2+c),c=-49/122+5/29*I,n=28 3141584150041193 a001 987/439204*2^(29/60) 3141584150566554 l006 ln(121/2800) 3141584158209006 r005 Re(z^2+c),c=-13/32+7/53*I,n=19 3141584169402503 m002 -Pi+Pi^5-ProductLog[Pi]/4+Sinh[Pi] 3141584183344502 r009 Re(z^3+c),c=-33/82+13/44*I,n=38 3141584185997584 m001 Pi-ZetaQ(4)^MasserGramainDelta 3141584189494245 m001 (sin(1/5*Pi)-Artin)/(Kac-Mills) 3141584190384177 l006 ln(7063/9670) 3141584212267280 r005 Im(z^2+c),c=-5/7+24/97*I,n=31 3141584213389111 m001 ln(GAMMA(5/6))^2*MinimumGamma^2*Zeta(9) 3141584221212218 k006 concat of cont frac of 3141584226056989 m001 (Khinchin+MertensB3)/(Mills-Trott2nd) 3141584244956947 a001 38*13^(14/17) 3141584257338747 r005 Re(z^2+c),c=39/98+13/42*I,n=38 3141584261469609 b008 1+39*FresnelC[1] 3141584266888900 m002 -1/(4*Pi^9)+Pi 3141584268329292 r009 Im(z^3+c),c=-21/44+6/35*I,n=49 3141584268599999 a001 2/1149851*18^(9/44) 3141584280270593 m002 -Pi+(Csch[Pi]^2*ProductLog[Pi])/Pi^6 3141584280679816 m001 (gamma-MertensB2)/Backhouse 3141584283183410 a007 Real Root Of -125*x^4-465*x^3+54*x^2+980*x+304 3141584298153881 m002 -Pi+Tanh[Pi]/(4*Pi^9) 3141584308007829 m002 -E^Pi/(3*Pi^12)+Pi 3141584311485689 m002 -Pi+(Csch[Pi]*ProductLog[Pi]*Sech[Pi])/Pi^6 3141584315133244 m001 (Chi(1)-MertensB3)/(OneNinth+Porter) 3141584316316549 a001 18*(1/2*5^(1/2)+1/2)^31*843^(6/23) 3141584322694760 m001 Pi-Trott^Sierpinski 3141584339145607 r005 Re(z^2+c),c=-39/106+16/47*I,n=19 3141584340333722 s002 sum(A053551[n]/((2*n)!),n=1..infinity) 3141584342584417 m002 -Pi+(ProductLog[Pi]*Sech[Pi]^2)/Pi^6 3141584356765864 m001 (Pi^(1/2)-Magata)/(Ei(1)-exp(1/Pi)) 3141584358451388 k002 Champernowne real with 133/2*n^2-377/2*n+125 3141584367046177 h001 (5/11*exp(2)+6/7)/(1/6*exp(1)+8/9) 3141584382610568 a001 4/17711*317811^(43/46) 3141584388998578 r009 Re(z^3+c),c=-33/82+13/44*I,n=34 3141584390958139 m005 (1/2*Pi+5/8)/(7/9*gamma+1/4) 3141584395432145 h001 (1/8*exp(1)+2/5)/(7/11*exp(1)+5/8) 3141584410196071 a001 55/521*199^(25/39) 3141584417348094 a007 Real Root Of 217*x^4+453*x^3-464*x^2+963*x+513 3141584418691448 k003 Champernowne real with n^3+121/2*n^2-355/2*n+119 3141584420440460 m001 1/exp(FeigenbaumC)*Niven*GAMMA(1/12) 3141584424087786 m001 GAMMA(3/4)+MertensB2+QuadraticClass 3141584433013211 m005 (1/2*5^(1/2)+3/4)/(3*3^(1/2)+3/4) 3141584433064744 r009 Im(z^3+c),c=-43/78+9/31*I,n=9 3141584441192014 a007 Real Root Of -5*x^4+83*x^3-19*x^2-961*x+229 3141584460317466 p004 log(26681/1153) 3141584467330711 m001 exp(Niven)^2*Khintchine/sin(Pi/12) 3141584469368191 m005 (1/4*gamma+5)/(29/30+3/10*5^(1/2)) 3141584496812404 m001 -Zeta(3)/(-GAMMA(19/24)+5) 3141584504738747 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/2 3141584504745195 m004 -100*Pi+Tan[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141584504751643 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/2 3141584506733861 m001 exp(Pi)*CopelandErdos*Stephens 3141584515788905 m001 (ln(3)-arctan(1/2))/(Mills+TravellingSalesman) 3141584525667967 m001 (FeigenbaumD-Paris)/(gamma(2)+FeigenbaumB) 3141584527405331 m001 Pi-StolarskyHarborth^FeigenbaumDelta 3141584531978458 m001 (ln(5)+Ei(1))/(Backhouse-PolyaRandomWalk3D) 3141584533843981 r005 Re(z^2+c),c=-17/26+3/26*I,n=4 3141584535940365 m004 -100*Pi+Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi]^2 3141584535953211 m004 -100*Pi+Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi]^2 3141584536858942 m001 ZetaP(3)*(Cahen-arctan(1/2)) 3141584537583908 r005 Im(z^2+c),c=-6/7+20/89*I,n=15 3141584538335949 r005 Re(z^2+c),c=-1/3+19/42*I,n=14 3141584539171568 k003 Champernowne real with 3*n^3+97/2*n^2-311/2*n+107 3141584548503625 a007 Real Root Of 394*x^4+234*x^3-17*x^2-552*x+164 3141584548703993 r005 Im(z^2+c),c=11/40+3/17*I,n=13 3141584569291598 k003 Champernowne real with 7/2*n^3+91/2*n^2-150*n+104 3141584572162067 r005 Re(z^2+c),c=-13/36+23/62*I,n=30 3141584573459517 a007 Real Root Of 278*x^4+631*x^3-478*x^2+904*x+43 3141584581334987 m001 Pi-gamma(3)^Ei(1) 3141584599411628 k003 Champernowne real with 4*n^3+85/2*n^2-289/2*n+101 3141584608688468 m001 1/exp(Magata)/Champernowne^2*Zeta(3)^2 3141584610198385 m002 -Pi+ProductLog[Pi]/(6*E^Pi*Pi^6) 3141584611070450 r005 Re(z^2+c),c=-31/94+29/63*I,n=22 3141584611930733 m001 (DuboisRaymond+GolombDickman)/(Chi(1)-gamma) 3141584616077606 r005 Re(z^2+c),c=-5/4+21/214*I,n=31 3141584621566287 q001 1/3183107 3141584624948096 r005 Im(z^2+c),c=-29/102+16/33*I,n=15 3141584626242148 m001 (-KomornikLoreti+MertensB3)/(Chi(1)-ln(2)) 3141584629531658 k003 Champernowne real with 9/2*n^3+79/2*n^2-139*n+98 3141584630249107 a007 Real Root Of 102*x^4-760*x^3-233*x^2-864*x+317 3141584631417084 m001 Pi-ZetaQ(4)^FeigenbaumC 3141584633344397 a001 1364/987*196418^(26/41) 3141584634514000 a007 Real Root Of 346*x^4+926*x^3-526*x^2-288*x-705 3141584634888327 r005 Im(z^2+c),c=-15/52+25/52*I,n=14 3141584659651688 k003 Champernowne real with 5*n^3+73/2*n^2-267/2*n+95 3141584660028739 m005 (1/3*3^(1/2)-1/9)/(4/7*Catalan-3/8) 3141584660567906 m004 (25*Sqrt[5]*Pi)/6+5/ProductLog[Sqrt[5]*Pi]^2 3141584663969780 m001 3^(1/3)+exp(1/exp(1))*Salem 3141584667899746 a007 Real Root Of 120*x^4-178*x^3+628*x^2-765*x-309 3141584670250243 m002 2/Pi^3+Pi^3+4*Sech[Pi] 3141584670338087 a005 (1/cos(6/157*Pi))^1752 3141584672487090 a007 Real Root Of 92*x^4+429*x^3+253*x^2-523*x+200 3141584674859230 m001 1/GAMMA(1/3)^2*BesselJ(0,1)*exp(cos(1))^2 3141584684146058 m002 -(E^Pi/Pi^13)+Pi 3141584689771718 k003 Champernowne real with 11/2*n^3+67/2*n^2-128*n+92 3141584700903496 a001 2584/1149851*2^(29/60) 3141584711592011 k008 concat of cont frac of 3141584719891748 k003 Champernowne real with 6*n^3+61/2*n^2-245/2*n+89 3141584736327694 m001 FibonacciFactorial/(exp(1)+KhinchinLevy) 3141584740003335 r002 32th iterates of z^2 + 3141584740906279 m004 -5-Pi+5*Coth[Sqrt[5]*Pi] 3141584740918801 m004 -5+Pi+5*Tanh[Sqrt[5]*Pi] 3141584741001177 k003 Champernowne real with 13/2*n^3+55/2*n^2-117*n+86 3141584743866019 m001 BesselK(1,1)^exp(Pi)-Pi 3141584765141647 r005 Im(z^2+c),c=-4/19+39/58*I,n=9 3141584771013180 k003 Champernowne real with 7*n^3+49/2*n^2-223/2*n+83 3141584773375678 m002 Pi-Cosh[Pi]/(5*Pi^11) 3141584773897725 r005 Re(z^2+c),c=-33/94+17/42*I,n=64 3141584779097590 r005 Im(z^2+c),c=-13/94+25/57*I,n=26 3141584781273223 a001 6765/3010349*2^(29/60) 3141584784462160 a001 47/1836311903*610^(3/4) 3141584785970361 r005 Im(z^2+c),c=-37/110+31/59*I,n=47 3141584799624521 b008 Pi*JacobiSD[1/10,1/2] 3141584800245942 a001 10946/4870847*2^(29/60) 3141584801025183 k003 Champernowne real with 15/2*n^3+43/2*n^2-106*n+80 3141584801714941 m001 HeathBrownMoroz^(Pi^(1/2))-Pi 3141584802752515 m002 Pi-Sinh[Pi]/(5*Pi^11) 3141584819367052 m001 (Pi+Artin)/(Cahen+PlouffeB) 3141584820596729 m005 (1/2*Zeta(3)+3/7)/(9/11*gamma-4/5) 3141584821432623 a007 Real Root Of 267*x^4+502*x^3-984*x^2+108*x-392 3141584830944446 a001 4181/1860498*2^(29/60) 3141584831037186 k003 Champernowne real with 8*n^3+37/2*n^2-201/2*n+77 3141584831901627 l006 ln(1612/2207) 3141584838066013 r005 Re(z^2+c),c=-13/46+22/37*I,n=52 3141584845680249 r005 Re(z^2+c),c=43/122+17/60*I,n=23 3141584852803353 m001 (FeigenbaumAlpha+Paris)/(Zeta(3)-Artin) 3141584854721177 m002 -Pi+Csch[Pi]^2/Pi^6 3141584861049189 k003 Champernowne real with 17/2*n^3+31/2*n^2-95*n+74 3141584863381541 m001 1/BesselK(0,1)^2*Backhouse/exp(GAMMA(1/6)) 3141584864928490 m001 FellerTornier*MertensB2+FransenRobinson 3141584869285117 m002 -Pi+(2*Csch[Pi])/(E^Pi*Pi^6) 3141584869840948 m001 (-3^(1/3)+4)/(Pi+5) 3141584871711804 m002 -Pi+(2*Log[Pi])/Pi^11 3141584873595561 p003 LerchPhi(1/512,5,208/165) 3141584876457075 a009 9/17-1/17*7^(2/3) 3141584880324350 h001 (-4*exp(8)+3)/(-5*exp(2)-1) 3141584883794764 m002 -Pi+(Csch[Pi]*Sech[Pi])/Pi^6 3141584883821860 m002 -4/(E^(2*Pi)*Pi^6)+Pi 3141584891061192 k003 Champernowne real with 9*n^3+25/2*n^2-179/2*n+71 3141584896819019 r002 59th iterates of z^2 + 3141584897113033 b008 Pi/(3/2+Pi)^3 3141584898304412 m002 -Pi+(2*Sech[Pi])/(E^Pi*Pi^6) 3141584907139710 h001 (4/11*exp(1)+1/9)/(3/7*exp(2)+1/3) 3141584912759968 m002 -Pi+Sech[Pi]^2/Pi^6 3141584921073195 k003 Champernowne real with 19/2*n^3+19/2*n^2-84*n+68 3141584935349129 p003 LerchPhi(1/16,5,193/153) 3141584941617192 m002 -Pi+(Sech[Pi]^2*Tanh[Pi])/Pi^6 3141584945975878 r009 Re(z^3+c),c=-39/94+14/61*I,n=4 3141584951085198 k003 Champernowne real with 10*n^3+13/2*n^2-157/2*n+65 3141584953120837 m001 1/GAMMA(11/24)*ln((3^(1/3)))^2*GAMMA(5/12)^2 3141584960707282 m005 (4*gamma-3/4)/(1/6*gamma+2/5) 3141584960707282 m007 (-4*gamma+3/4)/(-1/6*gamma-2/5) 3141584969720276 a007 Real Root Of 324*x^4-94*x^3+744*x^2-113*x-115 3141584973184068 m002 Pi-Log[Pi]/(5*Pi^9) 3141584974839309 r009 Re(z^3+c),c=-13/34+12/47*I,n=7 3141584981097201 k003 Champernowne real with 21/2*n^3+7/2*n^2-73*n+62 3141584984128044 m001 (BesselI(0,2)+Niven)/(3^(1/2)-arctan(1/2)) 3141584986966338 l006 ln(427/9881) 3141584994268201 a001 1/3647*(1/2*5^(1/2)+1/2)^28*521^(13/16) 3141585009329944 m001 exp(GAMMA(1/24))*MinimumGamma^2/GAMMA(23/24)^2 3141585011109204 k003 Champernowne real with 11*n^3+1/2*n^2-135/2*n+59 3141585014091835 a007 Real Root Of 223*x^4+492*x^3-549*x^2+273*x-191 3141585018951907 a007 Real Root Of -23*x^4-694*x^3+902*x^2+137*x-256 3141585024304985 m001 ReciprocalLucas^(Riemann3rdZero/MertensB3) 3141585024752657 m001 (exp(-1/2*Pi)+2*Pi/GAMMA(5/6))/(Robbin+Salem) 3141585026814782 r005 Im(z^2+c),c=19/78+11/54*I,n=29 3141585033611587 m001 Pi-ZetaQ(4)^Tribonacci 3141585034674942 m005 (5/8+1/4*5^(1/2))/(-55/14+1/14*5^(1/2)) 3141585040469073 m001 (gamma(1)-sin(1))/(Conway+ErdosBorwein) 3141585041121207 k003 Champernowne real with 23/2*n^3-5/2*n^2-62*n+56 3141585041355122 a001 1597/710647*2^(29/60) 3141585067546370 m002 -3-E^Pi+Pi^3-Pi*Sinh[Pi] 3141585071133210 k003 Champernowne real with 12*n^3-11/2*n^2-113/2*n+53 3141585078503883 b008 Pi*ModularLambda[I/5] 3141585078981733 a003 cos(Pi*7/79)/sin(Pi*10/101) 3141585083857541 m001 (2^(1/2)*MertensB2+KomornikLoreti)/MertensB2 3141585094271171 m005 (1/2*2^(1/2)-1/7)/(6*Pi-8/9) 3141585095141499 h001 (5/9*exp(2)+10/11)/(1/10*exp(2)+6/7) 3141585098712876 m001 (BesselI(1,2)+Cahen)/(HeathBrownMoroz+Rabbit) 3141585116747905 r005 Re(z^2+c),c=-35/114+17/32*I,n=44 3141585123221111 k007 concat of cont frac of 3141585123828249 r005 Im(z^2+c),c=-15/52+32/63*I,n=18 3141585131306155 m001 HardyLittlewoodC5-Salem+ZetaP(2) 3141585135101491 m003 359/10+Sqrt[5]/4-E^(1/2+Sqrt[5]/2) 3141585145052481 r005 Re(z^2+c),c=-41/122+29/54*I,n=35 3141585147947227 r005 Im(z^2+c),c=7/36+7/19*I,n=4 3141585149586018 m001 1/Magata/GaussKuzminWirsing^2*ln(FeigenbaumD) 3141585156936991 m001 (ln(3)+gamma(2))/(BesselI(0,2)+KhinchinLevy) 3141585157121925 a007 Real Root Of 353*x^4+951*x^3-155*x^2+922*x-472 3141585162014311 m002 -1/(6*E^Pi*Pi^6)+Pi 3141585171897678 b008 Pi*KelvinBer[0,1/9] 3141585181777352 p004 log(24043/1039) 3141585188580625 m004 -100*Pi+Tan[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141585189942334 m002 -Pi+Tanh[Pi]/(6*E^Pi*Pi^6) 3141585195483698 r005 Im(z^2+c),c=-113/98+13/54*I,n=20 3141585196061273 m004 -25*Pi+15*Pi*Coth[Sqrt[5]*Pi] 3141585196073075 m004 -5*Pi+15*Pi*Tanh[Sqrt[5]*Pi] 3141585196078976 m004 25*Pi+75*Pi*Tanh[Sqrt[5]*Pi]^2 3141585196084877 m004 5*Pi+5*Pi*Tanh[Sqrt[5]*Pi]^3 3141585198538207 m001 (Thue-ZetaP(2))/(ln(2)+BesselK(1,1)) 3141585205969755 m001 (ErdosBorwein-sin(1))/(-MinimumGamma+Niven) 3141585212241554 r005 Re(z^2+c),c=3/10+4/37*I,n=54 3141585212321412 k007 concat of cont frac of 3141585222443702 m002 -Pi+(6*Log[Pi])/Pi^12 3141585222808721 m001 1/GAMMA(3/4)*exp(KhintchineLevy)*sinh(1) 3141585231806974 a007 Real Root Of -22*x^4-682*x^3+301*x^2+416*x-338 3141585240820567 m004 -5/(6*E^(Sqrt[5]*Pi))+100*Pi 3141585269120123 r009 Im(z^3+c),c=-31/74+4/21*I,n=4 3141585269215626 r002 5th iterates of z^2 + 3141585284907303 m001 BesselI(1,2)+HardHexagonsEntropy^ln(2+3^(1/2)) 3141585293854023 m001 HeathBrownMoroz^Grothendieck-Pi 3141585295413405 m001 Salem^2/exp(Robbin)*BesselJ(1,1) 3141585299054852 a007 Real Root Of 109*x^4+68*x^3-732*x^2+456*x+148 3141585311762023 m001 Bloch*(LambertW(1)+Paris) 3141585317699393 l006 ln(306/7081) 3141585327791381 m001 (sin(1/5*Pi)+cos(1/5*Pi))/(Landau-Paris) 3141585327977069 r005 Im(z^2+c),c=-11/42+27/55*I,n=47 3141585330932057 m005 (1/2*5^(1/2)-1/11)/(6/11*2^(1/2)-4/9) 3141585338653243 r005 Re(z^2+c),c=-1+5/24*I,n=34 3141585342530522 m001 (Lehmer-Riemann3rdZero)/(gamma(1)-CareFree) 3141585354857422 m002 -Pi+(2*ProductLog[Pi])/Pi^11 3141585357656920 r005 Im(z^2+c),c=-13/90+11/25*I,n=19 3141585360427631 b008 Pi*JacobiCN[2,3] 3141585362049235 r005 Re(z^2+c),c=23/66+3/20*I,n=53 3141585365355323 r009 Re(z^3+c),c=-13/44+1/11*I,n=3 3141585369529019 m001 (Zeta(3)+2*Pi/GAMMA(5/6))/(GAMMA(7/12)+Kac) 3141585390768722 m001 (GaussAGM+OneNinth)/(ln(Pi)-exp(1/exp(1))) 3141585405145655 m002 -5/(E^Pi*Pi^9)+Pi 3141585410957286 a007 Real Root Of -329*x^4-996*x^3+191*x^2+472*x+763 3141585411469115 a007 Real Root Of -522*x^4+536*x^3+660*x^2+957*x+3 3141585412074796 m001 (Magata-Rabbit)/(ln(2)-Zeta(1,-1)) 3141585443660130 m001 (-LaplaceLimit+ReciprocalLucas)/(Cahen-Shi(1)) 3141585447580966 r005 Re(z^2+c),c=-69/122+23/39*I,n=5 3141585450029680 m002 -Pi+ProductLog[Pi]/(5*Pi^9) 3141585458562314 r002 51i'th iterates of 2*x/(1-x^2) of 3141585462249858 r005 Im(z^2+c),c=-13/44+17/40*I,n=6 3141585482696613 m001 (2^(1/3)+GaussKuzminWirsing)/(-Gompertz+Paris) 3141585488068554 r009 Re(z^3+c),c=-37/82+19/51*I,n=60 3141585488259735 r009 Im(z^3+c),c=-7/86+14/41*I,n=7 3141585491926425 m001 GAMMA(19/24)^2/exp(CareFree)^2*cos(Pi/12)^2 3141585494892590 p004 log(18443/797) 3141585496104177 s002 sum(A180211[n]/(n^2*pi^n+1),n=1..infinity) 3141585504423342 r005 Re(z^2+c),c=-53/60+17/37*I,n=2 3141585524681294 a001 3571/2584*196418^(26/41) 3141585533245192 m005 (1/2*Catalan+1/8)/(1/4*gamma-2) 3141585534732134 m001 HeathBrownMoroz^KomornikLoreti-Pi 3141585537325705 m004 -100*Pi+(2*Csch[Sqrt[5]*Pi])/5 3141585537331336 m004 -4/(5*E^(Sqrt[5]*Pi))+100*Pi 3141585537336967 m004 -100*Pi+(2*Sech[Sqrt[5]*Pi])/5 3141585543909249 r005 Im(z^2+c),c=-7/23+32/63*I,n=50 3141585546903244 r009 Re(z^3+c),c=-15/32+2/5*I,n=48 3141585547821787 m002 5/E^Pi+6/Pi^3+Pi^3 3141585548786337 r002 35th iterates of z^2 + 3141585564014942 a001 370248451/144*55^(1/20) 3141585579558350 m001 Pi-ZetaQ(3)^FeigenbaumAlpha 3141585594262923 a007 Real Root Of -745*x^4+157*x^3+796*x^2+235*x-150 3141585602956571 m001 (FeigenbaumD+PlouffeB)/(ln(2)/ln(10)+CareFree) 3141585608695290 l006 ln(5833/7986) 3141585609666077 a007 Real Root Of 598*x^4+671*x^3+926*x^2-769*x-318 3141585612612468 r004 Re(z^2+c),c=-3/7+6/13*I,z(0)=exp(7/8*I*Pi),n=6 3141585623786181 a007 Real Root Of 205*x^4+675*x^3-65*x^2-727*x-682 3141585626869107 m001 Pi-ZetaQ(4)^Si(Pi) 3141585631092853 m005 (1/2*Pi-1/5)/(1/12*5^(1/2)+1/4) 3141585632892728 r005 Re(z^2+c),c=-41/52+9/55*I,n=8 3141585634315505 a007 Real Root Of -118*x^4-100*x^3+478*x^2-967*x+638 3141585649013822 a007 Real Root Of 82*x^4+71*x^3-674*x^2-530*x-799 3141585654725568 a001 9349/6765*196418^(26/41) 3141585668034250 m002 Pi-Log[Pi]/(E^(2*Pi)*Pi^5) 3141585673698772 a001 24476/17711*196418^(26/41) 3141585674011061 r009 Re(z^3+c),c=-33/82+13/44*I,n=35 3141585676097820 m001 ZetaQ(2)^FeigenbaumKappa*ZetaQ(4) 3141585678177737 a001 39603/28657*196418^(26/41) 3141585678455521 r005 Im(z^2+c),c=-23/86+14/23*I,n=55 3141585683813782 m002 -Pi+(6*ProductLog[Pi])/Pi^12 3141585684664551 b008 Pi*ModularLambda[(5*I)/8/Pi] 3141585685424856 a001 15127/10946*196418^(26/41) 3141585687513904 p004 log(21751/15887) 3141585691107795 m005 (1/2*gamma-2/7)/(11/12*3^(1/2)-2/3) 3141585709781334 a007 Real Root Of -273*x^4-650*x^3+715*x^2+489*x+918 3141585710576584 a007 Real Root Of -359*x^4-999*x^3+31*x^2-929*x+770 3141585716520211 a007 Real Root Of -563*x^4-119*x^3+433*x^2+523*x+16 3141585717193400 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/5 3141585717204377 m004 -100*Pi+(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/5 3141585717663961 m001 (Shi(1)-GAMMA(19/24))^ln(5) 3141585727236661 m009 (2/5*Psi(1,3/4)+4)/(1/4*Psi(1,2/3)-3/4) 3141585728906731 a007 Real Root Of 256*x^4+596*x^3-559*x^2+154*x-456 3141585731049948 a005 (1/sin(91/201*Pi))^1144 3141585734995671 m001 Psi(2,1/3)*Gompertz+Backhouse 3141585735097347 a001 5778/4181*196418^(26/41) 3141585747149978 a001 47/6765*121393^(14/43) 3141585748136385 r009 Im(z^3+c),c=-9/19+10/57*I,n=45 3141585753048440 r009 Im(z^3+c),c=-25/58+19/62*I,n=4 3141585754691181 a007 Real Root Of -63*x^4+155*x^3+110*x^2+159*x-65 3141585758166921 r005 Re(z^2+c),c=-19/52+23/44*I,n=29 3141585762202910 r005 Im(z^2+c),c=-133/110+2/45*I,n=33 3141585763770196 m009 (1/6*Psi(1,2/3)+4)/(32/5*Catalan+4/5*Pi^2+3/5) 3141585805359221 a001 39603/55*21^(15/31) 3141585807391933 r005 Im(z^2+c),c=-1/94+11/18*I,n=9 3141585830148834 m002 -Pi+(2*Coth[Pi])/Pi^11 3141585836797893 m001 (GaussAGM+ZetaQ(2))/(GAMMA(11/12)+Pi^(1/2)) 3141585842867468 m002 Pi-(E^Pi*Csch[Pi])/Pi^11 3141585852082891 a001 843/13*5^(50/51) 3141585855586102 m002 -2/Pi^11+Pi 3141585861832635 m001 (BesselK(1,1)+Paris)/(exp(Pi)-sin(1)) 3141585866107483 m001 (DuboisRaymond+TwinPrimes)/(Pi-BesselK(0,1)) 3141585866825667 m001 (GAMMA(11/12)+PlouffeB)/(Zeta(5)+ln(gamma)) 3141585868257322 m002 Pi-(E^Pi*Sech[Pi])/Pi^11 3141585880928542 m002 -Pi+(2*Tanh[Pi])/Pi^11 3141585895241664 m001 (DuboisRaymond+Paris)/(ln(3)+Zeta(1,-1)) 3141585897278597 r005 Im(z^2+c),c=-9/14+43/151*I,n=11 3141585901819702 m001 HardyLittlewoodC4^Psi(1,1/3)-Pi 3141585905352792 l006 ln(4221/5779) 3141585926879377 a007 Real Root Of -348*x^4+687*x^3-160*x^2-27*x+32 3141585935976205 m001 BesselK(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141585944229078 m002 -1/(5*Pi^9)+Pi 3141585951287651 m004 -3*Csc[Sqrt[5]*Pi]+(2*Log[Sqrt[5]*Pi])/3 3141585960163652 r002 18th iterates of z^2 + 3141585963956340 m001 (-Kolakoski+Porter)/(3^(1/2)-exp(Pi)) 3141585966403217 b008 Pi*ModularLambda[I/4/2^(1/3)] 3141585969241064 m002 -Pi+Tanh[Pi]/(5*Pi^9) 3141585982097490 m004 -3/(4*E^(Sqrt[5]*Pi))+100*Pi 3141585986848292 h001 (10/11*exp(2)+7/8)/(3/10*exp(2)+1/5) 3141585990502536 m001 ReciprocalFibonacci^(exp(1)*KhinchinHarmonic) 3141586016397476 r005 Re(z^2+c),c=-17/42+6/41*I,n=23 3141586016958671 a007 Real Root Of 214*x^4+299*x^3-879*x^2+962*x+123 3141586043359445 r005 Re(z^2+c),c=-11/31+17/41*I,n=16 3141586050276111 p004 log(31687/30707) 3141586051010349 r002 20th iterates of z^2 + 3141586054063387 r005 Im(z^2+c),c=-89/86+13/53*I,n=40 3141586057845252 m002 E^Pi+Pi/6+Pi^3/4 3141586068828503 m005 (1/3*2^(1/2)+2/5)/(6/7*5^(1/2)+6/7) 3141586069504521 a001 4*(1/2*5^(1/2)+1/2)^30*843^(5/9) 3141586071931191 p001 sum(1/(576*n+323)/(25^n),n=0..infinity) 3141586075557635 a001 2207/1597*196418^(26/41) 3141586077105340 m008 (5*Pi^6+2/3)/(5*Pi^3-2) 3141586077829703 r005 Re(z^2+c),c=-25/78+26/51*I,n=13 3141586078287287 r005 Re(z^2+c),c=-115/122+2/13*I,n=56 3141586081066621 l006 ln(185/4281) 3141586084070421 m001 GAMMA(11/12)^Otter-Thue 3141586086744697 m002 Pi-Cosh[Pi]/(6*Pi^11) 3141586092033660 a003 cos(Pi*1/55)/cos(Pi*27/68) 3141586094450210 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/2 3141586094455400 m004 -100*Pi+Cos[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141586094460590 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/2 3141586096914636 r005 Re(z^2+c),c=-17/106+31/50*I,n=40 3141586098899368 p004 log(24481/17881) 3141586099377783 m004 -1+Tanh[Sqrt[5]*Pi]+Pi*Tanh[Sqrt[5]*Pi] 3141586101423771 m005 (1/2*Catalan-2)/(1/10*Catalan-5) 3141586101739399 m002 -Pi+ProductLog[Pi]/(E^(2*Pi)*Pi^5) 3141586106197208 r005 Re(z^2+c),c=-29/94+28/53*I,n=62 3141586111225395 m002 Pi-Sinh[Pi]/(6*Pi^11) 3141586115192985 m008 (3/4*Pi^2-1/6)/(3/4*Pi^5+4/5) 3141586124139950 r005 Re(z^2+c),c=-33/98+15/38*I,n=12 3141586126127732 r009 Im(z^3+c),c=-9/52+20/61*I,n=10 3141586130811676 b008 Sqrt[2]+Zeta[Sqrt[2],E] 3141586137683648 m002 -Pi+(6*Coth[Pi])/Pi^12 3141586139395315 r005 Re(z^2+c),c=4/11+10/53*I,n=20 3141586158706110 l006 ln(6830/9351) 3141586161009396 r005 Re(z^2+c),c=-9/40+10/17*I,n=36 3141586161974450 m002 -6/Pi^12+Pi 3141586162154588 r005 Im(z^2+c),c=-25/114+26/55*I,n=24 3141586182434921 r005 Im(z^2+c),c=-121/118+15/59*I,n=54 3141586186174697 m002 -Pi+(6*Tanh[Pi])/Pi^12 3141586192562259 a007 Real Root Of -566*x^4-233*x^3-740*x^2+973*x+377 3141586208034044 p003 LerchPhi(1/1024,1,71/223) 3141586211614389 r009 Im(z^3+c),c=-13/54+9/28*I,n=3 3141586220866598 m001 (-GAMMA(2/3)+Backhouse)/(cos(1/5*Pi)-sin(1)) 3141586232760547 r005 Re(z^2+c),c=-5/66+39/62*I,n=18 3141586236308109 m001 (Artin-OneNinth)/(exp(-1/2*Pi)-GAMMA(11/12)) 3141586237891112 m001 Pi-gamma(3)^(Pi*csc(11/24*Pi)/GAMMA(13/24)) 3141586249111650 a001 5/1364*123^(25/56) 3141586253251689 m002 Pi-Log[Pi]/(6*Pi^9) 3141586267469924 a007 Real Root Of 26*x^4+844*x^3+874*x^2+651*x+832 3141586267481683 r009 Im(z^3+c),c=-19/34+18/59*I,n=20 3141586268012023 r009 Im(z^3+c),c=-11/26+9/43*I,n=8 3141586270611790 m005 (1/2*3^(1/2)-2/7)/(5/7*5^(1/2)+1/4) 3141586272002469 p004 log(12923/9439) 3141586272189965 m001 sin(1/12*Pi)^exp(1)/(gamma(1)^exp(1)) 3141586272310716 m006 (2/5*ln(Pi)-3/5)/(1/6*exp(Pi)+2/3) 3141586272448403 m001 Gompertz^exp(Pi)-Pi 3141586273338907 m005 (1/2*3^(1/2)-10/11)/(3/10*5^(1/2)+7/10) 3141586278176615 r005 Im(z^2+c),c=-18/19+11/42*I,n=5 3141586292833692 r005 Re(z^2+c),c=-23/60+2/7*I,n=17 3141586302028560 m001 (PlouffeB+Tribonacci)/(TwinPrimes+ZetaP(4)) 3141586319864755 a003 cos(Pi*26/115)/cos(Pi*49/116) 3141586321962350 m002 -Pi+2/(Pi^11*ProductLog[Pi]) 3141586322232019 m004 -(Sqrt[5]/(E^(Sqrt[5]*Pi)*Pi))+100*Pi 3141586323437973 m004 -Pi+2*Csch[Sqrt[5]*Pi]^2 3141586323442981 m004 -4-Pi+4*Coth[Sqrt[5]*Pi] 3141586323447990 m004 -Pi+2*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141586323452999 m004 -4+Pi+4*Tanh[Sqrt[5]*Pi] 3141586323458008 m004 -Pi+2*Sech[Sqrt[5]*Pi]^2 3141586329409653 r005 Re(z^2+c),c=11/46+16/31*I,n=15 3141586333283121 m001 (Mills-ReciprocalLucas)/(Ei(1)+DuboisRaymond) 3141586344224432 r005 Re(z^2+c),c=-33/98+22/49*I,n=46 3141586356152655 m001 (Zeta(3)+Backhouse)/(Niven-Thue) 3141586359463263 a007 Real Root Of -201*x^4-415*x^3+544*x^2-731*x-954 3141586373335554 a007 Real Root Of 247*x^4+624*x^3-552*x^2+71*x+959 3141586374663640 a007 Real Root Of 247*x^4-58*x^3+481*x^2+69*x-30 3141586380955111 m005 (1/2*gamma-3/7)/(3/77+2/11*5^(1/2)) 3141586382714648 m002 Pi-Cosh[Pi]/(2*Pi^12) 3141586386321213 m001 (2*Pi/GAMMA(5/6)+Pi^(1/2))/(exp(Pi)+Ei(1,1)) 3141586386401486 m001 (Landau+ThueMorse)/(2^(1/3)+Grothendieck) 3141586394403320 m002 -E^Pi/(4*Pi^12)+Pi 3141586394502358 r005 Re(z^2+c),c=-5/14+18/47*I,n=16 3141586396693995 m001 GAMMA(3/4)-exp(1)-exp(1/2) 3141586396693995 m001 exp(1)-GAMMA(3/4)+exp(1/2) 3141586404728771 m001 FeigenbaumDelta^ZetaQ(3)/FellerTornier 3141586404790138 m004 -1000*Pi+(Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3141586406091992 m002 Pi-Sinh[Pi]/(2*Pi^12) 3141586408289348 r005 Re(z^2+c),c=-9/23+11/46*I,n=26 3141586412982090 a007 Real Root Of 3*x^4+945*x^3+791*x^2-618*x-675 3141586418325998 r009 Im(z^3+c),c=-1/13+21/26*I,n=20 3141586427132802 a007 Real Root Of -610*x^4+264*x^3+701*x^2+231*x-144 3141586438987611 m004 -10*Pi+(25*Pi)/E^(2*Sqrt[5]*Pi) 3141586438992528 m004 (-5*Pi)/2+(25*Pi*Tanh[Sqrt[5]*Pi])/2 3141586442693974 m005 (1/2*5^(1/2)+11/12)/(3/8*3^(1/2)-5/7) 3141586446806512 m001 Pi-ZetaP(4)^FeigenbaumDelta 3141586448479181 r005 Im(z^2+c),c=-7/22+31/61*I,n=19 3141586460968050 m002 -Pi+(5*Log[Pi])/Pi^12 3141586483436225 m004 Pi-Csch[Sqrt[5]*Pi]^2*Log[Sqrt[5]*Pi] 3141586483455754 m004 Pi-Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141586483531355 a001 610/271443*2^(29/60) 3141586503086684 m001 1/ln(Zeta(9))^2*FeigenbaumKappa*cos(Pi/12)^2 3141586507530528 b008 5*(-1+Erfi[Pi^(-1)]) 3141586509923868 m001 (Otter-Tetranacci)/(GAMMA(5/6)-Backhouse) 3141586511334321 r002 63th iterates of z^2 + 3141586523356579 m008 (4/5*Pi^2-1/6)/(1/4*Pi^4+1/4) 3141586535612560 r009 Re(z^3+c),c=-35/74+20/49*I,n=53 3141586540543502 m001 1/Zeta(1/2)^2/Cahen/exp(sin(1)) 3141586541717113 m002 Pi-Log[Pi]/(2*Pi^10) 3141586551228329 m002 -(1/(E^(2*Pi)*Pi^5))+Pi 3141586559501935 a001 1/198*(1/2*5^(1/2)+1/2)^9*18^(8/11) 3141586568596612 l006 ln(2609/3572) 3141586573977467 m002 -Pi+Tanh[Pi]/(E^(2*Pi)*Pi^5) 3141586577316762 m001 (Pi+Psi(2,1/3))/Zeta(1,-1)+gamma(1) 3141586591022609 r005 Re(z^2+c),c=-37/122+25/44*I,n=47 3141586592032991 r005 Im(z^2+c),c=-12/29+4/61*I,n=6 3141586592717478 m001 ln(gamma)^gamma(1)/(ln(gamma)^Tribonacci) 3141586602760659 m005 (1/6*Pi-3/5)/(2*Catalan+3/5) 3141586607330960 m002 -Pi+6/(Pi^12*ProductLog[Pi]) 3141586619292934 l006 ln(434/10043) 3141586622051200 m001 1/LambertW(1)/GAMMA(7/12)*exp(Zeta(9)) 3141586624899016 m005 (1/3*Catalan+1/6)/(1/2*3^(1/2)+7/11) 3141586625342565 a007 Real Root Of -215*x^4-187*x^3+137*x^2+902*x-289 3141586644880640 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/2 3141586644885394 m004 -100*Pi+Sin[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141586644890149 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/2 3141586650623032 m002 -Pi+ProductLog[Pi]/(6*Pi^9) 3141586654610795 m005 (1/2*5^(1/2)-4/11)/(1/3*Catalan-6/11) 3141586656448226 m005 (1/2*gamma+1)/(1/9*Catalan+4) 3141586662369964 m001 Pi+ln(2)/ln(10)*gamma(2)*gamma(3) 3141586668349851 m005 (1/2*exp(1)-3/8)/(47/20+7/20*5^(1/2)) 3141586670029743 a007 Real Root Of 258*x^4+444*x^3-989*x^2+280*x-724 3141586677075850 a007 Real Root Of 651*x^4-664*x^3-193*x^2-863*x-279 3141586681737299 m001 (sin(1)*GAMMA(17/24)+Otter)/GAMMA(17/24) 3141586684072989 s001 sum(1/10^(n-1)*A203045[n]/n!,n=1..infinity) 3141586685199664 a001 987/3010349*47^(27/46) 3141586686858318 a007 Real Root Of -6*x^4+283*x^3+805*x^2-312*x+434 3141586691333009 r009 Im(z^3+c),c=-1/42+10/29*I,n=7 3141586693211237 r005 Im(z^2+c),c=41/106+20/63*I,n=30 3141586693728792 r005 Im(z^2+c),c=29/122+9/43*I,n=27 3141586697668319 m004 -12-5*Sqrt[5]*Pi+25*Pi*Coth[Sqrt[5]*Pi] 3141586704304405 r005 Re(z^2+c),c=-17/42+9/61*I,n=15 3141586704685581 m001 GaussKuzminWirsing^Psi(1,1/3)-Pi 3141586715067723 m002 -Pi+2/(Pi^11*Log[Pi]) 3141586719322510 b008 Pi*ModularLambda[I/9*Sqrt[Pi]] 3141586723369720 m004 -100*Pi+Csch[Sqrt[5]*Pi]/3 3141586723374412 m004 -2/(3*E^(Sqrt[5]*Pi))+100*Pi 3141586723379105 m004 -100*Pi+Sech[Sqrt[5]*Pi]/3 3141586723388489 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/3 3141586725780639 r005 Re(z^2+c),c=-25/26+3/35*I,n=6 3141586729029210 s002 sum(A285804[n]/(n*2^n+1),n=1..infinity) 3141586742053863 a001 55/7*5778^(4/25) 3141586747066798 m005 (1/2*gamma-3)/(1/3*3^(1/2)+2/7) 3141586748362655 r005 Re(z^2+c),c=-29/34+53/122*I,n=2 3141586749632257 r005 Re(z^2+c),c=-33/94+17/42*I,n=62 3141586762142651 m001 Pi*ln(2)/ln(10)*sin(1/5*Pi)*BesselI(1,1) 3141586782164519 s002 sum(A098486[n]/(n^2*pi^n+1),n=1..infinity) 3141586783080857 s002 sum(A112089[n]/(n*pi^n+1),n=1..infinity) 3141586796544548 m009 (1/6*Psi(1,2/3)+2/5)/(1/3*Pi^2-3) 3141586797006935 m001 HardyLittlewoodC4-TwinPrimes^ln(Pi) 3141586812633035 a007 Real Root Of 897*x^4-691*x^3-487*x^2-996*x-295 3141586816079653 m001 Ei(1,1)^PlouffeB/(FeigenbaumAlpha^PlouffeB) 3141586819232071 m005 (1/3*gamma-3/5)/(1/7*exp(1)+10/11) 3141586826263843 m002 -3/(E^(2*Pi)*Pi^6)+Pi 3141586830810755 r005 Re(z^2+c),c=-33/70+13/51*I,n=2 3141586831188790 r009 Re(z^3+c),c=-4/9+21/58*I,n=42 3141586843093652 a001 55/7*2207^(9/50) 3141586843985379 m002 -Pi+(2*Csch[Pi])/Pi^9 3141586845443117 m002 -Pi+(5*ProductLog[Pi])/Pi^12 3141586854834482 m002 -4/(E^Pi*Pi^9)+Pi 3141586865643141 m002 -Pi+(2*Sech[Pi])/Pi^9 3141586872227299 p004 log(27329/1181) 3141586873259466 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/6 3141586873264039 m004 -100*Pi+Log[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141586873268613 m004 -100*Pi+(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/6 3141586878082557 r005 Re(z^2+c),c=-13/34+13/48*I,n=9 3141586893789653 m001 (Shi(1)+Magata)/(StolarskyHarborth+Totient) 3141586899584901 m001 (Catalan+GAMMA(5/6))/(-Robbin+Trott) 3141586906396265 a005 (1/cos(15/122*Pi))^376 3141586912442641 r005 Re(z^2+c),c=-79/70+9/34*I,n=64 3141586919288112 m005 (1/2*5^(1/2)+4/9)/(1/12*gamma-6/11) 3141586921178794 m002 -Pi+ProductLog[Pi]/(2*Pi^10) 3141586928455273 r005 Re(z^2+c),c=-33/94+17/42*I,n=53 3141586931704783 a001 29*(1/2*5^(1/2)+1/2)^4*3^(5/12) 3141586935017692 a007 Real Root Of -241*x^4-734*x^3-197*x^2-934*x-273 3141586936233395 a001 15127/5*28657^(19/42) 3141586936961980 m002 6+Cosh[Pi]/5+2*Sinh[Pi] 3141586954636696 m001 (-BesselJ(1,1)+Paris)/(BesselJ(0,1)-Si(Pi)) 3141586970106184 r005 Re(z^2+c),c=-23/56+2/27*I,n=18 3141586975152356 m001 (exp(1/Pi)-Backhouse)/(Riemann3rdZero+Thue) 3141586976764230 a001 29/144*2^(34/53) 3141586977104534 m001 (ErdosBorwein-Mills)/(BesselK(1,1)-ArtinRank2) 3141586982718941 m002 -Pi+6/(Pi^12*Log[Pi]) 3141586990873393 a007 Real Root Of -240*x^4-489*x^3+568*x^2-700*x+411 3141586991489048 a001 7/75025*55^(43/49) 3141586993231408 m001 (-sqrt(1+sqrt(3))+2)/(-Ei(1)+3) 3141586996960035 b008 Pi*ModularLambda[I/16*Pi] 3141587011027844 r009 Im(z^3+c),c=-9/74+9/11*I,n=16 3141587019047458 l006 ln(6215/8509) 3141587019179766 l006 ln(249/5762) 3141587020803240 m001 Pi-Trott2nd^ReciprocalFibonacci 3141587026541950 s002 sum(A142743[n]/(64^n-1),n=1..infinity) 3141587029937838 m005 (1/2*gamma-1/3)/(5/11*3^(1/2)+7/11) 3141587031555082 m001 HeathBrownMoroz^MasserGramainDelta-Pi 3141587033283759 r009 Im(z^3+c),c=-29/60+10/61*I,n=44 3141587034496119 m001 (ErdosBorwein+Stephens)/(2^(1/3)-BesselI(1,1)) 3141587048063504 b008 2+ArcCsc[Pi]^(-3) 3141587050797653 m001 1/exp(Zeta(3))^2/FeigenbaumD*cos(Pi/12)^2 3141587058124607 a007 Real Root Of -251*x^4-454*x^3+702*x^2-892*x+642 3141587060452254 m004 -125*Pi+1125*Pi*Tanh[Sqrt[5]*Pi] 3141587062455864 m002 -1/(6*Pi^9)+Pi 3141587063256176 r005 Im(z^2+c),c=-7/19+10/19*I,n=51 3141587073021736 a007 Real Root Of 745*x^4+35*x^3-391*x^2-152*x+78 3141587074903689 r005 Re(z^2+c),c=-33/94+17/42*I,n=63 3141587077920039 p003 LerchPhi(1/4,3,33/104) 3141587080367345 a007 Real Root Of -180*x^4+786*x^3-393*x^2+528*x+17 3141587081062670 a003 sin(Pi*13/113)*sin(Pi*39/112) 3141587083299185 m002 -Pi+Tanh[Pi]/(6*Pi^9) 3141587095071823 m004 -100*Pi+25*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141587095080620 m004 -Pi+(Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141587095089416 m004 -100*Pi+25*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141587096386720 r009 Im(z^3+c),c=-7/12+19/60*I,n=17 3141587105826234 m002 -Pi+(6*Csch[Pi])/Pi^10 3141587120265708 r009 Re(z^3+c),c=-10/23+17/49*I,n=36 3141587122361224 r005 Re(z^2+c),c=-21/58+21/38*I,n=45 3141587126507873 m002 -Pi+(6*Sech[Pi])/Pi^10 3141587127569465 m002 Sinh[Pi]+Pi^5*Tanh[Pi]^3 3141587128110824 r005 Im(z^2+c),c=11/46+12/61*I,n=5 3141587131518958 m001 Lehmer^exp(Pi)-Pi 3141587146584911 m005 (1/2*gamma+2/11)/(10/11*gamma-3/8) 3141587150315029 a007 Real Root Of 295*x^4-200*x^3-475*x^2-289*x+141 3141587150887300 r005 Im(z^2+c),c=2/11+23/64*I,n=4 3141587160680521 a001 89/4870847*18^(3/16) 3141587165326344 m001 exp(GAMMA(1/3))/ErdosBorwein^2*GAMMA(1/6) 3141587175686821 b008 Pi*Cos[E^(-2*Pi)] 3141587180727431 r005 Re(z^2+c),c=-1/3+17/37*I,n=40 3141587190604362 m001 exp(OneNinth)^2*Bloch^2/Zeta(1,2)^2 3141587205373803 m001 (ln(2)/ln(10))^Psi(1,1/3)-Pi 3141587207645787 m001 Pi-Trott^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3141587221022429 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 3141587221031026 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 3141587223668006 m002 -Pi+(5*Coth[Pi])/Pi^12 3141587238225627 m001 1/ln(Niven)*FeigenbaumAlpha*sin(Pi/12)^2 3141587240112948 m005 (1/3*Pi-1/2)/(10/11*Catalan+10/11) 3141587243910340 m002 -5/Pi^12+Pi 3141587245415509 h005 exp(sin(Pi*4/35)+sin(Pi*7/24)) 3141587250338673 m001 Gompertz^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141587262630371 m001 (FeigenbaumKappa+Landau)/(3^(1/3)-Chi(1)) 3141587264077213 m002 -Pi+(5*Tanh[Pi])/Pi^12 3141587271901868 a007 Real Root Of -552*x^4+432*x^3+580*x^2+257*x-146 3141587301959590 r002 7th iterates of z^2 + 3141587304479642 m002 Pi-Cosh[Pi]/(E^Pi*Pi^10) 3141587305918760 r009 Re(z^3+c),c=-7/29+43/46*I,n=62 3141587307468402 r005 Re(z^2+c),c=-57/44+1/15*I,n=12 3141587310454542 m001 Pi-Trott^FeigenbaumD 3141587314450179 m002 -1/(2*Pi^10)+Pi 3141587316086731 r002 31th iterates of z^2 + 3141587316391727 m004 -1000*Pi+3*Csch[Sqrt[5]*Pi] 3141587316395950 m004 -3/(5*E^(Sqrt[5]*Pi))+100*Pi 3141587316400173 m004 -1000*Pi+3*Sech[Sqrt[5]*Pi] 3141587322464349 a007 Real Root Of 824*x^4-854*x^3-579*x^2-431*x+211 3141587324420717 m002 Pi-Sinh[Pi]/(E^Pi*Pi^10) 3141587325190114 m001 Pi-ZetaQ(4)^Ei(1) 3141587334354085 m002 -Pi+Tanh[Pi]/(2*Pi^10) 3141587337373350 m001 HeathBrownMoroz^FeigenbaumC-Pi 3141587337551245 m001 1/Salem^2*Magata^2*exp(TwinPrimes)^2 3141587344956003 l006 ln(3606/4937) 3141587345392144 m001 Pi-gamma(3)^ReciprocalLucas 3141587355632556 m001 (Ei(1,1)+BesselI(1,1))/(Zeta(5)-Zeta(1/2)) 3141587365794111 m001 Pi-Trott^Khinchin 3141587367877741 r005 Re(z^2+c),c=-7/17+1/20*I,n=13 3141587374170387 r009 Re(z^3+c),c=-23/60+14/53*I,n=27 3141587374740521 a007 Real Root Of -443*x^4+252*x^3+365*x^2+288*x-130 3141587383493968 m001 (2^(1/2))^RenyiParking/ThueMorse 3141587383493968 m001 sqrt(2)^RenyiParking/ThueMorse 3141587405518401 a007 Real Root Of -458*x^4+832*x^3+921*x^2+47*x-127 3141587407227567 m001 (StolarskyHarborth+ZetaQ(4))/(MertensB3+Mills) 3141587423157273 r005 Re(z^2+c),c=7/54+3/7*I,n=23 3141587429516931 m001 (-GAMMA(13/24)+QuadraticClass)/(exp(Pi)+1) 3141587432010840 m005 (1/3*Pi+1/11)/(2/7*3^(1/2)-6/7) 3141587432980223 r008 a(0)=0,K{-n^6,-6+82*n^3-71*n^2-8*n} 3141587436324330 a007 Real Root Of -647*x^4+989*x^3-493*x^2+867*x+358 3141587440110105 m002 Pi-Log[Pi]/(E^Pi*Pi^8) 3141587442186210 m001 (ArtinRank2-sin(1))/(-QuadraticClass+Totient) 3141587464332388 m001 (Psi(2,1/3)+gamma(1))/(GAMMA(17/24)+Bloch) 3141587467886754 m001 (arctan(1/2)+FeigenbaumMu)/(OneNinth+Salem) 3141587472638244 r005 Im(z^2+c),c=-9/34+31/63*I,n=48 3141587486223407 m001 (-BesselK(1,1)+LaplaceLimit)/(Chi(1)+ln(3)) 3141587486761326 m001 (Trott2nd-ZetaQ(3))/(ln(2+3^(1/2))-Sarnak) 3141587498689929 m002 -4+Pi^5+(Pi*Cosh[Pi])/3 3141587499479793 r005 Re(z^2+c),c=-7/19+11/32*I,n=27 3141587522942835 r005 Re(z^2+c),c=-13/42+28/55*I,n=21 3141587523658561 m004 -1+Tanh[Sqrt[5]*Pi]+10*Pi*Tanh[Sqrt[5]*Pi] 3141587533034179 a007 Real Root Of -609*x^4+557*x^3+94*x^2+761*x+253 3141587535767810 a007 Real Root Of 415*x^4+991*x^3-996*x^2-47*x-15 3141587545988378 a007 Real Root Of -129*x^4-115*x^3+676*x^2-665*x+239 3141587558249359 m001 exp(FeigenbaumDelta)/Champernowne^2/Bloch^2 3141587564239171 r009 Re(z^3+c),c=-10/23+11/20*I,n=60 3141587570980463 r009 Re(z^3+c),c=-25/52+20/47*I,n=62 3141587572063270 m005 (2/3*Pi-1/5)/(5/12+1/12*5^(1/2)) 3141587572760176 m001 (RenyiParking-ZetaP(4))/(Zeta(5)+ln(3)) 3141587573655172 l006 ln(313/7243) 3141587573655172 p004 log(7243/313) 3141587576536341 a001 1597/4870847*47^(27/46) 3141587581897286 a001 521/29*(1/2*5^(1/2)+1/2)^3*29^(8/19) 3141587591700009 p004 log(11239/8209) 3141587602749375 m001 2/3/(ln(Pi)^GAMMA(1/6)) 3141587606220086 a007 Real Root Of 268*x^4+829*x^3-125*x^2-433*x-528 3141587613003576 m001 HeathBrownMoroz^Tribonacci-Pi 3141587615040766 m002 -Pi+5/(Pi^12*ProductLog[Pi]) 3141587646240615 m002 -E^Pi/(5*Pi^12)+Pi 3141587649598054 m001 (gamma+sin(1))/(-ln(2)+ln(Pi)) 3141587651502742 m005 (1/3*Zeta(3)+1/9)/(7/10*3^(1/2)+5/12) 3141587654349747 a007 Real Root Of -928*x^4-472*x^3+506*x^2+292*x-118 3141587666086639 m004 -1+Tanh[Sqrt[5]*Pi]+100*Pi*Tanh[Sqrt[5]*Pi] 3141587669713925 r005 Re(z^2+c),c=-33/94+17/42*I,n=58 3141587678558497 m001 (BesselI(1,1)+GAMMA(5/6))/(Psi(2,1/3)+Zeta(3)) 3141587679935500 m005 (1/2*3^(1/2)+4/7)/(8/11*Zeta(3)-5/12) 3141587681900179 m004 -10*Pi+5*Pi*Csch[Sqrt[5]*Pi]^2 3141587681904113 m004 -20*Pi+10*Pi*Coth[Sqrt[5]*Pi] 3141587681908047 m004 -10*Pi+5*Pi*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141587681911981 m004 (Pi*Tanh[Sqrt[5]*Pi])/10 3141587681913948 m004 25*E^(2*Sqrt[5]*Pi)*Pi*Sech[Sqrt[5]*Pi]^2 3141587681915915 m004 -10*Pi+5*Pi*Sech[Sqrt[5]*Pi]^2 3141587697737323 m004 -1+Tanh[Sqrt[5]*Pi]-100*Pi*Tanh[Sqrt[5]*Pi] 3141587699492399 m002 -Pi+(4*Log[Pi])/Pi^12 3141587706162473 r005 Im(z^2+c),c=-23/38+3/52*I,n=37 3141587710191659 a007 Real Root Of 95*x^4-682*x^3+863*x^2+840*x+736 3141587711616815 r005 Re(z^2+c),c=-9/22+1/61*I,n=9 3141587714415719 r005 Im(z^2+c),c=15/58+10/53*I,n=25 3141587723406890 r005 Re(z^2+c),c=-3/5+13/35*I,n=23 3141587724084079 r005 Re(z^2+c),c=-11/31+25/61*I,n=16 3141587726508691 r005 Re(z^2+c),c=-39/106+19/55*I,n=23 3141587727373345 s001 sum(exp(-Pi/2)^n*A182646[n],n=1..infinity) 3141587744851485 b008 Pi*KelvinBer[0,1/10] 3141587746501023 a005 (1/cos(79/202*Pi))^39 3141587749815551 m001 1/CareFree^2/Si(Pi)/exp(sqrt(Pi))^2 3141587754559542 m001 (Pi*Psi(1,1/3)+exp(1/exp(1)))/GAMMA(11/12) 3141587755875350 a003 cos(Pi*14/65)/cos(Pi*50/119) 3141587759058958 m005 (1/2*gamma-7/9)/(8/9*2^(1/2)+3/10) 3141587760782967 r002 9th iterates of z^2 + 3141587763794165 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^8) 3141587773661657 r009 Re(z^3+c),c=-1/48+29/39*I,n=7 3141587774728308 r005 Re(z^2+c),c=-17/19+14/57*I,n=53 3141587784999784 l006 ln(4603/6302) 3141587799069121 m001 1/TreeGrowth2nd/MinimumGamma^2/ln(Zeta(3))^2 3141587817088224 m004 -100*Pi+Cos[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141587821119888 m001 1/GAMMA(2/3)^2/ln(LaplaceLimit)^2/GAMMA(23/24) 3141587821641406 b008 1+(5*ArcSinh[10])/7 3141587822156283 m004 -Pi+Csch[Sqrt[5]*Pi]^2*ProductLog[Sqrt[5]*Pi] 3141587822171574 m004 -Pi+ProductLog[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141587822952021 m001 ZetaP(3)*(Magata-ln(5)) 3141587826920058 a001 1/6624*13^(2/7) 3141587828149991 m001 1/exp(PrimesInBinary)/Backhouse^2*Zeta(7) 3141587840165401 m004 -1+Tanh[Sqrt[5]*Pi]-10*Pi*Tanh[Sqrt[5]*Pi] 3141587840988155 m005 (1/2*Zeta(3)+7/10)/(7/10*gamma-9/11) 3141587856911537 r002 29th iterates of z^2 + 3141587858681651 m001 Pi-ZetaQ(3)^Sierpinski 3141587862639762 m001 (GAMMA(3/4)+BesselI(1,1)*PlouffeB)/PlouffeB 3141587867437072 s002 sum(A018674[n]/(n^3*exp(n)+1),n=1..infinity) 3141587876359866 r005 Re(z^2+c),c=-29/90+25/51*I,n=38 3141587887394882 r005 Im(z^2+c),c=9/94+20/33*I,n=55 3141587890619235 m001 1/(2^(1/3))*Cahen^2/exp(GAMMA(19/24))^2 3141587900098358 a003 cos(Pi*19/93)-sin(Pi*36/115) 3141587900163924 m001 Pi-Trott2nd^Magata 3141587905979684 m004 -3-Pi+3*Coth[Sqrt[5]*Pi] 3141587905983441 m004 -6/E^(2*Sqrt[5]*Pi)+Pi 3141587905987197 m004 -3+Pi+3*Tanh[Sqrt[5]*Pi] 3141587927864083 m002 -Pi+5/(Pi^12*Log[Pi]) 3141587939873508 l006 ln(377/8724) 3141587953459493 a003 sin(Pi*1/100)/sin(Pi*43/87) 3141587954107920 m001 1/(GAMMA(11/12)+Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141587954922361 m005 (-7/4+1/4*5^(1/2))/(7/10*3^(1/2)-5/6) 3141587956453771 p001 sum(1/(118*n+85)/n/(16^n),n=0..infinity) 3141587964071130 a007 Real Root Of -213*x^4-523*x^3+165*x^2-984*x-188 3141587987151690 m001 Lehmer^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141587994039290 r005 Im(z^2+c),c=3/26+17/56*I,n=17 3141587998446852 m005 (1/2*3^(1/2)-4/9)/(1/6*exp(1)+8/9) 3141587999259237 p003 LerchPhi(1/32,3,258/175) 3141588001466653 m005 (1/2*exp(1)-6)/(10/11*5^(1/2)-5/9) 3141588007072452 m002 -Pi+(4*ProductLog[Pi])/Pi^12 3141588018633675 m001 HeathBrownMoroz^Si(Pi)-Pi 3141588026244220 a007 Real Root Of 729*x^4-310*x^3+868*x^2-750*x-338 3141588027349103 m001 LambertW(1)-ZetaP(2)^(3^(1/2)) 3141588027526153 r005 Im(z^2+c),c=-7/52+21/55*I,n=4 3141588030453493 m002 -Pi+(5*Csch[Pi])/Pi^10 3141588040547570 r005 Im(z^2+c),c=-31/122+20/41*I,n=56 3141588045589881 r005 Im(z^2+c),c=-1/34+17/44*I,n=26 3141588047688193 m002 -Pi+(5*Sech[Pi])/Pi^10 3141588068356538 l006 ln(5600/7667) 3141588068756380 r009 Re(z^3+c),c=-13/28+11/28*I,n=60 3141588070943679 r009 Re(z^3+c),c=-41/90+11/29*I,n=62 3141588082833453 r009 Im(z^3+c),c=-25/48+20/57*I,n=7 3141588083841131 m001 (-Ei(1,1)+cos(1/12*Pi))/(Catalan-Zeta(1/2)) 3141588087330900 m001 Pi-sin(1/5*Pi)^exp(Pi) 3141588087573900 a007 Real Root Of 144*x^4+360*x^3-80*x^2+523*x-432 3141588090595946 m004 -100*Pi+1/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141588095673432 m001 Pi-Trott^exp(1) 3141588099258022 m002 -(1/(E^Pi*Pi^8))+Pi 3141588102046407 m008 (1/4*Pi^6+1/3)/(4/5*Pi^6-3) 3141588105248915 a001 2207/233*34^(17/50) 3141588116185703 a007 Real Root Of -303*x^4-895*x^3+333*x^2+228*x-806 3141588116236224 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^8) 3141588124321235 h002 exp(7^(1/2)*(17-2^(3/4))^(1/2)) 3141588131035337 r005 Im(z^2+c),c=-29/94+22/41*I,n=32 3141588159562530 a001 6765/199*29^(35/53) 3141588165146682 m005 (1/2*3^(1/2)-2)/(3/11*3^(1/2)-5/6) 3141588168045818 r005 Im(z^2+c),c=-73/118+16/45*I,n=27 3141588169392268 m005 (51/44+1/4*5^(1/2))/(2/5*gamma-7/9) 3141588170623005 a005 (1/cos(56/223*Pi))^23 3141588174420713 a007 Real Root Of -952*x^4+787*x^3+485*x^2+869*x-336 3141588174672015 r009 Re(z^3+c),c=-13/31+11/48*I,n=4 3141588175291941 p004 log(16699/12197) 3141588179149478 m005 (1/3*Zeta(3)-1/7)/(2/7*5^(1/2)+2/11) 3141588198126691 m002 Pi-(Csch[Pi]*Log[Pi])/(E^Pi*Pi^6) 3141588199515642 m002 Pi-Log[Pi]^2/Pi^11 3141588205644307 a001 2/370248451*7^(19/21) 3141588205924738 m004 -100*Pi+Csch[Sqrt[5]*Pi]/4 3141588205924738 m004 -100*Pi+Cosh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141588205928257 m004 -1/(2*E^(Sqrt[5]*Pi))+100*Pi 3141588205931777 m004 -100*Pi+Sech[Sqrt[5]*Pi]/4 3141588205931777 m004 -100*Pi+Sinh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141588205935296 m004 -100*Pi+Tanh[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141588205938815 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/4 3141588211315119 k002 Champernowne real with 7/2*n^2-1/2*n+28 3141588214736318 m002 Pi-(Log[Pi]*Sech[Pi])/(E^Pi*Pi^6) 3141588222461273 p004 log(34763/25391) 3141588238242943 m005 (1/2*2^(1/2)-5/12)/(1/9*3^(1/2)-1/10) 3141588266066270 l006 ln(6597/9032) 3141588278215462 r005 Re(z^2+c),c=-27/70+11/41*I,n=31 3141588280830071 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/3 3141588280836991 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/3 3141588290264723 b008 Pi*Sqrt[KelvinBei[0,1/5]] 3141588292147098 a003 sin(Pi*8/71)*sin(Pi*13/36) 3141588298086731 m001 Bloch^GAMMA(5/6)-FeigenbaumMu 3141588298949033 m005 (1/2*2^(1/2)-1/8)/(-43/22+1/22*5^(1/2)) 3141588301497509 r005 Im(z^2+c),c=-33/106+24/47*I,n=64 3141588302977137 m001 (Khinchin-Niven)/(exp(1/Pi)+KhinchinHarmonic) 3141588303222355 a001 29/75025*4181^(45/56) 3141588304523310 m002 -3/(E^Pi*Pi^9)+Pi 3141588305939043 m005 (1/2*Catalan+1/5)/(6/5+2/5*5^(1/2)) 3141588309652363 m002 -Pi+(4*Coth[Pi])/Pi^12 3141588317534595 m001 GAMMA(7/12)*(HardyLittlewoodC4+MadelungNaCl) 3141588318345478 m004 -100*Pi+Log[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141588318995176 m006 (1/2*ln(Pi)+4/5)/(3/5*ln(Pi)-1/4) 3141588325015453 m001 (Cahen+QuadraticClass)/(TwinPrimes-ZetaP(3)) 3141588325846231 m002 -4/Pi^12+Pi 3141588328765740 r009 Re(z^3+c),c=-17/70+41/59*I,n=5 3141588334864189 p004 log(33577/1451) 3141588341979729 m002 -Pi+(4*Tanh[Pi])/Pi^12 3141588342436470 m001 (GAMMA(11/12)-Niven)/(ln(2)+exp(1/Pi)) 3141588355853535 a007 Real Root Of 116*x^4+356*x^3+163*x^2+494*x-318 3141588361814895 a001 76/317811*13^(5/47) 3141588371094173 m002 Csch[Pi]-(E^Pi*Csch[Pi])/5 3141588379840845 a007 Real Root Of -248*x^4-497*x^3+665*x^2-565*x+409 3141588380515713 a007 Real Root Of 35*x^4-230*x^3-729*x^2+952*x-355 3141588397257714 r005 Re(z^2+c),c=-15/38+9/41*I,n=18 3141588403816831 r009 Re(z^3+c),c=-9/16+8/51*I,n=39 3141588409105939 a001 843/610*196418^(26/41) 3141588421062770 r002 3th iterates of z^2 + 3141588423694815 a003 sin(Pi*13/67)/cos(Pi*53/120) 3141588426711451 m001 (exp(1)+ln(3))/(-GolombDickman+Tribonacci) 3141588426757778 r009 Re(z^3+c),c=-11/30+18/29*I,n=9 3141588427090985 m001 cos(Pi/5)/Conway^2/exp(exp(1)) 3141588428191854 r005 Im(z^2+c),c=23/98+7/33*I,n=26 3141588435072335 r005 Re(z^2+c),c=-23/70+26/55*I,n=60 3141588435493113 r005 Re(z^2+c),c=-11/102+28/45*I,n=26 3141588441174507 m001 (1-arctan(1/2))/(gamma(3)+Niven) 3141588444187630 m001 3^(1/2)/(Psi(2,1/3)-Trott) 3141588445082622 a007 Real Root Of -278*x^4+269*x^3-200*x^2+354*x+142 3141588452977122 m001 Pi-ZetaQ(4)^(Pi*csc(11/24*Pi)/GAMMA(13/24)) 3141588453500773 p002 log(1/3*(3*12^(1/4)+4)^(1/2)) 3141588459846540 m001 (Khinchin-Kolakoski)/BesselK(1,1) 3141588462273248 m001 (-Lehmer+Sierpinski)/(2^(1/3)-Kac) 3141588466941875 a007 Real Root Of -108*x^4-112*x^3+953*x^2+687*x-200 3141588470762375 a007 Real Root Of -106*x^4-79*x^3+933*x^2+399*x-79 3141588473006363 m002 Pi-Cosh[Pi]/(3*Pi^12) 3141588473265254 m001 (5^(1/2)+ln(3))/(-GlaisherKinkelin+Salem) 3141588474375804 m001 Khinchin^exp(-Pi)*ln(2)/ln(10) 3141588474748540 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/(E^Pi*Pi^6) 3141588476051256 m002 -Pi+(Log[Pi]*ProductLog[Pi])/Pi^11 3141588478113682 m006 (1/6*exp(2*Pi)+5/6)/(1/4*Pi^2+2/5) 3141588480798811 m002 -E^Pi/(6*Pi^12)+Pi 3141588485630819 m001 (KomornikLoreti+Rabbit)/(Pi^(1/2)-Si(Pi)) 3141588488591259 m002 Pi-Sinh[Pi]/(3*Pi^12) 3141588490326942 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/(E^Pi*Pi^6) 3141588504746750 a001 4/987*2178309^(27/35) 3141588510524950 m004 (5*Pi)/3+(25*Pi*Tanh[Sqrt[5]*Pi])/3 3141588510842635 r005 Im(z^2+c),c=-11/8+2/121*I,n=51 3141588516083612 g002 -gamma-3*ln(2)-1/2*Pi+Psi(1/9)-2*Psi(1/8) 3141588533749234 r009 Im(z^3+c),c=-49/50+3/37*I,n=2 3141588536437602 a007 Real Root Of -175*x^4-458*x^3+157*x^2-100*x+982 3141588548240989 r002 54th iterates of z^2 + 3141588561244799 m001 OneNinth^(2*Pi/GAMMA(5/6))-Pi 3141588561244799 m001 OneNinth^GAMMA(1/6)-Pi 3141588561985787 a001 2/1149851*2^(29/34) 3141588563224675 b008 Pi*ModularLambda[I/3/Sqrt[3]] 3141588564776373 r009 Re(z^3+c),c=-13/29+28/53*I,n=41 3141588579008006 m002 Pi-Log[Pi]/(3*Pi^10) 3141588579164270 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/4 3141588579167494 m004 -100*Pi+Tan[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141588579170718 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/4 3141588584028090 r009 Im(z^3+c),c=-11/122+17/50*I,n=4 3141588590426316 r005 Re(z^2+c),c=-17/54+27/52*I,n=40 3141588591080751 r005 Im(z^2+c),c=-45/82+25/58*I,n=5 3141588594768290 m004 -100*Pi+Sin[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141588603609528 m001 (sin(1/5*Pi)*ln(Pi)+GAMMA(19/24))/sin(1/5*Pi) 3141588603609528 m001 (sin(Pi/5)*ln(Pi)+GAMMA(19/24))/sin(Pi/5) 3141588606009694 r005 Re(z^2+c),c=-13/34+13/56*I,n=8 3141588615158607 b008 Pi*KelvinBer[0,2/21] 3141588617835846 m001 (FeigenbaumD+Trott2nd)/(Ei(1,1)+Cahen) 3141588622750571 m002 -Pi+4/(Pi^12*ProductLog[Pi]) 3141588644345996 a003 2*cos(1/7*Pi)+cos(2/9*Pi)+2*cos(11/27*Pi) 3141588647783691 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/3 3141588647790030 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/3 3141588656808730 a007 Real Root Of 300*x^4+656*x^3-527*x^2+913*x-813 3141588661426685 m002 Pi-Cosh[Pi]/Pi^13 3141588665366366 m002 -(Cosh[Pi]/Pi^3)+3*Pi^2*ProductLog[Pi] 3141588672429039 m005 (5/6*Pi-1/5)/(7/12+1/12*5^(1/2)) 3141588673674432 m001 (Psi(1,1/3)-ZetaR(2))^FeigenbaumAlpha 3141588673732087 a001 322/233*956722026041^(4/11) 3141588676309165 m002 Pi-Sinh[Pi]/Pi^13 3141588676919607 m001 (CareFree+Niven)/(sin(1/12*Pi)-GAMMA(23/24)) 3141588682749310 r009 Re(z^3+c),c=-7/12+3/19*I,n=5 3141588689105406 r005 Im(z^2+c),c=-2/11+19/49*I,n=4 3141588697251166 m004 -5/E^(2*Sqrt[5]*Pi)+Pi 3141588702916230 a007 Real Root Of 248*x^4+545*x^3-604*x^2+535*x+383 3141588708558353 a001 6643838879/55*86267571272^(20/21) 3141588710078417 r005 Im(z^2+c),c=-13/50+25/51*I,n=61 3141588716830642 r009 Im(z^3+c),c=-81/122+3/22*I,n=2 3141588718923397 s002 sum(A177791[n]/(n^3*exp(n)+1),n=1..infinity) 3141588722657754 m002 -4-Pi^3-Log[Pi]+Pi^5*Log[Pi] 3141588725111961 a007 Real Root Of 388*x^4+502*x^3-49*x^2-947*x+283 3141588725493092 r005 Im(z^2+c),c=-5/8+61/163*I,n=37 3141588732479228 m001 Stephens^StronglyCareFree-cos(1/12*Pi) 3141588735417882 m002 -Pi+ProductLog[Pi]^2/Pi^11 3141588737392354 a007 Real Root Of 256*x^4+859*x^3+114*x^2-124*x+183 3141588741174733 r005 Re(z^2+c),c=-17/52+22/45*I,n=22 3141588748091398 m002 Pi-(Coth[Pi]*Log[Pi])/Pi^11 3141588761437455 m002 -Pi+Csch[Pi]/(E^Pi*Pi^6) 3141588762650798 m002 -Pi+Log[Pi]/Pi^11 3141588762947647 m001 1/GAMMA(1/24)*Catalan*ln(sqrt(5)) 3141588765679871 m001 (-LambertW(1)+Artin)/(Catalan-ln(2)/ln(10)) 3141588768705827 m002 -2/(E^(2*Pi)*Pi^6)+Pi 3141588775947102 m002 -Pi+Sech[Pi]/(E^Pi*Pi^6) 3141588777155922 m002 -Pi+(Log[Pi]*Tanh[Pi])/Pi^11 3141588785181766 p001 sum((-1)^n/(446*n+299)/(6^n),n=0..infinity) 3141588788417759 a003 sin(Pi*1/49)+sin(Pi*7/87) 3141588790402659 m002 -Pi+(Sech[Pi]*Tanh[Pi])/(E^Pi*Pi^6) 3141588797042317 h001 (1/2*exp(1)+2/11)/(5/9*exp(2)+4/5) 3141588805047674 m001 Pi-sin(1/5*Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141588806838028 a001 2889*610^(16/43) 3141588813178832 m001 (Zeta(1/2)-sin(1))/(-AlladiGrinstead+ZetaP(4)) 3141588822095898 p001 sum((-1)^n/(314*n+181)/n/(64^n),n=1..infinity) 3141588824065046 a007 Real Root Of -266*x^4-783*x^3+69*x^2-557*x-798 3141588827233530 a007 Real Root Of -145*x^4-316*x^3+787*x^2+968*x-400 3141588831982460 m002 -Pi+ProductLog[Pi]/(3*Pi^10) 3141588833612778 a009 10*10^(2/3)-15 3141588833612778 b008 -3/2+10^(2/3) 3141588848265630 a007 Real Root Of 16*x^4+499*x^3-103*x^2+386*x+480 3141588861685642 a001 2/317811*610^(31/32) 3141588870017594 p003 LerchPhi(1/8,4,97/129) 3141588870072106 b008 3*Coth[(3*Pi)/5] 3141588873009225 m002 -Pi+4/(Pi^12*Log[Pi]) 3141588875283301 r002 10th iterates of z^2 + 3141588880312446 r005 Re(z^2+c),c=35/102+19/55*I,n=7 3141588881074502 a007 Real Root Of -18*x^4+189*x^3+693*x^2-416*x-533 3141588881997932 a007 Real Root Of -100*x^4-293*x^3-192*x^2-551*x+820 3141588894918301 m001 (-Rabbit+Weierstrass)/(1-MadelungNaCl) 3141588895586089 a007 Real Root Of 611*x^4-510*x^3+441*x^2-852*x+234 3141588910285964 m001 (BesselJ(1,1)-MasserGramainDelta)/(Pi+2^(1/3)) 3141588914847862 r005 Im(z^2+c),c=-3/31+13/31*I,n=25 3141588924819632 m004 -125*Pi+25*Pi*Coth[Sqrt[5]*Pi]^3 3141588924828483 m004 -25*Pi+(30*Pi*Cosh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141588924831434 m004 25*Pi+75*Pi*Tanh[Sqrt[5]*Pi] 3141588930687873 r005 Im(z^2+c),c=37/118+7/59*I,n=49 3141588933354505 g003 abs(GAMMA(-131/30+I*(-21/10))) 3141588936137210 r009 Im(z^3+c),c=-13/29+27/50*I,n=26 3141588936918413 r005 Im(z^2+c),c=-4/3+13/179*I,n=19 3141588938016747 m002 -Pi+(3*Log[Pi])/Pi^12 3141588938941360 g007 Psi(2,5/9)+14*Zeta(3)-Psi(2,8/9)-Psi(2,4/9) 3141588939483997 m001 (Totient-ZetaP(2))/(LandauRamanujan2nd-Magata) 3141588945893609 a001 1/11592*591286729879^(8/11) 3141588955080753 m002 -Pi+(4*Csch[Pi])/Pi^10 3141588955341838 a007 Real Root Of -677*x^4+397*x^3+299*x^2+403*x+116 3141588959576456 r009 Im(z^3+c),c=-27/70+15/61*I,n=10 3141588959595432 m001 (Stephens+ZetaQ(4))/(GAMMA(5/6)+Rabbit) 3141588968188576 b008 7/(-25+E) 3141588968868513 m002 -Pi+(4*Sech[Pi])/Pi^10 3141588971861827 a007 Real Root Of 298*x^4+645*x^3-864*x^2+300*x+441 3141588988391896 r005 Re(z^2+c),c=-4/21+29/50*I,n=16 3141588990568142 m002 -Pi+(Coth[Pi]*ProductLog[Pi])/Pi^11 3141588995991504 a001 439204*514229^(17/20) 3141589002598507 m002 Pi*Tanh[Pi]+(Log[Pi]*Tanh[Pi])/Pi^4 3141589002957119 r005 Im(z^2+c),c=-6/19+21/41*I,n=63 3141589004223607 m002 -Pi+ProductLog[Pi]/Pi^11 3141589017791321 r005 Im(z^2+c),c=37/122+1/58*I,n=9 3141589017828166 m002 -Pi+(ProductLog[Pi]*Tanh[Pi])/Pi^11 3141589018749379 a001 305/930249*47^(27/46) 3141589024576863 r005 Im(z^2+c),c=-11/50+28/59*I,n=28 3141589028919890 m001 LandauRamanujan2nd^exp(Pi)-Pi 3141589029588213 m002 Pi-Log[Pi]/(Pi^11*ProductLog[Pi]) 3141589044383361 b008 Pi*ModularLambda[(3*I)/5/Pi] 3141589047058531 a007 Real Root Of 22*x^4-48*x^3-22*x^2-810*x-254 3141589054341509 m001 BesselJ(0,1)*FeigenbaumMu+HardyLittlewoodC5 3141589055501034 a009 5^(2/3)+1/13*4^(3/4) 3141589056915071 r002 3th iterates of z^2 + 3141589070271310 m005 (1/2*5^(1/2)-1/10)/(5/12*gamma+3) 3141589070683980 m001 (5^(1/2)+2/3)/(-BesselI(1,2)+2/3) 3141589094163384 m002 -1/(3*Pi^10)+Pi 3141589095457749 m004 -100*Pi+Csch[Sqrt[5]*Pi]/5 3141589095460564 m004 -2/(5*E^(Sqrt[5]*Pi))+100*Pi 3141589095463380 m004 -100*Pi+Sech[Sqrt[5]*Pi]/5 3141589095469011 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/5 3141589095499481 r005 Re(z^2+c),c=-9/74+11/21*I,n=5 3141589107432654 m002 -Pi+Tanh[Pi]/(3*Pi^10) 3141589111939551 a003 -1+2*cos(1/24*Pi)-cos(1/7*Pi)-cos(10/27*Pi) 3141589116926439 a007 Real Root Of 538*x^4+164*x^3-382*x^2-263*x+110 3141589119876961 a005 (1/cos(15/221*Pi))^251 3141589120215962 a001 76*(1/2*5^(1/2)+1/2)^2*11^(4/21) 3141589124752906 m005 (1/2*Zeta(3)+4/7)/(2+3^(1/2)) 3141589151330622 m001 (Artin-KhinchinLevy)/(Sierpinski+ZetaQ(4)) 3141589152306782 a007 Real Root Of 316*x^4+909*x^3-214*x^2-4*x-497 3141589168701787 m002 -Pi+(3*ProductLog[Pi])/Pi^12 3141589172812267 m001 HeathBrownMoroz^Ei(1)-Pi 3141589175800299 m001 (ZetaP(2)+ZetaQ(4))/(GAMMA(3/4)+Ei(1,1)) 3141589185202690 m001 LambertW(1)+FransenRobinson^Catalan 3141589185391596 m004 1000*Pi-Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3141589185394341 m004 -100*Pi+Log[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141589185397085 m004 1000*Pi-Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141589186369811 r009 Im(z^3+c),c=-7/17+11/49*I,n=8 3141589191533508 m001 1/exp(FeigenbaumC)*CopelandErdos/Zeta(3) 3141589199817040 b008 Pi*ModularLambda[(4*I)/21] 3141589201351644 m001 Pi-ZetaQ(4)^ReciprocalLucas 3141589204959197 m001 ReciprocalFibonacci/(cos(1/5*Pi)-Catalan) 3141589217145716 a007 Real Root Of 250*x^4-497*x^3+810*x^2-697*x+152 3141589225848791 r005 Re(z^2+c),c=-7/17+2/37*I,n=21 3141589225937752 r005 Im(z^2+c),c=1/28+13/37*I,n=8 3141589235355495 r005 Im(z^2+c),c=-23/34+37/126*I,n=49 3141589237420502 m001 (Zeta(5)*Paris-ReciprocalFibonacci)/Zeta(5) 3141589241869313 m002 -Pi+Coth[Pi]/Pi^11 3141589252178262 m001 (1+OrthogonalArrays)/BesselJ(0,1) 3141589254587947 m002 -Pi^(-11)+Pi 3141589255666489 r002 29th iterates of z^2 + 3141589256631746 m001 Bloch^StolarskyHarborth/(Bloch^Zeta(1/2)) 3141589261408332 m001 (BesselJ(0,1)+Conway)/(-TwinPrimes+ZetaQ(4)) 3141589264446179 m004 -1+Tanh[Sqrt[5]*Pi]-Pi*Tanh[Sqrt[5]*Pi] 3141589265617078 m001 Pi-gamma(3)*ZetaQ(4) 3141589267259167 m002 -Pi+Tanh[Pi]/Pi^11 3141589274721222 a001 76/377*75025^(43/50) 3141589276532463 a001 6/726103*5^(39/47) 3141589279883150 m002 -Pi+Tanh[Pi]^2/Pi^11 3141589291524374 a005 (1/cos(17/167*Pi))^22 3141589300855433 b008 Pi*KelvinBer[0,1/11] 3141589301752837 m001 (Zeta(1,2)-GaussAGM)/(LaplaceLimit-Paris) 3141589302239779 r005 Im(z^2+c),c=-31/86+22/41*I,n=57 3141589309255652 r005 Re(z^2+c),c=-33/94+17/42*I,n=57 3141589317846378 m009 (1/4*Psi(1,1/3)+5)/(1/6*Pi^2+3/4) 3141589326931618 m008 (4*Pi^6-1/2)/(1/5*Pi^2-3/4) 3141589327779769 a007 Real Root Of 173*x^4-838*x^3+83*x^2-162*x+67 3141589328375894 m002 Pi-(Csch[Pi]*Log[Pi])/Pi^9 3141589336457064 a007 Real Root Of -932*x^4+495*x^3-618*x^2+613*x+278 3141589336901400 a001 55/18*47^(23/38) 3141589338432619 r009 Im(z^3+c),c=-23/60+11/39*I,n=4 3141589340772038 m002 Pi-(Log[Pi]*Sech[Pi])/Pi^9 3141589340808574 r005 Im(z^2+c),c=-29/66+24/47*I,n=46 3141589341556937 a007 Real Root Of 305*x^4+796*x^3-738*x^2-883*x-519 3141589349474234 a005 (1/sin(68/169*Pi))^313 3141589349667874 r009 Re(z^3+c),c=-15/34+25/63*I,n=14 3141589351281512 m001 (GAMMA(11/12)-Backhouse)/(Paris+Salem) 3141589353824654 a007 Real Root Of 262*x^4+792*x^3-290*x^2-452*x+478 3141589361356226 m001 (-TreeGrowth2nd+ZetaP(2))/(3^(1/2)-Totient) 3141589363609764 r005 Im(z^2+c),c=-4/21+22/47*I,n=17 3141589374020001 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/4 3141589374022596 m004 -100*Pi+Cos[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141589374025191 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/4 3141589375086844 m001 (-ln(2)+1)/(Cahen+1/3) 3141589376572217 l006 ln(997/1365) 3141589378664902 a007 Real Root Of -29*x^4-917*x^3-198*x^2-338*x+651 3141589381068532 m005 (1/2*Pi-1/10)/(3/8+1/24*5^(1/2)) 3141589392382572 m001 (1/3)^GAMMA(1/12)-Pi 3141589394049375 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3141589394054533 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3141589395636720 m002 -Pi+(3*Coth[Pi])/Pi^12 3141589407782121 m002 -3/Pi^12+Pi 3141589417326343 r009 Re(z^3+c),c=-13/32+19/63*I,n=26 3141589419882245 m002 -Pi+(3*Tanh[Pi])/Pi^12 3141589423486960 a008 Real Root of x^2-x-99010 3141589447660946 m001 1/Zeta(9)^2*exp(Si(Pi))^2*log(1+sqrt(2))^2 3141589449971921 a008 Real Root of x^3-x^2-98*x-267 3141589465618350 m002 -Pi+ProductLog[Pi]/(Pi^11*Log[Pi]) 3141589468102476 a007 Real Root Of 51*x^4-130*x^3-871*x^2-76*x-641 3141589473032648 r008 a(0)=3,K{-n^6,-55-17*n^3+46*n^2+20*n} 3141589486745455 m001 Pi-gamma(1)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141589487776071 m002 -Pi+1/(Pi^11*ProductLog[Pi]) 3141589488513883 m004 -Pi+Csch[Sqrt[5]*Pi]^2 3141589488516387 m004 -2-Pi+2*Coth[Sqrt[5]*Pi] 3141589488518891 m004 -Pi+Coth[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3141589488518891 m004 -4/E^(2*Sqrt[5]*Pi)+Pi 3141589488521396 m004 -2+Pi+2*Tanh[Sqrt[5]*Pi] 3141589488523900 m004 -1+Pi+Tanh[Sqrt[5]*Pi]^2 3141589488528909 m004 -Pi+Sech[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3141589499577983 m002 -Pi+Tanh[Pi]/(Pi^11*ProductLog[Pi]) 3141589510890320 m001 exp(GAMMA(3/4))*Trott/sinh(1) 3141589511820666 r005 Im(z^2+c),c=-81/106+1/54*I,n=20 3141589513412822 m009 (1/5*Psi(1,3/4)+3)/(4*Psi(1,3/4)+1) 3141589515510056 r009 Re(z^3+c),c=-23/54+11/35*I,n=4 3141589515967715 m001 1/KhintchineLevy^2/Si(Pi)^2/exp(GAMMA(5/24))^2 3141589518152220 m002 Pi-Cosh[Pi]/(4*Pi^12) 3141589528847211 r009 Re(z^3+c),c=-7/22+1/7*I,n=11 3141589529840892 m002 Pi-Sinh[Pi]/(4*Pi^12) 3141589533046965 m001 (2^(1/2)-BesselI(1,1))/(-CareFree+Magata) 3141589534825099 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/Pi^9 3141589544766891 m005 (1/3*gamma+1/5)/(1/9*Pi+9/10) 3141589545477218 a007 Real Root Of -268*x^4-928*x^3-453*x^2-337*x+744 3141589546451616 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/Pi^9 3141589567245836 a001 54018521/233*34^(17/23) 3141589568842743 m001 (Khinchin+Trott2nd)/(BesselJ(1,1)-Conway) 3141589577931013 m005 (1/2*Zeta(3)+1/3)/(1/7*exp(1)-1/11) 3141589581444854 m001 Pi-ZetaQ(3)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3141589590579456 a001 4/987*2971215073^(8/11) 3141589593748831 r004 Re(z^2+c),c=-11/30-6/17*I,z(0)=-1,n=18 3141589597653453 m002 Pi-Log[Pi]/(4*Pi^10) 3141589602188352 r005 Re(z^2+c),c=-25/78+25/53*I,n=23 3141589611240845 m001 FellerTornier*Stephens+Otter 3141589613209712 m001 Pi-Trott^FransenRobinson 3141589618150321 m005 (1/2*2^(1/2)-3/8)/(2/11*2^(1/2)+4/5) 3141589629299273 m008 (5/6*Pi^4-4)/(1/3*Pi^2-5/6) 3141589630460377 m002 -Pi+3/(Pi^12*ProductLog[Pi]) 3141589636263729 m001 (Tetranacci+Thue)/(FeigenbaumC-exp(1)) 3141589636799762 r005 Im(z^2+c),c=-4/19+8/17*I,n=28 3141589641410941 a007 Real Root Of 225*x^4+492*x^3-459*x^2+401*x-872 3141589642153024 m001 Pi-ZetaQ(3)^FeigenbaumD 3141589649235216 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 3141589649237593 m004 -100*Pi+Sin[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141589649239971 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 3141589652161373 r004 Im(z^2+c),c=-37/30+5/22*I,z(0)=-1,n=13 3141589653055931 m001 Pi-gamma^exp(Pi) 3141589658461457 r005 Re(z^2+c),c=2/9+23/56*I,n=56 3141589674808056 m001 Pi-ZetaQ(3)^Khinchin 3141589684328758 m002 -Pi+1/(Pi^11*Log[Pi]) 3141589688479756 m004 -100*Pi+Csch[Sqrt[5]*Pi]/6 3141589688482103 m004 -1/(3*E^(Sqrt[5]*Pi))+100*Pi 3141589688484449 m004 -100*Pi+Sech[Sqrt[5]*Pi]/6 3141589688486795 m004 -100*Pi+Tanh[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141589688489141 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/6 3141589695397937 m002 -Pi+Tanh[Pi]/(Pi^11*Log[Pi]) 3141589704341803 b008 Csch[3+Pi^(1/8)] 3141589706119427 a007 Real Root Of -885*x^4+773*x^3+251*x^2+945*x-337 3141589710099705 m001 (2^(1/3))^Psi(2,1/3)-Pi 3141589722494158 m005 (1/2*gamma+11/12)/(-109/220+1/20*5^(1/2)) 3141589722987122 r005 Im(z^2+c),c=-47/50+12/49*I,n=51 3141589730908126 l006 ln(64/1481) 3141589732322043 b008 Pi*ModularLambda[(2*I)/15*Sqrt[2]] 3141589734110701 r009 Re(z^3+c),c=-25/56+23/63*I,n=51 3141589739106904 r005 Im(z^2+c),c=15/56+5/28*I,n=30 3141589747929342 a003 cos(Pi*3/13)/cos(Pi*47/111) 3141589748787586 m002 -Pi+Csch[Pi]/Pi^9 3141589754120990 m004 Pi-Csch[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141589754130167 m004 Pi-Sech[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141589754212138 m002 -2/(E^Pi*Pi^9)+Pi 3141589759616467 m002 -Pi+Sech[Pi]/Pi^9 3141589763426916 m004 -100*Pi+Log[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141589768139655 b008 Pi*ModularLambda[I/13*Sqrt[6]] 3141589769028483 r005 Im(z^2+c),c=-1/32+12/31*I,n=18 3141589769546923 m001 (Zeta(1,-1)-Pi^(1/2))/(Zeta(5)-ln(3)) 3141589770404979 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^9 3141589776185219 r009 Im(z^3+c),c=-43/82+37/64*I,n=36 3141589787384293 m002 -Pi+ProductLog[Pi]/(4*Pi^10) 3141589800523570 m001 Pi-Stephens^exp(Pi) 3141589818154367 m002 -Pi+3/(Pi^12*Log[Pi]) 3141589824345825 m001 (-sin(1)+ln(2))/(2^(1/3)-3^(1/2)) 3141589835242797 r009 Re(z^3+c),c=-15/32+14/33*I,n=33 3141589843406163 a007 Real Root Of 385*x^4+890*x^3-774*x^2+952*x+723 3141589845273700 m002 -E^Pi+Pi+Pi^2+Pi^6/E^Pi 3141589845956214 r002 24i'th iterates of 2*x/(1-x^2) of 3141589852748830 r009 Re(z^3+c),c=-7/23+32/47*I,n=10 3141589855771977 r005 Im(z^2+c),c=7/54+12/41*I,n=11 3141589858554508 b008 Pi*ModularLambda[I/3/Sqrt[Pi]] 3141589868397507 r002 6th iterates of z^2 + 3141589870280950 a007 Real Root Of -272*x^4-782*x^3-49*x^2-720*x+470 3141589872209996 m001 GAMMA(5/6)*(CopelandErdos-exp(-1/2*Pi)) 3141589873598620 r005 Re(z^2+c),c=-49/122+5/29*I,n=24 3141589874036826 m001 (LambertW(1)+Tribonacci)^Conway 3141589874335206 m004 -10*Pi+(5*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141589879708013 m002 -Pi+(3*Csch[Pi])/Pi^10 3141589884888078 m002 -6/(E^Pi*Pi^10)+Pi 3141589886747572 r009 Im(z^3+c),c=-41/102+15/58*I,n=5 3141589889053988 s002 sum(A176600[n]/(n*exp(n)-1),n=1..infinity) 3141589889959434 m004 (10*Cosh[Sqrt[5]*Pi])/Pi-Sinh[Sqrt[5]*Pi]^2 3141589890048833 m002 -Pi+(3*Sech[Pi])/Pi^10 3141589893320073 m001 1/ln(Zeta(9))^2*GAMMA(11/24)*cos(Pi/5)^2 3141589898122464 a007 Real Root Of 301*x^4+675*x^3-617*x^2+652*x-253 3141589898205543 a003 cos(Pi*1/84)-cos(Pi*20/77) 3141589898836988 r005 Re(z^2+c),c=-7/66+38/59*I,n=56 3141589904116780 m004 (-5*E^(Sqrt[5]*Pi))/Pi+Sinh[Sqrt[5]*Pi]^2 3141589915276166 a007 Real Root Of 31*x^4-158*x^3-685*x^2-480*x+223 3141589915619031 m001 1/exp(log(1+sqrt(2)))/GAMMA(7/12)^2*sqrt(Pi) 3141589917242871 a007 Real Root Of -364*x^4-766*x^3+982*x^2-368*x+858 3141589918274127 m004 (10*Sinh[Sqrt[5]*Pi])/Pi-Sinh[Sqrt[5]*Pi]^2 3141589922018129 a007 Real Root Of 238*x^4+831*x^3-26*x^2-978*x-233 3141589925282365 a003 cos(Pi*20/83)*cos(Pi*53/109) 3141589926208600 a007 Real Root Of 335*x^4+791*x^3-970*x^2-194*x+858 3141589937306111 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/6 3141589937308260 m004 -100*Pi+Tan[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141589937310410 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/6 3141589947373035 m001 Pi-gamma(3)*HeathBrownMoroz 3141589953755913 g004 Im(GAMMA(71/60+I*25/6)) 3141589953928623 m001 TwinPrimes^Zeta(3)/GAMMA(11/24) 3141589961430434 m002 6+Pi^5+2*ProductLog[Pi]*Tanh[Pi] 3141589962819991 r005 Re(z^2+c),c=5/16+3/26*I,n=38 3141589975259702 r005 Re(z^2+c),c=9/20+1/3*I,n=13 3141589983276576 r005 Im(z^2+c),c=-4/13+20/37*I,n=32 3141589984019986 m002 -1/(4*Pi^10)+Pi 3141589984992872 m004 -3/E^(Sqrt[5]*Pi)+1000*Pi 3141589990867575 g005 GAMMA(7/9)*GAMMA(2/3)/GAMMA(6/11)/GAMMA(2/7) 3141589993971939 m002 -Pi+Tanh[Pi]/(4*Pi^10) 3141589995340026 b008 Pi*ModularLambda[(3*I)/16] 3141590000010535 s004 Continued Fraction of A291599 3141590000027856 s004 Continued Fraction of A104826 3141590000027856 s004 Continued fraction of A104826 3141590007902039 m001 Pi-Trott2nd^FeigenbaumMu 3141590008968954 m005 (1/2*Pi+1/9)/(4*Zeta(3)+6/11) 3141590020534607 m001 (GAMMA(3/4)+MertensB1)/(Weierstrass-ZetaQ(4)) 3141590023371303 m001 Pi-ZetaQ(2)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141590029933960 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/5 3141590029938112 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/5 3141590035151779 a003 sin(Pi*13/120)*sin(Pi*16/41) 3141590039135491 r005 Re(z^2+c),c=-31/90+20/33*I,n=25 3141590042976958 a007 Real Root Of 16*x^4+492*x^3-343*x^2-277*x-528 3141590046640991 a007 Real Root Of 250*x^4+554*x^3-871*x^2-386*x+209 3141590061100118 r005 Im(z^2+c),c=-37/106+19/36*I,n=63 3141590067825282 r005 Im(z^2+c),c=-25/34+6/31*I,n=26 3141590070471070 r005 Im(z^2+c),c=-5/4+100/219*I,n=3 3141590071443992 r002 6th iterates of z^2 + 3141590078881734 r005 Re(z^2+c),c=-33/94+17/42*I,n=60 3141590082129233 m001 (FransenRobinson-Magata)/(cos(1/5*Pi)+ln(3)) 3141590100135380 m001 ZetaR(2)*(sin(1/5*Pi)+GAMMA(7/12)) 3141590102067193 r005 Re(z^2+c),c=25/74+15/43*I,n=16 3141590102567156 m001 exp(GAMMA(3/4))/Porter/exp(1)^2 3141590103366883 a007 Real Root Of 418*x^4+967*x^3-815*x^2+891*x+109 3141590103922917 m001 Pi-ZetaQ(3)^exp(1) 3141590107857836 m001 GAMMA(13/24)^2*ln(Backhouse)/LambertW(1)^2 3141590116837064 m002 -(E^Pi/Pi^14)+Pi 3141590125112713 r005 Re(z^2+c),c=-19/34+4/87*I,n=4 3141590132560171 g004 Im(GAMMA(8/5+I*103/30)) 3141590133146182 m001 (GlaisherKinkelin-Salem)/(Zeta(5)-exp(1/Pi)) 3141590135615509 a001 34/39603*7^(2/3) 3141590138059145 m001 Paris^(2*Pi/GAMMA(5/6))-Pi 3141590139398520 m001 Pi-gamma^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141590142299717 r005 Im(z^2+c),c=1/118+11/30*I,n=17 3141590143984539 r009 Re(z^3+c),c=-15/32+2/5*I,n=64 3141590145239735 m002 Pi-Cosh[Pi]/(5*Pi^12) 3141590154590673 m002 Pi-Sinh[Pi]/(5*Pi^12) 3141590154936816 r005 Im(z^2+c),c=-6/5+5/118*I,n=29 3141590157517549 m001 Cahen-Zeta(1,2)-Ei(1) 3141590165089359 r005 Re(z^2+c),c=-7/20+11/27*I,n=30 3141590167744986 m004 -100*Pi+25*Pi*Csch[Sqrt[5]*Pi]^2 3141590167746953 m004 -10*Pi+(5*Pi*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141590167748920 m004 (Pi*Sinh[Sqrt[5]*Pi])/(5*E^(Sqrt[5]*Pi)) 3141590167750887 m004 (E^(Sqrt[5]*Pi)*Pi*Sech[Sqrt[5]*Pi])/2 3141590167752854 m004 -100*Pi+25*Pi*Sech[Sqrt[5]*Pi]^2 3141590167752854 m004 25*Pi*Coth[Sqrt[5]*Pi]+75*Pi*Tanh[Sqrt[5]*Pi] 3141590167758755 m004 5*Pi*Coth[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi]^2 3141590170094196 m001 (Sierpinski+TreeGrowth2nd)/(1-ReciprocalLucas) 3141590173346011 m001 (GAMMA(13/24)+KhinchinLevy)/(Psi(1,1/3)-ln(3)) 3141590174826334 r002 8th iterates of z^2 + 3141590176541096 m002 -Pi+(2*Log[Pi])/Pi^12 3141590180056839 m001 (exp(1/exp(1))+GolombDickman)/(Trott-ZetaP(4)) 3141590185228384 m001 Pi+gamma(1)^FeigenbaumDelta 3141590185266631 m005 (3*Catalan-1/4)/(4/5*gamma+1/3) 3141590191446662 a007 Real Root Of -951*x^4-423*x^3-287*x^2+807*x+278 3141590196213742 m005 (1/2*gamma-5)/(1/4*Pi+5/7) 3141590199443306 p003 LerchPhi(1/1024,2,207/116) 3141590203762080 p004 log(24251/17713) 3141590204045598 s002 sum(A147740[n]/(n^2*exp(n)+1),n=1..infinity) 3141590204090545 r002 43th iterates of z^2 + 3141590208840721 m002 Pi-Log[Pi]/(5*Pi^10) 3141590210280506 m001 Pi-exp(-Pi)^exp(sqrt(2)) 3141590216674568 a007 Real Root Of -174*x^4-572*x^3+17*x^2+291*x-40 3141590217616884 r001 44i'th iterates of 2*x^2-1 of 3141590218588880 s002 sum(A178720[n]/(2^n-1),n=1..infinity) 3141590221651960 h001 (1/3*exp(1)+8/11)/(7/12*exp(2)+8/9) 3141590221736808 a003 cos(Pi*9/67)-cos(Pi*29/98) 3141590226576873 h001 (3/7*exp(2)+7/9)/(1/7*exp(2)+1/5) 3141590240219663 m005 (4*Pi-3/5)/(13/4+1/4*5^(1/2)) 3141590247366271 r009 Re(z^3+c),c=-23/60+14/53*I,n=24 3141590249024178 r009 Re(z^3+c),c=-23/60+14/53*I,n=31 3141590250106132 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/5 3141590250109935 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/5 3141590258852750 b008 Pi*ModularLambda[I/12*Sqrt[5]] 3141590262541889 a003 cos(Pi*3/11)-sin(Pi*45/107) 3141590264566420 m001 GAMMA(11/12)^2*exp(GAMMA(1/4))^2*sqrt(2)^2 3141590264638596 m001 Pi-Stephens^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141590266613354 a007 Real Root Of -382*x^4+906*x^3-522*x^2+139*x+127 3141590266911567 m001 AlladiGrinstead^Rabbit/Trott2nd 3141590272196270 h001 (2/11*exp(2)+3/4)/(7/9*exp(2)+11/12) 3141590279786617 m004 -3/E^(2*Sqrt[5]*Pi)+Pi 3141590286335540 b008 Pi*KelvinBer[0,1/12] 3141590288673394 g002 -ln(2)+1/2*Pi-Psi(11/12)-Psi(3/5) 3141590288679180 m005 (1/2*2^(1/2)+5)/(5/7*exp(1)-1/8) 3141590295514638 a008 Real Root of x^4-x^3-17*x^2+38*x-18 3141590296834641 r005 Re(z^2+c),c=-101/106+26/55*I,n=4 3141590319761320 m004 Pi-Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi]^2 3141590319768707 m004 Pi-Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141590330331123 m002 -Pi+(2*ProductLog[Pi])/Pi^12 3141590346338364 m002 -5/(E^Pi*Pi^10)+Pi 3141590360625393 m002 -Pi+ProductLog[Pi]/(5*Pi^10) 3141590365998264 m001 (MertensB3+OneNinth)/(Pi-FeigenbaumD) 3141590371162262 m009 (6*Catalan+3/4*Pi^2-2/5)/(4*Psi(1,1/3)-3/5) 3141590371818374 l006 ln(7361/10078) 3141590391017339 a001 196418/843*47^(25/37) 3141590391969012 r004 Im(z^2+c),c=-27/34+3/17*I,z(0)=-1,n=6 3141590392029191 b008 Pi*ModularLambda[I/13*(1+Sqrt[2])] 3141590397599399 s002 sum(A226105[n]/(n^3*2^n-1),n=1..infinity) 3141590402509092 m001 BesselI(0,1)^Psi(2,1/3)-Pi 3141590415467648 m001 sin(Pi/5)/OneNinth^2/ln(sinh(1)) 3141590415915689 a007 Real Root Of -219*x^4+271*x^3-783*x^2+88*x-2 3141590419654062 m001 (exp(1)-sin(1/12*Pi))/(-Paris+QuadraticClass) 3141590429258835 m005 (1/2*gamma-6)/(5/6*Pi-4/5) 3141590429759025 m004 -1/(4*E^(Sqrt[5]*Pi))+100*Pi 3141590429762544 m004 -100*Pi+Tanh[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141590430018403 m002 Pi-Log[Pi]/(E^(2*Pi)*Pi^6) 3141590430182605 m004 -10*Pi+Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141590430189642 m004 -10*Pi+Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141590430464634 m006 (5*ln(Pi)-5/6)/(4*Pi+3) 3141590432478617 m001 HeathBrownMoroz^ReciprocalLucas-Pi 3141590435251033 m001 MadelungNaCl^(2^(1/3))/(CareFree^(2^(1/3))) 3141590467209932 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/6 3141590467211662 m004 -100*Pi+Cos[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141590467213392 m004 -100*Pi+(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/6 3141590472699785 r005 Im(z^2+c),c=-9/16+42/73*I,n=17 3141590476377695 r005 Re(z^2+c),c=1/9+33/56*I,n=17 3141590480029823 m001 HeathBrownMoroz*ZetaQ(4)-Pi 3141590481621078 m002 -Pi+(2*Coth[Pi])/Pi^12 3141590482120951 m001 Pi-arctan(1/3)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141590485669545 m002 Pi-(E^Pi*Csch[Pi])/Pi^12 3141590488019719 m001 Pi-Trott2nd^(Pi*2^(1/2)/GAMMA(3/4)) 3141590489392152 r009 Re(z^3+c),c=-23/60+14/53*I,n=26 3141590489718012 m002 -2/Pi^12+Pi 3141590493751386 m002 Pi-(E^Pi*Sech[Pi])/Pi^12 3141590497784761 m002 -Pi+(2*Tanh[Pi])/Pi^12 3141590501103934 m001 Pi+gamma(2)^Khinchin 3141590501940964 m001 Pi+gamma(2)^FeigenbaumD 3141590503893476 m001 (-Champernowne+ErdosBorwein)/(2^(1/3)-3^(1/2)) 3141590504461550 m001 gamma(2)^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Pi 3141590506060272 m005 (1/2*2^(1/2)+1/7)/(4/5*5^(1/2)+11/12) 3141590511049292 a007 Real Root Of 12*x^4-219*x^3+793*x^2-799*x+305 3141590514430527 a007 Real Root Of 350*x^4+768*x^3-940*x^2+416*x+304 3141590515611735 m004 Pi-Csch[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141590515618502 m004 Pi-Sech[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141590517933947 m002 -1/(5*Pi^10)+Pi 3141590525895510 m002 -Pi+Tanh[Pi]/(5*Pi^10) 3141590526020976 m001 gamma(2)^exp(1)+Pi 3141590527736093 l006 ln(6364/8713) 3141590528232154 r005 Re(z^2+c),c=-5/86+21/34*I,n=27 3141590543309810 q001 1/3183101 3141590551022057 m005 (1/2*Zeta(3)-1/6)/(5/12*exp(1)+1/4) 3141590558277628 h001 (11/12*exp(1)+3/7)/(1/4*exp(1)+1/4) 3141590558850127 m006 (2/3/Pi+3)/(3*Pi+4/5) 3141590563298078 m002 Pi-Cosh[Pi]/(6*Pi^12) 3141590568071040 m002 -Pi+ProductLog[Pi]/(E^(2*Pi)*Pi^6) 3141590569011292 r009 Re(z^3+c),c=-23/60+14/53*I,n=30 3141590571090526 m002 Pi-Sinh[Pi]/(6*Pi^12) 3141590572630814 b008 Pi*ModularLambda[I/17*Pi] 3141590586384008 r005 Re(z^2+c),c=-33/98+22/49*I,n=40 3141590604235451 m005 (1/2*2^(1/2)+5)/(6/7*5^(1/2)-1/10) 3141590615730785 m001 1/Lehmer^2/Cahen^2/exp(cosh(1))^2 3141590615761547 m001 FeigenbaumDelta/gamma(3)/Sarnak 3141590616051274 a007 Real Root Of 16*x^4+486*x^3-536*x^2-385*x+522 3141590616298899 m002 Pi-Log[Pi]/(6*Pi^10) 3141590616378643 m004 -100*Pi+Tan[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141590616774394 a001 7/281*76^(3/56) 3141590621906940 a003 sin(Pi*9/119)/sin(Pi*31/115) 3141590625571769 p004 log(16061/11731) 3141590627965806 r009 Re(z^3+c),c=-43/94+15/32*I,n=22 3141590638170182 m002 -Pi+2/(Pi^12*ProductLog[Pi]) 3141590647837127 a003 cos(Pi*2/27)-cos(Pi*29/107) 3141590649327062 m002 2+E^Pi*Log[Pi]+Pi/ProductLog[Pi] 3141590649725812 r005 Im(z^2+c),c=-13/106+22/51*I,n=33 3141590650686742 m004 -100*Pi+(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/6 3141590650688327 m004 -100*Pi+Sin[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141590650689911 m004 -100*Pi+(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/6 3141590650693717 m005 (1/3*Zeta(3)-1/5)/(-23/60+1/5*5^(1/2)) 3141590652406089 r009 Re(z^3+c),c=-23/60+14/53*I,n=35 3141590653589793 s001 sum(1/10^(n-1)*A013705[n],n=1..infinity) 3141590653589793 s001 sum(1/10^n*A013705[n],n=1..infinity) 3141590653589793 s003 concatenated sequence A013705 3141590653934843 a007 Real Root Of 284*x^4+673*x^3-519*x^2+760*x+713 3141590657037188 m001 LambertW(1)^exp(Pi)-Pi 3141590664435265 m001 ln(TwinPrimes)/ArtinRank2/Ei(1) 3141590673895237 m005 (1/2*gamma-5/8)/(7/8*2^(1/2)-1/6) 3141590679207332 r009 Re(z^3+c),c=-23/60+14/53*I,n=34 3141590683803579 v002 sum(1/(5^n+(17/2*n^2+61/2*n+9)),n=1..infinity) 3141590684718497 m005 (1/2*3^(1/2)-2/9)/(19/15+7/20*5^(1/2)) 3141590690538468 r005 Re(z^2+c),c=15/106+19/43*I,n=29 3141590694736343 r005 Im(z^2+c),c=5/58+19/59*I,n=16 3141590698433965 r005 Im(z^2+c),c=-19/122+23/50*I,n=11 3141590707718249 r009 Re(z^3+c),c=-23/60+14/53*I,n=39 3141590708120296 m002 Pi-Log[Pi]/(2*Pi^11) 3141590708754746 r009 Re(z^3+c),c=-23/60+14/53*I,n=38 3141590711147810 m002 -(1/(E^(2*Pi)*Pi^6))+Pi 3141590714859900 r009 Re(z^3+c),c=-23/60+14/53*I,n=42 3141590715114934 r009 Re(z^3+c),c=-23/60+14/53*I,n=43 3141590715982693 r009 Re(z^3+c),c=-23/60+14/53*I,n=46 3141590716076050 r009 Re(z^3+c),c=-23/60+14/53*I,n=47 3141590716175456 r009 Re(z^3+c),c=-23/60+14/53*I,n=50 3141590716196651 r009 Re(z^3+c),c=-23/60+14/53*I,n=51 3141590716207022 r009 Re(z^3+c),c=-23/60+14/53*I,n=54 3141590716211109 r009 Re(z^3+c),c=-23/60+14/53*I,n=55 3141590716212010 r009 Re(z^3+c),c=-23/60+14/53*I,n=58 3141590716212732 r009 Re(z^3+c),c=-23/60+14/53*I,n=59 3141590716212775 r009 Re(z^3+c),c=-23/60+14/53*I,n=62 3141590716212896 r009 Re(z^3+c),c=-23/60+14/53*I,n=63 3141590716212960 r009 Re(z^3+c),c=-23/60+14/53*I,n=61 3141590716212960 r009 Re(z^3+c),c=-23/60+14/53*I,n=64 3141590716213257 r009 Re(z^3+c),c=-23/60+14/53*I,n=60 3141590716213484 r009 Re(z^3+c),c=-23/60+14/53*I,n=57 3141590716215217 r009 Re(z^3+c),c=-23/60+14/53*I,n=56 3141590716218378 r009 Re(z^3+c),c=-23/60+14/53*I,n=53 3141590716227815 r009 Re(z^3+c),c=-23/60+14/53*I,n=52 3141590716260414 r009 Re(z^3+c),c=-23/60+14/53*I,n=49 3141590716306214 r009 Re(z^3+c),c=-23/60+14/53*I,n=48 3141590716602541 r009 Re(z^3+c),c=-23/60+14/53*I,n=45 3141590716774665 r009 Re(z^3+c),c=-23/60+14/53*I,n=44 3141590717905237 m001 (GAMMA(17/24)-exp(Pi))/(-CareFree+ZetaQ(3)) 3141590718389085 m002 -Pi+Tanh[Pi]/(E^(2*Pi)*Pi^6) 3141590719279252 r009 Re(z^3+c),c=-23/60+14/53*I,n=41 3141590719420821 r009 Re(z^3+c),c=-23/60+14/53*I,n=40 3141590728901318 a007 Real Root Of 31*x^4+949*x^3-806*x^2-780*x-857 3141590729767730 r002 5th iterates of z^2 + 3141590733117268 r009 Re(z^3+c),c=-23/60+14/53*I,n=36 3141590737636222 m001 ln(GAMMA(7/12))/GAMMA(23/24)/log(2+sqrt(3)) 3141590737880497 m001 Pi-gamma(3)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141590739573341 r009 Re(z^3+c),c=-23/60+14/53*I,n=37 3141590739739968 a007 Real Root Of 411*x^4+941*x^3-959*x^2+482*x+121 3141590741581874 l006 ln(5367/7348) 3141590742062375 m005 (5*Pi-3/5)/(17/4+1/4*5^(1/2)) 3141590742786126 m002 -Pi+ProductLog[Pi]/(6*Pi^10) 3141590751462992 r009 Re(z^3+c),c=-17/29+17/53*I,n=13 3141590753346415 m001 Tribonacci^Zeta(1/2)/(FeigenbaumB^Zeta(1/2)) 3141590754544247 m004 -10*Pi+6*Csch[Sqrt[5]*Pi]^2 3141590754547252 m004 -10*Pi+6*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141590754550257 m004 -10*Pi+6*Sech[Sqrt[5]*Pi]^2 3141590758205591 r005 Re(z^2+c),c=-23/56+4/53*I,n=23 3141590761437994 s002 sum(A089600[n]/((10^n-1)/n),n=1..infinity) 3141590762569409 r005 Re(z^2+c),c=-21/62+18/41*I,n=30 3141590763299509 m002 -Pi+2/(Pi^12*Log[Pi]) 3141590773777710 p001 sum(1/(563*n+322)/(32^n),n=0..infinity) 3141590781033034 m001 (1-Backhouse)/(Lehmer+Thue) 3141590782063412 h001 (6/11*exp(2)+3/5)/(3/8*exp(1)+5/11) 3141590788831904 r009 Re(z^3+c),c=-29/50+22/43*I,n=8 3141590789209138 m004 25*Pi+(150*Pi*Sinh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141590789210613 m004 625*Pi+375*Pi*Tanh[Sqrt[5]*Pi] 3141590793184109 r009 Re(z^3+c),c=-23/60+14/53*I,n=32 3141590801792525 v002 sum(1/(2^n*(n^3-5*n^2+29*n-3)),n=1..infinity) 3141590804335273 m002 -Pi+(2*Csch[Pi])/Pi^10 3141590807788650 m002 -4/(E^Pi*Pi^10)+Pi 3141590810844574 a007 Real Root Of 526*x^4-645*x^3-230*x^2-708*x+260 3141590811229153 m002 -Pi+(2*Sech[Pi])/Pi^10 3141590812567745 m001 BesselI(1,1)^exp(Pi)-Pi 3141590812766832 r005 Re(z^2+c),c=-43/118+19/53*I,n=33 3141590827298009 m001 Pi+gamma(2)^FransenRobinson 3141590827458786 b008 -31/54+EulerGamma 3141590828906700 m002 -Pi+ProductLog[Pi]/(2*Pi^11) 3141590829736873 r005 Im(z^2+c),c=-19/82+11/23*I,n=32 3141590836086053 m001 (Pi+GAMMA(19/24))/(Artin-MadelungNaCl) 3141590838055180 r005 Im(z^2+c),c=1/3+5/37*I,n=24 3141590842651432 m002 Pi^5+Cosh[Pi]/4+6/Log[Pi] 3141590858310191 r005 Re(z^2+c),c=-165/118+14/15*I,n=2 3141590861862913 m001 (gamma(1)-BesselI(1,2))/(FeigenbaumDelta+Kac) 3141590865944102 r009 Re(z^3+c),c=-11/70+21/29*I,n=17 3141590867217565 r005 Re(z^2+c),c=-29/82+21/53*I,n=43 3141590873876588 m002 -1/(6*Pi^10)+Pi 3141590874523771 m004 -1000*Pi+Csch[Sqrt[5]*Pi] 3141590874525179 m004 -1/(5*E^(Sqrt[5]*Pi))+100*Pi 3141590874526586 m004 -1000*Pi+Sech[Sqrt[5]*Pi] 3141590874527994 m004 -100*Pi+Tanh[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141590874529402 m004 -1000*Pi+Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3141590880511223 m002 -Pi+Tanh[Pi]/(6*Pi^10) 3141590887681806 m002 -Pi+(6*Csch[Pi])/Pi^11 3141590888132908 r009 Re(z^3+c),c=-10/21+27/58*I,n=50 3141590889390056 r009 Re(z^3+c),c=-23/60+14/53*I,n=33 3141590890888614 b008 Pi*ModularLambda[I/4*(-1+Sqrt[3])] 3141590894264976 m002 -Pi+(6*Sech[Pi])/Pi^11 3141590904027363 h001 (3/11*exp(1)+5/7)/(3/5*exp(2)+1/5) 3141590905385039 a003 cos(Pi*36/89)*cos(Pi*55/118) 3141590907753198 a007 Real Root Of 962*x^4-745*x^3+510*x^2-855*x+232 3141590908701673 r005 Re(z^2+c),c=-37/122+26/45*I,n=39 3141590919492067 m004 1000*Pi-Log[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141590934608263 m001 1/exp(1)*RenyiParking/exp(sqrt(5))^2 3141590934904016 b008 Pi*KelvinBer[0,1/13] 3141590938968912 m001 (arctan(1/3)-KomornikLoreti)/(Rabbit-Salem) 3141590950509108 r009 Re(z^3+c),c=-57/110+15/43*I,n=39 3141590950915149 m002 Pi-Cosh[Pi]/(E^Pi*Pi^11) 3141590954088870 m002 -1/(2*Pi^11)+Pi 3141590954372995 r009 Re(z^3+c),c=-23/60+14/53*I,n=28 3141590957262591 m002 Pi-Sinh[Pi]/(E^Pi*Pi^11) 3141590960424480 m002 -Pi+Tanh[Pi]/(2*Pi^11) 3141590968304393 a007 Real Root Of -75*x^4+426*x^3-190*x^2+994*x-306 3141590980542348 p004 log(37511/1621) 3141590981094907 r009 Im(z^3+c),c=-2/27+13/38*I,n=7 3141590981529825 m001 Pi+ln(gamma)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141590981529825 m001 Pi+log(gamma)^GAMMA(1/12) 3141590985038444 m001 Pi-ZetaQ(3)^FransenRobinson 3141590987948020 a007 Real Root Of 167*x^4+563*x^3+254*x^2+160*x-815 3141590990099325 m001 LambertW(1)^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141590994036924 r005 Im(z^2+c),c=-1/74+15/38*I,n=6 3141590994087667 m002 Pi-Log[Pi]/(E^Pi*Pi^9) 3141590999542788 m001 (3^(1/3)+FeigenbaumB)/(Salem-ZetaP(2)) 3141590999827582 m001 1/(3^(1/3))*Niven*exp(GAMMA(13/24))^2 3141591004433734 r005 Re(z^2+c),c=-2/7+9/16*I,n=27 3141591009110885 m001 Pi+gamma(2)^Sierpinski 3141591013806195 m004 -100*Pi+Cos[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141591019840276 r002 3th iterates of z^2 + 3141591022363927 m005 (1/2*Catalan-4/5)/(1/6*3^(1/2)+4/5) 3141591023819584 m004 1000*Pi-Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141591023820873 m004 -100*Pi+Tan[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141591023822163 m004 1000*Pi-Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141591035189613 a007 Real Root Of 130*x^4-24*x^3+121*x^2-637*x+2 3141591044266444 m001 (Cahen-PrimesInBinary)/(ln(5)-ln(2^(1/2)+1)) 3141591050569200 m005 (-9/44+1/4*5^(1/2))/(1/5*Pi+1/2) 3141591053003959 l006 ln(4370/5983) 3141591054524116 m001 1/exp(GAMMA(1/12))^2*Bloch/cosh(1) 3141591057920191 h005 exp(cos(Pi*7/53)/cos(Pi*8/39)) 3141591067897306 b008 Pi*ModularLambda[(4*I)/7/Pi] 3141591071051838 m004 -10*Pi+5*Csch[Sqrt[5]*Pi]^2 3141591071053090 m004 -1-Pi+Coth[Sqrt[5]*Pi] 3141591071054342 m004 -10*Pi+5*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141591071054342 m004 -2/E^(2*Sqrt[5]*Pi)+Pi 3141591071055594 m004 -1+Pi+Tanh[Sqrt[5]*Pi] 3141591071056847 m004 -10*Pi+5*Sech[Sqrt[5]*Pi]^2 3141591071718873 r009 Re(z^3+c),c=-19/50+4/17*I,n=3 3141591074117479 a007 Real Root Of 824*x^4+898*x^3+998*x^2-192*x-139 3141591078882639 b008 Pi*ModularLambda[(2*I)/11] 3141591087581376 m005 (1/3*3^(1/2)-1/9)/(4/9*3^(1/2)+5/7) 3141591087677694 p004 log(34549/1493) 3141591094933745 a007 Real Root Of 641*x^4-339*x^3-369*x^2-905*x+325 3141591097119503 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^9) 3141591097165609 m001 Pi-Trott^Otter 3141591109849857 a007 Real Root Of -485*x^4+665*x^3-948*x^2+847*x+385 3141591111053842 m004 Pi-Log[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141591111342464 k007 concat of cont frac of 3141591111994973 m001 (Zeta(3)+Niven)/(Psi(1,1/3)-sin(1)) 3141591113814354 a007 Real Root Of -185*x^4-652*x^3-125*x^2-2*x-968 3141591115981041 m001 CareFree^ZetaR(2)-HardyLittlewoodC3 3141591116370902 r005 Re(z^2+c),c=5/18+26/61*I,n=7 3141591119922623 m001 Champernowne^CareFree-Landau 3141591121413445 m001 BesselI(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141591121731236 k008 concat of cont frac of 3141591125590497 r005 Re(z^2+c),c=25/82+5/51*I,n=18 3141591130661489 r009 Re(z^3+c),c=-27/70+15/26*I,n=3 3141591133450932 r005 Re(z^2+c),c=-37/94+7/31*I,n=27 3141591141112721 k007 concat of cont frac of 3141591144414500 m001 FeigenbaumB^2*exp(DuboisRaymond)/GAMMA(1/3) 3141591151413693 m004 -100*Pi+Sin[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141591155561121 k008 concat of cont frac of 3141591161113171 k008 concat of cont frac of 3141591161736140 r009 Im(z^3+c),c=-35/86+7/25*I,n=4 3141591162084089 m004 -130*Pi+30*Pi*Coth[Sqrt[5]*Pi] 3141591171035948 m004 -1/(6*E^(Sqrt[5]*Pi))+100*Pi 3141591171038294 m004 -100*Pi+Tanh[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141591171897458 a007 Real Root Of -632*x^4+968*x^3-408*x^2+979*x+384 3141591177424472 r005 Re(z^2+c),c=4/13+28/61*I,n=11 3141591179426473 m001 1/RenyiParking*ln(Conway)/GAMMA(5/6) 3141591179710818 a001 5/47*47^(9/32) 3141591181999803 m002 -Pi+(5*Csch[Pi])/Pi^11 3141591187485779 m002 -Pi+(5*Sech[Pi])/Pi^11 3141591187887279 r005 Re(z^2+c),c=-63/86+7/38*I,n=21 3141591191260887 r005 Im(z^2+c),c=17/58+4/27*I,n=53 3141591197340101 g002 Psi(7/8)-Psi(9/11)-Psi(9/10)-Psi(4/9) 3141591203900965 m002 -(1/(E^Pi*Pi^9))+Pi 3141591209305295 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^9) 3141591212221720 k008 concat of cont frac of 3141591219069875 m005 (1/2*gamma+5/8)/(1/3*5^(1/2)-5/11) 3141591224691541 r005 Re(z^2+c),c=-39/56+8/35*I,n=37 3141591226496621 k009 concat of cont frac of 3141591232372121 k006 concat of cont frac of 3141591235813957 m002 Pi-Log[Pi]^2/Pi^12 3141591235849657 m005 (1/2*5^(1/2)-1/10)/(3/7*gamma-4/7) 3141591236022679 g006 Psi(1,3/8)-Psi(1,8/9)-Psi(1,6/7)-Psi(1,2/5) 3141591243527775 r002 5th iterates of z^2 + 3141591255696436 a003 sin(Pi*19/83)-sin(Pi*43/101) 3141591259761312 k006 concat of cont frac of 3141591262126813 k006 concat of cont frac of 3141591263962499 m004 -100*Pi+(25*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141591265574642 r009 Re(z^3+c),c=-21/44+20/49*I,n=49 3141591267313628 m001 (Sarnak-ZetaQ(3))/(HardyLittlewoodC5-Khinchin) 3141591269238936 m002 -3/(E^Pi*Pi^10)+Pi 3141591271365186 k007 concat of cont frac of 3141591276400140 m001 (exp(1)*Totient+LambertW(1))/Totient 3141591295449026 m004 -100*Pi+Tan[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141591295734146 m004 -1000*Pi+ProductLog[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141591308232545 m001 Ei(1)/(sin(1/12*Pi)^Artin) 3141591308232545 m001 Ei(1)/(sin(Pi/12)^Artin) 3141591315228411 k007 concat of cont frac of 3141591323837977 m002 -Pi+(Log[Pi]*ProductLog[Pi])/Pi^12 3141591332518801 b008 Pi*ModularLambda[I/7*2^(1/3)] 3141591333341863 r005 Re(z^2+c),c=-21/52+7/45*I,n=18 3141591337280277 m001 1/GAMMA(1/12)^2/exp(Champernowne)/GAMMA(5/12) 3141591338418959 m001 MertensB1^Psi(1,1/3)-Pi 3141591341761876 m004 1000*Pi-Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141591341762914 m004 -100*Pi+Cos[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141591341763952 m004 1000*Pi-Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141591345433064 a001 3/1597*3^(22/47) 3141591356610128 m002 Pi-Log[Pi]/(3*Pi^11) 3141591358723123 m001 cosh(1)^2/ln(Champernowne)^2/sqrt(3) 3141591369382719 s001 sum(exp(-Pi/3)^n*A214643[n],n=1..infinity) 3141591372577588 m001 1/Magata^2*CopelandErdos^2/exp(BesselK(0,1)) 3141591375804894 b008 Pi*KelvinBer[0,1/14] 3141591379451273 r009 Re(z^3+c),c=-1/27+29/48*I,n=7 3141591382844808 m002 Pi-Cosh[Pi]/Pi^14 3141591387559429 m004 -10*Pi+4*Csch[Sqrt[5]*Pi]^2 3141591387561432 m004 -10*Pi+4*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141591387563436 m004 -10*Pi+4*Sech[Sqrt[5]*Pi]^2 3141591387582049 m002 Pi-Sinh[Pi]/Pi^14 3141591398837103 a007 Real Root Of 942*x^4-x^3+977*x^2-937*x-400 3141591403744483 a007 Real Root Of -223*x^4-527*x^3+500*x^2-29*x+356 3141591404355796 r009 Im(z^3+c),c=-41/98+13/58*I,n=17 3141591406396938 m002 -Pi+ProductLog[Pi]^2/Pi^12 3141591410431043 m002 Pi-(Coth[Pi]*Log[Pi])/Pi^12 3141591410668373 m004 (-25*Pi)/2+(5*Pi*Coth[Sqrt[5]*Pi])/2 3141591410669356 m004 -10*Pi+(5*Pi)/E^(2*Sqrt[5]*Pi) 3141591410670340 m004 5*Pi+(5*E^(Sqrt[5]*Pi)*Pi*Sech[Sqrt[5]*Pi])/2 3141591411957829 r005 Re(z^2+c),c=-43/122+2/5*I,n=35 3141591411991632 r005 Re(z^2+c),c=11/122+16/43*I,n=39 3141591415065444 m002 -Pi+Log[Pi]/Pi^12 3141591415742581 a007 Real Root Of -254*x^4-558*x^3+503*x^2-805*x-53 3141591419682569 m002 -Pi+(Log[Pi]*Tanh[Pi])/Pi^12 3141591434682668 m005 (1/2*gamma+2/3)/(9/10*Zeta(3)-7/9) 3141591435333749 a001 18/5*987^(55/56) 3141591437134398 m002 -Pi+ProductLog[Pi]/(3*Pi^11) 3141591445733327 m004 -Pi+ProductLog[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141591445911057 a007 Real Root Of -234*x^4-621*x^3+485*x^2+162*x-739 3141591451478912 m001 Bloch^2*FransenRobinson*ln(sqrt(1+sqrt(3))) 3141591451847962 m004 1000*Pi-Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141591451848913 m004 -100*Pi+Sin[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141591451849864 m004 1000*Pi-Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141591451863882 m001 Pi-ZetaQ(4)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141591457810590 l006 ln(391/9048) 3141591467041923 m001 Pi-ZetaQ(2)^FeigenbaumDelta 3141591468240260 m001 Pi-sin(1/12*Pi)^Psi(1,1/3) 3141591476178859 r005 Re(z^2+c),c=11/94+15/43*I,n=34 3141591476317801 m002 -Pi+(4*Csch[Pi])/Pi^11 3141591476516019 r005 Re(z^2+c),c=-19/58+1/2*I,n=32 3141591480706582 m002 -Pi+(4*Sech[Pi])/Pi^11 3141591481907495 r009 Im(z^3+c),c=-3/82+5/6*I,n=18 3141591487613788 m002 -Pi+(Coth[Pi]*ProductLog[Pi])/Pi^12 3141591488655000 r005 Re(z^2+c),c=-51/86+3/46*I,n=4 3141591491142881 b008 ArcCoth[E^Csch[2*Pi]] 3141591491850339 m001 Magata^2*LandauRamanujan/ln(sin(Pi/5))^2 3141591491960458 m002 -Pi+ProductLog[Pi]/Pi^12 3141591496290923 m002 -Pi+(ProductLog[Pi]*Tanh[Pi])/Pi^12 3141591500034262 m002 Pi-Log[Pi]/(Pi^12*ProductLog[Pi]) 3141591504252056 a001 2178309/29*47^(32/33) 3141591520589178 m002 -1/(3*Pi^11)+Pi 3141591522158624 a001 1/54*(1/2*5^(1/2)+1/2)^30*18^(13/17) 3141591524812918 m002 -Pi+Tanh[Pi]/(3*Pi^11) 3141591528117911 m001 (Porter-TwinPrimes)/(ln(3)-FeigenbaumKappa) 3141591530269234 q001 1/31831 3141591536945094 h001 (-4*exp(6)+1)/(-6*exp(2)-7) 3141591537234018 m001 GaussKuzminWirsing^GAMMA(1/12)-Pi 3141591541886199 m004 -100*Pi+5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141591541889717 m004 -100*Pi+5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141591543446951 m001 (arctan(1/3)+gamma(2)*KomornikLoreti)/gamma(2) 3141591544393350 m001 GlaisherKinkelin^Psi(2,1/3)-Pi 3141591547254594 m001 Pi+gamma(2)^Otter 3141591548527904 l006 ln(3373/4618) 3141591554874017 m001 (exp(-1/2*Pi)+PlouffeB)/(Pi-cos(1/12*Pi)) 3141591559678029 m001 GAMMA(11/24)^2/Niven^2*ln(GAMMA(13/24))^2 3141591559689995 b008 ArcCoth[31+Sin[1]] 3141591560400727 m004 -100*Pi+Cos[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141591566889742 r009 Re(z^3+c),c=-25/56+23/63*I,n=50 3141591567605435 m002 -Pi+Coth[Pi]/Pi^12 3141591571653902 m002 -Pi^(-12)+Pi 3141591575002667 a003 sin(Pi*7/69)/sin(Pi*52/109) 3141591575687277 m002 -Pi+Tanh[Pi]/Pi^12 3141591579705615 m002 -Pi+Tanh[Pi]^2/Pi^12 3141591594927361 r005 Im(z^2+c),c=-41/86+16/39*I,n=6 3141591595141335 m002 Pi-(Csch[Pi]*Log[Pi])/Pi^10 3141591599087150 m002 Pi-(Log[Pi]*Sech[Pi])/Pi^10 3141591600003218 m005 (1/2*gamma-2/9)/(9/10*exp(1)-1/3) 3141591604214572 m005 (1/2*exp(1)+1/6)/(3/11*Pi+4) 3141591604626430 m003 3+Sqrt[5]/64+(Sqrt[5]*Sech[1/2+Sqrt[5]/2])/8 3141591608720308 a003 sin(Pi*9/103)/cos(Pi*14/83) 3141591613695389 r005 Re(z^2+c),c=-41/118+19/36*I,n=27 3141591621226772 l003 KelvinHei(2,25/96) 3141591630762155 r005 Re(z^2+c),c=-25/82+31/56*I,n=57 3141591638826966 m002 -Pi+ProductLog[Pi]/(Pi^12*Log[Pi]) 3141591645264835 b008 Pi*ModularLambda[I/10*Sqrt[Pi]] 3141591645879987 m002 -Pi+1/(Pi^12*ProductLog[Pi]) 3141591649636653 m002 -Pi+Tanh[Pi]/(Pi^12*ProductLog[Pi]) 3141591651030860 m001 Pi-exp(-Pi)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141591651030860 m001 Pi-exp(-Pi)^GAMMA(5/24) 3141591652139060 m004 -100*Pi+Sin[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141591659252657 m004 -120*Pi+20*Pi*Coth[Sqrt[5]*Pi] 3141591660680666 m001 (Zeta(5)-GAMMA(3/4))/(DuboisRaymond-Kolakoski) 3141591660856158 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/Pi^10 3141591662566269 m001 GAMMA(17/24)^Psi(2,1/3)-Pi 3141591664556993 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/Pi^10 3141591673521694 a005 (1/cos(8/183*Pi))^121 3141591674745503 m001 Pi-gamma(3)^(5^(1/2)) 3141591676224127 m001 exp(GAMMA(1/24))^2/OneNinth/sin(1)^2 3141591680855044 m002 Pi-Log[Pi]/(4*Pi^11) 3141591683962439 b008 Pi*KelvinBer[0,1/15] 3141591685527566 b008 Pi*ModularLambda[(5*I)/9/Pi] 3141591691553151 b008 Pi*ModularLambda[I/4/Sqrt[2]] 3141591695434934 h001 (8/9*exp(1)+1/7)/(1/11*exp(2)+1/7) 3141591697595988 r005 Im(z^2+c),c=-2/3+69/223*I,n=35 3141591704067020 m004 -10*Pi+3*Csch[Sqrt[5]*Pi]^2 3141591704067771 m004 -10*Pi+(6*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141591704068522 m004 -10*Pi+3*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141591704069274 m004 -10*Pi+(6*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141591704070025 m004 -10*Pi+3*Sech[Sqrt[5]*Pi]^2 3141591708444651 m002 -Pi+1/(Pi^12*Log[Pi]) 3141591710824703 m001 (HardyLittlewoodC3+ThueMorse)/(5^(1/2)+ln(3)) 3141591711968080 m002 -Pi+Tanh[Pi]/(Pi^12*Log[Pi]) 3141591720757041 b008 Pi*ModularLambda[(3*I)/17] 3141591723909130 m001 1/exp(GAMMA(1/12))^2*Magata/GAMMA(11/12)^2 3141591728962533 m002 -Pi+Csch[Pi]/Pi^10 3141591730689221 m002 -2/(E^Pi*Pi^10)+Pi 3141591732409473 m002 -Pi+Sech[Pi]/Pi^10 3141591735843563 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^10 3141591737618114 r009 Re(z^3+c),c=-7/22+1/7*I,n=10 3141591741248246 m002 -Pi+ProductLog[Pi]/(4*Pi^11) 3141591752277162 s002 sum(A193797[n]/(n^2*exp(n)+1),n=1..infinity) 3141591760036322 r005 Im(z^2+c),c=-9/14+61/195*I,n=23 3141591764057486 m004 -E^(-(Sqrt[5]*Pi))+1000*Pi 3141591764058893 m004 -1000*Pi+Tanh[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141591769542769 a007 Real Root Of 431*x^4-505*x^3+709*x^2-704*x-311 3141591770635799 m002 -Pi+(3*Csch[Pi])/Pi^11 3141591772284665 m002 -6/(E^Pi*Pi^11)+Pi 3141591772425020 m001 Pi-Trott^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141591773236929 a008 Real Root of (1+2*x-4*x^2+3*x^4+2*x^5) 3141591773927384 m002 -Pi+(3*Sech[Pi])/Pi^11 3141591775993035 m001 1/exp(RenyiParking)/GlaisherKinkelin/Trott^2 3141591776338191 r005 Re(z^2+c),c=9/28+4/57*I,n=20 3141591783606348 m001 ln(gamma)^exp(Pi)+Pi 3141591783614628 m002 Pi^3+E^Pi/(5*Pi^2*Log[Pi]) 3141591795797268 l006 ln(327/7567) 3141591795901815 m001 (GAMMA(11/12)-PlouffeB)/(Zeta(5)+cos(1/5*Pi)) 3141591798023664 r005 Re(z^2+c),c=-5/82+29/43*I,n=18 3141591798718662 m001 Pi-StolarskyHarborth^(2*Pi/GAMMA(5/6)) 3141591803839331 m002 -1/(4*Pi^11)+Pi 3141591807007136 m002 -Pi+Tanh[Pi]/(4*Pi^11) 3141591810379264 m001 sin(1)^(Robbin/Paris) 3141591818379757 m001 (Si(Pi)+Weierstrass)^FeigenbaumKappa 3141591824976824 m004 (25*Pi)/3+(5*Pi*Tanh[Sqrt[5]*Pi])/3 3141591826020642 m001 Pi-ZetaQ(3)^Otter 3141591830273070 r009 Re(z^3+c),c=-11/32+11/56*I,n=7 3141591835427278 m001 (CareFree-Thue)/(2*Pi/GAMMA(5/6)-Cahen) 3141591837004405 m005 (1/3*Pi+2/7)/(Zeta(3)-7/9) 3141591838705333 m004 1000*Pi-Tan[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141591846116321 m002 -(E^Pi/Pi^15)+Pi 3141591853369788 b008 Pi*ModularLambda[I/7*Sqrt[3/2]] 3141591855144066 a007 Real Root Of 829*x^4+308*x^3+774*x^2-465*x-221 3141591862321441 m004 -10*Pi+(5*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141591862322067 m004 -E^(-2*Sqrt[5]*Pi)+Pi 3141591862322694 m004 -10*Pi+(5*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141591862323320 m004 -Pi+Tanh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141591868105872 r005 Im(z^2+c),c=-23/74+26/51*I,n=57 3141591873722536 m009 (5/2*Pi^2-3/5)/(5/6*Psi(1,1/3)-3/4) 3141591875401994 m002 Pi-Log[Pi]/(5*Pi^11) 3141591884565915 r005 Re(z^2+c),c=37/114+11/62*I,n=4 3141591888047606 b008 Pi*ModularLambda[I/18*Pi] 3141591898516570 b008 FresnelC[Pi/100] 3141591902337846 a001 311187*199^(34/39) 3141591904575741 b008 Pi*KelvinBer[0,1/16] 3141591905827350 m001 Pi-gamma(3)^BesselI(0,2) 3141591914291113 k006 concat of cont frac of 3141591915895925 m001 Landau^exp(Pi)-Pi 3141591919168853 m002 -5/(E^Pi*Pi^11)+Pi 3141591923716556 m002 -Pi+ProductLog[Pi]/(5*Pi^11) 3141591925191592 l006 ln(5749/7871) 3141591926984246 m001 Tribonacci^2/ln(Rabbit)/Pi 3141591928723739 m004 Pi-Tan[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141591931909008 a007 Real Root Of -2*x^4-631*x^3-843*x^2-172*x-105 3141591936381883 a009 11^(1/3)*(2^(2/3)-3) 3141591936682499 r002 59th iterates of z^2 + 3141591941221620 m001 (BesselI(1,1)+RenyiParking)/(Zeta(1/2)-exp(1)) 3141591942186669 p001 sum((-1)^n/(319*n+318)/(512^n),n=0..infinity) 3141591942389400 m001 ((1+3^(1/2))^(1/2)-Robbin)/(2^(1/3)+Ei(1)) 3141591942905471 m001 Pi^(1/2)+GAMMA(13/24)^HardyLittlewoodC3 3141591944488075 a001 7/10946*514229^(23/28) 3141591948219053 r005 Im(z^2+c),c=-7/38+32/55*I,n=8 3141591949744543 m001 Magata^2/ln(Si(Pi))^2/Paris^2 3141591951570060 m005 (1/2*5^(1/2)-2)/(-29/56+5/14*5^(1/2)) 3141591953134588 b008 (13*Sqrt[146])/5 3141591953134588 s003 concatenated sequence A358989 3141591957026936 m001 (Khinchin-MasserGramainDelta)/(3^(1/3)+Conway) 3141591967647564 m001 (Artin-FellerTornier)/(sin(1/12*Pi)+exp(1/Pi)) 3141591969283615 r009 Re(z^3+c),c=-23/60+14/53*I,n=29 3141591970336324 a007 Real Root Of 253*x^4+620*x^3-460*x^2+555*x+863 3141591972033013 m001 Porter^2/Niven^2*ln(GAMMA(7/12)) 3141591973789424 m002 -1/(5*Pi^11)+Pi 3141591976323079 m001 Pi-gamma(3)^UniversalParabolic 3141591976323668 m002 -Pi+Tanh[Pi]/(5*Pi^11) 3141591981380166 g005 1/2*GAMMA(5/11)/GAMMA(11/12)^2/Pi*GAMMA(5/6) 3141591986722746 b008 Pi*ModularLambda[I/10*Sqrt[3]] 3141591987143435 r005 Im(z^2+c),c=-15/62+31/61*I,n=16 3141591995095747 r005 Im(z^2+c),c=-8/23+26/49*I,n=36 3141591997676353 m004 1000*Pi-Cos[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141592003413914 m001 Pi-cos(1)^exp(Pi) 3141592004477756 r005 Im(z^2+c),c=9/50+8/31*I,n=27 3141592005099960 m002 Pi-Log[Pi]/(6*Pi^11) 3141592012565686 r002 4th iterates of z^2 + 3141592020574611 m004 -10*Pi+2*Csch[Sqrt[5]*Pi]^2 3141592020575112 m004 -10*Pi+(4*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592020575612 m004 -10*Pi+2*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592020576113 m004 -10*Pi+(4*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592020576614 m004 -10*Pi+2*Sech[Sqrt[5]*Pi]^2 3141592027556715 m001 Salem*Porter/ln(sqrt(3)) 3141592028196032 m001 GAMMA(1/4)*ln(TreeGrowth2nd)^2*GAMMA(17/24) 3141592032130066 m004 750*Pi+125*E^(Sqrt[5]*Pi)*Pi*Sech[Sqrt[5]*Pi] 3141592033582259 m001 Pi-ZetaP(4)^(2*Pi/GAMMA(5/6)) 3141592034327619 m002 Pi-Log[Pi]/(2*Pi^12) 3141592036574436 m004 10*Pi-Csch[Sqrt[5]*Pi]^2*Log[Sqrt[5]*Pi] 3141592036576389 m004 10*Pi-Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592042695809 m005 (1/3*Pi+1/5)/(7/10*Zeta(3)-4/9) 3141592045362095 m002 -Pi+ProductLog[Pi]/(6*Pi^11) 3141592047408257 m001 Landau^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592050336091 m001 Pi+gamma(2)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141592052719353 m004 1000*Pi-Sin[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141592053991797 m001 Pi-ZetaQ(4)^(5^(1/2)) 3141592058683041 a007 Real Root Of -17*x^4+793*x^3-795*x^2+811*x+358 3141592064651563 a007 Real Root Of -915*x^4+966*x^3+505*x^2+863*x-342 3141592064953797 m002 -Pi+(2*Csch[Pi])/Pi^11 3141592065864730 b008 Pi*KelvinBer[0,1/17] 3141592065978272 b008 Pi*ModularLambda[I/13*Sqrt[5]] 3141592066053041 m002 -4/(E^Pi*Pi^11)+Pi 3141592067148187 m002 -Pi+(2*Sech[Pi])/Pi^11 3141592070133598 m004 Pi-Cos[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592072775125 m002 -Pi+ProductLog[Pi]/(2*Pi^12) 3141592085318751 r009 Re(z^3+c),c=-21/44+23/39*I,n=3 3141592085541291 r009 Re(z^3+c),c=-21/44+20/49*I,n=52 3141592087089485 m002 -1/(6*Pi^11)+Pi 3141592089201355 m002 -Pi+Tanh[Pi]/(6*Pi^11) 3141592091483822 m002 -Pi+(6*Csch[Pi])/Pi^12 3141592092410461 b008 Pi*ModularLambda[I*(3-2*Sqrt[2])] 3141592093579311 m002 -Pi+(6*Sech[Pi])/Pi^12 3141592097738875 m004 -10*Pi+(Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141592105651308 p004 log(19739/853) 3141592111186112 k008 concat of cont frac of 3141592111611621 m002 Pi-Cosh[Pi]/(E^Pi*Pi^12) 3141592112621847 m002 -1/(2*Pi^12)+Pi 3141592113632074 m002 Pi-Sinh[Pi]/(E^Pi*Pi^12) 3141592114638535 m002 -Pi+Tanh[Pi]/(2*Pi^12) 3141592119096124 m004 Pi-Sin[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592119366078 b008 Pi*Erfc[E^(-5*Pi)] 3141592120261402 m001 Pi-cos(1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592122717511 k006 concat of cont frac of 3141592125353860 m002 Pi-Log[Pi]/(E^Pi*Pi^10) 3141592126122311 k007 concat of cont frac of 3141592126621321 k009 concat of cont frac of 3141592139767369 m001 (ln(Pi)+gamma(1))/(Zeta(1,2)+Gompertz) 3141592146299471 r009 Im(z^3+c),c=-3/62+44/53*I,n=24 3141592152311223 k006 concat of cont frac of 3141592156420831 m004 -100*Pi+5*Pi*Csch[Sqrt[5]*Pi]^2 3141592156421618 m004 -100*Pi+5*Pi*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592156422405 m004 -100*Pi+5*Pi*Sech[Sqrt[5]*Pi]^2 3141592157607758 m001 (ln(5)-GAMMA(17/24))/(Lehmer+TreeGrowth2nd) 3141592158149912 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^10) 3141592167533212 m001 (ln(5)+ArtinRank2)/(KhinchinLevy-ZetaP(2)) 3141592172997835 r005 Re(z^2+c),c=-13/118+26/41*I,n=41 3141592178828782 m004 -10*Pi+(3*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592178829158 m004 -6/E^(2*Sqrt[5]*Pi)+10*Pi 3141592178829533 m004 -10*Pi+(3*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592184585309 m006 (2/3*exp(2*Pi)-4/5)/(2/Pi-3/4) 3141592185168151 m002 -Pi+(5*Csch[Pi])/Pi^12 3141592185984007 b008 Pi*KelvinBer[0,1/18] 3141592186914391 m002 -Pi+(5*Sech[Pi])/Pi^12 3141592189527235 m001 (ln(2+3^(1/2))+ZetaP(3))/(cos(1)-sin(1/5*Pi)) 3141592192139507 m002 -(1/(E^Pi*Pi^10))+Pi 3141592192482202 m001 CopelandErdos^Psi(1,1/3)-Pi 3141592193859759 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^10) 3141592194809179 b008 Pi*ModularLambda[(3*I)/25*Sqrt[2]] 3141592196284570 m005 (1/3*Pi+1/7)/(1/2*Zeta(3)-2/9) 3141592197486158 m001 Pi-ZetaQ(3)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141592199890864 m001 Pi-ZetaQ(4)^BesselI(0,2) 3141592203378504 m001 Conway^Psi(2,1/3)-Pi 3141592212006489 r005 Re(z^2+c),c=-21/86+9/25*I,n=2 3141592212014117 k009 concat of cont frac of 3141592212937229 m002 -3/(E^Pi*Pi^11)+Pi 3141592213840028 r005 Re(z^2+c),c=-29/94+10/19*I,n=60 3141592227548461 m001 Pi-exp(-Pi)^FeigenbaumDelta 3141592232215941 k006 concat of cont frac of 3141592237950024 b008 Pi*ModularLambda[(2*I)/21*Sqrt[Pi]] 3141592238419118 k007 concat of cont frac of 3141592240748343 m002 Pi-Log[Pi]/(3*Pi^12) 3141592241683255 a007 Real Root Of 213*x^4+674*x^3-19*x^2-414*x-963 3141592243831749 a007 Real Root Of 926*x^4+423*x^3-808*x^2-536*x+226 3141592244102334 m001 Pi-ZetaQ(4)^UniversalParabolic 3141592244395351 r009 Re(z^3+c),c=-11/34+2/13*I,n=6 3141592249099101 m002 Pi-Cosh[Pi]/Pi^15 3141592249483393 r005 Im(z^2+c),c=-35/52+11/42*I,n=16 3141592250607012 m002 Pi-Sinh[Pi]/Pi^15 3141592250745734 a007 Real Root Of -354*x^4-770*x^3+892*x^2-334*x+755 3141592253607904 m001 Mills^Psi(2,1/3)-Pi 3141592257955930 m004 -5/E^(2*Sqrt[5]*Pi)+10*Pi 3141592259199699 r009 Im(z^3+c),c=-12/25+1/7*I,n=20 3141592259355248 m002 Pi-Log[Pi]/Pi^13 3141592260007966 m001 HardHexagonsEntropy*(GAMMA(3/4)+GAMMA(23/24)) 3141592266380014 m002 -Pi+ProductLog[Pi]/(3*Pi^12) 3141592273044615 r009 Re(z^3+c),c=-13/34+9/35*I,n=8 3141592276903080 m001 (Porter+ZetaQ(4))/(LambertW(1)-MertensB2) 3141592278852479 m002 -Pi+(4*Csch[Pi])/Pi^12 3141592280249471 m002 -Pi+(4*Sech[Pi])/Pi^12 3141592281185968 r002 58th iterates of z^2 + 3141592282824170 a001 843/2*121393^(23/24) 3141592283831691 m002 Pi-ProductLog[Pi]/Pi^13 3141592290786984 m001 HeathBrownMoroz^(5^(1/2))-Pi 3141592292944496 m002 -1/(3*Pi^12)+Pi 3141592294288954 m002 -Pi+Tanh[Pi]/(3*Pi^12) 3141592298279151 l006 ln(263/6086) 3141592309198903 m002 -Pi^(-13)+Pi 3141592310482766 m002 -Pi+Tanh[Pi]/Pi^13 3141592311633048 r005 Re(z^2+c),c=-37/102+21/61*I,n=7 3141592316675185 m002 Pi-(Csch[Pi]*Log[Pi])/Pi^11 3141592317931177 m002 Pi-(Log[Pi]*Sech[Pi])/Pi^11 3141592323479865 r009 Re(z^3+c),c=-13/27+22/45*I,n=41 3141592326240272 b008 Pi*ModularLambda[I/6] 3141592328457882 m001 Backhouse^Psi(1,1/3)/Riemann1stZero 3141592334388388 r005 Im(z^2+c),c=-23/78+35/54*I,n=3 3141592336012021 m005 (1/2*Pi+1/7)/(5*Zeta(3)-5/9) 3141592336770389 b008 Pi*ModularLambda[(2*I)/17*Sqrt[2]] 3141592337082202 m004 -10*Pi+Csch[Sqrt[5]*Pi]^2 3141592337082452 m004 -10*Pi+(2*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592337082703 m004 -10*Pi+Coth[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3141592337082703 m004 -4/E^(2*Sqrt[5]*Pi)+10*Pi 3141592337082953 m004 -10*Pi+(2*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592337083203 m004 -1+10*Pi+Tanh[Sqrt[5]*Pi]^2 3141592337083704 m004 -10*Pi+Sech[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3141592337592862 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/Pi^11 3141592338770875 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/Pi^11 3141592340561524 m005 (1/2*2^(1/2)+4)/(7/10*Catalan+6/7) 3141592343036545 m001 1/ln(TwinPrimes)^2*CareFree^2/Catalan 3141592343958706 m002 Pi-Log[Pi]/(4*Pi^12) 3141592346793636 b008 Pi*KelvinBer[0,1/20] 3141592352887060 a001 29*(1/2*5^(1/2)+1/2)^15*29^(8/13) 3141592357598797 s002 sum(A164887[n]/(n*2^n-1),n=1..infinity) 3141592359271795 m002 -Pi+Csch[Pi]/Pi^11 3141592359821417 m002 -2/(E^Pi*Pi^11)+Pi 3141592360368990 m002 -Pi+Sech[Pi]/Pi^11 3141592360817421 b008 Pi*ModularLambda[(2*I)/5*(-1+Sqrt[2])] 3141592361462095 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^11 3141592363182459 m002 -Pi+ProductLog[Pi]/(4*Pi^12) 3141592363642912 m004 10*Pi-Csch[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592363643830 m004 10*Pi-Sech[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592372063491 m001 (Bloch+PrimesInBinary)/(ReciprocalLucas+Thue) 3141592372536808 m002 -Pi+(3*Csch[Pi])/Pi^12 3141592373061658 m002 -6/(E^Pi*Pi^12)+Pi 3141592373584552 m002 -Pi+(3*Sech[Pi])/Pi^12 3141592375664334 m004 -100*Pi+(5*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141592379493060 m002 2+Pi^3/ProductLog[Pi]+ProductLog[Pi]/2 3141592379864851 r005 Re(z^2+c),c=-17/52+12/25*I,n=34 3141592381738178 m001 HeathBrownMoroz^BesselI(0,2)-Pi 3141592383105820 m002 -1/(4*Pi^12)+Pi 3141592384114164 m002 -Pi+Tanh[Pi]/(4*Pi^12) 3141592384844213 a001 18*(1/2*5^(1/2)+1/2)^31*322^(7/23) 3141592391130161 r005 Im(z^2+c),c=-8/23+19/39*I,n=19 3141592392621386 r009 Re(z^3+c),c=-41/94+22/63*I,n=32 3141592392959582 a007 Real Root Of 101*x^4-40*x^3-988*x^2+137*x-897 3141592395698270 r005 Im(z^2+c),c=-133/106+3/59*I,n=28 3141592396563004 m002 -(E^Pi/Pi^16)+Pi 3141592397174691 m001 Pi-ln(2+3^(1/2))^Psi(2,1/3) 3141592398404165 b008 Pi*ModularLambda[I/60*Pi^2] 3141592401078172 m001 1/log(1+sqrt(2))*ln(GolombDickman)*sin(Pi/5) 3141592401187835 b008 Pi*KelvinBer[0,1/21] 3141592402069905 m005 (1/2*2^(1/2)+3/4)/(3/8*Pi-5/7) 3141592403520889 m001 Pi-Trott^ReciprocalFibonacci 3141592403895816 r009 Im(z^3+c),c=-27/44+11/37*I,n=61 3141592405005509 m004 -100*Pi+(5*Pi*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592405005902 m004 -100*Pi+(5*Pi*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592405884923 m002 Pi-Log[Pi]/(5*Pi^12) 3141592409109784 m001 HeathBrownMoroz^UniversalParabolic-Pi 3141592413671280 m001 1/ln(cos(Pi/12))^2/GAMMA(7/12)*gamma 3141592414103419 m001 Pi-polylog(4,1/2)^exp(Pi) 3141592416209475 m004 -3/E^(2*Sqrt[5]*Pi)+10*Pi 3141592419042026 r005 Im(z^2+c),c=-35/26+7/125*I,n=15 3141592419816347 m002 -5/(E^Pi*Pi^12)+Pi 3141592420206945 m004 10*Pi-Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi]^2 3141592420207684 m004 10*Pi-Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592421263926 m002 -Pi+ProductLog[Pi]/(5*Pi^12) 3141592430196936 m001 Ei(1,1)^Psi(1,1/3)-Pi 3141592431249074 m004 -100*Pi+Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141592431249778 m004 -100*Pi+Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141592431665354 b008 Pi*ModularLambda[I/5*Sqrt[2/3]] 3141592434690729 a008 Real Root of (-5+5*x+2*x^2+4*x^3-5*x^4-2*x^5) 3141592437202615 m002 -1/(5*Pi^12)+Pi 3141592438009290 m002 -Pi+Tanh[Pi]/(5*Pi^12) 3141592439791987 m004 10*Pi-Csch[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592439792664 m004 10*Pi-Sech[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592447169068 m002 Pi-Log[Pi]/(6*Pi^12) 3141592451591632 m001 Pi-Trott^Magata 3141592453509488 m001 MertensB1^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141592453589793 s001 sum(1/10^(n-1)*A216548[n],n=1..infinity) 3141592453589793 s001 sum(1/10^n*A216548[n],n=1..infinity) 3141592453589793 s003 concatenated sequence A216548 3141592454457525 a007 Real Root Of -376*x^4+958*x^3-142*x^2+888*x-291 3141592459260172 a007 Real Root Of -159*x^4-343*x^3+455*x^2+62*x+557 3141592459442046 r005 Im(z^2+c),c=-35/102+14/27*I,n=51 3141592459900657 s001 sum(1/10^(n-1)*A258933[n]/n^n,n=1..infinity) 3141592459908159 l006 ln(2376/3253) 3141592459984904 m002 -Pi+ProductLog[Pi]/(6*Pi^12) 3141592463685238 m004 -100*Pi+6*Csch[Sqrt[5]*Pi]^2 3141592463685539 m004 -100*Pi+6*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592463685839 m004 -100*Pi+6*Sech[Sqrt[5]*Pi]^2 3141592465812233 r005 Re(z^2+c),c=-47/114+1/29*I,n=15 3141592465831622 m001 Pi-gamma(3)^FeigenbaumAlpha 3141592466221136 m002 -Pi+(2*Csch[Pi])/Pi^12 3141592466571036 m002 -4/(E^Pi*Pi^12)+Pi 3141592466919632 m002 -Pi+(2*Sech[Pi])/Pi^12 3141592468109529 m001 Pi-PisotVijayaraghavan^Psi(2,1/3) 3141592469520105 a001 105937/6*199^(31/57) 3141592472722578 h001 (-3*exp(3)-7)/(-5*exp(3/2)+1) 3141592473193772 r009 Re(z^3+c),c=-17/106+28/31*I,n=4 3141592473267144 m002 -1/(6*Pi^12)+Pi 3141592473939373 m002 -Pi+Tanh[Pi]/(6*Pi^12) 3141592475846874 m001 Pi-sin(1/12*Pi)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592475846874 m001 Pi-sin(Pi/12)^GAMMA(1/12) 3141592482259701 b008 Pi*ModularLambda[I/11*Sqrt[Pi]] 3141592485447073 m002 Pi-Log[Pi]/(E^Pi*Pi^11) 3141592487692141 r009 Re(z^3+c),c=-15/31+29/49*I,n=3 3141592495335997 m004 -100*Pi+5*Csch[Sqrt[5]*Pi]^2 3141592495336122 m004 -1-10*Pi+Coth[Sqrt[5]*Pi] 3141592495336248 m004 -100*Pi+5*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592495336248 m004 -2/E^(2*Sqrt[5]*Pi)+10*Pi 3141592495336373 m004 -1+10*Pi+Tanh[Sqrt[5]*Pi] 3141592495336498 m004 -100*Pi+5*Sech[Sqrt[5]*Pi]^2 3141592495886381 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^11) 3141592499336198 m004 10*Pi-Log[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592505636399 b008 Pi*KelvinBer[0,1/24] 3141592506705605 m002 -(1/(E^Pi*Pi^11))+Pi 3141592507253178 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^11) 3141592513325725 m002 -3/(E^Pi*Pi^12)+Pi 3141592518471989 m001 Pi-Trott2nd^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592519745371 m001 MertensB3^Psi(2,1/3)-Pi 3141592521114110 k009 concat of cont frac of 3141592521121612 k009 concat of cont frac of 3141592521669729 r005 Re(z^2+c),c=-19/54+19/46*I,n=21 3141592523900834 m001 Pi-exp(-1/2*Pi)^Psi(1,1/3) 3141592524836407 m002 Pi-Cosh[Pi]/Pi^16 3141592525316390 m002 Pi-Sinh[Pi]/Pi^16 3141592526039834 a007 Real Root Of 843*x^4-16*x^3+295*x^2-182*x-95 3141592526986756 m004 -100*Pi+4*Csch[Sqrt[5]*Pi]^2 3141592526986957 m004 -100*Pi+4*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592526987157 m004 -100*Pi+4*Sech[Sqrt[5]*Pi]^2 3141592527926087 b008 Pi*KelvinBer[0,1/25] 3141592528101040 m002 Pi-Log[Pi]/Pi^14 3141592529297749 m004 -100*Pi+(5*Pi)/E^(2*Sqrt[5]*Pi) 3141592531626336 m001 Pi-ZetaQ(3)^ReciprocalFibonacci 3141592532804146 m004 -10*Pi+ProductLog[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592534954223 r005 Re(z^2+c),c=9/26+8/57*I,n=55 3141592535892134 m002 Pi-ProductLog[Pi]/Pi^14 3141592537374983 r005 Re(z^2+c),c=-37/90+4/35*I,n=9 3141592540602227 m001 Pi-gamma(3)^Sierpinski 3141592543966768 m002 -Pi^(-14)+Pi 3141592544375434 m002 -Pi+Tanh[Pi]/Pi^14 3141592545111045 m001 Pi-ZetaQ(4)^FeigenbaumAlpha 3141592546346542 m002 Pi-(Csch[Pi]*Log[Pi])/Pi^12 3141592546746337 m002 Pi-(Log[Pi]*Sech[Pi])/Pi^12 3141592553004846 m002 -Pi+(Csch[Pi]*ProductLog[Pi])/Pi^12 3141592553379819 m002 -Pi+(ProductLog[Pi]*Sech[Pi])/Pi^12 3141592554147718 m001 Pi-Totient^Psi(2,1/3) 3141592556059762 m001 Pi-ZetaQ(3)^Magata 3141592556771244 a005 (1/cos(1/88*Pi))^1796 3141592556916508 m001 Pi-Trott^FeigenbaumMu 3141592557558767 m001 Pi-gamma(1)^(2*Pi/GAMMA(5/6)) 3141592558637515 m004 -100*Pi+3*Csch[Sqrt[5]*Pi]^2 3141592558637591 m004 -100*Pi+(6*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592558637666 m004 -100*Pi+3*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592558637741 m004 -100*Pi+(6*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592558637816 m004 -100*Pi+3*Sech[Sqrt[5]*Pi]^2 3141592559905464 m002 -Pi+Csch[Pi]/Pi^12 3141592560080414 m002 -2/(E^Pi*Pi^12)+Pi 3141592560254712 m002 -Pi+Sech[Pi]/Pi^12 3141592560255399 m001 Pi+ln(gamma)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592560602658 m002 -Pi+(Sech[Pi]*Tanh[Pi])/Pi^12 3141592561223217 b008 Pi*KelvinBer[0,1/27] 3141592562487456 r005 Re(z^2+c),c=-35/106+22/47*I,n=59 3141592567341315 m001 Pi-ZetaQ(2)^(2*Pi/GAMMA(5/6)) 3141592569690793 r005 Re(z^2+c),c=-17/54+28/55*I,n=58 3141592570289747 m001 Pi+gamma(2)^FeigenbaumAlpha 3141592571775625 m002 -(E^Pi/Pi^17)+Pi 3141592574462958 m004 -100*Pi+(5*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592574463020 m004 -E^(-2*Sqrt[5]*Pi)+10*Pi 3141592574463083 m004 -100*Pi+(5*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592574463145 m004 -10*Pi+Tanh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592574777326 r005 Im(z^2+c),c=-27/23+3/64*I,n=16 3141592578439592 m001 Pi-Trott^(Pi*2^(1/2)/GAMMA(3/4)) 3141592580501356 m001 Pi+gamma(2)^ReciprocalFibonacci 3141592581103187 m004 10*Pi-Tan[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592584260919 m002 Cosh[Pi]/(4*Pi^2)+Pi^3*Coth[Pi] 3141592587238244 m001 DuboisRaymond^Psi(1,1/3)-Pi 3141592589474183 m001 Pi-ZetaQ(4)^Sierpinski 3141592590288275 m004 -100*Pi+2*Csch[Sqrt[5]*Pi]^2 3141592590288325 m004 -100*Pi+(4*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592590288375 m004 -100*Pi+2*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592590288425 m004 -100*Pi+(4*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592590288475 m004 -100*Pi+2*Sech[Sqrt[5]*Pi]^2 3141592590417307 m001 Pi-gamma(3)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3141592590755479 a007 Real Root Of -870*x^4+22*x^3-110*x^2+557*x+195 3141592591711797 r005 Re(z^2+c),c=-7/17+3/56*I,n=22 3141592591771415 m001 HeathBrownMoroz^FeigenbaumAlpha-Pi 3141592591888257 m004 -100*Pi+Csch[Sqrt[5]*Pi]^2*Log[Sqrt[5]*Pi] 3141592591888452 m004 -100*Pi+Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592592042705 m001 Pi-gamma(3)^FeigenbaumD 3141592592912883 m001 Pi-gamma(3)^Khinchin 3141592592988083 b008 Pi*KelvinBer[0,1/30] 3141592595244173 m004 10*Pi-Cos[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592598004701 m004 -100*Pi+(Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141592598278380 m001 GAMMA(2/3)^Psi(2,1/3)-Pi 3141592600068303 m002 Pi-Log[Pi]/(E^Pi*Pi^12) 3141592600140426 m004 10*Pi-Sin[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592601221483 m001 FeigenbaumKappa^Psi(2,1/3)-Pi 3141592602875616 m001 Pi-Trott2nd^FeigenbaumDelta 3141592603391238 m002 -Pi+ProductLog[Pi]/(E^Pi*Pi^12) 3141592604068105 m001 Pi-gamma(3)^exp(1) 3141592606113692 m004 -100*Pi+(3*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592606113729 m004 -6/E^(2*Sqrt[5]*Pi)+100*Pi 3141592606113767 m004 -100*Pi+(3*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592606776414 b008 Pi*KelvinBer[0,1/32] 3141592606835104 m002 -(1/(E^Pi*Pi^12))+Pi 3141592607009402 m002 -Pi+Tanh[Pi]/(E^Pi*Pi^12) 3141592607759443 m001 1/ln(LambertW(1))/CopelandErdos/cosh(1)^2 3141592608510105 m001 Pi-ZetaQ(3)^FeigenbaumMu 3141592612606317 m002 Pi-Cosh[Pi]/Pi^17 3141592612759100 m002 Pi-Sinh[Pi]/Pi^17 3141592613645482 m002 Pi-Log[Pi]/Pi^15 3141592613921473 m001 Pi+gamma(2)^Magata 3141592614026406 m004 -5/E^(2*Sqrt[5]*Pi)+100*Pi 3141592616125464 m002 Pi-ProductLog[Pi]/Pi^15 3141592617720057 m001 HeathBrownMoroz^Sierpinski-Pi 3141592618472805 m001 Pi-ZetaQ(4)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3141592618695700 m002 -Pi^(-15)+Pi 3141592618825783 m002 -Pi+Tanh[Pi]/Pi^15 3141592618960917 m001 Pi-ZetaQ(3)^(Pi*2^(1/2)/GAMMA(3/4)) 3141592619407923 m001 Pi-ZetaQ(4)^FeigenbaumD 3141592619572185 m001 Pi-PlouffeB^exp(Pi) 3141592619908192 m001 Pi-ZetaQ(4)^Khinchin 3141592620674696 m001 Pi-Weierstrass^exp(Pi) 3141592621939034 m004 -100*Pi+Csch[Sqrt[5]*Pi]^2 3141592621939059 m004 -100*Pi+(2*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592621939084 m004 -100*Pi+Coth[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3141592621939084 m004 -4/E^(2*Sqrt[5]*Pi)+100*Pi 3141592621939109 m004 -100*Pi+(2*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592621939134 m004 -1+100*Pi+Tanh[Sqrt[5]*Pi]^2 3141592621939184 m004 -100*Pi+Sech[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3141592624364431 b008 Pi*KelvinBer[0,1/36] 3141592624595105 m004 -100*Pi+Csch[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592624595196 m004 -100*Pi+Sech[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592625125449 m001 Pi-gamma(3)^FransenRobinson 3141592625285918 m001 Bloch^exp(Pi)-Pi 3141592626297526 m001 Pi-ZetaQ(4)^exp(1) 3141592626807395 m001 Pi-PlouffeB^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592627029543 m001 Ei(1,1)^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141592627547534 m002 -(E^Pi/Pi^18)+Pi 3141592627687283 m001 Pi-Weierstrass^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592628153719 m001 Pi-exp(-Pi)^(2*Pi/GAMMA(5/6)) 3141592629606695 m001 Pi-exp(1/Pi)^Psi(2,1/3) 3141592629851761 m004 -3/E^(2*Sqrt[5]*Pi)+100*Pi 3141592630251508 m004 -100*Pi+Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi]^2 3141592630251582 m004 -100*Pi+Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592631095818 m001 Pi-ZetaP(3)^Psi(1,1/3) 3141592631362782 m001 Bloch^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592632210012 m004 -100*Pi+Csch[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592632210080 m004 -100*Pi+Sech[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592634353844 m001 HeathBrownMoroz^(2/3*Pi*3^(1/2)/GAMMA(2/3))-Pi 3141592634354546 m001 Pi-gamma(2)^(Pi*2^(1/2)/GAMMA(3/4)) 3141592634415033 b008 Pi*KelvinBer[0,1/40] 3141592634737695 m001 Pi-arctan(1/2)^exp(Pi) 3141592634883784 m001 HeathBrownMoroz^FeigenbaumD-Pi 3141592635167084 m001 HeathBrownMoroz^Khinchin-Pi 3141592637764426 m004 -1-100*Pi+Coth[Sqrt[5]*Pi] 3141592637764438 m004 -2/E^(2*Sqrt[5]*Pi)+100*Pi 3141592637764451 m004 -1+100*Pi+Tanh[Sqrt[5]*Pi] 3141592637814670 b008 Pi*KelvinBer[0,1/42] 3141592638164433 m004 -100*Pi+Log[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592638207295 m001 Pi-ZetaQ(4)^FransenRobinson 3141592638771542 m001 HeathBrownMoroz^exp(1)-Pi 3141592638868680 m001 Pi-arctan(1/2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592639293414 m001 Pi-exp(-1/2*Pi)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592639472436 m001 Pi-gamma(2)^FeigenbaumMu 3141592640544347 m002 Pi-Cosh[Pi]/Pi^18 3141592640592980 m002 Pi-Sinh[Pi]/Pi^18 3141592640875124 m002 Pi-Log[Pi]/Pi^16 3141592641249595 m001 Pi-Zeta(1,-1)^Psi(1,1/3) 3141592641664527 m002 Pi-ProductLog[Pi]/Pi^16 3141592642198469 m001 Pi-gamma(3)^Otter 3141592642482658 m002 -Pi^(-16)+Pi 3141592642524065 m002 -Pi+Tanh[Pi]/Pi^16 3141592642993250 m001 Pi-ZetaP(2)^exp(Pi) 3141592643059883 m001 HardHexagonsEntropy^Psi(2,1/3)-Pi 3141592645130651 r009 Re(z^3+c),c=-43/98+13/36*I,n=18 3141592645381252 m001 Pi-ZetaP(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592645404162 m001 HeathBrownMoroz^FransenRobinson-Pi 3141592645677115 m004 -E^(-2*Sqrt[5]*Pi)+100*Pi 3141592645677128 m004 -100*Pi+Tanh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592646040793 m001 OrthogonalArrays^Psi(2,1/3)-Pi 3141592646341132 m004 -100*Pi+Tan[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592647630262 m001 Pi-ZetaQ(4)^Otter 3141592647755231 m004 -100*Pi+Cos[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592647961155 m001 BesselJ(1,1)^exp(Pi)-Pi 3141592647998500 m001 Pi-TreeGrowth2nd^exp(Pi) 3141592648137436 b008 Pi*JacobiCD[3,-1/5] 3141592648244856 m004 -100*Pi+Sin[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592648357941 m001 Pi-gamma(3)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141592648539764 m001 (2^(1/2))^Psi(2,1/3)-Pi 3141592649046162 b008 Pi*JacobiCN[3,-1/5] 3141592649263412 m001 Pi-ZetaR(2)^Psi(1,1/3) 3141592649267798 m001 BesselJ(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592649542588 m002 Pi-Log[Pi]/Pi^17 3141592649793863 m002 Pi-ProductLog[Pi]/Pi^17 3141592650054282 m002 -Pi^(-17)+Pi 3141592650067462 m002 -Pi+Tanh[Pi]/Pi^17 3141592650522209 m001 HeathBrownMoroz^Otter-Pi 3141592650927082 m001 Pi-ZetaQ(4)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141592651295782 m001 Pi-Trott^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592651565791 m001 BesselK(0,1)^exp(Pi)-Pi 3141592651578230 m001 Pi-Trott2nd^(2*Pi/GAMMA(5/6)) 3141592651646259 m001 Pi-ZetaP(3)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592651832900 s001 sum(1/10^(n-1)*A087478[n],n=1..infinity) 3141592651832900 s001 sum(1/10^n*A087478[n],n=1..infinity) 3141592651832900 s003 concatenated sequence A087478 3141592651878381 m001 (3^(1/3))^Psi(2,1/3)-Pi 3141592652007259 m004 -1+1000*Pi+Tanh[Sqrt[5]*Pi] 3141592652029349 m001 Pi-exp(1/exp(1))^Psi(2,1/3) 3141592652057595 m001 BesselK(0,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592652165245 m001 Pi-PrimesInBinary^exp(Pi) 3141592652301527 m002 Pi-Log[Pi]/Pi^18 3141592652332247 m001 Pi-ThueMorse^exp(Pi) 3141592652381511 m002 Pi-ProductLog[Pi]/Pi^18 3141592652464405 m002 -Pi^(-18)+Pi 3141592652468600 m002 -Pi+Tanh[Pi]/Pi^18 3141592652502158 m001 HardyLittlewoodC5^exp(Pi)-Pi 3141592652578291 m001 Backhouse^Psi(2,1/3)-Pi 3141592652582646 s003 concatenated sequence A328927 3141592652644092 m001 Pi-ThueMorse^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592652655405 m001 Pi-gamma(3)^ReciprocalFibonacci 3141592652681067 b008 Pi*JacobiND[3,-1/5] 3141592652693335 m001 Pi-ZetaQ(3)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592652769866 m001 MinimumGamma^Psi(2,1/3)-Pi 3141592652791926 m001 Zeta(1/2)^Psi(2,1/3)+Pi 3141592652892003 m001 Pi-gamma(3)^Magata 3141592652916349 m001 Champernowne^Psi(1,1/3)-Pi 3141592652920917 m001 Pi-Trott^FeigenbaumDelta 3141592652921841 m001 Pi-Porter^Psi(2,1/3) 3141592653142392 m001 Pi-ZetaQ(4)^ReciprocalFibonacci 3141592653143588 m001 Pi-gamma(2)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592653259117 m001 Pi-ZetaQ(4)^Magata 3141592653292560 m001 Pi-ZetaR(2)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653335107 m001 Pi-gamma(3)^FeigenbaumMu 3141592653343190 m001 Pi-ZetaQ(3)^FeigenbaumDelta 3141592653379489 m001 HeathBrownMoroz^ReciprocalFibonacci-Pi 3141592653389012 m001 Pi+gamma(2)^FeigenbaumDelta 3141592653409320 m001 Pi-gamma(3)^(Pi*2^(1/2)/GAMMA(3/4)) 3141592653420841 m001 OneNinth^Psi(1,1/3)-Pi 3141592653435995 m001 HeathBrownMoroz^Magata-Pi 3141592653439236 s003 concatenated sequence A291600 3141592653451767 s004 Continued Fraction of A154883 3141592653451767 s004 Continued fraction of A154883 3141592653459546 m001 Artin^exp(Pi)-Pi 3141592653473332 m001 Pi-ZetaQ(4)^FeigenbaumMu 3141592653494885 m001 Artin^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592653508269 m001 Pi-ZetaQ(4)^(Pi*2^(1/2)/GAMMA(3/4)) 3141592653519897 m001 Paris^Psi(1,1/3)-Pi 3141592653520670 m001 GAMMA(7/12)^Psi(2,1/3)-Pi 3141592653537573 m001 HeathBrownMoroz^FeigenbaumMu-Pi 3141592653548524 m001 Pi-cosh(1)^Psi(2,1/3) 3141592653553693 m001 HeathBrownMoroz^(Pi*2^(1/2)/GAMMA(3/4))-Pi 3141592653554070 m001 Champernowne^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141592653570689 b008 Pi*Cos[E^(-4*Pi)] 3141592653578243 m001 Pi-Trott^(2*Pi/GAMMA(5/6)) 3141592653579893 b004 Shamos Catalog of real numbers 3141592653579923 m001 Pi-StolarskyHarborth^Psi(1,1/3) 3141592653582049 m001 BesselI(1,2)^Psi(2,1/3)-Pi 3141592653582148 s001 sum(1/10^(n-1)*A247385[n],n=1..infinity) 3141592653582148 s001 sum(1/10^n*A247385[n],n=1..infinity) 3141592653582148 s003 concatenated sequence A247385 3141592653582398 m001 OneNinth^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141592653582398 m001 OneNinth^GAMMA(1/12)-Pi 3141592653584281 m001 Pi-ZetaP(4)^Psi(1,1/3) 3141592653585341 m001 ErdosBorwein^Psi(2,1/3)-Pi 3141592653585515 m001 FellerTornier^exp(Pi)-Pi 3141592653585741 m001 Pi-ln(5)^Psi(2,1/3) 3141592653585778 m001 Pi-arctan(1/3)^exp(Pi) 3141592653586277 m001 Pi-ZetaQ(3)^(2*Pi/GAMMA(5/6)) 3141592653586677 m001 Pi-gamma(1)^Psi(1,1/3) 3141592653587005 m001 Pi-arctan(1/3)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653587087 m001 Paris^(Pi*csc(1/12*Pi)/GAMMA(11/12))-Pi 3141592653587936 m001 Pi+Zeta(1,-1)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653588266 m001 Pi-gamma(3)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592653588352 m001 GAMMA(13/24)^Psi(2,1/3)-Pi 3141592653588386 m001 HardyLittlewoodC4^exp(Pi)-Pi 3141592653588513 m001 Pi-gamma(2)^(2*Pi/GAMMA(5/6)) 3141592653588720 m001 Pi-exp(1/2)^Psi(2,1/3) 3141592653588740 m001 GaussKuzminWirsing^exp(Pi)-Pi 3141592653588860 m001 ((1+3^(1/2))^(1/2))^Psi(2,1/3)-Pi 3141592653588932 m001 (ln(2)/ln(10))^exp(Pi)-Pi 3141592653589210 m001 Pi-ZetaQ(4)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592653589510 m001 Pi-gamma(3)^FeigenbaumDelta 3141592653589625 m001 Niven^Psi(2,1/3)-Pi 3141592653589639 m001 Pi-ZetaQ(2)^Psi(1,1/3) 3141592653589643 m001 Pi-ZetaP(4)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589691 m001 Pi-ZetaQ(4)^FeigenbaumDelta 3141592653589722 m001 (3^(1/2))^Psi(2,1/3)-Pi 3141592653589746 m001 KhinchinHarmonic^Psi(2,1/3)-Pi 3141592653589749 m001 MadelungNaCl^Psi(2,1/3)-Pi 3141592653589757 m001 HeathBrownMoroz^FeigenbaumDelta-Pi 3141592653589760 m001 MertensB1^exp(Pi)-Pi 3141592653589767 m001 Pi-sin(1/12*Pi)^exp(Pi) 3141592653589771 m001 MertensB1^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592653589773 m001 (Pi^(1/2))^Psi(2,1/3)-Pi 3141592653589776 m001 Pi-sin(1/12*Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589776 m001 Pi-exp(-Pi)^Psi(1,1/3) 3141592653589778 m001 Grothendieck^Psi(2,1/3)-Pi 3141592653589780 m001 KomornikLoreti^Psi(2,1/3)-Pi 3141592653589789 m001 MasserGramainDelta^Psi(2,1/3)-Pi 3141592653589789 m001 FeigenbaumC^Psi(2,1/3)-Pi 3141592653589790 m001 CopelandErdos^exp(Pi)-Pi 3141592653589790 m001 Pi-Tribonacci^Psi(2,1/3) 3141592653589790 m001 Pi-ZetaQ(2)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589791 m001 Pi-Si(Pi)^Psi(2,1/3) 3141592653589792 m001 Pi-gamma(3)^(2*Pi/GAMMA(5/6)) 3141592653589792 m001 Ei(1,1)^exp(Pi)-Pi 3141592653589792 m001 Ei(1)^Psi(2,1/3)-Pi 3141592653589792 m001 Ei(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592653589792 m001 Pi-ZetaQ(4)^(2*Pi/GAMMA(5/6)) 3141592653589793 s001 sum(1/10^(n-1)*A253214[n],n=1..infinity) 3141592653589793 s001 sum(1/10^n*A253214[n],n=1..infinity) 3141592653589793 s003 concatenated sequence A253214 3141592653589793 m001 Pi-exp(-Pi)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 (Pi*csc(11/24*Pi)/GAMMA(13/24))^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-Trott2nd^Psi(1,1/3) 3141592653589793 m001 Pi-exp(-1/2*Pi)^exp(Pi) 3141592653589793 m001 Pi+gamma(1)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 Pi-exp(-1/2*Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 HeathBrownMoroz^(2*Pi/GAMMA(5/6))-Pi 3141592653589793 m001 Pi-ReciprocalLucas^Psi(2,1/3) 3141592653589793 m001 DuboisRaymond^exp(Pi)-Pi 3141592653589793 s003 concatenated sequence A047777 3141592653589793 m001 Pi-ZetaP(3)^exp(Pi) 3141592653589793 m001 Pi-ZetaP(3)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 Pi-Trott2nd^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^Psi(2,1/3)-Pi 3141592653589793 m001 Zeta(1,-1)^exp(Pi)+Pi 3141592653589793 m001 Pi-ZetaR(2)^exp(Pi) 3141592653589793 m001 Pi+Zeta(1,-1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 (5^(1/2))^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-ZetaR(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 BesselI(0,2)^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-Trott^Psi(1,1/3) 3141592653589793 m001 Pi-UniversalParabolic^Psi(2,1/3) 3141592653589793 m001 Pi-gamma(2)^Psi(1,1/3) 3141592653589793 b004 Shamos Catalog of real numbers 3141592653589793 m001 Pi-ZetaQ(3)^Psi(1,1/3) 3141592653589793 m001 Champernowne^exp(Pi)-Pi 3141592653589793 m001 Champernowne^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592653589793 m001 FeigenbaumAlpha^Psi(2,1/3)-Pi 3141592653589793 m001 OneNinth^exp(Pi)-Pi 3141592653589793 b004 Shamos Catalog of real numbers 3141592653589793 m001 Pi-Trott^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 OneNinth^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592653589793 m001 Pi-Sierpinski^Psi(2,1/3) 3141592653589793 m001 Paris^exp(Pi)-Pi 3141592653589793 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^Psi(2,1/3)-Pi 3141592653589793 m001 Paris^(Pi*csc(1/24*Pi)/GAMMA(23/24))-Pi 3141592653589793 m001 FeigenbaumD^Psi(2,1/3)-Pi 3141592653589793 m001 Khinchin^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-ZetaQ(3)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 Pi-exp(1)^Psi(2,1/3) 3141592653589793 m001 FransenRobinson^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-StolarskyHarborth^exp(Pi) 3141592653589793 m001 Pi-ZetaP(4)^exp(Pi) 3141592653589793 m001 Pi+gamma(2)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 Otter^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-ZetaP(4)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 gamma(1)^exp(Pi)+Pi 3141592653589793 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-gamma(3)^Psi(1,1/3) 3141592653589793 m001 Pi+gamma(1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 Pi-ZetaQ(4)^Psi(1,1/3) 3141592653589793 m001 Pi-ReciprocalFibonacci^Psi(2,1/3) 3141592653589793 m001 HeathBrownMoroz^Psi(1,1/3)-Pi 3141592653589793 m001 Magata^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-ZetaQ(2)^exp(Pi) 3141592653589793 m001 Pi-ZetaQ(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 FeigenbaumMu^Psi(2,1/3)-Pi 3141592653589793 m001 (Pi*2^(1/2)/GAMMA(3/4))^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-gamma(3)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 Pi-exp(-Pi)^exp(Pi) 3141592653589793 m001 Pi-ZetaQ(4)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 Pi-exp(-Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 s004 Continued Fraction of A277140 3141592653589793 s004 Continued fraction of A277140 3141592653589793 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^Psi(2,1/3)-Pi 3141592653589793 m001 Pi-Trott2nd^exp(Pi) 3141592653589793 m001 Pi-Trott2nd^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 FeigenbaumDelta^Psi(2,1/3)-Pi 3141592653589793 b000 Pi 3141592653589793 b008 (1+E^log2[3])*Pi 3141592653589793 b008 -10*Pi 3141592653589793 b008 -2*E^log2[3]+Pi 3141592653589793 b008 -3*E^log2[3]+Pi 3141592653589793 b008 2*E^log2[3]+Pi 3141592653589793 b008 2^log10[1/2]*Pi 3141592653589793 b008 2^log10[1/2]+Pi 3141592653589793 b008 2^log10[2]*Pi 3141592653589793 b008 2^log10[2]+Pi 3141592653589793 b008 2^log10[3]*Pi 3141592653589793 b008 2^log10[3]+Pi 3141592653589793 b008 2^log10[4]*Pi 3141592653589793 b008 2^log10[4]+Pi 3141592653589793 b008 2^log10[5]+Pi 3141592653589793 b008 2^log10[Pi]*Pi 3141592653589793 b008 2^log10[Pi]+Pi 3141592653589793 b008 3*E^log2[3]+Pi 3141592653589793 b008 3^log10[3]*Pi 3141592653589793 b008 3^log10[3]+Pi 3141592653589793 b008 3^log10[Pi]*Pi 3141592653589793 b008 3^log10[Pi]+Pi 3141592653589793 b008 3^log2[3]*Pi 3141592653589793 b008 3^log2[3]+Pi 3141592653589793 b008 3^log2[Pi]+Pi 3141592653589793 b008 4*E^log2[3]+Pi 3141592653589793 b008 5*E^log2[3]+Pi 3141592653589793 b008 6*E^log2[3]+Pi 3141592653589793 b008 E^log10[1/2]*Pi 3141592653589793 b008 E^log10[1/2]+Pi 3141592653589793 b008 E^log10[1/3]*Pi 3141592653589793 b008 E^log10[1/3]+Pi 3141592653589793 b008 E^log10[1/4]*Pi 3141592653589793 b008 E^log10[1/4]+Pi 3141592653589793 b008 E^log10[2]*Pi 3141592653589793 b008 E^log10[2]+Pi 3141592653589793 b008 E^log10[2]-Pi 3141592653589793 b008 E^log10[3]*Pi 3141592653589793 b008 E^log10[3]+Pi 3141592653589793 b008 E^log10[3]-Pi 3141592653589793 b008 E^log10[4]*Pi 3141592653589793 b008 E^log10[4]+Pi 3141592653589793 b008 E^log10[5]*Pi 3141592653589793 b008 E^log10[5]+Pi 3141592653589793 b008 E^log10[6]*Pi 3141592653589793 b008 E^log10[6]+Pi 3141592653589793 b008 E^log10[7]*Pi 3141592653589793 b008 E^log10[7]+Pi 3141592653589793 b008 E^log10[8]*Pi 3141592653589793 b008 E^log10[8]+Pi 3141592653589793 b008 E^log10[9]*Pi 3141592653589793 b008 E^log10[9]+Pi 3141592653589793 b008 E^log10[E]*Pi 3141592653589793 b008 E^log10[E]+Pi 3141592653589793 b008 E^log10[EulerGamma]*Pi 3141592653589793 b008 E^log10[EulerGamma]+Pi 3141592653589793 b008 E^log10[Pi]*Pi 3141592653589793 b008 E^log10[Pi]+Pi 3141592653589793 b008 E^log10[Pi]-Pi 3141592653589793 b008 E^log2[1/3]*Pi 3141592653589793 b008 E^log2[1/3]+Pi 3141592653589793 b008 E^log2[10]*Pi 3141592653589793 b008 E^log2[10]+Pi 3141592653589793 b008 E^log2[3]*Pi 3141592653589793 b008 E^log2[3]+Pi 3141592653589793 b008 E^log2[3]-Pi 3141592653589793 b008 E^log2[3]/2+Pi 3141592653589793 b008 E^log2[5]*Pi 3141592653589793 b008 E^log2[5]+Pi 3141592653589793 b008 E^log2[6]*Pi 3141592653589793 b008 E^log2[6]+Pi 3141592653589793 b008 E^log2[7]*Pi 3141592653589793 b008 E^log2[7]+Pi 3141592653589793 b008 E^log2[9]*Pi 3141592653589793 b008 E^log2[9]+Pi 3141592653589793 b008 E^log2[EulerGamma]*Pi 3141592653589793 b008 E^log2[EulerGamma]+Pi 3141592653589793 b008 E^log2[Pi]*Pi 3141592653589793 b008 E^log2[Pi]+Pi 3141592653589793 b008 E^log2[Pi]-Pi 3141592653589793 b008 Pi 3141592653589793 b008 Pi*(-1+log10[3]) 3141592653589793 b008 Pi*(-1+log10[7]) 3141592653589793 b008 Pi*(-1+log10[E]) 3141592653589793 b008 Pi*(-1+log10[EulerGamma]) 3141592653589793 b008 Pi*(-1+log10[Pi]) 3141592653589793 b008 Pi*(-1+log2[EulerGamma]) 3141592653589793 b008 Pi*(-1+log2[Pi]) 3141592653589793 b008 Pi*(-1/2+log10[3]) 3141592653589793 b008 Pi*(-1/2+log10[Pi]) 3141592653589793 b008 Pi*(-1/2+log2[Pi]) 3141592653589793 b008 Pi*(-1/3+log10[2]) 3141592653589793 b008 Pi*(-2+log10[2]) 3141592653589793 b008 Pi*(-2+log10[3]) 3141592653589793 b008 Pi*(-2+log10[6]) 3141592653589793 b008 Pi*(-2+log10[7]) 3141592653589793 b008 Pi*(-2+log10[8]) 3141592653589793 b008 Pi*(-2+log10[E]) 3141592653589793 b008 Pi*(-2+log10[Pi]) 3141592653589793 b008 Pi*(-2+log2[Pi]) 3141592653589793 b008 Pi*(-3+log10[3]) 3141592653589793 b008 Pi*(-3+log10[4]) 3141592653589793 b008 Pi*(-3+log10[E]) 3141592653589793 b008 Pi*(-3+log10[Pi]) 3141592653589793 b008 Pi*(-3+log2[3]) 3141592653589793 b008 Pi*(-3+log2[5]) 3141592653589793 b008 Pi*(-3+log2[Pi]) 3141592653589793 b008 Pi*(-4+log10[2]) 3141592653589793 b008 Pi*(-4+log10[3]) 3141592653589793 b008 Pi*(-4+log10[E]) 3141592653589793 b008 Pi*(-4+log10[Pi]) 3141592653589793 b008 Pi*(-4+log2[3]) 3141592653589793 b008 Pi*(-4+log2[Pi]) 3141592653589793 b008 Pi*(-5+log10[2]) 3141592653589793 b008 Pi*(-5+log10[3]) 3141592653589793 b008 Pi*(-5+log10[Pi]) 3141592653589793 b008 Pi*(-5+log2[3]) 3141592653589793 b008 Pi*(-5+log2[Pi]) 3141592653589793 b008 Pi*(-6+log10[2]) 3141592653589793 b008 Pi*(-7+log10[2]) 3141592653589793 b008 Pi*(-8+log10[2]) 3141592653589793 b008 Pi*(1+log10[2]) 3141592653589793 b008 Pi*(1+log10[3]) 3141592653589793 b008 Pi*(1+log10[4]) 3141592653589793 b008 Pi*(1+log10[6]) 3141592653589793 b008 Pi*(1+log10[7]) 3141592653589793 b008 Pi*(1+log10[8]) 3141592653589793 b008 Pi*(1+log10[E]) 3141592653589793 b008 Pi*(1+log10[EulerGamma]) 3141592653589793 b008 Pi*(1+log10[Pi]) 3141592653589793 b008 Pi*(1+log2[EulerGamma]) 3141592653589793 b008 Pi*(1+log2[Pi]) 3141592653589793 b008 Pi*(1/2+log10[3]) 3141592653589793 b008 Pi*(1/2+log10[6]) 3141592653589793 b008 Pi*(1/2+log10[7]) 3141592653589793 b008 Pi*(1/2+log10[E]) 3141592653589793 b008 Pi*(1/2+log10[Pi]) 3141592653589793 b008 Pi*(1/2+log2[7]) 3141592653589793 b008 Pi*(1/2+log2[Pi]) 3141592653589793 b008 Pi*(1/3+log10[2]) 3141592653589793 b008 Pi*(1/3+log10[3]) 3141592653589793 b008 Pi*(1/3+log10[4]) 3141592653589793 b008 Pi*(1/3+log10[E]) 3141592653589793 b008 Pi*(1/3+log10[Pi]) 3141592653589793 b008 Pi*(1/3+log2[3]) 3141592653589793 b008 Pi*(1/3+log2[Pi]) 3141592653589793 b008 Pi*(1/4+log10[2]) 3141592653589793 b008 Pi*(1/4+log10[3]) 3141592653589793 b008 Pi*(1/4+log10[Pi]) 3141592653589793 b008 Pi*(1/4+log2[3]) 3141592653589793 b008 Pi*(1/4+log2[Pi]) 3141592653589793 b008 Pi*(10+log10[2]) 3141592653589793 b008 Pi*(10+log10[3]) 3141592653589793 b008 Pi*(10+log10[Pi]) 3141592653589793 b008 Pi*(10+log2[3]) 3141592653589793 b008 Pi*(10+log2[Pi]) 3141592653589793 b008 Pi*(2+log10[2]) 3141592653589793 b008 Pi*(2+log10[3]) 3141592653589793 b008 Pi*(2+log10[5]) 3141592653589793 b008 Pi*(2+log10[6]) 3141592653589793 b008 Pi*(2+log10[7]) 3141592653589793 b008 Pi*(2+log10[8]) 3141592653589793 b008 Pi*(2+log10[E]) 3141592653589793 b008 Pi*(2+log10[EulerGamma]) 3141592653589793 b008 Pi*(2+log10[Pi]) 3141592653589793 b008 Pi*(2+log2[EulerGamma]) 3141592653589793 b008 Pi*(2+log2[Pi]) 3141592653589793 b008 Pi*(3+log10[2]) 3141592653589793 b008 Pi*(3+log10[3]) 3141592653589793 b008 Pi*(3+log10[4]) 3141592653589793 b008 Pi*(3+log10[6]) 3141592653589793 b008 Pi*(3+log10[7]) 3141592653589793 b008 Pi*(3+log10[8]) 3141592653589793 b008 Pi*(3+log10[9]) 3141592653589793 b008 Pi*(3+log10[E]) 3141592653589793 b008 Pi*(3+log10[EulerGamma]) 3141592653589793 b008 Pi*(3+log10[Pi]) 3141592653589793 b008 Pi*(3+log2[EulerGamma]) 3141592653589793 b008 Pi*(3+log2[Pi]) 3141592653589793 b008 Pi*(4+log10[2]) 3141592653589793 b008 Pi*(4+log10[3]) 3141592653589793 b008 Pi*(4+log10[6]) 3141592653589793 b008 Pi*(4+log10[7]) 3141592653589793 b008 Pi*(4+log10[E]) 3141592653589793 b008 Pi*(4+log10[Pi]) 3141592653589793 b008 Pi*(4+log2[3]) 3141592653589793 b008 Pi*(4+log2[5]) 3141592653589793 b008 Pi*(4+log2[7]) 3141592653589793 b008 Pi*(4+log2[Pi]) 3141592653589793 b008 Pi*(5+log10[2]) 3141592653589793 b008 Pi*(5+log10[3]) 3141592653589793 b008 Pi*(5+log10[4]) 3141592653589793 b008 Pi*(5+log10[6]) 3141592653589793 b008 Pi*(5+log10[E]) 3141592653589793 b008 Pi*(5+log10[Pi]) 3141592653589793 b008 Pi*(5+log2[3]) 3141592653589793 b008 Pi*(5+log2[5]) 3141592653589793 b008 Pi*(5+log2[Pi]) 3141592653589793 b008 Pi*(6+log10[2]) 3141592653589793 b008 Pi*(6+log10[3]) 3141592653589793 b008 Pi*(6+log10[E]) 3141592653589793 b008 Pi*(6+log10[Pi]) 3141592653589793 b008 Pi*(6+log2[3]) 3141592653589793 b008 Pi*(6+log2[5]) 3141592653589793 b008 Pi*(6+log2[Pi]) 3141592653589793 b008 Pi*(7+log10[2]) 3141592653589793 b008 Pi*(7+log10[3]) 3141592653589793 b008 Pi*(7+log10[4]) 3141592653589793 b008 Pi*(7+log10[E]) 3141592653589793 b008 Pi*(7+log10[Pi]) 3141592653589793 b008 Pi*(7+log2[3]) 3141592653589793 b008 Pi*(7+log2[Pi]) 3141592653589793 b008 Pi*(8+log10[2]) 3141592653589793 b008 Pi*(8+log10[3]) 3141592653589793 b008 Pi*(8+log10[Pi]) 3141592653589793 b008 Pi*(8+log2[3]) 3141592653589793 b008 Pi*(8+log2[Pi]) 3141592653589793 b008 Pi*(9+log10[2]) 3141592653589793 b008 Pi*(9+log10[3]) 3141592653589793 b008 Pi*(9+log10[Pi]) 3141592653589793 b008 Pi*(9+log2[3]) 3141592653589793 b008 Pi*(9+log2[Pi]) 3141592653589793 b008 Pi*(E+log10[1/2]) 3141592653589793 b008 Pi*(E+log10[1/3]) 3141592653589793 b008 Pi*(E+log10[2]) 3141592653589793 b008 Pi*(E+log10[3]) 3141592653589793 b008 Pi*(E+log10[4]) 3141592653589793 b008 Pi*(E+log10[5]) 3141592653589793 b008 Pi*(E+log10[6]) 3141592653589793 b008 Pi*(E+log10[7]) 3141592653589793 b008 Pi*(E+log10[E]) 3141592653589793 b008 Pi*(E+log10[Pi]) 3141592653589793 b008 Pi*(E+log2[1/3]) 3141592653589793 b008 Pi*(E+log2[3]) 3141592653589793 b008 Pi*(E+log2[5]) 3141592653589793 b008 Pi*(E+log2[6]) 3141592653589793 b008 Pi*(E+log2[7]) 3141592653589793 b008 Pi*(E+log2[Pi]) 3141592653589793 b008 Pi*(EulerGamma+log10[2]) 3141592653589793 b008 Pi*(EulerGamma+log10[3]) 3141592653589793 b008 Pi*(EulerGamma+log10[Pi]) 3141592653589793 b008 Pi*(EulerGamma+log2[3]) 3141592653589793 b008 Pi*(EulerGamma+log2[Pi]) 3141592653589793 b008 Pi*(Pi+log10[1/2]) 3141592653589793 b008 Pi*(Pi+log10[1/3]) 3141592653589793 b008 Pi*(Pi+log10[1/4]) 3141592653589793 b008 Pi*(Pi+log10[2]) 3141592653589793 b008 Pi*(Pi+log10[3]) 3141592653589793 b008 Pi*(Pi+log10[4]) 3141592653589793 b008 Pi*(Pi+log10[5]) 3141592653589793 b008 Pi*(Pi+log10[6]) 3141592653589793 b008 Pi*(Pi+log10[7]) 3141592653589793 b008 Pi*(Pi+log10[8]) 3141592653589793 b008 Pi*(Pi+log10[9]) 3141592653589793 b008 Pi*(Pi+log10[E]) 3141592653589793 b008 Pi*(Pi+log10[EulerGamma]) 3141592653589793 b008 Pi*(Pi+log10[Pi]) 3141592653589793 b008 Pi*(Pi+log2[1/3]) 3141592653589793 b008 Pi*(Pi+log2[10]) 3141592653589793 b008 Pi*(Pi+log2[3]) 3141592653589793 b008 Pi*(Pi+log2[5]) 3141592653589793 b008 Pi*(Pi+log2[6]) 3141592653589793 b008 Pi*(Pi+log2[7]) 3141592653589793 b008 Pi*(Pi+log2[9]) 3141592653589793 b008 Pi*(Pi+log2[EulerGamma]) 3141592653589793 b008 Pi*(Pi+log2[Pi]) 3141592653589793 b008 Pi*AiryAiPrime[log2[3]] 3141592653589793 b008 Pi*AiryAi[log2[3]] 3141592653589793 b008 Pi*AiryBiPrime[log2[3]] 3141592653589793 b008 Pi*AiryBi[log2[3]] 3141592653589793 b008 Pi*ArcCos[log10[2]] 3141592653589793 b008 Pi*ArcCos[log10[3]] 3141592653589793 b008 Pi*ArcCos[log10[Pi]] 3141592653589793 b008 Pi*ArcCosh[log2[3]] 3141592653589793 b008 Pi*ArcCosh[log2[3]]^2 3141592653589793 b008 Pi*ArcCosh[log2[Pi]] 3141592653589793 b008 Pi*ArcCot[log10[2]] 3141592653589793 b008 Pi*ArcCot[log10[3]] 3141592653589793 b008 Pi*ArcCot[log10[Pi]] 3141592653589793 b008 Pi*ArcCot[log2[3]] 3141592653589793 b008 Pi*ArcCot[log2[3]]^2 3141592653589793 b008 Pi*ArcCot[log2[Pi]] 3141592653589793 b008 Pi*ArcCoth[log2[3]] 3141592653589793 b008 Pi*ArcCoth[log2[3]]^2 3141592653589793 b008 Pi*ArcCoth[log2[Pi]] 3141592653589793 b008 Pi*ArcCsc[log2[3]] 3141592653589793 b008 Pi*ArcCsc[log2[3]]^2 3141592653589793 b008 Pi*ArcCsc[log2[Pi]] 3141592653589793 b008 Pi*ArcCsch[log10[2]] 3141592653589793 b008 Pi*ArcCsch[log10[3]] 3141592653589793 b008 Pi*ArcCsch[log10[Pi]] 3141592653589793 b008 Pi*ArcCsch[log2[3]] 3141592653589793 b008 Pi*ArcCsch[log2[3]]^2 3141592653589793 b008 Pi*ArcCsch[log2[Pi]] 3141592653589793 b008 Pi*ArcSec[log2[3]] 3141592653589793 b008 Pi*ArcSec[log2[3]]^2 3141592653589793 b008 Pi*ArcSec[log2[Pi]] 3141592653589793 b008 Pi*ArcSech[log10[2]] 3141592653589793 b008 Pi*ArcSech[log10[3]] 3141592653589793 b008 Pi*ArcSech[log10[Pi]] 3141592653589793 b008 Pi*ArcSin[log10[2]] 3141592653589793 b008 Pi*ArcSin[log10[3]] 3141592653589793 b008 Pi*ArcSin[log10[Pi]] 3141592653589793 b008 Pi*ArcSinh[log10[2]] 3141592653589793 b008 Pi*ArcSinh[log10[3]] 3141592653589793 b008 Pi*ArcSinh[log10[Pi]] 3141592653589793 b008 Pi*ArcSinh[log2[3]] 3141592653589793 b008 Pi*ArcSinh[log2[3]]^2 3141592653589793 b008 Pi*ArcSinh[log2[Pi]] 3141592653589793 b008 Pi*ArcTan[log10[2]] 3141592653589793 b008 Pi*ArcTan[log10[3]] 3141592653589793 b008 Pi*ArcTan[log10[Pi]] 3141592653589793 b008 Pi*ArcTan[log2[3]] 3141592653589793 b008 Pi*ArcTan[log2[3]]^2 3141592653589793 b008 Pi*ArcTan[log2[Pi]] 3141592653589793 b008 Pi*ArcTanh[log10[2]] 3141592653589793 b008 Pi*ArcTanh[log10[3]] 3141592653589793 b008 Pi*ArcTanh[log10[Pi]] 3141592653589793 b008 Pi*BarnesG[log2[3]] 3141592653589793 b008 Pi*Cos[log10[2]] 3141592653589793 b008 Pi*Cos[log10[3]] 3141592653589793 b008 Pi*Cos[log10[Pi]] 3141592653589793 b008 Pi*Cos[log2[3]] 3141592653589793 b008 Pi*Cos[log2[Pi]] 3141592653589793 b008 Pi*CoshIntegral[log2[3]] 3141592653589793 b008 Pi*Cosh[log10[2]] 3141592653589793 b008 Pi*Cosh[log10[3]] 3141592653589793 b008 Pi*Cosh[log10[Pi]] 3141592653589793 b008 Pi*Cosh[log2[3]] 3141592653589793 b008 Pi*Cosh[log2[Pi]] 3141592653589793 b008 Pi*Coth[log10[2]] 3141592653589793 b008 Pi*Coth[log10[3]] 3141592653589793 b008 Pi*Coth[log10[Pi]] 3141592653589793 b008 Pi*Coth[log2[3]] 3141592653589793 b008 Pi*Coth[log2[Pi]] 3141592653589793 b008 Pi*Csch[log10[2]] 3141592653589793 b008 Pi*Csch[log10[3]] 3141592653589793 b008 Pi*Csch[log10[Pi]] 3141592653589793 b008 Pi*Csch[log2[3]] 3141592653589793 b008 Pi*Csch[log2[Pi]] 3141592653589793 b008 Pi*DawsonF[log2[3]] 3141592653589793 b008 Pi*DedekindEta[I*log2[3]] 3141592653589793 b008 Pi*Erf[log2[3]] 3141592653589793 b008 Pi*Erfc[log2[3]] 3141592653589793 b008 Pi*Erfi[log2[3]] 3141592653589793 b008 Pi*ExpIntegralEi[log2[3]] 3141592653589793 b008 Pi*GammaInfimumOrSupremumOrdinate[1] 3141592653589793 b008 Pi*GammaInfimumOrSupremumOrdinate[1]^2 3141592653589793 b008 Pi*GammaInfimumOrSupremumOrdinate[1]^3 3141592653589793 b008 Pi*Gamma[log2[3]] 3141592653589793 b008 Pi*Gudermannian[log2[3]] 3141592653589793 b008 Pi*Hyperfactorial[log2[3]] 3141592653589793 b008 Pi*JacobiZeta[Pi/6,-8] 3141592653589793 b008 Pi*KleinInvariantJ[1/2+I/2] 3141592653589793 b008 Pi*KleinInvariantJ[I*log2[3]] 3141592653589793 b008 Pi*LogBarnesG[log2[3]] 3141592653589793 b008 Pi*LogGamma[log2[3]] 3141592653589793 b008 Pi*LogIntegral[log2[3]] 3141592653589793 b008 Pi*Log[log10[2]] 3141592653589793 b008 Pi*Log[log10[3]] 3141592653589793 b008 Pi*Log[log10[Pi]] 3141592653589793 b008 Pi*Log[log2[3]] 3141592653589793 b008 Pi*Log[log2[3]]^2 3141592653589793 b008 Pi*Log[log2[Pi]] 3141592653589793 b008 Pi*ModularLambda[1+I*log2[3]] 3141592653589793 b008 Pi*ModularLambda[1+I] 3141592653589793 b008 Pi*ModularLambda[I*log2[3]] 3141592653589793 b008 Pi*ProductLog[log2[3]] 3141592653589793 b008 Pi*RiemannSiegelZ[log2[3]] 3141592653589793 b008 Pi*Sech[log10[2]] 3141592653589793 b008 Pi*Sech[log10[3]] 3141592653589793 b008 Pi*Sech[log10[Pi]] 3141592653589793 b008 Pi*Sech[log2[3]] 3141592653589793 b008 Pi*Sech[log2[Pi]] 3141592653589793 b008 Pi*Sin[log10[2]] 3141592653589793 b008 Pi*Sin[log10[3]] 3141592653589793 b008 Pi*Sin[log10[Pi]] 3141592653589793 b008 Pi*SinhIntegral[log2[3]] 3141592653589793 b008 Pi*Sinh[log10[2]] 3141592653589793 b008 Pi*Sinh[log10[3]] 3141592653589793 b008 Pi*Sinh[log10[Pi]] 3141592653589793 b008 Pi*Sinh[log2[3]] 3141592653589793 b008 Pi*Sinh[log2[Pi]] 3141592653589793 b008 Pi*Sqrt[ArcCosh[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcCot[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcCoth[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcCsc[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcCsch[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcSec[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcSinh[log2[3]]] 3141592653589793 b008 Pi*Sqrt[ArcTan[log2[3]]] 3141592653589793 b008 Pi*Sqrt[GammaInfimumOrSupremumOrdinate[1]] 3141592653589793 b008 Pi*Sqrt[Log[log2[3]]] 3141592653589793 b008 Pi*Sqrt[log10[2]] 3141592653589793 b008 Pi*Sqrt[log10[3]] 3141592653589793 b008 Pi*Sqrt[log10[4]] 3141592653589793 b008 Pi*Sqrt[log10[5]] 3141592653589793 b008 Pi*Sqrt[log10[6]] 3141592653589793 b008 Pi*Sqrt[log10[7]] 3141592653589793 b008 Pi*Sqrt[log10[8]] 3141592653589793 b008 Pi*Sqrt[log10[9]] 3141592653589793 b008 Pi*Sqrt[log10[E]] 3141592653589793 b008 Pi*Sqrt[log10[Pi]] 3141592653589793 b008 Pi*Sqrt[log2[10]] 3141592653589793 b008 Pi*Sqrt[log2[3]] 3141592653589793 b008 Pi*Sqrt[log2[5]] 3141592653589793 b008 Pi*Sqrt[log2[6]] 3141592653589793 b008 Pi*Sqrt[log2[7]] 3141592653589793 b008 Pi*Sqrt[log2[9]] 3141592653589793 b008 Pi*Sqrt[log2[Pi]] 3141592653589793 b008 Pi*Tan[log10[2]] 3141592653589793 b008 Pi*Tan[log10[3]] 3141592653589793 b008 Pi*Tan[log10[Pi]] 3141592653589793 b008 Pi*Tanh[log10[2]] 3141592653589793 b008 Pi*Tanh[log10[3]] 3141592653589793 b008 Pi*Tanh[log10[Pi]] 3141592653589793 b008 Pi*Tanh[log2[3]] 3141592653589793 b008 Pi*Tanh[log2[Pi]] 3141592653589793 b008 Pi*Zeta[log2[3]] 3141592653589793 b008 Pi*log10[-1+E] 3141592653589793 b008 Pi*log10[-1+Pi] 3141592653589793 b008 Pi*log10[-1/2+Pi] 3141592653589793 b008 Pi*log10[-2+E] 3141592653589793 b008 Pi*log10[-2+Pi] 3141592653589793 b008 Pi*log10[-3+Pi] 3141592653589793 b008 Pi*log10[1+E] 3141592653589793 b008 Pi*log10[1+EulerGamma] 3141592653589793 b008 Pi*log10[1+Pi] 3141592653589793 b008 Pi*log10[1/2+E] 3141592653589793 b008 Pi*log10[1/2+Pi] 3141592653589793 b008 Pi*log10[1/3+E] 3141592653589793 b008 Pi*log10[1/3+Pi] 3141592653589793 b008 Pi*log10[1/4+Pi] 3141592653589793 b008 Pi*log10[10+Pi] 3141592653589793 b008 Pi*log10[11] 3141592653589793 b008 Pi*log10[12] 3141592653589793 b008 Pi*log10[13] 3141592653589793 b008 Pi*log10[14] 3141592653589793 b008 Pi*log10[15] 3141592653589793 b008 Pi*log10[17/2] 3141592653589793 b008 Pi*log10[17] 3141592653589793 b008 Pi*log10[18] 3141592653589793 b008 Pi*log10[19/2] 3141592653589793 b008 Pi*log10[19] 3141592653589793 b008 Pi*log10[2*E] 3141592653589793 b008 Pi*log10[2*EulerGamma] 3141592653589793 b008 Pi*log10[2*Pi] 3141592653589793 b008 Pi*log10[2+E] 3141592653589793 b008 Pi*log10[2+EulerGamma] 3141592653589793 b008 Pi*log10[2+Pi] 3141592653589793 b008 Pi*log10[2/11] 3141592653589793 b008 Pi*log10[2/13] 3141592653589793 b008 Pi*log10[2/15] 3141592653589793 b008 Pi*log10[2/3] 3141592653589793 b008 Pi*log10[2/5] 3141592653589793 b008 Pi*log10[2/7] 3141592653589793 b008 Pi*log10[2/9] 3141592653589793 b008 Pi*log10[21/2] 3141592653589793 b008 Pi*log10[21] 3141592653589793 b008 Pi*log10[24] 3141592653589793 b008 Pi*log10[27] 3141592653589793 b008 Pi*log10[28] 3141592653589793 b008 Pi*log10[2] 3141592653589793 b008 Pi*log10[2]^2 3141592653589793 b008 Pi*log10[2]^3 3141592653589793 b008 Pi*log10[2]^4 3141592653589793 b008 Pi*log10[2]^5 3141592653589793 b008 Pi*log10[2]^E 3141592653589793 b008 Pi*log10[2]^Pi 3141592653589793 b008 Pi*log10[3*E] 3141592653589793 b008 Pi*log10[3*EulerGamma] 3141592653589793 b008 Pi*log10[3*Pi] 3141592653589793 b008 Pi*log10[3+E] 3141592653589793 b008 Pi*log10[3+EulerGamma] 3141592653589793 b008 Pi*log10[3+Pi] 3141592653589793 b008 Pi*log10[3/11] 3141592653589793 b008 Pi*log10[3/13] 3141592653589793 b008 Pi*log10[3/14] 3141592653589793 b008 Pi*log10[3/4] 3141592653589793 b008 Pi*log10[3/5] 3141592653589793 b008 Pi*log10[3/7] 3141592653589793 b008 Pi*log10[3/8] 3141592653589793 b008 Pi*log10[35] 3141592653589793 b008 Pi*log10[3] 3141592653589793 b008 Pi*log10[3]^2 3141592653589793 b008 Pi*log10[3]^3 3141592653589793 b008 Pi*log10[3]^Pi 3141592653589793 b008 Pi*log10[4*E] 3141592653589793 b008 Pi*log10[4*Pi] 3141592653589793 b008 Pi*log10[4+E] 3141592653589793 b008 Pi*log10[4+Pi] 3141592653589793 b008 Pi*log10[4/11] 3141592653589793 b008 Pi*log10[4/5] 3141592653589793 b008 Pi*log10[4/7] 3141592653589793 b008 Pi*log10[42] 3141592653589793 b008 Pi*log10[45] 3141592653589793 b008 Pi*log10[48] 3141592653589793 b008 Pi*log10[5*E] 3141592653589793 b008 Pi*log10[5*Pi] 3141592653589793 b008 Pi*log10[5+E] 3141592653589793 b008 Pi*log10[5+Pi] 3141592653589793 b008 Pi*log10[5/6] 3141592653589793 b008 Pi*log10[5/7] 3141592653589793 b008 Pi*log10[5/8] 3141592653589793 b008 Pi*log10[54] 3141592653589793 b008 Pi*log10[56] 3141592653589793 b008 Pi*log10[5] 3141592653589793 b008 Pi*log10[5]^2 3141592653589793 b008 Pi*log10[6*E] 3141592653589793 b008 Pi*log10[6*Pi] 3141592653589793 b008 Pi*log10[6+E] 3141592653589793 b008 Pi*log10[6+Pi] 3141592653589793 b008 Pi*log10[6/7] 3141592653589793 b008 Pi*log10[63] 3141592653589793 b008 Pi*log10[6] 3141592653589793 b008 Pi*log10[6]^2 3141592653589793 b008 Pi*log10[7*E] 3141592653589793 b008 Pi*log10[7*Pi] 3141592653589793 b008 Pi*log10[7+E] 3141592653589793 b008 Pi*log10[7+Pi] 3141592653589793 b008 Pi*log10[72] 3141592653589793 b008 Pi*log10[7] 3141592653589793 b008 Pi*log10[7]^2 3141592653589793 b008 Pi*log10[8*Pi] 3141592653589793 b008 Pi*log10[8+Pi] 3141592653589793 b008 Pi*log10[8] 3141592653589793 b008 Pi*log10[8]^2 3141592653589793 b008 Pi*log10[9*Pi] 3141592653589793 b008 Pi*log10[9+Pi] 3141592653589793 b008 Pi*log10[ArcCosh[2]] 3141592653589793 b008 Pi*log10[ArcCosh[3]] 3141592653589793 b008 Pi*log10[ArcCosh[Pi]] 3141592653589793 b008 Pi*log10[ArcCot[2]] 3141592653589793 b008 Pi*log10[ArcCot[3]] 3141592653589793 b008 Pi*log10[ArcCot[Pi]] 3141592653589793 b008 Pi*log10[ArcCoth[2]] 3141592653589793 b008 Pi*log10[ArcCoth[3]] 3141592653589793 b008 Pi*log10[ArcCoth[Pi]] 3141592653589793 b008 Pi*log10[ArcCsc[3]] 3141592653589793 b008 Pi*log10[ArcCsc[Pi]] 3141592653589793 b008 Pi*log10[ArcCsch[1]] 3141592653589793 b008 Pi*log10[ArcCsch[2]] 3141592653589793 b008 Pi*log10[ArcCsch[3]] 3141592653589793 b008 Pi*log10[ArcCsch[Pi]] 3141592653589793 b008 Pi*log10[ArcSec[3]] 3141592653589793 b008 Pi*log10[ArcSec[Pi]] 3141592653589793 b008 Pi*log10[ArcSinh[2]] 3141592653589793 b008 Pi*log10[ArcSinh[3]] 3141592653589793 b008 Pi*log10[ArcSinh[Pi]] 3141592653589793 b008 Pi*log10[ArcTan[2]] 3141592653589793 b008 Pi*log10[ArcTan[3]] 3141592653589793 b008 Pi*log10[ArcTan[Pi]] 3141592653589793 b008 Pi*log10[CosIntegral[1]] 3141592653589793 b008 Pi*log10[Cos[1]] 3141592653589793 b008 Pi*log10[Cosh[1]] 3141592653589793 b008 Pi*log10[Cosh[2]] 3141592653589793 b008 Pi*log10[Cosh[3]] 3141592653589793 b008 Pi*log10[Cosh[Pi]] 3141592653589793 b008 Pi*log10[Coth[1]] 3141592653589793 b008 Pi*log10[Coth[2]] 3141592653589793 b008 Pi*log10[Coth[3]] 3141592653589793 b008 Pi*log10[Coth[Pi]] 3141592653589793 b008 Pi*log10[Csch[1]] 3141592653589793 b008 Pi*log10[Csch[2]] 3141592653589793 b008 Pi*log10[Csch[3]] 3141592653589793 b008 Pi*log10[Csch[Pi]] 3141592653589793 b008 Pi*log10[E*Pi] 3141592653589793 b008 Pi*log10[E+Pi] 3141592653589793 b008 Pi*log10[E/2] 3141592653589793 b008 Pi*log10[E/3] 3141592653589793 b008 Pi*log10[E]^2 3141592653589793 b008 Pi*log10[E^(1/3)] 3141592653589793 b008 Pi*log10[E^3] 3141592653589793 b008 Pi*log10[E^5] 3141592653589793 b008 Pi*log10[E^7] 3141592653589793 b008 Pi*log10[E^E] 3141592653589793 b008 Pi*log10[E^EulerGamma] 3141592653589793 b008 Pi*log10[E^Pi] 3141592653589793 b008 Pi*log10[Erf[1]] 3141592653589793 b008 Pi*log10[Erfc[1]] 3141592653589793 b008 Pi*log10[EulerGamma*Pi] 3141592653589793 b008 Pi*log10[EulerGamma+Pi] 3141592653589793 b008 Pi*log10[EulerGamma] 3141592653589793 b008 Pi*log10[ExpIntegralEi[1]] 3141592653589793 b008 Pi*log10[Log[2]] 3141592653589793 b008 Pi*log10[Log[3]] 3141592653589793 b008 Pi*log10[Log[Pi]] 3141592653589793 b008 Pi*log10[Pi/2] 3141592653589793 b008 Pi*log10[Pi/3] 3141592653589793 b008 Pi*log10[Pi/4] 3141592653589793 b008 Pi*log10[Pi] 3141592653589793 b008 Pi*log10[Pi]^2 3141592653589793 b008 Pi*log10[Pi]^3 3141592653589793 b008 Pi*log10[Pi]^Pi 3141592653589793 b008 Pi*log10[ProductLog[1]] 3141592653589793 b008 Pi*log10[SinIntegral[1]] 3141592653589793 b008 Pi*log10[Sin[1]] 3141592653589793 b008 Pi*log10[Tan[1]] 3141592653589793 b008 Pi*log2[-1+E] 3141592653589793 b008 Pi*log2[-1+Pi] 3141592653589793 b008 Pi*log2[-1/2+Pi] 3141592653589793 b008 Pi*log2[-2+E] 3141592653589793 b008 Pi*log2[-2+Pi] 3141592653589793 b008 Pi*log2[-3+Pi] 3141592653589793 b008 Pi*log2[1+E] 3141592653589793 b008 Pi*log2[1+EulerGamma] 3141592653589793 b008 Pi*log2[1+Pi] 3141592653589793 b008 Pi*log2[1/2+E] 3141592653589793 b008 Pi*log2[1/2+Pi] 3141592653589793 b008 Pi*log2[1/3+E] 3141592653589793 b008 Pi*log2[1/3+Pi] 3141592653589793 b008 Pi*log2[1/4+Pi] 3141592653589793 b008 Pi*log2[10*Pi] 3141592653589793 b008 Pi*log2[10+Pi] 3141592653589793 b008 Pi*log2[10] 3141592653589793 b008 Pi*log2[10]^2 3141592653589793 b008 Pi*log2[11] 3141592653589793 b008 Pi*log2[12] 3141592653589793 b008 Pi*log2[13] 3141592653589793 b008 Pi*log2[14] 3141592653589793 b008 Pi*log2[15] 3141592653589793 b008 Pi*log2[17/2] 3141592653589793 b008 Pi*log2[17] 3141592653589793 b008 Pi*log2[18] 3141592653589793 b008 Pi*log2[19/2] 3141592653589793 b008 Pi*log2[19] 3141592653589793 b008 Pi*log2[2+E] 3141592653589793 b008 Pi*log2[2+EulerGamma] 3141592653589793 b008 Pi*log2[2+Pi] 3141592653589793 b008 Pi*log2[2/11] 3141592653589793 b008 Pi*log2[2/13] 3141592653589793 b008 Pi*log2[2/15] 3141592653589793 b008 Pi*log2[2/3] 3141592653589793 b008 Pi*log2[2/5] 3141592653589793 b008 Pi*log2[2/7] 3141592653589793 b008 Pi*log2[2/9] 3141592653589793 b008 Pi*log2[20] 3141592653589793 b008 Pi*log2[21/2] 3141592653589793 b008 Pi*log2[21] 3141592653589793 b008 Pi*log2[24] 3141592653589793 b008 Pi*log2[27] 3141592653589793 b008 Pi*log2[28] 3141592653589793 b008 Pi*log2[3*E] 3141592653589793 b008 Pi*log2[3*EulerGamma] 3141592653589793 b008 Pi*log2[3*Pi] 3141592653589793 b008 Pi*log2[3+E] 3141592653589793 b008 Pi*log2[3+EulerGamma] 3141592653589793 b008 Pi*log2[3+Pi] 3141592653589793 b008 Pi*log2[3/10] 3141592653589793 b008 Pi*log2[3/11] 3141592653589793 b008 Pi*log2[3/13] 3141592653589793 b008 Pi*log2[3/14] 3141592653589793 b008 Pi*log2[3/4] 3141592653589793 b008 Pi*log2[3/5] 3141592653589793 b008 Pi*log2[3/7] 3141592653589793 b008 Pi*log2[30] 3141592653589793 b008 Pi*log2[35] 3141592653589793 b008 Pi*log2[3] 3141592653589793 b008 Pi*log2[3]!! 3141592653589793 b008 Pi*log2[3]^2 3141592653589793 b008 Pi*log2[3]^3 3141592653589793 b008 Pi*log2[3]^Pi 3141592653589793 b008 Pi*log2[4+E] 3141592653589793 b008 Pi*log2[4+Pi] 3141592653589793 b008 Pi*log2[4/11] 3141592653589793 b008 Pi*log2[4/5] 3141592653589793 b008 Pi*log2[4/7] 3141592653589793 b008 Pi*log2[40] 3141592653589793 b008 Pi*log2[42] 3141592653589793 b008 Pi*log2[45] 3141592653589793 b008 Pi*log2[5*E] 3141592653589793 b008 Pi*log2[5*Pi] 3141592653589793 b008 Pi*log2[5+E] 3141592653589793 b008 Pi*log2[5+Pi] 3141592653589793 b008 Pi*log2[5/6] 3141592653589793 b008 Pi*log2[5/7] 3141592653589793 b008 Pi*log2[50] 3141592653589793 b008 Pi*log2[54] 3141592653589793 b008 Pi*log2[56] 3141592653589793 b008 Pi*log2[5] 3141592653589793 b008 Pi*log2[5]^2 3141592653589793 b008 Pi*log2[6*E] 3141592653589793 b008 Pi*log2[6*Pi] 3141592653589793 b008 Pi*log2[6+E] 3141592653589793 b008 Pi*log2[6+Pi] 3141592653589793 b008 Pi*log2[6/7] 3141592653589793 b008 Pi*log2[60] 3141592653589793 b008 Pi*log2[63] 3141592653589793 b008 Pi*log2[6] 3141592653589793 b008 Pi*log2[6]^2 3141592653589793 b008 Pi*log2[7*E] 3141592653589793 b008 Pi*log2[7*Pi] 3141592653589793 b008 Pi*log2[7+E] 3141592653589793 b008 Pi*log2[7+Pi] 3141592653589793 b008 Pi*log2[70] 3141592653589793 b008 Pi*log2[72] 3141592653589793 b008 Pi*log2[7] 3141592653589793 b008 Pi*log2[7]^2 3141592653589793 b008 Pi*log2[8+Pi] 3141592653589793 b008 Pi*log2[9*Pi] 3141592653589793 b008 Pi*log2[9+Pi] 3141592653589793 b008 Pi*log2[90] 3141592653589793 b008 Pi*log2[ArcCosh[2]] 3141592653589793 b008 Pi*log2[ArcCosh[3]] 3141592653589793 b008 Pi*log2[ArcCosh[Pi]] 3141592653589793 b008 Pi*log2[ArcCot[2]] 3141592653589793 b008 Pi*log2[ArcCot[3]] 3141592653589793 b008 Pi*log2[ArcCot[Pi]] 3141592653589793 b008 Pi*log2[ArcCoth[2]] 3141592653589793 b008 Pi*log2[ArcCoth[3]] 3141592653589793 b008 Pi*log2[ArcCoth[Pi]] 3141592653589793 b008 Pi*log2[ArcCsc[3]] 3141592653589793 b008 Pi*log2[ArcCsc[Pi]] 3141592653589793 b008 Pi*log2[ArcCsch[1]] 3141592653589793 b008 Pi*log2[ArcCsch[2]] 3141592653589793 b008 Pi*log2[ArcCsch[3]] 3141592653589793 b008 Pi*log2[ArcCsch[Pi]] 3141592653589793 b008 Pi*log2[ArcSec[3]] 3141592653589793 b008 Pi*log2[ArcSec[Pi]] 3141592653589793 b008 Pi*log2[ArcSinh[2]] 3141592653589793 b008 Pi*log2[ArcSinh[3]] 3141592653589793 b008 Pi*log2[ArcSinh[Pi]] 3141592653589793 b008 Pi*log2[ArcTan[2]] 3141592653589793 b008 Pi*log2[ArcTan[3]] 3141592653589793 b008 Pi*log2[ArcTan[Pi]] 3141592653589793 b008 Pi*log2[CosIntegral[1]] 3141592653589793 b008 Pi*log2[Cos[1]] 3141592653589793 b008 Pi*log2[Cosh[1]] 3141592653589793 b008 Pi*log2[Cosh[2]] 3141592653589793 b008 Pi*log2[Cosh[3]] 3141592653589793 b008 Pi*log2[Cosh[Pi]] 3141592653589793 b008 Pi*log2[Coth[1]] 3141592653589793 b008 Pi*log2[Coth[2]] 3141592653589793 b008 Pi*log2[Coth[3]] 3141592653589793 b008 Pi*log2[Coth[Pi]] 3141592653589793 b008 Pi*log2[Csch[1]] 3141592653589793 b008 Pi*log2[Csch[2]] 3141592653589793 b008 Pi*log2[Csch[3]] 3141592653589793 b008 Pi*log2[Csch[Pi]] 3141592653589793 b008 Pi*log2[E*Pi] 3141592653589793 b008 Pi*log2[E+Pi] 3141592653589793 b008 Pi*log2[E/3] 3141592653589793 b008 Pi*log2[E^3] 3141592653589793 b008 Pi*log2[E^5] 3141592653589793 b008 Pi*log2[E^7] 3141592653589793 b008 Pi*log2[E^E] 3141592653589793 b008 Pi*log2[E^EulerGamma] 3141592653589793 b008 Pi*log2[Erf[1]] 3141592653589793 b008 Pi*log2[Erfc[1]] 3141592653589793 b008 Pi*log2[EulerGamma*Pi] 3141592653589793 b008 Pi*log2[EulerGamma+Pi] 3141592653589793 b008 Pi*log2[EulerGamma] 3141592653589793 b008 Pi*log2[ExpIntegralEi[1]] 3141592653589793 b008 Pi*log2[Log[2]] 3141592653589793 b008 Pi*log2[Log[3]] 3141592653589793 b008 Pi*log2[Log[Pi]] 3141592653589793 b008 Pi*log2[Pi/3] 3141592653589793 b008 Pi*log2[Pi] 3141592653589793 b008 Pi*log2[Pi]^2 3141592653589793 b008 Pi*log2[Pi]^3 3141592653589793 b008 Pi*log2[Pi]^Pi 3141592653589793 b008 Pi*log2[ProductLog[1]] 3141592653589793 b008 Pi*log2[SinIntegral[1]] 3141592653589793 b008 Pi*log2[Sin[1]] 3141592653589793 b008 Pi*log2[Tan[1]] 3141592653589793 b008 Pi+10*log10[2] 3141592653589793 b008 Pi+10*log10[3] 3141592653589793 b008 Pi+10*log10[Pi] 3141592653589793 b008 Pi+10*log2[3] 3141592653589793 b008 Pi+10*log2[Pi] 3141592653589793 b008 Pi+2*ArcCosh[log2[3]] 3141592653589793 b008 Pi+2*ArcCot[log2[3]] 3141592653589793 b008 Pi+2*ArcCoth[log2[3]] 3141592653589793 b008 Pi+2*ArcCsc[log2[3]] 3141592653589793 b008 Pi+2*ArcCsch[log2[3]] 3141592653589793 b008 Pi+2*ArcSec[log2[3]] 3141592653589793 b008 Pi+2*ArcSinh[log2[3]] 3141592653589793 b008 Pi+2*ArcTan[log2[3]] 3141592653589793 b008 Pi+2*Log[log2[3]] 3141592653589793 b008 Pi+2*log10[7] 3141592653589793 b008 Pi+2*log2[10] 3141592653589793 b008 Pi+2*log2[7] 3141592653589793 b008 Pi+3*log10[5] 3141592653589793 b008 Pi+3*log10[6] 3141592653589793 b008 Pi+3*log10[7] 3141592653589793 b008 Pi+3*log10[EulerGamma] 3141592653589793 b008 Pi+3*log10[Pi] 3141592653589793 b008 Pi+3*log2[10] 3141592653589793 b008 Pi+3*log2[5] 3141592653589793 b008 Pi+3*log2[6] 3141592653589793 b008 Pi+3*log2[7] 3141592653589793 b008 Pi+3*log2[EulerGamma] 3141592653589793 b008 Pi+3*log2[Pi] 3141592653589793 b008 Pi+4*log10[3] 3141592653589793 b008 Pi+4*log10[5] 3141592653589793 b008 Pi+4*log10[6] 3141592653589793 b008 Pi+4*log10[7] 3141592653589793 b008 Pi+4*log10[Pi] 3141592653589793 b008 Pi+4*log2[3] 3141592653589793 b008 Pi+4*log2[5] 3141592653589793 b008 Pi+4*log2[6] 3141592653589793 b008 Pi+4*log2[7] 3141592653589793 b008 Pi+4*log2[Pi] 3141592653589793 b008 Pi+5*log10[2] 3141592653589793 b008 Pi+5*log10[3] 3141592653589793 b008 Pi+5*log10[5] 3141592653589793 b008 Pi+5*log10[6] 3141592653589793 b008 Pi+5*log10[Pi] 3141592653589793 b008 Pi+5*log2[3] 3141592653589793 b008 Pi+5*log2[5] 3141592653589793 b008 Pi+5*log2[6] 3141592653589793 b008 Pi+5*log2[Pi] 3141592653589793 b008 Pi+6*log10[2] 3141592653589793 b008 Pi+6*log10[3] 3141592653589793 b008 Pi+6*log10[4] 3141592653589793 b008 Pi+6*log10[5] 3141592653589793 b008 Pi+6*log10[Pi] 3141592653589793 b008 Pi+6*log2[3] 3141592653589793 b008 Pi+6*log2[5] 3141592653589793 b008 Pi+6*log2[Pi] 3141592653589793 b008 Pi+7*log10[2] 3141592653589793 b008 Pi+7*log10[3] 3141592653589793 b008 Pi+7*log10[4] 3141592653589793 b008 Pi+7*log10[Pi] 3141592653589793 b008 Pi+7*log2[3] 3141592653589793 b008 Pi+7*log2[Pi] 3141592653589793 b008 Pi+8*log10[2] 3141592653589793 b008 Pi+8*log10[3] 3141592653589793 b008 Pi+8*log10[Pi] 3141592653589793 b008 Pi+8*log2[3] 3141592653589793 b008 Pi+8*log2[Pi] 3141592653589793 b008 Pi+9*log10[2] 3141592653589793 b008 Pi+9*log10[3] 3141592653589793 b008 Pi+9*log10[Pi] 3141592653589793 b008 Pi+9*log2[3] 3141592653589793 b008 Pi+9*log2[Pi] 3141592653589793 b008 Pi+ArcCos[log10[2]] 3141592653589793 b008 Pi+ArcCos[log10[3]] 3141592653589793 b008 Pi+ArcCos[log10[Pi]] 3141592653589793 b008 Pi+ArcCosh[log2[3]] 3141592653589793 b008 Pi+ArcCosh[log2[Pi]] 3141592653589793 b008 Pi+ArcCot[log10[2]] 3141592653589793 b008 Pi+ArcCot[log10[3]] 3141592653589793 b008 Pi+ArcCot[log10[Pi]] 3141592653589793 b008 Pi+ArcCot[log2[3]] 3141592653589793 b008 Pi+ArcCot[log2[Pi]] 3141592653589793 b008 Pi+ArcCoth[log2[3]] 3141592653589793 b008 Pi+ArcCoth[log2[Pi]] 3141592653589793 b008 Pi+ArcCsc[log2[3]] 3141592653589793 b008 Pi+ArcCsc[log2[Pi]] 3141592653589793 b008 Pi+ArcCsch[log10[2]] 3141592653589793 b008 Pi+ArcCsch[log10[3]] 3141592653589793 b008 Pi+ArcCsch[log10[Pi]] 3141592653589793 b008 Pi+ArcCsch[log2[3]] 3141592653589793 b008 Pi+ArcCsch[log2[Pi]] 3141592653589793 b008 Pi+ArcSec[log2[3]] 3141592653589793 b008 Pi+ArcSec[log2[Pi]] 3141592653589793 b008 Pi+ArcSech[log10[2]] 3141592653589793 b008 Pi+ArcSech[log10[3]] 3141592653589793 b008 Pi+ArcSech[log10[Pi]] 3141592653589793 b008 Pi+ArcSin[log10[2]] 3141592653589793 b008 Pi+ArcSin[log10[3]] 3141592653589793 b008 Pi+ArcSin[log10[Pi]] 3141592653589793 b008 Pi+ArcSinh[log10[2]] 3141592653589793 b008 Pi+ArcSinh[log10[3]] 3141592653589793 b008 Pi+ArcSinh[log10[Pi]] 3141592653589793 b008 Pi+ArcSinh[log2[3]] 3141592653589793 b008 Pi+ArcSinh[log2[Pi]] 3141592653589793 b008 Pi+ArcTan[log10[2]] 3141592653589793 b008 Pi+ArcTan[log10[3]] 3141592653589793 b008 Pi+ArcTan[log10[Pi]] 3141592653589793 b008 Pi+ArcTan[log2[3]] 3141592653589793 b008 Pi+ArcTan[log2[Pi]] 3141592653589793 b008 Pi+ArcTanh[log10[2]] 3141592653589793 b008 Pi+ArcTanh[log10[3]] 3141592653589793 b008 Pi+ArcTanh[log10[Pi]] 3141592653589793 b008 Pi+Cos[log10[2]] 3141592653589793 b008 Pi+Cos[log10[3]] 3141592653589793 b008 Pi+Cos[log10[Pi]] 3141592653589793 b008 Pi+Cos[log2[3]] 3141592653589793 b008 Pi+Cos[log2[Pi]] 3141592653589793 b008 Pi+CoshIntegral[log2[3]] 3141592653589793 b008 Pi+Cosh[log10[2]] 3141592653589793 b008 Pi+Cosh[log10[3]] 3141592653589793 b008 Pi+Cosh[log10[Pi]] 3141592653589793 b008 Pi+Cosh[log2[3]] 3141592653589793 b008 Pi+Cosh[log2[Pi]] 3141592653589793 b008 Pi+Coth[log10[2]] 3141592653589793 b008 Pi+Coth[log10[3]] 3141592653589793 b008 Pi+Coth[log10[Pi]] 3141592653589793 b008 Pi+Coth[log2[3]] 3141592653589793 b008 Pi+Coth[log2[Pi]] 3141592653589793 b008 Pi+Csch[log10[2]] 3141592653589793 b008 Pi+Csch[log10[3]] 3141592653589793 b008 Pi+Csch[log10[Pi]] 3141592653589793 b008 Pi+Csch[log2[3]] 3141592653589793 b008 Pi+Csch[log2[Pi]] 3141592653589793 b008 Pi+E*log10[1/2] 3141592653589793 b008 Pi+E*log10[1/3] 3141592653589793 b008 Pi+E*log10[2] 3141592653589793 b008 Pi+E*log10[3] 3141592653589793 b008 Pi+E*log10[4] 3141592653589793 b008 Pi+E*log10[5] 3141592653589793 b008 Pi+E*log10[6] 3141592653589793 b008 Pi+E*log10[7] 3141592653589793 b008 Pi+E*log10[Pi] 3141592653589793 b008 Pi+E*log2[1/3] 3141592653589793 b008 Pi+E*log2[3] 3141592653589793 b008 Pi+E*log2[5] 3141592653589793 b008 Pi+E*log2[6] 3141592653589793 b008 Pi+E*log2[7] 3141592653589793 b008 Pi+E*log2[Pi] 3141592653589793 b008 Pi+Erfc[log2[3]] 3141592653589793 b008 Pi+EulerGamma*log10[2] 3141592653589793 b008 Pi+EulerGamma*log10[3] 3141592653589793 b008 Pi+EulerGamma*log10[Pi] 3141592653589793 b008 Pi+EulerGamma*log2[3] 3141592653589793 b008 Pi+EulerGamma*log2[Pi] 3141592653589793 b008 Pi+ExpIntegralEi[log2[3]] 3141592653589793 b008 Pi+Gudermannian[log2[3]] 3141592653589793 b008 Pi+LogGamma[log2[3]] 3141592653589793 b008 Pi+LogIntegral[log2[3]] 3141592653589793 b008 Pi+Log[log10[2]] 3141592653589793 b008 Pi+Log[log10[3]] 3141592653589793 b008 Pi+Log[log10[Pi]] 3141592653589793 b008 Pi+Log[log2[3]] 3141592653589793 b008 Pi+Log[log2[Pi]] 3141592653589793 b008 Pi+Pi^log10[Pi] 3141592653589793 b008 Pi+Pi^log2[Pi] 3141592653589793 b008 Pi+ProductLog[log2[3]] 3141592653589793 b008 Pi+Sech[log10[2]] 3141592653589793 b008 Pi+Sech[log10[3]] 3141592653589793 b008 Pi+Sech[log10[Pi]] 3141592653589793 b008 Pi+Sech[log2[3]] 3141592653589793 b008 Pi+Sech[log2[Pi]] 3141592653589793 b008 Pi+Sin[log10[2]] 3141592653589793 b008 Pi+Sin[log10[3]] 3141592653589793 b008 Pi+Sin[log10[Pi]] 3141592653589793 b008 Pi+Sinh[log10[2]] 3141592653589793 b008 Pi+Sinh[log10[3]] 3141592653589793 b008 Pi+Sinh[log10[Pi]] 3141592653589793 b008 Pi+Sinh[log2[3]] 3141592653589793 b008 Pi+Sinh[log2[Pi]] 3141592653589793 b008 Pi+Sqrt[log10[2]] 3141592653589793 b008 Pi+Sqrt[log10[3]] 3141592653589793 b008 Pi+Sqrt[log10[4]] 3141592653589793 b008 Pi+Sqrt[log10[5]] 3141592653589793 b008 Pi+Sqrt[log10[6]] 3141592653589793 b008 Pi+Sqrt[log10[7]] 3141592653589793 b008 Pi+Sqrt[log10[8]] 3141592653589793 b008 Pi+Sqrt[log10[9]] 3141592653589793 b008 Pi+Sqrt[log10[E]] 3141592653589793 b008 Pi+Sqrt[log10[Pi]] 3141592653589793 b008 Pi+Sqrt[log2[10]] 3141592653589793 b008 Pi+Sqrt[log2[3]] 3141592653589793 b008 Pi+Sqrt[log2[5]] 3141592653589793 b008 Pi+Sqrt[log2[6]] 3141592653589793 b008 Pi+Sqrt[log2[7]] 3141592653589793 b008 Pi+Sqrt[log2[9]] 3141592653589793 b008 Pi+Sqrt[log2[Pi]] 3141592653589793 b008 Pi+Tan[log10[2]] 3141592653589793 b008 Pi+Tan[log10[3]] 3141592653589793 b008 Pi+Tan[log10[Pi]] 3141592653589793 b008 Pi+Tanh[log10[2]] 3141592653589793 b008 Pi+Tanh[log10[3]] 3141592653589793 b008 Pi+Tanh[log10[Pi]] 3141592653589793 b008 Pi+Tanh[log2[3]] 3141592653589793 b008 Pi+Tanh[log2[Pi]] 3141592653589793 b008 Pi+Zeta[log2[3]] 3141592653589793 b008 Pi+log10[-1+E] 3141592653589793 b008 Pi+log10[-1+Pi] 3141592653589793 b008 Pi+log10[-1/2+Pi] 3141592653589793 b008 Pi+log10[-2+E] 3141592653589793 b008 Pi+log10[-2+Pi] 3141592653589793 b008 Pi+log10[-3+Pi] 3141592653589793 b008 Pi+log10[1+E] 3141592653589793 b008 Pi+log10[1+EulerGamma] 3141592653589793 b008 Pi+log10[1+Pi] 3141592653589793 b008 Pi+log10[1/11] 3141592653589793 b008 Pi+log10[1/12] 3141592653589793 b008 Pi+log10[1/13] 3141592653589793 b008 Pi+log10[1/14] 3141592653589793 b008 Pi+log10[1/15] 3141592653589793 b008 Pi+log10[1/16] 3141592653589793 b008 Pi+log10[1/18] 3141592653589793 b008 Pi+log10[1/2+E] 3141592653589793 b008 Pi+log10[1/2+Pi] 3141592653589793 b008 Pi+log10[1/21] 3141592653589793 b008 Pi+log10[1/24] 3141592653589793 b008 Pi+log10[1/28] 3141592653589793 b008 Pi+log10[1/2] 3141592653589793 b008 Pi+log10[1/3+E] 3141592653589793 b008 Pi+log10[1/3+Pi] 3141592653589793 b008 Pi+log10[1/3] 3141592653589793 b008 Pi+log10[1/3]^(-1) 3141592653589793 b008 Pi+log10[1/4+Pi] 3141592653589793 b008 Pi+log10[1/4] 3141592653589793 b008 Pi+log10[1/4]^(-1) 3141592653589793 b008 Pi+log10[1/5] 3141592653589793 b008 Pi+log10[1/6] 3141592653589793 b008 Pi+log10[1/7] 3141592653589793 b008 Pi+log10[1/8] 3141592653589793 b008 Pi+log10[1/9] 3141592653589793 b008 Pi+log10[1/Sqrt[E]] 3141592653589793 b008 Pi+log10[10+Pi] 3141592653589793 b008 Pi+log10[11/2] 3141592653589793 b008 Pi+log10[11/3] 3141592653589793 b008 Pi+log10[11/4] 3141592653589793 b008 Pi+log10[11] 3141592653589793 b008 Pi+log10[12] 3141592653589793 b008 Pi+log10[13/2] 3141592653589793 b008 Pi+log10[13/3] 3141592653589793 b008 Pi+log10[13] 3141592653589793 b008 Pi+log10[14/3] 3141592653589793 b008 Pi+log10[14] 3141592653589793 b008 Pi+log10[15/2] 3141592653589793 b008 Pi+log10[15] 3141592653589793 b008 Pi+log10[16] 3141592653589793 b008 Pi+log10[17/2] 3141592653589793 b008 Pi+log10[17] 3141592653589793 b008 Pi+log10[18] 3141592653589793 b008 Pi+log10[19/2] 3141592653589793 b008 Pi+log10[19] 3141592653589793 b008 Pi+log10[2*E] 3141592653589793 b008 Pi+log10[2*EulerGamma] 3141592653589793 b008 Pi+log10[2*Pi] 3141592653589793 b008 Pi+log10[2+E] 3141592653589793 b008 Pi+log10[2+EulerGamma] 3141592653589793 b008 Pi+log10[2+Pi] 3141592653589793 b008 Pi+log10[2/11] 3141592653589793 b008 Pi+log10[2/13] 3141592653589793 b008 Pi+log10[2/15] 3141592653589793 b008 Pi+log10[2/3] 3141592653589793 b008 Pi+log10[2/5] 3141592653589793 b008 Pi+log10[2/7] 3141592653589793 b008 Pi+log10[2/9] 3141592653589793 b008 Pi+log10[21/2] 3141592653589793 b008 Pi+log10[21] 3141592653589793 b008 Pi+log10[24] 3141592653589793 b008 Pi+log10[25] 3141592653589793 b008 Pi+log10[27] 3141592653589793 b008 Pi+log10[28] 3141592653589793 b008 Pi+log10[2] 3141592653589793 b008 Pi+log10[2]/3 3141592653589793 b008 Pi+log10[2]/4 3141592653589793 b008 Pi+log10[2]/5 3141592653589793 b008 Pi+log10[2]/6 3141592653589793 b008 Pi+log10[2]/7 3141592653589793 b008 Pi+log10[2]^2 3141592653589793 b008 Pi+log10[2]^3 3141592653589793 b008 Pi+log10[2]^4 3141592653589793 b008 Pi+log10[2]^5 3141592653589793 b008 Pi+log10[2]^E 3141592653589793 b008 Pi+log10[2]^Pi 3141592653589793 b008 Pi+log10[3*E] 3141592653589793 b008 Pi+log10[3*EulerGamma] 3141592653589793 b008 Pi+log10[3*Pi] 3141592653589793 b008 Pi+log10[3+E] 3141592653589793 b008 Pi+log10[3+EulerGamma] 3141592653589793 b008 Pi+log10[3+Pi] 3141592653589793 b008 Pi+log10[3/11] 3141592653589793 b008 Pi+log10[3/13] 3141592653589793 b008 Pi+log10[3/14] 3141592653589793 b008 Pi+log10[3/2] 3141592653589793 b008 Pi+log10[3/4] 3141592653589793 b008 Pi+log10[3/5] 3141592653589793 b008 Pi+log10[3/7] 3141592653589793 b008 Pi+log10[3/8] 3141592653589793 b008 Pi+log10[35] 3141592653589793 b008 Pi+log10[36] 3141592653589793 b008 Pi+log10[3] 3141592653589793 b008 Pi+log10[3]/3 3141592653589793 b008 Pi+log10[3]/4 3141592653589793 b008 Pi+log10[3]^(-1) 3141592653589793 b008 Pi+log10[3]^2 3141592653589793 b008 Pi+log10[3]^3 3141592653589793 b008 Pi+log10[3]^Pi 3141592653589793 b008 Pi+log10[4*E] 3141592653589793 b008 Pi+log10[4*Pi] 3141592653589793 b008 Pi+log10[4+E] 3141592653589793 b008 Pi+log10[4+Pi] 3141592653589793 b008 Pi+log10[4/11] 3141592653589793 b008 Pi+log10[4/3] 3141592653589793 b008 Pi+log10[4/5] 3141592653589793 b008 Pi+log10[4/7] 3141592653589793 b008 Pi+log10[4/9] 3141592653589793 b008 Pi+log10[42] 3141592653589793 b008 Pi+log10[45] 3141592653589793 b008 Pi+log10[48] 3141592653589793 b008 Pi+log10[4] 3141592653589793 b008 Pi+log10[4]/3 3141592653589793 b008 Pi+log10[4]^(-1) 3141592653589793 b008 Pi+log10[4]^2 3141592653589793 b008 Pi+log10[5*E] 3141592653589793 b008 Pi+log10[5*Pi] 3141592653589793 b008 Pi+log10[5+E] 3141592653589793 b008 Pi+log10[5+Pi] 3141592653589793 b008 Pi+log10[5/2] 3141592653589793 b008 Pi+log10[5/3] 3141592653589793 b008 Pi+log10[5/4] 3141592653589793 b008 Pi+log10[5/6] 3141592653589793 b008 Pi+log10[5/7] 3141592653589793 b008 Pi+log10[5/8] 3141592653589793 b008 Pi+log10[54] 3141592653589793 b008 Pi+log10[56] 3141592653589793 b008 Pi+log10[5] 3141592653589793 b008 Pi+log10[5]^(-1) 3141592653589793 b008 Pi+log10[5]^2 3141592653589793 b008 Pi+log10[6*E] 3141592653589793 b008 Pi+log10[6*Pi] 3141592653589793 b008 Pi+log10[6+E] 3141592653589793 b008 Pi+log10[6+Pi] 3141592653589793 b008 Pi+log10[6/5] 3141592653589793 b008 Pi+log10[6/7] 3141592653589793 b008 Pi+log10[63] 3141592653589793 b008 Pi+log10[6] 3141592653589793 b008 Pi+log10[6]^(-1) 3141592653589793 b008 Pi+log10[6]^2 3141592653589793 b008 Pi+log10[7*E] 3141592653589793 b008 Pi+log10[7*Pi] 3141592653589793 b008 Pi+log10[7+E] 3141592653589793 b008 Pi+log10[7+Pi] 3141592653589793 b008 Pi+log10[7/2] 3141592653589793 b008 Pi+log10[7/3] 3141592653589793 b008 Pi+log10[7/4] 3141592653589793 b008 Pi+log10[7/5] 3141592653589793 b008 Pi+log10[7/6] 3141592653589793 b008 Pi+log10[72] 3141592653589793 b008 Pi+log10[7] 3141592653589793 b008 Pi+log10[7]^(-1) 3141592653589793 b008 Pi+log10[7]^2 3141592653589793 b008 Pi+log10[8*Pi] 3141592653589793 b008 Pi+log10[8+Pi] 3141592653589793 b008 Pi+log10[8/3] 3141592653589793 b008 Pi+log10[8/5] 3141592653589793 b008 Pi+log10[8] 3141592653589793 b008 Pi+log10[8]^(-1) 3141592653589793 b008 Pi+log10[8]^2 3141592653589793 b008 Pi+log10[9*Pi] 3141592653589793 b008 Pi+log10[9+Pi] 3141592653589793 b008 Pi+log10[9/2] 3141592653589793 b008 Pi+log10[9/4] 3141592653589793 b008 Pi+log10[9] 3141592653589793 b008 Pi+log10[9]^(-1) 3141592653589793 b008 Pi+log10[9]^2 3141592653589793 b008 Pi+log10[ArcCosh[2]] 3141592653589793 b008 Pi+log10[ArcCosh[3]] 3141592653589793 b008 Pi+log10[ArcCosh[Pi]] 3141592653589793 b008 Pi+log10[ArcCot[2]] 3141592653589793 b008 Pi+log10[ArcCot[3]] 3141592653589793 b008 Pi+log10[ArcCot[Pi]] 3141592653589793 b008 Pi+log10[ArcCoth[2]] 3141592653589793 b008 Pi+log10[ArcCoth[3]] 3141592653589793 b008 Pi+log10[ArcCoth[Pi]] 3141592653589793 b008 Pi+log10[ArcCsc[3]] 3141592653589793 b008 Pi+log10[ArcCsc[Pi]] 3141592653589793 b008 Pi+log10[ArcCsch[1]] 3141592653589793 b008 Pi+log10[ArcCsch[2]] 3141592653589793 b008 Pi+log10[ArcCsch[3]] 3141592653589793 b008 Pi+log10[ArcCsch[Pi]] 3141592653589793 b008 Pi+log10[ArcSec[3]] 3141592653589793 b008 Pi+log10[ArcSec[Pi]] 3141592653589793 b008 Pi+log10[ArcSinh[2]] 3141592653589793 b008 Pi+log10[ArcSinh[3]] 3141592653589793 b008 Pi+log10[ArcSinh[Pi]] 3141592653589793 b008 Pi+log10[ArcTan[2]] 3141592653589793 b008 Pi+log10[ArcTan[3]] 3141592653589793 b008 Pi+log10[ArcTan[Pi]] 3141592653589793 b008 Pi+log10[CosIntegral[1]] 3141592653589793 b008 Pi+log10[Cos[1]] 3141592653589793 b008 Pi+log10[Cosh[1]] 3141592653589793 b008 Pi+log10[Cosh[2]] 3141592653589793 b008 Pi+log10[Cosh[3]] 3141592653589793 b008 Pi+log10[Cosh[Pi]] 3141592653589793 b008 Pi+log10[Coth[1]] 3141592653589793 b008 Pi+log10[Coth[2]] 3141592653589793 b008 Pi+log10[Coth[3]] 3141592653589793 b008 Pi+log10[Coth[Pi]] 3141592653589793 b008 Pi+log10[Csch[1]] 3141592653589793 b008 Pi+log10[Csch[2]] 3141592653589793 b008 Pi+log10[Csch[3]] 3141592653589793 b008 Pi+log10[Csch[Pi]] 3141592653589793 b008 Pi+log10[E*Pi] 3141592653589793 b008 Pi+log10[E+Pi] 3141592653589793 b008 Pi+log10[E/2] 3141592653589793 b008 Pi+log10[E/3] 3141592653589793 b008 Pi+log10[E] 3141592653589793 b008 Pi+log10[E]^2 3141592653589793 b008 Pi+log10[E^(-1)] 3141592653589793 b008 Pi+log10[E^(-2)] 3141592653589793 b008 Pi+log10[E^(-3)] 3141592653589793 b008 Pi+log10[E^(-4)] 3141592653589793 b008 Pi+log10[E^(-5)] 3141592653589793 b008 Pi+log10[E^(1/3)] 3141592653589793 b008 Pi+log10[E^(1/4)] 3141592653589793 b008 Pi+log10[E^2] 3141592653589793 b008 Pi+log10[E^3] 3141592653589793 b008 Pi+log10[E^4] 3141592653589793 b008 Pi+log10[E^5] 3141592653589793 b008 Pi+log10[E^6] 3141592653589793 b008 Pi+log10[E^7] 3141592653589793 b008 Pi+log10[E^E] 3141592653589793 b008 Pi+log10[E^EulerGamma] 3141592653589793 b008 Pi+log10[Erf[1]] 3141592653589793 b008 Pi+log10[Erfc[1]] 3141592653589793 b008 Pi+log10[EulerGamma*Pi] 3141592653589793 b008 Pi+log10[EulerGamma+Pi] 3141592653589793 b008 Pi+log10[EulerGamma] 3141592653589793 b008 Pi+log10[EulerGamma]^(-1) 3141592653589793 b008 Pi+log10[EulerGamma^(-1)] 3141592653589793 b008 Pi+log10[EulerGamma^2] 3141592653589793 b008 Pi+log10[ExpIntegralEi[1]] 3141592653589793 b008 Pi+log10[Log[2]] 3141592653589793 b008 Pi+log10[Log[3]] 3141592653589793 b008 Pi+log10[Log[Pi]] 3141592653589793 b008 Pi+log10[Pi/2] 3141592653589793 b008 Pi+log10[Pi/3] 3141592653589793 b008 Pi+log10[Pi/4] 3141592653589793 b008 Pi+log10[Pi] 3141592653589793 b008 Pi+log10[Pi]/3 3141592653589793 b008 Pi+log10[Pi]/4 3141592653589793 b008 Pi+log10[Pi]^(-1) 3141592653589793 b008 Pi+log10[Pi]^2 3141592653589793 b008 Pi+log10[Pi]^3 3141592653589793 b008 Pi+log10[Pi]^Pi 3141592653589793 b008 Pi+log10[Pi^(-1)] 3141592653589793 b008 Pi+log10[Pi^2] 3141592653589793 b008 Pi+log10[ProductLog[1]] 3141592653589793 b008 Pi+log10[Sech[1]] 3141592653589793 b008 Pi+log10[Sech[2]] 3141592653589793 b008 Pi+log10[Sech[3]] 3141592653589793 b008 Pi+log10[Sech[Pi]] 3141592653589793 b008 Pi+log10[SinIntegral[1]] 3141592653589793 b008 Pi+log10[Sin[1]] 3141592653589793 b008 Pi+log10[Sinh[1]] 3141592653589793 b008 Pi+log10[Sinh[2]] 3141592653589793 b008 Pi+log10[Sinh[3]] 3141592653589793 b008 Pi+log10[Sinh[Pi]] 3141592653589793 b008 Pi+log10[Sqrt[2]] 3141592653589793 b008 Pi+log10[Sqrt[3]] 3141592653589793 b008 Pi+log10[Sqrt[5]] 3141592653589793 b008 Pi+log10[Sqrt[6]] 3141592653589793 b008 Pi+log10[Sqrt[7]] 3141592653589793 b008 Pi+log10[Sqrt[EulerGamma]] 3141592653589793 b008 Pi+log10[Sqrt[Pi]] 3141592653589793 b008 Pi+log10[Tan[1]] 3141592653589793 b008 Pi+log10[Tanh[1]] 3141592653589793 b008 Pi+log10[Tanh[2]] 3141592653589793 b008 Pi+log10[Tanh[3]] 3141592653589793 b008 Pi+log10[Tanh[Pi]] 3141592653589793 b008 Pi+log2[-1+E] 3141592653589793 b008 Pi+log2[-1+Pi] 3141592653589793 b008 Pi+log2[-1/2+Pi] 3141592653589793 b008 Pi+log2[-2+E] 3141592653589793 b008 Pi+log2[-2+Pi] 3141592653589793 b008 Pi+log2[-3+Pi] 3141592653589793 b008 Pi+log2[1+E] 3141592653589793 b008 Pi+log2[1+EulerGamma] 3141592653589793 b008 Pi+log2[1+Pi] 3141592653589793 b008 Pi+log2[1/10] 3141592653589793 b008 Pi+log2[1/11] 3141592653589793 b008 Pi+log2[1/12] 3141592653589793 b008 Pi+log2[1/13] 3141592653589793 b008 Pi+log2[1/14] 3141592653589793 b008 Pi+log2[1/15] 3141592653589793 b008 Pi+log2[1/18] 3141592653589793 b008 Pi+log2[1/2+E] 3141592653589793 b008 Pi+log2[1/2+Pi] 3141592653589793 b008 Pi+log2[1/20] 3141592653589793 b008 Pi+log2[1/21] 3141592653589793 b008 Pi+log2[1/24] 3141592653589793 b008 Pi+log2[1/25] 3141592653589793 b008 Pi+log2[1/28] 3141592653589793 b008 Pi+log2[1/3+E] 3141592653589793 b008 Pi+log2[1/3+Pi] 3141592653589793 b008 Pi+log2[1/30] 3141592653589793 b008 Pi+log2[1/3] 3141592653589793 b008 Pi+log2[1/3]^(-1) 3141592653589793 b008 Pi+log2[1/4+Pi] 3141592653589793 b008 Pi+log2[1/40] 3141592653589793 b008 Pi+log2[1/5] 3141592653589793 b008 Pi+log2[1/6] 3141592653589793 b008 Pi+log2[1/7] 3141592653589793 b008 Pi+log2[1/9] 3141592653589793 b008 Pi+log2[1/Sqrt[E]] 3141592653589793 b008 Pi+log2[10*Pi] 3141592653589793 b008 Pi+log2[10+Pi] 3141592653589793 b008 Pi+log2[10/3] 3141592653589793 b008 Pi+log2[10] 3141592653589793 b008 Pi+log2[10]^2 3141592653589793 b008 Pi+log2[11/2] 3141592653589793 b008 Pi+log2[11/3] 3141592653589793 b008 Pi+log2[11/4] 3141592653589793 b008 Pi+log2[11] 3141592653589793 b008 Pi+log2[12] 3141592653589793 b008 Pi+log2[13/2] 3141592653589793 b008 Pi+log2[13/3] 3141592653589793 b008 Pi+log2[13] 3141592653589793 b008 Pi+log2[14/3] 3141592653589793 b008 Pi+log2[14] 3141592653589793 b008 Pi+log2[15/2] 3141592653589793 b008 Pi+log2[15] 3141592653589793 b008 Pi+log2[17/2] 3141592653589793 b008 Pi+log2[17] 3141592653589793 b008 Pi+log2[18] 3141592653589793 b008 Pi+log2[19/2] 3141592653589793 b008 Pi+log2[19] 3141592653589793 b008 Pi+log2[2+E] 3141592653589793 b008 Pi+log2[2+EulerGamma] 3141592653589793 b008 Pi+log2[2+Pi] 3141592653589793 b008 Pi+log2[2/11] 3141592653589793 b008 Pi+log2[2/13] 3141592653589793 b008 Pi+log2[2/15] 3141592653589793 b008 Pi+log2[2/3] 3141592653589793 b008 Pi+log2[2/5] 3141592653589793 b008 Pi+log2[2/7] 3141592653589793 b008 Pi+log2[2/9] 3141592653589793 b008 Pi+log2[20] 3141592653589793 b008 Pi+log2[21/2] 3141592653589793 b008 Pi+log2[21] 3141592653589793 b008 Pi+log2[24] 3141592653589793 b008 Pi+log2[25] 3141592653589793 b008 Pi+log2[27] 3141592653589793 b008 Pi+log2[28] 3141592653589793 b008 Pi+log2[3*E] 3141592653589793 b008 Pi+log2[3*EulerGamma] 3141592653589793 b008 Pi+log2[3*Pi] 3141592653589793 b008 Pi+log2[3+E] 3141592653589793 b008 Pi+log2[3+EulerGamma] 3141592653589793 b008 Pi+log2[3+Pi] 3141592653589793 b008 Pi+log2[3/10] 3141592653589793 b008 Pi+log2[3/11] 3141592653589793 b008 Pi+log2[3/13] 3141592653589793 b008 Pi+log2[3/14] 3141592653589793 b008 Pi+log2[3/2] 3141592653589793 b008 Pi+log2[3/4] 3141592653589793 b008 Pi+log2[3/5] 3141592653589793 b008 Pi+log2[3/7] 3141592653589793 b008 Pi+log2[30] 3141592653589793 b008 Pi+log2[35] 3141592653589793 b008 Pi+log2[36] 3141592653589793 b008 Pi+log2[3] 3141592653589793 b008 Pi+log2[3]/3 3141592653589793 b008 Pi+log2[3]/4 3141592653589793 b008 Pi+log2[3]^(-1) 3141592653589793 b008 Pi+log2[3]^2 3141592653589793 b008 Pi+log2[3]^3 3141592653589793 b008 Pi+log2[3]^Pi 3141592653589793 b008 Pi+log2[4+E] 3141592653589793 b008 Pi+log2[4+Pi] 3141592653589793 b008 Pi+log2[4/11] 3141592653589793 b008 Pi+log2[4/3] 3141592653589793 b008 Pi+log2[4/5] 3141592653589793 b008 Pi+log2[4/7] 3141592653589793 b008 Pi+log2[4/9] 3141592653589793 b008 Pi+log2[40] 3141592653589793 b008 Pi+log2[42] 3141592653589793 b008 Pi+log2[45] 3141592653589793 b008 Pi+log2[5*E] 3141592653589793 b008 Pi+log2[5*Pi] 3141592653589793 b008 Pi+log2[5+E] 3141592653589793 b008 Pi+log2[5+Pi] 3141592653589793 b008 Pi+log2[5/2] 3141592653589793 b008 Pi+log2[5/3] 3141592653589793 b008 Pi+log2[5/4] 3141592653589793 b008 Pi+log2[5/6] 3141592653589793 b008 Pi+log2[5/7] 3141592653589793 b008 Pi+log2[50] 3141592653589793 b008 Pi+log2[54] 3141592653589793 b008 Pi+log2[56] 3141592653589793 b008 Pi+log2[5] 3141592653589793 b008 Pi+log2[5]^(-1) 3141592653589793 b008 Pi+log2[5]^2 3141592653589793 b008 Pi+log2[6*E] 3141592653589793 b008 Pi+log2[6*Pi] 3141592653589793 b008 Pi+log2[6+E] 3141592653589793 b008 Pi+log2[6+Pi] 3141592653589793 b008 Pi+log2[6/5] 3141592653589793 b008 Pi+log2[6/7] 3141592653589793 b008 Pi+log2[60] 3141592653589793 b008 Pi+log2[63] 3141592653589793 b008 Pi+log2[6] 3141592653589793 b008 Pi+log2[6]^(-1) 3141592653589793 b008 Pi+log2[6]^2 3141592653589793 b008 Pi+log2[7*E] 3141592653589793 b008 Pi+log2[7*Pi] 3141592653589793 b008 Pi+log2[7+E] 3141592653589793 b008 Pi+log2[7+Pi] 3141592653589793 b008 Pi+log2[7/2] 3141592653589793 b008 Pi+log2[7/3] 3141592653589793 b008 Pi+log2[7/4] 3141592653589793 b008 Pi+log2[7/5] 3141592653589793 b008 Pi+log2[7/6] 3141592653589793 b008 Pi+log2[70] 3141592653589793 b008 Pi+log2[72] 3141592653589793 b008 Pi+log2[7] 3141592653589793 b008 Pi+log2[7]^(-1) 3141592653589793 b008 Pi+log2[7]^2 3141592653589793 b008 Pi+log2[8+Pi] 3141592653589793 b008 Pi+log2[8/3] 3141592653589793 b008 Pi+log2[8/5] 3141592653589793 b008 Pi+log2[9*Pi] 3141592653589793 b008 Pi+log2[9+Pi] 3141592653589793 b008 Pi+log2[9/2] 3141592653589793 b008 Pi+log2[9/4] 3141592653589793 b008 Pi+log2[90] 3141592653589793 b008 Pi+log2[9] 3141592653589793 b008 Pi+log2[9]^(-1) 3141592653589793 b008 Pi+log2[9]^2 3141592653589793 b008 Pi+log2[ArcCosh[2]] 3141592653589793 b008 Pi+log2[ArcCosh[3]] 3141592653589793 b008 Pi+log2[ArcCosh[Pi]] 3141592653589793 b008 Pi+log2[ArcCot[2]] 3141592653589793 b008 Pi+log2[ArcCot[3]] 3141592653589793 b008 Pi+log2[ArcCot[Pi]] 3141592653589793 b008 Pi+log2[ArcCoth[2]] 3141592653589793 b008 Pi+log2[ArcCoth[3]] 3141592653589793 b008 Pi+log2[ArcCoth[Pi]] 3141592653589793 b008 Pi+log2[ArcCsc[3]] 3141592653589793 b008 Pi+log2[ArcCsc[Pi]] 3141592653589793 b008 Pi+log2[ArcCsch[1]] 3141592653589793 b008 Pi+log2[ArcCsch[2]] 3141592653589793 b008 Pi+log2[ArcCsch[3]] 3141592653589793 b008 Pi+log2[ArcCsch[Pi]] 3141592653589793 b008 Pi+log2[ArcSec[3]] 3141592653589793 b008 Pi+log2[ArcSec[Pi]] 3141592653589793 b008 Pi+log2[ArcSinh[2]] 3141592653589793 b008 Pi+log2[ArcSinh[3]] 3141592653589793 b008 Pi+log2[ArcSinh[Pi]] 3141592653589793 b008 Pi+log2[ArcTan[2]] 3141592653589793 b008 Pi+log2[ArcTan[3]] 3141592653589793 b008 Pi+log2[ArcTan[Pi]] 3141592653589793 b008 Pi+log2[CosIntegral[1]] 3141592653589793 b008 Pi+log2[Cos[1]] 3141592653589793 b008 Pi+log2[Cosh[1]] 3141592653589793 b008 Pi+log2[Cosh[2]] 3141592653589793 b008 Pi+log2[Cosh[3]] 3141592653589793 b008 Pi+log2[Cosh[Pi]] 3141592653589793 b008 Pi+log2[Coth[1]] 3141592653589793 b008 Pi+log2[Coth[2]] 3141592653589793 b008 Pi+log2[Coth[3]] 3141592653589793 b008 Pi+log2[Coth[Pi]] 3141592653589793 b008 Pi+log2[Csch[1]] 3141592653589793 b008 Pi+log2[Csch[2]] 3141592653589793 b008 Pi+log2[Csch[3]] 3141592653589793 b008 Pi+log2[Csch[Pi]] 3141592653589793 b008 Pi+log2[E*Pi] 3141592653589793 b008 Pi+log2[E+Pi] 3141592653589793 b008 Pi+log2[E/3] 3141592653589793 b008 Pi+log2[E^(-1)] 3141592653589793 b008 Pi+log2[E^(-2)] 3141592653589793 b008 Pi+log2[E^(-3)] 3141592653589793 b008 Pi+log2[E^(-5)] 3141592653589793 b008 Pi+log2[E^3] 3141592653589793 b008 Pi+log2[E^5] 3141592653589793 b008 Pi+log2[E^7] 3141592653589793 b008 Pi+log2[E^E] 3141592653589793 b008 Pi+log2[E^EulerGamma] 3141592653589793 b008 Pi+log2[Erf[1]] 3141592653589793 b008 Pi+log2[Erfc[1]] 3141592653589793 b008 Pi+log2[EulerGamma*Pi] 3141592653589793 b008 Pi+log2[EulerGamma+Pi] 3141592653589793 b008 Pi+log2[EulerGamma] 3141592653589793 b008 Pi+log2[EulerGamma]^(-1) 3141592653589793 b008 Pi+log2[EulerGamma^(-1)] 3141592653589793 b008 Pi+log2[EulerGamma^2] 3141592653589793 b008 Pi+log2[ExpIntegralEi[1]] 3141592653589793 b008 Pi+log2[Log[2]] 3141592653589793 b008 Pi+log2[Log[3]] 3141592653589793 b008 Pi+log2[Log[Pi]] 3141592653589793 b008 Pi+log2[Pi/3] 3141592653589793 b008 Pi+log2[Pi] 3141592653589793 b008 Pi+log2[Pi]/3 3141592653589793 b008 Pi+log2[Pi]/4 3141592653589793 b008 Pi+log2[Pi]^(-1) 3141592653589793 b008 Pi+log2[Pi]^2 3141592653589793 b008 Pi+log2[Pi]^3 3141592653589793 b008 Pi+log2[Pi]^Pi 3141592653589793 b008 Pi+log2[Pi^(-1)] 3141592653589793 b008 Pi+log2[Pi^2] 3141592653589793 b008 Pi+log2[ProductLog[1]] 3141592653589793 b008 Pi+log2[Sech[1]] 3141592653589793 b008 Pi+log2[Sech[2]] 3141592653589793 b008 Pi+log2[Sech[3]] 3141592653589793 b008 Pi+log2[Sech[Pi]] 3141592653589793 b008 Pi+log2[SinIntegral[1]] 3141592653589793 b008 Pi+log2[Sin[1]] 3141592653589793 b008 Pi+log2[Sinh[1]] 3141592653589793 b008 Pi+log2[Sinh[2]] 3141592653589793 b008 Pi+log2[Sinh[3]] 3141592653589793 b008 Pi+log2[Sinh[Pi]] 3141592653589793 b008 Pi+log2[Sqrt[3]] 3141592653589793 b008 Pi+log2[Sqrt[5]] 3141592653589793 b008 Pi+log2[Sqrt[6]] 3141592653589793 b008 Pi+log2[Sqrt[7]] 3141592653589793 b008 Pi+log2[Sqrt[EulerGamma]] 3141592653589793 b008 Pi+log2[Sqrt[Pi]] 3141592653589793 b008 Pi+log2[Tan[1]] 3141592653589793 b008 Pi+log2[Tanh[1]] 3141592653589793 b008 Pi+log2[Tanh[2]] 3141592653589793 b008 Pi+log2[Tanh[3]] 3141592653589793 b008 Pi+log2[Tanh[Pi]] 3141592653589793 b008 Pi-(2*log10[2])/3 3141592653589793 b008 Pi-10*log10[2] 3141592653589793 b008 Pi-10*log10[3] 3141592653589793 b008 Pi-10*log10[Pi] 3141592653589793 b008 Pi-10*log2[3] 3141592653589793 b008 Pi-10*log2[Pi] 3141592653589793 b008 Pi-12*log10[2] 3141592653589793 b008 Pi-14*log10[2] 3141592653589793 b008 Pi-15*log10[2] 3141592653589793 b008 Pi-2*Sqrt[log10[2]] 3141592653589793 b008 Pi-2*log10[11] 3141592653589793 b008 Pi-2*log10[12] 3141592653589793 b008 Pi-2*log10[13] 3141592653589793 b008 Pi-2*log10[14] 3141592653589793 b008 Pi-2*log10[15] 3141592653589793 b008 Pi-2*log10[2]^2 3141592653589793 b008 Pi-2*log10[6] 3141592653589793 b008 Pi-2*log10[7] 3141592653589793 b008 Pi-2*log10[Pi] 3141592653589793 b008 Pi-2*log2[10] 3141592653589793 b008 Pi-2*log2[11] 3141592653589793 b008 Pi-2*log2[12] 3141592653589793 b008 Pi-2*log2[13] 3141592653589793 b008 Pi-2*log2[14] 3141592653589793 b008 Pi-2*log2[15] 3141592653589793 b008 Pi-2*log2[6] 3141592653589793 b008 Pi-2*log2[7] 3141592653589793 b008 Pi-2*log2[Pi] 3141592653589793 b008 Pi-3*log10[3] 3141592653589793 b008 Pi-3*log10[5] 3141592653589793 b008 Pi-3*log10[6] 3141592653589793 b008 Pi-3*log10[7] 3141592653589793 b008 Pi-3*log10[EulerGamma] 3141592653589793 b008 Pi-3*log10[Pi] 3141592653589793 b008 Pi-3*log2[10] 3141592653589793 b008 Pi-3*log2[3] 3141592653589793 b008 Pi-3*log2[5] 3141592653589793 b008 Pi-3*log2[6] 3141592653589793 b008 Pi-3*log2[7] 3141592653589793 b008 Pi-3*log2[EulerGamma] 3141592653589793 b008 Pi-3*log2[Pi] 3141592653589793 b008 Pi-4*log10[3] 3141592653589793 b008 Pi-4*log10[5] 3141592653589793 b008 Pi-4*log10[6] 3141592653589793 b008 Pi-4*log10[7] 3141592653589793 b008 Pi-4*log10[Pi] 3141592653589793 b008 Pi-4*log2[3] 3141592653589793 b008 Pi-4*log2[5] 3141592653589793 b008 Pi-4*log2[6] 3141592653589793 b008 Pi-4*log2[7] 3141592653589793 b008 Pi-4*log2[Pi] 3141592653589793 b008 Pi-5*log10[2] 3141592653589793 b008 Pi-5*log10[3] 3141592653589793 b008 Pi-5*log10[5] 3141592653589793 b008 Pi-5*log10[6] 3141592653589793 b008 Pi-5*log10[Pi] 3141592653589793 b008 Pi-5*log2[3] 3141592653589793 b008 Pi-5*log2[5] 3141592653589793 b008 Pi-5*log2[6] 3141592653589793 b008 Pi-5*log2[Pi] 3141592653589793 b008 Pi-6*log10[2] 3141592653589793 b008 Pi-6*log10[3] 3141592653589793 b008 Pi-6*log10[5] 3141592653589793 b008 Pi-6*log10[Pi] 3141592653589793 b008 Pi-6*log2[3] 3141592653589793 b008 Pi-6*log2[5] 3141592653589793 b008 Pi-6*log2[Pi] 3141592653589793 b008 Pi-7*log10[2] 3141592653589793 b008 Pi-7*log10[3] 3141592653589793 b008 Pi-7*log10[Pi] 3141592653589793 b008 Pi-7*log2[3] 3141592653589793 b008 Pi-7*log2[Pi] 3141592653589793 b008 Pi-8*log10[2] 3141592653589793 b008 Pi-8*log10[3] 3141592653589793 b008 Pi-8*log10[Pi] 3141592653589793 b008 Pi-8*log2[3] 3141592653589793 b008 Pi-8*log2[Pi] 3141592653589793 b008 Pi-9*log10[2] 3141592653589793 b008 Pi-9*log10[3] 3141592653589793 b008 Pi-9*log10[Pi] 3141592653589793 b008 Pi-9*log2[3] 3141592653589793 b008 Pi-9*log2[Pi] 3141592653589793 b008 Pi-Sqrt[log10[2]] 3141592653589793 b008 Pi-Sqrt[log10[3]] 3141592653589793 b008 Pi-Sqrt[log10[4]] 3141592653589793 b008 Pi-Sqrt[log10[5]] 3141592653589793 b008 Pi-Sqrt[log10[E]] 3141592653589793 b008 Pi-Sqrt[log10[Pi]] 3141592653589793 b008 Pi-Sqrt[log2[3]] 3141592653589793 b008 Pi-Sqrt[log2[5]] 3141592653589793 b008 Pi-Sqrt[log2[Pi]] 3141592653589793 b008 Pi-log10[-1+Pi] 3141592653589793 b008 Pi-log10[1+E] 3141592653589793 b008 Pi-log10[1+Pi] 3141592653589793 b008 Pi-log10[17] 3141592653589793 b008 Pi-log10[19] 3141592653589793 b008 Pi-log10[2*E] 3141592653589793 b008 Pi-log10[2*Pi] 3141592653589793 b008 Pi-log10[2+E] 3141592653589793 b008 Pi-log10[2+Pi] 3141592653589793 b008 Pi-log10[2]/3 3141592653589793 b008 Pi-log10[2]/4 3141592653589793 b008 Pi-log10[2]/5 3141592653589793 b008 Pi-log10[2]/6 3141592653589793 b008 Pi-log10[2]/7 3141592653589793 b008 Pi-log10[2]^2 3141592653589793 b008 Pi-log10[3*Pi] 3141592653589793 b008 Pi-log10[3+Pi] 3141592653589793 b008 Pi-log10[3]/3 3141592653589793 b008 Pi-log10[3]/4 3141592653589793 b008 Pi-log10[3]^2 3141592653589793 b008 Pi-log10[4]^2 3141592653589793 b008 Pi-log10[5]^(-1) 3141592653589793 b008 Pi-log10[5]^2 3141592653589793 b008 Pi-log10[E]^2 3141592653589793 b008 Pi-log10[Pi]/2 3141592653589793 b008 Pi-log10[Pi]/3 3141592653589793 b008 Pi-log10[Pi]/4 3141592653589793 b008 Pi-log10[Pi]^(-1) 3141592653589793 b008 Pi-log10[Pi]^2 3141592653589793 b008 Pi-log10[Sqrt[5]] 3141592653589793 b008 Pi-log2[-1+Pi] 3141592653589793 b008 Pi-log2[1+E] 3141592653589793 b008 Pi-log2[1+Pi] 3141592653589793 b008 Pi-log2[17] 3141592653589793 b008 Pi-log2[19] 3141592653589793 b008 Pi-log2[2+E] 3141592653589793 b008 Pi-log2[2+Pi] 3141592653589793 b008 Pi-log2[3*Pi] 3141592653589793 b008 Pi-log2[3+Pi] 3141592653589793 b008 Pi-log2[3]/3 3141592653589793 b008 Pi-log2[3]/4 3141592653589793 b008 Pi-log2[3]^2 3141592653589793 b008 Pi-log2[5]^(-1) 3141592653589793 b008 Pi-log2[5]^2 3141592653589793 b008 Pi-log2[Pi]/2 3141592653589793 b008 Pi-log2[Pi]/3 3141592653589793 b008 Pi-log2[Pi]/4 3141592653589793 b008 Pi-log2[Pi]^(-1) 3141592653589793 b008 Pi-log2[Pi]^2 3141592653589793 b008 Pi-log2[Sqrt[5]] 3141592653589793 b008 Pi^(1+log10[Pi]) 3141592653589793 b008 Pi^(1+log2[Pi]) 3141592653589793 b008 Pi^2*SphericalBesselJ[1,Pi] 3141592653589793 b008 Pi^2*SphericalBesselY[0,Pi] 3141592653589793 b008 Pi^log10[1/2] 3141592653589793 b008 Pi^log10[1/3] 3141592653589793 b008 Pi^log10[1/4] 3141592653589793 b008 Pi^log10[Pi] 3141592653589793 b008 Pi^log2[1/3] 3141592653589793 b008 Pi^log2[10] 3141592653589793 b008 Pi^log2[Pi] 3141592653589793 m001 (2*Pi/GAMMA(5/6))^Psi(2,1/3)+Pi 3141592653589793 m001 (2*Pi/GAMMA(5/6))^Psi(2,1/3)-Pi 3141592653589793 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Psi(2,1/3)+Pi 3141592653589793 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Psi(2,1/3)-Pi 3141592653589793 m001 1*Pi 3141592653589793 m001 1/2*GAMMA(1/6)*GAMMA(5/6) 3141592653589793 m001 GAMMA(1/4)/sqrt(2)*GAMMA(3/4) 3141592653589793 m001 GAMMA(1/6)*GAMMA(5/6)-Pi 3141592653589793 m001 Gompertz^ln(Pi)/(Ei(1,1)^ln(Pi)) 3141592653589793 m001 Pi*(1-5^(1/2))*cos(1/5*Pi) 3141592653589793 m001 Pi+Psi(1,1/3)^Psi(2,1/3) 3141592653589793 m001 Pi+gamma(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 Pi-Psi(1,1/3)^Psi(2,1/3) 3141592653589793 m001 Pi-Trott^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 Pi-Trott^exp(Pi) 3141592653589793 m001 Pi-ZetaQ(3)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 Pi-ZetaQ(3)^exp(Pi) 3141592653589793 m001 Pi-gamma(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 Pi-gamma(2)^exp(Pi) 3141592653589793 m001 Trott^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 m001 Trott^exp(Pi)+Pi 3141592653589793 m001 ZetaQ(3)^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 m001 ZetaQ(3)^exp(Pi)+Pi 3141592653589793 m001 cos(1/12*Pi)*Pi*csc(5/12*Pi) 3141592653589793 m001 cos(Pi/12)*GAMMA(5/12)*GAMMA(7/12) 3141592653589793 m001 exp(1)^ln(Pi) 3141592653589793 m001 exp(gamma)^(ln(Pi)/gamma) 3141592653589793 m001 gamma(2)^exp(Pi)+Pi 3141592653589793 m001 gamma^(ln(Pi)/ln(gamma)) 3141592653589793 m001 sin(1/12*Pi)*Pi*csc(1/12*Pi) 3141592653589793 m001 sin(Pi/12)*GAMMA(11/12)*GAMMA(1/12) 3141592653589793 m002 -Pi/10 3141592653589793 m006 (1/6*Pi-1/2)/(1/2/Pi-1/6) 3141592653589793 s001 sum(1/10^(n-1)*A000796[n],n=1..infinity) 3141592653589793 s001 sum(1/10^(n-1)*A112602[n],n=1..infinity) 3141592653589793 s001 sum(1/10^(n-1)*A155481[n],n=1..infinity) 3141592653589793 s001 sum(1/10^n*A000796[n],n=1..infinity) 3141592653589793 s001 sum(1/10^n*A112602[n],n=1..infinity) 3141592653589793 s001 sum(1/10^n*A155481[n],n=1..infinity) 3141592653589793 s003 concatenated sequence A000796 3141592653589793 s003 concatenated sequence A016062 3141592653589793 s003 concatenated sequence A035331 3141592653589793 s003 concatenated sequence A037244 3141592653589793 s003 concatenated sequence A050807 3141592653589793 s003 concatenated sequence A050817 3141592653589793 s003 concatenated sequence A050818 3141592653589793 s003 concatenated sequence A050819 3141592653589793 s003 concatenated sequence A064809 3141592653589793 s003 concatenated sequence A090897 3141592653589793 s003 concatenated sequence A098711 3141592653589793 s003 concatenated sequence A104819 3141592653589793 s003 concatenated sequence A106156 3141592653589793 s003 concatenated sequence A107115 3141592653589793 s003 concatenated sequence A112602 3141592653589793 s003 concatenated sequence A136517 3141592653589793 s003 concatenated sequence A195834 3141592653589793 s003 concatenated sequence A255190 3141592653589793 s003 concatenated sequence A277140 3141592653589793 s004 Continued Fraction of A001203 3141592653589793 s004 Continued fraction of A001203 3141592653589793 b005 Number DB table 3141592653589793 b005 Number DB table 3141592653589793 m001 FeigenbaumDelta^Psi(2,1/3)+Pi 3141592653589793 m001 Trott2nd^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 m001 Trott2nd^exp(Pi)+Pi 3141592653589793 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^Psi(2,1/3)+Pi 3141592653589793 m001 Pi+exp(-Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 ZetaQ(4)^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653589793 s003 concatenated sequence A105320 3141592653589793 m001 exp(-Pi)^exp(Pi)+Pi 3141592653589793 m001 Pi+gamma(3)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 m001 (Pi*2^(1/2)/GAMMA(3/4))^Psi(2,1/3)+Pi 3141592653589793 b008 Log[262537412640768744]/Sqrt[163] 3141592653589793 s001 sum(1/10^(n-1)*A212131[n],n=1..infinity) 3141592653589793 s001 sum(1/10^n*A212131[n],n=1..infinity) 3141592653589793 s003 concatenated sequence A212131 3141592653589793 m001 FeigenbaumMu^Psi(2,1/3)+Pi 3141592653589793 m001 ZetaQ(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 m001 ZetaQ(2)^exp(Pi)+Pi 3141592653589793 m001 Magata^Psi(2,1/3)+Pi 3141592653589793 m001 HeathBrownMoroz^Psi(1,1/3)+Pi 3141592653589793 m001 ReciprocalFibonacci^Psi(2,1/3)+Pi 3141592653589793 m001 ZetaQ(4)^Psi(1,1/3)+Pi 3141592653589793 l005 ln(sec(355/113)) 3141592653589793 m001 Pi-gamma(1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 m001 gamma(3)^Psi(1,1/3)+Pi 3141592653589793 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(10*Pi) 3141592653589793 l004 Pi/tanh(1199/120*Pi) 3141592653589793 l004 Pi/tanh(1189/119*Pi) 3141592653589793 l004 Pi/tanh(1179/118*Pi) 3141592653589793 l004 Pi/tanh(1169/117*Pi) 3141592653589793 l004 Pi/tanh(1159/116*Pi) 3141592653589793 l004 Pi/tanh(1149/115*Pi) 3141592653589793 l004 Pi/tanh(1139/114*Pi) 3141592653589793 l004 Pi/tanh(1129/113*Pi) 3141592653589793 l004 Pi/tanh(1119/112*Pi) 3141592653589793 l004 Pi/tanh(1109/111*Pi) 3141592653589793 l004 Pi/tanh(1099/110*Pi) 3141592653589793 l004 Pi/tanh(1089/109*Pi) 3141592653589793 l004 Pi/tanh(1079/108*Pi) 3141592653589793 l004 Pi/tanh(1069/107*Pi) 3141592653589793 l004 Pi/tanh(1059/106*Pi) 3141592653589793 l004 Pi/tanh(1049/105*Pi) 3141592653589793 l004 Pi/tanh(1039/104*Pi) 3141592653589793 l004 Pi/tanh(1029/103*Pi) 3141592653589793 l004 Pi/tanh(1019/102*Pi) 3141592653589793 l004 Pi/tanh(1009/101*Pi) 3141592653589793 l004 Pi/tanh(999/100*Pi) 3141592653589793 l004 Pi/tanh(989/99*Pi) 3141592653589793 l004 Pi/tanh(979/98*Pi) 3141592653589793 l004 Pi/tanh(969/97*Pi) 3141592653589793 l004 Pi/tanh(959/96*Pi) 3141592653589793 l004 Pi/tanh(949/95*Pi) 3141592653589793 l004 Pi/tanh(939/94*Pi) 3141592653589793 l004 Pi/tanh(929/93*Pi) 3141592653589793 l004 Pi/tanh(919/92*Pi) 3141592653589793 l004 Pi/tanh(909/91*Pi) 3141592653589793 l004 Pi/tanh(899/90*Pi) 3141592653589793 l004 Pi/tanh(889/89*Pi) 3141592653589793 l004 Pi/tanh(879/88*Pi) 3141592653589793 l004 Pi/tanh(869/87*Pi) 3141592653589793 l004 Pi/tanh(859/86*Pi) 3141592653589793 l004 Pi/tanh(849/85*Pi) 3141592653589793 l004 Pi/tanh(839/84*Pi) 3141592653589793 l004 Pi/tanh(829/83*Pi) 3141592653589793 l004 Pi/tanh(819/82*Pi) 3141592653589793 l004 Pi/tanh(809/81*Pi) 3141592653589793 l004 Pi/tanh(799/80*Pi) 3141592653589793 l004 Pi/tanh(789/79*Pi) 3141592653589793 l004 Pi/tanh(779/78*Pi) 3141592653589793 l004 Pi/tanh(769/77*Pi) 3141592653589793 l004 Pi/tanh(759/76*Pi) 3141592653589793 l004 Pi/tanh(749/75*Pi) 3141592653589793 l004 Pi/tanh(739/74*Pi) 3141592653589793 l004 Pi/tanh(729/73*Pi) 3141592653589793 l004 Pi/tanh(719/72*Pi) 3141592653589793 l004 Pi/tanh(709/71*Pi) 3141592653589793 l004 Pi/tanh(699/70*Pi) 3141592653589793 l004 Pi/tanh(689/69*Pi) 3141592653589793 l004 Pi/tanh(679/68*Pi) 3141592653589793 l004 Pi/tanh(669/67*Pi) 3141592653589793 l004 Pi/tanh(659/66*Pi) 3141592653589793 l004 Pi/tanh(649/65*Pi) 3141592653589793 l004 Pi/tanh(639/64*Pi) 3141592653589793 l004 Pi/tanh(629/63*Pi) 3141592653589793 l004 Pi/tanh(619/62*Pi) 3141592653589793 l004 Pi/tanh(609/61*Pi) 3141592653589793 l004 Pi/tanh(599/60*Pi) 3141592653589793 l004 Pi/tanh(1188/119*Pi) 3141592653589793 l004 Pi/tanh(589/59*Pi) 3141592653589793 l004 Pi/tanh(1168/117*Pi) 3141592653589793 l004 Pi/tanh(579/58*Pi) 3141592653589793 l004 Pi/tanh(1148/115*Pi) 3141592653589793 l004 Pi/tanh(569/57*Pi) 3141592653589793 l004 Pi/tanh(1128/113*Pi) 3141592653589793 l004 Pi/tanh(559/56*Pi) 3141592653589793 l004 Pi/tanh(1108/111*Pi) 3141592653589793 l004 Pi/tanh(549/55*Pi) 3141592653589793 l004 Pi/tanh(1088/109*Pi) 3141592653589793 l004 Pi/tanh(539/54*Pi) 3141592653589793 l004 Pi/tanh(1068/107*Pi) 3141592653589793 l004 Pi/tanh(529/53*Pi) 3141592653589793 l004 Pi/tanh(1048/105*Pi) 3141592653589793 l004 Pi/tanh(519/52*Pi) 3141592653589793 l004 Pi/tanh(1028/103*Pi) 3141592653589793 l004 Pi/tanh(509/51*Pi) 3141592653589793 l004 Pi/tanh(1008/101*Pi) 3141592653589793 l004 Pi/tanh(499/50*Pi) 3141592653589793 l004 Pi/tanh(988/99*Pi) 3141592653589793 l004 Pi/tanh(489/49*Pi) 3141592653589793 l004 Pi/tanh(968/97*Pi) 3141592653589793 l004 Pi/tanh(479/48*Pi) 3141592653589793 l004 Pi/tanh(948/95*Pi) 3141592653589793 l004 Pi/tanh(469/47*Pi) 3141592653589793 l004 Pi/tanh(928/93*Pi) 3141592653589793 l004 Pi/tanh(459/46*Pi) 3141592653589793 l004 Pi/tanh(908/91*Pi) 3141592653589793 l004 Pi/tanh(449/45*Pi) 3141592653589793 l004 Pi/tanh(888/89*Pi) 3141592653589793 l004 Pi/tanh(439/44*Pi) 3141592653589793 l004 Pi/tanh(868/87*Pi) 3141592653589793 l004 Pi/tanh(429/43*Pi) 3141592653589793 l004 Pi/tanh(848/85*Pi) 3141592653589793 l004 Pi/tanh(419/42*Pi) 3141592653589793 l004 Pi/tanh(828/83*Pi) 3141592653589793 l004 Pi/tanh(409/41*Pi) 3141592653589793 l004 Pi/tanh(808/81*Pi) 3141592653589793 l004 Pi/tanh(399/40*Pi) 3141592653589793 l004 Pi/tanh(1187/119*Pi) 3141592653589793 l004 Pi/tanh(788/79*Pi) 3141592653589793 l004 Pi/tanh(1177/118*Pi) 3141592653589793 l004 Pi/tanh(389/39*Pi) 3141592653589793 l004 Pi/tanh(1157/116*Pi) 3141592653589793 l004 Pi/tanh(768/77*Pi) 3141592653589793 l004 Pi/tanh(1147/115*Pi) 3141592653589793 l004 Pi/tanh(379/38*Pi) 3141592653589793 l004 Pi/tanh(1127/113*Pi) 3141592653589793 l004 Pi/tanh(748/75*Pi) 3141592653589793 l004 Pi/tanh(1117/112*Pi) 3141592653589793 l004 Pi/tanh(369/37*Pi) 3141592653589793 l004 Pi/tanh(1097/110*Pi) 3141592653589793 l004 Pi/tanh(728/73*Pi) 3141592653589793 l004 Pi/tanh(1087/109*Pi) 3141592653589793 l004 Pi/tanh(359/36*Pi) 3141592653589793 l004 Pi/tanh(1067/107*Pi) 3141592653589793 l004 Pi/tanh(708/71*Pi) 3141592653589793 l004 Pi/tanh(1057/106*Pi) 3141592653589793 l004 Pi/tanh(349/35*Pi) 3141592653589793 l004 Pi/tanh(1037/104*Pi) 3141592653589793 l004 Pi/tanh(688/69*Pi) 3141592653589793 l004 Pi/tanh(1027/103*Pi) 3141592653589793 l004 Pi/tanh(339/34*Pi) 3141592653589793 l004 Pi/tanh(1007/101*Pi) 3141592653589793 l004 Pi/tanh(668/67*Pi) 3141592653589793 l004 Pi/tanh(997/100*Pi) 3141592653589793 l004 Pi/tanh(329/33*Pi) 3141592653589793 l004 Pi/tanh(977/98*Pi) 3141592653589793 l004 Pi/tanh(648/65*Pi) 3141592653589793 l004 Pi/tanh(967/97*Pi) 3141592653589793 l004 Pi/tanh(319/32*Pi) 3141592653589793 l004 Pi/tanh(947/95*Pi) 3141592653589793 l004 Pi/tanh(628/63*Pi) 3141592653589793 l004 Pi/tanh(937/94*Pi) 3141592653589793 l004 Pi/tanh(309/31*Pi) 3141592653589793 l004 Pi/tanh(917/92*Pi) 3141592653589793 l004 Pi/tanh(608/61*Pi) 3141592653589793 l004 Pi/tanh(907/91*Pi) 3141592653589793 l004 Pi/tanh(299/30*Pi) 3141592653589793 l004 Pi/tanh(1186/119*Pi) 3141592653589793 l004 Pi/tanh(887/89*Pi) 3141592653589793 l004 Pi/tanh(588/59*Pi) 3141592653589793 l004 Pi/tanh(877/88*Pi) 3141592653589793 l004 Pi/tanh(1166/117*Pi) 3141592653589793 l004 Pi/tanh(289/29*Pi) 3141592653589793 l004 Pi/tanh(1146/115*Pi) 3141592653589793 l004 Pi/tanh(857/86*Pi) 3141592653589793 l004 Pi/tanh(568/57*Pi) 3141592653589793 l004 Pi/tanh(847/85*Pi) 3141592653589793 l004 Pi/tanh(1126/113*Pi) 3141592653589793 l004 Pi/tanh(279/28*Pi) 3141592653589793 l004 Pi/tanh(1106/111*Pi) 3141592653589793 l004 Pi/tanh(827/83*Pi) 3141592653589793 l004 Pi/tanh(548/55*Pi) 3141592653589793 l004 Pi/tanh(817/82*Pi) 3141592653589793 l004 Pi/tanh(1086/109*Pi) 3141592653589793 l004 Pi/tanh(269/27*Pi) 3141592653589793 l004 Pi/tanh(1066/107*Pi) 3141592653589793 l004 Pi/tanh(797/80*Pi) 3141592653589793 l004 Pi/tanh(528/53*Pi) 3141592653589793 l004 Pi/tanh(787/79*Pi) 3141592653589793 l004 Pi/tanh(1046/105*Pi) 3141592653589793 l004 Pi/tanh(259/26*Pi) 3141592653589793 l004 Pi/tanh(1026/103*Pi) 3141592653589793 l004 Pi/tanh(767/77*Pi) 3141592653589793 l004 Pi/tanh(508/51*Pi) 3141592653589793 l004 Pi/tanh(757/76*Pi) 3141592653589793 l004 Pi/tanh(1006/101*Pi) 3141592653589793 l004 Pi/tanh(249/25*Pi) 3141592653589793 l004 Pi/tanh(986/99*Pi) 3141592653589793 l004 Pi/tanh(737/74*Pi) 3141592653589793 l004 Pi/tanh(488/49*Pi) 3141592653589793 l004 Pi/tanh(727/73*Pi) 3141592653589793 l004 Pi/tanh(966/97*Pi) 3141592653589793 l004 Pi/tanh(239/24*Pi) 3141592653589793 l004 Pi/tanh(1185/119*Pi) 3141592653589793 l004 Pi/tanh(946/95*Pi) 3141592653589793 l004 Pi/tanh(707/71*Pi) 3141592653589793 l004 Pi/tanh(1175/118*Pi) 3141592653589793 l004 Pi/tanh(468/47*Pi) 3141592653589793 m001 Pi-gamma(1)^exp(Pi) 3141592653589793 l004 Pi/tanh(1165/117*Pi) 3141592653589793 l004 Pi/tanh(697/70*Pi) 3141592653589793 l004 Pi/tanh(926/93*Pi) 3141592653589793 l004 Pi/tanh(1155/116*Pi) 3141592653589793 l004 Pi/tanh(229/23*Pi) 3141592653589793 l004 Pi/tanh(1135/114*Pi) 3141592653589793 l004 Pi/tanh(906/91*Pi) 3141592653589793 l004 Pi/tanh(677/68*Pi) 3141592653589793 l004 Pi/tanh(1125/113*Pi) 3141592653589793 l004 Pi/tanh(448/45*Pi) 3141592653589793 l004 Pi/tanh(1115/112*Pi) 3141592653589793 l004 Pi/tanh(667/67*Pi) 3141592653589793 l004 Pi/tanh(886/89*Pi) 3141592653589793 l004 Pi/tanh(1105/111*Pi) 3141592653589793 l004 Pi/tanh(219/22*Pi) 3141592653589793 l004 Pi/tanh(1085/109*Pi) 3141592653589793 l004 Pi/tanh(866/87*Pi) 3141592653589793 l004 Pi/tanh(647/65*Pi) 3141592653589793 l004 Pi/tanh(1075/108*Pi) 3141592653589793 l004 Pi/tanh(428/43*Pi) 3141592653589793 l004 Pi/tanh(1065/107*Pi) 3141592653589793 l004 Pi/tanh(637/64*Pi) 3141592653589793 l004 Pi/tanh(846/85*Pi) 3141592653589793 l004 Pi/tanh(1055/106*Pi) 3141592653589793 l004 Pi/tanh(209/21*Pi) 3141592653589793 l004 Pi/tanh(1035/104*Pi) 3141592653589793 l004 Pi/tanh(826/83*Pi) 3141592653589793 l004 Pi/tanh(617/62*Pi) 3141592653589793 l004 Pi/tanh(1025/103*Pi) 3141592653589793 l004 Pi/tanh(408/41*Pi) 3141592653589793 l004 Pi/tanh(1015/102*Pi) 3141592653589793 l004 Pi/tanh(607/61*Pi) 3141592653589793 l004 Pi/tanh(806/81*Pi) 3141592653589793 l004 Pi/tanh(1005/101*Pi) 3141592653589793 l004 Pi/tanh(199/20*Pi) 3141592653589793 l004 Pi/tanh(1184/119*Pi) 3141592653589793 l004 Pi/tanh(985/99*Pi) 3141592653589793 l004 Pi/tanh(786/79*Pi) 3141592653589793 l004 Pi/tanh(587/59*Pi) 3141592653589793 l004 Pi/tanh(975/98*Pi) 3141592653589793 l004 Pi/tanh(388/39*Pi) 3141592653589793 l004 Pi/tanh(965/97*Pi) 3141592653589793 l004 Pi/tanh(577/58*Pi) 3141592653589793 l004 Pi/tanh(766/77*Pi) 3141592653589793 l004 Pi/tanh(955/96*Pi) 3141592653589793 l004 Pi/tanh(1144/115*Pi) 3141592653589793 l004 Pi/tanh(189/19*Pi) 3141592653589793 l004 Pi/tanh(1124/113*Pi) 3141592653589793 l004 Pi/tanh(935/94*Pi) 3141592653589793 l004 Pi/tanh(746/75*Pi) 3141592653589793 l004 Pi/tanh(557/56*Pi) 3141592653589793 l004 Pi/tanh(925/93*Pi) 3141592653589793 l004 Pi/tanh(368/37*Pi) 3141592653589793 l004 Pi/tanh(915/92*Pi) 3141592653589793 l004 Pi/tanh(547/55*Pi) 3141592653589793 l004 Pi/tanh(726/73*Pi) 3141592653589793 l004 Pi/tanh(905/91*Pi) 3141592653589793 l004 Pi/tanh(1084/109*Pi) 3141592653589793 l004 Pi/tanh(179/18*Pi) 3141592653589793 l004 Pi/tanh(1064/107*Pi) 3141592653589793 l004 Pi/tanh(885/89*Pi) 3141592653589793 l004 Pi/tanh(706/71*Pi) 3141592653589793 l004 Pi/tanh(527/53*Pi) 3141592653589793 l004 Pi/tanh(875/88*Pi) 3141592653589793 l004 Pi/tanh(348/35*Pi) 3141592653589793 l004 Pi/tanh(865/87*Pi) 3141592653589793 l004 Pi/tanh(517/52*Pi) 3141592653589793 l004 Pi/tanh(686/69*Pi) 3141592653589793 l004 Pi/tanh(855/86*Pi) 3141592653589793 l004 Pi/tanh(1024/103*Pi) 3141592653589793 l004 Pi/tanh(1193/120*Pi) 3141592653589793 l004 Pi/tanh(169/17*Pi) 3141592653589793 l004 Pi/tanh(1173/118*Pi) 3141592653589793 l004 Pi/tanh(1004/101*Pi) 3141592653589793 l004 Pi/tanh(835/84*Pi) 3141592653589793 l004 Pi/tanh(666/67*Pi) 3141592653589793 l004 Pi/tanh(1163/117*Pi) 3141592653589793 l004 Pi/tanh(497/50*Pi) 3141592653589793 l004 Pi/tanh(825/83*Pi) 3141592653589793 l004 Pi/tanh(1153/116*Pi) 3141592653589793 l004 Pi/tanh(328/33*Pi) 3141592653589793 l004 Pi/tanh(1143/115*Pi) 3141592653589793 l004 Pi/tanh(815/82*Pi) 3141592653589793 l004 Pi/tanh(487/49*Pi) 3141592653589793 l004 Pi/tanh(1133/114*Pi) 3141592653589793 l004 Pi/tanh(646/65*Pi) 3141592653589793 l004 Pi/tanh(805/81*Pi) 3141592653589793 l004 Pi/tanh(964/97*Pi) 3141592653589793 l004 Pi/tanh(1123/113*Pi) 3141592653589793 l004 Pi/tanh(159/16*Pi) 3141592653589793 l004 Pi/tanh(1103/111*Pi) 3141592653589793 l004 Pi/tanh(944/95*Pi) 3141592653589793 l004 Pi/tanh(785/79*Pi) 3141592653589793 l004 Pi/tanh(626/63*Pi) 3141592653589793 l004 Pi/tanh(1093/110*Pi) 3141592653589793 l004 Pi/tanh(467/47*Pi) 3141592653589793 l004 Pi/tanh(775/78*Pi) 3141592653589793 l004 Pi/tanh(1083/109*Pi) 3141592653589793 l004 Pi/tanh(308/31*Pi) 3141592653589793 l004 Pi/tanh(1073/108*Pi) 3141592653589793 l004 Pi/tanh(765/77*Pi) 3141592653589793 l004 Pi/tanh(457/46*Pi) 3141592653589793 l004 Pi/tanh(1063/107*Pi) 3141592653589793 l004 Pi/tanh(606/61*Pi) 3141592653589793 l004 Pi/tanh(755/76*Pi) 3141592653589793 l004 Pi/tanh(904/91*Pi) 3141592653589793 l004 Pi/tanh(1053/106*Pi) 3141592653589793 l004 Pi/tanh(149/15*Pi) 3141592653589793 l004 Pi/tanh(1182/119*Pi) 3141592653589793 l004 Pi/tanh(1033/104*Pi) 3141592653589793 l004 Pi/tanh(884/89*Pi) 3141592653589793 l004 Pi/tanh(735/74*Pi) 3141592653589793 l004 Pi/tanh(586/59*Pi) 3141592653589793 l004 Pi/tanh(1023/103*Pi) 3141592653589793 l004 Pi/tanh(437/44*Pi) 3141592653589793 l004 Pi/tanh(1162/117*Pi) 3141592653589793 l004 Pi/tanh(725/73*Pi) 3141592653589793 l004 Pi/tanh(1013/102*Pi) 3141592653589793 l004 Pi/tanh(288/29*Pi) 3141592653589793 l004 Pi/tanh(1003/101*Pi) 3141592653589793 l004 Pi/tanh(715/72*Pi) 3141592653589793 l004 Pi/tanh(1142/115*Pi) 3141592653589793 l004 Pi/tanh(427/43*Pi) 3141592653589793 l004 Pi/tanh(993/100*Pi) 3141592653589793 l004 Pi/tanh(566/57*Pi) 3141592653589793 l004 Pi/tanh(705/71*Pi) 3141592653589793 l004 Pi/tanh(844/85*Pi) 3141592653589793 l004 Pi/tanh(983/99*Pi) 3141592653589793 l004 Pi/tanh(1122/113*Pi) 3141592653589793 l004 Pi/tanh(139/14*Pi) 3141592653589793 l004 Pi/tanh(1102/111*Pi) 3141592653589793 l004 Pi/tanh(963/97*Pi) 3141592653589793 l004 Pi/tanh(824/83*Pi) 3141592653589793 l004 Pi/tanh(685/69*Pi) 3141592653589793 l004 Pi/tanh(546/55*Pi) 3141592653589793 l004 Pi/tanh(953/96*Pi) 3141592653589793 l004 Pi/tanh(407/41*Pi) 3141592653589793 l004 Pi/tanh(1082/109*Pi) 3141592653589793 l004 Pi/tanh(675/68*Pi) 3141592653589793 l004 Pi/tanh(943/95*Pi) 3141592653589793 l004 Pi/tanh(268/27*Pi) 3141592653589793 l004 Pi/tanh(933/94*Pi) 3141592653589793 l004 Pi/tanh(665/67*Pi) 3141592653589793 l004 Pi/tanh(1062/107*Pi) 3141592653589793 l004 Pi/tanh(397/40*Pi) 3141592653589793 l004 Pi/tanh(923/93*Pi) 3141592653589793 l004 Pi/tanh(526/53*Pi) 3141592653589793 l004 Pi/tanh(1181/119*Pi) 3141592653589793 l004 Pi/tanh(655/66*Pi) 3141592653589793 l004 Pi/tanh(784/79*Pi) 3141592653589793 l004 Pi/tanh(913/92*Pi) 3141592653589793 l004 Pi/tanh(1042/105*Pi) 3141592653589793 l004 Pi/tanh(1171/118*Pi) 3141592653589793 l004 Pi/tanh(129/13*Pi) 3141592653589793 l004 Pi/tanh(1151/116*Pi) 3141592653589793 l004 Pi/tanh(1022/103*Pi) 3141592653589793 l004 Pi/tanh(893/90*Pi) 3141592653589793 l004 Pi/tanh(764/77*Pi) 3141592653589793 l004 Pi/tanh(635/64*Pi) 3141592653589793 l004 Pi/tanh(1141/115*Pi) 3141592653589793 l004 Pi/tanh(506/51*Pi) 3141592653589793 l004 Pi/tanh(883/89*Pi) 3141592653589793 l004 Pi/tanh(377/38*Pi) 3141592653589793 l004 Pi/tanh(1002/101*Pi) 3141592653589793 l004 Pi/tanh(625/63*Pi) 3141592653589793 l004 Pi/tanh(873/88*Pi) 3141592653589793 l004 Pi/tanh(1121/113*Pi) 3141592653589793 l004 Pi/tanh(248/25*Pi) 3141592653589793 l004 Pi/tanh(1111/112*Pi) 3141592653589793 l004 Pi/tanh(863/87*Pi) 3141592653589793 l004 Pi/tanh(615/62*Pi) 3141592653589793 l004 Pi/tanh(982/99*Pi) 3141592653589793 l004 Pi/tanh(367/37*Pi) 3141592653589793 l004 Pi/tanh(853/86*Pi) 3141592653589793 l004 Pi/tanh(486/49*Pi) 3141592653589793 l004 Pi/tanh(1091/110*Pi) 3141592653589793 l004 Pi/tanh(605/61*Pi) 3141592653589793 l004 Pi/tanh(724/73*Pi) 3141592653589793 l004 Pi/tanh(843/85*Pi) 3141592653589793 l004 Pi/tanh(962/97*Pi) 3141592653589793 l004 Pi/tanh(1081/109*Pi) 3141592653589793 l004 Pi/tanh(119/12*Pi) 3141592653589793 l004 Pi/tanh(1180/119*Pi) 3141592653589793 l004 Pi/tanh(1061/107*Pi) 3141592653589793 l004 Pi/tanh(942/95*Pi) 3141592653589793 l004 Pi/tanh(823/83*Pi) 3141592653589793 l004 Pi/tanh(704/71*Pi) 3141592653589793 l004 Pi/tanh(585/59*Pi) 3141592653589793 l004 Pi/tanh(1051/106*Pi) 3141592653589793 l004 Pi/tanh(466/47*Pi) 3141592653589793 l004 Pi/tanh(813/82*Pi) 3141592653589793 l004 Pi/tanh(1160/117*Pi) 3141592653589793 l004 Pi/tanh(347/35*Pi) 3141592653589793 l004 Pi/tanh(922/93*Pi) 3141592653589793 l004 Pi/tanh(575/58*Pi) 3141592653589793 l004 Pi/tanh(803/81*Pi) 3141592653589793 l004 Pi/tanh(1031/104*Pi) 3141592653589793 l004 Pi/tanh(228/23*Pi) 3141592653589793 l004 Pi/tanh(1021/103*Pi) 3141592653589793 l004 Pi/tanh(793/80*Pi) 3141592653589793 l004 Pi/tanh(565/57*Pi) 3141592653589793 l004 Pi/tanh(902/91*Pi) 3141592653589793 l004 Pi/tanh(337/34*Pi) 3141592653589793 l004 Pi/tanh(1120/113*Pi) 3141592653589793 l004 Pi/tanh(783/79*Pi) 3141592653589793 l004 Pi/tanh(446/45*Pi) 3141592653589793 l004 Pi/tanh(1001/101*Pi) 3141592653589793 l004 Pi/tanh(555/56*Pi) 3141592653589793 l004 Pi/tanh(664/67*Pi) 3141592653589793 l004 Pi/tanh(773/78*Pi) 3141592653589793 l004 Pi/tanh(882/89*Pi) 3141592653589793 l004 Pi/tanh(991/100*Pi) 3141592653589793 l004 Pi/tanh(1100/111*Pi) 3141592653589793 l004 Pi/tanh(109/11*Pi) 3141592653589793 l004 Pi/tanh(1189/120*Pi) 3141592653589793 l004 Pi/tanh(1080/109*Pi) 3141592653589793 l004 Pi/tanh(971/98*Pi) 3141592653589793 l004 Pi/tanh(862/87*Pi) 3141592653589793 l004 Pi/tanh(753/76*Pi) 3141592653589793 l004 Pi/tanh(644/65*Pi) 3141592653589793 l004 Pi/tanh(1179/119*Pi) 3141592653589793 l004 Pi/tanh(535/54*Pi) 3141592653589793 l004 Pi/tanh(961/97*Pi) 3141592653589793 l004 Pi/tanh(426/43*Pi) 3141592653589793 l004 Pi/tanh(1169/118*Pi) 3141592653589793 l004 Pi/tanh(743/75*Pi) 3141592653589793 l004 Pi/tanh(1060/107*Pi) 3141592653589793 l004 Pi/tanh(317/32*Pi) 3141592653589793 l004 Pi/tanh(1159/117*Pi) 3141592653589793 l004 Pi/tanh(842/85*Pi) 3141592653589793 l004 Pi/tanh(525/53*Pi) 3141592653589793 l004 Pi/tanh(733/74*Pi) 3141592653589793 l004 Pi/tanh(941/95*Pi) 3141592653589793 l004 Pi/tanh(1149/116*Pi) 3141592653589793 l004 Pi/tanh(208/21*Pi) 3141592653589793 l004 Pi/tanh(1139/115*Pi) 3141592653589793 l004 Pi/tanh(931/94*Pi) 3141592653589793 l004 Pi/tanh(723/73*Pi) 3141592653589793 l004 Pi/tanh(515/52*Pi) 3141592653589793 l004 Pi/tanh(822/83*Pi) 3141592653589793 l004 Pi/tanh(1129/114*Pi) 3141592653589793 l004 Pi/tanh(307/31*Pi) 3141592653589793 l004 Pi/tanh(1020/103*Pi) 3141592653589793 l004 Pi/tanh(713/72*Pi) 3141592653589793 l004 Pi/tanh(1119/113*Pi) 3141592653589793 l004 Pi/tanh(406/41*Pi) 3141592653589793 l004 Pi/tanh(911/92*Pi) 3141592653589793 l004 Pi/tanh(505/51*Pi) 3141592653589793 l004 Pi/tanh(1109/112*Pi) 3141592653589793 l004 Pi/tanh(604/61*Pi) 3141592653589793 l004 Pi/tanh(703/71*Pi) 3141592653589793 l004 Pi/tanh(802/81*Pi) 3141592653589793 l004 Pi/tanh(901/91*Pi) 3141592653589793 l004 Pi/tanh(1000/101*Pi) 3141592653589793 l004 Pi/tanh(1099/111*Pi) 3141592653589793 l004 Pi/tanh(99/10*Pi) 3141592653589793 l004 Pi/tanh(1178/119*Pi) 3141592653589793 l004 Pi/tanh(1079/109*Pi) 3141592653589793 l004 Pi/tanh(980/99*Pi) 3141592653589793 l004 Pi/tanh(881/89*Pi) 3141592653589793 l004 Pi/tanh(782/79*Pi) 3141592653589793 l004 Pi/tanh(683/69*Pi) 3141592653589793 l004 Pi/tanh(584/59*Pi) 3141592653589793 l004 Pi/tanh(1069/108*Pi) 3141592653589793 l004 Pi/tanh(485/49*Pi) 3141592653589793 l004 Pi/tanh(871/88*Pi) 3141592653589793 l004 Pi/tanh(386/39*Pi) 3141592653589793 l004 Pi/tanh(1059/107*Pi) 3141592653589793 l004 Pi/tanh(673/68*Pi) 3141592653589793 l004 Pi/tanh(960/97*Pi) 3141592653589793 l004 Pi/tanh(287/29*Pi) 3141592653589793 l004 Pi/tanh(1049/106*Pi) 3141592653589793 l004 Pi/tanh(762/77*Pi) 3141592653589793 l004 Pi/tanh(475/48*Pi) 3141592653589793 l004 Pi/tanh(1138/115*Pi) 3141592653589793 l004 Pi/tanh(663/67*Pi) 3141592653589793 l004 Pi/tanh(851/86*Pi) 3141592653589793 l004 Pi/tanh(1039/105*Pi) 3141592653589793 l004 Pi/tanh(188/19*Pi) 3141592653589793 l004 Pi/tanh(1029/104*Pi) 3141592653589793 l004 Pi/tanh(841/85*Pi) 3141592653589793 l004 Pi/tanh(653/66*Pi) 3141592653589793 l004 Pi/tanh(1118/113*Pi) 3141592653589793 l004 Pi/tanh(465/47*Pi) 3141592653589793 l004 Pi/tanh(742/75*Pi) 3141592653589793 l004 Pi/tanh(1019/103*Pi) 3141592653589793 l004 Pi/tanh(277/28*Pi) 3141592653589793 l004 Pi/tanh(920/93*Pi) 3141592653589793 l004 Pi/tanh(643/65*Pi) 3141592653589793 l004 Pi/tanh(1009/102*Pi) 3141592653589793 l004 Pi/tanh(366/37*Pi) 3141592653589793 l004 Pi/tanh(1187/120*Pi) 3141592653589793 l004 Pi/tanh(821/83*Pi) 3141592653589793 l004 Pi/tanh(455/46*Pi) 3141592653589793 l004 Pi/tanh(999/101*Pi) 3141592653589793 l004 Pi/tanh(544/55*Pi) 3141592653589793 l004 Pi/tanh(1177/119*Pi) 3141592653589793 l004 Pi/tanh(633/64*Pi) 3141592653589793 l004 Pi/tanh(722/73*Pi) 3141592653589793 l004 Pi/tanh(811/82*Pi) 3141592653589793 l004 Pi/tanh(900/91*Pi) 3141592653589793 l004 Pi/tanh(989/100*Pi) 3141592653589793 l004 Pi/tanh(1078/109*Pi) 3141592653589793 l004 Pi/tanh(1167/118*Pi) 3141592653589793 l004 Pi/tanh(89/9*Pi) 3141592653589793 l004 Pi/tanh(1147/116*Pi) 3141592653589793 l004 Pi/tanh(1058/107*Pi) 3141592653589793 l004 Pi/tanh(969/98*Pi) 3141592653589793 l004 Pi/tanh(880/89*Pi) 3141592653589793 l004 Pi/tanh(791/80*Pi) 3141592653589793 l004 Pi/tanh(702/71*Pi) 3141592653589793 l004 Pi/tanh(613/62*Pi) 3141592653589793 l004 Pi/tanh(1137/115*Pi) 3141592653589793 l004 Pi/tanh(524/53*Pi) 3141592653589793 l004 Pi/tanh(959/97*Pi) 3141592653589793 l004 Pi/tanh(435/44*Pi) 3141592653589793 l004 Pi/tanh(781/79*Pi) 3141592653589793 l004 Pi/tanh(1127/114*Pi) 3141592653589793 l004 Pi/tanh(346/35*Pi) 3141592653589793 l004 Pi/tanh(949/96*Pi) 3141592653589793 l004 Pi/tanh(603/61*Pi) 3141592653589793 l004 Pi/tanh(860/87*Pi) 3141592653589793 l004 Pi/tanh(1117/113*Pi) 3141592653589793 l004 Pi/tanh(257/26*Pi) 3141592653589793 l004 Pi/tanh(939/95*Pi) 3141592653589793 l004 Pi/tanh(682/69*Pi) 3141592653589793 l004 Pi/tanh(1107/112*Pi) 3141592653589793 l004 Pi/tanh(425/43*Pi) 3141592653589793 l004 Pi/tanh(1018/103*Pi) 3141592653589793 l004 Pi/tanh(593/60*Pi) 3141592653589793 l004 Pi/tanh(761/77*Pi) 3141592653589793 l004 Pi/tanh(929/94*Pi) 3141592653589793 l004 Pi/tanh(1097/111*Pi) 3141592653589793 l004 Pi/tanh(168/17*Pi) 3141592653589793 l004 Pi/tanh(1087/110*Pi) 3141592653589793 l004 Pi/tanh(919/93*Pi) 3141592653589793 l004 Pi/tanh(751/76*Pi) 3141592653589793 l004 Pi/tanh(583/59*Pi) 3141592653589793 m001 ZetaP(4)^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 l004 Pi/tanh(998/101*Pi) 3141592653589793 l004 Pi/tanh(415/42*Pi) 3141592653589793 l004 Pi/tanh(1077/109*Pi) 3141592653589793 l004 Pi/tanh(662/67*Pi) 3141592653589793 l004 Pi/tanh(909/92*Pi) 3141592653589793 l004 Pi/tanh(1156/117*Pi) 3141592653589793 l004 Pi/tanh(247/25*Pi) 3141592653589793 l004 Pi/tanh(1067/108*Pi) 3141592653589793 l004 Pi/tanh(820/83*Pi) 3141592653589793 l004 Pi/tanh(573/58*Pi) 3141592653589793 l004 Pi/tanh(899/91*Pi) 3141592653589793 l004 Pi/tanh(326/33*Pi) 3141592653589793 l004 Pi/tanh(1057/107*Pi) 3141592653589793 l004 Pi/tanh(731/74*Pi) 3141592653589793 l004 Pi/tanh(1136/115*Pi) 3141592653589793 l004 Pi/tanh(405/41*Pi) 3141592653589793 l004 Pi/tanh(889/90*Pi) 3141592653589793 l004 Pi/tanh(484/49*Pi) 3141592653589793 l004 Pi/tanh(1047/106*Pi) 3141592653589793 l004 Pi/tanh(563/57*Pi) 3141592653589793 l004 Pi/tanh(642/65*Pi) 3141592653589793 l004 Pi/tanh(721/73*Pi) 3141592653589793 l004 Pi/tanh(800/81*Pi) 3141592653589793 l004 Pi/tanh(879/89*Pi) 3141592653589793 l004 Pi/tanh(958/97*Pi) 3141592653589793 l004 Pi/tanh(1037/105*Pi) 3141592653589793 l004 Pi/tanh(1116/113*Pi) 3141592653589793 l004 Pi/tanh(79/8*Pi) 3141592653589793 l004 Pi/tanh(1175/119*Pi) 3141592653589793 l004 Pi/tanh(1096/111*Pi) 3141592653589793 l004 Pi/tanh(1017/103*Pi) 3141592653589793 l004 Pi/tanh(938/95*Pi) 3141592653589793 l004 Pi/tanh(859/87*Pi) 3141592653589793 l004 Pi/tanh(780/79*Pi) 3141592653589793 l004 Pi/tanh(701/71*Pi) 3141592653589793 l004 Pi/tanh(622/63*Pi) 3141592653589793 l004 Pi/tanh(1165/118*Pi) 3141592653589793 l004 Pi/tanh(543/55*Pi) 3141592653589793 l004 Pi/tanh(1007/102*Pi) 3141592653589793 l004 Pi/tanh(464/47*Pi) 3141592653589793 l004 Pi/tanh(849/86*Pi) 3141592653589793 l004 Pi/tanh(385/39*Pi) 3141592653589793 l004 Pi/tanh(1076/109*Pi) 3141592653589793 l004 Pi/tanh(691/70*Pi) 3141592653589793 l004 Pi/tanh(997/101*Pi) 3141592653589793 l004 Pi/tanh(306/31*Pi) 3141592653589793 l004 Pi/tanh(1145/116*Pi) 3141592653589793 l004 Pi/tanh(839/85*Pi) 3141592653589793 l004 Pi/tanh(533/54*Pi) 3141592653589793 l004 Pi/tanh(760/77*Pi) 3141592653589793 l004 Pi/tanh(987/100*Pi) 3141592653589793 l004 Pi/tanh(227/23*Pi) 3141592653589793 l004 Pi/tanh(1056/107*Pi) 3141592653589793 l004 Pi/tanh(829/84*Pi) 3141592653589793 l004 Pi/tanh(602/61*Pi) 3141592653589793 l004 Pi/tanh(977/99*Pi) 3141592653589793 l004 Pi/tanh(375/38*Pi) 3141592653589793 l004 Pi/tanh(898/91*Pi) 3141592653589793 l004 Pi/tanh(523/53*Pi) 3141592653589793 l004 Pi/tanh(671/68*Pi) 3141592653589793 l004 Pi/tanh(819/83*Pi) 3141592653589793 l004 Pi/tanh(967/98*Pi) 3141592653589793 l004 Pi/tanh(1115/113*Pi) 3141592653589793 l004 Pi/tanh(148/15*Pi) 3141592653589793 l004 Pi/tanh(1105/112*Pi) 3141592653589793 l004 Pi/tanh(957/97*Pi) 3141592653589793 l004 Pi/tanh(809/82*Pi) 3141592653589793 l004 Pi/tanh(661/67*Pi) 3141592653589793 l004 Pi/tanh(1174/119*Pi) 3141592653589793 l004 Pi/tanh(513/52*Pi) 3141592653589793 l004 Pi/tanh(878/89*Pi) 3141592653589793 l004 Pi/tanh(365/37*Pi) 3141592653589793 l004 Pi/tanh(947/96*Pi) 3141592653589793 l004 Pi/tanh(582/59*Pi) 3141592653589793 l004 Pi/tanh(799/81*Pi) 3141592653589793 l004 Pi/tanh(1016/103*Pi) 3141592653589793 l004 Pi/tanh(217/22*Pi) 3141592653589793 l004 Pi/tanh(1154/117*Pi) 3141592653589793 l004 Pi/tanh(937/95*Pi) 3141592653589793 l004 Pi/tanh(720/73*Pi) 3141592653589793 l004 Pi/tanh(503/51*Pi) 3141592653589793 l004 Pi/tanh(789/80*Pi) 3141592653589793 l004 Pi/tanh(1075/109*Pi) 3141592653589793 l004 Pi/tanh(286/29*Pi) 3141592653589793 l004 Pi/tanh(927/94*Pi) 3141592653589793 l004 Pi/tanh(641/65*Pi) 3141592653589793 l004 Pi/tanh(996/101*Pi) 3141592653589793 l004 Pi/tanh(355/36*Pi) 3141592653589793 l004 Pi/tanh(1134/115*Pi) 3141592653589793 l004 Pi/tanh(779/79*Pi) 3141592653589793 l004 Pi/tanh(424/43*Pi) 3141592653589793 l004 Pi/tanh(917/93*Pi) 3141592653589793 l004 Pi/tanh(493/50*Pi) 3141592653589793 l004 Pi/tanh(1055/107*Pi) 3141592653589793 l004 Pi/tanh(562/57*Pi) 3141592653589793 l004 Pi/tanh(631/64*Pi) 3141592653589793 l004 Pi/tanh(700/71*Pi) 3141592653589793 l004 Pi/tanh(769/78*Pi) 3141592653589793 l004 Pi/tanh(838/85*Pi) 3141592653589793 l004 Pi/tanh(907/92*Pi) 3141592653589793 l004 Pi/tanh(976/99*Pi) 3141592653589793 l004 Pi/tanh(1045/106*Pi) 3141592653589793 l004 Pi/tanh(1114/113*Pi) 3141592653589793 l004 Pi/tanh(1183/120*Pi) 3141592653589793 l004 Pi/tanh(69/7*Pi) 3141592653589793 l004 Pi/tanh(1163/118*Pi) 3141592653589793 l004 Pi/tanh(1094/111*Pi) 3141592653589793 l004 Pi/tanh(1025/104*Pi) 3141592653589793 l004 Pi/tanh(956/97*Pi) 3141592653589793 l004 Pi/tanh(887/90*Pi) 3141592653589793 l004 Pi/tanh(818/83*Pi) 3141592653589793 l004 Pi/tanh(749/76*Pi) 3141592653589793 l004 Pi/tanh(680/69*Pi) 3141592653589793 l004 Pi/tanh(611/62*Pi) 3141592653589793 l004 Pi/tanh(1153/117*Pi) 3141592653589793 l004 Pi/tanh(542/55*Pi) 3141592653589793 l004 Pi/tanh(1015/103*Pi) 3141592653589793 l004 Pi/tanh(473/48*Pi) 3141592653589793 l004 Pi/tanh(877/89*Pi) 3141592653589793 l004 Pi/tanh(404/41*Pi) 3141592653589793 l004 Pi/tanh(1143/116*Pi) 3141592653589793 l004 Pi/tanh(739/75*Pi) 3141592653589793 l004 Pi/tanh(1074/109*Pi) 3141592653589793 l004 Pi/tanh(335/34*Pi) 3141592653589793 l004 Pi/tanh(936/95*Pi) 3141592653589793 l004 Pi/tanh(601/61*Pi) 3141592653589793 l004 Pi/tanh(867/88*Pi) 3141592653589793 l004 Pi/tanh(1133/115*Pi) 3141592653589793 l004 Pi/tanh(266/27*Pi) 3141592653589793 l004 Pi/tanh(995/101*Pi) 3141592653589793 l004 Pi/tanh(729/74*Pi) 3141592653589793 l004 Pi/tanh(463/47*Pi) 3141592653589793 l004 Pi/tanh(1123/114*Pi) 3141592653589793 l004 Pi/tanh(660/67*Pi) 3141592653589793 l004 Pi/tanh(857/87*Pi) 3141592653589793 l004 Pi/tanh(1054/107*Pi) 3141592653589793 l004 Pi/tanh(197/20*Pi) 3141592653589793 l004 Pi/tanh(1113/113*Pi) 3141592653589793 l004 Pi/tanh(916/93*Pi) 3141592653589793 l004 Pi/tanh(719/73*Pi) 3141592653589793 l004 Pi/tanh(522/53*Pi) 3141592653589793 l004 Pi/tanh(847/86*Pi) 3141592653589793 l004 Pi/tanh(1172/119*Pi) 3141592653589793 l004 Pi/tanh(325/33*Pi) 3141592653589793 l004 Pi/tanh(1103/112*Pi) 3141592653589793 l004 Pi/tanh(778/79*Pi) 3141592653589793 l004 Pi/tanh(453/46*Pi) 3141592653589793 l004 Pi/tanh(1034/105*Pi) 3141592653589793 l004 Pi/tanh(581/59*Pi) 3141592653589793 l004 Pi/tanh(709/72*Pi) 3141592653589793 l004 Pi/tanh(837/85*Pi) 3141592653589793 l004 Pi/tanh(965/98*Pi) 3141592653589793 l004 Pi/tanh(1093/111*Pi) 3141592653589793 l004 Pi/tanh(128/13*Pi) 3141592653589793 l004 Pi/tanh(1083/110*Pi) 3141592653589793 l004 Pi/tanh(955/97*Pi) 3141592653589793 l004 Pi/tanh(827/84*Pi) 3141592653589793 l004 Pi/tanh(699/71*Pi) 3141592653589793 l004 Pi/tanh(571/58*Pi) 3141592653589793 l004 Pi/tanh(1014/103*Pi) 3141592653589793 l004 Pi/tanh(443/45*Pi) 3141592653589793 l004 Pi/tanh(758/77*Pi) 3141592653589793 l004 Pi/tanh(1073/109*Pi) 3141592653589793 l004 Pi/tanh(315/32*Pi) 3141592653589793 l004 Pi/tanh(1132/115*Pi) 3141592653589793 l004 Pi/tanh(817/83*Pi) 3141592653589793 l004 Pi/tanh(502/51*Pi) 3141592653589793 l004 Pi/tanh(689/70*Pi) 3141592653589793 l004 Pi/tanh(876/89*Pi) 3141592653589793 l004 Pi/tanh(1063/108*Pi) 3141592653589793 l004 Pi/tanh(187/19*Pi) 3141592653589793 l004 Pi/tanh(1181/120*Pi) 3141592653589793 l004 Pi/tanh(994/101*Pi) 3141592653589793 l004 Pi/tanh(807/82*Pi) 3141592653589793 l004 Pi/tanh(620/63*Pi) 3141592653589793 l004 Pi/tanh(1053/107*Pi) 3141592653589793 l004 Pi/tanh(433/44*Pi) 3141592653589793 l004 Pi/tanh(1112/113*Pi) 3141592653589793 l004 Pi/tanh(679/69*Pi) 3141592653589793 l004 Pi/tanh(925/94*Pi) 3141592653589793 l004 Pi/tanh(1171/119*Pi) 3141592653589793 l004 Pi/tanh(246/25*Pi) 3141592653589793 l004 Pi/tanh(1043/106*Pi) 3141592653589793 l004 Pi/tanh(797/81*Pi) 3141592653589793 l004 Pi/tanh(551/56*Pi) 3141592653589793 l004 Pi/tanh(856/87*Pi) 3141592653589793 l004 Pi/tanh(1161/118*Pi) 3141592653589793 l004 Pi/tanh(305/31*Pi) 3141592653589793 l004 Pi/tanh(974/99*Pi) 3141592653589793 l004 Pi/tanh(669/68*Pi) 3141592653589793 l004 Pi/tanh(1033/105*Pi) 3141592653589793 l004 Pi/tanh(364/37*Pi) 3141592653589793 l004 Pi/tanh(1151/117*Pi) 3141592653589793 l004 Pi/tanh(787/80*Pi) 3141592653589793 l004 Pi/tanh(423/43*Pi) 3141592653589793 l004 Pi/tanh(905/92*Pi) 3141592653589793 l004 Pi/tanh(482/49*Pi) 3141592653589793 l004 Pi/tanh(1023/104*Pi) 3141592653589793 l004 Pi/tanh(541/55*Pi) 3141592653589793 l004 Pi/tanh(1141/116*Pi) 3141592653589793 l004 Pi/tanh(600/61*Pi) 3141592653589793 l004 Pi/tanh(659/67*Pi) 3141592653589793 l004 Pi/tanh(718/73*Pi) 3141592653589793 l004 Pi/tanh(777/79*Pi) 3141592653589793 l004 Pi/tanh(836/85*Pi) 3141592653589793 l004 Pi/tanh(895/91*Pi) 3141592653589793 l004 Pi/tanh(954/97*Pi) 3141592653589793 l004 Pi/tanh(1013/103*Pi) 3141592653589793 l004 Pi/tanh(1072/109*Pi) 3141592653589793 l004 Pi/tanh(1131/115*Pi) 3141592653589793 l004 Pi/tanh(59/6*Pi) 3141592653589793 l004 Pi/tanh(1170/119*Pi) 3141592653589793 l004 Pi/tanh(1111/113*Pi) 3141592653589793 l004 Pi/tanh(1052/107*Pi) 3141592653589793 l004 Pi/tanh(993/101*Pi) 3141592653589793 l004 Pi/tanh(934/95*Pi) 3141592653589793 l004 Pi/tanh(875/89*Pi) 3141592653589793 l004 Pi/tanh(816/83*Pi) 3141592653589793 l004 Pi/tanh(757/77*Pi) 3141592653589793 l004 Pi/tanh(698/71*Pi) 3141592653589793 l004 Pi/tanh(639/65*Pi) 3141592653589793 l004 Pi/tanh(580/59*Pi) 3141592653589793 l004 Pi/tanh(1101/112*Pi) 3141592653589793 l004 Pi/tanh(521/53*Pi) 3141592653589793 l004 Pi/tanh(983/100*Pi) 3141592653589793 l004 Pi/tanh(462/47*Pi) 3141592653589793 l004 Pi/tanh(865/88*Pi) 3141592653589793 l004 Pi/tanh(403/41*Pi) 3141592653589793 l004 Pi/tanh(1150/117*Pi) 3141592653589793 l004 Pi/tanh(747/76*Pi) 3141592653589793 l004 Pi/tanh(1091/111*Pi) 3141592653589793 l004 Pi/tanh(344/35*Pi) 3141592653589793 l004 Pi/tanh(973/99*Pi) 3141592653589793 l004 Pi/tanh(629/64*Pi) 3141592653589793 l004 Pi/tanh(914/93*Pi) 3141592653589793 l004 Pi/tanh(285/29*Pi) 3141592653589793 l004 Pi/tanh(1081/110*Pi) 3141592653589793 l004 Pi/tanh(796/81*Pi) 3141592653589793 l004 Pi/tanh(511/52*Pi) 3141592653589793 l004 Pi/tanh(737/75*Pi) 3141592653589793 l004 Pi/tanh(963/98*Pi) 3141592653589793 l004 Pi/tanh(226/23*Pi) 3141592653589793 l004 Pi/tanh(1071/109*Pi) 3141592653589793 l004 Pi/tanh(845/86*Pi) 3141592653589793 l004 Pi/tanh(619/63*Pi) 3141592653589793 l004 Pi/tanh(1012/103*Pi) 3141592653589793 l004 Pi/tanh(393/40*Pi) 3141592653589793 l004 Pi/tanh(953/97*Pi) 3141592653589793 l004 Pi/tanh(560/57*Pi) 3141592653589793 l004 Pi/tanh(727/74*Pi) 3141592653589793 l004 Pi/tanh(894/91*Pi) 3141592653589793 l004 Pi/tanh(1061/108*Pi) 3141592653589793 l004 Pi/tanh(167/17*Pi) 3141592653589793 l004 Pi/tanh(1110/113*Pi) 3141592653589793 l004 Pi/tanh(943/96*Pi) 3141592653589793 l004 Pi/tanh(776/79*Pi) 3141592653589793 l004 Pi/tanh(609/62*Pi) 3141592653589793 l004 Pi/tanh(1051/107*Pi) 3141592653589793 l004 Pi/tanh(442/45*Pi) 3141592653589793 l004 Pi/tanh(1159/118*Pi) 3141592653589793 l004 Pi/tanh(717/73*Pi) 3141592653589793 l004 Pi/tanh(992/101*Pi) 3141592653589793 l004 Pi/tanh(275/28*Pi) 3141592653589793 l004 Pi/tanh(933/95*Pi) 3141592653589793 l004 Pi/tanh(658/67*Pi) 3141592653589793 l004 Pi/tanh(1041/106*Pi) 3141592653589793 l004 Pi/tanh(383/39*Pi) 3141592653589793 l004 Pi/tanh(874/89*Pi) 3141592653589793 l004 Pi/tanh(491/50*Pi) 3141592653589793 l004 Pi/tanh(1090/111*Pi) 3141592653589793 l004 Pi/tanh(599/61*Pi) 3141592653589793 l004 Pi/tanh(707/72*Pi) 3141592653589793 l004 Pi/tanh(815/83*Pi) 3141592653589793 l004 Pi/tanh(923/94*Pi) 3141592653589793 l004 Pi/tanh(1031/105*Pi) 3141592653589793 l004 Pi/tanh(1139/116*Pi) 3141592653589793 l004 Pi/tanh(108/11*Pi) 3141592653589793 l004 Pi/tanh(1129/115*Pi) 3141592653589793 l004 Pi/tanh(1021/104*Pi) 3141592653589793 l004 Pi/tanh(913/93*Pi) 3141592653589793 l004 Pi/tanh(805/82*Pi) 3141592653589793 l004 Pi/tanh(697/71*Pi) 3141592653589793 l004 Pi/tanh(589/60*Pi) 3141592653589793 l004 Pi/tanh(1070/109*Pi) 3141592653589793 l004 Pi/tanh(481/49*Pi) 3141592653589793 l004 Pi/tanh(854/87*Pi) 3141592653589793 l004 Pi/tanh(373/38*Pi) 3141592653589793 l004 Pi/tanh(1011/103*Pi) 3141592653589793 l004 Pi/tanh(638/65*Pi) 3141592653589793 l004 Pi/tanh(903/92*Pi) 3141592653589793 l004 Pi/tanh(1168/119*Pi) 3141592653589793 l004 Pi/tanh(265/27*Pi) 3141592653589793 l004 Pi/tanh(952/97*Pi) 3141592653589793 l004 Pi/tanh(687/70*Pi) 3141592653589793 l004 Pi/tanh(1109/113*Pi) 3141592653589793 l004 Pi/tanh(422/43*Pi) 3141592653589793 l004 Pi/tanh(1001/102*Pi) 3141592653589793 l004 Pi/tanh(579/59*Pi) 3141592653589793 l004 Pi/tanh(736/75*Pi) 3141592653589793 l004 Pi/tanh(893/91*Pi) 3141592653589793 l004 Pi/tanh(1050/107*Pi) 3141592653589793 l004 Pi/tanh(157/16*Pi) 3141592653589793 l004 Pi/tanh(1148/117*Pi) 3141592653589793 l004 Pi/tanh(991/101*Pi) 3141592653589793 l004 Pi/tanh(834/85*Pi) 3141592653589793 l004 Pi/tanh(677/69*Pi) 3141592653589793 l004 Pi/tanh(520/53*Pi) 3141592653589793 l004 Pi/tanh(883/90*Pi) 3141592653589793 l004 Pi/tanh(363/37*Pi) 3141592653589793 l004 Pi/tanh(932/95*Pi) 3141592653589793 l004 Pi/tanh(569/58*Pi) 3141592653589793 l004 Pi/tanh(775/79*Pi) 3141592653589793 l004 Pi/tanh(981/100*Pi) 3141592653589793 l004 Pi/tanh(206/21*Pi) 3141592653589793 l004 Pi/tanh(1079/110*Pi) 3141592653589793 l004 Pi/tanh(873/89*Pi) 3141592653589793 l004 Pi/tanh(667/68*Pi) 3141592653589793 l004 Pi/tanh(1128/115*Pi) 3141592653589793 l004 Pi/tanh(461/47*Pi) 3141592653589793 l004 Pi/tanh(1177/120*Pi) 3141592653589793 l004 Pi/tanh(716/73*Pi) 3141592653589793 l004 Pi/tanh(971/99*Pi) 3141592653589793 l004 Pi/tanh(255/26*Pi) 3141592653589793 l004 Pi/tanh(1069/109*Pi) 3141592653589793 l004 Pi/tanh(814/83*Pi) 3141592653589793 l004 Pi/tanh(559/57*Pi) 3141592653589793 l004 Pi/tanh(863/88*Pi) 3141592653589793 l004 Pi/tanh(1167/119*Pi) 3141592653589793 l004 Pi/tanh(304/31*Pi) 3141592653589793 l004 Pi/tanh(961/98*Pi) 3141592653589793 l004 Pi/tanh(657/67*Pi) 3141592653589793 l004 Pi/tanh(1010/103*Pi) 3141592653589793 l004 Pi/tanh(353/36*Pi) 3141592653589793 l004 Pi/tanh(1108/113*Pi) 3141592653589793 l004 Pi/tanh(755/77*Pi) 3141592653589793 l004 Pi/tanh(1157/118*Pi) 3141592653589793 l004 Pi/tanh(402/41*Pi) 3141592653589793 l004 Pi/tanh(853/87*Pi) 3141592653589793 l004 Pi/tanh(451/46*Pi) 3141592653589793 l004 Pi/tanh(951/97*Pi) 3141592653589793 l004 Pi/tanh(500/51*Pi) 3141592653589793 l004 Pi/tanh(1049/107*Pi) 3141592653589793 l004 Pi/tanh(549/56*Pi) 3141592653589793 l004 Pi/tanh(1147/117*Pi) 3141592653589793 l004 Pi/tanh(598/61*Pi) 3141592653589793 l004 Pi/tanh(647/66*Pi) 3141592653589793 l004 Pi/tanh(696/71*Pi) 3141592653589793 l004 Pi/tanh(745/76*Pi) 3141592653589793 l004 Pi/tanh(794/81*Pi) 3141592653589793 l004 Pi/tanh(843/86*Pi) 3141592653589793 l004 Pi/tanh(892/91*Pi) 3141592653589793 l004 Pi/tanh(941/96*Pi) 3141592653589793 l004 Pi/tanh(990/101*Pi) 3141592653589793 l004 Pi/tanh(1039/106*Pi) 3141592653589793 l004 Pi/tanh(1088/111*Pi) 3141592653589793 l004 Pi/tanh(1137/116*Pi) 3141592653589793 m001 Otter^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(49/5*Pi) 3141592653589793 l004 Pi/tanh(1166/119*Pi) 3141592653589793 l004 Pi/tanh(1117/114*Pi) 3141592653589793 l004 Pi/tanh(1068/109*Pi) 3141592653589793 l004 Pi/tanh(1019/104*Pi) 3141592653589793 l004 Pi/tanh(970/99*Pi) 3141592653589793 l004 Pi/tanh(921/94*Pi) 3141592653589793 l004 Pi/tanh(872/89*Pi) 3141592653589793 l004 Pi/tanh(823/84*Pi) 3141592653589793 l004 Pi/tanh(774/79*Pi) 3141592653589793 l004 Pi/tanh(725/74*Pi) 3141592653589793 l004 Pi/tanh(676/69*Pi) 3141592653589793 l004 Pi/tanh(627/64*Pi) 3141592653589793 l004 Pi/tanh(578/59*Pi) 3141592653589793 l004 Pi/tanh(1107/113*Pi) 3141592653589793 l004 Pi/tanh(529/54*Pi) 3141592653589793 l004 Pi/tanh(1009/103*Pi) 3141592653589793 l004 Pi/tanh(480/49*Pi) 3141592653589793 l004 Pi/tanh(911/93*Pi) 3141592653589793 l004 Pi/tanh(431/44*Pi) 3141592653589793 l004 Pi/tanh(813/83*Pi) 3141592653589793 l004 Pi/tanh(382/39*Pi) 3141592653589793 l004 Pi/tanh(1097/112*Pi) 3141592653589793 l004 Pi/tanh(715/73*Pi) 3141592653589793 l004 Pi/tanh(1048/107*Pi) 3141592653589793 l004 Pi/tanh(333/34*Pi) 3141592653589793 l004 Pi/tanh(950/97*Pi) 3141592653589793 l004 Pi/tanh(617/63*Pi) 3141592653589793 l004 Pi/tanh(901/92*Pi) 3141592653589793 l004 Pi/tanh(284/29*Pi) 3141592653589793 l004 Pi/tanh(1087/111*Pi) 3141592653589793 l004 Pi/tanh(803/82*Pi) 3141592653589793 l004 Pi/tanh(519/53*Pi) 3141592653589793 l004 Pi/tanh(754/77*Pi) 3141592653589793 l004 Pi/tanh(989/101*Pi) 3141592653589793 l004 Pi/tanh(235/24*Pi) 3141592653589793 l004 Pi/tanh(1126/115*Pi) 3141592653589793 l004 Pi/tanh(891/91*Pi) 3141592653589793 l004 Pi/tanh(656/67*Pi) 3141592653589793 l004 Pi/tanh(1077/110*Pi) 3141592653589793 l004 Pi/tanh(421/43*Pi) 3141592653589793 l004 Pi/tanh(1028/105*Pi) 3141592653589793 l004 Pi/tanh(607/62*Pi) 3141592653589793 l004 Pi/tanh(793/81*Pi) 3141592653589793 l004 Pi/tanh(979/100*Pi) 3141592653589793 l004 Pi/tanh(1165/119*Pi) 3141592653589793 l004 Pi/tanh(186/19*Pi) 3141592653589793 l004 Pi/tanh(1067/109*Pi) 3141592653589793 l004 Pi/tanh(881/90*Pi) 3141592653589793 l004 Pi/tanh(695/71*Pi) 3141592653589793 l004 Pi/tanh(509/52*Pi) 3141592653589793 l004 Pi/tanh(832/85*Pi) 3141592653589793 l004 Pi/tanh(1155/118*Pi) 3141592653589793 l004 Pi/tanh(323/33*Pi) 3141592653589793 l004 Pi/tanh(1106/113*Pi) 3141592653589793 l004 Pi/tanh(783/80*Pi) 3141592653589793 l004 Pi/tanh(460/47*Pi) 3141592653589793 l004 Pi/tanh(1057/108*Pi) 3141592653589793 l004 Pi/tanh(597/61*Pi) 3141592653589793 l004 Pi/tanh(734/75*Pi) 3141592653589793 l004 Pi/tanh(871/89*Pi) 3141592653589793 l004 Pi/tanh(1008/103*Pi) 3141592653589793 l004 Pi/tanh(1145/117*Pi) 3141592653589793 l004 Pi/tanh(137/14*Pi) 3141592653589793 l004 Pi/tanh(1047/107*Pi) 3141592653589793 l004 Pi/tanh(910/93*Pi) 3141592653589793 l004 Pi/tanh(773/79*Pi) 3141592653589793 l004 Pi/tanh(636/65*Pi) 3141592653589793 m001 Pi-gamma(2)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 l004 Pi/tanh(1135/116*Pi) 3141592653589793 l004 Pi/tanh(499/51*Pi) 3141592653589793 l004 Pi/tanh(861/88*Pi) 3141592653589793 l004 Pi/tanh(362/37*Pi) 3141592653589793 l004 Pi/tanh(949/97*Pi) 3141592653589793 l004 Pi/tanh(587/60*Pi) 3141592653589793 l004 Pi/tanh(812/83*Pi) 3141592653589793 l004 Pi/tanh(1037/106*Pi) 3141592653589793 l004 Pi/tanh(225/23*Pi) 3141592653589793 l004 Pi/tanh(988/101*Pi) 3141592653589793 l004 Pi/tanh(763/78*Pi) 3141592653589793 l004 Pi/tanh(538/55*Pi) 3141592653589793 l004 Pi/tanh(851/87*Pi) 3141592653589793 l004 Pi/tanh(1164/119*Pi) 3141592653589793 l004 Pi/tanh(313/32*Pi) 3141592653589793 l004 Pi/tanh(1027/105*Pi) 3141592653589793 l004 Pi/tanh(714/73*Pi) 3141592653589793 l004 Pi/tanh(1115/114*Pi) 3141592653589793 l004 Pi/tanh(401/41*Pi) 3141592653589793 l004 Pi/tanh(890/91*Pi) 3141592653589793 l004 Pi/tanh(489/50*Pi) 3141592653589793 l004 Pi/tanh(1066/109*Pi) 3141592653589793 l004 Pi/tanh(577/59*Pi) 3141592653589793 l004 Pi/tanh(665/68*Pi) 3141592653589793 l004 Pi/tanh(753/77*Pi) 3141592653589793 l004 Pi/tanh(841/86*Pi) 3141592653589793 l004 Pi/tanh(929/95*Pi) 3141592653589793 l004 Pi/tanh(1017/104*Pi) 3141592653589793 l004 Pi/tanh(1105/113*Pi) 3141592653589793 l004 Pi/tanh(88/9*Pi) 3141592653589793 l004 Pi/tanh(1095/112*Pi) 3141592653589793 l004 Pi/tanh(1007/103*Pi) 3141592653589793 l004 Pi/tanh(919/94*Pi) 3141592653589793 l004 Pi/tanh(831/85*Pi) 3141592653589793 l004 Pi/tanh(743/76*Pi) 3141592653589793 l004 Pi/tanh(655/67*Pi) 3141592653589793 l004 Pi/tanh(567/58*Pi) 3141592653589793 l004 Pi/tanh(1046/107*Pi) 3141592653589793 l004 Pi/tanh(479/49*Pi) 3141592653589793 l004 Pi/tanh(870/89*Pi) 3141592653589793 l004 Pi/tanh(391/40*Pi) 3141592653589793 l004 Pi/tanh(1085/111*Pi) 3141592653589793 l004 Pi/tanh(694/71*Pi) 3141592653589793 l004 Pi/tanh(997/102*Pi) 3141592653589793 l004 Pi/tanh(303/31*Pi) 3141592653589793 l004 Pi/tanh(1124/115*Pi) 3141592653589793 l004 Pi/tanh(821/84*Pi) 3141592653589793 l004 Pi/tanh(518/53*Pi) 3141592653589793 l004 Pi/tanh(733/75*Pi) 3141592653589793 l004 Pi/tanh(948/97*Pi) 3141592653589793 l004 Pi/tanh(1163/119*Pi) 3141592653589793 l004 Pi/tanh(215/22*Pi) 3141592653589793 l004 Pi/tanh(987/101*Pi) 3141592653589793 l004 Pi/tanh(772/79*Pi) 3141592653589793 l004 Pi/tanh(557/57*Pi) 3141592653589793 l004 Pi/tanh(899/92*Pi) 3141592653589793 l004 Pi/tanh(342/35*Pi) 3141592653589793 l004 Pi/tanh(1153/118*Pi) 3141592653589793 l004 Pi/tanh(811/83*Pi) 3141592653589793 l004 Pi/tanh(469/48*Pi) 3141592653589793 l004 Pi/tanh(1065/109*Pi) 3141592653589793 l004 Pi/tanh(596/61*Pi) 3141592653589793 l004 Pi/tanh(723/74*Pi) 3141592653589793 l004 Pi/tanh(850/87*Pi) 3141592653589793 l004 Pi/tanh(977/100*Pi) 3141592653589793 l004 Pi/tanh(1104/113*Pi) 3141592653589793 l004 Pi/tanh(127/13*Pi) 3141592653589793 l004 Pi/tanh(1055/108*Pi) 3141592653589793 l004 Pi/tanh(928/95*Pi) 3141592653589793 l004 Pi/tanh(801/82*Pi) 3141592653589793 l004 Pi/tanh(674/69*Pi) 3141592653589793 l004 Pi/tanh(547/56*Pi) 3141592653589793 l004 Pi/tanh(967/99*Pi) 3141592653589793 l004 Pi/tanh(420/43*Pi) 3141592653589793 l004 Pi/tanh(1133/116*Pi) 3141592653589793 l004 Pi/tanh(713/73*Pi) 3141592653589793 l004 Pi/tanh(1006/103*Pi) 3141592653589793 l004 Pi/tanh(293/30*Pi) 3141592653589793 l004 Pi/tanh(1045/107*Pi) 3141592653589793 l004 Pi/tanh(752/77*Pi) 3141592653589793 l004 Pi/tanh(459/47*Pi) 3141592653589793 l004 Pi/tanh(1084/111*Pi) 3141592653589793 l004 Pi/tanh(625/64*Pi) 3141592653589793 l004 Pi/tanh(791/81*Pi) 3141592653589793 l004 Pi/tanh(957/98*Pi) 3141592653589793 l004 Pi/tanh(1123/115*Pi) 3141592653589793 l004 Pi/tanh(166/17*Pi) 3141592653589793 l004 Pi/tanh(1035/106*Pi) 3141592653589793 l004 Pi/tanh(869/89*Pi) 3141592653589793 l004 Pi/tanh(703/72*Pi) 3141592653589793 l004 Pi/tanh(537/55*Pi) 3141592653589793 l004 Pi/tanh(908/93*Pi) 3141592653589793 l004 Pi/tanh(371/38*Pi) 3141592653589793 l004 Pi/tanh(947/97*Pi) 3141592653589793 l004 Pi/tanh(576/59*Pi) 3141592653589793 l004 Pi/tanh(781/80*Pi) 3141592653589793 l004 Pi/tanh(986/101*Pi) 3141592653589793 l004 Pi/tanh(205/21*Pi) 3141592653589793 l004 Pi/tanh(1064/109*Pi) 3141592653589793 l004 Pi/tanh(859/88*Pi) 3141592653589793 l004 Pi/tanh(654/67*Pi) 3141592653589793 l004 Pi/tanh(1103/113*Pi) 3141592653589793 l004 Pi/tanh(449/46*Pi) 3141592653589793 l004 Pi/tanh(1142/117*Pi) 3141592653589793 l004 Pi/tanh(693/71*Pi) 3141592653589793 l004 Pi/tanh(937/96*Pi) 3141592653589793 l004 Pi/tanh(244/25*Pi) 3141592653589793 l004 Pi/tanh(1015/104*Pi) 3141592653589793 l004 Pi/tanh(771/79*Pi) 3141592653589793 l004 Pi/tanh(527/54*Pi) 3141592653589793 l004 Pi/tanh(810/83*Pi) 3141592653589793 l004 Pi/tanh(1093/112*Pi) 3141592653589793 l004 Pi/tanh(283/29*Pi) 3141592653589793 l004 Pi/tanh(1171/120*Pi) 3141592653589793 l004 Pi/tanh(888/91*Pi) 3141592653589793 l004 Pi/tanh(605/62*Pi) 3141592653589793 l004 Pi/tanh(927/95*Pi) 3141592653589793 l004 Pi/tanh(322/33*Pi) 3141592653589793 l004 Pi/tanh(1005/103*Pi) 3141592653589793 l004 Pi/tanh(683/70*Pi) 3141592653589793 l004 Pi/tanh(1044/107*Pi) 3141592653589793 l004 Pi/tanh(361/37*Pi) 3141592653589793 l004 Pi/tanh(1122/115*Pi) 3141592653589793 l004 Pi/tanh(761/78*Pi) 3141592653589793 l004 Pi/tanh(1161/119*Pi) 3141592653589793 l004 Pi/tanh(400/41*Pi) 3141592653589793 l004 Pi/tanh(839/86*Pi) 3141592653589793 l004 Pi/tanh(439/45*Pi) 3141592653589793 l004 Pi/tanh(917/94*Pi) 3141592653589793 l004 Pi/tanh(478/49*Pi) 3141592653589793 l004 Pi/tanh(995/102*Pi) 3141592653589793 l004 Pi/tanh(517/53*Pi) 3141592653589793 l004 Pi/tanh(1073/110*Pi) 3141592653589793 l004 Pi/tanh(556/57*Pi) 3141592653589793 l004 Pi/tanh(1151/118*Pi) 3141592653589793 l004 Pi/tanh(595/61*Pi) 3141592653589793 l004 Pi/tanh(634/65*Pi) 3141592653589793 l004 Pi/tanh(673/69*Pi) 3141592653589793 l004 Pi/tanh(712/73*Pi) 3141592653589793 l004 Pi/tanh(751/77*Pi) 3141592653589793 l004 Pi/tanh(790/81*Pi) 3141592653589793 l004 Pi/tanh(829/85*Pi) 3141592653589793 l004 Pi/tanh(868/89*Pi) 3141592653589793 l004 Pi/tanh(907/93*Pi) 3141592653589793 l004 Pi/tanh(946/97*Pi) 3141592653589793 l004 Pi/tanh(985/101*Pi) 3141592653589793 l004 Pi/tanh(1024/105*Pi) 3141592653589793 l004 Pi/tanh(1063/109*Pi) 3141592653589793 l004 Pi/tanh(1102/113*Pi) 3141592653589793 l004 Pi/tanh(1141/117*Pi) 3141592653589793 l004 Pi/tanh(39/4*Pi) 3141592653589793 m001 ZetaP(4)^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(1160/119*Pi) 3141592653589793 l004 Pi/tanh(1121/115*Pi) 3141592653589793 l004 Pi/tanh(1082/111*Pi) 3141592653589793 l004 Pi/tanh(1043/107*Pi) 3141592653589793 l004 Pi/tanh(1004/103*Pi) 3141592653589793 l004 Pi/tanh(965/99*Pi) 3141592653589793 l004 Pi/tanh(926/95*Pi) 3141592653589793 l004 Pi/tanh(887/91*Pi) 3141592653589793 l004 Pi/tanh(848/87*Pi) 3141592653589793 l004 Pi/tanh(809/83*Pi) 3141592653589793 l004 Pi/tanh(770/79*Pi) 3141592653589793 l004 Pi/tanh(731/75*Pi) 3141592653589793 l004 Pi/tanh(692/71*Pi) 3141592653589793 l004 Pi/tanh(653/67*Pi) 3141592653589793 l004 Pi/tanh(614/63*Pi) 3141592653589793 l004 Pi/tanh(575/59*Pi) 3141592653589793 l004 Pi/tanh(1111/114*Pi) 3141592653589793 l004 Pi/tanh(536/55*Pi) 3141592653589793 l004 Pi/tanh(1033/106*Pi) 3141592653589793 l004 Pi/tanh(497/51*Pi) 3141592653589793 l004 Pi/tanh(955/98*Pi) 3141592653589793 l004 Pi/tanh(458/47*Pi) 3141592653589793 l004 Pi/tanh(877/90*Pi) 3141592653589793 l004 Pi/tanh(419/43*Pi) 3141592653589793 l004 Pi/tanh(799/82*Pi) 3141592653589793 l004 Pi/tanh(380/39*Pi) 3141592653589793 l004 Pi/tanh(1101/113*Pi) 3141592653589793 l004 Pi/tanh(721/74*Pi) 3141592653589793 l004 Pi/tanh(1062/109*Pi) 3141592653589793 l004 Pi/tanh(341/35*Pi) 3141592653589793 l005 ln(sec(1065/113)) 3141592653589793 l004 Pi/tanh(984/101*Pi) 3141592653589793 l004 Pi/tanh(643/66*Pi) 3141592653589793 l004 Pi/tanh(945/97*Pi) 3141592653589793 l004 Pi/tanh(302/31*Pi) 3141592653589793 l004 Pi/tanh(1169/120*Pi) 3141592653589793 l004 Pi/tanh(867/89*Pi) 3141592653589793 l004 Pi/tanh(565/58*Pi) 3141592653589793 l004 Pi/tanh(828/85*Pi) 3141592653589793 l004 Pi/tanh(1091/112*Pi) 3141592653589793 l004 Pi/tanh(263/27*Pi) 3141592653589793 l004 Pi/tanh(1013/104*Pi) 3141592653589793 l004 Pi/tanh(750/77*Pi) 3141592653589793 l004 Pi/tanh(487/50*Pi) 3141592653589793 l004 Pi/tanh(711/73*Pi) 3141592653589793 l004 Pi/tanh(935/96*Pi) 3141592653589793 l004 Pi/tanh(1159/119*Pi) 3141592653589793 l004 Pi/tanh(224/23*Pi) 3141592653589793 l004 Pi/tanh(1081/111*Pi) 3141592653589793 l004 Pi/tanh(857/88*Pi) 3141592653589793 l004 Pi/tanh(633/65*Pi) 3141592653589793 l004 Pi/tanh(1042/107*Pi) 3141592653589793 l004 Pi/tanh(409/42*Pi) 3141592653589793 l004 Pi/tanh(1003/103*Pi) 3141592653589793 l004 Pi/tanh(594/61*Pi) 3141592653589793 l004 Pi/tanh(779/80*Pi) 3141592653589793 l004 Pi/tanh(964/99*Pi) 3141592653589793 l004 Pi/tanh(1149/118*Pi) 3141592653589793 l004 Pi/tanh(185/19*Pi) 3141592653589793 l004 Pi/tanh(1071/110*Pi) 3141592653589793 l004 Pi/tanh(886/91*Pi) 3141592653589793 l004 Pi/tanh(701/72*Pi) 3141592653589793 l004 Pi/tanh(516/53*Pi) 3141592653589793 l004 Pi/tanh(847/87*Pi) 3141592653589793 l004 Pi/tanh(331/34*Pi) 3141592653589793 l004 Pi/tanh(1139/117*Pi) 3141592653589793 l004 Pi/tanh(808/83*Pi) 3141592653589793 l004 Pi/tanh(477/49*Pi) 3141592653589793 l004 Pi/tanh(1100/113*Pi) 3141592653589793 l004 Pi/tanh(623/64*Pi) 3141592653589793 l004 Pi/tanh(769/79*Pi) 3141592653589793 l004 Pi/tanh(915/94*Pi) 3141592653589793 l004 Pi/tanh(1061/109*Pi) 3141592653589793 l004 Pi/tanh(146/15*Pi) 3141592653589793 l004 Pi/tanh(1129/116*Pi) 3141592653589793 l004 Pi/tanh(983/101*Pi) 3141592653589793 l004 Pi/tanh(837/86*Pi) 3141592653589793 l004 Pi/tanh(691/71*Pi) 3141592653589793 l004 Pi/tanh(545/56*Pi) 3141592653589793 l004 Pi/tanh(944/97*Pi) 3141592653589793 l004 Pi/tanh(399/41*Pi) 3141592653589793 l004 Pi/tanh(1051/108*Pi) 3141592653589793 l004 Pi/tanh(652/67*Pi) 3141592653589793 l004 Pi/tanh(905/93*Pi) 3141592653589793 l004 Pi/tanh(1158/119*Pi) 3141592653589793 l004 Pi/tanh(253/26*Pi) 3141592653589793 l004 Pi/tanh(1119/115*Pi) 3141592653589793 l004 Pi/tanh(866/89*Pi) 3141592653589793 l004 Pi/tanh(613/63*Pi) 3141592653589793 l004 Pi/tanh(973/100*Pi) 3141592653589793 l004 Pi/tanh(360/37*Pi) 3141592653589793 l004 Pi/tanh(827/85*Pi) 3141592653589793 l004 Pi/tanh(467/48*Pi) 3141592653589793 l004 Pi/tanh(1041/107*Pi) 3141592653589793 l004 Pi/tanh(574/59*Pi) 3141592653589793 l004 Pi/tanh(681/70*Pi) 3141592653589793 l004 Pi/tanh(788/81*Pi) 3141592653589793 l004 Pi/tanh(895/92*Pi) 3141592653589793 l004 Pi/tanh(1002/103*Pi) 3141592653589793 l004 Pi/tanh(1109/114*Pi) 3141592653589793 l004 Pi/tanh(107/11*Pi) 3141592653589793 l004 Pi/tanh(1138/117*Pi) 3141592653589793 l004 Pi/tanh(1031/106*Pi) 3141592653589793 l004 Pi/tanh(924/95*Pi) 3141592653589793 l004 Pi/tanh(817/84*Pi) 3141592653589793 l004 Pi/tanh(710/73*Pi) 3141592653589793 l004 Pi/tanh(603/62*Pi) 3141592653589793 l004 Pi/tanh(1099/113*Pi) 3141592653589793 l004 Pi/tanh(496/51*Pi) 3141592653589793 l004 Pi/tanh(885/91*Pi) 3141592653589793 l004 Pi/tanh(389/40*Pi) 3141592653589793 l004 Pi/tanh(1060/109*Pi) 3141592653589793 l004 Pi/tanh(671/69*Pi) 3141592653589793 l004 Pi/tanh(953/98*Pi) 3141592653589793 l004 Pi/tanh(282/29*Pi) 3141592653589793 l004 Pi/tanh(1021/105*Pi) 3141592653589793 l004 Pi/tanh(739/76*Pi) 3141592653589793 l004 Pi/tanh(457/47*Pi) 3141592653589793 l004 Pi/tanh(1089/112*Pi) 3141592653589793 l004 Pi/tanh(632/65*Pi) 3141592653589793 l004 Pi/tanh(807/83*Pi) 3141592653589793 l004 Pi/tanh(982/101*Pi) 3141592653589793 l004 Pi/tanh(1157/119*Pi) 3141592653589793 l004 Pi/tanh(175/18*Pi) 3141592653589793 l004 Pi/tanh(1118/115*Pi) 3141592653589793 l004 Pi/tanh(943/97*Pi) 3141592653589793 l004 Pi/tanh(768/79*Pi) 3141592653589793 l004 Pi/tanh(593/61*Pi) 3141592653589793 l004 Pi/tanh(1011/104*Pi) 3141592653589793 l004 Pi/tanh(418/43*Pi) 3141592653589793 l004 Pi/tanh(1079/111*Pi) 3141592653589793 l004 Pi/tanh(661/68*Pi) 3141592653589793 l004 Pi/tanh(904/93*Pi) 3141592653589793 l004 Pi/tanh(1147/118*Pi) 3141592653589793 l004 Pi/tanh(243/25*Pi) 3141592653589793 l004 Pi/tanh(1040/107*Pi) 3141592653589793 l004 Pi/tanh(797/82*Pi) 3141592653589793 l004 Pi/tanh(554/57*Pi) 3141592653589793 l004 Pi/tanh(865/89*Pi) 3141592653589793 l004 Pi/tanh(311/32*Pi) 3141592653589793 l004 Pi/tanh(1001/103*Pi) 3141592653589793 l004 Pi/tanh(690/71*Pi) 3141592653589793 l004 Pi/tanh(1069/110*Pi) 3141592653589793 l004 Pi/tanh(379/39*Pi) 3141592653589793 l004 Pi/tanh(826/85*Pi) 3141592653589793 l004 Pi/tanh(447/46*Pi) 3141592653589793 l004 Pi/tanh(962/99*Pi) 3141592653589793 l004 Pi/tanh(515/53*Pi) 3141592653589793 l004 Pi/tanh(1098/113*Pi) 3141592653589793 l004 Pi/tanh(583/60*Pi) 3141592653589793 l004 Pi/tanh(651/67*Pi) 3141592653589793 l004 Pi/tanh(719/74*Pi) 3141592653589793 l004 Pi/tanh(787/81*Pi) 3141592653589793 l004 Pi/tanh(855/88*Pi) 3141592653589793 l004 Pi/tanh(923/95*Pi) 3141592653589793 l004 Pi/tanh(991/102*Pi) 3141592653589793 l004 Pi/tanh(1059/109*Pi) 3141592653589793 l004 Pi/tanh(1127/116*Pi) 3141592653589793 l004 Pi/tanh(68/7*Pi) 3141592653589793 l004 Pi/tanh(1117/115*Pi) 3141592653589793 l004 Pi/tanh(1049/108*Pi) 3141592653589793 l004 Pi/tanh(981/101*Pi) 3141592653589793 l004 Pi/tanh(913/94*Pi) 3141592653589793 l004 Pi/tanh(845/87*Pi) 3141592653589793 l004 Pi/tanh(777/80*Pi) 3141592653589793 l004 Pi/tanh(709/73*Pi) 3141592653589793 l004 Pi/tanh(641/66*Pi) 3141592653589793 l004 Pi/tanh(573/59*Pi) 3141592653589793 l004 Pi/tanh(1078/111*Pi) 3141592653589793 l004 Pi/tanh(505/52*Pi) 3141592653589793 l004 Pi/tanh(942/97*Pi) 3141592653589793 l004 Pi/tanh(437/45*Pi) 3141592653589793 l004 Pi/tanh(806/83*Pi) 3141592653589793 l004 Pi/tanh(369/38*Pi) 3141592653589793 l004 Pi/tanh(1039/107*Pi) 3141592653589793 l004 Pi/tanh(670/69*Pi) 3141592653589793 l004 Pi/tanh(971/100*Pi) 3141592653589793 l004 Pi/tanh(301/31*Pi) 3141592653589793 l004 Pi/tanh(1136/117*Pi) 3141592653589793 l004 Pi/tanh(835/86*Pi) 3141592653589793 l004 Pi/tanh(534/55*Pi) 3141592653589793 l004 Pi/tanh(767/79*Pi) 3141592653589793 l004 Pi/tanh(1000/103*Pi) 3141592653589793 l004 Pi/tanh(233/24*Pi) 3141592653589793 l004 Pi/tanh(1097/113*Pi) 3141592653589793 l004 Pi/tanh(864/89*Pi) 3141592653589793 l004 Pi/tanh(631/65*Pi) 3141592653589793 l004 Pi/tanh(1029/106*Pi) 3141592653589793 l004 Pi/tanh(398/41*Pi) 3141592653589793 l004 Pi/tanh(961/99*Pi) 3141592653589793 l004 Pi/tanh(563/58*Pi) 3141592653589793 l004 Pi/tanh(728/75*Pi) 3141592653589793 l004 Pi/tanh(893/92*Pi) 3141592653589793 l004 Pi/tanh(1058/109*Pi) 3141592653589793 l004 Pi/tanh(165/17*Pi) 3141592653589793 l004 Pi/tanh(1087/112*Pi) 3141592653589793 l004 Pi/tanh(922/95*Pi) 3141592653589793 l004 Pi/tanh(757/78*Pi) 3141592653589793 l004 Pi/tanh(592/61*Pi) 3141592653589793 l004 Pi/tanh(1019/105*Pi) 3141592653589793 l004 Pi/tanh(427/44*Pi) 3141592653589793 l004 Pi/tanh(1116/115*Pi) 3141592653589793 l004 Pi/tanh(689/71*Pi) 3141592653589793 l004 Pi/tanh(951/98*Pi) 3141592653589793 l004 Pi/tanh(262/27*Pi) 3141592653589793 l004 Pi/tanh(1145/118*Pi) 3141592653589793 l004 Pi/tanh(883/91*Pi) 3141592653589793 l004 Pi/tanh(621/64*Pi) 3141592653589793 l004 Pi/tanh(980/101*Pi) 3141592653589793 l004 Pi/tanh(359/37*Pi) 3141592653589793 l004 Pi/tanh(815/84*Pi) 3141592653589793 l004 Pi/tanh(456/47*Pi) 3141592653589793 l004 Pi/tanh(1009/104*Pi) 3141592653589793 l004 Pi/tanh(553/57*Pi) 3141592653589793 l004 Pi/tanh(650/67*Pi) 3141592653589793 l004 Pi/tanh(747/77*Pi) 3141592653589793 l004 Pi/tanh(844/87*Pi) 3141592653589793 l004 Pi/tanh(941/97*Pi) 3141592653589793 l004 Pi/tanh(1038/107*Pi) 3141592653589793 l004 Pi/tanh(1135/117*Pi) 3141592653589793 l004 Pi/tanh(97/10*Pi) 3141592653589793 l004 Pi/tanh(1096/113*Pi) 3141592653589793 l004 Pi/tanh(999/103*Pi) 3141592653589793 l004 Pi/tanh(902/93*Pi) 3141592653589793 l004 Pi/tanh(805/83*Pi) 3141592653589793 l004 Pi/tanh(708/73*Pi) 3141592653589793 l004 Pi/tanh(611/63*Pi) 3141592653589793 l004 Pi/tanh(1125/116*Pi) 3141592653589793 l004 Pi/tanh(514/53*Pi) 3141592653589793 l004 Pi/tanh(931/96*Pi) 3141592653589793 l004 Pi/tanh(417/43*Pi) 3141592653589793 l004 Pi/tanh(1154/119*Pi) 3141592653589793 l004 Pi/tanh(737/76*Pi) 3141592653589793 l004 Pi/tanh(1057/109*Pi) 3141592653589793 l004 Pi/tanh(320/33*Pi) 3141592653589793 l004 Pi/tanh(863/89*Pi) 3141592653589793 l004 Pi/tanh(543/56*Pi) 3141592653589793 l004 Pi/tanh(766/79*Pi) 3141592653589793 l004 Pi/tanh(989/102*Pi) 3141592653589793 l004 Pi/tanh(223/23*Pi) 3141592653589793 l004 Pi/tanh(1018/105*Pi) 3141592653589793 l004 Pi/tanh(795/82*Pi) 3141592653589793 l004 Pi/tanh(572/59*Pi) 3141592653589793 l004 Pi/tanh(921/95*Pi) 3141592653589793 l004 Pi/tanh(349/36*Pi) 3141592653589793 l004 Pi/tanh(824/85*Pi) 3141592653589793 l004 Pi/tanh(475/49*Pi) 3141592653589793 l004 Pi/tanh(1076/111*Pi) 3141592653589793 l004 Pi/tanh(601/62*Pi) 3141592653589793 l004 Pi/tanh(727/75*Pi) 3141592653589793 l004 Pi/tanh(853/88*Pi) 3141592653589793 l004 Pi/tanh(979/101*Pi) 3141592653589793 l004 Pi/tanh(1105/114*Pi) 3141592653589793 l004 Pi/tanh(126/13*Pi) 3141592653589793 l004 Pi/tanh(1163/120*Pi) 3141592653589793 l004 Pi/tanh(1037/107*Pi) 3141592653589793 l004 Pi/tanh(911/94*Pi) 3141592653589793 l004 Pi/tanh(785/81*Pi) 3141592653589793 l004 Pi/tanh(659/68*Pi) 3141592653589793 l004 Pi/tanh(533/55*Pi) 3141592653589793 l004 Pi/tanh(940/97*Pi) 3141592653589793 l004 Pi/tanh(407/42*Pi) 3141592653589793 l004 Pi/tanh(1095/113*Pi) 3141592653589793 l004 Pi/tanh(688/71*Pi) 3141592653589793 l004 Pi/tanh(969/100*Pi) 3141592653589793 l004 Pi/tanh(281/29*Pi) 3141592653589793 l004 Pi/tanh(998/103*Pi) 3141592653589793 l004 Pi/tanh(717/74*Pi) 3141592653589793 l004 Pi/tanh(1153/119*Pi) 3141592653589793 l004 Pi/tanh(436/45*Pi) 3141592653589793 l004 Pi/tanh(1027/106*Pi) 3141592653589793 l004 Pi/tanh(591/61*Pi) 3141592653589793 l004 Pi/tanh(746/77*Pi) 3141592653589793 l004 Pi/tanh(901/93*Pi) 3141592653589793 l004 Pi/tanh(1056/109*Pi) 3141592653589793 l004 Pi/tanh(155/16*Pi) 3141592653589793 l004 Pi/tanh(1114/115*Pi) 3141592653589793 l004 Pi/tanh(959/99*Pi) 3141592653589793 l004 Pi/tanh(804/83*Pi) 3141592653589793 l004 Pi/tanh(649/67*Pi) 3141592653589793 l004 Pi/tanh(1143/118*Pi) 3141592653589793 l004 Pi/tanh(494/51*Pi) 3141592653589793 l004 Pi/tanh(833/86*Pi) 3141592653589793 l004 Pi/tanh(339/35*Pi) 3141592653589793 l004 Pi/tanh(862/89*Pi) 3141592653589793 l004 Pi/tanh(523/54*Pi) 3141592653589793 l004 Pi/tanh(707/73*Pi) 3141592653589793 l004 Pi/tanh(891/92*Pi) 3141592653589793 l004 Pi/tanh(1075/111*Pi) 3141592653589793 l004 Pi/tanh(184/19*Pi) 3141592653589793 l004 Pi/tanh(1133/117*Pi) 3141592653589793 l004 Pi/tanh(949/98*Pi) 3141592653589793 l004 Pi/tanh(765/79*Pi) 3141592653589793 l004 Pi/tanh(581/60*Pi) 3141592653589793 l004 Pi/tanh(978/101*Pi) 3141592653589793 l004 Pi/tanh(397/41*Pi) 3141592653589793 l004 Pi/tanh(1007/104*Pi) 3141592653589793 l004 Pi/tanh(610/63*Pi) 3141592653589793 l004 Pi/tanh(823/85*Pi) 3141592653589793 l004 Pi/tanh(1036/107*Pi) 3141592653589793 l004 Pi/tanh(213/22*Pi) 3141592653589793 l004 Pi/tanh(1094/113*Pi) 3141592653589793 l004 Pi/tanh(881/91*Pi) 3141592653589793 l004 Pi/tanh(668/69*Pi) 3141592653589793 l004 Pi/tanh(1123/116*Pi) 3141592653589793 l004 Pi/tanh(455/47*Pi) 3141592653589793 l004 Pi/tanh(1152/119*Pi) 3141592653589793 l004 Pi/tanh(697/72*Pi) 3141592653589793 l004 Pi/tanh(939/97*Pi) 3141592653589793 l004 Pi/tanh(242/25*Pi) 3141592653589793 l004 Pi/tanh(997/103*Pi) 3141592653589793 l004 Pi/tanh(755/78*Pi) 3141592653589793 l004 Pi/tanh(513/53*Pi) 3141592653589793 l004 Pi/tanh(784/81*Pi) 3141592653589793 l004 Pi/tanh(1055/109*Pi) 3141592653589793 l004 Pi/tanh(271/28*Pi) 3141592653589793 l004 Pi/tanh(1113/115*Pi) 3141592653589793 l004 Pi/tanh(842/87*Pi) 3141592653589793 l004 Pi/tanh(571/59*Pi) 3141592653589793 l004 Pi/tanh(871/90*Pi) 3141592653589793 l004 Pi/tanh(300/31*Pi) 3141592653589793 l004 Pi/tanh(929/96*Pi) 3141592653589793 l004 Pi/tanh(629/65*Pi) 3141592653589793 l004 Pi/tanh(958/99*Pi) 3141592653589793 l004 Pi/tanh(329/34*Pi) 3141592653589793 l004 Pi/tanh(1016/105*Pi) 3141592653589793 l004 Pi/tanh(687/71*Pi) 3141592653589793 l004 Pi/tanh(1045/108*Pi) 3141592653589793 l004 Pi/tanh(358/37*Pi) 3141592653589793 l004 Pi/tanh(1103/114*Pi) 3141592653589793 l004 Pi/tanh(745/77*Pi) 3141592653589793 l004 Pi/tanh(1132/117*Pi) 3141592653589793 l004 Pi/tanh(387/40*Pi) 3141592653589793 l004 Pi/tanh(803/83*Pi) 3141592653589793 l004 Pi/tanh(416/43*Pi) 3141592653589793 l004 Pi/tanh(861/89*Pi) 3141592653589793 l004 Pi/tanh(445/46*Pi) 3141592653589793 l004 Pi/tanh(919/95*Pi) 3141592653589793 l004 Pi/tanh(474/49*Pi) 3141592653589793 l004 Pi/tanh(977/101*Pi) 3141592653589793 l004 Pi/tanh(503/52*Pi) 3141592653589793 l004 Pi/tanh(1035/107*Pi) 3141592653589793 l004 Pi/tanh(532/55*Pi) 3141592653589793 l004 Pi/tanh(1093/113*Pi) 3141592653589793 l004 Pi/tanh(561/58*Pi) 3141592653589793 l004 Pi/tanh(1151/119*Pi) 3141592653589793 l004 Pi/tanh(590/61*Pi) 3141592653589793 l004 Pi/tanh(619/64*Pi) 3141592653589793 l004 Pi/tanh(648/67*Pi) 3141592653589793 l004 Pi/tanh(677/70*Pi) 3141592653589793 l004 Pi/tanh(706/73*Pi) 3141592653589793 l004 Pi/tanh(735/76*Pi) 3141592653589793 l004 Pi/tanh(764/79*Pi) 3141592653589793 l004 Pi/tanh(793/82*Pi) 3141592653589793 l004 Pi/tanh(822/85*Pi) 3141592653589793 l004 Pi/tanh(851/88*Pi) 3141592653589793 l004 Pi/tanh(880/91*Pi) 3141592653589793 l004 Pi/tanh(909/94*Pi) 3141592653589793 l004 Pi/tanh(938/97*Pi) 3141592653589793 l004 Pi/tanh(967/100*Pi) 3141592653589793 l004 Pi/tanh(996/103*Pi) 3141592653589793 l004 Pi/tanh(1025/106*Pi) 3141592653589793 l004 Pi/tanh(1054/109*Pi) 3141592653589793 l004 Pi/tanh(1083/112*Pi) 3141592653589793 l004 Pi/tanh(1112/115*Pi) 3141592653589793 l004 Pi/tanh(1141/118*Pi) 3141592653589793 l004 Pi/tanh(29/3*Pi) 3141592653589793 l004 Pi/tanh(1150/119*Pi) 3141592653589793 l004 Pi/tanh(1121/116*Pi) 3141592653589793 l004 Pi/tanh(1092/113*Pi) 3141592653589793 l004 Pi/tanh(1063/110*Pi) 3141592653589793 l004 Pi/tanh(1034/107*Pi) 3141592653589793 l004 Pi/tanh(1005/104*Pi) 3141592653589793 l004 Pi/tanh(976/101*Pi) 3141592653589793 l004 Pi/tanh(947/98*Pi) 3141592653589793 l004 Pi/tanh(918/95*Pi) 3141592653589793 l004 Pi/tanh(889/92*Pi) 3141592653589793 l004 Pi/tanh(860/89*Pi) 3141592653589793 l004 Pi/tanh(831/86*Pi) 3141592653589793 l004 Pi/tanh(802/83*Pi) 3141592653589793 l004 Pi/tanh(773/80*Pi) 3141592653589793 l004 Pi/tanh(744/77*Pi) 3141592653589793 l004 Pi/tanh(715/74*Pi) 3141592653589793 l004 Pi/tanh(686/71*Pi) 3141592653589793 l004 Pi/tanh(657/68*Pi) 3141592653589793 l004 Pi/tanh(628/65*Pi) 3141592653589793 l004 Pi/tanh(599/62*Pi) 3141592653589793 l004 Pi/tanh(570/59*Pi) 3141592653589793 l004 Pi/tanh(1111/115*Pi) 3141592653589793 l004 Pi/tanh(541/56*Pi) 3141592653589793 l004 Pi/tanh(1053/109*Pi) 3141592653589793 l004 Pi/tanh(512/53*Pi) 3141592653589793 l004 Pi/tanh(995/103*Pi) 3141592653589793 l004 Pi/tanh(483/50*Pi) 3141592653589793 l004 Pi/tanh(937/97*Pi) 3141592653589793 l004 Pi/tanh(454/47*Pi) 3141592653589793 l004 Pi/tanh(879/91*Pi) 3141592653589793 l004 Pi/tanh(425/44*Pi) 3141592653589793 l004 Pi/tanh(821/85*Pi) 3141592653589793 l004 Pi/tanh(396/41*Pi) 3141592653589793 l004 Pi/tanh(1159/120*Pi) 3141592653589793 l004 Pi/tanh(763/79*Pi) 3141592653589793 l004 Pi/tanh(1130/117*Pi) 3141592653589793 l004 Pi/tanh(367/38*Pi) 3141592653589793 l004 Pi/tanh(1072/111*Pi) 3141592653589793 l004 Pi/tanh(705/73*Pi) 3141592653589793 l004 Pi/tanh(1043/108*Pi) 3141592653589793 l004 Pi/tanh(338/35*Pi) 3141592653589793 l004 Pi/tanh(985/102*Pi) 3141592653589793 l004 Pi/tanh(647/67*Pi) 3141592653589793 l004 Pi/tanh(956/99*Pi) 3141592653589793 l004 Pi/tanh(309/32*Pi) 3141592653589793 l004 Pi/tanh(898/93*Pi) 3141592653589793 l004 Pi/tanh(589/61*Pi) 3141592653589793 l004 Pi/tanh(869/90*Pi) 3141592653589793 l004 Pi/tanh(1149/119*Pi) 3141592653589793 l004 Pi/tanh(280/29*Pi) 3141592653589793 l004 Pi/tanh(1091/113*Pi) 3141592653589793 l004 Pi/tanh(811/84*Pi) 3141592653589793 l004 Pi/tanh(531/55*Pi) 3141592653589793 l004 Pi/tanh(782/81*Pi) 3141592653589793 l004 Pi/tanh(1033/107*Pi) 3141592653589793 l004 Pi/tanh(251/26*Pi) 3141592653589793 l004 Pi/tanh(975/101*Pi) 3141592653589793 l004 Pi/tanh(724/75*Pi) 3141592653589793 l004 Pi/tanh(473/49*Pi) 3141592653589793 l004 Pi/tanh(695/72*Pi) 3141592653589793 l004 Pi/tanh(917/95*Pi) 3141592653589793 l004 Pi/tanh(1139/118*Pi) 3141592653589793 l004 Pi/tanh(222/23*Pi) 3141592653589793 l004 Pi/tanh(1081/112*Pi) 3141592653589793 l004 Pi/tanh(859/89*Pi) 3141592653589793 l004 Pi/tanh(637/66*Pi) 3141592653589793 l004 Pi/tanh(1052/109*Pi) 3141592653589793 l004 Pi/tanh(415/43*Pi) 3141592653589793 l004 Pi/tanh(1023/106*Pi) 3141592653589793 l004 Pi/tanh(608/63*Pi) 3141592653589793 l004 Pi/tanh(801/83*Pi) 3141592653589793 l004 Pi/tanh(994/103*Pi) 3141592653589793 l004 Pi/tanh(193/20*Pi) 3141592653589793 l004 Pi/tanh(1129/117*Pi) 3141592653589793 l004 Pi/tanh(936/97*Pi) 3141592653589793 l004 Pi/tanh(743/77*Pi) 3141592653589793 l004 Pi/tanh(550/57*Pi) 3141592653589793 l004 Pi/tanh(907/94*Pi) 3141592653589793 l004 Pi/tanh(357/37*Pi) 3141592653589793 l004 Pi/tanh(878/91*Pi) 3141592653589793 l004 Pi/tanh(521/54*Pi) 3141592653589793 l004 Pi/tanh(685/71*Pi) 3141592653589793 l004 Pi/tanh(849/88*Pi) 3141592653589793 l004 Pi/tanh(1013/105*Pi) 3141592653589793 l004 Pi/tanh(164/17*Pi) 3141592653589793 l004 Pi/tanh(1119/116*Pi) 3141592653589793 l004 Pi/tanh(955/99*Pi) 3141592653589793 l004 Pi/tanh(791/82*Pi) 3141592653589793 l004 Pi/tanh(627/65*Pi) 3141592653589793 l004 Pi/tanh(1090/113*Pi) 3141592653589793 l004 Pi/tanh(463/48*Pi) 3141592653589793 l004 Pi/tanh(762/79*Pi) 3141592653589793 l004 Pi/tanh(1061/110*Pi) 3141592653589793 l004 Pi/tanh(299/31*Pi) 3141592653589793 l004 Pi/tanh(1032/107*Pi) 3141592653589793 l004 Pi/tanh(733/76*Pi) 3141592653589793 l004 Pi/tanh(434/45*Pi) 3141592653589793 l004 Pi/tanh(1003/104*Pi) 3141592653589793 l004 Pi/tanh(569/59*Pi) 3141592653589793 l004 Pi/tanh(704/73*Pi) 3141592653589793 l004 Pi/tanh(839/87*Pi) 3141592653589793 l004 Pi/tanh(974/101*Pi) 3141592653589793 l004 Pi/tanh(1109/115*Pi) 3141592653589793 l004 Pi/tanh(135/14*Pi) 3141592653589793 l004 Pi/tanh(1051/109*Pi) 3141592653589793 l004 Pi/tanh(916/95*Pi) 3141592653589793 l004 Pi/tanh(781/81*Pi) 3141592653589793 l004 Pi/tanh(646/67*Pi) 3141592653589793 l004 Pi/tanh(1157/120*Pi) 3141592653589793 l004 Pi/tanh(511/53*Pi) 3141592653589793 l004 Pi/tanh(887/92*Pi) 3141592653589793 l004 Pi/tanh(376/39*Pi) 3141592653589793 l004 Pi/tanh(993/103*Pi) 3141592653589793 l004 Pi/tanh(617/64*Pi) 3141592653589793 l004 Pi/tanh(858/89*Pi) 3141592653589793 l004 Pi/tanh(1099/114*Pi) 3141592653589793 l004 Pi/tanh(241/25*Pi) 3141592653589793 l004 Pi/tanh(1070/111*Pi) 3141592653589793 l004 Pi/tanh(829/86*Pi) 3141592653589793 l004 Pi/tanh(588/61*Pi) 3141592653589793 l004 Pi/tanh(935/97*Pi) 3141592653589793 l004 Pi/tanh(347/36*Pi) 3141592653589793 l004 Pi/tanh(1147/119*Pi) 3141592653589793 l004 Pi/tanh(800/83*Pi) 3141592653589793 l004 Pi/tanh(453/47*Pi) 3141592653589793 l004 Pi/tanh(1012/105*Pi) 3141592653589793 l004 Pi/tanh(559/58*Pi) 3141592653589793 l004 Pi/tanh(665/69*Pi) 3141592653589793 l004 Pi/tanh(771/80*Pi) 3141592653589793 l004 Pi/tanh(877/91*Pi) 3141592653589793 l004 Pi/tanh(983/102*Pi) 3141592653589793 l004 Pi/tanh(1089/113*Pi) 3141592653589793 l004 Pi/tanh(106/11*Pi) 3141592653589793 l004 Pi/tanh(1137/118*Pi) 3141592653589793 l004 Pi/tanh(1031/107*Pi) 3141592653589793 l004 Pi/tanh(925/96*Pi) 3141592653589793 l004 Pi/tanh(819/85*Pi) 3141592653589793 l004 Pi/tanh(713/74*Pi) 3141592653589793 l004 Pi/tanh(607/63*Pi) 3141592653589793 l004 Pi/tanh(1108/115*Pi) 3141592653589793 l004 Pi/tanh(501/52*Pi) 3141592653589793 l004 Pi/tanh(896/93*Pi) 3141592653589793 l004 Pi/tanh(395/41*Pi) 3141592653589793 l004 Pi/tanh(1079/112*Pi) 3141592653589793 l004 Pi/tanh(684/71*Pi) 3141592653589793 l004 Pi/tanh(973/101*Pi) 3141592653589793 l004 Pi/tanh(289/30*Pi) 3141592653589793 l004 Pi/tanh(1050/109*Pi) 3141592653589793 l004 Pi/tanh(761/79*Pi) 3141592653589793 l004 Pi/tanh(472/49*Pi) 3141592653589793 l004 Pi/tanh(1127/117*Pi) 3141592653589793 l004 Pi/tanh(655/68*Pi) 3141592653589793 l004 Pi/tanh(838/87*Pi) 3141592653589793 l004 Pi/tanh(1021/106*Pi) 3141592653589793 l004 Pi/tanh(183/19*Pi) 3141592653589793 l004 Pi/tanh(992/103*Pi) 3141592653589793 l004 Pi/tanh(809/84*Pi) 3141592653589793 l004 Pi/tanh(626/65*Pi) 3141592653589793 l004 Pi/tanh(1069/111*Pi) 3141592653589793 l004 Pi/tanh(443/46*Pi) 3141592653589793 l004 Pi/tanh(1146/119*Pi) 3141592653589793 l004 Pi/tanh(703/73*Pi) 3141592653589793 l004 Pi/tanh(963/100*Pi) 3141592653589793 l004 Pi/tanh(260/27*Pi) 3141592653589793 l004 Pi/tanh(1117/116*Pi) 3141592653589793 l004 Pi/tanh(857/89*Pi) 3141592653589793 l004 Pi/tanh(597/62*Pi) 3141592653589793 l004 Pi/tanh(934/97*Pi) 3141592653589793 l004 Pi/tanh(337/35*Pi) 3141592653589793 l004 Pi/tanh(1088/113*Pi) 3141592653589793 l004 Pi/tanh(751/78*Pi) 3141592653589793 l004 Pi/tanh(414/43*Pi) 3141592653589793 l004 Pi/tanh(905/94*Pi) 3141592653589793 l004 Pi/tanh(491/51*Pi) 3141592653589793 l004 Pi/tanh(1059/110*Pi) 3141592653589793 l004 Pi/tanh(568/59*Pi) 3141592653589793 l004 Pi/tanh(645/67*Pi) 3141592653589793 l004 Pi/tanh(722/75*Pi) 3141592653589793 l004 Pi/tanh(799/83*Pi) 3141592653589793 l004 Pi/tanh(876/91*Pi) 3141592653589793 l004 Pi/tanh(953/99*Pi) 3141592653589793 l004 Pi/tanh(1030/107*Pi) 3141592653589793 l004 Pi/tanh(1107/115*Pi) 3141592653589793 l004 Pi/tanh(77/8*Pi) 3141592653589793 l004 Pi/tanh(1126/117*Pi) 3141592653589793 l004 Pi/tanh(1049/109*Pi) 3141592653589793 l004 Pi/tanh(972/101*Pi) 3141592653589793 l004 Pi/tanh(895/93*Pi) 3141592653589793 l004 Pi/tanh(818/85*Pi) 3141592653589793 l004 Pi/tanh(741/77*Pi) 3141592653589793 l004 Pi/tanh(664/69*Pi) 3141592653589793 l004 Pi/tanh(587/61*Pi) 3141592653589793 l004 Pi/tanh(1097/114*Pi) 3141592653589793 l004 Pi/tanh(510/53*Pi) 3141592653589793 l004 Pi/tanh(943/98*Pi) 3141592653589793 l004 Pi/tanh(433/45*Pi) 3141592653589793 l004 Pi/tanh(789/82*Pi) 3141592653589793 l004 Pi/tanh(1145/119*Pi) 3141592653589793 l004 Pi/tanh(356/37*Pi) 3141592653589793 l004 Pi/tanh(991/103*Pi) 3141592653589793 l004 Pi/tanh(635/66*Pi) 3141592653589793 l004 Pi/tanh(914/95*Pi) 3141592653589793 l004 Pi/tanh(279/29*Pi) 3141592653589793 l004 Pi/tanh(1039/108*Pi) 3141592653589793 l004 Pi/tanh(760/79*Pi) 3141592653589793 l004 Pi/tanh(481/50*Pi) 3141592653589793 l004 Pi/tanh(683/71*Pi) 3141592653589793 l004 Pi/tanh(885/92*Pi) 3141592653589793 l004 Pi/tanh(1087/113*Pi) 3141592653589793 l004 Pi/tanh(202/21*Pi) 3141592653589793 l004 Pi/tanh(1135/118*Pi) 3141592653589793 l004 Pi/tanh(933/97*Pi) 3141592653589793 l004 Pi/tanh(731/76*Pi) 3141592653589793 l004 Pi/tanh(529/55*Pi) 3141592653589793 l004 Pi/tanh(856/89*Pi) 3141592653589793 l004 Pi/tanh(327/34*Pi) 3141592653589793 l004 Pi/tanh(1106/115*Pi) 3141592653589793 l004 Pi/tanh(779/81*Pi) 3141592653589793 l004 Pi/tanh(452/47*Pi) 3141592653589793 l004 Pi/tanh(1029/107*Pi) 3141592653589793 l004 Pi/tanh(577/60*Pi) 3141592653589793 l004 Pi/tanh(702/73*Pi) 3141592653589793 l004 Pi/tanh(827/86*Pi) 3141592653589793 l004 Pi/tanh(952/99*Pi) 3141592653589793 l004 Pi/tanh(1077/112*Pi) 3141592653589793 l004 Pi/tanh(125/13*Pi) 3141592653589793 l004 Pi/tanh(1048/109*Pi) 3141592653589793 l004 Pi/tanh(923/96*Pi) 3141592653589793 l004 Pi/tanh(798/83*Pi) 3141592653589793 l004 Pi/tanh(673/70*Pi) 3141592653589793 l004 Pi/tanh(548/57*Pi) 3141592653589793 l004 Pi/tanh(971/101*Pi) 3141592653589793 l004 Pi/tanh(423/44*Pi) 3141592653589793 l004 Pi/tanh(1144/119*Pi) 3141592653589793 l004 Pi/tanh(721/75*Pi) 3141592653589793 l004 Pi/tanh(1019/106*Pi) 3141592653589793 l004 Pi/tanh(298/31*Pi) 3141592653589793 l004 Pi/tanh(1067/111*Pi) 3141592653589793 l004 Pi/tanh(769/80*Pi) 3141592653589793 l004 Pi/tanh(471/49*Pi) 3141592653589793 l004 Pi/tanh(1115/116*Pi) 3141592653589793 l004 Pi/tanh(644/67*Pi) 3141592653589793 l004 Pi/tanh(817/85*Pi) 3141592653589793 l004 Pi/tanh(990/103*Pi) 3141592653589793 l004 Pi/tanh(173/18*Pi) 3141592653589793 l004 Pi/tanh(1086/113*Pi) 3141592653589793 l004 Pi/tanh(913/95*Pi) 3141592653589793 l004 Pi/tanh(740/77*Pi) 3141592653589793 l004 Pi/tanh(567/59*Pi) 3141592653589793 l004 Pi/tanh(961/100*Pi) 3141592653589793 l004 Pi/tanh(394/41*Pi) 3141592653589793 l004 Pi/tanh(1009/105*Pi) 3141592653589793 l004 Pi/tanh(615/64*Pi) 3141592653589793 l004 Pi/tanh(836/87*Pi) 3141592653589793 l004 Pi/tanh(1057/110*Pi) 3141592653589793 l004 Pi/tanh(221/23*Pi) 3141592653589793 l004 Pi/tanh(1153/120*Pi) 3141592653589793 l004 Pi/tanh(932/97*Pi) 3141592653589793 l004 Pi/tanh(711/74*Pi) 3141592653589793 l004 Pi/tanh(490/51*Pi) 3141592653589793 l004 Pi/tanh(759/79*Pi) 3141592653589793 l004 Pi/tanh(1028/107*Pi) 3141592653589793 l004 Pi/tanh(269/28*Pi) 3141592653589793 l004 Pi/tanh(1124/117*Pi) 3141592653589793 l004 Pi/tanh(855/89*Pi) 3141592653589793 l004 Pi/tanh(586/61*Pi) 3141592653589793 l004 Pi/tanh(903/94*Pi) 3141592653589793 l004 Pi/tanh(317/33*Pi) 3141592653589793 l004 Pi/tanh(999/104*Pi) 3141592653589793 l004 Pi/tanh(682/71*Pi) 3141592653589793 l004 Pi/tanh(1047/109*Pi) 3141592653589793 l004 Pi/tanh(365/38*Pi) 3141592653589793 l004 Pi/tanh(1143/119*Pi) 3141592653589793 l004 Pi/tanh(778/81*Pi) 3141592653589793 l004 Pi/tanh(413/43*Pi) 3141592653589793 l004 Pi/tanh(874/91*Pi) 3141592653589793 l004 Pi/tanh(461/48*Pi) 3141592653589793 l004 Pi/tanh(970/101*Pi) 3141592653589793 l004 Pi/tanh(509/53*Pi) 3141592653589793 l004 Pi/tanh(1066/111*Pi) 3141592653589793 l004 Pi/tanh(557/58*Pi) 3141592653589793 l004 Pi/tanh(605/63*Pi) 3141592653589793 l004 Pi/tanh(653/68*Pi) 3141592653589793 l004 Pi/tanh(701/73*Pi) 3141592653589793 l004 Pi/tanh(749/78*Pi) 3141592653589793 l004 Pi/tanh(797/83*Pi) 3141592653589793 l004 Pi/tanh(845/88*Pi) 3141592653589793 l004 Pi/tanh(893/93*Pi) 3141592653589793 l004 Pi/tanh(941/98*Pi) 3141592653589793 l004 Pi/tanh(989/103*Pi) 3141592653589793 l004 Pi/tanh(1037/108*Pi) 3141592653589793 l004 Pi/tanh(1085/113*Pi) 3141592653589793 l004 Pi/tanh(1133/118*Pi) 3141592653589793 l004 Pi/tanh(48/5*Pi) 3141592653589793 l004 Pi/tanh(1123/117*Pi) 3141592653589793 l004 Pi/tanh(1075/112*Pi) 3141592653589793 l004 Pi/tanh(1027/107*Pi) 3141592653589793 l004 Pi/tanh(979/102*Pi) 3141592653589793 l004 Pi/tanh(931/97*Pi) 3141592653589793 l004 Pi/tanh(883/92*Pi) 3141592653589793 l004 Pi/tanh(835/87*Pi) 3141592653589793 l004 Pi/tanh(787/82*Pi) 3141592653589793 l004 Pi/tanh(739/77*Pi) 3141592653589793 l004 Pi/tanh(691/72*Pi) 3141592653589793 l004 Pi/tanh(643/67*Pi) 3141592653589793 l004 Pi/tanh(595/62*Pi) 3141592653589793 l004 Pi/tanh(1142/119*Pi) 3141592653589793 l004 Pi/tanh(547/57*Pi) 3141592653589793 l004 Pi/tanh(1046/109*Pi) 3141592653589793 l004 Pi/tanh(499/52*Pi) 3141592653589793 l004 Pi/tanh(950/99*Pi) 3141592653589793 l004 Pi/tanh(451/47*Pi) 3141592653589793 l004 Pi/tanh(854/89*Pi) 3141592653589793 l004 Pi/tanh(403/42*Pi) 3141592653589793 l004 Pi/tanh(758/79*Pi) 3141592653589793 l004 Pi/tanh(1113/116*Pi) 3141592653589793 l004 Pi/tanh(355/37*Pi) 3141592653589793 l004 Pi/tanh(1017/106*Pi) 3141592653589793 l004 Pi/tanh(662/69*Pi) 3141592653589793 l004 Pi/tanh(969/101*Pi) 3141592653589793 l004 Pi/tanh(307/32*Pi) 3141592653589793 l004 Pi/tanh(873/91*Pi) 3141592653589793 l004 Pi/tanh(566/59*Pi) 3141592653589793 l004 Pi/tanh(825/86*Pi) 3141592653589793 l004 Pi/tanh(1084/113*Pi) 3141592653589793 l004 Pi/tanh(259/27*Pi) 3141592653589793 l004 Pi/tanh(988/103*Pi) 3141592653589793 l004 Pi/tanh(729/76*Pi) 3141592653589793 l004 Pi/tanh(470/49*Pi) 3141592653589793 l004 Pi/tanh(1151/120*Pi) 3141592653589793 l004 Pi/tanh(681/71*Pi) 3141592653589793 l004 Pi/tanh(892/93*Pi) 3141592653589793 l004 Pi/tanh(1103/115*Pi) 3141592653589793 l004 Pi/tanh(211/22*Pi) 3141592653589793 l004 Pi/tanh(1007/105*Pi) 3141592653589793 l004 Pi/tanh(796/83*Pi) 3141592653589793 l004 Pi/tanh(585/61*Pi) 3141592653589793 l004 Pi/tanh(959/100*Pi) 3141592653589793 l004 Pi/tanh(374/39*Pi) 3141592653589793 l004 Pi/tanh(911/95*Pi) 3141592653589793 l004 Pi/tanh(537/56*Pi) 3141592653589793 l004 Pi/tanh(700/73*Pi) 3141592653589793 l004 Pi/tanh(863/90*Pi) 3141592653589793 l004 Pi/tanh(1026/107*Pi) 3141592653589793 l004 Pi/tanh(163/17*Pi) 3141592653589793 l004 Pi/tanh(1093/114*Pi) 3141592653589793 l004 Pi/tanh(930/97*Pi) 3141592653589793 l004 Pi/tanh(767/80*Pi) 3141592653589793 l004 Pi/tanh(604/63*Pi) 3141592653589793 l004 Pi/tanh(1045/109*Pi) 3141592653589793 l004 Pi/tanh(441/46*Pi) 3141592653589793 l004 Pi/tanh(719/75*Pi) 3141592653589793 l004 Pi/tanh(997/104*Pi) 3141592653589793 l004 Pi/tanh(278/29*Pi) 3141592653589793 l004 Pi/tanh(949/99*Pi) 3141592653589793 l004 Pi/tanh(671/70*Pi) 3141592653589793 l004 Pi/tanh(1064/111*Pi) 3141592653589793 l004 Pi/tanh(393/41*Pi) 3141592653589793 l004 Pi/tanh(901/94*Pi) 3141592653589793 l004 Pi/tanh(508/53*Pi) 3141592653589793 l004 Pi/tanh(1131/118*Pi) 3141592653589793 l004 Pi/tanh(623/65*Pi) 3141592653589793 l004 Pi/tanh(738/77*Pi) 3141592653589793 l004 Pi/tanh(853/89*Pi) 3141592653589793 l004 Pi/tanh(968/101*Pi) 3141592653589793 l004 Pi/tanh(1083/113*Pi) 3141592653589793 l004 Pi/tanh(115/12*Pi) 3141592653589793 l004 Pi/tanh(1102/115*Pi) 3141592653589793 l004 Pi/tanh(987/103*Pi) 3141592653589793 l004 Pi/tanh(872/91*Pi) 3141592653589793 l004 Pi/tanh(757/79*Pi) 3141592653589793 l004 Pi/tanh(642/67*Pi) 3141592653589793 l004 Pi/tanh(527/55*Pi) 3141592653589793 l004 Pi/tanh(939/98*Pi) 3141592653589793 l004 Pi/tanh(412/43*Pi) 3141592653589793 l004 Pi/tanh(1121/117*Pi) 3141592653589793 l004 Pi/tanh(709/74*Pi) 3141592653589793 l004 Pi/tanh(1006/105*Pi) 3141592653589793 l004 Pi/tanh(297/31*Pi) 3141592653589793 l004 Pi/tanh(1073/112*Pi) 3141592653589793 l004 Pi/tanh(776/81*Pi) 3141592653589793 l004 Pi/tanh(479/50*Pi) 3141592653589793 l004 Pi/tanh(1140/119*Pi) 3141592653589793 l004 Pi/tanh(661/69*Pi) 3141592653589793 l004 Pi/tanh(843/88*Pi) 3141592653589793 l004 Pi/tanh(1025/107*Pi) 3141592653589793 l004 Pi/tanh(182/19*Pi) 3141592653589793 l004 Pi/tanh(977/102*Pi) 3141592653589793 l004 Pi/tanh(795/83*Pi) 3141592653589793 l004 Pi/tanh(613/64*Pi) 3141592653589793 l004 Pi/tanh(1044/109*Pi) 3141592653589793 l004 Pi/tanh(431/45*Pi) 3141592653589793 l004 Pi/tanh(1111/116*Pi) 3141592653589793 l004 Pi/tanh(680/71*Pi) 3141592653589793 l004 Pi/tanh(929/97*Pi) 3141592653589793 l004 Pi/tanh(249/26*Pi) 3141592653589793 l004 Pi/tanh(1063/111*Pi) 3141592653589793 l004 Pi/tanh(814/85*Pi) 3141592653589793 l004 Pi/tanh(565/59*Pi) 3141592653589793 l004 Pi/tanh(881/92*Pi) 3141592653589793 l004 Pi/tanh(316/33*Pi) 3141592653589793 l004 Pi/tanh(1015/106*Pi) 3141592653589793 l004 Pi/tanh(699/73*Pi) 3141592653589793 l004 Pi/tanh(1082/113*Pi) 3141592653589793 l004 Pi/tanh(383/40*Pi) 3141592653589793 l004 Pi/tanh(833/87*Pi) 3141592653589793 l004 Pi/tanh(450/47*Pi) 3141592653589793 l004 Pi/tanh(967/101*Pi) 3141592653589793 l004 Pi/tanh(517/54*Pi) 3141592653589793 l004 Pi/tanh(1101/115*Pi) 3141592653589793 l004 Pi/tanh(584/61*Pi) 3141592653589793 l004 Pi/tanh(651/68*Pi) 3141592653589793 l004 Pi/tanh(718/75*Pi) 3141592653589793 l004 Pi/tanh(785/82*Pi) 3141592653589793 l004 Pi/tanh(852/89*Pi) 3141592653589793 l004 Pi/tanh(919/96*Pi) 3141592653589793 l004 Pi/tanh(986/103*Pi) 3141592653589793 l004 Pi/tanh(1053/110*Pi) 3141592653589793 l004 Pi/tanh(1120/117*Pi) 3141592653589793 l004 Pi/tanh(67/7*Pi) 3141592653589793 l004 Pi/tanh(1091/114*Pi) 3141592653589793 l004 Pi/tanh(1024/107*Pi) 3141592653589793 l004 Pi/tanh(957/100*Pi) 3141592653589793 l004 Pi/tanh(890/93*Pi) 3141592653589793 l004 Pi/tanh(823/86*Pi) 3141592653589793 l004 Pi/tanh(756/79*Pi) 3141592653589793 l004 Pi/tanh(689/72*Pi) 3141592653589793 l004 Pi/tanh(622/65*Pi) 3141592653589793 l004 Pi/tanh(555/58*Pi) 3141592653589793 l004 Pi/tanh(1043/109*Pi) 3141592653589793 l004 Pi/tanh(488/51*Pi) 3141592653589793 l004 Pi/tanh(909/95*Pi) 3141592653589793 l004 Pi/tanh(421/44*Pi) 3141592653589793 l004 Pi/tanh(775/81*Pi) 3141592653589793 l004 Pi/tanh(1129/118*Pi) 3141592653589793 l004 Pi/tanh(354/37*Pi) 3141592653589793 l004 Pi/tanh(995/104*Pi) 3141592653589793 l004 Pi/tanh(641/67*Pi) 3141592653589793 l004 Pi/tanh(928/97*Pi) 3141592653589793 l004 Pi/tanh(287/30*Pi) 3141592653589793 l004 Pi/tanh(1081/113*Pi) 3141592653589793 l004 Pi/tanh(794/83*Pi) 3141592653589793 l004 Pi/tanh(507/53*Pi) 3141592653589793 l004 Pi/tanh(727/76*Pi) 3141592653589793 l004 Pi/tanh(947/99*Pi) 3141592653589793 l004 Pi/tanh(220/23*Pi) 3141592653589793 l004 Pi/tanh(1033/108*Pi) 3141592653589793 l004 Pi/tanh(813/85*Pi) 3141592653589793 l004 Pi/tanh(593/62*Pi) 3141592653589793 l004 Pi/tanh(966/101*Pi) 3141592653589793 l004 Pi/tanh(373/39*Pi) 3141592653589793 l004 Pi/tanh(899/94*Pi) 3141592653589793 l004 Pi/tanh(526/55*Pi) 3141592653589793 l004 Pi/tanh(679/71*Pi) 3141592653589793 l004 Pi/tanh(832/87*Pi) 3141592653589793 l004 Pi/tanh(985/103*Pi) 3141592653589793 l004 Pi/tanh(1138/119*Pi) 3141592653589793 l004 Pi/tanh(153/16*Pi) 3141592653589793 l004 Pi/tanh(1004/105*Pi) 3141592653589793 l004 Pi/tanh(851/89*Pi) 3141592653589793 l004 Pi/tanh(698/73*Pi) 3141592653589793 l004 Pi/tanh(545/57*Pi) 3141592653589793 l004 Pi/tanh(937/98*Pi) 3141592653589793 l004 Pi/tanh(392/41*Pi) 3141592653589793 l004 Pi/tanh(1023/107*Pi) 3141592653589793 l004 Pi/tanh(631/66*Pi) 3141592653589793 l004 Pi/tanh(870/91*Pi) 3141592653589793 l004 Pi/tanh(1109/116*Pi) 3141592653589793 l004 Pi/tanh(239/25*Pi) 3141592653589793 l004 Pi/tanh(1042/109*Pi) 3141592653589793 l004 Pi/tanh(803/84*Pi) 3141592653589793 l004 Pi/tanh(564/59*Pi) 3141592653589793 l004 Pi/tanh(889/93*Pi) 3141592653589793 l004 Pi/tanh(325/34*Pi) 3141592653589793 l004 Pi/tanh(1061/111*Pi) 3141592653589793 l004 Pi/tanh(736/77*Pi) 3141592653589793 l004 Pi/tanh(1147/120*Pi) 3141592653589793 l004 Pi/tanh(411/43*Pi) 3141592653589793 l004 Pi/tanh(908/95*Pi) 3141592653589793 l004 Pi/tanh(497/52*Pi) 3141592653589793 l004 Pi/tanh(1080/113*Pi) 3141592653589793 l004 Pi/tanh(583/61*Pi) 3141592653589793 l004 Pi/tanh(669/70*Pi) 3141592653589793 l004 Pi/tanh(755/79*Pi) 3141592653589793 l004 Pi/tanh(841/88*Pi) 3141592653589793 l004 Pi/tanh(927/97*Pi) 3141592653589793 l004 Pi/tanh(1013/106*Pi) 3141592653589793 l004 Pi/tanh(1099/115*Pi) 3141592653589793 l004 Pi/tanh(86/9*Pi) 3141592653589793 l004 Pi/tanh(1137/119*Pi) 3141592653589793 l004 Pi/tanh(1051/110*Pi) 3141592653589793 l004 Pi/tanh(965/101*Pi) 3141592653589793 l004 Pi/tanh(879/92*Pi) 3141592653589793 l004 Pi/tanh(793/83*Pi) 3141592653589793 l004 Pi/tanh(707/74*Pi) 3141592653589793 l004 Pi/tanh(621/65*Pi) 3141592653589793 l004 Pi/tanh(535/56*Pi) 3141592653589793 l004 Pi/tanh(984/103*Pi) 3141592653589793 l004 Pi/tanh(449/47*Pi) 3141592653589793 l004 Pi/tanh(812/85*Pi) 3141592653589793 l004 Pi/tanh(363/38*Pi) 3141592653589793 l004 Pi/tanh(1003/105*Pi) 3141592653589793 l004 Pi/tanh(640/67*Pi) 3141592653589793 l004 Pi/tanh(917/96*Pi) 3141592653589793 l004 Pi/tanh(277/29*Pi) 3141592653589793 l004 Pi/tanh(1022/107*Pi) 3141592653589793 l004 Pi/tanh(745/78*Pi) 3141592653589793 l004 Pi/tanh(468/49*Pi) 3141592653589793 l004 Pi/tanh(1127/118*Pi) 3141592653589793 l004 Pi/tanh(659/69*Pi) 3141592653589793 l004 Pi/tanh(850/89*Pi) 3141592653589793 l004 Pi/tanh(1041/109*Pi) 3141592653589793 l004 Pi/tanh(191/20*Pi) 3141592653589793 l004 Pi/tanh(1060/111*Pi) 3141592653589793 l004 Pi/tanh(869/91*Pi) 3141592653589793 l004 Pi/tanh(678/71*Pi) 3141592653589793 l004 Pi/tanh(487/51*Pi) 3141592653589793 l004 Pi/tanh(783/82*Pi) 3141592653589793 l004 Pi/tanh(1079/113*Pi) 3141592653589793 l004 Pi/tanh(296/31*Pi) 3141592653589793 l004 Pi/tanh(993/104*Pi) 3141592653589793 l004 Pi/tanh(697/73*Pi) 3141592653589793 l004 Pi/tanh(1098/115*Pi) 3141592653589793 l004 Pi/tanh(401/42*Pi) 3141592653589793 l004 Pi/tanh(907/95*Pi) 3141592653589793 l004 Pi/tanh(506/53*Pi) 3141592653589793 l004 Pi/tanh(1117/117*Pi) 3141592653589793 l004 Pi/tanh(611/64*Pi) 3141592653589793 l004 Pi/tanh(716/75*Pi) 3141592653589793 l004 Pi/tanh(821/86*Pi) 3141592653589793 l004 Pi/tanh(926/97*Pi) 3141592653589793 l004 Pi/tanh(1031/108*Pi) 3141592653589793 l004 Pi/tanh(1136/119*Pi) 3141592653589793 l004 Pi/tanh(105/11*Pi) 3141592653589793 l004 Pi/tanh(1069/112*Pi) 3141592653589793 l004 Pi/tanh(964/101*Pi) 3141592653589793 l004 Pi/tanh(859/90*Pi) 3141592653589793 l004 Pi/tanh(754/79*Pi) 3141592653589793 l004 Pi/tanh(649/68*Pi) 3141592653589793 l004 Pi/tanh(544/57*Pi) 3141592653589793 l004 Pi/tanh(983/103*Pi) 3141592653589793 l004 Pi/tanh(439/46*Pi) 3141592653589793 l004 Pi/tanh(773/81*Pi) 3141592653589793 l004 Pi/tanh(1107/116*Pi) 3141592653589793 l004 Pi/tanh(334/35*Pi) 3141592653589793 l004 Pi/tanh(897/94*Pi) 3141592653589793 l004 Pi/tanh(563/59*Pi) 3141592653589793 l004 Pi/tanh(792/83*Pi) 3141592653589793 l004 Pi/tanh(1021/107*Pi) 3141592653589793 l004 Pi/tanh(229/24*Pi) 3141592653589793 l004 Pi/tanh(1040/109*Pi) 3141592653589793 l004 Pi/tanh(811/85*Pi) 3141592653589793 l004 Pi/tanh(582/61*Pi) 3141592653589793 l004 Pi/tanh(935/98*Pi) 3141592653589793 l004 Pi/tanh(353/37*Pi) 3141592653589793 l004 Pi/tanh(830/87*Pi) 3141592653589793 l004 Pi/tanh(477/50*Pi) 3141592653589793 l004 Pi/tanh(1078/113*Pi) 3141592653589793 l004 Pi/tanh(601/63*Pi) 3141592653589793 l004 Pi/tanh(725/76*Pi) 3141592653589793 l004 Pi/tanh(849/89*Pi) 3141592653589793 l004 Pi/tanh(973/102*Pi) 3141592653589793 l004 Pi/tanh(1097/115*Pi) 3141592653589793 l004 Pi/tanh(124/13*Pi) 3141592653589793 l004 Pi/tanh(1135/119*Pi) 3141592653589793 l004 Pi/tanh(1011/106*Pi) 3141592653589793 l004 Pi/tanh(887/93*Pi) 3141592653589793 l004 Pi/tanh(763/80*Pi) 3141592653589793 l004 Pi/tanh(639/67*Pi) 3141592653589793 m001 StolarskyHarborth^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(515/54*Pi) 3141592653589793 l004 Pi/tanh(906/95*Pi) 3141592653589793 l004 Pi/tanh(391/41*Pi) 3141592653589793 l004 Pi/tanh(1049/110*Pi) 3141592653589793 l004 Pi/tanh(658/69*Pi) 3141592653589793 l004 Pi/tanh(925/97*Pi) 3141592653589793 l004 Pi/tanh(267/28*Pi) 3141592653589793 l004 Pi/tanh(944/99*Pi) 3141592653589793 l004 Pi/tanh(677/71*Pi) 3141592653589793 l004 Pi/tanh(1087/114*Pi) 3141592653589793 l004 Pi/tanh(410/43*Pi) 3141592653589793 l004 Pi/tanh(963/101*Pi) 3141592653589793 l004 Pi/tanh(553/58*Pi) 3141592653589793 l004 Pi/tanh(696/73*Pi) 3141592653589793 l004 Pi/tanh(839/88*Pi) 3141592653589793 l004 Pi/tanh(982/103*Pi) 3141592653589793 l004 Pi/tanh(1125/118*Pi) 3141592653589793 l004 Pi/tanh(143/15*Pi) 3141592653589793 l004 Pi/tanh(1020/107*Pi) 3141592653589793 l004 Pi/tanh(877/92*Pi) 3141592653589793 l004 Pi/tanh(734/77*Pi) 3141592653589793 l004 Pi/tanh(591/62*Pi) 3141592653589793 l004 Pi/tanh(1039/109*Pi) 3141592653589793 l004 Pi/tanh(448/47*Pi) 3141592653589793 l004 Pi/tanh(753/79*Pi) 3141592653589793 l004 Pi/tanh(1058/111*Pi) 3141592653589793 l004 Pi/tanh(305/32*Pi) 3141592653589793 l004 Pi/tanh(1077/113*Pi) 3141592653589793 l004 Pi/tanh(772/81*Pi) 3141592653589793 l004 Pi/tanh(467/49*Pi) 3141592653589793 l004 Pi/tanh(1096/115*Pi) 3141592653589793 l004 Pi/tanh(629/66*Pi) 3141592653589793 l004 Pi/tanh(791/83*Pi) 3141592653589793 l004 Pi/tanh(953/100*Pi) 3141592653589793 l004 Pi/tanh(1115/117*Pi) 3141592653589793 l004 Pi/tanh(162/17*Pi) 3141592653589793 l004 Pi/tanh(991/104*Pi) 3141592653589793 l004 Pi/tanh(829/87*Pi) 3141592653589793 l004 Pi/tanh(667/70*Pi) 3141592653589793 l004 Pi/tanh(505/53*Pi) 3141592653589793 l004 Pi/tanh(848/89*Pi) 3141592653589793 l004 Pi/tanh(343/36*Pi) 3141592653589793 l004 Pi/tanh(867/91*Pi) 3141592653589793 l004 Pi/tanh(524/55*Pi) 3141592653589793 l004 Pi/tanh(705/74*Pi) 3141592653589793 l004 Pi/tanh(886/93*Pi) 3141592653589793 l004 Pi/tanh(1067/112*Pi) 3141592653589793 l004 Pi/tanh(181/19*Pi) 3141592653589793 l004 Pi/tanh(1105/116*Pi) 3141592653589793 l004 Pi/tanh(924/97*Pi) 3141592653589793 l004 Pi/tanh(743/78*Pi) 3141592653589793 l004 Pi/tanh(562/59*Pi) 3141592653589793 l004 Pi/tanh(943/99*Pi) 3141592653589793 l004 Pi/tanh(381/40*Pi) 3141592653589793 l004 Pi/tanh(962/101*Pi) 3141592653589793 l004 Pi/tanh(581/61*Pi) 3141592653589793 l004 Pi/tanh(781/82*Pi) 3141592653589793 l004 Pi/tanh(981/103*Pi) 3141592653589793 l004 Pi/tanh(200/21*Pi) 3141592653589793 l004 Pi/tanh(1019/107*Pi) 3141592653589793 l004 Pi/tanh(819/86*Pi) 3141592653589793 l004 Pi/tanh(619/65*Pi) 3141592653589793 l004 Pi/tanh(1038/109*Pi) 3141592653589793 l004 Pi/tanh(419/44*Pi) 3141592653589793 l004 Pi/tanh(1057/111*Pi) 3141592653589793 l004 Pi/tanh(638/67*Pi) 3141592653589793 l004 Pi/tanh(857/90*Pi) 3141592653589793 l004 Pi/tanh(1076/113*Pi) 3141592653589793 l004 Pi/tanh(219/23*Pi) 3141592653589793 l004 Pi/tanh(1114/117*Pi) 3141592653589793 l004 Pi/tanh(895/94*Pi) 3141592653589793 l004 Pi/tanh(676/71*Pi) 3141592653589793 l004 Pi/tanh(1133/119*Pi) 3141592653589793 l004 Pi/tanh(457/48*Pi) 3141592653589793 l004 Pi/tanh(695/73*Pi) 3141592653589793 l004 Pi/tanh(933/98*Pi) 3141592653589793 l004 Pi/tanh(238/25*Pi) 3141592653589793 l004 Pi/tanh(971/102*Pi) 3141592653589793 l004 Pi/tanh(733/77*Pi) 3141592653589793 l004 Pi/tanh(495/52*Pi) 3141592653589793 l004 Pi/tanh(752/79*Pi) 3141592653589793 l004 Pi/tanh(1009/106*Pi) 3141592653589793 l004 Pi/tanh(257/27*Pi) 3141592653589793 l004 Pi/tanh(1047/110*Pi) 3141592653589793 l004 Pi/tanh(790/83*Pi) 3141592653589793 l004 Pi/tanh(533/56*Pi) 3141592653589793 l004 Pi/tanh(809/85*Pi) 3141592653589793 l004 Pi/tanh(1085/114*Pi) 3141592653589793 l004 Pi/tanh(276/29*Pi) 3141592653589793 l004 Pi/tanh(1123/118*Pi) 3141592653589793 l004 Pi/tanh(847/89*Pi) 3141592653589793 l004 Pi/tanh(571/60*Pi) 3141592653589793 l004 Pi/tanh(866/91*Pi) 3141592653589793 l004 Pi/tanh(295/31*Pi) 3141592653589793 l004 Pi/tanh(904/95*Pi) 3141592653589793 l004 Pi/tanh(609/64*Pi) 3141592653589793 l004 Pi/tanh(923/97*Pi) 3141592653589793 l004 Pi/tanh(314/33*Pi) 3141592653589793 l004 Pi/tanh(961/101*Pi) 3141592653589793 l004 Pi/tanh(647/68*Pi) 3141592653589793 l004 Pi/tanh(980/103*Pi) 3141592653589793 l004 Pi/tanh(333/35*Pi) 3141592653589793 l004 Pi/tanh(1018/107*Pi) 3141592653589793 l004 Pi/tanh(685/72*Pi) 3141592653589793 l004 Pi/tanh(1037/109*Pi) 3141592653589793 l004 Pi/tanh(352/37*Pi) 3141592653589793 l004 Pi/tanh(1075/113*Pi) 3141592653589793 l004 Pi/tanh(723/76*Pi) 3141592653589793 l004 Pi/tanh(1094/115*Pi) 3141592653589793 l004 Pi/tanh(371/39*Pi) 3141592653589793 l004 Pi/tanh(1132/119*Pi) 3141592653589793 l004 Pi/tanh(761/80*Pi) 3141592653589793 l004 Pi/tanh(390/41*Pi) 3141592653589793 l004 Pi/tanh(799/84*Pi) 3141592653589793 l004 Pi/tanh(409/43*Pi) 3141592653589793 l004 Pi/tanh(837/88*Pi) 3141592653589793 l004 Pi/tanh(428/45*Pi) 3141592653589793 l004 Pi/tanh(875/92*Pi) 3141592653589793 l004 Pi/tanh(447/47*Pi) 3141592653589793 l004 Pi/tanh(913/96*Pi) 3141592653589793 l004 Pi/tanh(466/49*Pi) 3141592653589793 l004 Pi/tanh(951/100*Pi) 3141592653589793 l004 Pi/tanh(485/51*Pi) 3141592653589793 l004 Pi/tanh(989/104*Pi) 3141592653589793 l004 Pi/tanh(504/53*Pi) 3141592653589793 l004 Pi/tanh(1027/108*Pi) 3141592653589793 l004 Pi/tanh(523/55*Pi) 3141592653589793 l004 Pi/tanh(1065/112*Pi) 3141592653589793 l004 Pi/tanh(542/57*Pi) 3141592653589793 l004 Pi/tanh(1103/116*Pi) 3141592653589793 l004 Pi/tanh(561/59*Pi) 3141592653589793 l004 Pi/tanh(1141/120*Pi) 3141592653589793 l004 Pi/tanh(580/61*Pi) 3141592653589793 l004 Pi/tanh(599/63*Pi) 3141592653589793 l004 Pi/tanh(618/65*Pi) 3141592653589793 l004 Pi/tanh(637/67*Pi) 3141592653589793 l004 Pi/tanh(656/69*Pi) 3141592653589793 l004 Pi/tanh(675/71*Pi) 3141592653589793 l004 Pi/tanh(694/73*Pi) 3141592653589793 l004 Pi/tanh(713/75*Pi) 3141592653589793 l004 Pi/tanh(732/77*Pi) 3141592653589793 l004 Pi/tanh(751/79*Pi) 3141592653589793 l004 Pi/tanh(770/81*Pi) 3141592653589793 l004 Pi/tanh(789/83*Pi) 3141592653589793 l004 Pi/tanh(808/85*Pi) 3141592653589793 l004 Pi/tanh(827/87*Pi) 3141592653589793 l004 Pi/tanh(846/89*Pi) 3141592653589793 l004 Pi/tanh(865/91*Pi) 3141592653589793 l004 Pi/tanh(884/93*Pi) 3141592653589793 l004 Pi/tanh(903/95*Pi) 3141592653589793 l004 Pi/tanh(922/97*Pi) 3141592653589793 l004 Pi/tanh(941/99*Pi) 3141592653589793 l004 Pi/tanh(960/101*Pi) 3141592653589793 l004 Pi/tanh(979/103*Pi) 3141592653589793 l004 Pi/tanh(998/105*Pi) 3141592653589793 l004 Pi/tanh(1017/107*Pi) 3141592653589793 l004 Pi/tanh(1036/109*Pi) 3141592653589793 l004 Pi/tanh(1055/111*Pi) 3141592653589793 l004 Pi/tanh(1074/113*Pi) 3141592653589793 l004 Pi/tanh(1093/115*Pi) 3141592653589793 l004 Pi/tanh(1112/117*Pi) 3141592653589793 l004 Pi/tanh(1131/119*Pi) 3141592653589793 l004 Pi/tanh(19/2*Pi) 3141592653589793 l004 Pi/tanh(1130/119*Pi) 3141592653589793 l004 Pi/tanh(1111/117*Pi) 3141592653589793 l004 Pi/tanh(1092/115*Pi) 3141592653589793 l004 Pi/tanh(1073/113*Pi) 3141592653589793 l004 Pi/tanh(1054/111*Pi) 3141592653589793 l004 Pi/tanh(1035/109*Pi) 3141592653589793 l004 Pi/tanh(1016/107*Pi) 3141592653589793 l004 Pi/tanh(997/105*Pi) 3141592653589793 l004 Pi/tanh(978/103*Pi) 3141592653589793 l004 Pi/tanh(959/101*Pi) 3141592653589793 l004 Pi/tanh(940/99*Pi) 3141592653589793 l004 Pi/tanh(921/97*Pi) 3141592653589793 l004 Pi/tanh(902/95*Pi) 3141592653589793 l004 Pi/tanh(883/93*Pi) 3141592653589793 l004 Pi/tanh(864/91*Pi) 3141592653589793 l004 Pi/tanh(845/89*Pi) 3141592653589793 l004 Pi/tanh(826/87*Pi) 3141592653589793 l004 Pi/tanh(807/85*Pi) 3141592653589793 l004 Pi/tanh(788/83*Pi) 3141592653589793 l004 Pi/tanh(769/81*Pi) 3141592653589793 l004 Pi/tanh(750/79*Pi) 3141592653589793 l004 Pi/tanh(731/77*Pi) 3141592653589793 l004 Pi/tanh(712/75*Pi) 3141592653589793 l004 Pi/tanh(693/73*Pi) 3141592653589793 l004 Pi/tanh(674/71*Pi) 3141592653589793 l004 Pi/tanh(655/69*Pi) 3141592653589793 l004 Pi/tanh(636/67*Pi) 3141592653589793 l004 Pi/tanh(617/65*Pi) 3141592653589793 l004 Pi/tanh(598/63*Pi) 3141592653589793 l004 Pi/tanh(579/61*Pi) 3141592653589793 l004 Pi/tanh(1139/120*Pi) 3141592653589793 l004 Pi/tanh(560/59*Pi) 3141592653589793 l004 Pi/tanh(1101/116*Pi) 3141592653589793 l004 Pi/tanh(541/57*Pi) 3141592653589793 l004 Pi/tanh(1063/112*Pi) 3141592653589793 l004 Pi/tanh(522/55*Pi) 3141592653589793 l004 Pi/tanh(1025/108*Pi) 3141592653589793 l004 Pi/tanh(503/53*Pi) 3141592653589793 l004 Pi/tanh(987/104*Pi) 3141592653589793 l004 Pi/tanh(484/51*Pi) 3141592653589793 l004 Pi/tanh(949/100*Pi) 3141592653589793 l004 Pi/tanh(465/49*Pi) 3141592653589793 l004 Pi/tanh(911/96*Pi) 3141592653589793 l004 Pi/tanh(446/47*Pi) 3141592653589793 l004 Pi/tanh(873/92*Pi) 3141592653589793 l004 Pi/tanh(427/45*Pi) 3141592653589793 l004 Pi/tanh(835/88*Pi) 3141592653589793 l004 Pi/tanh(408/43*Pi) 3141592653589793 l004 Pi/tanh(797/84*Pi) 3141592653589793 l004 Pi/tanh(389/41*Pi) 3141592653589793 l004 Pi/tanh(759/80*Pi) 3141592653589793 l004 Pi/tanh(1129/119*Pi) 3141592653589793 l004 Pi/tanh(370/39*Pi) 3141592653589793 l004 Pi/tanh(1091/115*Pi) 3141592653589793 l004 Pi/tanh(721/76*Pi) 3141592653589793 l004 Pi/tanh(1072/113*Pi) 3141592653589793 l004 Pi/tanh(351/37*Pi) 3141592653589793 l004 Pi/tanh(1034/109*Pi) 3141592653589793 l004 Pi/tanh(683/72*Pi) 3141592653589793 l004 Pi/tanh(1015/107*Pi) 3141592653589793 l004 Pi/tanh(332/35*Pi) 3141592653589793 l004 Pi/tanh(977/103*Pi) 3141592653589793 l004 Pi/tanh(645/68*Pi) 3141592653589793 l004 Pi/tanh(958/101*Pi) 3141592653589793 l004 Pi/tanh(313/33*Pi) 3141592653589793 l004 Pi/tanh(920/97*Pi) 3141592653589793 l004 Pi/tanh(607/64*Pi) 3141592653589793 l004 Pi/tanh(901/95*Pi) 3141592653589793 l004 Pi/tanh(294/31*Pi) 3141592653589793 l004 Pi/tanh(863/91*Pi) 3141592653589793 l004 Pi/tanh(569/60*Pi) 3141592653589793 l004 Pi/tanh(844/89*Pi) 3141592653589793 l004 Pi/tanh(1119/118*Pi) 3141592653589793 l004 Pi/tanh(275/29*Pi) 3141592653589793 l004 Pi/tanh(1081/114*Pi) 3141592653589793 l004 Pi/tanh(806/85*Pi) 3141592653589793 l004 Pi/tanh(531/56*Pi) 3141592653589793 l004 Pi/tanh(787/83*Pi) 3141592653589793 l004 Pi/tanh(1043/110*Pi) 3141592653589793 l004 Pi/tanh(256/27*Pi) 3141592653589793 l004 Pi/tanh(1005/106*Pi) 3141592653589793 l004 Pi/tanh(749/79*Pi) 3141592653589793 l004 Pi/tanh(493/52*Pi) 3141592653589793 l004 Pi/tanh(730/77*Pi) 3141592653589793 l004 Pi/tanh(967/102*Pi) 3141592653589793 l004 Pi/tanh(237/25*Pi) 3141592653589793 l004 Pi/tanh(929/98*Pi) 3141592653589793 l004 Pi/tanh(692/73*Pi) 3141592653589793 l004 Pi/tanh(455/48*Pi) 3141592653589793 l004 Pi/tanh(1128/119*Pi) 3141592653589793 l004 Pi/tanh(673/71*Pi) 3141592653589793 l004 Pi/tanh(891/94*Pi) 3141592653589793 l004 Pi/tanh(1109/117*Pi) 3141592653589793 l004 Pi/tanh(218/23*Pi) 3141592653589793 l004 Pi/tanh(1071/113*Pi) 3141592653589793 l004 Pi/tanh(853/90*Pi) 3141592653589793 l004 Pi/tanh(635/67*Pi) 3141592653589793 l004 Pi/tanh(1052/111*Pi) 3141592653589793 l004 Pi/tanh(417/44*Pi) 3141592653589793 l004 Pi/tanh(1033/109*Pi) 3141592653589793 l004 Pi/tanh(616/65*Pi) 3141592653589793 l004 Pi/tanh(815/86*Pi) 3141592653589793 l004 Pi/tanh(1014/107*Pi) 3141592653589793 l004 Pi/tanh(199/21*Pi) 3141592653589793 l004 Pi/tanh(976/103*Pi) 3141592653589793 l004 Pi/tanh(777/82*Pi) 3141592653589793 l004 Pi/tanh(578/61*Pi) 3141592653589793 l004 Pi/tanh(957/101*Pi) 3141592653589793 l004 Pi/tanh(379/40*Pi) 3141592653589793 l004 Pi/tanh(938/99*Pi) 3141592653589793 l004 Pi/tanh(559/59*Pi) 3141592653589793 l004 Pi/tanh(739/78*Pi) 3141592653589793 l004 Pi/tanh(919/97*Pi) 3141592653589793 l004 Pi/tanh(1099/116*Pi) 3141592653589793 l004 Pi/tanh(180/19*Pi) 3141592653589793 l004 Pi/tanh(1061/112*Pi) 3141592653589793 l004 Pi/tanh(881/93*Pi) 3141592653589793 l004 Pi/tanh(701/74*Pi) 3141592653589793 l004 Pi/tanh(521/55*Pi) 3141592653589793 l004 Pi/tanh(862/91*Pi) 3141592653589793 l004 Pi/tanh(341/36*Pi) 3141592653589793 l004 Pi/tanh(843/89*Pi) 3141592653589793 l004 Pi/tanh(502/53*Pi) 3141592653589793 l004 Pi/tanh(663/70*Pi) 3141592653589793 l004 Pi/tanh(824/87*Pi) 3141592653589793 l004 Pi/tanh(985/104*Pi) 3141592653589793 l004 Pi/tanh(161/17*Pi) 3141592653589793 l004 Pi/tanh(1108/117*Pi) 3141592653589793 l004 Pi/tanh(947/100*Pi) 3141592653589793 l004 Pi/tanh(786/83*Pi) 3141592653589793 l004 Pi/tanh(625/66*Pi) 3141592653589793 l004 Pi/tanh(1089/115*Pi) 3141592653589793 l004 Pi/tanh(464/49*Pi) 3141592653589793 l004 Pi/tanh(767/81*Pi) 3141592653589793 l004 Pi/tanh(1070/113*Pi) 3141592653589793 l004 Pi/tanh(303/32*Pi) 3141592653589793 l004 Pi/tanh(1051/111*Pi) 3141592653589793 l004 Pi/tanh(748/79*Pi) 3141592653589793 l004 Pi/tanh(445/47*Pi) 3141592653589793 l004 Pi/tanh(1032/109*Pi) 3141592653589793 l004 Pi/tanh(587/62*Pi) 3141592653589793 l004 Pi/tanh(729/77*Pi) 3141592653589793 l004 Pi/tanh(871/92*Pi) 3141592653589793 l004 Pi/tanh(1013/107*Pi) 3141592653589793 l004 Pi/tanh(142/15*Pi) 3141592653589793 l004 Pi/tanh(1117/118*Pi) 3141592653589793 l004 Pi/tanh(975/103*Pi) 3141592653589793 l004 Pi/tanh(833/88*Pi) 3141592653589793 l004 Pi/tanh(691/73*Pi) 3141592653589793 l004 Pi/tanh(549/58*Pi) 3141592653589793 l004 Pi/tanh(956/101*Pi) 3141592653589793 l004 Pi/tanh(407/43*Pi) 3141592653589793 l004 Pi/tanh(1079/114*Pi) 3141592653589793 l004 Pi/tanh(672/71*Pi) 3141592653589793 l004 Pi/tanh(937/99*Pi) 3141592653589793 l004 Pi/tanh(265/28*Pi) 3141592653589793 l004 Pi/tanh(918/97*Pi) 3141592653589793 l004 Pi/tanh(653/69*Pi) 3141592653589793 l004 Pi/tanh(1041/110*Pi) 3141592653589793 l004 Pi/tanh(388/41*Pi) 3141592653589793 l004 Pi/tanh(899/95*Pi) 3141592653589793 l004 Pi/tanh(511/54*Pi) 3141592653589793 l004 Pi/tanh(634/67*Pi) 3141592653589793 l004 Pi/tanh(757/80*Pi) 3141592653589793 l004 Pi/tanh(880/93*Pi) 3141592653589793 l004 Pi/tanh(1003/106*Pi) 3141592653589793 l004 Pi/tanh(1126/119*Pi) 3141592653589793 l004 Pi/tanh(123/13*Pi) 3141592653589793 l004 Pi/tanh(1088/115*Pi) 3141592653589793 l004 Pi/tanh(965/102*Pi) 3141592653589793 l004 Pi/tanh(842/89*Pi) 3141592653589793 l004 Pi/tanh(719/76*Pi) 3141592653589793 l004 Pi/tanh(596/63*Pi) 3141592653589793 l004 Pi/tanh(1069/113*Pi) 3141592653589793 l004 Pi/tanh(473/50*Pi) 3141592653589793 l004 Pi/tanh(823/87*Pi) 3141592653589793 l004 Pi/tanh(350/37*Pi) 3141592653589793 l004 Pi/tanh(927/98*Pi) 3141592653589793 l004 Pi/tanh(577/61*Pi) 3141592653589793 l004 Pi/tanh(804/85*Pi) 3141592653589793 l004 Pi/tanh(1031/109*Pi) 3141592653589793 l004 Pi/tanh(227/24*Pi) 3141592653589793 l004 Pi/tanh(1012/107*Pi) 3141592653589793 l004 Pi/tanh(785/83*Pi) 3141592653589793 l004 Pi/tanh(558/59*Pi) 3141592653589793 l004 Pi/tanh(889/94*Pi) 3141592653589793 l004 Pi/tanh(331/35*Pi) 3141592653589793 l004 Pi/tanh(1097/116*Pi) 3141592653589793 l004 Pi/tanh(766/81*Pi) 3141592653589793 l004 Pi/tanh(435/46*Pi) 3141592653589793 l004 Pi/tanh(974/103*Pi) 3141592653589793 l004 Pi/tanh(539/57*Pi) 3141592653589793 l004 Pi/tanh(643/68*Pi) 3141592653589793 l004 Pi/tanh(747/79*Pi) 3141592653589793 l004 Pi/tanh(851/90*Pi) 3141592653589793 l004 Pi/tanh(955/101*Pi) 3141592653589793 l004 Pi/tanh(1059/112*Pi) 3141592653589793 l004 Pi/tanh(104/11*Pi) 3141592653589793 l004 Pi/tanh(1125/119*Pi) 3141592653589793 l004 Pi/tanh(1021/108*Pi) 3141592653589793 l004 Pi/tanh(917/97*Pi) 3141592653589793 l004 Pi/tanh(813/86*Pi) 3141592653589793 l004 Pi/tanh(709/75*Pi) 3141592653589793 l004 Pi/tanh(605/64*Pi) 3141592653589793 l004 Pi/tanh(1106/117*Pi) 3141592653589793 l004 Pi/tanh(501/53*Pi) 3141592653589793 l004 Pi/tanh(898/95*Pi) 3141592653589793 l004 Pi/tanh(397/42*Pi) 3141592653589793 l004 Pi/tanh(1087/115*Pi) 3141592653589793 l004 Pi/tanh(690/73*Pi) 3141592653589793 l004 Pi/tanh(983/104*Pi) 3141592653589793 l004 Pi/tanh(293/31*Pi) 3141592653589793 l004 Pi/tanh(1068/113*Pi) 3141592653589793 l004 Pi/tanh(775/82*Pi) 3141592653589793 l004 Pi/tanh(482/51*Pi) 3141592653589793 l004 Pi/tanh(671/71*Pi) 3141592653589793 l004 Pi/tanh(860/91*Pi) 3141592653589793 l004 Pi/tanh(1049/111*Pi) 3141592653589793 l004 Pi/tanh(189/20*Pi) 3141592653589793 l004 Pi/tanh(1030/109*Pi) 3141592653589793 l004 Pi/tanh(841/89*Pi) 3141592653589793 l004 Pi/tanh(652/69*Pi) 3141592653589793 l004 Pi/tanh(1115/118*Pi) 3141592653589793 l004 Pi/tanh(463/49*Pi) 3141592653589793 l004 Pi/tanh(737/78*Pi) 3141592653589793 l004 Pi/tanh(1011/107*Pi) 3141592653589793 l004 Pi/tanh(274/29*Pi) 3141592653589793 l004 Pi/tanh(907/96*Pi) 3141592653589793 l004 Pi/tanh(633/67*Pi) 3141592653589793 l004 Pi/tanh(992/105*Pi) 3141592653589793 l004 Pi/tanh(359/38*Pi) 3141592653589793 l004 Pi/tanh(803/85*Pi) 3141592653589793 l004 Pi/tanh(444/47*Pi) 3141592653589793 l004 Pi/tanh(973/103*Pi) 3141592653589793 l004 Pi/tanh(529/56*Pi) 3141592653589793 l004 Pi/tanh(614/65*Pi) 3141592653589793 l004 Pi/tanh(699/74*Pi) 3141592653589793 l004 Pi/tanh(784/83*Pi) 3141592653589793 l004 Pi/tanh(869/92*Pi) 3141592653589793 l004 Pi/tanh(954/101*Pi) 3141592653589793 l004 Pi/tanh(1039/110*Pi) 3141592653589793 l004 Pi/tanh(1124/119*Pi) 3141592653589793 l004 Pi/tanh(85/9*Pi) 3141592653589793 l004 Pi/tanh(1086/115*Pi) 3141592653589793 l004 Pi/tanh(1001/106*Pi) 3141592653589793 l004 Pi/tanh(916/97*Pi) 3141592653589793 l004 Pi/tanh(831/88*Pi) 3141592653589793 l004 Pi/tanh(746/79*Pi) 3141592653589793 l004 Pi/tanh(661/70*Pi) 3141592653589793 l004 Pi/tanh(576/61*Pi) 3141592653589793 l004 Pi/tanh(1067/113*Pi) 3141592653589793 l004 Pi/tanh(491/52*Pi) 3141592653589793 l004 Pi/tanh(897/95*Pi) 3141592653589793 l004 Pi/tanh(406/43*Pi) 3141592653589793 l004 Pi/tanh(1133/120*Pi) 3141592653589793 l004 Pi/tanh(727/77*Pi) 3141592653589793 l004 Pi/tanh(1048/111*Pi) 3141592653589793 l004 Pi/tanh(321/34*Pi) 3141592653589793 l004 Pi/tanh(878/93*Pi) 3141592653589793 l004 Pi/tanh(557/59*Pi) 3141592653589793 l004 Pi/tanh(793/84*Pi) 3141592653589793 l004 Pi/tanh(1029/109*Pi) 3141592653589793 l004 Pi/tanh(236/25*Pi) 3141592653589793 l004 Pi/tanh(1095/116*Pi) 3141592653589793 l004 Pi/tanh(859/91*Pi) 3141592653589793 l004 Pi/tanh(623/66*Pi) 3141592653589793 l004 Pi/tanh(1010/107*Pi) 3141592653589793 l004 Pi/tanh(387/41*Pi) 3141592653589793 l004 Pi/tanh(925/98*Pi) 3141592653589793 l004 Pi/tanh(538/57*Pi) 3141592653589793 l004 Pi/tanh(689/73*Pi) 3141592653589793 l004 Pi/tanh(840/89*Pi) 3141592653589793 l004 Pi/tanh(991/105*Pi) 3141592653589793 l004 Pi/tanh(151/16*Pi) 3141592653589793 l004 Pi/tanh(1123/119*Pi) 3141592653589793 l004 Pi/tanh(972/103*Pi) 3141592653589793 l004 Pi/tanh(821/87*Pi) 3141592653589793 l004 Pi/tanh(670/71*Pi) 3141592653589793 l004 Pi/tanh(519/55*Pi) 3141592653589793 l004 Pi/tanh(887/94*Pi) 3141592653589793 l004 Pi/tanh(368/39*Pi) 3141592653589793 l004 Pi/tanh(953/101*Pi) 3141592653589793 l004 Pi/tanh(585/62*Pi) 3141592653589793 l004 Pi/tanh(802/85*Pi) 3141592653589793 l004 Pi/tanh(1019/108*Pi) 3141592653589793 l004 Pi/tanh(217/23*Pi) 3141592653589793 l004 Pi/tanh(934/99*Pi) 3141592653589793 l004 Pi/tanh(717/76*Pi) 3141592653589793 l004 Pi/tanh(500/53*Pi) 3141592653589793 l004 Pi/tanh(783/83*Pi) 3141592653589793 l004 Pi/tanh(1066/113*Pi) 3141592653589793 l004 Pi/tanh(283/30*Pi) 3141592653589793 l004 Pi/tanh(915/97*Pi) 3141592653589793 l004 Pi/tanh(632/67*Pi) 3141592653589793 l004 Pi/tanh(981/104*Pi) 3141592653589793 l004 Pi/tanh(349/37*Pi) 3141592653589793 l004 Pi/tanh(1113/118*Pi) 3141592653589793 l004 Pi/tanh(764/81*Pi) 3141592653589793 l004 Pi/tanh(415/44*Pi) 3141592653589793 l004 Pi/tanh(896/95*Pi) 3141592653589793 l004 Pi/tanh(481/51*Pi) 3141592653589793 l004 Pi/tanh(1028/109*Pi) 3141592653589793 l004 Pi/tanh(547/58*Pi) 3141592653589793 l004 Pi/tanh(613/65*Pi) 3141592653589793 l004 Pi/tanh(679/72*Pi) 3141592653589793 l004 Pi/tanh(745/79*Pi) 3141592653589793 l004 Pi/tanh(811/86*Pi) 3141592653589793 l004 Pi/tanh(877/93*Pi) 3141592653589793 l004 Pi/tanh(943/100*Pi) 3141592653589793 l004 Pi/tanh(1009/107*Pi) 3141592653589793 l004 Pi/tanh(1075/114*Pi) 3141592653589793 l004 Pi/tanh(66/7*Pi) 3141592653589793 l004 Pi/tanh(1103/117*Pi) 3141592653589793 l004 Pi/tanh(1037/110*Pi) 3141592653589793 l004 Pi/tanh(971/103*Pi) 3141592653589793 l004 Pi/tanh(905/96*Pi) 3141592653589793 l004 Pi/tanh(839/89*Pi) 3141592653589793 l004 Pi/tanh(773/82*Pi) 3141592653589793 l004 Pi/tanh(707/75*Pi) 3141592653589793 l004 Pi/tanh(641/68*Pi) 3141592653589793 l004 Pi/tanh(575/61*Pi) 3141592653589793 l004 Pi/tanh(1084/115*Pi) 3141592653589793 l004 Pi/tanh(509/54*Pi) 3141592653589793 l004 Pi/tanh(952/101*Pi) 3141592653589793 l004 Pi/tanh(443/47*Pi) 3141592653589793 l004 Pi/tanh(820/87*Pi) 3141592653589793 l004 Pi/tanh(377/40*Pi) 3141592653589793 l004 Pi/tanh(1065/113*Pi) 3141592653589793 l004 Pi/tanh(688/73*Pi) 3141592653589793 l004 Pi/tanh(999/106*Pi) 3141592653589793 l004 Pi/tanh(311/33*Pi) 3141592653589793 l004 Pi/tanh(867/92*Pi) 3141592653589793 l004 Pi/tanh(556/59*Pi) 3141592653589793 l004 Pi/tanh(801/85*Pi) 3141592653589793 l004 Pi/tanh(1046/111*Pi) 3141592653589793 l004 Pi/tanh(245/26*Pi) 3141592653589793 l004 Pi/tanh(914/97*Pi) 3141592653589793 l004 Pi/tanh(669/71*Pi) 3141592653589793 l004 Pi/tanh(1093/116*Pi) 3141592653589793 l004 Pi/tanh(424/45*Pi) 3141592653589793 l004 Pi/tanh(1027/109*Pi) 3141592653589793 l004 Pi/tanh(603/64*Pi) 3141592653589793 l004 Pi/tanh(782/83*Pi) 3141592653589793 l004 Pi/tanh(961/102*Pi) 3141592653589793 l004 Pi/tanh(179/19*Pi) 3141592653589793 l004 Pi/tanh(1008/107*Pi) 3141592653589793 l004 Pi/tanh(829/88*Pi) 3141592653589793 l004 Pi/tanh(650/69*Pi) 3141592653589793 l004 Pi/tanh(1121/119*Pi) 3141592653589793 l004 Pi/tanh(471/50*Pi) 3141592653589793 l004 Pi/tanh(763/81*Pi) 3141592653589793 l004 Pi/tanh(1055/112*Pi) 3141592653589793 l004 Pi/tanh(292/31*Pi) 3141592653589793 l004 Pi/tanh(989/105*Pi) 3141592653589793 l004 Pi/tanh(697/74*Pi) 3141592653589793 l004 Pi/tanh(1102/117*Pi) 3141592653589793 l004 Pi/tanh(405/43*Pi) 3141592653589793 l004 Pi/tanh(923/98*Pi) 3141592653589793 l004 Pi/tanh(518/55*Pi) 3141592653589793 l004 Pi/tanh(631/67*Pi) 3141592653589793 l004 Pi/tanh(744/79*Pi) 3141592653589793 l004 Pi/tanh(857/91*Pi) 3141592653589793 l004 Pi/tanh(970/103*Pi) 3141592653589793 l004 Pi/tanh(1083/115*Pi) 3141592653589793 l004 Pi/tanh(113/12*Pi) 3141592653589793 l004 Pi/tanh(1064/113*Pi) 3141592653589793 l004 Pi/tanh(951/101*Pi) 3141592653589793 l004 Pi/tanh(838/89*Pi) 3141592653589793 l004 Pi/tanh(725/77*Pi) 3141592653589793 l004 Pi/tanh(612/65*Pi) 3141592653589793 l004 Pi/tanh(1111/118*Pi) 3141592653589793 l004 Pi/tanh(499/53*Pi) 3141592653589793 l004 Pi/tanh(885/94*Pi) 3141592653589793 l004 Pi/tanh(386/41*Pi) 3141592653589793 l004 Pi/tanh(1045/111*Pi) 3141592653589793 l004 Pi/tanh(659/70*Pi) 3141592653589793 l004 Pi/tanh(932/99*Pi) 3141592653589793 l004 Pi/tanh(273/29*Pi) 3141592653589793 l004 Pi/tanh(979/104*Pi) 3141592653589793 l004 Pi/tanh(706/75*Pi) 3141592653589793 l004 Pi/tanh(433/46*Pi) 3141592653589793 l004 Pi/tanh(1026/109*Pi) 3141592653589793 l004 Pi/tanh(593/63*Pi) 3141592653589793 l004 Pi/tanh(753/80*Pi) 3141592653589793 l004 Pi/tanh(913/97*Pi) 3141592653589793 l004 Pi/tanh(1073/114*Pi) 3141592653589793 l004 Pi/tanh(160/17*Pi) 3141592653589793 l004 Pi/tanh(1007/107*Pi) 3141592653589793 l004 Pi/tanh(847/90*Pi) 3141592653589793 l004 Pi/tanh(687/73*Pi) 3141592653589793 l004 Pi/tanh(527/56*Pi) 3141592653589793 l004 Pi/tanh(894/95*Pi) 3141592653589793 l004 Pi/tanh(367/39*Pi) 3141592653589793 l004 Pi/tanh(941/100*Pi) 3141592653589793 l004 Pi/tanh(574/61*Pi) 3141592653589793 l004 Pi/tanh(781/83*Pi) 3141592653589793 l004 Pi/tanh(988/105*Pi) 3141592653589793 l004 Pi/tanh(207/22*Pi) 3141592653589793 l004 Pi/tanh(1082/115*Pi) 3141592653589793 l004 Pi/tanh(875/93*Pi) 3141592653589793 l004 Pi/tanh(668/71*Pi) 3141592653589793 l004 Pi/tanh(1129/120*Pi) 3141592653589793 l004 Pi/tanh(461/49*Pi) 3141592653589793 l004 Pi/tanh(715/76*Pi) 3141592653589793 l004 Pi/tanh(969/103*Pi) 3141592653589793 l004 Pi/tanh(254/27*Pi) 3141592653589793 l004 Pi/tanh(1063/113*Pi) 3141592653589793 l004 Pi/tanh(809/86*Pi) 3141592653589793 l004 Pi/tanh(555/59*Pi) 3141592653589793 l004 Pi/tanh(856/91*Pi) 3141592653589793 l004 Pi/tanh(301/32*Pi) 3141592653589793 l004 Pi/tanh(950/101*Pi) 3141592653589793 l004 Pi/tanh(649/69*Pi) 3141592653589793 l004 Pi/tanh(997/106*Pi) 3141592653589793 l004 Pi/tanh(348/37*Pi) 3141592653589793 l004 Pi/tanh(1091/116*Pi) 3141592653589793 l004 Pi/tanh(743/79*Pi) 3141592653589793 l004 Pi/tanh(395/42*Pi) 3141592653589793 l004 Pi/tanh(837/89*Pi) 3141592653589793 l004 Pi/tanh(442/47*Pi) 3141592653589793 l004 Pi/tanh(931/99*Pi) 3141592653589793 l004 Pi/tanh(489/52*Pi) 3141592653589793 l004 Pi/tanh(1025/109*Pi) 3141592653589793 l004 Pi/tanh(536/57*Pi) 3141592653589793 l004 Pi/tanh(1119/119*Pi) 3141592653589793 l004 Pi/tanh(583/62*Pi) 3141592653589793 l004 Pi/tanh(630/67*Pi) 3141592653589793 l004 Pi/tanh(677/72*Pi) 3141592653589793 l004 Pi/tanh(724/77*Pi) 3141592653589793 l004 Pi/tanh(771/82*Pi) 3141592653589793 l004 Pi/tanh(818/87*Pi) 3141592653589793 l004 Pi/tanh(865/92*Pi) 3141592653589793 l004 Pi/tanh(912/97*Pi) 3141592653589793 l004 Pi/tanh(959/102*Pi) 3141592653589793 l004 Pi/tanh(1006/107*Pi) 3141592653589793 l004 Pi/tanh(1053/112*Pi) 3141592653589793 l004 Pi/tanh(1100/117*Pi) 3141592653589793 l004 Pi/tanh(47/5*Pi) 3141592653589793 l004 Pi/tanh(1109/118*Pi) 3141592653589793 l004 Pi/tanh(1062/113*Pi) 3141592653589793 l004 Pi/tanh(1015/108*Pi) 3141592653589793 l004 Pi/tanh(968/103*Pi) 3141592653589793 l004 Pi/tanh(921/98*Pi) 3141592653589793 l004 Pi/tanh(874/93*Pi) 3141592653589793 l004 Pi/tanh(827/88*Pi) 3141592653589793 l004 Pi/tanh(780/83*Pi) 3141592653589793 l004 Pi/tanh(733/78*Pi) 3141592653589793 l004 Pi/tanh(686/73*Pi) 3141592653589793 l004 Pi/tanh(639/68*Pi) 3141592653589793 l004 Pi/tanh(592/63*Pi) 3141592653589793 l004 Pi/tanh(545/58*Pi) 3141592653589793 l004 Pi/tanh(1043/111*Pi) 3141592653589793 l004 Pi/tanh(498/53*Pi) 3141592653589793 l004 Pi/tanh(949/101*Pi) 3141592653589793 l004 Pi/tanh(451/48*Pi) 3141592653589793 l004 Pi/tanh(855/91*Pi) 3141592653589793 l004 Pi/tanh(404/43*Pi) 3141592653589793 l004 Pi/tanh(761/81*Pi) 3141592653589793 l004 Pi/tanh(1118/119*Pi) 3141592653589793 l004 Pi/tanh(357/38*Pi) 3141592653589793 l004 Pi/tanh(1024/109*Pi) 3141592653589793 l004 Pi/tanh(667/71*Pi) 3141592653589793 l004 Pi/tanh(977/104*Pi) 3141592653589793 l004 Pi/tanh(310/33*Pi) 3141592653589793 l004 Pi/tanh(883/94*Pi) 3141592653589793 l004 Pi/tanh(573/61*Pi) 3141592653589793 l004 Pi/tanh(836/89*Pi) 3141592653589793 l004 Pi/tanh(1099/117*Pi) 3141592653589793 l004 Pi/tanh(263/28*Pi) 3141592653589793 l004 Pi/tanh(1005/107*Pi) 3141592653589793 l004 Pi/tanh(742/79*Pi) 3141592653589793 l004 Pi/tanh(479/51*Pi) 3141592653589793 l004 Pi/tanh(695/74*Pi) 3141592653589793 l004 Pi/tanh(911/97*Pi) 3141592653589793 l004 Pi/tanh(1127/120*Pi) 3141592653589793 l004 Pi/tanh(216/23*Pi) 3141592653589793 l004 Pi/tanh(1033/110*Pi) 3141592653589793 l004 Pi/tanh(817/87*Pi) 3141592653589793 l004 Pi/tanh(601/64*Pi) 3141592653589793 l004 Pi/tanh(986/105*Pi) 3141592653589793 l004 Pi/tanh(385/41*Pi) 3141592653589793 l004 Pi/tanh(939/100*Pi) 3141592653589793 l004 Pi/tanh(554/59*Pi) 3141592653589793 l004 Pi/tanh(723/77*Pi) 3141592653589793 l004 Pi/tanh(892/95*Pi) 3141592653589793 l004 Pi/tanh(1061/113*Pi) 3141592653589793 l004 Pi/tanh(169/18*Pi) 3141592653589793 l004 Pi/tanh(967/103*Pi) 3141592653589793 l004 Pi/tanh(798/85*Pi) 3141592653589793 l004 Pi/tanh(629/67*Pi) 3141592653589793 l004 Pi/tanh(1089/116*Pi) 3141592653589793 l004 Pi/tanh(460/49*Pi) 3141592653589793 l004 Pi/tanh(751/80*Pi) 3141592653589793 l004 Pi/tanh(1042/111*Pi) 3141592653589793 l004 Pi/tanh(291/31*Pi) 3141592653589793 l004 Pi/tanh(995/106*Pi) 3141592653589793 l004 Pi/tanh(704/75*Pi) 3141592653589793 l004 Pi/tanh(1117/119*Pi) 3141592653589793 l004 Pi/tanh(413/44*Pi) 3141592653589793 l004 Pi/tanh(948/101*Pi) 3141592653589793 l004 Pi/tanh(535/57*Pi) 3141592653589793 l004 Pi/tanh(657/70*Pi) 3141592653589793 l004 Pi/tanh(779/83*Pi) 3141592653589793 l004 Pi/tanh(901/96*Pi) 3141592653589793 l004 Pi/tanh(1023/109*Pi) 3141592653589793 l004 Pi/tanh(122/13*Pi) 3141592653589793 l004 Pi/tanh(1051/112*Pi) 3141592653589793 l004 Pi/tanh(929/99*Pi) 3141592653589793 l004 Pi/tanh(807/86*Pi) 3141592653589793 l004 Pi/tanh(685/73*Pi) 3141592653589793 l004 Pi/tanh(563/60*Pi) 3141592653589793 l004 Pi/tanh(1004/107*Pi) 3141592653589793 l004 Pi/tanh(441/47*Pi) 3141592653589793 l004 Pi/tanh(760/81*Pi) 3141592653589793 l004 Pi/tanh(1079/115*Pi) 3141592653589793 l004 Pi/tanh(319/34*Pi) 3141592653589793 l004 Pi/tanh(835/89*Pi) 3141592653589793 l004 Pi/tanh(516/55*Pi) 3141592653589793 l004 Pi/tanh(713/76*Pi) 3141592653589793 l004 Pi/tanh(910/97*Pi) 3141592653589793 l004 Pi/tanh(1107/118*Pi) 3141592653589793 l004 Pi/tanh(197/21*Pi) 3141592653589793 l004 Pi/tanh(1060/113*Pi) 3141592653589793 l004 Pi/tanh(863/92*Pi) 3141592653589793 l004 Pi/tanh(666/71*Pi) 3141592653589793 l004 Pi/tanh(469/50*Pi) 3141592653589793 l004 Pi/tanh(741/79*Pi) 3141592653589793 l004 Pi/tanh(1013/108*Pi) 3141592653589793 l004 Pi/tanh(272/29*Pi) 3141592653589793 l004 Pi/tanh(891/95*Pi) 3141592653589793 l004 Pi/tanh(619/66*Pi) 3141592653589793 l004 Pi/tanh(966/103*Pi) 3141592653589793 l004 Pi/tanh(347/37*Pi) 3141592653589793 l004 Pi/tanh(1116/119*Pi) 3141592653589793 l004 Pi/tanh(769/82*Pi) 3141592653589793 l004 Pi/tanh(422/45*Pi) 3141592653589793 l004 Pi/tanh(919/98*Pi) 3141592653589793 l004 Pi/tanh(497/53*Pi) 3141592653589793 l004 Pi/tanh(1069/114*Pi) 3141592653589793 l004 Pi/tanh(572/61*Pi) 3141592653589793 l004 Pi/tanh(647/69*Pi) 3141592653589793 l004 Pi/tanh(722/77*Pi) 3141592653589793 l004 Pi/tanh(797/85*Pi) 3141592653589793 l004 Pi/tanh(872/93*Pi) 3141592653589793 l004 Pi/tanh(947/101*Pi) 3141592653589793 l004 Pi/tanh(1022/109*Pi) 3141592653589793 l004 Pi/tanh(1097/117*Pi) 3141592653589793 l004 Pi/tanh(75/8*Pi) 3141592653589793 l004 Pi/tanh(1078/115*Pi) 3141592653589793 l004 Pi/tanh(1003/107*Pi) 3141592653589793 l004 Pi/tanh(928/99*Pi) 3141592653589793 l004 Pi/tanh(853/91*Pi) 3141592653589793 l004 Pi/tanh(778/83*Pi) 3141592653589793 l004 Pi/tanh(703/75*Pi) 3141592653589793 l004 Pi/tanh(628/67*Pi) 3141592653589793 l004 Pi/tanh(553/59*Pi) 3141592653589793 l004 Pi/tanh(1031/110*Pi) 3141592653589793 l004 Pi/tanh(478/51*Pi) 3141592653589793 l004 Pi/tanh(881/94*Pi) 3141592653589793 l004 Pi/tanh(403/43*Pi) 3141592653589793 l004 Pi/tanh(731/78*Pi) 3141592653589793 l004 Pi/tanh(1059/113*Pi) 3141592653589793 l004 Pi/tanh(328/35*Pi) 3141592653589793 l004 Pi/tanh(909/97*Pi) 3141592653589793 l004 Pi/tanh(581/62*Pi) 3141592653589793 l004 Pi/tanh(834/89*Pi) 3141592653589793 l004 Pi/tanh(1087/116*Pi) 3141592653589793 l004 Pi/tanh(253/27*Pi) 3141592653589793 l004 Pi/tanh(937/100*Pi) 3141592653589793 l004 Pi/tanh(684/73*Pi) 3141592653589793 l004 Pi/tanh(1115/119*Pi) 3141592653589793 l004 Pi/tanh(431/46*Pi) 3141592653589793 l004 Pi/tanh(1040/111*Pi) 3141592653589793 l004 Pi/tanh(609/65*Pi) 3141592653589793 l004 Pi/tanh(787/84*Pi) 3141592653589793 l004 Pi/tanh(965/103*Pi) 3141592653589793 l004 Pi/tanh(178/19*Pi) 3141592653589793 l004 Pi/tanh(993/106*Pi) 3141592653589793 l004 Pi/tanh(815/87*Pi) 3141592653589793 l004 Pi/tanh(637/68*Pi) 3141592653589793 l004 Pi/tanh(1096/117*Pi) 3141592653589793 l004 Pi/tanh(459/49*Pi) 3141592653589793 l004 Pi/tanh(740/79*Pi) 3141592653589793 l004 Pi/tanh(1021/109*Pi) 3141592653589793 l004 Pi/tanh(281/30*Pi) 3141592653589793 l004 Pi/tanh(946/101*Pi) 3141592653589793 l004 Pi/tanh(665/71*Pi) 3141592653589793 l004 Pi/tanh(1049/112*Pi) 3141592653589793 l004 Pi/tanh(384/41*Pi) 3141592653589793 l004 Pi/tanh(871/93*Pi) 3141592653589793 l004 Pi/tanh(487/52*Pi) 3141592653589793 l004 Pi/tanh(1077/115*Pi) 3141592653589793 l004 Pi/tanh(590/63*Pi) 3141592653589793 l004 Pi/tanh(693/74*Pi) 3141592653589793 l004 Pi/tanh(796/85*Pi) 3141592653589793 l004 Pi/tanh(899/96*Pi) 3141592653589793 l004 Pi/tanh(1002/107*Pi) 3141592653589793 l004 Pi/tanh(1105/118*Pi) 3141592653589793 l004 Pi/tanh(103/11*Pi) 3141592653589793 l004 Pi/tanh(1058/113*Pi) 3141592653589793 l004 Pi/tanh(955/102*Pi) 3141592653589793 l004 Pi/tanh(852/91*Pi) 3141592653589793 l004 Pi/tanh(749/80*Pi) 3141592653589793 l004 Pi/tanh(646/69*Pi) 3141592653589793 l004 Pi/tanh(543/58*Pi) 3141592653589793 l004 Pi/tanh(983/105*Pi) 3141592653589793 l004 Pi/tanh(440/47*Pi) 3141592653589793 l004 Pi/tanh(777/83*Pi) 3141592653589793 l004 Pi/tanh(1114/119*Pi) 3141592653589793 l004 Pi/tanh(337/36*Pi) 3141592653589793 l004 Pi/tanh(908/97*Pi) 3141592653589793 l004 Pi/tanh(571/61*Pi) 3141592653589793 l004 Pi/tanh(805/86*Pi) 3141592653589793 l004 Pi/tanh(1039/111*Pi) 3141592653589793 l004 Pi/tanh(234/25*Pi) 3141592653589793 l004 Pi/tanh(1067/114*Pi) 3141592653589793 l004 Pi/tanh(833/89*Pi) 3141592653589793 l004 Pi/tanh(599/64*Pi) 3141592653589793 l004 Pi/tanh(964/103*Pi) 3141592653589793 l004 Pi/tanh(365/39*Pi) 3141592653589793 l004 Pi/tanh(861/92*Pi) 3141592653589793 l004 Pi/tanh(496/53*Pi) 3141592653589793 l004 Pi/tanh(1123/120*Pi) 3141592653589793 l004 Pi/tanh(627/67*Pi) 3141592653589793 l004 Pi/tanh(758/81*Pi) 3141592653589793 l004 Pi/tanh(889/95*Pi) 3141592653589793 l004 Pi/tanh(1020/109*Pi) 3141592653589793 l004 Pi/tanh(131/14*Pi) 3141592653589793 l004 Pi/tanh(1076/115*Pi) 3141592653589793 l004 Pi/tanh(945/101*Pi) 3141592653589793 l004 Pi/tanh(814/87*Pi) 3141592653589793 l004 Pi/tanh(683/73*Pi) 3141592653589793 l004 Pi/tanh(552/59*Pi) 3141592653589793 l004 Pi/tanh(973/104*Pi) 3141592653589793 l004 Pi/tanh(421/45*Pi) 3141592653589793 l004 Pi/tanh(711/76*Pi) 3141592653589793 l004 Pi/tanh(1001/107*Pi) 3141592653589793 l004 Pi/tanh(290/31*Pi) 3141592653589793 l004 Pi/tanh(1029/110*Pi) 3141592653589793 l004 Pi/tanh(739/79*Pi) 3141592653589793 l004 Pi/tanh(449/48*Pi) 3141592653589793 l004 Pi/tanh(1057/113*Pi) 3141592653589793 l004 Pi/tanh(608/65*Pi) 3141592653589793 l004 Pi/tanh(767/82*Pi) 3141592653589793 l004 Pi/tanh(926/99*Pi) 3141592653589793 l004 Pi/tanh(1085/116*Pi) 3141592653589793 l004 Pi/tanh(159/17*Pi) 3141592653589793 l004 Pi/tanh(982/105*Pi) 3141592653589793 l004 Pi/tanh(823/88*Pi) 3141592653589793 l004 Pi/tanh(664/71*Pi) 3141592653589793 l004 Pi/tanh(505/54*Pi) 3141592653589793 l004 Pi/tanh(851/91*Pi) 3141592653589793 l004 Pi/tanh(346/37*Pi) 3141592653589793 l004 Pi/tanh(879/94*Pi) 3141592653589793 l004 Pi/tanh(533/57*Pi) 3141592653589793 l004 Pi/tanh(720/77*Pi) 3141592653589793 l004 Pi/tanh(907/97*Pi) 3141592653589793 l004 Pi/tanh(1094/117*Pi) 3141592653589793 l004 Pi/tanh(187/20*Pi) 3141592653589793 m001 FransenRobinson^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(963/103*Pi) 3141592653589793 l004 Pi/tanh(776/83*Pi) 3141592653589793 l004 Pi/tanh(589/63*Pi) 3141592653589793 l004 Pi/tanh(991/106*Pi) 3141592653589793 l004 Pi/tanh(402/43*Pi) 3141592653589793 l004 Pi/tanh(1019/109*Pi) 3141592653589793 l004 Pi/tanh(617/66*Pi) 3141592653589793 l004 Pi/tanh(832/89*Pi) 3141592653589793 l004 Pi/tanh(1047/112*Pi) 3141592653589793 l004 Pi/tanh(215/23*Pi) 3141592653589793 l004 Pi/tanh(1103/118*Pi) 3141592653589793 l004 Pi/tanh(888/95*Pi) 3141592653589793 l004 Pi/tanh(673/72*Pi) 3141592653589793 l004 Pi/tanh(458/49*Pi) 3141592653589793 l004 Pi/tanh(701/75*Pi) 3141592653589793 l004 Pi/tanh(944/101*Pi) 3141592653589793 l004 Pi/tanh(243/26*Pi) 3141592653589793 l004 Pi/tanh(1000/107*Pi) 3141592653589793 l004 Pi/tanh(757/81*Pi) 3141592653589793 l004 Pi/tanh(514/55*Pi) 3141592653589793 l004 Pi/tanh(785/84*Pi) 3141592653589793 l004 Pi/tanh(1056/113*Pi) 3141592653589793 l004 Pi/tanh(271/29*Pi) 3141592653589793 l004 Pi/tanh(1112/119*Pi) 3141592653589793 l004 Pi/tanh(841/90*Pi) 3141592653589793 l004 Pi/tanh(570/61*Pi) 3141592653589793 l004 Pi/tanh(869/93*Pi) 3141592653589793 l004 Pi/tanh(299/32*Pi) 3141592653589793 l004 Pi/tanh(925/99*Pi) 3141592653589793 l004 Pi/tanh(626/67*Pi) 3141592653589793 l004 Pi/tanh(953/102*Pi) 3141592653589793 l004 Pi/tanh(327/35*Pi) 3141592653589793 l004 Pi/tanh(1009/108*Pi) 3141592653589793 l004 Pi/tanh(682/73*Pi) 3141592653589793 l004 Pi/tanh(1037/111*Pi) 3141592653589793 l004 Pi/tanh(355/38*Pi) 3141592653589793 l004 Pi/tanh(1093/117*Pi) 3141592653589793 l004 Pi/tanh(738/79*Pi) 3141592653589793 l004 Pi/tanh(1121/120*Pi) 3141592653589793 l004 Pi/tanh(383/41*Pi) 3141592653589793 l004 Pi/tanh(794/85*Pi) 3141592653589793 l004 Pi/tanh(411/44*Pi) 3141592653589793 l004 Pi/tanh(850/91*Pi) 3141592653589793 l004 Pi/tanh(439/47*Pi) 3141592653589793 l004 Pi/tanh(906/97*Pi) 3141592653589793 l004 Pi/tanh(467/50*Pi) 3141592653589793 l004 Pi/tanh(962/103*Pi) 3141592653589793 l004 Pi/tanh(495/53*Pi) 3141592653589793 l004 Pi/tanh(1018/109*Pi) 3141592653589793 l004 Pi/tanh(523/56*Pi) 3141592653589793 l004 Pi/tanh(1074/115*Pi) 3141592653589793 l004 Pi/tanh(551/59*Pi) 3141592653589793 l004 Pi/tanh(579/62*Pi) 3141592653589793 l004 Pi/tanh(607/65*Pi) 3141592653589793 l004 Pi/tanh(635/68*Pi) 3141592653589793 l004 Pi/tanh(663/71*Pi) 3141592653589793 l004 Pi/tanh(691/74*Pi) 3141592653589793 l004 Pi/tanh(719/77*Pi) 3141592653589793 l004 Pi/tanh(747/80*Pi) 3141592653589793 l004 Pi/tanh(775/83*Pi) 3141592653589793 l004 Pi/tanh(803/86*Pi) 3141592653589793 l004 Pi/tanh(831/89*Pi) 3141592653589793 l004 Pi/tanh(859/92*Pi) 3141592653589793 l004 Pi/tanh(887/95*Pi) 3141592653589793 l004 Pi/tanh(915/98*Pi) 3141592653589793 l004 Pi/tanh(943/101*Pi) 3141592653589793 l004 Pi/tanh(971/104*Pi) 3141592653589793 l004 Pi/tanh(999/107*Pi) 3141592653589793 l004 Pi/tanh(1027/110*Pi) 3141592653589793 l004 Pi/tanh(1055/113*Pi) 3141592653589793 l004 Pi/tanh(1083/116*Pi) 3141592653589793 l004 Pi/tanh(1111/119*Pi) 3141592653589793 l004 Pi/tanh(28/3*Pi) 3141592653589793 l004 Pi/tanh(1101/118*Pi) 3141592653589793 l004 Pi/tanh(1073/115*Pi) 3141592653589793 l004 Pi/tanh(1045/112*Pi) 3141592653589793 l004 Pi/tanh(1017/109*Pi) 3141592653589793 l004 Pi/tanh(989/106*Pi) 3141592653589793 l004 Pi/tanh(961/103*Pi) 3141592653589793 l004 Pi/tanh(933/100*Pi) 3141592653589793 l004 Pi/tanh(905/97*Pi) 3141592653589793 l004 Pi/tanh(877/94*Pi) 3141592653589793 l004 Pi/tanh(849/91*Pi) 3141592653589793 l004 Pi/tanh(821/88*Pi) 3141592653589793 l004 Pi/tanh(793/85*Pi) 3141592653589793 l004 Pi/tanh(765/82*Pi) 3141592653589793 l004 Pi/tanh(737/79*Pi) 3141592653589793 l004 Pi/tanh(709/76*Pi) 3141592653589793 l004 Pi/tanh(681/73*Pi) 3141592653589793 l004 Pi/tanh(653/70*Pi) 3141592653589793 l004 Pi/tanh(625/67*Pi) 3141592653589793 l004 Pi/tanh(597/64*Pi) 3141592653589793 l004 Pi/tanh(569/61*Pi) 3141592653589793 l004 Pi/tanh(1110/119*Pi) 3141592653589793 l004 Pi/tanh(541/58*Pi) 3141592653589793 l004 Pi/tanh(1054/113*Pi) 3141592653589793 l004 Pi/tanh(513/55*Pi) 3141592653589793 l004 Pi/tanh(998/107*Pi) 3141592653589793 l004 Pi/tanh(485/52*Pi) 3141592653589793 l004 Pi/tanh(942/101*Pi) 3141592653589793 l004 Pi/tanh(457/49*Pi) 3141592653589793 l004 Pi/tanh(886/95*Pi) 3141592653589793 l004 Pi/tanh(429/46*Pi) 3141592653589793 l004 Pi/tanh(830/89*Pi) 3141592653589793 l004 Pi/tanh(401/43*Pi) 3141592653589793 l004 Pi/tanh(774/83*Pi) 3141592653589793 l004 Pi/tanh(373/40*Pi) 3141592653589793 l004 Pi/tanh(1091/117*Pi) 3141592653589793 l004 Pi/tanh(718/77*Pi) 3141592653589793 l004 Pi/tanh(1063/114*Pi) 3141592653589793 l004 Pi/tanh(345/37*Pi) 3141592653589793 l004 Pi/tanh(1007/108*Pi) 3141592653589793 l004 Pi/tanh(662/71*Pi) 3141592653589793 l004 Pi/tanh(979/105*Pi) 3141592653589793 l004 Pi/tanh(317/34*Pi) 3141592653589793 l004 Pi/tanh(923/99*Pi) 3141592653589793 l004 Pi/tanh(606/65*Pi) 3141592653589793 l004 Pi/tanh(895/96*Pi) 3141592653589793 l004 Pi/tanh(289/31*Pi) 3141592653589793 l004 Pi/tanh(839/90*Pi) 3141592653589793 l004 Pi/tanh(550/59*Pi) 3141592653589793 l004 Pi/tanh(811/87*Pi) 3141592653589793 l004 Pi/tanh(1072/115*Pi) 3141592653589793 l004 Pi/tanh(261/28*Pi) 3141592653589793 l004 Pi/tanh(1016/109*Pi) 3141592653589793 l004 Pi/tanh(755/81*Pi) 3141592653589793 l004 Pi/tanh(494/53*Pi) 3141592653589793 l004 Pi/tanh(727/78*Pi) 3141592653589793 l004 Pi/tanh(960/103*Pi) 3141592653589793 l004 Pi/tanh(233/25*Pi) 3141592653589793 l004 Pi/tanh(904/97*Pi) 3141592653589793 l004 Pi/tanh(671/72*Pi) 3141592653589793 l004 Pi/tanh(1109/119*Pi) 3141592653589793 l004 Pi/tanh(438/47*Pi) 3141592653589793 l004 Pi/tanh(1081/116*Pi) 3141592653589793 l004 Pi/tanh(643/69*Pi) 3141592653589793 l004 Pi/tanh(848/91*Pi) 3141592653589793 l004 Pi/tanh(1053/113*Pi) 3141592653589793 l004 Pi/tanh(205/22*Pi) 3141592653589793 l004 Pi/tanh(997/107*Pi) 3141592653589793 l004 Pi/tanh(792/85*Pi) 3141592653589793 l004 Pi/tanh(587/63*Pi) 3141592653589793 l004 Pi/tanh(969/104*Pi) 3141592653589793 l004 Pi/tanh(382/41*Pi) 3141592653589793 l004 Pi/tanh(941/101*Pi) 3141592653589793 l004 Pi/tanh(559/60*Pi) 3141592653589793 l004 Pi/tanh(736/79*Pi) 3141592653589793 l004 Pi/tanh(913/98*Pi) 3141592653589793 l004 Pi/tanh(1090/117*Pi) 3141592653589793 l004 Pi/tanh(177/19*Pi) 3141592653589793 l004 Pi/tanh(1034/111*Pi) 3141592653589793 l004 Pi/tanh(857/92*Pi) 3141592653589793 l004 Pi/tanh(680/73*Pi) 3141592653589793 l004 Pi/tanh(503/54*Pi) 3141592653589793 l004 Pi/tanh(829/89*Pi) 3141592653589793 l004 Pi/tanh(326/35*Pi) 3141592653589793 l004 Pi/tanh(801/86*Pi) 3141592653589793 l004 Pi/tanh(475/51*Pi) 3141592653589793 l004 Pi/tanh(1099/118*Pi) 3141592653589793 l004 Pi/tanh(624/67*Pi) 3141592653589793 l004 Pi/tanh(773/83*Pi) 3141592653589793 l004 Pi/tanh(922/99*Pi) 3141592653589793 l004 Pi/tanh(1071/115*Pi) 3141592653589793 l004 Pi/tanh(149/16*Pi) 3141592653589793 l004 Pi/tanh(1015/109*Pi) 3141592653589793 l004 Pi/tanh(866/93*Pi) 3141592653589793 l004 Pi/tanh(717/77*Pi) 3141592653589793 l004 Pi/tanh(568/61*Pi) 3141592653589793 l004 Pi/tanh(987/106*Pi) 3141592653589793 l004 Pi/tanh(419/45*Pi) 3141592653589793 l004 Pi/tanh(1108/119*Pi) 3141592653589793 l004 Pi/tanh(689/74*Pi) 3141592653589793 l004 Pi/tanh(959/103*Pi) 3141592653589793 l004 Pi/tanh(270/29*Pi) 3141592653589793 l004 Pi/tanh(931/100*Pi) 3141592653589793 l004 Pi/tanh(661/71*Pi) 3141592653589793 l004 Pi/tanh(1052/113*Pi) 3141592653589793 l004 Pi/tanh(391/42*Pi) 3141592653589793 l004 Pi/tanh(903/97*Pi) 3141592653589793 l004 Pi/tanh(512/55*Pi) 3141592653589793 l004 Pi/tanh(633/68*Pi) 3141592653589793 l004 Pi/tanh(754/81*Pi) 3141592653589793 l004 Pi/tanh(875/94*Pi) 3141592653589793 l004 Pi/tanh(996/107*Pi) 3141592653589793 l004 Pi/tanh(1117/120*Pi) 3141592653589793 l004 Pi/tanh(121/13*Pi) 3141592653589793 l004 Pi/tanh(1061/114*Pi) 3141592653589793 l004 Pi/tanh(940/101*Pi) 3141592653589793 l004 Pi/tanh(819/88*Pi) 3141592653589793 l004 Pi/tanh(698/75*Pi) 3141592653589793 l004 Pi/tanh(577/62*Pi) 3141592653589793 l004 Pi/tanh(1033/111*Pi) 3141592653589793 l004 Pi/tanh(456/49*Pi) 3141592653589793 l004 Pi/tanh(791/85*Pi) 3141592653589793 l004 Pi/tanh(335/36*Pi) 3141592653589793 l004 Pi/tanh(884/95*Pi) 3141592653589793 l004 Pi/tanh(549/59*Pi) 3141592653589793 l004 Pi/tanh(763/82*Pi) 3141592653589793 l004 Pi/tanh(977/105*Pi) 3141592653589793 l004 Pi/tanh(214/23*Pi) 3141592653589793 l004 Pi/tanh(949/102*Pi) 3141592653589793 l004 Pi/tanh(735/79*Pi) 3141592653589793 l004 Pi/tanh(521/56*Pi) 3141592653589793 l004 Pi/tanh(828/89*Pi) 3141592653589793 l004 Pi/tanh(307/33*Pi) 3141592653589793 l004 Pi/tanh(1014/109*Pi) 3141592653589793 l004 Pi/tanh(707/76*Pi) 3141592653589793 l004 Pi/tanh(1107/119*Pi) 3141592653589793 l004 Pi/tanh(400/43*Pi) 3141592653589793 l004 Pi/tanh(893/96*Pi) 3141592653589793 l004 Pi/tanh(493/53*Pi) 3141592653589793 l004 Pi/tanh(1079/116*Pi) 3141592653589793 l004 Pi/tanh(586/63*Pi) 3141592653589793 l004 Pi/tanh(679/73*Pi) 3141592653589793 l004 Pi/tanh(772/83*Pi) 3141592653589793 l004 Pi/tanh(865/93*Pi) 3141592653589793 l004 Pi/tanh(958/103*Pi) 3141592653589793 l004 Pi/tanh(1051/113*Pi) 3141592653589793 l004 Pi/tanh(93/10*Pi) 3141592653589793 l004 Pi/tanh(1088/117*Pi) 3141592653589793 l004 Pi/tanh(995/107*Pi) 3141592653589793 l004 Pi/tanh(902/97*Pi) 3141592653589793 l004 Pi/tanh(809/87*Pi) 3141592653589793 l004 Pi/tanh(716/77*Pi) 3141592653589793 l004 Pi/tanh(623/67*Pi) 3141592653589793 l004 Pi/tanh(530/57*Pi) 3141592653589793 l004 Pi/tanh(967/104*Pi) 3141592653589793 l004 Pi/tanh(437/47*Pi) 3141592653589793 l004 Pi/tanh(781/84*Pi) 3141592653589793 l004 Pi/tanh(344/37*Pi) 3141592653589793 l004 Pi/tanh(939/101*Pi) 3141592653589793 l004 Pi/tanh(595/64*Pi) 3141592653589793 l004 Pi/tanh(846/91*Pi) 3141592653589793 l004 Pi/tanh(1097/118*Pi) 3141592653589793 l004 Pi/tanh(251/27*Pi) 3141592653589793 l004 Pi/tanh(911/98*Pi) 3141592653589793 l004 Pi/tanh(660/71*Pi) 3141592653589793 l004 Pi/tanh(1069/115*Pi) 3141592653589793 l004 Pi/tanh(409/44*Pi) 3141592653589793 l004 Pi/tanh(976/105*Pi) 3141592653589793 l004 Pi/tanh(567/61*Pi) 3141592653589793 l004 Pi/tanh(725/78*Pi) 3141592653589793 l004 Pi/tanh(883/95*Pi) 3141592653589793 l004 Pi/tanh(1041/112*Pi) 3141592653589793 l004 Pi/tanh(158/17*Pi) 3141592653589793 l004 Pi/tanh(1013/109*Pi) 3141592653589793 l004 Pi/tanh(855/92*Pi) 3141592653589793 l004 Pi/tanh(697/75*Pi) 3141592653589793 l004 Pi/tanh(539/58*Pi) 3141592653589793 l004 Pi/tanh(920/99*Pi) 3141592653589793 l004 Pi/tanh(381/41*Pi) 3141592653589793 l004 Pi/tanh(985/106*Pi) 3141592653589793 l004 Pi/tanh(604/65*Pi) 3141592653589793 l004 Pi/tanh(827/89*Pi) 3141592653589793 l004 Pi/tanh(1050/113*Pi) 3141592653589793 l004 Pi/tanh(223/24*Pi) 3141592653589793 l004 Pi/tanh(957/103*Pi) 3141592653589793 l004 Pi/tanh(734/79*Pi) 3141592653589793 l004 Pi/tanh(511/55*Pi) 3141592653589793 l004 Pi/tanh(799/86*Pi) 3141592653589793 l004 Pi/tanh(1087/117*Pi) 3141592653589793 l004 Pi/tanh(288/31*Pi) 3141592653589793 l004 Pi/tanh(929/100*Pi) 3141592653589793 l004 Pi/tanh(641/69*Pi) 3141592653589793 l004 Pi/tanh(994/107*Pi) 3141592653589793 l004 Pi/tanh(353/38*Pi) 3141592653589793 l004 Pi/tanh(771/83*Pi) 3141592653589793 l004 Pi/tanh(418/45*Pi) 3141592653589793 l004 Pi/tanh(901/97*Pi) 3141592653589793 l004 Pi/tanh(483/52*Pi) 3141592653589793 l004 Pi/tanh(1031/111*Pi) 3141592653589793 l004 Pi/tanh(548/59*Pi) 3141592653589793 l004 Pi/tanh(613/66*Pi) 3141592653589793 l004 Pi/tanh(678/73*Pi) 3141592653589793 l004 Pi/tanh(743/80*Pi) 3141592653589793 l004 Pi/tanh(808/87*Pi) 3141592653589793 l004 Pi/tanh(873/94*Pi) 3141592653589793 l004 Pi/tanh(938/101*Pi) 3141592653589793 l004 Pi/tanh(1003/108*Pi) 3141592653589793 l004 Pi/tanh(1068/115*Pi) 3141592653589793 l004 Pi/tanh(65/7*Pi) 3141592653589793 l004 Pi/tanh(1077/116*Pi) 3141592653589793 l004 Pi/tanh(1012/109*Pi) 3141592653589793 l004 Pi/tanh(947/102*Pi) 3141592653589793 l004 Pi/tanh(882/95*Pi) 3141592653589793 l004 Pi/tanh(817/88*Pi) 3141592653589793 l004 Pi/tanh(752/81*Pi) 3141592653589793 l004 Pi/tanh(687/74*Pi) 3141592653589793 l004 Pi/tanh(622/67*Pi) 3141592653589793 l004 Pi/tanh(557/60*Pi) 3141592653589793 l004 Pi/tanh(1049/113*Pi) 3141592653589793 l004 Pi/tanh(492/53*Pi) 3141592653589793 l004 Pi/tanh(919/99*Pi) 3141592653589793 l004 Pi/tanh(427/46*Pi) 3141592653589793 l004 Pi/tanh(789/85*Pi) 3141592653589793 l004 Pi/tanh(362/39*Pi) 3141592653589793 l004 Pi/tanh(1021/110*Pi) 3141592653589793 l004 Pi/tanh(659/71*Pi) 3141592653589793 l004 Pi/tanh(956/103*Pi) 3141592653589793 l004 Pi/tanh(297/32*Pi) 3141592653589793 l004 Pi/tanh(826/89*Pi) 3141592653589793 l004 Pi/tanh(529/57*Pi) 3141592653589793 l004 Pi/tanh(761/82*Pi) 3141592653589793 l004 Pi/tanh(993/107*Pi) 3141592653589793 l004 Pi/tanh(232/25*Pi) 3141592653589793 l004 Pi/tanh(1095/118*Pi) 3141592653589793 l004 Pi/tanh(863/93*Pi) 3141592653589793 l004 Pi/tanh(631/68*Pi) 3141592653589793 l004 Pi/tanh(1030/111*Pi) 3141592653589793 l004 Pi/tanh(399/43*Pi) 3141592653589793 l004 Pi/tanh(965/104*Pi) 3141592653589793 l004 Pi/tanh(566/61*Pi) 3141592653589793 l004 Pi/tanh(733/79*Pi) 3141592653589793 l004 Pi/tanh(900/97*Pi) 3141592653589793 l004 Pi/tanh(1067/115*Pi) 3141592653589793 l004 Pi/tanh(167/18*Pi) 3141592653589793 l004 Pi/tanh(1104/119*Pi) 3141592653589793 l004 Pi/tanh(937/101*Pi) 3141592653589793 l004 Pi/tanh(770/83*Pi) 3141592653589793 l004 Pi/tanh(603/65*Pi) 3141592653589793 l004 Pi/tanh(1039/112*Pi) 3141592653589793 l004 Pi/tanh(436/47*Pi) 3141592653589793 l004 Pi/tanh(705/76*Pi) 3141592653589793 l004 Pi/tanh(974/105*Pi) 3141592653589793 l004 Pi/tanh(269/29*Pi) 3141592653589793 l004 Pi/tanh(909/98*Pi) 3141592653589793 l004 Pi/tanh(640/69*Pi) 3141592653589793 l004 Pi/tanh(1011/109*Pi) 3141592653589793 l004 Pi/tanh(371/40*Pi) 3141592653589793 l004 Pi/tanh(844/91*Pi) 3141592653589793 l004 Pi/tanh(473/51*Pi) 3141592653589793 l004 Pi/tanh(1048/113*Pi) 3141592653589793 l004 Pi/tanh(575/62*Pi) 3141592653589793 l004 Pi/tanh(677/73*Pi) 3141592653589793 l004 Pi/tanh(779/84*Pi) 3141592653589793 l004 Pi/tanh(881/95*Pi) 3141592653589793 l004 Pi/tanh(983/106*Pi) 3141592653589793 l004 Pi/tanh(1085/117*Pi) 3141592653589793 l004 Pi/tanh(102/11*Pi) 3141592653589793 l004 Pi/tanh(1057/114*Pi) 3141592653589793 l004 Pi/tanh(955/103*Pi) 3141592653589793 l004 Pi/tanh(853/92*Pi) 3141592653589793 l004 Pi/tanh(751/81*Pi) 3141592653589793 l004 Pi/tanh(649/70*Pi) 3141592653589793 l004 Pi/tanh(547/59*Pi) 3141592653589793 l004 Pi/tanh(992/107*Pi) 3141592653589793 l004 Pi/tanh(445/48*Pi) 3141592653589793 l004 Pi/tanh(788/85*Pi) 3141592653589793 l004 Pi/tanh(343/37*Pi) 3141592653589793 l004 Pi/tanh(927/100*Pi) 3141592653589793 l004 Pi/tanh(584/63*Pi) 3141592653589793 l004 Pi/tanh(825/89*Pi) 3141592653589793 l004 Pi/tanh(1066/115*Pi) 3141592653589793 l004 Pi/tanh(241/26*Pi) 3141592653589793 l004 Pi/tanh(1103/119*Pi) 3141592653589793 l004 Pi/tanh(862/93*Pi) 3141592653589793 l004 Pi/tanh(621/67*Pi) 3141592653589793 l004 Pi/tanh(1001/108*Pi) 3141592653589793 l004 Pi/tanh(380/41*Pi) 3141592653589793 l004 Pi/tanh(899/97*Pi) 3141592653589793 l004 Pi/tanh(519/56*Pi) 3141592653589793 l004 Pi/tanh(658/71*Pi) 3141592653589793 l004 Pi/tanh(797/86*Pi) 3141592653589793 l004 Pi/tanh(936/101*Pi) 3141592653589793 l004 Pi/tanh(1075/116*Pi) 3141592653589793 l004 Pi/tanh(139/15*Pi) 3141592653589793 l004 Pi/tanh(1010/109*Pi) 3141592653589793 l004 Pi/tanh(871/94*Pi) 3141592653589793 l004 Pi/tanh(732/79*Pi) 3141592653589793 l004 Pi/tanh(593/64*Pi) 3141592653589793 l004 Pi/tanh(1047/113*Pi) 3141592653589793 l004 Pi/tanh(454/49*Pi) 3141592653589793 l004 Pi/tanh(769/83*Pi) 3141592653589793 l004 Pi/tanh(1084/117*Pi) 3141592653589793 l004 Pi/tanh(315/34*Pi) 3141592653589793 l004 Pi/tanh(806/87*Pi) 3141592653589793 l004 Pi/tanh(491/53*Pi) 3141592653589793 l004 Pi/tanh(667/72*Pi) 3141592653589793 l004 Pi/tanh(843/91*Pi) 3141592653589793 l004 Pi/tanh(1019/110*Pi) 3141592653589793 l004 Pi/tanh(176/19*Pi) 3141592653589793 l004 Pi/tanh(1093/118*Pi) 3141592653589793 l004 Pi/tanh(917/99*Pi) 3141592653589793 l004 Pi/tanh(741/80*Pi) 3141592653589793 l004 Pi/tanh(565/61*Pi) 3141592653589793 l004 Pi/tanh(954/103*Pi) 3141592653589793 l004 Pi/tanh(389/42*Pi) 3141592653589793 l004 Pi/tanh(991/107*Pi) 3141592653589793 l004 Pi/tanh(602/65*Pi) 3141592653589793 l004 Pi/tanh(815/88*Pi) 3141592653589793 l004 Pi/tanh(1028/111*Pi) 3141592653589793 l004 Pi/tanh(213/23*Pi) 3141592653589793 l004 Pi/tanh(1102/119*Pi) 3141592653589793 l004 Pi/tanh(889/96*Pi) 3141592653589793 l004 Pi/tanh(676/73*Pi) 3141592653589793 l004 Pi/tanh(463/50*Pi) 3141592653589793 l004 Pi/tanh(713/77*Pi) 3141592653589793 l004 Pi/tanh(963/104*Pi) 3141592653589793 l004 Pi/tanh(250/27*Pi) 3141592653589793 l004 Pi/tanh(1037/112*Pi) 3141592653589793 l004 Pi/tanh(787/85*Pi) 3141592653589793 l004 Pi/tanh(537/58*Pi) 3141592653589793 l004 Pi/tanh(824/89*Pi) 3141592653589793 l004 Pi/tanh(1111/120*Pi) 3141592653589793 l004 Pi/tanh(287/31*Pi) 3141592653589793 l004 Pi/tanh(898/97*Pi) 3141592653589793 l004 Pi/tanh(611/66*Pi) 3141592653589793 l004 Pi/tanh(935/101*Pi) 3141592653589793 l004 Pi/tanh(324/35*Pi) 3141592653589793 l004 Pi/tanh(1009/109*Pi) 3141592653589793 l004 Pi/tanh(685/74*Pi) 3141592653589793 l004 Pi/tanh(1046/113*Pi) 3141592653589793 l004 Pi/tanh(361/39*Pi) 3141592653589793 l004 Pi/tanh(759/82*Pi) 3141592653589793 l004 Pi/tanh(398/43*Pi) 3141592653589793 l004 Pi/tanh(833/90*Pi) 3141592653589793 l004 Pi/tanh(435/47*Pi) 3141592653589793 l004 Pi/tanh(907/98*Pi) 3141592653589793 l004 Pi/tanh(472/51*Pi) 3141592653589793 l004 Pi/tanh(981/106*Pi) 3141592653589793 l004 Pi/tanh(509/55*Pi) 3141592653589793 l004 Pi/tanh(1055/114*Pi) 3141592653589793 l004 Pi/tanh(546/59*Pi) 3141592653589793 l004 Pi/tanh(583/63*Pi) 3141592653589793 l004 Pi/tanh(620/67*Pi) 3141592653589793 l004 Pi/tanh(657/71*Pi) 3141592653589793 l004 Pi/tanh(694/75*Pi) 3141592653589793 l004 Pi/tanh(731/79*Pi) 3141592653589793 l004 Pi/tanh(768/83*Pi) 3141592653589793 l004 Pi/tanh(805/87*Pi) 3141592653589793 l004 Pi/tanh(842/91*Pi) 3141592653589793 l004 Pi/tanh(879/95*Pi) 3141592653589793 l004 Pi/tanh(916/99*Pi) 3141592653589793 l004 Pi/tanh(953/103*Pi) 3141592653589793 l004 Pi/tanh(990/107*Pi) 3141592653589793 l004 Pi/tanh(1027/111*Pi) 3141592653589793 l004 Pi/tanh(1064/115*Pi) 3141592653589793 l004 Pi/tanh(1101/119*Pi) 3141592653589793 l004 Pi/tanh(37/4*Pi) 3141592653589793 l004 Pi/tanh(1082/117*Pi) 3141592653589793 l004 Pi/tanh(1045/113*Pi) 3141592653589793 l004 Pi/tanh(1008/109*Pi) 3141592653589793 l004 Pi/tanh(971/105*Pi) 3141592653589793 l004 Pi/tanh(934/101*Pi) 3141592653589793 l004 Pi/tanh(897/97*Pi) 3141592653589793 l004 Pi/tanh(860/93*Pi) 3141592653589793 l004 Pi/tanh(823/89*Pi) 3141592653589793 l004 Pi/tanh(786/85*Pi) 3141592653589793 l004 Pi/tanh(749/81*Pi) 3141592653589793 l004 Pi/tanh(712/77*Pi) 3141592653589793 l004 Pi/tanh(675/73*Pi) 3141592653589793 l004 Pi/tanh(638/69*Pi) 3141592653589793 l004 Pi/tanh(601/65*Pi) 3141592653589793 l004 Pi/tanh(564/61*Pi) 3141592653589793 l004 Pi/tanh(1091/118*Pi) 3141592653589793 l004 Pi/tanh(527/57*Pi) 3141592653589793 l004 Pi/tanh(1017/110*Pi) 3141592653589793 l004 Pi/tanh(490/53*Pi) 3141592653589793 l004 Pi/tanh(943/102*Pi) 3141592653589793 l004 Pi/tanh(453/49*Pi) 3141592653589793 l004 Pi/tanh(869/94*Pi) 3141592653589793 l004 Pi/tanh(416/45*Pi) 3141592653589793 l004 Pi/tanh(795/86*Pi) 3141592653589793 l004 Pi/tanh(379/41*Pi) 3141592653589793 l004 Pi/tanh(1100/119*Pi) 3141592653589793 l004 Pi/tanh(721/78*Pi) 3141592653589793 l004 Pi/tanh(1063/115*Pi) 3141592653589793 l004 Pi/tanh(342/37*Pi) 3141592653589793 l004 Pi/tanh(989/107*Pi) 3141592653589793 l004 Pi/tanh(647/70*Pi) 3141592653589793 l004 Pi/tanh(952/103*Pi) 3141592653589793 l004 Pi/tanh(305/33*Pi) 3141592653589793 l004 Pi/tanh(878/95*Pi) 3141592653589793 l004 Pi/tanh(573/62*Pi) 3141592653589793 l004 Pi/tanh(841/91*Pi) 3141592653589793 l004 Pi/tanh(1109/120*Pi) 3141592653589793 l004 Pi/tanh(268/29*Pi) 3141592653589793 l004 Pi/tanh(1035/112*Pi) 3141592653589793 l004 Pi/tanh(767/83*Pi) 3141592653589793 l004 Pi/tanh(499/54*Pi) 3141592653589793 l004 Pi/tanh(730/79*Pi) 3141592653589793 l004 Pi/tanh(961/104*Pi) 3141592653589793 l004 Pi/tanh(231/25*Pi) 3141592653589793 l004 Pi/tanh(887/96*Pi) 3141592653589793 l004 Pi/tanh(656/71*Pi) 3141592653589793 l004 Pi/tanh(1081/117*Pi) 3141592653589793 l004 Pi/tanh(425/46*Pi) 3141592653589793 l004 Pi/tanh(1044/113*Pi) 3141592653589793 l004 Pi/tanh(619/67*Pi) 3141592653589793 l004 Pi/tanh(813/88*Pi) 3141592653589793 l004 Pi/tanh(1007/109*Pi) 3141592653589793 l004 Pi/tanh(194/21*Pi) 3141592653589793 l004 Pi/tanh(933/101*Pi) 3141592653589793 l004 Pi/tanh(739/80*Pi) 3141592653589793 l004 Pi/tanh(545/59*Pi) 3141592653589793 l004 Pi/tanh(896/97*Pi) 3141592653589793 l004 Pi/tanh(351/38*Pi) 3141592653589793 l004 Pi/tanh(859/93*Pi) 3141592653589793 l004 Pi/tanh(508/55*Pi) 3141592653589793 l004 Pi/tanh(665/72*Pi) 3141592653589793 l004 Pi/tanh(822/89*Pi) 3141592653589793 l004 Pi/tanh(979/106*Pi) 3141592653589793 l004 Pi/tanh(157/17*Pi) 3141592653589793 l004 Pi/tanh(1062/115*Pi) 3141592653589793 l004 Pi/tanh(905/98*Pi) 3141592653589793 l004 Pi/tanh(748/81*Pi) 3141592653589793 l004 Pi/tanh(591/64*Pi) 3141592653589793 l004 Pi/tanh(1025/111*Pi) 3141592653589793 l004 Pi/tanh(434/47*Pi) 3141592653589793 l004 Pi/tanh(711/77*Pi) 3141592653589793 l004 Pi/tanh(988/107*Pi) 3141592653589793 l004 Pi/tanh(277/30*Pi) 3141592653589793 l004 Pi/tanh(951/103*Pi) 3141592653589793 l004 Pi/tanh(674/73*Pi) 3141592653589793 l004 Pi/tanh(1071/116*Pi) 3141592653589793 l004 Pi/tanh(397/43*Pi) 3141592653589793 l004 Pi/tanh(914/99*Pi) 3141592653589793 l004 Pi/tanh(517/56*Pi) 3141592653589793 l004 Pi/tanh(637/69*Pi) 3141592653589793 l004 Pi/tanh(757/82*Pi) 3141592653589793 l004 Pi/tanh(877/95*Pi) 3141592653589793 l004 Pi/tanh(997/108*Pi) 3141592653589793 l004 Pi/tanh(120/13*Pi) 3141592653589793 l004 Pi/tanh(1043/113*Pi) 3141592653589793 l004 Pi/tanh(923/100*Pi) 3141592653589793 l004 Pi/tanh(803/87*Pi) 3141592653589793 l004 Pi/tanh(683/74*Pi) 3141592653589793 l004 Pi/tanh(563/61*Pi) 3141592653589793 l004 Pi/tanh(1006/109*Pi) 3141592653589793 l004 Pi/tanh(443/48*Pi) 3141592653589793 l004 Pi/tanh(766/83*Pi) 3141592653589793 l004 Pi/tanh(1089/118*Pi) 3141592653589793 l004 Pi/tanh(323/35*Pi) 3141592653589793 l004 Pi/tanh(849/92*Pi) 3141592653589793 l004 Pi/tanh(526/57*Pi) 3141592653589793 l004 Pi/tanh(729/79*Pi) 3141592653589793 l004 Pi/tanh(932/101*Pi) 3141592653589793 l004 Pi/tanh(203/22*Pi) 3141592653589793 l004 Pi/tanh(1098/119*Pi) 3141592653589793 l004 Pi/tanh(895/97*Pi) 3141592653589793 l004 Pi/tanh(692/75*Pi) 3141592653589793 l004 Pi/tanh(489/53*Pi) 3141592653589793 l004 Pi/tanh(775/84*Pi) 3141592653589793 l004 Pi/tanh(1061/115*Pi) 3141592653589793 l004 Pi/tanh(286/31*Pi) 3141592653589793 l004 Pi/tanh(941/102*Pi) 3141592653589793 l004 Pi/tanh(655/71*Pi) 3141592653589793 l004 Pi/tanh(1024/111*Pi) 3141592653589793 l004 Pi/tanh(369/40*Pi) 3141592653589793 l004 Pi/tanh(821/89*Pi) 3141592653589793 l004 Pi/tanh(452/49*Pi) 3141592653589793 l004 Pi/tanh(987/107*Pi) 3141592653589793 l004 Pi/tanh(535/58*Pi) 3141592653589793 l004 Pi/tanh(618/67*Pi) 3141592653589793 l004 Pi/tanh(701/76*Pi) 3141592653589793 l004 Pi/tanh(784/85*Pi) 3141592653589793 l004 Pi/tanh(867/94*Pi) 3141592653589793 l004 Pi/tanh(950/103*Pi) 3141592653589793 l004 Pi/tanh(1033/112*Pi) 3141592653589793 l004 Pi/tanh(83/9*Pi) 3141592653589793 l004 Pi/tanh(1042/113*Pi) 3141592653589793 l004 Pi/tanh(959/104*Pi) 3141592653589793 l004 Pi/tanh(876/95*Pi) 3141592653589793 l004 Pi/tanh(793/86*Pi) 3141592653589793 l004 Pi/tanh(710/77*Pi) 3141592653589793 l004 Pi/tanh(627/68*Pi) 3141592653589793 l004 Pi/tanh(544/59*Pi) 3141592653589793 l004 Pi/tanh(1005/109*Pi) 3141592653589793 l004 Pi/tanh(461/50*Pi) 3141592653589793 l004 Pi/tanh(839/91*Pi) 3141592653589793 l004 Pi/tanh(378/41*Pi) 3141592653589793 l004 Pi/tanh(1051/114*Pi) 3141592653589793 l004 Pi/tanh(673/73*Pi) 3141592653589793 l004 Pi/tanh(968/105*Pi) 3141592653589793 l004 Pi/tanh(295/32*Pi) 3141592653589793 l004 Pi/tanh(1097/119*Pi) 3141592653589793 l004 Pi/tanh(802/87*Pi) 3141592653589793 l004 Pi/tanh(507/55*Pi) 3141592653589793 l004 Pi/tanh(719/78*Pi) 3141592653589793 l004 Pi/tanh(931/101*Pi) 3141592653589793 l004 Pi/tanh(212/23*Pi) 3141592653589793 l004 Pi/tanh(977/106*Pi) 3141592653589793 l004 Pi/tanh(765/83*Pi) 3141592653589793 l004 Pi/tanh(553/60*Pi) 3141592653589793 l004 Pi/tanh(894/97*Pi) 3141592653589793 l004 Pi/tanh(341/37*Pi) 3141592653589793 l004 Pi/tanh(811/88*Pi) 3141592653589793 l004 Pi/tanh(470/51*Pi) 3141592653589793 l004 Pi/tanh(1069/116*Pi) 3141592653589793 l004 Pi/tanh(599/65*Pi) 3141592653589793 l004 Pi/tanh(728/79*Pi) 3141592653589793 l004 Pi/tanh(857/93*Pi) 3141592653589793 l004 Pi/tanh(986/107*Pi) 3141592653589793 l004 Pi/tanh(129/14*Pi) 3141592653589793 l004 Pi/tanh(1078/117*Pi) 3141592653589793 l004 Pi/tanh(949/103*Pi) 3141592653589793 l004 Pi/tanh(820/89*Pi) 3141592653589793 l004 Pi/tanh(691/75*Pi) 3141592653589793 l004 Pi/tanh(562/61*Pi) 3141592653589793 l004 Pi/tanh(995/108*Pi) 3141592653589793 l004 Pi/tanh(433/47*Pi) 3141592653589793 l004 Pi/tanh(737/80*Pi) 3141592653589793 l004 Pi/tanh(1041/113*Pi) 3141592653589793 l004 Pi/tanh(304/33*Pi) 3141592653589793 l004 Pi/tanh(1087/118*Pi) 3141592653589793 l004 Pi/tanh(783/85*Pi) 3141592653589793 l004 Pi/tanh(479/52*Pi) 3141592653589793 l004 Pi/tanh(654/71*Pi) 3141592653589793 l004 Pi/tanh(829/90*Pi) 3141592653589793 l004 Pi/tanh(1004/109*Pi) 3141592653589793 l004 Pi/tanh(175/19*Pi) 3141592653589793 l004 Pi/tanh(1096/119*Pi) 3141592653589793 l004 Pi/tanh(921/100*Pi) 3141592653589793 l004 Pi/tanh(746/81*Pi) 3141592653589793 l004 Pi/tanh(571/62*Pi) 3141592653589793 l004 Pi/tanh(967/105*Pi) 3141592653589793 l004 Pi/tanh(396/43*Pi) 3141592653589793 l004 Pi/tanh(1013/110*Pi) 3141592653589793 l004 Pi/tanh(617/67*Pi) 3141592653589793 l004 Pi/tanh(838/91*Pi) 3141592653589793 l004 Pi/tanh(1059/115*Pi) 3141592653589793 l004 Pi/tanh(221/24*Pi) 3141592653589793 l004 Pi/tanh(930/101*Pi) 3141592653589793 l004 Pi/tanh(709/77*Pi) 3141592653589793 l004 Pi/tanh(488/53*Pi) 3141592653589793 l004 Pi/tanh(755/82*Pi) 3141592653589793 l004 Pi/tanh(1022/111*Pi) 3141592653589793 l004 Pi/tanh(267/29*Pi) 3141592653589793 l004 Pi/tanh(847/92*Pi) 3141592653589793 l004 Pi/tanh(580/63*Pi) 3141592653589793 l004 Pi/tanh(893/97*Pi) 3141592653589793 l004 Pi/tanh(313/34*Pi) 3141592653589793 l004 Pi/tanh(985/107*Pi) 3141592653589793 l004 Pi/tanh(672/73*Pi) 3141592653589793 l004 Pi/tanh(1031/112*Pi) 3141592653589793 l004 Pi/tanh(359/39*Pi) 3141592653589793 l004 Pi/tanh(764/83*Pi) 3141592653589793 l004 Pi/tanh(405/44*Pi) 3141592653589793 l004 Pi/tanh(856/93*Pi) 3141592653589793 l004 Pi/tanh(451/49*Pi) 3141592653589793 l004 Pi/tanh(948/103*Pi) 3141592653589793 l004 Pi/tanh(497/54*Pi) 3141592653589793 l004 Pi/tanh(1040/113*Pi) 3141592653589793 l004 Pi/tanh(543/59*Pi) 3141592653589793 l004 Pi/tanh(589/64*Pi) 3141592653589793 l004 Pi/tanh(635/69*Pi) 3141592653589793 l004 Pi/tanh(681/74*Pi) 3141592653589793 l004 Pi/tanh(727/79*Pi) 3141592653589793 l004 Pi/tanh(773/84*Pi) 3141592653589793 l004 Pi/tanh(819/89*Pi) 3141592653589793 l004 Pi/tanh(865/94*Pi) 3141592653589793 l004 Pi/tanh(911/99*Pi) 3141592653589793 l004 Pi/tanh(957/104*Pi) 3141592653589793 l004 Pi/tanh(1003/109*Pi) 3141592653589793 l004 Pi/tanh(1049/114*Pi) 3141592653589793 l004 Pi/tanh(1095/119*Pi) 3141592653589793 l004 Pi/tanh(46/5*Pi) 3141592653589793 l004 Pi/tanh(1067/116*Pi) 3141592653589793 l004 Pi/tanh(1021/111*Pi) 3141592653589793 l004 Pi/tanh(975/106*Pi) 3141592653589793 l004 Pi/tanh(929/101*Pi) 3141592653589793 l004 Pi/tanh(883/96*Pi) 3141592653589793 l004 Pi/tanh(837/91*Pi) 3141592653589793 l004 Pi/tanh(791/86*Pi) 3141592653589793 l004 Pi/tanh(745/81*Pi) 3141592653589793 l004 Pi/tanh(699/76*Pi) 3141592653589793 l004 Pi/tanh(653/71*Pi) 3141592653589793 l004 Pi/tanh(607/66*Pi) 3141592653589793 l004 Pi/tanh(561/61*Pi) 3141592653589793 l004 Pi/tanh(1076/117*Pi) 3141592653589793 l004 Pi/tanh(515/56*Pi) 3141592653589793 l004 Pi/tanh(984/107*Pi) 3141592653589793 l004 Pi/tanh(469/51*Pi) 3141592653589793 l004 Pi/tanh(892/97*Pi) 3141592653589793 l004 Pi/tanh(423/46*Pi) 3141592653589793 l004 Pi/tanh(800/87*Pi) 3141592653589793 l004 Pi/tanh(377/41*Pi) 3141592653589793 l004 Pi/tanh(1085/118*Pi) 3141592653589793 l004 Pi/tanh(708/77*Pi) 3141592653589793 l004 Pi/tanh(1039/113*Pi) 3141592653589793 l004 Pi/tanh(331/36*Pi) 3141592653589793 l004 Pi/tanh(947/103*Pi) 3141592653589793 l004 Pi/tanh(616/67*Pi) 3141592653589793 l004 Pi/tanh(901/98*Pi) 3141592653589793 l004 Pi/tanh(285/31*Pi) 3141592653589793 l004 Pi/tanh(1094/119*Pi) 3141592653589793 l004 Pi/tanh(809/88*Pi) 3141592653589793 l004 Pi/tanh(524/57*Pi) 3141592653589793 l004 Pi/tanh(763/83*Pi) 3141592653589793 l004 Pi/tanh(1002/109*Pi) 3141592653589793 l004 Pi/tanh(239/26*Pi) 3141592653589793 l004 Pi/tanh(910/99*Pi) 3141592653589793 l004 Pi/tanh(671/73*Pi) 3141592653589793 l004 Pi/tanh(1103/120*Pi) 3141592653589793 l004 Pi/tanh(432/47*Pi) 3141592653589793 l004 Pi/tanh(1057/115*Pi) 3141592653589793 l004 Pi/tanh(625/68*Pi) 3141592653589793 l004 Pi/tanh(818/89*Pi) 3141592653589793 l004 Pi/tanh(1011/110*Pi) 3141592653589793 l004 Pi/tanh(193/21*Pi) 3141592653589793 l004 Pi/tanh(919/100*Pi) 3141592653589793 l004 Pi/tanh(726/79*Pi) 3141592653589793 l004 Pi/tanh(533/58*Pi) 3141592653589793 l004 Pi/tanh(873/95*Pi) 3141592653589793 l004 Pi/tanh(340/37*Pi) 3141592653589793 l004 Pi/tanh(827/90*Pi) 3141592653589793 l004 Pi/tanh(487/53*Pi) 3141592653589793 l004 Pi/tanh(634/69*Pi) 3141592653589793 l004 Pi/tanh(781/85*Pi) 3141592653589793 l004 Pi/tanh(928/101*Pi) 3141592653589793 l004 Pi/tanh(1075/117*Pi) 3141592653589793 l004 Pi/tanh(147/16*Pi) 3141592653589793 l004 Pi/tanh(983/107*Pi) 3141592653589793 l004 Pi/tanh(836/91*Pi) 3141592653589793 l004 Pi/tanh(689/75*Pi) 3141592653589793 l004 Pi/tanh(542/59*Pi) 3141592653589793 l004 Pi/tanh(937/102*Pi) 3141592653589793 l004 Pi/tanh(395/43*Pi) 3141592653589793 l004 Pi/tanh(1038/113*Pi) 3141592653589793 l004 Pi/tanh(643/70*Pi) 3141592653589793 l004 Pi/tanh(891/97*Pi) 3141592653589793 l004 Pi/tanh(248/27*Pi) 3141592653589793 l004 Pi/tanh(1093/119*Pi) 3141592653589793 l004 Pi/tanh(845/92*Pi) 3141592653589793 l004 Pi/tanh(597/65*Pi) 3141592653589793 l004 Pi/tanh(946/103*Pi) 3141592653589793 l004 Pi/tanh(349/38*Pi) 3141592653589793 l004 Pi/tanh(799/87*Pi) 3141592653589793 l004 Pi/tanh(450/49*Pi) 3141592653589793 l004 Pi/tanh(1001/109*Pi) 3141592653589793 l004 Pi/tanh(551/60*Pi) 3141592653589793 l004 Pi/tanh(652/71*Pi) 3141592653589793 l004 Pi/tanh(753/82*Pi) 3141592653589793 l004 Pi/tanh(854/93*Pi) 3141592653589793 l004 Pi/tanh(955/104*Pi) 3141592653589793 l004 Pi/tanh(1056/115*Pi) 3141592653589793 l004 Pi/tanh(101/11*Pi) 3141592653589793 l004 Pi/tanh(1065/116*Pi) 3141592653589793 l004 Pi/tanh(964/105*Pi) 3141592653589793 l004 Pi/tanh(863/94*Pi) 3141592653589793 l004 Pi/tanh(762/83*Pi) 3141592653589793 l004 Pi/tanh(661/72*Pi) 3141592653589793 l004 Pi/tanh(560/61*Pi) 3141592653589793 l004 Pi/tanh(1019/111*Pi) 3141592653589793 l004 Pi/tanh(459/50*Pi) 3141592653589793 l004 Pi/tanh(817/89*Pi) 3141592653589793 l004 Pi/tanh(358/39*Pi) 3141592653589793 l004 Pi/tanh(973/106*Pi) 3141592653589793 l004 Pi/tanh(615/67*Pi) 3141592653589793 l004 Pi/tanh(872/95*Pi) 3141592653589793 l004 Pi/tanh(257/28*Pi) 3141592653589793 l004 Pi/tanh(927/101*Pi) 3141592653589793 l004 Pi/tanh(670/73*Pi) 3141592653589793 l004 Pi/tanh(1083/118*Pi) 3141592653589793 l004 Pi/tanh(413/45*Pi) 3141592653589793 l004 Pi/tanh(982/107*Pi) 3141592653589793 l004 Pi/tanh(569/62*Pi) 3141592653589793 l004 Pi/tanh(725/79*Pi) 3141592653589793 l004 Pi/tanh(881/96*Pi) 3141592653589793 l004 Pi/tanh(1037/113*Pi) 3141592653589793 l004 Pi/tanh(156/17*Pi) 3141592653589793 l004 Pi/tanh(991/108*Pi) 3141592653589793 l004 Pi/tanh(835/91*Pi) 3141592653589793 l004 Pi/tanh(679/74*Pi) 3141592653589793 l004 Pi/tanh(523/57*Pi) 3141592653589793 l004 Pi/tanh(890/97*Pi) 3141592653589793 l004 Pi/tanh(367/40*Pi) 3141592653589793 l004 Pi/tanh(945/103*Pi) 3141592653589793 l004 Pi/tanh(578/63*Pi) 3141592653589793 l004 Pi/tanh(789/86*Pi) 3141592653589793 l004 Pi/tanh(1000/109*Pi) 3141592653589793 l004 Pi/tanh(211/23*Pi) 3141592653589793 l004 Pi/tanh(899/98*Pi) 3141592653589793 l004 Pi/tanh(688/75*Pi) 3141592653589793 l004 Pi/tanh(477/52*Pi) 3141592653589793 l004 Pi/tanh(743/81*Pi) 3141592653589793 l004 Pi/tanh(1009/110*Pi) 3141592653589793 l004 Pi/tanh(266/29*Pi) 3141592653589793 l004 Pi/tanh(853/93*Pi) 3141592653589793 l004 Pi/tanh(587/64*Pi) 3141592653589793 l004 Pi/tanh(908/99*Pi) 3141592653589793 l004 Pi/tanh(321/35*Pi) 3141592653589793 l004 Pi/tanh(1018/111*Pi) 3141592653589793 l004 Pi/tanh(697/76*Pi) 3141592653589793 l004 Pi/tanh(1073/117*Pi) 3141592653589793 l004 Pi/tanh(376/41*Pi) 3141592653589793 l004 Pi/tanh(807/88*Pi) 3141592653589793 l004 Pi/tanh(431/47*Pi) 3141592653589793 l004 Pi/tanh(917/100*Pi) 3141592653589793 l004 Pi/tanh(486/53*Pi) 3141592653589793 l004 Pi/tanh(1027/112*Pi) 3141592653589793 l004 Pi/tanh(541/59*Pi) 3141592653589793 l004 Pi/tanh(596/65*Pi) 3141592653589793 l004 Pi/tanh(651/71*Pi) 3141592653589793 l004 Pi/tanh(706/77*Pi) 3141592653589793 l004 Pi/tanh(761/83*Pi) 3141592653589793 l004 Pi/tanh(816/89*Pi) 3141592653589793 l004 Pi/tanh(871/95*Pi) 3141592653589793 l004 Pi/tanh(926/101*Pi) 3141592653589793 l004 Pi/tanh(981/107*Pi) 3141592653589793 l004 Pi/tanh(1036/113*Pi) 3141592653589793 l004 Pi/tanh(1091/119*Pi) 3141592653589793 l004 Pi/tanh(55/6*Pi) 3141592653589793 l004 Pi/tanh(1054/115*Pi) 3141592653589793 l004 Pi/tanh(999/109*Pi) 3141592653589793 l004 Pi/tanh(944/103*Pi) 3141592653589793 l004 Pi/tanh(889/97*Pi) 3141592653589793 l004 Pi/tanh(834/91*Pi) 3141592653589793 l004 Pi/tanh(779/85*Pi) 3141592653589793 l004 Pi/tanh(724/79*Pi) 3141592653589793 l004 Pi/tanh(669/73*Pi) 3141592653589793 l004 Pi/tanh(614/67*Pi) 3141592653589793 l004 Pi/tanh(559/61*Pi) 3141592653589793 l004 Pi/tanh(1063/116*Pi) 3141592653589793 l004 Pi/tanh(504/55*Pi) 3141592653589793 l004 Pi/tanh(953/104*Pi) 3141592653589793 l004 Pi/tanh(449/49*Pi) 3141592653589793 l004 Pi/tanh(843/92*Pi) 3141592653589793 l004 Pi/tanh(394/43*Pi) 3141592653589793 l004 Pi/tanh(733/80*Pi) 3141592653589793 l004 Pi/tanh(1072/117*Pi) 3141592653589793 l004 Pi/tanh(339/37*Pi) 3141592653589793 l004 Pi/tanh(962/105*Pi) 3141592653589793 l004 Pi/tanh(623/68*Pi) 3141592653589793 l004 Pi/tanh(907/99*Pi) 3141592653589793 l004 Pi/tanh(284/31*Pi) 3141592653589793 l004 Pi/tanh(1081/118*Pi) 3141592653589793 l004 Pi/tanh(797/87*Pi) 3141592653589793 l004 Pi/tanh(513/56*Pi) 3141592653589793 l004 Pi/tanh(742/81*Pi) 3141592653589793 l004 Pi/tanh(971/106*Pi) 3141592653589793 l004 Pi/tanh(229/25*Pi) 3141592653589793 l004 Pi/tanh(1090/119*Pi) 3141592653589793 l004 Pi/tanh(861/94*Pi) 3141592653589793 l004 Pi/tanh(632/69*Pi) 3141592653589793 l004 Pi/tanh(1035/113*Pi) 3141592653589793 l004 Pi/tanh(403/44*Pi) 3141592653589793 l004 Pi/tanh(980/107*Pi) 3141592653589793 l004 Pi/tanh(577/63*Pi) 3141592653589793 l004 Pi/tanh(751/82*Pi) 3141592653589793 l004 Pi/tanh(925/101*Pi) 3141592653589793 l004 Pi/tanh(1099/120*Pi) 3141592653589793 l004 Pi/tanh(174/19*Pi) 3141592653589793 l004 Pi/tanh(989/108*Pi) 3141592653589793 l004 Pi/tanh(815/89*Pi) 3141592653589793 l004 Pi/tanh(641/70*Pi) 3141592653589793 l004 Pi/tanh(467/51*Pi) 3141592653589793 l004 Pi/tanh(760/83*Pi) 3141592653589793 l004 Pi/tanh(1053/115*Pi) 3141592653589793 l004 Pi/tanh(293/32*Pi) 3141592653589793 l004 Pi/tanh(998/109*Pi) 3141592653589793 l004 Pi/tanh(705/77*Pi) 3141592653589793 l004 Pi/tanh(412/45*Pi) 3141592653589793 l004 Pi/tanh(943/103*Pi) 3141592653589793 l004 Pi/tanh(531/58*Pi) 3141592653589793 l004 Pi/tanh(650/71*Pi) 3141592653589793 l004 Pi/tanh(769/84*Pi) 3141592653589793 l004 Pi/tanh(888/97*Pi) 3141592653589793 l004 Pi/tanh(1007/110*Pi) 3141592653589793 l004 Pi/tanh(119/13*Pi) 3141592653589793 l004 Pi/tanh(1016/111*Pi) 3141592653589793 l004 Pi/tanh(897/98*Pi) 3141592653589793 l004 Pi/tanh(778/85*Pi) 3141592653589793 l004 Pi/tanh(659/72*Pi) 3141592653589793 l004 Pi/tanh(540/59*Pi) 3141592653589793 l004 Pi/tanh(961/105*Pi) 3141592653589793 l004 Pi/tanh(421/46*Pi) 3141592653589793 l004 Pi/tanh(723/79*Pi) 3141592653589793 l004 Pi/tanh(1025/112*Pi) 3141592653589793 l004 Pi/tanh(302/33*Pi) 3141592653589793 l004 Pi/tanh(1089/119*Pi) 3141592653589793 l004 Pi/tanh(787/86*Pi) 3141592653589793 l004 Pi/tanh(485/53*Pi) 3141592653589793 l004 Pi/tanh(668/73*Pi) 3141592653589793 l004 Pi/tanh(851/93*Pi) 3141592653589793 l004 Pi/tanh(1034/113*Pi) 3141592653589793 l004 Pi/tanh(183/20*Pi) 3141592653589793 l004 Pi/tanh(979/107*Pi) 3141592653589793 l004 Pi/tanh(796/87*Pi) 3141592653589793 l004 Pi/tanh(613/67*Pi) 3141592653589793 l004 Pi/tanh(1043/114*Pi) 3141592653589793 l004 Pi/tanh(430/47*Pi) 3141592653589793 l004 Pi/tanh(677/74*Pi) 3141592653589793 l004 Pi/tanh(924/101*Pi) 3141592653589793 l004 Pi/tanh(247/27*Pi) 3141592653589793 l004 Pi/tanh(1052/115*Pi) 3141592653589793 l004 Pi/tanh(805/88*Pi) 3141592653589793 l004 Pi/tanh(558/61*Pi) 3141592653589793 l004 Pi/tanh(869/95*Pi) 3141592653589793 l004 Pi/tanh(311/34*Pi) 3141592653589793 l004 Pi/tanh(997/109*Pi) 3141592653589793 l004 Pi/tanh(686/75*Pi) 3141592653589793 l004 Pi/tanh(1061/116*Pi) 3141592653589793 l004 Pi/tanh(375/41*Pi) 3141592653589793 l004 Pi/tanh(814/89*Pi) 3141592653589793 l004 Pi/tanh(439/48*Pi) 3141592653589793 l004 Pi/tanh(942/103*Pi) 3141592653589793 l004 Pi/tanh(503/55*Pi) 3141592653589793 l004 Pi/tanh(1070/117*Pi) 3141592653589793 l004 Pi/tanh(567/62*Pi) 3141592653589793 l004 Pi/tanh(631/69*Pi) 3141592653589793 l004 Pi/tanh(695/76*Pi) 3141592653589793 l004 Pi/tanh(759/83*Pi) 3141592653589793 l004 Pi/tanh(823/90*Pi) 3141592653589793 l004 Pi/tanh(887/97*Pi) 3141592653589793 l004 Pi/tanh(951/104*Pi) 3141592653589793 l004 Pi/tanh(1015/111*Pi) 3141592653589793 l004 Pi/tanh(1079/118*Pi) 3141592653589793 l004 Pi/tanh(64/7*Pi) 3141592653589793 l004 Pi/tanh(1097/120*Pi) 3141592653589793 l004 Pi/tanh(1033/113*Pi) 3141592653589793 l004 Pi/tanh(969/106*Pi) 3141592653589793 l004 Pi/tanh(905/99*Pi) 3141592653589793 l004 Pi/tanh(841/92*Pi) 3141592653589793 l004 Pi/tanh(777/85*Pi) 3141592653589793 l004 Pi/tanh(713/78*Pi) 3141592653589793 l004 Pi/tanh(649/71*Pi) 3141592653589793 l004 Pi/tanh(585/64*Pi) 3141592653589793 l004 Pi/tanh(521/57*Pi) 3141592653589793 l004 Pi/tanh(978/107*Pi) 3141592653589793 l004 Pi/tanh(457/50*Pi) 3141592653589793 l004 Pi/tanh(850/93*Pi) 3141592653589793 l004 Pi/tanh(393/43*Pi) 3141592653589793 l004 Pi/tanh(722/79*Pi) 3141592653589793 l004 Pi/tanh(1051/115*Pi) 3141592653589793 l004 Pi/tanh(329/36*Pi) 3141592653589793 l004 Pi/tanh(923/101*Pi) 3141592653589793 l004 Pi/tanh(594/65*Pi) 3141592653589793 l004 Pi/tanh(859/94*Pi) 3141592653589793 l004 Pi/tanh(265/29*Pi) 3141592653589793 l004 Pi/tanh(996/109*Pi) 3141592653589793 l004 Pi/tanh(731/80*Pi) 3141592653589793 l004 Pi/tanh(466/51*Pi) 3141592653589793 l004 Pi/tanh(667/73*Pi) 3141592653589793 l004 Pi/tanh(868/95*Pi) 3141592653589793 l004 Pi/tanh(1069/117*Pi) 3141592653589793 l004 Pi/tanh(201/22*Pi) 3141592653589793 l004 Pi/tanh(941/103*Pi) 3141592653589793 l004 Pi/tanh(740/81*Pi) 3141592653589793 l004 Pi/tanh(539/59*Pi) 3141592653589793 l004 Pi/tanh(877/96*Pi) 3141592653589793 l004 Pi/tanh(338/37*Pi) 3141592653589793 l004 Pi/tanh(813/89*Pi) 3141592653589793 l004 Pi/tanh(475/52*Pi) 3141592653589793 l004 Pi/tanh(1087/119*Pi) 3141592653589793 l004 Pi/tanh(612/67*Pi) 3141592653589793 l004 Pi/tanh(749/82*Pi) 3141592653589793 l004 Pi/tanh(886/97*Pi) 3141592653589793 l004 Pi/tanh(1023/112*Pi) 3141592653589793 l004 Pi/tanh(137/15*Pi) 3141592653589793 l004 Pi/tanh(1032/113*Pi) 3141592653589793 l004 Pi/tanh(895/98*Pi) 3141592653589793 l004 Pi/tanh(758/83*Pi) 3141592653589793 l004 Pi/tanh(621/68*Pi) 3141592653589793 l004 Pi/tanh(484/53*Pi) 3141592653589793 l004 Pi/tanh(831/91*Pi) 3141592653589793 l004 Pi/tanh(347/38*Pi) 3141592653589793 l004 Pi/tanh(904/99*Pi) 3141592653589793 l004 Pi/tanh(557/61*Pi) 3141592653589793 l004 Pi/tanh(767/84*Pi) 3141592653589793 l004 Pi/tanh(977/107*Pi) 3141592653589793 l004 Pi/tanh(210/23*Pi) 3141592653589793 l004 Pi/tanh(913/100*Pi) 3141592653589793 l004 Pi/tanh(703/77*Pi) 3141592653589793 l004 Pi/tanh(493/54*Pi) 3141592653589793 l004 Pi/tanh(776/85*Pi) 3141592653589793 l004 Pi/tanh(1059/116*Pi) 3141592653589793 l004 Pi/tanh(283/31*Pi) 3141592653589793 l004 Pi/tanh(922/101*Pi) 3141592653589793 l004 Pi/tanh(639/70*Pi) 3141592653589793 l004 Pi/tanh(995/109*Pi) 3141592653589793 l004 Pi/tanh(356/39*Pi) 3141592653589793 l004 Pi/tanh(785/86*Pi) 3141592653589793 l004 Pi/tanh(429/47*Pi) 3141592653589793 l004 Pi/tanh(931/102*Pi) 3141592653589793 l004 Pi/tanh(502/55*Pi) 3141592653589793 l004 Pi/tanh(1077/118*Pi) 3141592653589793 l004 Pi/tanh(575/63*Pi) 3141592653589793 l004 Pi/tanh(648/71*Pi) 3141592653589793 l004 Pi/tanh(721/79*Pi) 3141592653589793 l004 Pi/tanh(794/87*Pi) 3141592653589793 l004 Pi/tanh(867/95*Pi) 3141592653589793 l004 Pi/tanh(940/103*Pi) 3141592653589793 l004 Pi/tanh(1013/111*Pi) 3141592653589793 l004 Pi/tanh(1086/119*Pi) 3141592653589793 l004 Pi/tanh(73/8*Pi) 3141592653589793 l004 Pi/tanh(1031/113*Pi) 3141592653589793 l004 Pi/tanh(958/105*Pi) 3141592653589793 l004 Pi/tanh(885/97*Pi) 3141592653589793 l004 Pi/tanh(812/89*Pi) 3141592653589793 l004 Pi/tanh(739/81*Pi) 3141592653589793 l004 Pi/tanh(666/73*Pi) 3141592653589793 l004 Pi/tanh(593/65*Pi) 3141592653589793 l004 Pi/tanh(520/57*Pi) 3141592653589793 l004 Pi/tanh(967/106*Pi) 3141592653589793 l004 Pi/tanh(447/49*Pi) 3141592653589793 l004 Pi/tanh(821/90*Pi) 3141592653589793 l004 Pi/tanh(374/41*Pi) 3141592653589793 l004 Pi/tanh(1049/115*Pi) 3141592653589793 l004 Pi/tanh(675/74*Pi) 3141592653589793 l004 Pi/tanh(976/107*Pi) 3141592653589793 l004 Pi/tanh(301/33*Pi) 3141592653589793 l004 Pi/tanh(830/91*Pi) 3141592653589793 l004 Pi/tanh(529/58*Pi) 3141592653589793 l004 Pi/tanh(757/83*Pi) 3141592653589793 l004 Pi/tanh(985/108*Pi) 3141592653589793 l004 Pi/tanh(228/25*Pi) 3141592653589793 l004 Pi/tanh(1067/117*Pi) 3141592653589793 l004 Pi/tanh(839/92*Pi) 3141592653589793 l004 Pi/tanh(611/67*Pi) 3141592653589793 l004 Pi/tanh(994/109*Pi) 3141592653589793 l004 Pi/tanh(383/42*Pi) 3141592653589793 l004 Pi/tanh(921/101*Pi) 3141592653589793 l004 Pi/tanh(538/59*Pi) 3141592653589793 l004 Pi/tanh(693/76*Pi) 3141592653589793 l004 Pi/tanh(848/93*Pi) 3141592653589793 l004 Pi/tanh(1003/110*Pi) 3141592653589793 l004 Pi/tanh(155/17*Pi) 3141592653589793 l004 Pi/tanh(1012/111*Pi) 3141592653589793 l004 Pi/tanh(857/94*Pi) 3141592653589793 l004 Pi/tanh(702/77*Pi) 3141592653589793 l004 Pi/tanh(547/60*Pi) 3141592653589793 l004 Pi/tanh(939/103*Pi) 3141592653589793 l004 Pi/tanh(392/43*Pi) 3141592653589793 l004 Pi/tanh(1021/112*Pi) 3141592653589793 l004 Pi/tanh(629/69*Pi) 3141592653589793 l004 Pi/tanh(866/95*Pi) 3141592653589793 l004 Pi/tanh(237/26*Pi) 3141592653589793 l004 Pi/tanh(1030/113*Pi) 3141592653589793 l004 Pi/tanh(793/87*Pi) 3141592653589793 l004 Pi/tanh(556/61*Pi) 3141592653589793 l004 Pi/tanh(875/96*Pi) 3141592653589793 l004 Pi/tanh(319/35*Pi) 3141592653589793 l004 Pi/tanh(1039/114*Pi) 3141592653589793 l004 Pi/tanh(720/79*Pi) 3141592653589793 l004 Pi/tanh(401/44*Pi) 3141592653589793 l004 Pi/tanh(884/97*Pi) 3141592653589793 l004 Pi/tanh(483/53*Pi) 3141592653589793 l004 Pi/tanh(1048/115*Pi) 3141592653589793 l004 Pi/tanh(565/62*Pi) 3141592653589793 l004 Pi/tanh(647/71*Pi) 3141592653589793 l004 Pi/tanh(729/80*Pi) 3141592653589793 l004 Pi/tanh(811/89*Pi) 3141592653589793 l004 Pi/tanh(893/98*Pi) 3141592653589793 l004 Pi/tanh(975/107*Pi) 3141592653589793 l004 Pi/tanh(1057/116*Pi) 3141592653589793 l004 Pi/tanh(82/9*Pi) 3141592653589793 l004 Pi/tanh(1075/118*Pi) 3141592653589793 l004 Pi/tanh(993/109*Pi) 3141592653589793 l004 Pi/tanh(911/100*Pi) 3141592653589793 l004 Pi/tanh(829/91*Pi) 3141592653589793 l004 Pi/tanh(747/82*Pi) 3141592653589793 l004 Pi/tanh(665/73*Pi) 3141592653589793 l004 Pi/tanh(583/64*Pi) 3141592653589793 l004 Pi/tanh(1084/119*Pi) 3141592653589793 l004 Pi/tanh(501/55*Pi) 3141592653589793 l004 Pi/tanh(920/101*Pi) 3141592653589793 l004 Pi/tanh(419/46*Pi) 3141592653589793 l004 Pi/tanh(756/83*Pi) 3141592653589793 l004 Pi/tanh(1093/120*Pi) 3141592653589793 l004 Pi/tanh(337/37*Pi) 3141592653589793 l004 Pi/tanh(929/102*Pi) 3141592653589793 l004 Pi/tanh(592/65*Pi) 3141592653589793 l004 Pi/tanh(847/93*Pi) 3141592653589793 l004 Pi/tanh(255/28*Pi) 3141592653589793 l004 Pi/tanh(938/103*Pi) 3141592653589793 l004 Pi/tanh(683/75*Pi) 3141592653589793 l004 Pi/tanh(428/47*Pi) 3141592653589793 l004 Pi/tanh(1029/113*Pi) 3141592653589793 l004 Pi/tanh(601/66*Pi) 3141592653589793 l004 Pi/tanh(774/85*Pi) 3141592653589793 l004 Pi/tanh(947/104*Pi) 3141592653589793 l004 Pi/tanh(173/19*Pi) 3141592653589793 l004 Pi/tanh(956/105*Pi) 3141592653589793 l004 Pi/tanh(783/86*Pi) 3141592653589793 l004 Pi/tanh(610/67*Pi) 3141592653589793 l004 Pi/tanh(1047/115*Pi) 3141592653589793 l004 Pi/tanh(437/48*Pi) 3141592653589793 l004 Pi/tanh(701/77*Pi) 3141592653589793 l004 Pi/tanh(965/106*Pi) 3141592653589793 l004 Pi/tanh(264/29*Pi) 3141592653589793 l004 Pi/tanh(883/97*Pi) 3141592653589793 l004 Pi/tanh(619/68*Pi) 3141592653589793 l004 Pi/tanh(974/107*Pi) 3141592653589793 l004 Pi/tanh(355/39*Pi) 3141592653589793 l004 Pi/tanh(801/88*Pi) 3141592653589793 l004 Pi/tanh(446/49*Pi) 3141592653589793 l004 Pi/tanh(983/108*Pi) 3141592653589793 l004 Pi/tanh(537/59*Pi) 3141592653589793 l004 Pi/tanh(628/69*Pi) 3141592653589793 l004 Pi/tanh(719/79*Pi) 3141592653589793 l004 Pi/tanh(810/89*Pi) 3141592653589793 l004 Pi/tanh(901/99*Pi) 3141592653589793 l004 Pi/tanh(992/109*Pi) 3141592653589793 l004 Pi/tanh(1083/119*Pi) 3141592653589793 l004 Pi/tanh(91/10*Pi) 3141592653589793 l004 Pi/tanh(1010/111*Pi) 3141592653589793 l004 Pi/tanh(919/101*Pi) 3141592653589793 l004 Pi/tanh(828/91*Pi) 3141592653589793 l004 Pi/tanh(737/81*Pi) 3141592653589793 l004 Pi/tanh(646/71*Pi) 3141592653589793 l004 Pi/tanh(555/61*Pi) 3141592653589793 l004 Pi/tanh(1019/112*Pi) 3141592653589793 l004 Pi/tanh(464/51*Pi) 3141592653589793 l004 Pi/tanh(837/92*Pi) 3141592653589793 l004 Pi/tanh(373/41*Pi) 3141592653589793 l004 Pi/tanh(1028/113*Pi) 3141592653589793 l004 Pi/tanh(655/72*Pi) 3141592653589793 l004 Pi/tanh(937/103*Pi) 3141592653589793 l004 Pi/tanh(282/31*Pi) 3141592653589793 l004 Pi/tanh(1037/114*Pi) 3141592653589793 l004 Pi/tanh(755/83*Pi) 3141592653589793 l004 Pi/tanh(473/52*Pi) 3141592653589793 l004 Pi/tanh(664/73*Pi) 3141592653589793 l004 Pi/tanh(855/94*Pi) 3141592653589793 l004 Pi/tanh(1046/115*Pi) 3141592653589793 l004 Pi/tanh(191/21*Pi) 3141592653589793 l004 Pi/tanh(1055/116*Pi) 3141592653589793 l004 Pi/tanh(864/95*Pi) 3141592653589793 l004 Pi/tanh(673/74*Pi) 3141592653589793 l004 Pi/tanh(482/53*Pi) 3141592653589793 l004 Pi/tanh(773/85*Pi) 3141592653589793 l004 Pi/tanh(1064/117*Pi) 3141592653589793 l004 Pi/tanh(291/32*Pi) 3141592653589793 l004 Pi/tanh(973/107*Pi) 3141592653589793 l004 Pi/tanh(682/75*Pi) 3141592653589793 l004 Pi/tanh(1073/118*Pi) 3141592653589793 l004 Pi/tanh(391/43*Pi) 3141592653589793 l004 Pi/tanh(882/97*Pi) 3141592653589793 l004 Pi/tanh(491/54*Pi) 3141592653589793 l004 Pi/tanh(1082/119*Pi) 3141592653589793 l004 Pi/tanh(591/65*Pi) 3141592653589793 l004 Pi/tanh(691/76*Pi) 3141592653589793 l004 Pi/tanh(791/87*Pi) 3141592653589793 l004 Pi/tanh(891/98*Pi) 3141592653589793 l004 Pi/tanh(991/109*Pi) 3141592653589793 l004 Pi/tanh(1091/120*Pi) 3141592653589793 l004 Pi/tanh(100/11*Pi) 3141592653589793 l004 Pi/tanh(1009/111*Pi) 3141592653589793 l004 Pi/tanh(909/100*Pi) 3141592653589793 l004 Pi/tanh(809/89*Pi) 3141592653589793 l004 Pi/tanh(709/78*Pi) 3141592653589793 l004 Pi/tanh(609/67*Pi) 3141592653589793 l004 Pi/tanh(509/56*Pi) 3141592653589793 l004 Pi/tanh(918/101*Pi) 3141592653589793 l004 Pi/tanh(409/45*Pi) 3141592653589793 l004 Pi/tanh(718/79*Pi) 3141592653589793 l004 Pi/tanh(1027/113*Pi) 3141592653589793 l004 Pi/tanh(309/34*Pi) 3141592653589793 l004 Pi/tanh(827/91*Pi) 3141592653589793 l004 Pi/tanh(518/57*Pi) 3141592653589793 l004 Pi/tanh(727/80*Pi) 3141592653589793 l004 Pi/tanh(936/103*Pi) 3141592653589793 l004 Pi/tanh(209/23*Pi) 3141592653589793 l004 Pi/tanh(945/104*Pi) 3141592653589793 l004 Pi/tanh(736/81*Pi) 3141592653589793 l004 Pi/tanh(527/58*Pi) 3141592653589793 l004 Pi/tanh(845/93*Pi) 3141592653589793 l004 Pi/tanh(318/35*Pi) 3141592653589793 l004 Pi/tanh(1063/117*Pi) 3141592653589793 l004 Pi/tanh(745/82*Pi) 3141592653589793 l004 Pi/tanh(427/47*Pi) 3141592653589793 l004 Pi/tanh(963/106*Pi) 3141592653589793 l004 Pi/tanh(536/59*Pi) 3141592653589793 l004 Pi/tanh(645/71*Pi) 3141592653589793 l004 Pi/tanh(754/83*Pi) 3141592653589793 l004 Pi/tanh(863/95*Pi) 3141592653589793 l004 Pi/tanh(972/107*Pi) 3141592653589793 l004 Pi/tanh(1081/119*Pi) 3141592653589793 l004 Pi/tanh(109/12*Pi) 3141592653589793 l004 Pi/tanh(990/109*Pi) 3141592653589793 l004 Pi/tanh(881/97*Pi) 3141592653589793 l004 Pi/tanh(772/85*Pi) 3141592653589793 l004 Pi/tanh(663/73*Pi) 3141592653589793 l004 Pi/tanh(554/61*Pi) 3141592653589793 l004 Pi/tanh(999/110*Pi) 3141592653589793 l004 Pi/tanh(445/49*Pi) 3141592653589793 l004 Pi/tanh(781/86*Pi) 3141592653589793 l004 Pi/tanh(336/37*Pi) 3141592653589793 l004 Pi/tanh(899/99*Pi) 3141592653589793 l004 Pi/tanh(563/62*Pi) 3141592653589793 l004 Pi/tanh(790/87*Pi) 3141592653589793 l004 Pi/tanh(1017/112*Pi) 3141592653589793 l004 Pi/tanh(227/25*Pi) 3141592653589793 l004 Pi/tanh(1026/113*Pi) 3141592653589793 l004 Pi/tanh(799/88*Pi) 3141592653589793 l004 Pi/tanh(572/63*Pi) 3141592653589793 l004 Pi/tanh(917/101*Pi) 3141592653589793 l004 Pi/tanh(345/38*Pi) 3141592653589793 l004 Pi/tanh(808/89*Pi) 3141592653589793 l004 Pi/tanh(463/51*Pi) 3141592653589793 l004 Pi/tanh(1044/115*Pi) 3141592653589793 l004 Pi/tanh(581/64*Pi) 3141592653589793 l004 Pi/tanh(699/77*Pi) 3141592653589793 l004 Pi/tanh(817/90*Pi) 3141592653589793 l004 Pi/tanh(935/103*Pi) 3141592653589793 l004 Pi/tanh(1053/116*Pi) 3141592653589793 l004 Pi/tanh(118/13*Pi) 3141592653589793 l004 Pi/tanh(1071/118*Pi) 3141592653589793 l004 Pi/tanh(953/105*Pi) 3141592653589793 l004 Pi/tanh(835/92*Pi) 3141592653589793 l004 Pi/tanh(717/79*Pi) 3141592653589793 l004 Pi/tanh(599/66*Pi) 3141592653589793 l004 Pi/tanh(1080/119*Pi) 3141592653589793 l004 Pi/tanh(481/53*Pi) 3141592653589793 l004 Pi/tanh(844/93*Pi) 3141592653589793 l004 Pi/tanh(363/40*Pi) 3141592653589793 l004 Pi/tanh(971/107*Pi) 3141592653589793 l004 Pi/tanh(608/67*Pi) 3141592653589793 l004 Pi/tanh(853/94*Pi) 3141592653589793 l004 Pi/tanh(245/27*Pi) 3141592653589793 l004 Pi/tanh(862/95*Pi) 3141592653589793 l004 Pi/tanh(617/68*Pi) 3141592653589793 l004 Pi/tanh(989/109*Pi) 3141592653589793 l004 Pi/tanh(372/41*Pi) 3141592653589793 l004 Pi/tanh(871/96*Pi) 3141592653589793 l004 Pi/tanh(499/55*Pi) 3141592653589793 l004 Pi/tanh(626/69*Pi) 3141592653589793 l004 Pi/tanh(753/83*Pi) 3141592653589793 l004 Pi/tanh(880/97*Pi) 3141592653589793 l004 Pi/tanh(1007/111*Pi) 3141592653589793 l004 Pi/tanh(127/14*Pi) 3141592653589793 l004 Pi/tanh(1025/113*Pi) 3141592653589793 l004 Pi/tanh(898/99*Pi) 3141592653589793 l004 Pi/tanh(771/85*Pi) 3141592653589793 l004 Pi/tanh(644/71*Pi) 3141592653589793 l004 Pi/tanh(517/57*Pi) 3141592653589793 l004 Pi/tanh(907/100*Pi) 3141592653589793 l004 Pi/tanh(390/43*Pi) 3141592653589793 l004 Pi/tanh(1043/115*Pi) 3141592653589793 l004 Pi/tanh(653/72*Pi) 3141592653589793 l004 Pi/tanh(916/101*Pi) 3141592653589793 l004 Pi/tanh(263/29*Pi) 3141592653589793 l004 Pi/tanh(925/102*Pi) 3141592653589793 l004 Pi/tanh(662/73*Pi) 3141592653589793 l004 Pi/tanh(1061/117*Pi) 3141592653589793 l004 Pi/tanh(399/44*Pi) 3141592653589793 l004 Pi/tanh(934/103*Pi) 3141592653589793 l004 Pi/tanh(535/59*Pi) 3141592653589793 l004 Pi/tanh(671/74*Pi) 3141592653589793 l004 Pi/tanh(807/89*Pi) 3141592653589793 l004 Pi/tanh(943/104*Pi) 3141592653589793 l004 Pi/tanh(1079/119*Pi) 3141592653589793 l004 Pi/tanh(136/15*Pi) 3141592653589793 l004 Pi/tanh(961/106*Pi) 3141592653589793 l004 Pi/tanh(825/91*Pi) 3141592653589793 l004 Pi/tanh(689/76*Pi) 3141592653589793 l004 Pi/tanh(553/61*Pi) 3141592653589793 m001 exp(1)^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(970/107*Pi) 3141592653589793 l004 Pi/tanh(417/46*Pi) 3141592653589793 l004 Pi/tanh(698/77*Pi) 3141592653589793 l004 Pi/tanh(979/108*Pi) 3141592653589793 l004 Pi/tanh(281/31*Pi) 3141592653589793 l004 Pi/tanh(988/109*Pi) 3141592653589793 l004 Pi/tanh(707/78*Pi) 3141592653589793 l004 Pi/tanh(426/47*Pi) 3141592653589793 l004 Pi/tanh(997/110*Pi) 3141592653589793 l004 Pi/tanh(571/63*Pi) 3141592653589793 l004 Pi/tanh(716/79*Pi) 3141592653589793 l004 Pi/tanh(861/95*Pi) 3141592653589793 l004 Pi/tanh(1006/111*Pi) 3141592653589793 l004 Pi/tanh(145/16*Pi) 3141592653589793 l004 Pi/tanh(1024/113*Pi) 3141592653589793 l004 Pi/tanh(879/97*Pi) 3141592653589793 l004 Pi/tanh(734/81*Pi) 3141592653589793 l004 Pi/tanh(589/65*Pi) 3141592653589793 l004 Pi/tanh(1033/114*Pi) 3141592653589793 l004 Pi/tanh(444/49*Pi) 3141592653589793 l004 Pi/tanh(743/82*Pi) 3141592653589793 l004 Pi/tanh(1042/115*Pi) 3141592653589793 l004 Pi/tanh(299/33*Pi) 3141592653589793 l004 Pi/tanh(1051/116*Pi) 3141592653589793 l004 Pi/tanh(752/83*Pi) 3141592653589793 l004 Pi/tanh(453/50*Pi) 3141592653589793 l004 Pi/tanh(1060/117*Pi) 3141592653589793 l004 Pi/tanh(607/67*Pi) 3141592653589793 l004 Pi/tanh(761/84*Pi) 3141592653589793 l004 Pi/tanh(915/101*Pi) 3141592653589793 l004 Pi/tanh(1069/118*Pi) 3141592653589793 l004 Pi/tanh(154/17*Pi) 3141592653589793 l004 Pi/tanh(1087/120*Pi) 3141592653589793 l004 Pi/tanh(933/103*Pi) 3141592653589793 l004 Pi/tanh(779/86*Pi) 3141592653589793 l004 Pi/tanh(625/69*Pi) 3141592653589793 l004 Pi/tanh(471/52*Pi) 3141592653589793 l004 Pi/tanh(788/87*Pi) 3141592653589793 l004 Pi/tanh(317/35*Pi) 3141592653589793 l004 Pi/tanh(797/88*Pi) 3141592653589793 l004 Pi/tanh(480/53*Pi) 3141592653589793 l004 Pi/tanh(643/71*Pi) 3141592653589793 l004 Pi/tanh(806/89*Pi) 3141592653589793 l004 Pi/tanh(969/107*Pi) 3141592653589793 l004 Pi/tanh(163/18*Pi) 3141592653589793 l004 Pi/tanh(987/109*Pi) 3141592653589793 l004 Pi/tanh(824/91*Pi) 3141592653589793 l004 Pi/tanh(661/73*Pi) 3141592653589793 l004 Pi/tanh(498/55*Pi) 3141592653589793 l004 Pi/tanh(833/92*Pi) 3141592653589793 l004 Pi/tanh(335/37*Pi) 3141592653589793 l004 Pi/tanh(842/93*Pi) 3141592653589793 l004 Pi/tanh(507/56*Pi) 3141592653589793 l004 Pi/tanh(679/75*Pi) 3141592653589793 l004 Pi/tanh(851/94*Pi) 3141592653589793 l004 Pi/tanh(1023/113*Pi) 3141592653589793 l004 Pi/tanh(172/19*Pi) 3141592653589793 l004 Pi/tanh(1041/115*Pi) 3141592653589793 l004 Pi/tanh(869/96*Pi) 3141592653589793 l004 Pi/tanh(697/77*Pi) 3141592653589793 l004 Pi/tanh(525/58*Pi) 3141592653589793 l004 Pi/tanh(878/97*Pi) 3141592653589793 l004 Pi/tanh(353/39*Pi) 3141592653589793 l004 Pi/tanh(887/98*Pi) 3141592653589793 l004 Pi/tanh(534/59*Pi) 3141592653589793 l004 Pi/tanh(715/79*Pi) 3141592653589793 l004 Pi/tanh(896/99*Pi) 3141592653589793 l004 Pi/tanh(1077/119*Pi) 3141592653589793 l004 Pi/tanh(181/20*Pi) 3141592653589793 l004 Pi/tanh(914/101*Pi) 3141592653589793 l004 Pi/tanh(733/81*Pi) 3141592653589793 l004 Pi/tanh(552/61*Pi) 3141592653589793 l004 Pi/tanh(923/102*Pi) 3141592653589793 l004 Pi/tanh(371/41*Pi) 3141592653589793 l004 Pi/tanh(932/103*Pi) 3141592653589793 l004 Pi/tanh(561/62*Pi) 3141592653589793 l004 Pi/tanh(751/83*Pi) 3141592653589793 l004 Pi/tanh(941/104*Pi) 3141592653589793 l004 Pi/tanh(190/21*Pi) 3141592653589793 l004 Pi/tanh(959/106*Pi) 3141592653589793 l004 Pi/tanh(769/85*Pi) 3141592653589793 l004 Pi/tanh(579/64*Pi) 3141592653589793 l004 Pi/tanh(968/107*Pi) 3141592653589793 l004 Pi/tanh(389/43*Pi) 3141592653589793 l004 Pi/tanh(977/108*Pi) 3141592653589793 l004 Pi/tanh(588/65*Pi) 3141592653589793 l004 Pi/tanh(787/87*Pi) 3141592653589793 l004 Pi/tanh(986/109*Pi) 3141592653589793 l004 Pi/tanh(199/22*Pi) 3141592653589793 l004 Pi/tanh(1004/111*Pi) 3141592653589793 l004 Pi/tanh(805/89*Pi) 3141592653589793 l004 Pi/tanh(606/67*Pi) 3141592653589793 l004 Pi/tanh(1013/112*Pi) 3141592653589793 l004 Pi/tanh(407/45*Pi) 3141592653589793 l004 Pi/tanh(1022/113*Pi) 3141592653589793 l004 Pi/tanh(615/68*Pi) 3141592653589793 l004 Pi/tanh(823/91*Pi) 3141592653589793 l004 Pi/tanh(1031/114*Pi) 3141592653589793 l004 Pi/tanh(208/23*Pi) 3141592653589793 l004 Pi/tanh(1049/116*Pi) 3141592653589793 l004 Pi/tanh(841/93*Pi) 3141592653589793 l004 Pi/tanh(633/70*Pi) 3141592653589793 l004 Pi/tanh(1058/117*Pi) 3141592653589793 l004 Pi/tanh(425/47*Pi) 3141592653589793 l004 Pi/tanh(1067/118*Pi) 3141592653589793 l004 Pi/tanh(642/71*Pi) 3141592653589793 l004 Pi/tanh(859/95*Pi) 3141592653589793 l004 Pi/tanh(1076/119*Pi) 3141592653589793 l004 Pi/tanh(217/24*Pi) 3141592653589793 l004 Pi/tanh(877/97*Pi) 3141592653589793 l004 Pi/tanh(660/73*Pi) 3141592653589793 l004 Pi/tanh(443/49*Pi) 3141592653589793 l004 Pi/tanh(669/74*Pi) 3141592653589793 l004 Pi/tanh(895/99*Pi) 3141592653589793 l004 Pi/tanh(226/25*Pi) 3141592653589793 l004 Pi/tanh(913/101*Pi) 3141592653589793 l004 Pi/tanh(687/76*Pi) 3141592653589793 l004 Pi/tanh(461/51*Pi) 3141592653589793 l004 Pi/tanh(696/77*Pi) 3141592653589793 l004 Pi/tanh(931/103*Pi) 3141592653589793 l004 Pi/tanh(235/26*Pi) 3141592653589793 l004 Pi/tanh(949/105*Pi) 3141592653589793 l004 Pi/tanh(714/79*Pi) 3141592653589793 l004 Pi/tanh(479/53*Pi) 3141592653589793 l004 Pi/tanh(723/80*Pi) 3141592653589793 l004 Pi/tanh(967/107*Pi) 3141592653589793 l004 Pi/tanh(244/27*Pi) 3141592653589793 l004 Pi/tanh(985/109*Pi) 3141592653589793 l004 Pi/tanh(741/82*Pi) 3141592653589793 l004 Pi/tanh(497/55*Pi) 3141592653589793 l004 Pi/tanh(750/83*Pi) 3141592653589793 l004 Pi/tanh(1003/111*Pi) 3141592653589793 l004 Pi/tanh(253/28*Pi) 3141592653589793 l004 Pi/tanh(1021/113*Pi) 3141592653589793 l004 Pi/tanh(768/85*Pi) 3141592653589793 l004 Pi/tanh(515/57*Pi) 3141592653589793 l004 Pi/tanh(777/86*Pi) 3141592653589793 l004 Pi/tanh(1039/115*Pi) 3141592653589793 l004 Pi/tanh(262/29*Pi) 3141592653589793 l004 Pi/tanh(1057/117*Pi) 3141592653589793 l004 Pi/tanh(795/88*Pi) 3141592653589793 l004 Pi/tanh(533/59*Pi) 3141592653589793 l004 Pi/tanh(804/89*Pi) 3141592653589793 l004 Pi/tanh(1075/119*Pi) 3141592653589793 l004 Pi/tanh(271/30*Pi) 3141592653589793 l004 Pi/tanh(822/91*Pi) 3141592653589793 l004 Pi/tanh(551/61*Pi) 3141592653589793 l004 Pi/tanh(831/92*Pi) 3141592653589793 l004 Pi/tanh(280/31*Pi) 3141592653589793 l004 Pi/tanh(849/94*Pi) 3141592653589793 l004 Pi/tanh(569/63*Pi) 3141592653589793 l004 Pi/tanh(858/95*Pi) 3141592653589793 l004 Pi/tanh(289/32*Pi) 3141592653589793 l004 Pi/tanh(876/97*Pi) 3141592653589793 l004 Pi/tanh(587/65*Pi) 3141592653589793 l004 Pi/tanh(885/98*Pi) 3141592653589793 l004 Pi/tanh(298/33*Pi) 3141592653589793 l004 Pi/tanh(903/100*Pi) 3141592653589793 l004 Pi/tanh(605/67*Pi) 3141592653589793 l004 Pi/tanh(912/101*Pi) 3141592653589793 l004 Pi/tanh(307/34*Pi) 3141592653589793 l004 Pi/tanh(930/103*Pi) 3141592653589793 l004 Pi/tanh(623/69*Pi) 3141592653589793 l004 Pi/tanh(939/104*Pi) 3141592653589793 l004 Pi/tanh(316/35*Pi) 3141592653589793 l004 Pi/tanh(957/106*Pi) 3141592653589793 l004 Pi/tanh(641/71*Pi) 3141592653589793 l004 Pi/tanh(966/107*Pi) 3141592653589793 l004 Pi/tanh(325/36*Pi) 3141592653589793 l004 Pi/tanh(984/109*Pi) 3141592653589793 l004 Pi/tanh(659/73*Pi) 3141592653589793 l004 Pi/tanh(993/110*Pi) 3141592653589793 l004 Pi/tanh(334/37*Pi) 3141592653589793 l004 Pi/tanh(1011/112*Pi) 3141592653589793 l004 Pi/tanh(677/75*Pi) 3141592653589793 l004 Pi/tanh(1020/113*Pi) 3141592653589793 l004 Pi/tanh(343/38*Pi) 3141592653589793 l004 Pi/tanh(1038/115*Pi) 3141592653589793 l004 Pi/tanh(695/77*Pi) 3141592653589793 l004 Pi/tanh(1047/116*Pi) 3141592653589793 l004 Pi/tanh(352/39*Pi) 3141592653589793 l004 Pi/tanh(1065/118*Pi) 3141592653589793 l004 Pi/tanh(713/79*Pi) 3141592653589793 l004 Pi/tanh(1074/119*Pi) 3141592653589793 l004 Pi/tanh(361/40*Pi) 3141592653589793 l004 Pi/tanh(731/81*Pi) 3141592653589793 l004 Pi/tanh(370/41*Pi) 3141592653589793 l004 Pi/tanh(749/83*Pi) 3141592653589793 l004 Pi/tanh(379/42*Pi) 3141592653589793 l004 Pi/tanh(767/85*Pi) 3141592653589793 l004 Pi/tanh(388/43*Pi) 3141592653589793 l004 Pi/tanh(785/87*Pi) 3141592653589793 l004 Pi/tanh(397/44*Pi) 3141592653589793 l004 Pi/tanh(803/89*Pi) 3141592653589793 l004 Pi/tanh(406/45*Pi) 3141592653589793 l004 Pi/tanh(821/91*Pi) 3141592653589793 l004 Pi/tanh(415/46*Pi) 3141592653589793 l004 Pi/tanh(839/93*Pi) 3141592653589793 l004 Pi/tanh(424/47*Pi) 3141592653589793 l004 Pi/tanh(857/95*Pi) 3141592653589793 l004 Pi/tanh(433/48*Pi) 3141592653589793 l004 Pi/tanh(875/97*Pi) 3141592653589793 l004 Pi/tanh(442/49*Pi) 3141592653589793 l004 Pi/tanh(893/99*Pi) 3141592653589793 l004 Pi/tanh(451/50*Pi) 3141592653589793 l004 Pi/tanh(911/101*Pi) 3141592653589793 l004 Pi/tanh(460/51*Pi) 3141592653589793 l004 Pi/tanh(929/103*Pi) 3141592653589793 l004 Pi/tanh(469/52*Pi) 3141592653589793 l004 Pi/tanh(947/105*Pi) 3141592653589793 l004 Pi/tanh(478/53*Pi) 3141592653589793 l004 Pi/tanh(965/107*Pi) 3141592653589793 l004 Pi/tanh(487/54*Pi) 3141592653589793 l004 Pi/tanh(983/109*Pi) 3141592653589793 l004 Pi/tanh(496/55*Pi) 3141592653589793 l004 Pi/tanh(1001/111*Pi) 3141592653589793 l004 Pi/tanh(505/56*Pi) 3141592653589793 l004 Pi/tanh(1019/113*Pi) 3141592653589793 l004 Pi/tanh(514/57*Pi) 3141592653589793 l004 Pi/tanh(1037/115*Pi) 3141592653589793 l004 Pi/tanh(523/58*Pi) 3141592653589793 l004 Pi/tanh(1055/117*Pi) 3141592653589793 l004 Pi/tanh(532/59*Pi) 3141592653589793 l004 Pi/tanh(1073/119*Pi) 3141592653589793 l004 Pi/tanh(541/60*Pi) 3141592653589793 l004 Pi/tanh(550/61*Pi) 3141592653589793 l004 Pi/tanh(559/62*Pi) 3141592653589793 l004 Pi/tanh(568/63*Pi) 3141592653589793 l004 Pi/tanh(577/64*Pi) 3141592653589793 l004 Pi/tanh(586/65*Pi) 3141592653589793 l004 Pi/tanh(595/66*Pi) 3141592653589793 l004 Pi/tanh(604/67*Pi) 3141592653589793 l004 Pi/tanh(613/68*Pi) 3141592653589793 l004 Pi/tanh(622/69*Pi) 3141592653589793 l004 Pi/tanh(631/70*Pi) 3141592653589793 l004 Pi/tanh(640/71*Pi) 3141592653589793 l004 Pi/tanh(649/72*Pi) 3141592653589793 l004 Pi/tanh(658/73*Pi) 3141592653589793 l004 Pi/tanh(667/74*Pi) 3141592653589793 l004 Pi/tanh(676/75*Pi) 3141592653589793 l004 Pi/tanh(685/76*Pi) 3141592653589793 l004 Pi/tanh(694/77*Pi) 3141592653589793 l004 Pi/tanh(703/78*Pi) 3141592653589793 l004 Pi/tanh(712/79*Pi) 3141592653589793 l004 Pi/tanh(721/80*Pi) 3141592653589793 l004 Pi/tanh(730/81*Pi) 3141592653589793 l004 Pi/tanh(739/82*Pi) 3141592653589793 l004 Pi/tanh(748/83*Pi) 3141592653589793 l004 Pi/tanh(757/84*Pi) 3141592653589793 l004 Pi/tanh(766/85*Pi) 3141592653589793 l004 Pi/tanh(775/86*Pi) 3141592653589793 l004 Pi/tanh(784/87*Pi) 3141592653589793 l004 Pi/tanh(793/88*Pi) 3141592653589793 l004 Pi/tanh(802/89*Pi) 3141592653589793 l004 Pi/tanh(811/90*Pi) 3141592653589793 l004 Pi/tanh(820/91*Pi) 3141592653589793 l004 Pi/tanh(829/92*Pi) 3141592653589793 l004 Pi/tanh(838/93*Pi) 3141592653589793 l004 Pi/tanh(847/94*Pi) 3141592653589793 l004 Pi/tanh(856/95*Pi) 3141592653589793 l004 Pi/tanh(865/96*Pi) 3141592653589793 l004 Pi/tanh(874/97*Pi) 3141592653589793 l004 Pi/tanh(883/98*Pi) 3141592653589793 l004 Pi/tanh(892/99*Pi) 3141592653589793 l004 Pi/tanh(901/100*Pi) 3141592653589793 l004 Pi/tanh(910/101*Pi) 3141592653589793 l004 Pi/tanh(919/102*Pi) 3141592653589793 l004 Pi/tanh(928/103*Pi) 3141592653589793 l004 Pi/tanh(937/104*Pi) 3141592653589793 l004 Pi/tanh(946/105*Pi) 3141592653589793 l004 Pi/tanh(955/106*Pi) 3141592653589793 l004 Pi/tanh(964/107*Pi) 3141592653589793 l004 Pi/tanh(973/108*Pi) 3141592653589793 l004 Pi/tanh(982/109*Pi) 3141592653589793 l004 Pi/tanh(991/110*Pi) 3141592653589793 l004 Pi/tanh(1000/111*Pi) 3141592653589793 l004 Pi/tanh(1009/112*Pi) 3141592653589793 l004 Pi/tanh(1018/113*Pi) 3141592653589793 l004 Pi/tanh(1027/114*Pi) 3141592653589793 l004 Pi/tanh(1036/115*Pi) 3141592653589793 l004 Pi/tanh(1045/116*Pi) 3141592653589793 l004 Pi/tanh(1054/117*Pi) 3141592653589793 l004 Pi/tanh(1063/118*Pi) 3141592653589793 l004 Pi/tanh(1072/119*Pi) 3141592653589793 l004 Pi/tanh(1081/120*Pi) 3141592653589793 l004 Pi/tanh(9*Pi) 3141592653589793 l004 Pi/tanh(1079/120*Pi) 3141592653589793 l004 Pi/tanh(1070/119*Pi) 3141592653589793 l004 Pi/tanh(1061/118*Pi) 3141592653589793 l004 Pi/tanh(1052/117*Pi) 3141592653589793 l004 Pi/tanh(1043/116*Pi) 3141592653589793 l004 Pi/tanh(1034/115*Pi) 3141592653589793 l004 Pi/tanh(1025/114*Pi) 3141592653589793 l004 Pi/tanh(1016/113*Pi) 3141592653589793 l004 Pi/tanh(1007/112*Pi) 3141592653589793 l004 Pi/tanh(998/111*Pi) 3141592653589793 l004 Pi/tanh(989/110*Pi) 3141592653589793 l004 Pi/tanh(980/109*Pi) 3141592653589793 l004 Pi/tanh(971/108*Pi) 3141592653589793 l004 Pi/tanh(962/107*Pi) 3141592653589793 l004 Pi/tanh(953/106*Pi) 3141592653589793 l004 Pi/tanh(944/105*Pi) 3141592653589793 l004 Pi/tanh(935/104*Pi) 3141592653589793 l004 Pi/tanh(926/103*Pi) 3141592653589793 l004 Pi/tanh(917/102*Pi) 3141592653589793 l004 Pi/tanh(908/101*Pi) 3141592653589793 l004 Pi/tanh(899/100*Pi) 3141592653589793 l004 Pi/tanh(890/99*Pi) 3141592653589793 l004 Pi/tanh(881/98*Pi) 3141592653589793 l004 Pi/tanh(872/97*Pi) 3141592653589793 l004 Pi/tanh(863/96*Pi) 3141592653589793 l004 Pi/tanh(854/95*Pi) 3141592653589793 l004 Pi/tanh(845/94*Pi) 3141592653589793 l004 Pi/tanh(836/93*Pi) 3141592653589793 l004 Pi/tanh(827/92*Pi) 3141592653589793 l004 Pi/tanh(818/91*Pi) 3141592653589793 l004 Pi/tanh(809/90*Pi) 3141592653589793 l004 Pi/tanh(800/89*Pi) 3141592653589793 l004 Pi/tanh(791/88*Pi) 3141592653589793 l004 Pi/tanh(782/87*Pi) 3141592653589793 l004 Pi/tanh(773/86*Pi) 3141592653589793 l004 Pi/tanh(764/85*Pi) 3141592653589793 l004 Pi/tanh(755/84*Pi) 3141592653589793 l004 Pi/tanh(746/83*Pi) 3141592653589793 l004 Pi/tanh(737/82*Pi) 3141592653589793 l004 Pi/tanh(728/81*Pi) 3141592653589793 l004 Pi/tanh(719/80*Pi) 3141592653589793 l004 Pi/tanh(710/79*Pi) 3141592653589793 l004 Pi/tanh(701/78*Pi) 3141592653589793 l004 Pi/tanh(692/77*Pi) 3141592653589793 l004 Pi/tanh(683/76*Pi) 3141592653589793 l004 Pi/tanh(674/75*Pi) 3141592653589793 l004 Pi/tanh(665/74*Pi) 3141592653589793 l004 Pi/tanh(656/73*Pi) 3141592653589793 l004 Pi/tanh(647/72*Pi) 3141592653589793 l004 Pi/tanh(638/71*Pi) 3141592653589793 l004 Pi/tanh(629/70*Pi) 3141592653589793 l004 Pi/tanh(620/69*Pi) 3141592653589793 l004 Pi/tanh(611/68*Pi) 3141592653589793 l004 Pi/tanh(602/67*Pi) 3141592653589793 l004 Pi/tanh(593/66*Pi) 3141592653589793 l004 Pi/tanh(584/65*Pi) 3141592653589793 l004 Pi/tanh(575/64*Pi) 3141592653589793 l004 Pi/tanh(566/63*Pi) 3141592653589793 l004 Pi/tanh(557/62*Pi) 3141592653589793 l004 Pi/tanh(548/61*Pi) 3141592653589793 l004 Pi/tanh(539/60*Pi) 3141592653589793 l004 Pi/tanh(1069/119*Pi) 3141592653589793 l004 Pi/tanh(530/59*Pi) 3141592653589793 l004 Pi/tanh(1051/117*Pi) 3141592653589793 l004 Pi/tanh(521/58*Pi) 3141592653589793 l004 Pi/tanh(1033/115*Pi) 3141592653589793 l004 Pi/tanh(512/57*Pi) 3141592653589793 l004 Pi/tanh(1015/113*Pi) 3141592653589793 l004 Pi/tanh(503/56*Pi) 3141592653589793 l004 Pi/tanh(997/111*Pi) 3141592653589793 l004 Pi/tanh(494/55*Pi) 3141592653589793 l004 Pi/tanh(979/109*Pi) 3141592653589793 l004 Pi/tanh(485/54*Pi) 3141592653589793 l004 Pi/tanh(961/107*Pi) 3141592653589793 l004 Pi/tanh(476/53*Pi) 3141592653589793 l004 Pi/tanh(943/105*Pi) 3141592653589793 l004 Pi/tanh(467/52*Pi) 3141592653589793 l004 Pi/tanh(925/103*Pi) 3141592653589793 l004 Pi/tanh(458/51*Pi) 3141592653589793 l004 Pi/tanh(907/101*Pi) 3141592653589793 l004 Pi/tanh(449/50*Pi) 3141592653589793 l004 Pi/tanh(889/99*Pi) 3141592653589793 l004 Pi/tanh(440/49*Pi) 3141592653589793 l004 Pi/tanh(871/97*Pi) 3141592653589793 l004 Pi/tanh(431/48*Pi) 3141592653589793 l004 Pi/tanh(853/95*Pi) 3141592653589793 l004 Pi/tanh(422/47*Pi) 3141592653589793 l004 Pi/tanh(835/93*Pi) 3141592653589793 l004 Pi/tanh(413/46*Pi) 3141592653589793 l004 Pi/tanh(817/91*Pi) 3141592653589793 l004 Pi/tanh(404/45*Pi) 3141592653589793 l004 Pi/tanh(799/89*Pi) 3141592653589793 l004 Pi/tanh(395/44*Pi) 3141592653589793 l004 Pi/tanh(781/87*Pi) 3141592653589793 l004 Pi/tanh(386/43*Pi) 3141592653589793 l004 Pi/tanh(763/85*Pi) 3141592653589793 l004 Pi/tanh(377/42*Pi) 3141592653589793 l004 Pi/tanh(745/83*Pi) 3141592653589793 l004 Pi/tanh(368/41*Pi) 3141592653589793 l004 Pi/tanh(727/81*Pi) 3141592653589793 l004 Pi/tanh(359/40*Pi) 3141592653589793 l004 Pi/tanh(1068/119*Pi) 3141592653589793 l004 Pi/tanh(709/79*Pi) 3141592653589793 l004 Pi/tanh(1059/118*Pi) 3141592653589793 l004 Pi/tanh(350/39*Pi) 3141592653589793 l004 Pi/tanh(1041/116*Pi) 3141592653589793 l004 Pi/tanh(691/77*Pi) 3141592653589793 l004 Pi/tanh(1032/115*Pi) 3141592653589793 l004 Pi/tanh(341/38*Pi) 3141592653589793 l004 Pi/tanh(1014/113*Pi) 3141592653589793 l004 Pi/tanh(673/75*Pi) 3141592653589793 l004 Pi/tanh(1005/112*Pi) 3141592653589793 l004 Pi/tanh(332/37*Pi) 3141592653589793 l004 Pi/tanh(987/110*Pi) 3141592653589793 l004 Pi/tanh(655/73*Pi) 3141592653589793 l004 Pi/tanh(978/109*Pi) 3141592653589793 l004 Pi/tanh(323/36*Pi) 3141592653589793 l004 Pi/tanh(960/107*Pi) 3141592653589793 l004 Pi/tanh(637/71*Pi) 3141592653589793 l004 Pi/tanh(951/106*Pi) 3141592653589793 l004 Pi/tanh(314/35*Pi) 3141592653589793 l004 Pi/tanh(933/104*Pi) 3141592653589793 l004 Pi/tanh(619/69*Pi) 3141592653589793 l004 Pi/tanh(924/103*Pi) 3141592653589793 l004 Pi/tanh(305/34*Pi) 3141592653589793 l004 Pi/tanh(906/101*Pi) 3141592653589793 l004 Pi/tanh(601/67*Pi) 3141592653589793 l004 Pi/tanh(897/100*Pi) 3141592653589793 l004 Pi/tanh(296/33*Pi) 3141592653589793 l004 Pi/tanh(879/98*Pi) 3141592653589793 l004 Pi/tanh(583/65*Pi) 3141592653589793 l004 Pi/tanh(870/97*Pi) 3141592653589793 l004 Pi/tanh(287/32*Pi) 3141592653589793 l004 Pi/tanh(852/95*Pi) 3141592653589793 l004 Pi/tanh(565/63*Pi) 3141592653589793 l004 Pi/tanh(843/94*Pi) 3141592653589793 l004 Pi/tanh(278/31*Pi) 3141592653589793 l004 Pi/tanh(825/92*Pi) 3141592653589793 l004 Pi/tanh(547/61*Pi) 3141592653589793 l004 Pi/tanh(816/91*Pi) 3141592653589793 l004 Pi/tanh(269/30*Pi) 3141592653589793 l004 Pi/tanh(1067/119*Pi) 3141592653589793 l004 Pi/tanh(798/89*Pi) 3141592653589793 l004 Pi/tanh(529/59*Pi) 3141592653589793 l004 Pi/tanh(789/88*Pi) 3141592653589793 l004 Pi/tanh(1049/117*Pi) 3141592653589793 l004 Pi/tanh(260/29*Pi) 3141592653589793 l004 Pi/tanh(1031/115*Pi) 3141592653589793 l004 Pi/tanh(771/86*Pi) 3141592653589793 l004 Pi/tanh(511/57*Pi) 3141592653589793 l004 Pi/tanh(762/85*Pi) 3141592653589793 l004 Pi/tanh(1013/113*Pi) 3141592653589793 l004 Pi/tanh(251/28*Pi) 3141592653589793 m001 ZetaQ(3)^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653589793 l004 Pi/tanh(995/111*Pi) 3141592653589793 l004 Pi/tanh(744/83*Pi) 3141592653589793 l004 Pi/tanh(493/55*Pi) 3141592653589793 l004 Pi/tanh(735/82*Pi) 3141592653589793 l004 Pi/tanh(977/109*Pi) 3141592653589793 l004 Pi/tanh(242/27*Pi) 3141592653589793 l004 Pi/tanh(959/107*Pi) 3141592653589793 l004 Pi/tanh(717/80*Pi) 3141592653589793 l004 Pi/tanh(475/53*Pi) 3141592653589793 l004 Pi/tanh(708/79*Pi) 3141592653589793 l004 Pi/tanh(941/105*Pi) 3141592653589793 l004 Pi/tanh(233/26*Pi) 3141592653589793 l004 Pi/tanh(923/103*Pi) 3141592653589793 l004 Pi/tanh(690/77*Pi) 3141592653589793 l004 Pi/tanh(457/51*Pi) 3141592653589793 l004 Pi/tanh(681/76*Pi) 3141592653589793 l004 Pi/tanh(905/101*Pi) 3141592653589793 l004 Pi/tanh(224/25*Pi) 3141592653589793 l004 Pi/tanh(887/99*Pi) 3141592653589793 l004 Pi/tanh(663/74*Pi) 3141592653589793 l004 Pi/tanh(439/49*Pi) 3141592653589793 l004 Pi/tanh(654/73*Pi) 3141592653589793 m001 Khinchin^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(869/97*Pi) 3141592653589793 l004 Pi/tanh(215/24*Pi) 3141592653589793 l004 Pi/tanh(1066/119*Pi) 3141592653589793 l004 Pi/tanh(851/95*Pi) 3141592653589793 l004 Pi/tanh(636/71*Pi) 3141592653589793 l004 Pi/tanh(1057/118*Pi) 3141592653589793 l004 Pi/tanh(421/47*Pi) 3141592653589793 l004 Pi/tanh(1048/117*Pi) 3141592653589793 l004 Pi/tanh(627/70*Pi) 3141592653589793 l004 Pi/tanh(833/93*Pi) 3141592653589793 l004 Pi/tanh(1039/116*Pi) 3141592653589793 l004 Pi/tanh(206/23*Pi) 3141592653589793 l004 Pi/tanh(1021/114*Pi) 3141592653589793 l004 Pi/tanh(815/91*Pi) 3141592653589793 l004 Pi/tanh(609/68*Pi) 3141592653589793 l004 Pi/tanh(1012/113*Pi) 3141592653589793 l004 Pi/tanh(403/45*Pi) 3141592653589793 l004 Pi/tanh(1003/112*Pi) 3141592653589793 l004 Pi/tanh(600/67*Pi) 3141592653589793 l004 Pi/tanh(797/89*Pi) 3141592653589793 l004 Pi/tanh(994/111*Pi) 3141592653589793 l004 Pi/tanh(197/22*Pi) 3141592653589793 l004 Pi/tanh(976/109*Pi) 3141592653589793 l004 Pi/tanh(779/87*Pi) 3141592653589793 l004 Pi/tanh(582/65*Pi) 3141592653589793 l004 Pi/tanh(967/108*Pi) 3141592653589793 l004 Pi/tanh(385/43*Pi) 3141592653589793 l004 Pi/tanh(958/107*Pi) 3141592653589793 l004 Pi/tanh(573/64*Pi) 3141592653589793 l004 Pi/tanh(761/85*Pi) 3141592653589793 l004 Pi/tanh(949/106*Pi) 3141592653589793 l004 Pi/tanh(188/21*Pi) 3141592653589793 l004 Pi/tanh(931/104*Pi) 3141592653589793 l004 Pi/tanh(743/83*Pi) 3141592653589793 l004 Pi/tanh(555/62*Pi) 3141592653589793 l004 Pi/tanh(922/103*Pi) 3141592653589793 m001 FeigenbaumD^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(367/41*Pi) 3141592653589793 l004 Pi/tanh(913/102*Pi) 3141592653589793 l004 Pi/tanh(546/61*Pi) 3141592653589793 l004 Pi/tanh(725/81*Pi) 3141592653589793 l004 Pi/tanh(904/101*Pi) 3141592653589793 l004 Pi/tanh(179/20*Pi) 3141592653589793 l004 Pi/tanh(1065/119*Pi) 3141592653589793 l004 Pi/tanh(886/99*Pi) 3141592653589793 l004 Pi/tanh(707/79*Pi) 3141592653589793 l004 Pi/tanh(528/59*Pi) 3141592653589793 l004 Pi/tanh(877/98*Pi) 3141592653589793 l004 Pi/tanh(349/39*Pi) 3141592653589793 l004 Pi/tanh(868/97*Pi) 3141592653589793 l004 Pi/tanh(519/58*Pi) 3141592653589793 l004 Pi/tanh(689/77*Pi) 3141592653589793 l004 Pi/tanh(859/96*Pi) 3141592653589793 l004 Pi/tanh(1029/115*Pi) 3141592653589793 l004 Pi/tanh(170/19*Pi) 3141592653589793 l004 Pi/tanh(1011/113*Pi) 3141592653589793 l004 Pi/tanh(841/94*Pi) 3141592653589793 l004 Pi/tanh(671/75*Pi) 3141592653589793 l004 Pi/tanh(501/56*Pi) 3141592653589793 l004 Pi/tanh(832/93*Pi) 3141592653589793 l004 Pi/tanh(331/37*Pi) 3141592653589793 l004 Pi/tanh(823/92*Pi) 3141592653589793 l004 Pi/tanh(492/55*Pi) 3141592653589793 l004 Pi/tanh(653/73*Pi) 3141592653589793 l004 Pi/tanh(814/91*Pi) 3141592653589793 l004 Pi/tanh(975/109*Pi) 3141592653589793 l004 Pi/tanh(161/18*Pi) 3141592653589793 l004 Pi/tanh(957/107*Pi) 3141592653589793 l004 Pi/tanh(796/89*Pi) 3141592653589793 l004 Pi/tanh(635/71*Pi) 3141592653589793 l004 Pi/tanh(474/53*Pi) 3141592653589793 l004 Pi/tanh(787/88*Pi) 3141592653589793 l004 Pi/tanh(313/35*Pi) 3141592653589793 l004 Pi/tanh(778/87*Pi) 3141592653589793 l004 Pi/tanh(465/52*Pi) 3141592653589793 l004 Pi/tanh(617/69*Pi) 3141592653589793 l004 Pi/tanh(769/86*Pi) 3141592653589793 m001 Paris^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 l004 Pi/tanh(921/103*Pi) 3141592653589793 l004 Pi/tanh(1073/120*Pi) 3141592653589793 l004 Pi/tanh(152/17*Pi) 3141592653589793 l004 Pi/tanh(1055/118*Pi) 3141592653589793 l004 Pi/tanh(903/101*Pi) 3141592653589793 l004 Pi/tanh(751/84*Pi) 3141592653589793 l004 Pi/tanh(599/67*Pi) 3141592653589793 l004 Pi/tanh(1046/117*Pi) 3141592653589793 l004 Pi/tanh(447/50*Pi) 3141592653589793 l004 Pi/tanh(742/83*Pi) 3141592653589793 l004 Pi/tanh(1037/116*Pi) 3141592653589793 l004 Pi/tanh(295/33*Pi) 3141592653589793 l004 Pi/tanh(1028/115*Pi) 3141592653589793 l004 Pi/tanh(733/82*Pi) 3141592653589793 l004 Pi/tanh(438/49*Pi) 3141592653589793 l004 Pi/tanh(1019/114*Pi) 3141592653589793 l004 Pi/tanh(581/65*Pi) 3141592653589793 l004 Pi/tanh(724/81*Pi) 3141592653589793 l004 Pi/tanh(867/97*Pi) 3141592653589793 l004 Pi/tanh(1010/113*Pi) 3141592653589793 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(143/16*Pi) 3141592653589793 l004 Pi/tanh(992/111*Pi) 3141592653589793 l004 Pi/tanh(849/95*Pi) 3141592653589793 l004 Pi/tanh(706/79*Pi) 3141592653589793 l004 Pi/tanh(563/63*Pi) 3141592653589793 l004 Pi/tanh(983/110*Pi) 3141592653589793 l004 Pi/tanh(420/47*Pi) 3141592653589793 l004 Pi/tanh(697/78*Pi) 3141592653589793 l004 Pi/tanh(974/109*Pi) 3141592653589793 l004 Pi/tanh(277/31*Pi) 3141592653589793 l004 Pi/tanh(965/108*Pi) 3141592653589793 l004 Pi/tanh(688/77*Pi) 3141592653589793 l004 Pi/tanh(411/46*Pi) 3141592653589793 l004 Pi/tanh(956/107*Pi) 3141592653589793 l004 Pi/tanh(545/61*Pi) 3141592653589793 l004 Pi/tanh(679/76*Pi) 3141592653589793 l004 Pi/tanh(813/91*Pi) 3141592653589793 l004 Pi/tanh(947/106*Pi) 3141592653589793 l004 Pi/tanh(134/15*Pi) 3141592653589793 l004 Pi/tanh(1063/119*Pi) 3141592653589793 l004 Pi/tanh(929/104*Pi) 3141592653589793 l004 Pi/tanh(795/89*Pi) 3141592653589793 l004 Pi/tanh(661/74*Pi) 3141592653589793 l004 Pi/tanh(527/59*Pi) 3141592653589793 l004 Pi/tanh(920/103*Pi) 3141592653589793 l004 Pi/tanh(393/44*Pi) 3141592653589793 l004 Pi/tanh(1045/117*Pi) 3141592653589793 l004 Pi/tanh(652/73*Pi) 3141592653589793 l004 Pi/tanh(911/102*Pi) 3141592653589793 l004 Pi/tanh(259/29*Pi) 3141592653589793 l004 Pi/tanh(902/101*Pi) 3141592653589793 l004 Pi/tanh(643/72*Pi) 3141592653589793 l004 Pi/tanh(1027/115*Pi) 3141592653589793 l004 Pi/tanh(384/43*Pi) 3141592653589793 l004 Pi/tanh(893/100*Pi) 3141592653589793 l004 Pi/tanh(509/57*Pi) 3141592653589793 l004 Pi/tanh(634/71*Pi) 3141592653589793 l004 Pi/tanh(759/85*Pi) 3141592653589793 l004 Pi/tanh(884/99*Pi) 3141592653589793 l004 Pi/tanh(1009/113*Pi) 3141592653589793 l004 Pi/tanh(125/14*Pi) 3141592653589793 l004 Pi/tanh(991/111*Pi) 3141592653589793 l004 Pi/tanh(866/97*Pi) 3141592653589793 l004 Pi/tanh(741/83*Pi) 3141592653589793 l004 Pi/tanh(616/69*Pi) 3141592653589793 l004 Pi/tanh(491/55*Pi) 3141592653589793 l004 Pi/tanh(857/96*Pi) 3141592653589793 l004 Pi/tanh(366/41*Pi) 3141592653589793 l004 Pi/tanh(973/109*Pi) 3141592653589793 l004 Pi/tanh(607/68*Pi) 3141592653589793 l004 Pi/tanh(848/95*Pi) 3141592653589793 l004 Pi/tanh(241/27*Pi) 3141592653589793 l004 Pi/tanh(839/94*Pi) 3141592653589793 l004 Pi/tanh(598/67*Pi) 3141592653589793 l004 Pi/tanh(955/107*Pi) 3141592653589793 l004 Pi/tanh(357/40*Pi) 3141592653589793 l004 Pi/tanh(830/93*Pi) 3141592653589793 l004 Pi/tanh(473/53*Pi) 3141592653589793 l004 Pi/tanh(1062/119*Pi) 3141592653589793 l004 Pi/tanh(589/66*Pi) 3141592653589793 l004 Pi/tanh(705/79*Pi) 3141592653589793 l004 Pi/tanh(821/92*Pi) 3141592653589793 l004 Pi/tanh(937/105*Pi) 3141592653589793 l004 Pi/tanh(1053/118*Pi) 3141592653589793 l004 Pi/tanh(116/13*Pi) 3141592653589793 l004 Pi/tanh(1035/116*Pi) 3141592653589793 l004 Pi/tanh(919/103*Pi) 3141592653589793 l004 Pi/tanh(803/90*Pi) 3141592653589793 l004 Pi/tanh(687/77*Pi) 3141592653589793 l004 Pi/tanh(571/64*Pi) 3141592653589793 l004 Pi/tanh(1026/115*Pi) 3141592653589793 l004 Pi/tanh(455/51*Pi) 3141592653589793 l004 Pi/tanh(794/89*Pi) 3141592653589793 l004 Pi/tanh(339/38*Pi) 3141592653589793 l004 Pi/tanh(901/101*Pi) 3141592653589793 l004 Pi/tanh(562/63*Pi) 3141592653589793 l004 Pi/tanh(785/88*Pi) 3141592653589793 l004 Pi/tanh(1008/113*Pi) 3141592653589793 l004 Pi/tanh(223/25*Pi) 3141592653589793 l004 Pi/tanh(999/112*Pi) 3141592653589793 l004 Pi/tanh(776/87*Pi) 3141592653589793 l004 Pi/tanh(553/62*Pi) 3141592653589793 l004 Pi/tanh(883/99*Pi) 3141592653589793 l004 Pi/tanh(330/37*Pi) 3141592653589793 l004 Pi/tanh(767/86*Pi) 3141592653589793 l004 Pi/tanh(437/49*Pi) 3141592653589793 l004 Pi/tanh(981/110*Pi) 3141592653589793 l004 Pi/tanh(544/61*Pi) 3141592653589793 l004 Pi/tanh(651/73*Pi) 3141592653589793 l004 Pi/tanh(758/85*Pi) 3141592653589793 l004 Pi/tanh(865/97*Pi) 3141592653589793 l004 Pi/tanh(972/109*Pi) 3141592653589793 l004 Pi/tanh(107/12*Pi) 3141592653589793 l004 Pi/tanh(1061/119*Pi) 3141592653589793 l004 Pi/tanh(954/107*Pi) 3141592653589793 l004 Pi/tanh(847/95*Pi) 3141592653589793 l004 Pi/tanh(740/83*Pi) 3141592653589793 l004 Pi/tanh(633/71*Pi) 3141592653589793 l004 Pi/tanh(526/59*Pi) 3141592653589793 l004 Pi/tanh(945/106*Pi) 3141592653589793 l004 Pi/tanh(419/47*Pi) 3141592653589793 l004 Pi/tanh(731/82*Pi) 3141592653589793 l004 Pi/tanh(1043/117*Pi) 3141592653589793 l004 Pi/tanh(312/35*Pi) 3141592653589793 l004 Pi/tanh(829/93*Pi) 3141592653589793 l004 Pi/tanh(517/58*Pi) 3141592653589793 l004 Pi/tanh(722/81*Pi) 3141592653589793 l004 Pi/tanh(927/104*Pi) 3141592653589793 l004 Pi/tanh(205/23*Pi) 3141592653589793 l004 Pi/tanh(918/103*Pi) 3141592653589793 l004 Pi/tanh(713/80*Pi) 3141592653589793 l004 Pi/tanh(508/57*Pi) 3141592653589793 l004 Pi/tanh(811/91*Pi) 3141592653589793 l004 Pi/tanh(303/34*Pi) 3141592653589793 l004 Pi/tanh(1007/113*Pi) 3141592653589793 l004 Pi/tanh(704/79*Pi) 3141592653589793 l004 Pi/tanh(401/45*Pi) 3141592653589793 l004 Pi/tanh(900/101*Pi) 3141592653589793 l004 Pi/tanh(499/56*Pi) 3141592653589793 l004 Pi/tanh(597/67*Pi) 3141592653589793 l004 Pi/tanh(695/78*Pi) 3141592653589793 l004 Pi/tanh(793/89*Pi) 3141592653589793 l004 Pi/tanh(891/100*Pi) 3141592653589793 l004 Pi/tanh(989/111*Pi) 3141592653589793 l004 Pi/tanh(98/11*Pi) 3141592653589793 l004 Pi/tanh(1069/120*Pi) 3141592653589793 l004 Pi/tanh(971/109*Pi) 3141592653589793 l004 Pi/tanh(873/98*Pi) 3141592653589793 l004 Pi/tanh(775/87*Pi) 3141592653589793 l004 Pi/tanh(677/76*Pi) 3141592653589793 l004 Pi/tanh(579/65*Pi) 3141592653589793 l004 Pi/tanh(1060/119*Pi) 3141592653589793 l004 Pi/tanh(481/54*Pi) 3141592653589793 l004 Pi/tanh(864/97*Pi) 3141592653589793 l004 Pi/tanh(383/43*Pi) 3141592653589793 l004 Pi/tanh(1051/118*Pi) 3141592653589793 l004 Pi/tanh(668/75*Pi) 3141592653589793 l004 Pi/tanh(953/107*Pi) 3141592653589793 l004 Pi/tanh(285/32*Pi) 3141592653589793 l004 Pi/tanh(1042/117*Pi) 3141592653589793 l004 Pi/tanh(757/85*Pi) 3141592653589793 l004 Pi/tanh(472/53*Pi) 3141592653589793 l004 Pi/tanh(659/74*Pi) 3141592653589793 l004 Pi/tanh(846/95*Pi) 3141592653589793 l004 Pi/tanh(1033/116*Pi) 3141592653589793 l004 Pi/tanh(187/21*Pi) 3141592653589793 l004 Pi/tanh(1024/115*Pi) 3141592653589793 l004 Pi/tanh(837/94*Pi) 3141592653589793 l004 Pi/tanh(650/73*Pi) 3141592653589793 l004 Pi/tanh(463/52*Pi) 3141592653589793 l004 Pi/tanh(739/83*Pi) 3141592653589793 l004 Pi/tanh(1015/114*Pi) 3141592653589793 l004 Pi/tanh(276/31*Pi) 3141592653589793 l004 Pi/tanh(917/103*Pi) 3141592653589793 l004 Pi/tanh(641/72*Pi) 3141592653589793 l004 Pi/tanh(1006/113*Pi) 3141592653589793 l004 Pi/tanh(365/41*Pi) 3141592653589793 l004 Pi/tanh(819/92*Pi) 3141592653589793 l004 Pi/tanh(454/51*Pi) 3141592653589793 l004 Pi/tanh(997/112*Pi) 3141592653589793 l004 Pi/tanh(543/61*Pi) 3141592653589793 l004 Pi/tanh(632/71*Pi) 3141592653589793 l004 Pi/tanh(721/81*Pi) 3141592653589793 l004 Pi/tanh(810/91*Pi) 3141592653589793 l004 Pi/tanh(899/101*Pi) 3141592653589793 l004 Pi/tanh(988/111*Pi) 3141592653589793 l004 Pi/tanh(89/10*Pi) 3141592653589793 l004 Pi/tanh(1059/119*Pi) 3141592653589793 l004 Pi/tanh(970/109*Pi) 3141592653589793 l004 Pi/tanh(881/99*Pi) 3141592653589793 l004 Pi/tanh(792/89*Pi) 3141592653589793 l004 Pi/tanh(703/79*Pi) 3141592653589793 l004 Pi/tanh(614/69*Pi) 3141592653589793 l004 Pi/tanh(525/59*Pi) 3141592653589793 l004 Pi/tanh(961/108*Pi) 3141592653589793 l004 Pi/tanh(436/49*Pi) 3141592653589793 l004 Pi/tanh(783/88*Pi) 3141592653589793 l004 Pi/tanh(347/39*Pi) 3141592653589793 l004 Pi/tanh(952/107*Pi) 3141592653589793 l004 Pi/tanh(605/68*Pi) 3141592653589793 l004 Pi/tanh(863/97*Pi) 3141592653589793 l004 Pi/tanh(258/29*Pi) 3141592653589793 l004 Pi/tanh(943/106*Pi) 3141592653589793 l004 Pi/tanh(685/77*Pi) 3141592653589793 l004 Pi/tanh(427/48*Pi) 3141592653589793 l004 Pi/tanh(1023/115*Pi) 3141592653589793 l004 Pi/tanh(596/67*Pi) 3141592653589793 l004 Pi/tanh(765/86*Pi) 3141592653589793 l004 Pi/tanh(934/105*Pi) 3141592653589793 l004 Pi/tanh(169/19*Pi) 3141592653589793 l004 Pi/tanh(925/104*Pi) 3141592653589793 l004 Pi/tanh(756/85*Pi) 3141592653589793 l004 Pi/tanh(587/66*Pi) 3141592653589793 l004 Pi/tanh(1005/113*Pi) 3141592653589793 l004 Pi/tanh(418/47*Pi) 3141592653589793 l004 Pi/tanh(667/75*Pi) 3141592653589793 l004 Pi/tanh(916/103*Pi) 3141592653589793 l004 Pi/tanh(249/28*Pi) 3141592653589793 l004 Pi/tanh(827/93*Pi) 3141592653589793 l004 Pi/tanh(578/65*Pi) 3141592653589793 l004 Pi/tanh(907/102*Pi) 3141592653589793 l004 Pi/tanh(329/37*Pi) 3141592653589793 l004 Pi/tanh(1067/120*Pi) 3141592653589793 l004 Pi/tanh(738/83*Pi) 3141592653589793 l004 Pi/tanh(409/46*Pi) 3141592653589793 l004 Pi/tanh(898/101*Pi) 3141592653589793 l004 Pi/tanh(489/55*Pi) 3141592653589793 l004 Pi/tanh(1058/119*Pi) 3141592653589793 l004 Pi/tanh(569/64*Pi) 3141592653589793 l004 Pi/tanh(649/73*Pi) 3141592653589793 l004 Pi/tanh(729/82*Pi) 3141592653589793 l004 Pi/tanh(809/91*Pi) 3141592653589793 l004 Pi/tanh(889/100*Pi) 3141592653589793 l004 Pi/tanh(969/109*Pi) 3141592653589793 l004 Pi/tanh(1049/118*Pi) 3141592653589793 l004 Pi/tanh(80/9*Pi) 3141592653589793 l004 Pi/tanh(1031/116*Pi) 3141592653589793 l004 Pi/tanh(951/107*Pi) 3141592653589793 l004 Pi/tanh(871/98*Pi) 3141592653589793 l004 Pi/tanh(791/89*Pi) 3141592653589793 l004 Pi/tanh(711/80*Pi) 3141592653589793 l004 Pi/tanh(631/71*Pi) 3141592653589793 l004 Pi/tanh(551/62*Pi) 3141592653589793 l004 Pi/tanh(1022/115*Pi) 3141592653589793 l004 Pi/tanh(471/53*Pi) 3141592653589793 l004 Pi/tanh(862/97*Pi) 3141592653589793 l004 Pi/tanh(391/44*Pi) 3141592653589793 l004 Pi/tanh(702/79*Pi) 3141592653589793 l004 Pi/tanh(1013/114*Pi) 3141592653589793 l004 Pi/tanh(311/35*Pi) 3141592653589793 l004 Pi/tanh(853/96*Pi) 3141592653589793 l004 Pi/tanh(542/61*Pi) 3141592653589793 l004 Pi/tanh(773/87*Pi) 3141592653589793 l004 Pi/tanh(1004/113*Pi) 3141592653589793 l004 Pi/tanh(231/26*Pi) 3141592653589793 l004 Pi/tanh(844/95*Pi) 3141592653589793 l004 Pi/tanh(613/69*Pi) 3141592653589793 l004 Pi/tanh(995/112*Pi) 3141592653589793 l004 Pi/tanh(382/43*Pi) 3141592653589793 l004 Pi/tanh(915/103*Pi) 3141592653589793 l004 Pi/tanh(533/60*Pi) 3141592653589793 l004 Pi/tanh(684/77*Pi) 3141592653589793 l004 Pi/tanh(835/94*Pi) 3141592653589793 l004 Pi/tanh(986/111*Pi) 3141592653589793 l004 Pi/tanh(151/17*Pi) 3141592653589793 l004 Pi/tanh(977/110*Pi) 3141592653589793 l004 Pi/tanh(826/93*Pi) 3141592653589793 l004 Pi/tanh(675/76*Pi) 3141592653589793 l004 Pi/tanh(524/59*Pi) 3141592653589793 l004 Pi/tanh(897/101*Pi) 3141592653589793 l004 Pi/tanh(373/42*Pi) 3141592653589793 l004 Pi/tanh(968/109*Pi) 3141592653589793 l004 Pi/tanh(595/67*Pi) 3141592653589793 l004 Pi/tanh(817/92*Pi) 3141592653589793 l004 Pi/tanh(1039/117*Pi) 3141592653589793 l004 Pi/tanh(222/25*Pi) 3141592653589793 l004 Pi/tanh(959/108*Pi) 3141592653589793 l004 Pi/tanh(737/83*Pi) 3141592653589793 l004 Pi/tanh(515/58*Pi) 3141592653589793 l004 Pi/tanh(808/91*Pi) 3141592653589793 l004 Pi/tanh(293/33*Pi) 3141592653589793 l004 Pi/tanh(950/107*Pi) 3141592653589793 l004 Pi/tanh(657/74*Pi) 3141592653589793 l004 Pi/tanh(1021/115*Pi) 3141592653589793 l004 Pi/tanh(364/41*Pi) 3141592653589793 l004 Pi/tanh(799/90*Pi) 3141592653589793 l004 Pi/tanh(435/49*Pi) 3141592653589793 l004 Pi/tanh(941/106*Pi) 3141592653589793 l004 Pi/tanh(506/57*Pi) 3141592653589793 l004 Pi/tanh(577/65*Pi) 3141592653589793 l004 Pi/tanh(648/73*Pi) 3141592653589793 l004 Pi/tanh(719/81*Pi) 3141592653589793 l004 Pi/tanh(790/89*Pi) 3141592653589793 l004 Pi/tanh(861/97*Pi) 3141592653589793 l004 Pi/tanh(932/105*Pi) 3141592653589793 l004 Pi/tanh(1003/113*Pi) 3141592653589793 l004 Pi/tanh(71/8*Pi) 3141592653589793 l004 Pi/tanh(1056/119*Pi) 3141592653589793 l004 Pi/tanh(985/111*Pi) 3141592653589793 l004 Pi/tanh(914/103*Pi) 3141592653589793 l004 Pi/tanh(843/95*Pi) 3141592653589793 l004 Pi/tanh(772/87*Pi) 3141592653589793 l004 Pi/tanh(701/79*Pi) 3141592653589793 l004 Pi/tanh(630/71*Pi) 3141592653589793 l004 Pi/tanh(559/63*Pi) 3141592653589793 l004 Pi/tanh(1047/118*Pi) 3141592653589793 l004 Pi/tanh(488/55*Pi) 3141592653589793 l004 Pi/tanh(905/102*Pi) 3141592653589793 l004 Pi/tanh(417/47*Pi) 3141592653589793 l004 Pi/tanh(763/86*Pi) 3141592653589793 l004 Pi/tanh(346/39*Pi) 3141592653589793 l004 Pi/tanh(967/109*Pi) 3141592653589793 l004 Pi/tanh(621/70*Pi) 3141592653589793 l004 Pi/tanh(896/101*Pi) 3141592653589793 l004 Pi/tanh(275/31*Pi) 3141592653589793 l004 Pi/tanh(1029/116*Pi) 3141592653589793 l004 Pi/tanh(754/85*Pi) 3141592653589793 l004 Pi/tanh(479/54*Pi) 3141592653589793 l004 Pi/tanh(683/77*Pi) 3141592653589793 l004 Pi/tanh(887/100*Pi) 3141592653589793 l004 Pi/tanh(204/23*Pi) 3141592653589793 l004 Pi/tanh(949/107*Pi) 3141592653589793 l004 Pi/tanh(745/84*Pi) 3141592653589793 l004 Pi/tanh(541/61*Pi) 3141592653589793 l004 Pi/tanh(878/99*Pi) 3141592653589793 l004 Pi/tanh(337/38*Pi) 3141592653589793 l004 Pi/tanh(807/91*Pi) 3141592653589793 l004 Pi/tanh(470/53*Pi) 3141592653589793 l004 Pi/tanh(603/68*Pi) 3141592653589793 l004 Pi/tanh(736/83*Pi) 3141592653589793 l004 Pi/tanh(869/98*Pi) 3141592653589793 l004 Pi/tanh(1002/113*Pi) 3141592653589793 l004 Pi/tanh(133/15*Pi) 3141592653589793 l004 Pi/tanh(993/112*Pi) 3141592653589793 l004 Pi/tanh(860/97*Pi) 3141592653589793 l004 Pi/tanh(727/82*Pi) 3141592653589793 l004 Pi/tanh(594/67*Pi) 3141592653589793 l004 Pi/tanh(1055/119*Pi) 3141592653589793 l004 Pi/tanh(461/52*Pi) 3141592653589793 l004 Pi/tanh(789/89*Pi) 3141592653589793 l004 Pi/tanh(328/37*Pi) 3141592653589793 l004 Pi/tanh(851/96*Pi) 3141592653589793 l004 Pi/tanh(523/59*Pi) 3141592653589793 l004 Pi/tanh(718/81*Pi) 3141592653589793 l004 Pi/tanh(913/103*Pi) 3141592653589793 l004 Pi/tanh(195/22*Pi) 3141592653589793 l004 Pi/tanh(1037/117*Pi) 3141592653589793 l004 Pi/tanh(842/95*Pi) 3141592653589793 l004 Pi/tanh(647/73*Pi) 3141592653589793 l004 Pi/tanh(452/51*Pi) 3141592653589793 l004 Pi/tanh(709/80*Pi) 3141592653589793 l004 Pi/tanh(966/109*Pi) 3141592653589793 l004 Pi/tanh(257/29*Pi) 3141592653589793 l004 Pi/tanh(833/94*Pi) 3141592653589793 l004 Pi/tanh(576/65*Pi) 3141592653589793 l004 Pi/tanh(895/101*Pi) 3141592653589793 l004 Pi/tanh(319/36*Pi) 3141592653589793 l004 Pi/tanh(1019/115*Pi) 3141592653589793 l004 Pi/tanh(700/79*Pi) 3141592653589793 l004 Pi/tanh(381/43*Pi) 3141592653589793 l004 Pi/tanh(824/93*Pi) 3141592653589793 l004 Pi/tanh(443/50*Pi) 3141592653589793 l004 Pi/tanh(948/107*Pi) 3141592653589793 l004 Pi/tanh(505/57*Pi) 3141592653589793 l004 Pi/tanh(567/64*Pi) 3141592653589793 l004 Pi/tanh(629/71*Pi) 3141592653589793 l004 Pi/tanh(691/78*Pi) 3141592653589793 l004 Pi/tanh(753/85*Pi) 3141592653589793 l004 Pi/tanh(815/92*Pi) 3141592653589793 l004 Pi/tanh(877/99*Pi) 3141592653589793 l004 Pi/tanh(939/106*Pi) 3141592653589793 l004 Pi/tanh(1001/113*Pi) 3141592653589793 l004 Pi/tanh(1063/120*Pi) 3141592653589793 l004 Pi/tanh(62/7*Pi) 3141592653589793 l004 Pi/tanh(1045/118*Pi) 3141592653589793 l004 Pi/tanh(983/111*Pi) 3141592653589793 l004 Pi/tanh(921/104*Pi) 3141592653589793 l004 Pi/tanh(859/97*Pi) 3141592653589793 l004 Pi/tanh(797/90*Pi) 3141592653589793 l004 Pi/tanh(735/83*Pi) 3141592653589793 l004 Pi/tanh(673/76*Pi) 3141592653589793 l004 Pi/tanh(611/69*Pi) 3141592653589793 l004 Pi/tanh(549/62*Pi) 3141592653589793 l004 Pi/tanh(1036/117*Pi) 3141592653589793 l004 Pi/tanh(487/55*Pi) 3141592653589793 l004 Pi/tanh(912/103*Pi) 3141592653589793 l004 Pi/tanh(425/48*Pi) 3141592653589793 l004 Pi/tanh(788/89*Pi) 3141592653589793 l004 Pi/tanh(363/41*Pi) 3141592653589793 l004 Pi/tanh(1027/116*Pi) 3141592653589793 l004 Pi/tanh(664/75*Pi) 3141592653589793 l004 Pi/tanh(965/109*Pi) 3141592653589793 l004 Pi/tanh(301/34*Pi) 3141592653589793 l004 Pi/tanh(841/95*Pi) 3141592653589793 l004 Pi/tanh(540/61*Pi) 3141592653589793 l004 Pi/tanh(779/88*Pi) 3141592653589793 l004 Pi/tanh(1018/115*Pi) 3141592653589793 l004 Pi/tanh(239/27*Pi) 3141592653589793 l004 Pi/tanh(894/101*Pi) 3141592653589793 l004 Pi/tanh(655/74*Pi) 3141592653589793 l004 Pi/tanh(416/47*Pi) 3141592653589793 l004 Pi/tanh(1009/114*Pi) 3141592653589793 l004 Pi/tanh(593/67*Pi) 3141592653589793 l004 Pi/tanh(770/87*Pi) 3141592653589793 l004 Pi/tanh(947/107*Pi) 3141592653589793 l004 Pi/tanh(177/20*Pi) 3141592653589793 l004 Pi/tanh(1000/113*Pi) 3141592653589793 l004 Pi/tanh(823/93*Pi) 3141592653589793 l004 Pi/tanh(646/73*Pi) 3141592653589793 l004 Pi/tanh(469/53*Pi) 3141592653589793 l004 Pi/tanh(761/86*Pi) 3141592653589793 l004 Pi/tanh(1053/119*Pi) 3141592653589793 l004 Pi/tanh(292/33*Pi) 3141592653589793 l004 Pi/tanh(991/112*Pi) 3141592653589793 l004 Pi/tanh(699/79*Pi) 3141592653589793 l004 Pi/tanh(407/46*Pi) 3141592653589793 l004 Pi/tanh(929/105*Pi) 3141592653589793 l004 Pi/tanh(522/59*Pi) 3141592653589793 l004 Pi/tanh(637/72*Pi) 3141592653589793 l004 Pi/tanh(752/85*Pi) 3141592653589793 l004 Pi/tanh(867/98*Pi) 3141592653589793 l004 Pi/tanh(982/111*Pi) 3141592653589793 l004 Pi/tanh(115/13*Pi) 3141592653589793 l004 Pi/tanh(973/110*Pi) 3141592653589793 l004 Pi/tanh(858/97*Pi) 3141592653589793 l004 Pi/tanh(743/84*Pi) 3141592653589793 l004 Pi/tanh(628/71*Pi) 3141592653589793 l004 Pi/tanh(513/58*Pi) 3141592653589793 l004 Pi/tanh(911/103*Pi) 3141592653589793 l004 Pi/tanh(398/45*Pi) 3141592653589793 l004 Pi/tanh(681/77*Pi) 3141592653589793 l004 Pi/tanh(964/109*Pi) 3141592653589793 l004 Pi/tanh(283/32*Pi) 3141592653589793 l004 Pi/tanh(1017/115*Pi) 3141592653589793 l004 Pi/tanh(734/83*Pi) 3141592653589793 l004 Pi/tanh(451/51*Pi) 3141592653589793 l004 Pi/tanh(619/70*Pi) 3141592653589793 l004 Pi/tanh(787/89*Pi) 3141592653589793 l004 Pi/tanh(955/108*Pi) 3141592653589793 l004 Pi/tanh(168/19*Pi) 3141592653589793 l004 Pi/tanh(1061/120*Pi) 3141592653589793 l004 Pi/tanh(893/101*Pi) 3141592653589793 l004 Pi/tanh(725/82*Pi) 3141592653589793 l004 Pi/tanh(557/63*Pi) 3141592653589793 l004 Pi/tanh(946/107*Pi) 3141592653589793 l004 Pi/tanh(389/44*Pi) 3141592653589793 l004 Pi/tanh(999/113*Pi) 3141592653589793 l004 Pi/tanh(610/69*Pi) 3141592653589793 l004 Pi/tanh(831/94*Pi) 3141592653589793 l004 Pi/tanh(1052/119*Pi) 3141592653589793 l004 Pi/tanh(221/25*Pi) 3141592653589793 l004 Pi/tanh(937/106*Pi) 3141592653589793 l004 Pi/tanh(716/81*Pi) 3141592653589793 l004 Pi/tanh(495/56*Pi) 3141592653589793 l004 Pi/tanh(769/87*Pi) 3141592653589793 l004 Pi/tanh(1043/118*Pi) 3141592653589793 l004 Pi/tanh(274/31*Pi) 3141592653589793 l004 Pi/tanh(875/99*Pi) 3141592653589793 l004 Pi/tanh(601/68*Pi) 3141592653589793 l004 Pi/tanh(928/105*Pi) 3141592653589793 l004 Pi/tanh(327/37*Pi) 3141592653589793 l004 Pi/tanh(1034/117*Pi) 3141592653589793 l004 Pi/tanh(707/80*Pi) 3141592653589793 l004 Pi/tanh(380/43*Pi) 3141592653589793 l004 Pi/tanh(813/92*Pi) 3141592653589793 l004 Pi/tanh(433/49*Pi) 3141592653589793 l004 Pi/tanh(919/104*Pi) 3141592653589793 l004 Pi/tanh(486/55*Pi) 3141592653589793 l004 Pi/tanh(1025/116*Pi) 3141592653589793 l004 Pi/tanh(539/61*Pi) 3141592653589793 l004 Pi/tanh(592/67*Pi) 3141592653589793 l004 Pi/tanh(645/73*Pi) 3141592653589793 l004 Pi/tanh(698/79*Pi) 3141592653589793 l004 Pi/tanh(751/85*Pi) 3141592653589793 l004 Pi/tanh(804/91*Pi) 3141592653589793 l004 Pi/tanh(857/97*Pi) 3141592653589793 l004 Pi/tanh(910/103*Pi) 3141592653589793 l004 Pi/tanh(963/109*Pi) 3141592653589793 l004 Pi/tanh(1016/115*Pi) 3141592653589793 l004 Pi/tanh(53/6*Pi) 3141592653589793 l004 Pi/tanh(1051/119*Pi) 3141592653589793 l004 Pi/tanh(998/113*Pi) 3141592653589793 l004 Pi/tanh(945/107*Pi) 3141592653589793 l004 Pi/tanh(892/101*Pi) 3141592653589793 l004 Pi/tanh(839/95*Pi) 3141592653589793 l004 Pi/tanh(786/89*Pi) 3141592653589793 l004 Pi/tanh(733/83*Pi) 3141592653589793 l004 Pi/tanh(680/77*Pi) 3141592653589793 l004 Pi/tanh(627/71*Pi) 3141592653589793 l004 Pi/tanh(574/65*Pi) 3141592653589793 l004 Pi/tanh(521/59*Pi) 3141592653589793 l004 Pi/tanh(989/112*Pi) 3141592653589793 l004 Pi/tanh(468/53*Pi) 3141592653589793 l004 Pi/tanh(883/100*Pi) 3141592653589793 l004 Pi/tanh(415/47*Pi) 3141592653589793 l004 Pi/tanh(777/88*Pi) 3141592653589793 l004 Pi/tanh(362/41*Pi) 3141592653589793 l004 Pi/tanh(1033/117*Pi) 3141592653589793 l004 Pi/tanh(671/76*Pi) 3141592653589793 l004 Pi/tanh(980/111*Pi) 3141592653589793 l004 Pi/tanh(309/35*Pi) 3141592653589793 l004 Pi/tanh(874/99*Pi) 3141592653589793 l004 Pi/tanh(565/64*Pi) 3141592653589793 l004 Pi/tanh(821/93*Pi) 3141592653589793 l004 Pi/tanh(256/29*Pi) 3141592653589793 l004 Pi/tanh(971/110*Pi) 3141592653589793 l004 Pi/tanh(715/81*Pi) 3141592653589793 l004 Pi/tanh(459/52*Pi) 3141592653589793 l004 Pi/tanh(662/75*Pi) 3141592653589793 l004 Pi/tanh(865/98*Pi) 3141592653589793 l004 Pi/tanh(203/23*Pi) 3141592653589793 l004 Pi/tanh(962/109*Pi) 3141592653589793 l004 Pi/tanh(759/86*Pi) 3141592653589793 l004 Pi/tanh(556/63*Pi) 3141592653589793 l004 Pi/tanh(909/103*Pi) 3141592653589793 l004 Pi/tanh(353/40*Pi) 3141592653589793 l004 Pi/tanh(856/97*Pi) 3141592653589793 l004 Pi/tanh(503/57*Pi) 3141592653589793 l004 Pi/tanh(653/74*Pi) 3141592653589793 l004 Pi/tanh(803/91*Pi) 3141592653589793 l004 Pi/tanh(953/108*Pi) 3141592653589793 l004 Pi/tanh(150/17*Pi) 3141592653589793 m001 Paris^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(997/113*Pi) 3141592653589793 l004 Pi/tanh(847/96*Pi) 3141592653589793 l004 Pi/tanh(697/79*Pi) 3141592653589793 l004 Pi/tanh(547/62*Pi) 3141592653589793 l004 Pi/tanh(944/107*Pi) 3141592653589793 l004 Pi/tanh(397/45*Pi) 3141592653589793 l004 Pi/tanh(1041/118*Pi) 3141592653589793 l004 Pi/tanh(644/73*Pi) 3141592653589793 l004 Pi/tanh(891/101*Pi) 3141592653589793 l004 Pi/tanh(247/28*Pi) 3141592653589793 l004 Pi/tanh(838/95*Pi) 3141592653589793 l004 Pi/tanh(591/67*Pi) 3141592653589793 l004 Pi/tanh(935/106*Pi) 3141592653589793 l004 Pi/tanh(344/39*Pi) 3141592653589793 l004 Pi/tanh(785/89*Pi) 3141592653589793 l004 Pi/tanh(441/50*Pi) 3141592653589793 l004 Pi/tanh(979/111*Pi) 3141592653589793 l004 Pi/tanh(538/61*Pi) 3141592653589793 l004 Pi/tanh(635/72*Pi) 3141592653589793 l004 Pi/tanh(732/83*Pi) 3141592653589793 l004 Pi/tanh(829/94*Pi) 3141592653589793 l004 Pi/tanh(926/105*Pi) 3141592653589793 l004 Pi/tanh(1023/116*Pi) 3141592653589793 l004 Pi/tanh(97/11*Pi) 3141592653589793 l004 Pi/tanh(1014/115*Pi) 3141592653589793 l004 Pi/tanh(917/104*Pi) 3141592653589793 l004 Pi/tanh(820/93*Pi) 3141592653589793 l004 Pi/tanh(723/82*Pi) 3141592653589793 l004 Pi/tanh(626/71*Pi) 3141592653589793 l004 Pi/tanh(529/60*Pi) 3141592653589793 l004 Pi/tanh(961/109*Pi) 3141592653589793 l004 Pi/tanh(432/49*Pi) 3141592653589793 l004 Pi/tanh(767/87*Pi) 3141592653589793 l004 Pi/tanh(335/38*Pi) 3141592653589793 l004 Pi/tanh(908/103*Pi) 3141592653589793 l004 Pi/tanh(573/65*Pi) 3141592653589793 l004 Pi/tanh(811/92*Pi) 3141592653589793 l004 Pi/tanh(1049/119*Pi) 3141592653589793 l004 Pi/tanh(238/27*Pi) 3141592653589793 l004 Pi/tanh(855/97*Pi) 3141592653589793 l004 Pi/tanh(617/70*Pi) 3141592653589793 l004 Pi/tanh(996/113*Pi) 3141592653589793 l004 Pi/tanh(379/43*Pi) 3141592653589793 l004 Pi/tanh(899/102*Pi) 3141592653589793 l004 Pi/tanh(520/59*Pi) 3141592653589793 l004 Pi/tanh(661/75*Pi) 3141592653589793 l004 Pi/tanh(802/91*Pi) 3141592653589793 l004 Pi/tanh(943/107*Pi) 3141592653589793 l004 Pi/tanh(141/16*Pi) 3141592653589793 l004 Pi/tanh(1031/117*Pi) 3141592653589793 l004 Pi/tanh(890/101*Pi) 3141592653589793 l004 Pi/tanh(749/85*Pi) 3141592653589793 l004 Pi/tanh(608/69*Pi) 3141592653589793 l004 Pi/tanh(467/53*Pi) 3141592653589793 l004 Pi/tanh(793/90*Pi) 3141592653589793 l004 Pi/tanh(326/37*Pi) 3141592653589793 l004 Pi/tanh(837/95*Pi) 3141592653589793 l004 Pi/tanh(511/58*Pi) 3141592653589793 l004 Pi/tanh(696/79*Pi) 3141592653589793 l004 Pi/tanh(881/100*Pi) 3141592653589793 l004 Pi/tanh(185/21*Pi) 3141592653589793 l004 Pi/tanh(969/110*Pi) 3141592653589793 l004 Pi/tanh(784/89*Pi) 3141592653589793 l004 Pi/tanh(599/68*Pi) 3141592653589793 l004 Pi/tanh(1013/115*Pi) 3141592653589793 l004 Pi/tanh(414/47*Pi) 3141592653589793 l004 Pi/tanh(1057/120*Pi) 3141592653589793 l004 Pi/tanh(643/73*Pi) 3141592653589793 l004 Pi/tanh(872/99*Pi) 3141592653589793 l004 Pi/tanh(229/26*Pi) 3141592653589793 l004 Pi/tanh(960/109*Pi) 3141592653589793 l004 Pi/tanh(731/83*Pi) 3141592653589793 l004 Pi/tanh(502/57*Pi) 3141592653589793 l004 Pi/tanh(775/88*Pi) 3141592653589793 l004 Pi/tanh(1048/119*Pi) 3141592653589793 l004 Pi/tanh(273/31*Pi) 3141592653589793 l004 Pi/tanh(863/98*Pi) 3141592653589793 l004 Pi/tanh(590/67*Pi) 3141592653589793 l004 Pi/tanh(907/103*Pi) 3141592653589793 l004 Pi/tanh(317/36*Pi) 3141592653589793 l004 Pi/tanh(995/113*Pi) 3141592653589793 l004 Pi/tanh(678/77*Pi) 3141592653589793 l004 Pi/tanh(1039/118*Pi) 3141592653589793 l004 Pi/tanh(361/41*Pi) 3141592653589793 l004 Pi/tanh(766/87*Pi) 3141592653589793 l004 Pi/tanh(405/46*Pi) 3141592653589793 l004 Pi/tanh(854/97*Pi) 3141592653589793 l004 Pi/tanh(449/51*Pi) 3141592653589793 l004 Pi/tanh(942/107*Pi) 3141592653589793 l004 Pi/tanh(493/56*Pi) 3141592653589793 l004 Pi/tanh(1030/117*Pi) 3141592653589793 l004 Pi/tanh(537/61*Pi) 3141592653589793 l004 Pi/tanh(581/66*Pi) 3141592653589793 l004 Pi/tanh(625/71*Pi) 3141592653589793 l004 Pi/tanh(669/76*Pi) 3141592653589793 l004 Pi/tanh(713/81*Pi) 3141592653589793 l004 Pi/tanh(757/86*Pi) 3141592653589793 l004 Pi/tanh(801/91*Pi) 3141592653589793 l004 Pi/tanh(845/96*Pi) 3141592653589793 l004 Pi/tanh(889/101*Pi) 3141592653589793 l004 Pi/tanh(933/106*Pi) 3141592653589793 l004 Pi/tanh(977/111*Pi) 3141592653589793 l004 Pi/tanh(1021/116*Pi) 3141592653589793 l004 Pi/tanh(44/5*Pi) 3141592653589793 l004 Pi/tanh(1047/119*Pi) 3141592653589793 l004 Pi/tanh(1003/114*Pi) 3141592653589793 l004 Pi/tanh(959/109*Pi) 3141592653589793 l004 Pi/tanh(915/104*Pi) 3141592653589793 l004 Pi/tanh(871/99*Pi) 3141592653589793 l004 Pi/tanh(827/94*Pi) 3141592653589793 l004 Pi/tanh(783/89*Pi) 3141592653589793 l004 Pi/tanh(739/84*Pi) 3141592653589793 l004 Pi/tanh(695/79*Pi) 3141592653589793 l004 Pi/tanh(651/74*Pi) 3141592653589793 l004 Pi/tanh(607/69*Pi) 3141592653589793 l004 Pi/tanh(563/64*Pi) 3141592653589793 l004 Pi/tanh(519/59*Pi) 3141592653589793 l004 Pi/tanh(994/113*Pi) 3141592653589793 l004 Pi/tanh(475/54*Pi) 3141592653589793 l004 Pi/tanh(906/103*Pi) 3141592653589793 l004 Pi/tanh(431/49*Pi) 3141592653589793 l004 Pi/tanh(818/93*Pi) 3141592653589793 l004 Pi/tanh(387/44*Pi) 3141592653589793 l004 Pi/tanh(730/83*Pi) 3141592653589793 l004 Pi/tanh(343/39*Pi) 3141592653589793 l004 Pi/tanh(985/112*Pi) 3141592653589793 l004 Pi/tanh(642/73*Pi) 3141592653589793 l004 Pi/tanh(941/107*Pi) 3141592653589793 l004 Pi/tanh(299/34*Pi) 3141592653589793 l004 Pi/tanh(853/97*Pi) 3141592653589793 l004 Pi/tanh(554/63*Pi) 3141592653589793 l004 Pi/tanh(809/92*Pi) 3141592653589793 l004 Pi/tanh(255/29*Pi) 3141592653589793 l004 Pi/tanh(976/111*Pi) 3141592653589793 l004 Pi/tanh(721/82*Pi) 3141592653589793 l004 Pi/tanh(466/53*Pi) 3141592653589793 l004 Pi/tanh(677/77*Pi) 3141592653589793 l004 Pi/tanh(888/101*Pi) 3141592653589793 l004 Pi/tanh(211/24*Pi) 3141592653589793 l004 Pi/tanh(1011/115*Pi) 3141592653589793 l004 Pi/tanh(800/91*Pi) 3141592653589793 l004 Pi/tanh(589/67*Pi) 3141592653589793 l004 Pi/tanh(967/110*Pi) 3141592653589793 l004 Pi/tanh(378/43*Pi) 3141592653589793 l004 Pi/tanh(923/105*Pi) 3141592653589793 l004 Pi/tanh(545/62*Pi) 3141592653589793 l004 Pi/tanh(712/81*Pi) 3141592653589793 l004 Pi/tanh(879/100*Pi) 3141592653589793 l004 Pi/tanh(1046/119*Pi) 3141592653589793 l004 Pi/tanh(167/19*Pi) 3141592653589793 l004 Pi/tanh(958/109*Pi) 3141592653589793 l004 Pi/tanh(791/90*Pi) 3141592653589793 l004 Pi/tanh(624/71*Pi) 3141592653589793 l004 Pi/tanh(457/52*Pi) 3141592653589793 l004 Pi/tanh(747/85*Pi) 3141592653589793 l004 Pi/tanh(1037/118*Pi) 3141592653589793 l004 Pi/tanh(290/33*Pi) 3141592653589793 l004 Pi/tanh(993/113*Pi) 3141592653589793 l004 Pi/tanh(703/80*Pi) 3141592653589793 l004 Pi/tanh(413/47*Pi) 3141592653589793 l004 Pi/tanh(949/108*Pi) 3141592653589793 l004 Pi/tanh(536/61*Pi) 3141592653589793 l004 Pi/tanh(659/75*Pi) 3141592653589793 l004 Pi/tanh(782/89*Pi) 3141592653589793 l004 Pi/tanh(905/103*Pi) 3141592653589793 l004 Pi/tanh(1028/117*Pi) 3141592653589793 l004 Pi/tanh(123/14*Pi) 3141592653589793 l004 Pi/tanh(940/107*Pi) 3141592653589793 l004 Pi/tanh(817/93*Pi) 3141592653589793 l004 Pi/tanh(694/79*Pi) 3141592653589793 l004 Pi/tanh(571/65*Pi) 3141592653589793 l004 Pi/tanh(1019/116*Pi) 3141592653589793 l004 Pi/tanh(448/51*Pi) 3141592653589793 l004 Pi/tanh(773/88*Pi) 3141592653589793 l004 Pi/tanh(325/37*Pi) 3141592653589793 l004 Pi/tanh(852/97*Pi) 3141592653589793 l004 Pi/tanh(527/60*Pi) 3141592653589793 l004 Pi/tanh(729/83*Pi) 3141592653589793 l004 Pi/tanh(931/106*Pi) 3141592653589793 l004 Pi/tanh(202/23*Pi) 3141592653589793 l004 Pi/tanh(887/101*Pi) 3141592653589793 l004 Pi/tanh(685/78*Pi) 3141592653589793 l004 Pi/tanh(483/55*Pi) 3141592653589793 l004 Pi/tanh(764/87*Pi) 3141592653589793 l004 Pi/tanh(1045/119*Pi) 3141592653589793 l004 Pi/tanh(281/32*Pi) 3141592653589793 l004 Pi/tanh(922/105*Pi) 3141592653589793 l004 Pi/tanh(641/73*Pi) 3141592653589793 l004 Pi/tanh(1001/114*Pi) 3141592653589793 l004 Pi/tanh(360/41*Pi) 3141592653589793 l004 Pi/tanh(799/91*Pi) 3141592653589793 l004 Pi/tanh(439/50*Pi) 3141592653589793 l004 Pi/tanh(957/109*Pi) 3141592653589793 l004 Pi/tanh(518/59*Pi) 3141592653589793 l004 Pi/tanh(597/68*Pi) 3141592653589793 l004 Pi/tanh(676/77*Pi) 3141592653589793 l004 Pi/tanh(755/86*Pi) 3141592653589793 l004 Pi/tanh(834/95*Pi) 3141592653589793 l004 Pi/tanh(913/104*Pi) 3141592653589793 l004 Pi/tanh(992/113*Pi) 3141592653589793 l004 Pi/tanh(79/9*Pi) 3141592653589793 l004 Pi/tanh(983/112*Pi) 3141592653589793 l004 Pi/tanh(904/103*Pi) 3141592653589793 l004 Pi/tanh(825/94*Pi) 3141592653589793 l004 Pi/tanh(746/85*Pi) 3141592653589793 l004 Pi/tanh(667/76*Pi) 3141592653589793 l004 Pi/tanh(588/67*Pi) 3141592653589793 l004 Pi/tanh(509/58*Pi) 3141592653589793 l004 Pi/tanh(939/107*Pi) 3141592653589793 l004 Pi/tanh(430/49*Pi) 3141592653589793 l004 Pi/tanh(781/89*Pi) 3141592653589793 l004 Pi/tanh(351/40*Pi) 3141592653589793 l004 Pi/tanh(974/111*Pi) 3141592653589793 l004 Pi/tanh(623/71*Pi) 3141592653589793 l004 Pi/tanh(895/102*Pi) 3141592653589793 l004 Pi/tanh(272/31*Pi) 3141592653589793 l004 Pi/tanh(1009/115*Pi) 3141592653589793 l004 Pi/tanh(737/84*Pi) 3141592653589793 l004 Pi/tanh(465/53*Pi) 3141592653589793 l004 Pi/tanh(658/75*Pi) 3141592653589793 l004 Pi/tanh(851/97*Pi) 3141592653589793 l004 Pi/tanh(1044/119*Pi) 3141592653589793 l004 Pi/tanh(193/22*Pi) 3141592653589793 l004 Pi/tanh(886/101*Pi) 3141592653589793 l004 Pi/tanh(693/79*Pi) 3141592653589793 l004 Pi/tanh(500/57*Pi) 3141592653589793 l004 Pi/tanh(807/92*Pi) 3141592653589793 l004 Pi/tanh(307/35*Pi) 3141592653589793 l004 Pi/tanh(1035/118*Pi) 3141592653589793 l004 Pi/tanh(728/83*Pi) 3141592653589793 l004 Pi/tanh(421/48*Pi) 3141592653589793 l004 Pi/tanh(956/109*Pi) 3141592653589793 l004 Pi/tanh(535/61*Pi) 3141592653589793 l004 Pi/tanh(649/74*Pi) 3141592653589793 l004 Pi/tanh(763/87*Pi) 3141592653589793 l004 Pi/tanh(877/100*Pi) 3141592653589793 l004 Pi/tanh(991/113*Pi) 3141592653589793 l004 Pi/tanh(114/13*Pi) 3141592653589793 l004 Pi/tanh(947/108*Pi) 3141592653589793 l004 Pi/tanh(833/95*Pi) 3141592653589793 l004 Pi/tanh(719/82*Pi) 3141592653589793 l004 Pi/tanh(605/69*Pi) 3141592653589793 l004 Pi/tanh(491/56*Pi) 3141592653589793 l004 Pi/tanh(868/99*Pi) 3141592653589793 l004 Pi/tanh(377/43*Pi) 3141592653589793 l004 Pi/tanh(1017/116*Pi) 3141592653589793 l004 Pi/tanh(640/73*Pi) 3141592653589793 l004 Pi/tanh(903/103*Pi) 3141592653589793 l004 Pi/tanh(263/30*Pi) 3141592653589793 l004 Pi/tanh(938/107*Pi) 3141592653589793 l004 Pi/tanh(675/77*Pi) 3141592653589793 l004 Pi/tanh(412/47*Pi) 3141592653589793 l004 Pi/tanh(973/111*Pi) 3141592653589793 l004 Pi/tanh(561/64*Pi) 3141592653589793 l004 Pi/tanh(710/81*Pi) 3141592653589793 l004 Pi/tanh(859/98*Pi) 3141592653589793 l004 Pi/tanh(1008/115*Pi) 3141592653589793 l004 Pi/tanh(149/17*Pi) 3141592653589793 l004 Pi/tanh(929/106*Pi) 3141592653589793 l004 Pi/tanh(780/89*Pi) 3141592653589793 l004 Pi/tanh(631/72*Pi) 3141592653589793 l004 Pi/tanh(482/55*Pi) 3141592653589793 l004 Pi/tanh(815/93*Pi) 3141592653589793 l004 Pi/tanh(333/38*Pi) 3141592653589793 l004 Pi/tanh(850/97*Pi) 3141592653589793 l004 Pi/tanh(517/59*Pi) 3141592653589793 l004 Pi/tanh(701/80*Pi) 3141592653589793 l004 Pi/tanh(885/101*Pi) 3141592653589793 l004 Pi/tanh(184/21*Pi) 3141592653589793 l004 Pi/tanh(955/109*Pi) 3141592653589793 l004 Pi/tanh(771/88*Pi) 3141592653589793 l004 Pi/tanh(587/67*Pi) 3141592653589793 l004 Pi/tanh(990/113*Pi) 3141592653589793 l004 Pi/tanh(403/46*Pi) 3141592653589793 l004 Pi/tanh(1025/117*Pi) 3141592653589793 l004 Pi/tanh(622/71*Pi) 3141592653589793 l004 Pi/tanh(841/96*Pi) 3141592653589793 l004 Pi/tanh(219/25*Pi) 3141592653589793 l004 Pi/tanh(911/104*Pi) 3141592653589793 l004 Pi/tanh(692/79*Pi) 3141592653589793 l004 Pi/tanh(473/54*Pi) 3141592653589793 l004 Pi/tanh(727/83*Pi) 3141592653589793 l004 Pi/tanh(981/112*Pi) 3141592653589793 l004 Pi/tanh(254/29*Pi) 3141592653589793 l004 Pi/tanh(1051/120*Pi) 3141592653589793 l004 Pi/tanh(797/91*Pi) 3141592653589793 l004 Pi/tanh(543/62*Pi) 3141592653589793 l004 Pi/tanh(832/95*Pi) 3141592653589793 l004 Pi/tanh(289/33*Pi) 3141592653589793 l004 Pi/tanh(902/103*Pi) 3141592653589793 l004 Pi/tanh(613/70*Pi) 3141592653589793 l004 Pi/tanh(937/107*Pi) 3141592653589793 l004 Pi/tanh(324/37*Pi) 3141592653589793 l004 Pi/tanh(1007/115*Pi) 3141592653589793 l004 Pi/tanh(683/78*Pi) 3141592653589793 l004 Pi/tanh(1042/119*Pi) 3141592653589793 l004 Pi/tanh(359/41*Pi) 3141592653589793 l004 Pi/tanh(753/86*Pi) 3141592653589793 l004 Pi/tanh(394/45*Pi) 3141592653589793 l004 Pi/tanh(823/94*Pi) 3141592653589793 l004 Pi/tanh(429/49*Pi) 3141592653589793 l004 Pi/tanh(893/102*Pi) 3141592653589793 l004 Pi/tanh(464/53*Pi) 3141592653589793 l004 Pi/tanh(963/110*Pi) 3141592653589793 l004 Pi/tanh(499/57*Pi) 3141592653589793 l004 Pi/tanh(1033/118*Pi) 3141592653589793 l004 Pi/tanh(534/61*Pi) 3141592653589793 l004 Pi/tanh(569/65*Pi) 3141592653589793 l004 Pi/tanh(604/69*Pi) 3141592653589793 l004 Pi/tanh(639/73*Pi) 3141592653589793 l004 Pi/tanh(674/77*Pi) 3141592653589793 l004 Pi/tanh(709/81*Pi) 3141592653589793 l004 Pi/tanh(744/85*Pi) 3141592653589793 l004 Pi/tanh(779/89*Pi) 3141592653589793 l004 Pi/tanh(814/93*Pi) 3141592653589793 l004 Pi/tanh(849/97*Pi) 3141592653589793 l004 Pi/tanh(884/101*Pi) 3141592653589793 l004 Pi/tanh(919/105*Pi) 3141592653589793 l004 Pi/tanh(954/109*Pi) 3141592653589793 l004 Pi/tanh(989/113*Pi) 3141592653589793 l004 Pi/tanh(1024/117*Pi) 3141592653589793 l004 Pi/tanh(35/4*Pi) 3141592653589793 l004 Pi/tanh(1041/119*Pi) 3141592653589793 l004 Pi/tanh(1006/115*Pi) 3141592653589793 l004 Pi/tanh(971/111*Pi) 3141592653589793 l004 Pi/tanh(936/107*Pi) 3141592653589793 l004 Pi/tanh(901/103*Pi) 3141592653589793 l004 Pi/tanh(866/99*Pi) 3141592653589793 l004 Pi/tanh(831/95*Pi) 3141592653589793 l004 Pi/tanh(796/91*Pi) 3141592653589793 l004 Pi/tanh(761/87*Pi) 3141592653589793 l004 Pi/tanh(726/83*Pi) 3141592653589793 l004 Pi/tanh(691/79*Pi) 3141592653589793 l004 Pi/tanh(656/75*Pi) 3141592653589793 l004 Pi/tanh(621/71*Pi) 3141592653589793 l004 Pi/tanh(586/67*Pi) 3141592653589793 l004 Pi/tanh(551/63*Pi) 3141592653589793 l004 Pi/tanh(516/59*Pi) 3141592653589793 l004 Pi/tanh(997/114*Pi) 3141592653589793 l004 Pi/tanh(481/55*Pi) 3141592653589793 l004 Pi/tanh(927/106*Pi) 3141592653589793 l004 Pi/tanh(446/51*Pi) 3141592653589793 l004 Pi/tanh(857/98*Pi) 3141592653589793 l004 Pi/tanh(411/47*Pi) 3141592653589793 l004 Pi/tanh(787/90*Pi) 3141592653589793 l004 Pi/tanh(376/43*Pi) 3141592653589793 l004 Pi/tanh(717/82*Pi) 3141592653589793 l004 Pi/tanh(341/39*Pi) 3141592653589793 l004 Pi/tanh(988/113*Pi) 3141592653589793 l004 Pi/tanh(647/74*Pi) 3141592653589793 l004 Pi/tanh(953/109*Pi) 3141592653589793 l004 Pi/tanh(306/35*Pi) 3141592653589793 l004 Pi/tanh(883/101*Pi) 3141592653589793 l004 Pi/tanh(577/66*Pi) 3141592653589793 l004 Pi/tanh(848/97*Pi) 3141592653589793 l004 Pi/tanh(271/31*Pi) 3141592653589793 l004 Pi/tanh(1049/120*Pi) 3141592653589793 l004 Pi/tanh(778/89*Pi) 3141592653589793 l004 Pi/tanh(507/58*Pi) 3141592653589793 l004 Pi/tanh(743/85*Pi) 3141592653589793 l004 Pi/tanh(979/112*Pi) 3141592653589793 l004 Pi/tanh(236/27*Pi) 3141592653589793 l004 Pi/tanh(909/104*Pi) 3141592653589793 l004 Pi/tanh(673/77*Pi) 3141592653589793 l004 Pi/tanh(437/50*Pi) 3141592653589793 l004 Pi/tanh(638/73*Pi) 3141592653589793 l004 Pi/tanh(839/96*Pi) 3141592653589793 l004 Pi/tanh(1040/119*Pi) 3141592653589793 l004 Pi/tanh(201/23*Pi) 3141592653589793 l004 Pi/tanh(970/111*Pi) 3141592653589793 l004 Pi/tanh(769/88*Pi) 3141592653589793 l004 Pi/tanh(568/65*Pi) 3141592653589793 l004 Pi/tanh(935/107*Pi) 3141592653589793 l004 Pi/tanh(367/42*Pi) 3141592653589793 l004 Pi/tanh(900/103*Pi) 3141592653589793 l004 Pi/tanh(533/61*Pi) 3141592653589793 l004 Pi/tanh(699/80*Pi) 3141592653589793 l004 Pi/tanh(865/99*Pi) 3141592653589793 l004 Pi/tanh(1031/118*Pi) 3141592653589793 l004 Pi/tanh(166/19*Pi) 3141592653589793 l004 Pi/tanh(961/110*Pi) 3141592653589793 l004 Pi/tanh(795/91*Pi) 3141592653589793 l004 Pi/tanh(629/72*Pi) 3141592653589793 l004 Pi/tanh(463/53*Pi) 3141592653589793 l004 Pi/tanh(760/87*Pi) 3141592653589793 l004 Pi/tanh(297/34*Pi) 3141592653589793 l004 Pi/tanh(1022/117*Pi) 3141592653589793 l004 Pi/tanh(725/83*Pi) 3141592653589793 l004 Pi/tanh(428/49*Pi) 3141592653589793 l004 Pi/tanh(987/113*Pi) 3141592653589793 l004 Pi/tanh(559/64*Pi) 3141592653589793 l004 Pi/tanh(690/79*Pi) 3141592653589793 l004 Pi/tanh(821/94*Pi) 3141592653589793 l004 Pi/tanh(952/109*Pi) 3141592653589793 l004 Pi/tanh(131/15*Pi) 3141592653589793 l004 Pi/tanh(1013/116*Pi) 3141592653589793 l004 Pi/tanh(882/101*Pi) 3141592653589793 l004 Pi/tanh(751/86*Pi) 3141592653589793 l004 Pi/tanh(620/71*Pi) 3141592653589793 l004 Pi/tanh(489/56*Pi) 3141592653589793 l004 Pi/tanh(847/97*Pi) 3141592653589793 l004 Pi/tanh(358/41*Pi) 3141592653589793 l004 Pi/tanh(943/108*Pi) 3141592653589793 l004 Pi/tanh(585/67*Pi) 3141592653589793 l004 Pi/tanh(812/93*Pi) 3141592653589793 l004 Pi/tanh(1039/119*Pi) 3141592653589793 l004 Pi/tanh(227/26*Pi) 3141592653589793 l004 Pi/tanh(1004/115*Pi) 3141592653589793 l004 Pi/tanh(777/89*Pi) 3141592653589793 l004 Pi/tanh(550/63*Pi) 3141592653589793 l004 Pi/tanh(873/100*Pi) 3141592653589793 l004 Pi/tanh(323/37*Pi) 3141592653589793 l004 Pi/tanh(742/85*Pi) 3141592653589793 l004 Pi/tanh(419/48*Pi) 3141592653589793 l004 Pi/tanh(934/107*Pi) 3141592653589793 l004 Pi/tanh(515/59*Pi) 3141592653589793 l004 Pi/tanh(611/70*Pi) 3141592653589793 l004 Pi/tanh(707/81*Pi) 3141592653589793 l004 Pi/tanh(803/92*Pi) 3141592653589793 l004 Pi/tanh(899/103*Pi) 3141592653589793 l004 Pi/tanh(995/114*Pi) 3141592653589793 l004 Pi/tanh(96/11*Pi) 3141592653589793 l004 Pi/tanh(1021/117*Pi) 3141592653589793 l004 Pi/tanh(925/106*Pi) 3141592653589793 l004 Pi/tanh(829/95*Pi) 3141592653589793 l004 Pi/tanh(733/84*Pi) 3141592653589793 l004 Pi/tanh(637/73*Pi) 3141592653589793 l004 Pi/tanh(541/62*Pi) 3141592653589793 l004 Pi/tanh(986/113*Pi) 3141592653589793 l004 Pi/tanh(445/51*Pi) 3141592653589793 l004 Pi/tanh(794/91*Pi) 3141592653589793 l004 Pi/tanh(349/40*Pi) 3141592653589793 l004 Pi/tanh(951/109*Pi) 3141592653589793 l004 Pi/tanh(602/69*Pi) 3141592653589793 l004 Pi/tanh(855/98*Pi) 3141592653589793 l004 Pi/tanh(253/29*Pi) 3141592653589793 l004 Pi/tanh(916/105*Pi) 3141592653589793 l004 Pi/tanh(663/76*Pi) 3141592653589793 l004 Pi/tanh(410/47*Pi) 3141592653589793 l004 Pi/tanh(977/112*Pi) 3141592653589793 l004 Pi/tanh(567/65*Pi) 3141592653589793 l004 Pi/tanh(724/83*Pi) 3141592653589793 l004 Pi/tanh(881/101*Pi) 3141592653589793 l004 Pi/tanh(1038/119*Pi) 3141592653589793 l004 Pi/tanh(157/18*Pi) 3141592653589793 l004 Pi/tanh(1003/115*Pi) 3141592653589793 l004 Pi/tanh(846/97*Pi) 3141592653589793 l004 Pi/tanh(689/79*Pi) 3141592653589793 l004 Pi/tanh(532/61*Pi) 3141592653589793 l004 Pi/tanh(907/104*Pi) 3141592653589793 l004 Pi/tanh(375/43*Pi) 3141592653589793 l004 Pi/tanh(968/111*Pi) 3141592653589793 l004 Pi/tanh(593/68*Pi) 3141592653589793 l004 Pi/tanh(811/93*Pi) 3141592653589793 l004 Pi/tanh(1029/118*Pi) 3141592653589793 l004 Pi/tanh(218/25*Pi) 3141592653589793 l004 Pi/tanh(933/107*Pi) 3141592653589793 l004 Pi/tanh(715/82*Pi) 3141592653589793 l004 Pi/tanh(497/57*Pi) 3141592653589793 l004 Pi/tanh(776/89*Pi) 3141592653589793 l004 Pi/tanh(279/32*Pi) 3141592653589793 l004 Pi/tanh(898/103*Pi) 3141592653589793 l004 Pi/tanh(619/71*Pi) 3141592653589793 l004 Pi/tanh(959/110*Pi) 3141592653589793 l004 Pi/tanh(340/39*Pi) 3141592653589793 l004 Pi/tanh(741/85*Pi) 3141592653589793 l004 Pi/tanh(401/46*Pi) 3141592653589793 l004 Pi/tanh(863/99*Pi) 3141592653589793 l004 Pi/tanh(462/53*Pi) 3141592653589793 l004 Pi/tanh(985/113*Pi) 3141592653589793 l004 Pi/tanh(523/60*Pi) 3141592653589793 l004 Pi/tanh(584/67*Pi) 3141592653589793 l004 Pi/tanh(645/74*Pi) 3141592653589793 l004 Pi/tanh(706/81*Pi) 3141592653589793 l004 Pi/tanh(767/88*Pi) 3141592653589793 l004 Pi/tanh(828/95*Pi) 3141592653589793 l004 Pi/tanh(889/102*Pi) 3141592653589793 l004 Pi/tanh(950/109*Pi) 3141592653589793 l004 Pi/tanh(1011/116*Pi) 3141592653589793 l004 Pi/tanh(61/7*Pi) 3141592653589793 l004 Pi/tanh(1002/115*Pi) 3141592653589793 l004 Pi/tanh(941/108*Pi) 3141592653589793 l004 Pi/tanh(880/101*Pi) 3141592653589793 l004 Pi/tanh(819/94*Pi) 3141592653589793 l004 Pi/tanh(758/87*Pi) 3141592653589793 l004 Pi/tanh(697/80*Pi) 3141592653589793 l004 Pi/tanh(636/73*Pi) 3141592653589793 l004 Pi/tanh(575/66*Pi) 3141592653589793 l004 Pi/tanh(514/59*Pi) 3141592653589793 l004 Pi/tanh(967/111*Pi) 3141592653589793 l004 Pi/tanh(453/52*Pi) 3141592653589793 l004 Pi/tanh(845/97*Pi) 3141592653589793 l004 Pi/tanh(392/45*Pi) 3141592653589793 l004 Pi/tanh(723/83*Pi) 3141592653589793 l004 Pi/tanh(331/38*Pi) 3141592653589793 l004 Pi/tanh(932/107*Pi) 3141592653589793 l004 Pi/tanh(601/69*Pi) 3141592653589793 l004 Pi/tanh(871/100*Pi) 3141592653589793 l004 Pi/tanh(270/31*Pi) 3141592653589793 l004 Pi/tanh(1019/117*Pi) 3141592653589793 l004 Pi/tanh(749/86*Pi) 3141592653589793 l004 Pi/tanh(479/55*Pi) 3141592653589793 l004 Pi/tanh(688/79*Pi) 3141592653589793 l004 Pi/tanh(897/103*Pi) 3141592653589793 l004 Pi/tanh(209/24*Pi) 3141592653589793 l004 Pi/tanh(984/113*Pi) 3141592653589793 l004 Pi/tanh(775/89*Pi) 3141592653589793 l004 Pi/tanh(566/65*Pi) 3141592653589793 l004 Pi/tanh(923/106*Pi) 3141592653589793 l004 Pi/tanh(357/41*Pi) 3141592653589793 l004 Pi/tanh(862/99*Pi) 3141592653589793 l004 Pi/tanh(505/58*Pi) 3141592653589793 l004 Pi/tanh(653/75*Pi) 3141592653589793 l004 Pi/tanh(801/92*Pi) 3141592653589793 l004 Pi/tanh(949/109*Pi) 3141592653589793 l004 Pi/tanh(148/17*Pi) 3141592653589793 l004 Pi/tanh(975/112*Pi) 3141592653589793 l004 Pi/tanh(827/95*Pi) 3141592653589793 l004 Pi/tanh(679/78*Pi) 3141592653589793 l004 Pi/tanh(531/61*Pi) 3141592653589793 l004 Pi/tanh(914/105*Pi) 3141592653589793 l004 Pi/tanh(383/44*Pi) 3141592653589793 l004 Pi/tanh(1001/115*Pi) 3141592653589793 l004 Pi/tanh(618/71*Pi) 3141592653589793 l004 Pi/tanh(853/98*Pi) 3141592653589793 l004 Pi/tanh(235/27*Pi) 3141592653589793 l004 Pi/tanh(1027/118*Pi) 3141592653589793 l004 Pi/tanh(792/91*Pi) 3141592653589793 l004 Pi/tanh(557/64*Pi) 3141592653589793 l004 Pi/tanh(879/101*Pi) 3141592653589793 l004 Pi/tanh(322/37*Pi) 3141592653589793 l004 Pi/tanh(731/84*Pi) 3141592653589793 l004 Pi/tanh(409/47*Pi) 3141592653589793 l004 Pi/tanh(905/104*Pi) 3141592653589793 l004 Pi/tanh(496/57*Pi) 3141592653589793 l004 Pi/tanh(583/67*Pi) 3141592653589793 l004 Pi/tanh(670/77*Pi) 3141592653589793 l004 Pi/tanh(757/87*Pi) 3141592653589793 l004 Pi/tanh(844/97*Pi) 3141592653589793 l004 Pi/tanh(931/107*Pi) 3141592653589793 l004 Pi/tanh(1018/117*Pi) 3141592653589793 l004 Pi/tanh(87/10*Pi) 3141592653589793 l004 Pi/tanh(983/113*Pi) 3141592653589793 l004 Pi/tanh(896/103*Pi) 3141592653589793 l004 Pi/tanh(809/93*Pi) 3141592653589793 l004 Pi/tanh(722/83*Pi) 3141592653589793 l004 Pi/tanh(635/73*Pi) 3141592653589793 l004 Pi/tanh(548/63*Pi) 3141592653589793 l004 Pi/tanh(1009/116*Pi) 3141592653589793 l004 Pi/tanh(461/53*Pi) 3141592653589793 l004 Pi/tanh(835/96*Pi) 3141592653589793 l004 Pi/tanh(374/43*Pi) 3141592653589793 l004 Pi/tanh(1035/119*Pi) 3141592653589793 l004 Pi/tanh(661/76*Pi) 3141592653589793 l004 Pi/tanh(948/109*Pi) 3141592653589793 l004 Pi/tanh(287/33*Pi) 3141592653589793 l004 Pi/tanh(774/89*Pi) 3141592653589793 l004 Pi/tanh(487/56*Pi) 3141592653589793 l004 Pi/tanh(687/79*Pi) 3141592653589793 l004 Pi/tanh(887/102*Pi) 3141592653589793 l004 Pi/tanh(200/23*Pi) 3141592653589793 l004 Pi/tanh(913/105*Pi) 3141592653589793 l004 Pi/tanh(713/82*Pi) 3141592653589793 l004 Pi/tanh(513/59*Pi) 3141592653589793 l004 Pi/tanh(826/95*Pi) 3141592653589793 l004 Pi/tanh(313/36*Pi) 3141592653589793 l004 Pi/tanh(739/85*Pi) 3141592653589793 l004 Pi/tanh(426/49*Pi) 3141592653589793 l004 Pi/tanh(965/111*Pi) 3141592653589793 l004 Pi/tanh(539/62*Pi) 3141592653589793 l004 Pi/tanh(652/75*Pi) 3141592653589793 l004 Pi/tanh(765/88*Pi) 3141592653589793 l004 Pi/tanh(878/101*Pi) 3141592653589793 l004 Pi/tanh(991/114*Pi) 3141592653589793 l004 Pi/tanh(113/13*Pi) 3141592653589793 l004 Pi/tanh(1043/120*Pi) 3141592653589793 l004 Pi/tanh(930/107*Pi) 3141592653589793 l004 Pi/tanh(817/94*Pi) 3141592653589793 l004 Pi/tanh(704/81*Pi) 3141592653589793 l004 Pi/tanh(591/68*Pi) 3141592653589793 l004 Pi/tanh(478/55*Pi) 3141592653589793 l004 Pi/tanh(843/97*Pi) 3141592653589793 l004 Pi/tanh(365/42*Pi) 3141592653589793 l004 Pi/tanh(982/113*Pi) 3141592653589793 l004 Pi/tanh(617/71*Pi) 3141592653589793 l004 Pi/tanh(869/100*Pi) 3141592653589793 l004 Pi/tanh(252/29*Pi) 3141592653589793 l004 Pi/tanh(895/103*Pi) 3141592653589793 l004 Pi/tanh(643/74*Pi) 3141592653589793 l004 Pi/tanh(1034/119*Pi) 3141592653589793 l004 Pi/tanh(391/45*Pi) 3141592653589793 l004 Pi/tanh(921/106*Pi) 3141592653589793 l004 Pi/tanh(530/61*Pi) 3141592653589793 l004 Pi/tanh(669/77*Pi) 3141592653589793 l004 Pi/tanh(808/93*Pi) 3141592653589793 l004 Pi/tanh(947/109*Pi) 3141592653589793 l004 Pi/tanh(139/16*Pi) 3141592653589793 l004 Pi/tanh(999/115*Pi) 3141592653589793 l004 Pi/tanh(860/99*Pi) 3141592653589793 l004 Pi/tanh(721/83*Pi) 3141592653589793 l004 Pi/tanh(582/67*Pi) 3141592653589793 l004 Pi/tanh(1025/118*Pi) 3141592653589793 l004 Pi/tanh(443/51*Pi) 3141592653589793 l004 Pi/tanh(747/86*Pi) 3141592653589793 l004 Pi/tanh(304/35*Pi) 3141592653589793 l004 Pi/tanh(773/89*Pi) 3141592653589793 l004 Pi/tanh(469/54*Pi) 3141592653589793 l004 Pi/tanh(634/73*Pi) 3141592653589793 l004 Pi/tanh(799/92*Pi) 3141592653589793 l004 Pi/tanh(964/111*Pi) 3141592653589793 l004 Pi/tanh(165/19*Pi) 3141592653589793 l004 Pi/tanh(1016/117*Pi) 3141592653589793 l004 Pi/tanh(851/98*Pi) 3141592653589793 l004 Pi/tanh(686/79*Pi) 3141592653589793 l004 Pi/tanh(521/60*Pi) 3141592653589793 l004 Pi/tanh(877/101*Pi) 3141592653589793 l004 Pi/tanh(356/41*Pi) 3141592653589793 l004 Pi/tanh(903/104*Pi) 3141592653589793 l004 Pi/tanh(547/63*Pi) 3141592653589793 l004 Pi/tanh(738/85*Pi) 3141592653589793 l004 Pi/tanh(929/107*Pi) 3141592653589793 l004 Pi/tanh(191/22*Pi) 3141592653589793 l004 Pi/tanh(981/113*Pi) 3141592653589793 l004 Pi/tanh(790/91*Pi) 3141592653589793 l004 Pi/tanh(599/69*Pi) 3141592653589793 l004 Pi/tanh(1007/116*Pi) 3141592653589793 l004 Pi/tanh(408/47*Pi) 3141592653589793 l004 Pi/tanh(1033/119*Pi) 3141592653589793 l004 Pi/tanh(625/72*Pi) 3141592653589793 l004 Pi/tanh(842/97*Pi) 3141592653589793 l004 Pi/tanh(217/25*Pi) 3141592653589793 l004 Pi/tanh(894/103*Pi) 3141592653589793 l004 Pi/tanh(677/78*Pi) 3141592653589793 l004 Pi/tanh(460/53*Pi) 3141592653589793 l004 Pi/tanh(703/81*Pi) 3141592653589793 l004 Pi/tanh(946/109*Pi) 3141592653589793 l004 Pi/tanh(243/28*Pi) 3141592653589793 l004 Pi/tanh(998/115*Pi) 3141592653589793 l004 Pi/tanh(755/87*Pi) 3141592653589793 l004 Pi/tanh(512/59*Pi) 3141592653589793 l004 Pi/tanh(781/90*Pi) 3141592653589793 l004 Pi/tanh(269/31*Pi) 3141592653589793 l004 Pi/tanh(833/96*Pi) 3141592653589793 l004 Pi/tanh(564/65*Pi) 3141592653589793 l004 Pi/tanh(859/99*Pi) 3141592653589793 l004 Pi/tanh(295/34*Pi) 3141592653589793 l004 Pi/tanh(911/105*Pi) 3141592653589793 l004 Pi/tanh(616/71*Pi) 3141592653589793 l004 Pi/tanh(937/108*Pi) 3141592653589793 l004 Pi/tanh(321/37*Pi) 3141592653589793 l004 Pi/tanh(989/114*Pi) 3141592653589793 l004 Pi/tanh(668/77*Pi) 3141592653589793 l004 Pi/tanh(1015/117*Pi) 3141592653589793 l004 Pi/tanh(347/40*Pi) 3141592653589793 l004 Pi/tanh(720/83*Pi) 3141592653589793 l004 Pi/tanh(373/43*Pi) 3141592653589793 l004 Pi/tanh(772/89*Pi) 3141592653589793 l004 Pi/tanh(399/46*Pi) 3141592653589793 l004 Pi/tanh(824/95*Pi) 3141592653589793 l004 Pi/tanh(425/49*Pi) 3141592653589793 l004 Pi/tanh(876/101*Pi) 3141592653589793 l004 Pi/tanh(451/52*Pi) 3141592653589793 l004 Pi/tanh(928/107*Pi) 3141592653589793 l004 Pi/tanh(477/55*Pi) 3141592653589793 l004 Pi/tanh(980/113*Pi) 3141592653589793 l004 Pi/tanh(503/58*Pi) 3141592653589793 l004 Pi/tanh(1032/119*Pi) 3141592653589793 l004 Pi/tanh(529/61*Pi) 3141592653589793 l004 Pi/tanh(555/64*Pi) 3141592653589793 l004 Pi/tanh(581/67*Pi) 3141592653589793 l004 Pi/tanh(607/70*Pi) 3141592653589793 l004 Pi/tanh(633/73*Pi) 3141592653589793 l004 Pi/tanh(659/76*Pi) 3141592653589793 l004 Pi/tanh(685/79*Pi) 3141592653589793 l004 Pi/tanh(711/82*Pi) 3141592653589793 l004 Pi/tanh(737/85*Pi) 3141592653589793 l004 Pi/tanh(763/88*Pi) 3141592653589793 l004 Pi/tanh(789/91*Pi) 3141592653589793 l004 Pi/tanh(815/94*Pi) 3141592653589793 l004 Pi/tanh(841/97*Pi) 3141592653589793 l004 Pi/tanh(867/100*Pi) 3141592653589793 l004 Pi/tanh(893/103*Pi) 3141592653589793 l004 Pi/tanh(919/106*Pi) 3141592653589793 l004 Pi/tanh(945/109*Pi) 3141592653589793 l004 Pi/tanh(971/112*Pi) 3141592653589793 l004 Pi/tanh(997/115*Pi) 3141592653589793 l004 Pi/tanh(1023/118*Pi) 3141592653589793 l004 Pi/tanh(26/3*Pi) 3141592653589793 l004 Pi/tanh(1031/119*Pi) 3141592653589793 l004 Pi/tanh(1005/116*Pi) 3141592653589793 l004 Pi/tanh(979/113*Pi) 3141592653589793 l004 Pi/tanh(953/110*Pi) 3141592653589793 l004 Pi/tanh(927/107*Pi) 3141592653589793 l004 Pi/tanh(901/104*Pi) 3141592653589793 l004 Pi/tanh(875/101*Pi) 3141592653589793 l004 Pi/tanh(849/98*Pi) 3141592653589793 l004 Pi/tanh(823/95*Pi) 3141592653589793 l004 Pi/tanh(797/92*Pi) 3141592653589793 l004 Pi/tanh(771/89*Pi) 3141592653589793 l004 Pi/tanh(745/86*Pi) 3141592653589793 l004 Pi/tanh(719/83*Pi) 3141592653589793 l004 Pi/tanh(693/80*Pi) 3141592653589793 l004 Pi/tanh(667/77*Pi) 3141592653589793 l004 Pi/tanh(641/74*Pi) 3141592653589793 l004 Pi/tanh(615/71*Pi) 3141592653589793 l004 Pi/tanh(589/68*Pi) 3141592653589793 l004 Pi/tanh(563/65*Pi) 3141592653589793 l004 Pi/tanh(537/62*Pi) 3141592653589793 l004 Pi/tanh(511/59*Pi) 3141592653589793 l004 Pi/tanh(996/115*Pi) 3141592653589793 l004 Pi/tanh(485/56*Pi) 3141592653589793 l004 Pi/tanh(944/109*Pi) 3141592653589793 l004 Pi/tanh(459/53*Pi) 3141592653589793 l004 Pi/tanh(892/103*Pi) 3141592653589793 l004 Pi/tanh(433/50*Pi) 3141592653589793 l004 Pi/tanh(840/97*Pi) 3141592653589793 l004 Pi/tanh(407/47*Pi) 3141592653589793 l004 Pi/tanh(788/91*Pi) 3141592653589793 l004 Pi/tanh(381/44*Pi) 3141592653589793 l004 Pi/tanh(736/85*Pi) 3141592653589793 l004 Pi/tanh(355/41*Pi) 3141592653589793 l004 Pi/tanh(1039/120*Pi) 3141592653589793 l004 Pi/tanh(684/79*Pi) 3141592653589793 l004 Pi/tanh(1013/117*Pi) 3141592653589793 l004 Pi/tanh(329/38*Pi) 3141592653589793 l004 Pi/tanh(961/111*Pi) 3141592653589793 l004 Pi/tanh(632/73*Pi) 3141592653589793 l004 Pi/tanh(935/108*Pi) 3141592653589793 l004 Pi/tanh(303/35*Pi) 3141592653589793 l004 Pi/tanh(883/102*Pi) 3141592653589793 l004 Pi/tanh(580/67*Pi) 3141592653589793 l004 Pi/tanh(857/99*Pi) 3141592653589793 l004 Pi/tanh(277/32*Pi) 3141592653589793 l004 Pi/tanh(805/93*Pi) 3141592653589793 l004 Pi/tanh(528/61*Pi) 3141592653589793 l004 Pi/tanh(779/90*Pi) 3141592653589793 l004 Pi/tanh(1030/119*Pi) 3141592653589793 l004 Pi/tanh(251/29*Pi) 3141592653589793 l004 Pi/tanh(978/113*Pi) 3141592653589793 l004 Pi/tanh(727/84*Pi) 3141592653589793 l004 Pi/tanh(476/55*Pi) 3141592653589793 l004 Pi/tanh(701/81*Pi) 3141592653589793 l004 Pi/tanh(926/107*Pi) 3141592653589793 l004 Pi/tanh(225/26*Pi) 3141592653589793 l004 Pi/tanh(874/101*Pi) 3141592653589793 l004 Pi/tanh(649/75*Pi) 3141592653589793 l004 Pi/tanh(424/49*Pi) 3141592653589793 l004 Pi/tanh(623/72*Pi) 3141592653589793 l004 Pi/tanh(822/95*Pi) 3141592653589793 l004 Pi/tanh(1021/118*Pi) 3141592653589793 l004 Pi/tanh(199/23*Pi) 3141592653589793 l004 Pi/tanh(969/112*Pi) 3141592653589793 l004 Pi/tanh(770/89*Pi) 3141592653589793 l004 Pi/tanh(571/66*Pi) 3141592653589793 l004 Pi/tanh(943/109*Pi) 3141592653589793 l004 Pi/tanh(372/43*Pi) 3141592653589793 l004 Pi/tanh(917/106*Pi) 3141592653589793 l004 Pi/tanh(545/63*Pi) 3141592653589793 l004 Pi/tanh(718/83*Pi) 3141592653589793 l004 Pi/tanh(891/103*Pi) 3141592653589793 l004 Pi/tanh(173/20*Pi) 3141592653589793 l004 Pi/tanh(1012/117*Pi) 3141592653589793 l004 Pi/tanh(839/97*Pi) 3141592653589793 l004 Pi/tanh(666/77*Pi) 3141592653589793 l004 Pi/tanh(493/57*Pi) 3141592653589793 l004 Pi/tanh(813/94*Pi) 3141592653589793 l004 Pi/tanh(320/37*Pi) 3141592653589793 l004 Pi/tanh(787/91*Pi) 3141592653589793 l004 Pi/tanh(467/54*Pi) 3141592653589793 l004 Pi/tanh(614/71*Pi) 3141592653589793 l004 Pi/tanh(761/88*Pi) 3141592653589793 l004 Pi/tanh(908/105*Pi) 3141592653589793 l004 Pi/tanh(147/17*Pi) 3141592653589793 l004 Pi/tanh(1003/116*Pi) 3141592653589793 l004 Pi/tanh(856/99*Pi) 3141592653589793 l004 Pi/tanh(709/82*Pi) 3141592653589793 l004 Pi/tanh(562/65*Pi) 3141592653589793 l004 Pi/tanh(977/113*Pi) 3141592653589793 l004 Pi/tanh(415/48*Pi) 3141592653589793 l004 Pi/tanh(683/79*Pi) 3141592653589793 l004 Pi/tanh(951/110*Pi) 3141592653589793 l004 Pi/tanh(268/31*Pi) 3141592653589793 l004 Pi/tanh(925/107*Pi) 3141592653589793 l004 Pi/tanh(657/76*Pi) 3141592653589793 l004 Pi/tanh(389/45*Pi) 3141592653589793 l004 Pi/tanh(899/104*Pi) 3141592653589793 l004 Pi/tanh(510/59*Pi) 3141592653589793 l004 Pi/tanh(631/73*Pi) 3141592653589793 l004 Pi/tanh(752/87*Pi) 3141592653589793 l004 Pi/tanh(873/101*Pi) 3141592653589793 l004 Pi/tanh(994/115*Pi) 3141592653589793 l004 Pi/tanh(121/14*Pi) 3141592653589793 l004 Pi/tanh(942/109*Pi) 3141592653589793 l004 Pi/tanh(821/95*Pi) 3141592653589793 l004 Pi/tanh(700/81*Pi) 3141592653589793 l004 Pi/tanh(579/67*Pi) 3141592653589793 l004 Pi/tanh(1037/120*Pi) 3141592653589793 l004 Pi/tanh(458/53*Pi) 3141592653589793 l004 Pi/tanh(795/92*Pi) 3141592653589793 l004 Pi/tanh(337/39*Pi) 3141592653589793 l004 Pi/tanh(890/103*Pi) 3141592653589793 l004 Pi/tanh(553/64*Pi) 3141592653589793 l004 Pi/tanh(769/89*Pi) 3141592653589793 l004 Pi/tanh(985/114*Pi) 3141592653589793 l004 Pi/tanh(216/25*Pi) 3141592653589793 l004 Pi/tanh(959/111*Pi) 3141592653589793 l004 Pi/tanh(743/86*Pi) 3141592653589793 l004 Pi/tanh(527/61*Pi) 3141592653589793 l004 Pi/tanh(838/97*Pi) 3141592653589793 l004 Pi/tanh(311/36*Pi) 3141592653589793 l004 Pi/tanh(1028/119*Pi) 3141592653589793 l004 Pi/tanh(717/83*Pi) 3141592653589793 l004 Pi/tanh(406/47*Pi) 3141592653589793 l004 Pi/tanh(907/105*Pi) 3141592653589793 l004 Pi/tanh(501/58*Pi) 3141592653589793 l004 Pi/tanh(596/69*Pi) 3141592653589793 l004 Pi/tanh(691/80*Pi) 3141592653589793 l004 Pi/tanh(786/91*Pi) 3141592653589793 l004 Pi/tanh(881/102*Pi) 3141592653589793 l004 Pi/tanh(976/113*Pi) 3141592653589793 l004 Pi/tanh(95/11*Pi) 3141592653589793 l004 Pi/tanh(1019/118*Pi) 3141592653589793 l004 Pi/tanh(924/107*Pi) 3141592653589793 l004 Pi/tanh(829/96*Pi) 3141592653589793 l004 Pi/tanh(734/85*Pi) 3141592653589793 l004 Pi/tanh(639/74*Pi) 3141592653589793 l004 Pi/tanh(544/63*Pi) 3141592653589793 l004 Pi/tanh(993/115*Pi) 3141592653589793 l004 Pi/tanh(449/52*Pi) 3141592653589793 l004 Pi/tanh(803/93*Pi) 3141592653589793 l004 Pi/tanh(354/41*Pi) 3141592653589793 l004 Pi/tanh(967/112*Pi) 3141592653589793 l004 Pi/tanh(613/71*Pi) 3141592653589793 l004 Pi/tanh(872/101*Pi) 3141592653589793 l004 Pi/tanh(259/30*Pi) 3141592653589793 l004 Pi/tanh(941/109*Pi) 3141592653589793 l004 Pi/tanh(682/79*Pi) 3141592653589793 l004 Pi/tanh(423/49*Pi) 3141592653589793 l004 Pi/tanh(1010/117*Pi) 3141592653589793 l004 Pi/tanh(587/68*Pi) 3141592653589793 l004 Pi/tanh(751/87*Pi) 3141592653589793 l004 Pi/tanh(915/106*Pi) 3141592653589793 l004 Pi/tanh(164/19*Pi) 3141592653589793 l004 Pi/tanh(889/103*Pi) 3141592653589793 l004 Pi/tanh(725/84*Pi) 3141592653589793 l004 Pi/tanh(561/65*Pi) 3141592653589793 l004 Pi/tanh(958/111*Pi) 3141592653589793 l004 Pi/tanh(397/46*Pi) 3141592653589793 l004 Pi/tanh(1027/119*Pi) 3141592653589793 l004 Pi/tanh(630/73*Pi) 3141592653589793 l004 Pi/tanh(863/100*Pi) 3141592653589793 l004 Pi/tanh(233/27*Pi) 3141592653589793 l004 Pi/tanh(1001/116*Pi) 3141592653589793 l004 Pi/tanh(768/89*Pi) 3141592653589793 l004 Pi/tanh(535/62*Pi) 3141592653589793 l004 Pi/tanh(837/97*Pi) 3141592653589793 l004 Pi/tanh(302/35*Pi) 3141592653589793 l004 Pi/tanh(975/113*Pi) 3141592653589793 l004 Pi/tanh(673/78*Pi) 3141592653589793 l004 Pi/tanh(371/43*Pi) 3141592653589793 l004 Pi/tanh(811/94*Pi) 3141592653589793 l004 Pi/tanh(440/51*Pi) 3141592653589793 l004 Pi/tanh(949/110*Pi) 3141592653589793 l004 Pi/tanh(509/59*Pi) 3141592653589793 l004 Pi/tanh(578/67*Pi) 3141592653589793 l004 Pi/tanh(647/75*Pi) 3141592653589793 l004 Pi/tanh(716/83*Pi) 3141592653589793 l004 Pi/tanh(785/91*Pi) 3141592653589793 l004 Pi/tanh(854/99*Pi) 3141592653589793 l004 Pi/tanh(923/107*Pi) 3141592653589793 l004 Pi/tanh(992/115*Pi) 3141592653589793 l004 Pi/tanh(69/8*Pi) 3141592653589793 m001 Sierpinski^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(1009/117*Pi) 3141592653589793 l004 Pi/tanh(940/109*Pi) 3141592653589793 l004 Pi/tanh(871/101*Pi) 3141592653589793 l004 Pi/tanh(802/93*Pi) 3141592653589793 l004 Pi/tanh(733/85*Pi) 3141592653589793 l004 Pi/tanh(664/77*Pi) 3141592653589793 l004 Pi/tanh(595/69*Pi) 3141592653589793 l004 Pi/tanh(526/61*Pi) 3141592653589793 l004 Pi/tanh(983/114*Pi) 3141592653589793 l004 Pi/tanh(457/53*Pi) 3141592653589793 l004 Pi/tanh(845/98*Pi) 3141592653589793 l004 Pi/tanh(388/45*Pi) 3141592653589793 l004 Pi/tanh(707/82*Pi) 3141592653589793 l004 Pi/tanh(1026/119*Pi) 3141592653589793 l004 Pi/tanh(319/37*Pi) 3141592653589793 l004 Pi/tanh(888/103*Pi) 3141592653589793 l004 Pi/tanh(569/66*Pi) 3141592653589793 l004 Pi/tanh(819/95*Pi) 3141592653589793 l004 Pi/tanh(250/29*Pi) 3141592653589793 l004 Pi/tanh(931/108*Pi) 3141592653589793 l004 Pi/tanh(681/79*Pi) 3141592653589793 l004 Pi/tanh(431/50*Pi) 3141592653589793 l004 Pi/tanh(612/71*Pi) 3141592653589793 l004 Pi/tanh(793/92*Pi) 3141592653589793 l004 Pi/tanh(974/113*Pi) 3141592653589793 l004 Pi/tanh(181/21*Pi) 3141592653589793 l004 Pi/tanh(1017/118*Pi) 3141592653589793 l004 Pi/tanh(836/97*Pi) 3141592653589793 l004 Pi/tanh(655/76*Pi) 3141592653589793 l004 Pi/tanh(474/55*Pi) 3141592653589793 l004 Pi/tanh(767/89*Pi) 3141592653589793 l004 Pi/tanh(293/34*Pi) 3141592653589793 l004 Pi/tanh(991/115*Pi) 3141592653589793 l004 Pi/tanh(698/81*Pi) 3141592653589793 l004 Pi/tanh(405/47*Pi) 3141592653589793 l004 Pi/tanh(922/107*Pi) 3141592653589793 l004 Pi/tanh(517/60*Pi) 3141592653589793 l004 Pi/tanh(629/73*Pi) 3141592653589793 l004 Pi/tanh(741/86*Pi) 3141592653589793 l004 Pi/tanh(853/99*Pi) 3141592653589793 l004 Pi/tanh(965/112*Pi) 3141592653589793 l004 Pi/tanh(112/13*Pi) 3141592653589793 m001 OneNinth^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 l004 Pi/tanh(939/109*Pi) 3141592653589793 l004 Pi/tanh(827/96*Pi) 3141592653589793 l004 Pi/tanh(715/83*Pi) 3141592653589793 l004 Pi/tanh(603/70*Pi) 3141592653589793 l004 Pi/tanh(491/57*Pi) 3141592653589793 l004 Pi/tanh(870/101*Pi) 3141592653589793 l004 Pi/tanh(379/44*Pi) 3141592653589793 l004 Pi/tanh(1025/119*Pi) 3141592653589793 l004 Pi/tanh(646/75*Pi) 3141592653589793 l004 Pi/tanh(913/106*Pi) 3141592653589793 l004 Pi/tanh(267/31*Pi) 3141592653589793 l004 Pi/tanh(956/111*Pi) 3141592653589793 l004 Pi/tanh(689/80*Pi) 3141592653589793 l004 Pi/tanh(422/49*Pi) 3141592653589793 l004 Pi/tanh(999/116*Pi) 3141592653589793 l004 Pi/tanh(577/67*Pi) 3141592653589793 l004 Pi/tanh(732/85*Pi) 3141592653589793 l004 Pi/tanh(887/103*Pi) 3141592653589793 l004 Pi/tanh(155/18*Pi) 3141592653589793 l004 Pi/tanh(973/113*Pi) 3141592653589793 l004 Pi/tanh(818/95*Pi) 3141592653589793 l004 Pi/tanh(663/77*Pi) 3141592653589793 l004 Pi/tanh(508/59*Pi) 3141592653589793 l004 Pi/tanh(861/100*Pi) 3141592653589793 l004 Pi/tanh(353/41*Pi) 3141592653589793 l004 Pi/tanh(904/105*Pi) 3141592653589793 l004 Pi/tanh(551/64*Pi) 3141592653589793 l004 Pi/tanh(749/87*Pi) 3141592653589793 l004 Pi/tanh(947/110*Pi) 3141592653589793 l004 Pi/tanh(198/23*Pi) 3141592653589793 l004 Pi/tanh(1033/120*Pi) 3141592653589793 l004 Pi/tanh(835/97*Pi) 3141592653589793 l004 Pi/tanh(637/74*Pi) 3141592653589793 l004 Pi/tanh(439/51*Pi) 3141592653589793 l004 Pi/tanh(680/79*Pi) 3141592653589793 l004 Pi/tanh(921/107*Pi) 3141592653589793 l004 Pi/tanh(241/28*Pi) 3141592653589793 l004 Pi/tanh(1007/117*Pi) 3141592653589793 l004 Pi/tanh(766/89*Pi) 3141592653589793 l004 Pi/tanh(525/61*Pi) 3141592653589793 l004 Pi/tanh(809/94*Pi) 3141592653589793 l004 Pi/tanh(284/33*Pi) 3141592653589793 l004 Pi/tanh(895/104*Pi) 3141592653589793 l004 Pi/tanh(611/71*Pi) 3141592653589793 l004 Pi/tanh(938/109*Pi) 3141592653589793 l004 Pi/tanh(327/38*Pi) 3141592653589793 l004 Pi/tanh(1024/119*Pi) 3141592653589793 l004 Pi/tanh(697/81*Pi) 3141592653589793 l004 Pi/tanh(370/43*Pi) 3141592653589793 l004 Pi/tanh(783/91*Pi) 3141592653589793 l004 Pi/tanh(413/48*Pi) 3141592653589793 l004 Pi/tanh(869/101*Pi) 3141592653589793 l004 Pi/tanh(456/53*Pi) 3141592653589793 l004 Pi/tanh(955/111*Pi) 3141592653589793 l004 Pi/tanh(499/58*Pi) 3141592653589793 l004 Pi/tanh(542/63*Pi) 3141592653589793 l004 Pi/tanh(585/68*Pi) 3141592653589793 l004 Pi/tanh(628/73*Pi) 3141592653589793 l004 Pi/tanh(671/78*Pi) 3141592653589793 l004 Pi/tanh(714/83*Pi) 3141592653589793 l004 Pi/tanh(757/88*Pi) 3141592653589793 l004 Pi/tanh(800/93*Pi) 3141592653589793 l004 Pi/tanh(843/98*Pi) 3141592653589793 l004 Pi/tanh(886/103*Pi) 3141592653589793 l004 Pi/tanh(929/108*Pi) 3141592653589793 l004 Pi/tanh(972/113*Pi) 3141592653589793 l004 Pi/tanh(1015/118*Pi) 3141592653589793 l004 Pi/tanh(43/5*Pi) 3141592653589793 l004 Pi/tanh(1006/117*Pi) 3141592653589793 l004 Pi/tanh(963/112*Pi) 3141592653589793 l004 Pi/tanh(920/107*Pi) 3141592653589793 l004 Pi/tanh(877/102*Pi) 3141592653589793 l004 Pi/tanh(834/97*Pi) 3141592653589793 l004 Pi/tanh(791/92*Pi) 3141592653589793 l004 Pi/tanh(748/87*Pi) 3141592653589793 l004 Pi/tanh(705/82*Pi) 3141592653589793 l004 Pi/tanh(662/77*Pi) 3141592653589793 l004 Pi/tanh(619/72*Pi) 3141592653589793 l004 Pi/tanh(576/67*Pi) 3141592653589793 l004 Pi/tanh(533/62*Pi) 3141592653589793 l004 Pi/tanh(1023/119*Pi) 3141592653589793 l004 Pi/tanh(490/57*Pi) 3141592653589793 l004 Pi/tanh(937/109*Pi) 3141592653589793 l004 Pi/tanh(447/52*Pi) 3141592653589793 l004 Pi/tanh(851/99*Pi) 3141592653589793 l004 Pi/tanh(404/47*Pi) 3141592653589793 l004 Pi/tanh(765/89*Pi) 3141592653589793 l004 Pi/tanh(361/42*Pi) 3141592653589793 l004 Pi/tanh(679/79*Pi) 3141592653589793 l004 Pi/tanh(997/116*Pi) 3141592653589793 l004 Pi/tanh(318/37*Pi) 3141592653589793 l004 Pi/tanh(911/106*Pi) 3141592653589793 l004 Pi/tanh(593/69*Pi) 3141592653589793 l004 Pi/tanh(868/101*Pi) 3141592653589793 l004 Pi/tanh(275/32*Pi) 3141592653589793 l004 Pi/tanh(782/91*Pi) 3141592653589793 l004 Pi/tanh(507/59*Pi) 3141592653589793 l004 Pi/tanh(739/86*Pi) 3141592653589793 l004 Pi/tanh(971/113*Pi) 3141592653589793 l004 Pi/tanh(232/27*Pi) 3141592653589793 l004 Pi/tanh(885/103*Pi) 3141592653589793 l004 Pi/tanh(653/76*Pi) 3141592653589793 l004 Pi/tanh(421/49*Pi) 3141592653589793 l004 Pi/tanh(1031/120*Pi) 3141592653589793 l004 Pi/tanh(610/71*Pi) 3141592653589793 l004 Pi/tanh(799/93*Pi) 3141592653589793 l004 Pi/tanh(988/115*Pi) 3141592653589793 l004 Pi/tanh(189/22*Pi) 3141592653589793 l004 Pi/tanh(902/105*Pi) 3141592653589793 l004 Pi/tanh(713/83*Pi) 3141592653589793 l004 Pi/tanh(524/61*Pi) 3141592653589793 l004 Pi/tanh(859/100*Pi) 3141592653589793 l004 Pi/tanh(335/39*Pi) 3141592653589793 l004 Pi/tanh(816/95*Pi) 3141592653589793 l004 Pi/tanh(481/56*Pi) 3141592653589793 l004 Pi/tanh(627/73*Pi) 3141592653589793 l004 Pi/tanh(773/90*Pi) 3141592653589793 l004 Pi/tanh(919/107*Pi) 3141592653589793 l004 Pi/tanh(146/17*Pi) 3141592653589793 l004 Pi/tanh(979/114*Pi) 3141592653589793 l004 Pi/tanh(833/97*Pi) 3141592653589793 l004 Pi/tanh(687/80*Pi) 3141592653589793 l004 Pi/tanh(541/63*Pi) 3141592653589793 l004 Pi/tanh(936/109*Pi) 3141592653589793 l004 Pi/tanh(395/46*Pi) 3141592653589793 l004 Pi/tanh(644/75*Pi) 3141592653589793 l004 Pi/tanh(893/104*Pi) 3141592653589793 l004 Pi/tanh(249/29*Pi) 3141592653589793 l004 Pi/tanh(850/99*Pi) 3141592653589793 l004 Pi/tanh(601/70*Pi) 3141592653589793 l004 Pi/tanh(953/111*Pi) 3141592653589793 l004 Pi/tanh(352/41*Pi) 3141592653589793 l004 Pi/tanh(807/94*Pi) 3141592653589793 l004 Pi/tanh(455/53*Pi) 3141592653589793 l004 Pi/tanh(1013/118*Pi) 3141592653589793 l004 Pi/tanh(558/65*Pi) 3141592653589793 l004 Pi/tanh(661/77*Pi) 3141592653589793 l004 Pi/tanh(764/89*Pi) 3141592653589793 l004 Pi/tanh(867/101*Pi) 3141592653589793 l004 Pi/tanh(970/113*Pi) 3141592653589793 l004 Pi/tanh(103/12*Pi) 3141592653589793 l004 Pi/tanh(987/115*Pi) 3141592653589793 l004 Pi/tanh(884/103*Pi) 3141592653589793 l004 Pi/tanh(781/91*Pi) 3141592653589793 l004 Pi/tanh(678/79*Pi) 3141592653589793 l004 Pi/tanh(575/67*Pi) 3141592653589793 l004 Pi/tanh(472/55*Pi) 3141592653589793 l004 Pi/tanh(841/98*Pi) 3141592653589793 l004 Pi/tanh(369/43*Pi) 3141592653589793 l004 Pi/tanh(1004/117*Pi) 3141592653589793 l004 Pi/tanh(635/74*Pi) 3141592653589793 l004 Pi/tanh(901/105*Pi) 3141592653589793 l004 Pi/tanh(266/31*Pi) 3141592653589793 l004 Pi/tanh(961/112*Pi) 3141592653589793 l004 Pi/tanh(695/81*Pi) 3141592653589793 l004 Pi/tanh(429/50*Pi) 3141592653589793 l004 Pi/tanh(1021/119*Pi) 3141592653589793 l004 Pi/tanh(592/69*Pi) 3141592653589793 l004 Pi/tanh(755/88*Pi) 3141592653589793 l004 Pi/tanh(918/107*Pi) 3141592653589793 l004 Pi/tanh(163/19*Pi) 3141592653589793 l004 Pi/tanh(875/102*Pi) 3141592653589793 l004 Pi/tanh(712/83*Pi) 3141592653589793 l004 Pi/tanh(549/64*Pi) 3141592653589793 l004 Pi/tanh(935/109*Pi) 3141592653589793 l004 Pi/tanh(386/45*Pi) 3141592653589793 l004 Pi/tanh(995/116*Pi) 3141592653589793 l004 Pi/tanh(609/71*Pi) 3141592653589793 l004 Pi/tanh(832/97*Pi) 3141592653589793 l004 Pi/tanh(223/26*Pi) 3141592653589793 l004 Pi/tanh(952/111*Pi) 3141592653589793 l004 Pi/tanh(729/85*Pi) 3141592653589793 l004 Pi/tanh(506/59*Pi) 3141592653589793 l004 Pi/tanh(789/92*Pi) 3141592653589793 l004 Pi/tanh(283/33*Pi) 3141592653589793 l004 Pi/tanh(909/106*Pi) 3141592653589793 l004 Pi/tanh(626/73*Pi) 3141592653589793 l004 Pi/tanh(969/113*Pi) 3141592653589793 l004 Pi/tanh(343/40*Pi) 3141592653589793 l004 Pi/tanh(746/87*Pi) 3141592653589793 l004 Pi/tanh(403/47*Pi) 3141592653589793 l004 Pi/tanh(866/101*Pi) 3141592653589793 l004 Pi/tanh(463/54*Pi) 3141592653589793 l004 Pi/tanh(986/115*Pi) 3141592653589793 l004 Pi/tanh(523/61*Pi) 3141592653589793 l004 Pi/tanh(583/68*Pi) 3141592653589793 l004 Pi/tanh(643/75*Pi) 3141592653589793 l004 Pi/tanh(703/82*Pi) 3141592653589793 m001 Trott^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653589793 l004 Pi/tanh(763/89*Pi) 3141592653589793 l004 Pi/tanh(823/96*Pi) 3141592653589793 l004 Pi/tanh(883/103*Pi) 3141592653589793 l004 Pi/tanh(943/110*Pi) 3141592653589793 l004 Pi/tanh(1003/117*Pi) 3141592653589793 l004 Pi/tanh(60/7*Pi) 3141592653589793 l004 Pi/tanh(977/114*Pi) 3141592653589793 l004 Pi/tanh(917/107*Pi) 3141592653589793 l004 Pi/tanh(857/100*Pi) 3141592653589793 l004 Pi/tanh(797/93*Pi) 3141592653589793 l004 Pi/tanh(737/86*Pi) 3141592653589793 l004 Pi/tanh(677/79*Pi) 3141592653589793 l004 Pi/tanh(617/72*Pi) 3141592653589793 l004 Pi/tanh(557/65*Pi) 3141592653589793 l004 Pi/tanh(497/58*Pi) 3141592653589793 l004 Pi/tanh(934/109*Pi) 3141592653589793 l004 Pi/tanh(437/51*Pi) 3141592653589793 l004 Pi/tanh(814/95*Pi) 3141592653589793 l004 Pi/tanh(377/44*Pi) 3141592653589793 l004 Pi/tanh(694/81*Pi) 3141592653589793 l004 Pi/tanh(1011/118*Pi) 3141592653589793 l004 Pi/tanh(317/37*Pi) 3141592653589793 l004 Pi/tanh(891/104*Pi) 3141592653589793 l004 Pi/tanh(574/67*Pi) 3141592653589793 l004 Pi/tanh(831/97*Pi) 3141592653589793 l004 Pi/tanh(257/30*Pi) 3141592653589793 l004 Pi/tanh(968/113*Pi) 3141592653589793 l004 Pi/tanh(711/83*Pi) 3141592653589793 l004 Pi/tanh(454/53*Pi) 3141592653589793 l004 Pi/tanh(651/76*Pi) 3141592653589793 l004 Pi/tanh(848/99*Pi) 3141592653589793 l004 Pi/tanh(197/23*Pi) 3141592653589793 l004 Pi/tanh(925/108*Pi) 3141592653589793 l004 Pi/tanh(728/85*Pi) 3141592653589793 l004 Pi/tanh(531/62*Pi) 3141592653589793 l004 Pi/tanh(865/101*Pi) 3141592653589793 l004 Pi/tanh(334/39*Pi) 3141592653589793 l004 Pi/tanh(805/94*Pi) 3141592653589793 l004 Pi/tanh(471/55*Pi) 3141592653589793 l004 Pi/tanh(608/71*Pi) 3141592653589793 l004 Pi/tanh(745/87*Pi) 3141592653589793 l004 Pi/tanh(882/103*Pi) 3141592653589793 l004 Pi/tanh(1019/119*Pi) 3141592653589793 l004 Pi/tanh(137/16*Pi) 3141592653589793 l004 Pi/tanh(899/105*Pi) 3141592653589793 l004 Pi/tanh(762/89*Pi) 3141592653589793 l004 Pi/tanh(625/73*Pi) 3141592653589793 l004 Pi/tanh(488/57*Pi) 3141592653589793 l004 Pi/tanh(839/98*Pi) 3141592653589793 l004 Pi/tanh(351/41*Pi) 3141592653589793 l004 Pi/tanh(916/107*Pi) 3141592653589793 l004 Pi/tanh(565/66*Pi) 3141592653589793 l004 Pi/tanh(779/91*Pi) 3141592653589793 l004 Pi/tanh(993/116*Pi) 3141592653589793 l004 Pi/tanh(214/25*Pi) 3141592653589793 l004 Pi/tanh(933/109*Pi) 3141592653589793 l004 Pi/tanh(719/84*Pi) 3141592653589793 l004 Pi/tanh(505/59*Pi) 3141592653589793 l004 Pi/tanh(796/93*Pi) 3141592653589793 l004 Pi/tanh(291/34*Pi) 3141592653589793 l004 Pi/tanh(950/111*Pi) 3141592653589793 l004 Pi/tanh(659/77*Pi) 3141592653589793 l004 Pi/tanh(1027/120*Pi) 3141592653589793 l004 Pi/tanh(368/43*Pi) 3141592653589793 l004 Pi/tanh(813/95*Pi) 3141592653589793 l004 Pi/tanh(445/52*Pi) 3141592653589793 l004 Pi/tanh(967/113*Pi) 3141592653589793 l004 Pi/tanh(522/61*Pi) 3141592653589793 l004 Pi/tanh(599/70*Pi) 3141592653589793 l004 Pi/tanh(676/79*Pi) 3141592653589793 l004 Pi/tanh(753/88*Pi) 3141592653589793 l004 Pi/tanh(830/97*Pi) 3141592653589793 l004 Pi/tanh(907/106*Pi) 3141592653589793 l004 Pi/tanh(984/115*Pi) 3141592653589793 l004 Pi/tanh(77/9*Pi) 3141592653589793 l004 Pi/tanh(1018/119*Pi) 3141592653589793 l004 Pi/tanh(941/110*Pi) 3141592653589793 l004 Pi/tanh(864/101*Pi) 3141592653589793 l004 Pi/tanh(787/92*Pi) 3141592653589793 l004 Pi/tanh(710/83*Pi) 3141592653589793 l004 Pi/tanh(633/74*Pi) 3141592653589793 l004 Pi/tanh(556/65*Pi) 3141592653589793 l004 Pi/tanh(479/56*Pi) 3141592653589793 l004 Pi/tanh(881/103*Pi) 3141592653589793 l004 Pi/tanh(402/47*Pi) 3141592653589793 l004 Pi/tanh(727/85*Pi) 3141592653589793 l004 Pi/tanh(325/38*Pi) 3141592653589793 l004 Pi/tanh(898/105*Pi) 3141592653589793 l004 Pi/tanh(573/67*Pi) 3141592653589793 l004 Pi/tanh(821/96*Pi) 3141592653589793 l004 Pi/tanh(248/29*Pi) 3141592653589793 l004 Pi/tanh(915/107*Pi) 3141592653589793 l004 Pi/tanh(667/78*Pi) 3141592653589793 l004 Pi/tanh(419/49*Pi) 3141592653589793 l004 Pi/tanh(1009/118*Pi) 3141592653589793 l004 Pi/tanh(590/69*Pi) 3141592653589793 l004 Pi/tanh(761/89*Pi) 3141592653589793 l004 Pi/tanh(932/109*Pi) 3141592653589793 l004 Pi/tanh(171/20*Pi) 3141592653589793 l004 Pi/tanh(949/111*Pi) 3141592653589793 l004 Pi/tanh(778/91*Pi) 3141592653589793 l004 Pi/tanh(607/71*Pi) 3141592653589793 l004 Pi/tanh(436/51*Pi) 3141592653589793 l004 Pi/tanh(701/82*Pi) 3141592653589793 l004 Pi/tanh(966/113*Pi) 3141592653589793 l004 Pi/tanh(265/31*Pi) 3141592653589793 l004 Pi/tanh(889/104*Pi) 3141592653589793 l004 Pi/tanh(624/73*Pi) 3141592653589793 l004 Pi/tanh(983/115*Pi) 3141592653589793 l004 Pi/tanh(359/42*Pi) 3141592653589793 l004 Pi/tanh(812/95*Pi) 3141592653589793 l004 Pi/tanh(453/53*Pi) 3141592653589793 l004 Pi/tanh(1000/117*Pi) 3141592653589793 l004 Pi/tanh(547/64*Pi) 3141592653589793 l004 Pi/tanh(641/75*Pi) 3141592653589793 l004 Pi/tanh(735/86*Pi) 3141592653589793 l004 Pi/tanh(829/97*Pi) 3141592653589793 l004 Pi/tanh(923/108*Pi) 3141592653589793 l004 Pi/tanh(1017/119*Pi) 3141592653589793 l004 Pi/tanh(94/11*Pi) 3141592653589793 l004 Pi/tanh(957/112*Pi) 3141592653589793 l004 Pi/tanh(863/101*Pi) 3141592653589793 l004 Pi/tanh(769/90*Pi) 3141592653589793 l004 Pi/tanh(675/79*Pi) 3141592653589793 l004 Pi/tanh(581/68*Pi) 3141592653589793 l004 Pi/tanh(487/57*Pi) 3141592653589793 l004 Pi/tanh(880/103*Pi) 3141592653589793 l004 Pi/tanh(393/46*Pi) 3141592653589793 l004 Pi/tanh(692/81*Pi) 3141592653589793 l004 Pi/tanh(991/116*Pi) 3141592653589793 l004 Pi/tanh(299/35*Pi) 3141592653589793 l004 Pi/tanh(803/94*Pi) 3141592653589793 l004 Pi/tanh(504/59*Pi) 3141592653589793 l004 Pi/tanh(709/83*Pi) 3141592653589793 l004 Pi/tanh(914/107*Pi) 3141592653589793 l004 Pi/tanh(205/24*Pi) 3141592653589793 l004 Pi/tanh(931/109*Pi) 3141592653589793 l004 Pi/tanh(726/85*Pi) 3141592653589793 l004 Pi/tanh(521/61*Pi) 3141592653589793 l004 Pi/tanh(837/98*Pi) 3141592653589793 l004 Pi/tanh(316/37*Pi) 3141592653589793 l004 Pi/tanh(743/87*Pi) 3141592653589793 l004 Pi/tanh(427/50*Pi) 3141592653589793 l004 Pi/tanh(965/113*Pi) 3141592653589793 l004 Pi/tanh(538/63*Pi) 3141592653589793 l004 Pi/tanh(649/76*Pi) 3141592653589793 l004 Pi/tanh(760/89*Pi) 3141592653589793 l004 Pi/tanh(871/102*Pi) 3141592653589793 l004 Pi/tanh(982/115*Pi) 3141592653589793 l004 Pi/tanh(111/13*Pi) 3141592653589793 l004 Pi/tanh(1016/119*Pi) 3141592653589793 l004 Pi/tanh(905/106*Pi) 3141592653589793 l004 Pi/tanh(794/93*Pi) 3141592653589793 l004 Pi/tanh(683/80*Pi) 3141592653589793 l004 Pi/tanh(572/67*Pi) 3141592653589793 l004 Pi/tanh(461/54*Pi) 3141592653589793 l004 Pi/tanh(811/95*Pi) 3141592653589793 l004 Pi/tanh(350/41*Pi) 3141592653589793 l004 Pi/tanh(939/110*Pi) 3141592653589793 l004 Pi/tanh(589/69*Pi) 3141592653589793 l004 Pi/tanh(828/97*Pi) 3141592653589793 l004 Pi/tanh(239/28*Pi) 3141592653589793 l004 Pi/tanh(845/99*Pi) 3141592653589793 l004 Pi/tanh(606/71*Pi) 3141592653589793 l004 Pi/tanh(973/114*Pi) 3141592653589793 l004 Pi/tanh(367/43*Pi) 3141592653589793 l004 Pi/tanh(862/101*Pi) 3141592653589793 l004 Pi/tanh(495/58*Pi) 3141592653589793 l004 Pi/tanh(623/73*Pi) 3141592653589793 l004 Pi/tanh(751/88*Pi) 3141592653589793 l004 Pi/tanh(879/103*Pi) 3141592653589793 l004 Pi/tanh(1007/118*Pi) 3141592653589793 l004 Pi/tanh(128/15*Pi) 3141592653589793 l004 Pi/tanh(913/107*Pi) 3141592653589793 l004 Pi/tanh(785/92*Pi) 3141592653589793 l004 Pi/tanh(657/77*Pi) 3141592653589793 l004 Pi/tanh(529/62*Pi) 3141592653589793 l004 Pi/tanh(930/109*Pi) 3141592653589793 l004 Pi/tanh(401/47*Pi) 3141592653589793 l004 Pi/tanh(674/79*Pi) 3141592653589793 l004 Pi/tanh(947/111*Pi) 3141592653589793 l004 Pi/tanh(273/32*Pi) 3141592653589793 l004 Pi/tanh(964/113*Pi) 3141592653589793 l004 Pi/tanh(691/81*Pi) 3141592653589793 l004 Pi/tanh(418/49*Pi) 3141592653589793 l004 Pi/tanh(981/115*Pi) 3141592653589793 l004 Pi/tanh(563/66*Pi) 3141592653589793 l004 Pi/tanh(708/83*Pi) 3141592653589793 l004 Pi/tanh(853/100*Pi) 3141592653589793 l004 Pi/tanh(998/117*Pi) 3141592653589793 l004 Pi/tanh(145/17*Pi) 3141592653589793 l004 Pi/tanh(887/104*Pi) 3141592653589793 l004 Pi/tanh(742/87*Pi) 3141592653589793 l004 Pi/tanh(597/70*Pi) 3141592653589793 l004 Pi/tanh(452/53*Pi) 3141592653589793 l004 Pi/tanh(759/89*Pi) 3141592653589793 l004 Pi/tanh(307/36*Pi) 3141592653589793 l004 Pi/tanh(776/91*Pi) 3141592653589793 l004 Pi/tanh(469/55*Pi) 3141592653589793 l004 Pi/tanh(631/74*Pi) 3141592653589793 l004 Pi/tanh(793/93*Pi) 3141592653589793 l004 Pi/tanh(955/112*Pi) 3141592653589793 l004 Pi/tanh(162/19*Pi) 3141592653589793 l004 Pi/tanh(989/116*Pi) 3141592653589793 l004 Pi/tanh(827/97*Pi) 3141592653589793 l004 Pi/tanh(665/78*Pi) 3141592653589793 l004 Pi/tanh(503/59*Pi) 3141592653589793 l004 Pi/tanh(844/99*Pi) 3141592653589793 l004 Pi/tanh(341/40*Pi) 3141592653589793 l004 Pi/tanh(861/101*Pi) 3141592653589793 l004 Pi/tanh(520/61*Pi) 3141592653589793 l004 Pi/tanh(699/82*Pi) 3141592653589793 l004 Pi/tanh(878/103*Pi) 3141592653589793 l004 Pi/tanh(179/21*Pi) 3141592653589793 l004 Pi/tanh(912/107*Pi) 3141592653589793 l004 Pi/tanh(733/86*Pi) 3141592653589793 l004 Pi/tanh(554/65*Pi) 3141592653589793 l004 Pi/tanh(929/109*Pi) 3141592653589793 l004 Pi/tanh(375/44*Pi) 3141592653589793 l004 Pi/tanh(946/111*Pi) 3141592653589793 l004 Pi/tanh(571/67*Pi) 3141592653589793 l004 Pi/tanh(767/90*Pi) 3141592653589793 l004 Pi/tanh(963/113*Pi) 3141592653589793 l004 Pi/tanh(196/23*Pi) 3141592653589793 l004 Pi/tanh(997/117*Pi) 3141592653589793 l004 Pi/tanh(801/94*Pi) 3141592653589793 l004 Pi/tanh(605/71*Pi) 3141592653589793 l004 Pi/tanh(1014/119*Pi) 3141592653589793 l004 Pi/tanh(409/48*Pi) 3141592653589793 l004 Pi/tanh(622/73*Pi) 3141592653589793 l004 Pi/tanh(835/98*Pi) 3141592653589793 l004 Pi/tanh(213/25*Pi) 3141592653589793 l004 Pi/tanh(869/102*Pi) 3141592653589793 l004 Pi/tanh(656/77*Pi) 3141592653589793 l004 Pi/tanh(443/52*Pi) 3141592653589793 l004 Pi/tanh(673/79*Pi) 3141592653589793 l004 Pi/tanh(903/106*Pi) 3141592653589793 l004 Pi/tanh(230/27*Pi) 3141592653589793 l004 Pi/tanh(937/110*Pi) 3141592653589793 l004 Pi/tanh(707/83*Pi) 3141592653589793 l004 Pi/tanh(477/56*Pi) 3141592653589793 l004 Pi/tanh(724/85*Pi) 3141592653589793 l004 Pi/tanh(971/114*Pi) 3141592653589793 l004 Pi/tanh(247/29*Pi) 3141592653589793 l004 Pi/tanh(1005/118*Pi) 3141592653589793 l004 Pi/tanh(758/89*Pi) 3141592653589793 l004 Pi/tanh(511/60*Pi) 3141592653589793 l004 Pi/tanh(775/91*Pi) 3141592653589793 l004 Pi/tanh(264/31*Pi) 3141592653589793 l004 Pi/tanh(809/95*Pi) 3141592653589793 l004 Pi/tanh(545/64*Pi) 3141592653589793 l004 Pi/tanh(826/97*Pi) 3141592653589793 l004 Pi/tanh(281/33*Pi) 3141592653589793 l004 Pi/tanh(860/101*Pi) 3141592653589793 l004 Pi/tanh(579/68*Pi) 3141592653589793 l004 Pi/tanh(877/103*Pi) 3141592653589793 l004 Pi/tanh(298/35*Pi) 3141592653589793 l004 Pi/tanh(911/107*Pi) 3141592653589793 l004 Pi/tanh(613/72*Pi) 3141592653589793 l004 Pi/tanh(928/109*Pi) 3141592653589793 l004 Pi/tanh(315/37*Pi) 3141592653589793 l004 Pi/tanh(962/113*Pi) 3141592653589793 l004 Pi/tanh(647/76*Pi) 3141592653589793 l004 Pi/tanh(979/115*Pi) 3141592653589793 l004 Pi/tanh(332/39*Pi) 3141592653589793 l004 Pi/tanh(1013/119*Pi) 3141592653589793 l004 Pi/tanh(681/80*Pi) 3141592653589793 l004 Pi/tanh(349/41*Pi) 3141592653589793 l004 Pi/tanh(715/84*Pi) 3141592653589793 l004 Pi/tanh(366/43*Pi) 3141592653589793 l004 Pi/tanh(749/88*Pi) 3141592653589793 l004 Pi/tanh(383/45*Pi) 3141592653589793 l004 Pi/tanh(783/92*Pi) 3141592653589793 l004 Pi/tanh(400/47*Pi) 3141592653589793 l004 Pi/tanh(817/96*Pi) 3141592653589793 l004 Pi/tanh(417/49*Pi) 3141592653589793 l004 Pi/tanh(851/100*Pi) 3141592653589793 l004 Pi/tanh(434/51*Pi) 3141592653589793 l004 Pi/tanh(885/104*Pi) 3141592653589793 l004 Pi/tanh(451/53*Pi) 3141592653589793 l004 Pi/tanh(919/108*Pi) 3141592653589793 l004 Pi/tanh(468/55*Pi) 3141592653589793 l004 Pi/tanh(953/112*Pi) 3141592653589793 l004 Pi/tanh(485/57*Pi) 3141592653589793 l004 Pi/tanh(987/116*Pi) 3141592653589793 l004 Pi/tanh(502/59*Pi) 3141592653589793 l004 Pi/tanh(1021/120*Pi) 3141592653589793 l004 Pi/tanh(519/61*Pi) 3141592653589793 l004 Pi/tanh(536/63*Pi) 3141592653589793 l004 Pi/tanh(553/65*Pi) 3141592653589793 l004 Pi/tanh(570/67*Pi) 3141592653589793 l004 Pi/tanh(587/69*Pi) 3141592653589793 l004 Pi/tanh(604/71*Pi) 3141592653589793 l004 Pi/tanh(621/73*Pi) 3141592653589793 l004 Pi/tanh(638/75*Pi) 3141592653589793 l004 Pi/tanh(655/77*Pi) 3141592653589793 l004 Pi/tanh(672/79*Pi) 3141592653589793 l004 Pi/tanh(689/81*Pi) 3141592653589793 l004 Pi/tanh(706/83*Pi) 3141592653589793 l004 Pi/tanh(723/85*Pi) 3141592653589793 l004 Pi/tanh(740/87*Pi) 3141592653589793 l004 Pi/tanh(757/89*Pi) 3141592653589793 l004 Pi/tanh(774/91*Pi) 3141592653589793 l004 Pi/tanh(791/93*Pi) 3141592653589793 l004 Pi/tanh(808/95*Pi) 3141592653589793 l004 Pi/tanh(825/97*Pi) 3141592653589793 l004 Pi/tanh(842/99*Pi) 3141592653589793 l004 Pi/tanh(859/101*Pi) 3141592653589793 l004 Pi/tanh(876/103*Pi) 3141592653589793 l004 Pi/tanh(893/105*Pi) 3141592653589793 l004 Pi/tanh(910/107*Pi) 3141592653589793 l004 Pi/tanh(927/109*Pi) 3141592653589793 l004 Pi/tanh(944/111*Pi) 3141592653589793 l004 Pi/tanh(961/113*Pi) 3141592653589793 l004 Pi/tanh(978/115*Pi) 3141592653589793 l004 Pi/tanh(995/117*Pi) 3141592653589793 l004 Pi/tanh(1012/119*Pi) 3141592653589793 m001 OneNinth^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(17/2*Pi) 3141592653589793 l004 Pi/tanh(1011/119*Pi) 3141592653589793 l004 Pi/tanh(994/117*Pi) 3141592653589793 l004 Pi/tanh(977/115*Pi) 3141592653589793 l004 Pi/tanh(960/113*Pi) 3141592653589793 l004 Pi/tanh(943/111*Pi) 3141592653589793 l004 Pi/tanh(926/109*Pi) 3141592653589793 l004 Pi/tanh(909/107*Pi) 3141592653589793 l004 Pi/tanh(892/105*Pi) 3141592653589793 l004 Pi/tanh(875/103*Pi) 3141592653589793 l004 Pi/tanh(858/101*Pi) 3141592653589793 l004 Pi/tanh(841/99*Pi) 3141592653589793 l004 Pi/tanh(824/97*Pi) 3141592653589793 l004 Pi/tanh(807/95*Pi) 3141592653589793 l004 Pi/tanh(790/93*Pi) 3141592653589793 l004 Pi/tanh(773/91*Pi) 3141592653589793 l004 Pi/tanh(756/89*Pi) 3141592653589793 l004 Pi/tanh(739/87*Pi) 3141592653589793 l004 Pi/tanh(722/85*Pi) 3141592653589793 l004 Pi/tanh(705/83*Pi) 3141592653589793 l004 Pi/tanh(688/81*Pi) 3141592653589793 l004 Pi/tanh(671/79*Pi) 3141592653589793 l004 Pi/tanh(654/77*Pi) 3141592653589793 l004 Pi/tanh(637/75*Pi) 3141592653589793 l004 Pi/tanh(620/73*Pi) 3141592653589793 l004 Pi/tanh(603/71*Pi) 3141592653589793 l004 Pi/tanh(586/69*Pi) 3141592653589793 l004 Pi/tanh(569/67*Pi) 3141592653589793 l004 Pi/tanh(552/65*Pi) 3141592653589793 l004 Pi/tanh(535/63*Pi) 3141592653589793 l004 Pi/tanh(518/61*Pi) 3141592653589793 l004 Pi/tanh(1019/120*Pi) 3141592653589793 l004 Pi/tanh(501/59*Pi) 3141592653589793 l004 Pi/tanh(985/116*Pi) 3141592653589793 l004 Pi/tanh(484/57*Pi) 3141592653589793 l004 Pi/tanh(951/112*Pi) 3141592653589793 l004 Pi/tanh(467/55*Pi) 3141592653589793 l004 Pi/tanh(917/108*Pi) 3141592653589793 l004 Pi/tanh(450/53*Pi) 3141592653589793 l004 Pi/tanh(883/104*Pi) 3141592653589793 l004 Pi/tanh(433/51*Pi) 3141592653589793 l004 Pi/tanh(849/100*Pi) 3141592653589793 l004 Pi/tanh(416/49*Pi) 3141592653589793 l004 Pi/tanh(815/96*Pi) 3141592653589793 l004 Pi/tanh(399/47*Pi) 3141592653589793 l004 Pi/tanh(781/92*Pi) 3141592653589793 l004 Pi/tanh(382/45*Pi) 3141592653589793 l004 Pi/tanh(747/88*Pi) 3141592653589793 l004 Pi/tanh(365/43*Pi) 3141592653589793 l004 Pi/tanh(713/84*Pi) 3141592653589793 l004 Pi/tanh(348/41*Pi) 3141592653589793 l004 Pi/tanh(679/80*Pi) 3141592653589793 l004 Pi/tanh(1010/119*Pi) 3141592653589793 l004 Pi/tanh(331/39*Pi) 3141592653589793 l004 Pi/tanh(976/115*Pi) 3141592653589793 l004 Pi/tanh(645/76*Pi) 3141592653589793 l004 Pi/tanh(959/113*Pi) 3141592653589793 l004 Pi/tanh(314/37*Pi) 3141592653589793 l004 Pi/tanh(925/109*Pi) 3141592653589793 l004 Pi/tanh(611/72*Pi) 3141592653589793 l004 Pi/tanh(908/107*Pi) 3141592653589793 l004 Pi/tanh(297/35*Pi) 3141592653589793 l004 Pi/tanh(874/103*Pi) 3141592653589793 l004 Pi/tanh(577/68*Pi) 3141592653589793 l004 Pi/tanh(857/101*Pi) 3141592653589793 l004 Pi/tanh(280/33*Pi) 3141592653589793 l004 Pi/tanh(823/97*Pi) 3141592653589793 l004 Pi/tanh(543/64*Pi) 3141592653589793 l004 Pi/tanh(806/95*Pi) 3141592653589793 l004 Pi/tanh(263/31*Pi) 3141592653589793 l004 Pi/tanh(772/91*Pi) 3141592653589793 l004 Pi/tanh(509/60*Pi) 3141592653589793 l004 Pi/tanh(755/89*Pi) 3141592653589793 l004 Pi/tanh(1001/118*Pi) 3141592653589793 l004 Pi/tanh(246/29*Pi) 3141592653589793 l004 Pi/tanh(967/114*Pi) 3141592653589793 l004 Pi/tanh(721/85*Pi) 3141592653589793 l004 Pi/tanh(475/56*Pi) 3141592653589793 l004 Pi/tanh(704/83*Pi) 3141592653589793 l004 Pi/tanh(933/110*Pi) 3141592653589793 l004 Pi/tanh(229/27*Pi) 3141592653589793 l004 Pi/tanh(899/106*Pi) 3141592653589793 l004 Pi/tanh(670/79*Pi) 3141592653589793 l004 Pi/tanh(441/52*Pi) 3141592653589793 l004 Pi/tanh(653/77*Pi) 3141592653589793 l004 Pi/tanh(865/102*Pi) 3141592653589793 l004 Pi/tanh(212/25*Pi) 3141592653589793 l004 Pi/tanh(831/98*Pi) 3141592653589793 l004 Pi/tanh(619/73*Pi) 3141592653589793 l004 Pi/tanh(407/48*Pi) 3141592653589793 l004 Pi/tanh(1009/119*Pi) 3141592653589793 l004 Pi/tanh(602/71*Pi) 3141592653589793 l004 Pi/tanh(797/94*Pi) 3141592653589793 l004 Pi/tanh(992/117*Pi) 3141592653589793 l004 Pi/tanh(195/23*Pi) 3141592653589793 l004 Pi/tanh(958/113*Pi) 3141592653589793 l004 Pi/tanh(763/90*Pi) 3141592653589793 l004 Pi/tanh(568/67*Pi) 3141592653589793 l004 Pi/tanh(941/111*Pi) 3141592653589793 l004 Pi/tanh(373/44*Pi) 3141592653589793 l004 Pi/tanh(924/109*Pi) 3141592653589793 l004 Pi/tanh(551/65*Pi) 3141592653589793 l004 Pi/tanh(729/86*Pi) 3141592653589793 l004 Pi/tanh(907/107*Pi) 3141592653589793 l004 Pi/tanh(178/21*Pi) 3141592653589793 l004 Pi/tanh(873/103*Pi) 3141592653589793 l004 Pi/tanh(695/82*Pi) 3141592653589793 l004 Pi/tanh(517/61*Pi) 3141592653589793 l004 Pi/tanh(856/101*Pi) 3141592653589793 l004 Pi/tanh(339/40*Pi) 3141592653589793 l004 Pi/tanh(839/99*Pi) 3141592653589793 l004 Pi/tanh(500/59*Pi) 3141592653589793 l004 Pi/tanh(661/78*Pi) 3141592653589793 l004 Pi/tanh(822/97*Pi) 3141592653589793 l004 Pi/tanh(983/116*Pi) 3141592653589793 l004 Pi/tanh(161/19*Pi) 3141592653589793 l004 Pi/tanh(949/112*Pi) 3141592653589793 l004 Pi/tanh(788/93*Pi) 3141592653589793 l004 Pi/tanh(627/74*Pi) 3141592653589793 l004 Pi/tanh(466/55*Pi) 3141592653589793 l004 Pi/tanh(771/91*Pi) 3141592653589793 l004 Pi/tanh(305/36*Pi) 3141592653589793 l004 Pi/tanh(754/89*Pi) 3141592653589793 l004 Pi/tanh(449/53*Pi) 3141592653589793 l004 Pi/tanh(593/70*Pi) 3141592653589793 l004 Pi/tanh(737/87*Pi) 3141592653589793 l004 Pi/tanh(881/104*Pi) 3141592653589793 l004 Pi/tanh(144/17*Pi) 3141592653589793 l004 Pi/tanh(991/117*Pi) 3141592653589793 l004 Pi/tanh(847/100*Pi) 3141592653589793 l004 Pi/tanh(703/83*Pi) 3141592653589793 l004 Pi/tanh(559/66*Pi) 3141592653589793 l004 Pi/tanh(974/115*Pi) 3141592653589793 l004 Pi/tanh(415/49*Pi) 3141592653589793 l004 Pi/tanh(686/81*Pi) 3141592653589793 l004 Pi/tanh(957/113*Pi) 3141592653589793 l004 Pi/tanh(271/32*Pi) 3141592653589793 l004 Pi/tanh(940/111*Pi) 3141592653589793 l004 Pi/tanh(669/79*Pi) 3141592653589793 l004 Pi/tanh(398/47*Pi) 3141592653589793 l004 Pi/tanh(923/109*Pi) 3141592653589793 l004 Pi/tanh(525/62*Pi) 3141592653589793 l004 Pi/tanh(652/77*Pi) 3141592653589793 l004 Pi/tanh(779/92*Pi) 3141592653589793 l004 Pi/tanh(906/107*Pi) 3141592653589793 l004 Pi/tanh(127/15*Pi) 3141592653589793 l004 Pi/tanh(999/118*Pi) 3141592653589793 l004 Pi/tanh(872/103*Pi) 3141592653589793 l004 Pi/tanh(745/88*Pi) 3141592653589793 l004 Pi/tanh(618/73*Pi) 3141592653589793 l004 Pi/tanh(491/58*Pi) 3141592653589793 l004 Pi/tanh(855/101*Pi) 3141592653589793 l004 Pi/tanh(364/43*Pi) 3141592653589793 l004 Pi/tanh(965/114*Pi) 3141592653589793 l004 Pi/tanh(601/71*Pi) 3141592653589793 l004 Pi/tanh(838/99*Pi) 3141592653589793 l004 Pi/tanh(237/28*Pi) 3141592653589793 l004 Pi/tanh(821/97*Pi) 3141592653589793 l004 Pi/tanh(584/69*Pi) 3141592653589793 l004 Pi/tanh(931/110*Pi) 3141592653589793 l004 Pi/tanh(347/41*Pi) 3141592653589793 l004 Pi/tanh(804/95*Pi) 3141592653589793 l004 Pi/tanh(457/54*Pi) 3141592653589793 l004 Pi/tanh(567/67*Pi) 3141592653589793 l004 Pi/tanh(677/80*Pi) 3141592653589793 l004 Pi/tanh(787/93*Pi) 3141592653589793 l004 Pi/tanh(897/106*Pi) 3141592653589793 l004 Pi/tanh(1007/119*Pi) 3141592653589793 l004 Pi/tanh(110/13*Pi) 3141592653589793 l004 Pi/tanh(973/115*Pi) 3141592653589793 l004 Pi/tanh(863/102*Pi) 3141592653589793 l004 Pi/tanh(753/89*Pi) 3141592653589793 l004 Pi/tanh(643/76*Pi) 3141592653589793 l004 Pi/tanh(533/63*Pi) 3141592653589793 l004 Pi/tanh(956/113*Pi) 3141592653589793 l004 Pi/tanh(423/50*Pi) 3141592653589793 l004 Pi/tanh(736/87*Pi) 3141592653589793 l004 Pi/tanh(313/37*Pi) 3141592653589793 l004 Pi/tanh(829/98*Pi) 3141592653589793 l004 Pi/tanh(516/61*Pi) 3141592653589793 l004 Pi/tanh(719/85*Pi) 3141592653589793 l004 Pi/tanh(922/109*Pi) 3141592653589793 l004 Pi/tanh(203/24*Pi) 3141592653589793 l004 Pi/tanh(905/107*Pi) 3141592653589793 l004 Pi/tanh(702/83*Pi) 3141592653589793 l004 Pi/tanh(499/59*Pi) 3141592653589793 l004 Pi/tanh(795/94*Pi) 3141592653589793 l004 Pi/tanh(296/35*Pi) 3141592653589793 l004 Pi/tanh(981/116*Pi) 3141592653589793 l004 Pi/tanh(685/81*Pi) 3141592653589793 l004 Pi/tanh(389/46*Pi) 3141592653589793 l004 Pi/tanh(871/103*Pi) 3141592653589793 l004 Pi/tanh(482/57*Pi) 3141592653589793 l004 Pi/tanh(575/68*Pi) 3141592653589793 l004 Pi/tanh(668/79*Pi) 3141592653589793 l004 Pi/tanh(761/90*Pi) 3141592653589793 l004 Pi/tanh(854/101*Pi) 3141592653589793 l004 Pi/tanh(947/112*Pi) 3141592653589793 l004 Pi/tanh(93/11*Pi) 3141592653589793 l004 Pi/tanh(1006/119*Pi) 3141592653589793 l004 Pi/tanh(913/108*Pi) 3141592653589793 l004 Pi/tanh(820/97*Pi) 3141592653589793 l004 Pi/tanh(727/86*Pi) 3141592653589793 l004 Pi/tanh(634/75*Pi) 3141592653589793 l004 Pi/tanh(541/64*Pi) 3141592653589793 l004 Pi/tanh(989/117*Pi) 3141592653589793 l004 Pi/tanh(448/53*Pi) 3141592653589793 l004 Pi/tanh(803/95*Pi) 3141592653589793 l004 Pi/tanh(355/42*Pi) 3141592653589793 l004 Pi/tanh(972/115*Pi) 3141592653589793 l004 Pi/tanh(617/73*Pi) 3141592653589793 l004 Pi/tanh(879/104*Pi) 3141592653589793 l004 Pi/tanh(262/31*Pi) 3141592653589793 l004 Pi/tanh(955/113*Pi) 3141592653589793 l004 Pi/tanh(693/82*Pi) 3141592653589793 l004 Pi/tanh(431/51*Pi) 3141592653589793 l004 Pi/tanh(600/71*Pi) 3141592653589793 l004 Pi/tanh(769/91*Pi) 3141592653589793 l004 Pi/tanh(938/111*Pi) 3141592653589793 l004 Pi/tanh(169/20*Pi) 3141592653589793 l004 Pi/tanh(921/109*Pi) 3141592653589793 l004 Pi/tanh(752/89*Pi) 3141592653589793 l004 Pi/tanh(583/69*Pi) 3141592653589793 l004 Pi/tanh(997/118*Pi) 3141592653589793 l004 Pi/tanh(414/49*Pi) 3141592653589793 l004 Pi/tanh(659/78*Pi) 3141592653589793 l004 Pi/tanh(904/107*Pi) 3141592653589793 l004 Pi/tanh(245/29*Pi) 3141592653589793 l004 Pi/tanh(811/96*Pi) 3141592653589793 l004 Pi/tanh(566/67*Pi) 3141592653589793 l004 Pi/tanh(887/105*Pi) 3141592653589793 l004 Pi/tanh(321/38*Pi) 3141592653589793 l004 Pi/tanh(718/85*Pi) 3141592653589793 l004 Pi/tanh(397/47*Pi) 3141592653589793 l004 Pi/tanh(870/103*Pi) 3141592653589793 l004 Pi/tanh(473/56*Pi) 3141592653589793 l004 Pi/tanh(549/65*Pi) 3141592653589793 l004 Pi/tanh(625/74*Pi) 3141592653589793 l004 Pi/tanh(701/83*Pi) 3141592653589793 l004 Pi/tanh(777/92*Pi) 3141592653589793 l004 Pi/tanh(853/101*Pi) 3141592653589793 l004 Pi/tanh(929/110*Pi) 3141592653589793 l004 Pi/tanh(1005/119*Pi) 3141592653589793 l004 Pi/tanh(76/9*Pi) 3141592653589793 l004 Pi/tanh(971/115*Pi) 3141592653589793 l004 Pi/tanh(895/106*Pi) 3141592653589793 l004 Pi/tanh(819/97*Pi) 3141592653589793 l004 Pi/tanh(743/88*Pi) 3141592653589793 l004 Pi/tanh(667/79*Pi) 3141592653589793 l004 Pi/tanh(591/70*Pi) 3141592653589793 l004 Pi/tanh(515/61*Pi) 3141592653589793 l004 Pi/tanh(954/113*Pi) 3141592653589793 l004 Pi/tanh(439/52*Pi) 3141592653589793 l004 Pi/tanh(802/95*Pi) 3141592653589793 l004 Pi/tanh(363/43*Pi) 3141592653589793 l004 Pi/tanh(1013/120*Pi) 3141592653589793 l004 Pi/tanh(650/77*Pi) 3141592653589793 l004 Pi/tanh(937/111*Pi) 3141592653589793 l004 Pi/tanh(287/34*Pi) 3141592653589793 l004 Pi/tanh(785/93*Pi) 3141592653589793 l004 Pi/tanh(498/59*Pi) 3141592653589793 l004 Pi/tanh(709/84*Pi) 3141592653589793 l004 Pi/tanh(920/109*Pi) 3141592653589793 l004 Pi/tanh(211/25*Pi) 3141592653589793 l004 Pi/tanh(979/116*Pi) 3141592653589793 l004 Pi/tanh(768/91*Pi) 3141592653589793 l004 Pi/tanh(557/66*Pi) 3141592653589793 l004 Pi/tanh(903/107*Pi) 3141592653589793 l004 Pi/tanh(346/41*Pi) 3141592653589793 l004 Pi/tanh(827/98*Pi) 3141592653589793 l004 Pi/tanh(481/57*Pi) 3141592653589793 l004 Pi/tanh(616/73*Pi) 3141592653589793 l004 Pi/tanh(751/89*Pi) 3141592653589793 l004 Pi/tanh(886/105*Pi) 3141592653589793 l004 Pi/tanh(135/16*Pi) 3141592653589793 l004 Pi/tanh(1004/119*Pi) 3141592653589793 l004 Pi/tanh(869/103*Pi) 3141592653589793 l004 Pi/tanh(734/87*Pi) 3141592653589793 l004 Pi/tanh(599/71*Pi) 3141592653589793 l004 Pi/tanh(464/55*Pi) 3141592653589793 l004 Pi/tanh(793/94*Pi) 3141592653589793 l004 Pi/tanh(329/39*Pi) 3141592653589793 l004 Pi/tanh(852/101*Pi) 3141592653589793 l004 Pi/tanh(523/62*Pi) 3141592653589793 l004 Pi/tanh(717/85*Pi) 3141592653589793 l004 Pi/tanh(911/108*Pi) 3141592653589793 l004 Pi/tanh(194/23*Pi) 3141592653589793 l004 Pi/tanh(835/99*Pi) 3141592653589793 l004 Pi/tanh(641/76*Pi) 3141592653589793 l004 Pi/tanh(447/53*Pi) 3141592653589793 l004 Pi/tanh(700/83*Pi) 3141592653589793 l004 Pi/tanh(953/113*Pi) 3141592653589793 l004 Pi/tanh(253/30*Pi) 3141592653589793 l004 Pi/tanh(818/97*Pi) 3141592653589793 l004 Pi/tanh(565/67*Pi) 3141592653589793 l004 Pi/tanh(877/104*Pi) 3141592653589793 l004 Pi/tanh(312/37*Pi) 3141592653589793 l004 Pi/tanh(995/118*Pi) 3141592653589793 l004 Pi/tanh(683/81*Pi) 3141592653589793 l004 Pi/tanh(371/44*Pi) 3141592653589793 l004 Pi/tanh(801/95*Pi) 3141592653589793 l004 Pi/tanh(430/51*Pi) 3141592653589793 l004 Pi/tanh(919/109*Pi) 3141592653589793 l004 Pi/tanh(489/58*Pi) 3141592653589793 l004 Pi/tanh(548/65*Pi) 3141592653589793 l004 Pi/tanh(607/72*Pi) 3141592653589793 l004 Pi/tanh(666/79*Pi) 3141592653589793 l004 Pi/tanh(725/86*Pi) 3141592653589793 l004 Pi/tanh(784/93*Pi) 3141592653589793 l004 Pi/tanh(843/100*Pi) 3141592653589793 l004 Pi/tanh(902/107*Pi) 3141592653589793 l004 Pi/tanh(961/114*Pi) 3141592653589793 l004 Pi/tanh(59/7*Pi) 3141592653589793 l004 Pi/tanh(986/117*Pi) 3141592653589793 l004 Pi/tanh(927/110*Pi) 3141592653589793 l004 Pi/tanh(868/103*Pi) 3141592653589793 l004 Pi/tanh(809/96*Pi) 3141592653589793 l004 Pi/tanh(750/89*Pi) 3141592653589793 l004 Pi/tanh(691/82*Pi) 3141592653589793 l004 Pi/tanh(632/75*Pi) 3141592653589793 l004 Pi/tanh(573/68*Pi) 3141592653589793 l004 Pi/tanh(514/61*Pi) 3141592653589793 l004 Pi/tanh(969/115*Pi) 3141592653589793 l004 Pi/tanh(455/54*Pi) 3141592653589793 l004 Pi/tanh(851/101*Pi) 3141592653589793 l004 Pi/tanh(396/47*Pi) 3141592653589793 l004 Pi/tanh(733/87*Pi) 3141592653589793 l004 Pi/tanh(337/40*Pi) 3141592653589793 l004 Pi/tanh(952/113*Pi) 3141592653589793 l004 Pi/tanh(615/73*Pi) 3141592653589793 l004 Pi/tanh(893/106*Pi) 3141592653589793 l004 Pi/tanh(278/33*Pi) 3141592653589793 l004 Pi/tanh(775/92*Pi) 3141592653589793 l004 Pi/tanh(497/59*Pi) 3141592653589793 l004 Pi/tanh(716/85*Pi) 3141592653589793 l004 Pi/tanh(935/111*Pi) 3141592653589793 l004 Pi/tanh(219/26*Pi) 3141592653589793 l004 Pi/tanh(817/97*Pi) 3141592653589793 l004 Pi/tanh(598/71*Pi) 3141592653589793 l004 Pi/tanh(977/116*Pi) 3141592653589793 l004 Pi/tanh(379/45*Pi) 3141592653589793 l004 Pi/tanh(918/109*Pi) 3141592653589793 l004 Pi/tanh(539/64*Pi) 3141592653589793 l004 Pi/tanh(699/83*Pi) 3141592653589793 l004 Pi/tanh(859/102*Pi) 3141592653589793 l004 Pi/tanh(160/19*Pi) 3141592653589793 l004 Pi/tanh(901/107*Pi) 3141592653589793 l004 Pi/tanh(741/88*Pi) 3141592653589793 l004 Pi/tanh(581/69*Pi) 3141592653589793 l004 Pi/tanh(1002/119*Pi) 3141592653589793 l004 Pi/tanh(421/50*Pi) 3141592653589793 l004 Pi/tanh(682/81*Pi) 3141592653589793 l004 Pi/tanh(943/112*Pi) 3141592653589793 l004 Pi/tanh(261/31*Pi) 3141592653589793 l004 Pi/tanh(884/105*Pi) 3141592653589793 l004 Pi/tanh(623/74*Pi) 3141592653589793 l004 Pi/tanh(985/117*Pi) 3141592653589793 l004 Pi/tanh(362/43*Pi) 3141592653589793 l004 Pi/tanh(825/98*Pi) 3141592653589793 l004 Pi/tanh(463/55*Pi) 3141592653589793 l004 Pi/tanh(564/67*Pi) 3141592653589793 l004 Pi/tanh(665/79*Pi) 3141592653589793 l004 Pi/tanh(766/91*Pi) 3141592653589793 l004 Pi/tanh(867/103*Pi) 3141592653589793 l004 Pi/tanh(968/115*Pi) 3141592653589793 l004 Pi/tanh(101/12*Pi) 3141592653589793 l004 Pi/tanh(951/113*Pi) 3141592653589793 l004 Pi/tanh(850/101*Pi) 3141592653589793 l004 Pi/tanh(749/89*Pi) 3141592653589793 l004 Pi/tanh(648/77*Pi) 3141592653589793 l004 Pi/tanh(547/65*Pi) 3141592653589793 l004 Pi/tanh(993/118*Pi) 3141592653589793 l004 Pi/tanh(446/53*Pi) 3141592653589793 l004 Pi/tanh(791/94*Pi) 3141592653589793 l004 Pi/tanh(345/41*Pi) 3141592653589793 l004 Pi/tanh(934/111*Pi) 3141592653589793 l004 Pi/tanh(589/70*Pi) 3141592653589793 l004 Pi/tanh(833/99*Pi) 3141592653589793 l004 Pi/tanh(244/29*Pi) 3141592653589793 l004 Pi/tanh(875/104*Pi) 3141592653589793 l004 Pi/tanh(631/75*Pi) 3141592653589793 l004 Pi/tanh(387/46*Pi) 3141592653589793 l004 Pi/tanh(917/109*Pi) 3141592653589793 l004 Pi/tanh(530/63*Pi) 3141592653589793 l004 Pi/tanh(673/80*Pi) 3141592653589793 l004 Pi/tanh(816/97*Pi) 3141592653589793 l004 Pi/tanh(959/114*Pi) 3141592653589793 l004 Pi/tanh(143/17*Pi) 3141592653589793 l004 Pi/tanh(900/107*Pi) 3141592653589793 l004 Pi/tanh(757/90*Pi) 3141592653589793 l004 Pi/tanh(614/73*Pi) 3141592653589793 l004 Pi/tanh(471/56*Pi) 3141592653589793 l004 Pi/tanh(799/95*Pi) 3141592653589793 l004 Pi/tanh(328/39*Pi) 3141592653589793 l004 Pi/tanh(841/100*Pi) 3141592653589793 l004 Pi/tanh(513/61*Pi) 3141592653589793 l004 Pi/tanh(698/83*Pi) 3141592653589793 l004 Pi/tanh(883/105*Pi) 3141592653589793 l004 Pi/tanh(185/22*Pi) 3141592653589793 l004 Pi/tanh(967/115*Pi) 3141592653589793 l004 Pi/tanh(782/93*Pi) 3141592653589793 l004 Pi/tanh(597/71*Pi) 3141592653589793 l004 Pi/tanh(1009/120*Pi) 3141592653589793 l004 Pi/tanh(412/49*Pi) 3141592653589793 l004 Pi/tanh(639/76*Pi) 3141592653589793 l004 Pi/tanh(866/103*Pi) 3141592653589793 l004 Pi/tanh(227/27*Pi) 3141592653589793 l004 Pi/tanh(950/113*Pi) 3141592653589793 l004 Pi/tanh(723/86*Pi) 3141592653589793 l004 Pi/tanh(496/59*Pi) 3141592653589793 l004 Pi/tanh(765/91*Pi) 3141592653589793 l004 Pi/tanh(269/32*Pi) 3141592653589793 l004 Pi/tanh(849/101*Pi) 3141592653589793 l004 Pi/tanh(580/69*Pi) 3141592653589793 l004 Pi/tanh(891/106*Pi) 3141592653589793 l004 Pi/tanh(311/37*Pi) 3141592653589793 l004 Pi/tanh(975/116*Pi) 3141592653589793 l004 Pi/tanh(664/79*Pi) 3141592653589793 l004 Pi/tanh(353/42*Pi) 3141592653589793 l004 Pi/tanh(748/89*Pi) 3141592653589793 l004 Pi/tanh(395/47*Pi) 3141592653589793 l004 Pi/tanh(832/99*Pi) 3141592653589793 l004 Pi/tanh(437/52*Pi) 3141592653589793 l004 Pi/tanh(916/109*Pi) 3141592653589793 l004 Pi/tanh(479/57*Pi) 3141592653589793 l004 Pi/tanh(1000/119*Pi) 3141592653589793 l004 Pi/tanh(521/62*Pi) 3141592653589793 l004 Pi/tanh(563/67*Pi) 3141592653589793 l004 Pi/tanh(605/72*Pi) 3141592653589793 l004 Pi/tanh(647/77*Pi) 3141592653589793 l004 Pi/tanh(689/82*Pi) 3141592653589793 l004 Pi/tanh(731/87*Pi) 3141592653589793 l004 Pi/tanh(773/92*Pi) 3141592653589793 l004 Pi/tanh(815/97*Pi) 3141592653589793 l004 Pi/tanh(857/102*Pi) 3141592653589793 l004 Pi/tanh(899/107*Pi) 3141592653589793 l004 Pi/tanh(941/112*Pi) 3141592653589793 l004 Pi/tanh(983/117*Pi) 3141592653589793 l004 Pi/tanh(42/5*Pi) 3141592653589793 l004 Pi/tanh(991/118*Pi) 3141592653589793 l004 Pi/tanh(949/113*Pi) 3141592653589793 l004 Pi/tanh(907/108*Pi) 3141592653589793 l004 Pi/tanh(865/103*Pi) 3141592653589793 l004 Pi/tanh(823/98*Pi) 3141592653589793 l004 Pi/tanh(781/93*Pi) 3141592653589793 l004 Pi/tanh(739/88*Pi) 3141592653589793 l004 Pi/tanh(697/83*Pi) 3141592653589793 l004 Pi/tanh(655/78*Pi) 3141592653589793 l004 Pi/tanh(613/73*Pi) 3141592653589793 l004 Pi/tanh(571/68*Pi) 3141592653589793 l004 Pi/tanh(529/63*Pi) 3141592653589793 l004 Pi/tanh(487/58*Pi) 3141592653589793 l004 Pi/tanh(932/111*Pi) 3141592653589793 l004 Pi/tanh(445/53*Pi) 3141592653589793 l004 Pi/tanh(848/101*Pi) 3141592653589793 l004 Pi/tanh(403/48*Pi) 3141592653589793 l004 Pi/tanh(764/91*Pi) 3141592653589793 l004 Pi/tanh(361/43*Pi) 3141592653589793 l004 Pi/tanh(680/81*Pi) 3141592653589793 l004 Pi/tanh(999/119*Pi) 3141592653589793 l004 Pi/tanh(319/38*Pi) 3141592653589793 l004 Pi/tanh(915/109*Pi) 3141592653589793 l004 Pi/tanh(596/71*Pi) 3141592653589793 l004 Pi/tanh(873/104*Pi) 3141592653589793 l004 Pi/tanh(277/33*Pi) 3141592653589793 l004 Pi/tanh(789/94*Pi) 3141592653589793 l004 Pi/tanh(512/61*Pi) 3141592653589793 l004 Pi/tanh(747/89*Pi) 3141592653589793 l004 Pi/tanh(982/117*Pi) 3141592653589793 l004 Pi/tanh(235/28*Pi) 3141592653589793 l004 Pi/tanh(898/107*Pi) 3141592653589793 l004 Pi/tanh(663/79*Pi) 3141592653589793 l004 Pi/tanh(428/51*Pi) 3141592653589793 l004 Pi/tanh(621/74*Pi) 3141592653589793 l004 Pi/tanh(814/97*Pi) 3141592653589793 l004 Pi/tanh(1007/120*Pi) 3141592653589793 l004 Pi/tanh(193/23*Pi) 3141592653589793 l004 Pi/tanh(923/110*Pi) 3141592653589793 l004 Pi/tanh(730/87*Pi) 3141592653589793 l004 Pi/tanh(537/64*Pi) 3141592653589793 l004 Pi/tanh(881/105*Pi) 3141592653589793 l004 Pi/tanh(344/41*Pi) 3141592653589793 l004 Pi/tanh(839/100*Pi) 3141592653589793 l004 Pi/tanh(495/59*Pi) 3141592653589793 l004 Pi/tanh(646/77*Pi) 3141592653589793 l004 Pi/tanh(797/95*Pi) 3141592653589793 l004 Pi/tanh(948/113*Pi) 3141592653589793 l004 Pi/tanh(151/18*Pi) 3141592653589793 l004 Pi/tanh(864/103*Pi) 3141592653589793 l004 Pi/tanh(713/85*Pi) 3141592653589793 l004 Pi/tanh(562/67*Pi) 3141592653589793 l004 Pi/tanh(973/116*Pi) 3141592653589793 l004 Pi/tanh(411/49*Pi) 3141592653589793 l004 Pi/tanh(671/80*Pi) 3141592653589793 l004 Pi/tanh(931/111*Pi) 3141592653589793 l004 Pi/tanh(260/31*Pi) 3141592653589793 l004 Pi/tanh(889/106*Pi) 3141592653589793 l004 Pi/tanh(629/75*Pi) 3141592653589793 l004 Pi/tanh(998/119*Pi) 3141592653589793 l004 Pi/tanh(369/44*Pi) 3141592653589793 l004 Pi/tanh(847/101*Pi) 3141592653589793 l004 Pi/tanh(478/57*Pi) 3141592653589793 l004 Pi/tanh(587/70*Pi) 3141592653589793 l004 Pi/tanh(696/83*Pi) 3141592653589793 l004 Pi/tanh(805/96*Pi) 3141592653589793 l004 Pi/tanh(914/109*Pi) 3141592653589793 l004 Pi/tanh(109/13*Pi) 3141592653589793 l004 Pi/tanh(939/112*Pi) 3141592653589793 l004 Pi/tanh(830/99*Pi) 3141592653589793 l004 Pi/tanh(721/86*Pi) 3141592653589793 l004 Pi/tanh(612/73*Pi) 3141592653589793 l004 Pi/tanh(503/60*Pi) 3141592653589793 l004 Pi/tanh(897/107*Pi) 3141592653589793 l004 Pi/tanh(394/47*Pi) 3141592653589793 l004 Pi/tanh(679/81*Pi) 3141592653589793 l004 Pi/tanh(964/115*Pi) 3141592653589793 l004 Pi/tanh(285/34*Pi) 3141592653589793 l004 Pi/tanh(746/89*Pi) 3141592653589793 l004 Pi/tanh(461/55*Pi) 3141592653589793 l004 Pi/tanh(637/76*Pi) 3141592653589793 l004 Pi/tanh(813/97*Pi) 3141592653589793 l004 Pi/tanh(989/118*Pi) 3141592653589793 l004 Pi/tanh(176/21*Pi) 3141592653589793 l004 Pi/tanh(947/113*Pi) 3141592653589793 l004 Pi/tanh(771/92*Pi) 3141592653589793 l004 Pi/tanh(595/71*Pi) 3141592653589793 l004 Pi/tanh(419/50*Pi) 3141592653589793 l004 Pi/tanh(662/79*Pi) 3141592653589793 l004 Pi/tanh(905/108*Pi) 3141592653589793 l004 Pi/tanh(243/29*Pi) 3141592653589793 l004 Pi/tanh(796/95*Pi) 3141592653589793 l004 Pi/tanh(553/66*Pi) 3141592653589793 l004 Pi/tanh(863/103*Pi) 3141592653589793 l004 Pi/tanh(310/37*Pi) 3141592653589793 l004 Pi/tanh(997/119*Pi) 3141592653589793 l004 Pi/tanh(687/82*Pi) 3141592653589793 l004 Pi/tanh(377/45*Pi) 3141592653589793 l004 Pi/tanh(821/98*Pi) 3141592653589793 l004 Pi/tanh(444/53*Pi) 3141592653589793 l004 Pi/tanh(955/114*Pi) 3141592653589793 l004 Pi/tanh(511/61*Pi) 3141592653589793 l004 Pi/tanh(578/69*Pi) 3141592653589793 l004 Pi/tanh(645/77*Pi) 3141592653589793 l004 Pi/tanh(712/85*Pi) 3141592653589793 l004 Pi/tanh(779/93*Pi) 3141592653589793 l004 Pi/tanh(846/101*Pi) 3141592653589793 l004 Pi/tanh(913/109*Pi) 3141592653589793 l004 Pi/tanh(980/117*Pi) 3141592653589793 l004 Pi/tanh(67/8*Pi) 3141592653589793 l004 Pi/tanh(963/115*Pi) 3141592653589793 l004 Pi/tanh(896/107*Pi) 3141592653589793 l004 Pi/tanh(829/99*Pi) 3141592653589793 l004 Pi/tanh(762/91*Pi) 3141592653589793 l004 Pi/tanh(695/83*Pi) 3141592653589793 l004 Pi/tanh(628/75*Pi) 3141592653589793 l004 Pi/tanh(561/67*Pi) 3141592653589793 l004 Pi/tanh(494/59*Pi) 3141592653589793 l004 Pi/tanh(921/110*Pi) 3141592653589793 l004 Pi/tanh(427/51*Pi) 3141592653589793 l004 Pi/tanh(787/94*Pi) 3141592653589793 l004 Pi/tanh(360/43*Pi) 3141592653589793 l004 Pi/tanh(653/78*Pi) 3141592653589793 l004 Pi/tanh(946/113*Pi) 3141592653589793 l004 Pi/tanh(293/35*Pi) 3141592653589793 l004 Pi/tanh(812/97*Pi) 3141592653589793 l004 Pi/tanh(519/62*Pi) 3141592653589793 l004 Pi/tanh(745/89*Pi) 3141592653589793 l004 Pi/tanh(971/116*Pi) 3141592653589793 l004 Pi/tanh(226/27*Pi) 3141592653589793 l004 Pi/tanh(837/100*Pi) 3141592653589793 l004 Pi/tanh(611/73*Pi) 3141592653589793 l004 Pi/tanh(996/119*Pi) 3141592653589793 l004 Pi/tanh(385/46*Pi) 3141592653589793 l004 Pi/tanh(929/111*Pi) 3141592653589793 l004 Pi/tanh(544/65*Pi) 3141592653589793 l004 Pi/tanh(703/84*Pi) 3141592653589793 l004 Pi/tanh(862/103*Pi) 3141592653589793 l004 Pi/tanh(159/19*Pi) 3141592653589793 l004 Pi/tanh(887/106*Pi) 3141592653589793 l004 Pi/tanh(728/87*Pi) 3141592653589793 l004 Pi/tanh(569/68*Pi) 3141592653589793 l004 Pi/tanh(979/117*Pi) 3141592653589793 l004 Pi/tanh(410/49*Pi) 3141592653589793 l004 Pi/tanh(661/79*Pi) 3141592653589793 l004 Pi/tanh(912/109*Pi) 3141592653589793 l004 Pi/tanh(251/30*Pi) 3141592653589793 l004 Pi/tanh(845/101*Pi) 3141592653589793 l004 Pi/tanh(594/71*Pi) 3141592653589793 l004 Pi/tanh(937/112*Pi) 3141592653589793 l004 Pi/tanh(343/41*Pi) 3141592653589793 l004 Pi/tanh(778/93*Pi) 3141592653589793 l004 Pi/tanh(435/52*Pi) 3141592653589793 l004 Pi/tanh(962/115*Pi) 3141592653589793 l004 Pi/tanh(527/63*Pi) 3141592653589793 l004 Pi/tanh(619/74*Pi) 3141592653589793 l004 Pi/tanh(711/85*Pi) 3141592653589793 l004 Pi/tanh(803/96*Pi) 3141592653589793 l004 Pi/tanh(895/107*Pi) 3141592653589793 l004 Pi/tanh(987/118*Pi) 3141592653589793 l004 Pi/tanh(92/11*Pi) 3141592653589793 l004 Pi/tanh(945/113*Pi) 3141592653589793 l004 Pi/tanh(853/102*Pi) 3141592653589793 l004 Pi/tanh(761/91*Pi) 3141592653589793 l004 Pi/tanh(669/80*Pi) 3141592653589793 l004 Pi/tanh(577/69*Pi) 3141592653589793 l004 Pi/tanh(485/58*Pi) 3141592653589793 l004 Pi/tanh(878/105*Pi) 3141592653589793 l004 Pi/tanh(393/47*Pi) 3141592653589793 l004 Pi/tanh(694/83*Pi) 3141592653589793 l004 Pi/tanh(995/119*Pi) 3141592653589793 l004 Pi/tanh(301/36*Pi) 3141592653589793 l004 Pi/tanh(811/97*Pi) 3141592653589793 l004 Pi/tanh(510/61*Pi) 3141592653589793 l004 Pi/tanh(719/86*Pi) 3141592653589793 l004 Pi/tanh(928/111*Pi) 3141592653589793 l004 Pi/tanh(209/25*Pi) 3141592653589793 l004 Pi/tanh(953/114*Pi) 3141592653589793 l004 Pi/tanh(744/89*Pi) 3141592653589793 l004 Pi/tanh(535/64*Pi) 3141592653589793 l004 Pi/tanh(861/103*Pi) 3141592653589793 l004 Pi/tanh(326/39*Pi) 3141592653589793 l004 Pi/tanh(769/92*Pi) 3141592653589793 l004 Pi/tanh(443/53*Pi) 3141592653589793 l004 Pi/tanh(1003/120*Pi) 3141592653589793 l004 Pi/tanh(560/67*Pi) 3141592653589793 l004 Pi/tanh(677/81*Pi) 3141592653589793 l004 Pi/tanh(794/95*Pi) 3141592653589793 l004 Pi/tanh(911/109*Pi) 3141592653589793 l004 Pi/tanh(117/14*Pi) 3141592653589793 l004 Pi/tanh(961/115*Pi) 3141592653589793 l004 Pi/tanh(844/101*Pi) 3141592653589793 l004 Pi/tanh(727/87*Pi) 3141592653589793 l004 Pi/tanh(610/73*Pi) 3141592653589793 l004 Pi/tanh(493/59*Pi) 3141592653589793 l004 Pi/tanh(869/104*Pi) 3141592653589793 l004 Pi/tanh(376/45*Pi) 3141592653589793 l004 Pi/tanh(635/76*Pi) 3141592653589793 l004 Pi/tanh(894/107*Pi) 3141592653589793 l004 Pi/tanh(259/31*Pi) 3141592653589793 l004 Pi/tanh(919/110*Pi) 3141592653589793 l004 Pi/tanh(660/79*Pi) 3141592653589793 l004 Pi/tanh(401/48*Pi) 3141592653589793 l004 Pi/tanh(944/113*Pi) 3141592653589793 l004 Pi/tanh(543/65*Pi) 3141592653589793 l004 Pi/tanh(685/82*Pi) 3141592653589793 l004 Pi/tanh(827/99*Pi) 3141592653589793 l004 Pi/tanh(969/116*Pi) 3141592653589793 l004 Pi/tanh(142/17*Pi) 3141592653589793 l004 Pi/tanh(877/105*Pi) 3141592653589793 l004 Pi/tanh(735/88*Pi) 3141592653589793 l004 Pi/tanh(593/71*Pi) 3141592653589793 l004 Pi/tanh(451/54*Pi) 3141592653589793 l004 Pi/tanh(760/91*Pi) 3141592653589793 l004 Pi/tanh(309/37*Pi) 3141592653589793 l004 Pi/tanh(785/94*Pi) 3141592653589793 l004 Pi/tanh(476/57*Pi) 3141592653589793 l004 Pi/tanh(643/77*Pi) 3141592653589793 l004 Pi/tanh(810/97*Pi) 3141592653589793 l004 Pi/tanh(977/117*Pi) 3141592653589793 l004 Pi/tanh(167/20*Pi) 3141592653589793 l004 Pi/tanh(860/103*Pi) 3141592653589793 l004 Pi/tanh(693/83*Pi) 3141592653589793 l004 Pi/tanh(526/63*Pi) 3141592653589793 l004 Pi/tanh(885/106*Pi) 3141592653589793 l004 Pi/tanh(359/43*Pi) 3141592653589793 l004 Pi/tanh(910/109*Pi) 3141592653589793 l004 Pi/tanh(551/66*Pi) 3141592653589793 l004 Pi/tanh(743/89*Pi) 3141592653589793 l004 Pi/tanh(935/112*Pi) 3141592653589793 l004 Pi/tanh(192/23*Pi) 3141592653589793 l004 Pi/tanh(985/118*Pi) 3141592653589793 l004 Pi/tanh(793/95*Pi) 3141592653589793 l004 Pi/tanh(601/72*Pi) 3141592653589793 l004 Pi/tanh(409/49*Pi) 3141592653589793 l004 Pi/tanh(626/75*Pi) 3141592653589793 l004 Pi/tanh(843/101*Pi) 3141592653589793 l004 Pi/tanh(217/26*Pi) 3141592653589793 l004 Pi/tanh(893/107*Pi) 3141592653589793 l004 Pi/tanh(676/81*Pi) 3141592653589793 l004 Pi/tanh(459/55*Pi) 3141592653589793 l004 Pi/tanh(701/84*Pi) 3141592653589793 l004 Pi/tanh(943/113*Pi) 3141592653589793 l004 Pi/tanh(242/29*Pi) 3141592653589793 l004 Pi/tanh(993/119*Pi) 3141592653589793 l004 Pi/tanh(751/90*Pi) 3141592653589793 l004 Pi/tanh(509/61*Pi) 3141592653589793 l004 Pi/tanh(776/93*Pi) 3141592653589793 l004 Pi/tanh(267/32*Pi) 3141592653589793 l004 Pi/tanh(826/99*Pi) 3141592653589793 l004 Pi/tanh(559/67*Pi) 3141592653589793 l004 Pi/tanh(851/102*Pi) 3141592653589793 l004 Pi/tanh(292/35*Pi) 3141592653589793 l004 Pi/tanh(901/108*Pi) 3141592653589793 l004 Pi/tanh(609/73*Pi) 3141592653589793 l004 Pi/tanh(926/111*Pi) 3141592653589793 l004 Pi/tanh(317/38*Pi) 3141592653589793 l004 Pi/tanh(976/117*Pi) 3141592653589793 l004 Pi/tanh(659/79*Pi) 3141592653589793 l004 Pi/tanh(1001/120*Pi) 3141592653589793 l004 Pi/tanh(342/41*Pi) 3141592653589793 m001 FeigenbaumAlpha^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(709/85*Pi) 3141592653589793 l004 Pi/tanh(367/44*Pi) 3141592653589793 l004 Pi/tanh(759/91*Pi) 3141592653589793 l004 Pi/tanh(392/47*Pi) 3141592653589793 l004 Pi/tanh(809/97*Pi) 3141592653589793 l004 Pi/tanh(417/50*Pi) 3141592653589793 l004 Pi/tanh(859/103*Pi) 3141592653589793 l004 Pi/tanh(442/53*Pi) 3141592653589793 l004 Pi/tanh(909/109*Pi) 3141592653589793 l004 Pi/tanh(467/56*Pi) 3141592653589793 l004 Pi/tanh(959/115*Pi) 3141592653589793 l004 Pi/tanh(492/59*Pi) 3141592653589793 l004 Pi/tanh(517/62*Pi) 3141592653589793 l004 Pi/tanh(542/65*Pi) 3141592653589793 l004 Pi/tanh(567/68*Pi) 3141592653589793 l004 Pi/tanh(592/71*Pi) 3141592653589793 l004 Pi/tanh(617/74*Pi) 3141592653589793 l004 Pi/tanh(642/77*Pi) 3141592653589793 l004 Pi/tanh(667/80*Pi) 3141592653589793 l004 Pi/tanh(692/83*Pi) 3141592653589793 l004 Pi/tanh(717/86*Pi) 3141592653589793 l004 Pi/tanh(742/89*Pi) 3141592653589793 l004 Pi/tanh(767/92*Pi) 3141592653589793 l004 Pi/tanh(792/95*Pi) 3141592653589793 l004 Pi/tanh(817/98*Pi) 3141592653589793 l004 Pi/tanh(842/101*Pi) 3141592653589793 l004 Pi/tanh(867/104*Pi) 3141592653589793 l004 Pi/tanh(892/107*Pi) 3141592653589793 l004 Pi/tanh(917/110*Pi) 3141592653589793 l004 Pi/tanh(942/113*Pi) 3141592653589793 l004 Pi/tanh(967/116*Pi) 3141592653589793 l004 Pi/tanh(992/119*Pi) 3141592653589793 l004 Pi/tanh(25/3*Pi) 3141592653589793 l004 Pi/tanh(983/118*Pi) 3141592653589793 l004 Pi/tanh(958/115*Pi) 3141592653589793 l004 Pi/tanh(933/112*Pi) 3141592653589793 l004 Pi/tanh(908/109*Pi) 3141592653589793 l004 Pi/tanh(883/106*Pi) 3141592653589793 l004 Pi/tanh(858/103*Pi) 3141592653589793 l004 Pi/tanh(833/100*Pi) 3141592653589793 l004 Pi/tanh(808/97*Pi) 3141592653589793 l004 Pi/tanh(783/94*Pi) 3141592653589793 l004 Pi/tanh(758/91*Pi) 3141592653589793 l004 Pi/tanh(733/88*Pi) 3141592653589793 l004 Pi/tanh(708/85*Pi) 3141592653589793 l004 Pi/tanh(683/82*Pi) 3141592653589793 l004 Pi/tanh(658/79*Pi) 3141592653589793 l004 Pi/tanh(633/76*Pi) 3141592653589793 l004 Pi/tanh(608/73*Pi) 3141592653589793 l004 Pi/tanh(583/70*Pi) 3141592653589793 l004 Pi/tanh(558/67*Pi) 3141592653589793 l004 Pi/tanh(533/64*Pi) 3141592653589793 l004 Pi/tanh(508/61*Pi) 3141592653589793 l004 Pi/tanh(991/119*Pi) 3141592653589793 l004 Pi/tanh(483/58*Pi) 3141592653589793 l004 Pi/tanh(941/113*Pi) 3141592653589793 l004 Pi/tanh(458/55*Pi) 3141592653589793 l004 Pi/tanh(891/107*Pi) 3141592653589793 l004 Pi/tanh(433/52*Pi) 3141592653589793 l004 Pi/tanh(841/101*Pi) 3141592653589793 l004 Pi/tanh(408/49*Pi) 3141592653589793 l004 Pi/tanh(791/95*Pi) 3141592653589793 l004 Pi/tanh(383/46*Pi) 3141592653589793 l004 Pi/tanh(741/89*Pi) 3141592653589793 l004 Pi/tanh(358/43*Pi) 3141592653589793 l004 Pi/tanh(691/83*Pi) 3141592653589793 l004 Pi/tanh(333/40*Pi) 3141592653589793 l004 Pi/tanh(974/117*Pi) 3141592653589793 l004 Pi/tanh(641/77*Pi) 3141592653589793 l004 Pi/tanh(949/114*Pi) 3141592653589793 l004 Pi/tanh(308/37*Pi) 3141592653589793 l004 Pi/tanh(899/108*Pi) 3141592653589793 l004 Pi/tanh(591/71*Pi) 3141592653589793 l004 Pi/tanh(874/105*Pi) 3141592653589793 l004 Pi/tanh(283/34*Pi) 3141592653589793 l004 Pi/tanh(824/99*Pi) 3141592653589793 l004 Pi/tanh(541/65*Pi) 3141592653589793 l004 Pi/tanh(799/96*Pi) 3141592653589793 l004 Pi/tanh(258/31*Pi) 3141592653589793 l004 Pi/tanh(749/90*Pi) 3141592653589793 l004 Pi/tanh(491/59*Pi) 3141592653589793 l004 Pi/tanh(724/87*Pi) 3141592653589793 l004 Pi/tanh(957/115*Pi) 3141592653589793 l004 Pi/tanh(233/28*Pi) 3141592653589793 l004 Pi/tanh(907/109*Pi) 3141592653589793 l004 Pi/tanh(674/81*Pi) 3141592653589793 l004 Pi/tanh(441/53*Pi) 3141592653589793 l004 Pi/tanh(649/78*Pi) 3141592653589793 l004 Pi/tanh(857/103*Pi) 3141592653589793 l004 Pi/tanh(208/25*Pi) 3141592653589793 l004 Pi/tanh(807/97*Pi) 3141592653589793 l004 Pi/tanh(599/72*Pi) 3141592653589793 l004 Pi/tanh(990/119*Pi) 3141592653589793 l004 Pi/tanh(391/47*Pi) 3141592653589793 l004 Pi/tanh(965/116*Pi) 3141592653589793 l004 Pi/tanh(574/69*Pi) 3141592653589793 l004 Pi/tanh(757/91*Pi) 3141592653589793 l004 Pi/tanh(940/113*Pi) 3141592653589793 l004 Pi/tanh(183/22*Pi) 3141592653589793 l004 Pi/tanh(890/107*Pi) 3141592653589793 l004 Pi/tanh(707/85*Pi) 3141592653589793 l004 Pi/tanh(524/63*Pi) 3141592653589793 l004 Pi/tanh(865/104*Pi) 3141592653589793 l004 Pi/tanh(341/41*Pi) 3141592653589793 l004 Pi/tanh(840/101*Pi) 3141592653589793 l004 Pi/tanh(499/60*Pi) 3141592653589793 l004 Pi/tanh(657/79*Pi) 3141592653589793 l004 Pi/tanh(815/98*Pi) 3141592653589793 l004 Pi/tanh(973/117*Pi) 3141592653589793 l004 Pi/tanh(158/19*Pi) 3141592653589793 l004 Pi/tanh(923/111*Pi) 3141592653589793 l004 Pi/tanh(765/92*Pi) 3141592653589793 l004 Pi/tanh(607/73*Pi) 3141592653589793 l004 Pi/tanh(449/54*Pi) 3141592653589793 l004 Pi/tanh(740/89*Pi) 3141592653589793 l004 Pi/tanh(291/35*Pi) 3141592653589793 l004 Pi/tanh(715/86*Pi) 3141592653589793 l004 Pi/tanh(424/51*Pi) 3141592653589793 l004 Pi/tanh(981/118*Pi) 3141592653589793 l004 Pi/tanh(557/67*Pi) 3141592653589793 l004 Pi/tanh(690/83*Pi) 3141592653589793 l004 Pi/tanh(823/99*Pi) 3141592653589793 l004 Pi/tanh(956/115*Pi) 3141592653589793 l004 Pi/tanh(133/16*Pi) 3141592653589793 l004 Pi/tanh(906/109*Pi) 3141592653589793 l004 Pi/tanh(773/93*Pi) 3141592653589793 l004 Pi/tanh(640/77*Pi) 3141592653589793 l004 Pi/tanh(507/61*Pi) 3141592653589793 l004 Pi/tanh(881/106*Pi) 3141592653589793 l004 Pi/tanh(374/45*Pi) 3141592653589793 l004 Pi/tanh(989/119*Pi) 3141592653589793 l004 Pi/tanh(615/74*Pi) 3141592653589793 l004 Pi/tanh(856/103*Pi) 3141592653589793 l004 Pi/tanh(241/29*Pi) 3141592653589793 l004 Pi/tanh(831/100*Pi) 3141592653589793 l004 Pi/tanh(590/71*Pi) 3141592653589793 l004 Pi/tanh(939/113*Pi) 3141592653589793 l004 Pi/tanh(349/42*Pi) 3141592653589793 l004 Pi/tanh(806/97*Pi) 3141592653589793 l004 Pi/tanh(457/55*Pi) 3141592653589793 l004 Pi/tanh(565/68*Pi) 3141592653589793 l004 Pi/tanh(673/81*Pi) 3141592653589793 l004 Pi/tanh(781/94*Pi) 3141592653589793 l004 Pi/tanh(889/107*Pi) 3141592653589793 l004 Pi/tanh(997/120*Pi) 3141592653589793 l004 Pi/tanh(108/13*Pi) 3141592653589793 l004 Pi/tanh(947/114*Pi) 3141592653589793 l004 Pi/tanh(839/101*Pi) 3141592653589793 l004 Pi/tanh(731/88*Pi) 3141592653589793 l004 Pi/tanh(623/75*Pi) 3141592653589793 l004 Pi/tanh(515/62*Pi) 3141592653589793 l004 Pi/tanh(922/111*Pi) 3141592653589793 l004 Pi/tanh(407/49*Pi) 3141592653589793 l004 Pi/tanh(706/85*Pi) 3141592653589793 l004 Pi/tanh(299/36*Pi) 3141592653589793 l004 Pi/tanh(789/95*Pi) 3141592653589793 l004 Pi/tanh(490/59*Pi) 3141592653589793 l004 Pi/tanh(681/82*Pi) 3141592653589793 l004 Pi/tanh(872/105*Pi) 3141592653589793 l004 Pi/tanh(191/23*Pi) 3141592653589793 l004 Pi/tanh(847/102*Pi) 3141592653589793 l004 Pi/tanh(656/79*Pi) 3141592653589793 l004 Pi/tanh(465/56*Pi) 3141592653589793 l004 Pi/tanh(739/89*Pi) 3141592653589793 l004 Pi/tanh(274/33*Pi) 3141592653589793 l004 Pi/tanh(905/109*Pi) 3141592653589793 l004 Pi/tanh(631/76*Pi) 3141592653589793 l004 Pi/tanh(988/119*Pi) 3141592653589793 l004 Pi/tanh(357/43*Pi) 3141592653589793 l004 Pi/tanh(797/96*Pi) 3141592653589793 l004 Pi/tanh(440/53*Pi) 3141592653589793 l004 Pi/tanh(963/116*Pi) 3141592653589793 l004 Pi/tanh(523/63*Pi) 3141592653589793 l004 Pi/tanh(606/73*Pi) 3141592653589793 l004 Pi/tanh(689/83*Pi) 3141592653589793 l004 Pi/tanh(772/93*Pi) 3141592653589793 l004 Pi/tanh(855/103*Pi) 3141592653589793 l004 Pi/tanh(938/113*Pi) 3141592653589793 l004 Pi/tanh(83/10*Pi) 3141592653589793 l004 Pi/tanh(971/117*Pi) 3141592653589793 l004 Pi/tanh(888/107*Pi) 3141592653589793 l004 Pi/tanh(805/97*Pi) 3141592653589793 l004 Pi/tanh(722/87*Pi) 3141592653589793 l004 Pi/tanh(639/77*Pi) 3141592653589793 l004 Pi/tanh(556/67*Pi) 3141592653589793 l004 Pi/tanh(473/57*Pi) 3141592653589793 l004 Pi/tanh(863/104*Pi) 3141592653589793 l004 Pi/tanh(390/47*Pi) 3141592653589793 l004 Pi/tanh(697/84*Pi) 3141592653589793 l004 Pi/tanh(307/37*Pi) 3141592653589793 l004 Pi/tanh(838/101*Pi) 3141592653589793 l004 Pi/tanh(531/64*Pi) 3141592653589793 l004 Pi/tanh(755/91*Pi) 3141592653589793 l004 Pi/tanh(979/118*Pi) 3141592653589793 l004 Pi/tanh(224/27*Pi) 3141592653589793 l004 Pi/tanh(813/98*Pi) 3141592653589793 l004 Pi/tanh(589/71*Pi) 3141592653589793 l004 Pi/tanh(954/115*Pi) 3141592653589793 l004 Pi/tanh(365/44*Pi) 3141592653589793 l004 Pi/tanh(871/105*Pi) 3141592653589793 l004 Pi/tanh(506/61*Pi) 3141592653589793 l004 Pi/tanh(647/78*Pi) 3141592653589793 l004 Pi/tanh(788/95*Pi) 3141592653589793 l004 Pi/tanh(929/112*Pi) 3141592653589793 l004 Pi/tanh(141/17*Pi) 3141592653589793 l004 Pi/tanh(904/109*Pi) 3141592653589793 l004 Pi/tanh(763/92*Pi) 3141592653589793 l004 Pi/tanh(622/75*Pi) 3141592653589793 l004 Pi/tanh(481/58*Pi) 3141592653589793 l004 Pi/tanh(821/99*Pi) 3141592653589793 l004 Pi/tanh(340/41*Pi) 3141592653589793 l004 Pi/tanh(879/106*Pi) 3141592653589793 l004 Pi/tanh(539/65*Pi) 3141592653589793 l004 Pi/tanh(738/89*Pi) 3141592653589793 l004 Pi/tanh(937/113*Pi) 3141592653589793 l004 Pi/tanh(199/24*Pi) 3141592653589793 l004 Pi/tanh(854/103*Pi) 3141592653589793 l004 Pi/tanh(655/79*Pi) 3141592653589793 l004 Pi/tanh(456/55*Pi) 3141592653589793 l004 Pi/tanh(713/86*Pi) 3141592653589793 l004 Pi/tanh(970/117*Pi) 3141592653589793 l004 Pi/tanh(257/31*Pi) 3141592653589793 l004 Pi/tanh(829/100*Pi) 3141592653589793 l004 Pi/tanh(572/69*Pi) 3141592653589793 l004 Pi/tanh(887/107*Pi) 3141592653589793 l004 Pi/tanh(315/38*Pi) 3141592653589793 l004 Pi/tanh(688/83*Pi) 3141592653589793 l004 Pi/tanh(373/45*Pi) 3141592653589793 l004 Pi/tanh(804/97*Pi) 3141592653589793 l004 Pi/tanh(431/52*Pi) 3141592653589793 l004 Pi/tanh(920/111*Pi) 3141592653589793 l004 Pi/tanh(489/59*Pi) 3141592653589793 l004 Pi/tanh(547/66*Pi) 3141592653589793 l004 Pi/tanh(605/73*Pi) 3141592653589793 l004 Pi/tanh(663/80*Pi) 3141592653589793 l004 Pi/tanh(721/87*Pi) 3141592653589793 l004 Pi/tanh(779/94*Pi) 3141592653589793 l004 Pi/tanh(837/101*Pi) 3141592653589793 l004 Pi/tanh(895/108*Pi) 3141592653589793 l004 Pi/tanh(953/115*Pi) 3141592653589793 l004 Pi/tanh(58/7*Pi) 3141592653589793 l004 Pi/tanh(961/116*Pi) 3141592653589793 l004 Pi/tanh(903/109*Pi) 3141592653589793 l004 Pi/tanh(845/102*Pi) 3141592653589793 l004 Pi/tanh(787/95*Pi) 3141592653589793 l004 Pi/tanh(729/88*Pi) 3141592653589793 l004 Pi/tanh(671/81*Pi) 3141592653589793 l004 Pi/tanh(613/74*Pi) 3141592653589793 l004 Pi/tanh(555/67*Pi) 3141592653589793 l004 Pi/tanh(497/60*Pi) 3141592653589793 l004 Pi/tanh(936/113*Pi) 3141592653589793 l004 Pi/tanh(439/53*Pi) 3141592653589793 l004 Pi/tanh(820/99*Pi) 3141592653589793 l004 Pi/tanh(381/46*Pi) 3141592653589793 l004 Pi/tanh(704/85*Pi) 3141592653589793 l004 Pi/tanh(323/39*Pi) 3141592653589793 l004 Pi/tanh(911/110*Pi) 3141592653589793 l004 Pi/tanh(588/71*Pi) 3141592653589793 l004 Pi/tanh(853/103*Pi) 3141592653589793 l004 Pi/tanh(265/32*Pi) 3141592653589793 l004 Pi/tanh(737/89*Pi) 3141592653589793 l004 Pi/tanh(472/57*Pi) 3141592653589793 l004 Pi/tanh(679/82*Pi) 3141592653589793 l004 Pi/tanh(886/107*Pi) 3141592653589793 l004 Pi/tanh(207/25*Pi) 3141592653589793 l004 Pi/tanh(977/118*Pi) 3141592653589793 l004 Pi/tanh(770/93*Pi) 3141592653589793 l004 Pi/tanh(563/68*Pi) 3141592653589793 l004 Pi/tanh(919/111*Pi) 3141592653589793 l004 Pi/tanh(356/43*Pi) 3141592653589793 l004 Pi/tanh(861/104*Pi) 3141592653589793 l004 Pi/tanh(505/61*Pi) 3141592653589793 l004 Pi/tanh(654/79*Pi) 3141592653589793 l004 Pi/tanh(803/97*Pi) 3141592653589793 l004 Pi/tanh(952/115*Pi) 3141592653589793 l004 Pi/tanh(149/18*Pi) 3141592653589793 l004 Pi/tanh(985/119*Pi) 3141592653589793 l004 Pi/tanh(836/101*Pi) 3141592653589793 l004 Pi/tanh(687/83*Pi) 3141592653589793 l004 Pi/tanh(538/65*Pi) 3141592653589793 l004 Pi/tanh(927/112*Pi) 3141592653589793 l004 Pi/tanh(389/47*Pi) 3141592653589793 l004 Pi/tanh(629/76*Pi) 3141592653589793 l004 Pi/tanh(869/105*Pi) 3141592653589793 l004 Pi/tanh(240/29*Pi) 3141592653589793 l004 Pi/tanh(811/98*Pi) 3141592653589793 l004 Pi/tanh(571/69*Pi) 3141592653589793 l004 Pi/tanh(902/109*Pi) 3141592653589793 l004 Pi/tanh(331/40*Pi) 3141592653589793 l004 Pi/tanh(753/91*Pi) 3141592653589793 l004 Pi/tanh(422/51*Pi) 3141592653589793 l004 Pi/tanh(935/113*Pi) 3141592653589793 l004 Pi/tanh(513/62*Pi) 3141592653589793 l004 Pi/tanh(604/73*Pi) 3141592653589793 l004 Pi/tanh(695/84*Pi) 3141592653589793 l004 Pi/tanh(786/95*Pi) 3141592653589793 l004 Pi/tanh(877/106*Pi) 3141592653589793 l004 Pi/tanh(968/117*Pi) 3141592653589793 l004 Pi/tanh(91/11*Pi) 3141592653589793 l004 Pi/tanh(943/114*Pi) 3141592653589793 l004 Pi/tanh(852/103*Pi) 3141592653589793 l004 Pi/tanh(761/92*Pi) 3141592653589793 l004 Pi/tanh(670/81*Pi) 3141592653589793 l004 Pi/tanh(579/70*Pi) 3141592653589793 l004 Pi/tanh(488/59*Pi) 3141592653589793 l004 Pi/tanh(885/107*Pi) 3141592653589793 l004 Pi/tanh(397/48*Pi) 3141592653589793 l004 Pi/tanh(703/85*Pi) 3141592653589793 l004 Pi/tanh(306/37*Pi) 3141592653589793 l004 Pi/tanh(827/100*Pi) 3141592653589793 l004 Pi/tanh(521/63*Pi) 3141592653589793 l004 Pi/tanh(736/89*Pi) 3141592653589793 l004 Pi/tanh(951/115*Pi) 3141592653589793 l004 Pi/tanh(215/26*Pi) 3141592653589793 l004 Pi/tanh(984/119*Pi) 3141592653589793 l004 Pi/tanh(769/93*Pi) 3141592653589793 l004 Pi/tanh(554/67*Pi) 3141592653589793 l004 Pi/tanh(893/108*Pi) 3141592653589793 l004 Pi/tanh(339/41*Pi) 3141592653589793 l004 Pi/tanh(802/97*Pi) 3141592653589793 l004 Pi/tanh(463/56*Pi) 3141592653589793 l004 Pi/tanh(587/71*Pi) 3141592653589793 l004 Pi/tanh(711/86*Pi) 3141592653589793 l004 Pi/tanh(835/101*Pi) 3141592653589793 l004 Pi/tanh(959/116*Pi) 3141592653589793 l004 Pi/tanh(124/15*Pi) 3141592653589793 l004 Pi/tanh(901/109*Pi) 3141592653589793 l004 Pi/tanh(777/94*Pi) 3141592653589793 l004 Pi/tanh(653/79*Pi) 3141592653589793 l004 Pi/tanh(529/64*Pi) 3141592653589793 l004 Pi/tanh(934/113*Pi) 3141592653589793 l004 Pi/tanh(405/49*Pi) 3141592653589793 l004 Pi/tanh(686/83*Pi) 3141592653589793 l004 Pi/tanh(967/117*Pi) 3141592653589793 l004 Pi/tanh(281/34*Pi) 3141592653589793 l004 Pi/tanh(719/87*Pi) 3141592653589793 l004 Pi/tanh(438/53*Pi) 3141592653589793 l004 Pi/tanh(595/72*Pi) 3141592653589793 l004 Pi/tanh(752/91*Pi) 3141592653589793 l004 Pi/tanh(909/110*Pi) 3141592653589793 l004 Pi/tanh(157/19*Pi) 3141592653589793 l004 Pi/tanh(975/118*Pi) 3141592653589793 l004 Pi/tanh(818/99*Pi) 3141592653589793 l004 Pi/tanh(661/80*Pi) 3141592653589793 l004 Pi/tanh(504/61*Pi) 3141592653589793 l004 Pi/tanh(851/103*Pi) 3141592653589793 l004 Pi/tanh(347/42*Pi) 3141592653589793 l004 Pi/tanh(884/107*Pi) 3141592653589793 l004 Pi/tanh(537/65*Pi) 3141592653589793 l004 Pi/tanh(727/88*Pi) 3141592653589793 l004 Pi/tanh(917/111*Pi) 3141592653589793 l004 Pi/tanh(190/23*Pi) 3141592653589793 l004 Pi/tanh(983/119*Pi) 3141592653589793 l004 Pi/tanh(793/96*Pi) 3141592653589793 l004 Pi/tanh(603/73*Pi) 3141592653589793 l004 Pi/tanh(413/50*Pi) 3141592653589793 l004 Pi/tanh(636/77*Pi) 3141592653589793 l004 Pi/tanh(859/104*Pi) 3141592653589793 l004 Pi/tanh(223/27*Pi) 3141592653589793 l004 Pi/tanh(925/112*Pi) 3141592653589793 l004 Pi/tanh(702/85*Pi) 3141592653589793 l004 Pi/tanh(479/58*Pi) 3141592653589793 l004 Pi/tanh(735/89*Pi) 3141592653589793 l004 Pi/tanh(991/120*Pi) 3141592653589793 l004 Pi/tanh(256/31*Pi) 3141592653589793 l004 Pi/tanh(801/97*Pi) 3141592653589793 l004 Pi/tanh(545/66*Pi) 3141592653589793 l004 Pi/tanh(834/101*Pi) 3141592653589793 l004 Pi/tanh(289/35*Pi) 3141592653589793 l004 Pi/tanh(900/109*Pi) 3141592653589793 l004 Pi/tanh(611/74*Pi) 3141592653589793 l004 Pi/tanh(933/113*Pi) 3141592653589793 l004 Pi/tanh(322/39*Pi) 3141592653589793 l004 Pi/tanh(677/82*Pi) 3141592653589793 l004 Pi/tanh(355/43*Pi) 3141592653589793 l004 Pi/tanh(743/90*Pi) 3141592653589793 l004 Pi/tanh(388/47*Pi) 3141592653589793 l004 Pi/tanh(809/98*Pi) 3141592653589793 l004 Pi/tanh(421/51*Pi) 3141592653589793 l004 Pi/tanh(875/106*Pi) 3141592653589793 l004 Pi/tanh(454/55*Pi) 3141592653589793 l004 Pi/tanh(941/114*Pi) 3141592653589793 l004 Pi/tanh(487/59*Pi) 3141592653589793 l004 Pi/tanh(520/63*Pi) 3141592653589793 l004 Pi/tanh(553/67*Pi) 3141592653589793 l004 Pi/tanh(586/71*Pi) 3141592653589793 l004 Pi/tanh(619/75*Pi) 3141592653589793 l004 Pi/tanh(652/79*Pi) 3141592653589793 l004 Pi/tanh(685/83*Pi) 3141592653589793 l004 Pi/tanh(718/87*Pi) 3141592653589793 l004 Pi/tanh(751/91*Pi) 3141592653589793 l004 Pi/tanh(784/95*Pi) 3141592653589793 l004 Pi/tanh(817/99*Pi) 3141592653589793 l004 Pi/tanh(850/103*Pi) 3141592653589793 l004 Pi/tanh(883/107*Pi) 3141592653589793 l004 Pi/tanh(916/111*Pi) 3141592653589793 l004 Pi/tanh(949/115*Pi) 3141592653589793 l004 Pi/tanh(982/119*Pi) 3141592653589793 l004 Pi/tanh(33/4*Pi) 3141592653589793 l004 Pi/tanh(965/117*Pi) 3141592653589793 l004 Pi/tanh(932/113*Pi) 3141592653589793 l004 Pi/tanh(899/109*Pi) 3141592653589793 l004 Pi/tanh(866/105*Pi) 3141592653589793 l004 Pi/tanh(833/101*Pi) 3141592653589793 l004 Pi/tanh(800/97*Pi) 3141592653589793 l004 Pi/tanh(767/93*Pi) 3141592653589793 l004 Pi/tanh(734/89*Pi) 3141592653589793 l004 Pi/tanh(701/85*Pi) 3141592653589793 l004 Pi/tanh(668/81*Pi) 3141592653589793 l004 Pi/tanh(635/77*Pi) 3141592653589793 l004 Pi/tanh(602/73*Pi) 3141592653589793 l004 Pi/tanh(569/69*Pi) 3141592653589793 l004 Pi/tanh(536/65*Pi) 3141592653589793 l004 Pi/tanh(503/61*Pi) 3141592653589793 l004 Pi/tanh(973/118*Pi) 3141592653589793 l004 Pi/tanh(470/57*Pi) 3141592653589793 l004 Pi/tanh(907/110*Pi) 3141592653589793 l004 Pi/tanh(437/53*Pi) 3141592653589793 l004 Pi/tanh(841/102*Pi) 3141592653589793 l004 Pi/tanh(404/49*Pi) 3141592653589793 l004 Pi/tanh(775/94*Pi) 3141592653589793 l004 Pi/tanh(371/45*Pi) 3141592653589793 l004 Pi/tanh(709/86*Pi) 3141592653589793 l004 Pi/tanh(338/41*Pi) 3141592653589793 l004 Pi/tanh(981/119*Pi) 3141592653589793 l004 Pi/tanh(643/78*Pi) 3141592653589793 l004 Pi/tanh(948/115*Pi) 3141592653589793 l004 Pi/tanh(305/37*Pi) 3141592653589793 l004 Pi/tanh(882/107*Pi) 3141592653589793 l004 Pi/tanh(577/70*Pi) 3141592653589793 l004 Pi/tanh(849/103*Pi) 3141592653589793 l004 Pi/tanh(272/33*Pi) 3141592653589793 l004 Pi/tanh(783/95*Pi) 3141592653589793 l004 Pi/tanh(511/62*Pi) 3141592653589793 l004 Pi/tanh(750/91*Pi) 3141592653589793 l004 Pi/tanh(989/120*Pi) 3141592653589793 l004 Pi/tanh(239/29*Pi) 3141592653589793 l004 Pi/tanh(923/112*Pi) 3141592653589793 l004 Pi/tanh(684/83*Pi) 3141592653589793 l004 Pi/tanh(445/54*Pi) 3141592653589793 l004 Pi/tanh(651/79*Pi) 3141592653589793 l004 Pi/tanh(857/104*Pi) 3141592653589793 l004 Pi/tanh(206/25*Pi) 3141592653589793 l004 Pi/tanh(791/96*Pi) 3141592653589793 l004 Pi/tanh(585/71*Pi) 3141592653589793 l004 Pi/tanh(964/117*Pi) 3141592653589793 l004 Pi/tanh(379/46*Pi) 3141592653589793 l004 Pi/tanh(931/113*Pi) 3141592653589793 l004 Pi/tanh(552/67*Pi) 3141592653589793 l004 Pi/tanh(725/88*Pi) 3141592653589793 l004 Pi/tanh(898/109*Pi) 3141592653589793 l004 Pi/tanh(173/21*Pi) 3141592653589793 l004 Pi/tanh(832/101*Pi) 3141592653589793 l004 Pi/tanh(659/80*Pi) 3141592653589793 l004 Pi/tanh(486/59*Pi) 3141592653589793 l004 Pi/tanh(799/97*Pi) 3141592653589793 l004 Pi/tanh(313/38*Pi) 3141592653589793 l004 Pi/tanh(766/93*Pi) 3141592653589793 l004 Pi/tanh(453/55*Pi) 3141592653589793 l004 Pi/tanh(593/72*Pi) 3141592653589793 l004 Pi/tanh(733/89*Pi) 3141592653589793 l004 Pi/tanh(873/106*Pi) 3141592653589793 l004 Pi/tanh(140/17*Pi) 3141592653589793 l004 Pi/tanh(947/115*Pi) 3141592653589793 l004 Pi/tanh(807/98*Pi) 3141592653589793 l004 Pi/tanh(667/81*Pi) 3141592653589793 l004 Pi/tanh(527/64*Pi) 3141592653589793 l004 Pi/tanh(914/111*Pi) 3141592653589793 l004 Pi/tanh(387/47*Pi) 3141592653589793 l004 Pi/tanh(634/77*Pi) 3141592653589793 l004 Pi/tanh(881/107*Pi) 3141592653589793 l004 Pi/tanh(247/30*Pi) 3141592653589793 l004 Pi/tanh(848/103*Pi) 3141592653589793 l004 Pi/tanh(601/73*Pi) 3141592653589793 l004 Pi/tanh(955/116*Pi) 3141592653589793 l004 Pi/tanh(354/43*Pi) 3141592653589793 l004 Pi/tanh(815/99*Pi) 3141592653589793 l004 Pi/tanh(461/56*Pi) 3141592653589793 l004 Pi/tanh(568/69*Pi) 3141592653589793 l004 Pi/tanh(675/82*Pi) 3141592653589793 l004 Pi/tanh(782/95*Pi) 3141592653589793 l004 Pi/tanh(889/108*Pi) 3141592653589793 l004 Pi/tanh(107/13*Pi) 3141592653589793 l004 Pi/tanh(930/113*Pi) 3141592653589793 l004 Pi/tanh(823/100*Pi) 3141592653589793 l004 Pi/tanh(716/87*Pi) 3141592653589793 l004 Pi/tanh(609/74*Pi) 3141592653589793 l004 Pi/tanh(502/61*Pi) 3141592653589793 l004 Pi/tanh(897/109*Pi) 3141592653589793 l004 Pi/tanh(395/48*Pi) 3141592653589793 l004 Pi/tanh(683/83*Pi) 3141592653589793 l004 Pi/tanh(971/118*Pi) 3141592653589793 l004 Pi/tanh(288/35*Pi) 3141592653589793 l004 Pi/tanh(757/92*Pi) 3141592653589793 l004 Pi/tanh(469/57*Pi) 3141592653589793 l004 Pi/tanh(650/79*Pi) 3141592653589793 l004 Pi/tanh(831/101*Pi) 3141592653589793 l004 Pi/tanh(181/22*Pi) 3141592653589793 l004 Pi/tanh(979/119*Pi) 3141592653589793 l004 Pi/tanh(798/97*Pi) 3141592653589793 l004 Pi/tanh(617/75*Pi) 3141592653589793 l004 Pi/tanh(436/53*Pi) 3141592653589793 l004 Pi/tanh(691/84*Pi) 3141592653589793 l004 Pi/tanh(946/115*Pi) 3141592653589793 l004 Pi/tanh(255/31*Pi) 3141592653589793 l004 Pi/tanh(839/102*Pi) 3141592653589793 l004 Pi/tanh(584/71*Pi) 3141592653589793 l004 Pi/tanh(913/111*Pi) 3141592653589793 l004 Pi/tanh(329/40*Pi) 3141592653589793 l004 Pi/tanh(732/89*Pi) 3141592653589793 l004 Pi/tanh(403/49*Pi) 3141592653589793 l004 Pi/tanh(880/107*Pi) 3141592653589793 l004 Pi/tanh(477/58*Pi) 3141592653589793 l004 Pi/tanh(551/67*Pi) 3141592653589793 l004 Pi/tanh(625/76*Pi) 3141592653589793 l004 Pi/tanh(699/85*Pi) 3141592653589793 l004 Pi/tanh(773/94*Pi) 3141592653589793 l004 Pi/tanh(847/103*Pi) 3141592653589793 l004 Pi/tanh(921/112*Pi) 3141592653589793 l004 Pi/tanh(74/9*Pi) 3141592653589793 l004 Pi/tanh(929/113*Pi) 3141592653589793 l004 Pi/tanh(855/104*Pi) 3141592653589793 l004 Pi/tanh(781/95*Pi) 3141592653589793 l004 Pi/tanh(707/86*Pi) 3141592653589793 l004 Pi/tanh(633/77*Pi) 3141592653589793 l004 Pi/tanh(559/68*Pi) 3141592653589793 l004 Pi/tanh(485/59*Pi) 3141592653589793 l004 Pi/tanh(896/109*Pi) 3141592653589793 l004 Pi/tanh(411/50*Pi) 3141592653589793 l004 Pi/tanh(748/91*Pi) 3141592653589793 l004 Pi/tanh(337/41*Pi) 3141592653589793 l004 Pi/tanh(937/114*Pi) 3141592653589793 l004 Pi/tanh(600/73*Pi) 3141592653589793 l004 Pi/tanh(863/105*Pi) 3141592653589793 l004 Pi/tanh(263/32*Pi) 3141592653589793 l004 Pi/tanh(978/119*Pi) 3141592653589793 l004 Pi/tanh(715/87*Pi) 3141592653589793 l004 Pi/tanh(452/55*Pi) 3141592653589793 l004 Pi/tanh(641/78*Pi) 3141592653589793 l004 Pi/tanh(830/101*Pi) 3141592653589793 l004 Pi/tanh(189/23*Pi) 3141592653589793 l004 Pi/tanh(871/106*Pi) 3141592653589793 l004 Pi/tanh(682/83*Pi) 3141592653589793 l004 Pi/tanh(493/60*Pi) 3141592653589793 l004 Pi/tanh(797/97*Pi) 3141592653589793 l004 Pi/tanh(304/37*Pi) 3141592653589793 l004 Pi/tanh(723/88*Pi) 3141592653589793 l004 Pi/tanh(419/51*Pi) 3141592653589793 l004 Pi/tanh(953/116*Pi) 3141592653589793 l004 Pi/tanh(534/65*Pi) 3141592653589793 l004 Pi/tanh(649/79*Pi) 3141592653589793 l004 Pi/tanh(764/93*Pi) 3141592653589793 l004 Pi/tanh(879/107*Pi) 3141592653589793 l004 Pi/tanh(115/14*Pi) 3141592653589793 l004 Pi/tanh(961/117*Pi) 3141592653589793 l004 Pi/tanh(846/103*Pi) 3141592653589793 l004 Pi/tanh(731/89*Pi) 3141592653589793 l004 Pi/tanh(616/75*Pi) 3141592653589793 l004 Pi/tanh(501/61*Pi) 3141592653589793 l004 Pi/tanh(887/108*Pi) 3141592653589793 l004 Pi/tanh(386/47*Pi) 3141592653589793 l004 Pi/tanh(657/80*Pi) 3141592653589793 l004 Pi/tanh(928/113*Pi) 3141592653589793 l004 Pi/tanh(271/33*Pi) 3141592653589793 l004 Pi/tanh(969/118*Pi) 3141592653589793 l004 Pi/tanh(698/85*Pi) 3141592653589793 l004 Pi/tanh(427/52*Pi) 3141592653589793 l004 Pi/tanh(583/71*Pi) 3141592653589793 l004 Pi/tanh(739/90*Pi) 3141592653589793 l004 Pi/tanh(895/109*Pi) 3141592653589793 l004 Pi/tanh(156/19*Pi) 3141592653589793 l004 Pi/tanh(977/119*Pi) 3141592653589793 l004 Pi/tanh(821/100*Pi) 3141592653589793 l004 Pi/tanh(665/81*Pi) 3141592653589793 l004 Pi/tanh(509/62*Pi) 3141592653589793 l004 Pi/tanh(862/105*Pi) 3141592653589793 l004 Pi/tanh(353/43*Pi) 3141592653589793 l004 Pi/tanh(903/110*Pi) 3141592653589793 l004 Pi/tanh(550/67*Pi) 3141592653589793 l004 Pi/tanh(747/91*Pi) 3141592653589793 l004 Pi/tanh(944/115*Pi) 3141592653589793 l004 Pi/tanh(197/24*Pi) 3141592653589793 l004 Pi/tanh(829/101*Pi) 3141592653589793 l004 Pi/tanh(632/77*Pi) 3141592653589793 l004 Pi/tanh(435/53*Pi) 3141592653589793 l004 Pi/tanh(673/82*Pi) 3141592653589793 l004 Pi/tanh(911/111*Pi) 3141592653589793 l004 Pi/tanh(238/29*Pi) 3141592653589793 l004 Pi/tanh(755/92*Pi) 3141592653589793 l004 Pi/tanh(517/63*Pi) 3141592653589793 l004 Pi/tanh(796/97*Pi) 3141592653589793 l004 Pi/tanh(279/34*Pi) 3141592653589793 l004 Pi/tanh(878/107*Pi) 3141592653589793 l004 Pi/tanh(599/73*Pi) 3141592653589793 l004 Pi/tanh(919/112*Pi) 3141592653589793 l004 Pi/tanh(320/39*Pi) 3141592653589793 l004 Pi/tanh(681/83*Pi) 3141592653589793 l004 Pi/tanh(361/44*Pi) 3141592653589793 l004 Pi/tanh(763/93*Pi) 3141592653589793 l004 Pi/tanh(402/49*Pi) 3141592653589793 l004 Pi/tanh(845/103*Pi) 3141592653589793 l004 Pi/tanh(443/54*Pi) 3141592653589793 l004 Pi/tanh(927/113*Pi) 3141592653589793 l004 Pi/tanh(484/59*Pi) 3141592653589793 l004 Pi/tanh(525/64*Pi) 3141592653589793 l004 Pi/tanh(566/69*Pi) 3141592653589793 l004 Pi/tanh(607/74*Pi) 3141592653589793 l004 Pi/tanh(648/79*Pi) 3141592653589793 l004 Pi/tanh(689/84*Pi) 3141592653589793 l004 Pi/tanh(730/89*Pi) 3141592653589793 l004 Pi/tanh(771/94*Pi) 3141592653589793 l004 Pi/tanh(812/99*Pi) 3141592653589793 l004 Pi/tanh(853/104*Pi) 3141592653589793 l004 Pi/tanh(894/109*Pi) 3141592653589793 l004 Pi/tanh(935/114*Pi) 3141592653589793 l004 Pi/tanh(976/119*Pi) 3141592653589793 l004 Pi/tanh(41/5*Pi) 3141592653589793 l004 Pi/tanh(951/116*Pi) 3141592653589793 l004 Pi/tanh(910/111*Pi) 3141592653589793 l004 Pi/tanh(869/106*Pi) 3141592653589793 l004 Pi/tanh(828/101*Pi) 3141592653589793 l004 Pi/tanh(787/96*Pi) 3141592653589793 l004 Pi/tanh(746/91*Pi) 3141592653589793 l004 Pi/tanh(705/86*Pi) 3141592653589793 l004 Pi/tanh(664/81*Pi) 3141592653589793 l004 Pi/tanh(623/76*Pi) 3141592653589793 l004 Pi/tanh(582/71*Pi) 3141592653589793 l004 Pi/tanh(541/66*Pi) 3141592653589793 l004 Pi/tanh(500/61*Pi) 3141592653589793 l004 Pi/tanh(959/117*Pi) 3141592653589793 l004 Pi/tanh(459/56*Pi) 3141592653589793 l004 Pi/tanh(877/107*Pi) 3141592653589793 l004 Pi/tanh(418/51*Pi) 3141592653589793 l004 Pi/tanh(795/97*Pi) 3141592653589793 l004 Pi/tanh(377/46*Pi) 3141592653589793 l004 Pi/tanh(713/87*Pi) 3141592653589793 l004 Pi/tanh(336/41*Pi) 3141592653589793 l004 Pi/tanh(967/118*Pi) 3141592653589793 l004 Pi/tanh(631/77*Pi) 3141592653589793 l004 Pi/tanh(926/113*Pi) 3141592653589793 l004 Pi/tanh(295/36*Pi) 3141592653589793 l004 Pi/tanh(844/103*Pi) 3141592653589793 l004 Pi/tanh(549/67*Pi) 3141592653589793 l004 Pi/tanh(803/98*Pi) 3141592653589793 l004 Pi/tanh(254/31*Pi) 3141592653589793 l004 Pi/tanh(975/119*Pi) 3141592653589793 l004 Pi/tanh(721/88*Pi) 3141592653589793 l004 Pi/tanh(467/57*Pi) 3141592653589793 l004 Pi/tanh(680/83*Pi) 3141592653589793 l004 Pi/tanh(893/109*Pi) 3141592653589793 l004 Pi/tanh(213/26*Pi) 3141592653589793 l004 Pi/tanh(811/99*Pi) 3141592653589793 l004 Pi/tanh(598/73*Pi) 3141592653589793 l004 Pi/tanh(983/120*Pi) 3141592653589793 l004 Pi/tanh(385/47*Pi) 3141592653589793 l004 Pi/tanh(942/115*Pi) 3141592653589793 l004 Pi/tanh(557/68*Pi) 3141592653589793 l004 Pi/tanh(729/89*Pi) 3141592653589793 l004 Pi/tanh(901/110*Pi) 3141592653589793 l004 Pi/tanh(172/21*Pi) 3141592653589793 l004 Pi/tanh(819/100*Pi) 3141592653589793 l004 Pi/tanh(647/79*Pi) 3141592653589793 l004 Pi/tanh(475/58*Pi) 3141592653589793 l004 Pi/tanh(778/95*Pi) 3141592653589793 l004 Pi/tanh(303/37*Pi) 3141592653589793 l004 Pi/tanh(737/90*Pi) 3141592653589793 l004 Pi/tanh(434/53*Pi) 3141592653589793 l004 Pi/tanh(565/69*Pi) 3141592653589793 l004 Pi/tanh(696/85*Pi) 3141592653589793 l004 Pi/tanh(827/101*Pi) 3141592653589793 l004 Pi/tanh(958/117*Pi) 3141592653589793 l004 Pi/tanh(131/16*Pi) 3141592653589793 l004 Pi/tanh(876/107*Pi) 3141592653589793 l004 Pi/tanh(745/91*Pi) 3141592653589793 l004 Pi/tanh(614/75*Pi) 3141592653589793 l004 Pi/tanh(483/59*Pi) 3141592653589793 l004 Pi/tanh(835/102*Pi) 3141592653589793 l004 Pi/tanh(352/43*Pi) 3141592653589793 l004 Pi/tanh(925/113*Pi) 3141592653589793 l004 Pi/tanh(573/70*Pi) 3141592653589793 l004 Pi/tanh(794/97*Pi) 3141592653589793 l004 Pi/tanh(221/27*Pi) 3141592653589793 l004 Pi/tanh(974/119*Pi) 3141592653589793 l004 Pi/tanh(753/92*Pi) 3141592653589793 l004 Pi/tanh(532/65*Pi) 3141592653589793 l004 Pi/tanh(843/103*Pi) 3141592653589793 l004 Pi/tanh(311/38*Pi) 3141592653589793 l004 Pi/tanh(712/87*Pi) 3141592653589793 l004 Pi/tanh(401/49*Pi) 3141592653589793 l004 Pi/tanh(892/109*Pi) 3141592653589793 l004 Pi/tanh(491/60*Pi) 3141592653589793 l004 Pi/tanh(581/71*Pi) 3141592653589793 l004 Pi/tanh(671/82*Pi) 3141592653589793 l004 Pi/tanh(761/93*Pi) 3141592653589793 l004 Pi/tanh(851/104*Pi) 3141592653589793 l004 Pi/tanh(941/115*Pi) 3141592653589793 l004 Pi/tanh(90/11*Pi) 3141592653589793 l004 Pi/tanh(949/116*Pi) 3141592653589793 l004 Pi/tanh(859/105*Pi) 3141592653589793 l004 Pi/tanh(769/94*Pi) 3141592653589793 l004 Pi/tanh(679/83*Pi) 3141592653589793 l004 Pi/tanh(589/72*Pi) 3141592653589793 l004 Pi/tanh(499/61*Pi) 3141592653589793 l004 Pi/tanh(908/111*Pi) 3141592653589793 l004 Pi/tanh(409/50*Pi) 3141592653589793 l004 Pi/tanh(728/89*Pi) 3141592653589793 l004 Pi/tanh(319/39*Pi) 3141592653589793 l004 Pi/tanh(867/106*Pi) 3141592653589793 l004 Pi/tanh(548/67*Pi) 3141592653589793 l004 Pi/tanh(777/95*Pi) 3141592653589793 l004 Pi/tanh(229/28*Pi) 3141592653589793 l004 Pi/tanh(826/101*Pi) 3141592653589793 l004 Pi/tanh(597/73*Pi) 3141592653589793 l004 Pi/tanh(965/118*Pi) 3141592653589793 l004 Pi/tanh(368/45*Pi) 3141592653589793 l004 Pi/tanh(875/107*Pi) 3141592653589793 l004 Pi/tanh(507/62*Pi) 3141592653589793 l004 Pi/tanh(646/79*Pi) 3141592653589793 l004 Pi/tanh(785/96*Pi) 3141592653589793 l004 Pi/tanh(924/113*Pi) 3141592653589793 l004 Pi/tanh(139/17*Pi) 3141592653589793 l004 Pi/tanh(883/108*Pi) 3141592653589793 l004 Pi/tanh(744/91*Pi) 3141592653589793 l004 Pi/tanh(605/74*Pi) 3141592653589793 l004 Pi/tanh(466/57*Pi) 3141592653589793 l004 Pi/tanh(793/97*Pi) 3141592653589793 l004 Pi/tanh(327/40*Pi) 3141592653589793 l004 Pi/tanh(842/103*Pi) 3141592653589793 l004 Pi/tanh(515/63*Pi) 3141592653589793 l004 Pi/tanh(703/86*Pi) 3141592653589793 l004 Pi/tanh(891/109*Pi) 3141592653589793 l004 Pi/tanh(188/23*Pi) 3141592653589793 l004 Pi/tanh(801/98*Pi) 3141592653589793 l004 Pi/tanh(613/75*Pi) 3141592653589793 l004 Pi/tanh(425/52*Pi) 3141592653589793 l004 Pi/tanh(662/81*Pi) 3141592653589793 l004 Pi/tanh(899/110*Pi) 3141592653589793 l004 Pi/tanh(237/29*Pi) 3141592653589793 l004 Pi/tanh(760/93*Pi) 3141592653589793 l004 Pi/tanh(523/64*Pi) 3141592653589793 l004 Pi/tanh(809/99*Pi) 3141592653589793 l004 Pi/tanh(286/35*Pi) 3141592653589793 l004 Pi/tanh(907/111*Pi) 3141592653589793 l004 Pi/tanh(621/76*Pi) 3141592653589793 l004 Pi/tanh(956/117*Pi) 3141592653589793 l004 Pi/tanh(335/41*Pi) 3141592653589793 l004 Pi/tanh(719/88*Pi) 3141592653589793 l004 Pi/tanh(384/47*Pi) 3141592653589793 l004 Pi/tanh(817/100*Pi) 3141592653589793 l004 Pi/tanh(433/53*Pi) 3141592653589793 l004 Pi/tanh(915/112*Pi) 3141592653589793 l004 Pi/tanh(482/59*Pi) 3141592653589793 l004 Pi/tanh(531/65*Pi) 3141592653589793 l004 Pi/tanh(580/71*Pi) 3141592653589793 l004 Pi/tanh(629/77*Pi) 3141592653589793 l004 Pi/tanh(678/83*Pi) 3141592653589793 l004 Pi/tanh(727/89*Pi) 3141592653589793 l004 Pi/tanh(776/95*Pi) 3141592653589793 l004 Pi/tanh(825/101*Pi) 3141592653589793 l004 Pi/tanh(874/107*Pi) 3141592653589793 l004 Pi/tanh(923/113*Pi) 3141592653589793 l004 Pi/tanh(972/119*Pi) 3141592653589793 l004 Pi/tanh(49/6*Pi) 3141592653589793 l004 Pi/tanh(939/115*Pi) 3141592653589793 l004 Pi/tanh(890/109*Pi) 3141592653589793 l004 Pi/tanh(841/103*Pi) 3141592653589793 l004 Pi/tanh(792/97*Pi) 3141592653589793 l004 Pi/tanh(743/91*Pi) 3141592653589793 l004 Pi/tanh(694/85*Pi) 3141592653589793 l004 Pi/tanh(645/79*Pi) 3141592653589793 l004 Pi/tanh(596/73*Pi) 3141592653589793 l004 Pi/tanh(547/67*Pi) 3141592653589793 l004 Pi/tanh(498/61*Pi) 3141592653589793 l004 Pi/tanh(947/116*Pi) 3141592653589793 l004 Pi/tanh(449/55*Pi) 3141592653589793 l004 Pi/tanh(849/104*Pi) 3141592653589793 l004 Pi/tanh(400/49*Pi) 3141592653589793 l004 Pi/tanh(751/92*Pi) 3141592653589793 l004 Pi/tanh(351/43*Pi) 3141592653589793 l004 Pi/tanh(653/80*Pi) 3141592653589793 l004 Pi/tanh(955/117*Pi) 3141592653589793 l004 Pi/tanh(302/37*Pi) 3141592653589793 l004 Pi/tanh(857/105*Pi) 3141592653589793 l004 Pi/tanh(555/68*Pi) 3141592653589793 l004 Pi/tanh(808/99*Pi) 3141592653589793 l004 Pi/tanh(253/31*Pi) 3141592653589793 l004 Pi/tanh(963/118*Pi) 3141592653589793 l004 Pi/tanh(710/87*Pi) 3141592653589793 l004 Pi/tanh(457/56*Pi) 3141592653589793 l004 Pi/tanh(661/81*Pi) 3141592653589793 l004 Pi/tanh(865/106*Pi) 3141592653589793 l004 Pi/tanh(204/25*Pi) 3141592653589793 l004 Pi/tanh(971/119*Pi) 3141592653589793 l004 Pi/tanh(767/94*Pi) 3141592653589793 l004 Pi/tanh(563/69*Pi) 3141592653589793 l004 Pi/tanh(922/113*Pi) 3141592653589793 l004 Pi/tanh(359/44*Pi) 3141592653589793 l004 Pi/tanh(873/107*Pi) 3141592653589793 l004 Pi/tanh(514/63*Pi) 3141592653589793 l004 Pi/tanh(669/82*Pi) 3141592653589793 l004 Pi/tanh(824/101*Pi) 3141592653589793 l004 Pi/tanh(979/120*Pi) 3141592653589793 l004 Pi/tanh(155/19*Pi) 3141592653589793 l004 Pi/tanh(881/108*Pi) 3141592653589793 l004 Pi/tanh(726/89*Pi) 3141592653589793 l004 Pi/tanh(571/70*Pi) 3141592653589793 l004 Pi/tanh(416/51*Pi) 3141592653589793 l004 Pi/tanh(677/83*Pi) 3141592653589793 l004 Pi/tanh(938/115*Pi) 3141592653589793 l004 Pi/tanh(261/32*Pi) 3141592653589793 l004 Pi/tanh(889/109*Pi) 3141592653589793 l004 Pi/tanh(628/77*Pi) 3141592653589793 l004 Pi/tanh(367/45*Pi) 3141592653589793 l004 Pi/tanh(840/103*Pi) 3141592653589793 l004 Pi/tanh(473/58*Pi) 3141592653589793 l004 Pi/tanh(579/71*Pi) 3141592653589793 l004 Pi/tanh(685/84*Pi) 3141592653589793 l004 Pi/tanh(791/97*Pi) 3141592653589793 l004 Pi/tanh(897/110*Pi) 3141592653589793 l004 Pi/tanh(106/13*Pi) 3141592653589793 l004 Pi/tanh(905/111*Pi) 3141592653589793 l004 Pi/tanh(799/98*Pi) 3141592653589793 l004 Pi/tanh(693/85*Pi) 3141592653589793 l004 Pi/tanh(587/72*Pi) 3141592653589793 l004 Pi/tanh(481/59*Pi) 3141592653589793 l004 Pi/tanh(856/105*Pi) 3141592653589793 l004 Pi/tanh(375/46*Pi) 3141592653589793 l004 Pi/tanh(644/79*Pi) 3141592653589793 l004 Pi/tanh(913/112*Pi) 3141592653589793 l004 Pi/tanh(269/33*Pi) 3141592653589793 l004 Pi/tanh(970/119*Pi) 3141592653589793 l004 Pi/tanh(701/86*Pi) 3141592653589793 l004 Pi/tanh(432/53*Pi) 3141592653589793 l004 Pi/tanh(595/73*Pi) 3141592653589793 l004 Pi/tanh(758/93*Pi) 3141592653589793 l004 Pi/tanh(921/113*Pi) 3141592653589793 l004 Pi/tanh(163/20*Pi) 3141592653589793 l004 Pi/tanh(872/107*Pi) 3141592653589793 l004 Pi/tanh(709/87*Pi) 3141592653589793 l004 Pi/tanh(546/67*Pi) 3141592653589793 l004 Pi/tanh(929/114*Pi) 3141592653589793 l004 Pi/tanh(383/47*Pi) 3141592653589793 l004 Pi/tanh(603/74*Pi) 3141592653589793 l004 Pi/tanh(823/101*Pi) 3141592653589793 l004 Pi/tanh(220/27*Pi) 3141592653589793 l004 Pi/tanh(937/115*Pi) 3141592653589793 l004 Pi/tanh(717/88*Pi) 3141592653589793 l004 Pi/tanh(497/61*Pi) 3141592653589793 l004 Pi/tanh(774/95*Pi) 3141592653589793 l004 Pi/tanh(277/34*Pi) 3141592653589793 l004 Pi/tanh(888/109*Pi) 3141592653589793 l004 Pi/tanh(611/75*Pi) 3141592653589793 l004 Pi/tanh(945/116*Pi) 3141592653589793 l004 Pi/tanh(334/41*Pi) 3141592653589793 l004 Pi/tanh(725/89*Pi) 3141592653589793 l004 Pi/tanh(391/48*Pi) 3141592653589793 l004 Pi/tanh(839/103*Pi) 3141592653589793 l004 Pi/tanh(448/55*Pi) 3141592653589793 l004 Pi/tanh(953/117*Pi) 3141592653589793 l004 Pi/tanh(505/62*Pi) 3141592653589793 l004 Pi/tanh(562/69*Pi) 3141592653589793 l004 Pi/tanh(619/76*Pi) 3141592653589793 l004 Pi/tanh(676/83*Pi) 3141592653589793 l004 Pi/tanh(733/90*Pi) 3141592653589793 l004 Pi/tanh(790/97*Pi) 3141592653589793 l004 Pi/tanh(847/104*Pi) 3141592653589793 l004 Pi/tanh(904/111*Pi) 3141592653589793 l004 Pi/tanh(961/118*Pi) 3141592653589793 l004 Pi/tanh(57/7*Pi) 3141592653589793 l004 Pi/tanh(977/120*Pi) 3141592653589793 l004 Pi/tanh(920/113*Pi) 3141592653589793 l004 Pi/tanh(863/106*Pi) 3141592653589793 l004 Pi/tanh(806/99*Pi) 3141592653589793 l004 Pi/tanh(749/92*Pi) 3141592653589793 l004 Pi/tanh(692/85*Pi) 3141592653589793 l004 Pi/tanh(635/78*Pi) 3141592653589793 l004 Pi/tanh(578/71*Pi) 3141592653589793 l004 Pi/tanh(521/64*Pi) 3141592653589793 l004 Pi/tanh(464/57*Pi) 3141592653589793 l004 Pi/tanh(871/107*Pi) 3141592653589793 l004 Pi/tanh(407/50*Pi) 3141592653589793 l004 Pi/tanh(757/93*Pi) 3141592653589793 l004 Pi/tanh(350/43*Pi) 3141592653589793 l004 Pi/tanh(643/79*Pi) 3141592653589793 l004 Pi/tanh(936/115*Pi) 3141592653589793 l004 Pi/tanh(293/36*Pi) 3141592653589793 l004 Pi/tanh(822/101*Pi) 3141592653589793 l004 Pi/tanh(529/65*Pi) 3141592653589793 l004 Pi/tanh(765/94*Pi) 3141592653589793 l004 Pi/tanh(236/29*Pi) 3141592653589793 l004 Pi/tanh(887/109*Pi) 3141592653589793 l004 Pi/tanh(651/80*Pi) 3141592653589793 l004 Pi/tanh(415/51*Pi) 3141592653589793 l004 Pi/tanh(594/73*Pi) 3141592653589793 l004 Pi/tanh(773/95*Pi) 3141592653589793 l004 Pi/tanh(952/117*Pi) 3141592653589793 l004 Pi/tanh(179/22*Pi) 3141592653589793 l004 Pi/tanh(838/103*Pi) 3141592653589793 l004 Pi/tanh(659/81*Pi) 3141592653589793 l004 Pi/tanh(480/59*Pi) 3141592653589793 l004 Pi/tanh(781/96*Pi) 3141592653589793 l004 Pi/tanh(301/37*Pi) 3141592653589793 l004 Pi/tanh(724/89*Pi) 3141592653589793 l004 Pi/tanh(423/52*Pi) 3141592653589793 l004 Pi/tanh(968/119*Pi) 3141592653589793 l004 Pi/tanh(545/67*Pi) 3141592653589793 l004 Pi/tanh(667/82*Pi) 3141592653589793 l004 Pi/tanh(789/97*Pi) 3141592653589793 l004 Pi/tanh(911/112*Pi) 3141592653589793 l004 Pi/tanh(122/15*Pi) 3141592653589793 l004 Pi/tanh(919/113*Pi) 3141592653589793 l004 Pi/tanh(797/98*Pi) 3141592653589793 l004 Pi/tanh(675/83*Pi) 3141592653589793 l004 Pi/tanh(553/68*Pi) 3141592653589793 l004 Pi/tanh(431/53*Pi) 3141592653589793 l004 Pi/tanh(740/91*Pi) 3141592653589793 l004 Pi/tanh(309/38*Pi) 3141592653589793 l004 Pi/tanh(805/99*Pi) 3141592653589793 l004 Pi/tanh(496/61*Pi) 3141592653589793 l004 Pi/tanh(683/84*Pi) 3141592653589793 l004 Pi/tanh(870/107*Pi) 3141592653589793 l004 Pi/tanh(187/23*Pi) 3141592653589793 l004 Pi/tanh(813/100*Pi) 3141592653589793 l004 Pi/tanh(626/77*Pi) 3141592653589793 l004 Pi/tanh(439/54*Pi) 3141592653589793 l004 Pi/tanh(691/85*Pi) 3141592653589793 l004 Pi/tanh(943/116*Pi) 3141592653589793 l004 Pi/tanh(252/31*Pi) 3141592653589793 l004 Pi/tanh(821/101*Pi) 3141592653589793 l004 Pi/tanh(569/70*Pi) 3141592653589793 l004 Pi/tanh(886/109*Pi) 3141592653589793 l004 Pi/tanh(317/39*Pi) 3141592653589793 l004 Pi/tanh(699/86*Pi) 3141592653589793 l004 Pi/tanh(382/47*Pi) 3141592653589793 l004 Pi/tanh(829/102*Pi) 3141592653589793 l004 Pi/tanh(447/55*Pi) 3141592653589793 l004 Pi/tanh(959/118*Pi) 3141592653589793 l004 Pi/tanh(512/63*Pi) 3141592653589793 l004 Pi/tanh(577/71*Pi) 3141592653589793 l004 Pi/tanh(642/79*Pi) 3141592653589793 l004 Pi/tanh(707/87*Pi) 3141592653589793 l004 Pi/tanh(772/95*Pi) 3141592653589793 l004 Pi/tanh(837/103*Pi) 3141592653589793 l004 Pi/tanh(902/111*Pi) 3141592653589793 l004 Pi/tanh(967/119*Pi) 3141592653589793 l004 Pi/tanh(65/8*Pi) 3141592653589793 l004 Pi/tanh(918/113*Pi) 3141592653589793 l004 Pi/tanh(853/105*Pi) 3141592653589793 l004 Pi/tanh(788/97*Pi) 3141592653589793 l004 Pi/tanh(723/89*Pi) 3141592653589793 l004 Pi/tanh(658/81*Pi) 3141592653589793 l004 Pi/tanh(593/73*Pi) 3141592653589793 l004 Pi/tanh(528/65*Pi) 3141592653589793 l004 Pi/tanh(463/57*Pi) 3141592653589793 l004 Pi/tanh(861/106*Pi) 3141592653589793 l004 Pi/tanh(398/49*Pi) 3141592653589793 l004 Pi/tanh(731/90*Pi) 3141592653589793 l004 Pi/tanh(333/41*Pi) 3141592653589793 l004 Pi/tanh(934/115*Pi) 3141592653589793 l004 Pi/tanh(601/74*Pi) 3141592653589793 l004 Pi/tanh(869/107*Pi) 3141592653589793 l004 Pi/tanh(268/33*Pi) 3141592653589793 l004 Pi/tanh(739/91*Pi) 3141592653589793 l004 Pi/tanh(471/58*Pi) 3141592653589793 l004 Pi/tanh(674/83*Pi) 3141592653589793 l004 Pi/tanh(877/108*Pi) 3141592653589793 l004 Pi/tanh(203/25*Pi) 3141592653589793 l004 Pi/tanh(950/117*Pi) 3141592653589793 l004 Pi/tanh(747/92*Pi) 3141592653589793 l004 Pi/tanh(544/67*Pi) 3141592653589793 l004 Pi/tanh(885/109*Pi) 3141592653589793 l004 Pi/tanh(341/42*Pi) 3141592653589793 l004 Pi/tanh(820/101*Pi) 3141592653589793 l004 Pi/tanh(479/59*Pi) 3141592653589793 l004 Pi/tanh(617/76*Pi) 3141592653589793 l004 Pi/tanh(755/93*Pi) 3141592653589793 l004 Pi/tanh(893/110*Pi) 3141592653589793 l004 Pi/tanh(138/17*Pi) 3141592653589793 l004 Pi/tanh(901/111*Pi) 3141592653589793 l004 Pi/tanh(763/94*Pi) 3141592653589793 l004 Pi/tanh(625/77*Pi) 3141592653589793 l004 Pi/tanh(487/60*Pi) 3141592653589793 l004 Pi/tanh(836/103*Pi) 3141592653589793 l004 Pi/tanh(349/43*Pi) 3141592653589793 l004 Pi/tanh(909/112*Pi) 3141592653589793 l004 Pi/tanh(560/69*Pi) 3141592653589793 l004 Pi/tanh(771/95*Pi) 3141592653589793 l004 Pi/tanh(211/26*Pi) 3141592653589793 l004 Pi/tanh(917/113*Pi) 3141592653589793 l004 Pi/tanh(706/87*Pi) 3141592653589793 l004 Pi/tanh(495/61*Pi) 3141592653589793 l004 Pi/tanh(779/96*Pi) 3141592653589793 l004 Pi/tanh(284/35*Pi) 3141592653589793 l004 Pi/tanh(925/114*Pi) 3141592653589793 l004 Pi/tanh(641/79*Pi) 3141592653589793 l004 Pi/tanh(357/44*Pi) 3141592653589793 l004 Pi/tanh(787/97*Pi) 3141592653589793 l004 Pi/tanh(430/53*Pi) 3141592653589793 l004 Pi/tanh(933/115*Pi) 3141592653589793 l004 Pi/tanh(503/62*Pi) 3141592653589793 l004 Pi/tanh(576/71*Pi) 3141592653589793 l004 Pi/tanh(649/80*Pi) 3141592653589793 l004 Pi/tanh(722/89*Pi) 3141592653589793 l004 Pi/tanh(795/98*Pi) 3141592653589793 l004 Pi/tanh(868/107*Pi) 3141592653589793 l004 Pi/tanh(941/116*Pi) 3141592653589793 l004 Pi/tanh(73/9*Pi) 3141592653589793 l004 Pi/tanh(957/118*Pi) 3141592653589793 l004 Pi/tanh(884/109*Pi) 3141592653589793 l004 Pi/tanh(811/100*Pi) 3141592653589793 l004 Pi/tanh(738/91*Pi) 3141592653589793 l004 Pi/tanh(665/82*Pi) 3141592653589793 l004 Pi/tanh(592/73*Pi) 3141592653589793 l004 Pi/tanh(519/64*Pi) 3141592653589793 l004 Pi/tanh(965/119*Pi) 3141592653589793 l004 Pi/tanh(446/55*Pi) 3141592653589793 l004 Pi/tanh(819/101*Pi) 3141592653589793 l004 Pi/tanh(373/46*Pi) 3141592653589793 l004 Pi/tanh(673/83*Pi) 3141592653589793 l004 Pi/tanh(973/120*Pi) 3141592653589793 l004 Pi/tanh(300/37*Pi) 3141592653589793 l004 Pi/tanh(827/102*Pi) 3141592653589793 l004 Pi/tanh(527/65*Pi) 3141592653589793 l004 Pi/tanh(754/93*Pi) 3141592653589793 l004 Pi/tanh(227/28*Pi) 3141592653589793 l004 Pi/tanh(835/103*Pi) 3141592653589793 l004 Pi/tanh(608/75*Pi) 3141592653589793 l004 Pi/tanh(381/47*Pi) 3141592653589793 l004 Pi/tanh(916/113*Pi) 3141592653589793 l004 Pi/tanh(535/66*Pi) 3141592653589793 l004 Pi/tanh(689/85*Pi) 3141592653589793 l004 Pi/tanh(843/104*Pi) 3141592653589793 l004 Pi/tanh(154/19*Pi) 3141592653589793 l004 Pi/tanh(851/105*Pi) 3141592653589793 l004 Pi/tanh(697/86*Pi) 3141592653589793 l004 Pi/tanh(543/67*Pi) 3141592653589793 l004 Pi/tanh(932/115*Pi) 3141592653589793 l004 Pi/tanh(389/48*Pi) 3141592653589793 l004 Pi/tanh(624/77*Pi) 3141592653589793 m001 Champernowne^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 l004 Pi/tanh(859/106*Pi) 3141592653589793 l004 Pi/tanh(235/29*Pi) 3141592653589793 l004 Pi/tanh(786/97*Pi) 3141592653589793 l004 Pi/tanh(551/68*Pi) 3141592653589793 l004 Pi/tanh(867/107*Pi) 3141592653589793 l004 Pi/tanh(316/39*Pi) 3141592653589793 l004 Pi/tanh(713/88*Pi) 3141592653589793 l004 Pi/tanh(397/49*Pi) 3141592653589793 l004 Pi/tanh(875/108*Pi) 3141592653589793 l004 Pi/tanh(478/59*Pi) 3141592653589793 l004 Pi/tanh(559/69*Pi) 3141592653589793 l004 Pi/tanh(640/79*Pi) 3141592653589793 l004 Pi/tanh(721/89*Pi) 3141592653589793 l004 Pi/tanh(802/99*Pi) 3141592653589793 l004 Pi/tanh(883/109*Pi) 3141592653589793 l004 Pi/tanh(964/119*Pi) 3141592653589793 l004 Pi/tanh(81/10*Pi) 3141592653589793 l004 Pi/tanh(899/111*Pi) 3141592653589793 l004 Pi/tanh(818/101*Pi) 3141592653589793 l004 Pi/tanh(737/91*Pi) 3141592653589793 l004 Pi/tanh(656/81*Pi) 3141592653589793 l004 Pi/tanh(575/71*Pi) 3141592653589793 l004 Pi/tanh(494/61*Pi) 3141592653589793 l004 Pi/tanh(907/112*Pi) 3141592653589793 l004 Pi/tanh(413/51*Pi) 3141592653589793 l004 Pi/tanh(745/92*Pi) 3141592653589793 l004 Pi/tanh(332/41*Pi) 3141592653589793 l004 Pi/tanh(915/113*Pi) 3141592653589793 l004 Pi/tanh(583/72*Pi) 3141592653589793 l004 Pi/tanh(834/103*Pi) 3141592653589793 l004 Pi/tanh(251/31*Pi) 3141592653589793 l004 Pi/tanh(923/114*Pi) 3141592653589793 l004 Pi/tanh(672/83*Pi) 3141592653589793 l004 Pi/tanh(421/52*Pi) 3141592653589793 l004 Pi/tanh(591/73*Pi) 3141592653589793 l004 Pi/tanh(761/94*Pi) 3141592653589793 l004 Pi/tanh(931/115*Pi) 3141592653589793 l004 Pi/tanh(170/21*Pi) 3141592653589793 l004 Pi/tanh(939/116*Pi) 3141592653589793 l004 Pi/tanh(769/95*Pi) 3141592653589793 l004 Pi/tanh(599/74*Pi) 3141592653589793 l004 Pi/tanh(429/53*Pi) 3141592653589793 l004 Pi/tanh(688/85*Pi) 3141592653589793 l004 Pi/tanh(947/117*Pi) 3141592653589793 l004 Pi/tanh(259/32*Pi) 3141592653589793 l004 Pi/tanh(866/107*Pi) 3141592653589793 l004 Pi/tanh(607/75*Pi) 3141592653589793 l004 Pi/tanh(955/118*Pi) 3141592653589793 l004 Pi/tanh(348/43*Pi) 3141592653589793 l004 Pi/tanh(785/97*Pi) 3141592653589793 l004 Pi/tanh(437/54*Pi) 3141592653589793 l004 Pi/tanh(963/119*Pi) 3141592653589793 l004 Pi/tanh(526/65*Pi) 3141592653589793 l004 Pi/tanh(615/76*Pi) 3141592653589793 l004 Pi/tanh(704/87*Pi) 3141592653589793 l004 Pi/tanh(793/98*Pi) 3141592653589793 l004 Pi/tanh(882/109*Pi) 3141592653589793 l004 Pi/tanh(971/120*Pi) 3141592653589793 l004 Pi/tanh(89/11*Pi) 3141592653589793 l004 Pi/tanh(898/111*Pi) 3141592653589793 l004 Pi/tanh(809/100*Pi) 3141592653589793 l004 Pi/tanh(720/89*Pi) 3141592653589793 l004 Pi/tanh(631/78*Pi) 3141592653589793 l004 Pi/tanh(542/67*Pi) 3141592653589793 l004 Pi/tanh(453/56*Pi) 3141592653589793 l004 Pi/tanh(817/101*Pi) 3141592653589793 l004 Pi/tanh(364/45*Pi) 3141592653589793 l004 Pi/tanh(639/79*Pi) 3141592653589793 l004 Pi/tanh(914/113*Pi) 3141592653589793 l004 Pi/tanh(275/34*Pi) 3141592653589793 l004 Pi/tanh(736/91*Pi) 3141592653589793 l004 Pi/tanh(461/57*Pi) 3141592653589793 l004 Pi/tanh(647/80*Pi) 3141592653589793 l004 Pi/tanh(833/103*Pi) 3141592653589793 l004 Pi/tanh(186/23*Pi) 3141592653589793 l004 Pi/tanh(841/104*Pi) 3141592653589793 l004 Pi/tanh(655/81*Pi) 3141592653589793 l004 Pi/tanh(469/58*Pi) 3141592653589793 l004 Pi/tanh(752/93*Pi) 3141592653589793 l004 Pi/tanh(283/35*Pi) 3141592653589793 l004 Pi/tanh(946/117*Pi) 3141592653589793 l004 Pi/tanh(663/82*Pi) 3141592653589793 l004 Pi/tanh(380/47*Pi) 3141592653589793 l004 Pi/tanh(857/106*Pi) 3141592653589793 l004 Pi/tanh(477/59*Pi) 3141592653589793 l004 Pi/tanh(574/71*Pi) 3141592653589793 l004 Pi/tanh(671/83*Pi) 3141592653589793 l004 Pi/tanh(768/95*Pi) 3141592653589793 l004 Pi/tanh(865/107*Pi) 3141592653589793 l004 Pi/tanh(962/119*Pi) 3141592653589793 l004 Pi/tanh(97/12*Pi) 3141592653589793 l004 Pi/tanh(881/109*Pi) 3141592653589793 l004 Pi/tanh(784/97*Pi) 3141592653589793 l004 Pi/tanh(687/85*Pi) 3141592653589793 l004 Pi/tanh(590/73*Pi) 3141592653589793 l004 Pi/tanh(493/61*Pi) 3141592653589793 l004 Pi/tanh(889/110*Pi) 3141592653589793 l004 Pi/tanh(396/49*Pi) 3141592653589793 l004 Pi/tanh(695/86*Pi) 3141592653589793 l004 Pi/tanh(299/37*Pi) 3141592653589793 l004 Pi/tanh(800/99*Pi) 3141592653589793 l004 Pi/tanh(501/62*Pi) 3141592653589793 l004 Pi/tanh(703/87*Pi) 3141592653589793 l004 Pi/tanh(905/112*Pi) 3141592653589793 l004 Pi/tanh(202/25*Pi) 3141592653589793 l004 Pi/tanh(913/113*Pi) 3141592653589793 l004 Pi/tanh(711/88*Pi) 3141592653589793 l004 Pi/tanh(509/63*Pi) 3141592653589793 l004 Pi/tanh(816/101*Pi) 3141592653589793 l004 Pi/tanh(307/38*Pi) 3141592653589793 l004 Pi/tanh(719/89*Pi) 3141592653589793 l004 Pi/tanh(412/51*Pi) 3141592653589793 l004 Pi/tanh(929/115*Pi) 3141592653589793 l004 Pi/tanh(517/64*Pi) 3141592653589793 l004 Pi/tanh(622/77*Pi) 3141592653589793 l004 Pi/tanh(727/90*Pi) 3141592653589793 l004 Pi/tanh(832/103*Pi) 3141592653589793 l004 Pi/tanh(937/116*Pi) 3141592653589793 l004 Pi/tanh(105/13*Pi) 3141592653589793 l004 Pi/tanh(953/118*Pi) 3141592653589793 l004 Pi/tanh(848/105*Pi) 3141592653589793 l004 Pi/tanh(743/92*Pi) 3141592653589793 l004 Pi/tanh(638/79*Pi) 3141592653589793 l004 Pi/tanh(533/66*Pi) 3141592653589793 l004 Pi/tanh(961/119*Pi) 3141592653589793 l004 Pi/tanh(428/53*Pi) 3141592653589793 l004 Pi/tanh(751/93*Pi) 3141592653589793 l004 Pi/tanh(323/40*Pi) 3141592653589793 l004 Pi/tanh(864/107*Pi) 3141592653589793 l004 Pi/tanh(541/67*Pi) 3141592653589793 l004 Pi/tanh(759/94*Pi) 3141592653589793 l004 Pi/tanh(218/27*Pi) 3141592653589793 l004 Pi/tanh(767/95*Pi) 3141592653589793 l004 Pi/tanh(549/68*Pi) 3141592653589793 l004 Pi/tanh(880/109*Pi) 3141592653589793 l004 Pi/tanh(331/41*Pi) 3141592653589793 l004 Pi/tanh(775/96*Pi) 3141592653589793 l004 Pi/tanh(444/55*Pi) 3141592653589793 l004 Pi/tanh(557/69*Pi) 3141592653589793 l004 Pi/tanh(670/83*Pi) 3141592653589793 l004 Pi/tanh(783/97*Pi) 3141592653589793 l004 Pi/tanh(896/111*Pi) 3141592653589793 l004 Pi/tanh(113/14*Pi) 3141592653589793 l004 Pi/tanh(912/113*Pi) 3141592653589793 l004 Pi/tanh(799/99*Pi) 3141592653589793 l004 Pi/tanh(686/85*Pi) 3141592653589793 l004 Pi/tanh(573/71*Pi) 3141592653589793 l004 Pi/tanh(460/57*Pi) 3141592653589793 l004 Pi/tanh(807/100*Pi) 3141592653589793 l004 Pi/tanh(347/43*Pi) 3141592653589793 l004 Pi/tanh(928/115*Pi) 3141592653589793 l004 Pi/tanh(581/72*Pi) 3141592653589793 l004 Pi/tanh(815/101*Pi) 3141592653589793 l004 Pi/tanh(234/29*Pi) 3141592653589793 l004 Pi/tanh(823/102*Pi) 3141592653589793 l004 Pi/tanh(589/73*Pi) 3141592653589793 l004 Pi/tanh(944/117*Pi) 3141592653589793 l004 Pi/tanh(355/44*Pi) 3141592653589793 l004 Pi/tanh(831/103*Pi) 3141592653589793 l004 Pi/tanh(476/59*Pi) 3141592653589793 l004 Pi/tanh(597/74*Pi) 3141592653589793 l004 Pi/tanh(718/89*Pi) 3141592653589793 l004 Pi/tanh(839/104*Pi) 3141592653589793 l004 Pi/tanh(960/119*Pi) 3141592653589793 l004 Pi/tanh(121/15*Pi) 3141592653589793 l004 Pi/tanh(855/106*Pi) 3141592653589793 l004 Pi/tanh(734/91*Pi) 3141592653589793 l004 Pi/tanh(613/76*Pi) 3141592653589793 l004 Pi/tanh(492/61*Pi) 3141592653589793 l004 Pi/tanh(863/107*Pi) 3141592653589793 l004 Pi/tanh(371/46*Pi) 3141592653589793 l004 Pi/tanh(621/77*Pi) 3141592653589793 l004 Pi/tanh(871/108*Pi) 3141592653589793 l004 Pi/tanh(250/31*Pi) 3141592653589793 l004 Pi/tanh(879/109*Pi) 3141592653589793 l004 Pi/tanh(629/78*Pi) 3141592653589793 l004 Pi/tanh(379/47*Pi) 3141592653589793 l004 Pi/tanh(887/110*Pi) 3141592653589793 l004 Pi/tanh(508/63*Pi) 3141592653589793 l004 Pi/tanh(637/79*Pi) 3141592653589793 l004 Pi/tanh(766/95*Pi) 3141592653589793 l004 Pi/tanh(895/111*Pi) 3141592653589793 l004 Pi/tanh(129/16*Pi) 3141592653589793 l004 Pi/tanh(911/113*Pi) 3141592653589793 l004 Pi/tanh(782/97*Pi) 3141592653589793 l004 Pi/tanh(653/81*Pi) 3141592653589793 l004 Pi/tanh(524/65*Pi) 3141592653589793 l004 Pi/tanh(919/114*Pi) 3141592653589793 l004 Pi/tanh(395/49*Pi) 3141592653589793 l004 Pi/tanh(661/82*Pi) 3141592653589793 l004 Pi/tanh(927/115*Pi) 3141592653589793 l004 Pi/tanh(266/33*Pi) 3141592653589793 l004 Pi/tanh(935/116*Pi) 3141592653589793 l004 Pi/tanh(669/83*Pi) 3141592653589793 l004 Pi/tanh(403/50*Pi) 3141592653589793 l004 Pi/tanh(943/117*Pi) 3141592653589793 l004 Pi/tanh(540/67*Pi) 3141592653589793 l004 Pi/tanh(677/84*Pi) 3141592653589793 l004 Pi/tanh(814/101*Pi) 3141592653589793 l004 Pi/tanh(951/118*Pi) 3141592653589793 l004 Pi/tanh(137/17*Pi) 3141592653589793 l004 Pi/tanh(967/120*Pi) 3141592653589793 l004 Pi/tanh(830/103*Pi) 3141592653589793 l004 Pi/tanh(693/86*Pi) 3141592653589793 l004 Pi/tanh(556/69*Pi) 3141592653589793 l004 Pi/tanh(419/52*Pi) 3141592653589793 l004 Pi/tanh(701/87*Pi) 3141592653589793 l004 Pi/tanh(282/35*Pi) 3141592653589793 l004 Pi/tanh(709/88*Pi) 3141592653589793 l004 Pi/tanh(427/53*Pi) 3141592653589793 l004 Pi/tanh(572/71*Pi) 3141592653589793 l004 Pi/tanh(717/89*Pi) 3141592653589793 l004 Pi/tanh(862/107*Pi) 3141592653589793 l004 Pi/tanh(145/18*Pi) 3141592653589793 l004 Pi/tanh(878/109*Pi) 3141592653589793 l004 Pi/tanh(733/91*Pi) 3141592653589793 l004 Pi/tanh(588/73*Pi) 3141592653589793 l004 Pi/tanh(443/55*Pi) 3141592653589793 l004 Pi/tanh(741/92*Pi) 3141592653589793 l004 Pi/tanh(298/37*Pi) 3141592653589793 l004 Pi/tanh(749/93*Pi) 3141592653589793 l004 Pi/tanh(451/56*Pi) 3141592653589793 l004 Pi/tanh(604/75*Pi) 3141592653589793 l004 Pi/tanh(757/94*Pi) 3141592653589793 l004 Pi/tanh(910/113*Pi) 3141592653589793 l004 Pi/tanh(153/19*Pi) 3141592653589793 l004 Pi/tanh(926/115*Pi) 3141592653589793 l004 Pi/tanh(773/96*Pi) 3141592653589793 l004 Pi/tanh(620/77*Pi) 3141592653589793 l004 Pi/tanh(467/58*Pi) 3141592653589793 l004 Pi/tanh(781/97*Pi) 3141592653589793 l004 Pi/tanh(314/39*Pi) 3141592653589793 l004 Pi/tanh(789/98*Pi) 3141592653589793 l004 Pi/tanh(475/59*Pi) 3141592653589793 l004 Pi/tanh(636/79*Pi) 3141592653589793 l004 Pi/tanh(797/99*Pi) 3141592653589793 l004 Pi/tanh(958/119*Pi) 3141592653589793 l004 Pi/tanh(161/20*Pi) 3141592653589793 l004 Pi/tanh(813/101*Pi) 3141592653589793 l004 Pi/tanh(652/81*Pi) 3141592653589793 l004 Pi/tanh(491/61*Pi) 3141592653589793 l004 Pi/tanh(821/102*Pi) 3141592653589793 l004 Pi/tanh(330/41*Pi) 3141592653589793 l004 Pi/tanh(829/103*Pi) 3141592653589793 l004 Pi/tanh(499/62*Pi) 3141592653589793 l004 Pi/tanh(668/83*Pi) 3141592653589793 l004 Pi/tanh(837/104*Pi) 3141592653589793 l004 Pi/tanh(169/21*Pi) 3141592653589793 l004 Pi/tanh(853/106*Pi) 3141592653589793 l004 Pi/tanh(684/85*Pi) 3141592653589793 l004 Pi/tanh(515/64*Pi) 3141592653589793 l004 Pi/tanh(861/107*Pi) 3141592653589793 l004 Pi/tanh(346/43*Pi) 3141592653589793 l004 Pi/tanh(869/108*Pi) 3141592653589793 l004 Pi/tanh(523/65*Pi) 3141592653589793 l004 Pi/tanh(700/87*Pi) 3141592653589793 l004 Pi/tanh(877/109*Pi) 3141592653589793 l004 Pi/tanh(177/22*Pi) 3141592653589793 l004 Pi/tanh(893/111*Pi) 3141592653589793 l004 Pi/tanh(716/89*Pi) 3141592653589793 l004 Pi/tanh(539/67*Pi) 3141592653589793 l004 Pi/tanh(901/112*Pi) 3141592653589793 l004 Pi/tanh(362/45*Pi) 3141592653589793 l004 Pi/tanh(909/113*Pi) 3141592653589793 l004 Pi/tanh(547/68*Pi) 3141592653589793 l004 Pi/tanh(732/91*Pi) 3141592653589793 l004 Pi/tanh(917/114*Pi) 3141592653589793 l004 Pi/tanh(185/23*Pi) 3141592653589793 l004 Pi/tanh(933/116*Pi) 3141592653589793 l004 Pi/tanh(748/93*Pi) 3141592653589793 l004 Pi/tanh(563/70*Pi) 3141592653589793 l004 Pi/tanh(941/117*Pi) 3141592653589793 l004 Pi/tanh(378/47*Pi) 3141592653589793 l004 Pi/tanh(949/118*Pi) 3141592653589793 l004 Pi/tanh(571/71*Pi) 3141592653589793 l004 Pi/tanh(764/95*Pi) 3141592653589793 l004 Pi/tanh(957/119*Pi) 3141592653589793 l004 Pi/tanh(193/24*Pi) 3141592653589793 l004 Pi/tanh(780/97*Pi) 3141592653589793 l004 Pi/tanh(587/73*Pi) 3141592653589793 l004 Pi/tanh(394/49*Pi) 3141592653589793 l004 Pi/tanh(595/74*Pi) 3141592653589793 l004 Pi/tanh(796/99*Pi) 3141592653589793 l004 Pi/tanh(201/25*Pi) 3141592653589793 l004 Pi/tanh(812/101*Pi) 3141592653589793 l004 Pi/tanh(611/76*Pi) 3141592653589793 l004 Pi/tanh(410/51*Pi) 3141592653589793 l004 Pi/tanh(619/77*Pi) 3141592653589793 l004 Pi/tanh(828/103*Pi) 3141592653589793 l004 Pi/tanh(209/26*Pi) 3141592653589793 l004 Pi/tanh(844/105*Pi) 3141592653589793 l004 Pi/tanh(635/79*Pi) 3141592653589793 l004 Pi/tanh(426/53*Pi) 3141592653589793 l004 Pi/tanh(643/80*Pi) 3141592653589793 l004 Pi/tanh(860/107*Pi) 3141592653589793 l004 Pi/tanh(217/27*Pi) 3141592653589793 l004 Pi/tanh(876/109*Pi) 3141592653589793 l004 Pi/tanh(659/82*Pi) 3141592653589793 l004 Pi/tanh(442/55*Pi) 3141592653589793 l004 Pi/tanh(667/83*Pi) 3141592653589793 l004 Pi/tanh(892/111*Pi) 3141592653589793 l004 Pi/tanh(225/28*Pi) 3141592653589793 l004 Pi/tanh(908/113*Pi) 3141592653589793 l004 Pi/tanh(683/85*Pi) 3141592653589793 l004 Pi/tanh(458/57*Pi) 3141592653589793 l004 Pi/tanh(691/86*Pi) 3141592653589793 l004 Pi/tanh(924/115*Pi) 3141592653589793 l004 Pi/tanh(233/29*Pi) 3141592653589793 l004 Pi/tanh(940/117*Pi) 3141592653589793 l004 Pi/tanh(707/88*Pi) 3141592653589793 l004 Pi/tanh(474/59*Pi) 3141592653589793 l004 Pi/tanh(715/89*Pi) 3141592653589793 l004 Pi/tanh(956/119*Pi) 3141592653589793 l004 Pi/tanh(241/30*Pi) 3141592653589793 l004 Pi/tanh(731/91*Pi) 3141592653589793 l004 Pi/tanh(490/61*Pi) 3141592653589793 l004 Pi/tanh(739/92*Pi) 3141592653589793 l004 Pi/tanh(249/31*Pi) 3141592653589793 l004 Pi/tanh(755/94*Pi) 3141592653589793 l004 Pi/tanh(506/63*Pi) 3141592653589793 l004 Pi/tanh(763/95*Pi) 3141592653589793 l004 Pi/tanh(257/32*Pi) 3141592653589793 l004 Pi/tanh(779/97*Pi) 3141592653589793 l004 Pi/tanh(522/65*Pi) 3141592653589793 l004 Pi/tanh(787/98*Pi) 3141592653589793 l004 Pi/tanh(265/33*Pi) 3141592653589793 l004 Pi/tanh(803/100*Pi) 3141592653589793 l004 Pi/tanh(538/67*Pi) 3141592653589793 l004 Pi/tanh(811/101*Pi) 3141592653589793 l004 Pi/tanh(273/34*Pi) 3141592653589793 l004 Pi/tanh(827/103*Pi) 3141592653589793 l004 Pi/tanh(554/69*Pi) 3141592653589793 l004 Pi/tanh(835/104*Pi) 3141592653589793 l004 Pi/tanh(281/35*Pi) 3141592653589793 l004 Pi/tanh(851/106*Pi) 3141592653589793 l004 Pi/tanh(570/71*Pi) 3141592653589793 l004 Pi/tanh(859/107*Pi) 3141592653589793 l004 Pi/tanh(289/36*Pi) 3141592653589793 l004 Pi/tanh(875/109*Pi) 3141592653589793 l004 Pi/tanh(586/73*Pi) 3141592653589793 l004 Pi/tanh(883/110*Pi) 3141592653589793 l004 Pi/tanh(297/37*Pi) 3141592653589793 l004 Pi/tanh(899/112*Pi) 3141592653589793 l004 Pi/tanh(602/75*Pi) 3141592653589793 l004 Pi/tanh(907/113*Pi) 3141592653589793 l004 Pi/tanh(305/38*Pi) 3141592653589793 l004 Pi/tanh(923/115*Pi) 3141592653589793 l004 Pi/tanh(618/77*Pi) 3141592653589793 l004 Pi/tanh(931/116*Pi) 3141592653589793 l004 Pi/tanh(313/39*Pi) 3141592653589793 l004 Pi/tanh(947/118*Pi) 3141592653589793 l004 Pi/tanh(634/79*Pi) 3141592653589793 l004 Pi/tanh(955/119*Pi) 3141592653589793 l004 Pi/tanh(321/40*Pi) 3141592653589793 l004 Pi/tanh(650/81*Pi) 3141592653589793 l004 Pi/tanh(329/41*Pi) 3141592653589793 l004 Pi/tanh(666/83*Pi) 3141592653589793 l004 Pi/tanh(337/42*Pi) 3141592653589793 l004 Pi/tanh(682/85*Pi) 3141592653589793 l004 Pi/tanh(345/43*Pi) 3141592653589793 l004 Pi/tanh(698/87*Pi) 3141592653589793 l004 Pi/tanh(353/44*Pi) 3141592653589793 l004 Pi/tanh(714/89*Pi) 3141592653589793 l004 Pi/tanh(361/45*Pi) 3141592653589793 l004 Pi/tanh(730/91*Pi) 3141592653589793 l004 Pi/tanh(369/46*Pi) 3141592653589793 l004 Pi/tanh(746/93*Pi) 3141592653589793 l004 Pi/tanh(377/47*Pi) 3141592653589793 l004 Pi/tanh(762/95*Pi) 3141592653589793 l004 Pi/tanh(385/48*Pi) 3141592653589793 l004 Pi/tanh(778/97*Pi) 3141592653589793 l004 Pi/tanh(393/49*Pi) 3141592653589793 l004 Pi/tanh(794/99*Pi) 3141592653589793 l004 Pi/tanh(401/50*Pi) 3141592653589793 l004 Pi/tanh(810/101*Pi) 3141592653589793 l004 Pi/tanh(409/51*Pi) 3141592653589793 l004 Pi/tanh(826/103*Pi) 3141592653589793 l004 Pi/tanh(417/52*Pi) 3141592653589793 l004 Pi/tanh(842/105*Pi) 3141592653589793 l004 Pi/tanh(425/53*Pi) 3141592653589793 l004 Pi/tanh(858/107*Pi) 3141592653589793 l004 Pi/tanh(433/54*Pi) 3141592653589793 l004 Pi/tanh(874/109*Pi) 3141592653589793 l004 Pi/tanh(441/55*Pi) 3141592653589793 l004 Pi/tanh(890/111*Pi) 3141592653589793 l004 Pi/tanh(449/56*Pi) 3141592653589793 l004 Pi/tanh(906/113*Pi) 3141592653589793 l004 Pi/tanh(457/57*Pi) 3141592653589793 l004 Pi/tanh(922/115*Pi) 3141592653589793 l004 Pi/tanh(465/58*Pi) 3141592653589793 l004 Pi/tanh(938/117*Pi) 3141592653589793 l004 Pi/tanh(473/59*Pi) 3141592653589793 l004 Pi/tanh(954/119*Pi) 3141592653589793 l004 Pi/tanh(481/60*Pi) 3141592653589793 l004 Pi/tanh(489/61*Pi) 3141592653589793 l004 Pi/tanh(497/62*Pi) 3141592653589793 l004 Pi/tanh(505/63*Pi) 3141592653589793 l004 Pi/tanh(513/64*Pi) 3141592653589793 l004 Pi/tanh(521/65*Pi) 3141592653589793 l004 Pi/tanh(529/66*Pi) 3141592653589793 l004 Pi/tanh(537/67*Pi) 3141592653589793 l004 Pi/tanh(545/68*Pi) 3141592653589793 l004 Pi/tanh(553/69*Pi) 3141592653589793 l004 Pi/tanh(561/70*Pi) 3141592653589793 l004 Pi/tanh(569/71*Pi) 3141592653589793 l004 Pi/tanh(577/72*Pi) 3141592653589793 l004 Pi/tanh(585/73*Pi) 3141592653589793 l004 Pi/tanh(593/74*Pi) 3141592653589793 l004 Pi/tanh(601/75*Pi) 3141592653589793 l004 Pi/tanh(609/76*Pi) 3141592653589793 l004 Pi/tanh(617/77*Pi) 3141592653589793 l004 Pi/tanh(625/78*Pi) 3141592653589793 l004 Pi/tanh(633/79*Pi) 3141592653589793 l004 Pi/tanh(641/80*Pi) 3141592653589793 l004 Pi/tanh(649/81*Pi) 3141592653589793 l004 Pi/tanh(657/82*Pi) 3141592653589793 l004 Pi/tanh(665/83*Pi) 3141592653589793 l004 Pi/tanh(673/84*Pi) 3141592653589793 l004 Pi/tanh(681/85*Pi) 3141592653589793 l004 Pi/tanh(689/86*Pi) 3141592653589793 l004 Pi/tanh(697/87*Pi) 3141592653589793 l004 Pi/tanh(705/88*Pi) 3141592653589793 l004 Pi/tanh(713/89*Pi) 3141592653589793 l004 Pi/tanh(721/90*Pi) 3141592653589793 l004 Pi/tanh(729/91*Pi) 3141592653589793 l004 Pi/tanh(737/92*Pi) 3141592653589793 l004 Pi/tanh(745/93*Pi) 3141592653589793 l004 Pi/tanh(753/94*Pi) 3141592653589793 l004 Pi/tanh(761/95*Pi) 3141592653589793 l004 Pi/tanh(769/96*Pi) 3141592653589793 l004 Pi/tanh(777/97*Pi) 3141592653589793 l004 Pi/tanh(785/98*Pi) 3141592653589793 l004 Pi/tanh(793/99*Pi) 3141592653589793 l004 Pi/tanh(801/100*Pi) 3141592653589793 l004 Pi/tanh(809/101*Pi) 3141592653589793 l004 Pi/tanh(817/102*Pi) 3141592653589793 l004 Pi/tanh(825/103*Pi) 3141592653589793 l004 Pi/tanh(833/104*Pi) 3141592653589793 l004 Pi/tanh(841/105*Pi) 3141592653589793 l004 Pi/tanh(849/106*Pi) 3141592653589793 l004 Pi/tanh(857/107*Pi) 3141592653589793 l004 Pi/tanh(865/108*Pi) 3141592653589793 l004 Pi/tanh(873/109*Pi) 3141592653589793 l004 Pi/tanh(881/110*Pi) 3141592653589793 l004 Pi/tanh(889/111*Pi) 3141592653589793 l004 Pi/tanh(897/112*Pi) 3141592653589793 l004 Pi/tanh(905/113*Pi) 3141592653589793 l004 Pi/tanh(913/114*Pi) 3141592653589793 l004 Pi/tanh(921/115*Pi) 3141592653589793 l004 Pi/tanh(929/116*Pi) 3141592653589793 l004 Pi/tanh(937/117*Pi) 3141592653589793 l004 Pi/tanh(945/118*Pi) 3141592653589793 l004 Pi/tanh(953/119*Pi) 3141592653589793 l004 Pi/tanh(961/120*Pi) 3141592653589793 l004 Pi/tanh(8*Pi) 3141592653589793 m001 Champernowne^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(959/120*Pi) 3141592653589793 l004 Pi/tanh(951/119*Pi) 3141592653589793 l004 Pi/tanh(943/118*Pi) 3141592653589793 l004 Pi/tanh(935/117*Pi) 3141592653589793 l004 Pi/tanh(927/116*Pi) 3141592653589793 l004 Pi/tanh(919/115*Pi) 3141592653589793 l004 Pi/tanh(911/114*Pi) 3141592653589793 l004 Pi/tanh(903/113*Pi) 3141592653589793 l004 Pi/tanh(895/112*Pi) 3141592653589793 l004 Pi/tanh(887/111*Pi) 3141592653589793 l004 Pi/tanh(879/110*Pi) 3141592653589793 l004 Pi/tanh(871/109*Pi) 3141592653589793 l004 Pi/tanh(863/108*Pi) 3141592653589793 l004 Pi/tanh(855/107*Pi) 3141592653589793 l004 Pi/tanh(847/106*Pi) 3141592653589793 l004 Pi/tanh(839/105*Pi) 3141592653589793 l004 Pi/tanh(831/104*Pi) 3141592653589793 l004 Pi/tanh(823/103*Pi) 3141592653589793 l004 Pi/tanh(815/102*Pi) 3141592653589793 l004 Pi/tanh(807/101*Pi) 3141592653589793 l004 Pi/tanh(799/100*Pi) 3141592653589793 l004 Pi/tanh(791/99*Pi) 3141592653589793 l004 Pi/tanh(783/98*Pi) 3141592653589793 l004 Pi/tanh(775/97*Pi) 3141592653589793 l004 Pi/tanh(767/96*Pi) 3141592653589793 l004 Pi/tanh(759/95*Pi) 3141592653589793 l004 Pi/tanh(751/94*Pi) 3141592653589793 l004 Pi/tanh(743/93*Pi) 3141592653589793 l004 Pi/tanh(735/92*Pi) 3141592653589793 l004 Pi/tanh(727/91*Pi) 3141592653589793 l004 Pi/tanh(719/90*Pi) 3141592653589793 l004 Pi/tanh(711/89*Pi) 3141592653589793 l004 Pi/tanh(703/88*Pi) 3141592653589793 l004 Pi/tanh(695/87*Pi) 3141592653589793 l004 Pi/tanh(687/86*Pi) 3141592653589793 l004 Pi/tanh(679/85*Pi) 3141592653589793 l004 Pi/tanh(671/84*Pi) 3141592653589793 l004 Pi/tanh(663/83*Pi) 3141592653589793 l004 Pi/tanh(655/82*Pi) 3141592653589793 l004 Pi/tanh(647/81*Pi) 3141592653589793 l004 Pi/tanh(639/80*Pi) 3141592653589793 l004 Pi/tanh(631/79*Pi) 3141592653589793 l004 Pi/tanh(623/78*Pi) 3141592653589793 l004 Pi/tanh(615/77*Pi) 3141592653589793 l004 Pi/tanh(607/76*Pi) 3141592653589793 l004 Pi/tanh(599/75*Pi) 3141592653589793 l004 Pi/tanh(591/74*Pi) 3141592653589793 l004 Pi/tanh(583/73*Pi) 3141592653589793 l004 Pi/tanh(575/72*Pi) 3141592653589793 l004 Pi/tanh(567/71*Pi) 3141592653589793 l004 Pi/tanh(559/70*Pi) 3141592653589793 l004 Pi/tanh(551/69*Pi) 3141592653589793 l004 Pi/tanh(543/68*Pi) 3141592653589793 l004 Pi/tanh(535/67*Pi) 3141592653589793 l004 Pi/tanh(527/66*Pi) 3141592653589793 l004 Pi/tanh(519/65*Pi) 3141592653589793 l004 Pi/tanh(511/64*Pi) 3141592653589793 l004 Pi/tanh(503/63*Pi) 3141592653589793 l004 Pi/tanh(495/62*Pi) 3141592653589793 l004 Pi/tanh(487/61*Pi) 3141592653589793 l004 Pi/tanh(479/60*Pi) 3141592653589793 l004 Pi/tanh(950/119*Pi) 3141592653589793 l004 Pi/tanh(471/59*Pi) 3141592653589793 l004 Pi/tanh(934/117*Pi) 3141592653589793 l004 Pi/tanh(463/58*Pi) 3141592653589793 l004 Pi/tanh(918/115*Pi) 3141592653589793 l004 Pi/tanh(455/57*Pi) 3141592653589793 l004 Pi/tanh(902/113*Pi) 3141592653589793 l004 Pi/tanh(447/56*Pi) 3141592653589793 l004 Pi/tanh(886/111*Pi) 3141592653589793 l004 Pi/tanh(439/55*Pi) 3141592653589793 l004 Pi/tanh(870/109*Pi) 3141592653589793 l004 Pi/tanh(431/54*Pi) 3141592653589793 l004 Pi/tanh(854/107*Pi) 3141592653589793 l004 Pi/tanh(423/53*Pi) 3141592653589793 l004 Pi/tanh(838/105*Pi) 3141592653589793 l004 Pi/tanh(415/52*Pi) 3141592653589793 l004 Pi/tanh(822/103*Pi) 3141592653589793 l004 Pi/tanh(407/51*Pi) 3141592653589793 l004 Pi/tanh(806/101*Pi) 3141592653589793 l004 Pi/tanh(399/50*Pi) 3141592653589793 l004 Pi/tanh(790/99*Pi) 3141592653589793 l004 Pi/tanh(391/49*Pi) 3141592653589793 l004 Pi/tanh(774/97*Pi) 3141592653589793 l004 Pi/tanh(383/48*Pi) 3141592653589793 l004 Pi/tanh(758/95*Pi) 3141592653589793 l004 Pi/tanh(375/47*Pi) 3141592653589793 l004 Pi/tanh(742/93*Pi) 3141592653589793 l004 Pi/tanh(367/46*Pi) 3141592653589793 l004 Pi/tanh(726/91*Pi) 3141592653589793 l004 Pi/tanh(359/45*Pi) 3141592653589793 l004 Pi/tanh(710/89*Pi) 3141592653589793 l004 Pi/tanh(351/44*Pi) 3141592653589793 l004 Pi/tanh(694/87*Pi) 3141592653589793 l004 Pi/tanh(343/43*Pi) 3141592653589793 l004 Pi/tanh(678/85*Pi) 3141592653589793 l004 Pi/tanh(335/42*Pi) 3141592653589793 l004 Pi/tanh(662/83*Pi) 3141592653589793 l004 Pi/tanh(327/41*Pi) 3141592653589793 l004 Pi/tanh(646/81*Pi) 3141592653589793 l004 Pi/tanh(319/40*Pi) 3141592653589793 l004 Pi/tanh(949/119*Pi) 3141592653589793 l004 Pi/tanh(630/79*Pi) 3141592653589793 l004 Pi/tanh(941/118*Pi) 3141592653589793 l004 Pi/tanh(311/39*Pi) 3141592653589793 l004 Pi/tanh(925/116*Pi) 3141592653589793 l004 Pi/tanh(614/77*Pi) 3141592653589793 l004 Pi/tanh(917/115*Pi) 3141592653589793 l004 Pi/tanh(303/38*Pi) 3141592653589793 l004 Pi/tanh(901/113*Pi) 3141592653589793 l004 Pi/tanh(598/75*Pi) 3141592653589793 l004 Pi/tanh(893/112*Pi) 3141592653589793 l004 Pi/tanh(295/37*Pi) 3141592653589793 l004 Pi/tanh(877/110*Pi) 3141592653589793 l004 Pi/tanh(582/73*Pi) 3141592653589793 l004 Pi/tanh(869/109*Pi) 3141592653589793 l004 Pi/tanh(287/36*Pi) 3141592653589793 l004 Pi/tanh(853/107*Pi) 3141592653589793 l004 Pi/tanh(566/71*Pi) 3141592653589793 l004 Pi/tanh(845/106*Pi) 3141592653589793 l004 Pi/tanh(279/35*Pi) 3141592653589793 l004 Pi/tanh(829/104*Pi) 3141592653589793 l004 Pi/tanh(550/69*Pi) 3141592653589793 l004 Pi/tanh(821/103*Pi) 3141592653589793 l004 Pi/tanh(271/34*Pi) 3141592653589793 l004 Pi/tanh(805/101*Pi) 3141592653589793 l004 Pi/tanh(534/67*Pi) 3141592653589793 l004 Pi/tanh(797/100*Pi) 3141592653589793 l004 Pi/tanh(263/33*Pi) 3141592653589793 l004 Pi/tanh(781/98*Pi) 3141592653589793 l004 Pi/tanh(518/65*Pi) 3141592653589793 l004 Pi/tanh(773/97*Pi) 3141592653589793 l004 Pi/tanh(255/32*Pi) 3141592653589793 l004 Pi/tanh(757/95*Pi) 3141592653589793 l004 Pi/tanh(502/63*Pi) 3141592653589793 l004 Pi/tanh(749/94*Pi) 3141592653589793 l004 Pi/tanh(247/31*Pi) 3141592653589793 l004 Pi/tanh(733/92*Pi) 3141592653589793 l004 Pi/tanh(486/61*Pi) 3141592653589793 l004 Pi/tanh(725/91*Pi) 3141592653589793 l004 Pi/tanh(239/30*Pi) 3141592653589793 l004 Pi/tanh(948/119*Pi) 3141592653589793 l004 Pi/tanh(709/89*Pi) 3141592653589793 l004 Pi/tanh(470/59*Pi) 3141592653589793 l004 Pi/tanh(701/88*Pi) 3141592653589793 l004 Pi/tanh(932/117*Pi) 3141592653589793 l004 Pi/tanh(231/29*Pi) 3141592653589793 l004 Pi/tanh(916/115*Pi) 3141592653589793 l004 Pi/tanh(685/86*Pi) 3141592653589793 l004 Pi/tanh(454/57*Pi) 3141592653589793 l004 Pi/tanh(677/85*Pi) 3141592653589793 l004 Pi/tanh(900/113*Pi) 3141592653589793 l004 Pi/tanh(223/28*Pi) 3141592653589793 l004 Pi/tanh(884/111*Pi) 3141592653589793 l004 Pi/tanh(661/83*Pi) 3141592653589793 l004 Pi/tanh(438/55*Pi) 3141592653589793 l004 Pi/tanh(653/82*Pi) 3141592653589793 l004 Pi/tanh(868/109*Pi) 3141592653589793 l004 Pi/tanh(215/27*Pi) 3141592653589793 l004 Pi/tanh(852/107*Pi) 3141592653589793 l004 Pi/tanh(637/80*Pi) 3141592653589793 l004 Pi/tanh(422/53*Pi) 3141592653589793 l004 Pi/tanh(629/79*Pi) 3141592653589793 l004 Pi/tanh(836/105*Pi) 3141592653589793 l004 Pi/tanh(207/26*Pi) 3141592653589793 l004 Pi/tanh(820/103*Pi) 3141592653589793 l004 Pi/tanh(613/77*Pi) 3141592653589793 l004 Pi/tanh(406/51*Pi) 3141592653589793 l004 Pi/tanh(605/76*Pi) 3141592653589793 l004 Pi/tanh(804/101*Pi) 3141592653589793 l004 Pi/tanh(199/25*Pi) 3141592653589793 l004 Pi/tanh(788/99*Pi) 3141592653589793 l004 Pi/tanh(589/74*Pi) 3141592653589793 l004 Pi/tanh(390/49*Pi) 3141592653589793 l004 Pi/tanh(581/73*Pi) 3141592653589793 l004 Pi/tanh(772/97*Pi) 3141592653589793 l004 Pi/tanh(191/24*Pi) 3141592653589793 l004 Pi/tanh(947/119*Pi) 3141592653589793 l004 Pi/tanh(756/95*Pi) 3141592653589793 l004 Pi/tanh(565/71*Pi) 3141592653589793 l004 Pi/tanh(939/118*Pi) 3141592653589793 l004 Pi/tanh(374/47*Pi) 3141592653589793 l004 Pi/tanh(931/117*Pi) 3141592653589793 l004 Pi/tanh(557/70*Pi) 3141592653589793 l004 Pi/tanh(740/93*Pi) 3141592653589793 l004 Pi/tanh(923/116*Pi) 3141592653589793 l004 Pi/tanh(183/23*Pi) 3141592653589793 l004 Pi/tanh(907/114*Pi) 3141592653589793 l004 Pi/tanh(724/91*Pi) 3141592653589793 l004 Pi/tanh(541/68*Pi) 3141592653589793 l004 Pi/tanh(899/113*Pi) 3141592653589793 l004 Pi/tanh(358/45*Pi) 3141592653589793 l004 Pi/tanh(891/112*Pi) 3141592653589793 l004 Pi/tanh(533/67*Pi) 3141592653589793 l004 Pi/tanh(708/89*Pi) 3141592653589793 l004 Pi/tanh(883/111*Pi) 3141592653589793 l004 Pi/tanh(175/22*Pi) 3141592653589793 l004 Pi/tanh(867/109*Pi) 3141592653589793 l004 Pi/tanh(692/87*Pi) 3141592653589793 l004 Pi/tanh(517/65*Pi) 3141592653589793 l004 Pi/tanh(859/108*Pi) 3141592653589793 l004 Pi/tanh(342/43*Pi) 3141592653589793 l004 Pi/tanh(851/107*Pi) 3141592653589793 l004 Pi/tanh(509/64*Pi) 3141592653589793 l004 Pi/tanh(676/85*Pi) 3141592653589793 l004 Pi/tanh(843/106*Pi) 3141592653589793 l004 Pi/tanh(167/21*Pi) 3141592653589793 l004 Pi/tanh(827/104*Pi) 3141592653589793 l004 Pi/tanh(660/83*Pi) 3141592653589793 l004 Pi/tanh(493/62*Pi) 3141592653589793 l004 Pi/tanh(819/103*Pi) 3141592653589793 l004 Pi/tanh(326/41*Pi) 3141592653589793 l004 Pi/tanh(811/102*Pi) 3141592653589793 l004 Pi/tanh(485/61*Pi) 3141592653589793 l004 Pi/tanh(644/81*Pi) 3141592653589793 l004 Pi/tanh(803/101*Pi) 3141592653589793 l004 Pi/tanh(159/20*Pi) 3141592653589793 l004 Pi/tanh(946/119*Pi) 3141592653589793 l004 Pi/tanh(787/99*Pi) 3141592653589793 l004 Pi/tanh(628/79*Pi) 3141592653589793 l004 Pi/tanh(469/59*Pi) 3141592653589793 l004 Pi/tanh(779/98*Pi) 3141592653589793 l004 Pi/tanh(310/39*Pi) 3141592653589793 l004 Pi/tanh(771/97*Pi) 3141592653589793 l004 Pi/tanh(461/58*Pi) 3141592653589793 l004 Pi/tanh(612/77*Pi) 3141592653589793 l004 Pi/tanh(763/96*Pi) 3141592653589793 l004 Pi/tanh(914/115*Pi) 3141592653589793 l004 Pi/tanh(151/19*Pi) 3141592653589793 l004 Pi/tanh(898/113*Pi) 3141592653589793 l004 Pi/tanh(747/94*Pi) 3141592653589793 l004 Pi/tanh(596/75*Pi) 3141592653589793 l004 Pi/tanh(445/56*Pi) 3141592653589793 l004 Pi/tanh(739/93*Pi) 3141592653589793 l004 Pi/tanh(294/37*Pi) 3141592653589793 l004 Pi/tanh(731/92*Pi) 3141592653589793 l004 Pi/tanh(437/55*Pi) 3141592653589793 l004 Pi/tanh(580/73*Pi) 3141592653589793 l004 Pi/tanh(723/91*Pi) 3141592653589793 l004 Pi/tanh(866/109*Pi) 3141592653589793 l004 Pi/tanh(143/18*Pi) 3141592653589793 l004 Pi/tanh(850/107*Pi) 3141592653589793 l004 Pi/tanh(707/89*Pi) 3141592653589793 l004 Pi/tanh(564/71*Pi) 3141592653589793 l004 Pi/tanh(421/53*Pi) 3141592653589793 l004 Pi/tanh(699/88*Pi) 3141592653589793 l004 Pi/tanh(278/35*Pi) 3141592653589793 l004 Pi/tanh(691/87*Pi) 3141592653589793 l004 Pi/tanh(413/52*Pi) 3141592653589793 l004 Pi/tanh(548/69*Pi) 3141592653589793 l004 Pi/tanh(683/86*Pi) 3141592653589793 l004 Pi/tanh(818/103*Pi) 3141592653589793 l004 Pi/tanh(953/120*Pi) 3141592653589793 l004 Pi/tanh(135/17*Pi) 3141592653589793 l004 Pi/tanh(937/118*Pi) 3141592653589793 l004 Pi/tanh(802/101*Pi) 3141592653589793 l004 Pi/tanh(667/84*Pi) 3141592653589793 l004 Pi/tanh(532/67*Pi) 3141592653589793 l004 Pi/tanh(929/117*Pi) 3141592653589793 l004 Pi/tanh(397/50*Pi) 3141592653589793 l004 Pi/tanh(659/83*Pi) 3141592653589793 l004 Pi/tanh(921/116*Pi) 3141592653589793 l004 Pi/tanh(262/33*Pi) 3141592653589793 l004 Pi/tanh(913/115*Pi) 3141592653589793 l004 Pi/tanh(651/82*Pi) 3141592653589793 l004 Pi/tanh(389/49*Pi) 3141592653589793 l004 Pi/tanh(905/114*Pi) 3141592653589793 l004 Pi/tanh(516/65*Pi) 3141592653589793 l004 Pi/tanh(643/81*Pi) 3141592653589793 l004 Pi/tanh(770/97*Pi) 3141592653589793 l004 Pi/tanh(897/113*Pi) 3141592653589793 l004 Pi/tanh(127/16*Pi) 3141592653589793 l004 Pi/tanh(881/111*Pi) 3141592653589793 l004 Pi/tanh(754/95*Pi) 3141592653589793 l004 Pi/tanh(627/79*Pi) 3141592653589793 l004 Pi/tanh(500/63*Pi) 3141592653589793 l004 Pi/tanh(873/110*Pi) 3141592653589793 l004 Pi/tanh(373/47*Pi) 3141592653589793 l004 Pi/tanh(619/78*Pi) 3141592653589793 l004 Pi/tanh(865/109*Pi) 3141592653589793 l004 Pi/tanh(246/31*Pi) 3141592653589793 l004 Pi/tanh(857/108*Pi) 3141592653589793 l004 Pi/tanh(611/77*Pi) 3141592653589793 l004 Pi/tanh(365/46*Pi) 3141592653589793 l004 Pi/tanh(849/107*Pi) 3141592653589793 l004 Pi/tanh(484/61*Pi) 3141592653589793 l004 Pi/tanh(603/76*Pi) 3141592653589793 l004 Pi/tanh(722/91*Pi) 3141592653589793 l004 Pi/tanh(841/106*Pi) 3141592653589793 l004 Pi/tanh(119/15*Pi) 3141592653589793 l004 Pi/tanh(944/119*Pi) 3141592653589793 l004 Pi/tanh(825/104*Pi) 3141592653589793 l004 Pi/tanh(706/89*Pi) 3141592653589793 l004 Pi/tanh(587/74*Pi) 3141592653589793 l004 Pi/tanh(468/59*Pi) 3141592653589793 l004 Pi/tanh(817/103*Pi) 3141592653589793 l004 Pi/tanh(349/44*Pi) 3141592653589793 l004 Pi/tanh(928/117*Pi) 3141592653589793 l004 Pi/tanh(579/73*Pi) 3141592653589793 l004 Pi/tanh(809/102*Pi) 3141592653589793 l004 Pi/tanh(230/29*Pi) 3141592653589793 l004 Pi/tanh(801/101*Pi) 3141592653589793 l004 Pi/tanh(571/72*Pi) 3141592653589793 l004 Pi/tanh(912/115*Pi) 3141592653589793 l004 Pi/tanh(341/43*Pi) 3141592653589793 l004 Pi/tanh(793/100*Pi) 3141592653589793 l004 Pi/tanh(452/57*Pi) 3141592653589793 l004 Pi/tanh(563/71*Pi) 3141592653589793 l004 Pi/tanh(674/85*Pi) 3141592653589793 l004 Pi/tanh(785/99*Pi) 3141592653589793 l004 Pi/tanh(896/113*Pi) 3141592653589793 l004 Pi/tanh(111/14*Pi) 3141592653589793 l004 Pi/tanh(880/111*Pi) 3141592653589793 l004 Pi/tanh(769/97*Pi) 3141592653589793 l004 Pi/tanh(658/83*Pi) 3141592653589793 l004 Pi/tanh(547/69*Pi) 3141592653589793 l004 Pi/tanh(436/55*Pi) 3141592653589793 l004 Pi/tanh(761/96*Pi) 3141592653589793 l004 Pi/tanh(325/41*Pi) 3141592653589793 l004 Pi/tanh(864/109*Pi) 3141592653589793 l004 Pi/tanh(539/68*Pi) 3141592653589793 l004 Pi/tanh(753/95*Pi) 3141592653589793 l004 Pi/tanh(214/27*Pi) 3141592653589793 l004 Pi/tanh(745/94*Pi) 3141592653589793 l004 Pi/tanh(531/67*Pi) 3141592653589793 l004 Pi/tanh(848/107*Pi) 3141592653589793 l004 Pi/tanh(317/40*Pi) 3141592653589793 l004 Pi/tanh(737/93*Pi) 3141592653589793 l004 Pi/tanh(420/53*Pi) 3141592653589793 l004 Pi/tanh(943/119*Pi) 3141592653589793 l004 Pi/tanh(523/66*Pi) 3141592653589793 l004 Pi/tanh(626/79*Pi) 3141592653589793 l004 Pi/tanh(729/92*Pi) 3141592653589793 l004 Pi/tanh(832/105*Pi) 3141592653589793 l004 Pi/tanh(935/118*Pi) 3141592653589793 l004 Pi/tanh(103/13*Pi) 3141592653589793 l004 Pi/tanh(919/116*Pi) 3141592653589793 l004 Pi/tanh(816/103*Pi) 3141592653589793 l004 Pi/tanh(713/90*Pi) 3141592653589793 l004 Pi/tanh(610/77*Pi) 3141592653589793 l004 Pi/tanh(507/64*Pi) 3141592653589793 l004 Pi/tanh(911/115*Pi) 3141592653589793 l004 Pi/tanh(404/51*Pi) 3141592653589793 l004 Pi/tanh(705/89*Pi) 3141592653589793 l004 Pi/tanh(301/38*Pi) 3141592653589793 l004 Pi/tanh(800/101*Pi) 3141592653589793 l004 Pi/tanh(499/63*Pi) 3141592653589793 l004 Pi/tanh(697/88*Pi) 3141592653589793 l004 Pi/tanh(895/113*Pi) 3141592653589793 l004 Pi/tanh(198/25*Pi) 3141592653589793 l004 Pi/tanh(887/112*Pi) 3141592653589793 l004 Pi/tanh(689/87*Pi) 3141592653589793 l004 Pi/tanh(491/62*Pi) 3141592653589793 l004 Pi/tanh(784/99*Pi) 3141592653589793 l004 Pi/tanh(293/37*Pi) 3141592653589793 l004 Pi/tanh(681/86*Pi) 3141592653589793 l004 Pi/tanh(388/49*Pi) 3141592653589793 l004 Pi/tanh(871/110*Pi) 3141592653589793 l004 Pi/tanh(483/61*Pi) 3141592653589793 l004 Pi/tanh(578/73*Pi) 3141592653589793 l004 Pi/tanh(673/85*Pi) 3141592653589793 l004 Pi/tanh(768/97*Pi) 3141592653589793 l004 Pi/tanh(863/109*Pi) 3141592653589793 l004 Pi/tanh(95/12*Pi) 3141592653589793 l004 Pi/tanh(942/119*Pi) 3141592653589793 l004 Pi/tanh(847/107*Pi) 3141592653589793 l004 Pi/tanh(752/95*Pi) 3141592653589793 l004 Pi/tanh(657/83*Pi) 3141592653589793 l004 Pi/tanh(562/71*Pi) 3141592653589793 l004 Pi/tanh(467/59*Pi) 3141592653589793 l004 Pi/tanh(839/106*Pi) 3141592653589793 l004 Pi/tanh(372/47*Pi) 3141592653589793 l004 Pi/tanh(649/82*Pi) 3141592653589793 l004 Pi/tanh(926/117*Pi) 3141592653589793 l004 Pi/tanh(277/35*Pi) 3141592653589793 l004 Pi/tanh(736/93*Pi) 3141592653589793 l004 Pi/tanh(459/58*Pi) 3141592653589793 l004 Pi/tanh(641/81*Pi) 3141592653589793 l004 Pi/tanh(823/104*Pi) 3141592653589793 l004 Pi/tanh(182/23*Pi) 3141592653589793 l004 Pi/tanh(815/103*Pi) 3141592653589793 l004 Pi/tanh(633/80*Pi) 3141592653589793 l004 Pi/tanh(451/57*Pi) 3141592653589793 l004 Pi/tanh(720/91*Pi) 3141592653589793 l004 Pi/tanh(269/34*Pi) 3141592653589793 l004 Pi/tanh(894/113*Pi) 3141592653589793 l004 Pi/tanh(625/79*Pi) 3141592653589793 l004 Pi/tanh(356/45*Pi) 3141592653589793 l004 Pi/tanh(799/101*Pi) 3141592653589793 l004 Pi/tanh(443/56*Pi) 3141592653589793 l004 Pi/tanh(530/67*Pi) 3141592653589793 l004 Pi/tanh(617/78*Pi) 3141592653589793 l004 Pi/tanh(704/89*Pi) 3141592653589793 l004 Pi/tanh(791/100*Pi) 3141592653589793 l004 Pi/tanh(878/111*Pi) 3141592653589793 l004 Pi/tanh(87/11*Pi) 3141592653589793 l004 Pi/tanh(949/120*Pi) 3141592653589793 l004 Pi/tanh(862/109*Pi) 3141592653589793 l004 Pi/tanh(775/98*Pi) 3141592653589793 l004 Pi/tanh(688/87*Pi) 3141592653589793 l004 Pi/tanh(601/76*Pi) 3141592653589793 l004 Pi/tanh(514/65*Pi) 3141592653589793 l004 Pi/tanh(941/119*Pi) 3141592653589793 l004 Pi/tanh(427/54*Pi) 3141592653589793 l004 Pi/tanh(767/97*Pi) 3141592653589793 l004 Pi/tanh(340/43*Pi) 3141592653589793 l004 Pi/tanh(933/118*Pi) 3141592653589793 l004 Pi/tanh(593/75*Pi) 3141592653589793 l004 Pi/tanh(846/107*Pi) 3141592653589793 l004 Pi/tanh(253/32*Pi) 3141592653589793 l004 Pi/tanh(925/117*Pi) 3141592653589793 l004 Pi/tanh(672/85*Pi) 3141592653589793 l004 Pi/tanh(419/53*Pi) 3141592653589793 m001 ZetaQ(3)^Psi(1,1/3)+Pi 3141592653589793 l004 Pi/tanh(585/74*Pi) 3141592653589793 l004 Pi/tanh(751/95*Pi) 3141592653589793 l004 Pi/tanh(917/116*Pi) 3141592653589793 l004 Pi/tanh(166/21*Pi) 3141592653589793 l004 Pi/tanh(909/115*Pi) 3141592653589793 l004 Pi/tanh(743/94*Pi) 3141592653589793 l004 Pi/tanh(577/73*Pi) 3141592653589793 l004 Pi/tanh(411/52*Pi) 3141592653589793 l004 Pi/tanh(656/83*Pi) 3141592653589793 l004 Pi/tanh(901/114*Pi) 3141592653589793 l004 Pi/tanh(245/31*Pi) 3141592653589793 l004 Pi/tanh(814/103*Pi) 3141592653589793 l004 Pi/tanh(569/72*Pi) 3141592653589793 l004 Pi/tanh(893/113*Pi) 3141592653589793 l004 Pi/tanh(324/41*Pi) 3141592653589793 l004 Pi/tanh(727/92*Pi) 3141592653589793 l004 Pi/tanh(403/51*Pi) 3141592653589793 l004 Pi/tanh(885/112*Pi) 3141592653589793 l004 Pi/tanh(482/61*Pi) 3141592653589793 l004 Pi/tanh(561/71*Pi) 3141592653589793 l004 Pi/tanh(640/81*Pi) 3141592653589793 l004 Pi/tanh(719/91*Pi) 3141592653589793 l004 Pi/tanh(798/101*Pi) 3141592653589793 l004 Pi/tanh(877/111*Pi) 3141592653589793 l004 Pi/tanh(79/10*Pi) 3141592653589793 l004 Pi/tanh(940/119*Pi) 3141592653589793 l004 Pi/tanh(861/109*Pi) 3141592653589793 l004 Pi/tanh(782/99*Pi) 3141592653589793 l004 Pi/tanh(703/89*Pi) 3141592653589793 l004 Pi/tanh(624/79*Pi) 3141592653589793 l004 Pi/tanh(545/69*Pi) 3141592653589793 l004 Pi/tanh(466/59*Pi) 3141592653589793 l004 Pi/tanh(853/108*Pi) 3141592653589793 l004 Pi/tanh(387/49*Pi) 3141592653589793 l004 Pi/tanh(695/88*Pi) 3141592653589793 l004 Pi/tanh(308/39*Pi) 3141592653589793 l004 Pi/tanh(845/107*Pi) 3141592653589793 l004 Pi/tanh(537/68*Pi) 3141592653589793 l004 Pi/tanh(766/97*Pi) 3141592653589793 l004 Pi/tanh(229/29*Pi) 3141592653589793 l004 Pi/tanh(837/106*Pi) 3141592653589793 l004 Pi/tanh(608/77*Pi) 3141592653589793 l004 Pi/tanh(379/48*Pi) 3141592653589793 l004 Pi/tanh(908/115*Pi) 3141592653589793 l004 Pi/tanh(529/67*Pi) 3141592653589793 l004 Pi/tanh(679/86*Pi) 3141592653589793 l004 Pi/tanh(829/105*Pi) 3141592653589793 l004 Pi/tanh(150/19*Pi) 3141592653589793 l004 Pi/tanh(821/104*Pi) 3141592653589793 l004 Pi/tanh(671/85*Pi) 3141592653589793 l004 Pi/tanh(521/66*Pi) 3141592653589793 l004 Pi/tanh(892/113*Pi) 3141592653589793 l004 Pi/tanh(371/47*Pi) 3141592653589793 l004 Pi/tanh(592/75*Pi) 3141592653589793 l004 Pi/tanh(813/103*Pi) 3141592653589793 l004 Pi/tanh(221/28*Pi) 3141592653589793 l004 Pi/tanh(734/93*Pi) 3141592653589793 l004 Pi/tanh(513/65*Pi) 3141592653589793 l004 Pi/tanh(805/102*Pi) 3141592653589793 l004 Pi/tanh(292/37*Pi) 3141592653589793 l004 Pi/tanh(947/120*Pi) 3141592653589793 l004 Pi/tanh(655/83*Pi) 3141592653589793 l004 Pi/tanh(363/46*Pi) 3141592653589793 l004 Pi/tanh(797/101*Pi) 3141592653589793 l004 Pi/tanh(434/55*Pi) 3141592653589793 l004 Pi/tanh(939/119*Pi) 3141592653589793 l004 Pi/tanh(505/64*Pi) 3141592653589793 l004 Pi/tanh(576/73*Pi) 3141592653589793 l004 Pi/tanh(647/82*Pi) 3141592653589793 l004 Pi/tanh(718/91*Pi) 3141592653589793 l004 Pi/tanh(789/100*Pi) 3141592653589793 l004 Pi/tanh(860/109*Pi) 3141592653589793 l004 Pi/tanh(931/118*Pi) 3141592653589793 l004 Pi/tanh(71/9*Pi) 3141592653589793 l004 Pi/tanh(915/116*Pi) 3141592653589793 l004 Pi/tanh(844/107*Pi) 3141592653589793 l004 Pi/tanh(773/98*Pi) 3141592653589793 l004 Pi/tanh(702/89*Pi) 3141592653589793 l004 Pi/tanh(631/80*Pi) 3141592653589793 l004 Pi/tanh(560/71*Pi) 3141592653589793 l004 Pi/tanh(489/62*Pi) 3141592653589793 l004 Pi/tanh(907/115*Pi) 3141592653589793 l004 Pi/tanh(418/53*Pi) 3141592653589793 l004 Pi/tanh(765/97*Pi) 3141592653589793 l004 Pi/tanh(347/44*Pi) 3141592653589793 l004 Pi/tanh(623/79*Pi) 3141592653589793 l004 Pi/tanh(899/114*Pi) 3141592653589793 l004 Pi/tanh(276/35*Pi) 3141592653589793 l004 Pi/tanh(757/96*Pi) 3141592653589793 l004 Pi/tanh(481/61*Pi) 3141592653589793 l004 Pi/tanh(686/87*Pi) 3141592653589793 l004 Pi/tanh(891/113*Pi) 3141592653589793 l004 Pi/tanh(205/26*Pi) 3141592653589793 l004 Pi/tanh(749/95*Pi) 3141592653589793 l004 Pi/tanh(544/69*Pi) 3141592653589793 l004 Pi/tanh(883/112*Pi) 3141592653589793 l004 Pi/tanh(339/43*Pi) 3141592653589793 l004 Pi/tanh(812/103*Pi) 3141592653589793 l004 Pi/tanh(473/60*Pi) 3141592653589793 l004 Pi/tanh(607/77*Pi) 3141592653589793 l004 Pi/tanh(741/94*Pi) 3141592653589793 l004 Pi/tanh(875/111*Pi) 3141592653589793 l004 Pi/tanh(134/17*Pi) 3141592653589793 l004 Pi/tanh(867/110*Pi) 3141592653589793 l004 Pi/tanh(733/93*Pi) 3141592653589793 l004 Pi/tanh(599/76*Pi) 3141592653589793 l004 Pi/tanh(465/59*Pi) 3141592653589793 l004 Pi/tanh(796/101*Pi) 3141592653589793 l004 Pi/tanh(331/42*Pi) 3141592653589793 l004 Pi/tanh(859/109*Pi) 3141592653589793 l004 Pi/tanh(528/67*Pi) 3141592653589793 l004 Pi/tanh(725/92*Pi) 3141592653589793 l004 Pi/tanh(922/117*Pi) 3141592653589793 l004 Pi/tanh(197/25*Pi) 3141592653589793 l004 Pi/tanh(851/108*Pi) 3141592653589793 l004 Pi/tanh(654/83*Pi) 3141592653589793 l004 Pi/tanh(457/58*Pi) 3141592653589793 l004 Pi/tanh(717/91*Pi) 3141592653589793 l004 Pi/tanh(260/33*Pi) 3141592653589793 l004 Pi/tanh(843/107*Pi) 3141592653589793 l004 Pi/tanh(583/74*Pi) 3141592653589793 l004 Pi/tanh(906/115*Pi) 3141592653589793 l004 Pi/tanh(323/41*Pi) 3141592653589793 l004 Pi/tanh(709/90*Pi) 3141592653589793 l004 Pi/tanh(386/49*Pi) 3141592653589793 l004 Pi/tanh(835/106*Pi) 3141592653589793 l004 Pi/tanh(449/57*Pi) 3141592653589793 l004 Pi/tanh(512/65*Pi) 3141592653589793 l004 Pi/tanh(575/73*Pi) 3141592653589793 l004 Pi/tanh(638/81*Pi) 3141592653589793 l004 Pi/tanh(701/89*Pi) 3141592653589793 l004 Pi/tanh(764/97*Pi) 3141592653589793 l004 Pi/tanh(827/105*Pi) 3141592653589793 l004 Pi/tanh(890/113*Pi) 3141592653589793 l004 Pi/tanh(63/8*Pi) 3141592653589793 l004 Pi/tanh(937/119*Pi) 3141592653589793 l004 Pi/tanh(874/111*Pi) 3141592653589793 l004 Pi/tanh(811/103*Pi) 3141592653589793 l004 Pi/tanh(748/95*Pi) 3141592653589793 l004 Pi/tanh(685/87*Pi) 3141592653589793 l004 Pi/tanh(622/79*Pi) 3141592653589793 l004 Pi/tanh(559/71*Pi) 3141592653589793 l004 Pi/tanh(496/63*Pi) 3141592653589793 l004 Pi/tanh(929/118*Pi) 3141592653589793 l004 Pi/tanh(433/55*Pi) 3141592653589793 l004 Pi/tanh(803/102*Pi) 3141592653589793 l004 Pi/tanh(370/47*Pi) 3141592653589793 l004 Pi/tanh(677/86*Pi) 3141592653589793 l004 Pi/tanh(307/39*Pi) 3141592653589793 l004 Pi/tanh(858/109*Pi) 3141592653589793 l004 Pi/tanh(551/70*Pi) 3141592653589793 l004 Pi/tanh(795/101*Pi) 3141592653589793 l004 Pi/tanh(244/31*Pi) 3141592653589793 l004 Pi/tanh(913/116*Pi) 3141592653589793 l004 Pi/tanh(669/85*Pi) 3141592653589793 l004 Pi/tanh(425/54*Pi) 3141592653589793 l004 Pi/tanh(606/77*Pi) 3141592653589793 l004 Pi/tanh(787/100*Pi) 3141592653589793 l004 Pi/tanh(181/23*Pi) 3141592653589793 l004 Pi/tanh(842/107*Pi) 3141592653589793 l004 Pi/tanh(661/84*Pi) 3141592653589793 l004 Pi/tanh(480/61*Pi) 3141592653589793 l004 Pi/tanh(779/99*Pi) 3141592653589793 l004 Pi/tanh(299/38*Pi) 3141592653589793 l004 Pi/tanh(716/91*Pi) 3141592653589793 l004 Pi/tanh(417/53*Pi) 3141592653589793 l004 Pi/tanh(535/68*Pi) 3141592653589793 l004 Pi/tanh(653/83*Pi) 3141592653589793 l004 Pi/tanh(771/98*Pi) 3141592653589793 l004 Pi/tanh(889/113*Pi) 3141592653589793 l004 Pi/tanh(118/15*Pi) 3141592653589793 l004 Pi/tanh(881/112*Pi) 3141592653589793 l004 Pi/tanh(763/97*Pi) 3141592653589793 l004 Pi/tanh(645/82*Pi) 3141592653589793 l004 Pi/tanh(527/67*Pi) 3141592653589793 l004 Pi/tanh(936/119*Pi) 3141592653589793 l004 Pi/tanh(409/52*Pi) 3141592653589793 l004 Pi/tanh(700/89*Pi) 3141592653589793 l004 Pi/tanh(291/37*Pi) 3141592653589793 l004 Pi/tanh(755/96*Pi) 3141592653589793 l004 Pi/tanh(464/59*Pi) 3141592653589793 l004 Pi/tanh(637/81*Pi) 3141592653589793 l004 Pi/tanh(810/103*Pi) 3141592653589793 l004 Pi/tanh(173/22*Pi) 3141592653589793 l004 Pi/tanh(920/117*Pi) 3141592653589793 l004 Pi/tanh(747/95*Pi) 3141592653589793 l004 Pi/tanh(574/73*Pi) 3141592653589793 l004 Pi/tanh(401/51*Pi) 3141592653589793 l004 Pi/tanh(629/80*Pi) 3141592653589793 l004 Pi/tanh(857/109*Pi) 3141592653589793 l004 Pi/tanh(228/29*Pi) 3141592653589793 l004 Pi/tanh(739/94*Pi) 3141592653589793 l004 Pi/tanh(511/65*Pi) 3141592653589793 l004 Pi/tanh(794/101*Pi) 3141592653589793 l004 Pi/tanh(283/36*Pi) 3141592653589793 l004 Pi/tanh(904/115*Pi) 3141592653589793 l004 Pi/tanh(621/79*Pi) 3141592653589793 l004 Pi/tanh(338/43*Pi) 3141592653589793 l004 Pi/tanh(731/93*Pi) 3141592653589793 l004 Pi/tanh(393/50*Pi) 3141592653589793 l004 Pi/tanh(841/107*Pi) 3141592653589793 l004 Pi/tanh(448/57*Pi) 3141592653589793 l004 Pi/tanh(503/64*Pi) 3141592653589793 l004 Pi/tanh(558/71*Pi) 3141592653589793 l004 Pi/tanh(613/78*Pi) 3141592653589793 l004 Pi/tanh(668/85*Pi) 3141592653589793 l004 Pi/tanh(723/92*Pi) 3141592653589793 l004 Pi/tanh(778/99*Pi) 3141592653589793 l004 Pi/tanh(833/106*Pi) 3141592653589793 l004 Pi/tanh(888/113*Pi) 3141592653589793 l004 Pi/tanh(943/120*Pi) 3141592653589793 l004 Pi/tanh(55/7*Pi) 3141592653589793 l004 Pi/tanh(927/118*Pi) 3141592653589793 l004 Pi/tanh(872/111*Pi) 3141592653589793 l004 Pi/tanh(817/104*Pi) 3141592653589793 l004 Pi/tanh(762/97*Pi) 3141592653589793 l004 Pi/tanh(707/90*Pi) 3141592653589793 l004 Pi/tanh(652/83*Pi) 3141592653589793 l004 Pi/tanh(597/76*Pi) 3141592653589793 l004 Pi/tanh(542/69*Pi) 3141592653589793 l004 Pi/tanh(487/62*Pi) 3141592653589793 l004 Pi/tanh(919/117*Pi) 3141592653589793 l004 Pi/tanh(432/55*Pi) 3141592653589793 l004 Pi/tanh(809/103*Pi) 3141592653589793 l004 Pi/tanh(377/48*Pi) 3141592653589793 l004 Pi/tanh(699/89*Pi) 3141592653589793 l004 Pi/tanh(322/41*Pi) 3141592653589793 l004 Pi/tanh(911/116*Pi) 3141592653589793 l004 Pi/tanh(589/75*Pi) 3141592653589793 l004 Pi/tanh(856/109*Pi) 3141592653589793 l004 Pi/tanh(267/34*Pi) 3141592653589793 l004 Pi/tanh(746/95*Pi) 3141592653589793 l004 Pi/tanh(479/61*Pi) 3141592653589793 l004 Pi/tanh(691/88*Pi) 3141592653589793 l004 Pi/tanh(903/115*Pi) 3141592653589793 l004 Pi/tanh(212/27*Pi) 3141592653589793 l004 Pi/tanh(793/101*Pi) 3141592653589793 l004 Pi/tanh(581/74*Pi) 3141592653589793 l004 Pi/tanh(369/47*Pi) 3141592653589793 l004 Pi/tanh(895/114*Pi) 3141592653589793 l004 Pi/tanh(526/67*Pi) 3141592653589793 l004 Pi/tanh(683/87*Pi) 3141592653589793 l004 Pi/tanh(840/107*Pi) 3141592653589793 l004 Pi/tanh(157/20*Pi) 3141592653589793 l004 Pi/tanh(887/113*Pi) 3141592653589793 l004 Pi/tanh(730/93*Pi) 3141592653589793 l004 Pi/tanh(573/73*Pi) 3141592653589793 l004 Pi/tanh(416/53*Pi) 3141592653589793 l004 Pi/tanh(675/86*Pi) 3141592653589793 l004 Pi/tanh(934/119*Pi) 3141592653589793 l004 Pi/tanh(259/33*Pi) 3141592653589793 l004 Pi/tanh(879/112*Pi) 3141592653589793 l004 Pi/tanh(620/79*Pi) 3141592653589793 l004 Pi/tanh(361/46*Pi) 3141592653589793 l004 Pi/tanh(824/105*Pi) 3141592653589793 l004 Pi/tanh(463/59*Pi) 3141592653589793 l004 Pi/tanh(565/72*Pi) 3141592653589793 l004 Pi/tanh(667/85*Pi) 3141592653589793 l004 Pi/tanh(769/98*Pi) 3141592653589793 l004 Pi/tanh(871/111*Pi) 3141592653589793 l004 Pi/tanh(102/13*Pi) 3141592653589793 l004 Pi/tanh(863/110*Pi) 3141592653589793 l004 Pi/tanh(761/97*Pi) 3141592653589793 l004 Pi/tanh(659/84*Pi) 3141592653589793 l004 Pi/tanh(557/71*Pi) 3141592653589793 l004 Pi/tanh(455/58*Pi) 3141592653589793 l004 Pi/tanh(808/103*Pi) 3141592653589793 l004 Pi/tanh(353/45*Pi) 3141592653589793 l004 Pi/tanh(604/77*Pi) 3141592653589793 l004 Pi/tanh(855/109*Pi) 3141592653589793 l004 Pi/tanh(251/32*Pi) 3141592653589793 l004 Pi/tanh(902/115*Pi) 3141592653589793 l004 Pi/tanh(651/83*Pi) 3141592653589793 l004 Pi/tanh(400/51*Pi) 3141592653589793 l004 Pi/tanh(549/70*Pi) 3141592653589793 l004 Pi/tanh(698/89*Pi) 3141592653589793 l004 Pi/tanh(847/108*Pi) 3141592653589793 l004 Pi/tanh(149/19*Pi) 3141592653589793 l004 Pi/tanh(941/120*Pi) 3141592653589793 l004 Pi/tanh(792/101*Pi) 3141592653589793 l004 Pi/tanh(643/82*Pi) 3141592653589793 l004 Pi/tanh(494/63*Pi) 3141592653589793 l004 Pi/tanh(839/107*Pi) 3141592653589793 l004 Pi/tanh(345/44*Pi) 3141592653589793 l004 Pi/tanh(886/113*Pi) 3141592653589793 l004 Pi/tanh(541/69*Pi) 3141592653589793 l004 Pi/tanh(737/94*Pi) 3141592653589793 l004 Pi/tanh(933/119*Pi) 3141592653589793 l004 Pi/tanh(196/25*Pi) 3141592653589793 l004 Pi/tanh(831/106*Pi) 3141592653589793 l004 Pi/tanh(635/81*Pi) 3141592653589793 l004 Pi/tanh(439/56*Pi) 3141592653589793 l004 Pi/tanh(682/87*Pi) 3141592653589793 l004 Pi/tanh(925/118*Pi) 3141592653589793 l004 Pi/tanh(243/31*Pi) 3141592653589793 l004 Pi/tanh(776/99*Pi) 3141592653589793 l004 Pi/tanh(533/68*Pi) 3141592653589793 l004 Pi/tanh(823/105*Pi) 3141592653589793 l004 Pi/tanh(290/37*Pi) 3141592653589793 l004 Pi/tanh(917/117*Pi) 3141592653589793 l004 Pi/tanh(627/80*Pi) 3141592653589793 l004 Pi/tanh(337/43*Pi) 3141592653589793 l004 Pi/tanh(721/92*Pi) 3141592653589793 l004 Pi/tanh(384/49*Pi) 3141592653589793 l004 Pi/tanh(815/104*Pi) 3141592653589793 l004 Pi/tanh(431/55*Pi) 3141592653589793 l004 Pi/tanh(909/116*Pi) 3141592653589793 l004 Pi/tanh(478/61*Pi) 3141592653589793 l004 Pi/tanh(525/67*Pi) 3141592653589793 l004 Pi/tanh(572/73*Pi) 3141592653589793 l004 Pi/tanh(619/79*Pi) 3141592653589793 l004 Pi/tanh(666/85*Pi) 3141592653589793 l004 Pi/tanh(713/91*Pi) 3141592653589793 l004 Pi/tanh(760/97*Pi) 3141592653589793 l004 Pi/tanh(807/103*Pi) 3141592653589793 l004 Pi/tanh(854/109*Pi) 3141592653589793 l004 Pi/tanh(901/115*Pi) 3141592653589793 l004 Pi/tanh(47/6*Pi) 3141592653589793 l004 Pi/tanh(932/119*Pi) 3141592653589793 l004 Pi/tanh(885/113*Pi) 3141592653589793 l004 Pi/tanh(838/107*Pi) 3141592653589793 l004 Pi/tanh(791/101*Pi) 3141592653589793 l004 Pi/tanh(744/95*Pi) 3141592653589793 l004 Pi/tanh(697/89*Pi) 3141592653589793 l004 Pi/tanh(650/83*Pi) 3141592653589793 l004 Pi/tanh(603/77*Pi) 3141592653589793 l004 Pi/tanh(556/71*Pi) 3141592653589793 l004 Pi/tanh(509/65*Pi) 3141592653589793 l004 Pi/tanh(462/59*Pi) 3141592653589793 l004 Pi/tanh(877/112*Pi) 3141592653589793 l004 Pi/tanh(415/53*Pi) 3141592653589793 l004 Pi/tanh(783/100*Pi) 3141592653589793 l004 Pi/tanh(368/47*Pi) 3141592653589793 l004 Pi/tanh(689/88*Pi) 3141592653589793 l004 Pi/tanh(321/41*Pi) 3141592653589793 l004 Pi/tanh(916/117*Pi) 3141592653589793 l004 Pi/tanh(595/76*Pi) 3141592653589793 l004 Pi/tanh(869/111*Pi) 3141592653589793 l004 Pi/tanh(274/35*Pi) 3141592653589793 l004 Pi/tanh(775/99*Pi) 3141592653589793 l004 Pi/tanh(501/64*Pi) 3141592653589793 l004 Pi/tanh(728/93*Pi) 3141592653589793 l004 Pi/tanh(227/29*Pi) 3141592653589793 l004 Pi/tanh(861/110*Pi) 3141592653589793 l004 Pi/tanh(634/81*Pi) 3141592653589793 l004 Pi/tanh(407/52*Pi) 3141592653589793 l004 Pi/tanh(587/75*Pi) 3141592653589793 l004 Pi/tanh(767/98*Pi) 3141592653589793 l004 Pi/tanh(180/23*Pi) 3141592653589793 l004 Pi/tanh(853/109*Pi) 3141592653589793 l004 Pi/tanh(673/86*Pi) 3141592653589793 l004 Pi/tanh(493/63*Pi) 3141592653589793 l004 Pi/tanh(806/103*Pi) 3141592653589793 l004 Pi/tanh(313/40*Pi) 3141592653589793 l004 Pi/tanh(759/97*Pi) 3141592653589793 l004 Pi/tanh(446/57*Pi) 3141592653589793 l004 Pi/tanh(579/74*Pi) 3141592653589793 l004 Pi/tanh(712/91*Pi) 3141592653589793 l004 Pi/tanh(845/108*Pi) 3141592653589793 l004 Pi/tanh(133/17*Pi) 3141592653589793 l004 Pi/tanh(884/113*Pi) 3141592653589793 l004 Pi/tanh(751/96*Pi) 3141592653589793 l004 Pi/tanh(618/79*Pi) 3141592653589793 l004 Pi/tanh(485/62*Pi) 3141592653589793 l004 Pi/tanh(837/107*Pi) 3141592653589793 l004 Pi/tanh(352/45*Pi) 3141592653589793 l004 Pi/tanh(923/118*Pi) 3141592653589793 l004 Pi/tanh(571/73*Pi) 3141592653589793 l004 Pi/tanh(790/101*Pi) 3141592653589793 l004 Pi/tanh(219/28*Pi) 3141592653589793 l004 Pi/tanh(743/95*Pi) 3141592653589793 l004 Pi/tanh(524/67*Pi) 3141592653589793 l004 Pi/tanh(829/106*Pi) 3141592653589793 l004 Pi/tanh(305/39*Pi) 3141592653589793 l004 Pi/tanh(696/89*Pi) 3141592653589793 l004 Pi/tanh(391/50*Pi) 3141592653589793 l004 Pi/tanh(868/111*Pi) 3141592653589793 l004 Pi/tanh(477/61*Pi) 3141592653589793 l004 Pi/tanh(563/72*Pi) 3141592653589793 l004 Pi/tanh(649/83*Pi) 3141592653589793 l004 Pi/tanh(735/94*Pi) 3141592653589793 l004 Pi/tanh(821/105*Pi) 3141592653589793 l004 Pi/tanh(907/116*Pi) 3141592653589793 l004 Pi/tanh(86/11*Pi) 3141592653589793 l004 Pi/tanh(899/115*Pi) 3141592653589793 l004 Pi/tanh(813/104*Pi) 3141592653589793 l004 Pi/tanh(727/93*Pi) 3141592653589793 l004 Pi/tanh(641/82*Pi) 3141592653589793 l004 Pi/tanh(555/71*Pi) 3141592653589793 l004 Pi/tanh(469/60*Pi) 3141592653589793 l004 Pi/tanh(852/109*Pi) 3141592653589793 l004 Pi/tanh(383/49*Pi) 3141592653589793 l004 Pi/tanh(680/87*Pi) 3141592653589793 l004 Pi/tanh(297/38*Pi) 3141592653589793 l004 Pi/tanh(805/103*Pi) 3141592653589793 l004 Pi/tanh(508/65*Pi) 3141592653589793 l004 Pi/tanh(719/92*Pi) 3141592653589793 l004 Pi/tanh(930/119*Pi) 3141592653589793 l004 Pi/tanh(211/27*Pi) 3141592653589793 l004 Pi/tanh(758/97*Pi) 3141592653589793 l004 Pi/tanh(547/70*Pi) 3141592653589793 l004 Pi/tanh(883/113*Pi) 3141592653589793 l004 Pi/tanh(336/43*Pi) 3141592653589793 l004 Pi/tanh(797/102*Pi) 3141592653589793 l004 Pi/tanh(461/59*Pi) 3141592653589793 l004 Pi/tanh(586/75*Pi) 3141592653589793 l004 Pi/tanh(711/91*Pi) 3141592653589793 l004 Pi/tanh(836/107*Pi) 3141592653589793 l004 Pi/tanh(125/16*Pi) 3141592653589793 l004 Pi/tanh(914/117*Pi) 3141592653589793 l004 Pi/tanh(789/101*Pi) 3141592653589793 l004 Pi/tanh(664/85*Pi) 3141592653589793 l004 Pi/tanh(539/69*Pi) 3141592653589793 l004 Pi/tanh(414/53*Pi) 3141592653589793 l004 Pi/tanh(703/90*Pi) 3141592653589793 l004 Pi/tanh(289/37*Pi) 3141592653589793 l004 Pi/tanh(742/95*Pi) 3141592653589793 l004 Pi/tanh(453/58*Pi) 3141592653589793 l004 Pi/tanh(617/79*Pi) 3141592653589793 l004 Pi/tanh(781/100*Pi) 3141592653589793 l004 Pi/tanh(164/21*Pi) 3141592653589793 l004 Pi/tanh(859/110*Pi) 3141592653589793 l004 Pi/tanh(695/89*Pi) 3141592653589793 l004 Pi/tanh(531/68*Pi) 3141592653589793 l004 Pi/tanh(898/115*Pi) 3141592653589793 l004 Pi/tanh(367/47*Pi) 3141592653589793 l004 Pi/tanh(937/120*Pi) 3141592653589793 l004 Pi/tanh(570/73*Pi) 3141592653589793 l004 Pi/tanh(773/99*Pi) 3141592653589793 l004 Pi/tanh(203/26*Pi) 3141592653589793 l004 Pi/tanh(851/109*Pi) 3141592653589793 l004 Pi/tanh(648/83*Pi) 3141592653589793 l004 Pi/tanh(445/57*Pi) 3141592653589793 l004 Pi/tanh(687/88*Pi) 3141592653589793 l004 Pi/tanh(929/119*Pi) 3141592653589793 l004 Pi/tanh(242/31*Pi) 3141592653589793 l004 Pi/tanh(765/98*Pi) 3141592653589793 l004 Pi/tanh(523/67*Pi) 3141592653589793 l004 Pi/tanh(804/103*Pi) 3141592653589793 l004 Pi/tanh(281/36*Pi) 3141592653589793 l004 Pi/tanh(882/113*Pi) 3141592653589793 l004 Pi/tanh(601/77*Pi) 3141592653589793 l004 Pi/tanh(921/118*Pi) 3141592653589793 l004 Pi/tanh(320/41*Pi) 3141592653589793 l004 Pi/tanh(679/87*Pi) 3141592653589793 l004 Pi/tanh(359/46*Pi) 3141592653589793 l004 Pi/tanh(757/97*Pi) 3141592653589793 l004 Pi/tanh(398/51*Pi) 3141592653589793 l004 Pi/tanh(835/107*Pi) 3141592653589793 l004 Pi/tanh(437/56*Pi) 3141592653589793 l004 Pi/tanh(913/117*Pi) 3141592653589793 l004 Pi/tanh(476/61*Pi) 3141592653589793 l004 Pi/tanh(515/66*Pi) 3141592653589793 l004 Pi/tanh(554/71*Pi) 3141592653589793 l004 Pi/tanh(593/76*Pi) 3141592653589793 l004 Pi/tanh(632/81*Pi) 3141592653589793 l004 Pi/tanh(671/86*Pi) 3141592653589793 l004 Pi/tanh(710/91*Pi) 3141592653589793 l004 Pi/tanh(749/96*Pi) 3141592653589793 l004 Pi/tanh(788/101*Pi) 3141592653589793 l004 Pi/tanh(827/106*Pi) 3141592653589793 l004 Pi/tanh(866/111*Pi) 3141592653589793 l004 Pi/tanh(905/116*Pi) 3141592653589793 l004 Pi/tanh(39/5*Pi) 3141592653589793 l004 Pi/tanh(928/119*Pi) 3141592653589793 l004 Pi/tanh(889/114*Pi) 3141592653589793 l004 Pi/tanh(850/109*Pi) 3141592653589793 l004 Pi/tanh(811/104*Pi) 3141592653589793 l004 Pi/tanh(772/99*Pi) 3141592653589793 l004 Pi/tanh(733/94*Pi) 3141592653589793 l004 Pi/tanh(694/89*Pi) 3141592653589793 l004 Pi/tanh(655/84*Pi) 3141592653589793 l004 Pi/tanh(616/79*Pi) 3141592653589793 l004 Pi/tanh(577/74*Pi) 3141592653589793 l004 Pi/tanh(538/69*Pi) 3141592653589793 l004 Pi/tanh(499/64*Pi) 3141592653589793 l004 Pi/tanh(460/59*Pi) 3141592653589793 l004 Pi/tanh(881/113*Pi) 3141592653589793 l004 Pi/tanh(421/54*Pi) 3141592653589793 l004 Pi/tanh(803/103*Pi) 3141592653589793 l004 Pi/tanh(382/49*Pi) 3141592653589793 l004 Pi/tanh(725/93*Pi) 3141592653589793 l004 Pi/tanh(343/44*Pi) 3141592653589793 l004 Pi/tanh(647/83*Pi) 3141592653589793 l004 Pi/tanh(304/39*Pi) 3141592653589793 l004 Pi/tanh(873/112*Pi) 3141592653589793 l004 Pi/tanh(569/73*Pi) 3141592653589793 l004 Pi/tanh(834/107*Pi) 3141592653589793 l004 Pi/tanh(265/34*Pi) 3141592653589793 l004 Pi/tanh(756/97*Pi) 3141592653589793 l004 Pi/tanh(491/63*Pi) 3141592653589793 l004 Pi/tanh(717/92*Pi) 3141592653589793 l004 Pi/tanh(226/29*Pi) 3141592653589793 l004 Pi/tanh(865/111*Pi) 3141592653589793 l004 Pi/tanh(639/82*Pi) 3141592653589793 l004 Pi/tanh(413/53*Pi) 3141592653589793 l004 Pi/tanh(600/77*Pi) 3141592653589793 l004 Pi/tanh(787/101*Pi) 3141592653589793 l004 Pi/tanh(187/24*Pi) 3141592653589793 l004 Pi/tanh(896/115*Pi) 3141592653589793 l004 Pi/tanh(709/91*Pi) 3141592653589793 l004 Pi/tanh(522/67*Pi) 3141592653589793 l004 Pi/tanh(857/110*Pi) 3141592653589793 l004 Pi/tanh(335/43*Pi) 3141592653589793 l004 Pi/tanh(818/105*Pi) 3141592653589793 l004 Pi/tanh(483/62*Pi) 3141592653589793 l004 Pi/tanh(631/81*Pi) 3141592653589793 l004 Pi/tanh(779/100*Pi) 3141592653589793 l004 Pi/tanh(927/119*Pi) 3141592653589793 l004 Pi/tanh(148/19*Pi) 3141592653589793 l004 Pi/tanh(849/109*Pi) 3141592653589793 l004 Pi/tanh(701/90*Pi) 3141592653589793 l004 Pi/tanh(553/71*Pi) 3141592653589793 l004 Pi/tanh(405/52*Pi) 3141592653589793 l004 Pi/tanh(662/85*Pi) 3141592653589793 l004 Pi/tanh(919/118*Pi) 3141592653589793 l004 Pi/tanh(257/33*Pi) 3141592653589793 l004 Pi/tanh(880/113*Pi) 3141592653589793 l004 Pi/tanh(623/80*Pi) 3141592653589793 l004 Pi/tanh(366/47*Pi) 3141592653589793 l004 Pi/tanh(841/108*Pi) 3141592653589793 l004 Pi/tanh(475/61*Pi) 3141592653589793 l004 Pi/tanh(584/75*Pi) 3141592653589793 l004 Pi/tanh(693/89*Pi) 3141592653589793 l004 Pi/tanh(802/103*Pi) 3141592653589793 l004 Pi/tanh(911/117*Pi) 3141592653589793 l004 Pi/tanh(109/14*Pi) 3141592653589793 l004 Pi/tanh(833/107*Pi) 3141592653589793 l004 Pi/tanh(724/93*Pi) 3141592653589793 l004 Pi/tanh(615/79*Pi) 3141592653589793 l004 Pi/tanh(506/65*Pi) 3141592653589793 l004 Pi/tanh(903/116*Pi) 3141592653589793 l004 Pi/tanh(397/51*Pi) 3141592653589793 l004 Pi/tanh(685/88*Pi) 3141592653589793 l004 Pi/tanh(288/37*Pi) 3141592653589793 l004 Pi/tanh(755/97*Pi) 3141592653589793 l004 Pi/tanh(467/60*Pi) 3141592653589793 l004 Pi/tanh(646/83*Pi) 3141592653589793 l004 Pi/tanh(825/106*Pi) 3141592653589793 l004 Pi/tanh(179/23*Pi) 3141592653589793 l004 Pi/tanh(786/101*Pi) 3141592653589793 l004 Pi/tanh(607/78*Pi) 3141592653589793 l004 Pi/tanh(428/55*Pi) 3141592653589793 l004 Pi/tanh(677/87*Pi) 3141592653589793 l004 Pi/tanh(926/119*Pi) 3141592653589793 l004 Pi/tanh(249/32*Pi) 3141592653589793 l004 Pi/tanh(817/105*Pi) 3141592653589793 l004 Pi/tanh(568/73*Pi) 3141592653589793 l004 Pi/tanh(887/114*Pi) 3141592653589793 l004 Pi/tanh(319/41*Pi) 3141592653589793 l004 Pi/tanh(708/91*Pi) 3141592653589793 l004 Pi/tanh(389/50*Pi) 3141592653589793 l004 Pi/tanh(848/109*Pi) 3141592653589793 l004 Pi/tanh(459/59*Pi) 3141592653589793 l004 Pi/tanh(529/68*Pi) 3141592653589793 l004 Pi/tanh(599/77*Pi) 3141592653589793 l004 Pi/tanh(669/86*Pi) 3141592653589793 l004 Pi/tanh(739/95*Pi) 3141592653589793 l004 Pi/tanh(809/104*Pi) 3141592653589793 l004 Pi/tanh(879/113*Pi) 3141592653589793 l004 Pi/tanh(70/9*Pi) 3141592653589793 l004 Pi/tanh(871/112*Pi) 3141592653589793 l004 Pi/tanh(801/103*Pi) 3141592653589793 l004 Pi/tanh(731/94*Pi) 3141592653589793 l004 Pi/tanh(661/85*Pi) 3141592653589793 l004 Pi/tanh(591/76*Pi) 3141592653589793 l004 Pi/tanh(521/67*Pi) 3141592653589793 l004 Pi/tanh(451/58*Pi) 3141592653589793 l004 Pi/tanh(832/107*Pi) 3141592653589793 l004 Pi/tanh(381/49*Pi) 3141592653589793 l004 Pi/tanh(692/89*Pi) 3141592653589793 l004 Pi/tanh(311/40*Pi) 3141592653589793 l004 Pi/tanh(863/111*Pi) 3141592653589793 l004 Pi/tanh(552/71*Pi) 3141592653589793 l004 Pi/tanh(793/102*Pi) 3141592653589793 l004 Pi/tanh(241/31*Pi) 3141592653589793 l004 Pi/tanh(894/115*Pi) 3141592653589793 l004 Pi/tanh(653/84*Pi) 3141592653589793 l004 Pi/tanh(412/53*Pi) 3141592653589793 l004 Pi/tanh(583/75*Pi) 3141592653589793 l004 Pi/tanh(754/97*Pi) 3141592653589793 l004 Pi/tanh(925/119*Pi) 3141592653589793 l004 Pi/tanh(171/22*Pi) 3141592653589793 l004 Pi/tanh(785/101*Pi) 3141592653589793 l004 Pi/tanh(614/79*Pi) 3141592653589793 l004 Pi/tanh(443/57*Pi) 3141592653589793 l004 Pi/tanh(715/92*Pi) 3141592653589793 l004 Pi/tanh(272/35*Pi) 3141592653589793 l004 Pi/tanh(917/118*Pi) 3141592653589793 l004 Pi/tanh(645/83*Pi) 3141592653589793 l004 Pi/tanh(373/48*Pi) 3141592653589793 l004 Pi/tanh(847/109*Pi) 3141592653589793 l004 Pi/tanh(474/61*Pi) 3141592653589793 l004 Pi/tanh(575/74*Pi) 3141592653589793 l004 Pi/tanh(676/87*Pi) 3141592653589793 l004 Pi/tanh(777/100*Pi) 3141592653589793 l004 Pi/tanh(878/113*Pi) 3141592653589793 l004 Pi/tanh(101/13*Pi) 3141592653589793 l004 Pi/tanh(839/108*Pi) 3141592653589793 l004 Pi/tanh(738/95*Pi) 3141592653589793 l004 Pi/tanh(637/82*Pi) 3141592653589793 l004 Pi/tanh(536/69*Pi) 3141592653589793 l004 Pi/tanh(435/56*Pi) 3141592653589793 l004 Pi/tanh(769/99*Pi) 3141592653589793 l004 Pi/tanh(334/43*Pi) 3141592653589793 l004 Pi/tanh(901/116*Pi) 3141592653589793 l004 Pi/tanh(567/73*Pi) 3141592653589793 l004 Pi/tanh(800/103*Pi) 3141592653589793 l004 Pi/tanh(233/30*Pi) 3141592653589793 l004 Pi/tanh(831/107*Pi) 3141592653589793 l004 Pi/tanh(598/77*Pi) 3141592653589793 l004 Pi/tanh(365/47*Pi) 3141592653589793 l004 Pi/tanh(862/111*Pi) 3141592653589793 l004 Pi/tanh(497/64*Pi) 3141592653589793 l004 Pi/tanh(629/81*Pi) 3141592653589793 l004 Pi/tanh(761/98*Pi) 3141592653589793 l004 Pi/tanh(893/115*Pi) 3141592653589793 l004 Pi/tanh(132/17*Pi) 3141592653589793 l004 Pi/tanh(823/106*Pi) 3141592653589793 l004 Pi/tanh(691/89*Pi) 3141592653589793 l004 Pi/tanh(559/72*Pi) 3141592653589793 l004 Pi/tanh(427/55*Pi) 3141592653589793 l004 Pi/tanh(722/93*Pi) 3141592653589793 l004 Pi/tanh(295/38*Pi) 3141592653589793 l004 Pi/tanh(753/97*Pi) 3141592653589793 l004 Pi/tanh(458/59*Pi) 3141592653589793 l004 Pi/tanh(621/80*Pi) 3141592653589793 l004 Pi/tanh(784/101*Pi) 3141592653589793 l004 Pi/tanh(163/21*Pi) 3141592653589793 l004 Pi/tanh(846/109*Pi) 3141592653589793 l004 Pi/tanh(683/88*Pi) 3141592653589793 l004 Pi/tanh(520/67*Pi) 3141592653589793 l004 Pi/tanh(877/113*Pi) 3141592653589793 l004 Pi/tanh(357/46*Pi) 3141592653589793 l004 Pi/tanh(908/117*Pi) 3141592653589793 l004 Pi/tanh(551/71*Pi) 3141592653589793 l004 Pi/tanh(745/96*Pi) 3141592653589793 l004 Pi/tanh(194/25*Pi) 3141592653589793 l004 Pi/tanh(807/104*Pi) 3141592653589793 l004 Pi/tanh(613/79*Pi) 3141592653589793 l004 Pi/tanh(419/54*Pi) 3141592653589793 l004 Pi/tanh(644/83*Pi) 3141592653589793 l004 Pi/tanh(869/112*Pi) 3141592653589793 l004 Pi/tanh(225/29*Pi) 3141592653589793 l004 Pi/tanh(931/120*Pi) 3141592653589793 l004 Pi/tanh(706/91*Pi) 3141592653589793 l004 Pi/tanh(481/62*Pi) 3141592653589793 l004 Pi/tanh(737/95*Pi) 3141592653589793 l004 Pi/tanh(256/33*Pi) 3141592653589793 l004 Pi/tanh(799/103*Pi) 3141592653589793 l004 Pi/tanh(543/70*Pi) 3141592653589793 l004 Pi/tanh(830/107*Pi) 3141592653589793 l004 Pi/tanh(287/37*Pi) 3141592653589793 l004 Pi/tanh(892/115*Pi) 3141592653589793 l004 Pi/tanh(605/78*Pi) 3141592653589793 l004 Pi/tanh(923/119*Pi) 3141592653589793 l004 Pi/tanh(318/41*Pi) 3141592653589793 l004 Pi/tanh(667/86*Pi) 3141592653589793 l004 Pi/tanh(349/45*Pi) 3141592653589793 l004 Pi/tanh(729/94*Pi) 3141592653589793 l004 Pi/tanh(380/49*Pi) 3141592653589793 l004 Pi/tanh(791/102*Pi) 3141592653589793 l004 Pi/tanh(411/53*Pi) 3141592653589793 l004 Pi/tanh(853/110*Pi) 3141592653589793 l004 Pi/tanh(442/57*Pi) 3141592653589793 l004 Pi/tanh(915/118*Pi) 3141592653589793 l004 Pi/tanh(473/61*Pi) 3141592653589793 l004 Pi/tanh(504/65*Pi) 3141592653589793 l004 Pi/tanh(535/69*Pi) 3141592653589793 l004 Pi/tanh(566/73*Pi) 3141592653589793 l004 Pi/tanh(597/77*Pi) 3141592653589793 l004 Pi/tanh(628/81*Pi) 3141592653589793 l004 Pi/tanh(659/85*Pi) 3141592653589793 l004 Pi/tanh(690/89*Pi) 3141592653589793 l004 Pi/tanh(721/93*Pi) 3141592653589793 l004 Pi/tanh(752/97*Pi) 3141592653589793 l004 Pi/tanh(783/101*Pi) 3141592653589793 l004 Pi/tanh(814/105*Pi) 3141592653589793 l004 Pi/tanh(845/109*Pi) 3141592653589793 l004 Pi/tanh(876/113*Pi) 3141592653589793 l004 Pi/tanh(907/117*Pi) 3141592653589793 l004 Pi/tanh(31/4*Pi) 3141592653589793 m001 gamma(2)^Psi(1,1/3)+Pi 3141592653589793 l004 Pi/tanh(922/119*Pi) 3141592653589793 l004 Pi/tanh(891/115*Pi) 3141592653589793 l004 Pi/tanh(860/111*Pi) 3141592653589793 l004 Pi/tanh(829/107*Pi) 3141592653589793 l004 Pi/tanh(798/103*Pi) 3141592653589793 l004 Pi/tanh(767/99*Pi) 3141592653589793 l004 Pi/tanh(736/95*Pi) 3141592653589793 l004 Pi/tanh(705/91*Pi) 3141592653589793 l004 Pi/tanh(674/87*Pi) 3141592653589793 l004 Pi/tanh(643/83*Pi) 3141592653589793 l004 Pi/tanh(612/79*Pi) 3141592653589793 l004 Pi/tanh(581/75*Pi) 3141592653589793 l004 Pi/tanh(550/71*Pi) 3141592653589793 l004 Pi/tanh(519/67*Pi) 3141592653589793 l004 Pi/tanh(488/63*Pi) 3141592653589793 l004 Pi/tanh(457/59*Pi) 3141592653589793 l004 Pi/tanh(883/114*Pi) 3141592653589793 l004 Pi/tanh(426/55*Pi) 3141592653589793 l004 Pi/tanh(821/106*Pi) 3141592653589793 l004 Pi/tanh(395/51*Pi) 3141592653589793 l004 Pi/tanh(759/98*Pi) 3141592653589793 l004 Pi/tanh(364/47*Pi) 3141592653589793 l004 Pi/tanh(697/90*Pi) 3141592653589793 l004 Pi/tanh(333/43*Pi) 3141592653589793 l004 Pi/tanh(635/82*Pi) 3141592653589793 l004 Pi/tanh(302/39*Pi) 3141592653589793 l004 Pi/tanh(875/113*Pi) 3141592653589793 l004 Pi/tanh(573/74*Pi) 3141592653589793 l004 Pi/tanh(844/109*Pi) 3141592653589793 l004 Pi/tanh(271/35*Pi) 3141592653589793 l004 Pi/tanh(782/101*Pi) 3141592653589793 l004 Pi/tanh(511/66*Pi) 3141592653589793 l004 Pi/tanh(751/97*Pi) 3141592653589793 l004 Pi/tanh(240/31*Pi) 3141592653589793 l004 Pi/tanh(929/120*Pi) 3141592653589793 l004 Pi/tanh(689/89*Pi) 3141592653589793 l004 Pi/tanh(449/58*Pi) 3141592653589793 l004 Pi/tanh(658/85*Pi) 3141592653589793 l004 Pi/tanh(867/112*Pi) 3141592653589793 l004 Pi/tanh(209/27*Pi) 3141592653589793 l004 Pi/tanh(805/104*Pi) 3141592653589793 l004 Pi/tanh(596/77*Pi) 3141592653589793 l004 Pi/tanh(387/50*Pi) 3141592653589793 l004 Pi/tanh(565/73*Pi) 3141592653589793 l004 Pi/tanh(743/96*Pi) 3141592653589793 l004 Pi/tanh(921/119*Pi) 3141592653589793 l004 Pi/tanh(178/23*Pi) 3141592653589793 l004 Pi/tanh(859/111*Pi) 3141592653589793 l004 Pi/tanh(681/88*Pi) 3141592653589793 l004 Pi/tanh(503/65*Pi) 3141592653589793 l004 Pi/tanh(828/107*Pi) 3141592653589793 l004 Pi/tanh(325/42*Pi) 3141592653589793 l004 Pi/tanh(797/103*Pi) 3141592653589793 l004 Pi/tanh(472/61*Pi) 3141592653589793 l004 Pi/tanh(619/80*Pi) 3141592653589793 l004 Pi/tanh(766/99*Pi) 3141592653589793 l004 Pi/tanh(913/118*Pi) 3141592653589793 l004 Pi/tanh(147/19*Pi) 3141592653589793 l004 Pi/tanh(851/110*Pi) 3141592653589793 l004 Pi/tanh(704/91*Pi) 3141592653589793 l004 Pi/tanh(557/72*Pi) 3141592653589793 l004 Pi/tanh(410/53*Pi) 3141592653589793 l004 Pi/tanh(673/87*Pi) 3141592653589793 l004 Pi/tanh(263/34*Pi) 3141592653589793 l004 Pi/tanh(905/117*Pi) 3141592653589793 l004 Pi/tanh(642/83*Pi) 3141592653589793 l004 Pi/tanh(379/49*Pi) 3141592653589793 l004 Pi/tanh(874/113*Pi) 3141592653589793 l004 Pi/tanh(495/64*Pi) 3141592653589793 l004 Pi/tanh(611/79*Pi) 3141592653589793 l004 Pi/tanh(727/94*Pi) 3141592653589793 l004 Pi/tanh(843/109*Pi) 3141592653589793 l004 Pi/tanh(116/15*Pi) 3141592653589793 l004 Pi/tanh(897/116*Pi) 3141592653589793 l004 Pi/tanh(781/101*Pi) 3141592653589793 l004 Pi/tanh(665/86*Pi) 3141592653589793 l004 Pi/tanh(549/71*Pi) 3141592653589793 l004 Pi/tanh(433/56*Pi) 3141592653589793 l004 Pi/tanh(750/97*Pi) 3141592653589793 l004 Pi/tanh(317/41*Pi) 3141592653589793 l004 Pi/tanh(835/108*Pi) 3141592653589793 l004 Pi/tanh(518/67*Pi) 3141592653589793 l004 Pi/tanh(719/93*Pi) 3141592653589793 l004 Pi/tanh(920/119*Pi) 3141592653589793 l004 Pi/tanh(201/26*Pi) 3141592653589793 l004 Pi/tanh(889/115*Pi) 3141592653589793 l004 Pi/tanh(688/89*Pi) 3141592653589793 l004 Pi/tanh(487/63*Pi) 3141592653589793 l004 Pi/tanh(773/100*Pi) 3141592653589793 l004 Pi/tanh(286/37*Pi) 3141592653589793 l004 Pi/tanh(657/85*Pi) 3141592653589793 l004 Pi/tanh(371/48*Pi) 3141592653589793 l004 Pi/tanh(827/107*Pi) 3141592653589793 l004 Pi/tanh(456/59*Pi) 3141592653589793 l004 Pi/tanh(541/70*Pi) 3141592653589793 l004 Pi/tanh(626/81*Pi) 3141592653589793 l004 Pi/tanh(711/92*Pi) 3141592653589793 l004 Pi/tanh(796/103*Pi) 3141592653589793 l004 Pi/tanh(881/114*Pi) 3141592653589793 l004 Pi/tanh(85/11*Pi) 3141592653589793 l004 Pi/tanh(904/117*Pi) 3141592653589793 l004 Pi/tanh(819/106*Pi) 3141592653589793 l004 Pi/tanh(734/95*Pi) 3141592653589793 l004 Pi/tanh(649/84*Pi) 3141592653589793 l004 Pi/tanh(564/73*Pi) 3141592653589793 l004 Pi/tanh(479/62*Pi) 3141592653589793 l004 Pi/tanh(873/113*Pi) 3141592653589793 l004 Pi/tanh(394/51*Pi) 3141592653589793 l004 Pi/tanh(703/91*Pi) 3141592653589793 l004 Pi/tanh(309/40*Pi) 3141592653589793 l004 Pi/tanh(842/109*Pi) 3141592653589793 l004 Pi/tanh(533/69*Pi) 3141592653589793 l004 Pi/tanh(757/98*Pi) 3141592653589793 l004 Pi/tanh(224/29*Pi) 3141592653589793 l004 Pi/tanh(811/105*Pi) 3141592653589793 l004 Pi/tanh(587/76*Pi) 3141592653589793 l004 Pi/tanh(363/47*Pi) 3141592653589793 l004 Pi/tanh(865/112*Pi) 3141592653589793 l004 Pi/tanh(502/65*Pi) 3141592653589793 l004 Pi/tanh(641/83*Pi) 3141592653589793 l004 Pi/tanh(780/101*Pi) 3141592653589793 l004 Pi/tanh(919/119*Pi) 3141592653589793 l004 Pi/tanh(139/18*Pi) 3141592653589793 l004 Pi/tanh(888/115*Pi) 3141592653589793 l004 Pi/tanh(749/97*Pi) 3141592653589793 l004 Pi/tanh(610/79*Pi) 3141592653589793 l004 Pi/tanh(471/61*Pi) 3141592653589793 l004 Pi/tanh(803/104*Pi) 3141592653589793 l004 Pi/tanh(332/43*Pi) 3141592653589793 l004 Pi/tanh(857/111*Pi) 3141592653589793 l004 Pi/tanh(525/68*Pi) 3141592653589793 l004 Pi/tanh(718/93*Pi) 3141592653589793 l004 Pi/tanh(911/118*Pi) 3141592653589793 l004 Pi/tanh(193/25*Pi) 3141592653589793 l004 Pi/tanh(826/107*Pi) 3141592653589793 l004 Pi/tanh(633/82*Pi) 3141592653589793 l004 Pi/tanh(440/57*Pi) 3141592653589793 l004 Pi/tanh(687/89*Pi) 3141592653589793 l004 Pi/tanh(247/32*Pi) 3141592653589793 l004 Pi/tanh(795/103*Pi) 3141592653589793 l004 Pi/tanh(548/71*Pi) 3141592653589793 l004 Pi/tanh(849/110*Pi) 3141592653589793 l004 Pi/tanh(301/39*Pi) 3141592653589793 l004 Pi/tanh(656/85*Pi) 3141592653589793 l004 Pi/tanh(355/46*Pi) 3141592653589793 l004 Pi/tanh(764/99*Pi) 3141592653589793 l004 Pi/tanh(409/53*Pi) 3141592653589793 l004 Pi/tanh(872/113*Pi) 3141592653589793 l004 Pi/tanh(463/60*Pi) 3141592653589793 l004 Pi/tanh(517/67*Pi) 3141592653589793 l004 Pi/tanh(571/74*Pi) 3141592653589793 l004 Pi/tanh(625/81*Pi) 3141592653589793 l004 Pi/tanh(679/88*Pi) 3141592653589793 l004 Pi/tanh(733/95*Pi) 3141592653589793 l004 Pi/tanh(787/102*Pi) 3141592653589793 l004 Pi/tanh(841/109*Pi) 3141592653589793 l004 Pi/tanh(895/116*Pi) 3141592653589793 l004 Pi/tanh(54/7*Pi) 3141592653589793 l004 Pi/tanh(887/115*Pi) 3141592653589793 l004 Pi/tanh(833/108*Pi) 3141592653589793 l004 Pi/tanh(779/101*Pi) 3141592653589793 l004 Pi/tanh(725/94*Pi) 3141592653589793 l004 Pi/tanh(671/87*Pi) 3141592653589793 l004 Pi/tanh(617/80*Pi) 3141592653589793 l004 Pi/tanh(563/73*Pi) 3141592653589793 l004 Pi/tanh(509/66*Pi) 3141592653589793 l004 Pi/tanh(455/59*Pi) 3141592653589793 l004 Pi/tanh(856/111*Pi) 3141592653589793 l004 Pi/tanh(401/52*Pi) 3141592653589793 l004 Pi/tanh(748/97*Pi) 3141592653589793 l004 Pi/tanh(347/45*Pi) 3141592653589793 l004 Pi/tanh(640/83*Pi) 3141592653589793 l004 Pi/tanh(293/38*Pi) 3141592653589793 l004 Pi/tanh(825/107*Pi) 3141592653589793 l004 Pi/tanh(532/69*Pi) 3141592653589793 l004 Pi/tanh(771/100*Pi) 3141592653589793 l004 Pi/tanh(239/31*Pi) 3141592653589793 l004 Pi/tanh(902/117*Pi) 3141592653589793 l004 Pi/tanh(663/86*Pi) 3141592653589793 l004 Pi/tanh(424/55*Pi) 3141592653589793 l004 Pi/tanh(609/79*Pi) 3141592653589793 l004 Pi/tanh(794/103*Pi) 3141592653589793 l004 Pi/tanh(185/24*Pi) 3141592653589793 l004 Pi/tanh(871/113*Pi) 3141592653589793 l004 Pi/tanh(686/89*Pi) 3141592653589793 l004 Pi/tanh(501/65*Pi) 3141592653589793 l004 Pi/tanh(817/106*Pi) 3141592653589793 l004 Pi/tanh(316/41*Pi) 3141592653589793 l004 Pi/tanh(763/99*Pi) 3141592653589793 l004 Pi/tanh(447/58*Pi) 3141592653589793 l004 Pi/tanh(578/75*Pi) 3141592653589793 l004 Pi/tanh(709/92*Pi) 3141592653589793 l004 Pi/tanh(840/109*Pi) 3141592653589793 l004 Pi/tanh(131/17*Pi) 3141592653589793 l004 Pi/tanh(863/112*Pi) 3141592653589793 l004 Pi/tanh(732/95*Pi) 3141592653589793 l004 Pi/tanh(601/78*Pi) 3141592653589793 l004 Pi/tanh(470/61*Pi) 3141592653589793 l004 Pi/tanh(809/105*Pi) 3141592653589793 l004 Pi/tanh(339/44*Pi) 3141592653589793 l004 Pi/tanh(886/115*Pi) 3141592653589793 l004 Pi/tanh(547/71*Pi) 3141592653589793 l004 Pi/tanh(755/98*Pi) 3141592653589793 l004 Pi/tanh(208/27*Pi) 3141592653589793 l004 Pi/tanh(909/118*Pi) 3141592653589793 l004 Pi/tanh(701/91*Pi) 3141592653589793 l004 Pi/tanh(493/64*Pi) 3141592653589793 l004 Pi/tanh(778/101*Pi) 3141592653589793 l004 Pi/tanh(285/37*Pi) 3141592653589793 l004 Pi/tanh(647/84*Pi) 3141592653589793 l004 Pi/tanh(362/47*Pi) 3141592653589793 l004 Pi/tanh(801/104*Pi) 3141592653589793 l004 Pi/tanh(439/57*Pi) 3141592653589793 l004 Pi/tanh(516/67*Pi) 3141592653589793 l004 Pi/tanh(593/77*Pi) 3141592653589793 l004 Pi/tanh(670/87*Pi) 3141592653589793 l004 Pi/tanh(747/97*Pi) 3141592653589793 l004 Pi/tanh(824/107*Pi) 3141592653589793 l004 Pi/tanh(901/117*Pi) 3141592653589793 l004 Pi/tanh(77/10*Pi) 3141592653589793 l004 Pi/tanh(870/113*Pi) 3141592653589793 l004 Pi/tanh(793/103*Pi) 3141592653589793 l004 Pi/tanh(716/93*Pi) 3141592653589793 l004 Pi/tanh(639/83*Pi) 3141592653589793 l004 Pi/tanh(562/73*Pi) 3141592653589793 l004 Pi/tanh(485/63*Pi) 3141592653589793 l004 Pi/tanh(893/116*Pi) 3141592653589793 l004 Pi/tanh(408/53*Pi) 3141592653589793 l004 Pi/tanh(739/96*Pi) 3141592653589793 l004 Pi/tanh(331/43*Pi) 3141592653589793 l004 Pi/tanh(916/119*Pi) 3141592653589793 l004 Pi/tanh(585/76*Pi) 3141592653589793 l004 Pi/tanh(839/109*Pi) 3141592653589793 l004 Pi/tanh(254/33*Pi) 3141592653589793 l004 Pi/tanh(685/89*Pi) 3141592653589793 l004 Pi/tanh(431/56*Pi) 3141592653589793 l004 Pi/tanh(608/79*Pi) 3141592653589793 l004 Pi/tanh(785/102*Pi) 3141592653589793 l004 Pi/tanh(177/23*Pi) 3141592653589793 l004 Pi/tanh(808/105*Pi) 3141592653589793 l004 Pi/tanh(631/82*Pi) 3141592653589793 l004 Pi/tanh(454/59*Pi) 3141592653589793 l004 Pi/tanh(731/95*Pi) 3141592653589793 l004 Pi/tanh(277/36*Pi) 3141592653589793 l004 Pi/tanh(654/85*Pi) 3141592653589793 l004 Pi/tanh(377/49*Pi) 3141592653589793 l004 Pi/tanh(854/111*Pi) 3141592653589793 l004 Pi/tanh(477/62*Pi) 3141592653589793 l004 Pi/tanh(577/75*Pi) 3141592653589793 l004 Pi/tanh(677/88*Pi) 3141592653589793 l004 Pi/tanh(777/101*Pi) 3141592653589793 l004 Pi/tanh(877/114*Pi) 3141592653589793 l004 Pi/tanh(100/13*Pi) 3141592653589793 l004 Pi/tanh(923/120*Pi) 3141592653589793 l004 Pi/tanh(823/107*Pi) 3141592653589793 l004 Pi/tanh(723/94*Pi) 3141592653589793 l004 Pi/tanh(623/81*Pi) 3141592653589793 l004 Pi/tanh(523/68*Pi) 3141592653589793 l004 Pi/tanh(423/55*Pi) 3141592653589793 l004 Pi/tanh(746/97*Pi) 3141592653589793 l004 Pi/tanh(323/42*Pi) 3141592653589793 l004 Pi/tanh(869/113*Pi) 3141592653589793 l004 Pi/tanh(546/71*Pi) 3141592653589793 l004 Pi/tanh(769/100*Pi) 3141592653589793 l004 Pi/tanh(223/29*Pi) 3141592653589793 l004 Pi/tanh(792/103*Pi) 3141592653589793 l004 Pi/tanh(569/74*Pi) 3141592653589793 l004 Pi/tanh(915/119*Pi) 3141592653589793 l004 Pi/tanh(346/45*Pi) 3141592653589793 l004 Pi/tanh(815/106*Pi) 3141592653589793 l004 Pi/tanh(469/61*Pi) 3141592653589793 l004 Pi/tanh(592/77*Pi) 3141592653589793 l004 Pi/tanh(715/93*Pi) 3141592653589793 l004 Pi/tanh(838/109*Pi) 3141592653589793 l004 Pi/tanh(123/16*Pi) 3141592653589793 l004 Pi/tanh(884/115*Pi) 3141592653589793 l004 Pi/tanh(761/99*Pi) 3141592653589793 l004 Pi/tanh(638/83*Pi) 3141592653589793 l004 Pi/tanh(515/67*Pi) 3141592653589793 l004 Pi/tanh(907/118*Pi) 3141592653589793 l004 Pi/tanh(392/51*Pi) 3141592653589793 l004 Pi/tanh(661/86*Pi) 3141592653589793 l004 Pi/tanh(269/35*Pi) 3141592653589793 l004 Pi/tanh(684/89*Pi) 3141592653589793 l004 Pi/tanh(415/54*Pi) 3141592653589793 l004 Pi/tanh(561/73*Pi) 3141592653589793 l004 Pi/tanh(707/92*Pi) 3141592653589793 l004 Pi/tanh(853/111*Pi) 3141592653589793 l004 Pi/tanh(146/19*Pi) 3141592653589793 l004 Pi/tanh(899/117*Pi) 3141592653589793 l004 Pi/tanh(753/98*Pi) 3141592653589793 l004 Pi/tanh(607/79*Pi) 3141592653589793 l004 Pi/tanh(461/60*Pi) 3141592653589793 l004 Pi/tanh(776/101*Pi) 3141592653589793 l004 Pi/tanh(315/41*Pi) 3141592653589793 l004 Pi/tanh(799/104*Pi) 3141592653589793 l004 Pi/tanh(484/63*Pi) 3141592653589793 l004 Pi/tanh(653/85*Pi) 3141592653589793 l004 Pi/tanh(822/107*Pi) 3141592653589793 l004 Pi/tanh(169/22*Pi) 3141592653589793 l004 Pi/tanh(868/113*Pi) 3141592653589793 l004 Pi/tanh(699/91*Pi) 3141592653589793 l004 Pi/tanh(530/69*Pi) 3141592653589793 l004 Pi/tanh(891/116*Pi) 3141592653589793 l004 Pi/tanh(361/47*Pi) 3141592653589793 l004 Pi/tanh(914/119*Pi) 3141592653589793 l004 Pi/tanh(553/72*Pi) 3141592653589793 l004 Pi/tanh(745/97*Pi) 3141592653589793 l004 Pi/tanh(192/25*Pi) 3141592653589793 l004 Pi/tanh(791/103*Pi) 3141592653589793 l004 Pi/tanh(599/78*Pi) 3141592653589793 l004 Pi/tanh(407/53*Pi) 3141592653589793 l004 Pi/tanh(622/81*Pi) 3141592653589793 l004 Pi/tanh(837/109*Pi) 3141592653589793 l004 Pi/tanh(215/28*Pi) 3141592653589793 l004 Pi/tanh(883/115*Pi) 3141592653589793 l004 Pi/tanh(668/87*Pi) 3141592653589793 l004 Pi/tanh(453/59*Pi) 3141592653589793 l004 Pi/tanh(691/90*Pi) 3141592653589793 l004 Pi/tanh(238/31*Pi) 3141592653589793 l004 Pi/tanh(737/96*Pi) 3141592653589793 l004 Pi/tanh(499/65*Pi) 3141592653589793 l004 Pi/tanh(760/99*Pi) 3141592653589793 l004 Pi/tanh(261/34*Pi) 3141592653589793 l004 Pi/tanh(806/105*Pi) 3141592653589793 l004 Pi/tanh(545/71*Pi) 3141592653589793 l004 Pi/tanh(829/108*Pi) 3141592653589793 l004 Pi/tanh(284/37*Pi) 3141592653589793 l004 Pi/tanh(875/114*Pi) 3141592653589793 l004 Pi/tanh(591/77*Pi) 3141592653589793 l004 Pi/tanh(898/117*Pi) 3141592653589793 l004 Pi/tanh(307/40*Pi) 3141592653589793 l004 Pi/tanh(637/83*Pi) 3141592653589793 l004 Pi/tanh(330/43*Pi) 3141592653589793 l004 Pi/tanh(683/89*Pi) 3141592653589793 l004 Pi/tanh(353/46*Pi) 3141592653589793 l004 Pi/tanh(729/95*Pi) 3141592653589793 l004 Pi/tanh(376/49*Pi) 3141592653589793 l004 Pi/tanh(775/101*Pi) 3141592653589793 l004 Pi/tanh(399/52*Pi) 3141592653589793 l004 Pi/tanh(821/107*Pi) 3141592653589793 l004 Pi/tanh(422/55*Pi) 3141592653589793 l004 Pi/tanh(867/113*Pi) 3141592653589793 l004 Pi/tanh(445/58*Pi) 3141592653589793 l004 Pi/tanh(913/119*Pi) 3141592653589793 l004 Pi/tanh(468/61*Pi) 3141592653589793 l004 Pi/tanh(491/64*Pi) 3141592653589793 l004 Pi/tanh(514/67*Pi) 3141592653589793 l004 Pi/tanh(537/70*Pi) 3141592653589793 l004 Pi/tanh(560/73*Pi) 3141592653589793 l004 Pi/tanh(583/76*Pi) 3141592653589793 l004 Pi/tanh(606/79*Pi) 3141592653589793 l004 Pi/tanh(629/82*Pi) 3141592653589793 l004 Pi/tanh(652/85*Pi) 3141592653589793 l004 Pi/tanh(675/88*Pi) 3141592653589793 l004 Pi/tanh(698/91*Pi) 3141592653589793 l004 Pi/tanh(721/94*Pi) 3141592653589793 l004 Pi/tanh(744/97*Pi) 3141592653589793 l004 Pi/tanh(767/100*Pi) 3141592653589793 l004 Pi/tanh(790/103*Pi) 3141592653589793 l004 Pi/tanh(813/106*Pi) 3141592653589793 l004 Pi/tanh(836/109*Pi) 3141592653589793 l004 Pi/tanh(859/112*Pi) 3141592653589793 l004 Pi/tanh(882/115*Pi) 3141592653589793 l004 Pi/tanh(905/118*Pi) 3141592653589793 l004 Pi/tanh(23/3*Pi) 3141592653589793 l004 Pi/tanh(912/119*Pi) 3141592653589793 l004 Pi/tanh(889/116*Pi) 3141592653589793 l004 Pi/tanh(866/113*Pi) 3141592653589793 l004 Pi/tanh(843/110*Pi) 3141592653589793 l004 Pi/tanh(820/107*Pi) 3141592653589793 l004 Pi/tanh(797/104*Pi) 3141592653589793 l004 Pi/tanh(774/101*Pi) 3141592653589793 l004 Pi/tanh(751/98*Pi) 3141592653589793 l004 Pi/tanh(728/95*Pi) 3141592653589793 l004 Pi/tanh(705/92*Pi) 3141592653589793 l004 Pi/tanh(682/89*Pi) 3141592653589793 l004 Pi/tanh(659/86*Pi) 3141592653589793 l004 Pi/tanh(636/83*Pi) 3141592653589793 l004 Pi/tanh(613/80*Pi) 3141592653589793 l004 Pi/tanh(590/77*Pi) 3141592653589793 l004 Pi/tanh(567/74*Pi) 3141592653589793 l004 Pi/tanh(544/71*Pi) 3141592653589793 l004 Pi/tanh(521/68*Pi) 3141592653589793 l004 Pi/tanh(498/65*Pi) 3141592653589793 l004 Pi/tanh(475/62*Pi) 3141592653589793 l004 Pi/tanh(452/59*Pi) 3141592653589793 l004 Pi/tanh(881/115*Pi) 3141592653589793 l004 Pi/tanh(429/56*Pi) 3141592653589793 l004 Pi/tanh(835/109*Pi) 3141592653589793 l004 Pi/tanh(406/53*Pi) 3141592653589793 l004 Pi/tanh(789/103*Pi) 3141592653589793 l004 Pi/tanh(383/50*Pi) 3141592653589793 l004 Pi/tanh(743/97*Pi) 3141592653589793 l004 Pi/tanh(360/47*Pi) 3141592653589793 l004 Pi/tanh(697/91*Pi) 3141592653589793 l004 Pi/tanh(337/44*Pi) 3141592653589793 l004 Pi/tanh(651/85*Pi) 3141592653589793 l004 Pi/tanh(314/41*Pi) 3141592653589793 l004 Pi/tanh(919/120*Pi) 3141592653589793 l004 Pi/tanh(605/79*Pi) 3141592653589793 l004 Pi/tanh(896/117*Pi) 3141592653589793 l004 Pi/tanh(291/38*Pi) 3141592653589793 l004 Pi/tanh(850/111*Pi) 3141592653589793 l004 Pi/tanh(559/73*Pi) 3141592653589793 l004 Pi/tanh(827/108*Pi) 3141592653589793 l004 Pi/tanh(268/35*Pi) 3141592653589793 l004 Pi/tanh(781/102*Pi) 3141592653589793 l004 Pi/tanh(513/67*Pi) 3141592653589793 l004 Pi/tanh(758/99*Pi) 3141592653589793 l004 Pi/tanh(245/32*Pi) 3141592653589793 l004 Pi/tanh(712/93*Pi) 3141592653589793 l004 Pi/tanh(467/61*Pi) 3141592653589793 l004 Pi/tanh(689/90*Pi) 3141592653589793 l004 Pi/tanh(911/119*Pi) 3141592653589793 l004 Pi/tanh(222/29*Pi) 3141592653589793 l004 Pi/tanh(865/113*Pi) 3141592653589793 l004 Pi/tanh(643/84*Pi) 3141592653589793 l004 Pi/tanh(421/55*Pi) 3141592653589793 l004 Pi/tanh(620/81*Pi) 3141592653589793 l004 Pi/tanh(819/107*Pi) 3141592653589793 l004 Pi/tanh(199/26*Pi) 3141592653589793 l004 Pi/tanh(773/101*Pi) 3141592653589793 l004 Pi/tanh(574/75*Pi) 3141592653589793 l004 Pi/tanh(375/49*Pi) 3141592653589793 l004 Pi/tanh(551/72*Pi) 3141592653589793 l004 Pi/tanh(727/95*Pi) 3141592653589793 l004 Pi/tanh(903/118*Pi) 3141592653589793 l004 Pi/tanh(176/23*Pi) 3141592653589793 l004 Pi/tanh(857/112*Pi) 3141592653589793 l004 Pi/tanh(681/89*Pi) 3141592653589793 l004 Pi/tanh(505/66*Pi) 3141592653589793 l004 Pi/tanh(834/109*Pi) 3141592653589793 l004 Pi/tanh(329/43*Pi) 3141592653589793 l004 Pi/tanh(811/106*Pi) 3141592653589793 l004 Pi/tanh(482/63*Pi) 3141592653589793 l004 Pi/tanh(635/83*Pi) 3141592653589793 l004 Pi/tanh(788/103*Pi) 3141592653589793 l004 Pi/tanh(153/20*Pi) 3141592653589793 l004 Pi/tanh(895/117*Pi) 3141592653589793 l004 Pi/tanh(742/97*Pi) 3141592653589793 l004 Pi/tanh(589/77*Pi) 3141592653589793 l004 Pi/tanh(436/57*Pi) 3141592653589793 l004 Pi/tanh(719/94*Pi) 3141592653589793 l004 Pi/tanh(283/37*Pi) 3141592653589793 l004 Pi/tanh(696/91*Pi) 3141592653589793 l004 Pi/tanh(413/54*Pi) 3141592653589793 l004 Pi/tanh(543/71*Pi) 3141592653589793 l004 Pi/tanh(673/88*Pi) 3141592653589793 l004 Pi/tanh(803/105*Pi) 3141592653589793 l004 Pi/tanh(130/17*Pi) 3141592653589793 l004 Pi/tanh(887/116*Pi) 3141592653589793 l004 Pi/tanh(757/99*Pi) 3141592653589793 l004 Pi/tanh(627/82*Pi) 3141592653589793 l004 Pi/tanh(497/65*Pi) 3141592653589793 l004 Pi/tanh(864/113*Pi) 3141592653589793 l004 Pi/tanh(367/48*Pi) 3141592653589793 l004 Pi/tanh(604/79*Pi) 3141592653589793 l004 Pi/tanh(841/110*Pi) 3141592653589793 l004 Pi/tanh(237/31*Pi) 3141592653589793 l004 Pi/tanh(818/107*Pi) 3141592653589793 l004 Pi/tanh(581/76*Pi) 3141592653589793 l004 Pi/tanh(344/45*Pi) 3141592653589793 l004 Pi/tanh(795/104*Pi) 3141592653589793 l004 Pi/tanh(451/59*Pi) 3141592653589793 l004 Pi/tanh(558/73*Pi) 3141592653589793 l004 Pi/tanh(665/87*Pi) 3141592653589793 l004 Pi/tanh(772/101*Pi) 3141592653589793 l004 Pi/tanh(879/115*Pi) 3141592653589793 l004 Pi/tanh(107/14*Pi) 3141592653589793 l004 Pi/tanh(833/109*Pi) 3141592653589793 l004 Pi/tanh(726/95*Pi) 3141592653589793 l004 Pi/tanh(619/81*Pi) 3141592653589793 l004 Pi/tanh(512/67*Pi) 3141592653589793 l004 Pi/tanh(917/120*Pi) 3141592653589793 l004 Pi/tanh(405/53*Pi) 3141592653589793 l004 Pi/tanh(703/92*Pi) 3141592653589793 l004 Pi/tanh(298/39*Pi) 3141592653589793 l004 Pi/tanh(787/103*Pi) 3141592653589793 l004 Pi/tanh(489/64*Pi) 3141592653589793 l004 Pi/tanh(680/89*Pi) 3141592653589793 l004 Pi/tanh(871/114*Pi) 3141592653589793 l004 Pi/tanh(191/25*Pi) 3141592653589793 l004 Pi/tanh(848/111*Pi) 3141592653589793 l004 Pi/tanh(657/86*Pi) 3141592653589793 l004 Pi/tanh(466/61*Pi) 3141592653589793 l004 Pi/tanh(741/97*Pi) 3141592653589793 l004 Pi/tanh(275/36*Pi) 3141592653589793 l004 Pi/tanh(909/119*Pi) 3141592653589793 l004 Pi/tanh(634/83*Pi) 3141592653589793 l004 Pi/tanh(359/47*Pi) 3141592653589793 l004 Pi/tanh(802/105*Pi) 3141592653589793 l004 Pi/tanh(443/58*Pi) 3141592653589793 l004 Pi/tanh(527/69*Pi) 3141592653589793 l004 Pi/tanh(611/80*Pi) 3141592653589793 l004 Pi/tanh(695/91*Pi) 3141592653589793 l004 Pi/tanh(779/102*Pi) 3141592653589793 l004 Pi/tanh(863/113*Pi) 3141592653589793 l004 Pi/tanh(84/11*Pi) 3141592653589793 l004 Pi/tanh(901/118*Pi) 3141592653589793 l004 Pi/tanh(817/107*Pi) 3141592653589793 l004 Pi/tanh(733/96*Pi) 3141592653589793 l004 Pi/tanh(649/85*Pi) 3141592653589793 l004 Pi/tanh(565/74*Pi) 3141592653589793 l004 Pi/tanh(481/63*Pi) 3141592653589793 l004 Pi/tanh(878/115*Pi) 3141592653589793 l004 Pi/tanh(397/52*Pi) 3141592653589793 l004 Pi/tanh(710/93*Pi) 3141592653589793 l004 Pi/tanh(313/41*Pi) 3141592653589793 l004 Pi/tanh(855/112*Pi) 3141592653589793 l004 Pi/tanh(542/71*Pi) 3141592653589793 l004 Pi/tanh(771/101*Pi) 3141592653589793 l004 Pi/tanh(229/30*Pi) 3141592653589793 l004 Pi/tanh(832/109*Pi) 3141592653589793 l004 Pi/tanh(603/79*Pi) 3141592653589793 l004 Pi/tanh(374/49*Pi) 3141592653589793 l004 Pi/tanh(893/117*Pi) 3141592653589793 l004 Pi/tanh(519/68*Pi) 3141592653589793 l004 Pi/tanh(664/87*Pi) 3141592653589793 l004 Pi/tanh(809/106*Pi) 3141592653589793 l004 Pi/tanh(145/19*Pi) 3141592653589793 l004 Pi/tanh(786/103*Pi) 3141592653589793 l004 Pi/tanh(641/84*Pi) 3141592653589793 l004 Pi/tanh(496/65*Pi) 3141592653589793 l004 Pi/tanh(847/111*Pi) 3141592653589793 l004 Pi/tanh(351/46*Pi) 3141592653589793 l004 Pi/tanh(908/119*Pi) 3141592653589793 l004 Pi/tanh(557/73*Pi) 3141592653589793 l004 Pi/tanh(763/100*Pi) 3141592653589793 l004 Pi/tanh(206/27*Pi) 3141592653589793 l004 Pi/tanh(885/116*Pi) 3141592653589793 l004 Pi/tanh(679/89*Pi) 3141592653589793 l004 Pi/tanh(473/62*Pi) 3141592653589793 l004 Pi/tanh(740/97*Pi) 3141592653589793 l004 Pi/tanh(267/35*Pi) 3141592653589793 l004 Pi/tanh(862/113*Pi) 3141592653589793 l004 Pi/tanh(595/78*Pi) 3141592653589793 l004 Pi/tanh(328/43*Pi) 3141592653589793 l004 Pi/tanh(717/94*Pi) 3141592653589793 l004 Pi/tanh(389/51*Pi) 3141592653589793 l004 Pi/tanh(839/110*Pi) 3141592653589793 l004 Pi/tanh(450/59*Pi) 3141592653589793 l004 Pi/tanh(511/67*Pi) 3141592653589793 l004 Pi/tanh(572/75*Pi) 3141592653589793 l004 Pi/tanh(633/83*Pi) 3141592653589793 l004 Pi/tanh(694/91*Pi) 3141592653589793 l004 Pi/tanh(755/99*Pi) 3141592653589793 l004 Pi/tanh(816/107*Pi) 3141592653589793 l004 Pi/tanh(877/115*Pi) 3141592653589793 l004 Pi/tanh(61/8*Pi) 3141592653589793 l004 Pi/tanh(892/117*Pi) 3141592653589793 l004 Pi/tanh(831/109*Pi) 3141592653589793 l004 Pi/tanh(770/101*Pi) 3141592653589793 l004 Pi/tanh(709/93*Pi) 3141592653589793 l004 Pi/tanh(648/85*Pi) 3141592653589793 l004 Pi/tanh(587/77*Pi) 3141592653589793 l004 Pi/tanh(526/69*Pi) 3141592653589793 l004 Pi/tanh(465/61*Pi) 3141592653589793 l004 Pi/tanh(869/114*Pi) 3141592653589793 l004 Pi/tanh(404/53*Pi) 3141592653589793 l004 Pi/tanh(747/98*Pi) 3141592653589793 l004 Pi/tanh(343/45*Pi) 3141592653589793 l004 Pi/tanh(625/82*Pi) 3141592653589793 l004 Pi/tanh(907/119*Pi) 3141592653589793 l004 Pi/tanh(282/37*Pi) 3141592653589793 l004 Pi/tanh(785/103*Pi) 3141592653589793 l004 Pi/tanh(503/66*Pi) 3141592653589793 l004 Pi/tanh(724/95*Pi) 3141592653589793 l004 Pi/tanh(221/29*Pi) 3141592653589793 l004 Pi/tanh(823/108*Pi) 3141592653589793 l004 Pi/tanh(602/79*Pi) 3141592653589793 l004 Pi/tanh(381/50*Pi) 3141592653589793 l004 Pi/tanh(541/71*Pi) 3141592653589793 l004 Pi/tanh(701/92*Pi) 3141592653589793 l004 Pi/tanh(861/113*Pi) 3141592653589793 l004 Pi/tanh(160/21*Pi) 3141592653589793 l004 Pi/tanh(899/118*Pi) 3141592653589793 l004 Pi/tanh(739/97*Pi) 3141592653589793 l004 Pi/tanh(579/76*Pi) 3141592653589793 l004 Pi/tanh(419/55*Pi) 3141592653589793 l004 Pi/tanh(678/89*Pi) 3141592653589793 l004 Pi/tanh(259/34*Pi) 3141592653589793 l004 Pi/tanh(876/115*Pi) 3141592653589793 l004 Pi/tanh(617/81*Pi) 3141592653589793 l004 Pi/tanh(358/47*Pi) 3141592653589793 l004 Pi/tanh(815/107*Pi) 3141592653589793 l004 Pi/tanh(457/60*Pi) 3141592653589793 l004 Pi/tanh(556/73*Pi) 3141592653589793 l004 Pi/tanh(655/86*Pi) 3141592653589793 l004 Pi/tanh(754/99*Pi) 3141592653589793 l004 Pi/tanh(853/112*Pi) 3141592653589793 l004 Pi/tanh(99/13*Pi) 3141592653589793 l004 Pi/tanh(830/109*Pi) 3141592653589793 l004 Pi/tanh(731/96*Pi) 3141592653589793 l004 Pi/tanh(632/83*Pi) 3141592653589793 l004 Pi/tanh(533/70*Pi) 3141592653589793 l004 Pi/tanh(434/57*Pi) 3141592653589793 l004 Pi/tanh(769/101*Pi) 3141592653589793 l004 Pi/tanh(335/44*Pi) 3141592653589793 l004 Pi/tanh(906/119*Pi) 3141592653589793 l004 Pi/tanh(571/75*Pi) 3141592653589793 l004 Pi/tanh(807/106*Pi) 3141592653589793 l004 Pi/tanh(236/31*Pi) 3141592653589793 l004 Pi/tanh(845/111*Pi) 3141592653589793 l004 Pi/tanh(609/80*Pi) 3141592653589793 l004 Pi/tanh(373/49*Pi) 3141592653589793 l004 Pi/tanh(883/116*Pi) 3141592653589793 l004 Pi/tanh(510/67*Pi) 3141592653589793 l004 Pi/tanh(647/85*Pi) 3141592653589793 l004 Pi/tanh(784/103*Pi) 3141592653589793 l004 Pi/tanh(137/18*Pi) 3141592653589793 l004 Pi/tanh(860/113*Pi) 3141592653589793 l004 Pi/tanh(723/95*Pi) 3141592653589793 l004 Pi/tanh(586/77*Pi) 3141592653589793 l004 Pi/tanh(449/59*Pi) 3141592653589793 l004 Pi/tanh(761/100*Pi) 3141592653589793 l004 Pi/tanh(312/41*Pi) 3141592653589793 l004 Pi/tanh(799/105*Pi) 3141592653589793 l004 Pi/tanh(487/64*Pi) 3141592653589793 l004 Pi/tanh(662/87*Pi) 3141592653589793 l004 Pi/tanh(837/110*Pi) 3141592653589793 l004 Pi/tanh(175/23*Pi) 3141592653589793 l004 Pi/tanh(913/120*Pi) 3141592653589793 l004 Pi/tanh(738/97*Pi) 3141592653589793 l004 Pi/tanh(563/74*Pi) 3141592653589793 l004 Pi/tanh(388/51*Pi) 3141592653589793 l004 Pi/tanh(601/79*Pi) 3141592653589793 l004 Pi/tanh(814/107*Pi) 3141592653589793 l004 Pi/tanh(213/28*Pi) 3141592653589793 l004 Pi/tanh(890/117*Pi) 3141592653589793 l004 Pi/tanh(677/89*Pi) 3141592653589793 l004 Pi/tanh(464/61*Pi) 3141592653589793 l004 Pi/tanh(715/94*Pi) 3141592653589793 l004 Pi/tanh(251/33*Pi) 3141592653589793 l004 Pi/tanh(791/104*Pi) 3141592653589793 l004 Pi/tanh(540/71*Pi) 3141592653589793 l004 Pi/tanh(829/109*Pi) 3141592653589793 l004 Pi/tanh(289/38*Pi) 3141592653589793 l004 Pi/tanh(905/119*Pi) 3141592653589793 l004 Pi/tanh(616/81*Pi) 3141592653589793 l004 Pi/tanh(327/43*Pi) 3141592653589793 l004 Pi/tanh(692/91*Pi) 3141592653589793 l004 Pi/tanh(365/48*Pi) 3141592653589793 l004 Pi/tanh(768/101*Pi) 3141592653589793 l004 Pi/tanh(403/53*Pi) 3141592653589793 l004 Pi/tanh(844/111*Pi) 3141592653589793 l004 Pi/tanh(441/58*Pi) 3141592653589793 l004 Pi/tanh(479/63*Pi) 3141592653589793 l004 Pi/tanh(517/68*Pi) 3141592653589793 l004 Pi/tanh(555/73*Pi) 3141592653589793 l004 Pi/tanh(593/78*Pi) 3141592653589793 l004 Pi/tanh(631/83*Pi) 3141592653589793 l004 Pi/tanh(669/88*Pi) 3141592653589793 l004 Pi/tanh(707/93*Pi) 3141592653589793 l004 Pi/tanh(745/98*Pi) 3141592653589793 l004 Pi/tanh(783/103*Pi) 3141592653589793 l004 Pi/tanh(821/108*Pi) 3141592653589793 l004 Pi/tanh(859/113*Pi) 3141592653589793 l004 Pi/tanh(897/118*Pi) 3141592653589793 l004 Pi/tanh(38/5*Pi) 3141592653589793 l004 Pi/tanh(889/117*Pi) 3141592653589793 l004 Pi/tanh(851/112*Pi) 3141592653589793 l004 Pi/tanh(813/107*Pi) 3141592653589793 l004 Pi/tanh(775/102*Pi) 3141592653589793 l004 Pi/tanh(737/97*Pi) 3141592653589793 l004 Pi/tanh(699/92*Pi) 3141592653589793 l004 Pi/tanh(661/87*Pi) 3141592653589793 l004 Pi/tanh(623/82*Pi) 3141592653589793 l004 Pi/tanh(585/77*Pi) 3141592653589793 l004 Pi/tanh(547/72*Pi) 3141592653589793 l004 Pi/tanh(509/67*Pi) 3141592653589793 l004 Pi/tanh(471/62*Pi) 3141592653589793 l004 Pi/tanh(904/119*Pi) 3141592653589793 l004 Pi/tanh(433/57*Pi) 3141592653589793 l004 Pi/tanh(828/109*Pi) 3141592653589793 l004 Pi/tanh(395/52*Pi) 3141592653589793 l004 Pi/tanh(752/99*Pi) 3141592653589793 l004 Pi/tanh(357/47*Pi) 3141592653589793 l004 Pi/tanh(676/89*Pi) 3141592653589793 l004 Pi/tanh(319/42*Pi) 3141592653589793 l004 Pi/tanh(600/79*Pi) 3141592653589793 l004 Pi/tanh(881/116*Pi) 3141592653589793 l004 Pi/tanh(281/37*Pi) 3141592653589793 l004 Pi/tanh(805/106*Pi) 3141592653589793 l004 Pi/tanh(524/69*Pi) 3141592653589793 l004 Pi/tanh(767/101*Pi) 3141592653589793 l004 Pi/tanh(243/32*Pi) 3141592653589793 l004 Pi/tanh(691/91*Pi) 3141592653589793 l004 Pi/tanh(448/59*Pi) 3141592653589793 l004 Pi/tanh(653/86*Pi) 3141592653589793 l004 Pi/tanh(858/113*Pi) 3141592653589793 l004 Pi/tanh(205/27*Pi) 3141592653589793 l004 Pi/tanh(782/103*Pi) 3141592653589793 l004 Pi/tanh(577/76*Pi) 3141592653589793 l004 Pi/tanh(372/49*Pi) 3141592653589793 l004 Pi/tanh(911/120*Pi) 3141592653589793 l004 Pi/tanh(539/71*Pi) 3141592653589793 l004 Pi/tanh(706/93*Pi) 3141592653589793 l004 Pi/tanh(873/115*Pi) 3141592653589793 l004 Pi/tanh(167/22*Pi) 3141592653589793 l004 Pi/tanh(797/105*Pi) 3141592653589793 l004 Pi/tanh(630/83*Pi) 3141592653589793 l004 Pi/tanh(463/61*Pi) 3141592653589793 l004 Pi/tanh(759/100*Pi) 3141592653589793 l004 Pi/tanh(296/39*Pi) 3141592653589793 l004 Pi/tanh(721/95*Pi) 3141592653589793 l004 Pi/tanh(425/56*Pi) 3141592653589793 l004 Pi/tanh(554/73*Pi) 3141592653589793 l004 Pi/tanh(683/90*Pi) 3141592653589793 l004 Pi/tanh(812/107*Pi) 3141592653589793 l004 Pi/tanh(129/17*Pi) 3141592653589793 l004 Pi/tanh(865/114*Pi) 3141592653589793 l004 Pi/tanh(736/97*Pi) 3141592653589793 l004 Pi/tanh(607/80*Pi) 3141592653589793 l004 Pi/tanh(478/63*Pi) 3141592653589793 l004 Pi/tanh(827/109*Pi) 3141592653589793 l004 Pi/tanh(349/46*Pi) 3141592653589793 l004 Pi/tanh(569/75*Pi) 3141592653589793 l004 Pi/tanh(789/104*Pi) 3141592653589793 l004 Pi/tanh(220/29*Pi) 3141592653589793 l004 Pi/tanh(751/99*Pi) 3141592653589793 l004 Pi/tanh(531/70*Pi) 3141592653589793 l004 Pi/tanh(842/111*Pi) 3141592653589793 l004 Pi/tanh(311/41*Pi) 3141592653589793 l004 Pi/tanh(713/94*Pi) 3141592653589793 l004 Pi/tanh(402/53*Pi) 3141592653589793 l004 Pi/tanh(895/118*Pi) 3141592653589793 l004 Pi/tanh(493/65*Pi) 3141592653589793 l004 Pi/tanh(584/77*Pi) 3141592653589793 l004 Pi/tanh(675/89*Pi) 3141592653589793 l004 Pi/tanh(766/101*Pi) 3141592653589793 l004 Pi/tanh(857/113*Pi) 3141592653589793 l004 Pi/tanh(91/12*Pi) 3141592653589793 m001 UniversalParabolic^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(872/115*Pi) 3141592653589793 l004 Pi/tanh(781/103*Pi) 3141592653589793 l004 Pi/tanh(690/91*Pi) 3141592653589793 l004 Pi/tanh(599/79*Pi) 3141592653589793 l004 Pi/tanh(508/67*Pi) 3141592653589793 l004 Pi/tanh(417/55*Pi) 3141592653589793 l004 Pi/tanh(743/98*Pi) 3141592653589793 l004 Pi/tanh(326/43*Pi) 3141592653589793 l004 Pi/tanh(887/117*Pi) 3141592653589793 l004 Pi/tanh(561/74*Pi) 3141592653589793 l004 Pi/tanh(796/105*Pi) 3141592653589793 l004 Pi/tanh(235/31*Pi) 3141592653589793 l004 Pi/tanh(849/112*Pi) 3141592653589793 l004 Pi/tanh(614/81*Pi) 3141592653589793 l004 Pi/tanh(379/50*Pi) 3141592653589793 l004 Pi/tanh(902/119*Pi) 3141592653589793 l004 Pi/tanh(523/69*Pi) 3141592653589793 l004 Pi/tanh(667/88*Pi) 3141592653589793 l004 Pi/tanh(811/107*Pi) 3141592653589793 l004 Pi/tanh(144/19*Pi) 3141592653589793 l004 Pi/tanh(773/102*Pi) 3141592653589793 l004 Pi/tanh(629/83*Pi) 3141592653589793 l004 Pi/tanh(485/64*Pi) 3141592653589793 l004 Pi/tanh(826/109*Pi) 3141592653589793 l004 Pi/tanh(341/45*Pi) 3141592653589793 l004 Pi/tanh(879/116*Pi) 3141592653589793 l004 Pi/tanh(538/71*Pi) 3141592653589793 l004 Pi/tanh(735/97*Pi) 3141592653589793 l004 Pi/tanh(197/26*Pi) 3141592653589793 l004 Pi/tanh(841/111*Pi) 3141592653589793 l004 Pi/tanh(644/85*Pi) 3141592653589793 l004 Pi/tanh(447/59*Pi) 3141592653589793 l004 Pi/tanh(697/92*Pi) 3141592653589793 l004 Pi/tanh(250/33*Pi) 3141592653589793 l004 Pi/tanh(803/106*Pi) 3141592653589793 l004 Pi/tanh(553/73*Pi) 3141592653589793 l004 Pi/tanh(856/113*Pi) 3141592653589793 l004 Pi/tanh(303/40*Pi) 3141592653589793 l004 Pi/tanh(659/87*Pi) 3141592653589793 l004 Pi/tanh(356/47*Pi) 3141592653589793 l004 Pi/tanh(765/101*Pi) 3141592653589793 l004 Pi/tanh(409/54*Pi) 3141592653589793 l004 Pi/tanh(871/115*Pi) 3141592653589793 l004 Pi/tanh(462/61*Pi) 3141592653589793 l004 Pi/tanh(515/68*Pi) 3141592653589793 l004 Pi/tanh(568/75*Pi) 3141592653589793 l004 Pi/tanh(621/82*Pi) 3141592653589793 l004 Pi/tanh(674/89*Pi) 3141592653589793 l004 Pi/tanh(727/96*Pi) 3141592653589793 l004 Pi/tanh(780/103*Pi) 3141592653589793 l004 Pi/tanh(833/110*Pi) 3141592653589793 l004 Pi/tanh(886/117*Pi) 3141592653589793 l004 Pi/tanh(53/7*Pi) 3141592653589793 l004 Pi/tanh(863/114*Pi) 3141592653589793 l004 Pi/tanh(810/107*Pi) 3141592653589793 l004 Pi/tanh(757/100*Pi) 3141592653589793 l004 Pi/tanh(704/93*Pi) 3141592653589793 l004 Pi/tanh(651/86*Pi) 3141592653589793 l004 Pi/tanh(598/79*Pi) 3141592653589793 l004 Pi/tanh(545/72*Pi) 3141592653589793 l004 Pi/tanh(492/65*Pi) 3141592653589793 l004 Pi/tanh(439/58*Pi) 3141592653589793 l004 Pi/tanh(825/109*Pi) 3141592653589793 l004 Pi/tanh(386/51*Pi) 3141592653589793 l004 Pi/tanh(719/95*Pi) 3141592653589793 l004 Pi/tanh(333/44*Pi) 3141592653589793 l004 Pi/tanh(613/81*Pi) 3141592653589793 l004 Pi/tanh(893/118*Pi) 3141592653589793 l004 Pi/tanh(280/37*Pi) 3141592653589793 l004 Pi/tanh(787/104*Pi) 3141592653589793 l004 Pi/tanh(507/67*Pi) 3141592653589793 l004 Pi/tanh(734/97*Pi) 3141592653589793 l004 Pi/tanh(227/30*Pi) 3141592653589793 l004 Pi/tanh(855/113*Pi) 3141592653589793 l004 Pi/tanh(628/83*Pi) 3141592653589793 l004 Pi/tanh(401/53*Pi) 3141592653589793 l004 Pi/tanh(575/76*Pi) 3141592653589793 l004 Pi/tanh(749/99*Pi) 3141592653589793 l004 Pi/tanh(174/23*Pi) 3141592653589793 l004 Pi/tanh(817/108*Pi) 3141592653589793 l004 Pi/tanh(643/85*Pi) 3141592653589793 l004 Pi/tanh(469/62*Pi) 3141592653589793 l004 Pi/tanh(764/101*Pi) 3141592653589793 l004 Pi/tanh(295/39*Pi) 3141592653589793 l004 Pi/tanh(711/94*Pi) 3141592653589793 l004 Pi/tanh(416/55*Pi) 3141592653589793 l004 Pi/tanh(537/71*Pi) 3141592653589793 l004 Pi/tanh(658/87*Pi) 3141592653589793 l004 Pi/tanh(779/103*Pi) 3141592653589793 l004 Pi/tanh(900/119*Pi) 3141592653589793 l004 Pi/tanh(121/16*Pi) 3141592653589793 m001 Trott^Psi(1,1/3)+Pi 3141592653589793 l004 Pi/tanh(794/105*Pi) 3141592653589793 l004 Pi/tanh(673/89*Pi) 3141592653589793 l004 Pi/tanh(552/73*Pi) 3141592653589793 l004 Pi/tanh(431/57*Pi) 3141592653589793 l004 Pi/tanh(741/98*Pi) 3141592653589793 l004 Pi/tanh(310/41*Pi) 3141592653589793 l004 Pi/tanh(809/107*Pi) 3141592653589793 l004 Pi/tanh(499/66*Pi) 3141592653589793 l004 Pi/tanh(688/91*Pi) 3141592653589793 l004 Pi/tanh(877/116*Pi) 3141592653589793 l004 Pi/tanh(189/25*Pi) 3141592653589793 l004 Pi/tanh(824/109*Pi) 3141592653589793 l004 Pi/tanh(635/84*Pi) 3141592653589793 l004 Pi/tanh(446/59*Pi) 3141592653589793 l004 Pi/tanh(703/93*Pi) 3141592653589793 l004 Pi/tanh(257/34*Pi) 3141592653589793 l004 Pi/tanh(839/111*Pi) 3141592653589793 l004 Pi/tanh(582/77*Pi) 3141592653589793 l004 Pi/tanh(907/120*Pi) 3141592653589793 l004 Pi/tanh(325/43*Pi) 3141592653589793 l004 Pi/tanh(718/95*Pi) 3141592653589793 l004 Pi/tanh(393/52*Pi) 3141592653589793 l004 Pi/tanh(854/113*Pi) 3141592653589793 l004 Pi/tanh(461/61*Pi) 3141592653589793 l004 Pi/tanh(529/70*Pi) 3141592653589793 l004 Pi/tanh(597/79*Pi) 3141592653589793 l004 Pi/tanh(665/88*Pi) 3141592653589793 l004 Pi/tanh(733/97*Pi) 3141592653589793 l004 Pi/tanh(801/106*Pi) 3141592653589793 l004 Pi/tanh(869/115*Pi) 3141592653589793 l004 Pi/tanh(68/9*Pi) 3141592653589793 l004 Pi/tanh(899/119*Pi) 3141592653589793 l004 Pi/tanh(831/110*Pi) 3141592653589793 l004 Pi/tanh(763/101*Pi) 3141592653589793 l004 Pi/tanh(695/92*Pi) 3141592653589793 l004 Pi/tanh(627/83*Pi) 3141592653589793 l004 Pi/tanh(559/74*Pi) 3141592653589793 l004 Pi/tanh(491/65*Pi) 3141592653589793 l004 Pi/tanh(423/56*Pi) 3141592653589793 l004 Pi/tanh(778/103*Pi) 3141592653589793 l004 Pi/tanh(355/47*Pi) 3141592653589793 l004 Pi/tanh(642/85*Pi) 3141592653589793 l004 Pi/tanh(287/38*Pi) 3141592653589793 l004 Pi/tanh(793/105*Pi) 3141592653589793 l004 Pi/tanh(506/67*Pi) 3141592653589793 l004 Pi/tanh(725/96*Pi) 3141592653589793 l004 Pi/tanh(219/29*Pi) 3141592653589793 l004 Pi/tanh(808/107*Pi) 3141592653589793 l004 Pi/tanh(589/78*Pi) 3141592653589793 l004 Pi/tanh(370/49*Pi) 3141592653589793 l004 Pi/tanh(891/118*Pi) 3141592653589793 l004 Pi/tanh(521/69*Pi) 3141592653589793 l004 Pi/tanh(672/89*Pi) 3141592653589793 l004 Pi/tanh(823/109*Pi) 3141592653589793 l004 Pi/tanh(151/20*Pi) 3141592653589793 l004 Pi/tanh(838/111*Pi) 3141592653589793 l004 Pi/tanh(687/91*Pi) 3141592653589793 l004 Pi/tanh(536/71*Pi) 3141592653589793 l004 Pi/tanh(385/51*Pi) 3141592653589793 l004 Pi/tanh(619/82*Pi) 3141592653589793 l004 Pi/tanh(853/113*Pi) 3141592653589793 l004 Pi/tanh(234/31*Pi) 3141592653589793 l004 Pi/tanh(785/104*Pi) 3141592653589793 l004 Pi/tanh(551/73*Pi) 3141592653589793 l004 Pi/tanh(868/115*Pi) 3141592653589793 l004 Pi/tanh(317/42*Pi) 3141592653589793 l004 Pi/tanh(717/95*Pi) 3141592653589793 l004 Pi/tanh(400/53*Pi) 3141592653589793 l004 Pi/tanh(883/117*Pi) 3141592653589793 l004 Pi/tanh(483/64*Pi) 3141592653589793 l004 Pi/tanh(566/75*Pi) 3141592653589793 l004 Pi/tanh(649/86*Pi) 3141592653589793 l004 Pi/tanh(732/97*Pi) 3141592653589793 l004 Pi/tanh(815/108*Pi) 3141592653589793 l004 Pi/tanh(898/119*Pi) 3141592653589793 l004 Pi/tanh(83/11*Pi) 3141592653589793 l004 Pi/tanh(845/112*Pi) 3141592653589793 l004 Pi/tanh(762/101*Pi) 3141592653589793 l004 Pi/tanh(679/90*Pi) 3141592653589793 l004 Pi/tanh(596/79*Pi) 3141592653589793 l004 Pi/tanh(513/68*Pi) 3141592653589793 l004 Pi/tanh(430/57*Pi) 3141592653589793 l004 Pi/tanh(777/103*Pi) 3141592653589793 l004 Pi/tanh(347/46*Pi) 3141592653589793 l004 Pi/tanh(611/81*Pi) 3141592653589793 l004 Pi/tanh(875/116*Pi) 3141592653589793 l004 Pi/tanh(264/35*Pi) 3141592653589793 l004 Pi/tanh(709/94*Pi) 3141592653589793 l004 Pi/tanh(445/59*Pi) 3141592653589793 l004 Pi/tanh(626/83*Pi) 3141592653589793 l004 Pi/tanh(807/107*Pi) 3141592653589793 l004 Pi/tanh(181/24*Pi) 3141592653589793 l004 Pi/tanh(822/109*Pi) 3141592653589793 l004 Pi/tanh(641/85*Pi) 3141592653589793 l004 Pi/tanh(460/61*Pi) 3141592653589793 l004 Pi/tanh(739/98*Pi) 3141592653589793 l004 Pi/tanh(279/37*Pi) 3141592653589793 l004 Pi/tanh(656/87*Pi) 3141592653589793 l004 Pi/tanh(377/50*Pi) 3141592653589793 l004 Pi/tanh(852/113*Pi) 3141592653589793 l004 Pi/tanh(475/63*Pi) 3141592653589793 l004 Pi/tanh(573/76*Pi) 3141592653589793 l004 Pi/tanh(671/89*Pi) 3141592653589793 l004 Pi/tanh(769/102*Pi) 3141592653589793 l004 Pi/tanh(867/115*Pi) 3141592653589793 l004 Pi/tanh(98/13*Pi) 3141592653589793 l004 Pi/tanh(897/119*Pi) 3141592653589793 l004 Pi/tanh(799/106*Pi) 3141592653589793 l004 Pi/tanh(701/93*Pi) 3141592653589793 l004 Pi/tanh(603/80*Pi) 3141592653589793 l004 Pi/tanh(505/67*Pi) 3141592653589793 l004 Pi/tanh(407/54*Pi) 3141592653589793 l004 Pi/tanh(716/95*Pi) 3141592653589793 l004 Pi/tanh(309/41*Pi) 3141592653589793 l004 Pi/tanh(829/110*Pi) 3141592653589793 l004 Pi/tanh(520/69*Pi) 3141592653589793 l004 Pi/tanh(731/97*Pi) 3141592653589793 l004 Pi/tanh(211/28*Pi) 3141592653589793 l004 Pi/tanh(746/99*Pi) 3141592653589793 l004 Pi/tanh(535/71*Pi) 3141592653589793 l004 Pi/tanh(859/114*Pi) 3141592653589793 l004 Pi/tanh(324/43*Pi) 3141592653589793 l004 Pi/tanh(761/101*Pi) 3141592653589793 l004 Pi/tanh(437/58*Pi) 3141592653589793 l004 Pi/tanh(550/73*Pi) 3141592653589793 l004 Pi/tanh(663/88*Pi) 3141592653589793 l004 Pi/tanh(776/103*Pi) 3141592653589793 l004 Pi/tanh(889/118*Pi) 3141592653589793 l004 Pi/tanh(113/15*Pi) 3141592653589793 l004 Pi/tanh(806/107*Pi) 3141592653589793 l004 Pi/tanh(693/92*Pi) 3141592653589793 l004 Pi/tanh(580/77*Pi) 3141592653589793 l004 Pi/tanh(467/62*Pi) 3141592653589793 l004 Pi/tanh(821/109*Pi) 3141592653589793 l004 Pi/tanh(354/47*Pi) 3141592653589793 l004 Pi/tanh(595/79*Pi) 3141592653589793 l004 Pi/tanh(836/111*Pi) 3141592653589793 l004 Pi/tanh(241/32*Pi) 3141592653589793 l004 Pi/tanh(851/113*Pi) 3141592653589793 l004 Pi/tanh(610/81*Pi) 3141592653589793 l004 Pi/tanh(369/49*Pi) 3141592653589793 l004 Pi/tanh(866/115*Pi) 3141592653589793 l004 Pi/tanh(497/66*Pi) 3141592653589793 l004 Pi/tanh(625/83*Pi) 3141592653589793 l004 Pi/tanh(753/100*Pi) 3141592653589793 l004 Pi/tanh(881/117*Pi) 3141592653589793 l004 Pi/tanh(128/17*Pi) 3141592653589793 l004 Pi/tanh(783/104*Pi) 3141592653589793 l004 Pi/tanh(655/87*Pi) 3141592653589793 l004 Pi/tanh(527/70*Pi) 3141592653589793 l004 Pi/tanh(399/53*Pi) 3141592653589793 l004 Pi/tanh(670/89*Pi) 3141592653589793 l004 Pi/tanh(271/36*Pi) 3141592653589793 l004 Pi/tanh(685/91*Pi) 3141592653589793 l004 Pi/tanh(414/55*Pi) 3141592653589793 l004 Pi/tanh(557/74*Pi) 3141592653589793 l004 Pi/tanh(700/93*Pi) 3141592653589793 l004 Pi/tanh(843/112*Pi) 3141592653589793 l004 Pi/tanh(143/19*Pi) 3141592653589793 l004 Pi/tanh(873/116*Pi) 3141592653589793 l004 Pi/tanh(730/97*Pi) 3141592653589793 l004 Pi/tanh(587/78*Pi) 3141592653589793 l004 Pi/tanh(444/59*Pi) 3141592653589793 l004 Pi/tanh(745/99*Pi) 3141592653589793 l004 Pi/tanh(301/40*Pi) 3141592653589793 l004 Pi/tanh(760/101*Pi) 3141592653589793 l004 Pi/tanh(459/61*Pi) 3141592653589793 l004 Pi/tanh(617/82*Pi) 3141592653589793 l004 Pi/tanh(775/103*Pi) 3141592653589793 l004 Pi/tanh(158/21*Pi) 3141592653589793 l004 Pi/tanh(805/107*Pi) 3141592653589793 l004 Pi/tanh(647/86*Pi) 3141592653589793 l004 Pi/tanh(489/65*Pi) 3141592653589793 l004 Pi/tanh(820/109*Pi) 3141592653589793 l004 Pi/tanh(331/44*Pi) 3141592653589793 l004 Pi/tanh(835/111*Pi) 3141592653589793 l004 Pi/tanh(504/67*Pi) 3141592653589793 l004 Pi/tanh(677/90*Pi) 3141592653589793 l004 Pi/tanh(850/113*Pi) 3141592653589793 l004 Pi/tanh(173/23*Pi) 3141592653589793 m001 BesselI(0,2)^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(880/117*Pi) 3141592653589793 l004 Pi/tanh(707/94*Pi) 3141592653589793 l004 Pi/tanh(534/71*Pi) 3141592653589793 l004 Pi/tanh(895/119*Pi) 3141592653589793 l004 Pi/tanh(361/48*Pi) 3141592653589793 l004 Pi/tanh(549/73*Pi) 3141592653589793 l004 Pi/tanh(737/98*Pi) 3141592653589793 l004 Pi/tanh(188/25*Pi) 3141592653589793 l004 Pi/tanh(767/102*Pi) 3141592653589793 l004 Pi/tanh(579/77*Pi) 3141592653589793 l004 Pi/tanh(391/52*Pi) 3141592653589793 l004 Pi/tanh(594/79*Pi) 3141592653589793 l004 Pi/tanh(797/106*Pi) 3141592653589793 l004 Pi/tanh(203/27*Pi) 3141592653589793 l004 Pi/tanh(827/110*Pi) 3141592653589793 l004 Pi/tanh(624/83*Pi) 3141592653589793 l004 Pi/tanh(421/56*Pi) 3141592653589793 l004 Pi/tanh(639/85*Pi) 3141592653589793 l004 Pi/tanh(857/114*Pi) 3141592653589793 l004 Pi/tanh(218/29*Pi) 3141592653589793 l004 Pi/tanh(887/118*Pi) 3141592653589793 l004 Pi/tanh(669/89*Pi) 3141592653589793 l004 Pi/tanh(451/60*Pi) 3141592653589793 l004 Pi/tanh(684/91*Pi) 3141592653589793 l004 Pi/tanh(233/31*Pi) 3141592653589793 l004 Pi/tanh(714/95*Pi) 3141592653589793 l004 Pi/tanh(481/64*Pi) 3141592653589793 l004 Pi/tanh(729/97*Pi) 3141592653589793 l004 Pi/tanh(248/33*Pi) 3141592653589793 l004 Pi/tanh(759/101*Pi) 3141592653589793 l004 Pi/tanh(511/68*Pi) 3141592653589793 l004 Pi/tanh(774/103*Pi) 3141592653589793 l004 Pi/tanh(263/35*Pi) 3141592653589793 l004 Pi/tanh(804/107*Pi) 3141592653589793 l004 Pi/tanh(541/72*Pi) 3141592653589793 l004 Pi/tanh(819/109*Pi) 3141592653589793 l004 Pi/tanh(278/37*Pi) 3141592653589793 l004 Pi/tanh(849/113*Pi) 3141592653589793 l004 Pi/tanh(571/76*Pi) 3141592653589793 l004 Pi/tanh(864/115*Pi) 3141592653589793 l004 Pi/tanh(293/39*Pi) 3141592653589793 l004 Pi/tanh(894/119*Pi) 3141592653589793 l004 Pi/tanh(601/80*Pi) 3141592653589793 l004 Pi/tanh(308/41*Pi) 3141592653589793 l004 Pi/tanh(631/84*Pi) 3141592653589793 l004 Pi/tanh(323/43*Pi) 3141592653589793 l004 Pi/tanh(661/88*Pi) 3141592653589793 l004 Pi/tanh(338/45*Pi) 3141592653589793 l004 Pi/tanh(691/92*Pi) 3141592653589793 l004 Pi/tanh(353/47*Pi) 3141592653589793 l004 Pi/tanh(721/96*Pi) 3141592653589793 l004 Pi/tanh(368/49*Pi) 3141592653589793 l004 Pi/tanh(751/100*Pi) 3141592653589793 l004 Pi/tanh(383/51*Pi) 3141592653589793 l004 Pi/tanh(781/104*Pi) 3141592653589793 l004 Pi/tanh(398/53*Pi) 3141592653589793 l004 Pi/tanh(811/108*Pi) 3141592653589793 l004 Pi/tanh(413/55*Pi) 3141592653589793 l004 Pi/tanh(841/112*Pi) 3141592653589793 l004 Pi/tanh(428/57*Pi) 3141592653589793 l004 Pi/tanh(871/116*Pi) 3141592653589793 l004 Pi/tanh(443/59*Pi) 3141592653589793 l004 Pi/tanh(901/120*Pi) 3141592653589793 l004 Pi/tanh(458/61*Pi) 3141592653589793 l004 Pi/tanh(473/63*Pi) 3141592653589793 l004 Pi/tanh(488/65*Pi) 3141592653589793 l004 Pi/tanh(503/67*Pi) 3141592653589793 l004 Pi/tanh(518/69*Pi) 3141592653589793 l004 Pi/tanh(533/71*Pi) 3141592653589793 l004 Pi/tanh(548/73*Pi) 3141592653589793 l004 Pi/tanh(563/75*Pi) 3141592653589793 l004 Pi/tanh(578/77*Pi) 3141592653589793 l004 Pi/tanh(593/79*Pi) 3141592653589793 l004 Pi/tanh(608/81*Pi) 3141592653589793 l004 Pi/tanh(623/83*Pi) 3141592653589793 l004 Pi/tanh(638/85*Pi) 3141592653589793 l004 Pi/tanh(653/87*Pi) 3141592653589793 l004 Pi/tanh(668/89*Pi) 3141592653589793 l004 Pi/tanh(683/91*Pi) 3141592653589793 l004 Pi/tanh(698/93*Pi) 3141592653589793 l004 Pi/tanh(713/95*Pi) 3141592653589793 l004 Pi/tanh(728/97*Pi) 3141592653589793 l004 Pi/tanh(743/99*Pi) 3141592653589793 l004 Pi/tanh(758/101*Pi) 3141592653589793 l004 Pi/tanh(773/103*Pi) 3141592653589793 l004 Pi/tanh(788/105*Pi) 3141592653589793 l004 Pi/tanh(803/107*Pi) 3141592653589793 l004 Pi/tanh(818/109*Pi) 3141592653589793 l004 Pi/tanh(833/111*Pi) 3141592653589793 l004 Pi/tanh(848/113*Pi) 3141592653589793 l004 Pi/tanh(863/115*Pi) 3141592653589793 l004 Pi/tanh(878/117*Pi) 3141592653589793 l004 Pi/tanh(893/119*Pi) 3141592653589793 l004 Pi/tanh(15/2*Pi) 3141592653589793 l004 Pi/tanh(892/119*Pi) 3141592653589793 l004 Pi/tanh(877/117*Pi) 3141592653589793 l004 Pi/tanh(862/115*Pi) 3141592653589793 l004 Pi/tanh(847/113*Pi) 3141592653589793 l004 Pi/tanh(832/111*Pi) 3141592653589793 l004 Pi/tanh(817/109*Pi) 3141592653589793 l004 Pi/tanh(802/107*Pi) 3141592653589793 l004 Pi/tanh(787/105*Pi) 3141592653589793 l004 Pi/tanh(772/103*Pi) 3141592653589793 l004 Pi/tanh(757/101*Pi) 3141592653589793 l004 Pi/tanh(742/99*Pi) 3141592653589793 l004 Pi/tanh(727/97*Pi) 3141592653589793 l004 Pi/tanh(712/95*Pi) 3141592653589793 l004 Pi/tanh(697/93*Pi) 3141592653589793 l004 Pi/tanh(682/91*Pi) 3141592653589793 l004 Pi/tanh(667/89*Pi) 3141592653589793 l004 Pi/tanh(652/87*Pi) 3141592653589793 l004 Pi/tanh(637/85*Pi) 3141592653589793 l004 Pi/tanh(622/83*Pi) 3141592653589793 l004 Pi/tanh(607/81*Pi) 3141592653589793 l004 Pi/tanh(592/79*Pi) 3141592653589793 l004 Pi/tanh(577/77*Pi) 3141592653589793 l004 Pi/tanh(562/75*Pi) 3141592653589793 l004 Pi/tanh(547/73*Pi) 3141592653589793 l004 Pi/tanh(532/71*Pi) 3141592653589793 l004 Pi/tanh(517/69*Pi) 3141592653589793 l004 Pi/tanh(502/67*Pi) 3141592653589793 l004 Pi/tanh(487/65*Pi) 3141592653589793 l004 Pi/tanh(472/63*Pi) 3141592653589793 l004 Pi/tanh(457/61*Pi) 3141592653589793 l004 Pi/tanh(899/120*Pi) 3141592653589793 l004 Pi/tanh(442/59*Pi) 3141592653589793 l004 Pi/tanh(869/116*Pi) 3141592653589793 l004 Pi/tanh(427/57*Pi) 3141592653589793 l004 Pi/tanh(839/112*Pi) 3141592653589793 l004 Pi/tanh(412/55*Pi) 3141592653589793 l004 Pi/tanh(809/108*Pi) 3141592653589793 l004 Pi/tanh(397/53*Pi) 3141592653589793 l004 Pi/tanh(779/104*Pi) 3141592653589793 l004 Pi/tanh(382/51*Pi) 3141592653589793 l004 Pi/tanh(749/100*Pi) 3141592653589793 l004 Pi/tanh(367/49*Pi) 3141592653589793 l004 Pi/tanh(719/96*Pi) 3141592653589793 l004 Pi/tanh(352/47*Pi) 3141592653589793 l004 Pi/tanh(689/92*Pi) 3141592653589793 l004 Pi/tanh(337/45*Pi) 3141592653589793 l004 Pi/tanh(659/88*Pi) 3141592653589793 l004 Pi/tanh(322/43*Pi) 3141592653589793 l004 Pi/tanh(629/84*Pi) 3141592653589793 l004 Pi/tanh(307/41*Pi) 3141592653589793 l004 Pi/tanh(599/80*Pi) 3141592653589793 l004 Pi/tanh(891/119*Pi) 3141592653589793 l004 Pi/tanh(292/39*Pi) 3141592653589793 l004 Pi/tanh(861/115*Pi) 3141592653589793 l004 Pi/tanh(569/76*Pi) 3141592653589793 l004 Pi/tanh(846/113*Pi) 3141592653589793 l004 Pi/tanh(277/37*Pi) 3141592653589793 l004 Pi/tanh(816/109*Pi) 3141592653589793 l004 Pi/tanh(539/72*Pi) 3141592653589793 l004 Pi/tanh(801/107*Pi) 3141592653589793 l004 Pi/tanh(262/35*Pi) 3141592653589793 l004 Pi/tanh(771/103*Pi) 3141592653589793 l004 Pi/tanh(509/68*Pi) 3141592653589793 l004 Pi/tanh(756/101*Pi) 3141592653589793 l004 Pi/tanh(247/33*Pi) 3141592653589793 l004 Pi/tanh(726/97*Pi) 3141592653589793 l004 Pi/tanh(479/64*Pi) 3141592653589793 l004 Pi/tanh(711/95*Pi) 3141592653589793 l004 Pi/tanh(232/31*Pi) 3141592653589793 l004 Pi/tanh(681/91*Pi) 3141592653589793 l004 Pi/tanh(449/60*Pi) 3141592653589793 l004 Pi/tanh(666/89*Pi) 3141592653589793 l004 Pi/tanh(883/118*Pi) 3141592653589793 l004 Pi/tanh(217/29*Pi) 3141592653589793 l004 Pi/tanh(853/114*Pi) 3141592653589793 l004 Pi/tanh(636/85*Pi) 3141592653589793 l004 Pi/tanh(419/56*Pi) 3141592653589793 l004 Pi/tanh(621/83*Pi) 3141592653589793 l004 Pi/tanh(823/110*Pi) 3141592653589793 l004 Pi/tanh(202/27*Pi) 3141592653589793 l004 Pi/tanh(793/106*Pi) 3141592653589793 l004 Pi/tanh(591/79*Pi) 3141592653589793 l004 Pi/tanh(389/52*Pi) 3141592653589793 l004 Pi/tanh(576/77*Pi) 3141592653589793 l004 Pi/tanh(763/102*Pi) 3141592653589793 l004 Pi/tanh(187/25*Pi) 3141592653589793 l004 Pi/tanh(733/98*Pi) 3141592653589793 l004 Pi/tanh(546/73*Pi) 3141592653589793 l004 Pi/tanh(359/48*Pi) 3141592653589793 l004 Pi/tanh(890/119*Pi) 3141592653589793 l004 Pi/tanh(531/71*Pi) 3141592653589793 l004 Pi/tanh(703/94*Pi) 3141592653589793 l004 Pi/tanh(875/117*Pi) 3141592653589793 l004 Pi/tanh(172/23*Pi) 3141592653589793 l004 Pi/tanh(845/113*Pi) 3141592653589793 l004 Pi/tanh(673/90*Pi) 3141592653589793 l004 Pi/tanh(501/67*Pi) 3141592653589793 l004 Pi/tanh(830/111*Pi) 3141592653589793 l004 Pi/tanh(329/44*Pi) 3141592653589793 l004 Pi/tanh(815/109*Pi) 3141592653589793 l004 Pi/tanh(486/65*Pi) 3141592653589793 l004 Pi/tanh(643/86*Pi) 3141592653589793 l004 Pi/tanh(800/107*Pi) 3141592653589793 l004 Pi/tanh(157/21*Pi) 3141592653589793 l004 Pi/tanh(770/103*Pi) 3141592653589793 l004 Pi/tanh(613/82*Pi) 3141592653589793 l004 Pi/tanh(456/61*Pi) 3141592653589793 l004 Pi/tanh(755/101*Pi) 3141592653589793 l004 Pi/tanh(299/40*Pi) 3141592653589793 l004 Pi/tanh(740/99*Pi) 3141592653589793 l004 Pi/tanh(441/59*Pi) 3141592653589793 l004 Pi/tanh(583/78*Pi) 3141592653589793 l004 Pi/tanh(725/97*Pi) 3141592653589793 l004 Pi/tanh(867/116*Pi) 3141592653589793 l004 Pi/tanh(142/19*Pi) 3141592653589793 l004 Pi/tanh(837/112*Pi) 3141592653589793 l004 Pi/tanh(695/93*Pi) 3141592653589793 l004 Pi/tanh(553/74*Pi) 3141592653589793 l004 Pi/tanh(411/55*Pi) 3141592653589793 l004 Pi/tanh(680/91*Pi) 3141592653589793 l004 Pi/tanh(269/36*Pi) 3141592653589793 l004 Pi/tanh(665/89*Pi) 3141592653589793 l004 Pi/tanh(396/53*Pi) 3141592653589793 l004 Pi/tanh(523/70*Pi) 3141592653589793 l004 Pi/tanh(650/87*Pi) 3141592653589793 l004 Pi/tanh(777/104*Pi) 3141592653589793 l004 Pi/tanh(127/17*Pi) 3141592653589793 l004 Pi/tanh(874/117*Pi) 3141592653589793 l004 Pi/tanh(747/100*Pi) 3141592653589793 l004 Pi/tanh(620/83*Pi) 3141592653589793 l004 Pi/tanh(493/66*Pi) 3141592653589793 l004 Pi/tanh(859/115*Pi) 3141592653589793 l004 Pi/tanh(366/49*Pi) 3141592653589793 l004 Pi/tanh(605/81*Pi) 3141592653589793 l004 Pi/tanh(844/113*Pi) 3141592653589793 l004 Pi/tanh(239/32*Pi) 3141592653589793 l004 Pi/tanh(829/111*Pi) 3141592653589793 l004 Pi/tanh(590/79*Pi) 3141592653589793 l004 Pi/tanh(351/47*Pi) 3141592653589793 l004 Pi/tanh(814/109*Pi) 3141592653589793 l004 Pi/tanh(463/62*Pi) 3141592653589793 l004 Pi/tanh(575/77*Pi) 3141592653589793 l004 Pi/tanh(687/92*Pi) 3141592653589793 l004 Pi/tanh(799/107*Pi) 3141592653589793 l004 Pi/tanh(112/15*Pi) 3141592653589793 l004 Pi/tanh(881/118*Pi) 3141592653589793 l004 Pi/tanh(769/103*Pi) 3141592653589793 l004 Pi/tanh(657/88*Pi) 3141592653589793 l004 Pi/tanh(545/73*Pi) 3141592653589793 l004 Pi/tanh(433/58*Pi) 3141592653589793 l004 Pi/tanh(754/101*Pi) 3141592653589793 l004 Pi/tanh(321/43*Pi) 3141592653589793 l004 Pi/tanh(851/114*Pi) 3141592653589793 l004 Pi/tanh(530/71*Pi) 3141592653589793 l004 Pi/tanh(739/99*Pi) 3141592653589793 l004 Pi/tanh(209/28*Pi) 3141592653589793 l004 Pi/tanh(724/97*Pi) 3141592653589793 l004 Pi/tanh(515/69*Pi) 3141592653589793 l004 Pi/tanh(821/110*Pi) 3141592653589793 l004 Pi/tanh(306/41*Pi) 3141592653589793 l004 Pi/tanh(709/95*Pi) 3141592653589793 l004 Pi/tanh(403/54*Pi) 3141592653589793 l004 Pi/tanh(500/67*Pi) 3141592653589793 l004 Pi/tanh(597/80*Pi) 3141592653589793 l004 Pi/tanh(694/93*Pi) 3141592653589793 l004 Pi/tanh(791/106*Pi) 3141592653589793 l004 Pi/tanh(888/119*Pi) 3141592653589793 l004 Pi/tanh(97/13*Pi) 3141592653589793 l004 Pi/tanh(858/115*Pi) 3141592653589793 l004 Pi/tanh(761/102*Pi) 3141592653589793 l004 Pi/tanh(664/89*Pi) 3141592653589793 l004 Pi/tanh(567/76*Pi) 3141592653589793 l004 Pi/tanh(470/63*Pi) 3141592653589793 l004 Pi/tanh(843/113*Pi) 3141592653589793 l004 Pi/tanh(373/50*Pi) 3141592653589793 l004 Pi/tanh(649/87*Pi) 3141592653589793 l004 Pi/tanh(276/37*Pi) 3141592653589793 l004 Pi/tanh(731/98*Pi) 3141592653589793 l004 Pi/tanh(455/61*Pi) 3141592653589793 l004 Pi/tanh(634/85*Pi) 3141592653589793 l004 Pi/tanh(813/109*Pi) 3141592653589793 l004 Pi/tanh(179/24*Pi) 3141592653589793 l004 Pi/tanh(798/107*Pi) 3141592653589793 l004 Pi/tanh(619/83*Pi) 3141592653589793 l004 Pi/tanh(440/59*Pi) 3141592653589793 l004 Pi/tanh(701/94*Pi) 3141592653589793 l004 Pi/tanh(261/35*Pi) 3141592653589793 l004 Pi/tanh(865/116*Pi) 3141592653589793 l004 Pi/tanh(604/81*Pi) 3141592653589793 l004 Pi/tanh(343/46*Pi) 3141592653589793 l004 Pi/tanh(768/103*Pi) 3141592653589793 l004 Pi/tanh(425/57*Pi) 3141592653589793 l004 Pi/tanh(507/68*Pi) 3141592653589793 l004 Pi/tanh(589/79*Pi) 3141592653589793 l004 Pi/tanh(671/90*Pi) 3141592653589793 l004 Pi/tanh(753/101*Pi) 3141592653589793 l004 Pi/tanh(835/112*Pi) 3141592653589793 l004 Pi/tanh(82/11*Pi) 3141592653589793 l004 Pi/tanh(887/119*Pi) 3141592653589793 l004 Pi/tanh(805/108*Pi) 3141592653589793 l004 Pi/tanh(723/97*Pi) 3141592653589793 l004 Pi/tanh(641/86*Pi) 3141592653589793 l004 Pi/tanh(559/75*Pi) 3141592653589793 l004 Pi/tanh(477/64*Pi) 3141592653589793 l004 Pi/tanh(872/117*Pi) 3141592653589793 l004 Pi/tanh(395/53*Pi) 3141592653589793 l004 Pi/tanh(708/95*Pi) 3141592653589793 l004 Pi/tanh(313/42*Pi) 3141592653589793 l004 Pi/tanh(857/115*Pi) 3141592653589793 l004 Pi/tanh(544/73*Pi) 3141592653589793 l004 Pi/tanh(775/104*Pi) 3141592653589793 l004 Pi/tanh(231/31*Pi) 3141592653589793 l004 Pi/tanh(842/113*Pi) 3141592653589793 l004 Pi/tanh(611/82*Pi) 3141592653589793 l004 Pi/tanh(380/51*Pi) 3141592653589793 l004 Pi/tanh(529/71*Pi) 3141592653589793 l004 Pi/tanh(678/91*Pi) 3141592653589793 l004 Pi/tanh(827/111*Pi) 3141592653589793 l004 Pi/tanh(149/20*Pi) 3141592653589793 l004 Pi/tanh(812/109*Pi) 3141592653589793 l004 Pi/tanh(663/89*Pi) 3141592653589793 l004 Pi/tanh(514/69*Pi) 3141592653589793 l004 Pi/tanh(879/118*Pi) 3141592653589793 l004 Pi/tanh(365/49*Pi) 3141592653589793 l004 Pi/tanh(581/78*Pi) 3141592653589793 l004 Pi/tanh(797/107*Pi) 3141592653589793 l004 Pi/tanh(216/29*Pi) 3141592653589793 l004 Pi/tanh(715/96*Pi) 3141592653589793 l004 Pi/tanh(499/67*Pi) 3141592653589793 l004 Pi/tanh(782/105*Pi) 3141592653589793 l004 Pi/tanh(283/38*Pi) 3141592653589793 l004 Pi/tanh(633/85*Pi) 3141592653589793 l004 Pi/tanh(350/47*Pi) 3141592653589793 l004 Pi/tanh(767/103*Pi) 3141592653589793 l004 Pi/tanh(417/56*Pi) 3141592653589793 l004 Pi/tanh(484/65*Pi) 3141592653589793 l004 Pi/tanh(551/74*Pi) 3141592653589793 l004 Pi/tanh(618/83*Pi) 3141592653589793 l004 Pi/tanh(685/92*Pi) 3141592653589793 l004 Pi/tanh(752/101*Pi) 3141592653589793 l004 Pi/tanh(819/110*Pi) 3141592653589793 l004 Pi/tanh(886/119*Pi) 3141592653589793 l004 Pi/tanh(67/9*Pi) 3141592653589793 l004 Pi/tanh(856/115*Pi) 3141592653589793 l004 Pi/tanh(789/106*Pi) 3141592653589793 l004 Pi/tanh(722/97*Pi) 3141592653589793 l004 Pi/tanh(655/88*Pi) 3141592653589793 l004 Pi/tanh(588/79*Pi) 3141592653589793 l004 Pi/tanh(521/70*Pi) 3141592653589793 l004 Pi/tanh(454/61*Pi) 3141592653589793 l004 Pi/tanh(841/113*Pi) 3141592653589793 l004 Pi/tanh(387/52*Pi) 3141592653589793 l004 Pi/tanh(707/95*Pi) 3141592653589793 l004 Pi/tanh(320/43*Pi) 3141592653589793 l004 Pi/tanh(893/120*Pi) 3141592653589793 l004 Pi/tanh(573/77*Pi) 3141592653589793 l004 Pi/tanh(826/111*Pi) 3141592653589793 l004 Pi/tanh(253/34*Pi) 3141592653589793 l004 Pi/tanh(692/93*Pi) 3141592653589793 l004 Pi/tanh(439/59*Pi) 3141592653589793 l004 Pi/tanh(625/84*Pi) 3141592653589793 l004 Pi/tanh(811/109*Pi) 3141592653589793 l004 Pi/tanh(186/25*Pi) 3141592653589793 l004 Pi/tanh(863/116*Pi) 3141592653589793 l004 Pi/tanh(677/91*Pi) 3141592653589793 l004 Pi/tanh(491/66*Pi) 3141592653589793 l004 Pi/tanh(796/107*Pi) 3141592653589793 l004 Pi/tanh(305/41*Pi) 3141592653589793 l004 Pi/tanh(729/98*Pi) 3141592653589793 l004 Pi/tanh(424/57*Pi) 3141592653589793 l004 Pi/tanh(543/73*Pi) 3141592653589793 l004 Pi/tanh(662/89*Pi) 3141592653589793 l004 Pi/tanh(781/105*Pi) 3141592653589793 l004 Pi/tanh(119/16*Pi) 3141592653589793 l004 Pi/tanh(885/119*Pi) 3141592653589793 l004 Pi/tanh(766/103*Pi) 3141592653589793 l004 Pi/tanh(647/87*Pi) 3141592653589793 l004 Pi/tanh(528/71*Pi) 3141592653589793 l004 Pi/tanh(409/55*Pi) 3141592653589793 l004 Pi/tanh(699/94*Pi) 3141592653589793 l004 Pi/tanh(290/39*Pi) 3141592653589793 l004 Pi/tanh(751/101*Pi) 3141592653589793 l004 Pi/tanh(461/62*Pi) 3141592653589793 l004 Pi/tanh(632/85*Pi) 3141592653589793 l004 Pi/tanh(803/108*Pi) 3141592653589793 l004 Pi/tanh(171/23*Pi) 3141592653589793 l004 Pi/tanh(736/99*Pi) 3141592653589793 l004 Pi/tanh(565/76*Pi) 3141592653589793 l004 Pi/tanh(394/53*Pi) 3141592653589793 l004 Pi/tanh(617/83*Pi) 3141592653589793 l004 Pi/tanh(840/113*Pi) 3141592653589793 l004 Pi/tanh(223/30*Pi) 3141592653589793 l004 Pi/tanh(721/97*Pi) 3141592653589793 l004 Pi/tanh(498/67*Pi) 3141592653589793 l004 Pi/tanh(773/104*Pi) 3141592653589793 l004 Pi/tanh(275/37*Pi) 3141592653589793 l004 Pi/tanh(877/118*Pi) 3141592653589793 l004 Pi/tanh(602/81*Pi) 3141592653589793 l004 Pi/tanh(327/44*Pi) 3141592653589793 l004 Pi/tanh(706/95*Pi) 3141592653589793 l004 Pi/tanh(379/51*Pi) 3141592653589793 l004 Pi/tanh(810/109*Pi) 3141592653589793 l004 Pi/tanh(431/58*Pi) 3141592653589793 l004 Pi/tanh(483/65*Pi) 3141592653589793 l004 Pi/tanh(535/72*Pi) 3141592653589793 l004 Pi/tanh(587/79*Pi) 3141592653589793 l004 Pi/tanh(639/86*Pi) 3141592653589793 l004 Pi/tanh(691/93*Pi) 3141592653589793 l004 Pi/tanh(743/100*Pi) 3141592653589793 l004 Pi/tanh(795/107*Pi) 3141592653589793 l004 Pi/tanh(847/114*Pi) 3141592653589793 l004 Pi/tanh(52/7*Pi) 3141592653589793 l004 Pi/tanh(869/117*Pi) 3141592653589793 l004 Pi/tanh(817/110*Pi) 3141592653589793 l004 Pi/tanh(765/103*Pi) 3141592653589793 l004 Pi/tanh(713/96*Pi) 3141592653589793 l004 Pi/tanh(661/89*Pi) 3141592653589793 l004 Pi/tanh(609/82*Pi) 3141592653589793 l004 Pi/tanh(557/75*Pi) 3141592653589793 l004 Pi/tanh(505/68*Pi) 3141592653589793 l004 Pi/tanh(453/61*Pi) 3141592653589793 l004 Pi/tanh(854/115*Pi) 3141592653589793 l004 Pi/tanh(401/54*Pi) 3141592653589793 l004 Pi/tanh(750/101*Pi) 3141592653589793 l004 Pi/tanh(349/47*Pi) 3141592653589793 l004 Pi/tanh(646/87*Pi) 3141592653589793 l004 Pi/tanh(297/40*Pi) 3141592653589793 l004 Pi/tanh(839/113*Pi) 3141592653589793 l004 Pi/tanh(542/73*Pi) 3141592653589793 l004 Pi/tanh(787/106*Pi) 3141592653589793 l004 Pi/tanh(245/33*Pi) 3141592653589793 l004 Pi/tanh(683/92*Pi) 3141592653589793 l004 Pi/tanh(438/59*Pi) 3141592653589793 l004 Pi/tanh(631/85*Pi) 3141592653589793 l004 Pi/tanh(824/111*Pi) 3141592653589793 l004 Pi/tanh(193/26*Pi) 3141592653589793 l004 Pi/tanh(720/97*Pi) 3141592653589793 l004 Pi/tanh(527/71*Pi) 3141592653589793 l004 Pi/tanh(861/116*Pi) 3141592653589793 l004 Pi/tanh(334/45*Pi) 3141592653589793 l004 Pi/tanh(809/109*Pi) 3141592653589793 l004 Pi/tanh(475/64*Pi) 3141592653589793 l004 Pi/tanh(616/83*Pi) 3141592653589793 l004 Pi/tanh(757/102*Pi) 3141592653589793 l004 Pi/tanh(141/19*Pi) 3141592653589793 l004 Pi/tanh(794/107*Pi) 3141592653589793 l004 Pi/tanh(653/88*Pi) 3141592653589793 l004 Pi/tanh(512/69*Pi) 3141592653589793 l004 Pi/tanh(883/119*Pi) 3141592653589793 l004 Pi/tanh(371/50*Pi) 3141592653589793 l004 Pi/tanh(601/81*Pi) 3141592653589793 l004 Pi/tanh(831/112*Pi) 3141592653589793 l004 Pi/tanh(230/31*Pi) 3141592653589793 l004 Pi/tanh(779/105*Pi) 3141592653589793 l004 Pi/tanh(549/74*Pi) 3141592653589793 l004 Pi/tanh(868/117*Pi) 3141592653589793 l004 Pi/tanh(319/43*Pi) 3141592653589793 l004 Pi/tanh(727/98*Pi) 3141592653589793 l004 Pi/tanh(408/55*Pi) 3141592653589793 l004 Pi/tanh(497/67*Pi) 3141592653589793 l004 Pi/tanh(586/79*Pi) 3141592653589793 l004 Pi/tanh(675/91*Pi) 3141592653589793 l004 Pi/tanh(764/103*Pi) 3141592653589793 l004 Pi/tanh(853/115*Pi) 3141592653589793 l004 Pi/tanh(89/12*Pi) 3141592653589793 l004 Pi/tanh(838/113*Pi) 3141592653589793 m001 ZetaR(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 l004 Pi/tanh(749/101*Pi) 3141592653589793 l004 Pi/tanh(660/89*Pi) 3141592653589793 l004 Pi/tanh(571/77*Pi) 3141592653589793 l004 Pi/tanh(482/65*Pi) 3141592653589793 l004 Pi/tanh(875/118*Pi) 3141592653589793 l004 Pi/tanh(393/53*Pi) 3141592653589793 l004 Pi/tanh(697/94*Pi) 3141592653589793 l004 Pi/tanh(304/41*Pi) 3141592653589793 l004 Pi/tanh(823/111*Pi) 3141592653589793 l004 Pi/tanh(519/70*Pi) 3141592653589793 l004 Pi/tanh(734/99*Pi) 3141592653589793 l004 Pi/tanh(215/29*Pi) 3141592653589793 l004 Pi/tanh(771/104*Pi) 3141592653589793 l004 Pi/tanh(556/75*Pi) 3141592653589793 l004 Pi/tanh(341/46*Pi) 3141592653589793 l004 Pi/tanh(808/109*Pi) 3141592653589793 l004 Pi/tanh(467/63*Pi) 3141592653589793 l004 Pi/tanh(593/80*Pi) 3141592653589793 l004 Pi/tanh(719/97*Pi) 3141592653589793 l004 Pi/tanh(845/114*Pi) 3141592653589793 l004 Pi/tanh(126/17*Pi) 3141592653589793 l004 Pi/tanh(793/107*Pi) 3141592653589793 l004 Pi/tanh(667/90*Pi) 3141592653589793 l004 Pi/tanh(541/73*Pi) 3141592653589793 l004 Pi/tanh(415/56*Pi) 3141592653589793 l004 Pi/tanh(704/95*Pi) 3141592653589793 l004 Pi/tanh(289/39*Pi) 3141592653589793 l004 Pi/tanh(741/100*Pi) 3141592653589793 l004 Pi/tanh(452/61*Pi) 3141592653589793 l004 Pi/tanh(615/83*Pi) 3141592653589793 l004 Pi/tanh(778/105*Pi) 3141592653589793 l004 Pi/tanh(163/22*Pi) 3141592653589793 l004 Pi/tanh(852/115*Pi) 3141592653589793 l004 Pi/tanh(689/93*Pi) 3141592653589793 l004 Pi/tanh(526/71*Pi) 3141592653589793 l004 Pi/tanh(889/120*Pi) 3141592653589793 l004 Pi/tanh(363/49*Pi) 3141592653589793 l004 Pi/tanh(563/76*Pi) 3141592653589793 l004 Pi/tanh(763/103*Pi) 3141592653589793 l004 Pi/tanh(200/27*Pi) 3141592653589793 l004 Pi/tanh(837/113*Pi) 3141592653589793 l004 Pi/tanh(637/86*Pi) 3141592653589793 l004 Pi/tanh(437/59*Pi) 3141592653589793 l004 Pi/tanh(674/91*Pi) 3141592653589793 l004 Pi/tanh(237/32*Pi) 3141592653589793 l004 Pi/tanh(748/101*Pi) 3141592653589793 l004 Pi/tanh(511/69*Pi) 3141592653589793 l004 Pi/tanh(785/106*Pi) 3141592653589793 l004 Pi/tanh(274/37*Pi) 3141592653589793 l004 Pi/tanh(859/116*Pi) 3141592653589793 l004 Pi/tanh(585/79*Pi) 3141592653589793 l004 Pi/tanh(311/42*Pi) 3141592653589793 l004 Pi/tanh(659/89*Pi) 3141592653589793 l004 Pi/tanh(348/47*Pi) 3141592653589793 l004 Pi/tanh(733/99*Pi) 3141592653589793 l004 Pi/tanh(385/52*Pi) 3141592653589793 l004 Pi/tanh(807/109*Pi) 3141592653589793 l004 Pi/tanh(422/57*Pi) 3141592653589793 l004 Pi/tanh(881/119*Pi) 3141592653589793 l004 Pi/tanh(459/62*Pi) 3141592653589793 l004 Pi/tanh(496/67*Pi) 3141592653589793 l004 Pi/tanh(533/72*Pi) 3141592653589793 l004 Pi/tanh(570/77*Pi) 3141592653589793 l004 Pi/tanh(607/82*Pi) 3141592653589793 l004 Pi/tanh(644/87*Pi) 3141592653589793 l004 Pi/tanh(681/92*Pi) 3141592653589793 l004 Pi/tanh(718/97*Pi) 3141592653589793 l004 Pi/tanh(755/102*Pi) 3141592653589793 l004 Pi/tanh(792/107*Pi) 3141592653589793 l004 Pi/tanh(829/112*Pi) 3141592653589793 l004 Pi/tanh(866/117*Pi) 3141592653589793 l004 Pi/tanh(37/5*Pi) 3141592653589793 l004 Pi/tanh(873/118*Pi) 3141592653589793 l004 Pi/tanh(836/113*Pi) 3141592653589793 l004 Pi/tanh(799/108*Pi) 3141592653589793 l004 Pi/tanh(762/103*Pi) 3141592653589793 l004 Pi/tanh(725/98*Pi) 3141592653589793 l004 Pi/tanh(688/93*Pi) 3141592653589793 l004 Pi/tanh(651/88*Pi) 3141592653589793 l004 Pi/tanh(614/83*Pi) 3141592653589793 l004 Pi/tanh(577/78*Pi) 3141592653589793 l004 Pi/tanh(540/73*Pi) 3141592653589793 l004 Pi/tanh(503/68*Pi) 3141592653589793 l004 Pi/tanh(466/63*Pi) 3141592653589793 l004 Pi/tanh(429/58*Pi) 3141592653589793 l004 Pi/tanh(821/111*Pi) 3141592653589793 l004 Pi/tanh(392/53*Pi) 3141592653589793 l004 Pi/tanh(747/101*Pi) 3141592653589793 l004 Pi/tanh(355/48*Pi) 3141592653589793 l004 Pi/tanh(673/91*Pi) 3141592653589793 l004 Pi/tanh(318/43*Pi) 3141592653589793 l004 Pi/tanh(599/81*Pi) 3141592653589793 l004 Pi/tanh(880/119*Pi) 3141592653589793 l004 Pi/tanh(281/38*Pi) 3141592653589793 l004 Pi/tanh(806/109*Pi) 3141592653589793 l004 Pi/tanh(525/71*Pi) 3141592653589793 l004 Pi/tanh(769/104*Pi) 3141592653589793 l004 Pi/tanh(244/33*Pi) 3141592653589793 l004 Pi/tanh(695/94*Pi) 3141592653589793 l004 Pi/tanh(451/61*Pi) 3141592653589793 l004 Pi/tanh(658/89*Pi) 3141592653589793 l004 Pi/tanh(865/117*Pi) 3141592653589793 l004 Pi/tanh(207/28*Pi) 3141592653589793 l004 Pi/tanh(791/107*Pi) 3141592653589793 l004 Pi/tanh(584/79*Pi) 3141592653589793 l004 Pi/tanh(377/51*Pi) 3141592653589793 l004 Pi/tanh(547/74*Pi) 3141592653589793 l004 Pi/tanh(717/97*Pi) 3141592653589793 l004 Pi/tanh(887/120*Pi) 3141592653589793 l004 Pi/tanh(170/23*Pi) 3141592653589793 l004 Pi/tanh(813/110*Pi) 3141592653589793 l004 Pi/tanh(643/87*Pi) 3141592653589793 l004 Pi/tanh(473/64*Pi) 3141592653589793 l004 Pi/tanh(776/105*Pi) 3141592653589793 l004 Pi/tanh(303/41*Pi) 3141592653589793 l004 Pi/tanh(739/100*Pi) 3141592653589793 l004 Pi/tanh(436/59*Pi) 3141592653589793 l004 Pi/tanh(569/77*Pi) 3141592653589793 l004 Pi/tanh(702/95*Pi) 3141592653589793 l004 Pi/tanh(835/113*Pi) 3141592653589793 l004 Pi/tanh(133/18*Pi) 3141592653589793 l004 Pi/tanh(761/103*Pi) 3141592653589793 l004 Pi/tanh(628/85*Pi) 3141592653589793 l004 Pi/tanh(495/67*Pi) 3141592653589793 l004 Pi/tanh(857/116*Pi) 3141592653589793 l004 Pi/tanh(362/49*Pi) 3141592653589793 l004 Pi/tanh(591/80*Pi) 3141592653589793 l004 Pi/tanh(820/111*Pi) 3141592653589793 l004 Pi/tanh(229/31*Pi) 3141592653589793 l004 Pi/tanh(783/106*Pi) 3141592653589793 l004 Pi/tanh(554/75*Pi) 3141592653589793 l004 Pi/tanh(879/119*Pi) 3141592653589793 l004 Pi/tanh(325/44*Pi) 3141592653589793 l004 Pi/tanh(746/101*Pi) 3141592653589793 l004 Pi/tanh(421/57*Pi) 3141592653589793 l004 Pi/tanh(517/70*Pi) 3141592653589793 l004 Pi/tanh(613/83*Pi) 3141592653589793 l004 Pi/tanh(709/96*Pi) 3141592653589793 l004 Pi/tanh(805/109*Pi) 3141592653589793 l004 Pi/tanh(96/13*Pi) 3141592653589793 l004 Pi/tanh(827/112*Pi) 3141592653589793 l004 Pi/tanh(731/99*Pi) 3141592653589793 l004 Pi/tanh(635/86*Pi) 3141592653589793 l004 Pi/tanh(539/73*Pi) 3141592653589793 l004 Pi/tanh(443/60*Pi) 3141592653589793 l004 Pi/tanh(790/107*Pi) 3141592653589793 l004 Pi/tanh(347/47*Pi) 3141592653589793 l004 Pi/tanh(598/81*Pi) 3141592653589793 l004 Pi/tanh(849/115*Pi) 3141592653589793 l004 Pi/tanh(251/34*Pi) 3141592653589793 l004 Pi/tanh(657/89*Pi) 3141592653589793 l004 Pi/tanh(406/55*Pi) 3141592653589793 l004 Pi/tanh(561/76*Pi) 3141592653589793 l004 Pi/tanh(716/97*Pi) 3141592653589793 l004 Pi/tanh(871/118*Pi) 3141592653589793 l004 Pi/tanh(155/21*Pi) 3141592653589793 l004 Pi/tanh(834/113*Pi) 3141592653589793 l004 Pi/tanh(679/92*Pi) 3141592653589793 l004 Pi/tanh(524/71*Pi) 3141592653589793 l004 Pi/tanh(369/50*Pi) 3141592653589793 l004 Pi/tanh(583/79*Pi) 3141592653589793 l004 Pi/tanh(797/108*Pi) 3141592653589793 l004 Pi/tanh(214/29*Pi) 3141592653589793 l004 Pi/tanh(701/95*Pi) 3141592653589793 l004 Pi/tanh(487/66*Pi) 3141592653589793 l004 Pi/tanh(760/103*Pi) 3141592653589793 l004 Pi/tanh(273/37*Pi) 3141592653589793 l004 Pi/tanh(878/119*Pi) 3141592653589793 l004 Pi/tanh(605/82*Pi) 3141592653589793 l004 Pi/tanh(332/45*Pi) 3141592653589793 l004 Pi/tanh(723/98*Pi) 3141592653589793 l004 Pi/tanh(391/53*Pi) 3141592653589793 l004 Pi/tanh(841/114*Pi) 3141592653589793 l004 Pi/tanh(450/61*Pi) 3141592653589793 l004 Pi/tanh(509/69*Pi) 3141592653589793 l004 Pi/tanh(568/77*Pi) 3141592653589793 l004 Pi/tanh(627/85*Pi) 3141592653589793 l004 Pi/tanh(686/93*Pi) 3141592653589793 l004 Pi/tanh(745/101*Pi) 3141592653589793 l004 Pi/tanh(804/109*Pi) 3141592653589793 l004 Pi/tanh(863/117*Pi) 3141592653589793 l004 Pi/tanh(59/8*Pi) 3141592653589793 l004 Pi/tanh(848/115*Pi) 3141592653589793 l004 Pi/tanh(789/107*Pi) 3141592653589793 l004 Pi/tanh(730/99*Pi) 3141592653589793 l004 Pi/tanh(671/91*Pi) 3141592653589793 l004 Pi/tanh(612/83*Pi) 3141592653589793 l004 Pi/tanh(553/75*Pi) 3141592653589793 l004 Pi/tanh(494/67*Pi) 3141592653589793 l004 Pi/tanh(435/59*Pi) 3141592653589793 l004 Pi/tanh(811/110*Pi) 3141592653589793 l004 Pi/tanh(376/51*Pi) 3141592653589793 l004 Pi/tanh(693/94*Pi) 3141592653589793 l004 Pi/tanh(317/43*Pi) 3141592653589793 l004 Pi/tanh(575/78*Pi) 3141592653589793 l004 Pi/tanh(833/113*Pi) 3141592653589793 l004 Pi/tanh(258/35*Pi) 3141592653589793 l004 Pi/tanh(715/97*Pi) 3141592653589793 l004 Pi/tanh(457/62*Pi) 3141592653589793 l004 Pi/tanh(656/89*Pi) 3141592653589793 l004 Pi/tanh(855/116*Pi) 3141592653589793 l004 Pi/tanh(199/27*Pi) 3141592653589793 l004 Pi/tanh(737/100*Pi) 3141592653589793 l004 Pi/tanh(538/73*Pi) 3141592653589793 l004 Pi/tanh(877/119*Pi) 3141592653589793 l004 Pi/tanh(339/46*Pi) 3141592653589793 l004 Pi/tanh(818/111*Pi) 3141592653589793 l004 Pi/tanh(479/65*Pi) 3141592653589793 l004 Pi/tanh(619/84*Pi) 3141592653589793 l004 Pi/tanh(759/103*Pi) 3141592653589793 l004 Pi/tanh(140/19*Pi) 3141592653589793 l004 Pi/tanh(781/106*Pi) 3141592653589793 l004 Pi/tanh(641/87*Pi) 3141592653589793 l004 Pi/tanh(501/68*Pi) 3141592653589793 l004 Pi/tanh(862/117*Pi) 3141592653589793 l004 Pi/tanh(361/49*Pi) 3141592653589793 l004 Pi/tanh(582/79*Pi) 3141592653589793 l004 Pi/tanh(803/109*Pi) 3141592653589793 l004 Pi/tanh(221/30*Pi) 3141592653589793 l004 Pi/tanh(744/101*Pi) 3141592653589793 l004 Pi/tanh(523/71*Pi) 3141592653589793 l004 Pi/tanh(825/112*Pi) 3141592653589793 l004 Pi/tanh(302/41*Pi) 3141592653589793 l004 Pi/tanh(685/93*Pi) 3141592653589793 l004 Pi/tanh(383/52*Pi) 3141592653589793 l004 Pi/tanh(847/115*Pi) 3141592653589793 l004 Pi/tanh(464/63*Pi) 3141592653589793 l004 Pi/tanh(545/74*Pi) 3141592653589793 l004 Pi/tanh(626/85*Pi) 3141592653589793 l004 Pi/tanh(707/96*Pi) 3141592653589793 l004 Pi/tanh(788/107*Pi) 3141592653589793 l004 Pi/tanh(869/118*Pi) 3141592653589793 l004 Pi/tanh(81/11*Pi) 3141592653589793 l004 Pi/tanh(832/113*Pi) 3141592653589793 l004 Pi/tanh(751/102*Pi) 3141592653589793 l004 Pi/tanh(670/91*Pi) 3141592653589793 l004 Pi/tanh(589/80*Pi) 3141592653589793 l004 Pi/tanh(508/69*Pi) 3141592653589793 l004 Pi/tanh(427/58*Pi) 3141592653589793 l004 Pi/tanh(773/105*Pi) 3141592653589793 l004 Pi/tanh(346/47*Pi) 3141592653589793 l004 Pi/tanh(611/83*Pi) 3141592653589793 l004 Pi/tanh(876/119*Pi) 3141592653589793 l004 Pi/tanh(265/36*Pi) 3141592653589793 l004 Pi/tanh(714/97*Pi) 3141592653589793 l004 Pi/tanh(449/61*Pi) 3141592653589793 l004 Pi/tanh(633/86*Pi) 3141592653589793 l004 Pi/tanh(817/111*Pi) 3141592653589793 l004 Pi/tanh(184/25*Pi) 3141592653589793 l004 Pi/tanh(839/114*Pi) 3141592653589793 l004 Pi/tanh(655/89*Pi) 3141592653589793 l004 Pi/tanh(471/64*Pi) 3141592653589793 l004 Pi/tanh(758/103*Pi) 3141592653589793 l004 Pi/tanh(287/39*Pi) 3141592653589793 l004 Pi/tanh(677/92*Pi) 3141592653589793 l004 Pi/tanh(390/53*Pi) 3141592653589793 l004 Pi/tanh(883/120*Pi) 3141592653589793 l004 Pi/tanh(493/67*Pi) 3141592653589793 l004 Pi/tanh(596/81*Pi) 3141592653589793 l004 Pi/tanh(699/95*Pi) 3141592653589793 l004 Pi/tanh(802/109*Pi) 3141592653589793 l004 Pi/tanh(103/14*Pi) 3141592653589793 l004 Pi/tanh(846/115*Pi) 3141592653589793 l004 Pi/tanh(743/101*Pi) 3141592653589793 l004 Pi/tanh(640/87*Pi) 3141592653589793 l004 Pi/tanh(537/73*Pi) 3141592653589793 l004 Pi/tanh(434/59*Pi) 3141592653589793 l004 Pi/tanh(765/104*Pi) 3141592653589793 l004 Pi/tanh(331/45*Pi) 3141592653589793 l004 Pi/tanh(559/76*Pi) 3141592653589793 l004 Pi/tanh(787/107*Pi) 3141592653589793 l004 Pi/tanh(228/31*Pi) 3141592653589793 l004 Pi/tanh(809/110*Pi) 3141592653589793 l004 Pi/tanh(581/79*Pi) 3141592653589793 l004 Pi/tanh(353/48*Pi) 3141592653589793 l004 Pi/tanh(831/113*Pi) 3141592653589793 l004 Pi/tanh(478/65*Pi) 3141592653589793 l004 Pi/tanh(603/82*Pi) 3141592653589793 l004 Pi/tanh(728/99*Pi) 3141592653589793 l004 Pi/tanh(853/116*Pi) 3141592653589793 l004 Pi/tanh(125/17*Pi) 3141592653589793 l004 Pi/tanh(772/105*Pi) 3141592653589793 m001 (5^(1/2))^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(647/88*Pi) 3141592653589793 l004 Pi/tanh(522/71*Pi) 3141592653589793 m001 Pi-Zeta(1,-1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 l004 Pi/tanh(397/54*Pi) 3141592653589793 l004 Pi/tanh(669/91*Pi) 3141592653589793 l004 Pi/tanh(272/37*Pi) 3141592653589793 l004 Pi/tanh(691/94*Pi) 3141592653589793 l004 Pi/tanh(419/57*Pi) 3141592653589793 l004 Pi/tanh(566/77*Pi) 3141592653589793 l004 Pi/tanh(713/97*Pi) 3141592653589793 l004 Pi/tanh(860/117*Pi) 3141592653589793 l004 Pi/tanh(147/20*Pi) 3141592653589793 l004 Pi/tanh(757/103*Pi) 3141592653589793 l004 Pi/tanh(610/83*Pi) 3141592653589793 l004 Pi/tanh(463/63*Pi) 3141592653589793 l004 Pi/tanh(779/106*Pi) 3141592653589793 l004 Pi/tanh(316/43*Pi) 3141592653589793 l004 Pi/tanh(801/109*Pi) 3141592653589793 l004 Pi/tanh(485/66*Pi) 3141592653589793 l004 Pi/tanh(654/89*Pi) 3141592653589793 l004 Pi/tanh(823/112*Pi) 3141592653589793 l004 Pi/tanh(169/23*Pi) 3141592653589793 l004 Pi/tanh(867/118*Pi) 3141592653589793 l004 Pi/tanh(698/95*Pi) 3141592653589793 l004 Pi/tanh(529/72*Pi) 3141592653589793 l004 Pi/tanh(360/49*Pi) 3141592653589793 l004 Pi/tanh(551/75*Pi) 3141592653589793 l004 Pi/tanh(742/101*Pi) 3141592653589793 l004 Pi/tanh(191/26*Pi) 3141592653589793 l004 Pi/tanh(786/107*Pi) 3141592653589793 l004 Pi/tanh(595/81*Pi) 3141592653589793 l004 Pi/tanh(404/55*Pi) 3141592653589793 l004 Pi/tanh(617/84*Pi) 3141592653589793 l004 Pi/tanh(830/113*Pi) 3141592653589793 l004 Pi/tanh(213/29*Pi) 3141592653589793 l004 Pi/tanh(874/119*Pi) 3141592653589793 l004 Pi/tanh(661/90*Pi) 3141592653589793 l004 Pi/tanh(448/61*Pi) 3141592653589793 l004 Pi/tanh(683/93*Pi) 3141592653589793 l004 Pi/tanh(235/32*Pi) 3141592653589793 l004 Pi/tanh(727/99*Pi) 3141592653589793 l004 Pi/tanh(492/67*Pi) 3141592653589793 l004 Pi/tanh(749/102*Pi) 3141592653589793 l004 Pi/tanh(257/35*Pi) 3141592653589793 l004 Pi/tanh(793/108*Pi) 3141592653589793 l004 Pi/tanh(536/73*Pi) 3141592653589793 l004 Pi/tanh(815/111*Pi) 3141592653589793 l004 Pi/tanh(279/38*Pi) 3141592653589793 l004 Pi/tanh(859/117*Pi) 3141592653589793 l004 Pi/tanh(580/79*Pi) 3141592653589793 l004 Pi/tanh(881/120*Pi) 3141592653589793 l004 Pi/tanh(301/41*Pi) 3141592653589793 l004 Pi/tanh(624/85*Pi) 3141592653589793 l004 Pi/tanh(323/44*Pi) 3141592653589793 l004 Pi/tanh(668/91*Pi) 3141592653589793 l004 Pi/tanh(345/47*Pi) 3141592653589793 l004 Pi/tanh(712/97*Pi) 3141592653589793 l004 Pi/tanh(367/50*Pi) 3141592653589793 l004 Pi/tanh(756/103*Pi) 3141592653589793 l004 Pi/tanh(389/53*Pi) 3141592653589793 l004 Pi/tanh(800/109*Pi) 3141592653589793 l004 Pi/tanh(411/56*Pi) 3141592653589793 l004 Pi/tanh(844/115*Pi) 3141592653589793 l004 Pi/tanh(433/59*Pi) 3141592653589793 l004 Pi/tanh(455/62*Pi) 3141592653589793 l004 Pi/tanh(477/65*Pi) 3141592653589793 l004 Pi/tanh(499/68*Pi) 3141592653589793 l004 Pi/tanh(521/71*Pi) 3141592653589793 l004 Pi/tanh(543/74*Pi) 3141592653589793 l004 Pi/tanh(565/77*Pi) 3141592653589793 l004 Pi/tanh(587/80*Pi) 3141592653589793 l004 Pi/tanh(609/83*Pi) 3141592653589793 l004 Pi/tanh(631/86*Pi) 3141592653589793 l004 Pi/tanh(653/89*Pi) 3141592653589793 l004 Pi/tanh(675/92*Pi) 3141592653589793 l004 Pi/tanh(697/95*Pi) 3141592653589793 l004 Pi/tanh(719/98*Pi) 3141592653589793 l004 Pi/tanh(741/101*Pi) 3141592653589793 l004 Pi/tanh(763/104*Pi) 3141592653589793 l004 Pi/tanh(785/107*Pi) 3141592653589793 l004 Pi/tanh(807/110*Pi) 3141592653589793 l004 Pi/tanh(829/113*Pi) 3141592653589793 l004 Pi/tanh(851/116*Pi) 3141592653589793 l004 Pi/tanh(873/119*Pi) 3141592653589793 l004 Pi/tanh(22/3*Pi) 3141592653589793 l004 Pi/tanh(865/118*Pi) 3141592653589793 l004 Pi/tanh(843/115*Pi) 3141592653589793 l004 Pi/tanh(821/112*Pi) 3141592653589793 l004 Pi/tanh(799/109*Pi) 3141592653589793 l004 Pi/tanh(777/106*Pi) 3141592653589793 l004 Pi/tanh(755/103*Pi) 3141592653589793 l004 Pi/tanh(733/100*Pi) 3141592653589793 l004 Pi/tanh(711/97*Pi) 3141592653589793 l004 Pi/tanh(689/94*Pi) 3141592653589793 l004 Pi/tanh(667/91*Pi) 3141592653589793 l004 Pi/tanh(645/88*Pi) 3141592653589793 l004 Pi/tanh(623/85*Pi) 3141592653589793 l004 Pi/tanh(601/82*Pi) 3141592653589793 l004 Pi/tanh(579/79*Pi) 3141592653589793 l004 Pi/tanh(557/76*Pi) 3141592653589793 l004 Pi/tanh(535/73*Pi) 3141592653589793 l004 Pi/tanh(513/70*Pi) 3141592653589793 l004 Pi/tanh(491/67*Pi) 3141592653589793 l004 Pi/tanh(469/64*Pi) 3141592653589793 l004 Pi/tanh(447/61*Pi) 3141592653589793 l004 Pi/tanh(872/119*Pi) 3141592653589793 l004 Pi/tanh(425/58*Pi) 3141592653589793 l004 Pi/tanh(828/113*Pi) 3141592653589793 l004 Pi/tanh(403/55*Pi) 3141592653589793 l004 Pi/tanh(784/107*Pi) 3141592653589793 l004 Pi/tanh(381/52*Pi) 3141592653589793 l004 Pi/tanh(740/101*Pi) 3141592653589793 l004 Pi/tanh(359/49*Pi) 3141592653589793 l004 Pi/tanh(696/95*Pi) 3141592653589793 l004 Pi/tanh(337/46*Pi) 3141592653589793 l004 Pi/tanh(652/89*Pi) 3141592653589793 l004 Pi/tanh(315/43*Pi) 3141592653589793 l004 Pi/tanh(608/83*Pi) 3141592653589793 l004 Pi/tanh(293/40*Pi) 3141592653589793 l004 Pi/tanh(857/117*Pi) 3141592653589793 l004 Pi/tanh(564/77*Pi) 3141592653589793 l004 Pi/tanh(835/114*Pi) 3141592653589793 l004 Pi/tanh(271/37*Pi) 3141592653589793 l004 Pi/tanh(791/108*Pi) 3141592653589793 l004 Pi/tanh(520/71*Pi) 3141592653589793 l004 Pi/tanh(769/105*Pi) 3141592653589793 l004 Pi/tanh(249/34*Pi) 3141592653589793 l004 Pi/tanh(725/99*Pi) 3141592653589793 l004 Pi/tanh(476/65*Pi) 3141592653589793 l004 Pi/tanh(703/96*Pi) 3141592653589793 l004 Pi/tanh(227/31*Pi) 3141592653589793 l004 Pi/tanh(659/90*Pi) 3141592653589793 l004 Pi/tanh(432/59*Pi) 3141592653589793 l004 Pi/tanh(637/87*Pi) 3141592653589793 l004 Pi/tanh(842/115*Pi) 3141592653589793 l004 Pi/tanh(205/28*Pi) 3141592653589793 l004 Pi/tanh(798/109*Pi) 3141592653589793 l004 Pi/tanh(593/81*Pi) 3141592653589793 l004 Pi/tanh(388/53*Pi) 3141592653589793 l004 Pi/tanh(571/78*Pi) 3141592653589793 l004 Pi/tanh(754/103*Pi) 3141592653589793 l004 Pi/tanh(183/25*Pi) 3141592653589793 l004 Pi/tanh(710/97*Pi) 3141592653589793 l004 Pi/tanh(527/72*Pi) 3141592653589793 l004 Pi/tanh(871/119*Pi) 3141592653589793 l004 Pi/tanh(344/47*Pi) 3141592653589793 l004 Pi/tanh(849/116*Pi) 3141592653589793 l004 Pi/tanh(505/69*Pi) 3141592653589793 l004 Pi/tanh(666/91*Pi) 3141592653589793 l004 Pi/tanh(827/113*Pi) 3141592653589793 l004 Pi/tanh(161/22*Pi) 3141592653589793 m001 ZetaR(2)^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(783/107*Pi) 3141592653589793 l004 Pi/tanh(622/85*Pi) 3141592653589793 l004 Pi/tanh(461/63*Pi) 3141592653589793 l004 Pi/tanh(761/104*Pi) 3141592653589793 l004 Pi/tanh(300/41*Pi) 3141592653589793 l004 Pi/tanh(739/101*Pi) 3141592653589793 l004 Pi/tanh(439/60*Pi) 3141592653589793 l004 Pi/tanh(578/79*Pi) 3141592653589793 l004 Pi/tanh(717/98*Pi) 3141592653589793 l004 Pi/tanh(856/117*Pi) 3141592653589793 l004 Pi/tanh(139/19*Pi) 3141592653589793 l004 Pi/tanh(812/111*Pi) 3141592653589793 l004 Pi/tanh(673/92*Pi) 3141592653589793 l004 Pi/tanh(534/73*Pi) 3141592653589793 l004 Pi/tanh(395/54*Pi) 3141592653589793 l004 Pi/tanh(651/89*Pi) 3141592653589793 l004 Pi/tanh(256/35*Pi) 3141592653589793 l004 Pi/tanh(629/86*Pi) 3141592653589793 l004 Pi/tanh(373/51*Pi) 3141592653589793 l004 Pi/tanh(863/118*Pi) 3141592653589793 l004 Pi/tanh(490/67*Pi) 3141592653589793 l004 Pi/tanh(607/83*Pi) 3141592653589793 l004 Pi/tanh(724/99*Pi) 3141592653589793 l004 Pi/tanh(841/115*Pi) 3141592653589793 l004 Pi/tanh(117/16*Pi) 3141592653589793 l004 Pi/tanh(797/109*Pi) 3141592653589793 l004 Pi/tanh(680/93*Pi) 3141592653589793 l004 Pi/tanh(563/77*Pi) 3141592653589793 l004 Pi/tanh(446/61*Pi) 3141592653589793 l004 Pi/tanh(775/106*Pi) 3141592653589793 l004 Pi/tanh(329/45*Pi) 3141592653589793 l004 Pi/tanh(870/119*Pi) 3141592653589793 l004 Pi/tanh(541/74*Pi) 3141592653589793 l004 Pi/tanh(753/103*Pi) 3141592653589793 l004 Pi/tanh(212/29*Pi) 3141592653589793 l004 Pi/tanh(731/100*Pi) 3141592653589793 l004 Pi/tanh(519/71*Pi) 3141592653589793 l004 Pi/tanh(826/113*Pi) 3141592653589793 l004 Pi/tanh(307/42*Pi) 3141592653589793 l004 Pi/tanh(709/97*Pi) 3141592653589793 l004 Pi/tanh(402/55*Pi) 3141592653589793 l004 Pi/tanh(497/68*Pi) 3141592653589793 l004 Pi/tanh(592/81*Pi) 3141592653589793 l004 Pi/tanh(687/94*Pi) 3141592653589793 l004 Pi/tanh(782/107*Pi) 3141592653589793 l004 Pi/tanh(877/120*Pi) 3141592653589793 l004 Pi/tanh(95/13*Pi) 3141592653589793 l004 Pi/tanh(833/114*Pi) 3141592653589793 l004 Pi/tanh(738/101*Pi) 3141592653589793 l004 Pi/tanh(643/88*Pi) 3141592653589793 l004 Pi/tanh(548/75*Pi) 3141592653589793 l004 Pi/tanh(453/62*Pi) 3141592653589793 l004 Pi/tanh(811/111*Pi) 3141592653589793 l004 Pi/tanh(358/49*Pi) 3141592653589793 l004 Pi/tanh(621/85*Pi) 3141592653589793 l004 Pi/tanh(263/36*Pi) 3141592653589793 l004 Pi/tanh(694/95*Pi) 3141592653589793 l004 Pi/tanh(431/59*Pi) 3141592653589793 l004 Pi/tanh(599/82*Pi) 3141592653589793 l004 Pi/tanh(767/105*Pi) 3141592653589793 l004 Pi/tanh(168/23*Pi) 3141592653589793 l004 Pi/tanh(745/102*Pi) 3141592653589793 l004 Pi/tanh(577/79*Pi) 3141592653589793 l004 Pi/tanh(409/56*Pi) 3141592653589793 l004 Pi/tanh(650/89*Pi) 3141592653589793 l004 Pi/tanh(241/33*Pi) 3141592653589793 l004 Pi/tanh(796/109*Pi) 3141592653589793 l004 Pi/tanh(555/76*Pi) 3141592653589793 l004 Pi/tanh(869/119*Pi) 3141592653589793 l004 Pi/tanh(314/43*Pi) 3141592653589793 l004 Pi/tanh(701/96*Pi) 3141592653589793 l004 Pi/tanh(387/53*Pi) 3141592653589793 l004 Pi/tanh(847/116*Pi) 3141592653589793 l004 Pi/tanh(460/63*Pi) 3141592653589793 l004 Pi/tanh(533/73*Pi) 3141592653589793 l004 Pi/tanh(606/83*Pi) 3141592653589793 l004 Pi/tanh(679/93*Pi) 3141592653589793 l004 Pi/tanh(752/103*Pi) 3141592653589793 l004 Pi/tanh(825/113*Pi) 3141592653589793 l004 Pi/tanh(73/10*Pi) 3141592653589793 l004 Pi/tanh(854/117*Pi) 3141592653589793 l004 Pi/tanh(781/107*Pi) 3141592653589793 l004 Pi/tanh(708/97*Pi) 3141592653589793 l004 Pi/tanh(635/87*Pi) 3141592653589793 l004 Pi/tanh(562/77*Pi) 3141592653589793 l004 Pi/tanh(489/67*Pi) 3141592653589793 l004 Pi/tanh(416/57*Pi) 3141592653589793 l004 Pi/tanh(759/104*Pi) 3141592653589793 l004 Pi/tanh(343/47*Pi) 3141592653589793 l004 Pi/tanh(613/84*Pi) 3141592653589793 l004 Pi/tanh(270/37*Pi) 3141592653589793 l004 Pi/tanh(737/101*Pi) 3141592653589793 l004 Pi/tanh(467/64*Pi) 3141592653589793 l004 Pi/tanh(664/91*Pi) 3141592653589793 l004 Pi/tanh(861/118*Pi) 3141592653589793 l004 Pi/tanh(197/27*Pi) 3141592653589793 l004 Pi/tanh(715/98*Pi) 3141592653589793 l004 Pi/tanh(518/71*Pi) 3141592653589793 l004 Pi/tanh(839/115*Pi) 3141592653589793 l004 Pi/tanh(321/44*Pi) 3141592653589793 l004 Pi/tanh(766/105*Pi) 3141592653589793 l004 Pi/tanh(445/61*Pi) 3141592653589793 l004 Pi/tanh(569/78*Pi) 3141592653589793 l004 Pi/tanh(693/95*Pi) 3141592653589793 l004 Pi/tanh(817/112*Pi) 3141592653589793 l004 Pi/tanh(124/17*Pi) 3141592653589793 l004 Pi/tanh(795/109*Pi) 3141592653589793 l004 Pi/tanh(671/92*Pi) 3141592653589793 l004 Pi/tanh(547/75*Pi) 3141592653589793 l004 Pi/tanh(423/58*Pi) 3141592653589793 l004 Pi/tanh(722/99*Pi) 3141592653589793 l004 Pi/tanh(299/41*Pi) 3141592653589793 l004 Pi/tanh(773/106*Pi) 3141592653589793 l004 Pi/tanh(474/65*Pi) 3141592653589793 l004 Pi/tanh(649/89*Pi) 3141592653589793 l004 Pi/tanh(824/113*Pi) 3141592653589793 l004 Pi/tanh(175/24*Pi) 3141592653589793 l004 Pi/tanh(751/103*Pi) 3141592653589793 l004 Pi/tanh(576/79*Pi) 3141592653589793 l004 Pi/tanh(401/55*Pi) 3141592653589793 l004 Pi/tanh(627/86*Pi) 3141592653589793 l004 Pi/tanh(853/117*Pi) 3141592653589793 l004 Pi/tanh(226/31*Pi) 3141592653589793 l004 Pi/tanh(729/100*Pi) 3141592653589793 l004 Pi/tanh(503/69*Pi) 3141592653589793 l004 Pi/tanh(780/107*Pi) 3141592653589793 l004 Pi/tanh(277/38*Pi) 3141592653589793 l004 Pi/tanh(605/83*Pi) 3141592653589793 l004 Pi/tanh(328/45*Pi) 3141592653589793 l004 Pi/tanh(707/97*Pi) 3141592653589793 l004 Pi/tanh(379/52*Pi) 3141592653589793 l004 Pi/tanh(809/111*Pi) 3141592653589793 l004 Pi/tanh(430/59*Pi) 3141592653589793 l004 Pi/tanh(481/66*Pi) 3141592653589793 l004 Pi/tanh(532/73*Pi) 3141592653589793 l004 Pi/tanh(583/80*Pi) 3141592653589793 l004 Pi/tanh(634/87*Pi) 3141592653589793 l004 Pi/tanh(685/94*Pi) 3141592653589793 l004 Pi/tanh(736/101*Pi) 3141592653589793 l004 Pi/tanh(787/108*Pi) 3141592653589793 l004 Pi/tanh(838/115*Pi) 3141592653589793 l004 Pi/tanh(51/7*Pi) 3141592653589793 l004 Pi/tanh(845/116*Pi) 3141592653589793 l004 Pi/tanh(794/109*Pi) 3141592653589793 l004 Pi/tanh(743/102*Pi) 3141592653589793 l004 Pi/tanh(692/95*Pi) 3141592653589793 l004 Pi/tanh(641/88*Pi) 3141592653589793 l004 Pi/tanh(590/81*Pi) 3141592653589793 l004 Pi/tanh(539/74*Pi) 3141592653589793 l004 Pi/tanh(488/67*Pi) 3141592653589793 l004 Pi/tanh(437/60*Pi) 3141592653589793 l004 Pi/tanh(823/113*Pi) 3141592653589793 l004 Pi/tanh(386/53*Pi) 3141592653589793 l004 Pi/tanh(721/99*Pi) 3141592653589793 l004 Pi/tanh(335/46*Pi) 3141592653589793 l004 Pi/tanh(619/85*Pi) 3141592653589793 l004 Pi/tanh(284/39*Pi) 3141592653589793 l004 Pi/tanh(801/110*Pi) 3141592653589793 l004 Pi/tanh(517/71*Pi) 3141592653589793 l004 Pi/tanh(750/103*Pi) 3141592653589793 l004 Pi/tanh(233/32*Pi) 3141592653589793 l004 Pi/tanh(648/89*Pi) 3141592653589793 l004 Pi/tanh(415/57*Pi) 3141592653589793 l004 Pi/tanh(597/82*Pi) 3141592653589793 l004 Pi/tanh(779/107*Pi) 3141592653589793 l004 Pi/tanh(182/25*Pi) 3141592653589793 l004 Pi/tanh(859/118*Pi) 3141592653589793 l004 Pi/tanh(677/93*Pi) 3141592653589793 l004 Pi/tanh(495/68*Pi) 3141592653589793 l004 Pi/tanh(808/111*Pi) 3141592653589793 l004 Pi/tanh(313/43*Pi) 3141592653589793 l004 Pi/tanh(757/104*Pi) 3141592653589793 l004 Pi/tanh(444/61*Pi) 3141592653589793 l004 Pi/tanh(575/79*Pi) 3141592653589793 l004 Pi/tanh(706/97*Pi) 3141592653589793 l004 Pi/tanh(837/115*Pi) 3141592653589793 l004 Pi/tanh(131/18*Pi) 3141592653589793 l004 Pi/tanh(866/119*Pi) 3141592653589793 l004 Pi/tanh(735/101*Pi) 3141592653589793 l004 Pi/tanh(604/83*Pi) 3141592653589793 l004 Pi/tanh(473/65*Pi) 3141592653589793 l004 Pi/tanh(815/112*Pi) 3141592653589793 l004 Pi/tanh(342/47*Pi) 3141592653589793 l004 Pi/tanh(553/76*Pi) 3141592653589793 l004 Pi/tanh(764/105*Pi) 3141592653589793 l004 Pi/tanh(211/29*Pi) 3141592653589793 l004 Pi/tanh(713/98*Pi) 3141592653589793 l004 Pi/tanh(502/69*Pi) 3141592653589793 l004 Pi/tanh(793/109*Pi) 3141592653589793 l004 Pi/tanh(291/40*Pi) 3141592653589793 l004 Pi/tanh(662/91*Pi) 3141592653589793 l004 Pi/tanh(371/51*Pi) 3141592653589793 l004 Pi/tanh(822/113*Pi) 3141592653589793 l004 Pi/tanh(451/62*Pi) 3141592653589793 l004 Pi/tanh(531/73*Pi) 3141592653589793 l004 Pi/tanh(611/84*Pi) 3141592653589793 l004 Pi/tanh(691/95*Pi) 3141592653589793 l004 Pi/tanh(771/106*Pi) 3141592653589793 l004 Pi/tanh(851/117*Pi) 3141592653589793 l004 Pi/tanh(80/11*Pi) 3141592653589793 l004 Pi/tanh(829/114*Pi) 3141592653589793 l004 Pi/tanh(749/103*Pi) 3141592653589793 l004 Pi/tanh(669/92*Pi) 3141592653589793 l004 Pi/tanh(589/81*Pi) 3141592653589793 l004 Pi/tanh(509/70*Pi) 3141592653589793 l004 Pi/tanh(429/59*Pi) 3141592653589793 l004 Pi/tanh(778/107*Pi) 3141592653589793 l004 Pi/tanh(349/48*Pi) 3141592653589793 l004 Pi/tanh(618/85*Pi) 3141592653589793 l004 Pi/tanh(269/37*Pi) 3141592653589793 l004 Pi/tanh(727/100*Pi) 3141592653589793 l004 Pi/tanh(458/63*Pi) 3141592653589793 l004 Pi/tanh(647/89*Pi) 3141592653589793 l004 Pi/tanh(836/115*Pi) 3141592653589793 l004 Pi/tanh(189/26*Pi) 3141592653589793 l004 Pi/tanh(865/119*Pi) 3141592653589793 l004 Pi/tanh(676/93*Pi) 3141592653589793 l004 Pi/tanh(487/67*Pi) 3141592653589793 l004 Pi/tanh(785/108*Pi) 3141592653589793 l004 Pi/tanh(298/41*Pi) 3141592653589793 l004 Pi/tanh(705/97*Pi) 3141592653589793 l004 Pi/tanh(407/56*Pi) 3141592653589793 l004 Pi/tanh(516/71*Pi) 3141592653589793 l004 Pi/tanh(625/86*Pi) 3141592653589793 l004 Pi/tanh(734/101*Pi) 3141592653589793 l004 Pi/tanh(843/116*Pi) 3141592653589793 l004 Pi/tanh(109/15*Pi) 3141592653589793 l004 Pi/tanh(792/109*Pi) 3141592653589793 l004 Pi/tanh(683/94*Pi) 3141592653589793 l004 Pi/tanh(574/79*Pi) 3141592653589793 l004 Pi/tanh(465/64*Pi) 3141592653589793 l004 Pi/tanh(821/113*Pi) 3141592653589793 l004 Pi/tanh(356/49*Pi) 3141592653589793 l004 Pi/tanh(603/83*Pi) 3141592653589793 l004 Pi/tanh(850/117*Pi) 3141592653589793 l004 Pi/tanh(247/34*Pi) 3141592653589793 l004 Pi/tanh(632/87*Pi) 3141592653589793 l004 Pi/tanh(385/53*Pi) 3141592653589793 l004 Pi/tanh(523/72*Pi) 3141592653589793 l004 Pi/tanh(661/91*Pi) 3141592653589793 l004 Pi/tanh(799/110*Pi) 3141592653589793 l004 Pi/tanh(138/19*Pi) 3141592653589793 l004 Pi/tanh(857/118*Pi) 3141592653589793 l004 Pi/tanh(719/99*Pi) 3141592653589793 l004 Pi/tanh(581/80*Pi) 3141592653589793 l004 Pi/tanh(443/61*Pi) 3141592653589793 l004 Pi/tanh(748/103*Pi) 3141592653589793 l004 Pi/tanh(305/42*Pi) 3141592653589793 l004 Pi/tanh(777/107*Pi) 3141592653589793 l004 Pi/tanh(472/65*Pi) 3141592653589793 l004 Pi/tanh(639/88*Pi) 3141592653589793 l004 Pi/tanh(806/111*Pi) 3141592653589793 l004 Pi/tanh(167/23*Pi) 3141592653589793 l004 Pi/tanh(864/119*Pi) 3141592653589793 l004 Pi/tanh(697/96*Pi) 3141592653589793 l004 Pi/tanh(530/73*Pi) 3141592653589793 l004 Pi/tanh(363/50*Pi) 3141592653589793 l004 Pi/tanh(559/77*Pi) 3141592653589793 l004 Pi/tanh(755/104*Pi) 3141592653589793 l004 Pi/tanh(196/27*Pi) 3141592653589793 l004 Pi/tanh(813/112*Pi) 3141592653589793 l004 Pi/tanh(617/85*Pi) 3141592653589793 l004 Pi/tanh(421/58*Pi) 3141592653589793 l004 Pi/tanh(646/89*Pi) 3141592653589793 l004 Pi/tanh(871/120*Pi) 3141592653589793 l004 Pi/tanh(225/31*Pi) 3141592653589793 l004 Pi/tanh(704/97*Pi) 3141592653589793 l004 Pi/tanh(479/66*Pi) 3141592653589793 l004 Pi/tanh(733/101*Pi) 3141592653589793 l004 Pi/tanh(254/35*Pi) 3141592653589793 l004 Pi/tanh(791/109*Pi) 3141592653589793 l004 Pi/tanh(537/74*Pi) 3141592653589793 l004 Pi/tanh(820/113*Pi) 3141592653589793 l004 Pi/tanh(283/39*Pi) 3141592653589793 l004 Pi/tanh(595/82*Pi) 3141592653589793 l004 Pi/tanh(312/43*Pi) 3141592653589793 l004 Pi/tanh(653/90*Pi) 3141592653589793 l004 Pi/tanh(341/47*Pi) 3141592653589793 l004 Pi/tanh(711/98*Pi) 3141592653589793 l004 Pi/tanh(370/51*Pi) 3141592653589793 l004 Pi/tanh(769/106*Pi) 3141592653589793 l004 Pi/tanh(399/55*Pi) 3141592653589793 l004 Pi/tanh(827/114*Pi) 3141592653589793 l004 Pi/tanh(428/59*Pi) 3141592653589793 l004 Pi/tanh(457/63*Pi) 3141592653589793 l004 Pi/tanh(486/67*Pi) 3141592653589793 l004 Pi/tanh(515/71*Pi) 3141592653589793 l004 Pi/tanh(544/75*Pi) 3141592653589793 l004 Pi/tanh(573/79*Pi) 3141592653589793 l004 Pi/tanh(602/83*Pi) 3141592653589793 l004 Pi/tanh(631/87*Pi) 3141592653589793 l004 Pi/tanh(660/91*Pi) 3141592653589793 l004 Pi/tanh(689/95*Pi) 3141592653589793 l004 Pi/tanh(718/99*Pi) 3141592653589793 l004 Pi/tanh(747/103*Pi) 3141592653589793 l004 Pi/tanh(776/107*Pi) 3141592653589793 l004 Pi/tanh(805/111*Pi) 3141592653589793 l004 Pi/tanh(834/115*Pi) 3141592653589793 l004 Pi/tanh(863/119*Pi) 3141592653589793 l004 Pi/tanh(29/4*Pi) 3141592653589793 l004 Pi/tanh(848/117*Pi) 3141592653589793 l004 Pi/tanh(819/113*Pi) 3141592653589793 l004 Pi/tanh(790/109*Pi) 3141592653589793 l004 Pi/tanh(761/105*Pi) 3141592653589793 l004 Pi/tanh(732/101*Pi) 3141592653589793 l004 Pi/tanh(703/97*Pi) 3141592653589793 l004 Pi/tanh(674/93*Pi) 3141592653589793 l004 Pi/tanh(645/89*Pi) 3141592653589793 l004 Pi/tanh(616/85*Pi) 3141592653589793 l004 Pi/tanh(587/81*Pi) 3141592653589793 l004 Pi/tanh(558/77*Pi) 3141592653589793 l004 Pi/tanh(529/73*Pi) 3141592653589793 l004 Pi/tanh(500/69*Pi) 3141592653589793 l004 Pi/tanh(471/65*Pi) 3141592653589793 l004 Pi/tanh(442/61*Pi) 3141592653589793 l004 Pi/tanh(855/118*Pi) 3141592653589793 l004 Pi/tanh(413/57*Pi) 3141592653589793 l004 Pi/tanh(797/110*Pi) 3141592653589793 l004 Pi/tanh(384/53*Pi) 3141592653589793 l004 Pi/tanh(739/102*Pi) 3141592653589793 l004 Pi/tanh(355/49*Pi) 3141592653589793 l004 Pi/tanh(681/94*Pi) 3141592653589793 l004 Pi/tanh(326/45*Pi) 3141592653589793 l004 Pi/tanh(623/86*Pi) 3141592653589793 l004 Pi/tanh(297/41*Pi) 3141592653589793 l004 Pi/tanh(862/119*Pi) 3141592653589793 l004 Pi/tanh(565/78*Pi) 3141592653589793 l004 Pi/tanh(833/115*Pi) 3141592653589793 l004 Pi/tanh(268/37*Pi) 3141592653589793 l004 Pi/tanh(775/107*Pi) 3141592653589793 l004 Pi/tanh(507/70*Pi) 3141592653589793 l004 Pi/tanh(746/103*Pi) 3141592653589793 l004 Pi/tanh(239/33*Pi) 3141592653589793 l004 Pi/tanh(688/95*Pi) 3141592653589793 l004 Pi/tanh(449/62*Pi) 3141592653589793 l004 Pi/tanh(659/91*Pi) 3141592653589793 l004 Pi/tanh(869/120*Pi) 3141592653589793 l004 Pi/tanh(210/29*Pi) 3141592653589793 l004 Pi/tanh(811/112*Pi) 3141592653589793 l004 Pi/tanh(601/83*Pi) 3141592653589793 l004 Pi/tanh(391/54*Pi) 3141592653589793 l004 Pi/tanh(572/79*Pi) 3141592653589793 l004 Pi/tanh(753/104*Pi) 3141592653589793 l004 Pi/tanh(181/25*Pi) 3141592653589793 l004 Pi/tanh(695/96*Pi) 3141592653589793 l004 Pi/tanh(514/71*Pi) 3141592653589793 l004 Pi/tanh(847/117*Pi) 3141592653589793 l004 Pi/tanh(333/46*Pi) 3141592653589793 l004 Pi/tanh(818/113*Pi) 3141592653589793 l004 Pi/tanh(485/67*Pi) 3141592653589793 l004 Pi/tanh(637/88*Pi) 3141592653589793 l004 Pi/tanh(789/109*Pi) 3141592653589793 l004 Pi/tanh(152/21*Pi) 3141592653589793 l004 Pi/tanh(731/101*Pi) 3141592653589793 l004 Pi/tanh(579/80*Pi) 3141592653589793 l004 Pi/tanh(427/59*Pi) 3141592653589793 l004 Pi/tanh(702/97*Pi) 3141592653589793 l004 Pi/tanh(275/38*Pi) 3141592653589793 l004 Pi/tanh(673/93*Pi) 3141592653589793 l004 Pi/tanh(398/55*Pi) 3141592653589793 l004 Pi/tanh(521/72*Pi) 3141592653589793 l004 Pi/tanh(644/89*Pi) 3141592653589793 l004 Pi/tanh(767/106*Pi) 3141592653589793 l004 Pi/tanh(123/17*Pi) 3141592653589793 l004 Pi/tanh(832/115*Pi) 3141592653589793 l004 Pi/tanh(709/98*Pi) 3141592653589793 l004 Pi/tanh(586/81*Pi) 3141592653589793 l004 Pi/tanh(463/64*Pi) 3141592653589793 l004 Pi/tanh(803/111*Pi) 3141592653589793 l004 Pi/tanh(340/47*Pi) 3141592653589793 l004 Pi/tanh(557/77*Pi) 3141592653589793 l004 Pi/tanh(774/107*Pi) 3141592653589793 l004 Pi/tanh(217/30*Pi) 3141592653589793 l004 Pi/tanh(745/103*Pi) 3141592653589793 l004 Pi/tanh(528/73*Pi) 3141592653589793 l004 Pi/tanh(839/116*Pi) 3141592653589793 l004 Pi/tanh(311/43*Pi) 3141592653589793 l004 Pi/tanh(716/99*Pi) 3141592653589793 l004 Pi/tanh(405/56*Pi) 3141592653589793 l004 Pi/tanh(499/69*Pi) 3141592653589793 l004 Pi/tanh(593/82*Pi) 3141592653589793 l004 Pi/tanh(687/95*Pi) 3141592653589793 l004 Pi/tanh(781/108*Pi) 3141592653589793 l004 Pi/tanh(94/13*Pi) 3141592653589793 l004 Pi/tanh(817/113*Pi) 3141592653589793 l004 Pi/tanh(723/100*Pi) 3141592653589793 l004 Pi/tanh(629/87*Pi) 3141592653589793 l004 Pi/tanh(535/74*Pi) 3141592653589793 l004 Pi/tanh(441/61*Pi) 3141592653589793 l004 Pi/tanh(788/109*Pi) 3141592653589793 l004 Pi/tanh(347/48*Pi) 3141592653589793 l004 Pi/tanh(600/83*Pi) 3141592653589793 l004 Pi/tanh(853/118*Pi) 3141592653589793 l004 Pi/tanh(253/35*Pi) 3141592653589793 l004 Pi/tanh(665/92*Pi) 3141592653589793 l004 Pi/tanh(412/57*Pi) 3141592653589793 l004 Pi/tanh(571/79*Pi) 3141592653589793 l004 Pi/tanh(730/101*Pi) 3141592653589793 l004 Pi/tanh(159/22*Pi) 3141592653589793 l004 Pi/tanh(860/119*Pi) 3141592653589793 l004 Pi/tanh(701/97*Pi) 3141592653589793 l004 Pi/tanh(542/75*Pi) 3141592653589793 l004 Pi/tanh(383/53*Pi) 3141592653589793 l004 Pi/tanh(607/84*Pi) 3141592653589793 l004 Pi/tanh(831/115*Pi) 3141592653589793 l004 Pi/tanh(224/31*Pi) 3141592653589793 l004 Pi/tanh(737/102*Pi) 3141592653589793 l004 Pi/tanh(513/71*Pi) 3141592653589793 l004 Pi/tanh(802/111*Pi) 3141592653589793 l004 Pi/tanh(289/40*Pi) 3141592653589793 l004 Pi/tanh(643/89*Pi) 3141592653589793 l004 Pi/tanh(354/49*Pi) 3141592653589793 l004 Pi/tanh(773/107*Pi) 3141592653589793 l004 Pi/tanh(419/58*Pi) 3141592653589793 l004 Pi/tanh(484/67*Pi) 3141592653589793 l004 Pi/tanh(549/76*Pi) 3141592653589793 l004 Pi/tanh(614/85*Pi) 3141592653589793 l004 Pi/tanh(679/94*Pi) 3141592653589793 l004 Pi/tanh(744/103*Pi) 3141592653589793 l004 Pi/tanh(809/112*Pi) 3141592653589793 l004 Pi/tanh(65/9*Pi) 3141592653589793 l004 Pi/tanh(816/113*Pi) 3141592653589793 l004 Pi/tanh(751/104*Pi) 3141592653589793 l004 Pi/tanh(686/95*Pi) 3141592653589793 l004 Pi/tanh(621/86*Pi) 3141592653589793 l004 Pi/tanh(556/77*Pi) 3141592653589793 l004 Pi/tanh(491/68*Pi) 3141592653589793 l004 Pi/tanh(426/59*Pi) 3141592653589793 l004 Pi/tanh(787/109*Pi) 3141592653589793 l004 Pi/tanh(361/50*Pi) 3141592653589793 l004 Pi/tanh(657/91*Pi) 3141592653589793 l004 Pi/tanh(296/41*Pi) 3141592653589793 l004 Pi/tanh(823/114*Pi) 3141592653589793 l004 Pi/tanh(527/73*Pi) 3141592653589793 l004 Pi/tanh(758/105*Pi) 3141592653589793 l004 Pi/tanh(231/32*Pi) 3141592653589793 l004 Pi/tanh(859/119*Pi) 3141592653589793 l004 Pi/tanh(628/87*Pi) 3141592653589793 l004 Pi/tanh(397/55*Pi) 3141592653589793 l004 Pi/tanh(563/78*Pi) 3141592653589793 l004 Pi/tanh(729/101*Pi) 3141592653589793 l004 Pi/tanh(166/23*Pi) 3141592653589793 l004 Pi/tanh(765/106*Pi) 3141592653589793 l004 Pi/tanh(599/83*Pi) 3141592653589793 l004 Pi/tanh(433/60*Pi) 3141592653589793 l004 Pi/tanh(700/97*Pi) 3141592653589793 l004 Pi/tanh(267/37*Pi) 3141592653589793 l004 Pi/tanh(635/88*Pi) 3141592653589793 l004 Pi/tanh(368/51*Pi) 3141592653589793 l004 Pi/tanh(837/116*Pi) 3141592653589793 l004 Pi/tanh(469/65*Pi) 3141592653589793 l004 Pi/tanh(570/79*Pi) 3141592653589793 l004 Pi/tanh(671/93*Pi) 3141592653589793 l004 Pi/tanh(772/107*Pi) 3141592653589793 l004 Pi/tanh(101/14*Pi) 3141592653589793 l004 Pi/tanh(844/117*Pi) 3141592653589793 l004 Pi/tanh(743/103*Pi) 3141592653589793 l004 Pi/tanh(642/89*Pi) 3141592653589793 l004 Pi/tanh(541/75*Pi) 3141592653589793 l004 Pi/tanh(440/61*Pi) 3141592653589793 l004 Pi/tanh(779/108*Pi) 3141592653589793 l004 Pi/tanh(339/47*Pi) 3141592653589793 l004 Pi/tanh(577/80*Pi) 3141592653589793 l004 Pi/tanh(815/113*Pi) 3141592653589793 l004 Pi/tanh(238/33*Pi) 3141592653589793 l004 Pi/tanh(851/118*Pi) 3141592653589793 l004 Pi/tanh(613/85*Pi) 3141592653589793 l004 Pi/tanh(375/52*Pi) 3141592653589793 l004 Pi/tanh(512/71*Pi) 3141592653589793 l004 Pi/tanh(649/90*Pi) 3141592653589793 l004 Pi/tanh(786/109*Pi) 3141592653589793 l004 Pi/tanh(137/19*Pi) 3141592653589793 l004 Pi/tanh(858/119*Pi) 3141592653589793 l004 Pi/tanh(721/100*Pi) 3141592653589793 l004 Pi/tanh(584/81*Pi) 3141592653589793 l004 Pi/tanh(447/62*Pi) 3141592653589793 l004 Pi/tanh(757/105*Pi) 3141592653589793 l004 Pi/tanh(310/43*Pi) 3141592653589793 l004 Pi/tanh(793/110*Pi) 3141592653589793 l004 Pi/tanh(483/67*Pi) 3141592653589793 l004 Pi/tanh(656/91*Pi) 3141592653589793 l004 Pi/tanh(829/115*Pi) 3141592653589793 l004 Pi/tanh(173/24*Pi) 3141592653589793 l004 Pi/tanh(728/101*Pi) 3141592653589793 l004 Pi/tanh(555/77*Pi) 3141592653589793 l004 Pi/tanh(382/53*Pi) 3141592653589793 l004 Pi/tanh(591/82*Pi) 3141592653589793 l004 Pi/tanh(800/111*Pi) 3141592653589793 l004 Pi/tanh(209/29*Pi) 3141592653589793 l004 Pi/tanh(663/92*Pi) 3141592653589793 l004 Pi/tanh(454/63*Pi) 3141592653589793 l004 Pi/tanh(699/97*Pi) 3141592653589793 l004 Pi/tanh(245/34*Pi) 3141592653589793 l004 Pi/tanh(771/107*Pi) 3141592653589793 l004 Pi/tanh(526/73*Pi) 3141592653589793 l004 Pi/tanh(807/112*Pi) 3141592653589793 l004 Pi/tanh(281/39*Pi) 3141592653589793 l004 Pi/tanh(598/83*Pi) 3141592653589793 l004 Pi/tanh(317/44*Pi) 3141592653589793 l004 Pi/tanh(670/93*Pi) 3141592653589793 l004 Pi/tanh(353/49*Pi) 3141592653589793 l004 Pi/tanh(742/103*Pi) 3141592653589793 l004 Pi/tanh(389/54*Pi) 3141592653589793 l004 Pi/tanh(814/113*Pi) 3141592653589793 l004 Pi/tanh(425/59*Pi) 3141592653589793 l004 Pi/tanh(461/64*Pi) 3141592653589793 l004 Pi/tanh(497/69*Pi) 3141592653589793 l004 Pi/tanh(533/74*Pi) 3141592653589793 l004 Pi/tanh(569/79*Pi) 3141592653589793 l004 Pi/tanh(605/84*Pi) 3141592653589793 l004 Pi/tanh(641/89*Pi) 3141592653589793 l004 Pi/tanh(677/94*Pi) 3141592653589793 l004 Pi/tanh(713/99*Pi) 3141592653589793 l004 Pi/tanh(749/104*Pi) 3141592653589793 l004 Pi/tanh(785/109*Pi) 3141592653589793 l004 Pi/tanh(821/114*Pi) 3141592653589793 l004 Pi/tanh(857/119*Pi) 3141592653589793 l004 Pi/tanh(36/5*Pi) 3141592653589793 l004 Pi/tanh(835/116*Pi) 3141592653589793 l004 Pi/tanh(799/111*Pi) 3141592653589793 l004 Pi/tanh(763/106*Pi) 3141592653589793 l004 Pi/tanh(727/101*Pi) 3141592653589793 l004 Pi/tanh(691/96*Pi) 3141592653589793 l004 Pi/tanh(655/91*Pi) 3141592653589793 l004 Pi/tanh(619/86*Pi) 3141592653589793 l004 Pi/tanh(583/81*Pi) 3141592653589793 l004 Pi/tanh(547/76*Pi) 3141592653589793 l004 Pi/tanh(511/71*Pi) 3141592653589793 l004 Pi/tanh(475/66*Pi) 3141592653589793 l004 Pi/tanh(439/61*Pi) 3141592653589793 l004 Pi/tanh(842/117*Pi) 3141592653589793 l004 Pi/tanh(403/56*Pi) 3141592653589793 l004 Pi/tanh(770/107*Pi) 3141592653589793 l004 Pi/tanh(367/51*Pi) 3141592653589793 l004 Pi/tanh(698/97*Pi) 3141592653589793 l004 Pi/tanh(331/46*Pi) 3141592653589793 l004 Pi/tanh(626/87*Pi) 3141592653589793 l004 Pi/tanh(295/41*Pi) 3141592653589793 l004 Pi/tanh(849/118*Pi) 3141592653589793 l004 Pi/tanh(554/77*Pi) 3141592653589793 l004 Pi/tanh(813/113*Pi) 3141592653589793 l004 Pi/tanh(259/36*Pi) 3141592653589793 l004 Pi/tanh(741/103*Pi) 3141592653589793 l004 Pi/tanh(482/67*Pi) 3141592653589793 l004 Pi/tanh(705/98*Pi) 3141592653589793 l004 Pi/tanh(223/31*Pi) 3141592653589793 l004 Pi/tanh(856/119*Pi) 3141592653589793 l004 Pi/tanh(633/88*Pi) 3141592653589793 l004 Pi/tanh(410/57*Pi) 3141592653589793 l004 Pi/tanh(597/83*Pi) 3141592653589793 l004 Pi/tanh(784/109*Pi) 3141592653589793 l004 Pi/tanh(187/26*Pi) 3141592653589793 l004 Pi/tanh(712/99*Pi) 3141592653589793 l004 Pi/tanh(525/73*Pi) 3141592653589793 l004 Pi/tanh(863/120*Pi) 3141592653589793 l004 Pi/tanh(338/47*Pi) 3141592653589793 l004 Pi/tanh(827/115*Pi) 3141592653589793 l004 Pi/tanh(489/68*Pi) 3141592653589793 l004 Pi/tanh(640/89*Pi) 3141592653589793 l004 Pi/tanh(791/110*Pi) 3141592653589793 l004 Pi/tanh(151/21*Pi) 3141592653589793 l004 Pi/tanh(719/100*Pi) 3141592653589793 l004 Pi/tanh(568/79*Pi) 3141592653589793 l004 Pi/tanh(417/58*Pi) 3141592653589793 l004 Pi/tanh(683/95*Pi) 3141592653589793 l004 Pi/tanh(266/37*Pi) 3141592653589793 l004 Pi/tanh(647/90*Pi) 3141592653589793 l004 Pi/tanh(381/53*Pi) 3141592653589793 l004 Pi/tanh(496/69*Pi) 3141592653589793 l004 Pi/tanh(611/85*Pi) 3141592653589793 l004 Pi/tanh(726/101*Pi) 3141592653589793 l004 Pi/tanh(841/117*Pi) 3141592653589793 l004 Pi/tanh(115/16*Pi) 3141592653589793 l004 Pi/tanh(769/107*Pi) 3141592653589793 l004 Pi/tanh(654/91*Pi) 3141592653589793 l004 Pi/tanh(539/75*Pi) 3141592653589793 l004 Pi/tanh(424/59*Pi) 3141592653589793 l004 Pi/tanh(733/102*Pi) 3141592653589793 l004 Pi/tanh(309/43*Pi) 3141592653589793 l004 Pi/tanh(812/113*Pi) 3141592653589793 l004 Pi/tanh(503/70*Pi) 3141592653589793 l004 Pi/tanh(697/97*Pi) 3141592653589793 l004 Pi/tanh(194/27*Pi) 3141592653589793 l004 Pi/tanh(855/119*Pi) 3141592653589793 l004 Pi/tanh(661/92*Pi) 3141592653589793 l004 Pi/tanh(467/65*Pi) 3141592653589793 l004 Pi/tanh(740/103*Pi) 3141592653589793 l004 Pi/tanh(273/38*Pi) 3141592653589793 l004 Pi/tanh(625/87*Pi) 3141592653589793 l004 Pi/tanh(352/49*Pi) 3141592653589793 l004 Pi/tanh(783/109*Pi) 3141592653589793 l004 Pi/tanh(431/60*Pi) 3141592653589793 l004 Pi/tanh(510/71*Pi) 3141592653589793 l004 Pi/tanh(589/82*Pi) 3141592653589793 l004 Pi/tanh(668/93*Pi) 3141592653589793 l004 Pi/tanh(747/104*Pi) 3141592653589793 l004 Pi/tanh(826/115*Pi) 3141592653589793 l004 Pi/tanh(79/11*Pi) 3141592653589793 l004 Pi/tanh(833/116*Pi) 3141592653589793 l004 Pi/tanh(754/105*Pi) 3141592653589793 l004 Pi/tanh(675/94*Pi) 3141592653589793 l004 Pi/tanh(596/83*Pi) 3141592653589793 l004 Pi/tanh(517/72*Pi) 3141592653589793 l004 Pi/tanh(438/61*Pi) 3141592653589793 l004 Pi/tanh(797/111*Pi) 3141592653589793 l004 Pi/tanh(359/50*Pi) 3141592653589793 l004 Pi/tanh(639/89*Pi) 3141592653589793 l004 Pi/tanh(280/39*Pi) 3141592653589793 l004 Pi/tanh(761/106*Pi) 3141592653589793 l004 Pi/tanh(481/67*Pi) 3141592653589793 l004 Pi/tanh(682/95*Pi) 3141592653589793 l004 Pi/tanh(201/28*Pi) 3141592653589793 l004 Pi/tanh(725/101*Pi) 3141592653589793 l004 Pi/tanh(524/73*Pi) 3141592653589793 l004 Pi/tanh(847/118*Pi) 3141592653589793 l004 Pi/tanh(323/45*Pi) 3141592653589793 l004 Pi/tanh(768/107*Pi) 3141592653589793 l004 Pi/tanh(445/62*Pi) 3141592653589793 l004 Pi/tanh(567/79*Pi) 3141592653589793 l004 Pi/tanh(689/96*Pi) 3141592653589793 l004 Pi/tanh(811/113*Pi) 3141592653589793 l004 Pi/tanh(122/17*Pi) 3141592653589793 l004 Pi/tanh(775/108*Pi) 3141592653589793 l004 Pi/tanh(653/91*Pi) 3141592653589793 l004 Pi/tanh(531/74*Pi) 3141592653589793 l004 Pi/tanh(409/57*Pi) 3141592653589793 l004 Pi/tanh(696/97*Pi) 3141592653589793 l004 Pi/tanh(287/40*Pi) 3141592653589793 l004 Pi/tanh(739/103*Pi) 3141592653589793 l004 Pi/tanh(452/63*Pi) 3141592653589793 l004 Pi/tanh(617/86*Pi) 3141592653589793 l004 Pi/tanh(782/109*Pi) 3141592653589793 l004 Pi/tanh(165/23*Pi) 3141592653589793 l004 Pi/tanh(703/98*Pi) 3141592653589793 l004 Pi/tanh(538/75*Pi) 3141592653589793 l004 Pi/tanh(373/52*Pi) 3141592653589793 l004 Pi/tanh(581/81*Pi) 3141592653589793 l004 Pi/tanh(789/110*Pi) 3141592653589793 l004 Pi/tanh(208/29*Pi) 3141592653589793 l004 Pi/tanh(667/93*Pi) 3141592653589793 l004 Pi/tanh(459/64*Pi) 3141592653589793 l004 Pi/tanh(710/99*Pi) 3141592653589793 l004 Pi/tanh(251/35*Pi) 3141592653589793 l004 Pi/tanh(796/111*Pi) 3141592653589793 l004 Pi/tanh(545/76*Pi) 3141592653589793 l004 Pi/tanh(839/117*Pi) 3141592653589793 l004 Pi/tanh(294/41*Pi) 3141592653589793 l004 Pi/tanh(631/88*Pi) 3141592653589793 l004 Pi/tanh(337/47*Pi) 3141592653589793 l004 Pi/tanh(717/100*Pi) 3141592653589793 l004 Pi/tanh(380/53*Pi) 3141592653589793 l004 Pi/tanh(803/112*Pi) 3141592653589793 l004 Pi/tanh(423/59*Pi) 3141592653589793 l004 Pi/tanh(466/65*Pi) 3141592653589793 l004 Pi/tanh(509/71*Pi) 3141592653589793 l004 Pi/tanh(552/77*Pi) 3141592653589793 l004 Pi/tanh(595/83*Pi) 3141592653589793 l004 Pi/tanh(638/89*Pi) 3141592653589793 l004 Pi/tanh(681/95*Pi) 3141592653589793 l004 Pi/tanh(724/101*Pi) 3141592653589793 l004 Pi/tanh(767/107*Pi) 3141592653589793 l004 Pi/tanh(810/113*Pi) 3141592653589793 l004 Pi/tanh(853/119*Pi) 3141592653589793 l004 Pi/tanh(43/6*Pi) 3141592653589793 l004 Pi/tanh(824/115*Pi) 3141592653589793 l004 Pi/tanh(781/109*Pi) 3141592653589793 l004 Pi/tanh(738/103*Pi) 3141592653589793 l004 Pi/tanh(695/97*Pi) 3141592653589793 l004 Pi/tanh(652/91*Pi) 3141592653589793 l004 Pi/tanh(609/85*Pi) 3141592653589793 l004 Pi/tanh(566/79*Pi) 3141592653589793 l004 Pi/tanh(523/73*Pi) 3141592653589793 l004 Pi/tanh(480/67*Pi) 3141592653589793 l004 Pi/tanh(437/61*Pi) 3141592653589793 l004 Pi/tanh(831/116*Pi) 3141592653589793 l004 Pi/tanh(394/55*Pi) 3141592653589793 l004 Pi/tanh(745/104*Pi) 3141592653589793 l004 Pi/tanh(351/49*Pi) 3141592653589793 l004 Pi/tanh(659/92*Pi) 3141592653589793 l004 Pi/tanh(308/43*Pi) 3141592653589793 l004 Pi/tanh(573/80*Pi) 3141592653589793 l004 Pi/tanh(838/117*Pi) 3141592653589793 l004 Pi/tanh(265/37*Pi) 3141592653589793 l004 Pi/tanh(752/105*Pi) 3141592653589793 l004 Pi/tanh(487/68*Pi) 3141592653589793 l004 Pi/tanh(709/99*Pi) 3141592653589793 l004 Pi/tanh(222/31*Pi) 3141592653589793 l004 Pi/tanh(845/118*Pi) 3141592653589793 l004 Pi/tanh(623/87*Pi) 3141592653589793 l004 Pi/tanh(401/56*Pi) 3141592653589793 l004 Pi/tanh(580/81*Pi) 3141592653589793 l004 Pi/tanh(759/106*Pi) 3141592653589793 l004 Pi/tanh(179/25*Pi) 3141592653589793 l004 Pi/tanh(852/119*Pi) 3141592653589793 l004 Pi/tanh(673/94*Pi) 3141592653589793 l004 Pi/tanh(494/69*Pi) 3141592653589793 l004 Pi/tanh(809/113*Pi) 3141592653589793 l004 Pi/tanh(315/44*Pi) 3141592653589793 l004 Pi/tanh(766/107*Pi) 3141592653589793 l004 Pi/tanh(451/63*Pi) 3141592653589793 l004 Pi/tanh(587/82*Pi) 3141592653589793 l004 Pi/tanh(723/101*Pi) 3141592653589793 l004 Pi/tanh(859/120*Pi) 3141592653589793 l004 Pi/tanh(136/19*Pi) 3141592653589793 l004 Pi/tanh(773/108*Pi) 3141592653589793 l004 Pi/tanh(637/89*Pi) 3141592653589793 l004 Pi/tanh(501/70*Pi) 3141592653589793 l004 Pi/tanh(365/51*Pi) 3141592653589793 l004 Pi/tanh(594/83*Pi) 3141592653589793 l004 Pi/tanh(823/115*Pi) 3141592653589793 l004 Pi/tanh(229/32*Pi) 3141592653589793 l004 Pi/tanh(780/109*Pi) 3141592653589793 l004 Pi/tanh(551/77*Pi) 3141592653589793 l004 Pi/tanh(322/45*Pi) 3141592653589793 l004 Pi/tanh(737/103*Pi) 3141592653589793 l004 Pi/tanh(415/58*Pi) 3141592653589793 l004 Pi/tanh(508/71*Pi) 3141592653589793 l004 Pi/tanh(601/84*Pi) 3141592653589793 l004 Pi/tanh(694/97*Pi) 3141592653589793 l004 Pi/tanh(787/110*Pi) 3141592653589793 l004 Pi/tanh(93/13*Pi) 3141592653589793 l004 Pi/tanh(794/111*Pi) 3141592653589793 l004 Pi/tanh(701/98*Pi) 3141592653589793 l004 Pi/tanh(608/85*Pi) 3141592653589793 l004 Pi/tanh(515/72*Pi) 3141592653589793 l004 Pi/tanh(422/59*Pi) 3141592653589793 l004 Pi/tanh(751/105*Pi) 3141592653589793 l004 Pi/tanh(329/46*Pi) 3141592653589793 l004 Pi/tanh(565/79*Pi) 3141592653589793 l004 Pi/tanh(801/112*Pi) 3141592653589793 l004 Pi/tanh(236/33*Pi) 3141592653589793 l004 Pi/tanh(851/119*Pi) 3141592653589793 l004 Pi/tanh(615/86*Pi) 3141592653589793 l004 Pi/tanh(379/53*Pi) 3141592653589793 l004 Pi/tanh(522/73*Pi) 3141592653589793 l004 Pi/tanh(665/93*Pi) 3141592653589793 l004 Pi/tanh(808/113*Pi) 3141592653589793 l004 Pi/tanh(143/20*Pi) 3141592653589793 l004 Pi/tanh(765/107*Pi) 3141592653589793 l004 Pi/tanh(622/87*Pi) 3141592653589793 l004 Pi/tanh(479/67*Pi) 3141592653589793 l004 Pi/tanh(815/114*Pi) 3141592653589793 l004 Pi/tanh(336/47*Pi) 3141592653589793 l004 Pi/tanh(529/74*Pi) 3141592653589793 l004 Pi/tanh(722/101*Pi) 3141592653589793 l004 Pi/tanh(193/27*Pi) 3141592653589793 l004 Pi/tanh(822/115*Pi) 3141592653589793 l004 Pi/tanh(629/88*Pi) 3141592653589793 l004 Pi/tanh(436/61*Pi) 3141592653589793 l004 Pi/tanh(679/95*Pi) 3141592653589793 l004 Pi/tanh(243/34*Pi) 3141592653589793 l004 Pi/tanh(779/109*Pi) 3141592653589793 l004 Pi/tanh(536/75*Pi) 3141592653589793 l004 Pi/tanh(829/116*Pi) 3141592653589793 l004 Pi/tanh(293/41*Pi) 3141592653589793 l004 Pi/tanh(636/89*Pi) 3141592653589793 l004 Pi/tanh(343/48*Pi) 3141592653589793 l004 Pi/tanh(736/103*Pi) 3141592653589793 l004 Pi/tanh(393/55*Pi) 3141592653589793 l004 Pi/tanh(836/117*Pi) 3141592653589793 l004 Pi/tanh(443/62*Pi) 3141592653589793 l004 Pi/tanh(493/69*Pi) 3141592653589793 l004 Pi/tanh(543/76*Pi) 3141592653589793 l004 Pi/tanh(593/83*Pi) 3141592653589793 l004 Pi/tanh(643/90*Pi) 3141592653589793 l004 Pi/tanh(693/97*Pi) 3141592653589793 l004 Pi/tanh(743/104*Pi) 3141592653589793 l004 Pi/tanh(793/111*Pi) 3141592653589793 l004 Pi/tanh(843/118*Pi) 3141592653589793 l004 Pi/tanh(50/7*Pi) 3141592653589793 l004 Pi/tanh(857/120*Pi) 3141592653589793 l004 Pi/tanh(807/113*Pi) 3141592653589793 l004 Pi/tanh(757/106*Pi) 3141592653589793 l004 Pi/tanh(707/99*Pi) 3141592653589793 l004 Pi/tanh(657/92*Pi) 3141592653589793 l004 Pi/tanh(607/85*Pi) 3141592653589793 l004 Pi/tanh(557/78*Pi) 3141592653589793 l004 Pi/tanh(507/71*Pi) 3141592653589793 l004 Pi/tanh(457/64*Pi) 3141592653589793 l004 Pi/tanh(407/57*Pi) 3141592653589793 l004 Pi/tanh(764/107*Pi) 3141592653589793 l004 Pi/tanh(357/50*Pi) 3141592653589793 l004 Pi/tanh(664/93*Pi) 3141592653589793 l004 Pi/tanh(307/43*Pi) 3141592653589793 l004 Pi/tanh(564/79*Pi) 3141592653589793 l004 Pi/tanh(821/115*Pi) 3141592653589793 l004 Pi/tanh(257/36*Pi) 3141592653589793 l004 Pi/tanh(721/101*Pi) 3141592653589793 l004 Pi/tanh(464/65*Pi) 3141592653589793 l004 Pi/tanh(671/94*Pi) 3141592653589793 l004 Pi/tanh(207/29*Pi) 3141592653589793 l004 Pi/tanh(778/109*Pi) 3141592653589793 l004 Pi/tanh(571/80*Pi) 3141592653589793 l004 Pi/tanh(364/51*Pi) 3141592653589793 l004 Pi/tanh(521/73*Pi) 3141592653589793 l004 Pi/tanh(678/95*Pi) 3141592653589793 l004 Pi/tanh(835/117*Pi) 3141592653589793 l004 Pi/tanh(157/22*Pi) 3141592653589793 l004 Pi/tanh(735/103*Pi) 3141592653589793 l004 Pi/tanh(578/81*Pi) 3141592653589793 l004 Pi/tanh(421/59*Pi) 3141592653589793 l004 Pi/tanh(685/96*Pi) 3141592653589793 l004 Pi/tanh(264/37*Pi) 3141592653589793 l004 Pi/tanh(635/89*Pi) 3141592653589793 l004 Pi/tanh(371/52*Pi) 3141592653589793 l004 Pi/tanh(849/119*Pi) 3141592653589793 l004 Pi/tanh(478/67*Pi) 3141592653589793 l004 Pi/tanh(585/82*Pi) 3141592653589793 l004 Pi/tanh(692/97*Pi) 3141592653589793 l004 Pi/tanh(799/112*Pi) 3141592653589793 l004 Pi/tanh(107/15*Pi) 3141592653589793 l004 Pi/tanh(806/113*Pi) 3141592653589793 l004 Pi/tanh(699/98*Pi) 3141592653589793 l004 Pi/tanh(592/83*Pi) 3141592653589793 l004 Pi/tanh(485/68*Pi) 3141592653589793 l004 Pi/tanh(378/53*Pi) 3141592653589793 l004 Pi/tanh(649/91*Pi) 3141592653589793 l004 Pi/tanh(271/38*Pi) 3141592653589793 l004 Pi/tanh(706/99*Pi) 3141592653589793 l004 Pi/tanh(435/61*Pi) 3141592653589793 l004 Pi/tanh(599/84*Pi) 3141592653589793 l004 Pi/tanh(763/107*Pi) 3141592653589793 l004 Pi/tanh(164/23*Pi) 3141592653589793 l004 Pi/tanh(713/100*Pi) 3141592653589793 l004 Pi/tanh(549/77*Pi) 3141592653589793 l004 Pi/tanh(385/54*Pi) 3141592653589793 l004 Pi/tanh(606/85*Pi) 3141592653589793 l004 Pi/tanh(827/116*Pi) 3141592653589793 l004 Pi/tanh(221/31*Pi) 3141592653589793 l004 Pi/tanh(720/101*Pi) 3141592653589793 l004 Pi/tanh(499/70*Pi) 3141592653589793 l004 Pi/tanh(777/109*Pi) 3141592653589793 l004 Pi/tanh(278/39*Pi) 3141592653589793 l004 Pi/tanh(613/86*Pi) 3141592653589793 l004 Pi/tanh(335/47*Pi) 3141592653589793 l004 Pi/tanh(727/102*Pi) 3141592653589793 l004 Pi/tanh(392/55*Pi) 3141592653589793 l004 Pi/tanh(841/118*Pi) 3141592653589793 l004 Pi/tanh(449/63*Pi) 3141592653589793 l004 Pi/tanh(506/71*Pi) 3141592653589793 l004 Pi/tanh(563/79*Pi) 3141592653589793 l004 Pi/tanh(620/87*Pi) 3141592653589793 l004 Pi/tanh(677/95*Pi) 3141592653589793 l004 Pi/tanh(734/103*Pi) 3141592653589793 l004 Pi/tanh(791/111*Pi) 3141592653589793 l004 Pi/tanh(848/119*Pi) 3141592653589793 l004 Pi/tanh(57/8*Pi) 3141592653589793 l004 Pi/tanh(805/113*Pi) 3141592653589793 l004 Pi/tanh(748/105*Pi) 3141592653589793 l004 Pi/tanh(691/97*Pi) 3141592653589793 l004 Pi/tanh(634/89*Pi) 3141592653589793 l004 Pi/tanh(577/81*Pi) 3141592653589793 l004 Pi/tanh(520/73*Pi) 3141592653589793 l004 Pi/tanh(463/65*Pi) 3141592653589793 l004 Pi/tanh(406/57*Pi) 3141592653589793 l004 Pi/tanh(755/106*Pi) 3141592653589793 l004 Pi/tanh(349/49*Pi) 3141592653589793 l004 Pi/tanh(641/90*Pi) 3141592653589793 l004 Pi/tanh(292/41*Pi) 3141592653589793 l004 Pi/tanh(819/115*Pi) 3141592653589793 l004 Pi/tanh(527/74*Pi) 3141592653589793 l004 Pi/tanh(762/107*Pi) 3141592653589793 l004 Pi/tanh(235/33*Pi) 3141592653589793 l004 Pi/tanh(648/91*Pi) 3141592653589793 l004 Pi/tanh(413/58*Pi) 3141592653589793 l004 Pi/tanh(591/83*Pi) 3141592653589793 l004 Pi/tanh(769/108*Pi) 3141592653589793 l004 Pi/tanh(178/25*Pi) 3141592653589793 l004 Pi/tanh(833/117*Pi) 3141592653589793 l004 Pi/tanh(655/92*Pi) 3141592653589793 l004 Pi/tanh(477/67*Pi) 3141592653589793 l004 Pi/tanh(776/109*Pi) 3141592653589793 l004 Pi/tanh(299/42*Pi) 3141592653589793 l004 Pi/tanh(719/101*Pi) 3141592653589793 l004 Pi/tanh(420/59*Pi) 3141592653589793 l004 Pi/tanh(541/76*Pi) 3141592653589793 l004 Pi/tanh(662/93*Pi) 3141592653589793 l004 Pi/tanh(783/110*Pi) 3141592653589793 l004 Pi/tanh(121/17*Pi) 3141592653589793 l004 Pi/tanh(790/111*Pi) 3141592653589793 l004 Pi/tanh(669/94*Pi) 3141592653589793 l004 Pi/tanh(548/77*Pi) 3141592653589793 l004 Pi/tanh(427/60*Pi) 3141592653589793 l004 Pi/tanh(733/103*Pi) 3141592653589793 l004 Pi/tanh(306/43*Pi) 3141592653589793 l004 Pi/tanh(797/112*Pi) 3141592653589793 l004 Pi/tanh(491/69*Pi) 3141592653589793 l004 Pi/tanh(676/95*Pi) 3141592653589793 l004 Pi/tanh(185/26*Pi) 3141592653589793 l004 Pi/tanh(804/113*Pi) 3141592653589793 l004 Pi/tanh(619/87*Pi) 3141592653589793 l004 Pi/tanh(434/61*Pi) 3141592653589793 l004 Pi/tanh(683/96*Pi) 3141592653589793 l004 Pi/tanh(249/35*Pi) 3141592653589793 l004 Pi/tanh(811/114*Pi) 3141592653589793 l004 Pi/tanh(562/79*Pi) 3141592653589793 l004 Pi/tanh(313/44*Pi) 3141592653589793 l004 Pi/tanh(690/97*Pi) 3141592653589793 l004 Pi/tanh(377/53*Pi) 3141592653589793 l004 Pi/tanh(818/115*Pi) 3141592653589793 l004 Pi/tanh(441/62*Pi) 3141592653589793 l004 Pi/tanh(505/71*Pi) 3141592653589793 l004 Pi/tanh(569/80*Pi) 3141592653589793 l004 Pi/tanh(633/89*Pi) 3141592653589793 l004 Pi/tanh(697/98*Pi) 3141592653589793 l004 Pi/tanh(761/107*Pi) 3141592653589793 l004 Pi/tanh(825/116*Pi) 3141592653589793 l004 Pi/tanh(64/9*Pi) 3141592653589793 l004 Pi/tanh(839/118*Pi) 3141592653589793 l004 Pi/tanh(775/109*Pi) 3141592653589793 l004 Pi/tanh(711/100*Pi) 3141592653589793 l004 Pi/tanh(647/91*Pi) 3141592653589793 l004 Pi/tanh(583/82*Pi) 3141592653589793 l004 Pi/tanh(519/73*Pi) 3141592653589793 l004 Pi/tanh(455/64*Pi) 3141592653589793 l004 Pi/tanh(846/119*Pi) 3141592653589793 l004 Pi/tanh(391/55*Pi) 3141592653589793 l004 Pi/tanh(718/101*Pi) 3141592653589793 l004 Pi/tanh(327/46*Pi) 3141592653589793 l004 Pi/tanh(590/83*Pi) 3141592653589793 l004 Pi/tanh(853/120*Pi) 3141592653589793 l004 Pi/tanh(263/37*Pi) 3141592653589793 l004 Pi/tanh(725/102*Pi) 3141592653589793 l004 Pi/tanh(462/65*Pi) 3141592653589793 l004 Pi/tanh(661/93*Pi) 3141592653589793 l004 Pi/tanh(199/28*Pi) 3141592653589793 l004 Pi/tanh(732/103*Pi) 3141592653589793 l004 Pi/tanh(533/75*Pi) 3141592653589793 l004 Pi/tanh(334/47*Pi) 3141592653589793 l004 Pi/tanh(803/113*Pi) 3141592653589793 l004 Pi/tanh(469/66*Pi) 3141592653589793 l004 Pi/tanh(604/85*Pi) 3141592653589793 l004 Pi/tanh(739/104*Pi) 3141592653589793 l004 Pi/tanh(135/19*Pi) 3141592653589793 l004 Pi/tanh(746/105*Pi) 3141592653589793 l004 Pi/tanh(611/86*Pi) 3141592653589793 l004 Pi/tanh(476/67*Pi) 3141592653589793 l004 Pi/tanh(817/115*Pi) 3141592653589793 l004 Pi/tanh(341/48*Pi) 3141592653589793 l004 Pi/tanh(547/77*Pi) 3141592653589793 l004 Pi/tanh(753/106*Pi) 3141592653589793 l004 Pi/tanh(206/29*Pi) 3141592653589793 l004 Pi/tanh(689/97*Pi) 3141592653589793 l004 Pi/tanh(483/68*Pi) 3141592653589793 l004 Pi/tanh(760/107*Pi) 3141592653589793 l004 Pi/tanh(277/39*Pi) 3141592653589793 l004 Pi/tanh(625/88*Pi) 3141592653589793 l004 Pi/tanh(348/49*Pi) 3141592653589793 l004 Pi/tanh(767/108*Pi) 3141592653589793 l004 Pi/tanh(419/59*Pi) 3141592653589793 l004 Pi/tanh(490/69*Pi) 3141592653589793 l004 Pi/tanh(561/79*Pi) 3141592653589793 l004 Pi/tanh(632/89*Pi) 3141592653589793 l004 Pi/tanh(703/99*Pi) 3141592653589793 l004 Pi/tanh(774/109*Pi) 3141592653589793 l004 Pi/tanh(845/119*Pi) 3141592653589793 l004 Pi/tanh(71/10*Pi) 3141592653589793 l004 Pi/tanh(788/111*Pi) 3141592653589793 l004 Pi/tanh(717/101*Pi) 3141592653589793 l004 Pi/tanh(646/91*Pi) 3141592653589793 l004 Pi/tanh(575/81*Pi) 3141592653589793 l004 Pi/tanh(504/71*Pi) 3141592653589793 l004 Pi/tanh(433/61*Pi) 3141592653589793 l004 Pi/tanh(795/112*Pi) 3141592653589793 l004 Pi/tanh(362/51*Pi) 3141592653589793 l004 Pi/tanh(653/92*Pi) 3141592653589793 l004 Pi/tanh(291/41*Pi) 3141592653589793 l004 Pi/tanh(802/113*Pi) 3141592653589793 l004 Pi/tanh(511/72*Pi) 3141592653589793 l004 Pi/tanh(731/103*Pi) 3141592653589793 l004 Pi/tanh(220/31*Pi) 3141592653589793 l004 Pi/tanh(809/114*Pi) 3141592653589793 l004 Pi/tanh(589/83*Pi) 3141592653589793 l004 Pi/tanh(369/52*Pi) 3141592653589793 l004 Pi/tanh(518/73*Pi) 3141592653589793 l004 Pi/tanh(667/94*Pi) 3141592653589793 l004 Pi/tanh(816/115*Pi) 3141592653589793 l004 Pi/tanh(149/21*Pi) 3141592653589793 l004 Pi/tanh(823/116*Pi) 3141592653589793 l004 Pi/tanh(674/95*Pi) 3141592653589793 l004 Pi/tanh(525/74*Pi) 3141592653589793 l004 Pi/tanh(376/53*Pi) 3141592653589793 l004 Pi/tanh(603/85*Pi) 3141592653589793 l004 Pi/tanh(830/117*Pi) 3141592653589793 l004 Pi/tanh(227/32*Pi) 3141592653589793 l004 Pi/tanh(759/107*Pi) 3141592653589793 l004 Pi/tanh(532/75*Pi) 3141592653589793 l004 Pi/tanh(837/118*Pi) 3141592653589793 l004 Pi/tanh(305/43*Pi) 3141592653589793 l004 Pi/tanh(688/97*Pi) 3141592653589793 l004 Pi/tanh(383/54*Pi) 3141592653589793 l004 Pi/tanh(844/119*Pi) 3141592653589793 l004 Pi/tanh(461/65*Pi) 3141592653589793 l004 Pi/tanh(539/76*Pi) 3141592653589793 l004 Pi/tanh(617/87*Pi) 3141592653589793 l004 Pi/tanh(695/98*Pi) 3141592653589793 l004 Pi/tanh(773/109*Pi) 3141592653589793 l004 Pi/tanh(851/120*Pi) 3141592653589793 l004 Pi/tanh(78/11*Pi) 3141592653589793 l004 Pi/tanh(787/111*Pi) 3141592653589793 l004 Pi/tanh(709/100*Pi) 3141592653589793 l004 Pi/tanh(631/89*Pi) 3141592653589793 l004 Pi/tanh(553/78*Pi) 3141592653589793 l004 Pi/tanh(475/67*Pi) 3141592653589793 l004 Pi/tanh(397/56*Pi) 3141592653589793 l004 Pi/tanh(716/101*Pi) 3141592653589793 l004 Pi/tanh(319/45*Pi) 3141592653589793 l004 Pi/tanh(560/79*Pi) 3141592653589793 l004 Pi/tanh(801/113*Pi) 3141592653589793 l004 Pi/tanh(241/34*Pi) 3141592653589793 l004 Pi/tanh(645/91*Pi) 3141592653589793 l004 Pi/tanh(404/57*Pi) 3141592653589793 l004 Pi/tanh(567/80*Pi) 3141592653589793 l004 Pi/tanh(730/103*Pi) 3141592653589793 l004 Pi/tanh(163/23*Pi) 3141592653589793 l004 Pi/tanh(737/104*Pi) 3141592653589793 l004 Pi/tanh(574/81*Pi) 3141592653589793 l004 Pi/tanh(411/58*Pi) 3141592653589793 l004 Pi/tanh(659/93*Pi) 3141592653589793 l004 Pi/tanh(248/35*Pi) 3141592653589793 l004 Pi/tanh(829/117*Pi) 3141592653589793 l004 Pi/tanh(581/82*Pi) 3141592653589793 l004 Pi/tanh(333/47*Pi) 3141592653589793 l004 Pi/tanh(751/106*Pi) 3141592653589793 l004 Pi/tanh(418/59*Pi) 3141592653589793 l004 Pi/tanh(503/71*Pi) 3141592653589793 l004 Pi/tanh(588/83*Pi) 3141592653589793 l004 Pi/tanh(673/95*Pi) 3141592653589793 l004 Pi/tanh(758/107*Pi) 3141592653589793 l004 Pi/tanh(843/119*Pi) 3141592653589793 l004 Pi/tanh(85/12*Pi) 3141592653589793 l004 Pi/tanh(772/109*Pi) 3141592653589793 l004 Pi/tanh(687/97*Pi) 3141592653589793 l004 Pi/tanh(602/85*Pi) 3141592653589793 l004 Pi/tanh(517/73*Pi) 3141592653589793 l004 Pi/tanh(432/61*Pi) 3141592653589793 l004 Pi/tanh(779/110*Pi) 3141592653589793 l004 Pi/tanh(347/49*Pi) 3141592653589793 l004 Pi/tanh(609/86*Pi) 3141592653589793 l004 Pi/tanh(262/37*Pi) 3141592653589793 l004 Pi/tanh(701/99*Pi) 3141592653589793 l004 Pi/tanh(439/62*Pi) 3141592653589793 l004 Pi/tanh(616/87*Pi) 3141592653589793 l004 Pi/tanh(793/112*Pi) 3141592653589793 l004 Pi/tanh(177/25*Pi) 3141592653589793 l004 Pi/tanh(800/113*Pi) 3141592653589793 l004 Pi/tanh(623/88*Pi) 3141592653589793 l004 Pi/tanh(446/63*Pi) 3141592653589793 l004 Pi/tanh(715/101*Pi) 3141592653589793 l004 Pi/tanh(269/38*Pi) 3141592653589793 l004 Pi/tanh(630/89*Pi) 3141592653589793 l004 Pi/tanh(361/51*Pi) 3141592653589793 l004 Pi/tanh(814/115*Pi) 3141592653589793 l004 Pi/tanh(453/64*Pi) 3141592653589793 l004 Pi/tanh(545/77*Pi) 3141592653589793 l004 Pi/tanh(637/90*Pi) 3141592653589793 l004 Pi/tanh(729/103*Pi) 3141592653589793 l004 Pi/tanh(821/116*Pi) 3141592653589793 l004 Pi/tanh(92/13*Pi) 3141592653589793 l004 Pi/tanh(835/118*Pi) 3141592653589793 l004 Pi/tanh(743/105*Pi) 3141592653589793 l004 Pi/tanh(651/92*Pi) 3141592653589793 l004 Pi/tanh(559/79*Pi) 3141592653589793 l004 Pi/tanh(467/66*Pi) 3141592653589793 l004 Pi/tanh(842/119*Pi) 3141592653589793 l004 Pi/tanh(375/53*Pi) 3141592653589793 l004 Pi/tanh(658/93*Pi) 3141592653589793 l004 Pi/tanh(283/40*Pi) 3141592653589793 l004 Pi/tanh(757/107*Pi) 3141592653589793 l004 Pi/tanh(474/67*Pi) 3141592653589793 l004 Pi/tanh(665/94*Pi) 3141592653589793 l004 Pi/tanh(191/27*Pi) 3141592653589793 l004 Pi/tanh(672/95*Pi) 3141592653589793 l004 Pi/tanh(481/68*Pi) 3141592653589793 l004 Pi/tanh(771/109*Pi) 3141592653589793 l004 Pi/tanh(290/41*Pi) 3141592653589793 l004 Pi/tanh(679/96*Pi) 3141592653589793 l004 Pi/tanh(389/55*Pi) 3141592653589793 l004 Pi/tanh(488/69*Pi) 3141592653589793 l004 Pi/tanh(587/83*Pi) 3141592653589793 l004 Pi/tanh(686/97*Pi) 3141592653589793 l004 Pi/tanh(785/111*Pi) 3141592653589793 l004 Pi/tanh(99/14*Pi) 3141592653589793 l004 Pi/tanh(799/113*Pi) 3141592653589793 l004 Pi/tanh(700/99*Pi) 3141592653589793 l004 Pi/tanh(601/85*Pi) 3141592653589793 l004 Pi/tanh(502/71*Pi) 3141592653589793 l004 Pi/tanh(403/57*Pi) 3141592653589793 l004 Pi/tanh(707/100*Pi) 3141592653589793 l004 Pi/tanh(304/43*Pi) 3141592653589793 l004 Pi/tanh(813/115*Pi) 3141592653589793 l004 Pi/tanh(509/72*Pi) 3141592653589793 l004 Pi/tanh(714/101*Pi) 3141592653589793 l004 Pi/tanh(205/29*Pi) 3141592653589793 l004 Pi/tanh(721/102*Pi) 3141592653589793 l004 Pi/tanh(516/73*Pi) 3141592653589793 l004 Pi/tanh(827/117*Pi) 3141592653589793 l004 Pi/tanh(311/44*Pi) 3141592653589793 l004 Pi/tanh(728/103*Pi) 3141592653589793 l004 Pi/tanh(417/59*Pi) 3141592653589793 l004 Pi/tanh(523/74*Pi) 3141592653589793 l004 Pi/tanh(629/89*Pi) 3141592653589793 l004 Pi/tanh(735/104*Pi) 3141592653589793 l004 Pi/tanh(841/119*Pi) 3141592653589793 l004 Pi/tanh(106/15*Pi) 3141592653589793 l004 Pi/tanh(749/106*Pi) 3141592653589793 l004 Pi/tanh(643/91*Pi) 3141592653589793 l004 Pi/tanh(537/76*Pi) 3141592653589793 l004 Pi/tanh(431/61*Pi) 3141592653589793 l004 Pi/tanh(756/107*Pi) 3141592653589793 l004 Pi/tanh(325/46*Pi) 3141592653589793 l004 Pi/tanh(544/77*Pi) 3141592653589793 l004 Pi/tanh(763/108*Pi) 3141592653589793 l004 Pi/tanh(219/31*Pi) 3141592653589793 l004 Pi/tanh(770/109*Pi) 3141592653589793 l004 Pi/tanh(551/78*Pi) 3141592653589793 l004 Pi/tanh(332/47*Pi) 3141592653589793 l004 Pi/tanh(777/110*Pi) 3141592653589793 l004 Pi/tanh(445/63*Pi) 3141592653589793 l004 Pi/tanh(558/79*Pi) 3141592653589793 l004 Pi/tanh(671/95*Pi) 3141592653589793 l004 Pi/tanh(784/111*Pi) 3141592653589793 l004 Pi/tanh(113/16*Pi) 3141592653589793 l004 Pi/tanh(798/113*Pi) 3141592653589793 l004 Pi/tanh(685/97*Pi) 3141592653589793 l004 Pi/tanh(572/81*Pi) 3141592653589793 l004 Pi/tanh(459/65*Pi) 3141592653589793 l004 Pi/tanh(805/114*Pi) 3141592653589793 l004 Pi/tanh(346/49*Pi) 3141592653589793 l004 Pi/tanh(579/82*Pi) 3141592653589793 l004 Pi/tanh(812/115*Pi) 3141592653589793 l004 Pi/tanh(233/33*Pi) 3141592653589793 l004 Pi/tanh(819/116*Pi) 3141592653589793 l004 Pi/tanh(586/83*Pi) 3141592653589793 l004 Pi/tanh(353/50*Pi) 3141592653589793 l004 Pi/tanh(826/117*Pi) 3141592653589793 l004 Pi/tanh(473/67*Pi) 3141592653589793 l004 Pi/tanh(593/84*Pi) 3141592653589793 l004 Pi/tanh(713/101*Pi) 3141592653589793 l004 Pi/tanh(833/118*Pi) 3141592653589793 l004 Pi/tanh(120/17*Pi) 3141592653589793 l004 Pi/tanh(847/120*Pi) 3141592653589793 l004 Pi/tanh(727/103*Pi) 3141592653589793 l004 Pi/tanh(607/86*Pi) 3141592653589793 l004 Pi/tanh(487/69*Pi) 3141592653589793 l004 Pi/tanh(367/52*Pi) 3141592653589793 l004 Pi/tanh(614/87*Pi) 3141592653589793 l004 Pi/tanh(247/35*Pi) 3141592653589793 l004 Pi/tanh(621/88*Pi) 3141592653589793 l004 Pi/tanh(374/53*Pi) 3141592653589793 l004 Pi/tanh(501/71*Pi) 3141592653589793 l004 Pi/tanh(628/89*Pi) 3141592653589793 l004 Pi/tanh(755/107*Pi) 3141592653589793 l004 Pi/tanh(127/18*Pi) 3141592653589793 l004 Pi/tanh(769/109*Pi) 3141592653589793 l004 Pi/tanh(642/91*Pi) 3141592653589793 l004 Pi/tanh(515/73*Pi) 3141592653589793 l004 Pi/tanh(388/55*Pi) 3141592653589793 l004 Pi/tanh(649/92*Pi) 3141592653589793 l004 Pi/tanh(261/37*Pi) 3141592653589793 l004 Pi/tanh(656/93*Pi) 3141592653589793 l004 Pi/tanh(395/56*Pi) 3141592653589793 l004 Pi/tanh(529/75*Pi) 3141592653589793 l004 Pi/tanh(663/94*Pi) 3141592653589793 l004 Pi/tanh(797/113*Pi) 3141592653589793 l004 Pi/tanh(134/19*Pi) 3141592653589793 l004 Pi/tanh(811/115*Pi) 3141592653589793 l004 Pi/tanh(677/96*Pi) 3141592653589793 l004 Pi/tanh(543/77*Pi) 3141592653589793 l004 Pi/tanh(409/58*Pi) 3141592653589793 l004 Pi/tanh(684/97*Pi) 3141592653589793 l004 Pi/tanh(275/39*Pi) 3141592653589793 l004 Pi/tanh(691/98*Pi) 3141592653589793 l004 Pi/tanh(416/59*Pi) 3141592653589793 l004 Pi/tanh(557/79*Pi) 3141592653589793 l004 Pi/tanh(698/99*Pi) 3141592653589793 l004 Pi/tanh(839/119*Pi) 3141592653589793 l004 Pi/tanh(141/20*Pi) 3141592653589793 l004 Pi/tanh(712/101*Pi) 3141592653589793 l004 Pi/tanh(571/81*Pi) 3141592653589793 l004 Pi/tanh(430/61*Pi) 3141592653589793 l004 Pi/tanh(719/102*Pi) 3141592653589793 l004 Pi/tanh(289/41*Pi) 3141592653589793 l004 Pi/tanh(726/103*Pi) 3141592653589793 l004 Pi/tanh(437/62*Pi) 3141592653589793 l004 Pi/tanh(585/83*Pi) 3141592653589793 l004 Pi/tanh(733/104*Pi) 3141592653589793 l004 Pi/tanh(148/21*Pi) 3141592653589793 l004 Pi/tanh(747/106*Pi) 3141592653589793 l004 Pi/tanh(599/85*Pi) 3141592653589793 l004 Pi/tanh(451/64*Pi) 3141592653589793 l004 Pi/tanh(754/107*Pi) 3141592653589793 l004 Pi/tanh(303/43*Pi) 3141592653589793 l004 Pi/tanh(761/108*Pi) 3141592653589793 l004 Pi/tanh(458/65*Pi) 3141592653589793 l004 Pi/tanh(613/87*Pi) 3141592653589793 l004 Pi/tanh(768/109*Pi) 3141592653589793 l004 Pi/tanh(155/22*Pi) 3141592653589793 l004 Pi/tanh(782/111*Pi) 3141592653589793 l004 Pi/tanh(627/89*Pi) 3141592653589793 l004 Pi/tanh(472/67*Pi) 3141592653589793 l004 Pi/tanh(789/112*Pi) 3141592653589793 l004 Pi/tanh(317/45*Pi) 3141592653589793 l004 Pi/tanh(796/113*Pi) 3141592653589793 l004 Pi/tanh(479/68*Pi) 3141592653589793 l004 Pi/tanh(641/91*Pi) 3141592653589793 l004 Pi/tanh(803/114*Pi) 3141592653589793 l004 Pi/tanh(162/23*Pi) 3141592653589793 l004 Pi/tanh(817/116*Pi) 3141592653589793 l004 Pi/tanh(655/93*Pi) 3141592653589793 l004 Pi/tanh(493/70*Pi) 3141592653589793 l004 Pi/tanh(824/117*Pi) 3141592653589793 l004 Pi/tanh(331/47*Pi) 3141592653589793 l004 Pi/tanh(831/118*Pi) 3141592653589793 l004 Pi/tanh(500/71*Pi) 3141592653589793 l004 Pi/tanh(669/95*Pi) 3141592653589793 l004 Pi/tanh(838/119*Pi) 3141592653589793 l004 Pi/tanh(169/24*Pi) 3141592653589793 l004 Pi/tanh(683/97*Pi) 3141592653589793 l004 Pi/tanh(514/73*Pi) 3141592653589793 l004 Pi/tanh(345/49*Pi) 3141592653589793 l004 Pi/tanh(521/74*Pi) 3141592653589793 l004 Pi/tanh(697/99*Pi) 3141592653589793 l004 Pi/tanh(176/25*Pi) 3141592653589793 l004 Pi/tanh(711/101*Pi) 3141592653589793 l004 Pi/tanh(535/76*Pi) 3141592653589793 l004 Pi/tanh(359/51*Pi) 3141592653589793 l004 Pi/tanh(542/77*Pi) 3141592653589793 l004 Pi/tanh(725/103*Pi) 3141592653589793 l004 Pi/tanh(183/26*Pi) 3141592653589793 l004 Pi/tanh(739/105*Pi) 3141592653589793 l004 Pi/tanh(556/79*Pi) 3141592653589793 l004 Pi/tanh(373/53*Pi) 3141592653589793 l004 Pi/tanh(563/80*Pi) 3141592653589793 l004 Pi/tanh(753/107*Pi) 3141592653589793 l004 Pi/tanh(190/27*Pi) 3141592653589793 l004 Pi/tanh(767/109*Pi) 3141592653589793 l004 Pi/tanh(577/82*Pi) 3141592653589793 l004 Pi/tanh(387/55*Pi) 3141592653589793 l004 Pi/tanh(584/83*Pi) 3141592653589793 l004 Pi/tanh(781/111*Pi) 3141592653589793 l004 Pi/tanh(197/28*Pi) 3141592653589793 l004 Pi/tanh(795/113*Pi) 3141592653589793 l004 Pi/tanh(598/85*Pi) 3141592653589793 l004 Pi/tanh(401/57*Pi) 3141592653589793 l004 Pi/tanh(605/86*Pi) 3141592653589793 l004 Pi/tanh(809/115*Pi) 3141592653589793 l004 Pi/tanh(204/29*Pi) 3141592653589793 l004 Pi/tanh(823/117*Pi) 3141592653589793 l004 Pi/tanh(619/88*Pi) 3141592653589793 l004 Pi/tanh(415/59*Pi) 3141592653589793 l004 Pi/tanh(626/89*Pi) 3141592653589793 l004 Pi/tanh(837/119*Pi) 3141592653589793 l004 Pi/tanh(211/30*Pi) 3141592653589793 l004 Pi/tanh(640/91*Pi) 3141592653589793 l004 Pi/tanh(429/61*Pi) 3141592653589793 l004 Pi/tanh(647/92*Pi) 3141592653589793 l004 Pi/tanh(218/31*Pi) 3141592653589793 l004 Pi/tanh(661/94*Pi) 3141592653589793 l004 Pi/tanh(443/63*Pi) 3141592653589793 l004 Pi/tanh(668/95*Pi) 3141592653589793 l004 Pi/tanh(225/32*Pi) 3141592653589793 l004 Pi/tanh(682/97*Pi) 3141592653589793 l004 Pi/tanh(457/65*Pi) 3141592653589793 l004 Pi/tanh(689/98*Pi) 3141592653589793 l004 Pi/tanh(232/33*Pi) 3141592653589793 l004 Pi/tanh(703/100*Pi) 3141592653589793 l004 Pi/tanh(471/67*Pi) 3141592653589793 l004 Pi/tanh(710/101*Pi) 3141592653589793 l004 Pi/tanh(239/34*Pi) 3141592653589793 l004 Pi/tanh(724/103*Pi) 3141592653589793 l004 Pi/tanh(485/69*Pi) 3141592653589793 l004 Pi/tanh(731/104*Pi) 3141592653589793 l004 Pi/tanh(246/35*Pi) 3141592653589793 l004 Pi/tanh(745/106*Pi) 3141592653589793 l004 Pi/tanh(499/71*Pi) 3141592653589793 l004 Pi/tanh(752/107*Pi) 3141592653589793 l004 Pi/tanh(253/36*Pi) 3141592653589793 l004 Pi/tanh(766/109*Pi) 3141592653589793 l004 Pi/tanh(513/73*Pi) 3141592653589793 l004 Pi/tanh(773/110*Pi) 3141592653589793 l004 Pi/tanh(260/37*Pi) 3141592653589793 l004 Pi/tanh(787/112*Pi) 3141592653589793 l004 Pi/tanh(527/75*Pi) 3141592653589793 l004 Pi/tanh(794/113*Pi) 3141592653589793 l004 Pi/tanh(267/38*Pi) 3141592653589793 l004 Pi/tanh(808/115*Pi) 3141592653589793 l004 Pi/tanh(541/77*Pi) 3141592653589793 l004 Pi/tanh(815/116*Pi) 3141592653589793 l004 Pi/tanh(274/39*Pi) 3141592653589793 l004 Pi/tanh(829/118*Pi) 3141592653589793 l004 Pi/tanh(555/79*Pi) 3141592653589793 l004 Pi/tanh(836/119*Pi) 3141592653589793 l004 Pi/tanh(281/40*Pi) 3141592653589793 l004 Pi/tanh(569/81*Pi) 3141592653589793 l004 Pi/tanh(288/41*Pi) 3141592653589793 l004 Pi/tanh(583/83*Pi) 3141592653589793 l004 Pi/tanh(295/42*Pi) 3141592653589793 l004 Pi/tanh(597/85*Pi) 3141592653589793 l004 Pi/tanh(302/43*Pi) 3141592653589793 l004 Pi/tanh(611/87*Pi) 3141592653589793 l004 Pi/tanh(309/44*Pi) 3141592653589793 l004 Pi/tanh(625/89*Pi) 3141592653589793 l004 Pi/tanh(316/45*Pi) 3141592653589793 l004 Pi/tanh(639/91*Pi) 3141592653589793 l004 Pi/tanh(323/46*Pi) 3141592653589793 l004 Pi/tanh(653/93*Pi) 3141592653589793 l004 Pi/tanh(330/47*Pi) 3141592653589793 l004 Pi/tanh(667/95*Pi) 3141592653589793 l004 Pi/tanh(337/48*Pi) 3141592653589793 l004 Pi/tanh(681/97*Pi) 3141592653589793 l004 Pi/tanh(344/49*Pi) 3141592653589793 l004 Pi/tanh(695/99*Pi) 3141592653589793 l004 Pi/tanh(351/50*Pi) 3141592653589793 l004 Pi/tanh(709/101*Pi) 3141592653589793 l004 Pi/tanh(358/51*Pi) 3141592653589793 l004 Pi/tanh(723/103*Pi) 3141592653589793 l004 Pi/tanh(365/52*Pi) 3141592653589793 l004 Pi/tanh(737/105*Pi) 3141592653589793 l004 Pi/tanh(372/53*Pi) 3141592653589793 l004 Pi/tanh(751/107*Pi) 3141592653589793 l004 Pi/tanh(379/54*Pi) 3141592653589793 l004 Pi/tanh(765/109*Pi) 3141592653589793 l004 Pi/tanh(386/55*Pi) 3141592653589793 l004 Pi/tanh(779/111*Pi) 3141592653589793 l004 Pi/tanh(393/56*Pi) 3141592653589793 l004 Pi/tanh(793/113*Pi) 3141592653589793 l004 Pi/tanh(400/57*Pi) 3141592653589793 l004 Pi/tanh(807/115*Pi) 3141592653589793 l004 Pi/tanh(407/58*Pi) 3141592653589793 l004 Pi/tanh(821/117*Pi) 3141592653589793 l004 Pi/tanh(414/59*Pi) 3141592653589793 l004 Pi/tanh(835/119*Pi) 3141592653589793 l004 Pi/tanh(421/60*Pi) 3141592653589793 l004 Pi/tanh(428/61*Pi) 3141592653589793 l004 Pi/tanh(435/62*Pi) 3141592653589793 l004 Pi/tanh(442/63*Pi) 3141592653589793 l004 Pi/tanh(449/64*Pi) 3141592653589793 l004 Pi/tanh(456/65*Pi) 3141592653589793 l004 Pi/tanh(463/66*Pi) 3141592653589793 l004 Pi/tanh(470/67*Pi) 3141592653589793 l004 Pi/tanh(477/68*Pi) 3141592653589793 l004 Pi/tanh(484/69*Pi) 3141592653589793 l004 Pi/tanh(491/70*Pi) 3141592653589793 l004 Pi/tanh(498/71*Pi) 3141592653589793 l004 Pi/tanh(505/72*Pi) 3141592653589793 l004 Pi/tanh(512/73*Pi) 3141592653589793 l004 Pi/tanh(519/74*Pi) 3141592653589793 l004 Pi/tanh(526/75*Pi) 3141592653589793 l004 Pi/tanh(533/76*Pi) 3141592653589793 l004 Pi/tanh(540/77*Pi) 3141592653589793 l004 Pi/tanh(547/78*Pi) 3141592653589793 l004 Pi/tanh(554/79*Pi) 3141592653589793 l004 Pi/tanh(561/80*Pi) 3141592653589793 l004 Pi/tanh(568/81*Pi) 3141592653589793 l004 Pi/tanh(575/82*Pi) 3141592653589793 l004 Pi/tanh(582/83*Pi) 3141592653589793 l004 Pi/tanh(589/84*Pi) 3141592653589793 l004 Pi/tanh(596/85*Pi) 3141592653589793 l004 Pi/tanh(603/86*Pi) 3141592653589793 l004 Pi/tanh(610/87*Pi) 3141592653589793 l004 Pi/tanh(617/88*Pi) 3141592653589793 l004 Pi/tanh(624/89*Pi) 3141592653589793 l004 Pi/tanh(631/90*Pi) 3141592653589793 l004 Pi/tanh(638/91*Pi) 3141592653589793 l004 Pi/tanh(645/92*Pi) 3141592653589793 l004 Pi/tanh(652/93*Pi) 3141592653589793 l004 Pi/tanh(659/94*Pi) 3141592653589793 l004 Pi/tanh(666/95*Pi) 3141592653589793 l004 Pi/tanh(673/96*Pi) 3141592653589793 l004 Pi/tanh(680/97*Pi) 3141592653589793 l004 Pi/tanh(687/98*Pi) 3141592653589793 l004 Pi/tanh(694/99*Pi) 3141592653589793 l004 Pi/tanh(701/100*Pi) 3141592653589793 l004 Pi/tanh(708/101*Pi) 3141592653589793 l004 Pi/tanh(715/102*Pi) 3141592653589793 l004 Pi/tanh(722/103*Pi) 3141592653589793 l004 Pi/tanh(729/104*Pi) 3141592653589793 l004 Pi/tanh(736/105*Pi) 3141592653589793 l004 Pi/tanh(743/106*Pi) 3141592653589793 l004 Pi/tanh(750/107*Pi) 3141592653589793 l004 Pi/tanh(757/108*Pi) 3141592653589793 l004 Pi/tanh(764/109*Pi) 3141592653589793 l004 Pi/tanh(771/110*Pi) 3141592653589793 l004 Pi/tanh(778/111*Pi) 3141592653589793 l004 Pi/tanh(785/112*Pi) 3141592653589793 l004 Pi/tanh(792/113*Pi) 3141592653589793 l004 Pi/tanh(799/114*Pi) 3141592653589793 l004 Pi/tanh(806/115*Pi) 3141592653589793 l004 Pi/tanh(813/116*Pi) 3141592653589793 l004 Pi/tanh(820/117*Pi) 3141592653589793 l004 Pi/tanh(827/118*Pi) 3141592653589793 l004 Pi/tanh(834/119*Pi) 3141592653589793 l004 Pi/tanh(841/120*Pi) 3141592653589793 l004 Pi/tanh(7*Pi) 3141592653589793 l004 Pi/tanh(839/120*Pi) 3141592653589793 l004 Pi/tanh(832/119*Pi) 3141592653589793 l004 Pi/tanh(825/118*Pi) 3141592653589793 l004 Pi/tanh(818/117*Pi) 3141592653589793 l004 Pi/tanh(811/116*Pi) 3141592653589793 l004 Pi/tanh(804/115*Pi) 3141592653589793 l004 Pi/tanh(797/114*Pi) 3141592653589793 l004 Pi/tanh(790/113*Pi) 3141592653589793 l004 Pi/tanh(783/112*Pi) 3141592653589793 l004 Pi/tanh(776/111*Pi) 3141592653589793 l004 Pi/tanh(769/110*Pi) 3141592653589793 l004 Pi/tanh(762/109*Pi) 3141592653589793 l004 Pi/tanh(755/108*Pi) 3141592653589793 l004 Pi/tanh(748/107*Pi) 3141592653589793 l004 Pi/tanh(741/106*Pi) 3141592653589793 l004 Pi/tanh(734/105*Pi) 3141592653589793 l004 Pi/tanh(727/104*Pi) 3141592653589793 l004 Pi/tanh(720/103*Pi) 3141592653589793 l004 Pi/tanh(713/102*Pi) 3141592653589793 l004 Pi/tanh(706/101*Pi) 3141592653589793 l004 Pi/tanh(699/100*Pi) 3141592653589793 l004 Pi/tanh(692/99*Pi) 3141592653589793 l004 Pi/tanh(685/98*Pi) 3141592653589793 l004 Pi/tanh(678/97*Pi) 3141592653589793 l004 Pi/tanh(671/96*Pi) 3141592653589793 l004 Pi/tanh(664/95*Pi) 3141592653589793 l004 Pi/tanh(657/94*Pi) 3141592653589793 l004 Pi/tanh(650/93*Pi) 3141592653589793 l004 Pi/tanh(643/92*Pi) 3141592653589793 l004 Pi/tanh(636/91*Pi) 3141592653589793 l004 Pi/tanh(629/90*Pi) 3141592653589793 l004 Pi/tanh(622/89*Pi) 3141592653589793 l004 Pi/tanh(615/88*Pi) 3141592653589793 l004 Pi/tanh(608/87*Pi) 3141592653589793 l004 Pi/tanh(601/86*Pi) 3141592653589793 l004 Pi/tanh(594/85*Pi) 3141592653589793 l004 Pi/tanh(587/84*Pi) 3141592653589793 l004 Pi/tanh(580/83*Pi) 3141592653589793 l004 Pi/tanh(573/82*Pi) 3141592653589793 l004 Pi/tanh(566/81*Pi) 3141592653589793 l004 Pi/tanh(559/80*Pi) 3141592653589793 l004 Pi/tanh(552/79*Pi) 3141592653589793 l004 Pi/tanh(545/78*Pi) 3141592653589793 l004 Pi/tanh(538/77*Pi) 3141592653589793 l004 Pi/tanh(531/76*Pi) 3141592653589793 l004 Pi/tanh(524/75*Pi) 3141592653589793 l004 Pi/tanh(517/74*Pi) 3141592653589793 l004 Pi/tanh(510/73*Pi) 3141592653589793 l004 Pi/tanh(503/72*Pi) 3141592653589793 l004 Pi/tanh(496/71*Pi) 3141592653589793 l004 Pi/tanh(489/70*Pi) 3141592653589793 l004 Pi/tanh(482/69*Pi) 3141592653589793 l004 Pi/tanh(475/68*Pi) 3141592653589793 l004 Pi/tanh(468/67*Pi) 3141592653589793 l004 Pi/tanh(461/66*Pi) 3141592653589793 l004 Pi/tanh(454/65*Pi) 3141592653589793 l004 Pi/tanh(447/64*Pi) 3141592653589793 l004 Pi/tanh(440/63*Pi) 3141592653589793 l004 Pi/tanh(433/62*Pi) 3141592653589793 l004 Pi/tanh(426/61*Pi) 3141592653589793 l004 Pi/tanh(419/60*Pi) 3141592653589793 l004 Pi/tanh(831/119*Pi) 3141592653589793 l004 Pi/tanh(412/59*Pi) 3141592653589793 l004 Pi/tanh(817/117*Pi) 3141592653589793 l004 Pi/tanh(405/58*Pi) 3141592653589793 l004 Pi/tanh(803/115*Pi) 3141592653589793 l004 Pi/tanh(398/57*Pi) 3141592653589793 l004 Pi/tanh(789/113*Pi) 3141592653589793 l004 Pi/tanh(391/56*Pi) 3141592653589793 l004 Pi/tanh(775/111*Pi) 3141592653589793 l004 Pi/tanh(384/55*Pi) 3141592653589793 l004 Pi/tanh(761/109*Pi) 3141592653589793 l004 Pi/tanh(377/54*Pi) 3141592653589793 l004 Pi/tanh(747/107*Pi) 3141592653589793 l004 Pi/tanh(370/53*Pi) 3141592653589793 l004 Pi/tanh(733/105*Pi) 3141592653589793 l004 Pi/tanh(363/52*Pi) 3141592653589793 l004 Pi/tanh(719/103*Pi) 3141592653589793 l004 Pi/tanh(356/51*Pi) 3141592653589793 l004 Pi/tanh(705/101*Pi) 3141592653589793 l004 Pi/tanh(349/50*Pi) 3141592653589793 l004 Pi/tanh(691/99*Pi) 3141592653589793 l004 Pi/tanh(342/49*Pi) 3141592653589793 l004 Pi/tanh(677/97*Pi) 3141592653589793 l004 Pi/tanh(335/48*Pi) 3141592653589793 l004 Pi/tanh(663/95*Pi) 3141592653589793 l004 Pi/tanh(328/47*Pi) 3141592653589793 l004 Pi/tanh(649/93*Pi) 3141592653589793 l004 Pi/tanh(321/46*Pi) 3141592653589793 l004 Pi/tanh(635/91*Pi) 3141592653589793 l004 Pi/tanh(314/45*Pi) 3141592653589793 l004 Pi/tanh(621/89*Pi) 3141592653589793 l004 Pi/tanh(307/44*Pi) 3141592653589793 l004 Pi/tanh(607/87*Pi) 3141592653589793 l004 Pi/tanh(300/43*Pi) 3141592653589793 l004 Pi/tanh(593/85*Pi) 3141592653589793 l004 Pi/tanh(293/42*Pi) 3141592653589793 l004 Pi/tanh(579/83*Pi) 3141592653589793 l004 Pi/tanh(286/41*Pi) 3141592653589793 l004 Pi/tanh(565/81*Pi) 3141592653589793 l004 Pi/tanh(279/40*Pi) 3141592653589793 l004 Pi/tanh(830/119*Pi) 3141592653589793 l004 Pi/tanh(551/79*Pi) 3141592653589793 l004 Pi/tanh(823/118*Pi) 3141592653589793 l004 Pi/tanh(272/39*Pi) 3141592653589793 l004 Pi/tanh(809/116*Pi) 3141592653589793 l004 Pi/tanh(537/77*Pi) 3141592653589793 l004 Pi/tanh(802/115*Pi) 3141592653589793 l004 Pi/tanh(265/38*Pi) 3141592653589793 l004 Pi/tanh(788/113*Pi) 3141592653589793 l004 Pi/tanh(523/75*Pi) 3141592653589793 l004 Pi/tanh(781/112*Pi) 3141592653589793 l004 Pi/tanh(258/37*Pi) 3141592653589793 l004 Pi/tanh(767/110*Pi) 3141592653589793 l004 Pi/tanh(509/73*Pi) 3141592653589793 l004 Pi/tanh(760/109*Pi) 3141592653589793 l004 Pi/tanh(251/36*Pi) 3141592653589793 l004 Pi/tanh(746/107*Pi) 3141592653589793 l004 Pi/tanh(495/71*Pi) 3141592653589793 l004 Pi/tanh(739/106*Pi) 3141592653589793 l004 Pi/tanh(244/35*Pi) 3141592653589793 l004 Pi/tanh(725/104*Pi) 3141592653589793 l004 Pi/tanh(481/69*Pi) 3141592653589793 l004 Pi/tanh(718/103*Pi) 3141592653589793 l004 Pi/tanh(237/34*Pi) 3141592653589793 l004 Pi/tanh(704/101*Pi) 3141592653589793 l004 Pi/tanh(467/67*Pi) 3141592653589793 l004 Pi/tanh(697/100*Pi) 3141592653589793 l004 Pi/tanh(230/33*Pi) 3141592653589793 l004 Pi/tanh(683/98*Pi) 3141592653589793 l004 Pi/tanh(453/65*Pi) 3141592653589793 l004 Pi/tanh(676/97*Pi) 3141592653589793 l004 Pi/tanh(223/32*Pi) 3141592653589793 l004 Pi/tanh(662/95*Pi) 3141592653589793 l004 Pi/tanh(439/63*Pi) 3141592653589793 l004 Pi/tanh(655/94*Pi) 3141592653589793 l004 Pi/tanh(216/31*Pi) 3141592653589793 l004 Pi/tanh(641/92*Pi) 3141592653589793 l004 Pi/tanh(425/61*Pi) 3141592653589793 l004 Pi/tanh(634/91*Pi) 3141592653589793 l004 Pi/tanh(209/30*Pi) 3141592653589793 l004 Pi/tanh(829/119*Pi) 3141592653589793 l004 Pi/tanh(620/89*Pi) 3141592653589793 l004 Pi/tanh(411/59*Pi) 3141592653589793 l004 Pi/tanh(613/88*Pi) 3141592653589793 l004 Pi/tanh(815/117*Pi) 3141592653589793 l004 Pi/tanh(202/29*Pi) 3141592653589793 l004 Pi/tanh(801/115*Pi) 3141592653589793 l004 Pi/tanh(599/86*Pi) 3141592653589793 l004 Pi/tanh(397/57*Pi) 3141592653589793 l004 Pi/tanh(592/85*Pi) 3141592653589793 l004 Pi/tanh(787/113*Pi) 3141592653589793 l004 Pi/tanh(195/28*Pi) 3141592653589793 l004 Pi/tanh(773/111*Pi) 3141592653589793 l004 Pi/tanh(578/83*Pi) 3141592653589793 l004 Pi/tanh(383/55*Pi) 3141592653589793 l004 Pi/tanh(571/82*Pi) 3141592653589793 l004 Pi/tanh(759/109*Pi) 3141592653589793 l004 Pi/tanh(188/27*Pi) 3141592653589793 l004 Pi/tanh(745/107*Pi) 3141592653589793 l004 Pi/tanh(557/80*Pi) 3141592653589793 l004 Pi/tanh(369/53*Pi) 3141592653589793 l004 Pi/tanh(550/79*Pi) 3141592653589793 l004 Pi/tanh(731/105*Pi) 3141592653589793 l004 Pi/tanh(181/26*Pi) 3141592653589793 l004 Pi/tanh(717/103*Pi) 3141592653589793 l004 Pi/tanh(536/77*Pi) 3141592653589793 l004 Pi/tanh(355/51*Pi) 3141592653589793 l004 Pi/tanh(529/76*Pi) 3141592653589793 l004 Pi/tanh(703/101*Pi) 3141592653589793 l004 Pi/tanh(174/25*Pi) 3141592653589793 l004 Pi/tanh(689/99*Pi) 3141592653589793 l004 Pi/tanh(515/74*Pi) 3141592653589793 l004 Pi/tanh(341/49*Pi) 3141592653589793 l004 Pi/tanh(508/73*Pi) 3141592653589793 l004 Pi/tanh(675/97*Pi) 3141592653589793 l004 Pi/tanh(167/24*Pi) 3141592653589793 l004 Pi/tanh(828/119*Pi) 3141592653589793 l004 Pi/tanh(661/95*Pi) 3141592653589793 l004 Pi/tanh(494/71*Pi) 3141592653589793 l004 Pi/tanh(821/118*Pi) 3141592653589793 l004 Pi/tanh(327/47*Pi) 3141592653589793 l004 Pi/tanh(814/117*Pi) 3141592653589793 l004 Pi/tanh(487/70*Pi) 3141592653589793 l004 Pi/tanh(647/93*Pi) 3141592653589793 l004 Pi/tanh(807/116*Pi) 3141592653589793 l004 Pi/tanh(160/23*Pi) 3141592653589793 l004 Pi/tanh(793/114*Pi) 3141592653589793 l004 Pi/tanh(633/91*Pi) 3141592653589793 l004 Pi/tanh(473/68*Pi) 3141592653589793 l004 Pi/tanh(786/113*Pi) 3141592653589793 l004 Pi/tanh(313/45*Pi) 3141592653589793 l004 Pi/tanh(779/112*Pi) 3141592653589793 l004 Pi/tanh(466/67*Pi) 3141592653589793 l004 Pi/tanh(619/89*Pi) 3141592653589793 l004 Pi/tanh(772/111*Pi) 3141592653589793 l004 Pi/tanh(153/22*Pi) 3141592653589793 l004 Pi/tanh(758/109*Pi) 3141592653589793 l004 Pi/tanh(605/87*Pi) 3141592653589793 l004 Pi/tanh(452/65*Pi) 3141592653589793 l004 Pi/tanh(751/108*Pi) 3141592653589793 l004 Pi/tanh(299/43*Pi) 3141592653589793 l004 Pi/tanh(744/107*Pi) 3141592653589793 l004 Pi/tanh(445/64*Pi) 3141592653589793 l004 Pi/tanh(591/85*Pi) 3141592653589793 l004 Pi/tanh(737/106*Pi) 3141592653589793 l004 Pi/tanh(146/21*Pi) 3141592653589793 l004 Pi/tanh(723/104*Pi) 3141592653589793 l004 Pi/tanh(577/83*Pi) 3141592653589793 l004 Pi/tanh(431/62*Pi) 3141592653589793 l004 Pi/tanh(716/103*Pi) 3141592653589793 l004 Pi/tanh(285/41*Pi) 3141592653589793 l004 Pi/tanh(709/102*Pi) 3141592653589793 l004 Pi/tanh(424/61*Pi) 3141592653589793 l004 Pi/tanh(563/81*Pi) 3141592653589793 l004 Pi/tanh(702/101*Pi) 3141592653589793 l004 Pi/tanh(139/20*Pi) 3141592653589793 l004 Pi/tanh(827/119*Pi) 3141592653589793 l004 Pi/tanh(688/99*Pi) 3141592653589793 l004 Pi/tanh(549/79*Pi) 3141592653589793 l004 Pi/tanh(410/59*Pi) 3141592653589793 l004 Pi/tanh(681/98*Pi) 3141592653589793 l004 Pi/tanh(271/39*Pi) 3141592653589793 l004 Pi/tanh(674/97*Pi) 3141592653589793 l004 Pi/tanh(403/58*Pi) 3141592653589793 l004 Pi/tanh(535/77*Pi) 3141592653589793 l004 Pi/tanh(667/96*Pi) 3141592653589793 l004 Pi/tanh(799/115*Pi) 3141592653589793 l004 Pi/tanh(132/19*Pi) 3141592653589793 l004 Pi/tanh(785/113*Pi) 3141592653589793 l004 Pi/tanh(653/94*Pi) 3141592653589793 l004 Pi/tanh(521/75*Pi) 3141592653589793 l004 Pi/tanh(389/56*Pi) 3141592653589793 l004 Pi/tanh(646/93*Pi) 3141592653589793 l004 Pi/tanh(257/37*Pi) 3141592653589793 l004 Pi/tanh(639/92*Pi) 3141592653589793 l004 Pi/tanh(382/55*Pi) 3141592653589793 l004 Pi/tanh(507/73*Pi) 3141592653589793 l004 Pi/tanh(632/91*Pi) 3141592653589793 l004 Pi/tanh(757/109*Pi) 3141592653589793 l004 Pi/tanh(125/18*Pi) 3141592653589793 l004 Pi/tanh(743/107*Pi) 3141592653589793 l004 Pi/tanh(618/89*Pi) 3141592653589793 l004 Pi/tanh(493/71*Pi) 3141592653589793 l004 Pi/tanh(368/53*Pi) 3141592653589793 l004 Pi/tanh(611/88*Pi) 3141592653589793 l004 Pi/tanh(243/35*Pi) 3141592653589793 l004 Pi/tanh(604/87*Pi) 3141592653589793 l004 Pi/tanh(361/52*Pi) 3141592653589793 l004 Pi/tanh(479/69*Pi) 3141592653589793 l004 Pi/tanh(597/86*Pi) 3141592653589793 l004 Pi/tanh(715/103*Pi) 3141592653589793 l004 Pi/tanh(833/120*Pi) 3141592653589793 l004 Pi/tanh(118/17*Pi) 3141592653589793 l004 Pi/tanh(819/118*Pi) 3141592653589793 l004 Pi/tanh(701/101*Pi) 3141592653589793 l004 Pi/tanh(583/84*Pi) 3141592653589793 l004 Pi/tanh(465/67*Pi) 3141592653589793 l004 Pi/tanh(812/117*Pi) 3141592653589793 l004 Pi/tanh(347/50*Pi) 3141592653589793 l004 Pi/tanh(576/83*Pi) 3141592653589793 l004 Pi/tanh(805/116*Pi) 3141592653589793 l004 Pi/tanh(229/33*Pi) 3141592653589793 l004 Pi/tanh(798/115*Pi) 3141592653589793 l004 Pi/tanh(569/82*Pi) 3141592653589793 l004 Pi/tanh(340/49*Pi) 3141592653589793 l004 Pi/tanh(791/114*Pi) 3141592653589793 l004 Pi/tanh(451/65*Pi) 3141592653589793 l004 Pi/tanh(562/81*Pi) 3141592653589793 l004 Pi/tanh(673/97*Pi) 3141592653589793 l004 Pi/tanh(784/113*Pi) 3141592653589793 l004 Pi/tanh(111/16*Pi) 3141592653589793 l004 Pi/tanh(770/111*Pi) 3141592653589793 l004 Pi/tanh(659/95*Pi) 3141592653589793 l004 Pi/tanh(548/79*Pi) 3141592653589793 l004 Pi/tanh(437/63*Pi) 3141592653589793 l004 Pi/tanh(763/110*Pi) 3141592653589793 l004 Pi/tanh(326/47*Pi) 3141592653589793 l004 Pi/tanh(541/78*Pi) 3141592653589793 l004 Pi/tanh(756/109*Pi) 3141592653589793 l004 Pi/tanh(215/31*Pi) 3141592653589793 l004 Pi/tanh(749/108*Pi) 3141592653589793 m001 Pi-Zeta(1,-1)^exp(Pi) 3141592653589793 l004 Pi/tanh(534/77*Pi) 3141592653589793 l004 Pi/tanh(319/46*Pi) 3141592653589793 l004 Pi/tanh(742/107*Pi) 3141592653589793 l004 Pi/tanh(423/61*Pi) 3141592653589793 l004 Pi/tanh(527/76*Pi) 3141592653589793 l004 Pi/tanh(631/91*Pi) 3141592653589793 l004 Pi/tanh(735/106*Pi) 3141592653589793 l004 Pi/tanh(104/15*Pi) 3141592653589793 l004 Pi/tanh(825/119*Pi) 3141592653589793 l004 Pi/tanh(721/104*Pi) 3141592653589793 l004 Pi/tanh(617/89*Pi) 3141592653589793 l004 Pi/tanh(513/74*Pi) 3141592653589793 l004 Pi/tanh(409/59*Pi) 3141592653589793 l004 Pi/tanh(714/103*Pi) 3141592653589793 l004 Pi/tanh(305/44*Pi) 3141592653589793 l004 Pi/tanh(811/117*Pi) 3141592653589793 l004 Pi/tanh(506/73*Pi) 3141592653589793 l004 Pi/tanh(707/102*Pi) 3141592653589793 l004 Pi/tanh(201/29*Pi) 3141592653589793 l004 Pi/tanh(700/101*Pi) 3141592653589793 l004 Pi/tanh(499/72*Pi) 3141592653589793 l004 Pi/tanh(797/115*Pi) 3141592653589793 l004 Pi/tanh(298/43*Pi) 3141592653589793 l004 Pi/tanh(693/100*Pi) 3141592653589793 l004 Pi/tanh(395/57*Pi) 3141592653589793 l004 Pi/tanh(492/71*Pi) 3141592653589793 l004 Pi/tanh(589/85*Pi) 3141592653589793 l004 Pi/tanh(686/99*Pi) 3141592653589793 l004 Pi/tanh(783/113*Pi) 3141592653589793 l004 Pi/tanh(97/14*Pi) 3141592653589793 l004 Pi/tanh(769/111*Pi) 3141592653589793 l004 Pi/tanh(672/97*Pi) 3141592653589793 l004 Pi/tanh(575/83*Pi) 3141592653589793 l004 Pi/tanh(478/69*Pi) 3141592653589793 l004 Pi/tanh(381/55*Pi) 3141592653589793 l004 Pi/tanh(665/96*Pi) 3141592653589793 l004 Pi/tanh(284/41*Pi) 3141592653589793 l004 Pi/tanh(755/109*Pi) 3141592653589793 l004 Pi/tanh(471/68*Pi) 3141592653589793 l004 Pi/tanh(658/95*Pi) 3141592653589793 l004 Pi/tanh(187/27*Pi) 3141592653589793 l004 Pi/tanh(651/94*Pi) 3141592653589793 l004 Pi/tanh(464/67*Pi) 3141592653589793 l004 Pi/tanh(741/107*Pi) 3141592653589793 l004 Pi/tanh(277/40*Pi) 3141592653589793 l004 Pi/tanh(644/93*Pi) 3141592653589793 l004 Pi/tanh(367/53*Pi) 3141592653589793 l004 Pi/tanh(824/119*Pi) 3141592653589793 l004 Pi/tanh(457/66*Pi) 3141592653589793 l004 Pi/tanh(547/79*Pi) 3141592653589793 l004 Pi/tanh(637/92*Pi) 3141592653589793 l004 Pi/tanh(727/105*Pi) 3141592653589793 l004 Pi/tanh(817/118*Pi) 3141592653589793 l004 Pi/tanh(90/13*Pi) 3141592653589793 l004 Pi/tanh(803/116*Pi) 3141592653589793 l004 Pi/tanh(713/103*Pi) 3141592653589793 l004 Pi/tanh(623/90*Pi) 3141592653589793 l004 Pi/tanh(533/77*Pi) 3141592653589793 l004 Pi/tanh(443/64*Pi) 3141592653589793 l004 Pi/tanh(796/115*Pi) 3141592653589793 l004 Pi/tanh(353/51*Pi) 3141592653589793 l004 Pi/tanh(616/89*Pi) 3141592653589793 l004 Pi/tanh(263/38*Pi) 3141592653589793 l004 Pi/tanh(699/101*Pi) 3141592653589793 l004 Pi/tanh(436/63*Pi) 3141592653589793 l004 Pi/tanh(609/88*Pi) 3141592653589793 l004 Pi/tanh(782/113*Pi) 3141592653589793 l004 Pi/tanh(173/25*Pi) 3141592653589793 l004 Pi/tanh(775/112*Pi) 3141592653589793 l004 Pi/tanh(602/87*Pi) 3141592653589793 l004 Pi/tanh(429/62*Pi) 3141592653589793 l004 Pi/tanh(685/99*Pi) 3141592653589793 l004 Pi/tanh(256/37*Pi) 3141592653589793 l004 Pi/tanh(595/86*Pi) 3141592653589793 l004 Pi/tanh(339/49*Pi) 3141592653589793 l004 Pi/tanh(761/110*Pi) 3141592653589793 l004 Pi/tanh(422/61*Pi) 3141592653589793 l004 Pi/tanh(505/73*Pi) 3141592653589793 l004 Pi/tanh(588/85*Pi) 3141592653589793 l004 Pi/tanh(671/97*Pi) 3141592653589793 l004 Pi/tanh(754/109*Pi) 3141592653589793 l004 Pi/tanh(83/12*Pi) 3141592653589793 l004 Pi/tanh(823/119*Pi) 3141592653589793 l004 Pi/tanh(740/107*Pi) 3141592653589793 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(657/95*Pi) 3141592653589793 l004 Pi/tanh(574/83*Pi) 3141592653589793 l004 Pi/tanh(491/71*Pi) 3141592653589793 l004 Pi/tanh(408/59*Pi) 3141592653589793 l004 Pi/tanh(733/106*Pi) 3141592653589793 l004 Pi/tanh(325/47*Pi) 3141592653589793 l004 Pi/tanh(567/82*Pi) 3141592653589793 l004 Pi/tanh(809/117*Pi) 3141592653589793 l004 Pi/tanh(242/35*Pi) 3141592653589793 l004 Pi/tanh(643/93*Pi) 3141592653589793 l004 Pi/tanh(401/58*Pi) 3141592653589793 l004 Pi/tanh(560/81*Pi) 3141592653589793 l004 Pi/tanh(719/104*Pi) 3141592653589793 l004 Pi/tanh(159/23*Pi) 3141592653589793 l004 Pi/tanh(712/103*Pi) 3141592653589793 l004 Pi/tanh(553/80*Pi) 3141592653589793 l004 Pi/tanh(394/57*Pi) 3141592653589793 l004 Pi/tanh(629/91*Pi) 3141592653589793 l004 Pi/tanh(235/34*Pi) 3141592653589793 l004 Pi/tanh(781/113*Pi) 3141592653589793 l004 Pi/tanh(546/79*Pi) 3141592653589793 l004 Pi/tanh(311/45*Pi) 3141592653589793 l004 Pi/tanh(698/101*Pi) 3141592653589793 l004 Pi/tanh(387/56*Pi) 3141592653589793 l004 Pi/tanh(463/67*Pi) 3141592653589793 l004 Pi/tanh(539/78*Pi) 3141592653589793 l004 Pi/tanh(615/89*Pi) 3141592653589793 l004 Pi/tanh(691/100*Pi) 3141592653589793 l004 Pi/tanh(767/111*Pi) 3141592653589793 l004 Pi/tanh(76/11*Pi) 3141592653589793 l004 Pi/tanh(829/120*Pi) 3141592653589793 l004 Pi/tanh(753/109*Pi) 3141592653589793 l004 Pi/tanh(677/98*Pi) 3141592653589793 l004 Pi/tanh(601/87*Pi) 3141592653589793 l004 Pi/tanh(525/76*Pi) 3141592653589793 l004 Pi/tanh(449/65*Pi) 3141592653589793 l004 Pi/tanh(822/119*Pi) 3141592653589793 l004 Pi/tanh(373/54*Pi) 3141592653589793 l004 Pi/tanh(670/97*Pi) 3141592653589793 l004 Pi/tanh(297/43*Pi) 3141592653589793 l004 Pi/tanh(815/118*Pi) 3141592653589793 l004 Pi/tanh(518/75*Pi) 3141592653589793 l004 Pi/tanh(739/107*Pi) 3141592653589793 l004 Pi/tanh(221/32*Pi) 3141592653589793 l004 Pi/tanh(808/117*Pi) 3141592653589793 l004 Pi/tanh(587/85*Pi) 3141592653589793 l004 Pi/tanh(366/53*Pi) 3141592653589793 l004 Pi/tanh(511/74*Pi) 3141592653589793 l004 Pi/tanh(656/95*Pi) 3141592653589793 l004 Pi/tanh(801/116*Pi) 3141592653589793 l004 Pi/tanh(145/21*Pi) 3141592653589793 l004 Pi/tanh(794/115*Pi) 3141592653589793 l004 Pi/tanh(649/94*Pi) 3141592653589793 l004 Pi/tanh(504/73*Pi) 3141592653589793 l004 Pi/tanh(359/52*Pi) 3141592653589793 l004 Pi/tanh(573/83*Pi) 3141592653589793 l004 Pi/tanh(787/114*Pi) 3141592653589793 l004 Pi/tanh(214/31*Pi) 3141592653589793 l004 Pi/tanh(711/103*Pi) 3141592653589793 l004 Pi/tanh(497/72*Pi) 3141592653589793 l004 Pi/tanh(780/113*Pi) 3141592653589793 l004 Pi/tanh(283/41*Pi) 3141592653589793 l004 Pi/tanh(635/92*Pi) 3141592653589793 l004 Pi/tanh(352/51*Pi) 3141592653589793 l004 Pi/tanh(773/112*Pi) 3141592653589793 l004 Pi/tanh(421/61*Pi) 3141592653589793 l004 Pi/tanh(490/71*Pi) 3141592653589793 l004 Pi/tanh(559/81*Pi) 3141592653589793 l004 Pi/tanh(628/91*Pi) 3141592653589793 l004 Pi/tanh(697/101*Pi) 3141592653589793 l004 Pi/tanh(766/111*Pi) 3141592653589793 l004 Pi/tanh(69/10*Pi) 3141592653589793 l004 Pi/tanh(821/119*Pi) 3141592653589793 l004 Pi/tanh(752/109*Pi) 3141592653589793 l004 Pi/tanh(683/99*Pi) 3141592653589793 l004 Pi/tanh(614/89*Pi) 3141592653589793 l004 Pi/tanh(545/79*Pi) 3141592653589793 l004 Pi/tanh(476/69*Pi) 3141592653589793 l004 Pi/tanh(407/59*Pi) 3141592653589793 l004 Pi/tanh(745/108*Pi) 3141592653589793 l004 Pi/tanh(338/49*Pi) 3141592653589793 l004 Pi/tanh(607/88*Pi) 3141592653589793 l004 Pi/tanh(269/39*Pi) 3141592653589793 l004 Pi/tanh(738/107*Pi) 3141592653589793 l004 Pi/tanh(469/68*Pi) 3141592653589793 l004 Pi/tanh(669/97*Pi) 3141592653589793 l004 Pi/tanh(200/29*Pi) 3141592653589793 l004 Pi/tanh(731/106*Pi) 3141592653589793 l004 Pi/tanh(531/77*Pi) 3141592653589793 l004 Pi/tanh(331/48*Pi) 3141592653589793 l004 Pi/tanh(793/115*Pi) 3141592653589793 l004 Pi/tanh(462/67*Pi) 3141592653589793 l004 Pi/tanh(593/86*Pi) 3141592653589793 l004 Pi/tanh(724/105*Pi) 3141592653589793 l004 Pi/tanh(131/19*Pi) 3141592653589793 l004 Pi/tanh(717/104*Pi) 3141592653589793 l004 Pi/tanh(586/85*Pi) 3141592653589793 l004 Pi/tanh(455/66*Pi) 3141592653589793 l004 Pi/tanh(779/113*Pi) 3141592653589793 l004 Pi/tanh(324/47*Pi) 3141592653589793 l004 Pi/tanh(517/75*Pi) 3141592653589793 l004 Pi/tanh(710/103*Pi) 3141592653589793 l004 Pi/tanh(193/28*Pi) 3141592653589793 l004 Pi/tanh(641/93*Pi) 3141592653589793 l004 Pi/tanh(448/65*Pi) 3141592653589793 l004 Pi/tanh(703/102*Pi) 3141592653589793 l004 Pi/tanh(255/37*Pi) 3141592653589793 l004 Pi/tanh(827/120*Pi) 3141592653589793 l004 Pi/tanh(572/83*Pi) 3141592653589793 l004 Pi/tanh(317/46*Pi) 3141592653589793 l004 Pi/tanh(696/101*Pi) 3141592653589793 l004 Pi/tanh(379/55*Pi) 3141592653589793 l004 Pi/tanh(820/119*Pi) 3141592653589793 l004 Pi/tanh(441/64*Pi) 3141592653589793 l004 Pi/tanh(503/73*Pi) 3141592653589793 l004 Pi/tanh(565/82*Pi) 3141592653589793 l004 Pi/tanh(627/91*Pi) 3141592653589793 l004 Pi/tanh(689/100*Pi) 3141592653589793 l004 Pi/tanh(751/109*Pi) 3141592653589793 l004 Pi/tanh(813/118*Pi) 3141592653589793 l004 Pi/tanh(62/9*Pi) 3141592653589793 l004 Pi/tanh(799/116*Pi) 3141592653589793 l004 Pi/tanh(737/107*Pi) 3141592653589793 l004 Pi/tanh(675/98*Pi) 3141592653589793 l004 Pi/tanh(613/89*Pi) 3141592653589793 l004 Pi/tanh(551/80*Pi) 3141592653589793 l004 Pi/tanh(489/71*Pi) 3141592653589793 l004 Pi/tanh(427/62*Pi) 3141592653589793 l004 Pi/tanh(792/115*Pi) 3141592653589793 l004 Pi/tanh(365/53*Pi) 3141592653589793 l004 Pi/tanh(668/97*Pi) 3141592653589793 l004 Pi/tanh(303/44*Pi) 3141592653589793 l004 Pi/tanh(544/79*Pi) 3141592653589793 l004 Pi/tanh(785/114*Pi) 3141592653589793 l004 Pi/tanh(241/35*Pi) 3141592653589793 l004 Pi/tanh(661/96*Pi) 3141592653589793 l004 Pi/tanh(420/61*Pi) 3141592653589793 l004 Pi/tanh(599/87*Pi) 3141592653589793 l004 Pi/tanh(778/113*Pi) 3141592653589793 l004 Pi/tanh(179/26*Pi) 3141592653589793 l004 Pi/tanh(654/95*Pi) 3141592653589793 l004 Pi/tanh(475/69*Pi) 3141592653589793 l004 Pi/tanh(771/112*Pi) 3141592653589793 l004 Pi/tanh(296/43*Pi) 3141592653589793 l004 Pi/tanh(709/103*Pi) 3141592653589793 l004 Pi/tanh(413/60*Pi) 3141592653589793 l004 Pi/tanh(530/77*Pi) 3141592653589793 l004 Pi/tanh(647/94*Pi) 3141592653589793 l004 Pi/tanh(764/111*Pi) 3141592653589793 l004 Pi/tanh(117/17*Pi) 3141592653589793 l004 Pi/tanh(757/110*Pi) 3141592653589793 l004 Pi/tanh(640/93*Pi) 3141592653589793 l004 Pi/tanh(523/76*Pi) 3141592653589793 l004 Pi/tanh(406/59*Pi) 3141592653589793 l004 Pi/tanh(695/101*Pi) 3141592653589793 l004 Pi/tanh(289/42*Pi) 3141592653589793 l004 Pi/tanh(750/109*Pi) 3141592653589793 l004 Pi/tanh(461/67*Pi) 3141592653589793 l004 Pi/tanh(633/92*Pi) 3141592653589793 l004 Pi/tanh(805/117*Pi) 3141592653589793 l004 Pi/tanh(172/25*Pi) 3141592653589793 l004 Pi/tanh(743/108*Pi) 3141592653589793 l004 Pi/tanh(571/83*Pi) 3141592653589793 l004 Pi/tanh(399/58*Pi) 3141592653589793 l004 Pi/tanh(626/91*Pi) 3141592653589793 l004 Pi/tanh(227/33*Pi) 3141592653589793 l004 Pi/tanh(736/107*Pi) 3141592653589793 l004 Pi/tanh(509/74*Pi) 3141592653589793 l004 Pi/tanh(791/115*Pi) 3141592653589793 l004 Pi/tanh(282/41*Pi) 3141592653589793 l004 Pi/tanh(619/90*Pi) 3141592653589793 l004 Pi/tanh(337/49*Pi) 3141592653589793 l004 Pi/tanh(729/106*Pi) 3141592653589793 l004 Pi/tanh(392/57*Pi) 3141592653589793 l004 Pi/tanh(447/65*Pi) 3141592653589793 l004 Pi/tanh(502/73*Pi) 3141592653589793 l004 Pi/tanh(557/81*Pi) 3141592653589793 m001 Trott2nd^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653589793 l004 Pi/tanh(612/89*Pi) 3141592653589793 l004 Pi/tanh(667/97*Pi) 3141592653589793 l004 Pi/tanh(722/105*Pi) 3141592653589793 l004 Pi/tanh(777/113*Pi) 3141592653589793 l004 Pi/tanh(55/8*Pi) 3141592653589793 l004 Pi/tanh(818/119*Pi) 3141592653589793 l004 Pi/tanh(763/111*Pi) 3141592653589793 l004 Pi/tanh(708/103*Pi) 3141592653589793 l004 Pi/tanh(653/95*Pi) 3141592653589793 l004 Pi/tanh(598/87*Pi) 3141592653589793 l004 Pi/tanh(543/79*Pi) 3141592653589793 l004 Pi/tanh(488/71*Pi) 3141592653589793 l004 Pi/tanh(433/63*Pi) 3141592653589793 l004 Pi/tanh(811/118*Pi) 3141592653589793 l004 Pi/tanh(378/55*Pi) 3141592653589793 l004 Pi/tanh(701/102*Pi) 3141592653589793 l004 Pi/tanh(323/47*Pi) 3141592653589793 l004 Pi/tanh(591/86*Pi) 3141592653589793 l004 Pi/tanh(268/39*Pi) 3141592653589793 l004 Pi/tanh(749/109*Pi) 3141592653589793 l004 Pi/tanh(481/70*Pi) 3141592653589793 l004 Pi/tanh(694/101*Pi) 3141592653589793 l004 Pi/tanh(213/31*Pi) 3141592653589793 l004 Pi/tanh(797/116*Pi) 3141592653589793 l004 Pi/tanh(584/85*Pi) 3141592653589793 l004 Pi/tanh(371/54*Pi) 3141592653589793 l004 Pi/tanh(529/77*Pi) 3141592653589793 l004 Pi/tanh(687/100*Pi) 3141592653589793 l004 Pi/tanh(158/23*Pi) 3141592653589793 l004 Pi/tanh(735/107*Pi) 3141592653589793 l004 Pi/tanh(577/84*Pi) 3141592653589793 l004 Pi/tanh(419/61*Pi) 3141592653589793 l004 Pi/tanh(680/99*Pi) 3141592653589793 l004 Pi/tanh(261/38*Pi) 3141592653589793 l004 Pi/tanh(625/91*Pi) 3141592653589793 l004 Pi/tanh(364/53*Pi) 3141592653589793 l004 Pi/tanh(467/68*Pi) 3141592653589793 l004 Pi/tanh(570/83*Pi) 3141592653589793 l004 Pi/tanh(673/98*Pi) 3141592653589793 l004 Pi/tanh(776/113*Pi) 3141592653589793 l004 Pi/tanh(103/15*Pi) 3141592653589793 l004 Pi/tanh(769/112*Pi) 3141592653589793 l004 Pi/tanh(666/97*Pi) 3141592653589793 l004 Pi/tanh(563/82*Pi) 3141592653589793 l004 Pi/tanh(460/67*Pi) 3141592653589793 l004 Pi/tanh(817/119*Pi) 3141592653589793 l004 Pi/tanh(357/52*Pi) 3141592653589793 l004 Pi/tanh(611/89*Pi) 3141592653589793 l004 Pi/tanh(254/37*Pi) 3141592653589793 l004 Pi/tanh(659/96*Pi) 3141592653589793 l004 Pi/tanh(405/59*Pi) 3141592653589793 l004 Pi/tanh(556/81*Pi) 3141592653589793 l004 Pi/tanh(707/103*Pi) 3141592653589793 l004 Pi/tanh(151/22*Pi) 3141592653589793 l004 Pi/tanh(803/117*Pi) 3141592653589793 l004 Pi/tanh(652/95*Pi) 3141592653589793 l004 Pi/tanh(501/73*Pi) 3141592653589793 l004 Pi/tanh(350/51*Pi) 3141592653589793 l004 Pi/tanh(549/80*Pi) 3141592653589793 l004 Pi/tanh(748/109*Pi) 3141592653589793 l004 Pi/tanh(199/29*Pi) 3141592653589793 l004 Pi/tanh(645/94*Pi) 3141592653589793 l004 Pi/tanh(446/65*Pi) 3141592653589793 l004 Pi/tanh(693/101*Pi) 3141592653589793 l004 Pi/tanh(247/36*Pi) 3141592653589793 l004 Pi/tanh(789/115*Pi) 3141592653589793 l004 Pi/tanh(542/79*Pi) 3141592653589793 l005 ln(sec(377/120)) 3141592653589793 l004 Pi/tanh(295/43*Pi) 3141592653589793 l004 Pi/tanh(638/93*Pi) 3141592653589793 l004 Pi/tanh(343/50*Pi) 3141592653589793 l004 Pi/tanh(734/107*Pi) 3141592653589793 l004 Pi/tanh(391/57*Pi) 3141592653589793 l004 Pi/tanh(439/64*Pi) 3141592653589793 l004 Pi/tanh(487/71*Pi) 3141592653589793 l004 Pi/tanh(535/78*Pi) 3141592653589793 l004 Pi/tanh(583/85*Pi) 3141592653589793 l004 Pi/tanh(631/92*Pi) 3141592653589793 l004 Pi/tanh(679/99*Pi) 3141592653589793 l004 Pi/tanh(727/106*Pi) 3141592653589793 l004 Pi/tanh(775/113*Pi) 3141592653589793 l004 Pi/tanh(823/120*Pi) 3141592653589793 l004 Pi/tanh(48/7*Pi) 3141592653589793 l004 Pi/tanh(809/118*Pi) 3141592653589793 l004 Pi/tanh(761/111*Pi) 3141592653589793 l004 Pi/tanh(713/104*Pi) 3141592653589793 l004 Pi/tanh(665/97*Pi) 3141592653589793 l004 Pi/tanh(617/90*Pi) 3141592653589793 l004 Pi/tanh(569/83*Pi) 3141592653589793 l004 Pi/tanh(521/76*Pi) 3141592653589793 l004 Pi/tanh(473/69*Pi) 3141592653589793 l004 Pi/tanh(425/62*Pi) 3141592653589793 l004 Pi/tanh(802/117*Pi) 3141592653589793 l004 Pi/tanh(377/55*Pi) 3141592653589793 l004 Pi/tanh(706/103*Pi) 3141592653589793 l004 Pi/tanh(329/48*Pi) 3141592653589793 l004 Pi/tanh(610/89*Pi) 3141592653589793 l004 Pi/tanh(281/41*Pi) 3141592653589793 l004 Pi/tanh(795/116*Pi) 3141592653589793 l004 Pi/tanh(514/75*Pi) 3141592653589793 l004 Pi/tanh(747/109*Pi) 3141592653589793 l004 Pi/tanh(233/34*Pi) 3141592653589793 l004 Pi/tanh(651/95*Pi) 3141592653589793 l004 Pi/tanh(418/61*Pi) 3141592653589793 l004 Pi/tanh(603/88*Pi) 3141592653589793 l004 Pi/tanh(788/115*Pi) 3141592653589793 l004 Pi/tanh(185/27*Pi) 3141592653589793 l004 Pi/tanh(692/101*Pi) 3141592653589793 l004 Pi/tanh(507/74*Pi) 3141592653589793 l004 Pi/tanh(322/47*Pi) 3141592653589793 l004 Pi/tanh(781/114*Pi) 3141592653589793 l004 Pi/tanh(459/67*Pi) 3141592653589793 l004 Pi/tanh(596/87*Pi) 3141592653589793 l004 Pi/tanh(733/107*Pi) 3141592653589793 l004 Pi/tanh(137/20*Pi) 3141592653589793 l004 Pi/tanh(774/113*Pi) 3141592653589793 l004 Pi/tanh(637/93*Pi) 3141592653589793 l004 Pi/tanh(500/73*Pi) 3141592653589793 l004 Pi/tanh(363/53*Pi) 3141592653589793 l004 Pi/tanh(589/86*Pi) 3141592653589793 l004 Pi/tanh(815/119*Pi) 3141592653589793 l004 Pi/tanh(226/33*Pi) 3141592653589793 l004 Pi/tanh(767/112*Pi) 3141592653589793 l004 Pi/tanh(541/79*Pi) 3141592653589793 l004 Pi/tanh(315/46*Pi) 3141592653589793 l004 Pi/tanh(719/105*Pi) 3141592653589793 l004 Pi/tanh(404/59*Pi) 3141592653589793 l004 Pi/tanh(493/72*Pi) 3141592653589793 l004 Pi/tanh(582/85*Pi) 3141592653589793 l004 Pi/tanh(671/98*Pi) 3141592653589793 l004 Pi/tanh(760/111*Pi) 3141592653589793 l004 Pi/tanh(89/13*Pi) 3141592653589793 l004 Pi/tanh(753/110*Pi) 3141592653589793 l004 Pi/tanh(664/97*Pi) 3141592653589793 l004 Pi/tanh(575/84*Pi) 3141592653589793 l004 Pi/tanh(486/71*Pi) 3141592653589793 l004 Pi/tanh(397/58*Pi) 3141592653589793 l004 Pi/tanh(705/103*Pi) 3141592653589793 l004 Pi/tanh(308/45*Pi) 3141592653589793 l004 Pi/tanh(527/77*Pi) 3141592653589793 l004 Pi/tanh(746/109*Pi) 3141592653589793 l004 Pi/tanh(219/32*Pi) 3141592653589793 l004 Pi/tanh(787/115*Pi) 3141592653589793 l004 Pi/tanh(568/83*Pi) 3141592653589793 l004 Pi/tanh(349/51*Pi) 3141592653589793 l004 Pi/tanh(479/70*Pi) 3141592653589793 l004 Pi/tanh(609/89*Pi) 3141592653589793 l004 Pi/tanh(739/108*Pi) 3141592653589793 l004 Pi/tanh(130/19*Pi) 3141592653589793 l004 Pi/tanh(821/120*Pi) 3141592653589793 l004 Pi/tanh(691/101*Pi) 3141592653589793 l004 Pi/tanh(561/82*Pi) 3141592653589793 l004 Pi/tanh(431/63*Pi) 3141592653589793 l004 Pi/tanh(732/107*Pi) 3141592653589793 l004 Pi/tanh(301/44*Pi) 3141592653589793 l004 Pi/tanh(773/113*Pi) 3141592653589793 l004 Pi/tanh(472/69*Pi) 3141592653589793 l004 Pi/tanh(643/94*Pi) 3141592653589793 l004 Pi/tanh(814/119*Pi) 3141592653589793 l004 Pi/tanh(171/25*Pi) 3141592653589793 l004 Pi/tanh(725/106*Pi) 3141592653589793 l004 Pi/tanh(554/81*Pi) 3141592653589793 l004 Pi/tanh(383/56*Pi) 3141592653589793 l004 Pi/tanh(595/87*Pi) 3141592653589793 l004 Pi/tanh(807/118*Pi) 3141592653589793 l004 Pi/tanh(212/31*Pi) 3141592653589793 l004 Pi/tanh(677/99*Pi) 3141592653589793 l004 Pi/tanh(465/68*Pi) 3141592653589793 l004 Pi/tanh(718/105*Pi) 3141592653589793 l004 Pi/tanh(253/37*Pi) 3141592653589793 l004 Pi/tanh(800/117*Pi) 3141592653589793 l004 Pi/tanh(547/80*Pi) 3141592653589793 l004 Pi/tanh(294/43*Pi) 3141592653589793 l004 Pi/tanh(629/92*Pi) 3141592653589793 l004 Pi/tanh(335/49*Pi) 3141592653589793 l004 Pi/tanh(711/104*Pi) 3141592653589793 l004 Pi/tanh(376/55*Pi) 3141592653589793 l004 Pi/tanh(793/116*Pi) 3141592653589793 l004 Pi/tanh(417/61*Pi) 3141592653589793 l004 Pi/tanh(458/67*Pi) 3141592653589793 l004 Pi/tanh(499/73*Pi) 3141592653589793 l004 Pi/tanh(540/79*Pi) 3141592653589793 l004 Pi/tanh(581/85*Pi) 3141592653589793 l004 Pi/tanh(622/91*Pi) 3141592653589793 l004 Pi/tanh(663/97*Pi) 3141592653589793 l004 Pi/tanh(704/103*Pi) 3141592653589793 l004 Pi/tanh(745/109*Pi) 3141592653589793 l004 Pi/tanh(786/115*Pi) 3141592653589793 l004 Pi/tanh(41/6*Pi) 3141592653589793 l004 Pi/tanh(813/119*Pi) 3141592653589793 l004 Pi/tanh(772/113*Pi) 3141592653589793 l004 Pi/tanh(731/107*Pi) 3141592653589793 l004 Pi/tanh(690/101*Pi) 3141592653589793 l004 Pi/tanh(649/95*Pi) 3141592653589793 l004 Pi/tanh(608/89*Pi) 3141592653589793 l004 Pi/tanh(567/83*Pi) 3141592653589793 l004 Pi/tanh(526/77*Pi) 3141592653589793 l004 Pi/tanh(485/71*Pi) 3141592653589793 l004 Pi/tanh(444/65*Pi) 3141592653589793 l004 Pi/tanh(403/59*Pi) 3141592653589793 l004 Pi/tanh(765/112*Pi) 3141592653589793 l004 Pi/tanh(362/53*Pi) 3141592653589793 l004 Pi/tanh(683/100*Pi) 3141592653589793 l004 Pi/tanh(321/47*Pi) 3141592653589793 l004 Pi/tanh(601/88*Pi) 3141592653589793 l004 Pi/tanh(280/41*Pi) 3141592653589793 l004 Pi/tanh(799/117*Pi) 3141592653589793 l004 Pi/tanh(519/76*Pi) 3141592653589793 l004 Pi/tanh(758/111*Pi) 3141592653589793 l004 Pi/tanh(239/35*Pi) 3141592653589793 l004 Pi/tanh(676/99*Pi) 3141592653589793 l004 Pi/tanh(437/64*Pi) 3141592653589793 l004 Pi/tanh(635/93*Pi) 3141592653589793 l004 Pi/tanh(198/29*Pi) 3141592653589793 l004 Pi/tanh(751/110*Pi) 3141592653589793 l004 Pi/tanh(553/81*Pi) 3141592653589793 l004 Pi/tanh(355/52*Pi) 3141592653589793 l004 Pi/tanh(512/75*Pi) 3141592653589793 l004 Pi/tanh(669/98*Pi) 3141592653589793 l004 Pi/tanh(157/23*Pi) 3141592653589793 l004 Pi/tanh(744/109*Pi) 3141592653589793 l004 Pi/tanh(587/86*Pi) 3141592653589793 l004 Pi/tanh(430/63*Pi) 3141592653589793 l004 Pi/tanh(703/103*Pi) 3141592653589793 l004 Pi/tanh(273/40*Pi) 3141592653589793 l004 Pi/tanh(662/97*Pi) 3141592653589793 l004 Pi/tanh(389/57*Pi) 3141592653589793 l004 Pi/tanh(505/74*Pi) 3141592653589793 l004 Pi/tanh(621/91*Pi) 3141592653589793 l004 Pi/tanh(737/108*Pi) 3141592653589793 l004 Pi/tanh(116/17*Pi) 3141592653589793 l004 Pi/tanh(771/113*Pi) 3141592653589793 l004 Pi/tanh(655/96*Pi) 3141592653589793 l004 Pi/tanh(539/79*Pi) 3141592653589793 l004 Pi/tanh(423/62*Pi) 3141592653589793 l004 Pi/tanh(730/107*Pi) 3141592653589793 l004 Pi/tanh(307/45*Pi) 3141592653589793 l004 Pi/tanh(805/118*Pi) 3141592653589793 l004 Pi/tanh(498/73*Pi) 3141592653589793 l004 Pi/tanh(689/101*Pi) 3141592653589793 l004 Pi/tanh(191/28*Pi) 3141592653589793 l004 Pi/tanh(648/95*Pi) 3141592653589793 l004 Pi/tanh(457/67*Pi) 3141592653589793 l004 Pi/tanh(723/106*Pi) 3141592653589793 l004 Pi/tanh(266/39*Pi) 3141592653589793 l004 Pi/tanh(607/89*Pi) 3141592653589793 l004 Pi/tanh(341/50*Pi) 3141592653589793 l004 Pi/tanh(757/111*Pi) 3141592653589793 l004 Pi/tanh(416/61*Pi) 3141592653589793 l004 Pi/tanh(491/72*Pi) 3141592653589793 l004 Pi/tanh(566/83*Pi) 3141592653589793 l004 Pi/tanh(641/94*Pi) 3141592653589793 l004 Pi/tanh(716/105*Pi) 3141592653589793 l004 Pi/tanh(791/116*Pi) 3141592653589793 l004 Pi/tanh(75/11*Pi) 3141592653589793 l004 Pi/tanh(784/115*Pi) 3141592653589793 l004 Pi/tanh(709/104*Pi) 3141592653589793 l004 Pi/tanh(634/93*Pi) 3141592653589793 l004 Pi/tanh(559/82*Pi) 3141592653589793 l004 Pi/tanh(484/71*Pi) 3141592653589793 l004 Pi/tanh(409/60*Pi) 3141592653589793 l004 Pi/tanh(743/109*Pi) 3141592653589793 l004 Pi/tanh(334/49*Pi) 3141592653589793 l004 Pi/tanh(593/87*Pi) 3141592653589793 l004 Pi/tanh(259/38*Pi) 3141592653589793 l004 Pi/tanh(702/103*Pi) 3141592653589793 l004 Pi/tanh(443/65*Pi) 3141592653589793 l004 Pi/tanh(627/92*Pi) 3141592653589793 l004 Pi/tanh(811/119*Pi) 3141592653589793 l004 Pi/tanh(184/27*Pi) 3141592653589793 l004 Pi/tanh(661/97*Pi) 3141592653589793 l004 Pi/tanh(477/70*Pi) 3141592653589793 l004 Pi/tanh(770/113*Pi) 3141592653589793 l004 Pi/tanh(293/43*Pi) 3141592653589793 l004 Pi/tanh(695/102*Pi) 3141592653589793 l004 Pi/tanh(402/59*Pi) 3141592653589793 l004 Pi/tanh(511/75*Pi) 3141592653589793 l004 Pi/tanh(620/91*Pi) 3141592653589793 l004 Pi/tanh(729/107*Pi) 3141592653589793 l004 Pi/tanh(109/16*Pi) 3141592653589793 l004 Pi/tanh(797/117*Pi) 3141592653589793 l004 Pi/tanh(688/101*Pi) 3141592653589793 l004 Pi/tanh(579/85*Pi) 3141592653589793 l004 Pi/tanh(470/69*Pi) 3141592653589793 l004 Pi/tanh(361/53*Pi) 3141592653589793 l004 Pi/tanh(613/90*Pi) 3141592653589793 l004 Pi/tanh(252/37*Pi) 3141592653589793 l004 Pi/tanh(647/95*Pi) 3141592653589793 l004 Pi/tanh(395/58*Pi) 3141592653589793 l004 Pi/tanh(538/79*Pi) 3141592653589793 l004 Pi/tanh(681/100*Pi) 3141592653589793 l004 Pi/tanh(143/21*Pi) 3141592653589793 l004 Pi/tanh(749/110*Pi) 3141592653589793 l004 Pi/tanh(606/89*Pi) 3141592653589793 l004 Pi/tanh(463/68*Pi) 3141592653589793 l004 Pi/tanh(783/115*Pi) 3141592653589793 l004 Pi/tanh(320/47*Pi) 3141592653589793 l004 Pi/tanh(817/120*Pi) 3141592653589793 l004 Pi/tanh(497/73*Pi) 3141592653589793 l004 Pi/tanh(674/99*Pi) 3141592653589793 l004 Pi/tanh(177/26*Pi) 3141592653589793 l004 Pi/tanh(742/109*Pi) 3141592653589793 l004 Pi/tanh(565/83*Pi) 3141592653589793 l004 Pi/tanh(388/57*Pi) 3141592653589793 l004 Pi/tanh(599/88*Pi) 3141592653589793 l004 Pi/tanh(810/119*Pi) 3141592653589793 l004 Pi/tanh(211/31*Pi) 3141592653589793 l004 Pi/tanh(667/98*Pi) 3141592653589793 m001 ZetaP(3)^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589793 l004 Pi/tanh(456/67*Pi) 3141592653589793 l004 Pi/tanh(701/103*Pi) 3141592653589793 l004 Pi/tanh(245/36*Pi) 3141592653589793 l004 Pi/tanh(769/113*Pi) 3141592653589793 l004 Pi/tanh(524/77*Pi) 3141592653589793 l004 Pi/tanh(803/118*Pi) 3141592653589793 l004 Pi/tanh(279/41*Pi) 3141592653589793 l004 Pi/tanh(592/87*Pi) 3141592653589793 l004 Pi/tanh(313/46*Pi) 3141592653589793 l004 Pi/tanh(660/97*Pi) 3141592653589793 l004 Pi/tanh(347/51*Pi) 3141592653589793 l004 Pi/tanh(728/107*Pi) 3141592653589793 l004 Pi/tanh(381/56*Pi) 3141592653589793 l004 Pi/tanh(796/117*Pi) 3141592653589793 l004 Pi/tanh(415/61*Pi) 3141592653589793 l004 Pi/tanh(449/66*Pi) 3141592653589793 l004 Pi/tanh(483/71*Pi) 3141592653589793 l004 Pi/tanh(517/76*Pi) 3141592653589793 l004 Pi/tanh(551/81*Pi) 3141592653589793 l004 Pi/tanh(585/86*Pi) 3141592653589793 l004 Pi/tanh(619/91*Pi) 3141592653589793 l004 Pi/tanh(653/96*Pi) 3141592653589793 l004 Pi/tanh(687/101*Pi) 3141592653589793 l004 Pi/tanh(721/106*Pi) 3141592653589793 l004 Pi/tanh(755/111*Pi) 3141592653589793 l004 Pi/tanh(789/116*Pi) 3141592653589793 l004 Pi/tanh(34/5*Pi) 3141592653589793 l004 Pi/tanh(809/119*Pi) 3141592653589793 l004 Pi/tanh(775/114*Pi) 3141592653589793 l004 Pi/tanh(741/109*Pi) 3141592653589793 l004 Pi/tanh(707/104*Pi) 3141592653589793 l004 Pi/tanh(673/99*Pi) 3141592653589793 l004 Pi/tanh(639/94*Pi) 3141592653589793 l004 Pi/tanh(605/89*Pi) 3141592653589793 l004 Pi/tanh(571/84*Pi) 3141592653589793 l004 Pi/tanh(537/79*Pi) 3141592653589793 l004 Pi/tanh(503/74*Pi) 3141592653589793 l004 Pi/tanh(469/69*Pi) 3141592653589793 l004 Pi/tanh(435/64*Pi) 3141592653589793 l004 Pi/tanh(401/59*Pi) 3141592653589793 l004 Pi/tanh(768/113*Pi) 3141592653589793 l004 Pi/tanh(367/54*Pi) 3141592653589793 l004 Pi/tanh(700/103*Pi) 3141592653589793 l004 Pi/tanh(333/49*Pi) 3141592653589793 l004 Pi/tanh(632/93*Pi) 3141592653589793 l004 Pi/tanh(299/44*Pi) 3141592653589793 l004 Pi/tanh(564/83*Pi) 3141592653589793 l004 Pi/tanh(265/39*Pi) 3141592653589793 l004 Pi/tanh(761/112*Pi) 3141592653589793 l004 Pi/tanh(496/73*Pi) 3141592653589793 l004 Pi/tanh(727/107*Pi) 3141592653589793 l004 Pi/tanh(231/34*Pi) 3141592653589793 l004 Pi/tanh(659/97*Pi) 3141592653589793 l004 Pi/tanh(428/63*Pi) 3141592653589793 l004 Pi/tanh(625/92*Pi) 3141592653589793 l004 Pi/tanh(197/29*Pi) 3141592653589793 l004 Pi/tanh(754/111*Pi) 3141592653589793 l004 Pi/tanh(557/82*Pi) 3141592653589793 l004 Pi/tanh(360/53*Pi) 3141592653589793 l004 Pi/tanh(523/77*Pi) 3141592653589793 l004 Pi/tanh(686/101*Pi) 3141592653589793 l004 Pi/tanh(163/24*Pi) 3141592653589793 l004 Pi/tanh(781/115*Pi) 3141592653589793 l004 Pi/tanh(618/91*Pi) 3141592653589793 l004 Pi/tanh(455/67*Pi) 3141592653589793 l004 Pi/tanh(747/110*Pi) 3141592653589793 l004 Pi/tanh(292/43*Pi) 3141592653589793 l004 Pi/tanh(713/105*Pi) 3141592653589793 l004 Pi/tanh(421/62*Pi) 3141592653589793 l004 Pi/tanh(550/81*Pi) 3141592653589793 l004 Pi/tanh(679/100*Pi) 3141592653589793 l004 Pi/tanh(808/119*Pi) 3141592653589793 l004 Pi/tanh(129/19*Pi) 3141592653589793 l004 Pi/tanh(740/109*Pi) 3141592653589793 l004 Pi/tanh(611/90*Pi) 3141592653589793 l004 Pi/tanh(482/71*Pi) 3141592653589793 l004 Pi/tanh(353/52*Pi) 3141592653589793 l004 Pi/tanh(577/85*Pi) 3141592653589793 l004 Pi/tanh(801/118*Pi) 3141592653589793 l004 Pi/tanh(224/33*Pi) 3141592653589793 l004 Pi/tanh(767/113*Pi) 3141592653589793 l004 Pi/tanh(543/80*Pi) 3141592653589793 l004 Pi/tanh(319/47*Pi) 3141592653589793 l004 Pi/tanh(733/108*Pi) 3141592653589793 l004 Pi/tanh(414/61*Pi) 3141592653589793 l004 Pi/tanh(509/75*Pi) 3141592653589793 l004 Pi/tanh(604/89*Pi) 3141592653589793 l004 Pi/tanh(699/103*Pi) 3141592653589793 l004 Pi/tanh(794/117*Pi) 3141592653589793 l005 ln(sec(333/106)) 3141592653589793 l004 Pi/tanh(95/14*Pi) 3141592653589793 l004 Pi/tanh(726/107*Pi) 3141592653589793 l004 Pi/tanh(631/93*Pi) 3141592653589793 l004 Pi/tanh(536/79*Pi) 3141592653589793 l004 Pi/tanh(441/65*Pi) 3141592653589793 l004 Pi/tanh(787/116*Pi) 3141592653589793 l004 Pi/tanh(346/51*Pi) 3141592653589793 l004 Pi/tanh(597/88*Pi) 3141592653589793 l004 Pi/tanh(251/37*Pi) 3141592653589793 l004 Pi/tanh(658/97*Pi) 3141592653589793 l004 Pi/tanh(407/60*Pi) 3141592653589793 l004 Pi/tanh(563/83*Pi) 3141592653589793 l004 Pi/tanh(719/106*Pi) 3141592653589793 l004 Pi/tanh(156/23*Pi) 3141592653589793 l004 Pi/tanh(685/101*Pi) 3141592653589793 l004 Pi/tanh(529/78*Pi) 3141592653589793 l004 Pi/tanh(373/55*Pi) 3141592653589793 l004 Pi/tanh(590/87*Pi) 3141592653589793 l004 Pi/tanh(807/119*Pi) 3141592653589793 l004 Pi/tanh(217/32*Pi) 3141592653589793 l004 Pi/tanh(712/105*Pi) 3141592653589793 l004 Pi/tanh(495/73*Pi) 3141592653589793 l004 Pi/tanh(773/114*Pi) 3141592653589793 l004 Pi/tanh(278/41*Pi) 3141592653589793 l004 Pi/tanh(617/91*Pi) 3141592653589793 l004 Pi/tanh(339/50*Pi) 3141592653589793 l004 Pi/tanh(739/109*Pi) 3141592653589793 l004 Pi/tanh(400/59*Pi) 3141592653589793 l004 Pi/tanh(461/68*Pi) 3141592653589793 l004 Pi/tanh(522/77*Pi) 3141592653589793 l004 Pi/tanh(583/86*Pi) 3141592653589793 l004 Pi/tanh(644/95*Pi) 3141592653589793 l004 Pi/tanh(705/104*Pi) 3141592653589793 l004 Pi/tanh(766/113*Pi) 3141592653589793 l004 Pi/tanh(61/9*Pi) 3141592653589793 l004 Pi/tanh(759/112*Pi) 3141592653589793 l004 Pi/tanh(698/103*Pi) 3141592653589793 l004 Pi/tanh(637/94*Pi) 3141592653589793 l004 Pi/tanh(576/85*Pi) 3141592653589793 l004 Pi/tanh(515/76*Pi) 3141592653589793 l004 Pi/tanh(454/67*Pi) 3141592653589793 l004 Pi/tanh(393/58*Pi) 3141592653589793 l004 Pi/tanh(725/107*Pi) 3141592653589793 l004 Pi/tanh(332/49*Pi) 3141592653589793 l004 Pi/tanh(603/89*Pi) 3141592653589793 l004 Pi/tanh(271/40*Pi) 3141592653589793 l004 Pi/tanh(752/111*Pi) 3141592653589793 l004 Pi/tanh(481/71*Pi) 3141592653589793 l004 Pi/tanh(691/102*Pi) 3141592653589793 l004 Pi/tanh(210/31*Pi) 3141592653589793 l004 Pi/tanh(779/115*Pi) 3141592653589793 l004 Pi/tanh(569/84*Pi) 3141592653589793 l004 Pi/tanh(359/53*Pi) 3141592653589793 l004 Pi/tanh(508/75*Pi) 3141592653589793 l004 Pi/tanh(657/97*Pi) 3141592653589793 l004 Pi/tanh(806/119*Pi) 3141592653589793 l004 Pi/tanh(149/22*Pi) 3141592653589793 l004 Pi/tanh(684/101*Pi) 3141592653589793 l004 Pi/tanh(535/79*Pi) 3141592653589793 l004 Pi/tanh(386/57*Pi) 3141592653589793 l004 Pi/tanh(623/92*Pi) 3141592653589793 l004 Pi/tanh(237/35*Pi) 3141592653589793 l004 Pi/tanh(799/118*Pi) 3141592653589793 l004 Pi/tanh(562/83*Pi) 3141592653589793 l004 Pi/tanh(325/48*Pi) 3141592653589793 l004 Pi/tanh(738/109*Pi) 3141592653589793 l004 Pi/tanh(413/61*Pi) 3141592653589793 l004 Pi/tanh(501/74*Pi) 3141592653589793 l004 Pi/tanh(589/87*Pi) 3141592653589793 l004 Pi/tanh(677/100*Pi) 3141592653589793 l004 Pi/tanh(765/113*Pi) 3141592653589793 l004 Pi/tanh(88/13*Pi) 3141592653589793 l004 Pi/tanh(731/108*Pi) 3141592653589793 l004 Pi/tanh(643/95*Pi) 3141592653589793 l004 Pi/tanh(555/82*Pi) 3141592653589793 l004 Pi/tanh(467/69*Pi) 3141592653589793 l004 Pi/tanh(379/56*Pi) 3141592653589793 l004 Pi/tanh(670/99*Pi) 3141592653589793 l004 Pi/tanh(291/43*Pi) 3141592653589793 l004 Pi/tanh(785/116*Pi) 3141592653589793 l004 Pi/tanh(494/73*Pi) 3141592653589793 l004 Pi/tanh(697/103*Pi) 3141592653589793 l004 Pi/tanh(203/30*Pi) 3141592653589793 l004 Pi/tanh(724/107*Pi) 3141592653589793 l004 Pi/tanh(521/77*Pi) 3141592653589793 l004 Pi/tanh(318/47*Pi) 3141592653589793 l004 Pi/tanh(751/111*Pi) 3141592653589793 l004 Pi/tanh(433/64*Pi) 3141592653589793 l004 Pi/tanh(548/81*Pi) 3141592653589793 l004 Pi/tanh(663/98*Pi) 3141592653589793 l004 Pi/tanh(778/115*Pi) 3141592653589793 l004 Pi/tanh(115/17*Pi) 3141592653589793 l004 Pi/tanh(717/106*Pi) 3141592653589793 l004 Pi/tanh(602/89*Pi) 3141592653589793 l004 Pi/tanh(487/72*Pi) 3141592653589793 l004 Pi/tanh(372/55*Pi) 3141592653589793 l004 Pi/tanh(629/93*Pi) 3141592653589793 l004 Pi/tanh(257/38*Pi) 3141592653589793 l004 Pi/tanh(656/97*Pi) 3141592653589793 l004 Pi/tanh(399/59*Pi) 3141592653589793 l004 Pi/tanh(541/80*Pi) 3141592653589793 l004 Pi/tanh(683/101*Pi) 3141592653589793 l004 Pi/tanh(142/21*Pi) 3141592653589793 l004 Pi/tanh(737/109*Pi) 3141592653589793 l004 Pi/tanh(595/88*Pi) 3141592653589793 l004 Pi/tanh(453/67*Pi) 3141592653589793 l004 Pi/tanh(764/113*Pi) 3141592653589793 l004 Pi/tanh(311/46*Pi) 3141592653589793 l004 Pi/tanh(791/117*Pi) 3141592653589793 l004 Pi/tanh(480/71*Pi) 3141592653589793 l004 Pi/tanh(649/96*Pi) 3141592653589793 l004 Pi/tanh(169/25*Pi) 3141592653589793 l004 Pi/tanh(703/104*Pi) 3141592653589793 l004 Pi/tanh(534/79*Pi) 3141592653589793 l004 Pi/tanh(365/54*Pi) 3141592653589793 l004 Pi/tanh(561/83*Pi) 3141592653589793 l004 Pi/tanh(757/112*Pi) 3141592653589793 l004 Pi/tanh(196/29*Pi) 3141592653589793 l004 Pi/tanh(811/120*Pi) 3141592653589793 l004 Pi/tanh(615/91*Pi) 3141592653589793 l004 Pi/tanh(419/62*Pi) 3141592653589793 l004 Pi/tanh(642/95*Pi) 3141592653589793 l004 Pi/tanh(223/33*Pi) 3141592653589793 l004 Pi/tanh(696/103*Pi) 3141592653589793 l004 Pi/tanh(473/70*Pi) 3141592653589793 l004 Pi/tanh(723/107*Pi) 3141592653589793 l004 Pi/tanh(250/37*Pi) 3141592653589793 l004 Pi/tanh(777/115*Pi) 3141592653589793 l004 Pi/tanh(527/78*Pi) 3141592653589793 l004 Pi/tanh(804/119*Pi) 3141592653589793 l004 Pi/tanh(277/41*Pi) 3141592653589793 l004 Pi/tanh(581/86*Pi) 3141592653589793 l004 Pi/tanh(304/45*Pi) 3141592653589793 l004 Pi/tanh(635/94*Pi) 3141592653589793 l004 Pi/tanh(331/49*Pi) 3141592653589793 l004 Pi/tanh(689/102*Pi) 3141592653589793 l004 Pi/tanh(358/53*Pi) 3141592653589793 l004 Pi/tanh(743/110*Pi) 3141592653589793 l004 Pi/tanh(385/57*Pi) 3141592653589793 l004 Pi/tanh(797/118*Pi) 3141592653589793 l004 Pi/tanh(412/61*Pi) 3141592653589793 l004 Pi/tanh(439/65*Pi) 3141592653589793 l004 Pi/tanh(466/69*Pi) 3141592653589793 l004 Pi/tanh(493/73*Pi) 3141592653589793 l004 Pi/tanh(520/77*Pi) 3141592653589793 l004 Pi/tanh(547/81*Pi) 3141592653589793 l004 Pi/tanh(574/85*Pi) 3141592653589793 l004 Pi/tanh(601/89*Pi) 3141592653589793 l004 Pi/tanh(628/93*Pi) 3141592653589793 l004 Pi/tanh(655/97*Pi) 3141592653589793 l004 Pi/tanh(682/101*Pi) 3141592653589793 l004 Pi/tanh(709/105*Pi) 3141592653589793 l004 Pi/tanh(736/109*Pi) 3141592653589793 l004 Pi/tanh(763/113*Pi) 3141592653589793 l004 Pi/tanh(790/117*Pi) 3141592653589793 l004 Pi/tanh(27/4*Pi) 3141592653589793 l004 Pi/tanh(803/119*Pi) 3141592653589793 l004 Pi/tanh(776/115*Pi) 3141592653589793 l004 Pi/tanh(749/111*Pi) 3141592653589793 l004 Pi/tanh(722/107*Pi) 3141592653589793 l004 Pi/tanh(695/103*Pi) 3141592653589793 l004 Pi/tanh(668/99*Pi) 3141592653589793 l004 Pi/tanh(641/95*Pi) 3141592653589793 l004 Pi/tanh(614/91*Pi) 3141592653589793 l004 Pi/tanh(587/87*Pi) 3141592653589793 l004 Pi/tanh(560/83*Pi) 3141592653589793 l004 Pi/tanh(533/79*Pi) 3141592653589793 l004 Pi/tanh(506/75*Pi) 3141592653589793 l004 Pi/tanh(479/71*Pi) 3141592653589793 l004 Pi/tanh(452/67*Pi) 3141592653589793 l004 Pi/tanh(425/63*Pi) 3141592653589793 l004 Pi/tanh(398/59*Pi) 3141592653589793 l004 Pi/tanh(769/114*Pi) 3141592653589793 l004 Pi/tanh(371/55*Pi) 3141592653589793 l004 Pi/tanh(715/106*Pi) 3141592653589793 l004 Pi/tanh(344/51*Pi) 3141592653589793 l004 Pi/tanh(661/98*Pi) 3141592653589793 l004 Pi/tanh(317/47*Pi) 3141592653589793 l004 Pi/tanh(607/90*Pi) 3141592653589793 l004 Pi/tanh(290/43*Pi) 3141592653589793 l004 Pi/tanh(553/82*Pi) 3141592653589793 l004 Pi/tanh(263/39*Pi) 3141592653589793 l004 Pi/tanh(762/113*Pi) 3141592653589793 l004 Pi/tanh(499/74*Pi) 3141592653589793 l004 Pi/tanh(735/109*Pi) 3141592653589793 l004 Pi/tanh(236/35*Pi) 3141592653589793 l004 Pi/tanh(681/101*Pi) 3141592653589793 l004 Pi/tanh(445/66*Pi) 3141592653589793 l004 Pi/tanh(654/97*Pi) 3141592653589793 l004 Pi/tanh(209/31*Pi) 3141592653589793 l004 Pi/tanh(809/120*Pi) 3141592653589793 l004 Pi/tanh(600/89*Pi) 3141592653589793 l004 Pi/tanh(391/58*Pi) 3141592653589793 l004 Pi/tanh(573/85*Pi) 3141592653589793 l004 Pi/tanh(755/112*Pi) 3141592653589793 l004 Pi/tanh(182/27*Pi) 3141592653589793 l004 Pi/tanh(701/104*Pi) 3141592653589793 l004 Pi/tanh(519/77*Pi) 3141592653589793 l004 Pi/tanh(337/50*Pi) 3141592653589793 l004 Pi/tanh(492/73*Pi) 3141592653589793 l004 Pi/tanh(647/96*Pi) 3141592653589793 l004 Pi/tanh(802/119*Pi) 3141592653589793 l004 Pi/tanh(155/23*Pi) 3141592653589793 l004 Pi/tanh(748/111*Pi) 3141592653589793 l004 Pi/tanh(593/88*Pi) 3141592653589793 l004 Pi/tanh(438/65*Pi) 3141592653589793 l004 Pi/tanh(721/107*Pi) 3141592653589793 l004 Pi/tanh(283/42*Pi) 3141592653589793 l004 Pi/tanh(694/103*Pi) 3141592653589793 l004 Pi/tanh(411/61*Pi) 3141592653589793 l004 Pi/tanh(539/80*Pi) 3141592653589793 l004 Pi/tanh(667/99*Pi) 3141592653589793 l004 Pi/tanh(795/118*Pi) 3141592653589793 l004 Pi/tanh(128/19*Pi) 3141592653589793 l004 Pi/tanh(741/110*Pi) 3141592653589793 l004 Pi/tanh(613/91*Pi) 3141592653589793 l004 Pi/tanh(485/72*Pi) 3141592653589793 l004 Pi/tanh(357/53*Pi) 3141592653589793 l004 Pi/tanh(586/87*Pi) 3141592653589793 l004 Pi/tanh(229/34*Pi) 3141592653589793 l004 Pi/tanh(788/117*Pi) 3141592653589793 l004 Pi/tanh(559/83*Pi) 3141592653589793 l004 Pi/tanh(330/49*Pi) 3141592653589793 l004 Pi/tanh(761/113*Pi) 3141592653589793 l004 Pi/tanh(431/64*Pi) 3141592653589793 l004 Pi/tanh(532/79*Pi) 3141592653589793 l004 Pi/tanh(633/94*Pi) 3141592653589793 l004 Pi/tanh(734/109*Pi) 3141592653589793 l004 Pi/tanh(101/15*Pi) 3141592653589793 l004 Pi/tanh(781/116*Pi) 3141592653589793 l004 Pi/tanh(680/101*Pi) 3141592653589793 l004 Pi/tanh(579/86*Pi) 3141592653589793 l004 Pi/tanh(478/71*Pi) 3141592653589793 l004 Pi/tanh(377/56*Pi) 3141592653589793 l004 Pi/tanh(653/97*Pi) 3141592653589793 l004 Pi/tanh(276/41*Pi) 3141592653589793 l004 Pi/tanh(727/108*Pi) 3141592653589793 l004 Pi/tanh(451/67*Pi) 3141592653589793 l004 Pi/tanh(626/93*Pi) 3141592653589793 l004 Pi/tanh(801/119*Pi) 3141592653589793 l004 Pi/tanh(175/26*Pi) 3141592653589793 l004 Pi/tanh(774/115*Pi) 3141592653589793 l004 Pi/tanh(599/89*Pi) 3141592653589793 l004 Pi/tanh(424/63*Pi) 3141592653589793 l004 Pi/tanh(673/100*Pi) 3141592653589793 l004 Pi/tanh(249/37*Pi) 3141592653589793 l004 Pi/tanh(572/85*Pi) 3141592653589793 l004 Pi/tanh(323/48*Pi) 3141592653589793 l004 Pi/tanh(720/107*Pi) 3141592653589793 l004 Pi/tanh(397/59*Pi) 3141592653589793 l004 Pi/tanh(471/70*Pi) 3141592653589793 l004 Pi/tanh(545/81*Pi) 3141592653589793 l004 Pi/tanh(619/92*Pi) 3141592653589793 l004 Pi/tanh(693/103*Pi) 3141592653589793 l004 Pi/tanh(767/114*Pi) 3141592653589793 l004 Pi/tanh(74/11*Pi) 3141592653589793 l004 Pi/tanh(787/117*Pi) 3141592653589793 l004 Pi/tanh(713/106*Pi) 3141592653589793 l004 Pi/tanh(639/95*Pi) 3141592653589793 l004 Pi/tanh(565/84*Pi) 3141592653589793 l004 Pi/tanh(491/73*Pi) 3141592653589793 l004 Pi/tanh(417/62*Pi) 3141592653589793 l004 Pi/tanh(760/113*Pi) 3141592653589793 l004 Pi/tanh(343/51*Pi) 3141592653589793 l004 Pi/tanh(612/91*Pi) 3141592653589793 l004 Pi/tanh(269/40*Pi) 3141592653589793 l004 Pi/tanh(733/109*Pi) 3141592653589793 l004 Pi/tanh(464/69*Pi) 3141592653589793 l004 Pi/tanh(659/98*Pi) 3141592653589793 l004 Pi/tanh(195/29*Pi) 3141592653589793 l004 Pi/tanh(706/105*Pi) 3141592653589793 l004 Pi/tanh(511/76*Pi) 3141592653589793 l004 Pi/tanh(316/47*Pi) 3141592653589793 l004 Pi/tanh(753/112*Pi) 3141592653589793 l004 Pi/tanh(437/65*Pi) 3141592653589793 l004 Pi/tanh(558/83*Pi) 3141592653589793 l004 Pi/tanh(679/101*Pi) 3141592653589793 l004 Pi/tanh(800/119*Pi) 3141592653589793 l004 Pi/tanh(121/18*Pi) 3141592653589793 l004 Pi/tanh(773/115*Pi) 3141592653589793 l004 Pi/tanh(652/97*Pi) 3141592653589793 l004 Pi/tanh(531/79*Pi) 3141592653589793 l004 Pi/tanh(410/61*Pi) 3141592653589793 l004 Pi/tanh(699/104*Pi) 3141592653589793 l004 Pi/tanh(289/43*Pi) 3141592653589793 l004 Pi/tanh(746/111*Pi) 3141592653589793 l004 Pi/tanh(457/68*Pi) 3141592653589793 l004 Pi/tanh(625/93*Pi) 3141592653589793 l004 Pi/tanh(793/118*Pi) 3141592653589793 l004 Pi/tanh(168/25*Pi) 3141592653589793 l004 Pi/tanh(719/107*Pi) 3141592653589793 l004 Pi/tanh(551/82*Pi) 3141592653589793 l004 Pi/tanh(383/57*Pi) 3141592653589793 l004 Pi/tanh(598/89*Pi) 3141592653589793 l004 Pi/tanh(215/32*Pi) 3141592653589793 l004 Pi/tanh(692/103*Pi) 3141592653589793 l004 Pi/tanh(477/71*Pi) 3141592653589793 l004 Pi/tanh(739/110*Pi) 3141592653589793 l004 Pi/tanh(262/39*Pi) 3141592653589793 l004 Pi/tanh(571/85*Pi) 3141592653589793 l004 Pi/tanh(309/46*Pi) 3141592653589793 l004 Pi/tanh(665/99*Pi) 3141592653589793 l004 Pi/tanh(356/53*Pi) 3141592653589793 l004 Pi/tanh(759/113*Pi) 3141592653589793 m001 ZetaP(3)^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(403/60*Pi) 3141592653589793 l004 Pi/tanh(450/67*Pi) 3141592653589793 l004 Pi/tanh(497/74*Pi) 3141592653589793 l004 Pi/tanh(544/81*Pi) 3141592653589793 l004 Pi/tanh(591/88*Pi) 3141592653589793 l004 Pi/tanh(638/95*Pi) 3141592653589793 l004 Pi/tanh(685/102*Pi) 3141592653589793 l004 Pi/tanh(732/109*Pi) 3141592653589793 l004 Pi/tanh(779/116*Pi) 3141592653589793 l004 Pi/tanh(47/7*Pi) 3141592653589793 l004 Pi/tanh(772/115*Pi) 3141592653589793 l004 Pi/tanh(725/108*Pi) 3141592653589793 l004 Pi/tanh(678/101*Pi) 3141592653589793 l004 Pi/tanh(631/94*Pi) 3141592653589793 l004 Pi/tanh(584/87*Pi) 3141592653589793 l004 Pi/tanh(537/80*Pi) 3141592653589793 l004 Pi/tanh(490/73*Pi) 3141592653589793 l004 Pi/tanh(443/66*Pi) 3141592653589793 l004 Pi/tanh(396/59*Pi) 3141592653589793 l004 Pi/tanh(745/111*Pi) 3141592653589793 l004 Pi/tanh(349/52*Pi) 3141592653589793 l004 Pi/tanh(651/97*Pi) 3141592653589793 l004 Pi/tanh(302/45*Pi) 3141592653589793 l004 Pi/tanh(557/83*Pi) 3141592653589793 l004 Pi/tanh(255/38*Pi) 3141592653589793 l004 Pi/tanh(718/107*Pi) 3141592653589793 l004 Pi/tanh(463/69*Pi) 3141592653589793 l004 Pi/tanh(671/100*Pi) 3141592653589793 l004 Pi/tanh(208/31*Pi) 3141592653589793 l004 Pi/tanh(785/117*Pi) 3141592653589793 l004 Pi/tanh(577/86*Pi) 3141592653589793 l004 Pi/tanh(369/55*Pi) 3141592653589793 l004 Pi/tanh(530/79*Pi) 3141592653589793 l004 Pi/tanh(691/103*Pi) 3141592653589793 l004 Pi/tanh(161/24*Pi) 3141592653589793 l004 Pi/tanh(758/113*Pi) 3141592653589793 l004 Pi/tanh(597/89*Pi) 3141592653589793 l004 Pi/tanh(436/65*Pi) 3141592653589793 l004 Pi/tanh(711/106*Pi) 3141592653589793 l004 Pi/tanh(275/41*Pi) 3141592653589793 l004 Pi/tanh(664/99*Pi) 3141592653589793 l004 Pi/tanh(389/58*Pi) 3141592653589793 l004 Pi/tanh(503/75*Pi) 3141592653589793 l004 Pi/tanh(617/92*Pi) 3141592653589793 l004 Pi/tanh(731/109*Pi) 3141592653589793 l004 Pi/tanh(114/17*Pi) 3141592653589793 l004 Pi/tanh(751/112*Pi) 3141592653589793 l004 Pi/tanh(637/95*Pi) 3141592653589793 l004 Pi/tanh(523/78*Pi) 3141592653589793 l004 Pi/tanh(409/61*Pi) 3141592653589793 l004 Pi/tanh(704/105*Pi) 3141592653589793 l004 Pi/tanh(295/44*Pi) 3141592653589793 l004 Pi/tanh(771/115*Pi) 3141592653589793 l004 Pi/tanh(476/71*Pi) 3141592653589793 l004 Pi/tanh(657/98*Pi) 3141592653589793 l004 Pi/tanh(181/27*Pi) 3141592653589793 l004 Pi/tanh(791/118*Pi) 3141592653589793 l004 Pi/tanh(610/91*Pi) 3141592653589793 l004 Pi/tanh(429/64*Pi) 3141592653589793 l004 Pi/tanh(677/101*Pi) 3141592653589793 l004 Pi/tanh(248/37*Pi) 3141592653589793 l004 Pi/tanh(563/84*Pi) 3141592653589793 l004 Pi/tanh(315/47*Pi) 3141592653589793 l004 Pi/tanh(697/104*Pi) 3141592653589793 l004 Pi/tanh(382/57*Pi) 3141592653589793 l004 Pi/tanh(449/67*Pi) 3141592653589793 l004 Pi/tanh(516/77*Pi) 3141592653589793 l004 Pi/tanh(583/87*Pi) 3141592653589793 l004 Pi/tanh(650/97*Pi) 3141592653589793 l004 Pi/tanh(717/107*Pi) 3141592653589793 l004 Pi/tanh(784/117*Pi) 3141592653589793 l004 Pi/tanh(67/10*Pi) 3141592653589793 l004 Pi/tanh(757/113*Pi) 3141592653589793 l004 Pi/tanh(690/103*Pi) 3141592653589793 l004 Pi/tanh(623/93*Pi) 3141592653589793 l004 Pi/tanh(556/83*Pi) 3141592653589793 l004 Pi/tanh(489/73*Pi) 3141592653589793 l004 Pi/tanh(422/63*Pi) 3141592653589793 l004 Pi/tanh(777/116*Pi) 3141592653589793 l004 Pi/tanh(355/53*Pi) 3141592653589793 l004 Pi/tanh(643/96*Pi) 3141592653589793 l004 Pi/tanh(288/43*Pi) 3141592653589793 l004 Pi/tanh(797/119*Pi) 3141592653589793 l004 Pi/tanh(509/76*Pi) 3141592653589793 l004 Pi/tanh(730/109*Pi) 3141592653589793 l004 Pi/tanh(221/33*Pi) 3141592653589793 l004 Pi/tanh(596/89*Pi) 3141592653589793 l004 Pi/tanh(375/56*Pi) 3141592653589793 l004 Pi/tanh(529/79*Pi) 3141592653589793 l004 Pi/tanh(683/102*Pi) 3141592653589793 l004 Pi/tanh(154/23*Pi) 3141592653589793 l004 Pi/tanh(703/105*Pi) 3141592653589793 l004 Pi/tanh(549/82*Pi) 3141592653589793 l004 Pi/tanh(395/59*Pi) 3141592653589793 l004 Pi/tanh(636/95*Pi) 3141592653589793 l004 Pi/tanh(241/36*Pi) 3141592653589793 l004 Pi/tanh(569/85*Pi) 3141592653589793 l004 Pi/tanh(328/49*Pi) 3141592653589793 l004 Pi/tanh(743/111*Pi) 3141592653589793 l004 Pi/tanh(415/62*Pi) 3141592653589793 l004 Pi/tanh(502/75*Pi) 3141592653589793 l004 Pi/tanh(589/88*Pi) 3141592653589793 l004 Pi/tanh(676/101*Pi) 3141592653589793 l004 Pi/tanh(763/114*Pi) 3141592653589793 l004 Pi/tanh(87/13*Pi) 3141592653589793 l004 Pi/tanh(803/120*Pi) 3141592653589793 l004 Pi/tanh(716/107*Pi) 3141592653589793 l004 Pi/tanh(629/94*Pi) 3141592653589793 l004 Pi/tanh(542/81*Pi) 3141592653589793 l004 Pi/tanh(455/68*Pi) 3141592653589793 l004 Pi/tanh(368/55*Pi) 3141592653589793 l004 Pi/tanh(649/97*Pi) 3141592653589793 l004 Pi/tanh(281/42*Pi) 3141592653589793 l004 Pi/tanh(756/113*Pi) 3141592653589793 l004 Pi/tanh(475/71*Pi) 3141592653589793 l004 Pi/tanh(669/100*Pi) 3141592653589793 l004 Pi/tanh(194/29*Pi) 3141592653589793 l004 Pi/tanh(689/103*Pi) 3141592653589793 l004 Pi/tanh(495/74*Pi) 3141592653589793 l004 Pi/tanh(796/119*Pi) 3141592653589793 l004 Pi/tanh(301/45*Pi) 3141592653589793 l004 Pi/tanh(709/106*Pi) 3141592653589793 l004 Pi/tanh(408/61*Pi) 3141592653589793 l004 Pi/tanh(515/77*Pi) 3141592653589793 l004 Pi/tanh(622/93*Pi) 3141592653589793 l004 Pi/tanh(729/109*Pi) 3141592653589793 l004 Pi/tanh(107/16*Pi) 3141592653589793 l004 Pi/tanh(769/115*Pi) 3141592653589793 l004 Pi/tanh(662/99*Pi) 3141592653589793 l004 Pi/tanh(555/83*Pi) 3141592653589793 l004 Pi/tanh(448/67*Pi) 3141592653589793 l004 Pi/tanh(789/118*Pi) 3141592653589793 l004 Pi/tanh(341/51*Pi) 3141592653589793 l004 Pi/tanh(575/86*Pi) 3141592653589793 l004 Pi/tanh(234/35*Pi) 3141592653589793 l004 Pi/tanh(595/89*Pi) 3141592653589793 l004 Pi/tanh(361/54*Pi) 3141592653589793 l004 Pi/tanh(488/73*Pi) 3141592653589793 l004 Pi/tanh(615/92*Pi) 3141592653589793 l004 Pi/tanh(742/111*Pi) 3141592653589793 l004 Pi/tanh(127/19*Pi) 3141592653589793 l004 Pi/tanh(782/117*Pi) 3141592653589793 l004 Pi/tanh(655/98*Pi) 3141592653589793 l004 Pi/tanh(528/79*Pi) 3141592653589793 l004 Pi/tanh(401/60*Pi) 3141592653589793 l004 Pi/tanh(675/101*Pi) 3141592653589793 l004 Pi/tanh(274/41*Pi) 3141592653589793 l004 Pi/tanh(695/104*Pi) 3141592653589793 l004 Pi/tanh(421/63*Pi) 3141592653589793 l004 Pi/tanh(568/85*Pi) 3141592653589793 l004 Pi/tanh(715/107*Pi) 3141592653589793 l004 Pi/tanh(147/22*Pi) 3141592653589793 l004 Pi/tanh(755/113*Pi) 3141592653589793 l004 Pi/tanh(608/91*Pi) 3141592653589793 l004 Pi/tanh(461/69*Pi) 3141592653589793 l004 Pi/tanh(775/116*Pi) 3141592653589793 l004 Pi/tanh(314/47*Pi) 3141592653589793 l004 Pi/tanh(795/119*Pi) 3141592653589793 l004 Pi/tanh(481/72*Pi) 3141592653589793 l004 Pi/tanh(648/97*Pi) 3141592653589793 l004 Pi/tanh(167/25*Pi) 3141592653589793 l004 Pi/tanh(688/103*Pi) 3141592653589793 l004 Pi/tanh(521/78*Pi) 3141592653589793 l004 Pi/tanh(354/53*Pi) 3141592653589793 l004 Pi/tanh(541/81*Pi) 3141592653589793 l004 Pi/tanh(728/109*Pi) 3141592653589793 l004 Pi/tanh(187/28*Pi) 3141592653589793 l004 Pi/tanh(768/115*Pi) 3141592653589793 l004 Pi/tanh(581/87*Pi) 3141592653589793 l004 Pi/tanh(394/59*Pi) 3141592653589793 l004 Pi/tanh(601/90*Pi) 3141592653589793 l004 Pi/tanh(207/31*Pi) 3141592653589793 l004 Pi/tanh(641/96*Pi) 3141592653589793 l004 Pi/tanh(434/65*Pi) 3141592653589793 l004 Pi/tanh(661/99*Pi) 3141592653589793 l004 Pi/tanh(227/34*Pi) 3141592653589793 l004 Pi/tanh(701/105*Pi) 3141592653589793 l004 Pi/tanh(474/71*Pi) 3141592653589793 l004 Pi/tanh(721/108*Pi) 3141592653589793 l004 Pi/tanh(247/37*Pi) 3141592653589793 l004 Pi/tanh(761/114*Pi) 3141592653589793 l004 Pi/tanh(514/77*Pi) 3141592653589793 l004 Pi/tanh(781/117*Pi) 3141592653589793 l004 Pi/tanh(267/40*Pi) 3141592653589793 l004 Pi/tanh(554/83*Pi) 3141592653589793 l004 Pi/tanh(287/43*Pi) 3141592653589793 l004 Pi/tanh(594/89*Pi) 3141592653589793 l004 Pi/tanh(307/46*Pi) 3141592653589793 l004 Pi/tanh(634/95*Pi) 3141592653589793 l004 Pi/tanh(327/49*Pi) 3141592653589793 l004 Pi/tanh(674/101*Pi) 3141592653589793 l004 Pi/tanh(347/52*Pi) 3141592653589793 l004 Pi/tanh(714/107*Pi) 3141592653589793 l004 Pi/tanh(367/55*Pi) 3141592653589793 l004 Pi/tanh(754/113*Pi) 3141592653589793 l004 Pi/tanh(387/58*Pi) 3141592653589793 l004 Pi/tanh(794/119*Pi) 3141592653589793 l004 Pi/tanh(407/61*Pi) 3141592653589793 l004 Pi/tanh(427/64*Pi) 3141592653589793 l004 Pi/tanh(447/67*Pi) 3141592653589793 l004 Pi/tanh(467/70*Pi) 3141592653589793 l004 Pi/tanh(487/73*Pi) 3141592653589793 l004 Pi/tanh(507/76*Pi) 3141592653589793 l004 Pi/tanh(527/79*Pi) 3141592653589793 l004 Pi/tanh(547/82*Pi) 3141592653589793 l004 Pi/tanh(567/85*Pi) 3141592653589793 l004 Pi/tanh(587/88*Pi) 3141592653589793 l004 Pi/tanh(607/91*Pi) 3141592653589793 l004 Pi/tanh(627/94*Pi) 3141592653589793 l004 Pi/tanh(647/97*Pi) 3141592653589793 l004 Pi/tanh(667/100*Pi) 3141592653589793 l004 Pi/tanh(687/103*Pi) 3141592653589793 l004 Pi/tanh(707/106*Pi) 3141592653589793 l004 Pi/tanh(727/109*Pi) 3141592653589793 l004 Pi/tanh(747/112*Pi) 3141592653589793 l004 Pi/tanh(767/115*Pi) 3141592653589793 l004 Pi/tanh(787/118*Pi) 3141592653589793 l004 Pi/tanh(20/3*Pi) 3141592653589793 l004 Pi/tanh(793/119*Pi) 3141592653589793 l004 Pi/tanh(773/116*Pi) 3141592653589793 l004 Pi/tanh(753/113*Pi) 3141592653589793 l004 Pi/tanh(733/110*Pi) 3141592653589793 l004 Pi/tanh(713/107*Pi) 3141592653589793 l004 Pi/tanh(693/104*Pi) 3141592653589793 l004 Pi/tanh(673/101*Pi) 3141592653589793 l004 Pi/tanh(653/98*Pi) 3141592653589793 l004 Pi/tanh(633/95*Pi) 3141592653589793 l004 Pi/tanh(613/92*Pi) 3141592653589793 l004 Pi/tanh(593/89*Pi) 3141592653589793 l004 Pi/tanh(573/86*Pi) 3141592653589793 l004 Pi/tanh(553/83*Pi) 3141592653589793 l004 Pi/tanh(533/80*Pi) 3141592653589793 l004 Pi/tanh(513/77*Pi) 3141592653589793 l004 Pi/tanh(493/74*Pi) 3141592653589793 l004 Pi/tanh(473/71*Pi) 3141592653589793 l004 Pi/tanh(453/68*Pi) 3141592653589793 l004 Pi/tanh(433/65*Pi) 3141592653589793 l004 Pi/tanh(413/62*Pi) 3141592653589793 l004 Pi/tanh(393/59*Pi) 3141592653589793 l004 Pi/tanh(766/115*Pi) 3141592653589793 l004 Pi/tanh(373/56*Pi) 3141592653589793 l004 Pi/tanh(726/109*Pi) 3141592653589793 l004 Pi/tanh(353/53*Pi) 3141592653589793 l004 Pi/tanh(686/103*Pi) 3141592653589793 l004 Pi/tanh(333/50*Pi) 3141592653589793 l004 Pi/tanh(646/97*Pi) 3141592653589793 l004 Pi/tanh(313/47*Pi) 3141592653589793 l004 Pi/tanh(606/91*Pi) 3141592653589793 l004 Pi/tanh(293/44*Pi) 3141592653589793 l004 Pi/tanh(566/85*Pi) 3141592653589793 l004 Pi/tanh(273/41*Pi) 3141592653589793 l004 Pi/tanh(799/120*Pi) 3141592653589793 l004 Pi/tanh(526/79*Pi) 3141592653589793 l004 Pi/tanh(779/117*Pi) 3141592653589793 l004 Pi/tanh(253/38*Pi) 3141592653589793 l004 Pi/tanh(739/111*Pi) 3141592653589793 l004 Pi/tanh(486/73*Pi) 3141592653589793 l004 Pi/tanh(719/108*Pi) 3141592653589793 l004 Pi/tanh(233/35*Pi) 3141592653589793 l004 Pi/tanh(679/102*Pi) 3141592653589793 l004 Pi/tanh(446/67*Pi) 3141592653589793 l004 Pi/tanh(659/99*Pi) 3141592653589793 l004 Pi/tanh(213/32*Pi) 3141592653589793 l004 Pi/tanh(619/93*Pi) 3141592653589793 l004 Pi/tanh(406/61*Pi) 3141592653589793 l004 Pi/tanh(599/90*Pi) 3141592653589793 l004 Pi/tanh(792/119*Pi) 3141592653589793 l004 Pi/tanh(193/29*Pi) 3141592653589793 l004 Pi/tanh(752/113*Pi) 3141592653589793 l004 Pi/tanh(559/84*Pi) 3141592653589793 l004 Pi/tanh(366/55*Pi) 3141592653589793 l004 Pi/tanh(539/81*Pi) 3141592653589793 l004 Pi/tanh(712/107*Pi) 3141592653589793 l004 Pi/tanh(173/26*Pi) 3141592653589793 l004 Pi/tanh(672/101*Pi) 3141592653589793 l004 Pi/tanh(499/75*Pi) 3141592653589793 l004 Pi/tanh(326/49*Pi) 3141592653589793 l004 Pi/tanh(479/72*Pi) 3141592653589793 l004 Pi/tanh(632/95*Pi) 3141592653589793 l004 Pi/tanh(785/118*Pi) 3141592653589793 l004 Pi/tanh(153/23*Pi) 3141592653589793 l004 Pi/tanh(745/112*Pi) 3141592653589793 l004 Pi/tanh(592/89*Pi) 3141592653589793 l004 Pi/tanh(439/66*Pi) 3141592653589793 l004 Pi/tanh(725/109*Pi) 3141592653589793 l004 Pi/tanh(286/43*Pi) 3141592653589793 l004 Pi/tanh(705/106*Pi) 3141592653589793 l004 Pi/tanh(419/63*Pi) 3141592653589793 l004 Pi/tanh(552/83*Pi) 3141592653589793 l004 Pi/tanh(685/103*Pi) 3141592653589793 l004 Pi/tanh(133/20*Pi) 3141592653589793 l004 Pi/tanh(778/117*Pi) 3141592653589793 l004 Pi/tanh(645/97*Pi) 3141592653589793 l004 Pi/tanh(512/77*Pi) 3141592653589793 l004 Pi/tanh(379/57*Pi) 3141592653589793 l004 Pi/tanh(625/94*Pi) 3141592653589793 l004 Pi/tanh(246/37*Pi) 3141592653589793 l004 Pi/tanh(605/91*Pi) 3141592653589793 l004 Pi/tanh(359/54*Pi) 3141592653589793 l004 Pi/tanh(472/71*Pi) 3141592653589793 l004 Pi/tanh(585/88*Pi) 3141592653589793 l004 Pi/tanh(698/105*Pi) 3141592653589793 l004 Pi/tanh(113/17*Pi) 3141592653589793 l004 Pi/tanh(771/116*Pi) 3141592653589793 l004 Pi/tanh(658/99*Pi) 3141592653589793 l004 Pi/tanh(545/82*Pi) 3141592653589793 l004 Pi/tanh(432/65*Pi) 3141592653589793 l004 Pi/tanh(751/113*Pi) 3141592653589793 l004 Pi/tanh(319/48*Pi) 3141592653589793 l004 Pi/tanh(525/79*Pi) 3141592653589793 l004 Pi/tanh(731/110*Pi) 3141592653589793 l004 Pi/tanh(206/31*Pi) 3141592653589793 l004 Pi/tanh(711/107*Pi) 3141592653589793 l004 Pi/tanh(505/76*Pi) 3141592653589793 l004 Pi/tanh(299/45*Pi) 3141592653589793 l004 Pi/tanh(691/104*Pi) 3141592653589793 l004 Pi/tanh(392/59*Pi) 3141592653589793 l004 Pi/tanh(485/73*Pi) 3141592653589793 l004 Pi/tanh(578/87*Pi) 3141592653589793 l004 Pi/tanh(671/101*Pi) 3141592653589793 l004 Pi/tanh(764/115*Pi) 3141592653589793 l004 Pi/tanh(93/14*Pi) 3141592653589793 l004 Pi/tanh(724/109*Pi) 3141592653589793 l004 Pi/tanh(631/95*Pi) 3141592653589793 l004 Pi/tanh(538/81*Pi) 3141592653589793 l004 Pi/tanh(445/67*Pi) 3141592653589793 l004 Pi/tanh(797/120*Pi) 3141592653589793 l004 Pi/tanh(352/53*Pi) 3141592653589793 l004 Pi/tanh(611/92*Pi) 3141592653589793 l004 Pi/tanh(259/39*Pi) 3141592653589793 l004 Pi/tanh(684/103*Pi) 3141592653589793 l004 Pi/tanh(425/64*Pi) 3141592653589793 l004 Pi/tanh(591/89*Pi) 3141592653589793 l004 Pi/tanh(757/114*Pi) 3141592653589793 l004 Pi/tanh(166/25*Pi) 3141592653589793 l004 Pi/tanh(737/111*Pi) 3141592653589793 l004 Pi/tanh(571/86*Pi) 3141592653589793 l004 Pi/tanh(405/61*Pi) 3141592653589793 l004 Pi/tanh(644/97*Pi) 3141592653589793 l004 Pi/tanh(239/36*Pi) 3141592653589793 l004 Pi/tanh(790/119*Pi) 3141592653589793 l004 Pi/tanh(551/83*Pi) 3141592653589793 l004 Pi/tanh(312/47*Pi) 3141592653589793 l004 Pi/tanh(697/105*Pi) 3141592653589793 l004 Pi/tanh(385/58*Pi) 3141592653589793 l004 Pi/tanh(458/69*Pi) 3141592653589793 l004 Pi/tanh(531/80*Pi) 3141592653589793 l004 Pi/tanh(604/91*Pi) 3141592653589793 l004 Pi/tanh(677/102*Pi) 3141592653589793 l004 Pi/tanh(750/113*Pi) 3141592653589793 l004 Pi/tanh(73/11*Pi) 3141592653589793 l004 Pi/tanh(783/118*Pi) 3141592653589793 l004 Pi/tanh(710/107*Pi) 3141592653589793 l004 Pi/tanh(637/96*Pi) 3141592653589793 l004 Pi/tanh(564/85*Pi) 3141592653589793 l004 Pi/tanh(491/74*Pi) 3141592653589793 l004 Pi/tanh(418/63*Pi) 3141592653589793 l004 Pi/tanh(763/115*Pi) 3141592653589793 l004 Pi/tanh(345/52*Pi) 3141592653589793 l004 Pi/tanh(617/93*Pi) 3141592653589793 l004 Pi/tanh(272/41*Pi) 3141592653589793 l004 Pi/tanh(743/112*Pi) 3141592653589793 l004 Pi/tanh(471/71*Pi) 3141592653589793 l004 Pi/tanh(670/101*Pi) 3141592653589793 l004 Pi/tanh(199/30*Pi) 3141592653589793 l004 Pi/tanh(723/109*Pi) 3141592653589793 l004 Pi/tanh(524/79*Pi) 3141592653589793 l004 Pi/tanh(325/49*Pi) 3141592653589793 l004 Pi/tanh(776/117*Pi) 3141592653589793 l004 Pi/tanh(451/68*Pi) 3141592653589793 l004 Pi/tanh(577/87*Pi) 3141592653589793 l004 Pi/tanh(703/106*Pi) 3141592653589793 l004 Pi/tanh(126/19*Pi) 3141592653589793 l004 Pi/tanh(683/103*Pi) 3141592653589793 l004 Pi/tanh(557/84*Pi) 3141592653589793 l004 Pi/tanh(431/65*Pi) 3141592653589793 l004 Pi/tanh(736/111*Pi) 3141592653589793 l004 Pi/tanh(305/46*Pi) 3141592653589793 l004 Pi/tanh(789/119*Pi) 3141592653589793 l004 Pi/tanh(484/73*Pi) 3141592653589793 l004 Pi/tanh(663/100*Pi) 3141592653589793 l004 Pi/tanh(179/27*Pi) 3141592653589793 l004 Pi/tanh(769/116*Pi) 3141592653589793 l004 Pi/tanh(590/89*Pi) 3141592653589793 l004 Pi/tanh(411/62*Pi) 3141592653589793 l004 Pi/tanh(643/97*Pi) 3141592653589793 l004 Pi/tanh(232/35*Pi) 3141592653589793 l004 Pi/tanh(749/113*Pi) 3141592653589793 l004 Pi/tanh(517/78*Pi) 3141592653589793 l004 Pi/tanh(285/43*Pi) 3141592653589793 l004 Pi/tanh(623/94*Pi) 3141592653589793 l004 Pi/tanh(338/51*Pi) 3141592653589793 l004 Pi/tanh(729/110*Pi) 3141592653589793 l004 Pi/tanh(391/59*Pi) 3141592653589793 l004 Pi/tanh(444/67*Pi) 3141592653589793 l004 Pi/tanh(497/75*Pi) 3141592653589793 l004 Pi/tanh(550/83*Pi) 3141592653589793 l004 Pi/tanh(603/91*Pi) 3141592653589793 l004 Pi/tanh(656/99*Pi) 3141592653589793 l004 Pi/tanh(709/107*Pi) 3141592653589793 l004 Pi/tanh(762/115*Pi) 3141592653589793 l004 Pi/tanh(53/8*Pi) 3141592653589793 l004 Pi/tanh(775/117*Pi) 3141592653589793 l004 Pi/tanh(722/109*Pi) 3141592653589793 l004 Pi/tanh(669/101*Pi) 3141592653589793 l004 Pi/tanh(616/93*Pi) 3141592653589793 l004 Pi/tanh(563/85*Pi) 3141592653589793 l004 Pi/tanh(510/77*Pi) 3141592653589793 l004 Pi/tanh(457/69*Pi) 3141592653589793 l004 Pi/tanh(404/61*Pi) 3141592653589793 l004 Pi/tanh(755/114*Pi) 3141592653589793 l004 Pi/tanh(351/53*Pi) 3141592653589793 l004 Pi/tanh(649/98*Pi) 3141592653589793 l004 Pi/tanh(298/45*Pi) 3141592653589793 l004 Pi/tanh(543/82*Pi) 3141592653589793 l004 Pi/tanh(788/119*Pi) 3141592653589793 l004 Pi/tanh(245/37*Pi) 3141592653589793 l004 Pi/tanh(682/103*Pi) 3141592653589793 l004 Pi/tanh(437/66*Pi) 3141592653589793 l004 Pi/tanh(629/95*Pi) 3141592653589793 l004 Pi/tanh(192/29*Pi) 3141592653589793 l004 Pi/tanh(715/108*Pi) 3141592653589793 l004 Pi/tanh(523/79*Pi) 3141592653589793 l004 Pi/tanh(331/50*Pi) 3141592653589793 l004 Pi/tanh(470/71*Pi) 3141592653589793 l004 Pi/tanh(609/92*Pi) 3141592653589793 l004 Pi/tanh(748/113*Pi) 3141592653589793 l004 Pi/tanh(139/21*Pi) 3141592653589793 l004 Pi/tanh(781/118*Pi) 3141592653589793 l004 Pi/tanh(642/97*Pi) 3141592653589793 l004 Pi/tanh(503/76*Pi) 3141592653589793 l004 Pi/tanh(364/55*Pi) 3141592653589793 l004 Pi/tanh(589/89*Pi) 3141592653589793 l004 Pi/tanh(225/34*Pi) 3141592653589793 l004 Pi/tanh(761/115*Pi) 3141592653589793 l004 Pi/tanh(536/81*Pi) 3141592653589793 l004 Pi/tanh(311/47*Pi) 3141592653589793 l004 Pi/tanh(708/107*Pi) 3141592653589793 l004 Pi/tanh(397/60*Pi) 3141592653589793 l004 Pi/tanh(483/73*Pi) 3141592653589793 l004 Pi/tanh(569/86*Pi) 3141592653589793 l004 Pi/tanh(655/99*Pi) 3141592653589793 l004 Pi/tanh(741/112*Pi) 3141592653589793 l004 Pi/tanh(86/13*Pi) 3141592653589793 l004 Pi/tanh(721/109*Pi) 3141592653589793 l004 Pi/tanh(635/96*Pi) 3141592653589793 l004 Pi/tanh(549/83*Pi) 3141592653589793 l004 Pi/tanh(463/70*Pi) 3141592653589793 l004 Pi/tanh(377/57*Pi) 3141592653589793 l004 Pi/tanh(668/101*Pi) 3141592653589793 l004 Pi/tanh(291/44*Pi) 3141592653589793 l004 Pi/tanh(787/119*Pi) 3141592653589793 l004 Pi/tanh(496/75*Pi) 3141592653589793 l004 Pi/tanh(701/106*Pi) 3141592653589793 l004 Pi/tanh(205/31*Pi) 3141592653589793 l004 Pi/tanh(734/111*Pi) 3141592653589793 l004 Pi/tanh(529/80*Pi) 3141592653589793 l004 Pi/tanh(324/49*Pi) 3141592653589793 l004 Pi/tanh(767/116*Pi) 3141592653589793 l004 Pi/tanh(443/67*Pi) 3141592653589793 l004 Pi/tanh(562/85*Pi) 3141592653589793 l004 Pi/tanh(681/103*Pi) 3141592653589793 l004 Pi/tanh(119/18*Pi) 3141592653589793 l004 Pi/tanh(747/113*Pi) 3141592653589793 l004 Pi/tanh(628/95*Pi) 3141592653589793 l004 Pi/tanh(509/77*Pi) 3141592653589793 l004 Pi/tanh(390/59*Pi) 3141592653589793 l004 Pi/tanh(661/100*Pi) 3141592653589793 l004 Pi/tanh(271/41*Pi) 3141592653589793 l004 Pi/tanh(694/105*Pi) 3141592653589793 l004 Pi/tanh(423/64*Pi) 3141592653589793 l004 Pi/tanh(575/87*Pi) 3141592653589793 l004 Pi/tanh(727/110*Pi) 3141592653589793 l004 Pi/tanh(152/23*Pi) 3141592653589793 l004 Pi/tanh(793/120*Pi) 3141592653589793 l004 Pi/tanh(641/97*Pi) 3141592653589793 l004 Pi/tanh(489/74*Pi) 3141592653589793 l004 Pi/tanh(337/51*Pi) 3141592653589793 l004 Pi/tanh(522/79*Pi) 3141592653589793 l004 Pi/tanh(707/107*Pi) 3141592653589793 l004 Pi/tanh(185/28*Pi) 3141592653589793 l004 Pi/tanh(773/117*Pi) 3141592653589793 l004 Pi/tanh(588/89*Pi) 3141592653589793 l004 Pi/tanh(403/61*Pi) 3141592653589793 l004 Pi/tanh(621/94*Pi) 3141592653589793 l004 Pi/tanh(218/33*Pi) 3141592653589793 l004 Pi/tanh(687/104*Pi) 3141592653589793 l004 Pi/tanh(469/71*Pi) 3141592653589793 l004 Pi/tanh(720/109*Pi) 3141592653589793 l004 Pi/tanh(251/38*Pi) 3141592653589793 l004 Pi/tanh(786/119*Pi) 3141592653589793 l004 Pi/tanh(535/81*Pi) 3141592653589793 l004 Pi/tanh(284/43*Pi) 3141592653589793 l004 Pi/tanh(601/91*Pi) 3141592653589793 l004 Pi/tanh(317/48*Pi) 3141592653589793 l004 Pi/tanh(667/101*Pi) 3141592653589793 l004 Pi/tanh(350/53*Pi) 3141592653589793 l004 Pi/tanh(733/111*Pi) 3141592653589793 l004 Pi/tanh(383/58*Pi) 3141592653589793 l004 Pi/tanh(416/63*Pi) 3141592653589793 l004 Pi/tanh(449/68*Pi) 3141592653589793 l004 Pi/tanh(482/73*Pi) 3141592653589793 l004 Pi/tanh(515/78*Pi) 3141592653589793 l004 Pi/tanh(548/83*Pi) 3141592653589793 l004 Pi/tanh(581/88*Pi) 3141592653589793 l004 Pi/tanh(614/93*Pi) 3141592653589793 l004 Pi/tanh(647/98*Pi) 3141592653589793 l004 Pi/tanh(680/103*Pi) 3141592653589793 l004 Pi/tanh(713/108*Pi) 3141592653589793 l004 Pi/tanh(746/113*Pi) 3141592653589793 l004 Pi/tanh(779/118*Pi) 3141592653589793 l004 Pi/tanh(33/5*Pi) 3141592653589793 l004 Pi/tanh(772/117*Pi) 3141592653589793 l004 Pi/tanh(739/112*Pi) 3141592653589793 l004 Pi/tanh(706/107*Pi) 3141592653589793 l004 Pi/tanh(673/102*Pi) 3141592653589793 l004 Pi/tanh(640/97*Pi) 3141592653589793 l004 Pi/tanh(607/92*Pi) 3141592653589793 l004 Pi/tanh(574/87*Pi) 3141592653589793 l004 Pi/tanh(541/82*Pi) 3141592653589793 l004 Pi/tanh(508/77*Pi) 3141592653589793 l004 Pi/tanh(475/72*Pi) 3141592653589793 l004 Pi/tanh(442/67*Pi) 3141592653589793 l004 Pi/tanh(409/62*Pi) 3141592653589793 l004 Pi/tanh(785/119*Pi) 3141592653589793 l004 Pi/tanh(376/57*Pi) 3141592653589793 l004 Pi/tanh(719/109*Pi) 3141592653589793 l004 Pi/tanh(343/52*Pi) 3141592653589793 l004 Pi/tanh(653/99*Pi) 3141592653589793 l004 Pi/tanh(310/47*Pi) 3141592653589793 l004 Pi/tanh(587/89*Pi) 3141592653589793 l004 Pi/tanh(277/42*Pi) 3141592653589793 l004 Pi/tanh(521/79*Pi) 3141592653589793 l004 Pi/tanh(765/116*Pi) 3141592653589793 l004 Pi/tanh(244/37*Pi) 3141592653589793 l004 Pi/tanh(699/106*Pi) 3141592653589793 l004 Pi/tanh(455/69*Pi) 3141592653589793 l004 Pi/tanh(666/101*Pi) 3141592653589793 l004 Pi/tanh(211/32*Pi) 3141592653589793 l004 Pi/tanh(600/91*Pi) 3141592653589793 l004 Pi/tanh(389/59*Pi) 3141592653589793 l004 Pi/tanh(567/86*Pi) 3141592653589793 l004 Pi/tanh(745/113*Pi) 3141592653589793 l004 Pi/tanh(178/27*Pi) 3141592653589793 l004 Pi/tanh(679/103*Pi) 3141592653589793 l004 Pi/tanh(501/76*Pi) 3141592653589793 l004 Pi/tanh(323/49*Pi) 3141592653589793 l004 Pi/tanh(791/120*Pi) 3141592653589793 l004 Pi/tanh(468/71*Pi) 3141592653589793 l004 Pi/tanh(613/93*Pi) 3141592653589793 l004 Pi/tanh(758/115*Pi) 3141592653589793 l004 Pi/tanh(145/22*Pi) 3141592653589793 l004 Pi/tanh(692/105*Pi) 3141592653589793 l004 Pi/tanh(547/83*Pi) 3141592653589793 l004 Pi/tanh(402/61*Pi) 3141592653589793 l004 Pi/tanh(659/100*Pi) 3141592653589793 l004 Pi/tanh(257/39*Pi) 3141592653589793 l004 Pi/tanh(626/95*Pi) 3141592653589793 l004 Pi/tanh(369/56*Pi) 3141592653589793 l004 Pi/tanh(481/73*Pi) 3141592653589793 l004 Pi/tanh(593/90*Pi) 3141592653589793 l004 Pi/tanh(705/107*Pi) 3141592653589793 l004 Pi/tanh(112/17*Pi) 3141592653589793 l004 Pi/tanh(751/114*Pi) 3141592653589793 l004 Pi/tanh(639/97*Pi) 3141592653589793 l004 Pi/tanh(527/80*Pi) 3141592653589793 l004 Pi/tanh(415/63*Pi) 3141592653589793 l004 Pi/tanh(718/109*Pi) 3141592653589793 l004 Pi/tanh(303/46*Pi) 3141592653589793 l004 Pi/tanh(494/75*Pi) 3141592653589793 l004 Pi/tanh(685/104*Pi) 3141592653589793 l004 Pi/tanh(191/29*Pi) 3141592653589793 l004 Pi/tanh(652/99*Pi) 3141592653589793 l004 Pi/tanh(461/70*Pi) 3141592653589793 l004 Pi/tanh(731/111*Pi) 3141592653589793 l004 Pi/tanh(270/41*Pi) 3141592653589793 l004 Pi/tanh(619/94*Pi) 3141592653589793 l004 Pi/tanh(349/53*Pi) 3141592653589793 l004 Pi/tanh(777/118*Pi) 3141592653589793 l004 Pi/tanh(428/65*Pi) 3141592653589793 l004 Pi/tanh(507/77*Pi) 3141592653589793 l004 Pi/tanh(586/89*Pi) 3141592653589793 l004 Pi/tanh(665/101*Pi) 3141592653589793 l004 Pi/tanh(744/113*Pi) 3141592653589793 l004 Pi/tanh(79/12*Pi) 3141592653589793 l004 Pi/tanh(757/115*Pi) 3141592653589793 l004 Pi/tanh(678/103*Pi) 3141592653589793 l004 Pi/tanh(599/91*Pi) 3141592653589793 l004 Pi/tanh(520/79*Pi) 3141592653589793 l004 Pi/tanh(441/67*Pi) 3141592653589793 l004 Pi/tanh(362/55*Pi) 3141592653589793 l004 Pi/tanh(645/98*Pi) 3141592653589793 l004 Pi/tanh(283/43*Pi) 3141592653589793 l004 Pi/tanh(770/117*Pi) 3141592653589793 l004 Pi/tanh(487/74*Pi) 3141592653589793 l004 Pi/tanh(691/105*Pi) 3141592653589793 l004 Pi/tanh(204/31*Pi) 3141592653589793 l004 Pi/tanh(737/112*Pi) 3141592653589793 l004 Pi/tanh(533/81*Pi) 3141592653589793 l004 Pi/tanh(329/50*Pi) 3141592653589793 l004 Pi/tanh(783/119*Pi) 3141592653589793 l004 Pi/tanh(454/69*Pi) 3141592653589793 l004 Pi/tanh(579/88*Pi) 3141592653589793 l004 Pi/tanh(704/107*Pi) 3141592653589793 l004 Pi/tanh(125/19*Pi) 3141592653589793 l004 Pi/tanh(671/102*Pi) 3141592653589793 l004 Pi/tanh(546/83*Pi) 3141592653589793 l004 Pi/tanh(421/64*Pi) 3141592653589793 l004 Pi/tanh(717/109*Pi) 3141592653589793 l004 Pi/tanh(296/45*Pi) 3141592653589793 l004 Pi/tanh(763/116*Pi) 3141592653589793 l004 Pi/tanh(467/71*Pi) 3141592653589793 l004 Pi/tanh(638/97*Pi) 3141592653589793 l004 Pi/tanh(171/26*Pi) 3141592653589793 l004 Pi/tanh(730/111*Pi) 3141592653589793 l004 Pi/tanh(559/85*Pi) 3141592653589793 l004 Pi/tanh(388/59*Pi) 3141592653589793 l004 Pi/tanh(605/92*Pi) 3141592653589793 l004 Pi/tanh(217/33*Pi) 3141592653589793 l004 Pi/tanh(697/106*Pi) 3141592653589793 l004 Pi/tanh(480/73*Pi) 3141592653589793 l004 Pi/tanh(743/113*Pi) 3141592653589793 l004 Pi/tanh(263/40*Pi) 3141592653589793 l004 Pi/tanh(572/87*Pi) 3141592653589793 l004 Pi/tanh(309/47*Pi) 3141592653589793 l004 Pi/tanh(664/101*Pi) 3141592653589793 l004 Pi/tanh(355/54*Pi) 3141592653589793 l004 Pi/tanh(756/115*Pi) 3141592653589793 l004 Pi/tanh(401/61*Pi) 3141592653589793 l004 Pi/tanh(447/68*Pi) 3141592653589793 l004 Pi/tanh(493/75*Pi) 3141592653589793 l004 Pi/tanh(539/82*Pi) 3141592653589793 l004 Pi/tanh(585/89*Pi) 3141592653589793 l004 Pi/tanh(631/96*Pi) 3141592653589793 l004 Pi/tanh(677/103*Pi) 3141592653589793 l004 Pi/tanh(723/110*Pi) 3141592653589793 l004 Pi/tanh(769/117*Pi) 3141592653589793 l004 Pi/tanh(46/7*Pi) 3141592653589793 l004 Pi/tanh(749/114*Pi) 3141592653589793 l004 Pi/tanh(703/107*Pi) 3141592653589793 l004 Pi/tanh(657/100*Pi) 3141592653589793 l004 Pi/tanh(611/93*Pi) 3141592653589793 l004 Pi/tanh(565/86*Pi) 3141592653589793 l004 Pi/tanh(519/79*Pi) 3141592653589793 l004 Pi/tanh(473/72*Pi) 3141592653589793 l004 Pi/tanh(427/65*Pi) 3141592653589793 l004 Pi/tanh(381/58*Pi) 3141592653589793 l004 Pi/tanh(716/109*Pi) 3141592653589793 l004 Pi/tanh(335/51*Pi) 3141592653589793 l004 Pi/tanh(624/95*Pi) 3141592653589793 l004 Pi/tanh(289/44*Pi) 3141592653589793 l004 Pi/tanh(532/81*Pi) 3141592653589793 l004 Pi/tanh(775/118*Pi) 3141592653589793 l004 Pi/tanh(243/37*Pi) 3141592653589793 l004 Pi/tanh(683/104*Pi) 3141592653589793 l004 Pi/tanh(440/67*Pi) 3141592653589793 l004 Pi/tanh(637/97*Pi) 3141592653589793 l004 Pi/tanh(197/30*Pi) 3141592653589793 l004 Pi/tanh(742/113*Pi) 3141592653589793 l004 Pi/tanh(545/83*Pi) 3141592653589793 l004 Pi/tanh(348/53*Pi) 3141592653589793 l004 Pi/tanh(499/76*Pi) 3141592653589793 l004 Pi/tanh(650/99*Pi) 3141592653589793 l004 Pi/tanh(151/23*Pi) 3141592653589793 l004 Pi/tanh(709/108*Pi) 3141592653589793 l004 Pi/tanh(558/85*Pi) 3141592653589793 l004 Pi/tanh(407/62*Pi) 3141592653589793 l004 Pi/tanh(663/101*Pi) 3141592653589793 l004 Pi/tanh(256/39*Pi) 3141592653589793 l004 Pi/tanh(617/94*Pi) 3141592653589793 l004 Pi/tanh(361/55*Pi) 3141592653589793 l004 Pi/tanh(466/71*Pi) 3141592653589793 l004 Pi/tanh(571/87*Pi) 3141592653589793 l004 Pi/tanh(676/103*Pi) 3141592653589793 l004 Pi/tanh(781/119*Pi) 3141592653589793 l004 Pi/tanh(105/16*Pi) 3141592653589793 l004 Pi/tanh(689/105*Pi) 3141592653589793 l004 Pi/tanh(584/89*Pi) 3141592653589793 l004 Pi/tanh(479/73*Pi) 3141592653589793 l004 Pi/tanh(374/57*Pi) 3141592653589793 l004 Pi/tanh(643/98*Pi) 3141592653589793 l004 Pi/tanh(269/41*Pi) 3141592653589793 l004 Pi/tanh(702/107*Pi) 3141592653589793 l004 Pi/tanh(433/66*Pi) 3141592653589793 l004 Pi/tanh(597/91*Pi) 3141592653589793 l004 Pi/tanh(761/116*Pi) 3141592653589793 l004 Pi/tanh(164/25*Pi) 3141592653589793 l004 Pi/tanh(715/109*Pi) 3141592653589793 l004 Pi/tanh(551/84*Pi) 3141592653589793 l004 Pi/tanh(387/59*Pi) 3141592653589793 l004 Pi/tanh(610/93*Pi) 3141592653589793 l004 Pi/tanh(223/34*Pi) 3141592653589793 l004 Pi/tanh(728/111*Pi) 3141592653589793 l004 Pi/tanh(505/77*Pi) 3141592653589793 l004 Pi/tanh(787/120*Pi) 3141592653589793 l004 Pi/tanh(282/43*Pi) 3141592653589793 l004 Pi/tanh(623/95*Pi) 3141592653589793 l004 Pi/tanh(341/52*Pi) 3141592653589793 l004 Pi/tanh(741/113*Pi) 3141592653589793 l004 Pi/tanh(400/61*Pi) 3141592653589793 l004 Pi/tanh(459/70*Pi) 3141592653589793 l004 Pi/tanh(518/79*Pi) 3141592653589793 l004 Pi/tanh(577/88*Pi) 3141592653589793 l004 Pi/tanh(636/97*Pi) 3141592653589793 l004 Pi/tanh(695/106*Pi) 3141592653589793 l004 Pi/tanh(754/115*Pi) 3141592653589793 l004 Pi/tanh(59/9*Pi) 3141592653589793 l004 Pi/tanh(780/119*Pi) 3141592653589793 l004 Pi/tanh(721/110*Pi) 3141592653589793 l004 Pi/tanh(662/101*Pi) 3141592653589793 l004 Pi/tanh(603/92*Pi) 3141592653589793 l004 Pi/tanh(544/83*Pi) 3141592653589793 l004 Pi/tanh(485/74*Pi) 3141592653589793 l004 Pi/tanh(426/65*Pi) 3141592653589793 l004 Pi/tanh(367/56*Pi) 3141592653589793 l004 Pi/tanh(675/103*Pi) 3141592653589793 l004 Pi/tanh(308/47*Pi) 3141592653589793 l004 Pi/tanh(557/85*Pi) 3141592653589793 l004 Pi/tanh(249/38*Pi) 3141592653589793 l004 Pi/tanh(688/105*Pi) 3141592653589793 l004 Pi/tanh(439/67*Pi) 3141592653589793 l004 Pi/tanh(629/96*Pi) 3141592653589793 l004 Pi/tanh(190/29*Pi) 3141592653589793 l004 Pi/tanh(701/107*Pi) 3141592653589793 l004 Pi/tanh(511/78*Pi) 3141592653589793 l004 Pi/tanh(321/49*Pi) 3141592653589793 l004 Pi/tanh(773/118*Pi) 3141592653589793 l005 ln(sec(688/73)) 3141592653589793 l004 Pi/tanh(452/69*Pi) 3141592653589793 l004 Pi/tanh(583/89*Pi) 3141592653589793 l004 Pi/tanh(714/109*Pi) 3141592653589793 l004 Pi/tanh(131/20*Pi) 3141592653589793 l004 Pi/tanh(727/111*Pi) 3141592653589793 l004 Pi/tanh(596/91*Pi) 3141592653589793 l004 Pi/tanh(465/71*Pi) 3141592653589793 l004 Pi/tanh(334/51*Pi) 3141592653589793 l004 Pi/tanh(537/82*Pi) 3141592653589793 l004 Pi/tanh(740/113*Pi) 3141592653589793 l004 Pi/tanh(203/31*Pi) 3141592653589793 l004 Pi/tanh(681/104*Pi) 3141592653589793 l004 Pi/tanh(478/73*Pi) 3141592653589793 l004 Pi/tanh(753/115*Pi) 3141592653589793 l004 Pi/tanh(275/42*Pi) 3141592653589793 l004 Pi/tanh(622/95*Pi) 3141592653589793 l004 Pi/tanh(347/53*Pi) 3141592653589793 l004 Pi/tanh(766/117*Pi) 3141592653589793 l004 Pi/tanh(419/64*Pi) 3141592653589793 l004 Pi/tanh(491/75*Pi) 3141592653589793 l004 Pi/tanh(563/86*Pi) 3141592653589793 l004 Pi/tanh(635/97*Pi) 3141592653589793 l004 Pi/tanh(707/108*Pi) 3141592653589793 l004 Pi/tanh(779/119*Pi) 3141592653589793 l004 Pi/tanh(72/11*Pi) 3141592653589793 l004 Pi/tanh(733/112*Pi) 3141592653589793 l004 Pi/tanh(661/101*Pi) 3141592653589793 l004 Pi/tanh(589/90*Pi) 3141592653589793 l004 Pi/tanh(517/79*Pi) 3141592653589793 l004 Pi/tanh(445/68*Pi) 3141592653589793 l004 Pi/tanh(373/57*Pi) 3141592653589793 l004 Pi/tanh(674/103*Pi) 3141592653589793 l004 Pi/tanh(301/46*Pi) 3141592653589793 l004 Pi/tanh(530/81*Pi) 3141592653589793 l004 Pi/tanh(759/116*Pi) 3141592653589793 l004 Pi/tanh(229/35*Pi) 3141592653589793 l004 Pi/tanh(615/94*Pi) 3141592653589793 l004 Pi/tanh(386/59*Pi) 3141592653589793 l004 Pi/tanh(543/83*Pi) 3141592653589793 l004 Pi/tanh(700/107*Pi) 3141592653589793 l004 Pi/tanh(157/24*Pi) 3141592653589793 l004 Pi/tanh(713/109*Pi) 3141592653589793 l004 Pi/tanh(556/85*Pi) 3141592653589793 l004 Pi/tanh(399/61*Pi) 3141592653589793 l004 Pi/tanh(641/98*Pi) 3141592653589793 l004 Pi/tanh(242/37*Pi) 3141592653589793 l004 Pi/tanh(569/87*Pi) 3141592653589793 l004 Pi/tanh(327/50*Pi) 3141592653589793 l004 Pi/tanh(739/113*Pi) 3141592653589793 l004 Pi/tanh(412/63*Pi) 3141592653589793 l004 Pi/tanh(497/76*Pi) 3141592653589793 l004 Pi/tanh(582/89*Pi) 3141592653589793 l004 Pi/tanh(667/102*Pi) 3141592653589793 l004 Pi/tanh(752/115*Pi) 3141592653589793 l004 Pi/tanh(85/13*Pi) 3141592653589793 l004 Pi/tanh(778/119*Pi) 3141592653589793 l004 Pi/tanh(693/106*Pi) 3141592653589793 l004 Pi/tanh(608/93*Pi) 3141592653589793 l004 Pi/tanh(523/80*Pi) 3141592653589793 l004 Pi/tanh(438/67*Pi) 3141592653589793 l004 Pi/tanh(353/54*Pi) 3141592653589793 l004 Pi/tanh(621/95*Pi) 3141592653589793 l004 Pi/tanh(268/41*Pi) 3141592653589793 l004 Pi/tanh(719/110*Pi) 3141592653589793 l004 Pi/tanh(451/69*Pi) 3141592653589793 l004 Pi/tanh(634/97*Pi) 3141592653589793 l004 Pi/tanh(183/28*Pi) 3141592653589793 l004 Pi/tanh(647/99*Pi) 3141592653589793 l004 Pi/tanh(464/71*Pi) 3141592653589793 l004 Pi/tanh(745/114*Pi) 3141592653589793 l004 Pi/tanh(281/43*Pi) 3141592653589793 l004 Pi/tanh(660/101*Pi) 3141592653589793 l004 Pi/tanh(379/58*Pi) 3141592653589793 l004 Pi/tanh(477/73*Pi) 3141592653589793 l004 Pi/tanh(575/88*Pi) 3141592653589793 l004 Pi/tanh(673/103*Pi) 3141592653589793 l004 Pi/tanh(771/118*Pi) 3141592653589793 l004 Pi/tanh(98/15*Pi) 3141592653589793 l004 Pi/tanh(699/107*Pi) 3141592653589793 l004 Pi/tanh(601/92*Pi) 3141592653589793 l004 Pi/tanh(503/77*Pi) 3141592653589793 l004 Pi/tanh(405/62*Pi) 3141592653589793 l004 Pi/tanh(712/109*Pi) 3141592653589793 l004 Pi/tanh(307/47*Pi) 3141592653589793 l004 Pi/tanh(516/79*Pi) 3141592653589793 l004 Pi/tanh(725/111*Pi) 3141592653589793 l004 Pi/tanh(209/32*Pi) 3141592653589793 l004 Pi/tanh(738/113*Pi) 3141592653589793 l004 Pi/tanh(529/81*Pi) 3141592653589793 l004 Pi/tanh(320/49*Pi) 3141592653589793 l004 Pi/tanh(751/115*Pi) 3141592653589793 l004 Pi/tanh(431/66*Pi) 3141592653589793 l004 Pi/tanh(542/83*Pi) 3141592653589793 l004 Pi/tanh(653/100*Pi) 3141592653589793 l004 Pi/tanh(764/117*Pi) 3141592653589793 l004 Pi/tanh(111/17*Pi) 3141592653589793 l004 Pi/tanh(679/104*Pi) 3141592653589793 l004 Pi/tanh(568/87*Pi) 3141592653589793 l004 Pi/tanh(457/70*Pi) 3141592653589793 l004 Pi/tanh(346/53*Pi) 3141592653589793 l004 Pi/tanh(581/89*Pi) 3141592653589793 l004 Pi/tanh(235/36*Pi) 3141592653589793 l004 Pi/tanh(594/91*Pi) 3141592653589793 l004 Pi/tanh(359/55*Pi) 3141592653589793 l004 Pi/tanh(483/74*Pi) 3141592653589793 l004 Pi/tanh(607/93*Pi) 3141592653589793 l004 Pi/tanh(731/112*Pi) 3141592653589793 l004 Pi/tanh(124/19*Pi) 3141592653589793 l004 Pi/tanh(757/116*Pi) 3141592653589793 l004 Pi/tanh(633/97*Pi) 3141592653589793 l004 Pi/tanh(509/78*Pi) 3141592653589793 l004 Pi/tanh(385/59*Pi) 3141592653589793 l004 Pi/tanh(646/99*Pi) 3141592653589793 l004 Pi/tanh(261/40*Pi) 3141592653589793 l004 Pi/tanh(659/101*Pi) 3141592653589793 l004 Pi/tanh(398/61*Pi) 3141592653589793 l004 Pi/tanh(535/82*Pi) 3141592653589793 l004 Pi/tanh(672/103*Pi) 3141592653589793 l004 Pi/tanh(137/21*Pi) 3141592653589793 l004 Pi/tanh(698/107*Pi) 3141592653589793 l004 Pi/tanh(561/86*Pi) 3141592653589793 l004 Pi/tanh(424/65*Pi) 3141592653589793 l004 Pi/tanh(711/109*Pi) 3141592653589793 l004 Pi/tanh(287/44*Pi) 3141592653589793 l004 Pi/tanh(724/111*Pi) 3141592653589793 l004 Pi/tanh(437/67*Pi) 3141592653589793 l004 Pi/tanh(587/90*Pi) 3141592653589793 l004 Pi/tanh(737/113*Pi) 3141592653589793 l004 Pi/tanh(150/23*Pi) 3141592653589793 l004 Pi/tanh(763/117*Pi) 3141592653589793 l004 Pi/tanh(613/94*Pi) 3141592653589793 l004 Pi/tanh(463/71*Pi) 3141592653589793 l004 Pi/tanh(776/119*Pi) 3141592653589793 l004 Pi/tanh(313/48*Pi) 3141592653589793 l004 Pi/tanh(476/73*Pi) 3141592653589793 l004 Pi/tanh(639/98*Pi) 3141592653589793 l004 Pi/tanh(163/25*Pi) 3141592653589793 l004 Pi/tanh(665/102*Pi) 3141592653589793 l004 Pi/tanh(502/77*Pi) 3141592653589793 l004 Pi/tanh(339/52*Pi) 3141592653589793 l004 Pi/tanh(515/79*Pi) 3141592653589793 l004 Pi/tanh(691/106*Pi) 3141592653589793 l004 Pi/tanh(176/27*Pi) 3141592653589793 l004 Pi/tanh(717/110*Pi) 3141592653589793 l004 Pi/tanh(541/83*Pi) 3141592653589793 l004 Pi/tanh(365/56*Pi) 3141592653589793 l004 Pi/tanh(554/85*Pi) 3141592653589793 l004 Pi/tanh(743/114*Pi) 3141592653589793 l004 Pi/tanh(189/29*Pi) 3141592653589793 l004 Pi/tanh(769/118*Pi) 3141592653589793 l004 Pi/tanh(580/89*Pi) 3141592653589793 l004 Pi/tanh(391/60*Pi) 3141592653589793 l004 Pi/tanh(593/91*Pi) 3141592653589793 l004 Pi/tanh(202/31*Pi) 3141592653589793 l004 Pi/tanh(619/95*Pi) 3141592653589793 l004 Pi/tanh(417/64*Pi) 3141592653589793 l004 Pi/tanh(632/97*Pi) 3141592653589793 l004 Pi/tanh(215/33*Pi) 3141592653589793 l004 Pi/tanh(658/101*Pi) 3141592653589793 l004 Pi/tanh(443/68*Pi) 3141592653589793 l004 Pi/tanh(671/103*Pi) 3141592653589793 l004 Pi/tanh(228/35*Pi) 3141592653589793 l004 Pi/tanh(697/107*Pi) 3141592653589793 l004 Pi/tanh(469/72*Pi) 3141592653589793 l004 Pi/tanh(710/109*Pi) 3141592653589793 l004 Pi/tanh(241/37*Pi) 3141592653589793 l004 Pi/tanh(736/113*Pi) 3141592653589793 l004 Pi/tanh(495/76*Pi) 3141592653589793 l004 Pi/tanh(749/115*Pi) 3141592653589793 l004 Pi/tanh(254/39*Pi) 3141592653589793 l004 Pi/tanh(775/119*Pi) 3141592653589793 l004 Pi/tanh(521/80*Pi) 3141592653589793 l004 Pi/tanh(267/41*Pi) 3141592653589793 l004 Pi/tanh(547/84*Pi) 3141592653589793 l004 Pi/tanh(280/43*Pi) 3141592653589793 l004 Pi/tanh(573/88*Pi) 3141592653589793 l004 Pi/tanh(293/45*Pi) 3141592653589793 l004 Pi/tanh(599/92*Pi) 3141592653589793 l004 Pi/tanh(306/47*Pi) 3141592653589793 l004 Pi/tanh(625/96*Pi) 3141592653589793 l004 Pi/tanh(319/49*Pi) 3141592653589793 l004 Pi/tanh(651/100*Pi) 3141592653589793 l004 Pi/tanh(332/51*Pi) 3141592653589793 l004 Pi/tanh(677/104*Pi) 3141592653589793 l004 Pi/tanh(345/53*Pi) 3141592653589793 l004 Pi/tanh(703/108*Pi) 3141592653589793 l004 Pi/tanh(358/55*Pi) 3141592653589793 l004 Pi/tanh(729/112*Pi) 3141592653589793 l004 Pi/tanh(371/57*Pi) 3141592653589793 l004 Pi/tanh(755/116*Pi) 3141592653589793 l004 Pi/tanh(384/59*Pi) 3141592653589793 l004 Pi/tanh(781/120*Pi) 3141592653589793 l004 Pi/tanh(397/61*Pi) 3141592653589793 l004 Pi/tanh(410/63*Pi) 3141592653589793 l004 Pi/tanh(423/65*Pi) 3141592653589793 l004 Pi/tanh(436/67*Pi) 3141592653589793 l004 Pi/tanh(449/69*Pi) 3141592653589793 l004 Pi/tanh(462/71*Pi) 3141592653589793 l004 Pi/tanh(475/73*Pi) 3141592653589793 l004 Pi/tanh(488/75*Pi) 3141592653589793 l004 Pi/tanh(501/77*Pi) 3141592653589793 l004 Pi/tanh(514/79*Pi) 3141592653589793 l004 Pi/tanh(527/81*Pi) 3141592653589793 l004 Pi/tanh(540/83*Pi) 3141592653589793 l004 Pi/tanh(553/85*Pi) 3141592653589793 l004 Pi/tanh(566/87*Pi) 3141592653589793 l004 Pi/tanh(579/89*Pi) 3141592653589793 l004 Pi/tanh(592/91*Pi) 3141592653589793 l004 Pi/tanh(605/93*Pi) 3141592653589793 l004 Pi/tanh(618/95*Pi) 3141592653589793 l004 Pi/tanh(631/97*Pi) 3141592653589793 l004 Pi/tanh(644/99*Pi) 3141592653589793 l004 Pi/tanh(657/101*Pi) 3141592653589793 l004 Pi/tanh(670/103*Pi) 3141592653589793 l004 Pi/tanh(683/105*Pi) 3141592653589793 l004 Pi/tanh(696/107*Pi) 3141592653589793 l004 Pi/tanh(709/109*Pi) 3141592653589793 l004 Pi/tanh(722/111*Pi) 3141592653589793 l004 Pi/tanh(735/113*Pi) 3141592653589793 l004 Pi/tanh(748/115*Pi) 3141592653589793 l004 Pi/tanh(761/117*Pi) 3141592653589793 l004 Pi/tanh(774/119*Pi) 3141592653589793 l004 Pi/tanh(13/2*Pi) 3141592653589793 l004 Pi/tanh(773/119*Pi) 3141592653589793 l004 Pi/tanh(760/117*Pi) 3141592653589793 l004 Pi/tanh(747/115*Pi) 3141592653589793 l004 Pi/tanh(734/113*Pi) 3141592653589793 l004 Pi/tanh(721/111*Pi) 3141592653589793 l004 Pi/tanh(708/109*Pi) 3141592653589793 l004 Pi/tanh(695/107*Pi) 3141592653589793 l004 Pi/tanh(682/105*Pi) 3141592653589793 l004 Pi/tanh(669/103*Pi) 3141592653589793 l004 Pi/tanh(656/101*Pi) 3141592653589793 l004 Pi/tanh(643/99*Pi) 3141592653589793 l004 Pi/tanh(630/97*Pi) 3141592653589793 l004 Pi/tanh(617/95*Pi) 3141592653589793 l004 Pi/tanh(604/93*Pi) 3141592653589793 l004 Pi/tanh(591/91*Pi) 3141592653589793 l004 Pi/tanh(578/89*Pi) 3141592653589793 l004 Pi/tanh(565/87*Pi) 3141592653589793 l004 Pi/tanh(552/85*Pi) 3141592653589793 l004 Pi/tanh(539/83*Pi) 3141592653589793 l004 Pi/tanh(526/81*Pi) 3141592653589793 l004 Pi/tanh(513/79*Pi) 3141592653589793 l004 Pi/tanh(500/77*Pi) 3141592653589793 l004 Pi/tanh(487/75*Pi) 3141592653589793 l004 Pi/tanh(474/73*Pi) 3141592653589793 l004 Pi/tanh(461/71*Pi) 3141592653589793 l004 Pi/tanh(448/69*Pi) 3141592653589793 l004 Pi/tanh(435/67*Pi) 3141592653589793 l004 Pi/tanh(422/65*Pi) 3141592653589793 l004 Pi/tanh(409/63*Pi) 3141592653589793 l004 Pi/tanh(396/61*Pi) 3141592653589793 l004 Pi/tanh(779/120*Pi) 3141592653589793 l004 Pi/tanh(383/59*Pi) 3141592653589793 l004 Pi/tanh(753/116*Pi) 3141592653589793 l004 Pi/tanh(370/57*Pi) 3141592653589793 l004 Pi/tanh(727/112*Pi) 3141592653589793 l004 Pi/tanh(357/55*Pi) 3141592653589793 l004 Pi/tanh(701/108*Pi) 3141592653589793 l004 Pi/tanh(344/53*Pi) 3141592653589793 l004 Pi/tanh(675/104*Pi) 3141592653589793 l004 Pi/tanh(331/51*Pi) 3141592653589793 l004 Pi/tanh(649/100*Pi) 3141592653589793 l004 Pi/tanh(318/49*Pi) 3141592653589793 l004 Pi/tanh(623/96*Pi) 3141592653589793 l004 Pi/tanh(305/47*Pi) 3141592653589793 l004 Pi/tanh(597/92*Pi) 3141592653589793 l004 Pi/tanh(292/45*Pi) 3141592653589793 l004 Pi/tanh(571/88*Pi) 3141592653589793 l004 Pi/tanh(279/43*Pi) 3141592653589793 l004 Pi/tanh(545/84*Pi) 3141592653589793 l004 Pi/tanh(266/41*Pi) 3141592653589793 l004 Pi/tanh(519/80*Pi) 3141592653589793 l004 Pi/tanh(772/119*Pi) 3141592653589793 l004 Pi/tanh(253/39*Pi) 3141592653589793 l004 Pi/tanh(746/115*Pi) 3141592653589793 l004 Pi/tanh(493/76*Pi) 3141592653589793 l004 Pi/tanh(733/113*Pi) 3141592653589793 l004 Pi/tanh(240/37*Pi) 3141592653589793 l004 Pi/tanh(707/109*Pi) 3141592653589793 l004 Pi/tanh(467/72*Pi) 3141592653589793 l004 Pi/tanh(694/107*Pi) 3141592653589793 l004 Pi/tanh(227/35*Pi) 3141592653589793 l004 Pi/tanh(668/103*Pi) 3141592653589793 l004 Pi/tanh(441/68*Pi) 3141592653589793 l004 Pi/tanh(655/101*Pi) 3141592653589793 l004 Pi/tanh(214/33*Pi) 3141592653589793 l004 Pi/tanh(629/97*Pi) 3141592653589793 l004 Pi/tanh(415/64*Pi) 3141592653589793 l004 Pi/tanh(616/95*Pi) 3141592653589793 l004 Pi/tanh(201/31*Pi) 3141592653589793 l004 Pi/tanh(590/91*Pi) 3141592653589793 l004 Pi/tanh(389/60*Pi) 3141592653589793 l004 Pi/tanh(577/89*Pi) 3141592653589793 l004 Pi/tanh(765/118*Pi) 3141592653589793 l004 Pi/tanh(188/29*Pi) 3141592653589793 l004 Pi/tanh(739/114*Pi) 3141592653589793 l004 Pi/tanh(551/85*Pi) 3141592653589793 l004 Pi/tanh(363/56*Pi) 3141592653589793 l004 Pi/tanh(538/83*Pi) 3141592653589793 l004 Pi/tanh(713/110*Pi) 3141592653589793 l004 Pi/tanh(175/27*Pi) 3141592653589793 l004 Pi/tanh(687/106*Pi) 3141592653589793 l004 Pi/tanh(512/79*Pi) 3141592653589793 l004 Pi/tanh(337/52*Pi) 3141592653589793 l004 Pi/tanh(499/77*Pi) 3141592653589793 l004 Pi/tanh(661/102*Pi) 3141592653589793 l004 Pi/tanh(162/25*Pi) 3141592653589793 l004 Pi/tanh(635/98*Pi) 3141592653589793 l004 Pi/tanh(473/73*Pi) 3141592653589793 l004 Pi/tanh(311/48*Pi) 3141592653589793 l004 Pi/tanh(771/119*Pi) 3141592653589793 l004 Pi/tanh(460/71*Pi) 3141592653589793 l004 Pi/tanh(609/94*Pi) 3141592653589793 l004 Pi/tanh(758/117*Pi) 3141592653589793 l004 Pi/tanh(149/23*Pi) 3141592653589793 l004 Pi/tanh(732/113*Pi) 3141592653589793 l004 Pi/tanh(583/90*Pi) 3141592653589793 l004 Pi/tanh(434/67*Pi) 3141592653589793 l004 Pi/tanh(719/111*Pi) 3141592653589793 l004 Pi/tanh(285/44*Pi) 3141592653589793 l004 Pi/tanh(706/109*Pi) 3141592653589793 l004 Pi/tanh(421/65*Pi) 3141592653589793 l004 Pi/tanh(557/86*Pi) 3141592653589793 l004 Pi/tanh(693/107*Pi) 3141592653589793 l004 Pi/tanh(136/21*Pi) 3141592653589793 l004 Pi/tanh(667/103*Pi) 3141592653589793 l004 Pi/tanh(531/82*Pi) 3141592653589793 l004 Pi/tanh(395/61*Pi) 3141592653589793 l004 Pi/tanh(654/101*Pi) 3141592653589793 l004 Pi/tanh(259/40*Pi) 3141592653589793 l004 Pi/tanh(641/99*Pi) 3141592653589793 l004 Pi/tanh(382/59*Pi) 3141592653589793 l004 Pi/tanh(505/78*Pi) 3141592653589793 l004 Pi/tanh(628/97*Pi) 3141592653589793 l004 Pi/tanh(751/116*Pi) 3141592653589793 l004 Pi/tanh(123/19*Pi) 3141592653589793 l004 Pi/tanh(725/112*Pi) 3141592653589793 l004 Pi/tanh(602/93*Pi) 3141592653589793 l004 Pi/tanh(479/74*Pi) 3141592653589793 l004 Pi/tanh(356/55*Pi) 3141592653589793 l004 Pi/tanh(589/91*Pi) 3141592653589793 l004 Pi/tanh(233/36*Pi) 3141592653589793 l004 Pi/tanh(576/89*Pi) 3141592653589793 l004 Pi/tanh(343/53*Pi) 3141592653589793 l004 Pi/tanh(453/70*Pi) 3141592653589793 l004 Pi/tanh(563/87*Pi) 3141592653589793 l004 Pi/tanh(673/104*Pi) 3141592653589793 l004 Pi/tanh(110/17*Pi) 3141592653589793 l004 Pi/tanh(757/117*Pi) 3141592653589793 l004 Pi/tanh(647/100*Pi) 3141592653589793 l004 Pi/tanh(537/83*Pi) 3141592653589793 l004 Pi/tanh(427/66*Pi) 3141592653589793 l004 Pi/tanh(744/115*Pi) 3141592653589793 l004 Pi/tanh(317/49*Pi) 3141592653589793 l004 Pi/tanh(524/81*Pi) 3141592653589793 l004 Pi/tanh(731/113*Pi) 3141592653589793 l004 Pi/tanh(207/32*Pi) 3141592653589793 l004 Pi/tanh(718/111*Pi) 3141592653589793 l004 Pi/tanh(511/79*Pi) 3141592653589793 l004 Pi/tanh(304/47*Pi) 3141592653589793 l004 Pi/tanh(705/109*Pi) 3141592653589793 l004 Pi/tanh(401/62*Pi) 3141592653589793 l004 Pi/tanh(498/77*Pi) 3141592653589793 l004 Pi/tanh(595/92*Pi) 3141592653589793 l004 Pi/tanh(692/107*Pi) 3141592653589793 l004 Pi/tanh(97/15*Pi) 3141592653589793 l004 Pi/tanh(763/118*Pi) 3141592653589793 l004 Pi/tanh(666/103*Pi) 3141592653589793 l004 Pi/tanh(569/88*Pi) 3141592653589793 l004 Pi/tanh(472/73*Pi) 3141592653589793 l004 Pi/tanh(375/58*Pi) 3141592653589793 l004 Pi/tanh(653/101*Pi) 3141592653589793 l004 Pi/tanh(278/43*Pi) 3141592653589793 l004 Pi/tanh(737/114*Pi) 3141592653589793 l004 Pi/tanh(459/71*Pi) 3141592653589793 l004 Pi/tanh(640/99*Pi) 3141592653589793 l004 Pi/tanh(181/28*Pi) 3141592653589793 l004 Pi/tanh(627/97*Pi) 3141592653589793 l004 Pi/tanh(446/69*Pi) 3141592653589793 l004 Pi/tanh(711/110*Pi) 3141592653589793 l004 Pi/tanh(265/41*Pi) 3141592653589793 l004 Pi/tanh(614/95*Pi) 3141592653589793 l004 Pi/tanh(349/54*Pi) 3141592653589793 l004 Pi/tanh(433/67*Pi) 3141592653589793 l004 Pi/tanh(517/80*Pi) 3141592653589793 l004 Pi/tanh(601/93*Pi) 3141592653589793 l004 Pi/tanh(685/106*Pi) 3141592653589793 l004 Pi/tanh(769/119*Pi) 3141592653589793 l004 Pi/tanh(84/13*Pi) 3141592653589793 l004 Pi/tanh(743/115*Pi) 3141592653589793 l004 Pi/tanh(659/102*Pi) 3141592653589793 l004 Pi/tanh(575/89*Pi) 3141592653589793 l004 Pi/tanh(491/76*Pi) 3141592653589793 l004 Pi/tanh(407/63*Pi) 3141592653589793 l004 Pi/tanh(730/113*Pi) 3141592653589793 l004 Pi/tanh(323/50*Pi) 3141592653589793 l004 Pi/tanh(562/87*Pi) 3141592653589793 l004 Pi/tanh(239/37*Pi) 3141592653589793 l004 Pi/tanh(633/98*Pi) 3141592653589793 l004 Pi/tanh(394/61*Pi) 3141592653589793 l004 Pi/tanh(549/85*Pi) 3141592653589793 l004 Pi/tanh(704/109*Pi) 3141592653589793 l004 Pi/tanh(155/24*Pi) 3141592653589793 l004 Pi/tanh(691/107*Pi) 3141592653589793 l004 Pi/tanh(536/83*Pi) 3141592653589793 l004 Pi/tanh(381/59*Pi) 3141592653589793 l004 Pi/tanh(607/94*Pi) 3141592653589793 l004 Pi/tanh(226/35*Pi) 3141592653589793 l004 Pi/tanh(749/116*Pi) 3141592653589793 l004 Pi/tanh(523/81*Pi) 3141592653589793 l004 Pi/tanh(297/46*Pi) 3141592653589793 l004 Pi/tanh(665/103*Pi) 3141592653589793 l004 Pi/tanh(368/57*Pi) 3141592653589793 l004 Pi/tanh(439/68*Pi) 3141592653589793 l004 Pi/tanh(510/79*Pi) 3141592653589793 l004 Pi/tanh(581/90*Pi) 3141592653589793 l004 Pi/tanh(652/101*Pi) 3141592653589793 l004 Pi/tanh(723/112*Pi) 3141592653589793 l004 Pi/tanh(71/11*Pi) 3141592653589793 l004 Pi/tanh(768/119*Pi) 3141592653589793 l004 Pi/tanh(697/108*Pi) 3141592653589793 l004 Pi/tanh(626/97*Pi) 3141592653589793 l004 Pi/tanh(555/86*Pi) 3141592653589793 l004 Pi/tanh(484/75*Pi) 3141592653589793 l004 Pi/tanh(413/64*Pi) 3141592653589793 l004 Pi/tanh(755/117*Pi) 3141592653589793 l004 Pi/tanh(342/53*Pi) 3141592653589793 l004 Pi/tanh(613/95*Pi) 3141592653589793 l004 Pi/tanh(271/42*Pi) 3141592653589793 l004 Pi/tanh(742/115*Pi) 3141592653589793 l004 Pi/tanh(471/73*Pi) 3141592653589793 l004 Pi/tanh(671/104*Pi) 3141592653589793 l004 Pi/tanh(200/31*Pi) 3141592653589793 l004 Pi/tanh(729/113*Pi) 3141592653589793 l004 Pi/tanh(529/82*Pi) 3141592653589793 l004 Pi/tanh(329/51*Pi) 3141592653589793 l004 Pi/tanh(458/71*Pi) 3141592653589793 l004 Pi/tanh(587/91*Pi) 3141592653589793 l004 Pi/tanh(716/111*Pi) 3141592653589793 l004 Pi/tanh(129/20*Pi) 3141592653589793 l004 Pi/tanh(703/109*Pi) 3141592653589793 l004 Pi/tanh(574/89*Pi) 3141592653589793 l004 Pi/tanh(445/69*Pi) 3141592653589793 l004 Pi/tanh(761/118*Pi) 3141592653589793 l004 Pi/tanh(316/49*Pi) 3141592653589793 l004 Pi/tanh(503/78*Pi) 3141592653589793 l004 Pi/tanh(690/107*Pi) 3141592653589793 l004 Pi/tanh(187/29*Pi) 3141592653589793 l004 Pi/tanh(619/96*Pi) 3141592653589793 l004 Pi/tanh(432/67*Pi) 3141592653589793 l004 Pi/tanh(677/105*Pi) 3141592653589793 l004 Pi/tanh(245/38*Pi) 3141592653589793 l004 Pi/tanh(548/85*Pi) 3141592653589793 l004 Pi/tanh(303/47*Pi) 3141592653589793 l004 Pi/tanh(664/103*Pi) 3141592653589793 l004 Pi/tanh(361/56*Pi) 3141592653589793 l004 Pi/tanh(419/65*Pi) 3141592653589793 l004 Pi/tanh(477/74*Pi) 3141592653589793 l004 Pi/tanh(535/83*Pi) 3141592653589793 l004 Pi/tanh(593/92*Pi) 3141592653589793 l004 Pi/tanh(651/101*Pi) 3141592653589793 l004 Pi/tanh(709/110*Pi) 3141592653589793 l004 Pi/tanh(767/119*Pi) 3141592653589793 l004 Pi/tanh(58/9*Pi) 3141592653589793 l004 Pi/tanh(741/115*Pi) 3141592653589793 l004 Pi/tanh(683/106*Pi) 3141592653589793 l004 Pi/tanh(625/97*Pi) 3141592653589793 l004 Pi/tanh(567/88*Pi) 3141592653589793 l004 Pi/tanh(509/79*Pi) 3141592653589793 l004 Pi/tanh(451/70*Pi) 3141592653589793 l004 Pi/tanh(393/61*Pi) 3141592653589793 l004 Pi/tanh(728/113*Pi) 3141592653589793 l004 Pi/tanh(335/52*Pi) 3141592653589793 l004 Pi/tanh(612/95*Pi) 3141592653589793 l004 Pi/tanh(277/43*Pi) 3141592653589793 l004 Pi/tanh(773/120*Pi) 3141592653589793 l004 Pi/tanh(496/77*Pi) 3141592653589793 l004 Pi/tanh(715/111*Pi) 3141592653589793 l004 Pi/tanh(219/34*Pi) 3141592653589793 l004 Pi/tanh(599/93*Pi) 3141592653589793 l004 Pi/tanh(380/59*Pi) 3141592653589793 l004 Pi/tanh(541/84*Pi) 3141592653589793 l004 Pi/tanh(702/109*Pi) 3141592653589793 l004 Pi/tanh(161/25*Pi) 3141592653589793 l004 Pi/tanh(747/116*Pi) 3141592653589793 l004 Pi/tanh(586/91*Pi) 3141592653589793 l004 Pi/tanh(425/66*Pi) 3141592653589793 l004 Pi/tanh(689/107*Pi) 3141592653589793 l004 Pi/tanh(264/41*Pi) 3141592653589793 l004 Pi/tanh(631/98*Pi) 3141592653589793 l004 Pi/tanh(367/57*Pi) 3141592653589793 l004 Pi/tanh(470/73*Pi) 3141592653589793 l004 Pi/tanh(573/89*Pi) 3141592653589793 l004 Pi/tanh(676/105*Pi) 3141592653589793 l004 Pi/tanh(103/16*Pi) 3141592653589793 l004 Pi/tanh(766/119*Pi) 3141592653589793 l004 Pi/tanh(663/103*Pi) 3141592653589793 l004 Pi/tanh(560/87*Pi) 3141592653589793 l004 Pi/tanh(457/71*Pi) 3141592653589793 l004 Pi/tanh(354/55*Pi) 3141592653589793 l004 Pi/tanh(605/94*Pi) 3141592653589793 l004 Pi/tanh(251/39*Pi) 3141592653589793 l004 Pi/tanh(650/101*Pi) 3141592653589793 l004 Pi/tanh(399/62*Pi) 3141592653589793 l004 Pi/tanh(547/85*Pi) 3141592653589793 l004 Pi/tanh(695/108*Pi) 3141592653589793 l004 Pi/tanh(148/23*Pi) 3141592653589793 l004 Pi/tanh(637/99*Pi) 3141592653589793 l004 Pi/tanh(489/76*Pi) 3141592653589793 l004 Pi/tanh(341/53*Pi) 3141592653589793 l004 Pi/tanh(534/83*Pi) 3141592653589793 l004 Pi/tanh(727/113*Pi) 3141592653589793 l004 Pi/tanh(193/30*Pi) 3141592653589793 l004 Pi/tanh(624/97*Pi) 3141592653589793 l004 Pi/tanh(431/67*Pi) 3141592653589793 l004 Pi/tanh(669/104*Pi) 3141592653589793 l004 Pi/tanh(238/37*Pi) 3141592653589793 l004 Pi/tanh(759/118*Pi) 3141592653589793 l004 Pi/tanh(521/81*Pi) 3141592653589793 l004 Pi/tanh(283/44*Pi) 3141592653589793 l004 Pi/tanh(611/95*Pi) 3141592653589793 l004 Pi/tanh(328/51*Pi) 3141592653589793 l004 Pi/tanh(701/109*Pi) 3141592653589793 l004 Pi/tanh(373/58*Pi) 3141592653589793 l004 Pi/tanh(418/65*Pi) 3141592653589793 l004 Pi/tanh(463/72*Pi) 3141592653589793 l004 Pi/tanh(508/79*Pi) 3141592653589793 l004 Pi/tanh(553/86*Pi) 3141592653589793 l004 Pi/tanh(598/93*Pi) 3141592653589793 l004 Pi/tanh(643/100*Pi) 3141592653589793 l004 Pi/tanh(688/107*Pi) 3141592653589793 l004 Pi/tanh(733/114*Pi) 3141592653589793 l004 Pi/tanh(45/7*Pi) 3141592653589793 l004 Pi/tanh(752/117*Pi) 3141592653589793 l004 Pi/tanh(707/110*Pi) 3141592653589793 l004 Pi/tanh(662/103*Pi) 3141592653589793 l004 Pi/tanh(617/96*Pi) 3141592653589793 l004 Pi/tanh(572/89*Pi) 3141592653589793 l004 Pi/tanh(527/82*Pi) 3141592653589793 l004 Pi/tanh(482/75*Pi) 3141592653589793 l004 Pi/tanh(437/68*Pi) 3141592653589793 l004 Pi/tanh(392/61*Pi) 3141592653589793 l004 Pi/tanh(739/115*Pi) 3141592653589793 l004 Pi/tanh(347/54*Pi) 3141592653589793 l004 Pi/tanh(649/101*Pi) 3141592653589793 l004 Pi/tanh(302/47*Pi) 3141592653589793 l004 Pi/tanh(559/87*Pi) 3141592653589793 l004 Pi/tanh(257/40*Pi) 3141592653589793 l004 Pi/tanh(726/113*Pi) 3141592653589793 l004 Pi/tanh(469/73*Pi) 3141592653589793 l004 Pi/tanh(681/106*Pi) 3141592653589793 l004 Pi/tanh(212/33*Pi) 3141592653589793 l004 Pi/tanh(591/92*Pi) 3141592653589793 l004 Pi/tanh(379/59*Pi) 3141592653589793 l004 Pi/tanh(546/85*Pi) 3141592653589793 l004 Pi/tanh(713/111*Pi) 3141592653589793 l004 Pi/tanh(167/26*Pi) 3141592653589793 l004 Pi/tanh(623/97*Pi) 3141592653589793 l004 Pi/tanh(456/71*Pi) 3141592653589793 l004 Pi/tanh(745/116*Pi) 3141592653589793 l004 Pi/tanh(289/45*Pi) 3141592653589793 l004 Pi/tanh(700/109*Pi) 3141592653589793 l004 Pi/tanh(411/64*Pi) 3141592653589793 l004 Pi/tanh(533/83*Pi) 3141592653589793 l004 Pi/tanh(655/102*Pi) 3141592653589793 l004 Pi/tanh(122/19*Pi) 3141592653589793 l004 Pi/tanh(687/107*Pi) 3141592653589793 l004 Pi/tanh(565/88*Pi) 3141592653589793 l004 Pi/tanh(443/69*Pi) 3141592653589793 l004 Pi/tanh(764/119*Pi) 3141592653589793 l004 Pi/tanh(321/50*Pi) 3141592653589793 l004 Pi/tanh(520/81*Pi) 3141592653589793 l004 Pi/tanh(719/112*Pi) 3141592653589793 l004 Pi/tanh(199/31*Pi) 3141592653589793 l004 Pi/tanh(674/105*Pi) 3141592653589793 l004 Pi/tanh(475/74*Pi) 3141592653589793 l004 Pi/tanh(751/117*Pi) 3141592653589793 l004 Pi/tanh(276/43*Pi) 3141592653589793 l004 Pi/tanh(629/98*Pi) 3141592653589793 l004 Pi/tanh(353/55*Pi) 3141592653589793 l004 Pi/tanh(430/67*Pi) 3141592653589793 l004 Pi/tanh(507/79*Pi) 3141592653589793 l004 Pi/tanh(584/91*Pi) 3141592653589793 l004 Pi/tanh(661/103*Pi) 3141592653589793 l004 Pi/tanh(738/115*Pi) 3141592653589793 l004 Pi/tanh(77/12*Pi) 3141592653589793 l004 Pi/tanh(725/113*Pi) 3141592653589793 l004 Pi/tanh(648/101*Pi) 3141592653589793 l004 Pi/tanh(571/89*Pi) 3141592653589793 l004 Pi/tanh(494/77*Pi) 3141592653589793 l004 Pi/tanh(417/65*Pi) 3141592653589793 l004 Pi/tanh(757/118*Pi) 3141592653589793 l004 Pi/tanh(340/53*Pi) 3141592653589793 l004 Pi/tanh(603/94*Pi) 3141592653589793 l004 Pi/tanh(263/41*Pi) 3141592653589793 l004 Pi/tanh(712/111*Pi) 3141592653589793 l004 Pi/tanh(449/70*Pi) 3141592653589793 l004 Pi/tanh(635/99*Pi) 3141592653589793 l004 Pi/tanh(186/29*Pi) 3141592653589793 l004 Pi/tanh(667/104*Pi) 3141592653589793 l004 Pi/tanh(481/75*Pi) 3141592653589793 l004 Pi/tanh(295/46*Pi) 3141592653589793 l004 Pi/tanh(699/109*Pi) 3141592653589793 l004 Pi/tanh(404/63*Pi) 3141592653589793 l004 Pi/tanh(513/80*Pi) 3141592653589793 l004 Pi/tanh(622/97*Pi) 3141592653589793 l004 Pi/tanh(731/114*Pi) 3141592653589793 l004 Pi/tanh(109/17*Pi) 3141592653589793 l004 Pi/tanh(686/107*Pi) 3141592653589793 l004 Pi/tanh(577/90*Pi) 3141592653589793 l004 Pi/tanh(468/73*Pi) 3141592653589793 l004 Pi/tanh(359/56*Pi) 3141592653589793 l004 Pi/tanh(609/95*Pi) 3141592653589793 l004 Pi/tanh(250/39*Pi) 3141592653589793 l004 Pi/tanh(641/100*Pi) 3141592653589793 l004 Pi/tanh(391/61*Pi) 3141592653589793 l004 Pi/tanh(532/83*Pi) 3141592653589793 l004 Pi/tanh(673/105*Pi) 3141592653589793 l004 Pi/tanh(141/22*Pi) 3141592653589793 l004 Pi/tanh(737/115*Pi) 3141592653589793 l004 Pi/tanh(596/93*Pi) 3141592653589793 l004 Pi/tanh(455/71*Pi) 3141592653589793 l004 Pi/tanh(769/120*Pi) 3141592653589793 l004 Pi/tanh(314/49*Pi) 3141592653589793 l004 Pi/tanh(487/76*Pi) 3141592653589793 l004 Pi/tanh(660/103*Pi) 3141592653589793 l004 Pi/tanh(173/27*Pi) 3141592653589793 l004 Pi/tanh(724/113*Pi) 3141592653589793 l004 Pi/tanh(551/86*Pi) 3141592653589793 l004 Pi/tanh(378/59*Pi) 3141592653589793 l004 Pi/tanh(583/91*Pi) 3141592653589793 l004 Pi/tanh(205/32*Pi) 3141592653589793 l004 Pi/tanh(647/101*Pi) 3141592653589793 l004 Pi/tanh(442/69*Pi) 3141592653589793 l004 Pi/tanh(679/106*Pi) 3141592653589793 l004 Pi/tanh(237/37*Pi) 3141592653589793 l004 Pi/tanh(743/116*Pi) 3141592653589793 l004 Pi/tanh(506/79*Pi) 3141592653589793 l004 Pi/tanh(269/42*Pi) 3141592653589793 l004 Pi/tanh(570/89*Pi) 3141592653589793 l004 Pi/tanh(301/47*Pi) 3141592653589793 l004 Pi/tanh(634/99*Pi) 3141592653589793 l004 Pi/tanh(333/52*Pi) 3141592653589793 l004 Pi/tanh(698/109*Pi) 3141592653589793 l004 Pi/tanh(365/57*Pi) 3141592653589793 l004 Pi/tanh(762/119*Pi) 3141592653589793 l004 Pi/tanh(397/62*Pi) 3141592653589793 l004 Pi/tanh(429/67*Pi) 3141592653589793 l004 Pi/tanh(461/72*Pi) 3141592653589793 l004 Pi/tanh(493/77*Pi) 3141592653589793 l004 Pi/tanh(525/82*Pi) 3141592653589793 l004 Pi/tanh(557/87*Pi) 3141592653589793 l004 Pi/tanh(589/92*Pi) 3141592653589793 l004 Pi/tanh(621/97*Pi) 3141592653589793 l004 Pi/tanh(653/102*Pi) 3141592653589793 l004 Pi/tanh(685/107*Pi) 3141592653589793 l004 Pi/tanh(717/112*Pi) 3141592653589793 l004 Pi/tanh(749/117*Pi) 3141592653589793 l004 Pi/tanh(32/5*Pi) 3141592653589793 l004 Pi/tanh(755/118*Pi) 3141592653589793 l004 Pi/tanh(723/113*Pi) 3141592653589793 l004 Pi/tanh(691/108*Pi) 3141592653589793 l004 Pi/tanh(659/103*Pi) 3141592653589793 l004 Pi/tanh(627/98*Pi) 3141592653589793 l004 Pi/tanh(595/93*Pi) 3141592653589793 l004 Pi/tanh(563/88*Pi) 3141592653589793 l004 Pi/tanh(531/83*Pi) 3141592653589793 l004 Pi/tanh(499/78*Pi) 3141592653589793 l004 Pi/tanh(467/73*Pi) 3141592653589793 l004 Pi/tanh(435/68*Pi) 3141592653589793 l004 Pi/tanh(403/63*Pi) 3141592653589793 l004 Pi/tanh(371/58*Pi) 3141592653589793 l004 Pi/tanh(710/111*Pi) 3141592653589793 l004 Pi/tanh(339/53*Pi) 3141592653589793 l004 Pi/tanh(646/101*Pi) 3141592653589793 l004 Pi/tanh(307/48*Pi) 3141592653589793 l004 Pi/tanh(582/91*Pi) 3141592653589793 l004 Pi/tanh(275/43*Pi) 3141592653589793 l004 Pi/tanh(518/81*Pi) 3141592653589793 l004 Pi/tanh(761/119*Pi) 3141592653589793 l004 Pi/tanh(243/38*Pi) 3141592653589793 l004 Pi/tanh(697/109*Pi) 3141592653589793 l004 Pi/tanh(454/71*Pi) 3141592653589793 l004 Pi/tanh(665/104*Pi) 3141592653589793 l004 Pi/tanh(211/33*Pi) 3141592653589793 l004 Pi/tanh(601/94*Pi) 3141592653589793 l004 Pi/tanh(390/61*Pi) 3141592653589793 l004 Pi/tanh(569/89*Pi) 3141592653589793 l004 Pi/tanh(748/117*Pi) 3141592653589793 l004 Pi/tanh(179/28*Pi) 3141592653589793 l004 Pi/tanh(684/107*Pi) 3141592653589793 l004 Pi/tanh(505/79*Pi) 3141592653589793 l004 Pi/tanh(326/51*Pi) 3141592653589793 l004 Pi/tanh(473/74*Pi) 3141592653589793 l004 Pi/tanh(620/97*Pi) 3141592653589793 l004 Pi/tanh(767/120*Pi) 3141592653589793 l004 Pi/tanh(147/23*Pi) 3141592653589793 l004 Pi/tanh(703/110*Pi) 3141592653589793 l004 Pi/tanh(556/87*Pi) 3141592653589793 l004 Pi/tanh(409/64*Pi) 3141592653589793 l004 Pi/tanh(671/105*Pi) 3141592653589793 l004 Pi/tanh(262/41*Pi) 3141592653589793 l004 Pi/tanh(639/100*Pi) 3141592653589793 l004 Pi/tanh(377/59*Pi) 3141592653589793 l004 Pi/tanh(492/77*Pi) 3141592653589793 l004 Pi/tanh(607/95*Pi) 3141592653589793 l004 Pi/tanh(722/113*Pi) 3141592653589793 l004 Pi/tanh(115/18*Pi) 3141592653589793 l004 Pi/tanh(658/103*Pi) 3141592653589793 l004 Pi/tanh(543/85*Pi) 3141592653589793 l004 Pi/tanh(428/67*Pi) 3141592653589793 l004 Pi/tanh(741/116*Pi) 3141592653589793 l004 Pi/tanh(313/49*Pi) 3141592653589793 l004 Pi/tanh(511/80*Pi) 3141592653589793 l004 Pi/tanh(709/111*Pi) 3141592653589793 l004 Pi/tanh(198/31*Pi) 3141592653589793 l004 Pi/tanh(677/106*Pi) 3141592653589793 l004 Pi/tanh(479/75*Pi) 3141592653589793 l004 Pi/tanh(760/119*Pi) 3141592653589793 l004 Pi/tanh(281/44*Pi) 3141592653589793 l004 Pi/tanh(645/101*Pi) 3141592653589793 l004 Pi/tanh(364/57*Pi) 3141592653589793 l004 Pi/tanh(447/70*Pi) 3141592653589793 l004 Pi/tanh(530/83*Pi) 3141592653589793 l004 Pi/tanh(613/96*Pi) 3141592653589793 l004 Pi/tanh(696/109*Pi) 3141592653589793 l004 Pi/tanh(83/13*Pi) 3141592653589793 l004 Pi/tanh(715/112*Pi) 3141592653589793 l004 Pi/tanh(632/99*Pi) 3141592653589793 l004 Pi/tanh(549/86*Pi) 3141592653589793 l004 Pi/tanh(466/73*Pi) 3141592653589793 l004 Pi/tanh(383/60*Pi) 3141592653589793 l004 Pi/tanh(683/107*Pi) 3141592653589793 l004 Pi/tanh(300/47*Pi) 3141592653589793 l004 Pi/tanh(517/81*Pi) 3141592653589793 l004 Pi/tanh(734/115*Pi) 3141592653589793 l004 Pi/tanh(217/34*Pi) 3141592653589793 l004 Pi/tanh(568/89*Pi) 3141592653589793 l004 Pi/tanh(351/55*Pi) 3141592653589793 l004 Pi/tanh(485/76*Pi) 3141592653589793 l004 Pi/tanh(619/97*Pi) 3141592653589793 l004 Pi/tanh(753/118*Pi) 3141592653589793 l004 Pi/tanh(134/21*Pi) 3141592653589793 l004 Pi/tanh(721/113*Pi) 3141592653589793 l004 Pi/tanh(587/92*Pi) 3141592653589793 l004 Pi/tanh(453/71*Pi) 3141592653589793 l004 Pi/tanh(319/50*Pi) 3141592653589793 l004 Pi/tanh(504/79*Pi) 3141592653589793 l004 Pi/tanh(689/108*Pi) 3141592653589793 l004 Pi/tanh(185/29*Pi) 3141592653589793 l004 Pi/tanh(606/95*Pi) 3141592653589793 l004 Pi/tanh(421/66*Pi) 3141592653589793 l004 Pi/tanh(657/103*Pi) 3141592653589793 l004 Pi/tanh(236/37*Pi) 3141592653589793 l004 Pi/tanh(759/119*Pi) 3141592653589793 l004 Pi/tanh(523/82*Pi) 3141592653589793 l004 Pi/tanh(287/45*Pi) 3141592653589793 l004 Pi/tanh(625/98*Pi) 3141592653589793 l004 Pi/tanh(338/53*Pi) 3141592653589793 l004 Pi/tanh(727/114*Pi) 3141592653589793 l004 Pi/tanh(389/61*Pi) 3141592653589793 l004 Pi/tanh(440/69*Pi) 3141592653589793 l004 Pi/tanh(491/77*Pi) 3141592653589793 l004 Pi/tanh(542/85*Pi) 3141592653589793 l004 Pi/tanh(593/93*Pi) 3141592653589793 l004 Pi/tanh(644/101*Pi) 3141592653589793 l004 Pi/tanh(695/109*Pi) 3141592653589793 l004 Pi/tanh(746/117*Pi) 3141592653589793 l004 Pi/tanh(51/8*Pi) 3141592653589793 l004 Pi/tanh(733/115*Pi) 3141592653589793 l004 Pi/tanh(682/107*Pi) 3141592653589793 l004 Pi/tanh(631/99*Pi) 3141592653589793 l004 Pi/tanh(580/91*Pi) 3141592653589793 l004 Pi/tanh(529/83*Pi) 3141592653589793 l004 Pi/tanh(478/75*Pi) 3141592653589793 l004 Pi/tanh(427/67*Pi) 3141592653589793 l004 Pi/tanh(376/59*Pi) 3141592653589793 l004 Pi/tanh(701/110*Pi) 3141592653589793 l004 Pi/tanh(325/51*Pi) 3141592653589793 l004 Pi/tanh(599/94*Pi) 3141592653589793 l004 Pi/tanh(274/43*Pi) 3141592653589793 l004 Pi/tanh(497/78*Pi) 3141592653589793 l004 Pi/tanh(720/113*Pi) 3141592653589793 l004 Pi/tanh(223/35*Pi) 3141592653589793 l004 Pi/tanh(618/97*Pi) 3141592653589793 l004 Pi/tanh(395/62*Pi) 3141592653589793 l004 Pi/tanh(567/89*Pi) 3141592653589793 l004 Pi/tanh(739/116*Pi) 3141592653589793 l004 Pi/tanh(172/27*Pi) 3141592653589793 l004 Pi/tanh(637/100*Pi) 3141592653589793 l004 Pi/tanh(465/73*Pi) 3141592653589793 l004 Pi/tanh(758/119*Pi) 3141592653589793 l004 Pi/tanh(293/46*Pi) 3141592653589793 l004 Pi/tanh(707/111*Pi) 3141592653589793 l004 Pi/tanh(414/65*Pi) 3141592653589793 l004 Pi/tanh(535/84*Pi) 3141592653589793 l004 Pi/tanh(656/103*Pi) 3141592653589793 l004 Pi/tanh(121/19*Pi) 3141592653589793 l004 Pi/tanh(675/106*Pi) 3141592653589793 l004 Pi/tanh(554/87*Pi) 3141592653589793 l004 Pi/tanh(433/68*Pi) 3141592653589793 l004 Pi/tanh(745/117*Pi) 3141592653589793 l004 Pi/tanh(312/49*Pi) 3141592653589793 l004 Pi/tanh(503/79*Pi) 3141592653589793 l004 Pi/tanh(694/109*Pi) 3141592653589793 l004 Pi/tanh(191/30*Pi) 3141592653589793 l004 Pi/tanh(643/101*Pi) 3141592653589793 l004 Pi/tanh(452/71*Pi) 3141592653589793 l004 Pi/tanh(713/112*Pi) 3141592653589793 l004 Pi/tanh(261/41*Pi) 3141592653589793 l004 Pi/tanh(592/93*Pi) 3141592653589793 l004 Pi/tanh(331/52*Pi) 3141592653589793 l004 Pi/tanh(732/115*Pi) 3141592653589793 l004 Pi/tanh(401/63*Pi) 3141592653589793 l004 Pi/tanh(471/74*Pi) 3141592653589793 l004 Pi/tanh(541/85*Pi) 3141592653589793 l004 Pi/tanh(611/96*Pi) 3141592653589793 l004 Pi/tanh(681/107*Pi) 3141592653589793 l004 Pi/tanh(751/118*Pi) 3141592653589793 l004 Pi/tanh(70/11*Pi) 3141592653589793 l004 Pi/tanh(719/113*Pi) 3141592653589793 l004 Pi/tanh(649/102*Pi) 3141592653589793 l004 Pi/tanh(579/91*Pi) 3141592653589793 l004 Pi/tanh(509/80*Pi) 3141592653589793 l004 Pi/tanh(439/69*Pi) 3141592653589793 l004 Pi/tanh(369/58*Pi) 3141592653589793 l004 Pi/tanh(668/105*Pi) 3141592653589793 l004 Pi/tanh(299/47*Pi) 3141592653589793 l004 Pi/tanh(528/83*Pi) 3141592653589793 l004 Pi/tanh(757/119*Pi) 3141592653589793 l004 Pi/tanh(229/36*Pi) 3141592653589793 l004 Pi/tanh(617/97*Pi) 3141592653589793 l004 Pi/tanh(388/61*Pi) 3141592653589793 l004 Pi/tanh(547/86*Pi) 3141592653589793 l004 Pi/tanh(706/111*Pi) 3141592653589793 l004 Pi/tanh(159/25*Pi) 3141592653589793 l004 Pi/tanh(725/114*Pi) 3141592653589793 l004 Pi/tanh(566/89*Pi) 3141592653589793 l004 Pi/tanh(407/64*Pi) 3141592653589793 l004 Pi/tanh(655/103*Pi) 3141592653589793 l004 Pi/tanh(248/39*Pi) 3141592653589793 l004 Pi/tanh(585/92*Pi) 3141592653589793 l004 Pi/tanh(337/53*Pi) 3141592653589793 l004 Pi/tanh(763/120*Pi) 3141592653589793 l004 Pi/tanh(426/67*Pi) 3141592653589793 l004 Pi/tanh(515/81*Pi) 3141592653589793 l004 Pi/tanh(604/95*Pi) 3141592653589793 l004 Pi/tanh(693/109*Pi) 3141592653589793 l004 Pi/tanh(89/14*Pi) 3141592653589793 l004 Pi/tanh(731/115*Pi) 3141592653589793 l004 Pi/tanh(642/101*Pi) 3141592653589793 l004 Pi/tanh(553/87*Pi) 3141592653589793 l004 Pi/tanh(464/73*Pi) 3141592653589793 l004 Pi/tanh(375/59*Pi) 3141592653589793 l004 Pi/tanh(661/104*Pi) 3141592653589793 l004 Pi/tanh(286/45*Pi) 3141592653589793 l004 Pi/tanh(483/76*Pi) 3141592653589793 l004 Pi/tanh(680/107*Pi) 3141592653589793 l004 Pi/tanh(197/31*Pi) 3141592653589793 l004 Pi/tanh(699/110*Pi) 3141592653589793 l004 Pi/tanh(502/79*Pi) 3141592653589793 l004 Pi/tanh(305/48*Pi) 3141592653589793 l004 Pi/tanh(718/113*Pi) 3141592653589793 l004 Pi/tanh(413/65*Pi) 3141592653589793 l004 Pi/tanh(521/82*Pi) 3141592653589793 l004 Pi/tanh(629/99*Pi) 3141592653589793 l004 Pi/tanh(737/116*Pi) 3141592653589793 l004 Pi/tanh(108/17*Pi) 3141592653589793 l004 Pi/tanh(667/105*Pi) 3141592653589793 l004 Pi/tanh(559/88*Pi) 3141592653589793 l004 Pi/tanh(451/71*Pi) 3141592653589793 l004 Pi/tanh(343/54*Pi) 3141592653589793 l004 Pi/tanh(578/91*Pi) 3141592653589793 l004 Pi/tanh(235/37*Pi) 3141592653589793 l004 Pi/tanh(597/94*Pi) 3141592653589793 l004 Pi/tanh(362/57*Pi) 3141592653589793 l004 Pi/tanh(489/77*Pi) 3141592653589793 l004 Pi/tanh(616/97*Pi) 3141592653589793 l004 Pi/tanh(743/117*Pi) 3141592653589793 l004 Pi/tanh(127/20*Pi) 3141592653589793 l004 Pi/tanh(654/103*Pi) 3141592653589793 l004 Pi/tanh(527/83*Pi) 3141592653589793 l004 Pi/tanh(400/63*Pi) 3141592653589793 l004 Pi/tanh(673/106*Pi) 3141592653589793 l004 Pi/tanh(273/43*Pi) 3141592653589793 l004 Pi/tanh(692/109*Pi) 3141592653589793 l004 Pi/tanh(419/66*Pi) 3141592653589793 l004 Pi/tanh(565/89*Pi) 3141592653589793 l004 Pi/tanh(711/112*Pi) 3141592653589793 l004 Pi/tanh(146/23*Pi) 3141592653589793 l004 Pi/tanh(749/118*Pi) 3141592653589793 l004 Pi/tanh(603/95*Pi) 3141592653589793 l004 Pi/tanh(457/72*Pi) 3141592653589793 l004 Pi/tanh(311/49*Pi) 3141592653589793 l004 Pi/tanh(476/75*Pi) 3141592653589793 l004 Pi/tanh(641/101*Pi) 3141592653589793 l004 Pi/tanh(165/26*Pi) 3141592653589793 l004 Pi/tanh(679/107*Pi) 3141592653589793 l004 Pi/tanh(514/81*Pi) 3141592653589793 l004 Pi/tanh(349/55*Pi) 3141592653589793 l004 Pi/tanh(533/84*Pi) 3141592653589793 l004 Pi/tanh(717/113*Pi) 3141592653589793 l004 Pi/tanh(184/29*Pi) 3141592653589793 l004 Pi/tanh(755/119*Pi) 3141592653589793 l004 Pi/tanh(571/90*Pi) 3141592653589793 l004 Pi/tanh(387/61*Pi) 3141592653589793 l004 Pi/tanh(590/93*Pi) 3141592653589793 l004 Pi/tanh(203/32*Pi) 3141592653589793 l004 Pi/tanh(628/99*Pi) 3141592653589793 l004 Pi/tanh(425/67*Pi) 3141592653589793 l004 Pi/tanh(647/102*Pi) 3141592653589793 l004 Pi/tanh(222/35*Pi) 3141592653589793 l004 Pi/tanh(685/108*Pi) 3141592653589793 l004 Pi/tanh(463/73*Pi) 3141592653589793 l004 Pi/tanh(704/111*Pi) 3141592653589793 l004 Pi/tanh(241/38*Pi) 3141592653589793 l004 Pi/tanh(742/117*Pi) 3141592653589793 l004 Pi/tanh(501/79*Pi) 3141592653589793 l004 Pi/tanh(761/120*Pi) 3141592653589793 l004 Pi/tanh(260/41*Pi) 3141592653589793 l004 Pi/tanh(539/85*Pi) 3141592653589793 l004 Pi/tanh(279/44*Pi) 3141592653589793 l004 Pi/tanh(577/91*Pi) 3141592653589793 l004 Pi/tanh(298/47*Pi) 3141592653589793 l004 Pi/tanh(615/97*Pi) 3141592653589793 l004 Pi/tanh(317/50*Pi) 3141592653589793 l004 Pi/tanh(653/103*Pi) 3141592653589793 l004 Pi/tanh(336/53*Pi) 3141592653589793 l004 Pi/tanh(691/109*Pi) 3141592653589793 l004 Pi/tanh(355/56*Pi) 3141592653589793 l004 Pi/tanh(729/115*Pi) 3141592653589793 l004 Pi/tanh(374/59*Pi) 3141592653589793 l004 Pi/tanh(393/62*Pi) 3141592653589793 l004 Pi/tanh(412/65*Pi) 3141592653589793 l004 Pi/tanh(431/68*Pi) 3141592653589793 l004 Pi/tanh(450/71*Pi) 3141592653589793 l004 Pi/tanh(469/74*Pi) 3141592653589793 l004 Pi/tanh(488/77*Pi) 3141592653589793 l004 Pi/tanh(507/80*Pi) 3141592653589793 l004 Pi/tanh(526/83*Pi) 3141592653589793 l004 Pi/tanh(545/86*Pi) 3141592653589793 l004 Pi/tanh(564/89*Pi) 3141592653589793 l004 Pi/tanh(583/92*Pi) 3141592653589793 l004 Pi/tanh(602/95*Pi) 3141592653589793 l004 Pi/tanh(621/98*Pi) 3141592653589793 l004 Pi/tanh(640/101*Pi) 3141592653589793 l004 Pi/tanh(659/104*Pi) 3141592653589793 l004 Pi/tanh(678/107*Pi) 3141592653589793 l004 Pi/tanh(697/110*Pi) 3141592653589793 l004 Pi/tanh(716/113*Pi) 3141592653589793 l004 Pi/tanh(735/116*Pi) 3141592653589793 l004 Pi/tanh(754/119*Pi) 3141592653589793 l004 Pi/tanh(19/3*Pi) 3141592653589793 l004 Pi/tanh(747/118*Pi) 3141592653589793 l004 Pi/tanh(728/115*Pi) 3141592653589793 l004 Pi/tanh(709/112*Pi) 3141592653589793 l004 Pi/tanh(690/109*Pi) 3141592653589793 l004 Pi/tanh(671/106*Pi) 3141592653589793 l004 Pi/tanh(652/103*Pi) 3141592653589793 l004 Pi/tanh(633/100*Pi) 3141592653589793 l004 Pi/tanh(614/97*Pi) 3141592653589793 l004 Pi/tanh(595/94*Pi) 3141592653589793 l004 Pi/tanh(576/91*Pi) 3141592653589793 l004 Pi/tanh(557/88*Pi) 3141592653589793 l004 Pi/tanh(538/85*Pi) 3141592653589793 l004 Pi/tanh(519/82*Pi) 3141592653589793 l004 Pi/tanh(500/79*Pi) 3141592653589793 l004 Pi/tanh(481/76*Pi) 3141592653589793 l004 Pi/tanh(462/73*Pi) 3141592653589793 l004 Pi/tanh(443/70*Pi) 3141592653589793 l004 Pi/tanh(424/67*Pi) 3141592653589793 l004 Pi/tanh(405/64*Pi) 3141592653589793 l004 Pi/tanh(386/61*Pi) 3141592653589793 l004 Pi/tanh(753/119*Pi) 3141592653589793 l004 Pi/tanh(367/58*Pi) 3141592653589793 l004 Pi/tanh(715/113*Pi) 3141592653589793 l004 Pi/tanh(348/55*Pi) 3141592653589793 l004 Pi/tanh(677/107*Pi) 3141592653589793 l004 Pi/tanh(329/52*Pi) 3141592653589793 l004 Pi/tanh(639/101*Pi) 3141592653589793 l004 Pi/tanh(310/49*Pi) 3141592653589793 l004 Pi/tanh(601/95*Pi) 3141592653589793 l004 Pi/tanh(291/46*Pi) 3141592653589793 l004 Pi/tanh(563/89*Pi) 3141592653589793 l004 Pi/tanh(272/43*Pi) 3141592653589793 l004 Pi/tanh(525/83*Pi) 3141592653589793 l004 Pi/tanh(253/40*Pi) 3141592653589793 l004 Pi/tanh(740/117*Pi) 3141592653589793 l004 Pi/tanh(487/77*Pi) 3141592653589793 l004 Pi/tanh(721/114*Pi) 3141592653589793 l004 Pi/tanh(234/37*Pi) 3141592653589793 l004 Pi/tanh(683/108*Pi) 3141592653589793 l004 Pi/tanh(449/71*Pi) 3141592653589793 l004 Pi/tanh(664/105*Pi) 3141592653589793 l004 Pi/tanh(215/34*Pi) 3141592653589793 l004 Pi/tanh(626/99*Pi) 3141592653589793 l004 Pi/tanh(411/65*Pi) 3141592653589793 l004 Pi/tanh(607/96*Pi) 3141592653589793 l004 Pi/tanh(196/31*Pi) 3141592653589793 l004 Pi/tanh(569/90*Pi) 3141592653589793 m001 DuboisRaymond^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(373/59*Pi) 3141592653589793 l004 Pi/tanh(550/87*Pi) 3141592653589793 l004 Pi/tanh(727/115*Pi) 3141592653589793 l004 Pi/tanh(177/28*Pi) 3141592653589793 l004 Pi/tanh(689/109*Pi) 3141592653589793 l004 Pi/tanh(512/81*Pi) 3141592653589793 l004 Pi/tanh(335/53*Pi) 3141592653589793 l004 Pi/tanh(493/78*Pi) 3141592653589793 l004 Pi/tanh(651/103*Pi) 3141592653589793 l004 Pi/tanh(158/25*Pi) 3141592653589793 l004 Pi/tanh(613/97*Pi) 3141592653589793 l004 Pi/tanh(455/72*Pi) 3141592653589793 l004 Pi/tanh(752/119*Pi) 3141592653589793 l004 Pi/tanh(297/47*Pi) 3141592653589793 l004 Pi/tanh(733/116*Pi) 3141592653589793 l004 Pi/tanh(436/69*Pi) 3141592653589793 l004 Pi/tanh(575/91*Pi) 3141592653589793 l004 Pi/tanh(714/113*Pi) 3141592653589793 l004 Pi/tanh(139/22*Pi) 3141592653589793 l004 Pi/tanh(676/107*Pi) 3141592653589793 l004 Pi/tanh(537/85*Pi) 3141592653589793 l004 Pi/tanh(398/63*Pi) 3141592653589793 l004 Pi/tanh(657/104*Pi) 3141592653589793 l004 Pi/tanh(259/41*Pi) 3141592653589793 l004 Pi/tanh(638/101*Pi) 3141592653589793 l004 Pi/tanh(379/60*Pi) 3141592653589793 l004 Pi/tanh(499/79*Pi) 3141592653589793 l004 Pi/tanh(619/98*Pi) 3141592653589793 l004 Pi/tanh(739/117*Pi) 3141592653589793 l004 Pi/tanh(120/19*Pi) 3141592653589793 l004 Pi/tanh(701/111*Pi) 3141592653589793 l004 Pi/tanh(581/92*Pi) 3141592653589793 l004 Pi/tanh(461/73*Pi) 3141592653589793 l004 Pi/tanh(341/54*Pi) 3141592653589793 l004 Pi/tanh(562/89*Pi) 3141592653589793 l004 Pi/tanh(221/35*Pi) 3141592653589793 l004 Pi/tanh(543/86*Pi) 3141592653589793 l004 Pi/tanh(322/51*Pi) 3141592653589793 l004 Pi/tanh(745/118*Pi) 3141592653589793 l004 Pi/tanh(423/67*Pi) 3141592653589793 l004 Pi/tanh(524/83*Pi) 3141592653589793 l004 Pi/tanh(625/99*Pi) 3141592653589793 l004 Pi/tanh(726/115*Pi) 3141592653589793 l004 Pi/tanh(101/16*Pi) 3141592653589793 l004 Pi/tanh(688/109*Pi) 3141592653589793 l004 Pi/tanh(587/93*Pi) 3141592653589793 l004 Pi/tanh(486/77*Pi) 3141592653589793 l004 Pi/tanh(385/61*Pi) 3141592653589793 l004 Pi/tanh(669/106*Pi) 3141592653589793 l004 Pi/tanh(284/45*Pi) 3141592653589793 l004 Pi/tanh(751/119*Pi) 3141592653589793 l004 Pi/tanh(467/74*Pi) 3141592653589793 l004 Pi/tanh(650/103*Pi) 3141592653589793 l004 Pi/tanh(183/29*Pi) 3141592653589793 l004 Pi/tanh(631/100*Pi) 3141592653589793 l004 Pi/tanh(448/71*Pi) 3141592653589793 l004 Pi/tanh(713/113*Pi) 3141592653589793 l004 Pi/tanh(265/42*Pi) 3141592653589793 l004 Pi/tanh(612/97*Pi) 3141592653589793 l004 Pi/tanh(347/55*Pi) 3141592653589793 l004 Pi/tanh(429/68*Pi) 3141592653589793 l004 Pi/tanh(511/81*Pi) 3141592653589793 l004 Pi/tanh(593/94*Pi) 3141592653589793 l004 Pi/tanh(675/107*Pi) 3141592653589793 l004 Pi/tanh(757/120*Pi) 3141592653589793 l004 Pi/tanh(82/13*Pi) 3141592653589793 l004 Pi/tanh(719/114*Pi) 3141592653589793 l004 Pi/tanh(637/101*Pi) 3141592653589793 l004 Pi/tanh(555/88*Pi) 3141592653589793 l004 Pi/tanh(473/75*Pi) 3141592653589793 l004 Pi/tanh(391/62*Pi) 3141592653589793 l004 Pi/tanh(700/111*Pi) 3141592653589793 l004 Pi/tanh(309/49*Pi) 3141592653589793 l004 Pi/tanh(536/85*Pi) 3141592653589793 l004 Pi/tanh(227/36*Pi) 3141592653589793 l004 Pi/tanh(599/95*Pi) 3141592653589793 l004 Pi/tanh(372/59*Pi) 3141592653589793 l004 Pi/tanh(517/82*Pi) 3141592653589793 l004 Pi/tanh(662/105*Pi) 3141592653589793 l004 Pi/tanh(145/23*Pi) 3141592653589793 l004 Pi/tanh(643/102*Pi) 3141592653589793 l004 Pi/tanh(498/79*Pi) 3141592653589793 l004 Pi/tanh(353/56*Pi) 3141592653589793 l004 Pi/tanh(561/89*Pi) 3141592653589793 l004 Pi/tanh(208/33*Pi) 3141592653589793 l004 Pi/tanh(687/109*Pi) 3141592653589793 l004 Pi/tanh(479/76*Pi) 3141592653589793 l004 Pi/tanh(750/119*Pi) 3141592653589793 l004 Pi/tanh(271/43*Pi) 3141592653589793 l004 Pi/tanh(605/96*Pi) 3141592653589793 l004 Pi/tanh(334/53*Pi) 3141592653589793 l004 Pi/tanh(731/116*Pi) 3141592653589793 l004 Pi/tanh(397/63*Pi) 3141592653589793 l004 Pi/tanh(460/73*Pi) 3141592653589793 l004 Pi/tanh(523/83*Pi) 3141592653589793 l004 Pi/tanh(586/93*Pi) 3141592653589793 l004 Pi/tanh(649/103*Pi) 3141592653589793 l004 Pi/tanh(712/113*Pi) 3141592653589793 l005 ln(sec(311/99)) 3141592653589793 l004 Pi/tanh(63/10*Pi) 3141592653589793 l004 Pi/tanh(737/117*Pi) 3141592653589793 l004 Pi/tanh(674/107*Pi) 3141592653589793 l004 Pi/tanh(611/97*Pi) 3141592653589793 l004 Pi/tanh(548/87*Pi) 3141592653589793 l004 Pi/tanh(485/77*Pi) 3141592653589793 l004 Pi/tanh(422/67*Pi) 3141592653589793 l004 Pi/tanh(359/57*Pi) 3141592653589793 l004 Pi/tanh(655/104*Pi) 3141592653589793 l004 Pi/tanh(296/47*Pi) 3141592653589793 l004 Pi/tanh(529/84*Pi) 3141592653589793 l004 Pi/tanh(233/37*Pi) 3141592653589793 l004 Pi/tanh(636/101*Pi) 3141592653589793 l004 Pi/tanh(403/64*Pi) 3141592653589793 l004 Pi/tanh(573/91*Pi) 3141592653589793 l004 Pi/tanh(743/118*Pi) 3141592653589793 l004 Pi/tanh(170/27*Pi) 3141592653589793 l004 Pi/tanh(617/98*Pi) 3141592653589793 l004 Pi/tanh(447/71*Pi) 3141592653589793 l004 Pi/tanh(724/115*Pi) 3141592653589793 l004 Pi/tanh(277/44*Pi) 3141592653589793 l004 Pi/tanh(661/105*Pi) 3141592653589793 l004 Pi/tanh(384/61*Pi) 3141592653589793 l004 Pi/tanh(491/78*Pi) 3141592653589793 l004 Pi/tanh(598/95*Pi) 3141592653589793 l004 Pi/tanh(705/112*Pi) 3141592653589793 l004 Pi/tanh(107/17*Pi) 3141592653589793 l004 Pi/tanh(686/109*Pi) 3141592653589793 l004 Pi/tanh(579/92*Pi) 3141592653589793 l004 Pi/tanh(472/75*Pi) 3141592653589793 l004 Pi/tanh(365/58*Pi) 3141592653589793 l004 Pi/tanh(623/99*Pi) 3141592653589793 l004 Pi/tanh(258/41*Pi) 3141592653589793 l004 Pi/tanh(667/106*Pi) 3141592653589793 l004 Pi/tanh(409/65*Pi) 3141592653589793 l004 Pi/tanh(560/89*Pi) 3141592653589793 l004 Pi/tanh(711/113*Pi) 3141592653589793 l004 Pi/tanh(151/24*Pi) 3141592653589793 l004 Pi/tanh(648/103*Pi) 3141592653589793 l004 Pi/tanh(497/79*Pi) 3141592653589793 l004 Pi/tanh(346/55*Pi) 3141592653589793 l004 Pi/tanh(541/86*Pi) 3141592653589793 l004 Pi/tanh(736/117*Pi) 3141592653589793 l004 Pi/tanh(195/31*Pi) 3141592653589793 l004 Pi/tanh(629/100*Pi) 3141592653589793 l004 Pi/tanh(434/69*Pi) 3141592653589793 l004 Pi/tanh(673/107*Pi) 3141592653589793 l004 Pi/tanh(239/38*Pi) 3141592653589793 l004 Pi/tanh(522/83*Pi) 3141592653589793 l004 Pi/tanh(283/45*Pi) 3141592653589793 l004 Pi/tanh(610/97*Pi) 3141592653589793 l004 Pi/tanh(327/52*Pi) 3141592653589793 l004 Pi/tanh(698/111*Pi) 3141592653589793 l004 Pi/tanh(371/59*Pi) 3141592653589793 l004 Pi/tanh(415/66*Pi) 3141592653589793 l004 Pi/tanh(459/73*Pi) 3141592653589793 l004 Pi/tanh(503/80*Pi) 3141592653589793 l004 Pi/tanh(547/87*Pi) 3141592653589793 l004 Pi/tanh(591/94*Pi) 3141592653589793 l004 Pi/tanh(635/101*Pi) 3141592653589793 l004 Pi/tanh(679/108*Pi) 3141592653589793 l004 Pi/tanh(723/115*Pi) 3141592653589793 l004 Pi/tanh(44/7*Pi) 3141592653589793 l004 Pi/tanh(729/116*Pi) 3141592653589793 l004 Pi/tanh(685/109*Pi) 3141592653589793 l004 Pi/tanh(641/102*Pi) 3141592653589793 l004 Pi/tanh(597/95*Pi) 3141592653589793 l004 Pi/tanh(553/88*Pi) 3141592653589793 l004 Pi/tanh(509/81*Pi) 3141592653589793 l004 Pi/tanh(465/74*Pi) 3141592653589793 l004 Pi/tanh(421/67*Pi) 3141592653589793 l004 Pi/tanh(377/60*Pi) 3141592653589793 l004 Pi/tanh(710/113*Pi) 3141592653589793 l004 Pi/tanh(333/53*Pi) 3141592653589793 l004 Pi/tanh(622/99*Pi) 3141592653589793 l004 Pi/tanh(289/46*Pi) 3141592653589793 l004 Pi/tanh(534/85*Pi) 3141592653589793 l004 Pi/tanh(245/39*Pi) 3141592653589793 l004 Pi/tanh(691/110*Pi) 3141592653589793 l004 Pi/tanh(446/71*Pi) 3141592653589793 l004 Pi/tanh(647/103*Pi) 3141592653589793 l004 Pi/tanh(201/32*Pi) 3141592653589793 l004 Pi/tanh(559/89*Pi) 3141592653589793 l004 Pi/tanh(358/57*Pi) 3141592653589793 l004 Pi/tanh(515/82*Pi) 3141592653589793 l004 Pi/tanh(672/107*Pi) 3141592653589793 l004 Pi/tanh(157/25*Pi) 3141592653589793 l004 Pi/tanh(741/118*Pi) 3141592653589793 l004 Pi/tanh(584/93*Pi) 3141592653589793 l004 Pi/tanh(427/68*Pi) 3141592653589793 l004 Pi/tanh(697/111*Pi) 3141592653589793 l004 Pi/tanh(270/43*Pi) 3141592653589793 l004 Pi/tanh(653/104*Pi) 3141592653589793 l004 Pi/tanh(383/61*Pi) 3141592653589793 l004 Pi/tanh(496/79*Pi) 3141592653589793 l004 Pi/tanh(609/97*Pi) 3141592653589793 l004 Pi/tanh(722/115*Pi) 3141592653589793 l004 Pi/tanh(113/18*Pi) 3141592653589793 l004 Pi/tanh(747/119*Pi) 3141592653589793 l004 Pi/tanh(634/101*Pi) 3141592653589793 l004 Pi/tanh(521/83*Pi) 3141592653589793 l004 Pi/tanh(408/65*Pi) 3141592653589793 l004 Pi/tanh(703/112*Pi) 3141592653589793 l004 Pi/tanh(295/47*Pi) 3141592653589793 l004 Pi/tanh(477/76*Pi) 3141592653589793 l004 Pi/tanh(659/105*Pi) 3141592653589793 l004 Pi/tanh(182/29*Pi) 3141592653589793 l004 Pi/tanh(615/98*Pi) 3141592653589793 l004 Pi/tanh(433/69*Pi) 3141592653589793 l004 Pi/tanh(684/109*Pi) 3141592653589793 l004 Pi/tanh(251/40*Pi) 3141592653589793 l004 Pi/tanh(571/91*Pi) 3141592653589793 l004 Pi/tanh(320/51*Pi) 3141592653589793 l004 Pi/tanh(709/113*Pi) 3141592653589793 l004 Pi/tanh(389/62*Pi) 3141592653589793 l004 Pi/tanh(458/73*Pi) 3141592653589793 l004 Pi/tanh(527/84*Pi) 3141592653589793 l004 Pi/tanh(596/95*Pi) 3141592653589793 l004 Pi/tanh(665/106*Pi) 3141592653589793 l004 Pi/tanh(734/117*Pi) 3141592653589793 l004 Pi/tanh(69/11*Pi) 3141592653589793 l004 Pi/tanh(715/114*Pi) 3141592653589793 l004 Pi/tanh(646/103*Pi) 3141592653589793 l004 Pi/tanh(577/92*Pi) 3141592653589793 l004 Pi/tanh(508/81*Pi) 3141592653589793 l004 Pi/tanh(439/70*Pi) 3141592653589793 l004 Pi/tanh(370/59*Pi) 3141592653589793 l004 Pi/tanh(671/107*Pi) 3141592653589793 l004 Pi/tanh(301/48*Pi) 3141592653589793 l004 Pi/tanh(533/85*Pi) 3141592653589793 l004 Pi/tanh(232/37*Pi) 3141592653589793 l004 Pi/tanh(627/100*Pi) 3141592653589793 l004 Pi/tanh(395/63*Pi) 3141592653589793 l004 Pi/tanh(558/89*Pi) 3141592653589793 l004 Pi/tanh(721/115*Pi) 3141592653589793 l004 Pi/tanh(163/26*Pi) 3141592653589793 l004 Pi/tanh(746/119*Pi) 3141592653589793 l004 Pi/tanh(583/93*Pi) 3141592653589793 l004 Pi/tanh(420/67*Pi) 3141592653589793 l004 Pi/tanh(677/108*Pi) 3141592653589793 l004 Pi/tanh(257/41*Pi) 3141592653589793 l004 Pi/tanh(608/97*Pi) 3141592653589793 l004 Pi/tanh(351/56*Pi) 3141592653589793 l004 Pi/tanh(445/71*Pi) 3141592653589793 l004 Pi/tanh(539/86*Pi) 3141592653589793 l004 Pi/tanh(633/101*Pi) 3141592653589793 l004 Pi/tanh(727/116*Pi) 3141592653589793 l004 Pi/tanh(94/15*Pi) 3141592653589793 l004 Pi/tanh(683/109*Pi) 3141592653589793 l004 Pi/tanh(589/94*Pi) 3141592653589793 l004 Pi/tanh(495/79*Pi) 3141592653589793 l004 Pi/tanh(401/64*Pi) 3141592653589793 l004 Pi/tanh(708/113*Pi) 3141592653589793 l004 Pi/tanh(307/49*Pi) 3141592653589793 l004 Pi/tanh(520/83*Pi) 3141592653589793 l004 Pi/tanh(733/117*Pi) 3141592653589793 l004 Pi/tanh(213/34*Pi) 3141592653589793 l004 Pi/tanh(545/87*Pi) 3141592653589793 l004 Pi/tanh(332/53*Pi) 3141592653589793 l004 Pi/tanh(451/72*Pi) 3141592653589793 l004 Pi/tanh(570/91*Pi) 3141592653589793 l004 Pi/tanh(689/110*Pi) 3141592653589793 l004 Pi/tanh(119/19*Pi) 3141592653589793 l004 Pi/tanh(739/118*Pi) 3141592653589793 l004 Pi/tanh(620/99*Pi) 3141592653589793 l004 Pi/tanh(501/80*Pi) 3141592653589793 l004 Pi/tanh(382/61*Pi) 3141592653589793 l004 Pi/tanh(645/103*Pi) 3141592653589793 l004 Pi/tanh(263/42*Pi) 3141592653589793 l004 Pi/tanh(670/107*Pi) 3141592653589793 l004 Pi/tanh(407/65*Pi) 3141592653589793 l004 Pi/tanh(551/88*Pi) 3141592653589793 l004 Pi/tanh(695/111*Pi) 3141592653589793 l004 Pi/tanh(144/23*Pi) 3141592653589793 l004 Pi/tanh(745/119*Pi) 3141592653589793 l004 Pi/tanh(601/96*Pi) 3141592653589793 l004 Pi/tanh(457/73*Pi) 3141592653589793 l004 Pi/tanh(313/50*Pi) 3141592653589793 l004 Pi/tanh(482/77*Pi) 3141592653589793 l004 Pi/tanh(651/104*Pi) 3141592653589793 l004 Pi/tanh(169/27*Pi) 3141592653589793 l004 Pi/tanh(701/112*Pi) 3141592653589793 l004 Pi/tanh(532/85*Pi) 3141592653589793 l004 Pi/tanh(363/58*Pi) 3141592653589793 l004 Pi/tanh(557/89*Pi) 3141592653589793 l004 Pi/tanh(751/120*Pi) 3141592653589793 l004 Pi/tanh(194/31*Pi) 3141592653589793 l004 Pi/tanh(607/97*Pi) 3141592653589793 l004 Pi/tanh(413/66*Pi) 3141592653589793 l004 Pi/tanh(632/101*Pi) 3141592653589793 l004 Pi/tanh(219/35*Pi) 3141592653589793 l004 Pi/tanh(682/109*Pi) 3141592653589793 l004 Pi/tanh(463/74*Pi) 3141592653589793 l004 Pi/tanh(707/113*Pi) 3141592653589793 l004 Pi/tanh(244/39*Pi) 3141592653589793 l004 Pi/tanh(513/82*Pi) 3141592653589793 l004 Pi/tanh(269/43*Pi) 3141592653589793 l004 Pi/tanh(563/90*Pi) 3141592653589793 l004 Pi/tanh(294/47*Pi) 3141592653589793 l004 Pi/tanh(613/98*Pi) 3141592653589793 l004 Pi/tanh(319/51*Pi) 3141592653589793 l004 Pi/tanh(663/106*Pi) 3141592653589793 l004 Pi/tanh(344/55*Pi) 3141592653589793 l004 Pi/tanh(713/114*Pi) 3141592653589793 l004 Pi/tanh(369/59*Pi) 3141592653589793 l004 Pi/tanh(394/63*Pi) 3141592653589793 l004 Pi/tanh(419/67*Pi) 3141592653589793 l004 Pi/tanh(444/71*Pi) 3141592653589793 l004 Pi/tanh(469/75*Pi) 3141592653589793 l004 Pi/tanh(494/79*Pi) 3141592653589793 l004 Pi/tanh(519/83*Pi) 3141592653589793 l004 Pi/tanh(544/87*Pi) 3141592653589793 l004 Pi/tanh(569/91*Pi) 3141592653589793 l004 Pi/tanh(594/95*Pi) 3141592653589793 l004 Pi/tanh(619/99*Pi) 3141592653589793 l004 Pi/tanh(644/103*Pi) 3141592653589793 l004 Pi/tanh(669/107*Pi) 3141592653589793 l004 Pi/tanh(694/111*Pi) 3141592653589793 l004 Pi/tanh(719/115*Pi) 3141592653589793 l004 Pi/tanh(744/119*Pi) 3141592653589793 l004 Pi/tanh(25/4*Pi) 3141592653589793 l004 Pi/tanh(731/117*Pi) 3141592653589793 l004 Pi/tanh(706/113*Pi) 3141592653589793 l004 Pi/tanh(681/109*Pi) 3141592653589793 l004 Pi/tanh(656/105*Pi) 3141592653589793 l004 Pi/tanh(631/101*Pi) 3141592653589793 l004 Pi/tanh(606/97*Pi) 3141592653589793 l004 Pi/tanh(581/93*Pi) 3141592653589793 l004 Pi/tanh(556/89*Pi) 3141592653589793 l004 Pi/tanh(531/85*Pi) 3141592653589793 l004 Pi/tanh(506/81*Pi) 3141592653589793 l004 Pi/tanh(481/77*Pi) 3141592653589793 l004 Pi/tanh(456/73*Pi) 3141592653589793 l004 Pi/tanh(431/69*Pi) 3141592653589793 l004 Pi/tanh(406/65*Pi) 3141592653589793 l004 Pi/tanh(381/61*Pi) 3141592653589793 l004 Pi/tanh(737/118*Pi) 3141592653589793 l004 Pi/tanh(356/57*Pi) 3141592653589793 l004 Pi/tanh(687/110*Pi) 3141592653589793 l004 Pi/tanh(331/53*Pi) 3141592653589793 l004 Pi/tanh(637/102*Pi) 3141592653589793 l004 Pi/tanh(306/49*Pi) 3141592653589793 l004 Pi/tanh(587/94*Pi) 3141592653589793 l004 Pi/tanh(281/45*Pi) 3141592653589793 l004 Pi/tanh(537/86*Pi) 3141592653589793 l004 Pi/tanh(256/41*Pi) 3141592653589793 l004 Pi/tanh(743/119*Pi) 3141592653589793 l004 Pi/tanh(487/78*Pi) 3141592653589793 l004 Pi/tanh(718/115*Pi) 3141592653589793 l004 Pi/tanh(231/37*Pi) 3141592653589793 l004 Pi/tanh(668/107*Pi) 3141592653589793 l004 Pi/tanh(437/70*Pi) 3141592653589793 l004 Pi/tanh(643/103*Pi) 3141592653589793 l004 Pi/tanh(206/33*Pi) 3141592653589793 l004 Pi/tanh(593/95*Pi) 3141592653589793 l004 Pi/tanh(387/62*Pi) 3141592653589793 l004 Pi/tanh(568/91*Pi) 3141592653589793 l004 Pi/tanh(749/120*Pi) 3141592653589793 l004 Pi/tanh(181/29*Pi) 3141592653589793 l004 Pi/tanh(699/112*Pi) 3141592653589793 l004 Pi/tanh(518/83*Pi) 3141592653589793 l004 Pi/tanh(337/54*Pi) 3141592653589793 l004 Pi/tanh(493/79*Pi) 3141592653589793 l004 Pi/tanh(649/104*Pi) 3141592653589793 l004 Pi/tanh(156/25*Pi) 3141592653589793 l004 Pi/tanh(599/96*Pi) 3141592653589793 l004 Pi/tanh(443/71*Pi) 3141592653589793 l004 Pi/tanh(730/117*Pi) 3141592653589793 l004 Pi/tanh(287/46*Pi) 3141592653589793 l004 Pi/tanh(705/113*Pi) 3141592653589793 l004 Pi/tanh(418/67*Pi) 3141592653589793 l004 Pi/tanh(549/88*Pi) 3141592653589793 l004 Pi/tanh(680/109*Pi) 3141592653589793 l004 Pi/tanh(131/21*Pi) 3141592653589793 l004 Pi/tanh(630/101*Pi) 3141592653589793 l004 Pi/tanh(499/80*Pi) 3141592653589793 l004 Pi/tanh(368/59*Pi) 3141592653589793 l004 Pi/tanh(605/97*Pi) 3141592653589793 l004 Pi/tanh(237/38*Pi) 3141592653589793 l004 Pi/tanh(580/93*Pi) 3141592653589793 l004 Pi/tanh(343/55*Pi) 3141592653589793 l004 Pi/tanh(449/72*Pi) 3141592653589793 l004 Pi/tanh(555/89*Pi) 3141592653589793 l004 Pi/tanh(661/106*Pi) 3141592653589793 l004 Pi/tanh(106/17*Pi) 3141592653589793 l004 Pi/tanh(717/115*Pi) 3141592653589793 l004 Pi/tanh(611/98*Pi) 3141592653589793 l004 Pi/tanh(505/81*Pi) 3141592653589793 l004 Pi/tanh(399/64*Pi) 3141592653589793 l004 Pi/tanh(692/111*Pi) 3141592653589793 l004 Pi/tanh(293/47*Pi) 3141592653589793 l004 Pi/tanh(480/77*Pi) 3141592653589793 l004 Pi/tanh(667/107*Pi) 3141592653589793 l004 Pi/tanh(187/30*Pi) 3141592653589793 l004 Pi/tanh(642/103*Pi) 3141592653589793 l004 Pi/tanh(455/73*Pi) 3141592653589793 l004 Pi/tanh(723/116*Pi) 3141592653589793 l004 Pi/tanh(268/43*Pi) 3141592653589793 l004 Pi/tanh(617/99*Pi) 3141592653589793 l004 Pi/tanh(349/56*Pi) 3141592653589793 l004 Pi/tanh(430/69*Pi) 3141592653589793 l004 Pi/tanh(511/82*Pi) 3141592653589793 l004 Pi/tanh(592/95*Pi) 3141592653589793 l004 Pi/tanh(673/108*Pi) 3141592653589793 l004 Pi/tanh(81/13*Pi) 3141592653589793 l004 Pi/tanh(704/113*Pi) 3141592653589793 l004 Pi/tanh(623/100*Pi) 3141592653589793 l004 Pi/tanh(542/87*Pi) 3141592653589793 l004 Pi/tanh(461/74*Pi) 3141592653589793 l004 Pi/tanh(380/61*Pi) 3141592653589793 l004 Pi/tanh(679/109*Pi) 3141592653589793 l004 Pi/tanh(299/48*Pi) 3141592653589793 l004 Pi/tanh(517/83*Pi) 3141592653589793 l004 Pi/tanh(735/118*Pi) 3141592653589793 l004 Pi/tanh(218/35*Pi) 3141592653589793 l004 Pi/tanh(573/92*Pi) 3141592653589793 l004 Pi/tanh(355/57*Pi) 3141592653589793 l004 Pi/tanh(492/79*Pi) 3141592653589793 l004 Pi/tanh(629/101*Pi) 3141592653589793 l004 Pi/tanh(137/22*Pi) 3141592653589793 l004 Pi/tanh(741/119*Pi) 3141592653589793 l004 Pi/tanh(604/97*Pi) 3141592653589793 l004 Pi/tanh(467/75*Pi) 3141592653589793 l004 Pi/tanh(330/53*Pi) 3141592653589793 l004 Pi/tanh(523/84*Pi) 3141592653589793 l004 Pi/tanh(716/115*Pi) 3141592653589793 l004 Pi/tanh(193/31*Pi) 3141592653589793 l004 Pi/tanh(635/102*Pi) 3141592653589793 l004 Pi/tanh(442/71*Pi) 3141592653589793 l004 Pi/tanh(691/111*Pi) 3141592653589793 l004 Pi/tanh(249/40*Pi) 3141592653589793 l004 Pi/tanh(554/89*Pi) 3141592653589793 l004 Pi/tanh(305/49*Pi) 3141592653589793 l004 Pi/tanh(666/107*Pi) 3141592653589793 l004 Pi/tanh(361/58*Pi) 3141592653589793 l004 Pi/tanh(417/67*Pi) 3141592653589793 l004 Pi/tanh(473/76*Pi) 3141592653589793 l004 Pi/tanh(529/85*Pi) 3141592653589793 l004 Pi/tanh(585/94*Pi) 3141592653589793 l004 Pi/tanh(641/103*Pi) 3141592653589793 l004 Pi/tanh(697/112*Pi) 3141592653589793 l004 Pi/tanh(56/9*Pi) 3141592653589793 l004 Pi/tanh(703/113*Pi) 3141592653589793 l004 Pi/tanh(647/104*Pi) 3141592653589793 l004 Pi/tanh(591/95*Pi) 3141592653589793 l004 Pi/tanh(535/86*Pi) 3141592653589793 l004 Pi/tanh(479/77*Pi) 3141592653589793 l004 Pi/tanh(423/68*Pi) 3141592653589793 l004 Pi/tanh(367/59*Pi) 3141592653589793 l004 Pi/tanh(678/109*Pi) 3141592653589793 l004 Pi/tanh(311/50*Pi) 3141592653589793 l004 Pi/tanh(566/91*Pi) 3141592653589793 l004 Pi/tanh(255/41*Pi) 3141592653589793 l004 Pi/tanh(709/114*Pi) 3141592653589793 l004 Pi/tanh(454/73*Pi) 3141592653589793 l004 Pi/tanh(653/105*Pi) 3141592653589793 l004 Pi/tanh(199/32*Pi) 3141592653589793 l004 Pi/tanh(740/119*Pi) 3141592653589793 l004 Pi/tanh(541/87*Pi) 3141592653589793 l004 Pi/tanh(342/55*Pi) 3141592653589793 l004 Pi/tanh(485/78*Pi) 3141592653589793 l004 Pi/tanh(628/101*Pi) 3141592653589793 l004 Pi/tanh(143/23*Pi) 3141592653589793 l004 Pi/tanh(659/106*Pi) 3141592653589793 l004 Pi/tanh(516/83*Pi) 3141592653589793 l004 Pi/tanh(373/60*Pi) 3141592653589793 l004 Pi/tanh(603/97*Pi) 3141592653589793 l004 Pi/tanh(230/37*Pi) 3141592653589793 l004 Pi/tanh(547/88*Pi) 3141592653589793 l004 Pi/tanh(317/51*Pi) 3141592653589793 l004 Pi/tanh(721/116*Pi) 3141592653589793 l004 Pi/tanh(404/65*Pi) 3141592653589793 l004 Pi/tanh(491/79*Pi) 3141592653589793 l004 Pi/tanh(578/93*Pi) 3141592653589793 l004 Pi/tanh(665/107*Pi) 3141592653589793 l004 Pi/tanh(87/14*Pi) 3141592653589793 l004 Pi/tanh(727/117*Pi) 3141592653589793 l004 Pi/tanh(640/103*Pi) 3141592653589793 l004 Pi/tanh(553/89*Pi) 3141592653589793 l004 Pi/tanh(466/75*Pi) 3141592653589793 l004 Pi/tanh(379/61*Pi) 3141592653589793 l004 Pi/tanh(671/108*Pi) 3141592653589793 l004 Pi/tanh(292/47*Pi) 3141592653589793 l004 Pi/tanh(497/80*Pi) 3141592653589793 l004 Pi/tanh(702/113*Pi) 3141592653589793 l004 Pi/tanh(205/33*Pi) 3141592653589793 l004 Pi/tanh(733/118*Pi) 3141592653589793 l004 Pi/tanh(528/85*Pi) 3141592653589793 l004 Pi/tanh(323/52*Pi) 3141592653589793 l004 Pi/tanh(441/71*Pi) 3141592653589793 l004 Pi/tanh(559/90*Pi) 3141592653589793 l004 Pi/tanh(677/109*Pi) 3141592653589793 l004 Pi/tanh(118/19*Pi) 3141592653589793 l004 Pi/tanh(739/119*Pi) 3141592653589793 l004 Pi/tanh(621/100*Pi) 3141592653589793 l004 Pi/tanh(503/81*Pi) 3141592653589793 l004 Pi/tanh(385/62*Pi) 3141592653589793 l004 Pi/tanh(652/105*Pi) 3141592653589793 l004 Pi/tanh(267/43*Pi) 3141592653589793 l004 Pi/tanh(683/110*Pi) 3141592653589793 m001 ReciprocalLucas^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(416/67*Pi) 3141592653589793 l004 Pi/tanh(565/91*Pi) 3141592653589793 l004 Pi/tanh(714/115*Pi) 3141592653589793 l004 Pi/tanh(149/24*Pi) 3141592653589793 l004 Pi/tanh(627/101*Pi) 3141592653589793 l004 Pi/tanh(478/77*Pi) 3141592653589793 l004 Pi/tanh(329/53*Pi) 3141592653589793 l004 Pi/tanh(509/82*Pi) 3141592653589793 l004 Pi/tanh(689/111*Pi) 3141592653589793 l004 Pi/tanh(180/29*Pi) 3141592653589793 l004 Pi/tanh(571/92*Pi) 3141592653589793 l004 Pi/tanh(391/63*Pi) 3141592653589793 l004 Pi/tanh(602/97*Pi) 3141592653589793 l004 Pi/tanh(211/34*Pi) 3141592653589793 l004 Pi/tanh(664/107*Pi) 3141592653589793 l004 Pi/tanh(453/73*Pi) 3141592653589793 l004 Pi/tanh(695/112*Pi) 3141592653589793 l004 Pi/tanh(242/39*Pi) 3141592653589793 l004 Pi/tanh(515/83*Pi) 3141592653589793 l004 Pi/tanh(273/44*Pi) 3141592653589793 l004 Pi/tanh(577/93*Pi) 3141592653589793 l004 Pi/tanh(304/49*Pi) 3141592653589793 l004 Pi/tanh(639/103*Pi) 3141592653589793 l004 Pi/tanh(335/54*Pi) 3141592653589793 l004 Pi/tanh(701/113*Pi) 3141592653589793 l004 Pi/tanh(366/59*Pi) 3141592653589793 l004 Pi/tanh(397/64*Pi) 3141592653589793 l004 Pi/tanh(428/69*Pi) 3141592653589793 l004 Pi/tanh(459/74*Pi) 3141592653589793 l004 Pi/tanh(490/79*Pi) 3141592653589793 l004 Pi/tanh(521/84*Pi) 3141592653589793 l004 Pi/tanh(552/89*Pi) 3141592653589793 l004 Pi/tanh(583/94*Pi) 3141592653589793 l004 Pi/tanh(614/99*Pi) 3141592653589793 l004 Pi/tanh(645/104*Pi) 3141592653589793 l004 Pi/tanh(676/109*Pi) 3141592653589793 l004 Pi/tanh(707/114*Pi) 3141592653589793 l004 Pi/tanh(738/119*Pi) 3141592653589793 l004 Pi/tanh(31/5*Pi) 3141592653589793 l004 Pi/tanh(719/116*Pi) 3141592653589793 l004 Pi/tanh(688/111*Pi) 3141592653589793 l004 Pi/tanh(657/106*Pi) 3141592653589793 l004 Pi/tanh(626/101*Pi) 3141592653589793 l004 Pi/tanh(595/96*Pi) 3141592653589793 l004 Pi/tanh(564/91*Pi) 3141592653589793 l004 Pi/tanh(533/86*Pi) 3141592653589793 l004 Pi/tanh(502/81*Pi) 3141592653589793 l004 Pi/tanh(471/76*Pi) 3141592653589793 l004 Pi/tanh(440/71*Pi) 3141592653589793 l004 Pi/tanh(409/66*Pi) 3141592653589793 l004 Pi/tanh(378/61*Pi) 3141592653589793 l004 Pi/tanh(725/117*Pi) 3141592653589793 l004 Pi/tanh(347/56*Pi) 3141592653589793 l004 Pi/tanh(663/107*Pi) 3141592653589793 l004 Pi/tanh(316/51*Pi) 3141592653589793 l004 Pi/tanh(601/97*Pi) 3141592653589793 l004 Pi/tanh(285/46*Pi) 3141592653589793 l004 Pi/tanh(539/87*Pi) 3141592653589793 l004 Pi/tanh(254/41*Pi) 3141592653589793 l004 Pi/tanh(731/118*Pi) 3141592653589793 l004 Pi/tanh(477/77*Pi) 3141592653589793 l004 Pi/tanh(700/113*Pi) 3141592653589793 l004 Pi/tanh(223/36*Pi) 3141592653589793 l004 Pi/tanh(638/103*Pi) 3141592653589793 l004 Pi/tanh(415/67*Pi) 3141592653589793 l004 Pi/tanh(607/98*Pi) 3141592653589793 l004 Pi/tanh(192/31*Pi) 3141592653589793 l004 Pi/tanh(737/119*Pi) 3141592653589793 l004 Pi/tanh(545/88*Pi) 3141592653589793 l004 Pi/tanh(353/57*Pi) 3141592653589793 l004 Pi/tanh(514/83*Pi) 3141592653589793 l004 Pi/tanh(675/109*Pi) 3141592653589793 l004 Pi/tanh(161/26*Pi) 3141592653589793 l004 Pi/tanh(613/99*Pi) 3141592653589793 l004 Pi/tanh(452/73*Pi) 3141592653589793 l004 Pi/tanh(743/120*Pi) 3141592653589793 l004 Pi/tanh(291/47*Pi) 3141592653589793 l004 Pi/tanh(712/115*Pi) 3141592653589793 l004 Pi/tanh(421/68*Pi) 3141592653589793 l004 Pi/tanh(551/89*Pi) 3141592653589793 l004 Pi/tanh(681/110*Pi) 3141592653589793 l004 Pi/tanh(130/21*Pi) 3141592653589793 l004 Pi/tanh(619/100*Pi) 3141592653589793 l004 Pi/tanh(489/79*Pi) 3141592653589793 l004 Pi/tanh(359/58*Pi) 3141592653589793 l004 Pi/tanh(588/95*Pi) 3141592653589793 l004 Pi/tanh(229/37*Pi) 3141592653589793 l004 Pi/tanh(557/90*Pi) 3141592653589793 l004 Pi/tanh(328/53*Pi) 3141592653589793 l004 Pi/tanh(427/69*Pi) 3141592653589793 l004 Pi/tanh(526/85*Pi) 3141592653589793 l004 Pi/tanh(625/101*Pi) 3141592653589793 l004 Pi/tanh(724/117*Pi) 3141592653589793 l004 Pi/tanh(99/16*Pi) 3141592653589793 l004 Pi/tanh(662/107*Pi) 3141592653589793 l004 Pi/tanh(563/91*Pi) 3141592653589793 l004 Pi/tanh(464/75*Pi) 3141592653589793 l004 Pi/tanh(365/59*Pi) 3141592653589793 l004 Pi/tanh(631/102*Pi) 3141592653589793 l004 Pi/tanh(266/43*Pi) 3141592653589793 l004 Pi/tanh(699/113*Pi) 3141592653589793 l004 Pi/tanh(433/70*Pi) 3141592653589793 l004 Pi/tanh(600/97*Pi) 3141592653589793 l004 Pi/tanh(167/27*Pi) 3141592653589793 l004 Pi/tanh(736/119*Pi) 3141592653589793 l004 Pi/tanh(569/92*Pi) 3141592653589793 l004 Pi/tanh(402/65*Pi) 3141592653589793 l004 Pi/tanh(637/103*Pi) 3141592653589793 l004 Pi/tanh(235/38*Pi) 3141592653589793 l004 Pi/tanh(538/87*Pi) 3141592653589793 l004 Pi/tanh(303/49*Pi) 3141592653589793 l004 Pi/tanh(674/109*Pi) 3141592653589793 l004 Pi/tanh(371/60*Pi) 3141592653589793 l004 Pi/tanh(439/71*Pi) 3141592653589793 l004 Pi/tanh(507/82*Pi) 3141592653589793 l004 Pi/tanh(575/93*Pi) 3141592653589793 l004 Pi/tanh(643/104*Pi) 3141592653589793 l004 Pi/tanh(711/115*Pi) 3141592653589793 l004 Pi/tanh(68/11*Pi) 3141592653589793 l004 Pi/tanh(717/116*Pi) 3141592653589793 l004 Pi/tanh(649/105*Pi) 3141592653589793 l004 Pi/tanh(581/94*Pi) 3141592653589793 l004 Pi/tanh(513/83*Pi) 3141592653589793 l004 Pi/tanh(445/72*Pi) 3141592653589793 l004 Pi/tanh(377/61*Pi) 3141592653589793 l004 Pi/tanh(686/111*Pi) 3141592653589793 l004 Pi/tanh(309/50*Pi) 3141592653589793 l004 Pi/tanh(550/89*Pi) 3141592653589793 l004 Pi/tanh(241/39*Pi) 3141592653589793 l004 Pi/tanh(655/106*Pi) 3141592653589793 l004 Pi/tanh(414/67*Pi) 3141592653589793 l004 Pi/tanh(587/95*Pi) 3141592653589793 l004 Pi/tanh(173/28*Pi) 3141592653589793 l004 Pi/tanh(624/101*Pi) 3141592653589793 l004 Pi/tanh(451/73*Pi) 3141592653589793 l004 Pi/tanh(729/118*Pi) 3141592653589793 l004 Pi/tanh(278/45*Pi) 3141592653589793 l004 Pi/tanh(661/107*Pi) 3141592653589793 l004 Pi/tanh(383/62*Pi) 3141592653589793 l004 Pi/tanh(488/79*Pi) 3141592653589793 l004 Pi/tanh(593/96*Pi) 3141592653589793 l004 Pi/tanh(698/113*Pi) 3141592653589793 l004 Pi/tanh(105/17*Pi) 3141592653589793 l004 Pi/tanh(667/108*Pi) 3141592653589793 l004 Pi/tanh(562/91*Pi) 3141592653589793 l004 Pi/tanh(457/74*Pi) 3141592653589793 l004 Pi/tanh(352/57*Pi) 3141592653589793 l004 Pi/tanh(599/97*Pi) 3141592653589793 l004 Pi/tanh(247/40*Pi) 3141592653589793 l004 Pi/tanh(636/103*Pi) 3141592653589793 l004 Pi/tanh(389/63*Pi) 3141592653589793 l004 Pi/tanh(531/86*Pi) 3141592653589793 l004 Pi/tanh(673/109*Pi) 3141592653589793 l004 Pi/tanh(142/23*Pi) 3141592653589793 l004 Pi/tanh(605/98*Pi) 3141592653589793 l004 Pi/tanh(463/75*Pi) 3141592653589793 l004 Pi/tanh(321/52*Pi) 3141592653589793 l004 Pi/tanh(500/81*Pi) 3141592653589793 l004 Pi/tanh(679/110*Pi) 3141592653589793 l004 Pi/tanh(179/29*Pi) 3141592653589793 l004 Pi/tanh(574/93*Pi) 3141592653589793 l004 Pi/tanh(395/64*Pi) 3141592653589793 l004 Pi/tanh(611/99*Pi) 3141592653589793 l004 Pi/tanh(216/35*Pi) 3141592653589793 l004 Pi/tanh(685/111*Pi) 3141592653589793 l004 Pi/tanh(469/76*Pi) 3141592653589793 l004 Pi/tanh(722/117*Pi) 3141592653589793 l004 Pi/tanh(253/41*Pi) 3141592653589793 l004 Pi/tanh(543/88*Pi) 3141592653589793 l004 Pi/tanh(290/47*Pi) 3141592653589793 l004 Pi/tanh(617/100*Pi) 3141592653589793 l004 Pi/tanh(327/53*Pi) 3141592653589793 l004 Pi/tanh(691/112*Pi) 3141592653589793 l004 Pi/tanh(364/59*Pi) 3141592653589793 l004 Pi/tanh(401/65*Pi) 3141592653589793 l004 Pi/tanh(438/71*Pi) 3141592653589793 l004 Pi/tanh(475/77*Pi) 3141592653589793 l004 Pi/tanh(512/83*Pi) 3141592653589793 l004 Pi/tanh(549/89*Pi) 3141592653589793 l004 Pi/tanh(586/95*Pi) 3141592653589793 l004 Pi/tanh(623/101*Pi) 3141592653589793 l004 Pi/tanh(660/107*Pi) 3141592653589793 l004 Pi/tanh(697/113*Pi) 3141592653589793 l004 Pi/tanh(734/119*Pi) 3141592653589793 m001 HeathBrownMoroz^(2*Pi/GAMMA(5/6))+Pi 3141592653589793 l004 Pi/tanh(37/6*Pi) 3141592653589793 l004 Pi/tanh(709/115*Pi) 3141592653589793 l004 Pi/tanh(672/109*Pi) 3141592653589793 l004 Pi/tanh(635/103*Pi) 3141592653589793 l004 Pi/tanh(598/97*Pi) 3141592653589793 l004 Pi/tanh(561/91*Pi) 3141592653589793 l004 Pi/tanh(524/85*Pi) 3141592653589793 l004 Pi/tanh(487/79*Pi) 3141592653589793 l004 Pi/tanh(450/73*Pi) 3141592653589793 l004 Pi/tanh(413/67*Pi) 3141592653589793 l004 Pi/tanh(376/61*Pi) 3141592653589793 l004 Pi/tanh(715/116*Pi) 3141592653589793 l004 Pi/tanh(339/55*Pi) 3141592653589793 l004 Pi/tanh(641/104*Pi) 3141592653589793 l004 Pi/tanh(302/49*Pi) 3141592653589793 l004 Pi/tanh(567/92*Pi) 3141592653589793 l004 Pi/tanh(265/43*Pi) 3141592653589793 l004 Pi/tanh(493/80*Pi) 3141592653589793 l004 Pi/tanh(721/117*Pi) 3141592653589793 l004 Pi/tanh(228/37*Pi) 3141592653589793 l004 Pi/tanh(647/105*Pi) 3141592653589793 l004 Pi/tanh(419/68*Pi) 3141592653589793 l004 Pi/tanh(610/99*Pi) 3141592653589793 l005 ln(sec(377/40)) 3141592653589793 l004 Pi/tanh(191/31*Pi) 3141592653589793 l004 Pi/tanh(727/118*Pi) 3141592653589793 l004 Pi/tanh(536/87*Pi) 3141592653589793 l004 Pi/tanh(345/56*Pi) 3141592653589793 l004 Pi/tanh(499/81*Pi) 3141592653589793 l004 Pi/tanh(653/106*Pi) 3141592653589793 l004 Pi/tanh(154/25*Pi) 3141592653589793 l004 Pi/tanh(733/119*Pi) 3141592653589793 l004 Pi/tanh(579/94*Pi) 3141592653589793 l004 Pi/tanh(425/69*Pi) 3141592653589793 l004 Pi/tanh(696/113*Pi) 3141592653589793 l004 Pi/tanh(271/44*Pi) 3141592653589793 l004 Pi/tanh(659/107*Pi) 3141592653589793 l004 Pi/tanh(388/63*Pi) 3141592653589793 l004 Pi/tanh(505/82*Pi) 3141592653589793 l004 Pi/tanh(622/101*Pi) 3141592653589793 l004 Pi/tanh(739/120*Pi) 3141592653589793 m001 Pi+exp(-1/2*Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 l004 Pi/tanh(117/19*Pi) 3141592653589793 l004 Pi/tanh(665/108*Pi) 3141592653589793 l004 Pi/tanh(548/89*Pi) 3141592653589793 l004 Pi/tanh(431/70*Pi) 3141592653589793 l004 Pi/tanh(314/51*Pi) 3141592653589793 l004 Pi/tanh(511/83*Pi) 3141592653589793 l004 Pi/tanh(708/115*Pi) 3141592653589793 l004 Pi/tanh(197/32*Pi) 3141592653589793 l004 Pi/tanh(671/109*Pi) 3141592653589793 l004 Pi/tanh(474/77*Pi) 3141592653589793 l004 Pi/tanh(277/45*Pi) 3141592653589793 l004 Pi/tanh(634/103*Pi) 3141592653589793 l004 Pi/tanh(357/58*Pi) 3141592653589793 l004 Pi/tanh(437/71*Pi) 3141592653589793 l004 Pi/tanh(517/84*Pi) 3141592653589793 l004 Pi/tanh(597/97*Pi) 3141592653589793 l004 Pi/tanh(677/110*Pi) 3141592653589793 l004 Pi/tanh(80/13*Pi) 3141592653589793 l004 Pi/tanh(683/111*Pi) 3141592653589793 l004 Pi/tanh(603/98*Pi) 3141592653589793 l004 Pi/tanh(523/85*Pi) 3141592653589793 l004 Pi/tanh(443/72*Pi) 3141592653589793 l004 Pi/tanh(363/59*Pi) 3141592653589793 l004 Pi/tanh(646/105*Pi) 3141592653589793 l004 Pi/tanh(283/46*Pi) 3141592653589793 l004 Pi/tanh(486/79*Pi) 3141592653589793 l004 Pi/tanh(689/112*Pi) 3141592653589793 l004 Pi/tanh(203/33*Pi) 3141592653589793 l004 Pi/tanh(732/119*Pi) 3141592653589793 l004 Pi/tanh(529/86*Pi) 3141592653589793 l004 Pi/tanh(326/53*Pi) 3141592653589793 l004 Pi/tanh(449/73*Pi) 3141592653589793 l004 Pi/tanh(572/93*Pi) 3141592653589793 l004 Pi/tanh(695/113*Pi) 3141592653589793 l004 Pi/tanh(123/20*Pi) 3141592653589793 l004 Pi/tanh(658/107*Pi) 3141592653589793 l004 Pi/tanh(535/87*Pi) 3141592653589793 l004 Pi/tanh(412/67*Pi) 3141592653589793 l004 Pi/tanh(701/114*Pi) 3141592653589793 l004 Pi/tanh(289/47*Pi) 3141592653589793 l004 Pi/tanh(455/74*Pi) 3141592653589793 l004 Pi/tanh(621/101*Pi) 3141592653589793 l004 Pi/tanh(166/27*Pi) 3141592653589793 l004 Pi/tanh(707/115*Pi) 3141592653589793 l004 Pi/tanh(541/88*Pi) 3141592653589793 l004 Pi/tanh(375/61*Pi) 3141592653589793 l004 Pi/tanh(584/95*Pi) 3141592653589793 l004 Pi/tanh(209/34*Pi) 3141592653589793 l004 Pi/tanh(670/109*Pi) 3141592653589793 l004 Pi/tanh(461/75*Pi) 3141592653589793 l004 Pi/tanh(713/116*Pi) 3141592653589793 l004 Pi/tanh(252/41*Pi) 3141592653589793 l004 Pi/tanh(547/89*Pi) 3141592653589793 l004 Pi/tanh(295/48*Pi) 3141592653589793 l004 Pi/tanh(633/103*Pi) 3141592653589793 l004 Pi/tanh(338/55*Pi) 3141592653589793 l004 Pi/tanh(719/117*Pi) 3141592653589793 l004 Pi/tanh(381/62*Pi) 3141592653589793 l004 Pi/tanh(424/69*Pi) 3141592653589793 l004 Pi/tanh(467/76*Pi) 3141592653589793 l004 Pi/tanh(510/83*Pi) 3141592653589793 l004 Pi/tanh(553/90*Pi) 3141592653589793 l004 Pi/tanh(596/97*Pi) 3141592653589793 l004 Pi/tanh(639/104*Pi) 3141592653589793 l004 Pi/tanh(682/111*Pi) 3141592653589793 l004 Pi/tanh(725/118*Pi) 3141592653589793 l004 Pi/tanh(43/7*Pi) 3141592653589793 l004 Pi/tanh(737/120*Pi) 3141592653589793 l004 Pi/tanh(694/113*Pi) 3141592653589793 l004 Pi/tanh(651/106*Pi) 3141592653589793 l004 Pi/tanh(608/99*Pi) 3141592653589793 l004 Pi/tanh(565/92*Pi) 3141592653589793 l004 Pi/tanh(522/85*Pi) 3141592653589793 l004 Pi/tanh(479/78*Pi) 3141592653589793 l004 Pi/tanh(436/71*Pi) 3141592653589793 l004 Pi/tanh(393/64*Pi) 3141592653589793 l004 Pi/tanh(350/57*Pi) 3141592653589793 l004 Pi/tanh(657/107*Pi) 3141592653589793 l004 Pi/tanh(307/50*Pi) 3141592653589793 l004 Pi/tanh(571/93*Pi) 3141592653589793 l004 Pi/tanh(264/43*Pi) 3141592653589793 l004 Pi/tanh(485/79*Pi) 3141592653589793 l004 Pi/tanh(706/115*Pi) 3141592653589793 l004 Pi/tanh(221/36*Pi) 3141592653589793 l004 Pi/tanh(620/101*Pi) 3141592653589793 l004 Pi/tanh(399/65*Pi) 3141592653589793 l004 Pi/tanh(577/94*Pi) 3141592653589793 l004 Pi/tanh(178/29*Pi) 3141592653589793 l004 Pi/tanh(669/109*Pi) 3141592653589793 l004 Pi/tanh(491/80*Pi) 3141592653589793 l004 Pi/tanh(313/51*Pi) 3141592653589793 l004 Pi/tanh(448/73*Pi) 3141592653589793 l004 Pi/tanh(583/95*Pi) 3141592653589793 l004 Pi/tanh(718/117*Pi) 3141592653589793 l004 Pi/tanh(135/22*Pi) 3141592653589793 l004 Pi/tanh(632/103*Pi) 3141592653589793 l004 Pi/tanh(497/81*Pi) 3141592653589793 l004 Pi/tanh(362/59*Pi) 3141592653589793 l004 Pi/tanh(589/96*Pi) 3141592653589793 l004 Pi/tanh(227/37*Pi) 3141592653589793 l004 Pi/tanh(546/89*Pi) 3141592653589793 l004 Pi/tanh(319/52*Pi) 3141592653589793 l004 Pi/tanh(730/119*Pi) 3141592653589793 l004 Pi/tanh(411/67*Pi) 3141592653589793 l004 Pi/tanh(503/82*Pi) 3141592653589793 l004 Pi/tanh(595/97*Pi) 3141592653589793 l004 Pi/tanh(687/112*Pi) 3141592653589793 l004 Pi/tanh(92/15*Pi) 3141592653589793 l004 Pi/tanh(693/113*Pi) 3141592653589793 l004 Pi/tanh(601/98*Pi) 3141592653589793 l004 Pi/tanh(509/83*Pi) 3141592653589793 l004 Pi/tanh(417/68*Pi) 3141592653589793 l004 Pi/tanh(325/53*Pi) 3141592653589793 l004 Pi/tanh(558/91*Pi) 3141592653589793 l004 Pi/tanh(233/38*Pi) 3141592653589793 l004 Pi/tanh(607/99*Pi) 3141592653589793 l004 Pi/tanh(374/61*Pi) 3141592653589793 l004 Pi/tanh(515/84*Pi) 3141592653589793 l004 Pi/tanh(656/107*Pi) 3141592653589793 l004 Pi/tanh(141/23*Pi) 3141592653589793 l004 Pi/tanh(613/100*Pi) 3141592653589793 l004 Pi/tanh(472/77*Pi) 3141592653589793 l004 Pi/tanh(331/54*Pi) 3141592653589793 l004 Pi/tanh(521/85*Pi) 3141592653589793 l004 Pi/tanh(711/116*Pi) 3141592653589793 l004 Pi/tanh(190/31*Pi) 3141592653589793 l004 Pi/tanh(619/101*Pi) 3141592653589793 l004 Pi/tanh(429/70*Pi) 3141592653589793 l004 Pi/tanh(668/109*Pi) 3141592653589793 l004 Pi/tanh(239/39*Pi) 3141592653589793 l004 Pi/tanh(527/86*Pi) 3141592653589793 l004 Pi/tanh(288/47*Pi) 3141592653589793 l004 Pi/tanh(625/102*Pi) 3141592653589793 l004 Pi/tanh(337/55*Pi) 3141592653589793 l004 Pi/tanh(723/118*Pi) 3141592653589793 l004 Pi/tanh(386/63*Pi) 3141592653589793 l004 Pi/tanh(435/71*Pi) 3141592653589793 l004 Pi/tanh(484/79*Pi) 3141592653589793 l004 Pi/tanh(533/87*Pi) 3141592653589793 l004 Pi/tanh(582/95*Pi) 3141592653589793 l004 Pi/tanh(631/103*Pi) 3141592653589793 l004 Pi/tanh(680/111*Pi) 3141592653589793 l004 Pi/tanh(729/119*Pi) 3141592653589793 l004 Pi/tanh(49/8*Pi) 3141592653589793 l004 Pi/tanh(692/113*Pi) 3141592653589793 l004 Pi/tanh(643/105*Pi) 3141592653589793 l004 Pi/tanh(594/97*Pi) 3141592653589793 l004 Pi/tanh(545/89*Pi) 3141592653589793 l004 Pi/tanh(496/81*Pi) 3141592653589793 l004 Pi/tanh(447/73*Pi) 3141592653589793 l004 Pi/tanh(398/65*Pi) 3141592653589793 l004 Pi/tanh(349/57*Pi) 3141592653589793 l004 Pi/tanh(649/106*Pi) 3141592653589793 l004 Pi/tanh(300/49*Pi) 3141592653589793 l004 Pi/tanh(551/90*Pi) 3141592653589793 l004 Pi/tanh(251/41*Pi) 3141592653589793 l004 Pi/tanh(704/115*Pi) 3141592653589793 l004 Pi/tanh(453/74*Pi) 3141592653589793 l004 Pi/tanh(655/107*Pi) 3141592653589793 l004 Pi/tanh(202/33*Pi) 3141592653589793 l004 Pi/tanh(557/91*Pi) 3141592653589793 l004 Pi/tanh(355/58*Pi) 3141592653589793 l004 Pi/tanh(508/83*Pi) 3141592653589793 l004 Pi/tanh(661/108*Pi) 3141592653589793 l004 Pi/tanh(153/25*Pi) 3141592653589793 l004 Pi/tanh(716/117*Pi) 3141592653589793 l004 Pi/tanh(563/92*Pi) 3141592653589793 l004 Pi/tanh(410/67*Pi) 3141592653589793 l004 Pi/tanh(667/109*Pi) 3141592653589793 l004 Pi/tanh(257/42*Pi) 3141592653589793 l004 Pi/tanh(618/101*Pi) 3141592653589793 l004 Pi/tanh(361/59*Pi) 3141592653589793 l004 Pi/tanh(465/76*Pi) 3141592653589793 l004 Pi/tanh(569/93*Pi) 3141592653589793 l004 Pi/tanh(673/110*Pi) 3141592653589793 l004 Pi/tanh(104/17*Pi) 3141592653589793 l004 Pi/tanh(679/111*Pi) 3141592653589793 l004 Pi/tanh(575/94*Pi) 3141592653589793 l004 Pi/tanh(471/77*Pi) 3141592653589793 l004 Pi/tanh(367/60*Pi) 3141592653589793 l004 Pi/tanh(630/103*Pi) 3141592653589793 l004 Pi/tanh(263/43*Pi) 3141592653589793 l004 Pi/tanh(685/112*Pi) 3141592653589793 l004 Pi/tanh(422/69*Pi) 3141592653589793 l004 Pi/tanh(581/95*Pi) 3141592653589793 l004 Pi/tanh(159/26*Pi) 3141592653589793 l004 Pi/tanh(691/113*Pi) 3141592653589793 l004 Pi/tanh(532/87*Pi) 3141592653589793 l004 Pi/tanh(373/61*Pi) 3141592653589793 l004 Pi/tanh(587/96*Pi) 3141592653589793 l004 Pi/tanh(214/35*Pi) 3141592653589793 l004 Pi/tanh(697/114*Pi) 3141592653589793 l004 Pi/tanh(483/79*Pi) 3141592653589793 l004 Pi/tanh(269/44*Pi) 3141592653589793 l004 Pi/tanh(593/97*Pi) 3141592653589793 l004 Pi/tanh(324/53*Pi) 3141592653589793 l004 Pi/tanh(703/115*Pi) 3141592653589793 l004 Pi/tanh(379/62*Pi) 3141592653589793 l004 Pi/tanh(434/71*Pi) 3141592653589793 l004 Pi/tanh(489/80*Pi) 3141592653589793 l004 Pi/tanh(544/89*Pi) 3141592653589793 l004 Pi/tanh(599/98*Pi) 3141592653589793 l004 Pi/tanh(654/107*Pi) 3141592653589793 l004 Pi/tanh(709/116*Pi) 3141592653589793 l004 Pi/tanh(55/9*Pi) 3141592653589793 l004 Pi/tanh(721/118*Pi) 3141592653589793 l004 Pi/tanh(666/109*Pi) 3141592653589793 l004 Pi/tanh(611/100*Pi) 3141592653589793 l004 Pi/tanh(556/91*Pi) 3141592653589793 l004 Pi/tanh(501/82*Pi) 3141592653589793 l004 Pi/tanh(446/73*Pi) 3141592653589793 l004 Pi/tanh(391/64*Pi) 3141592653589793 l004 Pi/tanh(727/119*Pi) 3141592653589793 l004 Pi/tanh(336/55*Pi) 3141592653589793 l004 Pi/tanh(617/101*Pi) 3141592653589793 l004 Pi/tanh(281/46*Pi) 3141592653589793 l004 Pi/tanh(507/83*Pi) 3141592653589793 l004 Pi/tanh(733/120*Pi) 3141592653589793 l004 Pi/tanh(226/37*Pi) 3141592653589793 l004 Pi/tanh(623/102*Pi) 3141592653589793 l004 Pi/tanh(397/65*Pi) 3141592653589793 l004 Pi/tanh(568/93*Pi) 3141592653589793 l004 Pi/tanh(171/28*Pi) 3141592653589793 l004 Pi/tanh(629/103*Pi) 3141592653589793 l004 Pi/tanh(458/75*Pi) 3141592653589793 l004 Pi/tanh(287/47*Pi) 3141592653589793 l004 Pi/tanh(690/113*Pi) 3141592653589793 l004 Pi/tanh(403/66*Pi) 3141592653589793 l004 Pi/tanh(519/85*Pi) 3141592653589793 l004 Pi/tanh(635/104*Pi) 3141592653589793 l004 Pi/tanh(116/19*Pi) 3141592653589793 l004 Pi/tanh(641/105*Pi) 3141592653589793 l004 Pi/tanh(525/86*Pi) 3141592653589793 l004 Pi/tanh(409/67*Pi) 3141592653589793 l004 Pi/tanh(702/115*Pi) 3141592653589793 l004 Pi/tanh(293/48*Pi) 3141592653589793 l004 Pi/tanh(470/77*Pi) 3141592653589793 l004 Pi/tanh(647/106*Pi) 3141592653589793 l004 Pi/tanh(177/29*Pi) 3141592653589793 l004 Pi/tanh(592/97*Pi) 3141592653589793 l004 Pi/tanh(415/68*Pi) 3141592653589793 l004 Pi/tanh(653/107*Pi) 3141592653589793 l004 Pi/tanh(238/39*Pi) 3141592653589793 l004 Pi/tanh(537/88*Pi) 3141592653589793 l004 Pi/tanh(299/49*Pi) 3141592653589793 l004 Pi/tanh(659/108*Pi) 3141592653589793 l004 Pi/tanh(360/59*Pi) 3141592653589793 l004 Pi/tanh(421/69*Pi) 3141592653589793 l004 Pi/tanh(482/79*Pi) 3141592653589793 l004 Pi/tanh(543/89*Pi) 3141592653589793 l004 Pi/tanh(604/99*Pi) 3141592653589793 l004 Pi/tanh(665/109*Pi) 3141592653589793 l004 Pi/tanh(726/119*Pi) 3141592653589793 l004 Pi/tanh(61/10*Pi) 3141592653589793 l004 Pi/tanh(677/111*Pi) 3141592653589793 l004 Pi/tanh(616/101*Pi) 3141592653589793 l004 Pi/tanh(555/91*Pi) 3141592653589793 l004 Pi/tanh(494/81*Pi) 3141592653589793 l004 Pi/tanh(433/71*Pi) 3141592653589793 l004 Pi/tanh(372/61*Pi) 3141592653589793 l004 Pi/tanh(683/112*Pi) 3141592653589793 l004 Pi/tanh(311/51*Pi) 3141592653589793 l004 Pi/tanh(561/92*Pi) 3141592653589793 l004 Pi/tanh(250/41*Pi) 3141592653589793 l004 Pi/tanh(689/113*Pi) 3141592653589793 l004 Pi/tanh(439/72*Pi) 3141592653589793 l004 Pi/tanh(628/103*Pi) 3141592653589793 l004 Pi/tanh(189/31*Pi) 3141592653589793 l004 Pi/tanh(695/114*Pi) 3141592653589793 l004 Pi/tanh(506/83*Pi) 3141592653589793 l004 Pi/tanh(317/52*Pi) 3141592653589793 l004 Pi/tanh(445/73*Pi) 3141592653589793 l004 Pi/tanh(573/94*Pi) 3141592653589793 l004 Pi/tanh(701/115*Pi) 3141592653589793 l004 Pi/tanh(128/21*Pi) 3141592653589793 l004 Pi/tanh(707/116*Pi) 3141592653589793 l004 Pi/tanh(579/95*Pi) 3141592653589793 l004 Pi/tanh(451/74*Pi) 3141592653589793 l004 Pi/tanh(323/53*Pi) 3141592653589793 l004 Pi/tanh(518/85*Pi) 3141592653589793 l004 Pi/tanh(713/117*Pi) 3141592653589793 l004 Pi/tanh(195/32*Pi) 3141592653589793 l004 Pi/tanh(652/107*Pi) 3141592653589793 m001 Pi-gamma(1)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 l004 Pi/tanh(457/75*Pi) 3141592653589793 l004 Pi/tanh(719/118*Pi) 3141592653589793 l004 Pi/tanh(262/43*Pi) 3141592653589793 l004 Pi/tanh(591/97*Pi) 3141592653589793 l004 Pi/tanh(329/54*Pi) 3141592653589793 l004 Pi/tanh(725/119*Pi) 3141592653589793 l004 Pi/tanh(396/65*Pi) 3141592653589793 l004 Pi/tanh(463/76*Pi) 3141592653589793 l004 Pi/tanh(530/87*Pi) 3141592653589793 l004 Pi/tanh(597/98*Pi) 3141592653589793 l004 Pi/tanh(664/109*Pi) 3141592653589793 l004 Pi/tanh(731/120*Pi) 3141592653589793 l004 Pi/tanh(67/11*Pi) 3141592653589793 l004 Pi/tanh(676/111*Pi) 3141592653589793 l004 Pi/tanh(609/100*Pi) 3141592653589793 l004 Pi/tanh(542/89*Pi) 3141592653589793 l004 Pi/tanh(475/78*Pi) 3141592653589793 l004 Pi/tanh(408/67*Pi) 3141592653589793 l004 Pi/tanh(341/56*Pi) 3141592653589793 l004 Pi/tanh(615/101*Pi) 3141592653589793 l004 Pi/tanh(274/45*Pi) 3141592653589793 l004 Pi/tanh(481/79*Pi) 3141592653589793 l004 Pi/tanh(688/113*Pi) 3141592653589793 l004 Pi/tanh(207/34*Pi) 3141592653589793 l004 Pi/tanh(554/91*Pi) 3141592653589793 l004 Pi/tanh(347/57*Pi) 3141592653589793 l004 Pi/tanh(487/80*Pi) 3141592653589793 l004 Pi/tanh(627/103*Pi) 3141592653589793 l004 Pi/tanh(140/23*Pi) 3141592653589793 l005 ln(sec(999/106)) 3141592653589793 l004 Pi/tanh(633/104*Pi) 3141592653589793 l004 Pi/tanh(493/81*Pi) 3141592653589793 l004 Pi/tanh(353/58*Pi) 3141592653589793 l004 Pi/tanh(566/93*Pi) 3141592653589793 l004 Pi/tanh(213/35*Pi) 3141592653589793 l004 Pi/tanh(712/117*Pi) 3141592653589793 l004 Pi/tanh(499/82*Pi) 3141592653589793 l004 Pi/tanh(286/47*Pi) 3141592653589793 l004 Pi/tanh(645/106*Pi) 3141592653589793 l004 Pi/tanh(359/59*Pi) 3141592653589793 l004 Pi/tanh(432/71*Pi) 3141592653589793 l004 Pi/tanh(505/83*Pi) 3141592653589793 l004 Pi/tanh(578/95*Pi) 3141592653589793 l004 Pi/tanh(651/107*Pi) 3141592653589793 l004 Pi/tanh(724/119*Pi) 3141592653589793 l004 Pi/tanh(73/12*Pi) 3141592653589793 l004 Pi/tanh(663/109*Pi) 3141592653589793 l004 Pi/tanh(590/97*Pi) 3141592653589793 l004 Pi/tanh(517/85*Pi) 3141592653589793 l004 Pi/tanh(444/73*Pi) 3141592653589793 l004 Pi/tanh(371/61*Pi) 3141592653589793 l004 Pi/tanh(669/110*Pi) 3141592653589793 l004 Pi/tanh(298/49*Pi) 3141592653589793 l004 Pi/tanh(523/86*Pi) 3141592653589793 l004 Pi/tanh(225/37*Pi) 3141592653589793 l004 Pi/tanh(602/99*Pi) 3141592653589793 l004 Pi/tanh(377/62*Pi) 3141592653589793 l004 Pi/tanh(529/87*Pi) 3141592653589793 l004 Pi/tanh(681/112*Pi) 3141592653589793 l004 Pi/tanh(152/25*Pi) 3141592653589793 l004 Pi/tanh(687/113*Pi) 3141592653589793 l004 Pi/tanh(535/88*Pi) 3141592653589793 l004 Pi/tanh(383/63*Pi) 3141592653589793 l004 Pi/tanh(614/101*Pi) 3141592653589793 l004 Pi/tanh(231/38*Pi) 3141592653589793 l004 Pi/tanh(541/89*Pi) 3141592653589793 l004 Pi/tanh(310/51*Pi) 3141592653589793 l004 Pi/tanh(699/115*Pi) 3141592653589793 l004 Pi/tanh(389/64*Pi) 3141592653589793 l004 Pi/tanh(468/77*Pi) 3141592653589793 l004 Pi/tanh(547/90*Pi) 3141592653589793 m001 exp(-1/2*Pi)^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(626/103*Pi) 3141592653589793 l004 Pi/tanh(705/116*Pi) 3141592653589793 l004 Pi/tanh(79/13*Pi) 3141592653589793 l004 Pi/tanh(717/118*Pi) 3141592653589793 l004 Pi/tanh(638/105*Pi) 3141592653589793 l004 Pi/tanh(559/92*Pi) 3141592653589793 l004 Pi/tanh(480/79*Pi) 3141592653589793 l004 Pi/tanh(401/66*Pi) 3141592653589793 l004 Pi/tanh(723/119*Pi) 3141592653589793 l004 Pi/tanh(322/53*Pi) 3141592653589793 l004 Pi/tanh(565/93*Pi) 3141592653589793 l004 Pi/tanh(243/40*Pi) 3141592653589793 l004 Pi/tanh(650/107*Pi) 3141592653589793 l004 Pi/tanh(407/67*Pi) 3141592653589793 l004 Pi/tanh(571/94*Pi) 3141592653589793 l004 Pi/tanh(164/27*Pi) 3141592653589793 l004 Pi/tanh(577/95*Pi) 3141592653589793 l004 Pi/tanh(413/68*Pi) 3141592653589793 l004 Pi/tanh(662/109*Pi) 3141592653589793 l004 Pi/tanh(249/41*Pi) 3141592653589793 l004 Pi/tanh(583/96*Pi) 3141592653589793 l004 Pi/tanh(334/55*Pi) 3141592653589793 m001 Trott2nd^Psi(1,1/3)+Pi 3141592653589793 l004 Pi/tanh(419/69*Pi) 3141592653589793 l004 Pi/tanh(504/83*Pi) 3141592653589793 l004 Pi/tanh(589/97*Pi) 3141592653589793 l004 Pi/tanh(674/111*Pi) 3141592653589793 l004 Pi/tanh(85/14*Pi) 3141592653589793 m001 (Pi*csc(11/24*Pi)/GAMMA(13/24))^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(686/113*Pi) 3141592653589793 l004 Pi/tanh(601/99*Pi) 3141592653589793 l004 Pi/tanh(516/85*Pi) 3141592653589793 l004 Pi/tanh(431/71*Pi) 3141592653589793 l004 Pi/tanh(346/57*Pi) 3141592653589793 l004 Pi/tanh(607/100*Pi) 3141592653589793 l004 Pi/tanh(261/43*Pi) 3141592653589793 l004 Pi/tanh(698/115*Pi) 3141592653589793 l004 Pi/tanh(437/72*Pi) 3141592653589793 l004 Pi/tanh(613/101*Pi) 3141592653589793 l004 Pi/tanh(176/29*Pi) 3141592653589793 l004 Pi/tanh(619/102*Pi) 3141592653589793 l004 Pi/tanh(443/73*Pi) 3141592653589793 l004 Pi/tanh(710/117*Pi) 3141592653589793 l004 Pi/tanh(267/44*Pi) 3141592653589793 l004 Pi/tanh(625/103*Pi) 3141592653589793 l004 Pi/tanh(358/59*Pi) 3141592653589793 l004 Pi/tanh(449/74*Pi) 3141592653589793 l004 Pi/tanh(540/89*Pi) 3141592653589793 l004 Pi/tanh(631/104*Pi) 3141592653589793 l004 Pi/tanh(722/119*Pi) 3141592653589793 l004 Pi/tanh(91/15*Pi) 3141592653589793 l004 Pi/tanh(643/106*Pi) 3141592653589793 l004 Pi/tanh(552/91*Pi) 3141592653589793 l004 Pi/tanh(461/76*Pi) 3141592653589793 l004 Pi/tanh(370/61*Pi) 3141592653589793 l004 Pi/tanh(649/107*Pi) 3141592653589793 l004 Pi/tanh(279/46*Pi) 3141592653589793 l004 Pi/tanh(467/77*Pi) 3141592653589793 l004 Pi/tanh(655/108*Pi) 3141592653589793 l004 Pi/tanh(188/31*Pi) 3141592653589793 l004 Pi/tanh(661/109*Pi) 3141592653589793 l004 Pi/tanh(473/78*Pi) 3141592653589793 l004 Pi/tanh(285/47*Pi) 3141592653589793 l004 Pi/tanh(667/110*Pi) 3141592653589793 l004 Pi/tanh(382/63*Pi) 3141592653589793 l004 Pi/tanh(479/79*Pi) 3141592653589793 l004 Pi/tanh(576/95*Pi) 3141592653589793 l004 Pi/tanh(673/111*Pi) 3141592653589793 l004 Pi/tanh(97/16*Pi) 3141592653589793 l004 Pi/tanh(685/113*Pi) 3141592653589793 l004 Pi/tanh(588/97*Pi) 3141592653589793 l004 Pi/tanh(491/81*Pi) 3141592653589793 l004 Pi/tanh(394/65*Pi) 3141592653589793 l004 Pi/tanh(691/114*Pi) 3141592653589793 l004 Pi/tanh(297/49*Pi) 3141592653589793 l004 Pi/tanh(497/82*Pi) 3141592653589793 l004 Pi/tanh(697/115*Pi) 3141592653589793 l004 Pi/tanh(200/33*Pi) 3141592653589793 l004 Pi/tanh(703/116*Pi) 3141592653589793 l004 Pi/tanh(503/83*Pi) 3141592653589793 l004 Pi/tanh(303/50*Pi) 3141592653589793 l004 Pi/tanh(709/117*Pi) 3141592653589793 l004 Pi/tanh(406/67*Pi) 3141592653589793 l004 Pi/tanh(509/84*Pi) 3141592653589793 l004 Pi/tanh(612/101*Pi) 3141592653589793 l004 Pi/tanh(715/118*Pi) 3141592653589793 l004 Pi/tanh(103/17*Pi) 3141592653589793 l004 Pi/tanh(727/120*Pi) 3141592653589793 l004 Pi/tanh(624/103*Pi) 3141592653589793 l004 Pi/tanh(521/86*Pi) 3141592653589793 l004 Pi/tanh(418/69*Pi) 3141592653589793 l004 Pi/tanh(315/52*Pi) 3141592653589793 l004 Pi/tanh(527/87*Pi) 3141592653589793 l004 Pi/tanh(212/35*Pi) 3141592653589793 l004 Pi/tanh(533/88*Pi) 3141592653589793 l004 Pi/tanh(321/53*Pi) 3141592653589793 l004 Pi/tanh(430/71*Pi) 3141592653589793 l004 Pi/tanh(539/89*Pi) 3141592653589793 l004 Pi/tanh(648/107*Pi) 3141592653589793 l004 Pi/tanh(109/18*Pi) 3141592653589793 l004 Pi/tanh(660/109*Pi) 3141592653589793 l004 Pi/tanh(551/91*Pi) 3141592653589793 l004 Pi/tanh(442/73*Pi) 3141592653589793 l004 Pi/tanh(333/55*Pi) 3141592653589793 l004 Pi/tanh(557/92*Pi) 3141592653589793 l004 Pi/tanh(224/37*Pi) 3141592653589793 l004 Pi/tanh(563/93*Pi) 3141592653589793 l004 Pi/tanh(339/56*Pi) 3141592653589793 l004 Pi/tanh(454/75*Pi) 3141592653589793 l004 Pi/tanh(569/94*Pi) 3141592653589793 l004 Pi/tanh(684/113*Pi) 3141592653589793 l004 Pi/tanh(115/19*Pi) 3141592653589793 l004 Pi/tanh(696/115*Pi) 3141592653589793 l004 Pi/tanh(581/96*Pi) 3141592653589793 l004 Pi/tanh(466/77*Pi) 3141592653589793 l004 Pi/tanh(351/58*Pi) 3141592653589793 l004 Pi/tanh(587/97*Pi) 3141592653589793 l004 Pi/tanh(236/39*Pi) 3141592653589793 l004 Pi/tanh(593/98*Pi) 3141592653589793 l004 Pi/tanh(357/59*Pi) 3141592653589793 l004 Pi/tanh(478/79*Pi) 3141592653589793 l004 Pi/tanh(599/99*Pi) 3141592653589793 l004 Pi/tanh(720/119*Pi) 3141592653589793 l004 Pi/tanh(121/20*Pi) 3141592653589793 l004 Pi/tanh(611/101*Pi) 3141592653589793 l004 Pi/tanh(490/81*Pi) 3141592653589793 l004 Pi/tanh(369/61*Pi) 3141592653589793 l004 Pi/tanh(617/102*Pi) 3141592653589793 l004 Pi/tanh(248/41*Pi) 3141592653589793 l004 Pi/tanh(623/103*Pi) 3141592653589793 l004 Pi/tanh(375/62*Pi) 3141592653589793 l004 Pi/tanh(502/83*Pi) 3141592653589793 l004 Pi/tanh(629/104*Pi) 3141592653589793 l004 Pi/tanh(127/21*Pi) 3141592653589793 l004 Pi/tanh(641/106*Pi) 3141592653589793 l004 Pi/tanh(514/85*Pi) 3141592653589793 l004 Pi/tanh(387/64*Pi) 3141592653589793 l004 Pi/tanh(647/107*Pi) 3141592653589793 l004 Pi/tanh(260/43*Pi) 3141592653589793 l004 Pi/tanh(653/108*Pi) 3141592653589793 l004 Pi/tanh(393/65*Pi) 3141592653589793 l004 Pi/tanh(526/87*Pi) 3141592653589793 l004 Pi/tanh(659/109*Pi) 3141592653589793 l004 Pi/tanh(133/22*Pi) 3141592653589793 l004 Pi/tanh(671/111*Pi) 3141592653589793 l004 Pi/tanh(538/89*Pi) 3141592653589793 l004 Pi/tanh(405/67*Pi) 3141592653589793 l004 Pi/tanh(677/112*Pi) 3141592653589793 l004 Pi/tanh(272/45*Pi) 3141592653589793 l004 Pi/tanh(683/113*Pi) 3141592653589793 l004 Pi/tanh(411/68*Pi) 3141592653589793 l004 Pi/tanh(550/91*Pi) 3141592653589793 l004 Pi/tanh(689/114*Pi) 3141592653589793 l004 Pi/tanh(139/23*Pi) 3141592653589793 l004 Pi/tanh(701/116*Pi) 3141592653589793 l004 Pi/tanh(562/93*Pi) 3141592653589793 l004 Pi/tanh(423/70*Pi) 3141592653589793 l004 Pi/tanh(707/117*Pi) 3141592653589793 l004 Pi/tanh(284/47*Pi) 3141592653589793 l004 Pi/tanh(713/118*Pi) 3141592653589793 l004 Pi/tanh(429/71*Pi) 3141592653589793 m001 Pi+exp(-Pi)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653589793 l004 Pi/tanh(574/95*Pi) 3141592653589793 l004 Pi/tanh(719/119*Pi) 3141592653589793 l004 Pi/tanh(145/24*Pi) 3141592653589793 l004 Pi/tanh(586/97*Pi) 3141592653589793 l004 Pi/tanh(441/73*Pi) 3141592653589793 l004 Pi/tanh(296/49*Pi) 3141592653589793 l004 Pi/tanh(447/74*Pi) 3141592653589793 l004 Pi/tanh(598/99*Pi) 3141592653589793 l004 Pi/tanh(151/25*Pi) 3141592653589793 l004 Pi/tanh(610/101*Pi) 3141592653589793 l004 Pi/tanh(459/76*Pi) 3141592653589793 l004 Pi/tanh(308/51*Pi) 3141592653589793 l004 Pi/tanh(465/77*Pi) 3141592653589793 l004 Pi/tanh(622/103*Pi) 3141592653589793 l004 Pi/tanh(157/26*Pi) 3141592653589793 l004 Pi/tanh(634/105*Pi) 3141592653589793 l004 Pi/tanh(477/79*Pi) 3141592653589793 l004 Pi/tanh(320/53*Pi) 3141592653589793 l004 Pi/tanh(483/80*Pi) 3141592653589793 l004 Pi/tanh(646/107*Pi) 3141592653589793 l004 Pi/tanh(163/27*Pi) 3141592653589793 l004 Pi/tanh(658/109*Pi) 3141592653589793 l004 Pi/tanh(495/82*Pi) 3141592653589793 l004 Pi/tanh(332/55*Pi) 3141592653589793 l004 Pi/tanh(501/83*Pi) 3141592653589793 l004 Pi/tanh(670/111*Pi) 3141592653589793 l004 Pi/tanh(169/28*Pi) 3141592653589793 l004 Pi/tanh(682/113*Pi) 3141592653589793 l004 Pi/tanh(513/85*Pi) 3141592653589793 l004 Pi/tanh(344/57*Pi) 3141592653589793 l004 Pi/tanh(519/86*Pi) 3141592653589793 l004 Pi/tanh(694/115*Pi) 3141592653589793 l004 Pi/tanh(175/29*Pi) 3141592653589793 l004 Pi/tanh(706/117*Pi) 3141592653589793 l004 Pi/tanh(531/88*Pi) 3141592653589793 l004 Pi/tanh(356/59*Pi) 3141592653589793 l004 Pi/tanh(537/89*Pi) 3141592653589793 l004 Pi/tanh(718/119*Pi) 3141592653589793 l004 Pi/tanh(181/30*Pi) 3141592653589793 l004 Pi/tanh(549/91*Pi) 3141592653589793 l004 Pi/tanh(368/61*Pi) 3141592653589793 l004 Pi/tanh(555/92*Pi) 3141592653589793 l004 Pi/tanh(187/31*Pi) 3141592653589793 l004 Pi/tanh(567/94*Pi) 3141592653589793 l004 Pi/tanh(380/63*Pi) 3141592653589793 l004 Pi/tanh(573/95*Pi) 3141592653589793 l004 Pi/tanh(193/32*Pi) 3141592653589793 l004 Pi/tanh(585/97*Pi) 3141592653589793 l004 Pi/tanh(392/65*Pi) 3141592653589793 l004 Pi/tanh(591/98*Pi) 3141592653589793 l004 Pi/tanh(199/33*Pi) 3141592653589793 l004 Pi/tanh(603/100*Pi) 3141592653589793 l004 Pi/tanh(404/67*Pi) 3141592653589793 l004 Pi/tanh(609/101*Pi) 3141592653589793 l004 Pi/tanh(205/34*Pi) 3141592653589793 l004 Pi/tanh(621/103*Pi) 3141592653589793 l004 Pi/tanh(416/69*Pi) 3141592653589793 l004 Pi/tanh(627/104*Pi) 3141592653589793 l004 Pi/tanh(211/35*Pi) 3141592653589793 l004 Pi/tanh(639/106*Pi) 3141592653589793 l004 Pi/tanh(428/71*Pi) 3141592653589793 l004 Pi/tanh(645/107*Pi) 3141592653589793 l004 Pi/tanh(217/36*Pi) 3141592653589793 l004 Pi/tanh(657/109*Pi) 3141592653589793 l004 Pi/tanh(440/73*Pi) 3141592653589793 l004 Pi/tanh(663/110*Pi) 3141592653589793 l004 Pi/tanh(223/37*Pi) 3141592653589793 l004 Pi/tanh(675/112*Pi) 3141592653589793 l004 Pi/tanh(452/75*Pi) 3141592653589793 l004 Pi/tanh(681/113*Pi) 3141592653589793 l004 Pi/tanh(229/38*Pi) 3141592653589793 l004 Pi/tanh(693/115*Pi) 3141592653589793 l004 Pi/tanh(464/77*Pi) 3141592653589793 l004 Pi/tanh(699/116*Pi) 3141592653589793 l004 Pi/tanh(235/39*Pi) 3141592653589793 l004 Pi/tanh(711/118*Pi) 3141592653589793 l004 Pi/tanh(476/79*Pi) 3141592653589793 l004 Pi/tanh(717/119*Pi) 3141592653589793 l004 Pi/tanh(241/40*Pi) 3141592653589793 l004 Pi/tanh(488/81*Pi) 3141592653589793 l004 Pi/tanh(247/41*Pi) 3141592653589793 l004 Pi/tanh(500/83*Pi) 3141592653589793 l004 Pi/tanh(253/42*Pi) 3141592653589793 l004 Pi/tanh(512/85*Pi) 3141592653589793 l004 Pi/tanh(259/43*Pi) 3141592653589793 l004 Pi/tanh(524/87*Pi) 3141592653589793 l004 Pi/tanh(265/44*Pi) 3141592653589793 l004 Pi/tanh(536/89*Pi) 3141592653589793 l004 Pi/tanh(271/45*Pi) 3141592653589793 l004 Pi/tanh(548/91*Pi) 3141592653589793 l004 Pi/tanh(277/46*Pi) 3141592653589793 l004 Pi/tanh(560/93*Pi) 3141592653589793 l004 Pi/tanh(283/47*Pi) 3141592653589793 l004 Pi/tanh(572/95*Pi) 3141592653589793 l004 Pi/tanh(289/48*Pi) 3141592653589793 l004 Pi/tanh(584/97*Pi) 3141592653589793 l004 Pi/tanh(295/49*Pi) 3141592653589793 l004 Pi/tanh(596/99*Pi) 3141592653589793 l004 Pi/tanh(301/50*Pi) 3141592653589793 l004 Pi/tanh(608/101*Pi) 3141592653589793 l004 Pi/tanh(307/51*Pi) 3141592653589793 l004 Pi/tanh(620/103*Pi) 3141592653589793 l004 Pi/tanh(313/52*Pi) 3141592653589793 l004 Pi/tanh(632/105*Pi) 3141592653589793 l004 Pi/tanh(319/53*Pi) 3141592653589793 l004 Pi/tanh(644/107*Pi) 3141592653589793 l004 Pi/tanh(325/54*Pi) 3141592653589793 l004 Pi/tanh(656/109*Pi) 3141592653589793 l004 Pi/tanh(331/55*Pi) 3141592653589793 l004 Pi/tanh(668/111*Pi) 3141592653589793 l004 Pi/tanh(337/56*Pi) 3141592653589793 l004 Pi/tanh(680/113*Pi) 3141592653589793 l004 Pi/tanh(343/57*Pi) 3141592653589793 l004 Pi/tanh(692/115*Pi) 3141592653589793 l004 Pi/tanh(349/58*Pi) 3141592653589793 l004 Pi/tanh(704/117*Pi) 3141592653589793 l004 Pi/tanh(355/59*Pi) 3141592653589793 l004 Pi/tanh(716/119*Pi) 3141592653589793 l004 Pi/tanh(361/60*Pi) 3141592653589793 l004 Pi/tanh(367/61*Pi) 3141592653589793 l004 Pi/tanh(373/62*Pi) 3141592653589793 l004 Pi/tanh(379/63*Pi) 3141592653589793 l004 Pi/tanh(385/64*Pi) 3141592653589793 l004 Pi/tanh(391/65*Pi) 3141592653589793 l004 Pi/tanh(397/66*Pi) 3141592653589793 l004 Pi/tanh(403/67*Pi) 3141592653589793 l004 Pi/tanh(409/68*Pi) 3141592653589793 l004 Pi/tanh(415/69*Pi) 3141592653589793 l004 Pi/tanh(421/70*Pi) 3141592653589793 l004 Pi/tanh(427/71*Pi) 3141592653589793 l004 Pi/tanh(433/72*Pi) 3141592653589793 l004 Pi/tanh(439/73*Pi) 3141592653589793 l004 Pi/tanh(445/74*Pi) 3141592653589793 l004 Pi/tanh(451/75*Pi) 3141592653589793 l004 Pi/tanh(457/76*Pi) 3141592653589793 l004 Pi/tanh(463/77*Pi) 3141592653589793 l004 Pi/tanh(469/78*Pi) 3141592653589793 l004 Pi/tanh(475/79*Pi) 3141592653589793 l004 Pi/tanh(481/80*Pi) 3141592653589793 l004 Pi/tanh(487/81*Pi) 3141592653589793 l004 Pi/tanh(493/82*Pi) 3141592653589793 l004 Pi/tanh(499/83*Pi) 3141592653589793 l004 Pi/tanh(505/84*Pi) 3141592653589793 l004 Pi/tanh(511/85*Pi) 3141592653589793 l004 Pi/tanh(517/86*Pi) 3141592653589793 l004 Pi/tanh(523/87*Pi) 3141592653589793 l004 Pi/tanh(529/88*Pi) 3141592653589793 l004 Pi/tanh(535/89*Pi) 3141592653589793 l004 Pi/tanh(541/90*Pi) 3141592653589793 l004 Pi/tanh(547/91*Pi) 3141592653589793 l004 Pi/tanh(553/92*Pi) 3141592653589793 l004 Pi/tanh(559/93*Pi) 3141592653589793 l004 Pi/tanh(565/94*Pi) 3141592653589793 l004 Pi/tanh(571/95*Pi) 3141592653589793 l004 Pi/tanh(577/96*Pi) 3141592653589793 l004 Pi/tanh(583/97*Pi) 3141592653589793 l004 Pi/tanh(589/98*Pi) 3141592653589793 l004 Pi/tanh(595/99*Pi) 3141592653589793 l004 Pi/tanh(601/100*Pi) 3141592653589793 l004 Pi/tanh(607/101*Pi) 3141592653589793 l004 Pi/tanh(613/102*Pi) 3141592653589793 l004 Pi/tanh(619/103*Pi) 3141592653589793 l004 Pi/tanh(625/104*Pi) 3141592653589793 l004 Pi/tanh(631/105*Pi) 3141592653589793 l004 Pi/tanh(637/106*Pi) 3141592653589793 l004 Pi/tanh(643/107*Pi) 3141592653589793 l004 Pi/tanh(649/108*Pi) 3141592653589793 l004 Pi/tanh(655/109*Pi) 3141592653589793 l004 Pi/tanh(661/110*Pi) 3141592653589793 l004 Pi/tanh(667/111*Pi) 3141592653589793 l004 Pi/tanh(673/112*Pi) 3141592653589793 l004 Pi/tanh(679/113*Pi) 3141592653589793 l004 Pi/tanh(685/114*Pi) 3141592653589793 l004 Pi/tanh(691/115*Pi) 3141592653589793 l004 Pi/tanh(697/116*Pi) 3141592653589793 l004 Pi/tanh(703/117*Pi) 3141592653589793 l004 Pi/tanh(709/118*Pi) 3141592653589793 l004 Pi/tanh(715/119*Pi) 3141592653589793 l004 Pi/tanh(721/120*Pi) 3141592653589793 l004 Pi/tanh(6*Pi) 3141592653589793 l005 ln(sec(289/92)) 3141592653589793 l004 Pi/tanh(719/120*Pi) 3141592653589793 l004 Pi/tanh(713/119*Pi) 3141592653589793 l004 Pi/tanh(707/118*Pi) 3141592653589793 l004 Pi/tanh(701/117*Pi) 3141592653589793 l004 Pi/tanh(695/116*Pi) 3141592653589793 l004 Pi/tanh(689/115*Pi) 3141592653589793 l004 Pi/tanh(683/114*Pi) 3141592653589793 l004 Pi/tanh(677/113*Pi) 3141592653589793 l004 Pi/tanh(671/112*Pi) 3141592653589793 l004 Pi/tanh(665/111*Pi) 3141592653589793 l004 Pi/tanh(659/110*Pi) 3141592653589793 l004 Pi/tanh(653/109*Pi) 3141592653589793 l004 Pi/tanh(647/108*Pi) 3141592653589793 l004 Pi/tanh(641/107*Pi) 3141592653589793 l004 Pi/tanh(635/106*Pi) 3141592653589793 l004 Pi/tanh(629/105*Pi) 3141592653589793 l004 Pi/tanh(623/104*Pi) 3141592653589793 l004 Pi/tanh(617/103*Pi) 3141592653589793 l004 Pi/tanh(611/102*Pi) 3141592653589793 l004 Pi/tanh(605/101*Pi) 3141592653589793 l004 Pi/tanh(599/100*Pi) 3141592653589793 l004 Pi/tanh(593/99*Pi) 3141592653589793 l004 Pi/tanh(587/98*Pi) 3141592653589793 l004 Pi/tanh(581/97*Pi) 3141592653589793 l004 Pi/tanh(575/96*Pi) 3141592653589793 l004 Pi/tanh(569/95*Pi) 3141592653589793 l004 Pi/tanh(563/94*Pi) 3141592653589793 l004 Pi/tanh(557/93*Pi) 3141592653589793 l004 Pi/tanh(551/92*Pi) 3141592653589793 l004 Pi/tanh(545/91*Pi) 3141592653589793 l004 Pi/tanh(539/90*Pi) 3141592653589793 l004 Pi/tanh(533/89*Pi) 3141592653589793 l004 Pi/tanh(527/88*Pi) 3141592653589793 l004 Pi/tanh(521/87*Pi) 3141592653589793 l004 Pi/tanh(515/86*Pi) 3141592653589793 l004 Pi/tanh(509/85*Pi) 3141592653589793 l004 Pi/tanh(503/84*Pi) 3141592653589793 l004 Pi/tanh(497/83*Pi) 3141592653589793 l004 Pi/tanh(491/82*Pi) 3141592653589793 l004 Pi/tanh(485/81*Pi) 3141592653589793 l004 Pi/tanh(479/80*Pi) 3141592653589793 l004 Pi/tanh(473/79*Pi) 3141592653589793 l004 Pi/tanh(467/78*Pi) 3141592653589793 l004 Pi/tanh(461/77*Pi) 3141592653589793 l004 Pi/tanh(455/76*Pi) 3141592653589793 l004 Pi/tanh(449/75*Pi) 3141592653589793 l004 Pi/tanh(443/74*Pi) 3141592653589793 l004 Pi/tanh(437/73*Pi) 3141592653589793 l004 Pi/tanh(431/72*Pi) 3141592653589793 l004 Pi/tanh(425/71*Pi) 3141592653589793 l004 Pi/tanh(419/70*Pi) 3141592653589793 l004 Pi/tanh(413/69*Pi) 3141592653589793 l004 Pi/tanh(407/68*Pi) 3141592653589793 l004 Pi/tanh(401/67*Pi) 3141592653589793 l004 Pi/tanh(395/66*Pi) 3141592653589793 l004 Pi/tanh(389/65*Pi) 3141592653589793 l004 Pi/tanh(383/64*Pi) 3141592653589793 l004 Pi/tanh(377/63*Pi) 3141592653589793 l004 Pi/tanh(371/62*Pi) 3141592653589793 l004 Pi/tanh(365/61*Pi) 3141592653589793 l004 Pi/tanh(359/60*Pi) 3141592653589793 l004 Pi/tanh(712/119*Pi) 3141592653589793 l004 Pi/tanh(353/59*Pi) 3141592653589793 l004 Pi/tanh(700/117*Pi) 3141592653589793 l004 Pi/tanh(347/58*Pi) 3141592653589793 l004 Pi/tanh(688/115*Pi) 3141592653589793 l004 Pi/tanh(341/57*Pi) 3141592653589793 l004 Pi/tanh(676/113*Pi) 3141592653589793 l004 Pi/tanh(335/56*Pi) 3141592653589793 l004 Pi/tanh(664/111*Pi) 3141592653589793 l004 Pi/tanh(329/55*Pi) 3141592653589793 l004 Pi/tanh(652/109*Pi) 3141592653589793 l004 Pi/tanh(323/54*Pi) 3141592653589793 l004 Pi/tanh(640/107*Pi) 3141592653589793 l004 Pi/tanh(317/53*Pi) 3141592653589793 l004 Pi/tanh(628/105*Pi) 3141592653589793 l004 Pi/tanh(311/52*Pi) 3141592653589793 l004 Pi/tanh(616/103*Pi) 3141592653589793 l004 Pi/tanh(305/51*Pi) 3141592653589793 l004 Pi/tanh(604/101*Pi) 3141592653589793 l004 Pi/tanh(299/50*Pi) 3141592653589793 l004 Pi/tanh(592/99*Pi) 3141592653589793 l004 Pi/tanh(293/49*Pi) 3141592653589793 l004 Pi/tanh(580/97*Pi) 3141592653589793 l004 Pi/tanh(287/48*Pi) 3141592653589793 l004 Pi/tanh(568/95*Pi) 3141592653589793 l004 Pi/tanh(281/47*Pi) 3141592653589793 l004 Pi/tanh(556/93*Pi) 3141592653589793 l004 Pi/tanh(275/46*Pi) 3141592653589793 l004 Pi/tanh(544/91*Pi) 3141592653589793 l004 Pi/tanh(269/45*Pi) 3141592653589793 l004 Pi/tanh(532/89*Pi) 3141592653589793 l004 Pi/tanh(263/44*Pi) 3141592653589793 l004 Pi/tanh(520/87*Pi) 3141592653589793 l004 Pi/tanh(257/43*Pi) 3141592653589793 l004 Pi/tanh(508/85*Pi) 3141592653589793 l004 Pi/tanh(251/42*Pi) 3141592653589793 l004 Pi/tanh(496/83*Pi) 3141592653589793 l004 Pi/tanh(245/41*Pi) 3141592653589793 l004 Pi/tanh(484/81*Pi) 3141592653589793 l004 Pi/tanh(239/40*Pi) 3141592653589793 l004 Pi/tanh(711/119*Pi) 3141592653589793 l004 Pi/tanh(472/79*Pi) 3141592653589793 l004 Pi/tanh(705/118*Pi) 3141592653589793 l004 Pi/tanh(233/39*Pi) 3141592653589793 l004 Pi/tanh(693/116*Pi) 3141592653589793 l004 Pi/tanh(460/77*Pi) 3141592653589793 l004 Pi/tanh(687/115*Pi) 3141592653589793 l004 Pi/tanh(227/38*Pi) 3141592653589793 l004 Pi/tanh(675/113*Pi) 3141592653589793 l004 Pi/tanh(448/75*Pi) 3141592653589793 l004 Pi/tanh(669/112*Pi) 3141592653589793 l004 Pi/tanh(221/37*Pi) 3141592653589793 l004 Pi/tanh(657/110*Pi) 3141592653589793 l004 Pi/tanh(436/73*Pi) 3141592653589793 l004 Pi/tanh(651/109*Pi) 3141592653589793 l004 Pi/tanh(215/36*Pi) 3141592653589793 l004 Pi/tanh(639/107*Pi) 3141592653589793 l004 Pi/tanh(424/71*Pi) 3141592653589793 l004 Pi/tanh(633/106*Pi) 3141592653589793 l004 Pi/tanh(209/35*Pi) 3141592653589793 l004 Pi/tanh(621/104*Pi) 3141592653589793 l004 Pi/tanh(412/69*Pi) 3141592653589793 l004 Pi/tanh(615/103*Pi) 3141592653589793 l004 Pi/tanh(203/34*Pi) 3141592653589793 l004 Pi/tanh(603/101*Pi) 3141592653589793 l004 Pi/tanh(400/67*Pi) 3141592653589793 l004 Pi/tanh(597/100*Pi) 3141592653589793 l004 Pi/tanh(197/33*Pi) 3141592653589793 l004 Pi/tanh(585/98*Pi) 3141592653589793 l004 Pi/tanh(388/65*Pi) 3141592653589793 l004 Pi/tanh(579/97*Pi) 3141592653589793 l004 Pi/tanh(191/32*Pi) 3141592653589793 m001 ZetaQ(4)^(2*Pi/GAMMA(5/6))+Pi 3141592653589793 l004 Pi/tanh(567/95*Pi) 3141592653589793 l004 Pi/tanh(376/63*Pi) 3141592653589793 l004 Pi/tanh(561/94*Pi) 3141592653589793 l004 Pi/tanh(185/31*Pi) 3141592653589793 l004 Pi/tanh(549/92*Pi) 3141592653589793 l004 Pi/tanh(364/61*Pi) 3141592653589793 l004 Pi/tanh(543/91*Pi) 3141592653589793 l004 Pi/tanh(179/30*Pi) 3141592653589793 l004 Pi/tanh(710/119*Pi) 3141592653589793 l004 Pi/tanh(531/89*Pi) 3141592653589793 l004 Pi/tanh(352/59*Pi) 3141592653589793 l004 Pi/tanh(525/88*Pi) 3141592653589793 l004 Pi/tanh(698/117*Pi) 3141592653589793 l004 Pi/tanh(173/29*Pi) 3141592653589793 l004 Pi/tanh(686/115*Pi) 3141592653589793 l004 Pi/tanh(513/86*Pi) 3141592653589793 l004 Pi/tanh(340/57*Pi) 3141592653589793 l004 Pi/tanh(507/85*Pi) 3141592653589793 l004 Pi/tanh(674/113*Pi) 3141592653589793 l004 Pi/tanh(167/28*Pi) 3141592653589793 l004 Pi/tanh(662/111*Pi) 3141592653589793 l004 Pi/tanh(495/83*Pi) 3141592653589793 l004 Pi/tanh(328/55*Pi) 3141592653589793 l004 Pi/tanh(489/82*Pi) 3141592653589793 l004 Pi/tanh(650/109*Pi) 3141592653589793 l004 Pi/tanh(161/27*Pi) 3141592653589793 l004 Pi/tanh(638/107*Pi) 3141592653589793 l004 Pi/tanh(477/80*Pi) 3141592653589793 l004 Pi/tanh(316/53*Pi) 3141592653589793 l004 Pi/tanh(471/79*Pi) 3141592653589793 l004 Pi/tanh(626/105*Pi) 3141592653589793 l004 Pi/tanh(155/26*Pi) 3141592653589793 l004 Pi/tanh(614/103*Pi) 3141592653589793 l004 Pi/tanh(459/77*Pi) 3141592653589793 l004 Pi/tanh(304/51*Pi) 3141592653589793 l004 Pi/tanh(453/76*Pi) 3141592653589793 l004 Pi/tanh(602/101*Pi) 3141592653589793 l004 Pi/tanh(149/25*Pi) 3141592653589793 l004 Pi/tanh(590/99*Pi) 3141592653589793 l004 Pi/tanh(441/74*Pi) 3141592653589793 l004 Pi/tanh(292/49*Pi) 3141592653589793 l004 Pi/tanh(435/73*Pi) 3141592653589793 l004 Pi/tanh(578/97*Pi) 3141592653589793 l004 Pi/tanh(143/24*Pi) 3141592653589793 l004 Pi/tanh(709/119*Pi) 3141592653589793 l004 Pi/tanh(566/95*Pi) 3141592653589793 l004 Pi/tanh(423/71*Pi) 3141592653589793 l004 Pi/tanh(703/118*Pi) 3141592653589793 l004 Pi/tanh(280/47*Pi) 3141592653589793 l004 Pi/tanh(697/117*Pi) 3141592653589793 l004 Pi/tanh(417/70*Pi) 3141592653589793 m001 Pi+Ei(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589793 l004 Pi/tanh(554/93*Pi) 3141592653589793 l004 Pi/tanh(691/116*Pi) 3141592653589793 l004 Pi/tanh(137/23*Pi) 3141592653589793 l004 Pi/tanh(679/114*Pi) 3141592653589793 l004 Pi/tanh(542/91*Pi) 3141592653589793 l004 Pi/tanh(405/68*Pi) 3141592653589793 l004 Pi/tanh(673/113*Pi) 3141592653589793 l004 Pi/tanh(268/45*Pi) 3141592653589793 l004 Pi/tanh(667/112*Pi) 3141592653589793 l004 Pi/tanh(399/67*Pi) 3141592653589793 l004 Pi/tanh(530/89*Pi) 3141592653589793 l004 Pi/tanh(661/111*Pi) 3141592653589793 l004 Pi/tanh(131/22*Pi) 3141592653589793 l004 Pi/tanh(649/109*Pi) 3141592653589793 l004 Pi/tanh(518/87*Pi) 3141592653589793 l004 Pi/tanh(387/65*Pi) 3141592653589793 l004 Pi/tanh(643/108*Pi) 3141592653589793 l004 Pi/tanh(256/43*Pi) 3141592653589793 l004 Pi/tanh(637/107*Pi) 3141592653589793 l004 Pi/tanh(381/64*Pi) 3141592653589793 l004 Pi/tanh(506/85*Pi) 3141592653589793 l004 Pi/tanh(631/106*Pi) 3141592653589793 l004 Pi/tanh(125/21*Pi) 3141592653589793 l004 Pi/tanh(619/104*Pi) 3141592653589793 l004 Pi/tanh(494/83*Pi) 3141592653589793 l004 Pi/tanh(369/62*Pi) 3141592653589793 l004 Pi/tanh(613/103*Pi) 3141592653589793 l004 Pi/tanh(244/41*Pi) 3141592653589793 l004 Pi/tanh(607/102*Pi) 3141592653589793 l004 Pi/tanh(363/61*Pi) 3141592653589793 l004 Pi/tanh(482/81*Pi) 3141592653589793 l004 Pi/tanh(601/101*Pi) 3141592653589793 l004 Pi/tanh(119/20*Pi) 3141592653589793 l004 Pi/tanh(708/119*Pi) 3141592653589793 l004 Pi/tanh(589/99*Pi) 3141592653589793 l004 Pi/tanh(470/79*Pi) 3141592653589793 l004 Pi/tanh(351/59*Pi) 3141592653589793 l004 Pi/tanh(583/98*Pi) 3141592653589793 l004 Pi/tanh(232/39*Pi) 3141592653589793 l004 Pi/tanh(577/97*Pi) 3141592653589793 l004 Pi/tanh(345/58*Pi) 3141592653589793 l004 Pi/tanh(458/77*Pi) 3141592653589793 l004 Pi/tanh(571/96*Pi) 3141592653589793 l004 Pi/tanh(684/115*Pi) 3141592653589793 l004 Pi/tanh(113/19*Pi) 3141592653589793 l004 Pi/tanh(672/113*Pi) 3141592653589793 l004 Pi/tanh(559/94*Pi) 3141592653589793 l004 Pi/tanh(446/75*Pi) 3141592653589793 l004 Pi/tanh(333/56*Pi) 3141592653589793 l004 Pi/tanh(553/93*Pi) 3141592653589793 l004 Pi/tanh(220/37*Pi) 3141592653589793 l004 Pi/tanh(547/92*Pi) 3141592653589793 l004 Pi/tanh(327/55*Pi) 3141592653589793 l004 Pi/tanh(434/73*Pi) 3141592653589793 l004 Pi/tanh(541/91*Pi) 3141592653589793 l004 Pi/tanh(648/109*Pi) 3141592653589793 l004 Pi/tanh(107/18*Pi) 3141592653589793 l004 Pi/tanh(636/107*Pi) 3141592653589793 l004 Pi/tanh(529/89*Pi) 3141592653589793 l004 Pi/tanh(422/71*Pi) 3141592653589793 l004 Pi/tanh(315/53*Pi) 3141592653589793 l004 Pi/tanh(523/88*Pi) 3141592653589793 l004 Pi/tanh(208/35*Pi) 3141592653589793 l004 Pi/tanh(517/87*Pi) 3141592653589793 l004 Pi/tanh(309/52*Pi) 3141592653589793 l004 Pi/tanh(410/69*Pi) 3141592653589793 l004 Pi/tanh(511/86*Pi) 3141592653589793 l004 Pi/tanh(612/103*Pi) 3141592653589793 l004 Pi/tanh(713/120*Pi) 3141592653589793 l004 Pi/tanh(101/17*Pi) 3141592653589793 l004 Pi/tanh(701/118*Pi) 3141592653589793 l004 Pi/tanh(600/101*Pi) 3141592653589793 l004 Pi/tanh(499/84*Pi) 3141592653589793 l004 Pi/tanh(398/67*Pi) 3141592653589793 l004 Pi/tanh(695/117*Pi) 3141592653589793 l004 Pi/tanh(297/50*Pi) 3141592653589793 l004 Pi/tanh(493/83*Pi) 3141592653589793 l004 Pi/tanh(689/116*Pi) 3141592653589793 l004 Pi/tanh(196/33*Pi) 3141592653589793 l004 Pi/tanh(683/115*Pi) 3141592653589793 l004 Pi/tanh(487/82*Pi) 3141592653589793 l004 Pi/tanh(291/49*Pi) 3141592653589793 l004 Pi/tanh(677/114*Pi) 3141592653589793 l004 Pi/tanh(386/65*Pi) 3141592653589793 l004 Pi/tanh(481/81*Pi) 3141592653589793 l004 Pi/tanh(576/97*Pi) 3141592653589793 l004 Pi/tanh(671/113*Pi) 3141592653589793 l004 Pi/tanh(95/16*Pi) 3141592653589793 l004 Pi/tanh(659/111*Pi) 3141592653589793 l004 Pi/tanh(564/95*Pi) 3141592653589793 l004 Pi/tanh(469/79*Pi) 3141592653589793 l004 Pi/tanh(374/63*Pi) 3141592653589793 l004 Pi/tanh(653/110*Pi) 3141592653589793 l004 Pi/tanh(279/47*Pi) 3141592653589793 l004 Pi/tanh(463/78*Pi) 3141592653589793 l004 Pi/tanh(647/109*Pi) 3141592653589793 l004 Pi/tanh(184/31*Pi) 3141592653589793 l004 Pi/tanh(641/108*Pi) 3141592653589793 l004 Pi/tanh(457/77*Pi) 3141592653589793 l004 Pi/tanh(273/46*Pi) 3141592653589793 l004 Pi/tanh(635/107*Pi) 3141592653589793 l004 Pi/tanh(362/61*Pi) 3141592653589793 l004 Pi/tanh(451/76*Pi) 3141592653589793 l004 Pi/tanh(540/91*Pi) 3141592653589793 l004 Pi/tanh(629/106*Pi) 3141592653589793 l004 Pi/tanh(89/15*Pi) 3141592653589793 l004 Pi/tanh(706/119*Pi) 3141592653589793 l004 Pi/tanh(617/104*Pi) 3141592653589793 l004 Pi/tanh(528/89*Pi) 3141592653589793 l004 Pi/tanh(439/74*Pi) 3141592653589793 l004 Pi/tanh(350/59*Pi) 3141592653589793 l004 Pi/tanh(611/103*Pi) 3141592653589793 l004 Pi/tanh(261/44*Pi) 3141592653589793 l004 Pi/tanh(694/117*Pi) 3141592653589793 l004 Pi/tanh(433/73*Pi) 3141592653589793 l004 Pi/tanh(605/102*Pi) 3141592653589793 l004 Pi/tanh(172/29*Pi) 3141592653589793 l004 Pi/tanh(599/101*Pi) 3141592653589793 l004 Pi/tanh(427/72*Pi) 3141592653589793 l004 Pi/tanh(682/115*Pi) 3141592653589793 l004 Pi/tanh(255/43*Pi) 3141592653589793 l004 Pi/tanh(593/100*Pi) 3141592653589793 l004 Pi/tanh(338/57*Pi) 3141592653589793 l004 Pi/tanh(421/71*Pi) 3141592653589793 l004 Pi/tanh(504/85*Pi) 3141592653589793 l004 Pi/tanh(587/99*Pi) 3141592653589793 l004 Pi/tanh(670/113*Pi) 3141592653589793 l004 Pi/tanh(83/14*Pi) 3141592653589793 l004 Pi/tanh(658/111*Pi) 3141592653589793 l004 Pi/tanh(575/97*Pi) 3141592653589793 l004 Pi/tanh(492/83*Pi) 3141592653589793 l004 Pi/tanh(409/69*Pi) 3141592653589793 l004 Pi/tanh(326/55*Pi) 3141592653589793 l004 Pi/tanh(569/96*Pi) 3141592653589793 l004 Pi/tanh(243/41*Pi) 3141592653589793 l004 Pi/tanh(646/109*Pi) 3141592653589793 l004 Pi/tanh(403/68*Pi) 3141592653589793 l004 Pi/tanh(563/95*Pi) 3141592653589793 l004 Pi/tanh(160/27*Pi) 3141592653589793 l004 Pi/tanh(557/94*Pi) 3141592653589793 l004 Pi/tanh(397/67*Pi) 3141592653589793 l004 Pi/tanh(634/107*Pi) 3141592653589793 l004 Pi/tanh(237/40*Pi) 3141592653589793 l004 Pi/tanh(551/93*Pi) 3141592653589793 l004 Pi/tanh(314/53*Pi) 3141592653589793 l004 Pi/tanh(705/119*Pi) 3141592653589793 l004 Pi/tanh(391/66*Pi) 3141592653589793 l004 Pi/tanh(468/79*Pi) 3141592653589793 l004 Pi/tanh(545/92*Pi) 3141592653589793 l004 Pi/tanh(622/105*Pi) 3141592653589793 l004 Pi/tanh(699/118*Pi) 3141592653589793 l004 Pi/tanh(77/13*Pi) 3141592653589793 l004 Pi/tanh(687/116*Pi) 3141592653589793 l004 Pi/tanh(610/103*Pi) 3141592653589793 l004 Pi/tanh(533/90*Pi) 3141592653589793 l004 Pi/tanh(456/77*Pi) 3141592653589793 l004 Pi/tanh(379/64*Pi) 3141592653589793 l004 Pi/tanh(681/115*Pi) 3141592653589793 l004 Pi/tanh(302/51*Pi) 3141592653589793 l004 Pi/tanh(527/89*Pi) 3141592653589793 l004 Pi/tanh(225/38*Pi) 3141592653589793 l004 Pi/tanh(598/101*Pi) 3141592653589793 l004 Pi/tanh(373/63*Pi) 3141592653589793 l004 Pi/tanh(521/88*Pi) 3141592653589793 l004 Pi/tanh(669/113*Pi) 3141592653589793 l004 Pi/tanh(148/25*Pi) 3141592653589793 l004 Pi/tanh(663/112*Pi) 3141592653589793 l004 Pi/tanh(515/87*Pi) 3141592653589793 l004 Pi/tanh(367/62*Pi) 3141592653589793 l004 Pi/tanh(586/99*Pi) 3141592653589793 l004 Pi/tanh(219/37*Pi) 3141592653589793 l004 Pi/tanh(509/86*Pi) 3141592653589793 l004 Pi/tanh(290/49*Pi) 3141592653589793 l004 Pi/tanh(651/110*Pi) 3141592653589793 l004 Pi/tanh(361/61*Pi) 3141592653589793 l004 Pi/tanh(432/73*Pi) 3141592653589793 l004 Pi/tanh(503/85*Pi) 3141592653589793 l004 Pi/tanh(574/97*Pi) 3141592653589793 l004 Pi/tanh(645/109*Pi) 3141592653589793 l004 Pi/tanh(71/12*Pi) 3141592653589793 l004 Pi/tanh(704/119*Pi) 3141592653589793 l004 Pi/tanh(633/107*Pi) 3141592653589793 l004 Pi/tanh(562/95*Pi) 3141592653589793 l004 Pi/tanh(491/83*Pi) 3141592653589793 l004 Pi/tanh(420/71*Pi) 3141592653589793 l004 Pi/tanh(349/59*Pi) 3141592653589793 l004 Pi/tanh(627/106*Pi) 3141592653589793 l004 Pi/tanh(278/47*Pi) 3141592653589793 l004 Pi/tanh(485/82*Pi) 3141592653589793 l004 Pi/tanh(692/117*Pi) 3141592653589793 l004 Pi/tanh(207/35*Pi) 3141592653589793 l004 Pi/tanh(550/93*Pi) 3141592653589793 l004 Pi/tanh(343/58*Pi) 3141592653589793 l004 Pi/tanh(479/81*Pi) 3141592653589793 l004 Pi/tanh(615/104*Pi) 3141592653589793 l004 Pi/tanh(136/23*Pi) 3141592653589793 l004 Pi/tanh(609/103*Pi) 3141592653589793 l004 Pi/tanh(473/80*Pi) 3141592653589793 l004 Pi/tanh(337/57*Pi) 3141592653589793 l004 Pi/tanh(538/91*Pi) 3141592653589793 l004 Pi/tanh(201/34*Pi) 3141592653589793 l004 Pi/tanh(668/113*Pi) 3141592653589793 l004 Pi/tanh(467/79*Pi) 3141592653589793 l004 Pi/tanh(266/45*Pi) 3141592653589793 l004 Pi/tanh(597/101*Pi) 3141592653589793 l004 Pi/tanh(331/56*Pi) 3141592653589793 l004 Pi/tanh(396/67*Pi) 3141592653589793 l004 Pi/tanh(461/78*Pi) 3141592653589793 l004 Pi/tanh(526/89*Pi) 3141592653589793 l004 Pi/tanh(591/100*Pi) 3141592653589793 l004 Pi/tanh(656/111*Pi) 3141592653589793 l004 Pi/tanh(65/11*Pi) 3141592653589793 l004 Pi/tanh(709/120*Pi) 3141592653589793 l004 Pi/tanh(644/109*Pi) 3141592653589793 l004 Pi/tanh(579/98*Pi) 3141592653589793 l004 Pi/tanh(514/87*Pi) 3141592653589793 l004 Pi/tanh(449/76*Pi) 3141592653589793 l004 Pi/tanh(384/65*Pi) 3141592653589793 l004 Pi/tanh(703/119*Pi) 3141592653589793 l004 Pi/tanh(319/54*Pi) 3141592653589793 l004 Pi/tanh(573/97*Pi) 3141592653589793 l004 Pi/tanh(254/43*Pi) 3141592653589793 l004 Pi/tanh(697/118*Pi) 3141592653589793 l004 Pi/tanh(443/75*Pi) 3141592653589793 l004 Pi/tanh(632/107*Pi) 3141592653589793 l004 Pi/tanh(189/32*Pi) 3141592653589793 l004 Pi/tanh(691/117*Pi) 3141592653589793 l004 Pi/tanh(502/85*Pi) 3141592653589793 l004 Pi/tanh(313/53*Pi) 3141592653589793 l004 Pi/tanh(437/74*Pi) 3141592653589793 l004 Pi/tanh(561/95*Pi) 3141592653589793 l004 Pi/tanh(685/116*Pi) 3141592653589793 l004 Pi/tanh(124/21*Pi) 3141592653589793 l004 Pi/tanh(679/115*Pi) 3141592653589793 l004 Pi/tanh(555/94*Pi) 3141592653589793 l004 Pi/tanh(431/73*Pi) 3141592653589793 l004 Pi/tanh(307/52*Pi) 3141592653589793 l004 Pi/tanh(490/83*Pi) 3141592653589793 l004 Pi/tanh(673/114*Pi) 3141592653589793 l004 Pi/tanh(183/31*Pi) 3141592653589793 l004 Pi/tanh(608/103*Pi) 3141592653589793 l004 Pi/tanh(425/72*Pi) 3141592653589793 l004 Pi/tanh(667/113*Pi) 3141592653589793 l004 Pi/tanh(242/41*Pi) 3141592653589793 l004 Pi/tanh(543/92*Pi) 3141592653589793 l004 Pi/tanh(301/51*Pi) 3141592653589793 l004 Pi/tanh(661/112*Pi) 3141592653589793 l004 Pi/tanh(360/61*Pi) 3141592653589793 l004 Pi/tanh(419/71*Pi) 3141592653589793 l004 Pi/tanh(478/81*Pi) 3141592653589793 l004 Pi/tanh(537/91*Pi) 3141592653589793 l004 Pi/tanh(596/101*Pi) 3141592653589793 l004 Pi/tanh(655/111*Pi) 3141592653589793 m001 Ei(1)^Psi(2,1/3)+Pi 3141592653589793 l004 Pi/tanh(59/10*Pi) 3141592653589793 l004 Pi/tanh(702/119*Pi) 3141592653589793 l004 Pi/tanh(643/109*Pi) 3141592653589793 l004 Pi/tanh(584/99*Pi) 3141592653589793 l004 Pi/tanh(525/89*Pi) 3141592653589793 l004 Pi/tanh(466/79*Pi) 3141592653589793 l004 Pi/tanh(407/69*Pi) 3141592653589793 l004 Pi/tanh(348/59*Pi) 3141592653589793 l004 Pi/tanh(637/108*Pi) 3141592653589793 l004 Pi/tanh(289/49*Pi) 3141592653589793 l004 Pi/tanh(519/88*Pi) 3141592653589793 l004 Pi/tanh(230/39*Pi) 3141592653589793 l004 Pi/tanh(631/107*Pi) 3141592653589793 l004 Pi/tanh(401/68*Pi) 3141592653589793 l004 Pi/tanh(572/97*Pi) 3141592653589793 l004 Pi/tanh(171/29*Pi) 3141592653589793 l004 Pi/tanh(625/106*Pi) 3141592653589793 l004 Pi/tanh(454/77*Pi) 3141592653589793 l004 Pi/tanh(283/48*Pi) 3141592653589793 l004 Pi/tanh(678/115*Pi) 3141592653589793 l004 Pi/tanh(395/67*Pi) 3141592653589793 l004 Pi/tanh(507/86*Pi) 3141592653589793 l004 Pi/tanh(619/105*Pi) 3141592653589793 l004 Pi/tanh(112/19*Pi) 3141592653589793 l004 Pi/tanh(613/104*Pi) 3141592653589793 l004 Pi/tanh(501/85*Pi) 3141592653589793 l004 Pi/tanh(389/66*Pi) 3141592653589793 l004 Pi/tanh(666/113*Pi) 3141592653589793 l004 Pi/tanh(277/47*Pi) 3141592653589793 l004 Pi/tanh(442/75*Pi) 3141592653589793 l004 Pi/tanh(607/103*Pi) 3141592653589793 l004 Pi/tanh(165/28*Pi) 3141592653589793 l004 Pi/tanh(548/93*Pi) 3141592653589793 l004 Pi/tanh(383/65*Pi) 3141592653589793 l004 Pi/tanh(601/102*Pi) 3141592653589793 l004 Pi/tanh(218/37*Pi) 3141592653589793 l004 Pi/tanh(707/120*Pi) 3141592653589793 l004 Pi/tanh(489/83*Pi) 3141592653589793 l004 Pi/tanh(271/46*Pi) 3141592653589793 l004 Pi/tanh(595/101*Pi) 3141592653589793 l004 Pi/tanh(324/55*Pi) 3141592653589793 l004 Pi/tanh(701/119*Pi) 3141592653589793 l004 Pi/tanh(377/64*Pi) 3141592653589793 l004 Pi/tanh(430/73*Pi) 3141592653589793 l004 Pi/tanh(483/82*Pi) 3141592653589793 l004 Pi/tanh(536/91*Pi) 3141592653589793 l004 Pi/tanh(589/100*Pi) 3141592653589793 l004 Pi/tanh(642/109*Pi) 3141592653589793 l004 Pi/tanh(695/118*Pi) 3141592653589793 l004 Pi/tanh(53/9*Pi) 3141592653589793 l004 Pi/tanh(683/116*Pi) 3141592653589793 l004 Pi/tanh(630/107*Pi) 3141592653589793 l004 Pi/tanh(577/98*Pi) 3141592653589793 l004 Pi/tanh(524/89*Pi) 3141592653589793 l004 Pi/tanh(471/80*Pi) 3141592653589793 l004 Pi/tanh(418/71*Pi) 3141592653589793 l004 Pi/tanh(365/62*Pi) 3141592653589793 l004 Pi/tanh(677/115*Pi) 3141592653589793 l004 Pi/tanh(312/53*Pi) 3141592653589793 l004 Pi/tanh(571/97*Pi) 3141592653589793 l004 Pi/tanh(259/44*Pi) 3141592653589793 l004 Pi/tanh(465/79*Pi) 3141592653589793 l004 Pi/tanh(671/114*Pi) 3141592653589793 l004 Pi/tanh(206/35*Pi) 3141592653589793 l004 Pi/tanh(565/96*Pi) 3141592653589793 l004 Pi/tanh(359/61*Pi) 3141592653589793 l004 Pi/tanh(512/87*Pi) 3141592653589793 l004 Pi/tanh(665/113*Pi) 3141592653589793 l004 Pi/tanh(153/26*Pi) 3141592653589793 l004 Pi/tanh(559/95*Pi) 3141592653589793 l004 Pi/tanh(406/69*Pi) 3141592653589793 l004 Pi/tanh(659/112*Pi) 3141592653589793 l004 Pi/tanh(253/43*Pi) 3141592653589793 l004 Pi/tanh(606/103*Pi) 3141592653589793 l004 Pi/tanh(353/60*Pi) 3141592653589793 l004 Pi/tanh(453/77*Pi) 3141592653589793 l004 Pi/tanh(553/94*Pi) 3141592653589793 l004 Pi/tanh(653/111*Pi) 3141592653589793 l004 Pi/tanh(100/17*Pi) 3141592653589793 l004 Pi/tanh(647/110*Pi) 3141592653589793 l004 Pi/tanh(547/93*Pi) 3141592653589793 l004 Pi/tanh(447/76*Pi) 3141592653589793 l004 Pi/tanh(347/59*Pi) 3141592653589793 l004 Pi/tanh(594/101*Pi) 3141592653589793 l004 Pi/tanh(247/42*Pi) 3141592653589793 l004 Pi/tanh(641/109*Pi) 3141592653589793 l004 Pi/tanh(394/67*Pi) 3141592653589793 l004 Pi/tanh(541/92*Pi) 3141592653589793 l004 Pi/tanh(688/117*Pi) 3141592653589793 l004 Pi/tanh(147/25*Pi) 3141592653589793 l004 Pi/tanh(635/108*Pi) 3141592653589793 l004 Pi/tanh(488/83*Pi) 3141592653589793 l004 Pi/tanh(341/58*Pi) 3141592653589793 m001 Ei(1,1)^exp(Pi)+Pi 3141592653589793 l004 Pi/tanh(535/91*Pi) 3141592653589793 l004 Pi/tanh(194/33*Pi) 3141592653589793 l004 Pi/tanh(629/107*Pi) 3141592653589793 l004 Pi/tanh(435/74*Pi) 3141592653589793 l004 Pi/tanh(676/115*Pi) 3141592653589793 l004 Pi/tanh(241/41*Pi) 3141592653589793 l004 Pi/tanh(529/90*Pi) 3141592653589793 l004 Pi/tanh(288/49*Pi) 3141592653589793 l004 Pi/tanh(623/106*Pi) 3141592653589793 l004 Pi/tanh(335/57*Pi) 3141592653589793 l004 Pi/tanh(382/65*Pi) 3141592653589793 l004 Pi/tanh(429/73*Pi) 3141592653589793 l004 Pi/tanh(476/81*Pi) 3141592653589793 l004 Pi/tanh(523/89*Pi) 3141592653589793 l004 Pi/tanh(570/97*Pi) 3141592653589793 l004 Pi/tanh(617/105*Pi) 3141592653589793 l004 Pi/tanh(664/113*Pi) 3141592653589793 l004 Pi/tanh(47/8*Pi) 3141592653589793 l004 Pi/tanh(699/119*Pi) 3141592653589793 l004 Pi/tanh(652/111*Pi) 3141592653589793 l004 Pi/tanh(605/103*Pi) 3141592653589793 l004 Pi/tanh(558/95*Pi) 3141592653589793 l004 Pi/tanh(511/87*Pi) 3141592653589793 l004 Pi/tanh(464/79*Pi) 3141592653589793 l004 Pi/tanh(417/71*Pi) 3141592653589793 l004 Pi/tanh(370/63*Pi) 3141592653589793 l004 Pi/tanh(693/118*Pi) 3141592653589793 l004 Pi/tanh(323/55*Pi) 3141592653589793 l004 Pi/tanh(599/102*Pi) 3141592653589793 l004 Pi/tanh(276/47*Pi) 3141592653589793 l004 Pi/tanh(505/86*Pi) 3141592653589793 l004 Pi/tanh(229/39*Pi) 3141592653589793 l004 Pi/tanh(640/109*Pi) 3141592653589793 l004 Pi/tanh(411/70*Pi) 3141592653589793 l004 Pi/tanh(593/101*Pi) 3141592653589793 l004 Pi/tanh(182/31*Pi) 3141592653589793 l004 Pi/tanh(681/116*Pi) 3141592653589793 l004 Pi/tanh(499/85*Pi) 3141592653589793 l004 Pi/tanh(317/54*Pi) 3141592653589793 l004 Pi/tanh(452/77*Pi) 3141592653589793 l004 Pi/tanh(587/100*Pi) 3141592653589793 l004 Pi/tanh(135/23*Pi) 3141592653589793 l004 Pi/tanh(628/107*Pi) 3141592653589793 l004 Pi/tanh(493/84*Pi) 3141592653589793 l004 Pi/tanh(358/61*Pi) 3141592653589793 l004 Pi/tanh(581/99*Pi) 3141592653589793 l004 Pi/tanh(223/38*Pi) 3141592653589793 l004 Pi/tanh(534/91*Pi) 3141592653589793 l004 Pi/tanh(311/53*Pi) 3141592653589793 l004 Pi/tanh(399/68*Pi) 3141592653589793 l004 Pi/tanh(487/83*Pi) 3141592653589793 l004 Pi/tanh(575/98*Pi) 3141592653589793 l004 Pi/tanh(663/113*Pi) 3141592653589793 l004 Pi/tanh(88/15*Pi) 3141592653589793 l004 Pi/tanh(657/112*Pi) 3141592653589793 l004 Pi/tanh(569/97*Pi) 3141592653589793 l004 Pi/tanh(481/82*Pi) 3141592653589793 l004 Pi/tanh(393/67*Pi) 3141592653589793 l004 Pi/tanh(698/119*Pi) 3141592653589793 l004 Pi/tanh(305/52*Pi) 3141592653589793 l004 Pi/tanh(522/89*Pi) 3141592653589793 l004 Pi/tanh(217/37*Pi) 3141592653589793 l004 Pi/tanh(563/96*Pi) 3141592653589793 l004 Pi/tanh(346/59*Pi) 3141592653589793 l004 Pi/tanh(475/81*Pi) 3141592653589793 l004 Pi/tanh(604/103*Pi) 3141592653589793 l004 Pi/tanh(129/22*Pi) 3141592653589793 l004 Pi/tanh(686/117*Pi) 3141592653589793 l004 Pi/tanh(557/95*Pi) 3141592653589793 l004 Pi/tanh(428/73*Pi) 3141592653589793 l004 Pi/tanh(299/51*Pi) 3141592653589793 l004 Pi/tanh(469/80*Pi) 3141592653589793 l004 Pi/tanh(639/109*Pi) 3141592653589793 l004 Pi/tanh(170/29*Pi) 3141592653589793 l004 Pi/tanh(551/94*Pi) 3141592653589793 l004 Pi/tanh(381/65*Pi) 3141592653589793 l004 Pi/tanh(592/101*Pi) 3141592653589793 l004 Pi/tanh(211/36*Pi) 3141592653589793 l004 Pi/tanh(674/115*Pi) 3141592653589793 l004 Pi/tanh(463/79*Pi) 3141592653589793 l004 Pi/tanh(252/43*Pi) 3141592653589793 l004 Pi/tanh(545/93*Pi) 3141592653589793 l004 Pi/tanh(293/50*Pi) 3141592653589793 l004 Pi/tanh(627/107*Pi) 3141592653589793 l004 Pi/tanh(334/57*Pi) 3141592653589793 l004 Pi/tanh(375/64*Pi) 3141592653589793 l004 Pi/tanh(416/71*Pi) 3141592653589793 l004 Pi/tanh(457/78*Pi) 3141592653589793 l004 Pi/tanh(498/85*Pi) 3141592653589793 l004 Pi/tanh(539/92*Pi) 3141592653589793 l004 Pi/tanh(580/99*Pi) 3141592653589793 l004 Pi/tanh(621/106*Pi) 3141592653589793 l004 Pi/tanh(662/113*Pi) 3141592653589793 l004 Pi/tanh(703/120*Pi) 3141592653589793 l004 Pi/tanh(41/7*Pi) 3141592653589793 l004 Pi/tanh(691/118*Pi) 3141592653589793 l004 Pi/tanh(650/111*Pi) 3141592653589793 l004 Pi/tanh(609/104*Pi) 3141592653589793 l004 Pi/tanh(568/97*Pi) 3141592653589793 l004 Pi/tanh(527/90*Pi) 3141592653589793 l004 Pi/tanh(486/83*Pi) 3141592653589793 l004 Pi/tanh(445/76*Pi) 3141592653589793 l004 Pi/tanh(404/69*Pi) 3141592653589793 l004 Pi/tanh(363/62*Pi) 3141592653589793 l004 Pi/tanh(685/117*Pi) 3141592653589793 l004 Pi/tanh(322/55*Pi) 3141592653589793 l004 Pi/tanh(603/103*Pi) 3141592653589793 l004 Pi/tanh(281/48*Pi) 3141592653589793 l004 Pi/tanh(521/89*Pi) 3141592653589793 l004 Pi/tanh(240/41*Pi) 3141592653589793 l004 Pi/tanh(679/116*Pi) 3141592653589793 l004 Pi/tanh(439/75*Pi) 3141592653589793 l004 Pi/tanh(638/109*Pi) 3141592653589793 l004 Pi/tanh(199/34*Pi) 3141592653589793 l004 Pi/tanh(556/95*Pi) 3141592653589793 l004 Pi/tanh(357/61*Pi) 3141592653589793 l004 Pi/tanh(515/88*Pi) 3141592653589793 l004 Pi/tanh(673/115*Pi) 3141592653589793 l004 Pi/tanh(158/27*Pi) 3141592653589793 l004 Pi/tanh(591/101*Pi) 3141592653589793 l004 Pi/tanh(433/74*Pi) 3141592653589793 l004 Pi/tanh(275/47*Pi) 3141592653589793 l004 Pi/tanh(667/114*Pi) 3141592653589793 l004 Pi/tanh(392/67*Pi) 3141592653589793 l004 Pi/tanh(509/87*Pi) 3141592653589793 l004 Pi/tanh(626/107*Pi) 3141592653589793 l004 Pi/tanh(117/20*Pi) 3141592653589793 l004 Pi/tanh(661/113*Pi) 3141592653589793 l004 Pi/tanh(544/93*Pi) 3141592653589793 l004 Pi/tanh(427/73*Pi) 3141592653589793 l004 Pi/tanh(310/53*Pi) 3141592653589793 l004 Pi/tanh(503/86*Pi) 3141592653589793 l004 Pi/tanh(696/119*Pi) 3141592653589793 l004 Pi/tanh(193/33*Pi) 3141592653589793 l004 Pi/tanh(655/112*Pi) 3141592653589793 l004 Pi/tanh(462/79*Pi) 3141592653589793 l004 Pi/tanh(269/46*Pi) 3141592653589793 l004 Pi/tanh(614/105*Pi) 3141592653589793 l004 Pi/tanh(345/59*Pi) 3141592653589793 l004 Pi/tanh(421/72*Pi) 3141592653589793 l004 Pi/tanh(497/85*Pi) 3141592653589793 l004 Pi/tanh(573/98*Pi) 3141592653589793 l004 Pi/tanh(649/111*Pi) 3141592653589793 l004 Pi/tanh(76/13*Pi) 3141592653589793 l004 Pi/tanh(643/110*Pi) 3141592653589793 l004 Pi/tanh(567/97*Pi) 3141592653589793 l004 Pi/tanh(491/84*Pi) 3141592653589793 l004 Pi/tanh(415/71*Pi) 3141592653589793 l004 Pi/tanh(339/58*Pi) 3141592653589793 l004 Pi/tanh(602/103*Pi) 3141592653589793 l004 Pi/tanh(263/45*Pi) 3141592653589793 l004 Pi/tanh(450/77*Pi) 3141592653589793 l004 Pi/tanh(637/109*Pi) 3141592653589793 l004 Pi/tanh(187/32*Pi) 3141592653589793 l004 Pi/tanh(672/115*Pi) 3141592653589793 l004 Pi/tanh(485/83*Pi) 3141592653589793 l004 Pi/tanh(298/51*Pi) 3141592653589793 l004 Pi/tanh(409/70*Pi) 3141592653589793 l004 Pi/tanh(520/89*Pi) 3141592653589793 l004 Pi/tanh(631/108*Pi) 3141592653589793 l004 Pi/tanh(111/19*Pi) 3141592653589793 l004 Pi/tanh(701/120*Pi) 3141592653589793 l004 Pi/tanh(590/101*Pi) 3141592653589793 l004 Pi/tanh(479/82*Pi) 3141592653589793 l004 Pi/tanh(368/63*Pi) 3141592653589793 l004 Pi/tanh(625/107*Pi) 3141592653589793 l004 Pi/tanh(257/44*Pi) 3141592653589793 l004 Pi/tanh(660/113*Pi) 3141592653589793 l004 Pi/tanh(403/69*Pi) 3141592653589793 l004 Pi/tanh(549/94*Pi) 3141592653589793 l004 Pi/tanh(695/119*Pi) 3141592653589793 l004 Pi/tanh(146/25*Pi) 3141592653589793 l004 Pi/tanh(619/106*Pi) 3141592653589793 l004 Pi/tanh(473/81*Pi) 3141592653589793 l004 Pi/tanh(327/56*Pi) 3141592653589793 l004 Pi/tanh(508/87*Pi) 3141592653589793 l004 Pi/tanh(689/118*Pi) 3141592653589793 l004 Pi/tanh(181/31*Pi) 3141592653589793 l004 Pi/tanh(578/99*Pi) 3141592653589793 l004 Pi/tanh(397/68*Pi) 3141592653589793 l004 Pi/tanh(613/105*Pi) 3141592653589793 l004 Pi/tanh(216/37*Pi) 3141592653589793 l004 Pi/tanh(683/117*Pi) 3141592653589793 l004 Pi/tanh(467/80*Pi) 3141592653589793 l004 Pi/tanh(251/43*Pi) 3141592653589793 l004 Pi/tanh(537/92*Pi) 3141592653589793 l004 Pi/tanh(286/49*Pi) 3141592653589793 l004 Pi/tanh(607/104*Pi) 3141592653589793 l004 Pi/tanh(321/55*Pi) 3141592653589793 l004 Pi/tanh(677/116*Pi) 3141592653589793 l004 Pi/tanh(356/61*Pi) 3141592653589793 l004 Pi/tanh(391/67*Pi) 3141592653589793 l004 Pi/tanh(426/73*Pi) 3141592653589793 l004 Pi/tanh(461/79*Pi) 3141592653589793 l004 Pi/tanh(496/85*Pi) 3141592653589793 l004 Pi/tanh(531/91*Pi) 3141592653589793 l004 Pi/tanh(566/97*Pi) 3141592653589793 l004 Pi/tanh(601/103*Pi) 3141592653589793 l004 Pi/tanh(636/109*Pi) 3141592653589793 l004 Pi/tanh(671/115*Pi) 3141592653589793 l004 Pi/tanh(35/6*Pi) 3141592653589794 l004 Pi/tanh(694/119*Pi) 3141592653589794 l004 Pi/tanh(659/113*Pi) 3141592653589794 l004 Pi/tanh(624/107*Pi) 3141592653589794 l004 Pi/tanh(589/101*Pi) 3141592653589794 l004 Pi/tanh(554/95*Pi) 3141592653589794 l004 Pi/tanh(519/89*Pi) 3141592653589794 l004 Pi/tanh(484/83*Pi) 3141592653589794 l004 Pi/tanh(449/77*Pi) 3141592653589794 l004 Pi/tanh(414/71*Pi) 3141592653589794 l004 Pi/tanh(379/65*Pi) 3141592653589794 l004 Pi/tanh(344/59*Pi) 3141592653589794 l004 Pi/tanh(653/112*Pi) 3141592653589794 l004 Pi/tanh(309/53*Pi) 3141592653589794 l004 Pi/tanh(583/100*Pi) 3141592653589794 l004 Pi/tanh(274/47*Pi) 3141592653589794 l004 Pi/tanh(513/88*Pi) 3141592653589794 l004 Pi/tanh(239/41*Pi) 3141592653589794 l004 Pi/tanh(682/117*Pi) 3141592653589794 l004 Pi/tanh(443/76*Pi) 3141592653589794 l004 Pi/tanh(647/111*Pi) 3141592653589794 l004 Pi/tanh(204/35*Pi) 3141592653589794 l004 Pi/tanh(577/99*Pi) 3141592653589794 l004 Pi/tanh(373/64*Pi) 3141592653589794 l004 Pi/tanh(542/93*Pi) 3141592653589794 l004 Pi/tanh(169/29*Pi) 3141592653589794 l004 Pi/tanh(641/110*Pi) 3141592653589794 l004 Pi/tanh(472/81*Pi) 3141592653589794 l004 Pi/tanh(303/52*Pi) 3141592653589794 l004 Pi/tanh(437/75*Pi) 3141592653589794 l004 Pi/tanh(571/98*Pi) 3141592653589794 l004 Pi/tanh(134/23*Pi) 3141592653589794 l004 Pi/tanh(635/109*Pi) 3141592653589794 l004 Pi/tanh(501/86*Pi) 3141592653589794 l004 Pi/tanh(367/63*Pi) 3141592653589794 l004 Pi/tanh(600/103*Pi) 3141592653589794 l004 Pi/tanh(233/40*Pi) 3141592653589794 l004 Pi/tanh(565/97*Pi) 3141592653589794 l004 Pi/tanh(332/57*Pi) 3141592653589794 l004 Pi/tanh(431/74*Pi) 3141592653589794 l004 Pi/tanh(530/91*Pi) 3141592653589794 l004 Pi/tanh(629/108*Pi) 3141592653589794 l004 Pi/tanh(99/17*Pi) 3141592653589794 l004 Pi/tanh(658/113*Pi) 3141592653589794 l004 Pi/tanh(559/96*Pi) 3141592653589794 l004 Pi/tanh(460/79*Pi) 3141592653589794 l004 Pi/tanh(361/62*Pi) 3141592653589794 l004 Pi/tanh(623/107*Pi) 3141592653589794 l004 Pi/tanh(262/45*Pi) 3141592653589794 l004 Pi/tanh(687/118*Pi) 3141592653589794 l004 Pi/tanh(425/73*Pi) 3141592653589794 l004 Pi/tanh(588/101*Pi) 3141592653589794 l004 Pi/tanh(163/28*Pi) 3141592653589794 l004 Pi/tanh(553/95*Pi) 3141592653589794 l004 Pi/tanh(390/67*Pi) 3141592653589794 l004 Pi/tanh(617/106*Pi) 3141592653589794 l004 Pi/tanh(227/39*Pi) 3141592653589794 l004 Pi/tanh(518/89*Pi) 3141592653589794 l004 Pi/tanh(291/50*Pi) 3141592653589794 l004 Pi/tanh(646/111*Pi) 3141592653589794 l004 Pi/tanh(355/61*Pi) 3141592653589794 l004 Pi/tanh(419/72*Pi) 3141592653589794 l004 Pi/tanh(483/83*Pi) 3141592653589794 l004 Pi/tanh(547/94*Pi) 3141592653589794 l004 Pi/tanh(611/105*Pi) 3141592653589794 l004 Pi/tanh(675/116*Pi) 3141592653589794 l004 Pi/tanh(64/11*Pi) 3141592653589794 l004 Pi/tanh(669/115*Pi) 3141592653589794 l004 Pi/tanh(605/104*Pi) 3141592653589794 l004 Pi/tanh(541/93*Pi) 3141592653589794 l004 Pi/tanh(477/82*Pi) 3141592653589794 l004 Pi/tanh(413/71*Pi) 3141592653589794 l004 Pi/tanh(349/60*Pi) 3141592653589794 l004 Pi/tanh(634/109*Pi) 3141592653589794 l004 Pi/tanh(285/49*Pi) 3141592653589794 l004 Pi/tanh(506/87*Pi) 3141592653589794 l004 Pi/tanh(221/38*Pi) 3141592653589794 l004 Pi/tanh(599/103*Pi) 3141592653589794 l004 Pi/tanh(378/65*Pi) 3141592653589794 l004 Pi/tanh(535/92*Pi) 3141592653589794 l004 Pi/tanh(692/119*Pi) 3141592653589794 l004 Pi/tanh(157/27*Pi) 3141592653589794 l004 Pi/tanh(564/97*Pi) 3141592653589794 l004 Pi/tanh(407/70*Pi) 3141592653589794 l004 Pi/tanh(657/113*Pi) 3141592653589794 l004 Pi/tanh(250/43*Pi) 3141592653589794 l004 Pi/tanh(593/102*Pi) 3141592653589794 l004 Pi/tanh(343/59*Pi) 3141592653589794 l004 Pi/tanh(436/75*Pi) 3141592653589794 l004 Pi/tanh(529/91*Pi) 3141592653589794 l004 Pi/tanh(622/107*Pi) 3141592653589794 l004 Pi/tanh(93/16*Pi) 3141592653589794 l004 Pi/tanh(680/117*Pi) 3141592653589794 l004 Pi/tanh(587/101*Pi) 3141592653589794 l004 Pi/tanh(494/85*Pi) 3141592653589794 l004 Pi/tanh(401/69*Pi) 3141592653589794 l004 Pi/tanh(308/53*Pi) 3141592653589794 l004 Pi/tanh(523/90*Pi) 3141592653589794 l004 Pi/tanh(215/37*Pi) 3141592653589794 l004 Pi/tanh(552/95*Pi) 3141592653589794 l004 Pi/tanh(337/58*Pi) 3141592653589794 l004 Pi/tanh(459/79*Pi) 3141592653589794 l004 Pi/tanh(581/100*Pi) 3141592653589794 l004 Pi/tanh(122/21*Pi) 3141592653589794 l004 Pi/tanh(639/110*Pi) 3141592653589794 l004 Pi/tanh(517/89*Pi) 3141592653589794 l004 Pi/tanh(395/68*Pi) 3141592653589794 l004 Pi/tanh(668/115*Pi) 3141592653589794 l004 Pi/tanh(273/47*Pi) 3141592653589794 l004 Pi/tanh(697/120*Pi) 3141592653589794 l004 Pi/tanh(424/73*Pi) 3141592653589794 l004 Pi/tanh(575/99*Pi) 3141592653589794 l004 Pi/tanh(151/26*Pi) 3141592653589794 l004 Pi/tanh(633/109*Pi) 3141592653589794 l004 Pi/tanh(482/83*Pi) 3141592653589794 l004 Pi/tanh(331/57*Pi) 3141592653589794 l004 Pi/tanh(511/88*Pi) 3141592653589794 l004 Pi/tanh(691/119*Pi) 3141592653589794 l004 Pi/tanh(180/31*Pi) 3141592653589794 l004 Pi/tanh(569/98*Pi) 3141592653589794 l004 Pi/tanh(389/67*Pi) 3141592653589794 l004 Pi/tanh(598/103*Pi) 3141592653589794 l004 Pi/tanh(209/36*Pi) 3141592653589794 l004 Pi/tanh(656/113*Pi) 3141592653589794 l004 Pi/tanh(447/77*Pi) 3141592653589794 l004 Pi/tanh(685/118*Pi) 3141592653589794 l004 Pi/tanh(238/41*Pi) 3141592653589794 l004 Pi/tanh(505/87*Pi) 3141592653589794 l004 Pi/tanh(267/46*Pi) 3141592653589794 l004 Pi/tanh(563/97*Pi) 3141592653589794 l004 Pi/tanh(296/51*Pi) 3141592653589794 l004 Pi/tanh(621/107*Pi) 3141592653589794 l004 Pi/tanh(325/56*Pi) 3141592653589794 l004 Pi/tanh(679/117*Pi) 3141592653589794 l004 Pi/tanh(354/61*Pi) 3141592653589794 l004 Pi/tanh(383/66*Pi) 3141592653589794 l004 Pi/tanh(412/71*Pi) 3141592653589794 l004 Pi/tanh(441/76*Pi) 3141592653589794 l004 Pi/tanh(470/81*Pi) 3141592653589794 l004 Pi/tanh(499/86*Pi) 3141592653589794 l004 Pi/tanh(528/91*Pi) 3141592653589794 l004 Pi/tanh(557/96*Pi) 3141592653589794 l004 Pi/tanh(586/101*Pi) 3141592653589794 l004 Pi/tanh(615/106*Pi) 3141592653589794 l004 Pi/tanh(644/111*Pi) 3141592653589794 l004 Pi/tanh(673/116*Pi) 3141592653589794 l004 Pi/tanh(29/5*Pi) 3141592653589794 l004 Pi/tanh(690/119*Pi) 3141592653589794 l004 Pi/tanh(661/114*Pi) 3141592653589794 l004 Pi/tanh(632/109*Pi) 3141592653589794 l004 Pi/tanh(603/104*Pi) 3141592653589794 l004 Pi/tanh(574/99*Pi) 3141592653589794 l004 Pi/tanh(545/94*Pi) 3141592653589794 l004 Pi/tanh(516/89*Pi) 3141592653589794 l004 Pi/tanh(487/84*Pi) 3141592653589794 l004 Pi/tanh(458/79*Pi) 3141592653589794 l004 Pi/tanh(429/74*Pi) 3141592653589794 l004 Pi/tanh(400/69*Pi) 3141592653589794 l004 Pi/tanh(371/64*Pi) 3141592653589794 l004 Pi/tanh(342/59*Pi) 3141592653589794 l004 Pi/tanh(655/113*Pi) 3141592653589794 l004 Pi/tanh(313/54*Pi) 3141592653589794 l004 Pi/tanh(597/103*Pi) 3141592653589794 l004 Pi/tanh(284/49*Pi) 3141592653589794 l004 Pi/tanh(539/93*Pi) 3141592653589794 l004 Pi/tanh(255/44*Pi) 3141592653589794 l004 Pi/tanh(481/83*Pi) 3141592653589794 l004 Pi/tanh(226/39*Pi) 3141592653589794 l004 Pi/tanh(649/112*Pi) 3141592653589794 l004 Pi/tanh(423/73*Pi) 3141592653589794 l004 Pi/tanh(620/107*Pi) 3141592653589794 l004 Pi/tanh(197/34*Pi) 3141592653589794 l004 Pi/tanh(562/97*Pi) 3141592653589794 l004 Pi/tanh(365/63*Pi) 3141592653589794 l004 Pi/tanh(533/92*Pi) 3141592653589794 l004 Pi/tanh(168/29*Pi) 3141592653589794 l004 Pi/tanh(643/111*Pi) 3141592653589794 l004 Pi/tanh(475/82*Pi) 3141592653589794 l004 Pi/tanh(307/53*Pi) 3141592653589794 l004 Pi/tanh(446/77*Pi) 3141592653589794 l004 Pi/tanh(585/101*Pi) 3141592653589794 l004 Pi/tanh(139/24*Pi) 3141592653589794 l004 Pi/tanh(666/115*Pi) 3141592653589794 l004 Pi/tanh(527/91*Pi) 3141592653589794 l004 Pi/tanh(388/67*Pi) 3141592653589794 l004 Pi/tanh(637/110*Pi) 3141592653589794 l004 Pi/tanh(249/43*Pi) 3141592653589794 l004 Pi/tanh(608/105*Pi) 3141592653589794 l004 Pi/tanh(359/62*Pi) 3141592653589794 l004 Pi/tanh(469/81*Pi) 3141592653589794 l004 Pi/tanh(579/100*Pi) 3141592653589794 l004 Pi/tanh(689/119*Pi) 3141592653589794 l004 Pi/tanh(110/19*Pi) 3141592653589794 l004 Pi/tanh(631/109*Pi) 3141592653589794 l004 Pi/tanh(521/90*Pi) 3141592653589794 l004 Pi/tanh(411/71*Pi) 3141592653589794 l004 Pi/tanh(301/52*Pi) 3141592653589794 l004 Pi/tanh(492/85*Pi) 3141592653589794 l004 Pi/tanh(683/118*Pi) 3141592653589794 l004 Pi/tanh(191/33*Pi) 3141592653589794 l004 Pi/tanh(654/113*Pi) 3141592653589794 l004 Pi/tanh(463/80*Pi) 3141592653589794 l004 Pi/tanh(272/47*Pi) 3141592653589794 l004 Pi/tanh(625/108*Pi) 3141592653589794 l004 Pi/tanh(353/61*Pi) 3141592653589794 l004 Pi/tanh(434/75*Pi) 3141592653589794 l004 Pi/tanh(515/89*Pi) 3141592653589794 l004 Pi/tanh(596/103*Pi) 3141592653589794 l004 Pi/tanh(677/117*Pi) 3141592653589794 l004 Pi/tanh(81/14*Pi) 3141592653589794 l004 Pi/tanh(619/107*Pi) 3141592653589794 l004 Pi/tanh(538/93*Pi) 3141592653589794 l004 Pi/tanh(457/79*Pi) 3141592653589794 l004 Pi/tanh(376/65*Pi) 3141592653589794 l004 Pi/tanh(671/116*Pi) 3141592653589794 l004 Pi/tanh(295/51*Pi) 3141592653589794 l004 Pi/tanh(509/88*Pi) 3141592653589794 l004 Pi/tanh(214/37*Pi) 3141592653589794 l004 Pi/tanh(561/97*Pi) 3141592653589794 l004 Pi/tanh(347/60*Pi) 3141592653589794 l004 Pi/tanh(480/83*Pi) 3141592653589794 l004 Pi/tanh(613/106*Pi) 3141592653589794 l004 Pi/tanh(133/23*Pi) 3141592653589794 l004 Pi/tanh(584/101*Pi) 3141592653589794 l004 Pi/tanh(451/78*Pi) 3141592653589794 l004 Pi/tanh(318/55*Pi) 3141592653589794 l004 Pi/tanh(503/87*Pi) 3141592653589794 l004 Pi/tanh(688/119*Pi) 3141592653589794 l004 Pi/tanh(185/32*Pi) 3141592653589794 l004 Pi/tanh(607/105*Pi) 3141592653589794 l004 Pi/tanh(422/73*Pi) 3141592653589794 l004 Pi/tanh(659/114*Pi) 3141592653589794 l004 Pi/tanh(237/41*Pi) 3141592653589794 l004 Pi/tanh(526/91*Pi) 3141592653589794 l004 Pi/tanh(289/50*Pi) 3141592653589794 l004 Pi/tanh(630/109*Pi) 3141592653589794 l004 Pi/tanh(341/59*Pi) 3141592653589794 l004 Pi/tanh(393/68*Pi) 3141592653589794 l004 Pi/tanh(445/77*Pi) 3141592653589794 l004 Pi/tanh(497/86*Pi) 3141592653589794 l004 Pi/tanh(549/95*Pi) 3141592653589794 l004 Pi/tanh(601/104*Pi) 3141592653589794 l004 Pi/tanh(653/113*Pi) 3141592653589794 l004 Pi/tanh(52/9*Pi) 3141592653589794 l004 Pi/tanh(647/112*Pi) 3141592653589794 l004 Pi/tanh(595/103*Pi) 3141592653589794 l004 Pi/tanh(543/94*Pi) 3141592653589794 l004 Pi/tanh(491/85*Pi) 3141592653589794 l004 Pi/tanh(439/76*Pi) 3141592653589794 l004 Pi/tanh(387/67*Pi) 3141592653589794 l004 Pi/tanh(335/58*Pi) 3141592653589794 l004 Pi/tanh(618/107*Pi) 3141592653589794 l004 Pi/tanh(283/49*Pi) 3141592653589794 l004 Pi/tanh(514/89*Pi) 3141592653589794 l004 Pi/tanh(231/40*Pi) 3141592653589794 l004 Pi/tanh(641/111*Pi) 3141592653589794 l004 Pi/tanh(410/71*Pi) 3141592653589794 m001 Pi+gamma(3)^(2*Pi/GAMMA(5/6)) 3141592653589794 l004 Pi/tanh(589/102*Pi) 3141592653589794 l004 Pi/tanh(179/31*Pi) 3141592653589794 l004 Pi/tanh(664/115*Pi) 3141592653589794 l004 Pi/tanh(485/84*Pi) 3141592653589794 l004 Pi/tanh(306/53*Pi) 3141592653589794 l004 Pi/tanh(433/75*Pi) 3141592653589794 l004 Pi/tanh(560/97*Pi) 3141592653589794 l004 Pi/tanh(687/119*Pi) 3141592653589794 l004 Pi/tanh(127/22*Pi) 3141592653589794 l004 Pi/tanh(583/101*Pi) 3141592653589794 l004 Pi/tanh(456/79*Pi) 3141592653589794 l004 Pi/tanh(329/57*Pi) 3141592653589794 l004 Pi/tanh(531/92*Pi) 3141592653589794 l004 Pi/tanh(202/35*Pi) 3141592653589794 l004 Pi/tanh(681/118*Pi) 3141592653589794 l004 Pi/tanh(479/83*Pi) 3141592653589794 l004 Pi/tanh(277/48*Pi) 3141592653589794 l004 Pi/tanh(629/109*Pi) 3141592653589794 l004 Pi/tanh(352/61*Pi) 3141592653589794 l004 Pi/tanh(427/74*Pi) 3141592653589794 l004 Pi/tanh(502/87*Pi) 3141592653589794 l004 Pi/tanh(577/100*Pi) 3141592653589794 l004 Pi/tanh(652/113*Pi) 3141592653589794 l004 Pi/tanh(75/13*Pi) 3141592653589794 l004 Pi/tanh(623/108*Pi) 3141592653589794 l004 Pi/tanh(548/95*Pi) 3141592653589794 l004 Pi/tanh(473/82*Pi) 3141592653589794 l004 Pi/tanh(398/69*Pi) 3141592653589794 l004 Pi/tanh(323/56*Pi) 3141592653589794 l004 Pi/tanh(571/99*Pi) 3141592653589794 l004 Pi/tanh(248/43*Pi) 3141592653589794 l004 Pi/tanh(669/116*Pi) 3141592653589794 l004 Pi/tanh(421/73*Pi) 3141592653589794 l004 Pi/tanh(594/103*Pi) 3141592653589794 l004 Pi/tanh(173/30*Pi) 3141592653589794 l004 Pi/tanh(617/107*Pi) 3141592653589794 l004 Pi/tanh(444/77*Pi) 3141592653589794 l004 Pi/tanh(271/47*Pi) 3141592653589794 l004 Pi/tanh(640/111*Pi) 3141592653589794 l004 Pi/tanh(369/64*Pi) 3141592653589794 l004 Pi/tanh(467/81*Pi) 3141592653589794 l004 Pi/tanh(565/98*Pi) 3141592653589794 l004 Pi/tanh(663/115*Pi) 3141592653589794 l004 Pi/tanh(98/17*Pi) 3141592653589794 l004 Pi/tanh(611/106*Pi) 3141592653589794 l004 Pi/tanh(513/89*Pi) 3141592653589794 l004 Pi/tanh(415/72*Pi) 3141592653589794 l004 Pi/tanh(317/55*Pi) 3141592653589794 l004 Pi/tanh(536/93*Pi) 3141592653589794 l004 Pi/tanh(219/38*Pi) 3141592653589794 l004 Pi/tanh(559/97*Pi) 3141592653589794 l004 Pi/tanh(340/59*Pi) 3141592653589794 l004 Pi/tanh(461/80*Pi) 3141592653589794 l004 Pi/tanh(582/101*Pi) 3141592653589794 l004 Pi/tanh(121/21*Pi) 3141592653589794 l004 Pi/tanh(628/109*Pi) 3141592653589794 l004 Pi/tanh(507/88*Pi) 3141592653589794 l005 ln(sec(267/85)) 3141592653589794 l004 Pi/tanh(386/67*Pi) 3141592653589794 l004 Pi/tanh(651/113*Pi) 3141592653589794 l004 Pi/tanh(265/46*Pi) 3141592653589794 l004 Pi/tanh(674/117*Pi) 3141592653589794 l004 Pi/tanh(409/71*Pi) 3141592653589794 l004 Pi/tanh(553/96*Pi) 3141592653589794 l004 Pi/tanh(144/25*Pi) 3141592653589794 l004 Pi/tanh(599/104*Pi) 3141592653589794 l004 Pi/tanh(455/79*Pi) 3141592653589794 l004 Pi/tanh(311/54*Pi) 3141592653589794 l004 Pi/tanh(478/83*Pi) 3141592653589794 l004 Pi/tanh(645/112*Pi) 3141592653589794 l004 Pi/tanh(167/29*Pi) 3141592653589794 l004 Pi/tanh(691/120*Pi) 3141592653589794 l004 Pi/tanh(524/91*Pi) 3141592653589794 l004 Pi/tanh(357/62*Pi) 3141592653589794 l004 Pi/tanh(547/95*Pi) 3141592653589794 l004 Pi/tanh(190/33*Pi) 3141592653589794 l004 Pi/tanh(593/103*Pi) 3141592653589794 l004 Pi/tanh(403/70*Pi) 3141592653589794 l004 Pi/tanh(616/107*Pi) 3141592653589794 l004 Pi/tanh(213/37*Pi) 3141592653589794 l004 Pi/tanh(662/115*Pi) 3141592653589794 l004 Pi/tanh(449/78*Pi) 3141592653589794 l004 Pi/tanh(685/119*Pi) 3141592653589794 l004 Pi/tanh(236/41*Pi) 3141592653589794 l004 Pi/tanh(495/86*Pi) 3141592653589794 l004 Pi/tanh(259/45*Pi) 3141592653589794 l004 Pi/tanh(541/94*Pi) 3141592653589794 l004 Pi/tanh(282/49*Pi) 3141592653589794 l004 Pi/tanh(587/102*Pi) 3141592653589794 l004 Pi/tanh(305/53*Pi) 3141592653589794 l004 Pi/tanh(633/110*Pi) 3141592653589794 l004 Pi/tanh(328/57*Pi) 3141592653589794 l004 Pi/tanh(679/118*Pi) 3141592653589794 l004 Pi/tanh(351/61*Pi) 3141592653589794 l004 Pi/tanh(374/65*Pi) 3141592653589794 l004 Pi/tanh(397/69*Pi) 3141592653589794 l004 Pi/tanh(420/73*Pi) 3141592653589794 l004 Pi/tanh(443/77*Pi) 3141592653589794 l004 Pi/tanh(466/81*Pi) 3141592653589794 l004 Pi/tanh(489/85*Pi) 3141592653589794 l004 Pi/tanh(512/89*Pi) 3141592653589794 l004 Pi/tanh(535/93*Pi) 3141592653589794 l004 Pi/tanh(558/97*Pi) 3141592653589794 l004 Pi/tanh(581/101*Pi) 3141592653589794 l004 Pi/tanh(604/105*Pi) 3141592653589794 l004 Pi/tanh(627/109*Pi) 3141592653589794 l004 Pi/tanh(650/113*Pi) 3141592653589794 l004 Pi/tanh(673/117*Pi) 3141592653589794 l004 Pi/tanh(23/4*Pi) 3141592653589794 l004 Pi/tanh(684/119*Pi) 3141592653589794 l004 Pi/tanh(661/115*Pi) 3141592653589794 l004 Pi/tanh(638/111*Pi) 3141592653589794 l004 Pi/tanh(615/107*Pi) 3141592653589794 l004 Pi/tanh(592/103*Pi) 3141592653589794 l004 Pi/tanh(569/99*Pi) 3141592653589794 l004 Pi/tanh(546/95*Pi) 3141592653589794 l004 Pi/tanh(523/91*Pi) 3141592653589794 l004 Pi/tanh(500/87*Pi) 3141592653589794 l004 Pi/tanh(477/83*Pi) 3141592653589794 l004 Pi/tanh(454/79*Pi) 3141592653589794 l004 Pi/tanh(431/75*Pi) 3141592653589794 l004 Pi/tanh(408/71*Pi) 3141592653589794 l004 Pi/tanh(385/67*Pi) 3141592653589794 l004 Pi/tanh(362/63*Pi) 3141592653589794 l004 Pi/tanh(339/59*Pi) 3141592653589794 l004 Pi/tanh(655/114*Pi) 3141592653589794 l004 Pi/tanh(316/55*Pi) 3141592653589794 l004 Pi/tanh(609/106*Pi) 3141592653589794 l004 Pi/tanh(293/51*Pi) 3141592653589794 l004 Pi/tanh(563/98*Pi) 3141592653589794 l004 Pi/tanh(270/47*Pi) 3141592653589794 l004 Pi/tanh(517/90*Pi) 3141592653589794 l004 Pi/tanh(247/43*Pi) 3141592653589794 l004 Pi/tanh(471/82*Pi) 3141592653589794 l004 Pi/tanh(224/39*Pi) 3141592653589794 l004 Pi/tanh(649/113*Pi) 3141592653589794 l004 Pi/tanh(425/74*Pi) 3141592653589794 l004 Pi/tanh(626/109*Pi) 3141592653589794 l004 Pi/tanh(201/35*Pi) 3141592653589794 l004 Pi/tanh(580/101*Pi) 3141592653589794 l004 Pi/tanh(379/66*Pi) 3141592653589794 l004 Pi/tanh(557/97*Pi) 3141592653589794 l004 Pi/tanh(178/31*Pi) 3141592653589794 l004 Pi/tanh(689/120*Pi) 3141592653589794 l004 Pi/tanh(511/89*Pi) 3141592653589794 l004 Pi/tanh(333/58*Pi) 3141592653589794 l004 Pi/tanh(488/85*Pi) 3141592653589794 l004 Pi/tanh(643/112*Pi) 3141592653589794 l004 Pi/tanh(155/27*Pi) 3141592653589794 l004 Pi/tanh(597/104*Pi) 3141592653589794 l004 Pi/tanh(442/77*Pi) 3141592653589794 l004 Pi/tanh(287/50*Pi) 3141592653589794 l004 Pi/tanh(419/73*Pi) 3141592653589794 l004 Pi/tanh(551/96*Pi) 3141592653589794 l004 Pi/tanh(683/119*Pi) 3141592653589794 l004 Pi/tanh(132/23*Pi) 3141592653589794 l004 Pi/tanh(637/111*Pi) 3141592653589794 l004 Pi/tanh(505/88*Pi) 3141592653589794 l004 Pi/tanh(373/65*Pi) 3141592653589794 l004 Pi/tanh(614/107*Pi) 3141592653589794 l004 Pi/tanh(241/42*Pi) 3141592653589794 l004 Pi/tanh(591/103*Pi) 3141592653589794 l004 Pi/tanh(350/61*Pi) 3141592653589794 l004 Pi/tanh(459/80*Pi) 3141592653589794 l004 Pi/tanh(568/99*Pi) 3141592653589794 l004 Pi/tanh(677/118*Pi) 3141592653589794 l004 Pi/tanh(109/19*Pi) 3141592653589794 l004 Pi/tanh(631/110*Pi) 3141592653589794 l004 Pi/tanh(522/91*Pi) 3141592653589794 l004 Pi/tanh(413/72*Pi) 3141592653589794 l004 Pi/tanh(304/53*Pi) 3141592653589794 l004 Pi/tanh(499/87*Pi) 3141592653589794 l004 Pi/tanh(195/34*Pi) 3141592653589794 l004 Pi/tanh(671/117*Pi) 3141592653589794 l004 Pi/tanh(476/83*Pi) 3141592653589794 l004 Pi/tanh(281/49*Pi) 3141592653589794 l004 Pi/tanh(648/113*Pi) 3141592653589794 l004 Pi/tanh(367/64*Pi) 3141592653589794 l004 Pi/tanh(453/79*Pi) 3141592653589794 l004 Pi/tanh(539/94*Pi) 3141592653589794 l004 Pi/tanh(625/109*Pi) 3141592653589794 l004 Pi/tanh(86/15*Pi) 3141592653589794 l004 Pi/tanh(665/116*Pi) 3141592653589794 l004 Pi/tanh(579/101*Pi) 3141592653589794 l004 Pi/tanh(493/86*Pi) 3141592653589794 l004 Pi/tanh(407/71*Pi) 3141592653589794 l004 Pi/tanh(321/56*Pi) 3141592653589794 l004 Pi/tanh(556/97*Pi) 3141592653589794 l004 Pi/tanh(235/41*Pi) 3141592653589794 l004 Pi/tanh(619/108*Pi) 3141592653589794 l004 Pi/tanh(384/67*Pi) 3141592653589794 l004 Pi/tanh(533/93*Pi) 3141592653589794 l004 Pi/tanh(682/119*Pi) 3141592653589794 l004 Pi/tanh(149/26*Pi) 3141592653589794 l004 Pi/tanh(659/115*Pi) 3141592653589794 l004 Pi/tanh(510/89*Pi) 3141592653589794 l004 Pi/tanh(361/63*Pi) 3141592653589794 l004 Pi/tanh(573/100*Pi) 3141592653589794 l004 Pi/tanh(212/37*Pi) 3141592653589794 l004 Pi/tanh(487/85*Pi) 3141592653589794 l004 Pi/tanh(275/48*Pi) 3141592653589794 l004 Pi/tanh(613/107*Pi) 3141592653589794 l004 Pi/tanh(338/59*Pi) 3141592653589794 l004 Pi/tanh(401/70*Pi) 3141592653589794 l004 Pi/tanh(464/81*Pi) 3141592653589794 l004 Pi/tanh(527/92*Pi) 3141592653589794 l004 Pi/tanh(590/103*Pi) 3141592653589794 l004 Pi/tanh(653/114*Pi) 3141592653589794 l004 Pi/tanh(63/11*Pi) 3141592653589794 l004 Pi/tanh(670/117*Pi) 3141592653589794 l004 Pi/tanh(607/106*Pi) 3141592653589794 l004 Pi/tanh(544/95*Pi) 3141592653589794 l004 Pi/tanh(481/84*Pi) 3141592653589794 l004 Pi/tanh(418/73*Pi) 3141592653589794 l004 Pi/tanh(355/62*Pi) 3141592653589794 l004 Pi/tanh(647/113*Pi) 3141592653589794 l004 Pi/tanh(292/51*Pi) 3141592653589794 l004 Pi/tanh(521/91*Pi) 3141592653589794 l004 Pi/tanh(229/40*Pi) 3141592653589794 l004 Pi/tanh(624/109*Pi) 3141592653589794 l004 Pi/tanh(395/69*Pi) 3141592653589794 l004 Pi/tanh(561/98*Pi) 3141592653589794 l004 Pi/tanh(166/29*Pi) 3141592653589794 l004 Pi/tanh(601/105*Pi) 3141592653589794 l004 Pi/tanh(435/76*Pi) 3141592653589794 l004 Pi/tanh(269/47*Pi) 3141592653589794 l004 Pi/tanh(641/112*Pi) 3141592653589794 l004 Pi/tanh(372/65*Pi) 3141592653589794 l004 Pi/tanh(475/83*Pi) 3141592653589794 l004 Pi/tanh(578/101*Pi) 3141592653589794 l004 Pi/tanh(681/119*Pi) 3141592653589794 l004 Pi/tanh(103/18*Pi) 3141592653589794 l004 Pi/tanh(658/115*Pi) 3141592653589794 l004 Pi/tanh(555/97*Pi) 3141592653589794 l004 Pi/tanh(452/79*Pi) 3141592653589794 l004 Pi/tanh(349/61*Pi) 3141592653589794 l004 Pi/tanh(595/104*Pi) 3141592653589794 l004 Pi/tanh(246/43*Pi) 3141592653589794 l004 Pi/tanh(635/111*Pi) 3141592653589794 l004 Pi/tanh(389/68*Pi) 3141592653589794 l004 Pi/tanh(532/93*Pi) 3141592653589794 l004 Pi/tanh(675/118*Pi) 3141592653589794 l004 Pi/tanh(143/25*Pi) 3141592653589794 l004 Pi/tanh(612/107*Pi) 3141592653589794 l004 Pi/tanh(469/82*Pi) 3141592653589794 l004 Pi/tanh(326/57*Pi) 3141592653589794 l004 Pi/tanh(509/89*Pi) 3141592653589794 l004 Pi/tanh(183/32*Pi) 3141592653589794 l004 Pi/tanh(589/103*Pi) 3141592653589794 l004 Pi/tanh(406/71*Pi) 3141592653589794 l004 Pi/tanh(629/110*Pi) 3141592653589794 l004 Pi/tanh(223/39*Pi) 3141592653589794 l004 Pi/tanh(486/85*Pi) 3141592653589794 l004 Pi/tanh(263/46*Pi) 3141592653589794 l004 Pi/tanh(566/99*Pi) 3141592653589794 l004 Pi/tanh(303/53*Pi) 3141592653589794 l004 Pi/tanh(646/113*Pi) 3141592653589794 l004 Pi/tanh(343/60*Pi) 3141592653589794 l004 Pi/tanh(383/67*Pi) 3141592653589794 l004 Pi/tanh(423/74*Pi) 3141592653589794 l004 Pi/tanh(463/81*Pi) 3141592653589794 l004 Pi/tanh(503/88*Pi) 3141592653589794 l004 Pi/tanh(543/95*Pi) 3141592653589794 l004 Pi/tanh(583/102*Pi) 3141592653589794 l004 Pi/tanh(623/109*Pi) 3141592653589794 l004 Pi/tanh(663/116*Pi) 3141592653589794 l004 Pi/tanh(40/7*Pi) 3141592653589794 l004 Pi/tanh(657/115*Pi) 3141592653589794 l004 Pi/tanh(617/108*Pi) 3141592653589794 l004 Pi/tanh(577/101*Pi) 3141592653589794 l004 Pi/tanh(537/94*Pi) 3141592653589794 l004 Pi/tanh(497/87*Pi) 3141592653589794 l004 Pi/tanh(457/80*Pi) 3141592653589794 l004 Pi/tanh(417/73*Pi) 3141592653589794 l004 Pi/tanh(377/66*Pi) 3141592653589794 l004 Pi/tanh(337/59*Pi) 3141592653589794 l004 Pi/tanh(634/111*Pi) 3141592653589794 l004 Pi/tanh(297/52*Pi) 3141592653589794 l004 Pi/tanh(554/97*Pi) 3141592653589794 l004 Pi/tanh(257/45*Pi) 3141592653589794 l004 Pi/tanh(474/83*Pi) 3141592653589794 l004 Pi/tanh(217/38*Pi) 3141592653589794 l004 Pi/tanh(611/107*Pi) 3141592653589794 l004 Pi/tanh(394/69*Pi) 3141592653589794 l004 Pi/tanh(571/100*Pi) 3141592653589794 l004 Pi/tanh(177/31*Pi) 3141592653589794 l004 Pi/tanh(668/117*Pi) 3141592653589794 l004 Pi/tanh(491/86*Pi) 3141592653589794 l004 Pi/tanh(314/55*Pi) 3141592653589794 l004 Pi/tanh(451/79*Pi) 3141592653589794 l004 Pi/tanh(588/103*Pi) 3141592653589794 l004 Pi/tanh(137/24*Pi) 3141592653589794 l004 Pi/tanh(645/113*Pi) 3141592653589794 l004 Pi/tanh(508/89*Pi) 3141592653589794 l004 Pi/tanh(371/65*Pi) 3141592653589794 l004 Pi/tanh(605/106*Pi) 3141592653589794 l004 Pi/tanh(234/41*Pi) 3141592653589794 l004 Pi/tanh(565/99*Pi) 3141592653589794 l004 Pi/tanh(331/58*Pi) 3141592653589794 l004 Pi/tanh(428/75*Pi) 3141592653589794 l004 Pi/tanh(525/92*Pi) 3141592653589794 l004 Pi/tanh(622/109*Pi) 3141592653589794 l004 Pi/tanh(97/17*Pi) 3141592653589794 l004 Pi/tanh(639/112*Pi) 3141592653589794 l004 Pi/tanh(542/95*Pi) 3141592653589794 l004 Pi/tanh(445/78*Pi) 3141592653589794 l004 Pi/tanh(348/61*Pi) 3141592653589794 l004 Pi/tanh(599/105*Pi) 3141592653589794 l004 Pi/tanh(251/44*Pi) 3141592653589794 l004 Pi/tanh(656/115*Pi) 3141592653589794 l004 Pi/tanh(405/71*Pi) 3141592653589794 l004 Pi/tanh(559/98*Pi) 3141592653589794 l004 Pi/tanh(154/27*Pi) 3141592653589794 l004 Pi/tanh(673/118*Pi) 3141592653589794 l004 Pi/tanh(519/91*Pi) 3141592653589794 l004 Pi/tanh(365/64*Pi) 3141592653589794 l004 Pi/tanh(576/101*Pi) 3141592653589794 l004 Pi/tanh(211/37*Pi) 3141592653589794 l004 Pi/tanh(479/84*Pi) 3141592653589794 l004 Pi/tanh(268/47*Pi) 3141592653589794 l004 Pi/tanh(593/104*Pi) 3141592653589794 l004 Pi/tanh(325/57*Pi) 3141592653589794 l004 Pi/tanh(382/67*Pi) 3141592653589794 l004 Pi/tanh(439/77*Pi) 3141592653589794 l004 Pi/tanh(496/87*Pi) 3141592653589794 l004 Pi/tanh(553/97*Pi) 3141592653589794 l004 Pi/tanh(610/107*Pi) 3141592653589794 l004 Pi/tanh(667/117*Pi) 3141592653589794 l004 Pi/tanh(57/10*Pi) 3141592653589795 l004 Pi/tanh(644/113*Pi) 3141592653589795 l004 Pi/tanh(587/103*Pi) 3141592653589795 l004 Pi/tanh(530/93*Pi) 3141592653589795 l004 Pi/tanh(473/83*Pi) 3141592653589795 m001 Si(Pi)^Psi(2,1/3)+Pi 3141592653589795 l004 Pi/tanh(416/73*Pi) 3141592653589795 l004 Pi/tanh(359/63*Pi) 3141592653589795 l004 Pi/tanh(661/116*Pi) 3141592653589795 l004 Pi/tanh(302/53*Pi) 3141592653589795 l004 Pi/tanh(547/96*Pi) 3141592653589795 l004 Pi/tanh(245/43*Pi) 3141592653589795 l004 Pi/tanh(678/119*Pi) 3141592653589795 l004 Pi/tanh(433/76*Pi) 3141592653589795 l004 Pi/tanh(621/109*Pi) 3141592653589795 l004 Pi/tanh(188/33*Pi) 3141592653589795 l004 Pi/tanh(507/89*Pi) 3141592653589795 l004 Pi/tanh(319/56*Pi) 3141592653589795 l004 Pi/tanh(450/79*Pi) 3141592653589795 l004 Pi/tanh(581/102*Pi) 3141592653589795 l004 Pi/tanh(131/23*Pi) 3141592653589795 l004 Pi/tanh(598/105*Pi) 3141592653589795 l004 Pi/tanh(467/82*Pi) 3141592653589795 l004 Pi/tanh(336/59*Pi) 3141592653589795 l004 Pi/tanh(541/95*Pi) 3141592653589795 l004 Pi/tanh(205/36*Pi) 3141592653589795 l004 Pi/tanh(484/85*Pi) 3141592653589795 l004 Pi/tanh(279/49*Pi) 3141592653589795 l004 Pi/tanh(632/111*Pi) 3141592653589795 l004 Pi/tanh(353/62*Pi) 3141592653589795 l004 Pi/tanh(427/75*Pi) 3141592653589795 l004 Pi/tanh(501/88*Pi) 3141592653589795 l004 Pi/tanh(575/101*Pi) 3141592653589795 l004 Pi/tanh(649/114*Pi) 3141592653589795 l004 Pi/tanh(74/13*Pi) 3141592653589795 l004 Pi/tanh(683/120*Pi) 3141592653589795 l004 Pi/tanh(609/107*Pi) 3141592653589795 l004 Pi/tanh(535/94*Pi) 3141592653589795 l004 Pi/tanh(461/81*Pi) 3141592653589795 l004 Pi/tanh(387/68*Pi) 3141592653589795 l004 Pi/tanh(313/55*Pi) 3141592653589795 l004 Pi/tanh(552/97*Pi) 3141592653589795 l004 Pi/tanh(239/42*Pi) 3141592653589795 l004 Pi/tanh(643/113*Pi) 3141592653589795 l004 Pi/tanh(404/71*Pi) 3141592653589795 l004 Pi/tanh(569/100*Pi) 3141592653589795 l004 Pi/tanh(165/29*Pi) 3141592653589795 l004 Pi/tanh(586/103*Pi) 3141592653589795 l004 Pi/tanh(421/74*Pi) 3141592653589795 l004 Pi/tanh(677/119*Pi) 3141592653589795 l004 Pi/tanh(256/45*Pi) 3141592653589795 l004 Pi/tanh(603/106*Pi) 3141592653589795 l004 Pi/tanh(347/61*Pi) 3141592653589795 l004 Pi/tanh(438/77*Pi) 3141592653589795 l004 Pi/tanh(529/93*Pi) 3141592653589795 l004 Pi/tanh(620/109*Pi) 3141592653589795 l004 Pi/tanh(91/16*Pi) 3141592653589795 l004 Pi/tanh(654/115*Pi) 3141592653589795 l004 Pi/tanh(563/99*Pi) 3141592653589795 l004 Pi/tanh(472/83*Pi) 3141592653589795 l004 Pi/tanh(381/67*Pi) 3141592653589795 l004 Pi/tanh(671/118*Pi) 3141592653589795 l004 Pi/tanh(290/51*Pi) 3141592653589795 l004 Pi/tanh(489/86*Pi) 3141592653589795 l004 Pi/tanh(199/35*Pi) 3141592653589795 l004 Pi/tanh(506/89*Pi) 3141592653589795 l004 Pi/tanh(307/54*Pi) 3141592653589795 l004 Pi/tanh(415/73*Pi) 3141592653589795 l004 Pi/tanh(523/92*Pi) 3141592653589795 l004 Pi/tanh(631/111*Pi) 3141592653589795 l004 Pi/tanh(108/19*Pi) 3141592653589795 l004 Pi/tanh(665/117*Pi) 3141592653589795 l004 Pi/tanh(557/98*Pi) 3141592653589795 l004 Pi/tanh(449/79*Pi) 3141592653589795 l004 Pi/tanh(341/60*Pi) 3141592653589795 l004 Pi/tanh(574/101*Pi) 3141592653589795 l004 Pi/tanh(233/41*Pi) 3141592653589795 l004 Pi/tanh(591/104*Pi) 3141592653589795 l004 Pi/tanh(358/63*Pi) 3141592653589795 l004 Pi/tanh(483/85*Pi) 3141592653589795 l004 Pi/tanh(608/107*Pi) 3141592653589795 l004 Pi/tanh(125/22*Pi) 3141592653589795 l004 Pi/tanh(642/113*Pi) 3141592653589795 l004 Pi/tanh(517/91*Pi) 3141592653589795 l004 Pi/tanh(392/69*Pi) 3141592653589795 l004 Pi/tanh(659/116*Pi) 3141592653589795 l004 Pi/tanh(267/47*Pi) 3141592653589795 l004 Pi/tanh(676/119*Pi) 3141592653589795 l004 Pi/tanh(409/72*Pi) 3141592653589795 l004 Pi/tanh(551/97*Pi) 3141592653589795 l004 Pi/tanh(142/25*Pi) 3141592653589795 l004 Pi/tanh(585/103*Pi) 3141592653589795 l004 Pi/tanh(443/78*Pi) 3141592653589795 l004 Pi/tanh(301/53*Pi) 3141592653589795 l004 Pi/tanh(460/81*Pi) 3141592653589795 l004 Pi/tanh(619/109*Pi) 3141592653589795 l004 Pi/tanh(159/28*Pi) 3141592653589795 l004 Pi/tanh(653/115*Pi) 3141592653589795 l004 Pi/tanh(494/87*Pi) 3141592653589795 l004 Pi/tanh(335/59*Pi) 3141592653589795 l004 Pi/tanh(511/90*Pi) 3141592653589795 l004 Pi/tanh(176/31*Pi) 3141592653589795 l004 Pi/tanh(545/96*Pi) 3141592653589795 l004 Pi/tanh(369/65*Pi) 3141592653589795 l004 Pi/tanh(562/99*Pi) 3141592653589795 l004 Pi/tanh(193/34*Pi) 3141592653589795 l004 Pi/tanh(596/105*Pi) 3141592653589795 l004 Pi/tanh(403/71*Pi) 3141592653589795 l004 Pi/tanh(613/108*Pi) 3141592653589795 l004 Pi/tanh(210/37*Pi) 3141592653589795 l004 Pi/tanh(647/114*Pi) 3141592653589795 l004 Pi/tanh(437/77*Pi) 3141592653589795 l004 Pi/tanh(664/117*Pi) 3141592653589795 l004 Pi/tanh(227/40*Pi) 3141592653589795 l004 Pi/tanh(471/83*Pi) 3141592653589795 l004 Pi/tanh(244/43*Pi) 3141592653589795 l004 Pi/tanh(505/89*Pi) 3141592653589795 l004 Pi/tanh(261/46*Pi) 3141592653589795 l004 Pi/tanh(539/95*Pi) 3141592653589795 l004 Pi/tanh(278/49*Pi) 3141592653589795 l004 Pi/tanh(573/101*Pi) 3141592653589795 l004 Pi/tanh(295/52*Pi) 3141592653589795 l004 Pi/tanh(607/107*Pi) 3141592653589795 l004 Pi/tanh(312/55*Pi) 3141592653589795 l004 Pi/tanh(641/113*Pi) 3141592653589795 l004 Pi/tanh(329/58*Pi) 3141592653589795 l004 Pi/tanh(675/119*Pi) 3141592653589795 l004 Pi/tanh(346/61*Pi) 3141592653589795 l004 Pi/tanh(363/64*Pi) 3141592653589795 l004 Pi/tanh(380/67*Pi) 3141592653589795 l004 Pi/tanh(397/70*Pi) 3141592653589795 l004 Pi/tanh(414/73*Pi) 3141592653589795 l004 Pi/tanh(431/76*Pi) 3141592653589795 l004 Pi/tanh(448/79*Pi) 3141592653589795 l004 Pi/tanh(465/82*Pi) 3141592653589795 l004 Pi/tanh(482/85*Pi) 3141592653589795 l004 Pi/tanh(499/88*Pi) 3141592653589795 l004 Pi/tanh(516/91*Pi) 3141592653589795 l004 Pi/tanh(533/94*Pi) 3141592653589795 l004 Pi/tanh(550/97*Pi) 3141592653589795 l004 Pi/tanh(567/100*Pi) 3141592653589795 l004 Pi/tanh(584/103*Pi) 3141592653589795 l004 Pi/tanh(601/106*Pi) 3141592653589795 l004 Pi/tanh(618/109*Pi) 3141592653589795 l004 Pi/tanh(635/112*Pi) 3141592653589795 l004 Pi/tanh(652/115*Pi) 3141592653589795 l004 Pi/tanh(669/118*Pi) 3141592653589795 l004 Pi/tanh(17/3*Pi) 3141592653589795 l004 Pi/tanh(674/119*Pi) 3141592653589795 l004 Pi/tanh(657/116*Pi) 3141592653589795 l004 Pi/tanh(640/113*Pi) 3141592653589795 l004 Pi/tanh(623/110*Pi) 3141592653589795 l004 Pi/tanh(606/107*Pi) 3141592653589795 l004 Pi/tanh(589/104*Pi) 3141592653589795 l004 Pi/tanh(572/101*Pi) 3141592653589795 l004 Pi/tanh(555/98*Pi) 3141592653589795 l004 Pi/tanh(538/95*Pi) 3141592653589795 l004 Pi/tanh(521/92*Pi) 3141592653589795 l004 Pi/tanh(504/89*Pi) 3141592653589795 l004 Pi/tanh(487/86*Pi) 3141592653589795 l004 Pi/tanh(470/83*Pi) 3141592653589795 l004 Pi/tanh(453/80*Pi) 3141592653589795 l004 Pi/tanh(436/77*Pi) 3141592653589795 l004 Pi/tanh(419/74*Pi) 3141592653589795 l004 Pi/tanh(402/71*Pi) 3141592653589795 l004 Pi/tanh(385/68*Pi) 3141592653589795 l004 Pi/tanh(368/65*Pi) 3141592653589795 l004 Pi/tanh(351/62*Pi) 3141592653589795 l004 Pi/tanh(334/59*Pi) 3141592653589795 l004 Pi/tanh(651/115*Pi) 3141592653589795 l004 Pi/tanh(317/56*Pi) 3141592653589795 l004 Pi/tanh(617/109*Pi) 3141592653589795 l004 Pi/tanh(300/53*Pi) 3141592653589795 l004 Pi/tanh(583/103*Pi) 3141592653589795 l004 Pi/tanh(283/50*Pi) 3141592653589795 l004 Pi/tanh(549/97*Pi) 3141592653589795 l004 Pi/tanh(266/47*Pi) 3141592653589795 l004 Pi/tanh(515/91*Pi) 3141592653589795 l004 Pi/tanh(249/44*Pi) 3141592653589795 l004 Pi/tanh(481/85*Pi) 3141592653589795 l004 Pi/tanh(232/41*Pi) 3141592653589795 l004 Pi/tanh(679/120*Pi) 3141592653589795 l004 Pi/tanh(447/79*Pi) 3141592653589795 l004 Pi/tanh(662/117*Pi) 3141592653589795 l004 Pi/tanh(215/38*Pi) 3141592653589795 l004 Pi/tanh(628/111*Pi) 3141592653589795 l004 Pi/tanh(413/73*Pi) 3141592653589795 l004 Pi/tanh(611/108*Pi) 3141592653589795 l004 Pi/tanh(198/35*Pi) 3141592653589795 l004 Pi/tanh(577/102*Pi) 3141592653589795 l004 Pi/tanh(379/67*Pi) 3141592653589795 l004 Pi/tanh(560/99*Pi) 3141592653589795 l004 Pi/tanh(181/32*Pi) 3141592653589795 l004 Pi/tanh(526/93*Pi) 3141592653589795 l004 Pi/tanh(345/61*Pi) 3141592653589795 l004 Pi/tanh(509/90*Pi) 3141592653589795 l004 Pi/tanh(673/119*Pi) 3141592653589795 l004 Pi/tanh(164/29*Pi) 3141592653589795 l004 Pi/tanh(639/113*Pi) 3141592653589795 l004 Pi/tanh(475/84*Pi) 3141592653589795 l004 Pi/tanh(311/55*Pi) 3141592653589795 l004 Pi/tanh(458/81*Pi) 3141592653589795 l004 Pi/tanh(605/107*Pi) 3141592653589795 l004 Pi/tanh(147/26*Pi) 3141592653589795 l004 Pi/tanh(571/101*Pi) 3141592653589795 l004 Pi/tanh(424/75*Pi) 3141592653589795 l004 Pi/tanh(277/49*Pi) 3141592653589795 l004 Pi/tanh(407/72*Pi) 3141592653589795 l004 Pi/tanh(537/95*Pi) 3141592653589795 l004 Pi/tanh(667/118*Pi) 3141592653589795 l004 Pi/tanh(130/23*Pi) 3141592653589795 l004 Pi/tanh(633/112*Pi) 3141592653589795 l004 Pi/tanh(503/89*Pi) 3141592653589795 l004 Pi/tanh(373/66*Pi) 3141592653589795 l004 Pi/tanh(616/109*Pi) 3141592653589795 l004 Pi/tanh(243/43*Pi) 3141592653589795 l004 Pi/tanh(599/106*Pi) 3141592653589795 l004 Pi/tanh(356/63*Pi) 3141592653589795 l004 Pi/tanh(469/83*Pi) 3141592653589795 l004 Pi/tanh(582/103*Pi) 3141592653589795 l004 Pi/tanh(113/20*Pi) 3141592653589795 l004 Pi/tanh(661/117*Pi) 3141592653589795 l004 Pi/tanh(548/97*Pi) 3141592653589795 l004 Pi/tanh(435/77*Pi) 3141592653589795 l004 Pi/tanh(322/57*Pi) 3141592653589795 l004 Pi/tanh(531/94*Pi) 3141592653589795 l004 Pi/tanh(209/37*Pi) 3141592653589795 l004 Pi/tanh(514/91*Pi) 3141592653589795 l004 Pi/tanh(305/54*Pi) 3141592653589795 l004 Pi/tanh(401/71*Pi) 3141592653589795 l004 Pi/tanh(497/88*Pi) 3141592653589795 l004 Pi/tanh(593/105*Pi) 3141592653589795 l004 Pi/tanh(96/17*Pi) 3141592653589795 l004 Pi/tanh(655/116*Pi) 3141592653589795 l004 Pi/tanh(559/99*Pi) 3141592653589795 l004 Pi/tanh(463/82*Pi) 3141592653589795 l004 Pi/tanh(367/65*Pi) 3141592653589795 l004 Pi/tanh(638/113*Pi) 3141592653589795 l004 Pi/tanh(271/48*Pi) 3141592653589795 l004 Pi/tanh(446/79*Pi) 3141592653589795 l004 Pi/tanh(621/110*Pi) 3141592653589795 l004 Pi/tanh(175/31*Pi) 3141592653589795 l004 Pi/tanh(604/107*Pi) 3141592653589795 l004 Pi/tanh(429/76*Pi) 3141592653589795 l004 Pi/tanh(254/45*Pi) 3141592653589795 l004 Pi/tanh(587/104*Pi) 3141592653589795 l004 Pi/tanh(333/59*Pi) 3141592653589795 l004 Pi/tanh(412/73*Pi) 3141592653589795 l004 Pi/tanh(491/87*Pi) 3141592653589795 l004 Pi/tanh(570/101*Pi) 3141592653589795 l004 Pi/tanh(649/115*Pi) 3141592653589795 l004 Pi/tanh(79/14*Pi) 3141592653589795 l004 Pi/tanh(615/109*Pi) 3141592653589795 l004 Pi/tanh(536/95*Pi) 3141592653589795 l004 Pi/tanh(457/81*Pi) 3141592653589795 l004 Pi/tanh(378/67*Pi) 3141592653589795 l004 Pi/tanh(677/120*Pi) 3141592653589795 l004 Pi/tanh(299/53*Pi) 3141592653589795 l004 Pi/tanh(519/92*Pi) 3141592653589795 l004 Pi/tanh(220/39*Pi) 3141592653589795 l004 Pi/tanh(581/103*Pi) 3141592653589795 m001 ZetaQ(2)^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653589795 l004 Pi/tanh(361/64*Pi) 3141592653589795 l004 Pi/tanh(502/89*Pi) 3141592653589795 l004 Pi/tanh(643/114*Pi) 3141592653589795 l004 Pi/tanh(141/25*Pi) 3141592653589795 l004 Pi/tanh(626/111*Pi) 3141592653589795 l004 Pi/tanh(485/86*Pi) 3141592653589795 l004 Pi/tanh(344/61*Pi) 3141592653589795 l004 Pi/tanh(547/97*Pi) 3141592653589795 l004 Pi/tanh(203/36*Pi) 3141592653589795 l004 Pi/tanh(671/119*Pi) 3141592653589795 l004 Pi/tanh(468/83*Pi) 3141592653589795 m001 Tribonacci^Psi(2,1/3)+Pi 3141592653589795 l004 Pi/tanh(265/47*Pi) 3141592653589795 l004 Pi/tanh(592/105*Pi) 3141592653589795 l004 Pi/tanh(327/58*Pi) 3141592653589795 l004 Pi/tanh(389/69*Pi) 3141592653589795 l004 Pi/tanh(451/80*Pi) 3141592653589795 l004 Pi/tanh(513/91*Pi) 3141592653589795 l004 Pi/tanh(575/102*Pi) 3141592653589795 l004 Pi/tanh(637/113*Pi) 3141592653589795 l004 Pi/tanh(62/11*Pi) 3141592653589795 l004 Pi/tanh(665/118*Pi) 3141592653589795 l004 Pi/tanh(603/107*Pi) 3141592653589795 l004 Pi/tanh(541/96*Pi) 3141592653589795 l004 Pi/tanh(479/85*Pi) 3141592653589795 l004 Pi/tanh(417/74*Pi) 3141592653589795 l004 Pi/tanh(355/63*Pi) 3141592653589795 l004 Pi/tanh(648/115*Pi) 3141592653589795 l004 Pi/tanh(293/52*Pi) 3141592653589795 l004 Pi/tanh(524/93*Pi) 3141592653589795 l004 Pi/tanh(231/41*Pi) 3141592653589795 l004 Pi/tanh(631/112*Pi) 3141592653589795 l004 Pi/tanh(400/71*Pi) 3141592653589795 l004 Pi/tanh(569/101*Pi) 3141592653589795 l004 Pi/tanh(169/30*Pi) 3141592653589795 l004 Pi/tanh(614/109*Pi) 3141592653589795 l004 Pi/tanh(445/79*Pi) 3141592653589795 l005 ln(sec(820/87)) 3141592653589795 l004 Pi/tanh(276/49*Pi) 3141592653589795 l004 Pi/tanh(659/117*Pi) 3141592653589795 l004 Pi/tanh(383/68*Pi) 3141592653589795 l004 Pi/tanh(490/87*Pi) 3141592653589795 l004 Pi/tanh(597/106*Pi) 3141592653589795 l004 Pi/tanh(107/19*Pi) 3141592653589795 l004 Pi/tanh(580/103*Pi) 3141592653589795 l004 Pi/tanh(473/84*Pi) 3141592653589795 l004 Pi/tanh(366/65*Pi) 3141592653589795 l004 Pi/tanh(625/111*Pi) 3141592653589795 l004 Pi/tanh(259/46*Pi) 3141592653589795 l004 Pi/tanh(670/119*Pi) 3141592653589795 l004 Pi/tanh(411/73*Pi) 3141592653589795 l004 Pi/tanh(563/100*Pi) 3141592653589795 l004 Pi/tanh(152/27*Pi) 3141592653589795 l004 Pi/tanh(653/116*Pi) 3141592653589795 l004 Pi/tanh(501/89*Pi) 3141592653589795 l004 Pi/tanh(349/62*Pi) 3141592653589795 l004 Pi/tanh(546/97*Pi) 3141592653589795 l004 Pi/tanh(197/35*Pi) 3141592653589795 l004 Pi/tanh(636/113*Pi) 3141592653589795 l004 Pi/tanh(439/78*Pi) 3141592653589795 l004 Pi/tanh(242/43*Pi) 3141592653589796 l004 Pi/tanh(529/94*Pi) 3141592653589796 l004 Pi/tanh(287/51*Pi) 3141592653589796 l004 Pi/tanh(619/110*Pi) 3141592653589796 l004 Pi/tanh(332/59*Pi) 3141592653589796 l004 Pi/tanh(377/67*Pi) 3141592653589796 l004 Pi/tanh(422/75*Pi) 3141592653589796 l004 Pi/tanh(467/83*Pi) 3141592653589796 l004 Pi/tanh(512/91*Pi) 3141592653589796 l004 Pi/tanh(557/99*Pi) 3141592653589796 l004 Pi/tanh(602/107*Pi) 3141592653589796 l004 Pi/tanh(647/115*Pi) 3141592653589796 l004 Pi/tanh(45/8*Pi) 3141592653589796 l004 Pi/tanh(658/117*Pi) 3141592653589796 l004 Pi/tanh(613/109*Pi) 3141592653589796 l004 Pi/tanh(568/101*Pi) 3141592653589796 l004 Pi/tanh(523/93*Pi) 3141592653589796 l004 Pi/tanh(478/85*Pi) 3141592653589796 l004 Pi/tanh(433/77*Pi) 3141592653589796 l004 Pi/tanh(388/69*Pi) 3141592653589796 l004 Pi/tanh(343/61*Pi) 3141592653589796 l004 Pi/tanh(641/114*Pi) 3141592653589796 l004 Pi/tanh(298/53*Pi) 3141592653589796 l004 Pi/tanh(551/98*Pi) 3141592653589796 l004 Pi/tanh(253/45*Pi) 3141592653589796 l004 Pi/tanh(461/82*Pi) 3141592653589796 l004 Pi/tanh(669/119*Pi) 3141592653589796 l004 Pi/tanh(208/37*Pi) 3141592653589796 l004 Pi/tanh(579/103*Pi) 3141592653589796 l004 Pi/tanh(371/66*Pi) 3141592653589796 l004 Pi/tanh(534/95*Pi) 3141592653589796 l004 Pi/tanh(163/29*Pi) 3141592653589796 l004 Pi/tanh(607/108*Pi) 3141592653589796 l004 Pi/tanh(444/79*Pi) 3141592653589796 l004 Pi/tanh(281/50*Pi) 3141592653589796 l004 Pi/tanh(399/71*Pi) 3141592653589796 l004 Pi/tanh(517/92*Pi) 3141592653589796 l004 Pi/tanh(635/113*Pi) 3141592653589796 l004 Pi/tanh(118/21*Pi) 3141592653589796 l004 Pi/tanh(663/118*Pi) 3141592653589796 l004 Pi/tanh(545/97*Pi) 3141592653589796 l004 Pi/tanh(427/76*Pi) 3141592653589796 l004 Pi/tanh(309/55*Pi) 3141592653589796 l004 Pi/tanh(500/89*Pi) 3141592653589796 l004 Pi/tanh(191/34*Pi) 3141592653589796 l004 Pi/tanh(646/115*Pi) 3141592653589796 l004 Pi/tanh(455/81*Pi) 3141592653589796 l004 Pi/tanh(264/47*Pi) 3141592653589796 l004 Pi/tanh(601/107*Pi) 3141592653589796 l004 Pi/tanh(337/60*Pi) 3141592653589796 l004 Pi/tanh(410/73*Pi) 3141592653589796 l004 Pi/tanh(483/86*Pi) 3141592653589796 l004 Pi/tanh(556/99*Pi) 3141592653589796 l004 Pi/tanh(629/112*Pi) 3141592653589796 l004 Pi/tanh(73/13*Pi) 3141592653589796 m001 CopelandErdos^exp(Pi)+Pi 3141592653589796 l004 Pi/tanh(612/109*Pi) 3141592653589796 l004 Pi/tanh(539/96*Pi) 3141592653589796 l004 Pi/tanh(466/83*Pi) 3141592653589796 l004 Pi/tanh(393/70*Pi) 3141592653589796 l004 Pi/tanh(320/57*Pi) 3141592653589796 l004 Pi/tanh(567/101*Pi) 3141592653589796 l004 Pi/tanh(247/44*Pi) 3141592653589796 l004 Pi/tanh(668/119*Pi) 3141592653589796 l004 Pi/tanh(421/75*Pi) 3141592653589796 l004 Pi/tanh(595/106*Pi) 3141592653589796 l004 Pi/tanh(174/31*Pi) 3141592653589796 l004 Pi/tanh(623/111*Pi) 3141592653589796 l004 Pi/tanh(449/80*Pi) 3141592653589796 l004 Pi/tanh(275/49*Pi) 3141592653589796 l004 Pi/tanh(651/116*Pi) 3141592653589796 l004 Pi/tanh(376/67*Pi) 3141592653589796 l004 Pi/tanh(477/85*Pi) 3141592653589796 l004 Pi/tanh(578/103*Pi) 3141592653589796 l004 Pi/tanh(101/18*Pi) 3141592653589796 l004 Pi/tanh(634/113*Pi) 3141592653589796 l004 Pi/tanh(533/95*Pi) 3141592653589796 l004 Pi/tanh(432/77*Pi) 3141592653589796 l004 Pi/tanh(331/59*Pi) 3141592653589796 l004 Pi/tanh(561/100*Pi) 3141592653589796 l004 Pi/tanh(230/41*Pi) 3141592653589796 l004 Pi/tanh(589/105*Pi) 3141592653589796 l004 Pi/tanh(359/64*Pi) 3141592653589796 l004 Pi/tanh(488/87*Pi) 3141592653589796 l004 Pi/tanh(617/110*Pi) 3141592653589796 l004 Pi/tanh(129/23*Pi) 3141592653589796 l004 Pi/tanh(673/120*Pi) 3141592653589796 l004 Pi/tanh(544/97*Pi) 3141592653589796 l004 Pi/tanh(415/74*Pi) 3141592653589796 l004 Pi/tanh(286/51*Pi) 3141592653589796 l004 Pi/tanh(443/79*Pi) 3141592653589796 l004 Pi/tanh(600/107*Pi) 3141592653589796 l004 Pi/tanh(157/28*Pi) 3141592653589796 l004 Pi/tanh(656/117*Pi) 3141592653589796 l004 Pi/tanh(499/89*Pi) 3141592653589796 l004 Pi/tanh(342/61*Pi) 3141592653589796 l004 Pi/tanh(527/94*Pi) 3141592653589796 l004 Pi/tanh(185/33*Pi) 3141592653589796 l004 Pi/tanh(583/104*Pi) 3141592653589796 l004 Pi/tanh(398/71*Pi) 3141592653589796 l004 Pi/tanh(611/109*Pi) 3141592653589796 l004 Pi/tanh(213/38*Pi) 3141592653589796 l004 Pi/tanh(667/119*Pi) 3141592653589796 l004 Pi/tanh(454/81*Pi) 3141592653589796 l004 Pi/tanh(241/43*Pi) 3141592653589796 l004 Pi/tanh(510/91*Pi) 3141592653589796 l004 Pi/tanh(269/48*Pi) 3141592653589796 l004 Pi/tanh(566/101*Pi) 3141592653589796 l004 Pi/tanh(297/53*Pi) 3141592653589796 l004 Pi/tanh(622/111*Pi) 3141592653589796 l004 Pi/tanh(325/58*Pi) 3141592653589796 l004 Pi/tanh(353/63*Pi) 3141592653589796 l004 Pi/tanh(381/68*Pi) 3141592653589796 l004 Pi/tanh(409/73*Pi) 3141592653589796 l004 Pi/tanh(437/78*Pi) 3141592653589796 l004 Pi/tanh(465/83*Pi) 3141592653589796 l004 Pi/tanh(493/88*Pi) 3141592653589796 l004 Pi/tanh(521/93*Pi) 3141592653589796 l004 Pi/tanh(549/98*Pi) 3141592653589796 l004 Pi/tanh(577/103*Pi) 3141592653589796 l004 Pi/tanh(605/108*Pi) 3141592653589796 l004 Pi/tanh(633/113*Pi) 3141592653589796 l004 Pi/tanh(661/118*Pi) 3141592653589796 l005 ln(sec(311/33)) 3141592653589796 m001 FeigenbaumC^Psi(2,1/3)+Pi 3141592653589796 l004 Pi/tanh(28/5*Pi) 3141592653589796 l004 Pi/tanh(655/117*Pi) 3141592653589796 l004 Pi/tanh(627/112*Pi) 3141592653589796 l004 Pi/tanh(599/107*Pi) 3141592653589796 l004 Pi/tanh(571/102*Pi) 3141592653589796 l004 Pi/tanh(543/97*Pi) 3141592653589796 l004 Pi/tanh(515/92*Pi) 3141592653589796 l004 Pi/tanh(487/87*Pi) 3141592653589796 l004 Pi/tanh(459/82*Pi) 3141592653589796 l004 Pi/tanh(431/77*Pi) 3141592653589796 l004 Pi/tanh(403/72*Pi) 3141592653589796 l004 Pi/tanh(375/67*Pi) 3141592653589796 l004 Pi/tanh(347/62*Pi) 3141592653589796 l004 Pi/tanh(666/119*Pi) 3141592653589796 l004 Pi/tanh(319/57*Pi) 3141592653589796 l004 Pi/tanh(610/109*Pi) 3141592653589796 l004 Pi/tanh(291/52*Pi) 3141592653589796 l004 Pi/tanh(554/99*Pi) 3141592653589796 l004 Pi/tanh(263/47*Pi) 3141592653589796 l004 Pi/tanh(498/89*Pi) 3141592653589796 l004 Pi/tanh(235/42*Pi) 3141592653589796 l004 Pi/tanh(442/79*Pi) 3141592653589796 l004 Pi/tanh(649/116*Pi) 3141592653589796 l004 Pi/tanh(207/37*Pi) 3141592653589796 l004 Pi/tanh(593/106*Pi) 3141592653589796 l004 Pi/tanh(386/69*Pi) 3141592653589796 l004 Pi/tanh(565/101*Pi) 3141592653589796 l004 Pi/tanh(179/32*Pi) 3141592653589796 l004 Pi/tanh(509/91*Pi) 3141592653589796 l004 Pi/tanh(330/59*Pi) 3141592653589796 l004 Pi/tanh(481/86*Pi) 3141592653589796 l004 Pi/tanh(632/113*Pi) 3141592653589796 l004 Pi/tanh(151/27*Pi) 3141592653589796 l004 Pi/tanh(576/103*Pi) 3141592653589796 l004 Pi/tanh(425/76*Pi) 3141592653589796 l004 Pi/tanh(274/49*Pi) 3141592653589796 l004 Pi/tanh(671/120*Pi) 3141592653589796 l004 Pi/tanh(397/71*Pi) 3141592653589796 l004 Pi/tanh(520/93*Pi) 3141592653589796 l004 Pi/tanh(643/115*Pi) 3141592653589796 l004 Pi/tanh(123/22*Pi) 3141592653589796 l004 Pi/tanh(587/105*Pi) 3141592653589796 l004 Pi/tanh(464/83*Pi) 3141592653589796 l004 Pi/tanh(341/61*Pi) 3141592653589796 l004 Pi/tanh(559/100*Pi) 3141592653589796 l004 Pi/tanh(218/39*Pi) 3141592653589796 l004 Pi/tanh(531/95*Pi) 3141592653589796 l004 Pi/tanh(313/56*Pi) 3141592653589796 l004 Pi/tanh(408/73*Pi) 3141592653589796 l004 Pi/tanh(503/90*Pi) 3141592653589796 l004 Pi/tanh(598/107*Pi) 3141592653589796 l004 Pi/tanh(95/17*Pi) 3141592653589796 l004 Pi/tanh(637/114*Pi) 3141592653589796 l004 Pi/tanh(542/97*Pi) 3141592653589796 l004 Pi/tanh(447/80*Pi) 3141592653589796 l004 Pi/tanh(352/63*Pi) 3141592653589796 l004 Pi/tanh(609/109*Pi) 3141592653589796 l004 Pi/tanh(257/46*Pi) 3141592653589796 l004 Pi/tanh(419/75*Pi) 3141592653589796 l004 Pi/tanh(581/104*Pi) 3141592653589796 l004 Pi/tanh(162/29*Pi) 3141592653589796 l004 Pi/tanh(553/99*Pi) 3141592653589796 l004 Pi/tanh(391/70*Pi) 3141592653589796 l004 Pi/tanh(620/111*Pi) 3141592653589796 l004 Pi/tanh(229/41*Pi) 3141592653589796 l004 Pi/tanh(525/94*Pi) 3141592653589796 l004 Pi/tanh(296/53*Pi) 3141592653589796 l004 Pi/tanh(659/118*Pi) 3141592653589796 l004 Pi/tanh(363/65*Pi) 3141592653589796 l004 Pi/tanh(430/77*Pi) 3141592653589796 l004 Pi/tanh(497/89*Pi) 3141592653589796 l004 Pi/tanh(564/101*Pi) 3141592653589796 l004 Pi/tanh(631/113*Pi) 3141592653589796 l004 Pi/tanh(67/12*Pi) 3141592653589796 l004 Pi/tanh(642/115*Pi) 3141592653589796 l004 Pi/tanh(575/103*Pi) 3141592653589796 l004 Pi/tanh(508/91*Pi) 3141592653589796 l004 Pi/tanh(441/79*Pi) 3141592653589796 l004 Pi/tanh(374/67*Pi) 3141592653589796 l004 Pi/tanh(307/55*Pi) 3141592653589796 l004 Pi/tanh(547/98*Pi) 3141592653589796 l004 Pi/tanh(240/43*Pi) 3141592653589796 l004 Pi/tanh(653/117*Pi) 3141592653589796 l004 Pi/tanh(413/74*Pi) 3141592653589796 l004 Pi/tanh(586/105*Pi) 3141592653589796 l004 Pi/tanh(173/31*Pi) 3141592653589796 l004 Pi/tanh(625/112*Pi) 3141592653589796 l004 Pi/tanh(452/81*Pi) 3141592653589796 l004 Pi/tanh(279/50*Pi) 3141592653589796 l004 Pi/tanh(664/119*Pi) 3141592653589796 l004 Pi/tanh(385/69*Pi) 3141592653589796 l004 Pi/tanh(491/88*Pi) 3141592653589796 l004 Pi/tanh(597/107*Pi) 3141592653589796 l004 Pi/tanh(106/19*Pi) 3141592653589797 l004 Pi/tanh(569/102*Pi) 3141592653589797 l004 Pi/tanh(463/83*Pi) 3141592653589797 l004 Pi/tanh(357/64*Pi) 3141592653589797 l004 Pi/tanh(608/109*Pi) 3141592653589797 l004 Pi/tanh(251/45*Pi) 3141592653589797 l004 Pi/tanh(647/116*Pi) 3141592653589797 l004 Pi/tanh(396/71*Pi) 3141592653589797 l004 Pi/tanh(541/97*Pi) 3141592653589797 l004 Pi/tanh(145/26*Pi) 3141592653589797 l004 Pi/tanh(619/111*Pi) 3141592653589797 l004 Pi/tanh(474/85*Pi) 3141592653589797 l004 Pi/tanh(329/59*Pi) 3141592653589797 l004 Pi/tanh(513/92*Pi) 3141592653589797 l004 Pi/tanh(184/33*Pi) 3141592653589797 l004 Pi/tanh(591/106*Pi) 3141592653589797 l004 Pi/tanh(407/73*Pi) 3141592653589797 l004 Pi/tanh(630/113*Pi) 3141592653589797 l004 Pi/tanh(223/40*Pi) 3141592653589797 l004 Pi/tanh(485/87*Pi) 3141592653589797 l004 Pi/tanh(262/47*Pi) 3141592653589797 l004 Pi/tanh(563/101*Pi) 3141592653589797 l004 Pi/tanh(301/54*Pi) 3141592653589797 l004 Pi/tanh(641/115*Pi) 3141592653589797 l004 Pi/tanh(340/61*Pi) 3141592653589797 l004 Pi/tanh(379/68*Pi) 3141592653589797 l004 Pi/tanh(418/75*Pi) 3141592653589797 l004 Pi/tanh(457/82*Pi) 3141592653589797 l004 Pi/tanh(496/89*Pi) 3141592653589797 l004 Pi/tanh(535/96*Pi) 3141592653589797 l004 Pi/tanh(574/103*Pi) 3141592653589797 l004 Pi/tanh(613/110*Pi) 3141592653589797 l004 Pi/tanh(652/117*Pi) 3141592653589797 l004 Pi/tanh(39/7*Pi) 3141592653589797 l004 Pi/tanh(635/114*Pi) 3141592653589797 l004 Pi/tanh(596/107*Pi) 3141592653589797 l004 Pi/tanh(557/100*Pi) 3141592653589797 l004 Pi/tanh(518/93*Pi) 3141592653589797 l004 Pi/tanh(479/86*Pi) 3141592653589797 l004 Pi/tanh(440/79*Pi) 3141592653589797 l004 Pi/tanh(401/72*Pi) 3141592653589797 l004 Pi/tanh(362/65*Pi) 3141592653589797 l004 Pi/tanh(323/58*Pi) 3141592653589797 l004 Pi/tanh(607/109*Pi) 3141592653589797 l004 Pi/tanh(284/51*Pi) 3141592653589797 l004 Pi/tanh(529/95*Pi) 3141592653589797 l004 Pi/tanh(245/44*Pi) 3141592653589797 l004 Pi/tanh(451/81*Pi) 3141592653589797 l004 Pi/tanh(657/118*Pi) 3141592653589797 l004 Pi/tanh(206/37*Pi) 3141592653589797 l004 Pi/tanh(579/104*Pi) 3141592653589797 l004 Pi/tanh(373/67*Pi) 3141592653589797 l004 Pi/tanh(540/97*Pi) 3141592653589797 l004 Pi/tanh(167/30*Pi) 3141592653589797 l004 Pi/tanh(629/113*Pi) 3141592653589797 l004 Pi/tanh(462/83*Pi) 3141592653589797 l004 Pi/tanh(295/53*Pi) 3141592653589797 l004 Pi/tanh(423/76*Pi) 3141592653589797 l004 Pi/tanh(551/99*Pi) 3141592653589797 l004 Pi/tanh(128/23*Pi) 3141592653589797 l004 Pi/tanh(601/108*Pi) 3141592653589797 l004 Pi/tanh(473/85*Pi) 3141592653589797 l004 Pi/tanh(345/62*Pi) 3141592653589797 l005 ln(sec(245/78)) 3141592653589797 l004 Pi/tanh(562/101*Pi) 3141592653589797 l004 Pi/tanh(217/39*Pi) 3141592653589797 l004 Pi/tanh(523/94*Pi) 3141592653589797 l004 Pi/tanh(306/55*Pi) 3141592653589797 l004 Pi/tanh(395/71*Pi) 3141592653589797 l004 Pi/tanh(484/87*Pi) 3141592653589797 l004 Pi/tanh(573/103*Pi) 3141592653589797 l004 Pi/tanh(662/119*Pi) 3141592653589797 l004 Pi/tanh(89/16*Pi) 3141592653589797 l004 Pi/tanh(584/105*Pi) 3141592653589797 l004 Pi/tanh(495/89*Pi) 3141592653589797 l004 Pi/tanh(406/73*Pi) 3141592653589797 l004 Pi/tanh(317/57*Pi) 3141592653589797 l004 Pi/tanh(545/98*Pi) 3141592653589797 l004 Pi/tanh(228/41*Pi) 3141592653589797 l004 Pi/tanh(595/107*Pi) 3141592653589797 l004 Pi/tanh(367/66*Pi) 3141592653589797 l004 Pi/tanh(506/91*Pi) 3141592653589797 l004 Pi/tanh(645/116*Pi) 3141592653589797 l004 Pi/tanh(139/25*Pi) 3141592653589797 m001 MasserGramainDelta^Psi(2,1/3)+Pi 3141592653589797 l004 Pi/tanh(606/109*Pi) 3141592653589797 l004 Pi/tanh(467/84*Pi) 3141592653589797 l004 Pi/tanh(328/59*Pi) 3141592653589797 l004 Pi/tanh(517/93*Pi) 3141592653589797 l004 Pi/tanh(189/34*Pi) 3141592653589797 l004 Pi/tanh(617/111*Pi) 3141592653589797 l004 Pi/tanh(428/77*Pi) 3141592653589797 l004 Pi/tanh(667/120*Pi) 3141592653589797 l004 Pi/tanh(239/43*Pi) 3141592653589797 l004 Pi/tanh(528/95*Pi) 3141592653589797 l004 Pi/tanh(289/52*Pi) 3141592653589797 l004 Pi/tanh(628/113*Pi) 3141592653589797 l004 Pi/tanh(339/61*Pi) 3141592653589797 l004 Pi/tanh(389/70*Pi) 3141592653589797 l004 Pi/tanh(439/79*Pi) 3141592653589797 l004 Pi/tanh(489/88*Pi) 3141592653589797 l004 Pi/tanh(539/97*Pi) 3141592653589797 l004 Pi/tanh(589/106*Pi) 3141592653589797 l004 Pi/tanh(639/115*Pi) 3141592653589797 l004 Pi/tanh(50/9*Pi) 3141592653589797 l004 Pi/tanh(661/119*Pi) 3141592653589797 l004 Pi/tanh(611/110*Pi) 3141592653589797 l004 Pi/tanh(561/101*Pi) 3141592653589797 l004 Pi/tanh(511/92*Pi) 3141592653589797 l004 Pi/tanh(461/83*Pi) 3141592653589797 l004 Pi/tanh(411/74*Pi) 3141592653589797 l004 Pi/tanh(361/65*Pi) 3141592653589797 l004 Pi/tanh(311/56*Pi) 3141592653589797 l004 Pi/tanh(572/103*Pi) 3141592653589797 l004 Pi/tanh(261/47*Pi) 3141592653589797 l004 Pi/tanh(472/85*Pi) 3141592653589797 l004 Pi/tanh(211/38*Pi) 3141592653589797 l004 Pi/tanh(583/105*Pi) 3141592653589797 l004 Pi/tanh(372/67*Pi) 3141592653589797 l004 Pi/tanh(533/96*Pi) 3141592653589797 l004 Pi/tanh(161/29*Pi) 3141592653589797 l004 Pi/tanh(594/107*Pi) 3141592653589797 l004 Pi/tanh(433/78*Pi) 3141592653589797 l004 Pi/tanh(272/49*Pi) 3141592653589797 l004 Pi/tanh(655/118*Pi) 3141592653589797 l004 Pi/tanh(383/69*Pi) 3141592653589797 l004 Pi/tanh(494/89*Pi) 3141592653589797 l004 Pi/tanh(605/109*Pi) 3141592653589797 l004 Pi/tanh(111/20*Pi) 3141592653589797 l004 Pi/tanh(616/111*Pi) 3141592653589797 l004 Pi/tanh(505/91*Pi) 3141592653589797 l004 Pi/tanh(394/71*Pi) 3141592653589797 l004 Pi/tanh(283/51*Pi) 3141592653589797 l004 Pi/tanh(455/82*Pi) 3141592653589797 l004 Pi/tanh(627/113*Pi) 3141592653589797 l004 Pi/tanh(172/31*Pi) 3141592653589797 l004 Pi/tanh(577/104*Pi) 3141592653589797 l004 Pi/tanh(405/73*Pi) 3141592653589797 l004 Pi/tanh(638/115*Pi) 3141592653589797 l004 Pi/tanh(233/42*Pi) 3141592653589797 l004 Pi/tanh(527/95*Pi) 3141592653589797 l004 Pi/tanh(294/53*Pi) 3141592653589797 l004 Pi/tanh(649/117*Pi) 3141592653589797 l004 Pi/tanh(355/64*Pi) 3141592653589797 l004 Pi/tanh(416/75*Pi) 3141592653589797 l004 Pi/tanh(477/86*Pi) 3141592653589797 l004 Pi/tanh(538/97*Pi) 3141592653589797 l004 Pi/tanh(599/108*Pi) 3141592653589797 l004 Pi/tanh(660/119*Pi) 3141592653589797 l004 Pi/tanh(61/11*Pi) 3141592653589797 l004 Pi/tanh(621/112*Pi) 3141592653589797 l004 Pi/tanh(560/101*Pi) 3141592653589797 l004 Pi/tanh(499/90*Pi) 3141592653589797 l004 Pi/tanh(438/79*Pi) 3141592653589797 l004 Pi/tanh(377/68*Pi) 3141592653589797 l004 Pi/tanh(316/57*Pi) 3141592653589797 l004 Pi/tanh(571/103*Pi) 3141592653589797 l004 Pi/tanh(255/46*Pi) 3141592653589797 l004 Pi/tanh(449/81*Pi) 3141592653589797 l004 Pi/tanh(643/116*Pi) 3141592653589797 l004 Pi/tanh(194/35*Pi) 3141592653589797 l004 Pi/tanh(521/94*Pi) 3141592653589797 l004 Pi/tanh(327/59*Pi) 3141592653589797 l004 Pi/tanh(460/83*Pi) 3141592653589797 l004 Pi/tanh(593/107*Pi) 3141592653589797 l004 Pi/tanh(133/24*Pi) 3141592653589797 l004 Pi/tanh(604/109*Pi) 3141592653589797 l004 Pi/tanh(471/85*Pi) 3141592653589798 l004 Pi/tanh(338/61*Pi) 3141592653589798 l004 Pi/tanh(543/98*Pi) 3141592653589798 l004 Pi/tanh(205/37*Pi) 3141592653589798 l004 Pi/tanh(482/87*Pi) 3141592653589798 l004 Pi/tanh(277/50*Pi) 3141592653589798 l004 Pi/tanh(626/113*Pi) 3141592653589798 l004 Pi/tanh(349/63*Pi) 3141592653589798 l004 Pi/tanh(421/76*Pi) 3141592653589798 l004 Pi/tanh(493/89*Pi) 3141592653589798 l004 Pi/tanh(565/102*Pi) 3141592653589798 l004 Pi/tanh(637/115*Pi) 3141592653589798 l004 Pi/tanh(72/13*Pi) 3141592653589798 l004 Pi/tanh(659/119*Pi) 3141592653589798 l004 Pi/tanh(587/106*Pi) 3141592653589798 l004 Pi/tanh(515/93*Pi) 3141592653589798 l004 Pi/tanh(443/80*Pi) 3141592653589798 l004 Pi/tanh(371/67*Pi) 3141592653589798 l004 Pi/tanh(299/54*Pi) 3141592653589798 l004 Pi/tanh(526/95*Pi) 3141592653589798 l004 Pi/tanh(227/41*Pi) 3141592653589798 l004 Pi/tanh(609/110*Pi) 3141592653589798 l004 Pi/tanh(382/69*Pi) 3141592653589798 l004 Pi/tanh(537/97*Pi) 3141592653589798 l004 Pi/tanh(155/28*Pi) 3141592653589798 l004 Pi/tanh(548/99*Pi) 3141592653589798 l004 Pi/tanh(393/71*Pi) 3141592653589798 l004 Pi/tanh(631/114*Pi) 3141592653589798 l004 Pi/tanh(238/43*Pi) 3141592653589798 l004 Pi/tanh(559/101*Pi) 3141592653589798 l004 Pi/tanh(321/58*Pi) 3141592653589798 l004 Pi/tanh(404/73*Pi) 3141592653589798 l004 Pi/tanh(487/88*Pi) 3141592653589798 l004 Pi/tanh(570/103*Pi) 3141592653589798 l004 Pi/tanh(653/118*Pi) 3141592653589798 l004 Pi/tanh(83/15*Pi) 3141592653589798 l004 Pi/tanh(592/107*Pi) 3141592653589798 l004 Pi/tanh(509/92*Pi) 3141592653589798 l004 Pi/tanh(426/77*Pi) 3141592653589798 l004 Pi/tanh(343/62*Pi) 3141592653589798 l004 Pi/tanh(603/109*Pi) 3141592653589798 l004 Pi/tanh(260/47*Pi) 3141592653589798 l004 Pi/tanh(437/79*Pi) 3141592653589798 l004 Pi/tanh(614/111*Pi) 3141592653589798 l004 Pi/tanh(177/32*Pi) 3141592653589798 l004 Pi/tanh(625/113*Pi) 3141592653589798 l004 Pi/tanh(448/81*Pi) 3141592653589798 l004 Pi/tanh(271/49*Pi) 3141592653589798 l004 Pi/tanh(636/115*Pi) 3141592653589798 l004 Pi/tanh(365/66*Pi) 3141592653589798 l004 Pi/tanh(459/83*Pi) 3141592653589798 l004 Pi/tanh(553/100*Pi) 3141592653589798 l004 Pi/tanh(647/117*Pi) 3141592653589798 l004 Pi/tanh(94/17*Pi) 3141592653589798 l004 Pi/tanh(575/104*Pi) 3141592653589798 l004 Pi/tanh(481/87*Pi) 3141592653589798 l004 Pi/tanh(387/70*Pi) 3141592653589798 l004 Pi/tanh(293/53*Pi) 3141592653589798 l004 Pi/tanh(492/89*Pi) 3141592653589798 l004 Pi/tanh(199/36*Pi) 3141592653589798 l004 Pi/tanh(503/91*Pi) 3141592653589798 l004 Pi/tanh(304/55*Pi) 3141592653589798 l004 Pi/tanh(409/74*Pi) 3141592653589798 l004 Pi/tanh(514/93*Pi) 3141592653589798 l004 Pi/tanh(619/112*Pi) 3141592653589798 l004 Pi/tanh(105/19*Pi) 3141592653589798 l004 Pi/tanh(641/116*Pi) 3141592653589798 l004 Pi/tanh(536/97*Pi) 3141592653589798 l004 Pi/tanh(431/78*Pi) 3141592653589798 l004 Pi/tanh(326/59*Pi) 3141592653589798 l004 Pi/tanh(547/99*Pi) 3141592653589798 l004 Pi/tanh(221/40*Pi) 3141592653589798 l004 Pi/tanh(558/101*Pi) 3141592653589798 l004 Pi/tanh(337/61*Pi) 3141592653589798 l004 Pi/tanh(453/82*Pi) 3141592653589798 l004 Pi/tanh(569/103*Pi) 3141592653589798 l004 Pi/tanh(116/21*Pi) 3141592653589798 l004 Pi/tanh(591/107*Pi) 3141592653589798 l004 Pi/tanh(475/86*Pi) 3141592653589798 l004 Pi/tanh(359/65*Pi) 3141592653589798 l004 Pi/tanh(602/109*Pi) 3141592653589798 l004 Pi/tanh(243/44*Pi) 3141592653589798 l004 Pi/tanh(613/111*Pi) 3141592653589798 l004 Pi/tanh(370/67*Pi) 3141592653589798 l004 Pi/tanh(497/90*Pi) 3141592653589798 l004 Pi/tanh(624/113*Pi) 3141592653589798 l004 Pi/tanh(127/23*Pi) 3141592653589798 l004 Pi/tanh(646/117*Pi) 3141592653589798 l004 Pi/tanh(519/94*Pi) 3141592653589798 l004 Pi/tanh(392/71*Pi) 3141592653589798 l004 Pi/tanh(657/119*Pi) 3141592653589798 l004 Pi/tanh(265/48*Pi) 3141592653589798 l004 Pi/tanh(403/73*Pi) 3141592653589798 l004 Pi/tanh(541/98*Pi) 3141592653589798 l004 Pi/tanh(138/25*Pi) 3141592653589798 l004 Pi/tanh(563/102*Pi) 3141592653589798 l004 Pi/tanh(425/77*Pi) 3141592653589798 l004 Pi/tanh(287/52*Pi) 3141592653589798 l004 Pi/tanh(436/79*Pi) 3141592653589798 l004 Pi/tanh(585/106*Pi) 3141592653589798 l004 Pi/tanh(149/27*Pi) 3141592653589798 l004 Pi/tanh(607/110*Pi) 3141592653589798 l004 Pi/tanh(458/83*Pi) 3141592653589798 l004 Pi/tanh(309/56*Pi) 3141592653589798 l004 Pi/tanh(469/85*Pi) 3141592653589798 l004 Pi/tanh(629/114*Pi) 3141592653589798 l004 Pi/tanh(160/29*Pi) 3141592653589798 l004 Pi/tanh(651/118*Pi) 3141592653589798 l004 Pi/tanh(491/89*Pi) 3141592653589798 l004 Pi/tanh(331/60*Pi) 3141592653589798 l004 Pi/tanh(502/91*Pi) 3141592653589798 l004 Pi/tanh(171/31*Pi) 3141592653589798 l004 Pi/tanh(524/95*Pi) 3141592653589798 l004 Pi/tanh(353/64*Pi) 3141592653589798 l004 Pi/tanh(535/97*Pi) 3141592653589798 l004 Pi/tanh(182/33*Pi) 3141592653589798 l004 Pi/tanh(557/101*Pi) 3141592653589798 l004 Pi/tanh(375/68*Pi) 3141592653589798 l004 Pi/tanh(568/103*Pi) 3141592653589798 l004 Pi/tanh(193/35*Pi) 3141592653589798 l004 Pi/tanh(590/107*Pi) 3141592653589798 l004 Pi/tanh(397/72*Pi) 3141592653589798 l004 Pi/tanh(601/109*Pi) 3141592653589798 l004 Pi/tanh(204/37*Pi) 3141592653589798 l004 Pi/tanh(623/113*Pi) 3141592653589798 l004 Pi/tanh(419/76*Pi) 3141592653589798 l004 Pi/tanh(634/115*Pi) 3141592653589798 l004 Pi/tanh(215/39*Pi) 3141592653589798 l004 Pi/tanh(656/119*Pi) 3141592653589798 l004 Pi/tanh(441/80*Pi) 3141592653589798 l004 Pi/tanh(226/41*Pi) 3141592653589798 l004 Pi/tanh(463/84*Pi) 3141592653589798 l004 Pi/tanh(237/43*Pi) 3141592653589798 l004 Pi/tanh(485/88*Pi) 3141592653589798 l004 Pi/tanh(248/45*Pi) 3141592653589798 l004 Pi/tanh(507/92*Pi) 3141592653589799 l004 Pi/tanh(259/47*Pi) 3141592653589799 l004 Pi/tanh(529/96*Pi) 3141592653589799 l004 Pi/tanh(270/49*Pi) 3141592653589799 l004 Pi/tanh(551/100*Pi) 3141592653589799 l004 Pi/tanh(281/51*Pi) 3141592653589799 l004 Pi/tanh(573/104*Pi) 3141592653589799 l004 Pi/tanh(292/53*Pi) 3141592653589799 l004 Pi/tanh(595/108*Pi) 3141592653589799 l004 Pi/tanh(303/55*Pi) 3141592653589799 l004 Pi/tanh(617/112*Pi) 3141592653589799 l004 Pi/tanh(314/57*Pi) 3141592653589799 l004 Pi/tanh(639/116*Pi) 3141592653589799 l004 Pi/tanh(325/59*Pi) 3141592653589799 l004 Pi/tanh(661/120*Pi) 3141592653589799 l004 Pi/tanh(336/61*Pi) 3141592653589799 l004 Pi/tanh(347/63*Pi) 3141592653589799 l004 Pi/tanh(358/65*Pi) 3141592653589799 l004 Pi/tanh(369/67*Pi) 3141592653589799 l004 Pi/tanh(380/69*Pi) 3141592653589799 l004 Pi/tanh(391/71*Pi) 3141592653589799 l004 Pi/tanh(402/73*Pi) 3141592653589799 l004 Pi/tanh(413/75*Pi) 3141592653589799 l004 Pi/tanh(424/77*Pi) 3141592653589799 l004 Pi/tanh(435/79*Pi) 3141592653589799 l004 Pi/tanh(446/81*Pi) 3141592653589799 l004 Pi/tanh(457/83*Pi) 3141592653589799 l004 Pi/tanh(468/85*Pi) 3141592653589799 l004 Pi/tanh(479/87*Pi) 3141592653589799 l004 Pi/tanh(490/89*Pi) 3141592653589799 l004 Pi/tanh(501/91*Pi) 3141592653589799 l004 Pi/tanh(512/93*Pi) 3141592653589799 l004 Pi/tanh(523/95*Pi) 3141592653589799 l004 Pi/tanh(534/97*Pi) 3141592653589799 l004 Pi/tanh(545/99*Pi) 3141592653589799 l004 Pi/tanh(556/101*Pi) 3141592653589799 l004 Pi/tanh(567/103*Pi) 3141592653589799 l004 Pi/tanh(578/105*Pi) 3141592653589799 l004 Pi/tanh(589/107*Pi) 3141592653589799 l004 Pi/tanh(600/109*Pi) 3141592653589799 l004 Pi/tanh(611/111*Pi) 3141592653589799 l004 Pi/tanh(622/113*Pi) 3141592653589799 l004 Pi/tanh(633/115*Pi) 3141592653589799 l004 Pi/tanh(644/117*Pi) 3141592653589799 l004 Pi/tanh(655/119*Pi) 3141592653589799 l004 Pi/tanh(11/2*Pi) 3141592653589799 l004 Pi/tanh(654/119*Pi) 3141592653589799 l004 Pi/tanh(643/117*Pi) 3141592653589799 l004 Pi/tanh(632/115*Pi) 3141592653589799 l004 Pi/tanh(621/113*Pi) 3141592653589799 l004 Pi/tanh(610/111*Pi) 3141592653589799 l004 Pi/tanh(599/109*Pi) 3141592653589799 l004 Pi/tanh(588/107*Pi) 3141592653589799 l004 Pi/tanh(577/105*Pi) 3141592653589799 l004 Pi/tanh(566/103*Pi) 3141592653589799 l004 Pi/tanh(555/101*Pi) 3141592653589799 l004 Pi/tanh(544/99*Pi) 3141592653589799 l004 Pi/tanh(533/97*Pi) 3141592653589799 l004 Pi/tanh(522/95*Pi) 3141592653589799 l004 Pi/tanh(511/93*Pi) 3141592653589799 l004 Pi/tanh(500/91*Pi) 3141592653589799 l004 Pi/tanh(489/89*Pi) 3141592653589799 l004 Pi/tanh(478/87*Pi) 3141592653589799 l004 Pi/tanh(467/85*Pi) 3141592653589799 l004 Pi/tanh(456/83*Pi) 3141592653589799 l004 Pi/tanh(445/81*Pi) 3141592653589799 l004 Pi/tanh(434/79*Pi) 3141592653589799 l004 Pi/tanh(423/77*Pi) 3141592653589799 l004 Pi/tanh(412/75*Pi) 3141592653589799 l004 Pi/tanh(401/73*Pi) 3141592653589799 l004 Pi/tanh(390/71*Pi) 3141592653589799 l004 Pi/tanh(379/69*Pi) 3141592653589799 l004 Pi/tanh(368/67*Pi) 3141592653589799 l004 Pi/tanh(357/65*Pi) 3141592653589799 l004 Pi/tanh(346/63*Pi) 3141592653589799 l004 Pi/tanh(335/61*Pi) 3141592653589799 l004 Pi/tanh(659/120*Pi) 3141592653589799 l004 Pi/tanh(324/59*Pi) 3141592653589799 l004 Pi/tanh(637/116*Pi) 3141592653589799 l004 Pi/tanh(313/57*Pi) 3141592653589799 l004 Pi/tanh(615/112*Pi) 3141592653589799 l004 Pi/tanh(302/55*Pi) 3141592653589799 l004 Pi/tanh(593/108*Pi) 3141592653589799 l004 Pi/tanh(291/53*Pi) 3141592653589799 l004 Pi/tanh(571/104*Pi) 3141592653589799 l004 Pi/tanh(280/51*Pi) 3141592653589799 l004 Pi/tanh(549/100*Pi) 3141592653589799 l004 Pi/tanh(269/49*Pi) 3141592653589799 l004 Pi/tanh(527/96*Pi) 3141592653589799 l004 Pi/tanh(258/47*Pi) 3141592653589799 l004 Pi/tanh(505/92*Pi) 3141592653589799 l004 Pi/tanh(247/45*Pi) 3141592653589799 l004 Pi/tanh(483/88*Pi) 3141592653589799 l004 Pi/tanh(236/43*Pi) 3141592653589799 l004 Pi/tanh(461/84*Pi) 3141592653589799 l004 Pi/tanh(225/41*Pi) 3141592653589799 l004 Pi/tanh(439/80*Pi) 3141592653589799 l004 Pi/tanh(653/119*Pi) 3141592653589799 l004 Pi/tanh(214/39*Pi) 3141592653589799 l004 Pi/tanh(631/115*Pi) 3141592653589799 l004 Pi/tanh(417/76*Pi) 3141592653589799 l004 Pi/tanh(620/113*Pi) 3141592653589799 l004 Pi/tanh(203/37*Pi) 3141592653589799 l004 Pi/tanh(598/109*Pi) 3141592653589799 l004 Pi/tanh(395/72*Pi) 3141592653589799 l004 Pi/tanh(587/107*Pi) 3141592653589799 l004 Pi/tanh(192/35*Pi) 3141592653589799 l004 Pi/tanh(565/103*Pi) 3141592653589800 l004 Pi/tanh(373/68*Pi) 3141592653589800 l004 Pi/tanh(554/101*Pi) 3141592653589800 l004 Pi/tanh(181/33*Pi) 3141592653589800 l004 Pi/tanh(532/97*Pi) 3141592653589800 l004 Pi/tanh(351/64*Pi) 3141592653589800 l004 Pi/tanh(521/95*Pi) 3141592653589800 l004 Pi/tanh(170/31*Pi) 3141592653589800 l004 Pi/tanh(499/91*Pi) 3141592653589800 l004 Pi/tanh(329/60*Pi) 3141592653589800 l004 Pi/tanh(488/89*Pi) 3141592653589800 l004 Pi/tanh(647/118*Pi) 3141592653589800 l004 Pi/tanh(159/29*Pi) 3141592653589800 l004 Pi/tanh(625/114*Pi) 3141592653589800 l004 Pi/tanh(466/85*Pi) 3141592653589800 l004 Pi/tanh(307/56*Pi) 3141592653589800 l004 Pi/tanh(455/83*Pi) 3141592653589800 l004 Pi/tanh(603/110*Pi) 3141592653589800 l004 Pi/tanh(148/27*Pi) 3141592653589800 l004 Pi/tanh(581/106*Pi) 3141592653589800 l004 Pi/tanh(433/79*Pi) 3141592653589800 l004 Pi/tanh(285/52*Pi) 3141592653589800 l004 Pi/tanh(422/77*Pi) 3141592653589800 l004 Pi/tanh(559/102*Pi) 3141592653589800 l004 Pi/tanh(137/25*Pi) 3141592653589800 l004 Pi/tanh(537/98*Pi) 3141592653589800 l004 Pi/tanh(400/73*Pi) 3141592653589800 l004 Pi/tanh(263/48*Pi) 3141592653589800 l004 Pi/tanh(652/119*Pi) 3141592653589800 l004 Pi/tanh(389/71*Pi) 3141592653589800 l004 Pi/tanh(515/94*Pi) 3141592653589800 l004 Pi/tanh(641/117*Pi) 3141592653589800 l004 Pi/tanh(126/23*Pi) 3141592653589800 l004 Pi/tanh(619/113*Pi) 3141592653589800 l004 Pi/tanh(493/90*Pi) 3141592653589800 l004 Pi/tanh(367/67*Pi) 3141592653589800 l004 Pi/tanh(608/111*Pi) 3141592653589800 l004 Pi/tanh(241/44*Pi) 3141592653589800 l004 Pi/tanh(597/109*Pi) 3141592653589800 l004 Pi/tanh(356/65*Pi) 3141592653589800 l004 Pi/tanh(471/86*Pi) 3141592653589800 l004 Pi/tanh(586/107*Pi) 3141592653589800 l004 Pi/tanh(115/21*Pi) 3141592653589800 l004 Pi/tanh(564/103*Pi) 3141592653589800 l004 Pi/tanh(449/82*Pi) 3141592653589800 l004 Pi/tanh(334/61*Pi) 3141592653589800 l004 Pi/tanh(553/101*Pi) 3141592653589800 l004 Pi/tanh(219/40*Pi) 3141592653589800 l004 Pi/tanh(542/99*Pi) 3141592653589800 l004 Pi/tanh(323/59*Pi) 3141592653589800 l004 Pi/tanh(427/78*Pi) 3141592653589800 l004 Pi/tanh(531/97*Pi) 3141592653589800 l004 Pi/tanh(635/116*Pi) 3141592653589800 l004 Pi/tanh(104/19*Pi) 3141592653589800 l004 Pi/tanh(613/112*Pi) 3141592653589800 l004 Pi/tanh(509/93*Pi) 3141592653589800 l004 Pi/tanh(405/74*Pi) 3141592653589800 l004 Pi/tanh(301/55*Pi) 3141592653589800 l004 Pi/tanh(498/91*Pi) 3141592653589800 l004 Pi/tanh(197/36*Pi) 3141592653589800 l004 Pi/tanh(487/89*Pi) 3141592653589800 l004 Pi/tanh(290/53*Pi) 3141592653589800 l004 Pi/tanh(383/70*Pi) 3141592653589800 l004 Pi/tanh(476/87*Pi) 3141592653589800 l004 Pi/tanh(569/104*Pi) 3141592653589800 l004 Pi/tanh(93/17*Pi) 3141592653589800 l004 Pi/tanh(640/117*Pi) 3141592653589800 l004 Pi/tanh(547/100*Pi) 3141592653589800 l004 Pi/tanh(454/83*Pi) 3141592653589800 l004 Pi/tanh(361/66*Pi) 3141592653589800 l004 Pi/tanh(629/115*Pi) 3141592653589800 l004 Pi/tanh(268/49*Pi) 3141592653589800 l004 Pi/tanh(443/81*Pi) 3141592653589800 l004 Pi/tanh(618/113*Pi) 3141592653589800 l004 Pi/tanh(175/32*Pi) 3141592653589800 l004 Pi/tanh(607/111*Pi) 3141592653589800 l004 Pi/tanh(432/79*Pi) 3141592653589800 l004 Pi/tanh(257/47*Pi) 3141592653589800 l004 Pi/tanh(596/109*Pi) 3141592653589800 l004 Pi/tanh(339/62*Pi) 3141592653589800 l004 Pi/tanh(421/77*Pi) 3141592653589800 l004 Pi/tanh(503/92*Pi) 3141592653589800 l004 Pi/tanh(585/107*Pi) 3141592653589800 l004 Pi/tanh(82/15*Pi) 3141592653589800 l004 Pi/tanh(645/118*Pi) 3141592653589800 l004 Pi/tanh(563/103*Pi) 3141592653589800 l004 Pi/tanh(481/88*Pi) 3141592653589800 l004 Pi/tanh(399/73*Pi) 3141592653589800 l004 Pi/tanh(317/58*Pi) 3141592653589800 l004 Pi/tanh(552/101*Pi) 3141592653589800 l004 Pi/tanh(235/43*Pi) 3141592653589800 l004 Pi/tanh(623/114*Pi) 3141592653589800 l004 Pi/tanh(388/71*Pi) 3141592653589800 l004 Pi/tanh(541/99*Pi) 3141592653589800 l004 Pi/tanh(153/28*Pi) 3141592653589800 l004 Pi/tanh(530/97*Pi) 3141592653589800 l004 Pi/tanh(377/69*Pi) 3141592653589800 l004 Pi/tanh(601/110*Pi) 3141592653589800 l004 Pi/tanh(224/41*Pi) 3141592653589801 l004 Pi/tanh(519/95*Pi) 3141592653589801 l004 Pi/tanh(295/54*Pi) 3141592653589801 l004 Pi/tanh(366/67*Pi) 3141592653589801 l004 Pi/tanh(437/80*Pi) 3141592653589801 l004 Pi/tanh(508/93*Pi) 3141592653589801 l004 Pi/tanh(579/106*Pi) 3141592653589801 l004 Pi/tanh(650/119*Pi) 3141592653589801 l004 Pi/tanh(71/13*Pi) 3141592653589801 l004 Pi/tanh(628/115*Pi) 3141592653589801 l004 Pi/tanh(557/102*Pi) 3141592653589801 l004 Pi/tanh(486/89*Pi) 3141592653589801 l004 Pi/tanh(415/76*Pi) 3141592653589801 l004 Pi/tanh(344/63*Pi) 3141592653589801 l004 Pi/tanh(617/113*Pi) 3141592653589801 l004 Pi/tanh(273/50*Pi) 3141592653589801 l004 Pi/tanh(475/87*Pi) 3141592653589801 l004 Pi/tanh(202/37*Pi) 3141592653589801 l004 Pi/tanh(535/98*Pi) 3141592653589801 l004 Pi/tanh(333/61*Pi) 3141592653589801 l004 Pi/tanh(464/85*Pi) 3141592653589801 l004 Pi/tanh(595/109*Pi) 3141592653589801 l004 Pi/tanh(131/24*Pi) 3141592653589801 l004 Pi/tanh(584/107*Pi) 3141592653589801 l004 Pi/tanh(453/83*Pi) 3141592653589801 l004 Pi/tanh(322/59*Pi) 3141592653589801 l004 Pi/tanh(513/94*Pi) 3141592653589801 l004 Pi/tanh(191/35*Pi) 3141592653589801 l004 Pi/tanh(633/116*Pi) 3141592653589801 l004 Pi/tanh(442/81*Pi) 3141592653589801 l004 Pi/tanh(251/46*Pi) 3141592653589801 l004 Pi/tanh(562/103*Pi) 3141592653589801 l004 Pi/tanh(311/57*Pi) 3141592653589801 l004 Pi/tanh(371/68*Pi) 3141592653589801 l004 Pi/tanh(431/79*Pi) 3141592653589801 l004 Pi/tanh(491/90*Pi) 3141592653589801 l004 Pi/tanh(551/101*Pi) 3141592653589801 l004 Pi/tanh(611/112*Pi) 3141592653589801 l004 Pi/tanh(60/11*Pi) 3141592653589801 l004 Pi/tanh(649/119*Pi) 3141592653589801 l004 Pi/tanh(589/108*Pi) 3141592653589801 l004 Pi/tanh(529/97*Pi) 3141592653589801 l004 Pi/tanh(469/86*Pi) 3141592653589801 l004 Pi/tanh(409/75*Pi) 3141592653589801 l004 Pi/tanh(349/64*Pi) 3141592653589801 l004 Pi/tanh(638/117*Pi) 3141592653589801 l004 Pi/tanh(289/53*Pi) 3141592653589801 l004 Pi/tanh(518/95*Pi) 3141592653589801 l004 Pi/tanh(229/42*Pi) 3141592653589801 l004 Pi/tanh(627/115*Pi) 3141592653589801 l004 Pi/tanh(398/73*Pi) 3141592653589801 l004 Pi/tanh(567/104*Pi) 3141592653589801 l004 Pi/tanh(169/31*Pi) 3141592653589801 l004 Pi/tanh(616/113*Pi) 3141592653589801 l004 Pi/tanh(447/82*Pi) 3141592653589801 l004 Pi/tanh(278/51*Pi) 3141592653589801 l004 Pi/tanh(387/71*Pi) 3141592653589801 l004 Pi/tanh(496/91*Pi) 3141592653589801 l004 Pi/tanh(605/111*Pi) 3141592653589801 l004 Pi/tanh(109/20*Pi) 3141592653589801 l004 Pi/tanh(594/109*Pi) 3141592653589801 l004 Pi/tanh(485/89*Pi) 3141592653589801 l004 Pi/tanh(376/69*Pi) 3141592653589801 l004 Pi/tanh(643/118*Pi) 3141592653589801 l004 Pi/tanh(267/49*Pi) 3141592653589801 l004 Pi/tanh(425/78*Pi) 3141592653589801 l004 Pi/tanh(583/107*Pi) 3141592653589801 l004 Pi/tanh(158/29*Pi) 3141592653589801 l004 Pi/tanh(523/96*Pi) 3141592653589801 l004 Pi/tanh(365/67*Pi) 3141592653589801 l004 Pi/tanh(572/105*Pi) 3141592653589801 l004 Pi/tanh(207/38*Pi) 3141592653589801 l004 Pi/tanh(463/85*Pi) 3141592653589801 l004 Pi/tanh(256/47*Pi) 3141592653589801 l004 Pi/tanh(561/103*Pi) 3141592653589801 l004 Pi/tanh(305/56*Pi) 3141592653589801 l004 Pi/tanh(354/65*Pi) 3141592653589801 l004 Pi/tanh(403/74*Pi) 3141592653589801 l004 Pi/tanh(452/83*Pi) 3141592653589801 l004 Pi/tanh(501/92*Pi) 3141592653589801 l004 Pi/tanh(550/101*Pi) 3141592653589801 l004 Pi/tanh(599/110*Pi) 3141592653589801 l004 Pi/tanh(648/119*Pi) 3141592653589801 l004 Pi/tanh(49/9*Pi) 3141592653589802 l004 Pi/tanh(626/115*Pi) 3141592653589802 l004 Pi/tanh(577/106*Pi) 3141592653589802 l004 Pi/tanh(528/97*Pi) 3141592653589802 l004 Pi/tanh(479/88*Pi) 3141592653589802 l004 Pi/tanh(430/79*Pi) 3141592653589802 l004 Pi/tanh(381/70*Pi) 3141592653589802 l004 Pi/tanh(332/61*Pi) 3141592653589802 l004 Pi/tanh(615/113*Pi) 3141592653589802 l004 Pi/tanh(283/52*Pi) 3141592653589802 l004 Pi/tanh(517/95*Pi) 3141592653589802 l004 Pi/tanh(234/43*Pi) 3141592653589802 l004 Pi/tanh(653/120*Pi) 3141592653589802 l004 Pi/tanh(419/77*Pi) 3141592653589802 l004 Pi/tanh(604/111*Pi) 3141592653589802 l004 Pi/tanh(185/34*Pi) 3141592653589802 l004 Pi/tanh(506/93*Pi) 3141592653589802 l004 Pi/tanh(321/59*Pi) 3141592653589802 l004 Pi/tanh(457/84*Pi) 3141592653589802 l004 Pi/tanh(593/109*Pi) 3141592653589802 l004 Pi/tanh(136/25*Pi) 3141592653589802 l004 Pi/tanh(631/116*Pi) 3141592653589802 l004 Pi/tanh(495/91*Pi) 3141592653589802 l004 Pi/tanh(359/66*Pi) 3141592653589802 l004 Pi/tanh(582/107*Pi) 3141592653589802 l004 Pi/tanh(223/41*Pi) 3141592653589802 l004 Pi/tanh(533/98*Pi) 3141592653589802 l004 Pi/tanh(310/57*Pi) 3141592653589802 l004 Pi/tanh(397/73*Pi) 3141592653589802 l004 Pi/tanh(484/89*Pi) 3141592653589802 l004 Pi/tanh(571/105*Pi) 3141592653589802 l004 Pi/tanh(87/16*Pi) 3141592653589802 l004 Pi/tanh(647/119*Pi) 3141592653589802 l004 Pi/tanh(560/103*Pi) 3141592653589802 l004 Pi/tanh(473/87*Pi) 3141592653589802 l004 Pi/tanh(386/71*Pi) 3141592653589802 l004 Pi/tanh(299/55*Pi) 3141592653589802 l004 Pi/tanh(511/94*Pi) 3141592653589802 l004 Pi/tanh(212/39*Pi) 3141592653589802 l004 Pi/tanh(549/101*Pi) 3141592653589802 l004 Pi/tanh(337/62*Pi) 3141592653589802 l004 Pi/tanh(462/85*Pi) 3141592653589802 l004 Pi/tanh(587/108*Pi) 3141592653589802 l004 Pi/tanh(125/23*Pi) 3141592653589802 l004 Pi/tanh(538/99*Pi) 3141592653589802 l004 Pi/tanh(413/76*Pi) 3141592653589802 l004 Pi/tanh(288/53*Pi) 3141592653589802 l004 Pi/tanh(451/83*Pi) 3141592653589802 l004 Pi/tanh(614/113*Pi) 3141592653589802 l004 Pi/tanh(163/30*Pi) 3141592653589802 l004 Pi/tanh(527/97*Pi) 3141592653589802 l004 Pi/tanh(364/67*Pi) 3141592653589802 l004 Pi/tanh(565/104*Pi) 3141592653589802 l004 Pi/tanh(201/37*Pi) 3141592653589802 l004 Pi/tanh(641/118*Pi) 3141592653589802 l004 Pi/tanh(440/81*Pi) 3141592653589802 l004 Pi/tanh(239/44*Pi) 3141592653589802 l004 Pi/tanh(516/95*Pi) 3141592653589802 l004 Pi/tanh(277/51*Pi) 3141592653589802 l004 Pi/tanh(592/109*Pi) 3141592653589802 l004 Pi/tanh(315/58*Pi) 3141592653589802 l004 Pi/tanh(353/65*Pi) 3141592653589802 l004 Pi/tanh(391/72*Pi) 3141592653589802 l004 Pi/tanh(429/79*Pi) 3141592653589802 l004 Pi/tanh(467/86*Pi) 3141592653589802 l004 Pi/tanh(505/93*Pi) 3141592653589802 l004 Pi/tanh(543/100*Pi) 3141592653589802 l004 Pi/tanh(581/107*Pi) 3141592653589802 l004 Pi/tanh(619/114*Pi) 3141592653589802 l004 Pi/tanh(38/7*Pi) 3141592653589802 l004 Pi/tanh(635/117*Pi) 3141592653589802 l004 Pi/tanh(597/110*Pi) 3141592653589802 l004 Pi/tanh(559/103*Pi) 3141592653589802 l004 Pi/tanh(521/96*Pi) 3141592653589802 l004 Pi/tanh(483/89*Pi) 3141592653589803 l004 Pi/tanh(445/82*Pi) 3141592653589803 l004 Pi/tanh(407/75*Pi) 3141592653589803 l004 Pi/tanh(369/68*Pi) 3141592653589803 l004 Pi/tanh(331/61*Pi) 3141592653589803 l004 Pi/tanh(624/115*Pi) 3141592653589803 l004 Pi/tanh(293/54*Pi) 3141592653589803 l004 Pi/tanh(548/101*Pi) 3141592653589803 l004 Pi/tanh(255/47*Pi) 3141592653589803 l004 Pi/tanh(472/87*Pi) 3141592653589803 l004 Pi/tanh(217/40*Pi) 3141592653589803 l004 Pi/tanh(613/113*Pi) 3141592653589803 l004 Pi/tanh(396/73*Pi) 3141592653589803 l004 Pi/tanh(575/106*Pi) 3141592653589803 l004 Pi/tanh(179/33*Pi) 3141592653589803 l004 Pi/tanh(499/92*Pi) 3141592653589803 l004 Pi/tanh(320/59*Pi) 3141592653589803 l004 Pi/tanh(461/85*Pi) 3141592653589803 l004 Pi/tanh(602/111*Pi) 3141592653589803 l004 Pi/tanh(141/26*Pi) 3141592653589803 l004 Pi/tanh(526/97*Pi) 3141592653589803 l004 Pi/tanh(385/71*Pi) 3141592653589803 l004 Pi/tanh(629/116*Pi) 3141592653589803 l004 Pi/tanh(244/45*Pi) 3141592653589803 l004 Pi/tanh(591/109*Pi) 3141592653589803 l004 Pi/tanh(347/64*Pi) 3141592653589803 l004 Pi/tanh(450/83*Pi) 3141592653589803 l004 Pi/tanh(553/102*Pi) 3141592653589803 l004 Pi/tanh(103/19*Pi) 3141592653589803 l004 Pi/tanh(580/107*Pi) 3141592653589803 l004 Pi/tanh(477/88*Pi) 3141592653589803 l004 Pi/tanh(374/69*Pi) 3141592653589803 l004 Pi/tanh(645/119*Pi) 3141592653589803 l004 Pi/tanh(271/50*Pi) 3141592653589803 l004 Pi/tanh(439/81*Pi) 3141592653589803 l004 Pi/tanh(607/112*Pi) 3141592653589803 l004 Pi/tanh(168/31*Pi) 3141592653589803 l004 Pi/tanh(569/105*Pi) 3141592653589803 l004 Pi/tanh(401/74*Pi) 3141592653589803 l004 Pi/tanh(634/117*Pi) 3141592653589803 l004 Pi/tanh(233/43*Pi) 3141592653589803 l004 Pi/tanh(531/98*Pi) 3141592653589803 l004 Pi/tanh(298/55*Pi) 3141592653589803 l004 Pi/tanh(363/67*Pi) 3141592653589803 l004 Pi/tanh(428/79*Pi) 3141592653589803 l004 Pi/tanh(493/91*Pi) 3141592653589803 l004 Pi/tanh(558/103*Pi) 3141592653589803 l004 Pi/tanh(623/115*Pi) 3141592653589803 l004 Pi/tanh(65/12*Pi) 3141592653589803 l004 Pi/tanh(612/113*Pi) 3141592653589803 l004 Pi/tanh(547/101*Pi) 3141592653589803 l004 Pi/tanh(482/89*Pi) 3141592653589803 l004 Pi/tanh(417/77*Pi) 3141592653589803 l004 Pi/tanh(352/65*Pi) 3141592653589803 l004 Pi/tanh(639/118*Pi) 3141592653589803 l004 Pi/tanh(287/53*Pi) 3141592653589803 l004 Pi/tanh(509/94*Pi) 3141592653589803 l004 Pi/tanh(222/41*Pi) 3141592653589803 l004 Pi/tanh(601/111*Pi) 3141592653589803 l004 Pi/tanh(379/70*Pi) 3141592653589803 l004 Pi/tanh(536/99*Pi) 3141592653589803 l004 Pi/tanh(157/29*Pi) 3141592653589803 l004 Pi/tanh(563/104*Pi) 3141592653589803 l004 Pi/tanh(406/75*Pi) 3141592653589803 l004 Pi/tanh(249/46*Pi) 3141592653589803 l004 Pi/tanh(590/109*Pi) 3141592653589803 l004 Pi/tanh(341/63*Pi) 3141592653589803 l004 Pi/tanh(433/80*Pi) 3141592653589803 l004 Pi/tanh(525/97*Pi) 3141592653589803 l004 Pi/tanh(617/114*Pi) 3141592653589803 l004 Pi/tanh(92/17*Pi) 3141592653589804 l004 Pi/tanh(579/107*Pi) 3141592653589804 l004 Pi/tanh(487/90*Pi) 3141592653589804 l004 Pi/tanh(395/73*Pi) 3141592653589804 l004 Pi/tanh(303/56*Pi) 3141592653589804 l004 Pi/tanh(514/95*Pi) 3141592653589804 l004 Pi/tanh(211/39*Pi) 3141592653589804 l004 Pi/tanh(541/100*Pi) 3141592653589804 l004 Pi/tanh(330/61*Pi) 3141592653589804 l004 Pi/tanh(449/83*Pi) 3141592653589804 l004 Pi/tanh(568/105*Pi) 3141592653589804 l004 Pi/tanh(119/22*Pi) 3141592653589804 l004 Pi/tanh(622/115*Pi) 3141592653589804 l004 Pi/tanh(503/93*Pi) 3141592653589804 l004 Pi/tanh(384/71*Pi) 3141592653589804 l004 Pi/tanh(649/120*Pi) 3141592653589804 l004 Pi/tanh(265/49*Pi) 3141592653589804 l004 Pi/tanh(411/76*Pi) 3141592653589804 l004 Pi/tanh(557/103*Pi) 3141592653589804 l004 Pi/tanh(146/27*Pi) 3141592653589804 l004 Pi/tanh(611/113*Pi) 3141592653589804 l004 Pi/tanh(465/86*Pi) 3141592653589804 l004 Pi/tanh(319/59*Pi) 3141592653589804 l004 Pi/tanh(492/91*Pi) 3141592653589804 l004 Pi/tanh(173/32*Pi) 3141592653589804 l004 Pi/tanh(546/101*Pi) 3141592653589804 l004 Pi/tanh(373/69*Pi) 3141592653589804 l004 Pi/tanh(573/106*Pi) 3141592653589804 l004 Pi/tanh(200/37*Pi) 3141592653589804 l004 Pi/tanh(627/116*Pi) 3141592653589804 l004 Pi/tanh(427/79*Pi) 3141592653589804 l004 Pi/tanh(227/42*Pi) 3141592653589804 l004 Pi/tanh(481/89*Pi) 3141592653589804 l004 Pi/tanh(254/47*Pi) 3141592653589804 l004 Pi/tanh(535/99*Pi) 3141592653589804 l004 Pi/tanh(281/52*Pi) 3141592653589804 l004 Pi/tanh(589/109*Pi) 3141592653589804 l004 Pi/tanh(308/57*Pi) 3141592653589804 l004 Pi/tanh(643/119*Pi) 3141592653589804 l004 Pi/tanh(335/62*Pi) 3141592653589804 l004 Pi/tanh(362/67*Pi) 3141592653589804 l004 Pi/tanh(389/72*Pi) 3141592653589804 l004 Pi/tanh(416/77*Pi) 3141592653589804 l004 Pi/tanh(443/82*Pi) 3141592653589804 l004 Pi/tanh(470/87*Pi) 3141592653589804 l004 Pi/tanh(497/92*Pi) 3141592653589804 l004 Pi/tanh(524/97*Pi) 3141592653589804 l004 Pi/tanh(551/102*Pi) 3141592653589804 l004 Pi/tanh(578/107*Pi) 3141592653589804 l004 Pi/tanh(605/112*Pi) 3141592653589804 l004 Pi/tanh(632/117*Pi) 3141592653589804 l004 Pi/tanh(27/5*Pi) 3141592653589804 l004 Pi/tanh(637/118*Pi) 3141592653589804 l004 Pi/tanh(610/113*Pi) 3141592653589804 l004 Pi/tanh(583/108*Pi) 3141592653589804 l004 Pi/tanh(556/103*Pi) 3141592653589804 l004 Pi/tanh(529/98*Pi) 3141592653589804 l004 Pi/tanh(502/93*Pi) 3141592653589804 l004 Pi/tanh(475/88*Pi) 3141592653589804 l004 Pi/tanh(448/83*Pi) 3141592653589804 l004 Pi/tanh(421/78*Pi) 3141592653589804 l004 Pi/tanh(394/73*Pi) 3141592653589805 l004 Pi/tanh(367/68*Pi) 3141592653589805 l004 Pi/tanh(340/63*Pi) 3141592653589805 l004 Pi/tanh(313/58*Pi) 3141592653589805 l004 Pi/tanh(599/111*Pi) 3141592653589805 l004 Pi/tanh(286/53*Pi) 3141592653589805 l004 Pi/tanh(545/101*Pi) 3141592653589805 l004 Pi/tanh(259/48*Pi) 3141592653589805 l004 Pi/tanh(491/91*Pi) 3141592653589805 l004 Pi/tanh(232/43*Pi) 3141592653589805 l004 Pi/tanh(437/81*Pi) 3141592653589805 l004 Pi/tanh(642/119*Pi) 3141592653589805 l004 Pi/tanh(205/38*Pi) 3141592653589805 l004 Pi/tanh(588/109*Pi) 3141592653589805 l004 Pi/tanh(383/71*Pi) 3141592653589805 l004 Pi/tanh(561/104*Pi) 3141592653589805 l004 Pi/tanh(178/33*Pi) 3141592653589805 l004 Pi/tanh(507/94*Pi) 3141592653589805 l004 Pi/tanh(329/61*Pi) 3141592653589805 l004 Pi/tanh(480/89*Pi) 3141592653589805 l004 Pi/tanh(631/117*Pi) 3141592653589805 l004 Pi/tanh(151/28*Pi) 3141592653589805 l004 Pi/tanh(577/107*Pi) 3141592653589805 l004 Pi/tanh(426/79*Pi) 3141592653589805 l004 Pi/tanh(275/51*Pi) 3141592653589805 l004 Pi/tanh(399/74*Pi) 3141592653589805 l004 Pi/tanh(523/97*Pi) 3141592653589805 l004 Pi/tanh(647/120*Pi) 3141592653589805 l004 Pi/tanh(124/23*Pi) 3141592653589805 l004 Pi/tanh(593/110*Pi) 3141592653589805 l004 Pi/tanh(469/87*Pi) 3141592653589805 l004 Pi/tanh(345/64*Pi) 3141592653589805 l004 Pi/tanh(566/105*Pi) 3141592653589805 l004 Pi/tanh(221/41*Pi) 3141592653589805 l004 Pi/tanh(539/100*Pi) 3141592653589805 l004 Pi/tanh(318/59*Pi) 3141592653589805 l004 Pi/tanh(415/77*Pi) 3141592653589805 l004 Pi/tanh(512/95*Pi) 3141592653589805 l004 Pi/tanh(609/113*Pi) 3141592653589805 l004 Pi/tanh(97/18*Pi) 3141592653589805 l005 ln(sec(223/71)) 3141592653589805 l004 Pi/tanh(555/103*Pi) 3141592653589805 l004 Pi/tanh(458/85*Pi) 3141592653589805 l004 Pi/tanh(361/67*Pi) 3141592653589805 l004 Pi/tanh(625/116*Pi) 3141592653589805 l004 Pi/tanh(264/49*Pi) 3141592653589805 l004 Pi/tanh(431/80*Pi) 3141592653589805 l004 Pi/tanh(598/111*Pi) 3141592653589805 l004 Pi/tanh(167/31*Pi) 3141592653589805 l004 Pi/tanh(571/106*Pi) 3141592653589805 m001 KomornikLoreti^Psi(2,1/3)+Pi 3141592653589805 l004 Pi/tanh(404/75*Pi) 3141592653589805 l004 Pi/tanh(641/119*Pi) 3141592653589805 l004 Pi/tanh(237/44*Pi) 3141592653589805 l004 Pi/tanh(544/101*Pi) 3141592653589805 l004 Pi/tanh(307/57*Pi) 3141592653589805 l004 Pi/tanh(377/70*Pi) 3141592653589805 l004 Pi/tanh(447/83*Pi) 3141592653589805 l004 Pi/tanh(517/96*Pi) 3141592653589805 l004 Pi/tanh(587/109*Pi) 3141592653589805 l004 Pi/tanh(70/13*Pi) 3141592653589806 l004 Pi/tanh(603/112*Pi) 3141592653589806 l004 Pi/tanh(533/99*Pi) 3141592653589806 l004 Pi/tanh(463/86*Pi) 3141592653589806 l004 Pi/tanh(393/73*Pi) 3141592653589806 l004 Pi/tanh(323/60*Pi) 3141592653589806 l004 Pi/tanh(576/107*Pi) 3141592653589806 l005 ln(sec(443/47)) 3141592653589806 l004 Pi/tanh(253/47*Pi) 3141592653589806 l004 Pi/tanh(436/81*Pi) 3141592653589806 l004 Pi/tanh(619/115*Pi) 3141592653589806 l004 Pi/tanh(183/34*Pi) 3141592653589806 l004 Pi/tanh(479/89*Pi) 3141592653589806 l004 Pi/tanh(296/55*Pi) 3141592653589806 l004 Pi/tanh(409/76*Pi) 3141592653589806 l004 Pi/tanh(522/97*Pi) 3141592653589806 l004 Pi/tanh(635/118*Pi) 3141592653589806 l004 Pi/tanh(113/21*Pi) 3141592653589806 l004 Pi/tanh(608/113*Pi) 3141592653589806 l004 Pi/tanh(495/92*Pi) 3141592653589806 l004 Pi/tanh(382/71*Pi) 3141592653589806 l004 Pi/tanh(269/50*Pi) 3141592653589806 l004 Pi/tanh(425/79*Pi) 3141592653589806 l004 Pi/tanh(581/108*Pi) 3141592653589806 l004 Pi/tanh(156/29*Pi) 3141592653589806 l004 Pi/tanh(511/95*Pi) 3141592653589806 l004 Pi/tanh(355/66*Pi) 3141592653589806 l004 Pi/tanh(554/103*Pi) 3141592653589806 l004 Pi/tanh(199/37*Pi) 3141592653589806 l004 Pi/tanh(640/119*Pi) 3141592653589806 l004 Pi/tanh(441/82*Pi) 3141592653589806 l004 Pi/tanh(242/45*Pi) 3141592653589806 l004 Pi/tanh(527/98*Pi) 3141592653589806 l004 Pi/tanh(285/53*Pi) 3141592653589806 l004 Pi/tanh(613/114*Pi) 3141592653589806 l004 Pi/tanh(328/61*Pi) 3141592653589806 l004 Pi/tanh(371/69*Pi) 3141592653589806 l004 Pi/tanh(414/77*Pi) 3141592653589806 l004 Pi/tanh(457/85*Pi) 3141592653589806 l004 Pi/tanh(500/93*Pi) 3141592653589806 l004 Pi/tanh(543/101*Pi) 3141592653589806 l004 Pi/tanh(586/109*Pi) 3141592653589806 l004 Pi/tanh(629/117*Pi) 3141592653589806 l004 Pi/tanh(43/8*Pi) 3141592653589806 l004 Pi/tanh(618/115*Pi) 3141592653589806 l004 Pi/tanh(575/107*Pi) 3141592653589806 l004 Pi/tanh(532/99*Pi) 3141592653589806 l004 Pi/tanh(489/91*Pi) 3141592653589806 l004 Pi/tanh(446/83*Pi) 3141592653589806 l004 Pi/tanh(403/75*Pi) 3141592653589806 l004 Pi/tanh(360/67*Pi) 3141592653589806 l004 Pi/tanh(317/59*Pi) 3141592653589806 l004 Pi/tanh(591/110*Pi) 3141592653589806 l004 Pi/tanh(274/51*Pi) 3141592653589806 l004 Pi/tanh(505/94*Pi) 3141592653589807 l004 Pi/tanh(231/43*Pi) 3141592653589807 l004 Pi/tanh(419/78*Pi) 3141592653589807 l004 Pi/tanh(607/113*Pi) 3141592653589807 l004 Pi/tanh(188/35*Pi) 3141592653589807 l004 Pi/tanh(521/97*Pi) 3141592653589807 l004 Pi/tanh(333/62*Pi) 3141592653589807 l004 Pi/tanh(478/89*Pi) 3141592653589807 l004 Pi/tanh(623/116*Pi) 3141592653589807 l004 Pi/tanh(145/27*Pi) 3141592653589807 l004 Pi/tanh(537/100*Pi) 3141592653589807 l004 Pi/tanh(392/73*Pi) 3141592653589807 l004 Pi/tanh(639/119*Pi) 3141592653589807 l004 Pi/tanh(247/46*Pi) 3141592653589807 l004 Pi/tanh(596/111*Pi) 3141592653589807 l004 Pi/tanh(349/65*Pi) 3141592653589807 l004 Pi/tanh(451/84*Pi) 3141592653589807 l004 Pi/tanh(553/103*Pi) 3141592653589807 l004 Pi/tanh(102/19*Pi) 3141592653589807 l004 Pi/tanh(569/106*Pi) 3141592653589807 l004 Pi/tanh(467/87*Pi) 3141592653589807 l004 Pi/tanh(365/68*Pi) 3141592653589807 l004 Pi/tanh(628/117*Pi) 3141592653589807 l004 Pi/tanh(263/49*Pi) 3141592653589807 l004 Pi/tanh(424/79*Pi) 3141592653589807 l004 Pi/tanh(585/109*Pi) 3141592653589807 l004 Pi/tanh(161/30*Pi) 3141592653589807 l004 Pi/tanh(542/101*Pi) 3141592653589807 l004 Pi/tanh(381/71*Pi) 3141592653589807 l004 Pi/tanh(601/112*Pi) 3141592653589807 l004 Pi/tanh(220/41*Pi) 3141592653589807 l004 Pi/tanh(499/93*Pi) 3141592653589807 l004 Pi/tanh(279/52*Pi) 3141592653589807 l004 Pi/tanh(617/115*Pi) 3141592653589807 l004 Pi/tanh(338/63*Pi) 3141592653589807 l004 Pi/tanh(397/74*Pi) 3141592653589807 l004 Pi/tanh(456/85*Pi) 3141592653589807 l004 Pi/tanh(515/96*Pi) 3141592653589807 l004 Pi/tanh(574/107*Pi) 3141592653589807 l004 Pi/tanh(633/118*Pi) 3141592653589807 l004 Pi/tanh(59/11*Pi) 3141592653589807 l004 Pi/tanh(606/113*Pi) 3141592653589807 l004 Pi/tanh(547/102*Pi) 3141592653589807 l004 Pi/tanh(488/91*Pi) 3141592653589807 l004 Pi/tanh(429/80*Pi) 3141592653589807 l004 Pi/tanh(370/69*Pi) 3141592653589807 l004 Pi/tanh(311/58*Pi) 3141592653589807 m001 Grothendieck^Psi(2,1/3)+Pi 3141592653589807 l004 Pi/tanh(563/105*Pi) 3141592653589807 l004 Pi/tanh(252/47*Pi) 3141592653589807 l004 Pi/tanh(445/83*Pi) 3141592653589807 l004 Pi/tanh(638/119*Pi) 3141592653589807 l004 Pi/tanh(193/36*Pi) 3141592653589808 l004 Pi/tanh(520/97*Pi) 3141592653589808 l004 Pi/tanh(327/61*Pi) 3141592653589808 l004 Pi/tanh(461/86*Pi) 3141592653589808 l004 Pi/tanh(595/111*Pi) 3141592653589808 l004 Pi/tanh(134/25*Pi) 3141592653589808 l004 Pi/tanh(611/114*Pi) 3141592653589808 l004 Pi/tanh(477/89*Pi) 3141592653589808 l004 Pi/tanh(343/64*Pi) 3141592653589808 l004 Pi/tanh(552/103*Pi) 3141592653589808 l004 Pi/tanh(209/39*Pi) 3141592653589808 l004 Pi/tanh(493/92*Pi) 3141592653589808 l004 Pi/tanh(284/53*Pi) 3141592653589808 l004 Pi/tanh(643/120*Pi) 3141592653589808 l004 Pi/tanh(359/67*Pi) 3141592653589808 l004 Pi/tanh(434/81*Pi) 3141592653589808 l004 Pi/tanh(509/95*Pi) 3141592653589808 l004 Pi/tanh(584/109*Pi) 3141592653589808 l004 Pi/tanh(75/14*Pi) 3141592653589808 l004 Pi/tanh(616/115*Pi) 3141592653589808 l004 Pi/tanh(541/101*Pi) 3141592653589808 l004 Pi/tanh(466/87*Pi) 3141592653589808 l004 Pi/tanh(391/73*Pi) 3141592653589808 l004 Pi/tanh(316/59*Pi) 3141592653589808 l004 Pi/tanh(557/104*Pi) 3141592653589808 l004 Pi/tanh(241/45*Pi) 3141592653589808 l004 Pi/tanh(407/76*Pi) 3141592653589808 l004 Pi/tanh(573/107*Pi) 3141592653589808 l004 Pi/tanh(166/31*Pi) 3141592653589808 l004 Pi/tanh(589/110*Pi) 3141592653589808 l004 Pi/tanh(423/79*Pi) 3141592653589808 l004 Pi/tanh(257/48*Pi) 3141592653589808 l004 Pi/tanh(605/113*Pi) 3141592653589808 l004 Pi/tanh(348/65*Pi) 3141592653589808 l004 Pi/tanh(439/82*Pi) 3141592653589808 l004 Pi/tanh(530/99*Pi) 3141592653589808 l004 Pi/tanh(621/116*Pi) 3141592653589808 l004 Pi/tanh(91/17*Pi) 3141592653589808 l004 Pi/tanh(562/105*Pi) 3141592653589808 l004 Pi/tanh(471/88*Pi) 3141592653589808 l004 Pi/tanh(380/71*Pi) 3141592653589808 l004 Pi/tanh(289/54*Pi) 3141592653589808 l004 Pi/tanh(487/91*Pi) 3141592653589808 l004 Pi/tanh(198/37*Pi) 3141592653589808 l004 Pi/tanh(503/94*Pi) 3141592653589808 l004 Pi/tanh(305/57*Pi) 3141592653589808 l004 Pi/tanh(412/77*Pi) 3141592653589809 l004 Pi/tanh(519/97*Pi) 3141592653589809 l004 Pi/tanh(626/117*Pi) 3141592653589809 l004 Pi/tanh(107/20*Pi) 3141592653589809 l004 Pi/tanh(551/103*Pi) 3141592653589809 l004 Pi/tanh(444/83*Pi) 3141592653589809 l004 Pi/tanh(337/63*Pi) 3141592653589809 l004 Pi/tanh(567/106*Pi) 3141592653589809 l004 Pi/tanh(230/43*Pi) 3141592653589809 l004 Pi/tanh(583/109*Pi) 3141592653589809 l004 Pi/tanh(353/66*Pi) 3141592653589809 l004 Pi/tanh(476/89*Pi) 3141592653589809 l004 Pi/tanh(599/112*Pi) 3141592653589809 l004 Pi/tanh(123/23*Pi) 3141592653589809 l004 Pi/tanh(631/118*Pi) 3141592653589809 l004 Pi/tanh(508/95*Pi) 3141592653589809 l004 Pi/tanh(385/72*Pi) 3141592653589809 l004 Pi/tanh(262/49*Pi) 3141592653589809 l004 Pi/tanh(401/75*Pi) 3141592653589809 l004 Pi/tanh(540/101*Pi) 3141592653589809 l004 Pi/tanh(139/26*Pi) 3141592653589809 l004 Pi/tanh(572/107*Pi) 3141592653589809 l004 Pi/tanh(433/81*Pi) 3141592653589809 l004 Pi/tanh(294/55*Pi) 3141592653589809 l004 Pi/tanh(449/84*Pi) 3141592653589809 l004 Pi/tanh(604/113*Pi) 3141592653589809 l004 Pi/tanh(155/29*Pi) 3141592653589809 l004 Pi/tanh(636/119*Pi) 3141592653589809 l004 Pi/tanh(481/90*Pi) 3141592653589809 l004 Pi/tanh(326/61*Pi) 3141592653589809 l004 Pi/tanh(497/93*Pi) 3141592653589809 l004 Pi/tanh(171/32*Pi) 3141592653589809 l004 Pi/tanh(529/99*Pi) 3141592653589809 l004 Pi/tanh(358/67*Pi) 3141592653589809 l004 Pi/tanh(545/102*Pi) 3141592653589809 l004 Pi/tanh(187/35*Pi) 3141592653589809 l004 Pi/tanh(577/108*Pi) 3141592653589809 l004 Pi/tanh(390/73*Pi) 3141592653589809 l004 Pi/tanh(593/111*Pi) 3141592653589809 l004 Pi/tanh(203/38*Pi) 3141592653589809 l004 Pi/tanh(625/117*Pi) 3141592653589809 l004 Pi/tanh(422/79*Pi) 3141592653589809 l004 Pi/tanh(641/120*Pi) 3141592653589809 l004 Pi/tanh(219/41*Pi) 3141592653589809 l004 Pi/tanh(454/85*Pi) 3141592653589809 l004 Pi/tanh(235/44*Pi) 3141592653589810 l004 Pi/tanh(486/91*Pi) 3141592653589810 l004 Pi/tanh(251/47*Pi) 3141592653589810 m001 exp(-Pi)^Psi(1,1/3)+Pi 3141592653589810 l004 Pi/tanh(518/97*Pi) 3141592653589810 l004 Pi/tanh(267/50*Pi) 3141592653589810 l004 Pi/tanh(550/103*Pi) 3141592653589810 m001 Pi+sin(1/12*Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653589810 l004 Pi/tanh(283/53*Pi) 3141592653589810 l004 Pi/tanh(582/109*Pi) 3141592653589810 l004 Pi/tanh(299/56*Pi) 3141592653589810 l004 Pi/tanh(614/115*Pi) 3141592653589810 l004 Pi/tanh(315/59*Pi) 3141592653589810 l004 Pi/tanh(331/62*Pi) 3141592653589810 l004 Pi/tanh(347/65*Pi) 3141592653589810 l004 Pi/tanh(363/68*Pi) 3141592653589810 l004 Pi/tanh(379/71*Pi) 3141592653589810 l004 Pi/tanh(395/74*Pi) 3141592653589810 l004 Pi/tanh(411/77*Pi) 3141592653589810 l004 Pi/tanh(427/80*Pi) 3141592653589810 l004 Pi/tanh(443/83*Pi) 3141592653589810 l004 Pi/tanh(459/86*Pi) 3141592653589810 l004 Pi/tanh(475/89*Pi) 3141592653589810 l004 Pi/tanh(491/92*Pi) 3141592653589810 l004 Pi/tanh(507/95*Pi) 3141592653589810 l004 Pi/tanh(523/98*Pi) 3141592653589810 l004 Pi/tanh(539/101*Pi) 3141592653589810 l004 Pi/tanh(555/104*Pi) 3141592653589810 l004 Pi/tanh(571/107*Pi) 3141592653589810 l004 Pi/tanh(587/110*Pi) 3141592653589810 l004 Pi/tanh(603/113*Pi) 3141592653589810 l004 Pi/tanh(619/116*Pi) 3141592653589810 l004 Pi/tanh(635/119*Pi) 3141592653589810 l004 Pi/tanh(16/3*Pi) 3141592653589811 l004 Pi/tanh(629/118*Pi) 3141592653589811 l004 Pi/tanh(613/115*Pi) 3141592653589811 l004 Pi/tanh(597/112*Pi) 3141592653589811 l004 Pi/tanh(581/109*Pi) 3141592653589811 l004 Pi/tanh(565/106*Pi) 3141592653589811 l004 Pi/tanh(549/103*Pi) 3141592653589811 l004 Pi/tanh(533/100*Pi) 3141592653589811 l004 Pi/tanh(517/97*Pi) 3141592653589811 l004 Pi/tanh(501/94*Pi) 3141592653589811 l004 Pi/tanh(485/91*Pi) 3141592653589811 l004 Pi/tanh(469/88*Pi) 3141592653589811 l004 Pi/tanh(453/85*Pi) 3141592653589811 l004 Pi/tanh(437/82*Pi) 3141592653589811 l004 Pi/tanh(421/79*Pi) 3141592653589811 l004 Pi/tanh(405/76*Pi) 3141592653589811 l004 Pi/tanh(389/73*Pi) 3141592653589811 l004 Pi/tanh(373/70*Pi) 3141592653589811 l004 Pi/tanh(357/67*Pi) 3141592653589811 l004 Pi/tanh(341/64*Pi) 3141592653589811 l004 Pi/tanh(325/61*Pi) 3141592653589811 l004 Pi/tanh(634/119*Pi) 3141592653589811 l004 Pi/tanh(309/58*Pi) 3141592653589811 l004 Pi/tanh(602/113*Pi) 3141592653589811 l004 Pi/tanh(293/55*Pi) 3141592653589811 l004 Pi/tanh(570/107*Pi) 3141592653589811 l004 Pi/tanh(277/52*Pi) 3141592653589811 l004 Pi/tanh(538/101*Pi) 3141592653589811 l004 Pi/tanh(261/49*Pi) 3141592653589811 l004 Pi/tanh(506/95*Pi) 3141592653589811 l004 Pi/tanh(245/46*Pi) 3141592653589811 l004 Pi/tanh(474/89*Pi) 3141592653589811 l004 Pi/tanh(229/43*Pi) 3141592653589811 l004 Pi/tanh(442/83*Pi) 3141592653589811 l004 Pi/tanh(213/40*Pi) 3141592653589811 l004 Pi/tanh(623/117*Pi) 3141592653589811 l004 Pi/tanh(410/77*Pi) 3141592653589811 l004 Pi/tanh(607/114*Pi) 3141592653589811 l004 Pi/tanh(197/37*Pi) 3141592653589811 l004 Pi/tanh(575/108*Pi) 3141592653589811 l004 Pi/tanh(378/71*Pi) 3141592653589811 l004 Pi/tanh(559/105*Pi) 3141592653589811 l004 Pi/tanh(181/34*Pi) 3141592653589811 l004 Pi/tanh(527/99*Pi) 3141592653589811 l004 Pi/tanh(346/65*Pi) 3141592653589811 l004 Pi/tanh(511/96*Pi) 3141592653589812 l004 Pi/tanh(165/31*Pi) 3141592653589812 l004 Pi/tanh(479/90*Pi) 3141592653589812 l004 Pi/tanh(314/59*Pi) 3141592653589812 l004 Pi/tanh(463/87*Pi) 3141592653589812 l004 Pi/tanh(612/115*Pi) 3141592653589812 l004 Pi/tanh(149/28*Pi) 3141592653589812 l004 Pi/tanh(580/109*Pi) 3141592653589812 l004 Pi/tanh(431/81*Pi) 3141592653589812 l004 Pi/tanh(282/53*Pi) 3141592653589812 l004 Pi/tanh(415/78*Pi) 3141592653589812 l004 Pi/tanh(548/103*Pi) 3141592653589812 l004 Pi/tanh(133/25*Pi) 3141592653589812 l004 Pi/tanh(516/97*Pi) 3141592653589812 l004 Pi/tanh(383/72*Pi) 3141592653589812 l004 Pi/tanh(633/119*Pi) 3141592653589812 l004 Pi/tanh(250/47*Pi) 3141592653589812 l004 Pi/tanh(617/116*Pi) 3141592653589812 l004 Pi/tanh(367/69*Pi) 3141592653589812 l004 Pi/tanh(484/91*Pi) 3141592653589812 l004 Pi/tanh(601/113*Pi) 3141592653589812 l004 Pi/tanh(117/22*Pi) 3141592653589812 l004 Pi/tanh(569/107*Pi) 3141592653589812 l004 Pi/tanh(452/85*Pi) 3141592653589812 l004 Pi/tanh(335/63*Pi) 3141592653589812 l004 Pi/tanh(553/104*Pi) 3141592653589812 l004 Pi/tanh(218/41*Pi) 3141592653589812 l004 Pi/tanh(537/101*Pi) 3141592653589812 l004 Pi/tanh(319/60*Pi) 3141592653589812 l004 Pi/tanh(420/79*Pi) 3141592653589812 l004 Pi/tanh(521/98*Pi) 3141592653589812 l004 Pi/tanh(622/117*Pi) 3141592653589812 l004 Pi/tanh(101/19*Pi) 3141592653589812 l004 Pi/tanh(590/111*Pi) 3141592653589812 l004 Pi/tanh(489/92*Pi) 3141592653589812 l004 Pi/tanh(388/73*Pi) 3141592653589812 l004 Pi/tanh(287/54*Pi) 3141592653589813 l004 Pi/tanh(473/89*Pi) 3141592653589813 l004 Pi/tanh(186/35*Pi) 3141592653589813 l004 Pi/tanh(457/86*Pi) 3141592653589813 m001 (Pi^(1/2))^Psi(2,1/3)+Pi 3141592653589813 l004 Pi/tanh(271/51*Pi) 3141592653589813 l004 Pi/tanh(627/118*Pi) 3141592653589813 l004 Pi/tanh(356/67*Pi) 3141592653589813 l004 Pi/tanh(441/83*Pi) 3141592653589813 l004 Pi/tanh(526/99*Pi) 3141592653589813 l004 Pi/tanh(611/115*Pi) 3141592653589813 l004 Pi/tanh(85/16*Pi) 3141592653589813 l004 Pi/tanh(579/109*Pi) 3141592653589813 l004 Pi/tanh(494/93*Pi) 3141592653589813 l004 Pi/tanh(409/77*Pi) 3141592653589813 l004 Pi/tanh(324/61*Pi) 3141592653589813 l004 Pi/tanh(563/106*Pi) 3141592653589813 l004 Pi/tanh(239/45*Pi) 3141592653589813 l004 Pi/tanh(632/119*Pi) 3141592653589813 l004 Pi/tanh(393/74*Pi) 3141592653589813 l004 Pi/tanh(547/103*Pi) 3141592653589813 l004 Pi/tanh(154/29*Pi) 3141592653589813 l004 Pi/tanh(531/100*Pi) 3141592653589813 l004 Pi/tanh(377/71*Pi) 3141592653589813 l004 Pi/tanh(600/113*Pi) 3141592653589813 l004 Pi/tanh(223/42*Pi) 3141592653589813 l004 Pi/tanh(515/97*Pi) 3141592653589813 l004 Pi/tanh(292/55*Pi) 3141592653589813 l004 Pi/tanh(361/68*Pi) 3141592653589813 l004 Pi/tanh(430/81*Pi) 3141592653589813 l004 Pi/tanh(499/94*Pi) 3141592653589813 l004 Pi/tanh(568/107*Pi) 3141592653589813 l004 Pi/tanh(637/120*Pi) 3141592653589813 l004 Pi/tanh(69/13*Pi) 3141592653589813 l004 Pi/tanh(605/114*Pi) 3141592653589813 l004 Pi/tanh(536/101*Pi) 3141592653589813 l004 Pi/tanh(467/88*Pi) 3141592653589814 l004 Pi/tanh(398/75*Pi) 3141592653589814 l004 Pi/tanh(329/62*Pi) 3141592653589814 l004 Pi/tanh(589/111*Pi) 3141592653589814 l004 Pi/tanh(260/49*Pi) 3141592653589814 l004 Pi/tanh(451/85*Pi) 3141592653589814 l004 Pi/tanh(191/36*Pi) 3141592653589814 l004 Pi/tanh(504/95*Pi) 3141592653589814 l004 Pi/tanh(313/59*Pi) 3141592653589814 l004 Pi/tanh(435/82*Pi) 3141592653589814 l004 Pi/tanh(557/105*Pi) 3141592653589814 l004 Pi/tanh(122/23*Pi) 3141592653589814 l004 Pi/tanh(541/102*Pi) 3141592653589814 l004 Pi/tanh(419/79*Pi) 3141592653589814 l004 Pi/tanh(297/56*Pi) 3141592653589814 l004 Pi/tanh(472/89*Pi) 3141592653589814 l004 Pi/tanh(175/33*Pi) 3141592653589814 l004 Pi/tanh(578/109*Pi) 3141592653589814 l004 Pi/tanh(403/76*Pi) 3141592653589814 l004 Pi/tanh(631/119*Pi) 3141592653589814 l004 Pi/tanh(228/43*Pi) 3141592653589814 l004 Pi/tanh(509/96*Pi) 3141592653589814 l004 Pi/tanh(281/53*Pi) 3141592653589814 l004 Pi/tanh(615/116*Pi) 3141592653589814 l004 Pi/tanh(334/63*Pi) 3141592653589814 l004 Pi/tanh(387/73*Pi) 3141592653589814 m001 MertensB1^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653589814 l004 Pi/tanh(440/83*Pi) 3141592653589814 l004 Pi/tanh(493/93*Pi) 3141592653589814 l004 Pi/tanh(546/103*Pi) 3141592653589814 l004 Pi/tanh(599/113*Pi) 3141592653589814 l004 Pi/tanh(53/10*Pi) 3141592653589815 l004 Pi/tanh(620/117*Pi) 3141592653589815 l004 Pi/tanh(567/107*Pi) 3141592653589815 l004 Pi/tanh(514/97*Pi) 3141592653589815 l004 Pi/tanh(461/87*Pi) 3141592653589815 l004 Pi/tanh(408/77*Pi) 3141592653589815 l004 Pi/tanh(355/67*Pi) 3141592653589815 l004 Pi/tanh(302/57*Pi) 3141592653589815 l004 Pi/tanh(551/104*Pi) 3141592653589815 l004 Pi/tanh(249/47*Pi) 3141592653589815 l004 Pi/tanh(445/84*Pi) 3141592653589815 l004 Pi/tanh(196/37*Pi) 3141592653589815 l004 Pi/tanh(535/101*Pi) 3141592653589815 l004 Pi/tanh(339/64*Pi) 3141592653589815 l004 Pi/tanh(482/91*Pi) 3141592653589815 l004 Pi/tanh(625/118*Pi) 3141592653589815 l004 Pi/tanh(143/27*Pi) 3141592653589815 l004 Pi/tanh(519/98*Pi) 3141592653589815 l004 Pi/tanh(376/71*Pi) 3141592653589815 l004 Pi/tanh(609/115*Pi) 3141592653589815 l005 ln(sec(867/92)) 3141592653589815 l004 Pi/tanh(233/44*Pi) 3141592653589815 l004 Pi/tanh(556/105*Pi) 3141592653589815 l004 Pi/tanh(323/61*Pi) 3141592653589815 l004 Pi/tanh(413/78*Pi) 3141592653589815 l004 Pi/tanh(503/95*Pi) 3141592653589815 l004 Pi/tanh(593/112*Pi) 3141592653589815 l004 Pi/tanh(90/17*Pi) 3141592653589815 l004 Pi/tanh(577/109*Pi) 3141592653589815 l004 Pi/tanh(487/92*Pi) 3141592653589815 l004 Pi/tanh(397/75*Pi) 3141592653589815 l004 Pi/tanh(307/58*Pi) 3141592653589815 l004 Pi/tanh(524/99*Pi) 3141592653589815 l004 Pi/tanh(217/41*Pi) 3141592653589815 l004 Pi/tanh(561/106*Pi) 3141592653589815 l004 Pi/tanh(344/65*Pi) 3141592653589816 l004 Pi/tanh(471/89*Pi) 3141592653589816 l004 Pi/tanh(598/113*Pi) 3141592653589816 l004 Pi/tanh(127/24*Pi) 3141592653589816 l004 Pi/tanh(545/103*Pi) 3141592653589816 l004 Pi/tanh(418/79*Pi) 3141592653589816 l004 Pi/tanh(291/55*Pi) 3141592653589816 l004 Pi/tanh(455/86*Pi) 3141592653589816 l004 Pi/tanh(619/117*Pi) 3141592653589816 l004 Pi/tanh(164/31*Pi) 3141592653589816 l004 Pi/tanh(529/100*Pi) 3141592653589816 l004 Pi/tanh(365/69*Pi) 3141592653589816 l004 Pi/tanh(566/107*Pi) 3141592653589816 l004 Pi/tanh(201/38*Pi) 3141592653589816 l004 Pi/tanh(439/83*Pi) 3141592653589816 l004 Pi/tanh(238/45*Pi) 3141592653589816 l004 Pi/tanh(513/97*Pi) 3141592653589816 l004 Pi/tanh(275/52*Pi) 3141592653589816 l004 Pi/tanh(587/111*Pi) 3141592653589816 l004 Pi/tanh(312/59*Pi) 3141592653589816 l004 Pi/tanh(349/66*Pi) 3141592653589816 l004 Pi/tanh(386/73*Pi) 3141592653589816 l004 Pi/tanh(423/80*Pi) 3141592653589816 l004 Pi/tanh(460/87*Pi) 3141592653589816 l004 Pi/tanh(497/94*Pi) 3141592653589816 l004 Pi/tanh(534/101*Pi) 3141592653589816 l004 Pi/tanh(571/108*Pi) 3141592653589816 l004 Pi/tanh(608/115*Pi) 3141592653589816 l004 Pi/tanh(37/7*Pi) 3141592653589817 l004 Pi/tanh(613/116*Pi) 3141592653589817 l004 Pi/tanh(576/109*Pi) 3141592653589817 l004 Pi/tanh(539/102*Pi) 3141592653589817 l004 Pi/tanh(502/95*Pi) 3141592653589817 l004 Pi/tanh(465/88*Pi) 3141592653589817 l004 Pi/tanh(428/81*Pi) 3141592653589817 l004 Pi/tanh(391/74*Pi) 3141592653589817 l004 Pi/tanh(354/67*Pi) 3141592653589817 l004 Pi/tanh(317/60*Pi) 3141592653589817 l004 Pi/tanh(597/113*Pi) 3141592653589817 l004 Pi/tanh(280/53*Pi) 3141592653589817 l004 Pi/tanh(523/99*Pi) 3141592653589817 l004 Pi/tanh(243/46*Pi) 3141592653589817 l004 Pi/tanh(449/85*Pi) 3141592653589817 l004 Pi/tanh(206/39*Pi) 3141592653589817 l004 Pi/tanh(581/110*Pi) 3141592653589817 l004 Pi/tanh(375/71*Pi) 3141592653589817 l004 Pi/tanh(544/103*Pi) 3141592653589817 l004 Pi/tanh(169/32*Pi) 3141592653589817 l004 Pi/tanh(470/89*Pi) 3141592653589817 l004 Pi/tanh(301/57*Pi) 3141592653589817 l004 Pi/tanh(433/82*Pi) 3141592653589817 l004 Pi/tanh(565/107*Pi) 3141592653589817 l004 Pi/tanh(132/25*Pi) 3141592653589817 l004 Pi/tanh(623/118*Pi) 3141592653589817 l004 Pi/tanh(491/93*Pi) 3141592653589817 l004 Pi/tanh(359/68*Pi) 3141592653589817 l004 Pi/tanh(586/111*Pi) 3141592653589817 l004 Pi/tanh(227/43*Pi) 3141592653589817 l004 Pi/tanh(549/104*Pi) 3141592653589818 l004 Pi/tanh(322/61*Pi) 3141592653589818 l004 Pi/tanh(417/79*Pi) 3141592653589818 l004 Pi/tanh(512/97*Pi) 3141592653589818 l004 Pi/tanh(607/115*Pi) 3141592653589818 l004 Pi/tanh(95/18*Pi) 3141592653589818 l004 Pi/tanh(628/119*Pi) 3141592653589818 l004 Pi/tanh(533/101*Pi) 3141592653589818 l004 Pi/tanh(438/83*Pi) 3141592653589818 l004 Pi/tanh(343/65*Pi) 3141592653589818 l004 Pi/tanh(591/112*Pi) 3141592653589818 l004 Pi/tanh(248/47*Pi) 3141592653589818 l004 Pi/tanh(401/76*Pi) 3141592653589818 l004 Pi/tanh(554/105*Pi) 3141592653589818 l004 Pi/tanh(153/29*Pi) 3141592653589818 l004 Pi/tanh(517/98*Pi) 3141592653589818 l004 Pi/tanh(364/69*Pi) 3141592653589818 l004 Pi/tanh(575/109*Pi) 3141592653589818 l004 Pi/tanh(211/40*Pi) 3141592653589818 l004 Pi/tanh(480/91*Pi) 3141592653589818 l004 Pi/tanh(269/51*Pi) 3141592653589818 l004 Pi/tanh(596/113*Pi) 3141592653589818 l004 Pi/tanh(327/62*Pi) 3141592653589818 l004 Pi/tanh(385/73*Pi) 3141592653589818 l004 Pi/tanh(443/84*Pi) 3141592653589818 l004 Pi/tanh(501/95*Pi) 3141592653589818 l004 Pi/tanh(559/106*Pi) 3141592653589818 l004 Pi/tanh(617/117*Pi) 3141592653589818 l004 Pi/tanh(58/11*Pi) 3141592653589819 l004 Pi/tanh(601/114*Pi) 3141592653589819 l004 Pi/tanh(543/103*Pi) 3141592653589819 l004 Pi/tanh(485/92*Pi) 3141592653589819 l004 Pi/tanh(427/81*Pi) 3141592653589819 l004 Pi/tanh(369/70*Pi) 3141592653589819 l004 Pi/tanh(311/59*Pi) 3141592653589819 l004 Pi/tanh(564/107*Pi) 3141592653589819 l004 Pi/tanh(253/48*Pi) 3141592653589819 l004 Pi/tanh(448/85*Pi) 3141592653589819 m001 sin(1/12*Pi)^exp(Pi)+Pi 3141592653589819 l004 Pi/tanh(195/37*Pi) 3141592653589819 l004 Pi/tanh(527/100*Pi) 3141592653589819 l004 Pi/tanh(332/63*Pi) 3141592653589819 l004 Pi/tanh(469/89*Pi) 3141592653589819 l004 Pi/tanh(606/115*Pi) 3141592653589819 l004 Pi/tanh(137/26*Pi) 3141592653589819 l004 Pi/tanh(627/119*Pi) 3141592653589819 l004 Pi/tanh(490/93*Pi) 3141592653589819 l004 Pi/tanh(353/67*Pi) 3141592653589819 l004 Pi/tanh(569/108*Pi) 3141592653589819 l004 Pi/tanh(216/41*Pi) 3141592653589819 l004 Pi/tanh(511/97*Pi) 3141592653589819 l004 Pi/tanh(295/56*Pi) 3141592653589819 l004 Pi/tanh(374/71*Pi) 3141592653589819 l004 Pi/tanh(453/86*Pi) 3141592653589819 l004 Pi/tanh(532/101*Pi) 3141592653589819 l004 Pi/tanh(611/116*Pi) 3141592653589819 l004 Pi/tanh(79/15*Pi) 3141592653589820 l004 Pi/tanh(574/109*Pi) 3141592653589820 l004 Pi/tanh(495/94*Pi) 3141592653589820 l004 Pi/tanh(416/79*Pi) 3141592653589820 l004 Pi/tanh(337/64*Pi) 3141592653589820 l004 Pi/tanh(595/113*Pi) 3141592653589820 l004 Pi/tanh(258/49*Pi) 3141592653589820 l004 Pi/tanh(437/83*Pi) 3141592653589820 l004 Pi/tanh(616/117*Pi) 3141592653589820 l004 Pi/tanh(179/34*Pi) 3141592653589820 l004 Pi/tanh(458/87*Pi) 3141592653589820 l004 Pi/tanh(279/53*Pi) 3141592653589820 l004 Pi/tanh(379/72*Pi) 3141592653589820 l004 Pi/tanh(479/91*Pi) 3141592653589820 l004 Pi/tanh(579/110*Pi) 3141592653589820 l004 Pi/tanh(100/19*Pi) 3141592653589820 l004 Pi/tanh(621/118*Pi) 3141592653589820 l004 Pi/tanh(521/99*Pi) 3141592653589820 l004 Pi/tanh(421/80*Pi) 3141592653589820 l004 Pi/tanh(321/61*Pi) 3141592653589820 l004 Pi/tanh(542/103*Pi) 3141592653589820 l004 Pi/tanh(221/42*Pi) 3141592653589820 l004 Pi/tanh(563/107*Pi) 3141592653589820 l004 Pi/tanh(342/65*Pi) 3141592653589820 l004 Pi/tanh(463/88*Pi) 3141592653589820 l004 Pi/tanh(584/111*Pi) 3141592653589820 l004 Pi/tanh(121/23*Pi) 3141592653589821 l004 Pi/tanh(626/119*Pi) 3141592653589821 l004 Pi/tanh(505/96*Pi) 3141592653589821 l004 Pi/tanh(384/73*Pi) 3141592653589821 l004 Pi/tanh(263/50*Pi) 3141592653589821 l004 Pi/tanh(405/77*Pi) 3141592653589821 l004 Pi/tanh(547/104*Pi) 3141592653589821 l004 Pi/tanh(142/27*Pi) 3141592653589821 l004 Pi/tanh(589/112*Pi) 3141592653589821 l004 Pi/tanh(447/85*Pi) 3141592653589821 l004 Pi/tanh(305/58*Pi) 3141592653589821 l004 Pi/tanh(468/89*Pi) 3141592653589821 l004 Pi/tanh(631/120*Pi) 3141592653589821 l004 Pi/tanh(163/31*Pi) 3141592653589821 l004 Pi/tanh(510/97*Pi) 3141592653589821 l004 Pi/tanh(347/66*Pi) 3141592653589821 l004 Pi/tanh(531/101*Pi) 3141592653589821 l004 Pi/tanh(184/35*Pi) 3141592653589821 l004 Pi/tanh(573/109*Pi) 3141592653589821 l004 Pi/tanh(389/74*Pi) 3141592653589821 l004 Pi/tanh(594/113*Pi) 3141592653589821 l004 Pi/tanh(205/39*Pi) 3141592653589821 l004 Pi/tanh(431/82*Pi) 3141592653589821 l004 Pi/tanh(226/43*Pi) 3141592653589821 l004 Pi/tanh(473/90*Pi) 3141592653589821 l004 Pi/tanh(247/47*Pi) 3141592653589821 l004 Pi/tanh(515/98*Pi) 3141592653589822 l004 Pi/tanh(268/51*Pi) 3141592653589822 l004 Pi/tanh(557/106*Pi) 3141592653589822 l004 Pi/tanh(289/55*Pi) 3141592653589822 l004 Pi/tanh(599/114*Pi) 3141592653589822 l004 Pi/tanh(310/59*Pi) 3141592653589822 l004 Pi/tanh(331/63*Pi) 3141592653589822 l004 Pi/tanh(352/67*Pi) 3141592653589822 l004 Pi/tanh(373/71*Pi) 3141592653589822 l004 Pi/tanh(394/75*Pi) 3141592653589822 l004 Pi/tanh(415/79*Pi) 3141592653589822 l004 Pi/tanh(436/83*Pi) 3141592653589822 l004 Pi/tanh(457/87*Pi) 3141592653589822 l004 Pi/tanh(478/91*Pi) 3141592653589822 l004 Pi/tanh(499/95*Pi) 3141592653589822 l004 Pi/tanh(520/99*Pi) 3141592653589822 l004 Pi/tanh(541/103*Pi) 3141592653589822 l004 Pi/tanh(562/107*Pi) 3141592653589822 l004 Pi/tanh(583/111*Pi) 3141592653589822 l004 Pi/tanh(604/115*Pi) 3141592653589822 l004 Pi/tanh(625/119*Pi) 3141592653589822 l004 Pi/tanh(21/4*Pi) 3141592653589823 l004 Pi/tanh(614/117*Pi) 3141592653589823 l004 Pi/tanh(593/113*Pi) 3141592653589823 l004 Pi/tanh(572/109*Pi) 3141592653589823 l004 Pi/tanh(551/105*Pi) 3141592653589823 l004 Pi/tanh(530/101*Pi) 3141592653589823 l004 Pi/tanh(509/97*Pi) 3141592653589823 l004 Pi/tanh(488/93*Pi) 3141592653589823 l004 Pi/tanh(467/89*Pi) 3141592653589823 l004 Pi/tanh(446/85*Pi) 3141592653589823 l004 Pi/tanh(425/81*Pi) 3141592653589823 l004 Pi/tanh(404/77*Pi) 3141592653589823 l004 Pi/tanh(383/73*Pi) 3141592653589823 l004 Pi/tanh(362/69*Pi) 3141592653589823 l004 Pi/tanh(341/65*Pi) 3141592653589823 l004 Pi/tanh(320/61*Pi) 3141592653589823 l004 Pi/tanh(619/118*Pi) 3141592653589823 l004 Pi/tanh(299/57*Pi) 3141592653589823 l004 Pi/tanh(577/110*Pi) 3141592653589823 l004 Pi/tanh(278/53*Pi) 3141592653589823 l004 Pi/tanh(535/102*Pi) 3141592653589823 l004 Pi/tanh(257/49*Pi) 3141592653589823 l004 Pi/tanh(493/94*Pi) 3141592653589823 l004 Pi/tanh(236/45*Pi) 3141592653589824 l004 Pi/tanh(451/86*Pi) 3141592653589824 l004 Pi/tanh(215/41*Pi) 3141592653589824 l004 Pi/tanh(624/119*Pi) 3141592653589824 l004 Pi/tanh(409/78*Pi) 3141592653589824 l004 Pi/tanh(603/115*Pi) 3141592653589824 l004 Pi/tanh(194/37*Pi) 3141592653589824 l004 Pi/tanh(561/107*Pi) 3141592653589824 l004 Pi/tanh(367/70*Pi) 3141592653589824 l004 Pi/tanh(540/103*Pi) 3141592653589824 l004 Pi/tanh(173/33*Pi) 3141592653589824 l004 Pi/tanh(498/95*Pi) 3141592653589824 l004 Pi/tanh(325/62*Pi) 3141592653589824 l004 Pi/tanh(477/91*Pi) 3141592653589824 l004 Pi/tanh(629/120*Pi) 3141592653589824 l004 Pi/tanh(152/29*Pi) 3141592653589824 l004 Pi/tanh(587/112*Pi) 3141592653589824 l004 Pi/tanh(435/83*Pi) 3141592653589824 l004 Pi/tanh(283/54*Pi) 3141592653589824 l004 Pi/tanh(414/79*Pi) 3141592653589824 l004 Pi/tanh(545/104*Pi) 3141592653589824 l004 Pi/tanh(131/25*Pi) 3141592653589824 l004 Pi/tanh(503/96*Pi) 3141592653589824 l004 Pi/tanh(372/71*Pi) 3141592653589824 l004 Pi/tanh(613/117*Pi) 3141592653589824 l004 Pi/tanh(241/46*Pi) 3141592653589825 l004 Pi/tanh(592/113*Pi) 3141592653589825 l004 Pi/tanh(351/67*Pi) 3141592653589825 l004 Pi/tanh(461/88*Pi) 3141592653589825 l004 Pi/tanh(571/109*Pi) 3141592653589825 l004 Pi/tanh(110/21*Pi) 3141592653589825 l004 Pi/tanh(529/101*Pi) 3141592653589825 l004 Pi/tanh(419/80*Pi) 3141592653589825 l004 Pi/tanh(309/59*Pi) 3141592653589825 l004 Pi/tanh(508/97*Pi) 3141592653589825 l004 Pi/tanh(199/38*Pi) 3141592653589825 l004 Pi/tanh(487/93*Pi) 3141592653589825 l004 Pi/tanh(288/55*Pi) 3141592653589825 l004 Pi/tanh(377/72*Pi) 3141592653589825 l004 Pi/tanh(466/89*Pi) 3141592653589825 l004 Pi/tanh(555/106*Pi) 3141592653589825 l004 Pi/tanh(89/17*Pi) 3141592653589825 l004 Pi/tanh(602/115*Pi) 3141592653589825 l004 Pi/tanh(513/98*Pi) 3141592653589825 l004 Pi/tanh(424/81*Pi) 3141592653589825 l004 Pi/tanh(335/64*Pi) 3141592653589825 l004 Pi/tanh(581/111*Pi) 3141592653589826 l004 Pi/tanh(246/47*Pi) 3141592653589826 l004 Pi/tanh(403/77*Pi) 3141592653589826 l004 Pi/tanh(560/107*Pi) 3141592653589826 l004 Pi/tanh(157/30*Pi) 3141592653589826 l004 Pi/tanh(539/103*Pi) 3141592653589826 l004 Pi/tanh(382/73*Pi) 3141592653589826 l004 Pi/tanh(607/116*Pi) 3141592653589826 m001 MertensB1^exp(Pi)+Pi 3141592653589826 l004 Pi/tanh(225/43*Pi) 3141592653589826 l004 Pi/tanh(518/99*Pi) 3141592653589826 l004 Pi/tanh(293/56*Pi) 3141592653589826 l004 Pi/tanh(361/69*Pi) 3141592653589826 l004 Pi/tanh(429/82*Pi) 3141592653589826 l004 Pi/tanh(497/95*Pi) 3141592653589826 l004 Pi/tanh(565/108*Pi) 3141592653589826 l004 Pi/tanh(68/13*Pi) 3141592653589826 l004 Pi/tanh(591/113*Pi) 3141592653589826 l004 Pi/tanh(523/100*Pi) 3141592653589826 l004 Pi/tanh(455/87*Pi) 3141592653589826 l004 Pi/tanh(387/74*Pi) 3141592653589826 l004 Pi/tanh(319/61*Pi) 3141592653589827 l004 Pi/tanh(570/109*Pi) 3141592653589827 l004 Pi/tanh(251/48*Pi) 3141592653589827 l004 Pi/tanh(434/83*Pi) 3141592653589827 l004 Pi/tanh(617/118*Pi) 3141592653589827 l004 Pi/tanh(183/35*Pi) 3141592653589827 l004 Pi/tanh(481/92*Pi) 3141592653589827 l004 Pi/tanh(298/57*Pi) 3141592653589827 l004 Pi/tanh(413/79*Pi) 3141592653589827 l004 Pi/tanh(528/101*Pi) 3141592653589827 l004 Pi/tanh(115/22*Pi) 3141592653589827 l004 Pi/tanh(622/119*Pi) 3141592653589827 l004 Pi/tanh(507/97*Pi) 3141592653589827 l004 Pi/tanh(392/75*Pi) 3141592653589827 l004 Pi/tanh(277/53*Pi) 3141592653589827 l005 ln(sec(952/101)) 3141592653589827 l004 Pi/tanh(439/84*Pi) 3141592653589827 l004 Pi/tanh(601/115*Pi) 3141592653589827 l004 Pi/tanh(162/31*Pi) 3141592653589827 l004 Pi/tanh(533/102*Pi) 3141592653589827 l004 Pi/tanh(371/71*Pi) 3141592653589827 l004 Pi/tanh(580/111*Pi) 3141592653589827 l004 Pi/tanh(209/40*Pi) 3141592653589828 l004 Pi/tanh(465/89*Pi) 3141592653589828 l004 Pi/tanh(256/49*Pi) 3141592653589828 l004 Pi/tanh(559/107*Pi) 3141592653589828 l005 ln(sec(201/64)) 3141592653589828 l004 Pi/tanh(303/58*Pi) 3141592653589828 l004 Pi/tanh(350/67*Pi) 3141592653589828 l004 Pi/tanh(397/76*Pi) 3141592653589828 l004 Pi/tanh(444/85*Pi) 3141592653589828 l004 Pi/tanh(491/94*Pi) 3141592653589828 l004 Pi/tanh(538/103*Pi) 3141592653589828 l004 Pi/tanh(585/112*Pi) 3141592653589828 l004 Pi/tanh(47/9*Pi) 3141592653589828 l004 Pi/tanh(590/113*Pi) 3141592653589828 l004 Pi/tanh(543/104*Pi) 3141592653589828 l004 Pi/tanh(496/95*Pi) 3141592653589828 l004 Pi/tanh(449/86*Pi) 3141592653589828 m001 HeathBrownMoroz^FeigenbaumDelta+Pi 3141592653589828 l004 Pi/tanh(402/77*Pi) 3141592653589828 l004 Pi/tanh(355/68*Pi) 3141592653589828 l004 Pi/tanh(308/59*Pi) 3141592653589829 l004 Pi/tanh(569/109*Pi) 3141592653589829 l004 Pi/tanh(261/50*Pi) 3141592653589829 l004 Pi/tanh(475/91*Pi) 3141592653589829 l004 Pi/tanh(214/41*Pi) 3141592653589829 l004 Pi/tanh(595/114*Pi) 3141592653589829 l004 Pi/tanh(381/73*Pi) 3141592653589829 l004 Pi/tanh(548/105*Pi) 3141592653589829 l004 Pi/tanh(167/32*Pi) 3141592653589829 l004 Pi/tanh(621/119*Pi) 3141592653589829 l004 Pi/tanh(454/87*Pi) 3141592653589829 l004 Pi/tanh(287/55*Pi) 3141592653589829 l004 Pi/tanh(407/78*Pi) 3141592653589829 l004 Pi/tanh(527/101*Pi) 3141592653589829 l004 Pi/tanh(120/23*Pi) 3141592653589829 l004 Pi/tanh(553/106*Pi) 3141592653589829 l004 Pi/tanh(433/83*Pi) 3141592653589829 l004 Pi/tanh(313/60*Pi) 3141592653589829 l004 Pi/tanh(506/97*Pi) 3141592653589829 l004 Pi/tanh(193/37*Pi) 3141592653589829 l004 Pi/tanh(459/88*Pi) 3141592653589830 l004 Pi/tanh(266/51*Pi) 3141592653589830 l004 Pi/tanh(605/116*Pi) 3141592653589830 l004 Pi/tanh(339/65*Pi) 3141592653589830 l004 Pi/tanh(412/79*Pi) 3141592653589830 l004 Pi/tanh(485/93*Pi) 3141592653589830 l004 Pi/tanh(558/107*Pi) 3141592653589830 l004 Pi/tanh(73/14*Pi) 3141592653589830 l004 Pi/tanh(610/117*Pi) 3141592653589830 l004 Pi/tanh(537/103*Pi) 3141592653589830 l004 Pi/tanh(464/89*Pi) 3141592653589830 l004 Pi/tanh(391/75*Pi) 3141592653589830 l004 Pi/tanh(318/61*Pi) 3141592653589830 l004 Pi/tanh(563/108*Pi) 3141592653589830 l004 Pi/tanh(245/47*Pi) 3141592653589830 l004 Pi/tanh(417/80*Pi) 3141592653589830 l004 Pi/tanh(589/113*Pi) 3141592653589830 l004 Pi/tanh(172/33*Pi) 3141592653589830 l004 Pi/tanh(615/118*Pi) 3141592653589830 l004 Pi/tanh(443/85*Pi) 3141592653589831 l004 Pi/tanh(271/52*Pi) 3141592653589831 l004 Pi/tanh(370/71*Pi) 3141592653589831 l004 Pi/tanh(469/90*Pi) 3141592653589831 l004 Pi/tanh(568/109*Pi) 3141592653589831 l004 Pi/tanh(99/19*Pi) 3141592653589831 l004 Pi/tanh(620/119*Pi) 3141592653589831 l004 Pi/tanh(521/100*Pi) 3141592653589831 l004 Pi/tanh(422/81*Pi) 3141592653589831 l004 Pi/tanh(323/62*Pi) 3141592653589831 l004 Pi/tanh(547/105*Pi) 3141592653589831 l004 Pi/tanh(224/43*Pi) 3141592653589831 l004 Pi/tanh(573/110*Pi) 3141592653589831 l004 Pi/tanh(349/67*Pi) 3141592653589831 l004 Pi/tanh(474/91*Pi) 3141592653589831 l004 Pi/tanh(599/115*Pi) 3141592653589831 l004 Pi/tanh(125/24*Pi) 3141592653589831 l004 Pi/tanh(526/101*Pi) 3141592653589831 l004 Pi/tanh(401/77*Pi) 3141592653589831 l004 Pi/tanh(276/53*Pi) 3141592653589832 l004 Pi/tanh(427/82*Pi) 3141592653589832 l004 Pi/tanh(578/111*Pi) 3141592653589832 l004 Pi/tanh(151/29*Pi) 3141592653589832 l004 Pi/tanh(479/92*Pi) 3141592653589832 l004 Pi/tanh(328/63*Pi) 3141592653589832 l004 Pi/tanh(505/97*Pi) 3141592653589832 l004 Pi/tanh(177/34*Pi) 3141592653589832 l004 Pi/tanh(557/107*Pi) 3141592653589832 l004 Pi/tanh(380/73*Pi) 3141592653589832 l004 Pi/tanh(583/112*Pi) 3141592653589832 l004 Pi/tanh(203/39*Pi) 3141592653589832 l004 Pi/tanh(432/83*Pi) 3141592653589832 l004 Pi/tanh(229/44*Pi) 3141592653589832 l004 Pi/tanh(484/93*Pi) 3141592653589832 l004 Pi/tanh(255/49*Pi) 3141592653589832 l004 Pi/tanh(536/103*Pi) 3141592653589832 l004 Pi/tanh(281/54*Pi) 3141592653589832 l004 Pi/tanh(588/113*Pi) 3141592653589832 l004 Pi/tanh(307/59*Pi) 3141592653589833 l004 Pi/tanh(333/64*Pi) 3141592653589833 l004 Pi/tanh(359/69*Pi) 3141592653589833 l004 Pi/tanh(385/74*Pi) 3141592653589833 l004 Pi/tanh(411/79*Pi) 3141592653589833 l004 Pi/tanh(437/84*Pi) 3141592653589833 l004 Pi/tanh(463/89*Pi) 3141592653589833 l004 Pi/tanh(489/94*Pi) 3141592653589833 l004 Pi/tanh(515/99*Pi) 3141592653589833 l004 Pi/tanh(541/104*Pi) 3141592653589833 l004 Pi/tanh(567/109*Pi) 3141592653589833 l004 Pi/tanh(593/114*Pi) 3141592653589833 l004 Pi/tanh(619/119*Pi) 3141592653589833 l004 Pi/tanh(26/5*Pi) 3141592653589834 l004 Pi/tanh(603/116*Pi) 3141592653589834 l004 Pi/tanh(577/111*Pi) 3141592653589834 l004 Pi/tanh(551/106*Pi) 3141592653589834 l004 Pi/tanh(525/101*Pi) 3141592653589834 l004 Pi/tanh(499/96*Pi) 3141592653589834 l004 Pi/tanh(473/91*Pi) 3141592653589834 l004 Pi/tanh(447/86*Pi) 3141592653589834 l004 Pi/tanh(421/81*Pi) 3141592653589834 l004 Pi/tanh(395/76*Pi) 3141592653589834 l004 Pi/tanh(369/71*Pi) 3141592653589834 l004 Pi/tanh(343/66*Pi) 3141592653589834 l004 Pi/tanh(317/61*Pi) 3141592653589834 l004 Pi/tanh(608/117*Pi) 3141592653589834 l004 Pi/tanh(291/56*Pi) 3141592653589834 l004 Pi/tanh(556/107*Pi) 3141592653589834 l004 Pi/tanh(265/51*Pi) 3141592653589834 l004 Pi/tanh(504/97*Pi) 3141592653589834 l004 Pi/tanh(239/46*Pi) 3141592653589835 l004 Pi/tanh(452/87*Pi) 3141592653589835 l004 Pi/tanh(213/41*Pi) 3141592653589835 l004 Pi/tanh(613/118*Pi) 3141592653589835 l004 Pi/tanh(400/77*Pi) 3141592653589835 l004 Pi/tanh(587/113*Pi) 3141592653589835 l004 Pi/tanh(187/36*Pi) 3141592653589835 l004 Pi/tanh(535/103*Pi) 3141592653589835 l004 Pi/tanh(348/67*Pi) 3141592653589835 l004 Pi/tanh(509/98*Pi) 3141592653589835 l004 Pi/tanh(161/31*Pi) 3141592653589835 l004 Pi/tanh(618/119*Pi) 3141592653589835 l004 Pi/tanh(457/88*Pi) 3141592653589835 l004 Pi/tanh(296/57*Pi) 3141592653589835 l004 Pi/tanh(431/83*Pi) 3141592653589835 l004 Pi/tanh(566/109*Pi) 3141592653589835 l004 Pi/tanh(135/26*Pi) 3141592653589835 l004 Pi/tanh(514/99*Pi) 3141592653589836 l004 Pi/tanh(379/73*Pi) 3141592653589836 l004 Pi/tanh(623/120*Pi) 3141592653589836 l004 Pi/tanh(244/47*Pi) 3141592653589836 l004 Pi/tanh(597/115*Pi) 3141592653589836 l004 Pi/tanh(353/68*Pi) 3141592653589836 l004 Pi/tanh(462/89*Pi) 3141592653589836 l004 Pi/tanh(571/110*Pi) 3141592653589836 l004 Pi/tanh(109/21*Pi) 3141592653589836 l004 Pi/tanh(519/100*Pi) 3141592653589836 l004 Pi/tanh(410/79*Pi) 3141592653589836 m001 MadelungNaCl^Psi(2,1/3)+Pi 3141592653589836 l004 Pi/tanh(301/58*Pi) 3141592653589836 l004 Pi/tanh(493/95*Pi) 3141592653589836 l004 Pi/tanh(192/37*Pi) 3141592653589836 l004 Pi/tanh(467/90*Pi) 3141592653589836 l004 Pi/tanh(275/53*Pi) 3141592653589836 l004 Pi/tanh(358/69*Pi) 3141592653589836 l004 Pi/tanh(441/85*Pi) 3141592653589836 l004 Pi/tanh(524/101*Pi) 3141592653589837 l004 Pi/tanh(607/117*Pi) 3141592653589837 l004 Pi/tanh(83/16*Pi) 3141592653589837 l004 Pi/tanh(555/107*Pi) 3141592653589837 l004 Pi/tanh(472/91*Pi) 3141592653589837 l004 Pi/tanh(389/75*Pi) 3141592653589837 l004 Pi/tanh(306/59*Pi) 3141592653589837 l004 Pi/tanh(529/102*Pi) 3141592653589837 l004 Pi/tanh(223/43*Pi) 3141592653589837 l004 Pi/tanh(586/113*Pi) 3141592653589837 l004 Pi/tanh(363/70*Pi) 3141592653589837 l004 Pi/tanh(503/97*Pi) 3141592653589837 l004 Pi/tanh(140/27*Pi) 3141592653589837 l004 Pi/tanh(617/119*Pi) 3141592653589837 l004 Pi/tanh(477/92*Pi) 3141592653589837 l004 Pi/tanh(337/65*Pi) 3141592653589838 l004 Pi/tanh(534/103*Pi) 3141592653589838 l004 Pi/tanh(197/38*Pi) 3141592653589838 l004 Pi/tanh(451/87*Pi) 3141592653589838 l004 Pi/tanh(254/49*Pi) 3141592653589838 l004 Pi/tanh(565/109*Pi) 3141592653589838 l004 Pi/tanh(311/60*Pi) 3141592653589838 l004 Pi/tanh(368/71*Pi) 3141592653589838 l004 Pi/tanh(425/82*Pi) 3141592653589838 l004 Pi/tanh(482/93*Pi) 3141592653589838 l004 Pi/tanh(539/104*Pi) 3141592653589838 l004 Pi/tanh(596/115*Pi) 3141592653589838 l004 Pi/tanh(57/11*Pi) 3141592653589838 l004 Pi/tanh(601/116*Pi) 3141592653589839 l004 Pi/tanh(544/105*Pi) 3141592653589839 l004 Pi/tanh(487/94*Pi) 3141592653589839 l004 Pi/tanh(430/83*Pi) 3141592653589839 l004 Pi/tanh(373/72*Pi) 3141592653589839 l004 Pi/tanh(316/61*Pi) 3141592653589839 l004 Pi/tanh(575/111*Pi) 3141592653589839 l004 Pi/tanh(259/50*Pi) 3141592653589839 l004 Pi/tanh(461/89*Pi) 3141592653589839 l004 Pi/tanh(202/39*Pi) 3141592653589839 l004 Pi/tanh(549/106*Pi) 3141592653589839 l004 Pi/tanh(347/67*Pi) 3141592653589839 l004 Pi/tanh(492/95*Pi) 3141592653589839 m001 KhinchinHarmonic^Psi(2,1/3)+Pi 3141592653589839 l004 Pi/tanh(145/28*Pi) 3141592653589839 l004 Pi/tanh(523/101*Pi) 3141592653589839 l004 Pi/tanh(378/73*Pi) 3141592653589839 l004 Pi/tanh(611/118*Pi) 3141592653589839 l004 Pi/tanh(233/45*Pi) 3141592653589839 l004 Pi/tanh(554/107*Pi) 3141592653589840 l004 Pi/tanh(321/62*Pi) 3141592653589840 l004 Pi/tanh(409/79*Pi) 3141592653589840 l004 Pi/tanh(497/96*Pi) 3141592653589840 l004 Pi/tanh(585/113*Pi) 3141592653589840 l004 Pi/tanh(88/17*Pi) 3141592653589840 l004 Pi/tanh(559/108*Pi) 3141592653589840 l004 Pi/tanh(471/91*Pi) 3141592653589840 l004 Pi/tanh(383/74*Pi) 3141592653589840 l004 Pi/tanh(295/57*Pi) 3141592653589840 l004 Pi/tanh(502/97*Pi) 3141592653589840 l004 Pi/tanh(207/40*Pi) 3141592653589840 l004 Pi/tanh(533/103*Pi) 3141592653589840 l004 Pi/tanh(326/63*Pi) 3141592653589840 l004 Pi/tanh(445/86*Pi) 3141592653589840 l004 Pi/tanh(564/109*Pi) 3141592653589841 l004 Pi/tanh(119/23*Pi) 3141592653589841 l004 Pi/tanh(507/98*Pi) 3141592653589841 l004 Pi/tanh(388/75*Pi) 3141592653589841 l004 Pi/tanh(269/52*Pi) 3141592653589841 l004 Pi/tanh(419/81*Pi) 3141592653589841 l004 Pi/tanh(569/110*Pi) 3141592653589841 l005 ln(sec(556/59)) 3141592653589841 l004 Pi/tanh(150/29*Pi) 3141592653589841 l004 Pi/tanh(481/93*Pi) 3141592653589841 l004 Pi/tanh(331/64*Pi) 3141592653589841 l004 Pi/tanh(512/99*Pi) 3141592653589841 l004 Pi/tanh(181/35*Pi) 3141592653589841 l004 Pi/tanh(574/111*Pi) 3141592653589841 l004 Pi/tanh(393/76*Pi) 3141592653589841 l004 Pi/tanh(605/117*Pi) 3141592653589842 l004 Pi/tanh(212/41*Pi) 3141592653589842 l004 Pi/tanh(455/88*Pi) 3141592653589842 l004 Pi/tanh(243/47*Pi) 3141592653589842 l004 Pi/tanh(517/100*Pi) 3141592653589842 l004 Pi/tanh(274/53*Pi) 3141592653589842 l004 Pi/tanh(579/112*Pi) 3141592653589842 l004 Pi/tanh(305/59*Pi) 3141592653589842 l004 Pi/tanh(336/65*Pi) 3141592653589842 l004 Pi/tanh(367/71*Pi) 3141592653589842 l004 Pi/tanh(398/77*Pi) 3141592653589842 l004 Pi/tanh(429/83*Pi) 3141592653589842 l004 Pi/tanh(460/89*Pi) 3141592653589842 l004 Pi/tanh(491/95*Pi) 3141592653589842 l004 Pi/tanh(522/101*Pi) 3141592653589842 l004 Pi/tanh(553/107*Pi) 3141592653589842 l004 Pi/tanh(584/113*Pi) 3141592653589842 l004 Pi/tanh(615/119*Pi) 3141592653589843 l004 Pi/tanh(31/6*Pi) 3141592653589843 l004 Pi/tanh(594/115*Pi) 3141592653589843 l004 Pi/tanh(563/109*Pi) 3141592653589843 l004 Pi/tanh(532/103*Pi) 3141592653589843 l004 Pi/tanh(501/97*Pi) 3141592653589843 l004 Pi/tanh(470/91*Pi) 3141592653589843 l004 Pi/tanh(439/85*Pi) 3141592653589843 l004 Pi/tanh(408/79*Pi) 3141592653589844 l004 Pi/tanh(377/73*Pi) 3141592653589844 l004 Pi/tanh(346/67*Pi) 3141592653589844 l004 Pi/tanh(315/61*Pi) 3141592653589844 l004 Pi/tanh(599/116*Pi) 3141592653589844 l004 Pi/tanh(284/55*Pi) 3141592653589844 l004 Pi/tanh(537/104*Pi) 3141592653589844 l004 Pi/tanh(253/49*Pi) 3141592653589844 l004 Pi/tanh(475/92*Pi) 3141592653589844 l004 Pi/tanh(222/43*Pi) 3141592653589844 l004 Pi/tanh(413/80*Pi) 3141592653589844 l004 Pi/tanh(604/117*Pi) 3141592653589844 l004 Pi/tanh(191/37*Pi) 3141592653589844 l004 Pi/tanh(542/105*Pi) 3141592653589844 l004 Pi/tanh(351/68*Pi) 3141592653589844 l004 Pi/tanh(511/99*Pi) 3141592653589845 l004 Pi/tanh(160/31*Pi) 3141592653589845 l004 Pi/tanh(609/118*Pi) 3141592653589845 l004 Pi/tanh(449/87*Pi) 3141592653589845 l004 Pi/tanh(289/56*Pi) 3141592653589845 l004 Pi/tanh(418/81*Pi) 3141592653589845 l004 Pi/tanh(547/106*Pi) 3141592653589845 l004 Pi/tanh(129/25*Pi) 3141592653589845 l004 Pi/tanh(614/119*Pi) 3141592653589845 l004 Pi/tanh(485/94*Pi) 3141592653589845 l004 Pi/tanh(356/69*Pi) 3141592653589845 l004 Pi/tanh(583/113*Pi) 3141592653589845 l004 Pi/tanh(227/44*Pi) 3141592653589845 l004 Pi/tanh(552/107*Pi) 3141592653589845 l004 Pi/tanh(325/63*Pi) 3141592653589845 l004 Pi/tanh(423/82*Pi) 3141592653589845 l004 Pi/tanh(521/101*Pi) 3141592653589846 l004 Pi/tanh(619/120*Pi) 3141592653589846 l004 Pi/tanh(98/19*Pi) 3141592653589846 l004 Pi/tanh(557/108*Pi) 3141592653589846 l004 Pi/tanh(459/89*Pi) 3141592653589846 l004 Pi/tanh(361/70*Pi) 3141592653589846 l004 Pi/tanh(263/51*Pi) 3141592653589846 l004 Pi/tanh(428/83*Pi) 3141592653589846 l004 Pi/tanh(593/115*Pi) 3141592653589846 l004 Pi/tanh(165/32*Pi) 3141592653589846 l004 Pi/tanh(562/109*Pi) 3141592653589846 l004 Pi/tanh(397/77*Pi) 3141592653589846 l004 Pi/tanh(232/45*Pi) 3141592653589847 l004 Pi/tanh(531/103*Pi) 3141592653589847 l004 Pi/tanh(299/58*Pi) 3141592653589847 l004 Pi/tanh(366/71*Pi) 3141592653589847 l004 Pi/tanh(433/84*Pi) 3141592653589847 l004 Pi/tanh(500/97*Pi) 3141592653589847 l004 Pi/tanh(567/110*Pi) 3141592653589847 l004 Pi/tanh(67/13*Pi) 3141592653589847 l004 Pi/tanh(572/111*Pi) 3141592653589847 l004 Pi/tanh(505/98*Pi) 3141592653589847 l004 Pi/tanh(438/85*Pi) 3141592653589847 l004 Pi/tanh(371/72*Pi) 3141592653589847 l004 Pi/tanh(304/59*Pi) 3141592653589848 l004 Pi/tanh(541/105*Pi) 3141592653589848 l004 Pi/tanh(237/46*Pi) 3141592653589848 l004 Pi/tanh(407/79*Pi) 3141592653589848 l004 Pi/tanh(577/112*Pi) 3141592653589848 l004 Pi/tanh(170/33*Pi) 3141592653589848 l004 Pi/tanh(613/119*Pi) 3141592653589848 l004 Pi/tanh(443/86*Pi) 3141592653589848 l004 Pi/tanh(273/53*Pi) 3141592653589848 l004 Pi/tanh(376/73*Pi) 3141592653589848 l004 Pi/tanh(479/93*Pi) 3141592653589848 l004 Pi/tanh(582/113*Pi) 3141592653589848 l004 Pi/tanh(103/20*Pi) 3141592653589849 l004 Pi/tanh(551/107*Pi) 3141592653589849 l004 Pi/tanh(448/87*Pi) 3141592653589849 l004 Pi/tanh(345/67*Pi) 3141592653589849 l004 Pi/tanh(587/114*Pi) 3141592653589849 l004 Pi/tanh(242/47*Pi) 3141592653589849 l004 Pi/tanh(381/74*Pi) 3141592653589849 l004 Pi/tanh(520/101*Pi) 3141592653589849 l004 Pi/tanh(139/27*Pi) 3141592653589849 l004 Pi/tanh(592/115*Pi) 3141592653589849 l004 Pi/tanh(453/88*Pi) 3141592653589849 l004 Pi/tanh(314/61*Pi) 3141592653589849 l004 Pi/tanh(489/95*Pi) 3141592653589849 l004 Pi/tanh(175/34*Pi) 3141592653589849 l004 Pi/tanh(561/109*Pi) 3141592653589850 l004 Pi/tanh(386/75*Pi) 3141592653589850 l004 Pi/tanh(597/116*Pi) 3141592653589850 l004 Pi/tanh(211/41*Pi) 3141592653589850 l004 Pi/tanh(458/89*Pi) 3141592653589850 l004 Pi/tanh(247/48*Pi) 3141592653589850 l004 Pi/tanh(530/103*Pi) 3141592653589850 l004 Pi/tanh(283/55*Pi) 3141592653589850 l004 Pi/tanh(602/117*Pi) 3141592653589850 l004 Pi/tanh(319/62*Pi) 3141592653589850 l004 Pi/tanh(355/69*Pi) 3141592653589850 l004 Pi/tanh(391/76*Pi) 3141592653589850 l004 Pi/tanh(427/83*Pi) 3141592653589850 l004 Pi/tanh(463/90*Pi) 3141592653589850 l004 Pi/tanh(499/97*Pi) 3141592653589850 l004 Pi/tanh(535/104*Pi) 3141592653589850 l004 Pi/tanh(571/111*Pi) 3141592653589850 l004 Pi/tanh(607/118*Pi) 3141592653589851 l004 Pi/tanh(36/7*Pi) 3141592653589851 l004 Pi/tanh(617/120*Pi) 3141592653589851 l004 Pi/tanh(581/113*Pi) 3141592653589851 l004 Pi/tanh(545/106*Pi) 3141592653589851 l004 Pi/tanh(509/99*Pi) 3141592653589851 l004 Pi/tanh(473/92*Pi) 3141592653589852 l004 Pi/tanh(437/85*Pi) 3141592653589852 l004 Pi/tanh(401/78*Pi) 3141592653589852 l004 Pi/tanh(365/71*Pi) 3141592653589852 l004 Pi/tanh(329/64*Pi) 3141592653589852 l004 Pi/tanh(293/57*Pi) 3141592653589852 l004 Pi/tanh(550/107*Pi) 3141592653589852 l004 Pi/tanh(257/50*Pi) 3141592653589852 l004 Pi/tanh(478/93*Pi) 3141592653589852 l004 Pi/tanh(221/43*Pi) 3141592653589852 l004 Pi/tanh(406/79*Pi) 3141592653589852 l004 Pi/tanh(591/115*Pi) 3141592653589852 l004 Pi/tanh(185/36*Pi) 3141592653589852 l004 Pi/tanh(519/101*Pi) 3141592653589853 l004 Pi/tanh(334/65*Pi) 3141592653589853 l004 Pi/tanh(483/94*Pi) 3141592653589853 l004 Pi/tanh(149/29*Pi) 3141592653589853 l004 Pi/tanh(560/109*Pi) 3141592653589853 l004 Pi/tanh(411/80*Pi) 3141592653589853 l004 Pi/tanh(262/51*Pi) 3141592653589853 l004 Pi/tanh(375/73*Pi) 3141592653589853 l004 Pi/tanh(488/95*Pi) 3141592653589853 l004 Pi/tanh(601/117*Pi) 3141592653589853 l004 Pi/tanh(113/22*Pi) 3141592653589853 l004 Pi/tanh(529/103*Pi) 3141592653589854 l004 Pi/tanh(416/81*Pi) 3141592653589854 l004 Pi/tanh(303/59*Pi) 3141592653589854 l004 Pi/tanh(493/96*Pi) 3141592653589854 l004 Pi/tanh(190/37*Pi) 3141592653589854 l004 Pi/tanh(457/89*Pi) 3141592653589854 l004 Pi/tanh(267/52*Pi) 3141592653589854 l004 Pi/tanh(611/119*Pi) 3141592653589854 l004 Pi/tanh(344/67*Pi) 3141592653589854 l004 Pi/tanh(421/82*Pi) 3141592653589854 l004 Pi/tanh(498/97*Pi) 3141592653589854 l004 Pi/tanh(575/112*Pi) 3141592653589854 l004 Pi/tanh(77/15*Pi) 3141592653589855 l004 Pi/tanh(580/113*Pi) 3141592653589855 l004 Pi/tanh(503/98*Pi) 3141592653589855 l004 Pi/tanh(426/83*Pi) 3141592653589855 l004 Pi/tanh(349/68*Pi) 3141592653589855 l004 Pi/tanh(272/53*Pi) 3141592653589855 l004 Pi/tanh(467/91*Pi) 3141592653589855 l004 Pi/tanh(195/38*Pi) 3141592653589855 l004 Pi/tanh(508/99*Pi) 3141592653589855 l004 Pi/tanh(313/61*Pi) 3141592653589855 l004 Pi/tanh(431/84*Pi) 3141592653589855 l004 Pi/tanh(549/107*Pi) 3141592653589856 l004 Pi/tanh(118/23*Pi) 3141592653589856 l004 Pi/tanh(513/100*Pi) 3141592653589856 l004 Pi/tanh(395/77*Pi) 3141592653589856 l004 Pi/tanh(277/54*Pi) 3141592653589856 l004 Pi/tanh(436/85*Pi) 3141592653589856 l004 Pi/tanh(595/116*Pi) 3141592653589856 l004 Pi/tanh(159/31*Pi) 3141592653589856 l004 Pi/tanh(518/101*Pi) 3141592653589856 l004 Pi/tanh(359/70*Pi) 3141592653589856 l004 Pi/tanh(559/109*Pi) 3141592653589857 l004 Pi/tanh(200/39*Pi) 3141592653589857 l004 Pi/tanh(441/86*Pi) 3141592653589857 l004 Pi/tanh(241/47*Pi) 3141592653589857 l004 Pi/tanh(523/102*Pi) 3141592653589857 l004 Pi/tanh(282/55*Pi) 3141592653589857 l004 Pi/tanh(605/118*Pi) 3141592653589857 l004 Pi/tanh(323/63*Pi) 3141592653589857 l004 Pi/tanh(364/71*Pi) 3141592653589857 l004 Pi/tanh(405/79*Pi) 3141592653589857 l004 Pi/tanh(446/87*Pi) 3141592653589857 l004 Pi/tanh(487/95*Pi) 3141592653589857 l004 Pi/tanh(528/103*Pi) 3141592653589857 l004 Pi/tanh(569/111*Pi) 3141592653589857 l004 Pi/tanh(610/119*Pi) 3141592653589858 l004 Pi/tanh(41/8*Pi) 3141592653589858 l004 Pi/tanh(579/113*Pi) 3141592653589858 l004 Pi/tanh(538/105*Pi) 3141592653589858 l004 Pi/tanh(497/97*Pi) 3141592653589858 l004 Pi/tanh(456/89*Pi) 3141592653589858 l004 Pi/tanh(415/81*Pi) 3141592653589859 l004 Pi/tanh(374/73*Pi) 3141592653589859 l004 Pi/tanh(333/65*Pi) 3141592653589859 l004 Pi/tanh(292/57*Pi) 3141592653589859 l004 Pi/tanh(543/106*Pi) 3141592653589859 l004 Pi/tanh(251/49*Pi) 3141592653589859 l004 Pi/tanh(461/90*Pi) 3141592653589859 l004 Pi/tanh(210/41*Pi) 3141592653589859 l004 Pi/tanh(589/115*Pi) 3141592653589859 l004 Pi/tanh(379/74*Pi) 3141592653589859 l004 Pi/tanh(548/107*Pi) 3141592653589859 l004 Pi/tanh(169/33*Pi) 3141592653589860 l004 Pi/tanh(466/91*Pi) 3141592653589860 l004 Pi/tanh(297/58*Pi) 3141592653589860 l004 Pi/tanh(425/83*Pi) 3141592653589860 l004 Pi/tanh(553/108*Pi) 3141592653589860 l004 Pi/tanh(128/25*Pi) 3141592653589860 l004 Pi/tanh(599/117*Pi) 3141592653589860 l004 Pi/tanh(471/92*Pi) 3141592653589860 l004 Pi/tanh(343/67*Pi) 3141592653589860 l004 Pi/tanh(558/109*Pi) 3141592653589860 l004 Pi/tanh(215/42*Pi) 3141592653589860 l004 Pi/tanh(517/101*Pi) 3141592653589860 l004 Pi/tanh(302/59*Pi) 3141592653589861 l004 Pi/tanh(389/76*Pi) 3141592653589861 l004 Pi/tanh(476/93*Pi) 3141592653589861 l004 Pi/tanh(563/110*Pi) 3141592653589861 l004 Pi/tanh(87/17*Pi) 3141592653589861 l004 Pi/tanh(568/111*Pi) 3141592653589861 l004 Pi/tanh(481/94*Pi) 3141592653589861 l004 Pi/tanh(394/77*Pi) 3141592653589861 l004 Pi/tanh(307/60*Pi) 3141592653589861 l004 Pi/tanh(527/103*Pi) 3141592653589861 l004 Pi/tanh(220/43*Pi) 3141592653589862 l004 Pi/tanh(573/112*Pi) 3141592653589862 l004 Pi/tanh(353/69*Pi) 3141592653589862 l004 Pi/tanh(486/95*Pi) 3141592653589862 l005 ln(sec(509/54)) 3141592653589862 l004 Pi/tanh(133/26*Pi) 3141592653589862 l004 Pi/tanh(578/113*Pi) 3141592653589862 l004 Pi/tanh(445/87*Pi) 3141592653589862 l004 Pi/tanh(312/61*Pi) 3141592653589862 l004 Pi/tanh(491/96*Pi) 3141592653589862 l004 Pi/tanh(179/35*Pi) 3141592653589862 l004 Pi/tanh(583/114*Pi) 3141592653589862 l004 Pi/tanh(404/79*Pi) 3141592653589863 l004 Pi/tanh(225/44*Pi) 3141592653589863 l004 Pi/tanh(496/97*Pi) 3141592653589863 l004 Pi/tanh(271/53*Pi) 3141592653589863 l004 Pi/tanh(588/115*Pi) 3141592653589863 l004 Pi/tanh(317/62*Pi) 3141592653589863 l004 Pi/tanh(363/71*Pi) 3141592653589863 l004 Pi/tanh(409/80*Pi) 3141592653589863 l004 Pi/tanh(455/89*Pi) 3141592653589863 l004 Pi/tanh(501/98*Pi) 3141592653589863 l004 Pi/tanh(547/107*Pi) 3141592653589863 l004 Pi/tanh(593/116*Pi) 3141592653589864 m001 (3^(1/2))^Psi(2,1/3)+Pi 3141592653589864 l004 Pi/tanh(46/9*Pi) 3141592653589864 l004 Pi/tanh(603/118*Pi) 3141592653589864 l004 Pi/tanh(557/109*Pi) 3141592653589864 l004 Pi/tanh(511/100*Pi) 3141592653589864 l004 Pi/tanh(465/91*Pi) 3141592653589864 l004 Pi/tanh(419/82*Pi) 3141592653589864 l004 Pi/tanh(373/73*Pi) 3141592653589865 l004 Pi/tanh(327/64*Pi) 3141592653589865 l004 Pi/tanh(608/119*Pi) 3141592653589865 l004 Pi/tanh(281/55*Pi) 3141592653589865 l004 Pi/tanh(516/101*Pi) 3141592653589865 l004 Pi/tanh(235/46*Pi) 3141592653589865 l004 Pi/tanh(424/83*Pi) 3141592653589865 l004 Pi/tanh(613/120*Pi) 3141592653589865 l004 Pi/tanh(189/37*Pi) 3141592653589865 l004 Pi/tanh(521/102*Pi) 3141592653589865 l004 Pi/tanh(332/65*Pi) 3141592653589865 l004 Pi/tanh(475/93*Pi) 3141592653589866 l004 Pi/tanh(143/28*Pi) 3141592653589866 l004 Pi/tanh(526/103*Pi) 3141592653589866 l004 Pi/tanh(383/75*Pi) 3141592653589866 l004 Pi/tanh(240/47*Pi) 3141592653589866 l004 Pi/tanh(577/113*Pi) 3141592653589866 l004 Pi/tanh(337/66*Pi) 3141592653589866 l004 Pi/tanh(434/85*Pi) 3141592653589866 l004 Pi/tanh(531/104*Pi) 3141592653589866 l004 Pi/tanh(97/19*Pi) 3141592653589867 l004 Pi/tanh(536/105*Pi) 3141592653589867 l004 Pi/tanh(439/86*Pi) 3141592653589867 l004 Pi/tanh(342/67*Pi) 3141592653589867 l004 Pi/tanh(587/115*Pi) 3141592653589867 l004 Pi/tanh(245/48*Pi) 3141592653589867 l004 Pi/tanh(393/77*Pi) 3141592653589867 l004 Pi/tanh(541/106*Pi) 3141592653589867 l004 Pi/tanh(148/29*Pi) 3141592653589867 l004 Pi/tanh(495/97*Pi) 3141592653589867 l004 Pi/tanh(347/68*Pi) 3141592653589868 l004 Pi/tanh(546/107*Pi) 3141592653589868 l004 Pi/tanh(199/39*Pi) 3141592653589868 l004 Pi/tanh(449/88*Pi) 3141592653589868 l004 Pi/tanh(250/49*Pi) 3141592653589868 l004 Pi/tanh(551/108*Pi) 3141592653589868 l004 Pi/tanh(301/59*Pi) 3141592653589868 l004 Pi/tanh(352/69*Pi) 3141592653589868 l004 Pi/tanh(403/79*Pi) 3141592653589868 l004 Pi/tanh(454/89*Pi) 3141592653589868 l004 Pi/tanh(505/99*Pi) 3141592653589868 l004 Pi/tanh(556/109*Pi) 3141592653589868 l004 Pi/tanh(607/119*Pi) 3141592653589869 l004 Pi/tanh(51/10*Pi) 3141592653589869 l004 Pi/tanh(566/111*Pi) 3141592653589869 l004 Pi/tanh(515/101*Pi) 3141592653589869 l004 Pi/tanh(464/91*Pi) 3141592653589869 l004 Pi/tanh(413/81*Pi) 3141592653589870 l004 Pi/tanh(362/71*Pi) 3141592653589870 l004 Pi/tanh(311/61*Pi) 3141592653589870 l004 Pi/tanh(571/112*Pi) 3141592653589870 l004 Pi/tanh(260/51*Pi) 3141592653589870 l004 Pi/tanh(469/92*Pi) 3141592653589870 l004 Pi/tanh(209/41*Pi) 3141592653589870 l004 Pi/tanh(576/113*Pi) 3141592653589870 l004 Pi/tanh(367/72*Pi) 3141592653589870 l004 Pi/tanh(525/103*Pi) 3141592653589870 l004 Pi/tanh(158/31*Pi) 3141592653589871 l004 Pi/tanh(581/114*Pi) 3141592653589871 l004 Pi/tanh(423/83*Pi) 3141592653589871 l004 Pi/tanh(265/52*Pi) 3141592653589871 l004 Pi/tanh(372/73*Pi) 3141592653589871 l004 Pi/tanh(479/94*Pi) 3141592653589871 l004 Pi/tanh(586/115*Pi) 3141592653589871 l004 Pi/tanh(107/21*Pi) 3141592653589871 l004 Pi/tanh(591/116*Pi) 3141592653589871 l004 Pi/tanh(484/95*Pi) 3141592653589871 l004 Pi/tanh(377/74*Pi) 3141592653589872 l004 Pi/tanh(270/53*Pi) 3141592653589872 l004 Pi/tanh(433/85*Pi) 3141592653589872 l004 Pi/tanh(596/117*Pi) 3141592653589872 l004 Pi/tanh(163/32*Pi) 3141592653589872 l004 Pi/tanh(545/107*Pi) 3141592653589872 l004 Pi/tanh(382/75*Pi) 3141592653589872 l004 Pi/tanh(601/118*Pi) 3141592653589872 l004 Pi/tanh(219/43*Pi) 3141592653589872 l004 Pi/tanh(494/97*Pi) 3141592653589872 l004 Pi/tanh(275/54*Pi) 3141592653589873 l004 Pi/tanh(606/119*Pi) 3141592653589873 l004 Pi/tanh(331/65*Pi) 3141592653589873 l004 Pi/tanh(387/76*Pi) 3141592653589873 l004 Pi/tanh(443/87*Pi) 3141592653589873 l004 Pi/tanh(499/98*Pi) 3141592653589873 l004 Pi/tanh(555/109*Pi) 3141592653589873 l004 Pi/tanh(611/120*Pi) 3141592653589873 l004 Pi/tanh(56/11*Pi) 3141592653589874 l004 Pi/tanh(565/111*Pi) 3141592653589874 l004 Pi/tanh(509/100*Pi) 3141592653589874 l004 Pi/tanh(453/89*Pi) 3141592653589874 l004 Pi/tanh(397/78*Pi) 3141592653589874 l004 Pi/tanh(341/67*Pi) 3141592653589874 l004 Pi/tanh(285/56*Pi) 3141592653589874 l004 Pi/tanh(514/101*Pi) 3141592653589874 l004 Pi/tanh(229/45*Pi) 3141592653589875 l004 Pi/tanh(402/79*Pi) 3141592653589875 l004 Pi/tanh(575/113*Pi) 3141592653589875 l004 Pi/tanh(173/34*Pi) 3141592653589875 l004 Pi/tanh(463/91*Pi) 3141592653589875 l004 Pi/tanh(290/57*Pi) 3141592653589875 l004 Pi/tanh(407/80*Pi) 3141592653589875 l004 Pi/tanh(524/103*Pi) 3141592653589875 l004 Pi/tanh(117/23*Pi) 3141592653589876 l004 Pi/tanh(529/104*Pi) 3141592653589876 l004 Pi/tanh(412/81*Pi) 3141592653589876 l004 Pi/tanh(295/58*Pi) 3141592653589876 l004 Pi/tanh(473/93*Pi) 3141592653589876 l004 Pi/tanh(178/35*Pi) 3141592653589876 l004 Pi/tanh(595/117*Pi) 3141592653589876 l004 Pi/tanh(417/82*Pi) 3141592653589876 l004 Pi/tanh(239/47*Pi) 3141592653589876 l004 Pi/tanh(539/106*Pi) 3141592653589877 l004 Pi/tanh(300/59*Pi) 3141592653589877 l004 Pi/tanh(361/71*Pi) 3141592653589877 l004 Pi/tanh(422/83*Pi) 3141592653589877 l004 Pi/tanh(483/95*Pi) 3141592653589877 l004 Pi/tanh(544/107*Pi) 3141592653589877 l004 Pi/tanh(605/119*Pi) 3141592653589877 l004 Pi/tanh(61/12*Pi) 3141592653589878 l004 Pi/tanh(554/109*Pi) 3141592653589878 l004 Pi/tanh(493/97*Pi) 3141592653589878 l004 Pi/tanh(432/85*Pi) 3141592653589878 l004 Pi/tanh(371/73*Pi) 3141592653589878 l004 Pi/tanh(310/61*Pi) 3141592653589878 l004 Pi/tanh(559/110*Pi) 3141592653589878 l004 Pi/tanh(249/49*Pi) 3141592653589878 l004 Pi/tanh(437/86*Pi) 3141592653589878 l004 Pi/tanh(188/37*Pi) 3141592653589879 l004 Pi/tanh(503/99*Pi) 3141592653589879 l004 Pi/tanh(315/62*Pi) 3141592653589879 l004 Pi/tanh(442/87*Pi) 3141592653589879 l004 Pi/tanh(569/112*Pi) 3141592653589879 l004 Pi/tanh(127/25*Pi) 3141592653589879 l004 Pi/tanh(574/113*Pi) 3141592653589879 l004 Pi/tanh(447/88*Pi) 3141592653589879 l004 Pi/tanh(320/63*Pi) 3141592653589879 l004 Pi/tanh(513/101*Pi) 3141592653589880 l004 Pi/tanh(193/38*Pi) 3141592653589880 l004 Pi/tanh(452/89*Pi) 3141592653589880 l004 Pi/tanh(259/51*Pi) 3141592653589880 l004 Pi/tanh(584/115*Pi) 3141592653589880 l004 Pi/tanh(325/64*Pi) 3141592653589880 l004 Pi/tanh(391/77*Pi) 3141592653589880 l004 Pi/tanh(457/90*Pi) 3141592653589880 l004 Pi/tanh(523/103*Pi) 3141592653589880 l004 Pi/tanh(589/116*Pi) 3141592653589881 l004 Pi/tanh(66/13*Pi) 3141592653589881 l004 Pi/tanh(599/118*Pi) 3141592653589881 l004 Pi/tanh(533/105*Pi) 3141592653589881 l004 Pi/tanh(467/92*Pi) 3141592653589881 l004 Pi/tanh(401/79*Pi) 3141592653589881 l004 Pi/tanh(335/66*Pi) 3141592653589881 l004 Pi/tanh(604/119*Pi) 3141592653589882 l004 Pi/tanh(269/53*Pi) 3141592653589882 l004 Pi/tanh(472/93*Pi) 3141592653589882 l004 Pi/tanh(203/40*Pi) 3141592653589882 l004 Pi/tanh(543/107*Pi) 3141592653589882 l004 Pi/tanh(340/67*Pi) 3141592653589882 l004 Pi/tanh(477/94*Pi) 3141592653589882 l004 Pi/tanh(137/27*Pi) 3141592653589883 l004 Pi/tanh(482/95*Pi) 3141592653589883 l004 Pi/tanh(345/68*Pi) 3141592653589883 l004 Pi/tanh(553/109*Pi) 3141592653589883 l004 Pi/tanh(208/41*Pi) 3141592653589883 l004 Pi/tanh(487/96*Pi) 3141592653589883 l004 Pi/tanh(279/55*Pi) 3141592653589883 l004 Pi/tanh(350/69*Pi) 3141592653589883 l004 Pi/tanh(421/83*Pi) 3141592653589883 l004 Pi/tanh(492/97*Pi) 3141592653589883 l004 Pi/tanh(563/111*Pi) 3141592653589884 l004 Pi/tanh(71/14*Pi) 3141592653589884 l004 Pi/tanh(573/113*Pi) 3141592653589884 l004 Pi/tanh(502/99*Pi) 3141592653589884 l004 Pi/tanh(431/85*Pi) 3141592653589884 l004 Pi/tanh(360/71*Pi) 3141592653589885 l004 Pi/tanh(289/57*Pi) 3141592653589885 l004 Pi/tanh(507/100*Pi) 3141592653589885 l004 Pi/tanh(218/43*Pi) 3141592653589885 l004 Pi/tanh(583/115*Pi) 3141592653589885 l004 Pi/tanh(365/72*Pi) 3141592653589885 l004 Pi/tanh(512/101*Pi) 3141592653589885 l004 Pi/tanh(147/29*Pi) 3141592653589885 l004 Pi/tanh(517/102*Pi) 3141592653589886 l004 Pi/tanh(370/73*Pi) 3141592653589886 l004 Pi/tanh(593/117*Pi) 3141592653589886 l004 Pi/tanh(223/44*Pi) 3141592653589886 l004 Pi/tanh(522/103*Pi) 3141592653589886 l004 Pi/tanh(299/59*Pi) 3141592653589886 l004 Pi/tanh(375/74*Pi) 3141592653589886 l004 Pi/tanh(451/89*Pi) 3141592653589886 l004 Pi/tanh(527/104*Pi) 3141592653589886 l004 Pi/tanh(603/119*Pi) 3141592653589887 l004 Pi/tanh(76/15*Pi) 3141592653589887 l004 Pi/tanh(537/106*Pi) 3141592653589887 l004 Pi/tanh(461/91*Pi) 3141592653589887 l004 Pi/tanh(385/76*Pi) 3141592653589887 l004 Pi/tanh(309/61*Pi) 3141592653589887 l004 Pi/tanh(542/107*Pi) 3141592653589887 l005 ln(sec(179/57)) 3141592653589887 l004 Pi/tanh(233/46*Pi) 3141592653589888 l004 Pi/tanh(390/77*Pi) 3141592653589888 l004 Pi/tanh(547/108*Pi) 3141592653589888 l004 Pi/tanh(157/31*Pi) 3141592653589888 l004 Pi/tanh(552/109*Pi) 3141592653589888 l004 Pi/tanh(395/78*Pi) 3141592653589888 l004 Pi/tanh(238/47*Pi) 3141592653589888 l004 Pi/tanh(557/110*Pi) 3141592653589888 l004 Pi/tanh(319/63*Pi) 3141592653589889 l004 Pi/tanh(400/79*Pi) 3141592653589889 l004 Pi/tanh(481/95*Pi) 3141592653589889 l004 Pi/tanh(562/111*Pi) 3141592653589889 l004 Pi/tanh(81/16*Pi) 3141592653589889 l004 Pi/tanh(572/113*Pi) 3141592653589889 l005 ln(sec(801/85)) 3141592653589889 l004 Pi/tanh(491/97*Pi) 3141592653589890 l004 Pi/tanh(410/81*Pi) 3141592653589890 l004 Pi/tanh(329/65*Pi) 3141592653589890 l004 Pi/tanh(577/114*Pi) 3141592653589890 l004 Pi/tanh(248/49*Pi) 3141592653589890 l004 Pi/tanh(415/82*Pi) 3141592653589890 l004 Pi/tanh(582/115*Pi) 3141592653589890 l004 Pi/tanh(167/33*Pi) 3141592653589890 l004 Pi/tanh(587/116*Pi) 3141592653589890 l004 Pi/tanh(420/83*Pi) 3141592653589891 l004 Pi/tanh(253/50*Pi) 3141592653589891 l004 Pi/tanh(592/117*Pi) 3141592653589891 l004 Pi/tanh(339/67*Pi) 3141592653589891 l004 Pi/tanh(425/84*Pi) 3141592653589891 l004 Pi/tanh(511/101*Pi) 3141592653589891 l004 Pi/tanh(597/118*Pi) 3141592653589891 l004 Pi/tanh(86/17*Pi) 3141592653589892 l004 Pi/tanh(607/120*Pi) 3141592653589892 l004 Pi/tanh(521/103*Pi) 3141592653589892 l004 Pi/tanh(435/86*Pi) 3141592653589892 l004 Pi/tanh(349/69*Pi) 3141592653589892 l004 Pi/tanh(263/52*Pi) 3141592653589892 l004 Pi/tanh(440/87*Pi) 3141592653589892 l004 Pi/tanh(177/35*Pi) 3141592653589893 l004 Pi/tanh(445/88*Pi) 3141592653589893 l004 Pi/tanh(268/53*Pi) 3141592653589893 l004 Pi/tanh(359/71*Pi) 3141592653589893 l004 Pi/tanh(450/89*Pi) 3141592653589893 l004 Pi/tanh(541/107*Pi) 3141592653589893 l004 Pi/tanh(91/18*Pi) 3141592653589894 l004 Pi/tanh(551/109*Pi) 3141592653589894 l004 Pi/tanh(460/91*Pi) 3141592653589894 l004 Pi/tanh(369/73*Pi) 3141592653589894 l004 Pi/tanh(278/55*Pi) 3141592653589894 l004 Pi/tanh(465/92*Pi) 3141592653589894 l004 Pi/tanh(187/37*Pi) 3141592653589894 m001 ZetaQ(4)^FeigenbaumDelta+Pi 3141592653589894 l005 ln(sec(22/7)) 3141592653589895 l004 Pi/tanh(470/93*Pi) 3141592653589895 l004 Pi/tanh(283/56*Pi) 3141592653589895 l004 Pi/tanh(379/75*Pi) 3141592653589895 l004 Pi/tanh(475/94*Pi) 3141592653589895 l004 Pi/tanh(571/113*Pi) 3141592653589895 l004 Pi/tanh(96/19*Pi) 3141592653589896 l004 Pi/tanh(581/115*Pi) 3141592653589896 l004 Pi/tanh(485/96*Pi) 3141592653589896 l004 Pi/tanh(389/77*Pi) 3141592653589896 l004 Pi/tanh(293/58*Pi) 3141592653589896 l004 Pi/tanh(490/97*Pi) 3141592653589896 l004 Pi/tanh(197/39*Pi) 3141592653589896 l004 Pi/tanh(495/98*Pi) 3141592653589896 l004 Pi/tanh(298/59*Pi) 3141592653589897 l004 Pi/tanh(399/79*Pi) 3141592653589897 l004 Pi/tanh(500/99*Pi) 3141592653589897 l004 Pi/tanh(601/119*Pi) 3141592653589897 l004 Pi/tanh(101/20*Pi) 3141592653589897 l004 Pi/tanh(510/101*Pi) 3141592653589897 l004 Pi/tanh(409/81*Pi) 3141592653589898 l004 Pi/tanh(308/61*Pi) 3141592653589898 l004 Pi/tanh(515/102*Pi) 3141592653589898 l004 Pi/tanh(207/41*Pi) 3141592653589898 l004 Pi/tanh(520/103*Pi) 3141592653589898 l004 Pi/tanh(313/62*Pi) 3141592653589898 l004 Pi/tanh(419/83*Pi) 3141592653589898 l004 Pi/tanh(525/104*Pi) 3141592653589899 l004 Pi/tanh(106/21*Pi) 3141592653589899 l004 Pi/tanh(535/106*Pi) 3141592653589899 l004 Pi/tanh(429/85*Pi) 3141592653589899 l004 Pi/tanh(323/64*Pi) 3141592653589899 l004 Pi/tanh(540/107*Pi) 3141592653589899 l004 Pi/tanh(217/43*Pi) 3141592653589899 l004 Pi/tanh(545/108*Pi) 3141592653589900 l004 Pi/tanh(328/65*Pi) 3141592653589900 l004 Pi/tanh(439/87*Pi) 3141592653589900 l004 Pi/tanh(550/109*Pi) 3141592653589900 l004 Pi/tanh(111/22*Pi) 3141592653589900 l004 Pi/tanh(560/111*Pi) 3141592653589900 l004 Pi/tanh(449/89*Pi) 3141592653589900 l004 Pi/tanh(338/67*Pi) 3141592653589901 l004 Pi/tanh(565/112*Pi) 3141592653589901 l004 Pi/tanh(227/45*Pi) 3141592653589901 l004 Pi/tanh(570/113*Pi) 3141592653589901 l004 Pi/tanh(343/68*Pi) 3141592653589901 l004 Pi/tanh(459/91*Pi) 3141592653589901 l004 Pi/tanh(575/114*Pi) 3141592653589901 l004 Pi/tanh(116/23*Pi) 3141592653589902 l004 Pi/tanh(585/116*Pi) 3141592653589902 l004 Pi/tanh(469/93*Pi) 3141592653589902 l004 Pi/tanh(353/70*Pi) 3141592653589902 l004 Pi/tanh(590/117*Pi) 3141592653589902 l004 Pi/tanh(237/47*Pi) 3141592653589902 l004 Pi/tanh(595/118*Pi) 3141592653589902 l004 Pi/tanh(358/71*Pi) 3141592653589902 l004 Pi/tanh(479/95*Pi) 3141592653589902 l004 Pi/tanh(600/119*Pi) 3141592653589903 l004 Pi/tanh(121/24*Pi) 3141592653589903 l004 Pi/tanh(489/97*Pi) 3141592653589903 l004 Pi/tanh(368/73*Pi) 3141592653589903 l004 Pi/tanh(247/49*Pi) 3141592653589903 l004 Pi/tanh(373/74*Pi) 3141592653589903 l004 Pi/tanh(499/99*Pi) 3141592653589904 l004 Pi/tanh(126/25*Pi) 3141592653589904 l004 Pi/tanh(509/101*Pi) 3141592653589904 l004 Pi/tanh(383/76*Pi) 3141592653589904 l004 Pi/tanh(257/51*Pi) 3141592653589904 l004 Pi/tanh(388/77*Pi) 3141592653589905 l004 Pi/tanh(519/103*Pi) 3141592653589905 l004 Pi/tanh(131/26*Pi) 3141592653589905 l004 Pi/tanh(529/105*Pi) 3141592653589905 l004 Pi/tanh(398/79*Pi) 3141592653589905 l004 Pi/tanh(267/53*Pi) 3141592653589905 l004 Pi/tanh(403/80*Pi) 3141592653589906 l004 Pi/tanh(539/107*Pi) 3141592653589906 l004 Pi/tanh(136/27*Pi) 3141592653589906 l004 Pi/tanh(549/109*Pi) 3141592653589906 l004 Pi/tanh(413/82*Pi) 3141592653589906 l004 Pi/tanh(277/55*Pi) 3141592653589906 l004 Pi/tanh(418/83*Pi) 3141592653589907 l004 Pi/tanh(559/111*Pi) 3141592653589907 l004 Pi/tanh(141/28*Pi) 3141592653589907 l004 Pi/tanh(569/113*Pi) 3141592653589907 l004 Pi/tanh(428/85*Pi) 3141592653589907 l004 Pi/tanh(287/57*Pi) 3141592653589907 l004 Pi/tanh(433/86*Pi) 3141592653589907 l004 Pi/tanh(579/115*Pi) 3141592653589908 l004 Pi/tanh(146/29*Pi) 3141592653589908 l004 Pi/tanh(589/117*Pi) 3141592653589908 l004 Pi/tanh(443/88*Pi) 3141592653589908 l004 Pi/tanh(297/59*Pi) 3141592653589908 l004 Pi/tanh(448/89*Pi) 3141592653589908 l004 Pi/tanh(599/119*Pi) 3141592653589908 l004 Pi/tanh(151/30*Pi) 3141592653589909 l004 Pi/tanh(458/91*Pi) 3141592653589909 l004 Pi/tanh(307/61*Pi) 3141592653589909 l004 Pi/tanh(463/92*Pi) 3141592653589909 l004 Pi/tanh(156/31*Pi) 3141592653589910 l004 Pi/tanh(473/94*Pi) 3141592653589910 l005 ln(sec(1084/115)) 3141592653589910 l004 Pi/tanh(317/63*Pi) 3141592653589910 l004 Pi/tanh(478/95*Pi) 3141592653589910 l004 Pi/tanh(161/32*Pi) 3141592653589910 l004 Pi/tanh(488/97*Pi) 3141592653589910 l004 Pi/tanh(327/65*Pi) 3141592653589910 l004 Pi/tanh(493/98*Pi) 3141592653589911 l004 Pi/tanh(166/33*Pi) 3141592653589911 l004 Pi/tanh(503/100*Pi) 3141592653589911 l004 Pi/tanh(337/67*Pi) 3141592653589911 l004 Pi/tanh(508/101*Pi) 3141592653589911 l004 Pi/tanh(171/34*Pi) 3141592653589912 l004 Pi/tanh(518/103*Pi) 3141592653589912 l004 Pi/tanh(347/69*Pi) 3141592653589912 l004 Pi/tanh(523/104*Pi) 3141592653589912 l004 Pi/tanh(176/35*Pi) 3141592653589912 l004 Pi/tanh(533/106*Pi) 3141592653589912 l004 Pi/tanh(357/71*Pi) 3141592653589912 l004 Pi/tanh(538/107*Pi) 3141592653589913 l004 Pi/tanh(181/36*Pi) 3141592653589913 l004 Pi/tanh(548/109*Pi) 3141592653589913 l004 Pi/tanh(367/73*Pi) 3141592653589913 l004 Pi/tanh(553/110*Pi) 3141592653589913 l004 Pi/tanh(186/37*Pi) 3141592653589913 l004 Pi/tanh(563/112*Pi) 3141592653589913 l004 Pi/tanh(377/75*Pi) 3141592653589914 l004 Pi/tanh(568/113*Pi) 3141592653589914 l004 Pi/tanh(191/38*Pi) 3141592653589914 l004 Pi/tanh(578/115*Pi) 3141592653589914 l004 Pi/tanh(387/77*Pi) 3141592653589914 l004 Pi/tanh(583/116*Pi) 3141592653589914 l004 Pi/tanh(196/39*Pi) 3141592653589914 l004 Pi/tanh(593/118*Pi) 3141592653589914 l004 Pi/tanh(397/79*Pi) 3141592653589915 l004 Pi/tanh(598/119*Pi) 3141592653589915 l004 Pi/tanh(201/40*Pi) 3141592653589915 l004 Pi/tanh(407/81*Pi) 3141592653589915 l004 Pi/tanh(206/41*Pi) 3141592653589915 l004 Pi/tanh(417/83*Pi) 3141592653589916 l004 Pi/tanh(211/42*Pi) 3141592653589916 l004 Pi/tanh(427/85*Pi) 3141592653589916 l004 Pi/tanh(216/43*Pi) 3141592653589916 l004 Pi/tanh(437/87*Pi) 3141592653589916 l004 Pi/tanh(221/44*Pi) 3141592653589917 l004 Pi/tanh(447/89*Pi) 3141592653589917 l004 Pi/tanh(226/45*Pi) 3141592653589917 l004 Pi/tanh(457/91*Pi) 3141592653589917 l004 Pi/tanh(231/46*Pi) 3141592653589917 l004 Pi/tanh(467/93*Pi) 3141592653589918 l004 Pi/tanh(236/47*Pi) 3141592653589918 l004 Pi/tanh(477/95*Pi) 3141592653589918 l004 Pi/tanh(241/48*Pi) 3141592653589918 l004 Pi/tanh(487/97*Pi) 3141592653589918 l004 Pi/tanh(246/49*Pi) 3141592653589918 l004 Pi/tanh(497/99*Pi) 3141592653589919 l004 Pi/tanh(251/50*Pi) 3141592653589919 l004 Pi/tanh(507/101*Pi) 3141592653589919 l004 Pi/tanh(256/51*Pi) 3141592653589919 l004 Pi/tanh(517/103*Pi) 3141592653589919 l004 Pi/tanh(261/52*Pi) 3141592653589919 l004 Pi/tanh(527/105*Pi) 3141592653589919 l004 Pi/tanh(266/53*Pi) 3141592653589920 l004 Pi/tanh(537/107*Pi) 3141592653589920 l004 Pi/tanh(271/54*Pi) 3141592653589920 l004 Pi/tanh(547/109*Pi) 3141592653589920 l004 Pi/tanh(276/55*Pi) 3141592653589920 l004 Pi/tanh(557/111*Pi) 3141592653589920 l004 Pi/tanh(281/56*Pi) 3141592653589920 l004 Pi/tanh(567/113*Pi) 3141592653589921 l004 Pi/tanh(286/57*Pi) 3141592653589921 l004 Pi/tanh(577/115*Pi) 3141592653589921 l004 Pi/tanh(291/58*Pi) 3141592653589921 l004 Pi/tanh(587/117*Pi) 3141592653589921 l004 Pi/tanh(296/59*Pi) 3141592653589921 l004 Pi/tanh(597/119*Pi) 3141592653589921 l004 Pi/tanh(301/60*Pi) 3141592653589921 l004 Pi/tanh(306/61*Pi) 3141592653589922 l004 Pi/tanh(311/62*Pi) 3141592653589922 l004 Pi/tanh(316/63*Pi) 3141592653589922 l004 Pi/tanh(321/64*Pi) 3141592653589922 l004 Pi/tanh(326/65*Pi) 3141592653589922 l004 Pi/tanh(331/66*Pi) 3141592653589923 l004 Pi/tanh(336/67*Pi) 3141592653589923 l004 Pi/tanh(341/68*Pi) 3141592653589923 l004 Pi/tanh(346/69*Pi) 3141592653589923 l004 Pi/tanh(351/70*Pi) 3141592653589923 l004 Pi/tanh(356/71*Pi) 3141592653589924 l004 Pi/tanh(361/72*Pi) 3141592653589924 l004 Pi/tanh(366/73*Pi) 3141592653589924 l004 Pi/tanh(371/74*Pi) 3141592653589924 l004 Pi/tanh(376/75*Pi) 3141592653589924 l004 Pi/tanh(381/76*Pi) 3141592653589924 l004 Pi/tanh(386/77*Pi) 3141592653589924 l004 Pi/tanh(391/78*Pi) 3141592653589925 l004 Pi/tanh(396/79*Pi) 3141592653589925 l004 Pi/tanh(401/80*Pi) 3141592653589925 l004 Pi/tanh(406/81*Pi) 3141592653589925 l004 Pi/tanh(411/82*Pi) 3141592653589925 l004 Pi/tanh(416/83*Pi) 3141592653589925 l004 Pi/tanh(421/84*Pi) 3141592653589925 l004 Pi/tanh(426/85*Pi) 3141592653589925 l004 Pi/tanh(431/86*Pi) 3141592653589925 l004 Pi/tanh(436/87*Pi) 3141592653589926 l004 Pi/tanh(441/88*Pi) 3141592653589926 l004 Pi/tanh(446/89*Pi) 3141592653589926 l004 Pi/tanh(451/90*Pi) 3141592653589926 l004 Pi/tanh(456/91*Pi) 3141592653589926 l004 Pi/tanh(461/92*Pi) 3141592653589926 l004 Pi/tanh(466/93*Pi) 3141592653589926 l004 Pi/tanh(471/94*Pi) 3141592653589926 l004 Pi/tanh(476/95*Pi) 3141592653589926 l004 Pi/tanh(481/96*Pi) 3141592653589926 l004 Pi/tanh(486/97*Pi) 3141592653589927 l004 Pi/tanh(491/98*Pi) 3141592653589927 l004 Pi/tanh(496/99*Pi) 3141592653589927 l005 ln(sec(1046/111)) 3141592653589927 l004 Pi/tanh(501/100*Pi) 3141592653589927 l004 Pi/tanh(506/101*Pi) 3141592653589927 l004 Pi/tanh(511/102*Pi) 3141592653589927 l004 Pi/tanh(516/103*Pi) 3141592653589927 l004 Pi/tanh(521/104*Pi) 3141592653589927 l004 Pi/tanh(526/105*Pi) 3141592653589927 l004 Pi/tanh(531/106*Pi) 3141592653589927 l004 Pi/tanh(536/107*Pi) 3141592653589927 l004 Pi/tanh(541/108*Pi) 3141592653589927 l004 Pi/tanh(546/109*Pi) 3141592653589928 l004 Pi/tanh(551/110*Pi) 3141592653589928 l004 Pi/tanh(556/111*Pi) 3141592653589928 l004 Pi/tanh(561/112*Pi) 3141592653589928 l004 Pi/tanh(566/113*Pi) 3141592653589928 l004 Pi/tanh(571/114*Pi) 3141592653589928 l004 Pi/tanh(576/115*Pi) 3141592653589928 l004 Pi/tanh(581/116*Pi) 3141592653589928 l004 Pi/tanh(586/117*Pi) 3141592653589928 l004 Pi/tanh(591/118*Pi) 3141592653589928 l004 Pi/tanh(596/119*Pi) 3141592653589928 l004 Pi/tanh(601/120*Pi) 3141592653589935 l004 Pi/tanh(5*Pi) 3141592653589943 m001 ZetaP(4)^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653589943 l004 Pi/tanh(599/120*Pi) 3141592653589943 l004 Pi/tanh(594/119*Pi) 3141592653589943 l004 Pi/tanh(589/118*Pi) 3141592653589943 l004 Pi/tanh(584/117*Pi) 3141592653589943 l004 Pi/tanh(579/116*Pi) 3141592653589943 l004 Pi/tanh(574/115*Pi) 3141592653589944 l004 Pi/tanh(569/114*Pi) 3141592653589944 l004 Pi/tanh(564/113*Pi) 3141592653589944 l004 Pi/tanh(559/112*Pi) 3141592653589944 l004 Pi/tanh(554/111*Pi) 3141592653589944 l004 Pi/tanh(549/110*Pi) 3141592653589944 l004 Pi/tanh(544/109*Pi) 3141592653589944 l004 Pi/tanh(539/108*Pi) 3141592653589944 l004 Pi/tanh(534/107*Pi) 3141592653589944 l004 Pi/tanh(529/106*Pi) 3141592653589944 l004 Pi/tanh(524/105*Pi) 3141592653589944 l004 Pi/tanh(519/104*Pi) 3141592653589944 l004 Pi/tanh(514/103*Pi) 3141592653589945 l004 Pi/tanh(509/102*Pi) 3141592653589945 l004 Pi/tanh(504/101*Pi) 3141592653589945 l004 Pi/tanh(499/100*Pi) 3141592653589945 l004 Pi/tanh(494/99*Pi) 3141592653589945 l004 Pi/tanh(489/98*Pi) 3141592653589945 l004 Pi/tanh(484/97*Pi) 3141592653589945 l004 Pi/tanh(479/96*Pi) 3141592653589945 l004 Pi/tanh(474/95*Pi) 3141592653589945 l004 Pi/tanh(469/94*Pi) 3141592653589945 l004 Pi/tanh(464/93*Pi) 3141592653589946 l004 Pi/tanh(459/92*Pi) 3141592653589946 l004 Pi/tanh(454/91*Pi) 3141592653589946 l004 Pi/tanh(449/90*Pi) 3141592653589946 l004 Pi/tanh(444/89*Pi) 3141592653589946 l004 Pi/tanh(439/88*Pi) 3141592653589946 l004 Pi/tanh(434/87*Pi) 3141592653589946 l004 Pi/tanh(429/86*Pi) 3141592653589946 l004 Pi/tanh(424/85*Pi) 3141592653589947 l004 Pi/tanh(419/84*Pi) 3141592653589947 l004 Pi/tanh(414/83*Pi) 3141592653589947 m001 ZetaQ(2)^Psi(1,1/3)+Pi 3141592653589947 l004 Pi/tanh(409/82*Pi) 3141592653589947 l004 Pi/tanh(404/81*Pi) 3141592653589947 l004 Pi/tanh(399/80*Pi) 3141592653589947 l004 Pi/tanh(394/79*Pi) 3141592653589947 l004 Pi/tanh(389/78*Pi) 3141592653589948 l004 Pi/tanh(384/77*Pi) 3141592653589948 l004 Pi/tanh(379/76*Pi) 3141592653589948 l004 Pi/tanh(374/75*Pi) 3141592653589948 l004 Pi/tanh(369/74*Pi) 3141592653589948 l005 ln(sec(336/107)) 3141592653589948 l004 Pi/tanh(364/73*Pi) 3141592653589948 l004 Pi/tanh(359/72*Pi) 3141592653589949 l004 Pi/tanh(354/71*Pi) 3141592653589949 l004 Pi/tanh(349/70*Pi) 3141592653589949 l004 Pi/tanh(344/69*Pi) 3141592653589949 l004 Pi/tanh(339/68*Pi) 3141592653589949 l004 Pi/tanh(334/67*Pi) 3141592653589950 l004 Pi/tanh(329/66*Pi) 3141592653589950 l004 Pi/tanh(324/65*Pi) 3141592653589950 l004 Pi/tanh(319/64*Pi) 3141592653589950 l004 Pi/tanh(314/63*Pi) 3141592653589951 l004 Pi/tanh(309/62*Pi) 3141592653589951 l004 Pi/tanh(304/61*Pi) 3141592653589951 l004 Pi/tanh(299/60*Pi) 3141592653589951 l004 Pi/tanh(593/119*Pi) 3141592653589951 l004 Pi/tanh(294/59*Pi) 3141592653589952 l004 Pi/tanh(583/117*Pi) 3141592653589952 l004 Pi/tanh(289/58*Pi) 3141592653589952 l004 Pi/tanh(573/115*Pi) 3141592653589952 l004 Pi/tanh(284/57*Pi) 3141592653589952 l004 Pi/tanh(563/113*Pi) 3141592653589952 l004 Pi/tanh(279/56*Pi) 3141592653589953 l004 Pi/tanh(553/111*Pi) 3141592653589953 l004 Pi/tanh(274/55*Pi) 3141592653589953 l004 Pi/tanh(543/109*Pi) 3141592653589953 l004 Pi/tanh(269/54*Pi) 3141592653589953 l004 Pi/tanh(533/107*Pi) 3141592653589953 l004 Pi/tanh(264/53*Pi) 3141592653589954 l004 Pi/tanh(523/105*Pi) 3141592653589954 l004 Pi/tanh(259/52*Pi) 3141592653589954 l004 Pi/tanh(513/103*Pi) 3141592653589954 l004 Pi/tanh(254/51*Pi) 3141592653589954 l004 Pi/tanh(503/101*Pi) 3141592653589955 l004 Pi/tanh(249/50*Pi) 3141592653589955 l004 Pi/tanh(493/99*Pi) 3141592653589955 l004 Pi/tanh(244/49*Pi) 3141592653589955 l004 Pi/tanh(483/97*Pi) 3141592653589955 l004 Pi/tanh(239/48*Pi) 3141592653589956 l004 Pi/tanh(473/95*Pi) 3141592653589956 l004 Pi/tanh(234/47*Pi) 3141592653589956 l004 Pi/tanh(463/93*Pi) 3141592653589956 l004 Pi/tanh(229/46*Pi) 3141592653589957 l004 Pi/tanh(453/91*Pi) 3141592653589957 l004 Pi/tanh(224/45*Pi) 3141592653589957 l004 Pi/tanh(443/89*Pi) 3141592653589957 l004 Pi/tanh(219/44*Pi) 3141592653589958 l004 Pi/tanh(433/87*Pi) 3141592653589958 l004 Pi/tanh(214/43*Pi) 3141592653589958 l004 Pi/tanh(423/85*Pi) 3141592653589958 l004 Pi/tanh(209/42*Pi) 3141592653589959 l004 Pi/tanh(413/83*Pi) 3141592653589959 l004 Pi/tanh(204/41*Pi) 3141592653589959 l004 Pi/tanh(403/81*Pi) 3141592653589960 l004 Pi/tanh(199/40*Pi) 3141592653589960 l004 Pi/tanh(592/119*Pi) 3141592653589960 l004 Pi/tanh(393/79*Pi) 3141592653589960 l004 Pi/tanh(587/118*Pi) 3141592653589960 m001 Niven^Psi(2,1/3)+Pi 3141592653589960 l004 Pi/tanh(194/39*Pi) 3141592653589961 l004 Pi/tanh(577/116*Pi) 3141592653589961 l004 Pi/tanh(383/77*Pi) 3141592653589961 l004 Pi/tanh(572/115*Pi) 3141592653589961 l004 Pi/tanh(189/38*Pi) 3141592653589961 l004 Pi/tanh(562/113*Pi) 3141592653589961 l004 Pi/tanh(373/75*Pi) 3141592653589962 l004 Pi/tanh(557/112*Pi) 3141592653589962 l004 Pi/tanh(184/37*Pi) 3141592653589962 l004 Pi/tanh(547/110*Pi) 3141592653589962 l004 Pi/tanh(363/73*Pi) 3141592653589962 l004 Pi/tanh(542/109*Pi) 3141592653589963 l004 Pi/tanh(179/36*Pi) 3141592653589963 l004 Pi/tanh(532/107*Pi) 3141592653589963 l004 Pi/tanh(353/71*Pi) 3141592653589963 l004 Pi/tanh(527/106*Pi) 3141592653589963 l004 Pi/tanh(174/35*Pi) 3141592653589964 l004 Pi/tanh(517/104*Pi) 3141592653589964 l004 Pi/tanh(343/69*Pi) 3141592653589964 l004 Pi/tanh(512/103*Pi) 3141592653589964 l004 Pi/tanh(169/34*Pi) 3141592653589965 l004 Pi/tanh(502/101*Pi) 3141592653589965 l004 Pi/tanh(333/67*Pi) 3141592653589965 l004 Pi/tanh(497/100*Pi) 3141592653589965 l004 Pi/tanh(164/33*Pi) 3141592653589966 l004 Pi/tanh(487/98*Pi) 3141592653589966 l004 Pi/tanh(323/65*Pi) 3141592653589966 l004 Pi/tanh(482/97*Pi) 3141592653589966 l004 Pi/tanh(159/32*Pi) 3141592653589967 l004 Pi/tanh(472/95*Pi) 3141592653589967 l004 Pi/tanh(313/63*Pi) 3141592653589967 l004 Pi/tanh(467/94*Pi) 3141592653589967 l004 Pi/tanh(154/31*Pi) 3141592653589968 l004 Pi/tanh(457/92*Pi) 3141592653589968 l004 Pi/tanh(303/61*Pi) 3141592653589968 l004 Pi/tanh(452/91*Pi) 3141592653589969 l004 Pi/tanh(149/30*Pi) 3141592653589969 l004 Pi/tanh(591/119*Pi) 3141592653589969 l004 Pi/tanh(442/89*Pi) 3141592653589969 l004 Pi/tanh(293/59*Pi) 3141592653589969 l005 ln(sec(575/61)) 3141592653589970 l004 Pi/tanh(437/88*Pi) 3141592653589970 l004 Pi/tanh(581/117*Pi) 3141592653589970 l004 Pi/tanh(144/29*Pi) 3141592653589970 l004 Pi/tanh(571/115*Pi) 3141592653589970 l004 Pi/tanh(427/86*Pi) 3141592653589971 l004 Pi/tanh(283/57*Pi) 3141592653589971 l004 Pi/tanh(422/85*Pi) 3141592653589971 l004 Pi/tanh(561/113*Pi) 3141592653589971 l004 Pi/tanh(139/28*Pi) 3141592653589972 l004 Pi/tanh(551/111*Pi) 3141592653589972 l004 Pi/tanh(412/83*Pi) 3141592653589972 l004 Pi/tanh(273/55*Pi) 3141592653589972 l004 Pi/tanh(407/82*Pi) 3141592653589972 l004 Pi/tanh(541/109*Pi) 3141592653589973 l004 Pi/tanh(134/27*Pi) 3141592653589973 l004 Pi/tanh(531/107*Pi) 3141592653589973 l004 Pi/tanh(397/80*Pi) 3141592653589974 l004 Pi/tanh(263/53*Pi) 3141592653589974 l004 Pi/tanh(392/79*Pi) 3141592653589974 l004 Pi/tanh(521/105*Pi) 3141592653589974 l004 Pi/tanh(129/26*Pi) 3141592653589975 l004 Pi/tanh(511/103*Pi) 3141592653589975 l004 Pi/tanh(382/77*Pi) 3141592653589975 l004 Pi/tanh(253/51*Pi) 3141592653589976 l004 Pi/tanh(377/76*Pi) 3141592653589976 l004 Pi/tanh(501/101*Pi) 3141592653589976 l004 Pi/tanh(124/25*Pi) 3141592653589977 l004 Pi/tanh(491/99*Pi) 3141592653589977 l004 Pi/tanh(367/74*Pi) 3141592653589977 l004 Pi/tanh(243/49*Pi) 3141592653589977 l004 Pi/tanh(362/73*Pi) 3141592653589978 l004 Pi/tanh(481/97*Pi) 3141592653589978 l004 Pi/tanh(119/24*Pi) 3141592653589979 l004 Pi/tanh(590/119*Pi) 3141592653589979 l004 Pi/tanh(471/95*Pi) 3141592653589979 l004 Pi/tanh(352/71*Pi) 3141592653589979 l004 Pi/tanh(585/118*Pi) 3141592653589979 l004 Pi/tanh(233/47*Pi) 3141592653589979 l004 Pi/tanh(580/117*Pi) 3141592653589980 l004 Pi/tanh(347/70*Pi) 3141592653589980 l004 Pi/tanh(461/93*Pi) 3141592653589980 l004 Pi/tanh(575/116*Pi) 3141592653589980 l004 Pi/tanh(114/23*Pi) 3141592653589981 l004 Pi/tanh(565/114*Pi) 3141592653589981 l004 Pi/tanh(451/91*Pi) 3141592653589981 l004 Pi/tanh(337/68*Pi) 3141592653589981 l004 Pi/tanh(560/113*Pi) 3141592653589981 l004 Pi/tanh(223/45*Pi) 3141592653589982 l004 Pi/tanh(555/112*Pi) 3141592653589982 l004 Pi/tanh(332/67*Pi) 3141592653589982 l004 Pi/tanh(441/89*Pi) 3141592653589982 l004 Pi/tanh(550/111*Pi) 3141592653589983 l004 Pi/tanh(109/22*Pi) 3141592653589983 l004 Pi/tanh(540/109*Pi) 3141592653589983 l004 Pi/tanh(431/87*Pi) 3141592653589983 l004 Pi/tanh(322/65*Pi) 3141592653589984 l004 Pi/tanh(535/108*Pi) 3141592653589984 l004 Pi/tanh(213/43*Pi) 3141592653589984 l004 Pi/tanh(530/107*Pi) 3141592653589984 l004 Pi/tanh(317/64*Pi) 3141592653589985 l004 Pi/tanh(421/85*Pi) 3141592653589985 l004 Pi/tanh(525/106*Pi) 3141592653589985 l004 Pi/tanh(104/21*Pi) 3141592653589986 l004 Pi/tanh(515/104*Pi) 3141592653589986 l004 Pi/tanh(411/83*Pi) 3141592653589986 l004 Pi/tanh(307/62*Pi) 3141592653589986 l004 Pi/tanh(510/103*Pi) 3141592653589987 l004 Pi/tanh(203/41*Pi) 3141592653589987 l004 Pi/tanh(505/102*Pi) 3141592653589987 l004 Pi/tanh(302/61*Pi) 3141592653589987 l004 Pi/tanh(401/81*Pi) 3141592653589987 l004 Pi/tanh(500/101*Pi) 3141592653589988 l004 Pi/tanh(99/20*Pi) 3141592653589989 l004 Pi/tanh(589/119*Pi) 3141592653589989 l004 Pi/tanh(490/99*Pi) 3141592653589989 l004 Pi/tanh(391/79*Pi) 3141592653589989 l004 Pi/tanh(292/59*Pi) 3141592653589989 l004 Pi/tanh(485/98*Pi) 3141592653589990 l004 Pi/tanh(193/39*Pi) 3141592653589990 l004 Pi/tanh(480/97*Pi) 3141592653589990 l004 Pi/tanh(287/58*Pi) 3141592653589991 l004 Pi/tanh(381/77*Pi) 3141592653589991 l004 Pi/tanh(475/96*Pi) 3141592653589991 l004 Pi/tanh(569/115*Pi) 3141592653589991 l004 Pi/tanh(94/19*Pi) 3141592653589992 l004 Pi/tanh(559/113*Pi) 3141592653589992 l004 Pi/tanh(465/94*Pi) 3141592653589992 l004 Pi/tanh(371/75*Pi) 3141592653589993 l004 Pi/tanh(277/56*Pi) 3141592653589993 l004 Pi/tanh(460/93*Pi) 3141592653589993 l004 Pi/tanh(183/37*Pi) 3141592653589994 l004 Pi/tanh(455/92*Pi) 3141592653589994 l004 Pi/tanh(272/55*Pi) 3141592653589994 l004 Pi/tanh(361/73*Pi) 3141592653589994 l004 Pi/tanh(450/91*Pi) 3141592653589994 l004 Pi/tanh(539/109*Pi) 3141592653589995 l004 Pi/tanh(89/18*Pi) 3141592653589996 l004 Pi/tanh(529/107*Pi) 3141592653589996 l004 Pi/tanh(440/89*Pi) 3141592653589996 l004 Pi/tanh(351/71*Pi) 3141592653589996 l004 Pi/tanh(262/53*Pi) 3141592653589997 l004 Pi/tanh(435/88*Pi) 3141592653589997 l004 Pi/tanh(173/35*Pi) 3141592653589997 l004 Pi/tanh(430/87*Pi) 3141592653589998 l004 Pi/tanh(257/52*Pi) 3141592653589998 l004 Pi/tanh(341/69*Pi) 3141592653589998 l004 Pi/tanh(425/86*Pi) 3141592653589999 l004 Pi/tanh(509/103*Pi) 3141592653589999 l004 Pi/tanh(593/120*Pi) 3141592653589999 l004 Pi/tanh(84/17*Pi) 3141592653590000 l004 Pi/tanh(583/118*Pi) 3141592653590000 l004 Pi/tanh(499/101*Pi) 3141592653590000 l004 Pi/tanh(415/84*Pi) 3141592653590000 l004 Pi/tanh(331/67*Pi) 3141592653590001 l004 Pi/tanh(578/117*Pi) 3141592653590001 l004 Pi/tanh(247/50*Pi) 3141592653590001 l004 Pi/tanh(410/83*Pi) 3141592653590001 l004 Pi/tanh(573/116*Pi) 3141592653590002 l004 Pi/tanh(163/33*Pi) 3141592653590002 l004 Pi/tanh(568/115*Pi) 3141592653590002 l004 Pi/tanh(405/82*Pi) 3141592653590002 l004 Pi/tanh(242/49*Pi) 3141592653590003 l004 Pi/tanh(563/114*Pi) 3141592653590003 l004 Pi/tanh(321/65*Pi) 3141592653590003 l004 Pi/tanh(400/81*Pi) 3141592653590003 l004 Pi/tanh(479/97*Pi) 3141592653590003 l004 Pi/tanh(558/113*Pi) 3141592653590004 l004 Pi/tanh(79/16*Pi) 3141592653590005 l004 Pi/tanh(548/111*Pi) 3141592653590005 l004 Pi/tanh(469/95*Pi) 3141592653590005 l004 Pi/tanh(390/79*Pi) 3141592653590005 l004 Pi/tanh(311/63*Pi) 3141592653590006 l004 Pi/tanh(543/110*Pi) 3141592653590006 l004 Pi/tanh(232/47*Pi) 3141592653590006 l004 Pi/tanh(385/78*Pi) 3141592653590006 l004 Pi/tanh(538/109*Pi) 3141592653590007 l004 Pi/tanh(153/31*Pi) 3141592653590007 l004 Pi/tanh(533/108*Pi) 3141592653590007 l004 Pi/tanh(380/77*Pi) 3141592653590008 l004 Pi/tanh(227/46*Pi) 3141592653590008 l004 Pi/tanh(528/107*Pi) 3141592653590008 l004 Pi/tanh(301/61*Pi) 3141592653590008 l004 Pi/tanh(375/76*Pi) 3141592653590009 l004 Pi/tanh(449/91*Pi) 3141592653590009 l004 Pi/tanh(523/106*Pi) 3141592653590010 l004 Pi/tanh(74/15*Pi) 3141592653590010 l004 Pi/tanh(587/119*Pi) 3141592653590011 l004 Pi/tanh(513/104*Pi) 3141592653590011 l004 Pi/tanh(439/89*Pi) 3141592653590011 l004 Pi/tanh(365/74*Pi) 3141592653590011 l004 Pi/tanh(291/59*Pi) 3141592653590011 l004 Pi/tanh(508/103*Pi) 3141592653590012 l004 Pi/tanh(217/44*Pi) 3141592653590012 l004 Pi/tanh(577/117*Pi) 3141592653590012 l004 Pi/tanh(360/73*Pi) 3141592653590012 l004 Pi/tanh(503/102*Pi) 3141592653590013 l004 Pi/tanh(143/29*Pi) 3141592653590013 l004 Pi/tanh(498/101*Pi) 3141592653590013 l004 Pi/tanh(355/72*Pi) 3141592653590014 l004 Pi/tanh(567/115*Pi) 3141592653590014 l004 Pi/tanh(212/43*Pi) 3141592653590014 l004 Pi/tanh(493/100*Pi) 3141592653590015 l004 Pi/tanh(281/57*Pi) 3141592653590015 l004 Pi/tanh(350/71*Pi) 3141592653590015 l004 Pi/tanh(419/85*Pi) 3141592653590015 l004 Pi/tanh(488/99*Pi) 3141592653590015 l004 Pi/tanh(557/113*Pi) 3141592653590016 l004 Pi/tanh(69/14*Pi) 3141592653590017 l004 Pi/tanh(547/111*Pi) 3141592653590017 l004 Pi/tanh(478/97*Pi) 3141592653590017 l004 Pi/tanh(409/83*Pi) 3141592653590018 l004 Pi/tanh(340/69*Pi) 3141592653590018 l004 Pi/tanh(271/55*Pi) 3141592653590018 l004 Pi/tanh(473/96*Pi) 3141592653590019 l004 Pi/tanh(202/41*Pi) 3141592653590019 l004 Pi/tanh(537/109*Pi) 3141592653590019 l004 Pi/tanh(335/68*Pi) 3141592653590019 l004 Pi/tanh(468/95*Pi) 3141592653590020 l004 Pi/tanh(133/27*Pi) 3141592653590021 l004 Pi/tanh(463/94*Pi) 3141592653590021 l004 Pi/tanh(330/67*Pi) 3141592653590021 l004 Pi/tanh(527/107*Pi) 3141592653590021 l004 Pi/tanh(197/40*Pi) 3141592653590022 l004 Pi/tanh(458/93*Pi) 3141592653590022 l004 Pi/tanh(261/53*Pi) 3141592653590022 l004 Pi/tanh(586/119*Pi) 3141592653590022 l004 Pi/tanh(325/66*Pi) 3141592653590023 l004 Pi/tanh(389/79*Pi) 3141592653590023 l004 Pi/tanh(453/92*Pi) 3141592653590023 l004 Pi/tanh(517/105*Pi) 3141592653590023 l004 Pi/tanh(581/118*Pi) 3141592653590024 l004 Pi/tanh(64/13*Pi) 3141592653590025 l004 Pi/tanh(571/116*Pi) 3141592653590025 l004 Pi/tanh(507/103*Pi) 3141592653590025 l004 Pi/tanh(443/90*Pi) 3141592653590026 l004 Pi/tanh(379/77*Pi) 3141592653590026 l004 Pi/tanh(315/64*Pi) 3141592653590026 l004 Pi/tanh(566/115*Pi) 3141592653590026 l004 Pi/tanh(251/51*Pi) 3141592653590027 l004 Pi/tanh(438/89*Pi) 3141592653590027 l004 Pi/tanh(187/38*Pi) 3141592653590027 l004 Pi/tanh(497/101*Pi) 3141592653590028 l004 Pi/tanh(310/63*Pi) 3141592653590028 l004 Pi/tanh(433/88*Pi) 3141592653590028 l004 Pi/tanh(556/113*Pi) 3141592653590029 l004 Pi/tanh(123/25*Pi) 3141592653590029 l004 Pi/tanh(551/112*Pi) 3141592653590029 l004 Pi/tanh(428/87*Pi) 3141592653590030 l004 Pi/tanh(305/62*Pi) 3141592653590030 l004 Pi/tanh(487/99*Pi) 3141592653590030 l004 Pi/tanh(182/37*Pi) 3141592653590031 l004 Pi/tanh(423/86*Pi) 3141592653590031 l004 Pi/tanh(241/49*Pi) 3141592653590031 l004 Pi/tanh(541/110*Pi) 3141592653590032 l004 Pi/tanh(300/61*Pi) 3141592653590032 l004 Pi/tanh(359/73*Pi) 3141592653590032 l004 Pi/tanh(418/85*Pi) 3141592653590032 l004 Pi/tanh(477/97*Pi) 3141592653590032 l004 Pi/tanh(536/109*Pi) 3141592653590034 l004 Pi/tanh(59/12*Pi) 3141592653590035 l004 Pi/tanh(585/119*Pi) 3141592653590035 l004 Pi/tanh(526/107*Pi) 3141592653590035 l004 Pi/tanh(467/95*Pi) 3141592653590035 l004 Pi/tanh(408/83*Pi) 3141592653590035 l004 Pi/tanh(349/71*Pi) 3141592653590036 l004 Pi/tanh(290/59*Pi) 3141592653590036 l004 Pi/tanh(521/106*Pi) 3141592653590036 l004 Pi/tanh(231/47*Pi) 3141592653590037 l004 Pi/tanh(403/82*Pi) 3141592653590037 l004 Pi/tanh(575/117*Pi) 3141592653590037 l004 Pi/tanh(172/35*Pi) 3141592653590038 l004 Pi/tanh(457/93*Pi) 3141592653590038 l004 Pi/tanh(285/58*Pi) 3141592653590038 l004 Pi/tanh(398/81*Pi) 3141592653590039 l004 Pi/tanh(511/104*Pi) 3141592653590039 l004 Pi/tanh(113/23*Pi) 3141592653590040 l004 Pi/tanh(506/103*Pi) 3141592653590040 l004 Pi/tanh(393/80*Pi) 3141592653590040 l004 Pi/tanh(280/57*Pi) 3141592653590041 l004 Pi/tanh(447/91*Pi) 3141592653590041 l004 Pi/tanh(167/34*Pi) 3141592653590042 l004 Pi/tanh(555/113*Pi) 3141592653590042 l004 Pi/tanh(388/79*Pi) 3141592653590042 l004 Pi/tanh(221/45*Pi) 3141592653590043 l004 Pi/tanh(496/101*Pi) 3141592653590043 l004 Pi/tanh(275/56*Pi) 3141592653590043 l004 Pi/tanh(329/67*Pi) 3141592653590044 l004 Pi/tanh(383/78*Pi) 3141592653590044 l004 Pi/tanh(437/89*Pi) 3141592653590044 l004 Pi/tanh(491/100*Pi) 3141592653590044 l004 Pi/tanh(545/111*Pi) 3141592653590045 l004 Pi/tanh(54/11*Pi) 3141592653590047 l004 Pi/tanh(589/120*Pi) 3141592653590047 l004 Pi/tanh(535/109*Pi) 3141592653590047 l004 Pi/tanh(481/98*Pi) 3141592653590047 l004 Pi/tanh(427/87*Pi) 3141592653590047 l004 Pi/tanh(373/76*Pi) 3141592653590048 l004 Pi/tanh(319/65*Pi) 3141592653590048 l004 Pi/tanh(584/119*Pi) 3141592653590048 l004 Pi/tanh(265/54*Pi) 3141592653590048 l004 Pi/tanh(476/97*Pi) 3141592653590049 l005 ln(sec(157/50)) 3141592653590049 l004 Pi/tanh(211/43*Pi) 3141592653590049 l004 Pi/tanh(579/118*Pi) 3141592653590049 l004 Pi/tanh(368/75*Pi) 3141592653590049 l004 Pi/tanh(525/107*Pi) 3141592653590050 l004 Pi/tanh(157/32*Pi) 3141592653590050 l004 Pi/tanh(574/117*Pi) 3141592653590051 l004 Pi/tanh(417/85*Pi) 3141592653590051 l004 Pi/tanh(260/53*Pi) 3141592653590051 l004 Pi/tanh(363/74*Pi) 3141592653590052 l004 Pi/tanh(466/95*Pi) 3141592653590052 l004 Pi/tanh(569/116*Pi) 3141592653590052 l004 Pi/tanh(103/21*Pi) 3141592653590053 l004 Pi/tanh(564/115*Pi) 3141592653590053 l004 Pi/tanh(461/94*Pi) 3141592653590053 l004 Pi/tanh(358/73*Pi) 3141592653590054 l004 Pi/tanh(255/52*Pi) 3141592653590054 l004 Pi/tanh(407/83*Pi) 3141592653590054 l004 Pi/tanh(559/114*Pi) 3141592653590055 l004 Pi/tanh(152/31*Pi) 3141592653590055 l004 Pi/tanh(505/103*Pi) 3141592653590056 l004 Pi/tanh(353/72*Pi) 3141592653590056 l004 Pi/tanh(554/113*Pi) 3141592653590056 l004 Pi/tanh(201/41*Pi) 3141592653590057 l004 Pi/tanh(451/92*Pi) 3141592653590057 l004 Pi/tanh(250/51*Pi) 3141592653590057 l004 Pi/tanh(549/112*Pi) 3141592653590057 l004 Pi/tanh(299/61*Pi) 3141592653590058 l004 Pi/tanh(348/71*Pi) 3141592653590058 l004 Pi/tanh(397/81*Pi) 3141592653590058 l004 Pi/tanh(446/91*Pi) 3141592653590059 l004 Pi/tanh(495/101*Pi) 3141592653590059 l004 Pi/tanh(544/111*Pi) 3141592653590060 l004 Pi/tanh(49/10*Pi) 3141592653590062 l004 Pi/tanh(583/119*Pi) 3141592653590062 l004 Pi/tanh(534/109*Pi) 3141592653590062 l004 Pi/tanh(485/99*Pi) 3141592653590062 l004 Pi/tanh(436/89*Pi) 3141592653590062 l004 Pi/tanh(387/79*Pi) 3141592653590063 l004 Pi/tanh(338/69*Pi) 3141592653590063 l004 Pi/tanh(289/59*Pi) 3141592653590063 l004 Pi/tanh(529/108*Pi) 3141592653590064 l004 Pi/tanh(240/49*Pi) 3141592653590064 l004 Pi/tanh(431/88*Pi) 3141592653590065 l004 Pi/tanh(191/39*Pi) 3141592653590065 l004 Pi/tanh(524/107*Pi) 3141592653590065 l004 Pi/tanh(333/68*Pi) 3141592653590065 l004 Pi/tanh(475/97*Pi) 3141592653590066 l004 Pi/tanh(142/29*Pi) 3141592653590067 l004 Pi/tanh(519/106*Pi) 3141592653590067 l004 Pi/tanh(377/77*Pi) 3141592653590067 l004 Pi/tanh(235/48*Pi) 3141592653590068 l004 Pi/tanh(563/115*Pi) 3141592653590068 l004 Pi/tanh(328/67*Pi) 3141592653590068 l004 Pi/tanh(421/86*Pi) 3141592653590068 l004 Pi/tanh(514/105*Pi) 3141592653590069 l004 Pi/tanh(93/19*Pi) 3141592653590070 l004 Pi/tanh(509/104*Pi) 3141592653590070 l004 Pi/tanh(416/85*Pi) 3141592653590071 l004 Pi/tanh(323/66*Pi) 3141592653590071 l004 Pi/tanh(553/113*Pi) 3141592653590071 l004 Pi/tanh(230/47*Pi) 3141592653590072 l004 Pi/tanh(367/75*Pi) 3141592653590072 l004 Pi/tanh(504/103*Pi) 3141592653590072 l004 Pi/tanh(137/28*Pi) 3141592653590073 l004 Pi/tanh(455/93*Pi) 3141592653590073 l004 Pi/tanh(318/65*Pi) 3141592653590074 l004 Pi/tanh(499/102*Pi) 3141592653590074 l004 Pi/tanh(181/37*Pi) 3141592653590075 l004 Pi/tanh(587/120*Pi) 3141592653590075 l004 Pi/tanh(406/83*Pi) 3141592653590075 l004 Pi/tanh(225/46*Pi) 3141592653590076 l004 Pi/tanh(494/101*Pi) 3141592653590076 m001 Pi+gamma(3)^FeigenbaumDelta 3141592653590076 l004 Pi/tanh(269/55*Pi) 3141592653590076 l004 Pi/tanh(582/119*Pi) 3141592653590076 l004 Pi/tanh(313/64*Pi) 3141592653590077 l004 Pi/tanh(357/73*Pi) 3141592653590077 l004 Pi/tanh(401/82*Pi) 3141592653590077 l004 Pi/tanh(445/91*Pi) 3141592653590078 l004 Pi/tanh(489/100*Pi) 3141592653590078 l004 Pi/tanh(533/109*Pi) 3141592653590078 l004 Pi/tanh(577/118*Pi) 3141592653590080 l004 Pi/tanh(44/9*Pi) 3141592653590081 l004 Pi/tanh(567/116*Pi) 3141592653590081 l004 Pi/tanh(523/107*Pi) 3141592653590082 l004 Pi/tanh(479/98*Pi) 3141592653590082 l004 Pi/tanh(435/89*Pi) 3141592653590082 l004 Pi/tanh(391/80*Pi) 3141592653590082 l004 Pi/tanh(347/71*Pi) 3141592653590083 l004 Pi/tanh(303/62*Pi) 3141592653590083 l004 Pi/tanh(562/115*Pi) 3141592653590083 l004 Pi/tanh(259/53*Pi) 3141592653590084 l004 Pi/tanh(474/97*Pi) 3141592653590084 l004 Pi/tanh(215/44*Pi) 3141592653590085 l004 Pi/tanh(386/79*Pi) 3141592653590085 l004 Pi/tanh(557/114*Pi) 3141592653590085 l004 Pi/tanh(171/35*Pi) 3141592653590086 l004 Pi/tanh(469/96*Pi) 3141592653590086 l004 Pi/tanh(298/61*Pi) 3141592653590087 l004 Pi/tanh(425/87*Pi) 3141592653590087 l004 Pi/tanh(552/113*Pi) 3141592653590087 l004 Pi/tanh(127/26*Pi) 3141592653590088 l004 Pi/tanh(464/95*Pi) 3141592653590088 l004 Pi/tanh(337/69*Pi) 3141592653590089 l004 Pi/tanh(547/112*Pi) 3141592653590089 l004 Pi/tanh(210/43*Pi) 3141592653590089 l004 Pi/tanh(503/103*Pi) 3141592653590090 l004 Pi/tanh(293/60*Pi) 3141592653590090 l004 Pi/tanh(376/77*Pi) 3141592653590090 l004 Pi/tanh(459/94*Pi) 3141592653590091 l004 Pi/tanh(542/111*Pi) 3141592653590092 l004 Pi/tanh(83/17*Pi) 3141592653590093 l004 Pi/tanh(537/110*Pi) 3141592653590093 l004 Pi/tanh(454/93*Pi) 3141592653590093 l004 Pi/tanh(371/76*Pi) 3141592653590093 l004 Pi/tanh(288/59*Pi) 3141592653590094 l004 Pi/tanh(493/101*Pi) 3141592653590094 l004 Pi/tanh(205/42*Pi) 3141592653590095 l004 Pi/tanh(532/109*Pi) 3141592653590095 l004 Pi/tanh(327/67*Pi) 3141592653590095 l004 Pi/tanh(449/92*Pi) 3141592653590095 l004 Pi/tanh(571/117*Pi) 3141592653590096 l004 Pi/tanh(122/25*Pi) 3141592653590097 l004 Pi/tanh(527/108*Pi) 3141592653590097 l004 Pi/tanh(405/83*Pi) 3141592653590097 l004 Pi/tanh(283/58*Pi) 3141592653590098 l004 Pi/tanh(444/91*Pi) 3141592653590098 l004 Pi/tanh(161/33*Pi) 3141592653590099 l004 Pi/tanh(522/107*Pi) 3141592653590099 l004 Pi/tanh(361/74*Pi) 3141592653590099 l004 Pi/tanh(561/115*Pi) 3141592653590100 l004 Pi/tanh(200/41*Pi) 3141592653590100 l004 Pi/tanh(439/90*Pi) 3141592653590101 l004 Pi/tanh(239/49*Pi) 3141592653590101 l004 Pi/tanh(517/106*Pi) 3141592653590101 l004 Pi/tanh(278/57*Pi) 3141592653590102 l004 Pi/tanh(317/65*Pi) 3141592653590102 l004 Pi/tanh(356/73*Pi) 3141592653590103 l004 Pi/tanh(395/81*Pi) 3141592653590103 l004 Pi/tanh(434/89*Pi) 3141592653590103 l004 Pi/tanh(473/97*Pi) 3141592653590103 l004 Pi/tanh(512/105*Pi) 3141592653590104 l004 Pi/tanh(551/113*Pi) 3141592653590106 l004 Pi/tanh(39/8*Pi) 3141592653590108 l004 Pi/tanh(580/119*Pi) 3141592653590108 l004 Pi/tanh(541/111*Pi) 3141592653590108 l004 Pi/tanh(502/103*Pi) 3141592653590108 l004 Pi/tanh(463/95*Pi) 3141592653590109 l004 Pi/tanh(424/87*Pi) 3141592653590109 l004 Pi/tanh(385/79*Pi) 3141592653590109 l004 Pi/tanh(346/71*Pi) 3141592653590110 l004 Pi/tanh(307/63*Pi) 3141592653590110 l004 Pi/tanh(575/118*Pi) 3141592653590110 l004 Pi/tanh(268/55*Pi) 3141592653590111 l004 Pi/tanh(497/102*Pi) 3141592653590111 l004 Pi/tanh(229/47*Pi) 3141592653590111 l004 Pi/tanh(419/86*Pi) 3141592653590112 l004 Pi/tanh(190/39*Pi) 3141592653590113 l004 Pi/tanh(531/109*Pi) 3141592653590113 l004 Pi/tanh(341/70*Pi) 3141592653590113 l004 Pi/tanh(492/101*Pi) 3141592653590114 l004 Pi/tanh(151/31*Pi) 3141592653590114 l004 Pi/tanh(565/116*Pi) 3141592653590115 l004 Pi/tanh(414/85*Pi) 3141592653590115 l004 Pi/tanh(263/54*Pi) 3141592653590115 l004 Pi/tanh(375/77*Pi) 3141592653590116 l004 Pi/tanh(487/100*Pi) 3141592653590117 l004 Pi/tanh(112/23*Pi) 3141592653590117 l004 Pi/tanh(521/107*Pi) 3141592653590118 l004 Pi/tanh(409/84*Pi) 3141592653590118 l004 Pi/tanh(297/61*Pi) 3141592653590118 l004 Pi/tanh(482/99*Pi) 3141592653590119 l004 Pi/tanh(185/38*Pi) 3141592653590119 l005 ln(sec(641/68)) 3141592653590120 l004 Pi/tanh(443/91*Pi) 3141592653590120 l004 Pi/tanh(258/53*Pi) 3141592653590121 l004 Pi/tanh(331/68*Pi) 3141592653590121 l004 Pi/tanh(404/83*Pi) 3141592653590121 l004 Pi/tanh(477/98*Pi) 3141592653590121 l004 Pi/tanh(550/113*Pi) 3141592653590123 l004 Pi/tanh(73/15*Pi) 3141592653590124 l004 Pi/tanh(545/112*Pi) 3141592653590124 l004 Pi/tanh(472/97*Pi) 3141592653590124 l004 Pi/tanh(399/82*Pi) 3141592653590125 l004 Pi/tanh(326/67*Pi) 3141592653590125 l004 Pi/tanh(579/119*Pi) 3141592653590125 l004 Pi/tanh(253/52*Pi) 3141592653590126 l004 Pi/tanh(433/89*Pi) 3141592653590126 l005 ln(sec(245/26)) 3141592653590126 l004 Pi/tanh(180/37*Pi) 3141592653590127 l004 Pi/tanh(467/96*Pi) 3141592653590127 l004 Pi/tanh(287/59*Pi) 3141592653590128 l004 Pi/tanh(394/81*Pi) 3141592653590128 l004 Pi/tanh(501/103*Pi) 3141592653590129 l004 Pi/tanh(107/22*Pi) 3141592653590130 l004 Pi/tanh(569/117*Pi) 3141592653590130 l004 Pi/tanh(462/95*Pi) 3141592653590130 l004 Pi/tanh(355/73*Pi) 3141592653590131 l004 Pi/tanh(248/51*Pi) 3141592653590131 l004 Pi/tanh(389/80*Pi) 3141592653590132 l004 Pi/tanh(530/109*Pi) 3141592653590132 l004 Pi/tanh(141/29*Pi) 3141592653590133 l004 Pi/tanh(457/94*Pi) 3141592653590133 l004 Pi/tanh(316/65*Pi) 3141592653590134 l004 Pi/tanh(491/101*Pi) 3141592653590134 l004 Pi/tanh(175/36*Pi) 3141592653590135 l004 Pi/tanh(559/115*Pi) 3141592653590135 l004 Pi/tanh(384/79*Pi) 3141592653590136 l004 Pi/tanh(209/43*Pi) 3141592653590136 l004 Pi/tanh(452/93*Pi) 3141592653590137 l004 Pi/tanh(243/50*Pi) 3141592653590137 l004 Pi/tanh(520/107*Pi) 3141592653590137 l004 Pi/tanh(277/57*Pi) 3141592653590138 l004 Pi/tanh(311/64*Pi) 3141592653590138 l004 Pi/tanh(345/71*Pi) 3141592653590139 l004 Pi/tanh(379/78*Pi) 3141592653590139 l004 Pi/tanh(413/85*Pi) 3141592653590139 l004 Pi/tanh(447/92*Pi) 3141592653590140 l004 Pi/tanh(481/99*Pi) 3141592653590140 l004 Pi/tanh(515/106*Pi) 3141592653590140 l004 Pi/tanh(549/113*Pi) 3141592653590140 l004 Pi/tanh(583/120*Pi) 3141592653590143 l004 Pi/tanh(34/7*Pi) 3141592653590146 l004 Pi/tanh(573/118*Pi) 3141592653590146 l004 Pi/tanh(539/111*Pi) 3141592653590146 l004 Pi/tanh(505/104*Pi) 3141592653590146 l004 Pi/tanh(471/97*Pi) 3141592653590146 l004 Pi/tanh(437/90*Pi) 3141592653590147 l004 Pi/tanh(403/83*Pi) 3141592653590147 l004 Pi/tanh(369/76*Pi) 3141592653590147 l004 Pi/tanh(335/69*Pi) 3141592653590148 l004 Pi/tanh(301/62*Pi) 3141592653590148 l004 Pi/tanh(568/117*Pi) 3141592653590149 l004 Pi/tanh(267/55*Pi) 3141592653590149 l004 Pi/tanh(500/103*Pi) 3141592653590149 l004 Pi/tanh(233/48*Pi) 3141592653590150 l004 Pi/tanh(432/89*Pi) 3141592653590151 l004 Pi/tanh(199/41*Pi) 3141592653590151 l004 Pi/tanh(563/116*Pi) 3141592653590151 l004 Pi/tanh(364/75*Pi) 3141592653590152 l004 Pi/tanh(529/109*Pi) 3141592653590152 l004 Pi/tanh(165/34*Pi) 3141592653590153 l004 Pi/tanh(461/95*Pi) 3141592653590153 l004 Pi/tanh(296/61*Pi) 3141592653590154 l004 Pi/tanh(427/88*Pi) 3141592653590154 l004 Pi/tanh(558/115*Pi) 3141592653590155 l004 Pi/tanh(131/27*Pi) 3141592653590156 l004 Pi/tanh(490/101*Pi) 3141592653590156 l004 Pi/tanh(359/74*Pi) 3141592653590157 l004 Pi/tanh(228/47*Pi) 3141592653590157 l004 Pi/tanh(553/114*Pi) 3141592653590157 l004 Pi/tanh(325/67*Pi) 3141592653590158 l004 Pi/tanh(422/87*Pi) 3141592653590158 l004 Pi/tanh(519/107*Pi) 3141592653590159 l004 Pi/tanh(97/20*Pi) 3141592653590160 l004 Pi/tanh(548/113*Pi) 3141592653590160 l004 Pi/tanh(451/93*Pi) 3141592653590161 l004 Pi/tanh(354/73*Pi) 3141592653590161 l004 Pi/tanh(257/53*Pi) 3141592653590162 l004 Pi/tanh(417/86*Pi) 3141592653590162 l004 Pi/tanh(577/119*Pi) 3141592653590162 l004 Pi/tanh(160/33*Pi) 3141592653590163 l004 Pi/tanh(543/112*Pi) 3141592653590163 l004 Pi/tanh(383/79*Pi) 3141592653590164 l004 Pi/tanh(223/46*Pi) 3141592653590164 l004 Pi/tanh(509/105*Pi) 3141592653590165 l004 Pi/tanh(286/59*Pi) 3141592653590165 l004 Pi/tanh(349/72*Pi) 3141592653590166 l004 Pi/tanh(412/85*Pi) 3141592653590166 l004 Pi/tanh(475/98*Pi) 3141592653590166 l004 Pi/tanh(538/111*Pi) 3141592653590168 l004 Pi/tanh(63/13*Pi) 3141592653590170 l004 Pi/tanh(533/110*Pi) 3141592653590170 l004 Pi/tanh(470/97*Pi) 3141592653590170 l004 Pi/tanh(407/84*Pi) 3141592653590170 l004 Pi/tanh(344/71*Pi) 3141592653590171 l004 Pi/tanh(281/58*Pi) 3141592653590171 l004 Pi/tanh(499/103*Pi) 3141592653590172 l004 Pi/tanh(218/45*Pi) 3141592653590173 l004 Pi/tanh(373/77*Pi) 3141592653590173 l004 Pi/tanh(528/109*Pi) 3141592653590174 l004 Pi/tanh(155/32*Pi) 3141592653590174 l004 Pi/tanh(557/115*Pi) 3141592653590175 l004 Pi/tanh(402/83*Pi) 3141592653590175 l004 Pi/tanh(247/51*Pi) 3141592653590176 l004 Pi/tanh(339/70*Pi) 3141592653590176 l004 Pi/tanh(431/89*Pi) 3141592653590176 l004 Pi/tanh(523/108*Pi) 3141592653590178 l004 Pi/tanh(92/19*Pi) 3141592653590179 l004 Pi/tanh(581/120*Pi) 3141592653590179 l004 Pi/tanh(489/101*Pi) 3141592653590179 l004 Pi/tanh(397/82*Pi) 3141592653590180 l004 Pi/tanh(305/63*Pi) 3141592653590180 l004 Pi/tanh(518/107*Pi) 3141592653590180 l004 Pi/tanh(213/44*Pi) 3141592653590181 l004 Pi/tanh(547/113*Pi) 3141592653590181 l004 Pi/tanh(334/69*Pi) 3141592653590182 l004 Pi/tanh(455/94*Pi) 3141592653590182 l004 Pi/tanh(576/119*Pi) 3141592653590183 l004 Pi/tanh(121/25*Pi) 3141592653590184 l004 Pi/tanh(513/106*Pi) 3141592653590184 l004 Pi/tanh(392/81*Pi) 3141592653590184 l004 Pi/tanh(271/56*Pi) 3141592653590185 l004 Pi/tanh(421/87*Pi) 3141592653590185 l004 Pi/tanh(571/118*Pi) 3141592653590186 l004 Pi/tanh(150/31*Pi) 3141592653590187 l004 Pi/tanh(479/99*Pi) 3141592653590187 l004 Pi/tanh(329/68*Pi) 3141592653590187 l004 Pi/tanh(508/105*Pi) 3141592653590188 l004 Pi/tanh(179/37*Pi) 3141592653590189 l004 Pi/tanh(566/117*Pi) 3141592653590189 l004 Pi/tanh(387/80*Pi) 3141592653590190 l004 Pi/tanh(208/43*Pi) 3141592653590190 l004 Pi/tanh(445/92*Pi) 3141592653590191 l004 Pi/tanh(237/49*Pi) 3141592653590191 l004 Pi/tanh(503/104*Pi) 3141592653590192 l004 Pi/tanh(266/55*Pi) 3141592653590192 l004 Pi/tanh(561/116*Pi) 3141592653590192 l004 Pi/tanh(295/61*Pi) 3141592653590193 l004 Pi/tanh(324/67*Pi) 3141592653590194 l004 Pi/tanh(353/73*Pi) 3141592653590194 l004 Pi/tanh(382/79*Pi) 3141592653590194 l004 Pi/tanh(411/85*Pi) 3141592653590195 l004 Pi/tanh(440/91*Pi) 3141592653590195 l004 Pi/tanh(469/97*Pi) 3141592653590195 l004 Pi/tanh(498/103*Pi) 3141592653590195 l004 Pi/tanh(527/109*Pi) 3141592653590196 l004 Pi/tanh(556/115*Pi) 3141592653590199 l004 Pi/tanh(29/6*Pi) 3141592653590203 l004 Pi/tanh(575/119*Pi) 3141592653590203 l004 Pi/tanh(546/113*Pi) 3141592653590203 l004 Pi/tanh(517/107*Pi) 3141592653590204 l004 Pi/tanh(488/101*Pi) 3141592653590204 l004 Pi/tanh(459/95*Pi) 3141592653590204 l004 Pi/tanh(430/89*Pi) 3141592653590205 l004 Pi/tanh(401/83*Pi) 3141592653590205 l004 Pi/tanh(372/77*Pi) 3141592653590205 l004 Pi/tanh(343/71*Pi) 3141592653590206 l004 Pi/tanh(314/65*Pi) 3141592653590207 l004 Pi/tanh(285/59*Pi) 3141592653590207 l004 Pi/tanh(541/112*Pi) 3141592653590207 l004 Pi/tanh(256/53*Pi) 3141592653590208 l004 Pi/tanh(483/100*Pi) 3141592653590209 l004 Pi/tanh(227/47*Pi) 3141592653590209 l004 Pi/tanh(425/88*Pi) 3141592653590210 l004 Pi/tanh(198/41*Pi) 3141592653590210 l004 Pi/tanh(565/117*Pi) 3141592653590211 l004 Pi/tanh(367/76*Pi) 3141592653590211 l004 Pi/tanh(536/111*Pi) 3141592653590212 l004 Pi/tanh(169/35*Pi) 3141592653590212 l004 Pi/tanh(478/99*Pi) 3141592653590213 l004 Pi/tanh(309/64*Pi) 3141592653590213 l004 Pi/tanh(449/93*Pi) 3141592653590214 l004 Pi/tanh(140/29*Pi) 3141592653590215 l004 Pi/tanh(531/110*Pi) 3141592653590215 l004 Pi/tanh(391/81*Pi) 3141592653590216 l004 Pi/tanh(251/52*Pi) 3141592653590217 l004 Pi/tanh(362/75*Pi) 3141592653590217 l004 Pi/tanh(473/98*Pi) 3141592653590218 l005 ln(sec(292/93)) 3141592653590218 l004 Pi/tanh(111/23*Pi) 3141592653590219 l004 Pi/tanh(526/109*Pi) 3141592653590220 l004 Pi/tanh(415/86*Pi) 3141592653590220 l004 Pi/tanh(304/63*Pi) 3141592653590221 l004 Pi/tanh(497/103*Pi) 3141592653590221 l004 Pi/tanh(193/40*Pi) 3141592653590222 l004 Pi/tanh(468/97*Pi) 3141592653590222 l004 Pi/tanh(275/57*Pi) 3141592653590223 l004 Pi/tanh(357/74*Pi) 3141592653590223 l004 Pi/tanh(439/91*Pi) 3141592653590224 l004 Pi/tanh(521/108*Pi) 3141592653590225 l004 Pi/tanh(82/17*Pi) 3141592653590227 l004 Pi/tanh(545/113*Pi) 3141592653590227 l004 Pi/tanh(463/96*Pi) 3141592653590227 l004 Pi/tanh(381/79*Pi) 3141592653590228 l004 Pi/tanh(299/62*Pi) 3141592653590228 l004 Pi/tanh(516/107*Pi) 3141592653590229 l004 Pi/tanh(217/45*Pi) 3141592653590229 l004 Pi/tanh(569/118*Pi) 3141592653590230 l004 Pi/tanh(352/73*Pi) 3141592653590230 l004 Pi/tanh(487/101*Pi) 3141592653590231 l004 Pi/tanh(135/28*Pi) 3141592653590232 l004 Pi/tanh(458/95*Pi) 3141592653590232 l004 Pi/tanh(323/67*Pi) 3141592653590233 l004 Pi/tanh(511/106*Pi) 3141592653590233 l004 Pi/tanh(188/39*Pi) 3141592653590234 l004 Pi/tanh(429/89*Pi) 3141592653590235 l004 Pi/tanh(241/50*Pi) 3141592653590235 l004 Pi/tanh(535/111*Pi) 3141592653590236 l004 Pi/tanh(294/61*Pi) 3141592653590236 l004 Pi/tanh(347/72*Pi) 3141592653590237 l004 Pi/tanh(400/83*Pi) 3141592653590237 l004 Pi/tanh(453/94*Pi) 3141592653590238 l004 Pi/tanh(506/105*Pi) 3141592653590238 l004 Pi/tanh(559/116*Pi) 3141592653590240 l004 Pi/tanh(53/11*Pi) 3141592653590242 l004 Pi/tanh(554/115*Pi) 3141592653590242 l004 Pi/tanh(501/104*Pi) 3141592653590243 l004 Pi/tanh(448/93*Pi) 3141592653590243 l004 Pi/tanh(395/82*Pi) 3141592653590244 l004 Pi/tanh(342/71*Pi) 3141592653590244 l004 Pi/tanh(289/60*Pi) 3141592653590245 l004 Pi/tanh(525/109*Pi) 3141592653590245 l004 Pi/tanh(236/49*Pi) 3141592653590246 l004 Pi/tanh(419/87*Pi) 3141592653590247 l004 Pi/tanh(183/38*Pi) 3141592653590247 l004 Pi/tanh(496/103*Pi) 3141592653590248 l004 Pi/tanh(313/65*Pi) 3141592653590248 l004 Pi/tanh(443/92*Pi) 3141592653590249 l004 Pi/tanh(573/119*Pi) 3141592653590250 l004 Pi/tanh(130/27*Pi) 3141592653590251 l004 Pi/tanh(467/97*Pi) 3141592653590251 l004 Pi/tanh(337/70*Pi) 3141592653590251 l004 Pi/tanh(544/113*Pi) 3141592653590252 l004 Pi/tanh(207/43*Pi) 3141592653590253 l004 Pi/tanh(491/102*Pi) 3141592653590253 l004 Pi/tanh(284/59*Pi) 3141592653590254 l004 Pi/tanh(361/75*Pi) 3141592653590254 l004 Pi/tanh(438/91*Pi) 3141592653590255 l004 Pi/tanh(515/107*Pi) 3141592653590256 l004 Pi/tanh(77/16*Pi) 3141592653590258 l004 Pi/tanh(563/117*Pi) 3141592653590258 l004 Pi/tanh(486/101*Pi) 3141592653590258 l004 Pi/tanh(409/85*Pi) 3141592653590259 l004 Pi/tanh(332/69*Pi) 3141592653590260 l004 Pi/tanh(255/53*Pi) 3141592653590260 l004 Pi/tanh(433/90*Pi) 3141592653590261 l004 Pi/tanh(178/37*Pi) 3141592653590262 l004 Pi/tanh(457/95*Pi) 3141592653590263 l004 Pi/tanh(279/58*Pi) 3141592653590263 l004 Pi/tanh(380/79*Pi) 3141592653590264 l004 Pi/tanh(481/100*Pi) 3141592653590265 l004 Pi/tanh(101/21*Pi) 3141592653590266 l004 Pi/tanh(529/110*Pi) 3141592653590267 l004 Pi/tanh(428/89*Pi) 3141592653590267 l004 Pi/tanh(327/68*Pi) 3141592653590267 l004 Pi/tanh(553/115*Pi) 3141592653590268 l004 Pi/tanh(226/47*Pi) 3141592653590269 l004 Pi/tanh(577/120*Pi) 3141592653590269 l004 Pi/tanh(351/73*Pi) 3141592653590269 l004 Pi/tanh(476/99*Pi) 3141592653590270 l004 Pi/tanh(125/26*Pi) 3141592653590272 l004 Pi/tanh(524/109*Pi) 3141592653590272 l004 Pi/tanh(399/83*Pi) 3141592653590272 l004 Pi/tanh(274/57*Pi) 3141592653590273 l004 Pi/tanh(423/88*Pi) 3141592653590273 l004 Pi/tanh(572/119*Pi) 3141592653590274 l004 Pi/tanh(149/31*Pi) 3141592653590275 l004 Pi/tanh(471/98*Pi) 3141592653590276 l004 Pi/tanh(322/67*Pi) 3141592653590276 l004 Pi/tanh(495/103*Pi) 3141592653590277 l004 Pi/tanh(173/36*Pi) 3141592653590278 l004 Pi/tanh(543/113*Pi) 3141592653590278 l004 Pi/tanh(370/77*Pi) 3141592653590278 l004 Pi/tanh(567/118*Pi) 3141592653590279 l004 Pi/tanh(197/41*Pi) 3141592653590280 l004 Pi/tanh(418/87*Pi) 3141592653590281 l004 Pi/tanh(221/46*Pi) 3141592653590281 l004 Pi/tanh(466/97*Pi) 3141592653590282 l004 Pi/tanh(245/51*Pi) 3141592653590282 l004 Pi/tanh(514/107*Pi) 3141592653590283 l004 Pi/tanh(269/56*Pi) 3141592653590283 l004 Pi/tanh(562/117*Pi) 3141592653590284 l004 Pi/tanh(293/61*Pi) 3141592653590285 l004 Pi/tanh(317/66*Pi) 3141592653590285 l004 Pi/tanh(341/71*Pi) 3141592653590286 l004 Pi/tanh(365/76*Pi) 3141592653590286 l004 Pi/tanh(389/81*Pi) 3141592653590287 l004 Pi/tanh(413/86*Pi) 3141592653590287 l004 Pi/tanh(437/91*Pi) 3141592653590288 l004 Pi/tanh(461/96*Pi) 3141592653590288 l004 Pi/tanh(485/101*Pi) 3141592653590288 l004 Pi/tanh(509/106*Pi) 3141592653590288 l004 Pi/tanh(533/111*Pi) 3141592653590289 l004 Pi/tanh(557/116*Pi) 3141592653590294 l004 Pi/tanh(24/5*Pi) 3141592653590299 l005 ln(sec(707/75)) 3141592653590299 l004 Pi/tanh(571/119*Pi) 3141592653590300 l004 Pi/tanh(547/114*Pi) 3141592653590300 l004 Pi/tanh(523/109*Pi) 3141592653590300 l004 Pi/tanh(499/104*Pi) 3141592653590301 l004 Pi/tanh(475/99*Pi) 3141592653590301 l004 Pi/tanh(451/94*Pi) 3141592653590301 l004 Pi/tanh(427/89*Pi) 3141592653590302 l004 Pi/tanh(403/84*Pi) 3141592653590302 l004 Pi/tanh(379/79*Pi) 3141592653590303 l004 Pi/tanh(355/74*Pi) 3141592653590303 l004 Pi/tanh(331/69*Pi) 3141592653590304 l004 Pi/tanh(307/64*Pi) 3141592653590305 l004 Pi/tanh(283/59*Pi) 3141592653590305 l004 Pi/tanh(542/113*Pi) 3141592653590306 l004 Pi/tanh(259/54*Pi) 3141592653590307 l004 Pi/tanh(494/103*Pi) 3141592653590307 l004 Pi/tanh(235/49*Pi) 3141592653590308 l004 Pi/tanh(446/93*Pi) 3141592653590309 l004 Pi/tanh(211/44*Pi) 3141592653590310 l004 Pi/tanh(398/83*Pi) 3141592653590311 l004 Pi/tanh(187/39*Pi) 3141592653590311 l004 Pi/tanh(537/112*Pi) 3141592653590312 l004 Pi/tanh(350/73*Pi) 3141592653590312 l004 Pi/tanh(513/107*Pi) 3141592653590313 l004 Pi/tanh(163/34*Pi) 3141592653590314 l004 Pi/tanh(465/97*Pi) 3141592653590315 l004 Pi/tanh(302/63*Pi) 3141592653590315 l004 Pi/tanh(441/92*Pi) 3141592653590316 l004 Pi/tanh(139/29*Pi) 3141592653590317 l004 Pi/tanh(532/111*Pi) 3141592653590318 l004 Pi/tanh(393/82*Pi) 3141592653590318 l004 Pi/tanh(254/53*Pi) 3141592653590319 l004 Pi/tanh(369/77*Pi) 3141592653590320 l004 Pi/tanh(484/101*Pi) 3141592653590321 l004 Pi/tanh(115/24*Pi) 3141592653590322 l004 Pi/tanh(551/115*Pi) 3141592653590323 l004 Pi/tanh(436/91*Pi) 3141592653590323 l004 Pi/tanh(321/67*Pi) 3141592653590324 l004 Pi/tanh(527/110*Pi) 3141592653590324 l004 Pi/tanh(206/43*Pi) 3141592653590325 l004 Pi/tanh(503/105*Pi) 3141592653590326 l004 Pi/tanh(297/62*Pi) 3141592653590326 l004 Pi/tanh(388/81*Pi) 3141592653590327 l004 Pi/tanh(479/100*Pi) 3141592653590327 l004 Pi/tanh(570/119*Pi) 3141592653590328 l004 Pi/tanh(91/19*Pi) 3141592653590330 l004 Pi/tanh(522/109*Pi) 3141592653590330 l004 Pi/tanh(431/90*Pi) 3141592653590331 l004 Pi/tanh(340/71*Pi) 3141592653590332 l004 Pi/tanh(249/52*Pi) 3141592653590333 l004 Pi/tanh(407/85*Pi) 3141592653590333 l004 Pi/tanh(565/118*Pi) 3141592653590334 l004 Pi/tanh(158/33*Pi) 3141592653590335 l004 Pi/tanh(541/113*Pi) 3141592653590335 l004 Pi/tanh(383/80*Pi) 3141592653590336 l004 Pi/tanh(225/47*Pi) 3141592653590337 l004 Pi/tanh(517/108*Pi) 3141592653590337 l004 Pi/tanh(292/61*Pi) 3141592653590338 l004 Pi/tanh(359/75*Pi) 3141592653590338 l004 Pi/tanh(426/89*Pi) 3141592653590339 l004 Pi/tanh(493/103*Pi) 3141592653590339 l004 Pi/tanh(560/117*Pi) 3141592653590341 l004 Pi/tanh(67/14*Pi) 3141592653590344 l004 Pi/tanh(512/107*Pi) 3141592653590344 l004 Pi/tanh(445/93*Pi) 3141592653590344 l004 Pi/tanh(378/79*Pi) 3141592653590345 l004 Pi/tanh(311/65*Pi) 3141592653590345 l004 Pi/tanh(555/116*Pi) 3141592653590346 l004 Pi/tanh(244/51*Pi) 3141592653590347 l004 Pi/tanh(421/88*Pi) 3141592653590348 l004 Pi/tanh(177/37*Pi) 3141592653590349 l004 Pi/tanh(464/97*Pi) 3141592653590349 l004 Pi/tanh(287/60*Pi) 3141592653590350 l004 Pi/tanh(397/83*Pi) 3141592653590351 l004 Pi/tanh(507/106*Pi) 3141592653590352 l004 Pi/tanh(110/23*Pi) 3141592653590354 l004 Pi/tanh(483/101*Pi) 3141592653590354 l004 Pi/tanh(373/78*Pi) 3141592653590355 l004 Pi/tanh(263/55*Pi) 3141592653590356 l004 Pi/tanh(416/87*Pi) 3141592653590356 l004 Pi/tanh(569/119*Pi) 3141592653590357 l004 Pi/tanh(153/32*Pi) 3141592653590358 l004 Pi/tanh(502/105*Pi) 3141592653590358 l004 Pi/tanh(349/73*Pi) 3141592653590359 l004 Pi/tanh(545/114*Pi) 3141592653590360 l004 Pi/tanh(196/41*Pi) 3141592653590360 l004 Pi/tanh(435/91*Pi) 3141592653590361 l004 Pi/tanh(239/50*Pi) 3141592653590362 l004 Pi/tanh(521/109*Pi) 3141592653590362 l004 Pi/tanh(282/59*Pi) 3141592653590363 l004 Pi/tanh(325/68*Pi) 3141592653590364 l004 Pi/tanh(368/77*Pi) 3141592653590365 l004 Pi/tanh(411/86*Pi) 3141592653590365 l004 Pi/tanh(454/95*Pi) 3141592653590365 l004 Pi/tanh(497/104*Pi) 3141592653590366 l004 Pi/tanh(540/113*Pi) 3141592653590369 l004 Pi/tanh(43/9*Pi) 3141592653590373 l004 Pi/tanh(535/112*Pi) 3141592653590373 l004 Pi/tanh(492/103*Pi) 3141592653590374 l004 Pi/tanh(449/94*Pi) 3141592653590374 l004 Pi/tanh(406/85*Pi) 3141592653590375 l004 Pi/tanh(363/76*Pi) 3141592653590375 l004 Pi/tanh(320/67*Pi) 3141592653590375 m001 ZetaQ(4)^(Pi*csc(5/24*Pi)/GAMMA(19/24))+Pi 3141592653590376 l004 Pi/tanh(277/58*Pi) 3141592653590377 l004 Pi/tanh(511/107*Pi) 3141592653590378 l004 Pi/tanh(234/49*Pi) 3141592653590378 l004 Pi/tanh(425/89*Pi) 3141592653590379 l004 Pi/tanh(191/40*Pi) 3141592653590380 l004 Pi/tanh(530/111*Pi) 3141592653590381 l004 Pi/tanh(339/71*Pi) 3141592653590381 l004 Pi/tanh(487/102*Pi) 3141592653590382 l004 Pi/tanh(148/31*Pi) 3141592653590383 l004 Pi/tanh(549/115*Pi) 3141592653590384 l004 Pi/tanh(401/84*Pi) 3141592653590385 l004 Pi/tanh(253/53*Pi) 3141592653590386 l004 Pi/tanh(358/75*Pi) 3141592653590386 l004 Pi/tanh(463/97*Pi) 3141592653590386 l004 Pi/tanh(568/119*Pi) 3141592653590388 l004 Pi/tanh(105/22*Pi) 3141592653590390 l004 Pi/tanh(482/101*Pi) 3141592653590390 l004 Pi/tanh(377/79*Pi) 3141592653590391 l004 Pi/tanh(272/57*Pi) 3141592653590392 l004 Pi/tanh(439/92*Pi) 3141592653590393 l004 Pi/tanh(167/35*Pi) 3141592653590394 l004 Pi/tanh(563/118*Pi) 3141592653590394 l004 Pi/tanh(396/83*Pi) 3141592653590395 l004 Pi/tanh(229/48*Pi) 3141592653590396 l004 Pi/tanh(520/109*Pi) 3141592653590396 l004 Pi/tanh(291/61*Pi) 3141592653590397 l004 Pi/tanh(353/74*Pi) 3141592653590398 l004 Pi/tanh(415/87*Pi) 3141592653590398 l004 Pi/tanh(477/100*Pi) 3141592653590398 l004 Pi/tanh(539/113*Pi) 3141592653590401 l004 Pi/tanh(62/13*Pi) 3141592653590404 l004 Pi/tanh(515/108*Pi) 3141592653590404 l004 Pi/tanh(453/95*Pi) 3141592653590405 l004 Pi/tanh(391/82*Pi) 3141592653590405 l004 Pi/tanh(329/69*Pi) 3141592653590406 l004 Pi/tanh(267/56*Pi) 3141592653590407 l004 Pi/tanh(472/99*Pi) 3141592653590408 l004 Pi/tanh(205/43*Pi) 3141592653590409 l004 Pi/tanh(553/116*Pi) 3141592653590409 l004 Pi/tanh(348/73*Pi) 3141592653590410 l004 Pi/tanh(491/103*Pi) 3141592653590411 l004 Pi/tanh(143/30*Pi) 3141592653590412 l004 Pi/tanh(510/107*Pi) 3141592653590413 l004 Pi/tanh(367/77*Pi) 3141592653590414 l004 Pi/tanh(224/47*Pi) 3141592653590414 l004 Pi/tanh(529/111*Pi) 3141592653590415 l004 Pi/tanh(305/64*Pi) 3141592653590416 l004 Pi/tanh(386/81*Pi) 3141592653590416 l004 Pi/tanh(467/98*Pi) 3141592653590417 l004 Pi/tanh(548/115*Pi) 3141592653590419 l004 Pi/tanh(81/17*Pi) 3141592653590421 l004 Pi/tanh(505/106*Pi) 3141592653590421 l004 Pi/tanh(424/89*Pi) 3141592653590422 l004 Pi/tanh(343/72*Pi) 3141592653590423 l004 Pi/tanh(262/55*Pi) 3141592653590424 l004 Pi/tanh(443/93*Pi) 3141592653590425 l004 Pi/tanh(181/38*Pi) 3141592653590426 l004 Pi/tanh(462/97*Pi) 3141592653590426 l004 Pi/tanh(281/59*Pi) 3141592653590427 l004 Pi/tanh(381/80*Pi) 3141592653590428 l004 Pi/tanh(481/101*Pi) 3141592653590430 l004 Pi/tanh(100/21*Pi) 3141592653590431 l004 Pi/tanh(519/109*Pi) 3141592653590432 l004 Pi/tanh(419/88*Pi) 3141592653590433 l004 Pi/tanh(319/67*Pi) 3141592653590433 l004 Pi/tanh(538/113*Pi) 3141592653590434 l004 Pi/tanh(219/46*Pi) 3141592653590435 l004 Pi/tanh(557/117*Pi) 3141592653590435 l004 Pi/tanh(338/71*Pi) 3141592653590436 l004 Pi/tanh(457/96*Pi) 3141592653590437 l004 Pi/tanh(119/25*Pi) 3141592653590439 l004 Pi/tanh(495/104*Pi) 3141592653590439 l004 Pi/tanh(376/79*Pi) 3141592653590440 l004 Pi/tanh(257/54*Pi) 3141592653590441 l004 Pi/tanh(395/83*Pi) 3141592653590442 l004 Pi/tanh(533/112*Pi) 3141592653590443 l004 Pi/tanh(138/29*Pi) 3141592653590444 l004 Pi/tanh(571/120*Pi) 3141592653590445 l004 Pi/tanh(433/91*Pi) 3141592653590445 l004 Pi/tanh(295/62*Pi) 3141592653590446 l004 Pi/tanh(452/95*Pi) 3141592653590447 l004 Pi/tanh(157/33*Pi) 3141592653590448 l004 Pi/tanh(490/103*Pi) 3141592653590449 l004 Pi/tanh(333/70*Pi) 3141592653590450 l004 Pi/tanh(509/107*Pi) 3141592653590451 l004 Pi/tanh(176/37*Pi) 3141592653590452 l004 Pi/tanh(547/115*Pi) 3141592653590452 l004 Pi/tanh(371/78*Pi) 3141592653590453 l004 Pi/tanh(566/119*Pi) 3141592653590453 l004 Pi/tanh(195/41*Pi) 3141592653590455 l004 Pi/tanh(409/86*Pi) 3141592653590456 l004 Pi/tanh(214/45*Pi) 3141592653590457 l004 Pi/tanh(447/94*Pi) 3141592653590458 l004 Pi/tanh(233/49*Pi) 3141592653590458 l004 Pi/tanh(485/102*Pi) 3141592653590459 l004 Pi/tanh(252/53*Pi) 3141592653590460 l004 Pi/tanh(523/110*Pi) 3141592653590461 l004 Pi/tanh(271/57*Pi) 3141592653590461 l004 Pi/tanh(561/118*Pi) 3141592653590462 l004 Pi/tanh(290/61*Pi) 3141592653590463 l004 Pi/tanh(309/65*Pi) 3141592653590464 l004 Pi/tanh(328/69*Pi) 3141592653590465 l004 Pi/tanh(347/73*Pi) 3141592653590465 l004 Pi/tanh(366/77*Pi) 3141592653590466 l004 Pi/tanh(385/81*Pi) 3141592653590467 l004 Pi/tanh(404/85*Pi) 3141592653590467 l004 Pi/tanh(423/89*Pi) 3141592653590468 l004 Pi/tanh(442/93*Pi) 3141592653590468 l004 Pi/tanh(461/97*Pi) 3141592653590469 l004 Pi/tanh(480/101*Pi) 3141592653590469 l004 Pi/tanh(499/105*Pi) 3141592653590469 l004 Pi/tanh(518/109*Pi) 3141592653590470 l004 Pi/tanh(537/113*Pi) 3141592653590470 l004 Pi/tanh(556/117*Pi) 3141592653590479 l004 Pi/tanh(19/4*Pi) 3141592653590488 l004 Pi/tanh(565/119*Pi) 3141592653590489 l004 Pi/tanh(546/115*Pi) 3141592653590489 l004 Pi/tanh(527/111*Pi) 3141592653590489 l004 Pi/tanh(508/107*Pi) 3141592653590490 l004 Pi/tanh(489/103*Pi) 3141592653590490 l004 Pi/tanh(470/99*Pi) 3141592653590491 l004 Pi/tanh(451/95*Pi) 3141592653590491 l004 Pi/tanh(432/91*Pi) 3141592653590492 l004 Pi/tanh(413/87*Pi) 3141592653590492 l004 Pi/tanh(394/83*Pi) 3141592653590493 l004 Pi/tanh(375/79*Pi) 3141592653590494 l004 Pi/tanh(356/75*Pi) 3141592653590495 l004 Pi/tanh(337/71*Pi) 3141592653590495 l004 Pi/tanh(318/67*Pi) 3141592653590497 l004 Pi/tanh(299/63*Pi) 3141592653590497 l005 ln(sec(773/82)) 3141592653590498 l004 Pi/tanh(280/59*Pi) 3141592653590498 l004 Pi/tanh(541/114*Pi) 3141592653590499 l004 Pi/tanh(261/55*Pi) 3141592653590500 l004 Pi/tanh(503/106*Pi) 3141592653590501 l004 Pi/tanh(242/51*Pi) 3141592653590502 l004 Pi/tanh(465/98*Pi) 3141592653590503 l004 Pi/tanh(223/47*Pi) 3141592653590504 l004 Pi/tanh(427/90*Pi) 3141592653590505 l004 Pi/tanh(204/43*Pi) 3141592653590506 l004 Pi/tanh(389/82*Pi) 3141592653590506 l005 ln(sec(135/43)) 3141592653590507 l004 Pi/tanh(185/39*Pi) 3141592653590508 l004 Pi/tanh(536/113*Pi) 3141592653590509 l004 Pi/tanh(351/74*Pi) 3141592653590510 l004 Pi/tanh(517/109*Pi) 3141592653590511 l004 Pi/tanh(166/35*Pi) 3141592653590512 l004 Pi/tanh(479/101*Pi) 3141592653590513 l004 Pi/tanh(313/66*Pi) 3141592653590513 l004 Pi/tanh(460/97*Pi) 3141592653590515 l004 Pi/tanh(147/31*Pi) 3141592653590516 l004 Pi/tanh(569/120*Pi) 3141592653590517 l004 Pi/tanh(422/89*Pi) 3141592653590517 l004 Pi/tanh(275/58*Pi) 3141592653590518 l004 Pi/tanh(403/85*Pi) 3141592653590519 l004 Pi/tanh(531/112*Pi) 3141592653590520 l004 Pi/tanh(128/27*Pi) 3141592653590522 l004 Pi/tanh(493/104*Pi) 3141592653590523 l004 Pi/tanh(365/77*Pi) 3141592653590524 l004 Pi/tanh(237/50*Pi) 3141592653590525 l004 Pi/tanh(346/73*Pi) 3141592653590526 l004 Pi/tanh(455/96*Pi) 3141592653590526 l004 Pi/tanh(564/119*Pi) 3141592653590528 l004 Pi/tanh(109/23*Pi) 3141592653590530 l004 Pi/tanh(526/111*Pi) 3141592653590530 l004 Pi/tanh(417/88*Pi) 3141592653590531 l004 Pi/tanh(308/65*Pi) 3141592653590531 l004 Pi/tanh(507/107*Pi) 3141592653590532 l004 Pi/tanh(199/42*Pi) 3141592653590534 l004 Pi/tanh(488/103*Pi) 3141592653590534 l004 Pi/tanh(289/61*Pi) 3141592653590535 l004 Pi/tanh(379/80*Pi) 3141592653590536 l004 Pi/tanh(469/99*Pi) 3141592653590536 l004 Pi/tanh(559/118*Pi) 3141592653590538 l004 Pi/tanh(90/19*Pi) 3141592653590541 l004 Pi/tanh(521/110*Pi) 3141592653590541 l004 Pi/tanh(431/91*Pi) 3141592653590542 l004 Pi/tanh(341/72*Pi) 3141592653590543 l004 Pi/tanh(251/53*Pi) 3141592653590544 l004 Pi/tanh(412/87*Pi) 3141592653590546 l004 Pi/tanh(161/34*Pi) 3141592653590547 l004 Pi/tanh(554/117*Pi) 3141592653590547 l004 Pi/tanh(393/83*Pi) 3141592653590548 l004 Pi/tanh(232/49*Pi) 3141592653590549 l004 Pi/tanh(535/113*Pi) 3141592653590550 l004 Pi/tanh(303/64*Pi) 3141592653590551 l004 Pi/tanh(374/79*Pi) 3141592653590552 l004 Pi/tanh(445/94*Pi) 3141592653590552 l004 Pi/tanh(516/109*Pi) 3141592653590555 l004 Pi/tanh(71/15*Pi) 3141592653590558 l004 Pi/tanh(549/116*Pi) 3141592653590558 l004 Pi/tanh(478/101*Pi) 3141592653590559 l004 Pi/tanh(407/86*Pi) 3141592653590559 l004 Pi/tanh(336/71*Pi) 3141592653590561 l004 Pi/tanh(265/56*Pi) 3141592653590562 l004 Pi/tanh(459/97*Pi) 3141592653590563 l004 Pi/tanh(194/41*Pi) 3141592653590563 l005 ln(sec(914/97)) 3141592653590564 l004 Pi/tanh(511/108*Pi) 3141592653590565 l004 Pi/tanh(317/67*Pi) 3141592653590565 l004 Pi/tanh(440/93*Pi) 3141592653590566 l004 Pi/tanh(563/119*Pi) 3141592653590567 l004 Pi/tanh(123/26*Pi) 3141592653590569 l004 Pi/tanh(544/115*Pi) 3141592653590569 l004 Pi/tanh(421/89*Pi) 3141592653590570 l004 Pi/tanh(298/63*Pi) 3141592653590571 l004 Pi/tanh(473/100*Pi) 3141592653590572 l004 Pi/tanh(175/37*Pi) 3141592653590574 l004 Pi/tanh(402/85*Pi) 3141592653590575 l004 Pi/tanh(227/48*Pi) 3141592653590576 l004 Pi/tanh(506/107*Pi) 3141592653590577 l004 Pi/tanh(279/59*Pi) 3141592653590578 l004 Pi/tanh(331/70*Pi) 3141592653590579 l004 Pi/tanh(383/81*Pi) 3141592653590580 l004 Pi/tanh(435/92*Pi) 3141592653590580 l004 Pi/tanh(487/103*Pi) 3141592653590581 l004 Pi/tanh(539/114*Pi) 3141592653590585 l004 Pi/tanh(52/11*Pi) 3141592653590588 l004 Pi/tanh(553/117*Pi) 3141592653590589 l004 Pi/tanh(501/106*Pi) 3141592653590589 l004 Pi/tanh(449/95*Pi) 3141592653590590 l004 Pi/tanh(397/84*Pi) 3141592653590591 l004 Pi/tanh(345/73*Pi) 3141592653590592 l004 Pi/tanh(293/62*Pi) 3141592653590593 l004 Pi/tanh(534/113*Pi) 3141592653590593 l004 Pi/tanh(241/51*Pi) 3141592653590595 l004 Pi/tanh(430/91*Pi) 3141592653590596 l004 Pi/tanh(189/40*Pi) 3141592653590597 l004 Pi/tanh(515/109*Pi) 3141592653590598 l004 Pi/tanh(326/69*Pi) 3141592653590599 l004 Pi/tanh(463/98*Pi) 3141592653590600 l004 Pi/tanh(137/29*Pi) 3141592653590602 l004 Pi/tanh(496/105*Pi) 3141592653590603 l004 Pi/tanh(359/76*Pi) 3141592653590604 l004 Pi/tanh(222/47*Pi) 3141592653590605 l004 Pi/tanh(529/112*Pi) 3141592653590606 l004 Pi/tanh(307/65*Pi) 3141592653590607 l004 Pi/tanh(392/83*Pi) 3141592653590607 l004 Pi/tanh(477/101*Pi) 3141592653590608 l004 Pi/tanh(562/119*Pi) 3141592653590610 l004 Pi/tanh(85/18*Pi) 3141592653590613 l004 Pi/tanh(543/115*Pi) 3141592653590613 l004 Pi/tanh(458/97*Pi) 3141592653590614 l004 Pi/tanh(373/79*Pi) 3141592653590615 l004 Pi/tanh(288/61*Pi) 3141592653590616 l004 Pi/tanh(491/104*Pi) 3141592653590617 l004 Pi/tanh(203/43*Pi) 3141592653590618 l004 Pi/tanh(524/111*Pi) 3141592653590619 l004 Pi/tanh(321/68*Pi) 3141592653590619 l004 Pi/tanh(439/93*Pi) 3141592653590620 l004 Pi/tanh(557/118*Pi) 3141592653590622 l004 Pi/tanh(118/25*Pi) 3141592653590624 l004 Pi/tanh(505/107*Pi) 3141592653590624 l004 Pi/tanh(387/82*Pi) 3141592653590625 l004 Pi/tanh(269/57*Pi) 3141592653590626 l004 Pi/tanh(420/89*Pi) 3141592653590628 l004 Pi/tanh(151/32*Pi) 3141592653590630 l004 Pi/tanh(486/103*Pi) 3141592653590630 l004 Pi/tanh(335/71*Pi) 3141592653590631 l004 Pi/tanh(519/110*Pi) 3141592653590632 l004 Pi/tanh(184/39*Pi) 3141592653590634 l004 Pi/tanh(401/85*Pi) 3141592653590635 l004 Pi/tanh(217/46*Pi) 3141592653590636 l004 Pi/tanh(467/99*Pi) 3141592653590637 l004 Pi/tanh(250/53*Pi) 3141592653590638 l004 Pi/tanh(533/113*Pi) 3141592653590639 l004 Pi/tanh(283/60*Pi) 3141592653590640 l004 Pi/tanh(316/67*Pi) 3141592653590642 l004 Pi/tanh(349/74*Pi) 3141592653590642 l004 Pi/tanh(382/81*Pi) 3141592653590643 l004 Pi/tanh(415/88*Pi) 3141592653590644 l004 Pi/tanh(448/95*Pi) 3141592653590644 l004 Pi/tanh(481/102*Pi) 3141592653590645 l004 Pi/tanh(514/109*Pi) 3141592653590645 l004 Pi/tanh(547/116*Pi) 3141592653590652 l004 Pi/tanh(33/7*Pi) 3141592653590653 m001 (ln(2)/ln(10))^exp(Pi)+Pi 3141592653590659 l004 Pi/tanh(542/115*Pi) 3141592653590659 l004 Pi/tanh(509/108*Pi) 3141592653590660 l004 Pi/tanh(476/101*Pi) 3141592653590660 l004 Pi/tanh(443/94*Pi) 3141592653590661 l004 Pi/tanh(410/87*Pi) 3141592653590662 l004 Pi/tanh(377/80*Pi) 3141592653590662 l004 Pi/tanh(344/73*Pi) 3141592653590664 l004 Pi/tanh(311/66*Pi) 3141592653590665 l004 Pi/tanh(278/59*Pi) 3141592653590666 l004 Pi/tanh(523/111*Pi) 3141592653590667 l004 Pi/tanh(245/52*Pi) 3141592653590668 l004 Pi/tanh(457/97*Pi) 3141592653590669 l004 Pi/tanh(212/45*Pi) 3141592653590671 l004 Pi/tanh(391/83*Pi) 3141592653590672 l004 Pi/tanh(179/38*Pi) 3141592653590674 l004 Pi/tanh(504/107*Pi) 3141592653590675 l004 Pi/tanh(325/69*Pi) 3141592653590675 l004 Pi/tanh(471/100*Pi) 3141592653590677 l004 Pi/tanh(146/31*Pi) 3141592653590679 l004 Pi/tanh(551/117*Pi) 3141592653590679 l004 Pi/tanh(405/86*Pi) 3141592653590680 l004 Pi/tanh(259/55*Pi) 3141592653590682 l004 Pi/tanh(372/79*Pi) 3141592653590682 l004 Pi/tanh(485/103*Pi) 3141592653590685 l004 Pi/tanh(113/24*Pi) 3141592653590687 l004 Pi/tanh(532/113*Pi) 3141592653590687 l004 Pi/tanh(419/89*Pi) 3141592653590688 l004 Pi/tanh(306/65*Pi) 3141592653590689 l004 Pi/tanh(499/106*Pi) 3141592653590690 l004 Pi/tanh(193/41*Pi) 3141592653590692 l004 Pi/tanh(466/99*Pi) 3141592653590693 l004 Pi/tanh(273/58*Pi) 3141592653590694 l004 Pi/tanh(353/75*Pi) 3141592653590695 l004 Pi/tanh(433/92*Pi) 3141592653590695 l004 Pi/tanh(513/109*Pi) 3141592653590698 l004 Pi/tanh(80/17*Pi) 3141592653590701 l004 Pi/tanh(527/112*Pi) 3141592653590702 l004 Pi/tanh(447/95*Pi) 3141592653590703 l004 Pi/tanh(367/78*Pi) 3141592653590704 l004 Pi/tanh(287/61*Pi) 3141592653590705 l004 Pi/tanh(494/105*Pi) 3141592653590705 l005 ln(sec(839/89)) 3141592653590706 l004 Pi/tanh(207/44*Pi) 3141592653590707 l004 Pi/tanh(541/115*Pi) 3141592653590708 l004 Pi/tanh(334/71*Pi) 3141592653590709 l004 Pi/tanh(461/98*Pi) 3141592653590711 l004 Pi/tanh(127/27*Pi) 3141592653590713 l004 Pi/tanh(555/118*Pi) 3141592653590713 l004 Pi/tanh(428/91*Pi) 3141592653590714 l004 Pi/tanh(301/64*Pi) 3141592653590715 l004 Pi/tanh(475/101*Pi) 3141592653590717 l004 Pi/tanh(174/37*Pi) 3141592653590719 l004 Pi/tanh(395/84*Pi) 3141592653590720 l004 Pi/tanh(221/47*Pi) 3141592653590721 l004 Pi/tanh(489/104*Pi) 3141592653590722 l004 Pi/tanh(268/57*Pi) 3141592653590724 l004 Pi/tanh(315/67*Pi) 3141592653590725 l004 Pi/tanh(362/77*Pi) 3141592653590726 l004 Pi/tanh(409/87*Pi) 3141592653590726 m001 ((1+3^(1/2))^(1/2))^Psi(2,1/3)+Pi 3141592653590726 l004 Pi/tanh(456/97*Pi) 3141592653590727 l004 Pi/tanh(503/107*Pi) 3141592653590728 l004 Pi/tanh(550/117*Pi) 3141592653590733 l004 Pi/tanh(47/10*Pi) 3141592653590738 l004 Pi/tanh(531/113*Pi) 3141592653590738 l004 Pi/tanh(484/103*Pi) 3141592653590739 l004 Pi/tanh(437/93*Pi) 3141592653590740 l004 Pi/tanh(390/83*Pi) 3141592653590741 l004 Pi/tanh(343/73*Pi) 3141592653590742 l004 Pi/tanh(296/63*Pi) 3141592653590743 l004 Pi/tanh(545/116*Pi) 3141592653590744 l004 Pi/tanh(249/53*Pi) 3141592653590745 l004 Pi/tanh(451/96*Pi) 3141592653590746 l004 Pi/tanh(202/43*Pi) 3141592653590748 l004 Pi/tanh(559/119*Pi) 3141592653590748 l004 Pi/tanh(357/76*Pi) 3141592653590749 l004 Pi/tanh(512/109*Pi) 3141592653590751 l004 Pi/tanh(155/33*Pi) 3141592653590753 l004 Pi/tanh(418/89*Pi) 3141592653590754 l004 Pi/tanh(263/56*Pi) 3141592653590755 l004 Pi/tanh(371/79*Pi) 3141592653590756 l004 Pi/tanh(479/102*Pi) 3141592653590759 l004 Pi/tanh(108/23*Pi) 3141592653590761 l004 Pi/tanh(493/105*Pi) 3141592653590762 l004 Pi/tanh(385/82*Pi) 3141592653590763 l004 Pi/tanh(277/59*Pi) 3141592653590764 l004 Pi/tanh(446/95*Pi) 3141592653590766 l004 Pi/tanh(169/36*Pi) 3141592653590768 l004 Pi/tanh(399/85*Pi) 3141592653590769 l004 Pi/tanh(230/49*Pi) 3141592653590771 l004 Pi/tanh(521/111*Pi) 3141592653590771 l004 Pi/tanh(291/62*Pi) 3141592653590773 l004 Pi/tanh(352/75*Pi) 3141592653590774 l004 Pi/tanh(413/88*Pi) 3141592653590774 l004 Pi/tanh(474/101*Pi) 3141592653590775 l004 Pi/tanh(535/114*Pi) 3141592653590779 l004 Pi/tanh(61/13*Pi) 3141592653590783 l004 Pi/tanh(563/120*Pi) 3141592653590784 l004 Pi/tanh(502/107*Pi) 3141592653590784 l004 Pi/tanh(441/94*Pi) 3141592653590785 l004 Pi/tanh(380/81*Pi) 3141592653590786 l004 Pi/tanh(319/68*Pi) 3141592653590788 l004 Pi/tanh(258/55*Pi) 3141592653590789 l004 Pi/tanh(455/97*Pi) 3141592653590791 l004 Pi/tanh(197/42*Pi) 3141592653590792 l004 Pi/tanh(530/113*Pi) 3141592653590793 l004 Pi/tanh(333/71*Pi) 3141592653590793 l004 Pi/tanh(469/100*Pi) 3141592653590796 l004 Pi/tanh(136/29*Pi) 3141592653590798 l004 Pi/tanh(483/103*Pi) 3141592653590799 l004 Pi/tanh(347/74*Pi) 3141592653590799 l004 Pi/tanh(558/119*Pi) 3141592653590799 l005 ln(sec(669/71)) 3141592653590801 l004 Pi/tanh(211/45*Pi) 3141592653590802 l004 Pi/tanh(497/106*Pi) 3141592653590803 l004 Pi/tanh(286/61*Pi) 3141592653590804 l004 Pi/tanh(361/77*Pi) 3141592653590805 l004 Pi/tanh(436/93*Pi) 3141592653590806 l004 Pi/tanh(511/109*Pi) 3141592653590809 l004 Pi/tanh(75/16*Pi) 3141592653590813 l004 Pi/tanh(539/115*Pi) 3141592653590813 l004 Pi/tanh(464/99*Pi) 3141592653590814 l004 Pi/tanh(389/83*Pi) 3141592653590815 l004 Pi/tanh(314/67*Pi) 3141592653590816 l004 Pi/tanh(553/118*Pi) 3141592653590817 l004 Pi/tanh(239/51*Pi) 3141592653590819 l004 Pi/tanh(403/86*Pi) 3141592653590821 l004 Pi/tanh(164/35*Pi) 3141592653590823 l004 Pi/tanh(417/89*Pi) 3141592653590824 l004 Pi/tanh(253/54*Pi) 3141592653590826 l004 Pi/tanh(342/73*Pi) 3141592653590827 l004 Pi/tanh(431/92*Pi) 3141592653590827 l004 Pi/tanh(520/111*Pi) 3141592653590831 l004 Pi/tanh(89/19*Pi) 3141592653590834 l004 Pi/tanh(548/117*Pi) 3141592653590834 l004 Pi/tanh(459/98*Pi) 3141592653590835 l004 Pi/tanh(370/79*Pi) 3141592653590836 l004 Pi/tanh(281/60*Pi) 3141592653590837 l004 Pi/tanh(473/101*Pi) 3141592653590839 l004 Pi/tanh(192/41*Pi) 3141592653590841 l004 Pi/tanh(487/104*Pi) 3141592653590842 l004 Pi/tanh(295/63*Pi) 3141592653590843 l004 Pi/tanh(398/85*Pi) 3141592653590843 l004 Pi/tanh(501/107*Pi) 3141592653590845 m001 GaussKuzminWirsing^exp(Pi)+Pi 3141592653590846 l004 Pi/tanh(103/22*Pi) 3141592653590849 l004 Pi/tanh(529/113*Pi) 3141592653590850 l004 Pi/tanh(426/91*Pi) 3141592653590851 l004 Pi/tanh(323/69*Pi) 3141592653590851 l004 Pi/tanh(543/116*Pi) 3141592653590853 l004 Pi/tanh(220/47*Pi) 3141592653590854 l004 Pi/tanh(557/119*Pi) 3141592653590855 l004 Pi/tanh(337/72*Pi) 3141592653590856 l004 Pi/tanh(454/97*Pi) 3141592653590858 l004 Pi/tanh(117/25*Pi) 3141592653590861 l004 Pi/tanh(482/103*Pi) 3141592653590862 l004 Pi/tanh(365/78*Pi) 3141592653590863 l004 Pi/tanh(248/53*Pi) 3141592653590865 l004 Pi/tanh(379/81*Pi) 3141592653590865 m001 exp(1/2)^Psi(2,1/3)+Pi 3141592653590866 l004 Pi/tanh(510/109*Pi) 3141592653590868 l004 Pi/tanh(131/28*Pi) 3141592653590870 l004 Pi/tanh(538/115*Pi) 3141592653590871 l004 Pi/tanh(407/87*Pi) 3141592653590872 l004 Pi/tanh(276/59*Pi) 3141592653590873 l004 Pi/tanh(421/90*Pi) 3141592653590876 l004 Pi/tanh(145/31*Pi) 3141592653590878 l004 Pi/tanh(449/96*Pi) 3141592653590879 l004 Pi/tanh(304/65*Pi) 3141592653590880 l004 Pi/tanh(463/99*Pi) 3141592653590882 l004 Pi/tanh(159/34*Pi) 3141592653590884 l004 Pi/tanh(491/105*Pi) 3141592653590885 l004 Pi/tanh(332/71*Pi) 3141592653590886 l004 Pi/tanh(505/108*Pi) 3141592653590888 l004 Pi/tanh(173/37*Pi) 3141592653590889 l004 Pi/tanh(533/114*Pi) 3141592653590890 l004 Pi/tanh(360/77*Pi) 3141592653590891 l004 Pi/tanh(547/117*Pi) 3141592653590892 l004 Pi/tanh(187/40*Pi) 3141592653590894 l004 Pi/tanh(388/83*Pi) 3141592653590896 l004 Pi/tanh(201/43*Pi) 3141592653590898 l004 Pi/tanh(416/89*Pi) 3141592653590900 l004 Pi/tanh(215/46*Pi) 3141592653590902 l004 Pi/tanh(444/95*Pi) 3141592653590903 l004 Pi/tanh(229/49*Pi) 3141592653590904 l004 Pi/tanh(472/101*Pi) 3141592653590906 l004 Pi/tanh(243/52*Pi) 3141592653590907 l004 Pi/tanh(500/107*Pi) 3141592653590908 l004 Pi/tanh(257/55*Pi) 3141592653590909 l004 Pi/tanh(528/113*Pi) 3141592653590910 l004 Pi/tanh(271/58*Pi) 3141592653590911 l004 Pi/tanh(556/119*Pi) 3141592653590912 l004 Pi/tanh(285/61*Pi) 3141592653590914 l004 Pi/tanh(299/64*Pi) 3141592653590916 l004 Pi/tanh(313/67*Pi) 3141592653590917 l005 ln(sec(905/96)) 3141592653590917 l004 Pi/tanh(327/70*Pi) 3141592653590919 l004 Pi/tanh(341/73*Pi) 3141592653590920 l004 Pi/tanh(355/76*Pi) 3141592653590921 l004 Pi/tanh(369/79*Pi) 3141592653590922 l004 Pi/tanh(383/82*Pi) 3141592653590923 l004 Pi/tanh(397/85*Pi) 3141592653590924 l004 Pi/tanh(411/88*Pi) 3141592653590925 l004 Pi/tanh(425/91*Pi) 3141592653590926 l004 Pi/tanh(439/94*Pi) 3141592653590927 l004 Pi/tanh(453/97*Pi) 3141592653590928 l004 Pi/tanh(467/100*Pi) 3141592653590928 l004 Pi/tanh(481/103*Pi) 3141592653590929 l004 Pi/tanh(495/106*Pi) 3141592653590929 l004 Pi/tanh(509/109*Pi) 3141592653590930 l004 Pi/tanh(523/112*Pi) 3141592653590931 l004 Pi/tanh(537/115*Pi) 3141592653590931 l004 Pi/tanh(551/118*Pi) 3141592653590952 l004 Pi/tanh(14/3*Pi) 3141592653590972 l004 Pi/tanh(555/119*Pi) 3141592653590973 l004 Pi/tanh(541/116*Pi) 3141592653590973 l004 Pi/tanh(527/113*Pi) 3141592653590974 l004 Pi/tanh(513/110*Pi) 3141592653590974 l004 Pi/tanh(499/107*Pi) 3141592653590975 l004 Pi/tanh(485/104*Pi) 3141592653590976 l004 Pi/tanh(471/101*Pi) 3141592653590977 l004 Pi/tanh(457/98*Pi) 3141592653590977 l004 Pi/tanh(443/95*Pi) 3141592653590978 l004 Pi/tanh(429/92*Pi) 3141592653590979 l004 Pi/tanh(415/89*Pi) 3141592653590980 l004 Pi/tanh(401/86*Pi) 3141592653590981 l004 Pi/tanh(387/83*Pi) 3141592653590982 l004 Pi/tanh(373/80*Pi) 3141592653590983 l004 Pi/tanh(359/77*Pi) 3141592653590985 l004 Pi/tanh(345/74*Pi) 3141592653590986 l004 Pi/tanh(331/71*Pi) 3141592653590988 l004 Pi/tanh(317/68*Pi) 3141592653590989 l004 Pi/tanh(303/65*Pi) 3141592653590991 l004 Pi/tanh(289/62*Pi) 3141592653590993 l004 Pi/tanh(275/59*Pi) 3141592653590995 l004 Pi/tanh(536/115*Pi) 3141592653590996 l004 Pi/tanh(261/56*Pi) 3141592653590997 l004 Pi/tanh(508/109*Pi) 3141592653590998 l004 Pi/tanh(247/53*Pi) 3141592653591000 l004 Pi/tanh(480/103*Pi) 3141592653591001 l004 Pi/tanh(233/50*Pi) 3141592653591003 l004 Pi/tanh(452/97*Pi) 3141592653591004 l004 Pi/tanh(219/47*Pi) 3141592653591006 l004 Pi/tanh(424/91*Pi) 3141592653591008 l004 Pi/tanh(205/44*Pi) 3141592653591010 l004 Pi/tanh(396/85*Pi) 3141592653591011 l005 ln(sec(248/79)) 3141592653591012 l004 Pi/tanh(191/41*Pi) 3141592653591014 l004 Pi/tanh(559/120*Pi) 3141592653591015 l004 Pi/tanh(368/79*Pi) 3141592653591015 l004 Pi/tanh(545/117*Pi) 3141592653591017 l004 Pi/tanh(177/38*Pi) 3141592653591019 l004 Pi/tanh(517/111*Pi) 3141592653591020 l004 Pi/tanh(340/73*Pi) 3141592653591021 l004 Pi/tanh(503/108*Pi) 3141592653591023 l004 Pi/tanh(163/35*Pi) 3141592653591025 l004 Pi/tanh(475/102*Pi) 3141592653591026 l004 Pi/tanh(312/67*Pi) 3141592653591027 l004 Pi/tanh(461/99*Pi) 3141592653591030 l004 Pi/tanh(149/32*Pi) 3141592653591033 l004 Pi/tanh(433/93*Pi) 3141592653591034 l004 Pi/tanh(284/61*Pi) 3141592653591035 l004 Pi/tanh(419/90*Pi) 3141592653591036 l005 ln(sec(1093/116)) 3141592653591036 l004 Pi/tanh(554/119*Pi) 3141592653591038 l004 Pi/tanh(135/29*Pi) 3141592653591041 l004 Pi/tanh(526/113*Pi) 3141592653591042 l004 Pi/tanh(391/84*Pi) 3141592653591043 l004 Pi/tanh(256/55*Pi) 3141592653591045 l004 Pi/tanh(377/81*Pi) 3141592653591046 l004 Pi/tanh(498/107*Pi) 3141592653591049 l004 Pi/tanh(121/26*Pi) 3141592653591052 l004 Pi/tanh(470/101*Pi) 3141592653591053 l004 Pi/tanh(349/75*Pi) 3141592653591055 l004 Pi/tanh(228/49*Pi) 3141592653591057 l004 Pi/tanh(335/72*Pi) 3141592653591058 l004 Pi/tanh(442/95*Pi) 3141592653591059 l004 Pi/tanh(549/118*Pi) 3141592653591062 l004 Pi/tanh(107/23*Pi) 3141592653591065 l004 Pi/tanh(521/112*Pi) 3141592653591066 l004 Pi/tanh(414/89*Pi) 3141592653591067 l004 Pi/tanh(307/66*Pi) 3141592653591068 l004 Pi/tanh(507/109*Pi) 3141592653591070 l004 Pi/tanh(200/43*Pi) 3141592653591072 l004 Pi/tanh(493/106*Pi) 3141592653591072 m001 Pi+gamma(2)^(2*Pi/GAMMA(5/6)) 3141592653591073 l004 Pi/tanh(293/63*Pi) 3141592653591075 l004 Pi/tanh(386/83*Pi) 3141592653591076 l004 Pi/tanh(479/103*Pi) 3141592653591079 l004 Pi/tanh(93/20*Pi) 3141592653591083 l004 Pi/tanh(544/117*Pi) 3141592653591084 l004 Pi/tanh(451/97*Pi) 3141592653591085 l004 Pi/tanh(358/77*Pi) 3141592653591087 l004 Pi/tanh(265/57*Pi) 3141592653591088 l004 Pi/tanh(437/94*Pi) 3141592653591090 l004 Pi/tanh(172/37*Pi) 3141592653591093 l004 Pi/tanh(423/91*Pi) 3141592653591095 l004 Pi/tanh(251/54*Pi) 3141592653591097 l004 Pi/tanh(330/71*Pi) 3141592653591098 l004 Pi/tanh(409/88*Pi) 3141592653591099 l004 Pi/tanh(488/105*Pi) 3141592653591103 l004 Pi/tanh(79/17*Pi) 3141592653591108 l004 Pi/tanh(539/116*Pi) 3141592653591108 l004 Pi/tanh(460/99*Pi) 3141592653591109 l004 Pi/tanh(381/82*Pi) 3141592653591111 l004 Pi/tanh(302/65*Pi) 3141592653591112 l004 Pi/tanh(525/113*Pi) 3141592653591114 l004 Pi/tanh(223/48*Pi) 3141592653591116 l004 Pi/tanh(367/79*Pi) 3141592653591117 l004 Pi/tanh(511/110*Pi) 3141592653591119 l004 Pi/tanh(144/31*Pi) 3141592653591122 l004 Pi/tanh(497/107*Pi) 3141592653591123 l004 Pi/tanh(353/76*Pi) 3141592653591125 l004 Pi/tanh(209/45*Pi) 3141592653591127 l004 Pi/tanh(483/104*Pi) 3141592653591127 l005 ln(sec(971/103)) 3141592653591128 l004 Pi/tanh(274/59*Pi) 3141592653591130 l004 Pi/tanh(339/73*Pi) 3141592653591132 l004 Pi/tanh(404/87*Pi) 3141592653591133 l004 Pi/tanh(469/101*Pi) 3141592653591133 l004 Pi/tanh(534/115*Pi) 3141592653591139 l004 Pi/tanh(65/14*Pi) 3141592653591144 l004 Pi/tanh(506/109*Pi) 3141592653591145 l004 Pi/tanh(441/95*Pi) 3141592653591146 l004 Pi/tanh(376/81*Pi) 3141592653591148 l004 Pi/tanh(311/67*Pi) 3141592653591149 l004 Pi/tanh(557/120*Pi) 3141592653591150 l004 Pi/tanh(246/53*Pi) 3141592653591152 l004 Pi/tanh(427/92*Pi) 3141592653591154 l004 Pi/tanh(181/39*Pi) 3141592653591156 l004 Pi/tanh(478/103*Pi) 3141592653591158 l004 Pi/tanh(297/64*Pi) 3141592653591159 l004 Pi/tanh(413/89*Pi) 3141592653591160 l004 Pi/tanh(529/114*Pi) 3141592653591163 l004 Pi/tanh(116/25*Pi) 3141592653591166 l004 Pi/tanh(515/111*Pi) 3141592653591167 l004 Pi/tanh(399/86*Pi) 3141592653591169 l004 Pi/tanh(283/61*Pi) 3141592653591170 l004 Pi/tanh(450/97*Pi) 3141592653591172 l004 Pi/tanh(167/36*Pi) 3141592653591175 l004 Pi/tanh(552/119*Pi) 3141592653591175 l004 Pi/tanh(385/83*Pi) 3141592653591178 l004 Pi/tanh(218/47*Pi) 3141592653591179 l004 Pi/tanh(487/105*Pi) 3141592653591181 l004 Pi/tanh(269/58*Pi) 3141592653591183 l004 Pi/tanh(320/69*Pi) 3141592653591185 l004 Pi/tanh(371/80*Pi) 3141592653591186 l004 Pi/tanh(422/91*Pi) 3141592653591187 l004 Pi/tanh(473/102*Pi) 3141592653591187 l004 Pi/tanh(524/113*Pi) 3141592653591195 l004 Pi/tanh(51/11*Pi) 3141592653591199 m001 HardyLittlewoodC4^exp(Pi)+Pi 3141592653591201 l004 Pi/tanh(547/118*Pi) 3141592653591202 l004 Pi/tanh(496/107*Pi) 3141592653591203 l004 Pi/tanh(445/96*Pi) 3141592653591204 l004 Pi/tanh(394/85*Pi) 3141592653591205 l004 Pi/tanh(343/74*Pi) 3141592653591207 l004 Pi/tanh(292/63*Pi) 3141592653591209 l004 Pi/tanh(533/115*Pi) 3141592653591210 l004 Pi/tanh(241/52*Pi) 3141592653591212 l004 Pi/tanh(431/93*Pi) 3141592653591214 l004 Pi/tanh(190/41*Pi) 3141592653591216 l004 Pi/tanh(519/112*Pi) 3141592653591217 l004 Pi/tanh(329/71*Pi) 3141592653591219 l004 Pi/tanh(468/101*Pi) 3141592653591221 l004 Pi/tanh(139/30*Pi) 3141592653591224 l004 Pi/tanh(505/109*Pi) 3141592653591225 l004 Pi/tanh(366/79*Pi) 3141592653591228 l004 Pi/tanh(227/49*Pi) 3141592653591229 l004 Pi/tanh(542/117*Pi) 3141592653591230 l004 Pi/tanh(315/68*Pi) 3141592653591232 l004 Pi/tanh(403/87*Pi) 3141592653591233 l004 Pi/tanh(491/106*Pi) 3141592653591234 m001 GAMMA(13/24)^Psi(2,1/3)+Pi 3141592653591237 l004 Pi/tanh(88/19*Pi) 3141592653591242 l004 Pi/tanh(477/103*Pi) 3141592653591243 l004 Pi/tanh(389/84*Pi) 3141592653591245 l004 Pi/tanh(301/65*Pi) 3141592653591246 l004 Pi/tanh(514/111*Pi) 3141592653591248 l004 Pi/tanh(213/46*Pi) 3141592653591249 l004 Pi/tanh(551/119*Pi) 3141592653591250 l004 Pi/tanh(338/73*Pi) 3141592653591252 l004 Pi/tanh(463/100*Pi) 3141592653591255 l004 Pi/tanh(125/27*Pi) 3141592653591255 l005 ln(sec(361/115)) 3141592653591258 l004 Pi/tanh(537/116*Pi) 3141592653591259 l004 Pi/tanh(412/89*Pi) 3141592653591261 l004 Pi/tanh(287/62*Pi) 3141592653591262 l004 Pi/tanh(449/97*Pi) 3141592653591265 l004 Pi/tanh(162/35*Pi) 3141592653591267 l004 Pi/tanh(523/113*Pi) 3141592653591268 l004 Pi/tanh(361/78*Pi) 3141592653591271 l004 Pi/tanh(199/43*Pi) 3141592653591273 l004 Pi/tanh(435/94*Pi) 3141592653591275 l004 Pi/tanh(236/51*Pi) 3141592653591277 l004 Pi/tanh(509/110*Pi) 3141592653591278 l004 Pi/tanh(273/59*Pi) 3141592653591281 l004 Pi/tanh(310/67*Pi) 3141592653591283 l004 Pi/tanh(347/75*Pi) 3141592653591284 l004 Pi/tanh(384/83*Pi) 3141592653591285 l004 Pi/tanh(421/91*Pi) 3141592653591286 l005 ln(sec(371/118)) 3141592653591286 l004 Pi/tanh(458/99*Pi) 3141592653591287 l004 Pi/tanh(495/107*Pi) 3141592653591288 l004 Pi/tanh(532/115*Pi) 3141592653591298 l004 Pi/tanh(37/8*Pi) 3141592653591308 l004 Pi/tanh(541/117*Pi) 3141592653591309 l004 Pi/tanh(504/109*Pi) 3141592653591310 l004 Pi/tanh(467/101*Pi) 3141592653591311 l004 Pi/tanh(430/93*Pi) 3141592653591312 l004 Pi/tanh(393/85*Pi) 3141592653591314 l004 Pi/tanh(356/77*Pi) 3141592653591316 l004 Pi/tanh(319/69*Pi) 3141592653591318 l004 Pi/tanh(282/61*Pi) 3141592653591319 l004 Pi/tanh(527/114*Pi) 3141592653591320 m001 Pi+gamma(3)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592653591321 l004 Pi/tanh(245/53*Pi) 3141592653591323 l004 Pi/tanh(453/98*Pi) 3141592653591325 l004 Pi/tanh(208/45*Pi) 3141592653591327 l004 Pi/tanh(379/82*Pi) 3141592653591328 l004 Pi/tanh(550/119*Pi) 3141592653591331 l004 Pi/tanh(171/37*Pi) 3141592653591333 l004 Pi/tanh(476/103*Pi) 3141592653591334 l005 ln(sec(1037/110)) 3141592653591335 l004 Pi/tanh(305/66*Pi) 3141592653591336 l004 Pi/tanh(439/95*Pi) 3141592653591340 l004 Pi/tanh(134/29*Pi) 3141592653591343 l004 Pi/tanh(499/108*Pi) 3141592653591344 l004 Pi/tanh(365/79*Pi) 3141592653591346 l004 Pi/tanh(231/50*Pi) 3141592653591349 l004 Pi/tanh(328/71*Pi) 3141592653591351 l004 Pi/tanh(425/92*Pi) 3141592653591352 l004 Pi/tanh(522/113*Pi) 3141592653591356 l004 Pi/tanh(97/21*Pi) 3141592653591360 l004 Pi/tanh(545/118*Pi) 3141592653591361 l004 Pi/tanh(448/97*Pi) 3141592653591362 l004 Pi/tanh(351/76*Pi) 3141592653591364 l004 Pi/tanh(254/55*Pi) 3141592653591366 l004 Pi/tanh(411/89*Pi) 3141592653591369 l004 Pi/tanh(157/34*Pi) 3141592653591372 l004 Pi/tanh(531/115*Pi) 3141592653591373 l004 Pi/tanh(374/81*Pi) 3141592653591376 l004 Pi/tanh(217/47*Pi) 3141592653591378 l004 Pi/tanh(494/107*Pi) 3141592653591379 l004 Pi/tanh(277/60*Pi) 3141592653591382 l004 Pi/tanh(337/73*Pi) 3141592653591383 l004 Pi/tanh(397/86*Pi) 3141592653591384 l004 Pi/tanh(457/99*Pi) 3141592653591385 l004 Pi/tanh(517/112*Pi) 3141592653591392 l004 Pi/tanh(60/13*Pi) 3141592653591399 l004 Pi/tanh(503/109*Pi) 3141592653591400 l004 Pi/tanh(443/96*Pi) 3141592653591401 l004 Pi/tanh(383/83*Pi) 3141592653591403 l004 Pi/tanh(323/70*Pi) 3141592653591406 l004 Pi/tanh(263/57*Pi) 3141592653591407 l004 Pi/tanh(466/101*Pi) 3141592653591410 l004 Pi/tanh(203/44*Pi) 3141592653591412 l004 Pi/tanh(549/119*Pi) 3141592653591413 l004 Pi/tanh(346/75*Pi) 3141592653591414 l004 Pi/tanh(489/106*Pi) 3141592653591417 l004 Pi/tanh(143/31*Pi) 3141592653591420 l004 Pi/tanh(512/111*Pi) 3141592653591421 l004 Pi/tanh(369/80*Pi) 3141592653591424 l004 Pi/tanh(226/49*Pi) 3141592653591426 l004 Pi/tanh(535/116*Pi) 3141592653591427 l004 Pi/tanh(309/67*Pi) 3141592653591429 l004 Pi/tanh(392/85*Pi) 3141592653591430 l004 Pi/tanh(475/103*Pi) 3141592653591436 l004 Pi/tanh(83/18*Pi) 3141592653591441 l004 Pi/tanh(521/113*Pi) 3141592653591442 l004 Pi/tanh(438/95*Pi) 3141592653591443 l004 Pi/tanh(355/77*Pi) 3141592653591445 l004 Pi/tanh(272/59*Pi) 3141592653591447 l004 Pi/tanh(461/100*Pi) 3141592653591450 l004 Pi/tanh(189/41*Pi) 3141592653591452 l004 Pi/tanh(484/105*Pi) 3141592653591454 l004 Pi/tanh(295/64*Pi) 3141592653591455 l004 Pi/tanh(401/87*Pi) 3141592653591457 l004 Pi/tanh(507/110*Pi) 3141592653591461 l004 Pi/tanh(106/23*Pi) 3141592653591465 l004 Pi/tanh(553/120*Pi) 3141592653591465 l004 Pi/tanh(447/97*Pi) 3141592653591467 l004 Pi/tanh(341/74*Pi) 3141592653591470 l004 Pi/tanh(235/51*Pi) 3141592653591472 l004 Pi/tanh(364/79*Pi) 3141592653591474 l004 Pi/tanh(493/107*Pi) 3141592653591477 l004 Pi/tanh(129/28*Pi) 3141592653591479 l005 ln(sec(349/111)) 3141592653591480 l004 Pi/tanh(539/117*Pi) 3141592653591481 l004 Pi/tanh(410/89*Pi) 3141592653591483 l004 Pi/tanh(281/61*Pi) 3141592653591485 l004 Pi/tanh(433/94*Pi) 3141592653591489 l004 Pi/tanh(152/33*Pi) 3141592653591490 l005 ln(sec(424/45)) 3141592653591492 l004 Pi/tanh(479/104*Pi) 3141592653591493 l004 Pi/tanh(327/71*Pi) 3141592653591494 l004 Pi/tanh(502/109*Pi) 3141592653591497 l004 Pi/tanh(175/38*Pi) 3141592653591499 l004 Pi/tanh(548/119*Pi) 3141592653591501 l004 Pi/tanh(373/81*Pi) 3141592653591504 l004 Pi/tanh(198/43*Pi) 3141592653591506 l004 Pi/tanh(419/91*Pi) 3141592653591509 l004 Pi/tanh(221/48*Pi) 3141592653591511 l004 Pi/tanh(465/101*Pi) 3141592653591513 l004 Pi/tanh(244/53*Pi) 3141592653591515 l004 Pi/tanh(511/111*Pi) 3141592653591517 l004 Pi/tanh(267/58*Pi) 3141592653591520 l004 Pi/tanh(290/63*Pi) 3141592653591522 l004 Pi/tanh(313/68*Pi) 3141592653591524 l004 Pi/tanh(336/73*Pi) 3141592653591526 l004 Pi/tanh(359/78*Pi) 3141592653591528 l004 Pi/tanh(382/83*Pi) 3141592653591529 l004 Pi/tanh(405/88*Pi) 3141592653591531 l004 Pi/tanh(428/93*Pi) 3141592653591532 l004 Pi/tanh(451/98*Pi) 3141592653591533 l004 Pi/tanh(474/103*Pi) 3141592653591534 l004 Pi/tanh(497/108*Pi) 3141592653591535 l004 Pi/tanh(520/113*Pi) 3141592653591535 l005 ln(sec(1103/117)) 3141592653591536 l004 Pi/tanh(543/118*Pi) 3141592653591554 l004 Pi/tanh(23/5*Pi) 3141592653591573 l004 Pi/tanh(538/117*Pi) 3141592653591574 l004 Pi/tanh(515/112*Pi) 3141592653591575 l004 Pi/tanh(492/107*Pi) 3141592653591576 l004 Pi/tanh(469/102*Pi) 3141592653591577 l004 Pi/tanh(446/97*Pi) 3141592653591579 l004 Pi/tanh(423/92*Pi) 3141592653591580 l004 Pi/tanh(400/87*Pi) 3141592653591582 l004 Pi/tanh(377/82*Pi) 3141592653591583 l004 Pi/tanh(354/77*Pi) 3141592653591585 l004 Pi/tanh(331/72*Pi) 3141592653591588 l004 Pi/tanh(308/67*Pi) 3141592653591590 l004 Pi/tanh(285/62*Pi) 3141592653591592 l004 Pi/tanh(547/119*Pi) 3141592653591594 l004 Pi/tanh(262/57*Pi) 3141592653591595 l004 Pi/tanh(501/109*Pi) 3141592653591597 l004 Pi/tanh(239/52*Pi) 3141592653591600 l004 Pi/tanh(455/99*Pi) 3141592653591602 l004 Pi/tanh(216/47*Pi) 3141592653591605 l004 Pi/tanh(409/89*Pi) 3141592653591608 l004 Pi/tanh(193/42*Pi) 3141592653591611 l004 Pi/tanh(363/79*Pi) 3141592653591613 l004 Pi/tanh(533/116*Pi) 3141592653591615 l004 Pi/tanh(170/37*Pi) 3141592653591618 l004 Pi/tanh(487/106*Pi) 3141592653591620 l004 Pi/tanh(317/69*Pi) 3141592653591621 l004 Pi/tanh(464/101*Pi) 3141592653591625 l004 Pi/tanh(147/32*Pi) 3141592653591629 l004 Pi/tanh(418/91*Pi) 3141592653591631 l004 Pi/tanh(271/59*Pi) 3141592653591633 l004 Pi/tanh(395/86*Pi) 3141592653591635 l004 Pi/tanh(519/113*Pi) 3141592653591638 l004 Pi/tanh(124/27*Pi) 3141592653591642 l004 Pi/tanh(473/103*Pi) 3141592653591644 l004 Pi/tanh(349/76*Pi) 3141592653591647 l004 Pi/tanh(225/49*Pi) 3141592653591649 m001 Pi-Zeta(1,-1)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592653591649 l004 Pi/tanh(551/120*Pi) 3141592653591650 l004 Pi/tanh(326/71*Pi) 3141592653591652 l004 Pi/tanh(427/93*Pi) 3141592653591653 l004 Pi/tanh(528/115*Pi) 3141592653591658 l004 Pi/tanh(101/22*Pi) 3141592653591663 l004 Pi/tanh(482/105*Pi) 3141592653591664 l004 Pi/tanh(381/83*Pi) 3141592653591667 l004 Pi/tanh(280/61*Pi) 3141592653591669 l004 Pi/tanh(459/100*Pi) 3141592653591672 l004 Pi/tanh(179/39*Pi) 3141592653591675 l004 Pi/tanh(436/95*Pi) 3141592653591677 l004 Pi/tanh(257/56*Pi) 3141592653591680 l004 Pi/tanh(335/73*Pi) 3141592653591682 l004 Pi/tanh(413/90*Pi) 3141592653591683 l004 Pi/tanh(491/107*Pi) 3141592653591690 l004 Pi/tanh(78/17*Pi) 3141592653591696 l004 Pi/tanh(523/114*Pi) 3141592653591697 l004 Pi/tanh(445/97*Pi) 3141592653591698 l004 Pi/tanh(367/80*Pi) 3141592653591701 l004 Pi/tanh(289/63*Pi) 3141592653591702 l004 Pi/tanh(500/109*Pi) 3141592653591705 l004 Pi/tanh(211/46*Pi) 3141592653591708 l004 Pi/tanh(344/75*Pi) 3141592653591710 l004 Pi/tanh(477/104*Pi) 3141592653591714 l004 Pi/tanh(133/29*Pi) 3141592653591718 l004 Pi/tanh(454/99*Pi) 3141592653591720 l004 Pi/tanh(321/70*Pi) 3141592653591720 l005 ln(sec(327/104)) 3141592653591721 l004 Pi/tanh(509/111*Pi) 3141592653591724 l004 Pi/tanh(188/41*Pi) 3141592653591727 l004 Pi/tanh(431/94*Pi) 3141592653591730 l004 Pi/tanh(243/53*Pi) 3141592653591732 l004 Pi/tanh(541/118*Pi) 3141592653591733 l004 Pi/tanh(298/65*Pi) 3141592653591736 l004 Pi/tanh(353/77*Pi) 3141592653591737 l004 Pi/tanh(408/89*Pi) 3141592653591739 l004 Pi/tanh(463/101*Pi) 3141592653591740 l004 Pi/tanh(518/113*Pi) 3141592653591749 l004 Pi/tanh(55/12*Pi) 3141592653591758 l004 Pi/tanh(527/115*Pi) 3141592653591759 l004 Pi/tanh(472/103*Pi) 3141592653591760 l004 Pi/tanh(417/91*Pi) 3141592653591762 l004 Pi/tanh(362/79*Pi) 3141592653591764 l004 Pi/tanh(307/67*Pi) 3141592653591768 l004 Pi/tanh(252/55*Pi) 3141592653591770 l004 Pi/tanh(449/98*Pi) 3141592653591773 l004 Pi/tanh(197/43*Pi) 3141592653591775 l004 Pi/tanh(536/117*Pi) 3141592653591777 l004 Pi/tanh(339/74*Pi) 3141592653591778 l004 Pi/tanh(481/105*Pi) 3141592653591782 l004 Pi/tanh(142/31*Pi) 3141592653591786 l004 Pi/tanh(513/112*Pi) 3141592653591787 l004 Pi/tanh(371/81*Pi) 3141592653591790 l004 Pi/tanh(229/50*Pi) 3141592653591792 l004 Pi/tanh(545/119*Pi) 3141592653591794 l004 Pi/tanh(316/69*Pi) 3141592653591796 l004 Pi/tanh(403/88*Pi) 3141592653591797 l004 Pi/tanh(490/107*Pi) 3141592653591804 l004 Pi/tanh(87/19*Pi) 3141592653591810 l004 Pi/tanh(467/102*Pi) 3141592653591812 l004 Pi/tanh(380/83*Pi) 3141592653591814 l004 Pi/tanh(293/64*Pi) 3141592653591816 l004 Pi/tanh(499/109*Pi) 3141592653591818 l004 Pi/tanh(206/45*Pi) 3141592653591821 l004 Pi/tanh(531/116*Pi) 3141592653591822 l004 Pi/tanh(325/71*Pi) 3141592653591824 l004 Pi/tanh(444/97*Pi) 3141592653591829 l004 Pi/tanh(119/26*Pi) 3141592653591834 l004 Pi/tanh(508/111*Pi) 3141592653591835 l004 Pi/tanh(389/85*Pi) 3141592653591838 l004 Pi/tanh(270/59*Pi) 3141592653591840 l004 Pi/tanh(421/92*Pi) 3141592653591844 l004 Pi/tanh(151/33*Pi) 3141592653591848 l004 Pi/tanh(485/106*Pi) 3141592653591850 l004 Pi/tanh(334/73*Pi) 3141592653591851 l004 Pi/tanh(517/113*Pi) 3141592653591854 l004 Pi/tanh(183/40*Pi) 3141592653591858 l004 Pi/tanh(398/87*Pi) 3141592653591861 l004 Pi/tanh(215/47*Pi) 3141592653591864 l004 Pi/tanh(462/101*Pi) 3141592653591866 l004 Pi/tanh(247/54*Pi) 3141592653591868 l004 Pi/tanh(526/115*Pi) 3141592653591870 l004 Pi/tanh(279/61*Pi) 3141592653591873 l004 Pi/tanh(311/68*Pi) 3141592653591876 l004 Pi/tanh(343/75*Pi) 3141592653591878 l004 Pi/tanh(375/82*Pi) 3141592653591880 l004 Pi/tanh(407/89*Pi) 3141592653591881 l004 Pi/tanh(439/96*Pi) 3141592653591883 l004 Pi/tanh(471/103*Pi) 3141592653591884 l004 Pi/tanh(503/110*Pi) 3141592653591885 l004 Pi/tanh(535/117*Pi) 3141592653591901 l004 Pi/tanh(32/7*Pi) 3141592653591917 l004 Pi/tanh(521/114*Pi) 3141592653591919 l004 Pi/tanh(489/107*Pi) 3141592653591919 l005 ln(sec(113/36)) 3141592653591920 l004 Pi/tanh(457/100*Pi) 3141592653591921 l004 Pi/tanh(425/93*Pi) 3141592653591923 l004 Pi/tanh(393/86*Pi) 3141592653591925 l004 Pi/tanh(361/79*Pi) 3141592653591927 l004 Pi/tanh(329/72*Pi) 3141592653591930 l004 Pi/tanh(297/65*Pi) 3141592653591934 l004 Pi/tanh(265/58*Pi) 3141592653591936 l004 Pi/tanh(498/109*Pi) 3141592653591938 l004 Pi/tanh(233/51*Pi) 3141592653591941 l004 Pi/tanh(434/95*Pi) 3141592653591944 l004 Pi/tanh(201/44*Pi) 3141592653591948 l004 Pi/tanh(370/81*Pi) 3141592653591949 l004 Pi/tanh(539/118*Pi) 3141592653591953 l004 Pi/tanh(169/37*Pi) 3141592653591956 l004 Pi/tanh(475/104*Pi) 3141592653591958 l004 Pi/tanh(306/67*Pi) 3141592653591960 l004 Pi/tanh(443/97*Pi) 3141592653591965 l004 Pi/tanh(137/30*Pi) 3141592653591969 l004 Pi/tanh(516/113*Pi) 3141592653591970 l004 Pi/tanh(379/83*Pi) 3141592653591973 l004 Pi/tanh(242/53*Pi) 3141592653591977 l004 Pi/tanh(347/76*Pi) 3141592653591979 l004 Pi/tanh(452/99*Pi) 3141592653591985 l004 Pi/tanh(105/23*Pi) 3141592653591990 l004 Pi/tanh(493/108*Pi) 3141592653591992 l004 Pi/tanh(388/85*Pi) 3141592653591994 l004 Pi/tanh(283/62*Pi) 3141592653591997 l004 Pi/tanh(461/101*Pi) 3141592653592000 l004 Pi/tanh(178/39*Pi) 3141592653592004 l004 Pi/tanh(429/94*Pi) 3141592653592007 l004 Pi/tanh(251/55*Pi) 3141592653592010 l004 Pi/tanh(324/71*Pi) 3141592653592012 l004 Pi/tanh(397/87*Pi) 3141592653592014 l004 Pi/tanh(470/103*Pi) 3141592653592015 l004 Pi/tanh(543/119*Pi) 3141592653592022 l004 Pi/tanh(73/16*Pi) 3141592653592026 l005 ln(sec(305/97)) 3141592653592031 l004 Pi/tanh(479/105*Pi) 3141592653592032 l004 Pi/tanh(406/89*Pi) 3141592653592034 l004 Pi/tanh(333/73*Pi) 3141592653592038 l004 Pi/tanh(260/57*Pi) 3141592653592040 l004 Pi/tanh(447/98*Pi) 3141592653592044 l004 Pi/tanh(187/41*Pi) 3141592653592047 l004 Pi/tanh(488/107*Pi) 3141592653592049 l004 Pi/tanh(301/66*Pi) 3141592653592051 l004 Pi/tanh(415/91*Pi) 3141592653592053 l004 Pi/tanh(529/116*Pi) 3141592653592058 l004 Pi/tanh(114/25*Pi) 3141592653592063 l004 Pi/tanh(497/109*Pi) 3141592653592065 l004 Pi/tanh(383/84*Pi) 3141592653592067 l004 Pi/tanh(269/59*Pi) 3141592653592070 l004 Pi/tanh(424/93*Pi) 3141592653592075 l004 Pi/tanh(155/34*Pi) 3141592653592078 l004 Pi/tanh(506/111*Pi) 3141592653592080 l004 Pi/tanh(351/77*Pi) 3141592653592082 l004 Pi/tanh(547/120*Pi) 3141592653592084 l004 Pi/tanh(196/43*Pi) 3141592653592088 l004 Pi/tanh(433/95*Pi) 3141592653592091 l004 Pi/tanh(237/52*Pi) 3141592653592093 l004 Pi/tanh(515/113*Pi) 3141592653592095 l004 Pi/tanh(278/61*Pi) 3141592653592099 l004 Pi/tanh(319/70*Pi) 3141592653592100 l005 ln(sec(1027/109)) 3141592653592101 l004 Pi/tanh(360/79*Pi) 3141592653592103 l004 Pi/tanh(401/88*Pi) 3141592653592105 l004 Pi/tanh(442/97*Pi) 3141592653592107 l004 Pi/tanh(483/106*Pi) 3141592653592108 l004 Pi/tanh(524/115*Pi) 3141592653592122 l004 Pi/tanh(41/9*Pi) 3141592653592136 l004 Pi/tanh(542/119*Pi) 3141592653592137 l004 Pi/tanh(501/110*Pi) 3141592653592138 l004 Pi/tanh(460/101*Pi) 3141592653592140 l004 Pi/tanh(419/92*Pi) 3141592653592142 l004 Pi/tanh(378/83*Pi) 3141592653592144 l004 Pi/tanh(337/74*Pi) 3141592653592147 l004 Pi/tanh(296/65*Pi) 3141592653592151 l004 Pi/tanh(255/56*Pi) 3141592653592154 l004 Pi/tanh(469/103*Pi) 3141592653592157 l004 Pi/tanh(214/47*Pi) 3141592653592160 l004 Pi/tanh(387/85*Pi) 3141592653592165 l004 Pi/tanh(173/38*Pi) 3141592653592169 l004 Pi/tanh(478/105*Pi) 3141592653592171 l004 Pi/tanh(305/67*Pi) 3141592653592173 l004 Pi/tanh(437/96*Pi) 3141592653592179 l004 Pi/tanh(132/29*Pi) 3141592653592183 l004 Pi/tanh(487/107*Pi) 3141592653592185 l004 Pi/tanh(355/78*Pi) 3141592653592189 l004 Pi/tanh(223/49*Pi) 3141592653592192 l004 Pi/tanh(537/118*Pi) 3141592653592194 l004 Pi/tanh(314/69*Pi) 3141592653592196 l004 Pi/tanh(405/89*Pi) 3141592653592198 l004 Pi/tanh(496/109*Pi) 3141592653592205 l004 Pi/tanh(91/20*Pi) 3141592653592211 l004 Pi/tanh(505/111*Pi) 3141592653592213 l004 Pi/tanh(414/91*Pi) 3141592653592215 l004 Pi/tanh(323/71*Pi) 3141592653592220 l004 Pi/tanh(232/51*Pi) 3141592653592223 l004 Pi/tanh(373/82*Pi) 3141592653592225 l004 Pi/tanh(514/113*Pi) 3141592653592229 l004 Pi/tanh(141/31*Pi) 3141592653592234 l004 Pi/tanh(473/104*Pi) 3141592653592236 l004 Pi/tanh(332/73*Pi) 3141592653592238 l004 Pi/tanh(523/115*Pi) 3141592653592241 l004 Pi/tanh(191/42*Pi) 3141592653592245 l004 Pi/tanh(432/95*Pi) 3141592653592248 l004 Pi/tanh(241/53*Pi) 3141592653592250 l004 Pi/tanh(532/117*Pi) 3141592653592252 l004 Pi/tanh(291/64*Pi) 3141592653592256 l004 Pi/tanh(341/75*Pi) 3141592653592258 l004 Pi/tanh(391/86*Pi) 3141592653592260 l004 Pi/tanh(441/97*Pi) 3141592653592261 l004 Pi/tanh(491/108*Pi) 3141592653592263 l004 Pi/tanh(541/119*Pi) 3141592653592274 l004 Pi/tanh(50/11*Pi) 3141592653592287 l004 Pi/tanh(509/112*Pi) 3141592653592289 l004 Pi/tanh(459/101*Pi) 3141592653592290 l004 Pi/tanh(409/90*Pi) 3141592653592292 l004 Pi/tanh(359/79*Pi) 3141592653592295 l004 Pi/tanh(309/68*Pi) 3141592653592299 l004 Pi/tanh(259/57*Pi) 3141592653592302 l004 Pi/tanh(468/103*Pi) 3141592653592305 l004 Pi/tanh(209/46*Pi) 3141592653592310 l004 Pi/tanh(368/81*Pi) 3141592653592311 l004 Pi/tanh(527/116*Pi) 3141592653592315 l004 Pi/tanh(159/35*Pi) 3141592653592320 l004 Pi/tanh(427/94*Pi) 3141592653592323 l004 Pi/tanh(268/59*Pi) 3141592653592326 l004 Pi/tanh(377/83*Pi) 3141592653592328 l004 Pi/tanh(486/107*Pi) 3141592653592334 l004 Pi/tanh(109/24*Pi) 3141592653592340 l004 Pi/tanh(495/109*Pi) 3141592653592342 l004 Pi/tanh(386/85*Pi) 3141592653592345 l004 Pi/tanh(277/61*Pi) 3141592653592348 l004 Pi/tanh(445/98*Pi) 3141592653592352 l004 Pi/tanh(168/37*Pi) 3141592653592357 l004 Pi/tanh(395/87*Pi) 3141592653592361 l004 Pi/tanh(227/50*Pi) 3141592653592364 l004 Pi/tanh(513/113*Pi) 3141592653592366 l004 Pi/tanh(286/63*Pi) 3141592653592370 l004 Pi/tanh(345/76*Pi) 3141592653592372 l004 Pi/tanh(404/89*Pi) 3141592653592374 l004 Pi/tanh(463/102*Pi) 3141592653592375 l004 Pi/tanh(522/115*Pi) 3141592653592386 l004 Pi/tanh(59/13*Pi) 3141592653592397 l004 Pi/tanh(540/119*Pi) 3141592653592398 l004 Pi/tanh(481/106*Pi) 3141592653592399 l004 Pi/tanh(422/93*Pi) 3141592653592402 l004 Pi/tanh(363/80*Pi) 3141592653592405 l004 Pi/tanh(304/67*Pi) 3141592653592409 l004 Pi/tanh(245/54*Pi) 3141592653592412 l004 Pi/tanh(431/95*Pi) 3141592653592417 l004 Pi/tanh(186/41*Pi) 3141592653592420 l004 Pi/tanh(499/110*Pi) 3141592653592423 l004 Pi/tanh(313/69*Pi) 3141592653592424 l005 ln(sec(283/90)) 3141592653592425 l004 Pi/tanh(440/97*Pi) 3141592653592431 l004 Pi/tanh(127/28*Pi) 3141592653592437 l004 Pi/tanh(449/99*Pi) 3141592653592439 l004 Pi/tanh(322/71*Pi) 3141592653592442 l004 Pi/tanh(517/114*Pi) 3141592653592445 l004 Pi/tanh(195/43*Pi) 3141592653592449 l004 Pi/tanh(458/101*Pi) 3141592653592452 l004 Pi/tanh(263/58*Pi) 3141592653592456 l004 Pi/tanh(331/73*Pi) 3141592653592458 l004 Pi/tanh(399/88*Pi) 3141592653592460 l004 Pi/tanh(467/103*Pi) 3141592653592461 l004 Pi/tanh(535/118*Pi) 3141592653592471 l004 Pi/tanh(68/15*Pi) 3141592653592481 l004 Pi/tanh(485/107*Pi) 3141592653592483 l004 Pi/tanh(417/92*Pi) 3141592653592485 l004 Pi/tanh(349/77*Pi) 3141592653592489 l004 Pi/tanh(281/62*Pi) 3141592653592492 l004 Pi/tanh(494/109*Pi) 3141592653592495 l004 Pi/tanh(213/47*Pi) 3141592653592498 m001 Paris^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653592499 l004 Pi/tanh(358/79*Pi) 3141592653592501 l004 Pi/tanh(503/111*Pi) 3141592653592506 l004 Pi/tanh(145/32*Pi) 3141592653592511 l004 Pi/tanh(512/113*Pi) 3141592653592513 l004 Pi/tanh(367/81*Pi) 3141592653592517 l004 Pi/tanh(222/49*Pi) 3141592653592520 l004 Pi/tanh(521/115*Pi) 3141592653592522 l004 Pi/tanh(299/66*Pi) 3141592653592525 l004 Pi/tanh(376/83*Pi) 3141592653592528 l004 Pi/tanh(453/100*Pi) 3141592653592529 l004 Pi/tanh(530/117*Pi) 3141592653592538 l004 Pi/tanh(77/17*Pi) 3141592653592547 l004 Pi/tanh(471/104*Pi) 3141592653592549 l004 Pi/tanh(394/87*Pi) 3141592653592552 l004 Pi/tanh(317/70*Pi) 3141592653592557 l004 Pi/tanh(240/53*Pi) 3141592653592561 l004 Pi/tanh(403/89*Pi) 3141592653592566 l004 Pi/tanh(163/36*Pi) 3141592653592571 l004 Pi/tanh(412/91*Pi) 3141592653592575 l004 Pi/tanh(249/55*Pi) 3141592653592579 l004 Pi/tanh(335/74*Pi) 3141592653592580 m001 Pi+arctan(1/3)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592653592582 l004 Pi/tanh(421/93*Pi) 3141592653592583 l004 Pi/tanh(507/112*Pi) 3141592653592592 l004 Pi/tanh(86/19*Pi) 3141592653592600 l004 Pi/tanh(525/116*Pi) 3141592653592601 l004 Pi/tanh(439/97*Pi) 3141592653592604 l004 Pi/tanh(353/78*Pi) 3141592653592607 l004 Pi/tanh(267/59*Pi) 3141592653592610 l004 Pi/tanh(448/99*Pi) 3141592653592615 l004 Pi/tanh(181/40*Pi) 3141592653592618 l005 ln(sec(603/64)) 3141592653592619 l004 Pi/tanh(457/101*Pi) 3141592653592622 l004 Pi/tanh(276/61*Pi) 3141592653592626 l004 Pi/tanh(371/82*Pi) 3141592653592628 l004 Pi/tanh(466/103*Pi) 3141592653592636 l004 Pi/tanh(95/21*Pi) 3141592653592644 l004 Pi/tanh(484/107*Pi) 3141592653592646 l004 Pi/tanh(389/86*Pi) 3141592653592649 l004 Pi/tanh(294/65*Pi) 3141592653592652 l004 Pi/tanh(493/109*Pi) 3141592653592655 l004 Pi/tanh(199/44*Pi) 3141592653592659 l004 Pi/tanh(502/111*Pi) 3141592653592662 l004 Pi/tanh(303/67*Pi) 3141592653592665 l004 Pi/tanh(407/90*Pi) 3141592653592666 l004 Pi/tanh(511/113*Pi) 3141592653592673 l004 Pi/tanh(104/23*Pi) 3141592653592680 l004 Pi/tanh(529/117*Pi) 3141592653592682 l004 Pi/tanh(425/94*Pi) 3141592653592684 l004 Pi/tanh(321/71*Pi) 3141592653592687 l004 Pi/tanh(538/119*Pi) 3141592653592690 l004 Pi/tanh(217/48*Pi) 3141592653592695 l004 Pi/tanh(330/73*Pi) 3141592653592697 l004 Pi/tanh(443/98*Pi) 3141592653592705 l004 Pi/tanh(113/25*Pi) 3141592653592712 l004 Pi/tanh(461/102*Pi) 3141592653592714 l004 Pi/tanh(348/77*Pi) 3141592653592719 l004 Pi/tanh(235/52*Pi) 3141592653592724 l004 Pi/tanh(357/79*Pi) 3141592653592726 l004 Pi/tanh(479/106*Pi) 3141592653592732 l004 Pi/tanh(122/27*Pi) 3141592653592738 l004 Pi/tanh(497/110*Pi) 3141592653592740 l004 Pi/tanh(375/83*Pi) 3141592653592744 l004 Pi/tanh(253/56*Pi) 3141592653592748 l004 Pi/tanh(384/85*Pi) 3141592653592750 l004 Pi/tanh(515/114*Pi) 3141592653592756 l004 Pi/tanh(131/29*Pi) 3141592653592761 l004 Pi/tanh(533/118*Pi) 3141592653592763 l004 Pi/tanh(402/89*Pi) 3141592653592767 l004 Pi/tanh(271/60*Pi) 3141592653592770 l004 Pi/tanh(411/91*Pi) 3141592653592777 l004 Pi/tanh(140/31*Pi) 3141592653592783 l004 Pi/tanh(429/95*Pi) 3141592653592786 l004 Pi/tanh(289/64*Pi) 3141592653592789 l004 Pi/tanh(438/97*Pi) 3141592653592795 l004 Pi/tanh(149/33*Pi) 3141592653592801 l004 Pi/tanh(456/101*Pi) 3141592653592803 l004 Pi/tanh(307/68*Pi) 3141592653592806 l004 Pi/tanh(465/103*Pi) 3141592653592811 l004 Pi/tanh(158/35*Pi) 3141592653592816 l004 Pi/tanh(483/107*Pi) 3141592653592819 l004 Pi/tanh(325/72*Pi) 3141592653592821 l004 Pi/tanh(492/109*Pi) 3141592653592826 l004 Pi/tanh(167/37*Pi) 3141592653592831 l004 Pi/tanh(510/113*Pi) 3141592653592833 l004 Pi/tanh(343/76*Pi) 3141592653592835 l004 Pi/tanh(519/115*Pi) 3141592653592839 l004 Pi/tanh(176/39*Pi) 3141592653592843 l004 Pi/tanh(537/119*Pi) 3141592653592845 l004 Pi/tanh(361/80*Pi) 3141592653592851 l004 Pi/tanh(185/41*Pi) 3141592653592857 l004 Pi/tanh(379/84*Pi) 3141592653592862 l004 Pi/tanh(194/43*Pi) 3141592653592867 l004 Pi/tanh(397/88*Pi) 3141592653592872 l004 Pi/tanh(203/45*Pi) 3141592653592877 l004 Pi/tanh(415/92*Pi) 3141592653592881 l004 Pi/tanh(212/47*Pi) 3141592653592886 l004 Pi/tanh(433/96*Pi) 3141592653592890 l004 Pi/tanh(221/49*Pi) 3141592653592894 l004 Pi/tanh(451/100*Pi) 3141592653592898 l004 Pi/tanh(230/51*Pi) 3141592653592901 l004 Pi/tanh(469/104*Pi) 3141592653592905 l004 Pi/tanh(239/53*Pi) 3141592653592908 l004 Pi/tanh(487/108*Pi) 3141592653592909 m001 gamma(1)^Psi(1,1/3)+Pi 3141592653592912 l004 Pi/tanh(248/55*Pi) 3141592653592915 l004 Pi/tanh(505/112*Pi) 3141592653592918 l004 Pi/tanh(257/57*Pi) 3141592653592921 l004 Pi/tanh(523/116*Pi) 3141592653592924 l004 Pi/tanh(266/59*Pi) 3141592653592925 l005 ln(sec(317/101)) 3141592653592926 l004 Pi/tanh(541/120*Pi) 3141592653592929 l004 Pi/tanh(275/61*Pi) 3141592653592934 l004 Pi/tanh(284/63*Pi) 3141592653592939 l004 Pi/tanh(293/65*Pi) 3141592653592944 l004 Pi/tanh(302/67*Pi) 3141592653592948 l004 Pi/tanh(311/69*Pi) 3141592653592952 l004 Pi/tanh(320/71*Pi) 3141592653592954 l005 ln(sec(261/83)) 3141592653592956 l004 Pi/tanh(329/73*Pi) 3141592653592959 l004 Pi/tanh(338/75*Pi) 3141592653592963 l004 Pi/tanh(347/77*Pi) 3141592653592966 l004 Pi/tanh(356/79*Pi) 3141592653592969 l004 Pi/tanh(365/81*Pi) 3141592653592972 l004 Pi/tanh(374/83*Pi) 3141592653592975 l004 Pi/tanh(383/85*Pi) 3141592653592978 l004 Pi/tanh(392/87*Pi) 3141592653592980 l004 Pi/tanh(401/89*Pi) 3141592653592983 l004 Pi/tanh(410/91*Pi) 3141592653592985 l004 Pi/tanh(419/93*Pi) 3141592653592987 l004 Pi/tanh(428/95*Pi) 3141592653592990 l004 Pi/tanh(437/97*Pi) 3141592653592992 l004 Pi/tanh(446/99*Pi) 3141592653592994 l004 Pi/tanh(455/101*Pi) 3141592653592996 l004 Pi/tanh(464/103*Pi) 3141592653592998 l004 Pi/tanh(473/105*Pi) 3141592653592999 l004 Pi/tanh(482/107*Pi) 3141592653593001 l004 Pi/tanh(491/109*Pi) 3141592653593003 l004 Pi/tanh(500/111*Pi) 3141592653593004 l004 Pi/tanh(509/113*Pi) 3141592653593006 l004 Pi/tanh(518/115*Pi) 3141592653593007 l004 Pi/tanh(527/117*Pi) 3141592653593009 l004 Pi/tanh(536/119*Pi) 3141592653593095 l004 Pi/tanh(9/2*Pi) 3141592653593183 l004 Pi/tanh(535/119*Pi) 3141592653593185 l004 Pi/tanh(526/117*Pi) 3141592653593186 l004 Pi/tanh(517/115*Pi) 3141592653593188 l004 Pi/tanh(508/113*Pi) 3141592653593190 l004 Pi/tanh(499/111*Pi) 3141592653593191 l004 Pi/tanh(490/109*Pi) 3141592653593193 l004 Pi/tanh(481/107*Pi) 3141592653593195 l004 Pi/tanh(472/105*Pi) 3141592653593197 l004 Pi/tanh(463/103*Pi) 3141592653593199 l004 Pi/tanh(454/101*Pi) 3141592653593201 l004 Pi/tanh(445/99*Pi) 3141592653593204 l004 Pi/tanh(436/97*Pi) 3141592653593206 l004 Pi/tanh(427/95*Pi) 3141592653593208 l004 Pi/tanh(418/93*Pi) 3141592653593211 l004 Pi/tanh(409/91*Pi) 3141592653593213 l004 Pi/tanh(400/89*Pi) 3141592653593216 l004 Pi/tanh(391/87*Pi) 3141592653593219 l004 Pi/tanh(382/85*Pi) 3141592653593222 l004 Pi/tanh(373/83*Pi) 3141592653593225 l004 Pi/tanh(364/81*Pi) 3141592653593229 l004 Pi/tanh(355/79*Pi) 3141592653593232 l004 Pi/tanh(346/77*Pi) 3141592653593236 l004 Pi/tanh(337/75*Pi) 3141592653593240 l004 Pi/tanh(328/73*Pi) 3141592653593244 l004 Pi/tanh(319/71*Pi) 3141592653593249 l004 Pi/tanh(310/69*Pi) 3141592653593253 l004 Pi/tanh(301/67*Pi) 3141592653593258 l004 Pi/tanh(292/65*Pi) 3141592653593264 l004 Pi/tanh(283/63*Pi) 3141592653593269 l004 Pi/tanh(274/61*Pi) 3141592653593272 l004 Pi/tanh(539/120*Pi) 3141592653593275 l004 Pi/tanh(265/59*Pi) 3141592653593279 l004 Pi/tanh(521/116*Pi) 3141592653593282 l004 Pi/tanh(256/57*Pi) 3141592653593285 l004 Pi/tanh(503/112*Pi) 3141592653593289 l004 Pi/tanh(247/55*Pi) 3141592653593293 l004 Pi/tanh(485/108*Pi) 3141592653593297 l004 Pi/tanh(238/53*Pi) 3141592653593301 l004 Pi/tanh(467/104*Pi) 3141592653593305 l004 Pi/tanh(229/51*Pi) 3141592653593308 m001 ZetaQ(3)^(2*Pi/GAMMA(5/6))+Pi 3141592653593309 l004 Pi/tanh(449/100*Pi) 3141592653593314 l004 Pi/tanh(220/49*Pi) 3141592653593318 l004 Pi/tanh(431/96*Pi) 3141592653593323 l004 Pi/tanh(211/47*Pi) 3141592653593328 l004 Pi/tanh(413/92*Pi) 3141592653593334 l004 Pi/tanh(202/45*Pi) 3141592653593339 l004 Pi/tanh(395/88*Pi) 3141592653593345 l004 Pi/tanh(193/43*Pi) 3141592653593351 l004 Pi/tanh(377/84*Pi) 3141592653593358 l004 Pi/tanh(184/41*Pi) 3141592653593365 l004 Pi/tanh(359/80*Pi) 3141592653593367 l004 Pi/tanh(534/119*Pi) 3141592653593372 l004 Pi/tanh(175/39*Pi) 3141592653593377 l004 Pi/tanh(516/115*Pi) 3141592653593379 l004 Pi/tanh(341/76*Pi) 3141592653593382 l004 Pi/tanh(507/113*Pi) 3141592653593387 l004 Pi/tanh(166/37*Pi) 3141592653593393 l004 Pi/tanh(489/109*Pi) 3141592653593396 l004 Pi/tanh(323/72*Pi) 3141592653593399 l004 Pi/tanh(480/107*Pi) 3141592653593405 l004 Pi/tanh(157/35*Pi) 3141592653593411 l004 Pi/tanh(462/103*Pi) 3141592653593415 l004 Pi/tanh(305/68*Pi) 3141592653593418 l004 Pi/tanh(453/101*Pi) 3141592653593425 l004 Pi/tanh(148/33*Pi) 3141592653593426 l005 ln(sec(782/83)) 3141592653593432 l004 Pi/tanh(435/97*Pi) 3141592653593435 l004 Pi/tanh(287/64*Pi) 3141592653593439 l004 Pi/tanh(426/95*Pi) 3141592653593447 l004 Pi/tanh(139/31*Pi) 3141592653593455 l004 Pi/tanh(408/91*Pi) 3141592653593459 l004 Pi/tanh(269/60*Pi) 3141592653593464 l004 Pi/tanh(399/89*Pi) 3141592653593466 l004 Pi/tanh(529/118*Pi) 3141592653593473 l004 Pi/tanh(130/29*Pi) 3141592653593480 l004 Pi/tanh(511/114*Pi) 3141592653593482 l004 Pi/tanh(381/85*Pi) 3141592653593487 l004 Pi/tanh(251/56*Pi) 3141592653593492 l004 Pi/tanh(372/83*Pi) 3141592653593494 l004 Pi/tanh(493/110*Pi) 3141592653593502 l004 Pi/tanh(121/27*Pi) 3141592653593510 l004 Pi/tanh(475/106*Pi) 3141592653593513 l004 Pi/tanh(354/79*Pi) 3141592653593519 l004 Pi/tanh(233/52*Pi) 3141592653593525 l004 Pi/tanh(345/77*Pi) 3141592653593528 l004 Pi/tanh(457/102*Pi) 3141592653593537 l004 Pi/tanh(112/25*Pi) 3141592653593547 l004 Pi/tanh(439/98*Pi) 3141592653593550 l004 Pi/tanh(327/73*Pi) 3141592653593557 l004 Pi/tanh(215/48*Pi) 3141592653593561 l004 Pi/tanh(533/119*Pi) 3141592653593564 l004 Pi/tanh(318/71*Pi) 3141592653593567 l004 Pi/tanh(421/94*Pi) 3141592653593569 l004 Pi/tanh(524/117*Pi) 3141592653593578 l004 Pi/tanh(103/23*Pi) 3141592653593587 l004 Pi/tanh(506/113*Pi) 3141592653593590 l004 Pi/tanh(403/90*Pi) 3141592653593594 l004 Pi/tanh(300/67*Pi) 3141592653593597 l004 Pi/tanh(497/111*Pi) 3141592653593602 l004 Pi/tanh(197/44*Pi) 3141592653593607 l004 Pi/tanh(488/109*Pi) 3141592653593610 l004 Pi/tanh(291/65*Pi) 3141592653593614 l004 Pi/tanh(385/86*Pi) 3141592653593617 l004 Pi/tanh(479/107*Pi) 3141592653593617 l005 ln(sec(204/65)) 3141592653593628 l004 Pi/tanh(94/21*Pi) 3141592653593639 l004 Pi/tanh(461/103*Pi) 3141592653593642 l004 Pi/tanh(367/82*Pi) 3141592653593647 l004 Pi/tanh(273/61*Pi) 3141592653593651 l004 Pi/tanh(452/101*Pi) 3141592653593657 l004 Pi/tanh(179/40*Pi) 3141592653593663 l004 Pi/tanh(443/99*Pi) 3141592653593667 l004 Pi/tanh(264/59*Pi) 3141592653593672 l004 Pi/tanh(349/78*Pi) 3141592653593675 l004 Pi/tanh(434/97*Pi) 3141592653593677 l004 Pi/tanh(519/116*Pi) 3141592653593681 l005 ln(sec(239/76)) 3141592653593689 l004 Pi/tanh(85/19*Pi) 3141592653593700 l004 Pi/tanh(501/112*Pi) 3141592653593702 l004 Pi/tanh(416/93*Pi) 3141592653593706 l004 Pi/tanh(331/74*Pi) 3141592653593712 l004 Pi/tanh(246/55*Pi) 3141592653593717 l004 Pi/tanh(407/91*Pi) 3141592653593725 l004 Pi/tanh(161/36*Pi) 3141592653593727 m004 5*Pi*Coth[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi] 3141592653593732 l004 Pi/tanh(398/89*Pi) 3141592653593738 l004 Pi/tanh(237/53*Pi) 3141592653593744 l004 Pi/tanh(313/70*Pi) 3141592653593748 l004 Pi/tanh(389/87*Pi) 3141592653593751 l004 Pi/tanh(465/104*Pi) 3141592653593765 l004 Pi/tanh(76/17*Pi) 3141592653593778 l004 Pi/tanh(523/117*Pi) 3141592653593780 l004 Pi/tanh(447/100*Pi) 3141592653593783 l004 Pi/tanh(371/83*Pi) 3141592653593787 l004 Pi/tanh(295/66*Pi) 3141592653593791 l004 Pi/tanh(514/115*Pi) 3141592653593795 l004 Pi/tanh(219/49*Pi) 3141592653593802 l004 Pi/tanh(362/81*Pi) 3141592653593804 l004 Pi/tanh(505/113*Pi) 3141592653593807 m001 arctan(1/3)^exp(Pi)+Pi 3141592653593811 l004 Pi/tanh(143/32*Pi) 3141592653593818 l004 Pi/tanh(496/111*Pi) 3141592653593821 l004 Pi/tanh(353/79*Pi) 3141592653593828 l004 Pi/tanh(210/47*Pi) 3141592653593833 l004 Pi/tanh(487/109*Pi) 3141592653593837 l004 Pi/tanh(277/62*Pi) 3141592653593842 l004 Pi/tanh(344/77*Pi) 3141592653593845 m001 ln(5)^Psi(2,1/3)+Pi 3141592653593846 l004 Pi/tanh(411/92*Pi) 3141592653593848 l004 Pi/tanh(478/107*Pi) 3141592653593864 l004 Pi/tanh(67/15*Pi) 3141592653593879 l004 Pi/tanh(527/118*Pi) 3141592653593881 l004 Pi/tanh(460/103*Pi) 3141592653593884 l004 Pi/tanh(393/88*Pi) 3141592653593888 l004 Pi/tanh(326/73*Pi) 3141592653593894 l004 Pi/tanh(259/58*Pi) 3141592653593898 l004 Pi/tanh(451/101*Pi) 3141592653593904 l004 Pi/tanh(192/43*Pi) 3141592653593909 l004 Pi/tanh(509/114*Pi) 3141592653593913 l004 Pi/tanh(317/71*Pi) 3141592653593916 l004 Pi/tanh(442/99*Pi) 3141592653593926 l004 Pi/tanh(125/28*Pi) 3141592653593935 l004 Pi/tanh(433/97*Pi) 3141592653593939 l004 Pi/tanh(308/69*Pi) 3141592653593942 l004 Pi/tanh(491/110*Pi) 3141592653593948 l004 Pi/tanh(183/41*Pi) 3141592653593955 l004 Pi/tanh(424/95*Pi) 3141592653593960 l004 Pi/tanh(241/54*Pi) 3141592653593967 l004 Pi/tanh(299/67*Pi) 3141592653593972 l004 Pi/tanh(357/80*Pi) 3141592653593976 l004 Pi/tanh(415/93*Pi) 3141592653593978 l004 Pi/tanh(473/106*Pi) 3141592653593980 l004 Pi/tanh(531/119*Pi) 3141592653593998 l004 Pi/tanh(58/13*Pi) 3141592653594014 l005 ln(sec(961/102)) 3141592653594015 l004 Pi/tanh(513/115*Pi) 3141592653594018 l004 Pi/tanh(455/102*Pi) 3141592653594020 l004 Pi/tanh(397/89*Pi) 3141592653594024 l004 Pi/tanh(339/76*Pi) 3141592653594030 l004 Pi/tanh(281/63*Pi) 3141592653594034 l004 Pi/tanh(504/113*Pi) 3141592653594038 l004 Pi/tanh(223/50*Pi) 3141592653594045 l004 Pi/tanh(388/87*Pi) 3141592653594053 l004 Pi/tanh(165/37*Pi) 3141592653594060 l004 Pi/tanh(437/98*Pi) 3141592653594065 l004 Pi/tanh(272/61*Pi) 3141592653594070 l004 Pi/tanh(379/85*Pi) 3141592653594070 m001 FellerTornier^exp(Pi)+Pi 3141592653594073 l004 Pi/tanh(486/109*Pi) 3141592653594083 l004 Pi/tanh(107/24*Pi) 3141592653594094 l004 Pi/tanh(477/107*Pi) 3141592653594097 l004 Pi/tanh(370/83*Pi) 3141592653594102 l004 Pi/tanh(263/59*Pi) 3141592653594107 l004 Pi/tanh(419/94*Pi) 3141592653594115 l004 Pi/tanh(156/35*Pi) 3141592653594122 l004 Pi/tanh(517/116*Pi) 3141592653594125 l004 Pi/tanh(361/81*Pi) 3141592653594132 l004 Pi/tanh(205/46*Pi) 3141592653594138 l004 Pi/tanh(459/103*Pi) 3141592653594143 l004 Pi/tanh(254/57*Pi) 3141592653594150 l004 Pi/tanh(303/68*Pi) 3141592653594155 l004 Pi/tanh(352/79*Pi) 3141592653594159 l004 Pi/tanh(401/90*Pi) 3141592653594162 l004 Pi/tanh(450/101*Pi) 3141592653594164 l004 Pi/tanh(499/112*Pi) 3141592653594186 l004 Pi/tanh(49/11*Pi) 3141592653594208 l004 Pi/tanh(530/119*Pi) 3141592653594210 l004 Pi/tanh(481/108*Pi) 3141592653594212 l004 Pi/tanh(432/97*Pi) 3141592653594216 l004 Pi/tanh(383/86*Pi) 3141592653594220 l004 Pi/tanh(334/75*Pi) 3141592653594226 l004 Pi/tanh(285/64*Pi) 3141592653594230 l004 Pi/tanh(521/117*Pi) 3141592653594234 l004 Pi/tanh(236/53*Pi) 3141592653594240 l004 Pi/tanh(423/95*Pi) 3141592653594244 m001 ErdosBorwein^Psi(2,1/3)+Pi 3141592653594247 l004 Pi/tanh(187/42*Pi) 3141592653594252 l004 Pi/tanh(512/115*Pi) 3141592653594256 l004 Pi/tanh(325/73*Pi) 3141592653594259 l004 Pi/tanh(463/104*Pi) 3141592653594268 l004 Pi/tanh(138/31*Pi) 3141592653594276 l004 Pi/tanh(503/113*Pi) 3141592653594279 l004 Pi/tanh(365/82*Pi) 3141592653594286 l004 Pi/tanh(227/51*Pi) 3141592653594294 l004 Pi/tanh(316/71*Pi) 3141592653594298 l004 Pi/tanh(405/91*Pi) 3141592653594301 l004 Pi/tanh(494/111*Pi) 3141592653594314 l004 Pi/tanh(89/20*Pi) 3141592653594327 l004 Pi/tanh(485/109*Pi) 3141592653594330 l004 Pi/tanh(396/89*Pi) 3141592653594334 l004 Pi/tanh(307/69*Pi) 3141592653594338 l004 Pi/tanh(525/118*Pi) 3141592653594343 l004 Pi/tanh(218/49*Pi) 3141592653594350 l004 Pi/tanh(347/78*Pi) 3141592653594354 l004 Pi/tanh(476/107*Pi) 3141592653594363 l004 Pi/tanh(129/29*Pi) 3141592653594373 l004 Pi/tanh(427/96*Pi) 3141592653594378 l004 Pi/tanh(298/67*Pi) 3141592653594382 l004 Pi/tanh(467/105*Pi) 3141592653594389 l004 Pi/tanh(169/38*Pi) 3141592653594398 l004 Pi/tanh(378/85*Pi) 3141592653594405 l004 Pi/tanh(209/47*Pi) 3141592653594411 l004 Pi/tanh(458/103*Pi) 3141592653594416 l004 Pi/tanh(249/56*Pi) 3141592653594424 l004 Pi/tanh(289/65*Pi) 3141592653594430 l004 Pi/tanh(329/74*Pi) 3141592653594435 l004 Pi/tanh(369/83*Pi) 3141592653594439 l004 Pi/tanh(409/92*Pi) 3141592653594442 l004 Pi/tanh(449/101*Pi) 3141592653594445 l004 Pi/tanh(489/110*Pi) 3141592653594447 l004 Pi/tanh(529/119*Pi) 3141592653594474 l004 Pi/tanh(40/9*Pi) 3141592653594482 l005 ln(sec(295/94)) 3141592653594503 l004 Pi/tanh(511/115*Pi) 3141592653594505 l004 Pi/tanh(471/106*Pi) 3141592653594508 l004 Pi/tanh(431/97*Pi) 3141592653594512 l004 Pi/tanh(391/88*Pi) 3141592653594516 l004 Pi/tanh(351/79*Pi) 3141592653594521 l004 Pi/tanh(311/70*Pi) 3141592653594528 l004 Pi/tanh(271/61*Pi) 3141592653594532 l004 Pi/tanh(502/113*Pi) 3141592653594538 l004 Pi/tanh(231/52*Pi) 3141592653594544 l004 Pi/tanh(422/95*Pi) 3141592653594551 l004 Pi/tanh(191/43*Pi) 3141592653594557 l004 Pi/tanh(533/120*Pi) 3141592653594560 l004 Pi/tanh(342/77*Pi) 3141592653594563 l004 Pi/tanh(493/111*Pi) 3141592653594571 l004 Pi/tanh(151/34*Pi) 3141592653594581 l004 Pi/tanh(413/93*Pi) 3141592653594586 l004 Pi/tanh(262/59*Pi) 3141592653594592 l004 Pi/tanh(373/84*Pi) 3141592653594596 l004 Pi/tanh(484/109*Pi) 3141592653594607 l004 Pi/tanh(111/25*Pi) 3141592653594617 l004 Pi/tanh(515/116*Pi) 3141592653594620 l004 Pi/tanh(404/91*Pi) 3141592653594625 l004 Pi/tanh(293/66*Pi) 3141592653594630 l004 Pi/tanh(475/107*Pi) 3141592653594636 l004 Pi/tanh(182/41*Pi) 3141592653594644 l004 Pi/tanh(435/98*Pi) 3141592653594650 l004 Pi/tanh(253/57*Pi) 3141592653594657 l004 Pi/tanh(324/73*Pi) 3141592653594662 l004 Pi/tanh(395/89*Pi) 3141592653594665 l004 Pi/tanh(466/105*Pi) 3141592653594683 l004 Pi/tanh(71/16*Pi) 3141592653594699 l004 Pi/tanh(528/119*Pi) 3141592653594702 l004 Pi/tanh(457/103*Pi) 3141592653594705 l004 Pi/tanh(386/87*Pi) 3141592653594710 l004 Pi/tanh(315/71*Pi) 3141592653594714 l005 ln(sec(217/69)) 3141592653594718 l004 Pi/tanh(244/55*Pi) 3141592653594724 l004 Pi/tanh(417/94*Pi) 3141592653594733 l004 Pi/tanh(173/39*Pi) 3141592653594740 l004 Pi/tanh(448/101*Pi) 3141592653594745 l004 Pi/tanh(275/62*Pi) 3141592653594751 l004 Pi/tanh(377/85*Pi) 3141592653594755 l004 Pi/tanh(479/108*Pi) 3141592653594767 l004 Pi/tanh(102/23*Pi) 3141592653594781 l004 Pi/tanh(439/99*Pi) 3141592653594785 l004 Pi/tanh(337/76*Pi) 3141592653594793 l004 Pi/tanh(235/53*Pi) 3141592653594800 l004 Pi/tanh(368/83*Pi) 3141592653594804 l004 Pi/tanh(501/113*Pi) 3141592653594813 l004 Pi/tanh(133/30*Pi) 3141592653594824 l004 Pi/tanh(430/97*Pi) 3141592653594829 l004 Pi/tanh(297/67*Pi) 3141592653594833 l004 Pi/tanh(461/104*Pi) 3141592653594841 l004 Pi/tanh(164/37*Pi) 3141592653594849 l004 Pi/tanh(523/118*Pi) 3141592653594852 l004 Pi/tanh(359/81*Pi) 3141592653594861 l004 Pi/tanh(195/44*Pi) 3141592653594868 l004 Pi/tanh(421/95*Pi) 3141592653594875 l004 Pi/tanh(226/51*Pi) 3141592653594881 l004 Pi/tanh(483/109*Pi) 3141592653594886 l004 Pi/tanh(257/58*Pi) 3141592653594894 l004 Pi/tanh(288/65*Pi) 3141592653594901 l004 Pi/tanh(319/72*Pi) 3141592653594907 l004 Pi/tanh(350/79*Pi) 3141592653594912 l004 Pi/tanh(381/86*Pi) 3141592653594916 l004 Pi/tanh(412/93*Pi) 3141592653594919 l004 Pi/tanh(443/100*Pi) 3141592653594922 l004 Pi/tanh(474/107*Pi) 3141592653594925 l004 Pi/tanh(505/114*Pi) 3141592653594965 l004 Pi/tanh(31/7*Pi) 3141592653595005 l004 Pi/tanh(518/117*Pi) 3141592653595008 l004 Pi/tanh(487/110*Pi) 3141592653595011 l004 Pi/tanh(456/103*Pi) 3141592653595014 l004 Pi/tanh(425/96*Pi) 3141592653595018 l004 Pi/tanh(394/89*Pi) 3141592653595022 l004 Pi/tanh(363/82*Pi) 3141592653595028 l004 Pi/tanh(332/75*Pi) 3141592653595034 l004 Pi/tanh(301/68*Pi) 3141592653595042 l004 Pi/tanh(270/61*Pi) 3141592653595047 l004 Pi/tanh(509/115*Pi) 3141592653595052 l004 Pi/tanh(239/54*Pi) 3141592653595058 l004 Pi/tanh(447/101*Pi) 3141592653595065 l004 Pi/tanh(208/47*Pi) 3141592653595073 l004 Pi/tanh(385/87*Pi) 3141592653595083 l004 Pi/tanh(177/40*Pi) 3141592653595090 l004 Pi/tanh(500/113*Pi) 3141592653595094 l004 Pi/tanh(323/73*Pi) 3141592653595098 l004 Pi/tanh(469/106*Pi) 3141592653595108 l004 Pi/tanh(146/33*Pi) 3141592653595119 l004 Pi/tanh(407/92*Pi) 3141592653595125 l004 Pi/tanh(261/59*Pi) 3141592653595132 l004 Pi/tanh(376/85*Pi) 3141592653595135 l004 Pi/tanh(491/111*Pi) 3141592653595147 l004 Pi/tanh(115/26*Pi) 3141592653595160 l004 Pi/tanh(429/97*Pi) 3141592653595165 l004 Pi/tanh(314/71*Pi) 3141592653595169 l004 Pi/tanh(513/116*Pi) 3141592653595176 l004 Pi/tanh(199/45*Pi) 3141592653595182 s001 sum(1/10^(n-1)*A114609[n],n=1..infinity) 3141592653595182 s001 sum(1/10^n*A114609[n],n=1..infinity) 3141592653595182 s003 concatenated sequence A114609 3141592653595183 l004 Pi/tanh(482/109*Pi) 3141592653595188 l004 Pi/tanh(283/64*Pi) 3141592653595194 l004 Pi/tanh(367/83*Pi) 3141592653595198 l004 Pi/tanh(451/102*Pi) 3141592653595216 l004 Pi/tanh(84/19*Pi) 3141592653595232 l004 Pi/tanh(473/107*Pi) 3141592653595236 l004 Pi/tanh(389/88*Pi) 3141592653595242 l004 Pi/tanh(305/69*Pi) 3141592653595246 l004 Pi/tanh(526/119*Pi) 3141592653595251 l004 Pi/tanh(221/50*Pi) 3141592653595260 l004 Pi/tanh(358/81*Pi) 3141592653595264 l004 Pi/tanh(495/112*Pi) 3141592653595274 l004 Pi/tanh(137/31*Pi) 3141592653595284 l004 Pi/tanh(464/105*Pi) 3141592653595289 l004 Pi/tanh(327/74*Pi) 3141592653595293 l004 Pi/tanh(517/117*Pi) 3141592653595300 l004 Pi/tanh(190/43*Pi) 3141592653595305 m001 ZetaP(4)^Psi(1,1/3)+Pi 3141592653595308 l004 Pi/tanh(433/98*Pi) 3141592653595314 l004 Pi/tanh(243/55*Pi) 3141592653595324 l004 Pi/tanh(296/67*Pi) 3141592653595330 l004 Pi/tanh(349/79*Pi) 3141592653595335 l004 Pi/tanh(402/91*Pi) 3141592653595339 l004 Pi/tanh(455/103*Pi) 3141592653595342 l004 Pi/tanh(508/115*Pi) 3141592653595367 l004 Pi/tanh(53/12*Pi) 3141592653595393 l004 Pi/tanh(499/113*Pi) 3141592653595396 l004 Pi/tanh(446/101*Pi) 3141592653595400 l004 Pi/tanh(393/89*Pi) 3141592653595405 l004 Pi/tanh(340/77*Pi) 3141592653595412 l004 Pi/tanh(287/65*Pi) 3141592653595417 l004 Pi/tanh(521/118*Pi) 3141592653595422 l004 Pi/tanh(234/53*Pi) 3141592653595429 l004 Pi/tanh(415/94*Pi) 3141592653595439 l004 Pi/tanh(181/41*Pi) 3141592653595446 l004 Pi/tanh(490/111*Pi) 3141592653595451 l004 Pi/tanh(309/70*Pi) 3141592653595456 l004 Pi/tanh(437/99*Pi) 3141592653595469 l004 Pi/tanh(128/29*Pi) 3141592653595480 l004 Pi/tanh(459/104*Pi) 3141592653595485 l004 Pi/tanh(331/75*Pi) 3141592653595495 l004 Pi/tanh(203/46*Pi) 3141592653595503 l004 Pi/tanh(481/109*Pi) 3141592653595508 l004 Pi/tanh(278/63*Pi) 3141592653595515 l004 Pi/tanh(353/80*Pi) 3141592653595520 l004 Pi/tanh(428/97*Pi) 3141592653595523 l004 Pi/tanh(503/114*Pi) 3141592653595541 l004 Pi/tanh(75/17*Pi) 3141592653595561 l004 Pi/tanh(472/107*Pi) 3141592653595565 l004 Pi/tanh(397/90*Pi) 3141592653595571 l004 Pi/tanh(322/73*Pi) 3141592653595579 l004 Pi/tanh(247/56*Pi) 3141592653595586 l004 Pi/tanh(419/95*Pi) 3141592653595596 l004 Pi/tanh(172/39*Pi) 3141592653595605 l004 Pi/tanh(441/100*Pi) 3141592653595611 l004 Pi/tanh(269/61*Pi) 3141592653595619 l004 Pi/tanh(366/83*Pi) 3141592653595623 l004 Pi/tanh(463/105*Pi) 3141592653595639 l004 Pi/tanh(97/22*Pi) 3141592653595653 l004 Pi/tanh(507/115*Pi) 3141592653595657 l004 Pi/tanh(410/93*Pi) 3141592653595662 l004 Pi/tanh(313/71*Pi) 3141592653595667 l004 Pi/tanh(529/120*Pi) 3141592653595673 l004 Pi/tanh(216/49*Pi) 3141592653595683 l004 Pi/tanh(335/76*Pi) 3141592653595688 l004 Pi/tanh(454/103*Pi) 3141592653595701 l004 Pi/tanh(119/27*Pi) 3141592653595713 l004 Pi/tanh(498/113*Pi) 3141592653595717 l004 Pi/tanh(379/86*Pi) 3141592653595724 l004 Pi/tanh(260/59*Pi) 3141592653595731 l004 Pi/tanh(401/91*Pi) 3141592653595744 l004 Pi/tanh(141/32*Pi) 3141592653595756 l004 Pi/tanh(445/101*Pi) 3141592653595761 l004 Pi/tanh(304/69*Pi) 3141592653595766 l004 Pi/tanh(467/106*Pi) 3141592653595776 l004 Pi/tanh(163/37*Pi) 3141592653595784 l004 Pi/tanh(511/116*Pi) 3141592653595789 l004 Pi/tanh(348/79*Pi) 3141592653595800 l004 Pi/tanh(185/42*Pi) 3141592653595810 l004 Pi/tanh(392/89*Pi) 3141592653595819 l004 Pi/tanh(207/47*Pi) 3141592653595827 l004 Pi/tanh(436/99*Pi) 3141592653595835 l004 Pi/tanh(229/52*Pi) 3141592653595841 l004 Pi/tanh(480/109*Pi) 3141592653595847 l004 Pi/tanh(251/57*Pi) 3141592653595853 l004 Pi/tanh(524/119*Pi) 3141592653595858 l004 Pi/tanh(273/62*Pi) 3141592653595867 l004 Pi/tanh(295/67*Pi) 3141592653595875 l004 Pi/tanh(317/72*Pi) 3141592653595882 l004 Pi/tanh(339/77*Pi) 3141592653595888 l004 Pi/tanh(361/82*Pi) 3141592653595894 l004 Pi/tanh(383/87*Pi) 3141592653595898 l004 Pi/tanh(405/92*Pi) 3141592653595903 l004 Pi/tanh(427/97*Pi) 3141592653595907 l004 Pi/tanh(449/102*Pi) 3141592653595910 l004 Pi/tanh(471/107*Pi) 3141592653595913 l004 Pi/tanh(493/112*Pi) 3141592653595916 l004 Pi/tanh(515/117*Pi) 3141592653595982 l004 Pi/tanh(22/5*Pi) 3141592653596049 l004 Pi/tanh(519/118*Pi) 3141592653596052 l004 Pi/tanh(497/113*Pi) 3141592653596055 l004 Pi/tanh(475/108*Pi) 3141592653596058 l004 Pi/tanh(453/103*Pi) 3141592653596062 l004 Pi/tanh(431/98*Pi) 3141592653596067 l004 Pi/tanh(409/93*Pi) 3141592653596071 l004 Pi/tanh(387/88*Pi) 3141592653596077 l004 Pi/tanh(365/83*Pi) 3141592653596083 l004 Pi/tanh(343/78*Pi) 3141592653596090 l004 Pi/tanh(321/73*Pi) 3141592653596098 l004 Pi/tanh(299/68*Pi) 3141592653596107 l004 Pi/tanh(277/63*Pi) 3141592653596118 l004 Pi/tanh(255/58*Pi) 3141592653596124 l004 Pi/tanh(488/111*Pi) 3141592653596131 l004 Pi/tanh(233/53*Pi) 3141592653596138 l004 Pi/tanh(444/101*Pi) 3141592653596147 l004 Pi/tanh(211/48*Pi) 3141592653596156 l004 Pi/tanh(400/91*Pi) 3141592653596166 l004 Pi/tanh(189/43*Pi) 3141592653596177 l004 Pi/tanh(356/81*Pi) 3141592653596182 l004 Pi/tanh(523/119*Pi) 3141592653596191 l004 Pi/tanh(167/38*Pi) 3141592653596200 l004 Pi/tanh(479/109*Pi) 3141592653596205 l004 Pi/tanh(312/71*Pi) 3141592653596211 l004 Pi/tanh(457/104*Pi) 3141592653596223 l004 Pi/tanh(145/33*Pi) 3141592653596236 l004 Pi/tanh(413/94*Pi) 3141592653596243 l004 Pi/tanh(268/61*Pi) 3141592653596246 l005 ln(sec(195/62)) 3141592653596250 l004 Pi/tanh(391/89*Pi) 3141592653596254 l004 Pi/tanh(514/117*Pi) 3141592653596267 l004 Pi/tanh(123/28*Pi) 3141592653596280 l004 Pi/tanh(470/107*Pi) 3141592653596285 l004 Pi/tanh(347/79*Pi) 3141592653596295 l004 Pi/tanh(224/51*Pi) 3141592653596306 l004 Pi/tanh(325/74*Pi) 3141592653596312 l004 Pi/tanh(426/97*Pi) 3141592653596315 l004 Pi/tanh(527/120*Pi) 3141592653596330 l004 Pi/tanh(101/23*Pi) 3141592653596346 l004 Pi/tanh(483/110*Pi) 3141592653596351 l004 Pi/tanh(382/87*Pi) 3141592653596358 l004 Pi/tanh(281/64*Pi) 3141592653596364 l004 Pi/tanh(461/105*Pi) 3141592653596374 l004 Pi/tanh(180/41*Pi) 3141592653596384 l004 Pi/tanh(439/100*Pi) 3141592653596391 l004 Pi/tanh(259/59*Pi) 3141592653596400 l004 Pi/tanh(338/77*Pi) 3141592653596406 l004 Pi/tanh(417/95*Pi) 3141592653596410 l004 Pi/tanh(496/113*Pi) 3141592653596430 l004 Pi/tanh(79/18*Pi) 3141592653596453 l004 Pi/tanh(452/103*Pi) 3141592653596457 l004 Pi/tanh(373/85*Pi) 3141592653596465 l004 Pi/tanh(294/67*Pi) 3141592653596470 l004 Pi/tanh(509/116*Pi) 3141592653596477 l004 Pi/tanh(215/49*Pi) 3141592653596488 l004 Pi/tanh(351/80*Pi) 3141592653596493 l004 Pi/tanh(487/111*Pi) 3141592653596505 l004 Pi/tanh(136/31*Pi) 3141592653596518 l004 Pi/tanh(465/106*Pi) 3141592653596523 l004 Pi/tanh(329/75*Pi) 3141592653596528 l004 Pi/tanh(522/119*Pi) 3141592653596536 l004 Pi/tanh(193/44*Pi) 3141592653596546 l004 Pi/tanh(443/101*Pi) 3141592653596553 l004 Pi/tanh(250/57*Pi) 3141592653596564 l004 Pi/tanh(307/70*Pi) 3141592653596571 l004 Pi/tanh(364/83*Pi) 3141592653596576 l004 Pi/tanh(421/96*Pi) 3141592653596580 l004 Pi/tanh(478/109*Pi) 3141592653596611 l004 Pi/tanh(57/13*Pi) 3141592653596640 l004 Pi/tanh(491/112*Pi) 3141592653596644 l004 Pi/tanh(434/99*Pi) 3141592653596649 l004 Pi/tanh(377/86*Pi) 3141592653596656 l004 Pi/tanh(320/73*Pi) 3141592653596666 l004 Pi/tanh(263/60*Pi) 3141592653596672 l004 Pi/tanh(469/107*Pi) 3141592653596681 l004 Pi/tanh(206/47*Pi) 3141592653596692 l004 Pi/tanh(355/81*Pi) 3141592653596697 l004 Pi/tanh(504/115*Pi) 3141592653596708 l004 Pi/tanh(149/34*Pi) 3141592653596723 l004 Pi/tanh(390/89*Pi) 3141592653596731 l004 Pi/tanh(241/55*Pi) 3141592653596742 l004 Pi/tanh(333/76*Pi) 3141592653596748 l004 Pi/tanh(425/97*Pi) 3141592653596752 l004 Pi/tanh(517/118*Pi) 3141592653596769 l004 Pi/tanh(92/21*Pi) 3141592653596788 l004 Pi/tanh(495/113*Pi) 3141592653596792 l004 Pi/tanh(403/92*Pi) 3141592653596799 l004 Pi/tanh(311/71*Pi) 3141592653596811 l004 Pi/tanh(219/50*Pi) 3141592653596822 l004 Pi/tanh(346/79*Pi) 3141592653596828 l004 Pi/tanh(473/108*Pi) 3141592653596842 l004 Pi/tanh(127/29*Pi) 3141592653596858 l004 Pi/tanh(416/95*Pi) 3141592653596865 l004 Pi/tanh(289/66*Pi) 3141592653596871 l004 Pi/tanh(451/103*Pi) 3141592653596883 l004 Pi/tanh(162/37*Pi) 3141592653596893 l004 Pi/tanh(521/119*Pi) 3141592653596898 l004 Pi/tanh(359/82*Pi) 3141592653596910 l004 Pi/tanh(197/45*Pi) 3141592653596920 l004 Pi/tanh(429/98*Pi) 3141592653596929 l004 Pi/tanh(232/53*Pi) 3141592653596936 l004 Pi/tanh(499/114*Pi) 3141592653596943 l004 Pi/tanh(267/61*Pi) 3141592653596945 l005 ln(sec(91/29)) 3141592653596953 l004 Pi/tanh(302/69*Pi) 3141592653596962 l004 Pi/tanh(337/77*Pi) 3141592653596969 l004 Pi/tanh(372/85*Pi) 3141592653596974 l004 Pi/tanh(407/93*Pi) 3141592653596979 l004 Pi/tanh(442/101*Pi) 3141592653596983 l004 Pi/tanh(477/109*Pi) 3141592653596987 l004 Pi/tanh(512/117*Pi) 3141592653597035 l004 Pi/tanh(35/8*Pi) 3141592653597085 l004 Pi/tanh(503/115*Pi) 3141592653597089 l004 Pi/tanh(468/107*Pi) 3141592653597093 l004 Pi/tanh(433/99*Pi) 3141592653597098 l004 Pi/tanh(398/91*Pi) 3141592653597104 l004 Pi/tanh(363/83*Pi) 3141592653597111 l004 Pi/tanh(328/75*Pi) 3141592653597121 l004 Pi/tanh(293/67*Pi) 3141592653597132 l004 Pi/tanh(258/59*Pi) 3141592653597139 l004 Pi/tanh(481/110*Pi) 3141592653597148 l004 Pi/tanh(223/51*Pi) 3141592653597157 l004 Pi/tanh(411/94*Pi) 3141592653597169 l004 Pi/tanh(188/43*Pi) 3141592653597183 l004 Pi/tanh(341/78*Pi) 3141592653597187 m001 OneNinth^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653597187 m001 Pi+OneNinth^GAMMA(1/12) 3141592653597188 l004 Pi/tanh(494/113*Pi) 3141592653597200 l004 Pi/tanh(153/35*Pi) 3141592653597213 l004 Pi/tanh(424/97*Pi) 3141592653597221 l004 Pi/tanh(271/62*Pi) 3141592653597230 l004 Pi/tanh(389/89*Pi) 3141592653597234 l004 Pi/tanh(507/116*Pi) 3141592653597249 l004 Pi/tanh(118/27*Pi) 3141592653597266 l004 Pi/tanh(437/100*Pi) 3141592653597273 l004 Pi/tanh(319/73*Pi) 3141592653597278 l004 Pi/tanh(520/119*Pi) 3141592653597287 l004 Pi/tanh(201/46*Pi) 3141592653597296 l004 Pi/tanh(485/111*Pi) 3141592653597302 l005 ln(sec(368/117)) 3141592653597303 l004 Pi/tanh(284/65*Pi) 3141592653597311 l004 Pi/tanh(367/84*Pi) 3141592653597317 l004 Pi/tanh(450/103*Pi) 3141592653597341 l004 Pi/tanh(83/19*Pi) 3141592653597364 l004 Pi/tanh(463/106*Pi) 3141592653597370 l004 Pi/tanh(380/87*Pi) 3141592653597378 l004 Pi/tanh(297/68*Pi) 3141592653597384 l004 Pi/tanh(511/117*Pi) 3141592653597392 l004 Pi/tanh(214/49*Pi) 3141592653597404 l004 Pi/tanh(345/79*Pi) 3141592653597410 l004 Pi/tanh(476/109*Pi) 3141592653597425 l004 Pi/tanh(131/30*Pi) 3141592653597440 l004 Pi/tanh(441/101*Pi) 3141592653597447 l004 Pi/tanh(310/71*Pi) 3141592653597453 l004 Pi/tanh(489/112*Pi) 3141592653597456 l005 ln(sec(179/19)) 3141592653597464 l004 Pi/tanh(179/41*Pi) 3141592653597476 l004 Pi/tanh(406/93*Pi) 3141592653597486 l004 Pi/tanh(227/52*Pi) 3141592653597494 l004 Pi/tanh(502/115*Pi) 3141592653597501 l004 Pi/tanh(275/63*Pi) 3141592653597511 l004 Pi/tanh(323/74*Pi) 3141592653597519 l004 Pi/tanh(371/85*Pi) 3141592653597525 l004 Pi/tanh(419/96*Pi) 3141592653597530 l004 Pi/tanh(467/107*Pi) 3141592653597534 l004 Pi/tanh(515/118*Pi) 3141592653597537 m001 BesselI(1,2)^Psi(2,1/3)+Pi 3141592653597571 l004 Pi/tanh(48/11*Pi) 3141592653597611 l004 Pi/tanh(493/113*Pi) 3141592653597615 l004 Pi/tanh(445/102*Pi) 3141592653597620 l004 Pi/tanh(397/91*Pi) 3141592653597627 l004 Pi/tanh(349/80*Pi) 3141592653597636 l004 Pi/tanh(301/69*Pi) 3141592653597648 l004 Pi/tanh(253/58*Pi) 3141592653597656 l004 Pi/tanh(458/105*Pi) 3141592653597666 l004 Pi/tanh(205/47*Pi) 3141592653597679 l004 Pi/tanh(362/83*Pi) 3141592653597684 l004 Pi/tanh(519/119*Pi) 3141592653597696 l004 Pi/tanh(157/36*Pi) 3141592653597710 l004 Pi/tanh(423/97*Pi) 3141592653597718 l004 Pi/tanh(266/61*Pi) 3141592653597728 l004 Pi/tanh(375/86*Pi) 3141592653597733 l004 Pi/tanh(484/111*Pi) 3141592653597751 l004 Pi/tanh(109/25*Pi) 3141592653597769 l004 Pi/tanh(497/114*Pi) 3141592653597774 l004 Pi/tanh(388/89*Pi) 3141592653597782 l004 Pi/tanh(279/64*Pi) 3141592653597790 l004 Pi/tanh(449/103*Pi) 3141592653597802 l004 Pi/tanh(170/39*Pi) 3141592653597816 l004 Pi/tanh(401/92*Pi) 3141592653597827 l004 Pi/tanh(231/53*Pi) 3141592653597835 l004 Pi/tanh(523/120*Pi) 3141592653597841 l004 Pi/tanh(292/67*Pi) 3141592653597850 l004 Pi/tanh(353/81*Pi) 3141592653597857 l004 Pi/tanh(414/95*Pi) 3141592653597862 l004 Pi/tanh(475/109*Pi) 3141592653597895 l004 Pi/tanh(61/14*Pi) 3141592653597927 l004 Pi/tanh(501/115*Pi) 3141592653597931 l004 Pi/tanh(440/101*Pi) 3141592653597937 l004 Pi/tanh(379/87*Pi) 3141592653597945 l004 Pi/tanh(318/73*Pi) 3141592653597957 l004 Pi/tanh(257/59*Pi) 3141592653597965 l004 Pi/tanh(453/104*Pi) 3141592653597976 l004 Pi/tanh(196/45*Pi) 3141592653597991 l004 Pi/tanh(331/76*Pi) 3141592653597998 l004 Pi/tanh(466/107*Pi) 3141592653598013 l004 Pi/tanh(135/31*Pi) 3141592653598028 l004 Pi/tanh(479/110*Pi) 3141592653598032 l005 ln(sec(66/7)) 3141592653598034 l004 Pi/tanh(344/79*Pi) 3141592653598048 l004 Pi/tanh(209/48*Pi) 3141592653598058 l004 Pi/tanh(492/113*Pi) 3141592653598065 l004 Pi/tanh(283/65*Pi) 3141592653598074 l004 Pi/tanh(357/82*Pi) 3141592653598081 l004 Pi/tanh(431/99*Pi) 3141592653598085 l004 Pi/tanh(505/116*Pi) 3141592653598112 l004 Pi/tanh(74/17*Pi) 3141592653598141 l004 Pi/tanh(457/105*Pi) 3141592653598147 l004 Pi/tanh(383/88*Pi) 3141592653598155 l004 Pi/tanh(309/71*Pi) 3141592653598169 l004 Pi/tanh(235/54*Pi) 3141592653598180 l004 Pi/tanh(396/91*Pi) 3141592653598195 l004 Pi/tanh(161/37*Pi) 3141592653598211 l004 Pi/tanh(409/94*Pi) 3141592653598220 l004 Pi/tanh(248/57*Pi) 3141592653598233 l004 Pi/tanh(335/77*Pi) 3141592653598240 l004 Pi/tanh(422/97*Pi) 3141592653598244 l004 Pi/tanh(509/117*Pi) 3141592653598267 l004 Pi/tanh(87/20*Pi) 3141592653598293 l004 Pi/tanh(448/103*Pi) 3141592653598299 l004 Pi/tanh(361/83*Pi) 3141592653598309 l004 Pi/tanh(274/63*Pi) 3141592653598317 l004 Pi/tanh(461/106*Pi) 3141592653598329 l004 Pi/tanh(187/43*Pi) 3141592653598341 l004 Pi/tanh(474/109*Pi) 3141592653598348 l004 Pi/tanh(287/66*Pi) 3141592653598357 l004 Pi/tanh(387/89*Pi) 3141592653598363 l004 Pi/tanh(487/112*Pi) 3141592653598384 l004 Pi/tanh(100/23*Pi) 3141592653598404 l004 Pi/tanh(513/118*Pi) 3141592653598408 l004 Pi/tanh(413/95*Pi) 3141592653598416 l004 Pi/tanh(313/72*Pi) 3141592653598432 l004 Pi/tanh(213/49*Pi) 3141592653598446 l004 Pi/tanh(326/75*Pi) 3141592653598454 l004 Pi/tanh(439/101*Pi) 3141592653598474 l004 Pi/tanh(113/26*Pi) 3141592653598494 l004 Pi/tanh(465/107*Pi) 3141592653598500 l004 Pi/tanh(352/81*Pi) 3141592653598513 l004 Pi/tanh(239/55*Pi) 3141592653598524 l004 Pi/tanh(365/84*Pi) 3141592653598530 l004 Pi/tanh(491/113*Pi) 3141592653598547 l004 Pi/tanh(126/29*Pi) 3141592653598563 l004 Pi/tanh(517/119*Pi) 3141592653598568 l004 Pi/tanh(391/90*Pi) 3141592653598578 l004 Pi/tanh(265/61*Pi) 3141592653598588 l004 Pi/tanh(404/93*Pi) 3141592653598606 l004 Pi/tanh(139/32*Pi) 3141592653598624 l004 Pi/tanh(430/99*Pi) 3141592653598632 l004 Pi/tanh(291/67*Pi) 3141592653598640 l004 Pi/tanh(443/102*Pi) 3141592653598643 l005 ln(sec(173/55)) 3141592653598656 l004 Pi/tanh(152/35*Pi) 3141592653598671 l004 Pi/tanh(469/108*Pi) 3141592653598678 l004 Pi/tanh(317/73*Pi) 3141592653598685 l004 Pi/tanh(482/111*Pi) 3141592653598698 l004 Pi/tanh(165/38*Pi) 3141592653598711 l004 Pi/tanh(508/117*Pi) 3141592653598717 l004 Pi/tanh(343/79*Pi) 3141592653598723 l004 Pi/tanh(521/120*Pi) 3141592653598734 l004 Pi/tanh(178/41*Pi) 3141592653598750 l004 Pi/tanh(369/85*Pi) 3141592653598765 l004 Pi/tanh(191/44*Pi) 3141592653598779 l004 Pi/tanh(395/91*Pi) 3141592653598793 l004 Pi/tanh(204/47*Pi) 3141592653598805 l004 Pi/tanh(421/97*Pi) 3141592653598817 l004 Pi/tanh(217/50*Pi) 3141592653598828 l004 Pi/tanh(447/103*Pi) 3141592653598838 l004 Pi/tanh(230/53*Pi) 3141592653598848 l004 Pi/tanh(473/109*Pi) 3141592653598857 l004 Pi/tanh(243/56*Pi) 3141592653598866 l004 Pi/tanh(499/115*Pi) 3141592653598874 l004 Pi/tanh(256/59*Pi) 3141592653598890 l004 Pi/tanh(269/62*Pi) 3141592653598904 l004 Pi/tanh(282/65*Pi) 3141592653598917 l004 Pi/tanh(295/68*Pi) 3141592653598929 l004 Pi/tanh(308/71*Pi) 3141592653598940 l004 Pi/tanh(321/74*Pi) 3141592653598950 l004 Pi/tanh(334/77*Pi) 3141592653598959 l004 Pi/tanh(347/80*Pi) 3141592653598968 l004 Pi/tanh(360/83*Pi) 3141592653598976 l004 Pi/tanh(373/86*Pi) 3141592653598984 l004 Pi/tanh(386/89*Pi) 3141592653598991 l004 Pi/tanh(399/92*Pi) 3141592653598997 l004 Pi/tanh(412/95*Pi) 3141592653599004 l004 Pi/tanh(425/98*Pi) 3141592653599010 l004 Pi/tanh(438/101*Pi) 3141592653599015 l004 Pi/tanh(451/104*Pi) 3141592653599020 l004 Pi/tanh(464/107*Pi) 3141592653599025 l004 Pi/tanh(477/110*Pi) 3141592653599030 l004 Pi/tanh(490/113*Pi) 3141592653599034 l004 Pi/tanh(503/116*Pi) 3141592653599038 l004 Pi/tanh(516/119*Pi) 3141592653599203 l004 Pi/tanh(13/3*Pi) 3141592653599214 p002 log(1/6*(2^(1/2)-6^(1/3)*10^(1/4))*6^(2/3)) 3141592653599371 l004 Pi/tanh(511/118*Pi) 3141592653599376 l004 Pi/tanh(498/115*Pi) 3141592653599380 l004 Pi/tanh(485/112*Pi) 3141592653599385 l004 Pi/tanh(472/109*Pi) 3141592653599390 l004 Pi/tanh(459/106*Pi) 3141592653599396 l004 Pi/tanh(446/103*Pi) 3141592653599402 l004 Pi/tanh(433/100*Pi) 3141592653599408 l004 Pi/tanh(420/97*Pi) 3141592653599415 l004 Pi/tanh(407/94*Pi) 3141592653599422 l004 Pi/tanh(394/91*Pi) 3141592653599429 l004 Pi/tanh(381/88*Pi) 3141592653599437 l004 Pi/tanh(368/85*Pi) 3141592653599446 l004 Pi/tanh(355/82*Pi) 3141592653599455 l004 Pi/tanh(342/79*Pi) 3141592653599466 l004 Pi/tanh(329/76*Pi) 3141592653599477 l004 Pi/tanh(316/73*Pi) 3141592653599488 l004 Pi/tanh(303/70*Pi) 3141592653599501 l004 Pi/tanh(290/67*Pi) 3141592653599516 l004 Pi/tanh(277/64*Pi) 3141592653599531 l004 Pi/tanh(264/61*Pi) 3141592653599540 l004 Pi/tanh(515/119*Pi) 3141592653599549 l004 Pi/tanh(251/58*Pi) 3141592653599558 l004 Pi/tanh(489/113*Pi) 3141592653599568 l004 Pi/tanh(238/55*Pi) 3141592653599578 l004 Pi/tanh(463/107*Pi) 3141592653599589 l004 Pi/tanh(225/52*Pi) 3141592653599601 l004 Pi/tanh(437/101*Pi) 3141592653599614 l004 Pi/tanh(212/49*Pi) 3141592653599627 l004 Pi/tanh(411/95*Pi) 3141592653599641 l004 Pi/tanh(199/46*Pi) 3141592653599656 l004 Pi/tanh(385/89*Pi) 3141592653599663 m001 StolarskyHarborth^Psi(1,1/3)+Pi 3141592653599672 l004 Pi/tanh(186/43*Pi) 3141592653599690 l004 Pi/tanh(359/83*Pi) 3141592653599708 l004 Pi/tanh(173/40*Pi) 3141592653599722 l004 Pi/tanh(506/117*Pi) 3141592653599729 l004 Pi/tanh(333/77*Pi) 3141592653599736 l004 Pi/tanh(493/114*Pi) 3141592653599751 l004 Pi/tanh(160/37*Pi) 3141592653599756 l005 ln(sec(342/109)) 3141592653599766 l004 Pi/tanh(467/108*Pi) 3141592653599774 l004 Pi/tanh(307/71*Pi) 3141592653599783 l004 Pi/tanh(454/105*Pi) 3141592653599801 l004 Pi/tanh(147/34*Pi) 3141592653599819 l004 Pi/tanh(428/99*Pi) 3141592653599829 l004 Pi/tanh(281/65*Pi) 3141592653599839 l004 Pi/tanh(415/96*Pi) 3141592653599860 l004 Pi/tanh(134/31*Pi) 3141592653599883 l004 Pi/tanh(389/90*Pi) 3141592653599895 l004 Pi/tanh(255/59*Pi) 3141592653599907 l004 Pi/tanh(376/87*Pi) 3141592653599914 l004 Pi/tanh(497/115*Pi) 3141592653599933 l004 Pi/tanh(121/28*Pi) 3141592653599954 l004 Pi/tanh(471/109*Pi) 3141592653599962 l004 Pi/tanh(350/81*Pi) 3141592653599977 l004 Pi/tanh(229/53*Pi) 3141592653599992 l004 Pi/tanh(337/78*Pi) 3141592653600000 l004 Pi/tanh(445/103*Pi) 3141592653600025 l004 Pi/tanh(108/25*Pi) 3141592653600051 l004 Pi/tanh(419/97*Pi) 3141592653600061 l004 Pi/tanh(311/72*Pi) 3141592653600068 l004 Pi/tanh(514/119*Pi) 3141592653600080 l004 Pi/tanh(203/47*Pi) 3141592653600092 l004 Pi/tanh(501/116*Pi) 3141592653600100 l004 Pi/tanh(298/69*Pi) 3141592653600110 l004 Pi/tanh(393/91*Pi) 3141592653600116 l004 Pi/tanh(488/113*Pi) 3141592653600142 l004 Pi/tanh(95/22*Pi) 3141592653600170 l004 Pi/tanh(462/107*Pi) 3141592653600177 l004 Pi/tanh(367/85*Pi) 3141592653600190 l004 Pi/tanh(272/63*Pi) 3141592653600199 l004 Pi/tanh(449/104*Pi) 3141592653600215 l004 Pi/tanh(177/41*Pi) 3141592653600231 l004 Pi/tanh(436/101*Pi) 3141592653600241 l004 Pi/tanh(259/60*Pi) 3141592653600255 l004 Pi/tanh(341/79*Pi) 3141592653600264 l004 Pi/tanh(423/98*Pi) 3141592653600270 l004 Pi/tanh(505/117*Pi) 3141592653600299 l004 Pi/tanh(82/19*Pi) 3141592653600331 l004 Pi/tanh(479/111*Pi) 3141592653600337 l004 Pi/tanh(397/92*Pi) 3141592653600347 l004 Pi/tanh(315/73*Pi) 3141592653600364 l004 Pi/tanh(233/54*Pi) 3141592653600376 l005 ln(sec(324/103)) 3141592653600378 l004 Pi/tanh(384/89*Pi) 3141592653600399 l004 Pi/tanh(151/35*Pi) 3141592653600421 l004 Pi/tanh(371/86*Pi) 3141592653600436 l004 Pi/tanh(220/51*Pi) 3141592653600447 l004 Pi/tanh(509/118*Pi) 3141592653600456 l004 Pi/tanh(289/67*Pi) 3141592653600468 l004 Pi/tanh(358/83*Pi) 3141592653600476 l004 Pi/tanh(427/99*Pi) 3141592653600482 l004 Pi/tanh(496/115*Pi) 3141592653600519 l004 Pi/tanh(69/16*Pi) 3141592653600557 l004 Pi/tanh(470/109*Pi) 3141592653600564 l004 Pi/tanh(401/93*Pi) 3141592653600573 l004 Pi/tanh(332/77*Pi) 3141592653600588 l004 Pi/tanh(263/61*Pi) 3141592653600598 l004 Pi/tanh(457/106*Pi) 3141592653600613 l004 Pi/tanh(194/45*Pi) 3141592653600625 l004 Pi/tanh(513/119*Pi) 3141592653600633 l004 Pi/tanh(319/74*Pi) 3141592653600642 l004 Pi/tanh(444/103*Pi) 3141592653600665 l004 Pi/tanh(125/29*Pi) 3141592653600688 l004 Pi/tanh(431/100*Pi) 3141592653600698 l004 Pi/tanh(306/71*Pi) 3141592653600707 l004 Pi/tanh(487/113*Pi) 3141592653600721 l004 Pi/tanh(181/42*Pi) 3141592653600738 l004 Pi/tanh(418/97*Pi) 3141592653600751 l004 Pi/tanh(237/55*Pi) 3141592653600769 l004 Pi/tanh(293/68*Pi) 3141592653600782 l004 Pi/tanh(349/81*Pi) 3141592653600791 l004 Pi/tanh(405/94*Pi) 3141592653600798 l004 Pi/tanh(461/107*Pi) 3141592653600803 l004 Pi/tanh(517/120*Pi) 3141592653600848 l004 Pi/tanh(56/13*Pi) 3141592653600895 l004 Pi/tanh(491/114*Pi) 3141592653600901 l004 Pi/tanh(435/101*Pi) 3141592653600908 l004 Pi/tanh(379/88*Pi) 3141592653600919 l004 Pi/tanh(323/75*Pi) 3141592653600934 l004 Pi/tanh(267/62*Pi) 3141592653600944 l004 Pi/tanh(478/111*Pi) 3141592653600956 l005 ln(sec(251/80)) 3141592653600957 l004 Pi/tanh(211/49*Pi) 3141592653600974 l004 Pi/tanh(366/85*Pi) 3141592653600997 l004 Pi/tanh(155/36*Pi) 3141592653601018 l004 Pi/tanh(409/95*Pi) 3141592653601030 l004 Pi/tanh(254/59*Pi) 3141592653601045 l004 Pi/tanh(353/82*Pi) 3141592653601053 l004 Pi/tanh(452/105*Pi) 3141592653601082 l004 Pi/tanh(99/23*Pi) 3141592653601113 l004 Pi/tanh(439/102*Pi) 3141592653601121 l004 Pi/tanh(340/79*Pi) 3141592653601138 l004 Pi/tanh(241/56*Pi) 3141592653601152 l004 Pi/tanh(383/89*Pi) 3141592653601176 l004 Pi/tanh(142/33*Pi) 3141592653601196 l004 Pi/tanh(469/109*Pi) 3141592653601205 l004 Pi/tanh(327/76*Pi) 3141592653601213 l004 Pi/tanh(512/119*Pi) 3141592653601227 l004 Pi/tanh(185/43*Pi) 3141592653601244 l004 Pi/tanh(413/96*Pi) 3141592653601258 l004 Pi/tanh(228/53*Pi) 3141592653601270 l004 Pi/tanh(499/116*Pi) 3141592653601280 l004 Pi/tanh(271/63*Pi) 3141592653601296 l004 Pi/tanh(314/73*Pi) 3141592653601308 l004 Pi/tanh(357/83*Pi) 3141592653601317 l004 Pi/tanh(400/93*Pi) 3141592653601324 l004 Pi/tanh(443/103*Pi) 3141592653601331 l004 Pi/tanh(486/113*Pi) 3141592653601343 m001 Trott^(2*Pi/GAMMA(5/6))+Pi 3141592653601395 l004 Pi/tanh(43/10*Pi) 3141592653601457 l004 Pi/tanh(503/117*Pi) 3141592653601463 l004 Pi/tanh(460/107*Pi) 3141592653601470 l004 Pi/tanh(417/97*Pi) 3141592653601479 l004 Pi/tanh(374/87*Pi) 3141592653601490 l004 Pi/tanh(331/77*Pi) 3141592653601504 l004 Pi/tanh(288/67*Pi) 3141592653601524 l004 Pi/tanh(245/57*Pi) 3141592653601536 l004 Pi/tanh(447/104*Pi) 3141592653601551 l004 Pi/tanh(202/47*Pi) 3141592653601570 l004 Pi/tanh(361/84*Pi) 3141592653601594 l004 Pi/tanh(159/37*Pi) 3141592653601614 l004 Pi/tanh(434/101*Pi) 3141592653601625 l004 Pi/tanh(275/64*Pi) 3141592653601638 l004 Pi/tanh(391/91*Pi) 3141592653601645 l004 Pi/tanh(507/118*Pi) 3141592653601668 l004 Pi/tanh(116/27*Pi) 3141592653601696 l004 Pi/tanh(421/98*Pi) 3141592653601707 l004 Pi/tanh(305/71*Pi) 3141592653601716 l004 Pi/tanh(494/115*Pi) 3141592653601731 l004 Pi/tanh(189/44*Pi) 3141592653601747 l004 Pi/tanh(451/105*Pi) 3141592653601759 l004 Pi/tanh(262/61*Pi) 3141592653601775 l004 Pi/tanh(335/78*Pi) 3141592653601785 l004 Pi/tanh(408/95*Pi) 3141592653601792 l004 Pi/tanh(481/112*Pi) 3141592653601832 l004 Pi/tanh(73/17*Pi) 3141592653601873 l004 Pi/tanh(468/109*Pi) 3141592653601880 l004 Pi/tanh(395/92*Pi) 3141592653601891 l004 Pi/tanh(322/75*Pi) 3141592653601909 l004 Pi/tanh(249/58*Pi) 3141592653601922 l004 Pi/tanh(425/99*Pi) 3141592653601941 l004 Pi/tanh(176/41*Pi) 3141592653601958 l004 Pi/tanh(455/106*Pi) 3141592653601970 l004 Pi/tanh(279/65*Pi) 3141592653601983 l004 Pi/tanh(382/89*Pi) 3141592653601990 l004 Pi/tanh(485/113*Pi) 3141592653602019 l004 Pi/tanh(103/24*Pi) 3141592653602050 l004 Pi/tanh(442/103*Pi) 3141592653602059 l004 Pi/tanh(339/79*Pi) 3141592653602077 l004 Pi/tanh(236/55*Pi) 3141592653602093 l004 Pi/tanh(369/86*Pi) 3141592653602101 l004 Pi/tanh(502/117*Pi) 3141592653602122 l004 Pi/tanh(133/31*Pi) 3141592653602147 l004 Pi/tanh(429/100*Pi) 3141592653602159 l004 Pi/tanh(296/69*Pi) 3141592653602169 l004 Pi/tanh(459/107*Pi) 3141592653602188 l004 Pi/tanh(163/38*Pi) 3141592653602213 l004 Pi/tanh(356/83*Pi) 3141592653602234 l004 Pi/tanh(193/45*Pi) 3141592653602252 l004 Pi/tanh(416/97*Pi) 3141592653602267 l004 Pi/tanh(223/52*Pi) 3141592653602281 l004 Pi/tanh(476/111*Pi) 3141592653602293 l004 Pi/tanh(253/59*Pi) 3141592653602313 l004 Pi/tanh(283/66*Pi) 3141592653602330 l004 Pi/tanh(313/73*Pi) 3141592653602343 l004 Pi/tanh(343/80*Pi) 3141592653602354 l004 Pi/tanh(373/87*Pi) 3141592653602364 l004 Pi/tanh(403/94*Pi) 3141592653602372 l004 Pi/tanh(433/101*Pi) 3141592653602378 l005 ln(sec(1008/107)) 3141592653602380 l004 Pi/tanh(463/108*Pi) 3141592653602386 l004 Pi/tanh(493/115*Pi) 3141592653602485 l004 Pi/tanh(30/7*Pi) 3141592653602583 l004 Pi/tanh(497/116*Pi) 3141592653602590 l004 Pi/tanh(467/109*Pi) 3141592653602597 l004 Pi/tanh(437/102*Pi) 3141592653602605 l004 Pi/tanh(407/95*Pi) 3141592653602615 l004 Pi/tanh(377/88*Pi) 3141592653602626 l004 Pi/tanh(347/81*Pi) 3141592653602639 l004 Pi/tanh(317/74*Pi) 3141592653602656 l004 Pi/tanh(287/67*Pi) 3141592653602661 l005 ln(sec(151/48)) 3141592653602676 l004 Pi/tanh(257/60*Pi) 3141592653602688 l004 Pi/tanh(484/113*Pi) 3141592653602701 l004 Pi/tanh(227/53*Pi) 3141592653602717 l004 Pi/tanh(424/99*Pi) 3141592653602735 l004 Pi/tanh(197/46*Pi) 3141592653602756 l004 Pi/tanh(364/85*Pi) 3141592653602780 l004 Pi/tanh(167/39*Pi) 3141592653602799 l004 Pi/tanh(471/110*Pi) 3141592653602810 l004 Pi/tanh(304/71*Pi) 3141592653602821 l004 Pi/tanh(441/103*Pi) 3141592653602846 l004 Pi/tanh(137/32*Pi) 3141592653602874 l004 Pi/tanh(381/89*Pi) 3141592653602891 l004 Pi/tanh(244/57*Pi) 3141592653602908 l004 Pi/tanh(351/82*Pi) 3141592653602918 l004 Pi/tanh(458/107*Pi) 3141592653602949 l004 Pi/tanh(107/25*Pi) 3141592653602977 l004 Pi/tanh(505/118*Pi) 3141592653602984 l004 Pi/tanh(398/93*Pi) 3141592653602997 l004 Pi/tanh(291/68*Pi) 3141592653603008 l004 Pi/tanh(475/111*Pi) 3141592653603026 l004 Pi/tanh(184/43*Pi) 3141592653603044 l004 Pi/tanh(445/104*Pi) 3141592653603057 l004 Pi/tanh(261/61*Pi) 3141592653603075 l004 Pi/tanh(338/79*Pi) 3141592653603086 l004 Pi/tanh(415/97*Pi) 3141592653603093 l004 Pi/tanh(492/115*Pi) 3141592653603134 l004 Pi/tanh(77/18*Pi) 3141592653603173 l004 Pi/tanh(509/119*Pi) 3141592653603180 l004 Pi/tanh(432/101*Pi) 3141592653603190 l004 Pi/tanh(355/83*Pi) 3141592653603205 l004 Pi/tanh(278/65*Pi) 3141592653603217 l004 Pi/tanh(479/112*Pi) 3141592653603233 l004 Pi/tanh(201/47*Pi) 3141592653603257 l004 Pi/tanh(325/76*Pi) 3141592653603267 l004 Pi/tanh(449/105*Pi) 3141592653603295 l004 Pi/tanh(124/29*Pi) 3141592653603325 l004 Pi/tanh(419/98*Pi) 3141592653603338 l004 Pi/tanh(295/69*Pi) 3141592653603349 l004 Pi/tanh(466/109*Pi) 3141592653603368 l004 Pi/tanh(171/40*Pi) 3141592653603392 l004 Pi/tanh(389/91*Pi) 3141592653603410 l004 Pi/tanh(218/51*Pi) 3141592653603425 l004 Pi/tanh(483/113*Pi) 3141592653603437 l004 Pi/tanh(265/62*Pi) 3141592653603456 l004 Pi/tanh(312/73*Pi) 3141592653603470 l004 Pi/tanh(359/84*Pi) 3141592653603481 l004 Pi/tanh(406/95*Pi) 3141592653603490 l004 Pi/tanh(453/106*Pi) 3141592653603497 l004 Pi/tanh(500/117*Pi) 3141592653603564 l004 Pi/tanh(47/11*Pi) 3141592653603633 l004 Pi/tanh(487/114*Pi) 3141592653603640 l004 Pi/tanh(440/103*Pi) 3141592653603649 l004 Pi/tanh(393/92*Pi) 3141592653603661 l004 Pi/tanh(346/81*Pi) 3141592653603677 l004 Pi/tanh(299/70*Pi) 3141592653603695 l005 ln(sec(829/88)) 3141592653603698 l004 Pi/tanh(252/59*Pi) 3141592653603711 l004 Pi/tanh(457/107*Pi) 3141592653603729 l004 Pi/tanh(205/48*Pi) 3141592653603750 l004 Pi/tanh(363/85*Pi) 3141592653603778 l004 Pi/tanh(158/37*Pi) 3141592653603802 l004 Pi/tanh(427/100*Pi) 3141592653603816 l004 Pi/tanh(269/63*Pi) 3141592653603831 l004 Pi/tanh(380/89*Pi) 3141592653603840 l004 Pi/tanh(491/115*Pi) 3141592653603870 l004 Pi/tanh(111/26*Pi) 3141592653603880 l005 ln(sec(160/51)) 3141592653603898 l004 Pi/tanh(508/119*Pi) 3141592653603906 l004 Pi/tanh(397/93*Pi) 3141592653603920 l004 Pi/tanh(286/67*Pi) 3141592653603933 l004 Pi/tanh(461/108*Pi) 3141592653603953 l004 Pi/tanh(175/41*Pi) 3141592653603975 l004 Pi/tanh(414/97*Pi) 3141592653603992 l004 Pi/tanh(239/56*Pi) 3141592653604014 l004 Pi/tanh(303/71*Pi) 3141592653604029 l004 Pi/tanh(367/86*Pi) 3141592653604039 l004 Pi/tanh(431/101*Pi) 3141592653604047 l004 Pi/tanh(495/116*Pi) 3141592653604098 l004 Pi/tanh(64/15*Pi) 3141592653604153 l004 Pi/tanh(465/109*Pi) 3141592653604162 l004 Pi/tanh(401/94*Pi) 3141592653604174 l004 Pi/tanh(337/79*Pi) 3141592653604192 l004 Pi/tanh(273/64*Pi) 3141592653604205 l004 Pi/tanh(482/113*Pi) 3141592653604221 l004 Pi/tanh(209/49*Pi) 3141592653604243 l004 Pi/tanh(354/83*Pi) 3141592653604253 l004 Pi/tanh(499/117*Pi) 3141592653604276 l004 Pi/tanh(145/34*Pi) 3141592653604306 l004 Pi/tanh(371/87*Pi) 3141592653604326 l004 Pi/tanh(226/53*Pi) 3141592653604350 l004 Pi/tanh(307/72*Pi) 3141592653604364 l004 Pi/tanh(388/91*Pi) 3141592653604373 l004 Pi/tanh(469/110*Pi) 3141592653604417 l004 Pi/tanh(81/19*Pi) 3141592653604458 l004 Pi/tanh(503/118*Pi) 3141592653604466 l004 Pi/tanh(422/99*Pi) 3141592653604478 l004 Pi/tanh(341/80*Pi) 3141592653604497 l004 Pi/tanh(260/61*Pi) 3141592653604511 l004 Pi/tanh(439/103*Pi) 3141592653604533 l004 Pi/tanh(179/42*Pi) 3141592653604553 l004 Pi/tanh(456/107*Pi) 3141592653604567 l004 Pi/tanh(277/65*Pi) 3141592653604583 l004 Pi/tanh(375/88*Pi) 3141592653604592 l004 Pi/tanh(473/111*Pi) 3141592653604629 l004 Pi/tanh(98/23*Pi) 3141592653604663 l004 Pi/tanh(507/119*Pi) 3141592653604671 l004 Pi/tanh(409/96*Pi) 3141592653604684 l004 Pi/tanh(311/73*Pi) 3141592653604710 l004 Pi/tanh(213/50*Pi) 3141592653604735 l004 Pi/tanh(328/77*Pi) 3141592653604746 l004 Pi/tanh(443/104*Pi) 3141592653604780 l004 Pi/tanh(115/27*Pi) 3141592653604811 l004 Pi/tanh(477/112*Pi) 3141592653604821 l004 Pi/tanh(362/85*Pi) 3141592653604840 l004 Pi/tanh(247/58*Pi) 3141592653604858 l004 Pi/tanh(379/89*Pi) 3141592653604867 l004 Pi/tanh(511/120*Pi) 3141592653604893 l004 Pi/tanh(132/31*Pi) 3141592653604924 l004 Pi/tanh(413/97*Pi) 3141592653604939 l004 Pi/tanh(281/66*Pi) 3141592653604953 l004 Pi/tanh(430/101*Pi) 3141592653604980 l004 Pi/tanh(149/35*Pi) 3141592653605005 l004 Pi/tanh(464/109*Pi) 3141592653605017 l004 Pi/tanh(315/74*Pi) 3141592653605029 l004 Pi/tanh(481/113*Pi) 3141592653605050 l004 Pi/tanh(166/39*Pi) 3141592653605080 l004 Pi/tanh(349/82*Pi) 3141592653605108 l004 Pi/tanh(183/43*Pi) 3141592653605133 l004 Pi/tanh(383/90*Pi) 3141592653605155 l004 Pi/tanh(200/47*Pi) 3141592653605176 l004 Pi/tanh(417/98*Pi) 3141592653605196 l004 Pi/tanh(217/51*Pi) 3141592653605214 l004 Pi/tanh(451/106*Pi) 3141592653605230 l004 Pi/tanh(234/55*Pi) 3141592653605246 l004 Pi/tanh(485/114*Pi) 3141592653605260 l004 Pi/tanh(251/59*Pi) 3141592653605286 l004 Pi/tanh(268/63*Pi) 3141592653605309 l004 Pi/tanh(285/67*Pi) 3141592653605330 l004 Pi/tanh(302/71*Pi) 3141592653605348 l004 Pi/tanh(319/75*Pi) 3141592653605365 l004 Pi/tanh(336/79*Pi) 3141592653605380 l004 Pi/tanh(353/83*Pi) 3141592653605393 l004 Pi/tanh(370/87*Pi) 3141592653605406 l004 Pi/tanh(387/91*Pi) 3141592653605417 l004 Pi/tanh(404/95*Pi) 3141592653605427 l004 Pi/tanh(421/99*Pi) 3141592653605437 l004 Pi/tanh(438/103*Pi) 3141592653605446 l004 Pi/tanh(455/107*Pi) 3141592653605454 l004 Pi/tanh(472/111*Pi) 3141592653605462 l004 Pi/tanh(489/115*Pi) 3141592653605469 l004 Pi/tanh(506/119*Pi) 3141592653605678 l004 Pi/tanh(17/4*Pi) 3141592653605746 l005 ln(sec(280/89)) 3141592653605892 l004 Pi/tanh(497/117*Pi) 3141592653605900 l004 Pi/tanh(480/113*Pi) 3141592653605908 l004 Pi/tanh(463/109*Pi) 3141592653605917 l004 Pi/tanh(446/105*Pi) 3141592653605926 l004 Pi/tanh(429/101*Pi) 3141592653605937 l004 Pi/tanh(412/97*Pi) 3141592653605937 l005 ln(sec(650/69)) 3141592653605948 l004 Pi/tanh(395/93*Pi) 3141592653605960 l004 Pi/tanh(378/89*Pi) 3141592653605974 l004 Pi/tanh(361/85*Pi) 3141592653605989 l004 Pi/tanh(344/81*Pi) 3141592653606005 l004 Pi/tanh(327/77*Pi) 3141592653606023 l004 Pi/tanh(310/73*Pi) 3141592653606043 l004 Pi/tanh(293/69*Pi) 3141592653606066 l004 Pi/tanh(276/65*Pi) 3141592653606092 l004 Pi/tanh(259/61*Pi) 3141592653606106 l004 Pi/tanh(501/118*Pi) 3141592653606121 l004 Pi/tanh(242/57*Pi) 3141592653606138 l004 Pi/tanh(467/110*Pi) 3141592653606155 l004 Pi/tanh(225/53*Pi) 3141592653606174 l004 Pi/tanh(433/102*Pi) 3141592653606195 l004 Pi/tanh(208/49*Pi) 3141592653606217 l004 Pi/tanh(399/94*Pi) 3141592653606242 l004 Pi/tanh(191/45*Pi) 3141592653606269 l004 Pi/tanh(365/86*Pi) 3141592653606298 l004 Pi/tanh(174/41*Pi) 3141592653606319 l004 Pi/tanh(505/119*Pi) 3141592653606330 l004 Pi/tanh(331/78*Pi) 3141592653606342 l004 Pi/tanh(488/115*Pi) 3141592653606366 l004 Pi/tanh(157/37*Pi) 3141592653606393 l004 Pi/tanh(454/107*Pi) 3141592653606407 l004 Pi/tanh(297/70*Pi) 3141592653606421 l004 Pi/tanh(437/103*Pi) 3141592653606452 l004 Pi/tanh(140/33*Pi) 3141592653606485 l004 Pi/tanh(403/95*Pi) 3141592653606503 l004 Pi/tanh(263/62*Pi) 3141592653606522 l004 Pi/tanh(386/91*Pi) 3141592653606531 l004 Pi/tanh(509/120*Pi) 3141592653606562 l004 Pi/tanh(123/29*Pi) 3141592653606594 l004 Pi/tanh(475/112*Pi) 3141592653606605 l004 Pi/tanh(352/83*Pi) 3141592653606629 l004 Pi/tanh(229/54*Pi) 3141592653606654 l004 Pi/tanh(335/79*Pi) 3141592653606667 l004 Pi/tanh(441/104*Pi) 3141592653606708 l004 Pi/tanh(106/25*Pi) 3141592653606752 l004 Pi/tanh(407/96*Pi) 3141592653606768 l004 Pi/tanh(301/71*Pi) 3141592653606780 l004 Pi/tanh(496/117*Pi) 3141592653606800 l004 Pi/tanh(195/46*Pi) 3141592653606821 l004 Pi/tanh(479/113*Pi) 3141592653606835 l004 Pi/tanh(284/67*Pi) 3141592653606853 l004 Pi/tanh(373/88*Pi) 3141592653606864 l004 Pi/tanh(462/109*Pi) 3141592653606911 l004 Pi/tanh(89/21*Pi) 3141592653606962 l004 Pi/tanh(428/101*Pi) 3141592653606975 l004 Pi/tanh(339/80*Pi) 3141592653606998 l004 Pi/tanh(250/59*Pi) 3141592653607017 l004 Pi/tanh(411/97*Pi) 3141592653607047 l004 Pi/tanh(161/38*Pi) 3141592653607077 l004 Pi/tanh(394/93*Pi) 3141592653607099 l004 Pi/tanh(233/55*Pi) 3141592653607126 l004 Pi/tanh(305/72*Pi) 3141592653607143 l004 Pi/tanh(377/89*Pi) 3141592653607155 l004 Pi/tanh(449/106*Pi) 3141592653607215 l004 Pi/tanh(72/17*Pi) 3141592653607271 l004 Pi/tanh(487/115*Pi) 3141592653607281 l004 Pi/tanh(415/98*Pi) 3141592653607295 l004 Pi/tanh(343/81*Pi) 3141592653607316 l004 Pi/tanh(271/64*Pi) 3141592653607332 l004 Pi/tanh(470/111*Pi) 3141592653607353 l004 Pi/tanh(199/47*Pi) 3141592653607383 l004 Pi/tanh(326/77*Pi) 3141592653607397 l004 Pi/tanh(453/107*Pi) 3141592653607431 l004 Pi/tanh(127/30*Pi) 3141592653607467 l004 Pi/tanh(436/103*Pi) 3141592653607482 l004 Pi/tanh(309/73*Pi) 3141592653607495 l004 Pi/tanh(491/116*Pi) 3141592653607517 l004 Pi/tanh(182/43*Pi) 3141592653607543 l004 Pi/tanh(419/99*Pi) 3141592653607564 l004 Pi/tanh(237/56*Pi) 3141592653607593 l004 Pi/tanh(292/69*Pi) 3141592653607612 l004 Pi/tanh(347/82*Pi) 3141592653607627 l004 Pi/tanh(402/95*Pi) 3141592653607638 l004 Pi/tanh(457/108*Pi) 3141592653607707 l005 ln(sec(229/73)) 3141592653607718 l004 Pi/tanh(55/13*Pi) 3141592653607762 l005 ln(sec(1121/119)) 3141592653607794 l004 Pi/tanh(478/113*Pi) 3141592653607804 l004 Pi/tanh(423/100*Pi) 3141592653607818 l004 Pi/tanh(368/87*Pi) 3141592653607835 l004 Pi/tanh(313/74*Pi) 3141592653607860 l004 Pi/tanh(258/61*Pi) 3141592653607877 l004 Pi/tanh(461/109*Pi) 3141592653607899 l004 Pi/tanh(203/48*Pi) 3141592653607928 l004 Pi/tanh(351/83*Pi) 3141592653607939 l004 Pi/tanh(499/118*Pi) 3141592653607967 l004 Pi/tanh(148/35*Pi) 3141592653608002 l004 Pi/tanh(389/92*Pi) 3141592653608024 l004 Pi/tanh(241/57*Pi) 3141592653608050 l004 Pi/tanh(334/79*Pi) 3141592653608064 l004 Pi/tanh(427/101*Pi) 3141592653608116 l004 Pi/tanh(93/22*Pi) 3141592653608160 l004 Pi/tanh(503/119*Pi) 3141592653608170 l004 Pi/tanh(410/97*Pi) 3141592653608186 l004 Pi/tanh(317/75*Pi) 3141592653608215 l004 Pi/tanh(224/53*Pi) 3141592653608241 l004 Pi/tanh(355/84*Pi) 3141592653608253 l004 Pi/tanh(486/115*Pi) 3141592653608285 l004 Pi/tanh(131/31*Pi) 3141592653608322 l004 Pi/tanh(431/102*Pi) 3141592653608338 l004 Pi/tanh(300/71*Pi) 3141592653608353 l004 Pi/tanh(469/111*Pi) 3141592653608379 l004 Pi/tanh(169/40*Pi) 3141592653608412 l004 Pi/tanh(376/89*Pi) 3141592653608439 l004 Pi/tanh(207/49*Pi) 3141592653608461 l004 Pi/tanh(452/107*Pi) 3141592653608480 l004 Pi/tanh(245/58*Pi) 3141592653608511 l004 Pi/tanh(283/67*Pi) 3141592653608534 l004 Pi/tanh(321/76*Pi) 3141592653608552 l004 Pi/tanh(359/85*Pi) 3141592653608567 l004 Pi/tanh(397/94*Pi) 3141592653608579 l004 Pi/tanh(435/103*Pi) 3141592653608589 l004 Pi/tanh(473/112*Pi) 3141592653608707 l004 Pi/tanh(38/9*Pi) 3141592653608824 l004 Pi/tanh(477/113*Pi) 3141592653608834 l004 Pi/tanh(439/104*Pi) 3141592653608846 l004 Pi/tanh(401/95*Pi) 3141592653608861 l004 Pi/tanh(363/86*Pi) 3141592653608879 l004 Pi/tanh(325/77*Pi) 3141592653608902 l004 Pi/tanh(287/68*Pi) 3141592653608932 l004 Pi/tanh(249/59*Pi) 3141592653608950 l004 Pi/tanh(460/109*Pi) 3141592653608973 l004 Pi/tanh(211/50*Pi) 3141592653608999 l004 Pi/tanh(384/91*Pi) 3141592653609031 l004 Pi/tanh(173/41*Pi) 3141592653609057 l004 Pi/tanh(481/114*Pi) 3141592653609072 l004 Pi/tanh(308/73*Pi) 3141592653609088 l004 Pi/tanh(443/105*Pi) 3141592653609124 l004 Pi/tanh(135/32*Pi) 3141592653609156 l004 Pi/tanh(502/119*Pi) 3141592653609167 l004 Pi/tanh(367/87*Pi) 3141592653609193 l004 Pi/tanh(232/55*Pi) 3141592653609221 l004 Pi/tanh(329/78*Pi) 3141592653609237 l004 Pi/tanh(426/101*Pi) 3141592653609289 l004 Pi/tanh(97/23*Pi) 3141592653609340 l004 Pi/tanh(447/106*Pi) 3141592653609354 l004 Pi/tanh(350/83*Pi) 3141592653609378 l004 Pi/tanh(253/60*Pi) 3141592653609400 l004 Pi/tanh(409/97*Pi) 3141592653609434 l004 Pi/tanh(156/37*Pi) 3141592653609472 l004 Pi/tanh(371/88*Pi) 3141592653609499 l004 Pi/tanh(215/51*Pi) 3141592653609520 l004 Pi/tanh(489/116*Pi) 3141592653609537 l004 Pi/tanh(274/65*Pi) 3141592653609561 l004 Pi/tanh(333/79*Pi) 3141592653609578 l004 Pi/tanh(392/93*Pi) 3141592653609590 l004 Pi/tanh(451/107*Pi) 3141592653609674 l004 Pi/tanh(59/14*Pi) 3141592653609750 l004 Pi/tanh(493/117*Pi) 3141592653609760 l004 Pi/tanh(434/103*Pi) 3141592653609774 l004 Pi/tanh(375/89*Pi) 3141592653609793 l004 Pi/tanh(316/75*Pi) 3141592653609820 l004 Pi/tanh(257/61*Pi) 3141592653609840 l004 Pi/tanh(455/108*Pi) 3141592653609864 l004 Pi/tanh(198/47*Pi) 3141592653609898 l004 Pi/tanh(337/80*Pi) 3141592653609912 l004 Pi/tanh(476/113*Pi) 3141592653609946 l004 Pi/tanh(139/33*Pi) 3141592653609978 l004 Pi/tanh(497/118*Pi) 3141592653609991 l004 Pi/tanh(358/85*Pi) 3141592653610020 l004 Pi/tanh(219/52*Pi) 3141592653610028 l005 ln(sec(129/41)) 3141592653610054 l004 Pi/tanh(299/71*Pi) 3141592653610057 l005 ln(sec(298/95)) 3141592653610074 l004 Pi/tanh(379/90*Pi) 3141592653610087 l004 Pi/tanh(459/109*Pi) 3141592653610149 l004 Pi/tanh(80/19*Pi) 3141592653610205 l004 Pi/tanh(501/119*Pi) 3141592653610216 l004 Pi/tanh(421/100*Pi) 3141592653610232 l004 Pi/tanh(341/81*Pi) 3141592653610258 l004 Pi/tanh(261/62*Pi) 3141592653610277 l004 Pi/tanh(442/105*Pi) 3141592653610306 l004 Pi/tanh(181/43*Pi) 3141592653610333 l004 Pi/tanh(463/110*Pi) 3141592653610351 l004 Pi/tanh(282/67*Pi) 3141592653610372 l004 Pi/tanh(383/91*Pi) 3141592653610384 l004 Pi/tanh(484/115*Pi) 3141592653610431 l004 Pi/tanh(101/24*Pi) 3141592653610485 l004 Pi/tanh(425/101*Pi) 3141592653610502 l004 Pi/tanh(324/77*Pi) 3141592653610529 l005 ln(sec(471/50)) 3141592653610533 l004 Pi/tanh(223/53*Pi) 3141592653610563 l004 Pi/tanh(345/82*Pi) 3141592653610578 l004 Pi/tanh(467/111*Pi) 3141592653610618 l004 Pi/tanh(122/29*Pi) 3141592653610668 l004 Pi/tanh(387/92*Pi) 3141592653610690 l004 Pi/tanh(265/63*Pi) 3141592653610712 l004 Pi/tanh(408/97*Pi) 3141592653610752 l004 Pi/tanh(143/34*Pi) 3141592653610788 l004 Pi/tanh(450/107*Pi) 3141592653610805 l004 Pi/tanh(307/73*Pi) 3141592653610821 l004 Pi/tanh(471/112*Pi) 3141592653610851 l004 Pi/tanh(164/39*Pi) 3141592653610892 l004 Pi/tanh(349/83*Pi) 3141592653610928 l004 Pi/tanh(185/44*Pi) 3141592653610961 l004 Pi/tanh(391/93*Pi) 3141592653610990 l004 Pi/tanh(206/49*Pi) 3141592653611016 l004 Pi/tanh(433/103*Pi) 3141592653611040 l004 Pi/tanh(227/54*Pi) 3141592653611062 l004 Pi/tanh(475/113*Pi) 3141592653611082 l004 Pi/tanh(248/59*Pi) 3141592653611118 l004 Pi/tanh(269/64*Pi) 3141592653611148 l004 Pi/tanh(290/69*Pi) 3141592653611175 l004 Pi/tanh(311/74*Pi) 3141592653611197 l004 Pi/tanh(332/79*Pi) 3141592653611218 l004 Pi/tanh(353/84*Pi) 3141592653611236 l004 Pi/tanh(374/89*Pi) 3141592653611252 l004 Pi/tanh(395/94*Pi) 3141592653611266 l004 Pi/tanh(416/99*Pi) 3141592653611279 l004 Pi/tanh(437/104*Pi) 3141592653611291 l004 Pi/tanh(458/109*Pi) 3141592653611302 l004 Pi/tanh(479/114*Pi) 3141592653611312 l004 Pi/tanh(500/119*Pi) 3141592653611541 l004 Pi/tanh(21/5*Pi) 3141592653611637 l005 ln(sec(367/117)) 3141592653611778 l004 Pi/tanh(487/116*Pi) 3141592653611788 l004 Pi/tanh(466/111*Pi) 3141592653611800 l004 Pi/tanh(445/106*Pi) 3141592653611813 l004 Pi/tanh(424/101*Pi) 3141592653611827 l004 Pi/tanh(403/96*Pi) 3141592653611843 l004 Pi/tanh(382/91*Pi) 3141592653611861 l004 Pi/tanh(361/86*Pi) 3141592653611881 l004 Pi/tanh(340/81*Pi) 3141592653611903 l004 Pi/tanh(319/76*Pi) 3141592653611929 l004 Pi/tanh(298/71*Pi) 3141592653611959 l004 Pi/tanh(277/66*Pi) 3141592653611993 l004 Pi/tanh(256/61*Pi) 3141592653612013 l004 Pi/tanh(491/117*Pi) 3141592653612034 l004 Pi/tanh(235/56*Pi) 3141592653612058 l004 Pi/tanh(449/107*Pi) 3141592653612083 l004 Pi/tanh(214/51*Pi) 3141592653612112 l004 Pi/tanh(407/97*Pi) 3141592653612143 l004 Pi/tanh(193/46*Pi) 3141592653612178 l004 Pi/tanh(365/87*Pi) 3141592653612218 l004 Pi/tanh(172/41*Pi) 3141592653612247 l004 Pi/tanh(495/118*Pi) 3141592653612262 l004 Pi/tanh(323/77*Pi) 3141592653612278 l004 Pi/tanh(474/113*Pi) 3141592653612313 l004 Pi/tanh(151/36*Pi) 3141592653612351 l004 Pi/tanh(432/103*Pi) 3141592653612372 l004 Pi/tanh(281/67*Pi) 3141592653612394 l004 Pi/tanh(411/98*Pi) 3141592653612440 l004 Pi/tanh(130/31*Pi) 3141592653612479 l004 Pi/tanh(499/119*Pi) 3141592653612493 l004 Pi/tanh(369/88*Pi) 3141592653612521 l004 Pi/tanh(239/57*Pi) 3141592653612551 l004 Pi/tanh(348/83*Pi) 3141592653612567 l004 Pi/tanh(457/109*Pi) 3141592653612618 l004 Pi/tanh(109/26*Pi) 3141592653612673 l004 Pi/tanh(415/99*Pi) 3141592653612693 l004 Pi/tanh(306/73*Pi) 3141592653612710 l004 Pi/tanh(503/120*Pi) 3141592653612735 l004 Pi/tanh(197/47*Pi) 3141592653612762 l004 Pi/tanh(482/115*Pi) 3141592653612780 l004 Pi/tanh(285/68*Pi) 3141592653612804 l004 Pi/tanh(373/89*Pi) 3141592653612819 l004 Pi/tanh(461/110*Pi) 3141592653612882 l004 Pi/tanh(88/21*Pi) 3141592653612951 l004 Pi/tanh(419/100*Pi) 3141592653612969 l004 Pi/tanh(331/79*Pi) 3141592653613001 l004 Pi/tanh(243/58*Pi) 3141592653613028 l004 Pi/tanh(398/95*Pi) 3141592653613069 l004 Pi/tanh(155/37*Pi) 3141592653613113 l004 Pi/tanh(377/90*Pi) 3141592653613144 l004 Pi/tanh(222/53*Pi) 3141592653613184 l004 Pi/tanh(289/69*Pi) 3141592653613209 l004 Pi/tanh(356/85*Pi) 3141592653613226 l004 Pi/tanh(423/101*Pi) 3141592653613239 l004 Pi/tanh(490/117*Pi) 3141592653613318 l004 Pi/tanh(67/16*Pi) 3141592653613404 l004 Pi/tanh(448/107*Pi) 3141592653613419 l004 Pi/tanh(381/91*Pi) 3141592653613441 l004 Pi/tanh(314/75*Pi) 3141592653613475 l004 Pi/tanh(247/59*Pi) 3141592653613499 l004 Pi/tanh(427/102*Pi) 3141592653613533 l004 Pi/tanh(180/43*Pi) 3141592653613564 l004 Pi/tanh(473/113*Pi) 3141592653613583 l004 Pi/tanh(293/70*Pi) 3141592653613605 l004 Pi/tanh(406/97*Pi) 3141592653613662 l004 Pi/tanh(113/27*Pi) 3141592653613709 l004 Pi/tanh(498/119*Pi) 3141592653613723 l004 Pi/tanh(385/92*Pi) 3141592653613748 l004 Pi/tanh(272/65*Pi) 3141592653613770 l004 Pi/tanh(431/103*Pi) 3141592653613809 l004 Pi/tanh(159/38*Pi) 3141592653613855 l004 Pi/tanh(364/87*Pi) 3141592653613857 l005 ln(sec(365/116)) 3141592653613890 l004 Pi/tanh(205/49*Pi) 3141592653613918 l004 Pi/tanh(456/109*Pi) 3141592653613942 l004 Pi/tanh(251/60*Pi) 3141592653613977 l004 Pi/tanh(297/71*Pi) 3141592653614003 l004 Pi/tanh(343/82*Pi) 3141592653614023 l004 Pi/tanh(389/93*Pi) 3141592653614039 l004 Pi/tanh(435/104*Pi) 3141592653614052 l004 Pi/tanh(481/115*Pi) 3141592653614173 l004 Pi/tanh(46/11*Pi) 3141592653614293 l004 Pi/tanh(485/116*Pi) 3141592653614306 l004 Pi/tanh(439/105*Pi) 3141592653614321 l004 Pi/tanh(393/94*Pi) 3141592653614341 l004 Pi/tanh(347/83*Pi) 3141592653614367 l004 Pi/tanh(301/72*Pi) 3141592653614402 l004 Pi/tanh(255/61*Pi) 3141592653614425 l004 Pi/tanh(464/111*Pi) 3141592653614453 l004 Pi/tanh(209/50*Pi) 3141592653614488 l004 Pi/tanh(372/89*Pi) 3141592653614532 l004 Pi/tanh(163/39*Pi) 3141592653614570 l004 Pi/tanh(443/106*Pi) 3141592653614592 l004 Pi/tanh(280/67*Pi) 3141592653614616 l004 Pi/tanh(397/95*Pi) 3141592653614675 l004 Pi/tanh(117/28*Pi) 3141592653614730 l004 Pi/tanh(422/101*Pi) 3141592653614752 l004 Pi/tanh(305/73*Pi) 3141592653614770 l004 Pi/tanh(493/118*Pi) 3141592653614799 l004 Pi/tanh(188/45*Pi) 3141592653614832 l004 Pi/tanh(447/107*Pi) 3141592653614856 l004 Pi/tanh(259/62*Pi) 3141592653614888 l004 Pi/tanh(330/79*Pi) 3141592653614909 l004 Pi/tanh(401/96*Pi) 3141592653614923 l004 Pi/tanh(472/113*Pi) 3141592653615006 l004 Pi/tanh(71/17*Pi) 3141592653615092 l004 Pi/tanh(451/108*Pi) 3141592653615108 l004 Pi/tanh(380/91*Pi) 3141592653615132 l004 Pi/tanh(309/74*Pi) 3141592653615159 l005 ln(sec(763/81)) 3141592653615170 l004 Pi/tanh(238/57*Pi) 3141592653615199 l004 Pi/tanh(405/97*Pi) 3141592653615240 l004 Pi/tanh(167/40*Pi) 3141592653615279 l004 Pi/tanh(430/103*Pi) 3141592653615303 l004 Pi/tanh(263/63*Pi) 3141592653615333 l004 Pi/tanh(359/86*Pi) 3141592653615350 l004 Pi/tanh(455/109*Pi) 3141592653615414 l004 Pi/tanh(96/23*Pi) 3141592653615486 l004 Pi/tanh(409/98*Pi) 3141592653615508 l004 Pi/tanh(313/75*Pi) 3141592653615549 l004 Pi/tanh(217/52*Pi) 3141592653615588 l004 Pi/tanh(338/81*Pi) 3141592653615601 l005 ln(sec(1075/114)) 3141592653615606 l004 Pi/tanh(459/110*Pi) 3141592653615657 l004 Pi/tanh(121/29*Pi) 3141592653615717 l004 Pi/tanh(388/93*Pi) 3141592653615744 l004 Pi/tanh(267/64*Pi) 3141592653615770 l004 Pi/tanh(413/99*Pi) 3141592653615817 l004 Pi/tanh(146/35*Pi) 3141592653615859 l004 Pi/tanh(463/111*Pi) 3141592653615879 l004 Pi/tanh(317/76*Pi) 3141592653615897 l004 Pi/tanh(488/117*Pi) 3141592653615931 l004 Pi/tanh(171/41*Pi) 3141592653615977 l004 Pi/tanh(367/88*Pi) 3141592653616017 l004 Pi/tanh(196/47*Pi) 3141592653616052 l004 Pi/tanh(417/100*Pi) 3141592653616083 l004 Pi/tanh(221/53*Pi) 3141592653616111 l004 Pi/tanh(467/112*Pi) 3141592653616136 l004 Pi/tanh(246/59*Pi) 3141592653616166 l005 ln(sec(236/75)) 3141592653616179 l004 Pi/tanh(271/65*Pi) 3141592653616215 l004 Pi/tanh(296/71*Pi) 3141592653616245 l004 Pi/tanh(321/77*Pi) 3141592653616271 l004 Pi/tanh(346/83*Pi) 3141592653616294 l004 Pi/tanh(371/89*Pi) 3141592653616314 l004 Pi/tanh(396/95*Pi) 3141592653616331 l004 Pi/tanh(421/101*Pi) 3141592653616347 l004 Pi/tanh(446/107*Pi) 3141592653616360 l004 Pi/tanh(471/113*Pi) 3141592653616373 l004 Pi/tanh(496/119*Pi) 3141592653616608 l004 Pi/tanh(25/6*Pi) 3141592653616853 l004 Pi/tanh(479/115*Pi) 3141592653616867 l004 Pi/tanh(454/109*Pi) 3141592653616882 l004 Pi/tanh(429/103*Pi) 3141592653616899 l004 Pi/tanh(404/97*Pi) 3141592653616918 l004 Pi/tanh(379/91*Pi) 3141592653616940 l004 Pi/tanh(354/85*Pi) 3141592653616966 l004 Pi/tanh(329/79*Pi) 3141592653616995 l004 Pi/tanh(304/73*Pi) 3141592653617030 l004 Pi/tanh(279/67*Pi) 3141592653617072 l004 Pi/tanh(254/61*Pi) 3141592653617096 l004 Pi/tanh(483/116*Pi) 3141592653617123 l004 Pi/tanh(229/55*Pi) 3141592653617153 l004 Pi/tanh(433/104*Pi) 3141592653617187 l004 Pi/tanh(204/49*Pi) 3141592653617225 l004 Pi/tanh(383/92*Pi) 3141592653617269 l004 Pi/tanh(179/43*Pi) 3141592653617319 l004 Pi/tanh(333/80*Pi) 3141592653617319 l005 ln(sec(1009/107)) 3141592653617337 l004 Pi/tanh(487/117*Pi) 3141592653617377 l004 Pi/tanh(154/37*Pi) 3141592653617422 l004 Pi/tanh(437/105*Pi) 3141592653617446 l004 Pi/tanh(283/68*Pi) 3141592653617460 l005 ln(sec(1055/112)) 3141592653617472 l004 Pi/tanh(412/99*Pi) 3141592653617529 l004 Pi/tanh(129/31*Pi) 3141592653617577 l004 Pi/tanh(491/118*Pi) 3141592653617594 l004 Pi/tanh(362/87*Pi) 3141592653617630 l004 Pi/tanh(233/56*Pi) 3141592653617668 l004 Pi/tanh(337/81*Pi) 3141592653617689 l004 Pi/tanh(441/106*Pi) 3141592653617755 l004 Pi/tanh(104/25*Pi) 3141592653617814 l004 Pi/tanh(495/119*Pi) 3141592653617830 l004 Pi/tanh(391/94*Pi) 3141592653617857 l004 Pi/tanh(287/69*Pi) 3141592653617879 l004 Pi/tanh(470/113*Pi) 3141592653617915 l004 Pi/tanh(183/44*Pi) 3141592653617952 l004 Pi/tanh(445/107*Pi) 3141592653617979 l004 Pi/tanh(262/63*Pi) 3141592653618013 l004 Pi/tanh(341/82*Pi) 3141592653618034 l004 Pi/tanh(420/101*Pi) 3141592653618049 l004 Pi/tanh(499/120*Pi) 3141592653618127 l004 Pi/tanh(79/19*Pi) 3141592653618214 l004 Pi/tanh(449/108*Pi) 3141592653618233 l004 Pi/tanh(370/89*Pi) 3141592653618261 l004 Pi/tanh(291/70*Pi) 3141592653618311 l004 Pi/tanh(212/51*Pi) 3141592653618354 l004 Pi/tanh(345/83*Pi) 3141592653618373 l004 Pi/tanh(478/115*Pi) 3141592653618421 l004 Pi/tanh(133/32*Pi) 3141592653618473 l004 Pi/tanh(453/109*Pi) 3141592653618495 l004 Pi/tanh(320/77*Pi) 3141592653618547 l004 Pi/tanh(187/45*Pi) 3141592653618586 l004 Pi/tanh(428/103*Pi) 3141592653618616 l004 Pi/tanh(241/58*Pi) 3141592653618660 l004 Pi/tanh(295/71*Pi) 3141592653618690 l004 Pi/tanh(349/84*Pi) 3141592653618713 l004 Pi/tanh(403/97*Pi) 3141592653618730 l004 Pi/tanh(457/110*Pi) 3141592653618803 l005 ln(sec(343/109)) 3141592653618857 l004 Pi/tanh(54/13*Pi) 3141592653618984 l004 Pi/tanh(461/111*Pi) 3141592653619001 l004 Pi/tanh(407/98*Pi) 3141592653619023 l004 Pi/tanh(353/85*Pi) 3141592653619053 l004 Pi/tanh(299/72*Pi) 3141592653619096 l004 Pi/tanh(245/59*Pi) 3141592653619126 l004 Pi/tanh(436/105*Pi) 3141592653619164 l004 Pi/tanh(191/46*Pi) 3141592653619215 l004 Pi/tanh(328/79*Pi) 3141592653619236 l004 Pi/tanh(465/112*Pi) 3141592653619286 l004 Pi/tanh(137/33*Pi) 3141592653619333 l004 Pi/tanh(494/119*Pi) 3141592653619351 l004 Pi/tanh(357/86*Pi) 3141592653619381 l005 ln(sec(943/100)) 3141592653619392 l004 Pi/tanh(220/53*Pi) 3141592653619440 l004 Pi/tanh(303/73*Pi) 3141592653619468 l004 Pi/tanh(386/93*Pi) 3141592653619485 l004 Pi/tanh(469/113*Pi) 3141592653619540 l005 ln(sec(69/22)) 3141592653619568 l004 Pi/tanh(83/20*Pi) 3141592653619656 l004 Pi/tanh(444/107*Pi) 3141592653619676 l004 Pi/tanh(361/87*Pi) 3141592653619708 l004 Pi/tanh(278/67*Pi) 3141592653619733 l004 Pi/tanh(473/114*Pi) 3141592653619768 l004 Pi/tanh(195/47*Pi) 3141592653619822 l004 Pi/tanh(307/74*Pi) 3141592653619847 l004 Pi/tanh(419/101*Pi) 3141592653619917 l004 Pi/tanh(112/27*Pi) 3141592653619978 l004 Pi/tanh(477/115*Pi) 3141592653619996 l004 Pi/tanh(365/88*Pi) 3141592653620032 l004 Pi/tanh(253/61*Pi) 3141592653620064 l004 Pi/tanh(394/95*Pi) 3141592653620123 l004 Pi/tanh(141/34*Pi) 3141592653620175 l004 Pi/tanh(452/109*Pi) 3141592653620198 l004 Pi/tanh(311/75*Pi) 3141592653620220 l004 Pi/tanh(481/116*Pi) 3141592653620260 l004 Pi/tanh(170/41*Pi) 3141592653620313 l004 Pi/tanh(369/89*Pi) 3141592653620358 l004 Pi/tanh(199/48*Pi) 3141592653620397 l004 Pi/tanh(427/103*Pi) 3141592653620431 l004 Pi/tanh(228/55*Pi) 3141592653620461 l004 Pi/tanh(485/117*Pi) 3141592653620487 l004 Pi/tanh(257/62*Pi) 3141592653620532 l004 Pi/tanh(286/69*Pi) 3141592653620569 l004 Pi/tanh(315/76*Pi) 3141592653620600 l004 Pi/tanh(344/83*Pi) 3141592653620626 l004 Pi/tanh(373/90*Pi) 3141592653620648 l004 Pi/tanh(402/97*Pi) 3141592653620667 l004 Pi/tanh(431/104*Pi) 3141592653620684 l004 Pi/tanh(460/111*Pi) 3141592653620699 l004 Pi/tanh(489/118*Pi) 3141592653620935 l004 Pi/tanh(29/7*Pi) 3141592653621169 l004 Pi/tanh(497/120*Pi) 3141592653621183 l004 Pi/tanh(468/113*Pi) 3141592653621200 l004 Pi/tanh(439/106*Pi) 3141592653621218 l004 Pi/tanh(410/99*Pi) 3141592653621240 l004 Pi/tanh(381/92*Pi) 3141592653621265 l004 Pi/tanh(352/85*Pi) 3141592653621295 l004 Pi/tanh(323/78*Pi) 3141592653621331 l004 Pi/tanh(294/71*Pi) 3141592653621375 l004 Pi/tanh(265/64*Pi) 3141592653621429 l004 Pi/tanh(236/57*Pi) 3141592653621462 l004 Pi/tanh(443/107*Pi) 3141592653621499 l004 Pi/tanh(207/50*Pi) 3141592653621542 l004 Pi/tanh(385/93*Pi) 3141592653621592 l004 Pi/tanh(178/43*Pi) 3141592653621651 l004 Pi/tanh(327/79*Pi) 3141592653621673 l004 Pi/tanh(476/115*Pi) 3141592653621721 l004 Pi/tanh(149/36*Pi) 3141592653621776 l004 Pi/tanh(418/101*Pi) 3141592653621807 l004 Pi/tanh(269/65*Pi) 3141592653621840 l004 Pi/tanh(389/94*Pi) 3141592653621895 l005 ln(sec(877/93)) 3141592653621914 l004 Pi/tanh(120/29*Pi) 3141592653621978 l004 Pi/tanh(451/109*Pi) 3141592653622001 l004 Pi/tanh(331/80*Pi) 3141592653622051 l004 Pi/tanh(211/51*Pi) 3141592653622105 l004 Pi/tanh(302/73*Pi) 3141592653622134 l004 Pi/tanh(393/95*Pi) 3141592653622153 l004 Pi/tanh(484/117*Pi) 3141592653622232 l004 Pi/tanh(91/22*Pi) 3141592653622322 l004 Pi/tanh(426/103*Pi) 3141592653622346 l004 Pi/tanh(335/81*Pi) 3141592653622389 l004 Pi/tanh(244/59*Pi) 3141592653622425 l004 Pi/tanh(397/96*Pi) 3141592653622483 l004 Pi/tanh(153/37*Pi) 3141592653622545 l004 Pi/tanh(368/89*Pi) 3141592653622590 l004 Pi/tanh(215/52*Pi) 3141592653622623 l004 Pi/tanh(492/119*Pi) 3141592653622649 l004 Pi/tanh(277/67*Pi) 3141592653622687 l004 Pi/tanh(339/82*Pi) 3141592653622713 l004 Pi/tanh(401/97*Pi) 3141592653622732 l004 Pi/tanh(463/112*Pi) 3141592653622855 l004 Pi/tanh(62/15*Pi) 3141592653622978 l004 Pi/tanh(467/113*Pi) 3141592653622997 l004 Pi/tanh(405/98*Pi) 3141592653623022 l004 Pi/tanh(343/83*Pi) 3141592653623060 l004 Pi/tanh(281/68*Pi) 3141592653623118 l004 Pi/tanh(219/53*Pi) 3141592653623161 l004 Pi/tanh(376/91*Pi) 3141592653623222 l004 Pi/tanh(157/38*Pi) 3141592653623278 l004 Pi/tanh(409/99*Pi) 3141592653623312 l004 Pi/tanh(252/61*Pi) 3141592653623354 l004 Pi/tanh(347/84*Pi) 3141592653623377 l004 Pi/tanh(442/107*Pi) 3141592653623463 l004 Pi/tanh(95/23*Pi) 3141592653623555 l004 Pi/tanh(413/100*Pi) 3141592653623583 l004 Pi/tanh(318/77*Pi) 3141592653623634 l004 Pi/tanh(223/54*Pi) 3141592653623680 l004 Pi/tanh(351/85*Pi) 3141592653623702 l004 Pi/tanh(479/116*Pi) 3141592653623761 l004 Pi/tanh(128/31*Pi) 3141592653623829 l004 Pi/tanh(417/101*Pi) 3141592653623859 l004 Pi/tanh(289/70*Pi) 3141592653623887 l004 Pi/tanh(450/109*Pi) 3141592653623938 l004 Pi/tanh(161/39*Pi) 3141592653624002 l004 Pi/tanh(355/86*Pi) 3141592653624055 l004 Pi/tanh(194/47*Pi) 3141592653624100 l004 Pi/tanh(421/102*Pi) 3141592653624139 l004 Pi/tanh(227/55*Pi) 3141592653624172 l004 Pi/tanh(487/118*Pi) 3141592653624201 l004 Pi/tanh(260/63*Pi) 3141592653624209 l005 ln(sec(292/31)) 3141592653624249 l004 Pi/tanh(293/71*Pi) 3141592653624288 l004 Pi/tanh(326/79*Pi) 3141592653624319 l004 Pi/tanh(359/87*Pi) 3141592653624346 l004 Pi/tanh(392/95*Pi) 3141592653624368 l004 Pi/tanh(425/103*Pi) 3141592653624387 l004 Pi/tanh(458/111*Pi) 3141592653624403 l004 Pi/tanh(491/119*Pi) 3141592653624632 l004 Pi/tanh(33/8*Pi) 3141592653624875 l004 Pi/tanh(466/113*Pi) 3141592653624894 l004 Pi/tanh(433/105*Pi) 3141592653624916 l004 Pi/tanh(400/97*Pi) 3141592653624941 l004 Pi/tanh(367/89*Pi) 3141592653624972 l004 Pi/tanh(334/81*Pi) 3141592653625009 l004 Pi/tanh(301/73*Pi) 3141592653625015 l005 ln(sec(811/86)) 3141592653625056 l004 Pi/tanh(268/65*Pi) 3141592653625116 l004 Pi/tanh(235/57*Pi) 3141592653625153 l004 Pi/tanh(437/106*Pi) 3141592653625195 l004 Pi/tanh(202/49*Pi) 3141592653625246 l004 Pi/tanh(371/90*Pi) 3141592653625306 l004 Pi/tanh(169/41*Pi) 3141592653625315 l005 ln(sec(107/34)) 3141592653625354 l004 Pi/tanh(474/115*Pi) 3141592653625380 l004 Pi/tanh(305/74*Pi) 3141592653625408 l004 Pi/tanh(441/107*Pi) 3141592653625472 l004 Pi/tanh(136/33*Pi) 3141592653625515 m001 Champernowne^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653625546 l004 Pi/tanh(375/91*Pi) 3141592653625589 l004 Pi/tanh(239/58*Pi) 3141592653625636 l004 Pi/tanh(342/83*Pi) 3141592653625661 l004 Pi/tanh(445/108*Pi) 3141592653625744 l004 Pi/tanh(103/25*Pi) 3141592653625822 l004 Pi/tanh(482/117*Pi) 3141592653625843 l004 Pi/tanh(379/92*Pi) 3141592653625879 l004 Pi/tanh(276/67*Pi) 3141592653625893 m001 HeathBrownMoroz^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141592653625911 l004 Pi/tanh(449/109*Pi) 3141592653625960 l004 Pi/tanh(173/42*Pi) 3141592653626014 l004 Pi/tanh(416/101*Pi) 3141592653626052 l004 Pi/tanh(243/59*Pi) 3141592653626103 l004 Pi/tanh(313/76*Pi) 3141592653626135 l004 Pi/tanh(383/93*Pi) 3141592653626157 l004 Pi/tanh(453/110*Pi) 3141592653626280 l004 Pi/tanh(70/17*Pi) 3141592653626402 l004 Pi/tanh(457/111*Pi) 3141592653626424 l004 Pi/tanh(387/94*Pi) 3141592653626455 l004 Pi/tanh(317/77*Pi) 3141592653626505 l004 Pi/tanh(247/60*Pi) 3141592653626543 l004 Pi/tanh(424/103*Pi) 3141592653626595 l004 Pi/tanh(177/43*Pi) 3141592653626643 l004 Pi/tanh(461/112*Pi) 3141592653626673 l004 Pi/tanh(284/69*Pi) 3141592653626708 l004 Pi/tanh(391/95*Pi) 3141592653626802 l004 Pi/tanh(107/26*Pi) 3141592653626881 l004 Pi/tanh(465/113*Pi) 3141592653626905 l004 Pi/tanh(358/87*Pi) 3141592653626949 l004 Pi/tanh(251/61*Pi) 3141592653626989 l004 Pi/tanh(395/96*Pi) 3141592653627059 l004 Pi/tanh(144/35*Pi) 3141592653627117 l004 Pi/tanh(469/114*Pi) 3141592653627143 l004 Pi/tanh(325/79*Pi) 3141592653627211 l004 Pi/tanh(181/44*Pi) 3141592653627266 l004 Pi/tanh(399/97*Pi) 3141592653627312 l004 Pi/tanh(218/53*Pi) 3141592653627351 l004 Pi/tanh(473/115*Pi) 3141592653627384 l004 Pi/tanh(255/62*Pi) 3141592653627437 l004 Pi/tanh(292/71*Pi) 3141592653627479 l004 Pi/tanh(329/80*Pi) 3141592653627512 l004 Pi/tanh(366/89*Pi) 3141592653627540 l004 Pi/tanh(403/98*Pi) 3141592653627562 l004 Pi/tanh(440/107*Pi) 3141592653627581 l004 Pi/tanh(477/116*Pi) 3141592653627809 l004 Pi/tanh(37/9*Pi) 3141592653628035 l004 Pi/tanh(485/118*Pi) 3141592653628054 l004 Pi/tanh(448/109*Pi) 3141592653628076 l004 Pi/tanh(411/100*Pi) 3141592653628102 l004 Pi/tanh(374/91*Pi) 3141592653628134 l004 Pi/tanh(337/82*Pi) 3141592653628175 l004 Pi/tanh(300/73*Pi) 3141592653628226 l004 Pi/tanh(263/64*Pi) 3141592653628258 l004 Pi/tanh(489/119*Pi) 3141592653628295 l004 Pi/tanh(226/55*Pi) 3141592653628339 l004 Pi/tanh(415/101*Pi) 3141592653628391 l004 Pi/tanh(189/46*Pi) 3141592653628454 l004 Pi/tanh(341/83*Pi) 3141592653628479 l004 Pi/tanh(493/120*Pi) 3141592653628534 l004 Pi/tanh(152/37*Pi) 3141592653628598 l004 Pi/tanh(419/102*Pi) 3141592653628635 l004 Pi/tanh(267/65*Pi) 3141592653628675 l004 Pi/tanh(382/93*Pi) 3141592653628769 l004 Pi/tanh(115/28*Pi) 3141592653628854 l004 Pi/tanh(423/103*Pi) 3141592653628886 l004 Pi/tanh(308/75*Pi) 3141592653628956 l004 Pi/tanh(193/47*Pi) 3141592653628973 l005 ln(sec(745/79)) 3141592653629002 l004 Pi/tanh(464/113*Pi) 3141592653629035 l004 Pi/tanh(271/66*Pi) 3141592653629079 l004 Pi/tanh(349/85*Pi) 3141592653629107 l004 Pi/tanh(427/104*Pi) 3141592653629232 l004 Pi/tanh(78/19*Pi) 3141592653629357 l004 Pi/tanh(431/105*Pi) 3141592653629384 l004 Pi/tanh(353/86*Pi) 3141592653629427 l004 Pi/tanh(275/67*Pi) 3141592653629460 l004 Pi/tanh(472/115*Pi) 3141592653629505 l004 Pi/tanh(197/48*Pi) 3141592653629573 l004 Pi/tanh(316/77*Pi) 3141592653629603 l004 Pi/tanh(435/106*Pi) 3141592653629685 l004 Pi/tanh(119/29*Pi) 3141592653629774 l004 Pi/tanh(398/97*Pi) 3141592653629812 l004 Pi/tanh(279/68*Pi) 3141592653629846 l004 Pi/tanh(439/107*Pi) 3141592653629907 l004 Pi/tanh(160/39*Pi) 3141592653629980 l004 Pi/tanh(361/88*Pi) 3141592653630039 l004 Pi/tanh(201/49*Pi) 3141592653630087 l004 Pi/tanh(443/108*Pi) 3141592653630127 l004 Pi/tanh(242/59*Pi) 3141592653630189 l004 Pi/tanh(283/69*Pi) 3141592653630235 l004 Pi/tanh(324/79*Pi) 3141592653630272 l004 Pi/tanh(365/89*Pi) 3141592653630300 l004 Pi/tanh(406/99*Pi) 3141592653630324 l004 Pi/tanh(447/109*Pi) 3141592653630344 l004 Pi/tanh(488/119*Pi) 3141592653630558 l004 Pi/tanh(41/10*Pi) 3141592653630790 l004 Pi/tanh(455/111*Pi) 3141592653630813 l004 Pi/tanh(414/101*Pi) 3141592653630841 l004 Pi/tanh(373/91*Pi) 3141592653630876 l004 Pi/tanh(332/81*Pi) 3141592653630921 l004 Pi/tanh(291/71*Pi) 3141592653630926 l005 ln(sec(323/103)) 3141592653630980 l004 Pi/tanh(250/61*Pi) 3141592653631018 l004 Pi/tanh(459/112*Pi) 3141592653631061 m001 cosh(1)^Psi(2,1/3)+Pi 3141592653631064 l004 Pi/tanh(209/51*Pi) 3141592653631119 l004 Pi/tanh(377/92*Pi) 3141592653631188 l004 Pi/tanh(168/41*Pi) 3141592653631244 l004 Pi/tanh(463/113*Pi) 3141592653631276 l004 Pi/tanh(295/72*Pi) 3141592653631311 l004 Pi/tanh(422/103*Pi) 3141592653631393 l004 Pi/tanh(127/31*Pi) 3141592653631467 l004 Pi/tanh(467/114*Pi) 3141592653631495 l004 Pi/tanh(340/83*Pi) 3141592653631555 l004 Pi/tanh(213/52*Pi) 3141592653631625 l004 Pi/tanh(299/73*Pi) 3141592653631663 l004 Pi/tanh(385/94*Pi) 3141592653631687 l004 Pi/tanh(471/115*Pi) 3141592653631796 l004 Pi/tanh(86/21*Pi) 3141592653631905 l004 Pi/tanh(475/116*Pi) 3141592653631929 l004 Pi/tanh(389/95*Pi) 3141592653631967 l004 Pi/tanh(303/74*Pi) 3141592653632034 l004 Pi/tanh(217/53*Pi) 3141592653632093 l004 Pi/tanh(348/85*Pi) 3141592653632120 l004 Pi/tanh(479/117*Pi) 3141592653632191 l004 Pi/tanh(131/32*Pi) 3141592653632269 l004 Pi/tanh(438/107*Pi) 3141592653632302 l004 Pi/tanh(307/75*Pi) 3141592653632332 l004 Pi/tanh(483/118*Pi) 3141592653632385 l004 Pi/tanh(176/43*Pi) 3141592653632449 l004 Pi/tanh(397/97*Pi) 3141592653632500 l004 Pi/tanh(221/54*Pi) 3141592653632542 l004 Pi/tanh(487/119*Pi) 3141592653632577 l004 Pi/tanh(266/65*Pi) 3141592653632631 l004 Pi/tanh(311/76*Pi) 3141592653632672 l004 Pi/tanh(356/87*Pi) 3141592653632696 l005 ln(sec(989/105)) 3141592653632704 l004 Pi/tanh(401/98*Pi) 3141592653632729 l004 Pi/tanh(446/109*Pi) 3141592653632750 l004 Pi/tanh(491/120*Pi) 3141592653632955 l004 Pi/tanh(45/11*Pi) 3141592653633177 l004 Pi/tanh(454/111*Pi) 3141592653633202 l004 Pi/tanh(409/100*Pi) 3141592653633233 l004 Pi/tanh(364/89*Pi) 3141592653633272 l004 Pi/tanh(319/78*Pi) 3141592653633324 l004 Pi/tanh(274/67*Pi) 3141592653633397 l004 Pi/tanh(229/56*Pi) 3141592653633446 l004 Pi/tanh(413/101*Pi) 3141592653633506 l004 Pi/tanh(184/45*Pi) 3141592653633583 l004 Pi/tanh(323/79*Pi) 3141592653633614 l004 Pi/tanh(462/113*Pi) 3141592653633686 l004 Pi/tanh(139/34*Pi) 3141592653633775 l004 Pi/tanh(372/91*Pi) 3141592653633828 l004 Pi/tanh(233/57*Pi) 3141592653633889 l004 Pi/tanh(327/80*Pi) 3141592653633923 l004 Pi/tanh(421/103*Pi) 3141592653634040 l004 Pi/tanh(94/23*Pi) 3141592653634072 l005 ln(sec(299/95)) 3141592653634128 l005 ln(sec(679/72)) 3141592653634156 l004 Pi/tanh(425/104*Pi) 3141592653634189 l004 Pi/tanh(331/81*Pi) 3141592653634249 l004 Pi/tanh(237/58*Pi) 3141592653634301 l004 Pi/tanh(380/93*Pi) 3141592653634387 l004 Pi/tanh(143/35*Pi) 3141592653634455 l004 Pi/tanh(478/117*Pi) 3141592653634484 l004 Pi/tanh(335/82*Pi) 3141592653634516 l005 ln(sec(254/81)) 3141592653634557 l004 Pi/tanh(192/47*Pi) 3141592653634614 l004 Pi/tanh(433/106*Pi) 3141592653634659 l004 Pi/tanh(241/59*Pi) 3141592653634726 l004 Pi/tanh(290/71*Pi) 3141592653634774 l004 Pi/tanh(339/83*Pi) 3141592653634810 l004 Pi/tanh(388/95*Pi) 3141592653634838 l004 Pi/tanh(437/107*Pi) 3141592653634860 l004 Pi/tanh(486/119*Pi) 3141592653635059 l004 Pi/tanh(49/12*Pi) 3141592653635277 l004 Pi/tanh(445/109*Pi) 3141592653635304 l004 Pi/tanh(396/97*Pi) 3141592653635339 l004 Pi/tanh(347/85*Pi) 3141592653635385 l004 Pi/tanh(298/73*Pi) 3141592653635449 l004 Pi/tanh(249/61*Pi) 3141592653635492 l004 Pi/tanh(449/110*Pi) 3141592653635545 l004 Pi/tanh(200/49*Pi) 3141592653635613 l004 Pi/tanh(351/86*Pi) 3141592653635704 l004 Pi/tanh(151/37*Pi) 3141592653635783 l004 Pi/tanh(404/99*Pi) 3141592653635830 l004 Pi/tanh(253/62*Pi) 3141592653635884 l004 Pi/tanh(355/87*Pi) 3141592653635913 l004 Pi/tanh(457/112*Pi) 3141592653636017 l004 Pi/tanh(102/25*Pi) 3141592653636120 l004 Pi/tanh(461/113*Pi) 3141592653636149 l004 Pi/tanh(359/88*Pi) 3141592653636202 l004 Pi/tanh(257/63*Pi) 3141592653636247 l004 Pi/tanh(412/101*Pi) 3141592653636324 l004 Pi/tanh(155/38*Pi) 3141592653636410 l004 Pi/tanh(363/89*Pi) 3141592653636475 l004 Pi/tanh(208/51*Pi) 3141592653636525 l004 Pi/tanh(469/115*Pi) 3141592653636565 l004 Pi/tanh(261/64*Pi) 3141592653636624 l004 Pi/tanh(314/77*Pi) 3141592653636667 l004 Pi/tanh(367/90*Pi) 3141592653636682 l005 ln(sec(697/74)) 3141592653636699 l004 Pi/tanh(420/103*Pi) 3141592653636723 l004 Pi/tanh(473/116*Pi) 3141592653636919 l004 Pi/tanh(53/13*Pi) 3141592653637113 l004 Pi/tanh(481/118*Pi) 3141592653637137 l004 Pi/tanh(428/105*Pi) 3141592653637167 l004 Pi/tanh(375/92*Pi) 3141592653637208 l004 Pi/tanh(322/79*Pi) 3141592653637266 l004 Pi/tanh(269/66*Pi) 3141592653637304 l004 Pi/tanh(485/119*Pi) 3141592653637351 l004 Pi/tanh(216/53*Pi) 3141592653637412 l004 Pi/tanh(379/93*Pi) 3141592653637492 l004 Pi/tanh(163/40*Pi) 3141592653637562 l004 Pi/tanh(436/107*Pi) 3141592653637604 l004 Pi/tanh(273/67*Pi) 3141592653637652 l004 Pi/tanh(383/94*Pi) 3141592653637770 l004 Pi/tanh(110/27*Pi) 3141592653637888 l004 Pi/tanh(387/95*Pi) 3141592653637935 l004 Pi/tanh(277/68*Pi) 3141592653637976 l004 Pi/tanh(444/109*Pi) 3141592653638044 l004 Pi/tanh(167/41*Pi) 3141592653638121 l004 Pi/tanh(391/96*Pi) 3141592653638178 l004 Pi/tanh(224/55*Pi) 3141592653638258 l004 Pi/tanh(281/69*Pi) 3141592653638312 l004 Pi/tanh(338/83*Pi) 3141592653638349 l004 Pi/tanh(395/97*Pi) 3141592653638378 l004 Pi/tanh(452/111*Pi) 3141592653638575 l004 Pi/tanh(57/14*Pi) 3141592653638769 l004 Pi/tanh(460/113*Pi) 3141592653638796 l004 Pi/tanh(403/99*Pi) 3141592653638833 l004 Pi/tanh(346/85*Pi) 3141592653638884 l004 Pi/tanh(289/71*Pi) 3141592653638960 l004 Pi/tanh(232/57*Pi) 3141592653639014 l004 Pi/tanh(407/100*Pi) 3141592653639086 l004 Pi/tanh(175/43*Pi) 3141592653639149 l004 Pi/tanh(468/115*Pi) 3141592653639187 l004 Pi/tanh(293/72*Pi) 3141592653639229 l004 Pi/tanh(411/101*Pi) 3141592653639335 l004 Pi/tanh(118/29*Pi) 3141592653639441 l004 Pi/tanh(415/102*Pi) 3141592653639483 l004 Pi/tanh(297/73*Pi) 3141592653639519 l004 Pi/tanh(476/117*Pi) 3141592653639580 l004 Pi/tanh(179/44*Pi) 3141592653639606 l005 ln(sec(192/61)) 3141592653639649 l004 Pi/tanh(419/103*Pi) 3141592653639701 l004 Pi/tanh(240/59*Pi) 3141592653639772 l004 Pi/tanh(301/74*Pi) 3141592653639820 l004 Pi/tanh(362/89*Pi) 3141592653639854 l004 Pi/tanh(423/104*Pi) 3141592653639880 l004 Pi/tanh(484/119*Pi) 3141592653640056 l004 Pi/tanh(61/15*Pi) 3141592653640255 l004 Pi/tanh(431/106*Pi) 3141592653640288 l004 Pi/tanh(370/91*Pi) 3141592653640334 l004 Pi/tanh(309/76*Pi) 3141592653640403 l004 Pi/tanh(248/61*Pi) 3141592653640451 l004 Pi/tanh(435/107*Pi) 3141592653640490 l005 ln(sec(1102/117)) 3141592653640516 l004 Pi/tanh(187/46*Pi) 3141592653640606 l004 Pi/tanh(313/77*Pi) 3141592653640644 l004 Pi/tanh(439/108*Pi) 3141592653640740 l004 Pi/tanh(126/31*Pi) 3141592653640835 l004 Pi/tanh(443/109*Pi) 3141592653640873 l004 Pi/tanh(317/78*Pi) 3141592653640960 l004 Pi/tanh(191/47*Pi) 3141592653641022 l004 Pi/tanh(447/110*Pi) 3141592653641060 l005 ln(sec(613/65)) 3141592653641069 l004 Pi/tanh(256/63*Pi) 3141592653641134 l004 Pi/tanh(321/79*Pi) 3141592653641177 l004 Pi/tanh(386/95*Pi) 3141592653641207 l004 Pi/tanh(451/111*Pi) 3141592653641340 l005 ln(sec(185/59)) 3141592653641389 l004 Pi/tanh(65/16*Pi) 3141592653641569 l004 Pi/tanh(459/113*Pi) 3141592653641599 l004 Pi/tanh(394/97*Pi) 3141592653641640 l004 Pi/tanh(329/81*Pi) 3141592653641702 l004 Pi/tanh(264/65*Pi) 3141592653641746 l004 Pi/tanh(463/114*Pi) 3141592653641805 l004 Pi/tanh(199/49*Pi) 3141592653641886 l004 Pi/tanh(333/82*Pi) 3141592653641921 l004 Pi/tanh(467/115*Pi) 3141592653642007 l004 Pi/tanh(134/33*Pi) 3141592653642012 m001 HeathBrownMoroz^FeigenbaumMu+Pi 3141592653642093 l004 Pi/tanh(471/116*Pi) 3141592653642127 l004 Pi/tanh(337/83*Pi) 3141592653642206 l004 Pi/tanh(203/50*Pi) 3141592653642263 l004 Pi/tanh(475/117*Pi) 3141592653642305 l004 Pi/tanh(272/67*Pi) 3141592653642363 l004 Pi/tanh(341/84*Pi) 3141592653642402 l004 Pi/tanh(410/101*Pi) 3141592653642430 l004 Pi/tanh(479/118*Pi) 3141592653642595 l004 Pi/tanh(69/17*Pi) 3141592653642758 l004 Pi/tanh(487/120*Pi) 3141592653642785 l004 Pi/tanh(418/103*Pi) 3141592653642823 l004 Pi/tanh(349/86*Pi) 3141592653642879 l004 Pi/tanh(280/69*Pi) 3141592653642972 l004 Pi/tanh(211/52*Pi) 3141592653643046 l004 Pi/tanh(353/87*Pi) 3141592653643156 l004 Pi/tanh(142/35*Pi) 3141592653643265 l004 Pi/tanh(357/88*Pi) 3141592653643337 l004 Pi/tanh(215/53*Pi) 3141592653643426 l004 Pi/tanh(288/71*Pi) 3141592653643480 l004 Pi/tanh(361/89*Pi) 3141592653643515 l004 Pi/tanh(434/107*Pi) 3141592653643691 l004 Pi/tanh(73/18*Pi) 3141592653643822 s001 sum(1/10^(n-1)*A271452[n],n=1..infinity) 3141592653643822 s001 sum(1/10^n*A271452[n],n=1..infinity) 3141592653643822 s003 concatenated sequence A271452 3141592653643863 l004 Pi/tanh(442/109*Pi) 3141592653643898 l004 Pi/tanh(369/91*Pi) 3141592653643949 l004 Pi/tanh(296/73*Pi) 3141592653644034 l004 Pi/tanh(223/55*Pi) 3141592653644101 l004 Pi/tanh(373/92*Pi) 3141592653644202 l004 Pi/tanh(150/37*Pi) 3141592653644301 l004 Pi/tanh(377/93*Pi) 3141592653644367 l004 Pi/tanh(227/56*Pi) 3141592653644448 l004 Pi/tanh(304/75*Pi) 3141592653644497 l004 Pi/tanh(381/94*Pi) 3141592653644530 l004 Pi/tanh(458/113*Pi) 3141592653644690 l004 Pi/tanh(77/19*Pi) 3141592653644848 l004 Pi/tanh(466/115*Pi) 3141592653644879 l004 Pi/tanh(389/96*Pi) 3141592653644926 l004 Pi/tanh(312/77*Pi) 3141592653645004 l004 Pi/tanh(235/58*Pi) 3141592653645066 l004 Pi/tanh(393/97*Pi) 3141592653645157 l004 Pi/tanh(158/39*Pi) 3141592653645249 l004 Pi/tanh(397/98*Pi) 3141592653645309 l004 Pi/tanh(239/59*Pi) 3141592653645384 l004 Pi/tanh(320/79*Pi) 3141592653645428 l004 Pi/tanh(401/99*Pi) 3141592653645458 l004 Pi/tanh(482/119*Pi) 3141592653645605 l004 Pi/tanh(81/20*Pi) 3141592653645779 l004 Pi/tanh(409/101*Pi) 3141592653645822 l004 Pi/tanh(328/81*Pi) 3141592653645893 l004 Pi/tanh(247/61*Pi) 3141592653645950 l004 Pi/tanh(413/102*Pi) 3141592653646035 l004 Pi/tanh(166/41*Pi) 3141592653646118 l004 Pi/tanh(417/103*Pi) 3141592653646146 l005 ln(sec(277/88)) 3141592653646174 l004 Pi/tanh(251/62*Pi) 3141592653646243 l004 Pi/tanh(336/83*Pi) 3141592653646284 l004 Pi/tanh(421/104*Pi) 3141592653646446 l004 Pi/tanh(85/21*Pi) 3141592653646607 l004 Pi/tanh(429/106*Pi) 3141592653646646 l004 Pi/tanh(344/85*Pi) 3141592653646712 l004 Pi/tanh(259/64*Pi) 3141592653646764 l004 Pi/tanh(433/107*Pi) 3141592653646842 l004 Pi/tanh(174/43*Pi) 3141592653646919 l004 Pi/tanh(437/108*Pi) 3141592653646970 l004 Pi/tanh(263/65*Pi) 3141592653647034 l004 Pi/tanh(352/87*Pi) 3141592653647072 l004 Pi/tanh(441/109*Pi) 3141592653647222 l004 Pi/tanh(89/22*Pi) 3141592653647370 l004 Pi/tanh(449/111*Pi) 3141592653647407 l004 Pi/tanh(360/89*Pi) 3141592653647468 l004 Pi/tanh(271/67*Pi) 3141592653647516 l004 Pi/tanh(453/112*Pi) 3141592653647581 l005 ln(sec(405/43)) 3141592653647588 l004 Pi/tanh(182/45*Pi) 3141592653647659 l004 Pi/tanh(457/113*Pi) 3141592653647681 l005 ln(sec(301/96)) 3141592653647707 l004 Pi/tanh(275/68*Pi) 3141592653647765 l004 Pi/tanh(368/91*Pi) 3141592653647801 l004 Pi/tanh(461/114*Pi) 3141592653647940 l004 Pi/tanh(93/23*Pi) 3141592653648077 l004 Pi/tanh(469/116*Pi) 3141592653648111 l004 Pi/tanh(376/93*Pi) 3141592653648167 l004 Pi/tanh(283/70*Pi) 3141592653648212 l004 Pi/tanh(473/117*Pi) 3141592653648279 l004 Pi/tanh(190/47*Pi) 3141592653648345 l004 Pi/tanh(477/118*Pi) 3141592653648389 l004 Pi/tanh(287/71*Pi) 3141592653648444 l004 Pi/tanh(384/95*Pi) 3141592653648476 l004 Pi/tanh(481/119*Pi) 3141592653648605 l004 Pi/tanh(97/24*Pi) 3141592653648764 l004 Pi/tanh(392/97*Pi) 3141592653648817 l004 Pi/tanh(295/73*Pi) 3141592653648920 l004 Pi/tanh(198/49*Pi) 3141592653649023 l004 Pi/tanh(299/74*Pi) 3141592653649074 l004 Pi/tanh(400/99*Pi) 3141592653649225 l004 Pi/tanh(101/25*Pi) 3141592653649373 l004 Pi/tanh(408/101*Pi) 3141592653649421 l004 Pi/tanh(307/76*Pi) 3141592653649518 l004 Pi/tanh(206/51*Pi) 3141592653649614 l004 Pi/tanh(311/77*Pi) 3141592653649661 l004 Pi/tanh(416/103*Pi) 3141592653649802 l004 Pi/tanh(105/26*Pi) 3141592653649865 l005 ln(sec(362/115)) 3141592653649940 l004 Pi/tanh(424/105*Pi) 3141592653649986 l004 Pi/tanh(319/79*Pi) 3141592653650076 l004 Pi/tanh(214/53*Pi) 3141592653650165 l004 Pi/tanh(323/80*Pi) 3141592653650210 l004 Pi/tanh(432/107*Pi) 3141592653650341 l004 Pi/tanh(109/27*Pi) 3141592653650471 l004 Pi/tanh(440/109*Pi) 3141592653650513 l004 Pi/tanh(331/82*Pi) 3141592653650598 l004 Pi/tanh(222/55*Pi) 3141592653650682 l004 Pi/tanh(335/83*Pi) 3141592653650723 l004 Pi/tanh(448/111*Pi) 3141592653650760 l005 ln(sec(547/58)) 3141592653650847 l004 Pi/tanh(113/28*Pi) 3141592653650968 l004 Pi/tanh(456/113*Pi) 3141592653651008 l004 Pi/tanh(343/85*Pi) 3141592653651087 l004 Pi/tanh(230/57*Pi) 3141592653651166 l004 Pi/tanh(347/86*Pi) 3141592653651205 l004 Pi/tanh(464/115*Pi) 3141592653651321 l004 Pi/tanh(117/29*Pi) 3141592653651435 l004 Pi/tanh(472/117*Pi) 3141592653651473 l004 Pi/tanh(355/88*Pi) 3141592653651547 l004 Pi/tanh(238/59*Pi) 3141592653651621 l004 Pi/tanh(359/89*Pi) 3141592653651658 l004 Pi/tanh(480/119*Pi) 3141592653651767 l004 Pi/tanh(121/30*Pi) 3141592653651910 l004 Pi/tanh(367/91*Pi) 3141592653651980 l004 Pi/tanh(246/61*Pi) 3141592653652050 l004 Pi/tanh(371/92*Pi) 3141592653652187 l004 Pi/tanh(125/31*Pi) 3141592653652322 l004 Pi/tanh(379/94*Pi) 3141592653652388 l004 Pi/tanh(254/63*Pi) 3141592653652454 l004 Pi/tanh(383/95*Pi) 3141592653652583 l004 Pi/tanh(129/32*Pi) 3141592653652711 l004 Pi/tanh(391/97*Pi) 3141592653652773 l004 Pi/tanh(262/65*Pi) 3141592653652836 l004 Pi/tanh(395/98*Pi) 3141592653652958 l004 Pi/tanh(133/33*Pi) 3141592653653079 l004 Pi/tanh(403/100*Pi) 3141592653653138 l004 Pi/tanh(270/67*Pi) 3141592653653197 l004 Pi/tanh(407/101*Pi) 3141592653653313 l004 Pi/tanh(137/34*Pi) 3141592653653427 l004 Pi/tanh(415/103*Pi) 3141592653653483 l004 Pi/tanh(278/69*Pi) 3141592653653539 l004 Pi/tanh(419/104*Pi) 3141592653653649 l004 Pi/tanh(141/35*Pi) 3141592653653757 l004 Pi/tanh(427/106*Pi) 3141592653653811 l004 Pi/tanh(286/71*Pi) 3141592653653864 l004 Pi/tanh(431/107*Pi) 3141592653653968 l004 Pi/tanh(145/36*Pi) 3141592653654071 l004 Pi/tanh(439/109*Pi) 3141592653654122 l004 Pi/tanh(294/73*Pi) 3141592653654172 l004 Pi/tanh(443/110*Pi) 3141592653654272 l004 Pi/tanh(149/37*Pi) 3141592653654370 l004 Pi/tanh(451/112*Pi) 3141592653654418 l004 Pi/tanh(302/75*Pi) 3141592653654466 l004 Pi/tanh(455/113*Pi) 3141592653654561 l004 Pi/tanh(153/38*Pi) 3141592653654654 l004 Pi/tanh(463/115*Pi) 3141592653654700 l004 Pi/tanh(310/77*Pi) 3141592653654746 l004 Pi/tanh(467/116*Pi) 3141592653654836 l004 Pi/tanh(157/39*Pi) 3141592653654925 l004 Pi/tanh(475/118*Pi) 3141592653654969 l004 Pi/tanh(318/79*Pi) 3141592653655012 l004 Pi/tanh(479/119*Pi) 3141592653655098 l004 Pi/tanh(161/40*Pi) 3141592653655225 l004 Pi/tanh(326/81*Pi) 3141592653655349 l004 Pi/tanh(165/41*Pi) 3141592653655470 l004 Pi/tanh(334/83*Pi) 3141592653655589 l004 Pi/tanh(169/42*Pi) 3141592653655705 l004 Pi/tanh(342/85*Pi) 3141592653655818 l004 Pi/tanh(173/43*Pi) 3141592653655929 l004 Pi/tanh(350/87*Pi) 3141592653656038 l004 Pi/tanh(177/44*Pi) 3141592653656144 l004 Pi/tanh(358/89*Pi) 3141592653656248 l004 Pi/tanh(181/45*Pi) 3141592653656350 l004 Pi/tanh(366/91*Pi) 3141592653656450 l004 Pi/tanh(185/46*Pi) 3141592653656548 l004 Pi/tanh(374/93*Pi) 3141592653656644 l004 Pi/tanh(189/47*Pi) 3141592653656738 l004 Pi/tanh(382/95*Pi) 3141592653656831 l004 Pi/tanh(193/48*Pi) 3141592653656921 l004 Pi/tanh(390/97*Pi) 3141592653656992 l005 ln(sec(923/98)) 3141592653657010 l004 Pi/tanh(197/49*Pi) 3141592653657097 l004 Pi/tanh(398/99*Pi) 3141592653657163 l005 ln(sec(1028/109)) 3141592653657183 l004 Pi/tanh(201/50*Pi) 3141592653657266 l004 Pi/tanh(406/101*Pi) 3141592653657349 l004 Pi/tanh(205/51*Pi) 3141592653657430 l004 Pi/tanh(414/103*Pi) 3141592653657509 l004 Pi/tanh(209/52*Pi) 3141592653657587 l004 Pi/tanh(422/105*Pi) 3141592653657664 l004 Pi/tanh(213/53*Pi) 3141592653657739 l004 Pi/tanh(430/107*Pi) 3141592653657813 l004 Pi/tanh(217/54*Pi) 3141592653657885 l004 Pi/tanh(438/109*Pi) 3141592653657957 l004 Pi/tanh(221/55*Pi) 3141592653658027 l004 Pi/tanh(446/111*Pi) 3141592653658096 l004 Pi/tanh(225/56*Pi) 3141592653658164 l004 Pi/tanh(454/113*Pi) 3141592653658231 l004 Pi/tanh(229/57*Pi) 3141592653658296 l004 Pi/tanh(462/115*Pi) 3141592653658361 l004 Pi/tanh(233/58*Pi) 3141592653658424 l004 Pi/tanh(470/117*Pi) 3141592653658487 l004 Pi/tanh(237/59*Pi) 3141592653658548 l004 Pi/tanh(478/119*Pi) 3141592653658609 l004 Pi/tanh(241/60*Pi) 3141592653658727 l004 Pi/tanh(245/61*Pi) 3141592653658842 l004 Pi/tanh(249/62*Pi) 3141592653658916 m001 GAMMA(7/12)^Psi(2,1/3)+Pi 3141592653658953 l004 Pi/tanh(253/63*Pi) 3141592653658980 l005 ln(sec(116/37)) 3141592653659061 l004 Pi/tanh(257/64*Pi) 3141592653659165 l004 Pi/tanh(261/65*Pi) 3141592653659267 l004 Pi/tanh(265/66*Pi) 3141592653659366 l004 Pi/tanh(269/67*Pi) 3141592653659462 l004 Pi/tanh(273/68*Pi) 3141592653659555 l004 Pi/tanh(277/69*Pi) 3141592653659646 l004 Pi/tanh(281/70*Pi) 3141592653659689 m001 Paris^Psi(1,1/3)+Pi 3141592653659734 l004 Pi/tanh(285/71*Pi) 3141592653659820 l004 Pi/tanh(289/72*Pi) 3141592653659904 l004 Pi/tanh(293/73*Pi) 3141592653659986 l004 Pi/tanh(297/74*Pi) 3141592653660065 l004 Pi/tanh(301/75*Pi) 3141592653660143 l004 Pi/tanh(305/76*Pi) 3141592653660218 l004 Pi/tanh(309/77*Pi) 3141592653660292 l004 Pi/tanh(313/78*Pi) 3141592653660364 l004 Pi/tanh(317/79*Pi) 3141592653660434 l004 Pi/tanh(321/80*Pi) 3141592653660503 l004 Pi/tanh(325/81*Pi) 3141592653660570 l004 Pi/tanh(329/82*Pi) 3141592653660635 l004 Pi/tanh(333/83*Pi) 3141592653660699 l004 Pi/tanh(337/84*Pi) 3141592653660761 l004 Pi/tanh(341/85*Pi) 3141592653660822 l004 Pi/tanh(345/86*Pi) 3141592653660882 l004 Pi/tanh(349/87*Pi) 3141592653660940 l004 Pi/tanh(353/88*Pi) 3141592653660997 l004 Pi/tanh(357/89*Pi) 3141592653661053 l004 Pi/tanh(361/90*Pi) 3141592653661108 l004 Pi/tanh(365/91*Pi) 3141592653661162 l004 Pi/tanh(369/92*Pi) 3141592653661214 l004 Pi/tanh(373/93*Pi) 3141592653661265 l004 Pi/tanh(377/94*Pi) 3141592653661316 l004 Pi/tanh(381/95*Pi) 3141592653661365 l004 Pi/tanh(385/96*Pi) 3141592653661413 l004 Pi/tanh(389/97*Pi) 3141592653661461 l004 Pi/tanh(393/98*Pi) 3141592653661507 l004 Pi/tanh(397/99*Pi) 3141592653661553 l004 Pi/tanh(401/100*Pi) 3141592653661597 l004 Pi/tanh(405/101*Pi) 3141592653661641 l004 Pi/tanh(409/102*Pi) 3141592653661684 l004 Pi/tanh(413/103*Pi) 3141592653661726 l004 Pi/tanh(417/104*Pi) 3141592653661768 l004 Pi/tanh(421/105*Pi) 3141592653661808 l004 Pi/tanh(425/106*Pi) 3141592653661848 l004 Pi/tanh(429/107*Pi) 3141592653661887 l004 Pi/tanh(433/108*Pi) 3141592653661926 l004 Pi/tanh(437/109*Pi) 3141592653661964 l004 Pi/tanh(441/110*Pi) 3141592653662001 l004 Pi/tanh(445/111*Pi) 3141592653662037 l004 Pi/tanh(449/112*Pi) 3141592653662073 l004 Pi/tanh(453/113*Pi) 3141592653662108 l004 Pi/tanh(457/114*Pi) 3141592653662143 l004 Pi/tanh(461/115*Pi) 3141592653662177 l004 Pi/tanh(465/116*Pi) 3141592653662211 l004 Pi/tanh(469/117*Pi) 3141592653662244 l004 Pi/tanh(473/118*Pi) 3141592653662276 l004 Pi/tanh(477/119*Pi) 3141592653662308 l004 Pi/tanh(481/120*Pi) 3141592653663276 l005 ln(sec(85/27)) 3141592653665045 l005 ln(sec(481/51)) 3141592653665116 l005 ln(sec(518/55)) 3141592653666206 l004 Pi/tanh(4*Pi) 3141592653670314 l004 Pi/tanh(479/120*Pi) 3141592653670349 l004 Pi/tanh(475/119*Pi) 3141592653670385 l004 Pi/tanh(471/118*Pi) 3141592653670422 l004 Pi/tanh(467/117*Pi) 3141592653670459 l004 Pi/tanh(463/116*Pi) 3141592653670497 l004 Pi/tanh(459/115*Pi) 3141592653670536 l004 Pi/tanh(455/114*Pi) 3141592653670575 l004 Pi/tanh(451/113*Pi) 3141592653670615 l004 Pi/tanh(447/112*Pi) 3141592653670656 l004 Pi/tanh(443/111*Pi) 3141592653670698 l004 Pi/tanh(439/110*Pi) 3141592653670740 l004 Pi/tanh(435/109*Pi) 3141592653670783 l004 Pi/tanh(431/108*Pi) 3141592653670828 l004 Pi/tanh(427/107*Pi) 3141592653670872 l004 Pi/tanh(423/106*Pi) 3141592653670918 l004 Pi/tanh(419/105*Pi) 3141592653670965 l004 Pi/tanh(415/104*Pi) 3141592653671013 l004 Pi/tanh(411/103*Pi) 3141592653671061 l004 Pi/tanh(407/102*Pi) 3141592653671111 l004 Pi/tanh(403/101*Pi) 3141592653671161 l004 Pi/tanh(399/100*Pi) 3141592653671213 l004 Pi/tanh(395/99*Pi) 3141592653671266 l004 Pi/tanh(391/98*Pi) 3141592653671317 m001 ZetaQ(4)^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141592653671320 l004 Pi/tanh(387/97*Pi) 3141592653671375 l004 Pi/tanh(383/96*Pi) 3141592653671431 l004 Pi/tanh(379/95*Pi) 3141592653671488 l004 Pi/tanh(375/94*Pi) 3141592653671547 l004 Pi/tanh(371/93*Pi) 3141592653671607 l004 Pi/tanh(367/92*Pi) 3141592653671668 l004 Pi/tanh(363/91*Pi) 3141592653671731 l004 Pi/tanh(359/90*Pi) 3141592653671796 l004 Pi/tanh(355/89*Pi) 3141592653671861 l004 Pi/tanh(351/88*Pi) 3141592653671929 l004 Pi/tanh(347/87*Pi) 3141592653671998 l004 Pi/tanh(343/86*Pi) 3141592653672069 l004 Pi/tanh(339/85*Pi) 3141592653672141 l004 Pi/tanh(335/84*Pi) 3141592653672215 l004 Pi/tanh(331/83*Pi) 3141592653672291 l004 Pi/tanh(327/82*Pi) 3141592653672369 l004 Pi/tanh(323/81*Pi) 3141592653672450 l004 Pi/tanh(319/80*Pi) 3141592653672532 l004 Pi/tanh(315/79*Pi) 3141592653672616 l004 Pi/tanh(311/78*Pi) 3141592653672703 l004 Pi/tanh(307/77*Pi) 3141592653672792 l004 Pi/tanh(303/76*Pi) 3141592653672883 l004 Pi/tanh(299/75*Pi) 3141592653672942 l005 ln(sec(279/89)) 3141592653672978 l004 Pi/tanh(295/74*Pi) 3141592653673074 l004 Pi/tanh(291/73*Pi) 3141592653673174 l004 Pi/tanh(287/72*Pi) 3141592653673277 l004 Pi/tanh(283/71*Pi) 3141592653673382 l004 Pi/tanh(279/70*Pi) 3141592653673491 l004 Pi/tanh(275/69*Pi) 3141592653673603 l004 Pi/tanh(271/68*Pi) 3141592653673719 l004 Pi/tanh(267/67*Pi) 3141592653673838 l004 Pi/tanh(263/66*Pi) 3141592653673961 l004 Pi/tanh(259/65*Pi) 3141592653674089 l004 Pi/tanh(255/64*Pi) 3141592653674220 l004 Pi/tanh(251/63*Pi) 3141592653674356 l004 Pi/tanh(247/62*Pi) 3141592653674496 l004 Pi/tanh(243/61*Pi) 3141592653674642 l004 Pi/tanh(239/60*Pi) 3141592653674717 l004 Pi/tanh(474/119*Pi) 3141592653674793 l004 Pi/tanh(235/59*Pi) 3141592653674870 l004 Pi/tanh(466/117*Pi) 3141592653674917 l005 ln(sec(896/95)) 3141592653674949 l004 Pi/tanh(231/58*Pi) 3141592653675029 l004 Pi/tanh(458/115*Pi) 3141592653675111 l004 Pi/tanh(227/57*Pi) 3141592653675194 l004 Pi/tanh(450/113*Pi) 3141592653675279 l004 Pi/tanh(223/56*Pi) 3141592653675366 l004 Pi/tanh(442/111*Pi) 3141592653675454 l004 Pi/tanh(219/55*Pi) 3141592653675543 l004 Pi/tanh(434/109*Pi) 3141592653675635 l004 Pi/tanh(215/54*Pi) 3141592653675728 l004 Pi/tanh(426/107*Pi) 3141592653675824 l004 Pi/tanh(211/53*Pi) 3141592653675921 l004 Pi/tanh(418/105*Pi) 3141592653676020 l004 Pi/tanh(207/52*Pi) 3141592653676121 l004 Pi/tanh(410/103*Pi) 3141592653676225 l004 Pi/tanh(203/51*Pi) 3141592653676330 l004 Pi/tanh(402/101*Pi) 3141592653676438 l004 Pi/tanh(199/50*Pi) 3141592653676548 l004 Pi/tanh(394/99*Pi) 3141592653676660 l004 Pi/tanh(195/49*Pi) 3141592653676775 l004 Pi/tanh(386/97*Pi) 3141592653676893 l004 Pi/tanh(191/48*Pi) 3141592653677013 l004 Pi/tanh(378/95*Pi) 3141592653677136 l004 Pi/tanh(187/47*Pi) 3141592653677261 l004 Pi/tanh(370/93*Pi) 3141592653677390 l004 Pi/tanh(183/46*Pi) 3141592653677521 l004 Pi/tanh(362/91*Pi) 3141592653677656 l004 Pi/tanh(179/45*Pi) 3141592653677794 l004 Pi/tanh(354/89*Pi) 3141592653677935 l004 Pi/tanh(175/44*Pi) 3141592653678080 l004 Pi/tanh(346/87*Pi) 3141592653678229 l004 Pi/tanh(171/43*Pi) 3141592653678297 l005 ln(sec(631/67)) 3141592653678381 l004 Pi/tanh(338/85*Pi) 3141592653678537 l004 Pi/tanh(167/42*Pi) 3141592653678697 l004 Pi/tanh(330/83*Pi) 3141592653678861 l004 Pi/tanh(163/41*Pi) 3141592653679030 l004 Pi/tanh(322/81*Pi) 3141592653679203 l004 Pi/tanh(159/40*Pi) 3141592653679321 l004 Pi/tanh(473/119*Pi) 3141592653679381 l004 Pi/tanh(314/79*Pi) 3141592653679441 l004 Pi/tanh(469/118*Pi) 3141592653679564 l004 Pi/tanh(155/39*Pi) 3141592653679689 l004 Pi/tanh(461/116*Pi) 3141592653679752 l004 Pi/tanh(306/77*Pi) 3141592653679816 l004 Pi/tanh(457/115*Pi) 3141592653679945 l004 Pi/tanh(151/38*Pi) 3141592653680077 l004 Pi/tanh(449/113*Pi) 3141592653680144 l004 Pi/tanh(298/75*Pi) 3141592653680212 l004 Pi/tanh(445/112*Pi) 3141592653680349 l004 Pi/tanh(147/37*Pi) 3141592653680489 l004 Pi/tanh(437/110*Pi) 3141592653680560 l004 Pi/tanh(290/73*Pi) 3141592653680632 l004 Pi/tanh(433/109*Pi) 3141592653680777 l004 Pi/tanh(143/36*Pi) 3141592653680926 l004 Pi/tanh(425/107*Pi) 3141592653681001 l004 Pi/tanh(282/71*Pi) 3141592653681077 l004 Pi/tanh(421/106*Pi) 3141592653681150 l005 ln(sec(318/101)) 3141592653681232 l004 Pi/tanh(139/35*Pi) 3141592653681390 l004 Pi/tanh(413/104*Pi) 3141592653681470 l004 Pi/tanh(274/69*Pi) 3141592653681551 l004 Pi/tanh(409/103*Pi) 3141592653681716 l004 Pi/tanh(135/34*Pi) 3141592653681885 l004 Pi/tanh(401/101*Pi) 3141592653681970 l004 Pi/tanh(266/67*Pi) 3141592653682057 l004 Pi/tanh(397/100*Pi) 3141592653682232 l004 Pi/tanh(131/33*Pi) 3141592653682412 l004 Pi/tanh(389/98*Pi) 3141592653682504 l004 Pi/tanh(258/65*Pi) 3141592653682596 l004 Pi/tanh(385/97*Pi) 3141592653682784 l004 Pi/tanh(127/32*Pi) 3141592653682976 l004 Pi/tanh(377/95*Pi) 3141592653683074 l004 Pi/tanh(250/63*Pi) 3141592653683173 l004 Pi/tanh(373/94*Pi) 3141592653683375 l004 Pi/tanh(123/31*Pi) 3141592653683581 l004 Pi/tanh(365/92*Pi) 3141592653683686 l004 Pi/tanh(242/61*Pi) 3141592653683793 l004 Pi/tanh(361/91*Pi) 3141592653684009 l004 Pi/tanh(119/30*Pi) 3141592653684092 l005 ln(sec(163/52)) 3141592653684175 l004 Pi/tanh(472/119*Pi) 3141592653684231 l004 Pi/tanh(353/89*Pi) 3141592653684344 l004 Pi/tanh(234/59*Pi) 3141592653684459 l004 Pi/tanh(349/88*Pi) 3141592653684517 l004 Pi/tanh(464/117*Pi) 3141592653684692 l004 Pi/tanh(115/29*Pi) 3141592653684700 m001 Artin^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592653684871 l004 Pi/tanh(456/115*Pi) 3141592653684932 l004 Pi/tanh(341/86*Pi) 3141592653685054 l004 Pi/tanh(226/57*Pi) 3141592653685177 l004 Pi/tanh(337/85*Pi) 3141592653685240 l004 Pi/tanh(448/113*Pi) 3141592653685429 l004 Pi/tanh(111/28*Pi) 3141592653685623 l004 Pi/tanh(440/111*Pi) 3141592653685688 l004 Pi/tanh(329/83*Pi) 3141592653685820 l004 Pi/tanh(218/55*Pi) 3141592653685954 l004 Pi/tanh(325/82*Pi) 3141592653686022 l004 Pi/tanh(432/109*Pi) 3141592653686228 l004 Pi/tanh(107/27*Pi) 3141592653686438 l004 Pi/tanh(424/107*Pi) 3141592653686509 l004 Pi/tanh(317/80*Pi) 3141592653686652 l004 Pi/tanh(210/53*Pi) 3141592653686797 l004 Pi/tanh(313/79*Pi) 3141592653686871 l004 Pi/tanh(416/105*Pi) 3141592653687095 l004 Pi/tanh(103/26*Pi) 3141592653687323 l004 Pi/tanh(408/103*Pi) 3141592653687400 l004 Pi/tanh(305/77*Pi) 3141592653687542 l005 ln(sec(415/44)) 3141592653687557 l004 Pi/tanh(202/51*Pi) 3141592653687715 l004 Pi/tanh(301/76*Pi) 3141592653687796 l004 Pi/tanh(400/101*Pi) 3141592653688040 l004 Pi/tanh(99/25*Pi) 3141592653688289 l004 Pi/tanh(392/99*Pi) 3141592653688374 l004 Pi/tanh(293/74*Pi) 3141592653688421 l005 ln(sec(233/74)) 3141592653688446 l005 ln(sec(744/79)) 3141592653688545 l004 Pi/tanh(194/49*Pi) 3141592653688719 l004 Pi/tanh(289/73*Pi) 3141592653688806 l004 Pi/tanh(384/97*Pi) 3141592653689074 l004 Pi/tanh(95/24*Pi) 3141592653689293 l004 Pi/tanh(471/119*Pi) 3141592653689348 l004 Pi/tanh(376/95*Pi) 3141592653689441 l004 Pi/tanh(281/71*Pi) 3141592653689515 l004 Pi/tanh(467/118*Pi) 3141592653689629 l004 Pi/tanh(186/47*Pi) 3141592653689743 l004 Pi/tanh(463/117*Pi) 3141592653689819 l004 Pi/tanh(277/70*Pi) 3141592653689916 l004 Pi/tanh(368/93*Pi) 3141592653689974 l004 Pi/tanh(459/116*Pi) 3141592653690210 l004 Pi/tanh(91/23*Pi) 3141592653690451 l004 Pi/tanh(451/114*Pi) 3141592653690512 l004 Pi/tanh(360/91*Pi) 3141592653690615 l004 Pi/tanh(269/68*Pi) 3141592653690697 l004 Pi/tanh(447/113*Pi) 3141592653690822 l004 Pi/tanh(178/45*Pi) 3141592653690948 l004 Pi/tanh(443/112*Pi) 3141592653691033 l004 Pi/tanh(265/67*Pi) 3141592653691139 l004 Pi/tanh(352/89*Pi) 3141592653691204 l004 Pi/tanh(439/111*Pi) 3141592653691465 l004 Pi/tanh(87/22*Pi) 3141592653691732 l004 Pi/tanh(431/109*Pi) 3141592653691799 l004 Pi/tanh(344/87*Pi) 3141592653691913 l004 Pi/tanh(257/65*Pi) 3141592653692004 l004 Pi/tanh(427/108*Pi) 3141592653692143 l004 Pi/tanh(170/43*Pi) 3141592653692283 l004 Pi/tanh(423/107*Pi) 3141592653692377 l004 Pi/tanh(253/64*Pi) 3141592653692495 l004 Pi/tanh(336/85*Pi) 3141592653692567 l004 Pi/tanh(419/106*Pi) 3141592653692857 l004 Pi/tanh(83/21*Pi) 3141592653693137 l005 ln(sec(373/119)) 3141592653693154 l004 Pi/tanh(411/104*Pi) 3141592653693230 l004 Pi/tanh(328/83*Pi) 3141592653693356 l004 Pi/tanh(245/62*Pi) 3141592653693458 l004 Pi/tanh(407/103*Pi) 3141592653693612 l004 Pi/tanh(162/41*Pi) 3141592653693768 l004 Pi/tanh(403/102*Pi) 3141592653693873 l004 Pi/tanh(241/61*Pi) 3141592653694006 l004 Pi/tanh(320/81*Pi) 3141592653694086 l004 Pi/tanh(399/101*Pi) 3141592653694411 l004 Pi/tanh(79/20*Pi) 3141592653694687 l004 Pi/tanh(470/119*Pi) 3141592653694743 l004 Pi/tanh(391/99*Pi) 3141592653694828 l004 Pi/tanh(312/79*Pi) 3141592653694969 l004 Pi/tanh(233/59*Pi) 3141592653695084 l004 Pi/tanh(387/98*Pi) 3141592653695257 l004 Pi/tanh(154/39*Pi) 3141592653695432 l004 Pi/tanh(383/97*Pi) 3141592653695550 l004 Pi/tanh(229/58*Pi) 3141592653695699 l004 Pi/tanh(304/77*Pi) 3141592653695789 l004 Pi/tanh(379/96*Pi) 3141592653695850 l004 Pi/tanh(454/115*Pi) 3141592653696155 l004 Pi/tanh(75/19*Pi) 3141592653696458 l005 ln(sec(857/91)) 3141592653696467 l004 Pi/tanh(446/113*Pi) 3141592653696530 l004 Pi/tanh(371/94*Pi) 3141592653696625 l004 Pi/tanh(296/75*Pi) 3141592653696785 l004 Pi/tanh(221/56*Pi) 3141592653696914 l004 Pi/tanh(367/93*Pi) 3141592653697110 l004 Pi/tanh(146/37*Pi) 3141592653697308 l004 Pi/tanh(363/92*Pi) 3141592653697442 l004 Pi/tanh(217/55*Pi) 3141592653697610 l004 Pi/tanh(288/73*Pi) 3141592653697670 p002 log(2^(1/4)*(14^(1/2)-21^(1/2))) 3141592653697712 l004 Pi/tanh(359/91*Pi) 3141592653697781 l004 Pi/tanh(430/109*Pi) 3141592653698127 l004 Pi/tanh(71/18*Pi) 3141592653698481 l004 Pi/tanh(422/107*Pi) 3141592653698553 l004 Pi/tanh(351/89*Pi) 3141592653698661 l004 Pi/tanh(280/71*Pi) 3141592653698843 l004 Pi/tanh(209/53*Pi) 3141592653698990 l004 Pi/tanh(347/88*Pi) 3141592653699213 l004 Pi/tanh(138/35*Pi) 3141592653699439 l004 Pi/tanh(343/87*Pi) 3141592653699591 l004 Pi/tanh(205/52*Pi) 3141592653699784 l004 Pi/tanh(272/69*Pi) 3141592653699900 l004 Pi/tanh(339/86*Pi) 3141592653699979 l004 Pi/tanh(406/103*Pi) 3141592653700035 l004 Pi/tanh(473/120*Pi) 3141592653700375 l004 Pi/tanh(67/17*Pi) 3141592653700593 l005 ln(sec(210/67)) 3141592653700722 l004 Pi/tanh(465/118*Pi) 3141592653700780 l004 Pi/tanh(398/101*Pi) 3141592653700862 l004 Pi/tanh(331/84*Pi) 3141592653700986 l004 Pi/tanh(264/67*Pi) 3141592653701075 l004 Pi/tanh(461/117*Pi) 3141592653701195 l004 Pi/tanh(197/50*Pi) 3141592653701364 l004 Pi/tanh(327/83*Pi) 3141592653701437 l004 Pi/tanh(457/116*Pi) 3141592653701620 l004 Pi/tanh(130/33*Pi) 3141592653701805 l004 Pi/tanh(453/115*Pi) 3141592653701880 l004 Pi/tanh(323/82*Pi) 3141592653702055 l004 Pi/tanh(193/49*Pi) 3141592653702182 l004 Pi/tanh(449/114*Pi) 3141592653702277 l004 Pi/tanh(256/65*Pi) 3141592653702411 l004 Pi/tanh(319/81*Pi) 3141592653702502 l004 Pi/tanh(382/97*Pi) 3141592653702566 l004 Pi/tanh(445/113*Pi) 3141592653702926 l005 ln(sec(970/103)) 3141592653702959 l004 Pi/tanh(63/16*Pi) 3141592653703360 l004 Pi/tanh(437/111*Pi) 3141592653703428 l004 Pi/tanh(374/95*Pi) 3141592653703523 l004 Pi/tanh(311/79*Pi) 3141592653703666 l004 Pi/tanh(248/63*Pi) 3141592653703770 l004 Pi/tanh(433/110*Pi) 3141592653703908 l004 Pi/tanh(185/47*Pi) 3141592653704081 l005 ln(sec(764/81)) 3141592653704104 l004 Pi/tanh(307/78*Pi) 3141592653704189 l004 Pi/tanh(429/109*Pi) 3141592653704401 l004 Pi/tanh(122/31*Pi) 3141592653704617 l004 Pi/tanh(425/108*Pi) 3141592653704704 l004 Pi/tanh(303/77*Pi) 3141592653704908 l004 Pi/tanh(181/46*Pi) 3141592653705055 l004 Pi/tanh(421/107*Pi) 3141592653705166 l004 Pi/tanh(240/61*Pi) 3141592653705322 l004 Pi/tanh(299/76*Pi) 3141592653705427 l004 Pi/tanh(358/91*Pi) 3141592653705502 l004 Pi/tanh(417/106*Pi) 3141592653705506 l005 ln(sec(148/47)) 3141592653705961 l004 Pi/tanh(59/15*Pi) 3141592653706253 m001 ZetaQ(4)^FeigenbaumMu+Pi 3141592653706370 l004 Pi/tanh(468/119*Pi) 3141592653706429 l004 Pi/tanh(409/104*Pi) 3141592653706509 l004 Pi/tanh(350/89*Pi) 3141592653706620 l004 Pi/tanh(291/74*Pi) 3141592653706788 l004 Pi/tanh(232/59*Pi) 3141592653706909 l004 Pi/tanh(405/103*Pi) 3141592653707072 l004 Pi/tanh(173/44*Pi) 3141592653707215 l004 Pi/tanh(460/117*Pi) 3141592653707301 l004 Pi/tanh(287/73*Pi) 3141592653707401 l004 Pi/tanh(401/102*Pi) 3141592653707651 l004 Pi/tanh(114/29*Pi) 3141592653707904 l004 Pi/tanh(397/101*Pi) 3141592653708006 l004 Pi/tanh(283/72*Pi) 3141592653708096 l004 Pi/tanh(452/115*Pi) 3141592653708246 l004 Pi/tanh(169/43*Pi) 3141592653708249 l005 ln(sec(1083/115)) 3141592653708419 l004 Pi/tanh(393/100*Pi) 3141592653708550 l004 Pi/tanh(224/57*Pi) 3141592653708735 l004 Pi/tanh(279/71*Pi) 3141592653708858 l004 Pi/tanh(334/85*Pi) 3141592653708947 l004 Pi/tanh(389/99*Pi) 3141592653709014 l004 Pi/tanh(444/113*Pi) 3141592653709489 l004 Pi/tanh(55/14*Pi) 3141592653709974 l004 Pi/tanh(436/111*Pi) 3141592653710044 l004 Pi/tanh(381/97*Pi) 3141592653710138 l004 Pi/tanh(326/83*Pi) 3141592653710270 l004 Pi/tanh(271/69*Pi) 3141592653710470 l004 Pi/tanh(216/55*Pi) 3141592653710613 l004 Pi/tanh(377/96*Pi) 3141592653710756 l005 ln(sec(1113/118)) 3141592653710806 l004 Pi/tanh(161/41*Pi) 3141592653710977 l004 Pi/tanh(428/109*Pi) 3141592653711079 l004 Pi/tanh(267/68*Pi) 3141592653711197 l004 Pi/tanh(373/95*Pi) 3141592653711495 l004 Pi/tanh(106/27*Pi) 3141592653711797 l004 Pi/tanh(369/94*Pi) 3141592653711919 l004 Pi/tanh(263/67*Pi) 3141592653712026 l004 Pi/tanh(420/107*Pi) 3141592653712079 p002 log(1/10*(2^(1/4)-5^(3/4))*10^(2/3)) 3141592653712123 l005 ln(sec(257/82)) 3141592653712205 l004 Pi/tanh(157/40*Pi) 3141592653712412 l004 Pi/tanh(365/93*Pi) 3141592653712569 l004 Pi/tanh(208/53*Pi) 3141592653712691 l004 Pi/tanh(467/119*Pi) 3141592653712789 l004 Pi/tanh(259/66*Pi) 3141592653712938 l004 Pi/tanh(310/79*Pi) 3141592653713044 l004 Pi/tanh(361/92*Pi) 3141592653713124 l004 Pi/tanh(412/105*Pi) 3141592653713187 l004 Pi/tanh(463/118*Pi) 3141592653713693 l004 Pi/tanh(51/13*Pi) 3141592653714211 l004 Pi/tanh(455/116*Pi) 3141592653714276 l004 Pi/tanh(404/103*Pi) 3141592653714360 l004 Pi/tanh(353/90*Pi) 3141592653714473 l004 Pi/tanh(302/77*Pi) 3141592653714632 l004 Pi/tanh(251/64*Pi) 3141592653714739 l004 Pi/tanh(451/115*Pi) 3141592653714873 l004 Pi/tanh(200/51*Pi) 3141592653715046 l004 Pi/tanh(349/89*Pi) 3141592653715279 l004 Pi/tanh(149/38*Pi) 3141592653715485 l004 Pi/tanh(396/101*Pi) 3141592653715609 l004 Pi/tanh(247/63*Pi) 3141592653715752 l004 Pi/tanh(345/88*Pi) 3141592653715831 l004 Pi/tanh(443/113*Pi) 3141592653716112 l004 Pi/tanh(98/25*Pi) 3141592653716396 l004 Pi/tanh(439/112*Pi) 3141592653716477 l004 Pi/tanh(341/87*Pi) 3141592653716625 l004 Pi/tanh(243/62*Pi) 3141592653716755 l004 Pi/tanh(388/99*Pi) 3141592653716973 l004 Pi/tanh(145/37*Pi) 3141592653717224 l004 Pi/tanh(337/86*Pi) 3141592653717414 l004 Pi/tanh(192/49*Pi) 3141592653717563 l004 Pi/tanh(431/110*Pi) 3141592653717683 l004 Pi/tanh(239/61*Pi) 3141592653717726 l005 ln(sec(359/114)) 3141592653717864 l004 Pi/tanh(286/73*Pi) 3141592653717993 l004 Pi/tanh(333/85*Pi) 3141592653718091 l004 Pi/tanh(380/97*Pi) 3141592653718167 l004 Pi/tanh(427/109*Pi) 3141592653718785 l004 Pi/tanh(47/12*Pi) 3141592653719354 l004 Pi/tanh(466/119*Pi) 3141592653719418 l004 Pi/tanh(419/107*Pi) 3141592653719498 l004 Pi/tanh(372/95*Pi) 3141592653719602 l004 Pi/tanh(325/83*Pi) 3141592653719740 l004 Pi/tanh(278/71*Pi) 3141592653719935 l004 Pi/tanh(231/59*Pi) 3141592653720039 m001 Artin^exp(Pi)+Pi 3141592653720066 l004 Pi/tanh(415/106*Pi) 3141592653720230 l004 Pi/tanh(184/47*Pi) 3141592653720443 l004 Pi/tanh(321/82*Pi) 3141592653720529 l004 Pi/tanh(458/117*Pi) 3141592653720596 l005 ln(sec(304/97)) 3141592653720730 l004 Pi/tanh(137/35*Pi) 3141592653720983 l004 Pi/tanh(364/93*Pi) 3141592653721136 l004 Pi/tanh(227/58*Pi) 3141592653721311 l004 Pi/tanh(317/81*Pi) 3141592653721409 l004 Pi/tanh(407/104*Pi) 3141592653721756 l004 Pi/tanh(90/23*Pi) 3141592653722106 l004 Pi/tanh(403/103*Pi) 3141592653722207 l004 Pi/tanh(313/80*Pi) 3141592653722390 l004 Pi/tanh(223/57*Pi) 3141592653722550 l004 Pi/tanh(356/91*Pi) 3141592653722820 l004 Pi/tanh(133/34*Pi) 3141592653723038 l004 Pi/tanh(442/113*Pi) 3141592653723132 l004 Pi/tanh(309/79*Pi) 3141592653723368 l004 Pi/tanh(176/45*Pi) 3141592653723552 l004 Pi/tanh(395/101*Pi) 3141592653723701 l004 Pi/tanh(219/56*Pi) 3141592653723926 l004 Pi/tanh(262/67*Pi) 3141592653724087 l004 Pi/tanh(305/78*Pi) 3141592653724208 l004 Pi/tanh(348/89*Pi) 3141592653724303 l004 Pi/tanh(391/100*Pi) 3141592653724380 l004 Pi/tanh(434/111*Pi) 3141592653725074 l004 Pi/tanh(43/11*Pi) 3141592653725719 l004 Pi/tanh(469/120*Pi) 3141592653725785 l004 Pi/tanh(426/109*Pi) 3141592653725865 l004 Pi/tanh(383/98*Pi) 3141592653725965 l004 Pi/tanh(340/87*Pi) 3141592653726095 l004 Pi/tanh(297/76*Pi) 3141592653726268 l004 Pi/tanh(254/65*Pi) 3141592653726379 l004 Pi/tanh(465/119*Pi) 3141592653726386 l005 ln(sec(349/37)) 3141592653726513 l004 Pi/tanh(211/54*Pi) 3141592653726677 l004 Pi/tanh(379/97*Pi) 3141592653726858 l005 ln(sec(211/67)) 3141592653726883 l004 Pi/tanh(168/43*Pi) 3141592653727053 l004 Pi/tanh(461/118*Pi) 3141592653727073 l005 ln(sec(351/112)) 3141592653727150 l004 Pi/tanh(293/75*Pi) 3141592653727258 l004 Pi/tanh(418/107*Pi) 3141592653727510 l004 Pi/tanh(125/32*Pi) 3141592653727742 l004 Pi/tanh(457/117*Pi) 3141592653727829 l004 Pi/tanh(332/85*Pi) 3141592653728022 l004 Pi/tanh(207/53*Pi) 3141592653728243 l004 Pi/tanh(289/74*Pi) 3141592653728367 l004 Pi/tanh(371/95*Pi) 3141592653728446 l004 Pi/tanh(453/116*Pi) 3141592653728804 l004 Pi/tanh(82/21*Pi) 3141592653729166 l004 Pi/tanh(449/115*Pi) 3141592653729247 l004 Pi/tanh(367/94*Pi) 3141592653729375 l004 Pi/tanh(285/73*Pi) 3141592653729606 l004 Pi/tanh(203/52*Pi) 3141592653729810 l004 Pi/tanh(324/83*Pi) 3141592653729903 l004 Pi/tanh(445/114*Pi) 3141592653730152 l004 Pi/tanh(121/31*Pi) 3141592653730429 l004 Pi/tanh(402/103*Pi) 3141592653730548 l004 Pi/tanh(281/72*Pi) 3141592653730657 l004 Pi/tanh(441/113*Pi) 3141592653730848 l004 Pi/tanh(160/41*Pi) 3141592653731083 l004 Pi/tanh(359/92*Pi) 3141592653731272 l004 Pi/tanh(199/51*Pi) 3141592653731428 l004 Pi/tanh(437/112*Pi) 3141592653731558 l004 Pi/tanh(238/61*Pi) 3141592653731764 l004 Pi/tanh(277/71*Pi) 3141592653731919 l004 Pi/tanh(316/81*Pi) 3141592653732041 l004 Pi/tanh(355/91*Pi) 3141592653732138 l004 Pi/tanh(394/101*Pi) 3141592653732218 l004 Pi/tanh(433/111*Pi) 3141592653733026 l004 Pi/tanh(39/10*Pi) 3141592653733784 l004 Pi/tanh(464/119*Pi) 3141592653733854 l004 Pi/tanh(425/109*Pi) 3141592653733938 l004 Pi/tanh(386/99*Pi) 3141592653734041 l004 Pi/tanh(347/89*Pi) 3141592653734170 l004 Pi/tanh(308/79*Pi) 3141592653734336 l004 Pi/tanh(269/69*Pi) 3141592653734560 l004 Pi/tanh(230/59*Pi) 3141592653734702 l004 Pi/tanh(421/108*Pi) 3141592653734875 l004 Pi/tanh(191/49*Pi) 3141592653735086 l004 Pi/tanh(343/88*Pi) 3141592653735352 l004 Pi/tanh(152/39*Pi) 3141592653735572 l004 Pi/tanh(417/107*Pi) 3141592653735698 l004 Pi/tanh(265/68*Pi) 3141592653735837 l004 Pi/tanh(378/97*Pi) 3141592653736163 l004 Pi/tanh(113/29*Pi) 3141592653736463 l004 Pi/tanh(413/106*Pi) 3141592653736576 l004 Pi/tanh(300/77*Pi) 3141592653736825 l004 Pi/tanh(187/48*Pi) 3141592653736993 l004 Pi/tanh(448/115*Pi) 3141592653737113 l004 Pi/tanh(261/67*Pi) 3141592653737274 l004 Pi/tanh(335/86*Pi) 3141592653737376 l004 Pi/tanh(409/105*Pi) 3141592653737842 l004 Pi/tanh(74/19*Pi) 3141592653738313 l004 Pi/tanh(405/104*Pi) 3141592653738419 l004 Pi/tanh(331/85*Pi) 3141592653738586 l004 Pi/tanh(257/66*Pi) 3141592653738711 l004 Pi/tanh(440/113*Pi) 3141592653738887 l004 Pi/tanh(183/47*Pi) 3141592653739153 l004 Pi/tanh(292/75*Pi) 3141592653739275 l004 Pi/tanh(401/103*Pi) 3141592653739554 l005 ln(sec(274/87)) 3141592653739601 l004 Pi/tanh(109/28*Pi) 3141592653739963 l004 Pi/tanh(362/93*Pi) 3141592653740119 l004 Pi/tanh(253/65*Pi) 3141592653740261 l004 Pi/tanh(397/102*Pi) 3141592653740512 l004 Pi/tanh(144/37*Pi) 3141592653740726 l004 Pi/tanh(467/120*Pi) 3141592653740821 l004 Pi/tanh(323/83*Pi) 3141592653741070 l004 Pi/tanh(179/46*Pi) 3141592653741274 l004 Pi/tanh(393/101*Pi) 3141592653741446 l004 Pi/tanh(214/55*Pi) 3141592653741591 l004 Pi/tanh(463/119*Pi) 3141592653741717 l004 Pi/tanh(249/64*Pi) 3141592653741921 l004 Pi/tanh(284/73*Pi) 3141592653742081 l004 Pi/tanh(319/82*Pi) 3141592653742209 l004 Pi/tanh(354/91*Pi) 3141592653742315 l004 Pi/tanh(389/100*Pi) 3141592653742402 l004 Pi/tanh(424/109*Pi) 3141592653742477 l004 Pi/tanh(459/118*Pi) 3141592653743383 l004 Pi/tanh(35/9*Pi) 3141592653743590 m001 Pi+HeathBrownMoroz^Magata 3141592653744310 l004 Pi/tanh(451/116*Pi) 3141592653744388 l004 Pi/tanh(416/107*Pi) 3141592653744481 l004 Pi/tanh(381/98*Pi) 3141592653744593 l004 Pi/tanh(346/89*Pi) 3141592653744729 l004 Pi/tanh(311/80*Pi) 3141592653744901 l004 Pi/tanh(276/71*Pi) 3141592653745122 l004 Pi/tanh(241/62*Pi) 3141592653745259 l004 Pi/tanh(447/115*Pi) 3141592653745420 l004 Pi/tanh(206/53*Pi) 3141592653745610 l004 Pi/tanh(377/97*Pi) 3141592653745839 l004 Pi/tanh(171/44*Pi) 3141592653745902 l005 ln(sec(981/104)) 3141592653746122 l004 Pi/tanh(307/79*Pi) 3141592653746231 l004 Pi/tanh(443/114*Pi) 3141592653746477 l004 Pi/tanh(136/35*Pi) 3141592653746771 l004 Pi/tanh(373/96*Pi) 3141592653746939 l004 Pi/tanh(237/61*Pi) 3141592653747125 l004 Pi/tanh(338/87*Pi) 3141592653747226 l004 Pi/tanh(439/113*Pi) 3141592653747563 l004 Pi/tanh(101/26*Pi) 3141592653747941 l005 ln(sec(337/107)) 3141592653747965 l004 Pi/tanh(369/95*Pi) 3141592653748117 l004 Pi/tanh(268/69*Pi) 3141592653748245 l004 Pi/tanh(435/112*Pi) 3141592653748452 l004 Pi/tanh(167/43*Pi) 3141592653748677 l004 Pi/tanh(400/103*Pi) 3141592653748839 l004 Pi/tanh(233/60*Pi) 3141592653749055 l004 Pi/tanh(299/77*Pi) 3141592653749194 l004 Pi/tanh(365/94*Pi) 3141592653749290 l004 Pi/tanh(431/111*Pi) 3141592653749822 l004 Pi/tanh(66/17*Pi) 3141592653750360 l004 Pi/tanh(427/110*Pi) 3141592653750459 l004 Pi/tanh(361/93*Pi) 3141592653750602 l004 Pi/tanh(295/76*Pi) 3141592653750827 l004 Pi/tanh(229/59*Pi) 3141592653750997 l004 Pi/tanh(392/101*Pi) 3141592653751236 l004 Pi/tanh(163/42*Pi) 3141592653751458 l004 Pi/tanh(423/109*Pi) 3141592653751597 l004 Pi/tanh(260/67*Pi) 3141592653751762 l004 Pi/tanh(357/92*Pi) 3141592653751857 l004 Pi/tanh(454/117*Pi) 3141592653752205 l004 Pi/tanh(97/25*Pi) 3141592653752584 l004 Pi/tanh(419/108*Pi) 3141592653752698 l004 Pi/tanh(322/83*Pi) 3141592653752911 l004 Pi/tanh(225/58*Pi) 3141592653753105 l004 Pi/tanh(353/91*Pi) 3141592653753447 l004 Pi/tanh(128/33*Pi) 3141592653753738 l004 Pi/tanh(415/107*Pi) 3141592653753868 l004 Pi/tanh(287/74*Pi) 3141592653753990 l004 Pi/tanh(446/115*Pi) 3141592653754209 l004 Pi/tanh(159/41*Pi) 3141592653754489 l004 Pi/tanh(349/90*Pi) 3141592653754724 l004 Pi/tanh(190/49*Pi) 3141592653754923 l004 Pi/tanh(411/106*Pi) 3141592653755095 l004 Pi/tanh(221/57*Pi) 3141592653755376 l004 Pi/tanh(252/65*Pi) 3141592653755595 l004 Pi/tanh(283/73*Pi) 3141592653755771 l004 Pi/tanh(314/81*Pi) 3141592653755916 l004 Pi/tanh(345/89*Pi) 3141592653756037 l004 Pi/tanh(376/97*Pi) 3141592653756140 l004 Pi/tanh(407/105*Pi) 3141592653756228 l004 Pi/tanh(438/113*Pi) 3141592653757389 l004 Pi/tanh(31/8*Pi) 3141592653757537 l005 ln(sec(632/67)) 3141592653758498 l004 Pi/tanh(461/119*Pi) 3141592653758579 l004 Pi/tanh(430/111*Pi) 3141592653758671 l004 Pi/tanh(399/103*Pi) 3141592653758745 m001 OneNinth^Psi(1,1/3)+Pi 3141592653758780 l004 Pi/tanh(368/95*Pi) 3141592653758908 l004 Pi/tanh(337/87*Pi) 3141592653759063 l004 Pi/tanh(306/79*Pi) 3141592653759253 l004 Pi/tanh(275/71*Pi) 3141592653759491 l004 Pi/tanh(244/63*Pi) 3141592653759634 l004 Pi/tanh(457/118*Pi) 3141592653759799 l004 Pi/tanh(213/55*Pi) 3141592653759989 l004 Pi/tanh(395/102*Pi) 3141592653760213 l004 Pi/tanh(182/47*Pi) 3141592653760478 l004 Pi/tanh(333/86*Pi) 3141592653760798 l004 Pi/tanh(151/39*Pi) 3141592653761051 l004 Pi/tanh(422/109*Pi) 3141592653761192 l004 Pi/tanh(271/70*Pi) 3141592653761344 l004 Pi/tanh(391/101*Pi) 3141592653761689 l004 Pi/tanh(120/31*Pi) 3141592653761990 l004 Pi/tanh(449/116*Pi) 3141592653762031 l005 ln(sec(113/12)) 3141592653762099 l004 Pi/tanh(329/85*Pi) 3141592653762335 l004 Pi/tanh(209/54*Pi) 3141592653762596 l004 Pi/tanh(298/77*Pi) 3141592653762737 l004 Pi/tanh(387/100*Pi) 3141592653763210 l004 Pi/tanh(89/23*Pi) 3141592653763654 l004 Pi/tanh(414/107*Pi) 3141592653763775 l004 Pi/tanh(325/84*Pi) 3141592653763989 l004 Pi/tanh(236/61*Pi) 3141592653764170 l004 Pi/tanh(383/99*Pi) 3141592653764462 l004 Pi/tanh(147/38*Pi) 3141592653764779 l004 Pi/tanh(352/91*Pi) 3141592653765007 l004 Pi/tanh(205/53*Pi) 3141592653765313 l004 Pi/tanh(263/68*Pi) 3141592653765509 l004 Pi/tanh(321/83*Pi) 3141592653765644 l004 Pi/tanh(379/98*Pi) 3141592653765744 l004 Pi/tanh(437/113*Pi) 3141592653766398 l004 Pi/tanh(58/15*Pi) 3141592653767059 l004 Pi/tanh(433/112*Pi) 3141592653767162 l004 Pi/tanh(375/97*Pi) 3141592653767302 l004 Pi/tanh(317/82*Pi) 3141592653767505 l004 Pi/tanh(259/67*Pi) 3141592653767645 l004 Pi/tanh(460/119*Pi) 3141592653767826 l004 Pi/tanh(201/52*Pi) 3141592653768068 l004 Pi/tanh(344/89*Pi) 3141592653768408 l004 Pi/tanh(143/37*Pi) 3141592653768725 l004 Pi/tanh(371/96*Pi) 3141592653768923 l004 Pi/tanh(228/59*Pi) 3141592653769159 l004 Pi/tanh(313/81*Pi) 3141592653769294 l004 Pi/tanh(398/103*Pi) 3141592653769792 l004 Pi/tanh(85/22*Pi) 3141592653770232 l004 Pi/tanh(452/117*Pi) 3141592653770265 m001 gamma(3)^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141592653770334 l004 Pi/tanh(367/95*Pi) 3141592653770498 l004 Pi/tanh(282/73*Pi) 3141592653770722 l005 ln(sec(915/97)) 3141592653770803 l004 Pi/tanh(197/51*Pi) 3141592653771082 l004 Pi/tanh(309/80*Pi) 3141592653771213 l004 Pi/tanh(421/109*Pi) 3141592653771574 l004 Pi/tanh(112/29*Pi) 3141592653771993 l004 Pi/tanh(363/94*Pi) 3141592653772181 l004 Pi/tanh(251/65*Pi) 3141592653772355 l004 Pi/tanh(390/101*Pi) 3141592653772671 l004 Pi/tanh(139/36*Pi) 3141592653772949 l004 Pi/tanh(444/115*Pi) 3141592653773076 l004 Pi/tanh(305/79*Pi) 3141592653773415 l004 Pi/tanh(166/43*Pi) 3141592653773704 l004 Pi/tanh(359/93*Pi) 3141592653773952 l004 Pi/tanh(193/50*Pi) 3141592653774169 l004 Pi/tanh(413/107*Pi) 3141592653774359 l004 Pi/tanh(220/57*Pi) 3141592653774677 l004 Pi/tanh(247/64*Pi) 3141592653774933 l004 Pi/tanh(274/71*Pi) 3141592653774953 l005 ln(sec(47/15)) 3141592653775143 l004 Pi/tanh(301/78*Pi) 3141592653775319 l004 Pi/tanh(328/85*Pi) 3141592653775468 l004 Pi/tanh(355/92*Pi) 3141592653775596 l004 Pi/tanh(382/99*Pi) 3141592653775707 l004 Pi/tanh(409/106*Pi) 3141592653775805 l004 Pi/tanh(436/113*Pi) 3141592653775891 l004 Pi/tanh(463/120*Pi) 3141592653777288 l004 Pi/tanh(27/7*Pi) 3141592653778720 l004 Pi/tanh(455/118*Pi) 3141592653778811 l004 Pi/tanh(428/111*Pi) 3141592653778913 l004 Pi/tanh(401/104*Pi) 3141592653779031 l004 Pi/tanh(374/97*Pi) 3141592653779168 l004 Pi/tanh(347/90*Pi) 3141592653779327 l004 Pi/tanh(320/83*Pi) 3141592653779516 l004 Pi/tanh(293/76*Pi) 3141592653779743 l004 Pi/tanh(266/69*Pi) 3141592653780022 l004 Pi/tanh(239/62*Pi) 3141592653780187 l004 Pi/tanh(451/117*Pi) 3141592653780373 l004 Pi/tanh(212/55*Pi) 3141592653780585 l004 Pi/tanh(397/103*Pi) 3141592653780827 l004 Pi/tanh(185/48*Pi) 3141592653781109 l004 Pi/tanh(343/89*Pi) 3141592653781438 l004 Pi/tanh(158/41*Pi) 3141592653781692 l004 Pi/tanh(447/116*Pi) 3141592653781830 l004 Pi/tanh(289/75*Pi) 3141592653781978 l004 Pi/tanh(420/109*Pi) 3141592653782304 l004 Pi/tanh(131/34*Pi) 3141592653782679 l004 Pi/tanh(366/95*Pi) 3141592653782888 l004 Pi/tanh(235/61*Pi) 3141592653783114 l004 Pi/tanh(339/88*Pi) 3141592653783234 l004 Pi/tanh(443/115*Pi) 3141592653783626 l004 Pi/tanh(104/27*Pi) 3141592653784073 l004 Pi/tanh(389/101*Pi) 3141592653784237 l004 Pi/tanh(285/74*Pi) 3141592653784588 l004 Pi/tanh(181/47*Pi) 3141592653784817 l004 Pi/tanh(439/114*Pi) 3141592653784977 l004 Pi/tanh(258/67*Pi) 3141592653785188 l004 Pi/tanh(335/87*Pi) 3141592653785320 l004 Pi/tanh(412/107*Pi) 3141592653785895 l004 Pi/tanh(77/20*Pi) 3141592653786441 l004 Pi/tanh(435/113*Pi) 3141592653786558 l004 Pi/tanh(358/93*Pi) 3141592653786740 l004 Pi/tanh(281/73*Pi) 3141592653787061 l004 Pi/tanh(204/53*Pi) 3141592653787333 l004 Pi/tanh(331/86*Pi) 3141592653787454 l004 Pi/tanh(458/119*Pi) 3141592653787771 l004 Pi/tanh(127/33*Pi) 3141592653788107 l004 Pi/tanh(431/112*Pi) 3141592653788248 l004 Pi/tanh(304/79*Pi) 3141592653788588 l005 ln(sec(63/20)) 3141592653788592 l004 Pi/tanh(177/46*Pi) 3141592653788850 l004 Pi/tanh(404/105*Pi) 3141592653789052 l004 Pi/tanh(227/59*Pi) 3141592653789347 l004 Pi/tanh(277/72*Pi) 3141592653789552 l004 Pi/tanh(327/85*Pi) 3141592653789703 l004 Pi/tanh(377/98*Pi) 3141592653789819 l004 Pi/tanh(427/111*Pi) 3141592653790573 m001 Pi-gamma(2)^FeigenbaumDelta 3141592653790691 l004 Pi/tanh(50/13*Pi) 3141592653791576 l004 Pi/tanh(423/110*Pi) 3141592653791695 l004 Pi/tanh(373/97*Pi) 3141592653791851 l004 Pi/tanh(323/84*Pi) 3141592653792064 l004 Pi/tanh(273/71*Pi) 3141592653792373 l004 Pi/tanh(223/58*Pi) 3141592653792586 l004 Pi/tanh(396/103*Pi) 3141592653792861 l004 Pi/tanh(173/45*Pi) 3141592653793229 l004 Pi/tanh(296/77*Pi) 3141592653793382 l004 Pi/tanh(419/109*Pi) 3141592653793749 l004 Pi/tanh(123/32*Pi) 3141592653794097 l004 Pi/tanh(442/115*Pi) 3141592653794232 l004 Pi/tanh(319/83*Pi) 3141592653794536 l004 Pi/tanh(196/51*Pi) 3141592653794896 l004 Pi/tanh(269/70*Pi) 3141592653795103 l004 Pi/tanh(342/89*Pi) 3141592653795237 l004 Pi/tanh(415/108*Pi) 3141592653795867 l004 Pi/tanh(73/19*Pi) 3141592653796436 l004 Pi/tanh(461/120*Pi) 3141592653796543 l004 Pi/tanh(388/101*Pi) 3141592653796700 l004 Pi/tanh(315/82*Pi) 3141592653796952 l004 Pi/tanh(242/63*Pi) 3141592653797145 l004 Pi/tanh(411/107*Pi) 3141592653797422 l004 Pi/tanh(169/44*Pi) 3141592653797685 l004 Pi/tanh(434/113*Pi) 3141592653797852 l004 Pi/tanh(265/69*Pi) 3141592653798054 l004 Pi/tanh(361/94*Pi) 3141592653798171 l004 Pi/tanh(457/119*Pi) 3141592653798611 l004 Pi/tanh(96/25*Pi) 3141592653799107 l004 Pi/tanh(407/106*Pi) 3141592653799260 l004 Pi/tanh(311/81*Pi) 3141592653799551 l004 Pi/tanh(215/56*Pi) 3141592653799821 l004 Pi/tanh(334/87*Pi) 3141592653799950 l004 Pi/tanh(453/118*Pi) 3141592653800097 m001 Pi+HeathBrownMoroz^ReciprocalFibonacci 3141592653800311 l004 Pi/tanh(119/31*Pi) 3141592653800743 l004 Pi/tanh(380/99*Pi) 3141592653800940 l004 Pi/tanh(261/68*Pi) 3141592653801126 l004 Pi/tanh(403/105*Pi) 3141592653801468 l004 Pi/tanh(142/37*Pi) 3141592653801775 l004 Pi/tanh(449/117*Pi) 3141592653801917 l004 Pi/tanh(307/80*Pi) 3141592653802305 l004 Pi/tanh(165/43*Pi) 3141592653802643 l004 Pi/tanh(353/92*Pi) 3141592653802940 l004 Pi/tanh(188/49*Pi) 3141592653802963 l005 ln(sec(283/30)) 3141592653803203 l004 Pi/tanh(399/104*Pi) 3141592653803437 l004 Pi/tanh(211/55*Pi) 3141592653803648 l004 Pi/tanh(445/116*Pi) 3141592653803838 l004 Pi/tanh(234/61*Pi) 3141592653804167 l004 Pi/tanh(257/67*Pi) 3141592653804443 l004 Pi/tanh(280/73*Pi) 3141592653804677 l004 Pi/tanh(303/79*Pi) 3141592653804878 l004 Pi/tanh(326/85*Pi) 3141592653805053 l004 Pi/tanh(349/91*Pi) 3141592653805206 l004 Pi/tanh(372/97*Pi) 3141592653805342 l004 Pi/tanh(395/103*Pi) 3141592653805462 l004 Pi/tanh(418/109*Pi) 3141592653805570 l004 Pi/tanh(441/115*Pi) 3141592653805688 s003 concatenated sequence A339264 3141592653807544 l004 Pi/tanh(23/6*Pi) 3141592653808408 p002 log(1/3*(12^(1/3)-13^(1/2))*3^(3/4)) 3141592653809469 l004 Pi/tanh(456/119*Pi) 3141592653809572 l004 Pi/tanh(433/113*Pi) 3141592653809686 l004 Pi/tanh(410/107*Pi) 3141592653809814 l004 Pi/tanh(387/101*Pi) 3141592653809958 l004 Pi/tanh(364/95*Pi) 3141592653810121 l004 Pi/tanh(341/89*Pi) 3141592653810309 l004 Pi/tanh(318/83*Pi) 3141592653810526 l004 Pi/tanh(295/77*Pi) 3141592653810780 l004 Pi/tanh(272/71*Pi) 3141592653811081 l004 Pi/tanh(249/65*Pi) 3141592653811444 l004 Pi/tanh(226/59*Pi) 3141592653811654 l004 Pi/tanh(429/112*Pi) 3141592653811889 l004 Pi/tanh(203/53*Pi) 3141592653812153 l004 Pi/tanh(383/100*Pi) 3141592653812450 l004 Pi/tanh(180/47*Pi) 3141592653812789 l004 Pi/tanh(337/88*Pi) 3141592653813178 l004 Pi/tanh(157/41*Pi) 3141592653813470 l004 Pi/tanh(448/117*Pi) 3141592653813628 l004 Pi/tanh(291/76*Pi) 3141592653813795 l004 Pi/tanh(425/111*Pi) 3141592653814158 l004 Pi/tanh(134/35*Pi) 3141592653814565 l004 Pi/tanh(379/99*Pi) 3141592653814788 l004 Pi/tanh(245/64*Pi) 3141592653815026 l004 Pi/tanh(356/93*Pi) 3141592653815551 l004 Pi/tanh(111/29*Pi) 3141592653815996 l004 Pi/tanh(421/110*Pi) 3141592653816156 l004 Pi/tanh(310/81*Pi) 3141592653816494 l004 Pi/tanh(199/52*Pi) 3141592653816859 l004 Pi/tanh(287/75*Pi) 3141592653817053 l004 Pi/tanh(375/98*Pi) 3141592653817688 l004 Pi/tanh(88/23*Pi) 3141592653818260 l004 Pi/tanh(417/109*Pi) 3141592653818413 l004 Pi/tanh(329/86*Pi) 3141592653818678 l004 Pi/tanh(241/63*Pi) 3141592653818900 l004 Pi/tanh(394/103*Pi) 3141592653819249 l004 Pi/tanh(153/40*Pi) 3141592653819621 l004 Pi/tanh(371/97*Pi) 3141592653819883 l004 Pi/tanh(218/57*Pi) 3141592653820226 l004 Pi/tanh(283/74*Pi) 3141592653820441 l004 Pi/tanh(348/91*Pi) 3141592653820588 l004 Pi/tanh(413/108*Pi) 3141592653821379 l004 Pi/tanh(65/17*Pi) 3141592653822138 l004 Pi/tanh(432/113*Pi) 3141592653822273 l004 Pi/tanh(367/96*Pi) 3141592653822465 l004 Pi/tanh(302/79*Pi) 3141592653822764 l004 Pi/tanh(237/62*Pi) 3141592653822985 l004 Pi/tanh(409/107*Pi) 3141592653823289 l004 Pi/tanh(172/45*Pi) 3141592653823566 l004 Pi/tanh(451/118*Pi) 3141592653823736 l004 Pi/tanh(279/73*Pi) 3141592653823936 l004 Pi/tanh(386/101*Pi) 3141592653824457 l004 Pi/tanh(107/28*Pi) 3141592653825012 l004 Pi/tanh(363/95*Pi) 3141592653825244 l004 Pi/tanh(256/67*Pi) 3141592653825452 l004 Pi/tanh(405/106*Pi) 3141592653825811 l004 Pi/tanh(149/39*Pi) 3141592653826238 l004 Pi/tanh(340/89*Pi) 3141592653826572 l004 Pi/tanh(191/50*Pi) 3141592653826841 l004 Pi/tanh(424/111*Pi) 3141592653827061 l004 Pi/tanh(233/61*Pi) 3141592653827400 l004 Pi/tanh(275/72*Pi) 3141592653827650 l004 Pi/tanh(317/83*Pi) 3141592653827842 l004 Pi/tanh(359/94*Pi) 3141592653827994 l004 Pi/tanh(401/105*Pi) 3141592653828117 l004 Pi/tanh(443/116*Pi) 3141592653829293 l004 Pi/tanh(42/11*Pi) 3141592653830485 l004 Pi/tanh(439/115*Pi) 3141592653830612 l004 Pi/tanh(397/104*Pi) 3141592653830768 l004 Pi/tanh(355/93*Pi) 3141592653830967 l004 Pi/tanh(313/82*Pi) 3141592653831228 l004 Pi/tanh(271/71*Pi) 3141592653831584 l004 Pi/tanh(229/60*Pi) 3141592653831816 l004 Pi/tanh(416/109*Pi) 3141592653832101 l004 Pi/tanh(187/49*Pi) 3141592653832459 l004 Pi/tanh(332/87*Pi) 3141592653832920 l004 Pi/tanh(145/38*Pi) 3141592653833311 l004 Pi/tanh(393/103*Pi) 3141592653833539 l004 Pi/tanh(248/65*Pi) 3141592653833743 l005 ln(sec(1064/113)) 3141592653833796 l004 Pi/tanh(351/92*Pi) 3141592653833801 l005 ln(sec(354/113)) 3141592653833860 l005 ln(sec(356/113)) 3141592653833919 l005 ln(sec(1066/113)) 3141592653833936 l004 Pi/tanh(454/119*Pi) 3141592653834414 l004 Pi/tanh(103/27*Pi) 3141592653835001 l004 Pi/tanh(370/97*Pi) 3141592653835228 l004 Pi/tanh(267/70*Pi) 3141592653835423 l004 Pi/tanh(431/113*Pi) 3141592653835741 l004 Pi/tanh(164/43*Pi) 3141592653836094 l004 Pi/tanh(389/102*Pi) 3141592653836351 l004 Pi/tanh(225/59*Pi) 3141592653836396 m001 ZetaQ(3)^FeigenbaumDelta+Pi 3141592653836701 l004 Pi/tanh(286/75*Pi) 3141592653836929 l004 Pi/tanh(347/91*Pi) 3141592653837088 l004 Pi/tanh(408/107*Pi) 3141592653837998 l004 Pi/tanh(61/16*Pi) 3141592653838832 l004 Pi/tanh(446/117*Pi) 3141592653838964 l004 Pi/tanh(385/101*Pi) 3141592653839147 l004 Pi/tanh(324/85*Pi) 3141592653839414 l004 Pi/tanh(263/69*Pi) 3141592653839843 l004 Pi/tanh(202/53*Pi) 3141592653840173 l004 Pi/tanh(343/90*Pi) 3141592653840646 l004 Pi/tanh(141/37*Pi) 3141592653841095 l004 Pi/tanh(362/95*Pi) 3141592653841381 l004 Pi/tanh(221/58*Pi) 3141592653841727 l004 Pi/tanh(301/79*Pi) 3141592653841927 l004 Pi/tanh(381/100*Pi) 3141592653842683 l004 Pi/tanh(80/21*Pi) 3141592653843371 l004 Pi/tanh(419/110*Pi) 3141592653843534 l004 Pi/tanh(339/89*Pi) 3141592653843549 l005 ln(sec(951/101)) 3141592653843798 l004 Pi/tanh(259/68*Pi) 3141592653843915 l005 ln(sec(307/98)) 3141592653844002 l004 Pi/tanh(438/115*Pi) 3141592653844298 l004 Pi/tanh(179/47*Pi) 3141592653844478 m001 Pi+gamma(3)^FeigenbaumMu 3141592653844528 l005 ln(sec(293/93)) 3141592653844581 l004 Pi/tanh(457/120*Pi) 3141592653844764 l004 Pi/tanh(278/73*Pi) 3141592653844986 l004 Pi/tanh(377/99*Pi) 3141592653845610 l004 Pi/tanh(99/26*Pi) 3141592653845898 l005 ln(sec(783/83)) 3141592653846177 l004 Pi/tanh(415/109*Pi) 3141592653846356 l004 Pi/tanh(316/83*Pi) 3141592653846696 l004 Pi/tanh(217/57*Pi) 3141592653847018 l004 Pi/tanh(335/88*Pi) 3141592653847173 l004 Pi/tanh(453/119*Pi) 3141592653847612 l004 Pi/tanh(118/31*Pi) 3141592653848145 l004 Pi/tanh(373/98*Pi) 3141592653848393 l004 Pi/tanh(255/67*Pi) 3141592653848628 l004 Pi/tanh(392/103*Pi) 3141592653849067 l004 Pi/tanh(137/36*Pi) 3141592653849468 l004 Pi/tanh(430/113*Pi) 3141592653849656 l004 Pi/tanh(293/77*Pi) 3141592653849835 l004 Pi/tanh(449/118*Pi) 3141592653850173 l004 Pi/tanh(156/41*Pi) 3141592653850632 l004 Pi/tanh(331/87*Pi) 3141592653851042 l004 Pi/tanh(175/46*Pi) 3141592653851410 l004 Pi/tanh(369/97*Pi) 3141592653851743 l004 Pi/tanh(194/51*Pi) 3141592653852045 l004 Pi/tanh(407/107*Pi) 3141592653852320 l004 Pi/tanh(213/56*Pi) 3141592653852572 l004 Pi/tanh(445/117*Pi) 3141592653852803 l004 Pi/tanh(232/61*Pi) 3141592653853214 l004 Pi/tanh(251/66*Pi) 3141592653853567 l004 Pi/tanh(270/71*Pi) 3141592653853875 l004 Pi/tanh(289/76*Pi) 3141592653854144 l004 Pi/tanh(308/81*Pi) 3141592653854383 l004 Pi/tanh(327/86*Pi) 3141592653854595 l004 Pi/tanh(346/91*Pi) 3141592653854786 l004 Pi/tanh(365/96*Pi) 3141592653854958 l004 Pi/tanh(384/101*Pi) 3141592653855113 l004 Pi/tanh(403/106*Pi) 3141592653855255 l004 Pi/tanh(422/111*Pi) 3141592653855385 l004 Pi/tanh(441/116*Pi) 3141592653856423 l005 ln(sec(838/89)) 3141592653858185 l005 ln(sec(260/83)) 3141592653858277 l004 Pi/tanh(19/5*Pi) 3141592653861128 l004 Pi/tanh(452/119*Pi) 3141592653861253 l004 Pi/tanh(433/114*Pi) 3141592653861391 l004 Pi/tanh(414/109*Pi) 3141592653861541 l004 Pi/tanh(395/104*Pi) 3141592653861707 l004 Pi/tanh(376/99*Pi) 3141592653861726 l005 ln(sec(230/73)) 3141592653861891 l004 Pi/tanh(357/94*Pi) 3141592653862095 l004 Pi/tanh(338/89*Pi) 3141592653862324 l004 Pi/tanh(319/84*Pi) 3141592653862582 l004 Pi/tanh(300/79*Pi) 3141592653862876 l004 Pi/tanh(281/74*Pi) 3141592653863212 l004 Pi/tanh(262/69*Pi) 3141592653863601 l004 Pi/tanh(243/64*Pi) 3141592653864057 l004 Pi/tanh(224/59*Pi) 3141592653864316 l004 Pi/tanh(429/113*Pi) 3141592653864599 l004 Pi/tanh(205/54*Pi) 3141592653864909 l004 Pi/tanh(391/103*Pi) 3141592653865252 l004 Pi/tanh(186/49*Pi) 3141592653865632 l004 Pi/tanh(353/93*Pi) 3141592653866056 l004 Pi/tanh(167/44*Pi) 3141592653866532 l004 Pi/tanh(315/83*Pi) 3141592653867069 l004 Pi/tanh(148/39*Pi) 3141592653867468 l004 Pi/tanh(425/112*Pi) 3141592653867682 l004 Pi/tanh(277/73*Pi) 3141592653867906 l004 Pi/tanh(406/107*Pi) 3141592653868386 l004 Pi/tanh(129/34*Pi) 3141592653868918 l004 Pi/tanh(368/97*Pi) 3141592653869205 l004 Pi/tanh(239/63*Pi) 3141592653869508 l004 Pi/tanh(349/92*Pi) 3141592653870167 l004 Pi/tanh(110/29*Pi) 3141592653870715 l004 Pi/tanh(421/111*Pi) 3141592653870909 l004 Pi/tanh(311/82*Pi) 3141592653871316 l004 Pi/tanh(201/53*Pi) 3141592653871750 l004 Pi/tanh(292/77*Pi) 3141592653871977 l004 Pi/tanh(383/101*Pi) 3141592653872710 l004 Pi/tanh(91/24*Pi) 3141592653872904 l005 ln(sec(500/53)) 3141592653873355 l004 Pi/tanh(436/115*Pi) 3141592653873525 l004 Pi/tanh(345/91*Pi) 3141592653873817 l004 Pi/tanh(254/67*Pi) 3141592653874045 l005 ln(sec(725/77)) 3141592653874060 l004 Pi/tanh(417/110*Pi) 3141592653874438 l004 Pi/tanh(163/43*Pi) 3141592653874834 l004 Pi/tanh(398/105*Pi) 3141592653875109 l004 Pi/tanh(235/62*Pi) 3141592653875466 l004 Pi/tanh(307/81*Pi) 3141592653875688 l004 Pi/tanh(379/100*Pi) 3141592653875839 l004 Pi/tanh(451/119*Pi) 3141592653876635 l004 Pi/tanh(72/19*Pi) 3141592653877507 l004 Pi/tanh(413/109*Pi) 3141592653877691 l004 Pi/tanh(341/90*Pi) 3141592653877974 l004 Pi/tanh(269/71*Pi) 3141592653878465 l004 Pi/tanh(197/52*Pi) 3141592653878876 l004 Pi/tanh(322/85*Pi) 3141592653879057 l004 Pi/tanh(447/118*Pi) 3141592653879524 l004 Pi/tanh(125/33*Pi) 3141592653879798 l005 ln(sec(213/68)) 3141592653880013 l004 Pi/tanh(428/113*Pi) 3141592653880214 l004 Pi/tanh(303/80*Pi) 3141592653880700 l004 Pi/tanh(178/47*Pi) 3141592653881060 l004 Pi/tanh(409/108*Pi) 3141592653881338 l004 Pi/tanh(231/61*Pi) 3141592653881739 l004 Pi/tanh(284/75*Pi) 3141592653882014 l004 Pi/tanh(337/89*Pi) 3141592653882214 l004 Pi/tanh(390/103*Pi) 3141592653882367 l004 Pi/tanh(443/117*Pi) 3141592653883491 l004 Pi/tanh(53/14*Pi) 3141592653884726 l004 Pi/tanh(405/107*Pi) 3141592653884912 l004 Pi/tanh(352/93*Pi) 3141592653885165 l004 Pi/tanh(299/79*Pi) 3141592653885526 l004 Pi/tanh(246/65*Pi) 3141592653885773 l004 Pi/tanh(439/116*Pi) 3141592653886087 l004 Pi/tanh(193/51*Pi) 3141592653886502 l004 Pi/tanh(333/88*Pi) 3141592653887025 m001 ZetaR(2)^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592653887075 l004 Pi/tanh(140/37*Pi) 3141592653887596 l004 Pi/tanh(367/97*Pi) 3141592653887918 l004 Pi/tanh(227/60*Pi) 3141592653888294 l004 Pi/tanh(314/83*Pi) 3141592653888508 l004 Pi/tanh(401/106*Pi) 3141592653889278 l004 Pi/tanh(87/23*Pi) 3141592653890090 l004 Pi/tanh(382/101*Pi) 3141592653890329 l004 Pi/tanh(295/78*Pi) 3141592653890770 l004 Pi/tanh(208/55*Pi) 3141592653891165 l004 Pi/tanh(329/87*Pi) 3141592653891348 l004 Pi/tanh(450/119*Pi) 3141592653891846 l004 Pi/tanh(121/32*Pi) 3141592653892411 l004 Pi/tanh(397/105*Pi) 3141592653892660 l004 Pi/tanh(276/73*Pi) 3141592653892888 l004 Pi/tanh(431/114*Pi) 3141592653893296 l004 Pi/tanh(155/41*Pi) 3141592653893808 l004 Pi/tanh(344/91*Pi) 3141592653893991 l005 ln(sec(167/53)) 3141592653894228 l004 Pi/tanh(189/50*Pi) 3141592653894579 l004 Pi/tanh(412/109*Pi) 3141592653894877 l004 Pi/tanh(223/59*Pi) 3141592653895355 l004 Pi/tanh(257/68*Pi) 3141592653895722 l004 Pi/tanh(291/77*Pi) 3141592653896012 l004 Pi/tanh(325/86*Pi) 3141592653896248 l004 Pi/tanh(359/95*Pi) 3141592653896443 l004 Pi/tanh(393/104*Pi) 3141592653896607 l004 Pi/tanh(427/113*Pi) 3141592653898508 l004 Pi/tanh(34/9*Pi) 3141592653899573 l005 ln(sec(612/65)) 3141592653900439 l004 Pi/tanh(423/112*Pi) 3141592653900608 l004 Pi/tanh(389/103*Pi) 3141592653900810 l004 Pi/tanh(355/94*Pi) 3141592653901054 l004 Pi/tanh(321/85*Pi) 3141592653901357 l004 Pi/tanh(287/76*Pi) 3141592653901742 l004 Pi/tanh(253/67*Pi) 3141592653902247 l004 Pi/tanh(219/58*Pi) 3141592653902563 l004 Pi/tanh(404/107*Pi) 3141592653902938 l004 Pi/tanh(185/49*Pi) 3141592653903390 l004 Pi/tanh(336/89*Pi) 3141592653903944 l004 Pi/tanh(151/40*Pi) 3141592653904389 l004 Pi/tanh(419/111*Pi) 3141592653904639 l004 Pi/tanh(268/71*Pi) 3141592653904780 l005 ln(sec(717/76)) 3141592653904913 l004 Pi/tanh(385/102*Pi) 3141592653905540 l004 Pi/tanh(117/31*Pi) 3141592653906097 l004 Pi/tanh(434/115*Pi) 3141592653906302 l004 Pi/tanh(317/84*Pi) 3141592653906749 l004 Pi/tanh(200/53*Pi) 3141592653907251 l004 Pi/tanh(283/75*Pi) 3141592653907525 l004 Pi/tanh(366/97*Pi) 3141592653907698 l004 Pi/tanh(449/119*Pi) 3141592653908462 l004 Pi/tanh(83/22*Pi) 3141592653909364 l004 Pi/tanh(381/101*Pi) 3141592653909616 l004 Pi/tanh(298/79*Pi) 3141592653910063 l004 Pi/tanh(215/57*Pi) 3141592653910447 l004 Pi/tanh(347/92*Pi) 3141592653911073 l004 Pi/tanh(132/35*Pi) 3141592653911562 l004 Pi/tanh(445/118*Pi) 3141592653911769 l004 Pi/tanh(313/83*Pi) 3141592653912277 l004 Pi/tanh(181/48*Pi) 3141592653912664 l004 Pi/tanh(411/109*Pi) 3141592653912970 l004 Pi/tanh(230/61*Pi) 3141592653913420 l004 Pi/tanh(279/74*Pi) 3141592653913736 l004 Pi/tanh(328/87*Pi) 3141592653913970 l004 Pi/tanh(377/100*Pi) 3141592653914150 l004 Pi/tanh(426/113*Pi) 3141592653915540 l004 Pi/tanh(49/13*Pi) 3141592653916235 l005 ln(sec(166/53)) 3141592653917001 l004 Pi/tanh(407/108*Pi) 3141592653917134 l005 ln(sec(1111/118)) 3141592653917202 l004 Pi/tanh(358/95*Pi) 3141592653917466 l004 Pi/tanh(309/82*Pi) 3141592653917830 l004 Pi/tanh(260/69*Pi) 3141592653918364 l004 Pi/tanh(211/56*Pi) 3141592653918737 l004 Pi/tanh(373/99*Pi) 3141592653919222 l004 Pi/tanh(162/43*Pi) 3141592653919638 l004 Pi/tanh(437/116*Pi) 3141592653919882 l004 Pi/tanh(275/73*Pi) 3141592653920158 l004 Pi/tanh(388/103*Pi) 3141592653920469 m001 ZetaQ(4)^Magata+Pi 3141592653920831 l004 Pi/tanh(113/30*Pi) 3141592653921421 s001 sum(1/10^(n-1)*A068089[n],n=1..infinity) 3141592653921421 s001 sum(1/10^n*A068089[n],n=1..infinity) 3141592653921421 s003 concatenated sequence A068089 3141592653921479 l004 Pi/tanh(403/107*Pi) 3141592653921733 l004 Pi/tanh(290/77*Pi) 3141592653922309 l004 Pi/tanh(177/47*Pi) 3141592653922710 l004 Pi/tanh(418/111*Pi) 3141592653922912 l005 ln(sec(934/99)) 3141592653923005 l004 Pi/tanh(241/64*Pi) 3141592653923409 l004 Pi/tanh(305/81*Pi) 3141592653923562 l005 ln(sec(271/86)) 3141592653923673 l004 Pi/tanh(369/98*Pi) 3141592653923859 l004 Pi/tanh(433/115*Pi) 3141592653924934 l004 Pi/tanh(64/17*Pi) 3141592653926105 l004 Pi/tanh(399/106*Pi) 3141592653926329 l004 Pi/tanh(335/89*Pi) 3141592653926659 l004 Pi/tanh(271/72*Pi) 3141592653927194 l004 Pi/tanh(207/55*Pi) 3141592653927609 l004 Pi/tanh(350/93*Pi) 3141592653928210 l004 Pi/tanh(143/38*Pi) 3141592653928787 l004 Pi/tanh(365/97*Pi) 3141592653929160 l004 Pi/tanh(222/59*Pi) 3141592653929612 l004 Pi/tanh(301/80*Pi) 3141592653929876 l004 Pi/tanh(380/101*Pi) 3141592653930885 l004 Pi/tanh(79/21*Pi) 3141592653931823 l004 Pi/tanh(410/109*Pi) 3141592653932047 l004 Pi/tanh(331/88*Pi) 3141592653932412 l004 Pi/tanh(252/67*Pi) 3141592653932696 l004 Pi/tanh(425/113*Pi) 3141592653933111 l004 Pi/tanh(173/46*Pi) 3141592653933512 l004 Pi/tanh(440/117*Pi) 3141592653933772 l004 Pi/tanh(267/71*Pi) 3141592653934089 l004 Pi/tanh(361/96*Pi) 3141592653934992 l004 Pi/tanh(94/25*Pi) 3141592653935827 l004 Pi/tanh(391/104*Pi) 3141592653936092 l004 Pi/tanh(297/79*Pi) 3141592653936602 l004 Pi/tanh(203/54*Pi) 3141592653937089 l004 Pi/tanh(312/83*Pi) 3141592653937324 l004 Pi/tanh(421/112*Pi) 3141592653937404 l005 ln(sec(375/119)) 3141592653937997 l004 Pi/tanh(109/29*Pi) 3141592653938626 l004 Pi/tanh(451/120*Pi) 3141592653938827 l004 Pi/tanh(342/91*Pi) 3141592653939215 l004 Pi/tanh(233/62*Pi) 3141592653939588 l004 Pi/tanh(357/95*Pi) 3141592653939677 l005 ln(sec(499/53)) 3141592653940290 l004 Pi/tanh(124/33*Pi) 3141592653940939 l004 Pi/tanh(387/103*Pi) 3141592653941245 l004 Pi/tanh(263/70*Pi) 3141592653941540 l004 Pi/tanh(402/107*Pi) 3141592653942098 l004 Pi/tanh(139/37*Pi) 3141592653942619 l004 Pi/tanh(432/115*Pi) 3141592653942866 l004 Pi/tanh(293/78*Pi) 3141592653943105 l004 Pi/tanh(447/119*Pi) 3141592653943561 l004 Pi/tanh(154/41*Pi) 3141592653944192 l004 Pi/tanh(323/86*Pi) 3141592653944768 l004 Pi/tanh(169/45*Pi) 3141592653945295 l004 Pi/tanh(353/94*Pi) 3141592653945626 l005 ln(sec(285/91)) 3141592653945780 l004 Pi/tanh(184/49*Pi) 3141592653946228 l004 Pi/tanh(383/102*Pi) 3141592653946643 l004 Pi/tanh(199/53*Pi) 3141592653947028 l004 Pi/tanh(413/110*Pi) 3141592653947386 l004 Pi/tanh(214/57*Pi) 3141592653947720 l004 Pi/tanh(443/118*Pi) 3141592653948033 l004 Pi/tanh(229/61*Pi) 3141592653948601 l004 Pi/tanh(244/65*Pi) 3141592653949104 l004 Pi/tanh(259/69*Pi) 3141592653949552 l004 Pi/tanh(274/73*Pi) 3141592653949955 l004 Pi/tanh(289/77*Pi) 3141592653950318 l004 Pi/tanh(304/81*Pi) 3141592653950647 l004 Pi/tanh(319/85*Pi) 3141592653950947 l004 Pi/tanh(334/89*Pi) 3141592653951221 l004 Pi/tanh(349/93*Pi) 3141592653951473 l004 Pi/tanh(364/97*Pi) 3141592653951705 l004 Pi/tanh(379/101*Pi) 3141592653951919 l004 Pi/tanh(394/105*Pi) 3141592653952118 l004 Pi/tanh(409/109*Pi) 3141592653952303 l004 Pi/tanh(424/113*Pi) 3141592653952475 l004 Pi/tanh(439/117*Pi) 3141592653957377 l004 Pi/tanh(15/4*Pi) 3141592653962262 l004 Pi/tanh(446/119*Pi) 3141592653962433 l004 Pi/tanh(431/115*Pi) 3141592653962616 l004 Pi/tanh(416/111*Pi) 3141592653962813 l004 Pi/tanh(401/107*Pi) 3141592653963026 l004 Pi/tanh(386/103*Pi) 3141592653963256 l004 Pi/tanh(371/99*Pi) 3141592653963506 l004 Pi/tanh(356/95*Pi) 3141592653963777 l004 Pi/tanh(341/91*Pi) 3141592653964074 l004 Pi/tanh(326/87*Pi) 3141592653964400 l004 Pi/tanh(311/83*Pi) 3141592653964759 l004 Pi/tanh(296/79*Pi) 3141592653965157 l004 Pi/tanh(281/75*Pi) 3141592653965600 l004 Pi/tanh(266/71*Pi) 3141592653966097 l004 Pi/tanh(251/67*Pi) 3141592653966658 l004 Pi/tanh(236/63*Pi) 3141592653967295 l004 Pi/tanh(221/59*Pi) 3141592653967648 l004 Pi/tanh(427/114*Pi) 3141592653968027 l004 Pi/tanh(206/55*Pi) 3141592653968435 l004 Pi/tanh(397/106*Pi) 3141592653968875 l004 Pi/tanh(191/51*Pi) 3141592653969352 l004 Pi/tanh(367/98*Pi) 3141592653969602 l005 ln(sec(885/94)) 3141592653969870 l004 Pi/tanh(176/47*Pi) 3141592653970435 l004 Pi/tanh(337/90*Pi) 3141592653971053 l004 Pi/tanh(161/43*Pi) 3141592653971733 l004 Pi/tanh(307/82*Pi) 3141592653972485 l004 Pi/tanh(146/39*Pi) 3141592653973031 l004 Pi/tanh(423/113*Pi) 3141592653973319 l004 Pi/tanh(277/74*Pi) 3141592653973618 l004 Pi/tanh(408/109*Pi) 3141592653974250 l004 Pi/tanh(131/35*Pi) 3141592653974934 l004 Pi/tanh(378/101*Pi) 3141592653975297 l004 Pi/tanh(247/66*Pi) 3141592653975501 l005 ln(sec(104/33)) 3141592653975676 l004 Pi/tanh(363/97*Pi) 3141592653976483 l004 Pi/tanh(116/31*Pi) 3141592653977137 l004 Pi/tanh(449/120*Pi) 3141592653977365 l004 Pi/tanh(333/89*Pi) 3141592653977837 l004 Pi/tanh(217/58*Pi) 3141592653978332 l004 Pi/tanh(318/85*Pi) 3141592653978588 l004 Pi/tanh(419/112*Pi) 3141592653979397 l004 Pi/tanh(101/27*Pi) 3141592653980270 l004 Pi/tanh(389/104*Pi) 3141592653980576 l004 Pi/tanh(288/77*Pi) 3141592653981214 l004 Pi/tanh(187/50*Pi) 3141592653981889 l004 Pi/tanh(273/73*Pi) 3141592653982240 l004 Pi/tanh(359/96*Pi) 3141592653982456 l004 Pi/tanh(445/119*Pi) 3141592653983359 l004 Pi/tanh(86/23*Pi) 3141592653984329 l004 Pi/tanh(415/111*Pi) 3141592653984582 l004 Pi/tanh(329/88*Pi) 3141592653985016 l004 Pi/tanh(243/65*Pi) 3141592653985374 l004 Pi/tanh(400/107*Pi) 3141592653985927 l004 Pi/tanh(157/42*Pi) 3141592653986503 l004 Pi/tanh(385/103*Pi) 3141592653986900 l004 Pi/tanh(228/61*Pi) 3141592653987411 l004 Pi/tanh(299/80*Pi) 3141592653987727 l004 Pi/tanh(370/99*Pi) 3141592653987941 l004 Pi/tanh(441/118*Pi) 3141592653988434 l005 ln(sec(217/23)) 3141592653989058 l004 Pi/tanh(71/19*Pi) 3141592653989879 l005 ln(sec(119/38)) 3141592653990260 l004 Pi/tanh(411/110*Pi) 3141592653990512 l004 Pi/tanh(340/91*Pi) 3141592653990896 l004 Pi/tanh(269/72*Pi) 3141592653991140 p002 log(1/2*(10^(1/3)-5^(3/4))*2^(3/4)) 3141592653991557 l004 Pi/tanh(198/53*Pi) 3141592653992105 l004 Pi/tanh(325/87*Pi) 3141592653992961 l004 Pi/tanh(127/34*Pi) 3141592653993598 l004 Pi/tanh(437/117*Pi) 3141592653993859 l004 Pi/tanh(310/83*Pi) 3141592653994484 l004 Pi/tanh(183/49*Pi) 3141592653994943 l004 Pi/tanh(422/113*Pi) 3141592653995296 l004 Pi/tanh(239/64*Pi) 3141592653995800 l004 Pi/tanh(295/79*Pi) 3141592653996144 l004 Pi/tanh(351/94*Pi) 3141592653996393 l004 Pi/tanh(407/109*Pi) 3141592653997958 l004 Pi/tanh(56/15*Pi) 3141592653999435 l004 Pi/tanh(433/116*Pi) 3141592653999655 l004 Pi/tanh(377/101*Pi) 3141592653999951 l004 Pi/tanh(321/86*Pi) 3141592654000374 l004 Pi/tanh(265/71*Pi) 3141592654001023 l004 Pi/tanh(209/56*Pi) 3141592654001499 l004 Pi/tanh(362/97*Pi) 3141592654002150 l004 Pi/tanh(153/41*Pi) 3141592654002735 l004 Pi/tanh(403/108*Pi) 3141592654003094 l004 Pi/tanh(250/67*Pi) 3141592654003511 l004 Pi/tanh(347/93*Pi) 3141592654003746 l004 Pi/tanh(444/119*Pi) 3141592654004587 l004 Pi/tanh(97/26*Pi) 3141592654005460 l004 Pi/tanh(429/115*Pi) 3141592654005715 l004 Pi/tanh(332/89*Pi) 3141592654006182 l004 Pi/tanh(235/63*Pi) 3141592654006597 l004 Pi/tanh(373/100*Pi) 3141592654007306 l004 Pi/tanh(138/37*Pi) 3141592654008140 l004 Pi/tanh(317/85*Pi) 3141592654008785 l004 Pi/tanh(179/48*Pi) 3141592654009298 l004 Pi/tanh(399/107*Pi) 3141592654009716 l004 Pi/tanh(220/59*Pi) 3141592654010355 l004 Pi/tanh(261/70*Pi) 3141592654010821 l004 Pi/tanh(302/81*Pi) 3141592654011082 l005 ln(sec(386/41)) 3141592654011177 l004 Pi/tanh(343/92*Pi) 3141592654011456 l004 Pi/tanh(384/103*Pi) 3141592654011682 l004 Pi/tanh(425/114*Pi) 3141592654013801 l004 Pi/tanh(41/11*Pi) 3141592654015876 l004 Pi/tanh(436/117*Pi) 3141592654016092 l004 Pi/tanh(395/106*Pi) 3141592654016358 l004 Pi/tanh(354/95*Pi) 3141592654016694 l004 Pi/tanh(313/84*Pi) 3141592654017132 l004 Pi/tanh(272/73*Pi) 3141592654017725 l004 Pi/tanh(231/62*Pi) 3141592654018109 l004 Pi/tanh(421/113*Pi) 3141592654018577 l004 Pi/tanh(190/51*Pi) 3141592654019157 l004 Pi/tanh(339/91*Pi) 3141592654019323 l005 ln(sec(353/112)) 3141592654019899 l004 Pi/tanh(149/40*Pi) 3141592654020520 l004 Pi/tanh(406/109*Pi) 3141592654020880 l004 Pi/tanh(257/69*Pi) 3141592654021280 l004 Pi/tanh(365/98*Pi) 3141592654022235 l004 Pi/tanh(108/29*Pi) 3141592654023129 l004 Pi/tanh(391/105*Pi) 3141592654023470 l004 Pi/tanh(283/76*Pi) 3141592654024233 l004 Pi/tanh(175/47*Pi) 3141592654024752 l004 Pi/tanh(417/112*Pi) 3141592654025128 l004 Pi/tanh(242/65*Pi) 3141592654025635 l004 Pi/tanh(309/83*Pi) 3141592654025962 l004 Pi/tanh(376/101*Pi) 3141592654026190 l004 Pi/tanh(443/119*Pi) 3141592654027472 l004 Pi/tanh(67/18*Pi) 3141592654028802 l004 Pi/tanh(428/115*Pi) 3141592654029050 l004 Pi/tanh(361/97*Pi) 3141592654029410 l004 Pi/tanh(294/79*Pi) 3141592654029984 l004 Pi/tanh(227/61*Pi) 3141592654030420 l004 Pi/tanh(387/104*Pi) 3141592654031039 l004 Pi/tanh(160/43*Pi) 3141592654031621 l004 Pi/tanh(413/111*Pi) 3141592654031989 l004 Pi/tanh(253/68*Pi) 3141592654032428 l004 Pi/tanh(346/93*Pi) 3141592654032682 l004 Pi/tanh(439/118*Pi) 3141592654033626 l004 Pi/tanh(93/25*Pi) 3141592654034083 l005 ln(sec(310/99)) 3141592654034670 l004 Pi/tanh(398/107*Pi) 3141592654034988 l004 Pi/tanh(305/82*Pi) 3141592654035587 l004 Pi/tanh(212/57*Pi) 3141592654035997 m001 Pi+gamma(2)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141592654036140 l004 Pi/tanh(331/89*Pi) 3141592654037126 l004 Pi/tanh(119/32*Pi) 3141592654037193 m001 ZetaQ(4)^ReciprocalFibonacci+Pi 3141592654037979 l004 Pi/tanh(383/103*Pi) 3141592654038364 l004 Pi/tanh(264/71*Pi) 3141592654038693 l005 ln(sec(249/79)) 3141592654038725 l004 Pi/tanh(409/110*Pi) 3141592654039383 l004 Pi/tanh(145/39*Pi) 3141592654040236 l004 Pi/tanh(316/85*Pi) 3141592654040961 l004 Pi/tanh(171/46*Pi) 3141592654041584 l004 Pi/tanh(368/99*Pi) 3141592654042125 l004 Pi/tanh(197/53*Pi) 3141592654042600 l004 Pi/tanh(420/113*Pi) 3141592654043020 l004 Pi/tanh(223/60*Pi) 3141592654043729 l004 Pi/tanh(249/67*Pi) 3141592654044304 l004 Pi/tanh(275/74*Pi) 3141592654044781 l004 Pi/tanh(301/81*Pi) 3141592654045182 l004 Pi/tanh(327/88*Pi) 3141592654045524 l004 Pi/tanh(353/95*Pi) 3141592654045820 l004 Pi/tanh(379/102*Pi) 3141592654046078 l004 Pi/tanh(405/109*Pi) 3141592654046305 l004 Pi/tanh(431/116*Pi) 3141592654048789 l005 ln(sec(1045/111)) 3141592654049851 l004 Pi/tanh(26/7*Pi) 3141592654053456 l004 Pi/tanh(427/115*Pi) 3141592654053690 l004 Pi/tanh(401/108*Pi) 3141592654053958 l004 Pi/tanh(375/101*Pi) 3141592654054265 l004 Pi/tanh(349/94*Pi) 3141592654054622 l004 Pi/tanh(323/87*Pi) 3141592654055042 l004 Pi/tanh(297/80*Pi) 3141592654055543 l004 Pi/tanh(271/73*Pi) 3141592654056150 l004 Pi/tanh(245/66*Pi) 3141592654056576 l005 ln(sec(1019/108)) 3141592654056903 l004 Pi/tanh(219/59*Pi) 3141592654057352 l004 Pi/tanh(412/111*Pi) 3141592654057861 l004 Pi/tanh(193/52*Pi) 3141592654058444 l004 Pi/tanh(360/97*Pi) 3141592654059120 l004 Pi/tanh(167/45*Pi) 3141592654059910 l004 Pi/tanh(308/83*Pi) 3141592654060847 l004 Pi/tanh(141/38*Pi) 3141592654061576 l004 Pi/tanh(397/107*Pi) 3141592654061977 l004 Pi/tanh(256/69*Pi) 3141592654062408 l004 Pi/tanh(371/100*Pi) 3141592654063366 l004 Pi/tanh(115/31*Pi) 3141592654063411 l005 ln(sec(191/61)) 3141592654064188 l004 Pi/tanh(434/117*Pi) 3141592654064484 l004 Pi/tanh(319/86*Pi) 3141592654065115 l004 Pi/tanh(204/55*Pi) 3141592654065803 l004 Pi/tanh(293/79*Pi) 3141592654066170 l004 Pi/tanh(382/103*Pi) 3141592654067383 l004 Pi/tanh(89/24*Pi) 3141592654068491 l004 Pi/tanh(419/113*Pi) 3141592654068790 l004 Pi/tanh(330/89*Pi) 3141592654069310 l004 Pi/tanh(241/65*Pi) 3141592654069748 l004 Pi/tanh(393/106*Pi) 3141592654070442 l004 Pi/tanh(152/41*Pi) 3141592654071187 l004 Pi/tanh(367/99*Pi) 3141592654071714 l004 Pi/tanh(215/58*Pi) 3141592654072018 l005 ln(sec(659/70)) 3141592654072410 l004 Pi/tanh(278/75*Pi) 3141592654072850 l004 Pi/tanh(341/92*Pi) 3141592654073153 l004 Pi/tanh(404/109*Pi) 3141592654074795 l004 Pi/tanh(63/17*Pi) 3141592654076398 l004 Pi/tanh(415/112*Pi) 3141592654076429 l005 ln(sec(802/85)) 3141592654076685 l004 Pi/tanh(352/95*Pi) 3141592654077098 l004 Pi/tanh(289/78*Pi) 3141592654077742 l004 Pi/tanh(226/61*Pi) 3141592654078221 l004 Pi/tanh(389/105*Pi) 3141592654078886 l004 Pi/tanh(163/44*Pi) 3141592654079493 l004 Pi/tanh(426/115*Pi) 3141592654079870 l004 Pi/tanh(263/71*Pi) 3141592654080313 l004 Pi/tanh(363/98*Pi) 3141592654081479 l004 Pi/tanh(100/27*Pi) 3141592654082450 l004 Pi/tanh(437/118*Pi) 3141592654082738 l004 Pi/tanh(337/91*Pi) 3141592654083270 l004 Pi/tanh(237/64*Pi) 3141592654083750 l004 Pi/tanh(374/101*Pi) 3141592654084582 l004 Pi/tanh(137/37*Pi) 3141592654085583 l004 Pi/tanh(311/84*Pi) 3141592654086372 l004 Pi/tanh(174/47*Pi) 3141592654087011 l004 Pi/tanh(385/104*Pi) 3141592654087538 l004 Pi/tanh(211/57*Pi) 3141592654088358 l004 Pi/tanh(248/67*Pi) 3141592654088592 l005 ln(sec(145/46)) 3141592654088966 l004 Pi/tanh(285/77*Pi) 3141592654089434 l004 Pi/tanh(322/87*Pi) 3141592654089806 l004 Pi/tanh(359/97*Pi) 3141592654090109 l004 Pi/tanh(396/107*Pi) 3141592654090360 l004 Pi/tanh(433/117*Pi) 3141592654093056 l004 Pi/tanh(37/10*Pi) 3141592654095862 l004 Pi/tanh(418/113*Pi) 3141592654096135 l004 Pi/tanh(381/103*Pi) 3141592654096467 l004 Pi/tanh(344/93*Pi) 3141592654096880 l004 Pi/tanh(307/83*Pi) 3141592654097406 l004 Pi/tanh(270/73*Pi) 3141592654098100 l004 Pi/tanh(233/63*Pi) 3141592654098537 l004 Pi/tanh(429/116*Pi) 3141592654099057 l004 Pi/tanh(196/53*Pi) 3141592654099099 l005 ln(sec(932/99)) 3141592654099687 l004 Pi/tanh(355/96*Pi) 3141592654099813 l005 ln(sec(263/84)) 3141592654100463 l004 Pi/tanh(159/43*Pi) 3141592654101091 l004 Pi/tanh(440/119*Pi) 3141592654101446 l004 Pi/tanh(281/76*Pi) 3141592654101834 l004 Pi/tanh(403/109*Pi) 3141592654102729 l004 Pi/tanh(122/33*Pi) 3141592654103828 l004 Pi/tanh(329/89*Pi) 3141592654104476 l004 Pi/tanh(207/56*Pi) 3141592654105208 l004 Pi/tanh(292/79*Pi) 3141592654105610 l004 Pi/tanh(377/102*Pi) 3141592654106993 l004 Pi/tanh(85/23*Pi) 3141592654108341 l004 Pi/tanh(388/105*Pi) 3141592654108719 l004 Pi/tanh(303/82*Pi) 3141592654109394 l004 Pi/tanh(218/59*Pi) 3141592654109976 l004 Pi/tanh(351/95*Pi) 3141592654110933 l004 Pi/tanh(133/36*Pi) 3141592654112004 l004 Pi/tanh(314/85*Pi) 3141592654112515 l005 ln(sec(585/62)) 3141592654112793 l004 Pi/tanh(181/49*Pi) 3141592654113397 l004 Pi/tanh(410/111*Pi) 3141592654113875 l004 Pi/tanh(229/62*Pi) 3141592654114584 l004 Pi/tanh(277/75*Pi) 3141592654115084 l004 Pi/tanh(325/88*Pi) 3141592654115455 l004 Pi/tanh(373/101*Pi) 3141592654115742 l004 Pi/tanh(421/114*Pi) 3141592654117977 l004 Pi/tanh(48/13*Pi) 3141592654120108 l004 Pi/tanh(443/120*Pi) 3141592654120368 l004 Pi/tanh(395/107*Pi) 3141592654120700 l004 Pi/tanh(347/94*Pi) 3141592654121138 l004 Pi/tanh(299/81*Pi) 3141592654121145 p002 log(3^(1/3)+12^(1/4)-7^(3/4)) 3141592654121483 l005 ln(sec(335/107)) 3141592654121744 l004 Pi/tanh(251/68*Pi) 3141592654122639 l004 Pi/tanh(203/55*Pi) 3141592654123267 l004 Pi/tanh(358/97*Pi) 3141592654124090 l004 Pi/tanh(155/42*Pi) 3141592654124798 l004 Pi/tanh(417/113*Pi) 3141592654125217 l004 Pi/tanh(262/71*Pi) 3141592654125691 l004 Pi/tanh(369/100*Pi) 3141592654126853 l004 Pi/tanh(107/29*Pi) 3141592654127984 l004 Pi/tanh(380/103*Pi) 3141592654128428 l004 Pi/tanh(273/74*Pi) 3141592654128793 l005 ln(sec(331/105)) 3141592654128813 l004 Pi/tanh(439/119*Pi) 3141592654129445 l004 Pi/tanh(166/45*Pi) 3141592654130157 l004 Pi/tanh(391/106*Pi) 3141592654130682 l004 Pi/tanh(225/61*Pi) 3141592654131406 l004 Pi/tanh(284/77*Pi) 3141592654131882 l004 Pi/tanh(343/93*Pi) 3141592654132218 l004 Pi/tanh(402/109*Pi) 3141592654134175 l004 Pi/tanh(59/16*Pi) 3141592654136037 l004 Pi/tanh(424/115*Pi) 3141592654136339 l004 Pi/tanh(365/99*Pi) 3141592654136757 l004 Pi/tanh(306/83*Pi) 3141592654137375 l004 Pi/tanh(247/67*Pi) 3141592654137811 l004 Pi/tanh(435/118*Pi) 3141592654138383 l004 Pi/tanh(188/51*Pi) 3141592654139170 l004 Pi/tanh(317/86*Pi) 3141592654140318 l004 Pi/tanh(129/35*Pi) 3141592654141429 l004 Pi/tanh(328/89*Pi) 3141592654142151 l004 Pi/tanh(199/54*Pi) 3141592654143032 l004 Pi/tanh(269/73*Pi) 3141592654143550 l004 Pi/tanh(339/92*Pi) 3141592654143891 l004 Pi/tanh(409/111*Pi) 3141592654144409 l005 ln(sec(953/101)) 3141592654145544 l004 Pi/tanh(70/19*Pi) 3141592654147117 l004 Pi/tanh(431/117*Pi) 3141592654147422 l004 Pi/tanh(361/98*Pi) 3141592654147875 l004 Pi/tanh(291/79*Pi) 3141592654148615 l004 Pi/tanh(221/60*Pi) 3141592654149195 l004 Pi/tanh(372/101*Pi) 3141592654150045 l004 Pi/tanh(151/41*Pi) 3141592654150871 l004 Pi/tanh(383/104*Pi) 3141592654151409 l004 Pi/tanh(232/63*Pi) 3141592654152068 l004 Pi/tanh(313/85*Pi) 3141592654152457 l004 Pi/tanh(394/107*Pi) 3141592654153961 l004 Pi/tanh(81/22*Pi) 3141592654155389 l004 Pi/tanh(416/113*Pi) 3141592654155734 l004 Pi/tanh(335/91*Pi) 3141592654156301 l004 Pi/tanh(254/69*Pi) 3141592654156746 l004 Pi/tanh(427/116*Pi) 3141592654157400 l004 Pi/tanh(173/47*Pi) 3141592654158038 l004 Pi/tanh(438/119*Pi) 3141592654158454 l004 Pi/tanh(265/72*Pi) 3141592654158966 l004 Pi/tanh(357/97*Pi) 3141592654160443 l004 Pi/tanh(92/25*Pi) 3141592654161784 l005 ln(sec(186/59)) 3141592654161837 l004 Pi/tanh(379/103*Pi) 3141592654162285 l004 Pi/tanh(287/78*Pi) 3141592654163155 l004 Pi/tanh(195/53*Pi) 3141592654163995 l004 Pi/tanh(298/81*Pi) 3141592654164404 l004 Pi/tanh(401/109*Pi) 3141592654165588 l004 Pi/tanh(103/28*Pi) 3141592654166713 l004 Pi/tanh(423/115*Pi) 3141592654167075 l004 Pi/tanh(320/87*Pi) 3141592654167569 p002 log(1/6*(5^(1/2)-6^(1/2)*7^(1/3))*6^(1/2)) 3141592654167782 l004 Pi/tanh(217/59*Pi) 3141592654168467 l004 Pi/tanh(331/90*Pi) 3141592654169162 l005 ln(sec(273/29)) 3141592654169771 l004 Pi/tanh(114/31*Pi) 3141592654170997 l004 Pi/tanh(353/96*Pi) 3141592654171582 l004 Pi/tanh(239/65*Pi) 3141592654172151 l004 Pi/tanh(364/99*Pi) 3141592654173239 l004 Pi/tanh(125/34*Pi) 3141592654174267 l004 Pi/tanh(386/105*Pi) 3141592654174759 l004 Pi/tanh(261/71*Pi) 3141592654175239 l004 Pi/tanh(397/108*Pi) 3141592654176160 l004 Pi/tanh(136/37*Pi) 3141592654177034 l004 Pi/tanh(419/114*Pi) 3141592654177455 l004 Pi/tanh(283/77*Pi) 3141592654177865 l004 Pi/tanh(430/117*Pi) 3141592654178655 l004 Pi/tanh(147/40*Pi) 3141592654179770 l004 Pi/tanh(305/83*Pi) 3141592654180810 l004 Pi/tanh(158/43*Pi) 3141592654181781 l004 Pi/tanh(327/89*Pi) 3141592654182690 l004 Pi/tanh(169/46*Pi) 3141592654183543 l004 Pi/tanh(349/95*Pi) 3141592654184345 l004 Pi/tanh(180/49*Pi) 3141592654185101 l004 Pi/tanh(371/101*Pi) 3141592654185813 l004 Pi/tanh(191/52*Pi) 3141592654186487 l004 Pi/tanh(393/107*Pi) 3141592654187124 l004 Pi/tanh(202/55*Pi) 3141592654187728 l004 Pi/tanh(415/113*Pi) 3141592654188302 l004 Pi/tanh(213/58*Pi) 3141592654188847 l004 Pi/tanh(437/119*Pi) 3141592654189366 l004 Pi/tanh(224/61*Pi) 3141592654190331 l004 Pi/tanh(235/64*Pi) 3141592654191212 l004 Pi/tanh(246/67*Pi) 3141592654192018 l004 Pi/tanh(257/70*Pi) 3141592654192759 l004 Pi/tanh(268/73*Pi) 3141592654193443 l004 Pi/tanh(279/76*Pi) 3141592654194075 l004 Pi/tanh(290/79*Pi) 3141592654194661 l004 Pi/tanh(301/82*Pi) 3141592654195206 l004 Pi/tanh(312/85*Pi) 3141592654195715 l004 Pi/tanh(323/88*Pi) 3141592654196191 l004 Pi/tanh(334/91*Pi) 3141592654196636 l004 Pi/tanh(345/94*Pi) 3141592654197055 l004 Pi/tanh(356/97*Pi) 3141592654197448 l004 Pi/tanh(367/100*Pi) 3141592654197819 l004 Pi/tanh(378/103*Pi) 3141592654198089 l005 ln(sec(368/39)) 3141592654198169 l004 Pi/tanh(389/106*Pi) 3141592654198500 l004 Pi/tanh(400/109*Pi) 3141592654198813 l004 Pi/tanh(411/112*Pi) 3141592654199111 l004 Pi/tanh(422/115*Pi) 3141592654199393 l004 Pi/tanh(433/118*Pi) 3141592654206535 l005 ln(sec(72/23)) 3141592654210309 l004 Pi/tanh(11/3*Pi) 3141592654212583 l005 ln(sec(227/72)) 3141592654221327 l004 Pi/tanh(436/119*Pi) 3141592654221614 l004 Pi/tanh(425/116*Pi) 3141592654221917 l004 Pi/tanh(414/113*Pi) 3141592654222237 l004 Pi/tanh(403/110*Pi) 3141592654222575 l004 Pi/tanh(392/107*Pi) 3141592654222932 l004 Pi/tanh(381/104*Pi) 3141592654223311 l004 Pi/tanh(370/101*Pi) 3141592654223713 l004 Pi/tanh(359/98*Pi) 3141592654224141 l004 Pi/tanh(348/95*Pi) 3141592654224597 l004 Pi/tanh(337/92*Pi) 3141592654225085 l004 Pi/tanh(326/89*Pi) 3141592654225606 l004 Pi/tanh(315/86*Pi) 3141592654226166 l004 Pi/tanh(304/83*Pi) 3141592654226769 l004 Pi/tanh(293/80*Pi) 3141592654227419 l004 Pi/tanh(282/77*Pi) 3141592654228122 l004 Pi/tanh(271/74*Pi) 3141592654228886 l004 Pi/tanh(260/71*Pi) 3141592654229718 l004 Pi/tanh(249/68*Pi) 3141592654230629 l004 Pi/tanh(238/65*Pi) 3141592654231629 l004 Pi/tanh(227/62*Pi) 3141592654232732 l004 Pi/tanh(216/59*Pi) 3141592654233328 l004 Pi/tanh(421/115*Pi) 3141592654233956 l004 Pi/tanh(205/56*Pi) 3141592654234619 l004 Pi/tanh(399/109*Pi) 3141592654235321 l004 Pi/tanh(194/53*Pi) 3141592654236064 l004 Pi/tanh(377/103*Pi) 3141592654236853 l004 Pi/tanh(183/50*Pi) 3141592654237692 l004 Pi/tanh(355/97*Pi) 3141592654238586 l004 Pi/tanh(172/47*Pi) 3141592654239540 l004 Pi/tanh(333/91*Pi) 3141592654240560 l004 Pi/tanh(161/44*Pi) 3141592654241654 l004 Pi/tanh(311/85*Pi) 3141592654242345 l005 ln(sec(979/104)) 3141592654242830 l004 Pi/tanh(150/41*Pi) 3141592654243665 l004 Pi/tanh(439/120*Pi) 3141592654244098 l004 Pi/tanh(289/79*Pi) 3141592654244543 l004 Pi/tanh(428/117*Pi) 3141592654245469 l004 Pi/tanh(139/38*Pi) 3141592654246447 l004 Pi/tanh(406/111*Pi) 3141592654246956 l004 Pi/tanh(267/73*Pi) 3141592654247480 l004 Pi/tanh(395/108*Pi) 3141592654248574 l004 Pi/tanh(128/35*Pi) 3141592654249735 l004 Pi/tanh(373/102*Pi) 3141592654249781 l005 ln(sec(268/85)) 3141592654250342 l004 Pi/tanh(245/67*Pi) 3141592654250968 l004 Pi/tanh(362/99*Pi) 3141592654252280 l004 Pi/tanh(117/32*Pi) 3141592654253681 l004 Pi/tanh(340/93*Pi) 3141592654254416 l004 Pi/tanh(223/61*Pi) 3141592654255177 l004 Pi/tanh(329/90*Pi) 3141592654255568 l004 Pi/tanh(435/119*Pi) 3141592654256781 l004 Pi/tanh(106/29*Pi) 3141592654257744 m001 Porter^Psi(2,1/3)+Pi 3141592654258061 l004 Pi/tanh(413/113*Pi) 3141592654258504 l004 Pi/tanh(307/84*Pi) 3141592654258668 m001 Trott^FeigenbaumDelta+Pi 3141592654259414 l004 Pi/tanh(201/55*Pi) 3141592654260013 l005 ln(sec(887/94)) 3141592654260359 l004 Pi/tanh(296/81*Pi) 3141592654260845 l004 Pi/tanh(391/107*Pi) 3141592654262362 l004 Pi/tanh(95/26*Pi) 3141592654263236 m001 Champernowne^Psi(1,1/3)+Pi 3141592654263974 l004 Pi/tanh(369/101*Pi) 3141592654264533 l004 Pi/tanh(274/75*Pi) 3141592654265688 l004 Pi/tanh(179/49*Pi) 3141592654266892 l004 Pi/tanh(263/72*Pi) 3141592654267515 l004 Pi/tanh(347/95*Pi) 3141592654267895 l004 Pi/tanh(431/118*Pi) 3141592654269466 l004 Pi/tanh(84/23*Pi) 3141592654271126 l004 Pi/tanh(409/112*Pi) 3141592654271556 l004 Pi/tanh(325/89*Pi) 3141592654272285 l004 Pi/tanh(241/66*Pi) 3141592654272423 l005 ln(sec(706/75)) 3141592654272882 l004 Pi/tanh(398/109*Pi) 3141592654273798 l004 Pi/tanh(157/43*Pi) 3141592654274742 l004 Pi/tanh(387/106*Pi) 3141592654275386 l004 Pi/tanh(230/63*Pi) 3141592654276211 l004 Pi/tanh(303/83*Pi) 3141592654276715 l004 Pi/tanh(376/103*Pi) 3141592654278154 l005 ln(sec(309/98)) 3141592654278814 l004 Pi/tanh(73/20*Pi) 3141592654280666 l004 Pi/tanh(427/117*Pi) 3141592654281049 l004 Pi/tanh(354/97*Pi) 3141592654281631 l004 Pi/tanh(281/77*Pi) 3141592654282622 l004 Pi/tanh(208/57*Pi) 3141592654283435 l004 Pi/tanh(343/94*Pi) 3141592654284689 l004 Pi/tanh(135/37*Pi) 3141592654285987 l004 Pi/tanh(332/91*Pi) 3141592654286878 l004 Pi/tanh(197/54*Pi) 3141592654287582 m001 Pi+gamma(3)^Magata 3141592654288021 l004 Pi/tanh(259/71*Pi) 3141592654288724 l004 Pi/tanh(321/88*Pi) 3141592654289199 l004 Pi/tanh(383/105*Pi) 3141592654291665 l004 Pi/tanh(62/17*Pi) 3141592654293905 l004 Pi/tanh(423/116*Pi) 3141592654294290 l004 Pi/tanh(361/99*Pi) 3141592654294836 l004 Pi/tanh(299/82*Pi) 3141592654295668 l004 Pi/tanh(237/65*Pi) 3141592654296272 l004 Pi/tanh(412/113*Pi) 3141592654297091 l004 Pi/tanh(175/48*Pi) 3141592654298263 l004 Pi/tanh(288/79*Pi) 3141592654298776 l004 Pi/tanh(401/110*Pi) 3141592654300083 l004 Pi/tanh(113/31*Pi) 3141592654300492 l005 ln(sec(350/111)) 3141592654301430 l004 Pi/tanh(390/107*Pi) 3141592654301980 l004 Pi/tanh(277/76*Pi) 3141592654303290 l004 Pi/tanh(164/45*Pi) 3141592654304248 l004 Pi/tanh(379/104*Pi) 3141592654304980 l004 Pi/tanh(215/59*Pi) 3141592654306024 l004 Pi/tanh(266/73*Pi) 3141592654306703 l005 ln(sec(519/55)) 3141592654306733 l004 Pi/tanh(317/87*Pi) 3141592654307246 l004 Pi/tanh(368/101*Pi) 3141592654307634 l004 Pi/tanh(419/115*Pi) 3141592654308432 l005 ln(sec(313/100)) 3141592654310441 l004 Pi/tanh(51/14*Pi) 3141592654313415 l004 Pi/tanh(397/109*Pi) 3141592654313854 l004 Pi/tanh(346/95*Pi) 3141592654314445 l004 Pi/tanh(295/81*Pi) 3141592654315285 l004 Pi/tanh(244/67*Pi) 3141592654315852 l004 Pi/tanh(437/120*Pi) 3141592654316570 l004 Pi/tanh(193/53*Pi) 3141592654317507 l004 Pi/tanh(335/92*Pi) 3141592654318782 l004 Pi/tanh(142/39*Pi) 3141592654319923 l004 Pi/tanh(375/103*Pi) 3141592654320620 l004 Pi/tanh(233/64*Pi) 3141592654321426 l004 Pi/tanh(324/89*Pi) 3141592654321880 l004 Pi/tanh(415/114*Pi) 3141592654323495 l004 Pi/tanh(91/25*Pi) 3141592654325158 l004 Pi/tanh(404/111*Pi) 3141592654325643 l004 Pi/tanh(313/86*Pi) 3141592654326524 l004 Pi/tanh(222/61*Pi) 3141592654327307 l004 Pi/tanh(353/97*Pi) 3141592654328635 l004 Pi/tanh(131/36*Pi) 3141592654329720 l004 Pi/tanh(433/119*Pi) 3141592654330191 l004 Pi/tanh(302/83*Pi) 3141592654331384 l004 Pi/tanh(171/47*Pi) 3141592654332329 l004 Pi/tanh(382/105*Pi) 3141592654333095 l004 Pi/tanh(211/58*Pi) 3141592654334263 l004 Pi/tanh(251/69*Pi) 3141592654335111 l004 Pi/tanh(291/80*Pi) 3141592654335755 l004 Pi/tanh(331/91*Pi) 3141592654336260 l004 Pi/tanh(371/102*Pi) 3141592654336667 l004 Pi/tanh(411/113*Pi) 3141592654340452 l004 Pi/tanh(40/11*Pi) 3141592654341181 l005 ln(sec(241/77)) 3141592654344094 l004 Pi/tanh(429/118*Pi) 3141592654344252 l005 ln(sec(433/46)) 3141592654344470 l004 Pi/tanh(389/107*Pi) 3141592654344932 l004 Pi/tanh(349/96*Pi) 3141592654345513 l004 Pi/tanh(309/85*Pi) 3141592654346269 l004 Pi/tanh(269/74*Pi) 3141592654347289 l004 Pi/tanh(229/63*Pi) 3141592654347946 l004 Pi/tanh(418/115*Pi) 3141592654348743 l004 Pi/tanh(189/52*Pi) 3141592654349730 l004 Pi/tanh(338/93*Pi) 3141592654350983 l004 Pi/tanh(149/41*Pi) 3141592654352025 l004 Pi/tanh(407/112*Pi) 3141592654352628 l004 Pi/tanh(258/71*Pi) 3141592654353296 l004 Pi/tanh(367/101*Pi) 3141592654354881 l004 Pi/tanh(109/30*Pi) 3141592654356353 l004 Pi/tanh(396/109*Pi) 3141592654356912 l004 Pi/tanh(287/79*Pi) 3141592654358158 l004 Pi/tanh(178/49*Pi) 3141592654359001 l004 Pi/tanh(425/117*Pi) 3141592654359609 l004 Pi/tanh(247/68*Pi) 3141592654360427 l004 Pi/tanh(316/87*Pi) 3141592654360952 l004 Pi/tanh(385/106*Pi) 3141592654363362 l004 Pi/tanh(69/19*Pi) 3141592654365849 l004 Pi/tanh(374/103*Pi) 3141592654366413 l004 Pi/tanh(305/84*Pi) 3141592654367307 l004 Pi/tanh(236/65*Pi) 3141592654367985 l004 Pi/tanh(403/111*Pi) 3141592654368943 l004 Pi/tanh(167/46*Pi) 3141592654369838 l004 Pi/tanh(432/119*Pi) 3141592654370402 l004 Pi/tanh(265/73*Pi) 3141592654371074 l004 Pi/tanh(363/100*Pi) 3141592654372222 l005 ln(sec(670/71)) 3141592654372894 l004 Pi/tanh(98/27*Pi) 3141592654374467 l004 Pi/tanh(421/116*Pi) 3141592654374945 l004 Pi/tanh(323/89*Pi) 3141592654375839 l004 Pi/tanh(225/62*Pi) 3141592654376661 l004 Pi/tanh(352/97*Pi) 3141592654378119 l004 Pi/tanh(127/35*Pi) 3141592654379372 l004 Pi/tanh(410/113*Pi) 3141592654379935 l004 Pi/tanh(283/78*Pi) 3141592654381417 l004 Pi/tanh(156/43*Pi) 3141592654382648 l004 Pi/tanh(341/94*Pi) 3141592654383688 l004 Pi/tanh(185/51*Pi) 3141592654384578 l004 Pi/tanh(399/110*Pi) 3141592654385347 l004 Pi/tanh(214/59*Pi) 3141592654386613 l004 Pi/tanh(243/67*Pi) 3141592654387610 l004 Pi/tanh(272/75*Pi) 3141592654387660 m001 Pi-Zeta(1/2)^Psi(2,1/3) 3141592654388416 l004 Pi/tanh(301/83*Pi) 3141592654389080 l004 Pi/tanh(330/91*Pi) 3141592654389638 l004 Pi/tanh(359/99*Pi) 3141592654390112 l004 Pi/tanh(388/107*Pi) 3141592654390521 l004 Pi/tanh(417/115*Pi) 3141592654396009 l004 Pi/tanh(29/8*Pi) 3141592654396868 l005 ln(sec(1026/109)) 3141592654401439 l004 Pi/tanh(424/117*Pi) 3141592654401839 l004 Pi/tanh(395/109*Pi) 3141592654402302 l004 Pi/tanh(366/101*Pi) 3141592654402846 l004 Pi/tanh(337/93*Pi) 3141592654403492 l004 Pi/tanh(308/85*Pi) 3141592654404274 l004 Pi/tanh(279/77*Pi) 3141592654404769 l005 ln(sec(169/54)) 3141592654405238 l004 Pi/tanh(250/69*Pi) 3141592654406456 l004 Pi/tanh(221/61*Pi) 3141592654407194 l004 Pi/tanh(413/114*Pi) 3141592654408045 l004 Pi/tanh(192/53*Pi) 3141592654409035 l004 Pi/tanh(355/98*Pi) 3141592654409719 m001 MinimumGamma^Psi(2,1/3)+Pi 3141592654410203 l004 Pi/tanh(163/45*Pi) 3141592654411601 l004 Pi/tanh(297/82*Pi) 3141592654412131 l004 Pi/tanh(431/119*Pi) 3141592654413305 l004 Pi/tanh(134/37*Pi) 3141592654414664 l004 Pi/tanh(373/103*Pi) 3141592654415427 l004 Pi/tanh(239/66*Pi) 3141592654415895 l005 ln(sec(821/87)) 3141592654416254 l004 Pi/tanh(344/95*Pi) 3141592654418141 l004 Pi/tanh(105/29*Pi) 3141592654419805 l004 Pi/tanh(391/108*Pi) 3141592654420416 l004 Pi/tanh(286/79*Pi) 3141592654421739 l004 Pi/tanh(181/50*Pi) 3141592654423212 l004 Pi/tanh(257/71*Pi) 3141592654424014 l004 Pi/tanh(333/92*Pi) 3141592654424519 l004 Pi/tanh(409/113*Pi) 3141592654426732 l004 Pi/tanh(76/21*Pi) 3141592654428857 l004 Pi/tanh(427/118*Pi) 3141592654429317 l004 Pi/tanh(351/97*Pi) 3141592654430033 l004 Pi/tanh(275/76*Pi) 3141592654431297 l004 Pi/tanh(199/55*Pi) 3141592654432378 l004 Pi/tanh(322/89*Pi) 3141592654434129 l004 Pi/tanh(123/34*Pi) 3141592654435487 l004 Pi/tanh(416/115*Pi) 3141592654436058 l004 Pi/tanh(293/81*Pi) 3141592654436989 l005 ln(sec(593/63)) 3141592654437456 l004 Pi/tanh(170/47*Pi) 3141592654438516 l004 Pi/tanh(387/107*Pi) 3141592654439347 l004 Pi/tanh(217/60*Pi) 3141592654440566 l004 Pi/tanh(264/73*Pi) 3141592654441418 l004 Pi/tanh(311/86*Pi) 3141592654442047 l004 Pi/tanh(358/99*Pi) 3141592654442530 l004 Pi/tanh(405/112*Pi) 3141592654446218 l004 Pi/tanh(47/13*Pi) 3141592654447048 l005 ln(sec(972/103)) 3141592654450024 l004 Pi/tanh(394/109*Pi) 3141592654450540 l004 Pi/tanh(347/96*Pi) 3141592654451219 l004 Pi/tanh(300/83*Pi) 3141592654452151 l004 Pi/tanh(253/70*Pi) 3141592654453510 l004 Pi/tanh(206/57*Pi) 3141592654454454 l004 Pi/tanh(365/101*Pi) 3141592654455677 l004 Pi/tanh(159/44*Pi) 3141592654456717 l004 Pi/tanh(430/119*Pi) 3141592654457327 l004 Pi/tanh(271/75*Pi) 3141592654458013 l004 Pi/tanh(383/106*Pi) 3141592654459675 l004 Pi/tanh(112/31*Pi) 3141592654461265 l004 Pi/tanh(401/111*Pi) 3141592654461882 l004 Pi/tanh(289/80*Pi) 3141592654463280 l004 Pi/tanh(177/49*Pi) 3141592654464247 l004 Pi/tanh(419/116*Pi) 3141592654464954 l004 Pi/tanh(242/67*Pi) 3141592654465780 l005 ln(sec(266/85)) 3141592654465920 l004 Pi/tanh(307/85*Pi) 3141592654466549 l004 Pi/tanh(372/103*Pi) 3141592654469525 l004 Pi/tanh(65/18*Pi) 3141592654470374 l005 ln(sec(1123/119)) 3141592654472247 l004 Pi/tanh(408/113*Pi) 3141592654472764 l004 Pi/tanh(343/95*Pi) 3141592654473522 l004 Pi/tanh(278/77*Pi) 3141592654474746 l004 Pi/tanh(213/59*Pi) 3141592654475688 l004 Pi/tanh(361/100*Pi) 3141592654477047 l004 Pi/tanh(148/41*Pi) 3141592654478343 l004 Pi/tanh(379/105*Pi) 3141592654479174 l004 Pi/tanh(231/64*Pi) 3141592654480178 l004 Pi/tanh(314/87*Pi) 3141592654480763 l004 Pi/tanh(397/110*Pi) 3141592654482979 l004 Pi/tanh(83/23*Pi) 3141592654485014 l004 Pi/tanh(433/120*Pi) 3141592654485498 l004 Pi/tanh(350/97*Pi) 3141592654486250 m001 ZetaQ(3)^(Pi*csc(5/24*Pi)/GAMMA(19/24))+Pi 3141592654486282 l004 Pi/tanh(267/74*Pi) 3141592654486855 l005 ln(sec(41/13)) 3141592654487776 l004 Pi/tanh(184/51*Pi) 3141592654489177 l004 Pi/tanh(285/79*Pi) 3141592654489846 l004 Pi/tanh(386/107*Pi) 3141592654491736 l004 Pi/tanh(101/28*Pi) 3141592654493467 l004 Pi/tanh(422/117*Pi) 3141592654494013 l004 Pi/tanh(321/89*Pi) 3141592654494039 l005 ln(sec(753/80)) 3141592654495060 l004 Pi/tanh(220/61*Pi) 3141592654495321 l005 ln(sec(363/116)) 3141592654496052 l004 Pi/tanh(339/94*Pi) 3141592654497890 l004 Pi/tanh(119/33*Pi) 3141592654499554 l004 Pi/tanh(375/104*Pi) 3141592654500328 l004 Pi/tanh(256/71*Pi) 3141592654501068 l004 Pi/tanh(393/109*Pi) 3141592654502451 l004 Pi/tanh(137/38*Pi) 3141592654503720 l004 Pi/tanh(429/119*Pi) 3141592654504316 l004 Pi/tanh(292/81*Pi) 3141592654505967 l004 Pi/tanh(155/43*Pi) 3141592654507440 l004 Pi/tanh(328/91*Pi) 3141592654508761 l004 Pi/tanh(173/48*Pi) 3141592654509952 l004 Pi/tanh(364/101*Pi) 3141592654511033 l004 Pi/tanh(191/53*Pi) 3141592654512017 l004 Pi/tanh(400/111*Pi) 3141592654512918 l004 Pi/tanh(209/58*Pi) 3141592654514507 l004 Pi/tanh(227/63*Pi) 3141592654515864 l004 Pi/tanh(245/68*Pi) 3141592654517037 l004 Pi/tanh(263/73*Pi) 3141592654518061 l004 Pi/tanh(281/78*Pi) 3141592654518962 l004 Pi/tanh(299/83*Pi) 3141592654519762 l004 Pi/tanh(317/88*Pi) 3141592654520476 l004 Pi/tanh(335/93*Pi) 3141592654521118 l004 Pi/tanh(353/98*Pi) 3141592654521698 l004 Pi/tanh(371/103*Pi) 3141592654522224 l004 Pi/tanh(389/108*Pi) 3141592654522704 l004 Pi/tanh(407/113*Pi) 3141592654523144 l004 Pi/tanh(425/118*Pi) 3141592654524180 m001 Pi+gamma(3)^ReciprocalFibonacci 3141592654532605 l005 ln(sec(913/97)) 3141592654533137 l004 Pi/tanh(18/5*Pi) 3141592654535493 m001 ThueMorse^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592654543323 l004 Pi/tanh(421/117*Pi) 3141592654543781 l004 Pi/tanh(403/112*Pi) 3141592654544281 l004 Pi/tanh(385/107*Pi) 3141592654544831 l004 Pi/tanh(367/102*Pi) 3141592654545437 l004 Pi/tanh(349/97*Pi) 3141592654546110 l004 Pi/tanh(331/92*Pi) 3141592654546861 l004 Pi/tanh(313/87*Pi) 3141592654547314 p002 log(9^(2/3)*(2^(3/4)-7^(1/3))) 3141592654547705 l004 Pi/tanh(295/82*Pi) 3141592654548658 l004 Pi/tanh(277/77*Pi) 3141592654549746 l004 Pi/tanh(259/72*Pi) 3141592654550997 l004 Pi/tanh(241/67*Pi) 3141592654552452 l004 Pi/tanh(223/62*Pi) 3141592654553272 l004 Pi/tanh(428/119*Pi) 3141592654554165 l004 Pi/tanh(205/57*Pi) 3141592654555141 l004 Pi/tanh(392/109*Pi) 3141592654556211 l004 Pi/tanh(187/52*Pi) 3141592654557392 l004 Pi/tanh(356/99*Pi) 3141592654558699 l004 Pi/tanh(169/47*Pi) 3141592654560156 l004 Pi/tanh(320/89*Pi) 3141592654560396 l005 ln(sec(1073/114)) 3141592654561788 l004 Pi/tanh(151/42*Pi) 3141592654563630 l004 Pi/tanh(284/79*Pi) 3141592654564298 l004 Pi/tanh(417/116*Pi) 3141592654565726 l004 Pi/tanh(133/37*Pi) 3141592654567291 l004 Pi/tanh(381/106*Pi) 3141592654568131 l004 Pi/tanh(248/69*Pi) 3141592654569013 l004 Pi/tanh(363/101*Pi) 3141592654570919 l004 Pi/tanh(115/32*Pi) 3141592654573038 l004 Pi/tanh(327/91*Pi) 3141592654574189 l004 Pi/tanh(212/59*Pi) 3141592654575409 l004 Pi/tanh(309/86*Pi) 3141592654576047 l004 Pi/tanh(406/113*Pi) 3141592654578080 l004 Pi/tanh(97/27*Pi) 3141592654580160 l005 ln(sec(97/31)) 3141592654580315 l004 Pi/tanh(370/103*Pi) 3141592654581111 l004 Pi/tanh(273/76*Pi) 3141592654582785 l004 Pi/tanh(176/49*Pi) 3141592654583846 l004 Pi/tanh(431/120*Pi) 3141592654584580 l004 Pi/tanh(255/71*Pi) 3141592654585527 l004 Pi/tanh(334/93*Pi) 3141592654586112 l004 Pi/tanh(413/115*Pi) 3141592654588589 l004 Pi/tanh(79/22*Pi) 3141592654591310 l004 Pi/tanh(377/105*Pi) 3141592654592032 l004 Pi/tanh(298/83*Pi) 3141592654593276 l004 Pi/tanh(219/61*Pi) 3141592654594311 l004 Pi/tanh(359/100*Pi) 3141592654595930 l004 Pi/tanh(140/39*Pi) 3141592654597638 l004 Pi/tanh(341/95*Pi) 3141592654598829 l004 Pi/tanh(201/56*Pi) 3141592654600381 l004 Pi/tanh(262/73*Pi) 3141592654601294 m001 Backhouse^Psi(2,1/3)+Pi 3141592654601348 l004 Pi/tanh(323/90*Pi) 3141592654602008 l004 Pi/tanh(384/107*Pi) 3141592654605511 l004 Pi/tanh(61/17*Pi) 3141592654608809 l004 Pi/tanh(409/114*Pi) 3141592654609388 l004 Pi/tanh(348/97*Pi) 3141592654610214 l004 Pi/tanh(287/80*Pi) 3141592654611487 l004 Pi/tanh(226/63*Pi) 3141592654612422 l004 Pi/tanh(391/109*Pi) 3141592654613705 l004 Pi/tanh(165/46*Pi) 3141592654615571 l004 Pi/tanh(269/75*Pi) 3141592654616398 l004 Pi/tanh(373/104*Pi) 3141592654618539 l004 Pi/tanh(104/29*Pi) 3141592654620792 l004 Pi/tanh(355/99*Pi) 3141592654621728 l004 Pi/tanh(251/70*Pi) 3141592654622562 l004 Pi/tanh(398/111*Pi) 3141592654623989 l004 Pi/tanh(147/41*Pi) 3141592654625677 l004 Pi/tanh(337/94*Pi) 3141592654626984 l004 Pi/tanh(190/53*Pi) 3141592654628027 l004 Pi/tanh(423/118*Pi) 3141592654628877 l004 Pi/tanh(233/65*Pi) 3141592654630183 l004 Pi/tanh(276/77*Pi) 3141592654631137 l004 Pi/tanh(319/89*Pi) 3141592654631865 l004 Pi/tanh(362/101*Pi) 3141592654632135 l005 ln(sec(151/16)) 3141592654632439 l004 Pi/tanh(405/113*Pi) 3141592654637281 l004 Pi/tanh(43/12*Pi) 3141592654642062 l004 Pi/tanh(412/115*Pi) 3141592654642620 l004 Pi/tanh(369/103*Pi) 3141592654643326 l004 Pi/tanh(326/91*Pi) 3141592654644247 l004 Pi/tanh(283/79*Pi) 3141592654645500 l004 Pi/tanh(240/67*Pi) 3141592654647301 l004 Pi/tanh(197/55*Pi) 3141592654648535 l004 Pi/tanh(351/98*Pi) 3141592654650114 l004 Pi/tanh(154/43*Pi) 3141592654651439 l004 Pi/tanh(419/117*Pi) 3141592654652210 l004 Pi/tanh(265/74*Pi) 3141592654653070 l004 Pi/tanh(376/105*Pi) 3141592654655124 l004 Pi/tanh(111/31*Pi) 3141592654657054 l004 Pi/tanh(401/112*Pi) 3141592654657793 l004 Pi/tanh(290/81*Pi) 3141592654659451 l004 Pi/tanh(179/50*Pi) 3141592654660581 l004 Pi/tanh(426/119*Pi) 3141592654661401 l004 Pi/tanh(247/69*Pi) 3141592654662511 l004 Pi/tanh(315/88*Pi) 3141592654663227 l004 Pi/tanh(383/107*Pi) 3141592654666549 l004 Pi/tanh(68/19*Pi) 3141592654670046 l004 Pi/tanh(365/102*Pi) 3141592654670848 l004 Pi/tanh(297/83*Pi) 3141592654672127 l004 Pi/tanh(229/64*Pi) 3141592654673103 l004 Pi/tanh(390/109*Pi) 3141592654674491 l004 Pi/tanh(161/45*Pi) 3141592654675798 l004 Pi/tanh(415/116*Pi) 3141592654676627 l004 Pi/tanh(254/71*Pi) 3141592654677427 m001 HardyLittlewoodC5^exp(Pi)+Pi 3141592654677619 l004 Pi/tanh(347/97*Pi) 3141592654680332 l004 Pi/tanh(93/26*Pi) 3141592654682709 l004 Pi/tanh(397/111*Pi) 3141592654683437 l004 Pi/tanh(304/85*Pi) 3141592654684803 l005 ln(sec(316/101)) 3141592654684808 l004 Pi/tanh(211/59*Pi) 3141592654686076 l004 Pi/tanh(329/92*Pi) 3141592654688347 l004 Pi/tanh(118/33*Pi) 3141592654690322 l004 Pi/tanh(379/106*Pi) 3141592654691216 l004 Pi/tanh(261/73*Pi) 3141592654692056 l004 Pi/tanh(404/113*Pi) 3141592654693589 l004 Pi/tanh(143/40*Pi) 3141592654695584 l004 Pi/tanh(311/87*Pi) 3141592654697284 l004 Pi/tanh(168/47*Pi) 3141592654698751 l004 Pi/tanh(361/101*Pi) 3141592654700029 l004 Pi/tanh(193/54*Pi) 3141592654701153 l004 Pi/tanh(411/115*Pi) 3141592654702149 l004 Pi/tanh(218/61*Pi) 3141592654703835 l004 Pi/tanh(243/68*Pi) 3141592654705209 l004 Pi/tanh(268/75*Pi) 3141592654706349 l004 Pi/tanh(293/82*Pi) 3141592654707311 l004 Pi/tanh(318/89*Pi) 3141592654708133 l004 Pi/tanh(343/96*Pi) 3141592654708844 l004 Pi/tanh(368/103*Pi) 3141592654709464 l004 Pi/tanh(393/110*Pi) 3141592654709847 l005 ln(sec(347/110)) 3141592654710011 l004 Pi/tanh(418/117*Pi) 3141592654710985 m002 Pi+Tanh[Pi]/Pi^18 3141592654715181 m002 Pi^(-18)+Pi 3141592654718638 l004 Pi/tanh(25/7*Pi) 3141592654727561 l004 Pi/tanh(407/114*Pi) 3141592654728148 l004 Pi/tanh(382/107*Pi) 3141592654728816 l004 Pi/tanh(357/100*Pi) 3141592654729586 l004 Pi/tanh(332/93*Pi) 3141592654730482 l004 Pi/tanh(307/86*Pi) 3141592654730905 l005 ln(sec(160/17)) 3141592654731537 l004 Pi/tanh(282/79*Pi) 3141592654732799 l004 Pi/tanh(257/72*Pi) 3141592654733703 l005 ln(sec(219/70)) 3141592654734335 l004 Pi/tanh(232/65*Pi) 3141592654736244 l004 Pi/tanh(207/58*Pi) 3141592654737384 l004 Pi/tanh(389/109*Pi) 3141592654738682 l004 Pi/tanh(182/51*Pi) 3141592654740173 l004 Pi/tanh(339/95*Pi) 3141592654741903 l004 Pi/tanh(157/44*Pi) 3141592654742619 l005 ln(sec(306/97)) 3141592654743936 l004 Pi/tanh(289/81*Pi) 3141592654744695 l004 Pi/tanh(421/118*Pi) 3141592654746358 l004 Pi/tanh(132/37*Pi) 3141592654748248 l004 Pi/tanh(371/104*Pi) 3141592654749293 l004 Pi/tanh(239/67*Pi) 3141592654750415 l004 Pi/tanh(346/97*Pi) 3141592654752924 l004 Pi/tanh(107/30*Pi) 3141592654755081 l004 Pi/tanh(403/113*Pi) 3141592654755862 l004 Pi/tanh(296/83*Pi) 3141592654757529 l004 Pi/tanh(189/53*Pi) 3141592654759352 l004 Pi/tanh(271/76*Pi) 3141592654760329 l004 Pi/tanh(353/99*Pi) 3141592654763563 l004 Pi/tanh(82/23*Pi) 3141592654766536 l004 Pi/tanh(385/108*Pi) 3141592654767342 l004 Pi/tanh(303/85*Pi) 3141592654768747 l004 Pi/tanh(221/62*Pi) 3141592654769930 l004 Pi/tanh(360/101*Pi) 3141592654771814 l004 Pi/tanh(139/39*Pi) 3141592654773842 l004 Pi/tanh(335/94*Pi) 3141592654775282 l004 Pi/tanh(196/55*Pi) 3141592654777191 l004 Pi/tanh(253/71*Pi) 3141592654778399 l004 Pi/tanh(310/87*Pi) 3141592654779233 l004 Pi/tanh(367/103*Pi) 3141592654779843 l004 Pi/tanh(424/119*Pi) 3141592654780460 l005 ln(sec(341/109)) 3141592654783776 l004 Pi/tanh(57/16*Pi) 3141592654786615 l005 ln(sec(265/84)) 3141592654788250 l004 Pi/tanh(374/105*Pi) 3141592654789056 l004 Pi/tanh(317/89*Pi) 3141592654790217 l004 Pi/tanh(260/73*Pi) 3141592654792031 l004 Pi/tanh(203/57*Pi) 3141592654793384 l004 Pi/tanh(349/98*Pi) 3141592654795267 l004 Pi/tanh(146/41*Pi) 3141592654796995 l004 Pi/tanh(381/107*Pi) 3141592654798070 l004 Pi/tanh(235/66*Pi) 3141592654798075 m002 Pi+ProductLog[Pi]/Pi^18 3141592654799334 l004 Pi/tanh(324/91*Pi) 3141592654800054 l004 Pi/tanh(413/116*Pi) 3141592654802679 l004 Pi/tanh(89/25*Pi) 3141592654805479 l004 Pi/tanh(388/109*Pi) 3141592654806314 l004 Pi/tanh(299/84*Pi) 3141592654807857 l004 Pi/tanh(210/59*Pi) 3141592654809253 l004 Pi/tanh(331/93*Pi) 3141592654811678 l004 Pi/tanh(121/34*Pi) 3141592654813714 l004 Pi/tanh(395/111*Pi) 3141592654814614 l004 Pi/tanh(274/77*Pi) 3141592654815447 l004 Pi/tanh(427/120*Pi) 3141592654816941 l004 Pi/tanh(153/43*Pi) 3141592654818830 l004 Pi/tanh(338/95*Pi) 3141592654820394 l004 Pi/tanh(185/52*Pi) 3141592654821711 l004 Pi/tanh(402/113*Pi) 3141592654822834 l004 Pi/tanh(217/61*Pi) 3141592654824650 l004 Pi/tanh(249/70*Pi) 3141592654826054 l004 Pi/tanh(281/79*Pi) 3141592654827171 l004 Pi/tanh(313/88*Pi) 3141592654828083 l004 Pi/tanh(345/97*Pi) 3141592654828839 l004 Pi/tanh(377/106*Pi) 3141592654829478 l004 Pi/tanh(409/115*Pi) 3141592654837027 l004 Pi/tanh(32/9*Pi) 3141592654841341 l005 ln(sec(991/105)) 3141592654844366 l004 Pi/tanh(423/119*Pi) 3141592654844968 l004 Pi/tanh(391/110*Pi) 3141592654845678 l004 Pi/tanh(359/101*Pi) 3141592654846527 l004 Pi/tanh(327/92*Pi) 3141592654847339 m001 ThueMorse^exp(Pi)+Pi 3141592654847562 l004 Pi/tanh(295/83*Pi) 3141592654848743 l005 ln(sec(224/71)) 3141592654848849 l004 Pi/tanh(263/74*Pi) 3141592654850495 l004 Pi/tanh(231/65*Pi) 3141592654852673 l004 Pi/tanh(199/56*Pi) 3141592654854050 l004 Pi/tanh(366/103*Pi) 3141592654855691 l004 Pi/tanh(167/47*Pi) 3141592654857684 l004 Pi/tanh(302/85*Pi) 3141592654860153 l004 Pi/tanh(135/38*Pi) 3141592654862155 l004 Pi/tanh(373/105*Pi) 3141592654863292 l004 Pi/tanh(238/67*Pi) 3141592654864536 l004 Pi/tanh(341/96*Pi) 3141592654867417 l004 Pi/tanh(103/29*Pi) 3141592654867959 l005 ln(sec(122/39)) 3141592654870006 l004 Pi/tanh(380/107*Pi) 3141592654870970 l004 Pi/tanh(277/78*Pi) 3141592654873078 l004 Pi/tanh(174/49*Pi) 3141592654874474 l004 Pi/tanh(419/118*Pi) 3141592654875465 l004 Pi/tanh(245/69*Pi) 3141592654876781 l004 Pi/tanh(316/89*Pi) 3141592654877615 l004 Pi/tanh(387/109*Pi) 3141592654878058 m002 Pi+Log[Pi]/Pi^18 3141592654881332 l004 Pi/tanh(71/20*Pi) 3141592654882056 l005 ln(sec(840/89)) 3141592654884993 l004 Pi/tanh(394/111*Pi) 3141592654885799 l004 Pi/tanh(323/91*Pi) 3141592654887060 l004 Pi/tanh(252/71*Pi) 3141592654889313 l004 Pi/tanh(181/51*Pi) 3141592654891267 l004 Pi/tanh(291/82*Pi) 3141592654892150 l004 Pi/tanh(401/113*Pi) 3141592654894488 l004 Pi/tanh(110/31*Pi) 3141592654897033 l004 Pi/tanh(369/104*Pi) 3141592654898115 l004 Pi/tanh(259/73*Pi) 3141592654899095 l004 Pi/tanh(408/115*Pi) 3141592654900799 l004 Pi/tanh(149/42*Pi) 3141592654902865 l004 Pi/tanh(337/95*Pi) 3141592654904505 l004 Pi/tanh(188/53*Pi) 3141592654905838 l004 Pi/tanh(415/117*Pi) 3141592654906942 l004 Pi/tanh(227/64*Pi) 3141592654908668 l004 Pi/tanh(266/75*Pi) 3141592654909953 l004 Pi/tanh(305/86*Pi) 3141592654910948 l004 Pi/tanh(344/97*Pi) 3141592654911740 l004 Pi/tanh(383/108*Pi) 3141592654912387 l004 Pi/tanh(422/119*Pi) 3141592654918750 l004 Pi/tanh(39/11*Pi) 3141592654925545 l004 Pi/tanh(397/112*Pi) 3141592654926220 b008 Pi*Zeta[9,1/10] 3141592654926288 l004 Pi/tanh(358/101*Pi) 3141592654927212 l004 Pi/tanh(319/90*Pi) 3141592654928394 l004 Pi/tanh(280/79*Pi) 3141592654929961 l004 Pi/tanh(241/68*Pi) 3141592654932135 l004 Pi/tanh(202/57*Pi) 3141592654933572 l004 Pi/tanh(365/103*Pi) 3141592654935356 l004 Pi/tanh(163/46*Pi) 3141592654936306 l005 ln(sec(1007/107)) 3141592654937626 l004 Pi/tanh(287/81*Pi) 3141592654938528 l004 Pi/tanh(411/116*Pi) 3141592654940617 l004 Pi/tanh(124/35*Pi) 3141592654942351 l005 ln(sec(689/73)) 3141592654942972 l005 ln(sec(183/58)) 3141592654943199 l004 Pi/tanh(333/94*Pi) 3141592654944733 l004 Pi/tanh(209/59*Pi) 3141592654946473 l004 Pi/tanh(294/83*Pi) 3141592654947433 l004 Pi/tanh(379/107*Pi) 3141592654950759 l004 Pi/tanh(85/24*Pi) 3141592654954032 l004 Pi/tanh(386/109*Pi) 3141592654954957 l004 Pi/tanh(301/85*Pi) 3141592654956613 l004 Pi/tanh(216/61*Pi) 3141592654958050 l004 Pi/tanh(347/98*Pi) 3141592654960423 l004 Pi/tanh(131/37*Pi) 3141592654963101 l004 Pi/tanh(308/87*Pi) 3141592654965086 l004 Pi/tanh(177/50*Pi) 3141592654966616 l004 Pi/tanh(400/113*Pi) 3141592654967832 l004 Pi/tanh(223/63*Pi) 3141592654969641 l004 Pi/tanh(269/76*Pi) 3141592654970924 l004 Pi/tanh(315/89*Pi) 3141592654971880 l004 Pi/tanh(361/102*Pi) 3141592654972621 l004 Pi/tanh(407/115*Pi) 3141592654978021 l005 ln(sec(847/90)) 3141592654978445 l004 Pi/tanh(46/13*Pi) 3141592654984096 l004 Pi/tanh(421/119*Pi) 3141592654984791 l004 Pi/tanh(375/106*Pi) 3141592654985680 l004 Pi/tanh(329/93*Pi) 3141592654985687 l005 ln(sec(269/86)) 3141592654986860 l004 Pi/tanh(283/80*Pi) 3141592654988498 l004 Pi/tanh(237/67*Pi) 3141592654990929 l004 Pi/tanh(191/54*Pi) 3141592654992646 l004 Pi/tanh(336/95*Pi) 3141592654994911 l004 Pi/tanh(145/41*Pi) 3141592654996870 l004 Pi/tanh(389/110*Pi) 3141592654998036 l004 Pi/tanh(244/69*Pi) 3141592654999358 l004 Pi/tanh(343/97*Pi) 3141592655002623 l004 Pi/tanh(99/28*Pi) 3141592655005829 l004 Pi/tanh(350/99*Pi) 3141592655007095 l004 Pi/tanh(251/71*Pi) 3141592655008196 l004 Pi/tanh(403/114*Pi) 3141592655010015 l004 Pi/tanh(152/43*Pi) 3141592655010938 l005 ln(sec(325/103)) 3141592655012071 l004 Pi/tanh(357/101*Pi) 3141592655013598 l004 Pi/tanh(205/58*Pi) 3141592655014340 m001 PrimesInBinary^exp(Pi)+Pi 3141592655015712 l004 Pi/tanh(258/73*Pi) 3141592655017107 l004 Pi/tanh(311/88*Pi) 3141592655018097 l004 Pi/tanh(364/103*Pi) 3141592655018836 l004 Pi/tanh(417/118*Pi) 3141592655023918 l004 Pi/tanh(53/15*Pi) 3141592655029543 l004 Pi/tanh(378/107*Pi) 3141592655030462 l004 Pi/tanh(325/92*Pi) 3141592655031740 l004 Pi/tanh(272/77*Pi) 3141592655033640 l004 Pi/tanh(219/62*Pi) 3141592655034983 l004 Pi/tanh(385/109*Pi) 3141592655036756 l004 Pi/tanh(166/47*Pi) 3141592655039207 l004 Pi/tanh(279/79*Pi) 3141592655040246 l004 Pi/tanh(392/111*Pi) 3141592655040685 l005 ln(sec(538/57)) 3141592655040906 l005 ln(sec(687/73)) 3141592655042814 l004 Pi/tanh(113/32*Pi) 3141592655045341 l004 Pi/tanh(399/113*Pi) 3141592655046340 l004 Pi/tanh(286/81*Pi) 3141592655048648 l004 Pi/tanh(173/49*Pi) 3141592655050275 l004 Pi/tanh(406/115*Pi) 3141592655051485 l004 Pi/tanh(233/66*Pi) 3141592655053162 l004 Pi/tanh(293/83*Pi) 3141592655054271 l004 Pi/tanh(353/100*Pi) 3141592655055057 l004 Pi/tanh(413/117*Pi) 3141592655059693 l004 Pi/tanh(60/17*Pi) 3141592655064926 l004 Pi/tanh(367/104*Pi) 3141592655065951 l004 Pi/tanh(307/87*Pi) 3141592655067475 l004 Pi/tanh(247/70*Pi) 3141592655069980 l004 Pi/tanh(187/53*Pi) 3141592655071953 l004 Pi/tanh(314/89*Pi) 3141592655074862 l004 Pi/tanh(127/36*Pi) 3141592655077713 l004 Pi/tanh(321/91*Pi) 3141592655079582 l004 Pi/tanh(194/55*Pi) 3141592655081884 l004 Pi/tanh(261/74*Pi) 3141592655083247 l004 Pi/tanh(328/93*Pi) 3141592655084148 l004 Pi/tanh(395/112*Pi) 3141592655088567 l004 Pi/tanh(67/19*Pi) 3141592655089397 l005 ln(sec(147/47)) 3141592655092845 l004 Pi/tanh(409/116*Pi) 3141592655093685 l004 Pi/tanh(342/97*Pi) 3141592655094934 l004 Pi/tanh(275/78*Pi) 3141592655096991 l004 Pi/tanh(208/59*Pi) 3141592655098613 l004 Pi/tanh(349/99*Pi) 3141592655101009 l004 Pi/tanh(141/40*Pi) 3141592655102278 l005 ln(sec(142/45)) 3141592655103361 l004 Pi/tanh(356/101*Pi) 3141592655104905 l004 Pi/tanh(215/61*Pi) 3141592655106810 l004 Pi/tanh(289/82*Pi) 3141592655107939 l004 Pi/tanh(363/103*Pi) 3141592655112355 l004 Pi/tanh(74/21*Pi) 3141592655116619 l004 Pi/tanh(377/107*Pi) 3141592655117347 l005 ln(sec(925/98)) 3141592655117661 l004 Pi/tanh(303/86*Pi) 3141592655119380 l004 Pi/tanh(229/65*Pi) 3141592655120737 l004 Pi/tanh(384/109*Pi) 3141592655121990 m001 Pi+BesselK(0,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592655122744 l004 Pi/tanh(155/44*Pi) 3141592655124717 l004 Pi/tanh(391/111*Pi) 3141592655126015 l004 Pi/tanh(236/67*Pi) 3141592655127616 l004 Pi/tanh(317/90*Pi) 3141592655128566 l004 Pi/tanh(398/113*Pi) 3141592655132291 l004 Pi/tanh(81/23*Pi) 3141592655135897 l004 Pi/tanh(412/117*Pi) 3141592655136780 l004 Pi/tanh(331/94*Pi) 3141592655138237 l004 Pi/tanh(250/71*Pi) 3141592655139389 l004 Pi/tanh(419/119*Pi) 3141592655141095 l004 Pi/tanh(169/48*Pi) 3141592655143879 l004 Pi/tanh(257/73*Pi) 3141592655145245 l004 Pi/tanh(345/98*Pi) 3141592655146418 l005 ln(sec(527/56)) 3141592655149239 l004 Pi/tanh(88/25*Pi) 3141592655150237 m001 exp(1/exp(1))^Psi(2,1/3)+Pi 3141592655153086 l004 Pi/tanh(359/102*Pi) 3141592655154337 l004 Pi/tanh(271/77*Pi) 3141592655156794 l004 Pi/tanh(183/52*Pi) 3141592655159193 l004 Pi/tanh(278/79*Pi) 3141592655160371 l004 Pi/tanh(373/106*Pi) 3141592655163822 l004 Pi/tanh(95/27*Pi) 3141592655167156 l004 Pi/tanh(387/110*Pi) 3141592655168242 l004 Pi/tanh(292/83*Pi) 3141592655170377 l004 Pi/tanh(197/56*Pi) 3141592655172327 m004 -1-1000*Pi+Tanh[Sqrt[5]*Pi] 3141592655172465 l004 Pi/tanh(299/85*Pi) 3141592655173491 l004 Pi/tanh(401/114*Pi) 3141592655176504 l004 Pi/tanh(102/29*Pi) 3141592655179420 l004 Pi/tanh(415/118*Pi) 3141592655180371 l004 Pi/tanh(313/89*Pi) 3141592655181240 l005 ln(sec(319/102)) 3141592655182244 l004 Pi/tanh(211/60*Pi) 3141592655184078 l004 Pi/tanh(320/91*Pi) 3141592655187633 l004 Pi/tanh(109/31*Pi) 3141592655191045 l004 Pi/tanh(334/95*Pi) 3141592655192701 l004 Pi/tanh(225/64*Pi) 3141592655194324 l004 Pi/tanh(341/97*Pi) 3141592655197477 l004 Pi/tanh(116/33*Pi) 3141592655200510 l004 Pi/tanh(355/101*Pi) 3141592655201984 l004 Pi/tanh(239/68*Pi) 3141592655203431 l004 Pi/tanh(362/103*Pi) 3141592655206246 l004 Pi/tanh(123/35*Pi) 3141592655208961 l004 Pi/tanh(376/107*Pi) 3141592655210282 l004 Pi/tanh(253/72*Pi) 3141592655211579 l004 Pi/tanh(383/109*Pi) 3141592655214108 l004 Pi/tanh(130/37*Pi) 3141592655216551 l004 Pi/tanh(397/113*Pi) 3141592655217742 l004 Pi/tanh(267/76*Pi) 3141592655218912 l004 Pi/tanh(404/115*Pi) 3141592655221196 l004 Pi/tanh(137/39*Pi) 3141592655223406 l004 Pi/tanh(418/119*Pi) 3141592655224485 l004 Pi/tanh(281/80*Pi) 3141592655227619 l004 Pi/tanh(144/41*Pi) 3141592655228924 l005 ln(sec(387/41)) 3141592655230610 l004 Pi/tanh(295/84*Pi) 3141592655231260 l005 ln(sec(243/77)) 3141592655231325 l005 ln(sec(894/95)) 3141592655233467 l004 Pi/tanh(151/43*Pi) 3141592655236198 l004 Pi/tanh(309/88*Pi) 3141592655238813 l004 Pi/tanh(158/45*Pi) 3141592655241317 l004 Pi/tanh(323/92*Pi) 3141592655243719 l004 Pi/tanh(165/47*Pi) 3141592655246024 l004 Pi/tanh(337/96*Pi) 3141592655248237 l004 Pi/tanh(172/49*Pi) 3141592655250365 l004 Pi/tanh(351/100*Pi) 3141592655252412 l004 Pi/tanh(179/51*Pi) 3141592655254383 l004 Pi/tanh(365/104*Pi) 3141592655256282 l004 Pi/tanh(186/53*Pi) 3141592655258112 l004 Pi/tanh(379/108*Pi) 3141592655259878 l004 Pi/tanh(193/55*Pi) 3141592655261582 l004 Pi/tanh(393/112*Pi) 3141592655263012 l005 ln(sec(172/55)) 3141592655263228 l004 Pi/tanh(200/57*Pi) 3141592655264819 l004 Pi/tanh(407/116*Pi) 3141592655266358 l004 Pi/tanh(207/59*Pi) 3141592655267846 l004 Pi/tanh(421/120*Pi) 3141592655269287 l004 Pi/tanh(214/61*Pi) 3141592655272035 l004 Pi/tanh(221/63*Pi) 3141592655274618 l004 Pi/tanh(228/65*Pi) 3141592655277051 l004 Pi/tanh(235/67*Pi) 3141592655279346 l004 Pi/tanh(242/69*Pi) 3141592655281514 l004 Pi/tanh(249/71*Pi) 3141592655283566 l004 Pi/tanh(256/73*Pi) 3141592655285511 l004 Pi/tanh(263/75*Pi) 3141592655286846 l005 ln(sec(344/109)) 3141592655287357 l004 Pi/tanh(270/77*Pi) 3141592655289111 l004 Pi/tanh(277/79*Pi) 3141592655290781 l004 Pi/tanh(284/81*Pi) 3141592655292371 l004 Pi/tanh(291/83*Pi) 3141592655293888 l004 Pi/tanh(298/85*Pi) 3141592655295337 l004 Pi/tanh(305/87*Pi) 3141592655296721 l004 Pi/tanh(312/89*Pi) 3141592655298046 l004 Pi/tanh(319/91*Pi) 3141592655299315 l004 Pi/tanh(326/93*Pi) 3141592655300531 l004 Pi/tanh(333/95*Pi) 3141592655301205 m001 (3^(1/3))^Psi(2,1/3)+Pi 3141592655301698 l004 Pi/tanh(340/97*Pi) 3141592655302818 l004 Pi/tanh(347/99*Pi) 3141592655303895 l004 Pi/tanh(354/101*Pi) 3141592655304931 l004 Pi/tanh(361/103*Pi) 3141592655305927 l004 Pi/tanh(368/105*Pi) 3141592655306887 l004 Pi/tanh(375/107*Pi) 3141592655307813 l004 Pi/tanh(382/109*Pi) 3141592655308705 l004 Pi/tanh(389/111*Pi) 3141592655309566 l004 Pi/tanh(396/113*Pi) 3141592655310398 l004 Pi/tanh(403/115*Pi) 3141592655311202 l004 Pi/tanh(410/117*Pi) 3141592655311979 l004 Pi/tanh(417/119*Pi) 3141592655336201 l005 ln(sec(369/118)) 3141592655336378 l005 ln(sec(1010/107)) 3141592655347617 p002 log(10^(2/3)/(19^(1/2)-9)) 3141592655358050 l004 Pi/tanh(7/2*Pi) 3141592655359260 l005 ln(sec(367/39)) 3141592655402037 l005 ln(sec(197/63)) 3141592655405353 l004 Pi/tanh(416/119*Pi) 3141592655405738 l005 ln(sec(623/66)) 3141592655406173 l004 Pi/tanh(409/117*Pi) 3141592655407021 l004 Pi/tanh(402/115*Pi) 3141592655407900 l004 Pi/tanh(395/113*Pi) 3141592655408811 l004 Pi/tanh(388/111*Pi) 3141592655409756 l004 Pi/tanh(381/109*Pi) 3141592655410737 l004 Pi/tanh(374/107*Pi) 3141592655411755 l004 Pi/tanh(367/105*Pi) 3141592655412814 l004 Pi/tanh(360/103*Pi) 3141592655413916 l004 Pi/tanh(353/101*Pi) 3141592655415062 l004 Pi/tanh(346/99*Pi) 3141592655416257 l004 Pi/tanh(339/97*Pi) 3141592655417503 l004 Pi/tanh(332/95*Pi) 3141592655418803 l004 Pi/tanh(325/93*Pi) 3141592655420161 l004 Pi/tanh(318/91*Pi) 3141592655421582 l004 Pi/tanh(311/89*Pi) 3141592655423069 l004 Pi/tanh(304/87*Pi) 3141592655424627 l004 Pi/tanh(297/85*Pi) 3141592655426262 l004 Pi/tanh(290/83*Pi) 3141592655426385 l005 ln(sec(101/32)) 3141592655427979 l004 Pi/tanh(283/81*Pi) 3141592655429785 l004 Pi/tanh(276/79*Pi) 3141592655431686 l004 Pi/tanh(269/77*Pi) 3141592655433692 l004 Pi/tanh(262/75*Pi) 3141592655435809 l004 Pi/tanh(255/73*Pi) 3141592655438048 l004 Pi/tanh(248/71*Pi) 3141592655440420 l004 Pi/tanh(241/69*Pi) 3141592655442937 l004 Pi/tanh(234/67*Pi) 3141592655445613 l004 Pi/tanh(227/65*Pi) 3141592655448462 l004 Pi/tanh(220/63*Pi) 3141592655451504 l004 Pi/tanh(213/61*Pi) 3141592655453102 l004 Pi/tanh(419/120*Pi) 3141592655454757 l004 Pi/tanh(206/59*Pi) 3141592655456470 l004 Pi/tanh(405/116*Pi) 3141592655458244 l004 Pi/tanh(199/57*Pi) 3141592655460084 l004 Pi/tanh(391/112*Pi) 3141592655461993 l004 Pi/tanh(192/55*Pi) 3141592655463974 l004 Pi/tanh(377/108*Pi) 3141592655466033 l004 Pi/tanh(185/53*Pi) 3141592655466159 p002 log(1/11*3^(2/3)-2^(1/4)) 3141592655468172 l004 Pi/tanh(363/104*Pi) 3141592655470399 l004 Pi/tanh(178/51*Pi) 3141592655472717 l004 Pi/tanh(349/100*Pi) 3141592655475133 l004 Pi/tanh(171/49*Pi) 3141592655477653 l004 Pi/tanh(335/96*Pi) 3141592655480284 l004 Pi/tanh(164/47*Pi) 3141592655483033 l004 Pi/tanh(321/92*Pi) 3141592655485909 l004 Pi/tanh(157/45*Pi) 3141592655487590 l005 ln(sec(941/100)) 3141592655488919 l004 Pi/tanh(307/88*Pi) 3141592655489912 l005 ln(sec(859/91)) 3141592655492076 l004 Pi/tanh(150/43*Pi) 3141592655495387 l004 Pi/tanh(293/84*Pi) 3141592655498867 l004 Pi/tanh(143/41*Pi) 3141592655502528 l004 Pi/tanh(279/80*Pi) 3141592655503791 l004 Pi/tanh(415/119*Pi) 3141592655506384 l004 Pi/tanh(136/39*Pi) 3141592655509070 l004 Pi/tanh(401/115*Pi) 3141592655510451 l004 Pi/tanh(265/76*Pi) 3141592655511856 l004 Pi/tanh(394/113*Pi) 3141592655514747 l004 Pi/tanh(129/37*Pi) 3141592655515549 l005 ln(sec(222/71)) 3141592655517748 l004 Pi/tanh(380/109*Pi) 3141592655519293 l004 Pi/tanh(251/72*Pi) 3141592655520867 l004 Pi/tanh(373/107*Pi) 3141592655524109 l004 Pi/tanh(122/35*Pi) 3141592655527484 l004 Pi/tanh(359/103*Pi) 3141592655529223 l004 Pi/tanh(237/68*Pi) 3141592655530998 l004 Pi/tanh(352/101*Pi) 3141592655533326 m001 ZetaP(3)^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592655534661 l004 Pi/tanh(115/33*Pi) 3141592655538482 l004 Pi/tanh(338/97*Pi) 3141592655539091 l005 ln(sec(1095/116)) 3141592655540455 l004 Pi/tanh(223/64*Pi) 3141592655542472 l004 Pi/tanh(331/95*Pi) 3141592655546643 l004 Pi/tanh(108/31*Pi) 3141592655547870 p002 log(1/11*(6^(1/2)-11^(2/3)*5^(1/4))*11^(1/3)) 3141592655551006 l004 Pi/tanh(317/91*Pi) 3141592655553264 l004 Pi/tanh(209/60*Pi) 3141592655555576 l004 Pi/tanh(310/89*Pi) 3141592655556752 l004 Pi/tanh(411/118*Pi) 3141592655560367 l004 Pi/tanh(101/29*Pi) 3141592655564116 l004 Pi/tanh(397/114*Pi) 3141592655565397 l004 Pi/tanh(296/85*Pi) 3141592655566422 l005 ln(sec(363/115)) 3141592655568006 l004 Pi/tanh(195/56*Pi) 3141592655570682 l004 Pi/tanh(289/83*Pi) 3141592655572046 l004 Pi/tanh(383/110*Pi) 3141592655573215 l005 ln(sec(574/61)) 3141592655576244 l004 Pi/tanh(94/27*Pi) 3141592655580610 l004 Pi/tanh(369/106*Pi) 3141592655582104 l004 Pi/tanh(275/79*Pi) 3141592655583026 p002 log(19^(1/2)/(10^(2/3)-9)) 3141592655585153 l004 Pi/tanh(181/52*Pi) 3141592655588287 l004 Pi/tanh(268/77*Pi) 3141592655589886 l004 Pi/tanh(355/102*Pi) 3141592655594821 l004 Pi/tanh(87/25*Pi) 3141592655599197 p002 log(2^(2/3)/(10^(1/3)-14^(1/2))) 3141592655599969 l004 Pi/tanh(341/98*Pi) 3141592655601355 m001 Trott2nd^(2*Pi/GAMMA(5/6))+Pi 3141592655601736 l004 Pi/tanh(254/73*Pi) 3141592655605347 l004 Pi/tanh(167/48*Pi) 3141592655607565 l004 Pi/tanh(414/119*Pi) 3141592655609066 l004 Pi/tanh(247/71*Pi) 3141592655609828 l005 ln(sec(247/79)) 3141592655610968 l004 Pi/tanh(327/94*Pi) 3141592655612123 l004 Pi/tanh(407/117*Pi) 3141592655613794 m001 BesselK(0,1)^exp(Pi)+Pi 3141592655616850 l004 Pi/tanh(80/23*Pi) 3141592655621757 l004 Pi/tanh(393/113*Pi) 3141592655622496 l005 ln(sec(262/83)) 3141592655623013 l004 Pi/tanh(313/90*Pi) 3141592655625132 l004 Pi/tanh(233/67*Pi) 3141592655626853 l004 Pi/tanh(386/111*Pi) 3141592655629475 l004 Pi/tanh(153/44*Pi) 3141592655632149 l004 Pi/tanh(379/109*Pi) 3141592655633961 l004 Pi/tanh(226/65*Pi) 3141592655636260 l004 Pi/tanh(299/86*Pi) 3141592655637658 l004 Pi/tanh(372/107*Pi) 3141592655643392 l004 Pi/tanh(73/21*Pi) 3141592655649366 l004 Pi/tanh(358/103*Pi) 3141592655650899 l004 Pi/tanh(285/82*Pi) 3141592655653489 l004 Pi/tanh(212/61*Pi) 3141592655655595 l004 Pi/tanh(351/101*Pi) 3141592655658810 l004 Pi/tanh(139/40*Pi) 3141592655662096 l004 Pi/tanh(344/99*Pi) 3141592655664326 l004 Pi/tanh(205/59*Pi) 3141592655667161 l004 Pi/tanh(271/78*Pi) 3141592655668886 l004 Pi/tanh(337/97*Pi) 3141592655670048 l004 Pi/tanh(403/116*Pi) 3141592655675987 l004 Pi/tanh(66/19*Pi) 3141592655680190 l005 ln(sec(781/83)) 3141592655682155 l004 Pi/tanh(389/112*Pi) 3141592655683418 l004 Pi/tanh(323/93*Pi) 3141592655685330 l004 Pi/tanh(257/74*Pi) 3141592655688568 l004 Pi/tanh(191/55*Pi) 3141592655689299 l005 ln(sec(272/87)) 3141592655691204 l004 Pi/tanh(316/91*Pi) 3141592655695239 l004 Pi/tanh(125/36*Pi) 3141592655699372 l004 Pi/tanh(309/89*Pi) 3141592655702183 l004 Pi/tanh(184/53*Pi) 3141592655705764 l004 Pi/tanh(243/70*Pi) 3141592655707948 l004 Pi/tanh(302/87*Pi) 3141592655709420 l004 Pi/tanh(361/104*Pi) 3141592655716966 l004 Pi/tanh(59/17*Pi) 3141592655723696 l004 Pi/tanh(406/117*Pi) 3141592655724842 l004 Pi/tanh(347/100*Pi) 3141592655726205 l005 ln(sec(236/25)) 3141592655726459 l004 Pi/tanh(288/83*Pi) 3141592655728911 l004 Pi/tanh(229/66*Pi) 3141592655730683 l004 Pi/tanh(399/115*Pi) 3141592655733071 l004 Pi/tanh(170/49*Pi) 3141592655736467 l004 Pi/tanh(281/81*Pi) 3141592655737941 l004 Pi/tanh(392/113*Pi) 3141592655741677 l004 Pi/tanh(111/32*Pi) 3141592655744290 l005 ln(sec(988/105)) 3141592655745487 l004 Pi/tanh(385/111*Pi) 3141592655747032 l004 Pi/tanh(274/79*Pi) 3141592655750686 l004 Pi/tanh(163/47*Pi) 3141592655753310 l005 ln(sec(161/51)) 3141592655753338 l004 Pi/tanh(378/109*Pi) 3141592655755350 l004 Pi/tanh(215/62*Pi) 3141592655757151 l005 ln(sec(297/95)) 3141592655758202 l004 Pi/tanh(267/77*Pi) 3141592655760126 l004 Pi/tanh(319/92*Pi) 3141592655761512 l004 Pi/tanh(371/107*Pi) 3141592655770030 l004 Pi/tanh(52/15*Pi) 3141592655777783 l004 Pi/tanh(409/118*Pi) 3141592655778915 l004 Pi/tanh(357/103*Pi) 3141592655780433 l004 Pi/tanh(305/88*Pi) 3141592655782577 l004 Pi/tanh(253/73*Pi) 3141592655785833 l004 Pi/tanh(201/58*Pi) 3141592655788190 l004 Pi/tanh(350/101*Pi) 3141592655791373 l004 Pi/tanh(149/43*Pi) 3141592655794196 l004 Pi/tanh(395/114*Pi) 3141592655795908 l004 Pi/tanh(246/71*Pi) 3141592655797881 l004 Pi/tanh(343/99*Pi) 3141592655802892 l004 Pi/tanh(97/28*Pi) 3141592655808017 l004 Pi/tanh(336/97*Pi) 3141592655810101 l004 Pi/tanh(239/69*Pi) 3141592655811940 l004 Pi/tanh(381/110*Pi) 3141592655815038 l004 Pi/tanh(142/41*Pi) 3141592655815734 l005 ln(sec(322/103)) 3141592655818630 l004 Pi/tanh(329/95*Pi) 3141592655821362 l004 Pi/tanh(187/54*Pi) 3141592655825240 l004 Pi/tanh(232/67*Pi) 3141592655827862 l004 Pi/tanh(277/80*Pi) 3141592655829753 l004 Pi/tanh(322/93*Pi) 3141592655831182 l004 Pi/tanh(367/106*Pi) 3141592655832298 l004 Pi/tanh(412/119*Pi) 3141592655836885 p002 log(1/2*(2*2^(1/6)-7^(2/3))*2^(1/2)) 3141592655841425 l004 Pi/tanh(45/13*Pi) 3141592655850908 l004 Pi/tanh(398/115*Pi) 3141592655852119 l004 Pi/tanh(353/102*Pi) 3141592655853686 l004 Pi/tanh(308/89*Pi) 3141592655855790 l004 Pi/tanh(263/76*Pi) 3141592655858765 l004 Pi/tanh(218/63*Pi) 3141592655860769 l004 Pi/tanh(391/113*Pi) 3141592655863296 l004 Pi/tanh(173/50*Pi) 3141592655866582 l004 Pi/tanh(301/87*Pi) 3141592655866809 l005 ln(sec(347/111)) 3141592655871030 l004 Pi/tanh(128/37*Pi) 3141592655874987 l004 Pi/tanh(339/98*Pi) 3141592655877390 l004 Pi/tanh(211/61*Pi) 3141592655880164 l004 Pi/tanh(294/85*Pi) 3141592655881717 l004 Pi/tanh(377/109*Pi) 3141592655883803 m001 Trott^(Pi*csc(5/24*Pi)/GAMMA(19/24))+Pi 3141592655887229 l004 Pi/tanh(83/24*Pi) 3141592655892857 l004 Pi/tanh(370/107*Pi) 3141592655894487 l004 Pi/tanh(287/83*Pi) 3141592655897446 l004 Pi/tanh(204/59*Pi) 3141592655900062 l004 Pi/tanh(325/94*Pi) 3141592655904478 l004 Pi/tanh(121/35*Pi) 3141592655908063 l004 Pi/tanh(401/116*Pi) 3141592655909614 l004 Pi/tanh(280/81*Pi) 3141592655911721 l005 ln(sec(372/119)) 3141592655913529 l004 Pi/tanh(159/46*Pi) 3141592655916488 l005 ln(sec(221/70)) 3141592655916612 l004 Pi/tanh(356/103*Pi) 3141592655919104 l004 Pi/tanh(197/57*Pi) 3141592655922883 l004 Pi/tanh(235/68*Pi) 3141592655925613 l004 Pi/tanh(273/79*Pi) 3141592655927679 l004 Pi/tanh(311/90*Pi) 3141592655929295 l004 Pi/tanh(349/101*Pi) 3141592655930595 l004 Pi/tanh(387/112*Pi) 3141592655939802 l005 ln(sec(1029/109)) 3141592655942563 l004 Pi/tanh(38/11*Pi) 3141592655953884 l004 Pi/tanh(411/119*Pi) 3141592655955040 l004 Pi/tanh(373/108*Pi) 3141592655956459 l004 Pi/tanh(335/97*Pi) 3141592655958242 l004 Pi/tanh(297/86*Pi) 3141592655960551 l004 Pi/tanh(259/75*Pi) 3141592655963656 l004 Pi/tanh(221/64*Pi) 3141592655965649 l004 Pi/tanh(404/117*Pi) 3141592655968057 l004 Pi/tanh(183/53*Pi) 3141592655971027 l004 Pi/tanh(328/95*Pi) 3141592655974780 l004 Pi/tanh(145/42*Pi) 3141592655977884 l004 Pi/tanh(397/115*Pi) 3141592655979672 l004 Pi/tanh(252/73*Pi) 3141592655981651 l004 Pi/tanh(359/104*Pi) 3141592655986317 l004 Pi/tanh(107/31*Pi) 3141592655990619 l004 Pi/tanh(390/113*Pi) 3141592655992248 l004 Pi/tanh(283/82*Pi) 3141592655995860 l004 Pi/tanh(176/51*Pi) 3141592655999482 l005 ln(sec(207/22)) 3141592656000039 l004 Pi/tanh(245/71*Pi) 3141592656002384 l004 Pi/tanh(314/91*Pi) 3141592656003885 l004 Pi/tanh(383/111*Pi) 3141592656006358 l005 ln(sec(793/84)) 3141592656010727 l004 Pi/tanh(69/20*Pi) 3141592656014057 l005 ln(sec(281/89)) 3141592656017715 l004 Pi/tanh(376/109*Pi) 3141592656019288 l004 Pi/tanh(307/89*Pi) 3141592656021775 l004 Pi/tanh(238/69*Pi) 3141592656023652 l004 Pi/tanh(407/118*Pi) 3141592656026299 l004 Pi/tanh(169/49*Pi) 3141592656030307 l004 Pi/tanh(269/78*Pi) 3141592656032145 l004 Pi/tanh(369/107*Pi) 3141592656037096 l004 Pi/tanh(100/29*Pi) 3141592656042625 l004 Pi/tanh(331/96*Pi) 3141592656045023 l004 Pi/tanh(231/67*Pi) 3141592656047217 l004 Pi/tanh(362/105*Pi) 3141592656051089 l004 Pi/tanh(131/38*Pi) 3141592656055882 l004 Pi/tanh(293/85*Pi) 3141592656059763 l004 Pi/tanh(162/47*Pi) 3141592656062971 l004 Pi/tanh(355/103*Pi) 3141592656065667 l004 Pi/tanh(193/56*Pi) 3141592656069944 l004 Pi/tanh(224/65*Pi) 3141592656073186 l004 Pi/tanh(255/74*Pi) 3141592656075728 l004 Pi/tanh(286/83*Pi) 3141592656077774 l004 Pi/tanh(317/92*Pi) 3141592656078914 l005 ln(sec(341/108)) 3141592656079457 l004 Pi/tanh(348/101*Pi) 3141592656080866 l004 Pi/tanh(379/110*Pi) 3141592656082062 l004 Pi/tanh(410/119*Pi) 3141592656096726 l004 Pi/tanh(31/9*Pi) 3141592656111991 l004 Pi/tanh(396/115*Pi) 3141592656113291 l004 Pi/tanh(365/106*Pi) 3141592656114834 l004 Pi/tanh(334/97*Pi) 3141592656116693 l004 Pi/tanh(303/88*Pi) 3141592656118978 l004 Pi/tanh(272/79*Pi) 3141592656121853 l004 Pi/tanh(241/70*Pi) 3141592656125582 l004 Pi/tanh(210/61*Pi) 3141592656127895 l004 Pi/tanh(389/113*Pi) 3141592656130610 l004 Pi/tanh(179/52*Pi) 3141592656133024 l005 ln(sec(557/59)) 3141592656133844 l004 Pi/tanh(327/95*Pi) 3141592656137760 l004 Pi/tanh(148/43*Pi) 3141592656140864 l004 Pi/tanh(413/120*Pi) 3141592656142600 l004 Pi/tanh(265/77*Pi) 3141592656144477 l004 Pi/tanh(382/111*Pi) 3141592656148734 l004 Pi/tanh(117/34*Pi) 3141592656153824 l004 Pi/tanh(320/93*Pi) 3141592656156761 l004 Pi/tanh(203/59*Pi) 3141592656160018 l004 Pi/tanh(289/84*Pi) 3141592656161782 l004 Pi/tanh(375/109*Pi) 3141592656167719 l004 Pi/tanh(86/25*Pi) 3141592656173311 l004 Pi/tanh(399/116*Pi) 3141592656174849 l004 Pi/tanh(313/91*Pi) 3141592656177555 l004 Pi/tanh(227/66*Pi) 3141592656179858 l004 Pi/tanh(368/107*Pi) 3141592656183570 l004 Pi/tanh(141/41*Pi) 3141592656187630 l004 Pi/tanh(337/98*Pi) 3141592656190553 l004 Pi/tanh(196/57*Pi) 3141592656194484 l004 Pi/tanh(251/73*Pi) 3141592656197004 l004 Pi/tanh(306/89*Pi) 3141592656198757 l004 Pi/tanh(361/105*Pi) 3141592656208533 l004 Pi/tanh(55/16*Pi) 3141592656217189 l004 Pi/tanh(409/119*Pi) 3141592656218536 l004 Pi/tanh(354/103*Pi) 3141592656220380 l004 Pi/tanh(299/87*Pi) 3141592656223057 l004 Pi/tanh(244/71*Pi) 3141592656227298 l004 Pi/tanh(189/55*Pi) 3141592656230505 l004 Pi/tanh(323/94*Pi) 3141592656235035 l004 Pi/tanh(134/39*Pi) 3141592656239258 l004 Pi/tanh(347/101*Pi) 3141592656241918 l004 Pi/tanh(213/62*Pi) 3141592656245081 l004 Pi/tanh(292/85*Pi) 3141592656246899 l004 Pi/tanh(371/108*Pi) 3141592656251653 l005 ln(sec(878/93)) 3141592656251689 l005 ln(sec(1082/115)) 3141592656252503 m001 ZetaQ(4)^(Pi*csc(7/24*Pi)/GAMMA(17/24))+Pi 3141592656253629 l004 Pi/tanh(79/23*Pi) 3141592656260990 l004 Pi/tanh(340/99*Pi) 3141592656263221 l004 Pi/tanh(261/76*Pi) 3141592656267395 l004 Pi/tanh(182/53*Pi) 3141592656271222 l004 Pi/tanh(285/83*Pi) 3141592656273019 l004 Pi/tanh(388/113*Pi) 3141592656277997 l004 Pi/tanh(103/30*Pi) 3141592656283807 l004 Pi/tanh(333/97*Pi) 3141592656286413 l004 Pi/tanh(230/67*Pi) 3141592656288846 l004 Pi/tanh(357/104*Pi) 3141592656293257 l004 Pi/tanh(127/37*Pi) 3141592656297150 l004 Pi/tanh(405/118*Pi) 3141592656298930 l004 Pi/tanh(278/81*Pi) 3141592656303711 l004 Pi/tanh(151/44*Pi) 3141592656307793 l004 Pi/tanh(326/95*Pi) 3141592656311320 l004 Pi/tanh(175/51*Pi) 3141592656314138 l005 ln(sec(875/93)) 3141592656314398 l004 Pi/tanh(374/109*Pi) 3141592656317107 l004 Pi/tanh(199/58*Pi) 3141592656321657 l004 Pi/tanh(223/65*Pi) 3141592656325327 l004 Pi/tanh(247/72*Pi) 3141592656328350 l004 Pi/tanh(271/79*Pi) 3141592656330884 l004 Pi/tanh(295/86*Pi) 3141592656333038 l004 Pi/tanh(319/93*Pi) 3141592656334892 l004 Pi/tanh(343/100*Pi) 3141592656336505 l004 Pi/tanh(367/107*Pi) 3141592656337920 l004 Pi/tanh(391/114*Pi) 3141592656359643 l004 Pi/tanh(24/7*Pi) 3141592656380974 l004 Pi/tanh(401/117*Pi) 3141592656382337 l004 Pi/tanh(377/110*Pi) 3141592656383887 l004 Pi/tanh(353/103*Pi) 3141592656385663 l004 Pi/tanh(329/96*Pi) 3141592656387719 l004 Pi/tanh(305/89*Pi) 3141592656390129 l004 Pi/tanh(281/82*Pi) 3141592656392992 l004 Pi/tanh(257/75*Pi) 3141592656396447 l004 Pi/tanh(233/68*Pi) 3141592656400212 l005 ln(sec(60/19)) 3141592656400702 l004 Pi/tanh(209/61*Pi) 3141592656403221 l004 Pi/tanh(394/115*Pi) 3141592656406069 l004 Pi/tanh(185/54*Pi) 3141592656409315 l004 Pi/tanh(346/101*Pi) 3141592656413050 l004 Pi/tanh(161/47*Pi) 3141592656417391 l004 Pi/tanh(298/87*Pi) 3141592656417612 l005 ln(sec(668/71)) 3141592656422501 l004 Pi/tanh(137/40*Pi) 3141592656426441 l004 Pi/tanh(387/113*Pi) 3141592656428603 l004 Pi/tanh(250/73*Pi) 3141592656430909 l004 Pi/tanh(363/106*Pi) 3141592656436017 l004 Pi/tanh(113/33*Pi) 3141592656441913 l004 Pi/tanh(315/92*Pi) 3141592656445217 l004 Pi/tanh(202/59*Pi) 3141592656448796 l004 Pi/tanh(291/85*Pi) 3141592656450701 l004 Pi/tanh(380/111*Pi) 3141592656456936 l004 Pi/tanh(89/26*Pi) 3141592656464088 l004 Pi/tanh(332/97*Pi) 3141592656466712 l004 Pi/tanh(243/71*Pi) 3141592656467301 l005 ln(sec(321/34)) 3141592656468907 l004 Pi/tanh(397/116*Pi) 3141592656472375 l004 Pi/tanh(154/45*Pi) 3141592656476070 l004 Pi/tanh(373/109*Pi) 3141592656478671 l004 Pi/tanh(219/64*Pi) 3141592656482090 l004 Pi/tanh(284/83*Pi) 3141592656484237 l004 Pi/tanh(349/102*Pi) 3141592656493636 l004 Pi/tanh(65/19*Pi) 3141592656499809 l005 ln(sec(1129/120)) 3141592656502625 l004 Pi/tanh(366/107*Pi) 3141592656504569 l004 Pi/tanh(301/88*Pi) 3141592656507587 l004 Pi/tanh(236/69*Pi) 3141592656509821 l004 Pi/tanh(407/119*Pi) 3141592656512906 l004 Pi/tanh(171/50*Pi) 3141592656517444 l004 Pi/tanh(277/81*Pi) 3141592656519473 l004 Pi/tanh(383/112*Pi) 3141592656524779 l004 Pi/tanh(106/31*Pi) 3141592656530450 l004 Pi/tanh(359/105*Pi) 3141592656532829 l004 Pi/tanh(253/74*Pi) 3141592656534966 l004 Pi/tanh(400/117*Pi) 3141592656538646 l004 Pi/tanh(147/43*Pi) 3141592656543046 l004 Pi/tanh(335/98*Pi) 3141592656546491 l004 Pi/tanh(188/55*Pi) 3141592656551536 l004 Pi/tanh(229/67*Pi) 3141592656555054 l004 Pi/tanh(270/79*Pi) 3141592656557647 l004 Pi/tanh(311/91*Pi) 3141592656559637 l004 Pi/tanh(352/103*Pi) 3141592656561213 l004 Pi/tanh(393/115*Pi) 3141592656574773 l004 Pi/tanh(41/12*Pi) 3141592656588636 l004 Pi/tanh(386/113*Pi) 3141592656590288 l004 Pi/tanh(345/101*Pi) 3141592656592386 l004 Pi/tanh(304/89*Pi) 3141592656595140 l004 Pi/tanh(263/77*Pi) 3141592656598915 l004 Pi/tanh(222/65*Pi) 3141592656601381 l004 Pi/tanh(403/118*Pi) 3141592656604408 l004 Pi/tanh(181/53*Pi) 3141592656606015 l005 ln(sec(25/8)) 3141592656608213 l004 Pi/tanh(321/94*Pi) 3141592656613138 l004 Pi/tanh(140/41*Pi) 3141592656617315 l004 Pi/tanh(379/111*Pi) 3141592656619764 l004 Pi/tanh(239/70*Pi) 3141592656622075 l005 ln(sec(461/49)) 3141592656622512 l004 Pi/tanh(338/99*Pi) 3141592656629157 l004 Pi/tanh(99/29*Pi) 3141592656635495 l004 Pi/tanh(355/104*Pi) 3141592656637949 l004 Pi/tanh(256/75*Pi) 3141592656643506 l004 Pi/tanh(157/46*Pi) 3141592656647335 l004 Pi/tanh(372/109*Pi) 3141592656650134 l004 Pi/tanh(215/63*Pi) 3141592656653951 l004 Pi/tanh(273/80*Pi) 3141592656656433 l004 Pi/tanh(331/97*Pi) 3141592656657376 m001 Pi+HeathBrownMoroz^Otter 3141592656657848 l005 ln(sec(1048/111)) 3141592656658176 l004 Pi/tanh(389/114*Pi) 3141592656668141 l004 Pi/tanh(58/17*Pi) 3141592656678792 l004 Pi/tanh(365/107*Pi) 3141592656680808 l004 Pi/tanh(307/90*Pi) 3141592656683766 l004 Pi/tanh(249/73*Pi) 3141592656688525 l004 Pi/tanh(191/56*Pi) 3141592656692187 l004 Pi/tanh(324/95*Pi) 3141592656697452 l004 Pi/tanh(133/39*Pi) 3141592656702463 l004 Pi/tanh(341/100*Pi) 3141592656705671 l004 Pi/tanh(208/61*Pi) 3141592656709540 l004 Pi/tanh(283/83*Pi) 3141592656711790 l004 Pi/tanh(358/105*Pi) 3141592656715102 l005 ln(sec(379/120)) 3141592656720294 l004 Pi/tanh(75/22*Pi) 3141592656728078 l004 Pi/tanh(392/115*Pi) 3141592656729922 l004 Pi/tanh(317/93*Pi) 3141592656732911 l004 Pi/tanh(242/71*Pi) 3141592656735230 l004 Pi/tanh(409/120*Pi) 3141592656738593 l004 Pi/tanh(167/49*Pi) 3141592656743910 l004 Pi/tanh(259/76*Pi) 3141592656744932 l005 ln(sec(727/77)) 3141592656746443 l004 Pi/tanh(351/103*Pi) 3141592656753583 l004 Pi/tanh(92/27*Pi) 3141592656760105 l004 Pi/tanh(385/113*Pi) 3141592656762156 l004 Pi/tanh(293/86*Pi) 3141592656766086 l004 Pi/tanh(201/59*Pi) 3141592656769806 l004 Pi/tanh(310/91*Pi) 3141592656776675 l004 Pi/tanh(109/32*Pi) 3141592656777176 l005 ln(sec(319/101)) 3141592656782876 l004 Pi/tanh(344/101*Pi) 3141592656785756 l004 Pi/tanh(235/69*Pi) 3141592656788503 l004 Pi/tanh(361/106*Pi) 3141592656793631 l004 Pi/tanh(126/37*Pi) 3141592656798325 l004 Pi/tanh(395/116*Pi) 3141592656800526 l004 Pi/tanh(269/79*Pi) 3141592656806612 l004 Pi/tanh(143/42*Pi) 3141592656812023 l004 Pi/tanh(303/89*Pi) 3141592656816867 l004 Pi/tanh(160/47*Pi) 3141592656821228 l004 Pi/tanh(337/99*Pi) 3141592656822921 l005 ln(sec(715/76)) 3141592656825174 l004 Pi/tanh(177/52*Pi) 3141592656827122 l005 ln(sec(1133/120)) 3141592656828762 l004 Pi/tanh(371/109*Pi) 3141592656832040 l004 Pi/tanh(194/57*Pi) 3141592656835044 l004 Pi/tanh(405/119*Pi) 3141592656837809 l004 Pi/tanh(211/62*Pi) 3141592656842726 l004 Pi/tanh(228/67*Pi) 3141592656846965 l004 Pi/tanh(245/72*Pi) 3141592656850659 l004 Pi/tanh(262/77*Pi) 3141592656853906 l004 Pi/tanh(279/82*Pi) 3141592656856782 l004 Pi/tanh(296/87*Pi) 3141592656859347 l004 Pi/tanh(313/92*Pi) 3141592656861650 l004 Pi/tanh(330/97*Pi) 3141592656863729 l004 Pi/tanh(347/102*Pi) 3141592656865614 l004 Pi/tanh(364/107*Pi) 3141592656867332 l004 Pi/tanh(381/112*Pi) 3141592656868904 l004 Pi/tanh(398/117*Pi) 3141592656869677 l005 ln(sec(259/82)) 3141592656904313 l004 Pi/tanh(17/5*Pi) 3141592656921896 l005 ln(sec(969/103)) 3141592656939799 l004 Pi/tanh(401/118*Pi) 3141592656941378 l004 Pi/tanh(384/113*Pi) 3141592656943104 l004 Pi/tanh(367/108*Pi) 3141592656944999 l004 Pi/tanh(350/103*Pi) 3141592656947088 l004 Pi/tanh(333/98*Pi) 3141592656949403 l004 Pi/tanh(316/93*Pi) 3141592656951984 l004 Pi/tanh(299/88*Pi) 3141592656954877 l004 Pi/tanh(282/83*Pi) 3141592656958145 l004 Pi/tanh(265/78*Pi) 3141592656961864 l004 Pi/tanh(248/73*Pi) 3141592656966135 l004 Pi/tanh(231/68*Pi) 3141592656971090 l004 Pi/tanh(214/63*Pi) 3141592656976909 l004 Pi/tanh(197/58*Pi) 3141592656978301 l005 ln(sec(406/43)) 3141592656980217 l004 Pi/tanh(377/111*Pi) 3141592656983840 l004 Pi/tanh(180/53*Pi) 3141592656987826 l004 Pi/tanh(343/101*Pi) 3141592656992233 l004 Pi/tanh(163/48*Pi) 3141592656997130 l004 Pi/tanh(309/91*Pi) 3141592657002606 l004 Pi/tanh(146/43*Pi) 3141592657008768 l004 Pi/tanh(275/81*Pi) 3141592657010998 l004 Pi/tanh(404/119*Pi) 3141592657015755 l004 Pi/tanh(129/38*Pi) 3141592657020955 l004 Pi/tanh(370/109*Pi) 3141592657022154 l005 ln(sec(199/63)) 3141592657023742 l004 Pi/tanh(241/71*Pi) 3141592657026666 l004 Pi/tanh(353/104*Pi) 3141592657032963 l004 Pi/tanh(112/33*Pi) 3141592657039945 l004 Pi/tanh(319/94*Pi) 3141592657043727 l004 Pi/tanh(207/61*Pi) 3141592657047727 l004 Pi/tanh(302/89*Pi) 3141592657049814 l004 Pi/tanh(397/117*Pi) 3141592657056457 l004 Pi/tanh(95/28*Pi) 3141592657063735 l004 Pi/tanh(363/107*Pi) 3141592657066318 l004 Pi/tanh(268/79*Pi) 3141592657071744 l004 Pi/tanh(173/51*Pi) 3141592657077545 l004 Pi/tanh(251/74*Pi) 3141592657080600 l004 Pi/tanh(329/97*Pi) 3141592657082485 l004 Pi/tanh(407/120*Pi) 3141592657090445 l004 Pi/tanh(78/23*Pi) 3141592657099149 l004 Pi/tanh(373/110*Pi) 3141592657099989 p002 log(2^(1/3)*(3^(1/3)-5^(1/2))) 3141592657101454 l004 Pi/tanh(295/87*Pi) 3141592657105419 l004 Pi/tanh(217/64*Pi) 3141592657108708 l004 Pi/tanh(356/105*Pi) 3141592657112123 m002 Pi+Tanh[Pi]/Pi^17 3141592657113847 l004 Pi/tanh(139/41*Pi) 3141592657119252 l004 Pi/tanh(339/100*Pi) 3141592657123013 l004 Pi/tanh(200/59*Pi) 3141592657125304 m002 Pi^(-17)+Pi 3141592657127903 l004 Pi/tanh(261/77*Pi) 3141592657130943 l004 Pi/tanh(322/95*Pi) 3141592657133016 l004 Pi/tanh(383/113*Pi) 3141592657142558 l005 ln(sec(338/107)) 3141592657143979 l004 Pi/tanh(61/18*Pi) 3141592657156044 l004 Pi/tanh(349/103*Pi) 3141592657158604 l004 Pi/tanh(288/85*Pi) 3141592657162544 l004 Pi/tanh(227/67*Pi) 3141592657165434 l004 Pi/tanh(393/116*Pi) 3141592657169388 l004 Pi/tanh(166/49*Pi) 3141592657175130 l004 Pi/tanh(271/80*Pi) 3141592657176760 l005 ln(sec(897/95)) 3141592657177668 l004 Pi/tanh(376/111*Pi) 3141592657184226 l004 Pi/tanh(105/31*Pi) 3141592657191105 l004 Pi/tanh(359/106*Pi) 3141592657193952 l004 Pi/tanh(254/75*Pi) 3141592657196491 l004 Pi/tanh(403/119*Pi) 3141592657200821 l004 Pi/tanh(149/44*Pi) 3141592657205930 l004 Pi/tanh(342/101*Pi) 3141592657209879 l004 Pi/tanh(193/57*Pi) 3141592657212710 l005 ln(sec(254/27)) 3141592657215584 l004 Pi/tanh(237/70*Pi) 3141592657219508 l004 Pi/tanh(281/83*Pi) 3141592657222371 l004 Pi/tanh(325/96*Pi) 3141592657224553 l004 Pi/tanh(369/109*Pi) 3141592657240706 l004 Pi/tanh(44/13*Pi) 3141592657256495 l004 Pi/tanh(379/112*Pi) 3141592657258573 l004 Pi/tanh(335/99*Pi) 3141592657261282 l004 Pi/tanh(291/86*Pi) 3141592657264958 l004 Pi/tanh(247/73*Pi) 3141592657270234 l004 Pi/tanh(203/60*Pi) 3141592657273838 l004 Pi/tanh(362/107*Pi) 3141592657278443 l004 Pi/tanh(159/47*Pi) 3141592657284536 l004 Pi/tanh(274/81*Pi) 3141592657287029 l004 Pi/tanh(389/115*Pi) 3141592657292975 l004 Pi/tanh(115/34*Pi) 3141592657300673 l004 Pi/tanh(301/89*Pi) 3141592657305439 l004 Pi/tanh(186/55*Pi) 3141592657311028 l004 Pi/tanh(257/76*Pi) 3141592657314201 l004 Pi/tanh(328/97*Pi) 3141592657316246 l004 Pi/tanh(399/118*Pi) 3141592657320434 l005 ln(sec(139/44)) 3141592657325707 l004 Pi/tanh(71/21*Pi) 3141592657335612 l004 Pi/tanh(382/113*Pi) 3141592657337877 l004 Pi/tanh(311/92*Pi) 3141592657341484 l004 Pi/tanh(240/71*Pi) 3141592657347351 l005 ln(sec(491/52)) 3141592657348130 l004 Pi/tanh(169/50*Pi) 3141592657354113 l004 Pi/tanh(267/79*Pi) 3141592657356886 l004 Pi/tanh(365/108*Pi) 3141592657364451 l004 Pi/tanh(98/29*Pi) 3141592657373069 l004 Pi/tanh(321/95*Pi) 3141592657376862 l004 Pi/tanh(223/66*Pi) 3141592657380364 l004 Pi/tanh(348/103*Pi) 3141592657385723 m002 Pi+ProductLog[Pi]/Pi^17 3141592657386619 l004 Pi/tanh(125/37*Pi) 3141592657392041 l004 Pi/tanh(402/119*Pi) 3141592657394490 l004 Pi/tanh(277/82*Pi) 3141592657400974 l004 Pi/tanh(152/45*Pi) 3141592657406408 l004 Pi/tanh(331/98*Pi) 3141592657411028 l004 Pi/tanh(179/53*Pi) 3141592657415004 l004 Pi/tanh(385/114*Pi) 3141592657418461 l004 Pi/tanh(206/61*Pi) 3141592657424181 l004 Pi/tanh(233/69*Pi) 3141592657428718 l004 Pi/tanh(260/77*Pi) 3141592657432405 l004 Pi/tanh(287/85*Pi) 3141592657435461 l004 Pi/tanh(314/93*Pi) 3141592657438034 l004 Pi/tanh(341/101*Pi) 3141592657440231 l004 Pi/tanh(368/109*Pi) 3141592657442129 l004 Pi/tanh(395/117*Pi) 3141592657468076 l004 Pi/tanh(27/8*Pi) 3141592657494003 l005 ln(sec(1063/113)) 3141592657494473 l005 ln(sec(353/113)) 3141592657494653 l004 Pi/tanh(388/115*Pi) 3141592657494944 l005 ln(sec(357/113)) 3141592657495415 l005 ln(sec(1067/113)) 3141592657496648 l004 Pi/tanh(361/107*Pi) 3141592657498966 l004 Pi/tanh(334/99*Pi) 3141592657501693 l004 Pi/tanh(307/91*Pi) 3141592657504949 l004 Pi/tanh(280/83*Pi) 3141592657508902 l004 Pi/tanh(253/75*Pi) 3141592657513806 l004 Pi/tanh(226/67*Pi) 3141592657520048 l004 Pi/tanh(199/59*Pi) 3141592657523855 l004 Pi/tanh(371/110*Pi) 3141592657528263 l004 Pi/tanh(172/51*Pi) 3141592657533429 l004 Pi/tanh(317/94*Pi) 3141592657539564 l004 Pi/tanh(145/43*Pi) 3141592657546970 l004 Pi/tanh(263/78*Pi) 3141592657549792 l004 Pi/tanh(381/113*Pi) 3141592657550329 p002 log(1/2*(10^(1/2)-7^(2/3)*2^(1/4))*2^(3/4)) 3141592657556088 l004 Pi/tanh(118/35*Pi) 3141592657563435 l004 Pi/tanh(327/97*Pi) 3141592657567589 l004 Pi/tanh(209/62*Pi) 3141592657569386 l005 ln(sec(328/105)) 3141592657572121 l004 Pi/tanh(300/89*Pi) 3141592657574545 l004 Pi/tanh(391/116*Pi) 3141592657582547 l004 Pi/tanh(91/27*Pi) 3141592657585602 l005 ln(sec(809/86)) 3141592657591849 l004 Pi/tanh(337/100*Pi) 3141592657595296 l004 Pi/tanh(246/73*Pi) 3141592657598194 l004 Pi/tanh(401/119*Pi) 3141592657602797 l004 Pi/tanh(155/46*Pi) 3141592657607739 l004 Pi/tanh(374/111*Pi) 3141592657609378 l005 ln(sec(218/69)) 3141592657611239 l004 Pi/tanh(219/65*Pi) 3141592657615870 l004 Pi/tanh(283/84*Pi) 3141592657618794 l004 Pi/tanh(347/103*Pi) 3141592657625052 l005 ln(sec(576/61)) 3141592657631751 l004 Pi/tanh(64/19*Pi) 3141592657636998 m002 Pi+Log[Pi]/Pi^17 3141592657644380 l004 Pi/tanh(357/106*Pi) 3141592657647144 l004 Pi/tanh(293/87*Pi) 3141592657651455 l004 Pi/tanh(229/68*Pi) 3141592657654664 l004 Pi/tanh(394/117*Pi) 3141592657658010 l005 ln(sec(303/97)) 3141592657659122 l004 Pi/tanh(165/49*Pi) 3141592657665732 l004 Pi/tanh(266/79*Pi) 3141592657668707 l004 Pi/tanh(367/109*Pi) 3141592657676552 l004 Pi/tanh(101/30*Pi) 3141592657685036 l004 Pi/tanh(340/101*Pi) 3141592657688625 l004 Pi/tanh(239/71*Pi) 3141592657691865 l004 Pi/tanh(377/112*Pi) 3141592657697482 l004 Pi/tanh(138/41*Pi) 3141592657704256 l004 Pi/tanh(313/93*Pi) 3141592657709606 l004 Pi/tanh(175/52*Pi) 3141592657713937 l004 Pi/tanh(387/115*Pi) 3141592657717515 l004 Pi/tanh(212/63*Pi) 3141592657723082 l004 Pi/tanh(249/74*Pi) 3141592657727212 l004 Pi/tanh(286/85*Pi) 3141592657730400 l004 Pi/tanh(323/96*Pi) 3141592657732933 l004 Pi/tanh(360/107*Pi) 3141592657734995 l004 Pi/tanh(397/118*Pi) 3141592657750249 l005 ln(sec(297/94)) 3141592657755109 l004 Pi/tanh(37/11*Pi) 3141592657764459 l005 ln(sec(278/89)) 3141592657765528 l005 ln(sec(555/59)) 3141592657776218 l004 Pi/tanh(380/113*Pi) 3141592657778501 l004 Pi/tanh(343/102*Pi) 3141592657781337 l004 Pi/tanh(306/91*Pi) 3141592657784956 l004 Pi/tanh(269/80*Pi) 3141592657789734 l004 Pi/tanh(232/69*Pi) 3141592657796333 l004 Pi/tanh(195/58*Pi) 3141592657800675 l004 Pi/tanh(353/105*Pi) 3141592657806040 l004 Pi/tanh(158/47*Pi) 3141592657812837 l004 Pi/tanh(279/83*Pi) 3141592657815524 l004 Pi/tanh(400/119*Pi) 3141592657821726 l004 Pi/tanh(121/36*Pi) 3141592657829348 l004 Pi/tanh(326/97*Pi) 3141592657833609 l005 ln(sec(376/119)) 3141592657833852 l004 Pi/tanh(205/61*Pi) 3141592657838938 l004 Pi/tanh(289/86*Pi) 3141592657841101 l005 ln(sec(661/70)) 3141592657841736 l004 Pi/tanh(373/111*Pi) 3141592657851374 l004 Pi/tanh(84/25*Pi) 3141592657860780 l004 Pi/tanh(383/114*Pi) 3141592657863425 l004 Pi/tanh(299/89*Pi) 3141592657868142 l004 Pi/tanh(215/64*Pi) 3141592657872222 l004 Pi/tanh(346/103*Pi) 3141592657878926 l004 Pi/tanh(131/39*Pi) 3141592657886443 l004 Pi/tanh(309/92*Pi) 3141592657891983 l004 Pi/tanh(178/53*Pi) 3141592657894669 l005 ln(sec(253/81)) 3141592657896236 l004 Pi/tanh(403/120*Pi) 3141592657899602 l004 Pi/tanh(225/67*Pi) 3141592657904595 l004 Pi/tanh(272/81*Pi) 3141592657908120 l004 Pi/tanh(319/95*Pi) 3141592657910741 l004 Pi/tanh(366/109*Pi) 3141592657911787 m001 Pi+BesselJ(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592657916173 m001 ZetaR(2)^Psi(1,1/3)+Pi 3141592657928569 l004 Pi/tanh(47/14*Pi) 3141592657941089 l005 ln(sec(856/91)) 3141592657945534 l004 Pi/tanh(386/115*Pi) 3141592657947891 l004 Pi/tanh(339/101*Pi) 3141592657951008 l004 Pi/tanh(292/87*Pi) 3141592657955325 l004 Pi/tanh(245/73*Pi) 3141592657961698 l004 Pi/tanh(198/59*Pi) 3141592657966177 l004 Pi/tanh(349/104*Pi) 3141592657972057 l004 Pi/tanh(151/45*Pi) 3141592657980115 l004 Pi/tanh(255/76*Pi) 3141592657983509 l004 Pi/tanh(359/107*Pi) 3141592657991840 l004 Pi/tanh(104/31*Pi) 3141592657999958 l004 Pi/tanh(369/110*Pi) 3141592658003148 l004 Pi/tanh(265/79*Pi) 3141592658010467 l004 Pi/tanh(161/48*Pi) 3141592658013769 l005 ln(sec(746/79)) 3141592658015591 l004 Pi/tanh(379/113*Pi) 3141592658019378 l004 Pi/tanh(218/65*Pi) 3141592658024603 l004 Pi/tanh(275/82*Pi) 3141592658028037 l004 Pi/tanh(332/99*Pi) 3141592658030466 l004 Pi/tanh(389/116*Pi) 3141592658044637 l004 Pi/tanh(57/17*Pi) 3141592658057512 l005 ln(sec(228/73)) 3141592658060346 l004 Pi/tanh(352/105*Pi) 3141592658063387 l004 Pi/tanh(295/88*Pi) 3141592658067888 l004 Pi/tanh(238/71*Pi) 3141592658075233 l004 Pi/tanh(181/54*Pi) 3141592658080972 l004 Pi/tanh(305/91*Pi) 3141592658089360 l004 Pi/tanh(124/37*Pi) 3141592658097497 l004 Pi/tanh(315/94*Pi) 3141592658102786 l004 Pi/tanh(191/57*Pi) 3141592658109251 l004 Pi/tanh(258/77*Pi) 3141592658113055 l004 Pi/tanh(325/97*Pi) 3141592658115559 l004 Pi/tanh(392/117*Pi) 3141592658127728 l004 Pi/tanh(67/20*Pi) 3141592658133424 b008 Pi*JacobiNC[3,-1/5] 3141592658141590 l004 Pi/tanh(345/103*Pi) 3141592658144937 l004 Pi/tanh(278/83*Pi) 3141592658150414 l004 Pi/tanh(211/63*Pi) 3141592658154707 l004 Pi/tanh(355/106*Pi) 3141592658154833 l005 ln(sec(831/88)) 3141592658158296 l005 ln(sec(79/25)) 3141592658161004 l004 Pi/tanh(144/43*Pi) 3141592658167136 l004 Pi/tanh(365/109*Pi) 3141592658171135 l004 Pi/tanh(221/66*Pi) 3141592658176038 l004 Pi/tanh(298/89*Pi) 3141592658178930 l004 Pi/tanh(375/112*Pi) 3141592658190137 l004 Pi/tanh(77/23*Pi) 3141592658200800 l004 Pi/tanh(395/118*Pi) 3141592658203385 l004 Pi/tanh(318/95*Pi) 3141592658207625 l004 Pi/tanh(241/72*Pi) 3141592658215857 l004 Pi/tanh(164/49*Pi) 3141592658223773 l004 Pi/tanh(251/75*Pi) 3141592658227618 l004 Pi/tanh(338/101*Pi) 3141592658238728 l004 Pi/tanh(87/26*Pi) 3141592658249240 l004 Pi/tanh(358/107*Pi) 3141592658252619 l004 Pi/tanh(271/81*Pi) 3141592658259200 l004 Pi/tanh(184/55*Pi) 3141592658265554 l004 Pi/tanh(281/84*Pi) 3141592658266855 l005 ln(sec(203/65)) 3141592658268650 l004 Pi/tanh(378/113*Pi) 3141592658272191 l005 ln(sec(916/97)) 3141592658277630 l004 Pi/tanh(97/29*Pi) 3141592658279226 l005 ln(sec(301/32)) 3141592658286173 l004 Pi/tanh(398/119*Pi) 3141592658288929 l004 Pi/tanh(301/90*Pi) 3141592658294310 l004 Pi/tanh(204/61*Pi) 3141592658299524 l004 Pi/tanh(311/93*Pi) 3141592658309478 l004 Pi/tanh(107/32*Pi) 3141592658318848 l004 Pi/tanh(331/99*Pi) 3141592658323329 l004 Pi/tanh(224/67*Pi) 3141592658327683 l004 Pi/tanh(341/102*Pi) 3141592658336029 l004 Pi/tanh(117/35*Pi) 3141592658343925 l004 Pi/tanh(361/108*Pi) 3141592658347716 l004 Pi/tanh(244/73*Pi) 3141592658351406 l004 Pi/tanh(371/111*Pi) 3141592658358505 l004 Pi/tanh(127/38*Pi) 3141592658365249 l004 Pi/tanh(391/117*Pi) 3141592658368496 l004 Pi/tanh(264/79*Pi) 3141592658371326 l005 ln(sec(1001/106)) 3141592658371664 l004 Pi/tanh(401/120*Pi) 3141592658377775 l004 Pi/tanh(137/41*Pi) 3141592658386415 l004 Pi/tanh(284/85*Pi) 3141592658394480 l004 Pi/tanh(147/44*Pi) 3141592658402026 l004 Pi/tanh(304/91*Pi) 3141592658409100 l004 Pi/tanh(157/47*Pi) 3141592658415747 l004 Pi/tanh(324/97*Pi) 3141592658422003 l004 Pi/tanh(167/50*Pi) 3141592658427902 l004 Pi/tanh(344/103*Pi) 3141592658433474 l004 Pi/tanh(177/53*Pi) 3141592658438745 l004 Pi/tanh(364/109*Pi) 3141592658443739 l004 Pi/tanh(187/56*Pi) 3141592658448477 l004 Pi/tanh(384/115*Pi) 3141592658452978 l004 Pi/tanh(197/59*Pi) 3141592658456162 l005 ln(sec(1086/115)) 3141592658461339 l004 Pi/tanh(207/62*Pi) 3141592658468940 l004 Pi/tanh(217/65*Pi) 3141592658475881 l004 Pi/tanh(227/68*Pi) 3141592658482244 l004 Pi/tanh(237/71*Pi) 3141592658488098 l004 Pi/tanh(247/74*Pi) 3141592658493502 l004 Pi/tanh(257/77*Pi) 3141592658498506 l004 Pi/tanh(267/80*Pi) 3141592658503154 l004 Pi/tanh(277/83*Pi) 3141592658507480 l004 Pi/tanh(287/86*Pi) 3141592658511519 l004 Pi/tanh(297/89*Pi) 3141592658515297 l004 Pi/tanh(307/92*Pi) 3141592658518840 l004 Pi/tanh(317/95*Pi) 3141592658522167 l004 Pi/tanh(327/98*Pi) 3141592658525299 l004 Pi/tanh(337/101*Pi) 3141592658528252 l004 Pi/tanh(347/104*Pi) 3141592658531042 l004 Pi/tanh(357/107*Pi) 3141592658533680 l004 Pi/tanh(367/110*Pi) 3141592658536180 l004 Pi/tanh(377/113*Pi) 3141592658538551 l004 Pi/tanh(387/116*Pi) 3141592658540804 l004 Pi/tanh(397/119*Pi) 3141592658544622 l005 ln(sec(335/106)) 3141592658545605 l005 ln(sec(178/57)) 3141592658600422 l005 ln(sec(950/101)) 3141592658628713 l004 Pi/tanh(10/3*Pi) 3141592658639822 m001 (2^(1/2))^Psi(2,1/3)+Pi 3141592658668661 l005 ln(sec(256/81)) 3141592658718948 l004 Pi/tanh(393/118*Pi) 3141592658721324 l004 Pi/tanh(383/115*Pi) 3141592658722587 l005 ln(sec(331/106)) 3141592658723827 l004 Pi/tanh(373/112*Pi) 3141592658726470 l004 Pi/tanh(363/109*Pi) 3141592658729265 l004 Pi/tanh(353/106*Pi) 3141592658732223 l004 Pi/tanh(343/103*Pi) 3141592658735361 l004 Pi/tanh(333/100*Pi) 3141592658738695 l004 Pi/tanh(323/97*Pi) 3141592658742245 l004 Pi/tanh(313/94*Pi) 3141592658746031 l004 Pi/tanh(303/91*Pi) 3141592658750078 l004 Pi/tanh(293/88*Pi) 3141592658754414 l004 Pi/tanh(283/85*Pi) 3141592658754858 l005 ln(sec(649/69)) 3141592658759072 l004 Pi/tanh(273/82*Pi) 3141592658764088 l004 Pi/tanh(263/79*Pi) 3141592658769506 l004 Pi/tanh(253/76*Pi) 3141592658775375 l004 Pi/tanh(243/73*Pi) 3141592658781756 l004 Pi/tanh(233/70*Pi) 3141592658788716 l004 Pi/tanh(223/67*Pi) 3141592658796339 l004 Pi/tanh(213/64*Pi) 3141592658804726 l004 Pi/tanh(203/61*Pi) 3141592658809242 l004 Pi/tanh(396/119*Pi) 3141592658813995 l004 Pi/tanh(193/58*Pi) 3141592658819006 l004 Pi/tanh(376/113*Pi) 3141592658821644 m001 Pi+gamma(3)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141592658824295 l004 Pi/tanh(183/55*Pi) 3141592658829887 l004 Pi/tanh(356/107*Pi) 3141592658835808 l004 Pi/tanh(173/52*Pi) 3141592658842087 l004 Pi/tanh(336/101*Pi) 3141592658848760 l004 Pi/tanh(163/49*Pi) 3141592658855863 l004 Pi/tanh(316/95*Pi) 3141592658863440 l004 Pi/tanh(153/46*Pi) 3141592658871540 l004 Pi/tanh(296/89*Pi) 3141592658880219 l004 Pi/tanh(143/43*Pi) 3141592658889541 l004 Pi/tanh(276/83*Pi) 3141592658899580 l004 Pi/tanh(133/40*Pi) 3141592658905304 l005 ln(sec(997/106)) 3141592658906713 l004 Pi/tanh(389/117*Pi) 3141592658909808 l005 ln(sec(177/56)) 3141592658910423 l004 Pi/tanh(256/77*Pi) 3141592658914233 l004 Pi/tanh(379/114*Pi) 3141592658922170 l004 Pi/tanh(123/37*Pi) 3141592658930561 l004 Pi/tanh(359/108*Pi) 3141592658934382 l005 ln(sec(153/49)) 3141592658934729 m004 -100*Pi-Sin[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592658934939 l004 Pi/tanh(236/71*Pi) 3141592658939446 l004 Pi/tanh(349/105*Pi) 3141592658948870 l004 Pi/tanh(113/34*Pi) 3141592658958883 l004 Pi/tanh(329/99*Pi) 3141592658964128 l004 Pi/tanh(216/65*Pi) 3141592658969542 l004 Pi/tanh(319/96*Pi) 3141592658980912 l004 Pi/tanh(103/31*Pi) 3141592658993067 l004 Pi/tanh(299/90*Pi) 3141592658999464 l004 Pi/tanh(196/59*Pi) 3141592659006090 l004 Pi/tanh(289/87*Pi) 3141592659009492 l004 Pi/tanh(382/115*Pi) 3141592659020078 l004 Pi/tanh(93/28*Pi) 3141592659031269 l004 Pi/tanh(362/109*Pi) 3141592659035143 l004 Pi/tanh(269/81*Pi) 3141592659042150 b008 Pi*JacobiDC[3,-1/5] 3141592659043119 l004 Pi/tanh(176/53*Pi) 3141592659051413 l004 Pi/tanh(259/78*Pi) 3141592659055686 l004 Pi/tanh(342/103*Pi) 3141592659069040 l004 Pi/tanh(83/25*Pi) 3141592659083255 l004 Pi/tanh(322/97*Pi) 3141592659088199 l004 Pi/tanh(239/72*Pi) 3141592659092233 l004 Pi/tanh(395/119*Pi) 3141592659098418 l004 Pi/tanh(156/47*Pi) 3141592659104770 l004 Pi/tanh(385/116*Pi) 3141592659109101 l004 Pi/tanh(229/69*Pi) 3141592659114627 l004 Pi/tanh(302/91*Pi) 3141592659118004 l004 Pi/tanh(375/113*Pi) 3141592659131993 l004 Pi/tanh(73/22*Pi) 3141592659141951 l005 ln(sec(275/87)) 3141592659146806 l004 Pi/tanh(355/107*Pi) 3141592659150646 l004 Pi/tanh(282/85*Pi) 3141592659157175 l004 Pi/tanh(209/63*Pi) 3141592659162517 l004 Pi/tanh(345/104*Pi) 3141592659170734 l004 Pi/tanh(136/41*Pi) 3141592659179209 l004 Pi/tanh(335/101*Pi) 3141592659181085 m001 TreeGrowth2nd^exp(Pi)+Pi 3141592659185007 l004 Pi/tanh(199/60*Pi) 3141592659192161 l005 ln(sec(281/90)) 3141592659192429 l004 Pi/tanh(262/79*Pi) 3141592659194619 l005 ln(sec(348/37)) 3141592659196978 l004 Pi/tanh(325/98*Pi) 3141592659200051 l004 Pi/tanh(388/117*Pi) 3141592659215931 l004 Pi/tanh(63/19*Pi) 3141592659218431 m001 BesselJ(1,1)^exp(Pi)+Pi 3141592659232717 l004 Pi/tanh(368/111*Pi) 3141592659236190 l004 Pi/tanh(305/92*Pi) 3141592659241475 l004 Pi/tanh(242/73*Pi) 3141592659250490 l004 Pi/tanh(179/54*Pi) 3141592659254740 l005 ln(sec(373/118)) 3141592659257896 l004 Pi/tanh(295/89*Pi) 3141592659269340 l004 Pi/tanh(116/35*Pi) 3141592659281209 l004 Pi/tanh(285/86*Pi) 3141592659289368 l004 Pi/tanh(169/51*Pi) 3141592659295321 l004 Pi/tanh(391/118*Pi) 3141592659299858 l004 Pi/tanh(222/67*Pi) 3141592659306313 l004 Pi/tanh(275/83*Pi) 3141592659310686 l004 Pi/tanh(328/99*Pi) 3141592659313844 l004 Pi/tanh(381/115*Pi) 3141592659322698 p002 log(1/10*(6^(1/4)-5^(3/4))*10^(3/4)) 3141592659333424 l004 Pi/tanh(53/16*Pi) 3141592659354154 l004 Pi/tanh(361/109*Pi) 3141592659357728 l004 Pi/tanh(308/93*Pi) 3141592659362791 l004 Pi/tanh(255/77*Pi) 3141592659370519 l004 Pi/tanh(202/61*Pi) 3141592659376139 l004 Pi/tanh(351/106*Pi) 3141592659383766 l004 Pi/tanh(149/45*Pi) 3141592659390568 l004 Pi/tanh(394/119*Pi) 3141592659394708 l004 Pi/tanh(245/74*Pi) 3141592659399496 l004 Pi/tanh(341/103*Pi) 3141592659411729 l004 Pi/tanh(96/29*Pi) 3141592659424355 m004 -100*Pi-Cos[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592659424357 l004 Pi/tanh(331/100*Pi) 3141592659429522 l004 Pi/tanh(235/71*Pi) 3141592659434097 l004 Pi/tanh(374/113*Pi) 3141592659441840 l004 Pi/tanh(139/42*Pi) 3141592659450872 l004 Pi/tanh(321/97*Pi) 3141592659457779 l004 Pi/tanh(182/55*Pi) 3141592659467646 l004 Pi/tanh(225/68*Pi) 3141592659469174 l005 ln(sec(1091/116)) 3141592659474354 l004 Pi/tanh(268/81*Pi) 3141592659479212 l004 Pi/tanh(311/94*Pi) 3141592659482893 l004 Pi/tanh(354/107*Pi) 3141592659485777 l004 Pi/tanh(397/120*Pi) 3141592659509572 l004 Pi/tanh(43/13*Pi) 3141592659512343 l005 ln(sec(128/41)) 3141592659534723 l004 Pi/tanh(377/114*Pi) 3141592659537968 l004 Pi/tanh(334/101*Pi) 3141592659542175 l004 Pi/tanh(291/88*Pi) 3141592659542616 l005 ln(sec(85/9)) 3141592659547844 l004 Pi/tanh(248/75*Pi) 3141592659549324 m001 ZetaQ(4)^Otter+Pi 3141592659555900 l004 Pi/tanh(205/62*Pi) 3141592659561350 l004 Pi/tanh(367/111*Pi) 3141592659568252 l004 Pi/tanh(162/49*Pi) 3141592659577278 l004 Pi/tanh(281/85*Pi) 3141592659580466 l005 ln(sec(98/31)) 3141592659589585 l004 Pi/tanh(119/36*Pi) 3141592659600618 l004 Pi/tanh(314/95*Pi) 3141592659601176 l005 ln(sec(743/79)) 3141592659607360 l004 Pi/tanh(195/59*Pi) 3141592659615180 l004 Pi/tanh(271/82*Pi) 3141592659619578 l004 Pi/tanh(347/105*Pi) 3141592659635287 l004 Pi/tanh(76/23*Pi) 3141592659651500 l004 Pi/tanh(337/102*Pi) 3141592659656228 l004 Pi/tanh(261/79*Pi) 3141592659664850 l004 Pi/tanh(185/56*Pi) 3141592659672514 l004 Pi/tanh(294/89*Pi) 3141592659685540 l004 Pi/tanh(109/33*Pi) 3141592659696198 l004 Pi/tanh(360/109*Pi) 3141592659700831 l004 Pi/tanh(251/76*Pi) 3141592659705078 l004 Pi/tanh(393/119*Pi) 3141592659712592 l004 Pi/tanh(142/43*Pi) 3141592659721918 l004 Pi/tanh(317/96*Pi) 3141592659729495 l004 Pi/tanh(175/53*Pi) 3141592659735773 l004 Pi/tanh(383/116*Pi) 3141592659741060 l004 Pi/tanh(208/63*Pi) 3141592659749469 l004 Pi/tanh(241/73*Pi) 3141592659755860 l004 Pi/tanh(274/83*Pi) 3141592659760881 l004 Pi/tanh(307/93*Pi) 3141592659764931 l004 Pi/tanh(340/103*Pi) 3141592659768265 l004 Pi/tanh(373/113*Pi) 3141592659772342 l005 ln(sec(359/115)) 3141592659802715 l004 Pi/tanh(33/10*Pi) 3141592659836170 l004 Pi/tanh(386/117*Pi) 3141592659839306 l004 Pi/tanh(353/107*Pi) 3141592659843090 l004 Pi/tanh(320/97*Pi) 3141592659847748 l004 Pi/tanh(287/87*Pi) 3141592659853620 l004 Pi/tanh(254/77*Pi) 3141592659861253 l004 Pi/tanh(221/67*Pi) 3141592659871580 l004 Pi/tanh(188/57*Pi) 3141592659878242 l004 Pi/tanh(343/104*Pi) 3141592659886330 l004 Pi/tanh(155/47*Pi) 3141592659896359 l004 Pi/tanh(277/84*Pi) 3141592659909121 l004 Pi/tanh(122/37*Pi) 3141592659919755 l004 Pi/tanh(333/101*Pi) 3141592659920029 l005 ln(sec(231/74)) 3141592659925911 l004 Pi/tanh(211/64*Pi) 3141592659932751 l004 Pi/tanh(300/91*Pi) 3141592659936463 l004 Pi/tanh(389/118*Pi) 3141592659948992 l004 Pi/tanh(89/27*Pi) 3141592659964110 l004 Pi/tanh(323/98*Pi) 3141592659969869 l004 Pi/tanh(234/71*Pi) 3141592659974781 l004 Pi/tanh(379/115*Pi) 3141592659977311 l005 ln(sec(395/42)) 3141592659982714 l004 Pi/tanh(145/44*Pi) 3141592659986830 l005 ln(sec(313/99)) 3141592659991414 l004 Pi/tanh(346/105*Pi) 3141592659997697 l004 Pi/tanh(201/61*Pi) 3141592660006165 l004 Pi/tanh(257/78*Pi) 3141592660011608 l004 Pi/tanh(313/95*Pi) 3141592660015401 l004 Pi/tanh(369/112*Pi) 3141592660036641 l004 Pi/tanh(56/17*Pi) 3141592660058538 l004 Pi/tanh(359/109*Pi) 3141592660062592 l004 Pi/tanh(303/92*Pi) 3141592660068489 l004 Pi/tanh(247/75*Pi) 3141592660077854 l004 Pi/tanh(191/58*Pi) 3141592660081692 l005 ln(sec(334/107)) 3141592660084957 l004 Pi/tanh(326/99*Pi) 3141592660095019 l004 Pi/tanh(135/41*Pi) 3141592660104431 l004 Pi/tanh(349/106*Pi) 3141592660110374 l004 Pi/tanh(214/65*Pi) 3141592660117460 l004 Pi/tanh(293/89*Pi) 3141592660121540 l004 Pi/tanh(372/113*Pi) 3141592660136690 l004 Pi/tanh(79/24*Pi) 3141592660153352 l004 Pi/tanh(339/103*Pi) 3141592660158422 l004 Pi/tanh(260/79*Pi) 3141592660167928 l004 Pi/tanh(181/55*Pi) 3141592660176672 l004 Pi/tanh(283/86*Pi) 3141592660178791 l005 ln(sec(215/68)) 3141592660180786 l004 Pi/tanh(385/117*Pi) 3141592660192214 l004 Pi/tanh(102/31*Pi) 3141592660205609 l004 Pi/tanh(329/100*Pi) 3141592660211637 l004 Pi/tanh(227/69*Pi) 3141592660217274 l004 Pi/tanh(352/107*Pi) 3141592660227524 l004 Pi/tanh(125/38*Pi) 3141592660240760 l004 Pi/tanh(273/83*Pi) 3141592660251958 l004 Pi/tanh(148/45*Pi) 3141592660261555 l004 Pi/tanh(319/97*Pi) 3141592660269871 l004 Pi/tanh(171/52*Pi) 3141592660277147 l004 Pi/tanh(365/111*Pi) 3141592660283566 l004 Pi/tanh(194/59*Pi) 3141592660294375 l004 Pi/tanh(217/66*Pi) 3141592660303124 l004 Pi/tanh(240/73*Pi) 3141592660310351 l004 Pi/tanh(263/80*Pi) 3141592660316421 l004 Pi/tanh(286/87*Pi) 3141592660321591 l004 Pi/tanh(309/94*Pi) 3141592660325730 l005 ln(sec(837/89)) 3141592660326047 l004 Pi/tanh(332/101*Pi) 3141592660329929 l004 Pi/tanh(355/108*Pi) 3141592660333339 l004 Pi/tanh(378/115*Pi) 3141592660363710 l005 ln(sec(332/105)) 3141592660386180 l004 Pi/tanh(23/7*Pi) 3141592660438974 l004 Pi/tanh(381/116*Pi) 3141592660442378 l004 Pi/tanh(358/109*Pi) 3141592660446252 l004 Pi/tanh(335/102*Pi) 3141592660450699 l004 Pi/tanh(312/95*Pi) 3141592660455454 l005 ln(sec(103/33)) 3141592660455858 l004 Pi/tanh(289/88*Pi) 3141592660461913 l004 Pi/tanh(266/81*Pi) 3141592660469120 l004 Pi/tanh(243/74*Pi) 3141592660477844 l004 Pi/tanh(220/67*Pi) 3141592660488618 l004 Pi/tanh(197/60*Pi) 3141592660495014 l004 Pi/tanh(371/113*Pi) 3141592660502262 l004 Pi/tanh(174/53*Pi) 3141592660510545 l004 Pi/tanh(325/99*Pi) 3141592660520100 l004 Pi/tanh(151/46*Pi) 3141592660531246 l004 Pi/tanh(279/85*Pi) 3141592660544415 l004 Pi/tanh(128/39*Pi) 3141592660554608 l004 Pi/tanh(361/110*Pi) 3141592660560214 l004 Pi/tanh(233/71*Pi) 3141592660566205 l004 Pi/tanh(338/103*Pi) 3141592660579517 l004 Pi/tanh(105/32*Pi) 3141592660594955 l004 Pi/tanh(292/89*Pi) 3141592660603636 l004 Pi/tanh(187/57*Pi) 3141592660613071 l004 Pi/tanh(269/82*Pi) 3141592660618102 l004 Pi/tanh(351/107*Pi) 3141592660634630 l004 Pi/tanh(82/25*Pi) 3141592660648971 l005 ln(sec(442/47)) 3141592660649651 l004 Pi/tanh(387/118*Pi) 3141592660653694 l004 Pi/tanh(305/93*Pi) 3141592660660716 l004 Pi/tanh(223/68*Pi) 3141592660666605 l004 Pi/tanh(364/111*Pi) 3141592660675927 l004 Pi/tanh(141/43*Pi) 3141592660685890 l004 Pi/tanh(341/104*Pi) 3141592660692921 l004 Pi/tanh(200/61*Pi) 3141592660702189 l004 Pi/tanh(259/79*Pi) 3141592660708023 l004 Pi/tanh(318/97*Pi) 3141592660712033 l004 Pi/tanh(377/115*Pi) 3141592660713680 l005 ln(sec(117/37)) 3141592660733685 l004 Pi/tanh(59/18*Pi) 3141592660754671 l004 Pi/tanh(390/119*Pi) 3141592660756283 l005 ln(sec(1124/119)) 3141592660758417 l004 Pi/tanh(331/101*Pi) 3141592660763792 l004 Pi/tanh(272/83*Pi) 3141592660772152 l004 Pi/tanh(213/65*Pi) 3141592660778354 l004 Pi/tanh(367/112*Pi) 3141592660778640 p002 log(11^(2/3)-2^(2/3)-19^(1/2)) 3141592660786939 l004 Pi/tanh(154/47*Pi) 3141592660799610 l004 Pi/tanh(249/76*Pi) 3141592660805289 l004 Pi/tanh(344/105*Pi) 3141592660820194 l004 Pi/tanh(95/29*Pi) 3141592660836197 l004 Pi/tanh(321/98*Pi) 3141592660838453 m004 -100*Pi-Tan[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592660842933 l004 Pi/tanh(226/69*Pi) 3141592660848995 l004 Pi/tanh(357/109*Pi) 3141592660859464 l004 Pi/tanh(131/40*Pi) 3141592660863189 l005 ln(sec(1039/110)) 3141592660872023 l004 Pi/tanh(298/91*Pi) 3141592660881889 l004 Pi/tanh(167/51*Pi) 3141592660889843 l004 Pi/tanh(370/113*Pi) 3141592660896393 l004 Pi/tanh(203/62*Pi) 3141592660906544 l004 Pi/tanh(239/73*Pi) 3141592660914045 l004 Pi/tanh(275/84*Pi) 3141592660915321 l005 ln(sec(284/91)) 3141592660919814 l004 Pi/tanh(311/95*Pi) 3141592660924389 l004 Pi/tanh(347/106*Pi) 3141592660928106 l004 Pi/tanh(383/117*Pi) 3141592660949368 l005 ln(sec(931/99)) 3141592660964019 l004 Pi/tanh(36/11*Pi) 3141592660990677 l005 ln(sec(954/101)) 3141592660990750 p002 log(1/6*(10^(1/4)-5^(3/4))*6^(3/4)) 3141592661001060 l004 Pi/tanh(373/114*Pi) 3141592661005027 l004 Pi/tanh(337/103*Pi) 3141592661009946 l004 Pi/tanh(301/92*Pi) 3141592661016205 l004 Pi/tanh(265/81*Pi) 3141592661024439 l004 Pi/tanh(229/70*Pi) 3141592661035758 l004 Pi/tanh(193/59*Pi) 3141592661039147 l005 ln(sec(370/117)) 3141592661043173 l004 Pi/tanh(350/107*Pi) 3141592661052296 l004 Pi/tanh(157/48*Pi) 3141592661063797 l004 Pi/tanh(278/85*Pi) 3141592661078744 l004 Pi/tanh(121/37*Pi) 3141592661091472 l004 Pi/tanh(327/100*Pi) 3141592661098958 l004 Pi/tanh(206/63*Pi) 3141592661107377 l004 Pi/tanh(291/89*Pi) 3141592661111994 l004 Pi/tanh(376/115*Pi) 3141592661127817 l004 Pi/tanh(85/26*Pi) 3141592661138792 m001 OrthogonalArrays^Psi(2,1/3)+Pi 3141592661143141 l004 Pi/tanh(389/119*Pi) 3141592661145301 l005 ln(sec(869/92)) 3141592661147430 l004 Pi/tanh(304/93*Pi) 3141592661155055 l004 Pi/tanh(219/67*Pi) 3141592661161627 l004 Pi/tanh(353/108*Pi) 3141592661172379 l004 Pi/tanh(134/41*Pi) 3141592661184368 l004 Pi/tanh(317/97*Pi) 3141592661187066 l005 ln(sec(181/58)) 3141592661193158 l004 Pi/tanh(183/56*Pi) 3141592661193390 l005 ln(sec(253/80)) 3141592661205183 l004 Pi/tanh(232/71*Pi) 3141592661213023 l004 Pi/tanh(281/86*Pi) 3141592661218540 l004 Pi/tanh(330/101*Pi) 3141592661222632 l004 Pi/tanh(379/116*Pi) 3141592661229038 l005 ln(sec(489/52)) 3141592661250244 l004 Pi/tanh(49/15*Pi) 3141592661279739 l004 Pi/tanh(356/109*Pi) 3141592661284456 l004 Pi/tanh(307/94*Pi) 3141592661290970 l004 Pi/tanh(258/79*Pi) 3141592661300546 l004 Pi/tanh(209/64*Pi) 3141592661307248 l004 Pi/tanh(369/113*Pi) 3141592661316011 l004 Pi/tanh(160/49*Pi) 3141592661327956 l004 Pi/tanh(271/83*Pi) 3141592661332964 l004 Pi/tanh(382/117*Pi) 3141592661336711 l005 ln(sec(784/83)) 3141592661345204 l004 Pi/tanh(111/34*Pi) 3141592661361695 l004 Pi/tanh(284/87*Pi) 3141592661372293 l004 Pi/tanh(173/53*Pi) 3141592661385118 l004 Pi/tanh(235/72*Pi) 3141592661392597 l004 Pi/tanh(297/91*Pi) 3141592661397496 l004 Pi/tanh(359/110*Pi) 3141592661421004 l004 Pi/tanh(62/19*Pi) 3141592661442981 l004 Pi/tanh(385/118*Pi) 3141592661447206 l004 Pi/tanh(323/99*Pi) 3141592661453442 l004 Pi/tanh(261/80*Pi) 3141592661463574 l004 Pi/tanh(199/61*Pi) 3141592661471452 l004 Pi/tanh(336/103*Pi) 3141592661482908 l004 Pi/tanh(137/42*Pi) 3141592661489889 l005 ln(sec(1025/109)) 3141592661493618 l005 ln(sec(259/83)) 3141592661493951 l004 Pi/tanh(349/107*Pi) 3141592661501095 l004 Pi/tanh(212/65*Pi) 3141592661502457 m004 -100*Pi-Tanh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592661502470 m004 -E^(-2*Sqrt[5]*Pi)-100*Pi 3141592661509790 l004 Pi/tanh(287/88*Pi) 3141592661514886 l004 Pi/tanh(362/111*Pi) 3141592661534414 l004 Pi/tanh(75/23*Pi) 3141592661552673 l004 Pi/tanh(388/119*Pi) 3141592661557054 l004 Pi/tanh(313/96*Pi) 3141592661564200 l004 Pi/tanh(238/73*Pi) 3141592661577940 l004 Pi/tanh(163/50*Pi) 3141592661579725 l005 ln(sec(699/74)) 3141592661590987 l004 Pi/tanh(251/77*Pi) 3141592661597267 l004 Pi/tanh(339/104*Pi) 3141592661615205 l004 Pi/tanh(88/27*Pi) 3141592661625209 l005 ln(sec(136/43)) 3141592661631897 l004 Pi/tanh(365/112*Pi) 3141592661636503 p002 log(1/14*7^(1/2)-2^(1/4)) 3141592661637207 l004 Pi/tanh(277/85*Pi) 3141592661647469 l004 Pi/tanh(189/58*Pi) 3141592661657283 l004 Pi/tanh(290/89*Pi) 3141592661662027 l005 ln(sec(337/108)) 3141592661662031 l004 Pi/tanh(391/120*Pi) 3141592661675677 l004 Pi/tanh(101/31*Pi) 3141592661692590 l004 Pi/tanh(316/97*Pi) 3141592661700546 l004 Pi/tanh(215/66*Pi) 3141592661708195 l004 Pi/tanh(329/101*Pi) 3141592661722637 l004 Pi/tanh(114/35*Pi) 3141592661733635 l005 ln(sec(536/57)) 3141592661736043 l004 Pi/tanh(355/109*Pi) 3141592661742391 l004 Pi/tanh(241/74*Pi) 3141592661748519 l004 Pi/tanh(368/113*Pi) 3141592661760160 l004 Pi/tanh(127/39*Pi) 3141592661775423 m001 HeathBrownMoroz^FransenRobinson+Pi 3141592661776228 l004 Pi/tanh(267/82*Pi) 3141592661790829 l004 Pi/tanh(140/43*Pi) 3141592661798333 m001 ZetaP(2)^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592661804155 l004 Pi/tanh(293/90*Pi) 3141592661816365 l004 Pi/tanh(153/47*Pi) 3141592661827595 l004 Pi/tanh(319/98*Pi) 3141592661837958 l004 Pi/tanh(166/51*Pi) 3141592661847550 l004 Pi/tanh(345/106*Pi) 3141592661856454 l004 Pi/tanh(179/55*Pi) 3141592661864742 l004 Pi/tanh(371/114*Pi) 3141592661866942 p002 log(13^(1/2)-15^(1/2)*2^(1/4)) 3141592661872476 l004 Pi/tanh(192/59*Pi) 3141592661886489 l004 Pi/tanh(205/63*Pi) 3141592661898295 l005 ln(sec(614/65)) 3141592661898848 l004 Pi/tanh(218/67*Pi) 3141592661909830 l004 Pi/tanh(231/71*Pi) 3141592661919653 l004 Pi/tanh(244/75*Pi) 3141592661928491 l004 Pi/tanh(257/79*Pi) 3141592661936486 l004 Pi/tanh(270/83*Pi) 3141592661943751 l004 Pi/tanh(283/87*Pi) 3141592661950384 l004 Pi/tanh(296/91*Pi) 3141592661956463 l004 Pi/tanh(309/95*Pi) 3141592661961807 l005 ln(sec(1119/119)) 3141592661962054 l004 Pi/tanh(322/99*Pi) 3141592661967215 l004 Pi/tanh(335/103*Pi) 3141592661971992 l004 Pi/tanh(348/107*Pi) 3141592661976427 l004 Pi/tanh(361/111*Pi) 3141592661980557 l004 Pi/tanh(374/115*Pi) 3141592661984410 l004 Pi/tanh(387/119*Pi) 3141592662015429 l005 ln(sec(291/92)) 3141592662095953 l004 Pi/tanh(13/4*Pi) 3141592662175778 l005 ln(sec(583/62)) 3141592662210924 l004 Pi/tanh(380/117*Pi) 3141592662215022 l004 Pi/tanh(367/113*Pi) 3141592662219423 l004 Pi/tanh(354/109*Pi) 3141592662224162 l004 Pi/tanh(341/105*Pi) 3141592662229279 l004 Pi/tanh(328/101*Pi) 3141592662234821 l004 Pi/tanh(315/97*Pi) 3141592662240502 l005 ln(sec(78/25)) 3141592662240845 l004 Pi/tanh(302/93*Pi) 3141592662247414 l004 Pi/tanh(289/89*Pi) 3141592662254608 l004 Pi/tanh(276/85*Pi) 3141592662262519 l004 Pi/tanh(263/81*Pi) 3141592662271260 l004 Pi/tanh(250/77*Pi) 3141592662280970 l004 Pi/tanh(237/73*Pi) 3141592662291818 l004 Pi/tanh(224/69*Pi) 3141592662304018 l004 Pi/tanh(211/65*Pi) 3141592662317838 l004 Pi/tanh(198/61*Pi) 3141592662325460 l004 Pi/tanh(383/118*Pi) 3141592662333624 l004 Pi/tanh(185/57*Pi) 3141592662333762 l005 ln(sec(529/56)) 3141592662342391 l004 Pi/tanh(357/110*Pi) 3141592662351829 l004 Pi/tanh(172/53*Pi) 3141592662362019 l004 Pi/tanh(331/102*Pi) 3141592662369427 l005 ln(sec(155/49)) 3141592662373054 l004 Pi/tanh(159/49*Pi) 3141592662385043 l004 Pi/tanh(305/94*Pi) 3141592662398117 l004 Pi/tanh(146/45*Pi) 3141592662412430 l004 Pi/tanh(279/86*Pi) 3141592662428165 l004 Pi/tanh(133/41*Pi) 3141592662439555 l004 Pi/tanh(386/119*Pi) 3141592662445547 l004 Pi/tanh(253/78*Pi) 3141592662451753 l004 Pi/tanh(373/115*Pi) 3141592662464848 l004 Pi/tanh(120/37*Pi) 3141592662478945 l004 Pi/tanh(347/107*Pi) 3141592662486405 l004 Pi/tanh(227/70*Pi) 3141592662494161 l004 Pi/tanh(334/103*Pi) 3141592662510637 l004 Pi/tanh(107/33*Pi) 3141592662528534 l004 Pi/tanh(308/95*Pi) 3141592662538074 l004 Pi/tanh(201/62*Pi) 3141592662548045 l004 Pi/tanh(295/91*Pi) 3141592662553201 l004 Pi/tanh(389/120*Pi) 3141592662565897 l005 ln(sec(630/67)) 3141592662569399 l004 Pi/tanh(94/29*Pi) 3141592662586787 l004 Pi/tanh(363/112*Pi) 3141592662592870 l004 Pi/tanh(269/83*Pi) 3141592662605500 l004 Pi/tanh(175/54*Pi) 3141592662617241 l005 ln(sec(973/103)) 3141592662618788 l004 Pi/tanh(256/79*Pi) 3141592662625696 l004 Pi/tanh(337/104*Pi) 3141592662647559 l004 Pi/tanh(81/25*Pi) 3141592662671303 l004 Pi/tanh(311/96*Pi) 3141592662679678 l004 Pi/tanh(230/71*Pi) 3141592662686556 l004 Pi/tanh(379/117*Pi) 3141592662691774 l005 ln(sec(329/104)) 3141592662697183 l004 Pi/tanh(149/46*Pi) 3141592662708198 l004 Pi/tanh(366/113*Pi) 3141592662715768 l004 Pi/tanh(217/67*Pi) 3141592662725499 l004 Pi/tanh(285/88*Pi) 3141592662731485 l004 Pi/tanh(353/109*Pi) 3141592662756613 l004 Pi/tanh(68/21*Pi) 3141592662783809 l004 Pi/tanh(327/101*Pi) 3141592662790961 l004 Pi/tanh(259/80*Pi) 3141592662801570 l005 ln(sec(365/117)) 3141592662803218 l004 Pi/tanh(191/59*Pi) 3141592662813339 l004 Pi/tanh(314/97*Pi) 3141592662829074 l004 Pi/tanh(123/38*Pi) 3141592662845516 l004 Pi/tanh(301/93*Pi) 3141592662856892 l004 Pi/tanh(178/55*Pi) 3141592662871608 l004 Pi/tanh(233/72*Pi) 3141592662880713 l004 Pi/tanh(288/89*Pi) 3141592662886903 l004 Pi/tanh(343/106*Pi) 3141592662912357 l005 ln(sec(677/72)) 3141592662919377 l004 Pi/tanh(55/17*Pi) 3141592662949410 l004 Pi/tanh(372/115*Pi) 3141592662954629 l004 Pi/tanh(317/98*Pi) 3141592662958641 l005 ln(sec(287/92)) 3141592662962045 l004 Pi/tanh(262/81*Pi) 3141592662963940 l005 ln(sec(444/47)) 3141592662973411 l004 Pi/tanh(207/64*Pi) 3141592662981714 l004 Pi/tanh(359/111*Pi) 3141592662986361 l005 ln(sec(174/55)) 3141592662993032 l004 Pi/tanh(152/47*Pi) 3141592663009372 l004 Pi/tanh(249/77*Pi) 3141592663016558 l004 Pi/tanh(346/107*Pi) 3141592663035028 l004 Pi/tanh(97/30*Pi) 3141592663054253 l004 Pi/tanh(333/103*Pi) 3141592663062166 l004 Pi/tanh(236/73*Pi) 3141592663069197 l004 Pi/tanh(375/116*Pi) 3141592663081145 l004 Pi/tanh(139/43*Pi) 3141592663095164 l004 Pi/tanh(320/99*Pi) 3141592663105943 l004 Pi/tanh(181/56*Pi) 3141592663121430 l004 Pi/tanh(223/69*Pi) 3141592663132020 l004 Pi/tanh(265/82*Pi) 3141592663139720 l004 Pi/tanh(307/95*Pi) 3141592663145570 l004 Pi/tanh(349/108*Pi) 3141592663188430 l004 Pi/tanh(42/13*Pi) 3141592663214563 p002 log(11^(1/3)/(3^(2/3)-7^(3/4))) 3141592663221899 l005 ln(sec(724/77)) 3141592663229573 l004 Pi/tanh(365/113*Pi) 3141592663234935 l004 Pi/tanh(323/100*Pi) 3141592663237735 l005 ln(sec(209/67)) 3141592663241903 l004 Pi/tanh(281/87*Pi) 3141592663251328 l004 Pi/tanh(239/74*Pi) 3141592663256501 l005 ln(sec(367/116)) 3141592663264785 l004 Pi/tanh(197/61*Pi) 3141592663273932 l004 Pi/tanh(352/109*Pi) 3141592663285569 l004 Pi/tanh(155/48*Pi) 3141592663300872 l004 Pi/tanh(268/83*Pi) 3141592663307104 l004 Pi/tanh(381/118*Pi) 3141592663321899 l004 Pi/tanh(113/35*Pi) 3141592663340908 l004 Pi/tanh(297/92*Pi) 3141592663352598 l004 Pi/tanh(184/57*Pi) 3141592663366230 l004 Pi/tanh(255/79*Pi) 3141592663373932 l004 Pi/tanh(326/101*Pi) 3141592663397331 l005 ln(sec(803/85)) 3141592663401638 l004 Pi/tanh(71/22*Pi) 3141592663425214 l004 Pi/tanh(384/119*Pi) 3141592663430569 l004 Pi/tanh(313/97*Pi) 3141592663439072 l004 Pi/tanh(242/75*Pi) 3141592663454653 l004 Pi/tanh(171/53*Pi) 3141592663468585 l004 Pi/tanh(271/84*Pi) 3141592663475013 l004 Pi/tanh(371/115*Pi) 3141592663478114 l005 ln(sec(340/109)) 3141592663492451 l004 Pi/tanh(100/31*Pi) 3141592663499991 l005 ln(sec(771/82)) 3141592663505026 l005 ln(sec(193/61)) 3141592663512148 l004 Pi/tanh(329/102*Pi) 3141592663520760 l004 Pi/tanh(229/71*Pi) 3141592663528681 l004 Pi/tanh(358/111*Pi) 3141592663542756 l004 Pi/tanh(129/40*Pi) 3141592663560338 l004 Pi/tanh(287/89*Pi) 3141592663574713 l004 Pi/tanh(158/49*Pi) 3141592663586686 l004 Pi/tanh(345/107*Pi) 3141592663596813 l004 Pi/tanh(187/58*Pi) 3141592663613006 l004 Pi/tanh(216/67*Pi) 3141592663625381 l004 Pi/tanh(245/76*Pi) 3141592663635147 l004 Pi/tanh(274/85*Pi) 3141592663643050 l004 Pi/tanh(303/94*Pi) 3141592663649576 l004 Pi/tanh(332/103*Pi) 3141592663655056 l004 Pi/tanh(361/112*Pi) 3141592663717992 l004 Pi/tanh(29/9*Pi) 3141592663751104 l005 ln(sec(818/87)) 3141592663764455 p002 log(1/5*(7^(1/3)-5^(1/4)*3^(3/4))*5^(3/4)) 3141592663780760 l004 Pi/tanh(364/113*Pi) 3141592663786210 l004 Pi/tanh(335/104*Pi) 3141592663792696 l004 Pi/tanh(306/95*Pi) 3141592663800546 l004 Pi/tanh(277/86*Pi) 3141592663810239 l004 Pi/tanh(248/77*Pi) 3141592663822511 l004 Pi/tanh(219/68*Pi) 3141592663838549 l004 Pi/tanh(190/59*Pi) 3141592663848567 l004 Pi/tanh(351/109*Pi) 3141592663860401 l004 Pi/tanh(161/50*Pi) 3141592663870840 l005 ln(sec(131/42)) 3141592663874593 l004 Pi/tanh(293/91*Pi) 3141592663891928 l004 Pi/tanh(132/41*Pi) 3141592663905786 l004 Pi/tanh(367/114*Pi) 3141592663913578 l004 Pi/tanh(235/73*Pi) 3141592663922044 l004 Pi/tanh(338/105*Pi) 3141592663941383 l004 Pi/tanh(103/32*Pi) 3141592663946602 l005 ln(sec(212/67)) 3141592663953958 l005 ln(sec(359/38)) 3141592663958478 l004 Pi/tanh(383/119*Pi) 3141592663964772 l004 Pi/tanh(280/87*Pi) 3141592663978405 l004 Pi/tanh(177/55*Pi) 3141592663978918 l005 ln(sec(865/92)) 3141592663993631 l004 Pi/tanh(251/78*Pi) 3141592664001932 l004 Pi/tanh(325/101*Pi) 3141592664030133 l004 Pi/tanh(74/23*Pi) 3141592664057074 l004 Pi/tanh(341/106*Pi) 3141592664064552 l004 Pi/tanh(267/83*Pi) 3141592664077776 l004 Pi/tanh(193/60*Pi) 3141592664089105 l004 Pi/tanh(312/97*Pi) 3141592664107502 l004 Pi/tanh(119/37*Pi) 3141592664119702 m001 HardHexagonsEntropy^Psi(2,1/3)+Pi 3141592664127818 l004 Pi/tanh(283/88*Pi) 3141592664142581 l004 Pi/tanh(164/51*Pi) 3141592664153795 l004 Pi/tanh(373/116*Pi) 3141592664162602 l004 Pi/tanh(209/65*Pi) 3141592664175547 l004 Pi/tanh(254/79*Pi) 3141592664184604 l004 Pi/tanh(299/93*Pi) 3141592664186336 m001 ZetaP(2)^exp(Pi)+Pi 3141592664186485 l005 ln(sec(912/97)) 3141592664191295 l004 Pi/tanh(344/107*Pi) 3141592664235856 l004 Pi/tanh(45/14*Pi) 3141592664276771 l004 Pi/tanh(376/117*Pi) 3141592664282345 l004 Pi/tanh(331/103*Pi) 3141592664287482 p002 log(13^(1/2)-5^(2/3)-2^(3/4)) 3141592664289676 l004 Pi/tanh(286/89*Pi) 3141592664299752 l004 Pi/tanh(241/75*Pi) 3141592664307677 l005 ln(sec(315/101)) 3141592664314471 l004 Pi/tanh(196/61*Pi) 3141592664324705 l004 Pi/tanh(347/108*Pi) 3141592664326766 l005 ln(sec(231/73)) 3141592664338001 l004 Pi/tanh(151/47*Pi) 3141592664339074 p002 log(4*11^(2/3)-4*9^(3/4)) 3141592664355977 l004 Pi/tanh(257/80*Pi) 3141592664363462 l004 Pi/tanh(363/113*Pi) 3141592664376357 l005 ln(sec(959/102)) 3141592664381631 l004 Pi/tanh(106/33*Pi) 3141592664399058 l004 Pi/tanh(379/118*Pi) 3141592664405831 l004 Pi/tanh(273/85*Pi) 3141592664421218 l004 Pi/tanh(167/52*Pi) 3141592664421645 l005 ln(sec(992/105)) 3141592664439667 l004 Pi/tanh(228/71*Pi) 3141592664450341 l004 Pi/tanh(289/90*Pi) 3141592664457299 l004 Pi/tanh(350/109*Pi) 3141592664490320 l004 Pi/tanh(61/19*Pi) 3141592664520654 l004 Pi/tanh(382/119*Pi) 3141592664526427 l004 Pi/tanh(321/100*Pi) 3141592664534914 l004 Pi/tanh(260/81*Pi) 3141592664548616 l004 Pi/tanh(199/62*Pi) 3141592664550678 l005 ln(sec(1006/107)) 3141592664559198 l004 Pi/tanh(337/105*Pi) 3141592664574474 l004 Pi/tanh(138/43*Pi) 3141592664589075 l004 Pi/tanh(353/110*Pi) 3141592664592458 p002 log(3^(2/3)/(11^(1/3)-7^(3/4))) 3141592664598457 l004 Pi/tanh(215/67*Pi) 3141592664609807 l004 Pi/tanh(292/91*Pi) 3141592664616426 l004 Pi/tanh(369/115*Pi) 3141592664627023 l005 ln(sec(184/59)) 3141592664641557 l004 Pi/tanh(77/24*Pi) 3141592664655521 m002 Pi+Tanh[Pi]/Pi^16 3141592664657304 l005 ln(sec(250/79)) 3141592664670241 l004 Pi/tanh(324/101*Pi) 3141592664679197 l004 Pi/tanh(247/77*Pi) 3141592664693835 l005 ln(sec(633/67)) 3141592664696283 l004 Pi/tanh(170/53*Pi) 3141592664696927 m002 Pi^(-16)+Pi 3141592664711265 l005 ln(sec(1053/112)) 3141592664712352 l004 Pi/tanh(263/82*Pi) 3141592664720032 l004 Pi/tanh(356/111*Pi) 3141592664741779 l004 Pi/tanh(93/29*Pi) 3141592664768073 l004 Pi/tanh(295/92*Pi) 3141592664780197 l004 Pi/tanh(202/63*Pi) 3141592664791709 l004 Pi/tanh(311/97*Pi) 3141592664813071 l004 Pi/tanh(109/34*Pi) 3141592664832471 l004 Pi/tanh(343/107*Pi) 3141592664841518 l004 Pi/tanh(234/73*Pi) 3141592664850169 l004 Pi/tanh(359/112*Pi) 3141592664859667 l005 ln(sec(1100/117)) 3141592664866378 l004 Pi/tanh(125/39*Pi) 3141592664888288 l004 Pi/tanh(266/83*Pi) 3141592664907743 l004 Pi/tanh(141/44*Pi) 3141592664925135 l004 Pi/tanh(298/93*Pi) 3141592664940775 l004 Pi/tanh(157/49*Pi) 3141592664947220 l005 ln(sec(269/85)) 3141592664954915 l004 Pi/tanh(330/103*Pi) 3141592664967761 l004 Pi/tanh(173/54*Pi) 3141592664979483 l004 Pi/tanh(362/113*Pi) 3141592664981116 m001 Pi+gamma(3)^Otter 3141592664990222 l004 Pi/tanh(189/59*Pi) 3141592664997383 l005 ln(sec(907/96)) 3141592665009208 l004 Pi/tanh(205/64*Pi) 3141592665025467 l004 Pi/tanh(221/69*Pi) 3141592665039548 l004 Pi/tanh(237/74*Pi) 3141592665051860 l004 Pi/tanh(253/79*Pi) 3141592665062398 l005 ln(sec(237/76)) 3141592665062718 l004 Pi/tanh(269/84*Pi) 3141592665072365 l004 Pi/tanh(285/89*Pi) 3141592665080992 l004 Pi/tanh(301/94*Pi) 3141592665088753 l004 Pi/tanh(317/99*Pi) 3141592665095772 l004 Pi/tanh(333/104*Pi) 3141592665102152 l004 Pi/tanh(349/109*Pi) 3141592665107974 l004 Pi/tanh(365/114*Pi) 3141592665113310 l004 Pi/tanh(381/119*Pi) 3141592665203491 l005 ln(sec(288/91)) 3141592665235643 l004 Pi/tanh(16/5*Pi) 3141592665345201 l005 ln(sec(290/93)) 3141592665362489 l004 Pi/tanh(371/116*Pi) 3141592665368236 l004 Pi/tanh(355/111*Pi) 3141592665374527 l004 Pi/tanh(339/106*Pi) 3141592665381445 l004 Pi/tanh(323/101*Pi) 3141592665389089 l004 Pi/tanh(307/96*Pi) 3141592665397578 l004 Pi/tanh(291/91*Pi) 3141592665407062 l004 Pi/tanh(275/86*Pi) 3141592665417726 l004 Pi/tanh(259/81*Pi) 3141592665429804 l004 Pi/tanh(243/76*Pi) 3141592665431603 l005 ln(sec(307/97)) 3141592665443599 l004 Pi/tanh(227/71*Pi) 3141592665459504 l004 Pi/tanh(211/66*Pi) 3141592665478043 l004 Pi/tanh(195/61*Pi) 3141592665488514 l004 Pi/tanh(374/117*Pi) 3141592665499930 l004 Pi/tanh(179/56*Pi) 3141592665512425 l004 Pi/tanh(342/107*Pi) 3141592665515059 m002 Pi+ProductLog[Pi]/Pi^16 3141592665526161 l004 Pi/tanh(163/51*Pi) 3141592665541331 l004 Pi/tanh(310/97*Pi) 3141592665543624 l005 ln(sec(343/110)) 3141592665558172 l004 Pi/tanh(147/46*Pi) 3141592665576977 l004 Pi/tanh(278/87*Pi) 3141592665598111 l004 Pi/tanh(131/41*Pi) 3141592665613717 l004 Pi/tanh(377/118*Pi) 3141592665622034 l004 Pi/tanh(246/77*Pi) 3141592665630726 l004 Pi/tanh(361/113*Pi) 3141592665635921 l005 ln(sec(326/103)) 3141592665649338 l004 Pi/tanh(115/36*Pi) 3141592665669790 l004 Pi/tanh(329/103*Pi) 3141592665680794 l004 Pi/tanh(214/67*Pi) 3141592665692370 l004 Pi/tanh(313/98*Pi) 3141592665717426 l004 Pi/tanh(99/31*Pi) 3141592665722463 l005 ln(sec(274/29)) 3141592665738100 l004 Pi/tanh(380/119*Pi) 3141592665745391 l004 Pi/tanh(281/88*Pi) 3141592665760627 l004 Pi/tanh(182/57*Pi) 3141592665776802 l004 Pi/tanh(265/83*Pi) 3141592665785269 l004 Pi/tanh(348/109*Pi) 3141592665812337 l004 Pi/tanh(83/26*Pi) 3141592665819958 l005 ln(sec(345/109)) 3141592665842209 l004 Pi/tanh(316/99*Pi) 3141592665852866 l004 Pi/tanh(233/73*Pi) 3141592665861665 l004 Pi/tanh(383/120*Pi) 3141592665875344 l004 Pi/tanh(150/47*Pi) 3141592665889634 l004 Pi/tanh(367/115*Pi) 3141592665899520 l004 Pi/tanh(217/68*Pi) 3141592665912307 l004 Pi/tanh(284/89*Pi) 3141592665920218 l004 Pi/tanh(351/110*Pi) 3141592665929990 m001 Zeta(1,-1)^Psi(1,1/3)+Pi 3141592665953802 l004 Pi/tanh(67/21*Pi) 3141592665986574 l005 ln(sec(364/115)) 3141592665990851 l004 Pi/tanh(319/100*Pi) 3141592666000718 l004 Pi/tanh(252/79*Pi) 3141592666017748 l004 Pi/tanh(185/58*Pi) 3141592666031928 l004 Pi/tanh(303/95*Pi) 3141592666054189 l004 Pi/tanh(118/37*Pi) 3141592666077729 l004 Pi/tanh(287/90*Pi) 3141592666094189 l004 Pi/tanh(169/53*Pi) 3141592666115692 l004 Pi/tanh(220/69*Pi) 3141592666129118 l004 Pi/tanh(271/85*Pi) 3141592666138299 l004 Pi/tanh(322/101*Pi) 3141592666144973 l004 Pi/tanh(373/117*Pi) 3141592666187184 l004 Pi/tanh(51/16*Pi) 3141592666233502 l004 Pi/tanh(341/107*Pi) 3141592666241664 l004 Pi/tanh(290/91*Pi) 3141592666253317 l004 Pi/tanh(239/75*Pi) 3141592666271311 l004 Pi/tanh(188/59*Pi) 3141592666284558 l004 Pi/tanh(325/102*Pi) 3141592666302757 l004 Pi/tanh(137/43*Pi) 3141592666304462 m002 Pi+Log[Pi]/Pi^16 3141592666319207 l004 Pi/tanh(360/113*Pi) 3141592666329322 l004 Pi/tanh(223/70*Pi) 3141592666341116 l004 Pi/tanh(309/97*Pi) 3141592666371744 l004 Pi/tanh(86/27*Pi) 3141592666396765 l004 Pi/tanh(379/119*Pi) 3141592666401934 l005 ln(sec(1011/107)) 3141592666404117 l004 Pi/tanh(293/92*Pi) 3141592666417588 l004 Pi/tanh(207/65*Pi) 3141592666429632 l004 Pi/tanh(328/103*Pi) 3141592666450261 l004 Pi/tanh(121/38*Pi) 3141592666471724 p002 log(6/19-3^(1/4)) 3141592666474726 l004 Pi/tanh(277/87*Pi) 3141592666493731 l004 Pi/tanh(156/49*Pi) 3141592666508920 l004 Pi/tanh(347/109*Pi) 3141592666521338 l004 Pi/tanh(191/60*Pi) 3141592666540425 l004 Pi/tanh(226/71*Pi) 3141592666554409 l004 Pi/tanh(261/82*Pi) 3141592666565095 l004 Pi/tanh(296/93*Pi) 3141592666573527 l004 Pi/tanh(331/104*Pi) 3141592666580350 l004 Pi/tanh(366/115*Pi) 3141592666586606 m002 Pi+Sinh[Pi]/Pi^18 3141592666635238 m002 Pi+Cosh[Pi]/Pi^18 3141592666645034 l004 Pi/tanh(35/11*Pi) 3141592666661696 l005 ln(sec(737/78)) 3141592666673947 l005 ln(sec(53/17)) 3141592666709478 l004 Pi/tanh(369/116*Pi) 3141592666716248 l004 Pi/tanh(334/105*Pi) 3141592666724606 l004 Pi/tanh(299/94*Pi) 3141592666735189 l004 Pi/tanh(264/83*Pi) 3141592666749017 l004 Pi/tanh(229/72*Pi) 3141592666767856 l004 Pi/tanh(194/61*Pi) 3141592666780090 l004 Pi/tanh(353/111*Pi) 3141592666795032 l004 Pi/tanh(159/50*Pi) 3141592666813690 l004 Pi/tanh(283/89*Pi) 3141592666837649 l004 Pi/tanh(124/39*Pi) 3141592666857800 l004 Pi/tanh(337/106*Pi) 3141592666869543 l004 Pi/tanh(213/67*Pi) 3141592666882659 l004 Pi/tanh(302/95*Pi) 3141592666914095 l004 Pi/tanh(89/28*Pi) 3141592666943732 l004 Pi/tanh(321/101*Pi) 3141592666955116 l004 Pi/tanh(232/73*Pi) 3141592666964869 l004 Pi/tanh(375/118*Pi) 3141592666980705 l004 Pi/tanh(143/45*Pi) 3141592666998190 l004 Pi/tanh(340/107*Pi) 3141592667010895 l004 Pi/tanh(197/62*Pi) 3141592667028123 l004 Pi/tanh(251/79*Pi) 3141592667039261 l004 Pi/tanh(305/96*Pi) 3141592667047053 l004 Pi/tanh(359/113*Pi) 3141592667091141 l004 Pi/tanh(54/17*Pi) 3141592667137425 l004 Pi/tanh(343/108*Pi) 3141592667146089 l004 Pi/tanh(289/91*Pi) 3141592667158744 l004 Pi/tanh(235/74*Pi) 3141592667178971 l004 Pi/tanh(181/57*Pi) 3141592667194423 l004 Pi/tanh(308/97*Pi) 3141592667216472 l004 Pi/tanh(127/40*Pi) 3141592667237269 l004 Pi/tanh(327/103*Pi) 3141592667242648 l005 ln(sec(463/49)) 3141592667250490 l004 Pi/tanh(200/63*Pi) 3141592667266341 l004 Pi/tanh(273/86*Pi) 3141592667275511 l004 Pi/tanh(346/109*Pi) 3141592667309854 l004 Pi/tanh(73/23*Pi) 3141592667348153 l004 Pi/tanh(311/98*Pi) 3141592667359920 l004 Pi/tanh(238/75*Pi) 3141592667382122 l004 Pi/tanh(165/52*Pi) 3141592667402712 l004 Pi/tanh(257/81*Pi) 3141592667412456 l004 Pi/tanh(349/110*Pi) 3141592667439709 l004 Pi/tanh(92/29*Pi) 3141592667472012 l004 Pi/tanh(295/93*Pi) 3141592667486675 l004 Pi/tanh(203/64*Pi) 3141592667500463 l004 Pi/tanh(314/99*Pi) 3141592667525710 l004 Pi/tanh(111/35*Pi) 3141592667548267 l004 Pi/tanh(352/111*Pi) 3141592667558667 l004 Pi/tanh(241/76*Pi) 3141592667568541 l004 Pi/tanh(371/117*Pi) 3141592667586863 l004 Pi/tanh(130/41*Pi) 3141592667611259 l004 Pi/tanh(279/88*Pi) 3141592667632576 l004 Pi/tanh(149/47*Pi) 3141592667637157 l005 ln(sec(1115/118)) 3141592667651362 l004 Pi/tanh(317/100*Pi) 3141592667668042 l004 Pi/tanh(168/53*Pi) 3141592667682951 l004 Pi/tanh(355/112*Pi) 3141592667696358 l004 Pi/tanh(187/59*Pi) 3141592667707151 m001 Pi+gamma(2)^FeigenbaumMu 3141592667719489 l004 Pi/tanh(206/65*Pi) 3141592667738739 l004 Pi/tanh(225/71*Pi) 3141592667755010 l004 Pi/tanh(244/77*Pi) 3141592667768943 l004 Pi/tanh(263/83*Pi) 3141592667781009 l004 Pi/tanh(282/89*Pi) 3141592667791558 l004 Pi/tanh(301/95*Pi) 3141592667800861 l004 Pi/tanh(320/101*Pi) 3141592667809126 l004 Pi/tanh(339/107*Pi) 3141592667816517 l004 Pi/tanh(358/113*Pi) 3141592667823166 l004 Pi/tanh(377/119*Pi) 3141592667871356 l005 ln(sec(346/111)) 3141592667886172 m001 Pi+exp(-1/2*Pi)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592667886172 m001 Pi+exp(-1/2*Pi)^GAMMA(1/12) 3141592667922463 l005 ln(sec(652/69)) 3141592667948972 l004 Pi/tanh(19/6*Pi) 3141592667979678 p002 log(7^(1/2)/(2^(3/4)-9^(2/3))) 3141592668080325 l004 Pi/tanh(364/115*Pi) 3141592668087590 l004 Pi/tanh(345/109*Pi) 3141592668095706 l004 Pi/tanh(326/103*Pi) 3141592668096389 l005 ln(sec(293/94)) 3141592668104832 l004 Pi/tanh(307/97*Pi) 3141592668115167 l004 Pi/tanh(288/91*Pi) 3141592668126971 l004 Pi/tanh(269/85*Pi) 3141592668140580 l004 Pi/tanh(250/79*Pi) 3141592668156442 l004 Pi/tanh(231/73*Pi) 3141592668175167 l004 Pi/tanh(212/67*Pi) 3141592668197607 l004 Pi/tanh(193/61*Pi) 3141592668210584 l004 Pi/tanh(367/116*Pi) 3141592668224990 l004 Pi/tanh(174/55*Pi) 3141592668241075 l004 Pi/tanh(329/104*Pi) 3141592668258861 p002 log(3^(3/4)/(3^(2/3)-19^(1/2))) 3141592668259150 l004 Pi/tanh(155/49*Pi) 3141592668279611 l004 Pi/tanh(291/92*Pi) 3141592668298579 p002 log(1/2*(2^(1/3)-6^(1/2))*2^(3/4)) 3141592668302961 l004 Pi/tanh(136/43*Pi) 3141592668307409 l005 ln(sec(841/89)) 3141592668310905 m001 Pi+arctan(1/2)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592668329859 l004 Pi/tanh(253/80*Pi) 3141592668332785 b008 Pi*Zeta[8,1/10] 3141592668339757 l004 Pi/tanh(370/117*Pi) 3141592668361181 l004 Pi/tanh(117/37*Pi) 3141592668385090 l004 Pi/tanh(332/105*Pi) 3141592668398115 l004 Pi/tanh(215/68*Pi) 3141592668408043 m001 HeathBrownMoroz^exp(1)+Pi 3141592668411943 l004 Pi/tanh(313/99*Pi) 3141592668425455 l005 ln(sec(240/77)) 3141592668442319 l004 Pi/tanh(98/31*Pi) 3141592668467853 l004 Pi/tanh(373/118*Pi) 3141592668476962 l004 Pi/tanh(275/87*Pi) 3141592668496173 l004 Pi/tanh(177/56*Pi) 3141592668516836 l004 Pi/tanh(256/81*Pi) 3141592668527763 l004 Pi/tanh(335/106*Pi) 3141592668555066 l005 ln(sec(1030/109)) 3141592668563223 l004 Pi/tanh(79/25*Pi) 3141592668590484 l005 ln(sec(47/5)) 3141592668594881 l004 Pi/tanh(376/119*Pi) 3141592668603311 l004 Pi/tanh(297/94*Pi) 3141592668617862 l004 Pi/tanh(218/69*Pi) 3141592668629978 l004 Pi/tanh(357/113*Pi) 3141592668648996 l004 Pi/tanh(139/44*Pi) 3141592668669107 l004 Pi/tanh(338/107*Pi) 3141592668683169 l004 Pi/tanh(199/63*Pi) 3141592668701538 l004 Pi/tanh(259/82*Pi) 3141592668713006 l004 Pi/tanh(319/101*Pi) 3141592668720849 l004 Pi/tanh(379/120*Pi) 3141592668762604 l004 Pi/tanh(60/19*Pi) 3141592668809134 l004 Pi/tanh(341/108*Pi) 3141592668819086 l004 Pi/tanh(281/89*Pi) 3141592668834453 l004 Pi/tanh(221/70*Pi) 3141592668861307 l004 Pi/tanh(161/51*Pi) 3141592668883992 l004 Pi/tanh(262/83*Pi) 3141592668894063 l004 Pi/tanh(363/115*Pi) 3141592668920216 l004 Pi/tanh(101/32*Pi) 3141592668947856 l004 Pi/tanh(344/109*Pi) 3141592668952210 l005 ln(sec(187/60)) 3141592668959358 l004 Pi/tanh(243/77*Pi) 3141592668972290 m001 ZetaQ(4)^FransenRobinson+Pi 3141592668987253 l004 Pi/tanh(142/45*Pi) 3141592669008140 l004 Pi/tanh(325/103*Pi) 3141592669015152 m004 -100*Pi-Log[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592669024365 l004 Pi/tanh(183/58*Pi) 3141592669047933 l004 Pi/tanh(224/71*Pi) 3141592669064227 l004 Pi/tanh(265/84*Pi) 3141592669076164 l004 Pi/tanh(306/97*Pi) 3141592669085286 l004 Pi/tanh(347/110*Pi) 3141592669153521 l004 Pi/tanh(41/13*Pi) 3141592669221437 l004 Pi/tanh(350/111*Pi) 3141592669230469 l004 Pi/tanh(309/98*Pi) 3141592669242271 l004 Pi/tanh(268/85*Pi) 3141592669258349 l004 Pi/tanh(227/72*Pi) 3141592669281541 l004 Pi/tanh(186/59*Pi) 3141592669297464 l004 Pi/tanh(331/105*Pi) 3141592669317911 l004 Pi/tanh(145/46*Pi) 3141592669320439 l005 ln(sec(19/6)) 3141592669345129 l004 Pi/tanh(249/79*Pi) 3141592669355067 l005 ln(sec(321/103)) 3141592669356321 l004 Pi/tanh(353/112*Pi) 3141592669383147 l004 Pi/tanh(104/33*Pi) 3141592669408436 l004 Pi/tanh(375/119*Pi) 3141592669415135 m004 -1-100*Pi+Tanh[Sqrt[5]*Pi] 3141592669415147 m004 -2/E^(2*Sqrt[5]*Pi)-100*Pi 3141592669415160 m004 -1+100*Pi+Coth[Sqrt[5]*Pi] 3141592669418151 l004 Pi/tanh(271/86*Pi) 3141592669439985 l004 Pi/tanh(167/53*Pi) 3141592669465747 l004 Pi/tanh(230/73*Pi) 3141592669480447 l004 Pi/tanh(293/93*Pi) 3141592669489950 l004 Pi/tanh(356/113*Pi) 3141592669534217 l004 Pi/tanh(63/20*Pi) 3141592669581100 l004 Pi/tanh(337/107*Pi) 3141592669591897 l004 Pi/tanh(274/87*Pi) 3141592669609155 l004 Pi/tanh(211/67*Pi) 3141592669622338 l004 Pi/tanh(359/114*Pi) 3141592669641150 l004 Pi/tanh(148/47*Pi) 3141592669670174 l004 Pi/tanh(233/74*Pi) 3141592669683698 l004 Pi/tanh(318/101*Pi) 3141592669695249 l005 ln(sec(189/20)) 3141592669720822 l004 Pi/tanh(85/27*Pi) 3141592669753498 l004 Pi/tanh(362/115*Pi) 3141592669763536 l004 Pi/tanh(277/88*Pi) 3141592669782478 l004 Pi/tanh(192/61*Pi) 3141592669800045 l004 Pi/tanh(299/95*Pi) 3141592669831609 l004 Pi/tanh(107/34*Pi) 3141592669859169 l004 Pi/tanh(343/109*Pi) 3141592669871678 l004 Pi/tanh(236/75*Pi) 3141592669883441 l004 Pi/tanh(365/116*Pi) 3141592669904981 l004 Pi/tanh(129/41*Pi) 3141592669930372 l005 ln(sec(134/43)) 3141592669933098 l004 Pi/tanh(280/89*Pi) 3141592669957153 l004 Pi/tanh(151/48*Pi) 3141592669977967 l004 Pi/tanh(324/103*Pi) 3141592669996154 l004 Pi/tanh(173/55*Pi) 3141592670012181 l004 Pi/tanh(368/117*Pi) 3141592670026412 l004 Pi/tanh(195/62*Pi) 3141592670050570 l004 Pi/tanh(217/69*Pi) 3141592670070305 l004 Pi/tanh(239/76*Pi) 3141592670086728 l004 Pi/tanh(261/83*Pi) 3141592670100610 l004 Pi/tanh(283/90*Pi) 3141592670112498 l004 Pi/tanh(305/97*Pi) 3141592670122792 l004 Pi/tanh(327/104*Pi) 3141592670131793 l004 Pi/tanh(349/111*Pi) 3141592670139730 l004 Pi/tanh(371/118*Pi) 3141592670266102 l004 Pi/tanh(22/7*Pi) 3141592670391308 l004 Pi/tanh(377/120*Pi) 3141592670399095 l004 Pi/tanh(355/113*Pi) 3141592670407915 l004 Pi/tanh(333/106*Pi) 3141592670417987 l004 Pi/tanh(311/99*Pi) 3141592670425293 p002 log(17/6-6^(3/4)) 3141592670429600 l004 Pi/tanh(289/92*Pi) 3141592670443136 l004 Pi/tanh(267/85*Pi) 3141592670459115 l004 Pi/tanh(245/78*Pi) 3141592670473216 l005 ln(sec(349/112)) 3141592670478266 l004 Pi/tanh(223/71*Pi) 3141592670487660 p002 log(12^(1/3)*(19^(1/2)-23^(1/2))) 3141592670501634 l004 Pi/tanh(201/64*Pi) 3141592670530788 l004 Pi/tanh(179/57*Pi) 3141592670548249 l004 Pi/tanh(336/107*Pi) 3141592670568177 l004 Pi/tanh(157/50*Pi) 3141592670591134 l004 Pi/tanh(292/93*Pi) 3141592670617868 l004 Pi/tanh(135/43*Pi) 3141592670649392 l004 Pi/tanh(248/79*Pi) 3141592670661195 l004 Pi/tanh(361/115*Pi) 3141592670687124 l004 Pi/tanh(113/36*Pi) 3141592670716694 l004 Pi/tanh(317/101*Pi) 3141592670733094 l004 Pi/tanh(204/65*Pi) 3141592670750732 l004 Pi/tanh(295/94*Pi) 3141592670790332 l004 Pi/tanh(91/29*Pi) 3141592670818281 l005 ln(sec(215/69)) 3141592670824556 l004 Pi/tanh(342/109*Pi) 3141592670836979 l004 Pi/tanh(251/80*Pi) 3141592670863560 l004 Pi/tanh(160/51*Pi) 3141592670877106 l005 ln(sec(1049/111)) 3141592670892737 l004 Pi/tanh(229/73*Pi) 3141592670908421 l004 Pi/tanh(298/95*Pi) 3141592670918213 l004 Pi/tanh(367/117*Pi) 3141592670960564 l004 Pi/tanh(69/22*Pi) 3141592671008797 l004 Pi/tanh(323/103*Pi) 3141592671021920 l004 Pi/tanh(254/81*Pi) 3141592671044854 l004 Pi/tanh(185/59*Pi) 3141592671064228 l004 Pi/tanh(301/96*Pi) 3141592671095166 l004 Pi/tanh(116/37*Pi) 3141592671128599 l004 Pi/tanh(279/89*Pi) 3141592671145341 l005 ln(sec(860/91)) 3141592671152427 l004 Pi/tanh(163/52*Pi) 3141592671170269 l004 Pi/tanh(373/119*Pi) 3141592671184128 l004 Pi/tanh(210/67*Pi) 3141592671204262 l004 Pi/tanh(257/82*Pi) 3141592671218182 l004 Pi/tanh(304/97*Pi) 3141592671228380 l004 Pi/tanh(351/112*Pi) 3141592671231859 l005 ln(sec(296/95)) 3141592671294472 l004 Pi/tanh(47/15*Pi) 3141592671360223 l004 Pi/tanh(354/113*Pi) 3141592671370308 l004 Pi/tanh(307/98*Pi) 3141592671384048 l004 Pi/tanh(260/83*Pi) 3141592671403869 l004 Pi/tanh(213/68*Pi) 3141592671434953 l004 Pi/tanh(166/53*Pi) 3141592671458216 l004 Pi/tanh(285/91*Pi) 3141592671490712 l004 Pi/tanh(119/38*Pi) 3141592671520635 l004 Pi/tanh(310/99*Pi) 3141592671539300 l004 Pi/tanh(191/61*Pi) 3141592671561324 l004 Pi/tanh(263/84*Pi) 3141592671570934 l005 ln(sec(671/71)) 3141592671573892 l004 Pi/tanh(335/107*Pi) 3141592671619866 l004 Pi/tanh(72/23*Pi) 3141592671669188 l004 Pi/tanh(313/100*Pi) 3141592671683947 l004 Pi/tanh(241/77*Pi) 3141592671711309 l004 Pi/tanh(169/54*Pi) 3141592671736133 l004 Pi/tanh(266/85*Pi) 3141592671747700 l004 Pi/tanh(363/116*Pi) 3141592671779454 l004 Pi/tanh(97/31*Pi) 3141592671815994 l004 Pi/tanh(316/101*Pi) 3141592671832199 l004 Pi/tanh(219/70*Pi) 3141592671847227 l004 Pi/tanh(341/109*Pi) 3141592671874232 l004 Pi/tanh(122/39*Pi) 3141592671908518 l004 Pi/tanh(269/86*Pi) 3141592671937016 l004 Pi/tanh(147/47*Pi) 3141592671961078 l004 Pi/tanh(319/102*Pi) 3141592671981665 l004 Pi/tanh(172/55*Pi) 3141592671999480 l004 Pi/tanh(369/118*Pi) 3141592672012502 m001 Pi+HeathBrownMoroz^Khinchin 3141592672015046 l004 Pi/tanh(197/63*Pi) 3141592672040946 l004 Pi/tanh(222/71*Pi) 3141592672061626 l004 Pi/tanh(247/79*Pi) 3141592672078521 l004 Pi/tanh(272/87*Pi) 3141592672092582 l004 Pi/tanh(297/95*Pi) 3141592672104467 l004 Pi/tanh(322/103*Pi) 3141592672114644 l004 Pi/tanh(347/111*Pi) 3141592672123458 l004 Pi/tanh(372/119*Pi) 3141592672246185 l004 Pi/tanh(25/8*Pi) 3141592672295801 m001 HeathBrownMoroz^FeigenbaumD+Pi 3141592672349494 l005 ln(sec(482/51)) 3141592672365558 l005 ln(sec(81/26)) 3141592672376306 l004 Pi/tanh(353/113*Pi) 3141592672386257 l004 Pi/tanh(328/105*Pi) 3141592672397857 l004 Pi/tanh(303/97*Pi) 3141592672411550 l004 Pi/tanh(278/89*Pi) 3141592672427962 l004 Pi/tanh(253/81*Pi) 3141592672441890 m001 arctan(1/2)^exp(Pi)+Pi 3141592672447990 l004 Pi/tanh(228/73*Pi) 3141592672472978 l004 Pi/tanh(203/65*Pi) 3141592672505029 l004 Pi/tanh(178/57*Pi) 3141592672524709 l004 Pi/tanh(331/106*Pi) 3141592672547629 l004 Pi/tanh(153/49*Pi) 3141592672574658 l004 Pi/tanh(281/90*Pi) 3141592672607013 l004 Pi/tanh(128/41*Pi) 3141592672632372 l004 Pi/tanh(359/115*Pi) 3141592672646437 l004 Pi/tanh(231/74*Pi) 3141592672661565 l004 Pi/tanh(334/107*Pi) 3141592672695532 l004 Pi/tanh(103/33*Pi) 3141592672735549 l004 Pi/tanh(284/91*Pi) 3141592672758354 l004 Pi/tanh(181/58*Pi) 3141592672783389 l004 Pi/tanh(259/83*Pi) 3141592672796847 l004 Pi/tanh(337/108*Pi) 3141592672825040 m001 gamma(2)^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141592672825741 m001 HeathBrownMoroz^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Pi 3141592672841596 l004 Pi/tanh(78/25*Pi) 3141592672882996 l004 Pi/tanh(365/117*Pi) 3141592672894261 l004 Pi/tanh(287/92*Pi) 3141592672913948 l004 Pi/tanh(209/67*Pi) 3141592672930581 l004 Pi/tanh(340/109*Pi) 3141592672957144 l004 Pi/tanh(131/42*Pi) 3141592672985852 l004 Pi/tanh(315/101*Pi) 3141592673006314 l004 Pi/tanh(184/59*Pi) 3141592673033541 l004 Pi/tanh(237/76*Pi) 3141592673043801 l005 ln(sec(775/82)) 3141592673050833 l004 Pi/tanh(290/93*Pi) 3141592673062789 l004 Pi/tanh(343/110*Pi) 3141592673128329 l004 Pi/tanh(53/17*Pi) 3141592673136162 l005 ln(sec(1109/118)) 3141592673141176 l005 ln(sec(377/119)) 3141592673193495 l004 Pi/tanh(346/111*Pi) 3141592673205304 l004 Pi/tanh(293/94*Pi) 3141592673222339 l004 Pi/tanh(240/77*Pi) 3141592673249057 l004 Pi/tanh(187/60*Pi) 3141592673269055 l004 Pi/tanh(321/103*Pi) 3141592673296993 l004 Pi/tanh(134/43*Pi) 3141592673310422 p002 log(1/10*(21^(1/2)-6^(1/2)*10^(1/2))*10^(1/2)) 3141592673322720 l004 Pi/tanh(349/112*Pi) 3141592673338771 l004 Pi/tanh(215/69*Pi) 3141592673357710 l004 Pi/tanh(296/95*Pi) 3141592673358627 l005 ln(sec(1062/113)) 3141592673360216 l005 ln(sec(352/113)) 3141592673361806 l005 ln(sec(358/113)) 3141592673363395 l005 ln(sec(1068/113)) 3141592673408059 l004 Pi/tanh(81/26*Pi) 3141592673450488 l004 Pi/tanh(352/113*Pi) 3141592673463185 l004 Pi/tanh(271/87*Pi) 3141592673486728 l004 Pi/tanh(190/61*Pi) 3141592673508088 l004 Pi/tanh(299/96*Pi) 3141592673545370 l004 Pi/tanh(109/35*Pi) 3141592673576819 l004 Pi/tanh(355/114*Pi) 3141592673590769 l004 Pi/tanh(246/79*Pi) 3141592673603855 l005 ln(sec(1015/108)) 3141592673609367 l005 ln(sec(339/107)) 3141592673626955 l004 Pi/tanh(137/44*Pi) 3141592673656475 l004 Pi/tanh(302/97*Pi) 3141592673664996 l005 ln(sec(271/87)) 3141592673681014 l004 Pi/tanh(165/53*Pi) 3141592673701737 l004 Pi/tanh(358/115*Pi) 3141592673719468 l004 Pi/tanh(193/62*Pi) 3141592673748220 l004 Pi/tanh(221/71*Pi) 3141592673770532 l004 Pi/tanh(249/80*Pi) 3141592673788349 l004 Pi/tanh(277/89*Pi) 3141592673802905 l004 Pi/tanh(305/98*Pi) 3141592673815020 l004 Pi/tanh(333/107*Pi) 3141592673825261 l004 Pi/tanh(361/116*Pi) 3141592673875510 l005 ln(sec(968/103)) 3141592673889088 l005 ln(sec(320/101)) 3141592673947413 l004 Pi/tanh(28/9*Pi) 3141592674068213 l004 Pi/tanh(367/118*Pi) 3141592674078219 l004 Pi/tanh(339/109*Pi) 3141592674090033 l004 Pi/tanh(311/100*Pi) 3141592674104192 l004 Pi/tanh(283/91*Pi) 3141592674121473 l004 Pi/tanh(255/82*Pi) 3141592674143036 l004 Pi/tanh(227/73*Pi) 3141592674170695 l004 Pi/tanh(199/64*Pi) 3141592674178077 l005 ln(sec(921/98)) 3141592674187682 l004 Pi/tanh(370/119*Pi) 3141592674207465 l004 Pi/tanh(171/55*Pi) 3141592674207643 l005 ln(sec(301/95)) 3141592674227767 l005 ln(sec(293/31)) 3141592674230799 l004 Pi/tanh(314/101*Pi) 3141592674238885 l005 ln(sec(190/61)) 3141592674258732 l004 Pi/tanh(143/46*Pi) 3141592674292774 l004 Pi/tanh(258/83*Pi) 3141592674305839 l004 Pi/tanh(373/120*Pi) 3141592674335176 l004 Pi/tanh(115/37*Pi) 3141592674369743 l004 Pi/tanh(317/102*Pi) 3141592674389445 l004 Pi/tanh(202/65*Pi) 3141592674411075 l004 Pi/tanh(289/93*Pi) 3141592674461376 l004 Pi/tanh(87/28*Pi) 3141592674506897 l004 Pi/tanh(320/103*Pi) 3141592674517116 l005 ln(sec(874/93)) 3141592674523917 l004 Pi/tanh(233/75*Pi) 3141592674561264 l004 Pi/tanh(146/47*Pi) 3141592674573675 l005 ln(sec(282/89)) 3141592674586089 l004 Pi/tanh(351/113*Pi) 3141592674603786 l004 Pi/tanh(205/66*Pi) 3141592674627334 l004 Pi/tanh(264/85*Pi) 3141592674642293 l004 Pi/tanh(323/104*Pi) 3141592674709341 l004 Pi/tanh(59/19*Pi) 3141592674769521 l005 ln(sec(299/96)) 3141592674775961 l004 Pi/tanh(326/105*Pi) 3141592674790708 l004 Pi/tanh(267/86*Pi) 3141592674813839 l004 Pi/tanh(208/67*Pi) 3141592674831153 l004 Pi/tanh(357/115*Pi) 3141592674855345 l004 Pi/tanh(149/48*Pi) 3141592674891527 l004 Pi/tanh(239/77*Pi) 3141592674899591 l005 ln(sec(827/88)) 3141592674907932 l004 Pi/tanh(329/106*Pi) 3141592674951550 l004 Pi/tanh(90/29*Pi) 3141592674969506 m004 -100*Pi-Sech[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592674969573 m004 -100*Pi-Csch[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592674998585 l005 ln(sec(263/83)) 3141592674999318 l004 Pi/tanh(301/97*Pi) 3141592675019722 l004 Pi/tanh(211/68*Pi) 3141592675038236 l004 Pi/tanh(332/107*Pi) 3141592675070554 l004 Pi/tanh(121/39*Pi) 3141592675109917 l004 Pi/tanh(273/88*Pi) 3141592675141297 l004 Pi/tanh(152/49*Pi) 3141592675166900 l004 Pi/tanh(335/108*Pi) 3141592675188187 l004 Pi/tanh(183/59*Pi) 3141592675198742 l005 ln(sec(983/104)) 3141592675221548 l004 Pi/tanh(214/69*Pi) 3141592675246497 l004 Pi/tanh(245/79*Pi) 3141592675265859 l004 Pi/tanh(276/89*Pi) 3141592675281321 l004 Pi/tanh(307/99*Pi) 3141592675293955 l004 Pi/tanh(338/109*Pi) 3141592675304471 l004 Pi/tanh(369/119*Pi) 3141592675334352 l005 ln(sec(780/83)) 3141592675419428 l004 Pi/tanh(31/10*Pi) 3141592675497720 l005 ln(sec(244/77)) 3141592675543345 l004 Pi/tanh(344/111*Pi) 3141592675555653 l004 Pi/tanh(313/101*Pi) 3141592675570674 l004 Pi/tanh(282/91*Pi) 3141592675589419 l004 Pi/tanh(251/81*Pi) 3141592675613468 l004 Pi/tanh(220/71*Pi) 3141592675621274 l005 ln(sec(690/73)) 3141592675645442 l004 Pi/tanh(189/61*Pi) 3141592675665735 l004 Pi/tanh(347/112*Pi) 3141592675690032 l004 Pi/tanh(158/51*Pi) 3141592675718712 l005 ln(sec(109/35)) 3141592675719647 l004 Pi/tanh(285/92*Pi) 3141592675756540 l004 Pi/tanh(127/41*Pi) 3141592675786623 l004 Pi/tanh(350/113*Pi) 3141592675803771 l004 Pi/tanh(223/72*Pi) 3141592675816804 m001 Bloch^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592675822600 l004 Pi/tanh(319/103*Pi) 3141592675832801 l005 ln(sec(733/78)) 3141592675837662 r005 Im(z^2+c),c=-7/12+19/67*I,n=3 3141592675866393 l004 Pi/tanh(96/31*Pi) 3141592675906034 l004 Pi/tanh(353/114*Pi) 3141592675920858 l004 Pi/tanh(257/83*Pi) 3141592675953391 l004 Pi/tanh(161/52*Pi) 3141592675990438 l004 Pi/tanh(226/73*Pi) 3141592676008698 l005 ln(sec(1087/115)) 3141592676010959 l004 Pi/tanh(291/94*Pi) 3141592676023994 l004 Pi/tanh(356/115*Pi) 3141592676082438 l004 Pi/tanh(65/21*Pi) 3141592676083768 m001 ZetaP(3)^Psi(1,1/3)+Pi 3141592676092225 l005 ln(sec(225/71)) 3141592676140528 l004 Pi/tanh(359/116*Pi) 3141592676153390 l004 Pi/tanh(294/95*Pi) 3141592676173565 l004 Pi/tanh(229/74*Pi) 3141592676209774 l004 Pi/tanh(164/53*Pi) 3141592676241345 l004 Pi/tanh(263/85*Pi) 3141592676255660 l004 Pi/tanh(362/117*Pi) 3141592676293730 l004 Pi/tanh(99/32*Pi) 3141592676335431 l004 Pi/tanh(331/107*Pi) 3141592676353247 l004 Pi/tanh(232/75*Pi) 3141592676369414 l004 Pi/tanh(365/118*Pi) 3141592676397639 l004 Pi/tanh(133/43*Pi) 3141592676409889 l005 ln(sec(686/73)) 3141592676432023 l004 Pi/tanh(300/97*Pi) 3141592676459440 l004 Pi/tanh(167/54*Pi) 3141592676481812 l004 Pi/tanh(368/119*Pi) 3141592676500415 l004 Pi/tanh(201/65*Pi) 3141592676529573 l004 Pi/tanh(235/76*Pi) 3141592676542478 l005 ln(sec(355/114)) 3141592676551383 l004 Pi/tanh(269/87*Pi) 3141592676568310 l004 Pi/tanh(303/98*Pi) 3141592676581830 l004 Pi/tanh(337/109*Pi) 3141592676592878 l004 Pi/tanh(371/120*Pi) 3141592676694213 l005 ln(sec(397/42)) 3141592676702633 l004 Pi/tanh(34/11*Pi) 3141592676812051 l005 ln(sec(206/65)) 3141592676821877 l004 Pi/tanh(343/111*Pi) 3141592676835031 l004 Pi/tanh(309/100*Pi) 3141592676851447 l004 Pi/tanh(275/89*Pi) 3141592676872511 l004 Pi/tanh(241/78*Pi) 3141592676900521 l004 Pi/tanh(207/67*Pi) 3141592676914699 l005 ln(sec(246/79)) 3141592676928004 m004 -100*Pi-Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592676928077 m004 -100*Pi-Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi]^2 3141592676939590 l004 Pi/tanh(173/56*Pi) 3141592676965543 l004 Pi/tanh(312/101*Pi) 3141592676997881 l004 Pi/tanh(139/45*Pi) 3141592677039290 l004 Pi/tanh(244/79*Pi) 3141592677055800 l004 Pi/tanh(349/113*Pi) 3141592677085592 l005 ln(sec(639/68)) 3141592677094208 l004 Pi/tanh(105/34*Pi) 3141592677141988 l004 Pi/tanh(281/91*Pi) 3141592677170535 l004 Pi/tanh(176/57*Pi) 3141592677203049 l004 Pi/tanh(247/80*Pi) 3141592677221062 l004 Pi/tanh(318/103*Pi) 3141592677283821 l004 Pi/tanh(71/23*Pi) 3141592677327824 m004 -3/E^(2*Sqrt[5]*Pi)-100*Pi 3141592677346141 l004 Pi/tanh(321/104*Pi) 3141592677363867 l004 Pi/tanh(250/81*Pi) 3141592677395684 l004 Pi/tanh(179/58*Pi) 3141592677423430 l004 Pi/tanh(287/93*Pi) 3141592677469481 l004 Pi/tanh(108/35*Pi) 3141592677506149 l004 Pi/tanh(361/117*Pi) 3141592677521817 l004 Pi/tanh(253/82*Pi) 3141592677544945 l005 ln(sec(898/95)) 3141592677560866 l004 Pi/tanh(145/47*Pi) 3141592677572891 m001 exp(1/Pi)^Psi(2,1/3)+Pi 3141592677591117 l004 Pi/tanh(327/106*Pi) 3141592677615242 l004 Pi/tanh(182/59*Pi) 3141592677651305 l004 Pi/tanh(219/71*Pi) 3141592677676974 l004 Pi/tanh(256/83*Pi) 3141592677696175 l004 Pi/tanh(293/95*Pi) 3141592677701025 l005 ln(sec(187/59)) 3141592677711081 l004 Pi/tanh(330/107*Pi) 3141592677722986 l004 Pi/tanh(367/119*Pi) 3141592677829406 l004 Pi/tanh(37/12*Pi) 3141592677887196 l005 ln(sec(592/63)) 3141592677900156 l005 ln(sec(137/44)) 3141592677946125 l004 Pi/tanh(336/109*Pi) 3141592677960603 l004 Pi/tanh(299/97*Pi) 3141592677979183 l004 Pi/tanh(262/85*Pi) 3141592678003892 l004 Pi/tanh(225/73*Pi) 3141592678038364 l004 Pi/tanh(188/61*Pi) 3141592678061269 l004 Pi/tanh(339/110*Pi) 3141592678089812 l004 Pi/tanh(151/49*Pi) 3141592678126369 l004 Pi/tanh(265/86*Pi) 3141592678174867 l004 Pi/tanh(114/37*Pi) 3141592678217074 l004 Pi/tanh(305/99*Pi) 3141592678228512 l005 ln(sec(355/112)) 3141592678235626 l005 ln(sec(501/53)) 3141592678242297 l004 Pi/tanh(191/62*Pi) 3141592678271030 l004 Pi/tanh(268/87*Pi) 3141592678286950 l004 Pi/tanh(345/112*Pi) 3141592678342433 l004 Pi/tanh(77/25*Pi) 3141592678397548 l004 Pi/tanh(348/113*Pi) 3141592678413227 l004 Pi/tanh(271/88*Pi) 3141592678441377 l004 Pi/tanh(194/63*Pi) 3141592678465929 l004 Pi/tanh(311/101*Pi) 3141592678506687 l004 Pi/tanh(117/38*Pi) 3141592678553021 l004 Pi/tanh(274/89*Pi) 3141592678587601 l004 Pi/tanh(157/51*Pi) 3141592678614395 l004 Pi/tanh(354/115*Pi) 3141592678635768 l004 Pi/tanh(197/64*Pi) 3141592678667722 l004 Pi/tanh(237/77*Pi) 3141592678690469 l004 Pi/tanh(277/90*Pi) 3141592678707488 l004 Pi/tanh(317/103*Pi) 3141592678720700 l004 Pi/tanh(357/116*Pi) 3141592678725550 l005 ln(sec(302/97)) 3141592678807336 l005 ln(sec(1106/117)) 3141592678825629 l004 Pi/tanh(40/13*Pi) 3141592678825845 l005 ln(sec(168/53)) 3141592678852937 l005 ln(sec(545/58)) 3141592678929205 l004 Pi/tanh(363/118*Pi) 3141592678942059 l004 Pi/tanh(323/105*Pi) 3141592678958554 l004 Pi/tanh(283/92*Pi) 3141592678980495 l004 Pi/tanh(243/79*Pi) 3141592679011110 l004 Pi/tanh(203/66*Pi) 3141592679025866 m001 Pi+exp(-Pi)^(2*Pi/GAMMA(5/6)) 3141592679025866 m001 Pi+exp(-Pi)^GAMMA(1/6) 3141592679031456 l004 Pi/tanh(366/119*Pi) 3141592679056814 l004 Pi/tanh(163/53*Pi) 3141592679089298 l004 Pi/tanh(286/93*Pi) 3141592679132404 l004 Pi/tanh(123/40*Pi) 3141592679169929 l004 Pi/tanh(329/107*Pi) 3141592679192358 l004 Pi/tanh(206/67*Pi) 3141592679217913 l004 Pi/tanh(289/94*Pi) 3141592679281438 l004 Pi/tanh(83/27*Pi) 3141592679288265 l005 ln(sec(605/64)) 3141592679344449 l004 Pi/tanh(292/95*Pi) 3141592679369511 l004 Pi/tanh(209/68*Pi) 3141592679391374 l004 Pi/tanh(335/109*Pi) 3141592679413708 l005 ln(sec(1043/111)) 3141592679426603 l005 ln(sec(165/53)) 3141592679427675 l004 Pi/tanh(126/41*Pi) 3141592679468954 l004 Pi/tanh(295/96*Pi) 3141592679492302 m001 Weierstrass^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592679499768 l004 Pi/tanh(169/55*Pi) 3141592679507683 l005 ln(sec(317/100)) 3141592679542702 l004 Pi/tanh(212/69*Pi) 3141592679571191 l004 Pi/tanh(255/83*Pi) 3141592679591475 l004 Pi/tanh(298/97*Pi) 3141592679606653 l004 Pi/tanh(341/111*Pi) 3141592679632051 m002 E^Pi/Pi^18+Pi 3141592679712058 l004 Pi/tanh(43/14*Pi) 3141592679816014 l004 Pi/tanh(347/113*Pi) 3141592679830748 l004 Pi/tanh(304/99*Pi) 3141592679850348 l004 Pi/tanh(261/85*Pi) 3141592679877703 l004 Pi/tanh(218/71*Pi) 3141592679918548 l004 Pi/tanh(175/57*Pi) 3141592679947587 l004 Pi/tanh(307/100*Pi) 3141592679986129 l004 Pi/tanh(132/43*Pi) 3141592680019690 l004 Pi/tanh(353/115*Pi) 3141592680029243 l005 ln(sec(358/115)) 3141592680038026 l005 ln(sec(498/53)) 3141592680039753 l004 Pi/tanh(221/72*Pi) 3141592680052211 l005 ln(sec(709/75)) 3141592680062617 l004 Pi/tanh(310/101*Pi) 3141592680119466 l004 Pi/tanh(89/29*Pi) 3141592680150042 m001 Pi+Ei(1,1)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592680175879 l004 Pi/tanh(313/102*Pi) 3141592680198322 l004 Pi/tanh(224/73*Pi) 3141592680217904 l004 Pi/tanh(359/117*Pi) 3141592680250424 l004 Pi/tanh(135/44*Pi) 3141592680287412 l004 Pi/tanh(316/103*Pi) 3141592680293040 l005 ln(sec(149/47)) 3141592680315030 l004 Pi/tanh(181/59*Pi) 3141592680353518 l004 Pi/tanh(227/74*Pi) 3141592680372191 m001 PlouffeB^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141592680379063 l004 Pi/tanh(273/89*Pi) 3141592680397255 l004 Pi/tanh(319/104*Pi) 3141592680410868 l004 Pi/tanh(365/119*Pi) 3141592680505444 l004 Pi/tanh(46/15*Pi) 3141592680552709 l005 ln(sec(193/62)) 3141592680612017 l004 Pi/tanh(325/106*Pi) 3141592680629625 l004 Pi/tanh(279/91*Pi) 3141592680631689 l005 ln(sec(813/86)) 3141592680654201 l004 Pi/tanh(233/76*Pi) 3141592680690907 l004 Pi/tanh(187/61*Pi) 3141592680717008 l004 Pi/tanh(328/107*Pi) 3141592680737143 l005 ln(sec(949/101)) 3141592680751659 l004 Pi/tanh(141/46*Pi) 3141592680799885 l004 Pi/tanh(236/77*Pi) 3141592680820451 l004 Pi/tanh(331/108*Pi) 3141592680871603 l004 Pi/tanh(95/31*Pi) 3141592680882059 m001 ZetaQ(4)^exp(1)+Pi 3141592680922380 l004 Pi/tanh(334/109*Pi) 3141592680942587 l004 Pi/tanh(239/78*Pi) 3141592680989508 l004 Pi/tanh(144/47*Pi) 3141592681022827 l004 Pi/tanh(337/110*Pi) 3141592681047711 l004 Pi/tanh(193/63*Pi) 3141592681082397 l004 Pi/tanh(242/79*Pi) 3141592681086224 l005 ln(sec(917/97)) 3141592681105423 l004 Pi/tanh(291/95*Pi) 3141592681121823 l004 Pi/tanh(340/111*Pi) 3141592681207011 l005 ln(sec(279/88)) 3141592681219399 l004 Pi/tanh(49/16*Pi) 3141592681315585 l004 Pi/tanh(346/113*Pi) 3141592681331483 l004 Pi/tanh(297/97*Pi) 3141592681353677 l004 Pi/tanh(248/81*Pi) 3141592681386830 l004 Pi/tanh(199/65*Pi) 3141592681410410 l004 Pi/tanh(349/114*Pi) 3141592681417021 l005 ln(sec(221/71)) 3141592681441720 l004 Pi/tanh(150/49*Pi) 3141592681452247 l005 ln(sec(1021/108)) 3141592681485308 l004 Pi/tanh(251/82*Pi) 3141592681503901 l004 Pi/tanh(352/115*Pi) 3141592681525090 l005 ln(sec(451/48)) 3141592681550155 l004 Pi/tanh(101/33*Pi) 3141592681596086 l004 Pi/tanh(355/116*Pi) 3141592681614369 l004 Pi/tanh(254/83*Pi) 3141592681656831 l004 Pi/tanh(153/50*Pi) 3141592681686992 l004 Pi/tanh(358/117*Pi) 3141592681709522 l004 Pi/tanh(205/67*Pi) 3141592681740933 l004 Pi/tanh(257/84*Pi) 3141592681753296 l005 ln(sec(1125/119)) 3141592681761789 l004 Pi/tanh(309/101*Pi) 3141592681776645 l004 Pi/tanh(361/118*Pi) 3141592681807459 p002 log(1/2*(8-2^(2/3)*11^(3/4))*2^(1/3)) 3141592681865071 l004 Pi/tanh(52/17*Pi) 3141592681893667 m001 Bloch^exp(Pi)+Pi 3141592681925213 p002 log(14^(1/2)/(2^(1/3)-5)) 3141592681952293 l004 Pi/tanh(367/120*Pi) 3141592681966714 l004 Pi/tanh(315/103*Pi) 3141592681986850 l004 Pi/tanh(263/86*Pi) 3141592682002856 p002 log(3^(2/3)/(10^(1/2)-12^(2/3))) 3141592682016934 l004 Pi/tanh(211/69*Pi) 3141592682054137 m001 Pi+gamma(3)^FransenRobinson 3141592682066758 l004 Pi/tanh(159/52*Pi) 3141592682101028 l005 ln(sec(249/80)) 3141592682106336 l004 Pi/tanh(266/87*Pi) 3141592682165239 l004 Pi/tanh(107/35*Pi) 3141592682223592 l004 Pi/tanh(269/88*Pi) 3141592682262193 l004 Pi/tanh(162/53*Pi) 3141592682283380 l005 ln(sec(130/41)) 3141592682310108 l004 Pi/tanh(217/71*Pi) 3141592682338680 l004 Pi/tanh(272/89*Pi) 3141592682357654 l004 Pi/tanh(327/107*Pi) 3141592682419577 l005 ln(sec(855/91)) 3141592682451657 l004 Pi/tanh(55/18*Pi) 3141592682544233 l004 Pi/tanh(333/109*Pi) 3141592682562580 l004 Pi/tanh(278/91*Pi) 3141592682584389 m004 -100*Pi-Sech[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592682584481 m004 -100*Pi-Csch[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592682589997 l004 Pi/tanh(223/73*Pi) 3141592682635415 l004 Pi/tanh(168/55*Pi) 3141592682655677 l005 ln(sec(277/89)) 3141592682671505 l004 Pi/tanh(281/92*Pi) 3141592682725234 l004 Pi/tanh(113/37*Pi) 3141592682778483 l004 Pi/tanh(284/93*Pi) 3141592682813719 l004 Pi/tanh(171/56*Pi) 3141592682857471 l004 Pi/tanh(229/75*Pi) 3141592682883567 l004 Pi/tanh(287/94*Pi) 3141592682900900 l004 Pi/tanh(345/113*Pi) 3141592682986804 l004 Pi/tanh(58/19*Pi) 3141592683071460 l004 Pi/tanh(351/115*Pi) 3141592683088244 l004 Pi/tanh(293/96*Pi) 3141592683113328 l004 Pi/tanh(235/77*Pi) 3141592683113461 l005 ln(sec(371/117)) 3141592683114420 l005 ln(sec(305/98)) 3141592683154894 l004 Pi/tanh(177/58*Pi) 3141592683187931 l004 Pi/tanh(296/97*Pi) 3141592683237131 l004 Pi/tanh(119/39*Pi) 3141592683285910 l004 Pi/tanh(299/98*Pi) 3141592683318198 l004 Pi/tanh(180/59*Pi) 3141592683358300 l004 Pi/tanh(241/79*Pi) 3141592683382225 l004 Pi/tanh(302/99*Pi) 3141592683398118 l004 Pi/tanh(363/119*Pi) 3141592683443265 l005 ln(sec(404/43)) 3141592683476916 l004 Pi/tanh(61/20*Pi) 3141592683500110 l005 ln(sec(333/107)) 3141592683568677 l005 ln(sec(241/76)) 3141592683570024 l004 Pi/tanh(308/101*Pi) 3141592683593058 l004 Pi/tanh(247/81*Pi) 3141592683631236 l004 Pi/tanh(186/61*Pi) 3141592683661588 l004 Pi/tanh(311/102*Pi) 3141592683706803 l004 Pi/tanh(125/41*Pi) 3141592683751646 l004 Pi/tanh(314/103*Pi) 3141592683781337 l004 Pi/tanh(189/62*Pi) 3141592683818223 l004 Pi/tanh(253/83*Pi) 3141592683828887 l005 ln(sec(361/116)) 3141592683840234 l004 Pi/tanh(317/104*Pi) 3141592683927387 l004 Pi/tanh(64/21*Pi) 3141592684013140 l004 Pi/tanh(323/106*Pi) 3141592684034363 l004 Pi/tanh(259/85*Pi) 3141592684054179 l005 ln(sec(352/111)) 3141592684069547 l004 Pi/tanh(195/64*Pi) 3141592684097526 l004 Pi/tanh(326/107*Pi) 3141592684139216 l004 Pi/tanh(131/43*Pi) 3141592684180576 l004 Pi/tanh(329/108*Pi) 3141592684207969 l004 Pi/tanh(198/65*Pi) 3141592684242007 l004 Pi/tanh(265/87*Pi) 3141592684262323 l004 Pi/tanh(332/109*Pi) 3141592684342796 l004 Pi/tanh(67/22*Pi) 3141592684422024 l004 Pi/tanh(338/111*Pi) 3141592684441640 l004 Pi/tanh(271/89*Pi) 3141592684474166 l004 Pi/tanh(204/67*Pi) 3141592684500037 l004 Pi/tanh(341/112*Pi) 3141592684538595 l004 Pi/tanh(137/45*Pi) 3141592684576860 l004 Pi/tanh(344/113*Pi) 3141592684602209 l004 Pi/tanh(207/68*Pi) 3141592684625595 l005 ln(sec(761/81)) 3141592684633714 l004 Pi/tanh(277/91*Pi) 3141592684652522 l004 Pi/tanh(347/114*Pi) 3141592684727048 l004 Pi/tanh(70/23*Pi) 3141592684800463 l004 Pi/tanh(353/116*Pi) 3141592684818646 l004 Pi/tanh(283/93*Pi) 3141592684840332 l005 ln(sec(104/11)) 3141592684848802 l004 Pi/tanh(213/70*Pi) 3141592684872792 l004 Pi/tanh(356/117*Pi) 3141592684908557 l004 Pi/tanh(143/47*Pi) 3141592684944058 l004 Pi/tanh(359/118*Pi) 3141592684967582 l004 Pi/tanh(216/71*Pi) 3141592684996825 l004 Pi/tanh(289/95*Pi) 3141592685014285 l004 Pi/tanh(362/119*Pi) 3141592685061343 l005 ln(sec(1118/119)) 3141592685083495 l004 Pi/tanh(73/24*Pi) 3141592685128700 l005 ln(sec(111/35)) 3141592685168610 l004 Pi/tanh(295/97*Pi) 3141592685196643 l004 Pi/tanh(222/73*Pi) 3141592685240402 m004 -100*Pi-Sech[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3141592685240452 m004 -1-100*Pi+Tanh[Sqrt[5]*Pi]^2 3141592685240477 m004 -100*Pi-(2*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592685240502 m004 -4/E^(2*Sqrt[5]*Pi)-100*Pi 3141592685240502 m004 -100*Pi-Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141592685240527 m004 -100*Pi-(2*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592685240552 m004 -100*Pi-Csch[Sqrt[5]*Pi]^2 3141592685252211 l004 Pi/tanh(149/49*Pi) 3141592685307124 l004 Pi/tanh(225/74*Pi) 3141592685334338 l004 Pi/tanh(301/99*Pi) 3141592685415029 l004 Pi/tanh(76/25*Pi) 3141592685494321 l004 Pi/tanh(307/101*Pi) 3141592685520448 l004 Pi/tanh(231/76*Pi) 3141592685572251 l004 Pi/tanh(155/51*Pi) 3141592685623463 l004 Pi/tanh(234/77*Pi) 3141592685648852 l004 Pi/tanh(313/103*Pi) 3141592685724158 l004 Pi/tanh(79/26*Pi) 3141592685798201 l004 Pi/tanh(319/105*Pi) 3141592685822607 l004 Pi/tanh(240/79*Pi) 3141592685871013 l004 Pi/tanh(161/53*Pi) 3141592685918886 l004 Pi/tanh(243/80*Pi) 3141592685942625 l004 Pi/tanh(325/107*Pi) 3141592686005478 l005 ln(sec(357/38)) 3141592686013064 l004 Pi/tanh(82/27*Pi) 3141592686082361 l004 Pi/tanh(331/109*Pi) 3141592686105210 l004 Pi/tanh(249/82*Pi) 3141592686150541 l004 Pi/tanh(167/55*Pi) 3141592686195388 l004 Pi/tanh(252/83*Pi) 3141592686217632 l004 Pi/tanh(337/111*Pi) 3141592686283660 l004 Pi/tanh(85/28*Pi) 3141592686348649 l004 Pi/tanh(343/113*Pi) 3141592686367001 l005 ln(sec(314/99)) 3141592686370086 l004 Pi/tanh(258/85*Pi) 3141592686412624 l004 Pi/tanh(173/57*Pi) 3141592686454722 l004 Pi/tanh(261/86*Pi) 3141592686475608 l004 Pi/tanh(349/115*Pi) 3141592686504890 m001 Weierstrass^exp(Pi)+Pi 3141592686537624 l004 Pi/tanh(88/29*Pi) 3141592686598693 l004 Pi/tanh(355/117*Pi) 3141592686618843 l004 Pi/tanh(267/88*Pi) 3141592686658838 l004 Pi/tanh(179/59*Pi) 3141592686698431 l004 Pi/tanh(270/89*Pi) 3141592686718079 l004 Pi/tanh(361/119*Pi) 3141592686776436 l004 Pi/tanh(91/30*Pi) 3141592686852904 l004 Pi/tanh(276/91*Pi) 3141592686890576 l004 Pi/tanh(185/61*Pi) 3141592686927880 l004 Pi/tanh(279/92*Pi) 3141592687001408 l004 Pi/tanh(94/31*Pi) 3141592687059430 l005 ln(sec(203/64)) 3141592687060321 l005 ln(sec(1024/109)) 3141592687073528 l004 Pi/tanh(285/94*Pi) 3141592687109072 l004 Pi/tanh(191/63*Pi) 3141592687144280 l004 Pi/tanh(288/95*Pi) 3141592687213704 l004 Pi/tanh(97/32*Pi) 3141592687233005 p002 log(11^(2/3)-17^(1/2)*3^(1/3)) 3141592687271393 m001 ZetaQ(4)^Khinchin+Pi 3141592687281835 l004 Pi/tanh(294/97*Pi) 3141592687315427 l004 Pi/tanh(197/65*Pi) 3141592687342246 p002 log((6-12^(3/4))*5^(1/2)) 3141592687348709 l004 Pi/tanh(297/98*Pi) 3141592687414362 l004 Pi/tanh(100/33*Pi) 3141592687478825 l004 Pi/tanh(303/100*Pi) 3141592687510621 l004 Pi/tanh(203/67*Pi) 3141592687542131 l004 Pi/tanh(306/101*Pi) 3141592687604310 l004 Pi/tanh(103/34*Pi) 3141592687607401 m001 PlouffeB^exp(Pi)+Pi 3141592687635352 l005 ln(sec(667/71)) 3141592687665393 l004 Pi/tanh(312/103*Pi) 3141592687695532 l004 Pi/tanh(209/69*Pi) 3141592687725407 l004 Pi/tanh(315/104*Pi) 3141592687771663 m001 ZetaQ(4)^FeigenbaumD+Pi 3141592687784381 l004 Pi/tanh(106/35*Pi) 3141592687808528 l005 ln(sec(295/93)) 3141592687842342 l004 Pi/tanh(321/106*Pi) 3141592687870950 l004 Pi/tanh(215/71*Pi) 3141592687899314 l004 Pi/tanh(324/107*Pi) 3141592687948944 l005 ln(sec(28/9)) 3141592687955324 l004 Pi/tanh(109/36*Pi) 3141592688010395 l004 Pi/tanh(330/109*Pi) 3141592688037585 l004 Pi/tanh(221/73*Pi) 3141592688064550 l004 Pi/tanh(333/110*Pi) 3141592688117813 l004 Pi/tanh(112/37*Pi) 3141592688170204 l004 Pi/tanh(339/112*Pi) 3141592688196080 l004 Pi/tanh(227/75*Pi) 3141592688218668 m001 ZetaQ(3)^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141592688221746 l004 Pi/tanh(342/113*Pi) 3141592688245949 l005 ln(sec(977/104)) 3141592688272458 l004 Pi/tanh(115/38*Pi) 3141592688322361 l004 Pi/tanh(348/115*Pi) 3141592688347014 l004 Pi/tanh(233/77*Pi) 3141592688353803 m002 Pi+Tanh[Pi]/Pi^15 3141592688371473 l004 Pi/tanh(351/116*Pi) 3141592688391375 l005 ln(sec(1059/112)) 3141592688419813 l004 Pi/tanh(118/39*Pi) 3141592688467400 l004 Pi/tanh(357/118*Pi) 3141592688483885 m002 Pi^(-15)+Pi 3141592688490916 l004 Pi/tanh(239/79*Pi) 3141592688514250 l004 Pi/tanh(360/119*Pi) 3141592688560380 l004 Pi/tanh(121/40*Pi) 3141592688628263 l004 Pi/tanh(245/81*Pi) 3141592688694617 l004 Pi/tanh(124/41*Pi) 3141592688706781 m001 ZetaQ(4)^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Pi 3141592688759493 l004 Pi/tanh(251/83*Pi) 3141592688795620 l005 ln(sec(955/101)) 3141592688822940 l004 Pi/tanh(127/42*Pi) 3141592688885005 l004 Pi/tanh(257/85*Pi) 3141592688945732 l004 Pi/tanh(130/43*Pi) 3141592689005164 l004 Pi/tanh(263/87*Pi) 3141592689063342 l004 Pi/tanh(133/44*Pi) 3141592689120304 l004 Pi/tanh(269/89*Pi) 3141592689176090 l004 Pi/tanh(136/45*Pi) 3141592689230734 l004 Pi/tanh(275/91*Pi) 3141592689284271 l004 Pi/tanh(139/46*Pi) 3141592689303588 l005 ln(sec(851/90)) 3141592689336735 l004 Pi/tanh(281/93*Pi) 3141592689388157 l004 Pi/tanh(142/47*Pi) 3141592689438568 l004 Pi/tanh(287/95*Pi) 3141592689459528 m001 Pi+HeathBrownMoroz^Sierpinski 3141592689487998 l004 Pi/tanh(145/48*Pi) 3141592689506163 l005 ln(sec(92/29)) 3141592689536474 l004 Pi/tanh(293/97*Pi) 3141592689584025 l004 Pi/tanh(148/49*Pi) 3141592689587479 l005 ln(sec(310/33)) 3141592689630676 l004 Pi/tanh(299/99*Pi) 3141592689676453 l004 Pi/tanh(151/50*Pi) 3141592689721380 l004 Pi/tanh(305/101*Pi) 3141592689765480 l004 Pi/tanh(154/51*Pi) 3141592689808776 l004 Pi/tanh(311/103*Pi) 3141592689851290 l004 Pi/tanh(157/52*Pi) 3141592689893043 l004 Pi/tanh(317/105*Pi) 3141592689934054 l004 Pi/tanh(160/53*Pi) 3141592689960999 l005 ln(sec(747/79)) 3141592689974344 l004 Pi/tanh(323/107*Pi) 3141592690013931 l004 Pi/tanh(163/54*Pi) 3141592690052834 l004 Pi/tanh(329/109*Pi) 3141592690091070 l004 Pi/tanh(166/55*Pi) 3141592690128656 l004 Pi/tanh(335/111*Pi) 3141592690165608 l004 Pi/tanh(169/56*Pi) 3141592690201943 l004 Pi/tanh(341/113*Pi) 3141592690237676 l004 Pi/tanh(172/57*Pi) 3141592690272821 l004 Pi/tanh(347/115*Pi) 3141592690307393 l004 Pi/tanh(175/58*Pi) 3141592690341406 l004 Pi/tanh(353/117*Pi) 3141592690374872 l004 Pi/tanh(178/59*Pi) 3141592690407807 l004 Pi/tanh(359/119*Pi) 3141592690440221 l004 Pi/tanh(181/60*Pi) 3141592690468267 p002 log(1/6*(1-7^(3/4))*6^(1/3)) 3141592690503537 l004 Pi/tanh(184/61*Pi) 3141592690564914 l004 Pi/tanh(187/62*Pi) 3141592690624440 l004 Pi/tanh(190/63*Pi) 3141592690679727 r002 29th iterates of z^2 + 3141592690682197 l004 Pi/tanh(193/64*Pi) 3141592690738263 l004 Pi/tanh(196/65*Pi) 3141592690792711 l004 Pi/tanh(199/66*Pi) 3141592690845010 l005 ln(sec(643/68)) 3141592690845610 l004 Pi/tanh(202/67*Pi) 3141592690897025 l004 Pi/tanh(205/68*Pi) 3141592690947018 l004 Pi/tanh(208/69*Pi) 3141592690990061 l005 ln(sec(349/110)) 3141592690995646 l004 Pi/tanh(211/70*Pi) 3141592691042965 l004 Pi/tanh(214/71*Pi) 3141592691054121 m002 Pi+ProductLog[Pi]/Pi^15 3141592691089027 l004 Pi/tanh(217/72*Pi) 3141592691116711 l005 ln(sec(883/94)) 3141592691133882 l004 Pi/tanh(220/73*Pi) 3141592691177576 l004 Pi/tanh(223/74*Pi) 3141592691220153 l004 Pi/tanh(226/75*Pi) 3141592691261657 l004 Pi/tanh(229/76*Pi) 3141592691302126 l004 Pi/tanh(232/77*Pi) 3141592691341599 l004 Pi/tanh(235/78*Pi) 3141592691380113 l004 Pi/tanh(238/79*Pi) 3141592691417702 l004 Pi/tanh(241/80*Pi) 3141592691454399 l004 Pi/tanh(244/81*Pi) 3141592691490235 l004 Pi/tanh(247/82*Pi) 3141592691525240 l004 Pi/tanh(250/83*Pi) 3141592691532352 l005 ln(sec(257/81)) 3141592691559443 l004 Pi/tanh(253/84*Pi) 3141592691592871 l004 Pi/tanh(256/85*Pi) 3141592691625550 l004 Pi/tanh(259/86*Pi) 3141592691646780 p002 log(4*15^(1/2)-4*17^(1/2)) 3141592691657505 l004 Pi/tanh(262/87*Pi) 3141592691688759 l004 Pi/tanh(265/88*Pi) 3141592691719336 l004 Pi/tanh(268/89*Pi) 3141592691749257 l004 Pi/tanh(271/90*Pi) 3141592691778544 l004 Pi/tanh(274/91*Pi) 3141592691807215 l004 Pi/tanh(277/92*Pi) 3141592691835291 l004 Pi/tanh(280/93*Pi) 3141592691862789 l004 Pi/tanh(283/94*Pi) 3141592691889728 l004 Pi/tanh(286/95*Pi) 3141592691916123 l004 Pi/tanh(289/96*Pi) 3141592691941992 l004 Pi/tanh(292/97*Pi) 3141592691964037 l005 ln(sec(573/61)) 3141592691967350 l004 Pi/tanh(295/98*Pi) 3141592691992212 l004 Pi/tanh(298/99*Pi) 3141592692016593 l004 Pi/tanh(301/100*Pi) 3141592692021436 p002 log(7^(1/2)/(2^(1/4)-6^(3/4))) 3141592692040505 l004 Pi/tanh(304/101*Pi) 3141592692063964 l004 Pi/tanh(307/102*Pi) 3141592692086980 l004 Pi/tanh(310/103*Pi) 3141592692096747 l005 ln(sec(539/57)) 3141592692109568 l004 Pi/tanh(313/104*Pi) 3141592692110756 p002 log(5^(1/3)*(14^(1/2)-9^(2/3))) 3141592692131738 l004 Pi/tanh(316/105*Pi) 3141592692153502 l004 Pi/tanh(319/106*Pi) 3141592692174871 l004 Pi/tanh(322/107*Pi) 3141592692195856 l004 Pi/tanh(325/108*Pi) 3141592692216467 l004 Pi/tanh(328/109*Pi) 3141592692236714 l004 Pi/tanh(331/110*Pi) 3141592692256607 l004 Pi/tanh(334/111*Pi) 3141592692276154 l004 Pi/tanh(337/112*Pi) 3141592692295365 l004 Pi/tanh(340/113*Pi) 3141592692314248 l004 Pi/tanh(343/114*Pi) 3141592692332812 l004 Pi/tanh(346/115*Pi) 3141592692351064 l004 Pi/tanh(349/116*Pi) 3141592692369013 l004 Pi/tanh(352/117*Pi) 3141592692386666 l004 Pi/tanh(355/118*Pi) 3141592692396129 l005 ln(sec(367/118)) 3141592692404030 l004 Pi/tanh(358/119*Pi) 3141592692421112 l004 Pi/tanh(361/120*Pi) 3141592692698922 l005 ln(sec(165/52)) 3141592692781686 l005 ln(sec(339/109)) 3141592692874464 l005 ln(sec(836/89)) 3141592692940250 l005 ln(sec(974/103)) 3141592693153179 m004 -5/E^(2*Sqrt[5]*Pi)-100*Pi 3141592693240330 l005 ln(sec(311/100)) 3141592693258118 m001 Pi-gamma(2)^Magata 3141592693355508 l005 ln(sec(1099/117)) 3141592693534103 m002 Pi+Log[Pi]/Pi^15 3141592693618654 p002 log(7/9-10^(1/4)) 3141592693794981 l005 ln(sec(283/91)) 3141592693988820 l005 ln(sec(238/75)) 3141592694004600 l005 ln(sec(435/46)) 3141592694420485 m002 Pi+Sinh[Pi]/Pi^17 3141592694479238 l005 ln(sec(255/82)) 3141592694508485 l004 Pi/tanh(3*Pi) 3141592694573268 m002 Pi+Cosh[Pi]/Pi^17 3141592694686076 l005 ln(sec(311/98)) 3141592694820601 p002 log(1/6*(23-7*6^(3/4))*6^(1/4)) 3141592694913922 l005 ln(sec(263/28)) 3141592694941939 p003 LerchPhi(1/64,2,109/193) 3141592695344405 l005 ln(sec(227/73)) 3141592695389051 l005 ln(sec(766/81)) 3141592695947792 l005 ln(sec(1097/116)) 3141592696472881 l005 ln(sec(199/64)) 3141592696669944 l005 ln(sec(1005/107)) 3141592696708065 l004 Pi/tanh(359/120*Pi) 3141592696727042 l004 Pi/tanh(356/119*Pi) 3141592696746348 l004 Pi/tanh(353/118*Pi) 3141592696765993 l004 Pi/tanh(350/117*Pi) 3141592696785986 l004 Pi/tanh(347/116*Pi) 3141592696806337 l004 Pi/tanh(344/115*Pi) 3141592696827054 l004 Pi/tanh(341/114*Pi) 3141592696848148 l004 Pi/tanh(338/113*Pi) 3141592696869629 l004 Pi/tanh(335/112*Pi) 3141592696891509 l004 Pi/tanh(332/111*Pi) 3141592696913797 l004 Pi/tanh(329/110*Pi) 3141592696936506 l004 Pi/tanh(326/109*Pi) 3141592696959648 l004 Pi/tanh(323/108*Pi) 3141592696983236 l004 Pi/tanh(320/107*Pi) 3141592697007281 l004 Pi/tanh(317/106*Pi) 3141592697022585 l005 ln(sec(73/23)) 3141592697031799 l004 Pi/tanh(314/105*Pi) 3141592697056802 l004 Pi/tanh(311/104*Pi) 3141592697082305 l004 Pi/tanh(308/103*Pi) 3141592697108324 l004 Pi/tanh(305/102*Pi) 3141592697134874 l004 Pi/tanh(302/101*Pi) 3141592697161971 l004 Pi/tanh(299/100*Pi) 3141592697176367 l005 ln(sec(370/119)) 3141592697189634 l004 Pi/tanh(296/99*Pi) 3141592697217879 l004 Pi/tanh(293/98*Pi) 3141592697246725 l004 Pi/tanh(290/97*Pi) 3141592697262357 l005 ln(sec(331/35)) 3141592697276193 l004 Pi/tanh(287/96*Pi) 3141592697305566 l005 ln(sec(742/79)) 3141592697306300 l004 Pi/tanh(284/95*Pi) 3141592697337070 l004 Pi/tanh(281/94*Pi) 3141592697368524 l004 Pi/tanh(278/93*Pi) 3141592697400686 l004 Pi/tanh(275/92*Pi) 3141592697433578 l004 Pi/tanh(272/91*Pi) 3141592697467227 l004 Pi/tanh(269/90*Pi) 3141592697501659 l004 Pi/tanh(266/89*Pi) 3141592697536901 l004 Pi/tanh(263/88*Pi) 3141592697572982 l004 Pi/tanh(260/87*Pi) 3141592697609934 l004 Pi/tanh(257/86*Pi) 3141592697647787 l004 Pi/tanh(254/85*Pi) 3141592697686575 l004 Pi/tanh(251/84*Pi) 3141592697726333 l004 Pi/tanh(248/83*Pi) 3141592697767098 l004 Pi/tanh(245/82*Pi) 3141592697808908 l004 Pi/tanh(242/81*Pi) 3141592697851805 l004 Pi/tanh(239/80*Pi) 3141592697895831 l004 Pi/tanh(236/79*Pi) 3141592697941032 l004 Pi/tanh(233/78*Pi) 3141592697987454 l004 Pi/tanh(230/77*Pi) 3141592698005827 l005 ln(sec(171/55)) 3141592698035149 l004 Pi/tanh(227/76*Pi) 3141592698084168 l004 Pi/tanh(224/75*Pi) 3141592698134569 l004 Pi/tanh(221/74*Pi) 3141592698186410 l004 Pi/tanh(218/73*Pi) 3141592698239755 l004 Pi/tanh(215/72*Pi) 3141592698294668 l004 Pi/tanh(212/71*Pi) 3141592698351220 l004 Pi/tanh(209/70*Pi) 3141592698409487 l004 Pi/tanh(206/69*Pi) 3141592698469546 l004 Pi/tanh(203/68*Pi) 3141592698531483 l004 Pi/tanh(200/67*Pi) 3141592698595386 l004 Pi/tanh(197/66*Pi) 3141592698661350 l004 Pi/tanh(194/65*Pi) 3141592698661968 l005 ln(sec(479/51)) 3141592698669481 m001 ZetaQ(3)^FeigenbaumMu+Pi 3141592698729476 l004 Pi/tanh(191/64*Pi) 3141592698799874 l004 Pi/tanh(188/63*Pi) 3141592698872657 l004 Pi/tanh(185/62*Pi) 3141592698926496 l005 ln(sec(889/94)) 3141592698947950 l004 Pi/tanh(182/61*Pi) 3141592698998242 l005 ln(sec(314/101)) 3141592699025884 l004 Pi/tanh(179/60*Pi) 3141592699065885 l004 Pi/tanh(355/119*Pi) 3141592699106600 l004 Pi/tanh(176/59*Pi) 3141592699148049 l004 Pi/tanh(349/117*Pi) 3141592699190251 l004 Pi/tanh(173/58*Pi) 3141592699207109 l005 ln(sec(346/109)) 3141592699233227 l004 Pi/tanh(343/115*Pi) 3141592699276999 l004 Pi/tanh(170/57*Pi) 3141592699321589 l004 Pi/tanh(337/113*Pi) 3141592699367019 l004 Pi/tanh(167/56*Pi) 3141592699413315 l004 Pi/tanh(331/111*Pi) 3141592699460500 l004 Pi/tanh(164/55*Pi) 3141592699508601 l004 Pi/tanh(325/109*Pi) 3141592699557644 l004 Pi/tanh(161/54*Pi) 3141592699607658 l004 Pi/tanh(319/107*Pi) 3141592699658672 l004 Pi/tanh(158/53*Pi) 3141592699710716 l004 Pi/tanh(313/105*Pi) 3141592699763821 l004 Pi/tanh(155/52*Pi) 3141592699805056 l005 ln(sec(273/86)) 3141592699818020 l004 Pi/tanh(307/103*Pi) 3141592699873347 l004 Pi/tanh(152/51*Pi) 3141592699929838 l004 Pi/tanh(301/101*Pi) 3141592699935908 l005 ln(sec(558/59)) 3141592699987530 l004 Pi/tanh(149/50*Pi) 3141592700046462 l004 Pi/tanh(295/99*Pi) 3141592700106673 l004 Pi/tanh(146/49*Pi) 3141592700144605 l005 ln(sec(695/74)) 3141592700168206 l004 Pi/tanh(289/97*Pi) 3141592700170184 m002 Pi+Tanh[Pi]/(E^Pi*Pi^12) 3141592700206553 l005 ln(sec(143/46)) 3141592700231105 l004 Pi/tanh(143/48*Pi) 3141592700295416 l004 Pi/tanh(283/95*Pi) 3141592700344482 m002 1/(E^Pi*Pi^12)+Pi 3141592700361187 l004 Pi/tanh(140/47*Pi) 3141592700428468 l004 Pi/tanh(277/93*Pi) 3141592700497311 l004 Pi/tanh(137/46*Pi) 3141592700567772 l004 Pi/tanh(271/91*Pi) 3141592700639909 l004 Pi/tanh(134/45*Pi) 3141592700713780 l004 Pi/tanh(265/89*Pi) 3141592700789451 l004 Pi/tanh(131/44*Pi) 3141592700853462 l005 ln(sec(200/63)) 3141592700866987 l004 Pi/tanh(259/87*Pi) 3141592700938654 l005 ln(sec(911/97)) 3141592700946458 l004 Pi/tanh(128/43*Pi) 3141592701027937 l004 Pi/tanh(253/85*Pi) 3141592701065819 m004 -100*Pi-(3*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592701065856 m004 -6/E^(2*Sqrt[5]*Pi)-100*Pi 3141592701065894 m004 -100*Pi-(3*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592701099354 l005 ln(sec(785/83)) 3141592701111502 l004 Pi/tanh(125/42*Pi) 3141592701197232 l004 Pi/tanh(247/83*Pi) 3141592701285214 l004 Pi/tanh(122/41*Pi) 3141592701375537 l004 Pi/tanh(241/81*Pi) 3141592701433354 l005 ln(sec(1127/120)) 3141592701468296 l004 Pi/tanh(119/40*Pi) 3141592701531537 l004 Pi/tanh(354/119*Pi) 3141592701563590 l004 Pi/tanh(235/79*Pi) 3141592701595936 l004 Pi/tanh(351/118*Pi) 3141592701661524 l004 Pi/tanh(116/39*Pi) 3141592701709256 l005 ln(sec(258/83)) 3141592701728336 l004 Pi/tanh(345/116*Pi) 3141592701742412 l005 ln(sec(327/103)) 3141592701750176 l005 ln(sec(1012/107)) 3141592701762210 l004 Pi/tanh(229/77*Pi) 3141592701796404 l004 Pi/tanh(342/115*Pi) 3141592701843781 p002 log(1-11^(1/2)+3^(1/4)) 3141592701865765 l004 Pi/tanh(113/38*Pi) 3141592701936457 l004 Pi/tanh(336/113*Pi) 3141592701972313 l004 Pi/tanh(223/75*Pi) 3141592702008517 l004 Pi/tanh(333/112*Pi) 3141592702081985 l004 Pi/tanh(110/37*Pi) 3141592702156904 l004 Pi/tanh(327/110*Pi) 3141592702194921 l004 Pi/tanh(217/73*Pi) 3141592702233317 l004 Pi/tanh(324/109*Pi) 3141592702294819 l005 ln(sec(373/120)) 3141592702311269 l004 Pi/tanh(107/36*Pi) 3141592702390805 l004 Pi/tanh(318/107*Pi) 3141592702423122 r005 Re(z^2+c),c=6/25+21/55*I,n=7 3141592702431184 l004 Pi/tanh(211/71*Pi) 3141592702471976 l004 Pi/tanh(315/106*Pi) 3141592702554833 l004 Pi/tanh(104/35*Pi) 3141592702639427 l004 Pi/tanh(309/104*Pi) 3141592702682392 l004 Pi/tanh(205/69*Pi) 3141592702725814 l004 Pi/tanh(306/103*Pi) 3141592702746228 m001 (Otter+RenyiParking)/(5^(1/2)-Shi(1)) 3141592702814051 l004 Pi/tanh(101/34*Pi) 3141592702875971 p002 log((14^(1/2)-4)*15^(1/2)) 3141592702904199 l004 Pi/tanh(300/101*Pi) 3141592702950009 l004 Pi/tanh(199/67*Pi) 3141592702996320 l004 Pi/tanh(297/100*Pi) 3141592703090480 l004 Pi/tanh(98/33*Pi) 3141592703111481 m001 gamma(3)^exp(1)+Pi 3141592703167867 l005 ln(sec(127/40)) 3141592703186746 l004 Pi/tanh(291/98*Pi) 3141592703235691 l004 Pi/tanh(193/65*Pi) 3141592703285190 l004 Pi/tanh(288/97*Pi) 3141592703385886 l004 Pi/tanh(95/32*Pi) 3141592703488913 l004 Pi/tanh(282/95*Pi) 3141592703541325 l004 Pi/tanh(187/63*Pi) 3141592703562484 l005 ln(sec(216/23)) 3141592703594352 l004 Pi/tanh(279/94*Pi) 3141592703627813 l005 ln(sec(115/37)) 3141592703702288 l004 Pi/tanh(92/31*Pi) 3141592703788348 m002 Pi+ProductLog[Pi]/(E^Pi*Pi^12) 3141592703812812 l004 Pi/tanh(273/92*Pi) 3141592703869073 l004 Pi/tanh(181/61*Pi) 3141592703926016 l004 Pi/tanh(270/91*Pi) 3141592704042000 l004 Pi/tanh(89/30*Pi) 3141592704052603 l005 ln(sec(227/24)) 3141592704130874 l004 Pi/tanh(353/119*Pi) 3141592704160867 l004 Pi/tanh(264/89*Pi) 3141592704221415 l004 Pi/tanh(175/59*Pi) 3141592704282725 l004 Pi/tanh(261/88*Pi) 3141592704303969 m001 Trott2nd^FeigenbaumDelta+Pi 3141592704313670 l004 Pi/tanh(347/117*Pi) 3141592704407688 l004 Pi/tanh(86/29*Pi) 3141592704503519 l004 Pi/tanh(341/115*Pi) 3141592704535875 l004 Pi/tanh(255/86*Pi) 3141592704601218 l004 Pi/tanh(169/57*Pi) 3141592704667415 l004 Pi/tanh(252/85*Pi) 3141592704700838 l004 Pi/tanh(335/113*Pi) 3141592704715904 l005 ln(sec(308/97)) 3141592704802437 l004 Pi/tanh(83/28*Pi) 3141592704906074 l004 Pi/tanh(329/111*Pi) 3141592704941084 l004 Pi/tanh(246/83*Pi) 3141592705011811 l004 Pi/tanh(163/55*Pi) 3141592705083501 l004 Pi/tanh(243/82*Pi) 3141592705119712 l004 Pi/tanh(323/109*Pi) 3141592705229844 l004 Pi/tanh(80/27*Pi) 3141592705230868 l005 ln(sec(317/102)) 3141592705342276 l004 Pi/tanh(317/107*Pi) 3141592705380277 l004 Pi/tanh(237/80*Pi) 3141592705457082 l004 Pi/tanh(157/53*Pi) 3141592705534974 l004 Pi/tanh(234/79*Pi) 3141592705574336 l004 Pi/tanh(311/105*Pi) 3141592705694118 l004 Pi/tanh(77/26*Pi) 3141592705816510 l004 Pi/tanh(305/103*Pi) 3141592705823696 l005 ln(sec(181/57)) 3141592705857902 l004 Pi/tanh(228/77*Pi) 3141592705941598 l004 Pi/tanh(151/51*Pi) 3141592705958102 m001 FeigenbaumKappa^Psi(2,1/3)+Pi 3141592705965398 l005 ln(sec(1033/110)) 3141592706026531 l004 Pi/tanh(225/76*Pi) 3141592706069471 l004 Pi/tanh(299/101*Pi) 3141592706160408 l005 ln(sec(202/65)) 3141592706200223 l004 Pi/tanh(74/25*Pi) 3141592706333953 l004 Pi/tanh(293/99*Pi) 3141592706379209 l004 Pi/tanh(219/74*Pi) 3141592706392141 l005 ln(sec(1031/109)) 3141592706470762 l004 Pi/tanh(145/49*Pi) 3141592706563732 l004 Pi/tanh(216/73*Pi) 3141592706610758 l004 Pi/tanh(287/97*Pi) 3141592706614883 l005 ln(sec(817/87)) 3141592706754053 l004 Pi/tanh(71/24*Pi) 3141592706871143 l004 Pi/tanh(352/119*Pi) 3141592706900765 l004 Pi/tanh(281/95*Pi) 3141592706902280 p002 log(8*10^(1/3)-8*3^(3/4)) 3141592706950449 l004 Pi/tanh(210/71*Pi) 3141592706990482 l004 Pi/tanh(349/118*Pi) 3141592707039160 m004 10*Pi+Sin[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592707051015 l004 Pi/tanh(139/47*Pi) 3141592707067199 l005 ln(sec(804/85)) 3141592707111283 m002 Pi+Log[Pi]/(E^Pi*Pi^12) 3141592707112135 l004 Pi/tanh(346/117*Pi) 3141592707153212 l004 Pi/tanh(207/70*Pi) 3141592707194275 l005 ln(sec(289/93)) 3141592707204934 l004 Pi/tanh(275/93*Pi) 3141592707236170 l004 Pi/tanh(343/116*Pi) 3141592707302955 l005 ln(sec(235/74)) 3141592707362657 l004 Pi/tanh(68/23*Pi) 3141592707491669 l004 Pi/tanh(337/114*Pi) 3141592707524326 l004 Pi/tanh(269/91*Pi) 3141592707579118 l004 Pi/tanh(201/68*Pi) 3141592707623283 l004 Pi/tanh(334/113*Pi) 3141592707690089 l004 Pi/tanh(133/45*Pi) 3141592707745280 l005 ln(sec(601/64)) 3141592707757576 l004 Pi/tanh(331/112*Pi) 3141592707802951 l004 Pi/tanh(198/67*Pi) 3141592707860105 l004 Pi/tanh(263/89*Pi) 3141592707894633 l004 Pi/tanh(328/111*Pi) 3141592708034537 l004 Pi/tanh(65/22*Pi) 3141592708177379 l004 Pi/tanh(322/109*Pi) 3141592708213559 l004 Pi/tanh(257/87*Pi) 3141592708245392 l005 ln(sec(289/91)) 3141592708274285 l004 Pi/tanh(192/65*Pi) 3141592708289548 l005 ln(sec(577/61)) 3141592708323251 l004 Pi/tanh(319/108*Pi) 3141592708397354 l004 Pi/tanh(127/43*Pi) 3141592708472251 l004 Pi/tanh(316/107*Pi) 3141592708522630 l004 Pi/tanh(189/64*Pi) 3141592708586114 l004 Pi/tanh(251/85*Pi) 3141592708624480 l004 Pi/tanh(313/106*Pi) 3141592708695508 l005 ln(sec(986/105)) 3141592708780042 l004 Pi/tanh(62/21*Pi) 3141592708898259 l005 ln(sec(343/108)) 3141592708901205 m001 GAMMA(2/3)^Psi(2,1/3)+Pi 3141592708939048 l004 Pi/tanh(307/104*Pi) 3141592708979351 l004 Pi/tanh(245/83*Pi) 3141592709047022 l004 Pi/tanh(183/62*Pi) 3141592709101614 l004 Pi/tanh(304/103*Pi) 3141592709174884 m004 -100*Pi-(Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141592709184268 l004 Pi/tanh(121/41*Pi) 3141592709267858 l004 Pi/tanh(301/102*Pi) 3141592709324112 l004 Pi/tanh(180/61*Pi) 3141592709366616 l005 ln(sec(927/98)) 3141592709395031 l004 Pi/tanh(239/81*Pi) 3141592709437907 l004 Pi/tanh(298/101*Pi) 3141592709611893 l004 Pi/tanh(59/20*Pi) 3141592709653088 l005 ln(sec(87/28)) 3141592709759986 l004 Pi/tanh(351/119*Pi) 3141592709789952 l004 Pi/tanh(292/99*Pi) 3141592709835119 l004 Pi/tanh(233/79*Pi) 3141592709910991 l004 Pi/tanh(174/59*Pi) 3141592709972228 l004 Pi/tanh(289/98*Pi) 3141592710064994 l004 Pi/tanh(115/39*Pi) 3141592710158871 l004 Pi/tanh(286/97*Pi) 3141592710203721 l005 ln(sec(385/41)) 3141592710222084 l004 Pi/tanh(171/58*Pi) 3141592710301815 l004 Pi/tanh(227/77*Pi) 3141592710350041 l004 Pi/tanh(283/96*Pi) 3141592710382354 l004 Pi/tanh(339/115*Pi) 3141592710545902 l004 Pi/tanh(56/19*Pi) 3141592710712828 l004 Pi/tanh(333/113*Pi) 3141592710746627 l004 Pi/tanh(277/94*Pi) 3141592710797590 l004 Pi/tanh(221/75*Pi) 3141592710883237 l004 Pi/tanh(165/56*Pi) 3141592710952400 l004 Pi/tanh(274/93*Pi) 3141592711057239 l004 Pi/tanh(109/37*Pi) 3141592711163411 l004 Pi/tanh(271/92*Pi) 3141592711176961 l005 ln(sec(350/37)) 3141592711234947 l004 Pi/tanh(162/55*Pi) 3141592711325228 l004 Pi/tanh(215/73*Pi) 3141592711379862 l004 Pi/tanh(268/91*Pi) 3141592711416481 l004 Pi/tanh(321/109*Pi) 3141592711601964 l004 Pi/tanh(53/18*Pi) 3141592711791526 l004 Pi/tanh(315/107*Pi) 3141592711820454 l005 ln(sec(939/100)) 3141592711829940 l004 Pi/tanh(262/89*Pi) 3141592711887879 l004 Pi/tanh(209/71*Pi) 3141592711935412 m004 10*Pi+Cos[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592711944992 l005 ln(sec(320/103)) 3141592711985302 l004 Pi/tanh(156/53*Pi) 3141592712064023 l004 Pi/tanh(259/88*Pi) 3141592712183432 l004 Pi/tanh(103/35*Pi) 3141592712304462 l004 Pi/tanh(256/87*Pi) 3141592712386065 l004 Pi/tanh(153/52*Pi) 3141592712489117 l004 Pi/tanh(203/69*Pi) 3141592712493051 l005 ln(sec(54/17)) 3141592712551515 l004 Pi/tanh(253/86*Pi) 3141592712593353 l004 Pi/tanh(303/103*Pi) 3141592712623355 l004 Pi/tanh(353/120*Pi) 3141592712805458 l004 Pi/tanh(50/17*Pi) 3141592712818399 l005 ln(sec(233/75)) 3141592712964169 l005 ln(sec(554/59)) 3141592712991224 l004 Pi/tanh(347/118*Pi) 3141592713022549 l004 Pi/tanh(297/101*Pi) 3141592713066581 l004 Pi/tanh(247/84*Pi) 3141592713133018 l004 Pi/tanh(197/67*Pi) 3141592713180763 l004 Pi/tanh(344/117*Pi) 3141592713244801 l004 Pi/tanh(147/50*Pi) 3141592713268602 l005 ln(sec(823/87)) 3141592713335189 l004 Pi/tanh(244/83*Pi) 3141592713374191 l004 Pi/tanh(341/116*Pi) 3141592713472400 l004 Pi/tanh(97/33*Pi) 3141592713571627 l004 Pi/tanh(338/115*Pi) 3141592713611606 l004 Pi/tanh(241/82*Pi) 3141592713705539 l004 Pi/tanh(144/49*Pi) 3141592713773196 l004 Pi/tanh(335/114*Pi) 3141592713824249 l004 Pi/tanh(191/65*Pi) 3141592713896175 l004 Pi/tanh(238/81*Pi) 3141592713944421 l004 Pi/tanh(285/97*Pi) 3141592713979028 l004 Pi/tanh(332/113*Pi) 3141592714189258 l004 Pi/tanh(47/16*Pi) 3141592714266702 m001 Pi+gamma(3)^Khinchin 3141592714404029 l004 Pi/tanh(326/111*Pi) 3141592714440275 l004 Pi/tanh(279/95*Pi) 3141592714474569 l005 ln(sec(723/77)) 3141592714491241 l004 Pi/tanh(232/79*Pi) 3141592714568174 l004 Pi/tanh(185/63*Pi) 3141592714623486 l004 Pi/tanh(323/110*Pi) 3141592714697706 l004 Pi/tanh(138/47*Pi) 3141592714766726 l005 ln(sec(146/47)) 3141592714802529 l004 Pi/tanh(229/78*Pi) 3141592714847784 l004 Pi/tanh(320/109*Pi) 3141592714852722 l005 ln(sec(473/50)) 3141592714961798 l004 Pi/tanh(91/31*Pi) 3141592715077083 l004 Pi/tanh(317/108*Pi) 3141592715123557 l004 Pi/tanh(226/77*Pi) 3141592715136880 m001 Pi+gamma(3)^FeigenbaumD 3141592715232809 l004 Pi/tanh(135/46*Pi) 3141592715291133 m004 -100*Pi-Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592715291328 m004 -100*Pi-Csch[Sqrt[5]*Pi]^2*Log[Sqrt[5]*Pi] 3141592715311550 l004 Pi/tanh(314/107*Pi) 3141592715370995 l004 Pi/tanh(179/61*Pi) 3141592715408171 m001 HeathBrownMoroz^FeigenbaumAlpha+Pi 3141592715427001 l005 ln(sec(892/95)) 3141592715454784 l004 Pi/tanh(223/76*Pi) 3141592715511014 l004 Pi/tanh(267/91*Pi) 3141592715524622 p002 log(1/15*(10^(1/2)-15^(1/2)*6^(1/3))*15^(1/2)) 3141592715551361 l004 Pi/tanh(311/106*Pi) 3141592715796698 l004 Pi/tanh(44/15*Pi) 3141592716016052 l004 Pi/tanh(349/119*Pi) 3141592716047753 l004 Pi/tanh(305/104*Pi) 3141592716082377 l005 ln(sec(1061/113)) 3141592716086145 l005 ln(sec(351/113)) 3141592716089914 l005 ln(sec(359/113)) 3141592716090165 l004 Pi/tanh(261/89*Pi) 3141592716093683 l005 ln(sec(1069/113)) 3141592716149820 l004 Pi/tanh(217/74*Pi) 3141592716239916 l004 Pi/tanh(173/59*Pi) 3141592716304726 l004 Pi/tanh(302/103*Pi) 3141592716391734 l004 Pi/tanh(129/44*Pi) 3141592716468432 l004 Pi/tanh(343/117*Pi) 3141592716514705 l004 Pi/tanh(214/73*Pi) 3141592716567826 l004 Pi/tanh(299/102*Pi) 3141592716701742 l004 Pi/tanh(85/29*Pi) 3141592716743637 l005 ln(sec(305/96)) 3141592716762278 m001 gamma(3)^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Pi 3141592716837272 l004 Pi/tanh(296/101*Pi) 3141592716891111 m004 -100*Pi-2*Sech[Sqrt[5]*Pi]^2 3141592716891161 m004 -100*Pi-(4*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592716891211 m004 -100*Pi-2*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592716891261 m004 -100*Pi-(4*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592716891311 m004 -100*Pi-2*Csch[Sqrt[5]*Pi]^2 3141592716891943 l004 Pi/tanh(211/72*Pi) 3141592716939998 l004 Pi/tanh(337/115*Pi) 3141592717020543 l004 Pi/tanh(126/43*Pi) 3141592717038662 l005 ln(sec(205/66)) 3141592717091917 l005 ln(sec(596/63)) 3141592717113296 l004 Pi/tanh(293/100*Pi) 3141592717183357 l004 Pi/tanh(167/57*Pi) 3141592717282166 l004 Pi/tanh(208/71*Pi) 3141592717348512 l004 Pi/tanh(249/85*Pi) 3141592717396137 l004 Pi/tanh(290/99*Pi) 3141592717431984 l004 Pi/tanh(331/113*Pi) 3141592717686048 l004 Pi/tanh(41/14*Pi) 3141592717687608 l005 ln(sec(251/79)) 3141592717705403 m001 ZetaQ(4)^Sierpinski+Pi 3141592717945729 l004 Pi/tanh(325/111*Pi) 3141592717983295 l004 Pi/tanh(284/97*Pi) 3141592718033569 l004 Pi/tanh(243/83*Pi) 3141592718104310 l004 Pi/tanh(202/69*Pi) 3141592718211212 l004 Pi/tanh(161/55*Pi) 3141592718288157 l004 Pi/tanh(281/96*Pi) 3141592718321761 l005 ln(sec(264/85)) 3141592718391520 l004 Pi/tanh(120/41*Pi) 3141592718460740 p002 log(1/12*(4^(3/4)-5^(1/2)*12^(1/3))*12^(2/3)) 3141592718482692 l004 Pi/tanh(319/109*Pi) 3141592718537725 l004 Pi/tanh(199/68*Pi) 3141592718571779 p002 log((13^(1/2)-15^(1/2))*14^(1/2)) 3141592718598186 l005 ln(sec(719/76)) 3141592718600926 l004 Pi/tanh(278/95*Pi) 3141592718760372 l004 Pi/tanh(79/27*Pi) 3141592718921911 l004 Pi/tanh(275/94*Pi) 3141592718987122 l004 Pi/tanh(196/67*Pi) 3141592719044464 l004 Pi/tanh(313/107*Pi) 3141592719140624 l004 Pi/tanh(117/40*Pi) 3141592719146069 l005 ln(sec(323/104)) 3141592719170075 l005 ln(sec(197/62)) 3141592719251435 l004 Pi/tanh(272/93*Pi) 3141592719335189 l004 Pi/tanh(155/53*Pi) 3141592719400719 l004 Pi/tanh(348/119*Pi) 3141592719453389 l004 Pi/tanh(193/66*Pi) 3141592719532806 l004 Pi/tanh(231/79*Pi) 3141592719589839 l004 Pi/tanh(269/92*Pi) 3141592719628042 l005 ln(sec(169/18)) 3141592719632781 l004 Pi/tanh(307/105*Pi) 3141592719666281 l004 Pi/tanh(345/118*Pi) 3141592719680508 l005 ln(sec(842/89)) 3141592719937482 l004 Pi/tanh(38/13*Pi) 3141592719941342 m001 DuboisRaymond^Psi(1,1/3)+Pi 3141592720214501 l004 Pi/tanh(339/116*Pi) 3141592720249547 l004 Pi/tanh(301/103*Pi) 3141592720281001 l005 ln(sec(340/107)) 3141592720294744 l004 Pi/tanh(263/90*Pi) 3141592720355251 l004 Pi/tanh(225/77*Pi) 3141592720440431 l004 Pi/tanh(187/64*Pi) 3141592720495690 l005 ln(sec(965/102)) 3141592720497525 l004 Pi/tanh(336/115*Pi) 3141592720569242 l004 Pi/tanh(149/51*Pi) 3141592720662023 l004 Pi/tanh(260/89*Pi) 3141592720786748 l004 Pi/tanh(111/38*Pi) 3141592720896846 l004 Pi/tanh(295/101*Pi) 3141592720963342 l004 Pi/tanh(184/63*Pi) 3141592721039742 l004 Pi/tanh(257/88*Pi) 3141592721082374 l004 Pi/tanh(330/113*Pi) 3141592721131729 l005 ln(sec(1088/115)) 3141592721232654 l004 Pi/tanh(73/25*Pi) 3141592721384614 l004 Pi/tanh(327/112*Pi) 3141592721428344 l004 Pi/tanh(254/87*Pi) 3141592721507412 l004 Pi/tanh(181/62*Pi) 3141592721576971 l004 Pi/tanh(289/99*Pi) 3141592721693691 l004 Pi/tanh(108/37*Pi) 3141592721828302 l004 Pi/tanh(251/86*Pi) 3141592721834661 l005 ln(sec(143/45)) 3141592721930123 l004 Pi/tanh(143/49*Pi) 3141592722009835 l004 Pi/tanh(321/110*Pi) 3141592722073932 l004 Pi/tanh(178/61*Pi) 3141592722170632 l004 Pi/tanh(213/73*Pi) 3141592722240112 l004 Pi/tanh(248/85*Pi) 3141592722292448 l004 Pi/tanh(283/97*Pi) 3141592722333287 l004 Pi/tanh(318/109*Pi) 3141592722664302 l004 Pi/tanh(35/12*Pi) 3141592722930573 l005 ln(sec(59/19)) 3141592722968899 l004 Pi/tanh(347/119*Pi) 3141592723003143 l004 Pi/tanh(312/107*Pi) 3141592723046062 l004 Pi/tanh(277/95*Pi) 3141592723101430 l004 Pi/tanh(242/83*Pi) 3141592723175584 l004 Pi/tanh(207/71*Pi) 3141592723266818 l005 ln(sec(375/118)) 3141592723280036 l004 Pi/tanh(172/59*Pi) 3141592723350087 l004 Pi/tanh(309/106*Pi) 3141592723438122 l004 Pi/tanh(137/47*Pi) 3141592723552089 l004 Pi/tanh(239/82*Pi) 3141592723597923 l004 Pi/tanh(341/117*Pi) 3141592723689286 l005 ln(sec(967/103)) 3141592723705423 l004 Pi/tanh(102/35*Pi) 3141592723840899 l004 Pi/tanh(271/93*Pi) 3141592723922778 l004 Pi/tanh(169/58*Pi) 3141592724016906 l004 Pi/tanh(236/81*Pi) 3141592724069455 l004 Pi/tanh(303/104*Pi) 3141592724160814 l005 ln(sec(232/73)) 3141592724254830 l004 Pi/tanh(67/23*Pi) 3141592724442501 l004 Pi/tanh(300/103*Pi) 3141592724496548 l004 Pi/tanh(233/80*Pi) 3141592724572808 l005 ln(sec(798/85)) 3141592724594317 l004 Pi/tanh(166/57*Pi) 3141592724680379 l004 Pi/tanh(265/91*Pi) 3141592724824894 l004 Pi/tanh(99/34*Pi) 3141592724941487 l004 Pi/tanh(329/113*Pi) 3141592724991725 l004 Pi/tanh(230/79*Pi) 3141592725118034 l004 Pi/tanh(131/45*Pi) 3141592725216153 l005 ln(sec(321/101)) 3141592725216986 l004 Pi/tanh(294/101*Pi) 3141592725296600 l004 Pi/tanh(163/56*Pi) 3141592725416782 l004 Pi/tanh(195/67*Pi) 3141592725503191 l004 Pi/tanh(227/78*Pi) 3141592725568309 l004 Pi/tanh(259/89*Pi) 3141592725619142 l004 Pi/tanh(291/100*Pi) 3141592725659926 l004 Pi/tanh(323/111*Pi) 3141592725947317 l005 ln(sec(629/67)) 3141592726031750 l004 Pi/tanh(32/11*Pi) 3141592726076398 m004 10*Pi+Tan[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592726280934 l005 ln(sec(123/13)) 3141592726377395 l004 Pi/tanh(349/120*Pi) 3141592726412368 l004 Pi/tanh(317/109*Pi) 3141592726455215 l004 Pi/tanh(285/98*Pi) 3141592726508933 l004 Pi/tanh(253/87*Pi) 3141592726578259 l004 Pi/tanh(221/76*Pi) 3141592726671152 l004 Pi/tanh(189/65*Pi) 3141592726678238 m001 Pi-gamma(2)^ReciprocalFibonacci 3141592726730540 l004 Pi/tanh(346/119*Pi) 3141592726762762 b008 Pi*Zeta[8,-1/10] 3141592726802091 l004 Pi/tanh(157/54*Pi) 3141592726838296 l005 ln(sec(326/105)) 3141592726889964 l004 Pi/tanh(282/97*Pi) 3141592726967104 l005 ln(sec(1089/116)) 3141592727000467 l004 Pi/tanh(125/43*Pi) 3141592727091428 l004 Pi/tanh(343/118*Pi) 3141592727143630 l004 Pi/tanh(218/75*Pi) 3141592727201242 l004 Pi/tanh(311/107*Pi) 3141592727336446 l004 Pi/tanh(93/32*Pi) 3141592727460312 l004 Pi/tanh(340/117*Pi) 3141592727506997 l004 Pi/tanh(247/85*Pi) 3141592727610163 l004 Pi/tanh(154/53*Pi) 3141592727723448 l005 ln(sec(267/86)) 3141592727728841 l004 Pi/tanh(215/74*Pi) 3141592727795134 l004 Pi/tanh(276/95*Pi) 3141592727837455 l004 Pi/tanh(337/116*Pi) 3141592728023255 l005 ln(sec(89/28)) 3141592728029209 l004 Pi/tanh(61/21*Pi) 3141592728223133 l004 Pi/tanh(334/115*Pi) 3141592728266525 l004 Pi/tanh(273/94*Pi) 3141592728334934 l004 Pi/tanh(212/73*Pi) 3141592728378911 l005 ln(sec(460/49)) 3141592728458756 l004 Pi/tanh(151/52*Pi) 3141592728567829 l004 Pi/tanh(241/83*Pi) 3141592728617634 l004 Pi/tanh(331/114*Pi) 3141592728739993 m001 Trott^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141592728751146 l004 Pi/tanh(90/31*Pi) 3141592728899195 l004 Pi/tanh(299/103*Pi) 3141592728963027 l004 Pi/tanh(209/72*Pi) 3141592729021258 l004 Pi/tanh(328/113*Pi) 3141592729123626 l004 Pi/tanh(119/41*Pi) 3141592729126737 l005 ln(sec(208/67)) 3141592729249551 l004 Pi/tanh(267/92*Pi) 3141592729350937 l004 Pi/tanh(148/51*Pi) 3141592729434320 l004 Pi/tanh(325/112*Pi) 3141592729504104 l004 Pi/tanh(177/61*Pi) 3141592729614316 l004 Pi/tanh(206/71*Pi) 3141592729697421 l004 Pi/tanh(235/81*Pi) 3141592729762325 l004 Pi/tanh(264/91*Pi) 3141592729814416 l004 Pi/tanh(293/101*Pi) 3141592729857148 l004 Pi/tanh(322/111*Pi) 3141592730189105 l005 ln(sec(357/115)) 3141592730290085 l004 Pi/tanh(29/10*Pi) 3141592730462105 l005 ln(sec(751/80)) 3141592730669976 p002 log(1/7*(3^(2/3)-7^(1/4)*3^(3/4))*7^(3/4)) 3141592730696133 l004 Pi/tanh(345/119*Pi) 3141592730733493 l004 Pi/tanh(316/109*Pi) 3141592730778424 l004 Pi/tanh(287/99*Pi) 3141592730833487 l004 Pi/tanh(258/89*Pi) 3141592730902546 l004 Pi/tanh(229/79*Pi) 3141592730991713 l004 Pi/tanh(200/69*Pi) 3141592731097321 l005 ln(sec(302/95)) 3141592731111267 l004 Pi/tanh(171/59*Pi) 3141592731187746 l004 Pi/tanh(313/108*Pi) 3141592731279933 l004 Pi/tanh(142/49*Pi) 3141592731393221 l004 Pi/tanh(255/88*Pi) 3141592731395432 l005 ln(sec(1042/111)) 3141592731531558 l005 ln(sec(1126/119)) 3141592731535791 l004 Pi/tanh(113/39*Pi) 3141592731653241 l004 Pi/tanh(310/107*Pi) 3141592731664009 p002 log(1/21*(2^(1/2)-6)*21^(1/2)) 3141592731690687 l005 ln(sec(149/48)) 3141592731720682 l004 Pi/tanh(197/68*Pi) 3141592731795143 l004 Pi/tanh(281/97*Pi) 3141592731970019 l004 Pi/tanh(84/29*Pi) 3141592732130390 l004 Pi/tanh(307/106*Pi) 3141592732190875 l004 Pi/tanh(223/77*Pi) 3141592732194550 l005 ln(sec(1003/106)) 3141592732289114 m005 (1/2*Zeta(3)-5/12)/(4/11*Pi-5/9) 3141592732324610 l004 Pi/tanh(139/48*Pi) 3141592732409827 l005 ln(sec(213/67)) 3141592732414282 l004 Pi/tanh(333/115*Pi) 3141592732478587 l004 Pi/tanh(194/67*Pi) 3141592732564658 l004 Pi/tanh(249/86*Pi) 3141592732619629 l004 Pi/tanh(304/105*Pi) 3141592732716440 m004 10*Pi+Tanh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592732716503 m004 -100*Pi-(5*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592732716565 m004 E^(-2*Sqrt[5]*Pi)+10*Pi 3141592732716628 m004 -100*Pi-(5*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592732868923 l004 Pi/tanh(55/19*Pi) 3141592733049053 l005 ln(sec(880/93)) 3141592733121412 l004 Pi/tanh(301/104*Pi) 3141592733177961 l004 Pi/tanh(246/85*Pi) 3141592733267149 l004 Pi/tanh(191/66*Pi) 3141592733334304 l004 Pi/tanh(327/113*Pi) 3141592733428701 l004 Pi/tanh(136/47*Pi) 3141592733571138 l004 Pi/tanh(217/75*Pi) 3141592733600234 l005 ln(sec(337/106)) 3141592733636218 l004 Pi/tanh(298/103*Pi) 3141592733810800 l004 Pi/tanh(81/28*Pi) 3141592733843299 l005 ln(sec(291/31)) 3141592733974292 l005 ln(sec(239/77)) 3141592734004599 l004 Pi/tanh(269/93*Pi) 3141592734088226 l004 Pi/tanh(188/65*Pi) 3141592734164550 l004 Pi/tanh(295/102*Pi) 3141592734191981 l005 ln(sec(757/80)) 3141592734298807 l004 Pi/tanh(107/37*Pi) 3141592734413102 l004 Pi/tanh(347/120*Pi) 3141592734464105 l004 Pi/tanh(240/83*Pi) 3141592734597307 l004 Pi/tanh(133/46*Pi) 3141592734706935 l004 Pi/tanh(292/101*Pi) 3141592734798737 l004 Pi/tanh(159/55*Pi) 3141592734876735 l004 Pi/tanh(344/119*Pi) 3141592734943824 l004 Pi/tanh(185/64*Pi) 3141592735024692 l005 ln(sec(329/106)) 3141592735053307 l004 Pi/tanh(211/73*Pi) 3141592735138860 l004 Pi/tanh(237/82*Pi) 3141592735207555 l004 Pi/tanh(263/91*Pi) 3141592735263929 l004 Pi/tanh(289/100*Pi) 3141592735311022 l004 Pi/tanh(315/109*Pi) 3141592735350954 l004 Pi/tanh(341/118*Pi) 3141592735403961 m002 E^Pi/Pi^17+Pi 3141592735676717 l005 ln(sec(124/39)) 3141592735798819 l005 ln(sec(634/67)) 3141592735836117 l004 Pi/tanh(26/9*Pi) 3141592736137657 r005 Im(z^2+c),c=21/94+8/21*I,n=4 3141592736332599 l004 Pi/tanh(335/116*Pi) 3141592736374495 l004 Pi/tanh(309/107*Pi) 3141592736424114 l004 Pi/tanh(283/98*Pi) 3141592736468091 l005 ln(sec(995/106)) 3141592736483808 l004 Pi/tanh(257/89*Pi) 3141592736556992 l004 Pi/tanh(231/80*Pi) 3141592736648821 l004 Pi/tanh(205/71*Pi) 3141592736767460 l004 Pi/tanh(179/62*Pi) 3141592736840791 l004 Pi/tanh(332/115*Pi) 3141592736916312 m001 Pi-gamma(2)^FeigenbaumAlpha 3141592736926656 l004 Pi/tanh(153/53*Pi) 3141592737028571 l004 Pi/tanh(280/97*Pi) 3141592737151496 l004 Pi/tanh(127/44*Pi) 3141592737302678 l004 Pi/tanh(228/79*Pi) 3141592737361102 l004 Pi/tanh(329/114*Pi) 3141592737493124 l004 Pi/tanh(101/35*Pi) 3141592737571605 l005 ln(sec(704/75)) 3141592737650170 l004 Pi/tanh(277/96*Pi) 3141592737740410 l004 Pi/tanh(176/61*Pi) 3141592737840099 l004 Pi/tanh(251/87*Pi) 3141592737863667 l005 ln(sec(90/29)) 3141592737893962 l004 Pi/tanh(326/113*Pi) 3141592738074447 l004 Pi/tanh(75/26*Pi) 3141592738202283 l005 ln(sec(283/89)) 3141592738223341 l005 ln(sec(511/54)) 3141592738289633 l004 Pi/tanh(274/95*Pi) 3141592738370859 l004 Pi/tanh(199/69*Pi) 3141592738439818 l004 Pi/tanh(323/112*Pi) 3141592738550590 l004 Pi/tanh(124/43*Pi) 3141592738563816 l005 ln(sec(1117/119)) 3141592738671205 l004 Pi/tanh(297/103*Pi) 3141592738757751 l004 Pi/tanh(173/60*Pi) 3141592738873658 l004 Pi/tanh(222/77*Pi) 3141592738947723 l004 Pi/tanh(271/94*Pi) 3141592738999140 l004 Pi/tanh(320/111*Pi) 3141592739284003 l004 Pi/tanh(49/17*Pi) 3141592739572419 l004 Pi/tanh(317/110*Pi) 3141592739625245 l004 Pi/tanh(268/93*Pi) 3141592739701762 l004 Pi/tanh(219/76*Pi) 3141592739822510 l004 Pi/tanh(170/59*Pi) 3141592739838270 m001 ZetaQ(2)^(2*Pi/GAMMA(5/6))+Pi 3141592739913482 l004 Pi/tanh(291/101*Pi) 3141592739965243 l005 ln(sec(899/95)) 3141592740041438 l004 Pi/tanh(121/42*Pi) 3141592740160172 l004 Pi/tanh(314/109*Pi) 3141592740212340 l005 ln(sec(159/50)) 3141592740234686 l004 Pi/tanh(193/67*Pi) 3141592740275324 l005 ln(sec(413/44)) 3141592740323051 l004 Pi/tanh(265/92*Pi) 3141592740373694 l004 Pi/tanh(337/117*Pi) 3141592740560315 l004 Pi/tanh(72/25*Pi) 3141592740687270 p002 log(1/10*11^(2/3)-5^(1/4)) 3141592740762940 l004 Pi/tanh(311/108*Pi) 3141592740824064 l004 Pi/tanh(239/83*Pi) 3141592740937996 l004 Pi/tanh(167/58*Pi) 3141592741042041 l004 Pi/tanh(262/91*Pi) 3141592741050266 l005 ln(sec(301/97)) 3141592741225209 l004 Pi/tanh(95/33*Pi) 3141592741381290 l004 Pi/tanh(308/107*Pi) 3141592741450983 l004 Pi/tanh(213/74*Pi) 3141592741515877 l004 Pi/tanh(331/115*Pi) 3141592741633125 l004 Pi/tanh(118/41*Pi) 3141592741783169 l004 Pi/tanh(259/90*Pi) 3141592741849710 l005 ln(sec(353/111)) 3141592741908913 l004 Pi/tanh(141/49*Pi) 3141592742015818 l004 Pi/tanh(305/106*Pi) 3141592742107821 l004 Pi/tanh(164/57*Pi) 3141592742229595 m008 (4/5*Pi^4+2)/(5/6*Pi^5-3/5) 3141592742258063 l004 Pi/tanh(187/65*Pi) 3141592742300329 l005 ln(sec(388/41)) 3141592742324891 l005 ln(sec(948/101)) 3141592742375553 l004 Pi/tanh(210/73*Pi) 3141592742436399 l005 ln(sec(211/68)) 3141592742469947 l004 Pi/tanh(233/81*Pi) 3141592742547447 l004 Pi/tanh(256/89*Pi) 3141592742612215 l004 Pi/tanh(279/97*Pi) 3141592742667150 l004 Pi/tanh(302/105*Pi) 3141592742714334 l004 Pi/tanh(325/113*Pi) 3141592743209041 l005 ln(sec(194/61)) 3141592743335945 l004 Pi/tanh(23/8*Pi) 3141592743707170 l005 ln(sec(332/107)) 3141592743930228 l004 Pi/tanh(342/119*Pi) 3141592743931708 l005 ln(sec(535/57)) 3141592743973210 l004 Pi/tanh(319/111*Pi) 3141592744022896 l004 Pi/tanh(296/103*Pi) 3141592744080984 l004 Pi/tanh(273/95*Pi) 3141592744149803 l004 Pi/tanh(250/87*Pi) 3141592744232629 l004 Pi/tanh(227/79*Pi) 3141592744334224 l004 Pi/tanh(204/71*Pi) 3141592744354826 l005 ln(sec(1041/110)) 3141592744461781 l004 Pi/tanh(181/63*Pi) 3141592744538618 l004 Pi/tanh(339/118*Pi) 3141592744626712 l004 Pi/tanh(158/55*Pi) 3141592744728730 l004 Pi/tanh(293/102*Pi) 3141592744732118 m001 (exp(1)*Magata+3^(1/3))/Magata 3141592744848258 l004 Pi/tanh(135/47*Pi) 3141592744990227 l004 Pi/tanh(247/86*Pi) 3141592745161612 l004 Pi/tanh(112/39*Pi) 3141592745297060 l004 Pi/tanh(313/109*Pi) 3141592745335372 l005 ln(sec(229/72)) 3141592745372610 l004 Pi/tanh(201/70*Pi) 3141592745454215 l004 Pi/tanh(290/101*Pi) 3141592745592398 l005 ln(sec(653/69)) 3141592745638750 l004 Pi/tanh(89/31*Pi) 3141592745799725 l004 Pi/tanh(333/116*Pi) 3141592745858504 l004 Pi/tanh(244/85*Pi) 3141592745955427 l005 ln(sec(121/39)) 3141592745984896 l004 Pi/tanh(155/54*Pi) 3141592746124620 l004 Pi/tanh(221/77*Pi) 3141592746200159 l004 Pi/tanh(287/100*Pi) 3141592746288462 l005 ln(sec(657/70)) 3141592746453500 l004 Pi/tanh(66/23*Pi) 3141592746576927 m002 Pi+(Sech[Pi]*Tanh[Pi])/Pi^12 3141592746690894 l004 Pi/tanh(307/107*Pi) 3141592746756000 l004 Pi/tanh(241/84*Pi) 3141592746870313 l004 Pi/tanh(175/61*Pi) 3141592746922059 l005 ln(sec(264/83)) 3141592746924385 m001 Pi-ln(gamma)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141592746924873 m002 Pi+Sech[Pi]/Pi^12 3141592746967416 l004 Pi/tanh(284/99*Pi) 3141592747011100 l005 ln(sec(918/97)) 3141592747099171 m002 2/(E^Pi*Pi^12)+Pi 3141592747123503 l004 Pi/tanh(109/38*Pi) 3141592747274121 m002 Pi+Csch[Pi]/Pi^12 3141592747293608 l004 Pi/tanh(261/91*Pi) 3141592747415761 l004 Pi/tanh(152/53*Pi) 3141592747579479 l004 Pi/tanh(195/68*Pi) 3141592747684171 l004 Pi/tanh(238/83*Pi) 3141592747756883 l004 Pi/tanh(281/98*Pi) 3141592747810327 l004 Pi/tanh(324/113*Pi) 3141592747933460 l005 ln(sec(779/83)) 3141592748151248 l005 ln(sec(299/94)) 3141592748160241 l004 Pi/tanh(43/15*Pi) 3141592748514596 l004 Pi/tanh(321/112*Pi) 3141592748541770 m004 -100*Pi-3*Sech[Sqrt[5]*Pi]^2 3141592748541845 m004 -100*Pi-(6*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592748541920 m004 -100*Pi-3*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592748541995 m004 -100*Pi-(6*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592748542070 m004 -100*Pi-3*Csch[Sqrt[5]*Pi]^2 3141592748569511 l004 Pi/tanh(278/97*Pi) 3141592748644569 l004 Pi/tanh(235/82*Pi) 3141592748745489 l005 ln(sec(273/88)) 3141592748753340 l004 Pi/tanh(192/67*Pi) 3141592748827467 p002 log(21/17-5^(1/2)) 3141592748828364 l004 Pi/tanh(341/119*Pi) 3141592748925117 l004 Pi/tanh(149/52*Pi) 3141592749054636 l004 Pi/tanh(255/89*Pi) 3141592749131455 l005 ln(sec(334/105)) 3141592749146672 l005 ln(sec(901/96)) 3141592749236961 l004 Pi/tanh(106/37*Pi) 3141592749406303 l004 Pi/tanh(275/96*Pi) 3141592749512653 l004 Pi/tanh(169/59*Pi) 3141592749620884 m001 Pi+gamma(1)^(2*Pi/GAMMA(5/6)) 3141592749638850 l004 Pi/tanh(232/81*Pi) 3141592749711213 l004 Pi/tanh(295/103*Pi) 3141592749931335 l005 ln(sec(369/116)) 3141592749978109 l004 Pi/tanh(63/22*Pi) 3141592750078314 l005 ln(sec(1023/109)) 3141592750213682 l004 Pi/tanh(335/117*Pi) 3141592750263077 m001 Trott^FeigenbaumMu+Pi 3141592750268318 l004 Pi/tanh(272/95*Pi) 3141592750355950 l004 Pi/tanh(209/73*Pi) 3141592750519396 l004 Pi/tanh(146/51*Pi) 3141592750577233 l005 ln(sec(265/28)) 3141592750668783 l004 Pi/tanh(229/80*Pi) 3141592750678794 p002 log(1/9*(5^(1/3)-11^(3/4))*9^(1/3)) 3141592750738758 l004 Pi/tanh(312/109*Pi) 3141592750932055 l004 Pi/tanh(83/29*Pi) 3141592751010956 l005 ln(sec(152/49)) 3141592751119824 m001 ZetaQ(3)^Magata+Pi 3141592751156679 l004 Pi/tanh(269/94*Pi) 3141592751257063 l004 Pi/tanh(186/65*Pi) 3141592751350583 l004 Pi/tanh(289/101*Pi) 3141592751519664 l004 Pi/tanh(103/36*Pi) 3141592751544964 p002 log(1/13*6^(1/2)-2^(1/4)) 3141592751668403 l004 Pi/tanh(329/115*Pi) 3141592751736257 l004 Pi/tanh(226/79*Pi) 3141592751917960 l004 Pi/tanh(123/43*Pi) 3141592752072573 l004 Pi/tanh(266/93*Pi) 3141592752205736 l004 Pi/tanh(143/50*Pi) 3141592752321621 l004 Pi/tanh(306/107*Pi) 3141592752423387 l004 Pi/tanh(163/57*Pi) 3141592752593761 l004 Pi/tanh(183/64*Pi) 3141592752730753 l004 Pi/tanh(203/71*Pi) 3141592752843298 l004 Pi/tanh(223/78*Pi) 3141592752886610 l005 ln(sec(335/108)) 3141592752937404 l004 Pi/tanh(243/85*Pi) 3141592753017259 l004 Pi/tanh(263/92*Pi) 3141592753031867 m001 Totient^Psi(2,1/3)+Pi 3141592753085873 l004 Pi/tanh(283/99*Pi) 3141592753145464 l004 Pi/tanh(303/106*Pi) 3141592753197700 l004 Pi/tanh(323/113*Pi) 3141592753243865 l004 Pi/tanh(343/120*Pi) 3141592753605651 p002 log(1/21*(12^(1/4)-12^(3/4))*21^(1/2)) 3141592753799767 m002 Pi+(ProductLog[Pi]*Sech[Pi])/Pi^12 3141592753992071 l004 Pi/tanh(20/7*Pi) 3141592754169428 l005 ln(sec(937/99)) 3141592754174740 m002 Pi+(Csch[Pi]*ProductLog[Pi])/Pi^12 3141592754464840 l005 ln(sec(183/59)) 3141592754758719 l004 Pi/tanh(337/118*Pi) 3141592754807262 l004 Pi/tanh(317/111*Pi) 3141592754862368 l004 Pi/tanh(297/104*Pi) 3141592754925464 l004 Pi/tanh(277/97*Pi) 3141592754998424 l004 Pi/tanh(257/90*Pi) 3141592755083757 l004 Pi/tanh(237/83*Pi) 3141592755184902 l004 Pi/tanh(217/76*Pi) 3141592755306703 l004 Pi/tanh(197/69*Pi) 3141592755456206 l004 Pi/tanh(177/62*Pi) 3141592755544478 l004 Pi/tanh(334/117*Pi) 3141592755613161 l005 ln(sec(672/71)) 3141592755644076 l004 Pi/tanh(157/55*Pi) 3141592755757330 l004 Pi/tanh(294/103*Pi) 3141592755887254 l004 Pi/tanh(137/48*Pi) 3141592756037822 l004 Pi/tanh(254/89*Pi) 3141592756214378 l004 Pi/tanh(117/41*Pi) 3141592756350046 l004 Pi/tanh(331/116*Pi) 3141592756424287 l004 Pi/tanh(214/75*Pi) 3141592756503354 l004 Pi/tanh(311/109*Pi) 3141592756677983 l004 Pi/tanh(97/34*Pi) 3141592756878711 l004 Pi/tanh(271/95*Pi) 3141592756879493 l005 ln(sec(1079/114)) 3141592756972799 l005 ln(sec(214/69)) 3141592756990762 l004 Pi/tanh(174/61*Pi) 3141592757111863 l004 Pi/tanh(251/88*Pi) 3141592757170760 l005 ln(sec(122/13)) 3141592757176156 l004 Pi/tanh(328/115*Pi) 3141592757385983 l004 Pi/tanh(77/27*Pi) 3141592757625412 l004 Pi/tanh(288/101*Pi) 3141592757712908 l004 Pi/tanh(211/74*Pi) 3141592757821888 l005 ln(sec(35/11)) 3141592757901182 l004 Pi/tanh(134/47*Pi) 3141592758023577 l004 Pi/tanh(325/114*Pi) 3141592758109522 l004 Pi/tanh(191/67*Pi) 3141592758222246 l004 Pi/tanh(248/87*Pi) 3141592758292893 l004 Pi/tanh(305/107*Pi) 3141592758600760 l004 Pi/tanh(57/20*Pi) 3141592758876126 l005 ln(sec(245/79)) 3141592758893115 l004 Pi/tanh(322/113*Pi) 3141592758956093 l004 Pi/tanh(265/93*Pi) 3141592758996177 l005 ln(sec(407/43)) 3141592759053654 l004 Pi/tanh(208/73*Pi) 3141592759225064 l004 Pi/tanh(151/53*Pi) 3141592759370783 l004 Pi/tanh(245/86*Pi) 3141592759435747 l004 Pi/tanh(339/119*Pi) 3141592759605236 l004 Pi/tanh(94/33*Pi) 3141592759785615 l004 Pi/tanh(319/112*Pi) 3141592759861054 l004 Pi/tanh(225/79*Pi) 3141592760044956 l004 Pi/tanh(131/46*Pi) 3141592760183530 l004 Pi/tanh(299/105*Pi) 3141592760291696 l004 Pi/tanh(168/59*Pi) 3141592760369734 l005 ln(sec(276/89)) 3141592760433249 m002 Pi+(Log[Pi]*Sech[Pi])/Pi^12 3141592760449635 l004 Pi/tanh(205/72*Pi) 3141592760559400 l004 Pi/tanh(242/85*Pi) 3141592760629996 p002 log(1/12*(11^(1/2)-6^(1/2)*12^(1/3))*12^(2/3)) 3141592760640116 l004 Pi/tanh(279/98*Pi) 3141592760701967 l004 Pi/tanh(316/111*Pi) 3141592760833043 m002 Pi+(Csch[Pi]*Log[Pi])/Pi^12 3141592761165565 p002 log(7^(2/3)/(5^(3/4)-7)) 3141592761169377 l004 Pi/tanh(37/13*Pi) 3141592761424217 l005 ln(sec(956/101)) 3141592761572961 l005 ln(sec(307/99)) 3141592761643104 l004 Pi/tanh(313/110*Pi) 3141592761706752 l004 Pi/tanh(276/97*Pi) 3141592761790156 l004 Pi/tanh(239/84*Pi) 3141592761904207 l004 Pi/tanh(202/71*Pi) 3141592762068540 m001 ZetaQ(4)^FeigenbaumAlpha+Pi 3141592762069598 l004 Pi/tanh(165/58*Pi) 3141592762183752 l004 Pi/tanh(293/103*Pi) 3141592762331062 l004 Pi/tanh(128/45*Pi) 3141592762528424 l004 Pi/tanh(219/77*Pi) 3141592762562931 l005 ln(sec(338/109)) 3141592762610009 l004 Pi/tanh(310/109*Pi) 3141592762804152 m002 Pi+Tanh[Pi]/Pi^14 3141592762806572 l004 Pi/tanh(91/32*Pi) 3141592762993206 l004 Pi/tanh(327/115*Pi) 3141592763065247 l004 Pi/tanh(236/83*Pi) 3141592763157626 p002 log(1/2*(2^(1/2)*5^(1/3)-6^(3/4))*2^(1/2)) 3141592763212818 m002 Pi^(-14)+Pi 3141592763227866 l004 Pi/tanh(145/51*Pi) 3141592763251220 l005 ln(sec(549/58)) 3141592763391696 l005 ln(sec(369/119)) 3141592763420998 l004 Pi/tanh(199/70*Pi) 3141592763531823 l004 Pi/tanh(253/89*Pi) 3141592763603713 l004 Pi/tanh(307/108*Pi) 3141592763941090 l004 Pi/tanh(54/19*Pi) 3141592764245614 l004 Pi/tanh(341/120*Pi) 3141592764302994 l004 Pi/tanh(287/101*Pi) 3141592764387019 l004 Pi/tanh(233/82*Pi) 3141592764441924 l005 ln(sec(1051/112)) 3141592764521859 l004 Pi/tanh(179/63*Pi) 3141592764625306 l004 Pi/tanh(304/107*Pi) 3141592764760064 m004 -100*Pi+Sqrt[5]*Pi-Sqrt[5]*Pi*Coth[Sqrt[5]*Pi] 3141592764773590 l004 Pi/tanh(125/44*Pi) 3141592764914183 l004 Pi/tanh(321/113*Pi) 3141592765003930 l004 Pi/tanh(196/69*Pi) 3141592765111912 l004 Pi/tanh(267/94*Pi) 3141592765174572 l004 Pi/tanh(338/119*Pi) 3141592765410487 l004 Pi/tanh(71/25*Pi) 3141592765424406 l005 ln(sec(929/99)) 3141592765675930 l004 Pi/tanh(301/106*Pi) 3141592765757984 l004 Pi/tanh(230/81*Pi) 3141592765805354 p002 log(1/2*(2*2^(1/6)-6^(3/4))*2^(1/3)) 3141592765817162 l005 ln(sec(691/73)) 3141592765913465 l004 Pi/tanh(159/56*Pi) 3141592766058417 l004 Pi/tanh(247/87*Pi) 3141592766127274 l004 Pi/tanh(335/118*Pi) 3141592766262505 l005 ln(sec(366/115)) 3141592766320740 l004 Pi/tanh(88/31*Pi) 3141592766551772 l004 Pi/tanh(281/99*Pi) 3141592766577358 m001 Pi+gamma(3)^Sierpinski 3141592766657252 l004 Pi/tanh(193/68*Pi) 3141592766713695 l005 ln(sec(807/86)) 3141592766756795 l004 Pi/tanh(298/105*Pi) 3141592766939967 l004 Pi/tanh(105/37*Pi) 3141592767104605 l004 Pi/tanh(332/117*Pi) 3141592767180831 l004 Pi/tanh(227/80*Pi) 3141592767184320 l005 ln(sec(331/104)) 3141592767388495 l004 Pi/tanh(122/43*Pi) 3141592767532803 l005 ln(sec(833/88)) 3141592767569382 l004 Pi/tanh(261/92*Pi) 3141592767728355 l004 Pi/tanh(139/49*Pi) 3141592767869171 l004 Pi/tanh(295/104*Pi) 3141592767994771 l004 Pi/tanh(156/55*Pi) 3141592768107496 l004 Pi/tanh(329/116*Pi) 3141592768209228 l004 Pi/tanh(173/61*Pi) 3141592768332010 l005 ln(sec(296/93)) 3141592768385574 l004 Pi/tanh(190/67*Pi) 3141592768479959 l005 ln(sec(685/73)) 3141592768533141 l004 Pi/tanh(207/73*Pi) 3141592768658440 l004 Pi/tanh(224/79*Pi) 3141592768760603 l005 ln(sec(975/103)) 3141592768766160 l004 Pi/tanh(241/85*Pi) 3141592768859756 l004 Pi/tanh(258/91*Pi) 3141592768941836 l004 Pi/tanh(275/97*Pi) 3141592769014402 l004 Pi/tanh(292/103*Pi) 3141592769079018 l004 Pi/tanh(309/109*Pi) 3141592769136921 l004 Pi/tanh(326/115*Pi) 3141592769682691 l005 ln(sec(1117/118)) 3141592769800105 l005 ln(sec(261/82)) 3141592770193906 l004 Pi/tanh(17/6*Pi) 3141592771047583 l005 ln(sec(563/60)) 3141592771224548 l004 Pi/tanh(337/119*Pi) 3141592771279527 l004 Pi/tanh(320/113*Pi) 3141592771287452 m002 Pi+ProductLog[Pi]/Pi^14 3141592771340701 l004 Pi/tanh(303/107*Pi) 3141592771409181 l004 Pi/tanh(286/101*Pi) 3141592771486359 l004 Pi/tanh(269/95*Pi) 3141592771574004 l004 Pi/tanh(252/89*Pi) 3141592771674401 l004 Pi/tanh(235/83*Pi) 3141592771744365 l005 ln(sec(226/71)) 3141592771790551 l004 Pi/tanh(218/77*Pi) 3141592771926476 l004 Pi/tanh(201/71*Pi) 3141592772087698 l004 Pi/tanh(184/65*Pi) 3141592772282002 l004 Pi/tanh(167/59*Pi) 3141592772394913 l004 Pi/tanh(317/112*Pi) 3141592772520734 l004 Pi/tanh(150/53*Pi) 3141592772661811 l004 Pi/tanh(283/100*Pi) 3141592772735161 l005 ln(sec(31/10)) 3141592772821098 l004 Pi/tanh(133/47*Pi) 3141592772823865 l005 ln(sec(1004/107)) 3141592773002366 l004 Pi/tanh(249/88*Pi) 3141592773210499 l004 Pi/tanh(116/41*Pi) 3141592773367283 l004 Pi/tanh(331/117*Pi) 3141592773451949 l004 Pi/tanh(215/76*Pi) 3141592773541256 l004 Pi/tanh(314/111*Pi) 3141592773735410 l004 Pi/tanh(99/35*Pi) 3141592773953471 l004 Pi/tanh(280/99*Pi) 3141592774072891 l004 Pi/tanh(181/64*Pi) 3141592774200145 l004 Pi/tanh(263/93*Pi) 3141592774375439 m004 10*Pi+ProductLog[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592774440864 l005 ln(sec(191/60)) 3141592774481458 l004 Pi/tanh(82/29*Pi) 3141592774719807 l004 Pi/tanh(311/110*Pi) 3141592774805256 l004 Pi/tanh(229/81*Pi) 3141592774986212 l004 Pi/tanh(147/52*Pi) 3141592775120654 l005 ln(sec(441/47)) 3141592775181948 l004 Pi/tanh(212/75*Pi) 3141592775285936 l004 Pi/tanh(277/98*Pi) 3141592775303111 m001 ln(MinimumGamma/Zeta(1/2)) 3141592775553249 m001 ZetaQ(3)^ReciprocalFibonacci+Pi 3141592775625646 l004 Pi/tanh(65/23*Pi) 3141592775931883 l004 Pi/tanh(308/109*Pi) 3141592776013913 l004 Pi/tanh(243/86*Pi) 3141592776155969 l004 Pi/tanh(178/63*Pi) 3141592776164821 l005 ln(sec(142/15)) 3141592776221956 l005 ln(sec(347/109)) 3141592776274706 l004 Pi/tanh(291/103*Pi) 3141592776461948 l004 Pi/tanh(113/40*Pi) 3141592776661086 l004 Pi/tanh(274/97*Pi) 3141592776801024 l004 Pi/tanh(161/57*Pi) 3141592776984698 l004 Pi/tanh(209/74*Pi) 3141592777099886 l004 Pi/tanh(257/91*Pi) 3141592777178873 l004 Pi/tanh(305/108*Pi) 3141592777602546 l004 Pi/tanh(48/17*Pi) 3141592777881836 m004 -100*Pi-(5*Pi)/E^(2*Sqrt[5]*Pi) 3141592778008830 l004 Pi/tanh(319/113*Pi) 3141592778080914 l004 Pi/tanh(271/96*Pi) 3141592778184095 l004 Pi/tanh(223/79*Pi) 3141592778205375 l005 ln(sec(760/81)) 3141592778344028 l004 Pi/tanh(175/62*Pi) 3141592778429622 l005 ln(sec(156/49)) 3141592778462241 l004 Pi/tanh(302/107*Pi) 3141592778625296 l004 Pi/tanh(127/45*Pi) 3141592778773335 l004 Pi/tanh(333/118*Pi) 3141592778851196 p002 log(1/13*(2^(2/3)-9^(3/4))*13^(1/2)) 3141592778864679 l004 Pi/tanh(206/73*Pi) 3141592778971482 l004 Pi/tanh(285/101*Pi) 3141592779021432 p002 log(1/7*(3^(1/4)-10^(3/4))*7^(1/4)) 3141592779078546 m002 Pi+Log[Pi]/Pi^14 3141592779250362 l004 Pi/tanh(79/28*Pi) 3141592779482848 l005 ln(sec(1079/115)) 3141592779547536 l004 Pi/tanh(268/95*Pi) 3141592779671936 l004 Pi/tanh(189/67*Pi) 3141592779783531 l004 Pi/tanh(299/106*Pi) 3141592779975476 l004 Pi/tanh(110/39*Pi) 3141592780192428 m004 -100*Pi-4*Sech[Sqrt[5]*Pi]^2 3141592780192629 m004 -100*Pi-4*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592780192829 m004 -100*Pi-4*Csch[Sqrt[5]*Pi]^2 3141592780204466 l004 Pi/tanh(251/89*Pi) 3141592780383366 l004 Pi/tanh(141/50*Pi) 3141592780526991 l004 Pi/tanh(313/111*Pi) 3141592780644838 l004 Pi/tanh(172/61*Pi) 3141592780826733 l004 Pi/tanh(203/72*Pi) 3141592780960580 l004 Pi/tanh(234/83*Pi) 3141592781063197 l004 Pi/tanh(265/94*Pi) 3141592781144372 l004 Pi/tanh(296/105*Pi) 3141592781210189 l004 Pi/tanh(327/116*Pi) 3141592781237471 l005 ln(sec(277/87)) 3141592781443495 p002 log(4^(2/3)/(3^(1/4)-6^(3/4))) 3141592781840158 l004 Pi/tanh(31/11*Pi) 3141592781863196 m002 Pi+Sinh[Pi]/Pi^16 3141592782343179 m002 Pi+Cosh[Pi]/Pi^16 3141592782441614 p002 log(5^(3/4)/(7^(2/3)-7)) 3141592782478755 l004 Pi/tanh(324/115*Pi) 3141592782546485 l004 Pi/tanh(293/104*Pi) 3141592782565816 l005 ln(sec(319/34)) 3141592782630285 l004 Pi/tanh(262/93*Pi) 3141592782736648 l004 Pi/tanh(231/82*Pi) 3141592782876100 l004 Pi/tanh(200/71*Pi) 3141592783066929 l004 Pi/tanh(169/60*Pi) 3141592783075056 p002 log(1/2*(13^(1/2)-23^(1/2))*2^(3/4)) 3141592783191381 l004 Pi/tanh(307/109*Pi) 3141592783278751 m001 exp(-1/2*Pi)^Psi(1,1/3)+Pi 3141592783343935 l004 Pi/tanh(138/49*Pi) 3141592783401500 l005 ln(sec(344/111)) 3141592783535319 l004 Pi/tanh(245/87*Pi) 3141592783624157 l005 ln(sec(1013/107)) 3141592783782521 l004 Pi/tanh(107/38*Pi) 3141592783991688 l004 Pi/tanh(290/103*Pi) 3141592784114126 l004 Pi/tanh(183/65*Pi) 3141592784251340 l004 Pi/tanh(259/92*Pi) 3141592784326350 l004 Pi/tanh(335/119*Pi) 3141592784495218 l005 ln(sec(313/101)) 3141592784582262 l004 Pi/tanh(76/27*Pi) 3141592784871901 l005 ln(sec(871/92)) 3141592784896901 l004 Pi/tanh(273/97*Pi) 3141592784927740 l005 ln(sec(121/38)) 3141592785018463 l004 Pi/tanh(197/70*Pi) 3141592785122903 l004 Pi/tanh(318/113*Pi) 3141592785293099 l004 Pi/tanh(121/43*Pi) 3141592785481906 l004 Pi/tanh(287/102*Pi) 3141592785619682 l004 Pi/tanh(166/59*Pi) 3141592785807288 l004 Pi/tanh(211/75*Pi) 3141592785838655 l005 ln(sec(282/91)) 3141592785929066 l004 Pi/tanh(256/91*Pi) 3141592786014490 l004 Pi/tanh(301/107*Pi) 3141592786173155 p002 log(11^(1/3)*(2^(1/3)-5^(1/3))) 3141592786501393 l004 Pi/tanh(45/16*Pi) 3141592786620667 l005 ln(sec(729/77)) 3141592786632894 l005 ln(sec(835/89)) 3141592786948247 l004 Pi/tanh(329/117*Pi) 3141592787019174 l004 Pi/tanh(284/101*Pi) 3141592787116864 l004 Pi/tanh(239/85*Pi) 3141592787259988 l004 Pi/tanh(194/69*Pi) 3141592787434214 m001 MertensB3^Psi(2,1/3)+Pi 3141592787489848 l004 Pi/tanh(149/53*Pi) 3141592787528265 l005 ln(sec(251/81)) 3141592787666341 l004 Pi/tanh(253/90*Pi) 3141592787919561 l004 Pi/tanh(104/37*Pi) 3141592788106626 l005 ln(sec(328/103)) 3141592788159895 l004 Pi/tanh(267/95*Pi) 3141592788313436 l004 Pi/tanh(163/58*Pi) 3141592788498306 l004 Pi/tanh(222/79*Pi) 3141592788605647 l004 Pi/tanh(281/100*Pi) 3141592788707597 m001 Trott2nd^(Pi*csc(5/24*Pi)/GAMMA(19/24))+Pi 3141592789010219 l004 Pi/tanh(59/21*Pi) 3141592789194743 l005 ln(sec(516/55)) 3141592789247744 l005 ln(sec(587/62)) 3141592789379063 l004 Pi/tanh(309/110*Pi) 3141592789466240 l004 Pi/tanh(250/89*Pi) 3141592789607380 l004 Pi/tanh(191/68*Pi) 3141592789716711 l004 Pi/tanh(323/115*Pi) 3141592789717441 l005 ln(sec(220/71)) 3141592789875047 l004 Pi/tanh(132/47*Pi) 3141592789991585 l005 ln(sec(207/65)) 3141592790026959 l004 Pi/tanh(337/120*Pi) 3141592790124855 l004 Pi/tanh(205/73*Pi) 3141592790243611 l004 Pi/tanh(278/99*Pi) 3141592790518436 m001 exp(Pi)+Khinchin*GAMMA(7/24) 3141592790518436 m001 exp(Pi)+Pi*csc(7/24*Pi)/GAMMA(17/24)*Khinchin 3141592790577593 l004 Pi/tanh(73/26*Pi) 3141592790881642 l004 Pi/tanh(306/109*Pi) 3141592790977025 l004 Pi/tanh(233/83*Pi) 3141592791126890 l005 ln(sec(1032/109)) 3141592791159608 l004 Pi/tanh(160/57*Pi) 3141592791332040 l004 Pi/tanh(247/88*Pi) 3141592791401973 p002 log(1/7*(12^(1/3)-7^(11/12))*7^(1/3)) 3141592791414710 l004 Pi/tanh(334/119*Pi) 3141592791649656 l004 Pi/tanh(87/31*Pi) 3141592791935487 l004 Pi/tanh(275/98*Pi) 3141592792012312 a005 (1/cos(27/220*Pi))^770 3141592792067937 l004 Pi/tanh(188/67*Pi) 3141592792125356 l005 ln(sec(293/92)) 3141592792194075 l004 Pi/tanh(289/103*Pi) 3141592792241650 l005 ln(sec(713/76)) 3141592792429139 l004 Pi/tanh(101/36*Pi) 3141592792643747 l004 Pi/tanh(317/113*Pi) 3141592792665736 l005 ln(sec(189/61)) 3141592792744197 l004 Pi/tanh(216/77*Pi) 3141592792840459 l004 Pi/tanh(331/118*Pi) 3141592793021424 l004 Pi/tanh(115/41*Pi) 3141592793267246 l004 Pi/tanh(244/87*Pi) 3141592793301382 l005 ln(sec(379/119)) 3141592793486713 l004 Pi/tanh(129/46*Pi) 3141592793635555 l005 ln(sec(445/47)) 3141592793683848 l004 Pi/tanh(272/97*Pi) 3141592793853860 m002 3/(E^Pi*Pi^12)+Pi 3141592793861895 l004 Pi/tanh(143/51*Pi) 3141592793991931 l005 ln(sec(910/97)) 3141592794023497 l004 Pi/tanh(300/107*Pi) 3141592794170833 l004 Pi/tanh(157/56*Pi) 3141592794195160 p002 log(1/7*(2^(1/4)-3^(1/2)*7^(1/4))*7^(3/4)) 3141592794305710 l004 Pi/tanh(328/117*Pi) 3141592794352549 p002 log(1/2*(11^(1/2)-5)*2^(1/4)) 3141592794429647 l004 Pi/tanh(171/61*Pi) 3141592794559389 l005 ln(sec(347/112)) 3141592794649620 l004 Pi/tanh(185/66*Pi) 3141592794838886 l004 Pi/tanh(199/71*Pi) 3141592795003455 l004 Pi/tanh(213/76*Pi) 3141592795127974 l005 ln(sec(1107/118)) 3141592795147864 l004 Pi/tanh(227/81*Pi) 3141592795275604 l004 Pi/tanh(241/86*Pi) 3141592795389403 l004 Pi/tanh(255/91*Pi) 3141592795491426 l004 Pi/tanh(269/96*Pi) 3141592795583411 l004 Pi/tanh(283/101*Pi) 3141592795666769 l004 Pi/tanh(297/106*Pi) 3141592795742660 l004 Pi/tanh(311/111*Pi) 3141592795812045 l004 Pi/tanh(325/116*Pi) 3141592796657394 p002 log(1/17*(15^(1/2)-8)*17^(1/2)) 3141592796849678 l005 ln(sec(158/51)) 3141592797153046 l005 ln(sec(748/79)) 3141592797361125 l004 Pi/tanh(14/5*Pi) 3141592797364896 l005 ln(sec(86/27)) 3141592798662237 l005 ln(sec(1051/111)) 3141592798887391 l004 Pi/tanh(333/119*Pi) 3141592798954702 l004 Pi/tanh(319/114*Pi) 3141592799028224 l004 Pi/tanh(305/109*Pi) 3141592799108859 l004 Pi/tanh(291/104*Pi) 3141592799197689 l004 Pi/tanh(277/99*Pi) 3141592799296034 l004 Pi/tanh(263/94*Pi) 3141592799405506 l004 Pi/tanh(249/89*Pi) 3141592799528108 l004 Pi/tanh(235/84*Pi) 3141592799666352 l004 Pi/tanh(221/79*Pi) 3141592799675404 l005 ln(sec(285/92)) 3141592799823437 l004 Pi/tanh(207/74*Pi) 3141592799926408 m002 Pi+Tanh[Pi]/(E^Pi*Pi^11) 3141592800003496 l004 Pi/tanh(193/69*Pi) 3141592800211965 l004 Pi/tanh(179/64*Pi) 3141592800456144 l004 Pi/tanh(165/59*Pi) 3141592800465157 l005 ln(sec(197/21)) 3141592800473981 m002 1/(E^Pi*Pi^11)+Pi 3141592800594621 l004 Pi/tanh(316/113*Pi) 3141592800746069 l004 Pi/tanh(151/54*Pi) 3141592800912400 l004 Pi/tanh(288/103*Pi) 3141592801095921 l004 Pi/tanh(137/49*Pi) 3141592801299442 l004 Pi/tanh(260/93*Pi) 3141592801526422 l004 Pi/tanh(123/44*Pi) 3141592801781163 l004 Pi/tanh(232/83*Pi) 3141592802069089 l004 Pi/tanh(109/39*Pi) 3141592802249749 p002 log(5^(1/4)/(6^(2/3)-23^(1/2))) 3141592802282824 l004 Pi/tanh(313/112*Pi) 3141592802397137 l004 Pi/tanh(204/73*Pi) 3141592802439013 l005 ln(sec(303/32)) 3141592802470406 l005 ln(sec(309/97)) 3141592802516886 l004 Pi/tanh(299/107*Pi) 3141592802774320 l004 Pi/tanh(95/34*Pi) 3141592803058810 l004 Pi/tanh(271/97*Pi) 3141592803212570 l004 Pi/tanh(176/63*Pi) 3141592803248449 l005 ln(sec(127/41)) 3141592803374857 l004 Pi/tanh(257/92*Pi) 3141592803728019 l004 Pi/tanh(81/29*Pi) 3141592803810200 p002 log((10^(1/4)-3^(2/3))*11^(1/2)) 3141592804021361 l004 Pi/tanh(310/111*Pi) 3141592804125241 l004 Pi/tanh(229/82*Pi) 3141592804343034 l004 Pi/tanh(148/53*Pi) 3141592804475577 l005 ln(sec(223/70)) 3141592804575315 l004 Pi/tanh(215/77*Pi) 3141592804697348 l004 Pi/tanh(282/101*Pi) 3141592805089538 l004 Pi/tanh(67/24*Pi) 3141592805434823 l004 Pi/tanh(321/115*Pi) 3141592805526018 l004 Pi/tanh(254/91*Pi) 3141592805682675 l004 Pi/tanh(187/67*Pi) 3141592805812394 l004 Pi/tanh(307/110*Pi) 3141592806014737 l004 Pi/tanh(120/43*Pi) 3141592806198205 l005 ln(sec(1060/113)) 3141592806205568 l005 ln(sec(350/113)) 3141592806212932 l005 ln(sec(360/113)) 3141592806220296 l005 ln(sec(1070/113)) 3141592806227002 l004 Pi/tanh(293/105*Pi) 3141592806374393 l004 Pi/tanh(173/62*Pi) 3141592806565666 l004 Pi/tanh(226/81*Pi) 3141592806684376 l004 Pi/tanh(279/100*Pi) 3141592806765231 l004 Pi/tanh(332/119*Pi) 3141592807191488 l004 Pi/tanh(53/19*Pi) 3141592807530030 l005 ln(sec(863/92)) 3141592807658207 l004 Pi/tanh(304/109*Pi) 3141592807733820 l005 ln(sec(767/81)) 3141592807756917 l004 Pi/tanh(251/90*Pi) 3141592807843388 m004 10*Pi+Log[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141592807908582 l004 Pi/tanh(198/71*Pi) 3141592807908949 l005 ln(sec(223/72)) 3141592808171431 l004 Pi/tanh(145/52*Pi) 3141592808391331 l004 Pi/tanh(237/85*Pi) 3141592808488335 l004 Pi/tanh(329/118*Pi) 3141592808738474 l004 Pi/tanh(92/33*Pi) 3141592808791172 p002 log(11^(1/3)-5^(1/2)*3^(1/3)) 3141592808953868 r002 19th iterates of z^2 + 3141592809000112 l004 Pi/tanh(315/113*Pi) 3141592809073233 l005 ln(sec(137/43)) 3141592809108167 l004 Pi/tanh(223/80*Pi) 3141592809368264 l004 Pi/tanh(131/47*Pi) 3141592809561210 l004 Pi/tanh(301/108*Pi) 3141592809667655 l005 ln(sec(666/71)) 3141592809710036 l004 Pi/tanh(170/61*Pi) 3141592809715382 r005 Re(z^2+c),c=-45/106+13/63*I,n=7 3141592809794071 l005 ln(sec(319/103)) 3141592809924594 l004 Pi/tanh(209/75*Pi) 3141592810071822 l004 Pi/tanh(248/89*Pi) 3141592810179114 l004 Pi/tanh(287/103*Pi) 3141592810260778 l004 Pi/tanh(326/117*Pi) 3141592810862904 l004 Pi/tanh(39/14*Pi) 3141592811267104 l005 ln(sec(464/49)) 3141592811293205 m002 Pi+ProductLog[Pi]/(E^Pi*Pi^11) 3141592811523953 l004 Pi/tanh(298/107*Pi) 3141592811623706 l004 Pi/tanh(259/93*Pi) 3141592811758916 l004 Pi/tanh(220/79*Pi) 3141592811842962 m004 -10*Pi-Tanh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]^2 3141592811843087 m004 -100*Pi-5*Sech[Sqrt[5]*Pi]^2 3141592811843213 m004 -1-10*Pi+Tanh[Sqrt[5]*Pi] 3141592811843338 m004 2/E^(2*Sqrt[5]*Pi)+10*Pi 3141592811843338 m004 -100*Pi-5*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592811843463 m004 -1+10*Pi+Coth[Sqrt[5]*Pi] 3141592811843588 m004 -100*Pi-5*Csch[Sqrt[5]*Pi]^2 3141592811952570 l004 Pi/tanh(181/65*Pi) 3141592812010878 p002 log(1/7*(10^(1/4)-2^(1/2)*7^(3/4))*7^(1/4)) 3141592812084591 l004 Pi/tanh(323/116*Pi) 3141592812253012 l004 Pi/tanh(142/51*Pi) 3141592812288753 l005 ln(sec(325/102)) 3141592812475296 l004 Pi/tanh(245/88*Pi) 3141592812782197 l004 Pi/tanh(103/37*Pi) 3141592813061136 l004 Pi/tanh(270/97*Pi) 3141592813233392 l004 Pi/tanh(167/60*Pi) 3141592813434939 l004 Pi/tanh(231/83*Pi) 3141592813549134 l004 Pi/tanh(295/106*Pi) 3141592813658982 l005 ln(sec(469/50)) 3141592813791989 l005 ln(sec(1089/115)) 3141592813961911 l004 Pi/tanh(64/23*Pi) 3141592814101000 p002 log(1/9*(20-9^(2/3)*10^(3/4))*9^(1/3)) 3141592814239059 l005 ln(sec(96/31)) 3141592814396269 l004 Pi/tanh(281/101*Pi) 3141592814524573 l004 Pi/tanh(217/78*Pi) 3141592814663507 l005 ln(sec(188/59)) 3141592814760452 l004 Pi/tanh(153/55*Pi) 3141592814972225 l004 Pi/tanh(242/87*Pi) 3141592815070197 l004 Pi/tanh(331/119*Pi) 3141592815336859 l004 Pi/tanh(89/32*Pi) 3141592815639608 l004 Pi/tanh(292/105*Pi) 3141592815686053 l005 ln(sec(625/66)) 3141592815772499 l004 Pi/tanh(203/73*Pi) 3141592815894994 l004 Pi/tanh(317/114*Pi) 3141592816113325 l004 Pi/tanh(114/41*Pi) 3141592816387253 l004 Pi/tanh(253/91*Pi) 3141592816612219 l004 Pi/tanh(139/50*Pi) 3141592816682873 b008 Pi*Zeta[7,1/10] 3141592816800272 l004 Pi/tanh(303/109*Pi) 3141592816959809 l004 Pi/tanh(164/59*Pi) 3141592817215863 l004 Pi/tanh(189/68*Pi) 3141592817311021 l005 ln(sec(741/79)) 3141592817412332 l004 Pi/tanh(214/77*Pi) 3141592817567846 l004 Pi/tanh(239/86*Pi) 3141592817694003 l004 Pi/tanh(264/95*Pi) 3141592817798398 l004 Pi/tanh(289/104*Pi) 3141592817886216 l004 Pi/tanh(314/113*Pi) 3141592817935838 l005 ln(sec(239/75)) 3141592818036307 p002 log(11^(1/3)/(10^(1/4)-4)) 3141592818336137 l005 ln(sec(353/114)) 3141592818338063 l005 ln(sec(786/83)) 3141592818416025 p002 log(2^(2/3)/(2^(1/2)-3)) 3141592818458809 p002 log(1/3*(4-3^(2/3)*5^(2/3))*3^(1/3)) 3141592818904407 l004 Pi/tanh(25/9*Pi) 3141592819022787 l005 ln(sec(1013/108)) 3141592819886299 l005 ln(sec(257/83)) 3141592819938084 l004 Pi/tanh(311/112*Pi) 3141592820028711 l004 Pi/tanh(286/103*Pi) 3141592820083945 l005 ln(sec(290/91)) 3141592820106133 l005 ln(sec(947/100)) 3141592820136758 l004 Pi/tanh(261/94*Pi) 3141592820267779 l004 Pi/tanh(236/85*Pi) 3141592820429974 l004 Pi/tanh(211/76*Pi) 3141592820635970 l004 Pi/tanh(186/67*Pi) 3141592820906282 l004 Pi/tanh(161/58*Pi) 3141592821075765 l004 Pi/tanh(297/107*Pi) 3141592821276600 l004 Pi/tanh(136/49*Pi) 3141592821369010 l005 ln(sec(1108/117)) 3141592821518372 l004 Pi/tanh(247/89*Pi) 3141592821602136 l005 ln(sec(341/107)) 3141592821732512 m002 Pi+Log[Pi]/(E^Pi*Pi^11) 3141592821815017 l004 Pi/tanh(111/40*Pi) 3141592822053246 l004 Pi/tanh(308/111*Pi) 3141592822187609 l004 Pi/tanh(197/71*Pi) 3141592822333948 l004 Pi/tanh(283/102*Pi) 3141592822669592 l004 Pi/tanh(86/31*Pi) 3141592822967852 l004 Pi/tanh(319/115*Pi) 3141592823078057 l004 Pi/tanh(233/84*Pi) 3141592823317427 l004 Pi/tanh(147/53*Pi) 3141592823323006 l005 ln(sec(161/52)) 3141592823351925 p002 log(1/23*(3-7^(1/4)*23^(1/2))*23^(1/2)) 3141592823585924 l004 Pi/tanh(208/75*Pi) 3141592823732807 l004 Pi/tanh(269/97*Pi) 3141592823754012 l005 ln(sec(272/29)) 3141592823825446 l004 Pi/tanh(330/119*Pi) 3141592824234502 l004 Pi/tanh(61/22*Pi) 3141592824717719 l004 Pi/tanh(280/101*Pi) 3141592824852530 l004 Pi/tanh(219/79*Pi) 3141592825091665 l004 Pi/tanh(158/57*Pi) 3141592825297276 l004 Pi/tanh(255/92*Pi) 3141592825632656 l004 Pi/tanh(97/35*Pi) 3141592825894593 l004 Pi/tanh(327/118*Pi) 3141592826005168 l004 Pi/tanh(230/83*Pi) 3141592826277300 l004 Pi/tanh(133/48*Pi) 3141592826484807 l004 Pi/tanh(302/109*Pi) 3141592826648267 l004 Pi/tanh(169/61*Pi) 3141592826889321 l004 Pi/tanh(205/74*Pi) 3141592827058535 l004 Pi/tanh(241/87*Pi) 3141592827183861 l004 Pi/tanh(277/100*Pi) 3141592827280412 l004 Pi/tanh(313/113*Pi) 3141592827294929 l005 ln(sec(226/73)) 3141592828024910 l004 Pi/tanh(36/13*Pi) 3141592828807292 l004 Pi/tanh(299/108*Pi) 3141592828914627 l004 Pi/tanh(263/95*Pi) 3141592828943771 l005 ln(sec(161/17)) 3141592829056096 l004 Pi/tanh(227/82*Pi) 3141592829223028 p002 log(1/4*(5^(1/4)-9^(2/3))*4^(1/4)) 3141592829251059 l004 Pi/tanh(191/69*Pi) 3141592829255180 l005 ln(sec(891/95)) 3141592829521896 l005 ln(sec(291/94)) 3141592829536931 l004 Pi/tanh(155/56*Pi) 3141592829609559 r005 Re(z^2+c),c=-37/86+30/61*I,n=15 3141592829736450 l004 Pi/tanh(274/99*Pi) 3141592829996629 l004 Pi/tanh(119/43*Pi) 3141592830030433 p002 log(21^(1/2)-3*12^(1/4)) 3141592830218981 l004 Pi/tanh(321/116*Pi) 3141592830333556 p002 log(1/7*(3^(1/2)-11^(3/4))*7^(1/4)) 3141592830350087 l004 Pi/tanh(202/73*Pi) 3141592830435326 l005 ln(sec(51/16)) 3141592830497857 l004 Pi/tanh(285/103*Pi) 3141592830857947 l004 Pi/tanh(83/30*Pi) 3141592830946607 l005 ln(sec(356/115)) 3141592831205268 l004 Pi/tanh(296/107*Pi) 3141592831332712 m001 Pi+sin(1/12*Pi)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141592831332712 m001 Pi+sin(Pi/12)^GAMMA(1/12) 3141592831340772 l004 Pi/tanh(213/77*Pi) 3141592831649645 l004 Pi/tanh(130/47*Pi) 3141592831714093 l005 ln(sec(619/66)) 3141592831864224 l004 Pi/tanh(307/111*Pi) 3141592832021969 l004 Pi/tanh(177/64*Pi) 3141592832230092 p002 log(1/6*(10^(1/2)-7)*6^(1/4)) 3141592832238366 l004 Pi/tanh(224/81*Pi) 3141592832379829 l004 Pi/tanh(271/98*Pi) 3141592832479534 l004 Pi/tanh(318/115*Pi) 3141592833055394 l004 Pi/tanh(47/17*Pi) 3141592833240212 m002 Pi+Tanh[Pi]/(6*Pi^12) 3141592833369559 p002 log(3^(1/3)/(12^(1/4)-6^(2/3))) 3141592833682244 l004 Pi/tanh(293/106*Pi) 3141592833802228 l004 Pi/tanh(246/89*Pi) 3141592833912441 m002 1/(6*Pi^12)+Pi 3141592833979017 l004 Pi/tanh(199/72*Pi) 3141592834004832 l005 ln(sec(966/103)) 3141592834265461 l004 Pi/tanh(152/55*Pi) 3141592834487537 l004 Pi/tanh(257/93*Pi) 3141592834809445 l004 Pi/tanh(105/38*Pi) 3141592835025129 b008 -1+E^6/Pi^4 3141592835118617 l004 Pi/tanh(268/97*Pi) 3141592835318024 l004 Pi/tanh(163/59*Pi) 3141592835560099 l004 Pi/tanh(221/80*Pi) 3141592835586432 p002 log(1/2*(5^(1/3)*2^(2/3)-7^(3/4))*2^(1/3)) 3141592835701658 l004 Pi/tanh(279/101*Pi) 3141592835798018 m009 (1/12*Pi^2+6)/(3/5*Psi(1,2/3)+1/3) 3141592835982566 p002 log(1/11*(7^(1/3)-11^(1/3)*12^(1/4))*11^(2/3)) 3141592836241941 l004 Pi/tanh(58/21*Pi) 3141592836744000 l004 Pi/tanh(301/109*Pi) 3141592836757866 m001 sin(1/12*Pi)/Zeta(5)/Kolakoski 3141592836864013 l004 Pi/tanh(243/88*Pi) 3141592837059427 l004 Pi/tanh(185/67*Pi) 3141592837211752 l004 Pi/tanh(312/113*Pi) 3141592837430255 l005 ln(sec(65/21)) 3141592837433843 l004 Pi/tanh(127/46*Pi) 3141592837648596 l004 Pi/tanh(323/117*Pi) 3141592837768939 l005 ln(sec(985/104)) 3141592837787866 l004 Pi/tanh(196/71*Pi) 3141592837957743 l004 Pi/tanh(265/96*Pi) 3141592838145808 l005 ln(sec(347/37)) 3141592838441050 l004 Pi/tanh(69/25*Pi) 3141592838814418 l005 ln(sec(373/117)) 3141592838888303 l004 Pi/tanh(287/104*Pi) 3141592839030064 l004 Pi/tanh(218/79*Pi) 3141592839070057 m001 PisotVijayaraghavan^Psi(2,1/3)+Pi 3141592839303392 l004 Pi/tanh(149/54*Pi) 3141592839531583 l005 ln(sec(824/87)) 3141592839563921 l004 Pi/tanh(229/83*Pi) 3141592839689664 l004 Pi/tanh(309/112*Pi) 3141592840050018 l004 Pi/tanh(80/29*Pi) 3141592840050903 a007 Real Root Of -910*x^4+936*x^3+296*x^2+228*x-121 3141592840168637 l005 ln(sec(322/101)) 3141592840259953 m002 Pi+(2*Sech[Pi])/Pi^12 3141592840386979 l004 Pi/tanh(331/120*Pi) 3141592840494490 l004 Pi/tanh(251/91*Pi) 3141592840608549 m002 4/(E^Pi*Pi^12)+Pi 3141592840702751 l004 Pi/tanh(171/62*Pi) 3141592840902461 l004 Pi/tanh(262/95*Pi) 3141592840958450 m002 Pi+(2*Csch[Pi])/Pi^12 3141592841278251 l004 Pi/tanh(91/33*Pi) 3141592841347964 m001 Pi+gamma(3)^FeigenbaumAlpha 3141592841625521 l004 Pi/tanh(284/103*Pi) 3141592841633601 p002 log(1/19*(10^(1/3)-19^(1/2)*5^(1/4))*19^(1/2)) 3141592841647461 p002 log(1/23*9^(2/3)-2^(1/4)) 3141592841787230 l005 ln(sec(1116/119)) 3141592841789457 l004 Pi/tanh(193/70*Pi) 3141592841947400 l004 Pi/tanh(295/107*Pi) 3141592842044812 l005 ln(sec(271/85)) 3141592842173702 l005 ln(sec(663/70)) 3141592842246572 l004 Pi/tanh(102/37*Pi) 3141592842525360 l004 Pi/tanh(317/115*Pi) 3141592842657749 l004 Pi/tanh(215/78*Pi) 3141592842785777 l004 Pi/tanh(328/119*Pi) 3141592843029581 l004 Pi/tanh(113/41*Pi) 3141592843367456 l004 Pi/tanh(237/86*Pi) 3141592843447843 l005 ln(sec(769/82)) 3141592843493746 m004 -100*Pi-6*Sech[Sqrt[5]*Pi]^2 3141592843494047 m004 -100*Pi-6*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141592843494347 m004 -100*Pi-6*Csch[Sqrt[5]*Pi]^2 3141592843675822 l004 Pi/tanh(124/45*Pi) 3141592843777235 p002 log(1/4*2^(1/3)-3^(1/4)) 3141592843958383 l004 Pi/tanh(259/94*Pi) 3141592844031957 l005 ln(sec(359/116)) 3141592844218248 l004 Pi/tanh(135/49*Pi) 3141592844458045 l004 Pi/tanh(281/102*Pi) 3141592844680013 l004 Pi/tanh(146/53*Pi) 3141592844816577 l005 ln(sec(220/69)) 3141592844886068 l004 Pi/tanh(303/110*Pi) 3141592845077863 l004 Pi/tanh(157/57*Pi) 3141592845256827 l004 Pi/tanh(325/118*Pi) 3141592845372705 p002 log(1/10*(12-23^(1/2)*10^(1/2))*10^(1/2)) 3141592845424208 l004 Pi/tanh(168/61*Pi) 3141592845514964 l005 ln(sec(294/95)) 3141592845728442 l004 Pi/tanh(179/65*Pi) 3141592845997804 l004 Pi/tanh(190/69*Pi) 3141592846224159 a007 Real Root Of 276*x^4+803*x^3-92*x^2+105*x-749 3141592846237965 l004 Pi/tanh(201/73*Pi) 3141592846453428 l004 Pi/tanh(212/77*Pi) 3141592846571708 l005 ln(sec(502/53)) 3141592846647818 l004 Pi/tanh(223/81*Pi) 3141592846824081 l004 Pi/tanh(234/85*Pi) 3141592846984641 l004 Pi/tanh(245/89*Pi) 3141592847131505 l004 Pi/tanh(256/93*Pi) 3141592847194682 m002 Pi+ProductLog[Pi]/(6*Pi^12) 3141592847266355 l004 Pi/tanh(267/97*Pi) 3141592847390607 l004 Pi/tanh(278/101*Pi) 3141592847505463 l004 Pi/tanh(289/105*Pi) 3141592847611950 l004 Pi/tanh(300/109*Pi) 3141592847710950 l004 Pi/tanh(311/113*Pi) 3141592847803227 l004 Pi/tanh(322/117*Pi) 3141592847857093 l005 ln(sec(229/74)) 3141592847892226 l005 ln(sec(422/45)) 3141592848223705 a001 1/188*(1/2*5^(1/2)+1/2)^28*47^(11/20) 3141592849325584 l005 ln(sec(169/53)) 3141592850084523 l005 ln(sec(843/89)) 3141592850428242 l004 Pi/tanh(11/4*Pi) 3141592851670593 l005 ln(sec(919/98)) 3141592852108839 l005 ln(sec(164/53)) 3141592852629820 m001 (Sarnak+ZetaQ(2))/(exp(Pi)+ErdosBorwein) 3141592852836146 l005 ln(sec(287/90)) 3141592853043728 l004 Pi/tanh(327/119*Pi) 3141592853135324 l004 Pi/tanh(316/115*Pi) 3141592853233569 l004 Pi/tanh(305/111*Pi) 3141592853339213 l004 Pi/tanh(294/107*Pi) 3141592853453124 l004 Pi/tanh(283/103*Pi) 3141592853576314 l004 Pi/tanh(272/99*Pi) 3141592853670097 m001 MertensB1^(Pi*csc(1/12*Pi)/GAMMA(11/12))+Pi 3141592853709963 l004 Pi/tanh(261/95*Pi) 3141592853855463 l004 Pi/tanh(250/91*Pi) 3141592854005677 p002 log(11^(1/3)*5^(1/4)-9^(2/3)) 3141592854014464 l004 Pi/tanh(239/87*Pi) 3141592854188935 l004 Pi/tanh(228/83*Pi) 3141592854381249 l004 Pi/tanh(217/79*Pi) 3141592854594292 l004 Pi/tanh(206/75*Pi) 3141592854831605 l004 Pi/tanh(195/71*Pi) 3141592854921682 l005 ln(sec(497/53)) 3141592855097587 l004 Pi/tanh(184/67*Pi) 3141592855343202 l005 ln(sec(341/36)) 3141592855397766 l004 Pi/tanh(173/63*Pi) 3141592855587953 m001 Trott^Magata+Pi 3141592855739189 l004 Pi/tanh(162/59*Pi) 3141592855866873 l005 ln(sec(263/85)) 3141592855928117 l004 Pi/tanh(313/114*Pi) 3141592856130983 l004 Pi/tanh(151/55*Pi) 3141592856349386 l004 Pi/tanh(291/106*Pi) 3141592856585183 l004 Pi/tanh(140/51*Pi) 3141592856840537 l004 Pi/tanh(269/98*Pi) 3141592857117986 l004 Pi/tanh(129/47*Pi) 3141592857420529 l004 Pi/tanh(247/90*Pi) 3141592857586683 l005 ln(sec(362/117)) 3141592857748337 l005 ln(sec(1069/114)) 3141592857751730 l004 Pi/tanh(118/43*Pi) 3141592857946826 l005 ln(sec(118/37)) 3141592858115862 l004 Pi/tanh(225/82*Pi) 3141592858518094 l004 Pi/tanh(107/39*Pi) 3141592858810475 l004 Pi/tanh(310/113*Pi) 3141592858964735 l004 Pi/tanh(203/74*Pi) 3141592859095271 m005 (1/2*2^(1/2)+1/4)/(5/6*Pi+3/7) 3141592859124779 l004 Pi/tanh(299/109*Pi) 3141592859463567 l004 Pi/tanh(96/35*Pi) 3141592859829817 l004 Pi/tanh(277/101*Pi) 3141592860010517 m002 Pi+Log[Pi]/(6*Pi^12) 3141592860024305 l004 Pi/tanh(181/66*Pi) 3141592860227008 l004 Pi/tanh(266/97*Pi) 3141592860228365 l005 ln(sec(572/61)) 3141592860587755 l005 ln(sec(862/91)) 3141592860659232 l004 Pi/tanh(85/31*Pi) 3141592861009273 l004 Pi/tanh(329/120*Pi) 3141592861131337 l004 Pi/tanh(244/89*Pi) 3141592861283723 p002 log(2^(1/2)/(2^(2/3)-3)) 3141592861384110 l004 Pi/tanh(159/58*Pi) 3141592861649109 l004 Pi/tanh(233/85*Pi) 3141592861786473 l004 Pi/tanh(307/112*Pi) 3141592862208216 l005 ln(sec(99/32)) 3141592862219508 l004 Pi/tanh(74/27*Pi) 3141592862686861 l004 Pi/tanh(285/104*Pi) 3141592862850986 l004 Pi/tanh(211/77*Pi) 3141592862878652 l005 ln(sec(303/95)) 3141592863192778 l004 Pi/tanh(137/50*Pi) 3141592863276032 m001 (2^(1/2)+GAMMA(13/24))/(-FeigenbaumC+Thue) 3141592863553904 l004 Pi/tanh(200/73*Pi) 3141592863742236 l004 Pi/tanh(263/96*Pi) 3141592863857852 l004 Pi/tanh(326/119*Pi) 3141592864075504 l005 ln(sec(521/55)) 3141592864341107 l004 Pi/tanh(63/23*Pi) 3141592864375241 l005 ln(sec(647/69)) 3141592864860426 l004 Pi/tanh(304/111*Pi) 3141592864996368 l004 Pi/tanh(241/88*Pi) 3141592865228717 l004 Pi/tanh(178/65*Pi) 3141592865419999 l004 Pi/tanh(293/107*Pi) 3141592865716372 l004 Pi/tanh(115/42*Pi) 3141592866024693 l004 Pi/tanh(282/103*Pi) 3141592866071127 l005 ln(sec(185/58)) 3141592866237241 l004 Pi/tanh(167/61*Pi) 3141592866511209 l004 Pi/tanh(219/80*Pi) 3141592866680193 l004 Pi/tanh(271/99*Pi) 3141592866794835 l004 Pi/tanh(323/118*Pi) 3141592867351105 l005 ln(sec(331/107)) 3141592867386922 m004 10*Pi+Sech[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592867387599 m004 10*Pi+Csch[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141592867393178 l004 Pi/tanh(52/19*Pi) 3141592867704503 l005 ln(sec(722/77)) 3141592868036904 l004 Pi/tanh(301/110*Pi) 3141592868171553 l004 Pi/tanh(249/91*Pi) 3141592868377430 l004 Pi/tanh(197/72*Pi) 3141592868424726 l005 ln(sec(701/74)) 3141592868731377 l004 Pi/tanh(145/53*Pi) 3141592869024740 l004 Pi/tanh(238/87*Pi) 3141592869170296 m002 Pi+Tanh[Pi]/(5*Pi^12) 3141592869482839 l004 Pi/tanh(93/34*Pi) 3141592869574113 l005 ln(sec(232/75)) 3141592869824108 l004 Pi/tanh(320/117*Pi) 3141592869958406 l005 ln(sec(252/79)) 3141592869964060 l004 Pi/tanh(227/83*Pi) 3141592869976971 m002 1/(5*Pi^12)+Pi 3141592870298599 l004 Pi/tanh(134/49*Pi) 3141592870435965 l005 ln(sec(797/85)) 3141592870544652 l004 Pi/tanh(309/113*Pi) 3141592870733225 l004 Pi/tanh(175/64*Pi) 3141592871003241 l004 Pi/tanh(216/79*Pi) 3141592871028369 l005 ln(sec(881/93)) 3141592871187274 l004 Pi/tanh(257/94*Pi) 3141592871320753 l004 Pi/tanh(298/109*Pi) 3141592871604844 l005 ln(sec(365/118)) 3141592872159087 l004 Pi/tanh(41/15*Pi) 3141592872237335 l005 ln(sec(319/100)) 3141592872717212 l005 ln(sec(872/93)) 3141592872761574 l005 ln(sec(1061/112)) 3141592872949773 l004 Pi/tanh(317/116*Pi) 3141592873067445 l004 Pi/tanh(276/101*Pi) 3141592873226266 l004 Pi/tanh(235/86*Pi) 3141592873452392 l004 Pi/tanh(194/71*Pi) 3141592873800111 l004 Pi/tanh(153/56*Pi) 3141592874054975 l004 Pi/tanh(265/97*Pi) 3141592874403559 l004 Pi/tanh(112/41*Pi) 3141592874650987 l005 ln(sec(947/101)) 3141592874717109 l004 Pi/tanh(295/108*Pi) 3141592874909202 l004 Pi/tanh(183/67*Pi) 3141592875132488 l004 Pi/tanh(254/93*Pi) 3141592875181062 l005 ln(sec(133/43)) 3141592875258302 l004 Pi/tanh(325/119*Pi) 3141592875708916 l004 Pi/tanh(71/26*Pi) 3141592875929808 m004 -100*Pi-Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141592875930512 m004 -100*Pi-Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141592876176168 l004 Pi/tanh(314/115*Pi) 3141592876311003 l005 ln(sec(1022/109)) 3141592876312854 l004 Pi/tanh(243/89*Pi) 3141592876382342 p002 log(1/9*(10^(1/2)-3^(1/2)*9^(2/3))*9^(1/3)) 3141592876562577 l004 Pi/tanh(172/63*Pi) 3141592876785065 l004 Pi/tanh(273/100*Pi) 3141592876982650 m001 Ei(1,1)^Psi(1,1/3)+Pi 3141592877164408 l004 Pi/tanh(101/37*Pi) 3141592877611520 l004 Pi/tanh(232/85*Pi) 3141592877751515 l005 ln(sec(1097/117)) 3141592877956778 l004 Pi/tanh(131/48*Pi) 3141592878231428 l004 Pi/tanh(292/107*Pi) 3141592878455120 l004 Pi/tanh(161/59*Pi) 3141592878470741 r005 Im(z^2+c),c=-55/106+26/47*I,n=59 3141592878680456 p002 log((2^(1/2)-2^(3/4))*14^(1/2)) 3141592878797480 l004 Pi/tanh(191/70*Pi) 3141592879047181 l004 Pi/tanh(221/81*Pi) 3141592879237356 l004 Pi/tanh(251/92*Pi) 3141592879387025 l004 Pi/tanh(281/103*Pi) 3141592879507882 l004 Pi/tanh(311/114*Pi) 3141592879590645 l005 ln(sec(300/97)) 3141592880139902 p002 log(10^(1/3)/(2^(3/4)-6^(3/4))) 3141592880642688 l004 Pi/tanh(30/11*Pi) 3141592880972111 l005 ln(sec(67/21)) 3141592881395171 l005 ln(sec(180/19)) 3141592881753880 l004 Pi/tanh(319/117*Pi) 3141592881869503 l004 Pi/tanh(289/106*Pi) 3141592882011983 l004 Pi/tanh(259/95*Pi) 3141592882191906 l004 Pi/tanh(229/84*Pi) 3141592882426264 l004 Pi/tanh(199/73*Pi) 3141592882744165 l004 Pi/tanh(169/62*Pi) 3141592882949770 l004 Pi/tanh(308/113*Pi) 3141592883148802 l005 ln(sec(167/54)) 3141592883199969 l004 Pi/tanh(139/51*Pi) 3141592883361786 a007 Real Root Of 162*x^4+450*x^3-199*x^2-89*x-143 3141592883511036 l004 Pi/tanh(248/91*Pi) 3141592883908257 l004 Pi/tanh(109/40*Pi) 3141592884240408 l004 Pi/tanh(297/109*Pi) 3141592884433178 l004 Pi/tanh(188/69*Pi) 3141592884647775 l004 Pi/tanh(267/98*Pi) 3141592885159171 l004 Pi/tanh(79/29*Pi) 3141592885637494 l004 Pi/tanh(286/105*Pi) 3141592885820273 l004 Pi/tanh(207/76*Pi) 3141592885915660 m002 Pi+ProductLog[Pi]/(5*Pi^12) 3141592886080106 l005 ln(sec(368/119)) 3141592886229128 l004 Pi/tanh(128/47*Pi) 3141592886506976 l004 Pi/tanh(305/112*Pi) 3141592886708087 l004 Pi/tanh(177/65*Pi) 3141592886971901 m004 10*Pi+Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141592886972640 m004 10*Pi+Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi]^2 3141592886979742 l004 Pi/tanh(226/83*Pi) 3141592887154737 l004 Pi/tanh(275/101*Pi) 3141592887276870 l004 Pi/tanh(324/119*Pi) 3141592887363238 m002 5/(E^Pi*Pi^12)+Pi 3141592887963357 l004 Pi/tanh(49/18*Pi) 3141592888536625 l005 ln(sec(201/65)) 3141592888675845 l004 Pi/tanh(313/115*Pi) 3141592888808297 l004 Pi/tanh(264/97*Pi) 3141592889001241 l004 Pi/tanh(215/79*Pi) 3141592889137643 l005 ln(sec(351/110)) 3141592889308379 l004 Pi/tanh(166/61*Pi) 3141592889541954 l004 Pi/tanh(283/104*Pi) 3141592889873701 l004 Pi/tanh(117/43*Pi) 3141592889970782 l005 ln(sec(1099/116)) 3141592890184950 l004 Pi/tanh(302/111*Pi) 3141592890381981 l004 Pi/tanh(185/68*Pi) 3141592890617362 l004 Pi/tanh(253/93*Pi) 3141592890753111 l004 Pi/tanh(321/118*Pi) 3141592890970110 m004 3/E^(2*Sqrt[5]*Pi)+10*Pi 3141592891095997 l005 ln(sec(284/89)) 3141592891258782 l004 Pi/tanh(68/25*Pi) 3141592891678507 l005 ln(sec(919/97)) 3141592891817688 l004 Pi/tanh(291/107*Pi) 3141592891988348 l004 Pi/tanh(223/82*Pi) 3141592892309039 l004 Pi/tanh(155/57*Pi) 3141592892422073 l005 ln(sec(235/76)) 3141592892604889 l004 Pi/tanh(242/89*Pi) 3141592893076166 m001 polylog(4,1/2)^exp(Pi)+Pi 3141592893132780 l004 Pi/tanh(87/32*Pi) 3141592893589858 l004 Pi/tanh(280/103*Pi) 3141592893796150 l004 Pi/tanh(193/71*Pi) 3141592893989475 l004 Pi/tanh(299/110*Pi) 3141592894235301 l005 ln(sec(739/78)) 3141592894289754 l005 ln(sec(217/68)) 3141592894341825 l004 Pi/tanh(106/39*Pi) 3141592894798574 l004 Pi/tanh(231/85*Pi) 3141592895186497 l004 Pi/tanh(125/46*Pi) 3141592895356309 l005 ln(sec(269/87)) 3141592895520060 l004 Pi/tanh(269/99*Pi) 3141592895602178 p002 log(10^(2/3)-9^(2/3)-3^(1/4)) 3141592895809940 l004 Pi/tanh(144/53*Pi) 3141592896064192 l004 Pi/tanh(307/113*Pi) 3141592896289003 l004 Pi/tanh(163/60*Pi) 3141592896668634 l004 Pi/tanh(182/67*Pi) 3141592896783479 l005 ln(sec(367/115)) 3141592896976878 l004 Pi/tanh(201/74*Pi) 3141592897232142 l004 Pi/tanh(220/81*Pi) 3141592897447002 l004 Pi/tanh(239/88*Pi) 3141592897630349 l004 Pi/tanh(258/95*Pi) 3141592897650395 l005 ln(sec(303/98)) 3141592897788641 l004 Pi/tanh(277/102*Pi) 3141592897926685 l004 Pi/tanh(296/109*Pi) 3141592898048134 l004 Pi/tanh(315/116*Pi) 3141592898069801 m001 Pi+HeathBrownMoroz^UniversalParabolic 3141592898083337 l005 ln(sec(75/8)) 3141592898483552 l005 ln(sec(559/59)) 3141592899493144 l005 ln(sec(337/109)) 3141592899947069 l004 Pi/tanh(19/7*Pi) 3141592900425670 l005 ln(sec(150/47)) 3141592901005783 l005 ln(sec(371/120)) 3141592901294662 m002 Pi+Log[Pi]/(5*Pi^12) 3141592901870092 l005 ln(sec(938/99)) 3141592901877460 l004 Pi/tanh(312/115*Pi) 3141592902003099 l004 Pi/tanh(293/108*Pi) 3141592902146230 l004 Pi/tanh(274/101*Pi) 3141592902173683 m004 -100*Pi-(5*Pi*Sech[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592902174077 m004 -100*Pi-(5*Pi*Csch[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141592902310781 l004 Pi/tanh(255/94*Pi) 3141592902501947 l004 Pi/tanh(236/87*Pi) 3141592902726756 l004 Pi/tanh(217/80*Pi) 3141592902994943 l004 Pi/tanh(198/73*Pi) 3141592903320406 l004 Pi/tanh(179/66*Pi) 3141592903658697 m001 Trott^ReciprocalFibonacci+Pi 3141592903700420 p002 log(2^(1/3)/(14^(1/2)-5)) 3141592903723686 l004 Pi/tanh(160/59*Pi) 3141592903834514 r005 Re(z^2+c),c=-27/82+17/36*I,n=42 3141592903954361 l005 ln(sec(383/120)) 3141592903963782 l004 Pi/tanh(301/111*Pi) 3141592904236479 l004 Pi/tanh(141/52*Pi) 3141592904548898 l004 Pi/tanh(263/97*Pi) 3141592904910400 l004 Pi/tanh(122/45*Pi) 3141592905333539 l004 Pi/tanh(225/83*Pi) 3141592905835545 l004 Pi/tanh(103/38*Pi) 3141592906225642 l004 Pi/tanh(290/107*Pi) 3141592906246200 l005 ln(sec(233/73)) 3141592906440735 l004 Pi/tanh(187/69*Pi) 3141592906671088 l004 Pi/tanh(271/100*Pi) 3141592906929227 l005 ln(sec(379/40)) 3141592907184562 l004 Pi/tanh(84/31*Pi) 3141592907624254 l004 Pi/tanh(317/117*Pi) 3141592907782935 l004 Pi/tanh(233/86*Pi) 3141592908120821 l004 Pi/tanh(149/55*Pi) 3141592908489158 l004 Pi/tanh(214/79*Pi) 3141592908686061 l004 Pi/tanh(279/103*Pi) 3141592909045249 l005 ln(sec(316/99)) 3141592909335274 l004 Pi/tanh(65/24*Pi) 3141592909700822 a001 11/1597*121393^(7/54) 3141592909928475 l004 Pi/tanh(306/113*Pi) 3141592910004894 m001 ln(2+3^(1/2))^Psi(2,1/3)+Pi 3141592910088674 l004 Pi/tanh(241/89*Pi) 3141592910367413 l004 Pi/tanh(176/65*Pi) 3141592910601683 l004 Pi/tanh(287/106*Pi) 3141592910616582 m002 E^Pi/Pi^16+Pi 3141592910864534 p002 log(10^(1/4)/(11^(1/3)-4)) 3141592910973524 l004 Pi/tanh(111/41*Pi) 3141592911372253 l004 Pi/tanh(268/99*Pi) 3141592911654486 l004 Pi/tanh(157/58*Pi) 3141592911962864 l005 ln(sec(957/101)) 3141592912027507 l004 Pi/tanh(203/75*Pi) 3141592912262949 l004 Pi/tanh(249/92*Pi) 3141592912425075 l004 Pi/tanh(295/109*Pi) 3141592913304228 l004 Pi/tanh(46/17*Pi) 3141592914121282 k008 concat of cont frac of 3141592914162699 l004 Pi/tanh(303/112*Pi) 3141592914316620 l004 Pi/tanh(257/95*Pi) 3141592914537792 l004 Pi/tanh(211/78*Pi) 3141592914882615 l004 Pi/tanh(165/61*Pi) 3141592915139065 l004 Pi/tanh(284/105*Pi) 3141592915304101 l005 ln(sec(578/61)) 3141592915495013 l004 Pi/tanh(119/44*Pi) 3141592915820432 l004 Pi/tanh(311/115*Pi) 3141592916022303 l004 Pi/tanh(192/71*Pi) 3141592916259391 l004 Pi/tanh(265/98*Pi) 3141592916374878 l005 ln(sec(34/11)) 3141592916883867 l004 Pi/tanh(73/27*Pi) 3141592917028557 l005 ln(sec(83/26)) 3141592917403627 l004 Pi/tanh(319/118*Pi) 3141592917558039 l004 Pi/tanh(246/91*Pi) 3141592917842974 l004 Pi/tanh(173/64*Pi) 3141592918099960 l004 Pi/tanh(273/101*Pi) 3141592918515827 p002 log(1/6*7^(1/2)-3^(1/3)) 3141592918545067 l004 Pi/tanh(100/37*Pi) 3141592919081247 l004 Pi/tanh(227/84*Pi) 3141592919463963 l005 ln(sec(777/82)) 3141592919504109 l004 Pi/tanh(127/47*Pi) 3141592919846143 l004 Pi/tanh(281/104*Pi) 3141592920128502 l004 Pi/tanh(154/57*Pi) 3141592920157914 l005 ln(sec(1078/115)) 3141592920353982 q001 71/226 3141592920353982 r002 2th iterates of z^2 + 3141592920353982 r005 Im(z^2+c),c=-2/3+213/226*I,n=2 3141592920353982 s001 sum(1/10^(n-1)*A068079[n],n=1..infinity) 3141592920353982 s001 sum(1/10^n*A068079[n],n=1..infinity) 3141592920353982 s003 concatenated sequence A068079 3141592920567384 l004 Pi/tanh(181/67*Pi) 3141592920892736 l004 Pi/tanh(208/77*Pi) 3141592921143565 l004 Pi/tanh(235/87*Pi) 3141592921342844 l004 Pi/tanh(262/97*Pi) 3141592921504984 l004 Pi/tanh(289/107*Pi) 3141592921639482 l004 Pi/tanh(316/117*Pi) 3141592921866344 l005 ln(sec(1003/107)) 3141592921950845 l005 ln(sec(976/103)) 3141592923065422 m002 Pi+Tanh[Pi]/(4*Pi^12) 3141592923082847 l004 Pi/tanh(27/10*Pi) 3141592923861184 l005 ln(sec(928/99)) 3141592924073765 m002 1/(4*Pi^12)+Pi 3141592924440347 l005 ln(sec(348/109)) 3141592924585494 l004 Pi/tanh(305/113*Pi) 3141592924731827 l004 Pi/tanh(278/103*Pi) 3141592924909737 l004 Pi/tanh(251/93*Pi) 3141592925130678 l004 Pi/tanh(224/83*Pi) 3141592925412413 l004 Pi/tanh(197/73*Pi) 3141592925441408 m001 HeathBrownMoroz^BesselI(0,2)+Pi 3141592925784032 l004 Pi/tanh(170/63*Pi) 3141592926018157 l004 Pi/tanh(313/116*Pi) 3141592926220979 l005 ln(sec(853/91)) 3141592926296718 l004 Pi/tanh(143/53*Pi) 3141592926515058 r009 Re(z^3+c),c=-25/52+17/41*I,n=61 3141592926633692 l004 Pi/tanh(259/96*Pi) 3141592926793971 l005 ln(sec(265/83)) 3141592927049606 l004 Pi/tanh(116/43*Pi) 3141592927385595 l004 Pi/tanh(321/119*Pi) 3141592927575876 l004 Pi/tanh(205/76*Pi) 3141592927783766 l004 Pi/tanh(294/109*Pi) 3141592928263143 l004 Pi/tanh(89/33*Pi) 3141592928851386 l004 Pi/tanh(240/89*Pi) 3141592929055852 l005 ln(sec(778/83)) 3141592929198619 l004 Pi/tanh(151/56*Pi) 3141592929590331 l004 Pi/tanh(213/79*Pi) 3141592929805625 l004 Pi/tanh(275/102*Pi) 3141592930546393 l004 Pi/tanh(62/23*Pi) 3141592931267898 l004 Pi/tanh(283/105*Pi) 3141592931337456 l005 ln(sec(182/57)) 3141592931470609 l004 Pi/tanh(221/82*Pi) 3141592931515251 m004 -100*Pi-(5*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141592931829025 l005 ln(sec(199/21)) 3141592931831731 l004 Pi/tanh(159/59*Pi) 3141592932143815 l004 Pi/tanh(256/95*Pi) 3141592932326678 p002 log((2^(2/3)-6^(1/3))*19^(1/2)) 3141592932525132 l005 ln(sec(703/75)) 3141592932656041 l004 Pi/tanh(97/36*Pi) 3141592933086876 p002 log(12^(1/3)*(2^(1/4)-7^(1/4))) 3141592933229645 l004 Pi/tanh(229/85*Pi) 3141592933595034 m002 Pi+(3*Sech[Pi])/Pi^12 3141592933651819 l004 Pi/tanh(132/49*Pi) 3141592933784343 l005 ln(sec(343/111)) 3141592933975536 l004 Pi/tanh(299/111*Pi) 3141592934117928 m002 6/(E^Pi*Pi^12)+Pi 3141592934231642 l004 Pi/tanh(167/62*Pi) 3141592934611108 l004 Pi/tanh(202/75*Pi) 3141592934642778 m002 Pi+(3*Csch[Pi])/Pi^12 3141592934878767 l004 Pi/tanh(237/88*Pi) 3141592935077689 l004 Pi/tanh(272/101*Pi) 3141592935231338 l004 Pi/tanh(307/114*Pi) 3141592935674520 l005 ln(sec(281/88)) 3141592935750872 l005 ln(sec(309/100)) 3141592935860273 p002 log(1/7*(3-7^(2/3)*11^(1/4))*7^(1/3)) 3141592936427939 l004 Pi/tanh(35/13*Pi) 3141592936868239 l005 ln(sec(628/67)) 3141592937569419 l004 Pi/tanh(323/120*Pi) 3141592937708417 l004 Pi/tanh(288/107*Pi) 3141592937769843 l005 ln(sec(380/119)) 3141592937885960 l004 Pi/tanh(253/94*Pi) 3141592938120662 l004 Pi/tanh(218/81*Pi) 3141592938218000 l005 ln(sec(275/89)) 3141592938445422 l004 Pi/tanh(183/68*Pi) 3141592938924381 l004 Pi/tanh(148/55*Pi) 3141592939260626 l004 Pi/tanh(261/97*Pi) 3141592939701546 l004 Pi/tanh(113/42*Pi) 3141592940080577 l004 Pi/tanh(304/113*Pi) 3141592940305030 l004 Pi/tanh(191/71*Pi) 3141592940558872 l004 Pi/tanh(269/100*Pi) 3141592941181298 l004 Pi/tanh(78/29*Pi) 3141592941404621 l005 ln(sec(241/78)) 3141592941593251 l005 ln(sec(1014/107)) 3141592941786886 l004 Pi/tanh(277/103*Pi) 3141592942024559 l004 Pi/tanh(199/74*Pi) 3141592942230434 l004 Pi/tanh(320/119*Pi) 3141592942462152 l005 ln(sec(553/59)) 3141592942569304 l004 Pi/tanh(121/45*Pi) 3141592942950207 l004 Pi/tanh(285/106*Pi) 3141592943231523 l004 Pi/tanh(164/61*Pi) 3141592943535755 m004 10*Pi+Sech[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592943536673 m004 10*Pi+Csch[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141592943619237 l004 Pi/tanh(207/77*Pi) 3141592943781511 l005 ln(sec(99/31)) 3141592943873825 l004 Pi/tanh(250/93*Pi) 3141592943997127 m002 Pi+ProductLog[Pi]/(4*Pi^12) 3141592944016089 l005 ln(sec(815/86)) 3141592944053807 l004 Pi/tanh(293/109*Pi) 3141592945102162 l004 Pi/tanh(43/16*Pi) 3141592945678903 l005 ln(sec(207/67)) 3141592945717491 m002 Pi+(Sech[Pi]*Tanh[Pi])/Pi^11 3141592945909720 l005 ln(sec(1031/110)) 3141592946099312 l004 Pi/tanh(309/115*Pi) 3141592946260788 l004 Pi/tanh(266/99*Pi) 3141592946484666 l004 Pi/tanh(223/83*Pi) 3141592946810596 m002 Pi+Sech[Pi]/Pi^11 3141592946815785 l004 Pi/tanh(180/67*Pi) 3141592947048915 l004 Pi/tanh(317/118*Pi) 3141592947355466 l004 Pi/tanh(137/51*Pi) 3141592947358169 m002 2/(E^Pi*Pi^11)+Pi 3141592947776603 l004 Pi/tanh(231/86*Pi) 3141592947907791 m002 Pi+Csch[Pi]/Pi^11 3141592948037722 l005 ln(sec(616/65)) 3141592948391341 l004 Pi/tanh(94/35*Pi) 3141592948986577 l004 Pi/tanh(239/89*Pi) 3141592949373021 l004 Pi/tanh(145/54*Pi) 3141592949844848 l004 Pi/tanh(196/73*Pi) 3141592949936497 l005 ln(sec(478/51)) 3141592950122140 l004 Pi/tanh(247/92*Pi) 3141592950304645 l004 Pi/tanh(298/111*Pi) 3141592951189944 l004 Pi/tanh(51/19*Pi) 3141592951209102 l005 ln(sec(313/98)) 3141592951240129 l005 ln(sec(1033/109)) 3141592951711522 l005 ln(sec(173/56)) 3141592952032284 l004 Pi/tanh(314/117*Pi) 3141592952195870 l004 Pi/tanh(263/98*Pi) 3141592952438309 l004 Pi/tanh(212/79*Pi) 3141592952834715 l004 Pi/tanh(161/60*Pi) 3141592953145142 l004 Pi/tanh(271/101*Pi) 3141592953600006 l004 Pi/tanh(110/41*Pi) 3141592954042409 l004 Pi/tanh(279/104*Pi) 3141592954330673 l004 Pi/tanh(169/63*Pi) 3141592954683749 l004 Pi/tanh(228/85*Pi) 3141592954693605 l005 ln(sec(214/67)) 3141592954701374 l005 ln(sec(881/94)) 3141592954891828 l004 Pi/tanh(287/107*Pi) 3141592955697124 l004 Pi/tanh(59/22*Pi) 3141592955764613 l005 ln(sec(312/101)) 3141592956003123 p002 log((3-6^(2/3))*11^(1/2)) 3141592956018688 l005 ln(sec(417/44)) 3141592956461644 l004 Pi/tanh(303/113*Pi) 3141592956646763 l004 Pi/tanh(244/91*Pi) 3141592956950174 l004 Pi/tanh(185/69*Pi) 3141592957188407 l004 Pi/tanh(311/116*Pi) 3141592957538493 l004 Pi/tanh(126/47*Pi) 3141592957880141 l004 Pi/tanh(319/119*Pi) 3141592958037290 l005 ln(sec(329/103)) 3141592958103369 l004 Pi/tanh(193/72*Pi) 3141592958377449 l004 Pi/tanh(260/97*Pi) 3141592959168179 l004 Pi/tanh(67/25*Pi) 3141592959914723 l004 Pi/tanh(276/103*Pi) 3141592960154385 l004 Pi/tanh(209/78*Pi) 3141592960427003 l005 ln(sec(403/43)) 3141592960620681 l004 Pi/tanh(142/53*Pi) 3141592960766938 l005 ln(sec(1052/111)) 3141592960866040 l005 ln(sec(139/45)) 3141592961070377 l004 Pi/tanh(217/81*Pi) 3141592961289274 l004 Pi/tanh(292/109*Pi) 3141592961308482 l006 ln(6131/8394) 3141592961923391 l004 Pi/tanh(75/28*Pi) 3141592962525630 l004 Pi/tanh(308/115*Pi) 3141592962719704 l004 Pi/tanh(233/87*Pi) 3141592963098334 l004 Pi/tanh(158/59*Pi) 3141592963220880 m002 Pi+Log[Pi]/(4*Pi^12) 3141592963464784 l004 Pi/tanh(241/90*Pi) 3141592963915476 l005 ln(sec(635/67)) 3141592964163421 l004 Pi/tanh(83/31*Pi) 3141592964334350 l005 ln(sec(115/36)) 3141592964819823 l004 Pi/tanh(257/96*Pi) 3141592965133365 l004 Pi/tanh(174/65*Pi) 3141592965437707 l004 Pi/tanh(265/99*Pi) 3141592966020366 l004 Pi/tanh(91/34*Pi) 3141592966570726 l004 Pi/tanh(281/105*Pi) 3141592966820790 p002 log(10^(2/3)-13^(1/2)*6^(1/4)) 3141592966834623 l004 Pi/tanh(190/71*Pi) 3141592967091402 l004 Pi/tanh(289/108*Pi) 3141592967184019 p002 log(5^(2/3)/(3^(2/3)-5)) 3141592967435224 l005 ln(sec(731/78)) 3141592967481918 l005 ln(sec(244/79)) 3141592967584730 l004 Pi/tanh(99/37*Pi) 3141592967831952 l005 ln(sec(853/90)) 3141592968052809 l004 Pi/tanh(305/114*Pi) 3141592968277978 l004 Pi/tanh(206/77*Pi) 3141592968408711 m002 Pi+(ProductLog[Pi]*Sech[Pi])/Pi^11 3141592968497529 l004 Pi/tanh(313/117*Pi) 3141592968920596 l004 Pi/tanh(107/40*Pi) 3141592969517933 l004 Pi/tanh(222/83*Pi) 3141592969586723 m002 Pi+(Csch[Pi]*ProductLog[Pi])/Pi^11 3141592970074611 l004 Pi/tanh(115/43*Pi) 3141592970095881 m004 10*Pi+Sech[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3141592970096382 m004 -1-10*Pi+Tanh[Sqrt[5]*Pi]^2 3141592970096632 m004 -2-10*Pi+2*Tanh[Sqrt[5]*Pi] 3141592970096883 m004 4/E^(2*Sqrt[5]*Pi)+10*Pi 3141592970096883 m004 -10*Pi-Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141592970097133 m004 -2+10*Pi+2*Coth[Sqrt[5]*Pi] 3141592970097384 m004 10*Pi+Csch[Sqrt[5]*Pi]^2 3141592970133366 l005 ln(sec(1059/113)) 3141592970146095 l005 ln(sec(349/113)) 3141592970158825 l005 ln(sec(361/113)) 3141592970171555 l005 ln(sec(1071/113)) 3141592970594644 l004 Pi/tanh(238/89*Pi) 3141592971081534 l004 Pi/tanh(123/46*Pi) 3141592971538352 l004 Pi/tanh(254/95*Pi) 3141592971967800 l004 Pi/tanh(131/49*Pi) 3141592972372265 l004 Pi/tanh(270/101*Pi) 3141592972753866 l004 Pi/tanh(139/52*Pi) 3141592972909882 l005 ln(sec(246/77)) 3141592973114488 l004 Pi/tanh(286/107*Pi) 3141592973455814 l004 Pi/tanh(147/55*Pi) 3141592973779353 l004 Pi/tanh(302/113*Pi) 3141592973876365 r005 Re(z^2+c),c=-145/118+4/27*I,n=56 3141592974086459 l004 Pi/tanh(155/58*Pi) 3141592974378354 l004 Pi/tanh(318/119*Pi) 3141592974656139 l004 Pi/tanh(163/61*Pi) 3141592975173287 l004 Pi/tanh(171/64*Pi) 3141592975561146 l005 ln(sec(377/118)) 3141592975644847 l004 Pi/tanh(179/67*Pi) 3141592976076593 l004 Pi/tanh(187/70*Pi) 3141592976208961 l005 ln(sec(328/35)) 3141592976401887 l005 ln(sec(105/34)) 3141592976473362 l004 Pi/tanh(195/73*Pi) 3141592976839239 l004 Pi/tanh(203/76*Pi) 3141592976936892 r005 Re(z^2+c),c=11/28+21/61*I,n=14 3141592977177697 l004 Pi/tanh(211/79*Pi) 3141592977491706 l004 Pi/tanh(219/82*Pi) 3141592977783822 l004 Pi/tanh(227/85*Pi) 3141592978056259 l004 Pi/tanh(235/88*Pi) 3141592978310940 l004 Pi/tanh(243/91*Pi) 3141592978549545 l004 Pi/tanh(251/94*Pi) 3141592978773551 l004 Pi/tanh(259/97*Pi) 3141592978984258 l004 Pi/tanh(267/100*Pi) 3141592979182815 l004 Pi/tanh(275/103*Pi) 3141592979370244 l004 Pi/tanh(283/106*Pi) 3141592979452380 l005 ln(sec(218/23)) 3141592979547455 l004 Pi/tanh(291/109*Pi) 3141592979715261 l004 Pi/tanh(299/112*Pi) 3141592979874392 l004 Pi/tanh(307/115*Pi) 3141592980025504 l004 Pi/tanh(315/118*Pi) 3141592980584951 l005 ln(sec(131/41)) 3141592983396589 l005 ln(sec(909/97)) 3141592983847973 m001 TreeGrowth2nd^2/exp(FeigenbaumC)/Pi^2 3141592984298651 l005 ln(sec(281/91)) 3141592985871172 l004 Pi/tanh(8/3*Pi) 3141592987492561 l005 ln(sec(278/87)) 3141592987506804 l005 ln(sec(581/62)) 3141592988608279 l005 ln(sec(1109/117)) 3141592989077489 l005 ln(sec(176/57)) 3141592989248409 m002 Pi+(Log[Pi]*Sech[Pi])/Pi^11 3141592990174425 p002 log(1/10*(5^(2/3)-7^(1/2)*10^(1/4))*10^(3/4)) 3141592990504401 m002 Pi+(Csch[Pi]*Log[Pi])/Pi^11 3141592990689344 m001 (Robbin+Trott2nd)/(BesselK(0,1)+Pi^(1/2)) 3141592990877641 l005 ln(sec(891/94)) 3141592991771077 l004 Pi/tanh(317/119*Pi) 3141592991925043 l004 Pi/tanh(309/116*Pi) 3141592992030124 l005 ln(sec(834/89)) 3141592992087259 l004 Pi/tanh(301/113*Pi) 3141592992258408 l004 Pi/tanh(293/110*Pi) 3141592992439248 l004 Pi/tanh(285/107*Pi) 3141592992630626 l004 Pi/tanh(277/104*Pi) 3141592992833491 l004 Pi/tanh(269/101*Pi) 3141592993048909 l004 Pi/tanh(261/98*Pi) 3141592993278083 l004 Pi/tanh(253/95*Pi) 3141592993522372 l004 Pi/tanh(245/92*Pi) 3141592993741112 l005 ln(sec(147/46)) 3141592993783325 l004 Pi/tanh(237/89*Pi) 3141592994062705 l004 Pi/tanh(229/86*Pi) 3141592994362536 l004 Pi/tanh(221/83*Pi) 3141592994466532 l005 ln(sec(1087/116)) 3141592994576207 l005 ln(sec(247/80)) 3141592994642435 l005 ln(sec(673/71)) 3141592994685150 l004 Pi/tanh(213/80*Pi) 3141592995033244 l004 Pi/tanh(205/77*Pi) 3141592995409961 l004 Pi/tanh(197/74*Pi) 3141592995818984 l004 Pi/tanh(189/71*Pi) 3141592996261121 a007 Real Root Of 334*x^4+784*x^3-808*x^2-176*x-804 3141592996264652 l004 Pi/tanh(181/68*Pi) 3141592996696820 m002 Pi+Tanh[Pi]/Pi^13 3141592996752123 l004 Pi/tanh(173/65*Pi) 3141592997130677 p002 log(1/10*(2^(1/3)-5^(1/3)*10^(1/4))*10^(3/4)) 3141592997287566 l004 Pi/tanh(165/62*Pi) 3141592997638527 l005 ln(sec(1128/119)) 3141592997648101 l005 ln(sec(318/103)) 3141592997878428 l004 Pi/tanh(157/59*Pi) 3141592997980683 m002 Pi^(-13)+Pi 3141592998197401 l004 Pi/tanh(306/115*Pi) 3141592998533781 l004 Pi/tanh(149/56*Pi) 3141592998889034 l004 Pi/tanh(290/109*Pi) 3141592999264793 l004 Pi/tanh(141/53*Pi) 3141592999419754 l005 ln(sec(310/97)) 3141592999662886 l004 Pi/tanh(274/103*Pi) 3141593000085365 l004 Pi/tanh(133/50*Pi) 3141593000534542 l004 Pi/tanh(258/97*Pi) 3141593001013029 l004 Pi/tanh(125/47*Pi) 3141593001523791 l004 Pi/tanh(242/91*Pi) 3141593002070207 l004 Pi/tanh(117/44*Pi) 3141593002106405 l005 ln(sec(455/48)) 3141593002590935 l005 ln(sec(253/27)) 3141593002656145 l004 Pi/tanh(226/85*Pi) 3141593003286052 l004 Pi/tanh(109/41*Pi) 3141593003732924 l004 Pi/tanh(319/120*Pi) 3141593003965070 l004 Pi/tanh(210/79*Pi) 3141593004203328 l004 Pi/tanh(311/117*Pi) 3141593004602414 l005 ln(sec(163/51)) 3141593004699173 l004 Pi/tanh(101/38*Pi) 3141593004955238 p002 log(1/10*(13^(1/2)-10^(11/12))*10^(1/3)) 3141593005197058 b008 2*Sqrt[2]+ArcCsch[Pi] 3141593005222580 l004 Pi/tanh(295/111*Pi) 3141593005495347 l004 Pi/tanh(194/73*Pi) 3141593005775911 l004 Pi/tanh(287/108*Pi) 3141593006326588 a007 Real Root Of 297*x^4-80*x^3+598*x^2-403*x-191 3141593006361808 l004 Pi/tanh(93/35*Pi) 3141593006983232 l004 Pi/tanh(271/102*Pi) 3141593007308292 l004 Pi/tanh(178/67*Pi) 3141593007643515 l004 Pi/tanh(263/99*Pi) 3141593008346417 l004 Pi/tanh(85/32*Pi) 3141593008494916 l005 ln(sec(71/23)) 3141593009096200 l004 Pi/tanh(247/93*Pi) 3141593009350879 l005 ln(sec(342/107)) 3141593009482815 l005 ln(sec(692/73)) 3141593009490163 l004 Pi/tanh(162/61*Pi) 3141593009897716 l004 Pi/tanh(239/90*Pi) 3141593010106811 l004 Pi/tanh(316/119*Pi) 3141593010756508 l004 Pi/tanh(77/29*Pi) 3141593011441982 l004 Pi/tanh(300/113*Pi) 3141593011678939 l004 Pi/tanh(223/84*Pi) 3141593012166270 l004 Pi/tanh(146/55*Pi) 3141593012196313 l005 ln(sec(937/100)) 3141593012672351 l004 Pi/tanh(215/81*Pi) 3141593012890631 m002 Pi+Tanh[Pi]/(3*Pi^12) 3141593012932764 l004 Pi/tanh(284/107*Pi) 3141593013138193 l005 ln(sec(929/98)) 3141593013468292 p002 log(1/3*(23^(1/2)-3^(1/3)*9^(2/3))*3^(2/3)) 3141593013717162 l005 ln(sec(179/56)) 3141593013745263 l004 Pi/tanh(69/26*Pi) 3141593014235090 m002 1/(3*Pi^12)+Pi 3141593014608032 l004 Pi/tanh(268/101*Pi) 3141593014907608 l004 Pi/tanh(199/75*Pi) 3141593015525885 l004 Pi/tanh(130/49*Pi) 3141593015798757 l005 ln(sec(684/73)) 3141593016171049 l004 Pi/tanh(191/72*Pi) 3141593016392602 m001 HeathBrownMoroz^(5^(1/2))+Pi 3141593016504267 l004 Pi/tanh(252/95*Pi) 3141593016707737 l004 Pi/tanh(313/118*Pi) 3141593017549366 l004 Pi/tanh(61/23*Pi) 3141593017745348 l005 ln(sec(374/117)) 3141593018438192 l004 Pi/tanh(297/112*Pi) 3141593018668242 l004 Pi/tanh(236/89*Pi) 3141593018846960 l005 ln(sec(1115/119)) 3141593019058961 l004 Pi/tanh(175/66*Pi) 3141593019378298 l004 Pi/tanh(289/109*Pi) 3141593019488361 l005 ln(sec(321/104)) 3141593019856460 r005 Im(z^2+c),c=-16/31+31/45*I,n=17 3141593019868987 l004 Pi/tanh(114/43*Pi) 3141593020374250 l004 Pi/tanh(281/106*Pi) 3141593020719512 l004 Pi/tanh(167/63*Pi) 3141593021160921 l004 Pi/tanh(220/83*Pi) 3141593021431171 l004 Pi/tanh(273/103*Pi) 3141593021473033 l005 ln(sec(195/61)) 3141593022554833 l004 Pi/tanh(53/20*Pi) 3141593022656012 l005 ln(sec(250/81)) 3141593023171540 m001 FellerTornier/(GAMMA(13/24)^ZetaQ(2)) 3141593023347894 m002 Pi+ProductLog[Pi]/Pi^13 3141593023546881 l004 Pi/tanh(310/117*Pi) 3141593023723789 l005 ln(sec(431/46)) 3141593023751758 l004 Pi/tanh(257/97*Pi) 3141593023973248 l005 ln(sec(237/25)) 3141593024002312 p002 log(1/7*(10^(2/3)-3^(2/3)*7^(3/4))*7^(1/4)) 3141593024063282 l004 Pi/tanh(204/77*Pi) 3141593024594023 l004 Pi/tanh(151/57*Pi) 3141593025029345 l004 Pi/tanh(249/94*Pi) 3141593025494467 p002 log(2^(3/4)/(10^(1/3)-6^(3/4))) 3141593025700976 l004 Pi/tanh(98/37*Pi) 3141593026396024 l004 Pi/tanh(241/91*Pi) 3141593026873010 l004 Pi/tanh(143/54*Pi) 3141593026930114 m002 Pi+(4*Sech[Pi])/Pi^12 3141593027485251 l004 Pi/tanh(188/71*Pi) 3141593027861441 l004 Pi/tanh(233/88*Pi) 3141593027892325 p002 log(1/6*(14-6^(2/3)*12^(2/3))*6^(1/3)) 3141593028116032 l004 Pi/tanh(278/105*Pi) 3141593028151488 l005 ln(sec(211/66)) 3141593028327106 m002 Pi+(4*Csch[Pi])/Pi^12 3141593028387415 l005 ln(sec(179/58)) 3141593028816013 m001 ln(BesselJ(1,1))*RenyiParking^2/Zeta(1/2) 3141593029006199 l005 ln(sec(1040/111)) 3141593029436684 l004 Pi/tanh(45/17*Pi) 3141593030636117 l004 Pi/tanh(307/116*Pi) 3141593030842465 l004 Pi/tanh(262/99*Pi) 3141593031134565 l004 Pi/tanh(217/82*Pi) 3141593031579890 l004 Pi/tanh(172/65*Pi) 3141593031903375 l004 Pi/tanh(299/113*Pi) 3141593032341869 l004 Pi/tanh(127/48*Pi) 3141593032778558 l005 ln(sec(609/65)) 3141593032969965 l004 Pi/tanh(209/79*Pi) 3141593033175629 p002 log(3^(3/4)/(4^(2/3)-23^(1/2))) 3141593033244370 l004 Pi/tanh(291/110*Pi) 3141593033433472 l005 ln(sec(287/93)) 3141593033944558 l004 Pi/tanh(82/31*Pi) 3141593033961614 l005 ln(sec(227/71)) 3141593034612424 l005 ln(sec(967/102)) 3141593034665723 l004 Pi/tanh(283/107*Pi) 3141593034960275 l004 Pi/tanh(201/76*Pi) 3141593035661568 l004 Pi/tanh(119/45*Pi) 3141593036174868 l004 Pi/tanh(275/104*Pi) 3141593036566830 l004 Pi/tanh(156/59*Pi) 3141593037125937 l004 Pi/tanh(193/73*Pi) 3141593037505566 l004 Pi/tanh(230/87*Pi) 3141593037595371 m001 PrimesInBinary^2/Backhouse^2*exp(GAMMA(2/3)) 3141593037780184 l004 Pi/tanh(267/101*Pi) 3141593037807004 l005 ln(sec(787/84)) 3141593037988070 l004 Pi/tanh(304/115*Pi) 3141593038115511 l005 ln(sec(730/77)) 3141593038165617 m001 Si(Pi)+Cahen+MasserGramain 3141593039061888 l005 ln(sec(243/76)) 3141593039491154 l004 Pi/tanh(37/14*Pi) 3141593040799571 m002 Pi+ProductLog[Pi]/(3*Pi^12) 3141593041005941 l005 ln(sec(965/103)) 3141593041083348 l004 Pi/tanh(288/109*Pi) 3141593041318542 l004 Pi/tanh(251/95*Pi) 3141593041635263 l004 Pi/tanh(214/81*Pi) 3141593041907536 l005 ln(sec(108/35)) 3141593042084788 l004 Pi/tanh(177/67*Pi) 3141593042388512 l004 Pi/tanh(317/120*Pi) 3141593042772805 l004 Pi/tanh(140/53*Pi) 3141593043274627 l004 Pi/tanh(243/92*Pi) 3141593043574551 l005 ln(sec(259/81)) 3141593043957628 l004 Pi/tanh(103/39*Pi) 3141593044568699 l004 Pi/tanh(272/103*Pi) 3141593044941540 l004 Pi/tanh(169/64*Pi) 3141593045057091 l005 ln(sec(493/52)) 3141593045373473 l004 Pi/tanh(235/89*Pi) 3141593045616171 l004 Pi/tanh(301/114*Pi) 3141593046481396 l004 Pi/tanh(66/25*Pi) 3141593047371993 l004 Pi/tanh(293/111*Pi) 3141593047595378 l005 ln(sec(275/86)) 3141593047631266 l004 Pi/tanh(227/86*Pi) 3141593047824337 m002 Pi+Log[Pi]/Pi^13 3141593048103496 l004 Pi/tanh(161/61*Pi) 3141593048522648 l004 Pi/tanh(256/97*Pi) 3141593048554058 p002 log(5/8-7^(1/4)) 3141593048743892 l005 ln(sec(361/117)) 3141593049223655 m004 5/E^(2*Sqrt[5]*Pi)+10*Pi 3141593049233894 l004 Pi/tanh(95/36*Pi) 3141593049814596 l004 Pi/tanh(314/119*Pi) 3141593050066732 l004 Pi/tanh(219/83*Pi) 3141593050170293 m005 (exp(1)-3/4)/(5/6*exp(1)+4) 3141593050705836 l004 Pi/tanh(124/47*Pi) 3141593051200453 l005 ln(sec(291/91)) 3141593051211762 l004 Pi/tanh(277/105*Pi) 3141593051471923 p002 log(11^(1/2)-6+2^(3/4)) 3141593051622209 l004 Pi/tanh(153/58*Pi) 3141593051689184 l005 ln(sec(253/82)) 3141593051913015 l005 ln(sec(749/79)) 3141593052247615 l004 Pi/tanh(182/69*Pi) 3141593052701649 l004 Pi/tanh(211/80*Pi) 3141593053046261 l004 Pi/tanh(240/91*Pi) 3141593053316753 l004 Pi/tanh(269/102*Pi) 3141593053534717 l004 Pi/tanh(298/113*Pi) 3141593053571681 m001 Mills^Psi(2,1/3)+Pi 3141593054450966 l005 ln(sec(307/96)) 3141593055309048 l005 ln(sec(1005/106)) 3141593055388748 l005 ln(sec(178/19)) 3141593055561499 l004 Pi/tanh(29/11*Pi) 3141593055874592 p002 log(11^(2/3)-6^(2/3)-7^(1/2)) 3141593056572574 m002 Pi+Sinh[Pi]/Pi^15 3141593057019110 p002 log(1/3*(2^(1/4)-5^(2/3))*3^(1/2)) 3141593057396687 l005 ln(sec(323/101)) 3141593057512027 l004 Pi/tanh(311/118*Pi) 3141593057713084 l004 Pi/tanh(282/107*Pi) 3141593057960354 l004 Pi/tanh(253/96*Pi) 3141593058080484 m002 Pi+Cosh[Pi]/Pi^15 3141593058271839 l004 Pi/tanh(224/85*Pi) 3141593058676285 l004 Pi/tanh(195/74*Pi) 3141593059092626 l005 ln(sec(145/47)) 3141593059222606 l004 Pi/tanh(166/63*Pi) 3141593059574541 l004 Pi/tanh(303/115*Pi) 3141593060001333 l004 Pi/tanh(137/52*Pi) 3141593060078499 l005 ln(sec(339/106)) 3141593060529708 l004 Pi/tanh(245/93*Pi) 3141593060688056 p002 log(1/7*(14^(1/2)-6^(2/3)*7^(1/4))*7^(3/4)) 3141593061200830 l004 Pi/tanh(108/41*Pi) 3141593061758941 l004 Pi/tanh(295/112*Pi) 3141593062081579 l004 Pi/tanh(187/71*Pi) 3141593062439654 l004 Pi/tanh(266/101*Pi) 3141593062530300 l005 ln(sec(355/111)) 3141593063077252 m001 ZetaQ(4)^UniversalParabolic+Pi 3141593063288349 l004 Pi/tanh(79/30*Pi) 3141593063698009 a001 29*(1/2*5^(1/2)+1/2)^13*29^(5/23) 3141593063793067 m005 (1/2*gamma+8/9)/(3/11*Catalan+1/8) 3141593064076326 l004 Pi/tanh(287/109*Pi) 3141593064375955 l004 Pi/tanh(208/79*Pi) 3141593064780426 l005 ln(sec(371/116)) 3141593064890317 l005 ln(sec(327/106)) 3141593065043261 l004 Pi/tanh(129/49*Pi) 3141593065370455 l005 ln(sec(256/27)) 3141593065494448 l004 Pi/tanh(308/117*Pi) 3141593065819875 l004 Pi/tanh(179/68*Pi) 3141593066257923 l004 Pi/tanh(229/87*Pi) 3141593066431242 m002 Pi+Log[Pi]/(3*Pi^12) 3141593066539181 l004 Pi/tanh(279/106*Pi) 3141593067829493 l004 Pi/tanh(50/19*Pi) 3141593067834499 p002 log(2-2^(1/2)-2^(2/3)) 3141593069161597 l004 Pi/tanh(271/103*Pi) 3141593069463500 l004 Pi/tanh(221/84*Pi) 3141593069553149 l005 ln(sec(182/59)) 3141593069744751 l005 ln(sec(993/106)) 3141593069942349 l004 Pi/tanh(171/65*Pi) 3141593070305088 l004 Pi/tanh(292/111*Pi) 3141593070818192 l004 Pi/tanh(121/46*Pi) 3141593071036922 p002 log(1/3*(2^(3/4)-3)*3^(3/4)) 3141593071297372 l004 Pi/tanh(313/119*Pi) 3141593071599603 l004 Pi/tanh(192/73*Pi) 3141593071846274 a001 11/20365011074*317811^(13/19) 3141593071850530 a001 11/10610209857723*2971215073^(13/19) 3141593071959543 l004 Pi/tanh(263/100*Pi) 3141593072816611 p002 log(1/12*(12^(1/3)-21^(1/2))*12^(2/3)) 3141593072930497 l005 ln(sec(815/87)) 3141593072934268 l004 Pi/tanh(71/27*Pi) 3141593073776370 l004 Pi/tanh(305/116*Pi) 3141593074032173 l004 Pi/tanh(234/89*Pi) 3141593074511191 l004 Pi/tanh(163/62*Pi) 3141593074951183 l004 Pi/tanh(255/97*Pi) 3141593075243766 l005 ln(sec(1043/110)) 3141593075731726 l004 Pi/tanh(92/35*Pi) 3141593076042116 p002 log(1/7*(12^(2/3)-14^(1/2)*7^(1/3))*7^(2/3)) 3141593076152357 p002 log(1/5*(2^(1/3)-5^(1/2)*6^(1/4))*5^(1/2)) 3141593076402903 l004 Pi/tanh(297/113*Pi) 3141593076588240 l005 ln(sec(219/71)) 3141593076704418 l004 Pi/tanh(205/78*Pi) 3141593077497799 l004 Pi/tanh(113/43*Pi) 3141593077538825 a008 Real Root of x^4-31*x^2-18*x+152 3141593077932966 l005 ln(sec(637/68)) 3141593078157266 l004 Pi/tanh(247/94*Pi) 3141593078493531 l005 ln(sec(787/83)) 3141593078714084 l004 Pi/tanh(134/51*Pi) 3141593079190489 l004 Pi/tanh(289/110*Pi) 3141593079602726 l004 Pi/tanh(155/59*Pi) 3141593079631124 m001 Pi+exp(-Pi)^FeigenbaumDelta 3141593079631124 m001 exp(-Pi)^FeigenbaumDelta+Pi 3141593080280401 l004 Pi/tanh(176/67*Pi) 3141593080814262 l004 Pi/tanh(197/75*Pi) 3141593081245698 l004 Pi/tanh(218/83*Pi) 3141593081601604 l004 Pi/tanh(239/91*Pi) 3141593081643108 l005 ln(sec(256/83)) 3141593081681680 l005 ln(sec(1096/117)) 3141593081900218 l004 Pi/tanh(260/99*Pi) 3141593082154344 l004 Pi/tanh(281/107*Pi) 3141593082313900 p002 log(17/24-5^(1/3)) 3141593082373233 l004 Pi/tanh(302/115*Pi) 3141593084931680 l005 ln(sec(531/56)) 3141593085311654 l004 Pi/tanh(21/8*Pi) 3141593085416490 p002 log(7^(1/2)/(10^(1/3)-23^(1/2))) 3141593085450453 l005 ln(sec(293/95)) 3141593085574468 p002 log(1/9*(12^(1/3)-3^(1/3)*9^(3/4))*9^(1/4)) 3141593086925083 l005 ln(sec(459/49)) 3141593087159672 r005 Re(z^2+c),c=-19/30+53/89*I,n=3 3141593088219467 l004 Pi/tanh(307/117*Pi) 3141593088421271 l005 ln(sec(330/107)) 3141593088433655 l004 Pi/tanh(286/109*Pi) 3141593088681905 l004 Pi/tanh(265/101*Pi) 3141593088973045 l004 Pi/tanh(244/93*Pi) 3141593089319241 l004 Pi/tanh(223/85*Pi) 3141593089737741 l004 Pi/tanh(202/77*Pi) 3141593090109251 a007 Real Root Of -397*x^4+802*x^3+832*x^2+684*x-318 3141593090253838 l004 Pi/tanh(181/69*Pi) 3141593090803919 l005 ln(sec(367/119)) 3141593090808300 a007 Real Root Of -279*x^4+871*x^3-928*x^2+677*x+334 3141593090906176 l004 Pi/tanh(160/61*Pi) 3141593091288713 l005 ln(sec(806/85)) 3141593091301485 l004 Pi/tanh(299/114*Pi) 3141593091756906 l004 Pi/tanh(139/53*Pi) 3141593092287278 l004 Pi/tanh(257/98*Pi) 3141593092912761 l004 Pi/tanh(118/45*Pi) 3141593093661460 l004 Pi/tanh(215/82*Pi) 3141593093944914 l004 Pi/tanh(312/119*Pi) 3141593094242357 m002 3/(E^Pi*Pi^11)+Pi 3141593094338712 a007 Real Root Of 345*x^4-275*x^3-293*x^2-439*x+172 3141593094437090 l005 ln(sec(1081/114)) 3141593094573760 l004 Pi/tanh(97/37*Pi) 3141593094778989 l005 ln(sec(740/79)) 3141593095301409 l004 Pi/tanh(270/103*Pi) 3141593095709858 l004 Pi/tanh(173/66*Pi) 3141593096153130 l004 Pi/tanh(249/95*Pi) 3141593097163613 l004 Pi/tanh(76/29*Pi) 3141593098054371 l004 Pi/tanh(283/108*Pi) 3141593098344233 l005 ln(sec(1021/109)) 3141593098381807 l004 Pi/tanh(207/79*Pi) 3141593099089892 l004 Pi/tanh(131/50*Pi) 3141593099879086 l004 Pi/tanh(186/71*Pi) 3141593100308582 l004 Pi/tanh(241/92*Pi) 3141593100578653 l004 Pi/tanh(296/113*Pi) 3141593101763751 l004 Pi/tanh(55/21*Pi) 3141593102901577 l004 Pi/tanh(309/118*Pi) 3141593103148290 l004 Pi/tanh(254/97*Pi) 3141593103273209 p002 log(11^(1/4)-2^(2/3)*10^(1/4)) 3141593103531614 l004 Pi/tanh(199/76*Pi) 3141593103763048 l005 ln(sec(275/29)) 3141593103801082 m001 Conway^Psi(2,1/3)+Pi 3141593104208455 l004 Pi/tanh(144/55*Pi) 3141593104787237 l004 Pi/tanh(233/89*Pi) 3141593105725077 l004 Pi/tanh(89/34*Pi) 3141593106452221 l004 Pi/tanh(301/115*Pi) 3141593106757790 l004 Pi/tanh(212/81*Pi) 3141593107288721 m001 ZetaQ(4)^BesselI(0,2)+Pi 3141593107506330 l004 Pi/tanh(123/47*Pi) 3141593107836157 l005 ln(sec(281/30)) 3141593108073803 l004 Pi/tanh(280/107*Pi) 3141593108518820 l004 Pi/tanh(157/60*Pi) 3141593109171892 l004 Pi/tanh(191/73*Pi) 3141593109628078 l004 Pi/tanh(225/86*Pi) 3141593109693427 m001 ZetaQ(3)^(Pi*csc(7/24*Pi)/GAMMA(17/24))+Pi 3141593109785276 p002 log(1/2*(2^(1/3)*5^(2/3)-11^(2/3))*2^(2/3)) 3141593109964751 l004 Pi/tanh(259/99*Pi) 3141593110223436 l004 Pi/tanh(293/112*Pi) 3141593112119311 k008 concat of cont frac of 3141593112198239 l004 Pi/tanh(34/13*Pi) 3141593112484893 l005 ln(sec(37/12)) 3141593112912723 l005 ln(sec(1119/118)) 3141593113319827 m002 Pi+Tanh[Pi]/(E^Pi*Pi^10) 3141593114236292 l004 Pi/tanh(285/109*Pi) 3141593114512973 l004 Pi/tanh(251/96*Pi) 3141593114697383 m001 CopelandErdos^Psi(1,1/3)+Pi 3141593114876579 l004 Pi/tanh(217/83*Pi) 3141593115040078 m002 1/(E^Pi*Pi^10)+Pi 3141593115375704 l004 Pi/tanh(183/70*Pi) 3141593115924003 l005 ln(sec(844/89)) 3141593116103466 l004 Pi/tanh(149/57*Pi) 3141593116608529 l004 Pi/tanh(264/101*Pi) 3141593116615170 p002 log(3/16-2^(1/4)) 3141593117169240 l005 ln(sec(16/5)) 3141593117263635 l004 Pi/tanh(115/44*Pi) 3141593117820376 l004 Pi/tanh(311/119*Pi) 3141593118147309 l004 Pi/tanh(196/75*Pi) 3141593118249617 l005 ln(sec(946/101)) 3141593118514611 l004 Pi/tanh(277/106*Pi) 3141593119404448 l004 Pi/tanh(81/31*Pi) 3141593120255792 l004 Pi/tanh(290/111*Pi) 3141593120265195 m002 Pi+(5*Sech[Pi])/Pi^12 3141593120586106 l004 Pi/tanh(209/80*Pi) 3141593121335233 l004 Pi/tanh(128/49*Pi) 3141593121852572 l004 Pi/tanh(303/116*Pi) 3141593121889379 l005 ln(sec(569/60)) 3141593122011435 m002 Pi+(5*Csch[Pi])/Pi^12 3141593122231287 l004 Pi/tanh(175/67*Pi) 3141593122679146 p002 log(3^(1/4)/(4^(2/3)-6^(3/4))) 3141593122703089 l005 ln(sec(665/71)) 3141593122748615 l004 Pi/tanh(222/85*Pi) 3141593123085437 l004 Pi/tanh(269/103*Pi) 3141593123964914 l006 ln(199/4605) 3141593124679251 l004 Pi/tanh(47/18*Pi) 3141593124805524 p002 log(1/15*(1-15^(1/2)*2^(1/3))*15^(1/2)) 3141593126136734 l004 Pi/tanh(295/113*Pi) 3141593126413396 l004 Pi/tanh(248/95*Pi) 3141593126746562 l005 ln(sec(1049/112)) 3141593126819700 l004 Pi/tanh(201/77*Pi) 3141593127474653 l004 Pi/tanh(154/59*Pi) 3141593127779337 l005 ln(sec(863/91)) 3141593127979583 l004 Pi/tanh(261/100*Pi) 3141593128350052 m004 -3-10*Pi+3*Tanh[Sqrt[5]*Pi] 3141593128350428 m004 6/E^(2*Sqrt[5]*Pi)+10*Pi 3141593128350804 m004 -3+10*Pi+3*Coth[Sqrt[5]*Pi] 3141593128706002 p002 log(23/18-3^(3/4)) 3141593128707136 l004 Pi/tanh(107/41*Pi) 3141593129401080 l004 Pi/tanh(274/105*Pi) 3141593129461432 p002 log(1/12*(19^(1/2)-12^(1/4)*5^(3/4))*12^(3/4)) 3141593129846171 l004 Pi/tanh(167/64*Pi) 3141593130383903 l004 Pi/tanh(227/87*Pi) 3141593130697046 l004 Pi/tanh(287/110*Pi) 3141593131669753 r005 Re(z^2+c),c=4/13+7/62*I,n=62 3141593131883401 l004 Pi/tanh(60/23*Pi) 3141593132583234 p002 log(1/4*2^(1/4)-1/4*9^(3/4)) 3141593132973485 l004 Pi/tanh(313/120*Pi) 3141593133232322 l004 Pi/tanh(253/97*Pi) 3141593133652356 l004 Pi/tanh(193/74*Pi) 3141593133810469 l005 ln(sec(384/41)) 3141593134452259 l004 Pi/tanh(133/51*Pi) 3141593135202744 l004 Pi/tanh(206/79*Pi) 3141593135560864 l004 Pi/tanh(279/107*Pi) 3141593136572711 l004 Pi/tanh(73/28*Pi) 3141593137065647 l005 ln(sec(336/109)) 3141593137499934 l004 Pi/tanh(305/117*Pi) 3141593137792013 l004 Pi/tanh(232/89*Pi) 3141593138352722 l004 Pi/tanh(159/61*Pi) 3141593138884206 l004 Pi/tanh(245/94*Pi) 3141593139336993 l005 ln(sec(294/31)) 3141593139868179 l004 Pi/tanh(86/33*Pi) 3141593140173829 l005 ln(sec(299/97)) 3141593140279453 r005 Im(z^2+c),c=-1/4+23/47*I,n=27 3141593140759256 l004 Pi/tanh(271/104*Pi) 3141593141173974 l004 Pi/tanh(185/71*Pi) 3141593141569998 l004 Pi/tanh(284/109*Pi) 3141593142310798 l004 Pi/tanh(99/38*Pi) 3141593142422248 l005 ln(sec(871/93)) 3141593142990334 l004 Pi/tanh(310/119*Pi) 3141593143309454 l004 Pi/tanh(211/81*Pi) 3141593144181530 l005 ln(sec(262/85)) 3141593144193685 l004 Pi/tanh(112/43*Pi) 3141593144531486 p002 log(11/9-11^(1/3)) 3141593144982091 l004 Pi/tanh(237/91*Pi) 3141593145221023 p002 log(1/10*(14^(1/2)*10^(1/2)-15)*10^(1/2)) 3141593145689446 l004 Pi/tanh(125/48*Pi) 3141593146127415 p002 log(7^(1/2)/(19^(1/2)-7)) 3141593146327639 l004 Pi/tanh(263/101*Pi) 3141593146906339 l004 Pi/tanh(138/53*Pi) 3141593147039489 m009 (5/2*Pi^2-3/5)/(1/8*Pi^2-2) 3141593147433495 l004 Pi/tanh(289/111*Pi) 3141593147915698 l004 Pi/tanh(151/58*Pi) 3141593148766441 l004 Pi/tanh(164/63*Pi) 3141593149029673 m002 Pi+ProductLog[Pi]/(E^Pi*Pi^10) 3141593149293602 l005 ln(sec(487/52)) 3141593149493231 l004 Pi/tanh(177/68*Pi) 3141593149545096 l005 ln(sec(225/73)) 3141593150121318 l004 Pi/tanh(190/73*Pi) 3141593150605017 l005 ln(sec(901/95)) 3141593150669531 l004 Pi/tanh(203/78*Pi) 3141593150757181 m004 -100*Pi-5*Pi*Sech[Sqrt[5]*Pi]^2 3141593150757967 m004 -100*Pi-5*Pi*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141593150758754 m004 -100*Pi-5*Pi*Csch[Sqrt[5]*Pi]^2 3141593151152194 l004 Pi/tanh(216/83*Pi) 3141593151580401 l004 Pi/tanh(229/88*Pi) 3141593151962875 l004 Pi/tanh(242/93*Pi) 3141593152306571 l004 Pi/tanh(255/98*Pi) 3141593152617103 l004 Pi/tanh(268/103*Pi) 3141593152720788 p002 log(1/5*(13^(1/2)-3^(2/3)*5^(3/4))*5^(1/4)) 3141593152899049 l004 Pi/tanh(281/108*Pi) 3141593153156183 l004 Pi/tanh(294/113*Pi) 3141593153391642 l004 Pi/tanh(307/118*Pi) 3141593153763850 p002 log(1/7*(11^(1/2)-11^(2/3))*7^(3/4)) 3141593154903239 l005 ln(sec(1077/115)) 3141593155359344 p002 log(1/3*(2^(1/3)-5^(3/4))*3^(1/3)) 3141593156132941 l005 ln(sec(607/64)) 3141593157092152 l005 ln(sec(188/61)) 3141593158742708 l004 Pi/tanh(13/5*Pi) 3141593159569191 l005 ln(sec(590/63)) 3141593161591483 l005 ln(sec(920/97)) 3141593162148009 l005 ln(sec(339/110)) 3141593164197538 l004 Pi/tanh(304/117*Pi) 3141593164442426 l004 Pi/tanh(291/112*Pi) 3141593164459860 p002 log(1/22*17^(1/2)-2^(1/4)) 3141593164710335 l004 Pi/tanh(278/107*Pi) 3141593165004672 l004 Pi/tanh(265/102*Pi) 3141593165329549 l004 Pi/tanh(252/97*Pi) 3141593165689980 l004 Pi/tanh(239/92*Pi) 3141593166092140 l004 Pi/tanh(226/87*Pi) 3141593166543719 l004 Pi/tanh(213/82*Pi) 3141593166884916 l005 ln(sec(693/74)) 3141593167054424 l004 Pi/tanh(200/77*Pi) 3141593167079639 m001 exp(Salem)^2*Rabbit*BesselK(0,1) 3141593167636679 l004 Pi/tanh(187/72*Pi) 3141593168306653 l004 Pi/tanh(174/67*Pi) 3141593168495160 l005 ln(sec(151/49)) 3141593169085784 l004 Pi/tanh(161/62*Pi) 3141593169524973 l004 Pi/tanh(309/119*Pi) 3141593170003112 l004 Pi/tanh(148/57*Pi) 3141593170525623 l004 Pi/tanh(283/109*Pi) 3141593171098983 l004 Pi/tanh(135/52*Pi) 3141593171730994 l004 Pi/tanh(257/99*Pi) 3141593172304442 l005 ln(sec(313/33)) 3141593172358164 l005 ln(sec(796/85)) 3141593172431139 l004 Pi/tanh(122/47*Pi) 3141593172909340 l005 ln(sec(381/119)) 3141593173211064 l004 Pi/tanh(231/89*Pi) 3141593174085228 l004 Pi/tanh(109/42*Pi) 3141593175071806 l004 Pi/tanh(205/79*Pi) 3141593175429477 l004 Pi/tanh(301/116*Pi) 3141593175463903 l005 ln(sec(365/114)) 3141593176193973 l004 Pi/tanh(96/37*Pi) 3141593176606926 l005 ln(sec(899/96)) 3141593176700039 l005 ln(sec(265/86)) 3141593177031875 l004 Pi/tanh(275/106*Pi) 3141593177387410 a001 3/20365011074*987^(7/9) 3141593177481737 l004 Pi/tanh(179/69*Pi) 3141593177954287 l004 Pi/tanh(262/101*Pi) 3141593178263585 l005 ln(sec(349/109)) 3141593178974672 l004 Pi/tanh(83/32*Pi) 3141593180000680 l005 ln(sec(1002/107)) 3141593180109512 l004 Pi/tanh(236/91*Pi) 3141593180402377 p002 log(1/11*(6^(1/4)-11^(1/4)*12^(1/4))*11^(3/4)) 3141593180726043 l004 Pi/tanh(153/59*Pi) 3141593181345400 l005 ln(sec(333/104)) 3141593181379206 l004 Pi/tanh(223/86*Pi) 3141593181720559 l004 Pi/tanh(293/113*Pi) 3141593181825726 m002 Pi+Log[Pi]/(E^Pi*Pi^10) 3141593182751872 l005 ln(sec(958/101)) 3141593182773870 l005 ln(sec(1105/118)) 3141593182809305 l004 Pi/tanh(70/27*Pi) 3141593184006336 l004 Pi/tanh(267/103*Pi) 3141593184432248 l004 Pi/tanh(197/76*Pi) 3141593184754200 l005 ln(sec(317/99)) 3141593185049594 a007 Real Root Of 273*x^4-88*x^3+499*x^2-68*x-76 3141593185328649 l004 Pi/tanh(127/49*Pi) 3141593185897153 l004 Pi/tanh(311/120*Pi) 3141593186289855 l004 Pi/tanh(184/71*Pi) 3141593186394907 s004 Continued fraction of A133593 3141593186736119 p002 log(1/15*(3^(1/4)-9^(3/4))*15^(1/2)) 3141593186796995 l004 Pi/tanh(241/93*Pi) 3141593186918183 m001 Pi+cos(1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141593187110340 l004 Pi/tanh(298/115*Pi) 3141593187446214 g005 Pi^(1/2)*GAMMA(10/11)/GAMMA(4/11)^2 3141593187716500 l005 ln(sec(114/37)) 3141593187878479 l005 ln(sec(645/68)) 3141593188083461 m004 Pi+Sin[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141593188436970 l004 Pi/tanh(57/22*Pi) 3141593188544862 l005 ln(sec(301/94)) 3141593189893731 l004 Pi/tanh(272/105*Pi) 3141593190280526 l004 Pi/tanh(215/83*Pi) 3141593190946973 l004 Pi/tanh(158/61*Pi) 3141593191500752 l004 Pi/tanh(259/100*Pi) 3141593192368065 l004 Pi/tanh(101/39*Pi) 3141593192541051 m002 Pi+Tanh[Pi]/(2*Pi^12) 3141593192785255 l005 ln(sec(285/89)) 3141593192941647 l005 ln(sec(977/103)) 3141593193282536 l004 Pi/tanh(246/95*Pi) 3141593193547511 m002 Pi+Sinh[Pi]/(E^Pi*Pi^12) 3141593193920316 l004 Pi/tanh(145/56*Pi) 3141593194557738 m002 1/(2*Pi^12)+Pi 3141593194751434 l004 Pi/tanh(189/73*Pi) 3141593195269218 l004 Pi/tanh(233/90*Pi) 3141593195567965 m002 Pi+Cosh[Pi]/(E^Pi*Pi^12) 3141593195622758 l004 Pi/tanh(277/107*Pi) 3141593195699323 p002 log(1/12*(11^(2/3)-7^(2/3)*12^(1/4))*12^(3/4)) 3141593197065365 p002 log(1/4*(1-6^(3/4))*4^(1/4)) 3141593197426868 l005 ln(sec(305/99)) 3141593197498284 l004 Pi/tanh(44/17*Pi) 3141593197560309 l005 ln(sec(269/84)) 3141593199264550 l004 Pi/tanh(295/114*Pi) 3141593199574692 l004 Pi/tanh(251/97*Pi) 3141593200016949 l004 Pi/tanh(207/80*Pi) 3141593200698585 l004 Pi/tanh(163/63*Pi) 3141593200997483 m001 exp(TreeGrowth2nd)^2/LandauRamanujan/Zeta(9)^2 3141593201199409 l004 Pi/tanh(282/109*Pi) 3141593201886065 l004 Pi/tanh(119/46*Pi) 3141593202881508 l005 ln(sec(332/35)) 3141593202885539 l004 Pi/tanh(194/75*Pi) 3141593202977738 l005 ln(sec(253/79)) 3141593203284527 l005 ln(sec(191/62)) 3141593203328195 l004 Pi/tanh(269/104*Pi) 3141593204474650 l004 Pi/tanh(75/29*Pi) 3141593205681582 l004 Pi/tanh(256/99*Pi) 3141593206182372 l004 Pi/tanh(181/70*Pi) 3141593206629404 l004 Pi/tanh(287/111*Pi) 3141593207393467 l004 Pi/tanh(106/41*Pi) 3141593208297071 l004 Pi/tanh(243/94*Pi) 3141593208848153 m005 (1/3*3^(1/2)-2/5)/(3/10*5^(1/2)-8/11) 3141593208997097 l004 Pi/tanh(137/53*Pi) 3141593209176209 l005 ln(sec(237/74)) 3141593209440710 m004 10*Pi+(Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141593209555377 l004 Pi/tanh(305/118*Pi) 3141593210007594 l005 ln(sec(268/87)) 3141593210011005 l004 Pi/tanh(168/65*Pi) 3141593210325098 l005 ln(sec(103/11)) 3141593210709964 l004 Pi/tanh(199/77*Pi) 3141593211220995 l004 Pi/tanh(230/89*Pi) 3141593211610908 l004 Pi/tanh(261/101*Pi) 3141593211918199 l004 Pi/tanh(292/113*Pi) 3141593212579037 l005 ln(sec(1015/107)) 3141593212682821 r009 Im(z^3+c),c=-25/48+3/19*I,n=57 3141593213600275 m002 Pi+(6*Sech[Pi])/Pi^12 3141593213755722 l005 ln(sec(345/112)) 3141593214511283 l004 Pi/tanh(31/12*Pi) 3141593214526281 p002 log(5^(3/4)-6^(2/3)*3^(1/4)) 3141593215695763 m002 Pi+(6*Csch[Pi])/Pi^12 3141593216337289 l005 ln(sec(221/69)) 3141593217071000 l004 Pi/tanh(297/115*Pi) 3141593217339251 l005 ln(sec(683/72)) 3141593217369978 l004 Pi/tanh(266/103*Pi) 3141593217748034 l004 Pi/tanh(235/91*Pi) 3141593217978230 m002 Pi+Tanh[Pi]/(6*Pi^11) 3141593218241324 l004 Pi/tanh(204/79*Pi) 3141593218912006 l004 Pi/tanh(173/67*Pi) 3141593219876742 l004 Pi/tanh(142/55*Pi) 3141593220090100 m002 1/(6*Pi^11)+Pi 3141593220437817 r005 Re(z^2+c),c=-37/94+13/60*I,n=3 3141593220537254 l004 Pi/tanh(253/98*Pi) 3141593220608553 r009 Re(z^3+c),c=-55/118+15/37*I,n=31 3141593221383219 l004 Pi/tanh(111/43*Pi) 3141593222041647 l005 ln(sec(1034/109)) 3141593222092776 l004 Pi/tanh(302/117*Pi) 3141593222505493 l004 Pi/tanh(191/74*Pi) 3141593222965731 l004 Pi/tanh(271/105*Pi) 3141593223487627 r009 Re(z^3+c),c=-33/82+13/44*I,n=31 3141593224065869 l004 Pi/tanh(80/31*Pi) 3141593224703390 l005 ln(sec(205/64)) 3141593225099179 l004 Pi/tanh(289/112*Pi) 3141593225495138 l004 Pi/tanh(209/81*Pi) 3141593226383083 l004 Pi/tanh(129/50*Pi) 3141593226947073 l005 ln(sec(77/25)) 3141593226988271 l004 Pi/tanh(307/119*Pi) 3141593227427212 l004 Pi/tanh(178/69*Pi) 3141593228021315 l004 Pi/tanh(227/88*Pi) 3141593228404755 l004 Pi/tanh(276/107*Pi) 3141593230184025 l004 Pi/tanh(49/19*Pi) 3141593230947488 g004 Im(GAMMA(3/20+I*7/60)) 3141593231276567 l005 ln(sec(351/37)) 3141593232056433 l004 Pi/tanh(263/102*Pi) 3141593232485912 l004 Pi/tanh(214/83*Pi) 3141593232587574 m001 (CareFree+OneNinth)/Sierpinski 3141593233012776 p002 log(1/3*(2^(1/2)-3^(2/3)*2^(3/4))*3^(1/3)) 3141593233171052 l004 Pi/tanh(165/64*Pi) 3141593233693308 l004 Pi/tanh(281/109*Pi) 3141593234404460 m002 Pi+ProductLog[Pi]/(2*Pi^12) 3141593234436882 l004 Pi/tanh(116/45*Pi) 3141593234605497 l005 ln(sec(189/59)) 3141593235136455 l004 Pi/tanh(299/116*Pi) 3141593235580282 l004 Pi/tanh(183/71*Pi) 3141593236111489 l004 Pi/tanh(250/97*Pi) 3141593237045988 m004 Pi+Cos[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141593237564564 l004 Pi/tanh(67/26*Pi) 3141593238837335 l004 Pi/tanh(286/111*Pi) 3141593239227208 l004 Pi/tanh(219/85*Pi) 3141593239950340 p002 log(1/7*(2^(1/3)*7^(1/3)-9^(2/3))*7^(2/3)) 3141593239961400 l004 Pi/tanh(152/59*Pi) 3141593240031398 m002 Pi+(2*Sech[Pi])/Pi^11 3141593240230159 l005 ln(sec(1058/113)) 3141593240250383 l005 ln(sec(348/113)) 3141593240270607 l005 ln(sec(362/113)) 3141593240290832 l005 ln(sec(1072/113)) 3141593240640548 l004 Pi/tanh(237/92*Pi) 3141593241126544 m002 4/(E^Pi*Pi^11)+Pi 3141593241856743 l004 Pi/tanh(85/33*Pi) 3141593242225788 m002 Pi+(2*Csch[Pi])/Pi^11 3141593242914351 l004 Pi/tanh(273/106*Pi) 3141593243393071 l004 Pi/tanh(188/73*Pi) 3141593243525731 l005 ln(sec(955/102)) 3141593243842490 l004 Pi/tanh(291/113*Pi) 3141593244071627 l005 ln(sec(271/88)) 3141593244663562 l004 Pi/tanh(103/40*Pi) 3141593244717363 l005 ln(sec(721/76)) 3141593245320630 r009 Im(z^3+c),c=-8/15+17/47*I,n=43 3141593245731718 l004 Pi/tanh(224/87*Pi) 3141593246507545 l005 ln(sec(173/54)) 3141593246642307 l004 Pi/tanh(121/47*Pi) 3141593247427798 l004 Pi/tanh(260/101*Pi) 3141593247518583 p002 log(11^(1/2)*2^(1/4)-11^(2/3)) 3141593247637351 l005 ln(sec(852/91)) 3141593248112313 l004 Pi/tanh(139/54*Pi) 3141593248714146 l004 Pi/tanh(296/115*Pi) 3141593249091278 l005 ln(sec(1091/115)) 3141593249247425 l004 Pi/tanh(157/61*Pi) 3141593250150382 l004 Pi/tanh(175/68*Pi) 3141593250885796 l004 Pi/tanh(193/75*Pi) 3141593250972370 l005 ln(sec(194/63)) 3141593251496339 l004 Pi/tanh(211/82*Pi) 3141593252011326 l004 Pi/tanh(229/89*Pi) 3141593252451562 l004 Pi/tanh(247/96*Pi) 3141593252832221 l004 Pi/tanh(265/103*Pi) 3141593252910812 l005 ln(sec(749/80)) 3141593253164630 l004 Pi/tanh(283/110*Pi) 3141593253187789 m001 ZetaQ(4)^(5^(1/2))+Pi 3141593253382230 p002 log(12^(3/4)/(6^(1/4)-8)) 3141593253407111 l005 ln(sec(330/103)) 3141593253457416 l004 Pi/tanh(301/117*Pi) 3141593254460233 m004 1000*Pi+Sin[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141593255374702 m005 (1/3*Pi-1/7)/(1/2*Zeta(3)-8/9) 3141593256843502 m001 Pi-gamma(2)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 3141593257034082 l005 ln(sec(311/101)) 3141593257684542 l005 ln(sec(370/39)) 3141593258077165 l004 Pi/tanh(18/7*Pi) 3141593258683720 p002 log(22-6*6^(3/4)) 3141593259201825 p002 log(1/12*(21^(1/2)-12^(3/4))*12^(3/4)) 3141593259771328 m001 Landau^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141593259919295 l005 ln(sec(646/69)) 3141593261080318 l005 ln(sec(157/49)) 3141593261817490 m002 Pi+ProductLog[Pi]/(6*Pi^11) 3141593261831537 a007 Real Root Of -193*x^4-353*x^3+773*x^2-364*x-918 3141593262855484 l004 Pi/tanh(293/114*Pi) 3141593263169398 l004 Pi/tanh(275/107*Pi) 3141593263527456 l004 Pi/tanh(257/100*Pi) 3141593263939676 l004 Pi/tanh(239/93*Pi) 3141593264419352 l004 Pi/tanh(221/86*Pi) 3141593264984517 l004 Pi/tanh(203/79*Pi) 3141593265660261 l004 Pi/tanh(185/72*Pi) 3141593266077056 l005 ln(sec(1129/119)) 3141593266482555 l004 Pi/tanh(167/65*Pi) 3141593267185325 l005 ln(sec(117/38)) 3141593267504870 l004 Pi/tanh(149/58*Pi) 3141593268115320 l004 Pi/tanh(280/109*Pi) 3141593268810294 l004 Pi/tanh(131/51*Pi) 3141593269608653 l004 Pi/tanh(244/95*Pi) 3141593269664322 l005 ln(sec(298/93)) 3141593269686878 l005 ln(sec(543/58)) 3141593270199987 l005 ln(sec(759/80)) 3141593270535321 l004 Pi/tanh(113/44*Pi) 3141593270603197 m004 10*Pi+Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141593270605150 m004 10*Pi+Csch[Sqrt[5]*Pi]^2*Log[Sqrt[5]*Pi] 3141593271623930 l004 Pi/tanh(208/81*Pi) 3141593272030344 l004 Pi/tanh(303/118*Pi) 3141593272386616 m005 (-29/44+1/4*5^(1/2))/(10/11*exp(1)+5/7) 3141593272851967 m002 Pi+Log[Pi]/(2*Pi^12) 3141593272920993 l004 Pi/tanh(95/37*Pi) 3141593273597327 m001 ZetaP(4)^(2*Pi/GAMMA(5/6))+Pi 3141593273933090 l004 Pi/tanh(267/104*Pi) 3141593274492719 l004 Pi/tanh(172/67*Pi) 3141593275050503 m004 750*Pi+125*E^(Sqrt[5]*Pi)*Pi*Csch[Sqrt[5]*Pi] 3141593275070003 p002 log(9^(2/3)/(2^(3/4)-6)) 3141593275093293 l004 Pi/tanh(249/97*Pi) 3141593276169558 l005 ln(sec(983/105)) 3141593276270770 m006 (4/5*Pi-5/6)/(exp(2*Pi)-3/4) 3141593276436675 l004 Pi/tanh(77/30*Pi) 3141593277592159 l004 Pi/tanh(290/113*Pi) 3141593278010332 l004 Pi/tanh(213/83*Pi) 3141593278572695 l006 ln(3755/5141) 3141593278859928 l005 ln(sec(274/89)) 3141593278902842 l004 Pi/tanh(136/53*Pi) 3141593279330570 l005 ln(sec(141/44)) 3141593279879015 l004 Pi/tanh(195/76*Pi) 3141593280402239 l004 Pi/tanh(254/99*Pi) 3141593282134262 l004 Pi/tanh(59/23*Pi) 3141593282284555 l005 ln(sec(389/41)) 3141593283726155 l004 Pi/tanh(277/108*Pi) 3141593284157595 l004 Pi/tanh(218/85*Pi) 3141593284239872 l005 ln(sec(440/47)) 3141593284909841 l004 Pi/tanh(159/62*Pi) 3141593285315056 h001 (-6*exp(3)-4)/(-2*exp(3/2)+5) 3141593285543615 l004 Pi/tanh(259/101*Pi) 3141593286552463 l004 Pi/tanh(100/39*Pi) 3141593286602971 m004 10*Pi+2*Sech[Sqrt[5]*Pi]^2 3141593286603472 m004 -4-10*Pi+4*Tanh[Sqrt[5]*Pi] 3141593286603973 m004 10*Pi+2*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141593286604474 m004 -4+10*Pi+4*Coth[Sqrt[5]*Pi] 3141593286604975 m004 10*Pi+2*Csch[Sqrt[5]*Pi]^2 3141593287638233 l004 Pi/tanh(241/94*Pi) 3141593287666436 l005 ln(sec(157/51)) 3141593288108734 r005 Im(z^2+c),c=7/66+9/29*I,n=12 3141593288409270 l004 Pi/tanh(141/55*Pi) 3141593289431524 l004 Pi/tanh(182/71*Pi) 3141593290078625 l004 Pi/tanh(223/87*Pi) 3141593290296160 l005 ln(sec(266/83)) 3141593290525069 l004 Pi/tanh(264/103*Pi) 3141593290851658 l004 Pi/tanh(305/119*Pi) 3141593292171894 p002 log(5^(2/3)*(11^(1/2)-7^(2/3))) 3141593292387911 r005 Im(z^2+c),c=7/26+5/29*I,n=12 3141593292958091 l004 Pi/tanh(41/16*Pi) 3141593293958090 l005 ln(sec(797/84)) 3141593294545547 l005 ln(sec(354/115)) 3141593294561492 l005 ln(sec(777/83)) 3141593295353801 l004 Pi/tanh(269/105*Pi) 3141593295785441 l004 Pi/tanh(228/89*Pi) 3141593296406802 l004 Pi/tanh(187/73*Pi) 3141593297378201 l004 Pi/tanh(146/57*Pi) 3141593298102748 l004 Pi/tanh(251/98*Pi) 3141593298672826 l005 ln(sec(1114/119)) 3141593299092105 p002 log(1/2*(13^(1/2)-9^(3/4))*2^(1/3)) 3141593299111400 l004 Pi/tanh(105/41*Pi) 3141593300036596 l004 Pi/tanh(274/107*Pi) 3141593300067317 l005 ln(sec(197/64)) 3141593300612007 l004 Pi/tanh(169/66*Pi) 3141593301289245 l004 Pi/tanh(233/91*Pi) 3141593301674886 l004 Pi/tanh(297/116*Pi) 3141593302079625 m002 Pi+Log[Pi]/(6*Pi^11) 3141593302840045 l005 ln(sec(125/39)) 3141593303080560 l004 Pi/tanh(64/25*Pi) 3141593303765672 m001 cos(1)^exp(Pi)+Pi 3141593303923488 r005 Im(z^2+c),c=21/86+13/64*I,n=29 3141593304579855 l004 Pi/tanh(279/109*Pi) 3141593305026742 l004 Pi/tanh(215/84*Pi) 3141593305074313 p002 log(10^(1/3)/(7^(1/2)-23^(1/2))) 3141593305222141 r005 Im(z^2+c),c=-10/31+20/41*I,n=11 3141593305239452 l005 ln(sec(408/43)) 3141593305841238 m001 BesselK(1,1)^(ErdosBorwein/CareFree) 3141593305853153 l004 Pi/tanh(151/59*Pi) 3141593306600490 l004 Pi/tanh(238/93*Pi) 3141593307899373 l004 Pi/tanh(87/34*Pi) 3141593308227134 l005 ln(sec(337/36)) 3141593308380498 l005 ln(sec(237/77)) 3141593308612542 p002 log(1/3*(14^(1/2)-3^(1/2)*10^(1/2))*3^(1/2)) 3141593308677330 p002 log(1/3*(13^(1/2)-14^(1/2)*3^(1/4))*3^(3/4)) 3141593308989615 l004 Pi/tanh(284/111*Pi) 3141593309471598 l004 Pi/tanh(197/77*Pi) 3141593309503232 m004 1000*Pi+Cos[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141593309917749 l004 Pi/tanh(307/120*Pi) 3141593310717427 l004 Pi/tanh(110/43*Pi) 3141593311268346 m001 (MertensB3+ZetaQ(4))/(exp(1)+GAMMA(7/12)) 3141593311728941 l004 Pi/tanh(243/95*Pi) 3141593312254929 l005 ln(sec(359/112)) 3141593312566561 l004 Pi/tanh(133/52*Pi) 3141593313271579 l004 Pi/tanh(289/113*Pi) 3141593313873174 l004 Pi/tanh(156/61*Pi) 3141593314145004 b008 Pi*Zeta[7,-1/10] 3141593314340718 l005 ln(sec(277/90)) 3141593314845478 l004 Pi/tanh(179/70*Pi) 3141593315597223 l004 Pi/tanh(202/79*Pi) 3141593316146541 l005 ln(sec(835/88)) 3141593316195813 l004 Pi/tanh(225/88*Pi) 3141593316683724 l004 Pi/tanh(248/97*Pi) 3141593317089055 l004 Pi/tanh(271/106*Pi) 3141593317326594 l005 ln(sec(234/73)) 3141593317431136 l004 Pi/tanh(294/115*Pi) 3141593318822944 l005 ln(sec(317/103)) 3141593320093012 l005 ln(sec(908/97)) 3141593321473382 l004 Pi/tanh(23/9*Pi) 3141593322316223 l005 ln(sec(357/116)) 3141593322666589 l005 ln(sec(343/107)) 3141593325403140 l004 Pi/tanh(304/119*Pi) 3141593325725687 l004 Pi/tanh(281/110*Pi) 3141593326105917 l004 Pi/tanh(258/101*Pi) 3141593326560821 l004 Pi/tanh(235/92*Pi) 3141593326696337 l005 ln(sec(427/45)) 3141593327114795 l004 Pi/tanh(212/83*Pi) 3141593327171135 l005 ln(sec(571/61)) 3141593327804154 l004 Pi/tanh(189/74*Pi) 3141593328685440 l004 Pi/tanh(166/65*Pi) 3141593329851762 l004 Pi/tanh(143/56*Pi) 3141593330588828 l004 Pi/tanh(263/103*Pi) 3141593330855918 m002 Pi+Tanh[Pi]/(5*Pi^11) 3141593330856507 m001 Pi+gamma(3)^UniversalParabolic 3141593331468083 l004 Pi/tanh(120/47*Pi) 3141593332535063 l004 Pi/tanh(217/85*Pi) 3141593333390162 m002 1/(5*Pi^11)+Pi 3141593333857073 l004 Pi/tanh(97/38*Pi) 3141593333944631 a001 987/521*2^(27/37) 3141593334240756 l005 ln(sec(109/34)) 3141593334243487 p002 log(12^(3/4)-6^(1/2)-5) 3141593334929156 l004 Pi/tanh(268/105*Pi) 3141593335222136 l005 ln(sec(805/86)) 3141593335537954 l004 Pi/tanh(171/67*Pi) 3141593336204450 l004 Pi/tanh(245/96*Pi) 3141593336904937 l005 ln(sec(873/92)) 3141593337746777 l004 Pi/tanh(74/29*Pi) 3141593338412766 m001 (-BesselK(1,1)+MinimumGamma)/(sin(1)+Ei(1)) 3141593339133513 l004 Pi/tanh(273/107*Pi) 3141593339649811 l004 Pi/tanh(199/78*Pi) 3141593339677191 l005 ln(sec(1039/111)) 3141593340778588 l004 Pi/tanh(125/49*Pi) 3141593341525749 l004 Pi/tanh(301/118*Pi) 3141593342056834 l004 Pi/tanh(176/69*Pi) 3141593342761602 l004 Pi/tanh(227/89*Pi) 3141593343208112 l004 Pi/tanh(278/109*Pi) 3141593345198594 l004 Pi/tanh(51/20*Pi) 3141593345911943 r005 Im(z^2+c),c=-21/82+21/43*I,n=39 3141593346787597 l005 ln(sec(446/47)) 3141593347158802 l004 Pi/tanh(283/111*Pi) 3141593347181742 l005 ln(sec(311/97)) 3141593347590362 l004 Pi/tanh(232/91*Pi) 3141593348265591 l004 Pi/tanh(181/71*Pi) 3141593349472044 l004 Pi/tanh(130/51*Pi) 3141593350482721 l005 ln(sec(40/13)) 3141593350518348 l004 Pi/tanh(209/82*Pi) 3141593350991089 l004 Pi/tanh(288/113*Pi) 3141593352243111 l004 Pi/tanh(79/31*Pi) 3141593353606029 l004 Pi/tanh(265/104*Pi) 3141593353795598 p002 log(10^(1/4)-10^(2/3)+12^(1/4)) 3141593354185607 l004 Pi/tanh(186/73*Pi) 3141593354242015 l005 ln(sec(202/63)) 3141593354710160 l004 Pi/tanh(293/115*Pi) 3141593355169644 l005 ln(sec(234/25)) 3141593355622818 l004 Pi/tanh(107/42*Pi) 3141593356358769 l005 ln(sec(911/96)) 3141593356729203 l004 Pi/tanh(242/95*Pi) 3141593357607200 l004 Pi/tanh(135/53*Pi) 3141593358240545 p002 log(1/10*(12^(1/3)-10^(2/3)*5^(1/4))*10^(1/3)) 3141593358320910 l004 Pi/tanh(298/117*Pi) 3141593358912498 l004 Pi/tanh(163/64*Pi) 3141593359836368 l004 Pi/tanh(191/75*Pi) 3141593359865620 m001 (Salem-ThueMorse)/(ArtinRank2-Riemann3rdZero) 3141593360524685 l004 Pi/tanh(219/86*Pi) 3141593361057348 l004 Pi/tanh(247/97*Pi) 3141593361481793 l004 Pi/tanh(275/108*Pi) 3141593361744272 l005 ln(sec(295/92)) 3141593361827957 l004 Pi/tanh(303/119*Pi) 3141593364803616 m001 (Riemann1stZero+Salem)/(Pi+3^(1/2)) 3141593365235664 l004 Pi/tanh(28/11*Pi) 3141593365632146 l005 ln(sec(465/49)) 3141593368874321 l004 Pi/tanh(285/112*Pi) 3141593369271732 l004 Pi/tanh(257/101*Pi) 3141593369766596 l004 Pi/tanh(229/90*Pi) 3141593370240989 p002 log(1/20*14^(1/2)-2^(1/4)) 3141593370399770 l004 Pi/tanh(201/79*Pi) 3141593370505252 l005 ln(sec(1067/114)) 3141593371238654 l004 Pi/tanh(173/68*Pi) 3141593372007475 p002 log(1/7*(17^(1/2)-11^(3/4))*7^(2/3)) 3141593372402941 l004 Pi/tanh(145/57*Pi) 3141593373172632 l004 Pi/tanh(262/103*Pi) 3141593374127523 l004 Pi/tanh(117/46*Pi) 3141593374620701 l005 ln(sec(949/100)) 3141593374857906 l005 ln(sec(833/89)) 3141593375343597 l004 Pi/tanh(206/81*Pi) 3141593375826401 l004 Pi/tanh(295/116*Pi) 3141593376259649 p002 log(3^(1/4)-4+2^(3/4)) 3141593376944987 l004 Pi/tanh(89/35*Pi) 3141593378249913 l005 ln(sec(93/29)) 3141593378327759 l004 Pi/tanh(239/94*Pi) 3141593378455846 m004 Pi+Tan[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141593379030618 l005 ln(sec(363/118)) 3141593379149296 l004 Pi/tanh(150/59*Pi) 3141593380080836 l004 Pi/tanh(211/83*Pi) 3141593380595000 l004 Pi/tanh(272/107*Pi) 3141593381734198 p002 log(1/4*(10^(1/4)-7^(3/4))*4^(1/3)) 3141593382375959 l004 Pi/tanh(61/24*Pi) 3141593382625213 l005 ln(sec(323/105)) 3141593382660167 l005 ln(sec(599/64)) 3141593383336722 l005 ln(sec(484/51)) 3141593383463030 m002 Pi+ProductLog[Pi]/(5*Pi^11) 3141593384128482 l004 Pi/tanh(277/109*Pi) 3141593384624075 l004 Pi/tanh(216/85*Pi) 3141593385510480 l004 Pi/tanh(155/61*Pi) 3141593386280171 l004 Pi/tanh(249/98*Pi) 3141593387255220 l005 ln(sec(283/92)) 3141593387550888 l004 Pi/tanh(94/37*Pi) 3141593388010732 m002 5/(E^Pi*Pi^11)+Pi 3141593388786750 r005 Im(z^2+c),c=7/118+20/51*I,n=4 3141593388984910 l004 Pi/tanh(221/87*Pi) 3141593389452792 l005 ln(sec(964/103)) 3141593390047890 l004 Pi/tanh(127/50*Pi) 3141593390867338 l004 Pi/tanh(287/113*Pi) 3141593391283660 m001 Landau^exp(Pi)+Pi 3141593391518342 l004 Pi/tanh(160/63*Pi) 3141593391791856 l005 ln(sec(987/104)) 3141593392147693 l005 ln(sec(356/111)) 3141593392487344 l004 Pi/tanh(193/76*Pi) 3141593393174037 l004 Pi/tanh(226/89*Pi) 3141593393443144 l005 ln(sec(243/79)) 3141593393686105 l004 Pi/tanh(259/102*Pi) 3141593394082644 l004 Pi/tanh(292/115*Pi) 3141593397110320 l005 ln(sec(263/82)) 3141593397201337 l004 Pi/tanh(33/13*Pi) 3141593399997141 l005 ln(sec(503/53)) 3141593400227679 l004 Pi/tanh(302/119*Pi) 3141593400599681 l004 Pi/tanh(269/106*Pi) 3141593400702456 l005 ln(sec(365/39)) 3141593401075954 l004 Pi/tanh(236/93*Pi) 3141593401352236 m001 Pi+gamma(3)^BesselI(0,2) 3141593401707483 l004 Pi/tanh(203/80*Pi) 3141593402133992 l005 ln(sec(203/66)) 3141593402582781 a001 48/41*15127^(4/39) 3141593402584968 l004 Pi/tanh(170/67*Pi) 3141593403886838 l004 Pi/tanh(137/54*Pi) 3141593404806359 l004 Pi/tanh(241/95*Pi) 3141593406019155 l004 Pi/tanh(104/41*Pi) 3141593406137828 m001 (Shi(1)+cos(1))/(HardyLittlewoodC5+Paris) 3141593407068146 l004 Pi/tanh(279/110*Pi) 3141593407584807 l005 ln(sec(170/53)) 3141593407692152 l004 Pi/tanh(175/69*Pi) 3141593407945713 l005 ln(sec(366/119)) 3141593407963039 l005 ln(sec(1025/108)) 3141593408400413 l004 Pi/tanh(246/97*Pi) 3141593410148611 l004 Pi/tanh(71/28*Pi) 3141593411865419 l004 Pi/tanh(251/99*Pi) 3141593412543540 l004 Pi/tanh(180/71*Pi) 3141593412565109 p002 log(1/6*(2^(1/3)-4^(3/4))*6^(3/4)) 3141593413132927 l004 Pi/tanh(289/114*Pi) 3141593413449806 l005 ln(sec(861/92)) 3141593414107103 l004 Pi/tanh(109/43*Pi) 3141593415208169 l004 Pi/tanh(256/101*Pi) 3141593415230219 l005 ln(sec(163/53)) 3141593415699473 l005 ln(sec(522/55)) 3141593416025506 l004 Pi/tanh(147/58*Pi) 3141593416138267 p002 log(6^(2/3)*(4-7^(3/4))) 3141593417157788 l004 Pi/tanh(185/73*Pi) 3141593417904984 l004 Pi/tanh(223/88*Pi) 3141593418434993 l004 Pi/tanh(261/103*Pi) 3141593418830493 l004 Pi/tanh(299/118*Pi) 3141593418860820 l005 ln(sec(247/77)) 3141593421551789 l004 Pi/tanh(38/15*Pi) 3141593422933669 l005 ln(sec(496/53)) 3141593423215855 l005 ln(sec(1063/112)) 3141593424564066 l004 Pi/tanh(271/107*Pi) 3141593424628103 l005 ln(sec(286/93)) 3141593424756189 r002 50th iterates of z^2 + 3141593424828323 l005 ln(sec(324/101)) 3141593425056317 l004 Pi/tanh(233/92*Pi) 3141593425740877 l004 Pi/tanh(195/77*Pi) 3141593426757794 l004 Pi/tanh(157/62*Pi) 3141593427476974 l004 Pi/tanh(276/109*Pi) 3141593428426702 l004 Pi/tanh(119/47*Pi) 3141593429619414 p002 log(1/10*(21^(1/2)-6^(1/3)*10^(3/4))*10^(1/4)) 3141593429739001 l004 Pi/tanh(200/79*Pi) 3141593430264581 l005 ln(sec(1123/120)) 3141593430295329 l004 Pi/tanh(281/111*Pi) 3141593430521118 l005 ln(sec(541/57)) 3141593431670471 l004 Pi/tanh(81/32*Pi) 3141593431777592 m002 Pi+Log[Pi]/(5*Pi^11) 3141593433023645 l004 Pi/tanh(286/113*Pi) 3141593433558880 l004 Pi/tanh(205/81*Pi) 3141593434211622 a001 514229/47*521^(19/21) 3141593434794600 l004 Pi/tanh(124/49*Pi) 3141593435432665 r005 Re(z^2+c),c=-7/9+9/103*I,n=20 3141593435666151 l004 Pi/tanh(291/115*Pi) 3141593436020343 a007 Real Root Of 100*x^4+427*x^3+324*x^2-212*x-365 3141593436100701 l005 ln(sec(627/67)) 3141593436313841 l004 Pi/tanh(167/66*Pi) 3141593437212129 l004 Pi/tanh(210/83*Pi) 3141593437214037 l005 ln(sec(123/40)) 3141593437623738 l005 ln(sec(1101/116)) 3141593437805564 l004 Pi/tanh(253/100*Pi) 3141593438226820 l004 Pi/tanh(296/117*Pi) 3141593440709382 l004 Pi/tanh(43/17*Pi) 3141593441132454 p002 log(1/16*17^(1/2)-2^(1/3)) 3141593443511654 l004 Pi/tanh(263/104*Pi) 3141593444060389 l004 Pi/tanh(220/87*Pi) 3141593444210061 l005 ln(sec(77/24)) 3141593444531769 l005 ln(sec(560/59)) 3141593444807230 l005 ln(sec(758/81)) 3141593444856266 m004 Pi+Tanh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141593444856892 m004 -5-10*Pi+5*Tanh[Sqrt[5]*Pi] 3141593444857518 m004 E^(-2*Sqrt[5]*Pi)+Pi 3141593444858144 m004 -5+10*Pi+5*Coth[Sqrt[5]*Pi] 3141593444876355 l004 Pi/tanh(177/70*Pi) 3141593445449649 p002 log(18/(11^(3/4)-24)) 3141593446217599 l004 Pi/tanh(134/53*Pi) 3141593447274106 l004 Pi/tanh(225/89*Pi) 3141593448277917 l005 ln(sec(329/107)) 3141593448832084 l004 Pi/tanh(91/36*Pi) 3141593448986180 m005 (1/3*gamma-2/7)/(3*Catalan+2/9) 3141593450358778 l004 Pi/tanh(230/91*Pi) 3141593450991202 l005 ln(sec(889/95)) 3141593451252860 l005 ln(sec(1139/120)) 3141593451359655 l004 Pi/tanh(139/55*Pi) 3141593452592188 l004 Pi/tanh(187/74*Pi) 3141593453322001 l004 Pi/tanh(235/93*Pi) 3141593453804564 l004 Pi/tanh(283/112*Pi) 3141593454938863 l005 ln(sec(206/67)) 3141593455610072 l005 ln(sec(1020/109)) 3141593455780269 r005 Im(z^2+c),c=-55/74+1/30*I,n=8 3141593456170790 l004 Pi/tanh(48/19*Pi) 3141593457794280 l005 ln(sec(579/61)) 3141593458462061 l004 Pi/tanh(293/116*Pi) 3141593458911632 l004 Pi/tanh(245/97*Pi) 3141593459580690 l004 Pi/tanh(197/78*Pi) 3141593460681874 l004 Pi/tanh(149/59*Pi) 3141593461063265 m002 E^Pi/Pi^15+Pi 3141593461531788 l005 ln(sec(369/115)) 3141593461550533 l004 Pi/tanh(250/99*Pi) 3141593462571905 l005 ln(sec(289/94)) 3141593462833512 l004 Pi/tanh(101/40*Pi) 3141593464093063 l004 Pi/tanh(255/101*Pi) 3141593464920062 l004 Pi/tanh(154/61*Pi) 3141593465939842 l004 Pi/tanh(207/82*Pi) 3141593466147240 l005 ln(sec(292/91)) 3141593466544394 l004 Pi/tanh(260/103*Pi) 3141593467102339 m001 ln(FeigenbaumB)/FransenRobinson/(3^(1/3))^2 3141593468474252 m004 1000*Pi+Tan[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141593468909337 l004 Pi/tanh(53/21*Pi) 3141593470365425 l005 ln(sec(598/63)) 3141593471192369 l004 Pi/tanh(270/107*Pi) 3141593471591238 m001 (5^(1/2)+BesselJ(0,1)*Ei(1,1))/BesselJ(0,1) 3141593471750824 l004 Pi/tanh(217/86*Pi) 3141593472670958 l004 Pi/tanh(164/65*Pi) 3141593473397665 l004 Pi/tanh(275/109*Pi) 3141593474115385 l005 ln(sec(215/67)) 3141593474472390 l004 Pi/tanh(111/44*Pi) 3141593475529122 l004 Pi/tanh(280/111*Pi) 3141593476223835 l004 Pi/tanh(169/67*Pi) 3141593477081456 l004 Pi/tanh(227/90*Pi) 3141593477590380 l004 Pi/tanh(285/113*Pi) 3141593478556824 a007 Real Root Of -277*x^4-907*x^3+103*x^2+501*x-583 3141593479584844 l004 Pi/tanh(58/23*Pi) 3141593479721977 a007 Real Root Of 407*x^4+989*x^3-978*x^2-206*x+25 3141593480751421 l005 ln(sec(353/110)) 3141593481158943 m001 ZetaQ(3)^Otter+Pi 3141593481515704 l004 Pi/tanh(295/117*Pi) 3141593481748878 l005 ln(sec(83/27)) 3141593481988835 l004 Pi/tanh(237/94*Pi) 3141593482204073 m004 (25*Pi)/3+(5*Pi*Coth[Sqrt[5]*Pi])/3 3141593482296577 l005 ln(sec(617/65)) 3141593482769092 l004 Pi/tanh(179/71*Pi) 3141593483385949 l004 Pi/tanh(300/119*Pi) 3141593483864252 a001 48/41*2207^(5/39) 3141593484299225 l004 Pi/tanh(121/48*Pi) 3141593485790146 l004 Pi/tanh(184/73*Pi) 3141593486521368 l004 Pi/tanh(247/98*Pi) 3141593487485053 l005 ln(sec(131/14)) 3141593488660217 l004 Pi/tanh(63/25*Pi) 3141593490720363 l004 Pi/tanh(257/102*Pi) 3141593490727440 m001 (Chi(1)-CopelandErdos)/(-Tetranacci+Trott) 3141593491171472 l005 ln(sec(138/43)) 3141593491390334 l004 Pi/tanh(194/77*Pi) 3141593492706066 l004 Pi/tanh(131/52*Pi) 3141593492941254 m001 (Chi(1)+LambertW(1))/(-ln(Pi)+ArtinRank2) 3141593493634304 l005 ln(sec(636/67)) 3141593493990476 l004 Pi/tanh(199/79*Pi) 3141593494621283 l004 Pi/tanh(267/106*Pi) 3141593496469697 l004 Pi/tanh(68/27*Pi) 3141593498254740 l004 Pi/tanh(277/110*Pi) 3141593498836231 l004 Pi/tanh(209/83*Pi) 3141593499476084 p002 log(1/3*(11^(1/2)-3^(1/3)*6^(2/3))*3^(2/3)) 3141593499979612 l004 Pi/tanh(141/56*Pi) 3141593500172449 m002 Pi+Tanh[Pi]/(4*Pi^11) 3141593501057839 l005 ln(sec(292/95)) 3141593501097582 l004 Pi/tanh(214/85*Pi) 3141593501647300 l004 Pi/tanh(287/114*Pi) 3141593502193069 l005 ln(sec(337/105)) 3141593503260600 l004 Pi/tanh(73/29*Pi) 3141593503340254 m002 1/(4*Pi^11)+Pi 3141593503374899 p002 log(1/15*(13-15^(1/2)*19^(1/2))*15^(1/2)) 3141593504420893 l005 ln(sec(655/69)) 3141593504822127 l004 Pi/tanh(297/118*Pi) 3141593504929177 a007 Real Root Of 121*x^4+405*x^3+220*x^2+574*x+403 3141593505331559 l004 Pi/tanh(224/89*Pi) 3141593506334331 l004 Pi/tanh(151/60*Pi) 3141593507316206 l004 Pi/tanh(229/91*Pi) 3141593507607373 p002 log(1/3*(3^(7/12)-5^(3/4))*3^(2/3)) 3141593508460924 m001 StolarskyHarborth^(2*Pi/GAMMA(5/6))+Pi 3141593508771329 p002 log(1/2*(3^(1/2)-5^(2/3))*2^(3/4)) 3141593508817597 l005 ln(sec(209/68)) 3141593509219821 l004 Pi/tanh(78/31*Pi) 3141593509900758 l005 ln(sec(199/62)) 3141593511047265 l004 Pi/tanh(239/95*Pi) 3141593511933836 l004 Pi/tanh(161/64*Pi) 3141593512803015 l004 Pi/tanh(244/97*Pi) 3141593514491206 l004 Pi/tanh(83/33*Pi) 3141593514694809 l005 ln(sec(674/71)) 3141593515624077 l005 ln(sec(335/109)) 3141593516115660 l004 Pi/tanh(254/101*Pi) 3141593516905102 l004 Pi/tanh(171/68*Pi) 3141593517106732 r005 Re(z^2+c),c=-19/62+13/25*I,n=42 3141593517679917 l004 Pi/tanh(259/103*Pi) 3141593518565837 l005 ln(sec(1076/115)) 3141593519187261 l004 Pi/tanh(88/35*Pi) 3141593519970271 l005 ln(sec(260/81)) 3141593520640739 l004 Pi/tanh(269/107*Pi) 3141593521348172 l004 Pi/tanh(181/72*Pi) 3141593522043186 l004 Pi/tanh(274/109*Pi) 3141593522941694 l005 ln(sec(945/101)) 3141593523008201 h001 (-5*exp(-1)+6)/(-5*exp(1/2)-5) 3141593523397242 l004 Pi/tanh(93/37*Pi) 3141593523573291 m001 Pi-ln(gamma)^exp(Pi) 3141593524491109 l005 ln(sec(693/73)) 3141593524705367 l004 Pi/tanh(284/113*Pi) 3141593525342929 l004 Pi/tanh(191/76*Pi) 3141593525969858 l004 Pi/tanh(289/115*Pi) 3141593526257840 l005 ln(sec(321/100)) 3141593527002412 l005 ln(sec(126/41)) 3141593527192861 l004 Pi/tanh(98/39*Pi) 3141593528376383 l004 Pi/tanh(299/119*Pi) 3141593528751345 l005 ln(sec(814/87)) 3141593528953932 l004 Pi/tanh(201/80*Pi) 3141593529584357 a007 Real Root Of -282*x^4-12*x^3+111*x^2+513*x-169 3141593530557161 l005 ln(sec(382/119)) 3141593530632391 l004 Pi/tanh(103/41*Pi) 3141593530879988 r005 Re(z^2+c),c=7/30+15/29*I,n=11 3141593532233916 l004 Pi/tanh(211/84*Pi) 3141593532482749 r005 Im(z^2+c),c=-37/66+3/53*I,n=62 3141593533252201 m002 Pi+(3*Sech[Pi])/Pi^11 3141593533763675 l004 Pi/tanh(108/43*Pi) 3141593533841790 l005 ln(sec(712/75)) 3141593534754566 m001 Trott^(Pi*csc(7/24*Pi)/GAMMA(17/24))+Pi 3141593534894920 m002 6/(E^Pi*Pi^11)+Pi 3141593535045912 r002 6th iterates of z^2 + 3141593535226384 l004 Pi/tanh(221/88*Pi) 3141593535765066 p002 log(1/9*(5^(2/3)-6^(1/4)*9^(3/4))*9^(1/4)) 3141593536543786 m002 Pi+(3*Csch[Pi])/Pi^11 3141593536626354 l004 Pi/tanh(113/45*Pi) 3141593536837348 l005 ln(sec(683/73)) 3141593537967537 l004 Pi/tanh(231/92*Pi) 3141593539253557 l004 Pi/tanh(118/47*Pi) 3141593540057817 l005 ln(sec(295/96)) 3141593540487747 l004 Pi/tanh(241/96*Pi) 3141593540869086 a007 Real Root Of 310*x^4+759*x^3-529*x^2+756*x+933 3141593541466201 p002 log(17/(11^(3/4)-23)) 3141593541673178 l004 Pi/tanh(123/49*Pi) 3141593542776116 l005 ln(sec(731/77)) 3141593542812683 l004 Pi/tanh(251/100*Pi) 3141593543120692 m004 1000*Pi+Tanh[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141593543122100 m004 1000*Pi+Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 3141593543908878 l004 Pi/tanh(128/51*Pi) 3141593544964186 l004 Pi/tanh(261/104*Pi) 3141593545980853 l004 Pi/tanh(133/53*Pi) 3141593546960960 l004 Pi/tanh(271/108*Pi) 3141593547906447 l004 Pi/tanh(138/55*Pi) 3141593548819113 l004 Pi/tanh(281/112*Pi) 3141593548862924 l005 ln(sec(552/59)) 3141593549700639 l004 Pi/tanh(143/57*Pi) 3141593549884908 l005 ln(sec(169/55)) 3141593550552591 l004 Pi/tanh(291/116*Pi) 3141593551320889 l005 ln(sec(750/79)) 3141593551376433 l004 Pi/tanh(148/59*Pi) 3141593552173532 l004 Pi/tanh(301/120*Pi) 3141593552945170 l004 Pi/tanh(153/61*Pi) 3141593553447800 l005 ln(sec(61/19)) 3141593554229398 p002 log(1/14*13^(1/2)-2^(1/3)) 3141593554416791 l004 Pi/tanh(158/63*Pi) 3141593555800041 l004 Pi/tanh(163/65*Pi) 3141593557102647 l004 Pi/tanh(168/67*Pi) 3141593557377063 l005 ln(sec(973/104)) 3141593558331459 l004 Pi/tanh(173/69*Pi) 3141593559492575 l004 Pi/tanh(178/71*Pi) 3141593559500699 l005 ln(sec(769/81)) 3141593560591438 l004 Pi/tanh(183/73*Pi) 3141593561632923 l004 Pi/tanh(188/75*Pi) 3141593562621410 l004 Pi/tanh(193/77*Pi) 3141593563560842 l004 Pi/tanh(198/79*Pi) 3141593563693130 l005 ln(sec(212/69)) 3141593564454782 l004 Pi/tanh(203/81*Pi) 3141593565306457 l004 Pi/tanh(208/83*Pi) 3141593565931339 m002 Pi+ProductLog[Pi]/(4*Pi^11) 3141593566118794 l004 Pi/tanh(213/85*Pi) 3141593566894457 l004 Pi/tanh(218/87*Pi) 3141593567338145 l005 ln(sec(788/83)) 3141593567635874 l004 Pi/tanh(223/89*Pi) 3141593568345264 l004 Pi/tanh(228/91*Pi) 3141593568631952 l005 ln(sec(421/45)) 3141593569024658 l004 Pi/tanh(233/93*Pi) 3141593569675919 l004 Pi/tanh(238/95*Pi) 3141593570300759 l004 Pi/tanh(243/97*Pi) 3141593570900754 l004 Pi/tanh(248/99*Pi) 3141593571336023 m002 Pi+(Sech[Pi]*Tanh[Pi])/Pi^10 3141593571477357 l004 Pi/tanh(253/101*Pi) 3141593572031908 l004 Pi/tanh(258/103*Pi) 3141593572565650 l004 Pi/tanh(263/105*Pi) 3141593572930706 l005 ln(sec(255/83)) 3141593573079732 l004 Pi/tanh(268/107*Pi) 3141593573575221 l004 Pi/tanh(273/109*Pi) 3141593574053107 l004 Pi/tanh(278/111*Pi) 3141593574514311 l004 Pi/tanh(283/113*Pi) 3141593574770113 m002 Pi+Sech[Pi]/Pi^10 3141593574854022 l005 ln(sec(807/85)) 3141593574959693 l004 Pi/tanh(288/115*Pi) 3141593575390053 l004 Pi/tanh(293/117*Pi) 3141593575806138 l004 Pi/tanh(298/119*Pi) 3141593576490364 m002 2/(E^Pi*Pi^10)+Pi 3141593578217053 m002 Pi+Csch[Pi]/Pi^10 3141593578947473 l005 ln(sec(350/109)) 3141593579544473 l005 ln(sec(298/97)) 3141593582067503 l005 ln(sec(826/87)) 3141593583779593 m001 FeigenbaumB^2*GaussKuzminWirsing^2/exp(Rabbit) 3141593584203461 l005 ln(sec(711/76)) 3141593584399337 l005 ln(sec(289/90)) 3141593584513190 l005 ln(sec(341/111)) 3141593584624856 p002 log(1/5*(3-12^(2/3))*5^(1/2)) 3141593587653510 s002 sum(A188865[n]/(n*10^n+1),n=1..infinity) 3141593587709153 m005 (1/2*Zeta(3)+6)/(8/7+3/7*5^(1/2)) 3141593588494273 p002 log(1/13*(6^(1/2)-13^(1/2)*2^(3/4))*13^(1/2)) 3141593588996282 l005 ln(sec(845/89)) 3141593589795897 s003 concatenated sequence A104826 3141593590206156 p002 log(2^(2/3)/(12^(1/3)-15^(1/2))) 3141593590811294 l005 ln(sec(1001/107)) 3141593590855411 m001 (Otter+TreeGrowth2nd)/(GolombDickman-Niven) 3141593592720462 p002 log(3^(3/4)*(3^(2/3)-4^(2/3))) 3141593592815975 l005 ln(sec(228/71)) 3141593593241451 p002 log(1/15*(11^(2/3)-15^(1/2)*3^(3/4))*15^(1/2)) 3141593595211506 m002 Pi+Tanh[Pi]/(Pi^12*Log[Pi]) 3141593595656720 l005 ln(sec(864/91)) 3141593598734935 m002 Pi+1/(Pi^12*Log[Pi]) 3141593600476816 l004 Pi/tanh(5/2*Pi) 3141593602063961 l005 ln(sec(883/93)) 3141593603109560 m004 10*Pi+3*Sech[Sqrt[5]*Pi]^2 3141593603110312 m004 -6-10*Pi+6*Tanh[Sqrt[5]*Pi] 3141593603111063 m004 10*Pi+3*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141593603111814 m004 -6+10*Pi+6*Coth[Sqrt[5]*Pi] 3141593603112566 m004 10*Pi+3*Csch[Sqrt[5]*Pi]^2 3141593605693585 p002 log(7/17-2^(1/2)) 3141593607160140 l005 ln(sec(290/31)) 3141593607518074 l005 ln(sec(167/52)) 3141593608232042 l005 ln(sec(902/95)) 3141593609182128 p002 log(7^(3/4)/(10^(1/3)-12^(3/4))) 3141593614173994 l005 ln(sec(921/97)) 3141593615977490 r005 Im(z^2+c),c=25/64+19/60*I,n=6 3141593619491177 l005 ln(sec(43/14)) 3141593619901927 l005 ln(sec(940/99)) 3141593619930490 l005 ln(sec(273/85)) 3141593623267593 l005 ln(sec(1029/110)) 3141593625042935 a007 Real Root Of 272*x^4+767*x^3-252*x^2-33*x-330 3141593625427109 l005 ln(sec(959/101)) 3141593625438681 l005 ln(sec(379/118)) 3141593625807471 l004 Pi/tanh(297/119*Pi) 3141593625865933 m001 (Porter-Tetranacci)/(gamma(2)-Backhouse) 3141593626246314 l004 Pi/tanh(292/117*Pi) 3141593626324541 m002 Pi+Log[Pi]/(4*Pi^11) 3141593626700629 l004 Pi/tanh(287/115*Pi) 3141593627171249 l004 Pi/tanh(282/113*Pi) 3141593627659069 l004 Pi/tanh(277/111*Pi) 3141593628165049 l004 Pi/tanh(272/109*Pi) 3141593628690222 l004 Pi/tanh(267/107*Pi) 3141593629235700 l004 Pi/tanh(262/105*Pi) 3141593629643705 l005 ln(sec(739/79)) 3141593629802685 l004 Pi/tanh(257/103*Pi) 3141593630392475 l004 Pi/tanh(252/101*Pi) 3141593630760038 l005 ln(sec(978/103)) 3141593631006472 l004 Pi/tanh(247/99*Pi) 3141593631646200 l004 Pi/tanh(242/97*Pi) 3141593632313308 l004 Pi/tanh(237/95*Pi) 3141593632434083 m001 gamma(3)^(5^(1/2))+Pi 3141593632977778 m001 (cos(1/5*Pi)+HardyLittlewoodC3)/(1-cos(1)) 3141593632999578 m005 (1/2*5^(1/2)-7/12)/(4/11*5^(1/2)+8/9) 3141593633009595 l004 Pi/tanh(232/93*Pi) 3141593633737015 l004 Pi/tanh(227/91*Pi) 3141593634497706 l004 Pi/tanh(222/89*Pi) 3141593635294004 l004 Pi/tanh(217/87*Pi) 3141593635910507 l005 ln(sec(997/105)) 3141593636128466 l004 Pi/tanh(212/85*Pi) 3141593636786004 r002 52th iterates of z^2 + 3141593637003905 l004 Pi/tanh(207/83*Pi) 3141593637923415 l004 Pi/tanh(202/81*Pi) 3141593637958244 a007 Real Root Of 30*x^4+939*x^3-104*x^2+139*x-832 3141593638890408 l004 Pi/tanh(197/79*Pi) 3141593639734984 l005 ln(sec(106/33)) 3141593639908660 l004 Pi/tanh(192/77*Pi) 3141593640241505 m001 ln(Sierpinski)^2*Lehmer^2/Zeta(7) 3141593640887657 l005 ln(sec(1016/107)) 3141593640982356 l004 Pi/tanh(187/75*Pi) 3141593642116152 l004 Pi/tanh(182/73*Pi) 3141593642622592 m002 Pi+(ProductLog[Pi]*Sech[Pi])/Pi^10 3141593643315238 l004 Pi/tanh(177/71*Pi) 3141593643777769 r005 Re(z^2+c),c=-33/82+8/59*I,n=10 3141593644374300 l005 ln(sec(449/48)) 3141593644585420 l004 Pi/tanh(172/69*Pi) 3141593644613316 m001 GAMMA(17/24)^Psi(2,1/3)+Pi 3141593645700036 l005 ln(sec(1035/109)) 3141593645908454 m001 FeigenbaumKappa^2*ln(FeigenbaumD)/gamma 3141593645933212 l004 Pi/tanh(167/67*Pi) 3141593646323427 m002 Pi+(Csch[Pi]*ProductLog[Pi])/Pi^10 3141593647365951 l004 Pi/tanh(162/65*Pi) 3141593647925355 m004 -120*Pi+20*Pi*Tanh[Sqrt[5]*Pi] 3141593648891927 l004 Pi/tanh(157/63*Pi) 3141593650355642 l005 ln(sec(1054/111)) 3141593650520547 l004 Pi/tanh(152/61*Pi) 3141593651376638 l004 Pi/tanh(299/120*Pi) 3141593652262523 l004 Pi/tanh(147/59*Pi) 3141593652491567 r002 15th iterates of z^2 + 3141593653179783 l004 Pi/tanh(289/116*Pi) 3141593654130115 l004 Pi/tanh(142/57*Pi) 3141593654771349 l005 ln(sec(1057/113)) 3141593654801555 l005 ln(sec(347/113)) 3141593654831761 l005 ln(sec(363/113)) 3141593654861968 l005 ln(sec(1073/113)) 3141593655040526 m004 -100*Pi-Sin[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141593655115340 l004 Pi/tanh(279/112*Pi) 3141593656067102 p002 log(16/(11^(3/4)-22)) 3141593656137415 l004 Pi/tanh(137/55*Pi) 3141593656148726 m001 Pi+exp(-Pi)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141593656148726 m001 Pi+exp(-Pi)^GAMMA(5/24) 3141593656566734 b008 ArcCosh[9+Sqrt[4+E]] 3141593657198446 l004 Pi/tanh(269/108*Pi) 3141593657448196 l006 ln(5134/7029) 3141593657507613 r009 Re(z^3+c),c=-13/32+19/63*I,n=29 3141593657542933 m002 Pi+Tanh[Pi]/(Pi^12*ProductLog[Pi]) 3141593658300704 l004 Pi/tanh(132/53*Pi) 3141593659226040 l005 ln(sec(1092/115)) 3141593659446637 l004 Pi/tanh(259/104*Pi) 3141593659872039 l005 ln(sec(304/99)) 3141593660638894 l004 Pi/tanh(127/51*Pi) 3141593661109455 l005 ln(sec(257/80)) 3141593661292588 p002 log(14^(1/2)-3^(1/3)-6^(2/3)) 3141593661299598 m002 Pi+1/(Pi^12*ProductLog[Pi]) 3141593661880341 l004 Pi/tanh(249/100*Pi) 3141593662501577 l005 ln(sec(608/65)) 3141593663174084 l004 Pi/tanh(122/49*Pi) 3141593663454451 l005 ln(sec(1111/117)) 3141593664523498 l004 Pi/tanh(239/96*Pi) 3141593665932254 l004 Pi/tanh(117/47*Pi) 3141593666642616 l005 ln(sec(261/85)) 3141593666796053 p002 log(5^(2/3)/(3^(1/3)-19^(1/2))) 3141593667404354 l004 Pi/tanh(229/92*Pi) 3141593667553397 l005 ln(sec(1130/119)) 3141593667899864 p002 log(5^(2/3)/(3^(3/4)-9^(3/4))) 3141593668352620 m002 Pi+ProductLog[Pi]/(Pi^12*Log[Pi]) 3141593668944166 l004 Pi/tanh(112/45*Pi) 3141593670556471 l004 Pi/tanh(219/88*Pi) 3141593672246507 l004 Pi/tanh(107/43*Pi) 3141593673087785 p002 log(1/3*(12^(2/3)-6^(2/3)*3^(3/4))*3^(1/4)) 3141593673227513 l005 ln(sec(767/82)) 3141593674020034 l004 Pi/tanh(209/84*Pi) 3141593674641435 p002 log(2^(3/4)-3^(1/3)*12^(1/4)) 3141593675883393 l004 Pi/tanh(102/41*Pi) 3141593676140292 l005 ln(sec(218/71)) 3141593676323531 l005 ln(sec(151/47)) 3141593677843581 l004 Pi/tanh(199/80*Pi) 3141593678519810 l004 Pi/tanh(296/119*Pi) 3141593679124520 a001 3/591286729879*75025^(7/9) 3141593679908344 l004 Pi/tanh(97/39*Pi) 3141593680316191 l005 ln(sec(926/99)) 3141593681347156 l004 Pi/tanh(286/115*Pi) 3141593681992972 m001 Pi*Psi(1,1/3)-exp(1/exp(1))*exp(-1/2*Pi) 3141593682076111 a001 76/987*55^(20/57) 3141593682086276 l004 Pi/tanh(189/76*Pi) 3141593682839024 l004 Pi/tanh(281/113*Pi) 3141593684386938 l004 Pi/tanh(92/37*Pi) 3141593685349424 l005 ln(sec(1085/116)) 3141593685994113 l004 Pi/tanh(271/109*Pi) 3141593686820997 l004 Pi/tanh(179/72*Pi) 3141593687664018 l004 Pi/tanh(266/107*Pi) 3141593687703911 l005 ln(sec(347/108)) 3141593687967869 m001 (2^(1/3)+GAMMA(5/6))/(Paris+Robbin) 3141593689400396 l004 Pi/tanh(87/35*Pi) 3141593690427451 l005 ln(sec(175/57)) 3141593690766950 r009 Im(z^3+c),c=-13/25+9/34*I,n=8 3141593691207293 l004 Pi/tanh(256/103*Pi) 3141593692138542 l004 Pi/tanh(169/68*Pi) 3141593693089093 l004 Pi/tanh(251/101*Pi) 3141593694722386 p002 log(9^(3/4)/(6^(1/3)-7)) 3141593695050548 l004 Pi/tanh(82/33*Pi) 3141593696537029 l005 ln(sec(196/61)) 3141593697096820 l004 Pi/tanh(241/97*Pi) 3141593698153500 l004 Pi/tanh(159/64*Pi) 3141593699233530 l004 Pi/tanh(236/95*Pi) 3141593700661920 l005 ln(sec(307/100)) 3141593701466802 l004 Pi/tanh(77/31*Pi) 3141593703803330 l004 Pi/tanh(226/91*Pi) 3141593705012576 l004 Pi/tanh(149/60*Pi) 3141593706250436 l004 Pi/tanh(221/89*Pi) 3141593706880416 l004 Pi/tanh(293/118*Pi) 3141593708092435 m002 Pi+(Log[Pi]*Sech[Pi])/Pi^10 3141593708816155 l004 Pi/tanh(72/29*Pi) 3141593709356068 l005 ln(sec(241/75)) 3141593710823562 l004 Pi/tanh(283/114*Pi) 3141593711509316 l004 Pi/tanh(211/85*Pi) 3141593712038250 m002 Pi+(Csch[Pi]*Log[Pi])/Pi^10 3141593712906689 l004 Pi/tanh(139/56*Pi) 3141593714011916 p002 log(9/16-6^(1/4)) 3141593714339646 l004 Pi/tanh(206/83*Pi) 3141593714345203 l005 ln(sec(132/43)) 3141593715029598 l005 ln(sec(159/17)) 3141593715069896 l004 Pi/tanh(273/110*Pi) 3141593717317889 l004 Pi/tanh(67/27*Pi) 3141593718210211 l005 ln(sec(286/89)) 3141593719655744 l004 Pi/tanh(263/106*Pi) 3141593720455936 l004 Pi/tanh(196/79*Pi) 3141593722088957 l004 Pi/tanh(129/52*Pi) 3141593723766991 l004 Pi/tanh(191/77*Pi) 3141593724120263 a007 Real Root Of -29*x^4-900*x^3+359*x^2+331*x-923 3141593724623473 l004 Pi/tanh(253/102*Pi) 3141593724629948 p002 log(1/10*(2^(1/3)-10^(1/3)*2^(2/3))*10^(2/3)) 3141593724692386 l005 ln(sec(331/103)) 3141593726352432 l005 ln(sec(353/115)) 3141593727265749 l004 Pi/tanh(62/25*Pi) 3141593727473970 m002 Pi+Tanh[Pi]^2/Pi^12 3141593729643076 l005 ln(sec(376/117)) 3141593730022795 l004 Pi/tanh(243/98*Pi) 3141593730968616 l004 Pi/tanh(181/73*Pi) 3141593731492309 m002 -Pi-Tanh[Pi]/Pi^12 3141593732902247 l004 Pi/tanh(119/48*Pi) 3141593733571903 l005 ln(sec(221/72)) 3141593734090141 l004 Pi/tanh(295/119*Pi) 3141593734423063 r005 Im(z^2+c),c=-19/28+1/4*I,n=18 3141593734893966 l004 Pi/tanh(176/71*Pi) 3141593735157838 m001 1/Rabbit/DuboisRaymond*ln(cosh(1)) 3141593735525683 m002 -Pi^(-12)-Pi 3141593735912431 l004 Pi/tanh(233/94*Pi) 3141593736530941 l004 Pi/tanh(290/117*Pi) 3141593739062443 l004 Pi/tanh(57/23*Pi) 3141593739574150 m002 Pi+Coth[Pi]/Pi^12 3141593741689791 l004 Pi/tanh(280/113*Pi) 3141593741836430 l005 ln(sec(310/101)) 3141593742362244 l004 Pi/tanh(223/90*Pi) 3141593743497323 l004 Pi/tanh(166/67*Pi) 3141593744418525 l004 Pi/tanh(275/111*Pi) 3141593745822762 l004 Pi/tanh(109/44*Pi) 3141593746107037 m001 KhinchinLevy*ZetaP(4)^(2^(1/2)) 3141593746778858 m004 -100*Pi-Cos[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141593747254622 l004 Pi/tanh(270/109*Pi) 3141593747894381 p002 log(1/17*(13^(1/2)*17^(1/2)-19)*17^(1/2)) 3141593748224946 l004 Pi/tanh(161/65*Pi) 3141593748542009 p002 log(5^(3/4)/(12^(1/4)-9^(3/4))) 3141593748559329 l005 ln(sec(982/105)) 3141593749456013 l004 Pi/tanh(213/86*Pi) 3141593750204533 l004 Pi/tanh(265/107*Pi) 3141593752158646 r004 Re(z^2+c),c=7/20+1/7*I,z(0)=exp(7/12*I*Pi),n=6 3141593753275240 l004 Pi/tanh(52/21*Pi) 3141593754037033 m001 (GAMMA(5/6)+ErdosBorwein)/(Gompertz-Porter) 3141593755127201 l005 ln(sec(823/88)) 3141593756474303 l004 Pi/tanh(255/103*Pi) 3141593757295071 l004 Pi/tanh(203/82*Pi) 3141593758682345 l004 Pi/tanh(151/61*Pi) 3141593759809929 l004 Pi/tanh(250/101*Pi) 3141593759924999 m001 Pi-gamma(2)^Otter 3141593760857858 r005 Im(z^2+c),c=-10/29+27/49*I,n=39 3141593761531710 l004 Pi/tanh(99/40*Pi) 3141593762050703 r002 3th iterates of z^2 + 3141593762560504 l005 ln(sec(89/29)) 3141593762786235 m001 GlaisherKinkelin^Psi(2,1/3)+Pi 3141593763291036 l004 Pi/tanh(245/99*Pi) 3141593764485388 l004 Pi/tanh(146/59*Pi) 3141593764894403 l005 ln(sec(664/71)) 3141593765289868 m004 -100*Pi-5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141593765290748 m004 -10*Pi-Sqrt[5]*Pi+Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 3141593765292507 m004 -10*Pi+Sqrt[5]*Pi-Sqrt[5]*Pi*Coth[Sqrt[5]*Pi] 3141593765293387 m004 -100*Pi-5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141593765573212 p002 log(11^(2/3)-7^(2/3)-12^(1/3)) 3141593765731833 r002 21th iterates of z^2 + 3141593766003148 l004 Pi/tanh(193/78*Pi) 3141593766596043 l005 ln(sec(45/14)) 3141593766927336 l004 Pi/tanh(240/97*Pi) 3141593767549204 l004 Pi/tanh(287/116*Pi) 3141593769945568 m001 Pi+GaussKuzminWirsing^GAMMA(1/12) 3141593770729422 l004 Pi/tanh(47/19*Pi) 3141593774032791 l004 Pi/tanh(277/112*Pi) 3141593774130170 l006 ln(334/7729) 3141593774708873 l004 Pi/tanh(230/93*Pi) 3141593774728218 p002 log(5^(2/3)-6^(2/3)*2^(1/4)) 3141593775732910 l004 Pi/tanh(183/74*Pi) 3141593777466590 l004 Pi/tanh(136/55*Pi) 3141593777563717 p002 log(1/5*(2^(2/3)-6^(2/3))*5^(2/3)) 3141593778878371 l004 Pi/tanh(225/91*Pi) 3141593779741858 a007 Real Root Of -170*x^4+736*x^3-561*x^2+131*x+121 3141593780950443 l005 ln(sec(505/54)) 3141593781038683 l004 Pi/tanh(89/36*Pi) 3141593781662756 m001 (ln(2+3^(1/2))-Khinchin)/(Landau-OneNinth) 3141593782366668 m002 Pi+Tanh[Pi]/(3*Pi^11) 3141593782621858 r005 Im(z^2+c),c=-29/106+22/43*I,n=10 3141593783251830 l004 Pi/tanh(220/89*Pi) 3141593783371928 l005 ln(sec(313/102)) 3141593784757576 l004 Pi/tanh(131/53*Pi) 3141593785187933 a007 Real Root Of -149*x^4-618*x^3-242*x^2+413*x-962 3141593786590408 m002 1/(3*Pi^11)+Pi 3141593786674924 l004 Pi/tanh(173/70*Pi) 3141593787844556 l004 Pi/tanh(215/87*Pi) 3141593788632488 l004 Pi/tanh(257/104*Pi) 3141593790832671 a001 1597/843*18^(7/40) 3141593791720318 l005 ln(sec(224/73)) 3141593792673422 l004 Pi/tanh(42/17*Pi) 3141593793598120 l005 ln(sec(851/91)) 3141593794377202 p002 log(15/(11^(3/4)-21)) 3141593796277440 l004 Pi/tanh(289/117*Pi) 3141593796891256 l004 Pi/tanh(247/100*Pi) 3141593797757075 l004 Pi/tanh(205/83*Pi) 3141593798126993 p002 log(1/3*(10^(1/2)-3^(1/2)*4^(3/4))*3^(1/2)) 3141593799036109 l005 ln(sec(359/117)) 3141593799070171 l004 Pi/tanh(163/66*Pi) 3141593799602299 a007 Real Root Of -325*x^4+922*x^3-916*x^2+356*x+234 3141593800018820 l004 Pi/tanh(284/115*Pi) 3141593801297834 l004 Pi/tanh(121/49*Pi) 3141593803116170 l004 Pi/tanh(200/81*Pi) 3141593803905547 l004 Pi/tanh(279/113*Pi) 3141593805906081 l004 Pi/tanh(79/32*Pi) 3141593807145323 m002 Pi+Log[Pi]/(Pi^12*ProductLog[Pi]) 3141593807946235 l004 Pi/tanh(274/111*Pi) 3141593808084203 l005 ln(sec(344/107)) 3141593808773654 l004 Pi/tanh(195/79*Pi) 3141593810730126 l004 Pi/tanh(116/47*Pi) 3141593810888662 m002 Pi+(ProductLog[Pi]*Tanh[Pi])/Pi^12 3141593811251470 l005 ln(sec(135/44)) 3141593811347761 p002 log(1/3*(3^(1/2)*5^(1/4)-9^(2/3))*3^(1/2)) 3141593812150190 l004 Pi/tanh(269/109*Pi) 3141593812247688 l005 ln(sec(346/37)) 3141593813227851 l004 Pi/tanh(153/62*Pi) 3141593814428829 l005 ln(sec(299/93)) 3141593814755086 l004 Pi/tanh(190/77*Pi) 3141593815219128 m002 -Pi-ProductLog[Pi]/Pi^12 3141593815785444 l004 Pi/tanh(227/92*Pi) 3141593816527482 l004 Pi/tanh(264/107*Pi) 3141593817207487 a007 Real Root Of -191*x^4-241*x^3+998*x^2-634*x-709 3141593818828062 a007 Real Root Of -102*x^4+700*x^3-595*x^2+799*x-213 3141593819565798 m002 Pi+(Coth[Pi]*ProductLog[Pi])/Pi^12 3141593821089024 l004 Pi/tanh(37/15*Pi) 3141593823063874 l005 ln(sec(254/79)) 3141593823486402 b008 ArcCoth[LogGamma[Sech[4]]] 3141593825240805 l004 Pi/tanh(291/118*Pi) 3141593825245516 l005 ln(sec(316/103)) 3141593825846663 l004 Pi/tanh(254/103*Pi) 3141593826473004 m002 Pi+(4*Sech[Pi])/Pi^11 3141593826659556 l004 Pi/tanh(217/88*Pi) 3141593827807474 l004 Pi/tanh(180/73*Pi) 3141593829551287 l004 Pi/tanh(143/58*Pi) 3141593829984195 s001 sum(1/10^(n-1)*A152042[n],n=1..infinity) 3141593829984195 s001 sum(1/10^n*A152042[n],n=1..infinity) 3141593829984195 s003 concatenated sequence A152042 3141593830519331 l005 ln(sec(879/94)) 3141593830813279 l004 Pi/tanh(249/101*Pi) 3141593830861784 m002 Pi+(4*Csch[Pi])/Pi^11 3141593832517646 l004 Pi/tanh(106/43*Pi) 3141593834029718 l004 Pi/tanh(281/114*Pi) 3141593834946422 l004 Pi/tanh(175/71*Pi) 3141593835502368 l005 ln(sec(209/65)) 3141593835764126 l005 ln(sec(181/59)) 3141593836002902 l004 Pi/tanh(244/99*Pi) 3141593837990678 r005 Im(z^2+c),c=9/74+25/42*I,n=59 3141593838686073 l004 Pi/tanh(69/28*Pi) 3141593838814975 h001 (3/4*exp(2)+8/11)/(1/2*exp(1)+7/11) 3141593838939325 m001 sin(1/12*Pi)^Psi(1,1/3)+Pi 3141593840137663 m001 ZetaQ(2)^FeigenbaumDelta+Pi 3141593841430845 l004 Pi/tanh(239/97*Pi) 3141593842495085 l005 ln(sec(533/57)) 3141593842546478 l004 Pi/tanh(170/69*Pi) 3141593843531132 l004 Pi/tanh(271/110*Pi) 3141593844030078 l005 ln(sec(373/116)) 3141593845190076 l004 Pi/tanh(101/41*Pi) 3141593847113847 l004 Pi/tanh(234/95*Pi) 3141593848024323 p002 log(1/10*(1-6^(1/4)*10^(1/4))*10^(3/4)) 3141593848576562 l004 Pi/tanh(133/54*Pi) 3141593850522703 l005 ln(sec(227/74)) 3141593850653634 l004 Pi/tanh(165/67*Pi) 3141593852057699 l004 Pi/tanh(197/80*Pi) 3141593853070250 l004 Pi/tanh(229/93*Pi) 3141593853835005 l004 Pi/tanh(261/106*Pi) 3141593853957663 r009 Re(z^3+c),c=-25/62+13/57*I,n=4 3141593854433011 l004 Pi/tanh(293/119*Pi) 3141593854965577 l005 ln(sec(164/51)) 3141593854966594 r005 Im(z^2+c),c=-77/58+1/45*I,n=42 3141593855315703 m001 ZetaQ(4)^(Pi*csc(5/12*Pi)/GAMMA(7/12))+Pi 3141593855329722 m004 1000*Pi+Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141593855330672 m004 -100*Pi-Sin[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141593855331623 m004 1000*Pi+Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3141593857238570 l005 ln(sec(720/77)) 3141593858005147 m001 Kolakoski/(GAMMA(3/4)+Conway) 3141593859320189 l004 Pi/tanh(32/13*Pi) 3141593859568919 r005 Im(z^2+c),c=-23/110+15/32*I,n=29 3141593860382427 l005 ln(sec(273/89)) 3141593861446259 m004 Pi+ProductLog[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141593864398297 l004 Pi/tanh(283/115*Pi) 3141593865047042 l004 Pi/tanh(251/102*Pi) 3141593865885822 l004 Pi/tanh(219/89*Pi) 3141593865966039 l005 ln(sec(907/97)) 3141593867012466 l004 Pi/tanh(187/76*Pi) 3141593867435035 l005 ln(sec(319/104)) 3141593868396367 p002 log(1/3*(6^(1/4)-6^(2/3))*3^(1/2)) 3141593868605859 l004 Pi/tanh(155/63*Pi) 3141593869355888 a007 Real Root Of -215*x^4-471*x^3+637*x^2-57*x-127 3141593869495565 l005 ln(sec(283/88)) 3141593869678698 l004 Pi/tanh(278/113*Pi) 3141593870045188 m002 Pi+ProductLog[Pi]/(3*Pi^11) 3141593871031825 l004 Pi/tanh(123/50*Pi) 3141593871735621 l005 ln(sec(1094/117)) 3141593871885477 m001 (Ei(1)-GAMMA(17/24))/(sin(1/5*Pi)+GAMMA(2/3)) 3141593872729863 l005 ln(sec(365/119)) 3141593872791582 l004 Pi/tanh(214/87*Pi) 3141593875173673 l004 Pi/tanh(91/37*Pi) 3141593875884779 l006 ln(6513/8917) 3141593877292287 l004 Pi/tanh(241/98*Pi) 3141593878579138 l004 Pi/tanh(150/61*Pi) 3141593879328040 r009 Im(z^3+c),c=-9/34+10/33*I,n=10 3141593880064480 l004 Pi/tanh(209/85*Pi) 3141593880896513 l004 Pi/tanh(268/109*Pi) 3141593883847838 l004 Pi/tanh(59/24*Pi) 3141593886861625 l004 Pi/tanh(263/107*Pi) 3141593887497017 m002 Pi+(Log[Pi]*Tanh[Pi])/Pi^12 3141593887734456 l004 Pi/tanh(204/83*Pi) 3141593889318965 l004 Pi/tanh(145/59*Pi) 3141593889739139 l005 ln(sec(119/37)) 3141593890719743 l004 Pi/tanh(231/94*Pi) 3141593891121982 r002 6th iterates of z^2 + 3141593892114141 m002 -Pi-Log[Pi]/Pi^12 3141593893084651 l004 Pi/tanh(86/35*Pi) 3141593895004357 l004 Pi/tanh(285/116*Pi) 3141593895834779 l004 Pi/tanh(199/81*Pi) 3141593896509246 m004 (-25*Pi)/2+(5*Pi*Tanh[Sqrt[5]*Pi])/2 3141593896510229 m004 10*Pi+(5*Pi)/E^(2*Sqrt[5]*Pi) 3141593896511213 m004 5*Pi+(5*E^(Sqrt[5]*Pi)*Pi*Csch[Sqrt[5]*Pi])/2 3141593896748542 m002 Pi+(Coth[Pi]*Log[Pi])/Pi^12 3141593897931355 l004 Pi/tanh(113/46*Pi) 3141593899582604 l004 Pi/tanh(253/103*Pi) 3141593900011039 l005 ln(sec(187/20)) 3141593900782648 m002 Pi+ProductLog[Pi]^2/Pi^12 3141593900916788 l004 Pi/tanh(140/57*Pi) 3141593902940406 l004 Pi/tanh(167/68*Pi) 3141593903694006 p002 log((11^(1/4)-3^(2/3))*15^(1/2)) 3141593904402524 l004 Pi/tanh(194/79*Pi) 3141593905508369 l004 Pi/tanh(221/90*Pi) 3141593906374019 l004 Pi/tanh(248/101*Pi) 3141593906894390 a007 Real Root Of -486*x^4+864*x^3+449*x^2+749*x-24 3141593907070065 l004 Pi/tanh(275/112*Pi) 3141593907681885 r005 Im(z^2+c),c=-3/74+20/51*I,n=19 3141593908322371 l005 ln(sec(312/97)) 3141593909919055 l005 ln(sec(46/15)) 3141593910461892 a007 Real Root Of -151*x^4-114*x^3+821*x^2-919*x+184 3141593911293241 r009 Re(z^3+c),c=-29/62+21/53*I,n=42 3141593911721910 a007 Real Root Of -157*x^4-710*x^3-891*x^2-548*x+351 3141593912937923 m001 (1-gamma(2))/(-GAMMA(23/24)+CareFree) 3141593913479129 l004 Pi/tanh(27/11*Pi) 3141593919541122 l004 Pi/tanh(292/119*Pi) 3141593919597537 m002 Pi+Sinh[Pi]/Pi^14 3141593919616150 m004 10*Pi+4*Sech[Sqrt[5]*Pi]^2 3141593919618153 m004 10*Pi+4*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141593919620157 m004 10*Pi+4*Csch[Sqrt[5]*Pi]^2 3141593919652016 r005 Im(z^2+c),c=-127/102+1/30*I,n=48 3141593919886081 l005 ln(sec(193/60)) 3141593920160182 l004 Pi/tanh(265/108*Pi) 3141593920920060 l004 Pi/tanh(238/97*Pi) 3141593921874972 l004 Pi/tanh(211/86*Pi) 3141593923111058 l004 Pi/tanh(184/75*Pi) 3141593924334777 m002 Pi+Cosh[Pi]/Pi^14 3141593924773946 l004 Pi/tanh(157/64*Pi) 3141593925841045 l004 Pi/tanh(287/117*Pi) 3141593927130812 l004 Pi/tanh(130/53*Pi) 3141593928721058 l004 Pi/tanh(233/95*Pi) 3141593929912350 l005 ln(sec(19/2)) 3141593929985172 p002 log(4^(3/4)/(11^(1/4)-10^(2/3))) 3141593930730632 l004 Pi/tanh(103/42*Pi) 3141593930986322 m005 (1/2*3^(1/2)-3/10)/(5/6*Zeta(3)+4/5) 3141593931386724 p002 log(1/19*11^(2/3)-24/19) 3141593932393103 l004 Pi/tanh(282/115*Pi) 3141593932724305 l005 ln(sec(963/103)) 3141593932959441 r009 Re(z^3+c),c=-41/86+20/43*I,n=50 3141593933350574 l004 Pi/tanh(179/73*Pi) 3141593933501475 l005 ln(sec(267/83)) 3141593934410150 l004 Pi/tanh(255/104*Pi) 3141593936908748 l004 Pi/tanh(76/31*Pi) 3141593939212650 l004 Pi/tanh(277/113*Pi) 3141593940084715 l004 Pi/tanh(201/82*Pi) 3141593940702449 l005 ln(sec(776/83)) 3141593941256843 l005 ln(sec(341/106)) 3141593941441515 r005 Im(z^2+c),c=-69/94+10/49*I,n=33 3141593942019043 l004 Pi/tanh(125/51*Pi) 3141593944256676 l004 Pi/tanh(174/71*Pi) 3141593945512433 l004 Pi/tanh(223/91*Pi) 3141593946316306 l004 Pi/tanh(272/111*Pi) 3141593947362583 p001 sum((-1)^n/(419*n+313)/(25^n),n=0..infinity) 3141593949980246 l004 Pi/tanh(49/20*Pi) 3141593950569458 m002 Pi+Log[Pi]/(3*Pi^11) 3141593952676867 l005 ln(sec(325/106)) 3141593953722087 l004 Pi/tanh(267/109*Pi) 3141593953826474 l005 ln(sec(589/63)) 3141593954564435 l004 Pi/tanh(218/89*Pi) 3141593955896213 l004 Pi/tanh(169/69*Pi) 3141593956901592 l004 Pi/tanh(289/118*Pi) 3141593957667046 a007 Real Root Of 234*x^4+551*x^3-647*x^2+54*x+846 3141593958235171 m001 GAMMA(5/24)/BesselK(0,1)^2*ln(GAMMA(7/24))^2 3141593958318645 l004 Pi/tanh(120/49*Pi) 3141593959067952 p002 log(1/12*5^(1/2)-2^(1/4)) 3141593959828373 l005 ln(sec(279/91)) 3141593960021351 p002 log(1/10*(5^(1/2)-10^(1/2)*5^(1/3))*10^(1/2)) 3141593960465321 l004 Pi/tanh(191/78*Pi) 3141593961449557 l004 Pi/tanh(262/107*Pi) 3141593963417843 p002 log(14/(11^(3/4)-20)) 3141593964100493 l004 Pi/tanh(71/29*Pi) 3141593964172757 l005 ln(sec(991/106)) 3141593965415633 m004 1000*Pi+Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141593965416671 m004 -100*Pi-Cos[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141593965417709 m004 1000*Pi+Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3141593967061513 l004 Pi/tanh(235/96*Pi) 3141593968345223 l004 Pi/tanh(164/67*Pi) 3141593968760627 m001 MertensB1^Psi(1,1/3)+Pi 3141593969519998 l004 Pi/tanh(257/105*Pi) 3141593969537295 l005 ln(sec(74/23)) 3141593969852149 l005 ln(sec(233/76)) 3141593971392741 a007 Real Root Of -203*x^4-972*x^3-814*x^2+750*x+26 3141593971593870 l004 Pi/tanh(93/38*Pi) 3141593974067907 r009 Im(z^3+c),c=-8/21+36/59*I,n=16 3141593974160225 l004 Pi/tanh(208/85*Pi) 3141593976238803 l004 Pi/tanh(115/47*Pi) 3141593977956598 l004 Pi/tanh(252/103*Pi) 3141593978444853 m001 (MertensB2+ZetaP(4))/(1-MasserGramain) 3141593979400041 l004 Pi/tanh(137/56*Pi) 3141593979442722 l005 ln(sec(402/43)) 3141593980480287 r005 Re(z^2+c),c=-21/62+36/61*I,n=17 3141593981690564 l004 Pi/tanh(159/65*Pi) 3141593982856625 p002 log(23/14-7^(1/2)) 3141593983341609 m002 Pi+(Log[Pi]*ProductLog[Pi])/Pi^12 3141593983426564 l004 Pi/tanh(181/74*Pi) 3141593983991957 m002 -Cosh[Pi]+(2*Pi^4*Coth[Pi])/E^Pi 3141593984787666 l004 Pi/tanh(203/83*Pi) 3141593984912842 l005 ln(sec(187/61)) 3141593985883476 l004 Pi/tanh(225/92*Pi) 3141593986784669 l004 Pi/tanh(247/101*Pi) 3141593987538861 l004 Pi/tanh(269/110*Pi) 3141593988179309 l004 Pi/tanh(291/119*Pi) 3141593990983742 m003 -2+Sqrt[5]/16+36*Tanh[1/2+Sqrt[5]/2] 3141593994420137 l005 ln(sec(1019/109)) 3141593995688467 l005 ln(sec(328/107)) 3141593996031896 l004 Pi/tanh(22/9*Pi) 3141593999022279 a001 55/7*322^(6/25) 3141593999716611 l005 ln(sec(325/101)) 3141594004206262 l004 Pi/tanh(281/115*Pi) 3141594004246247 l005 ln(sec(617/66)) 3141594004902600 l004 Pi/tanh(259/106*Pi) 3141594005728621 l004 Pi/tanh(237/97*Pi) 3141594005830645 m001 1/Zeta(3)*exp(Si(Pi))^2/Zeta(5)^2 3141594006724271 l004 Pi/tanh(215/88*Pi) 3141594007947781 l004 Pi/tanh(193/79*Pi) 3141594008714009 l005 ln(sec(251/78)) 3141594009487477 l004 Pi/tanh(171/70*Pi) 3141594010078708 l005 ln(sec(141/46)) 3141594010928124 r002 18th iterates of z^2 + 3141594011445439 m004 1000*Pi+ProductLog[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141594011484112 l004 Pi/tanh(149/61*Pi) 3141594011730559 m004 -100*Pi-Tan[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141594012722439 l004 Pi/tanh(276/113*Pi) 3141594014176532 l004 Pi/tanh(127/52*Pi) 3141594015908164 l004 Pi/tanh(232/95*Pi) 3141594016076005 a007 Real Root Of -694*x^4+531*x^3+684*x^2+776*x-321 3141594016354005 l005 ln(sec(832/89)) 3141594018005174 l004 Pi/tanh(105/43*Pi) 3141594019667596 l004 Pi/tanh(293/120*Pi) 3141594019675083 p002 log(1/2*(3^(2/3)-5^(3/4))*2^(2/3)) 3141594020596843 l004 Pi/tanh(188/77*Pi) 3141594021602145 l004 Pi/tanh(271/111*Pi) 3141594023526982 l005 ln(sec(1047/112)) 3141594023881593 l004 Pi/tanh(83/34*Pi) 3141594024395755 m001 ln(Backhouse/Zeta(1/2)) 3141594025353997 l005 ln(sec(177/55)) 3141594025993205 p002 log(6^(1/2)/(12^(1/4)-7^(3/4))) 3141594026607197 l004 Pi/tanh(227/93*Pi) 3141594028180346 l004 Pi/tanh(144/59*Pi) 3141594029924148 l004 Pi/tanh(205/84*Pi) 3141594030267477 l005 ln(sec(236/77)) 3141594030357869 r005 Re(z^2+c),c=29/86+1/7*I,n=12 3141594030868964 l004 Pi/tanh(266/109*Pi) 3141594034048299 l004 Pi/tanh(61/25*Pi) 3141594034367715 r009 Re(z^3+c),c=-35/78+20/39*I,n=21 3141594037042465 l004 Pi/tanh(283/116*Pi) 3141594037830486 a007 Real Root Of 280*x^4+967*x^3+230*x^2-166*x-83 3141594037866174 l004 Pi/tanh(222/91*Pi) 3141594037940650 m002 3/(E^Pi*Pi^10)+Pi 3141594038934549 l005 ln(sec(331/108)) 3141594039315095 l004 Pi/tanh(161/66*Pi) 3141594040402594 l005 ln(sec(280/87)) 3141594040548548 l004 Pi/tanh(261/107*Pi) 3141594042536413 l004 Pi/tanh(100/41*Pi) 3141594043217086 m004 -100*Pi-(25*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141594044710091 l004 Pi/tanh(239/98*Pi) 3141594046275717 l004 Pi/tanh(139/57*Pi) 3141594047399552 l005 ln(sec(383/119)) 3141594048380287 l004 Pi/tanh(178/73*Pi) 3141594049729828 l004 Pi/tanh(217/89*Pi) 3141594050496357 p002 log(1/6*14^(1/2)-7^(1/4)) 3141594050668850 l004 Pi/tanh(256/105*Pi) 3141594051550652 l005 ln(sec(215/23)) 3141594054999791 p002 log(1/5*(17^(1/2)-5*5^(1/4))*5^(1/4)) 3141594055903697 l004 Pi/tanh(39/16*Pi) 3141594060538967 l004 Pi/tanh(290/119*Pi) 3141594060639673 l005 ln(sec(95/31)) 3141594061260383 l004 Pi/tanh(251/103*Pi) 3141594061302959 p002 log(9/11-11^(1/4)) 3141594062247746 l004 Pi/tanh(212/87*Pi) 3141594062380496 a003 cos(Pi*17/115)*cos(Pi*27/70) 3141594063681349 l004 Pi/tanh(173/71*Pi) 3141594065952027 l004 Pi/tanh(134/55*Pi) 3141594066556532 l005 ln(sec(103/32)) 3141594067669538 l004 Pi/tanh(229/94*Pi) 3141594069164608 p002 log(1/5*(13^(1/2)-5*5^(1/6))*5^(1/3)) 3141594070095219 l004 Pi/tanh(95/39*Pi) 3141594071365629 m002 Pi+Log[Pi]^2/Pi^12 3141594071466230 r005 Im(z^2+c),c=-41/90+16/35*I,n=18 3141594072356521 l004 Pi/tanh(246/101*Pi) 3141594073100541 a007 Real Root Of 300*x^4+851*x^3-468*x^2-788*x-693 3141594073780802 l004 Pi/tanh(151/62*Pi) 3141594073932302 r005 Re(z^2+c),c=-15/82+39/47*I,n=46 3141594074040286 m001 Ei(1)^2*MinimumGamma^2/ln(GAMMA(1/12)) 3141594074074074 r005 Im(z^2+c),c=-23/50+1/3*I,n=3 3141594075317995 p002 log(1/6*(10^(1/4)-10^(3/4))*6^(1/4)) 3141594075475043 l004 Pi/tanh(207/85*Pi) 3141594076130316 r005 Im(z^2+c),c=1/52+23/61*I,n=7 3141594076448575 l004 Pi/tanh(263/108*Pi) 3141594077084073 p002 log(1/18*11^(2/3)-23/18) 3141594078545406 l005 ln(sec(1103/118)) 3141594080052200 l004 Pi/tanh(56/23*Pi) 3141594081571898 p002 log(1/7*(6^(1/4)-7^(1/3)*11^(1/4))*7^(2/3)) 3141594082396486 l005 ln(sec(334/109)) 3141594083993837 l004 Pi/tanh(241/99*Pi) 3141594085139397 l005 ln(sec(888/95)) 3141594085188846 l004 Pi/tanh(185/76*Pi) 3141594087423708 l004 Pi/tanh(129/53*Pi) 3141594088505996 l005 ln(sec(338/105)) 3141594088506735 p002 log((12^(1/4)-3^(2/3))*21^(1/2)) 3141594088584660 p002 log(6-7^(2/3)-5^(3/4)) 3141594089473147 l004 Pi/tanh(202/83*Pi) 3141594090435398 l004 Pi/tanh(275/113*Pi) 3141594091113185 l005 ln(sec(239/78)) 3141594093100985 l004 Pi/tanh(73/30*Pi) 3141594093247841 m005 (1/2*exp(1)-4/9)/(8/11*Catalan-3/8) 3141594093625351 a007 Real Root Of -458*x^4+546*x^3-500*x^2+647*x+274 3141594095995721 l005 ln(sec(673/72)) 3141594096212493 l004 Pi/tanh(236/97*Pi) 3141594097607885 l004 Pi/tanh(163/67*Pi) 3141594097874291 m002 Pi+Tanh[Pi]/(E^Pi*Pi^9) 3141594098207952 l005 ln(sec(235/73)) 3141594098517260 r005 Re(z^2+c),c=-4/13+19/36*I,n=44 3141594098910572 l004 Pi/tanh(253/104*Pi) 3141594101272485 l004 Pi/tanh(90/37*Pi) 3141594103278620 m002 1/(E^Pi*Pi^9)+Pi 3141594103357370 l004 Pi/tanh(287/118*Pi) 3141594104310724 l004 Pi/tanh(197/81*Pi) 3141594106870541 l004 Pi/tanh(107/44*Pi) 3141594107187457 l005 ln(sec(367/114)) 3141594109056690 l004 Pi/tanh(231/95*Pi) 3141594110945421 l004 Pi/tanh(124/51*Pi) 3141594111482136 l005 ln(sec(144/47)) 3141594112593562 l004 Pi/tanh(265/109*Pi) 3141594114044329 l004 Pi/tanh(141/58*Pi) 3141594114344070 p002 log(1/10*(4^(2/3)-7^(3/4))*10^(3/4)) 3141594114518804 p002 log(23^(1/2)-5^(1/4)-7^(3/4)) 3141594116480393 l004 Pi/tanh(158/65*Pi) 3141594117219657 l005 ln(sec(458/49)) 3141594118445732 l004 Pi/tanh(175/72*Pi) 3141594118528436 a007 Real Root Of 312*x^4+593*x^3-979*x^2+548*x-621 3141594119693807 m002 Pi+(5*Sech[Pi])/Pi^11 3141594120064763 l004 Pi/tanh(192/79*Pi) 3141594121421607 l004 Pi/tanh(209/86*Pi) 3141594122575181 l004 Pi/tanh(226/93*Pi) 3141594123279003 l005 ln(sec(132/41)) 3141594123567980 l004 Pi/tanh(243/100*Pi) 3141594124311723 a007 Real Root Of 22*x^4+678*x^3-396*x^2+561*x+706 3141594124431425 l004 Pi/tanh(260/107*Pi) 3141594125179782 m002 Pi+(5*Csch[Pi])/Pi^11 3141594125189250 l004 Pi/tanh(277/114*Pi) 3141594126056322 l005 ln(sec(337/110)) 3141594132019945 p002 log(1/11*(1-9^(2/3))*11^(1/2)) 3141594132089130 a007 Real Root Of 887*x^4-343*x^3-115*x^2-922*x+303 3141594136141292 m004 -100*Pi-Tanh[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141594136143638 m004 -1/(6*E^(Sqrt[5]*Pi))-100*Pi 3141594136821871 l004 Pi/tanh(17/7*Pi) 3141594137000161 l005 ln(sec(193/63)) 3141594137814387 l005 ln(sec(701/75)) 3141594140979854 p002 log(1/6*(3^(1/2)-6^(2/3))*6^(3/4)) 3141594143625924 l005 ln(sec(293/91)) 3141594145093136 m004 -130*Pi+30*Pi*Tanh[Sqrt[5]*Pi] 3141594146315195 a007 Real Root Of -225*x^4-493*x^3+825*x^2+201*x-880 3141594147883901 l005 ln(sec(944/101)) 3141594148244659 l004 Pi/tanh(284/117*Pi) 3141594148974534 l004 Pi/tanh(267/110*Pi) 3141594149804048 l004 Pi/tanh(250/103*Pi) 3141594150755097 l004 Pi/tanh(233/96*Pi) 3141594151856505 l004 Pi/tanh(216/89*Pi) 3141594152339989 l005 ln(sec(242/79)) 3141594153146988 l004 Pi/tanh(199/82*Pi) 3141594154679803 l004 Pi/tanh(182/75*Pi) 3141594155765892 m004 -100*Pi-Sin[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141594156530282 l004 Pi/tanh(165/68*Pi) 3141594156710727 p002 log(1/3*(10^(1/4)-5^(1/2)*3^(1/3))*3^(2/3)) 3141594157252099 p002 log(1/7*(7^(1/3)*10^(1/3)-11^(3/4))*7^(2/3)) 3141594158808587 l004 Pi/tanh(148/61*Pi) 3141594159170653 p002 log(1/11*(13^(1/2)-3^(1/2)*11^(2/3))*11^(1/3)) 3141594160157384 l004 Pi/tanh(279/115*Pi) 3141594160179939 s002 sum(A281058[n]/((2^n+1)/n),n=1..infinity) 3141594160467602 l005 ln(sec(161/50)) 3141594161682478 l004 Pi/tanh(131/54*Pi) 3141594162578187 l005 ln(sec(291/95)) 3141594163420852 l004 Pi/tanh(245/101*Pi) 3141594165420606 l004 Pi/tanh(114/47*Pi) 3141594166771115 a001 514229/2207*47^(25/37) 3141594167745481 l004 Pi/tanh(211/87*Pi) 3141594169896751 l005 ln(sec(340/111)) 3141594170481779 l004 Pi/tanh(97/40*Pi) 3141594172591855 l004 Pi/tanh(274/113*Pi) 3141594173015876 p002 log(13/(11^(3/4)-19)) 3141594173749306 l004 Pi/tanh(177/73*Pi) 3141594174637207 l005 ln(sec(351/109)) 3141594174950771 h001 (4/5*exp(2)+5/12)/(7/12*exp(1)+3/7) 3141594174984163 l004 Pi/tanh(257/106*Pi) 3141594177218064 l005 ln(sec(243/26)) 3141594177523494 m001 FeigenbaumAlpha/(arctan(1/3)+Weierstrass) 3141594177719382 l004 Pi/tanh(80/33*Pi) 3141594180876927 l004 Pi/tanh(223/92*Pi) 3141594182645863 l004 Pi/tanh(143/59*Pi) 3141594184070079 p002 log(1/6*(10^(1/3)-6)*6^(1/4)) 3141594184562786 l004 Pi/tanh(206/85*Pi) 3141594185582669 l004 Pi/tanh(269/111*Pi) 3141594185766141 m001 Pi+BesselI(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141594186723454 l005 ln(sec(190/59)) 3141594187973747 a007 Real Root Of -424*x^4-197*x^3-606*x^2+704*x+279 3141594188136066 p002 log(1/10*(10^(1/2)-11^(2/3))*10^(3/4)) 3141594188921644 l004 Pi/tanh(63/26*Pi) 3141594192150522 r009 Im(z^3+c),c=-47/106+10/49*I,n=26 3141594192751463 l004 Pi/tanh(235/97*Pi) 3141594194156321 l004 Pi/tanh(172/71*Pi) 3141594195332056 l004 Pi/tanh(281/116*Pi) 3141594196125744 m004 Pi+Log[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141594197188931 l004 Pi/tanh(109/45*Pi) 3141594199167512 l004 Pi/tanh(264/109*Pi) 3141594200560219 l004 Pi/tanh(155/64*Pi) 3141594201051962 p002 log(11^(1/3)/(3^(1/3)-7^(2/3))) 3141594202391103 l004 Pi/tanh(201/83*Pi) 3141594203540999 l004 Pi/tanh(247/102*Pi) 3141594205301972 l005 ln(sec(1000/107)) 3141594205356857 p002 log(10^(1/4)-5^(1/3)*7^(1/4)) 3141594206247238 l005 ln(sec(219/68)) 3141594208574248 l004 Pi/tanh(46/19*Pi) 3141594210013976 m001 Trott^Otter+Pi 3141594210060082 m002 Pi+ProductLog[Pi]/(E^Pi*Pi^9) 3141594211016863 p002 log(1/19*(6^(1/2)-19^(1/2)*6^(1/4))*19^(1/2)) 3141594211102321 k006 concat of cont frac of 3141594213387515 l004 Pi/tanh(259/107*Pi) 3141594213901103 l005 ln(sec(49/16)) 3141594214398410 l005 ln(sec(757/81)) 3141594214428697 l004 Pi/tanh(213/88*Pi) 3141594216044659 l004 Pi/tanh(167/69*Pi) 3141594216398622 p002 log(1/11*(14-11^(2/3)*6^(3/4))*11^(1/3)) 3141594217240732 l004 Pi/tanh(288/119*Pi) 3141594218892816 l004 Pi/tanh(121/50*Pi) 3141594221323118 l004 Pi/tanh(196/81*Pi) 3141594221332871 l005 ln(sec(248/77)) 3141594222409292 l004 Pi/tanh(271/112*Pi) 3141594223065383 p002 log(7^(3/4)/(5^(1/3)-6)) 3141594225250914 l004 Pi/tanh(75/31*Pi) 3141594228287651 l004 Pi/tanh(254/105*Pi) 3141594229561540 l004 Pi/tanh(179/74*Pi) 3141594230705652 l004 Pi/tanh(283/117*Pi) 3141594232209763 l005 ln(sec(514/55)) 3141594232676533 l004 Pi/tanh(104/43*Pi) 3141594233338737 l005 ln(sec(277/86)) 3141594235032750 l004 Pi/tanh(237/98*Pi) 3141594236121487 m004 -Pi-Tanh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]^2 3141594236122739 m004 10*Pi+5*Sech[Sqrt[5]*Pi]^2 3141594236123991 m004 -1-Pi+Tanh[Sqrt[5]*Pi] 3141594236125243 m004 2/E^(2*Sqrt[5]*Pi)+Pi 3141594236125243 m004 10*Pi+5*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141594236126496 m004 -1+Pi+Coth[Sqrt[5]*Pi] 3141594236127748 m004 10*Pi+5*Csch[Sqrt[5]*Pi]^2 3141594236877332 l004 Pi/tanh(133/55*Pi) 3141594238586489 p002 log(14/13-3^(2/3)) 3141594239579252 l004 Pi/tanh(162/67*Pi) 3141594240218029 l005 ln(sec(1131/119)) 3141594241154637 p002 log(10^(3/4)-7^(1/4)-5) 3141594241463058 l004 Pi/tanh(191/79*Pi) 3141594242851467 l004 Pi/tanh(220/91*Pi) 3141594243120348 l005 ln(sec(306/95)) 3141594243917185 l004 Pi/tanh(249/103*Pi) 3141594244760998 l004 Pi/tanh(278/115*Pi) 3141594245971100 l005 ln(sec(1112/117)) 3141594249199104 p002 log(1/17*11^(2/3)-22/17) 3141594249529101 l005 ln(sec(785/84)) 3141594249682895 r005 Re(z^2+c),c=-9/28+29/54*I,n=38 3141594251243277 l005 ln(sec(335/104)) 3141594251940752 l005 ln(sec(1093/115)) 3141594252022173 l004 Pi/tanh(29/12*Pi) 3141594254144810 m001 ln(HardHexagonsEntropy)*Bloch*Riemann1stZero^2 3141594254416316 b008 1-6*ArcCosh[111] 3141594256128620 p002 log(1/12*(10^(1/3)-2^(1/2)*12^(2/3))*12^(1/3)) 3141594258010295 l005 ln(sec(1056/113)) 3141594258053331 l005 ln(sec(346/113)) 3141594258096369 l005 ln(sec(364/113)) 3141594258139408 l005 ln(sec(1074/113)) 3141594259445885 l004 Pi/tanh(273/113*Pi) 3141594260330198 l004 Pi/tanh(244/101*Pi) 3141594261403235 b008 7*Sin[(4*Pi)/27] 3141594261453680 l004 Pi/tanh(215/89*Pi) 3141594262928530 l004 Pi/tanh(186/77*Pi) 3141594263756796 h001 (2/9*exp(1)+6/11)/(4/9*exp(2)+3/8) 3141594264580456 l005 ln(sec(1055/111)) 3141594264950133 l004 Pi/tanh(157/65*Pi) 3141594265425320 l005 ln(sec(297/97)) 3141594266270684 l004 Pi/tanh(285/118*Pi) 3141594266424727 p002 log(1/4*(5^(1/3)-4^(2/3)*2^(3/4))*4^(1/3)) 3141594267515625 p002 log(12^(1/4)*(12^(1/3)-4^(3/4))) 3141594267891706 l004 Pi/tanh(128/53*Pi) 3141594268399071 a003 cos(Pi*41/111)-cos(Pi*35/74) 3141594268805022 p002 log(1/17*10^(1/2)-2^(1/4)) 3141594269928911 l004 Pi/tanh(227/94*Pi) 3141594271278348 l005 ln(sec(1036/109)) 3141594272566183 l004 Pi/tanh(99/41*Pi) 3141594274802912 l004 Pi/tanh(268/111*Pi) 3141594275011488 r002 3th iterates of z^2 + 3141594275752149 l005 ln(sec(248/81)) 3141594275923307 m002 Pi^3+ProductLog[Pi]/(2*Log[Pi]^2) 3141594276114432 l004 Pi/tanh(169/70*Pi) 3141594277586185 l004 Pi/tanh(239/99*Pi) 3141594278248701 l005 ln(sec(1017/107)) 3141594281144195 l004 Pi/tanh(70/29*Pi) 3141594282767544 l005 ln(sec(271/29)) 3141594283357423 m004 1000*Pi+Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141594283358712 m004 -100*Pi-Tan[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141594283360002 m004 1000*Pi+Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3141594284538388 l004 Pi/tanh(251/104*Pi) 3141594285508420 l005 ln(sec(998/105)) 3141594285702514 a007 Real Root Of -377*x^4-227*x^3+38*x^2+993*x-305 3141594285852707 l004 Pi/tanh(181/75*Pi) 3141594288828115 l004 Pi/tanh(111/46*Pi) 3141594289044317 p002 log(2^(1/2)-7+21^(1/2)) 3141594289113622 r009 Im(z^3+c),c=-37/82+1/5*I,n=2 3141594290878563 l004 Pi/tanh(263/109*Pi) 3141594291255234 l005 ln(sec(199/65)) 3141594292377340 l004 Pi/tanh(152/63*Pi) 3141594293075836 l005 ln(sec(979/103)) 3141594293373391 m004 -100*Pi-Cos[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141594294421631 l004 Pi/tanh(193/80*Pi) 3141594295021114 p002 log(1/12*(14^(1/2)-9)*12^(1/3)) 3141594295282124 p002 log(1/9*(10^(1/4)-2^(1/2)*9^(2/3))*9^(1/3)) 3141594295750733 l004 Pi/tanh(234/97*Pi) 3141594296600413 p002 log(1/6*(11^(1/2)-6^(1/3)*4^(3/4))*6^(2/3)) 3141594296684079 l004 Pi/tanh(275/114*Pi) 3141594298080208 m001 Pi-gamma(2)^Sierpinski 3141594300392310 m001 (Si(Pi)-ln(2)/ln(10))/(-Zeta(5)+Landau) 3141594300970851 l005 ln(sec(960/101)) 3141594301645448 p002 log(1/9*(7^(2/3)-8)*9^(1/3)) 3141594302019797 l004 Pi/tanh(41/17*Pi) 3141594302337993 l005 ln(sec(349/114)) 3141594304315154 r002 3th iterates of z^2 + 3141594306540973 l005 ln(sec(1112/119)) 3141594307723647 l004 Pi/tanh(258/107*Pi) 3141594308803255 l004 Pi/tanh(217/90*Pi) 3141594309215120 l005 ln(sec(941/99)) 3141594310386967 l004 Pi/tanh(176/73*Pi) 3141594312935394 l004 Pi/tanh(135/56*Pi) 3141594313091919 m002 Pi+Log[Pi]/(E^Pi*Pi^9) 3141594314256493 l005 ln(sec(841/90)) 3141594314896322 l004 Pi/tanh(229/95*Pi) 3141594317080261 m001 Pi+LambertW(1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141594317126392 l005 ln(sec(150/49)) 3141594317716067 l004 Pi/tanh(94/39*Pi) 3141594317832239 l005 ln(sec(922/97)) 3141594320399258 l004 Pi/tanh(241/100*Pi) 3141594322117008 l004 Pi/tanh(147/61*Pi) 3141594322141142 m001 ZetaQ(3)^FransenRobinson+Pi 3141594323025763 m001 (ln(2)+MadelungNaCl)/(GAMMA(2/3)-gamma) 3141594323753955 p002 log(3^(3/4)/(5^(2/3)-9^(3/4))) 3141594323782235 r009 Re(z^3+c),c=-23/38+25/52*I,n=18 3141594324188936 l004 Pi/tanh(200/83*Pi) 3141594325393810 l004 Pi/tanh(253/105*Pi) 3141594326847969 l005 ln(sec(903/95)) 3141594328495110 m001 Pi*(Psi(1,1/3)-BesselK(1,1))+BesselI(1,2) 3141594329385875 l005 ln(sec(570/61)) 3141594329576141 m001 BesselJ(1,1)/(FeigenbaumD-GlaisherKinkelin) 3141594329947297 l004 Pi/tanh(53/22*Pi) 3141594330850562 r005 Re(z^2+c),c=-12/25+16/45*I,n=7 3141594331579632 a007 Real Root Of -91*x^4+47*x^3+977*x^2-395*x-562 3141594332532296 r009 Im(z^3+c),c=-37/122+15/52*I,n=11 3141594334115660 l004 Pi/tanh(277/115*Pi) 3141594335103239 l004 Pi/tanh(224/93*Pi) 3141594336290491 l005 ln(sec(884/93)) 3141594336630079 r005 Im(z^2+c),c=-7/10+26/97*I,n=39 3141594336704071 l004 Pi/tanh(171/71*Pi) 3141594337851072 l005 ln(sec(251/82)) 3141594337945764 l004 Pi/tanh(289/120*Pi) 3141594338899131 l005 ln(sec(29/9)) 3141594339746577 l004 Pi/tanh(118/49*Pi) 3141594340124201 m001 GAMMA(1/3)/ln(Artin)^2/log(1+sqrt(2)) 3141594342593886 l004 Pi/tanh(183/76*Pi) 3141594343950119 l004 Pi/tanh(248/103*Pi) 3141594344125520 l005 ln(sec(869/93)) 3141594346190695 l005 ln(sec(865/91)) 3141594346740232 l005 ln(sec(352/115)) 3141594346755106 m002 Pi+Tanh[Pi]/(2*Pi^11) 3141594346774298 p002 log(1/10*(23^(1/2)-10^(1/2)*4^(2/3))*10^(1/2)) 3141594347773512 l004 Pi/tanh(65/27*Pi) 3141594349916995 m002 Pi+Sinh[Pi]/(E^Pi*Pi^11) 3141594351266086 l004 Pi/tanh(272/113*Pi) 3141594352364076 l004 Pi/tanh(207/86*Pi) 3141594352706412 p002 log(1/14*(3^(1/3)-9^(3/4))*14^(1/2)) 3141594353090715 m002 1/(2*Pi^11)+Pi 3141594354468989 l004 Pi/tanh(142/59*Pi) 3141594355935186 p002 log(1/15*(10^(1/3)-11^(3/4))*15^(1/2)) 3141594356264436 m002 Pi+Cosh[Pi]/(E^Pi*Pi^11) 3141594356460644 l004 Pi/tanh(219/91*Pi) 3141594356582512 l005 ln(sec(846/89)) 3141594360138874 l004 Pi/tanh(77/32*Pi) 3141594363459727 l004 Pi/tanh(243/101*Pi) 3141594365002026 l004 Pi/tanh(166/69*Pi) 3141594366472868 l004 Pi/tanh(255/106*Pi) 3141594366851144 p002 log(1/4*(10^(1/2)-6)*4^(1/4)) 3141594367503295 l005 ln(sec(827/87)) 3141594368980959 l005 ln(sec(101/33)) 3141594369219169 l004 Pi/tanh(89/37*Pi) 3141594370955632 p002 log(6^(3/4)-5^(2/3)-7^(1/3)) 3141594371732569 l004 Pi/tanh(279/116*Pi) 3141594372492367 l005 ln(sec(299/32)) 3141594372910997 l004 Pi/tanh(190/79*Pi) 3141594376169904 l004 Pi/tanh(101/42*Pi) 3141594378994262 l005 ln(sec(808/85)) 3141594379067815 l004 Pi/tanh(214/89*Pi) 3141594381661563 l004 Pi/tanh(113/47*Pi) 3141594382073993 m005 (1/3*Catalan+1/8)/(6/7*gamma+7/8) 3141594383996644 l004 Pi/tanh(238/99*Pi) 3141594384734493 r005 Im(z^2+c),c=-1/28+23/63*I,n=5 3141594385247466 m001 ln(Zeta(1/2)+arctan(1/2)) 3141594386109913 l004 Pi/tanh(125/52*Pi) 3141594387687519 m004 1000*Pi+Log[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141594388031541 l004 Pi/tanh(262/109*Pi) 3141594388511398 k002 Champernowne real with 67*n^2-190*n+126 3141594389786463 l004 Pi/tanh(137/57*Pi) 3141594391101003 l005 ln(sec(789/83)) 3141594391245768 l005 ln(sec(355/116)) 3141594391395471 l004 Pi/tanh(286/119*Pi) 3141594392876036 l004 Pi/tanh(149/62*Pi) 3141594395318976 p002 log(10^(2/3)/(11^(1/4)-12^(3/4))) 3141594395508807 l004 Pi/tanh(161/67*Pi) 3141594397092702 r005 Im(z^2+c),c=-26/25+2/59*I,n=9 3141594397779109 l004 Pi/tanh(173/72*Pi) 3141594398037178 p002 log(1/5*(17^(1/2)-10^(3/4))*5^(3/4)) 3141594399464153 l005 ln(sec(925/99)) 3141594399756973 l004 Pi/tanh(185/77*Pi) 3141594400158053 l005 ln(sec(254/83)) 3141594401495483 l004 Pi/tanh(197/82*Pi) 3141594402464792 m001 1/GAMMA(13/24)/GolombDickman*ln(LambertW(1))^2 3141594403035609 l004 Pi/tanh(209/87*Pi) 3141594403874077 l005 ln(sec(770/81)) 3141594404409474 l004 Pi/tanh(221/92*Pi) 3141594405642620 l004 Pi/tanh(233/97*Pi) 3141594406755615 l004 Pi/tanh(245/102*Pi) 3141594407765203 l004 Pi/tanh(257/107*Pi) 3141594408591418 k003 Champernowne real with 1/3*n^3+65*n^2-559/3*n+124 3141594408685155 l004 Pi/tanh(269/112*Pi) 3141594409495221 r005 Im(z^2+c),c=-11/14+5/158*I,n=6 3141594409526900 l004 Pi/tanh(281/117*Pi) 3141594412457741 l005 ln(sec(626/67)) 3141594412914609 m002 Pi+(6*Sech[Pi])/Pi^11 3141594415616584 r005 Im(z^2+c),c=-61/86+1/18*I,n=4 3141594417369703 l005 ln(sec(751/79)) 3141594418631428 k003 Champernowne real with 1/2*n^3+64*n^2-369/2*n+123 3141594419497780 m002 Pi+(6*Csch[Pi])/Pi^11 3141594420662923 r005 Im(z^2+c),c=17/58+4/27*I,n=59 3141594420966711 l005 ln(sec(153/50)) 3141594423481659 l005 ln(sec(361/112)) 3141594425138470 l005 ln(sec(953/102)) 3141594426290182 p002 log(9^(3/4)/(11^(1/4)-7)) 3141594426668362 m002 Pi+Tanh[Pi]/(6*Pi^10) 3141594428488171 l004 Pi/tanh(12/5*Pi) 3141594428671438 k003 Champernowne real with 2/3*n^3+63*n^2-548/3*n+122 3141594431020812 l005 ln(sec(332/103)) 3141594431650569 l005 ln(sec(732/77)) 3141594432650184 m004 1000*Pi+Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3141594432651591 m004 -100*Pi-Tanh[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141594432652999 m004 1000*Pi+Sech[Sqrt[5]*Pi] 3141594432654407 m004 -1/(5*E^(Sqrt[5]*Pi))-100*Pi 3141594432655815 m004 1000*Pi+Csch[Sqrt[5]*Pi] 3141594433302997 m002 1/(6*Pi^10)+Pi 3141594435840873 l005 ln(sec(358/117)) 3141594437264782 p002 log(12/(11^(3/4)-18)) 3141594437974730 m005 (1/2*2^(1/2)-1/7)/(8/9*Zeta(3)-8/9) 3141594438205358 p002 log(3^(1/4)*10^(1/4)-5^(3/4)) 3141594439974797 p002 log(1/11*(10^(1/4)-13^(1/2))*11^(3/4)) 3141594440035084 l005 ln(sec(303/94)) 3141594446786785 l005 ln(sec(713/75)) 3141594447002087 l005 ln(sec(205/67)) 3141594447490902 l004 Pi/tanh(283/118*Pi) 3141594448336416 l004 Pi/tanh(271/113*Pi) 3141594448751458 k003 Champernowne real with n^3+61*n^2-179*n+120 3141594449032133 b008 Pi*Sqrt[Zeta[2*Pi^2]] 3141594449260672 l004 Pi/tanh(259/108*Pi) 3141594449604349 l005 ln(sec(327/35)) 3141594450275211 l004 Pi/tanh(247/103*Pi) 3141594451004209 l005 ln(sec(274/85)) 3141594451393937 l004 Pi/tanh(235/98*Pi) 3141594452633770 l004 Pi/tanh(223/93*Pi) 3141594454015499 l004 Pi/tanh(211/88*Pi) 3141594454527032 p002 log(1/16*11^(2/3)-21/16) 3141594455564962 l004 Pi/tanh(199/83*Pi) 3141594457314675 l004 Pi/tanh(187/78*Pi) 3141594459306139 l004 Pi/tanh(175/73*Pi) 3141594461593173 l004 Pi/tanh(163/68*Pi) 3141594462635421 l005 ln(sec(257/84)) 3141594462857013 l005 ln(sec(694/73)) 3141594462906367 p002 log(6^(1/4)*(19^(1/2)-5)) 3141594464246852 l004 Pi/tanh(151/63*Pi) 3141594464641150 l005 ln(sec(245/76)) 3141594467363021 l004 Pi/tanh(139/58*Pi) 3141594468056187 b008 Pi*Zeta[6,1/10] 3141594468742811 a007 Real Root Of -333*x^4-946*x^3+347*x^2+328*x+711 3141594468831478 k003 Champernowne real with 4/3*n^3+59*n^2-526/3*n+118 3141594469134043 l004 Pi/tanh(266/111*Pi) 3141594470806417 r005 Re(z^2+c),c=-25/86+18/35*I,n=21 3141594471074125 l004 Pi/tanh(127/53*Pi) 3141594472943132 l005 ln(sec(1009/108)) 3141594473062352 l005 ln(sec(309/101)) 3141594473208684 l004 Pi/tanh(242/101*Pi) 3141594475568507 l004 Pi/tanh(115/48*Pi) 3141594478191233 l004 Pi/tanh(218/91*Pi) 3141594478272885 m002 Pi+ProductLog[Pi]/(2*Pi^11) 3141594478871488 k003 Champernowne real with 3/2*n^3+58*n^2-347/2*n+117 3141594479882082 m001 Pi-gamma(2)^FransenRobinson 3141594479949799 l005 ln(sec(675/71)) 3141594480512360 l005 ln(sec(361/118)) 3141594481123388 l004 Pi/tanh(103/43*Pi) 3141594482053369 l005 ln(sec(216/67)) 3141594484213372 l005 ln(sec(682/73)) 3141594484423158 l004 Pi/tanh(194/81*Pi) 3141594485403896 r009 Re(z^3+c),c=-4/21+6/7*I,n=45 3141594485616977 l004 Pi/tanh(285/119*Pi) 3141594486598426 r005 Re(z^2+c),c=-45/118+31/47*I,n=39 3141594488164295 l004 Pi/tanh(91/38*Pi) 3141594488911498 k003 Champernowne real with 5/3*n^3+57*n^2-515/3*n+116 3141594490845126 a008 Real Root of x^2-x-98382 3141594490949355 l004 Pi/tanh(261/109*Pi) 3141594492441688 l004 Pi/tanh(170/71*Pi) 3141594494007068 l004 Pi/tanh(249/104*Pi) 3141594494611840 m001 BesselI(1,1)^exp(Pi)+Pi 3141594495229247 l005 ln(sec(1037/111)) 3141594495950433 m002 Pi+(2*Sech[Pi])/Pi^10 3141594497379527 l004 Pi/tanh(79/33*Pi) 3141594498165168 l005 ln(sec(656/69)) 3141594499306348 r002 40th iterates of z^2 + 3141594499390936 m002 4/(E^Pi*Pi^10)+Pi 3141594501117959 l004 Pi/tanh(225/94*Pi) 3141594501760212 p002 log(1/7*(2^(3/4)-6)*7^(1/4)) 3141594502451825 h001 (7/8*exp(2)+5/7)/(7/11*exp(1)+5/9) 3141594502844312 m002 Pi+(2*Csch[Pi])/Pi^10 3141594503143548 l004 Pi/tanh(146/61*Pi) 3141594505059285 l005 ln(sec(187/58)) 3141594505285346 l004 Pi/tanh(213/89*Pi) 3141594506402993 l004 Pi/tanh(280/117*Pi) 3141594506973355 m005 (1/3*3^(1/2)-2/11)/(1/4*5^(1/2)+7/10) 3141594507521075 m001 (FeigenbaumB-MertensB1)/(GAMMA(19/24)+Cahen) 3141594508239136 p002 log(11^(1/3)-3^(1/2)-5^(1/4)) 3141594508991518 k003 Champernowne real with 2*n^3+55*n^2-168*n+114 3141594509959996 l004 Pi/tanh(67/28*Pi) 3141594513857246 l004 Pi/tanh(256/107*Pi) 3141594515240513 l004 Pi/tanh(189/79*Pi) 3141594516530892 l005 ln(sec(355/38)) 3141594517616537 l005 ln(sec(637/67)) 3141594517970447 m004 25*Pi+(150*Pi*Cosh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141594517971923 m004 625*Pi+375*Pi*Coth[Sqrt[5]*Pi] 3141594518146005 l004 Pi/tanh(122/51*Pi) 3141594518396045 m006 (3/5*exp(Pi)+5/6)/(1/2*Pi^2-1/4) 3141594519024506 a007 Real Root Of 565*x^4-82*x^3-731*x^2-340*x+176 3141594519575083 l005 ln(sec(345/107)) 3141594521252818 l004 Pi/tanh(177/74*Pi) 3141594522888373 l004 Pi/tanh(232/97*Pi) 3141594522898554 v002 sum(1/(5^n+(24*n^2-57*n+91)),n=1..infinity) 3141594523897679 l004 Pi/tanh(287/120*Pi) 3141594524350920 a007 Real Root Of -4*x^4+301*x^3+755*x^2-466*x+807 3141594525247565 l005 ln(sec(52/17)) 3141594528160317 l004 Pi/tanh(55/23*Pi) 3141594528381637 m001 LandauRamanujan*(BesselJ(0,1)-Salem) 3141594529071538 k003 Champernowne real with 7/3*n^3+53*n^2-493/3*n+112 3141594529913645 m005 (1/5*Catalan+5/6)/(1/6*2^(1/2)+3) 3141594532821548 l004 Pi/tanh(263/110*Pi) 3141594534055764 l004 Pi/tanh(208/87*Pi) 3141594536178966 l004 Pi/tanh(153/64*Pi) 3141594536867296 l005 ln(sec(158/49)) 3141594536910653 l005 ln(sec(1093/117)) 3141594537940006 l004 Pi/tanh(251/105*Pi) 3141594538433012 l005 ln(sec(618/65)) 3141594539111548 k003 Champernowne real with 5/2*n^3+52*n^2-325/2*n+111 3141594540692241 l004 Pi/tanh(98/41*Pi) 3141594541216025 r002 14i'th iterates of 2*x/(1-x^2) of 3141594543586413 l004 Pi/tanh(239/100*Pi) 3141594543880077 m002 Pi+2/(Pi^12*Log[Pi]) 3141594545600232 l004 Pi/tanh(141/59*Pi) 3141594546096839 m001 (Pi+Psi(2,1/3))/ln(5)+ln(2^(1/2)+1) 3141594546772985 l005 ln(sec(738/79)) 3141594548218783 l004 Pi/tanh(184/77*Pi) 3141594549151558 k003 Champernowne real with 8/3*n^3+51*n^2-482/3*n+110 3141594549846866 l004 Pi/tanh(227/95*Pi) 3141594550957068 l004 Pi/tanh(270/113*Pi) 3141594552629328 m004 10*Pi+6*Sech[Sqrt[5]*Pi]^2 3141594552632333 m004 10*Pi+6*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141594552635339 m004 10*Pi+6*Csch[Sqrt[5]*Pi]^2 3141594556426046 l005 ln(sec(1121/120)) 3141594556827248 l004 Pi/tanh(43/18*Pi) 3141594557212484 s001 sum(exp(-Pi)^(n-1)*A164743[n],n=1..infinity) 3141594557815782 l005 ln(sec(287/89)) 3141594560762187 l005 ln(sec(599/63)) 3141594561292268 a007 Real Root Of 628*x^4-383*x^3-558*x^2-500*x-120 3141594563288243 l004 Pi/tanh(246/103*Pi) 3141594564393459 m002 Pi+ProductLog[Pi]/(6*Pi^10) 3141594564659265 l004 Pi/tanh(203/85*Pi) 3141594566768876 l004 Pi/tanh(160/67*Pi) 3141594568316190 l004 Pi/tanh(277/116*Pi) 3141594569231578 k003 Champernowne real with 3*n^3+49*n^2-157*n+108 3141594569299089 m001 Pi+gamma(3)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3141594570034331 l005 ln(sec(367/120)) 3141594570433930 l004 Pi/tanh(117/49*Pi) 3141594572810288 a007 Real Root Of -582*x^4+75*x^3+821*x^2+227*x-149 3141594573508815 l004 Pi/tanh(191/80*Pi) 3141594573541018 p002 log(11^(3/4)-6^(2/3)-14^(1/2)) 3141594574867765 l004 Pi/tanh(265/111*Pi) 3141594575130006 l005 ln(sec(383/41)) 3141594576866910 m001 ln(-arctan(1/3)+Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141594577502979 l005 ln(sec(315/103)) 3141594578379180 l004 Pi/tanh(74/31*Pi) 3141594578745408 a007 Real Root Of 430*x^4-33*x^3+734*x^2-434*x-214 3141594582058096 a007 Real Root Of 319*x^4+602*x^3-968*x^2+699*x-658 3141594582063106 l004 Pi/tanh(253/106*Pi) 3141594583587854 l004 Pi/tanh(179/75*Pi) 3141594583715562 l005 ln(sec(129/40)) 3141594584773543 l005 ln(sec(580/61)) 3141594584947048 l004 Pi/tanh(284/119*Pi) 3141594587266063 l004 Pi/tanh(105/44*Pi) 3141594587725063 p002 log(1/11*(23^(1/2)-6^(1/2)*11^(1/2))*11^(1/2)) 3141594587960846 l005 ln(sec(263/86)) 3141594588740886 m001 (ZetaQ(3)+ZetaQ(4))/(ErdosBorwein+Niven) 3141594588790500 m002 Pi+Tanh[Pi]/(E^(2*Pi)*Pi^6) 3141594590001942 l004 Pi/tanh(241/101*Pi) 3141594590278700 p002 log(6^(1/3)/(2^(1/4)-3)) 3141594592116495 l004 Pi/tanh(136/57*Pi) 3141594595171563 l004 Pi/tanh(167/70*Pi) 3141594596031776 m002 1/(E^(2*Pi)*Pi^6)+Pi 3141594597272410 l004 Pi/tanh(198/83*Pi) 3141594597469999 l005 ln(sec(1141/120)) 3141594598805710 l004 Pi/tanh(229/96*Pi) 3141594599059290 m002 Pi+Log[Pi]/(2*Pi^11) 3141594599351608 k003 Champernowne real with 7/2*n^3+46*n^2-303/2*n+105 3141594599974080 l004 Pi/tanh(260/109*Pi) 3141594601770198 l005 ln(sec(794/85)) 3141594602560000 m005 (1/2*Pi-3/4)/(10/11*Catalan-4/7) 3141594603651208 l005 ln(sec(211/69)) 3141594604672389 l005 ln(sec(358/111)) 3141594607577772 m001 Rabbit/GlaisherKinkelin^2*exp(Riemann3rdZero) 3141594608623799 l004 Pi/tanh(31/13*Pi) 3141594610662638 l005 ln(sec(561/59)) 3141594611973090 p002 log(3^(1/2)-7^(1/4)*2^(3/4)) 3141594613231930 p002 log((10^(1/2)-14^(1/2))*3^(1/2)) 3141594613328346 p002 log(12^(2/3)-3^(1/2)*13^(1/2)) 3141594613350280 p002 log(1/17*19^(1/2)-2^(1/3)) 3141594615100821 r005 Re(z^2+c),c=2/11+18/29*I,n=9 3141594616554034 l005 ln(sec(229/71)) 3141594617078735 l004 Pi/tanh(267/112*Pi) 3141594618191692 l004 Pi/tanh(236/99*Pi) 3141594619374956 p002 log(14^(1/2)-5^(2/3)-11^(1/4)) 3141594619642070 l004 Pi/tanh(205/86*Pi) 3141594621610732 l004 Pi/tanh(174/73*Pi) 3141594624380827 l005 ln(sec(1103/116)) 3141594624435918 l004 Pi/tanh(143/60*Pi) 3141594626365709 l004 Pi/tanh(255/107*Pi) 3141594626842725 l005 ln(sec(411/44)) 3141594628832018 l004 Pi/tanh(112/47*Pi) 3141594629471638 k003 Champernowne real with 4*n^3+43*n^2-146*n+102 3141594629545705 l005 ln(sec(329/102)) 3141594629810132 l005 ln(sec(159/52)) 3141594632094709 l004 Pi/tanh(193/81*Pi) 3141594632343342 a007 Real Root Of 296*x^4+844*x^3-429*x^2-708*x-654 3141594633429707 l004 Pi/tanh(274/115*Pi) 3141594636613775 l004 Pi/tanh(81/34*Pi) 3141594638656273 l005 ln(sec(542/57)) 3141594640735605 l004 Pi/tanh(212/89*Pi) 3141594643287929 l004 Pi/tanh(131/55*Pi) 3141594646281002 l004 Pi/tanh(181/76*Pi) 3141594647980105 l004 Pi/tanh(231/97*Pi) 3141594649075210 l004 Pi/tanh(281/118*Pi) 3141594650142398 m001 LambertW(1)^exp(Pi)+Pi 3141594650480245 l005 ln(sec(850/91)) 3141594650743512 l005 ln(sec(266/87)) 3141594653523268 l005 ln(sec(1065/112)) 3141594654141359 l004 Pi/tanh(50/21*Pi) 3141594656489674 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/6 3141594656491259 m004 -100*Pi-Sin[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141594656492844 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/6 3141594657256045 p002 log(1/17*(15-17^(1/2)*10^(2/3))*17^(1/2)) 3141594659166539 m001 Pi-ln(gamma)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141594659166539 m001 Pi-log(gamma)^GAMMA(1/12) 3141594659445403 l004 Pi/tanh(269/113*Pi) 3141594659544041 l005 ln(sec(100/31)) 3141594659591668 k003 Champernowne real with 9/2*n^3+40*n^2-281/2*n+99 3141594660658078 l004 Pi/tanh(219/92*Pi) 3141594661668032 h001 (9/10*exp(1)+5/7)/(1/3*exp(1)+1/10) 3141594662589624 l004 Pi/tanh(169/71*Pi) 3141594664023002 r005 Re(z^2+c),c=-131/102+7/31*I,n=2 3141594666148525 l004 Pi/tanh(119/50*Pi) 3141594669009404 m002 Pi+2/(Pi^12*ProductLog[Pi]) 3141594669018943 l005 ln(sec(523/55)) 3141594669352410 l004 Pi/tanh(188/79*Pi) 3141594669631678 k003 Champernowne real with 14/3*n^3+39*n^2-416/3*n+98 3141594670104803 m001 FeigenbaumKappa^2*Rabbit^2/exp(cos(1))^2 3141594670339218 m001 (-MertensB3+ZetaP(3))/(1+Khinchin) 3141594670837417 l004 Pi/tanh(257/108*Pi) 3141594672801082 l005 ln(sec(439/47)) 3141594674888332 l004 Pi/tanh(69/29*Pi) 3141594677670293 a007 Real Root Of -202*x^4+x^3-705*x^2+969*x+376 3141594679323563 p002 log(5/16-3^(1/4)) 3141594679503465 l004 Pi/tanh(226/95*Pi) 3141594679671688 k003 Champernowne real with 29/6*n^3+38*n^2-821/6*n+97 3141594681534657 l004 Pi/tanh(157/66*Pi) 3141594682151439 l005 ln(sec(107/35)) 3141594682543169 m001 (Bloch+Landau)/(MasserGramain+Sierpinski) 3141594683409892 l004 Pi/tanh(245/103*Pi) 3141594685183577 l005 ln(sec(1027/108)) 3141594686436274 l005 ln(sec(371/115)) 3141594686759212 l004 Pi/tanh(88/37*Pi) 3141594689121441 l006 ln(1379/1888) 3141594689662666 l004 Pi/tanh(283/119*Pi) 3141594689711698 k003 Champernowne real with 5*n^3+37*n^2-135*n+96 3141594690800942 m004 -100*Pi-Tan[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141594690880686 m002 Pi+Log[Pi]/(6*Pi^10) 3141594690974117 l004 Pi/tanh(195/82*Pi) 3141594691425724 p002 log(1/3*(5-12^(3/4))*3^(2/3)) 3141594693911077 l005 ln(sec(906/97)) 3141594694446251 l004 Pi/tanh(107/45*Pi) 3141594696428854 l005 ln(sec(271/84)) 3141594697356052 l004 Pi/tanh(233/98*Pi) 3141594699751708 k003 Champernowne real with 31/6*n^3+36*n^2-799/6*n+95 3141594699829894 l004 Pi/tanh(126/53*Pi) 3141594701958924 l004 Pi/tanh(271/114*Pi) 3141594702020048 r005 Re(z^2+c),c=-47/106+21/47*I,n=15 3141594702060929 l005 ln(sec(504/53)) 3141594702197172 p002 log(1/15*11^(2/3)-4/3) 3141594703810535 l004 Pi/tanh(145/61*Pi) 3141594705632111 r002 10th iterates of z^2 + 3141594706873386 l004 Pi/tanh(164/69*Pi) 3141594709303049 l004 Pi/tanh(183/77*Pi) 3141594709791718 k003 Champernowne real with 16/3*n^3+35*n^2-394/3*n+94 3141594711277477 l004 Pi/tanh(202/85*Pi) 3141594712913654 l004 Pi/tanh(221/93*Pi) 3141594712993497 r005 Im(z^2+c),c=-37/82+2/31*I,n=8 3141594713565618 l005 ln(sec(269/88)) 3141594713905169 l005 ln(sec(467/50)) 3141594714291642 l004 Pi/tanh(240/101*Pi) 3141594715468086 l004 Pi/tanh(259/109*Pi) 3141594716484189 l004 Pi/tanh(278/117*Pi) 3141594717646926 a001 1346269/5778*47^(25/37) 3141594718237674 l005 ln(sec(171/53)) 3141594719698619 l005 ln(sec(989/104)) 3141594719831728 k003 Champernowne real with 11/2*n^3+34*n^2-259/2*n+93 3141594722783378 p002 log(2^(1/4)*(3^(2/3)-5^(2/3))) 3141594723348290 a007 Real Root Of 779*x^4+242*x^3-130*x^2-873*x+272 3141594727357740 m001 (Pi^(1/2)-FeigenbaumB)/(Magata-PrimesInBinary) 3141594729363856 p002 log(6^(2/3)/(5^(1/3)-5)) 3141594729635119 p002 log(1/21*5^(2/3)-8/7) 3141594729871738 k003 Champernowne real with 17/3*n^3+33*n^2-383/3*n+92 3141594730378584 l004 Pi/tanh(19/8*Pi) 3141594732521147 l006 ln(135/3124) 3141594732868735 l005 ln(sec(962/103)) 3141594733128606 m001 (Landau+MertensB2)/(ln(3)-Gompertz) 3141594733211250 m001 ln(Salem)*Si(Pi)^2/sqrt(Pi) 3141594734510157 l005 ln(sec(162/53)) 3141594734841903 a001 1/24447*(1/2*5^(1/2)+1/2)^30*29^(8/19) 3141594736089060 m002 Pi+Sinh[Pi]/(6*Pi^12) 3141594738148562 l005 ln(sec(485/51)) 3141594738862000 r005 Re(z^2+c),c=-13/36+10/27*I,n=37 3141594739108546 m002 Pi+ProductLog[Pi]/(E^(2*Pi)*Pi^6) 3141594739911748 k003 Champernowne real with 35/6*n^3+32*n^2-755/6*n+91 3141594742049682 a009 11^(3/4)/(7^(3/4)-8)^(1/2) 3141594742870603 l005 ln(sec(242/75)) 3141594743881508 m002 Pi+Cosh[Pi]/(6*Pi^12) 3141594744610664 l004 Pi/tanh(273/115*Pi) 3141594745678655 l004 Pi/tanh(254/107*Pi) 3141594746919936 l004 Pi/tanh(235/99*Pi) 3141594748380406 l004 Pi/tanh(216/91*Pi) 3141594749951758 k003 Champernowne real with 6*n^3+31*n^2-124*n+90 3141594750123744 l004 Pi/tanh(197/83*Pi) 3141594750878755 l005 ln(sec(495/53)) 3141594752240944 l004 Pi/tanh(178/75*Pi) 3141594754032224 m001 1/GAMMA(5/12)/ln(CopelandErdos)*cos(Pi/12) 3141594754866708 l004 Pi/tanh(159/67*Pi) 3141594755120966 p002 log(1/10*(1-10^(1/2))*10^(2/3)) 3141594756323251 a007 Real Root Of -16*x^4-513*x^3-345*x^2-616*x+394 3141594756422705 l005 ln(sec(313/97)) 3141594757467456 l005 ln(sec(951/100)) 3141594758209287 l004 Pi/tanh(140/59*Pi) 3141594759991768 k003 Champernowne real with 37/6*n^3+30*n^2-733/6*n+89 3141594760070853 r005 Im(z^2+c),c=-5/118+23/58*I,n=10 3141594760247827 l004 Pi/tanh(261/110*Pi) 3141594760691036 l005 ln(sec(217/71)) 3141594761003177 k003 Champernowne real with 19/3*n^3+29*n^2-361/3*n+88 3141594761218938 p002 log(1/2*(19^(1/2)-10^(3/4))*2^(2/3)) 3141594762608601 l004 Pi/tanh(121/51*Pi) 3141594764997789 l005 ln(sec(384/119)) 3141594765374568 l004 Pi/tanh(223/94*Pi) 3141594768004803 l005 ln(sec(1018/109)) 3141594768659837 l004 Pi/tanh(102/43*Pi) 3141594769121734 s001 sum(exp(-Pi/3)^n*A254534[n],n=1..infinity) 3141594771007178 k003 Champernowne real with 13/2*n^3+28*n^2-237/2*n+87 3141594772625800 l004 Pi/tanh(185/78*Pi) 3141594772903936 b008 Pi*Sqrt[Zeta[39/2]] 3141594774136924 l004 Pi/tanh(268/113*Pi) 3141594775128880 r009 Re(z^3+c),c=-23/60+14/53*I,n=22 3141594776398935 l005 ln(sec(272/89)) 3141594776957251 p002 log(11/(11^(3/4)-17)) 3141594777508449 l004 Pi/tanh(83/35*Pi) 3141594777717343 l005 ln(sec(466/49)) 3141594779020147 m001 RenyiParking/Bloch/exp(cos(Pi/5))^2 3141594779660958 p002 log(1/6*(11-15^(1/2)*6^(3/4))*6^(1/4)) 3141594781011179 k003 Champernowne real with 20/3*n^3+27*n^2-350/3*n+86 3141594781160762 m001 Pi-gamma(2)^exp(1) 3141594781284076 m002 Pi+Tanh[Pi]/(5*Pi^10) 3141594781442863 l004 Pi/tanh(230/97*Pi) 3141594783667121 l004 Pi/tanh(147/62*Pi) 3141594784309906 l005 ln(sec(523/56)) 3141594786093960 l004 Pi/tanh(211/89*Pi) 3141594786870355 l005 ln(sec(327/107)) 3141594787392197 l004 Pi/tanh(275/116*Pi) 3141594789245638 m002 1/(5*Pi^10)+Pi 3141594790943513 r002 57th iterates of z^2 + 3141594791015180 k003 Champernowne real with 41/6*n^3+26*n^2-689/6*n+85 3141594791561084 m004 Pi+Sech[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141594791567851 m004 Pi+Csch[Sqrt[5]*Pi]^2*Sin[Sqrt[5]*Pi] 3141594791677171 l004 Pi/tanh(64/27*Pi) 3141594795842273 m001 (BesselK(1,1)+Bloch)/(Magata+Trott) 3141594796658522 l004 Pi/tanh(237/100*Pi) 3141594798503878 l004 Pi/tanh(173/73*Pi) 3141594798966245 l005 ln(sec(913/96)) 3141594799851291 l005 ln(sec(1074/115)) 3141594800055826 l004 Pi/tanh(282/119*Pi) 3141594801019181 k003 Champernowne real with 7*n^3+25*n^2-113*n+84 3141594802521005 l004 Pi/tanh(109/46*Pi) 3141594802721741 m001 Pi-gamma(2)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3141594803119637 l005 ln(sec(71/22)) 3141594805167000 l004 Pi/tanh(263/111*Pi) 3141594805242125 m001 Pi-gamma(2)^FeigenbaumD 3141594806079048 m001 Pi-gamma(2)^Khinchin 3141594807041518 l004 Pi/tanh(154/65*Pi) 3141594807934859 a007 Real Root Of 276*x^4+909*x^3+113*x^2-272*x-670 3141594809394825 m002 Pi+(2*Tanh[Pi])/Pi^12 3141594809521066 l004 Pi/tanh(199/84*Pi) 3141594811023182 k003 Champernowne real with 43/6*n^3+24*n^2-667/6*n+83 3141594811087298 l004 Pi/tanh(244/103*Pi) 3141594813428199 m002 Pi+(E^Pi*Sech[Pi])/Pi^12 3141594814681028 l005 ln(sec(551/59)) 3141594816841370 p002 log(5^(1/4)*(10^(1/4)-6^(1/2))) 3141594817461574 m002 -2/Pi^12-Pi 3141594818025339 l004 Pi/tanh(45/19*Pi) 3141594818387219 p002 log(1/7*(2^(1/3)-7^(1/4)*10^(1/4))*7^(3/4)) 3141594819159866 m001 Trott2nd^(Pi*2^(1/2)/GAMMA(3/4))+Pi 3141594821027183 k003 Champernowne real with 22/3*n^3+23*n^2-328/3*n+82 3141594821288899 l005 ln(sec(447/47)) 3141594821510041 m002 Pi+(E^Pi*Csch[Pi])/Pi^12 3141594824788393 l004 Pi/tanh(251/106*Pi) 3141594825058635 m001 Pi+arctan(1/3)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3141594825558508 m002 Pi+(2*Coth[Pi])/Pi^12 3141594826268190 l004 Pi/tanh(206/87*Pi) 3141594827126458 s004 Continued Fraction of A036567 3141594827126458 s004 Continued fraction of A036567 3141594827149762 m001 Pi+HeathBrownMoroz*ZetaQ(4) 3141594828576946 l004 Pi/tanh(161/68*Pi) 3141594830295303 l004 Pi/tanh(277/117*Pi) 3141594831031184 k003 Champernowne real with 15/2*n^3+22*n^2-215/2*n+81 3141594832682212 l004 Pi/tanh(116/49*Pi) 3141594836222063 l004 Pi/tanh(187/79*Pi) 3141594837019906 r005 Im(z^2+c),c=17/58+4/27*I,n=50 3141594837815245 l004 Pi/tanh(258/109*Pi) 3141594839216883 l005 ln(sec(55/18)) 3141594839966194 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/6 3141594839967924 m004 -100*Pi-Cos[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141594839969654 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/6 3141594841029105 p002 log(7^(1/3)+3^(3/4)-9^(3/4)) 3141594841035185 k003 Champernowne real with 23/3*n^3+21*n^2-317/3*n+80 3141594842016190 l004 Pi/tanh(71/30*Pi) 3141594842391373 l005 ln(sec(579/62)) 3141594844767591 l005 ln(sec(875/92)) 3141594845184254 m001 (-Champernowne+Sarnak)/(ln(2)/ln(10)+ln(5)) 3141594846558949 l004 Pi/tanh(239/101*Pi) 3141594847005472 m005 (4*Pi+3/5)/(-19/4+1/4*5^(1/2)) 3141594847311715 r005 Re(z^2+c),c=5/16+23/55*I,n=10 3141594847691093 a001 2178309/9349*47^(25/37) 3141594847718866 m001 (1+ln(2^(1/2)+1))/(-ArtinRank2+Paris) 3141594848481258 l004 Pi/tanh(168/71*Pi) 3141594848696100 l005 ln(sec(326/101)) 3141594850216213 l004 Pi/tanh(265/112*Pi) 3141594851039186 k003 Champernowne real with 47/6*n^3+20*n^2-623/6*n+79 3141594851546007 m001 ln(GAMMA(1/3))^2*Magata*GAMMA(7/24)^2 3141594853223892 l004 Pi/tanh(97/41*Pi) 3141594856851510 l004 Pi/tanh(220/93*Pi) 3141594859715965 l004 Pi/tanh(123/52*Pi) 3141594861043187 k003 Champernowne real with 8*n^3+19*n^2-102*n+78 3141594861516457 l005 ln(sec(255/79)) 3141594862035161 l004 Pi/tanh(272/115*Pi) 3141594863951254 l004 Pi/tanh(149/63*Pi) 3141594866932266 l004 Pi/tanh(175/74*Pi) 3141594867774066 l005 ln(sec(607/65)) 3141594868414399 a005 (1/sin(58/161*Pi))^335 3141594869144316 l004 Pi/tanh(201/85*Pi) 3141594869493130 l005 ln(sec(428/45)) 3141594870850946 l004 Pi/tanh(227/96*Pi) 3141594871047188 k003 Champernowne real with 49/6*n^3+18*n^2-601/6*n+77 3141594872207618 l004 Pi/tanh(253/107*Pi) 3141594873311963 l004 Pi/tanh(279/118*Pi) 3141594874700969 m001 Pi+HeathBrownMoroz^ReciprocalLucas 3141594876989943 m004 10*Pi+Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141594876996981 m004 10*Pi+Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141594877161182 m002 Pi+Log[Pi]/(E^(2*Pi)*Pi^6) 3141594877417041 m004 -100*Pi-Tanh[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141594877420560 m004 -1/(4*E^(Sqrt[5]*Pi))-100*Pi 3141594881051189 k003 Champernowne real with 25/3*n^3+17*n^2-295/3*n+76 3141594884082950 l004 Pi/tanh(26/11*Pi) 3141594884371219 l005 ln(sec(184/57)) 3141594887445638 m001 polylog(4,1/2)/(Landau^Otter) 3141594891055190 k003 Champernowne real with 17/2*n^3+16*n^2-193/2*n+75 3141594891109169 l005 ln(sec(635/68)) 3141594891535337 l005 ln(sec(333/109)) 3141594892523167 r005 Re(z^2+c),c=-11/29+17/57*I,n=36 3141594895386319 l004 Pi/tanh(267/113*Pi) 3141594895565967 l005 ln(sec(837/88)) 3141594896608726 l004 Pi/tanh(241/102*Pi) 3141594898127589 l004 Pi/tanh(215/91*Pi) 3141594900065630 l004 Pi/tanh(189/80*Pi) 3141594901059191 k003 Champernowne real with 26/3*n^3+15*n^2-284/3*n+74 3141594901994442 l005 ln(sec(278/91)) 3141594902067253 r005 Re(z^2+c),c=7/29+26/55*I,n=49 3141594902624156 l004 Pi/tanh(163/69*Pi) 3141594904137876 l005 ln(sec(297/92)) 3141594904411867 a007 Real Root Of 377*x^4-275*x^3+95*x^2-30*x-31 3141594904670494 m001 BesselI(0,1)^Psi(2,1/3)+Pi 3141594906157940 l004 Pi/tanh(137/58*Pi) 3141594908483164 l004 Pi/tanh(248/105*Pi) 3141594911063192 k003 Champernowne real with 53/6*n^3+14*n^2-557/6*n+73 3141594911355898 l004 Pi/tanh(111/47*Pi) 3141594912633769 l005 ln(sec(663/71)) 3141594914995323 l004 Pi/tanh(196/83*Pi) 3141594916434359 l004 Pi/tanh(281/119*Pi) 3141594917679732 l005 ln(sec(223/73)) 3141594919755626 l004 Pi/tanh(85/36*Pi) 3141594921067193 k003 Champernowne real with 9*n^3+13*n^2-91*n+72 3141594922037897 g006 Psi(1,5/11)+2*Psi(1,5/7)-Psi(1,3/8) 3141594923097490 l005 ln(sec(409/43)) 3141594923836829 l004 Pi/tanh(229/97*Pi) 3141594924616164 p002 log(12^(2/3)/(10^(1/4)-7)) 3141594925762454 a007 Real Root Of -399*x^4+560*x^3+600*x^2+297*x-166 3141594926248856 l004 Pi/tanh(144/61*Pi) 3141594928972474 l004 Pi/tanh(203/86*Pi) 3141594929346121 p002 log(1/6*(2^(1/2)-15^(1/2))*6^(1/2)) 3141594930470626 l004 Pi/tanh(262/111*Pi) 3141594931071194 k003 Champernowne real with 55/6*n^3+12*n^2-535/6*n+71 3141594931202901 p002 log(2^(3/4)*(3^(1/4)-7^(1/3))) 3141594932549879 l005 ln(sec(691/74)) 3141594935631807 l004 Pi/tanh(59/25*Pi) 3141594936610453 l005 ln(sec(113/35)) 3141594940538829 p004 log(28843/21067) 3141594940668409 l004 Pi/tanh(269/114*Pi) 3141594941075195 k003 Champernowne real with 28/3*n^3+11*n^2-262/3*n+70 3141594942085184 l004 Pi/tanh(210/89*Pi) 3141594943812032 l005 ln(sec(168/55)) 3141594944610988 l004 Pi/tanh(151/64*Pi) 3141594946554192 m002 Pi+ProductLog[Pi]/(5*Pi^10) 3141594946795724 l004 Pi/tanh(243/103*Pi) 3141594950385447 l004 Pi/tanh(92/39*Pi) 3141594951030658 l005 ln(sec(719/77)) 3141594951079196 k003 Champernowne real with 19/2*n^3+10*n^2-171/2*n+69 3141594952211543 l005 ln(sec(799/84)) 3141594954411043 l004 Pi/tanh(217/92*Pi) 3141594957377780 l004 Pi/tanh(125/53*Pi) 3141594959308740 r005 Re(z^2+c),c=17/122+15/23*I,n=45 3141594959654869 l004 Pi/tanh(283/120*Pi) 3141594960841221 m002 5/(E^Pi*Pi^10)+Pi 3141594961083197 k003 Champernowne real with 29/3*n^3+9*n^2-251/3*n+68 3141594961457743 l004 Pi/tanh(158/67*Pi) 3141594961847852 m001 Psi(2,1/3)^(ThueMorse/exp(1/exp(1))) 3141594962171154 l005 ln(sec(381/118)) 3141594964131258 l004 Pi/tanh(191/81*Pi) 3141594964708085 l005 ln(sec(281/92)) 3141594964921731 m002 (Pi^3*Cosh[Pi]*Coth[Pi])/Log[Pi]-Tanh[Pi] 3141594966018651 l004 Pi/tanh(224/95*Pi) 3141594967422208 l004 Pi/tanh(257/109*Pi) 3141594968225364 l005 ln(sec(747/80)) 3141594971087198 k003 Champernowne real with 59/6*n^3+8*n^2-491/6*n+67 3141594971377528 a007 Real Root Of 185*x^4-943*x^3-132*x^2-557*x-193 3141594973013934 l005 ln(sec(268/83)) 3141594973558971 m001 (Pi^(1/2)-Shi(1))/(-OrthogonalArrays+Salem) 3141594976848463 m002 Pi+(2*ProductLog[Pi])/Pi^12 3141594976968876 l004 Pi/tanh(33/14*Pi) 3141594977311674 s004 Continued Fraction of A239040 3141594977311674 s004 Continued fraction of A239040 3141594978477130 b008 ArcCoth[E^Sech[2*Pi]] 3141594981091199 k003 Champernowne real with 10*n^3+7*n^2-80*n+66 3141594983046191 l005 ln(sec(390/41)) 3141594984263324 l005 ln(sec(775/83)) 3141594984576068 p002 log(11^(2/3)*(5^(1/3)-7^(1/3))) 3141594986053813 l004 Pi/tanh(271/115*Pi) 3141594987315912 l004 Pi/tanh(238/101*Pi) 3141594987410879 m004 Pi+Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141594987418266 m004 Pi+Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi]^2 3141594988985251 l004 Pi/tanh(205/87*Pi) 3141594991095200 k003 Champernowne real with 61/6*n^3+6*n^2-469/6*n+65 3141594991296853 l004 Pi/tanh(172/73*Pi) 3141594991776433 p002 log(10/11-7^(1/3)) 3141594994709663 l004 Pi/tanh(139/59*Pi) 3141594996033976 l005 ln(sec(113/37)) 3141594997108168 l004 Pi/tanh(245/104*Pi) 3141594997829270 p002 log(2^(3/4)/(7^(1/4)-6^(2/3))) 3141594997941822 p002 log(11^(1/4)-6^(1/4)-2^(1/3)) 3141594999257143 l005 ln(sec(803/86)) 3141594999831661 l005 ln(sec(155/48)) 3141595000256599 l004 Pi/tanh(106/45*Pi) 3141595001099201 k003 Champernowne real with 31/3*n^3+5*n^2-229/3*n+64 3141595002896069 h001 (1/11*exp(1)+3/5)/(9/10*exp(1)+1/4) 3141595004571833 l004 Pi/tanh(179/76*Pi) 3141595004705530 p002 log(1/14*11^(2/3)-19/14) 3141595006389021 l004 Pi/tanh(252/107*Pi) 3141595007947256 p002 log(1/4*(2^(1/2)-4^(2/3)*6^(1/4))*4^(1/3)) 3141595010850006 l004 Pi/tanh(73/31*Pi) 3141595011103202 k003 Champernowne real with 21/2*n^3+4*n^2-149/2*n+63 3141595013305311 l005 ln(sec(831/89)) 3141595014212831 a007 Real Root Of -877*x^4-71*x^3+934*x^2+301*x-176 3141595015197444 l004 Pi/tanh(259/110*Pi) 3141595015755799 l005 ln(sec(761/80)) 3141595016905590 l004 Pi/tanh(186/79*Pi) 3141595020408143 l005 ln(sec(352/109)) 3141595020824753 l004 Pi/tanh(113/48*Pi) 3141595021107203 k003 Champernowne real with 32/3*n^3+3*n^2-218/3*n+62 3141595023568558 l004 Pi/tanh(266/113*Pi) 3141595025596794 l004 Pi/tanh(153/65*Pi) 3141595026494339 l005 ln(sec(859/92)) 3141595027104987 l005 ln(sec(1132/119)) 3141595027335705 l005 ln(sec(284/93)) 3141595027392969 m004 3/E^(2*Sqrt[5]*Pi)+Pi 3141595028394646 l004 Pi/tanh(193/82*Pi) 3141595030233414 l004 Pi/tanh(233/99*Pi) 3141595031111204 k003 Champernowne real with 65/6*n^3+2*n^2-425/6*n+61 3141595031534092 l004 Pi/tanh(273/116*Pi) 3141595032766129 s004 Continued Fraction of A010912 3141595032766129 s004 Continued fraction of A010912 3141595032872181 p002 log(12^(1/4)/(6^(1/2)-7^(3/4))) 3141595034712670 p002 log(1/12*11^(1/3)-2^(1/4)) 3141595036272767 p002 log(1/7*19^(1/2)-7^(1/4)) 3141595036694508 l005 ln(sec(197/61)) 3141595038900529 l005 ln(sec(887/95)) 3141595039122783 l004 Pi/tanh(40/17*Pi) 3141595041115205 k003 Champernowne real with 11*n^3+n^2-69*n+60 3141595042540989 m001 Stephens^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141595043169965 m001 Lehmer^2/exp(KhintchineHarmonic)^2/Magata 3141595043584175 r002 28th iterates of z^2 + 3141595045402368 r002 7th iterates of z^2 + 3141595047534639 l004 Pi/tanh(247/105*Pi) 3141595048188836 l005 ln(sec(171/56)) 3141595049163072 l004 Pi/tanh(207/88*Pi) 3141595050513477 l005 ln(sec(371/39)) 3141595050591424 l005 ln(sec(915/98)) 3141595051119206 k003 Champernowne real with 67/6*n^3-403/6*n+59 3141595051573348 l004 Pi/tanh(167/71*Pi) 3141595052151609 m001 (Rabbit-ZetaQ(2))/(exp(1/exp(1))+Cahen) 3141595054937549 r005 Im(z^2+c),c=-59/86+26/63*I,n=6 3141595055506403 l004 Pi/tanh(127/54*Pi) 3141595057069650 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/5 3141595057073454 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/5 3141595058106997 a001 832040/3571*47^(25/37) 3141595058579530 l004 Pi/tanh(214/91*Pi) 3141595060836987 l005 ln(sec(239/74)) 3141595061123207 k003 Champernowne real with 34/3*n^3-n^2-196/3*n+58 3141595061627032 l005 ln(sec(943/101)) 3141595061918242 m001 (-ThueMorse+TwinPrimes)/(2^(1/2)-Kac) 3141595063071692 l004 Pi/tanh(87/37*Pi) 3141595067428481 l004 Pi/tanh(221/94*Pi) 3141595070260787 l004 Pi/tanh(134/57*Pi) 3141595071127208 k003 Champernowne real with 23/2*n^3-2*n^2-127/2*n+57 3141595072060846 l005 ln(sec(971/104)) 3141595073722913 l004 Pi/tanh(181/77*Pi) 3141595074237429 l005 ln(sec(229/75)) 3141595074918261 l005 ln(sec(1094/115)) 3141595075759672 l004 Pi/tanh(228/97*Pi) 3141595077101038 l004 Pi/tanh(275/117*Pi) 3141595077344878 a003 cos(Pi*10/29)-cos(Pi*32/71) 3141595077873680 l005 ln(sec(281/87)) 3141595078160809 p002 log(1/5*(3^(1/2)*5^(2/3)-8)*5^(1/3)) 3141595078558154 p002 log(15^(1/2)-9+17^(1/2)) 3141595078668466 h001 (8/9*exp(1)+3/8)/(1/12*exp(2)+3/11) 3141595081131209 k003 Champernowne real with 35/3*n^3-3*n^2-185/3*n+56 3141595081940699 l005 ln(sec(999/107)) 3141595083617208 l004 Pi/tanh(47/20*Pi) 3141595087513974 l005 ln(sec(723/76)) 3141595089856541 l005 ln(sec(287/94)) 3141595090539007 l005 ln(sec(323/100)) 3141595091040328 l004 Pi/tanh(242/103*Pi) 3141595091135210 k003 Champernowne real with 71/6*n^3-4*n^2-359/6*n+55 3141595091252824 s004 Continued Fraction of A023523 3141595091252824 s004 Continued fraction of A023523 3141595091272096 s004 Continued Fraction of A019489 3141595091272096 s004 Continued fraction of A019489 3141595091281381 s004 Continued Fraction of A218983 3141595091281381 s004 Continued fraction of A218983 3141595091281381 s004 Continued Fraction of A020746 3141595091281381 s004 Continued fraction of A020746 3141595091309497 l005 ln(sec(1027/110)) 3141595092346895 r005 Re(z^2+c),c=-5/4+8/93*I,n=12 3141595092832419 l004 Pi/tanh(195/83*Pi) 3141595095765185 l004 Pi/tanh(148/63*Pi) 3141595096899080 m001 Pi+exp(-Pi)^exp(sqrt(2)) 3141595098064057 l004 Pi/tanh(249/106*Pi) 3141595098338865 m002 Pi+Log[Pi]/(5*Pi^10) 3141595100205833 l005 ln(sec(1055/113)) 3141595100264913 l005 ln(sec(345/113)) 3141595100323993 l005 ln(sec(365/113)) 3141595100383075 l005 ln(sec(1075/113)) 3141595101139211 k003 Champernowne real with 12*n^3-5*n^2-58*n+54 3141595101204143 m001 (OrthogonalArrays-Totient)/(Cahen-Khinchin) 3141595101436080 l004 Pi/tanh(101/43*Pi) 3141595103593061 p002 log(10^(2/3)/(1-10^(3/4))) 3141595104719756 l004 Pi/tanh(256/109*Pi) 3141595105482799 a007 Real Root Of -2*x^4-626*x^3+729*x^2+146*x+717 3141595106861491 l004 Pi/tanh(155/66*Pi) 3141595108664515 l005 ln(sec(1083/116)) 3141595109487063 l004 Pi/tanh(209/89*Pi) 3141595111035592 l004 Pi/tanh(263/112*Pi) 3141595114075797 p002 log(1/12*(14^(1/2)-11^(3/4))*12^(2/3)) 3141595116717020 l005 ln(sec(1111/119)) 3141595117036927 l004 Pi/tanh(54/23*Pi) 3141595117630701 p002 log(5^(2/3)/(2^(1/2)-9^(2/3))) 3141595121956811 m001 Pi-gamma(1)^FeigenbaumDelta 3141595122746666 l004 Pi/tanh(277/118*Pi) 3141595123465775 h001 (8/11*exp(2)+7/9)/(4/9*exp(1)+3/4) 3141595124100465 p002 log(3^(2/3)/(2^(2/3)-7^(2/3))) 3141595124131012 l004 Pi/tanh(223/95*Pi) 3141595125416151 p002 log(5^(1/4)*(10^(1/2)-6^(3/4))) 3141595126401481 l004 Pi/tanh(169/72*Pi) 3141595126977123 l005 ln(sec(352/37)) 3141595130638490 m002 Pi+(2*Log[Pi])/Pi^12 3141595130809356 l004 Pi/tanh(115/49*Pi) 3141595135048308 l004 Pi/tanh(176/75*Pi) 3141595136630960 p002 log(1/22*7^(1/3)-12/11) 3141595137107442 l004 Pi/tanh(237/101*Pi) 3141595139046224 a007 Real Root Of 132*x^4+228*x^3-667*x^2-554*x-946 3141595139426732 m004 -100*Pi-25*Pi*Sech[Sqrt[5]*Pi]^2 3141595139428699 m004 -15*Pi+5*Pi*Tanh[Sqrt[5]*Pi] 3141595139430666 m004 (Pi*Cosh[Sqrt[5]*Pi])/(5*E^(Sqrt[5]*Pi)) 3141595139432633 m004 (E^(Sqrt[5]*Pi)*Pi*Csch[Sqrt[5]*Pi])/2 3141595139434600 m004 75*Pi*Coth[Sqrt[5]*Pi]+25*Pi*Tanh[Sqrt[5]*Pi] 3141595139434600 m004 -100*Pi-25*Pi*Csch[Sqrt[5]*Pi]^2 3141595139440500 m004 5*Pi*Coth[Sqrt[5]*Pi]^2+5*Pi*Tanh[Sqrt[5]*Pi] 3141595143056829 l004 Pi/tanh(61/26*Pi) 3141595148685681 l004 Pi/tanh(251/107*Pi) 3141595149338098 p002 log(11^(1/2)/(1-7^(3/4))) 3141595150495170 l004 Pi/tanh(190/81*Pi) 3141595152251117 l005 ln(sec(58/19)) 3141595152588913 m002 Pi+Sinh[Pi]/(5*Pi^12) 3141595152813936 r005 Re(z^2+c),c=-1+30/157*I,n=28 3141595154019209 l004 Pi/tanh(129/55*Pi) 3141595154133803 k006 concat of cont frac of 3141595154384059 r005 Re(z^2+c),c=-35/86+1/8*I,n=20 3141595154775663 l005 ln(sec(1037/109)) 3141595157422100 l004 Pi/tanh(197/84*Pi) 3141595159080049 l004 Pi/tanh(265/113*Pi) 3141595160014100 p002 log(7^(1/4)/(2^(3/4)-6^(2/3))) 3141595161939851 m002 Pi+Cosh[Pi]/(5*Pi^12) 3141595161956274 r005 Re(z^2+c),c=-29/62+7/22*I,n=7 3141595163888584 l004 Pi/tanh(68/29*Pi) 3141595164801606 g001 abs(Psi(-31/8+I*47/24)) 3141595166847868 p002 log((3^(2/3)-12^(1/3))*23^(1/2)) 3141595167781065 m001 Pi+gamma^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141595168463213 l004 Pi/tanh(279/119*Pi) 3141595169120440 m001 Paris^(2*Pi/GAMMA(5/6))+Pi 3141595169151955 l005 ln(sec(685/72)) 3141595169939036 l004 Pi/tanh(211/90*Pi) 3141595172820592 l004 Pi/tanh(143/61*Pi) 3141595175612337 l004 Pi/tanh(218/93*Pi) 3141595176582996 l005 ln(sec(42/13)) 3141595177561618 p002 log(1/11*(1-4^(3/4))*11^(3/4)) 3141595178098121 p002 log(7^(1/4)*(14^(1/2)-19^(1/2))) 3141595180942674 l004 Pi/tanh(75/32*Pi) 3141595183860680 l005 ln(sec(1018/107)) 3141595185960221 l004 Pi/tanh(232/99*Pi) 3141595188360176 l004 Pi/tanh(157/67*Pi) 3141595188737707 p002 log(1/19*5^(2/3)-22/19) 3141595190342521 m002 E^Pi/Pi^14+Pi 3141595190691718 l004 Pi/tanh(239/102*Pi) 3141595191587940 p002 log(1/5*(11^(2/3)-12^(3/4))*5^(3/4)) 3141595194742479 r005 Im(z^2+c),c=6/17+9/50*I,n=27 3141595195160941 l004 Pi/tanh(82/35*Pi) 3141595197211976 r002 48th iterates of z^2 + 3141595199389102 l004 Pi/tanh(253/108*Pi) 3141595201418796 l004 Pi/tanh(171/73*Pi) 3141595203256669 m001 ZetaQ(3)^exp(1)+Pi 3141595203395187 l004 Pi/tanh(260/111*Pi) 3141595204136942 l005 ln(sec(351/115)) 3141595207196241 l004 Pi/tanh(89/38*Pi) 3141595210807607 l004 Pi/tanh(274/117*Pi) 3141595212546538 l004 Pi/tanh(185/79*Pi) 3141595214243135 l004 Pi/tanh(281/120*Pi) 3141595214321640 l005 ln(sec(333/35)) 3141595214501176 l005 ln(sec(293/96)) 3141595217515359 l004 Pi/tanh(96/41*Pi) 3141595218515392 s004 Continued Fraction of A182615 3141595218515392 s004 Continued fraction of A182615 3141595220205625 m001 Riemann2ndZero^GAMMA(5/6)*Psi(1,1/3) 3141595222142090 l004 Pi/tanh(199/85*Pi) 3141595226460876 l004 Pi/tanh(103/44*Pi) 3141595230039081 l005 ln(sec(235/77)) 3141595230501466 l004 Pi/tanh(213/91*Pi) 3141595232004806 m001 (Thue*Weierstrass-sin(1/12*Pi))/Weierstrass 3141595232960550 p002 log(1/2*(11^(1/4)-6^(1/2)*2^(1/3))*2^(2/3)) 3141595234289897 l004 Pi/tanh(110/47*Pi) 3141595235343110 p002 log(1/5*(2^(1/2)-7^(2/3))*5^(1/2)) 3141595237849055 l004 Pi/tanh(227/97*Pi) 3141595238142832 p002 log(1/23*(19^(1/2)-23^(1/2)*7^(1/3))*23^(1/2)) 3141595241199140 l004 Pi/tanh(117/50*Pi) 3141595244358044 l004 Pi/tanh(241/103*Pi) 3141595245445075 a001 5473*76^(23/57) 3141595246256350 l005 ln(sec(980/103)) 3141595247183227 m001 (ln(2)-ln(2+3^(1/2)))/(ArtinRank2-FeigenbaumD) 3141595247341678 l004 Pi/tanh(124/53*Pi) 3141595248845665 r005 Im(z^2+c),c=-31/22+1/117*I,n=10 3141595250164232 l004 Pi/tanh(255/109*Pi) 3141595252085752 m001 (ln(3)+ln(1+sqrt(2))*Ei(1))/ln(1+sqrt(2)) 3141595252085752 m001 (ln(3)+ln(2^(1/2)+1)*Ei(1))/ln(2^(1/2)+1) 3141595252838407 l004 Pi/tanh(131/56*Pi) 3141595255375602 l004 Pi/tanh(269/115*Pi) 3141595255912438 l005 ln(sec(177/58)) 3141595257059804 a007 Real Root Of -218*x^4-886*x^3-845*x^2-434*x+740 3141595257786078 l004 Pi/tanh(138/59*Pi) 3141595258269139 l005 ln(sec(349/108)) 3141595261290613 p002 log(1/3*(19^(1/2)-12^(3/4))*3^(1/3)) 3141595262263037 l004 Pi/tanh(145/62*Pi) 3141595262809447 l005 ln(sec(647/68)) 3141595263357887 p002 log(2^(1/2)*(1-5^(1/3))) 3141595266333402 l004 Pi/tanh(152/65*Pi) 3141595269591418 s001 sum(exp(-Pi/4)^(n-1)*A159930[n],n=1..infinity) 3141595269599804 l005 ln(sec(307/95)) 3141595269632088 r005 Re(z^2+c),c=-11/18+13/47*I,n=2 3141595270050151 l004 Pi/tanh(159/68*Pi) 3141595271196706 p002 log(10^(1/2)-8+6^(3/4)) 3141595273457445 l004 Pi/tanh(166/71*Pi) 3141595275243901 p002 log(6/7-12^(1/4)) 3141595276347425 p002 log(7/12-2^(2/3)) 3141595276589618 l005 ln(sec(296/97)) 3141595276592383 l004 Pi/tanh(173/74*Pi) 3141595277241474 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/5 3141595277245626 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/5 3141595279179159 p002 log(4^(2/3)/(6^(1/3)-9^(2/3))) 3141595279486365 l004 Pi/tanh(180/77*Pi) 3141595279771944 l005 ln(sec(961/101)) 3141595282166141 l004 Pi/tanh(187/80*Pi) 3141595283808282 m001 ZetaQ(2)^(Pi*csc(5/24*Pi)/GAMMA(19/24))+Pi 3141595284579555 l005 ln(sec(265/82)) 3141595284654643 l004 Pi/tanh(194/83*Pi) 3141595286896210 r005 Re(z^2+c),c=-65/114+21/44*I,n=55 3141595286971644 l004 Pi/tanh(201/86*Pi) 3141595287924399 s004 Continued Fraction of A219846 3141595287924399 s004 Continued fraction of A219846 3141595289134282 l004 Pi/tanh(208/89*Pi) 3141595291157484 l004 Pi/tanh(215/92*Pi) 3141595293054313 l004 Pi/tanh(222/95*Pi) 3141595294836252 l004 Pi/tanh(229/98*Pi) 3141595296513431 l004 Pi/tanh(236/101*Pi) 3141595298094824 l004 Pi/tanh(243/104*Pi) 3141595299277547 m001 Trott2nd^FeigenbaumMu+Pi 3141595299588409 l004 Pi/tanh(250/107*Pi) 3141595301001302 l004 Pi/tanh(257/110*Pi) 3141595302339869 l004 Pi/tanh(264/113*Pi) 3141595303609825 l004 Pi/tanh(271/116*Pi) 3141595304816313 l004 Pi/tanh(278/119*Pi) 3141595305309141 l005 ln(sec(223/69)) 3141595307568190 l005 ln(sec(119/39)) 3141595309752204 p002 log(12/17-5^(1/3)) 3141595310363675 p002 log(21^(1/2)-2^(1/3)-9^(2/3)) 3141595313207647 m002 Pi+Tanh[Pi]/(4*Pi^10) 3141595313248716 a007 Real Root Of -533*x^4-96*x^3+855*x^2+359*x-189 3141595313938312 m001 (BesselI(1,1)-GaussKuzminWirsing)/FeigenbaumB 3141595314985997 l005 ln(sec(314/33)) 3141595321099286 p002 log(1/11*(6^(1/3)-11^(7/12))*11^(2/3)) 3141595322186714 m004 3/E^(Sqrt[5]*Pi)+1000*Pi 3141595323159599 m002 1/(4*Pi^10)+Pi 3141595324856888 p002 log(6^(1/3)*(12^(3/4)-7)) 3141595325247338 p001 sum((-1)^n/(543*n+305)/(8^n),n=0..infinity) 3141595335884190 l005 ln(sec(181/56)) 3141595336495831 m005 (-1/2+1/4*5^(1/2))/(3/5*Zeta(3)-10/11) 3141595338500440 l005 ln(sec(299/98)) 3141595341781046 m001 GaussKuzminWirsing/(Artin+Lehmer) 3141595345524708 m001 (CareFree-MertensB1)/(Zeta(3)+exp(-1/2*Pi)) 3141595351890850 l004 Pi/tanh(7/3*Pi) 3141595352027812 l005 ln(sec(923/97)) 3141595352525087 m001 Rabbit^Psi(1,1/3) 3141595357350109 l005 ln(sec(320/99)) 3141595359095296 l005 ln(sec(180/59)) 3141595359806550 m001 Pi+gamma(3)*HeathBrownMoroz 3141595359939685 r005 Re(z^2+c),c=13/36+11/52*I,n=45 3141595369869176 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/6 3141595369871325 m004 -100*Pi-Tan[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141595369873475 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/6 3141595371278104 l005 ln(sec(609/64)) 3141595378229638 p002 log(1/21*7^(1/3)-23/21) 3141595379522487 p002 log(1/13*11^(2/3)-18/13) 3141595380865141 p002 log(23^(1/2)/(11^(1/3)-7)) 3141595384807958 l005 ln(sec(241/79)) 3141595385498840 l005 ln(sec(139/43)) 3141595387639664 m001 (-HeathBrownMoroz+MertensB1)/(Chi(1)+gamma(2)) 3141595388060841 m002 6+Pi^5+Log[Pi]/ProductLog[Pi]+ProductLog[Pi] 3141595389977923 s003 concatenated sequence A104822 3141595389977923 s003 concatenated sequence A198175 3141595391039898 l005 ln(sec(904/95)) 3141595399562563 p002 log(1/12*(12^(1/4)-6^(1/3)*12^(1/3))*12^(2/3)) 3141595399707296 p002 log(10^(2/3)-7^(1/2)-3) 3141595400210867 l004 Pi/tanh(275/118*Pi) 3141595400218685 l005 ln(sec(302/99)) 3141595401482903 l004 Pi/tanh(268/115*Pi) 3141595402823721 l004 Pi/tanh(261/112*Pi) 3141595404239056 l004 Pi/tanh(254/109*Pi) 3141595405735295 l004 Pi/tanh(247/106*Pi) 3141595407319580 l004 Pi/tanh(240/103*Pi) 3141595408999918 l004 Pi/tanh(233/100*Pi) 3141595409695908 l005 ln(sec(375/116)) 3141595410485341 l005 ln(sec(363/119)) 3141595410785316 l004 Pi/tanh(226/97*Pi) 3141595412685947 l004 Pi/tanh(219/94*Pi) 3141595413988578 r009 Im(z^3+c),c=-27/64+7/32*I,n=12 3141595414713336 l004 Pi/tanh(212/91*Pi) 3141595416880602 l004 Pi/tanh(205/88*Pi) 3141595416977698 l006 ln(7277/9963) 3141595417130753 m002 Pi+(3*Sech[Pi])/Pi^10 3141595419202737 l004 Pi/tanh(198/85*Pi) 3141595421696955 l004 Pi/tanh(191/82*Pi) 3141595422291507 m002 6/(E^Pi*Pi^10)+Pi 3141595424024096 l005 ln(sec(236/73)) 3141595424322747 r009 Re(z^3+c),c=-21/46+12/31*I,n=28 3141595424383120 l004 Pi/tanh(184/79*Pi) 3141595425298259 s002 sum(A021647[n]/(n*exp(pi*n)-1),n=1..infinity) 3141595427284274 l004 Pi/tanh(177/76*Pi) 3141595427471572 m002 Pi+(3*Csch[Pi])/Pi^10 3141595430427302 l004 Pi/tanh(170/73*Pi) 3141595432179664 l005 ln(sec(295/31)) 3141595432844379 m004 10*Pi+(5*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141595433843764 l004 Pi/tanh(163/70*Pi) 3141595435131861 m009 (2*Pi^2-1/2)/(6*Psi(1,1/3)+2/3) 3141595437570964 l004 Pi/tanh(156/67*Pi) 3141595440172499 s004 Continued Fraction of A000412 3141595440172499 s004 Continued fraction of A000412 3141595440227596 l005 ln(sec(333/103)) 3141595441047662 m005 (1/3*exp(1)+2/5)/(3/11*gamma+4) 3141595441303316 p002 log(19^(1/2)/(7^(2/3)-8)) 3141595441653309 l004 Pi/tanh(149/64*Pi) 3141595443595730 l005 ln(sec(28/3)) 3141595446144096 l004 Pi/tanh(142/61*Pi) 3141595448562300 l004 Pi/tanh(277/119*Pi) 3141595451107842 l004 Pi/tanh(135/58*Pi) 3141595453642506 p002 log(3/(3^(1/4)-7^(3/4))) 3141595453791053 l004 Pi/tanh(263/113*Pi) 3141595456623408 l004 Pi/tanh(128/55*Pi) 3141595459046353 m001 PrimesInBinary^Zeta(1,2)+Thue 3141595459617697 l004 Pi/tanh(249/107*Pi) 3141595461730382 l005 ln(sec(61/20)) 3141595462788215 l004 Pi/tanh(121/52*Pi) 3141595466150988 l004 Pi/tanh(235/101*Pi) 3141595469724048 l004 Pi/tanh(114/49*Pi) 3141595473527753 l004 Pi/tanh(221/95*Pi) 3141595475543017 r005 Re(z^2+c),c=-7/31+11/23*I,n=5 3141595475621396 l005 ln(sec(866/91)) 3141595477585178 l004 Pi/tanh(107/46*Pi) 3141595477619865 p002 log(1/18*5^(2/3)-7/6) 3141595479953419 l005 ln(sec(97/30)) 3141595481922578 l004 Pi/tanh(207/89*Pi) 3141595486569963 l004 Pi/tanh(100/43*Pi) 3141595488481963 r005 Re(z^2+c),c=-31/86+19/51*I,n=32 3141595489025219 m002 Pi+3/(Pi^12*Log[Pi]) 3141595490887990 m001 LandauRamanujan2nd^Chi(1)/(ZetaR(2)^Chi(1)) 3141595491561789 l004 Pi/tanh(193/83*Pi) 3141595493111033 r009 Im(z^3+c),c=-19/36+14/53*I,n=21 3141595496937812 l004 Pi/tanh(93/40*Pi) 3141595497062381 m001 Salem^2*exp(Kolakoski)*GAMMA(23/24) 3141595498265130 l005 ln(sec(571/60)) 3141595499325172 m008 (3/5*Pi+1)/(3*Pi^5+1/4) 3141595500757745 l004 Pi/tanh(272/117*Pi) 3141595502744151 l004 Pi/tanh(179/77*Pi) 3141595504784272 l004 Pi/tanh(265/114*Pi) 3141595506656015 m001 Stephens^exp(Pi)+Pi 3141595509034614 l004 Pi/tanh(86/37*Pi) 3141595511866361 m001 (BesselI(1,1)+Cahen)/(Magata+TreeGrowth2nd) 3141595513527959 l004 Pi/tanh(251/108*Pi) 3141595515580812 p002 log(1/3*(2^(1/4)*3^(3/4)-5)*3^(1/4)) 3141595515872364 l004 Pi/tanh(165/71*Pi) 3141595516755642 m009 (2*Catalan+1/4*Pi^2-3/5)/(1/12*Pi^2-2) 3141595518285756 l004 Pi/tanh(244/105*Pi) 3141595518594497 l005 ln(sec(346/107)) 3141595519795292 m002 Pi+ProductLog[Pi]/(4*Pi^10) 3141595521558530 l005 ln(sec(847/89)) 3141595522227395 p004 log(26113/19073) 3141595523022498 l005 ln(sec(308/101)) 3141595523332051 l004 Pi/tanh(79/34*Pi) 3141595528693896 l004 Pi/tanh(230/99*Pi) 3141595531502543 l004 Pi/tanh(151/65*Pi) 3141595533457423 l005 ln(sec(1123/118)) 3141595533756359 l005 ln(sec(249/77)) 3141595534384777 m005 (1/2*Pi+1/10)/(-5/8+1/24*5^(1/2)) 3141595534401834 l004 Pi/tanh(223/96*Pi) 3141595536751461 p002 log(1/4*(10^(1/4)-5^(1/3)*4^(2/3))*4^(1/3)) 3141595536774606 m002 Pi+(Sech[Pi]*Tanh[Pi])/Pi^9 3141595538309776 l005 ln(sec(247/81)) 3141595540490478 l004 Pi/tanh(72/31*Pi) 3141595542063178 p002 log(1/12*14^(1/2)-3^(1/4)) 3141595543634294 r005 Im(z^2+c),c=-21/44+25/52*I,n=38 3141595543752669 m004 -100*Pi-Log[Sqrt[5]*Pi]/(6*E^(Sqrt[5]*Pi)) 3141595546999217 l004 Pi/tanh(209/90*Pi) 3141595547563118 m002 Pi+Sech[Pi]/Pi^9 3141595550424941 l004 Pi/tanh(137/59*Pi) 3141595551927465 m001 (Gompertz-Niven)/(ReciprocalLucas-Tetranacci) 3141595552967448 m002 2/(E^Pi*Pi^9)+Pi 3141595553049418 m004 Pi+Sech[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141595553058595 m004 Pi+Csch[Sqrt[5]*Pi]^2*Tan[Sqrt[5]*Pi] 3141595553973062 l004 Pi/tanh(202/87*Pi) 3141595555795089 l004 Pi/tanh(267/115*Pi) 3141595558392000 m002 Pi+Csch[Pi]/Pi^9 3141595561463692 l004 Pi/tanh(65/28*Pi) 3141595563755889 l005 ln(sec(186/61)) 3141595567456333 l004 Pi/tanh(253/109*Pi) 3141595568498516 l005 ln(sec(152/47)) 3141595569320094 r002 35th iterates of z^2 + 3141595569530734 l004 Pi/tanh(188/81*Pi) 3141595569581410 p002 log(1/7*(10^(1/2)-23^(1/2))*7^(3/4)) 3141595570206314 l005 ln(sec(276/29)) 3141595571741426 m001 (Tetranacci+TwinPrimes)/(Niven-QuadraticClass) 3141595573801598 l004 Pi/tanh(123/53*Pi) 3141595578243348 l004 Pi/tanh(181/78*Pi) 3141595580531540 l004 Pi/tanh(239/103*Pi) 3141595584082891 l005 ln(sec(311/102)) 3141595586985356 p002 log(1/2*(10^(1/2)-21^(1/2))*2^(1/2)) 3141595587156357 l006 ln(5898/8075) 3141595587682212 l004 Pi/tanh(58/25*Pi) 3141595592783170 l005 ln(sec(359/111)) 3141595595294319 l004 Pi/tanh(225/97*Pi) 3141595597079881 m001 Pi+(2^(1/3))^Psi(2,1/3) 3141595597942028 l004 Pi/tanh(167/72*Pi) 3141595600102007 l004 Pi/tanh(276/119*Pi) 3141595600387052 r005 Re(z^2+c),c=-15/38+9/41*I,n=19 3141595603413986 l004 Pi/tanh(109/47*Pi) 3141595606815487 l004 Pi/tanh(269/116*Pi) 3141595608614455 l005 ln(sec(1085/114)) 3141595609134697 l004 Pi/tanh(160/69*Pi) 3141595609145401 p002 log(1/3*(14^(1/2)-7^(1/2)*3^(3/4))*3^(1/4)) 3141595610713750 l005 ln(sec(207/64)) 3141595611781649 m002 Pi+Tanh[Pi]/(Pi^11*Log[Pi]) 3141595612093694 l004 Pi/tanh(211/91*Pi) 3141595613901971 l004 Pi/tanh(262/113*Pi) 3141595614522628 l005 ln(sec(125/41)) 3141595615406077 r009 Re(z^3+c),c=-5/94+13/22*I,n=34 3141595616579455 a007 Real Root Of -79*x^4-231*x^3-759*x^2+613*x+20 3141595618690444 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/6 3141595618692791 m004 -100*Pi-Tanh[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141595618695137 m004 -100*Pi-Sech[Sqrt[5]*Pi]/6 3141595618697483 m004 -1/(3*E^(Sqrt[5]*Pi))-100*Pi 3141595618699829 m004 -100*Pi-Csch[Sqrt[5]*Pi]/6 3141595618976777 m001 (Champernowne-OneNinth)/(PlouffeB+Trott2nd) 3141595620006683 r005 Im(z^2+c),c=-2/11+18/19*I,n=3 3141595621393413 l004 Pi/tanh(51/22*Pi) 3141595621804914 l005 ln(sec(809/85)) 3141595622494407 m005 (1/2*exp(1)-1/12)/(2/7*2^(1/2)-2/5) 3141595622850827 m002 Pi+1/(Pi^11*Log[Pi]) 3141595628589704 a007 Real Root Of -250*x^4-565*x^3+665*x^2-194*x-339 3141595629325519 l004 Pi/tanh(248/107*Pi) 3141595631381986 l004 Pi/tanh(197/85*Pi) 3141595632371530 m001 ZetaQ(3)^Khinchin+Pi 3141595634877973 l004 Pi/tanh(146/63*Pi) 3141595635418568 l005 ln(sec(262/81)) 3141595637738317 l004 Pi/tanh(241/104*Pi) 3141595637819829 a001 (2+3^(1/2))^(485/37) 3141595639685794 a007 Real Root Of 310*x^4+959*x^3-291*x^2-496*x+852 3141595642138831 l004 Pi/tanh(95/41*Pi) 3141595642742856 r005 Im(z^2+c),c=7/44+3/11*I,n=11 3141595644900259 l005 ln(sec(314/103)) 3141595646676833 l004 Pi/tanh(234/101*Pi) 3141595648793518 l005 ln(sec(533/56)) 3141595649781764 l004 Pi/tanh(139/60*Pi) 3141595651001889 b008 Pi*Sqrt[Zeta[19]] 3141595651635789 l005 ln(sec(317/98)) 3141595653756052 l004 Pi/tanh(183/79*Pi) 3141595654123654 m001 gamma^exp(Pi)+Pi 3141595656191890 l004 Pi/tanh(227/98*Pi) 3141595657837720 l004 Pi/tanh(271/117*Pi) 3141595657939615 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 3141595657941992 m004 -100*Pi-Sin[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141595657944369 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 3141595662802053 m001 3^(1/3)/(HardyLittlewoodC4^TwinPrimes) 3141595663098050 l005 ln(sec(372/115)) 3141595665026561 m001 ZetaQ(3)^FeigenbaumD+Pi 3141595665116872 l005 ln(sec(189/62)) 3141595666341074 l004 Pi/tanh(44/19*Pi) 3141595671237518 l006 ln(341/7891) 3141595675330126 l004 Pi/tanh(257/111*Pi) 3141595676623054 l005 ln(sec(790/83)) 3141595676719209 m002 Pi+3/(Pi^12*ProductLog[Pi]) 3141595677189899 l004 Pi/tanh(213/92*Pi) 3141595680019967 l004 Pi/tanh(169/73*Pi) 3141595680950351 p002 log(1/12*(3^(2/3)-7^(1/3)*12^(1/3))*12^(2/3)) 3141595684847667 l004 Pi/tanh(125/54*Pi) 3141595688813215 l004 Pi/tanh(206/89*Pi) 3141595689903559 m001 (2^(1/3))^ln(Pi)/PrimesInBinary 3141595690347453 l005 ln(sec(253/83)) 3141595690865192 l005 ln(sec(1047/110)) 3141595691061731 a007 Real Root Of -168*x^4-601*x^3-412*x^2-482*x+282 3141595693969874 m001 Trott^FransenRobinson+Pi 3141595694941666 l004 Pi/tanh(81/35*Pi) 3141595695267633 a001 2/710647*47^(1/35) 3141595701296930 l004 Pi/tanh(199/86*Pi) 3141595701894787 m001 (GolombDickman-Salem)/(GAMMA(17/24)+Bloch) 3141595704223914 a001 1597/3*7^(52/57) 3141595705464098 l005 ln(sec(317/104)) 3141595705666069 l004 Pi/tanh(118/51*Pi) 3141595708854302 l004 Pi/tanh(273/118*Pi) 3141595709526133 m002 Pi+Log[Pi]/(4*Pi^10) 3141595711283398 l004 Pi/tanh(155/67*Pi) 3141595711599973 m002 2/Pi^4+Cosh[Pi]/(4*Pi^2) 3141595712265517 a007 Real Root Of 248*x^4+739*x^3-477*x^2-932*x+536 3141595714553675 p002 log(1/7*(5^(1/3)-5^(3/4))*7^(3/4)) 3141595714740136 l004 Pi/tanh(192/83*Pi) 3141595715892944 p002 log(1/2*(21^(1/2)-2^(1/3)*10^(2/3))*2^(2/3)) 3141595716537902 m001 (-KhinchinLevy+TreeGrowth2nd)/(exp(Pi)+Kac) 3141595717081762 l004 Pi/tanh(229/99*Pi) 3141595717285675 m001 BesselK(1,1)^2/Kolakoski^2/ln(sin(Pi/12))^2 3141595718772918 l004 Pi/tanh(266/115*Pi) 3141595720224389 p002 log(1/5*(10^(2/3)-8)*5^(1/4)) 3141595725734731 m001 ZetaQ(3)^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Pi 3141595729257724 l004 Pi/tanh(37/16*Pi) 3141595729817750 l005 ln(sec(55/17)) 3141595734962311 l005 ln(sec(257/27)) 3141595740358558 l004 Pi/tanh(252/109*Pi) 3141595742272414 l004 Pi/tanh(215/93*Pi) 3141595744983668 l004 Pi/tanh(178/77*Pi) 3141595747769756 a009 2^(2/3)-6^(1/2)-3^(3/4) 3141595747850574 r009 Re(z^3+c),c=-53/114+12/29*I,n=18 3141595748979987 p002 log(1/10*(5^(1/4)-7^(2/3))*10^(2/3)) 3141595749121801 l004 Pi/tanh(141/61*Pi) 3141595752131275 l004 Pi/tanh(245/106*Pi) 3141595753820006 r005 Im(z^2+c),c=17/58+4/27*I,n=58 3141595756215457 l004 Pi/tanh(104/45*Pi) 3141595759858001 l004 Pi/tanh(275/119*Pi) 3141595760727969 m002 Pi+(ProductLog[Pi]*Sech[Pi])/Pi^9 3141595761362700 r005 Re(z^2+c),c=-17/66+36/59*I,n=57 3141595762075152 l004 Pi/tanh(171/74*Pi) 3141595764638686 l004 Pi/tanh(238/103*Pi) 3141595765764661 l005 ln(sec(64/21)) 3141595771189700 l004 Pi/tanh(67/29*Pi) 3141595772354486 m002 Pi+(Csch[Pi]*ProductLog[Pi])/Pi^9 3141595777338693 m002 Pi+Sinh[Pi]/(4*Pi^12) 3141595777951667 l004 Pi/tanh(231/100*Pi) 3141595777981991 a008 Real Root of x^5-x^4-18*x^3+3*x^2+84*x+56 3141595778805559 m009 (3/2*Pi^2-1/2)/(5/6*Psi(1,2/3)+2) 3141595780717814 l004 Pi/tanh(164/71*Pi) 3141595781230129 l005 ln(sec(1009/106)) 3141595782754358 p002 log(1/17*(3-3^(1/2)*17^(1/2))*17^(1/2)) 3141595783167774 l004 Pi/tanh(261/113*Pi) 3141595787313739 l004 Pi/tanh(97/42*Pi) 3141595788339863 m001 HardyLittlewoodC3-Rabbit*ZetaP(2) 3141595789027365 m002 Pi+Cosh[Pi]/(4*Pi^12) 3141595790190365 m001 (ln(gamma)*Mills+HardyLittlewoodC4)/Mills 3141595790290278 p001 sum(1/(538*n+467)/n/(32^n),n=1..infinity) 3141595792150501 l004 Pi/tanh(224/97*Pi) 3141595795784280 m006 (1/2*exp(2*Pi)+3/4)/(4/5/Pi+3/5) 3141595795849055 l004 Pi/tanh(127/55*Pi) 3141595797162187 l005 ln(sec(752/79)) 3141595799374672 a007 Real Root Of -276*x^4+651*x^3+844*x^2+650*x-305 3141595801132478 l004 Pi/tanh(157/68*Pi) 3141595803452329 l005 ln(sec(343/106)) 3141595804725050 l004 Pi/tanh(187/81*Pi) 3141595805204148 l005 ln(sec(1101/118)) 3141595805523749 m001 (Shi(1)+Paris)/(PolyaRandomWalk3D+Trott2nd) 3141595806942963 r005 Im(z^2+c),c=-21/19+2/57*I,n=5 3141595807326488 l004 Pi/tanh(217/94*Pi) 3141595807601602 m002 Pi+Tanh[Pi]/(Pi^11*ProductLog[Pi]) 3141595809297229 l004 Pi/tanh(247/107*Pi) 3141595810841836 l004 Pi/tanh(277/120*Pi) 3141595815085069 l005 ln(sec(1073/115)) 3141595815282558 p002 log(10^(3/4)-2^(3/4)-11^(2/3)) 3141595817666582 l005 ln(sec(288/89)) 3141595818650676 m004 Pi+Sech[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3141595818655685 m004 -1-Pi+Tanh[Sqrt[5]*Pi]^2 3141595818658190 m004 -2-Pi+2*Tanh[Sqrt[5]*Pi] 3141595818660694 m004 4/E^(2*Sqrt[5]*Pi)+Pi 3141595818660694 m004 -Pi-Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141595818663198 m004 -2+Pi+2*Coth[Sqrt[5]*Pi] 3141595818665703 m004 Pi+Csch[Sqrt[5]*Pi]^2 3141595818847035 p002 log(1/17*5^(2/3)-20/17) 3141595819403514 m002 Pi+1/(Pi^11*ProductLog[Pi]) 3141595820462395 m001 Pi+gamma(1)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 3141595823583896 l004 Pi/tanh(30/13*Pi) 3141595825520479 l005 ln(sec(1045/112)) 3141595825792914 l005 ln(sec(323/106)) 3141595828112937 p002 log(9/(11^(3/4)-15)) 3141595829827784 l005 ln(sec(495/52)) 3141595831723563 m001 (StolarskyHarborth+ZetaP(3))/(ln(5)-Kolakoski) 3141595832598766 m001 (exp(1)+KhinchinLevy)/(-Niven+Riemann1stZero) 3141595836558340 l005 ln(sec(1017/109)) 3141595837052150 l004 Pi/tanh(263/114*Pi) 3141595838680733 l005 ln(sec(233/72)) 3141595838789839 l004 Pi/tanh(233/101*Pi) 3141595840756436 l005 ln(sec(259/85)) 3141595841042347 l004 Pi/tanh(203/88*Pi) 3141595841561235 m002 Pi+ProductLog[Pi]/(Pi^11*Log[Pi]) 3141595842711285 p002 log(1/5*(3^(2/3)-7^(1/4)*5^(3/4))*5^(1/4)) 3141595844037076 p002 log(1/5*(4-5*5^(1/12))*5^(2/3)) 3141595844078241 l004 Pi/tanh(173/75*Pi) 3141595848252306 l005 ln(sec(989/106)) 3141595848392217 l004 Pi/tanh(143/62*Pi) 3141595849334419 r005 Im(z^2+c),c=-19/62+32/63*I,n=52 3141595849987974 r005 Re(z^2+c),c=-37/118+32/59*I,n=46 3141595851310368 l004 Pi/tanh(256/111*Pi) 3141595851672988 p002 log(1/12*11^(2/3)-17/12) 3141595855006542 l004 Pi/tanh(113/49*Pi) 3141595859839743 l004 Pi/tanh(196/85*Pi) 3141595860662587 l005 ln(sec(961/103)) 3141595861197091 l006 ln(4519/6187) 3141595863606144 l005 ln(sec(733/77)) 3141595863999016 r009 Re(z^3+c),c=-51/122+19/59*I,n=4 3141595865656314 l005 ln(sec(195/64)) 3141595866429995 l004 Pi/tanh(83/36*Pi) 3141595871274328 b008 Sqrt[2]+2*Cot[4] 3141595872338017 l004 Pi/tanh(219/95*Pi) 3141595872907302 l005 ln(sec(178/55)) 3141595873856985 l005 ln(sec(933/100)) 3141595875948248 l004 Pi/tanh(136/59*Pi) 3141595880135895 l004 Pi/tanh(189/82*Pi) 3141595880929961 l005 ln(sec(971/102)) 3141595881848388 r005 Im(z^2+c),c=-10/31+33/64*I,n=58 3141595882491342 l004 Pi/tanh(242/105*Pi) 3141595882967322 p002 log(15-9*10^(1/4)) 3141595885540502 l005 ln(sec(326/107)) 3141595887297341 m002 Pi+(3*Tanh[Pi])/Pi^12 3141595887808155 r005 Re(z^2+c),c=-13/42+29/55*I,n=40 3141595887912123 l005 ln(sec(905/97)) 3141595890903024 l004 Pi/tanh(53/23*Pi) 3141595891803735 m001 CopelandErdos-Zeta(1,2)-Thue 3141595899397464 m002 -3/Pi^12-Pi 3141595899584998 l004 Pi/tanh(235/102*Pi) 3141595899594440 l005 ln(sec(301/93)) 3141595902117035 l004 Pi/tanh(182/79*Pi) 3141595902407146 m005 (1/2*2^(1/2)-4/9)/(5/7*Catalan+2/11) 3141595902914928 l005 ln(sec(877/94)) 3141595903881388 m005 (1/2*5^(1/2)-2)/(9/11*exp(1)+7/12) 3141595905823732 h001 (-7*exp(-1)-3)/(-8*exp(1)+4) 3141595906734036 l004 Pi/tanh(129/56*Pi) 3141595910837769 l004 Pi/tanh(205/89*Pi) 3141595911542865 m002 Pi+(3*Coth[Pi])/Pi^12 3141595913125053 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3141595913130211 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3141595914797014 m001 Pi+(1/3)^GAMMA(1/12) 3141595915306612 l005 ln(sec(131/43)) 3141595917813531 l004 Pi/tanh(76/33*Pi) 3141595918964422 l005 ln(sec(849/91)) 3141595923520413 l004 Pi/tanh(251/109*Pi) 3141595924210442 m005 (1/2*exp(1)-7/9)/(4/5*Zeta(3)+8/9) 3141595926001507 l004 Pi/tanh(175/76*Pi) 3141595926502146 p002 log(1/5*(1-19^(1/2))*5^(1/4)) 3141595928275758 l004 Pi/tanh(274/119*Pi) 3141595932299230 l004 Pi/tanh(99/43*Pi) 3141595933154394 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/4 3141595933156989 m004 -100*Pi-Cos[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141595933159584 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/4 3141595934596322 a007 Real Root Of -156*x^4-470*x^3-138*x^2+919*x-259 3141595934728793 l005 ln(sec(238/25)) 3141595936173896 l005 ln(sec(821/88)) 3141595936863331 a003 cos(Pi*1/25)/sin(Pi*9/88) 3141595937293522 l004 Pi/tanh(221/96*Pi) 3141595938514446 l005 ln(sec(123/38)) 3141595941351084 l004 Pi/tanh(122/53*Pi) 3141595941846956 r005 Re(z^2+c),c=-21/86+29/40*I,n=23 3141595943533985 p002 log(1/5*(2^(2/3)-6^(3/4))*5^(1/2)) 3141595944712857 l004 Pi/tanh(267/116*Pi) 3141595944999710 l005 ln(sec(329/108)) 3141595947543678 l004 Pi/tanh(145/63*Pi) 3141595948409076 a001 228826127/144*832040^(1/20) 3141595948409122 a001 35355581/36*12586269025^(1/20) 3141595951958017 a001 7/34*2178309^(40/41) 3141595952046978 l004 Pi/tanh(168/73*Pi) 3141595953667536 m001 (Pi/exp(Pi)+gamma(3))*BesselI(0,2) 3141595954673572 l005 ln(sec(793/85)) 3141595955455657 m002 -Pi^3-(Log[Pi]*ProductLog[Pi])/3 3141595955469256 l004 Pi/tanh(191/83*Pi) 3141595958158047 l004 Pi/tanh(214/93*Pi) 3141595960326335 l004 Pi/tanh(237/103*Pi) 3141595961109076 r005 Re(z^2+c),c=-7/20+2/5*I,n=22 3141595962111923 l004 Pi/tanh(260/113*Pi) 3141595964754117 l005 ln(sec(198/65)) 3141595965925721 r005 Im(z^2+c),c=21/86+13/64*I,n=36 3141595966407548 m002 Pi+(Log[Pi]*Sech[Pi])/Pi^9 3141595974613886 l005 ln(sec(765/82)) 3141595975844934 a001 13/1860498*76^(29/33) 3141595976157636 l005 ln(sec(314/97)) 3141595978803691 m002 Pi+(Csch[Pi]*Log[Pi])/Pi^9 3141595980214928 p002 log(1/6*(17^(1/2)-3^(2/3)*6^(3/4))*6^(1/4)) 3141595980545526 b008 Pi*Sqrt[Zeta[6*Pi]] 3141595980559685 l004 Pi/tanh(23/10*Pi) 3141595980580552 p002 log(1/19*7^(1/3)-21/19) 3141595989400569 l005 ln(sec(265/87)) 3141595991436057 l005 ln(sec(933/98)) 3141595992412097 a007 Real Root Of 176*x^4+92*x^3-724*x^2-933*x+360 3141595994211810 p002 log(1/6*(5^(1/2)-6^(2/3)*2^(3/4))*6^(1/3)) 3141595996169553 l005 ln(sec(737/79)) 3141595997953139 p002 log(6^(3/4)/(11^(1/3)-11^(3/4))) 3141595998474394 l004 Pi/tanh(269/117*Pi) 3141595998924201 m001 (2^(1/2)-Lehmer)/(StronglyCareFree+Tribonacci) 3141596000153587 l004 Pi/tanh(246/107*Pi) 3141596000573350 l005 ln(sec(191/59)) 3141596001621347 a003 sin(Pi*30/113)/cos(Pi*14/33) 3141596002180127 l004 Pi/tanh(223/97*Pi) 3141596004163430 l005 ln(sec(332/109)) 3141596004674221 l004 Pi/tanh(200/87*Pi) 3141596007818776 l004 Pi/tanh(177/77*Pi) 3141596011024537 l005 ln(sec(695/73)) 3141596011797500 m001 ln(Porter/Zeta(1/2)) 3141596011906407 l004 Pi/tanh(154/67*Pi) 3141596017436207 l004 Pi/tanh(131/57*Pi) 3141596019544670 l005 ln(sec(709/76)) 3141596021003495 l004 Pi/tanh(239/104*Pi) 3141596022038502 p002 log(1/3*(8-3^(1/2)*10^(3/4))*3^(1/2)) 3141596025334858 l004 Pi/tanh(108/47*Pi) 3141596027233238 r005 Im(z^2+c),c=-2/3+80/247*I,n=10 3141596027296436 m002 Pi+Tanh[Pi]^2/Pi^11 3141596030357890 l005 ln(sec(259/80)) 3141596030705217 l004 Pi/tanh(193/84*Pi) 3141596035892340 p002 log(13/16-6^(1/3)) 3141596035924953 a007 Real Root Of -309*x^4-899*x^3-98*x^2-883*x+418 3141596037539360 l004 Pi/tanh(85/37*Pi) 3141596039920418 m002 -Pi-Tanh[Pi]/Pi^11 3141596041562507 m001 Pi+gamma(3)*ZetaQ(4) 3141596042741274 m004 -1+Pi*Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141596043233735 l004 Pi/tanh(232/101*Pi) 3141596044979143 l005 ln(sec(681/73)) 3141596045754207 p002 log(10^(2/3)-5^(1/3)*6^(2/3)) 3141596046530165 l004 Pi/tanh(147/64*Pi) 3141596047848640 l005 ln(sec(327/101)) 3141596048157128 m001 (Landau+LandauRamanujan2nd)/(Pi+BesselJ(1,1)) 3141596049774741 m006 (1/2*Pi^2-3/4)/(1/4*exp(2*Pi)-2/3) 3141596050192595 l004 Pi/tanh(209/91*Pi) 3141596051285688 l005 ln(sec(457/48)) 3141596052180650 l004 Pi/tanh(271/118*Pi) 3141596052591638 m002 -Pi^(-11)-Pi 3141596058889708 l004 Pi/tanh(62/27*Pi) 3141596060185569 p001 sum(1/(493*n+32)/(12^n),n=0..infinity) 3141596063025125 l005 ln(sec(67/22)) 3141596065310272 m002 Pi+Coth[Pi]/Pi^11 3141596065414438 b008 Pi*Zeta[3^E] 3141596065970310 h001 (-11*exp(3)+8)/(-2*exp(2)+8) 3141596066985538 l004 Pi/tanh(225/98*Pi) 3141596070069282 l004 Pi/tanh(163/71*Pi) 3141596072699368 l004 Pi/tanh(264/115*Pi) 3141596072756883 l005 ln(sec(653/70)) 3141596076162504 l005 ln(sec(1133/119)) 3141596076380357 r002 41th iterates of z^2 + 3141596076947639 l004 Pi/tanh(101/44*Pi) 3141596081606565 l004 Pi/tanh(241/105*Pi) 3141596083745483 m001 1/GAMMA(2/3)/Backhouse/ln(sinh(1)) 3141596084971037 l004 Pi/tanh(140/61*Pi) 3141596086838171 m001 (GAMMA(2/3)-Ei(1))/(FeigenbaumB-TwinPrimes) 3141596089505350 l004 Pi/tanh(179/78*Pi) 3141596092420014 l004 Pi/tanh(218/95*Pi) 3141596093057976 l005 ln(sec(676/71)) 3141596094451330 l004 Pi/tanh(257/112*Pi) 3141596098692636 b008 Pi*Zeta[14*Sqrt[2]] 3141596103216355 l005 ln(sec(625/67)) 3141596105824908 l004 Pi/tanh(39/17*Pi) 3141596105827942 m001 ZetaQ(4)^ReciprocalLucas+Pi 3141596114536693 l005 ln(sec(895/94)) 3141596115104214 l005 ln(sec(68/21)) 3141596117399938 m001 1/exp(GAMMA(3/4))^2*Kolakoski^2*gamma 3141596117550684 l004 Pi/tanh(250/109*Pi) 3141596118643793 r005 Im(z^2+c),c=-19/60+26/57*I,n=3 3141596119721759 l004 Pi/tanh(211/92*Pi) 3141596121578802 l005 ln(sec(338/111)) 3141596121782500 m004 1000*Pi+Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141596121785245 m004 -100*Pi-Log[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 3141596121787989 m004 1000*Pi+Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3141596121911211 k007 concat of cont frac of 3141596122879480 l004 Pi/tanh(172/75*Pi) 3141596125099481 p002 log(1/6*10^(2/3)-10^(1/4)) 3141596127619812 l005 ln(sec(1114/117)) 3141596127894182 l004 Pi/tanh(133/58*Pi) 3141596131698024 l004 Pi/tanh(227/99*Pi) 3141596134367318 m001 HeathBrownMoroz^Ei(1)+Pi 3141596136168440 l005 ln(sec(271/89)) 3141596136764304 l005 ln(sec(597/64)) 3141596137086182 l004 Pi/tanh(94/41*Pi) 3141596138477798 m002 Pi+(3*ProductLog[Pi])/Pi^12 3141596141266092 a007 Real Root Of -130*x^4-442*x^3-257*x^2-183*x+920 3141596142126056 l004 Pi/tanh(243/106*Pi) 3141596145308804 l004 Pi/tanh(149/65*Pi) 3141596147042209 m005 (1/2*2^(1/2)-7/12)/(3/5*2^(1/2)-5/11) 3141596149103281 l004 Pi/tanh(204/89*Pi) 3141596150475758 a007 Real Root Of 343*x^4+802*x^3-591*x^2+815*x-151 3141596151287812 l004 Pi/tanh(259/113*Pi) 3141596155603242 p002 log(1/4*(10^(2/3)-7^(1/2)*4^(3/4))*4^(1/4)) 3141596159400708 l004 Pi/tanh(55/24*Pi) 3141596160440739 l005 ln(sec(204/67)) 3141596165011740 p002 log(6^(1/4)/(3^(1/3)-3)) 3141596166616146 m001 1/BesselK(1,1)/ln(BesselJ(1,1))^2*GAMMA(5/6)^2 3141596168322913 l004 Pi/tanh(236/103*Pi) 3141596171037951 l004 Pi/tanh(181/79*Pi) 3141596171101103 s003 concatenated sequence A087054 3141596171879110 s003 concatenated sequence A238397 3141596173893834 l005 ln(sec(569/61)) 3141596175780180 r005 Re(z^2+c),c=-7/22+31/61*I,n=43 3141596176128118 l004 Pi/tanh(126/55*Pi) 3141596178312532 l005 ln(sec(353/109)) 3141596179818980 l005 ln(sec(341/112)) 3141596180810461 l004 Pi/tanh(197/86*Pi) 3141596181476526 l005 ln(sec(219/23)) 3141596183013712 l004 Pi/tanh(268/117*Pi) 3141596188743511 p002 log(1/14*19^(1/2)-3^(1/4)) 3141596189082638 a007 Real Root Of -17*x^4-534*x^3+4*x^2+30*x-793 3141596189133165 l004 Pi/tanh(71/31*Pi) 3141596193523600 l005 ln(sec(285/88)) 3141596193985177 l005 ln(sec(1110/119)) 3141596194935341 p002 log(12^(1/4)/(5^(3/4)-9^(3/4))) 3141596195509479 r005 Re(z^2+c),c=-19/60+5/9*I,n=43 3141596196306396 l004 Pi/tanh(229/100*Pi) 3141596199533888 l004 Pi/tanh(158/69*Pi) 3141596199746931 m002 Pi+Tanh[Pi]/(3*Pi^10) 3141596201048945 m001 (BesselK(1,1)+ArtinRank2)/(Shi(1)-ln(3)) 3141596202552893 l004 Pi/tanh(245/107*Pi) 3141596204187168 a007 Real Root Of 347*x^4+130*x^3+524*x^2-751*x-287 3141596204686035 r005 Re(z^2+c),c=-23/94+32/55*I,n=41 3141596208041345 l004 Pi/tanh(87/38*Pi) 3141596208819927 l005 ln(sec(137/45)) 3141596211166711 p002 log(1/5*(3^(2/3)-9^(2/3))*5^(1/2)) 3141596211710575 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/5 3141596211716206 m004 -100*Pi-Sech[Sqrt[5]*Pi]/5 3141596211719021 m004 -2/(5*E^(Sqrt[5]*Pi))-100*Pi 3141596211721836 m004 -100*Pi-Csch[Sqrt[5]*Pi]/5 3141596213016202 m002 1/(3*Pi^10)+Pi 3141596215129344 l004 Pi/tanh(190/83*Pi) 3141596215208533 l005 ln(sec(541/58)) 3141596215236540 r009 Re(z^3+c),c=-12/25+27/58*I,n=25 3141596215413384 k006 concat of cont frac of 3141596218375264 l005 ln(sec(217/67)) 3141596220729790 p002 log(1/15*(3^(1/2)-10^(3/4))*15^(1/2)) 3141596221125772 l004 Pi/tanh(103/45*Pi) 3141596225064502 h001 (3/10*exp(1)+1/5)/(4/11*exp(2)+6/11) 3141596225874018 p002 log(1/16*5^(2/3)-19/16) 3141596226264751 l004 Pi/tanh(222/97*Pi) 3141596226893128 p002 log(7/16-3^(1/3)) 3141596230717919 l004 Pi/tanh(119/52*Pi) 3141596230809503 p002 log(1/4*(13^(1/2)-12^(3/4))*4^(1/4)) 3141596231770789 p002 log(9^(3/4)/(4^(3/4)-8)) 3141596234143642 p002 log(1/6*(10^(1/2)-10^(3/4))*6^(1/2)) 3141596234613971 l004 Pi/tanh(254/111*Pi) 3141596237661962 l005 ln(sec(1054/113)) 3141596237740662 l005 ln(sec(344/113)) 3141596237819364 l005 ln(sec(366/113)) 3141596237898066 l005 ln(sec(1076/113)) 3141596238051297 l004 Pi/tanh(135/59*Pi) 3141596241576869 m001 2*Pi/GAMMA(5/6)*Rabbit-AlladiGrinstead 3141596242943207 r005 Im(z^2+c),c=-29/23+1/30*I,n=44 3141596243839697 l004 Pi/tanh(151/66*Pi) 3141596244475500 b008 Pi*Zeta[2*Pi^2] 3141596248524822 l004 Pi/tanh(167/73*Pi) 3141596249119139 p002 log(1/12*(7^(1/2)-11^(2/3))*12^(2/3)) 3141596252394653 l004 Pi/tanh(183/80*Pi) 3141596252425006 l005 ln(sec(857/90)) 3141596253331765 r005 Im(z^2+c),c=-5/4+27/70*I,n=14 3141596255644966 l004 Pi/tanh(199/87*Pi) 3141596256976316 l005 ln(sec(207/68)) 3141596258413502 l004 Pi/tanh(215/94*Pi) 3141596260799987 l004 Pi/tanh(231/101*Pi) 3141596261455141 l005 ln(sec(513/55)) 3141596262339634 b008 Pi*Zeta[18+Sqrt[3]] 3141596262878398 l004 Pi/tanh(247/108*Pi) 3141596264704773 l004 Pi/tanh(263/115*Pi) 3141596266282510 l005 ln(sec(149/46)) 3141596268016920 r009 Im(z^3+c),c=-27/56+9/49*I,n=16 3141596269817712 p002 log(8/11-3^(1/2)) 3141596271715086 p002 log(1/21*15^(1/2)-2^(1/4)) 3141596272097423 r005 Im(z^2+c),c=-19/44+29/56*I,n=41 3141596277025811 l005 ln(sec(638/67)) 3141596277591373 m002 Pi+Log[Pi]/(Pi^11*ProductLog[Pi]) 3141596278259695 m001 LandauRamanujan2nd^exp(Pi)+Pi 3141596280970164 l005 ln(sec(277/91)) 3141596281633878 p002 log(1/2*(11^(1/2)-21^(1/2))*2^(2/3)) 3141596283219840 m001 1/(2^(1/3))/ln(Champernowne)^2*sqrt(3) 3141596286415244 l006 ln(206/4767) 3141596286711132 l005 ln(sec(998/107)) 3141596289351419 m002 Pi+(ProductLog[Pi]*Tanh[Pi])/Pi^11 3141596290403127 p001 sum((-1)^n/(529*n+309)/(12^n),n=0..infinity) 3141596293000545 l004 Pi/tanh(16/7*Pi) 3141596293933419 l005 ln(sec(379/117)) 3141596294979640 r005 Re(z^2+c),c=-19/62+20/37*I,n=54 3141596295339310 l005 ln(sec(347/114)) 3141596295381162 b008 Csch[2*Sqrt[2]-Pi] 3141596296129445 m004 4+(5*Sqrt[5]*Pi)/3+5*Pi*Tanh[Sqrt[5]*Pi] 3141596297028190 p002 log(1/13*11^(1/2)-2^(1/3)) 3141596297064969 l005 ln(sec(1057/111)) 3141596300194154 b008 Pi*JacobiNS[Sqrt[3],1/3] 3141596302955978 m002 -Pi-ProductLog[Pi]/Pi^11 3141596311213015 a007 Real Root Of -164*x^4-439*x^3+531*x^2+808*x-339 3141596311932759 l005 ln(sec(230/71)) 3141596313568482 l005 ln(sec(485/52)) 3141596314205229 m001 (-GAMMA(2/3)+ln(2))/(Chi(1)+BesselI(0,1)) 3141596316611444 m002 Pi+(Coth[Pi]*ProductLog[Pi])/Pi^11 3141596318242625 m002 -(Pi*Coth[Pi])+Log[Pi]/Pi^4 3141596318610035 a007 Real Root Of -127*x^4-417*x^3+298*x^2+839*x-864 3141596321271242 l004 Pi/tanh(265/116*Pi) 3141596321736388 a007 Real Root Of 807*x^4+468*x^3+481*x^2-408*x-169 3141596323094277 l004 Pi/tanh(249/109*Pi) 3141596325168635 l004 Pi/tanh(233/102*Pi) 3141596327550132 l004 Pi/tanh(217/95*Pi) 3141596327738901 l005 ln(sec(419/44)) 3141596330312436 l004 Pi/tanh(201/88*Pi) 3141596333208909 r005 Re(z^2+c),c=-71/102+18/59*I,n=7 3141596333554822 l004 Pi/tanh(185/81*Pi) 3141596333959751 l005 ln(sec(311/96)) 3141596337414355 l004 Pi/tanh(169/74*Pi) 3141596338311072 m002 Pi+(4*Sech[Pi])/Pi^10 3141596339426891 p002 log(3^(1/3)/(11^(1/3)-7^(2/3))) 3141596341251111 k007 concat of cont frac of 3141596341559574 p002 log(21^(1/2)-4-2^(2/3)) 3141596342085762 l004 Pi/tanh(153/67*Pi) 3141596342183728 l005 ln(sec(942/101)) 3141596346250669 r005 Re(z^2+c),c=-19/30+18/61*I,n=18 3141596347855324 l004 Pi/tanh(137/60*Pi) 3141596351280475 l004 Pi/tanh(258/113*Pi) 3141596352098832 m002 Pi+(4*Csch[Pi])/Pi^10 3141596352610816 l005 ln(sec(70/23)) 3141596353944539 a008 Real Root of (-3+7*x+9*x^2-9*x^4+3*x^8) 3141596355161838 l004 Pi/tanh(121/53*Pi) 3141596356059565 h001 (2/3*exp(1)+1/9)/(7/9*exp(2)+3/8) 3141596356264234 m005 (1/3*5^(1/2)-2/9)/(9/10*Zeta(3)+7/12) 3141596356547145 m005 (Catalan-3/4)/(1/5*2^(1/2)+5) 3141596359174608 l005 ln(sec(1038/109)) 3141596359574531 p002 log(1/18*7^(1/3)-10/9) 3141596359597060 l004 Pi/tanh(226/99*Pi) 3141596364713796 l004 Pi/tanh(105/46*Pi) 3141596368354309 a001 233/103682*2^(29/60) 3141596369162838 m002 Pi+(3*Log[Pi])/Pi^12 3141596370682194 l004 Pi/tanh(194/85*Pi) 3141596372734399 l005 ln(sec(457/49)) 3141596375939824 l006 ln(3140/4299) 3141596376786463 m001 (sin(1/12*Pi)+GAMMA(23/24))/(Kac-MertensB2) 3141596377734183 l004 Pi/tanh(89/39*Pi) 3141596380568544 l005 ln(sec(619/65)) 3141596382342251 m004 -125*Pi+25*Pi*Tanh[Sqrt[5]*Pi]^3 3141596382351102 m004 -25*Pi+(30*Pi*Sinh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3141596382354052 m004 25*Pi+75*Pi*Coth[Sqrt[5]*Pi] 3141596383192609 l004 Pi/tanh(251/110*Pi) 3141596386026014 r002 9th iterates of z^2 + 3141596386194302 l004 Pi/tanh(162/71*Pi) 3141596387379913 a007 Real Root Of -982*x^4-280*x^3-590*x^2+966*x-227 3141596388729397 p002 log(1/12*(2^(1/3)-12^(1/4)*2^(3/4))*12^(3/4)) 3141596389402663 l004 Pi/tanh(235/103*Pi) 3141596395011184 r005 Im(z^2+c),c=-22/27+11/59*I,n=7 3141596395506934 r009 Im(z^3+c),c=-71/102+1/28*I,n=3 3141596396531062 l004 Pi/tanh(73/32*Pi) 3141596397059854 l005 ln(sec(81/25)) 3141596398297515 r009 Im(z^3+c),c=-9/16+13/45*I,n=40 3141596402488699 p002 log(7^(2/3)/(1-10^(2/3))) 3141596404234284 m001 TwinPrimes*Khintchine^2/exp(exp(1)) 3141596404797765 l004 Pi/tanh(203/89*Pi) 3141596404963595 r005 Im(z^2+c),c=-155/126+5/58*I,n=57 3141596405227009 p002 log(1/5*(8-5^(1/2)*21^(1/2))*5^(1/2)) 3141596405422646 l005 ln(sec(886/95)) 3141596407642704 m005 (1/2*Zeta(3)-7/12)/(-31/72+4/9*5^(1/2)) 3141596407657684 r005 Re(z^2+c),c=-35/86+1/8*I,n=22 3141596407817284 l005 ln(sec(819/86)) 3141596409446720 l004 Pi/tanh(130/57*Pi) 3141596409551481 l005 ln(sec(353/116)) 3141596411844065 r009 Im(z^3+c),c=-1/27+14/41*I,n=3 3141596414499058 l004 Pi/tanh(187/82*Pi) 3141596417193265 l004 Pi/tanh(244/107*Pi) 3141596418642534 p002 log(1/5*(3^(1/3)*5^(1/4)-7^(2/3))*5^(3/4)) 3141596420651030 r009 Re(z^3+c),c=-57/94+29/54*I,n=8 3141596420659466 p002 log(1/12*(10^(1/2)-5^(1/4)*12^(3/4))*12^(1/4)) 3141596420860553 m005 (1/2*exp(1)+3/4)/(6/11*Pi+5) 3141596423260747 a007 Real Root Of 302*x^4+806*x^3-376*x^2+11*x-681 3141596423734557 l005 ln(sec(283/93)) 3141596424443161 l005 ln(sec(1019/107)) 3141596426043817 l004 Pi/tanh(57/25*Pi) 3141596429787690 a007 Real Root Of -545*x^4-509*x^3-776*x^2+458*x+210 3141596433093076 p002 log(13^(1/2)-2^(1/3)*7^(2/3)) 3141596434087309 l004 Pi/tanh(269/118*Pi) 3141596434170361 m002 Pi+4/(Pi^12*Log[Pi]) 3141596436252461 l004 Pi/tanh(212/93*Pi) 3141596438136599 m001 (-FeigenbaumD+ZetaP(3))/(GAMMA(13/24)-sin(1)) 3141596439577920 r005 Im(z^2+c),c=5/28+8/31*I,n=12 3141596440012581 l004 Pi/tanh(155/68*Pi) 3141596440479639 l005 ln(sec(429/46)) 3141596443165829 l004 Pi/tanh(253/111*Pi) 3141596447326473 l005 ln(sec(213/70)) 3141596448157721 l004 Pi/tanh(98/43*Pi) 3141596453492861 l004 Pi/tanh(237/104*Pi) 3141596454053488 r005 Im(z^2+c),c=-73/60+7/47*I,n=10 3141596454151761 m005 (1/2*gamma-1/7)/(3/10*Zeta(3)-5) 3141596456024222 l005 ln(sec(337/104)) 3141596456060968 p002 log(2^(1/2)*(12^(1/3)-3)) 3141596457258204 l004 Pi/tanh(139/61*Pi) 3141596458024634 p002 log(1/11*11^(2/3)-16/11) 3141596462220801 l004 Pi/tanh(180/79*Pi) 3141596465344925 l004 Pi/tanh(221/97*Pi) 3141596466029028 r005 Re(z^2+c),c=7/58+31/50*I,n=26 3141596466157992 l005 ln(sec(356/117)) 3141596467492547 l004 Pi/tanh(262/115*Pi) 3141596470325469 p002 log(1/7*(2^(1/4)-7^(7/12))*7^(2/3)) 3141596474828340 l005 ln(sec(256/79)) 3141596475197125 m002 Pi+ProductLog[Pi]/(3*Pi^10) 3141596478170945 l005 ln(sec(830/89)) 3141596479086691 l004 Pi/tanh(41/18*Pi) 3141596488212859 p002 log(1/9*(10^(1/4)-7)*9^(1/4)) 3141596490324603 l004 Pi/tanh(271/119*Pi) 3141596492330863 l004 Pi/tanh(230/101*Pi) 3141596493107842 l005 ln(sec(200/21)) 3141596494335005 l005 ln(sec(143/47)) 3141596495209138 l004 Pi/tanh(189/83*Pi) 3141596499634557 a007 Real Root Of -268*x^4-663*x^3+652*x^2+420*x+433 3141596499685816 l004 Pi/tanh(148/65*Pi) 3141596500319820 a001 317811/1364*47^(25/37) 3141596502131912 m001 Pi+sin(1/5*Pi)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141596503006720 l004 Pi/tanh(255/112*Pi) 3141596507604185 l004 Pi/tanh(107/47*Pi) 3141596511240414 l005 ln(sec(175/54)) 3141596514389407 l004 Pi/tanh(173/76*Pi) 3141596516776927 m002 Pi+(Sech[Pi]*Tanh[Pi])/(E^Pi*Pi^6) 3141596517430470 l004 Pi/tanh(239/105*Pi) 3141596518803142 l005 ln(sec(401/43)) 3141596522427401 l005 ln(sec(359/118)) 3141596525411523 l004 Pi/tanh(66/29*Pi) 3141596530023663 m002 Pi+(Log[Pi]*Tanh[Pi])/Pi^11 3141596531232483 m002 -Pi^(-6)-Pi+Tanh[Pi]/Pi^6 3141596533980946 l004 Pi/tanh(223/98*Pi) 3141596534350076 p002 log(1/18*11^(1/2)-2^(1/4)) 3141596537588246 l004 Pi/tanh(157/69*Pi) 3141596538246432 r005 Im(z^2+c),c=-69/56+1/58*I,n=42 3141596538473759 m002 2/(E^(2*Pi)*Pi^6)+Pi 3141596540356366 p002 log(1/13*(2-10^(3/4))*13^(1/2)) 3141596540834370 l004 Pi/tanh(248/109*Pi) 3141596541108498 l005 ln(sec(216/71)) 3141596544528787 m002 -Pi-Log[Pi]/Pi^11 3141596545742131 m002 Pi+Csch[Pi]/(E^Pi*Pi^6) 3141596546139212 l005 ln(sec(269/83)) 3141596546440310 l004 Pi/tanh(91/40*Pi) 3141596549637105 r005 Im(z^2+c),c=-89/66+1/39*I,n=34 3141596553165760 l004 Pi/tanh(207/91*Pi) 3141596555291263 r009 Re(z^3+c),c=-43/102+15/46*I,n=30 3141596558448753 l004 Pi/tanh(116/51*Pi) 3141596559088187 m002 Pi+(Coth[Pi]*Log[Pi])/Pi^11 3141596562708400 l004 Pi/tanh(257/113*Pi) 3141596562732003 l005 ln(sec(774/83)) 3141596563049906 l005 ln(sec(363/112)) 3141596564406653 l005 ln(sec(289/95)) 3141596565429466 l005 ln(sec(981/103)) 3141596566215786 l004 Pi/tanh(141/62*Pi) 3141596571651235 l004 Pi/tanh(166/73*Pi) 3141596571761703 m002 Pi+ProductLog[Pi]^2/Pi^11 3141596575667957 l004 Pi/tanh(191/84*Pi) 3141596578357100 l005 ln(sec(362/119)) 3141596578757288 l004 Pi/tanh(216/95*Pi) 3141596581207166 l004 Pi/tanh(241/106*Pi) 3141596583197507 l004 Pi/tanh(266/117*Pi) 3141596584114314 l005 ln(sec(781/82)) 3141596587524293 r005 Re(z^2+c),c=-7/10+54/205*I,n=26 3141596591086683 a007 Real Root Of -93*x^4-196*x^3+106*x^2-612*x+13 3141596595396484 m001 (Zeta(1,2)+CopelandErdos)/(5^(1/2)-gamma(3)) 3141596595859955 p002 log(5^(2/3)*(3-5^(3/4))) 3141596602428927 l004 Pi/tanh(25/11*Pi) 3141596609594802 r005 Re(z^2+c),c=-5/12+9/55*I,n=7 3141596609928419 m004 5/E^(2*Sqrt[5]*Pi)+Pi 3141596610372723 l005 ln(sec(373/40)) 3141596611754589 l005 ln(sec(94/29)) 3141596612287770 p002 log(7^(2/3)/(19^(1/2)-8)) 3141596612836449 m001 (Psi(2,1/3)-Salem)/(Totient+ZetaP(2)) 3141596615816226 l005 ln(sec(581/61)) 3141596619520877 b008 Pi*Zeta[8*Sqrt[6]] 3141596622202003 r005 Im(z^2+c),c=-49/90+26/63*I,n=22 3141596622264307 l004 Pi/tanh(259/114*Pi) 3141596622489486 m005 (1/2*gamma+7/11)/(4*5^(1/2)-6) 3141596624388528 l004 Pi/tanh(234/103*Pi) 3141596625384259 m003 -7/8+Sqrt[5]/32+(Sqrt[5]*Csc[1/2+Sqrt[5]/2])/2 3141596626967205 r009 Re(z^3+c),c=-27/64+16/49*I,n=34 3141596627022293 l004 Pi/tanh(209/92*Pi) 3141596630373924 l004 Pi/tanh(184/81*Pi) 3141596630870420 m002 Pi+Sinh[Pi]/Pi^13 3141596630958763 m002 5/2+Sinh[Pi]/18 3141596633664041 a001 1/311187*13^(8/9) 3141596633944807 l005 ln(sec(73/24)) 3141596634783225 l004 Pi/tanh(159/70*Pi) 3141596636660984 r002 26th iterates of z^2 + 3141596640844636 l004 Pi/tanh(134/59*Pi) 3141596641695378 l005 ln(sec(962/101)) 3141596642967743 r005 Im(z^2+c),c=19/78+11/54*I,n=36 3141596643818080 r009 Re(z^3+c),c=-49/106+20/43*I,n=22 3141596644401227 p002 log(1/3*(1-6^(1/2))*3^(2/3)) 3141596644432641 l005 ln(sec(1091/117)) 3141596644815039 l004 Pi/tanh(243/107*Pi) 3141596645752900 m002 Pi+Cosh[Pi]/Pi^13 3141596649700741 l004 Pi/tanh(109/48*Pi) 3141596652414290 p002 log(11^(1/3)-7^(1/3)-3^(1/4)) 3141596655859483 l004 Pi/tanh(193/85*Pi) 3141596657622232 l005 ln(sec(389/120)) 3141596659389555 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/3 3141596659395895 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/3 3141596662212788 l005 ln(sec(718/77)) 3141596663863348 l004 Pi/tanh(84/37*Pi) 3141596664012257 r002 5th iterates of z^2 + 3141596670679216 l004 Pi/tanh(227/100*Pi) 3141596672322944 l005 ln(sec(295/91)) 3141596673086655 m001 (GAMMA(11/12)-FeigenbaumD)/(Kac-OneNinth) 3141596673592568 p002 log(8/(11^(3/4)-14)) 3141596674687585 l004 Pi/tanh(143/63*Pi) 3141596675316916 s002 sum(A216865[n]/(exp(n)+1),n=1..infinity) 3141596679196142 l004 Pi/tanh(202/89*Pi) 3141596680522647 l005 ln(sec(1063/114)) 3141596681405313 l005 ln(sec(381/40)) 3141596681668190 l004 Pi/tanh(261/115*Pi) 3141596684429014 m002 Pi+4/(Pi^12*ProductLog[Pi]) 3141596684536016 p002 log(13/9-6^(1/2)) 3141596688194652 m001 (sin(1/5*Pi)+exp(1/exp(1)))/(Sarnak-ZetaP(4)) 3141596690141699 l004 Pi/tanh(59/26*Pi) 3141596691094747 p002 log(1/12*(3^(1/2)-7)*12^(1/3)) 3141596697318906 a001 9/98209*4181^(41/42) 3141596698347319 l004 Pi/tanh(270/119*Pi) 3141596700644346 l004 Pi/tanh(211/93*Pi) 3141596700891085 l005 ln(sec(201/62)) 3141596702945532 l005 ln(sec(295/97)) 3141596704727356 l004 Pi/tanh(152/67*Pi) 3141596708246582 l004 Pi/tanh(245/108*Pi) 3141596710110713 s003 concatenated sequence A245650 3141596712411295 m004 -100*Pi-Sin[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141596714004093 l004 Pi/tanh(93/41*Pi) 3141596716773743 p002 log(1/15*5^(2/3)-6/5) 3141596718828317 l005 ln(sec(345/37)) 3141596720008838 m005 (1/3*gamma-1/4)/(6/7*5^(1/2)-1/12) 3141596720424137 l004 Pi/tanh(220/97*Pi) 3141596722222829 l005 ln(sec(943/99)) 3141596725130963 l004 Pi/tanh(127/56*Pi) 3141596725825767 l005 ln(sec(222/73)) 3141596726921074 m001 1/sin(Pi/5)*exp(FeigenbaumDelta)*sqrt(3) 3141596727869955 a007 Real Root Of -421*x^4-978*x^3+889*x^2-728*x-376 3141596728008868 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/4 3141596728012092 m004 -100*Pi-Tan[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141596728015315 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/4 3141596728171580 m002 Pi+Log[Pi]/(3*Pi^10) 3141596728399165 l005 ln(sec(308/95)) 3141596731570220 l004 Pi/tanh(161/71*Pi) 3141596735768699 l004 Pi/tanh(195/86*Pi) 3141596736406584 p002 log(1/12*(4^(2/3)-9)*12^(1/4)) 3141596736622273 m001 FeigenbaumC^(Pi^(1/2))+Ei(1,1) 3141596738722692 l004 Pi/tanh(229/101*Pi) 3141596739296982 r005 Im(z^2+c),c=-13/62+10/21*I,n=17 3141596740914101 l004 Pi/tanh(263/116*Pi) 3141596745934786 m001 OneNinth^(2*Pi/GAMMA(5/6))+Pi 3141596745934786 m001 Pi+OneNinth^GAMMA(1/6) 3141596750071939 l005 ln(sec(562/59)) 3141596755487758 p002 log((10^(1/2)-15^(1/2))*2^(1/2)) 3141596755700225 l004 Pi/tanh(34/15*Pi) 3141596759558385 l005 ln(sec(1007/108)) 3141596763278071 p002 log(1/3*(5^(1/2)-9^(2/3))*3^(1/3)) 3141596766032392 p002 log(3^(3/4)/(3^(1/2)-4)) 3141596771405594 l005 ln(sec(149/49)) 3141596771494675 l004 Pi/tanh(247/109*Pi) 3141596771809638 m001 1/GAMMA(3/4)/ln(GAMMA(1/6))^2/log(1+sqrt(2)) 3141596772396186 r009 Re(z^3+c),c=-9/34+37/56*I,n=3 3141596774020686 l004 Pi/tanh(213/94*Pi) 3141596775225013 a007 Real Root Of 266*x^4+566*x^3-803*x^2+438*x+940 3141596777508486 l004 Pi/tanh(179/79*Pi) 3141596779860783 p002 log(2^(3/4)/(9^(2/3)-6)) 3141596780460597 l005 ln(sec(107/33)) 3141596780905026 l005 ln(sec(662/71)) 3141596782636546 l004 Pi/tanh(145/64*Pi) 3141596785624833 l005 ln(sec(743/78)) 3141596785673873 a007 Real Root Of 72*x^4+171*x^3+164*x^2-186*x-6 3141596786225436 l004 Pi/tanh(256/113*Pi) 3141596787456045 p002 log(6^(2/3)/(10^(1/2)-12^(3/4))) 3141596790917665 l004 Pi/tanh(111/49*Pi) 3141596796661192 m004 (5*Pi)/3+(25*Pi*Coth[Sqrt[5]*Pi])/3 3141596797314446 l004 Pi/tanh(188/83*Pi) 3141596799996377 l004 Pi/tanh(265/117*Pi) 3141596802948445 l005 ln(sec(979/105)) 3141596806550736 l004 Pi/tanh(77/34*Pi) 3141596807218763 p002 log(1/17*7^(1/3)-19/17) 3141596807362862 l005 ln(sec(924/97)) 3141596808769040 p002 log(9/22-2^(1/2)) 3141596809461594 p002 log(1/7*(1-7^(2/3))*7^(1/2)) 3141596815381559 l004 Pi/tanh(197/87*Pi) 3141596815917781 s004 Continued Fraction of A190890 3141596815917781 s004 Continued fraction of A190890 3141596816454046 r005 Im(z^2+c),c=-67/106+10/39*I,n=5 3141596816743967 l005 ln(sec(225/74)) 3141596816852644 m002 Pi+(ProductLog[Pi]*Sech[Pi])/(E^Pi*Pi^6) 3141596818302020 p002 log(3^(2/3)/(12^(1/3)-19^(1/2))) 3141596818588326 m002 Pi+Sinh[Pi]/(3*Pi^12) 3141596820763548 p002 log(1/5*(6^(1/3)-5^(2/3)*7^(1/4))*5^(1/3)) 3141596821056500 l004 Pi/tanh(120/53*Pi) 3141596822028044 l005 ln(sec(1105/116)) 3141596824256559 r005 Im(z^2+c),c=-9/14+67/250*I,n=3 3141596826380775 m002 E^Pi/(6*Pi^12)+Pi 3141596827924045 l004 Pi/tanh(163/72*Pi) 3141596828919951 l005 ln(sec(334/103)) 3141596831128330 m002 Pi+(Log[Pi]*ProductLog[Pi])/Pi^11 3141596831929038 l004 Pi/tanh(206/91*Pi) 3141596832431046 m002 Pi+(Csch[Pi]*ProductLog[Pi])/(E^Pi*Pi^6) 3141596834173223 m002 Pi+Cosh[Pi]/(3*Pi^12) 3141596834552568 l004 Pi/tanh(249/110*Pi) 3141596838950985 b005 Number DB table 3141596839322413 l005 ln(sec(301/99)) 3141596847140754 l004 Pi/tanh(43/19*Pi) 3141596849226095 m005 (1/3*Pi+1/10)/(-55/12+5/12*5^(1/2)) 3141596849265390 l005 ln(sec(317/34)) 3141596850561799 l006 ln(4901/6710) 3141596851912764 l005 ln(sec(227/70)) 3141596854202463 m001 ZetaQ(4)^(Pi*csc(11/24*Pi)/GAMMA(13/24))+Pi 3141596858909635 l004 Pi/tanh(267/118*Pi) 3141596860935826 m005 (1/2*2^(1/2)-1/10)/(2/3*3^(1/2)+7/9) 3141596861172084 l004 Pi/tanh(224/99*Pi) 3141596864104928 m001 GAMMA(5/6)+ReciprocalFibonacci^gamma 3141596864511418 l004 Pi/tanh(181/80*Pi) 3141596867579392 a001 505019158607/8*102334155^(6/13) 3141596867579392 a001 28143753123/8*53316291173^(6/13) 3141596867586909 a001 9062201101803/8*196418^(6/13) 3141596869936635 l004 Pi/tanh(138/61*Pi) 3141596873152506 r005 Re(z^2+c),c=-9/22+6/59*I,n=17 3141596874135765 l005 ln(sec(347/107)) 3141596874155218 l004 Pi/tanh(233/103*Pi) 3141596880289725 l004 Pi/tanh(95/42*Pi) 3141596880628965 m001 (Tribonacci+ZetaQ(4))/(Pi+exp(1)) 3141596886203328 l004 Pi/tanh(242/107*Pi) 3141596890028825 l004 Pi/tanh(147/65*Pi) 3141596892219510 b008 Pi*Zeta[39/2] 3141596892980113 p002 log(1/11*(12^(1/3)*11^(1/4)-6)*11^(3/4)) 3141596893002768 b008 Pi*Sqrt[Zeta[37/2]] 3141596894684939 l004 Pi/tanh(199/88*Pi) 3141596895630693 p002 log(2^(1/2)*11^(2/3)-8) 3141596897413868 l004 Pi/tanh(251/111*Pi) 3141596897504816 l005 ln(sec(181/19)) 3141596898812742 l005 ln(sec(923/99)) 3141596900831652 p002 log(2^(2/3)/(3^(2/3)-7^(2/3))) 3141596901067077 b008 Pi*Zeta[11*Sqrt[Pi]] 3141596901288762 r005 Im(z^2+c),c=-17/31+25/57*I,n=46 3141596905202239 a007 Real Root Of 778*x^4+36*x^3-370*x^2-182*x+85 3141596906694014 l005 ln(sec(76/25)) 3141596907871209 l004 Pi/tanh(52/23*Pi) 3141596916420914 l005 ln(sec(120/37)) 3141596916883948 r009 Re(z^3+c),c=-1/70+31/37*I,n=30 3141596917648761 l004 Pi/tanh(269/119*Pi) 3141596919994635 l004 Pi/tanh(217/96*Pi) 3141596921123426 m001 Zeta(5)+GAMMA(7/12)+Stephens 3141596923821497 l004 Pi/tanh(165/73*Pi) 3141596924904251 l005 ln(sec(606/65)) 3141596926691538 a007 Real Root Of -819*x^4+255*x^3-547*x^2+793*x+319 3141596929133426 m004 4+5*Pi+(5*Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi])/3 3141596931178698 l004 Pi/tanh(113/50*Pi) 3141596938165411 l004 Pi/tanh(174/77*Pi) 3141596941528469 l004 Pi/tanh(235/104*Pi) 3141596949544881 b008 ExpIntegralEi[1/2+SinIntegral[1]] 3141596951133916 l004 Pi/tanh(61/27*Pi) 3141596951937115 l005 ln(sec(895/96)) 3141596956049588 l005 ln(sec(373/115)) 3141596960072526 l004 Pi/tanh(253/112*Pi) 3141596962915738 l004 Pi/tanh(192/85*Pi) 3141596962925348 r005 Re(z^2+c),c=-79/102+2/47*I,n=18 3141596965199857 m002 Pi+(4*Tanh[Pi])/Pi^12 3141596968411392 l004 Pi/tanh(131/58*Pi) 3141596969090221 m005 (7/18+1/6*5^(1/2))/(1/7*2^(1/2)-4/9) 3141596973518986 l005 ln(sec(307/101)) 3141596973666593 l004 Pi/tanh(201/89*Pi) 3141596974206187 r009 Re(z^3+c),c=-53/126+15/47*I,n=4 3141596974944290 l005 ln(sec(253/78)) 3141596976208901 l004 Pi/tanh(271/120*Pi) 3141596976754862 l005 ln(sec(1067/112)) 3141596981333355 m002 -4/Pi^12-Pi 3141596983516101 l004 Pi/tanh(70/31*Pi) 3141596985583886 r005 Re(z^2+c),c=-7/25+11/29*I,n=4 3141596986369019 m001 1/FransenRobinson/exp(Champernowne)/Zeta(9) 3141596986863751 m001 (exp(1)+BesselK(1,1))/(-GAMMA(7/12)+Bloch) 3141596988834108 m004 -100*Pi-Log[Sqrt[5]*Pi]/(4*E^(Sqrt[5]*Pi)) 3141596992573032 l004 Pi/tanh(219/97*Pi) 3141596993081545 l005 ln(sec(886/93)) 3141596993263043 l005 ln(sec(386/119)) 3141596995672335 l005 ln(sec(231/76)) 3141596996833582 l004 Pi/tanh(149/66*Pi) 3141596997527222 m002 Pi+(4*Coth[Pi])/Pi^12 3141597000929335 l004 Pi/tanh(228/101*Pi) 3141597002656275 m002 3/(E^Pi*Pi^9)+Pi 3141597005252303 a007 Real Root Of 563*x^4+601*x^3-448*x^2-996*x+333 3141597008663267 l004 Pi/tanh(79/35*Pi) 3141597009036075 l005 ln(sec(289/31)) 3141597015244247 s002 sum(A204733[n]/(pi^n-1),n=1..infinity) 3141597015841851 l004 Pi/tanh(246/109*Pi) 3141597017279535 h001 (5/7*exp(1)+1/6)/(8/9*exp(2)+1/7) 3141597017818922 r005 Im(z^2+c),c=-9/31+40/63*I,n=25 3141597017880262 l005 ln(sec(705/74)) 3141597019241248 l004 Pi/tanh(167/74*Pi) 3141597022522822 l004 Pi/tanh(255/113*Pi) 3141597024022359 r005 Re(z^2+c),c=-29/94+10/19*I,n=48 3141597026342595 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/3 3141597026349515 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/3 3141597028274365 l005 ln(sec(133/41)) 3141597028756181 l004 Pi/tanh(88/39*Pi) 3141597028885811 s001 sum(exp(-Pi/2)^(n-1)*A166021[n],n=1..infinity) 3141597037360628 l004 Pi/tanh(185/82*Pi) 3141597039796437 l005 ln(sec(155/51)) 3141597043727377 l006 ln(277/6410) 3141597045179295 l004 Pi/tanh(97/43*Pi) 3141597052315110 l004 Pi/tanh(203/90*Pi) 3141597053210461 m001 Bloch+ReciprocalLucas^Backhouse 3141597058853777 l004 Pi/tanh(106/47*Pi) 3141597060054683 l005 ln(sec(524/55)) 3141597061450307 m001 (Artin-ZetaQ(3))/(ln(2)-AlladiGrinstead) 3141597064867237 l004 Pi/tanh(221/98*Pi) 3141597070416321 l004 Pi/tanh(115/51*Pi) 3141597070567779 l005 ln(sec(839/90)) 3141597073914638 a007 Real Root Of -246*x^4-364*x^3+902*x^2-996*x+645 3141597074265334 l006 ln(6662/9121) 3141597075552816 l004 Pi/tanh(239/106*Pi) 3141597077069734 l005 ln(sec(279/86)) 3141597080321085 l004 Pi/tanh(124/55*Pi) 3141597083677005 l005 ln(sec(234/77)) 3141597084759352 l004 Pi/tanh(257/114*Pi) 3141597085474379 m005 (1/2*Pi+7/12)/(3/11*Pi+6) 3141597088900727 l004 Pi/tanh(133/59*Pi) 3141597092073544 a007 Real Root Of 593*x^4-314*x^3+550*x^2-835*x+212 3141597092443267 m002 Pi+(Log[Pi]*Sech[Pi])/(E^Pi*Pi^6) 3141597094575500 l005 ln(sec(867/91)) 3141597096404485 l004 Pi/tanh(142/63*Pi) 3141597098571681 p002 log(16/13-5^(1/2)) 3141597101240770 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/4 3141597101244289 m004 -100*Pi-Tanh[Sqrt[5]*Pi]/(2*E^(Sqrt[5]*Pi)) 3141597101247809 m004 -100*Pi-Sinh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141597101247809 m004 -100*Pi-Sech[Sqrt[5]*Pi]/4 3141597101251328 m004 -1/(2*E^(Sqrt[5]*Pi))-100*Pi 3141597101254847 m004 -100*Pi-Cosh[Sqrt[5]*Pi]/E^(2*Sqrt[5]*Pi) 3141597101254847 m004 -100*Pi-Csch[Sqrt[5]*Pi]/4 3141597102941049 r005 Re(z^2+c),c=-15/38+7/32*I,n=22 3141597103022783 l004 Pi/tanh(151/67*Pi) 3141597103158523 l005 ln(sec(550/59)) 3141597103839933 m001 (FeigenbaumKappa+Weierstrass)/(Pi-Psi(2,1/3)) 3141597105525957 l005 ln(sec(313/103)) 3141597107663944 m002 Pi+Log[Pi]^2/Pi^11 3141597108591622 h001 (8/11*exp(1)+9/10)/(1/12*exp(2)+3/10) 3141597108903612 l004 Pi/tanh(160/71*Pi) 3141597109052894 m002 Pi+(Csch[Pi]*Log[Pi])/(E^Pi*Pi^6) 3141597113642119 k007 concat of cont frac of 3141597114163725 l004 Pi/tanh(169/75*Pi) 3141597118896467 l004 Pi/tanh(178/79*Pi) 3141597121882704 l005 ln(sec(146/45)) 3141597123177360 l004 Pi/tanh(187/83*Pi) 3141597127068163 l004 Pi/tanh(196/87*Pi) 3141597129234986 p003 LerchPhi(1/8,2,136/239) 3141597130619871 l004 Pi/tanh(205/91*Pi) 3141597133288266 p002 log(11^(2/3)/(3^(2/3)-7)) 3141597133874961 l004 Pi/tanh(214/95*Pi) 3141597136869101 l004 Pi/tanh(223/99*Pi) 3141597137062871 l005 ln(sec(811/87)) 3141597139632461 l004 Pi/tanh(232/103*Pi) 3141597142190731 l004 Pi/tanh(241/107*Pi) 3141597142500217 a007 Real Root Of -349*x^4-757*x^3+942*x^2-176*x+674 3141597144565926 l004 Pi/tanh(250/111*Pi) 3141597146777019 l004 Pi/tanh(259/115*Pi) 3141597147707488 l005 ln(sec(343/36)) 3141597148840448 l004 Pi/tanh(268/119*Pi) 3141597151962813 b008 Pi*Zeta[18+Sqrt[2]] 3141597154532422 l005 ln(sec(1072/115)) 3141597155565729 a008 Real Root of x^3-x^2+15*x+88 3141597156933283 p002 log(1/18*21^(1/2)-2^(1/3)) 3141597161685886 a007 Real Root Of 967*x^4+370*x^3+625*x^2-937*x-354 3141597163179796 l005 ln(sec(305/94)) 3141597169670740 m001 exp(GAMMA(1/12))/Paris^2*GAMMA(1/6)^2 3141597170707585 l005 ln(sec(79/26)) 3141597179524205 a003 cos(Pi*1/105)*cos(Pi*45/113) 3141597179580378 a007 Real Root Of 28*x^4+877*x^3-68*x^2+500*x+741 3141597183750985 p002 log(2^(1/4)/(6^(1/3)-3)) 3141597185513505 a007 Real Root Of -970*x^4+265*x^3+126*x^2+916*x+293 3141597186034371 p002 log(1/10*(3^(1/3)-10^(2/3)*3^(1/4))*10^(1/3)) 3141597187650789 m001 GAMMA(5/6)*(ln(5)+GAMMA(19/24)) 3141597188585218 r005 Im(z^2+c),c=1/20+18/53*I,n=9 3141597190943362 m002 Pi+Tanh[Pi]/(E^Pi*Pi^8) 3141597201357694 l005 ln(sec(159/49)) 3141597202525831 l005 ln(sec(848/89)) 3141597204858053 p002 log(4^(2/3)/(12^(1/3)-23^(1/2))) 3141597204985250 a007 Real Root Of 76*x^4+149*x^3+356*x^2-900*x-314 3141597207921563 m002 1/(E^Pi*Pi^8)+Pi 3141597208571015 l004 Pi/tanh(9/4*Pi) 3141597209139271 l005 ln(sec(261/28)) 3141597211506154 m001 Trott^exp(1)+Pi 3141597212222551 k007 concat of cont frac of 3141597216583639 m004 -100*Pi-1/(E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]) 3141597219848686 m001 sin(1/5*Pi)^exp(Pi)+Pi 3141597221843874 s002 sum(A278646[n]/((2^n-1)/n),n=1..infinity) 3141597235341771 l005 ln(sec(319/105)) 3141597236755790 l005 ln(sec(331/102)) 3141597240046399 l005 ln(sec(505/53)) 3141597241225133 k006 concat of cont frac of 3141597244630598 r005 Re(z^2+c),c=-19/56+19/43*I,n=47 3141597251459190 r005 Re(z^2+c),c=-7/12+5/18*I,n=7 3141597253544379 a007 Real Root Of 169*x^4+192*x^3-942*x^2+380*x-18 3141597254414537 p002 log(1/3*(15^(1/2)-9^(3/4))*3^(3/4)) 3141597256764979 l005 ln(sec(240/79)) 3141597259491392 m002 Pi+(5*Sech[Pi])/Pi^10 3141597264837219 a005 (1/sin(89/197*Pi))^699 3141597267290062 l005 ln(sec(1016/109)) 3141597269666127 l005 ln(sec(172/53)) 3141597270136814 l004 Pi/tanh(263/117*Pi) 3141597272331318 l004 Pi/tanh(254/113*Pi) 3141597274688047 l004 Pi/tanh(245/109*Pi) 3141597276726092 m002 Pi+(5*Csch[Pi])/Pi^10 3141597277161357 m003 -23/8+Sqrt[5]/4-2*Csch[1/2+Sqrt[5]/2] 3141597277225680 l004 Pi/tanh(236/105*Pi) 3141597277933241 p001 sum(1/(614*n+323)/(24^n),n=0..infinity) 3141597279616313 p002 log(1/5*(11^(1/3)-2*5^(1/2))*5^(1/2)) 3141597279965877 l004 Pi/tanh(227/101*Pi) 3141597282933900 l004 Pi/tanh(218/97*Pi) 3141597283634124 r005 Re(z^2+c),c=-25/42+22/63*I,n=9 3141597286159394 l004 Pi/tanh(209/93*Pi) 3141597286598314 r005 Im(z^2+c),c=-65/106+2/33*I,n=32 3141597287493759 r005 Re(z^2+c),c=13/42+6/53*I,n=41 3141597287520697 l005 ln(sec(755/81)) 3141597288086320 l005 ln(sec(667/70)) 3141597288545910 m001 HeathBrownMoroz^Si(Pi)+Pi 3141597289677379 l004 Pi/tanh(200/89*Pi) 3141597291766565 p002 log(1/3*(11^(1/3)-3^(1/2)*12^(1/3))*3^(1/2)) 3141597292824460 m001 BesselK(0,1)/exp(FeigenbaumD)/Catalan 3141597293529530 l004 Pi/tanh(191/85*Pi) 3141597297765830 l004 Pi/tanh(182/81*Pi) 3141597299064208 m001 (Cahen+Conway)/(Kolakoski-ZetaP(3)) 3141597299429347 l005 ln(sec(161/53)) 3141597300107133 m002 Pi+(4*ProductLog[Pi])/Pi^12 3141597300341346 l005 ln(sec(357/110)) 3141597302446758 l004 Pi/tanh(173/77*Pi) 3141597304698703 p002 log(1/9*(10-9^(2/3)*11^(1/2))*9^(1/3)) 3141597307646185 l004 Pi/tanh(164/73*Pi) 3141597313455311 l004 Pi/tanh(155/69*Pi) 3141597314169807 r002 36th iterates of z^2 + 3141597315327114 h001 (2/9*exp(1)+1/6)/(4/7*exp(1)+9/10) 3141597315398796 a009 1/17*(13^(1/2)*17^(1/2)-7^(1/3))*17^(1/2) 3141597316278662 p002 log(1/14*5^(2/3)-17/14) 3141597317536725 l005 ln(sec(829/87)) 3141597319988051 l004 Pi/tanh(146/65*Pi) 3141597320027896 m001 Lehmer^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141597320960590 p002 log(12^(3/4)/(2^(2/3)-8)) 3141597324768193 p002 log(6^(2/3)*(10^(2/3)-11^(2/3))) 3141597327388583 l004 Pi/tanh(137/61*Pi) 3141597329001096 l005 ln(sec(185/57)) 3141597329336525 l005 ln(sec(494/53)) 3141597331351641 r005 Im(z^2+c),c=-125/114+1/27*I,n=23 3141597331470160 l004 Pi/tanh(265/118*Pi) 3141597335842111 l004 Pi/tanh(128/57*Pi) 3141597337438133 l005 ln(sec(991/104)) 3141597337634225 m001 1/ln(Rabbit)^2/Paris^2*Ei(1)^2 3141597339899138 r002 6i'th iterates of 2*x/(1-x^2) of 3141597340536565 l004 Pi/tanh(247/110*Pi) 3141597341152918 p002 log(1/16*7^(1/3)-9/8) 3141597341851297 l005 ln(sec(243/80)) 3141597345590570 l004 Pi/tanh(119/53*Pi) 3141597348318049 p002 log(1/17*(14^(1/2)-17^(1/2)*7^(1/3))*17^(1/2)) 3141597349787223 p002 log(21^(1/2)/(3^(1/3)-6)) 3141597351047076 l004 Pi/tanh(229/102*Pi) 3141597355837232 l005 ln(sec(383/118)) 3141597356187615 a001 4181/2207*18^(7/40) 3141597356683138 p002 log(1/5*6^(1/2)-5^(1/4)) 3141597356956155 l004 Pi/tanh(110/49*Pi) 3141597362971498 l005 ln(sec(325/107)) 3141597363376544 l004 Pi/tanh(211/94*Pi) 3141597370377602 l004 Pi/tanh(101/45*Pi) 3141597371331695 p002 log(1/12*(1-3^(1/3)*12^(1/3))*12^(2/3)) 3141597373060084 l005 ln(sec(727/78)) 3141597378041825 l004 Pi/tanh(193/86*Pi) 3141597379315503 m002 Pi+5/(Pi^12*Log[Pi]) 3141597381018068 l005 ln(sec(198/61)) 3141597381251262 m001 (Khinchin+Niven)/(ln(2)+CareFree) 3141597386213583 r005 Re(z^2+c),c=-17/50+19/43*I,n=34 3141597386468114 l004 Pi/tanh(92/41*Pi) 3141597387721590 p002 log(5^(3/4)/(3^(1/4)-10^(2/3))) 3141597392567054 l004 Pi/tanh(267/119*Pi) 3141597395677955 l005 ln(sec(960/103)) 3141597395776058 l004 Pi/tanh(175/78*Pi) 3141597399098968 l004 Pi/tanh(258/115*Pi) 3141597401192388 m004 -3-Pi+3*Tanh[Sqrt[5]*Pi] 3141597401196145 m004 6/E^(2*Sqrt[5]*Pi)+Pi 3141597401199901 m004 -3+Pi+3*Coth[Sqrt[5]*Pi] 3141597406111650 l004 Pi/tanh(83/37*Pi) 3141597407015662 m001 Trott2nd^Magata+Pi 3141597413660199 l004 Pi/tanh(240/107*Pi) 3141597415836247 a007 Real Root Of -205*x^4-490*x^3+308*x^2-346*x+649 3141597417654989 l004 Pi/tanh(157/70*Pi) 3141597421808466 l004 Pi/tanh(231/103*Pi) 3141597425000373 a007 Real Root Of 396*x^4+948*x^3-900*x^2+300*x+645 3141597425969733 l005 ln(sec(82/27)) 3141597426989731 l005 ln(sec(211/65)) 3141597430321839 p002 log(3^(1/2)-3^(11/12)) 3141597430630865 l004 Pi/tanh(74/33*Pi) 3141597431278248 r005 Re(z^2+c),c=-31/82+7/23*I,n=24 3141597439448163 a001 2889/305*34^(17/50) 3141597439475795 r005 Im(z^2+c),c=-11/31+25/46*I,n=44 3141597440214646 l004 Pi/tanh(213/95*Pi) 3141597440287214 l005 ln(sec(162/17)) 3141597443094358 r005 Im(z^2+c),c=-5/17+20/37*I,n=27 3141597445323529 l004 Pi/tanh(139/62*Pi) 3141597448497935 m001 ZetaQ(3)^Sierpinski+Pi 3141597450662796 l004 Pi/tanh(204/91*Pi) 3141597453058205 a007 Real Root Of 31*x^4+972*x^3-47*x^2+376*x-564 3141597453423748 l004 Pi/tanh(269/120*Pi) 3141597459297903 r005 Im(z^2+c),c=-17/14+32/97*I,n=5 3141597462097746 l004 Pi/tanh(65/29*Pi) 3141597462520173 m001 (GaussAGM+Robbin)/(ln(gamma)+GAMMA(23/24)) 3141597462527154 p002 log(13^(1/2)/(2^(1/2)-5)) 3141597465826917 p002 log(1/12*(2-3^(2/3)*12^(1/4))*12^(3/4)) 3141597466769439 l005 ln(sec(233/25)) 3141597467015031 a001 1364/29*(1/2*5^(1/2)+1/2)*29^(8/19) 3141597467022053 m004 -1+10*Pi*Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141597467782956 r005 Im(z^2+c),c=-13/98+17/39*I,n=31 3141597467910360 l005 ln(sec(224/69)) 3141597469367570 r005 Im(z^2+c),c=7/26+11/62*I,n=19 3141597471408710 l004 Pi/tanh(251/112*Pi) 3141597473287441 r009 Im(z^3+c),c=-17/74+11/35*I,n=4 3141597474666187 l004 Pi/tanh(186/83*Pi) 3141597477788670 r005 Re(z^2+c),c=19/60+7/59*I,n=52 3141597481429458 l004 Pi/tanh(121/54*Pi) 3141597481798322 p002 log(1/11*(12^(1/4)-9^(3/4))*11^(1/2)) 3141597485008011 m004 Pi+ProductLog[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141597485023303 m004 Pi+Csch[Sqrt[5]*Pi]^2*ProductLog[Sqrt[5]*Pi] 3141597485264705 r005 Im(z^2+c),c=1/52+22/61*I,n=24 3141597485933760 m001 1/GAMMA(5/6)/GAMMA(1/24)/ln(cos(Pi/12))^2 3141597488425860 l005 ln(sec(331/109)) 3141597488545394 l004 Pi/tanh(177/79*Pi) 3141597490091361 m004 -100*Pi-Cos[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 3141597492021070 l006 ln(348/8053) 3141597492244343 l004 Pi/tanh(233/104*Pi) 3141597492969205 m001 (Ei(1)-Zeta(1/2))/(CopelandErdos+FeigenbaumB) 3141597494119983 r009 Im(z^3+c),c=-61/126+7/48*I,n=25 3141597498726024 s004 Continued Fraction of A184863 3141597498726024 s004 Continued fraction of A184863 3141597502873081 m005 (-23/4+1/4*5^(1/2))/(4/7*Pi-1/7) 3141597503951632 l004 Pi/tanh(56/25*Pi) 3141597504567867 l005 ln(sec(237/73)) 3141597509124454 l005 ln(sec(249/82)) 3141597510213113 k006 concat of cont frac of 3141597515185957 m001 (MertensB1+PlouffeB)/(exp(Pi)+FellerTornier) 3141597516666496 l004 Pi/tanh(215/96*Pi) 3141597521151491 l004 Pi/tanh(159/71*Pi) 3141597522512386 p002 log(1/3*(2-14^(1/2))*3^(1/2)) 3141597524834576 l004 Pi/tanh(262/117*Pi) 3141597528387074 m001 CopelandErdos^exp(-1/2*Pi)/CopelandErdos 3141597530524808 l004 Pi/tanh(103/46*Pi) 3141597531120596 p002 log(13/5-13^(1/2)) 3141597532631021 p002 log(17/22-10^(1/4)) 3141597532740923 m002 E^Pi/3+Pi^2/E^Pi+Pi^5 3141597532886043 p002 log(2^(1/4)*(10^(1/3)-3)) 3141597533124877 l005 ln(sec(1115/117)) 3141597536423468 l004 Pi/tanh(253/113*Pi) 3141597537594614 l005 ln(sec(250/77)) 3141597540471327 m001 (2^(1/3)-Champernowne)/(Otter+Robbin) 3141597540477425 l004 Pi/tanh(150/67*Pi) 3141597543131851 l005 ln(sec(904/97)) 3141597543385420 m002 Pi+ProductLog[Pi]/(E^Pi*Pi^8) 3141597544087292 p002 log(7^(1/3)/(2^(1/3)-10^(1/2))) 3141597545688011 l004 Pi/tanh(197/88*Pi) 3141597548893604 l004 Pi/tanh(244/109*Pi) 3141597549040826 l005 ln(sec(953/100)) 3141597550341965 l005 ln(sec(167/55)) 3141597560522018 r009 Re(z^3+c),c=-27/46+14/45*I,n=42 3141597562349427 l004 Pi/tanh(47/21*Pi) 3141597563919983 a007 Real Root Of 367*x^4+898*x^3-964*x^2-210*x+949 3141597567503946 l005 ln(sec(263/81)) 3141597569858293 l005 ln(sec(671/72)) 3141597571542773 l005 ln(sec(791/83)) 3141597573548829 m009 (5/6*Psi(1,2/3)-2/5)/(32*Catalan+4*Pi^2-1/4) 3141597575176541 m001 (Ei(1)+cos(1/12*Pi))/(Pi^(1/2)-FeigenbaumD) 3141597576912557 l004 Pi/tanh(226/101*Pi) 3141597580742533 l004 Pi/tanh(179/80*Pi) 3141597581211380 r005 Im(z^2+c),c=-47/110+8/15*I,n=36 3141597583949769 m001 1/Zeta(1,2)*LandauRamanujan^2*exp(cos(Pi/5))^2 3141597586409824 m005 (1/3*gamma-1/7)/(65/88+3/8*5^(1/2)) 3141597587305849 l004 Pi/tanh(132/59*Pi) 3141597587938382 r005 Re(z^2+c),c=8/23+7/39*I,n=28 3141597591320500 l005 ln(sec(252/83)) 3141597591724793 l005 ln(sec(1109/119)) 3141597592725472 l004 Pi/tanh(217/97*Pi) 3141597594716898 l005 ln(sec(276/85)) 3141597601151949 l004 Pi/tanh(85/38*Pi) 3141597602757477 m005 (-3/4+1/4*5^(1/2))/(3/11*2^(1/2)+2/9) 3141597605784604 l005 ln(sec(629/66)) 3141597607687187 m002 Pi+(4*Log[Pi])/Pi^12 3141597609450130 m004 -1+100*Pi*Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141597609956172 l004 Pi/tanh(208/93*Pi) 3141597611720385 l005 ln(sec(337/111)) 3141597616048240 l004 Pi/tanh(123/55*Pi) 3141597616879656 p002 log(1/5*(23^(1/2)-7^(1/2)*5^(2/3))*5^(1/3)) 3141597617220689 a007 Real Root Of -254*x^4+527*x^3+577*x^2+984*x+271 3141597619582025 l005 ln(sec(289/89)) 3141597623550414 m001 GAMMA(23/24)^2/Lehmer/exp(sqrt(3)) 3141597623928245 l004 Pi/tanh(161/72*Pi) 3141597625263671 m004 -15*Pi+5*Pi*Tanh[Sqrt[5]*Pi]^2 3141597625267605 m004 -20*Pi+10*Pi*Tanh[Sqrt[5]*Pi] 3141597625271538 m004 10*Pi+5*Pi*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141597625275472 m004 (Pi*Coth[Sqrt[5]*Pi])/10 3141597625277439 m004 25*E^(2*Sqrt[5]*Pi)*Pi*Csch[Sqrt[5]*Pi]^2 3141597625279406 m004 10*Pi+5*Pi*Csch[Sqrt[5]*Pi]^2 3141597625364033 l005 ln(sec(438/47)) 3141597628804166 l004 Pi/tanh(199/89*Pi) 3141597630609350 l005 ln(sec(1096/115)) 3141597632118839 l004 Pi/tanh(237/106*Pi) 3141597637363711 m005 (-9/44+1/4*5^(1/2))/(1/3*exp(1)+2/9) 3141597637428971 r005 Re(z^2+c),c=-17/60+10/27*I,n=4 3141597640548186 p002 log(1/6*(7^(2/3)-6^(1/4)*5^(3/4))*6^(3/4)) 3141597641100814 m004 -1-100*Pi*Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141597642390345 l005 ln(sec(302/93)) 3141597649508209 l004 Pi/tanh(38/17*Pi) 3141597652644459 a001 4/987*832040^(15/47) 3141597660051881 l005 ln(sec(1081/116)) 3141597660830810 r005 Re(z^2+c),c=35/94+13/37*I,n=19 3141597660938971 m002 E^Pi/(5*Pi^12)+Pi 3141597661354986 p003 LerchPhi(1/12,4,117/49) 3141597663386727 l005 ln(sec(315/97)) 3141597664194418 l005 ln(sec(467/49)) 3141597665152689 m006 (2*Pi^2-1)/(2/3*ln(Pi)-1/6) 3141597665590461 l004 Pi/tanh(257/115*Pi) 3141597665686080 a005 (1/cos(7/117*Pi))^1749 3141597668385504 l004 Pi/tanh(219/98*Pi) 3141597672356452 l004 Pi/tanh(181/81*Pi) 3141597672563688 l005 ln(sec(85/28)) 3141597678443062 l004 Pi/tanh(143/64*Pi) 3141597678712911 p002 log(10^(1/2)+3^(3/4)-12^(3/4)) 3141597682778684 l005 ln(sec(328/101)) 3141597682889300 l004 Pi/tanh(248/111*Pi) 3141597683783739 l005 ln(sec(643/69)) 3141597687798387 m001 Catalan^2*Tribonacci^2*exp(Zeta(3))^2 3141597688950079 l004 Pi/tanh(105/47*Pi) 3141597689510453 a007 Real Root Of 231*x^4+541*x^3-939*x^2-914*x+669 3141597692138820 m002 Pi+5/(Pi^12*ProductLog[Pi]) 3141597694176009 m001 Pi+HeathBrownMoroz^Tribonacci 3141597695360644 a007 Real Root Of -283*x^4-504*x^3+926*x^2-681*x+661 3141597696849649 l006 ln(1761/2411) 3141597697699901 l004 Pi/tanh(172/77*Pi) 3141597700743228 l005 ln(sec(341/105)) 3141597701548086 l004 Pi/tanh(239/107*Pi) 3141597709303999 r009 Re(z^3+c),c=-43/94+14/37*I,n=30 3141597710547551 p002 log(6^(1/3)/(4^(2/3)-9^(2/3))) 3141597711438536 l004 Pi/tanh(67/30*Pi) 3141597712169088 l005 ln(sec(772/81)) 3141597713818640 r005 Re(z^2+c),c=-33/94+17/42*I,n=55 3141597714157774 l005 ln(sec(848/91)) 3141597714181621 m009 (4*Psi(1,1/3)-5/6)/(4*Psi(1,2/3)+1/3) 3141597714980610 m002 Pi^3+(Pi^2*Tanh[Pi])/24 3141597717432273 l005 ln(sec(354/109)) 3141597721733603 l004 Pi/tanh(230/103*Pi) 3141597722936804 r005 Re(z^2+c),c=11/34+12/59*I,n=8 3141597724972499 m002 -2+(3*Coth[Pi])/Pi^6-Log[Pi] 3141597725634077 r002 21th iterates of z^2 + 3141597725970526 l004 Pi/tanh(163/73*Pi) 3141597729735590 l004 Pi/tanh(259/116*Pi) 3141597732772392 l005 ln(sec(1053/113)) 3141597732874659 l005 ln(sec(343/113)) 3141597732976927 l005 ln(sec(367/113)) 3141597733079196 l005 ln(sec(1077/113)) 3141597736133843 l004 Pi/tanh(96/43*Pi) 3141597742390694 a007 Real Root Of 210*x^4+565*x^3+101*x^2+941*x-978 3141597743641048 l004 Pi/tanh(221/99*Pi) 3141597745559268 m001 ((1+3^(1/2))^(1/2)+Bloch)/(Landau-PlouffeB) 3141597747490935 l005 ln(sec(380/117)) 3141597747699029 b008 ArcCsch[Cos[2]^2/2] 3141597749413034 l004 Pi/tanh(125/56*Pi) 3141597752860528 l005 ln(sec(258/85)) 3141597757706014 l004 Pi/tanh(154/69*Pi) 3141597759146557 a003 sin(Pi*10/93)*sin(Pi*25/63) 3141597760143009 m001 (3^(1/2)+Zeta(1/2))/(-Totient+Weierstrass) 3141597763377266 l004 Pi/tanh(183/82*Pi) 3141597763831505 p002 log(5^(1/2)/(3^(2/3)-7^(3/4))) 3141597764665641 m001 1/FeigenbaumAlpha^2*Backhouse*ln(sin(Pi/12)) 3141597767500337 l004 Pi/tanh(212/95*Pi) 3141597770633038 l004 Pi/tanh(241/108*Pi) 3141597773083235 m001 GAMMA(13/24)/KhinchinLevy/TreeGrowth2nd 3141597774043517 m001 (exp(Pi)+2^(1/2))/(-GAMMA(3/4)+Conway) 3141597774743685 p002 log(14^(1/2)/(3^(3/4)-6)) 3141597774996889 p002 log(4^(2/3)/(11^(1/4)-9^(2/3))) 3141597776088406 m005 (1/2*Catalan+2/5)/(2/3*Catalan-7/12) 3141597783528892 m004 -1-10*Pi*Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141597786298184 l005 ln(sec(305/32)) 3141597786744760 p002 log(12^(3/4)*(3^(2/3)-5^(1/2))) 3141597788386957 l006 ln(419/9696) 3141597790633202 p002 log(6^(2/3)/(7^(1/3)-9^(3/4))) 3141597792656273 l005 ln(sec(173/57)) 3141597792957442 m001 (ArtinRank2-Riemann2ndZero)/(Sarnak-ZetaP(4)) 3141597793584182 l004 Pi/tanh(29/13*Pi) 3141597805048408 a003 cos(Pi*29/93)-sin(Pi*32/95) 3141597810316332 l005 ln(sec(205/22)) 3141597813758868 m001 1/Niven/ArtinRank2^2*ln(sinh(1))^2 3141597815615993 l004 Pi/tanh(252/113*Pi) 3141597816670379 a007 Real Root Of 163*x^4-735*x^3-574*x^2-653*x+283 3141597818487056 l004 Pi/tanh(223/100*Pi) 3141597822218522 l004 Pi/tanh(194/87*Pi) 3141597827265327 l004 Pi/tanh(165/74*Pi) 3141597832218146 l005 ln(sec(261/86)) 3141597833992557 a007 Real Root Of -223*x^4+863*x^3-742*x^2+766*x-192 3141597834471757 l004 Pi/tanh(136/61*Pi) 3141597838607861 p002 log(1/12*(19^(1/2)-2^(3/4)*12^(3/4))*12^(1/4)) 3141597838660926 m001 (2^(1/3))^2*Conway/ln(GAMMA(11/24)) 3141597839369915 l004 Pi/tanh(243/109*Pi) 3141597840891484 p002 log(11^(1/4)/(2^(1/4)-3)) 3141597840905345 l005 ln(sec(1058/111)) 3141597843246087 r005 Im(z^2+c),c=-5/8+45/101*I,n=48 3141597845601340 l004 Pi/tanh(107/48*Pi) 3141597850416413 r009 Re(z^3+c),c=-14/31+16/43*I,n=33 3141597851911685 l005 ln(sec(349/115)) 3141597853796153 l004 Pi/tanh(185/83*Pi) 3141597856157092 a003 cos(Pi*24/77)-sin(Pi*30/89) 3141597857133336 l004 Pi/tanh(263/118*Pi) 3141597863148473 l005 ln(sec(753/79)) 3141597865055791 l004 Pi/tanh(78/35*Pi) 3141597867069481 m002 Pi+Log[Pi]/(E^Pi*Pi^8) 3141597873270600 r005 Re(z^2+c),c=-17/22+6/121*I,n=16 3141597875234860 l004 Pi/tanh(205/92*Pi) 3141597875675998 r009 Re(z^3+c),c=-16/31+18/47*I,n=48 3141597876366607 a001 5473/2889*18^(7/40) 3141597876946300 m001 (Pi^(1/2)-Lehmer)/(ZetaP(2)-ZetaP(4)) 3141597877856090 m001 BesselI(0,1)*(sin(1)+GAMMA(13/24)) 3141597880875154 m009 (16/5*Catalan+2/5*Pi^2+5)/(2/5*Pi^2-1/6) 3141597881495015 l004 Pi/tanh(127/57*Pi) 3141597888476917 m005 (1/4*gamma-2)/(4*2^(1/2)+1/4) 3141597888794782 l004 Pi/tanh(176/79*Pi) 3141597892918951 l004 Pi/tanh(225/101*Pi) 3141597893170829 l005 ln(sec(997/107)) 3141597901077807 a005 (1/cos(11/90*Pi))^807 3141597902838240 r008 a(0)=0,K{-n^6,-77-86*n^3+62*n^2+69*n} 3141597903096270 m001 (Pi^(1/2)-Trott2nd)/(gamma(2)+BesselI(1,1)) 3141597907755266 l004 Pi/tanh(49/22*Pi) 3141597907983220 p002 log(7/(11^(3/4)-13)) 3141597908242442 r005 Re(z^2+c),c=29/94+1/9*I,n=33 3141597910644212 l005 ln(sec(88/29)) 3141597914777517 l005 ln(sec(792/85)) 3141597915917400 p002 log(1/18*6^(2/3)-2^(1/4)) 3141597915964600 l005 ln(sec(448/47)) 3141597920380388 l004 Pi/tanh(265/119*Pi) 3141597922345723 p002 log(9^(3/4)/(6^(3/4)-9)) 3141597923248036 l004 Pi/tanh(216/97*Pi) 3141597923928989 a007 Real Root Of 30*x^4+935*x^3-203*x^2+974*x-956 3141597925956530 r009 Re(z^3+c),c=-15/34+16/45*I,n=23 3141597927801242 l004 Pi/tanh(167/75*Pi) 3141597935896808 a007 Real Root Of 51*x^4-356*x^3-742*x^2-249*x+162 3141597936144658 l004 Pi/tanh(118/53*Pi) 3141597938835625 r005 Re(z^2+c),c=-69/94+3/59*I,n=8 3141597941385475 m001 Trott^Khinchin+Pi 3141597942123207 m001 1/KhintchineLevy/CareFree^2/ln(GAMMA(11/12)) 3141597943605290 l004 Pi/tanh(187/84*Pi) 3141597947047214 l004 Pi/tanh(256/115*Pi) 3141597951627931 l005 ln(sec(587/63)) 3141597952259715 a001 28657/15127*18^(7/40) 3141597954494924 l005 ln(sec(1039/109)) 3141597956384978 l004 Pi/tanh(69/31*Pi) 3141597956691443 m001 MertensB1^LaplaceLimit*LandauRamanujan 3141597959921450 h001 (3/8*exp(1)+3/8)/(5/9*exp(2)+1/3) 3141597961787441 m001 Pi+gamma(3)^ReciprocalLucas 3141597962198137 r005 Im(z^2+c),c=-67/82+1/61*I,n=60 3141597963332370 a001 75025/39603*18^(7/40) 3141597964947849 a001 98209/51841*18^(7/40) 3141597965183544 a001 514229/271443*18^(7/40) 3141597965217932 a001 1346269/710647*18^(7/40) 3141597965226049 a001 2178309/1149851*18^(7/40) 3141597965239184 a001 208010/109801*18^(7/40) 3141597965321756 m001 1/(2^(1/3))*exp(Si(Pi))^2/GAMMA(23/24) 3141597965329212 a001 317811/167761*18^(7/40) 3141597965946270 a001 121393/64079*18^(7/40) 3141597966932605 l004 Pi/tanh(227/102*Pi) 3141597967303353 a007 Real Root Of -27*x^4+124*x^3+708*x^2+352*x+593 3141597968591441 p002 log(1/7*(1-5^(2/3))*7^(2/3)) 3141597968857317 l005 ln(sec(355/117)) 3141597969806235 m001 HeathBrownMoroz^FeigenbaumC+Pi 3141597970175648 a001 11592/6119*18^(7/40) 3141597971544485 l004 Pi/tanh(158/71*Pi) 3141597972825501 m002 Pi+Tanh[Pi]/(2*Pi^10) 3141597974670021 h001 (2/7*exp(2)+1/5)/(11/12*exp(2)+7/12) 3141597975785958 l004 Pi/tanh(247/111*Pi) 3141597979882375 a007 Real Root Of -265*x^4-561*x^3+781*x^2+58*x+893 3141597981889817 l005 ln(sec(969/104)) 3141597981989471 m001 ZetaQ(4)^Ei(1)+Pi 3141597982758869 m002 Pi+Sinh[Pi]/(E^Pi*Pi^10) 3141597983322905 l004 Pi/tanh(89/40*Pi) 3141597983844362 l005 ln(sec(591/62)) 3141597985068882 p002 log(1/15*7^(1/3)-17/15) 3141597986181597 a007 Real Root Of 834*x^4-883*x^3+571*x^2-236*x-166 3141597988146877 l005 ln(sec(267/88)) 3141597990779412 m004 1000*Pi+3*Sech[Sqrt[5]*Pi] 3141597990783635 m004 -3/(5*E^(Sqrt[5]*Pi))-100*Pi 3141597990787858 m004 1000*Pi+3*Csch[Sqrt[5]*Pi] 3141597991757765 m006 (1/6*exp(2*Pi)+1/2)/(1/6*exp(Pi)-1) 3141597992729406 m002 1/(2*Pi^10)+Pi 3141597992737876 l004 Pi/tanh(198/89*Pi) 3141597995787455 m009 (1/4*Psi(1,3/4)-2/3)/(1/4*Psi(1,2/3)-2/3) 3141597996725043 m001 Trott^FeigenbaumD+Pi 3141597999164237 a001 17711/9349*18^(7/40) 3141598000368523 m001 arctan(1/3)-MasserGramain^Zeta(5) 3141598000435896 l004 Pi/tanh(109/49*Pi) 3141598001009621 a007 Real Root Of -555*x^4+90*x^3+54*x^2+80*x+28 3141598001937289 p002 log(1/21*(2-21^(1/2)*3^(1/3))*21^(1/2)) 3141598002699944 m002 Pi+Cosh[Pi]/(E^Pi*Pi^10) 3141598003094992 m001 1/Ei(1)*ln(Kolakoski)*sin(Pi/12) 3141598003545485 m006 (5/Pi-3/5)/(3/4*Pi+4/5) 3141598006847376 l004 Pi/tanh(238/107*Pi) 3141598012269963 l004 Pi/tanh(129/58*Pi) 3141598012517751 a005 (1/sin(100/209*Pi))^500 3141598020264428 m001 (3^(1/2)-ln(3))/(-Riemann2ndZero+Thue) 3141598020941307 l004 Pi/tanh(149/67*Pi) 3141598025599535 l005 ln(sec(734/77)) 3141598026554597 l005 ln(sec(179/59)) 3141598027568351 l004 Pi/tanh(169/76*Pi) 3141598028642694 l005 ln(sec(382/41)) 3141598032797787 l004 Pi/tanh(189/85*Pi) 3141598034185628 a001 76/55*832040^(11/48) 3141598034840474 r005 Re(z^2+c),c=-87/74+20/41*I,n=2 3141598035268184 p002 log(1/10*(2^(1/2)*10^(1/4)-7^(3/4))*10^(3/4)) 3141598037029562 l004 Pi/tanh(209/94*Pi) 3141598038516252 m001 GAMMA(7/12)^2*exp(GAMMA(1/12))^2*sinh(1)^2 3141598038663414 p002 log(1/6*(10^(1/3)*6^(1/4)-11^(2/3))*6^(3/4)) 3141598039506143 p002 log(1/3*11^(1/3)-1/3*12^(2/3)) 3141598040524311 l004 Pi/tanh(229/103*Pi) 3141598041672954 p002 log(6^(1/3)/(5^(1/4)-6^(2/3))) 3141598042116484 m009 (1/4*Psi(1,2/3)-2/3)/(3/10*Pi^2+1/5) 3141598043102373 m002 Pi+(5*Tanh[Pi])/Pi^12 3141598043459155 l004 Pi/tanh(249/112*Pi) 3141598050652835 p002 log(1/2*(4-9^(3/4))*2^(3/4)) 3141598053877201 l005 ln(sec(877/92)) 3141598056840913 m001 Gompertz^(Pi*csc(1/24*Pi)/GAMMA(23/24))+Pi 3141598058958065 p002 log(1/13*5^(2/3)-16/13) 3141598063269245 m002 -5/Pi^12-Pi 3141598064717662 p002 log(1/10*(5^(3/4)-9)*10^(1/4)) 3141598064734712 l005 ln(sec(270/89)) 3141598069872414 p002 log(1/3*10^(1/4)-1/3*23^(1/2)) 3141598074295651 l005 ln(sec(1020/107)) 3141598075591995 r005 Im(z^2+c),c=3/19+14/51*I,n=18 3141598077105725 l005 ln(sec(941/101)) 3141598077160885 l004 Pi/tanh(20/9*Pi) 3141598083511580 m002 Pi+(5*Coth[Pi])/Pi^12 3141598083739769 l005 ln(sec(361/119)) 3141598085033924 m001 (GolombDickman+LaplaceLimit)/(3^(1/3)-Si(Pi)) 3141598086148559 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 3141598086157156 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 3141598086980970 a007 Real Root Of 222*x^4+416*x^3-667*x^2+376*x-962 3141598087869873 b008 Pi*Zeta[16+Pi] 3141598088261954 p002 log(1/12*(13^(1/2)-6^(1/4)*12^(3/4))*12^(1/4)) 3141598089817009 m005 (1/2*Pi+1/5)/(-3/4+1/12*5^(1/2)) 3141598090797413 r005 Im(z^2+c),c=-1/44+19/53*I,n=5 3141598095126743 m001 cos(1)/CareFree^2/ln(sqrt(2)) 3141598099533798 m001 Trott^(2/3*Pi*3^(1/2)/GAMMA(2/3))+Pi 3141598101805782 m001 (ln(2)/ln(10))^Psi(1,1/3)+Pi 3141598105989923 r002 41th iterates of z^2 + 3141598109985854 p002 log(1/12*(2-3^(1/4)*12^(3/4))*12^(1/4)) 3141598110410467 l005 ln(sec(559/60)) 3141598110772307 l004 Pi/tanh(251/113*Pi) 3141598113690763 l004 Pi/tanh(231/104*Pi) 3141598117164221 l004 Pi/tanh(211/95*Pi) 3141598121367634 l004 Pi/tanh(191/86*Pi) 3141598123494747 b008 Pi*JacobiNS[Sqrt[2],-1/2] 3141598126558119 l004 Pi/tanh(171/77*Pi) 3141598131502316 b008 Pi*Sec[E^(-2*Pi)] 3141598133129614 l004 Pi/tanh(151/68*Pi) 3141598133726292 m001 LambertW(1)^2*Tribonacci^2/exp(sqrt(Pi))^2 3141598134608345 m001 Otter^(2^(1/3))-StronglyCareFree 3141598135296773 m005 (1/2*Zeta(3)+1/4)/(5/6*Pi+1/11) 3141598136738432 p002 log(1/2*12^(1/4)-1/2*15^(1/2)) 3141598140416657 l005 ln(sec(91/30)) 3141598140672163 p002 log(1/10*(15^(1/2)-11^(3/4))*10^(2/3)) 3141598141717841 l004 Pi/tanh(131/59*Pi) 3141598147082451 l004 Pi/tanh(242/109*Pi) 3141598148954671 m004 5*Pi+(5*Sqrt[5]*Pi)/3+4*Tanh[Sqrt[5]*Pi] 3141598153213518 l005 ln(sec(736/79)) 3141598153419436 l004 Pi/tanh(111/50*Pi) 3141598153819564 r005 Im(z^2+c),c=1/52+22/61*I,n=13 3141598161019513 l004 Pi/tanh(202/91*Pi) 3141598170302114 l004 Pi/tanh(91/41*Pi) 3141598170546670 l005 ln(sec(13/4)) 3141598175660628 m001 Lehmer^exp(Pi)+Pi 3141598177723138 l004 Pi/tanh(253/114*Pi) 3141598179543684 l005 ln(sec(913/98)) 3141598180671712 m002 Pi+(6*Sech[Pi])/Pi^10 3141598181895487 l004 Pi/tanh(162/73*Pi) 3141598186429034 l004 Pi/tanh(233/105*Pi) 3141598187914519 r005 Re(z^2+c),c=-17/46+22/59*I,n=15 3141598196785109 l004 Pi/tanh(71/32*Pi) 3141598197375671 l005 ln(sec(1090/117)) 3141598197854996 a001 6765/3571*18^(7/40) 3141598200800848 l005 ln(sec(143/15)) 3141598201353352 m002 Pi+(6*Csch[Pi])/Pi^10 3141598205938917 l004 Pi/tanh(264/119*Pi) 3141598207396293 r009 Re(z^3+c),c=-21/64+10/61*I,n=6 3141598209309637 l004 Pi/tanh(193/87*Pi) 3141598211207731 r005 Re(z^2+c),c=-75/106+4/19*I,n=11 3141598212090169 m004 -100*Pi-25*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 3141598212098966 m004 Pi+(Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 3141598212107762 m004 -100*Pi-25*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 3141598215201970 l005 ln(sec(276/91)) 3141598216609653 l004 Pi/tanh(122/55*Pi) 3141598222996314 r005 Re(z^2+c),c=-31/50+22/51*I,n=14 3141598223558541 m001 ln(sinh(1))*LambertW(1)^2/sqrt(1+sqrt(3)) 3141598223880400 m002 Pi+Tanh[Pi]/(6*Pi^9) 3141598224339792 r005 Re(z^2+c),c=-37/90+3/43*I,n=17 3141598224763295 l004 Pi/tanh(173/78*Pi) 3141598228021272 p002 log(1/10*(10^(1/4)-12^(3/4))*10^(1/3)) 3141598229208422 l004 Pi/tanh(224/101*Pi) 3141598235559317 p002 log(1/11*(5^(2/3)-9)*11^(1/4)) 3141598244309626 l004 Pi/tanh(51/23*Pi) 3141598244723721 m002 1/(6*Pi^9)+Pi 3141598244764700 p002 log(5^(1/3)*(12^(1/4)-6^(1/2))) 3141598246736182 m004 -125*Pi+1125*Pi*Coth[Sqrt[5]*Pi] 3141598249328436 a007 Real Root Of -510*x^4+528*x^3+592*x^2+882*x+240 3141598252261358 l005 ln(sec(185/61)) 3141598253945034 p002 log(5^(2/3)/(12^(1/3)-9^(3/4))) 3141598258736559 l004 Pi/tanh(235/106*Pi) 3141598260632974 p002 log(1/14*(5^(1/2)-6)*14^(1/2)) 3141598262740968 l004 Pi/tanh(184/83*Pi) 3141598269822416 l004 Pi/tanh(133/60*Pi) 3141598273231837 p002 log(5^(1/4)*(17^(1/2)-23^(1/2))) 3141598274793656 r005 Re(z^2+c),c=17/54+23/44*I,n=61 3141598275624504 m001 Pi+HeathBrownMoroz^MasserGramainDelta 3141598275888896 l004 Pi/tanh(215/97*Pi) 3141598280658320 s001 sum(1/10^(n-1)*A057466[n],n=1..infinity) 3141598280658320 s001 sum(1/10^n*A057466[n],n=1..infinity) 3141598280658320 s003 concatenated sequence A057466 3141598282571071 m001 (BesselI(1,2)-cos(1))/(FeigenbaumD+TwinPrimes) 3141598283428635 p002 log(1/6*(1-2^(1/2)*6^(1/2))*6^(1/2)) 3141598285740364 l004 Pi/tanh(82/37*Pi) 3141598286376346 m001 Trott2nd^ReciprocalFibonacci+Pi 3141598288360646 a007 Real Root Of -871*x^4+850*x^3-842*x^2+449*x+259 3141598289100182 l005 ln(sec(279/92)) 3141598289996999 r009 Re(z^3+c),c=-25/56+23/63*I,n=54 3141598290038903 l005 ln(sec(177/19)) 3141598293540952 a001 4/6765*13^(28/43) 3141598296619370 l004 Pi/tanh(195/88*Pi) 3141598297693170 m001 Si(Pi)/GaussKuzminWirsing^2/ln(Ei(1)) 3141598301529876 m001 (2^(1/2)-Ei(1))/(gamma(3)+GAMMA(7/12)) 3141598304415881 a001 8/969323029*123^(5/18) 3141598304525133 l004 Pi/tanh(113/51*Pi) 3141598310529996 l004 Pi/tanh(257/116*Pi) 3141598314970228 r005 Im(z^2+c),c=-16/27+3/52*I,n=41 3141598315245970 l004 Pi/tanh(144/65*Pi) 3141598317419468 l005 ln(sec(1125/118)) 3141598318382892 p002 log(1/3*(12^(1/3)-21^(1/2))*3^(1/4)) 3141598319340936 p002 log(1/10*(11^(3/4)-3^(2/3)*10^(3/4))*10^(1/4)) 3141598322177818 l004 Pi/tanh(175/79*Pi) 3141598324460645 m002 Pi+6/(Pi^12*Log[Pi]) 3141598327027697 l004 Pi/tanh(206/93*Pi) 3141598330597708 p002 log(1/9*11^(2/3)-14/9) 3141598330611110 l004 Pi/tanh(237/107*Pi) 3141598334555203 l005 ln(sec(982/103)) 3141598334732934 p002 log(1/12*(12^(1/3)-5^(1/2)*12^(1/4))*12^(3/4)) 3141598334991654 p002 log(1/9*(5^(2/3)-9^(2/3)*2^(3/4))*9^(1/3)) 3141598346115562 m001 (Kolakoski+Trott)/(2^(1/3)+Conway) 3141598349170459 m002 (Pi^3*Cosh[Pi])/Log[Pi]+ProductLog[Pi]/6 3141598349319414 m001 1/gamma*exp(cos(Pi/12))^3 3141598349461508 p002 log(6^(3/4)/(2^(1/4)-5)) 3141598349895790 r008 a(0)=3,K{-n^6,-8+5*n^3-n^2} 3141598354472740 l004 Pi/tanh(31/14*Pi) 3141598355077204 m001 1/GAMMA(11/24)/Magata^2*exp(GAMMA(5/12))^2 3141598356907459 m001 arctan(1/2)*FeigenbaumD*ln(sqrt(1+sqrt(3)))^2 3141598357593778 l005 ln(sec(839/88)) 3141598362121059 l005 ln(sec(94/31)) 3141598364503081 p003 LerchPhi(1/5,6,278/229) 3141598376382706 l004 Pi/tanh(259/117*Pi) 3141598378971634 m001 (Khinchin+Trott2nd)/(Psi(1,1/3)+Zeta(1/2)) 3141598379367253 l004 Pi/tanh(228/103*Pi) 3141598383293127 l004 Pi/tanh(197/89*Pi) 3141598386000792 m002 Pi+ProductLog[Pi]/(2*Pi^10) 3141598388689047 l004 Pi/tanh(166/75*Pi) 3141598388965960 l005 ln(sec(1034/111)) 3141598390219597 l005 ln(sec(696/73)) 3141598396570901 l004 Pi/tanh(135/61*Pi) 3141598402050783 l004 Pi/tanh(239/108*Pi) 3141598402652203 r005 Re(z^2+c),c=-23/82+37/64*I,n=60 3141598403984053 h001 (3/7*exp(1)+7/9)/(4/5*exp(2)+3/11) 3141598404291113 m001 (BesselK(1,1)+ZetaP(2))/(Ei(1)-Zeta(1/2)) 3141598409170767 l004 Pi/tanh(104/47*Pi) 3141598409558033 l005 ln(sec(857/92)) 3141598418796737 l004 Pi/tanh(177/80*Pi) 3141598419383474 p002 log(7^(1/3)/(3^(1/3)-5^(3/4))) 3141598420938991 m001 (3^(1/2)-Catalan)/(-AlladiGrinstead+Magata) 3141598422805198 l004 Pi/tanh(250/113*Pi) 3141598429004357 l006 ln(5665/7756) 3141598432534252 l004 Pi/tanh(73/33*Pi) 3141598433894049 b008 Pi*Zeta[11*Sqrt[3]] 3141598433910972 m004 -100*Pi-(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/6 3141598433915546 m004 -100*Pi-Log[Sqrt[5]*Pi]/(3*E^(Sqrt[5]*Pi)) 3141598433920120 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/6 3141598434274563 l005 ln(sec(285/94)) 3141598435148242 a007 Real Root Of -263*x^4-617*x^3+368*x^2-634*x+864 3141598439988400 l005 ln(sec(553/58)) 3141598440975678 l005 ln(sec(680/73)) 3141598441536444 m002 Pi+(2*Sech[Pi])/Pi^9 3141598441866435 l004 Pi/tanh(261/118*Pi) 3141598445493578 l004 Pi/tanh(188/85*Pi) 3141598450602395 p002 log(11^(2/3)-7^(11/12)) 3141598452345103 m002 4/(E^Pi*Pi^9)+Pi 3141598453732835 l004 Pi/tanh(115/52*Pi) 3141598461695642 p002 log(1/4*(10^(1/3)-5)*4^(1/4)) 3141598461736468 m002 Pi+(5*ProductLog[Pi])/Pi^12 3141598462201493 m001 (Si(Pi)-ln(3))/(Zeta(1/2)+Zeta(1,2)) 3141598463194207 m002 Pi+(2*Csch[Pi])/Pi^9 3141598463612151 l004 Pi/tanh(157/71*Pi) 3141598469327869 l004 Pi/tanh(199/90*Pi) 3141598469483623 a007 Real Root Of -873*x^4-896*x^3-249*x^2+900*x-28 3141598470029208 l005 ln(sec(191/63)) 3141598473053974 l004 Pi/tanh(241/109*Pi) 3141598476161414 l005 ln(sec(963/101)) 3141598477244813 m005 (1/3*Catalan-1/11)/(7/12*2^(1/2)+6) 3141598477612854 p002 log(1/4*5^(1/2)-6^(1/4)) 3141598480915742 m002 3/(E^(2*Pi)*Pi^6)+Pi 3141598483410942 r005 Re(z^2+c),c=-31/98+29/52*I,n=43 3141598484682624 p002 log(1/6*(10^(1/4)-3^(1/2)*6^(1/2))*6^(1/2)) 3141598486286524 r002 15th iterates of z^2 + 3141598490736412 l004 Pi/tanh(42/19*Pi) 3141598494798640 l005 ln(sec(503/54)) 3141598497025897 m001 (LambertW(1)+Ei(1,1))/(exp(1/Pi)+GAMMA(5/6)) 3141598501138756 p002 log(3^(2/3)-6^(1/2)*2^(1/3)) 3141598505570818 l005 ln(sec(288/95)) 3141598506980072 l004 Pi/tanh(263/119*Pi) 3141598509182336 p002 log(1/10*(3^(1/3)-6^(1/3)*10^(1/4))*10^(3/4)) 3141598510071474 l004 Pi/tanh(221/100*Pi) 3141598510614811 a001 1/64003*(1/2*5^(1/2)+1/2)^32*29^(8/19) 3141598511478761 m001 1/exp(GAMMA(2/3))^2/GAMMA(1/6)^2*Zeta(1/2) 3141598511916121 k002 Champernowne real with 4*n^2-2*n+29 3141598514616125 l004 Pi/tanh(179/81*Pi) 3141598521953639 l004 Pi/tanh(137/62*Pi) 3141598525221807 l005 ln(sec(410/43)) 3141598527620282 l004 Pi/tanh(232/105*Pi) 3141598529105971 m001 (GAMMA(11/12)+ZetaP(4))/(Chi(1)-sin(1)) 3141598532143941 p002 log(1/7*(6-7*7^(1/6))*7^(1/3)) 3141598533271035 b008 Pi*Zeta[7*E] 3141598535800426 l004 Pi/tanh(95/43*Pi) 3141598537863529 r005 Re(z^2+c),c=-39/110+19/34*I,n=22 3141598539225654 l005 ln(sec(829/89)) 3141598541556106 r005 Re(z^2+c),c=-49/122+5/29*I,n=26 3141598542983366 r005 Re(z^2+c),c=-51/122+11/64*I,n=7 3141598543619372 l004 Pi/tanh(243/110*Pi) 3141598545047983 m001 Pi/ln(2)*ln(10)/sin(1/5*Pi)/BesselI(1,1) 3141598548642976 l004 Pi/tanh(148/67*Pi) 3141598554721185 l004 Pi/tanh(201/91*Pi) 3141598558265291 l004 Pi/tanh(254/115*Pi) 3141598559102872 a001 341/36*4807526976^(4/11) 3141598561510292 p002 log(3^(2/3)/(5^(1/2)-7^(3/4))) 3141598568946552 l005 ln(sec(1087/114)) 3141598569075399 m005 (exp(1)-4)/(5*Catalan-1/2) 3141598571722706 l004 Pi/tanh(53/24*Pi) 3141598576020081 l005 ln(sec(97/32)) 3141598578087179 r005 Im(z^2+c),c=33/122+4/23*I,n=18 3141598579040582 m001 (cos(1/5*Pi)*3^(1/3)+exp(1/Pi))/cos(1/5*Pi) 3141598579040582 m001 (cos(Pi/5)*(3^(1/3))+exp(1/Pi))/cos(Pi/5) 3141598583791096 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/3 3141598583800481 m004 -100*Pi-Sech[Sqrt[5]*Pi]/3 3141598583805173 m004 -2/(3*E^(Sqrt[5]*Pi))-100*Pi 3141598583809866 m004 -100*Pi-Csch[Sqrt[5]*Pi]/3 3141598587082853 l004 Pi/tanh(223/101*Pi) 3141598591878576 l004 Pi/tanh(170/77*Pi) 3141598592091873 r005 Re(z^2+c),c=-19/21+11/40*I,n=44 3141598592111862 m002 Pi+2/(Pi^11*Log[Pi]) 3141598593346202 r005 Re(z^2+c),c=27/94+31/63*I,n=41 3141598593907480 m001 (-KhinchinLevy+Porter)/(BesselK(0,1)+Bloch) 3141598595546435 l005 ln(sec(677/71)) 3141598601028328 l004 Pi/tanh(117/53*Pi) 3141598601387740 p003 LerchPhi(1/25,4,136/181) 3141598602494004 m001 GaussKuzminWirsing^Psi(1,1/3)+Pi 3141598605901502 m001 1/ln(Zeta(3))*DuboisRaymond^2/cos(Pi/5)^2 3141598608192872 h005 exp(cos(Pi*12/59)+cos(Pi*7/18)) 3141598608267733 l005 ln(sec(326/35)) 3141598609633004 l004 Pi/tanh(181/82*Pi) 3141598611711729 l005 ln(sec(387/119)) 3141598613745933 l004 Pi/tanh(245/111*Pi) 3141598617167008 p002 log(5^(1/3)+2^(2/3)-7^(3/4)) 3141598623436735 m001 RenyiParking/Bloch^2*exp(sqrt(5)) 3141598623714931 m004 3+5*Pi+(5*Sqrt[5]*Pi)/3+Tanh[Sqrt[5]*Pi] 3141598625390970 l004 Pi/tanh(64/29*Pi) 3141598626287847 l005 ln(sec(944/99)) 3141598627518720 l005 ln(sec(374/115)) 3141598631334081 r005 Re(z^2+c),c=-15/22+22/95*I,n=26 3141598638360453 b008 Pi*Zeta[6,-1/10] 3141598639320026 a007 Real Root Of -364*x^4-825*x^3+776*x^2-671*x+110 3141598639471249 l004 Pi/tanh(203/92*Pi) 3141598639704850 r005 Re(z^2+c),c=9/28+7/58*I,n=61 3141598643697419 p002 log(1/12*(2-7^(3/4))*12^(2/3)) 3141598644499938 l005 ln(sec(361/111)) 3141598644809621 m001 Pi-ln(2)/ln(10)*gamma(2)*gamma(3) 3141598645632713 l005 ln(sec(294/97)) 3141598645963801 l004 Pi/tanh(139/63*Pi) 3141598648416845 b008 Pi*Zeta[19] 3141598652128193 l004 Pi/tanh(214/97*Pi) 3141598656168414 p002 log((7^(3/4)-21^(1/2))*13^(1/2)) 3141598656556553 m002 Pi+ProductLog[Pi]/(6*Pi^9) 3141598659204823 b008 (1+Sqrt[Pi])/2^Pi 3141598662289437 m004 -100*Pi-(Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/2 3141598662294191 m004 -100*Pi-Sin[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141598662298946 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/2 3141598662791199 l005 ln(sec(348/107)) 3141598663567213 l004 Pi/tanh(75/34*Pi) 3141598672980802 a001 1/5*1597^(3/49) 3141598673956016 l004 Pi/tanh(236/107*Pi) 3141598678800765 l004 Pi/tanh(161/73*Pi) 3141598680128553 l005 ln(sec(197/65)) 3141598680357328 l005 ln(sec(801/86)) 3141598681731435 p002 log(1/12*(4-7^(1/4)*12^(3/4))*12^(1/4)) 3141598682550093 l005 ln(sec(335/103)) 3141598683432871 l004 Pi/tanh(247/112*Pi) 3141598692112798 l004 Pi/tanh(86/39*Pi) 3141598697667776 r005 Im(z^2+c),c=-31/94+4/7*I,n=19 3141598698269423 r005 Re(z^2+c),c=33/94+12/59*I,n=20 3141598699848625 m002 Pi+6/(Pi^12*ProductLog[Pi]) 3141598702260861 p002 log(1/7*(5^(1/3)-11^(3/4))*7^(1/4)) 3141598703845280 l004 Pi/tanh(183/83*Pi) 3141598703960529 l005 ln(sec(322/99)) 3141598704351857 r005 Re(z^2+c),c=-12/31+33/59*I,n=63 3141598704775125 l005 ln(sec(267/28)) 3141598706624983 r009 Im(z^3+c),c=-14/29+7/32*I,n=10 3141598709093695 m005 (1/2*3^(1/2)+1/2)/(1/12*5^(1/2)-1/7) 3141598709934973 a007 Real Root Of 296*x^4+627*x^3-886*x^2+189*x-54 3141598710195951 m001 (Catalan-Si(Pi))/(-MertensB2+MertensB3) 3141598714263580 l004 Pi/tanh(97/44*Pi) 3141598714419156 l005 ln(sec(297/98)) 3141598714950561 m008 (2/3*Pi^5-5/6)/(1/4*Pi^2+4) 3141598719628192 p002 log(12^(3/4)-19^(1/2)*5^(1/3)) 3141598723257912 r005 Im(z^2+c),c=9/86+4/13*I,n=7 3141598723576783 l004 Pi/tanh(205/93*Pi) 3141598725770290 r005 Im(z^2+c),c=-25/98+24/31*I,n=16 3141598727238458 l005 ln(sec(309/95)) 3141598727512795 m001 (Tetranacci+ZetaP(4))/(gamma(1)-BesselI(1,1)) 3141598730208724 l005 ln(sec(475/51)) 3141598731951853 l004 Pi/tanh(108/49*Pi) 3141598732577241 m001 exp(Pi)*Totient+ThueMorse 3141598733202118 m002 Pi+Tanh[Pi]/(E^(2*Pi)*Pi^5) 3141598739523736 l004 Pi/tanh(227/103*Pi) 3141598746402682 l004 Pi/tanh(119/54*Pi) 3141598752107216 m001 (-Ei(1,1)+RenyiParking)/(Zeta(5)-exp(1)) 3141598752639174 l005 ln(sec(296/91)) 3141598752679644 l004 Pi/tanh(249/113*Pi) 3141598755071809 m001 Lehmer/exp(GaussKuzminWirsing)^2*Paris^2 3141598755951257 m002 1/(E^(2*Pi)*Pi^5)+Pi 3141598758430328 l004 Pi/tanh(130/59*Pi) 3141598759261624 l006 ln(3904/5345) 3141598760662484 r005 Re(z^2+c),c=37/126+3/29*I,n=34 3141598765462473 m002 Pi+Log[Pi]/(2*Pi^10) 3141598766735860 l005 ln(sec(1099/118)) 3141598768597122 l004 Pi/tanh(141/64*Pi) 3141598771385009 p002 log(1/14*7^(1/3)-8/7) 3141598776374854 p002 log(1/2*5^(1/3)-12^(1/4)) 3141598777234256 p001 sum((-1)^n/(567*n+418)/n/(32^n),n=1..infinity) 3141598777303895 l004 Pi/tanh(152/69*Pi) 3141598777315592 p002 log(1/6*(1-4^(3/4))*6^(2/3)) 3141598777395945 r009 Im(z^3+c),c=-23/52+8/39*I,n=25 3141598780466684 l005 ln(sec(283/87)) 3141598782389905 l005 ln(sec(100/33)) 3141598784844073 l004 Pi/tanh(163/74*Pi) 3141598785677416 l005 ln(sec(925/97)) 3141598791437394 l004 Pi/tanh(174/79*Pi) 3141598794650519 l005 ln(sec(624/67)) 3141598797251670 l004 Pi/tanh(185/84*Pi) 3141598801294390 a001 15127/1597*34^(17/50) 3141598801520660 p002 log(1/2*(10^(1/2)-19^(1/2))*2^(3/4)) 3141598802090859 p002 log(1/7*(11^(1/2)-12^(2/3))*7^(2/3)) 3141598802417271 l004 Pi/tanh(196/89*Pi) 3141598803891965 a007 Real Root Of 953*x^4+265*x^3-743*x^2-478*x+206 3141598807037014 l004 Pi/tanh(207/94*Pi) 3141598809603802 m001 (Psi(2,1/3)+gamma(3))/(GAMMA(5/6)+Kac) 3141598811085908 l005 ln(sec(270/83)) 3141598811193079 l004 Pi/tanh(218/99*Pi) 3141598813953563 l006 ln(6674/6695) 3141598814951938 l004 Pi/tanh(229/104*Pi) 3141598815385383 m005 (1/2*5^(1/2)-5/8)/(7/9*3^(1/2)+2/9) 3141598815845852 p002 log(1/20*7^(2/3)-2^(1/4)) 3141598818367935 l004 Pi/tanh(240/109*Pi) 3141598818738128 l005 ln(sec(658/69)) 3141598821485936 l004 Pi/tanh(251/114*Pi) 3141598823723832 m004 Pi+Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 3141598823743361 m004 Pi+Csch[Sqrt[5]*Pi]^2*Log[Sqrt[5]*Pi] 3141598824343303 l004 Pi/tanh(262/119*Pi) 3141598824686124 r009 Im(z^3+c),c=-17/60+8/27*I,n=14 3141598824858103 p002 log(11^(1/3)/(7^(1/3)-17^(1/2))) 3141598828562116 p002 log(1/19*(10^(1/4)-2^(1/2)*19^(1/2))*19^(1/2)) 3141598830301752 p002 log(1/2*11^(1/4)-1/2*6^(3/4)) 3141598834501197 l005 ln(sec(773/83)) 3141598835642892 p002 log(6^(1/3)/(10^(2/3)-12^(3/4))) 3141598838953776 p003 LerchPhi(1/16,6,239/197) 3141598844938722 l005 ln(sec(257/79)) 3141598846211535 m002 Pi+(5*Log[Pi])/Pi^12 3141598848002653 l005 ln(sec(1049/110)) 3141598849555495 l005 ln(sec(303/100)) 3141598854653734 r005 Im(z^2+c),c=-11/62+21/46*I,n=23 3141598858089715 m001 1/GAMMA(7/12)^2/GAMMA(11/24)^2*exp(Zeta(7)) 3141598860373073 m001 ZetaP(4)^FeigenbaumDelta+Pi 3141598861313360 p002 log(1/11*23^(1/2)-3^(1/3)) 3141598861337465 r005 Im(z^2+c),c=-13/25+18/37*I,n=32 3141598861580906 l005 ln(sec(922/99)) 3141598863419303 m001 GAMMA(5/6)+GAMMA(13/24)^(2^(1/2)) 3141598863419303 m001 GAMMA(5/6)+GAMMA(13/24)^sqrt(2) 3141598868191975 m004 10*Pi+(25*Pi)/E^(2*Sqrt[5]*Pi) 3141598868196892 m004 (-5*Pi)/2+(25*Pi*Coth[Sqrt[5]*Pi])/2 3141598876330228 a001 47/4*(1/2*5^(1/2)+1/2)^29*4^(14/23) 3141598878856016 p002 log(4^(3/4)/(2^(1/4)-4)) 3141598881114688 m001 Zeta(1,-1)^arctan(1/3)+FransenRobinson 3141598881180722 l005 ln(sec(1071/115)) 3141598882565351 l005 ln(sec(244/75)) 3141598882839652 l005 ln(sec(203/67)) 3141598887771852 r009 Re(z^3+c),c=-59/106+6/35*I,n=5 3141598889851647 l004 Pi/tanh(11/5*Pi) 3141598897488252 l005 ln(sec(391/41)) 3141598901068278 s002 sum(A068751[n]/((2^n+1)/n),n=1..infinity) 3141598901087593 m002 Pi+Sinh[Pi]/(2*Pi^12) 3141598902389447 m004 1000*Pi+(Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3141598903824602 a001 233/710647*47^(27/46) 3141598910514008 r005 Re(z^2+c),c=-37/90+1/14*I,n=15 3141598912776266 m002 E^Pi/(4*Pi^12)+Pi 3141598915206366 r002 8th iterates of z^2 + 3141598915926476 l005 ln(sec(306/101)) 3141598924464938 m002 Pi+Cosh[Pi]/(2*Pi^12) 3141598924633315 l005 ln(sec(231/71)) 3141598927868753 r005 Re(z^2+c),c=-5/16+26/51*I,n=42 3141598929082424 p003 LerchPhi(1/32,6,76/135) 3141598932655921 r009 Im(z^3+c),c=-31/122+17/55*I,n=4 3141598935140409 p002 log(1/3*(10^(1/4)-3^(2/3)*12^(1/4))*3^(1/3)) 3141598936409610 p001 sum((-1)^n/(449*n+313)/(24^n),n=0..infinity) 3141598938769472 r005 Im(z^2+c),c=-27/122+28/59*I,n=36 3141598939600239 a007 Real Root Of 348*x^4-335*x^3-853*x^2-792*x+340 3141598940221770 m004 -5-5*Pi-(5*Sqrt[5]*Pi)/3+Tanh[Sqrt[5]*Pi] 3141598948069144 p002 log(1/22*12^(1/4)-12/11) 3141598949169220 a007 Real Root Of -37*x^4+181*x^3+619*x^2+470*x-214 3141598955157900 l005 ln(sec(906/95)) 3141598956220039 r009 Im(z^3+c),c=-3/70+10/29*I,n=4 3141598957776882 l004 Pi/tanh(255/116*Pi) 3141598960853931 l004 Pi/tanh(244/111*Pi) 3141598962472025 r009 Im(z^3+c),c=-29/54+12/43*I,n=44 3141598964222989 l004 Pi/tanh(233/106*Pi) 3141598967927692 l004 Pi/tanh(222/101*Pi) 3141598971977225 l005 ln(sec(218/67)) 3141598972020829 l004 Pi/tanh(211/96*Pi) 3141598972238267 m001 (Stephens+ZetaP(2))/(GAMMA(5/6)-Backhouse) 3141598974590394 a007 Real Root Of 264*x^4+746*x^3-224*x^2+103*x-51 3141598975204969 m001 (gamma(1)+BesselI(0,2))/(Kac+ZetaP(4)) 3141598976566868 l004 Pi/tanh(200/91*Pi) 3141598981513398 l005 ln(sec(103/34)) 3141598981645379 l004 Pi/tanh(189/86*Pi) 3141598983692378 a007 Real Root Of -365*x^4-852*x^3+650*x^2-931*x-203 3141598983721578 m004 Pi+2*Sech[Sqrt[5]*Pi]^2 3141598983726586 m004 -4-Pi+4*Tanh[Sqrt[5]*Pi] 3141598983731595 m004 Pi+2*Csch[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3141598983736604 m004 -4+Pi+4*Coth[Sqrt[5]*Pi] 3141598983741613 m004 Pi+2*Csch[Sqrt[5]*Pi]^2 3141598984947566 m004 -(Sqrt[5]/(E^(Sqrt[5]*Pi)*Pi))-100*Pi 3141598985217236 m002 Pi+2/(Pi^11*ProductLog[Pi]) 3141598986038206 p002 log(2-6^(1/3)-2^(1/4)) 3141598987355732 l004 Pi/tanh(178/81*Pi) 3141598993391263 r005 Im(z^2+c),c=-25/34+15/68*I,n=28 3141598993823663 l004 Pi/tanh(167/76*Pi) 3141598994315601 p002 log(1/12*5^(2/3)-5/4) 3141598999210765 l005 ln(sec(515/54)) 3141598999310971 p002 log(5^(3/4)/(2^(1/3)-21^(1/2))) 3141598999985181 a001 39603/4181*34^(17/50) 3141599001210636 l004 Pi/tanh(156/71*Pi) 3141599003225344 a007 Real Root Of 346*x^4-660*x^3-752*x^2-903*x+375 3141599003490760 l005 ln(sec(149/16)) 3141599005583011 p002 log(11^(1/4)*(12^(3/4)-7)) 3141599009451764 s001 sum(1/10^(n-1)*A187079[n],n=1..infinity) 3141599009451764 s001 sum(1/10^n*A187079[n],n=1..infinity) 3141599009451764 s003 concatenated sequence A187079 3141599009727510 l004 Pi/tanh(145/66*Pi) 3141599012023385 a007 Real Root Of 22*x^4+699*x^3+275*x^2+872*x-675 3141599013097692 p003 LerchPhi(1/32,6,489/187) 3141599019654984 l004 Pi/tanh(134/61*Pi) 3141599025261936 l004 Pi/tanh(257/117*Pi) 3141599025654479 l005 ln(sec(205/63)) 3141599031375129 l004 Pi/tanh(123/56*Pi) 3141599034731183 m001 Gompertz^exp(Pi)+Pi 3141599038066362 l004 Pi/tanh(235/107*Pi) 3141599038777026 p002 log(1/7*(5^(1/3)*7^(1/3)-9^(3/4))*7^(2/3)) 3141599042192186 r005 Re(z^2+c),c=7/40+2/5*I,n=15 3141599045421684 l004 Pi/tanh(112/51*Pi) 3141599046326795 l005 ln(sec(312/103)) 3141599046889718 a001 64079/6765*34^(17/50) 3141599049980495 p002 log(1/10*19^(1/2)-3^(1/3)) 3141599053111900 r009 Re(z^3+c),c=-29/54+7/24*I,n=38 3141599053545116 l004 Pi/tanh(213/97*Pi) 3141599053927897 m002 Pi+Log[Pi]/(6*Pi^9) 3141599054632420 r005 Im(z^2+c),c=-83/94+6/29*I,n=20 3141599060523723 m002 5+Pi/2+E^Pi*ProductLog[Pi] 3141599062070056 l005 ln(sec(639/67)) 3141599062563600 l004 Pi/tanh(101/46*Pi) 3141599066491517 p002 log(1/5*(10^(1/3)-7^(2/3))*5^(3/4)) 3141599068655929 l006 ln(6047/8279) 3141599069288474 m001 Pi+gamma(3)^(Pi*csc(11/24*Pi)/GAMMA(13/24)) 3141599070182422 m001 arctan(1/2)/(Porter+ZetaQ(3)) 3141599072633674 l004 Pi/tanh(191/87*Pi) 3141599078446708 l005 ln(sec(209/69)) 3141599083950643 l004 Pi/tanh(90/41*Pi) 3141599084562029 a003 sin(Pi*13/111)-sin(Pi*11/86) 3141599087024798 l005 ln(sec(192/59)) 3141599092307286 l004 Pi/tanh(259/118*Pi) 3141599092914510 p002 log(1/2*(5^(1/2)-7^(2/3))*2^(1/2)) 3141599094184273 p002 log(3^(1/2)+6^(1/4)-7^(3/4)) 3141599096761356 l004 Pi/tanh(169/77*Pi) 3141599098269367 r005 Re(z^2+c),c=-17/16+27/110*I,n=40 3141599101415799 l004 Pi/tanh(248/113*Pi) 3141599104763853 l005 ln(sec(763/80)) 3141599105162592 r005 Im(z^2+c),c=-5/8+41/157*I,n=5 3141599107627545 a007 Real Root Of 306*x^4+973*x^3-214*x^2-932*x-454 3141599110377176 l005 ln(sec(315/104)) 3141599111184115 k008 concat of cont frac of 3141599111382424 l004 Pi/tanh(79/36*Pi) 3141599112109389 m001 (1+sin(1/5*Pi))/(-GAMMA(2/3)+Conway) 3141599114178086 m009 (1/3*Pi^2-5/6)/(1/2*Psi(1,2/3)-3/4) 3141599121004889 m002 Pi+(6*Tanh[Pi])/Pi^12 3141599121129969 l005 ln(sec(371/114)) 3141599122334405 l004 Pi/tanh(226/103*Pi) 3141599122782857 a001 6119/646*34^(17/50) 3141599127237400 b008 33*Log[ArcCoth[E]] 3141599128226721 l004 Pi/tanh(147/67*Pi) 3141599134320275 a001 10610209857723/4*7^(2/23) 3141599134425450 l004 Pi/tanh(215/98*Pi) 3141599134481562 l005 ln(sec(1015/109)) 3141599135653971 l005 ln(sec(887/93)) 3141599136921572 p002 log(1/13*(5^(1/2)-13^(1/2)*7^(1/4))*13^(1/2)) 3141599139704309 r005 Re(z^2+c),c=-35/86+6/19*I,n=7 3141599145205136 m002 -6/Pi^12-Pi 3141599147842985 l004 Pi/tanh(68/31*Pi) 3141599155271725 s001 sum(exp(-3*Pi/5)^n*A002308[n],n=1..infinity) 3141599155594731 a001 1/29*(1/2*5^(1/2)+1/2)^16*29^(8/19) 3141599157220758 l005 ln(sec(866/93)) 3141599157643790 p002 log(13^(1/2)/(1-21^(1/2))) 3141599157866400 l005 ln(sec(179/55)) 3141599158913575 l004 Pi/tanh(261/119*Pi) 3141599159040778 l005 ln(sec(1011/106)) 3141599162817936 l004 Pi/tanh(193/88*Pi) 3141599168050398 s001 sum(exp(-3*Pi/5)^n*A056796[n],n=1..infinity) 3141599168103981 s001 sum(exp(-3*Pi/5)^n*A061295[n],n=1..infinity) 3141599169495937 m002 Pi+(6*Coth[Pi])/Pi^12 3141599169573019 p002 log(1/2*(5^(1/2)-6^(3/4))*2^(1/3)) 3141599170976699 l004 Pi/tanh(125/57*Pi) 3141599171322489 m001 (1-FeigenbaumMu)/(LandauRamanujan+ZetaQ(2)) 3141599173675004 l005 ln(sec(106/35)) 3141599177361964 l005 ln(sec(1135/119)) 3141599178512248 r002 2th iterates of z^2 + 3141599179638123 l004 Pi/tanh(182/83*Pi) 3141599180805519 r005 Im(z^2+c),c=-5/31+22/49*I,n=26 3141599184172074 l004 Pi/tanh(239/109*Pi) 3141599189512469 l005 ln(sec(717/77)) 3141599189619927 r001 54i'th iterates of 2*x^2-1 of 3141599193323858 m001 BesselK(0,1)^2*ln(FeigenbaumB)*cos(Pi/12) 3141599194676557 r009 Im(z^3+c),c=-57/110+8/47*I,n=49 3141599194796824 m002 Pi/ProductLog[Pi]+(Coth[Pi]*ProductLog[Pi])/5 3141599195954191 m002 Pi+Sinh[Pi]/(6*Pi^11) 3141599197550193 l005 ln(sec(345/106)) 3141599198666930 l004 Pi/tanh(57/26*Pi) 3141599199088723 m001 (-Conway+Tetranacci)/(sin(1)+ln(Pi)) 3141599200913270 h001 (3/11*exp(1)+1/12)/(1/4*exp(2)+7/9) 3141599205440186 m002 Pi+ProductLog[Pi]/(E^(2*Pi)*Pi^5) 3141599207809671 m004 -1-Pi*Coth[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3141599212718995 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/2 3141599212724185 m004 -100*Pi-Cos[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 3141599212729376 m004 -100*Pi-(Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi])/2 3141599214663126 l004 Pi/tanh(217/99*Pi) 3141599215529503 r009 Re(z^3+c),c=-19/36+12/31*I,n=10 3141599219718053 a003 sin(Pi*19/109)*sin(Pi*20/97) 3141599220369838 l004 Pi/tanh(160/73*Pi) 3141599220434889 m002 Pi+Cosh[Pi]/(6*Pi^11) 3141599220863369 r009 Re(z^3+c),c=-27/64+16/49*I,n=37 3141599221234752 r009 Im(z^3+c),c=-9/29+39/58*I,n=32 3141599223279500 m001 (Gompertz-TwinPrimes)/(sin(1/12*Pi)+Pi^(1/2)) 3141599225081612 l004 Pi/tanh(263/120*Pi) 3141599227528639 h001 (2/7*exp(2)+2/11)/(7/8*exp(2)+5/6) 3141599230330740 r005 Re(z^2+c),c=-3/11+11/19*I,n=60 3141599232406603 l004 Pi/tanh(103/47*Pi) 3141599236230692 l005 ln(sec(321/106)) 3141599238975825 l005 ln(sec(568/61)) 3141599240058778 l004 Pi/tanh(252/115*Pi) 3141599240550095 l005 ln(sec(166/51)) 3141599240995952 l006 ln(71/1643) 3141599244589328 p002 log(1/16*5^(2/3)-2^(1/4)) 3141599245352982 l004 Pi/tanh(149/68*Pi) 3141599245595378 a007 Real Root Of -265*x^4-516*x^3+878*x^2-436*x-221 3141599247433810 r005 Im(z^2+c),c=-17/90+1/24*I,n=9 3141599248203981 p002 log(5^(1/2)/(10^(1/4)-4)) 3141599252200111 l004 Pi/tanh(195/89*Pi) 3141599253481232 m001 MertensB1^(sin(1)*GAMMA(23/24)) 3141599256436438 l004 Pi/tanh(241/110*Pi) 3141599261655615 a001 15127/144*46368^(47/49) 3141599267233472 l005 ln(sec(215/71)) 3141599270108168 m001 1+cos(1/5*Pi)+MertensB3 3141599270108168 m001 5^(1/2)*cos(1/5*Pi)+MertensB3 3141599274420605 l004 Pi/tanh(46/21*Pi) 3141599275082785 l005 ln(sec(987/106)) 3141599287298904 l005 ln(sec(319/98)) 3141599289157964 a007 Real Root Of 835*x^4-768*x^3-928*x^2-553*x+281 3141599294259770 l004 Pi/tanh(219/100*Pi) 3141599298054593 l005 ln(sec(324/107)) 3141599298767807 r005 Im(z^2+c),c=-49/90+17/43*I,n=15 3141599299543466 l004 Pi/tanh(173/79*Pi) 3141599300379850 a007 Real Root Of -374*x^4-864*x^3+827*x^2-724*x-795 3141599307504783 b008 Pi*Zeta[6*Pi] 3141599308663162 l004 Pi/tanh(127/58*Pi) 3141599310846940 r005 Im(z^2+c),c=-33/98+33/64*I,n=41 3141599315237822 p002 log(12^(3/4)-21^(1/2)*7^(1/4)) 3141599316256439 l004 Pi/tanh(208/95*Pi) 3141599317375967 p002 log(1/7*(2-5^(1/2)*7^(1/4))*7^(3/4)) 3141599318815231 r004 Re(z^2+c),c=-23/20+5/19*I,z(0)=-1,n=9 3141599322358582 m001 (Thue+ZetaQ(3))/(Shi(1)+Niven) 3141599324265090 l005 ln(sec(419/45)) 3141599325082096 m004 -3/(4*E^(Sqrt[5]*Pi))-100*Pi 3141599328176851 l004 Pi/tanh(81/37*Pi) 3141599328201273 l005 ln(sec(124/13)) 3141599337120693 p002 log(1/2*(12^(2/3)-17^(1/2)*2^(3/4))*2^(1/4)) 3141599337938522 m002 Pi+Tanh[Pi]/(5*Pi^9) 3141599338307980 l005 ln(sec(153/47)) 3141599340782648 l004 Pi/tanh(197/90*Pi) 3141599346427370 r005 Re(z^2+c),c=25/106+13/23*I,n=9 3141599349597030 l004 Pi/tanh(116/53*Pi) 3141599352011005 m001 (1+3^(1/2))^(1/2)+AlladiGrinstead*Tribonacci 3141599352540244 m001 Paris^PrimesInBinary/(ln(5)^PrimesInBinary) 3141599353963516 r005 Re(z^2+c),c=-33/94+15/37*I,n=33 3141599359156983 l005 ln(sec(109/36)) 3141599361111512 l004 Pi/tanh(151/69*Pi) 3141599362950507 m002 1/(5*Pi^9)+Pi 3141599364448208 r005 Im(z^2+c),c=-7/6+5/21*I,n=20 3141599368301151 l004 Pi/tanh(186/85*Pi) 3141599368305302 l005 ln(sec(1108/119)) 3141599371203381 m001 Pi+BesselK(1,1)^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 3141599373217314 l004 Pi/tanh(221/101*Pi) 3141599374478564 h005 exp(cos(Pi*7/54)/cos(Pi*11/54)) 3141599376791143 l004 Pi/tanh(256/117*Pi) 3141599378551101 p002 log(19/(17^(1/2)-23)) 3141599384638382 r005 Re(z^2+c),c=-17/23+6/47*I,n=56 3141599384835868 r005 Im(z^2+c),c=-17/54+21/41*I,n=61 3141599392206685 a007 Real Root Of -13*x^4-394*x^3+441*x^2-340*x+806 3141599394185875 l005 ln(sec(293/90)) 3141599395193146 l005 ln(sec(689/74)) 3141599398719215 p002 log(4^(3/4)-2^(1/4)-7^(1/2)) 3141599399394849 l004 Pi/tanh(35/16*Pi) 3141599399409248 r005 Im(z^2+c),c=27/70+6/23*I,n=7 3141599402441091 r009 Re(z^3+c),c=-7/17+37/59*I,n=15 3141599404527610 s004 Continued Fraction of A060092 3141599404527610 s004 Continued fraction of A060092 3141599405359884 m001 HardyLittlewoodC4^Psi(1,1/3)+Pi 3141599414983032 m004 5*Pi+(5*Sqrt[5]*Pi)/3+4*Coth[Sqrt[5]*Pi] 3141599419548065 l005 ln(sec(330/109)) 3141599424198040 l004 Pi/tanh(234/107*Pi) 3141599426251044 m002 Pi+(2*Tanh[Pi])/Pi^11 3141599426358412 l005 ln(sec(959/103)) 3141599428568458 l004 Pi/tanh(199/91*Pi) 3141599434808472 l004 Pi/tanh(164/75*Pi) 3141599438922264 m002 Pi+(E^Pi*Sech[Pi])/Pi^11 3141599441562682 p002 log(1/6*(12^(1/4)-9^(2/3))*6^(1/2)) 3141599444444170 l004 Pi/tanh(129/59*Pi) 3141599449480029 l005 ln(sec(221/73)) 3141599451537976 l004 Pi/tanh(223/102*Pi) 3141599451593483 m002 -2/Pi^11-Pi 3141599452328099 a001 70711162/305*34^(17/23) 3141599453261615 m005 (1/3*2^(1/2)-2/5)/(2*2^(1/2)-5/9) 3141599455662517 l005 ln(sec(140/43)) 3141599461283398 l004 Pi/tanh(94/43*Pi) 3141599464312117 m002 Pi+(E^Pi*Csch[Pi])/Pi^11 3141599466197339 a007 Real Root Of -379*x^4-809*x^3+975*x^2-962*x-811 3141599470092148 l004 Pi/tanh(247/113*Pi) 3141599472860107 a001 21/9349*47^(37/54) 3141599475508887 l004 Pi/tanh(153/70*Pi) 3141599477030751 m002 Pi+(2*Coth[Pi])/Pi^11 3141599479237952 l005 ln(sec(333/110)) 3141599481824538 l004 Pi/tanh(212/97*Pi) 3141599482124830 a008 Real Root of (3+12*x+10*x^2+7*x^3) 3141599487031541 l005 ln(sec(1097/115)) 3141599488065542 p002 log(1/19*(10^(1/2)-3^(1/2)*19^(1/2))*19^(1/2)) 3141599491292668 s003 concatenated sequence A291599 3141599494400494 p002 log(1/7*(11^(1/2)-7)*7^(1/3)) 3141599495375111 r005 Re(z^2+c),c=-29/98+28/51*I,n=43 3141599496775958 r005 Im(z^2+c),c=-11/58+23/50*I,n=24 3141599498225689 l004 Pi/tanh(59/27*Pi) 3141599506374313 l005 ln(sec(270/29)) 3141599507476829 l005 ln(sec(973/102)) 3141599511623834 l004 Pi/tanh(260/119*Pi) 3141599514443151 m006 (3/4*exp(Pi)+3/4)/(2/3*ln(Pi)+5) 3141599515560874 l004 Pi/tanh(201/92*Pi) 3141599517612622 r009 Im(z^3+c),c=-39/82+7/41*I,n=28 3141599522774544 l004 Pi/tanh(142/65*Pi) 3141599523620970 l005 ln(sec(267/82)) 3141599525611356 m001 Pi^(1/2)/(LandauRamanujan2nd^Shi(1)) 3141599529224232 l004 Pi/tanh(225/103*Pi) 3141599530235207 a007 Real Root Of -660*x^4+339*x^3-941*x^2+790*x+358 3141599533962946 l005 ln(sec(849/89)) 3141599538236667 l005 ln(sec(112/37)) 3141599538403186 r005 Re(z^2+c),c=-37/114+29/60*I,n=52 3141599540270637 l004 Pi/tanh(83/38*Pi) 3141599553371509 l004 Pi/tanh(190/87*Pi) 3141599554786413 r005 Re(z^2+c),c=-37/110+18/43*I,n=17 3141599557974749 m001 MinimumGamma/Artin^2/exp(Zeta(3)) 3141599559702438 a001 646/341*18^(7/40) 3141599559751992 p002 log(1/21*12^(1/4)-23/21) 3141599563548525 l004 Pi/tanh(107/49*Pi) 3141599569630927 l005 ln(sec(725/76)) 3141599571682235 l004 Pi/tanh(238/109*Pi) 3141599578331867 l004 Pi/tanh(131/60*Pi) 3141599578372384 h001 (-2*exp(3)-4)/(-3*exp(-2)-1) 3141599580456515 r009 Re(z^3+c),c=-23/60+14/53*I,n=25 3141599585598625 a007 Real Root Of 168*x^4+550*x^3-6*x^2+43*x+883 3141599588552897 l004 Pi/tanh(155/71*Pi) 3141599589531415 l005 ln(sec(931/100)) 3141599589975208 m004 -100*Pi-(Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi])/5 3141599589986185 m004 -100*Pi-(Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/5 3141599596041256 l004 Pi/tanh(179/82*Pi) 3141599596554132 l005 ln(sec(339/112)) 3141599599139696 l005 ln(sec(127/39)) 3141599600864951 m005 (1/2*2^(1/2)+11/12)/(5/14+1/14*5^(1/2)) 3141599601763618 l004 Pi/tanh(203/93*Pi) 3141599606278806 l004 Pi/tanh(227/104*Pi) 3141599609932365 l004 Pi/tanh(251/115*Pi) 3141599612499337 m001 (ln(2)-MertensB3)/(Salem+Thue) 3141599613381438 p002 log(1/15*10^(2/3)-3^(1/4)) 3141599620255664 l005 ln(sec(601/63)) 3141599623365803 m002 Pi+(6*ProductLog[Pi])/Pi^12 3141599623714249 l005 ln(sec(661/71)) 3141599625460470 l005 ln(sec(227/75)) 3141599626165350 p002 log(3^(1/3)*(13^(1/2)-7^(3/4))) 3141599626893682 m001 1/TreeGrowth2nd^2*Bloch^2/ln((3^(1/3))) 3141599632293500 l006 ln(2143/2934) 3141599634953350 r005 Re(z^2+c),c=-33/94+17/42*I,n=52 3141599639145335 m002 Pi+Log[Pi]/(E^(2*Pi)*Pi^5) 3141599642962271 a001 9349/987*34^(17/50) 3141599644570124 l004 Pi/tanh(24/11*Pi) 3141599649988023 p002 log(11^(1/2)*(4-7^(3/4))) 3141599654070020 l005 ln(sec(1052/113)) 3141599654200171 l005 ln(sec(342/113)) 3141599654330324 l005 ln(sec(368/113)) 3141599654460478 l005 ln(sec(1078/113)) 3141599658252028 m001 ZetaP(3)*(Robbin-sin(1)) 3141599666648863 r005 Re(z^2+c),c=35/102+13/34*I,n=58 3141599673420202 a007 Real Root Of -19*x^4-578*x^3+567*x^2-862*x-545 3141599673871974 r005 Im(z^2+c),c=-17/62+31/50*I,n=63 3141599677991417 r005 Re(z^2+c),c=-11/31+16/41*I,n=27 3141599678752309 p002 log(1/11*(10^(1/3)-3^(1/3)*11^(2/3))*11^(1/3)) 3141599679079528 l004 Pi/tanh(253/116*Pi) 3141599680310478 m001 ZetaQ(4)^Si(Pi)+Pi 3141599682704642 l004 Pi/tanh(229/105*Pi) 3141599683549579 l005 ln(sec(241/74)) 3141599684467787 r005 Re(z^2+c),c=-7/9+5/103*I,n=32 3141599687054186 p002 log((1-2^(1/3))*15^(1/2)) 3141599687180766 l004 Pi/tanh(205/94*Pi) 3141599689550033 r009 Re(z^3+c),c=-33/82+13/44*I,n=28 3141599692847416 l004 Pi/tanh(181/83*Pi) 3141599695265200 m001 (3^(1/3))*RenyiParking^2/ln(GAMMA(19/24))^2 3141599697738095 l005 ln(sec(477/50)) 3141599700208251 r009 Re(z^3+c),c=-5/114+17/25*I,n=19 3141599700252414 l004 Pi/tanh(157/72*Pi) 3141599700363358 m001 (Chi(1)+BesselI(0,1))/(-GAMMA(3/4)+Ei(1)) 3141599703808708 r002 58th iterates of z^2 + 3141599705611579 l005 ln(sec(391/42)) 3141599709063713 a001 3/233*233^(9/55) 3141599710340580 l004 Pi/tanh(133/61*Pi) 3141599711184497 l005 ln(sec(115/38)) 3141599713414578 r009 Im(z^3+c),c=-27/98+41/59*I,n=5 3141599713937778 l005 ln(sec(355/109)) 3141599714662604 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*GAMMA(7/12)/Conway 3141599716891975 l004 Pi/tanh(242/111*Pi) 3141599719018753 p002 log(1/19*15^(1/2)-23/19) 3141599719078998 r005 Re(z^2+c),c=-29/86+22/61*I,n=9 3141599724892916 l004 Pi/tanh(109/50*Pi) 3141599727621235 m001 ZetaQ(3)^FeigenbaumAlpha+Pi 3141599734884318 l004 Pi/tanh(194/89*Pi) 3141599735734581 m002 -5+5/Pi+Pi^5+Sinh[Pi] 3141599738977288 h001 (1/2*exp(2)+1/4)/(1/7*exp(2)+1/5) 3141599742122210 p002 log(23^(1/2)/(5^(1/2)-7)) 3141599745407769 p002 log(1/13*7^(1/3)-15/13) 3141599747714462 l004 Pi/tanh(85/39*Pi) 3141599754249104 l005 ln(sec(830/87)) 3141599758504893 l004 Pi/tanh(231/106*Pi) 3141599764793446 l004 Pi/tanh(146/67*Pi) 3141599766013952 l005 ln(sec(903/97)) 3141599767516714 l005 ln(sec(348/115)) 3141599769766635 m001 2/3*Pi^(3/2)*3^(1/2)/GAMMA(2/3)-ErdosBorwein 3141599769842618 m004 -100*Pi-(2*Sech[Sqrt[5]*Pi])/5 3141599769848249 m004 -4/(5*E^(Sqrt[5]*Pi))-100*Pi 3141599769853880 m004 -100*Pi-(2*Csch[Sqrt[5]*Pi])/5 3141599771816717 l004 Pi/tanh(207/95*Pi) 3141599772447452 m001 Pi+HeathBrownMoroz^KomornikLoreti 3141599772837524 r005 Re(z^2+c),c=-47/118+11/56*I,n=32 3141599778512095 l005 ln(sec(114/35)) 3141599783270745 a007 Real Root Of 211*x^4-801*x^3+21*x^2-624*x-225 3141599788026546 p002 log(3^(1/2)/(3^(3/4)-4)) 3141599788650572 l004 Pi/tanh(61/28*Pi) 3141599793912447 b008 ExpIntegralEi[-2^(-1/3)] 3141599795441253 l005 ln(sec(233/77)) 3141599800845435 r005 Re(z^2+c),c=-7/19+1/58*I,n=3 3141599804520727 l004 Pi/tanh(220/101*Pi) 3141599810617272 l004 Pi/tanh(159/73*Pi) 3141599812268907 p002 log(6/(11^(3/4)-12)) 3141599812400628 l005 ln(sec(512/55)) 3141599815839629 l004 Pi/tanh(257/118*Pi) 3141599823206314 l005 ln(sec(351/116)) 3141599824319559 l004 Pi/tanh(98/45*Pi) 3141599827048074 p002 log(10^(3/4)/(2^(1/2)-7)) 3141599829235003 a007 Real Root Of 990*x^4+632*x^3-196*x^2-819*x-228 3141599831155917 l005 ln(sec(353/37)) 3141599833201587 p002 log(1/8*11^(2/3)-13/8) 3141599833682900 l004 Pi/tanh(233/107*Pi) 3141599835365312 b008 Pi*Zeta[2*Pi^2]^2 3141599836514258 a007 Real Root Of 489*x^4-41*x^3-714*x^2-955*x+367 3141599839086909 r002 48i'th iterates of 2*x/(1-x^2) of 3141599839997725 m001 (Sierpinski+Trott2nd)/(exp(1/Pi)-Landau) 3141599840486529 l004 Pi/tanh(135/62*Pi) 3141599843981834 m005 (1/2*gamma-3/10)/(8/11*5^(1/2)+2) 3141599848646904 p002 log(1/7*(15^(1/2)*7^(3/4)-21)*7^(1/4)) 3141599848698220 l005 ln(sec(329/101)) 3141599849711852 l004 Pi/tanh(172/79*Pi) 3141599853857320 p004 log(21061/15383) 3141599855676166 l004 Pi/tanh(209/96*Pi) 3141599857149906 m002 Pi+ProductLog[Pi]/(5*Pi^9) 3141599858295674 m003 -15/32+(17*Sqrt[5])/32+Sinh[1/2+Sqrt[5]/2] 3141599859848843 l004 Pi/tanh(246/113*Pi) 3141599865827258 m001 (GAMMA(2/3)+Pi^(1/2))/(Bloch-Porter) 3141599872307316 b008 Pi*Zeta[17+Sqrt[3]] 3141599878262671 l005 ln(sec(118/39)) 3141599878962964 l005 ln(sec(633/68)) 3141599883457610 l004 Pi/tanh(37/17*Pi) 3141599886128335 l005 ln(sec(215/66)) 3141599889959434 m004 (10*Cosh[Sqrt[5]*Pi])/Pi-Cosh[Sqrt[5]*Pi]^2 3141599892322144 p002 log(11^(1/3)-23^(1/2)+6^(1/4)) 3141599896185234 a001 192900153618/89*34^(2/19) 3141599899953475 l005 ln(sec(935/98)) 3141599901568819 m001 GAMMA(3/4)/GAMMA(2/3)^2/exp(GAMMA(7/12))^2 3141599902033931 m002 5/(E^Pi*Pi^9)+Pi 3141599904116780 m004 (-5*E^(Sqrt[5]*Pi))/Pi+Cosh[Sqrt[5]*Pi]^2 3141599904907019 a007 Real Root Of 2*x^4+629*x^3+214*x^2+113*x-547 3141599904937335 r005 Re(z^2+c),c=-37/102+4/11*I,n=26 3141599908242180 l004 Pi/tanh(235/108*Pi) 3141599912881675 l004 Pi/tanh(198/91*Pi) 3141599915697649 a007 Real Root Of -344*x^4-130*x^3+865*x^2+608*x-269 3141599918274127 m004 -Cosh[Sqrt[5]*Pi]^2+(10*Sinh[Sqrt[5]*Pi])/Pi 3141599919658155 l004 Pi/tanh(161/74*Pi) 3141599919921762 p002 log(14/11-3^(3/4)) 3141599924424058 l005 ln(sec(754/81)) 3141599925257309 l005 ln(sec(316/97)) 3141599927974675 m005 (1/2*Zeta(3)+2/3)/(8/11*2^(1/2)-5/8) 3141599928727079 r005 Im(z^2+c),c=-9/86+30/47*I,n=45 3141599930489859 l004 Pi/tanh(124/57*Pi) 3141599932695040 l005 ln(sec(357/118)) 3141599938764077 l004 Pi/tanh(211/97*Pi) 3141599941923933 l005 ln(sec(582/61)) 3141599946768885 b008 Pi*JacobiNC[2,3] 3141599950571097 l004 Pi/tanh(87/40*Pi) 3141599952322163 m002 Pi+(2*ProductLog[Pi])/Pi^11 3141599952731668 p002 log(12^(1/3)*(3^(2/3)-4^(2/3))) 3141599955692962 p002 log(1/3*(6^(1/4)-7^(2/3))*3^(1/3)) 3141599957444587 l005 ln(sec(875/94)) 3141599959680090 l005 ln(sec(239/79)) 3141599961707824 l004 Pi/tanh(224/103*Pi) 3141599968787582 l004 Pi/tanh(137/63*Pi) 3141599973683964 m005 (-1/30+3/10*5^(1/2))/(-27/10+3/10*5^(1/2)) 3141599977275854 l004 Pi/tanh(187/86*Pi) 3141599982186411 l004 Pi/tanh(237/109*Pi) 3141599982516306 l005 ln(sec(996/107)) 3141599986512559 l005 ln(sec(360/119)) 3141599990539896 l005 ln(sec(811/85)) 3141599991616400 a007 Real Root Of -876*x^4-138*x^3-57*x^2+863*x+281 3141599999926262 s003 concatenated sequence A086183