3178100000022768 a001 98208+98209*5^(1/2) 3178100006259031 r005 Im(z^2+c),c=11/58+12/47*I,n=26 3178100013419265 a007 Real Root Of 218*x^4+618*x^3-135*x^2+541*x+681 3178100021208787 r005 Re(z^2+c),c=-41/106+12/41*I,n=47 3178100021987563 a007 Real Root Of 355*x^4+924*x^3-925*x^2-804*x+232 3178100025213503 r005 Re(z^2+c),c=-29/106+24/55*I,n=7 3178100025520400 r005 Im(z^2+c),c=19/62+5/38*I,n=29 3178100025667797 l005 ln(sec(89/22)) 3178100037555557 a003 sin(Pi*1/73)+sin(Pi*7/79) 3178100038501947 r009 Im(z^3+c),c=-8/21+15/59*I,n=19 3178100041001430 r005 Im(z^2+c),c=-19/94+26/55*I,n=47 3178100046618618 m001 1/Trott^2/Rabbit^2/ln(sin(Pi/5)) 3178100059918218 m001 (FeigenbaumC-exp(1/Pi))^MinimumGamma 3178100063683652 m009 (5*Psi(1,1/3)-1/4)/(3/2*Pi^2+1) 3178100079172986 a001 24157817/15127*521^(11/13) 3178100088167606 a009 1/8*(10^(1/2)+6^(2/3))^(1/2) 3178100091035360 a001 63245986/39603*521^(11/13) 3178100091774659 r004 Im(z^2+c),c=1/9-1/17*I,z(0)=exp(7/24*I*Pi),n=4 3178100092766058 a001 165580141/103682*521^(11/13) 3178100093018563 a001 433494437/271443*521^(11/13) 3178100093055403 a001 1134903170/710647*521^(11/13) 3178100093060778 a001 2971215073/1860498*521^(11/13) 3178100093061562 a001 7778742049/4870847*521^(11/13) 3178100093061676 a001 20365011074/12752043*521^(11/13) 3178100093061693 a001 53316291173/33385282*521^(11/13) 3178100093061696 a001 139583862445/87403803*521^(11/13) 3178100093061696 a001 365435296162/228826127*521^(11/13) 3178100093061696 a001 956722026041/599074578*521^(11/13) 3178100093061696 a001 2504730781961/1568397607*521^(11/13) 3178100093061696 a001 6557470319842/4106118243*521^(11/13) 3178100093061696 a001 10610209857723/6643838879*521^(11/13) 3178100093061696 a001 4052739537881/2537720636*521^(11/13) 3178100093061696 a001 1548008755920/969323029*521^(11/13) 3178100093061696 a001 591286729879/370248451*521^(11/13) 3178100093061696 a001 225851433717/141422324*521^(11/13) 3178100093061697 a001 86267571272/54018521*521^(11/13) 3178100093061703 a001 32951280099/20633239*521^(11/13) 3178100093061747 a001 12586269025/7881196*521^(11/13) 3178100093062047 a001 4807526976/3010349*521^(11/13) 3178100093064100 a001 1836311903/1149851*521^(11/13) 3178100093078171 a001 701408733/439204*521^(11/13) 3178100093174620 a001 267914296/167761*521^(11/13) 3178100093835687 a001 102334155/64079*521^(11/13) 3178100098366711 a001 39088169/24476*521^(11/13) 3178100098744070 m001 (ln(gamma)+2/3)/(Khinchin+1) 3178100103921621 b008 (7/51)^EulerGamma 3178100120634168 m002 Coth[Pi]*Log[Pi]^2+2/ProductLog[Pi] 3178100122903367 r004 Re(z^2+c),c=5/22-8/17*I,z(0)=I,n=48 3178100124092442 a001 4976784/281*521^(6/13) 3178100129422813 a001 14930352/9349*521^(11/13) 3178100136341666 m005 (1/2*5^(1/2)+11/12)/(11/12*gamma+1/9) 3178100137343998 m001 ln(Zeta(3))^2/(3^(1/3))/exp(1)^2 3178100152010855 m001 ln(FeigenbaumDelta)^2*Cahen*(3^(1/3))^2 3178100155858530 a007 Real Root Of -745*x^4+615*x^3+738*x^2+366*x-203 3178100170135343 r005 Im(z^2+c),c=-5/8+29/245*I,n=4 3178100176609875 m005 (1/2*5^(1/2)-9/11)/(8/9*Zeta(3)-1/8) 3178100181721486 r005 Im(z^2+c),c=-11/62+28/61*I,n=12 3178100182051118 a007 Real Root Of 313*x^4+997*x^3+75*x^2-16*x-736 3178100201610112 v003 sum((n^3-3*n^2+11*n+13)/n^n,n=1..infinity) 3178100203895543 r005 Im(z^2+c),c=-43/58+9/14*I,n=4 3178100206275372 a007 Real Root Of 121*x^4-317*x^3+521*x^2-88*x-92 3178100210407284 m001 (HardyLittlewoodC5+Kac)/(exp(1)+cos(1)) 3178100218137051 m008 (4*Pi^4-2/5)/(4*Pi^5+2/3) 3178100220379197 a001 123/377*2971215073^(8/19) 3178100220865339 a001 64079/21*3^(1/27) 3178100226923512 r002 5th iterates of z^2 + 3178100228114223 r005 Re(z^2+c),c=-13/32+9/50*I,n=15 3178100228468509 r009 Re(z^3+c),c=-49/106+13/36*I,n=14 3178100231080713 m001 (ln(2)-ErdosBorwein)/(Otter-StolarskyHarborth) 3178100234258967 a001 843/55*317811^(8/19) 3178100237524890 m001 (Kac+Weierstrass)/(Pi+arctan(1/3)) 3178100237803060 a007 Real Root Of 637*x^4-865*x^3+132*x^2-17*x-53 3178100241012119 m001 GAMMA(1/24)^2/exp(Si(Pi))/exp(1) 3178100242959973 b008 31+7*ArcCoth[9] 3178100248456328 r005 Im(z^2+c),c=-29/98+21/40*I,n=32 3178100271373242 a005 (1/cos(17/117*Pi))^501 3178100278438865 r005 Re(z^2+c),c=-41/106+12/41*I,n=44 3178100286626815 a008 Real Root of (12+9*x+8*x^2+2*x^3) 3178100289997153 m005 (1/5*Pi-2/3)/(4*Pi-1/2) 3178100289997153 m006 (2/3/Pi-1/5)/(1/2/Pi-4) 3178100289997153 m008 (1/5*Pi-2/3)/(4*Pi-1/2) 3178100315628266 m001 (3^(1/2)+BesselI(1,2))/(MertensB2+Trott) 3178100329088306 m001 Niven/(Psi(2,1/3)+Porter) 3178100332403443 a007 Real Root Of 206*x^4+281*x^3-59*x^2-419*x+128 3178100340729608 m005 (1/2*2^(1/2)-3/8)/(1/5*Pi+5/12) 3178100341217868 a001 5702887/2207*521^(10/13) 3178100342284514 a001 1597*521^(11/13) 3178100356517987 a001 31622993/161*123^(1/10) 3178100374083320 a007 Real Root Of 141*x^4+508*x^3+404*x^2+916*x+753 3178100386394366 r005 Im(z^2+c),c=-17/74+31/64*I,n=49 3178100417268056 r005 Im(z^2+c),c=-85/74+7/34*I,n=32 3178100420211620 m005 (1/2*Catalan+3)/(5/7*Catalan-6/11) 3178100427819530 r005 Im(z^2+c),c=-29/94+16/31*I,n=62 3178100429530914 r005 Re(z^2+c),c=3/14+15/28*I,n=18 3178100442022760 m001 (BesselJ(0,1)+BesselK(0,1))/(-Ei(1,1)+Lehmer) 3178100445967887 a001 11/17711*34^(25/54) 3178100470945206 m005 (1/3*exp(1)+3/4)/(1/11*3^(1/2)+4/11) 3178100476721047 r002 55th iterates of z^2 + 3178100510943866 r005 Re(z^2+c),c=9/22+7/34*I,n=19 3178100513426626 b008 21/11+Zeta[E] 3178100539414048 m001 1/GAMMA(19/24)*GAMMA(1/24)*exp(arctan(1/2)) 3178100551651549 a007 Real Root Of 520*x^4+517*x^3+688*x^2-292*x-151 3178100567548677 r005 Re(z^2+c),c=9/32+3/32*I,n=23 3178100583139284 m005 (1/2*5^(1/2)-3/8)/(8/9*Pi-5/11) 3178100586871776 r005 Re(z^2+c),c=5/126+13/45*I,n=8 3178100587869747 r005 Im(z^2+c),c=-1/34+2/5*I,n=7 3178100609954167 a007 Real Root Of -132*x^4-329*x^3+197*x^2-458*x-540 3178100610934226 b008 5-17*LogIntegral[3] 3178100621930471 m001 1/Kolakoski/GlaisherKinkelin^2*ln(TwinPrimes) 3178100624082448 r005 Re(z^2+c),c=-9/122+39/44*I,n=12 3178100628965037 m001 (Zeta(1/2)-Bloch)/(Porter-Thue) 3178100646770548 r009 Im(z^3+c),c=-37/78+11/61*I,n=42 3178100647575240 m001 Totient^FeigenbaumAlpha+ln(3) 3178100652749081 m001 Pi/Psi(1,1/3)/(Catalan-Ei(1)) 3178100662536755 r005 Im(z^2+c),c=-13/86+14/31*I,n=15 3178100690913708 m004 -2+Sqrt[5]*Pi*Cos[Sqrt[5]*Pi]-Csch[Sqrt[5]*Pi] 3178100692321425 m004 -2-2/E^(Sqrt[5]*Pi)+Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 3178100693729141 m004 -2+Sqrt[5]*Pi*Cos[Sqrt[5]*Pi]-Sech[Sqrt[5]*Pi] 3178100696045600 m001 (-exp(-1/2*Pi)+Weierstrass)/(1-Catalan) 3178100701655260 r009 Re(z^3+c),c=-9/25+8/37*I,n=13 3178100718507293 r005 Re(z^2+c),c=-13/32+5/27*I,n=18 3178100718535292 m001 (exp(-1/2*Pi)+Magata)/(5^(1/2)-ln(3)) 3178100719892318 a001 (5+5^(1/2))^(455/34) 3178100727439866 m005 (1/2*Catalan-3/11)/(6*Catalan+1/3) 3178100734183493 m005 (1/2*Catalan-9/10)/(5/9*3^(1/2)+3/7) 3178100745333795 m001 GAMMA(2/3)^2*exp(Riemann3rdZero)*cosh(1)^2 3178100746665302 r009 Im(z^3+c),c=-55/94+11/34*I,n=10 3178100750803439 m001 exp(Pi)*FeigenbaumKappa+PrimesInBinary 3178100766981651 q001 3/94396 3178100785857430 a001 1/76*(1/2*5^(1/2)+1/2)^10*199^(9/16) 3178100788448608 g005 GAMMA(7/9)/GAMMA(3/11)/GAMMA(1/11)/GAMMA(8/9) 3178100790717883 r009 Im(z^3+c),c=-19/36+9/49*I,n=47 3178100795532908 r009 Im(z^3+c),c=-3/82+22/63*I,n=6 3178100809735588 r005 Im(z^2+c),c=-7/54+26/59*I,n=32 3178100815385398 m001 (-Conway+LaplaceLimit)/(BesselK(0,1)-Ei(1,1)) 3178100825103058 a007 Real Root Of -288*x^4-734*x^3+328*x^2-604*x+587 3178100825284315 l006 ln(989/1359) 3178100826428089 r005 Im(z^2+c),c=-41/122+17/39*I,n=3 3178100828753089 m001 (-Artin+2/3)/(BesselK(0,1)+1/2) 3178100832703210 h001 (-2*exp(1)-5)/(-3*exp(7)+6) 3178100839617383 s002 sum(A151424[n]/((10^n+1)/n),n=1..infinity) 3178100846034911 s001 sum(1/10^(n-1)*A204342[n]/n!^2,n=1..infinity) 3178100846754574 a007 Real Root Of 194*x^4+489*x^3-649*x^2-661*x+360 3178100868333983 m005 (23/28+1/4*5^(1/2))/(1/2*Zeta(3)-1/6) 3178100869410301 m001 GAMMA(23/24)/exp(FransenRobinson)^2/sinh(1) 3178100872773290 m001 (5^(1/2)-Paris)/(Robbin+Trott) 3178100874772662 a007 Real Root Of 46*x^4-199*x^3-935*x^2+364*x-480 3178100888295719 p003 LerchPhi(1/64,4,275/116) 3178100898497074 a001 2584*521^(10/13) 3178100900631293 a001 1346269/1364*521^(12/13) 3178100903557374 r005 Im(z^2+c),c=-31/98+25/48*I,n=35 3178100905662272 r005 Im(z^2+c),c=-21/74+22/37*I,n=52 3178100909860681 r009 Re(z^3+c),c=-37/82+20/47*I,n=10 3178100919091983 a008 Real Root of x^4-x^3-18*x^2-68*x+328 3178100937557605 a005 (1/cos(17/86*Pi))^195 3178100946034347 r009 Re(z^3+c),c=-1/18+38/61*I,n=52 3178100976689489 r009 Im(z^3+c),c=-10/29+17/62*I,n=16 3178100979803031 a001 39088169/15127*521^(10/13) 3178100991665410 a001 34111385/13201*521^(10/13) 3178100993396108 a001 133957148/51841*521^(10/13) 3178100993648614 a001 233802911/90481*521^(10/13) 3178100993685454 a001 1836311903/710647*521^(10/13) 3178100993690829 a001 267084832/103361*521^(10/13) 3178100993691613 a001 12586269025/4870847*521^(10/13) 3178100993691727 a001 10983760033/4250681*521^(10/13) 3178100993691744 a001 43133785636/16692641*521^(10/13) 3178100993691746 a001 75283811239/29134601*521^(10/13) 3178100993691747 a001 591286729879/228826127*521^(10/13) 3178100993691747 a001 86000486440/33281921*521^(10/13) 3178100993691747 a001 4052739537881/1568397607*521^(10/13) 3178100993691747 a001 3536736619241/1368706081*521^(10/13) 3178100993691747 a001 3278735159921/1268860318*521^(10/13) 3178100993691747 a001 2504730781961/969323029*521^(10/13) 3178100993691747 a001 956722026041/370248451*521^(10/13) 3178100993691747 a001 182717648081/70711162*521^(10/13) 3178100993691748 a001 139583862445/54018521*521^(10/13) 3178100993691754 a001 53316291173/20633239*521^(10/13) 3178100993691798 a001 10182505537/3940598*521^(10/13) 3178100993692098 a001 7778742049/3010349*521^(10/13) 3178100993694151 a001 2971215073/1149851*521^(10/13) 3178100993708222 a001 567451585/219602*521^(10/13) 3178100993804671 a001 433494437/167761*521^(10/13) 3178100994465738 a001 165580141/64079*521^(10/13) 3178100998996764 a001 31622993/12238*521^(10/13) 3178100999889613 r009 Re(z^3+c),c=-19/30+17/52*I,n=15 3178101002758179 r009 Im(z^3+c),c=-14/29+6/35*I,n=62 3178101016852614 p004 log(21193/883) 3178101023760729 b008 LogGamma[Pi^Sqrt[2/3]] 3178101024722505 a001 24157817/843*521^(5/13) 3178101025317193 r005 Im(z^2+c),c=-35/26+8/127*I,n=58 3178101030052878 a001 24157817/9349*521^(10/13) 3178101031105779 a007 Real Root Of 240*x^4+751*x^3+800*x^2-632*x-260 3178101033217844 r005 Re(z^2+c),c=-13/32+11/60*I,n=34 3178101039091551 m001 (Cahen+ZetaQ(2))/(Chi(1)-Shi(1)) 3178101039091551 m001 (Cahen+ZetaQ(2))/Ei(1,1) 3178101045125615 m005 (1/2*gamma+1/12)/(2/7*Pi+3/11) 3178101055746963 a001 377/843*20633239^(4/5) 3178101055746969 a001 377/843*17393796001^(4/7) 3178101055746969 a001 377/843*14662949395604^(4/9) 3178101055746969 a001 377/843*(1/2+1/2*5^(1/2))^28 3178101055746969 a001 377/843*505019158607^(1/2) 3178101055746969 a001 377/843*73681302247^(7/13) 3178101055746969 a001 377/843*10749957122^(7/12) 3178101055746969 a001 377/843*4106118243^(14/23) 3178101055746969 a001 377/843*1568397607^(7/11) 3178101055746969 a001 377/843*599074578^(2/3) 3178101055746969 a001 377/843*228826127^(7/10) 3178101055746969 a001 377/843*87403803^(14/19) 3178101055746971 a001 377/843*33385282^(7/9) 3178101055746985 a001 377/843*12752043^(14/17) 3178101055747086 a001 377/843*4870847^(7/8) 3178101055747826 a001 377/843*1860498^(14/15) 3178101059088762 r009 Re(z^3+c),c=-59/98+31/57*I,n=20 3178101060052352 r009 Re(z^3+c),c=-1/18+38/61*I,n=54 3178101064732887 m001 Pi/(Psi(1,1/3)-arctan(1/3)/GAMMA(7/12)) 3178101065996613 s002 sum(A151424[n]/((10^n-1)/n),n=1..infinity) 3178101066481193 m001 (3^(1/3))/KhintchineLevy*exp(GAMMA(1/6)) 3178101085752538 a007 Real Root Of 919*x^4+423*x^3+784*x^2+44*x-61 3178101087441271 r005 Re(z^2+c),c=-9/28+22/43*I,n=53 3178101087921903 a007 Real Root Of 486*x^4+173*x^3+226*x^2-745*x-259 3178101111151811 k006 concat of cont frac of 3178101113706645 m001 (Pi-2^(1/3)*sin(1/12*Pi))*GAMMA(5/6) 3178101115754348 r005 Re(z^2+c),c=-33/82+9/43*I,n=28 3178101117462616 a001 76/55*610^(22/45) 3178101121222132 k009 concat of cont frac of 3178101122261113 k006 concat of cont frac of 3178101130604453 a001 199/21*610^(10/53) 3178101133263690 r005 Re(z^2+c),c=-33/94+7/16*I,n=26 3178101133285884 r002 41th iterates of z^2 + 3178101133285884 r002 41th iterates of z^2 + 3178101137824279 m001 1/ln(Cahen)^2*Artin^2*Riemann2ndZero^2 3178101139462265 g002 gamma+2*ln(2)+Psi(8/9)+Psi(1/5)-Psi(9/11) 3178101139561158 r005 Re(z^2+c),c=-19/50+23/45*I,n=26 3178101141372951 a007 Real Root Of -70*x^4-18*x^3+441*x^2-579*x+269 3178101168801499 r005 Re(z^2+c),c=-31/66+17/39*I,n=15 3178101176453415 a007 Real Root Of 134*x^4+123*x^3-724*x^2+945*x+594 3178101186749216 r005 Re(z^2+c),c=-25/82+28/47*I,n=50 3178101194179644 m005 (1/2*Pi+1/11)/(6/11*2^(1/2)-6) 3178101208234636 r002 9th iterates of z^2 + 3178101210604500 m001 (GAMMA(7/12)-cos(1))/(-MertensB2+Sarnak) 3178101211611322 k006 concat of cont frac of 3178101214404944 r009 Re(z^3+c),c=-57/122+12/31*I,n=57 3178101216975172 r005 Re(z^2+c),c=37/118+11/29*I,n=41 3178101217088017 a007 Real Root Of -337*x^4-921*x^3+493*x^2+44*x-24 3178101226147632 m001 GAMMA(17/24)*(exp(Pi)+BesselI(1,2)) 3178101231313342 k009 concat of cont frac of 3178101241848016 a001 9227465/2207*521^(9/13) 3178101242914663 a001 9227465/3571*521^(10/13) 3178101249091596 r005 Re(z^2+c),c=-41/74+30/61*I,n=3 3178101252454444 m005 (1/3*2^(1/2)+1/10)/(Zeta(3)-3) 3178101259681274 p001 sum(1/(354*n+317)/(64^n),n=0..infinity) 3178101263008183 a007 Real Root Of 931*x^4+276*x^3+48*x^2-697*x-227 3178101265954835 r005 Im(z^2+c),c=1/11+12/37*I,n=16 3178101271201097 a003 sin(Pi*8/49)-sin(Pi*7/40) 3178101274161766 a007 Real Root Of -74*x^4-179*x^3-586*x^2+485*x+16 3178101301039368 p001 sum((-1)^n/(389*n+309)/(24^n),n=0..infinity) 3178101302853910 m005 (3*2^(1/2)-1)/(3/4*Catalan+1/3) 3178101311930825 a007 Real Root Of 215*x^4+682*x^3+165*x^2+337*x-637 3178101323931664 m001 (GAMMA(3/4)-Conway)/(FellerTornier-ZetaP(4)) 3178101341828058 m001 Weierstrass-polylog(4,1/2)*GaussKuzminWirsing 3178101360037560 r005 Re(z^2+c),c=33/98+7/50*I,n=5 3178101372886062 a007 Real Root Of -962*x^4-407*x^3+611*x^2+655*x-247 3178101378997388 r005 Im(z^2+c),c=-4/27+22/49*I,n=28 3178101415688535 m001 Magata/ln(Backhouse)^2*log(2+sqrt(3)) 3178101434911737 r005 Im(z^2+c),c=-11/98+19/21*I,n=15 3178101446014030 a007 Real Root Of -377*x^4+53*x^3-666*x^2+482*x+226 3178101452619370 r005 Re(z^2+c),c=-107/86+23/64*I,n=5 3178101454000650 r009 Re(z^3+c),c=-47/106+20/57*I,n=36 3178101461818122 k008 concat of cont frac of 3178101461988769 m005 (1/2*gamma+9/10)/(7/12*3^(1/2)-7/11) 3178101470256545 m005 (1/2*Pi-5/8)/(2/7*Pi-3/5) 3178101471124813 m001 (Pi^(1/2)-Psi(2,1/3))/(GAMMA(7/12)+MertensB1) 3178101471144688 r009 Im(z^3+c),c=-55/106+9/40*I,n=22 3178101492743745 m001 (MertensB1+MinimumGamma)/(Si(Pi)+FeigenbaumMu) 3178101493800507 a003 sin(Pi*9/82)*sin(Pi*44/113) 3178101496087944 a009 12*6^(1/4)+13 3178101496707744 m002 Pi^5+Cosh[Pi]+Tanh[Pi]^2/5 3178101500306829 a007 Real Root Of 737*x^4+942*x^3+874*x^2-766*x-309 3178101509601964 r005 Im(z^2+c),c=-4/21+29/62*I,n=40 3178101510967899 a007 Real Root Of -975*x^4-477*x^3+385*x^2+240*x-8 3178101514827637 m001 1/Si(Pi)^2*ln(Bloch)^2*GAMMA(11/24) 3178101516250105 r009 Im(z^3+c),c=-33/70+9/52*I,n=18 3178101525609216 r005 Re(z^2+c),c=-5/8+23/227*I,n=4 3178101527909451 r005 Re(z^2+c),c=-41/98+1/31*I,n=17 3178101529747593 a007 Real Root Of 762*x^4+389*x^3+247*x^2-509*x-182 3178101531666697 r009 Re(z^3+c),c=-1/102+37/48*I,n=43 3178101550086219 r005 Re(z^2+c),c=-2/5+13/58*I,n=24 3178101565103153 r009 Re(z^3+c),c=-1/18+38/61*I,n=56 3178101611352018 m001 (1+ErdosBorwein)/(-KomornikLoreti+Niven) 3178101611525200 m001 2/3*3^(1/2)/GAMMA(2/3)/FeigenbaumD 3178101628101832 a007 Real Root Of 553*x^4-437*x^3+34*x^2-727*x+236 3178101629118920 r005 Re(z^2+c),c=31/114+20/47*I,n=55 3178101631493477 r002 3th iterates of z^2 + 3178101652683825 r005 Re(z^2+c),c=-13/32+11/60*I,n=31 3178101670814077 q001 894/2813 3178101702857302 r005 Im(z^2+c),c=-7/74+14/33*I,n=26 3178101712509495 r005 Im(z^2+c),c=-23/66+5/11*I,n=9 3178101719742872 a008 Real Root of x^4-2*x^3-21*x^2-5*x+30 3178101726475215 m001 (Artin-GAMMA(23/24))^GAMMA(1/3) 3178101751300455 r005 Im(z^2+c),c=-1/122+8/21*I,n=27 3178101755024984 r005 Re(z^2+c),c=-77/114+26/61*I,n=25 3178101766413264 r005 Im(z^2+c),c=-27/46+1/19*I,n=23 3178101775414497 m005 (1/3*3^(1/2)-1/10)/(1/2*exp(1)+1/7) 3178101782940653 r002 48th iterates of z^2 + 3178101794858121 l006 ln(8702/8983) 3178101799127357 a001 24157817/5778*521^(9/13) 3178101801261088 a001 2178309/1364*521^(11/13) 3178101809627001 m001 (Catalan+Lehmer)/(Magata+Totient) 3178101826681282 a007 Real Root Of 262*x^4+692*x^3-605*x^2-345*x+499 3178101826693047 l006 ln(7348/10097) 3178101827953891 m001 1/sin(Pi/5)^2*BesselK(0,1)^2/ln(sinh(1)) 3178101828912679 r005 Re(z^2+c),c=-10/27+9/25*I,n=50 3178101838689885 r009 Re(z^3+c),c=-11/23+11/24*I,n=51 3178101839665636 m009 (2*Catalan+1/4*Pi^2-1/5)/(1/3*Pi^2-2) 3178101842516430 r009 Im(z^3+c),c=-9/44+17/19*I,n=8 3178101843601793 r005 Re(z^2+c),c=-125/106+3/17*I,n=14 3178101846315567 a008 Real Root of x^4+9*x^2-95*x+109 3178101848379182 m005 (1/2*Catalan-11/12)/(5/7*Zeta(3)-5/7) 3178101854276086 m001 FeigenbaumD+ZetaQ(3)^ZetaR(2) 3178101859510844 r005 Re(z^2+c),c=-13/32+11/60*I,n=36 3178101864235331 a007 Real Root Of 371*x^4+974*x^3-452*x^2+559*x-241 3178101867253107 a007 Real Root Of -851*x^4+923*x^3-748*x^2-9*x+111 3178101868218776 r005 Re(z^2+c),c=-49/114+6/31*I,n=7 3178101869301926 m005 (1/2*Pi-1/11)/(3/8*Catalan-5) 3178101876105109 r005 Im(z^2+c),c=-61/98+18/49*I,n=49 3178101878898946 m001 (FellerTornier+MertensB1)/(Robbin+Salem) 3178101879714633 a007 Real Root Of 190*x^4+574*x^3-274*x^2-363*x+656 3178101880433334 a001 63245986/15127*521^(9/13) 3178101889288873 m001 BesselI(0,1)+Zeta(3)*BesselI(1,2) 3178101892295716 a001 165580141/39603*521^(9/13) 3178101894026414 a001 433494437/103682*521^(9/13) 3178101894278920 a001 1134903170/271443*521^(9/13) 3178101894315760 a001 2971215073/710647*521^(9/13) 3178101894321135 a001 7778742049/1860498*521^(9/13) 3178101894321919 a001 20365011074/4870847*521^(9/13) 3178101894322033 a001 53316291173/12752043*521^(9/13) 3178101894322050 a001 139583862445/33385282*521^(9/13) 3178101894322052 a001 365435296162/87403803*521^(9/13) 3178101894322053 a001 956722026041/228826127*521^(9/13) 3178101894322053 a001 2504730781961/599074578*521^(9/13) 3178101894322053 a001 6557470319842/1568397607*521^(9/13) 3178101894322053 a001 10610209857723/2537720636*521^(9/13) 3178101894322053 a001 4052739537881/969323029*521^(9/13) 3178101894322053 a001 1548008755920/370248451*521^(9/13) 3178101894322053 a001 591286729879/141422324*521^(9/13) 3178101894322054 a001 225851433717/54018521*521^(9/13) 3178101894322060 a001 86267571272/20633239*521^(9/13) 3178101894322104 a001 32951280099/7881196*521^(9/13) 3178101894322404 a001 12586269025/3010349*521^(9/13) 3178101894324457 a001 4807526976/1149851*521^(9/13) 3178101894338528 a001 1836311903/439204*521^(9/13) 3178101894434977 a001 701408733/167761*521^(9/13) 3178101895096045 a001 267914296/64079*521^(9/13) 3178101899627072 a001 102334155/24476*521^(9/13) 3178101913152914 a007 Real Root Of -867*x^4-726*x^3-842*x^2+596*x+260 3178101925352819 a001 39088169/843*521^(4/13) 3178101925905410 a007 Real Root Of 827*x^4+903*x^3+688*x^2-451*x-15 3178101927830697 r005 Im(z^2+c),c=1/29+5/14*I,n=13 3178101930683193 a001 4181*521^(9/13) 3178101935911778 a007 Real Root Of 385*x^4+911*x^3-920*x^2+405*x+546 3178101938927782 m001 (Lehmer-Salem)/(GAMMA(19/24)+LaplaceLimit) 3178101945722538 a007 Real Root Of 215*x^4+460*x^3-926*x^2-810*x-389 3178101949761394 m001 (sin(1/5*Pi)+ln(gamma))/(Landau+TwinPrimes) 3178101964591107 m001 (-DuboisRaymond+Rabbit)/(1-Chi(1)) 3178101966002932 r005 Im(z^2+c),c=-7/40+27/59*I,n=16 3178101982439734 l006 ln(6359/8738) 3178101991966231 r005 Re(z^2+c),c=-37/110+8/17*I,n=40 3178101993030099 m005 (1/2*gamma+4/11)/(4/5*3^(1/2)+2/3) 3178101997165068 r005 Re(z^2+c),c=5/86+8/13*I,n=39 3178101999633510 m004 -24-(5*Sqrt[5]*Pi)/4+Tanh[Sqrt[5]*Pi] 3178102000302513 r002 2th iterates of z^2 + 3178102002239356 r005 Re(z^2+c),c=-33/82+9/43*I,n=34 3178102008243249 r002 33th iterates of z^2 + 3178102010301844 a007 Real Root Of 212*x^4-192*x^3+712*x^2-402*x-208 3178102011955761 r009 Im(z^3+c),c=-13/38+12/47*I,n=3 3178102013468608 p001 sum(1/(427*n+316)/(100^n),n=0..infinity) 3178102015312879 r005 Im(z^2+c),c=-3/20+24/53*I,n=17 3178102027343857 m001 (Trott2nd+ZetaQ(3))/(5^(1/2)-ln(3)) 3178102033579378 r005 Im(z^2+c),c=-9/14+4/15*I,n=7 3178102039353308 m008 (1/4*Pi^5+5/6)/(1/4*Pi^6+3) 3178102045894871 r005 Re(z^2+c),c=-13/32+11/60*I,n=32 3178102048895281 r009 Im(z^3+c),c=-15/32+8/43*I,n=37 3178102052064384 a001 433494437/2207*199^(1/11) 3178102053849609 a007 Real Root Of 320*x^4+762*x^3-711*x^2+443*x+404 3178102055662759 r005 Re(z^2+c),c=7/32+1/62*I,n=17 3178102066108307 m001 Riemann3rdZero/(GAMMA(2/3)-LambertW(1)) 3178102066125712 m004 5/3+25*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi]/4 3178102076724232 r005 Im(z^2+c),c=-2/3+29/89*I,n=55 3178102081665093 r009 Re(z^3+c),c=-1/18+38/61*I,n=58 3178102109376708 m005 (3/5*Catalan+4/5)/(5*Catalan-1/3) 3178102112448222 k007 concat of cont frac of 3178102126745436 m001 (3^(1/2)-FeigenbaumKappa)/(OneNinth+Trott) 3178102127936659 r005 Im(z^2+c),c=-9/28+14/27*I,n=49 3178102132709522 m001 GAMMA(13/24)*ErdosBorwein+Landau 3178102134200819 r009 Re(z^3+c),c=-1/18+38/61*I,n=50 3178102141079267 m002 -1+(Pi^4*Tanh[Pi]^2)/E^Pi 3178102142478382 a001 14930352/2207*521^(8/13) 3178102143545029 a001 14930352/3571*521^(9/13) 3178102171457940 r009 Im(z^3+c),c=-7/25+10/33*I,n=7 3178102172490518 r005 Re(z^2+c),c=-7/9+7/81*I,n=18 3178102181122122 k007 concat of cont frac of 3178102192705962 m005 (1/2*2^(1/2)+2)/(7/8*Zeta(3)-1/5) 3178102195554562 l006 ln(5370/7379) 3178102209191590 a001 105937/41*7^(5/47) 3178102210785042 m001 1/ln(FeigenbaumKappa)^2*Magata/OneNinth^2 3178102213019519 r005 Re(z^2+c),c=-17/56+8/17*I,n=15 3178102230553008 b008 InverseEllipticNomeQ[-1/58] 3178102247258573 r005 Re(z^2+c),c=-9/25+23/58*I,n=42 3178102250414140 a001 89/123*843^(28/31) 3178102272739375 r005 Im(z^2+c),c=-17/110+14/31*I,n=21 3178102274013457 m005 (1/3*exp(1)+3/7)/(3/5*2^(1/2)-3/7) 3178102274636118 m001 (BesselK(0,1)-Zeta(1,-1))/(-gamma(1)+Pi^(1/2)) 3178102284715828 r005 Re(z^2+c),c=-51/122+1/61*I,n=13 3178102288867340 m001 ZetaP(4)/(ReciprocalLucas^Mills) 3178102321103175 r005 Re(z^2+c),c=-13/36+11/28*I,n=44 3178102321880586 r005 Im(z^2+c),c=-13/82+5/11*I,n=23 3178102324090971 r005 Im(z^2+c),c=-27/110+31/63*I,n=33 3178102328870042 m002 -Pi-Log[Pi]/3+4*Sech[Pi] 3178102333405507 a007 Real Root Of -924*x^4+502*x^3+287*x^2+473*x-186 3178102336933876 a001 1346269/322*322^(3/4) 3178102345713630 r009 Re(z^3+c),c=-31/74+23/62*I,n=8 3178102352153189 r005 Re(z^2+c),c=-43/70+25/44*I,n=3 3178102355242962 r005 Re(z^2+c),c=-27/82+23/47*I,n=59 3178102356945290 r005 Re(z^2+c),c=-17/30+65/128*I,n=3 3178102363146961 a008 Real Root of x^4-13*x^2-4*x+42 3178102367588468 a007 Real Root Of -786*x^4-737*x^3-773*x^2+930*x+358 3178102367944860 m001 (Khinchin-Lehmer)/(TwinPrimes-ZetaQ(4)) 3178102375640395 r004 Im(z^2+c),c=1/6+5/11*I,z(0)=I,n=11 3178102381640598 r005 Im(z^2+c),c=-11/114+23/60*I,n=4 3178102387453923 m001 Khintchine/ln(MertensB1)*(2^(1/3))^2 3178102394835757 a007 Real Root Of 729*x^4-762*x^3+476*x^2-299*x-175 3178102421161163 k007 concat of cont frac of 3178102456836802 m001 (Riemann3rdZero+Thue)/(BesselJ(1,1)+Artin) 3178102466447013 m006 (5/6/Pi+1)/(4*Pi^2+1/3) 3178102476158443 r005 Re(z^2+c),c=-12/31+3/10*I,n=17 3178102479008106 r005 Im(z^2+c),c=-8/27+26/51*I,n=44 3178102485706744 r009 Re(z^3+c),c=-1/18+38/61*I,n=60 3178102502863105 a007 Real Root Of 867*x^4-661*x^3+244*x^2-926*x-349 3178102504889682 l006 ln(4381/6020) 3178102511711114 k007 concat of cont frac of 3178102513328895 r002 3th iterates of z^2 + 3178102518735281 r005 Re(z^2+c),c=17/46+9/47*I,n=7 3178102524927303 r009 Re(z^3+c),c=-1/18+38/61*I,n=49 3178102526805768 r009 Re(z^3+c),c=-3/62+23/47*I,n=18 3178102527671592 r009 Re(z^3+c),c=-9/22+11/37*I,n=27 3178102528419945 r005 Im(z^2+c),c=1/48+19/52*I,n=17 3178102551399554 q001 1283/4037 3178102553327942 r005 Re(z^2+c),c=-47/118+31/56*I,n=55 3178102562283569 m001 Gompertz^ZetaQ(4)-ln(2+3^(1/2)) 3178102562871897 m002 -16+Pi^4/E^Pi-Pi^5 3178102566745531 a003 sin(Pi*9/80)*sin(Pi*10/27) 3178102578004748 r005 Re(z^2+c),c=-41/118+26/55*I,n=18 3178102578985281 m001 1/GolombDickman^2/exp(Bloch)^2/Pi 3178102581617351 r008 a(0)=0,K{-n^6,16-51*n+37*n^2+2*n^3} 3178102586558346 a007 Real Root Of -259*x^4-767*x^3+169*x^2+108*x+438 3178102601935191 r005 Re(z^2+c),c=-19/60+18/59*I,n=4 3178102609343874 a001 567451585/2889*199^(1/11) 3178102620881813 r009 Im(z^3+c),c=-29/60+7/18*I,n=7 3178102630288740 m005 (1/2*3^(1/2)-5/9)/(1/8*5^(1/2)-2/11) 3178102630379714 m001 FeigenbaumB/(Chi(1)-Stephens) 3178102646741981 s001 sum(1/10^(n-1)*A103798[n]/n!^2,n=1..infinity) 3178102653103128 r005 Re(z^2+c),c=-13/32+11/60*I,n=38 3178102659519627 a001 4/2178309*233^(52/55) 3178102661393570 m001 (ln(3)-gamma(2))/(DuboisRaymond-Landau) 3178102677272196 a001 844/13*75025^(16/29) 3178102684030019 m001 Shi(1)*(BesselK(0,1)+Sierpinski) 3178102690649872 a001 2971215073/15127*199^(1/11) 3178102695828913 r005 Im(z^2+c),c=-13/54+22/45*I,n=42 3178102698971948 a007 Real Root Of -513*x^4-966*x^3-356*x^2+932*x-224 3178102699757890 a001 39088169/5778*521^(8/13) 3178102701716146 a007 Real Root Of -425*x^4+515*x^3+486*x^2+630*x+172 3178102701891808 a001 1762289/682*521^(10/13) 3178102702512257 a001 7778742049/39603*199^(1/11) 3178102704242956 a001 10182505537/51841*199^(1/11) 3178102704495462 a001 53316291173/271443*199^(1/11) 3178102704532302 a001 139583862445/710647*199^(1/11) 3178102704537677 a001 182717648081/930249*199^(1/11) 3178102704538461 a001 956722026041/4870847*199^(1/11) 3178102704538575 a001 2504730781961/12752043*199^(1/11) 3178102704538592 a001 3278735159921/16692641*199^(1/11) 3178102704538596 a001 10610209857723/54018521*199^(1/11) 3178102704538602 a001 4052739537881/20633239*199^(1/11) 3178102704538646 a001 387002188980/1970299*199^(1/11) 3178102704538946 a001 591286729879/3010349*199^(1/11) 3178102704540999 a001 225851433717/1149851*199^(1/11) 3178102704555070 a001 196418*199^(1/11) 3178102704651519 a001 32951280099/167761*199^(1/11) 3178102705312587 a001 12586269025/64079*199^(1/11) 3178102709843615 a001 1201881744/6119*199^(1/11) 3178102727297630 a007 Real Root Of -267*x^4+404*x^3+971*x^2+858*x-381 3178102740899744 a001 1836311903/9349*199^(1/11) 3178102755467471 a007 Real Root Of 244*x^4+405*x^3-914*x^2+606*x-734 3178102761454655 a001 4/4181*317811^(16/25) 3178102762851795 r009 Re(z^3+c),c=-1/18+38/61*I,n=62 3178102766400394 m001 gamma(3)/MasserGramain 3178102773552864 r005 Im(z^2+c),c=-73/106+5/63*I,n=45 3178102781063891 a001 6765*521^(8/13) 3178102792926277 a001 267914296/39603*521^(8/13) 3178102794656976 a001 701408733/103682*521^(8/13) 3178102794909481 a001 1836311903/271443*521^(8/13) 3178102794946321 a001 686789568/101521*521^(8/13) 3178102794951696 a001 12586269025/1860498*521^(8/13) 3178102794952480 a001 32951280099/4870847*521^(8/13) 3178102794952595 a001 86267571272/12752043*521^(8/13) 3178102794952611 a001 32264490531/4769326*521^(8/13) 3178102794952614 a001 591286729879/87403803*521^(8/13) 3178102794952614 a001 1548008755920/228826127*521^(8/13) 3178102794952614 a001 4052739537881/599074578*521^(8/13) 3178102794952614 a001 1515744265389/224056801*521^(8/13) 3178102794952614 a001 6557470319842/969323029*521^(8/13) 3178102794952614 a001 2504730781961/370248451*521^(8/13) 3178102794952614 a001 956722026041/141422324*521^(8/13) 3178102794952615 a001 365435296162/54018521*521^(8/13) 3178102794952622 a001 139583862445/20633239*521^(8/13) 3178102794952665 a001 53316291173/7881196*521^(8/13) 3178102794952965 a001 20365011074/3010349*521^(8/13) 3178102794955018 a001 7778742049/1149851*521^(8/13) 3178102794969090 a001 2971215073/439204*521^(8/13) 3178102795065538 a001 1134903170/167761*521^(8/13) 3178102795726606 a001 433494437/64079*521^(8/13) 3178102797901826 m005 (1/2*3^(1/2)+9/10)/(4*2^(1/2)-1/10) 3178102800257635 a001 165580141/24476*521^(8/13) 3178102803628579 m005 (1/2*exp(1)-2/9)/(1/3*3^(1/2)+3) 3178102807048233 a007 Real Root Of 624*x^4+936*x^3-146*x^2-902*x+265 3178102808246972 r009 Re(z^3+c),c=-13/32+12/41*I,n=22 3178102814723032 m001 ln(GolombDickman)*Conway/GAMMA(11/24) 3178102818037373 r005 Im(z^2+c),c=-5/17+19/37*I,n=40 3178102818397950 r005 Im(z^2+c),c=-15/31+5/51*I,n=6 3178102825983389 a001 63245986/843*521^(3/13) 3178102827258610 r005 Im(z^2+c),c=-41/122+10/19*I,n=56 3178102831313765 a001 63245986/9349*521^(8/13) 3178102832337918 m001 GAMMA(17/24)^2/exp(Catalan)^2*Zeta(3) 3178102842572051 r009 Im(z^3+c),c=-47/102+5/28*I,n=13 3178102845747873 r009 Im(z^3+c),c=-37/82+9/44*I,n=19 3178102849234234 m002 3+Cosh[Pi]/Pi^6+Tanh[Pi]/6 3178102850173773 m005 (1/2*Pi-4/11)/(4/11*3^(1/2)-1/4) 3178102851934755 r005 Im(z^2+c),c=11/90+25/42*I,n=45 3178102852606597 m001 Riemann2ndZero/Kolakoski*ln(sqrt(2))^2 3178102857873090 r009 Im(z^3+c),c=-11/102+21/26*I,n=18 3178102885658312 r005 Im(z^2+c),c=37/122+5/36*I,n=52 3178102888277039 m001 1/Artin^2/exp(GaussAGM(1,1/sqrt(2)))*Zeta(5) 3178102918935689 r005 Re(z^2+c),c=-5/19+23/43*I,n=18 3178102918981876 m005 (1/2*3^(1/2)-11/12)/(39/35+3/14*5^(1/2)) 3178102937046162 r009 Re(z^3+c),c=-1/18+38/61*I,n=64 3178102944819700 m001 (Mills-Salem)/(BesselI(1,2)+FeigenbaumAlpha) 3178102951529804 r009 Im(z^3+c),c=-11/24+10/51*I,n=23 3178102952262163 a007 Real Root Of -87*x^4-89*x^3-157*x^2+949*x-282 3178102953761637 a001 701408733/3571*199^(1/11) 3178102953901883 r005 Im(z^2+c),c=-61/54+1/4*I,n=14 3178102959683595 m005 (1/2*Catalan+7/8)/(-19/40+2/5*5^(1/2)) 3178102977032201 r005 Im(z^2+c),c=15/106+16/55*I,n=19 3178102977131080 r005 Im(z^2+c),c=-1/7+25/56*I,n=25 3178102982524800 r005 Re(z^2+c),c=-41/106+12/41*I,n=42 3178102983822755 m001 ln(ArtinRank2)^2/CopelandErdos*gamma 3178102987743159 r009 Re(z^3+c),c=-3/94+1/24*I,n=3 3178102994609472 l006 ln(3392/4661) 3178103014765665 m001 (Stephens+StolarskyHarborth)/(ln(2)+exp(1/Pi)) 3178103016481435 r005 Im(z^2+c),c=-11/23+26/63*I,n=6 3178103016880588 m001 FeigenbaumDelta/(cos(1/5*Pi)+TwinPrimes) 3178103016880588 m001 FeigenbaumDelta/(cos(Pi/5)+TwinPrimes) 3178103020329501 a007 Real Root Of 36*x^4-632*x^3+172*x^2-195*x-100 3178103025778863 m001 Salem^2*FeigenbaumDelta/ln(GAMMA(3/4)) 3178103043109018 a001 24157817/2207*521^(7/13) 3178103044069814 r005 Re(z^2+c),c=-13/32+11/60*I,n=40 3178103044175665 a001 24157817/3571*521^(8/13) 3178103045258780 m001 (gamma(3)-GAMMA(17/24))/(ThueMorse-ZetaQ(3)) 3178103046983647 m001 exp(Niven)/FeigenbaumB/(3^(1/3))^2 3178103050231002 r005 Im(z^2+c),c=-17/54+27/53*I,n=33 3178103053895259 r005 Re(z^2+c),c=-13/32+11/60*I,n=43 3178103064065735 r005 Im(z^2+c),c=-107/98+2/59*I,n=6 3178103070977601 a001 123/610*17711^(2/43) 3178103072978423 r005 Re(z^2+c),c=-13/32+11/60*I,n=45 3178103076260835 r009 Im(z^3+c),c=-51/106+4/23*I,n=40 3178103083765809 m005 (1/2*2^(1/2)+1/12)/(5/8*Zeta(3)-1) 3178103086684934 r005 Im(z^2+c),c=-33/98+29/51*I,n=56 3178103093563615 r005 Re(z^2+c),c=-13/32+11/60*I,n=41 3178103094666049 r005 Re(z^2+c),c=-13/32+11/60*I,n=47 3178103106072427 r005 Re(z^2+c),c=-13/32+11/60*I,n=49 3178103106724093 h005 exp(cos(Pi*4/31)+cos(Pi*25/59)) 3178103107144459 r005 Re(z^2+c),c=-13/32+11/60*I,n=52 3178103107554776 r005 Re(z^2+c),c=-13/32+11/60*I,n=54 3178103108140931 r005 Re(z^2+c),c=-13/32+11/60*I,n=56 3178103108470973 r005 Re(z^2+c),c=-13/32+11/60*I,n=58 3178103108524168 r005 Re(z^2+c),c=-13/32+11/60*I,n=61 3178103108531906 r005 Re(z^2+c),c=-13/32+11/60*I,n=63 3178103108573454 r005 Re(z^2+c),c=-13/32+11/60*I,n=59 3178103108578114 r005 Re(z^2+c),c=-13/32+11/60*I,n=50 3178103108579978 r005 Re(z^2+c),c=-13/32+11/60*I,n=64 3178103108583525 r005 Re(z^2+c),c=-13/32+11/60*I,n=60 3178103108595050 r005 Re(z^2+c),c=-13/32+11/60*I,n=62 3178103108779929 r005 Re(z^2+c),c=-13/32+11/60*I,n=57 3178103109249009 r005 Re(z^2+c),c=-13/32+11/60*I,n=55 3178103109667185 r005 Re(z^2+c),c=-13/32+11/60*I,n=51 3178103109856722 r005 Re(z^2+c),c=-13/32+11/60*I,n=53 3178103114272676 a007 Real Root Of -354*x^4-603*x^3-783*x^2+795*x+316 3178103115481851 r005 Re(z^2+c),c=-13/32+11/60*I,n=48 3178103123011325 r009 Re(z^3+c),c=-23/52+15/43*I,n=34 3178103127720887 r005 Im(z^2+c),c=-4/29+4/9*I,n=37 3178103132204389 r005 Re(z^2+c),c=-13/32+11/60*I,n=46 3178103134056567 a001 233/7*123^(18/19) 3178103136930226 r005 Im(z^2+c),c=-55/42+7/30*I,n=4 3178103137336440 m001 (Bloch-Riemann3rdZero)/(Zeta(1,-1)-Zeta(1,2)) 3178103140739126 a007 Real Root Of 938*x^4-35*x^3+567*x^2-19*x-74 3178103147773349 r009 Im(z^3+c),c=-1/98+61/62*I,n=4 3178103149216656 a007 Real Root Of -211*x^4-372*x^3+853*x^2-128*x+562 3178103152159526 r005 Re(z^2+c),c=-33/86+19/62*I,n=34 3178103152944747 r005 Im(z^2+c),c=5/29+13/41*I,n=4 3178103156083810 r005 Re(z^2+c),c=-13/32+11/60*I,n=44 3178103156920069 r005 Re(z^2+c),c=-13/32+11/60*I,n=42 3178103170392893 b008 11/(15*E^3)+Pi 3178103189511872 s001 sum(exp(-2*Pi)^(n-1)*A142003[n],n=1..infinity) 3178103194673216 m005 (1/2*5^(1/2)+8/9)/(6/11*gamma+6) 3178103198616920 m001 (FeigenbaumB+FellerTornier)/(exp(1)+Catalan) 3178103199841016 a007 Real Root Of 304*x^4+733*x^3-935*x^2-752*x-430 3178103205963704 r005 Re(z^2+c),c=31/90+4/35*I,n=37 3178103213719395 r005 Re(z^2+c),c=-41/106+12/41*I,n=40 3178103214081625 a007 Real Root Of -133*x^4-228*x^3+815*x^2+698*x+236 3178103260917013 p004 log(33211/24169) 3178103265430223 a007 Real Root Of 286*x^4+936*x^3+367*x^2+579*x-998 3178103268137427 m001 (GAMMA(5/6)-KomornikLoreti)/(ln(Pi)+Zeta(1,2)) 3178103280089448 r005 Im(z^2+c),c=-7/34+21/44*I,n=22 3178103293005749 a007 Real Root Of -208*x^4-540*x^3+499*x^2+570*x+657 3178103298453946 m002 -Pi^3+(6*Log[Pi])/Pi^3-Tanh[Pi] 3178103299040153 a007 Real Root Of -602*x^4+959*x^3+311*x^2+892*x+289 3178103322044284 r005 Re(z^2+c),c=-13/32+11/60*I,n=39 3178103325146809 m008 (1/6*Pi^6-3/4)/(5*Pi^2+5/6) 3178103337697643 a007 Real Root Of 214*x^4+338*x^3-950*x^2+351*x-271 3178103364835927 l006 ln(5795/7963) 3178103367499000 r005 Im(z^2+c),c=23/56+11/35*I,n=21 3178103385338883 a007 Real Root Of -231*x^4-715*x^3-186*x^2-972*x-596 3178103390116377 r002 2th iterates of z^2 + 3178103394667193 r005 Im(z^2+c),c=-13/118+10/23*I,n=15 3178103395963935 s002 sum(A194638[n]/(64^n),n=1..infinity) 3178103401441629 m001 log(1+sqrt(2))/exp(OneNinth)^2/sqrt(5) 3178103407563045 a007 Real Root Of -776*x^4+347*x^3+594*x^2+465*x-211 3178103414155003 r005 Re(z^2+c),c=-51/122+1/22*I,n=20 3178103417181955 a007 Real Root Of -352*x^4-862*x^3+623*x^2-361*x+800 3178103425101676 r009 Re(z^3+c),c=-1/18+38/61*I,n=63 3178103427336889 m001 (3^(1/3))^2*Sierpinski/exp(sqrt(2))^2 3178103432239533 m002 -Log[Pi]-Log[Pi]/Pi+Pi^3*ProductLog[Pi] 3178103436396566 r005 Re(z^2+c),c=-23/58+15/61*I,n=19 3178103438027145 l003 KelvinHei(2,6/67) 3178103445446902 r002 24th iterates of z^2 + 3178103457715035 m001 (exp(-1/2*Pi)+LaplaceLimit)/Trott2nd 3178103463096313 r005 Re(z^2+c),c=21/94+11/18*I,n=5 3178103479873890 r002 5th iterates of z^2 + 3178103481157803 r005 Re(z^2+c),c=37/122+3/28*I,n=52 3178103486214913 r005 Im(z^2+c),c=-21/118+31/54*I,n=11 3178103493726815 m006 (2*exp(2*Pi)-3/5)/(5/6*Pi+3/4) 3178103504185890 a007 Real Root Of -203*x^4-412*x^3+656*x^2-519*x-791 3178103519742269 r009 Re(z^3+c),c=-47/114+13/43*I,n=31 3178103529938070 r005 Im(z^2+c),c=13/110+19/62*I,n=14 3178103534861953 r005 Im(z^2+c),c=-2/31+25/61*I,n=22 3178103540659062 m001 1/ln(gamma)^2*FeigenbaumKappa*sin(1)^2 3178103541989050 m001 Riemann3rdZero/ln(RenyiParking)^2*Zeta(5)^2 3178103555455737 m001 BesselJ(1,1)*(1/3-GAMMA(11/12)) 3178103563506231 r008 a(0)=3,K{-n^6,-61-46*n^3+30*n^2+71*n} 3178103566217862 m005 (1/2*Zeta(3)-3/4)/(4/3+3/2*5^(1/2)) 3178103584073618 a001 1/11592*55^(9/10) 3178103592381081 r005 Re(z^2+c),c=-47/122+18/59*I,n=8 3178103597233427 m004 Sqrt[5]*Pi+(400*Sqrt[5]*Cot[Sqrt[5]*Pi])/Pi 3178103597962480 m001 Lehmer/MertensB1^2/exp(sqrt(1+sqrt(3)))^2 3178103600388680 a001 31622993/2889*521^(7/13) 3178103602522527 a001 5702887/1364*521^(9/13) 3178103616486500 m004 10*Pi+Sqrt[5]/(Pi*Log[Sqrt[5]*Pi]) 3178103617143960 m001 1/ln(TwinPrimes)*TreeGrowth2nd*sqrt(3)^2 3178103646914467 r009 Re(z^3+c),c=-1/18+38/61*I,n=61 3178103651295769 r005 Im(z^2+c),c=-31/98+28/55*I,n=30 3178103655881344 a009 5+14*7^(1/3) 3178103655881344 b008 5+14*7^(1/3) 3178103665974285 r009 Re(z^3+c),c=-43/98+13/38*I,n=24 3178103668494356 m001 1/Salem/ln(DuboisRaymond)^2*Zeta(9) 3178103670023085 r005 Re(z^2+c),c=-23/56+9/52*I,n=11 3178103670574697 a003 cos(Pi*21/53)*sin(Pi*35/76) 3178103673006583 r005 Im(z^2+c),c=3/19+5/18*I,n=6 3178103676156998 m001 (Khinchin+OneNinth)/(Backhouse-gamma) 3178103681694703 a001 165580141/15127*521^(7/13) 3178103690746859 r009 Re(z^3+c),c=-33/62+11/23*I,n=2 3178103693557093 a001 433494437/39603*521^(7/13) 3178103695287792 a001 567451585/51841*521^(7/13) 3178103695540298 a001 2971215073/271443*521^(7/13) 3178103695577138 a001 7778742049/710647*521^(7/13) 3178103695582513 a001 10182505537/930249*521^(7/13) 3178103695583297 a001 53316291173/4870847*521^(7/13) 3178103695583411 a001 139583862445/12752043*521^(7/13) 3178103695583428 a001 182717648081/16692641*521^(7/13) 3178103695583430 a001 956722026041/87403803*521^(7/13) 3178103695583431 a001 2504730781961/228826127*521^(7/13) 3178103695583431 a001 3278735159921/299537289*521^(7/13) 3178103695583431 a001 10610209857723/969323029*521^(7/13) 3178103695583431 a001 4052739537881/370248451*521^(7/13) 3178103695583431 a001 387002188980/35355581*521^(7/13) 3178103695583432 a001 591286729879/54018521*521^(7/13) 3178103695583438 a001 7787980473/711491*521^(7/13) 3178103695583482 a001 21566892818/1970299*521^(7/13) 3178103695583781 a001 32951280099/3010349*521^(7/13) 3178103695585834 a001 12586269025/1149851*521^(7/13) 3178103695599906 a001 1201881744/109801*521^(7/13) 3178103695696355 a001 1836311903/167761*521^(7/13) 3178103696357423 a001 701408733/64079*521^(7/13) 3178103699307363 a007 Real Root Of -929*x^4-392*x^3+906*x^2+351*x-181 3178103700888452 a001 10946*521^(7/13) 3178103706664167 m001 (-OneNinth+Thue)/(gamma+KomornikLoreti) 3178103707492239 m008 (2/5*Pi^5-1/6)/(4*Pi^6+4/5) 3178103713598651 m002 Pi^5+(3*Csch[Pi])/ProductLog[Pi]+Sinh[Pi] 3178103721574623 a007 Real Root Of 203*x^4+334*x^3-814*x^2+412*x-457 3178103726018710 a007 Real Root Of -858*x^4-232*x^3+325*x^2+706*x-241 3178103726614214 a001 34111385/281*521^(2/13) 3178103731944591 a001 102334155/9349*521^(7/13) 3178103741692724 r009 Im(z^3+c),c=-23/74+9/31*I,n=8 3178103745579013 a007 Real Root Of -289*x^4-928*x^3-96*x^2-156*x+168 3178103765256143 m005 (1/2*Pi+7/11)/(9/11*gamma+2/9) 3178103766789214 r009 Re(z^3+c),c=-7/66+45/56*I,n=28 3178103784269413 m003 -1/3+(3*Sqrt[5])/16-Sinh[1/2+Sqrt[5]/2]/6 3178103793896857 m001 (Champernowne-GolombDickman)/(Zeta(3)+Artin) 3178103819672131 a001 193864333/610 3178103821982996 r009 Re(z^3+c),c=-8/17+11/26*I,n=23 3178103835996002 r005 Re(z^2+c),c=-39/110+17/41*I,n=55 3178103839222232 r005 Im(z^2+c),c=-57/40+1/44*I,n=11 3178103845863307 m001 Zeta(1,-1)^Porter/(Zeta(1,-1)^FeigenbaumDelta) 3178103847226316 r005 Re(z^2+c),c=9/32+31/51*I,n=4 3178103853510975 m001 (ln(Pi)+Artin)/(MasserGramainDelta+Otter) 3178103863086394 r009 Re(z^3+c),c=-5/16+7/58*I,n=6 3178103865549092 b008 ArcCsch[37/2]/17 3178103873701054 a001 47*(1/2*5^(1/2)+1/2)^25*3571^(11/15) 3178103878996013 m005 (25/12+1/12*5^(1/2))/(Pi+4) 3178103887436044 l006 ln(2403/3302) 3178103889766081 m001 Zeta(1,-1)-FeigenbaumAlpha^Zeta(3) 3178103895371660 m008 (3/5*Pi^5-1/2)/(3/5*Pi^6-2/3) 3178103903560164 r005 Re(z^2+c),c=-41/122+21/47*I,n=10 3178103913175537 r005 Re(z^2+c),c=-13/32+11/60*I,n=37 3178103928254443 r009 Im(z^3+c),c=-43/94+11/54*I,n=15 3178103933239077 r005 Re(z^2+c),c=-11/29+14/37*I,n=13 3178103933548882 a001 377*1364^(14/15) 3178103942870929 a007 Real Root Of 419*x^4+348*x^3-401*x^2-640*x-156 3178103943739903 a001 39088169/2207*521^(6/13) 3178103944806550 a001 39088169/3571*521^(7/13) 3178103950514932 m002 -5-(Pi^3*Sinh[Pi])/Log[Pi] 3178103954126198 r005 Im(z^2+c),c=39/94+1/6*I,n=6 3178103959346871 r009 Re(z^3+c),c=-3/94+1/24*I,n=6 3178103959347322 r009 Re(z^3+c),c=-3/94+1/24*I,n=7 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=9 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=10 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=13 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=14 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=16 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=17 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=20 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=23 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=19 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=18 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=15 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=12 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=11 3178103959347324 r009 Re(z^3+c),c=-3/94+1/24*I,n=8 3178103959398930 r009 Re(z^3+c),c=-3/94+1/24*I,n=5 3178103962667516 r009 Re(z^3+c),c=-3/94+1/24*I,n=4 3178103970865577 r005 Re(z^2+c),c=-119/94+13/36*I,n=9 3178103971491053 r005 Re(z^2+c),c=23/66+7/47*I,n=59 3178103975975337 m001 (1-BesselK(0,1))/(GAMMA(3/4)+Gompertz) 3178103981634893 m008 (1/2*Pi^3-1/4)/(1/2*Pi^6-3/4) 3178103982122478 m005 (1/2*Zeta(3)+6/11)/(3/7*Catalan-4) 3178103985832091 r009 Re(z^3+c),c=-1/18+38/61*I,n=59 3178103988376518 m001 (Niven+Thue)/(GAMMA(3/4)-ln(Pi)) 3178104004604006 m001 GaussKuzminWirsing^HeathBrownMoroz/Pi 3178104004604665 p001 sum(1/(533*n+420)/(2^n),n=0..infinity) 3178104006552235 a001 228826127*144^(9/17) 3178104013687007 r009 Re(z^3+c),c=-3/44+25/36*I,n=4 3178104024951674 a001 47*(1/2*5^(1/2)+1/2)^21*9349^(13/15) 3178104027367611 r005 Im(z^2+c),c=7/60+4/13*I,n=27 3178104036498701 a007 Real Root Of 527*x^4-439*x^3+135*x^2-950*x+297 3178104047437656 a001 514229/843*1364^(13/15) 3178104048289685 m001 BesselJ(0,1)/Zeta(1/2)/exp(1/2) 3178104049185003 r005 Re(z^2+c),c=-11/28+13/24*I,n=6 3178104054951693 a008 Real Root of x^4-2*x^3-5*x^2-13*x+54 3178104055584718 a007 Real Root Of -207*x^4-456*x^3+656*x^2-68*x-362 3178104055742291 a001 47*(1/2*5^(1/2)+1/2)^16*64079^(14/15) 3178104056888351 m001 Artin^BesselI(0,2)*Artin^FibonacciFactorial 3178104057148551 a007 Real Root Of -170*x^4-402*x^3+189*x^2-706*x+286 3178104057979392 m004 -1125/Pi+(25*Pi)/Log[Sqrt[5]*Pi] 3178104059247690 r009 Im(z^3+c),c=-33/94+8/33*I,n=2 3178104065927269 r009 Im(z^3+c),c=-21/44+11/62*I,n=61 3178104069856996 a007 Real Root Of 732*x^4+228*x^3+459*x^2-828*x+202 3178104075650295 m001 (MertensB2+ZetaQ(4))/(3^(1/2)+GAMMA(7/12)) 3178104092653183 m005 (1/3*Zeta(3)+1/2)/(1/10*Catalan-3/8) 3178104099171587 l006 ln(4831/4987) 3178104099171587 p004 log(4987/4831) 3178104109861861 a001 105937*199^(11/53) 3178104116010528 b008 1/4+3^(-Sqrt[6]) 3178104118657940 r005 Im(z^2+c),c=-25/102+19/39*I,n=26 3178104140529198 r005 Re(z^2+c),c=29/98+4/39*I,n=47 3178104150680994 m005 (1/2*Catalan-6/7)/(3/5*exp(1)-3/8) 3178104158236320 h001 (-5*exp(6)-1)/(-9*exp(2)+3) 3178104161314416 a001 832040/843*1364^(4/5) 3178104164757663 r002 60th iterates of z^2 + 3178104169131304 r005 Re(z^2+c),c=-35/94+17/47*I,n=20 3178104181217438 a007 Real Root Of 152*x^4+398*x^3-378*x^2-259*x+264 3178104183358267 m001 MertensB2-Zeta(3)*Gompertz 3178104184713177 r005 Re(z^2+c),c=-10/27+9/25*I,n=52 3178104194293388 a001 1364/17711*89^(6/19) 3178104206371302 r005 Re(z^2+c),c=-7/19+18/49*I,n=33 3178104211406269 a001 76/987*377^(37/59) 3178104217300984 a001 47/17711*17711^(24/25) 3178104228097999 a001 34/9349*18^(3/4) 3178104228258355 h005 exp(cos(Pi*1/31)/cos(Pi*8/47)) 3178104254033282 s002 sum(A108917[n]/(n^2*exp(n)+1),n=1..infinity) 3178104266213198 m001 (Zeta(5)-ln(3))/(CopelandErdos+Niven) 3178104269186931 r005 Im(z^2+c),c=-3/10+18/31*I,n=22 3178104275195770 a001 1346269/843*1364^(11/15) 3178104275990024 m001 exp(Conway)/ErdosBorwein/Khintchine^2 3178104280701792 r009 Re(z^3+c),c=-11/24+17/55*I,n=4 3178104288205092 r005 Im(z^2+c),c=-17/62+17/29*I,n=25 3178104289956479 m004 5/3+25*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi]/4 3178104297447978 m001 TwinPrimes^gamma(3)-ln(2+3^(1/2)) 3178104299063835 r009 Im(z^3+c),c=-9/94+38/47*I,n=52 3178104302991095 h001 (7/8*exp(2)+3/4)/(5/8*exp(1)+4/7) 3178104317068711 m001 (AlladiGrinstead-Salem)/(ln(Pi)-gamma(2)) 3178104317247733 a007 Real Root Of 165*x^4-293*x^3-470*x^2-399*x+182 3178104319651513 h001 (6/7*exp(1)+1/11)/(10/11*exp(2)+9/10) 3178104329395659 m005 (1/3*5^(1/2)+1/8)/(9/11*5^(1/2)+10/11) 3178104335522382 r009 Im(z^3+c),c=-23/52+4/19*I,n=39 3178104354998775 m001 BesselK(1,1)*Backhouse*ln(Zeta(5)) 3178104355497161 r005 Im(z^2+c),c=-17/74+31/64*I,n=57 3178104356095911 a003 -1/2-cos(1/9*Pi)-2*cos(3/8*Pi)-cos(2/27*Pi) 3178104360536146 a007 Real Root Of -146*x^4-239*x^3+528*x^2-374*x+701 3178104360952824 a001 47*(1/2*5^(1/2)+1/2)^30*2207^(7/15) 3178104361531551 m005 (1/2*Pi-5/12)/(1/3*gamma-5/9) 3178104374327928 l006 ln(6220/8547) 3178104383082971 m001 BesselK(1,1)^2/FeigenbaumAlpha^2*ln(gamma) 3178104384654507 s001 sum(1/10^(n-1)*A051202[n]/n!^2,n=1..infinity) 3178104389075375 a001 726103/281*1364^(2/3) 3178104393338857 b008 1+ArcCosh[4+Sqrt[2]/3] 3178104397795596 m001 (Mills+TwinPrimes)/(GAMMA(5/6)-MadelungNaCl) 3178104399945184 m001 BesselJ(0,1)^(2*Pi/GAMMA(5/6))-Landau 3178104400102855 r009 Im(z^3+c),c=-15/32+9/49*I,n=22 3178104406576107 m001 1/Zeta(5)*Pi*exp(sinh(1))^2 3178104412739524 a001 66978574/341*199^(1/11) 3178104414470993 r009 Re(z^3+c),c=-41/86+2/5*I,n=56 3178104416944205 m001 (BesselJ(1,1)+Bloch)/(2^(1/3)+ln(5)) 3178104452452716 r009 Re(z^3+c),c=-1/18+38/61*I,n=57 3178104456850930 p004 log(19753/823) 3178104465223267 a007 Real Root Of 75*x^4-100*x^3+865*x^2+300*x+4 3178104497071895 r005 Im(z^2+c),c=-5/52+17/40*I,n=22 3178104498818564 r005 Re(z^2+c),c=-8/21+30/59*I,n=6 3178104501019725 a001 34111385/1926*521^(6/13) 3178104502955654 a001 3524578/843*1364^(3/5) 3178104503153600 a001 9227465/1364*521^(8/13) 3178104509064495 r005 Re(z^2+c),c=-13/34+3/10*I,n=13 3178104514408973 a007 Real Root Of 369*x^4+863*x^3-698*x^2+741*x-537 3178104517777239 a007 Real Root Of 271*x^4+667*x^3-543*x^2+25*x-672 3178104544447403 a001 514229/18*11^(2/45) 3178104548165570 m001 (-Champernowne+ZetaP(2))/(3^(1/2)-ArtinRank2) 3178104564508956 m001 (Ei(1)-PolyaRandomWalk3D)/(ThueMorse+ZetaP(4)) 3178104570507766 m008 (3/5*Pi^2-1)/(5*Pi^3-1/6) 3178104573705173 m001 MadelungNaCl/ln(KhintchineHarmonic)^2/sqrt(Pi) 3178104575163398 q001 389/1224 3178104582325771 a001 267914296/15127*521^(6/13) 3178104584620811 a007 Real Root Of -241*x^4-599*x^3+397*x^2-311*x+360 3178104594188164 a001 17711*521^(6/13) 3178104595918864 a001 1836311903/103682*521^(6/13) 3178104596171369 a001 1602508992/90481*521^(6/13) 3178104596208209 a001 12586269025/710647*521^(6/13) 3178104596213584 a001 10983760033/620166*521^(6/13) 3178104596214368 a001 86267571272/4870847*521^(6/13) 3178104596214483 a001 75283811239/4250681*521^(6/13) 3178104596214500 a001 591286729879/33385282*521^(6/13) 3178104596214502 a001 516002918640/29134601*521^(6/13) 3178104596214502 a001 4052739537881/228826127*521^(6/13) 3178104596214502 a001 3536736619241/199691526*521^(6/13) 3178104596214502 a001 6557470319842/370248451*521^(6/13) 3178104596214503 a001 2504730781961/141422324*521^(6/13) 3178104596214503 a001 956722026041/54018521*521^(6/13) 3178104596214510 a001 365435296162/20633239*521^(6/13) 3178104596214554 a001 139583862445/7881196*521^(6/13) 3178104596214853 a001 53316291173/3010349*521^(6/13) 3178104596216906 a001 20365011074/1149851*521^(6/13) 3178104596230978 a001 7778742049/439204*521^(6/13) 3178104596327426 a001 2971215073/167761*521^(6/13) 3178104596351922 m001 Lehmer^GAMMA(1/6)*Lehmer^GAMMA(23/24) 3178104596351922 m001 Lehmer^GAMMA(23/24)*Lehmer^(2*Pi/GAMMA(5/6)) 3178104596988495 a001 1134903170/64079*521^(6/13) 3178104601519526 a001 433494437/24476*521^(6/13) 3178104616835681 a001 5702887/843*1364^(8/15) 3178104617527674 a007 Real Root Of -115*x^4-517*x^3-814*x^2-769*x+914 3178104618218093 a003 sin(Pi*23/117)-sin(Pi*17/48) 3178104625652947 m001 Pi-ln(2)/ln(10)/GAMMA(2/3)+sin(1/12*Pi) 3178104627245295 a001 165580141/843*521^(1/13) 3178104632575673 a001 165580141/9349*521^(6/13) 3178104645034576 m001 (exp(Pi)+MertensB1)/(-Salem+TreeGrowth2nd) 3178104650817098 h001 (9/10*exp(2)+3/11)/(4/7*exp(1)+5/8) 3178104663348234 m008 (4*Pi^5-2)/(4*Pi^6-1/4) 3178104671863992 m008 (3*Pi^3+2/3)/(2/5*Pi^2-1) 3178104673866665 m001 Pi*Psi(2,1/3)*(2^(1/2)+BesselK(0,1)) 3178104674128556 a001 8/3*11^(3/41) 3178104680851678 l006 ln(3817/5245) 3178104684736359 m008 (1/2*Pi^5-2)/(1/4*Pi^3-3) 3178104690876400 b008 -11*Pi+ArcSinh[8] 3178104692764053 s002 sum(A237667[n]/(n^2*exp(n)+1),n=1..infinity) 3178104697914756 r005 Im(z^2+c),c=-5/52+23/54*I,n=18 3178104703391372 a007 Real Root Of -333*x^4-702*x^3+889*x^2-827*x-170 3178104703802400 r005 Re(z^2+c),c=-33/82+9/43*I,n=39 3178104709460014 r009 Re(z^3+c),c=-1/23+29/50*I,n=2 3178104721161112 k008 concat of cont frac of 3178104726068157 m001 Riemann3rdZero^2*Conway/ln(GAMMA(19/24))^2 3178104730715810 a001 9227465/843*1364^(7/15) 3178104749345606 m001 GAMMA(7/24)^2/FransenRobinson^2/ln(cos(1))^2 3178104752149349 m001 ln(Pi)^(3^(1/3))+ReciprocalLucas 3178104753476366 r005 Im(z^2+c),c=-47/82+3/52*I,n=42 3178104757231653 m001 Ei(1)*OrthogonalArrays+polylog(4,1/2) 3178104759212163 m001 (Magata+Niven)/(3^(1/2)-Champernowne) 3178104770813916 r005 Re(z^2+c),c=8/25+28/51*I,n=53 3178104774434023 m001 1/5*Tribonacci/sin(1/12*Pi)*5^(1/2) 3178104776639026 a007 Real Root Of -412*x^4-352*x^3+848*x^2+890*x-353 3178104778684485 r005 Re(z^2+c),c=-33/82+9/43*I,n=37 3178104789447418 r005 Re(z^2+c),c=-19/54+11/26*I,n=45 3178104808490067 m001 (Riemann1stZero+Weierstrass)/(1-cos(1)) 3178104817987791 m005 (1/2*3^(1/2)-11/12)/(2/11*5^(1/2)-2) 3178104820901509 r005 Re(z^2+c),c=-3/8+8/15*I,n=34 3178104828705155 r009 Im(z^3+c),c=-71/114+10/41*I,n=6 3178104830329352 a007 Real Root Of -245*x^4-869*x^3-315*x^2-22*x+211 3178104832710747 r005 Re(z^2+c),c=-13/32+11/60*I,n=35 3178104844371045 a001 63245986/2207*521^(5/13) 3178104844595906 a001 4976784/281*1364^(2/5) 3178104845437693 a001 63245986/3571*521^(6/13) 3178104847198440 r005 Re(z^2+c),c=-43/90+5/52*I,n=4 3178104848372680 m004 -6+5*Pi-Log[Sqrt[5]*Pi]-5*Tan[Sqrt[5]*Pi] 3178104855773428 a007 Real Root Of -266*x^4+546*x^3-853*x^2+455*x+251 3178104859923922 m001 LaplaceLimit/ErdosBorwein*ln(Catalan)^2 3178104869430546 m001 Trott^Ei(1,1)/(Trott^Weierstrass) 3178104873686230 r009 Im(z^3+c),c=-59/114+7/12*I,n=18 3178104875395501 a001 377/2207*7881196^(10/11) 3178104875395541 a001 377/2207*20633239^(6/7) 3178104875395547 a001 377/2207*141422324^(10/13) 3178104875395547 a001 377/2207*2537720636^(2/3) 3178104875395547 a001 377/2207*45537549124^(10/17) 3178104875395547 a001 377/2207*312119004989^(6/11) 3178104875395547 a001 377/2207*14662949395604^(10/21) 3178104875395547 a001 377/2207*(1/2+1/2*5^(1/2))^30 3178104875395547 a001 377/2207*192900153618^(5/9) 3178104875395547 a001 377/2207*28143753123^(3/5) 3178104875395547 a001 377/2207*10749957122^(5/8) 3178104875395547 a001 377/2207*4106118243^(15/23) 3178104875395547 a001 377/2207*1568397607^(15/22) 3178104875395547 a001 377/2207*599074578^(5/7) 3178104875395547 a001 377/2207*228826127^(3/4) 3178104875395547 a001 377/2207*87403803^(15/19) 3178104875395550 a001 377/2207*33385282^(5/6) 3178104875395564 a001 377/2207*12752043^(15/17) 3178104875395673 a001 377/2207*4870847^(15/16) 3178104875401706 a001 329/281*141422324^(2/3) 3178104875401706 a001 329/281*(1/2+1/2*5^(1/2))^26 3178104875401706 a001 329/281*73681302247^(1/2) 3178104875401706 a001 329/281*10749957122^(13/24) 3178104875401706 a001 329/281*4106118243^(13/23) 3178104875401706 a001 329/281*1568397607^(13/22) 3178104875401706 a001 329/281*599074578^(13/21) 3178104875401706 a001 329/281*228826127^(13/20) 3178104875401707 a001 329/281*87403803^(13/19) 3178104875401708 a001 329/281*33385282^(13/18) 3178104875401721 a001 329/281*12752043^(13/17) 3178104875401815 a001 329/281*4870847^(13/16) 3178104875402502 a001 329/281*1860498^(13/15) 3178104875407550 a001 329/281*710647^(13/14) 3178104878793274 m001 (Ei(1,1)+GAMMA(5/6)*Champernowne)/GAMMA(5/6) 3178104885039796 a007 Real Root Of 159*x^4+320*x^3+483*x^2-975*x-350 3178104885591969 r005 Im(z^2+c),c=-31/90+13/24*I,n=7 3178104885878758 m005 (1/2*5^(1/2)-2/11)/(1/6*Pi-9/11) 3178104891288143 a001 416020/161*322^(5/6) 3178104895431125 a001 1/47*(1/2*5^(1/2)+1/2)^23*11^(6/17) 3178104919222463 a007 Real Root Of 265*x^4+801*x^3-269*x^2-514*x-239 3178104933128550 a001 1/329*610^(29/40) 3178104938053592 m001 (Cahen-Mills)/(Pi-GAMMA(11/12)) 3178104939503497 r005 Im(z^2+c),c=25/82+8/59*I,n=34 3178104951621010 m001 1/Zeta(7)^2*exp(ErdosBorwein)/cosh(1) 3178104958476020 a001 24157817/843*1364^(1/3) 3178104978874910 r005 Re(z^2+c),c=-1/3+27/58*I,n=23 3178104984993531 s002 sum(A045433[n]/(n*exp(n)-1),n=1..infinity) 3178104989495612 m005 (5/6*2^(1/2)-1/2)/(3/5*Pi+1/4) 3178104990119681 r009 Re(z^3+c),c=-1/18+38/61*I,n=55 3178104997793864 r009 Re(z^3+c),c=-1/18+38/61*I,n=51 3178104999410328 g006 Psi(1,2/11)+Psi(1,4/7)+Psi(1,2/3)-Psi(1,5/12) 3178105007413391 r005 Im(z^2+c),c=-39/56+1/40*I,n=35 3178105012859029 a007 Real Root Of 148*x^4+535*x^3+74*x^2-469*x-163 3178105017178262 r005 Re(z^2+c),c=7/32+1/64*I,n=10 3178105026316590 r009 Re(z^3+c),c=-9/34+29/42*I,n=35 3178105044876236 r005 Im(z^2+c),c=-5/17+25/49*I,n=50 3178105045328385 l006 ln(5231/7188) 3178105054400357 m005 (1/2*2^(1/2)-5)/(3/8*Zeta(3)+9/10) 3178105058717360 r005 Re(z^2+c),c=-33/82+9/43*I,n=41 3178105062754285 a007 Real Root Of 89*x^4-85*x^3+713*x^2-42*x-89 3178105064043722 r005 Im(z^2+c),c=-19/94+26/55*I,n=55 3178105072356133 a001 39088169/843*1364^(4/15) 3178105093957256 r005 Re(z^2+c),c=-11/27+3/17*I,n=18 3178105104512635 r009 Re(z^3+c),c=-7/78+49/62*I,n=34 3178105105306359 a007 Real Root Of 853*x^4-891*x^3+773*x^2-653*x+20 3178105108127930 s002 sum(A173579[n]/(n^2*10^n+1),n=1..infinity) 3178105108206487 a001 7/233*1134903170^(4/9) 3178105112983544 r005 Re(z^2+c),c=37/110+3/20*I,n=23 3178105114536574 a007 Real Root Of -431*x^4+54*x^3-771*x^2+623*x+282 3178105120830185 r005 Re(z^2+c),c=-13/32+11/60*I,n=33 3178105130305375 m001 1/Tribonacci^2*Riemann1stZero^2*exp(sin(1))^2 3178105137937173 a001 7/28657*4181^(43/50) 3178105155166135 m001 ln(CareFree)^2/FeigenbaumAlpha/cosh(1) 3178105167829546 a005 (1/sin(90/193*Pi))^1438 3178105176837289 l005 sec(137/89) 3178105185632206 r005 Re(z^2+c),c=3/44+12/35*I,n=9 3178105186236252 a001 63245986/843*1364^(1/5) 3178105238348818 r005 Im(z^2+c),c=-2/27+17/41*I,n=19 3178105254689943 l006 ln(6645/9131) 3178105254766945 m001 (BesselI(1,1)-LambertW(1))/GolombDickman 3178105254766945 m001 (LambertW(1)-BesselI(1,1))/GolombDickman 3178105261833885 m008 (4*Pi^4-4/5)/(1/6*Pi^4-4) 3178105271593453 a001 5/39603*521^(38/43) 3178105278647463 a001 507543413/1597 3178105278921285 r005 Re(z^2+c),c=-47/74+11/39*I,n=7 3178105280843499 r005 Im(z^2+c),c=-20/19+13/45*I,n=6 3178105293270443 a001 121393/843*3571^(16/17) 3178105294892962 a007 Real Root Of -380*x^4-983*x^3+776*x^2+217*x+64 3178105300116374 a001 34111385/281*1364^(2/15) 3178105307990242 a001 196418/843*3571^(15/17) 3178105315511934 r005 Re(z^2+c),c=-33/82+9/43*I,n=43 3178105321150119 r009 Im(z^3+c),c=-57/118+29/51*I,n=12 3178105322627664 a001 377*3571^(14/17) 3178105332935962 p004 log(19417/809) 3178105334069356 a001 119218851371/8*987^(7/9) 3178105337296552 a001 514229/843*3571^(13/17) 3178105340123332 a007 Real Root Of -633*x^4-225*x^3+19*x^2+729*x+229 3178105348624228 a001 55/322*15127^(2/31) 3178105350733372 r005 Im(z^2+c),c=-1/66+5/13*I,n=28 3178105351953420 a001 832040/843*3571^(12/17) 3178105353335969 m005 (1/2*2^(1/2)+1)/(4/9*2^(1/2)-6) 3178105353354803 r005 Re(z^2+c),c=-33/82+9/43*I,n=46 3178105355030664 a007 Real Root Of 505*x^4-566*x^3-545*x^2-906*x+356 3178105356994041 a005 (1/cos(9/103*Pi))^332 3178105362605544 r005 Re(z^2+c),c=-33/82+9/43*I,n=48 3178105366494256 a007 Real Root Of -265*x^4-724*x^3+249*x^2-568*x-526 3178105366614880 a001 1346269/843*3571^(11/17) 3178105370048642 r005 Re(z^2+c),c=5/16+25/49*I,n=53 3178105371826944 r009 Re(z^3+c),c=-1/18+38/61*I,n=53 3178105378062942 r005 Re(z^2+c),c=-33/82+9/43*I,n=50 3178105380715763 m005 (1/3*gamma-1/7)/(8/9*5^(1/2)-3/7) 3178105381274586 a001 726103/281*3571^(10/17) 3178105385815370 r005 Re(z^2+c),c=-33/82+9/43*I,n=55 3178105386055014 r005 Re(z^2+c),c=-11/20+15/47*I,n=5 3178105386425971 r005 Re(z^2+c),c=-33/82+9/43*I,n=53 3178105386486310 r005 Re(z^2+c),c=-33/82+9/43*I,n=57 3178105386488764 r005 Re(z^2+c),c=-33/82+9/43*I,n=52 3178105387075158 r005 Re(z^2+c),c=-33/82+9/43*I,n=59 3178105387233725 r005 Re(z^2+c),c=-33/82+9/43*I,n=62 3178105387241165 r005 Re(z^2+c),c=-33/82+9/43*I,n=64 3178105387325920 r005 Re(z^2+c),c=-33/82+9/43*I,n=61 3178105387357778 r005 Re(z^2+c),c=-33/82+9/43*I,n=60 3178105387365885 r005 Re(z^2+c),c=-33/82+9/43*I,n=63 3178105387772518 r005 Re(z^2+c),c=-33/82+9/43*I,n=58 3178105388483527 r005 Re(z^2+c),c=-33/82+9/43*I,n=56 3178105388785794 r005 Re(z^2+c),c=-33/82+9/43*I,n=54 3178105390427834 r005 Re(z^2+c),c=-9/22+5/31*I,n=31 3178105391344840 r005 Re(z^2+c),c=-33/82+9/43*I,n=51 3178105395063353 r005 Re(z^2+c),c=-33/82+9/43*I,n=44 3178105395934962 a001 3524578/843*3571^(9/17) 3178105401651025 a001 165580141/5778*521^(5/13) 3178105403681822 r005 Re(z^2+c),c=-33/82+9/43*I,n=49 3178105403784890 a001 3732588/341*521^(7/13) 3178105410595082 a001 5702887/843*3571^(8/17) 3178105411130233 r005 Re(z^2+c),c=-33/82+9/43*I,n=45 3178105411266206 r005 Re(z^2+c),c=-33/82+9/43*I,n=36 3178105413996500 a001 165580141/843*1364^(1/15) 3178105419257733 r005 Re(z^2+c),c=-33/82+9/43*I,n=47 3178105422850865 a007 Real Root Of 884*x^4+134*x^3+85*x^2-814*x-272 3178105425255300 a001 9227465/843*3571^(7/17) 3178105431193768 b008 E*(1/7+Sinh[Pi]) 3178105432667177 a001 2584/843*439204^(8/9) 3178105432675532 a001 377/5778*(1/2+1/2*5^(1/2))^32 3178105432675532 a001 377/5778*23725150497407^(1/2) 3178105432675532 a001 377/5778*73681302247^(8/13) 3178105432675532 a001 377/5778*10749957122^(2/3) 3178105432675532 a001 377/5778*4106118243^(16/23) 3178105432675532 a001 377/5778*1568397607^(8/11) 3178105432675532 a001 377/5778*599074578^(16/21) 3178105432675532 a001 377/5778*228826127^(4/5) 3178105432675532 a001 377/5778*87403803^(16/19) 3178105432675534 a001 377/5778*33385282^(8/9) 3178105432675550 a001 377/5778*12752043^(16/17) 3178105432681785 a001 2584/843*7881196^(8/11) 3178105432681822 a001 2584/843*141422324^(8/13) 3178105432681822 a001 2584/843*2537720636^(8/15) 3178105432681822 a001 2584/843*45537549124^(8/17) 3178105432681822 a001 2584/843*14662949395604^(8/21) 3178105432681822 a001 2584/843*(1/2+1/2*5^(1/2))^24 3178105432681822 a001 2584/843*192900153618^(4/9) 3178105432681822 a001 2584/843*73681302247^(6/13) 3178105432681822 a001 2584/843*10749957122^(1/2) 3178105432681822 a001 2584/843*4106118243^(12/23) 3178105432681822 a001 2584/843*1568397607^(6/11) 3178105432681822 a001 2584/843*599074578^(4/7) 3178105432681822 a001 2584/843*228826127^(3/5) 3178105432681822 a001 2584/843*87403803^(12/19) 3178105432681824 a001 2584/843*33385282^(2/3) 3178105432681836 a001 2584/843*12752043^(12/17) 3178105432681923 a001 2584/843*4870847^(3/4) 3178105432682557 a001 2584/843*1860498^(4/5) 3178105432687216 a001 2584/843*710647^(6/7) 3178105432721637 a001 2584/843*271443^(12/13) 3178105439915480 a001 4976784/281*3571^(6/17) 3178105442951287 r005 Re(z^2+c),c=-13/38+29/64*I,n=50 3178105454575675 a001 24157817/843*3571^(5/17) 3178105460959232 a001 15456*4^(13/25) 3178105461585631 m001 (-Totient+Weierstrass)/(BesselK(0,1)-ln(2)) 3178105462711301 a007 Real Root Of -133*x^4-222*x^3+745*x^2+380*x+125 3178105469235865 a001 39088169/843*3571^(4/17) 3178105470835863 s001 sum(exp(-2*Pi/3)^n*A237321[n],n=1..infinity) 3178105472654504 a007 Real Root Of 946*x^4-275*x^3-456*x^2-521*x-138 3178105475359434 a001 408569081798/17*701408733^(11/19) 3178105475359434 a001 4106118243/34*6557470319842^(11/19) 3178105482957094 a001 433494437/15127*521^(5/13) 3178105483896057 a001 63245986/843*3571^(3/17) 3178105491509208 a001 1328765906/4181 3178105493133557 a001 15456/281*9349^(18/19) 3178105494819490 a001 1134903170/39603*521^(5/13) 3178105495455866 a001 75025/843*9349^(17/19) 3178105496550190 a001 2971215073/103682*521^(5/13) 3178105496802696 a001 7778742049/271443*521^(5/13) 3178105496839536 a001 20365011074/710647*521^(5/13) 3178105496844911 a001 53316291173/1860498*521^(5/13) 3178105496845695 a001 139583862445/4870847*521^(5/13) 3178105496845810 a001 365435296162/12752043*521^(5/13) 3178105496845827 a001 956722026041/33385282*521^(5/13) 3178105496845829 a001 2504730781961/87403803*521^(5/13) 3178105496845829 a001 6557470319842/228826127*521^(5/13) 3178105496845829 a001 10610209857723/370248451*521^(5/13) 3178105496845830 a001 4052739537881/141422324*521^(5/13) 3178105496845830 a001 1548008755920/54018521*521^(5/13) 3178105496845837 a001 591286729879/20633239*521^(5/13) 3178105496845881 a001 225851433717/7881196*521^(5/13) 3178105496846180 a001 86267571272/3010349*521^(5/13) 3178105496848233 a001 32951280099/1149851*521^(5/13) 3178105496862305 a001 12586269025/439204*521^(5/13) 3178105496958753 a001 4807526976/167761*521^(5/13) 3178105497213555 a001 121393/843*9349^(16/19) 3178105497619822 a001 28657*521^(5/13) 3178105498556248 a001 34111385/281*3571^(2/17) 3178105499186910 a001 196418/843*9349^(15/19) 3178105499456958 m001 (-GAMMA(11/12)+1/2)/(-sin(1)+2/3) 3178105501077888 a001 377*9349^(14/19) 3178105502150854 a001 701408733/24476*521^(5/13) 3178105503000331 a001 514229/843*9349^(13/19) 3178105504910756 a001 832040/843*9349^(12/19) 3178105506825771 a001 1346269/843*9349^(11/19) 3178105508739033 a001 726103/281*9349^(10/19) 3178105510652964 a001 3524578/843*9349^(9/19) 3178105512566640 a001 5702887/843*9349^(8/19) 3178105513216439 a001 165580141/843*3571^(1/17) 3178105513247554 a001 2255/281*64079^(22/23) 3178105513981602 a001 377/15127*45537549124^(2/3) 3178105513981602 a001 377/15127*(1/2+1/2*5^(1/2))^34 3178105513981602 a001 377/15127*10749957122^(17/24) 3178105513981602 a001 377/15127*4106118243^(17/23) 3178105513981602 a001 377/15127*1568397607^(17/22) 3178105513981602 a001 377/15127*599074578^(17/21) 3178105513981602 a001 377/15127*228826127^(17/20) 3178105513981603 a001 377/15127*87403803^(17/19) 3178105513981605 a001 377/15127*33385282^(17/18) 3178105513987861 a001 2255/281*7881196^(2/3) 3178105513987895 a001 2255/281*312119004989^(2/5) 3178105513987895 a001 2255/281*(1/2+1/2*5^(1/2))^22 3178105513987895 a001 2255/281*10749957122^(11/24) 3178105513987895 a001 2255/281*4106118243^(11/23) 3178105513987895 a001 2255/281*1568397607^(1/2) 3178105513987895 a001 2255/281*599074578^(11/21) 3178105513987895 a001 2255/281*228826127^(11/20) 3178105513987895 a001 2255/281*87403803^(11/19) 3178105513987897 a001 2255/281*33385282^(11/18) 3178105513987908 a001 2255/281*12752043^(11/17) 3178105513987987 a001 2255/281*4870847^(11/16) 3178105513988569 a001 2255/281*1860498^(11/15) 3178105513992840 a001 2255/281*710647^(11/14) 3178105514024392 a001 2255/281*271443^(11/13) 3178105514258898 a001 2255/281*103682^(11/12) 3178105514480413 a001 9227465/843*9349^(7/19) 3178105514517604 r005 Im(z^2+c),c=11/60+7/20*I,n=4 3178105516394149 a001 4976784/281*9349^(6/19) 3178105518307900 a001 24157817/843*9349^(5/19) 3178105520221645 a001 39088169/843*9349^(4/19) 3178105520797887 a001 17711/843*24476^(20/21) 3178105522135392 a001 63245986/843*9349^(3/19) 3178105522565320 a001 267596485/842 3178105523033828 a001 15456/281*24476^(6/7) 3178105523695011 a001 75025/843*24476^(17/21) 3178105523791574 a001 121393/843*24476^(16/21) 3178105523850839 a001 28657/843*24476^(19/21) 3178105524049138 a001 34111385/281*9349^(2/19) 3178105524103803 a001 196418/843*24476^(5/7) 3178105524333654 a001 377*24476^(2/3) 3178105524594971 a001 514229/843*24476^(13/21) 3178105524844270 a001 832040/843*24476^(4/7) 3178105525098159 a001 1346269/843*24476^(11/21) 3178105525177254 a001 17711/843*64079^(20/23) 3178105525350294 a001 726103/281*24476^(10/21) 3178105525603100 a001 3524578/843*24476^(3/7) 3178105525759952 a001 17711/843*167761^(4/5) 3178105525843998 a001 377/39603*141422324^(12/13) 3178105525843998 a001 377/39603*2537720636^(4/5) 3178105525843998 a001 377/39603*45537549124^(12/17) 3178105525843998 a001 377/39603*14662949395604^(4/7) 3178105525843998 a001 377/39603*(1/2+1/2*5^(1/2))^36 3178105525843998 a001 377/39603*505019158607^(9/14) 3178105525843998 a001 377/39603*192900153618^(2/3) 3178105525843998 a001 377/39603*73681302247^(9/13) 3178105525843998 a001 377/39603*10749957122^(3/4) 3178105525843998 a001 377/39603*4106118243^(18/23) 3178105525843998 a001 377/39603*1568397607^(9/11) 3178105525843998 a001 377/39603*599074578^(6/7) 3178105525843998 a001 377/39603*228826127^(9/10) 3178105525843999 a001 377/39603*87403803^(18/19) 3178105525850287 a001 17711/843*20633239^(4/7) 3178105525850291 a001 17711/843*2537720636^(4/9) 3178105525850291 a001 17711/843*(1/2+1/2*5^(1/2))^20 3178105525850291 a001 17711/843*23725150497407^(5/16) 3178105525850291 a001 17711/843*505019158607^(5/14) 3178105525850291 a001 17711/843*73681302247^(5/13) 3178105525850291 a001 17711/843*28143753123^(2/5) 3178105525850291 a001 17711/843*10749957122^(5/12) 3178105525850291 a001 17711/843*4106118243^(10/23) 3178105525850291 a001 17711/843*1568397607^(5/11) 3178105525850291 a001 17711/843*599074578^(10/21) 3178105525850291 a001 17711/843*228826127^(1/2) 3178105525850292 a001 17711/843*87403803^(10/19) 3178105525850293 a001 17711/843*33385282^(5/9) 3178105525850303 a001 17711/843*12752043^(10/17) 3178105525850375 a001 17711/843*4870847^(5/8) 3178105525850903 a001 17711/843*1860498^(2/3) 3178105525854786 a001 17711/843*710647^(5/7) 3178105525855649 a001 5702887/843*24476^(8/21) 3178105525883471 a001 17711/843*271443^(10/13) 3178105525900669 a001 167761/233*34^(8/19) 3178105525962884 a001 165580141/843*9349^(1/19) 3178105526096657 a001 17711/843*103682^(5/6) 3178105526108296 a001 9227465/843*24476^(1/3) 3178105526360906 a001 4976784/281*24476^(2/7) 3178105526613531 a001 24157817/843*24476^(5/21) 3178105526866149 a001 39088169/843*24476^(4/21) 3178105526975258 a001 15456/281*64079^(18/23) 3178105527096346 a001 9107497009/28657 3178105527118770 a001 63245986/843*24476^(1/7) 3178105527295068 a001 121393/843*64079^(16/23) 3178105527371390 a001 34111385/281*24476^(2/21) 3178105527388328 a001 196418/843*64079^(15/23) 3178105527399212 a001 377*64079^(14/23) 3178105527417473 a001 75025/843*64079^(17/23) 3178105527441560 a001 514229/843*64079^(13/23) 3178105527471890 a001 832040/843*64079^(12/23) 3178105527506811 a001 1346269/843*64079^(11/23) 3178105527539978 a001 726103/281*64079^(10/23) 3178105527570008 a001 15456/281*439204^(2/3) 3178105527573815 a001 3524578/843*64079^(9/23) 3178105527574699 a001 377/103682*817138163596^(2/3) 3178105527574699 a001 377/103682*(1/2+1/2*5^(1/2))^38 3178105527574699 a001 377/103682*10749957122^(19/24) 3178105527574699 a001 377/103682*4106118243^(19/23) 3178105527574699 a001 377/103682*1568397607^(19/22) 3178105527574699 a001 377/103682*599074578^(19/21) 3178105527574699 a001 377/103682*228826127^(19/20) 3178105527580964 a001 15456/281*7881196^(6/11) 3178105527580992 a001 15456/281*141422324^(6/13) 3178105527580992 a001 15456/281*2537720636^(2/5) 3178105527580992 a001 15456/281*45537549124^(6/17) 3178105527580992 a001 15456/281*14662949395604^(2/7) 3178105527580992 a001 15456/281*(1/2+1/2*5^(1/2))^18 3178105527580992 a001 15456/281*192900153618^(1/3) 3178105527580992 a001 15456/281*10749957122^(3/8) 3178105527580992 a001 15456/281*4106118243^(9/23) 3178105527580992 a001 15456/281*1568397607^(9/22) 3178105527580992 a001 15456/281*599074578^(3/7) 3178105527580992 a001 15456/281*228826127^(9/20) 3178105527580992 a001 15456/281*87403803^(9/19) 3178105527580993 a001 15456/281*33385282^(1/2) 3178105527581002 a001 15456/281*12752043^(9/17) 3178105527581067 a001 15456/281*4870847^(9/16) 3178105527581543 a001 15456/281*1860498^(3/5) 3178105527585037 a001 15456/281*710647^(9/14) 3178105527607396 a001 5702887/843*64079^(8/23) 3178105527610853 a001 15456/281*271443^(9/13) 3178105527620581 r002 30th iterates of z^2 + 3178105527624010 a001 165580141/843*24476^(1/21) 3178105527641075 a001 9227465/843*64079^(7/23) 3178105527674717 a001 4976784/281*64079^(6/23) 3178105527692418 a001 17711/843*39603^(10/11) 3178105527708372 a001 24157817/843*64079^(5/23) 3178105527742023 a001 39088169/843*64079^(4/23) 3178105527757414 a001 23843736722/75025 3178105527775675 a001 63245986/843*64079^(3/23) 3178105527802721 a001 15456/281*103682^(3/4) 3178105527809327 a001 34111385/281*64079^(2/23) 3178105527825352 a001 196418/843*167761^(3/5) 3178105527827204 a001 377/271443*2537720636^(8/9) 3178105527827204 a001 377/271443*312119004989^(8/11) 3178105527827204 a001 377/271443*(1/2+1/2*5^(1/2))^40 3178105527827204 a001 377/271443*23725150497407^(5/8) 3178105527827204 a001 377/271443*73681302247^(10/13) 3178105527827204 a001 377/271443*28143753123^(4/5) 3178105527827204 a001 377/271443*10749957122^(5/6) 3178105527827204 a001 377/271443*4106118243^(20/23) 3178105527827204 a001 377/271443*1568397607^(10/11) 3178105527827204 a001 377/271443*599074578^(20/21) 3178105527831327 a001 726103/281*167761^(2/5) 3178105527833497 a001 121393/843*(1/2+1/2*5^(1/2))^16 3178105527833497 a001 121393/843*23725150497407^(1/4) 3178105527833497 a001 121393/843*73681302247^(4/13) 3178105527833497 a001 121393/843*10749957122^(1/3) 3178105527833497 a001 121393/843*4106118243^(8/23) 3178105527833497 a001 121393/843*1568397607^(4/11) 3178105527833497 a001 121393/843*599074578^(8/21) 3178105527833497 a001 121393/843*228826127^(2/5) 3178105527833498 a001 121393/843*87403803^(8/19) 3178105527833499 a001 121393/843*33385282^(4/9) 3178105527833507 a001 121393/843*12752043^(8/17) 3178105527833564 a001 121393/843*4870847^(1/2) 3178105527833987 a001 121393/843*1860498^(8/15) 3178105527837093 a001 121393/843*710647^(4/7) 3178105527842979 a001 165580141/843*64079^(1/23) 3178105527853862 a001 62423713157/196418 3178105527854047 a001 24157817/843*167761^(1/5) 3178105527860041 a001 121393/843*271443^(8/13) 3178105527864045 a001 377/710647*2537720636^(14/15) 3178105527864045 a001 377/710647*17393796001^(6/7) 3178105527864045 a001 377/710647*45537549124^(14/17) 3178105527864045 a001 377/710647*817138163596^(14/19) 3178105527864045 a001 377/710647*14662949395604^(2/3) 3178105527864045 a001 377/710647*(1/2+1/2*5^(1/2))^42 3178105527864045 a001 377/710647*505019158607^(3/4) 3178105527864045 a001 377/710647*192900153618^(7/9) 3178105527864045 a001 377/710647*10749957122^(7/8) 3178105527864045 a001 377/710647*4106118243^(21/23) 3178105527864045 a001 377/710647*1568397607^(21/22) 3178105527867934 a001 163427402749/514229 3178105527868390 a001 832040/843*439204^(4/9) 3178105527869419 a001 377/1860498*312119004989^(4/5) 3178105527869419 a001 377/1860498*(1/2+1/2*5^(1/2))^44 3178105527869419 a001 377/1860498*23725150497407^(11/16) 3178105527869419 a001 377/1860498*73681302247^(11/13) 3178105527869419 a001 377/1860498*10749957122^(11/12) 3178105527869419 a001 377/1860498*4106118243^(22/23) 3178105527869987 a001 427858495090/1346269 3178105527870204 a001 377/4870847*(1/2+1/2*5^(1/2))^46 3178105527870204 a001 377/4870847*10749957122^(23/24) 3178105527870286 a001 1120148082521/3524578 3178105527870318 a001 377/12752043*45537549124^(16/17) 3178105527870318 a001 377/12752043*14662949395604^(16/21) 3178105527870318 a001 377/12752043*(1/2+1/2*5^(1/2))^48 3178105527870318 a001 377/12752043*192900153618^(8/9) 3178105527870318 a001 377/12752043*73681302247^(12/13) 3178105527870330 a001 225583519421/709805 3178105527870335 a001 377*20633239^(2/5) 3178105527870335 a001 377/33385282*312119004989^(10/11) 3178105527870335 a001 377/33385282*(1/2+1/2*5^(1/2))^50 3178105527870335 a001 377/33385282*3461452808002^(5/6) 3178105527870336 a001 7677609174898/24157817 3178105527870337 a001 377/87403803*23725150497407^(13/16) 3178105527870337 a001 377/87403803*505019158607^(13/14) 3178105527870337 a001 20100241772221/63245986 3178105527870337 a001 377/228826127*14662949395604^(6/7) 3178105527870338 a001 52623116141765/165580141 3178105527870338 a001 377/599074578*14662949395604^(8/9) 3178105527870338 a001 137769106653074/433494437 3178105527870338 a001 360684203817457/1134903170 3178105527870338 a001 377/4106118243*14662949395604^(20/21) 3178105527870338 a001 944283504799297/2971215073 3178105527870338 a001 190166639275418/598364773 3178105527870338 a001 377*17393796001^(2/7) 3178105527870338 a001 377*14662949395604^(2/9) 3178105527870338 a001 4000049116361571/12586269025 3178105527870338 a001 377*10749957122^(7/24) 3178105527870338 a001 1527882805781137/4807526976 3178105527870338 a001 377*4106118243^(7/23) 3178105527870338 a001 583599300981840/1836311903 3178105527870338 a001 377*1568397607^(7/22) 3178105527870338 a001 222915097164383/701408733 3178105527870338 a001 377*599074578^(1/3) 3178105527870338 a001 377/969323029*14662949395604^(19/21) 3178105527870338 a001 225851433717/710648 3178105527870338 a001 377*228826127^(7/20) 3178105527870338 a001 377/370248451*3461452808002^(11/12) 3178105527870338 a001 32522874369544/102334155 3178105527870338 a001 377*87403803^(7/19) 3178105527870338 a001 12422632597323/39088169 3178105527870339 a001 377/54018521*14662949395604^(17/21) 3178105527870339 a001 377/54018521*192900153618^(17/18) 3178105527870339 a001 377*33385282^(7/18) 3178105527870340 a001 4745023422425/14930352 3178105527870345 a001 13/711491*14662949395604^(7/9) 3178105527870345 a001 13/711491*(1/2+1/2*5^(1/2))^49 3178105527870345 a001 13/711491*505019158607^(7/8) 3178105527870346 a001 377*12752043^(7/17) 3178105527870357 a001 1812437669952/5702887 3178105527870389 a001 377/7881196*(1/2+1/2*5^(1/2))^47 3178105527870396 a001 377*4870847^(7/16) 3178105527870472 a001 692289587431/2178309 3178105527870688 a001 377/3010349*45537549124^(15/17) 3178105527870688 a001 377/3010349*312119004989^(9/11) 3178105527870688 a001 377/3010349*14662949395604^(5/7) 3178105527870688 a001 377/3010349*(1/2+1/2*5^(1/2))^45 3178105527870688 a001 377/3010349*192900153618^(5/6) 3178105527870688 a001 377/3010349*28143753123^(9/10) 3178105527870688 a001 377/3010349*10749957122^(15/16) 3178105527870766 a001 377*1860498^(7/15) 3178105527871190 a001 3524578/843*439204^(1/3) 3178105527871256 a001 264431092341/832040 3178105527872741 a001 377/1149851*(1/2+1/2*5^(1/2))^43 3178105527872967 a001 4976784/281*439204^(2/9) 3178105527873484 a001 377*710647^(1/2) 3178105527874800 a001 63245986/843*439204^(1/9) 3178105527875694 a001 832040/843*7881196^(4/11) 3178105527875712 a001 832040/843*141422324^(4/13) 3178105527875712 a001 832040/843*2537720636^(4/15) 3178105527875712 a001 832040/843*45537549124^(4/17) 3178105527875712 a001 832040/843*817138163596^(4/19) 3178105527875712 a001 832040/843*14662949395604^(4/21) 3178105527875712 a001 832040/843*(1/2+1/2*5^(1/2))^12 3178105527875712 a001 832040/843*192900153618^(2/9) 3178105527875712 a001 832040/843*73681302247^(3/13) 3178105527875712 a001 832040/843*10749957122^(1/4) 3178105527875712 a001 832040/843*4106118243^(6/23) 3178105527875712 a001 832040/843*1568397607^(3/11) 3178105527875712 a001 832040/843*599074578^(2/7) 3178105527875712 a001 832040/843*228826127^(3/10) 3178105527875713 a001 832040/843*87403803^(6/19) 3178105527875713 a001 832040/843*33385282^(1/3) 3178105527875719 a001 832040/843*12752043^(6/17) 3178105527875763 a001 832040/843*4870847^(3/8) 3178105527876080 a001 832040/843*1860498^(2/5) 3178105527876495 a001 726103/281*20633239^(2/7) 3178105527876497 a001 726103/281*2537720636^(2/9) 3178105527876497 a001 726103/281*312119004989^(2/11) 3178105527876497 a001 726103/281*(1/2+1/2*5^(1/2))^10 3178105527876497 a001 726103/281*28143753123^(1/5) 3178105527876497 a001 726103/281*10749957122^(5/24) 3178105527876497 a001 726103/281*4106118243^(5/23) 3178105527876497 a001 726103/281*1568397607^(5/22) 3178105527876497 a001 726103/281*599074578^(5/21) 3178105527876497 a001 726103/281*228826127^(1/4) 3178105527876497 a001 726103/281*87403803^(5/19) 3178105527876497 a001 726103/281*33385282^(5/18) 3178105527876502 a001 726103/281*12752043^(5/17) 3178105527876538 a001 726103/281*4870847^(5/16) 3178105527876611 a001 5702887/843*(1/2+1/2*5^(1/2))^8 3178105527876611 a001 5702887/843*23725150497407^(1/8) 3178105527876611 a001 5702887/843*505019158607^(1/7) 3178105527876611 a001 5702887/843*73681302247^(2/13) 3178105527876611 a001 5702887/843*10749957122^(1/6) 3178105527876611 a001 5702887/843*4106118243^(4/23) 3178105527876611 a001 5702887/843*1568397607^(2/11) 3178105527876611 a001 5702887/843*599074578^(4/21) 3178105527876611 a001 5702887/843*228826127^(1/5) 3178105527876611 a001 5702887/843*87403803^(4/19) 3178105527876612 a001 5702887/843*33385282^(2/9) 3178105527876616 a001 5702887/843*12752043^(4/17) 3178105527876618 a001 4976784/281*7881196^(2/11) 3178105527876626 a001 63245986/843*7881196^(1/11) 3178105527876628 a001 4976784/281*141422324^(2/13) 3178105527876628 a001 4976784/281*2537720636^(2/15) 3178105527876628 a001 4976784/281*45537549124^(2/17) 3178105527876628 a001 4976784/281*14662949395604^(2/21) 3178105527876628 a001 4976784/281*(1/2+1/2*5^(1/2))^6 3178105527876628 a001 4976784/281*10749957122^(1/8) 3178105527876628 a001 4976784/281*4106118243^(3/23) 3178105527876628 a001 4976784/281*1568397607^(3/22) 3178105527876628 a001 4976784/281*599074578^(1/7) 3178105527876628 a001 4976784/281*228826127^(3/20) 3178105527876628 a001 4976784/281*87403803^(3/19) 3178105527876628 a001 4976784/281*33385282^(1/6) 3178105527876630 a001 39088169/843*(1/2+1/2*5^(1/2))^4 3178105527876630 a001 39088169/843*23725150497407^(1/16) 3178105527876630 a001 39088169/843*73681302247^(1/13) 3178105527876630 a001 39088169/843*10749957122^(1/12) 3178105527876630 a001 39088169/843*4106118243^(2/23) 3178105527876630 a001 39088169/843*1568397607^(1/11) 3178105527876630 a001 39088169/843*599074578^(2/21) 3178105527876630 a001 39088169/843*228826127^(1/10) 3178105527876630 a001 39088169/843*87403803^(2/19) 3178105527876630 a001 39088169/843*33385282^(1/9) 3178105527876631 a001 34111385/281*(1/2+1/2*5^(1/2))^2 3178105527876631 a001 34111385/281*10749957122^(1/24) 3178105527876631 a001 34111385/281*4106118243^(1/23) 3178105527876631 a001 34111385/281*1568397607^(1/22) 3178105527876631 a001 34111385/281*599074578^(1/21) 3178105527876631 a001 34111385/281*228826127^(1/20) 3178105527876631 a001 34111385/281*87403803^(1/19) 3178105527876631 a001 267914296/843 3178105527876631 a001 24157817/843*20633239^(1/7) 3178105527876631 a001 165580141/1686+165580141/1686*5^(1/2) 3178105527876631 a001 34111385/281*33385282^(1/18) 3178105527876631 a001 63245986/843*141422324^(1/13) 3178105527876631 a001 63245986/843*2537720636^(1/15) 3178105527876631 a001 63245986/843*45537549124^(1/17) 3178105527876631 a001 63245986/843*14662949395604^(1/21) 3178105527876631 a001 63245986/843*(1/2+1/2*5^(1/2))^3 3178105527876631 a001 63245986/843*192900153618^(1/18) 3178105527876631 a001 63245986/843*10749957122^(1/16) 3178105527876631 a001 63245986/843*599074578^(1/14) 3178105527876631 a001 63245986/843*33385282^(1/12) 3178105527876631 a001 4976784/281*12752043^(3/17) 3178105527876632 a001 34111385/281*12752043^(1/17) 3178105527876632 a001 24157817/843*2537720636^(1/9) 3178105527876632 a001 24157817/843*312119004989^(1/11) 3178105527876632 a001 24157817/843*(1/2+1/2*5^(1/2))^5 3178105527876632 a001 24157817/843*28143753123^(1/10) 3178105527876632 a001 24157817/843*228826127^(1/8) 3178105527876632 a001 39088169/843*12752043^(2/17) 3178105527876637 a001 9227465/843*20633239^(1/5) 3178105527876638 a001 9227465/843*17393796001^(1/7) 3178105527876638 a001 9227465/843*14662949395604^(1/9) 3178105527876638 a001 9227465/843*(1/2+1/2*5^(1/2))^7 3178105527876638 a001 9227465/843*599074578^(1/6) 3178105527876639 a001 34111385/281*4870847^(1/16) 3178105527876645 a001 5702887/843*4870847^(1/4) 3178105527876647 a001 39088169/843*4870847^(1/8) 3178105527876653 a001 4976784/281*4870847^(3/16) 3178105527876668 a001 3524578/843*7881196^(3/11) 3178105527876682 a001 3524578/843*141422324^(3/13) 3178105527876682 a001 3524578/843*2537720636^(1/5) 3178105527876682 a001 3524578/843*45537549124^(3/17) 3178105527876682 a001 3524578/843*14662949395604^(1/7) 3178105527876682 a001 3524578/843*(1/2+1/2*5^(1/2))^9 3178105527876682 a001 3524578/843*192900153618^(1/6) 3178105527876682 a001 3524578/843*10749957122^(3/16) 3178105527876682 a001 3524578/843*599074578^(3/14) 3178105527876682 a001 3524578/843*33385282^(1/4) 3178105527876692 a001 34111385/281*1860498^(1/15) 3178105527876723 a001 63245986/843*1860498^(1/10) 3178105527876753 a001 39088169/843*1860498^(2/15) 3178105527876785 a001 24157817/843*1860498^(1/6) 3178105527876803 a001 726103/281*1860498^(1/3) 3178105527876811 a001 4976784/281*1860498^(1/5) 3178105527876856 a001 5702887/843*1860498^(4/15) 3178105527876957 a001 3524578/843*1860498^(3/10) 3178105527876964 a001 1346269/843*7881196^(1/3) 3178105527876981 a001 1346269/843*312119004989^(1/5) 3178105527876981 a001 1346269/843*(1/2+1/2*5^(1/2))^11 3178105527876981 a001 1346269/843*1568397607^(1/4) 3178105527877080 a001 34111385/281*710647^(1/14) 3178105527877529 a001 39088169/843*710647^(1/7) 3178105527877976 a001 4976784/281*710647^(3/14) 3178105527878211 a001 9227465/843*710647^(1/4) 3178105527878409 a001 5702887/843*710647^(2/7) 3178105527878409 a001 832040/843*710647^(3/7) 3178105527878744 a001 726103/281*710647^(5/14) 3178105527879034 a001 514229/843*141422324^(1/3) 3178105527879034 a001 514229/843*(1/2+1/2*5^(1/2))^13 3178105527879034 a001 514229/843*73681302247^(1/4) 3178105527879948 a001 34111385/281*271443^(1/13) 3178105527883266 a001 39088169/843*271443^(2/13) 3178105527883953 a001 196418/843*439204^(5/9) 3178105527886582 a001 4976784/281*271443^(3/13) 3178105527886813 a001 377/439204*(1/2+1/2*5^(1/2))^41 3178105527888949 a001 165580141/843*103682^(1/24) 3178105527889883 a001 5702887/843*271443^(4/13) 3178105527893083 a001 196418/843*7881196^(5/11) 3178105527893086 a001 726103/281*271443^(5/13) 3178105527893103 a001 196418/843*20633239^(3/7) 3178105527893106 a001 196418/843*141422324^(5/13) 3178105527893106 a001 196418/843*2537720636^(1/3) 3178105527893106 a001 196418/843*45537549124^(5/17) 3178105527893106 a001 196418/843*312119004989^(3/11) 3178105527893106 a001 196418/843*14662949395604^(5/21) 3178105527893106 a001 196418/843*(1/2+1/2*5^(1/2))^15 3178105527893106 a001 196418/843*192900153618^(5/18) 3178105527893106 a001 196418/843*28143753123^(3/10) 3178105527893106 a001 196418/843*10749957122^(5/16) 3178105527893106 a001 196418/843*599074578^(5/14) 3178105527893106 a001 196418/843*228826127^(3/8) 3178105527893107 a001 196418/843*33385282^(5/12) 3178105527893563 a001 377*271443^(7/13) 3178105527893565 a001 196418/843*1860498^(1/2) 3178105527895620 a001 832040/843*271443^(6/13) 3178105527900601 a001 514229/843*271443^(1/2) 3178105527901267 a001 34111385/281*103682^(1/12) 3178105527913471 a001 38579976435/121393 3178105527913586 a001 63245986/843*103682^(1/8) 3178105527925903 a001 39088169/843*103682^(1/6) 3178105527938223 a001 24157817/843*103682^(5/24) 3178105527950537 a001 4976784/281*103682^(1/4) 3178105527962866 a001 9227465/843*103682^(7/24) 3178105527968737 a001 165580141/843*39603^(1/22) 3178105527975157 a001 5702887/843*103682^(1/3) 3178105527983262 a001 377/167761*2537720636^(13/15) 3178105527983262 a001 377/167761*45537549124^(13/17) 3178105527983262 a001 377/167761*14662949395604^(13/21) 3178105527983262 a001 377/167761*(1/2+1/2*5^(1/2))^39 3178105527983262 a001 377/167761*192900153618^(13/18) 3178105527983262 a001 377/167761*73681302247^(3/4) 3178105527983262 a001 377/167761*10749957122^(13/16) 3178105527983262 a001 377/167761*599074578^(13/14) 3178105527987546 a001 3524578/843*103682^(3/8) 3178105527989555 a001 75025/843*45537549124^(1/3) 3178105527989555 a001 75025/843*(1/2+1/2*5^(1/2))^17 3178105527989564 a001 75025/843*12752043^(1/2) 3178105527999680 a001 726103/281*103682^(5/12) 3178105528011238 a001 28657/843*64079^(19/23) 3178105528012482 a001 1346269/843*103682^(11/24) 3178105528023532 a001 832040/843*103682^(1/2) 3178105528030590 a001 121393/843*103682^(2/3) 3178105528039172 a001 514229/843*103682^(13/24) 3178105528042794 a001 377*103682^(7/12) 3178105528060843 a001 34111385/281*39603^(1/11) 3178105528077880 a001 196418/843*103682^(5/8) 3178105528152950 a001 63245986/843*39603^(3/22) 3178105528165976 a001 14736239713/46368 3178105528198965 a001 75025/843*103682^(17/24) 3178105528245055 a001 39088169/843*39603^(2/11) 3178105528337163 a001 24157817/843*39603^(5/22) 3178105528429266 a001 4976784/281*39603^(3/11) 3178105528521382 a001 9227465/843*39603^(7/22) 3178105528571067 a001 165580141/843*15127^(1/20) 3178105528613462 a001 5702887/843*39603^(4/11) 3178105528644330 a001 377/64079*(1/2+1/2*5^(1/2))^37 3178105528650623 a001 28657/843*817138163596^(1/3) 3178105528650623 a001 28657/843*(1/2+1/2*5^(1/2))^19 3178105528650623 a001 28657/843*87403803^(1/2) 3178105528705639 a001 3524578/843*39603^(9/22) 3178105528797560 a001 726103/281*39603^(5/11) 3178105528884671 a001 28657/843*103682^(19/24) 3178105528890151 a001 1346269/843*39603^(1/2) 3178105528980988 a001 832040/843*39603^(6/11) 3178105529076417 a001 514229/843*39603^(13/22) 3178105529159826 a001 377*39603^(7/11) 3178105529238906 a001 15456/281*39603^(9/11) 3178105529265504 a001 34111385/281*15127^(1/10) 3178105529274701 a001 196418/843*39603^(15/22) 3178105529307199 a001 121393/843*39603^(8/11) 3178105529555362 a001 75025/843*39603^(17/22) 3178105529896674 a001 5628742704/17711 3178105529959941 a001 63245986/843*15127^(3/20) 3178105530258061 r005 Re(z^2+c),c=-10/27+9/25*I,n=55 3178105530400643 a001 28657/843*39603^(19/22) 3178105530654377 a001 39088169/843*15127^(1/5) 3178105531348816 a001 24157817/843*15127^(1/4) 3178105532043248 a001 4976784/281*15127^(3/10) 3178105532474966 a001 10946/843*64079^(21/23) 3178105532737695 a001 9227465/843*15127^(7/20) 3178105533165231 a001 165580141/843*5778^(1/18) 3178105533168841 a001 10946/843*439204^(7/9) 3178105533175362 a001 13/844*2537720636^(7/9) 3178105533175362 a001 13/844*17393796001^(5/7) 3178105533175362 a001 13/844*312119004989^(7/11) 3178105533175362 a001 13/844*14662949395604^(5/9) 3178105533175362 a001 13/844*(1/2+1/2*5^(1/2))^35 3178105533175362 a001 13/844*505019158607^(5/8) 3178105533175362 a001 13/844*28143753123^(7/10) 3178105533175362 a001 13/844*599074578^(5/6) 3178105533175362 a001 13/844*228826127^(7/8) 3178105533181623 a001 10946/843*7881196^(7/11) 3178105533181651 a001 10946/843*20633239^(3/5) 3178105533181655 a001 10946/843*141422324^(7/13) 3178105533181655 a001 10946/843*2537720636^(7/15) 3178105533181655 a001 10946/843*17393796001^(3/7) 3178105533181655 a001 10946/843*45537549124^(7/17) 3178105533181655 a001 10946/843*14662949395604^(1/3) 3178105533181655 a001 10946/843*(1/2+1/2*5^(1/2))^21 3178105533181655 a001 10946/843*192900153618^(7/18) 3178105533181655 a001 10946/843*10749957122^(7/16) 3178105533181655 a001 10946/843*599074578^(1/2) 3178105533181657 a001 10946/843*33385282^(7/12) 3178105533182298 a001 10946/843*1860498^(7/10) 3178105533186375 a001 10946/843*710647^(3/4) 3178105533207011 a001 267914296/9349*521^(5/13) 3178105533432105 a001 5702887/843*15127^(2/5) 3178105533440339 a001 10946/843*103682^(7/8) 3178105534126613 a001 3524578/843*15127^(9/20) 3178105534820864 a001 726103/281*15127^(1/2) 3178105535115888 a001 10946/843*39603^(21/22) 3178105535515786 a001 1346269/843*15127^(11/20) 3178105536208954 a001 832040/843*15127^(3/5) 3178105536906712 a001 514229/843*15127^(13/20) 3178105537592452 a001 377*15127^(7/10) 3178105538309658 a001 196418/843*15127^(3/4) 3178105538453831 a001 34111385/281*5778^(1/9) 3178105538944486 a001 121393/843*15127^(4/5) 3178105539794980 a001 75025/843*15127^(17/20) 3178105540080854 a001 15456/281*15127^(9/10) 3178105541759053 a001 2149988399/6765 3178105541844922 a001 28657/843*15127^(19/20) 3178105541902210 r005 Re(z^2+c),c=-45/46+13/59*I,n=40 3178105543742432 a001 63245986/843*5778^(1/6) 3178105549031032 a001 39088169/843*5778^(2/9) 3178105551645514 a007 Real Root Of -831*x^4-52*x^3-747*x^2+940*x+381 3178105554319634 a001 24157817/843*5778^(5/18) 3178105559608230 a001 4976784/281*5778^(1/3) 3178105564231519 a001 377/9349*141422324^(11/13) 3178105564231519 a001 377/9349*2537720636^(11/15) 3178105564231519 a001 377/9349*45537549124^(11/17) 3178105564231519 a001 377/9349*312119004989^(3/5) 3178105564231519 a001 377/9349*14662949395604^(11/21) 3178105564231519 a001 377/9349*(1/2+1/2*5^(1/2))^33 3178105564231519 a001 377/9349*192900153618^(11/18) 3178105564231519 a001 377/9349*10749957122^(11/16) 3178105564231519 a001 377/9349*1568397607^(3/4) 3178105564231519 a001 377/9349*599074578^(11/14) 3178105564231522 a001 377/9349*33385282^(11/12) 3178105564237812 a001 4181/843*(1/2+1/2*5^(1/2))^23 3178105564237812 a001 4181/843*4106118243^(1/2) 3178105564521133 a001 4181/843*103682^(23/24) 3178105564896841 a001 9227465/843*5778^(7/18) 3178105565123029 r005 Re(z^2+c),c=-33/82+9/43*I,n=42 3178105568656309 a001 165580141/843*2207^(1/16) 3178105570185414 a001 5702887/843*5778^(4/9) 3178105572445005 r009 Im(z^3+c),c=-9/34+7/22*I,n=3 3178105575474086 a001 3524578/843*5778^(1/2) 3178105577440376 m001 (Zeta(5)+Conway)/(MertensB1+Weierstrass) 3178105580762501 a001 726103/281*5778^(5/9) 3178105583794559 r009 Im(z^3+c),c=-29/54+9/50*I,n=64 3178105584802237 m005 (1/2*5^(1/2)+3/7)/(1/9*Zeta(3)-5) 3178105585021708 r005 Im(z^2+c),c=-3/5+7/120*I,n=37 3178105585483684 m001 1/GAMMA(1/24)/PrimesInBinary/exp(GAMMA(19/24)) 3178105586051586 a001 1346269/843*5778^(11/18) 3178105588727172 m001 1/Magata/KhintchineHarmonic^2/ln(GAMMA(2/3)) 3178105591338918 a001 832040/843*5778^(2/3) 3178105592919607 r005 Re(z^2+c),c=-41/106+19/63*I,n=17 3178105596630840 a001 514229/843*5778^(13/18) 3178105601910744 a001 377*5778^(7/9) 3178105607222113 a001 196418/843*5778^(5/6) 3178105609435989 a001 34111385/281*2207^(1/8) 3178105610813927 p004 log(16903/12301) 3178105612451105 a001 121393/843*5778^(8/9) 3178105617895763 a001 75025/843*5778^(17/18) 3178105623065015 a001 821222493/2584 3178105623441539 r005 Re(z^2+c),c=-7/17+7/51*I,n=25 3178105645791889 m004 ProductLog[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi]^4 3178105650215669 a001 63245986/843*2207^(3/16) 3178105650718415 a007 Real Root Of -215*x^4-447*x^3+724*x^2+189*x+873 3178105651541144 a001 3571/46368*89^(6/19) 3178105660753049 a007 Real Root Of 876*x^4-158*x^3+908*x^2-347*x-216 3178105663114310 r005 Im(z^2+c),c=-17/98+29/63*I,n=47 3178105681332379 m001 (-gamma(3)+BesselJ(1,1))/(Chi(1)+cos(1)) 3178105690995349 a001 39088169/843*2207^(1/4) 3178105697641030 m001 ln(2+3^(1/2))+MasserGramainDelta^MertensB2 3178105697938830 a007 Real Root Of 13*x^4+384*x^3-922*x^2+136*x-260 3178105722992869 r005 Im(z^2+c),c=-5/62+34/41*I,n=45 3178105725487371 m006 (2*exp(Pi)-4)/(1/4*exp(2*Pi)-5/6) 3178105726235947 h001 (-exp(4)+11)/(-exp(1)-11) 3178105729027407 m001 (Kac-OneNinth)/(ln(5)-Pi^(1/2)) 3178105729272837 m005 (1/2*Zeta(3)-1/4)/(3/7*gamma+6/7) 3178105731775031 a001 24157817/843*2207^(5/16) 3178105738290285 m001 1/ln(Rabbit)^2/Backhouse/Tribonacci 3178105745002443 a001 102334155/2207*521^(4/13) 3178105745831600 m005 (1/2*3^(1/2)+3)/(3/8*gamma+1) 3178105746069091 a001 102334155/3571*521^(5/13) 3178105750531507 r005 Im(z^2+c),c=-15/62+23/47*I,n=43 3178105760369969 r005 Im(z^2+c),c=-7/6+69/254*I,n=48 3178105770669468 m001 ln(GAMMA(11/24))^2/Backhouse/Zeta(1,2) 3178105772554709 a001 4976784/281*2207^(3/8) 3178105774673058 a007 Real Root Of -276*x^4-877*x^3-110*x^2-124*x+722 3178105776102733 r009 Re(z^3+c),c=-19/56+5/28*I,n=11 3178105777093601 a001 377/3571*(1/2+1/2*5^(1/2))^31 3178105777093601 a001 377/3571*9062201101803^(1/2) 3178105777099870 a001 1597/843*20633239^(5/7) 3178105777099875 a001 1597/843*2537720636^(5/9) 3178105777099875 a001 1597/843*312119004989^(5/11) 3178105777099875 a001 1597/843*(1/2+1/2*5^(1/2))^25 3178105777099875 a001 1597/843*3461452808002^(5/12) 3178105777099875 a001 1597/843*28143753123^(1/2) 3178105777099875 a001 1597/843*228826127^(5/8) 3178105777100640 a001 1597/843*1860498^(5/6) 3178105778868966 m001 (Si(Pi)+ReciprocalFibonacci)/GAMMA(13/24) 3178105779531454 r005 Im(z^2+c),c=-25/78+28/61*I,n=3 3178105782428533 a007 Real Root Of 764*x^4-640*x^3+382*x^2-768*x-311 3178105790322670 a007 Real Root Of 334*x^4+878*x^3-549*x^2-57*x-526 3178105790985748 r005 Im(z^2+c),c=-17/31+23/60*I,n=5 3178105799187842 r005 Re(z^2+c),c=-31/74+1/38*I,n=14 3178105801620468 m002 1/2-Log[Pi]/(2*Pi) 3178105806081215 a007 Real Root Of 678*x^4-92*x^3+869*x^2-750*x-336 3178105813334401 a001 9227465/843*2207^(7/16) 3178105815740995 r005 Re(z^2+c),c=-13/14+46/203*I,n=64 3178105832761171 m001 Zeta(9)*exp((3^(1/3)))^2*sqrt(Pi) 3178105841436991 a001 167761/8*32951280099^(7/9) 3178105841549899 a001 35355581/2*5702887^(7/9) 3178105841550049 a001 4870847/8*433494437^(7/9) 3178105841637745 a001 4106118243/8*75025^(7/9) 3178105846296099 m001 1/ln(GAMMA(13/24))^2*Magata^2*sin(Pi/12)^2 3178105847314255 a001 165580141/843*843^(1/14) 3178105854114056 a001 5702887/843*2207^(1/2) 3178105858769709 m005 (1/3*Catalan-2/11)/(1/2*gamma+1/10) 3178105862690919 m002 -2-Pi^3+Log[Pi]/5+Tanh[Pi] 3178105863359246 a001 123/75025*13^(8/31) 3178105864150726 a001 9349/121393*89^(6/19) 3178105874978182 m001 (MasserGramainDelta-Niven)/(Kac-LaplaceLimit) 3178105877190111 m006 (3/4/Pi+4)/(1/4*exp(2*Pi)-1/2) 3178105886830746 m005 (1/2+1/4*5^(1/2))/(7/8*Pi+7/12) 3178105888609310 m001 (Chi(1)-Shi(1))/(-gamma+MasserGramain) 3178105888609310 m001 Ei(1,1)/(MasserGramain-gamma) 3178105892207929 r005 Re(z^2+c),c=17/56+3/29*I,n=26 3178105894893810 a001 3524578/843*2207^(9/16) 3178105895170046 a001 844/10959*89^(6/19) 3178105898208440 r005 Re(z^2+c),c=-33/82+9/43*I,n=40 3178105899695704 a001 64079/832040*89^(6/19) 3178105900355989 a001 167761/2178309*89^(6/19) 3178105900452323 a001 439204/5702887*89^(6/19) 3178105900466378 a001 1149851/14930352*89^(6/19) 3178105900468428 a001 3010349/39088169*89^(6/19) 3178105900468728 a001 7881196/102334155*89^(6/19) 3178105900468771 a001 711491/9238424*89^(6/19) 3178105900468778 a001 54018521/701408733*89^(6/19) 3178105900468778 a001 141422324/1836311903*89^(6/19) 3178105900468779 a001 370248451/4807526976*89^(6/19) 3178105900468779 a001 969323029/12586269025*89^(6/19) 3178105900468779 a001 2537720636/32951280099*89^(6/19) 3178105900468779 a001 6643838879/86267571272*89^(6/19) 3178105900468779 a001 599786069/7787980473*89^(6/19) 3178105900468779 a001 45537549124/591286729879*89^(6/19) 3178105900468779 a001 119218851371/1548008755920*89^(6/19) 3178105900468779 a001 312119004989/4052739537881*89^(6/19) 3178105900468779 a001 817138163596/10610209857723*89^(6/19) 3178105900468779 a001 505019158607/6557470319842*89^(6/19) 3178105900468779 a001 192900153618/2504730781961*89^(6/19) 3178105900468779 a001 73681302247/956722026041*89^(6/19) 3178105900468779 a001 28143753123/365435296162*89^(6/19) 3178105900468779 a001 10749957122/139583862445*89^(6/19) 3178105900468779 a001 4106118243/53316291173*89^(6/19) 3178105900468779 a001 1568397607/20365011074*89^(6/19) 3178105900468779 a001 599074578/7778742049*89^(6/19) 3178105900468779 a001 228826127/2971215073*89^(6/19) 3178105900468779 a001 87403803/1134903170*89^(6/19) 3178105900468781 a001 33385282/433494437*89^(6/19) 3178105900468798 a001 12752043/165580141*89^(6/19) 3178105900468912 a001 4870847/63245986*89^(6/19) 3178105900469696 a001 1860498/24157817*89^(6/19) 3178105900475064 a001 710647/9227465*89^(6/19) 3178105900511861 a001 271443/3524578*89^(6/19) 3178105900764067 a001 103682/1346269*89^(6/19) 3178105902492714 a001 39603/514229*89^(6/19) 3178105914341040 a001 15127/196418*89^(6/19) 3178105926615853 m005 (1/2*5^(1/2)+3)/(7/9*Catalan+7/12) 3178105928870525 h001 (-5*exp(3)+8)/(-2*exp(5)+6) 3178105935673309 a001 726103/281*2207^(5/8) 3178105936744733 a001 2889/4*2504730781961^(7/9) 3178105943751806 r002 4th iterates of z^2 + 3178105961132709 a007 Real Root Of 373*x^4+967*x^3-899*x^2-452*x+632 3178105965006617 b008 3*(-1+E^3*EulerGamma) 3178105973822419 a007 Real Root Of 230*x^4+936*x^3+552*x^2-619*x-961 3178105974543199 r005 Re(z^2+c),c=-25/74+27/58*I,n=60 3178105976453477 a001 1346269/843*2207^(11/16) 3178105979204582 a007 Real Root Of 437*x^4-920*x^3+191*x^2-147*x-100 3178105992204395 m001 (2^(1/3)+FellerTornier)/(-GaussAGM+MertensB3) 3178105995550674 a001 5778/75025*89^(6/19) 3178106017231893 a001 832040/843*2207^(3/4) 3178106019296128 r009 Im(z^3+c),c=-63/122+28/59*I,n=6 3178106020713920 r005 Re(z^2+c),c=-10/27+9/25*I,n=57 3178106021257479 m001 (Mills-ZetaP(2))/((1+3^(1/2))^(1/2)+MertensB2) 3178106029209220 l006 ln(1414/1943) 3178106033824866 b008 SinIntegral[Coth[E]]/3 3178106058014900 a001 514229/843*2207^(13/16) 3178106059535891 r005 Im(z^2+c),c=-19/52+21/40*I,n=38 3178106062869626 s001 sum(1/10^(n-1)*A211674[n]/n!^2,n=1..infinity) 3178106063393104 m002 -3+5/Pi^6+3*Cosh[Pi] 3178106063526443 s001 sum(1/10^(n-1)*A035095[n]/n!^2,n=1..infinity) 3178106063526443 s001 sum(1/10^(n-1)*A066674[n]/n!^2,n=1..infinity) 3178106063526443 s001 sum(1/10^(n-1)*A125878[n]/n!^2,n=1..infinity) 3178106063566333 r005 Re(z^2+c),c=-59/102+11/39*I,n=9 3178106065290310 a007 Real Root Of -405*x^4+150*x^3-877*x^2+807*x+354 3178106092626036 r009 Im(z^3+c),c=-19/34+2/3*I,n=3 3178106098785889 a001 377*2207^(7/8) 3178106100282042 r005 Re(z^2+c),c=1/15+14/53*I,n=5 3178106104509409 m005 (1/2*3^(1/2)-4)/(1/10*exp(1)+5/7) 3178106107919407 m005 (1/2*Pi+7/11)/(1/4*Pi-1/11) 3178106109940015 m001 (sin(1/5*Pi)-gamma(2))/(Niven+ZetaP(3)) 3178106119080259 s001 sum(1/10^(n-1)*A126112[n]/n!^2,n=1..infinity) 3178106119914714 m001 (-Backhouse+Robbin)/(Shi(1)+3^(1/3)) 3178106132659795 s001 sum(1/10^(n-1)*A194373[n]/n!^2,n=1..infinity) 3178106133365055 m001 ln(5)+(Pi*csc(5/12*Pi)/GAMMA(7/12))^Gompertz 3178106136466783 r005 Im(z^2+c),c=31/106+9/61*I,n=19 3178106138966312 r002 18th iterates of z^2 + 3178106139588344 a001 196418/843*2207^(15/16) 3178106149739547 r005 Re(z^2+c),c=-33/82+9/43*I,n=38 3178106166751911 a001 34111385/281*843^(1/7) 3178106172363944 a005 (1/cos(6/227*Pi))^335 3178106177043567 m001 (MertensB3-Sarnak)/(ln(2^(1/2)+1)+MertensB2) 3178106180344478 a001 313679080/987 3178106188331329 s001 sum(1/10^(n-1)*A156210[n]/n!^2,n=1..infinity) 3178106190966535 a007 Real Root Of 414*x^4+508*x^3+302*x^2-886*x-300 3178106204647158 r005 Re(z^2+c),c=-5/8+43/176*I,n=9 3178106208311846 m001 (Salem+Trott)/(Pi^(1/2)+ReciprocalLucas) 3178106230543808 s001 sum(1/10^(n-1)*A264803[n]/n!^2,n=1..infinity) 3178106240358621 p001 sum((-1)^n/(168*n+31)/(10^n),n=0..infinity) 3178106259294339 r009 Im(z^3+c),c=-13/64+12/37*I,n=4 3178106260390157 a007 Real Root Of 45*x^4-130*x^3-623*x^2+911*x+424 3178106263496519 a001 13/817138163596*47^(7/9) 3178106272827754 s001 sum(1/10^(n-1)*A125879[n]/n!^2,n=1..infinity) 3178106292834211 m001 (-TwinPrimes+ZetaP(4))/(2^(1/3)+Stephens) 3178106302282580 a001 133957148/2889*521^(4/13) 3178106304416450 a001 24157817/1364*521^(6/13) 3178106311698187 a007 Real Root Of 304*x^4+797*x^3-216*x^2+920*x-324 3178106313713983 a007 Real Root Of -348*x^4-840*x^3+676*x^2-596*x-184 3178106315897669 a007 Real Root Of -92*x^4+332*x^3-106*x^2+814*x+281 3178106322168676 a003 sin(Pi*1/92)*sin(Pi*8/21) 3178106345627612 m008 (4*Pi^3+3/5)/(2/5*Pi^4+1/4) 3178106368247641 m008 (3/5*Pi+2)/(2/5*Pi^5-1/6) 3178106383588672 a001 701408733/15127*521^(4/13) 3178106390546788 r005 Im(z^2+c),c=-3/10+21/41*I,n=49 3178106395451072 a001 1836311903/39603*521^(4/13) 3178106397181773 a001 46368*521^(4/13) 3178106397434278 a001 12586269025/271443*521^(4/13) 3178106397471119 a001 32951280099/710647*521^(4/13) 3178106397476493 a001 43133785636/930249*521^(4/13) 3178106397477278 a001 225851433717/4870847*521^(4/13) 3178106397477392 a001 591286729879/12752043*521^(4/13) 3178106397477409 a001 774004377960/16692641*521^(4/13) 3178106397477411 a001 4052739537881/87403803*521^(4/13) 3178106397477411 a001 225749145909/4868641*521^(4/13) 3178106397477412 a001 3278735159921/70711162*521^(4/13) 3178106397477413 a001 2504730781961/54018521*521^(4/13) 3178106397477419 a001 956722026041/20633239*521^(4/13) 3178106397477463 a001 182717648081/3940598*521^(4/13) 3178106397477762 a001 139583862445/3010349*521^(4/13) 3178106397479815 a001 53316291173/1149851*521^(4/13) 3178106397493887 a001 10182505537/219602*521^(4/13) 3178106397590336 a001 7778742049/167761*521^(4/13) 3178106398251404 a001 2971215073/64079*521^(4/13) 3178106402782438 a001 567451585/12238*521^(4/13) 3178106403009726 m001 LandauRamanujan/(2^(1/3)+ln(Pi)) 3178106403009726 m001 LandauRamanujan/(ln(Pi)+(2^(1/3))) 3178106416588670 m001 exp((3^(1/3)))^2/Robbin*sinh(1) 3178106433838603 a001 433494437/9349*521^(4/13) 3178106435251569 h001 (-exp(1)-4)/(-4*exp(4)+7) 3178106441598616 a001 47*(1/2*5^(1/2)+1/2)^30*843^(8/15) 3178106441869413 m001 GAMMA(7/12)^2/Salem^2*ln(cosh(1))^2 3178106450138441 r005 Re(z^2+c),c=-27/44+16/37*I,n=35 3178106461665841 r005 Im(z^2+c),c=-13/44+37/56*I,n=52 3178106484979732 r004 Im(z^2+c),c=-7/38+10/17*I,z(0)=I,n=27 3178106486189600 a001 63245986/843*843^(3/14) 3178106487472181 r005 Re(z^2+c),c=-10/27+9/25*I,n=60 3178106492532827 m008 (4*Pi^6+3/4)/(4*Pi^3-3) 3178106502503139 r005 Im(z^2+c),c=-2/3+7/253*I,n=3 3178106509747713 m001 Landau^(Pi*csc(5/12*Pi)/GAMMA(7/12))/Thue 3178106512086060 m001 (3^(1/2))^(3^(1/3))*(3^(1/2))^LaplaceLimit 3178106515960952 r005 Im(z^2+c),c=5/118+8/13*I,n=16 3178106520867472 h001 (2/7*exp(2)+1/7)/(10/11*exp(2)+3/8) 3178106527629985 r005 Im(z^2+c),c=1/13+33/49*I,n=7 3178106540973675 m001 Paris*FransenRobinson^2*ln(Ei(1))^2 3178106552169787 a001 2207/28657*89^(6/19) 3178106556561554 r009 Re(z^3+c),c=-1/18+38/61*I,n=48 3178106576924029 r005 Re(z^2+c),c=-10/27+9/25*I,n=62 3178106579221008 r005 Re(z^2+c),c=-21/50+20/37*I,n=28 3178106581563143 m005 (-1/12+1/4*5^(1/2))/(4/5*3^(1/2)+1/9) 3178106597302616 m002 -4*E^Pi+Pi-E^Pi*Pi^2 3178106618664539 r005 Re(z^2+c),c=-33/82+9/43*I,n=35 3178106620618022 r005 Re(z^2+c),c=-7/18+5/28*I,n=3 3178106631498177 m001 (2*Pi/GAMMA(5/6)+Bloch)/(Salem+Sarnak) 3178106644936711 m001 (-Backhouse+Thue)/(sin(1)+Zeta(5)) 3178106645634095 a001 165580141/2207*521^(3/13) 3178106646700744 a001 165580141/3571*521^(4/13) 3178106653577510 r009 Re(z^3+c),c=-1/16+30/49*I,n=12 3178106653599758 m001 BesselK(0,1)/(Ei(1)^TreeGrowth2nd) 3178106669131991 r005 Im(z^2+c),c=-37/66+23/51*I,n=60 3178106673906973 m001 (-ln(3)+2)/(FeigenbaumAlpha+1/3) 3178106678391193 r005 Re(z^2+c),c=-39/122+31/59*I,n=46 3178106682936429 a007 Real Root Of -836*x^4+624*x^3-469*x^2+834*x+27 3178106683879340 a001 5/3010349*2^(44/47) 3178106703210742 m001 (arctan(1/3)+Artin)/(MertensB1+Tetranacci) 3178106747015953 a007 Real Root Of 143*x^4-22*x^3+65*x^2-498*x-167 3178106754881864 r005 Re(z^2+c),c=15/58+5/57*I,n=2 3178106765538552 a005 (1/cos(12/235*Pi))^624 3178106788915669 m001 (Pi*2^(1/2)/GAMMA(3/4))^Khinchin-ZetaQ(4) 3178106791954992 r005 Im(z^2+c),c=-69/122+4/7*I,n=10 3178106805627320 a001 39088169/843*843^(2/7) 3178106810781779 r009 Im(z^3+c),c=-11/50+55/62*I,n=2 3178106811611128 r009 Im(z^3+c),c=-63/118+26/41*I,n=10 3178106825462522 r009 Re(z^3+c),c=-15/32+16/49*I,n=10 3178106827039765 r005 Re(z^2+c),c=-10/27+9/25*I,n=64 3178106832669630 m005 (1/2*exp(1)-5/12)/(6/7*Pi+3/11) 3178106836921697 a001 11/21*144^(19/23) 3178106845106279 r005 Re(z^2+c),c=-45/122+7/19*I,n=23 3178106857166663 r005 Im(z^2+c),c=19/78+5/24*I,n=30 3178106860665604 r009 Re(z^3+c),c=-23/48+18/47*I,n=30 3178106875563466 l006 ln(6081/8356) 3178106883892289 r005 Re(z^2+c),c=-17/22+4/43*I,n=52 3178106890904509 r005 Re(z^2+c),c=-97/126+3/8*I,n=2 3178106905683781 r005 Re(z^2+c),c=-10/27+9/25*I,n=63 3178106921433921 m001 ln(FeigenbaumD)^2*Lehmer^2/OneNinth 3178106935229538 r005 Re(z^2+c),c=-10/27+9/25*I,n=59 3178106942689127 r005 Im(z^2+c),c=-15/31+7/15*I,n=16 3178106951836180 m001 (LambertW(1)+exp(1/exp(1)))/(-Landau+Salem) 3178106959886613 r002 5th iterates of z^2 + 3178106971030417 m001 Porter-Totient^PlouffeB 3178106973132549 b008 (3*InverseGudermannian[Pi/12])/25 3178106975167479 r005 Re(z^2+c),c=-29/86+29/62*I,n=50 3178106980023619 r009 Im(z^3+c),c=-21/62+35/47*I,n=26 3178106988000256 m001 ln(2)/ln(10)/Psi(2,1/3)*LandauRamanujan2nd 3178107025951062 r009 Im(z^3+c),c=-1/15+14/17*I,n=56 3178107045151968 m001 (sin(1/12*Pi)+Kac)/(KhinchinHarmonic-Porter) 3178107045660719 q001 1051/3307 3178107057185430 r005 Im(z^2+c),c=-47/118+25/56*I,n=11 3178107064797951 r005 Re(z^2+c),c=-19/70+26/49*I,n=15 3178107071365770 m001 (ln(Pi)+Pi^(1/2))/(MertensB3-PrimesInBinary) 3178107079084005 m001 1/Riemann3rdZero/exp(Bloch)*GAMMA(5/6)^2 3178107082130968 r005 Re(z^2+c),c=-10/27+9/25*I,n=58 3178107094733920 r005 Re(z^2+c),c=-31/56+8/21*I,n=14 3178107109837873 r005 Re(z^2+c),c=-41/98+1/29*I,n=21 3178107114518279 r005 Re(z^2+c),c=-11/14+29/151*I,n=6 3178107114801218 r005 Im(z^2+c),c=-9/16+53/112*I,n=17 3178107117280957 a001 63245986/521*199^(2/11) 3178107118663358 m005 (1/3*gamma-1/8)/(2/5*2^(1/2)-7/9) 3178107120531456 a003 cos(Pi*19/49)-cos(Pi*28/57) 3178107123980533 m001 (Conway-Tetranacci)/(Zeta(1,2)-GAMMA(23/24)) 3178107125065074 a001 24157817/843*843^(5/14) 3178107127691610 m001 exp(FeigenbaumD)^2/FeigenbaumAlpha^2/Zeta(5)^2 3178107128787983 a001 199/433494437*20365011074^(21/22) 3178107130816618 a001 1/89*514229^(21/22) 3178107131990473 l006 ln(4667/6413) 3178107144496695 r005 Re(z^2+c),c=-10/27+9/25*I,n=61 3178107145886360 m001 1/exp(Tribonacci)^2*Rabbit*BesselK(0,1)^2 3178107155376849 a007 Real Root Of 933*x^4-599*x^3+445*x^2-152*x-122 3178107178053133 m001 MasserGramain^(exp(1)*cos(1/12*Pi)) 3178107190849530 h001 (-exp(6)-5)/(-6*exp(3)-8) 3178107202914390 a001 433494437/5778*521^(3/13) 3178107205048259 a001 39088169/1364*521^(5/13) 3178107220034434 a007 Real Root Of 641*x^4-807*x^3+919*x^2+262*x-42 3178107227070997 m002 Pi^3/E^Pi+Cosh[Pi]+Pi^5*Tanh[Pi] 3178107227784196 m001 Pi^(1/2)*(Grothendieck+Trott) 3178107233148543 m005 (1/3*2^(1/2)-1/5)/(1/4*Pi-7/10) 3178107236072784 a001 377/1364*(1/2+1/2*5^(1/2))^29 3178107236072784 a001 377/1364*1322157322203^(1/2) 3178107236078117 a001 610/843*7881196^(9/11) 3178107236078159 a001 610/843*141422324^(9/13) 3178107236078159 a001 610/843*2537720636^(3/5) 3178107236078159 a001 610/843*45537549124^(9/17) 3178107236078159 a001 610/843*817138163596^(9/19) 3178107236078159 a001 610/843*14662949395604^(3/7) 3178107236078159 a001 610/843*(1/2+1/2*5^(1/2))^27 3178107236078159 a001 610/843*192900153618^(1/2) 3178107236078159 a001 610/843*10749957122^(9/16) 3178107236078159 a001 610/843*599074578^(9/14) 3178107236078161 a001 610/843*33385282^(3/4) 3178107236078986 a001 610/843*1860498^(9/10) 3178107240536856 h005 exp(sin(Pi*13/35)/cos(Pi*22/49)) 3178107241799019 b008 3+E^EulerGamma/10 3178107241799019 b008 30+E^EulerGamma 3178107245741106 s001 sum(1/10^(n-1)*A238673[n]/n!^2,n=1..infinity) 3178107251166829 m008 (1/3*Pi-3)/(3/5*Pi^4+3) 3178107257632726 m002 Pi^3+Coth[Pi]-Log[Pi]/5 3178107264509550 m001 (Psi(2,1/3)+gamma(1))/(-MadelungNaCl+Trott) 3178107270811499 a007 Real Root Of 26*x^4+807*x^3-642*x^2-871*x+978 3178107273138942 a007 Real Root Of -663*x^4+983*x^3+600*x^2+691*x-305 3178107275863632 a007 Real Root Of -769*x^4-599*x^3-777*x^2+629*x+267 3178107279438404 m001 exp(Zeta(3))^2*GAMMA(1/3)/cos(Pi/12)^2 3178107284220506 a001 1134903170/15127*521^(3/13) 3178107292508553 a007 Real Root Of 354*x^4-602*x^3-975*x^2-346*x+12 3178107296082909 a001 2971215073/39603*521^(3/13) 3178107297813610 a001 7778742049/103682*521^(3/13) 3178107298066116 a001 20365011074/271443*521^(3/13) 3178107298102956 a001 53316291173/710647*521^(3/13) 3178107298108331 a001 139583862445/1860498*521^(3/13) 3178107298109115 a001 365435296162/4870847*521^(3/13) 3178107298109229 a001 956722026041/12752043*521^(3/13) 3178107298109246 a001 2504730781961/33385282*521^(3/13) 3178107298109249 a001 6557470319842/87403803*521^(3/13) 3178107298109249 a001 10610209857723/141422324*521^(3/13) 3178107298109250 a001 4052739537881/54018521*521^(3/13) 3178107298109256 a001 140728068720/1875749*521^(3/13) 3178107298109300 a001 591286729879/7881196*521^(3/13) 3178107298109600 a001 225851433717/3010349*521^(3/13) 3178107298111653 a001 86267571272/1149851*521^(3/13) 3178107298125724 a001 32951280099/439204*521^(3/13) 3178107298222173 a001 75025*521^(3/13) 3178107298883242 a001 4807526976/64079*521^(3/13) 3178107299064411 v002 sum(1/(5^n+(27*n^2-61*n+89)),n=1..infinity) 3178107302495516 r008 a(0)=3,K{-n^6,-35+38*n+34*n^2-43*n^3} 3178107303414277 a001 1836311903/24476*521^(3/13) 3178107306250573 r005 Im(z^2+c),c=-15/94+5/11*I,n=26 3178107329770967 r005 Re(z^2+c),c=-83/118+2/9*I,n=30 3178107331399579 r005 Im(z^2+c),c=13/122+11/35*I,n=20 3178107334470451 a001 701408733/9349*521^(3/13) 3178107337583788 m001 (1-ln(2)/ln(10))/(ErdosBorwein+Lehmer) 3178107357068558 r002 39th iterates of z^2 + 3178107363342945 a007 Real Root Of 162*x^4+276*x^3-706*x^2+176*x+23 3178107385284763 m001 (OneNinth+OrthogonalArrays)/PlouffeB 3178107390728712 m001 (ln(3)-Conway)/(HeathBrownMoroz-MasserGramain) 3178107407949486 r005 Re(z^2+c),c=-25/66+18/55*I,n=30 3178107409421685 r005 Re(z^2+c),c=-37/54+14/43*I,n=29 3178107412152087 h001 (9/11*exp(2)+5/12)/(1/5*exp(2)+5/9) 3178107413341517 r005 Im(z^2+c),c=-15/82+17/35*I,n=14 3178107413848625 a007 Real Root Of -275*x^4-635*x^3+978*x^2+516*x-567 3178107417952411 a007 Real Root Of 349*x^4+885*x^3-361*x^2+973*x-457 3178107425480987 r005 Im(z^2+c),c=-5/26+23/49*I,n=19 3178107432596150 r009 Re(z^3+c),c=-49/102+7/50*I,n=5 3178107440671791 m005 (1/6*gamma-3/4)/(2/3*2^(1/2)-3) 3178107442619402 m001 (cos(1)+gamma(3))/(Artin+MertensB3) 3178107444502855 a001 4976784/281*843^(3/7) 3178107445649054 a001 514229/322*322^(11/12) 3178107485921009 r005 Re(z^2+c),c=-10/27+9/25*I,n=54 3178107490907331 m001 ln((3^(1/3)))/(2^(1/3))^2*GAMMA(19/24)^2 3178107512302081 r005 Re(z^2+c),c=-10/27+9/25*I,n=53 3178107530308151 a007 Real Root Of -315*x^4-735*x^3+982*x^2+374*x-188 3178107534350923 r002 3th iterates of z^2 + 3178107546266003 a001 267914296/2207*521^(2/13) 3178107547332652 a001 267914296/3571*521^(3/13) 3178107550528069 s002 sum(A261970[n]/((2*n)!),n=1..infinity) 3178107561809336 l006 ln(5791/5978) 3178107571680731 m001 (Rabbit+Tribonacci)/(sin(1/12*Pi)+Landau) 3178107577812452 s002 sum(A102996[n]/(pi^n),n=1..infinity) 3178107595992123 m001 BesselK(1,1)^2*ln(Salem)*cos(1) 3178107611342630 l006 ln(3253/4470) 3178107612146153 a007 Real Root Of 261*x^4+182*x^3+809*x^2-844*x+26 3178107639344262 a001 96932283/305 3178107646817322 l004 Ci(997/105) 3178107661561307 m001 1/exp(Zeta(5))/GAMMA(11/24)*sqrt(3) 3178107689745133 m005 (1/3*3^(1/2)-3/7)/(7/8*Catalan-1/3) 3178107690379609 a007 Real Root Of 306*x^4-678*x^3-718*x^2-861*x-226 3178107691097222 r005 Re(z^2+c),c=-21/58+23/59*I,n=31 3178107692451340 m001 Landau*(Robbin-ZetaP(4)) 3178107698246242 a007 Real Root Of -7*x^4-198*x^3+760*x^2-569*x-302 3178107704373966 m001 Lehmer/(FeigenbaumMu-Niven) 3178107712852233 a001 39603/89*8^(52/55) 3178107720455680 m001 Pi/cos(Pi/12)^(1/3) 3178107721104824 r009 Re(z^3+c),c=-11/48+17/24*I,n=39 3178107728807987 r005 Im(z^2+c),c=23/58+39/62*I,n=5 3178107729382580 m002 Pi+(ProductLog[Pi]*Sinh[Pi]^2)/5 3178107731439455 p004 log(18553/773) 3178107743957945 s002 sum(A181334[n]/(64^n),n=1..infinity) 3178107747311591 m001 (Tribonacci+Thue)/(2^(1/2)-BesselI(1,1)) 3178107753032711 m004 -125/Pi+5*Pi-Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 3178107753206294 a001 832040/2207*1364^(14/15) 3178107759194879 m001 GAMMA(7/12)/Cahen/RenyiParking 3178107759194879 m001 GAMMA(7/12)/RenyiParking/Cahen 3178107761981405 p004 log(20407/14851) 3178107763940682 a001 9227465/843*843^(1/2) 3178107797936585 r005 Im(z^2+c),c=-5/28+15/26*I,n=14 3178107802247717 m001 Rabbit^2/ln(ArtinRank2)/BesselJ(1,1) 3178107806320117 m001 Ei(1)/exp(TwinPrimes)/GAMMA(7/24) 3178107827288285 r005 Im(z^2+c),c=-5/48+3/7*I,n=20 3178107829010506 h001 (5/12*exp(1)+1/5)/(4/9*exp(2)+10/11) 3178107829523453 r005 Re(z^2+c),c=-41/110+13/37*I,n=32 3178107829680538 r005 Re(z^2+c),c=4/13+1/24*I,n=46 3178107838954593 r005 Im(z^2+c),c=7/22+5/16*I,n=10 3178107840325234 m001 (-Kolakoski+ZetaQ(2))/(Zeta(1,-1)-exp(Pi)) 3178107843433380 h001 (-7*exp(1)-7)/(-8*exp(1/2)+5) 3178107857064096 a005 (1/sin(49/149*Pi))^159 3178107863139619 r005 Re(z^2+c),c=-17/30+19/41*I,n=24 3178107867087777 a001 1346269/2207*1364^(13/15) 3178107869728936 m005 (1/2*5^(1/2)-3)/(1/7*5^(1/2)+3/11) 3178107870636088 m001 (CareFree-Porter)/(cos(1/5*Pi)+BesselI(1,2)) 3178107882332646 a007 Real Root Of -904*x^4+788*x^3+8*x^2+658*x-226 3178107895427155 r005 Re(z^2+c),c=-17/50+29/61*I,n=26 3178107900555236 m001 (Si(Pi)+gamma)/(-GAMMA(23/24)+MertensB1) 3178107902578151 m001 sin(1/12*Pi)*(KhinchinHarmonic-polylog(4,1/2)) 3178107906051439 m006 (1/6*Pi^2+1/3)/(5/6*Pi^2-2) 3178107906051439 m008 (1/6*Pi^2+1/3)/(5/6*Pi^2-2) 3178107906051439 m009 (1/12*Pi^2+1/6)/(5/12*Pi^2-1) 3178107919429955 m001 (gamma(1)+BesselK(1,1))/(Pi^(1/2)-OneNinth) 3178107929789585 a001 199/75025*6557470319842^(17/24) 3178107945656184 a007 Real Root Of 178*x^4+665*x^3+176*x^2-577*x-424 3178107946671961 a007 Real Root Of -393*x^4-976*x^3+689*x^2-281*x+911 3178107980964759 a007 Real Root Of 689*x^4+856*x^3-897*x^2-865*x+331 3178107980967511 a001 987*1364^(4/5) 3178107995503398 r005 Im(z^2+c),c=-2/3+44/135*I,n=55 3178108011801647 p004 log(18457/769) 3178108013718827 m005 (1/3*5^(1/2)-1/3)/(1/3*5^(1/2)-7/8) 3178108024296668 m001 (PlouffeB+ZetaP(3))/(Si(Pi)+DuboisRaymond) 3178108028916196 a001 521/75025*28657^(19/51) 3178108032150397 r005 Re(z^2+c),c=-10/27+9/25*I,n=56 3178108041736041 r005 Re(z^2+c),c=-27/70+25/62*I,n=13 3178108049763655 a001 199/5*144^(52/59) 3178108050685995 l006 ln(5092/6997) 3178108059164539 r005 Im(z^2+c),c=7/52+18/61*I,n=10 3178108072343435 a009 6/7*3^(3/4)*7^(1/4) 3178108072504641 a007 Real Root Of 334*x^4+983*x^3-313*x^2-432*x-731 3178108082234731 a001 165580141/843*322^(1/12) 3178108083378504 a001 5702887/843*843^(4/7) 3178108089034902 m001 (FeigenbaumDelta-Trott)/(gamma(2)-Backhouse) 3178108094847919 a001 3524578/2207*1364^(11/15) 3178108100888532 a007 Real Root Of -547*x^4-836*x^3-839*x^2+332*x+169 3178108103546456 a001 233802911/1926*521^(2/13) 3178108104599257 r005 Im(z^2+c),c=3/50+12/35*I,n=20 3178108105680326 a001 31622993/682*521^(4/13) 3178108106216686 m001 (ln(Pi)+Zeta(1,2))/(LaplaceLimit-Trott) 3178108111823469 r009 Im(z^3+c),c=-25/62+6/25*I,n=20 3178108114622305 m001 (ln(3)-ln(5))/(GAMMA(23/24)-KhinchinLevy) 3178108138089982 r005 Re(z^2+c),c=-49/118+5/52*I,n=18 3178108173865570 r005 Re(z^2+c),c=-5/32+17/27*I,n=37 3178108177241731 a007 Real Root Of 174*x^4-376*x^3-869*x^2-670*x+311 3178108178970742 a001 144/47*3^(1/30) 3178108184852595 a001 1836311903/15127*521^(2/13) 3178108196715001 a001 1602508992/13201*521^(2/13) 3178108196721311 a001 19386460/61 3178108198445702 a001 12586269025/103682*521^(2/13) 3178108198698208 a001 121393*521^(2/13) 3178108198735049 a001 86267571272/710647*521^(2/13) 3178108198740423 a001 75283811239/620166*521^(2/13) 3178108198741208 a001 591286729879/4870847*521^(2/13) 3178108198741322 a001 516002918640/4250681*521^(2/13) 3178108198741339 a001 4052739537881/33385282*521^(2/13) 3178108198741341 a001 3536736619241/29134601*521^(2/13) 3178108198741343 a001 6557470319842/54018521*521^(2/13) 3178108198741349 a001 2504730781961/20633239*521^(2/13) 3178108198741393 a001 956722026041/7881196*521^(2/13) 3178108198741692 a001 365435296162/3010349*521^(2/13) 3178108198743745 a001 139583862445/1149851*521^(2/13) 3178108198757817 a001 53316291173/439204*521^(2/13) 3178108198854266 a001 20365011074/167761*521^(2/13) 3178108199515335 a001 7778742049/64079*521^(2/13) 3178108200400820 m001 (gamma(2)+Kac)/(Tetranacci+Trott) 3178108202091485 b008 Gudermannian[ArcSinh[11]^(-1)] 3178108204046371 a001 2971215073/24476*521^(2/13) 3178108206852262 a007 Real Root Of 683*x^4+984*x^3-16*x^2-715*x-201 3178108208290583 b008 -4/3+2^(1/45) 3178108208728075 a001 5702887/2207*1364^(2/3) 3178108213765454 m001 ln(Porter)^2/LaplaceLimit^2/GAMMA(23/24)^2 3178108224406961 r009 Re(z^3+c),c=-12/25+16/39*I,n=60 3178108225117195 m001 ln(cos(Pi/12))^2*Artin/sqrt(2) 3178108229646990 m001 Trott2nd*(ln(2)/ln(10)+Thue) 3178108235102554 a001 1134903170/9349*521^(2/13) 3178108247143752 h001 (6/11*exp(2)+7/9)/(1/4*exp(1)+5/6) 3178108256887687 l006 ln(6931/9524) 3178108267098957 a005 (1/cos(9/178*Pi))^1000 3178108268977544 r002 29th iterates of z^2 + 3178108278688524 a001 38772921/122 3178108288785785 r005 Re(z^2+c),c=-10/27+9/25*I,n=43 3178108291803278 a001 1/305*(1/2+1/2*5^(1/2))^43 3178108293994381 g002 Psi(11/12)+Psi(7/12)+Psi(4/9)-Psi(7/11) 3178108294911948 r005 Re(z^2+c),c=-10/27+9/25*I,n=48 3178108295081967 a001 96932303/305 3178108310487568 a001 726103/1926*1364^(14/15) 3178108313214530 r005 Im(z^2+c),c=7/29+4/19*I,n=23 3178108322608332 a001 9227465/2207*1364^(3/5) 3178108327868852 a001 96932304/305 3178108333166349 r005 Re(z^2+c),c=-24/31+2/37*I,n=34 3178108340226316 r005 Re(z^2+c),c=3/34+11/49*I,n=14 3178108344929459 m005 (1/3*exp(1)+1/8)/(7/11*3^(1/2)-7/9) 3178108361677596 a007 Real Root Of -146*x^4+994*x^3+857*x^2+664*x-22 3178108368998821 s002 sum(A276515[n]/(pi^n-1),n=1..infinity) 3178108376877230 a007 Real Root Of 390*x^4+272*x^3+288*x^2-172*x-79 3178108378617231 a003 cos(Pi*1/120)/sin(Pi*11/108) 3178108388394782 r005 Re(z^2+c),c=-17/26+9/31*I,n=29 3178108391793826 a001 5702887/15127*1364^(14/15) 3178108401640083 a007 Real Root Of 54*x^4+390*x^3+864*x^2+174*x-20 3178108402816456 a001 3524578/843*843^(9/14) 3178108403656250 a001 4976784/13201*1364^(14/15) 3178108405386954 a001 39088169/103682*1364^(14/15) 3178108405639460 a001 34111385/90481*1364^(14/15) 3178108405676301 a001 267914296/710647*1364^(14/15) 3178108405681676 a001 233802911/620166*1364^(14/15) 3178108405682460 a001 1836311903/4870847*1364^(14/15) 3178108405682574 a001 1602508992/4250681*1364^(14/15) 3178108405682591 a001 12586269025/33385282*1364^(14/15) 3178108405682593 a001 10983760033/29134601*1364^(14/15) 3178108405682594 a001 86267571272/228826127*1364^(14/15) 3178108405682594 a001 267913919/710646*1364^(14/15) 3178108405682594 a001 591286729879/1568397607*1364^(14/15) 3178108405682594 a001 516002918640/1368706081*1364^(14/15) 3178108405682594 a001 4052739537881/10749957122*1364^(14/15) 3178108405682594 a001 3536736619241/9381251041*1364^(14/15) 3178108405682594 a001 6557470319842/17393796001*1364^(14/15) 3178108405682594 a001 2504730781961/6643838879*1364^(14/15) 3178108405682594 a001 956722026041/2537720636*1364^(14/15) 3178108405682594 a001 365435296162/969323029*1364^(14/15) 3178108405682594 a001 139583862445/370248451*1364^(14/15) 3178108405682594 a001 53316291173/141422324*1364^(14/15) 3178108405682595 a001 20365011074/54018521*1364^(14/15) 3178108405682601 a001 7778742049/20633239*1364^(14/15) 3178108405682645 a001 2971215073/7881196*1364^(14/15) 3178108405682944 a001 1134903170/3010349*1364^(14/15) 3178108405684997 a001 433494437/1149851*1364^(14/15) 3178108405699069 a001 165580141/439204*1364^(14/15) 3178108405795518 a001 63245986/167761*1364^(14/15) 3178108406456588 a001 24157817/64079*1364^(14/15) 3178108410987631 a001 9227465/24476*1364^(14/15) 3178108412639983 r005 Im(z^2+c),c=11/114+17/53*I,n=11 3178108424142121 r005 Re(z^2+c),c=-21/62+22/47*I,n=32 3178108424367987 a001 1762289/2889*1364^(13/15) 3178108424949345 r005 Im(z^2+c),c=-4/3+4/171*I,n=30 3178108436488557 a001 14930352/2207*1364^(8/15) 3178108442043859 a001 3524578/9349*1364^(14/15) 3178108446898166 a001 433494437/2207*521^(1/13) 3178108447964815 a001 433494437/3571*521^(2/13) 3178108455613402 r002 9th iterates of z^2 + 3178108464059624 a007 Real Root Of -210*x^4-604*x^3+80*x^2-484*x-311 3178108497359577 q001 662/2083 3178108501936958 r005 Im(z^2+c),c=-4/17+35/54*I,n=23 3178108505674090 a001 9227465/15127*1364^(13/15) 3178108517536491 a001 24157817/39603*1364^(13/15) 3178108519267192 a001 31622993/51841*1364^(13/15) 3178108519519698 a001 165580141/271443*1364^(13/15) 3178108519556538 a001 433494437/710647*1364^(13/15) 3178108519561913 a001 567451585/930249*1364^(13/15) 3178108519562697 a001 2971215073/4870847*1364^(13/15) 3178108519562812 a001 7778742049/12752043*1364^(13/15) 3178108519562828 a001 10182505537/16692641*1364^(13/15) 3178108519562831 a001 53316291173/87403803*1364^(13/15) 3178108519562831 a001 139583862445/228826127*1364^(13/15) 3178108519562831 a001 182717648081/299537289*1364^(13/15) 3178108519562831 a001 956722026041/1568397607*1364^(13/15) 3178108519562831 a001 2504730781961/4106118243*1364^(13/15) 3178108519562831 a001 3278735159921/5374978561*1364^(13/15) 3178108519562831 a001 10610209857723/17393796001*1364^(13/15) 3178108519562831 a001 4052739537881/6643838879*1364^(13/15) 3178108519562831 a001 1134903780/1860499*1364^(13/15) 3178108519562831 a001 591286729879/969323029*1364^(13/15) 3178108519562831 a001 225851433717/370248451*1364^(13/15) 3178108519562831 a001 21566892818/35355581*1364^(13/15) 3178108519562832 a001 32951280099/54018521*1364^(13/15) 3178108519562839 a001 1144206275/1875749*1364^(13/15) 3178108519562883 a001 1201881744/1970299*1364^(13/15) 3178108519563182 a001 1836311903/3010349*1364^(13/15) 3178108519565235 a001 701408733/1149851*1364^(13/15) 3178108519579307 a001 66978574/109801*1364^(13/15) 3178108519675755 a001 9303105/15251*1364^(13/15) 3178108520336824 a001 39088169/64079*1364^(13/15) 3178108520727190 a001 322/233*2504730781961^(4/21) 3178108524867858 a001 3732588/6119*1364^(13/15) 3178108526181013 a001 521*6557470319842^(9/17) 3178108536931419 m001 1/ln(BesselJ(1,1))*MadelungNaCl/sin(Pi/12)^2 3178108538248155 a001 5702887/5778*1364^(4/5) 3178108540983606 a001 193864621/610 3178108546760377 r005 Re(z^2+c),c=-10/27+22/61*I,n=30 3178108550368799 a001 24157817/2207*1364^(7/15) 3178108551523858 r005 Im(z^2+c),c=-15/52+31/61*I,n=63 3178108555924028 a001 5702887/9349*1364^(13/15) 3178108568093135 r004 Re(z^2+c),c=-5/12+1/13*I,z(0)=-1,n=21 3178108569298575 r002 3th iterates of z^2 + 3178108577980747 m001 (GAMMA(3/4)-GAMMA(13/24))/(Bloch+FeigenbaumB) 3178108589414540 r005 Im(z^2+c),c=-6/31+31/58*I,n=14 3178108597560140 m005 (-15/4+1/4*5^(1/2))/(7/10*gamma+3/5) 3178108597936404 a007 Real Root Of -24*x^4-754*x^3+274*x^2-109*x+535 3178108598128230 m008 (1/2*Pi^5-2/3)/(1/4*Pi-5/6) 3178108617848391 m001 (BesselI(0,1)+BesselI(1,2))/(-Paris+ZetaQ(3)) 3178108619554321 a001 14930352/15127*1364^(4/5) 3178108629055298 r005 Im(z^2+c),c=-27/98+7/16*I,n=6 3178108631416732 a001 39088169/39603*1364^(4/5) 3178108633147434 a001 102334155/103682*1364^(4/5) 3178108633399940 a001 267914296/271443*1364^(4/5) 3178108633436780 a001 701408733/710647*1364^(4/5) 3178108633442155 a001 1836311903/1860498*1364^(4/5) 3178108633442939 a001 4807526976/4870847*1364^(4/5) 3178108633443054 a001 12586269025/12752043*1364^(4/5) 3178108633443070 a001 32951280099/33385282*1364^(4/5) 3178108633443073 a001 86267571272/87403803*1364^(4/5) 3178108633443073 a001 225851433717/228826127*1364^(4/5) 3178108633443073 a001 591286729879/599074578*1364^(4/5) 3178108633443073 a001 1548008755920/1568397607*1364^(4/5) 3178108633443073 a001 4052739537881/4106118243*1364^(4/5) 3178108633443073 a001 4807525989/4870846*1364^(4/5) 3178108633443073 a001 6557470319842/6643838879*1364^(4/5) 3178108633443073 a001 2504730781961/2537720636*1364^(4/5) 3178108633443073 a001 956722026041/969323029*1364^(4/5) 3178108633443073 a001 365435296162/370248451*1364^(4/5) 3178108633443073 a001 139583862445/141422324*1364^(4/5) 3178108633443074 a001 53316291173/54018521*1364^(4/5) 3178108633443081 a001 20365011074/20633239*1364^(4/5) 3178108633443124 a001 7778742049/7881196*1364^(4/5) 3178108633443424 a001 2971215073/3010349*1364^(4/5) 3178108633445477 a001 1134903170/1149851*1364^(4/5) 3178108633459549 a001 433494437/439204*1364^(4/5) 3178108633555997 a001 165580141/167761*1364^(4/5) 3178108634217067 a001 63245986/64079*1364^(4/5) 3178108637416084 a003 sin(Pi*5/94)/cos(Pi*29/60) 3178108638748104 a001 24157817/24476*1364^(4/5) 3178108646347994 m005 (-7/12+1/4*5^(1/2))/(5/9*gamma+4/9) 3178108652128424 a001 9227465/5778*1364^(11/15) 3178108654906434 a001 1346269/3571*1364^(14/15) 3178108664249041 a001 39088169/2207*1364^(2/5) 3178108664958570 h001 (-4*exp(4)+11)/(-3*exp(3)-5) 3178108668239683 s001 sum(exp(-Pi/3)^n*A283053[n],n=1..infinity) 3178108669804298 a001 9227465/9349*1364^(4/5) 3178108673787743 m005 (1/2*gamma-4/5)/(41/63+3/7*5^(1/2)) 3178108681662166 r009 Re(z^3+c),c=-37/102+7/32*I,n=8 3178108687505558 m001 (ln(Pi)-GAMMA(7/12))/(MadelungNaCl-Otter) 3178108689428848 s002 sum(A275236[n]/(n^3*pi^n+1),n=1..infinity) 3178108695054869 a001 987/2207*20633239^(4/5) 3178108695054875 a001 987/2207*17393796001^(4/7) 3178108695054875 a001 987/2207*14662949395604^(4/9) 3178108695054875 a001 987/2207*(1/2+1/2*5^(1/2))^28 3178108695054875 a001 987/2207*73681302247^(7/13) 3178108695054875 a001 987/2207*10749957122^(7/12) 3178108695054875 a001 987/2207*4106118243^(14/23) 3178108695054875 a001 987/2207*1568397607^(7/11) 3178108695054875 a001 987/2207*599074578^(2/3) 3178108695054876 a001 987/2207*228826127^(7/10) 3178108695054876 a001 987/2207*87403803^(14/19) 3178108695054878 a001 987/2207*33385282^(7/9) 3178108695054892 a001 987/2207*12752043^(14/17) 3178108695054993 a001 987/2207*4870847^(7/8) 3178108695055732 a001 987/2207*1860498^(14/15) 3178108699783921 a007 Real Root Of 744*x^4-371*x^3+178*x^2-795*x+239 3178108722254184 a001 726103/281*843^(5/7) 3178108725438043 s002 sum(A072395[n]/(n^2*10^n-1),n=1..infinity) 3178108731158854 m001 (ln(2+3^(1/2))-Lehmer)/(Zeta(5)-cos(1/5*Pi)) 3178108732264622 m001 Zeta(1/2)^2/exp(GAMMA(2/3))*gamma 3178108732335346 r005 Im(z^2+c),c=-11/34+14/27*I,n=46 3178108733434571 a001 24157817/15127*1364^(11/15) 3178108745296978 a001 63245986/39603*1364^(11/15) 3178108747027680 a001 165580141/103682*1364^(11/15) 3178108747280186 a001 433494437/271443*1364^(11/15) 3178108747317026 a001 1134903170/710647*1364^(11/15) 3178108747322401 a001 2971215073/1860498*1364^(11/15) 3178108747323185 a001 7778742049/4870847*1364^(11/15) 3178108747323299 a001 20365011074/12752043*1364^(11/15) 3178108747323316 a001 53316291173/33385282*1364^(11/15) 3178108747323319 a001 139583862445/87403803*1364^(11/15) 3178108747323319 a001 365435296162/228826127*1364^(11/15) 3178108747323319 a001 956722026041/599074578*1364^(11/15) 3178108747323319 a001 2504730781961/1568397607*1364^(11/15) 3178108747323319 a001 6557470319842/4106118243*1364^(11/15) 3178108747323319 a001 10610209857723/6643838879*1364^(11/15) 3178108747323319 a001 4052739537881/2537720636*1364^(11/15) 3178108747323319 a001 1548008755920/969323029*1364^(11/15) 3178108747323319 a001 591286729879/370248451*1364^(11/15) 3178108747323319 a001 225851433717/141422324*1364^(11/15) 3178108747323320 a001 86267571272/54018521*1364^(11/15) 3178108747323326 a001 32951280099/20633239*1364^(11/15) 3178108747323370 a001 12586269025/7881196*1364^(11/15) 3178108747323670 a001 4807526976/3010349*1364^(11/15) 3178108747325723 a001 1836311903/1149851*1364^(11/15) 3178108747339794 a001 701408733/439204*1364^(11/15) 3178108747436243 a001 267914296/167761*1364^(11/15) 3178108748043381 m005 (5*gamma+1/3)/(3/5*gamma+2/3) 3178108748043381 m007 (-5*gamma-1/3)/(-3/5*gamma-2/3) 3178108748097312 a001 102334155/64079*1364^(11/15) 3178108752628349 a001 39088169/24476*1364^(11/15) 3178108755192202 m001 KhinchinLevy-Magata^Zeta(3) 3178108766008660 a001 2584*1364^(2/3) 3178108768786196 a001 2178309/3571*1364^(13/15) 3178108770588324 r008 a(0)=3,K{-n^6,-19+14*n+42*n^2-43*n^3} 3178108776157950 m005 (1/2*Catalan-3)/(-7/22+1/2*5^(1/2)) 3178108778129288 a001 63245986/2207*1364^(1/3) 3178108778521178 r005 Re(z^2+c),c=-41/106+12/41*I,n=33 3178108783684535 a001 14930352/9349*1364^(11/15) 3178108785982353 r005 Re(z^2+c),c=-1/3+8/17*I,n=33 3178108794758689 r002 27th iterates of z^2 + 3178108798694786 r009 Re(z^3+c),c=-29/50+30/59*I,n=32 3178108804920106 m008 (3/5*Pi^2+1/3)/(1/5*Pi^4+1/5) 3178108822186305 r005 Re(z^2+c),c=-5/13+29/55*I,n=24 3178108822541092 m005 (1/3*3^(1/2)-1/11)/(7/9*Catalan+9/11) 3178108827838731 l006 ln(1839/2527) 3178108830197677 a009 13/(15+3^(1/2))^(1/2) 3178108839971339 s001 sum(1/10^(n-1)*A142194[n]/n^n,n=1..infinity) 3178108842582376 r005 Im(z^2+c),c=-7/60+17/39*I,n=18 3178108847314819 a001 39088169/15127*1364^(2/3) 3178108856275209 r005 Re(z^2+c),c=25/82+5/48*I,n=26 3178108859177227 a001 34111385/13201*1364^(2/3) 3178108860907930 a001 133957148/51841*1364^(2/3) 3178108861160436 a001 233802911/90481*1364^(2/3) 3178108861197276 a001 1836311903/710647*1364^(2/3) 3178108861202651 a001 267084832/103361*1364^(2/3) 3178108861203435 a001 12586269025/4870847*1364^(2/3) 3178108861203549 a001 10983760033/4250681*1364^(2/3) 3178108861203566 a001 43133785636/16692641*1364^(2/3) 3178108861203568 a001 75283811239/29134601*1364^(2/3) 3178108861203569 a001 591286729879/228826127*1364^(2/3) 3178108861203569 a001 86000486440/33281921*1364^(2/3) 3178108861203569 a001 4052739537881/1568397607*1364^(2/3) 3178108861203569 a001 3536736619241/1368706081*1364^(2/3) 3178108861203569 a001 3278735159921/1268860318*1364^(2/3) 3178108861203569 a001 2504730781961/969323029*1364^(2/3) 3178108861203569 a001 956722026041/370248451*1364^(2/3) 3178108861203569 a001 182717648081/70711162*1364^(2/3) 3178108861203570 a001 139583862445/54018521*1364^(2/3) 3178108861203576 a001 53316291173/20633239*1364^(2/3) 3178108861203620 a001 10182505537/3940598*1364^(2/3) 3178108861203920 a001 7778742049/3010349*1364^(2/3) 3178108861205973 a001 2971215073/1149851*1364^(2/3) 3178108861220044 a001 567451585/219602*1364^(2/3) 3178108861316493 a001 433494437/167761*1364^(2/3) 3178108861977562 a001 165580141/64079*1364^(2/3) 3178108863253235 r005 Im(z^2+c),c=-17/106+5/11*I,n=40 3178108863499976 a001 161/72*28657^(29/41) 3178108864379027 m001 (Paris-Trott2nd)/(BesselK(1,1)+GAMMA(13/24)) 3178108864931227 r005 Im(z^2+c),c=1/38+4/11*I,n=11 3178108866508599 a001 31622993/12238*1364^(2/3) 3178108870664991 p004 log(18169/757) 3178108877158117 r005 Im(z^2+c),c=-1/122+20/37*I,n=6 3178108878431677 s002 sum(A056461[n]/(16^n),n=1..infinity) 3178108879888915 a001 24157817/5778*1364^(3/5) 3178108880046622 r002 29th iterates of z^2 + 3178108882666632 a001 3524578/3571*1364^(4/5) 3178108888774932 r009 Re(z^3+c),c=-57/118+16/39*I,n=61 3178108892009539 a001 102334155/2207*1364^(4/15) 3178108897564790 a001 24157817/9349*1364^(2/3) 3178108898702279 a007 Real Root Of -920*x^4-647*x^3+69*x^2+643*x+186 3178108900894574 m001 (Cahen+Champernowne)/(Kac+KomornikLoreti) 3178108905688718 m003 -1+Sqrt[5]/2+Sin[1/2+Sqrt[5]/2]/5 3178108911693298 r009 Im(z^3+c),c=-13/94+47/57*I,n=50 3178108924760471 m002 -Pi^5-Cosh[Pi]-Tanh[Pi]/5 3178108929161752 p001 sum((-1)^n/(105*n+34)/n/(2^n),n=0..infinity) 3178108932605021 a007 Real Root Of -407*x^4+425*x^3+189*x^2+969*x-31 3178108934081457 m001 (BesselJ(1,1)+GAMMA(19/24))/(Cahen-Lehmer) 3178108936949839 a007 Real Root Of 284*x^4+789*x^3-274*x^2+497*x+701 3178108937059809 r009 Re(z^3+c),c=-11/25+19/55*I,n=41 3178108941090818 r005 Im(z^2+c),c=-59/98+9/23*I,n=54 3178108941181183 r005 Re(z^2+c),c=-12/31+32/59*I,n=42 3178108941920126 a007 Real Root Of 254*x^4+64*x^3-698*x^2-957*x+370 3178108951354252 r005 Re(z^2+c),c=-41/114+19/50*I,n=11 3178108960523290 r009 Re(z^3+c),c=-51/110+13/34*I,n=42 3178108961195073 a001 63245986/15127*1364^(3/5) 3178108963009097 m005 (1/3*3^(1/2)-1/2)/(9/10*3^(1/2)+7/8) 3178108973057482 a001 165580141/39603*1364^(3/5) 3178108974788184 a001 433494437/103682*1364^(3/5) 3178108975040690 a001 1134903170/271443*1364^(3/5) 3178108975077530 a001 2971215073/710647*1364^(3/5) 3178108975082905 a001 7778742049/1860498*1364^(3/5) 3178108975083689 a001 20365011074/4870847*1364^(3/5) 3178108975083803 a001 53316291173/12752043*1364^(3/5) 3178108975083820 a001 139583862445/33385282*1364^(3/5) 3178108975083822 a001 365435296162/87403803*1364^(3/5) 3178108975083823 a001 956722026041/228826127*1364^(3/5) 3178108975083823 a001 2504730781961/599074578*1364^(3/5) 3178108975083823 a001 6557470319842/1568397607*1364^(3/5) 3178108975083823 a001 10610209857723/2537720636*1364^(3/5) 3178108975083823 a001 4052739537881/969323029*1364^(3/5) 3178108975083823 a001 1548008755920/370248451*1364^(3/5) 3178108975083823 a001 591286729879/141422324*1364^(3/5) 3178108975083824 a001 225851433717/54018521*1364^(3/5) 3178108975083830 a001 86267571272/20633239*1364^(3/5) 3178108975083874 a001 32951280099/7881196*1364^(3/5) 3178108975084174 a001 12586269025/3010349*1364^(3/5) 3178108975086227 a001 4807526976/1149851*1364^(3/5) 3178108975100298 a001 1836311903/439204*1364^(3/5) 3178108975196747 a001 701408733/167761*1364^(3/5) 3178108975857816 a001 267914296/64079*1364^(3/5) 3178108976551850 m001 ln(Pi)^2/Riemann2ndZero^2/cos(Pi/12)^2 3178108980388853 a001 102334155/24476*1364^(3/5) 3178108986942666 r002 15th iterates of z^2 + 3178108993769168 a001 39088169/5778*1364^(8/15) 3178108995835839 r005 Im(z^2+c),c=-1/48+29/46*I,n=48 3178108996546816 a001 1597*1364^(11/15) 3178108997841249 a007 Real Root Of -536*x^4-373*x^3-692*x^2+687*x-131 3178109003585531 m001 Si(Pi)^(GAMMA(1/4)/GAMMA(11/24)) 3178109004178777 a001 567451585/2889*521^(1/13) 3178109005889794 a001 165580141/2207*1364^(1/5) 3178109006312647 a001 9303105/124*521^(3/13) 3178109007655699 m001 (2*Pi/GAMMA(5/6)+Lehmer)/(Paris+Tribonacci) 3178109011445044 a001 4181*1364^(3/5) 3178109017311328 a008 Real Root of x^4-x^3-14*x^2+4*x+20 3178109018693310 m001 (3^(1/3))^FeigenbaumMu/((3^(1/3))^ThueMorse) 3178109032663071 a001 199/121393*233^(31/57) 3178109041692614 a001 1346269/843*843^(11/14) 3178109042863719 m001 ln(1+sqrt(2))*(Zeta(3)-sin(1)) 3178109042863719 m001 ln(2^(1/2)+1)*(Zeta(3)-sin(1)) 3178109043731731 m001 Weierstrass*(Zeta(1,2)+ErdosBorwein) 3178109053288577 p004 log(22691/22619) 3178109065328897 r005 Re(z^2+c),c=-10/27+23/64*I,n=29 3178109075075330 a001 6765*1364^(8/15) 3178109077476949 m001 Landau^MasserGramainDelta/MertensB2 3178109083119054 b008 Pi+4*SphericalBesselY[2,4] 3178109084197378 r005 Im(z^2+c),c=-23/90+23/42*I,n=22 3178109085484939 a001 2971215073/15127*521^(1/13) 3178109086937739 a001 267914296/39603*1364^(8/15) 3178109088668442 a001 701408733/103682*1364^(8/15) 3178109088920948 a001 1836311903/271443*1364^(8/15) 3178109088957788 a001 686789568/101521*1364^(8/15) 3178109088963163 a001 12586269025/1860498*1364^(8/15) 3178109088963947 a001 32951280099/4870847*1364^(8/15) 3178109088964061 a001 86267571272/12752043*1364^(8/15) 3178109088964078 a001 32264490531/4769326*1364^(8/15) 3178109088964081 a001 591286729879/87403803*1364^(8/15) 3178109088964081 a001 1548008755920/228826127*1364^(8/15) 3178109088964081 a001 4052739537881/599074578*1364^(8/15) 3178109088964081 a001 1515744265389/224056801*1364^(8/15) 3178109088964081 a001 6557470319842/969323029*1364^(8/15) 3178109088964081 a001 2504730781961/370248451*1364^(8/15) 3178109088964081 a001 956722026041/141422324*1364^(8/15) 3178109088964082 a001 365435296162/54018521*1364^(8/15) 3178109088964088 a001 139583862445/20633239*1364^(8/15) 3178109088964132 a001 53316291173/7881196*1364^(8/15) 3178109088964432 a001 20365011074/3010349*1364^(8/15) 3178109088966485 a001 7778742049/1149851*1364^(8/15) 3178109088980556 a001 2971215073/439204*1364^(8/15) 3178109089077005 a001 1134903170/167761*1364^(8/15) 3178109089738075 a001 433494437/64079*1364^(8/15) 3178109094269112 a001 165580141/24476*1364^(8/15) 3178109097347348 a001 7778742049/39603*521^(1/13) 3178109098309329 a001 507544023/1597 3178109099078050 a001 10182505537/51841*521^(1/13) 3178109099330556 a001 53316291173/271443*521^(1/13) 3178109099367396 a001 139583862445/710647*521^(1/13) 3178109099372771 a001 182717648081/930249*521^(1/13) 3178109099373556 a001 956722026041/4870847*521^(1/13) 3178109099373670 a001 2504730781961/12752043*521^(1/13) 3178109099373687 a001 3278735159921/16692641*521^(1/13) 3178109099373691 a001 10610209857723/54018521*521^(1/13) 3178109099373697 a001 4052739537881/20633239*521^(1/13) 3178109099373741 a001 387002188980/1970299*521^(1/13) 3178109099374040 a001 591286729879/3010349*521^(1/13) 3178109099376093 a001 225851433717/1149851*521^(1/13) 3178109099390165 a001 196418*521^(1/13) 3178109099486614 a001 32951280099/167761*521^(1/13) 3178109100147683 a001 12586269025/64079*521^(1/13) 3178109104678720 a001 1201881744/6119*521^(1/13) 3178109107649428 a001 31622993/2889*1364^(7/15) 3178109110427102 a001 9227465/3571*1364^(2/3) 3178109111694642 a007 Real Root Of 224*x^4-68*x^3-433*x^2-234*x+118 3178109112715965 m001 (ln(5)+KhinchinLevy)/(Niven-Sierpinski) 3178109112960955 a001 317811/2207*3571^(16/17) 3178109114415470 m001 QuadraticClass-ln(2+3^(1/2))^TwinPrimes 3178109119770053 a001 267914296/2207*1364^(2/15) 3178109120579703 r009 Re(z^3+c),c=-21/50+11/35*I,n=25 3178109125325304 a001 63245986/9349*1364^(8/15) 3178109125607788 r009 Im(z^3+c),c=-11/114+47/58*I,n=52 3178109127629860 a001 514229/2207*3571^(15/17) 3178109133794583 a003 cos(Pi*19/68)-sin(Pi*41/101) 3178109135734912 a001 1836311903/9349*521^(1/13) 3178109139580914 a003 cos(Pi*2/65)*sin(Pi*3/29) 3178109141905402 a001 3010349/89*610^(17/24) 3178109142286746 a001 832040/2207*3571^(14/17) 3178109149060614 r009 Re(z^3+c),c=-17/46+31/38*I,n=2 3178109156948223 a001 1346269/2207*3571^(13/17) 3178109165893061 a007 Real Root Of 353*x^4+845*x^3-770*x^2+642*x+930 3178109171607946 a001 987*3571^(12/17) 3178109182931028 r005 Im(z^2+c),c=-17/106+5/11*I,n=38 3178109186268340 a001 3524578/2207*3571^(11/17) 3178109188955592 a001 165580141/15127*1364^(7/15) 3178109200818002 a001 433494437/39603*1364^(7/15) 3178109200928477 a001 5702887/2207*3571^(10/17) 3178109202548704 a001 567451585/51841*1364^(7/15) 3178109202801210 a001 2971215073/271443*1364^(7/15) 3178109202838050 a001 7778742049/710647*1364^(7/15) 3178109202843425 a001 10182505537/930249*1364^(7/15) 3178109202844209 a001 53316291173/4870847*1364^(7/15) 3178109202844324 a001 139583862445/12752043*1364^(7/15) 3178109202844340 a001 182717648081/16692641*1364^(7/15) 3178109202844343 a001 956722026041/87403803*1364^(7/15) 3178109202844343 a001 2504730781961/228826127*1364^(7/15) 3178109202844343 a001 3278735159921/299537289*1364^(7/15) 3178109202844343 a001 10610209857723/969323029*1364^(7/15) 3178109202844343 a001 4052739537881/370248451*1364^(7/15) 3178109202844343 a001 387002188980/35355581*1364^(7/15) 3178109202844344 a001 591286729879/54018521*1364^(7/15) 3178109202844351 a001 7787980473/711491*1364^(7/15) 3178109202844394 a001 21566892818/1970299*1364^(7/15) 3178109202844694 a001 32951280099/3010349*1364^(7/15) 3178109202846747 a001 12586269025/1149851*1364^(7/15) 3178109202860819 a001 1201881744/109801*1364^(7/15) 3178109202957267 a001 1836311903/167761*1364^(7/15) 3178109203618337 a001 701408733/64079*1364^(7/15) 3178109208149374 a001 10946*1364^(7/15) 3178109215588713 a001 9227465/2207*3571^(9/17) 3178109215666225 r005 Im(z^2+c),c=3/62+34/53*I,n=17 3178109221529690 a001 34111385/1926*1364^(2/5) 3178109224307354 a001 14930352/3571*1364^(3/5) 3178109230248911 a001 14930352/2207*3571^(8/17) 3178109233650317 a001 433494437/2207*1364^(1/15) 3178109239205567 a001 102334155/9349*1364^(7/15) 3178109243556738 m001 Sierpinski*(Zeta(3)+Trott2nd) 3178109244909124 a001 24157817/2207*3571^(7/17) 3178109252335483 a001 329/1926*7881196^(10/11) 3178109252335524 a001 329/1926*20633239^(6/7) 3178109252335530 a001 329/1926*141422324^(10/13) 3178109252335530 a001 329/1926*2537720636^(2/3) 3178109252335530 a001 329/1926*45537549124^(10/17) 3178109252335530 a001 329/1926*312119004989^(6/11) 3178109252335530 a001 329/1926*14662949395604^(10/21) 3178109252335530 a001 329/1926*(1/2+1/2*5^(1/2))^30 3178109252335530 a001 329/1926*192900153618^(5/9) 3178109252335530 a001 329/1926*28143753123^(3/5) 3178109252335530 a001 329/1926*10749957122^(5/8) 3178109252335530 a001 329/1926*4106118243^(15/23) 3178109252335530 a001 329/1926*1568397607^(15/22) 3178109252335530 a001 329/1926*599074578^(5/7) 3178109252335530 a001 329/1926*228826127^(3/4) 3178109252335530 a001 329/1926*87403803^(15/19) 3178109252335532 a001 329/1926*33385282^(5/6) 3178109252335547 a001 329/1926*12752043^(15/17) 3178109252335656 a001 329/1926*4870847^(15/16) 3178109252335661 a001 2584/2207*141422324^(2/3) 3178109252335661 a001 2584/2207*(1/2+1/2*5^(1/2))^26 3178109252335661 a001 2584/2207*73681302247^(1/2) 3178109252335661 a001 2584/2207*10749957122^(13/24) 3178109252335661 a001 2584/2207*4106118243^(13/23) 3178109252335661 a001 2584/2207*1568397607^(13/22) 3178109252335661 a001 2584/2207*599074578^(13/21) 3178109252335661 a001 2584/2207*228826127^(13/20) 3178109252335661 a001 2584/2207*87403803^(13/19) 3178109252335663 a001 2584/2207*33385282^(13/18) 3178109252335676 a001 2584/2207*12752043^(13/17) 3178109252335770 a001 2584/2207*4870847^(13/16) 3178109252336457 a001 2584/2207*1860498^(13/15) 3178109252341505 a001 2584/2207*710647^(13/14) 3178109259569331 a001 39088169/2207*3571^(6/17) 3178109268427736 r005 Im(z^2+c),c=-47/82+3/52*I,n=39 3178109270472208 a007 Real Root Of -909*x^4-7*x^3-19*x^2+771*x+256 3178109271454132 s002 sum(A249221[n]/(n^3*pi^n+1),n=1..infinity) 3178109274229540 a001 63245986/2207*3571^(5/17) 3178109276590597 s001 sum(exp(-Pi/2)^(n-1)*A189214[n],n=1..infinity) 3178109282670233 p004 log(23911/17401) 3178109287324949 r005 Im(z^2+c),c=11/58+12/47*I,n=30 3178109288889748 a001 102334155/2207*3571^(4/17) 3178109299211229 r005 Im(z^2+c),c=37/122+7/43*I,n=15 3178109299915053 m001 1/GAMMA(5/12)^2*TwinPrimes*exp(GAMMA(7/24)) 3178109302835857 a001 267914296/15127*1364^(2/5) 3178109303549957 a001 165580141/2207*3571^(3/17) 3178109303958114 a007 Real Root Of -282*x^4-768*x^3+80*x^2-865*x+559 3178109309360430 m002 Pi^3+Log[Pi]^(-1)-Log[Pi]*Sech[Pi] 3178109311169576 a001 1328767503/4181 3178109312819584 r005 Im(z^2+c),c=13/82+16/57*I,n=10 3178109313039974 a001 121393/2207*9349^(18/19) 3178109314698268 a001 17711*1364^(2/5) 3178109315013332 a001 196418/2207*9349^(17/19) 3178109316428970 a001 1836311903/103682*1364^(2/5) 3178109316681476 a001 1602508992/90481*1364^(2/5) 3178109316718316 a001 12586269025/710647*1364^(2/5) 3178109316723691 a001 10983760033/620166*1364^(2/5) 3178109316724475 a001 86267571272/4870847*1364^(2/5) 3178109316724590 a001 75283811239/4250681*1364^(2/5) 3178109316724607 a001 591286729879/33385282*1364^(2/5) 3178109316724609 a001 516002918640/29134601*1364^(2/5) 3178109316724609 a001 4052739537881/228826127*1364^(2/5) 3178109316724609 a001 3536736619241/199691526*1364^(2/5) 3178109316724609 a001 6557470319842/370248451*1364^(2/5) 3178109316724610 a001 2504730781961/141422324*1364^(2/5) 3178109316724610 a001 956722026041/54018521*1364^(2/5) 3178109316724617 a001 365435296162/20633239*1364^(2/5) 3178109316724661 a001 139583862445/7881196*1364^(2/5) 3178109316724960 a001 53316291173/3010349*1364^(2/5) 3178109316727013 a001 20365011074/1149851*1364^(2/5) 3178109316741085 a001 7778742049/439204*1364^(2/5) 3178109316837534 a001 2971215073/167761*1364^(2/5) 3178109316904312 a001 317811/2207*9349^(16/19) 3178109317498603 a001 1134903170/64079*1364^(2/5) 3178109318210166 a001 267914296/2207*3571^(2/17) 3178109318826757 a001 514229/2207*9349^(15/19) 3178109318958490 a005 (1/cos(17/148*Pi))^467 3178109320737184 a001 832040/2207*9349^(14/19) 3178109322029641 a001 433494437/24476*1364^(2/5) 3178109322652202 a001 1346269/2207*9349^(13/19) 3178109324565466 a001 987*9349^(12/19) 3178109326479400 a001 3524578/2207*9349^(11/19) 3178109328393078 a001 5702887/2207*9349^(10/19) 3178109330306853 a001 9227465/2207*9349^(9/19) 3178109332220592 a001 14930352/2207*9349^(8/19) 3178109332870375 a001 433494437/2207*3571^(1/17) 3178109333627187 a001 6765/2207*439204^(8/9) 3178109333641698 a001 141/2161*(1/2+1/2*5^(1/2))^32 3178109333641698 a001 141/2161*23725150497407^(1/2) 3178109333641698 a001 141/2161*505019158607^(4/7) 3178109333641698 a001 141/2161*73681302247^(8/13) 3178109333641698 a001 141/2161*10749957122^(2/3) 3178109333641698 a001 141/2161*4106118243^(16/23) 3178109333641698 a001 141/2161*1568397607^(8/11) 3178109333641698 a001 141/2161*599074578^(16/21) 3178109333641698 a001 141/2161*228826127^(4/5) 3178109333641698 a001 141/2161*87403803^(16/19) 3178109333641701 a001 141/2161*33385282^(8/9) 3178109333641716 a001 141/2161*12752043^(16/17) 3178109333641795 a001 6765/2207*7881196^(8/11) 3178109333641832 a001 6765/2207*141422324^(8/13) 3178109333641832 a001 6765/2207*2537720636^(8/15) 3178109333641832 a001 6765/2207*45537549124^(8/17) 3178109333641832 a001 6765/2207*14662949395604^(8/21) 3178109333641832 a001 6765/2207*(1/2+1/2*5^(1/2))^24 3178109333641832 a001 6765/2207*192900153618^(4/9) 3178109333641832 a001 6765/2207*73681302247^(6/13) 3178109333641832 a001 6765/2207*10749957122^(1/2) 3178109333641832 a001 6765/2207*4106118243^(12/23) 3178109333641832 a001 6765/2207*1568397607^(6/11) 3178109333641832 a001 6765/2207*599074578^(4/7) 3178109333641832 a001 6765/2207*228826127^(3/5) 3178109333641832 a001 6765/2207*87403803^(12/19) 3178109333641834 a001 6765/2207*33385282^(2/3) 3178109333641846 a001 6765/2207*12752043^(12/17) 3178109333641932 a001 6765/2207*4870847^(3/4) 3178109333642566 a001 6765/2207*1860498^(4/5) 3178109333647226 a001 6765/2207*710647^(6/7) 3178109333681647 a001 6765/2207*271443^(12/13) 3178109334134344 a001 24157817/2207*9349^(7/19) 3178109335409957 a001 165580141/5778*1364^(1/3) 3178109336048091 a001 39088169/2207*9349^(6/19) 3178109337961841 a001 63245986/2207*9349^(5/19) 3178109338187625 a001 24157817/3571*1364^(8/15) 3178109339875589 a001 102334155/2207*9349^(4/19) 3178109341789338 a001 165580141/2207*9349^(3/19) 3178109342182534 a001 46368/2207*24476^(20/21) 3178109342225470 a001 1739379243/5473 3178109342843718 a001 75025/2207*24476^(19/21) 3178109342940281 a001 121393/2207*24476^(6/7) 3178109343252510 a001 196418/2207*24476^(17/21) 3178109343482362 a001 317811/2207*24476^(16/21) 3178109343703087 a001 267914296/2207*9349^(2/19) 3178109343743680 a001 514229/2207*24476^(5/7) 3178109343992978 a001 832040/2207*24476^(2/3) 3178109344246868 a001 1346269/2207*24476^(13/21) 3178109344499004 a001 987*24476^(4/7) 3178109344751809 a001 3524578/2207*24476^(11/21) 3178109344763901 a001 17711/2207*64079^(22/23) 3178109345004359 a001 5702887/2207*24476^(10/21) 3178109345257007 a001 9227465/2207*24476^(3/7) 3178109345504108 a001 329/13201*45537549124^(2/3) 3178109345504108 a001 329/13201*(1/2+1/2*5^(1/2))^34 3178109345504108 a001 329/13201*10749957122^(17/24) 3178109345504108 a001 329/13201*4106118243^(17/23) 3178109345504108 a001 329/13201*1568397607^(17/22) 3178109345504108 a001 329/13201*599074578^(17/21) 3178109345504108 a001 329/13201*228826127^(17/20) 3178109345504109 a001 329/13201*87403803^(17/19) 3178109345504111 a001 329/13201*33385282^(17/18) 3178109345504208 a001 17711/2207*7881196^(2/3) 3178109345504242 a001 17711/2207*312119004989^(2/5) 3178109345504242 a001 17711/2207*(1/2+1/2*5^(1/2))^22 3178109345504242 a001 17711/2207*10749957122^(11/24) 3178109345504242 a001 17711/2207*4106118243^(11/23) 3178109345504242 a001 17711/2207*1568397607^(1/2) 3178109345504242 a001 17711/2207*599074578^(11/21) 3178109345504242 a001 17711/2207*228826127^(11/20) 3178109345504243 a001 17711/2207*87403803^(11/19) 3178109345504244 a001 17711/2207*33385282^(11/18) 3178109345504255 a001 17711/2207*12752043^(11/17) 3178109345504334 a001 17711/2207*4870847^(11/16) 3178109345504916 a001 17711/2207*1860498^(11/15) 3178109345509187 a001 17711/2207*710647^(11/14) 3178109345509617 a001 14930352/2207*24476^(8/21) 3178109345540740 a001 17711/2207*271443^(11/13) 3178109345616835 a001 433494437/2207*9349^(1/19) 3178109345648352 a007 Real Root Of 265*x^4+753*x^3-190*x^2+209*x-280 3178109345762241 a001 24157817/2207*24476^(1/3) 3178109345775245 a001 17711/2207*103682^(11/12) 3178109346014860 a001 39088169/2207*24476^(2/7) 3178109346267481 a001 63245986/2207*24476^(5/21) 3178109346520102 a001 102334155/2207*24476^(4/21) 3178109346561907 a001 46368/2207*64079^(20/23) 3178109346756464 a001 9107507955/28657 3178109346772722 a001 165580141/2207*24476^(1/7) 3178109346881717 a001 121393/2207*64079^(18/23) 3178109346974977 a001 196418/2207*64079^(17/23) 3178109346985861 a001 317811/2207*64079^(16/23) 3178109347004122 a001 75025/2207*64079^(19/23) 3178109347025343 a001 267914296/2207*24476^(2/21) 3178109347028209 a001 514229/2207*64079^(15/23) 3178109347058539 a001 832040/2207*64079^(14/23) 3178109347093460 a001 1346269/2207*64079^(13/23) 3178109347126627 a001 987*64079^(12/23) 3178109347144605 a001 46368/2207*167761^(4/5) 3178109347160464 a001 3524578/2207*64079^(11/23) 3178109347194045 a001 5702887/2207*64079^(10/23) 3178109347227724 a001 9227465/2207*64079^(9/23) 3178109347234811 a001 21/2206*141422324^(12/13) 3178109347234811 a001 21/2206*2537720636^(4/5) 3178109347234811 a001 21/2206*45537549124^(12/17) 3178109347234811 a001 21/2206*14662949395604^(4/7) 3178109347234811 a001 21/2206*(1/2+1/2*5^(1/2))^36 3178109347234811 a001 21/2206*505019158607^(9/14) 3178109347234811 a001 21/2206*192900153618^(2/3) 3178109347234811 a001 21/2206*73681302247^(9/13) 3178109347234811 a001 21/2206*10749957122^(3/4) 3178109347234811 a001 21/2206*4106118243^(18/23) 3178109347234811 a001 21/2206*1568397607^(9/11) 3178109347234811 a001 21/2206*599074578^(6/7) 3178109347234811 a001 21/2206*228826127^(9/10) 3178109347234811 a001 21/2206*87403803^(18/19) 3178109347234940 a001 46368/2207*20633239^(4/7) 3178109347234945 a001 46368/2207*2537720636^(4/9) 3178109347234945 a001 46368/2207*(1/2+1/2*5^(1/2))^20 3178109347234945 a001 46368/2207*23725150497407^(5/16) 3178109347234945 a001 46368/2207*505019158607^(5/14) 3178109347234945 a001 46368/2207*73681302247^(5/13) 3178109347234945 a001 46368/2207*28143753123^(2/5) 3178109347234945 a001 46368/2207*10749957122^(5/12) 3178109347234945 a001 46368/2207*4106118243^(10/23) 3178109347234945 a001 46368/2207*1568397607^(5/11) 3178109347234945 a001 46368/2207*599074578^(10/21) 3178109347234945 a001 46368/2207*228826127^(1/2) 3178109347234945 a001 46368/2207*87403803^(10/19) 3178109347234946 a001 46368/2207*33385282^(5/9) 3178109347234956 a001 46368/2207*12752043^(10/17) 3178109347235028 a001 46368/2207*4870847^(5/8) 3178109347235557 a001 46368/2207*1860498^(2/3) 3178109347239440 a001 46368/2207*710647^(5/7) 3178109347261366 a001 14930352/2207*64079^(8/23) 3178109347268124 a001 46368/2207*271443^(10/13) 3178109347277963 a001 433494437/2207*24476^(1/21) 3178109347295022 a001 24157817/2207*64079^(7/23) 3178109347328672 a001 39088169/2207*64079^(6/23) 3178109347362325 a001 63245986/2207*64079^(5/23) 3178109347395976 a001 102334155/2207*64079^(4/23) 3178109347417527 a001 23843765379/75025 3178109347429628 a001 165580141/2207*64079^(3/23) 3178109347463280 a001 267914296/2207*64079^(2/23) 3178109347465233 a001 514229/2207*167761^(3/5) 3178109347476467 a001 121393/2207*439204^(2/3) 3178109347481311 a001 46368/2207*103682^(5/6) 3178109347485395 a001 5702887/2207*167761^(2/5) 3178109347487317 a001 329/90481*817138163596^(2/3) 3178109347487317 a001 329/90481*(1/2+1/2*5^(1/2))^38 3178109347487317 a001 329/90481*10749957122^(19/24) 3178109347487317 a001 329/90481*4106118243^(19/23) 3178109347487317 a001 329/90481*1568397607^(19/22) 3178109347487317 a001 329/90481*599074578^(19/21) 3178109347487317 a001 329/90481*228826127^(19/20) 3178109347487423 a001 121393/2207*7881196^(6/11) 3178109347487451 a001 121393/2207*141422324^(6/13) 3178109347487451 a001 121393/2207*2537720636^(2/5) 3178109347487451 a001 121393/2207*45537549124^(6/17) 3178109347487451 a001 121393/2207*14662949395604^(2/7) 3178109347487451 a001 121393/2207*(1/2+1/2*5^(1/2))^18 3178109347487451 a001 121393/2207*192900153618^(1/3) 3178109347487451 a001 121393/2207*10749957122^(3/8) 3178109347487451 a001 121393/2207*4106118243^(9/23) 3178109347487451 a001 121393/2207*1568397607^(9/22) 3178109347487451 a001 121393/2207*599074578^(3/7) 3178109347487451 a001 121393/2207*228826127^(9/20) 3178109347487451 a001 121393/2207*87403803^(9/19) 3178109347487452 a001 121393/2207*33385282^(1/2) 3178109347487461 a001 121393/2207*12752043^(9/17) 3178109347487526 a001 121393/2207*4870847^(9/16) 3178109347488002 a001 121393/2207*1860498^(3/5) 3178109347491496 a001 121393/2207*710647^(9/14) 3178109347496932 a001 433494437/2207*64079^(1/23) 3178109347507999 a001 63245986/2207*167761^(1/5) 3178109347513975 a001 31211894091/98209 3178109347517312 a001 121393/2207*271443^(9/13) 3178109347523128 a001 987*439204^(4/9) 3178109347523835 a001 514229/2207*439204^(5/9) 3178109347524157 a001 141/101521*2537720636^(8/9) 3178109347524157 a001 141/101521*312119004989^(8/11) 3178109347524157 a001 141/101521*(1/2+1/2*5^(1/2))^40 3178109347524157 a001 141/101521*23725150497407^(5/8) 3178109347524157 a001 141/101521*73681302247^(10/13) 3178109347524157 a001 141/101521*28143753123^(4/5) 3178109347524157 a001 141/101521*10749957122^(5/6) 3178109347524157 a001 141/101521*4106118243^(20/23) 3178109347524157 a001 141/101521*1568397607^(10/11) 3178109347524157 a001 141/101521*599074578^(20/21) 3178109347524291 a001 317811/2207*(1/2+1/2*5^(1/2))^16 3178109347524291 a001 317811/2207*23725150497407^(1/4) 3178109347524291 a001 317811/2207*73681302247^(4/13) 3178109347524291 a001 317811/2207*10749957122^(1/3) 3178109347524291 a001 317811/2207*4106118243^(8/23) 3178109347524291 a001 317811/2207*1568397607^(4/11) 3178109347524291 a001 317811/2207*599074578^(8/21) 3178109347524291 a001 317811/2207*228826127^(2/5) 3178109347524291 a001 317811/2207*87403803^(8/19) 3178109347524292 a001 317811/2207*33385282^(4/9) 3178109347524300 a001 317811/2207*12752043^(8/17) 3178109347524358 a001 317811/2207*4870847^(1/2) 3178109347524781 a001 317811/2207*1860498^(8/15) 3178109347525100 a001 9227465/2207*439204^(1/3) 3178109347526922 a001 39088169/2207*439204^(2/9) 3178109347527887 a001 317811/2207*710647^(4/7) 3178109347528046 a001 163427599167/514229 3178109347528753 a001 165580141/2207*439204^(1/9) 3178109347529532 a001 329/620166*2537720636^(14/15) 3178109347529532 a001 329/620166*17393796001^(6/7) 3178109347529532 a001 329/620166*45537549124^(14/17) 3178109347529532 a001 329/620166*14662949395604^(2/3) 3178109347529532 a001 329/620166*(1/2+1/2*5^(1/2))^42 3178109347529532 a001 329/620166*505019158607^(3/4) 3178109347529532 a001 329/620166*192900153618^(7/9) 3178109347529532 a001 329/620166*10749957122^(7/8) 3178109347529532 a001 329/620166*4106118243^(21/23) 3178109347529532 a001 329/620166*1568397607^(21/22) 3178109347529663 a001 832040/2207*20633239^(2/5) 3178109347529666 a001 832040/2207*17393796001^(2/7) 3178109347529666 a001 832040/2207*14662949395604^(2/9) 3178109347529666 a001 832040/2207*(1/2+1/2*5^(1/2))^14 3178109347529666 a001 832040/2207*10749957122^(7/24) 3178109347529666 a001 832040/2207*4106118243^(7/23) 3178109347529666 a001 832040/2207*1568397607^(7/22) 3178109347529666 a001 832040/2207*599074578^(1/3) 3178109347529666 a001 832040/2207*228826127^(7/20) 3178109347529666 a001 832040/2207*87403803^(7/19) 3178109347529667 a001 832040/2207*33385282^(7/18) 3178109347529674 a001 832040/2207*12752043^(7/17) 3178109347529724 a001 832040/2207*4870847^(7/16) 3178109347530094 a001 832040/2207*1860498^(7/15) 3178109347530099 a001 427859009319/1346269 3178109347530316 a001 987/4870847*312119004989^(4/5) 3178109347530316 a001 987/4870847*(1/2+1/2*5^(1/2))^44 3178109347530316 a001 987/4870847*23725150497407^(11/16) 3178109347530316 a001 987/4870847*73681302247^(11/13) 3178109347530316 a001 987/4870847*10749957122^(11/12) 3178109347530316 a001 987/4870847*4106118243^(22/23) 3178109347530399 a001 560074714395/1762289 3178109347530431 a001 329/4250681*(1/2+1/2*5^(1/2))^46 3178109347530431 a001 329/4250681*10749957122^(23/24) 3178109347530431 a001 987*7881196^(4/11) 3178109347530443 a001 2932589277051/9227465 3178109347530447 a001 141/4769326*45537549124^(16/17) 3178109347530447 a001 141/4769326*14662949395604^(16/21) 3178109347530447 a001 141/4769326*(1/2+1/2*5^(1/2))^48 3178109347530447 a001 141/4769326*192900153618^(8/9) 3178109347530447 a001 141/4769326*73681302247^(12/13) 3178109347530449 a001 7677618402363/24157817 3178109347530450 a001 329/29134601*312119004989^(10/11) 3178109347530450 a001 329/29134601*3461452808002^(5/6) 3178109347530450 a001 10050132965019/31622993 3178109347530450 a001 21/4868641*23725150497407^(13/16) 3178109347530450 a001 21/4868641*505019158607^(13/14) 3178109347530450 a001 987*141422324^(4/13) 3178109347530450 a001 52623179387751/165580141 3178109347530450 a001 329/199691526*14662949395604^(6/7) 3178109347530450 a001 137769272233215/433494437 3178109347530450 a001 141/224056801*14662949395604^(8/9) 3178109347530450 a001 180342318655947/567451585 3178109347530450 a001 987*2537720636^(4/15) 3178109347530450 a001 944284639702467/2971215073 3178109347530450 a001 987/10749957122*14662949395604^(20/21) 3178109347530450 a001 2472169281795507/7778742049 3178109347530450 a001 3236111602842027/10182505537 3178109347530450 a001 987*45537549124^(4/17) 3178109347530450 a001 987*817138163596^(4/19) 3178109347530450 a001 987*14662949395604^(4/21) 3178109347530450 a001 987*192900153618^(2/9) 3178109347530450 a001 987*73681302247^(3/13) 3178109347530450 a001 3490759043190867/10983760033 3178109347530450 a001 4000053923888547/12586269025 3178109347530450 a001 987*10749957122^(1/4) 3178109347530450 a001 32250182415/101476 3178109347530450 a001 987*4106118243^(6/23) 3178109347530450 a001 583600002390573/1836311903 3178109347530450 a001 987*1568397607^(3/11) 3178109347530450 a001 987/2537720636*14662949395604^(19/21) 3178109347530450 a001 74305121692893/233802911 3178109347530450 a001 987*599074578^(2/7) 3178109347530450 a001 987/969323029*3461452808002^(11/12) 3178109347530450 a001 10643261605683/33489287 3178109347530450 a001 987*228826127^(3/10) 3178109347530450 a001 1548710164653/4873055 3178109347530450 a001 987*87403803^(6/19) 3178109347530450 a001 987/141422324*817138163596^(17/19) 3178109347530450 a001 987/141422324*14662949395604^(17/21) 3178109347530450 a001 987/141422324*192900153618^(17/18) 3178109347530450 a001 12422647527675/39088169 3178109347530451 a001 987*33385282^(1/3) 3178109347530451 a001 987/54018521*14662949395604^(7/9) 3178109347530451 a001 987/54018521*505019158607^(7/8) 3178109347530453 a001 10983863716/34561 3178109347530457 a001 987*12752043^(6/17) 3178109347530458 a001 987/20633239*(1/2+1/2*5^(1/2))^47 3178109347530470 a001 1812439848261/5702887 3178109347530500 a001 987*4870847^(3/8) 3178109347530501 a001 987/7881196*45537549124^(15/17) 3178109347530501 a001 987/7881196*312119004989^(9/11) 3178109347530501 a001 987/7881196*14662949395604^(5/7) 3178109347530501 a001 987/7881196*(1/2+1/2*5^(1/2))^45 3178109347530501 a001 987/7881196*192900153618^(5/6) 3178109347530501 a001 987/7881196*28143753123^(9/10) 3178109347530501 a001 987/7881196*10749957122^(15/16) 3178109347530562 a001 5702887/2207*20633239^(2/7) 3178109347530564 a001 5702887/2207*2537720636^(2/9) 3178109347530564 a001 5702887/2207*312119004989^(2/11) 3178109347530564 a001 5702887/2207*(1/2+1/2*5^(1/2))^10 3178109347530564 a001 5702887/2207*28143753123^(1/5) 3178109347530564 a001 5702887/2207*10749957122^(5/24) 3178109347530564 a001 5702887/2207*4106118243^(5/23) 3178109347530564 a001 5702887/2207*1568397607^(5/22) 3178109347530564 a001 5702887/2207*599074578^(5/21) 3178109347530564 a001 5702887/2207*228826127^(1/4) 3178109347530565 a001 5702887/2207*87403803^(5/19) 3178109347530565 a001 5702887/2207*33385282^(5/18) 3178109347530570 a001 5702887/2207*12752043^(5/17) 3178109347530574 a001 39088169/2207*7881196^(2/11) 3178109347530578 a001 9227465/2207*7881196^(3/11) 3178109347530579 a001 165580141/2207*7881196^(1/11) 3178109347530581 a001 14930352/2207*(1/2+1/2*5^(1/2))^8 3178109347530581 a001 14930352/2207*23725150497407^(1/8) 3178109347530581 a001 14930352/2207*505019158607^(1/7) 3178109347530581 a001 14930352/2207*73681302247^(2/13) 3178109347530581 a001 14930352/2207*10749957122^(1/6) 3178109347530581 a001 14930352/2207*4106118243^(4/23) 3178109347530581 a001 14930352/2207*1568397607^(2/11) 3178109347530581 a001 14930352/2207*599074578^(4/21) 3178109347530581 a001 14930352/2207*228826127^(1/5) 3178109347530581 a001 14930352/2207*87403803^(4/19) 3178109347530582 a001 14930352/2207*33385282^(2/9) 3178109347530583 a001 63245986/2207*20633239^(1/7) 3178109347530584 a001 39088169/2207*141422324^(2/13) 3178109347530584 a001 39088169/2207*2537720636^(2/15) 3178109347530584 a001 39088169/2207*45537549124^(2/17) 3178109347530584 a001 39088169/2207*14662949395604^(2/21) 3178109347530584 a001 39088169/2207*(1/2+1/2*5^(1/2))^6 3178109347530584 a001 39088169/2207*10749957122^(1/8) 3178109347530584 a001 39088169/2207*4106118243^(3/23) 3178109347530584 a001 39088169/2207*1568397607^(3/22) 3178109347530584 a001 39088169/2207*599074578^(1/7) 3178109347530584 a001 39088169/2207*228826127^(3/20) 3178109347530584 a001 24157817/2207*20633239^(1/5) 3178109347530584 a001 39088169/2207*87403803^(3/19) 3178109347530584 a001 102334155/2207*(1/2+1/2*5^(1/2))^4 3178109347530584 a001 102334155/2207*23725150497407^(1/16) 3178109347530584 a001 102334155/2207*73681302247^(1/13) 3178109347530584 a001 102334155/2207*10749957122^(1/12) 3178109347530584 a001 102334155/2207*4106118243^(2/23) 3178109347530584 a001 102334155/2207*1568397607^(1/11) 3178109347530584 a001 102334155/2207*599074578^(2/21) 3178109347530584 a001 102334155/2207*228826127^(1/10) 3178109347530584 a001 102334155/2207*87403803^(2/19) 3178109347530584 a001 267914296/2207*(1/2+1/2*5^(1/2))^2 3178109347530584 a001 267914296/2207*10749957122^(1/24) 3178109347530584 a001 267914296/2207*4106118243^(1/23) 3178109347530584 a001 267914296/2207*1568397607^(1/22) 3178109347530584 a001 267914296/2207*599074578^(1/21) 3178109347530584 a001 267914296/2207*228826127^(1/20) 3178109347530584 a001 701408733/2207 3178109347530584 a001 433494437/4414+433494437/4414*5^(1/2) 3178109347530584 a001 165580141/2207*141422324^(1/13) 3178109347530584 a001 267914296/2207*87403803^(1/19) 3178109347530584 a001 165580141/2207*2537720636^(1/15) 3178109347530584 a001 165580141/2207*45537549124^(1/17) 3178109347530584 a001 165580141/2207*14662949395604^(1/21) 3178109347530584 a001 165580141/2207*(1/2+1/2*5^(1/2))^3 3178109347530584 a001 165580141/2207*192900153618^(1/18) 3178109347530584 a001 165580141/2207*10749957122^(1/16) 3178109347530584 a001 165580141/2207*599074578^(1/14) 3178109347530584 a001 39088169/2207*33385282^(1/6) 3178109347530584 a001 267914296/2207*33385282^(1/18) 3178109347530584 a001 63245986/2207*2537720636^(1/9) 3178109347530584 a001 63245986/2207*312119004989^(1/11) 3178109347530584 a001 63245986/2207*(1/2+1/2*5^(1/2))^5 3178109347530584 a001 63245986/2207*28143753123^(1/10) 3178109347530584 a001 63245986/2207*228826127^(1/8) 3178109347530584 a001 102334155/2207*33385282^(1/9) 3178109347530584 a001 165580141/2207*33385282^(1/12) 3178109347530585 a001 24157817/2207*17393796001^(1/7) 3178109347530585 a001 24157817/2207*14662949395604^(1/9) 3178109347530585 a001 24157817/2207*(1/2+1/2*5^(1/2))^7 3178109347530585 a001 24157817/2207*599074578^(1/6) 3178109347530585 a001 267914296/2207*12752043^(1/17) 3178109347530586 a001 14930352/2207*12752043^(4/17) 3178109347530586 a001 102334155/2207*12752043^(2/17) 3178109347530587 a001 39088169/2207*12752043^(3/17) 3178109347530591 a001 9227465/2207*141422324^(3/13) 3178109347530591 a001 9227465/2207*2537720636^(1/5) 3178109347530591 a001 9227465/2207*45537549124^(3/17) 3178109347530591 a001 9227465/2207*14662949395604^(1/7) 3178109347530591 a001 9227465/2207*(1/2+1/2*5^(1/2))^9 3178109347530591 a001 9227465/2207*192900153618^(1/6) 3178109347530591 a001 9227465/2207*10749957122^(3/16) 3178109347530591 a001 9227465/2207*599074578^(3/14) 3178109347530592 a001 9227465/2207*33385282^(1/4) 3178109347530592 a001 267914296/2207*4870847^(1/16) 3178109347530601 a001 102334155/2207*4870847^(1/8) 3178109347530606 a001 5702887/2207*4870847^(5/16) 3178109347530609 a001 39088169/2207*4870847^(3/16) 3178109347530615 a001 14930352/2207*4870847^(1/4) 3178109347530618 a001 3524578/2207*7881196^(1/3) 3178109347530635 a001 3524578/2207*312119004989^(1/5) 3178109347530635 a001 3524578/2207*(1/2+1/2*5^(1/2))^11 3178109347530635 a001 3524578/2207*1568397607^(1/4) 3178109347530645 a001 267914296/2207*1860498^(1/15) 3178109347530676 a001 165580141/2207*1860498^(1/10) 3178109347530706 a001 102334155/2207*1860498^(2/15) 3178109347530737 a001 63245986/2207*1860498^(1/6) 3178109347530767 a001 39088169/2207*1860498^(1/5) 3178109347530801 a001 987/3010349*(1/2+1/2*5^(1/2))^43 3178109347530817 a001 987*1860498^(2/5) 3178109347530826 a001 14930352/2207*1860498^(4/15) 3178109347530867 a001 9227465/2207*1860498^(3/10) 3178109347530871 a001 5702887/2207*1860498^(1/3) 3178109347530935 a001 1346269/2207*141422324^(1/3) 3178109347530935 a001 1346269/2207*(1/2+1/2*5^(1/2))^13 3178109347530935 a001 1346269/2207*73681302247^(1/4) 3178109347531033 a001 267914296/2207*710647^(1/14) 3178109347531368 a001 33053926269/104005 3178109347531483 a001 102334155/2207*710647^(1/7) 3178109347531932 a001 39088169/2207*710647^(3/14) 3178109347532158 a001 24157817/2207*710647^(1/4) 3178109347532379 a001 14930352/2207*710647^(2/7) 3178109347532812 a001 5702887/2207*710647^(5/14) 3178109347532812 a001 832040/2207*710647^(1/2) 3178109347532854 a001 987/1149851*(1/2+1/2*5^(1/2))^41 3178109347532964 a001 514229/2207*7881196^(5/11) 3178109347532985 a001 514229/2207*20633239^(3/7) 3178109347532988 a001 514229/2207*141422324^(5/13) 3178109347532988 a001 514229/2207*2537720636^(1/3) 3178109347532988 a001 514229/2207*45537549124^(5/17) 3178109347532988 a001 514229/2207*312119004989^(3/11) 3178109347532988 a001 514229/2207*14662949395604^(5/21) 3178109347532988 a001 514229/2207*(1/2+1/2*5^(1/2))^15 3178109347532988 a001 514229/2207*192900153618^(5/18) 3178109347532988 a001 514229/2207*28143753123^(3/10) 3178109347532988 a001 514229/2207*10749957122^(5/16) 3178109347532988 a001 514229/2207*599074578^(5/14) 3178109347532988 a001 514229/2207*228826127^(3/8) 3178109347532989 a001 514229/2207*33385282^(5/12) 3178109347533147 a001 987*710647^(3/7) 3178109347533447 a001 514229/2207*1860498^(1/2) 3178109347533902 a001 267914296/2207*271443^(1/13) 3178109347536743 a001 33667936995/105937 3178109347537220 a001 102334155/2207*271443^(2/13) 3178109347540537 a001 39088169/2207*271443^(3/13) 3178109347542902 a001 433494437/2207*103682^(1/24) 3178109347543853 a001 14930352/2207*271443^(4/13) 3178109347546925 a001 987/439204*2537720636^(13/15) 3178109347546925 a001 987/439204*45537549124^(13/17) 3178109347546925 a001 987/439204*14662949395604^(13/21) 3178109347546925 a001 987/439204*(1/2+1/2*5^(1/2))^39 3178109347546925 a001 987/439204*192900153618^(13/18) 3178109347546925 a001 987/439204*73681302247^(3/4) 3178109347546925 a001 987/439204*10749957122^(13/16) 3178109347546925 a001 987/439204*599074578^(13/14) 3178109347547059 a001 196418/2207*45537549124^(1/3) 3178109347547059 a001 196418/2207*(1/2+1/2*5^(1/2))^17 3178109347547069 a001 196418/2207*12752043^(1/2) 3178109347547154 a001 5702887/2207*271443^(5/13) 3178109347550358 a001 987*271443^(6/13) 3178109347550834 a001 317811/2207*271443^(8/13) 3178109347552501 a001 1346269/2207*271443^(1/2) 3178109347552891 a001 832040/2207*271443^(7/13) 3178109347555221 a001 267914296/2207*103682^(1/12) 3178109347567539 a001 165580141/2207*103682^(1/8) 3178109347573583 a001 38580022803/121393 3178109347579857 a001 102334155/2207*103682^(1/6) 3178109347592176 a001 63245986/2207*103682^(5/24) 3178109347597888 a001 28657/2207*64079^(21/23) 3178109347604493 a001 39088169/2207*103682^(1/4) 3178109347616813 a001 24157817/2207*103682^(7/24) 3178109347622690 a001 433494437/2207*39603^(1/22) 3178109347629128 a001 14930352/2207*103682^(1/3) 3178109347641456 a001 9227465/2207*103682^(3/8) 3178109347643374 a001 987/167761*(1/2+1/2*5^(1/2))^37 3178109347643508 a001 75025/2207*817138163596^(1/3) 3178109347643508 a001 75025/2207*(1/2+1/2*5^(1/2))^19 3178109347643508 a001 75025/2207*87403803^(1/2) 3178109347653747 a001 5702887/2207*103682^(5/12) 3178109347666136 a001 3524578/2207*103682^(11/24) 3178109347678270 a001 987*103682^(1/2) 3178109347691073 a001 1346269/2207*103682^(13/24) 3178109347702122 a001 832040/2207*103682^(7/12) 3178109347709180 a001 121393/2207*103682^(3/4) 3178109347714797 a001 267914296/2207*39603^(1/11) 3178109347717762 a001 514229/2207*103682^(5/8) 3178109347721384 a001 317811/2207*103682^(2/3) 3178109347756471 a001 196418/2207*103682^(17/24) 3178109347806903 a001 165580141/2207*39603^(3/22) 3178109347877556 a001 75025/2207*103682^(19/24) 3178109347899010 a001 102334155/2207*39603^(2/11) 3178109347991116 a001 63245986/2207*39603^(5/22) 3178109348083222 a001 39088169/2207*39603^(3/11) 3178109348175330 a001 24157817/2207*39603^(7/22) 3178109348225022 a001 433494437/2207*15127^(1/20) 3178109348267433 a001 14930352/2207*39603^(4/11) 3178109348291763 a001 28657/2207*439204^(7/9) 3178109348304444 a001 987/64079*2537720636^(7/9) 3178109348304444 a001 987/64079*17393796001^(5/7) 3178109348304444 a001 987/64079*312119004989^(7/11) 3178109348304444 a001 987/64079*14662949395604^(5/9) 3178109348304444 a001 987/64079*(1/2+1/2*5^(1/2))^35 3178109348304444 a001 987/64079*505019158607^(5/8) 3178109348304444 a001 987/64079*28143753123^(7/10) 3178109348304444 a001 987/64079*599074578^(5/6) 3178109348304444 a001 987/64079*228826127^(7/8) 3178109348304545 a001 28657/2207*7881196^(7/11) 3178109348304573 a001 28657/2207*20633239^(3/5) 3178109348304578 a001 28657/2207*141422324^(7/13) 3178109348304578 a001 28657/2207*2537720636^(7/15) 3178109348304578 a001 28657/2207*17393796001^(3/7) 3178109348304578 a001 28657/2207*45537549124^(7/17) 3178109348304578 a001 28657/2207*14662949395604^(1/3) 3178109348304578 a001 28657/2207*(1/2+1/2*5^(1/2))^21 3178109348304578 a001 28657/2207*192900153618^(7/18) 3178109348304578 a001 28657/2207*10749957122^(7/16) 3178109348304578 a001 28657/2207*599074578^(1/2) 3178109348304579 a001 28657/2207*33385282^(7/12) 3178109348305220 a001 28657/2207*1860498^(7/10) 3178109348309297 a001 28657/2207*710647^(3/4) 3178109348359549 a001 9227465/2207*39603^(9/22) 3178109348451629 a001 5702887/2207*39603^(5/11) 3178109348543806 a001 3524578/2207*39603^(1/2) 3178109348563262 a001 28657/2207*103682^(7/8) 3178109348597233 a001 701408733/3571*521^(1/13) 3178109348635727 a001 987*39603^(6/11) 3178109348728318 a001 1346269/2207*39603^(13/22) 3178109348819156 a001 832040/2207*39603^(7/11) 3178109348914584 a001 514229/2207*39603^(15/22) 3178109348919459 a001 267914296/2207*15127^(1/10) 3178109348997994 a001 317811/2207*39603^(8/11) 3178109349077073 a001 46368/2207*39603^(10/11) 3178109349112869 a001 196418/2207*39603^(17/22) 3178109349145367 a001 121393/2207*39603^(9/11) 3178109349393530 a001 75025/2207*39603^(19/22) 3178109349556772 a001 5628749469/17711 3178109349613897 a001 165580141/2207*15127^(3/20) 3178109350238813 a001 28657/2207*39603^(21/22) 3178109350308334 a001 102334155/2207*15127^(1/5) 3178109351002772 a001 63245986/2207*15127^(1/4) 3178109351697209 a001 39088169/2207*15127^(3/10) 3178109352391648 a001 24157817/2207*15127^(7/20) 3178109352819191 a001 433494437/2207*5778^(1/18) 3178109352835481 a001 987/24476*141422324^(11/13) 3178109352835481 a001 987/24476*2537720636^(11/15) 3178109352835481 a001 987/24476*45537549124^(11/17) 3178109352835481 a001 987/24476*312119004989^(3/5) 3178109352835481 a001 987/24476*14662949395604^(11/21) 3178109352835481 a001 987/24476*(1/2+1/2*5^(1/2))^33 3178109352835481 a001 987/24476*192900153618^(11/18) 3178109352835481 a001 987/24476*10749957122^(11/16) 3178109352835481 a001 987/24476*1568397607^(3/4) 3178109352835481 a001 987/24476*599074578^(11/14) 3178109352835484 a001 987/24476*33385282^(11/12) 3178109352835615 a001 10946/2207*(1/2+1/2*5^(1/2))^23 3178109352835615 a001 10946/2207*4106118243^(1/2) 3178109353085834 a001 165580141/9349*1364^(2/5) 3178109353086082 a001 14930352/2207*15127^(2/5) 3178109353118936 a001 10946/2207*103682^(23/24) 3178109353780530 a001 9227465/2207*15127^(9/20) 3178109354474940 a001 5702887/2207*15127^(1/2) 3178109355169449 a001 3524578/2207*15127^(11/20) 3178109355863701 a001 987*15127^(3/5) 3178109356558624 a001 1346269/2207*15127^(13/20) 3178109357251792 a001 832040/2207*15127^(7/10) 3178109357318773 m001 (Ei(1,1)+Champernowne)/(ErdosBorwein-Khinchin) 3178109357949552 a001 514229/2207*15127^(3/4) 3178109358107798 a001 267914296/2207*5778^(1/9) 3178109358635293 a001 317811/2207*15127^(4/5) 3178109359352499 a001 196418/2207*15127^(17/20) 3178109359987328 a001 121393/2207*15127^(9/10) 3178109360837823 a001 75025/2207*15127^(19/20) 3178109361129323 a001 832040/843*843^(6/7) 3178109361419068 a001 716663661/2255 3178109363396404 a001 165580141/2207*5778^(1/6) 3178109364376645 m008 (4*Pi^5+1/5)/(2/5*Pi^6+2/3) 3178109368685011 a001 102334155/2207*5778^(2/9) 3178109371228423 r005 Re(z^2+c),c=-1/17+27/47*I,n=5 3178109373973618 a001 63245986/2207*5778^(5/18) 3178109379262224 a001 39088169/2207*5778^(1/3) 3178109380795637 r002 41th iterates of z^2 + 3178109383038697 r005 Re(z^2+c),c=-9/22+5/31*I,n=33 3178109383891675 a001 987/9349*(1/2+1/2*5^(1/2))^31 3178109383891675 a001 987/9349*9062201101803^(1/2) 3178109383891804 a001 4181/2207*20633239^(5/7) 3178109383891809 a001 4181/2207*2537720636^(5/9) 3178109383891809 a001 4181/2207*312119004989^(5/11) 3178109383891809 a001 4181/2207*(1/2+1/2*5^(1/2))^25 3178109383891809 a001 4181/2207*3461452808002^(5/12) 3178109383891809 a001 4181/2207*28143753123^(1/2) 3178109383891809 a001 4181/2207*228826127^(5/8) 3178109383892574 a001 4181/2207*1860498^(5/6) 3178109384550833 a001 24157817/2207*5778^(7/18) 3178109388310312 a001 433494437/2207*2207^(1/16) 3178109389045301 r005 Im(z^2+c),c=-17/18+46/187*I,n=51 3178109389839435 a001 14930352/2207*5778^(4/9) 3178109395128053 a001 9227465/2207*5778^(1/2) 3178109400242781 a007 Real Root Of 398*x^4+976*x^3-609*x^2+978*x-14 3178109400416632 a001 5702887/2207*5778^(5/9) 3178109405705310 a001 3524578/2207*5778^(11/18) 3178109407306941 r005 Im(z^2+c),c=-151/126+13/38*I,n=7 3178109410993732 a001 987*5778^(2/3) 3178109416282823 a001 1346269/2207*5778^(13/18) 3178109416716127 a001 433494437/15127*1364^(1/3) 3178109421570161 a001 832040/2207*5778^(7/9) 3178109422511729 a007 Real Root Of -93*x^4-236*x^3+390*x^2+798*x+509 3178109426862090 a001 514229/2207*5778^(5/6) 3178109428578538 a001 1134903170/39603*1364^(1/3) 3178109429090040 a001 267914296/2207*2207^(1/8) 3178109430309240 a001 2971215073/103682*1364^(1/3) 3178109430561747 a001 7778742049/271443*1364^(1/3) 3178109430598587 a001 20365011074/710647*1364^(1/3) 3178109430603962 a001 53316291173/1860498*1364^(1/3) 3178109430604746 a001 139583862445/4870847*1364^(1/3) 3178109430604860 a001 365435296162/12752043*1364^(1/3) 3178109430604877 a001 956722026041/33385282*1364^(1/3) 3178109430604879 a001 2504730781961/87403803*1364^(1/3) 3178109430604880 a001 6557470319842/228826127*1364^(1/3) 3178109430604880 a001 10610209857723/370248451*1364^(1/3) 3178109430604880 a001 4052739537881/141422324*1364^(1/3) 3178109430604881 a001 1548008755920/54018521*1364^(1/3) 3178109430604887 a001 591286729879/20633239*1364^(1/3) 3178109430604931 a001 225851433717/7881196*1364^(1/3) 3178109430605230 a001 86267571272/3010349*1364^(1/3) 3178109430607283 a001 32951280099/1149851*1364^(1/3) 3178109430621355 a001 12586269025/439204*1364^(1/3) 3178109430717804 a001 4807526976/167761*1364^(1/3) 3178109431378873 a001 28657*1364^(1/3) 3178109432142000 a001 317811/2207*5778^(8/9) 3178109432638442 m001 1/Riemann2ndZero/Niven/ln(Catalan) 3178109433980207 m001 (GAMMA(11/12)-Si(Pi))/(Grothendieck+Sarnak) 3178109435909911 a001 701408733/24476*1364^(1/3) 3178109437453375 a001 196418/2207*5778^(17/18) 3178109442724458 a001 102652935/323 3178109443532635 m001 Backhouse*(ErdosBorwein+Stephens) 3178109443965686 m001 Robbin^2/exp(LaplaceLimit)^2*sqrt(1+sqrt(3))^2 3178109446398003 m005 (2/3*2^(1/2)-1/4)/(4/5*Pi-1/3) 3178109449290228 a001 133957148/2889*1364^(4/15) 3178109449895154 r005 Im(z^2+c),c=-31/78+14/25*I,n=47 3178109450518038 a007 Real Root Of -779*x^4+98*x^3+893*x^2+820*x-346 3178109452067895 a001 39088169/3571*1364^(7/15) 3178109458225562 a003 cos(Pi*13/109)/cos(Pi*15/37) 3178109464392598 r005 Im(z^2+c),c=-5/19+26/51*I,n=14 3178109465157533 r005 Im(z^2+c),c=-31/70+1/19*I,n=17 3178109466036024 a007 Real Root Of 493*x^4+953*x^3+799*x^2-868*x-331 3178109466845638 r005 Im(z^2+c),c=-31/58+29/43*I,n=48 3178109466966106 a001 267914296/9349*1364^(1/3) 3178109469869769 a001 165580141/2207*2207^(3/16) 3178109493820125 l006 ln(5942/8165) 3178109500341378 m001 Pi^(ErdosBorwein/BesselI(1,2)) 3178109507202847 r009 Re(z^3+c),c=-29/50+30/59*I,n=38 3178109507396898 s001 sum(1/10^(n-1)*A213740[n]/n!^2,n=1..infinity) 3178109509385796 m001 (1-sin(1/12*Pi))/(-FransenRobinson+PlouffeB) 3178109510649499 a001 102334155/2207*2207^(1/4) 3178109522049389 r005 Re(z^2+c),c=-13/32+11/60*I,n=30 3178109527978639 r009 Im(z^3+c),c=-5/102+22/63*I,n=4 3178109530596401 a001 701408733/15127*1364^(4/15) 3178109533232896 a007 Real Root Of 289*x^4-200*x^3+309*x^2+156*x+9 3178109538628517 m001 exp(Ei(1))^2*GolombDickman*GAMMA(1/12) 3178109541498622 r005 Re(z^2+c),c=-8/27+29/53*I,n=31 3178109542240453 a007 Real Root Of 757*x^4+636*x^3-250*x^2-519*x-127 3178109542458812 a001 1836311903/39603*1364^(4/15) 3178109544189515 a001 46368*1364^(4/15) 3178109544442021 a001 12586269025/271443*1364^(4/15) 3178109544478861 a001 32951280099/710647*1364^(4/15) 3178109544484236 a001 43133785636/930249*1364^(4/15) 3178109544485020 a001 225851433717/4870847*1364^(4/15) 3178109544485135 a001 591286729879/12752043*1364^(4/15) 3178109544485151 a001 774004377960/16692641*1364^(4/15) 3178109544485154 a001 4052739537881/87403803*1364^(4/15) 3178109544485154 a001 225749145909/4868641*1364^(4/15) 3178109544485154 a001 3278735159921/70711162*1364^(4/15) 3178109544485155 a001 2504730781961/54018521*1364^(4/15) 3178109544485162 a001 956722026041/20633239*1364^(4/15) 3178109544485205 a001 182717648081/3940598*1364^(4/15) 3178109544485505 a001 139583862445/3010349*1364^(4/15) 3178109544487558 a001 53316291173/1149851*1364^(4/15) 3178109544501630 a001 10182505537/219602*1364^(4/15) 3178109544598078 a001 7778742049/167761*1364^(4/15) 3178109545259148 a001 2971215073/64079*1364^(4/15) 3178109549670357 p004 log(30133/21929) 3178109549790186 a001 567451585/12238*1364^(4/15) 3178109550406606 m001 ArtinRank2*FeigenbaumDelta*ln(Khintchine)^2 3178109551429229 a001 63245986/2207*2207^(5/16) 3178109553849703 m001 (gamma+FeigenbaumDelta)/(-Khinchin+MertensB2) 3178109563170503 a001 433494437/5778*1364^(1/5) 3178109565948170 a001 63245986/3571*1364^(2/5) 3178109580846382 a001 433494437/9349*1364^(4/15) 3178109590664119 r005 Re(z^2+c),c=7/22+7/61*I,n=41 3178109592208959 a001 39088169/2207*2207^(3/8) 3178109595203453 m001 1/Niven^2/exp(GlaisherKinkelin)*gamma^2 3178109596754013 a001 987/3571*(1/2+1/2*5^(1/2))^29 3178109596754013 a001 987/3571*1322157322203^(1/2) 3178109596754086 a001 1597/2207*7881196^(9/11) 3178109596754128 a001 1597/2207*141422324^(9/13) 3178109596754128 a001 1597/2207*2537720636^(3/5) 3178109596754128 a001 1597/2207*45537549124^(9/17) 3178109596754128 a001 1597/2207*817138163596^(9/19) 3178109596754128 a001 1597/2207*14662949395604^(3/7) 3178109596754128 a001 1597/2207*(1/2+1/2*5^(1/2))^27 3178109596754128 a001 1597/2207*192900153618^(1/2) 3178109596754128 a001 1597/2207*10749957122^(9/16) 3178109596754128 a001 1597/2207*599074578^(9/14) 3178109596754130 a001 1597/2207*33385282^(3/4) 3178109596754954 a001 1597/2207*1860498^(9/10) 3178109611321412 k007 concat of cont frac of 3178109614872391 r009 Im(z^3+c),c=-55/126+11/48*I,n=9 3178109632988691 a001 24157817/2207*2207^(7/16) 3178109633433170 a007 Real Root Of 32*x^4+987*x^3-941*x^2+389*x-37 3178109637606367 r009 Im(z^3+c),c=-29/56+9/35*I,n=17 3178109644476679 a001 1134903170/15127*1364^(1/5) 3178109649692132 m003 61/2+Sqrt[5]/32+Sinh[1/2+Sqrt[5]/2]/2 3178109655604257 a001 507544112/1597 3178109656339091 a001 2971215073/39603*1364^(1/5) 3178109658069793 a001 7778742049/103682*1364^(1/5) 3178109658322299 a001 20365011074/271443*1364^(1/5) 3178109658359140 a001 53316291173/710647*1364^(1/5) 3178109658364514 a001 139583862445/1860498*1364^(1/5) 3178109658365299 a001 365435296162/4870847*1364^(1/5) 3178109658365413 a001 956722026041/12752043*1364^(1/5) 3178109658365430 a001 2504730781961/33385282*1364^(1/5) 3178109658365432 a001 6557470319842/87403803*1364^(1/5) 3178109658365433 a001 10610209857723/141422324*1364^(1/5) 3178109658365434 a001 4052739537881/54018521*1364^(1/5) 3178109658365440 a001 140728068720/1875749*1364^(1/5) 3178109658365484 a001 591286729879/7881196*1364^(1/5) 3178109658365783 a001 225851433717/3010349*1364^(1/5) 3178109658367836 a001 86267571272/1149851*1364^(1/5) 3178109658381908 a001 32951280099/439204*1364^(1/5) 3178109658478357 a001 75025*1364^(1/5) 3178109659139426 a001 4807526976/64079*1364^(1/5) 3178109660631500 s001 sum(1/10^(n-1)*A152084[n]/n!^2,n=1..infinity) 3178109663670464 a001 1836311903/24476*1364^(1/5) 3178109666968592 a001 433494437/2207*843^(1/14) 3178109670247058 a001 416020/2889*3571^(16/17) 3178109673490659 a008 Real Root of x^2-x-100686 3178109673768419 a001 14930352/2207*2207^(1/2) 3178109674906667 s001 sum(1/10^(n-1)*A274134[n]/n!^2,n=1..infinity) 3178109675462716 r002 13th iterates of z^2 + 3178109677050782 a001 233802911/1926*1364^(2/15) 3178109679828450 a001 102334155/3571*1364^(1/3) 3178109680570655 a001 514229/843*843^(13/14) 3178109684908537 a001 1346269/5778*3571^(15/17) 3178109694726662 a001 701408733/9349*1364^(1/5) 3178109697175263 r005 Im(z^2+c),c=25/78+8/49*I,n=9 3178109699568263 a001 726103/1926*3571^(14/17) 3178109703453503 m002 -5-Pi^3+(Pi^4*Coth[Pi])/E^Pi 3178109703846277 s001 sum(1/10^(n-1)*A091938[n]/n!^2,n=1..infinity) 3178109713613714 r005 Re(z^2+c),c=-73/114+17/59*I,n=18 3178109714228659 a001 1762289/2889*3571^(13/17) 3178109714548161 a001 9227465/2207*2207^(9/16) 3178109717443361 a007 Real Root Of -666*x^4+285*x^3+39*x^2+623*x+210 3178109720679824 m001 (GAMMA(1/4)+5)/(exp(Pi)+4) 3178109725187086 a008 Real Root of x^4-x^3-33*x^2-82*x+524 3178109728888799 a001 5702887/5778*3571^(12/17) 3178109737006887 a001 507544125/1597 3178109743549037 a001 9227465/5778*3571^(11/17) 3178109749530369 a001 507544127/1597 3178109749808733 m005 (1/3*Zeta(3)-1/9)/(3/10*Catalan+7/11) 3178109750782717 a001 2/1597*(1/2+1/2*5^(1/2))^45 3178109751554021 a001 311187/2161*3571^(16/17) 3178109755327867 a001 5702887/2207*2207^(5/8) 3178109755494229 m001 (ln(3)-ln(2^(1/2)+1))/(Zeta(1/2)+GAMMA(7/12)) 3178109755792110 a001 507544128/1597 3178109757063178 r009 Re(z^3+c),c=-17/114+44/57*I,n=7 3178109758209237 a001 2584*3571^(10/17) 3178109758356961 a001 1836311903/15127*1364^(2/15) 3178109759048476 a007 Real Root Of -327*x^4-798*x^3+845*x^2+387*x+439 3178109763416547 a001 5702887/39603*3571^(16/17) 3178109765147266 a001 7465176/51841*3571^(16/17) 3178109765399775 a001 39088169/271443*3571^(16/17) 3178109765436615 a001 14619165/101521*3571^(16/17) 3178109765441990 a001 133957148/930249*3571^(16/17) 3178109765442775 a001 701408733/4870847*3571^(16/17) 3178109765442889 a001 1836311903/12752043*3571^(16/17) 3178109765442906 a001 14930208/103681*3571^(16/17) 3178109765442908 a001 12586269025/87403803*3571^(16/17) 3178109765442908 a001 32951280099/228826127*3571^(16/17) 3178109765442908 a001 43133785636/299537289*3571^(16/17) 3178109765442908 a001 32264490531/224056801*3571^(16/17) 3178109765442908 a001 591286729879/4106118243*3571^(16/17) 3178109765442908 a001 774004377960/5374978561*3571^(16/17) 3178109765442908 a001 4052739537881/28143753123*3571^(16/17) 3178109765442908 a001 1515744265389/10525900321*3571^(16/17) 3178109765442908 a001 3278735159921/22768774562*3571^(16/17) 3178109765442908 a001 2504730781961/17393796001*3571^(16/17) 3178109765442908 a001 956722026041/6643838879*3571^(16/17) 3178109765442908 a001 182717648081/1268860318*3571^(16/17) 3178109765442908 a001 139583862445/969323029*3571^(16/17) 3178109765442909 a001 53316291173/370248451*3571^(16/17) 3178109765442909 a001 10182505537/70711162*3571^(16/17) 3178109765442910 a001 7778742049/54018521*3571^(16/17) 3178109765442916 a001 2971215073/20633239*3571^(16/17) 3178109765442960 a001 567451585/3940598*3571^(16/17) 3178109765443259 a001 433494437/3010349*3571^(16/17) 3178109765445312 a001 165580141/1149851*3571^(16/17) 3178109765459384 a001 31622993/219602*3571^(16/17) 3178109765555834 a001 24157817/167761*3571^(16/17) 3178109766214417 a001 3524578/15127*3571^(15/17) 3178109766216910 a001 9227465/64079*3571^(16/17) 3178109770219373 a001 1602508992/13201*1364^(2/15) 3178109770747992 a001 1762289/12238*3571^(16/17) 3178109771683732 m009 (2/5*Pi^2-2)/(16/5*Catalan+2/5*Pi^2-3/4) 3178109771950076 a001 12586269025/103682*1364^(2/15) 3178109772202582 a001 121393*1364^(2/15) 3178109772239422 a001 86267571272/710647*1364^(2/15) 3178109772244797 a001 75283811239/620166*1364^(2/15) 3178109772245581 a001 591286729879/4870847*1364^(2/15) 3178109772245696 a001 516002918640/4250681*1364^(2/15) 3178109772245712 a001 4052739537881/33385282*1364^(2/15) 3178109772245715 a001 3536736619241/29134601*1364^(2/15) 3178109772245716 a001 6557470319842/54018521*1364^(2/15) 3178109772245723 a001 2504730781961/20633239*1364^(2/15) 3178109772245766 a001 956722026041/7881196*1364^(2/15) 3178109772246066 a001 365435296162/3010349*1364^(2/15) 3178109772248119 a001 139583862445/1149851*1364^(2/15) 3178109772262191 a001 53316291173/439204*1364^(2/15) 3178109772358639 a001 20365011074/167761*1364^(2/15) 3178109772869452 a001 24157817/5778*3571^(9/17) 3178109773019709 a001 7778742049/64079*1364^(2/15) 3178109774736827 m001 log(2+sqrt(3))^2/ln(DuboisRaymond)*sqrt(3)^2 3178109777550747 a001 2971215073/24476*1364^(2/15) 3178109778066663 r009 Re(z^3+c),c=-29/50+30/59*I,n=44 3178109778076785 a001 9227465/39603*3571^(15/17) 3178109779807481 a001 24157817/103682*3571^(15/17) 3178109780059986 a001 63245986/271443*3571^(15/17) 3178109780096826 a001 165580141/710647*3571^(15/17) 3178109780102201 a001 433494437/1860498*3571^(15/17) 3178109780102986 a001 1134903170/4870847*3571^(15/17) 3178109780103100 a001 2971215073/12752043*3571^(15/17) 3178109780103117 a001 7778742049/33385282*3571^(15/17) 3178109780103119 a001 20365011074/87403803*3571^(15/17) 3178109780103119 a001 53316291173/228826127*3571^(15/17) 3178109780103119 a001 139583862445/599074578*3571^(15/17) 3178109780103119 a001 365435296162/1568397607*3571^(15/17) 3178109780103119 a001 956722026041/4106118243*3571^(15/17) 3178109780103119 a001 2504730781961/10749957122*3571^(15/17) 3178109780103119 a001 6557470319842/28143753123*3571^(15/17) 3178109780103119 a001 10610209857723/45537549124*3571^(15/17) 3178109780103119 a001 4052739537881/17393796001*3571^(15/17) 3178109780103119 a001 1548008755920/6643838879*3571^(15/17) 3178109780103119 a001 591286729879/2537720636*3571^(15/17) 3178109780103119 a001 225851433717/969323029*3571^(15/17) 3178109780103120 a001 86267571272/370248451*3571^(15/17) 3178109780103120 a001 63246219/271444*3571^(15/17) 3178109780103121 a001 12586269025/54018521*3571^(15/17) 3178109780103127 a001 4807526976/20633239*3571^(15/17) 3178109780103171 a001 1836311903/7881196*3571^(15/17) 3178109780103470 a001 701408733/3010349*3571^(15/17) 3178109780105523 a001 267914296/1149851*3571^(15/17) 3178109780119595 a001 102334155/439204*3571^(15/17) 3178109780216043 a001 39088169/167761*3571^(15/17) 3178109780874557 a001 5702887/15127*3571^(14/17) 3178109780877110 a001 14930352/64079*3571^(15/17) 3178109782346820 h001 (7/10*exp(2)+1/11)/(1/3*exp(1)+3/4) 3178109785408132 a001 5702887/24476*3571^(15/17) 3178109787100814 a001 507544133/1597 3178109787529662 a001 39088169/5778*3571^(8/17) 3178109790931066 a001 567451585/2889*1364^(1/15) 3178109792318717 l006 ln(4103/5638) 3178109792736986 a001 4976784/13201*3571^(14/17) 3178109793657938 r009 Re(z^3+c),c=-31/56+28/61*I,n=9 3178109793708733 a001 165580141/3571*1364^(4/15) 3178109794467691 a001 39088169/103682*3571^(14/17) 3178109794720197 a001 34111385/90481*3571^(14/17) 3178109794757037 a001 267914296/710647*3571^(14/17) 3178109794762412 a001 233802911/620166*3571^(14/17) 3178109794763197 a001 1836311903/4870847*3571^(14/17) 3178109794763311 a001 1602508992/4250681*3571^(14/17) 3178109794763328 a001 12586269025/33385282*3571^(14/17) 3178109794763330 a001 10983760033/29134601*3571^(14/17) 3178109794763330 a001 86267571272/228826127*3571^(14/17) 3178109794763331 a001 267913919/710646*3571^(14/17) 3178109794763331 a001 591286729879/1568397607*3571^(14/17) 3178109794763331 a001 516002918640/1368706081*3571^(14/17) 3178109794763331 a001 4052739537881/10749957122*3571^(14/17) 3178109794763331 a001 3536736619241/9381251041*3571^(14/17) 3178109794763331 a001 6557470319842/17393796001*3571^(14/17) 3178109794763331 a001 2504730781961/6643838879*3571^(14/17) 3178109794763331 a001 956722026041/2537720636*3571^(14/17) 3178109794763331 a001 365435296162/969323029*3571^(14/17) 3178109794763331 a001 139583862445/370248451*3571^(14/17) 3178109794763331 a001 53316291173/141422324*3571^(14/17) 3178109794763332 a001 20365011074/54018521*3571^(14/17) 3178109794763338 a001 7778742049/20633239*3571^(14/17) 3178109794763382 a001 2971215073/7881196*3571^(14/17) 3178109794763681 a001 1134903170/3010349*3571^(14/17) 3178109794765734 a001 433494437/1149851*3571^(14/17) 3178109794779806 a001 165580141/439204*3571^(14/17) 3178109794876255 a001 63245986/167761*3571^(14/17) 3178109795534795 a001 9227465/15127*3571^(13/17) 3178109795537325 a001 24157817/64079*3571^(14/17) 3178109796053727 a003 cos(Pi*1/22)-sin(Pi*43/96) 3178109796107670 a001 3524578/2207*2207^(11/16) 3178109800068370 a001 9227465/24476*3571^(14/17) 3178109801804489 a001 1346269/9349*3571^(16/17) 3178109802189873 a001 31622993/2889*3571^(7/17) 3178109806925330 m002 1+Pi^3+Pi^5-E^Pi/Log[Pi] 3178109807048078 a001 29/2*3^(5/7) 3178109807397201 a001 24157817/39603*3571^(13/17) 3178109808606945 a001 1134903170/9349*1364^(2/15) 3178109809127903 a001 31622993/51841*3571^(13/17) 3178109809380409 a001 165580141/271443*3571^(13/17) 3178109809417249 a001 433494437/710647*3571^(13/17) 3178109809422624 a001 567451585/930249*3571^(13/17) 3178109809423408 a001 2971215073/4870847*3571^(13/17) 3178109809423522 a001 7778742049/12752043*3571^(13/17) 3178109809423539 a001 10182505537/16692641*3571^(13/17) 3178109809423541 a001 53316291173/87403803*3571^(13/17) 3178109809423542 a001 139583862445/228826127*3571^(13/17) 3178109809423542 a001 182717648081/299537289*3571^(13/17) 3178109809423542 a001 956722026041/1568397607*3571^(13/17) 3178109809423542 a001 2504730781961/4106118243*3571^(13/17) 3178109809423542 a001 3278735159921/5374978561*3571^(13/17) 3178109809423542 a001 10610209857723/17393796001*3571^(13/17) 3178109809423542 a001 4052739537881/6643838879*3571^(13/17) 3178109809423542 a001 1134903780/1860499*3571^(13/17) 3178109809423542 a001 591286729879/969323029*3571^(13/17) 3178109809423542 a001 225851433717/370248451*3571^(13/17) 3178109809423542 a001 21566892818/35355581*3571^(13/17) 3178109809423543 a001 32951280099/54018521*3571^(13/17) 3178109809423549 a001 1144206275/1875749*3571^(13/17) 3178109809423593 a001 1201881744/1970299*3571^(13/17) 3178109809423892 a001 1836311903/3010349*3571^(13/17) 3178109809425945 a001 701408733/1149851*3571^(13/17) 3178109809440017 a001 66978574/109801*3571^(13/17) 3178109809536466 a001 9303105/15251*3571^(13/17) 3178109809616407 a001 1292/2889*20633239^(4/5) 3178109809616413 a001 1292/2889*17393796001^(4/7) 3178109809616413 a001 1292/2889*14662949395604^(4/9) 3178109809616413 a001 1292/2889*(1/2+1/2*5^(1/2))^28 3178109809616413 a001 1292/2889*73681302247^(7/13) 3178109809616413 a001 1292/2889*10749957122^(7/12) 3178109809616413 a001 1292/2889*4106118243^(14/23) 3178109809616413 a001 1292/2889*1568397607^(7/11) 3178109809616413 a001 1292/2889*599074578^(2/3) 3178109809616413 a001 1292/2889*228826127^(7/10) 3178109809616414 a001 1292/2889*87403803^(14/19) 3178109809616415 a001 1292/2889*33385282^(7/9) 3178109809616429 a001 1292/2889*12752043^(14/17) 3178109809616530 a001 1292/2889*4870847^(7/8) 3178109809617270 a001 1292/2889*1860498^(14/15) 3178109810194996 a001 14930352/15127*3571^(12/17) 3178109810197535 a001 39088169/64079*3571^(13/17) 3178109812313776 m005 (4/5*Pi+3)/(5/6*exp(1)-4) 3178109814415773 r009 Im(z^3+c),c=-29/64+7/13*I,n=12 3178109814728571 a001 3732588/6119*3571^(13/17) 3178109816464216 a001 2178309/9349*3571^(15/17) 3178109816850084 a001 34111385/1926*3571^(6/17) 3178109822057411 a001 39088169/39603*3571^(12/17) 3178109823788114 a001 102334155/103682*3571^(12/17) 3178109824040620 a001 267914296/271443*3571^(12/17) 3178109824077460 a001 701408733/710647*3571^(12/17) 3178109824082835 a001 1836311903/1860498*3571^(12/17) 3178109824083619 a001 4807526976/4870847*3571^(12/17) 3178109824083733 a001 12586269025/12752043*3571^(12/17) 3178109824083750 a001 32951280099/33385282*3571^(12/17) 3178109824083752 a001 86267571272/87403803*3571^(12/17) 3178109824083753 a001 225851433717/228826127*3571^(12/17) 3178109824083753 a001 591286729879/599074578*3571^(12/17) 3178109824083753 a001 1548008755920/1568397607*3571^(12/17) 3178109824083753 a001 4052739537881/4106118243*3571^(12/17) 3178109824083753 a001 4807525989/4870846*3571^(12/17) 3178109824083753 a001 6557470319842/6643838879*3571^(12/17) 3178109824083753 a001 2504730781961/2537720636*3571^(12/17) 3178109824083753 a001 956722026041/969323029*3571^(12/17) 3178109824083753 a001 365435296162/370248451*3571^(12/17) 3178109824083753 a001 139583862445/141422324*3571^(12/17) 3178109824083754 a001 53316291173/54018521*3571^(12/17) 3178109824083760 a001 20365011074/20633239*3571^(12/17) 3178109824083804 a001 7778742049/7881196*3571^(12/17) 3178109824084104 a001 2971215073/3010349*3571^(12/17) 3178109824086157 a001 1134903170/1149851*3571^(12/17) 3178109824100228 a001 433494437/439204*3571^(12/17) 3178109824196677 a001 165580141/167761*3571^(12/17) 3178109824855211 a001 24157817/15127*3571^(11/17) 3178109824857747 a001 63245986/64079*3571^(12/17) 3178109829388786 a001 24157817/24476*3571^(12/17) 3178109831124612 a001 3524578/9349*3571^(14/17) 3178109831510296 a001 165580141/5778*3571^(5/17) 3178109834648392 r009 Re(z^3+c),c=-29/50+30/59*I,n=50 3178109836717622 a001 63245986/39603*3571^(11/17) 3178109836887219 a001 987*2207^(3/4) 3178109838448325 a001 165580141/103682*3571^(11/17) 3178109838700831 a001 433494437/271443*3571^(11/17) 3178109838737671 a001 1134903170/710647*3571^(11/17) 3178109838743046 a001 2971215073/1860498*3571^(11/17) 3178109838743830 a001 7778742049/4870847*3571^(11/17) 3178109838743945 a001 20365011074/12752043*3571^(11/17) 3178109838743961 a001 53316291173/33385282*3571^(11/17) 3178109838743964 a001 139583862445/87403803*3571^(11/17) 3178109838743964 a001 365435296162/228826127*3571^(11/17) 3178109838743964 a001 956722026041/599074578*3571^(11/17) 3178109838743964 a001 2504730781961/1568397607*3571^(11/17) 3178109838743964 a001 6557470319842/4106118243*3571^(11/17) 3178109838743964 a001 10610209857723/6643838879*3571^(11/17) 3178109838743964 a001 4052739537881/2537720636*3571^(11/17) 3178109838743964 a001 1548008755920/969323029*3571^(11/17) 3178109838743964 a001 591286729879/370248451*3571^(11/17) 3178109838743964 a001 225851433717/141422324*3571^(11/17) 3178109838743965 a001 86267571272/54018521*3571^(11/17) 3178109838743972 a001 32951280099/20633239*3571^(11/17) 3178109838744015 a001 12586269025/7881196*3571^(11/17) 3178109838744315 a001 4807526976/3010349*3571^(11/17) 3178109838746368 a001 1836311903/1149851*3571^(11/17) 3178109838760440 a001 701408733/439204*3571^(11/17) 3178109838856888 a001 267914296/167761*3571^(11/17) 3178109839515421 a001 39088169/15127*3571^(10/17) 3178109839517958 a001 102334155/64079*3571^(11/17) 3178109843574134 r009 Re(z^3+c),c=-7/24+3/52*I,n=4 3178109844048996 a001 39088169/24476*3571^(11/17) 3178109844095827 r009 Re(z^3+c),c=-29/50+30/59*I,n=56 3178109844304054 a007 Real Root Of -251*x^4-522*x^3+760*x^2-78*x+926 3178109845454009 r009 Re(z^3+c),c=-29/50+30/59*I,n=62 3178109845784753 a001 5702887/9349*3571^(13/17) 3178109846170507 a001 133957148/2889*3571^(4/17) 3178109846194323 r009 Re(z^3+c),c=-29/50+30/59*I,n=59 3178109849838103 r009 Re(z^3+c),c=-29/50+30/59*I,n=53 3178109851377833 a001 34111385/13201*3571^(10/17) 3178109853108536 a001 133957148/51841*3571^(10/17) 3178109853361042 a001 233802911/90481*3571^(10/17) 3178109853397882 a001 1836311903/710647*3571^(10/17) 3178109853403257 a001 267084832/103361*3571^(10/17) 3178109853404042 a001 12586269025/4870847*3571^(10/17) 3178109853404156 a001 10983760033/4250681*3571^(10/17) 3178109853404173 a001 43133785636/16692641*3571^(10/17) 3178109853404175 a001 75283811239/29134601*3571^(10/17) 3178109853404175 a001 591286729879/228826127*3571^(10/17) 3178109853404175 a001 86000486440/33281921*3571^(10/17) 3178109853404175 a001 4052739537881/1568397607*3571^(10/17) 3178109853404175 a001 3536736619241/1368706081*3571^(10/17) 3178109853404175 a001 3278735159921/1268860318*3571^(10/17) 3178109853404175 a001 2504730781961/969323029*3571^(10/17) 3178109853404176 a001 956722026041/370248451*3571^(10/17) 3178109853404176 a001 182717648081/70711162*3571^(10/17) 3178109853404177 a001 139583862445/54018521*3571^(10/17) 3178109853404183 a001 53316291173/20633239*3571^(10/17) 3178109853404227 a001 10182505537/3940598*3571^(10/17) 3178109853404526 a001 7778742049/3010349*3571^(10/17) 3178109853406579 a001 2971215073/1149851*3571^(10/17) 3178109853420651 a001 567451585/219602*3571^(10/17) 3178109853517100 a001 433494437/167761*3571^(10/17) 3178109854175633 a001 63245986/15127*3571^(9/17) 3178109854178169 a001 165580141/64079*3571^(10/17) 3178109858709208 a001 31622993/12238*3571^(10/17) 3178109860444991 a001 9227465/9349*3571^(12/17) 3178109860830718 a001 433494437/5778*3571^(3/17) 3178109866038045 a001 165580141/39603*3571^(9/17) 3178109867768748 a001 433494437/103682*3571^(9/17) 3178109868021254 a001 1134903170/271443*3571^(9/17) 3178109868058094 a001 2971215073/710647*3571^(9/17) 3178109868063469 a001 7778742049/1860498*3571^(9/17) 3178109868064253 a001 20365011074/4870847*3571^(9/17) 3178109868064367 a001 53316291173/12752043*3571^(9/17) 3178109868064384 a001 139583862445/33385282*3571^(9/17) 3178109868064386 a001 365435296162/87403803*3571^(9/17) 3178109868064387 a001 956722026041/228826127*3571^(9/17) 3178109868064387 a001 2504730781961/599074578*3571^(9/17) 3178109868064387 a001 6557470319842/1568397607*3571^(9/17) 3178109868064387 a001 10610209857723/2537720636*3571^(9/17) 3178109868064387 a001 4052739537881/969323029*3571^(9/17) 3178109868064387 a001 1548008755920/370248451*3571^(9/17) 3178109868064387 a001 591286729879/141422324*3571^(9/17) 3178109868064388 a001 225851433717/54018521*3571^(9/17) 3178109868064394 a001 86267571272/20633239*3571^(9/17) 3178109868064438 a001 32951280099/7881196*3571^(9/17) 3178109868064738 a001 12586269025/3010349*3571^(9/17) 3178109868066791 a001 4807526976/1149851*3571^(9/17) 3178109868080862 a001 1836311903/439204*3571^(9/17) 3178109868177311 a001 701408733/167761*3571^(9/17) 3178109868452523 a001 1328767736/4181 3178109868835844 a001 6765*3571^(8/17) 3178109868838381 a001 267914296/64079*3571^(9/17) 3178109870357577 a001 105937/1926*9349^(18/19) 3178109872237247 a001 2971215073/15127*1364^(1/15) 3178109872280023 a001 514229/5778*9349^(17/19) 3178109873369419 a001 102334155/24476*3571^(9/17) 3178109873452527 r009 Re(z^3+c),c=-29/50+30/59*I,n=47 3178109874190450 a001 416020/2889*9349^(16/19) 3178109875105192 a001 14930352/9349*3571^(11/17) 3178109875490930 a001 233802911/1926*3571^(2/17) 3178109876105468 a001 1346269/5778*9349^(15/19) 3178109877667438 a001 1346269/2207*2207^(13/16) 3178109878018733 a001 726103/1926*9349^(14/19) 3178109879932667 a001 1762289/2889*9349^(13/19) 3178109880698256 a001 267914296/39603*3571^(8/17) 3178109881846345 a001 5702887/5778*9349^(12/19) 3178109882428959 a001 701408733/103682*3571^(8/17) 3178109882681465 a001 1836311903/271443*3571^(8/17) 3178109882718305 a001 686789568/101521*3571^(8/17) 3178109882723680 a001 12586269025/1860498*3571^(8/17) 3178109882724464 a001 32951280099/4870847*3571^(8/17) 3178109882724579 a001 86267571272/12752043*3571^(8/17) 3178109882724595 a001 32264490531/4769326*3571^(8/17) 3178109882724598 a001 591286729879/87403803*3571^(8/17) 3178109882724598 a001 1548008755920/228826127*3571^(8/17) 3178109882724598 a001 4052739537881/599074578*3571^(8/17) 3178109882724598 a001 1515744265389/224056801*3571^(8/17) 3178109882724598 a001 6557470319842/969323029*3571^(8/17) 3178109882724598 a001 2504730781961/370248451*3571^(8/17) 3178109882724599 a001 956722026041/141422324*3571^(8/17) 3178109882724599 a001 365435296162/54018521*3571^(8/17) 3178109882724606 a001 139583862445/20633239*3571^(8/17) 3178109882724650 a001 53316291173/7881196*3571^(8/17) 3178109882724949 a001 20365011074/3010349*3571^(8/17) 3178109882727002 a001 7778742049/1149851*3571^(8/17) 3178109882741074 a001 2971215073/439204*3571^(8/17) 3178109882837523 a001 1134903170/167761*3571^(8/17) 3178109883496055 a001 165580141/15127*3571^(7/17) 3178109883498592 a001 433494437/64079*3571^(8/17) 3178109883760121 a001 9227465/5778*9349^(11/19) 3178109884099660 a001 7778742049/39603*1364^(1/15) 3178109885673860 a001 2584*9349^(10/19) 3178109885830363 a001 10182505537/51841*1364^(1/15) 3178109886082869 a001 53316291173/271443*1364^(1/15) 3178109886119709 a001 139583862445/710647*1364^(1/15) 3178109886125084 a001 182717648081/930249*1364^(1/15) 3178109886125868 a001 956722026041/4870847*1364^(1/15) 3178109886125982 a001 2504730781961/12752043*1364^(1/15) 3178109886125999 a001 3278735159921/16692641*1364^(1/15) 3178109886126003 a001 10610209857723/54018521*1364^(1/15) 3178109886126009 a001 4052739537881/20633239*1364^(1/15) 3178109886126053 a001 387002188980/1970299*1364^(1/15) 3178109886126353 a001 591286729879/3010349*1364^(1/15) 3178109886128406 a001 225851433717/1149851*1364^(1/15) 3178109886142477 a001 196418*1364^(1/15) 3178109886238926 a001 32951280099/167761*1364^(1/15) 3178109886899996 a001 12586269025/64079*1364^(1/15) 3178109887587613 a001 24157817/5778*9349^(9/19) 3178109888029631 a001 165580141/24476*3571^(8/17) 3178109888222807 r009 Re(z^3+c),c=-33/106+7/59*I,n=8 3178109889501360 a001 39088169/5778*9349^(8/19) 3178109889765408 a001 24157817/9349*3571^(10/17) 3178109890151141 a001 567451585/2889*3571^(1/17) 3178109890892900 m005 (1/3*gamma+1/11)/(4/7*2^(1/2)+1/12) 3178109890922549 a001 2584/15127*7881196^(10/11) 3178109890922589 a001 2584/15127*20633239^(6/7) 3178109890922595 a001 2584/15127*141422324^(10/13) 3178109890922596 a001 2584/15127*2537720636^(2/3) 3178109890922596 a001 2584/15127*45537549124^(10/17) 3178109890922596 a001 2584/15127*312119004989^(6/11) 3178109890922596 a001 2584/15127*14662949395604^(10/21) 3178109890922596 a001 2584/15127*(1/2+1/2*5^(1/2))^30 3178109890922596 a001 2584/15127*192900153618^(5/9) 3178109890922596 a001 2584/15127*28143753123^(3/5) 3178109890922596 a001 2584/15127*10749957122^(5/8) 3178109890922596 a001 2584/15127*4106118243^(15/23) 3178109890922596 a001 2584/15127*1568397607^(15/22) 3178109890922596 a001 2584/15127*599074578^(5/7) 3178109890922596 a001 2584/15127*228826127^(3/4) 3178109890922596 a001 2584/15127*87403803^(15/19) 3178109890922598 a001 2584/15127*33385282^(5/6) 3178109890922598 a001 2255/1926*141422324^(2/3) 3178109890922598 a001 2255/1926*(1/2+1/2*5^(1/2))^26 3178109890922598 a001 2255/1926*73681302247^(1/2) 3178109890922598 a001 2255/1926*10749957122^(13/24) 3178109890922598 a001 2255/1926*4106118243^(13/23) 3178109890922598 a001 2255/1926*1568397607^(13/22) 3178109890922598 a001 2255/1926*599074578^(13/21) 3178109890922598 a001 2255/1926*228826127^(13/20) 3178109890922599 a001 2255/1926*87403803^(13/19) 3178109890922600 a001 2255/1926*33385282^(13/18) 3178109890922613 a001 2584/15127*12752043^(15/17) 3178109890922613 a001 2255/1926*12752043^(13/17) 3178109890922707 a001 2255/1926*4870847^(13/16) 3178109890922721 a001 2584/15127*4870847^(15/16) 3178109890923394 a001 2255/1926*1860498^(13/15) 3178109890928442 a001 2255/1926*710647^(13/14) 3178109891415110 a001 31622993/2889*9349^(7/19) 3178109891431034 a001 1201881744/6119*1364^(1/15) 3178109893326400 r005 Re(z^2+c),c=-2/5+8/35*I,n=16 3178109893328859 a001 34111385/1926*9349^(6/19) 3178109895242608 a001 165580141/5778*9349^(5/19) 3178109895358468 a001 433494437/39603*3571^(7/17) 3178109897089171 a001 567451585/51841*3571^(7/17) 3178109897156357 a001 133957148/2889*9349^(4/19) 3178109897341677 a001 2971215073/271443*3571^(7/17) 3178109897378517 a001 7778742049/710647*3571^(7/17) 3178109897383892 a001 10182505537/930249*3571^(7/17) 3178109897384676 a001 53316291173/4870847*3571^(7/17) 3178109897384790 a001 139583862445/12752043*3571^(7/17) 3178109897384807 a001 182717648081/16692641*3571^(7/17) 3178109897384809 a001 956722026041/87403803*3571^(7/17) 3178109897384810 a001 2504730781961/228826127*3571^(7/17) 3178109897384810 a001 3278735159921/299537289*3571^(7/17) 3178109897384810 a001 10610209857723/969323029*3571^(7/17) 3178109897384810 a001 4052739537881/370248451*3571^(7/17) 3178109897384810 a001 387002188980/35355581*3571^(7/17) 3178109897384811 a001 591286729879/54018521*3571^(7/17) 3178109897384817 a001 7787980473/711491*3571^(7/17) 3178109897384861 a001 21566892818/1970299*3571^(7/17) 3178109897385161 a001 32951280099/3010349*3571^(7/17) 3178109897387214 a001 12586269025/1149851*3571^(7/17) 3178109897401285 a001 1201881744/109801*3571^(7/17) 3178109897497734 a001 1836311903/167761*3571^(7/17) 3178109898156267 a001 267914296/15127*3571^(6/17) 3178109898158804 a001 701408733/64079*3571^(7/17) 3178109899070106 a001 433494437/5778*9349^(3/19) 3178109899506669 a001 1739379548/5473 3178109899715808 a001 121393/5778*24476^(20/21) 3178109900028037 a001 98209/2889*24476^(19/21) 3178109900257889 a001 105937/1926*24476^(6/7) 3178109900519207 a001 514229/5778*24476^(17/21) 3178109900768505 a001 416020/2889*24476^(16/21) 3178109900983855 a001 233802911/1926*9349^(2/19) 3178109901022395 a001 1346269/5778*24476^(5/7) 3178109901274531 a001 726103/1926*24476^(2/3) 3178109901442674 p003 LerchPhi(1/3,3,319/212) 3178109901527337 a001 1762289/2889*24476^(13/21) 3178109901779886 a001 5702887/5778*24476^(4/7) 3178109902032534 a001 9227465/5778*24476^(11/21) 3178109902285144 a001 2584*24476^(10/21) 3178109902388017 r001 11i'th iterates of 2*x^2-1 of 3178109902537769 a001 24157817/5778*24476^(3/7) 3178109902689842 a001 10946*3571^(7/17) 3178109902770366 a001 17711/5778*439204^(8/9) 3178109902784974 a001 17711/5778*7881196^(8/11) 3178109902785008 a001 2584/39603*(1/2+1/2*5^(1/2))^32 3178109902785008 a001 2584/39603*23725150497407^(1/2) 3178109902785008 a001 2584/39603*73681302247^(8/13) 3178109902785008 a001 2584/39603*10749957122^(2/3) 3178109902785008 a001 2584/39603*4106118243^(16/23) 3178109902785008 a001 2584/39603*1568397607^(8/11) 3178109902785008 a001 2584/39603*599074578^(16/21) 3178109902785008 a001 2584/39603*228826127^(4/5) 3178109902785008 a001 2584/39603*87403803^(16/19) 3178109902785011 a001 2584/39603*33385282^(8/9) 3178109902785011 a001 17711/5778*141422324^(8/13) 3178109902785011 a001 17711/5778*2537720636^(8/15) 3178109902785011 a001 17711/5778*45537549124^(8/17) 3178109902785011 a001 17711/5778*14662949395604^(8/21) 3178109902785011 a001 17711/5778*(1/2+1/2*5^(1/2))^24 3178109902785011 a001 17711/5778*192900153618^(4/9) 3178109902785011 a001 17711/5778*73681302247^(6/13) 3178109902785011 a001 17711/5778*10749957122^(1/2) 3178109902785011 a001 17711/5778*4106118243^(12/23) 3178109902785011 a001 17711/5778*1568397607^(6/11) 3178109902785011 a001 17711/5778*599074578^(4/7) 3178109902785011 a001 17711/5778*228826127^(3/5) 3178109902785011 a001 17711/5778*87403803^(12/19) 3178109902785013 a001 17711/5778*33385282^(2/3) 3178109902785025 a001 17711/5778*12752043^(12/17) 3178109902785026 a001 2584/39603*12752043^(16/17) 3178109902785111 a001 17711/5778*4870847^(3/4) 3178109902785745 a001 17711/5778*1860498^(4/5) 3178109902790388 a001 39088169/5778*24476^(8/21) 3178109902790405 a001 17711/5778*710647^(6/7) 3178109902824826 a001 17711/5778*271443^(12/13) 3178109902897604 a001 567451585/2889*9349^(1/19) 3178109903043009 a001 31622993/2889*24476^(1/3) 3178109903295629 a001 34111385/1926*24476^(2/7) 3178109903548250 a001 165580141/5778*24476^(5/21) 3178109903775372 a001 2576/321*64079^(22/23) 3178109903800871 a001 133957148/2889*24476^(4/21) 3178109904037407 a001 9107509552/28657 3178109904053491 a001 433494437/5778*24476^(1/7) 3178109904095182 a001 121393/5778*64079^(20/23) 3178109904188442 a001 98209/2889*64079^(19/23) 3178109904199326 a001 105937/1926*64079^(18/23) 3178109904217587 a001 75025/5778*64079^(21/23) 3178109904241674 a001 514229/5778*64079^(17/23) 3178109904272004 a001 416020/2889*64079^(16/23) 3178109904306112 a001 233802911/1926*24476^(2/21) 3178109904306925 a001 1346269/5778*64079^(15/23) 3178109904340092 a001 726103/1926*64079^(14/23) 3178109904373929 a001 1762289/2889*64079^(13/23) 3178109904407511 a001 5702887/5778*64079^(12/23) 3178109904425618 a001 4181*3571^(9/17) 3178109904441189 a001 9227465/5778*64079^(11/23) 3178109904474831 a001 2584*64079^(10/23) 3178109904508487 a001 24157817/5778*64079^(9/23) 3178109904515679 a001 2576/321*7881196^(2/3) 3178109904515711 a001 1292/51841*45537549124^(2/3) 3178109904515711 a001 1292/51841*(1/2+1/2*5^(1/2))^34 3178109904515711 a001 1292/51841*10749957122^(17/24) 3178109904515711 a001 1292/51841*4106118243^(17/23) 3178109904515711 a001 1292/51841*1568397607^(17/22) 3178109904515711 a001 1292/51841*599074578^(17/21) 3178109904515711 a001 1292/51841*228826127^(17/20) 3178109904515711 a001 1292/51841*87403803^(17/19) 3178109904515713 a001 1292/51841*33385282^(17/18) 3178109904515714 a001 2576/321*312119004989^(2/5) 3178109904515714 a001 2576/321*(1/2+1/2*5^(1/2))^22 3178109904515714 a001 2576/321*10749957122^(11/24) 3178109904515714 a001 2576/321*4106118243^(11/23) 3178109904515714 a001 2576/321*1568397607^(1/2) 3178109904515714 a001 2576/321*599074578^(11/21) 3178109904515714 a001 2576/321*228826127^(11/20) 3178109904515714 a001 2576/321*87403803^(11/19) 3178109904515715 a001 2576/321*33385282^(11/18) 3178109904515726 a001 2576/321*12752043^(11/17) 3178109904515806 a001 2576/321*4870847^(11/16) 3178109904516387 a001 2576/321*1860498^(11/15) 3178109904520658 a001 2576/321*710647^(11/14) 3178109904542137 a001 39088169/5778*64079^(8/23) 3178109904552211 a001 2576/321*271443^(11/13) 3178109904558732 a001 567451585/2889*24476^(1/21) 3178109904575790 a001 31622993/2889*64079^(7/23) 3178109904609441 a001 34111385/1926*64079^(6/23) 3178109904643093 a001 165580141/5778*64079^(5/23) 3178109904676745 a001 133957148/2889*64079^(4/23) 3178109904677880 a001 121393/5778*167761^(4/5) 3178109904698433 a001 4768753912/15005 3178109904710397 a001 433494437/5778*64079^(3/23) 3178109904743949 a001 1346269/5778*167761^(3/5) 3178109904744049 a001 233802911/1926*64079^(2/23) 3178109904766180 a001 2584*167761^(2/5) 3178109904768215 a001 121393/5778*20633239^(4/7) 3178109904768217 a001 2584/271443*141422324^(12/13) 3178109904768217 a001 2584/271443*2537720636^(4/5) 3178109904768217 a001 2584/271443*45537549124^(12/17) 3178109904768217 a001 2584/271443*14662949395604^(4/7) 3178109904768217 a001 2584/271443*(1/2+1/2*5^(1/2))^36 3178109904768217 a001 2584/271443*192900153618^(2/3) 3178109904768217 a001 2584/271443*73681302247^(9/13) 3178109904768217 a001 2584/271443*10749957122^(3/4) 3178109904768217 a001 2584/271443*4106118243^(18/23) 3178109904768217 a001 2584/271443*1568397607^(9/11) 3178109904768217 a001 2584/271443*599074578^(6/7) 3178109904768217 a001 2584/271443*228826127^(9/10) 3178109904768217 a001 2584/271443*87403803^(18/19) 3178109904768220 a001 121393/5778*2537720636^(4/9) 3178109904768220 a001 121393/5778*(1/2+1/2*5^(1/2))^20 3178109904768220 a001 121393/5778*23725150497407^(5/16) 3178109904768220 a001 121393/5778*505019158607^(5/14) 3178109904768220 a001 121393/5778*73681302247^(5/13) 3178109904768220 a001 121393/5778*28143753123^(2/5) 3178109904768220 a001 121393/5778*10749957122^(5/12) 3178109904768220 a001 121393/5778*4106118243^(10/23) 3178109904768220 a001 121393/5778*1568397607^(5/11) 3178109904768220 a001 121393/5778*599074578^(10/21) 3178109904768220 a001 121393/5778*228826127^(1/2) 3178109904768220 a001 121393/5778*87403803^(10/19) 3178109904768221 a001 121393/5778*33385282^(5/9) 3178109904768231 a001 121393/5778*12752043^(10/17) 3178109904768303 a001 121393/5778*4870847^(5/8) 3178109904768832 a001 121393/5778*1860498^(2/3) 3178109904772715 a001 121393/5778*710647^(5/7) 3178109904777701 a001 567451585/2889*64079^(1/23) 3178109904786716 a001 2576/321*103682^(11/12) 3178109904788768 a001 165580141/5778*167761^(1/5) 3178109904794076 a001 105937/1926*439204^(2/3) 3178109904794876 a001 1835994092/5777 3178109904801399 a001 121393/5778*271443^(10/13) 3178109904802551 a001 1346269/5778*439204^(5/9) 3178109904804011 a001 5702887/5778*439204^(4/9) 3178109904805032 a001 105937/1926*7881196^(6/11) 3178109904805057 a001 2584/710647*817138163596^(2/3) 3178109904805057 a001 2584/710647*(1/2+1/2*5^(1/2))^38 3178109904805057 a001 2584/710647*10749957122^(19/24) 3178109904805057 a001 2584/710647*4106118243^(19/23) 3178109904805057 a001 2584/710647*1568397607^(19/22) 3178109904805057 a001 2584/710647*599074578^(19/21) 3178109904805057 a001 2584/710647*228826127^(19/20) 3178109904805060 a001 105937/1926*141422324^(6/13) 3178109904805060 a001 105937/1926*2537720636^(2/5) 3178109904805060 a001 105937/1926*45537549124^(6/17) 3178109904805060 a001 105937/1926*14662949395604^(2/7) 3178109904805060 a001 105937/1926*(1/2+1/2*5^(1/2))^18 3178109904805060 a001 105937/1926*192900153618^(1/3) 3178109904805060 a001 105937/1926*10749957122^(3/8) 3178109904805060 a001 105937/1926*4106118243^(9/23) 3178109904805060 a001 105937/1926*1568397607^(9/22) 3178109904805060 a001 105937/1926*599074578^(3/7) 3178109904805060 a001 105937/1926*228826127^(9/20) 3178109904805060 a001 105937/1926*87403803^(9/19) 3178109904805061 a001 105937/1926*33385282^(1/2) 3178109904805070 a001 105937/1926*12752043^(9/17) 3178109904805135 a001 105937/1926*4870847^(9/16) 3178109904805611 a001 105937/1926*1860498^(3/5) 3178109904805862 a001 24157817/5778*439204^(1/3) 3178109904807692 a001 34111385/1926*439204^(2/9) 3178109904808946 a001 163427627824/514229 3178109904809105 a001 105937/1926*710647^(9/14) 3178109904809522 a001 433494437/5778*439204^(1/9) 3178109904810432 a001 1292/930249*2537720636^(8/9) 3178109904810432 a001 1292/930249*312119004989^(8/11) 3178109904810432 a001 1292/930249*(1/2+1/2*5^(1/2))^40 3178109904810432 a001 1292/930249*23725150497407^(5/8) 3178109904810432 a001 1292/930249*73681302247^(10/13) 3178109904810432 a001 1292/930249*28143753123^(4/5) 3178109904810432 a001 1292/930249*10749957122^(5/6) 3178109904810432 a001 1292/930249*4106118243^(20/23) 3178109904810432 a001 1292/930249*1568397607^(10/11) 3178109904810432 a001 1292/930249*599074578^(20/21) 3178109904810435 a001 416020/2889*(1/2+1/2*5^(1/2))^16 3178109904810435 a001 416020/2889*23725150497407^(1/4) 3178109904810435 a001 416020/2889*73681302247^(4/13) 3178109904810435 a001 416020/2889*10749957122^(1/3) 3178109904810435 a001 416020/2889*4106118243^(8/23) 3178109904810435 a001 416020/2889*1568397607^(4/11) 3178109904810435 a001 416020/2889*599074578^(8/21) 3178109904810435 a001 416020/2889*228826127^(2/5) 3178109904810435 a001 416020/2889*87403803^(8/19) 3178109904810436 a001 416020/2889*33385282^(4/9) 3178109904810444 a001 416020/2889*12752043^(8/17) 3178109904810502 a001 416020/2889*4870847^(1/2) 3178109904810924 a001 416020/2889*1860498^(8/15) 3178109904810999 a001 427859084344/1346269 3178109904811216 a001 726103/1926*20633239^(2/5) 3178109904811216 a001 2584/4870847*2537720636^(14/15) 3178109904811216 a001 2584/4870847*17393796001^(6/7) 3178109904811216 a001 2584/4870847*45537549124^(14/17) 3178109904811216 a001 2584/4870847*14662949395604^(2/3) 3178109904811216 a001 2584/4870847*(1/2+1/2*5^(1/2))^42 3178109904811216 a001 2584/4870847*505019158607^(3/4) 3178109904811216 a001 2584/4870847*192900153618^(7/9) 3178109904811216 a001 2584/4870847*10749957122^(7/8) 3178109904811216 a001 2584/4870847*4106118243^(21/23) 3178109904811216 a001 2584/4870847*1568397607^(21/22) 3178109904811219 a001 726103/1926*17393796001^(2/7) 3178109904811219 a001 726103/1926*14662949395604^(2/9) 3178109904811219 a001 726103/1926*(1/2+1/2*5^(1/2))^14 3178109904811219 a001 726103/1926*10749957122^(7/24) 3178109904811219 a001 726103/1926*4106118243^(7/23) 3178109904811219 a001 726103/1926*1568397607^(7/22) 3178109904811219 a001 726103/1926*599074578^(1/3) 3178109904811219 a001 726103/1926*228826127^(7/20) 3178109904811219 a001 726103/1926*87403803^(7/19) 3178109904811220 a001 726103/1926*33385282^(7/18) 3178109904811227 a001 726103/1926*12752043^(7/17) 3178109904811278 a001 726103/1926*4870847^(7/16) 3178109904811299 a001 560074812604/1762289 3178109904811315 a001 5702887/5778*7881196^(4/11) 3178109904811331 a001 2584/12752043*312119004989^(4/5) 3178109904811331 a001 2584/12752043*(1/2+1/2*5^(1/2))^44 3178109904811331 a001 2584/12752043*23725150497407^(11/16) 3178109904811331 a001 2584/12752043*73681302247^(11/13) 3178109904811331 a001 2584/12752043*10749957122^(11/12) 3178109904811331 a001 2584/12752043*4106118243^(22/23) 3178109904811333 a001 5702887/5778*141422324^(4/13) 3178109904811333 a001 5702887/5778*2537720636^(4/15) 3178109904811333 a001 5702887/5778*45537549124^(4/17) 3178109904811333 a001 5702887/5778*817138163596^(4/19) 3178109904811333 a001 5702887/5778*14662949395604^(4/21) 3178109904811333 a001 5702887/5778*(1/2+1/2*5^(1/2))^12 3178109904811333 a001 5702887/5778*192900153618^(2/9) 3178109904811333 a001 5702887/5778*73681302247^(3/13) 3178109904811333 a001 5702887/5778*10749957122^(1/4) 3178109904811333 a001 5702887/5778*4106118243^(6/23) 3178109904811333 a001 5702887/5778*1568397607^(3/11) 3178109904811333 a001 5702887/5778*599074578^(2/7) 3178109904811333 a001 5702887/5778*228826127^(3/10) 3178109904811333 a001 5702887/5778*87403803^(6/19) 3178109904811334 a001 5702887/5778*33385282^(1/3) 3178109904811340 a001 24157817/5778*7881196^(3/11) 3178109904811340 a001 5702887/5778*12752043^(6/17) 3178109904811343 a001 586517958256/1845493 3178109904811343 a001 9227465/5778*7881196^(1/3) 3178109904811344 a001 34111385/1926*7881196^(2/11) 3178109904811347 a001 1292/16692641*(1/2+1/2*5^(1/2))^46 3178109904811347 a001 1292/16692641*10749957122^(23/24) 3178109904811348 a001 2584*20633239^(2/7) 3178109904811348 a001 433494437/5778*7881196^(1/11) 3178109904811349 a001 7677619748632/24157817 3178109904811350 a001 2584/87403803*45537549124^(16/17) 3178109904811350 a001 2584/87403803*14662949395604^(16/21) 3178109904811350 a001 2584/87403803*192900153618^(8/9) 3178109904811350 a001 2584/87403803*73681302247^(12/13) 3178109904811350 a001 10050134727308/31622993 3178109904811350 a001 2584/228826127*312119004989^(10/11) 3178109904811350 a001 2584/228826127*3461452808002^(5/6) 3178109904811350 a001 52623188615216/165580141 3178109904811350 a001 1292/299537289*23725150497407^(13/16) 3178109904811350 a001 1292/299537289*505019158607^(13/14) 3178109904811350 a001 137769296391032/433494437 3178109904811350 a001 2584/1568397607*14662949395604^(6/7) 3178109904811350 a001 2121674709164/6675901 3178109904811350 a001 2584/4106118243*14662949395604^(8/9) 3178109904811350 a001 2584*2537720636^(2/9) 3178109904811350 a001 944284805282608/2971215073 3178109904811350 a001 2472169715289944/7778742049 3178109904811350 a001 2584/28143753123*14662949395604^(20/21) 3178109904811350 a001 3236112170293612/10182505537 3178109904811350 a001 16944503306471728/53316291173 3178109904811350 a001 2584*312119004989^(2/11) 3178109904811350 a001 10610209857723/33385283 3178109904811350 a001 10472278965884504/32951280099 3178109904811350 a001 2584*28143753123^(1/5) 3178109904811350 a001 72728265914496/228841255 3178109904811350 a001 2584*10749957122^(5/24) 3178109904811350 a001 190985613750917/600940872 3178109904811350 a001 2584*4106118243^(5/23) 3178109904811350 a001 2584/6643838879*14662949395604^(19/21) 3178109904811350 a001 583600104724728/1836311903 3178109904811350 a001 2584*1568397607^(5/22) 3178109904811350 a001 34/33391061*3461452808002^(11/12) 3178109904811350 a001 222915404166848/701408733 3178109904811350 a001 2584*599074578^(5/21) 3178109904811350 a001 10643263471977/33489287 3178109904811350 a001 2584*228826127^(1/4) 3178109904811350 a001 2584/370248451*14662949395604^(17/21) 3178109904811350 a001 2584/370248451*192900153618^(17/18) 3178109904811350 a001 591325802920/1860621 3178109904811350 a001 2584*87403803^(5/19) 3178109904811350 a001 646/35355581*14662949395604^(7/9) 3178109904811350 a001 646/35355581*505019158607^(7/8) 3178109904811350 a001 12422649705984/39088169 3178109904811351 a001 2584*33385282^(5/18) 3178109904811352 a001 31622993/2889*20633239^(1/5) 3178109904811352 a001 165580141/5778*20633239^(1/7) 3178109904811352 a001 39088169/5778*(1/2+1/2*5^(1/2))^8 3178109904811352 a001 39088169/5778*23725150497407^(1/8) 3178109904811352 a001 39088169/5778*505019158607^(1/7) 3178109904811352 a001 39088169/5778*73681302247^(2/13) 3178109904811352 a001 39088169/5778*10749957122^(1/6) 3178109904811352 a001 39088169/5778*4106118243^(4/23) 3178109904811352 a001 39088169/5778*1568397607^(2/11) 3178109904811352 a001 39088169/5778*599074578^(4/21) 3178109904811353 a001 39088169/5778*228826127^(1/5) 3178109904811353 a001 39088169/5778*87403803^(4/19) 3178109904811353 a001 34111385/1926*141422324^(2/13) 3178109904811353 a001 34111385/1926*2537720636^(2/15) 3178109904811353 a001 34111385/1926*45537549124^(2/17) 3178109904811353 a001 34111385/1926*14662949395604^(2/21) 3178109904811353 a001 34111385/1926*(1/2+1/2*5^(1/2))^6 3178109904811353 a001 34111385/1926*10749957122^(1/8) 3178109904811353 a001 34111385/1926*4106118243^(3/23) 3178109904811353 a001 34111385/1926*1568397607^(3/22) 3178109904811353 a001 34111385/1926*599074578^(1/7) 3178109904811353 a001 34111385/1926*228826127^(3/20) 3178109904811353 a001 133957148/2889*(1/2+1/2*5^(1/2))^4 3178109904811353 a001 133957148/2889*23725150497407^(1/16) 3178109904811353 a001 133957148/2889*73681302247^(1/13) 3178109904811353 a001 133957148/2889*10749957122^(1/12) 3178109904811353 a001 433494437/5778*141422324^(1/13) 3178109904811353 a001 133957148/2889*4106118243^(2/23) 3178109904811353 a001 133957148/2889*1568397607^(1/11) 3178109904811353 a001 133957148/2889*599074578^(2/21) 3178109904811353 a001 133957148/2889*228826127^(1/10) 3178109904811353 a001 233802911/1926*(1/2+1/2*5^(1/2))^2 3178109904811353 a001 233802911/1926*10749957122^(1/24) 3178109904811353 a001 233802911/1926*4106118243^(1/23) 3178109904811353 a001 233802911/1926*1568397607^(1/22) 3178109904811353 a001 233802911/1926*599074578^(1/21) 3178109904811353 a001 1836311903/5778 3178109904811353 a001 567451585/5778+567451585/5778*5^(1/2) 3178109904811353 a001 233802911/1926*228826127^(1/20) 3178109904811353 a001 433494437/5778*2537720636^(1/15) 3178109904811353 a001 433494437/5778*45537549124^(1/17) 3178109904811353 a001 433494437/5778*14662949395604^(1/21) 3178109904811353 a001 433494437/5778*(1/2+1/2*5^(1/2))^3 3178109904811353 a001 433494437/5778*192900153618^(1/18) 3178109904811353 a001 433494437/5778*10749957122^(1/16) 3178109904811353 a001 433494437/5778*599074578^(1/14) 3178109904811353 a001 34111385/1926*87403803^(3/19) 3178109904811353 a001 233802911/1926*87403803^(1/19) 3178109904811353 a001 165580141/5778*2537720636^(1/9) 3178109904811353 a001 165580141/5778*312119004989^(1/11) 3178109904811353 a001 165580141/5778*(1/2+1/2*5^(1/2))^5 3178109904811353 a001 165580141/5778*28143753123^(1/10) 3178109904811353 a001 165580141/5778*228826127^(1/8) 3178109904811353 a001 133957148/2889*87403803^(2/19) 3178109904811353 a001 233802911/1926*33385282^(1/18) 3178109904811353 a001 31622993/2889*17393796001^(1/7) 3178109904811353 a001 31622993/2889*14662949395604^(1/9) 3178109904811353 a001 31622993/2889*(1/2+1/2*5^(1/2))^7 3178109904811353 a001 31622993/2889*599074578^(1/6) 3178109904811353 a001 39088169/5778*33385282^(2/9) 3178109904811353 a001 433494437/5778*33385282^(1/12) 3178109904811353 a001 133957148/2889*33385282^(1/9) 3178109904811353 a001 34111385/1926*33385282^(1/6) 3178109904811354 a001 24157817/5778*141422324^(3/13) 3178109904811354 a001 24157817/5778*2537720636^(1/5) 3178109904811354 a001 24157817/5778*45537549124^(3/17) 3178109904811354 a001 24157817/5778*14662949395604^(1/7) 3178109904811354 a001 24157817/5778*(1/2+1/2*5^(1/2))^9 3178109904811354 a001 24157817/5778*192900153618^(1/6) 3178109904811354 a001 24157817/5778*10749957122^(3/16) 3178109904811354 a001 24157817/5778*599074578^(3/14) 3178109904811354 a001 233802911/1926*12752043^(1/17) 3178109904811355 a001 24157817/5778*33385282^(1/4) 3178109904811355 a001 133957148/2889*12752043^(2/17) 3178109904811356 a001 2584*12752043^(5/17) 3178109904811356 a001 34111385/1926*12752043^(3/17) 3178109904811357 a001 39088169/5778*12752043^(4/17) 3178109904811358 a001 2584/20633239*45537549124^(15/17) 3178109904811358 a001 2584/20633239*312119004989^(9/11) 3178109904811358 a001 2584/20633239*14662949395604^(5/7) 3178109904811358 a001 2584/20633239*(1/2+1/2*5^(1/2))^45 3178109904811358 a001 2584/20633239*192900153618^(5/6) 3178109904811358 a001 2584/20633239*28143753123^(9/10) 3178109904811358 a001 2584/20633239*10749957122^(15/16) 3178109904811360 a001 9227465/5778*312119004989^(1/5) 3178109904811360 a001 9227465/5778*(1/2+1/2*5^(1/2))^11 3178109904811360 a001 9227465/5778*1568397607^(1/4) 3178109904811361 a001 233802911/1926*4870847^(1/16) 3178109904811370 a001 1812440166072/5702887 3178109904811370 a001 133957148/2889*4870847^(1/8) 3178109904811378 a001 34111385/1926*4870847^(3/16) 3178109904811384 a001 5702887/5778*4870847^(3/8) 3178109904811386 a001 39088169/5778*4870847^(1/4) 3178109904811392 a001 2584*4870847^(5/16) 3178109904811401 a001 646/1970299*(1/2+1/2*5^(1/2))^43 3178109904811404 a001 1762289/2889*141422324^(1/3) 3178109904811404 a001 1762289/2889*(1/2+1/2*5^(1/2))^13 3178109904811404 a001 1762289/2889*73681302247^(1/4) 3178109904811414 a001 233802911/1926*1860498^(1/15) 3178109904811445 a001 433494437/5778*1860498^(1/10) 3178109904811475 a001 133957148/2889*1860498^(2/15) 3178109904811484 a001 692290540864/2178309 3178109904811506 a001 165580141/5778*1860498^(1/6) 3178109904811536 a001 34111385/1926*1860498^(1/5) 3178109904811597 a001 39088169/5778*1860498^(4/15) 3178109904811629 a001 24157817/5778*1860498^(3/10) 3178109904811647 a001 726103/1926*1860498^(7/15) 3178109904811656 a001 2584*1860498^(1/3) 3178109904811680 a001 1346269/5778*7881196^(5/11) 3178109904811700 a001 1346269/5778*20633239^(3/7) 3178109904811701 a001 5702887/5778*1860498^(2/5) 3178109904811701 a001 2584/3010349*(1/2+1/2*5^(1/2))^41 3178109904811704 a001 1346269/5778*141422324^(5/13) 3178109904811704 a001 1346269/5778*2537720636^(1/3) 3178109904811704 a001 1346269/5778*45537549124^(5/17) 3178109904811704 a001 1346269/5778*312119004989^(3/11) 3178109904811704 a001 1346269/5778*14662949395604^(5/21) 3178109904811704 a001 1346269/5778*(1/2+1/2*5^(1/2))^15 3178109904811704 a001 1346269/5778*192900153618^(5/18) 3178109904811704 a001 1346269/5778*28143753123^(3/10) 3178109904811704 a001 1346269/5778*10749957122^(5/16) 3178109904811704 a001 1346269/5778*599074578^(5/14) 3178109904811704 a001 1346269/5778*228826127^(3/8) 3178109904811705 a001 1346269/5778*33385282^(5/12) 3178109904811802 a001 233802911/1926*710647^(1/14) 3178109904812163 a001 1346269/5778*1860498^(1/2) 3178109904812252 a001 133957148/2889*710647^(1/7) 3178109904812268 a001 600980583/1891 3178109904812701 a001 34111385/1926*710647^(3/14) 3178109904812926 a001 31622993/2889*710647^(1/4) 3178109904813151 a001 39088169/5778*710647^(2/7) 3178109904813598 a001 2584*710647^(5/14) 3178109904813754 a001 2584/1149851*2537720636^(13/15) 3178109904813754 a001 2584/1149851*45537549124^(13/17) 3178109904813754 a001 2584/1149851*14662949395604^(13/21) 3178109904813754 a001 2584/1149851*(1/2+1/2*5^(1/2))^39 3178109904813754 a001 2584/1149851*192900153618^(13/18) 3178109904813754 a001 2584/1149851*73681302247^(3/4) 3178109904813754 a001 2584/1149851*10749957122^(13/16) 3178109904813754 a001 2584/1149851*599074578^(13/14) 3178109904813757 a001 514229/5778*45537549124^(1/3) 3178109904813757 a001 514229/5778*(1/2+1/2*5^(1/2))^17 3178109904813766 a001 514229/5778*12752043^(1/2) 3178109904814030 a001 5702887/5778*710647^(3/7) 3178109904814031 a001 416020/2889*710647^(4/7) 3178109904814365 a001 726103/1926*710647^(1/2) 3178109904814671 a001 233802911/1926*271443^(1/13) 3178109904817643 a001 101003828696/317811 3178109904817989 a001 133957148/2889*271443^(2/13) 3178109904821307 a001 34111385/1926*271443^(3/13) 3178109904823671 a001 567451585/2889*103682^(1/24) 3178109904824624 a001 39088169/5778*271443^(4/13) 3178109904827825 a001 34/5779*(1/2+1/2*5^(1/2))^37 3178109904827828 a001 98209/2889*817138163596^(1/3) 3178109904827828 a001 98209/2889*(1/2+1/2*5^(1/2))^19 3178109904827829 a001 98209/2889*87403803^(1/2) 3178109904827940 a001 2584*271443^(5/13) 3178109904831241 a001 5702887/5778*271443^(6/13) 3178109904832971 a001 1762289/2889*271443^(1/2) 3178109904834445 a001 726103/1926*271443^(7/13) 3178109904834921 a001 105937/1926*271443^(9/13) 3178109904835990 a001 233802911/1926*103682^(1/12) 3178109904836978 a001 416020/2889*271443^(8/13) 3178109904848308 a001 433494437/5778*103682^(1/8) 3178109904854480 a001 38580029568/121393 3178109904860626 a001 133957148/2889*103682^(1/6) 3178109904872944 a001 165580141/5778*103682^(5/24) 3178109904885263 a001 34111385/1926*103682^(1/4) 3178109904897581 a001 31622993/2889*103682^(7/24) 3178109904903459 a001 567451585/2889*39603^(1/22) 3178109904909899 a001 39088169/5778*103682^(1/3) 3178109904911463 a001 75025/5778*439204^(7/9) 3178109904922219 a001 24157817/5778*103682^(3/8) 3178109904924245 a001 75025/5778*7881196^(7/11) 3178109904924273 a001 75025/5778*20633239^(3/5) 3178109904924274 a001 2584/167761*2537720636^(7/9) 3178109904924274 a001 2584/167761*17393796001^(5/7) 3178109904924274 a001 2584/167761*312119004989^(7/11) 3178109904924274 a001 2584/167761*14662949395604^(5/9) 3178109904924274 a001 2584/167761*(1/2+1/2*5^(1/2))^35 3178109904924274 a001 2584/167761*505019158607^(5/8) 3178109904924274 a001 2584/167761*28143753123^(7/10) 3178109904924274 a001 2584/167761*599074578^(5/6) 3178109904924274 a001 2584/167761*228826127^(7/8) 3178109904924277 a001 75025/5778*141422324^(7/13) 3178109904924277 a001 75025/5778*2537720636^(7/15) 3178109904924277 a001 75025/5778*17393796001^(3/7) 3178109904924277 a001 75025/5778*45537549124^(7/17) 3178109904924277 a001 75025/5778*14662949395604^(1/3) 3178109904924277 a001 75025/5778*(1/2+1/2*5^(1/2))^21 3178109904924277 a001 75025/5778*192900153618^(7/18) 3178109904924277 a001 75025/5778*10749957122^(7/16) 3178109904924277 a001 75025/5778*599074578^(1/2) 3178109904924279 a001 75025/5778*33385282^(7/12) 3178109904924920 a001 75025/5778*1860498^(7/10) 3178109904928997 a001 75025/5778*710647^(3/4) 3178109904934533 a001 2584*103682^(5/12) 3178109904946862 a001 9227465/5778*103682^(11/24) 3178109904959153 a001 5702887/5778*103682^(1/2) 3178109904971542 a001 1762289/2889*103682^(13/24) 3178109904983675 a001 726103/1926*103682^(7/12) 3178109904995566 a001 233802911/1926*39603^(1/11) 3178109904996478 a001 1346269/5778*103682^(5/8) 3178109905007528 a001 416020/2889*103682^(2/3) 3178109905014586 a001 121393/5778*103682^(5/6) 3178109905023168 a001 514229/5778*103682^(17/24) 3178109905026789 a001 105937/1926*103682^(3/4) 3178109905061876 a001 98209/2889*103682^(19/24) 3178109905087672 a001 433494437/5778*39603^(3/22) 3178109905106970 a001 1842032501/5796 3178109905179779 a001 133957148/2889*39603^(2/11) 3178109905182961 a001 75025/5778*103682^(7/8) 3178109905271885 a001 165580141/5778*39603^(5/22) 3178109905363992 a001 34111385/1926*39603^(3/11) 3178109905456098 a001 31622993/2889*39603^(7/22) 3178109905505791 a001 567451585/2889*15127^(1/20) 3178109905548204 a001 39088169/5778*39603^(4/11) 3178109905585344 a001 2584/64079*141422324^(11/13) 3178109905585344 a001 2584/64079*2537720636^(11/15) 3178109905585344 a001 2584/64079*45537549124^(11/17) 3178109905585344 a001 2584/64079*312119004989^(3/5) 3178109905585344 a001 2584/64079*14662949395604^(11/21) 3178109905585344 a001 2584/64079*(1/2+1/2*5^(1/2))^33 3178109905585344 a001 2584/64079*192900153618^(11/18) 3178109905585344 a001 2584/64079*10749957122^(11/16) 3178109905585344 a001 2584/64079*1568397607^(3/4) 3178109905585344 a001 2584/64079*599074578^(11/14) 3178109905585346 a001 2584/64079*33385282^(11/12) 3178109905585347 a001 28657/5778*(1/2+1/2*5^(1/2))^23 3178109905585347 a001 28657/5778*4106118243^(1/2) 3178109905640312 a001 24157817/5778*39603^(9/22) 3178109905732415 a001 2584*39603^(5/11) 3178109905824531 a001 9227465/5778*39603^(1/2) 3178109905868668 a001 28657/5778*103682^(23/24) 3178109905916611 a001 5702887/5778*39603^(6/11) 3178109906008788 a001 1762289/2889*39603^(13/22) 3178109906100709 a001 726103/1926*39603^(7/11) 3178109906193300 a001 1346269/5778*39603^(15/22) 3178109906200228 a001 233802911/1926*15127^(1/10) 3178109906284138 a001 416020/2889*39603^(8/11) 3178109906379566 a001 514229/5778*39603^(17/22) 3178109906462976 a001 105937/1926*39603^(9/11) 3178109906577851 a001 98209/2889*39603^(19/22) 3178109906610349 a001 121393/5778*39603^(10/11) 3178109906837558 a001 5628750456/17711 3178109906858513 a001 75025/5778*39603^(21/22) 3178109906894666 a001 433494437/5778*15127^(3/20) 3178109906945224 a001 165580141/1364*521^(2/13) 3178109907589020 a001 267914296/3571*1364^(1/5) 3178109907589104 a001 133957148/2889*15127^(1/5) 3178109908229953 m001 (exp(1)+BesselK(1,1))/(-GAMMA(11/12)+Trott) 3178109908283542 a001 165580141/5778*15127^(1/4) 3178109908977979 a001 34111385/1926*15127^(3/10) 3178109909672417 a001 31622993/2889*15127^(7/20) 3178109910018680 a001 17711*3571^(6/17) 3178109910099961 a001 567451585/2889*5778^(1/18) 3178109910116380 a001 5473/2889*20633239^(5/7) 3178109910116382 a001 646/6119*(1/2+1/2*5^(1/2))^31 3178109910116382 a001 646/6119*9062201101803^(1/2) 3178109910116385 a001 5473/2889*2537720636^(5/9) 3178109910116385 a001 5473/2889*312119004989^(5/11) 3178109910116385 a001 5473/2889*(1/2+1/2*5^(1/2))^25 3178109910116385 a001 5473/2889*3461452808002^(5/12) 3178109910116385 a001 5473/2889*28143753123^(1/2) 3178109910116385 a001 5473/2889*228826127^(5/8) 3178109910117150 a001 5473/2889*1860498^(5/6) 3178109910366854 a001 39088169/5778*15127^(2/5) 3178109911061294 a001 24157817/5778*15127^(9/20) 3178109911749382 a001 1836311903/103682*3571^(6/17) 3178109911755727 a001 2584*15127^(1/2) 3178109912001888 a001 1602508992/90481*3571^(6/17) 3178109912038728 a001 12586269025/710647*3571^(6/17) 3178109912044103 a001 10983760033/620166*3571^(6/17) 3178109912044888 a001 86267571272/4870847*3571^(6/17) 3178109912045002 a001 75283811239/4250681*3571^(6/17) 3178109912045019 a001 591286729879/33385282*3571^(6/17) 3178109912045021 a001 516002918640/29134601*3571^(6/17) 3178109912045021 a001 4052739537881/228826127*3571^(6/17) 3178109912045021 a001 3536736619241/199691526*3571^(6/17) 3178109912045022 a001 6557470319842/370248451*3571^(6/17) 3178109912045022 a001 2504730781961/141422324*3571^(6/17) 3178109912045023 a001 956722026041/54018521*3571^(6/17) 3178109912045029 a001 365435296162/20633239*3571^(6/17) 3178109912045073 a001 139583862445/7881196*3571^(6/17) 3178109912045372 a001 53316291173/3010349*3571^(6/17) 3178109912047425 a001 20365011074/1149851*3571^(6/17) 3178109912061497 a001 7778742049/439204*3571^(6/17) 3178109912157946 a001 2971215073/167761*3571^(6/17) 3178109912450175 a001 9227465/5778*15127^(11/20) 3178109912816479 a001 433494437/15127*3571^(5/17) 3178109912819015 a001 1134903170/64079*3571^(6/17) 3178109913144586 a001 5702887/5778*15127^(3/5) 3178109913839095 a001 1762289/2889*15127^(13/20) 3178109914533347 a001 726103/1926*15127^(7/10) 3178109915228269 a001 1346269/5778*15127^(3/4) 3178109915388568 a001 233802911/1926*5778^(1/9) 3178109915921438 a001 416020/2889*15127^(4/5) 3178109916619198 a001 514229/5778*15127^(17/20) 3178109917304939 a001 105937/1926*15127^(9/10) 3178109917350054 a001 433494437/24476*3571^(6/17) 3178109918022145 a001 98209/2889*15127^(19/20) 3178109918445904 a001 832040/2207*2207^(7/8) 3178109918699186 a001 39090752/123 3178109919085830 a001 63245986/9349*3571^(8/17) 3178109920677176 a001 433494437/5778*5778^(1/6) 3178109922487233 a001 1836311903/9349*1364^(1/15) 3178109923319715 m005 (1/2*exp(1)+2/9)/(-47/63+1/9*5^(1/2)) 3178109924678891 a001 1134903170/39603*3571^(5/17) 3178109925965784 a001 133957148/2889*5778^(2/9) 3178109926409594 a001 2971215073/103682*3571^(5/17) 3178109926662100 a001 7778742049/271443*3571^(5/17) 3178109926698940 a001 20365011074/710647*3571^(5/17) 3178109926704315 a001 53316291173/1860498*3571^(5/17) 3178109926705099 a001 139583862445/4870847*3571^(5/17) 3178109926705214 a001 365435296162/12752043*3571^(5/17) 3178109926705230 a001 956722026041/33385282*3571^(5/17) 3178109926705233 a001 2504730781961/87403803*3571^(5/17) 3178109926705233 a001 6557470319842/228826127*3571^(5/17) 3178109926705233 a001 10610209857723/370248451*3571^(5/17) 3178109926705233 a001 4052739537881/141422324*3571^(5/17) 3178109926705234 a001 1548008755920/54018521*3571^(5/17) 3178109926705241 a001 591286729879/20633239*3571^(5/17) 3178109926705284 a001 225851433717/7881196*3571^(5/17) 3178109926705584 a001 86267571272/3010349*3571^(5/17) 3178109926707637 a001 32951280099/1149851*3571^(5/17) 3178109926721709 a001 12586269025/439204*3571^(5/17) 3178109926818157 a001 4807526976/167761*3571^(5/17) 3178109927476690 a001 701408733/15127*3571^(4/17) 3178109927479227 a001 28657*3571^(5/17) 3178109930753887 r002 4th iterates of z^2 + 3178109931254391 a001 165580141/5778*5778^(5/18) 3178109932010265 a001 701408733/24476*3571^(5/17) 3178109933445715 m001 BesselI(1,1)^(2^(1/2))/OrthogonalArrays 3178109933746042 a001 102334155/9349*3571^(7/17) 3178109936542999 a001 34111385/1926*5778^(1/3) 3178109939339103 a001 1836311903/39603*3571^(4/17) 3178109941069806 a001 46368*3571^(4/17) 3178109941172542 a001 4181/5778*7881196^(9/11) 3178109941172582 a001 2584/9349*(1/2+1/2*5^(1/2))^29 3178109941172582 a001 2584/9349*1322157322203^(1/2) 3178109941172584 a001 4181/5778*141422324^(9/13) 3178109941172584 a001 4181/5778*2537720636^(3/5) 3178109941172584 a001 4181/5778*45537549124^(9/17) 3178109941172584 a001 4181/5778*817138163596^(9/19) 3178109941172584 a001 4181/5778*14662949395604^(3/7) 3178109941172584 a001 4181/5778*(1/2+1/2*5^(1/2))^27 3178109941172584 a001 4181/5778*192900153618^(1/2) 3178109941172584 a001 4181/5778*10749957122^(9/16) 3178109941172584 a001 4181/5778*599074578^(9/14) 3178109941172586 a001 4181/5778*33385282^(3/4) 3178109941173411 a001 4181/5778*1860498^(9/10) 3178109941322312 a001 12586269025/271443*3571^(4/17) 3178109941359152 a001 32951280099/710647*3571^(4/17) 3178109941364527 a001 43133785636/930249*3571^(4/17) 3178109941365311 a001 225851433717/4870847*3571^(4/17) 3178109941365425 a001 591286729879/12752043*3571^(4/17) 3178109941365442 a001 774004377960/16692641*3571^(4/17) 3178109941365444 a001 4052739537881/87403803*3571^(4/17) 3178109941365445 a001 225749145909/4868641*3571^(4/17) 3178109941365445 a001 3278735159921/70711162*3571^(4/17) 3178109941365446 a001 2504730781961/54018521*3571^(4/17) 3178109941365452 a001 956722026041/20633239*3571^(4/17) 3178109941365496 a001 182717648081/3940598*3571^(4/17) 3178109941365796 a001 139583862445/3010349*3571^(4/17) 3178109941367849 a001 53316291173/1149851*3571^(4/17) 3178109941381920 a001 10182505537/219602*3571^(4/17) 3178109941478369 a001 7778742049/167761*3571^(4/17) 3178109941831607 a001 31622993/2889*5778^(7/18) 3178109942136902 a001 1134903170/15127*3571^(3/17) 3178109942139439 a001 2971215073/64079*3571^(4/17) 3178109945591088 a001 567451585/2889*2207^(1/16) 3178109946373968 m002 -2/Pi^5+Pi+Tanh[Pi]/E^Pi 3178109946670477 a001 567451585/12238*3571^(4/17) 3178109947120214 a001 39088169/5778*5778^(4/9) 3178109948406253 a001 165580141/9349*3571^(6/17) 3178109949772781 a001 1328767770/4181 3178109951669136 a001 832040/15127*9349^(18/19) 3178109952408823 a001 24157817/5778*5778^(1/2) 3178109953584154 a001 1346269/15127*9349^(17/19) 3178109953999315 a001 2971215073/39603*3571^(3/17) 3178109955497419 a001 311187/2161*9349^(16/19) 3178109955730017 a001 7778742049/103682*3571^(3/17) 3178109955982524 a001 20365011074/271443*3571^(3/17) 3178109956019364 a001 53316291173/710647*3571^(3/17) 3178109956024739 a001 139583862445/1860498*3571^(3/17) 3178109956025523 a001 365435296162/4870847*3571^(3/17) 3178109956025637 a001 956722026041/12752043*3571^(3/17) 3178109956025654 a001 2504730781961/33385282*3571^(3/17) 3178109956025656 a001 6557470319842/87403803*3571^(3/17) 3178109956025657 a001 10610209857723/141422324*3571^(3/17) 3178109956025658 a001 4052739537881/54018521*3571^(3/17) 3178109956025664 a001 140728068720/1875749*3571^(3/17) 3178109956025708 a001 591286729879/7881196*3571^(3/17) 3178109956026007 a001 225851433717/3010349*3571^(3/17) 3178109956028060 a001 86267571272/1149851*3571^(3/17) 3178109956042132 a001 32951280099/439204*3571^(3/17) 3178109956138581 a001 75025*3571^(3/17) 3178109956797114 a001 1836311903/15127*3571^(2/17) 3178109956799650 a001 4807526976/64079*3571^(3/17) 3178109957126487 m001 Zeta(1/2)/sin(1)*FeigenbaumC 3178109957411353 a001 3524578/15127*9349^(15/19) 3178109957697427 a001 2584*5778^(5/9) 3178109958569759 m001 (Lehmer+ZetaQ(3))/(exp(1/Pi)+polylog(4,1/2)) 3178109959228961 a001 514229/2207*2207^(15/16) 3178109959325031 a001 5702887/15127*9349^(14/19) 3178109961238807 a001 9227465/15127*9349^(13/19) 3178109961330689 a001 1836311903/24476*3571^(3/17) 3178109961731643 a001 1328767775/4181 3178109962986045 a001 9227465/5778*5778^(11/18) 3178109963066465 a001 267914296/9349*3571^(5/17) 3178109963152546 a001 14930352/15127*9349^(12/19) 3178109963532333 a001 726103/13201*9349^(18/19) 3178109963645060 a001 2/4181*(1/2+1/2*5^(1/2))^47 3178109964123415 a001 1328767776/4181 3178109965066299 a001 24157817/15127*9349^(11/19) 3178109965263150 a001 5702887/103682*9349^(18/19) 3178109965332242 r005 Im(z^2+c),c=43/118+12/47*I,n=18 3178109965446267 a001 3524578/39603*9349^(17/19) 3178109965515673 a001 4976784/90481*9349^(18/19) 3178109965552516 a001 39088169/710647*9349^(18/19) 3178109965557891 a001 831985/15126*9349^(18/19) 3178109965558675 a001 267914296/4870847*9349^(18/19) 3178109965558790 a001 233802911/4250681*9349^(18/19) 3178109965558806 a001 1836311903/33385282*9349^(18/19) 3178109965558809 a001 1602508992/29134601*9349^(18/19) 3178109965558809 a001 12586269025/228826127*9349^(18/19) 3178109965558809 a001 10983760033/199691526*9349^(18/19) 3178109965558809 a001 86267571272/1568397607*9349^(18/19) 3178109965558809 a001 75283811239/1368706081*9349^(18/19) 3178109965558809 a001 591286729879/10749957122*9349^(18/19) 3178109965558809 a001 12585437040/228811001*9349^(18/19) 3178109965558809 a001 4052739537881/73681302247*9349^(18/19) 3178109965558809 a001 3536736619241/64300051206*9349^(18/19) 3178109965558809 a001 6557470319842/119218851371*9349^(18/19) 3178109965558809 a001 2504730781961/45537549124*9349^(18/19) 3178109965558809 a001 956722026041/17393796001*9349^(18/19) 3178109965558809 a001 365435296162/6643838879*9349^(18/19) 3178109965558809 a001 139583862445/2537720636*9349^(18/19) 3178109965558809 a001 53316291173/969323029*9349^(18/19) 3178109965558809 a001 20365011074/370248451*9349^(18/19) 3178109965558809 a001 7778742049/141422324*9349^(18/19) 3178109965558810 a001 2971215073/54018521*9349^(18/19) 3178109965558817 a001 1134903170/20633239*9349^(18/19) 3178109965558860 a001 433494437/7881196*9349^(18/19) 3178109965559160 a001 165580141/3010349*9349^(18/19) 3178109965561213 a001 63245986/1149851*9349^(18/19) 3178109965575286 a001 24157817/439204*9349^(18/19) 3178109965671741 a001 9227465/167761*9349^(18/19) 3178109966332854 a001 3524578/64079*9349^(18/19) 3178109966980047 a001 39088169/15127*9349^(10/19) 3178109967176926 a001 9227465/103682*9349^(17/19) 3178109967359946 a001 5702887/39603*9349^(16/19) 3178109967429426 a001 24157817/271443*9349^(17/19) 3178109967466265 a001 63245986/710647*9349^(17/19) 3178109967471640 a001 165580141/1860498*9349^(17/19) 3178109967472424 a001 433494437/4870847*9349^(17/19) 3178109967472539 a001 1134903170/12752043*9349^(17/19) 3178109967472555 a001 2971215073/33385282*9349^(17/19) 3178109967472558 a001 7778742049/87403803*9349^(17/19) 3178109967472558 a001 20365011074/228826127*9349^(17/19) 3178109967472558 a001 53316291173/599074578*9349^(17/19) 3178109967472558 a001 139583862445/1568397607*9349^(17/19) 3178109967472558 a001 365435296162/4106118243*9349^(17/19) 3178109967472558 a001 956722026041/10749957122*9349^(17/19) 3178109967472558 a001 2504730781961/28143753123*9349^(17/19) 3178109967472558 a001 6557470319842/73681302247*9349^(17/19) 3178109967472558 a001 10610209857723/119218851371*9349^(17/19) 3178109967472558 a001 4052739537881/45537549124*9349^(17/19) 3178109967472558 a001 1548008755920/17393796001*9349^(17/19) 3178109967472558 a001 591286729879/6643838879*9349^(17/19) 3178109967472558 a001 225851433717/2537720636*9349^(17/19) 3178109967472558 a001 86267571272/969323029*9349^(17/19) 3178109967472558 a001 32951280099/370248451*9349^(17/19) 3178109967472558 a001 12586269025/141422324*9349^(17/19) 3178109967472559 a001 4807526976/54018521*9349^(17/19) 3178109967472566 a001 1836311903/20633239*9349^(17/19) 3178109967472609 a001 3524667/39604*9349^(17/19) 3178109967472909 a001 267914296/3010349*9349^(17/19) 3178109967474962 a001 102334155/1149851*9349^(17/19) 3178109967489033 a001 39088169/439204*9349^(17/19) 3178109967585480 a001 14930352/167761*9349^(17/19) 3178109968185169 m001 (Stephens+ZetaQ(2))/(Gompertz-Kolakoski) 3178109968246532 a001 5702887/64079*9349^(17/19) 3178109968274626 a001 5702887/5778*5778^(2/3) 3178109968659527 a001 1602508992/13201*3571^(2/17) 3178109968893796 a001 63245986/15127*9349^(9/19) 3178109968906960 a001 1328767778/4181 3178109969090665 a001 7465176/51841*9349^(16/19) 3178109969173688 r005 Re(z^2+c),c=-51/122+1/60*I,n=13 3178109969273722 a001 9227465/39603*9349^(15/19) 3178109969343174 a001 39088169/271443*9349^(16/19) 3178109969380014 a001 14619165/101521*9349^(16/19) 3178109969385389 a001 133957148/930249*9349^(16/19) 3178109969386173 a001 701408733/4870847*9349^(16/19) 3178109969386288 a001 1836311903/12752043*9349^(16/19) 3178109969386304 a001 14930208/103681*9349^(16/19) 3178109969386307 a001 12586269025/87403803*9349^(16/19) 3178109969386307 a001 32951280099/228826127*9349^(16/19) 3178109969386307 a001 43133785636/299537289*9349^(16/19) 3178109969386307 a001 32264490531/224056801*9349^(16/19) 3178109969386307 a001 591286729879/4106118243*9349^(16/19) 3178109969386307 a001 774004377960/5374978561*9349^(16/19) 3178109969386307 a001 4052739537881/28143753123*9349^(16/19) 3178109969386307 a001 1515744265389/10525900321*9349^(16/19) 3178109969386307 a001 3278735159921/22768774562*9349^(16/19) 3178109969386307 a001 2504730781961/17393796001*9349^(16/19) 3178109969386307 a001 956722026041/6643838879*9349^(16/19) 3178109969386307 a001 182717648081/1268860318*9349^(16/19) 3178109969386307 a001 139583862445/969323029*9349^(16/19) 3178109969386307 a001 53316291173/370248451*9349^(16/19) 3178109969386307 a001 10182505537/70711162*9349^(16/19) 3178109969386308 a001 7778742049/54018521*9349^(16/19) 3178109969386315 a001 2971215073/20633239*9349^(16/19) 3178109969386358 a001 567451585/3940598*9349^(16/19) 3178109969386658 a001 433494437/3010349*9349^(16/19) 3178109969388711 a001 165580141/1149851*9349^(16/19) 3178109969402783 a001 31622993/219602*9349^(16/19) 3178109969499233 a001 24157817/167761*9349^(16/19) 3178109970160309 a001 9227465/64079*9349^(16/19) 3178109970390229 a001 12586269025/103682*3571^(2/17) 3178109970642735 a001 121393*3571^(2/17) 3178109970679576 a001 86267571272/710647*3571^(2/17) 3178109970684950 a001 75283811239/620166*3571^(2/17) 3178109970685735 a001 591286729879/4870847*3571^(2/17) 3178109970685849 a001 516002918640/4250681*3571^(2/17) 3178109970685866 a001 4052739537881/33385282*3571^(2/17) 3178109970685868 a001 3536736619241/29134601*3571^(2/17) 3178109970685870 a001 6557470319842/54018521*3571^(2/17) 3178109970685876 a001 2504730781961/20633239*3571^(2/17) 3178109970685920 a001 956722026041/7881196*3571^(2/17) 3178109970686219 a001 365435296162/3010349*3571^(2/17) 3178109970688272 a001 139583862445/1149851*3571^(2/17) 3178109970702344 a001 53316291173/439204*3571^(2/17) 3178109970798793 a001 20365011074/167761*3571^(2/17) 3178109970807545 a001 6765*9349^(8/19) 3178109970864192 a001 1346269/24476*9349^(18/19) 3178109971004418 a001 24157817/103682*9349^(15/19) 3178109971187461 a001 4976784/13201*9349^(14/19) 3178109971256923 a001 63245986/271443*9349^(15/19) 3178109971293763 a001 165580141/710647*9349^(15/19) 3178109971299138 a001 433494437/1860498*9349^(15/19) 3178109971299922 a001 1134903170/4870847*9349^(15/19) 3178109971300037 a001 2971215073/12752043*9349^(15/19) 3178109971300053 a001 7778742049/33385282*9349^(15/19) 3178109971300056 a001 20365011074/87403803*9349^(15/19) 3178109971300056 a001 53316291173/228826127*9349^(15/19) 3178109971300056 a001 139583862445/599074578*9349^(15/19) 3178109971300056 a001 365435296162/1568397607*9349^(15/19) 3178109971300056 a001 956722026041/4106118243*9349^(15/19) 3178109971300056 a001 2504730781961/10749957122*9349^(15/19) 3178109971300056 a001 6557470319842/28143753123*9349^(15/19) 3178109971300056 a001 10610209857723/45537549124*9349^(15/19) 3178109971300056 a001 4052739537881/17393796001*9349^(15/19) 3178109971300056 a001 1548008755920/6643838879*9349^(15/19) 3178109971300056 a001 591286729879/2537720636*9349^(15/19) 3178109971300056 a001 225851433717/969323029*9349^(15/19) 3178109971300056 a001 86267571272/370248451*9349^(15/19) 3178109971300057 a001 63246219/271444*9349^(15/19) 3178109971300057 a001 12586269025/54018521*9349^(15/19) 3178109971300064 a001 4807526976/20633239*9349^(15/19) 3178109971300108 a001 1836311903/7881196*9349^(15/19) 3178109971300407 a001 701408733/3010349*9349^(15/19) 3178109971302460 a001 267914296/1149851*9349^(15/19) 3178109971316532 a001 102334155/439204*9349^(15/19) 3178109971412980 a001 39088169/167761*9349^(15/19) 3178109971457326 a001 2971215073/15127*3571^(1/17) 3178109971459862 a001 7778742049/64079*3571^(2/17) 3178109972074047 a001 14930352/64079*9349^(15/19) 3178109972228777 a001 6765/15127*20633239^(4/5) 3178109972228783 a001 6765/15127*17393796001^(4/7) 3178109972228783 a001 6765/15127*14662949395604^(4/9) 3178109972228783 a001 6765/15127*(1/2+1/2*5^(1/2))^28 3178109972228783 a001 6765/15127*73681302247^(7/13) 3178109972228783 a001 6765/15127*10749957122^(7/12) 3178109972228783 a001 6765/15127*4106118243^(14/23) 3178109972228783 a001 6765/15127*1568397607^(7/11) 3178109972228783 a001 6765/15127*599074578^(2/3) 3178109972228783 a001 6765/15127*228826127^(7/10) 3178109972228783 a001 6765/15127*87403803^(14/19) 3178109972228785 a001 6765/15127*33385282^(7/9) 3178109972228799 a001 6765/15127*12752043^(14/17) 3178109972228900 a001 6765/15127*4870847^(7/8) 3178109972229640 a001 6765/15127*1860498^(14/15) 3178109972721294 a001 165580141/15127*9349^(7/19) 3178109972777457 a001 2178309/24476*9349^(17/19) 3178109972918166 a001 39088169/103682*9349^(14/19) 3178109973101214 a001 24157817/39603*9349^(13/19) 3178109973170672 a001 34111385/90481*9349^(14/19) 3178109973207512 a001 267914296/710647*9349^(14/19) 3178109973212887 a001 233802911/620166*9349^(14/19) 3178109973213671 a001 1836311903/4870847*9349^(14/19) 3178109973213786 a001 1602508992/4250681*9349^(14/19) 3178109973213803 a001 12586269025/33385282*9349^(14/19) 3178109973213805 a001 10983760033/29134601*9349^(14/19) 3178109973213805 a001 86267571272/228826127*9349^(14/19) 3178109973213805 a001 267913919/710646*9349^(14/19) 3178109973213805 a001 591286729879/1568397607*9349^(14/19) 3178109973213805 a001 516002918640/1368706081*9349^(14/19) 3178109973213805 a001 4052739537881/10749957122*9349^(14/19) 3178109973213805 a001 3536736619241/9381251041*9349^(14/19) 3178109973213805 a001 6557470319842/17393796001*9349^(14/19) 3178109973213805 a001 2504730781961/6643838879*9349^(14/19) 3178109973213805 a001 956722026041/2537720636*9349^(14/19) 3178109973213805 a001 365435296162/969323029*9349^(14/19) 3178109973213805 a001 139583862445/370248451*9349^(14/19) 3178109973213806 a001 53316291173/141422324*9349^(14/19) 3178109973213807 a001 20365011074/54018521*9349^(14/19) 3178109973213813 a001 7778742049/20633239*9349^(14/19) 3178109973213857 a001 2971215073/7881196*9349^(14/19) 3178109973214156 a001 1134903170/3010349*9349^(14/19) 3178109973216209 a001 433494437/1149851*9349^(14/19) 3178109973230281 a001 165580141/439204*9349^(14/19) 3178109973326730 a001 63245986/167761*9349^(14/19) 3178109973563305 a001 1762289/2889*5778^(13/18) 3178109973987800 a001 24157817/64079*9349^(14/19) 3178109974635043 a001 267914296/15127*9349^(6/19) 3178109974691391 a001 1762289/12238*9349^(16/19) 3178109974831915 a001 31622993/51841*9349^(13/19) 3178109975014961 a001 39088169/39603*9349^(12/19) 3178109975084421 a001 165580141/271443*9349^(13/19) 3178109975121261 a001 433494437/710647*9349^(13/19) 3178109975126636 a001 567451585/930249*9349^(13/19) 3178109975127421 a001 2971215073/4870847*9349^(13/19) 3178109975127535 a001 7778742049/12752043*9349^(13/19) 3178109975127552 a001 10182505537/16692641*9349^(13/19) 3178109975127554 a001 53316291173/87403803*9349^(13/19) 3178109975127554 a001 139583862445/228826127*9349^(13/19) 3178109975127554 a001 182717648081/299537289*9349^(13/19) 3178109975127554 a001 956722026041/1568397607*9349^(13/19) 3178109975127554 a001 2504730781961/4106118243*9349^(13/19) 3178109975127554 a001 3278735159921/5374978561*9349^(13/19) 3178109975127554 a001 10610209857723/17393796001*9349^(13/19) 3178109975127554 a001 4052739537881/6643838879*9349^(13/19) 3178109975127554 a001 1134903780/1860499*9349^(13/19) 3178109975127554 a001 591286729879/969323029*9349^(13/19) 3178109975127555 a001 225851433717/370248451*9349^(13/19) 3178109975127555 a001 21566892818/35355581*9349^(13/19) 3178109975127556 a001 32951280099/54018521*9349^(13/19) 3178109975127562 a001 1144206275/1875749*9349^(13/19) 3178109975127606 a001 1201881744/1970299*9349^(13/19) 3178109975127905 a001 1836311903/3010349*9349^(13/19) 3178109975129958 a001 701408733/1149851*9349^(13/19) 3178109975144030 a001 66978574/109801*9349^(13/19) 3178109975240479 a001 9303105/15251*9349^(13/19) 3178109975901548 a001 39088169/64079*9349^(13/19) 3178109975990901 a001 2971215073/24476*3571^(2/17) 3178109976548792 a001 433494437/15127*9349^(5/19) 3178109976605069 a001 5702887/24476*9349^(15/19) 3178109976745664 a001 102334155/103682*9349^(12/19) 3178109976928711 a001 63245986/39603*9349^(11/19) 3178109976998170 a001 267914296/271443*9349^(12/19) 3178109977035011 a001 701408733/710647*9349^(12/19) 3178109977040385 a001 1836311903/1860498*9349^(12/19) 3178109977041170 a001 4807526976/4870847*9349^(12/19) 3178109977041284 a001 12586269025/12752043*9349^(12/19) 3178109977041301 a001 32951280099/33385282*9349^(12/19) 3178109977041303 a001 86267571272/87403803*9349^(12/19) 3178109977041304 a001 225851433717/228826127*9349^(12/19) 3178109977041304 a001 591286729879/599074578*9349^(12/19) 3178109977041304 a001 1548008755920/1568397607*9349^(12/19) 3178109977041304 a001 4052739537881/4106118243*9349^(12/19) 3178109977041304 a001 4807525989/4870846*9349^(12/19) 3178109977041304 a001 6557470319842/6643838879*9349^(12/19) 3178109977041304 a001 2504730781961/2537720636*9349^(12/19) 3178109977041304 a001 956722026041/969323029*9349^(12/19) 3178109977041304 a001 365435296162/370248451*9349^(12/19) 3178109977041304 a001 139583862445/141422324*9349^(12/19) 3178109977041305 a001 53316291173/54018521*9349^(12/19) 3178109977041311 a001 20365011074/20633239*9349^(12/19) 3178109977041355 a001 7778742049/7881196*9349^(12/19) 3178109977041654 a001 2971215073/3010349*9349^(12/19) 3178109977043707 a001 1134903170/1149851*9349^(12/19) 3178109977057779 a001 433494437/439204*9349^(12/19) 3178109977154228 a001 165580141/167761*9349^(12/19) 3178109977726677 a001 433494437/9349*3571^(4/17) 3178109977815298 a001 63245986/64079*9349^(12/19) 3178109978462541 a001 701408733/15127*9349^(4/19) 3178109978518845 a001 9227465/24476*9349^(14/19) 3178109978659413 a001 165580141/103682*9349^(11/19) 3178109978842460 a001 34111385/13201*9349^(10/19) 3178109978851727 a001 726103/1926*5778^(7/9) 3178109978911919 a001 433494437/271443*9349^(11/19) 3178109978948760 a001 1134903170/710647*9349^(11/19) 3178109978954135 a001 2971215073/1860498*9349^(11/19) 3178109978954919 a001 7778742049/4870847*9349^(11/19) 3178109978955033 a001 20365011074/12752043*9349^(11/19) 3178109978955050 a001 53316291173/33385282*9349^(11/19) 3178109978955052 a001 139583862445/87403803*9349^(11/19) 3178109978955053 a001 365435296162/228826127*9349^(11/19) 3178109978955053 a001 956722026041/599074578*9349^(11/19) 3178109978955053 a001 2504730781961/1568397607*9349^(11/19) 3178109978955053 a001 6557470319842/4106118243*9349^(11/19) 3178109978955053 a001 10610209857723/6643838879*9349^(11/19) 3178109978955053 a001 4052739537881/2537720636*9349^(11/19) 3178109978955053 a001 1548008755920/969323029*9349^(11/19) 3178109978955053 a001 591286729879/370248451*9349^(11/19) 3178109978955053 a001 225851433717/141422324*9349^(11/19) 3178109978955054 a001 86267571272/54018521*9349^(11/19) 3178109978955060 a001 32951280099/20633239*9349^(11/19) 3178109978955104 a001 12586269025/7881196*9349^(11/19) 3178109978955403 a001 4807526976/3010349*9349^(11/19) 3178109978957456 a001 1836311903/1149851*9349^(11/19) 3178109978971528 a001 701408733/439204*9349^(11/19) 3178109979067977 a001 267914296/167761*9349^(11/19) 3178109979729046 a001 102334155/64079*9349^(11/19) 3178109980376290 a001 1134903170/15127*9349^(3/19) 3178109980432584 a001 3732588/6119*9349^(13/19) 3178109980573162 a001 133957148/51841*9349^(10/19) 3178109980756209 a001 165580141/39603*9349^(9/19) 3178109980814909 a001 3478759185/10946 3178109980825669 a001 233802911/90481*9349^(10/19) 3178109980862509 a001 1836311903/710647*9349^(10/19) 3178109980867884 a001 267084832/103361*9349^(10/19) 3178109980868668 a001 12586269025/4870847*9349^(10/19) 3178109980868782 a001 10983760033/4250681*9349^(10/19) 3178109980868799 a001 43133785636/16692641*9349^(10/19) 3178109980868801 a001 75283811239/29134601*9349^(10/19) 3178109980868802 a001 591286729879/228826127*9349^(10/19) 3178109980868802 a001 86000486440/33281921*9349^(10/19) 3178109980868802 a001 4052739537881/1568397607*9349^(10/19) 3178109980868802 a001 3536736619241/1368706081*9349^(10/19) 3178109980868802 a001 3278735159921/1268860318*9349^(10/19) 3178109980868802 a001 2504730781961/969323029*9349^(10/19) 3178109980868802 a001 956722026041/370248451*9349^(10/19) 3178109980868802 a001 182717648081/70711162*9349^(10/19) 3178109980868803 a001 139583862445/54018521*9349^(10/19) 3178109980868809 a001 53316291173/20633239*9349^(10/19) 3178109980868853 a001 10182505537/3940598*9349^(10/19) 3178109980869152 a001 7778742049/3010349*9349^(10/19) 3178109980871205 a001 2971215073/1149851*9349^(10/19) 3178109980885277 a001 567451585/219602*9349^(10/19) 3178109980981726 a001 433494437/167761*9349^(10/19) 3178109981058833 a001 317811/15127*24476^(20/21) 3178109981320150 a001 514229/15127*24476^(19/21) 3178109981569449 a001 832040/15127*24476^(6/7) 3178109981642796 a001 165580141/64079*9349^(10/19) 3178109981823338 a001 1346269/15127*24476^(17/21) 3178109982075474 a001 311187/2161*24476^(16/21) 3178109982290040 a001 1836311903/15127*9349^(2/19) 3178109982328280 a001 3524578/15127*24476^(5/7) 3178109982346337 a001 24157817/24476*9349^(12/19) 3178109982486911 a001 433494437/103682*9349^(9/19) 3178109982580830 a001 5702887/15127*24476^(2/3) 3178109982669958 a001 267914296/39603*9349^(8/19) 3178109982739418 a001 1134903170/271443*9349^(9/19) 3178109982776258 a001 2971215073/710647*9349^(9/19) 3178109982781633 a001 7778742049/1860498*9349^(9/19) 3178109982782417 a001 20365011074/4870847*9349^(9/19) 3178109982782531 a001 53316291173/12752043*9349^(9/19) 3178109982782548 a001 139583862445/33385282*9349^(9/19) 3178109982782550 a001 365435296162/87403803*9349^(9/19) 3178109982782551 a001 956722026041/228826127*9349^(9/19) 3178109982782551 a001 2504730781961/599074578*9349^(9/19) 3178109982782551 a001 6557470319842/1568397607*9349^(9/19) 3178109982782551 a001 10610209857723/2537720636*9349^(9/19) 3178109982782551 a001 4052739537881/969323029*9349^(9/19) 3178109982782551 a001 1548008755920/370248451*9349^(9/19) 3178109982782551 a001 591286729879/141422324*9349^(9/19) 3178109982782552 a001 225851433717/54018521*9349^(9/19) 3178109982782558 a001 86267571272/20633239*9349^(9/19) 3178109982782602 a001 32951280099/7881196*9349^(9/19) 3178109982782901 a001 12586269025/3010349*9349^(9/19) 3178109982784955 a001 4807526976/1149851*9349^(9/19) 3178109982799026 a001 1836311903/439204*9349^(9/19) 3178109982833478 a001 9227465/15127*24476^(13/21) 3178109982895475 a001 701408733/167761*9349^(9/19) 3178109982910131 m006 (3/5*Pi^2+3)/(1/5*Pi^2+5/6) 3178109982910131 m008 (3/5*Pi^2+3)/(1/5*Pi^2+5/6) 3178109983086088 a001 14930352/15127*24476^(4/7) 3178109983319739 a001 7778742049/39603*3571^(1/17) 3178109983338712 a001 24157817/15127*24476^(11/21) 3178109983556545 a001 267914296/64079*9349^(9/19) 3178109983591331 a001 39088169/15127*24476^(10/21) 3178109983843953 a001 63245986/15127*24476^(3/7) 3178109984091149 a001 2255/13201*7881196^(10/11) 3178109984091189 a001 2255/13201*20633239^(6/7) 3178109984091195 a001 2255/13201*141422324^(10/13) 3178109984091196 a001 17711/15127*141422324^(2/3) 3178109984091196 a001 2255/13201*2537720636^(2/3) 3178109984091196 a001 2255/13201*45537549124^(10/17) 3178109984091196 a001 2255/13201*312119004989^(6/11) 3178109984091196 a001 2255/13201*14662949395604^(10/21) 3178109984091196 a001 2255/13201*(1/2+1/2*5^(1/2))^30 3178109984091196 a001 2255/13201*192900153618^(5/9) 3178109984091196 a001 2255/13201*28143753123^(3/5) 3178109984091196 a001 2255/13201*10749957122^(5/8) 3178109984091196 a001 2255/13201*4106118243^(15/23) 3178109984091196 a001 2255/13201*1568397607^(15/22) 3178109984091196 a001 2255/13201*599074578^(5/7) 3178109984091196 a001 2255/13201*228826127^(3/4) 3178109984091196 a001 17711/15127*(1/2+1/2*5^(1/2))^26 3178109984091196 a001 17711/15127*73681302247^(1/2) 3178109984091196 a001 17711/15127*10749957122^(13/24) 3178109984091196 a001 17711/15127*4106118243^(13/23) 3178109984091196 a001 17711/15127*1568397607^(13/22) 3178109984091196 a001 17711/15127*599074578^(13/21) 3178109984091196 a001 17711/15127*228826127^(13/20) 3178109984091196 a001 2255/13201*87403803^(15/19) 3178109984091196 a001 17711/15127*87403803^(13/19) 3178109984091198 a001 17711/15127*33385282^(13/18) 3178109984091198 a001 2255/13201*33385282^(5/6) 3178109984091211 a001 17711/15127*12752043^(13/17) 3178109984091213 a001 2255/13201*12752043^(15/17) 3178109984091304 a001 17711/15127*4870847^(13/16) 3178109984091321 a001 2255/13201*4870847^(15/16) 3178109984091991 a001 17711/15127*1860498^(13/15) 3178109984096573 a001 6765*24476^(8/21) 3178109984097039 a001 17711/15127*710647^(13/14) 3178109984140820 a001 1346269/5778*5778^(5/6) 3178109984203789 a001 2971215073/15127*9349^(1/19) 3178109984260085 a001 39088169/24476*9349^(11/19) 3178109984349194 a001 165580141/15127*24476^(1/3) 3178109984400661 a001 701408733/103682*9349^(8/19) 3178109984583707 a001 433494437/39603*9349^(7/19) 3178109984601814 a001 267914296/15127*24476^(2/7) 3178109984653167 a001 1836311903/271443*9349^(8/19) 3178109984690007 a001 686789568/101521*9349^(8/19) 3178109984695382 a001 12586269025/1860498*9349^(8/19) 3178109984696166 a001 32951280099/4870847*9349^(8/19) 3178109984696280 a001 86267571272/12752043*9349^(8/19) 3178109984696297 a001 32264490531/4769326*9349^(8/19) 3178109984696299 a001 591286729879/87403803*9349^(8/19) 3178109984696300 a001 1548008755920/228826127*9349^(8/19) 3178109984696300 a001 4052739537881/599074578*9349^(8/19) 3178109984696300 a001 1515744265389/224056801*9349^(8/19) 3178109984696300 a001 6557470319842/969323029*9349^(8/19) 3178109984696300 a001 2504730781961/370248451*9349^(8/19) 3178109984696300 a001 956722026041/141422324*9349^(8/19) 3178109984696301 a001 365435296162/54018521*9349^(8/19) 3178109984696307 a001 139583862445/20633239*9349^(8/19) 3178109984696351 a001 53316291173/7881196*9349^(8/19) 3178109984696651 a001 20365011074/3010349*9349^(8/19) 3178109984698704 a001 7778742049/1149851*9349^(8/19) 3178109984712775 a001 2971215073/439204*9349^(8/19) 3178109984809224 a001 1134903170/167761*9349^(8/19) 3178109984854435 a001 433494437/15127*24476^(5/21) 3178109985050441 a001 10182505537/51841*3571^(1/17) 3178109985107055 a001 701408733/15127*24476^(4/21) 3178109985302947 a001 53316291173/271443*3571^(1/17) 3178109985334063 a001 121393/15127*64079^(22/23) 3178109985339787 a001 139583862445/710647*3571^(1/17) 3178109985343895 a001 9107509785/28657 3178109985345162 a001 182717648081/930249*3571^(1/17) 3178109985345947 a001 956722026041/4870847*3571^(1/17) 3178109985346061 a001 2504730781961/12752043*3571^(1/17) 3178109985346078 a001 3278735159921/16692641*3571^(1/17) 3178109985346082 a001 10610209857723/54018521*3571^(1/17) 3178109985346088 a001 4052739537881/20633239*3571^(1/17) 3178109985346132 a001 387002188980/1970299*3571^(1/17) 3178109985346431 a001 591286729879/3010349*3571^(1/17) 3178109985348484 a001 225851433717/1149851*3571^(1/17) 3178109985359676 a001 1134903170/15127*24476^(1/7) 3178109985362556 a001 196418*3571^(1/17) 3178109985427323 a001 196418/15127*64079^(21/23) 3178109985438207 a001 317811/15127*64079^(20/23) 3178109985459005 a001 32951280099/167761*3571^(1/17) 3178109985470294 a001 433494437/64079*9349^(8/19) 3178109985480555 a001 514229/15127*64079^(19/23) 3178109985510885 a001 832040/15127*64079^(18/23) 3178109985545806 a001 1346269/15127*64079^(17/23) 3178109985578973 a001 311187/2161*64079^(16/23) 3178109985612297 a001 1836311903/15127*24476^(2/21) 3178109985612810 a001 3524578/15127*64079^(15/23) 3178109985646391 a001 5702887/15127*64079^(14/23) 3178109985680070 a001 9227465/15127*64079^(13/23) 3178109985713712 a001 14930352/15127*64079^(12/23) 3178109985747368 a001 24157817/15127*64079^(11/23) 3178109985781018 a001 39088169/15127*64079^(10/23) 3178109985807254 a001 6624/2161*439204^(8/9) 3178109985814671 a001 63245986/15127*64079^(9/23) 3178109985821861 a001 6624/2161*7881196^(8/11) 3178109985821898 a001 6624/2161*141422324^(8/13) 3178109985821898 a001 6765/103682*(1/2+1/2*5^(1/2))^32 3178109985821898 a001 6765/103682*23725150497407^(1/2) 3178109985821898 a001 6765/103682*505019158607^(4/7) 3178109985821898 a001 6765/103682*73681302247^(8/13) 3178109985821898 a001 6765/103682*10749957122^(2/3) 3178109985821898 a001 6765/103682*4106118243^(16/23) 3178109985821898 a001 6765/103682*1568397607^(8/11) 3178109985821898 a001 6765/103682*599074578^(16/21) 3178109985821898 a001 6765/103682*228826127^(4/5) 3178109985821898 a001 6624/2161*2537720636^(8/15) 3178109985821898 a001 6624/2161*45537549124^(8/17) 3178109985821898 a001 6624/2161*14662949395604^(8/21) 3178109985821898 a001 6624/2161*(1/2+1/2*5^(1/2))^24 3178109985821898 a001 6624/2161*192900153618^(4/9) 3178109985821898 a001 6624/2161*73681302247^(6/13) 3178109985821898 a001 6624/2161*10749957122^(1/2) 3178109985821898 a001 6624/2161*4106118243^(12/23) 3178109985821898 a001 6624/2161*1568397607^(6/11) 3178109985821898 a001 6624/2161*599074578^(4/7) 3178109985821898 a001 6624/2161*228826127^(3/5) 3178109985821899 a001 6624/2161*87403803^(12/19) 3178109985821899 a001 6765/103682*87403803^(16/19) 3178109985821900 a001 6624/2161*33385282^(2/3) 3178109985821901 a001 6765/103682*33385282^(8/9) 3178109985821912 a001 6624/2161*12752043^(12/17) 3178109985821917 a001 6765/103682*12752043^(16/17) 3178109985821999 a001 6624/2161*4870847^(3/4) 3178109985822633 a001 6624/2161*1860498^(4/5) 3178109985827292 a001 6624/2161*710647^(6/7) 3178109985848322 a001 6765*64079^(8/23) 3178109985861714 a001 6624/2161*271443^(12/13) 3178109985864917 a001 2971215073/15127*24476^(1/21) 3178109985881974 a001 165580141/15127*64079^(7/23) 3178109985915626 a001 267914296/15127*64079^(6/23) 3178109985949278 a001 433494437/15127*64079^(5/23) 3178109985982930 a001 701408733/15127*64079^(4/23) 3178109986004665 a001 4768754034/15005 3178109986016582 a001 1134903170/15127*64079^(3/23) 3178109986020905 a001 317811/15127*167761^(4/5) 3178109986049834 a001 3524578/15127*167761^(3/5) 3178109986050234 a001 1836311903/15127*64079^(2/23) 3178109986072368 a001 39088169/15127*167761^(2/5) 3178109986074370 a001 121393/15127*7881196^(2/3) 3178109986074404 a001 2255/90481*45537549124^(2/3) 3178109986074404 a001 2255/90481*(1/2+1/2*5^(1/2))^34 3178109986074404 a001 2255/90481*10749957122^(17/24) 3178109986074404 a001 2255/90481*4106118243^(17/23) 3178109986074404 a001 2255/90481*1568397607^(17/22) 3178109986074404 a001 2255/90481*599074578^(17/21) 3178109986074404 a001 2255/90481*228826127^(17/20) 3178109986074404 a001 121393/15127*312119004989^(2/5) 3178109986074404 a001 121393/15127*(1/2+1/2*5^(1/2))^22 3178109986074404 a001 121393/15127*10749957122^(11/24) 3178109986074404 a001 121393/15127*4106118243^(11/23) 3178109986074404 a001 121393/15127*1568397607^(1/2) 3178109986074404 a001 121393/15127*599074578^(11/21) 3178109986074405 a001 121393/15127*228826127^(11/20) 3178109986074405 a001 121393/15127*87403803^(11/19) 3178109986074405 a001 2255/90481*87403803^(17/19) 3178109986074406 a001 121393/15127*33385282^(11/18) 3178109986074407 a001 2255/90481*33385282^(17/18) 3178109986074417 a001 121393/15127*12752043^(11/17) 3178109986074497 a001 121393/15127*4870847^(11/16) 3178109986075078 a001 121393/15127*1860498^(11/15) 3178109986079349 a001 121393/15127*710647^(11/14) 3178109986083886 a001 2971215073/15127*64079^(1/23) 3178109986094953 a001 433494437/15127*167761^(1/5) 3178109986101070 a001 62423800725/196418 3178109986105636 a001 832040/15127*439204^(2/3) 3178109986108436 a001 3524578/15127*439204^(5/9) 3178109986110212 a001 14930352/15127*439204^(4/9) 3178109986110902 a001 121393/15127*271443^(11/13) 3178109986111240 a001 317811/15127*20633239^(4/7) 3178109986111244 a001 6765/710647*141422324^(12/13) 3178109986111245 a001 6765/710647*2537720636^(4/5) 3178109986111245 a001 6765/710647*45537549124^(12/17) 3178109986111245 a001 6765/710647*14662949395604^(4/7) 3178109986111245 a001 6765/710647*(1/2+1/2*5^(1/2))^36 3178109986111245 a001 6765/710647*192900153618^(2/3) 3178109986111245 a001 6765/710647*73681302247^(9/13) 3178109986111245 a001 6765/710647*10749957122^(3/4) 3178109986111245 a001 6765/710647*4106118243^(18/23) 3178109986111245 a001 6765/710647*1568397607^(9/11) 3178109986111245 a001 6765/710647*599074578^(6/7) 3178109986111245 a001 6765/710647*228826127^(9/10) 3178109986111245 a001 317811/15127*2537720636^(4/9) 3178109986111245 a001 317811/15127*(1/2+1/2*5^(1/2))^20 3178109986111245 a001 317811/15127*23725150497407^(5/16) 3178109986111245 a001 317811/15127*505019158607^(5/14) 3178109986111245 a001 317811/15127*73681302247^(5/13) 3178109986111245 a001 317811/15127*28143753123^(2/5) 3178109986111245 a001 317811/15127*10749957122^(5/12) 3178109986111245 a001 317811/15127*4106118243^(10/23) 3178109986111245 a001 317811/15127*1568397607^(5/11) 3178109986111245 a001 317811/15127*599074578^(10/21) 3178109986111245 a001 317811/15127*228826127^(1/2) 3178109986111245 a001 317811/15127*87403803^(10/19) 3178109986111245 a001 6765/710647*87403803^(18/19) 3178109986111246 a001 317811/15127*33385282^(5/9) 3178109986111256 a001 317811/15127*12752043^(10/17) 3178109986111328 a001 317811/15127*4870847^(5/8) 3178109986111857 a001 317811/15127*1860498^(2/3) 3178109986112046 a001 63245986/15127*439204^(1/3) 3178109986113876 a001 267914296/15127*439204^(2/9) 3178109986115135 a001 163427632005/514229 3178109986115707 a001 1134903170/15127*439204^(1/9) 3178109986115740 a001 317811/15127*710647^(5/7) 3178109986116592 a001 832040/15127*7881196^(6/11) 3178109986116619 a001 832040/15127*141422324^(6/13) 3178109986116619 a001 55/15126*817138163596^(2/3) 3178109986116619 a001 55/15126*(1/2+1/2*5^(1/2))^38 3178109986116619 a001 55/15126*10749957122^(19/24) 3178109986116619 a001 55/15126*4106118243^(19/23) 3178109986116619 a001 55/15126*1568397607^(19/22) 3178109986116619 a001 55/15126*599074578^(19/21) 3178109986116620 a001 55/15126*228826127^(19/20) 3178109986116620 a001 832040/15127*2537720636^(2/5) 3178109986116620 a001 832040/15127*45537549124^(6/17) 3178109986116620 a001 832040/15127*14662949395604^(2/7) 3178109986116620 a001 832040/15127*(1/2+1/2*5^(1/2))^18 3178109986116620 a001 832040/15127*192900153618^(1/3) 3178109986116620 a001 832040/15127*10749957122^(3/8) 3178109986116620 a001 832040/15127*4106118243^(9/23) 3178109986116620 a001 832040/15127*1568397607^(9/22) 3178109986116620 a001 832040/15127*599074578^(3/7) 3178109986116620 a001 832040/15127*228826127^(9/20) 3178109986116620 a001 832040/15127*87403803^(9/19) 3178109986116621 a001 832040/15127*33385282^(1/2) 3178109986116630 a001 832040/15127*12752043^(9/17) 3178109986116695 a001 832040/15127*4870847^(9/16) 3178109986117170 a001 832040/15127*1860498^(3/5) 3178109986117187 a001 427859095290/1346269 3178109986117404 a001 6765/4870847*2537720636^(8/9) 3178109986117404 a001 6765/4870847*312119004989^(8/11) 3178109986117404 a001 6765/4870847*(1/2+1/2*5^(1/2))^40 3178109986117404 a001 6765/4870847*23725150497407^(5/8) 3178109986117404 a001 6765/4870847*73681302247^(10/13) 3178109986117404 a001 6765/4870847*28143753123^(4/5) 3178109986117404 a001 6765/4870847*10749957122^(5/6) 3178109986117404 a001 6765/4870847*4106118243^(20/23) 3178109986117404 a001 6765/4870847*1568397607^(10/11) 3178109986117404 a001 6765/4870847*599074578^(20/21) 3178109986117404 a001 311187/2161*(1/2+1/2*5^(1/2))^16 3178109986117404 a001 311187/2161*23725150497407^(1/4) 3178109986117404 a001 311187/2161*73681302247^(4/13) 3178109986117404 a001 311187/2161*10749957122^(1/3) 3178109986117404 a001 311187/2161*4106118243^(8/23) 3178109986117404 a001 311187/2161*1568397607^(4/11) 3178109986117404 a001 311187/2161*599074578^(8/21) 3178109986117404 a001 311187/2161*228826127^(2/5) 3178109986117404 a001 311187/2161*87403803^(8/19) 3178109986117405 a001 311187/2161*33385282^(4/9) 3178109986117413 a001 311187/2161*12752043^(8/17) 3178109986117471 a001 311187/2161*4870847^(1/2) 3178109986117486 a001 1120149653865/3524578 3178109986117515 a001 5702887/15127*20633239^(2/5) 3178109986117516 a001 14930352/15127*7881196^(4/11) 3178109986117518 a001 2255/4250681*2537720636^(14/15) 3178109986117518 a001 2255/4250681*17393796001^(6/7) 3178109986117518 a001 2255/4250681*45537549124^(14/17) 3178109986117518 a001 2255/4250681*14662949395604^(2/3) 3178109986117518 a001 2255/4250681*(1/2+1/2*5^(1/2))^42 3178109986117518 a001 2255/4250681*505019158607^(3/4) 3178109986117518 a001 2255/4250681*192900153618^(7/9) 3178109986117518 a001 2255/4250681*10749957122^(7/8) 3178109986117518 a001 2255/4250681*4106118243^(21/23) 3178109986117518 a001 2255/4250681*1568397607^(21/22) 3178109986117518 a001 5702887/15127*17393796001^(2/7) 3178109986117518 a001 5702887/15127*14662949395604^(2/9) 3178109986117518 a001 5702887/15127*(1/2+1/2*5^(1/2))^14 3178109986117518 a001 5702887/15127*10749957122^(7/24) 3178109986117518 a001 5702887/15127*4106118243^(7/23) 3178109986117518 a001 5702887/15127*1568397607^(7/22) 3178109986117518 a001 5702887/15127*599074578^(1/3) 3178109986117518 a001 5702887/15127*228826127^(7/20) 3178109986117518 a001 5702887/15127*87403803^(7/19) 3178109986117519 a001 5702887/15127*33385282^(7/18) 3178109986117522 a001 24157817/15127*7881196^(1/3) 3178109986117524 a001 63245986/15127*7881196^(3/11) 3178109986117526 a001 5702887/15127*12752043^(7/17) 3178109986117528 a001 267914296/15127*7881196^(2/11) 3178109986117530 a001 586517973261/1845493 3178109986117533 a001 1134903170/15127*7881196^(1/11) 3178109986117535 a001 6765/33385282*312119004989^(4/5) 3178109986117535 a001 6765/33385282*(1/2+1/2*5^(1/2))^44 3178109986117535 a001 6765/33385282*23725150497407^(11/16) 3178109986117535 a001 6765/33385282*73681302247^(11/13) 3178109986117535 a001 6765/33385282*10749957122^(11/12) 3178109986117535 a001 6765/33385282*4106118243^(22/23) 3178109986117535 a001 14930352/15127*141422324^(4/13) 3178109986117535 a001 14930352/15127*2537720636^(4/15) 3178109986117535 a001 14930352/15127*45537549124^(4/17) 3178109986117535 a001 14930352/15127*817138163596^(4/19) 3178109986117535 a001 14930352/15127*14662949395604^(4/21) 3178109986117535 a001 14930352/15127*(1/2+1/2*5^(1/2))^12 3178109986117535 a001 14930352/15127*192900153618^(2/9) 3178109986117535 a001 14930352/15127*73681302247^(3/13) 3178109986117535 a001 14930352/15127*10749957122^(1/4) 3178109986117535 a001 14930352/15127*4106118243^(6/23) 3178109986117535 a001 14930352/15127*1568397607^(3/11) 3178109986117535 a001 14930352/15127*599074578^(2/7) 3178109986117535 a001 14930352/15127*228826127^(3/10) 3178109986117535 a001 14930352/15127*87403803^(6/19) 3178109986117535 a001 39088169/15127*20633239^(2/7) 3178109986117536 a001 14930352/15127*33385282^(1/3) 3178109986117536 a001 165580141/15127*20633239^(1/5) 3178109986117537 a001 7677619945050/24157817 3178109986117537 a001 433494437/15127*20633239^(1/7) 3178109986117537 a001 2255/29134601*10749957122^(23/24) 3178109986117537 a001 39088169/15127*2537720636^(2/9) 3178109986117537 a001 39088169/15127*312119004989^(2/11) 3178109986117537 a001 39088169/15127*(1/2+1/2*5^(1/2))^10 3178109986117537 a001 39088169/15127*28143753123^(1/5) 3178109986117537 a001 39088169/15127*10749957122^(5/24) 3178109986117537 a001 39088169/15127*4106118243^(5/23) 3178109986117537 a001 39088169/15127*1568397607^(5/22) 3178109986117537 a001 39088169/15127*599074578^(5/21) 3178109986117537 a001 39088169/15127*228826127^(1/4) 3178109986117537 a001 39088169/15127*87403803^(5/19) 3178109986117537 a001 20100269968845/63245986 3178109986117538 a001 6765/228826127*45537549124^(16/17) 3178109986117538 a001 6765/228826127*14662949395604^(16/21) 3178109986117538 a001 6765/228826127*192900153618^(8/9) 3178109986117538 a001 6765/228826127*73681302247^(12/13) 3178109986117538 a001 52623189961485/165580141 3178109986117538 a001 2255/199691526*312119004989^(10/11) 3178109986117538 a001 2255/199691526*3461452808002^(5/6) 3178109986117538 a001 137769299915610/433494437 3178109986117538 a001 6765/1568397607*23725150497407^(13/16) 3178109986117538 a001 6765/1568397607*505019158607^(13/14) 3178109986117538 a001 72136941957069/226980634 3178109986117538 a001 2255/1368706081*14662949395604^(6/7) 3178109986117538 a001 944284829440425/2971215073 3178109986117538 a001 6765/10749957122*14662949395604^(8/9) 3178109986117538 a001 2472169778535930/7778742049 3178109986117538 a001 6472224506167365/20365011074 3178109986117538 a001 6765/73681302247*14662949395604^(20/21) 3178109986117538 a001 16944503739966165/53316291173 3178109986117538 a001 8872257342746226/27916772489 3178109986117538 a001 6765*23725150497407^(1/8) 3178109986117538 a001 6765*505019158607^(1/7) 3178109986117538 a001 3418003318452195/10754830177 3178109986117538 a001 27416782973764965/86267571272 3178109986117538 a001 6765*73681302247^(2/13) 3178109986117538 a001 3490759744599600/10983760033 3178109986117538 a001 72728267775117/228841255 3178109986117538 a001 6765*10749957122^(1/6) 3178109986117538 a001 6765/17393796001*14662949395604^(19/21) 3178109986117538 a001 24252142049135/76309952 3178109986117538 a001 6765*4106118243^(4/23) 3178109986117538 a001 6765/6643838879*3461452808002^(11/12) 3178109986117538 a001 583600119655080/1836311903 3178109986117538 a001 6765*1568397607^(2/11) 3178109986117538 a001 74305136623245/233802911 3178109986117538 a001 6765*599074578^(4/21) 3178109986117538 a001 6765/969323029*14662949395604^(17/21) 3178109986117538 a001 6765/969323029*192900153618^(17/18) 3178109986117538 a001 85146109954125/267914296 3178109986117538 a001 6765*228826127^(1/5) 3178109986117538 a001 6765/370248451*14662949395604^(7/9) 3178109986117538 a001 6765/370248451*505019158607^(7/8) 3178109986117538 a001 267914296/15127*141422324^(2/13) 3178109986117538 a001 1134903170/15127*141422324^(1/13) 3178109986117538 a001 267914296/15127*2537720636^(2/15) 3178109986117538 a001 267914296/15127*45537549124^(2/17) 3178109986117538 a001 267914296/15127*14662949395604^(2/21) 3178109986117538 a001 267914296/15127*(1/2+1/2*5^(1/2))^6 3178109986117538 a001 267914296/15127*10749957122^(1/8) 3178109986117538 a001 267914296/15127*4106118243^(3/23) 3178109986117538 a001 267914296/15127*1568397607^(3/22) 3178109986117538 a001 267914296/15127*599074578^(1/7) 3178109986117538 a001 701408733/15127*(1/2+1/2*5^(1/2))^4 3178109986117538 a001 701408733/15127*23725150497407^(1/16) 3178109986117538 a001 701408733/15127*73681302247^(1/13) 3178109986117538 a001 701408733/15127*10749957122^(1/12) 3178109986117538 a001 701408733/15127*4106118243^(2/23) 3178109986117538 a001 701408733/15127*1568397607^(1/11) 3178109986117538 a001 701408733/15127*599074578^(2/21) 3178109986117538 a001 1836311903/15127*(1/2+1/2*5^(1/2))^2 3178109986117538 a001 1836311903/15127*10749957122^(1/24) 3178109986117538 a001 1836311903/15127*4106118243^(1/23) 3178109986117538 a001 1836311903/15127*1568397607^(1/22) 3178109986117538 a001 686789568/2161 3178109986117538 a001 2971215073/30254+2971215073/30254*5^(1/2) 3178109986117538 a001 1836311903/15127*599074578^(1/21) 3178109986117538 a001 267914296/15127*228826127^(3/20) 3178109986117538 a001 1134903170/15127*2537720636^(1/15) 3178109986117538 a001 1134903170/15127*45537549124^(1/17) 3178109986117538 a001 1134903170/15127*14662949395604^(1/21) 3178109986117538 a001 1134903170/15127*(1/2+1/2*5^(1/2))^3 3178109986117538 a001 1134903170/15127*192900153618^(1/18) 3178109986117538 a001 1134903170/15127*10749957122^(1/16) 3178109986117538 a001 1134903170/15127*599074578^(1/14) 3178109986117538 a001 1836311903/15127*228826127^(1/20) 3178109986117538 a001 433494437/15127*2537720636^(1/9) 3178109986117538 a001 433494437/15127*312119004989^(1/11) 3178109986117538 a001 433494437/15127*(1/2+1/2*5^(1/2))^5 3178109986117538 a001 433494437/15127*28143753123^(1/10) 3178109986117538 a001 701408733/15127*228826127^(1/10) 3178109986117538 a001 433494437/15127*228826127^(1/8) 3178109986117538 a001 1836311903/15127*87403803^(1/19) 3178109986117538 a001 165580141/15127*17393796001^(1/7) 3178109986117538 a001 165580141/15127*14662949395604^(1/9) 3178109986117538 a001 165580141/15127*(1/2+1/2*5^(1/2))^7 3178109986117538 a001 165580141/15127*599074578^(1/6) 3178109986117538 a001 6765*87403803^(4/19) 3178109986117538 a001 701408733/15127*87403803^(2/19) 3178109986117538 a001 267914296/15127*87403803^(3/19) 3178109986117538 a001 63245986/15127*141422324^(3/13) 3178109986117538 a001 1836311903/15127*33385282^(1/18) 3178109986117538 a001 63245986/15127*2537720636^(1/5) 3178109986117538 a001 63245986/15127*45537549124^(3/17) 3178109986117538 a001 63245986/15127*14662949395604^(1/7) 3178109986117538 a001 63245986/15127*(1/2+1/2*5^(1/2))^9 3178109986117538 a001 63245986/15127*192900153618^(1/6) 3178109986117538 a001 63245986/15127*10749957122^(3/16) 3178109986117538 a001 63245986/15127*599074578^(3/14) 3178109986117538 a001 1134903170/15127*33385282^(1/12) 3178109986117538 a001 701408733/15127*33385282^(1/9) 3178109986117538 a001 12422650023795/39088169 3178109986117538 a001 39088169/15127*33385282^(5/18) 3178109986117538 a001 267914296/15127*33385282^(1/6) 3178109986117538 a001 6765*33385282^(2/9) 3178109986117539 a001 63245986/15127*33385282^(1/4) 3178109986117539 a001 6765/54018521*45537549124^(15/17) 3178109986117539 a001 6765/54018521*312119004989^(9/11) 3178109986117539 a001 6765/54018521*14662949395604^(5/7) 3178109986117539 a001 6765/54018521*192900153618^(5/6) 3178109986117539 a001 6765/54018521*28143753123^(9/10) 3178109986117539 a001 6765/54018521*10749957122^(15/16) 3178109986117539 a001 24157817/15127*312119004989^(1/5) 3178109986117539 a001 24157817/15127*(1/2+1/2*5^(1/2))^11 3178109986117539 a001 24157817/15127*1568397607^(1/4) 3178109986117539 a001 1836311903/15127*12752043^(1/17) 3178109986117540 a001 701408733/15127*12752043^(2/17) 3178109986117540 a001 527225564305/1658928 3178109986117541 a001 267914296/15127*12752043^(3/17) 3178109986117542 a001 14930352/15127*12752043^(6/17) 3178109986117542 a001 6765*12752043^(4/17) 3178109986117543 a001 39088169/15127*12752043^(5/17) 3178109986117545 a001 615/1875749*(1/2+1/2*5^(1/2))^43 3178109986117545 a001 9227465/15127*141422324^(1/3) 3178109986117545 a001 9227465/15127*(1/2+1/2*5^(1/2))^13 3178109986117545 a001 9227465/15127*73681302247^(1/4) 3178109986117546 a001 1836311903/15127*4870847^(1/16) 3178109986117554 a001 701408733/15127*4870847^(1/8) 3178109986117557 a001 1812440212440/5702887 3178109986117563 a001 267914296/15127*4870847^(3/16) 3178109986117566 a001 3524578/15127*7881196^(5/11) 3178109986117571 a001 6765*4870847^(1/4) 3178109986117577 a001 5702887/15127*4870847^(7/16) 3178109986117579 a001 39088169/15127*4870847^(5/16) 3178109986117585 a001 14930352/15127*4870847^(3/8) 3178109986117586 a001 3524578/15127*20633239^(3/7) 3178109986117589 a001 3524578/15127*141422324^(5/13) 3178109986117589 a001 6765/7881196*(1/2+1/2*5^(1/2))^41 3178109986117589 a001 3524578/15127*2537720636^(1/3) 3178109986117589 a001 3524578/15127*45537549124^(5/17) 3178109986117589 a001 3524578/15127*312119004989^(3/11) 3178109986117589 a001 3524578/15127*14662949395604^(5/21) 3178109986117589 a001 3524578/15127*(1/2+1/2*5^(1/2))^15 3178109986117589 a001 3524578/15127*192900153618^(5/18) 3178109986117589 a001 3524578/15127*28143753123^(3/10) 3178109986117589 a001 3524578/15127*10749957122^(5/16) 3178109986117589 a001 3524578/15127*599074578^(5/14) 3178109986117589 a001 3524578/15127*228826127^(3/8) 3178109986117590 a001 3524578/15127*33385282^(5/12) 3178109986117599 a001 1836311903/15127*1860498^(1/15) 3178109986117629 a001 1134903170/15127*1860498^(1/10) 3178109986117660 a001 701408733/15127*1860498^(2/15) 3178109986117672 a001 32966217075/103729 3178109986117691 a001 433494437/15127*1860498^(1/6) 3178109986117721 a001 267914296/15127*1860498^(1/5) 3178109986117782 a001 6765*1860498^(4/15) 3178109986117813 a001 63245986/15127*1860498^(3/10) 3178109986117843 a001 39088169/15127*1860498^(1/3) 3178109986117888 a001 6765/3010349*2537720636^(13/15) 3178109986117888 a001 6765/3010349*45537549124^(13/17) 3178109986117888 a001 6765/3010349*14662949395604^(13/21) 3178109986117888 a001 6765/3010349*(1/2+1/2*5^(1/2))^39 3178109986117888 a001 6765/3010349*192900153618^(13/18) 3178109986117888 a001 6765/3010349*73681302247^(3/4) 3178109986117888 a001 6765/3010349*10749957122^(13/16) 3178109986117888 a001 6765/3010349*599074578^(13/14) 3178109986117888 a001 1346269/15127*45537549124^(1/3) 3178109986117888 a001 1346269/15127*(1/2+1/2*5^(1/2))^17 3178109986117893 a001 311187/2161*1860498^(8/15) 3178109986117898 a001 1346269/15127*12752043^(1/2) 3178109986117902 a001 14930352/15127*1860498^(2/5) 3178109986117947 a001 5702887/15127*1860498^(7/15) 3178109986117987 a001 1836311903/15127*710647^(1/14) 3178109986118048 a001 3524578/15127*1860498^(1/2) 3178109986118437 a001 701408733/15127*710647^(1/7) 3178109986118455 a001 4807844787/15128 3178109986118886 a001 267914296/15127*710647^(3/14) 3178109986119111 a001 165580141/15127*710647^(1/4) 3178109986119336 a001 6765*710647^(2/7) 3178109986119785 a001 39088169/15127*710647^(5/14) 3178109986119941 a001 6765/1149851*(1/2+1/2*5^(1/2))^37 3178109986119941 a001 514229/15127*817138163596^(1/3) 3178109986119941 a001 514229/15127*(1/2+1/2*5^(1/2))^19 3178109986119942 a001 514229/15127*87403803^(1/2) 3178109986120074 a001 12586269025/64079*3571^(1/17) 3178109986120232 a001 14930352/15127*710647^(3/7) 3178109986120665 a001 5702887/15127*710647^(1/2) 3178109986120665 a001 832040/15127*710647^(9/14) 3178109986120856 a001 1836311903/15127*271443^(1/13) 3178109986121000 a001 311187/2161*710647^(4/7) 3178109986121199 a001 196418/15127*439204^(7/9) 3178109986123828 a001 33667943760/105937 3178109986124174 a001 701408733/15127*271443^(2/13) 3178109986127491 a001 267914296/15127*271443^(3/13) 3178109986129856 a001 2971215073/15127*103682^(1/24) 3178109986130809 a001 6765*271443^(4/13) 3178109986133981 a001 196418/15127*7881196^(7/11) 3178109986134009 a001 196418/15127*20633239^(3/5) 3178109986134013 a001 196418/15127*141422324^(7/13) 3178109986134013 a001 6765/439204*2537720636^(7/9) 3178109986134013 a001 6765/439204*17393796001^(5/7) 3178109986134013 a001 6765/439204*312119004989^(7/11) 3178109986134013 a001 6765/439204*14662949395604^(5/9) 3178109986134013 a001 6765/439204*(1/2+1/2*5^(1/2))^35 3178109986134013 a001 6765/439204*505019158607^(5/8) 3178109986134013 a001 6765/439204*28143753123^(7/10) 3178109986134013 a001 6765/439204*599074578^(5/6) 3178109986134013 a001 6765/439204*228826127^(7/8) 3178109986134013 a001 196418/15127*2537720636^(7/15) 3178109986134013 a001 196418/15127*17393796001^(3/7) 3178109986134013 a001 196418/15127*45537549124^(7/17) 3178109986134013 a001 196418/15127*14662949395604^(1/3) 3178109986134013 a001 196418/15127*(1/2+1/2*5^(1/2))^21 3178109986134013 a001 196418/15127*192900153618^(7/18) 3178109986134013 a001 196418/15127*10749957122^(7/16) 3178109986134013 a001 196418/15127*599074578^(1/2) 3178109986134015 a001 196418/15127*33385282^(7/12) 3178109986134127 a001 39088169/15127*271443^(5/13) 3178109986134656 a001 196418/15127*1860498^(7/10) 3178109986137442 a001 14930352/15127*271443^(6/13) 3178109986138733 a001 196418/15127*710647^(3/4) 3178109986139112 a001 9227465/15127*271443^(1/2) 3178109986140744 a001 5702887/15127*271443^(7/13) 3178109986142174 a001 1836311903/15127*103682^(1/12) 3178109986143947 a001 311187/2161*271443^(8/13) 3178109986144424 a001 317811/15127*271443^(10/13) 3178109986146481 a001 832040/15127*271443^(9/13) 3178109986154493 a001 1134903170/15127*103682^(1/8) 3178109986160651 a001 38580030555/121393 3178109986166811 a001 701408733/15127*103682^(1/6) 3178109986173834 a001 31622993/12238*9349^(10/19) 3178109986179129 a001 433494437/15127*103682^(5/24) 3178109986191447 a001 267914296/15127*103682^(1/4) 3178109986203766 a001 165580141/15127*103682^(7/24) 3178109986209644 a001 2971215073/15127*39603^(1/22) 3178109986216084 a001 6765*103682^(1/3) 3178109986228403 a001 63245986/15127*103682^(3/8) 3178109986230462 a001 615/15251*141422324^(11/13) 3178109986230462 a001 615/15251*2537720636^(11/15) 3178109986230462 a001 615/15251*45537549124^(11/17) 3178109986230462 a001 615/15251*312119004989^(3/5) 3178109986230462 a001 615/15251*817138163596^(11/19) 3178109986230462 a001 615/15251*14662949395604^(11/21) 3178109986230462 a001 615/15251*(1/2+1/2*5^(1/2))^33 3178109986230462 a001 615/15251*192900153618^(11/18) 3178109986230462 a001 615/15251*10749957122^(11/16) 3178109986230462 a001 615/15251*1568397607^(3/4) 3178109986230462 a001 615/15251*599074578^(11/14) 3178109986230462 a001 75025/15127*(1/2+1/2*5^(1/2))^23 3178109986230462 a001 75025/15127*4106118243^(1/2) 3178109986230464 a001 615/15251*33385282^(11/12) 3178109986240720 a001 39088169/15127*103682^(5/12) 3178109986253040 a001 24157817/15127*103682^(11/24) 3178109986265354 a001 14930352/15127*103682^(1/2) 3178109986277683 a001 9227465/15127*103682^(13/24) 3178109986289974 a001 5702887/15127*103682^(7/12) 3178109986301751 a001 1836311903/15127*39603^(1/11) 3178109986302363 a001 3524578/15127*103682^(5/8) 3178109986314410 a001 567451585/51841*9349^(7/19) 3178109986314497 a001 311187/2161*103682^(2/3) 3178109986327300 a001 1346269/15127*103682^(17/24) 3178109986338349 a001 832040/15127*103682^(3/4) 3178109986345407 a001 121393/15127*103682^(11/12) 3178109986353989 a001 514229/15127*103682^(19/24) 3178109986357611 a001 317811/15127*103682^(5/6) 3178109986370823 a001 233802911/1926*2207^(1/8) 3178109986392697 a001 196418/15127*103682^(7/8) 3178109986393857 a001 1134903170/15127*39603^(3/22) 3178109986406633 a001 267914296/2207*843^(1/7) 3178109986485963 a001 701408733/15127*39603^(2/11) 3178109986497456 a001 17711*9349^(6/19) 3178109986513783 a001 75025/15127*103682^(23/24) 3178109986566916 a001 2971215073/271443*9349^(7/19) 3178109986578070 a001 433494437/15127*39603^(5/22) 3178109986603756 a001 7778742049/710647*9349^(7/19) 3178109986609131 a001 10182505537/930249*9349^(7/19) 3178109986609915 a001 53316291173/4870847*9349^(7/19) 3178109986610029 a001 139583862445/12752043*9349^(7/19) 3178109986610046 a001 182717648081/16692641*9349^(7/19) 3178109986610049 a001 956722026041/87403803*9349^(7/19) 3178109986610049 a001 2504730781961/228826127*9349^(7/19) 3178109986610049 a001 3278735159921/299537289*9349^(7/19) 3178109986610049 a001 10610209857723/969323029*9349^(7/19) 3178109986610049 a001 4052739537881/370248451*9349^(7/19) 3178109986610049 a001 387002188980/35355581*9349^(7/19) 3178109986610050 a001 591286729879/54018521*9349^(7/19) 3178109986610056 a001 7787980473/711491*9349^(7/19) 3178109986610100 a001 21566892818/1970299*9349^(7/19) 3178109986610400 a001 32951280099/3010349*9349^(7/19) 3178109986612453 a001 12586269025/1149851*9349^(7/19) 3178109986626524 a001 1201881744/109801*9349^(7/19) 3178109986670176 a001 267914296/15127*39603^(3/11) 3178109986722973 a001 1836311903/167761*9349^(7/19) 3178109986762283 a001 165580141/15127*39603^(7/22) 3178109986811975 a001 2971215073/15127*15127^(1/20) 3178109986854389 a001 6765*39603^(4/11) 3178109986891526 a001 28657/15127*20633239^(5/7) 3178109986891531 a001 6765/64079*(1/2+1/2*5^(1/2))^31 3178109986891531 a001 6765/64079*9062201101803^(1/2) 3178109986891531 a001 28657/15127*2537720636^(5/9) 3178109986891531 a001 28657/15127*312119004989^(5/11) 3178109986891531 a001 28657/15127*(1/2+1/2*5^(1/2))^25 3178109986891531 a001 28657/15127*3461452808002^(5/12) 3178109986891531 a001 28657/15127*28143753123^(1/2) 3178109986891531 a001 28657/15127*228826127^(5/8) 3178109986892297 a001 28657/15127*1860498^(5/6) 3178109986946496 a001 63245986/15127*39603^(9/22) 3178109987038602 a001 39088169/15127*39603^(5/11) 3178109987130710 a001 24157817/15127*39603^(1/2) 3178109987222812 a001 14930352/15127*39603^(6/11) 3178109987314929 a001 9227465/15127*39603^(13/22) 3178109987384043 a001 701408733/64079*9349^(7/19) 3178109987407009 a001 5702887/15127*39603^(7/11) 3178109987499186 a001 3524578/15127*39603^(15/22) 3178109987506413 a001 1836311903/15127*15127^(1/10) 3178109987591107 a001 311187/2161*39603^(8/11) 3178109987683698 a001 1346269/15127*39603^(17/22) 3178109987774536 a001 832040/15127*39603^(9/11) 3178109987869964 a001 514229/15127*39603^(19/22) 3178109987953374 a001 317811/15127*39603^(10/11) 3178109988068249 a001 196418/15127*39603^(21/22) 3178109988087583 a001 102334155/24476*9349^(9/19) 3178109988142962 a001 5628750600/17711 3178109988200851 a001 1134903170/15127*15127^(3/20) 3178109988228159 a001 1836311903/103682*9349^(6/19) 3178109988411205 a001 1134903170/39603*9349^(5/19) 3178109988480665 a001 1602508992/90481*9349^(6/19) 3178109988517505 a001 12586269025/710647*9349^(6/19) 3178109988522880 a001 10983760033/620166*9349^(6/19) 3178109988523664 a001 86267571272/4870847*9349^(6/19) 3178109988523778 a001 75283811239/4250681*9349^(6/19) 3178109988523795 a001 591286729879/33385282*9349^(6/19) 3178109988523798 a001 516002918640/29134601*9349^(6/19) 3178109988523798 a001 4052739537881/228826127*9349^(6/19) 3178109988523798 a001 3536736619241/199691526*9349^(6/19) 3178109988523798 a001 6557470319842/370248451*9349^(6/19) 3178109988523798 a001 2504730781961/141422324*9349^(6/19) 3178109988523799 a001 956722026041/54018521*9349^(6/19) 3178109988523806 a001 365435296162/20633239*9349^(6/19) 3178109988523849 a001 139583862445/7881196*9349^(6/19) 3178109988524149 a001 53316291173/3010349*9349^(6/19) 3178109988526202 a001 20365011074/1149851*9349^(6/19) 3178109988540273 a001 7778742049/439204*9349^(6/19) 3178109988636722 a001 2971215073/167761*9349^(6/19) 3178109988895289 a001 701408733/15127*15127^(1/5) 3178109989297792 a001 1134903170/64079*9349^(6/19) 3178109989428159 a001 416020/2889*5778^(8/9) 3178109989589726 a001 433494437/15127*15127^(1/4) 3178109990001332 a001 165580141/24476*9349^(8/19) 3178109990141908 a001 2971215073/103682*9349^(5/19) 3178109990284164 a001 267914296/15127*15127^(3/10) 3178109990324954 a001 1836311903/39603*9349^(4/19) 3178109990394414 a001 7778742049/271443*9349^(5/19) 3178109990431254 a001 20365011074/710647*9349^(5/19) 3178109990436629 a001 53316291173/1860498*9349^(5/19) 3178109990437413 a001 139583862445/4870847*9349^(5/19) 3178109990437528 a001 365435296162/12752043*9349^(5/19) 3178109990437544 a001 956722026041/33385282*9349^(5/19) 3178109990437547 a001 2504730781961/87403803*9349^(5/19) 3178109990437547 a001 6557470319842/228826127*9349^(5/19) 3178109990437547 a001 10610209857723/370248451*9349^(5/19) 3178109990437547 a001 4052739537881/141422324*9349^(5/19) 3178109990437548 a001 1548008755920/54018521*9349^(5/19) 3178109990437555 a001 591286729879/20633239*9349^(5/19) 3178109990437598 a001 225851433717/7881196*9349^(5/19) 3178109990437898 a001 86267571272/3010349*9349^(5/19) 3178109990439951 a001 32951280099/1149851*9349^(5/19) 3178109990454023 a001 12586269025/439204*9349^(5/19) 3178109990550471 a001 4807526976/167761*9349^(5/19) 3178109990651113 a001 1201881744/6119*3571^(1/17) 3178109990978602 a001 165580141/15127*15127^(7/20) 3178109991211541 a001 28657*9349^(5/19) 3178109991406145 a001 2971215073/15127*5778^(1/18) 3178109991422528 a001 10946/15127*7881196^(9/11) 3178109991422570 a001 10946/15127*141422324^(9/13) 3178109991422570 a001 6765/24476*(1/2+1/2*5^(1/2))^29 3178109991422570 a001 6765/24476*1322157322203^(1/2) 3178109991422570 a001 10946/15127*2537720636^(3/5) 3178109991422570 a001 10946/15127*45537549124^(9/17) 3178109991422570 a001 10946/15127*817138163596^(9/19) 3178109991422570 a001 10946/15127*14662949395604^(3/7) 3178109991422570 a001 10946/15127*(1/2+1/2*5^(1/2))^27 3178109991422570 a001 10946/15127*192900153618^(1/2) 3178109991422570 a001 10946/15127*10749957122^(9/16) 3178109991422570 a001 10946/15127*599074578^(9/14) 3178109991422572 a001 10946/15127*33385282^(3/4) 3178109991423396 a001 10946/15127*1860498^(9/10) 3178109991673040 a001 6765*15127^(2/5) 3178109991915081 a001 10946*9349^(7/19) 3178109992055657 a001 46368*9349^(4/19) 3178109992238703 a001 2971215073/39603*9349^(3/19) 3178109992308163 a001 12586269025/271443*9349^(4/19) 3178109992345003 a001 32951280099/710647*9349^(4/19) 3178109992350378 a001 43133785636/930249*9349^(4/19) 3178109992351162 a001 225851433717/4870847*9349^(4/19) 3178109992351277 a001 591286729879/12752043*9349^(4/19) 3178109992351293 a001 774004377960/16692641*9349^(4/19) 3178109992351296 a001 4052739537881/87403803*9349^(4/19) 3178109992351296 a001 225749145909/4868641*9349^(4/19) 3178109992351296 a001 3278735159921/70711162*9349^(4/19) 3178109992351297 a001 2504730781961/54018521*9349^(4/19) 3178109992351304 a001 956722026041/20633239*9349^(4/19) 3178109992351347 a001 182717648081/3940598*9349^(4/19) 3178109992351647 a001 139583862445/3010349*9349^(4/19) 3178109992353700 a001 53316291173/1149851*9349^(4/19) 3178109992367478 a001 63245986/15127*15127^(9/20) 3178109992367772 a001 10182505537/219602*9349^(4/19) 3178109992386889 a001 701408733/9349*3571^(3/17) 3178109992464220 a001 7778742049/167761*9349^(4/19) 3178109992691394 a001 1739379599/5473 3178109992926621 a001 832040/39603*24476^(20/21) 3178109993023792 r005 Re(z^2+c),c=-13/17+3/61*I,n=50 3178109993061915 a001 39088169/15127*15127^(1/2) 3178109993125290 a001 2971215073/64079*9349^(4/19) 3178109993180510 a001 1346269/39603*24476^(19/21) 3178109993432646 a001 726103/13201*24476^(6/7) 3178109993685452 a001 3524578/39603*24476^(17/21) 3178109993756354 a001 24157817/15127*15127^(11/20) 3178109993828830 a001 433494437/24476*9349^(6/19) 3178109993938002 a001 5702887/39603*24476^(16/21) 3178109993969406 a001 7778742049/103682*9349^(3/19) 3178109994152452 a001 1602508992/13201*9349^(2/19) 3178109994190649 a001 9227465/39603*24476^(5/7) 3178109994221912 a001 20365011074/271443*9349^(3/19) 3178109994258752 a001 53316291173/710647*9349^(3/19) 3178109994264127 a001 139583862445/1860498*9349^(3/19) 3178109994264911 a001 365435296162/4870847*9349^(3/19) 3178109994265026 a001 956722026041/12752043*9349^(3/19) 3178109994265042 a001 2504730781961/33385282*9349^(3/19) 3178109994265045 a001 6557470319842/87403803*9349^(3/19) 3178109994265045 a001 10610209857723/141422324*9349^(3/19) 3178109994265046 a001 4052739537881/54018521*9349^(3/19) 3178109994265053 a001 140728068720/1875749*9349^(3/19) 3178109994265096 a001 591286729879/7881196*9349^(3/19) 3178109994265396 a001 225851433717/3010349*9349^(3/19) 3178109994267449 a001 86267571272/1149851*9349^(3/19) 3178109994281521 a001 32951280099/439204*9349^(3/19) 3178109994377969 a001 75025*9349^(3/19) 3178109994443259 a001 4976784/13201*24476^(2/3) 3178109994450788 a001 14930352/15127*15127^(3/5) 3178109994518545 a001 1739379600/5473 3178109994658108 a001 46347/2206*24476^(20/21) 3178109994695884 a001 24157817/39603*24476^(13/21) 3178109994701260 a001 17393796001/10946*8^(1/3) 3178109994701260 a001 1/5473*(1/2+1/2*5^(1/2))^49 3178109994720088 a001 514229/5778*5778^(17/18) 3178109994910728 a001 5702887/271443*24476^(20/21) 3178109994910913 a001 1762289/51841*24476^(19/21) 3178109994947585 a001 14930352/710647*24476^(20/21) 3178109994948503 a001 39088169/39603*24476^(4/7) 3178109994952962 a001 39088169/1860498*24476^(20/21) 3178109994953747 a001 102334155/4870847*24476^(20/21) 3178109994953861 a001 267914296/12752043*24476^(20/21) 3178109994953878 a001 701408733/33385282*24476^(20/21) 3178109994953880 a001 1836311903/87403803*24476^(20/21) 3178109994953881 a001 102287808/4868641*24476^(20/21) 3178109994953881 a001 12586269025/599074578*24476^(20/21) 3178109994953881 a001 32951280099/1568397607*24476^(20/21) 3178109994953881 a001 86267571272/4106118243*24476^(20/21) 3178109994953881 a001 225851433717/10749957122*24476^(20/21) 3178109994953881 a001 591286729879/28143753123*24476^(20/21) 3178109994953881 a001 1548008755920/73681302247*24476^(20/21) 3178109994953881 a001 4052739537881/192900153618*24476^(20/21) 3178109994953881 a001 225749145909/10745088481*24476^(20/21) 3178109994953881 a001 6557470319842/312119004989*24476^(20/21) 3178109994953881 a001 2504730781961/119218851371*24476^(20/21) 3178109994953881 a001 956722026041/45537549124*24476^(20/21) 3178109994953881 a001 365435296162/17393796001*24476^(20/21) 3178109994953881 a001 139583862445/6643838879*24476^(20/21) 3178109994953881 a001 53316291173/2537720636*24476^(20/21) 3178109994953881 a001 20365011074/969323029*24476^(20/21) 3178109994953881 a001 7778742049/370248451*24476^(20/21) 3178109994953881 a001 2971215073/141422324*24476^(20/21) 3178109994953882 a001 1134903170/54018521*24476^(20/21) 3178109994953888 a001 433494437/20633239*24476^(20/21) 3178109994953932 a001 165580141/7881196*24476^(20/21) 3178109994954232 a001 63245986/3010349*24476^(20/21) 3178109994956286 a001 24157817/1149851*24476^(20/21) 3178109994970364 a001 9227465/439204*24476^(20/21) 3178109995039039 a001 4807526976/64079*9349^(3/19) 3178109995066856 a001 3524578/167761*24476^(20/21) 3178109995145236 a001 9227465/15127*15127^(13/20) 3178109995163376 a001 9227465/271443*24476^(19/21) 3178109995163463 a001 5702887/103682*24476^(6/7) 3178109995200209 a001 24157817/710647*24476^(19/21) 3178109995201124 a001 63245986/39603*24476^(11/21) 3178109995205583 a001 31622993/930249*24476^(19/21) 3178109995206367 a001 165580141/4870847*24476^(19/21) 3178109995206482 a001 433494437/12752043*24476^(19/21) 3178109995206499 a001 567451585/16692641*24476^(19/21) 3178109995206501 a001 2971215073/87403803*24476^(19/21) 3178109995206501 a001 7778742049/228826127*24476^(19/21) 3178109995206501 a001 10182505537/299537289*24476^(19/21) 3178109995206501 a001 53316291173/1568397607*24476^(19/21) 3178109995206501 a001 139583862445/4106118243*24476^(19/21) 3178109995206501 a001 182717648081/5374978561*24476^(19/21) 3178109995206501 a001 956722026041/28143753123*24476^(19/21) 3178109995206501 a001 2504730781961/73681302247*24476^(19/21) 3178109995206501 a001 3278735159921/96450076809*24476^(19/21) 3178109995206501 a001 10610209857723/312119004989*24476^(19/21) 3178109995206501 a001 4052739537881/119218851371*24476^(19/21) 3178109995206501 a001 387002188980/11384387281*24476^(19/21) 3178109995206501 a001 591286729879/17393796001*24476^(19/21) 3178109995206501 a001 225851433717/6643838879*24476^(19/21) 3178109995206501 a001 1135099622/33391061*24476^(19/21) 3178109995206501 a001 32951280099/969323029*24476^(19/21) 3178109995206501 a001 12586269025/370248451*24476^(19/21) 3178109995206502 a001 1201881744/35355581*24476^(19/21) 3178109995206502 a001 1836311903/54018521*24476^(19/21) 3178109995206509 a001 701408733/20633239*24476^(19/21) 3178109995206553 a001 66978574/1970299*24476^(19/21) 3178109995206852 a001 102334155/3010349*24476^(19/21) 3178109995208905 a001 39088169/1149851*24476^(19/21) 3178109995222974 a001 196452/5779*24476^(19/21) 3178109995319406 a001 5702887/167761*24476^(19/21) 3178109995415986 a001 4976784/90481*24476^(6/7) 3178109995416111 a001 9227465/103682*24476^(17/21) 3178109995432121 a001 3478759201/10946 3178109995452829 a001 39088169/710647*24476^(6/7) 3178109995453745 a001 34111385/13201*24476^(10/21) 3178109995458204 a001 831985/15126*24476^(6/7) 3178109995458988 a001 267914296/4870847*24476^(6/7) 3178109995459102 a001 233802911/4250681*24476^(6/7) 3178109995459119 a001 1836311903/33385282*24476^(6/7) 3178109995459122 a001 1602508992/29134601*24476^(6/7) 3178109995459122 a001 12586269025/228826127*24476^(6/7) 3178109995459122 a001 10983760033/199691526*24476^(6/7) 3178109995459122 a001 86267571272/1568397607*24476^(6/7) 3178109995459122 a001 75283811239/1368706081*24476^(6/7) 3178109995459122 a001 591286729879/10749957122*24476^(6/7) 3178109995459122 a001 12585437040/228811001*24476^(6/7) 3178109995459122 a001 4052739537881/73681302247*24476^(6/7) 3178109995459122 a001 3536736619241/64300051206*24476^(6/7) 3178109995459122 a001 6557470319842/119218851371*24476^(6/7) 3178109995459122 a001 2504730781961/45537549124*24476^(6/7) 3178109995459122 a001 956722026041/17393796001*24476^(6/7) 3178109995459122 a001 365435296162/6643838879*24476^(6/7) 3178109995459122 a001 139583862445/2537720636*24476^(6/7) 3178109995459122 a001 53316291173/969323029*24476^(6/7) 3178109995459122 a001 20365011074/370248451*24476^(6/7) 3178109995459122 a001 7778742049/141422324*24476^(6/7) 3178109995459123 a001 2971215073/54018521*24476^(6/7) 3178109995459129 a001 1134903170/20633239*24476^(6/7) 3178109995459173 a001 433494437/7881196*24476^(6/7) 3178109995459473 a001 165580141/3010349*24476^(6/7) 3178109995461526 a001 63245986/1149851*24476^(6/7) 3178109995475598 a001 24157817/439204*24476^(6/7) 3178109995572054 a001 9227465/167761*24476^(6/7) 3178109995668610 a001 24157817/271443*24476^(17/21) 3178109995668721 a001 7465176/51841*24476^(16/21) 3178109995705450 a001 63245986/710647*24476^(17/21) 3178109995706365 a001 165580141/39603*24476^(3/7) 3178109995710824 a001 165580141/1860498*24476^(17/21) 3178109995711609 a001 433494437/4870847*24476^(17/21) 3178109995711723 a001 1134903170/12752043*24476^(17/21) 3178109995711740 a001 2971215073/33385282*24476^(17/21) 3178109995711742 a001 7778742049/87403803*24476^(17/21) 3178109995711743 a001 20365011074/228826127*24476^(17/21) 3178109995711743 a001 53316291173/599074578*24476^(17/21) 3178109995711743 a001 139583862445/1568397607*24476^(17/21) 3178109995711743 a001 365435296162/4106118243*24476^(17/21) 3178109995711743 a001 956722026041/10749957122*24476^(17/21) 3178109995711743 a001 2504730781961/28143753123*24476^(17/21) 3178109995711743 a001 6557470319842/73681302247*24476^(17/21) 3178109995711743 a001 10610209857723/119218851371*24476^(17/21) 3178109995711743 a001 4052739537881/45537549124*24476^(17/21) 3178109995711743 a001 1548008755920/17393796001*24476^(17/21) 3178109995711743 a001 591286729879/6643838879*24476^(17/21) 3178109995711743 a001 225851433717/2537720636*24476^(17/21) 3178109995711743 a001 86267571272/969323029*24476^(17/21) 3178109995711743 a001 32951280099/370248451*24476^(17/21) 3178109995711743 a001 12586269025/141422324*24476^(17/21) 3178109995711744 a001 4807526976/54018521*24476^(17/21) 3178109995711750 a001 1836311903/20633239*24476^(17/21) 3178109995711794 a001 3524667/39604*24476^(17/21) 3178109995712093 a001 267914296/3010349*24476^(17/21) 3178109995714146 a001 102334155/1149851*24476^(17/21) 3178109995728218 a001 39088169/439204*24476^(17/21) 3178109995728225 a001 1346269/64079*24476^(20/21) 3178109995742579 a001 701408733/24476*9349^(5/19) 3178109995824664 a001 14930352/167761*24476^(17/21) 3178109995839647 a001 5702887/15127*15127^(7/10) 3178109995883155 a001 12586269025/103682*9349^(2/19) 3178109995921230 a001 39088169/271443*24476^(16/21) 3178109995921346 a001 24157817/103682*24476^(5/7) 3178109995953603 a001 17711/39603*20633239^(4/5) 3178109995953608 a001 17711/39603*17393796001^(4/7) 3178109995953608 a001 17711/39603*14662949395604^(4/9) 3178109995953608 a001 17711/39603*(1/2+1/2*5^(1/2))^28 3178109995953608 a001 17711/39603*505019158607^(1/2) 3178109995953608 a001 17711/39603*73681302247^(7/13) 3178109995953608 a001 17711/39603*10749957122^(7/12) 3178109995953608 a001 17711/39603*4106118243^(14/23) 3178109995953608 a001 17711/39603*1568397607^(7/11) 3178109995953608 a001 17711/39603*599074578^(2/3) 3178109995953609 a001 17711/39603*228826127^(7/10) 3178109995953609 a001 17711/39603*87403803^(14/19) 3178109995953611 a001 17711/39603*33385282^(7/9) 3178109995953625 a001 17711/39603*12752043^(14/17) 3178109995953726 a001 17711/39603*4870847^(7/8) 3178109995954465 a001 17711/39603*1860498^(14/15) 3178109995958070 a001 14619165/101521*24476^(16/21) 3178109995958986 a001 267914296/39603*24476^(8/21) 3178109995963445 a001 133957148/930249*24476^(16/21) 3178109995964229 a001 701408733/4870847*24476^(16/21) 3178109995964344 a001 1836311903/12752043*24476^(16/21) 3178109995964360 a001 14930208/103681*24476^(16/21) 3178109995964363 a001 12586269025/87403803*24476^(16/21) 3178109995964363 a001 32951280099/228826127*24476^(16/21) 3178109995964363 a001 43133785636/299537289*24476^(16/21) 3178109995964363 a001 32264490531/224056801*24476^(16/21) 3178109995964363 a001 591286729879/4106118243*24476^(16/21) 3178109995964363 a001 774004377960/5374978561*24476^(16/21) 3178109995964363 a001 4052739537881/28143753123*24476^(16/21) 3178109995964363 a001 1515744265389/10525900321*24476^(16/21) 3178109995964363 a001 3278735159921/22768774562*24476^(16/21) 3178109995964363 a001 2504730781961/17393796001*24476^(16/21) 3178109995964363 a001 956722026041/6643838879*24476^(16/21) 3178109995964363 a001 182717648081/1268860318*24476^(16/21) 3178109995964363 a001 139583862445/969323029*24476^(16/21) 3178109995964363 a001 53316291173/370248451*24476^(16/21) 3178109995964363 a001 10182505537/70711162*24476^(16/21) 3178109995964364 a001 7778742049/54018521*24476^(16/21) 3178109995964371 a001 2971215073/20633239*24476^(16/21) 3178109995964414 a001 567451585/3940598*24476^(16/21) 3178109995964714 a001 433494437/3010349*24476^(16/21) 3178109995966767 a001 165580141/1149851*24476^(16/21) 3178109995980361 a001 2178309/64079*24476^(19/21) 3178109995980839 a001 31622993/219602*24476^(16/21) 3178109996066201 a001 7778742049/39603*9349^(1/19) 3178109996077288 a001 24157817/167761*24476^(16/21) 3178109996135661 a001 121393*9349^(2/19) 3178109996172501 a001 86267571272/710647*9349^(2/19) 3178109996173851 a001 63245986/271443*24476^(5/7) 3178109996173965 a001 39088169/103682*24476^(2/3) 3178109996177876 a001 75283811239/620166*9349^(2/19) 3178109996178660 a001 591286729879/4870847*9349^(2/19) 3178109996178775 a001 516002918640/4250681*9349^(2/19) 3178109996178792 a001 4052739537881/33385282*9349^(2/19) 3178109996178794 a001 3536736619241/29134601*9349^(2/19) 3178109996178795 a001 6557470319842/54018521*9349^(2/19) 3178109996178802 a001 2504730781961/20633239*9349^(2/19) 3178109996178846 a001 956722026041/7881196*9349^(2/19) 3178109996179145 a001 365435296162/3010349*9349^(2/19) 3178109996181198 a001 139583862445/1149851*9349^(2/19) 3178109996195270 a001 53316291173/439204*9349^(2/19) 3178109996210691 a001 165580141/710647*24476^(5/7) 3178109996211606 a001 433494437/39603*24476^(1/3) 3178109996216066 a001 433494437/1860498*24476^(5/7) 3178109996216850 a001 1134903170/4870847*24476^(5/7) 3178109996216964 a001 2971215073/12752043*24476^(5/7) 3178109996216981 a001 7778742049/33385282*24476^(5/7) 3178109996216983 a001 20365011074/87403803*24476^(5/7) 3178109996216984 a001 53316291173/228826127*24476^(5/7) 3178109996216984 a001 139583862445/599074578*24476^(5/7) 3178109996216984 a001 365435296162/1568397607*24476^(5/7) 3178109996216984 a001 956722026041/4106118243*24476^(5/7) 3178109996216984 a001 2504730781961/10749957122*24476^(5/7) 3178109996216984 a001 6557470319842/28143753123*24476^(5/7) 3178109996216984 a001 10610209857723/45537549124*24476^(5/7) 3178109996216984 a001 4052739537881/17393796001*24476^(5/7) 3178109996216984 a001 1548008755920/6643838879*24476^(5/7) 3178109996216984 a001 591286729879/2537720636*24476^(5/7) 3178109996216984 a001 225851433717/969323029*24476^(5/7) 3178109996216984 a001 86267571272/370248451*24476^(5/7) 3178109996216984 a001 63246219/271444*24476^(5/7) 3178109996216985 a001 12586269025/54018521*24476^(5/7) 3178109996216991 a001 4807526976/20633239*24476^(5/7) 3178109996217035 a001 1836311903/7881196*24476^(5/7) 3178109996217334 a001 701408733/3010349*24476^(5/7) 3178109996219387 a001 267914296/1149851*24476^(5/7) 3178109996233167 a001 3524578/64079*24476^(6/7) 3178109996233459 a001 102334155/439204*24476^(5/7) 3178109996291719 a001 20365011074/167761*9349^(2/19) 3178109996321459 r005 Im(z^2+c),c=1/56+11/30*I,n=16 3178109996329908 a001 39088169/167761*24476^(5/7) 3178109996426471 a001 34111385/90481*24476^(2/3) 3178109996426586 a001 31622993/51841*24476^(13/21) 3178109996463311 a001 267914296/710647*24476^(2/3) 3178109996464227 a001 17711*24476^(2/7) 3178109996468686 a001 233802911/620166*24476^(2/3) 3178109996469470 a001 1836311903/4870847*24476^(2/3) 3178109996469585 a001 1602508992/4250681*24476^(2/3) 3178109996469601 a001 12586269025/33385282*24476^(2/3) 3178109996469604 a001 10983760033/29134601*24476^(2/3) 3178109996469604 a001 86267571272/228826127*24476^(2/3) 3178109996469604 a001 267913919/710646*24476^(2/3) 3178109996469604 a001 591286729879/1568397607*24476^(2/3) 3178109996469604 a001 516002918640/1368706081*24476^(2/3) 3178109996469604 a001 4052739537881/10749957122*24476^(2/3) 3178109996469604 a001 3536736619241/9381251041*24476^(2/3) 3178109996469604 a001 6557470319842/17393796001*24476^(2/3) 3178109996469604 a001 2504730781961/6643838879*24476^(2/3) 3178109996469604 a001 956722026041/2537720636*24476^(2/3) 3178109996469604 a001 365435296162/969323029*24476^(2/3) 3178109996469604 a001 139583862445/370248451*24476^(2/3) 3178109996469604 a001 53316291173/141422324*24476^(2/3) 3178109996469605 a001 20365011074/54018521*24476^(2/3) 3178109996469612 a001 7778742049/20633239*24476^(2/3) 3178109996469655 a001 2971215073/7881196*24476^(2/3) 3178109996469955 a001 1134903170/3010349*24476^(2/3) 3178109996472008 a001 433494437/1149851*24476^(2/3) 3178109996485717 a001 5702887/64079*24476^(17/21) 3178109996486080 a001 165580141/439204*24476^(2/3) 3178109996534155 a001 3524578/15127*15127^(3/4) 3178109996582529 a001 63245986/167761*24476^(2/3) 3178109996679092 a001 165580141/271443*24476^(13/21) 3178109996679206 a001 102334155/103682*24476^(4/7) 3178109996694753 a001 1836311903/15127*5778^(1/9) 3178109996715932 a001 433494437/710647*24476^(13/21) 3178109996716848 a001 1134903170/39603*24476^(5/21) 3178109996721307 a001 567451585/930249*24476^(13/21) 3178109996722091 a001 2971215073/4870847*24476^(13/21) 3178109996722205 a001 7778742049/12752043*24476^(13/21) 3178109996722222 a001 10182505537/16692641*24476^(13/21) 3178109996722225 a001 53316291173/87403803*24476^(13/21) 3178109996722225 a001 139583862445/228826127*24476^(13/21) 3178109996722225 a001 182717648081/299537289*24476^(13/21) 3178109996722225 a001 956722026041/1568397607*24476^(13/21) 3178109996722225 a001 2504730781961/4106118243*24476^(13/21) 3178109996722225 a001 3278735159921/5374978561*24476^(13/21) 3178109996722225 a001 10610209857723/17393796001*24476^(13/21) 3178109996722225 a001 4052739537881/6643838879*24476^(13/21) 3178109996722225 a001 1134903780/1860499*24476^(13/21) 3178109996722225 a001 591286729879/969323029*24476^(13/21) 3178109996722225 a001 225851433717/370248451*24476^(13/21) 3178109996722225 a001 21566892818/35355581*24476^(13/21) 3178109996722226 a001 32951280099/54018521*24476^(13/21) 3178109996722232 a001 1144206275/1875749*24476^(13/21) 3178109996722276 a001 1201881744/1970299*24476^(13/21) 3178109996722576 a001 1836311903/3010349*24476^(13/21) 3178109996724629 a001 701408733/1149851*24476^(13/21) 3178109996738364 a001 9227465/64079*24476^(16/21) 3178109996738700 a001 66978574/109801*24476^(13/21) 3178109996835149 a001 9303105/15251*24476^(13/21) 3178109996931712 a001 267914296/271443*24476^(4/7) 3178109996931827 a001 165580141/103682*24476^(11/21) 3178109996952788 a001 7778742049/64079*9349^(2/19) 3178109996968552 a001 701408733/710647*24476^(4/7) 3178109996969468 a001 1836311903/39603*24476^(4/21) 3178109996973927 a001 1836311903/1860498*24476^(4/7) 3178109996974712 a001 4807526976/4870847*24476^(4/7) 3178109996974826 a001 12586269025/12752043*24476^(4/7) 3178109996974843 a001 32951280099/33385282*24476^(4/7) 3178109996974845 a001 86267571272/87403803*24476^(4/7) 3178109996974845 a001 225851433717/228826127*24476^(4/7) 3178109996974845 a001 591286729879/599074578*24476^(4/7) 3178109996974846 a001 1548008755920/1568397607*24476^(4/7) 3178109996974846 a001 4052739537881/4106118243*24476^(4/7) 3178109996974846 a001 4807525989/4870846*24476^(4/7) 3178109996974846 a001 6557470319842/6643838879*24476^(4/7) 3178109996974846 a001 2504730781961/2537720636*24476^(4/7) 3178109996974846 a001 956722026041/969323029*24476^(4/7) 3178109996974846 a001 365435296162/370248451*24476^(4/7) 3178109996974846 a001 139583862445/141422324*24476^(4/7) 3178109996974847 a001 53316291173/54018521*24476^(4/7) 3178109996974853 a001 20365011074/20633239*24476^(4/7) 3178109996974897 a001 7778742049/7881196*24476^(4/7) 3178109996975196 a001 2971215073/3010349*24476^(4/7) 3178109996977249 a001 1134903170/1149851*24476^(4/7) 3178109996990975 a001 14930352/64079*24476^(5/7) 3178109996991321 a001 433494437/439204*24476^(4/7) 3178109997087770 a001 165580141/167761*24476^(4/7) 3178109997184333 a001 433494437/271443*24476^(11/21) 3178109997184447 a001 133957148/51841*24476^(10/21) 3178109997208360 a001 9107509819/28657 3178109997221173 a001 1134903170/710647*24476^(11/21) 3178109997222089 a001 2971215073/39603*24476^(1/7) 3178109997226548 a001 2971215073/1860498*24476^(11/21) 3178109997227332 a001 7778742049/4870847*24476^(11/21) 3178109997227447 a001 20365011074/12752043*24476^(11/21) 3178109997227463 a001 53316291173/33385282*24476^(11/21) 3178109997227466 a001 139583862445/87403803*24476^(11/21) 3178109997227466 a001 365435296162/228826127*24476^(11/21) 3178109997227466 a001 956722026041/599074578*24476^(11/21) 3178109997227466 a001 2504730781961/1568397607*24476^(11/21) 3178109997227466 a001 6557470319842/4106118243*24476^(11/21) 3178109997227466 a001 10610209857723/6643838879*24476^(11/21) 3178109997227466 a001 4052739537881/2537720636*24476^(11/21) 3178109997227466 a001 1548008755920/969323029*24476^(11/21) 3178109997227466 a001 591286729879/370248451*24476^(11/21) 3178109997227466 a001 225851433717/141422324*24476^(11/21) 3178109997227467 a001 86267571272/54018521*24476^(11/21) 3178109997227474 a001 32951280099/20633239*24476^(11/21) 3178109997227517 a001 12586269025/7881196*24476^(11/21) 3178109997227817 a001 4807526976/3010349*24476^(11/21) 3178109997228408 a001 311187/2161*15127^(4/5) 3178109997229870 a001 1836311903/1149851*24476^(11/21) 3178109997233316 a001 105937/13201*64079^(22/23) 3178109997243599 a001 24157817/64079*24476^(2/3) 3178109997243942 a001 701408733/439204*24476^(11/21) 3178109997275664 a001 514229/39603*64079^(21/23) 3178109997305994 a001 832040/39603*64079^(20/23) 3178109997340390 a001 267914296/167761*24476^(11/21) 3178109997340915 a001 1346269/39603*64079^(19/23) 3178109997374082 a001 726103/13201*64079^(18/23) 3178109997407919 a001 3524578/39603*64079^(17/23) 3178109997436953 a001 233802911/90481*24476^(10/21) 3178109997437068 a001 433494437/103682*24476^(3/7) 3178109997441501 a001 5702887/39603*64079^(16/23) 3178109997473794 a001 1836311903/710647*24476^(10/21) 3178109997474709 a001 1602508992/13201*24476^(2/21) 3178109997475179 a001 9227465/39603*64079^(15/23) 3178109997479169 a001 267084832/103361*24476^(10/21) 3178109997479953 a001 12586269025/4870847*24476^(10/21) 3178109997480067 a001 10983760033/4250681*24476^(10/21) 3178109997480084 a001 43133785636/16692641*24476^(10/21) 3178109997480086 a001 75283811239/29134601*24476^(10/21) 3178109997480087 a001 591286729879/228826127*24476^(10/21) 3178109997480087 a001 86000486440/33281921*24476^(10/21) 3178109997480087 a001 4052739537881/1568397607*24476^(10/21) 3178109997480087 a001 3536736619241/1368706081*24476^(10/21) 3178109997480087 a001 3278735159921/1268860318*24476^(10/21) 3178109997480087 a001 2504730781961/969323029*24476^(10/21) 3178109997480087 a001 956722026041/370248451*24476^(10/21) 3178109997480087 a001 182717648081/70711162*24476^(10/21) 3178109997480088 a001 139583862445/54018521*24476^(10/21) 3178109997480094 a001 53316291173/20633239*24476^(10/21) 3178109997480138 a001 10182505537/3940598*24476^(10/21) 3178109997480437 a001 7778742049/3010349*24476^(10/21) 3178109997482490 a001 2971215073/1149851*24476^(10/21) 3178109997496218 a001 39088169/64079*24476^(13/21) 3178109997496562 a001 567451585/219602*24476^(10/21) 3178109997508821 a001 4976784/13201*64079^(14/23) 3178109997542477 a001 24157817/39603*64079^(13/23) 3178109997576127 a001 39088169/39603*64079^(12/23) 3178109997593011 a001 433494437/167761*24476^(10/21) 3178109997609780 a001 63245986/39603*64079^(11/23) 3178109997643431 a001 34111385/13201*64079^(10/23) 3178109997656329 a001 567451585/12238*9349^(4/19) 3178109997677083 a001 165580141/39603*64079^(9/23) 3178109997684265 a001 17711/103682*7881196^(10/11) 3178109997684305 a001 17711/103682*20633239^(6/7) 3178109997684311 a001 17711/103682*141422324^(10/13) 3178109997684311 a001 15456/13201*141422324^(2/3) 3178109997684311 a001 17711/103682*2537720636^(2/3) 3178109997684311 a001 17711/103682*45537549124^(10/17) 3178109997684311 a001 17711/103682*312119004989^(6/11) 3178109997684311 a001 17711/103682*14662949395604^(10/21) 3178109997684311 a001 17711/103682*(1/2+1/2*5^(1/2))^30 3178109997684311 a001 17711/103682*192900153618^(5/9) 3178109997684311 a001 17711/103682*28143753123^(3/5) 3178109997684311 a001 17711/103682*10749957122^(5/8) 3178109997684311 a001 17711/103682*4106118243^(15/23) 3178109997684311 a001 17711/103682*1568397607^(15/22) 3178109997684311 a001 15456/13201*(1/2+1/2*5^(1/2))^26 3178109997684311 a001 15456/13201*73681302247^(1/2) 3178109997684311 a001 15456/13201*10749957122^(13/24) 3178109997684311 a001 15456/13201*4106118243^(13/23) 3178109997684311 a001 15456/13201*1568397607^(13/22) 3178109997684311 a001 17711/103682*599074578^(5/7) 3178109997684311 a001 15456/13201*599074578^(13/21) 3178109997684311 a001 15456/13201*228826127^(13/20) 3178109997684311 a001 17711/103682*228826127^(3/4) 3178109997684311 a001 15456/13201*87403803^(13/19) 3178109997684312 a001 17711/103682*87403803^(15/19) 3178109997684313 a001 15456/13201*33385282^(13/18) 3178109997684314 a001 17711/103682*33385282^(5/6) 3178109997684326 a001 15456/13201*12752043^(13/17) 3178109997684328 a001 17711/103682*12752043^(15/17) 3178109997684420 a001 15456/13201*4870847^(13/16) 3178109997684437 a001 17711/103682*4870847^(15/16) 3178109997685107 a001 15456/13201*1860498^(13/15) 3178109997689574 a001 1134903170/271443*24476^(3/7) 3178109997689689 a001 701408733/103682*24476^(8/21) 3178109997690155 a001 15456/13201*710647^(13/14) 3178109997710735 a001 267914296/39603*64079^(8/23) 3178109997726414 a001 2971215073/710647*24476^(3/7) 3178109997727330 a001 7778742049/39603*24476^(1/21) 3178109997731789 a001 7778742049/1860498*24476^(3/7) 3178109997732573 a001 20365011074/4870847*24476^(3/7) 3178109997732688 a001 53316291173/12752043*24476^(3/7) 3178109997732704 a001 139583862445/33385282*24476^(3/7) 3178109997732707 a001 365435296162/87403803*24476^(3/7) 3178109997732707 a001 956722026041/228826127*24476^(3/7) 3178109997732707 a001 2504730781961/599074578*24476^(3/7) 3178109997732707 a001 6557470319842/1568397607*24476^(3/7) 3178109997732707 a001 10610209857723/2537720636*24476^(3/7) 3178109997732707 a001 4052739537881/969323029*24476^(3/7) 3178109997732707 a001 1548008755920/370248451*24476^(3/7) 3178109997732707 a001 591286729879/141422324*24476^(3/7) 3178109997732708 a001 225851433717/54018521*24476^(3/7) 3178109997732715 a001 86267571272/20633239*24476^(3/7) 3178109997732758 a001 32951280099/7881196*24476^(3/7) 3178109997733058 a001 12586269025/3010349*24476^(3/7) 3178109997735111 a001 4807526976/1149851*24476^(3/7) 3178109997744387 a001 433494437/39603*64079^(7/23) 3178109997748839 a001 63245986/64079*24476^(4/7) 3178109997749183 a001 1836311903/439204*24476^(3/7) 3178109997778039 a001 17711*64079^(6/23) 3178109997796904 a001 10182505537/51841*9349^(1/19) 3178109997811691 a001 1134903170/39603*64079^(5/23) 3178109997845343 a001 1836311903/39603*64079^(4/23) 3178109997845631 a001 701408733/167761*24476^(3/7) 3178109997867377 a001 23843770259/75025 3178109997878995 a001 2971215073/39603*64079^(3/23) 3178109997888693 a001 832040/39603*167761^(4/5) 3178109997912203 a001 9227465/39603*167761^(3/5) 3178109997912647 a001 1602508992/13201*64079^(2/23) 3178109997922173 a001 121393/39603*439204^(8/9) 3178109997923330 a001 1346269/15127*15127^(17/20) 3178109997934781 a001 34111385/13201*167761^(2/5) 3178109997936780 a001 121393/39603*7881196^(8/11) 3178109997936817 a001 121393/39603*141422324^(8/13) 3178109997936817 a001 17711/271443*(1/2+1/2*5^(1/2))^32 3178109997936817 a001 17711/271443*23725150497407^(1/2) 3178109997936817 a001 17711/271443*505019158607^(4/7) 3178109997936817 a001 17711/271443*73681302247^(8/13) 3178109997936817 a001 17711/271443*10749957122^(2/3) 3178109997936817 a001 17711/271443*4106118243^(16/23) 3178109997936817 a001 17711/271443*1568397607^(8/11) 3178109997936817 a001 121393/39603*2537720636^(8/15) 3178109997936817 a001 121393/39603*45537549124^(8/17) 3178109997936817 a001 121393/39603*14662949395604^(8/21) 3178109997936817 a001 121393/39603*(1/2+1/2*5^(1/2))^24 3178109997936817 a001 121393/39603*192900153618^(4/9) 3178109997936817 a001 121393/39603*73681302247^(6/13) 3178109997936817 a001 121393/39603*10749957122^(1/2) 3178109997936817 a001 121393/39603*4106118243^(12/23) 3178109997936817 a001 121393/39603*1568397607^(6/11) 3178109997936817 a001 121393/39603*599074578^(4/7) 3178109997936817 a001 17711/271443*599074578^(16/21) 3178109997936817 a001 121393/39603*228826127^(3/5) 3178109997936817 a001 17711/271443*228826127^(4/5) 3178109997936818 a001 121393/39603*87403803^(12/19) 3178109997936818 a001 17711/271443*87403803^(16/19) 3178109997936819 a001 121393/39603*33385282^(2/3) 3178109997936820 a001 17711/271443*33385282^(8/9) 3178109997936831 a001 121393/39603*12752043^(12/17) 3178109997936836 a001 17711/271443*12752043^(16/17) 3178109997936918 a001 121393/39603*4870847^(3/4) 3178109997937552 a001 121393/39603*1860498^(4/5) 3178109997942195 a001 1836311903/271443*24476^(8/21) 3178109997942211 a001 121393/39603*710647^(6/7) 3178109997942309 a001 567451585/51841*24476^(1/3) 3178109997946299 a001 7778742049/39603*64079^(1/23) 3178109997957366 a001 1134903170/39603*167761^(1/5) 3178109997963526 a001 31211900479/98209 3178109997968833 a001 726103/13201*439204^(2/3) 3178109997969540 a001 514229/39603*439204^(7/9) 3178109997970805 a001 9227465/39603*439204^(5/9) 3178109997972628 a001 39088169/39603*439204^(4/9) 3178109997973623 a001 105937/13201*7881196^(2/3) 3178109997973657 a001 17711/710647*45537549124^(2/3) 3178109997973657 a001 17711/710647*(1/2+1/2*5^(1/2))^34 3178109997973657 a001 17711/710647*10749957122^(17/24) 3178109997973657 a001 17711/710647*4106118243^(17/23) 3178109997973657 a001 17711/710647*1568397607^(17/22) 3178109997973657 a001 105937/13201*312119004989^(2/5) 3178109997973657 a001 105937/13201*(1/2+1/2*5^(1/2))^22 3178109997973657 a001 105937/13201*10749957122^(11/24) 3178109997973657 a001 105937/13201*4106118243^(11/23) 3178109997973657 a001 105937/13201*1568397607^(1/2) 3178109997973657 a001 105937/13201*599074578^(11/21) 3178109997973657 a001 17711/710647*599074578^(17/21) 3178109997973657 a001 105937/13201*228826127^(11/20) 3178109997973658 a001 17711/710647*228826127^(17/20) 3178109997973658 a001 105937/13201*87403803^(11/19) 3178109997973658 a001 17711/710647*87403803^(17/19) 3178109997973659 a001 105937/13201*33385282^(11/18) 3178109997973660 a001 17711/710647*33385282^(17/18) 3178109997973670 a001 105937/13201*12752043^(11/17) 3178109997973750 a001 105937/13201*4870847^(11/16) 3178109997974331 a001 105937/13201*1860498^(11/15) 3178109997974459 a001 165580141/39603*439204^(1/3) 3178109997976289 a001 17711*439204^(2/9) 3178109997976633 a001 121393/39603*271443^(12/13) 3178109997977554 a001 163427632615/514229 3178109997978120 a001 2971215073/39603*439204^(1/9) 3178109997978602 a001 105937/13201*710647^(11/14) 3178109997979028 a001 832040/39603*20633239^(4/7) 3178109997979032 a001 17711/1860498*141422324^(12/13) 3178109997979032 a001 17711/1860498*2537720636^(4/5) 3178109997979032 a001 17711/1860498*45537549124^(12/17) 3178109997979032 a001 17711/1860498*14662949395604^(4/7) 3178109997979032 a001 17711/1860498*(1/2+1/2*5^(1/2))^36 3178109997979032 a001 17711/1860498*505019158607^(9/14) 3178109997979032 a001 17711/1860498*192900153618^(2/3) 3178109997979032 a001 17711/1860498*73681302247^(9/13) 3178109997979032 a001 17711/1860498*10749957122^(3/4) 3178109997979032 a001 17711/1860498*4106118243^(18/23) 3178109997979032 a001 17711/1860498*1568397607^(9/11) 3178109997979032 a001 832040/39603*2537720636^(4/9) 3178109997979032 a001 832040/39603*(1/2+1/2*5^(1/2))^20 3178109997979032 a001 832040/39603*23725150497407^(5/16) 3178109997979032 a001 832040/39603*505019158607^(5/14) 3178109997979032 a001 832040/39603*73681302247^(5/13) 3178109997979032 a001 832040/39603*28143753123^(2/5) 3178109997979032 a001 832040/39603*10749957122^(5/12) 3178109997979032 a001 832040/39603*4106118243^(10/23) 3178109997979032 a001 832040/39603*1568397607^(5/11) 3178109997979032 a001 832040/39603*599074578^(10/21) 3178109997979032 a001 17711/1860498*599074578^(6/7) 3178109997979032 a001 832040/39603*228826127^(1/2) 3178109997979032 a001 17711/1860498*228826127^(9/10) 3178109997979033 a001 832040/39603*87403803^(10/19) 3178109997979033 a001 17711/1860498*87403803^(18/19) 3178109997979034 a001 832040/39603*33385282^(5/9) 3178109997979035 a001 686789568/101521*24476^(8/21) 3178109997979044 a001 832040/39603*12752043^(10/17) 3178109997979116 a001 832040/39603*4870847^(5/8) 3178109997979601 a001 427859096887/1346269 3178109997979644 a001 832040/39603*1860498^(2/3) 3178109997979789 a001 726103/13201*7881196^(6/11) 3178109997979816 a001 726103/13201*141422324^(6/13) 3178109997979817 a001 17711/4870847*817138163596^(2/3) 3178109997979817 a001 17711/4870847*(1/2+1/2*5^(1/2))^38 3178109997979817 a001 17711/4870847*10749957122^(19/24) 3178109997979817 a001 17711/4870847*4106118243^(19/23) 3178109997979817 a001 726103/13201*2537720636^(2/5) 3178109997979817 a001 17711/4870847*1568397607^(19/22) 3178109997979817 a001 726103/13201*45537549124^(6/17) 3178109997979817 a001 726103/13201*14662949395604^(2/7) 3178109997979817 a001 726103/13201*(1/2+1/2*5^(1/2))^18 3178109997979817 a001 726103/13201*192900153618^(1/3) 3178109997979817 a001 726103/13201*10749957122^(3/8) 3178109997979817 a001 726103/13201*4106118243^(9/23) 3178109997979817 a001 726103/13201*1568397607^(9/22) 3178109997979817 a001 726103/13201*599074578^(3/7) 3178109997979817 a001 17711/4870847*599074578^(19/21) 3178109997979817 a001 726103/13201*228826127^(9/20) 3178109997979817 a001 17711/4870847*228826127^(19/20) 3178109997979817 a001 726103/13201*87403803^(9/19) 3178109997979818 a001 726103/13201*33385282^(1/2) 3178109997979827 a001 726103/13201*12752043^(9/17) 3178109997979892 a001 726103/13201*4870847^(9/16) 3178109997979900 a001 6292975607/19801 3178109997979931 a001 17711/12752043*2537720636^(8/9) 3178109997979931 a001 17711/12752043*312119004989^(8/11) 3178109997979931 a001 17711/12752043*(1/2+1/2*5^(1/2))^40 3178109997979931 a001 17711/12752043*23725150497407^(5/8) 3178109997979931 a001 17711/12752043*73681302247^(10/13) 3178109997979931 a001 17711/12752043*28143753123^(4/5) 3178109997979931 a001 17711/12752043*10749957122^(5/6) 3178109997979931 a001 17711/12752043*4106118243^(20/23) 3178109997979931 a001 17711/12752043*1568397607^(10/11) 3178109997979931 a001 5702887/39603*(1/2+1/2*5^(1/2))^16 3178109997979931 a001 5702887/39603*23725150497407^(1/4) 3178109997979931 a001 5702887/39603*73681302247^(4/13) 3178109997979931 a001 5702887/39603*10749957122^(1/3) 3178109997979931 a001 5702887/39603*4106118243^(8/23) 3178109997979931 a001 5702887/39603*1568397607^(4/11) 3178109997979931 a001 5702887/39603*599074578^(8/21) 3178109997979931 a001 17711/12752043*599074578^(20/21) 3178109997979931 a001 5702887/39603*228826127^(2/5) 3178109997979931 a001 5702887/39603*87403803^(8/19) 3178109997979931 a001 39088169/39603*7881196^(4/11) 3178109997979932 a001 5702887/39603*33385282^(4/9) 3178109997979934 a001 63245986/39603*7881196^(1/3) 3178109997979935 a001 9227465/39603*7881196^(5/11) 3178109997979937 a001 165580141/39603*7881196^(3/11) 3178109997979940 a001 5702887/39603*12752043^(8/17) 3178109997979941 a001 17711*7881196^(2/11) 3178109997979943 a001 2932589877251/9227465 3178109997979945 a001 4976784/13201*20633239^(2/5) 3178109997979946 a001 2971215073/39603*7881196^(1/11) 3178109997979948 a001 17711/33385282*2537720636^(14/15) 3178109997979948 a001 17711/33385282*17393796001^(6/7) 3178109997979948 a001 17711/33385282*45537549124^(14/17) 3178109997979948 a001 17711/33385282*817138163596^(14/19) 3178109997979948 a001 17711/33385282*14662949395604^(2/3) 3178109997979948 a001 17711/33385282*(1/2+1/2*5^(1/2))^42 3178109997979948 a001 17711/33385282*505019158607^(3/4) 3178109997979948 a001 17711/33385282*192900153618^(7/9) 3178109997979948 a001 17711/33385282*10749957122^(7/8) 3178109997979948 a001 17711/33385282*4106118243^(21/23) 3178109997979948 a001 17711/33385282*1568397607^(21/22) 3178109997979948 a001 4976784/13201*17393796001^(2/7) 3178109997979948 a001 4976784/13201*14662949395604^(2/9) 3178109997979948 a001 4976784/13201*(1/2+1/2*5^(1/2))^14 3178109997979948 a001 4976784/13201*10749957122^(7/24) 3178109997979948 a001 4976784/13201*4106118243^(7/23) 3178109997979948 a001 4976784/13201*1568397607^(7/22) 3178109997979948 a001 4976784/13201*599074578^(1/3) 3178109997979948 a001 4976784/13201*228826127^(7/20) 3178109997979948 a001 4976784/13201*87403803^(7/19) 3178109997979948 a001 34111385/13201*20633239^(2/7) 3178109997979949 a001 4976784/13201*33385282^(7/18) 3178109997979949 a001 433494437/39603*20633239^(1/5) 3178109997979949 a001 7677619973707/24157817 3178109997979949 a001 1134903170/39603*20633239^(1/7) 3178109997979950 a001 39088169/39603*141422324^(4/13) 3178109997979950 a001 17711/87403803*312119004989^(4/5) 3178109997979950 a001 17711/87403803*23725150497407^(11/16) 3178109997979950 a001 17711/87403803*73681302247^(11/13) 3178109997979950 a001 17711/87403803*10749957122^(11/12) 3178109997979950 a001 17711/87403803*4106118243^(22/23) 3178109997979950 a001 39088169/39603*2537720636^(4/15) 3178109997979950 a001 39088169/39603*45537549124^(4/17) 3178109997979950 a001 39088169/39603*817138163596^(4/19) 3178109997979950 a001 39088169/39603*14662949395604^(4/21) 3178109997979950 a001 39088169/39603*(1/2+1/2*5^(1/2))^12 3178109997979950 a001 39088169/39603*192900153618^(2/9) 3178109997979950 a001 39088169/39603*73681302247^(3/13) 3178109997979950 a001 39088169/39603*10749957122^(1/4) 3178109997979950 a001 39088169/39603*4106118243^(6/23) 3178109997979950 a001 39088169/39603*1568397607^(3/11) 3178109997979950 a001 39088169/39603*599074578^(2/7) 3178109997979950 a001 39088169/39603*228826127^(3/10) 3178109997979950 a001 39088169/39603*87403803^(6/19) 3178109997979950 a001 10050135021935/31622993 3178109997979950 a001 17711/228826127*10749957122^(23/24) 3178109997979950 a001 34111385/13201*2537720636^(2/9) 3178109997979950 a001 34111385/13201*312119004989^(2/11) 3178109997979950 a001 34111385/13201*(1/2+1/2*5^(1/2))^10 3178109997979950 a001 34111385/13201*28143753123^(1/5) 3178109997979950 a001 34111385/13201*10749957122^(5/24) 3178109997979950 a001 34111385/13201*4106118243^(5/23) 3178109997979950 a001 34111385/13201*1568397607^(5/22) 3178109997979950 a001 34111385/13201*599074578^(5/21) 3178109997979950 a001 34111385/13201*228826127^(1/4) 3178109997979950 a001 17711*141422324^(2/13) 3178109997979950 a001 52623190157903/165580141 3178109997979951 a001 165580141/39603*141422324^(3/13) 3178109997979951 a001 2971215073/39603*141422324^(1/13) 3178109997979951 a001 17711/599074578*45537549124^(16/17) 3178109997979951 a001 17711/599074578*14662949395604^(16/21) 3178109997979951 a001 17711/599074578*192900153618^(8/9) 3178109997979951 a001 17711/599074578*73681302247^(12/13) 3178109997979951 a001 267914296/39603*(1/2+1/2*5^(1/2))^8 3178109997979951 a001 267914296/39603*23725150497407^(1/8) 3178109997979951 a001 267914296/39603*73681302247^(2/13) 3178109997979951 a001 267914296/39603*10749957122^(1/6) 3178109997979951 a001 267914296/39603*4106118243^(4/23) 3178109997979951 a001 267914296/39603*1568397607^(2/11) 3178109997979951 a001 267914296/39603*599074578^(4/21) 3178109997979951 a001 137769300429839/433494437 3178109997979951 a001 17711/1568397607*312119004989^(10/11) 3178109997979951 a001 17711/1568397607*3461452808002^(5/6) 3178109997979951 a001 180342355565807/567451585 3178109997979951 a001 17711/4106118243*23725150497407^(13/16) 3178109997979951 a001 17711/4106118243*505019158607^(13/14) 3178109997979951 a001 944284832965003/2971215073 3178109997979951 a001 17711*2537720636^(2/15) 3178109997979951 a001 17711/10749957122*14662949395604^(6/7) 3178109997979951 a001 2472169787763395/7778742049 3178109997979951 a001 17711/28143753123*14662949395604^(8/9) 3178109997979951 a001 3236112265162591/10182505537 3178109997979951 a001 16944503803212151/53316291173 3178109997979951 a001 17711*45537549124^(2/17) 3178109997979951 a001 498441425610239/1568358005 3178109997979951 a001 58069678417360831/182717648081 3178109997979951 a001 17711*14662949395604^(2/21) 3178109997979951 a001 71778069955410391/225851433717 3178109997979951 a001 3427097884512390/10783446409 3178109997979951 a001 10472279272886969/32951280099 3178109997979951 a001 17711/45537549124*14662949395604^(19/21) 3178109997979951 a001 17711*10749957122^(1/8) 3178109997979951 a001 4000054742561787/12586269025 3178109997979951 a001 17711/17393796001*3461452808002^(11/12) 3178109997979951 a001 17711*4106118243^(3/23) 3178109997979951 a001 190985619349799/600940872 3178109997979951 a001 17711*1568397607^(3/22) 3178109997979951 a001 583600121833389/1836311903 3178109997979951 a001 17711/2537720636*817138163596^(17/19) 3178109997979951 a001 17711/2537720636*14662949395604^(17/21) 3178109997979951 a001 17711/2537720636*192900153618^(17/18) 3178109997979951 a001 1836311903/39603*(1/2+1/2*5^(1/2))^4 3178109997979951 a001 1836311903/39603*23725150497407^(1/16) 3178109997979951 a001 1836311903/39603*73681302247^(1/13) 3178109997979951 a001 1836311903/39603*10749957122^(1/12) 3178109997979951 a001 1836311903/39603*4106118243^(2/23) 3178109997979951 a001 1836311903/39603*1568397607^(1/11) 3178109997979951 a001 1602508992/13201*(1/2+1/2*5^(1/2))^2 3178109997979951 a001 17711*599074578^(1/7) 3178109997979951 a001 1602508992/13201*10749957122^(1/24) 3178109997979951 a001 1602508992/13201*4106118243^(1/23) 3178109997979951 a001 12586269025/39603 3178109997979951 a001 7778742049/79206+7778742049/79206*5^(1/2) 3178109997979951 a001 1602508992/13201*1568397607^(1/22) 3178109997979951 a001 2971215073/39603*2537720636^(1/15) 3178109997979951 a001 2971215073/39603*45537549124^(1/17) 3178109997979951 a001 2971215073/39603*14662949395604^(1/21) 3178109997979951 a001 2971215073/39603*(1/2+1/2*5^(1/2))^3 3178109997979951 a001 2971215073/39603*192900153618^(1/18) 3178109997979951 a001 2971215073/39603*10749957122^(1/16) 3178109997979951 a001 1602508992/13201*599074578^(1/21) 3178109997979951 a001 1134903170/39603*2537720636^(1/9) 3178109997979951 a001 1134903170/39603*312119004989^(1/11) 3178109997979951 a001 1134903170/39603*(1/2+1/2*5^(1/2))^5 3178109997979951 a001 1134903170/39603*28143753123^(1/10) 3178109997979951 a001 1836311903/39603*599074578^(2/21) 3178109997979951 a001 2971215073/39603*599074578^(1/14) 3178109997979951 a001 17711/969323029*14662949395604^(7/9) 3178109997979951 a001 17711/969323029*505019158607^(7/8) 3178109997979951 a001 1602508992/13201*228826127^(1/20) 3178109997979951 a001 267914296/39603*228826127^(1/5) 3178109997979951 a001 433494437/39603*17393796001^(1/7) 3178109997979951 a001 433494437/39603*14662949395604^(1/9) 3178109997979951 a001 433494437/39603*(1/2+1/2*5^(1/2))^7 3178109997979951 a001 433494437/39603*599074578^(1/6) 3178109997979951 a001 1836311903/39603*228826127^(1/10) 3178109997979951 a001 10643263783992/33489287 3178109997979951 a001 17711*228826127^(3/20) 3178109997979951 a001 1134903170/39603*228826127^(1/8) 3178109997979951 a001 1602508992/13201*87403803^(1/19) 3178109997979951 a001 165580141/39603*2537720636^(1/5) 3178109997979951 a001 165580141/39603*45537549124^(3/17) 3178109997979951 a001 165580141/39603*14662949395604^(1/7) 3178109997979951 a001 165580141/39603*(1/2+1/2*5^(1/2))^9 3178109997979951 a001 165580141/39603*192900153618^(1/6) 3178109997979951 a001 165580141/39603*10749957122^(3/16) 3178109997979951 a001 165580141/39603*599074578^(3/14) 3178109997979951 a001 1836311903/39603*87403803^(2/19) 3178109997979951 a001 34111385/13201*87403803^(5/19) 3178109997979951 a001 32522920114033/102334155 3178109997979951 a001 17711*87403803^(3/19) 3178109997979951 a001 267914296/39603*87403803^(4/19) 3178109997979951 a001 17711/141422324*45537549124^(15/17) 3178109997979951 a001 17711/141422324*312119004989^(9/11) 3178109997979951 a001 17711/141422324*14662949395604^(5/7) 3178109997979951 a001 17711/141422324*192900153618^(5/6) 3178109997979951 a001 17711/141422324*28143753123^(9/10) 3178109997979951 a001 17711/141422324*10749957122^(15/16) 3178109997979951 a001 1602508992/13201*33385282^(1/18) 3178109997979951 a001 63245986/39603*312119004989^(1/5) 3178109997979951 a001 63245986/39603*(1/2+1/2*5^(1/2))^11 3178109997979951 a001 63245986/39603*1568397607^(1/4) 3178109997979951 a001 2971215073/39603*33385282^(1/12) 3178109997979951 a001 1836311903/39603*33385282^(1/9) 3178109997979951 a001 12422650070163/39088169 3178109997979951 a001 17711*33385282^(1/6) 3178109997979951 a001 39088169/39603*33385282^(1/3) 3178109997979951 a001 267914296/39603*33385282^(2/9) 3178109997979951 a001 34111385/13201*33385282^(5/18) 3178109997979951 a001 165580141/39603*33385282^(1/4) 3178109997979952 a001 24157817/39603*141422324^(1/3) 3178109997979952 a001 24157817/39603*(1/2+1/2*5^(1/2))^13 3178109997979952 a001 24157817/39603*73681302247^(1/4) 3178109997979952 a001 1602508992/13201*12752043^(1/17) 3178109997979953 a001 1836311903/39603*12752043^(2/17) 3178109997979953 a001 593128762057/1866294 3178109997979954 a001 17711*12752043^(3/17) 3178109997979955 a001 9227465/39603*20633239^(3/7) 3178109997979955 a001 267914296/39603*12752043^(4/17) 3178109997979956 a001 4976784/13201*12752043^(7/17) 3178109997979956 a001 34111385/13201*12752043^(5/17) 3178109997979957 a001 39088169/39603*12752043^(6/17) 3178109997979958 a001 9227465/39603*141422324^(5/13) 3178109997979958 a001 17711/20633239*(1/2+1/2*5^(1/2))^41 3178109997979958 a001 9227465/39603*2537720636^(1/3) 3178109997979958 a001 9227465/39603*45537549124^(5/17) 3178109997979958 a001 9227465/39603*312119004989^(3/11) 3178109997979958 a001 9227465/39603*14662949395604^(5/21) 3178109997979958 a001 9227465/39603*(1/2+1/2*5^(1/2))^15 3178109997979958 a001 9227465/39603*192900153618^(5/18) 3178109997979958 a001 9227465/39603*28143753123^(3/10) 3178109997979958 a001 9227465/39603*10749957122^(5/16) 3178109997979958 a001 9227465/39603*599074578^(5/14) 3178109997979958 a001 9227465/39603*228826127^(3/8) 3178109997979959 a001 1602508992/13201*4870847^(1/16) 3178109997979959 a001 9227465/39603*33385282^(5/12) 3178109997979967 a001 1836311903/39603*4870847^(1/8) 3178109997979970 a001 1812440219205/5702887 3178109997979976 a001 17711*4870847^(3/16) 3178109997979984 a001 267914296/39603*4870847^(1/4) 3178109997979992 a001 34111385/13201*4870847^(5/16) 3178109997979998 a001 5702887/39603*4870847^(1/2) 3178109997980000 a001 39088169/39603*4870847^(3/8) 3178109997980002 a001 89/39604*2537720636^(13/15) 3178109997980002 a001 89/39604*45537549124^(13/17) 3178109997980002 a001 89/39604*14662949395604^(13/21) 3178109997980002 a001 89/39604*(1/2+1/2*5^(1/2))^39 3178109997980002 a001 89/39604*192900153618^(13/18) 3178109997980002 a001 89/39604*73681302247^(3/4) 3178109997980002 a001 89/39604*10749957122^(13/16) 3178109997980002 a001 3524578/39603*45537549124^(1/3) 3178109997980002 a001 3524578/39603*(1/2+1/2*5^(1/2))^17 3178109997980002 a001 89/39604*599074578^(13/14) 3178109997980006 a001 4976784/13201*4870847^(7/16) 3178109997980011 a001 3524578/39603*12752043^(1/2) 3178109997980012 a001 1602508992/13201*1860498^(1/15) 3178109997980042 a001 2971215073/39603*1860498^(1/10) 3178109997980073 a001 1836311903/39603*1860498^(2/15) 3178109997980084 a001 692290561159/2178309 3178109997980104 a001 1134903170/39603*1860498^(1/6) 3178109997980134 a001 17711*1860498^(1/5) 3178109997980195 a001 267914296/39603*1860498^(4/15) 3178109997980226 a001 165580141/39603*1860498^(3/10) 3178109997980257 a001 34111385/13201*1860498^(1/3) 3178109997980301 a001 17711/3010349*(1/2+1/2*5^(1/2))^37 3178109997980301 a001 1346269/39603*817138163596^(1/3) 3178109997980301 a001 1346269/39603*(1/2+1/2*5^(1/2))^19 3178109997980301 a001 1346269/39603*87403803^(1/2) 3178109997980317 a001 39088169/39603*1860498^(2/5) 3178109997980367 a001 726103/13201*1860498^(3/5) 3178109997980376 a001 4976784/13201*1860498^(7/15) 3178109997980400 a001 1602508992/13201*710647^(1/14) 3178109997980417 a001 9227465/39603*1860498^(1/2) 3178109997980421 a001 5702887/39603*1860498^(8/15) 3178109997980850 a001 1836311903/39603*710647^(1/7) 3178109997980866 a001 33053933034/104005 3178109997981299 a001 17711*710647^(3/14) 3178109997981524 a001 433494437/39603*710647^(1/4) 3178109997981749 a001 267914296/39603*710647^(2/7) 3178109997982198 a001 34111385/13201*710647^(5/14) 3178109997982322 a001 514229/39603*7881196^(7/11) 3178109997982350 a001 514229/39603*20633239^(3/5) 3178109997982354 a001 514229/39603*141422324^(7/13) 3178109997982354 a001 17711/1149851*2537720636^(7/9) 3178109997982354 a001 17711/1149851*17393796001^(5/7) 3178109997982354 a001 17711/1149851*312119004989^(7/11) 3178109997982354 a001 17711/1149851*14662949395604^(5/9) 3178109997982354 a001 17711/1149851*(1/2+1/2*5^(1/2))^35 3178109997982354 a001 17711/1149851*505019158607^(5/8) 3178109997982354 a001 17711/1149851*28143753123^(7/10) 3178109997982354 a001 514229/39603*2537720636^(7/15) 3178109997982354 a001 514229/39603*17393796001^(3/7) 3178109997982354 a001 514229/39603*45537549124^(7/17) 3178109997982354 a001 514229/39603*14662949395604^(1/3) 3178109997982354 a001 514229/39603*(1/2+1/2*5^(1/2))^21 3178109997982354 a001 514229/39603*192900153618^(7/18) 3178109997982354 a001 514229/39603*10749957122^(7/16) 3178109997982354 a001 514229/39603*599074578^(1/2) 3178109997982354 a001 17711/1149851*599074578^(5/6) 3178109997982354 a001 17711/1149851*228826127^(7/8) 3178109997982356 a001 514229/39603*33385282^(7/12) 3178109997982647 a001 39088169/39603*710647^(3/7) 3178109997982997 a001 514229/39603*1860498^(7/10) 3178109997983094 a001 4976784/13201*710647^(1/2) 3178109997983268 a001 1602508992/13201*271443^(1/13) 3178109997983527 a001 5702887/39603*710647^(4/7) 3178109997983527 a001 832040/39603*710647^(5/7) 3178109997983862 a001 726103/13201*710647^(9/14) 3178109997984410 a001 12586269025/1860498*24476^(8/21) 3178109997985194 a001 32951280099/4870847*24476^(8/21) 3178109997985308 a001 86267571272/12752043*24476^(8/21) 3178109997985325 a001 32264490531/4769326*24476^(8/21) 3178109997985327 a001 591286729879/87403803*24476^(8/21) 3178109997985328 a001 1548008755920/228826127*24476^(8/21) 3178109997985328 a001 4052739537881/599074578*24476^(8/21) 3178109997985328 a001 1515744265389/224056801*24476^(8/21) 3178109997985328 a001 6557470319842/969323029*24476^(8/21) 3178109997985328 a001 2504730781961/370248451*24476^(8/21) 3178109997985328 a001 956722026041/141422324*24476^(8/21) 3178109997985329 a001 365435296162/54018521*24476^(8/21) 3178109997985335 a001 139583862445/20633239*24476^(8/21) 3178109997985379 a001 53316291173/7881196*24476^(8/21) 3178109997985679 a001 20365011074/3010349*24476^(8/21) 3178109997986224 a001 101003831657/317811 3178109997986586 a001 1836311903/39603*271443^(2/13) 3178109997987074 a001 514229/39603*710647^(3/4) 3178109997987732 a001 7778742049/1149851*24476^(8/21) 3178109997989904 a001 17711*271443^(3/13) 3178109997992269 a001 7778742049/39603*103682^(1/24) 3178109997993222 a001 267914296/39603*271443^(4/13) 3178109997996426 a001 17711/439204*141422324^(11/13) 3178109997996426 a001 17711/439204*2537720636^(11/15) 3178109997996426 a001 17711/439204*45537549124^(11/17) 3178109997996426 a001 17711/439204*312119004989^(3/5) 3178109997996426 a001 17711/439204*14662949395604^(11/21) 3178109997996426 a001 17711/439204*(1/2+1/2*5^(1/2))^33 3178109997996426 a001 17711/439204*192900153618^(11/18) 3178109997996426 a001 17711/439204*10749957122^(11/16) 3178109997996426 a001 17711/439204*1568397607^(3/4) 3178109997996426 a001 196418/39603*(1/2+1/2*5^(1/2))^23 3178109997996426 a001 196418/39603*4106118243^(1/2) 3178109997996426 a001 17711/439204*599074578^(11/14) 3178109997996429 a001 17711/439204*33385282^(11/12) 3178109997996540 a001 34111385/13201*271443^(5/13) 3178109997999858 a001 39088169/39603*271443^(6/13) 3178109998001460 a001 102334155/64079*24476^(11/21) 3178109998001518 a001 24157817/39603*271443^(1/2) 3178109998001803 a001 2971215073/439204*24476^(8/21) 3178109998003173 a001 4976784/13201*271443^(7/13) 3178109998004587 a001 1602508992/13201*103682^(1/12) 3178109998006474 a001 5702887/39603*271443^(8/13) 3178109998009678 a001 726103/13201*271443^(9/13) 3178109998010155 a001 105937/13201*271443^(11/13) 3178109998012212 a001 832040/39603*271443^(10/13) 3178109998016905 a001 2971215073/39603*103682^(1/8) 3178109998022950 a001 38580030699/121393 3178109998029224 a001 1836311903/39603*103682^(1/6) 3178109998041542 a001 1134903170/39603*103682^(5/24) 3178109998049410 a001 53316291173/271443*9349^(1/19) 3178109998053860 a001 17711*103682^(1/4) 3178109998066179 a001 433494437/39603*103682^(7/24) 3178109998072057 a001 7778742049/39603*39603^(1/22) 3178109998078497 a001 267914296/39603*103682^(1/3) 3178109998086250 a001 139583862445/710647*9349^(1/19) 3178109998090815 a001 165580141/39603*103682^(3/8) 3178109998091625 a001 182717648081/930249*9349^(1/19) 3178109998092410 a001 956722026041/4870847*9349^(1/19) 3178109998092524 a001 2504730781961/12752043*9349^(1/19) 3178109998092541 a001 3278735159921/16692641*9349^(1/19) 3178109998092545 a001 10610209857723/54018521*9349^(1/19) 3178109998092551 a001 4052739537881/20633239*9349^(1/19) 3178109998092595 a001 387002188980/1970299*9349^(1/19) 3178109998092869 a001 75025/39603*20633239^(5/7) 3178109998092875 a001 17711/167761*(1/2+1/2*5^(1/2))^31 3178109998092875 a001 17711/167761*9062201101803^(1/2) 3178109998092875 a001 75025/39603*2537720636^(5/9) 3178109998092875 a001 75025/39603*312119004989^(5/11) 3178109998092875 a001 75025/39603*(1/2+1/2*5^(1/2))^25 3178109998092875 a001 75025/39603*3461452808002^(5/12) 3178109998092875 a001 75025/39603*28143753123^(1/2) 3178109998092875 a001 75025/39603*228826127^(5/8) 3178109998092894 a001 591286729879/3010349*9349^(1/19) 3178109998093640 a001 75025/39603*1860498^(5/6) 3178109998094947 a001 225851433717/1149851*9349^(1/19) 3178109998098252 a001 1134903170/167761*24476^(8/21) 3178109998103134 a001 34111385/13201*103682^(5/12) 3178109998109019 a001 196418*9349^(1/19) 3178109998115452 a001 63245986/39603*103682^(11/24) 3178109998127770 a001 39088169/39603*103682^(1/2) 3178109998140090 a001 24157817/39603*103682^(13/24) 3178109998152404 a001 4976784/13201*103682^(7/12) 3178109998164163 a001 1602508992/13201*39603^(1/11) 3178109998164733 a001 9227465/39603*103682^(5/8) 3178109998177024 a001 5702887/39603*103682^(2/3) 3178109998189413 a001 3524578/39603*103682^(17/24) 3178109998194815 a001 2971215073/271443*24476^(1/3) 3178109998194930 a001 1836311903/103682*24476^(2/7) 3178109998201546 a001 726103/13201*103682^(3/4) 3178109998205468 a001 32951280099/167761*9349^(1/19) 3178109998214349 a001 1346269/39603*103682^(19/24) 3178109998225398 a001 832040/39603*103682^(5/6) 3178109998231655 a001 7778742049/710647*24476^(1/3) 3178109998237030 a001 10182505537/930249*24476^(1/3) 3178109998237814 a001 53316291173/4870847*24476^(1/3) 3178109998237929 a001 139583862445/12752043*24476^(1/3) 3178109998237946 a001 182717648081/16692641*24476^(1/3) 3178109998237948 a001 956722026041/87403803*24476^(1/3) 3178109998237948 a001 2504730781961/228826127*24476^(1/3) 3178109998237948 a001 3278735159921/299537289*24476^(1/3) 3178109998237948 a001 10610209857723/969323029*24476^(1/3) 3178109998237948 a001 4052739537881/370248451*24476^(1/3) 3178109998237949 a001 387002188980/35355581*24476^(1/3) 3178109998237950 a001 591286729879/54018521*24476^(1/3) 3178109998237956 a001 7787980473/711491*24476^(1/3) 3178109998238000 a001 21566892818/1970299*24476^(1/3) 3178109998238299 a001 32951280099/3010349*24476^(1/3) 3178109998240352 a001 12586269025/1149851*24476^(1/3) 3178109998241039 a001 514229/39603*103682^(7/8) 3178109998244660 a001 105937/13201*103682^(11/12) 3178109998254080 a001 165580141/64079*24476^(10/21) 3178109998254424 a001 1201881744/109801*24476^(1/3) 3178109998256270 a001 2971215073/39603*39603^(3/22) 3178109998274672 a001 1842032555/5796 3178109998279747 a001 196418/39603*103682^(23/24) 3178109998348376 a001 1836311903/39603*39603^(2/11) 3178109998350873 a001 1836311903/167761*24476^(1/3) 3178109998440483 a001 1134903170/39603*39603^(5/22) 3178109998447436 a001 1602508992/90481*24476^(2/7) 3178109998447550 a001 2971215073/103682*24476^(5/21) 3178109998484276 a001 12586269025/710647*24476^(2/7) 3178109998489651 a001 10983760033/620166*24476^(2/7) 3178109998490435 a001 86267571272/4870847*24476^(2/7) 3178109998490549 a001 75283811239/4250681*24476^(2/7) 3178109998490566 a001 591286729879/33385282*24476^(2/7) 3178109998490569 a001 516002918640/29134601*24476^(2/7) 3178109998490569 a001 4052739537881/228826127*24476^(2/7) 3178109998490569 a001 3536736619241/199691526*24476^(2/7) 3178109998490569 a001 6557470319842/370248451*24476^(2/7) 3178109998490569 a001 2504730781961/141422324*24476^(2/7) 3178109998490570 a001 956722026041/54018521*24476^(2/7) 3178109998490576 a001 365435296162/20633239*24476^(2/7) 3178109998490620 a001 139583862445/7881196*24476^(2/7) 3178109998490920 a001 53316291173/3010349*24476^(2/7) 3178109998492973 a001 20365011074/1149851*24476^(2/7) 3178109998506701 a001 267914296/64079*24476^(3/7) 3178109998507044 a001 7778742049/439204*24476^(2/7) 3178109998532589 a001 17711*39603^(3/11) 3178109998603493 a001 2971215073/167761*24476^(2/7) 3178109998616499 a001 832040/15127*15127^(9/10) 3178109998624696 a001 433494437/39603*39603^(7/22) 3178109998674388 a001 7778742049/39603*15127^(1/20) 3178109998700056 a001 7778742049/271443*24476^(5/21) 3178109998700171 a001 46368*24476^(4/21) 3178109998716802 a001 267914296/39603*39603^(4/11) 3178109998736897 a001 20365011074/710647*24476^(5/21) 3178109998742271 a001 53316291173/1860498*24476^(5/21) 3178109998743056 a001 139583862445/4870847*24476^(5/21) 3178109998743170 a001 365435296162/12752043*24476^(5/21) 3178109998743187 a001 956722026041/33385282*24476^(5/21) 3178109998743189 a001 2504730781961/87403803*24476^(5/21) 3178109998743190 a001 6557470319842/228826127*24476^(5/21) 3178109998743190 a001 10610209857723/370248451*24476^(5/21) 3178109998743190 a001 4052739537881/141422324*24476^(5/21) 3178109998743191 a001 1548008755920/54018521*24476^(5/21) 3178109998743197 a001 591286729879/20633239*24476^(5/21) 3178109998743241 a001 225851433717/7881196*24476^(5/21) 3178109998743540 a001 86267571272/3010349*24476^(5/21) 3178109998745593 a001 32951280099/1149851*24476^(5/21) 3178109998753902 a001 28657/39603*7881196^(9/11) 3178109998753944 a001 28657/39603*141422324^(9/13) 3178109998753944 a001 17711/64079*(1/2+1/2*5^(1/2))^29 3178109998753944 a001 17711/64079*1322157322203^(1/2) 3178109998753944 a001 28657/39603*2537720636^(3/5) 3178109998753944 a001 28657/39603*45537549124^(9/17) 3178109998753944 a001 28657/39603*817138163596^(9/19) 3178109998753944 a001 28657/39603*14662949395604^(3/7) 3178109998753944 a001 28657/39603*(1/2+1/2*5^(1/2))^27 3178109998753944 a001 28657/39603*192900153618^(1/2) 3178109998753944 a001 28657/39603*10749957122^(9/16) 3178109998753944 a001 28657/39603*599074578^(9/14) 3178109998753946 a001 28657/39603*33385282^(3/4) 3178109998754771 a001 28657/39603*1860498^(9/10) 3178109998759322 a001 433494437/64079*24476^(8/21) 3178109998759665 a001 12586269025/439204*24476^(5/21) 3178109998808909 a001 165580141/39603*39603^(9/22) 3178109998856114 a001 4807526976/167761*24476^(5/21) 3178109998866537 a001 12586269025/64079*9349^(1/19) 3178109998901015 a001 34111385/13201*39603^(5/11) 3178109998952677 a001 12586269025/271443*24476^(4/21) 3178109998952791 a001 7778742049/103682*24476^(1/7) 3178109998953135 a001 9107509824/28657 3178109998969393 a001 416020/51841*64079^(22/23) 3178109998989517 a001 32951280099/710647*24476^(4/21) 3178109998993122 a001 63245986/39603*39603^(1/2) 3178109998994892 a001 43133785636/930249*24476^(4/21) 3178109998995676 a001 225851433717/4870847*24476^(4/21) 3178109998995791 a001 591286729879/12752043*24476^(4/21) 3178109998995807 a001 774004377960/16692641*24476^(4/21) 3178109998995810 a001 4052739537881/87403803*24476^(4/21) 3178109998995810 a001 225749145909/4868641*24476^(4/21) 3178109998995810 a001 3278735159921/70711162*24476^(4/21) 3178109998995811 a001 2504730781961/54018521*24476^(4/21) 3178109998995818 a001 956722026041/20633239*24476^(4/21) 3178109998995861 a001 182717648081/3940598*24476^(4/21) 3178109998996161 a001 139583862445/3010349*24476^(4/21) 3178109998998214 a001 53316291173/1149851*24476^(4/21) 3178109999004314 a001 1346269/103682*64079^(21/23) 3178109999011942 a001 701408733/64079*24476^(1/3) 3178109999012286 a001 10182505537/219602*24476^(4/21) 3178109999037481 a001 46347/2206*64079^(20/23) 3178109999071318 a001 1762289/51841*64079^(19/23) 3178109999085228 a001 39088169/39603*39603^(6/11) 3178109999104899 a001 5702887/103682*64079^(18/23) 3178109999108734 a001 7778742049/167761*24476^(4/21) 3178109999138578 a001 9227465/103682*64079^(17/23) 3178109999172220 a001 7465176/51841*64079^(16/23) 3178109999177336 a001 24157817/39603*39603^(13/22) 3178109999205298 a001 20365011074/271443*24476^(1/7) 3178109999205412 a001 12586269025/103682*24476^(2/21) 3178109999205876 a001 24157817/103682*64079^(15/23) 3178109999222684 a001 726103/90481*64079^(22/23) 3178109999232299 a001 2/28657*(1/2+1/2*5^(1/2))^51 3178109999239526 a001 39088169/103682*64079^(14/23) 3178109999242138 a001 53316291173/710647*24476^(1/7) 3178109999247513 a001 139583862445/1860498*24476^(1/7) 3178109999248297 a001 365435296162/4870847*24476^(1/7) 3178109999248411 a001 956722026041/12752043*24476^(1/7) 3178109999248428 a001 2504730781961/33385282*24476^(1/7) 3178109999248430 a001 6557470319842/87403803*24476^(1/7) 3178109999248431 a001 10610209857723/141422324*24476^(1/7) 3178109999248432 a001 4052739537881/54018521*24476^(1/7) 3178109999248438 a001 140728068720/1875749*24476^(1/7) 3178109999248482 a001 591286729879/7881196*24476^(1/7) 3178109999248781 a001 225851433717/3010349*24476^(1/7) 3178109999250835 a001 86267571272/1149851*24476^(1/7) 3178109999256521 a001 3524578/271443*64079^(21/23) 3178109999259638 a001 5702887/710647*64079^(22/23) 3178109999264563 a001 1134903170/64079*24476^(2/7) 3178109999264906 a001 32951280099/439204*24476^(1/7) 3178109999265030 a001 829464/103361*64079^(22/23) 3178109999265816 a001 39088169/4870847*64079^(22/23) 3178109999265931 a001 34111385/4250681*64079^(22/23) 3178109999265948 a001 133957148/16692641*64079^(22/23) 3178109999265950 a001 233802911/29134601*64079^(22/23) 3178109999265951 a001 1836311903/228826127*64079^(22/23) 3178109999265951 a001 267084832/33281921*64079^(22/23) 3178109999265951 a001 12586269025/1568397607*64079^(22/23) 3178109999265951 a001 10983760033/1368706081*64079^(22/23) 3178109999265951 a001 43133785636/5374978561*64079^(22/23) 3178109999265951 a001 75283811239/9381251041*64079^(22/23) 3178109999265951 a001 591286729879/73681302247*64079^(22/23) 3178109999265951 a001 86000486440/10716675201*64079^(22/23) 3178109999265951 a001 4052739537881/505019158607*64079^(22/23) 3178109999265951 a001 3536736619241/440719107401*64079^(22/23) 3178109999265951 a001 3278735159921/408569081798*64079^(22/23) 3178109999265951 a001 2504730781961/312119004989*64079^(22/23) 3178109999265951 a001 956722026041/119218851371*64079^(22/23) 3178109999265951 a001 182717648081/22768774562*64079^(22/23) 3178109999265951 a001 139583862445/17393796001*64079^(22/23) 3178109999265951 a001 53316291173/6643838879*64079^(22/23) 3178109999265951 a001 10182505537/1268860318*64079^(22/23) 3178109999265951 a001 7778742049/969323029*64079^(22/23) 3178109999265951 a001 2971215073/370248451*64079^(22/23) 3178109999265951 a001 567451585/70711162*64079^(22/23) 3178109999265952 a001 433494437/54018521*64079^(22/23) 3178109999265958 a001 165580141/20633239*64079^(22/23) 3178109999266002 a001 31622993/3940598*64079^(22/23) 3178109999266302 a001 24157817/3010349*64079^(22/23) 3178109999268362 a001 9227465/1149851*64079^(22/23) 3178109999269438 a001 4976784/13201*39603^(7/11) 3178109999273179 a001 31622993/51841*64079^(13/23) 3178109999282477 a001 1762289/219602*64079^(22/23) 3178109999290102 a001 5702887/271443*64079^(20/23) 3178109999293317 a001 9227465/710647*64079^(21/23) 3178109999298686 a001 24157817/1860498*64079^(21/23) 3178109999299469 a001 63245986/4870847*64079^(21/23) 3178109999299583 a001 165580141/12752043*64079^(21/23) 3178109999299600 a001 433494437/33385282*64079^(21/23) 3178109999299602 a001 1134903170/87403803*64079^(21/23) 3178109999299603 a001 2971215073/228826127*64079^(21/23) 3178109999299603 a001 7778742049/599074578*64079^(21/23) 3178109999299603 a001 20365011074/1568397607*64079^(21/23) 3178109999299603 a001 53316291173/4106118243*64079^(21/23) 3178109999299603 a001 139583862445/10749957122*64079^(21/23) 3178109999299603 a001 365435296162/28143753123*64079^(21/23) 3178109999299603 a001 956722026041/73681302247*64079^(21/23) 3178109999299603 a001 2504730781961/192900153618*64079^(21/23) 3178109999299603 a001 10610209857723/817138163596*64079^(21/23) 3178109999299603 a001 4052739537881/312119004989*64079^(21/23) 3178109999299603 a001 1548008755920/119218851371*64079^(21/23) 3178109999299603 a001 591286729879/45537549124*64079^(21/23) 3178109999299603 a001 7787980473/599786069*64079^(21/23) 3178109999299603 a001 86267571272/6643838879*64079^(21/23) 3178109999299603 a001 32951280099/2537720636*64079^(21/23) 3178109999299603 a001 12586269025/969323029*64079^(21/23) 3178109999299603 a001 4807526976/370248451*64079^(21/23) 3178109999299603 a001 1836311903/141422324*64079^(21/23) 3178109999299604 a001 701408733/54018521*64079^(21/23) 3178109999299610 a001 9238424/711491*64079^(21/23) 3178109999299654 a001 102334155/7881196*64079^(21/23) 3178109999299953 a001 39088169/3010349*64079^(21/23) 3178109999302003 a001 14930352/1149851*64079^(21/23) 3178109999302090 a001 9107509825/28657 3178109999306830 a001 102334155/103682*64079^(12/23) 3178109999314259 a001 514229/15127*15127^(19/20) 3178109999316058 a001 5702887/439204*64079^(21/23) 3178109999323781 a001 9227465/271443*64079^(19/23) 3178109999326959 a001 14930352/710647*64079^(20/23) 3178109999332336 a001 39088169/1860498*64079^(20/23) 3178109999333120 a001 102334155/4870847*64079^(20/23) 3178109999333235 a001 267914296/12752043*64079^(20/23) 3178109999333252 a001 701408733/33385282*64079^(20/23) 3178109999333254 a001 1836311903/87403803*64079^(20/23) 3178109999333254 a001 102287808/4868641*64079^(20/23) 3178109999333254 a001 12586269025/599074578*64079^(20/23) 3178109999333254 a001 32951280099/1568397607*64079^(20/23) 3178109999333254 a001 86267571272/4106118243*64079^(20/23) 3178109999333254 a001 225851433717/10749957122*64079^(20/23) 3178109999333254 a001 591286729879/28143753123*64079^(20/23) 3178109999333254 a001 1548008755920/73681302247*64079^(20/23) 3178109999333254 a001 4052739537881/192900153618*64079^(20/23) 3178109999333254 a001 225749145909/10745088481*64079^(20/23) 3178109999333254 a001 6557470319842/312119004989*64079^(20/23) 3178109999333254 a001 2504730781961/119218851371*64079^(20/23) 3178109999333254 a001 956722026041/45537549124*64079^(20/23) 3178109999333254 a001 365435296162/17393796001*64079^(20/23) 3178109999333254 a001 139583862445/6643838879*64079^(20/23) 3178109999333254 a001 53316291173/2537720636*64079^(20/23) 3178109999333254 a001 20365011074/969323029*64079^(20/23) 3178109999333254 a001 7778742049/370248451*64079^(20/23) 3178109999333255 a001 2971215073/141422324*64079^(20/23) 3178109999333256 a001 1134903170/54018521*64079^(20/23) 3178109999333262 a001 433494437/20633239*64079^(20/23) 3178109999333306 a001 165580141/7881196*64079^(20/23) 3178109999333605 a001 63245986/3010349*64079^(20/23) 3178109999335659 a001 24157817/1149851*64079^(20/23) 3178109999340482 a001 165580141/103682*64079^(11/23) 3178109999349737 a001 9227465/439204*64079^(20/23) 3178109999357422 a001 4976784/90481*64079^(18/23) 3178109999360614 a001 24157817/710647*64079^(19/23) 3178109999361355 a001 75025*24476^(1/7) 3178109999361555 a001 9227465/39603*39603^(15/22) 3178109999365988 a001 31622993/930249*64079^(19/23) 3178109999366772 a001 165580141/4870847*64079^(19/23) 3178109999366887 a001 433494437/12752043*64079^(19/23) 3178109999366904 a001 567451585/16692641*64079^(19/23) 3178109999366906 a001 2971215073/87403803*64079^(19/23) 3178109999366906 a001 7778742049/228826127*64079^(19/23) 3178109999366906 a001 10182505537/299537289*64079^(19/23) 3178109999366906 a001 53316291173/1568397607*64079^(19/23) 3178109999366906 a001 139583862445/4106118243*64079^(19/23) 3178109999366906 a001 182717648081/5374978561*64079^(19/23) 3178109999366906 a001 956722026041/28143753123*64079^(19/23) 3178109999366906 a001 2504730781961/73681302247*64079^(19/23) 3178109999366906 a001 3278735159921/96450076809*64079^(19/23) 3178109999366906 a001 10610209857723/312119004989*64079^(19/23) 3178109999366906 a001 4052739537881/119218851371*64079^(19/23) 3178109999366906 a001 387002188980/11384387281*64079^(19/23) 3178109999366906 a001 591286729879/17393796001*64079^(19/23) 3178109999366906 a001 225851433717/6643838879*64079^(19/23) 3178109999366906 a001 1135099622/33391061*64079^(19/23) 3178109999366906 a001 32951280099/969323029*64079^(19/23) 3178109999366906 a001 12586269025/370248451*64079^(19/23) 3178109999366907 a001 1201881744/35355581*64079^(19/23) 3178109999366907 a001 1836311903/54018521*64079^(19/23) 3178109999366914 a001 701408733/20633239*64079^(19/23) 3178109999366958 a001 66978574/1970299*64079^(19/23) 3178109999367257 a001 102334155/3010349*64079^(19/23) 3178109999368826 a001 1602508992/13201*15127^(1/10) 3178109999369310 a001 39088169/1149851*64079^(19/23) 3178109999374134 a001 133957148/51841*64079^(10/23) 3178109999379226 a001 1346269/167761*64079^(22/23) 3178109999383379 a001 196452/5779*64079^(19/23) 3178109999391078 a001 24157817/271443*64079^(17/23) 3178109999394265 a001 39088169/710647*64079^(18/23) 3178109999399640 a001 831985/15126*64079^(18/23) 3178109999400424 a001 267914296/4870847*64079^(18/23) 3178109999400539 a001 233802911/4250681*64079^(18/23) 3178109999400555 a001 1836311903/33385282*64079^(18/23) 3178109999400558 a001 1602508992/29134601*64079^(18/23) 3178109999400558 a001 12586269025/228826127*64079^(18/23) 3178109999400558 a001 10983760033/199691526*64079^(18/23) 3178109999400558 a001 86267571272/1568397607*64079^(18/23) 3178109999400558 a001 75283811239/1368706081*64079^(18/23) 3178109999400558 a001 591286729879/10749957122*64079^(18/23) 3178109999400558 a001 12585437040/228811001*64079^(18/23) 3178109999400558 a001 4052739537881/73681302247*64079^(18/23) 3178109999400558 a001 3536736619241/64300051206*64079^(18/23) 3178109999400558 a001 6557470319842/119218851371*64079^(18/23) 3178109999400558 a001 2504730781961/45537549124*64079^(18/23) 3178109999400558 a001 956722026041/17393796001*64079^(18/23) 3178109999400558 a001 365435296162/6643838879*64079^(18/23) 3178109999400558 a001 139583862445/2537720636*64079^(18/23) 3178109999400558 a001 53316291173/969323029*64079^(18/23) 3178109999400558 a001 20365011074/370248451*64079^(18/23) 3178109999400558 a001 7778742049/141422324*64079^(18/23) 3178109999400559 a001 2971215073/54018521*64079^(18/23) 3178109999400566 a001 1134903170/20633239*64079^(18/23) 3178109999400609 a001 433494437/7881196*64079^(18/23) 3178109999400909 a001 165580141/3010349*64079^(18/23) 3178109999402962 a001 63245986/1149851*64079^(18/23) 3178109999407786 a001 433494437/103682*64079^(9/23) 3178109999412393 a001 2178309/167761*64079^(21/23) 3178109999415008 a001 23184/51841*20633239^(4/5) 3178109999415014 a001 23184/51841*17393796001^(4/7) 3178109999415014 a001 23184/51841*14662949395604^(4/9) 3178109999415014 a001 23184/51841*(1/2+1/2*5^(1/2))^28 3178109999415014 a001 23184/51841*73681302247^(7/13) 3178109999415014 a001 23184/51841*10749957122^(7/12) 3178109999415014 a001 23184/51841*4106118243^(14/23) 3178109999415014 a001 23184/51841*1568397607^(7/11) 3178109999415014 a001 23184/51841*599074578^(2/3) 3178109999415014 a001 23184/51841*228826127^(7/10) 3178109999415014 a001 23184/51841*87403803^(14/19) 3178109999415016 a001 23184/51841*33385282^(7/9) 3178109999415030 a001 23184/51841*12752043^(14/17) 3178109999415131 a001 23184/51841*4870847^(7/8) 3178109999415871 a001 23184/51841*1860498^(14/15) 3178109999417035 a001 24157817/439204*64079^(18/23) 3178109999424728 a001 39088169/271443*64079^(16/23) 3178109999427917 a001 63245986/710647*64079^(17/23) 3178109999433292 a001 165580141/1860498*64079^(17/23) 3178109999434076 a001 433494437/4870847*64079^(17/23) 3178109999434191 a001 1134903170/12752043*64079^(17/23) 3178109999434207 a001 2971215073/33385282*64079^(17/23) 3178109999434210 a001 7778742049/87403803*64079^(17/23) 3178109999434210 a001 20365011074/228826127*64079^(17/23) 3178109999434210 a001 53316291173/599074578*64079^(17/23) 3178109999434210 a001 139583862445/1568397607*64079^(17/23) 3178109999434210 a001 365435296162/4106118243*64079^(17/23) 3178109999434210 a001 956722026041/10749957122*64079^(17/23) 3178109999434210 a001 2504730781961/28143753123*64079^(17/23) 3178109999434210 a001 6557470319842/73681302247*64079^(17/23) 3178109999434210 a001 10610209857723/119218851371*64079^(17/23) 3178109999434210 a001 4052739537881/45537549124*64079^(17/23) 3178109999434210 a001 1548008755920/17393796001*64079^(17/23) 3178109999434210 a001 591286729879/6643838879*64079^(17/23) 3178109999434210 a001 225851433717/2537720636*64079^(17/23) 3178109999434210 a001 86267571272/969323029*64079^(17/23) 3178109999434210 a001 32951280099/370248451*64079^(17/23) 3178109999434210 a001 12586269025/141422324*64079^(17/23) 3178109999434211 a001 4807526976/54018521*64079^(17/23) 3178109999434218 a001 1836311903/20633239*64079^(17/23) 3178109999434261 a001 3524667/39604*64079^(17/23) 3178109999434561 a001 267914296/3010349*64079^(17/23) 3178109999436614 a001 102334155/1149851*64079^(17/23) 3178109999441438 a001 701408733/103682*64079^(8/23) 3178109999446230 a001 3524578/167761*64079^(20/23) 3178109999450685 a001 39088169/439204*64079^(17/23) 3178109999453634 a001 5702887/39603*39603^(8/11) 3178109999457918 a001 121393*24476^(2/21) 3178109999458033 a001 10182505537/51841*24476^(1/21) 3178109999458381 a001 63245986/271443*64079^(15/23) 3178109999461569 a001 14619165/101521*64079^(16/23) 3178109999466944 a001 133957148/930249*64079^(16/23) 3178109999467728 a001 701408733/4870847*64079^(16/23) 3178109999467843 a001 1836311903/12752043*64079^(16/23) 3178109999467859 a001 14930208/103681*64079^(16/23) 3178109999467862 a001 12586269025/87403803*64079^(16/23) 3178109999467862 a001 32951280099/228826127*64079^(16/23) 3178109999467862 a001 43133785636/299537289*64079^(16/23) 3178109999467862 a001 32264490531/224056801*64079^(16/23) 3178109999467862 a001 591286729879/4106118243*64079^(16/23) 3178109999467862 a001 774004377960/5374978561*64079^(16/23) 3178109999467862 a001 4052739537881/28143753123*64079^(16/23) 3178109999467862 a001 1515744265389/10525900321*64079^(16/23) 3178109999467862 a001 3278735159921/22768774562*64079^(16/23) 3178109999467862 a001 2504730781961/17393796001*64079^(16/23) 3178109999467862 a001 956722026041/6643838879*64079^(16/23) 3178109999467862 a001 182717648081/1268860318*64079^(16/23) 3178109999467862 a001 139583862445/969323029*64079^(16/23) 3178109999467862 a001 53316291173/370248451*64079^(16/23) 3178109999467862 a001 10182505537/70711162*64079^(16/23) 3178109999467863 a001 7778742049/54018521*64079^(16/23) 3178109999467870 a001 2971215073/20633239*64079^(16/23) 3178109999467913 a001 567451585/3940598*64079^(16/23) 3178109999468213 a001 433494437/3010349*64079^(16/23) 3178109999470266 a001 165580141/1149851*64079^(16/23) 3178109999475090 a001 567451585/51841*64079^(7/23) 3178109999479811 a001 5702887/167761*64079^(19/23) 3178109999484338 a001 31622993/219602*64079^(16/23) 3178109999492033 a001 34111385/90481*64079^(14/23) 3178109999494758 a001 86267571272/710647*24476^(2/21) 3178109999495221 a001 165580141/710647*64079^(15/23) 3178109999500133 a001 75283811239/620166*24476^(2/21) 3178109999500596 a001 433494437/1860498*64079^(15/23) 3178109999500917 a001 591286729879/4870847*24476^(2/21) 3178109999501032 a001 516002918640/4250681*24476^(2/21) 3178109999501049 a001 4052739537881/33385282*24476^(2/21) 3178109999501051 a001 3536736619241/29134601*24476^(2/21) 3178109999501052 a001 6557470319842/54018521*24476^(2/21) 3178109999501059 a001 2504730781961/20633239*24476^(2/21) 3178109999501103 a001 956722026041/7881196*24476^(2/21) 3178109999501380 a001 1134903170/4870847*64079^(15/23) 3178109999501402 a001 365435296162/3010349*24476^(2/21) 3178109999501494 a001 2971215073/12752043*64079^(15/23) 3178109999501511 a001 7778742049/33385282*64079^(15/23) 3178109999501514 a001 20365011074/87403803*64079^(15/23) 3178109999501514 a001 53316291173/228826127*64079^(15/23) 3178109999501514 a001 139583862445/599074578*64079^(15/23) 3178109999501514 a001 365435296162/1568397607*64079^(15/23) 3178109999501514 a001 956722026041/4106118243*64079^(15/23) 3178109999501514 a001 2504730781961/10749957122*64079^(15/23) 3178109999501514 a001 6557470319842/28143753123*64079^(15/23) 3178109999501514 a001 10610209857723/45537549124*64079^(15/23) 3178109999501514 a001 4052739537881/17393796001*64079^(15/23) 3178109999501514 a001 1548008755920/6643838879*64079^(15/23) 3178109999501514 a001 591286729879/2537720636*64079^(15/23) 3178109999501514 a001 225851433717/969323029*64079^(15/23) 3178109999501514 a001 86267571272/370248451*64079^(15/23) 3178109999501514 a001 63246219/271444*64079^(15/23) 3178109999501515 a001 12586269025/54018521*64079^(15/23) 3178109999501521 a001 4807526976/20633239*64079^(15/23) 3178109999501565 a001 1836311903/7881196*64079^(15/23) 3178109999501865 a001 701408733/3010349*64079^(15/23) 3178109999503455 a001 139583862445/1149851*24476^(2/21) 3178109999503918 a001 267914296/1149851*64079^(15/23) 3178109999508742 a001 1836311903/103682*64079^(6/23) 3178109999513490 a001 9227465/167761*64079^(18/23) 3178109999517183 a001 28657*24476^(5/21) 3178109999517527 a001 53316291173/439204*24476^(2/21) 3178109999517989 a001 102334155/439204*64079^(15/23) 3178109999525685 a001 165580141/271443*64079^(13/23) 3178109999528873 a001 267914296/710647*64079^(14/23) 3178109999534248 a001 233802911/620166*64079^(14/23) 3178109999535032 a001 1836311903/4870847*64079^(14/23) 3178109999535146 a001 1602508992/4250681*64079^(14/23) 3178109999535163 a001 12586269025/33385282*64079^(14/23) 3178109999535165 a001 10983760033/29134601*64079^(14/23) 3178109999535166 a001 86267571272/228826127*64079^(14/23) 3178109999535166 a001 267913919/710646*64079^(14/23) 3178109999535166 a001 591286729879/1568397607*64079^(14/23) 3178109999535166 a001 516002918640/1368706081*64079^(14/23) 3178109999535166 a001 4052739537881/10749957122*64079^(14/23) 3178109999535166 a001 3536736619241/9381251041*64079^(14/23) 3178109999535166 a001 6557470319842/17393796001*64079^(14/23) 3178109999535166 a001 2504730781961/6643838879*64079^(14/23) 3178109999535166 a001 956722026041/2537720636*64079^(14/23) 3178109999535166 a001 365435296162/969323029*64079^(14/23) 3178109999535166 a001 139583862445/370248451*64079^(14/23) 3178109999535166 a001 53316291173/141422324*64079^(14/23) 3178109999535167 a001 20365011074/54018521*64079^(14/23) 3178109999535173 a001 7778742049/20633239*64079^(14/23) 3178109999535217 a001 2971215073/7881196*64079^(14/23) 3178109999535517 a001 1134903170/3010349*64079^(14/23) 3178109999537570 a001 433494437/1149851*64079^(14/23) 3178109999542394 a001 2971215073/103682*64079^(5/23) 3178109999545811 a001 3524578/39603*39603^(17/22) 3178109999547132 a001 14930352/167761*64079^(17/23) 3178109999551641 a001 165580141/439204*64079^(14/23) 3178109999559336 a001 267914296/271443*64079^(12/23) 3178109999562525 a001 433494437/710647*64079^(13/23) 3178109999567900 a001 567451585/930249*64079^(13/23) 3178109999568684 a001 2971215073/4870847*64079^(13/23) 3178109999568798 a001 7778742049/12752043*64079^(13/23) 3178109999568815 a001 10182505537/16692641*64079^(13/23) 3178109999568817 a001 53316291173/87403803*64079^(13/23) 3178109999568818 a001 139583862445/228826127*64079^(13/23) 3178109999568818 a001 182717648081/299537289*64079^(13/23) 3178109999568818 a001 956722026041/1568397607*64079^(13/23) 3178109999568818 a001 2504730781961/4106118243*64079^(13/23) 3178109999568818 a001 3278735159921/5374978561*64079^(13/23) 3178109999568818 a001 10610209857723/17393796001*64079^(13/23) 3178109999568818 a001 4052739537881/6643838879*64079^(13/23) 3178109999568818 a001 1134903780/1860499*64079^(13/23) 3178109999568818 a001 591286729879/969323029*64079^(13/23) 3178109999568818 a001 225851433717/370248451*64079^(13/23) 3178109999568818 a001 21566892818/35355581*64079^(13/23) 3178109999568819 a001 32951280099/54018521*64079^(13/23) 3178109999568825 a001 1144206275/1875749*64079^(13/23) 3178109999568869 a001 1201881744/1970299*64079^(13/23) 3178109999569168 a001 1836311903/3010349*64079^(13/23) 3178109999570078 a001 1836311903/24476*9349^(3/19) 3178109999571222 a001 701408733/1149851*64079^(13/23) 3178109999576046 a001 46368*64079^(4/23) 3178109999580787 a001 24157817/167761*64079^(16/23) 3178109999585293 a001 66978574/109801*64079^(13/23) 3178109999592988 a001 433494437/271443*64079^(11/23) 3178109999596177 a001 701408733/710647*64079^(12/23) 3178109999600133 a001 23843770272/75025 3178109999601552 a001 1836311903/1860498*64079^(12/23) 3178109999602336 a001 4807526976/4870847*64079^(12/23) 3178109999602450 a001 12586269025/12752043*64079^(12/23) 3178109999602467 a001 32951280099/33385282*64079^(12/23) 3178109999602469 a001 86267571272/87403803*64079^(12/23) 3178109999602470 a001 225851433717/228826127*64079^(12/23) 3178109999602470 a001 591286729879/599074578*64079^(12/23) 3178109999602470 a001 1548008755920/1568397607*64079^(12/23) 3178109999602470 a001 4052739537881/4106118243*64079^(12/23) 3178109999602470 a001 4807525989/4870846*64079^(12/23) 3178109999602470 a001 6557470319842/6643838879*64079^(12/23) 3178109999602470 a001 2504730781961/2537720636*64079^(12/23) 3178109999602470 a001 956722026041/969323029*64079^(12/23) 3178109999602470 a001 365435296162/370248451*64079^(12/23) 3178109999602470 a001 139583862445/141422324*64079^(12/23) 3178109999602471 a001 53316291173/54018521*64079^(12/23) 3178109999602477 a001 20365011074/20633239*64079^(12/23) 3178109999602521 a001 7778742049/7881196*64079^(12/23) 3178109999602820 a001 2971215073/3010349*64079^(12/23) 3178109999604873 a001 1134903170/1149851*64079^(12/23) 3178109999609698 a001 7778742049/103682*64079^(3/23) 3178109999613976 a001 20365011074/167761*24476^(2/21) 3178109999614438 a001 39088169/167761*64079^(15/23) 3178109999618945 a001 433494437/439204*64079^(12/23) 3178109999620180 a001 46347/2206*167761^(4/5) 3178109999626640 a001 233802911/90481*64079^(10/23) 3178109999629829 a001 1134903170/710647*64079^(11/23) 3178109999635203 a001 2971215073/1860498*64079^(11/23) 3178109999635988 a001 7778742049/4870847*64079^(11/23) 3178109999636102 a001 20365011074/12752043*64079^(11/23) 3178109999636119 a001 53316291173/33385282*64079^(11/23) 3178109999636121 a001 139583862445/87403803*64079^(11/23) 3178109999636122 a001 365435296162/228826127*64079^(11/23) 3178109999636122 a001 956722026041/599074578*64079^(11/23) 3178109999636122 a001 2504730781961/1568397607*64079^(11/23) 3178109999636122 a001 6557470319842/4106118243*64079^(11/23) 3178109999636122 a001 10610209857723/6643838879*64079^(11/23) 3178109999636122 a001 4052739537881/2537720636*64079^(11/23) 3178109999636122 a001 1548008755920/969323029*64079^(11/23) 3178109999636122 a001 591286729879/370248451*64079^(11/23) 3178109999636122 a001 225851433717/141422324*64079^(11/23) 3178109999636123 a001 86267571272/54018521*64079^(11/23) 3178109999636129 a001 32951280099/20633239*64079^(11/23) 3178109999636173 a001 12586269025/7881196*64079^(11/23) 3178109999636472 a001 4807526976/3010349*64079^(11/23) 3178109999637733 a001 726103/13201*39603^(9/11) 3178109999638525 a001 1836311903/1149851*64079^(11/23) 3178109999642900 a001 24157817/103682*167761^(3/5) 3178109999643349 a001 12586269025/103682*64079^(2/23) 3178109999648090 a001 63245986/167761*64079^(14/23) 3178109999652597 a001 701408733/439204*64079^(11/23) 3178109999660292 a001 1134903170/271443*64079^(9/23) 3178109999663480 a001 1836311903/710647*64079^(10/23) 3178109999665484 a001 133957148/51841*167761^(2/5) 3178109999667474 a001 15456/90481*7881196^(10/11) 3178109999667514 a001 15456/90481*20633239^(6/7) 3178109999667520 a001 15456/90481*141422324^(10/13) 3178109999667520 a001 121393/103682*141422324^(2/3) 3178109999667520 a001 15456/90481*2537720636^(2/3) 3178109999667520 a001 15456/90481*45537549124^(10/17) 3178109999667520 a001 15456/90481*312119004989^(6/11) 3178109999667520 a001 15456/90481*14662949395604^(10/21) 3178109999667520 a001 15456/90481*(1/2+1/2*5^(1/2))^30 3178109999667520 a001 15456/90481*192900153618^(5/9) 3178109999667520 a001 15456/90481*28143753123^(3/5) 3178109999667520 a001 15456/90481*10749957122^(5/8) 3178109999667520 a001 121393/103682*(1/2+1/2*5^(1/2))^26 3178109999667520 a001 121393/103682*73681302247^(1/2) 3178109999667520 a001 121393/103682*10749957122^(13/24) 3178109999667520 a001 15456/90481*4106118243^(15/23) 3178109999667520 a001 121393/103682*4106118243^(13/23) 3178109999667520 a001 121393/103682*1568397607^(13/22) 3178109999667520 a001 15456/90481*1568397607^(15/22) 3178109999667520 a001 121393/103682*599074578^(13/21) 3178109999667520 a001 15456/90481*599074578^(5/7) 3178109999667520 a001 121393/103682*228826127^(13/20) 3178109999667520 a001 15456/90481*228826127^(3/4) 3178109999667520 a001 121393/103682*87403803^(13/19) 3178109999667520 a001 15456/90481*87403803^(15/19) 3178109999667522 a001 121393/103682*33385282^(13/18) 3178109999667522 a001 15456/90481*33385282^(5/6) 3178109999667535 a001 121393/103682*12752043^(13/17) 3178109999667537 a001 15456/90481*12752043^(15/17) 3178109999667629 a001 121393/103682*4870847^(13/16) 3178109999667646 a001 15456/90481*4870847^(15/16) 3178109999668316 a001 121393/103682*1860498^(13/15) 3178109999668855 a001 267084832/103361*64079^(10/23) 3178109999669640 a001 12586269025/4870847*64079^(10/23) 3178109999669754 a001 10983760033/4250681*64079^(10/23) 3178109999669771 a001 43133785636/16692641*64079^(10/23) 3178109999669773 a001 75283811239/29134601*64079^(10/23) 3178109999669773 a001 591286729879/228826127*64079^(10/23) 3178109999669774 a001 86000486440/33281921*64079^(10/23) 3178109999669774 a001 4052739537881/1568397607*64079^(10/23) 3178109999669774 a001 3536736619241/1368706081*64079^(10/23) 3178109999669774 a001 3278735159921/1268860318*64079^(10/23) 3178109999669774 a001 2504730781961/969323029*64079^(10/23) 3178109999669774 a001 956722026041/370248451*64079^(10/23) 3178109999669774 a001 182717648081/70711162*64079^(10/23) 3178109999669775 a001 139583862445/54018521*64079^(10/23) 3178109999669781 a001 53316291173/20633239*64079^(10/23) 3178109999669825 a001 10182505537/3940598*64079^(10/23) 3178109999670124 a001 7778742049/3010349*64079^(10/23) 3178109999672177 a001 2971215073/1149851*64079^(10/23) 3178109999673364 a001 121393/103682*710647^(13/14) 3178109999677001 a001 10182505537/51841*64079^(1/23) 3178109999681742 a001 9303105/15251*64079^(13/23) 3178109999686249 a001 567451585/219602*64079^(10/23) 3178109999688068 a001 2971215073/103682*167761^(1/5) 3178109999689715 a001 317811/103682*439204^(8/9) 3178109999693944 a001 1836311903/271443*64079^(8/23) 3178109999694529 a001 31211900496/98209 3178109999697132 a001 2971215073/710647*64079^(9/23) 3178109999698190 a001 1346269/103682*439204^(7/9) 3178109999699650 a001 5702887/103682*439204^(2/3) 3178109999701501 a001 24157817/103682*439204^(5/9) 3178109999702507 a001 7778742049/1860498*64079^(9/23) 3178109999703291 a001 20365011074/4870847*64079^(9/23) 3178109999703331 a001 102334155/103682*439204^(4/9) 3178109999703406 a001 53316291173/12752043*64079^(9/23) 3178109999703423 a001 139583862445/33385282*64079^(9/23) 3178109999703425 a001 365435296162/87403803*64079^(9/23) 3178109999703425 a001 956722026041/228826127*64079^(9/23) 3178109999703425 a001 2504730781961/599074578*64079^(9/23) 3178109999703425 a001 6557470319842/1568397607*64079^(9/23) 3178109999703425 a001 10610209857723/2537720636*64079^(9/23) 3178109999703425 a001 4052739537881/969323029*64079^(9/23) 3178109999703425 a001 1548008755920/370248451*64079^(9/23) 3178109999703426 a001 591286729879/141422324*64079^(9/23) 3178109999703427 a001 225851433717/54018521*64079^(9/23) 3178109999703433 a001 86267571272/20633239*64079^(9/23) 3178109999703477 a001 32951280099/7881196*64079^(9/23) 3178109999703776 a001 12586269025/3010349*64079^(9/23) 3178109999704323 a001 317811/103682*7881196^(8/11) 3178109999704360 a001 317811/103682*141422324^(8/13) 3178109999704360 a001 317811/103682*2537720636^(8/15) 3178109999704360 a001 6624/101521*(1/2+1/2*5^(1/2))^32 3178109999704360 a001 6624/101521*23725150497407^(1/2) 3178109999704360 a001 6624/101521*505019158607^(4/7) 3178109999704360 a001 6624/101521*73681302247^(8/13) 3178109999704360 a001 6624/101521*10749957122^(2/3) 3178109999704360 a001 317811/103682*45537549124^(8/17) 3178109999704360 a001 317811/103682*14662949395604^(8/21) 3178109999704360 a001 317811/103682*(1/2+1/2*5^(1/2))^24 3178109999704360 a001 317811/103682*192900153618^(4/9) 3178109999704360 a001 317811/103682*73681302247^(6/13) 3178109999704360 a001 317811/103682*10749957122^(1/2) 3178109999704360 a001 317811/103682*4106118243^(12/23) 3178109999704360 a001 6624/101521*4106118243^(16/23) 3178109999704360 a001 317811/103682*1568397607^(6/11) 3178109999704360 a001 6624/101521*1568397607^(8/11) 3178109999704360 a001 317811/103682*599074578^(4/7) 3178109999704360 a001 6624/101521*599074578^(16/21) 3178109999704360 a001 317811/103682*228826127^(3/5) 3178109999704360 a001 6624/101521*228826127^(4/5) 3178109999704360 a001 317811/103682*87403803^(12/19) 3178109999704361 a001 6624/101521*87403803^(16/19) 3178109999704362 a001 317811/103682*33385282^(2/3) 3178109999704363 a001 6624/101521*33385282^(8/9) 3178109999704374 a001 317811/103682*12752043^(12/17) 3178109999704379 a001 6624/101521*12752043^(16/17) 3178109999704461 a001 317811/103682*4870847^(3/4) 3178109999705095 a001 317811/103682*1860498^(4/5) 3178109999705161 a001 433494437/103682*439204^(1/3) 3178109999705829 a001 4807526976/1149851*64079^(9/23) 3178109999706992 a001 1836311903/103682*439204^(2/9) 3178109999708301 a001 163427632704/514229 3178109999708823 a001 7778742049/103682*439204^(1/9) 3178109999709701 a001 416020/51841*7881196^(2/3) 3178109999709735 a001 2576/103361*45537549124^(2/3) 3178109999709735 a001 2576/103361*(1/2+1/2*5^(1/2))^34 3178109999709735 a001 2576/103361*10749957122^(17/24) 3178109999709735 a001 416020/51841*312119004989^(2/5) 3178109999709735 a001 416020/51841*(1/2+1/2*5^(1/2))^22 3178109999709735 a001 416020/51841*10749957122^(11/24) 3178109999709735 a001 416020/51841*4106118243^(11/23) 3178109999709735 a001 2576/103361*4106118243^(17/23) 3178109999709735 a001 416020/51841*1568397607^(1/2) 3178109999709735 a001 2576/103361*1568397607^(17/22) 3178109999709735 a001 416020/51841*599074578^(11/21) 3178109999709735 a001 2576/103361*599074578^(17/21) 3178109999709735 a001 416020/51841*228826127^(11/20) 3178109999709735 a001 2576/103361*228826127^(17/20) 3178109999709735 a001 416020/51841*87403803^(11/19) 3178109999709735 a001 2576/103361*87403803^(17/19) 3178109999709737 a001 416020/51841*33385282^(11/18) 3178109999709738 a001 2576/103361*33385282^(17/18) 3178109999709748 a001 416020/51841*12752043^(11/17) 3178109999709754 a001 317811/103682*710647^(6/7) 3178109999709827 a001 416020/51841*4870847^(11/16) 3178109999710310 a001 427859097120/1346269 3178109999710408 a001 416020/51841*1860498^(11/15) 3178109999710515 a001 46347/2206*20633239^(4/7) 3178109999710519 a001 46368/4870847*141422324^(12/13) 3178109999710519 a001 46368/4870847*2537720636^(4/5) 3178109999710519 a001 46347/2206*2537720636^(4/9) 3178109999710519 a001 46368/4870847*45537549124^(12/17) 3178109999710519 a001 46368/4870847*14662949395604^(4/7) 3178109999710519 a001 46368/4870847*(1/2+1/2*5^(1/2))^36 3178109999710519 a001 46368/4870847*505019158607^(9/14) 3178109999710519 a001 46368/4870847*192900153618^(2/3) 3178109999710519 a001 46368/4870847*73681302247^(9/13) 3178109999710519 a001 46368/4870847*10749957122^(3/4) 3178109999710519 a001 46347/2206*(1/2+1/2*5^(1/2))^20 3178109999710519 a001 46347/2206*23725150497407^(5/16) 3178109999710519 a001 46347/2206*505019158607^(5/14) 3178109999710519 a001 46347/2206*73681302247^(5/13) 3178109999710519 a001 46347/2206*28143753123^(2/5) 3178109999710519 a001 46347/2206*10749957122^(5/12) 3178109999710519 a001 46347/2206*4106118243^(10/23) 3178109999710519 a001 46368/4870847*4106118243^(18/23) 3178109999710519 a001 46347/2206*1568397607^(5/11) 3178109999710519 a001 46368/4870847*1568397607^(9/11) 3178109999710519 a001 46347/2206*599074578^(10/21) 3178109999710519 a001 46368/4870847*599074578^(6/7) 3178109999710519 a001 46347/2206*228826127^(1/2) 3178109999710519 a001 46368/4870847*228826127^(9/10) 3178109999710519 a001 46347/2206*87403803^(10/19) 3178109999710520 a001 46368/4870847*87403803^(18/19) 3178109999710521 a001 46347/2206*33385282^(5/9) 3178109999710531 a001 46347/2206*12752043^(10/17) 3178109999710539 a001 53316291173/271443*24476^(1/21) 3178109999710603 a001 46347/2206*4870847^(5/8) 3178109999710603 a001 560074829328/1762289 3178109999710606 a001 5702887/103682*7881196^(6/11) 3178109999710631 a001 24157817/103682*7881196^(5/11) 3178109999710634 a001 5702887/103682*141422324^(6/13) 3178109999710634 a001 5702887/103682*2537720636^(2/5) 3178109999710634 a001 15456/4250681*817138163596^(2/3) 3178109999710634 a001 15456/4250681*(1/2+1/2*5^(1/2))^38 3178109999710634 a001 15456/4250681*10749957122^(19/24) 3178109999710634 a001 5702887/103682*45537549124^(6/17) 3178109999710634 a001 5702887/103682*14662949395604^(2/7) 3178109999710634 a001 5702887/103682*(1/2+1/2*5^(1/2))^18 3178109999710634 a001 5702887/103682*192900153618^(1/3) 3178109999710634 a001 5702887/103682*10749957122^(3/8) 3178109999710634 a001 5702887/103682*4106118243^(9/23) 3178109999710634 a001 15456/4250681*4106118243^(19/23) 3178109999710634 a001 5702887/103682*1568397607^(9/22) 3178109999710634 a001 15456/4250681*1568397607^(19/22) 3178109999710634 a001 5702887/103682*599074578^(3/7) 3178109999710634 a001 15456/4250681*599074578^(19/21) 3178109999710634 a001 5702887/103682*228826127^(9/20) 3178109999710634 a001 15456/4250681*228826127^(19/20) 3178109999710634 a001 5702887/103682*87403803^(9/19) 3178109999710635 a001 102334155/103682*7881196^(4/11) 3178109999710635 a001 5702887/103682*33385282^(1/2) 3178109999710636 a001 165580141/103682*7881196^(1/3) 3178109999710639 a001 433494437/103682*7881196^(3/11) 3178109999710644 a001 1836311903/103682*7881196^(2/11) 3178109999710644 a001 5702887/103682*12752043^(9/17) 3178109999710646 a001 2932589878848/9227465 3178109999710649 a001 7778742049/103682*7881196^(1/11) 3178109999710650 a001 39088169/103682*20633239^(2/5) 3178109999710650 a001 144/103681*2537720636^(8/9) 3178109999710650 a001 144/103681*312119004989^(8/11) 3178109999710650 a001 144/103681*(1/2+1/2*5^(1/2))^40 3178109999710650 a001 144/103681*23725150497407^(5/8) 3178109999710650 a001 144/103681*73681302247^(10/13) 3178109999710650 a001 144/103681*28143753123^(4/5) 3178109999710650 a001 144/103681*10749957122^(5/6) 3178109999710650 a001 7465176/51841*(1/2+1/2*5^(1/2))^16 3178109999710650 a001 7465176/51841*23725150497407^(1/4) 3178109999710650 a001 7465176/51841*73681302247^(4/13) 3178109999710650 a001 7465176/51841*10749957122^(1/3) 3178109999710650 a001 7465176/51841*4106118243^(8/23) 3178109999710650 a001 144/103681*4106118243^(20/23) 3178109999710650 a001 7465176/51841*1568397607^(4/11) 3178109999710650 a001 144/103681*1568397607^(10/11) 3178109999710650 a001 7465176/51841*599074578^(8/21) 3178109999710650 a001 144/103681*599074578^(20/21) 3178109999710650 a001 7465176/51841*228826127^(2/5) 3178109999710651 a001 7465176/51841*87403803^(8/19) 3178109999710651 a001 133957148/51841*20633239^(2/7) 3178109999710651 a001 24157817/103682*20633239^(3/7) 3178109999710652 a001 7465176/51841*33385282^(4/9) 3178109999710652 a001 567451585/51841*20633239^(1/5) 3178109999710652 a001 2971215073/103682*20633239^(1/7) 3178109999710652 a001 7677619977888/24157817 3178109999710653 a001 15456/29134601*2537720636^(14/15) 3178109999710653 a001 15456/29134601*17393796001^(6/7) 3178109999710653 a001 15456/29134601*45537549124^(14/17) 3178109999710653 a001 15456/29134601*14662949395604^(2/3) 3178109999710653 a001 15456/29134601*505019158607^(3/4) 3178109999710653 a001 15456/29134601*192900153618^(7/9) 3178109999710653 a001 15456/29134601*10749957122^(7/8) 3178109999710653 a001 39088169/103682*17393796001^(2/7) 3178109999710653 a001 39088169/103682*14662949395604^(2/9) 3178109999710653 a001 39088169/103682*(1/2+1/2*5^(1/2))^14 3178109999710653 a001 39088169/103682*505019158607^(1/4) 3178109999710653 a001 39088169/103682*10749957122^(7/24) 3178109999710653 a001 39088169/103682*4106118243^(7/23) 3178109999710653 a001 15456/29134601*4106118243^(21/23) 3178109999710653 a001 39088169/103682*1568397607^(7/22) 3178109999710653 a001 15456/29134601*1568397607^(21/22) 3178109999710653 a001 39088169/103682*599074578^(1/3) 3178109999710653 a001 39088169/103682*228826127^(7/20) 3178109999710653 a001 39088169/103682*87403803^(7/19) 3178109999710653 a001 10050135027408/31622993 3178109999710653 a001 102334155/103682*141422324^(4/13) 3178109999710653 a001 102334155/103682*2537720636^(4/15) 3178109999710653 a001 46368/228826127*312119004989^(4/5) 3178109999710653 a001 46368/228826127*23725150497407^(11/16) 3178109999710653 a001 46368/228826127*73681302247^(11/13) 3178109999710653 a001 46368/228826127*10749957122^(11/12) 3178109999710653 a001 102334155/103682*45537549124^(4/17) 3178109999710653 a001 102334155/103682*817138163596^(4/19) 3178109999710653 a001 102334155/103682*14662949395604^(4/21) 3178109999710653 a001 102334155/103682*(1/2+1/2*5^(1/2))^12 3178109999710653 a001 102334155/103682*192900153618^(2/9) 3178109999710653 a001 102334155/103682*73681302247^(3/13) 3178109999710653 a001 102334155/103682*10749957122^(1/4) 3178109999710653 a001 102334155/103682*4106118243^(6/23) 3178109999710653 a001 46368/228826127*4106118243^(22/23) 3178109999710653 a001 102334155/103682*1568397607^(3/11) 3178109999710653 a001 102334155/103682*599074578^(2/7) 3178109999710653 a001 102334155/103682*228826127^(3/10) 3178109999710653 a001 433494437/103682*141422324^(3/13) 3178109999710653 a001 1836311903/103682*141422324^(2/13) 3178109999710653 a001 52623190186560/165580141 3178109999710653 a001 7778742049/103682*141422324^(1/13) 3178109999710653 a001 133957148/51841*2537720636^(2/9) 3178109999710653 a001 2576/33281921*10749957122^(23/24) 3178109999710653 a001 133957148/51841*312119004989^(2/11) 3178109999710653 a001 133957148/51841*(1/2+1/2*5^(1/2))^10 3178109999710653 a001 133957148/51841*28143753123^(1/5) 3178109999710653 a001 133957148/51841*10749957122^(5/24) 3178109999710653 a001 133957148/51841*4106118243^(5/23) 3178109999710653 a001 133957148/51841*1568397607^(5/22) 3178109999710653 a001 133957148/51841*599074578^(5/21) 3178109999710653 a001 137769300504864/433494437 3178109999710653 a001 6624/224056801*45537549124^(16/17) 3178109999710653 a001 6624/224056801*14662949395604^(16/21) 3178109999710653 a001 6624/224056801*192900153618^(8/9) 3178109999710653 a001 6624/224056801*73681302247^(12/13) 3178109999710653 a001 701408733/103682*(1/2+1/2*5^(1/2))^8 3178109999710653 a001 701408733/103682*23725150497407^(1/8) 3178109999710653 a001 701408733/103682*73681302247^(2/13) 3178109999710653 a001 701408733/103682*10749957122^(1/6) 3178109999710653 a001 701408733/103682*4106118243^(4/23) 3178109999710653 a001 701408733/103682*1568397607^(2/11) 3178109999710653 a001 180342355664016/567451585 3178109999710653 a001 1836311903/103682*2537720636^(2/15) 3178109999710653 a001 15456/1368706081*312119004989^(10/11) 3178109999710653 a001 15456/1368706081*3461452808002^(5/6) 3178109999710653 a001 1836311903/103682*45537549124^(2/17) 3178109999710653 a001 1836311903/103682*14662949395604^(2/21) 3178109999710653 a001 1836311903/103682*(1/2+1/2*5^(1/2))^6 3178109999710653 a001 1836311903/103682*10749957122^(1/8) 3178109999710653 a001 1836311903/103682*4106118243^(3/23) 3178109999710653 a001 944284833479232/2971215073 3178109999710653 a001 23184/5374978561*23725150497407^(13/16) 3178109999710653 a001 23184/5374978561*505019158607^(13/14) 3178109999710653 a001 2472169789109664/7778742049 3178109999710653 a001 15456/9381251041*14662949395604^(6/7) 3178109999710653 a001 3236112266924880/10182505537 3178109999710653 a001 6624/10525900321*14662949395604^(8/9) 3178109999710653 a001 16944503812439616/53316291173 3178109999710653 a001 44361286903469088/139583862445 3178109999710653 a001 46368/505019158607*14662949395604^(20/21) 3178109999710653 a001 58069678448983824/182717648081 3178109999710653 a001 187917426892466208/591286729879 3178109999710653 a001 3418003333071360/10754830177 3178109999710653 a001 46368*73681302247^(1/13) 3178109999710653 a001 3427097886378684/10783446409 3178109999710653 a001 46368/119218851371*14662949395604^(19/21) 3178109999710653 a001 3490759759529952/10983760033 3178109999710653 a001 11592/11384387281*3461452808002^(11/12) 3178109999710653 a001 46368*10749957122^(1/12) 3178109999710653 a001 4000054744740096/12586269025 3178109999710653 a001 7778742049/103682*2537720636^(1/15) 3178109999710653 a001 1836311903/103682*1568397607^(3/22) 3178109999710653 a001 46368*4106118243^(2/23) 3178109999710653 a001 12586269025/103682*(1/2+1/2*5^(1/2))^2 3178109999710653 a001 12586269025/103682*10749957122^(1/24) 3178109999710653 a001 32951280099/103682 3178109999710653 a001 10182505537/103682+10182505537/103682*5^(1/2) 3178109999710653 a001 12586269025/103682*4106118243^(1/23) 3178109999710653 a001 7778742049/103682*45537549124^(1/17) 3178109999710653 a001 7778742049/103682*14662949395604^(1/21) 3178109999710653 a001 7778742049/103682*(1/2+1/2*5^(1/2))^3 3178109999710653 a001 7778742049/103682*192900153618^(1/18) 3178109999710653 a001 7778742049/103682*10749957122^(1/16) 3178109999710653 a001 2971215073/103682*2537720636^(1/9) 3178109999710653 a001 46368/6643838879*817138163596^(17/19) 3178109999710653 a001 46368/6643838879*14662949395604^(17/21) 3178109999710653 a001 46368/6643838879*192900153618^(17/18) 3178109999710653 a001 12586269025/103682*1568397607^(1/22) 3178109999710653 a001 2971215073/103682*312119004989^(1/11) 3178109999710653 a001 2971215073/103682*(1/2+1/2*5^(1/2))^5 3178109999710653 a001 2971215073/103682*28143753123^(1/10) 3178109999710653 a001 46368*1568397607^(1/11) 3178109999710653 a001 583600122151200/1836311903 3178109999710653 a001 701408733/103682*599074578^(4/21) 3178109999710653 a001 12586269025/103682*599074578^(1/21) 3178109999710653 a001 11592/634430159*14662949395604^(7/9) 3178109999710653 a001 11592/634430159*505019158607^(7/8) 3178109999710653 a001 567451585/51841*17393796001^(1/7) 3178109999710653 a001 567451585/51841*14662949395604^(1/9) 3178109999710653 a001 567451585/51841*(1/2+1/2*5^(1/2))^7 3178109999710653 a001 7778742049/103682*599074578^(1/14) 3178109999710653 a001 46368*599074578^(2/21) 3178109999710653 a001 1836311903/103682*599074578^(1/7) 3178109999710653 a001 74305136941056/233802911 3178109999710653 a001 567451585/51841*599074578^(1/6) 3178109999710653 a001 12586269025/103682*228826127^(1/20) 3178109999710653 a001 433494437/103682*2537720636^(1/5) 3178109999710653 a001 433494437/103682*45537549124^(3/17) 3178109999710653 a001 433494437/103682*817138163596^(3/19) 3178109999710653 a001 433494437/103682*14662949395604^(1/7) 3178109999710653 a001 433494437/103682*(1/2+1/2*5^(1/2))^9 3178109999710653 a001 433494437/103682*192900153618^(1/6) 3178109999710653 a001 433494437/103682*10749957122^(3/16) 3178109999710653 a001 433494437/103682*599074578^(3/14) 3178109999710653 a001 46368*228826127^(1/10) 3178109999710653 a001 133957148/51841*228826127^(1/4) 3178109999710653 a001 2971215073/103682*228826127^(1/8) 3178109999710653 a001 10643263789788/33489287 3178109999710653 a001 1836311903/103682*228826127^(3/20) 3178109999710653 a001 701408733/103682*228826127^(1/5) 3178109999710653 a001 12586269025/103682*87403803^(1/19) 3178109999710653 a001 46368/370248451*45537549124^(15/17) 3178109999710653 a001 46368/370248451*312119004989^(9/11) 3178109999710653 a001 46368/370248451*14662949395604^(5/7) 3178109999710653 a001 46368/370248451*192900153618^(5/6) 3178109999710653 a001 46368/370248451*28143753123^(9/10) 3178109999710653 a001 46368/370248451*10749957122^(15/16) 3178109999710653 a001 165580141/103682*312119004989^(1/5) 3178109999710653 a001 165580141/103682*(1/2+1/2*5^(1/2))^11 3178109999710653 a001 165580141/103682*1568397607^(1/4) 3178109999710653 a001 46368*87403803^(2/19) 3178109999710653 a001 1548710482464/4873055 3178109999710653 a001 1836311903/103682*87403803^(3/19) 3178109999710653 a001 102334155/103682*87403803^(6/19) 3178109999710653 a001 701408733/103682*87403803^(4/19) 3178109999710653 a001 133957148/51841*87403803^(5/19) 3178109999710653 a001 31622993/51841*141422324^(1/3) 3178109999710653 a001 12586269025/103682*33385282^(1/18) 3178109999710653 a001 31622993/51841*(1/2+1/2*5^(1/2))^13 3178109999710653 a001 31622993/51841*73681302247^(1/4) 3178109999710653 a001 7778742049/103682*33385282^(1/12) 3178109999710654 a001 46368*33385282^(1/9) 3178109999710654 a001 12422650076928/39088169 3178109999710654 a001 1836311903/103682*33385282^(1/6) 3178109999710654 a001 701408733/103682*33385282^(2/9) 3178109999710654 a001 39088169/103682*33385282^(7/18) 3178109999710654 a001 433494437/103682*33385282^(1/4) 3178109999710654 a001 133957148/51841*33385282^(5/18) 3178109999710654 a001 102334155/103682*33385282^(1/3) 3178109999710654 a001 24157817/103682*141422324^(5/13) 3178109999710654 a001 24157817/103682*2537720636^(1/3) 3178109999710654 a001 24157817/103682*45537549124^(5/17) 3178109999710654 a001 24157817/103682*312119004989^(3/11) 3178109999710654 a001 24157817/103682*14662949395604^(5/21) 3178109999710654 a001 24157817/103682*(1/2+1/2*5^(1/2))^15 3178109999710654 a001 24157817/103682*192900153618^(5/18) 3178109999710654 a001 24157817/103682*28143753123^(3/10) 3178109999710654 a001 24157817/103682*10749957122^(5/16) 3178109999710654 a001 24157817/103682*599074578^(5/14) 3178109999710654 a001 24157817/103682*228826127^(3/8) 3178109999710654 a001 12586269025/103682*12752043^(1/17) 3178109999710656 a001 24157817/103682*33385282^(5/12) 3178109999710656 a001 46368*12752043^(2/17) 3178109999710656 a001 10983865970/34561 3178109999710657 a001 1836311903/103682*12752043^(3/17) 3178109999710658 a001 701408733/103682*12752043^(4/17) 3178109999710659 a001 133957148/51841*12752043^(5/17) 3178109999710660 a001 7465176/51841*12752043^(8/17) 3178109999710660 a001 102334155/103682*12752043^(6/17) 3178109999710661 a001 46368/20633239*2537720636^(13/15) 3178109999710661 a001 46368/20633239*45537549124^(13/17) 3178109999710661 a001 46368/20633239*14662949395604^(13/21) 3178109999710661 a001 46368/20633239*(1/2+1/2*5^(1/2))^39 3178109999710661 a001 46368/20633239*192900153618^(13/18) 3178109999710661 a001 46368/20633239*73681302247^(3/4) 3178109999710661 a001 46368/20633239*10749957122^(13/16) 3178109999710661 a001 9227465/103682*45537549124^(1/3) 3178109999710661 a001 9227465/103682*(1/2+1/2*5^(1/2))^17 3178109999710661 a001 46368/20633239*599074578^(13/14) 3178109999710661 a001 39088169/103682*12752043^(7/17) 3178109999710662 a001 12586269025/103682*4870847^(1/16) 3178109999710670 a001 46368*4870847^(1/8) 3178109999710670 a001 9227465/103682*12752043^(1/2) 3178109999710672 a001 1812440220192/5702887 3178109999710678 a001 1836311903/103682*4870847^(3/16) 3178109999710687 a001 701408733/103682*4870847^(1/4) 3178109999710695 a001 133957148/51841*4870847^(5/16) 3178109999710703 a001 102334155/103682*4870847^(3/8) 3178109999710704 a001 11592/1970299*(1/2+1/2*5^(1/2))^37 3178109999710704 a001 1762289/51841*817138163596^(1/3) 3178109999710704 a001 1762289/51841*(1/2+1/2*5^(1/2))^19 3178109999710705 a001 1762289/51841*87403803^(1/2) 3178109999710709 a001 5702887/103682*4870847^(9/16) 3178109999710711 a001 39088169/103682*4870847^(7/16) 3178109999710714 a001 12586269025/103682*1860498^(1/15) 3178109999710717 a001 7465176/51841*4870847^(1/2) 3178109999710745 a001 7778742049/103682*1860498^(1/10) 3178109999710776 a001 46368*1860498^(2/15) 3178109999710784 a001 32966217216/103729 3178109999710806 a001 2971215073/103682*1860498^(1/6) 3178109999710837 a001 1836311903/103682*1860498^(1/5) 3178109999710898 a001 701408733/103682*1860498^(4/15) 3178109999710929 a001 433494437/103682*1860498^(3/10) 3178109999710959 a001 133957148/51841*1860498^(1/3) 3178109999710971 a001 1346269/103682*7881196^(7/11) 3178109999710999 a001 1346269/103682*20633239^(3/5) 3178109999711004 a001 1346269/103682*141422324^(7/13) 3178109999711004 a001 46368/3010349*2537720636^(7/9) 3178109999711004 a001 1346269/103682*2537720636^(7/15) 3178109999711004 a001 46368/3010349*17393796001^(5/7) 3178109999711004 a001 46368/3010349*312119004989^(7/11) 3178109999711004 a001 46368/3010349*14662949395604^(5/9) 3178109999711004 a001 46368/3010349*(1/2+1/2*5^(1/2))^35 3178109999711004 a001 46368/3010349*505019158607^(5/8) 3178109999711004 a001 46368/3010349*28143753123^(7/10) 3178109999711004 a001 1346269/103682*17393796001^(3/7) 3178109999711004 a001 1346269/103682*45537549124^(7/17) 3178109999711004 a001 1346269/103682*14662949395604^(1/3) 3178109999711004 a001 1346269/103682*(1/2+1/2*5^(1/2))^21 3178109999711004 a001 1346269/103682*192900153618^(7/18) 3178109999711004 a001 1346269/103682*10749957122^(7/16) 3178109999711004 a001 1346269/103682*599074578^(1/2) 3178109999711004 a001 46368/3010349*599074578^(5/6) 3178109999711004 a001 46368/3010349*228826127^(7/8) 3178109999711006 a001 1346269/103682*33385282^(7/12) 3178109999711020 a001 102334155/103682*1860498^(2/5) 3178109999711081 a001 39088169/103682*1860498^(7/15) 3178109999711103 a001 12586269025/103682*710647^(1/14) 3178109999711113 a001 24157817/103682*1860498^(1/2) 3178109999711131 a001 46347/2206*1860498^(2/3) 3178109999711140 a001 7465176/51841*1860498^(8/15) 3178109999711185 a001 5702887/103682*1860498^(3/5) 3178109999711552 a001 33053933052/104005 3178109999711552 a001 46368*710647^(1/7) 3178109999711647 a001 1346269/103682*1860498^(7/10) 3178109999712002 a001 1836311903/103682*710647^(3/14) 3178109999712226 a001 567451585/51841*710647^(1/4) 3178109999712451 a001 701408733/103682*710647^(2/7) 3178109999712901 a001 133957148/51841*710647^(5/14) 3178109999713057 a001 46368/1149851*141422324^(11/13) 3178109999713057 a001 46368/1149851*2537720636^(11/15) 3178109999713057 a001 46368/1149851*45537549124^(11/17) 3178109999713057 a001 46368/1149851*312119004989^(3/5) 3178109999713057 a001 46368/1149851*14662949395604^(11/21) 3178109999713057 a001 46368/1149851*(1/2+1/2*5^(1/2))^33 3178109999713057 a001 46368/1149851*192900153618^(11/18) 3178109999713057 a001 46368/1149851*10749957122^(11/16) 3178109999713057 a001 514229/103682*(1/2+1/2*5^(1/2))^23 3178109999713057 a001 514229/103682*4106118243^(1/2) 3178109999713057 a001 46368/1149851*1568397607^(3/4) 3178109999713057 a001 46368/1149851*599074578^(11/14) 3178109999713060 a001 46368/1149851*33385282^(11/12) 3178109999713350 a001 102334155/103682*710647^(3/7) 3178109999713799 a001 39088169/103682*710647^(1/2) 3178109999713971 a001 12586269025/103682*271443^(1/13) 3178109999714246 a001 7465176/51841*710647^(4/7) 3178109999714679 a001 5702887/103682*710647^(9/14) 3178109999714680 a001 416020/51841*710647^(11/14) 3178109999715014 a001 46347/2206*710647^(5/7) 3178109999715394 a001 165580141/167761*64079^(12/23) 3178109999715724 a001 1346269/103682*710647^(3/4) 3178109999716812 a001 33667943904/105937 3178109999717289 a001 46368*271443^(2/13) 3178109999719901 a001 1836311903/439204*64079^(9/23) 3178109999720607 a001 1836311903/103682*271443^(3/13) 3178109999722972 a001 10182505537/51841*103682^(1/24) 3178109999723925 a001 701408733/103682*271443^(4/13) 3178109999727123 a001 98209/51841*20633239^(5/7) 3178109999727129 a001 98209/51841*2537720636^(5/9) 3178109999727129 a001 11592/109801*(1/2+1/2*5^(1/2))^31 3178109999727129 a001 11592/109801*9062201101803^(1/2) 3178109999727129 a001 98209/51841*312119004989^(5/11) 3178109999727129 a001 98209/51841*(1/2+1/2*5^(1/2))^25 3178109999727129 a001 98209/51841*3461452808002^(5/12) 3178109999727129 a001 98209/51841*28143753123^(1/2) 3178109999727129 a001 98209/51841*228826127^(5/8) 3178109999727243 a001 133957148/51841*271443^(5/13) 3178109999727596 a001 2971215073/271443*64079^(7/23) 3178109999727894 a001 98209/51841*1860498^(5/6) 3178109999730324 a001 1346269/39603*39603^(19/22) 3178109999730561 a001 102334155/103682*271443^(6/13) 3178109999730784 a001 686789568/101521*64079^(8/23) 3178109999732220 a001 31622993/51841*271443^(1/2) 3178109999733878 a001 39088169/103682*271443^(7/13) 3178109999735290 a001 12586269025/103682*103682^(1/12) 3178109999736159 a001 12586269025/1860498*64079^(8/23) 3178109999736943 a001 32951280099/4870847*64079^(8/23) 3178109999737058 a001 86267571272/12752043*64079^(8/23) 3178109999737074 a001 32264490531/4769326*64079^(8/23) 3178109999737077 a001 591286729879/87403803*64079^(8/23) 3178109999737077 a001 1548008755920/228826127*64079^(8/23) 3178109999737077 a001 4052739537881/599074578*64079^(8/23) 3178109999737077 a001 1515744265389/224056801*64079^(8/23) 3178109999737077 a001 6557470319842/969323029*64079^(8/23) 3178109999737077 a001 2504730781961/370248451*64079^(8/23) 3178109999737077 a001 956722026041/141422324*64079^(8/23) 3178109999737078 a001 365435296162/54018521*64079^(8/23) 3178109999737085 a001 139583862445/20633239*64079^(8/23) 3178109999737128 a001 53316291173/7881196*64079^(8/23) 3178109999737194 a001 7465176/51841*271443^(8/13) 3178109999737428 a001 20365011074/3010349*64079^(8/23) 3178109999739481 a001 7778742049/1149851*64079^(8/23) 3178109999740495 a001 5702887/103682*271443^(9/13) 3178109999743699 a001 46347/2206*271443^(10/13) 3178109999744175 a001 317811/103682*271443^(12/13) 3178109999746232 a001 416020/51841*271443^(11/13) 3178109999747379 a001 139583862445/710647*24476^(1/21) 3178109999747608 a001 7778742049/103682*103682^(1/8) 3178109999749046 a001 267914296/167761*64079^(11/23) 3178109999752754 a001 182717648081/930249*24476^(1/21) 3178109999752868 a001 38580030720/121393 3178109999753538 a001 956722026041/4870847*24476^(1/21) 3178109999753553 a001 2971215073/439204*64079^(8/23) 3178109999753652 a001 2504730781961/12752043*24476^(1/21) 3178109999753669 a001 3278735159921/16692641*24476^(1/21) 3178109999753673 a001 10610209857723/54018521*24476^(1/21) 3178109999753679 a001 4052739537881/20633239*24476^(1/21) 3178109999753723 a001 387002188980/1970299*24476^(1/21) 3178109999754023 a001 591286729879/3010349*24476^(1/21) 3178109999756076 a001 225851433717/1149851*24476^(1/21) 3178109999759926 a001 46368*103682^(1/6) 3178109999761248 a001 1602508992/90481*64079^(6/23) 3178109999764436 a001 7778742049/710647*64079^(7/23) 3178109999769804 a001 2971215073/64079*24476^(4/21) 3178109999769811 a001 10182505537/930249*64079^(7/23) 3178109999770147 a001 196418*24476^(1/21) 3178109999770595 a001 53316291173/4870847*64079^(7/23) 3178109999770710 a001 139583862445/12752043*64079^(7/23) 3178109999770726 a001 182717648081/16692641*64079^(7/23) 3178109999770729 a001 956722026041/87403803*64079^(7/23) 3178109999770729 a001 2504730781961/228826127*64079^(7/23) 3178109999770729 a001 3278735159921/299537289*64079^(7/23) 3178109999770729 a001 10610209857723/969323029*64079^(7/23) 3178109999770729 a001 4052739537881/370248451*64079^(7/23) 3178109999770729 a001 387002188980/35355581*64079^(7/23) 3178109999770730 a001 591286729879/54018521*64079^(7/23) 3178109999770737 a001 7787980473/711491*64079^(7/23) 3178109999770780 a001 21566892818/1970299*64079^(7/23) 3178109999771080 a001 32951280099/3010349*64079^(7/23) 3178109999772245 a001 2971215073/103682*103682^(5/24) 3178109999773133 a001 12586269025/1149851*64079^(7/23) 3178109999782698 a001 433494437/167761*64079^(10/23) 3178109999784563 a001 1836311903/103682*103682^(1/4) 3178109999787205 a001 1201881744/109801*64079^(7/23) 3178109999794900 a001 7778742049/271443*64079^(5/23) 3178109999796881 a001 567451585/51841*103682^(7/24) 3178109999798088 a001 12586269025/710647*64079^(6/23) 3178109999802760 a001 10182505537/51841*39603^(1/22) 3178109999803463 a001 10983760033/620166*64079^(6/23) 3178109999804247 a001 86267571272/4870847*64079^(6/23) 3178109999804362 a001 75283811239/4250681*64079^(6/23) 3178109999804378 a001 591286729879/33385282*64079^(6/23) 3178109999804381 a001 516002918640/29134601*64079^(6/23) 3178109999804381 a001 4052739537881/228826127*64079^(6/23) 3178109999804381 a001 3536736619241/199691526*64079^(6/23) 3178109999804381 a001 6557470319842/370248451*64079^(6/23) 3178109999804381 a001 2504730781961/141422324*64079^(6/23) 3178109999804382 a001 956722026041/54018521*64079^(6/23) 3178109999804389 a001 365435296162/20633239*64079^(6/23) 3178109999804432 a001 139583862445/7881196*64079^(6/23) 3178109999804732 a001 53316291173/3010349*64079^(6/23) 3178109999806785 a001 20365011074/1149851*64079^(6/23) 3178109999809200 a001 701408733/103682*103682^(1/3) 3178109999816350 a001 701408733/167761*64079^(9/23) 3178109999820857 a001 7778742049/439204*64079^(6/23) 3178109999821161 a001 832040/39603*39603^(10/11) 3178109999821518 a001 433494437/103682*103682^(3/8) 3178109999823536 a001 75025/103682*7881196^(9/11) 3178109999823577 a001 75025/103682*141422324^(9/13) 3178109999823577 a001 75025/103682*2537720636^(3/5) 3178109999823577 a001 46368/167761*(1/2+1/2*5^(1/2))^29 3178109999823577 a001 46368/167761*1322157322203^(1/2) 3178109999823577 a001 75025/103682*45537549124^(9/17) 3178109999823577 a001 75025/103682*817138163596^(9/19) 3178109999823577 a001 75025/103682*14662949395604^(3/7) 3178109999823577 a001 75025/103682*(1/2+1/2*5^(1/2))^27 3178109999823577 a001 75025/103682*192900153618^(1/2) 3178109999823577 a001 75025/103682*10749957122^(9/16) 3178109999823577 a001 75025/103682*599074578^(9/14) 3178109999823580 a001 75025/103682*33385282^(3/4) 3178109999824404 a001 75025/103682*1860498^(9/10) 3178109999828552 a001 12586269025/271443*64079^(4/23) 3178109999831740 a001 20365011074/710647*64079^(5/23) 3178109999833836 a001 133957148/51841*103682^(5/12) 3178109999837115 a001 53316291173/1860498*64079^(5/23) 3178109999837899 a001 139583862445/4870847*64079^(5/23) 3178109999838013 a001 365435296162/12752043*64079^(5/23) 3178109999838030 a001 956722026041/33385282*64079^(5/23) 3178109999838033 a001 2504730781961/87403803*64079^(5/23) 3178109999838033 a001 6557470319842/228826127*64079^(5/23) 3178109999838033 a001 10610209857723/370248451*64079^(5/23) 3178109999838033 a001 4052739537881/141422324*64079^(5/23) 3178109999838034 a001 1548008755920/54018521*64079^(5/23) 3178109999838040 a001 591286729879/20633239*64079^(5/23) 3178109999838084 a001 225851433717/7881196*64079^(5/23) 3178109999838384 a001 86267571272/3010349*64079^(5/23) 3178109999840437 a001 32951280099/1149851*64079^(5/23) 3178109999846155 a001 165580141/103682*103682^(11/24) 3178109999850001 a001 1134903170/167761*64079^(8/23) 3178109999854508 a001 12586269025/439204*64079^(5/23) 3178109999858473 a001 102334155/103682*103682^(1/2) 3178109999862204 a001 20365011074/271443*64079^(3/23) 3178109999865392 a001 32951280099/710647*64079^(4/23) 3178109999866596 a001 32951280099/167761*24476^(1/21) 3178109999866711 a001 260497/2+167761/2*5^(1/2) 3178109999866711 a001 23843770274/75025 3178109999870767 a001 43133785636/930249*64079^(4/23) 3178109999870791 a001 31622993/51841*103682^(13/24) 3178109999871551 a001 225851433717/4870847*64079^(4/23) 3178109999871665 a001 591286729879/12752043*64079^(4/23) 3178109999871682 a001 774004377960/16692641*64079^(4/23) 3178109999871685 a001 4052739537881/87403803*64079^(4/23) 3178109999871685 a001 225749145909/4868641*64079^(4/23) 3178109999871685 a001 3278735159921/70711162*64079^(4/23) 3178109999871686 a001 2504730781961/54018521*64079^(4/23) 3178109999871692 a001 956722026041/20633239*64079^(4/23) 3178109999871736 a001 182717648081/3940598*64079^(4/23) 3178109999872036 a001 139583862445/3010349*64079^(4/23) 3178109999872800 a001 5702887/271443*167761^(4/5) 3178109999874089 a001 53316291173/1149851*64079^(4/23) 3178109999883109 a001 39088169/103682*103682^(7/12) 3178109999883653 a001 1836311903/167761*64079^(7/23) 3178109999888160 a001 10182505537/219602*64079^(4/23) 3178109999893368 a001 2/75025*(1/2+1/2*5^(1/2))^53 3178109999894866 a001 12586269025/103682*39603^(1/11) 3178109999895405 a001 63245986/271443*167761^(3/5) 3178109999895429 a001 24157817/103682*103682^(5/8) 3178109999895856 a001 121393*64079^(2/23) 3178109999899044 a001 53316291173/710647*64079^(3/23) 3178109999904419 a001 139583862445/1860498*64079^(3/23) 3178109999905203 a001 365435296162/4870847*64079^(3/23) 3178109999905317 a001 956722026041/12752043*64079^(3/23) 3178109999905334 a001 2504730781961/33385282*64079^(3/23) 3178109999905336 a001 6557470319842/87403803*64079^(3/23) 3178109999905337 a001 10610209857723/141422324*64079^(3/23) 3178109999905338 a001 4052739537881/54018521*64079^(3/23) 3178109999905344 a001 140728068720/1875749*64079^(3/23) 3178109999905388 a001 591286729879/7881196*64079^(3/23) 3178109999905688 a001 225851433717/3010349*64079^(3/23) 3178109999907741 a001 86267571272/1149851*64079^(3/23) 3178109999907743 a001 7465176/51841*103682^(2/3) 3178109999909657 a001 14930352/710647*167761^(4/5) 3178109999915035 a001 39088169/1860498*167761^(4/5) 3178109999915819 a001 102334155/4870847*167761^(4/5) 3178109999915934 a001 267914296/12752043*167761^(4/5) 3178109999915950 a001 701408733/33385282*167761^(4/5) 3178109999915953 a001 1836311903/87403803*167761^(4/5) 3178109999915953 a001 102287808/4868641*167761^(4/5) 3178109999915953 a001 12586269025/599074578*167761^(4/5) 3178109999915953 a001 32951280099/1568397607*167761^(4/5) 3178109999915953 a001 86267571272/4106118243*167761^(4/5) 3178109999915953 a001 225851433717/10749957122*167761^(4/5) 3178109999915953 a001 591286729879/28143753123*167761^(4/5) 3178109999915953 a001 1548008755920/73681302247*167761^(4/5) 3178109999915953 a001 4052739537881/192900153618*167761^(4/5) 3178109999915953 a001 225749145909/10745088481*167761^(4/5) 3178109999915953 a001 6557470319842/312119004989*167761^(4/5) 3178109999915953 a001 2504730781961/119218851371*167761^(4/5) 3178109999915953 a001 956722026041/45537549124*167761^(4/5) 3178109999915953 a001 365435296162/17393796001*167761^(4/5) 3178109999915953 a001 139583862445/6643838879*167761^(4/5) 3178109999915953 a001 53316291173/2537720636*167761^(4/5) 3178109999915953 a001 20365011074/969323029*167761^(4/5) 3178109999915953 a001 7778742049/370248451*167761^(4/5) 3178109999915953 a001 2971215073/141422324*167761^(4/5) 3178109999915954 a001 1134903170/54018521*167761^(4/5) 3178109999915961 a001 433494437/20633239*167761^(4/5) 3178109999916004 a001 165580141/7881196*167761^(4/5) 3178109999916304 a001 63245986/3010349*167761^(4/5) 3178109999916590 a001 514229/39603*39603^(21/22) 3178109999917305 a001 2971215073/167761*64079^(6/23) 3178109999917990 a001 233802911/90481*167761^(2/5) 3178109999918358 a001 24157817/1149851*167761^(4/5) 3178109999920020 a001 121393/271443*20633239^(4/5) 3178109999920026 a001 121393/271443*17393796001^(4/7) 3178109999920026 a001 121393/271443*14662949395604^(4/9) 3178109999920026 a001 121393/271443*(1/2+1/2*5^(1/2))^28 3178109999920026 a001 121393/271443*73681302247^(7/13) 3178109999920026 a001 121393/271443*10749957122^(7/12) 3178109999920026 a001 121393/271443*4106118243^(14/23) 3178109999920026 a001 121393/271443*1568397607^(7/11) 3178109999920026 a001 121393/271443*599074578^(2/3) 3178109999920026 a001 121393/271443*228826127^(7/10) 3178109999920026 a001 121393/271443*87403803^(14/19) 3178109999920028 a001 121393/271443*33385282^(7/9) 3178109999920042 a001 121393/271443*12752043^(14/17) 3178109999920072 a001 9227465/103682*103682^(17/24) 3178109999920143 a001 121393/271443*4870847^(7/8) 3178109999920883 a001 121393/271443*1860498^(14/15) 3178109999921812 a001 32951280099/439204*64079^(3/23) 3178109999926319 a001 46368+121393*5^(1/2) 3178109999929507 a001 53316291173/271443*64079^(1/23) 3178109999932245 a001 165580141/710647*167761^(3/5) 3178109999932363 a001 5702887/103682*103682^(3/4) 3178109999932436 a001 9227465/439204*167761^(4/5) 3178109999932696 a001 86267571272/710647*64079^(2/23) 3178109999937620 a001 433494437/1860498*167761^(3/5) 3178109999938071 a001 75283811239/620166*64079^(2/23) 3178109999938404 a001 1134903170/4870847*167761^(3/5) 3178109999938519 a001 2971215073/12752043*167761^(3/5) 3178109999938535 a001 7778742049/33385282*167761^(3/5) 3178109999938538 a001 20365011074/87403803*167761^(3/5) 3178109999938538 a001 53316291173/228826127*167761^(3/5) 3178109999938538 a001 139583862445/599074578*167761^(3/5) 3178109999938538 a001 365435296162/1568397607*167761^(3/5) 3178109999938538 a001 956722026041/4106118243*167761^(3/5) 3178109999938538 a001 2504730781961/10749957122*167761^(3/5) 3178109999938538 a001 6557470319842/28143753123*167761^(3/5) 3178109999938538 a001 10610209857723/45537549124*167761^(3/5) 3178109999938538 a001 4052739537881/17393796001*167761^(3/5) 3178109999938538 a001 1548008755920/6643838879*167761^(3/5) 3178109999938538 a001 591286729879/2537720636*167761^(3/5) 3178109999938538 a001 225851433717/969323029*167761^(3/5) 3178109999938538 a001 86267571272/370248451*167761^(3/5) 3178109999938538 a001 63246219/271444*167761^(3/5) 3178109999938539 a001 12586269025/54018521*167761^(3/5) 3178109999938546 a001 4807526976/20633239*167761^(3/5) 3178109999938589 a001 1836311903/7881196*167761^(3/5) 3178109999938855 a001 591286729879/4870847*64079^(2/23) 3178109999938889 a001 701408733/3010349*167761^(3/5) 3178109999938969 a001 516002918640/4250681*64079^(2/23) 3178109999938986 a001 4052739537881/33385282*64079^(2/23) 3178109999938988 a001 3536736619241/29134601*64079^(2/23) 3178109999938990 a001 6557470319842/54018521*64079^(2/23) 3178109999938996 a001 2504730781961/20633239*64079^(2/23) 3178109999939040 a001 956722026041/7881196*64079^(2/23) 3178109999939339 a001 365435296162/3010349*64079^(2/23) 3178109999940575 a001 7778742049/271443*167761^(1/5) 3178109999940942 a001 267914296/1149851*167761^(3/5) 3178109999941392 a001 139583862445/1149851*64079^(2/23) 3178109999944752 a001 1762289/51841*103682^(19/24) 3178109999947596 a001 832040/271443*439204^(8/9) 3178109999949088 a001 62423800997/196418 3178109999950396 a001 3524578/271443*439204^(7/9) 3178109999950957 a001 4807526976/167761*64079^(5/23) 3178109999952173 a001 4976784/90481*439204^(2/3) 3178109999954007 a001 63245986/271443*439204^(5/9) 3178109999954830 a001 1836311903/710647*167761^(2/5) 3178109999955013 a001 102334155/439204*167761^(3/5) 3178109999955464 a001 53316291173/439204*64079^(2/23) 3178109999955837 a001 267914296/271443*439204^(4/9) 3178109999956820 a001 121393/710647*7881196^(10/11) 3178109999956860 a001 121393/710647*20633239^(6/7) 3178109999956866 a001 121393/710647*141422324^(10/13) 3178109999956866 a001 105937/90481*141422324^(2/3) 3178109999956866 a001 121393/710647*2537720636^(2/3) 3178109999956866 a001 121393/710647*45537549124^(10/17) 3178109999956866 a001 121393/710647*312119004989^(6/11) 3178109999956866 a001 121393/710647*14662949395604^(10/21) 3178109999956866 a001 121393/710647*(1/2+1/2*5^(1/2))^30 3178109999956866 a001 121393/710647*192900153618^(5/9) 3178109999956866 a001 105937/90481*(1/2+1/2*5^(1/2))^26 3178109999956866 a001 105937/90481*73681302247^(1/2) 3178109999956866 a001 121393/710647*28143753123^(3/5) 3178109999956866 a001 105937/90481*10749957122^(13/24) 3178109999956866 a001 121393/710647*10749957122^(5/8) 3178109999956866 a001 105937/90481*4106118243^(13/23) 3178109999956866 a001 121393/710647*4106118243^(15/23) 3178109999956866 a001 105937/90481*1568397607^(13/22) 3178109999956866 a001 121393/710647*1568397607^(15/22) 3178109999956866 a001 105937/90481*599074578^(13/21) 3178109999956866 a001 121393/710647*599074578^(5/7) 3178109999956866 a001 105937/90481*228826127^(13/20) 3178109999956866 a001 121393/710647*228826127^(3/4) 3178109999956867 a001 105937/90481*87403803^(13/19) 3178109999956867 a001 121393/710647*87403803^(15/19) 3178109999956868 a001 105937/90481*33385282^(13/18) 3178109999956869 a001 121393/710647*33385282^(5/6) 3178109999956881 a001 105937/90481*12752043^(13/17) 3178109999956884 a001 121393/710647*12752043^(15/17) 3178109999956885 a001 46347/2206*103682^(5/6) 3178109999956975 a001 105937/90481*4870847^(13/16) 3178109999956992 a001 121393/710647*4870847^(15/16) 3178109999957662 a001 105937/90481*1860498^(13/15) 3178109999957668 a001 1134903170/271443*439204^(1/3) 3178109999959498 a001 1602508992/90481*439204^(2/9) 3178109999960205 a001 267084832/103361*167761^(2/5) 3178109999960989 a001 12586269025/4870847*167761^(2/5) 3178109999961103 a001 10983760033/4250681*167761^(2/5) 3178109999961106 a001 163427632717/514229 3178109999961120 a001 43133785636/16692641*167761^(2/5) 3178109999961122 a001 75283811239/29134601*167761^(2/5) 3178109999961123 a001 591286729879/228826127*167761^(2/5) 3178109999961123 a001 86000486440/33281921*167761^(2/5) 3178109999961123 a001 4052739537881/1568397607*167761^(2/5) 3178109999961123 a001 3536736619241/1368706081*167761^(2/5) 3178109999961123 a001 3278735159921/1268860318*167761^(2/5) 3178109999961123 a001 2504730781961/969323029*167761^(2/5) 3178109999961123 a001 956722026041/370248451*167761^(2/5) 3178109999961123 a001 182717648081/70711162*167761^(2/5) 3178109999961124 a001 139583862445/54018521*167761^(2/5) 3178109999961130 a001 53316291173/20633239*167761^(2/5) 3178109999961174 a001 10182505537/3940598*167761^(2/5) 3178109999961329 a001 20365011074/271443*439204^(1/9) 3178109999961474 a001 7778742049/3010349*167761^(2/5) 3178109999962204 a001 832040/271443*7881196^(8/11) 3178109999962241 a001 832040/271443*141422324^(8/13) 3178109999962241 a001 832040/271443*2537720636^(8/15) 3178109999962241 a001 832040/271443*45537549124^(8/17) 3178109999962241 a001 121393/1860498*(1/2+1/2*5^(1/2))^32 3178109999962241 a001 121393/1860498*23725150497407^(1/2) 3178109999962241 a001 121393/1860498*73681302247^(8/13) 3178109999962241 a001 832040/271443*14662949395604^(8/21) 3178109999962241 a001 832040/271443*(1/2+1/2*5^(1/2))^24 3178109999962241 a001 832040/271443*192900153618^(4/9) 3178109999962241 a001 832040/271443*73681302247^(6/13) 3178109999962241 a001 832040/271443*10749957122^(1/2) 3178109999962241 a001 121393/1860498*10749957122^(2/3) 3178109999962241 a001 832040/271443*4106118243^(12/23) 3178109999962241 a001 121393/1860498*4106118243^(16/23) 3178109999962241 a001 832040/271443*1568397607^(6/11) 3178109999962241 a001 121393/1860498*1568397607^(8/11) 3178109999962241 a001 832040/271443*599074578^(4/7) 3178109999962241 a001 121393/1860498*599074578^(16/21) 3178109999962241 a001 832040/271443*228826127^(3/5) 3178109999962241 a001 121393/1860498*228826127^(4/5) 3178109999962241 a001 832040/271443*87403803^(12/19) 3178109999962242 a001 121393/1860498*87403803^(16/19) 3178109999962243 a001 832040/271443*33385282^(2/3) 3178109999962244 a001 121393/1860498*33385282^(8/9) 3178109999962255 a001 832040/271443*12752043^(12/17) 3178109999962260 a001 121393/1860498*12752043^(16/17) 3178109999962342 a001 832040/271443*4870847^(3/4) 3178109999962710 a001 105937/90481*710647^(13/14) 3178109999962860 a001 427859097154/1346269 3178109999962976 a001 832040/271443*1860498^(4/5) 3178109999962991 a001 726103/90481*7881196^(2/3) 3178109999963025 a001 121393/4870847*45537549124^(2/3) 3178109999963025 a001 121393/4870847*(1/2+1/2*5^(1/2))^34 3178109999963025 a001 726103/90481*312119004989^(2/5) 3178109999963025 a001 726103/90481*(1/2+1/2*5^(1/2))^22 3178109999963025 a001 726103/90481*10749957122^(11/24) 3178109999963025 a001 121393/4870847*10749957122^(17/24) 3178109999963025 a001 726103/90481*4106118243^(11/23) 3178109999963025 a001 121393/4870847*4106118243^(17/23) 3178109999963025 a001 726103/90481*1568397607^(1/2) 3178109999963025 a001 121393/4870847*1568397607^(17/22) 3178109999963025 a001 726103/90481*599074578^(11/21) 3178109999963025 a001 121393/4870847*599074578^(17/21) 3178109999963025 a001 726103/90481*228826127^(11/20) 3178109999963025 a001 121393/4870847*228826127^(17/20) 3178109999963026 a001 726103/90481*87403803^(11/19) 3178109999963026 a001 121393/4870847*87403803^(17/19) 3178109999963027 a001 726103/90481*33385282^(11/18) 3178109999963028 a001 121393/4870847*33385282^(17/18) 3178109999963038 a001 726103/90481*12752043^(11/17) 3178109999963116 a001 1120149658745/3524578 3178109999963117 a001 726103/90481*4870847^(11/16) 3178109999963129 a001 4976784/90481*7881196^(6/11) 3178109999963136 a001 5702887/271443*20633239^(4/7) 3178109999963136 a001 63245986/271443*7881196^(5/11) 3178109999963140 a001 121393/12752043*141422324^(12/13) 3178109999963140 a001 121393/12752043*2537720636^(4/5) 3178109999963140 a001 5702887/271443*2537720636^(4/9) 3178109999963140 a001 121393/12752043*45537549124^(12/17) 3178109999963140 a001 121393/12752043*14662949395604^(4/7) 3178109999963140 a001 121393/12752043*(1/2+1/2*5^(1/2))^36 3178109999963140 a001 121393/12752043*505019158607^(9/14) 3178109999963140 a001 121393/12752043*192900153618^(2/3) 3178109999963140 a001 121393/12752043*73681302247^(9/13) 3178109999963140 a001 5702887/271443*(1/2+1/2*5^(1/2))^20 3178109999963140 a001 5702887/271443*23725150497407^(5/16) 3178109999963140 a001 5702887/271443*505019158607^(5/14) 3178109999963140 a001 5702887/271443*73681302247^(5/13) 3178109999963140 a001 5702887/271443*28143753123^(2/5) 3178109999963140 a001 5702887/271443*10749957122^(5/12) 3178109999963140 a001 121393/12752043*10749957122^(3/4) 3178109999963140 a001 5702887/271443*4106118243^(10/23) 3178109999963140 a001 121393/12752043*4106118243^(18/23) 3178109999963140 a001 5702887/271443*1568397607^(5/11) 3178109999963140 a001 121393/12752043*1568397607^(9/11) 3178109999963140 a001 5702887/271443*599074578^(10/21) 3178109999963140 a001 121393/12752043*599074578^(6/7) 3178109999963140 a001 5702887/271443*228826127^(1/2) 3178109999963140 a001 121393/12752043*228826127^(9/10) 3178109999963140 a001 5702887/271443*87403803^(10/19) 3178109999963140 a001 121393/12752043*87403803^(18/19) 3178109999963141 a001 267914296/271443*7881196^(4/11) 3178109999963141 a001 5702887/271443*33385282^(5/9) 3178109999963142 a001 433494437/271443*7881196^(1/3) 3178109999963145 a001 1134903170/271443*7881196^(3/11) 3178109999963150 a001 1602508992/90481*7881196^(2/11) 3178109999963151 a001 5702887/271443*12752043^(10/17) 3178109999963153 a001 2932589879081/9227465 3178109999963155 a001 20365011074/271443*7881196^(1/11) 3178109999963156 a001 34111385/90481*20633239^(2/5) 3178109999963156 a001 63245986/271443*20633239^(3/7) 3178109999963156 a001 4976784/90481*141422324^(6/13) 3178109999963157 a001 4976784/90481*2537720636^(2/5) 3178109999963157 a001 121393/33385282*817138163596^(2/3) 3178109999963157 a001 121393/33385282*(1/2+1/2*5^(1/2))^38 3178109999963157 a001 4976784/90481*45537549124^(6/17) 3178109999963157 a001 4976784/90481*14662949395604^(2/7) 3178109999963157 a001 4976784/90481*(1/2+1/2*5^(1/2))^18 3178109999963157 a001 4976784/90481*192900153618^(1/3) 3178109999963157 a001 4976784/90481*10749957122^(3/8) 3178109999963157 a001 121393/33385282*10749957122^(19/24) 3178109999963157 a001 4976784/90481*4106118243^(9/23) 3178109999963157 a001 121393/33385282*4106118243^(19/23) 3178109999963157 a001 4976784/90481*1568397607^(9/22) 3178109999963157 a001 121393/33385282*1568397607^(19/22) 3178109999963157 a001 4976784/90481*599074578^(3/7) 3178109999963157 a001 121393/33385282*599074578^(19/21) 3178109999963157 a001 4976784/90481*228826127^(9/20) 3178109999963157 a001 121393/33385282*228826127^(19/20) 3178109999963157 a001 4976784/90481*87403803^(9/19) 3178109999963157 a001 233802911/90481*20633239^(2/7) 3178109999963158 a001 2971215073/271443*20633239^(1/5) 3178109999963158 a001 4976784/90481*33385282^(1/2) 3178109999963158 a001 7778742049/271443*20633239^(1/7) 3178109999963158 a001 7677619978498/24157817 3178109999963159 a001 121393/87403803*2537720636^(8/9) 3178109999963159 a001 121393/87403803*312119004989^(8/11) 3178109999963159 a001 121393/87403803*23725150497407^(5/8) 3178109999963159 a001 121393/87403803*73681302247^(10/13) 3178109999963159 a001 39088169/271443*(1/2+1/2*5^(1/2))^16 3178109999963159 a001 39088169/271443*23725150497407^(1/4) 3178109999963159 a001 39088169/271443*73681302247^(4/13) 3178109999963159 a001 121393/87403803*28143753123^(4/5) 3178109999963159 a001 39088169/271443*10749957122^(1/3) 3178109999963159 a001 121393/87403803*10749957122^(5/6) 3178109999963159 a001 39088169/271443*4106118243^(8/23) 3178109999963159 a001 121393/87403803*4106118243^(20/23) 3178109999963159 a001 39088169/271443*1568397607^(4/11) 3178109999963159 a001 121393/87403803*1568397607^(10/11) 3178109999963159 a001 39088169/271443*599074578^(8/21) 3178109999963159 a001 121393/87403803*599074578^(20/21) 3178109999963159 a001 39088169/271443*228826127^(2/5) 3178109999963159 a001 39088169/271443*87403803^(8/19) 3178109999963159 a001 86267253461/271442 3178109999963159 a001 121393/228826127*2537720636^(14/15) 3178109999963159 a001 121393/228826127*17393796001^(6/7) 3178109999963159 a001 34111385/90481*17393796001^(2/7) 3178109999963159 a001 121393/228826127*45537549124^(14/17) 3178109999963159 a001 121393/228826127*817138163596^(14/19) 3178109999963159 a001 121393/228826127*14662949395604^(2/3) 3178109999963159 a001 121393/228826127*505019158607^(3/4) 3178109999963159 a001 121393/228826127*192900153618^(7/9) 3178109999963159 a001 34111385/90481*14662949395604^(2/9) 3178109999963159 a001 34111385/90481*(1/2+1/2*5^(1/2))^14 3178109999963159 a001 34111385/90481*10749957122^(7/24) 3178109999963159 a001 121393/228826127*10749957122^(7/8) 3178109999963159 a001 34111385/90481*4106118243^(7/23) 3178109999963159 a001 121393/228826127*4106118243^(21/23) 3178109999963159 a001 34111385/90481*1568397607^(7/22) 3178109999963159 a001 121393/228826127*1568397607^(21/22) 3178109999963159 a001 267914296/271443*141422324^(4/13) 3178109999963159 a001 34111385/90481*599074578^(1/3) 3178109999963159 a001 34111385/90481*228826127^(7/20) 3178109999963159 a001 1134903170/271443*141422324^(3/13) 3178109999963159 a001 165580141/271443*141422324^(1/3) 3178109999963159 a001 1602508992/90481*141422324^(2/13) 3178109999963159 a001 52623190190741/165580141 3178109999963159 a001 20365011074/271443*141422324^(1/13) 3178109999963159 a001 267914296/271443*2537720636^(4/15) 3178109999963159 a001 121393/599074578*312119004989^(4/5) 3178109999963159 a001 121393/599074578*23725150497407^(11/16) 3178109999963159 a001 267914296/271443*45537549124^(4/17) 3178109999963159 a001 121393/599074578*73681302247^(11/13) 3178109999963159 a001 267914296/271443*817138163596^(4/19) 3178109999963159 a001 267914296/271443*14662949395604^(4/21) 3178109999963159 a001 267914296/271443*(1/2+1/2*5^(1/2))^12 3178109999963159 a001 267914296/271443*192900153618^(2/9) 3178109999963159 a001 267914296/271443*73681302247^(3/13) 3178109999963159 a001 267914296/271443*10749957122^(1/4) 3178109999963159 a001 121393/599074578*10749957122^(11/12) 3178109999963159 a001 267914296/271443*4106118243^(6/23) 3178109999963159 a001 121393/599074578*4106118243^(22/23) 3178109999963159 a001 267914296/271443*1568397607^(3/11) 3178109999963159 a001 267914296/271443*599074578^(2/7) 3178109999963159 a001 137769300515810/433494437 3178109999963159 a001 233802911/90481*2537720636^(2/9) 3178109999963159 a001 233802911/90481*312119004989^(2/11) 3178109999963159 a001 233802911/90481*(1/2+1/2*5^(1/2))^10 3178109999963159 a001 233802911/90481*28143753123^(1/5) 3178109999963159 a001 233802911/90481*10749957122^(5/24) 3178109999963159 a001 121393/1568397607*10749957122^(23/24) 3178109999963159 a001 233802911/90481*4106118243^(5/23) 3178109999963159 a001 233802911/90481*1568397607^(5/22) 3178109999963159 a001 360684711356689/1134903170 3178109999963159 a001 121393/4106118243*45537549124^(16/17) 3178109999963159 a001 121393/4106118243*14662949395604^(16/21) 3178109999963159 a001 121393/4106118243*192900153618^(8/9) 3178109999963159 a001 121393/4106118243*73681302247^(12/13) 3178109999963159 a001 1836311903/271443*(1/2+1/2*5^(1/2))^8 3178109999963159 a001 1836311903/271443*23725150497407^(1/8) 3178109999963159 a001 1836311903/271443*505019158607^(1/7) 3178109999963159 a001 1836311903/271443*73681302247^(2/13) 3178109999963159 a001 1836311903/271443*10749957122^(1/6) 3178109999963159 a001 1836311903/271443*4106118243^(4/23) 3178109999963159 a001 1602508992/90481*2537720636^(2/15) 3178109999963159 a001 944284833554257/2971215073 3178109999963159 a001 7778742049/271443*2537720636^(1/9) 3178109999963159 a001 20365011074/271443*2537720636^(1/15) 3178109999963159 a001 121393/10749957122*312119004989^(10/11) 3178109999963159 a001 121393/10749957122*3461452808002^(5/6) 3178109999963159 a001 1602508992/90481*45537549124^(2/17) 3178109999963159 a001 1602508992/90481*14662949395604^(2/21) 3178109999963159 a001 1602508992/90481*(1/2+1/2*5^(1/2))^6 3178109999963159 a001 1602508992/90481*10749957122^(1/8) 3178109999963159 a001 2472169789306082/7778742049 3178109999963159 a001 121393/28143753123*23725150497407^(13/16) 3178109999963159 a001 121393/28143753123*505019158607^(13/14) 3178109999963159 a001 12586269025/271443*(1/2+1/2*5^(1/2))^4 3178109999963159 a001 12586269025/271443*23725150497407^(1/16) 3178109999963159 a001 12586269025/271443*73681302247^(1/13) 3178109999963159 a001 1602508992/90481*4106118243^(3/23) 3178109999963159 a001 6472224534363989/20365011074 3178109999963159 a001 12586269025/271443*10749957122^(1/12) 3178109999963159 a001 121393/73681302247*14662949395604^(6/7) 3178109999963159 a001 16944503813785885/53316291173 3178109999963159 a001 121393/192900153618*14662949395604^(8/9) 3178109999963159 a001 44361286906993666/139583862445 3178109999963159 a001 116139356907195113/365435296162 3178109999963159 a001 187917426907396560/591286729879 3178109999963159 a001 121393/312119004989*14662949395604^(19/21) 3178109999963159 a001 27416783093207781/86267571272 3178109999963159 a001 121393/119218851371*3461452808002^(11/12) 3178109999963159 a001 86267571272/271443 3178109999963159 a001 53316291173/542886+53316291173/542886*5^(1/2) 3178109999963159 a001 121393*10749957122^(1/24) 3178109999963159 a001 20365011074/271443*45537549124^(1/17) 3178109999963159 a001 20365011074/271443*14662949395604^(1/21) 3178109999963159 a001 20365011074/271443*(1/2+1/2*5^(1/2))^3 3178109999963159 a001 20365011074/271443*192900153618^(1/18) 3178109999963159 a001 4000054745057907/12586269025 3178109999963159 a001 20365011074/271443*10749957122^(1/16) 3178109999963159 a001 121393*4106118243^(1/23) 3178109999963159 a001 121393/17393796001*14662949395604^(17/21) 3178109999963159 a001 121393/17393796001*192900153618^(17/18) 3178109999963159 a001 7778742049/271443*312119004989^(1/11) 3178109999963159 a001 7778742049/271443*(1/2+1/2*5^(1/2))^5 3178109999963159 a001 7778742049/271443*28143753123^(1/10) 3178109999963159 a001 12586269025/271443*4106118243^(2/23) 3178109999963159 a001 1527884955751825/4807526976 3178109999963159 a001 1836311903/271443*1568397607^(2/11) 3178109999963159 a001 121393*1568397607^(1/22) 3178109999963159 a001 2971215073/271443*17393796001^(1/7) 3178109999963159 a001 121393/6643838879*14662949395604^(7/9) 3178109999963159 a001 121393/6643838879*505019158607^(7/8) 3178109999963159 a001 2971215073/271443*14662949395604^(1/9) 3178109999963159 a001 2971215073/271443*(1/2+1/2*5^(1/2))^7 3178109999963159 a001 12586269025/271443*1568397607^(1/11) 3178109999963159 a001 1602508992/90481*1568397607^(3/22) 3178109999963159 a001 583600122197568/1836311903 3178109999963159 a001 1134903170/271443*2537720636^(1/5) 3178109999963159 a001 121393*599074578^(1/21) 3178109999963159 a001 1134903170/271443*45537549124^(3/17) 3178109999963159 a001 1134903170/271443*817138163596^(3/19) 3178109999963159 a001 1134903170/271443*14662949395604^(1/7) 3178109999963159 a001 1134903170/271443*(1/2+1/2*5^(1/2))^9 3178109999963159 a001 1134903170/271443*192900153618^(1/6) 3178109999963159 a001 1134903170/271443*10749957122^(3/16) 3178109999963159 a001 20365011074/271443*599074578^(1/14) 3178109999963159 a001 233802911/90481*599074578^(5/21) 3178109999963159 a001 12586269025/271443*599074578^(2/21) 3178109999963159 a001 222915410840879/701408733 3178109999963159 a001 1602508992/90481*599074578^(1/7) 3178109999963159 a001 1836311903/271443*599074578^(4/21) 3178109999963159 a001 2971215073/271443*599074578^(1/6) 3178109999963159 a001 1134903170/271443*599074578^(3/14) 3178109999963159 a001 121393*228826127^(1/20) 3178109999963159 a001 121393/969323029*45537549124^(15/17) 3178109999963159 a001 121393/969323029*312119004989^(9/11) 3178109999963159 a001 121393/969323029*14662949395604^(5/7) 3178109999963159 a001 121393/969323029*192900153618^(5/6) 3178109999963159 a001 433494437/271443*312119004989^(1/5) 3178109999963159 a001 433494437/271443*(1/2+1/2*5^(1/2))^11 3178109999963159 a001 121393/969323029*28143753123^(9/10) 3178109999963159 a001 121393/969323029*10749957122^(15/16) 3178109999963159 a001 433494437/271443*1568397607^(1/4) 3178109999963159 a001 12586269025/271443*228826127^(1/10) 3178109999963159 a001 85146110325069/267914296 3178109999963159 a001 7778742049/271443*228826127^(1/8) 3178109999963159 a001 1602508992/90481*228826127^(3/20) 3178109999963159 a001 267914296/271443*228826127^(3/10) 3178109999963159 a001 1836311903/271443*228826127^(1/5) 3178109999963159 a001 233802911/90481*228826127^(1/4) 3178109999963159 a001 121393*87403803^(1/19) 3178109999963159 a001 165580141/271443*(1/2+1/2*5^(1/2))^13 3178109999963159 a001 165580141/271443*73681302247^(1/4) 3178109999963159 a001 12586269025/271443*87403803^(2/19) 3178109999963159 a001 32522920134328/102334155 3178109999963159 a001 1602508992/90481*87403803^(3/19) 3178109999963159 a001 1836311903/271443*87403803^(4/19) 3178109999963159 a001 34111385/90481*87403803^(7/19) 3178109999963159 a001 63245986/271443*141422324^(5/13) 3178109999963159 a001 233802911/90481*87403803^(5/19) 3178109999963159 a001 267914296/271443*87403803^(6/19) 3178109999963160 a001 121393*33385282^(1/18) 3178109999963160 a001 63245986/271443*2537720636^(1/3) 3178109999963160 a001 63245986/271443*45537549124^(5/17) 3178109999963160 a001 63245986/271443*312119004989^(3/11) 3178109999963160 a001 63245986/271443*14662949395604^(5/21) 3178109999963160 a001 63245986/271443*(1/2+1/2*5^(1/2))^15 3178109999963160 a001 63245986/271443*192900153618^(5/18) 3178109999963160 a001 63245986/271443*28143753123^(3/10) 3178109999963160 a001 63245986/271443*10749957122^(5/16) 3178109999963160 a001 63245986/271443*599074578^(5/14) 3178109999963160 a001 63245986/271443*228826127^(3/8) 3178109999963160 a001 20365011074/271443*33385282^(1/12) 3178109999963160 a001 12586269025/271443*33385282^(1/9) 3178109999963160 a001 12422650077915/39088169 3178109999963160 a001 1602508992/90481*33385282^(1/6) 3178109999963160 a001 1836311903/271443*33385282^(2/9) 3178109999963160 a001 1134903170/271443*33385282^(1/4) 3178109999963160 a001 233802911/90481*33385282^(5/18) 3178109999963160 a001 39088169/271443*33385282^(4/9) 3178109999963160 a001 267914296/271443*33385282^(1/3) 3178109999963160 a001 34111385/90481*33385282^(7/18) 3178109999963160 a001 121393/54018521*2537720636^(13/15) 3178109999963160 a001 121393/54018521*45537549124^(13/17) 3178109999963160 a001 121393/54018521*14662949395604^(13/21) 3178109999963160 a001 121393/54018521*192900153618^(13/18) 3178109999963160 a001 24157817/271443*45537549124^(1/3) 3178109999963160 a001 121393/54018521*73681302247^(3/4) 3178109999963160 a001 24157817/271443*(1/2+1/2*5^(1/2))^17 3178109999963160 a001 121393/54018521*10749957122^(13/16) 3178109999963160 a001 121393/54018521*599074578^(13/14) 3178109999963161 a001 121393*12752043^(1/17) 3178109999963161 a001 63245986/271443*33385282^(5/12) 3178109999963162 a001 12586269025/271443*12752043^(2/17) 3178109999963162 a001 4745030099417/14930352 3178109999963163 a001 1602508992/90481*12752043^(3/17) 3178109999963164 a001 1836311903/271443*12752043^(4/17) 3178109999963165 a001 233802911/90481*12752043^(5/17) 3178109999963166 a001 267914296/271443*12752043^(6/17) 3178109999963167 a001 121393/20633239*(1/2+1/2*5^(1/2))^37 3178109999963167 a001 9227465/271443*817138163596^(1/3) 3178109999963167 a001 9227465/271443*(1/2+1/2*5^(1/2))^19 3178109999963167 a001 4976784/90481*12752043^(9/17) 3178109999963167 a001 9227465/271443*87403803^(1/2) 3178109999963167 a001 34111385/90481*12752043^(7/17) 3178109999963168 a001 121393*4870847^(1/16) 3178109999963168 a001 39088169/271443*12752043^(8/17) 3178109999963170 a001 24157817/271443*12752043^(1/2) 3178109999963176 a001 1812440220336/5702887 3178109999963176 a001 12586269025/271443*4870847^(1/8) 3178109999963178 a001 3524578/271443*7881196^(7/11) 3178109999963184 a001 1602508992/90481*4870847^(3/16) 3178109999963193 a001 1836311903/271443*4870847^(1/4) 3178109999963201 a001 233802911/90481*4870847^(5/16) 3178109999963206 a001 3524578/271443*20633239^(3/5) 3178109999963210 a001 267914296/271443*4870847^(3/8) 3178109999963210 a001 3524578/271443*141422324^(7/13) 3178109999963211 a001 121393/7881196*2537720636^(7/9) 3178109999963211 a001 3524578/271443*2537720636^(7/15) 3178109999963211 a001 121393/7881196*17393796001^(5/7) 3178109999963211 a001 3524578/271443*17393796001^(3/7) 3178109999963211 a001 3524578/271443*45537549124^(7/17) 3178109999963211 a001 121393/7881196*312119004989^(7/11) 3178109999963211 a001 121393/7881196*14662949395604^(5/9) 3178109999963211 a001 121393/7881196*(1/2+1/2*5^(1/2))^35 3178109999963211 a001 121393/7881196*505019158607^(5/8) 3178109999963211 a001 3524578/271443*14662949395604^(1/3) 3178109999963211 a001 3524578/271443*(1/2+1/2*5^(1/2))^21 3178109999963211 a001 3524578/271443*192900153618^(7/18) 3178109999963211 a001 121393/7881196*28143753123^(7/10) 3178109999963211 a001 3524578/271443*10749957122^(7/16) 3178109999963211 a001 3524578/271443*599074578^(1/2) 3178109999963211 a001 121393/7881196*599074578^(5/6) 3178109999963211 a001 121393/7881196*228826127^(7/8) 3178109999963212 a001 3524578/271443*33385282^(7/12) 3178109999963218 a001 34111385/90481*4870847^(7/16) 3178109999963221 a001 121393*1860498^(1/15) 3178109999963224 a001 5702887/271443*4870847^(5/8) 3178109999963226 a001 39088169/271443*4870847^(1/2) 3178109999963232 a001 4976784/90481*4870847^(9/16) 3178109999963251 a001 20365011074/271443*1860498^(1/10) 3178109999963274 a001 692290561591/2178309 3178109999963282 a001 12586269025/271443*1860498^(2/15) 3178109999963312 a001 7778742049/271443*1860498^(1/6) 3178109999963343 a001 1602508992/90481*1860498^(1/5) 3178109999963404 a001 1836311903/271443*1860498^(4/15) 3178109999963435 a001 1134903170/271443*1860498^(3/10) 3178109999963465 a001 233802911/90481*1860498^(1/3) 3178109999963510 a001 121393/3010349*141422324^(11/13) 3178109999963510 a001 121393/3010349*2537720636^(11/15) 3178109999963510 a001 121393/3010349*45537549124^(11/17) 3178109999963510 a001 121393/3010349*312119004989^(3/5) 3178109999963510 a001 121393/3010349*14662949395604^(11/21) 3178109999963510 a001 121393/3010349*(1/2+1/2*5^(1/2))^33 3178109999963510 a001 121393/3010349*192900153618^(11/18) 3178109999963510 a001 1346269/271443*(1/2+1/2*5^(1/2))^23 3178109999963510 a001 121393/3010349*10749957122^(11/16) 3178109999963510 a001 1346269/271443*4106118243^(1/2) 3178109999963510 a001 121393/3010349*1568397607^(3/4) 3178109999963510 a001 121393/3010349*599074578^(11/14) 3178109999963513 a001 121393/3010349*33385282^(11/12) 3178109999963527 a001 267914296/271443*1860498^(2/5) 3178109999963527 a001 2971215073/1149851*167761^(2/5) 3178109999963588 a001 34111385/90481*1860498^(7/15) 3178109999963609 a001 121393*710647^(1/14) 3178109999963619 a001 63245986/271443*1860498^(1/2) 3178109999963649 a001 39088169/271443*1860498^(8/15) 3178109999963699 a001 726103/90481*1860498^(11/15) 3178109999963707 a001 4976784/90481*1860498^(3/5) 3178109999963752 a001 5702887/271443*1860498^(2/3) 3178109999963853 a001 3524578/271443*1860498^(7/10) 3178109999963944 a001 264431464437/832040 3178109999964058 a001 12586269025/271443*710647^(1/7) 3178109999964508 a001 1602508992/90481*710647^(3/14) 3178109999964733 a001 2971215073/271443*710647^(1/4) 3178109999964957 a001 1836311903/271443*710647^(2/7) 3178109999965407 a001 233802911/90481*710647^(5/14) 3178109999965558 a001 514229/271443*20633239^(5/7) 3178109999965563 a001 514229/271443*2537720636^(5/9) 3178109999965563 a001 121393/1149851*(1/2+1/2*5^(1/2))^31 3178109999965563 a001 121393/1149851*9062201101803^(1/2) 3178109999965563 a001 514229/271443*312119004989^(5/11) 3178109999965563 a001 514229/271443*(1/2+1/2*5^(1/2))^25 3178109999965563 a001 514229/271443*3461452808002^(5/12) 3178109999965563 a001 514229/271443*28143753123^(1/2) 3178109999965563 a001 514229/271443*228826127^(5/8) 3178109999965856 a001 267914296/271443*710647^(3/7) 3178109999966306 a001 34111385/90481*710647^(1/2) 3178109999966328 a001 514229/271443*1860498^(5/6) 3178109999966348 a001 139583862445/710647*64079^(1/23) 3178109999966477 a001 121393*271443^(1/13) 3178109999966755 a001 39088169/271443*710647^(4/7) 3178109999967202 a001 4976784/90481*710647^(9/14) 3178109999967635 a001 5702887/271443*710647^(5/7) 3178109999967635 a001 832040/271443*710647^(6/7) 3178109999967930 a001 3524578/271443*710647^(3/4) 3178109999967970 a001 726103/90481*710647^(11/14) 3178109999968534 a001 101003831720/317811 3178109999969688 a001 1346269/103682*103682^(7/8) 3178109999969795 a001 12586269025/271443*271443^(2/13) 3178109999971723 a001 182717648081/930249*64079^(1/23) 3178109999972507 a001 956722026041/4870847*64079^(1/23) 3178109999972621 a001 2504730781961/12752043*64079^(1/23) 3178109999972638 a001 3278735159921/16692641*64079^(1/23) 3178109999972642 a001 10610209857723/54018521*64079^(1/23) 3178109999972648 a001 4052739537881/20633239*64079^(1/23) 3178109999972692 a001 387002188980/1970299*64079^(1/23) 3178109999972991 a001 591286729879/3010349*64079^(1/23) 3178109999973113 a001 1602508992/90481*271443^(3/13) 3178109999975044 a001 225851433717/1149851*64079^(1/23) 3178109999975478 a001 53316291173/271443*103682^(1/24) 3178109999976431 a001 1836311903/271443*271443^(4/13) 3178109999977415 a001 20365011074/710647*167761^(1/5) 3178109999977598 a001 567451585/219602*167761^(2/5) 3178109999979593 a001 196418/271443*7881196^(9/11) 3178109999979635 a001 196418/271443*141422324^(9/13) 3178109999979635 a001 196418/271443*2537720636^(3/5) 3178109999979635 a001 196418/271443*45537549124^(9/17) 3178109999979635 a001 121393/439204*(1/2+1/2*5^(1/2))^29 3178109999979635 a001 121393/439204*1322157322203^(1/2) 3178109999979635 a001 196418/271443*14662949395604^(3/7) 3178109999979635 a001 196418/271443*(1/2+1/2*5^(1/2))^27 3178109999979635 a001 196418/271443*192900153618^(1/2) 3178109999979635 a001 196418/271443*10749957122^(9/16) 3178109999979635 a001 196418/271443*599074578^(9/14) 3178109999979637 a001 196418/271443*33385282^(3/4) 3178109999979749 a001 233802911/90481*271443^(5/13) 3178109999980461 a001 196418/271443*1860498^(9/10) 3178109999980738 a001 416020/51841*103682^(11/12) 3178109999982790 a001 53316291173/1860498*167761^(1/5) 3178109999983067 a001 267914296/271443*271443^(6/13) 3178109999983574 a001 139583862445/4870847*167761^(1/5) 3178109999983688 a001 365435296162/12752043*167761^(1/5) 3178109999983705 a001 956722026041/33385282*167761^(1/5) 3178109999983707 a001 2504730781961/87403803*167761^(1/5) 3178109999983708 a001 6557470319842/228826127*167761^(1/5) 3178109999983708 a001 10610209857723/370248451*167761^(1/5) 3178109999983708 a001 4052739537881/141422324*167761^(1/5) 3178109999983709 a001 1548008755920/54018521*167761^(1/5) 3178109999983715 a001 591286729879/20633239*167761^(1/5) 3178109999983759 a001 225851433717/7881196*167761^(1/5) 3178109999984058 a001 86267571272/3010349*167761^(1/5) 3178109999984609 a001 7778742049/167761*64079^(4/23) 3178109999984726 a001 165580141/271443*271443^(1/2) 3178109999985221 a001 311187/101521*439204^(8/9) 3178109999985928 a001 -75025/2+317811/2*5^(1/2) 3178109999986111 a001 32951280099/1149851*167761^(1/5) 3178109999986385 a001 34111385/90481*271443^(7/13) 3178109999986973 a001 7778742049/103682*39603^(3/22) 3178109999987193 a001 9227465/710647*439204^(7/9) 3178109999987796 a001 121393*103682^(1/12) 3178109999989015 a001 39088169/710647*439204^(2/3) 3178109999989116 a001 196418*64079^(1/23) 3178109999989702 a001 39088169/271443*271443^(8/13) 3178109999989817 a001 1/98209*(1/2+1/2*5^(1/2))^55 3178109999990710 a001 5702887/1860498*439204^(8/9) 3178109999990847 a001 165580141/710647*439204^(5/9) 3178109999991511 a001 14930352/4870847*439204^(8/9) 3178109999991628 a001 39088169/12752043*439204^(8/9) 3178109999991645 a001 14619165/4769326*439204^(8/9) 3178109999991647 a001 267914296/87403803*439204^(8/9) 3178109999991648 a001 701408733/228826127*439204^(8/9) 3178109999991648 a001 1836311903/599074578*439204^(8/9) 3178109999991648 a001 686789568/224056801*439204^(8/9) 3178109999991648 a001 12586269025/4106118243*439204^(8/9) 3178109999991648 a001 32951280099/10749957122*439204^(8/9) 3178109999991648 a001 86267571272/28143753123*439204^(8/9) 3178109999991648 a001 32264490531/10525900321*439204^(8/9) 3178109999991648 a001 591286729879/192900153618*439204^(8/9) 3178109999991648 a001 1548008755920/505019158607*439204^(8/9) 3178109999991648 a001 1515744265389/494493258286*439204^(8/9) 3178109999991648 a001 2504730781961/817138163596*439204^(8/9) 3178109999991648 a001 956722026041/312119004989*439204^(8/9) 3178109999991648 a001 365435296162/119218851371*439204^(8/9) 3178109999991648 a001 139583862445/45537549124*439204^(8/9) 3178109999991648 a001 53316291173/17393796001*439204^(8/9) 3178109999991648 a001 20365011074/6643838879*439204^(8/9) 3178109999991648 a001 7778742049/2537720636*439204^(8/9) 3178109999991648 a001 2971215073/969323029*439204^(8/9) 3178109999991648 a001 1134903170/370248451*439204^(8/9) 3178109999991648 a001 433494437/141422324*439204^(8/9) 3178109999991649 a001 165580141/54018521*439204^(8/9) 3178109999991655 a001 63245986/20633239*439204^(8/9) 3178109999991700 a001 24157817/7881196*439204^(8/9) 3178109999992006 a001 9227465/3010349*439204^(8/9) 3178109999992561 a001 24157817/1860498*439204^(7/9) 3178109999992677 a001 701408733/710647*439204^(4/9) 3178109999993018 a001 4976784/90481*271443^(9/13) 3178109999993345 a001 63245986/4870847*439204^(7/9) 3178109999993459 a001 165580141/12752043*439204^(7/9) 3178109999993475 a001 433494437/33385282*439204^(7/9) 3178109999993478 a001 1134903170/87403803*439204^(7/9) 3178109999993478 a001 2971215073/228826127*439204^(7/9) 3178109999993478 a001 7778742049/599074578*439204^(7/9) 3178109999993478 a001 20365011074/1568397607*439204^(7/9) 3178109999993478 a001 53316291173/4106118243*439204^(7/9) 3178109999993478 a001 139583862445/10749957122*439204^(7/9) 3178109999993478 a001 365435296162/28143753123*439204^(7/9) 3178109999993478 a001 956722026041/73681302247*439204^(7/9) 3178109999993478 a001 2504730781961/192900153618*439204^(7/9) 3178109999993478 a001 10610209857723/817138163596*439204^(7/9) 3178109999993478 a001 4052739537881/312119004989*439204^(7/9) 3178109999993478 a001 1548008755920/119218851371*439204^(7/9) 3178109999993478 a001 591286729879/45537549124*439204^(7/9) 3178109999993478 a001 7787980473/599786069*439204^(7/9) 3178109999993478 a001 86267571272/6643838879*439204^(7/9) 3178109999993478 a001 32951280099/2537720636*439204^(7/9) 3178109999993478 a001 12586269025/969323029*439204^(7/9) 3178109999993478 a001 4807526976/370248451*439204^(7/9) 3178109999993478 a001 1836311903/141422324*439204^(7/9) 3178109999993479 a001 701408733/54018521*439204^(7/9) 3178109999993486 a001 9238424/711491*439204^(7/9) 3178109999993529 a001 102334155/7881196*439204^(7/9) 3178109999993700 a001 317811/710647*20633239^(4/5) 3178109999993706 a001 317811/710647*17393796001^(4/7) 3178109999993706 a001 317811/710647*14662949395604^(4/9) 3178109999993706 a001 317811/710647*(1/2+1/2*5^(1/2))^28 3178109999993706 a001 317811/710647*505019158607^(1/2) 3178109999993706 a001 317811/710647*73681302247^(7/13) 3178109999993706 a001 317811/710647*10749957122^(7/12) 3178109999993706 a001 317811/710647*4106118243^(14/23) 3178109999993706 a001 317811/710647*1568397607^(7/11) 3178109999993706 a001 317811/710647*599074578^(2/3) 3178109999993706 a001 317811/710647*228826127^(7/10) 3178109999993707 a001 317811/710647*87403803^(14/19) 3178109999993709 a001 317811/710647*33385282^(7/9) 3178109999993723 a001 317811/710647*12752043^(14/17) 3178109999993824 a001 317811/710647*4870847^(7/8) 3178109999993829 a001 39088169/3010349*439204^(7/9) 3178109999994103 a001 3524578/1149851*439204^(8/9) 3178109999994391 a001 831985/15126*439204^(2/3) 3178109999994508 a001 2971215073/710647*439204^(1/3) 3178109999994563 a001 317811/710647*1860498^(14/15) 3178109999995175 a001 267914296/4870847*439204^(2/3) 3178109999995289 a001 233802911/4250681*439204^(2/3) 3178109999995306 a001 1836311903/33385282*439204^(2/3) 3178109999995309 a001 1602508992/29134601*439204^(2/3) 3178109999995309 a001 12586269025/228826127*439204^(2/3) 3178109999995309 a001 10983760033/199691526*439204^(2/3) 3178109999995309 a001 86267571272/1568397607*439204^(2/3) 3178109999995309 a001 75283811239/1368706081*439204^(2/3) 3178109999995309 a001 591286729879/10749957122*439204^(2/3) 3178109999995309 a001 12585437040/228811001*439204^(2/3) 3178109999995309 a001 4052739537881/73681302247*439204^(2/3) 3178109999995309 a001 3536736619241/64300051206*439204^(2/3) 3178109999995309 a001 6557470319842/119218851371*439204^(2/3) 3178109999995309 a001 2504730781961/45537549124*439204^(2/3) 3178109999995309 a001 956722026041/17393796001*439204^(2/3) 3178109999995309 a001 365435296162/6643838879*439204^(2/3) 3178109999995309 a001 139583862445/2537720636*439204^(2/3) 3178109999995309 a001 53316291173/969323029*439204^(2/3) 3178109999995309 a001 20365011074/370248451*439204^(2/3) 3178109999995309 a001 7778742049/141422324*439204^(2/3) 3178109999995310 a001 2971215073/54018521*439204^(2/3) 3178109999995316 a001 1134903170/20633239*439204^(2/3) 3178109999995360 a001 433494437/7881196*439204^(2/3) 3178109999995660 a001 165580141/3010349*439204^(2/3) 3178109999995879 a001 14930352/1149851*439204^(7/9) 3178109999996221 a001 433494437/1860498*439204^(5/9) 3178109999996319 a001 5702887/271443*271443^(10/13) 3178109999996338 a001 12586269025/710647*439204^(2/9) 3178109999996378 a001 514229/103682*103682^(23/24) 3178109999997006 a001 1134903170/4870847*439204^(5/9) 3178109999997120 a001 2971215073/12752043*439204^(5/9) 3178109999997137 a001 7778742049/33385282*439204^(5/9) 3178109999997139 a001 20365011074/87403803*439204^(5/9) 3178109999997139 a001 53316291173/228826127*439204^(5/9) 3178109999997140 a001 139583862445/599074578*439204^(5/9) 3178109999997140 a001 365435296162/1568397607*439204^(5/9) 3178109999997140 a001 956722026041/4106118243*439204^(5/9) 3178109999997140 a001 2504730781961/10749957122*439204^(5/9) 3178109999997140 a001 6557470319842/28143753123*439204^(5/9) 3178109999997140 a001 10610209857723/45537549124*439204^(5/9) 3178109999997140 a001 4052739537881/17393796001*439204^(5/9) 3178109999997140 a001 1548008755920/6643838879*439204^(5/9) 3178109999997140 a001 591286729879/2537720636*439204^(5/9) 3178109999997140 a001 225851433717/969323029*439204^(5/9) 3178109999997140 a001 86267571272/370248451*439204^(5/9) 3178109999997140 a001 63246219/271444*439204^(5/9) 3178109999997141 a001 12586269025/54018521*439204^(5/9) 3178109999997147 a001 4807526976/20633239*439204^(5/9) 3178109999997191 a001 1836311903/7881196*439204^(5/9) 3178109999997490 a001 701408733/3010349*439204^(5/9) 3178109999997713 a001 63245986/1149851*439204^(2/3) 3178109999998052 a001 1836311903/1860498*439204^(4/9) 3178109999998169 a001 53316291173/710647*439204^(1/9) 3178109999998836 a001 4807526976/4870847*439204^(4/9) 3178109999998951 a001 12586269025/12752043*439204^(4/9) 3178109999998967 a001 32951280099/33385282*439204^(4/9) 3178109999998970 a001 86267571272/87403803*439204^(4/9) 3178109999998970 a001 225851433717/228826127*439204^(4/9) 3178109999998970 a001 591286729879/599074578*439204^(4/9) 3178109999998970 a001 1548008755920/1568397607*439204^(4/9) 3178109999998970 a001 4052739537881/4106118243*439204^(4/9) 3178109999998970 a001 4807525989/4870846*439204^(4/9) 3178109999998970 a001 6557470319842/6643838879*439204^(4/9) 3178109999998970 a001 2504730781961/2537720636*439204^(4/9) 3178109999998970 a001 956722026041/969323029*439204^(4/9) 3178109999998970 a001 365435296162/370248451*439204^(4/9) 3178109999998970 a001 139583862445/141422324*439204^(4/9) 3178109999998971 a001 53316291173/54018521*439204^(4/9) 3178109999998978 a001 20365011074/20633239*439204^(4/9) 3178109999999021 a001 7778742049/7881196*439204^(4/9) 3178109999999035 a001 105937/620166*7881196^(10/11) 3178109999999075 a001 105937/620166*20633239^(6/7) 3178109999999081 a001 105937/620166*141422324^(10/13) 3178109999999081 a001 832040/710647*141422324^(2/3) 3178109999999081 a001 105937/620166*2537720636^(2/3) 3178109999999081 a001 105937/620166*45537549124^(10/17) 3178109999999081 a001 105937/620166*312119004989^(6/11) 3178109999999081 a001 105937/620166*14662949395604^(10/21) 3178109999999081 a001 105937/620166*(1/2+1/2*5^(1/2))^30 3178109999999081 a001 832040/710647*(1/2+1/2*5^(1/2))^26 3178109999999081 a001 105937/620166*192900153618^(5/9) 3178109999999081 a001 832040/710647*73681302247^(1/2) 3178109999999081 a001 105937/620166*28143753123^(3/5) 3178109999999081 a001 832040/710647*10749957122^(13/24) 3178109999999081 a001 105937/620166*10749957122^(5/8) 3178109999999081 a001 832040/710647*4106118243^(13/23) 3178109999999081 a001 105937/620166*4106118243^(15/23) 3178109999999081 a001 832040/710647*1568397607^(13/22) 3178109999999081 a001 105937/620166*1568397607^(15/22) 3178109999999081 a001 832040/710647*599074578^(13/21) 3178109999999081 a001 105937/620166*599074578^(5/7) 3178109999999081 a001 832040/710647*228826127^(13/20) 3178109999999081 a001 105937/620166*228826127^(3/4) 3178109999999082 a001 832040/710647*87403803^(13/19) 3178109999999082 a001 105937/620166*87403803^(15/19) 3178109999999083 a001 832040/710647*33385282^(13/18) 3178109999999084 a001 105937/620166*33385282^(5/6) 3178109999999096 a001 832040/710647*12752043^(13/17) 3178109999999099 a001 105937/620166*12752043^(15/17) 3178109999999190 a001 832040/710647*4870847^(13/16) 3178109999999207 a001 105937/620166*4870847^(15/16) 3178109999999321 a001 2971215073/3010349*439204^(4/9) 3178109999999523 a001 726103/90481*271443^(11/13) 3178109999999543 a001 267914296/1149851*439204^(5/9) 3178109999999828 a001 311187/101521*7881196^(8/11) 3178109999999865 a001 311187/101521*141422324^(8/13) 3178109999999866 a001 311187/101521*2537720636^(8/15) 3178109999999866 a001 311187/101521*45537549124^(8/17) 3178109999999866 a001 317811/4870847*(1/2+1/2*5^(1/2))^32 3178109999999866 a001 311187/101521*14662949395604^(8/21) 3178109999999866 a001 311187/101521*(1/2+1/2*5^(1/2))^24 3178109999999866 a001 311187/101521*192900153618^(4/9) 3178109999999866 a001 311187/101521*73681302247^(6/13) 3178109999999866 a001 317811/4870847*73681302247^(8/13) 3178109999999866 a001 311187/101521*10749957122^(1/2) 3178109999999866 a001 317811/4870847*10749957122^(2/3) 3178109999999866 a001 311187/101521*4106118243^(12/23) 3178109999999866 a001 317811/4870847*4106118243^(16/23) 3178109999999866 a001 311187/101521*1568397607^(6/11) 3178109999999866 a001 317811/4870847*1568397607^(8/11) 3178109999999866 a001 311187/101521*599074578^(4/7) 3178109999999866 a001 317811/4870847*599074578^(16/21) 3178109999999866 a001 311187/101521*228826127^(3/5) 3178109999999866 a001 317811/4870847*228826127^(4/5) 3178109999999866 a001 311187/101521*87403803^(12/19) 3178109999999866 a001 317811/4870847*87403803^(16/19) 3178109999999867 a001 311187/101521*33385282^(2/3) 3178109999999868 a001 317811/4870847*33385282^(8/9) 3178109999999877 a001 832040/710647*1860498^(13/15) 3178109999999879 a001 311187/101521*12752043^(12/17) 3178109999999883 a001 7778742049/1860498*439204^(1/3) 3178109999999884 a001 317811/4870847*12752043^(16/17) 3178109999999946 a001 5702887/710647*7881196^(2/3) 3178109999999966 a001 311187/101521*4870847^(3/4) 3178109999999971 a001 39088169/710647*7881196^(6/11) 3178109999999974 a001 9227465/710647*7881196^(7/11) 3178109999999976 a001 165580141/710647*7881196^(5/11) 3178109999999980 a001 105937/4250681*45537549124^(2/3) 3178109999999980 a001 5702887/710647*312119004989^(2/5) 3178109999999980 a001 105937/4250681*(1/2+1/2*5^(1/2))^34 3178109999999980 a001 5702887/710647*(1/2+1/2*5^(1/2))^22 3178109999999980 a001 5702887/710647*10749957122^(11/24) 3178109999999980 a001 105937/4250681*10749957122^(17/24) 3178109999999980 a001 5702887/710647*4106118243^(11/23) 3178109999999980 a001 105937/4250681*4106118243^(17/23) 3178109999999980 a001 5702887/710647*1568397607^(1/2) 3178109999999980 a001 105937/4250681*1568397607^(17/22) 3178109999999980 a001 5702887/710647*599074578^(11/21) 3178109999999980 a001 105937/4250681*599074578^(17/21) 3178109999999980 a001 5702887/710647*228826127^(11/20) 3178109999999980 a001 105937/4250681*228826127^(17/20) 3178109999999980 a001 5702887/710647*87403803^(11/19) 3178109999999980 a001 105937/4250681*87403803^(17/19) 3178109999999981 a001 701408733/710647*7881196^(4/11) 3178109999999982 a001 5702887/710647*33385282^(11/18) 3178109999999982 a001 1134903170/710647*7881196^(1/3) 3178109999999983 a001 105937/4250681*33385282^(17/18) 3178109999999986 a001 2971215073/710647*7881196^(3/11) 3178109999999990 a001 12586269025/710647*7881196^(2/11) 3178109999999992 a001 14930352/710647*20633239^(4/7) 3178109999999993 a001 5702887/710647*12752043^(11/17) 3178109999999995 a001 53316291173/710647*7881196^(1/11) 3178109999999996 a001 165580141/710647*20633239^(3/7) 3178109999999997 a001 317811/33385282*141422324^(12/13) 3178109999999997 a001 267914296/710647*20633239^(2/5) 3178109999999997 a001 317811/33385282*2537720636^(4/5) 3178109999999997 a001 14930352/710647*2537720636^(4/9) 3178109999999997 a001 317811/33385282*45537549124^(12/17) 3178109999999997 a001 317811/33385282*14662949395604^(4/7) 3178109999999997 a001 317811/33385282*(1/2+1/2*5^(1/2))^36 3178109999999997 a001 14930352/710647*(1/2+1/2*5^(1/2))^20 3178109999999997 a001 14930352/710647*23725150497407^(5/16) 3178109999999997 a001 14930352/710647*505019158607^(5/14) 3178109999999997 a001 317811/33385282*192900153618^(2/3) 3178109999999997 a001 14930352/710647*73681302247^(5/13) 3178109999999997 a001 317811/33385282*73681302247^(9/13) 3178109999999997 a001 14930352/710647*28143753123^(2/5) 3178109999999997 a001 14930352/710647*10749957122^(5/12) 3178109999999997 a001 317811/33385282*10749957122^(3/4) 3178109999999997 a001 14930352/710647*4106118243^(10/23) 3178109999999997 a001 317811/33385282*4106118243^(18/23) 3178109999999997 a001 14930352/710647*1568397607^(5/11) 3178109999999997 a001 317811/33385282*1568397607^(9/11) 3178109999999997 a001 14930352/710647*599074578^(10/21) 3178109999999997 a001 317811/33385282*599074578^(6/7) 3178109999999997 a001 14930352/710647*228826127^(1/2) 3178109999999997 a001 317811/33385282*228826127^(9/10) 3178109999999997 a001 14930352/710647*87403803^(10/19) 3178109999999997 a001 317811/33385282*87403803^(18/19) 3178109999999997 a001 1836311903/710647*20633239^(2/7) 3178109999999998 a001 7778742049/710647*20633239^(1/5) 3178109999999998 a001 14930352/710647*33385282^(5/9) 3178109999999998 a001 20365011074/710647*20633239^(1/7) 3178109999999999 a001 39088169/710647*141422324^(6/13) 3178109999999999 a001 39088169/710647*2537720636^(2/5) 3178109999999999 a001 39088169/710647*45537549124^(6/17) 3178109999999999 a001 105937/29134601*817138163596^(2/3) 3178109999999999 a001 39088169/710647*14662949395604^(2/7) 3178109999999999 a001 39088169/710647*(1/2+1/2*5^(1/2))^18 3178109999999999 a001 39088169/710647*192900153618^(1/3) 3178109999999999 a001 39088169/710647*10749957122^(3/8) 3178109999999999 a001 105937/29134601*10749957122^(19/24) 3178109999999999 a001 39088169/710647*4106118243^(9/23) 3178109999999999 a001 105937/29134601*4106118243^(19/23) 3178109999999999 a001 39088169/710647*1568397607^(9/22) 3178109999999999 a001 105937/29134601*1568397607^(19/22) 3178109999999999 a001 39088169/710647*599074578^(3/7) 3178109999999999 a001 105937/29134601*599074578^(19/21) 3178109999999999 a001 39088169/710647*228826127^(9/20) 3178109999999999 a001 105937/29134601*228826127^(19/20) 3178109999999999 a001 39088169/710647*87403803^(9/19) 3178109999999999 a001 317811/228826127*2537720636^(8/9) 3178109999999999 a001 317811/228826127*312119004989^(8/11) 3178109999999999 a001 14619165/101521*(1/2+1/2*5^(1/2))^16 3178109999999999 a001 14619165/101521*23725150497407^(1/4) 3178109999999999 a001 14619165/101521*73681302247^(4/13) 3178109999999999 a001 317811/228826127*73681302247^(10/13) 3178109999999999 a001 317811/228826127*28143753123^(4/5) 3178109999999999 a001 14619165/101521*10749957122^(1/3) 3178109999999999 a001 317811/228826127*10749957122^(5/6) 3178109999999999 a001 14619165/101521*4106118243^(8/23) 3178109999999999 a001 317811/228826127*4106118243^(20/23) 3178109999999999 a001 14619165/101521*1568397607^(4/11) 3178109999999999 a001 317811/228826127*1568397607^(10/11) 3178109999999999 a001 14619165/101521*599074578^(8/21) 3178109999999999 a001 317811/228826127*599074578^(20/21) 3178109999999999 a001 701408733/710647*141422324^(4/13) 3178109999999999 a001 433494437/710647*141422324^(1/3) 3178109999999999 a001 165580141/710647*141422324^(5/13) 3178109999999999 a001 2971215073/710647*141422324^(3/13) 3178109999999999 a001 14619165/101521*228826127^(2/5) 3178109999999999 a001 12586269025/710647*141422324^(2/13) 3178109999999999 a001 53316291173/710647*141422324^(1/13) 3178109999999999 a001 377/710646*2537720636^(14/15) 3178109999999999 a001 377/710646*17393796001^(6/7) 3178109999999999 a001 267914296/710647*17393796001^(2/7) 3178109999999999 a001 377/710646*45537549124^(14/17) 3178109999999999 a001 377/710646*14662949395604^(2/3) 3178109999999999 a001 267914296/710647*14662949395604^(2/9) 3178109999999999 a001 267914296/710647*(1/2+1/2*5^(1/2))^14 3178109999999999 a001 267914296/710647*505019158607^(1/4) 3178109999999999 a001 377/710646*192900153618^(7/9) 3178109999999999 a001 267914296/710647*10749957122^(7/24) 3178109999999999 a001 377/710646*10749957122^(7/8) 3178109999999999 a001 267914296/710647*4106118243^(7/23) 3178109999999999 a001 377/710646*4106118243^(21/23) 3178109999999999 a001 267914296/710647*1568397607^(7/22) 3178109999999999 a001 377/710646*1568397607^(21/22) 3178109999999999 a001 267914296/710647*599074578^(1/3) 3178109999999999 a001 701408733/710647*2537720636^(4/15) 3178109999999999 a001 701408733/710647*45537549124^(4/17) 3178109999999999 a001 317811/1568397607*312119004989^(4/5) 3178109999999999 a001 317811/1568397607*23725150497407^(11/16) 3178109999999999 a001 701408733/710647*817138163596^(4/19) 3178109999999999 a001 701408733/710647*(1/2+1/2*5^(1/2))^12 3178109999999999 a001 701408733/710647*192900153618^(2/9) 3178109999999999 a001 701408733/710647*73681302247^(3/13) 3178109999999999 a001 317811/1568397607*73681302247^(11/13) 3178109999999999 a001 701408733/710647*10749957122^(1/4) 3178109999999999 a001 317811/1568397607*10749957122^(11/12) 3178109999999999 a001 701408733/710647*4106118243^(6/23) 3178109999999999 a001 317811/1568397607*4106118243^(22/23) 3178109999999999 a001 701408733/710647*1568397607^(3/11) 3178109999999999 a001 1836311903/710647*2537720636^(2/9) 3178109999999999 a001 1836311903/710647*312119004989^(2/11) 3178109999999999 a001 1836311903/710647*(1/2+1/2*5^(1/2))^10 3178109999999999 a001 1836311903/710647*28143753123^(1/5) 3178109999999999 a001 1836311903/710647*10749957122^(5/24) 3178109999999999 a001 105937/1368706081*10749957122^(23/24) 3178109999999999 a001 1836311903/710647*4106118243^(5/23) 3178109999999999 a001 12586269025/710647*2537720636^(2/15) 3178109999999999 a001 20365011074/710647*2537720636^(1/9) 3178109999999999 a001 53316291173/710647*2537720636^(1/15) 3178109999999999 a001 317811/10749957122*45537549124^(16/17) 3178109999999999 a001 317811/10749957122*14662949395604^(16/21) 3178109999999999 a001 686789568/101521*(1/2+1/2*5^(1/2))^8 3178109999999999 a001 686789568/101521*505019158607^(1/7) 3178109999999999 a001 317811/10749957122*192900153618^(8/9) 3178109999999999 a001 686789568/101521*73681302247^(2/13) 3178109999999999 a001 317811/10749957122*73681302247^(12/13) 3178109999999999 a001 2971215073/710647*2537720636^(1/5) 3178109999999999 a001 686789568/101521*10749957122^(1/6) 3178109999999999 a001 12586269025/710647*45537549124^(2/17) 3178109999999999 a001 105937/9381251041*312119004989^(10/11) 3178109999999999 a001 105937/9381251041*3461452808002^(5/6) 3178109999999999 a001 12586269025/710647*(1/2+1/2*5^(1/2))^6 3178109999999999 a001 317811/73681302247*23725150497407^(13/16) 3178109999999999 a001 32951280099/710647*(1/2+1/2*5^(1/2))^4 3178109999999999 a001 12586269025/710647*10749957122^(1/8) 3178109999999999 a001 32951280099/710647*73681302247^(1/13) 3178109999999999 a001 105937/64300051206*14662949395604^(6/7) 3178109999999999 a001 86267571272/710647*(1/2+1/2*5^(1/2))^2 3178109999999999 a001 317811/505019158607*14662949395604^(8/9) 3178110000000000 a001 317811/817138163596*14662949395604^(19/21) 3178110000000000 a001 317811/312119004989*3461452808002^(11/12) 3178110000000000 a001 53316291173/710647*45537549124^(1/17) 3178110000000000 a001 53316291173/710647*14662949395604^(1/21) 3178110000000000 a001 53316291173/710647*(1/2+1/2*5^(1/2))^3 3178110000000000 a001 53316291173/710647*192900153618^(1/18) 3178110000000000 a001 86267571272/710647*10749957122^(1/24) 3178110000000000 a001 317811/45537549124*14662949395604^(17/21) 3178110000000000 a001 20365011074/710647*312119004989^(1/11) 3178110000000000 a001 20365011074/710647*(1/2+1/2*5^(1/2))^5 3178110000000000 a001 317811/45537549124*192900153618^(17/18) 3178110000000000 a001 32951280099/710647*10749957122^(1/12) 3178110000000000 a001 20365011074/710647*28143753123^(1/10) 3178110000000000 a001 53316291173/710647*10749957122^(1/16) 3178110000000000 a001 686789568/101521*4106118243^(4/23) 3178110000000000 a001 86267571272/710647*4106118243^(1/23) 3178110000000000 a001 7778742049/710647*17393796001^(1/7) 3178110000000000 a001 10959/599786069*14662949395604^(7/9) 3178110000000000 a001 10959/599786069*505019158607^(7/8) 3178110000000000 a001 7778742049/710647*14662949395604^(1/9) 3178110000000000 a001 7778742049/710647*(1/2+1/2*5^(1/2))^7 3178110000000000 a001 32951280099/710647*4106118243^(2/23) 3178110000000000 a001 12586269025/710647*4106118243^(3/23) 3178110000000000 a001 86267571272/710647*1568397607^(1/22) 3178110000000000 a001 2971215073/710647*45537549124^(3/17) 3178110000000000 a001 2971215073/710647*14662949395604^(1/7) 3178110000000000 a001 2971215073/710647*(1/2+1/2*5^(1/2))^9 3178110000000000 a001 2971215073/710647*192900153618^(1/6) 3178110000000000 a001 2971215073/710647*10749957122^(3/16) 3178110000000000 a001 1836311903/710647*1568397607^(5/22) 3178110000000000 a001 32951280099/710647*1568397607^(1/11) 3178110000000000 a001 12586269025/710647*1568397607^(3/22) 3178110000000000 a001 686789568/101521*1568397607^(2/11) 3178110000000000 a001 86267571272/710647*599074578^(1/21) 3178110000000000 a001 317811/2537720636*45537549124^(15/17) 3178110000000000 a001 317811/2537720636*312119004989^(9/11) 3178110000000000 a001 317811/2537720636*14662949395604^(5/7) 3178110000000000 a001 1134903170/710647*312119004989^(1/5) 3178110000000000 a001 1134903170/710647*(1/2+1/2*5^(1/2))^11 3178110000000000 a001 317811/2537720636*192900153618^(5/6) 3178110000000000 a001 317811/2537720636*28143753123^(9/10) 3178110000000000 a001 317811/2537720636*10749957122^(15/16) 3178110000000000 a001 53316291173/710647*599074578^(1/14) 3178110000000000 a001 1134903170/710647*1568397607^(1/4) 3178110000000000 a001 32951280099/710647*599074578^(2/21) 3178110000000000 a001 701408733/710647*599074578^(2/7) 3178110000000000 a001 12586269025/710647*599074578^(1/7) 3178110000000000 a001 7778742049/710647*599074578^(1/6) 3178110000000000 a001 686789568/101521*599074578^(4/21) 3178110000000000 a001 1836311903/710647*599074578^(5/21) 3178110000000000 a001 2971215073/710647*599074578^(3/14) 3178110000000000 a001 86267571272/710647*228826127^(1/20) 3178110000000000 a001 433494437/710647*(1/2+1/2*5^(1/2))^13 3178110000000000 a001 433494437/710647*73681302247^(1/4) 3178110000000000 a001 32951280099/710647*228826127^(1/10) 3178110000000000 a001 20365011074/710647*228826127^(1/8) 3178110000000000 a001 12586269025/710647*228826127^(3/20) 3178110000000000 a001 686789568/101521*228826127^(1/5) 3178110000000000 a001 267914296/710647*228826127^(7/20) 3178110000000000 a001 1836311903/710647*228826127^(1/4) 3178110000000000 a001 701408733/710647*228826127^(3/10) 3178110000000000 a001 86267571272/710647*87403803^(1/19) 3178110000000000 a001 165580141/710647*2537720636^(1/3) 3178110000000000 a001 165580141/710647*45537549124^(5/17) 3178110000000000 a001 165580141/710647*312119004989^(3/11) 3178110000000000 a001 165580141/710647*14662949395604^(5/21) 3178110000000000 a001 165580141/710647*(1/2+1/2*5^(1/2))^15 3178110000000000 a001 165580141/710647*192900153618^(5/18) 3178110000000000 a001 165580141/710647*28143753123^(3/10) 3178110000000000 a001 165580141/710647*10749957122^(5/16) 3178110000000000 a001 165580141/710647*599074578^(5/14) 3178110000000000 a001 32951280099/710647*87403803^(2/19) 3178110000000000 a001 165580141/710647*228826127^(3/8) 3178110000000000 a001 12586269025/710647*87403803^(3/19) 3178110000000000 a001 686789568/101521*87403803^(4/19) 3178110000000000 a001 1836311903/710647*87403803^(5/19) 3178110000000000 a001 14619165/101521*87403803^(8/19) 3178110000000000 a001 701408733/710647*87403803^(6/19) 3178110000000000 a001 267914296/710647*87403803^(7/19) 3178110000000000 a001 86267571272/710647*33385282^(1/18) 3178110000000000 a001 317811/141422324*2537720636^(13/15) 3178110000000000 a001 317811/141422324*45537549124^(13/17) 3178110000000000 a001 63245986/710647*45537549124^(1/3) 3178110000000000 a001 317811/141422324*14662949395604^(13/21) 3178110000000000 a001 63245986/710647*(1/2+1/2*5^(1/2))^17 3178110000000000 a001 317811/141422324*192900153618^(13/18) 3178110000000000 a001 317811/141422324*73681302247^(3/4) 3178110000000000 a001 317811/141422324*10749957122^(13/16) 3178110000000000 a001 317811/141422324*599074578^(13/14) 3178110000000000 a001 53316291173/710647*33385282^(1/12) 3178110000000000 a001 32951280099/710647*33385282^(1/9) 3178110000000000 a001 12586269025/710647*33385282^(1/6) 3178110000000000 a001 686789568/101521*33385282^(2/9) 3178110000000000 a001 2971215073/710647*33385282^(1/4) 3178110000000000 a001 1836311903/710647*33385282^(5/18) 3178110000000000 a001 701408733/710647*33385282^(1/3) 3178110000000001 a001 39088169/710647*33385282^(1/2) 3178110000000001 a001 24157817/710647*817138163596^(1/3) 3178110000000001 a001 24157817/710647*(1/2+1/2*5^(1/2))^19 3178110000000001 a001 267914296/710647*33385282^(7/18) 3178110000000001 a001 86267571272/710647*12752043^(1/17) 3178110000000001 a001 14619165/101521*33385282^(4/9) 3178110000000001 a001 165580141/710647*33385282^(5/12) 3178110000000001 a001 24157817/710647*87403803^(1/2) 3178110000000002 a001 32951280099/710647*12752043^(2/17) 3178110000000002 a001 9227465/710647*20633239^(3/5) 3178110000000003 a001 12586269025/710647*12752043^(3/17) 3178110000000004 a001 686789568/101521*12752043^(4/17) 3178110000000005 a001 1836311903/710647*12752043^(5/17) 3178110000000006 a001 701408733/710647*12752043^(6/17) 3178110000000007 a001 9227465/710647*141422324^(7/13) 3178110000000007 a001 10959/711491*2537720636^(7/9) 3178110000000007 a001 9227465/710647*2537720636^(7/15) 3178110000000007 a001 10959/711491*17393796001^(5/7) 3178110000000007 a001 9227465/710647*17393796001^(3/7) 3178110000000007 a001 9227465/710647*45537549124^(7/17) 3178110000000007 a001 10959/711491*312119004989^(7/11) 3178110000000007 a001 10959/711491*14662949395604^(5/9) 3178110000000007 a001 10959/711491*(1/2+1/2*5^(1/2))^35 3178110000000007 a001 10959/711491*505019158607^(5/8) 3178110000000007 a001 9227465/710647*14662949395604^(1/3) 3178110000000007 a001 9227465/710647*(1/2+1/2*5^(1/2))^21 3178110000000007 a001 9227465/710647*192900153618^(7/18) 3178110000000007 a001 10959/711491*28143753123^(7/10) 3178110000000007 a001 9227465/710647*10749957122^(7/16) 3178110000000007 a001 9227465/710647*599074578^(1/2) 3178110000000007 a001 10959/711491*599074578^(5/6) 3178110000000007 a001 10959/711491*228826127^(7/8) 3178110000000008 a001 267914296/710647*12752043^(7/17) 3178110000000008 a001 86267571272/710647*4870847^(1/16) 3178110000000008 a001 14930352/710647*12752043^(10/17) 3178110000000009 a001 9227465/710647*33385282^(7/12) 3178110000000009 a001 14619165/101521*12752043^(8/17) 3178110000000009 a001 39088169/710647*12752043^(9/17) 3178110000000009 a001 63245986/710647*12752043^(1/2) 3178110000000016 a001 32951280099/710647*4870847^(1/8) 3178110000000025 a001 12586269025/710647*4870847^(3/16) 3178110000000033 a001 686789568/101521*4870847^(1/4) 3178110000000041 a001 1836311903/710647*4870847^(5/16) 3178110000000050 a001 701408733/710647*4870847^(3/8) 3178110000000051 a001 317811/7881196*141422324^(11/13) 3178110000000051 a001 317811/7881196*2537720636^(11/15) 3178110000000051 a001 317811/7881196*45537549124^(11/17) 3178110000000051 a001 317811/7881196*312119004989^(3/5) 3178110000000051 a001 317811/7881196*817138163596^(11/19) 3178110000000051 a001 317811/7881196*14662949395604^(11/21) 3178110000000051 a001 317811/7881196*(1/2+1/2*5^(1/2))^33 3178110000000051 a001 3524578/710647*(1/2+1/2*5^(1/2))^23 3178110000000051 a001 317811/7881196*192900153618^(11/18) 3178110000000051 a001 317811/7881196*10749957122^(11/16) 3178110000000051 a001 3524578/710647*4106118243^(1/2) 3178110000000051 a001 317811/7881196*1568397607^(3/4) 3178110000000051 a001 317811/7881196*599074578^(11/14) 3178110000000053 a001 317811/7881196*33385282^(11/12) 3178110000000058 a001 267914296/710647*4870847^(7/16) 3178110000000061 a001 86267571272/710647*1860498^(1/15) 3178110000000066 a001 14619165/101521*4870847^(1/2) 3178110000000072 a001 5702887/710647*4870847^(11/16) 3178110000000074 a001 39088169/710647*4870847^(9/16) 3178110000000080 a001 14930352/710647*4870847^(5/8) 3178110000000091 a001 53316291173/710647*1860498^(1/10) 3178110000000114 a001 20365011074/271443*103682^(1/8) 3178110000000122 a001 32951280099/710647*1860498^(2/15) 3178110000000153 a001 20365011074/710647*1860498^(1/6) 3178110000000183 a001 12586269025/439204*167761^(1/5) 3178110000000183 a001 12586269025/710647*1860498^(1/5) 3178110000000244 a001 686789568/101521*1860498^(4/15) 3178110000000275 a001 2971215073/710647*1860498^(3/10) 3178110000000306 a001 1836311903/710647*1860498^(1/3) 3178110000000345 a001 1346269/710647*20633239^(5/7) 3178110000000350 a001 1346269/710647*2537720636^(5/9) 3178110000000350 a001 1346269/710647*312119004989^(5/11) 3178110000000350 a001 317811/3010349*(1/2+1/2*5^(1/2))^31 3178110000000350 a001 1346269/710647*(1/2+1/2*5^(1/2))^25 3178110000000350 a001 1346269/710647*3461452808002^(5/12) 3178110000000350 a001 1346269/710647*28143753123^(1/2) 3178110000000350 a001 1346269/710647*228826127^(5/8) 3178110000000367 a001 701408733/710647*1860498^(2/5) 3178110000000428 a001 267914296/710647*1860498^(7/15) 3178110000000449 a001 86267571272/710647*710647^(1/14) 3178110000000459 a001 165580141/710647*1860498^(1/2) 3178110000000489 a001 14619165/101521*1860498^(8/15) 3178110000000550 a001 39088169/710647*1860498^(3/5) 3178110000000600 a001 311187/101521*1860498^(4/5) 3178110000000609 a001 14930352/710647*1860498^(2/3) 3178110000000650 a001 9227465/710647*1860498^(7/10) 3178110000000653 a001 5702887/710647*1860498^(11/15) 3178110000000667 a001 20365011074/4870847*439204^(1/3) 3178110000000781 a001 53316291173/12752043*439204^(1/3) 3178110000000798 a001 139583862445/33385282*439204^(1/3) 3178110000000800 a001 365435296162/87403803*439204^(1/3) 3178110000000801 a001 956722026041/228826127*439204^(1/3) 3178110000000801 a001 2504730781961/599074578*439204^(1/3) 3178110000000801 a001 6557470319842/1568397607*439204^(1/3) 3178110000000801 a001 10610209857723/2537720636*439204^(1/3) 3178110000000801 a001 4052739537881/969323029*439204^(1/3) 3178110000000801 a001 1548008755920/370248451*439204^(1/3) 3178110000000801 a001 591286729879/141422324*439204^(1/3) 3178110000000802 a001 225851433717/54018521*439204^(1/3) 3178110000000808 a001 86267571272/20633239*439204^(1/3) 3178110000000852 a001 32951280099/7881196*439204^(1/3) 3178110000000899 a001 32951280099/710647*710647^(1/7) 3178110000001115 a001 1346269/710647*1860498^(5/6) 3178110000001151 a001 12586269025/3010349*439204^(1/3) 3178110000001348 a001 12586269025/710647*710647^(3/14) 3178110000001374 a001 1134903170/1149851*439204^(4/9) 3178110000001573 a001 7778742049/710647*710647^(1/4) 3178110000001713 a001 10983760033/620166*439204^(2/9) 3178110000001798 a001 686789568/101521*710647^(2/7) 3178110000002056 a001 832040/271443*271443^(12/13) 3178110000002247 a001 1836311903/710647*710647^(5/14) 3178110000002361 a001 514229/710647*7881196^(9/11) 3178110000002403 a001 514229/710647*141422324^(9/13) 3178110000002403 a001 514229/710647*2537720636^(3/5) 3178110000002403 a001 514229/710647*45537549124^(9/17) 3178110000002403 a001 317811/1149851*(1/2+1/2*5^(1/2))^29 3178110000002403 a001 317811/1149851*1322157322203^(1/2) 3178110000002403 a001 514229/710647*14662949395604^(3/7) 3178110000002403 a001 514229/710647*(1/2+1/2*5^(1/2))^27 3178110000002403 a001 514229/710647*192900153618^(1/2) 3178110000002403 a001 514229/710647*10749957122^(9/16) 3178110000002403 a001 514229/710647*599074578^(9/14) 3178110000002405 a001 514229/710647*33385282^(3/4) 3178110000002497 a001 86267571272/4870847*439204^(2/9) 3178110000002612 a001 75283811239/4250681*439204^(2/9) 3178110000002628 a001 591286729879/33385282*439204^(2/9) 3178110000002631 a001 516002918640/29134601*439204^(2/9) 3178110000002631 a001 4052739537881/228826127*439204^(2/9) 3178110000002631 a001 3536736619241/199691526*439204^(2/9) 3178110000002631 a001 6557470319842/370248451*439204^(2/9) 3178110000002632 a001 2504730781961/141422324*439204^(2/9) 3178110000002632 a001 956722026041/54018521*439204^(2/9) 3178110000002639 a001 365435296162/20633239*439204^(2/9) 3178110000002683 a001 139583862445/7881196*439204^(2/9) 3178110000002697 a001 701408733/710647*710647^(3/7) 3178110000002982 a001 53316291173/3010349*439204^(2/9) 3178110000003146 a001 267914296/710647*710647^(1/2) 3178110000003204 a001 4807526976/1149851*439204^(1/3) 3178110000003230 a001 514229/710647*1860498^(9/10) 3178110000003317 a001 86267571272/710647*271443^(1/13) 3178110000003544 a001 139583862445/1860498*439204^(1/9) 3178110000003595 a001 14619165/101521*710647^(4/7) 3178110000003889 a001 2/514229*(1/2+1/2*5^(1/2))^57 3178110000004045 a001 39088169/710647*710647^(9/14) 3178110000004328 a001 365435296162/4870847*439204^(1/9) 3178110000004442 a001 956722026041/12752043*439204^(1/9) 3178110000004450 a001 416020/930249*20633239^(4/5) 3178110000004456 a001 416020/930249*17393796001^(4/7) 3178110000004456 a001 416020/930249*14662949395604^(4/9) 3178110000004456 a001 416020/930249*(1/2+1/2*5^(1/2))^28 3178110000004456 a001 416020/930249*505019158607^(1/2) 3178110000004456 a001 416020/930249*73681302247^(7/13) 3178110000004456 a001 416020/930249*10749957122^(7/12) 3178110000004456 a001 416020/930249*4106118243^(14/23) 3178110000004456 a001 416020/930249*1568397607^(7/11) 3178110000004456 a001 416020/930249*599074578^(2/3) 3178110000004456 a001 416020/930249*228826127^(7/10) 3178110000004457 a001 416020/930249*87403803^(14/19) 3178110000004458 a001 416020/930249*33385282^(7/9) 3178110000004459 a001 2504730781961/33385282*439204^(1/9) 3178110000004462 a001 6557470319842/87403803*439204^(1/9) 3178110000004462 a001 10610209857723/141422324*439204^(1/9) 3178110000004463 a001 4052739537881/54018521*439204^(1/9) 3178110000004469 a001 140728068720/1875749*439204^(1/9) 3178110000004472 a001 416020/930249*12752043^(14/17) 3178110000004492 a001 14930352/710647*710647^(5/7) 3178110000004513 a001 591286729879/7881196*439204^(1/9) 3178110000004573 a001 416020/930249*4870847^(7/8) 3178110000004590 a001 692290561600/2178309 3178110000004727 a001 9227465/710647*710647^(3/4) 3178110000004813 a001 225851433717/3010349*439204^(1/9) 3178110000004924 a001 5702887/710647*710647^(11/14) 3178110000004925 a001 832040/710647*710647^(13/14) 3178110000005035 a001 20365011074/1149851*439204^(2/9) 3178110000005194 a001 832040/4870847*7881196^(10/11) 3178110000005234 a001 832040/4870847*20633239^(6/7) 3178110000005240 a001 832040/4870847*141422324^(10/13) 3178110000005240 a001 726103/620166*141422324^(2/3) 3178110000005240 a001 832040/4870847*2537720636^(2/3) 3178110000005240 a001 832040/4870847*45537549124^(10/17) 3178110000005240 a001 832040/4870847*312119004989^(6/11) 3178110000005240 a001 832040/4870847*14662949395604^(10/21) 3178110000005240 a001 832040/4870847*(1/2+1/2*5^(1/2))^30 3178110000005240 a001 726103/620166*(1/2+1/2*5^(1/2))^26 3178110000005240 a001 832040/4870847*192900153618^(5/9) 3178110000005240 a001 726103/620166*73681302247^(1/2) 3178110000005240 a001 832040/4870847*28143753123^(3/5) 3178110000005240 a001 726103/620166*10749957122^(13/24) 3178110000005240 a001 832040/4870847*10749957122^(5/8) 3178110000005240 a001 726103/620166*4106118243^(13/23) 3178110000005240 a001 832040/4870847*4106118243^(15/23) 3178110000005240 a001 726103/620166*1568397607^(13/22) 3178110000005240 a001 832040/4870847*1568397607^(15/22) 3178110000005240 a001 726103/620166*599074578^(13/21) 3178110000005240 a001 832040/4870847*599074578^(5/7) 3178110000005240 a001 726103/620166*228826127^(13/20) 3178110000005240 a001 832040/4870847*228826127^(3/4) 3178110000005241 a001 726103/620166*87403803^(13/19) 3178110000005241 a001 832040/4870847*87403803^(15/19) 3178110000005243 a001 726103/620166*33385282^(13/18) 3178110000005243 a001 832040/4870847*33385282^(5/6) 3178110000005255 a001 726103/620166*12752043^(13/17) 3178110000005258 a001 832040/4870847*12752043^(15/17) 3178110000005260 a001 311187/101521*710647^(6/7) 3178110000005260 a001 1812440220360/5702887 3178110000005313 a001 416020/930249*1860498^(14/15) 3178110000005318 a001 5702887/1860498*7881196^(8/11) 3178110000005337 a001 829464/103361*7881196^(2/3) 3178110000005343 a001 24157817/1860498*7881196^(7/11) 3178110000005346 a001 831985/15126*7881196^(6/11) 3178110000005349 a001 726103/620166*4870847^(13/16) 3178110000005351 a001 433494437/1860498*7881196^(5/11) 3178110000005355 a001 5702887/1860498*141422324^(8/13) 3178110000005355 a001 5702887/1860498*2537720636^(8/15) 3178110000005355 a001 5702887/1860498*45537549124^(8/17) 3178110000005355 a001 832040/12752043*(1/2+1/2*5^(1/2))^32 3178110000005355 a001 832040/12752043*23725150497407^(1/2) 3178110000005355 a001 5702887/1860498*14662949395604^(8/21) 3178110000005355 a001 5702887/1860498*(1/2+1/2*5^(1/2))^24 3178110000005355 a001 832040/12752043*505019158607^(4/7) 3178110000005355 a001 5702887/1860498*192900153618^(4/9) 3178110000005355 a001 5702887/1860498*73681302247^(6/13) 3178110000005355 a001 832040/12752043*73681302247^(8/13) 3178110000005355 a001 5702887/1860498*10749957122^(1/2) 3178110000005355 a001 832040/12752043*10749957122^(2/3) 3178110000005355 a001 5702887/1860498*4106118243^(12/23) 3178110000005355 a001 832040/12752043*4106118243^(16/23) 3178110000005355 a001 5702887/1860498*1568397607^(6/11) 3178110000005355 a001 832040/12752043*1568397607^(8/11) 3178110000005355 a001 5702887/1860498*599074578^(4/7) 3178110000005355 a001 832040/12752043*599074578^(16/21) 3178110000005355 a001 5702887/1860498*228826127^(3/5) 3178110000005355 a001 832040/12752043*228826127^(4/5) 3178110000005355 a001 5702887/1860498*87403803^(12/19) 3178110000005355 a001 832040/12752043*87403803^(16/19) 3178110000005356 a001 1836311903/1860498*7881196^(4/11) 3178110000005357 a001 5702887/1860498*33385282^(2/3) 3178110000005357 a001 2971215073/1860498*7881196^(1/3) 3178110000005357 a001 832040/12752043*33385282^(8/9) 3178110000005358 a001 593128762435/1866294 3178110000005360 a001 7778742049/1860498*7881196^(3/11) 3178110000005365 a001 10983760033/620166*7881196^(2/11) 3178110000005366 a001 832040/4870847*4870847^(15/16) 3178110000005369 a001 5702887/1860498*12752043^(12/17) 3178110000005370 a001 39088169/1860498*20633239^(4/7) 3178110000005370 a001 139583862445/1860498*7881196^(1/11) 3178110000005371 a001 24157817/1860498*20633239^(3/5) 3178110000005371 a001 433494437/1860498*20633239^(3/7) 3178110000005371 a001 233802911/620166*20633239^(2/5) 3178110000005372 a001 416020/16692641*45537549124^(2/3) 3178110000005372 a001 829464/103361*312119004989^(2/5) 3178110000005372 a001 416020/16692641*(1/2+1/2*5^(1/2))^34 3178110000005372 a001 829464/103361*(1/2+1/2*5^(1/2))^22 3178110000005372 a001 829464/103361*10749957122^(11/24) 3178110000005372 a001 416020/16692641*10749957122^(17/24) 3178110000005372 a001 829464/103361*4106118243^(11/23) 3178110000005372 a001 416020/16692641*4106118243^(17/23) 3178110000005372 a001 829464/103361*1568397607^(1/2) 3178110000005372 a001 416020/16692641*1568397607^(17/22) 3178110000005372 a001 829464/103361*599074578^(11/21) 3178110000005372 a001 416020/16692641*599074578^(17/21) 3178110000005372 a001 829464/103361*228826127^(11/20) 3178110000005372 a001 416020/16692641*228826127^(17/20) 3178110000005372 a001 829464/103361*87403803^(11/19) 3178110000005372 a001 416020/16692641*87403803^(17/19) 3178110000005372 a001 12422650078080/39088169 3178110000005372 a001 267084832/103361*20633239^(2/7) 3178110000005373 a001 10182505537/930249*20633239^(1/5) 3178110000005373 a001 832040/12752043*12752043^(16/17) 3178110000005373 a001 829464/103361*33385282^(11/18) 3178110000005373 a001 53316291173/1860498*20633239^(1/7) 3178110000005374 a001 832040/87403803*141422324^(12/13) 3178110000005374 a001 832040/87403803*2537720636^(4/5) 3178110000005374 a001 39088169/1860498*2537720636^(4/9) 3178110000005374 a001 832040/87403803*45537549124^(12/17) 3178110000005374 a001 832040/87403803*14662949395604^(4/7) 3178110000005374 a001 39088169/1860498*(1/2+1/2*5^(1/2))^20 3178110000005374 a001 39088169/1860498*23725150497407^(5/16) 3178110000005374 a001 39088169/1860498*505019158607^(5/14) 3178110000005374 a001 832040/87403803*192900153618^(2/3) 3178110000005374 a001 39088169/1860498*73681302247^(5/13) 3178110000005374 a001 832040/87403803*73681302247^(9/13) 3178110000005374 a001 39088169/1860498*28143753123^(2/5) 3178110000005374 a001 39088169/1860498*10749957122^(5/12) 3178110000005374 a001 832040/87403803*10749957122^(3/4) 3178110000005374 a001 39088169/1860498*4106118243^(10/23) 3178110000005374 a001 832040/87403803*4106118243^(18/23) 3178110000005374 a001 39088169/1860498*1568397607^(5/11) 3178110000005374 a001 832040/87403803*1568397607^(9/11) 3178110000005374 a001 39088169/1860498*599074578^(10/21) 3178110000005374 a001 832040/87403803*599074578^(6/7) 3178110000005374 a001 39088169/1860498*228826127^(1/2) 3178110000005374 a001 832040/87403803*228826127^(9/10) 3178110000005374 a001 591325820632/1860621 3178110000005374 a001 39088169/1860498*87403803^(10/19) 3178110000005374 a001 416020/16692641*33385282^(17/18) 3178110000005374 a001 831985/15126*141422324^(6/13) 3178110000005374 a001 831985/15126*2537720636^(2/5) 3178110000005374 a001 831985/15126*45537549124^(6/17) 3178110000005374 a001 831985/15126*14662949395604^(2/7) 3178110000005374 a001 831985/15126*(1/2+1/2*5^(1/2))^18 3178110000005374 a001 831985/15126*192900153618^(1/3) 3178110000005374 a001 831985/15126*10749957122^(3/8) 3178110000005374 a001 832040/228826127*10749957122^(19/24) 3178110000005374 a001 831985/15126*4106118243^(9/23) 3178110000005374 a001 832040/228826127*4106118243^(19/23) 3178110000005374 a001 831985/15126*1568397607^(9/22) 3178110000005374 a001 832040/228826127*1568397607^(19/22) 3178110000005374 a001 433494437/1860498*141422324^(5/13) 3178110000005374 a001 831985/15126*599074578^(3/7) 3178110000005374 a001 832040/228826127*599074578^(19/21) 3178110000005374 a001 567451585/930249*141422324^(1/3) 3178110000005374 a001 10643263790775/33489287 3178110000005374 a001 1836311903/1860498*141422324^(4/13) 3178110000005374 a001 7778742049/1860498*141422324^(3/13) 3178110000005374 a001 831985/15126*228826127^(9/20) 3178110000005374 a001 10983760033/620166*141422324^(2/13) 3178110000005374 a001 832040/87403803*87403803^(18/19) 3178110000005374 a001 139583862445/1860498*141422324^(1/13) 3178110000005374 a001 416020/299537289*2537720636^(8/9) 3178110000005374 a001 416020/299537289*312119004989^(8/11) 3178110000005374 a001 416020/299537289*23725150497407^(5/8) 3178110000005374 a001 133957148/930249*(1/2+1/2*5^(1/2))^16 3178110000005374 a001 133957148/930249*23725150497407^(1/4) 3178110000005374 a001 133957148/930249*73681302247^(4/13) 3178110000005374 a001 416020/299537289*73681302247^(10/13) 3178110000005374 a001 416020/299537289*28143753123^(4/5) 3178110000005374 a001 133957148/930249*10749957122^(1/3) 3178110000005374 a001 416020/299537289*10749957122^(5/6) 3178110000005374 a001 133957148/930249*4106118243^(8/23) 3178110000005374 a001 416020/299537289*4106118243^(20/23) 3178110000005374 a001 133957148/930249*1568397607^(4/11) 3178110000005374 a001 416020/299537289*1568397607^(10/11) 3178110000005374 a001 222915410843840/701408733 3178110000005374 a001 133957148/930249*599074578^(8/21) 3178110000005374 a001 832040/228826127*228826127^(19/20) 3178110000005374 a001 832040/1568397607*2537720636^(14/15) 3178110000005374 a001 832040/1568397607*17393796001^(6/7) 3178110000005374 a001 233802911/620166*17393796001^(2/7) 3178110000005374 a001 832040/1568397607*45537549124^(14/17) 3178110000005374 a001 233802911/620166*14662949395604^(2/9) 3178110000005374 a001 233802911/620166*(1/2+1/2*5^(1/2))^14 3178110000005374 a001 233802911/620166*505019158607^(1/4) 3178110000005374 a001 832040/1568397607*192900153618^(7/9) 3178110000005374 a001 233802911/620166*10749957122^(7/24) 3178110000005374 a001 832040/1568397607*10749957122^(7/8) 3178110000005374 a001 233802911/620166*4106118243^(7/23) 3178110000005374 a001 832040/1568397607*4106118243^(21/23) 3178110000005374 a001 583600122205320/1836311903 3178110000005374 a001 233802911/620166*1568397607^(7/22) 3178110000005374 a001 416020/299537289*599074578^(20/21) 3178110000005374 a001 1836311903/1860498*2537720636^(4/15) 3178110000005374 a001 1836311903/1860498*45537549124^(4/17) 3178110000005374 a001 832040/4106118243*312119004989^(4/5) 3178110000005374 a001 1836311903/1860498*817138163596^(4/19) 3178110000005374 a001 1836311903/1860498*14662949395604^(4/21) 3178110000005374 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^12 3178110000005374 a001 1836311903/1860498*192900153618^(2/9) 3178110000005374 a001 1836311903/1860498*73681302247^(3/13) 3178110000005374 a001 832040/4106118243*73681302247^(11/13) 3178110000005374 a001 1836311903/1860498*10749957122^(1/4) 3178110000005374 a001 832040/4106118243*10749957122^(11/12) 3178110000005374 a001 190985619471515/600940872 3178110000005374 a001 1836311903/1860498*4106118243^(6/23) 3178110000005374 a001 267084832/103361*2537720636^(2/9) 3178110000005374 a001 7778742049/1860498*2537720636^(1/5) 3178110000005374 a001 10983760033/620166*2537720636^(2/15) 3178110000005374 a001 832040/1568397607*1568397607^(21/22) 3178110000005374 a001 53316291173/1860498*2537720636^(1/9) 3178110000005374 a001 139583862445/1860498*2537720636^(1/15) 3178110000005374 a001 267084832/103361*312119004989^(2/11) 3178110000005374 a001 267084832/103361*(1/2+1/2*5^(1/2))^10 3178110000005374 a001 267084832/103361*28143753123^(1/5) 3178110000005374 a001 72728268092928/228841255 3178110000005374 a001 267084832/103361*10749957122^(5/24) 3178110000005374 a001 832040/4106118243*4106118243^(22/23) 3178110000005374 a001 832040/28143753123*45537549124^(16/17) 3178110000005374 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^8 3178110000005374 a001 12586269025/1860498*23725150497407^(1/8) 3178110000005374 a001 12586269025/1860498*505019158607^(1/7) 3178110000005374 a001 832040/28143753123*192900153618^(8/9) 3178110000005374 a001 12586269025/1860498*73681302247^(2/13) 3178110000005374 a001 832040/28143753123*73681302247^(12/13) 3178110000005374 a001 10472279279561000/32951280099 3178110000005374 a001 416020/5374978561*10749957122^(23/24) 3178110000005374 a001 10983760033/620166*45537549124^(2/17) 3178110000005374 a001 832040/73681302247*312119004989^(10/11) 3178110000005374 a001 10983760033/620166*14662949395604^(2/21) 3178110000005374 a001 10983760033/620166*(1/2+1/2*5^(1/2))^6 3178110000005374 a001 3427097886696495/10783446409 3178110000005374 a001 416020/96450076809*23725150497407^(13/16) 3178110000005374 a001 43133785636/930249*(1/2+1/2*5^(1/2))^4 3178110000005374 a001 416020/96450076809*505019158607^(13/14) 3178110000005374 a001 139583862445/1860498*45537549124^(1/17) 3178110000005374 a001 43133785636/930249*73681302247^(1/13) 3178110000005374 a001 75283811239/620166*(1/2+1/2*5^(1/2))^2 3178110000005374 a001 187917426909892680/591286729879 3178110000005374 a006 5^(1/2)*Fibonacci(58)/Lucas(30)/sqrt(5) 3178110000005374 a001 1042018099911415220/3278735159921 3178110000005374 a001 10182505537/930249*17393796001^(1/7) 3178110000005374 a001 139583862445/1860498*14662949395604^(1/21) 3178110000005374 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^3 3178110000005374 a001 8872257381516584/27916772489 3178110000005374 a001 53316291173/1860498*312119004989^(1/11) 3178110000005374 a001 832040/119218851371*14662949395604^(17/21) 3178110000005374 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^5 3178110000005374 a001 832040/119218851371*192900153618^(17/18) 3178110000005374 a001 12586269025/1860498*10749957122^(1/6) 3178110000005374 a001 53316291173/1860498*28143753123^(1/10) 3178110000005374 a001 75283811239/620166*10749957122^(1/24) 3178110000005374 a001 16944503814010960/53316291173 3178110000005374 a001 10182505537/930249*14662949395604^(1/9) 3178110000005374 a001 10182505537/930249*(1/2+1/2*5^(1/2))^7 3178110000005374 a001 208010/11384387281*505019158607^(7/8) 3178110000005374 a001 139583862445/1860498*10749957122^(1/16) 3178110000005374 a001 43133785636/930249*10749957122^(1/12) 3178110000005374 a001 10983760033/620166*10749957122^(1/8) 3178110000005374 a001 75283811239/620166*4106118243^(1/23) 3178110000005374 a001 3236112267224980/10182505537 3178110000005374 a001 7778742049/1860498*45537549124^(3/17) 3178110000005374 a001 7778742049/1860498*14662949395604^(1/7) 3178110000005374 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^9 3178110000005374 a001 7778742049/1860498*192900153618^(1/6) 3178110000005374 a001 267084832/103361*4106118243^(5/23) 3178110000005374 a001 7778742049/1860498*10749957122^(3/16) 3178110000005374 a001 43133785636/930249*4106118243^(2/23) 3178110000005374 a001 10983760033/620166*4106118243^(3/23) 3178110000005374 a001 12586269025/1860498*4106118243^(4/23) 3178110000005374 a001 75283811239/620166*1568397607^(1/22) 3178110000005374 a001 2472169789338920/7778742049 3178110000005374 a001 832040/6643838879*45537549124^(15/17) 3178110000005374 a001 832040/6643838879*312119004989^(9/11) 3178110000005374 a001 2971215073/1860498*312119004989^(1/5) 3178110000005374 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^11 3178110000005374 a001 832040/6643838879*192900153618^(5/6) 3178110000005374 a001 832040/6643838879*28143753123^(9/10) 3178110000005374 a001 832040/6643838879*10749957122^(15/16) 3178110000005374 a001 43133785636/930249*1568397607^(1/11) 3178110000005374 a001 1836311903/1860498*1568397607^(3/11) 3178110000005374 a001 10983760033/620166*1568397607^(3/22) 3178110000005374 a001 12586269025/1860498*1568397607^(2/11) 3178110000005374 a001 267084832/103361*1568397607^(5/22) 3178110000005374 a001 2971215073/1860498*1568397607^(1/4) 3178110000005374 a001 944284833566800/2971215073 3178110000005374 a001 75283811239/620166*599074578^(1/21) 3178110000005374 a001 567451585/930249*(1/2+1/2*5^(1/2))^13 3178110000005374 a001 567451585/930249*73681302247^(1/4) 3178110000005374 a001 139583862445/1860498*599074578^(1/14) 3178110000005374 a001 43133785636/930249*599074578^(2/21) 3178110000005374 a001 10983760033/620166*599074578^(1/7) 3178110000005374 a001 10182505537/930249*599074578^(1/6) 3178110000005374 a001 233802911/620166*599074578^(1/3) 3178110000005374 a001 12586269025/1860498*599074578^(4/21) 3178110000005374 a001 7778742049/1860498*599074578^(3/14) 3178110000005374 a001 267084832/103361*599074578^(5/21) 3178110000005374 a001 1836311903/1860498*599074578^(2/7) 3178110000005374 a001 591286412068/1860497 3178110000005374 a001 75283811239/620166*228826127^(1/20) 3178110000005374 a001 433494437/1860498*2537720636^(1/3) 3178110000005374 a001 433494437/1860498*45537549124^(5/17) 3178110000005374 a001 433494437/1860498*312119004989^(3/11) 3178110000005374 a001 433494437/1860498*14662949395604^(5/21) 3178110000005374 a001 433494437/1860498*(1/2+1/2*5^(1/2))^15 3178110000005374 a001 433494437/1860498*192900153618^(5/18) 3178110000005374 a001 433494437/1860498*28143753123^(3/10) 3178110000005374 a001 433494437/1860498*10749957122^(5/16) 3178110000005374 a001 43133785636/930249*228826127^(1/10) 3178110000005374 a001 433494437/1860498*599074578^(5/14) 3178110000005374 a001 53316291173/1860498*228826127^(1/8) 3178110000005374 a001 10983760033/620166*228826127^(3/20) 3178110000005374 a001 12586269025/1860498*228826127^(1/5) 3178110000005374 a001 267084832/103361*228826127^(1/4) 3178110000005374 a001 133957148/930249*228826127^(2/5) 3178110000005374 a001 1836311903/1860498*228826127^(3/10) 3178110000005374 a001 137769300517640/433494437 3178110000005374 a001 233802911/620166*228826127^(7/20) 3178110000005374 a001 75283811239/620166*87403803^(1/19) 3178110000005374 a001 832040/370248451*2537720636^(13/15) 3178110000005374 a001 832040/370248451*45537549124^(13/17) 3178110000005374 a001 165580141/1860498*45537549124^(1/3) 3178110000005374 a001 832040/370248451*14662949395604^(13/21) 3178110000005374 a001 165580141/1860498*(1/2+1/2*5^(1/2))^17 3178110000005374 a001 832040/370248451*192900153618^(13/18) 3178110000005374 a001 832040/370248451*73681302247^(3/4) 3178110000005374 a001 832040/370248451*10749957122^(13/16) 3178110000005374 a001 433494437/1860498*228826127^(3/8) 3178110000005374 a001 832040/370248451*599074578^(13/14) 3178110000005374 a001 43133785636/930249*87403803^(2/19) 3178110000005374 a001 10983760033/620166*87403803^(3/19) 3178110000005374 a001 12586269025/1860498*87403803^(4/19) 3178110000005375 a001 267084832/103361*87403803^(5/19) 3178110000005375 a001 1836311903/1860498*87403803^(6/19) 3178110000005375 a001 52623190191440/165580141 3178110000005375 a001 831985/15126*87403803^(9/19) 3178110000005375 a001 233802911/620166*87403803^(7/19) 3178110000005375 a001 75283811239/620166*33385282^(1/18) 3178110000005375 a001 31622993/930249*817138163596^(1/3) 3178110000005375 a001 31622993/930249*(1/2+1/2*5^(1/2))^19 3178110000005375 a001 133957148/930249*87403803^(8/19) 3178110000005375 a001 139583862445/1860498*33385282^(1/12) 3178110000005375 a001 43133785636/930249*33385282^(1/9) 3178110000005375 a001 31622993/930249*87403803^(1/2) 3178110000005375 a001 10983760033/620166*33385282^(1/6) 3178110000005375 a001 12586269025/1860498*33385282^(2/9) 3178110000005375 a001 7778742049/1860498*33385282^(1/4) 3178110000005375 a001 267084832/103361*33385282^(5/18) 3178110000005375 a001 10050135028340/31622993 3178110000005375 a001 1836311903/1860498*33385282^(1/3) 3178110000005375 a001 24157817/1860498*141422324^(7/13) 3178110000005375 a001 832040/54018521*2537720636^(7/9) 3178110000005375 a001 24157817/1860498*2537720636^(7/15) 3178110000005375 a001 832040/54018521*17393796001^(5/7) 3178110000005375 a001 24157817/1860498*17393796001^(3/7) 3178110000005375 a001 24157817/1860498*45537549124^(7/17) 3178110000005375 a001 832040/54018521*312119004989^(7/11) 3178110000005375 a001 24157817/1860498*14662949395604^(1/3) 3178110000005375 a001 24157817/1860498*(1/2+1/2*5^(1/2))^21 3178110000005375 a001 832040/54018521*505019158607^(5/8) 3178110000005375 a001 24157817/1860498*192900153618^(7/18) 3178110000005375 a001 832040/54018521*28143753123^(7/10) 3178110000005375 a001 24157817/1860498*10749957122^(7/16) 3178110000005375 a001 24157817/1860498*599074578^(1/2) 3178110000005376 a001 832040/54018521*599074578^(5/6) 3178110000005376 a001 233802911/620166*33385282^(7/18) 3178110000005376 a001 832040/54018521*228826127^(7/8) 3178110000005376 a001 75283811239/620166*12752043^(1/17) 3178110000005376 a001 39088169/1860498*33385282^(5/9) 3178110000005376 a001 433494437/1860498*33385282^(5/12) 3178110000005376 a001 133957148/930249*33385282^(4/9) 3178110000005376 a001 831985/15126*33385282^(1/2) 3178110000005377 a001 43133785636/930249*12752043^(2/17) 3178110000005377 a001 24157817/1860498*33385282^(7/12) 3178110000005378 a001 10983760033/620166*12752043^(3/17) 3178110000005379 a001 12586269025/1860498*12752043^(4/17) 3178110000005380 a001 267084832/103361*12752043^(5/17) 3178110000005381 a001 7677619978600/24157817 3178110000005381 a001 1836311903/1860498*12752043^(6/17) 3178110000005382 a001 75640/1875749*141422324^(11/13) 3178110000005382 a001 75640/1875749*2537720636^(11/15) 3178110000005382 a001 75640/1875749*45537549124^(11/17) 3178110000005382 a001 75640/1875749*312119004989^(3/5) 3178110000005382 a001 75640/1875749*817138163596^(11/19) 3178110000005382 a001 75640/1875749*14662949395604^(11/21) 3178110000005382 a001 75640/1875749*(1/2+1/2*5^(1/2))^33 3178110000005382 a001 9227465/1860498*(1/2+1/2*5^(1/2))^23 3178110000005382 a001 75640/1875749*192900153618^(11/18) 3178110000005382 a001 75640/1875749*10749957122^(11/16) 3178110000005382 a001 9227465/1860498*4106118243^(1/2) 3178110000005382 a001 75640/1875749*1568397607^(3/4) 3178110000005382 a001 75640/1875749*599074578^(11/14) 3178110000005382 a001 233802911/620166*12752043^(7/17) 3178110000005383 a001 75283811239/620166*4870847^(1/16) 3178110000005384 a001 133957148/930249*12752043^(8/17) 3178110000005384 a001 829464/103361*12752043^(11/17) 3178110000005384 a001 165580141/1860498*12752043^(1/2) 3178110000005384 a001 75640/1875749*33385282^(11/12) 3178110000005385 a001 831985/15126*12752043^(9/17) 3178110000005385 a001 39088169/1860498*12752043^(10/17) 3178110000005391 a001 43133785636/930249*4870847^(1/8) 3178110000005400 a001 10983760033/620166*4870847^(3/16) 3178110000005408 a001 12586269025/1860498*4870847^(1/4) 3178110000005416 a001 267084832/103361*4870847^(5/16) 3178110000005418 a001 586517975824/1845493 3178110000005420 a001 1762289/930249*20633239^(5/7) 3178110000005425 a001 1836311903/1860498*4870847^(3/8) 3178110000005426 a001 1762289/930249*2537720636^(5/9) 3178110000005426 a001 1762289/930249*312119004989^(5/11) 3178110000005426 a001 208010/1970299*(1/2+1/2*5^(1/2))^31 3178110000005426 a001 208010/1970299*9062201101803^(1/2) 3178110000005426 a001 1762289/930249*(1/2+1/2*5^(1/2))^25 3178110000005426 a001 1762289/930249*3461452808002^(5/12) 3178110000005426 a001 1762289/930249*28143753123^(1/2) 3178110000005426 a001 1762289/930249*228826127^(5/8) 3178110000005433 a001 233802911/620166*4870847^(7/16) 3178110000005436 a001 75283811239/620166*1860498^(1/15) 3178110000005441 a001 133957148/930249*4870847^(1/2) 3178110000005450 a001 831985/15126*4870847^(9/16) 3178110000005455 a001 5702887/1860498*4870847^(3/4) 3178110000005458 a001 39088169/1860498*4870847^(5/8) 3178110000005464 a001 829464/103361*4870847^(11/16) 3178110000005466 a001 139583862445/1860498*1860498^(1/10) 3178110000005497 a001 43133785636/930249*1860498^(2/15) 3178110000005527 a001 53316291173/1860498*1860498^(1/6) 3178110000005558 a001 10983760033/620166*1860498^(1/5) 3178110000005619 a001 12586269025/1860498*1860498^(4/15) 3178110000005650 a001 7778742049/1860498*1860498^(3/10) 3178110000005674 a001 560074829380/1762289 3178110000005680 a001 267084832/103361*1860498^(1/3) 3178110000005683 a001 1346269/1860498*7881196^(9/11) 3178110000005725 a001 1346269/1860498*141422324^(9/13) 3178110000005725 a001 1346269/1860498*2537720636^(3/5) 3178110000005725 a001 1346269/1860498*45537549124^(9/17) 3178110000005725 a001 1346269/1860498*817138163596^(9/19) 3178110000005725 a001 832040/3010349*(1/2+1/2*5^(1/2))^29 3178110000005725 a001 1346269/1860498*14662949395604^(3/7) 3178110000005725 a001 1346269/1860498*(1/2+1/2*5^(1/2))^27 3178110000005725 a001 832040/3010349*1322157322203^(1/2) 3178110000005725 a001 1346269/1860498*192900153618^(1/2) 3178110000005725 a001 1346269/1860498*10749957122^(9/16) 3178110000005725 a001 1346269/1860498*599074578^(9/14) 3178110000005727 a001 1346269/1860498*33385282^(3/4) 3178110000005742 a001 1836311903/1860498*1860498^(2/5) 3178110000005803 a001 233802911/620166*1860498^(7/15) 3178110000005824 a001 75283811239/620166*710647^(1/14) 3178110000005833 a001 433494437/1860498*1860498^(1/2) 3178110000005864 a001 133957148/930249*1860498^(8/15) 3178110000005925 a001 831985/15126*1860498^(3/5) 3178110000005942 a001 2/1346269*(1/2+1/2*5^(1/2))^59 3178110000005986 a001 39088169/1860498*1860498^(2/3) 3178110000006018 a001 24157817/1860498*1860498^(7/10) 3178110000006019 a001 2178309/4870847*20633239^(4/5) 3178110000006025 a001 2178309/4870847*17393796001^(4/7) 3178110000006025 a001 2178309/4870847*14662949395604^(4/9) 3178110000006025 a001 2178309/4870847*(1/2+1/2*5^(1/2))^28 3178110000006025 a001 2178309/4870847*505019158607^(1/2) 3178110000006025 a001 2178309/4870847*73681302247^(7/13) 3178110000006025 a001 2178309/4870847*10749957122^(7/12) 3178110000006025 a001 2178309/4870847*4106118243^(14/23) 3178110000006025 a001 2178309/4870847*1568397607^(7/11) 3178110000006025 a001 2178309/4870847*599074578^(2/3) 3178110000006025 a001 2178309/4870847*228826127^(7/10) 3178110000006025 a001 2178309/4870847*87403803^(14/19) 3178110000006027 a001 2178309/4870847*33385282^(7/9) 3178110000006027 a001 527225566609/1658928 3178110000006036 a001 726103/620166*1860498^(13/15) 3178110000006041 a001 2178309/4870847*12752043^(14/17) 3178110000006045 a001 829464/103361*1860498^(11/15) 3178110000006089 a001 5702887/1860498*1860498^(4/5) 3178110000006093 a001 726103/4250681*7881196^(10/11) 3178110000006119 a001 14930352/4870847*7881196^(8/11) 3178110000006124 a001 39088169/4870847*7881196^(2/3) 3178110000006126 a001 63245986/4870847*7881196^(7/11) 3178110000006131 a001 267914296/4870847*7881196^(6/11) 3178110000006133 a001 726103/4250681*20633239^(6/7) 3178110000006135 a001 1134903170/4870847*7881196^(5/11) 3178110000006139 a001 726103/4250681*141422324^(10/13) 3178110000006139 a001 5702887/4870847*141422324^(2/3) 3178110000006139 a001 726103/4250681*2537720636^(2/3) 3178110000006139 a001 726103/4250681*45537549124^(10/17) 3178110000006139 a001 726103/4250681*312119004989^(6/11) 3178110000006139 a001 726103/4250681*14662949395604^(10/21) 3178110000006139 a001 726103/4250681*(1/2+1/2*5^(1/2))^30 3178110000006139 a001 5702887/4870847*(1/2+1/2*5^(1/2))^26 3178110000006139 a001 726103/4250681*192900153618^(5/9) 3178110000006139 a001 5702887/4870847*73681302247^(1/2) 3178110000006139 a001 726103/4250681*28143753123^(3/5) 3178110000006139 a001 5702887/4870847*10749957122^(13/24) 3178110000006139 a001 726103/4250681*10749957122^(5/8) 3178110000006139 a001 5702887/4870847*4106118243^(13/23) 3178110000006139 a001 726103/4250681*4106118243^(15/23) 3178110000006139 a001 5702887/4870847*1568397607^(13/22) 3178110000006139 a001 726103/4250681*1568397607^(15/22) 3178110000006139 a001 5702887/4870847*599074578^(13/21) 3178110000006139 a001 726103/4250681*599074578^(5/7) 3178110000006139 a001 5702887/4870847*228826127^(13/20) 3178110000006139 a001 726103/4250681*228826127^(3/4) 3178110000006139 a001 5702887/4870847*87403803^(13/19) 3178110000006139 a001 726103/4250681*87403803^(15/19) 3178110000006139 a001 12422650078083/39088169 3178110000006140 a001 4807526976/4870847*7881196^(4/11) 3178110000006141 a001 5702887/4870847*33385282^(13/18) 3178110000006141 a001 726103/4250681*33385282^(5/6) 3178110000006142 a001 7778742049/4870847*7881196^(1/3) 3178110000006142 a001 2178309/4870847*4870847^(7/8) 3178110000006145 a001 20365011074/4870847*7881196^(3/11) 3178110000006149 a001 86267571272/4870847*7881196^(2/11) 3178110000006154 a001 365435296162/4870847*7881196^(1/11) 3178110000006154 a001 5702887/4870847*12752043^(13/17) 3178110000006154 a001 102334155/4870847*20633239^(4/7) 3178110000006154 a001 63245986/4870847*20633239^(3/5) 3178110000006155 a001 1134903170/4870847*20633239^(3/7) 3178110000006156 a001 1836311903/4870847*20633239^(2/5) 3178110000006156 a001 14930352/4870847*141422324^(8/13) 3178110000006156 a001 14930352/4870847*2537720636^(8/15) 3178110000006156 a001 14930352/4870847*45537549124^(8/17) 3178110000006156 a001 311187/4769326*(1/2+1/2*5^(1/2))^32 3178110000006156 a001 14930352/4870847*14662949395604^(8/21) 3178110000006156 a001 311187/4769326*23725150497407^(1/2) 3178110000006156 a001 14930352/4870847*(1/2+1/2*5^(1/2))^24 3178110000006156 a001 311187/4769326*505019158607^(4/7) 3178110000006156 a001 14930352/4870847*192900153618^(4/9) 3178110000006156 a001 14930352/4870847*73681302247^(6/13) 3178110000006156 a001 311187/4769326*73681302247^(8/13) 3178110000006156 a001 14930352/4870847*10749957122^(1/2) 3178110000006156 a001 311187/4769326*10749957122^(2/3) 3178110000006156 a001 14930352/4870847*4106118243^(12/23) 3178110000006156 a001 311187/4769326*4106118243^(16/23) 3178110000006156 a001 14930352/4870847*1568397607^(6/11) 3178110000006156 a001 311187/4769326*1568397607^(8/11) 3178110000006156 a001 14930352/4870847*599074578^(4/7) 3178110000006156 a001 311187/4769326*599074578^(16/21) 3178110000006156 a001 14930352/4870847*228826127^(3/5) 3178110000006156 a001 311187/4769326*228826127^(4/5) 3178110000006156 a001 1548710482608/4873055 3178110000006156 a001 14930352/4870847*87403803^(12/19) 3178110000006156 a001 311187/4769326*87403803^(16/19) 3178110000006156 a001 726103/4250681*12752043^(15/17) 3178110000006156 a001 12586269025/4870847*20633239^(2/7) 3178110000006157 a001 53316291173/4870847*20633239^(1/5) 3178110000006158 a001 139583862445/4870847*20633239^(1/7) 3178110000006158 a001 14930352/4870847*33385282^(2/3) 3178110000006158 a001 726103/29134601*45537549124^(2/3) 3178110000006158 a001 39088169/4870847*312119004989^(2/5) 3178110000006158 a001 39088169/4870847*(1/2+1/2*5^(1/2))^22 3178110000006158 a001 39088169/4870847*10749957122^(11/24) 3178110000006158 a001 726103/29134601*10749957122^(17/24) 3178110000006158 a001 39088169/4870847*4106118243^(11/23) 3178110000006158 a001 726103/29134601*4106118243^(17/23) 3178110000006158 a001 39088169/4870847*1568397607^(1/2) 3178110000006158 a001 726103/29134601*1568397607^(17/22) 3178110000006158 a001 39088169/4870847*599074578^(11/21) 3178110000006158 a001 726103/29134601*599074578^(17/21) 3178110000006158 a001 85146110326221/267914296 3178110000006158 a001 39088169/4870847*228826127^(11/20) 3178110000006158 a001 726103/29134601*228826127^(17/20) 3178110000006158 a001 311187/4769326*33385282^(8/9) 3178110000006158 a001 46347/4868641*141422324^(12/13) 3178110000006158 a001 39088169/4870847*87403803^(11/19) 3178110000006159 a001 267914296/4870847*141422324^(6/13) 3178110000006159 a001 46347/4868641*2537720636^(4/5) 3178110000006159 a001 102334155/4870847*2537720636^(4/9) 3178110000006159 a001 46347/4868641*45537549124^(12/17) 3178110000006159 a001 102334155/4870847*(1/2+1/2*5^(1/2))^20 3178110000006159 a001 102334155/4870847*23725150497407^(5/16) 3178110000006159 a001 102334155/4870847*505019158607^(5/14) 3178110000006159 a001 46347/4868641*505019158607^(9/14) 3178110000006159 a001 46347/4868641*192900153618^(2/3) 3178110000006159 a001 102334155/4870847*73681302247^(5/13) 3178110000006159 a001 46347/4868641*73681302247^(9/13) 3178110000006159 a001 102334155/4870847*28143753123^(2/5) 3178110000006159 a001 102334155/4870847*10749957122^(5/12) 3178110000006159 a001 46347/4868641*10749957122^(3/4) 3178110000006159 a001 1134903170/4870847*141422324^(5/13) 3178110000006159 a001 102334155/4870847*4106118243^(10/23) 3178110000006159 a001 46347/4868641*4106118243^(18/23) 3178110000006159 a001 102334155/4870847*1568397607^(5/11) 3178110000006159 a001 46347/4868641*1568397607^(9/11) 3178110000006159 a001 74305136947965/233802911 3178110000006159 a001 102334155/4870847*599074578^(10/21) 3178110000006159 a001 46347/4868641*599074578^(6/7) 3178110000006159 a001 2971215073/4870847*141422324^(1/3) 3178110000006159 a001 4807526976/4870847*141422324^(4/13) 3178110000006159 a001 726103/29134601*87403803^(17/19) 3178110000006159 a001 20365011074/4870847*141422324^(3/13) 3178110000006159 a001 102334155/4870847*228826127^(1/2) 3178110000006159 a001 86267571272/4870847*141422324^(2/13) 3178110000006159 a001 365435296162/4870847*141422324^(1/13) 3178110000006159 a001 267914296/4870847*2537720636^(2/5) 3178110000006159 a001 267914296/4870847*45537549124^(6/17) 3178110000006159 a001 726103/199691526*817138163596^(2/3) 3178110000006159 a001 267914296/4870847*14662949395604^(2/7) 3178110000006159 a001 267914296/4870847*(1/2+1/2*5^(1/2))^18 3178110000006159 a001 267914296/4870847*192900153618^(1/3) 3178110000006159 a001 267914296/4870847*10749957122^(3/8) 3178110000006159 a001 726103/199691526*10749957122^(19/24) 3178110000006159 a001 267914296/4870847*4106118243^(9/23) 3178110000006159 a001 726103/199691526*4106118243^(19/23) 3178110000006159 a001 583600122205464/1836311903 3178110000006159 a001 267914296/4870847*1568397607^(9/22) 3178110000006159 a001 726103/199691526*1568397607^(19/22) 3178110000006159 a001 46347/4868641*228826127^(9/10) 3178110000006159 a001 267914296/4870847*599074578^(3/7) 3178110000006159 a001 311187/224056801*2537720636^(8/9) 3178110000006159 a001 311187/224056801*312119004989^(8/11) 3178110000006159 a001 311187/224056801*23725150497407^(5/8) 3178110000006159 a001 701408733/4870847*(1/2+1/2*5^(1/2))^16 3178110000006159 a001 701408733/4870847*23725150497407^(1/4) 3178110000006159 a001 701408733/4870847*73681302247^(4/13) 3178110000006159 a001 311187/224056801*73681302247^(10/13) 3178110000006159 a001 311187/224056801*28143753123^(4/5) 3178110000006159 a001 701408733/4870847*10749957122^(1/3) 3178110000006159 a001 311187/224056801*10749957122^(5/6) 3178110000006159 a001 516003024577/1623616 3178110000006159 a001 701408733/4870847*4106118243^(8/23) 3178110000006159 a001 311187/224056801*4106118243^(20/23) 3178110000006159 a001 726103/199691526*599074578^(19/21) 3178110000006159 a001 701408733/4870847*1568397607^(4/11) 3178110000006159 a001 726103/1368706081*2537720636^(14/15) 3178110000006159 a001 726103/1368706081*17393796001^(6/7) 3178110000006159 a001 1836311903/4870847*17393796001^(2/7) 3178110000006159 a001 726103/1368706081*45537549124^(14/17) 3178110000006159 a001 726103/1368706081*14662949395604^(2/3) 3178110000006159 a001 1836311903/4870847*14662949395604^(2/9) 3178110000006159 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^14 3178110000006159 a001 726103/1368706081*505019158607^(3/4) 3178110000006159 a001 726103/1368706081*192900153618^(7/9) 3178110000006159 a001 4000054745112027/12586269025 3178110000006159 a001 1836311903/4870847*10749957122^(7/24) 3178110000006159 a001 726103/1368706081*10749957122^(7/8) 3178110000006159 a001 4807526976/4870847*2537720636^(4/15) 3178110000006159 a001 1836311903/4870847*4106118243^(7/23) 3178110000006159 a001 311187/224056801*1568397607^(10/11) 3178110000006159 a001 12586269025/4870847*2537720636^(2/9) 3178110000006159 a001 20365011074/4870847*2537720636^(1/5) 3178110000006159 a001 86267571272/4870847*2537720636^(2/15) 3178110000006159 a001 139583862445/4870847*2537720636^(1/9) 3178110000006159 a001 365435296162/4870847*2537720636^(1/15) 3178110000006159 a001 4807526976/4870847*45537549124^(4/17) 3178110000006159 a001 987/4870846*312119004989^(4/5) 3178110000006159 a001 4807526976/4870847*817138163596^(4/19) 3178110000006159 a001 4807526976/4870847*14662949395604^(4/21) 3178110000006159 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^12 3178110000006159 a001 4807526976/4870847*192900153618^(2/9) 3178110000006159 a001 4807526976/4870847*73681302247^(3/13) 3178110000006159 a001 987/4870846*73681302247^(11/13) 3178110000006159 a001 3490759759854528/10983760033 3178110000006159 a001 4807526976/4870847*10749957122^(1/4) 3178110000006159 a001 726103/1368706081*4106118243^(21/23) 3178110000006159 a001 12586269025/4870847*312119004989^(2/11) 3178110000006159 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^10 3178110000006159 a001 27416783093578725/86267571272 3178110000006159 a001 12586269025/4870847*28143753123^(1/5) 3178110000006159 a001 987/4870846*10749957122^(11/12) 3178110000006159 a001 311187/10525900321*45537549124^(16/17) 3178110000006159 a001 53316291173/4870847*17393796001^(1/7) 3178110000006159 a001 311187/10525900321*14662949395604^(16/21) 3178110000006159 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^8 3178110000006159 a001 32951280099/4870847*23725150497407^(1/8) 3178110000006159 a001 32951280099/4870847*505019158607^(1/7) 3178110000006159 a001 311187/10525900321*192900153618^(8/9) 3178110000006159 a001 32951280099/4870847*73681302247^(2/13) 3178110000006159 a001 86267571272/4870847*45537549124^(2/17) 3178110000006159 a001 726103/64300051206*312119004989^(10/11) 3178110000006159 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^6 3178110000006159 a001 365435296162/4870847*45537549124^(1/17) 3178110000006159 a001 726103/64300051206*3461452808002^(5/6) 3178110000006159 a001 187917426909939048/591286729879 3178110000006159 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^4 3178110000006159 a001 225851433717/4870847*23725150497407^(1/16) 3178110000006159 a001 1288005205275994611/4052739537881 3178110000006159 a001 2178309/2139295485799*3461452808002^(11/12) 3178110000006159 a001 139583862445/4870847*312119004989^(1/11) 3178110000006159 a001 2178309/312119004989*14662949395604^(17/21) 3178110000006159 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^5 3178110000006159 a001 2178309/312119004989*192900153618^(17/18) 3178110000006159 a001 116139356908766457/365435296162 3178110000006159 a001 53316291173/4870847*14662949395604^(1/9) 3178110000006159 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^7 3178110000006159 a001 2178309/119218851371*505019158607^(7/8) 3178110000006159 a001 139583862445/4870847*28143753123^(1/10) 3178110000006159 a001 591286729879/4870847*10749957122^(1/24) 3178110000006159 a001 20365011074/4870847*45537549124^(3/17) 3178110000006159 a001 44361286907593866/139583862445 3178110000006159 a001 20365011074/4870847*817138163596^(3/19) 3178110000006159 a001 20365011074/4870847*14662949395604^(1/7) 3178110000006159 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^9 3178110000006159 a001 20365011074/4870847*192900153618^(1/6) 3178110000006159 a001 12586269025/4870847*10749957122^(5/24) 3178110000006159 a001 365435296162/4870847*10749957122^(1/16) 3178110000006159 a001 225851433717/4870847*10749957122^(1/12) 3178110000006159 a001 86267571272/4870847*10749957122^(1/8) 3178110000006159 a001 32951280099/4870847*10749957122^(1/6) 3178110000006159 a001 20365011074/4870847*10749957122^(3/16) 3178110000006159 a001 591286729879/4870847*4106118243^(1/23) 3178110000006159 a001 2178309/17393796001*45537549124^(15/17) 3178110000006159 a001 16944503814015141/53316291173 3178110000006159 a001 2178309/17393796001*312119004989^(9/11) 3178110000006159 a001 2178309/17393796001*14662949395604^(5/7) 3178110000006159 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^11 3178110000006159 a001 2178309/17393796001*192900153618^(5/6) 3178110000006159 a001 2178309/17393796001*28143753123^(9/10) 3178110000006159 a001 225851433717/4870847*4106118243^(2/23) 3178110000006159 a001 4807526976/4870847*4106118243^(6/23) 3178110000006159 a001 726103/9381251041*10749957122^(23/24) 3178110000006159 a001 86267571272/4870847*4106118243^(3/23) 3178110000006159 a001 32951280099/4870847*4106118243^(4/23) 3178110000006159 a001 2178309/17393796001*10749957122^(15/16) 3178110000006159 a001 12586269025/4870847*4106118243^(5/23) 3178110000006159 a001 591286729879/4870847*1568397607^(1/22) 3178110000006159 a001 6472224534451557/20365011074 3178110000006159 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^13 3178110000006159 a001 2971215073/4870847*73681302247^(1/4) 3178110000006159 a001 225851433717/4870847*1568397607^(1/11) 3178110000006159 a001 987/4870846*4106118243^(22/23) 3178110000006159 a001 86267571272/4870847*1568397607^(3/22) 3178110000006159 a001 1836311903/4870847*1568397607^(7/22) 3178110000006159 a001 32951280099/4870847*1568397607^(2/11) 3178110000006159 a001 12586269025/4870847*1568397607^(5/22) 3178110000006159 a001 4807526976/4870847*1568397607^(3/11) 3178110000006159 a001 1134903170/4870847*2537720636^(1/3) 3178110000006159 a001 7778742049/4870847*1568397607^(1/4) 3178110000006159 a001 591286729879/4870847*599074578^(1/21) 3178110000006159 a001 2472169789339530/7778742049 3178110000006159 a001 1134903170/4870847*45537549124^(5/17) 3178110000006159 a001 1134903170/4870847*312119004989^(3/11) 3178110000006159 a001 1134903170/4870847*14662949395604^(5/21) 3178110000006159 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^15 3178110000006159 a001 1134903170/4870847*192900153618^(5/18) 3178110000006159 a001 1134903170/4870847*28143753123^(3/10) 3178110000006159 a001 1134903170/4870847*10749957122^(5/16) 3178110000006159 a001 365435296162/4870847*599074578^(1/14) 3178110000006159 a001 225851433717/4870847*599074578^(2/21) 3178110000006159 a001 726103/1368706081*1568397607^(21/22) 3178110000006159 a001 86267571272/4870847*599074578^(1/7) 3178110000006159 a001 53316291173/4870847*599074578^(1/6) 3178110000006159 a001 32951280099/4870847*599074578^(4/21) 3178110000006159 a001 20365011074/4870847*599074578^(3/14) 3178110000006159 a001 701408733/4870847*599074578^(8/21) 3178110000006159 a001 12586269025/4870847*599074578^(5/21) 3178110000006159 a001 4807526976/4870847*599074578^(2/7) 3178110000006159 a001 1836311903/4870847*599074578^(1/3) 3178110000006159 a001 2178309/969323029*2537720636^(13/15) 3178110000006159 a001 591286729879/4870847*228826127^(1/20) 3178110000006159 a001 944284833567033/2971215073 3178110000006159 a001 2178309/969323029*45537549124^(13/17) 3178110000006159 a001 433494437/4870847*45537549124^(1/3) 3178110000006159 a001 2178309/969323029*14662949395604^(13/21) 3178110000006159 a001 433494437/4870847*(1/2+1/2*5^(1/2))^17 3178110000006159 a001 2178309/969323029*192900153618^(13/18) 3178110000006159 a001 2178309/969323029*73681302247^(3/4) 3178110000006159 a001 2178309/969323029*10749957122^(13/16) 3178110000006159 a001 1134903170/4870847*599074578^(5/14) 3178110000006159 a001 225851433717/4870847*228826127^(1/10) 3178110000006159 a001 311187/224056801*599074578^(20/21) 3178110000006159 a001 139583862445/4870847*228826127^(1/8) 3178110000006159 a001 86267571272/4870847*228826127^(3/20) 3178110000006159 a001 2178309/969323029*599074578^(13/14) 3178110000006159 a001 32951280099/4870847*228826127^(1/5) 3178110000006159 a001 12586269025/4870847*228826127^(1/4) 3178110000006159 a001 4807526976/4870847*228826127^(3/10) 3178110000006159 a001 267914296/4870847*228826127^(9/20) 3178110000006159 a001 1836311903/4870847*228826127^(7/20) 3178110000006159 a001 591286729879/4870847*87403803^(1/19) 3178110000006159 a001 360684711361569/1134903170 3178110000006159 a001 701408733/4870847*228826127^(2/5) 3178110000006159 a001 165580141/4870847*817138163596^(1/3) 3178110000006159 a001 165580141/4870847*(1/2+1/2*5^(1/2))^19 3178110000006159 a001 1134903170/4870847*228826127^(3/8) 3178110000006159 a001 225851433717/4870847*87403803^(2/19) 3178110000006159 a001 726103/199691526*228826127^(19/20) 3178110000006159 a001 86267571272/4870847*87403803^(3/19) 3178110000006159 a001 63245986/4870847*141422324^(7/13) 3178110000006159 a001 32951280099/4870847*87403803^(4/19) 3178110000006159 a001 12586269025/4870847*87403803^(5/19) 3178110000006159 a001 4807526976/4870847*87403803^(6/19) 3178110000006159 a001 1836311903/4870847*87403803^(7/19) 3178110000006159 a001 137769300517674/433494437 3178110000006159 a001 102334155/4870847*87403803^(10/19) 3178110000006159 a001 591286729879/4870847*33385282^(1/18) 3178110000006159 a001 2178309/141422324*2537720636^(7/9) 3178110000006159 a001 63245986/4870847*2537720636^(7/15) 3178110000006159 a001 2178309/141422324*17393796001^(5/7) 3178110000006159 a001 63245986/4870847*17393796001^(3/7) 3178110000006159 a001 63245986/4870847*45537549124^(7/17) 3178110000006159 a001 2178309/141422324*312119004989^(7/11) 3178110000006159 a001 2178309/141422324*14662949395604^(5/9) 3178110000006159 a001 63245986/4870847*(1/2+1/2*5^(1/2))^21 3178110000006159 a001 2178309/141422324*505019158607^(5/8) 3178110000006159 a001 63245986/4870847*192900153618^(7/18) 3178110000006159 a001 2178309/141422324*28143753123^(7/10) 3178110000006159 a001 63245986/4870847*10749957122^(7/16) 3178110000006159 a001 63245986/4870847*599074578^(1/2) 3178110000006159 a001 2178309/141422324*599074578^(5/6) 3178110000006159 a001 701408733/4870847*87403803^(8/19) 3178110000006159 a001 267914296/4870847*87403803^(9/19) 3178110000006159 a001 2178309/141422324*228826127^(7/8) 3178110000006159 a001 165580141/4870847*87403803^(1/2) 3178110000006159 a001 365435296162/4870847*33385282^(1/12) 3178110000006159 a001 225851433717/4870847*33385282^(1/9) 3178110000006159 a001 46347/4868641*87403803^(18/19) 3178110000006159 a001 86267571272/4870847*33385282^(1/6) 3178110000006159 a001 32951280099/4870847*33385282^(2/9) 3178110000006159 a001 20365011074/4870847*33385282^(1/4) 3178110000006159 a001 12586269025/4870847*33385282^(5/18) 3178110000006160 a001 4807526976/4870847*33385282^(1/3) 3178110000006160 a001 2178309/54018521*141422324^(11/13) 3178110000006160 a001 52623190191453/165580141 3178110000006160 a001 2178309/54018521*2537720636^(11/15) 3178110000006160 a001 2178309/54018521*45537549124^(11/17) 3178110000006160 a001 2178309/54018521*312119004989^(3/5) 3178110000006160 a001 2178309/54018521*14662949395604^(11/21) 3178110000006160 a001 24157817/4870847*(1/2+1/2*5^(1/2))^23 3178110000006160 a001 2178309/54018521*192900153618^(11/18) 3178110000006160 a001 2178309/54018521*10749957122^(11/16) 3178110000006160 a001 24157817/4870847*4106118243^(1/2) 3178110000006160 a001 2178309/54018521*1568397607^(3/4) 3178110000006160 a001 2178309/54018521*599074578^(11/14) 3178110000006160 a001 1836311903/4870847*33385282^(7/18) 3178110000006160 a001 591286729879/4870847*12752043^(1/17) 3178110000006160 a001 1134903170/4870847*33385282^(5/12) 3178110000006160 a001 701408733/4870847*33385282^(4/9) 3178110000006160 a001 39088169/4870847*33385282^(11/18) 3178110000006160 a001 267914296/4870847*33385282^(1/2) 3178110000006160 a001 102334155/4870847*33385282^(5/9) 3178110000006160 a001 63245986/4870847*33385282^(7/12) 3178110000006161 a001 9227465/4870847*20633239^(5/7) 3178110000006161 a001 726103/29134601*33385282^(17/18) 3178110000006161 a001 225851433717/4870847*12752043^(2/17) 3178110000006162 a001 86267571272/4870847*12752043^(3/17) 3178110000006162 a001 2178309/54018521*33385282^(11/12) 3178110000006163 a001 32951280099/4870847*12752043^(4/17) 3178110000006164 a001 12586269025/4870847*12752043^(5/17) 3178110000006165 a001 4807526976/4870847*12752043^(6/17) 3178110000006166 a001 20100270056685/63245986 3178110000006166 a001 9227465/4870847*2537720636^(5/9) 3178110000006166 a001 9227465/4870847*312119004989^(5/11) 3178110000006166 a001 2178309/20633239*(1/2+1/2*5^(1/2))^31 3178110000006166 a001 9227465/4870847*(1/2+1/2*5^(1/2))^25 3178110000006166 a001 2178309/20633239*9062201101803^(1/2) 3178110000006166 a001 9227465/4870847*3461452808002^(5/12) 3178110000006166 a001 9227465/4870847*28143753123^(1/2) 3178110000006166 a001 9227465/4870847*228826127^(5/8) 3178110000006167 a001 1836311903/4870847*12752043^(7/17) 3178110000006167 a001 591286729879/4870847*4870847^(1/16) 3178110000006168 a001 701408733/4870847*12752043^(8/17) 3178110000006168 a001 3524578/4870847*7881196^(9/11) 3178110000006168 a001 433494437/4870847*12752043^(1/2) 3178110000006169 a001 267914296/4870847*12752043^(9/17) 3178110000006170 a001 14930352/4870847*12752043^(12/17) 3178110000006170 a001 102334155/4870847*12752043^(10/17) 3178110000006171 a001 39088169/4870847*12752043^(11/17) 3178110000006174 a001 311187/4769326*12752043^(16/17) 3178110000006175 a001 225851433717/4870847*4870847^(1/8) 3178110000006184 a001 86267571272/4870847*4870847^(3/16) 3178110000006191 a001 1762289/930249*1860498^(5/6) 3178110000006192 a001 32951280099/4870847*4870847^(1/4) 3178110000006200 a001 12586269025/4870847*4870847^(5/16) 3178110000006209 a001 7677619978602/24157817 3178110000006209 a001 4807526976/4870847*4870847^(3/8) 3178110000006210 a001 3524578/4870847*141422324^(9/13) 3178110000006210 a001 3524578/4870847*2537720636^(3/5) 3178110000006210 a001 3524578/4870847*45537549124^(9/17) 3178110000006210 a001 3524578/4870847*14662949395604^(3/7) 3178110000006210 a001 2178309/7881196*(1/2+1/2*5^(1/2))^29 3178110000006210 a001 3524578/4870847*(1/2+1/2*5^(1/2))^27 3178110000006210 a001 2178309/7881196*1322157322203^(1/2) 3178110000006210 a001 3524578/4870847*192900153618^(1/2) 3178110000006210 a001 3524578/4870847*10749957122^(9/16) 3178110000006210 a001 3524578/4870847*599074578^(9/14) 3178110000006212 a001 3524578/4870847*33385282^(3/4) 3178110000006217 a001 1836311903/4870847*4870847^(7/16) 3178110000006220 a001 591286729879/4870847*1860498^(1/15) 3178110000006224 a001 5702887/33385282*7881196^(10/11) 3178110000006226 a001 701408733/4870847*4870847^(1/2) 3178110000006234 a001 267914296/4870847*4870847^(9/16) 3178110000006235 a001 39088169/12752043*7881196^(8/11) 3178110000006239 a001 9227465/12752043*7881196^(9/11) 3178110000006239 a001 34111385/4250681*7881196^(2/3) 3178110000006240 a001 165580141/12752043*7881196^(7/11) 3178110000006241 a001 1/1762289*(1/2+1/2*5^(1/2))^61 3178110000006242 a001 102334155/4870847*4870847^(5/8) 3178110000006243 a001 4976784/29134601*7881196^(10/11) 3178110000006245 a001 233802911/4250681*7881196^(6/11) 3178110000006246 a001 39088169/228826127*7881196^(10/11) 3178110000006246 a001 34111385/199691526*7881196^(10/11) 3178110000006246 a001 267914296/1568397607*7881196^(10/11) 3178110000006246 a001 233802911/1368706081*7881196^(10/11) 3178110000006246 a001 1836311903/10749957122*7881196^(10/11) 3178110000006246 a001 1602508992/9381251041*7881196^(10/11) 3178110000006246 a001 12586269025/73681302247*7881196^(10/11) 3178110000006246 a001 10983760033/64300051206*7881196^(10/11) 3178110000006246 a001 86267571272/505019158607*7881196^(10/11) 3178110000006246 a001 75283811239/440719107401*7881196^(10/11) 3178110000006246 a001 2504730781961/14662949395604*7881196^(10/11) 3178110000006246 a001 139583862445/817138163596*7881196^(10/11) 3178110000006246 a001 53316291173/312119004989*7881196^(10/11) 3178110000006246 a001 20365011074/119218851371*7881196^(10/11) 3178110000006246 a001 7778742049/45537549124*7881196^(10/11) 3178110000006246 a001 2971215073/17393796001*7881196^(10/11) 3178110000006246 a001 1134903170/6643838879*7881196^(10/11) 3178110000006246 a001 433494437/2537720636*7881196^(10/11) 3178110000006246 a001 165580141/969323029*7881196^(10/11) 3178110000006246 a001 63245986/370248451*7881196^(10/11) 3178110000006247 a001 24157817/141422324*7881196^(10/11) 3178110000006247 a001 5702887/12752043*20633239^(4/5) 3178110000006248 a001 5702887/4870847*4870847^(13/16) 3178110000006249 a001 24157817/33385282*7881196^(9/11) 3178110000006250 a001 2971215073/12752043*7881196^(5/11) 3178110000006250 a001 39088169/4870847*4870847^(11/16) 3178110000006250 a001 365435296162/4870847*1860498^(1/10) 3178110000006250 a001 63245986/87403803*7881196^(9/11) 3178110000006251 a001 165580141/228826127*7881196^(9/11) 3178110000006251 a001 433494437/599074578*7881196^(9/11) 3178110000006251 a001 1134903170/1568397607*7881196^(9/11) 3178110000006251 a001 2971215073/4106118243*7881196^(9/11) 3178110000006251 a001 7778742049/10749957122*7881196^(9/11) 3178110000006251 a001 20365011074/28143753123*7881196^(9/11) 3178110000006251 a001 53316291173/73681302247*7881196^(9/11) 3178110000006251 a001 139583862445/192900153618*7881196^(9/11) 3178110000006251 a001 10610209857723/14662949395604*7881196^(9/11) 3178110000006251 a001 591286729879/817138163596*7881196^(9/11) 3178110000006251 a001 225851433717/312119004989*7881196^(9/11) 3178110000006251 a001 86267571272/119218851371*7881196^(9/11) 3178110000006251 a001 32951280099/45537549124*7881196^(9/11) 3178110000006251 a001 12586269025/17393796001*7881196^(9/11) 3178110000006251 a001 4807526976/6643838879*7881196^(9/11) 3178110000006251 a001 1836311903/2537720636*7881196^(9/11) 3178110000006251 a001 701408733/969323029*7881196^(9/11) 3178110000006251 a001 267914296/370248451*7881196^(9/11) 3178110000006251 a001 102334155/141422324*7881196^(9/11) 3178110000006251 a001 39088169/54018521*7881196^(9/11) 3178110000006252 a001 14619165/4769326*7881196^(8/11) 3178110000006253 a001 5702887/12752043*17393796001^(4/7) 3178110000006253 a001 5702887/12752043*14662949395604^(4/9) 3178110000006253 a001 5702887/12752043*(1/2+1/2*5^(1/2))^28 3178110000006253 a001 5702887/12752043*73681302247^(7/13) 3178110000006253 a001 5702887/12752043*10749957122^(7/12) 3178110000006253 a001 5702887/12752043*4106118243^(14/23) 3178110000006253 a001 5702887/12752043*1568397607^(7/11) 3178110000006253 a001 5702887/12752043*599074578^(2/3) 3178110000006254 a001 5702887/12752043*228826127^(7/10) 3178110000006254 a001 32522920134769/102334155 3178110000006254 a001 5702887/12752043*87403803^(14/19) 3178110000006254 a001 12586269025/12752043*7881196^(4/11) 3178110000006255 a001 9227465/54018521*7881196^(10/11) 3178110000006255 a001 267914296/87403803*7881196^(8/11) 3178110000006255 a001 701408733/228826127*7881196^(8/11) 3178110000006255 a001 14930352/20633239*7881196^(9/11) 3178110000006255 a001 1836311903/599074578*7881196^(8/11) 3178110000006255 a001 686789568/224056801*7881196^(8/11) 3178110000006255 a001 12586269025/4106118243*7881196^(8/11) 3178110000006255 a001 32951280099/10749957122*7881196^(8/11) 3178110000006255 a001 86267571272/28143753123*7881196^(8/11) 3178110000006255 a001 32264490531/10525900321*7881196^(8/11) 3178110000006255 a001 591286729879/192900153618*7881196^(8/11) 3178110000006255 a001 1548008755920/505019158607*7881196^(8/11) 3178110000006255 a001 1515744265389/494493258286*7881196^(8/11) 3178110000006255 a001 2504730781961/817138163596*7881196^(8/11) 3178110000006255 a001 956722026041/312119004989*7881196^(8/11) 3178110000006255 a001 365435296162/119218851371*7881196^(8/11) 3178110000006255 a001 139583862445/45537549124*7881196^(8/11) 3178110000006255 a001 53316291173/17393796001*7881196^(8/11) 3178110000006255 a001 20365011074/6643838879*7881196^(8/11) 3178110000006255 a001 7778742049/2537720636*7881196^(8/11) 3178110000006255 a001 2971215073/969323029*7881196^(8/11) 3178110000006255 a001 1134903170/370248451*7881196^(8/11) 3178110000006255 a001 433494437/141422324*7881196^(8/11) 3178110000006256 a001 133957148/16692641*7881196^(2/3) 3178110000006256 a001 5702887/12752043*33385282^(7/9) 3178110000006256 a001 20365011074/12752043*7881196^(1/3) 3178110000006256 a001 14930352/4870847*4870847^(3/4) 3178110000006256 a001 165580141/54018521*7881196^(8/11) 3178110000006257 a001 433494437/33385282*7881196^(7/11) 3178110000006258 a001 233802911/29134601*7881196^(2/3) 3178110000006258 a001 1836311903/228826127*7881196^(2/3) 3178110000006258 a001 267084832/33281921*7881196^(2/3) 3178110000006258 a001 12586269025/1568397607*7881196^(2/3) 3178110000006258 a001 10983760033/1368706081*7881196^(2/3) 3178110000006258 a001 43133785636/5374978561*7881196^(2/3) 3178110000006258 a001 75283811239/9381251041*7881196^(2/3) 3178110000006258 a001 591286729879/73681302247*7881196^(2/3) 3178110000006258 a001 86000486440/10716675201*7881196^(2/3) 3178110000006258 a001 4052739537881/505019158607*7881196^(2/3) 3178110000006258 a001 3536736619241/440719107401*7881196^(2/3) 3178110000006258 a001 3278735159921/408569081798*7881196^(2/3) 3178110000006258 a001 2504730781961/312119004989*7881196^(2/3) 3178110000006258 a001 956722026041/119218851371*7881196^(2/3) 3178110000006258 a001 182717648081/22768774562*7881196^(2/3) 3178110000006258 a001 139583862445/17393796001*7881196^(2/3) 3178110000006258 a001 53316291173/6643838879*7881196^(2/3) 3178110000006258 a001 10182505537/1268860318*7881196^(2/3) 3178110000006258 a001 7778742049/969323029*7881196^(2/3) 3178110000006258 a001 2971215073/370248451*7881196^(2/3) 3178110000006259 a001 567451585/70711162*7881196^(2/3) 3178110000006259 a001 53316291173/12752043*7881196^(3/11) 3178110000006260 a001 433494437/54018521*7881196^(2/3) 3178110000006260 a001 1134903170/87403803*7881196^(7/11) 3178110000006260 a001 2971215073/228826127*7881196^(7/11) 3178110000006260 a001 7778742049/599074578*7881196^(7/11) 3178110000006260 a001 20365011074/1568397607*7881196^(7/11) 3178110000006260 a001 53316291173/4106118243*7881196^(7/11) 3178110000006260 a001 139583862445/10749957122*7881196^(7/11) 3178110000006260 a001 365435296162/28143753123*7881196^(7/11) 3178110000006260 a001 956722026041/73681302247*7881196^(7/11) 3178110000006260 a001 2504730781961/192900153618*7881196^(7/11) 3178110000006260 a001 10610209857723/817138163596*7881196^(7/11) 3178110000006260 a001 4052739537881/312119004989*7881196^(7/11) 3178110000006260 a001 1548008755920/119218851371*7881196^(7/11) 3178110000006260 a001 591286729879/45537549124*7881196^(7/11) 3178110000006260 a001 7787980473/599786069*7881196^(7/11) 3178110000006260 a001 86267571272/6643838879*7881196^(7/11) 3178110000006260 a001 32951280099/2537720636*7881196^(7/11) 3178110000006260 a001 12586269025/969323029*7881196^(7/11) 3178110000006260 a001 4807526976/370248451*7881196^(7/11) 3178110000006260 a001 1836311903/141422324*7881196^(7/11) 3178110000006261 a001 701408733/54018521*7881196^(7/11) 3178110000006262 a001 1836311903/33385282*7881196^(6/11) 3178110000006263 a001 63245986/20633239*7881196^(8/11) 3178110000006264 a001 75283811239/4250681*7881196^(2/11) 3178110000006264 a001 5702887/33385282*20633239^(6/7) 3178110000006264 a001 1602508992/29134601*7881196^(6/11) 3178110000006265 a001 12586269025/228826127*7881196^(6/11) 3178110000006265 a001 10983760033/199691526*7881196^(6/11) 3178110000006265 a001 726103/4250681*4870847^(15/16) 3178110000006265 a001 86267571272/1568397607*7881196^(6/11) 3178110000006265 a001 75283811239/1368706081*7881196^(6/11) 3178110000006265 a001 591286729879/10749957122*7881196^(6/11) 3178110000006265 a001 12585437040/228811001*7881196^(6/11) 3178110000006265 a001 4052739537881/73681302247*7881196^(6/11) 3178110000006265 a001 3536736619241/64300051206*7881196^(6/11) 3178110000006265 a001 6557470319842/119218851371*7881196^(6/11) 3178110000006265 a001 2504730781961/45537549124*7881196^(6/11) 3178110000006265 a001 956722026041/17393796001*7881196^(6/11) 3178110000006265 a001 365435296162/6643838879*7881196^(6/11) 3178110000006265 a001 139583862445/2537720636*7881196^(6/11) 3178110000006265 a001 53316291173/969323029*7881196^(6/11) 3178110000006265 a001 20365011074/370248451*7881196^(6/11) 3178110000006265 a001 7778742049/141422324*7881196^(6/11) 3178110000006266 a001 2971215073/54018521*7881196^(6/11) 3178110000006266 a001 165580141/20633239*7881196^(2/3) 3178110000006266 a001 7778742049/33385282*7881196^(5/11) 3178110000006267 a001 9238424/711491*7881196^(7/11) 3178110000006268 a001 956722026041/12752043*7881196^(1/11) 3178110000006269 a001 165580141/12752043*20633239^(3/5) 3178110000006269 a001 267914296/12752043*20633239^(4/7) 3178110000006269 a001 24157817/12752043*20633239^(5/7) 3178110000006269 a001 20365011074/87403803*7881196^(5/11) 3178110000006269 a001 53316291173/228826127*7881196^(5/11) 3178110000006269 a001 139583862445/599074578*7881196^(5/11) 3178110000006269 a001 365435296162/1568397607*7881196^(5/11) 3178110000006269 a001 956722026041/4106118243*7881196^(5/11) 3178110000006269 a001 2504730781961/10749957122*7881196^(5/11) 3178110000006269 a001 6557470319842/28143753123*7881196^(5/11) 3178110000006269 a001 10610209857723/45537549124*7881196^(5/11) 3178110000006269 a001 4052739537881/17393796001*7881196^(5/11) 3178110000006269 a001 1548008755920/6643838879*7881196^(5/11) 3178110000006269 a001 591286729879/2537720636*7881196^(5/11) 3178110000006269 a001 225851433717/969323029*7881196^(5/11) 3178110000006269 a001 86267571272/370248451*7881196^(5/11) 3178110000006269 a001 63246219/271444*7881196^(5/11) 3178110000006270 a001 5702887/12752043*12752043^(14/17) 3178110000006270 a001 2971215073/12752043*20633239^(3/7) 3178110000006270 a001 1602508992/4250681*20633239^(2/5) 3178110000006270 a001 5702887/33385282*141422324^(10/13) 3178110000006270 a001 4976784/4250681*141422324^(2/3) 3178110000006270 a001 5702887/33385282*2537720636^(2/3) 3178110000006270 a001 5702887/33385282*45537549124^(10/17) 3178110000006270 a001 5702887/33385282*312119004989^(6/11) 3178110000006270 a001 5702887/33385282*14662949395604^(10/21) 3178110000006270 a001 5702887/33385282*(1/2+1/2*5^(1/2))^30 3178110000006270 a001 4976784/4250681*(1/2+1/2*5^(1/2))^26 3178110000006270 a001 5702887/33385282*192900153618^(5/9) 3178110000006270 a001 4976784/4250681*73681302247^(1/2) 3178110000006270 a001 5702887/33385282*28143753123^(3/5) 3178110000006270 a001 4976784/4250681*10749957122^(13/24) 3178110000006270 a001 5702887/33385282*10749957122^(5/8) 3178110000006270 a001 4976784/4250681*4106118243^(13/23) 3178110000006270 a001 5702887/33385282*4106118243^(15/23) 3178110000006270 a001 4976784/4250681*1568397607^(13/22) 3178110000006270 a001 5702887/33385282*1568397607^(15/22) 3178110000006270 a001 4976784/4250681*599074578^(13/21) 3178110000006270 a001 5702887/33385282*599074578^(5/7) 3178110000006270 a001 10643263790778/33489287 3178110000006270 a001 4976784/4250681*228826127^(13/20) 3178110000006270 a001 5702887/33385282*228826127^(3/4) 3178110000006270 a001 12586269025/54018521*7881196^(5/11) 3178110000006270 a001 4976784/4250681*87403803^(13/19) 3178110000006270 a001 5702887/33385282*87403803^(15/19) 3178110000006271 a001 10983760033/4250681*20633239^(2/7) 3178110000006271 a001 32951280099/33385282*7881196^(4/11) 3178110000006272 a001 139583862445/12752043*20633239^(1/5) 3178110000006272 a001 365435296162/12752043*20633239^(1/7) 3178110000006272 a001 1134903170/20633239*7881196^(6/11) 3178110000006272 a001 4976784/4250681*33385282^(13/18) 3178110000006272 a001 39088169/12752043*141422324^(8/13) 3178110000006273 a001 5702887/33385282*33385282^(5/6) 3178110000006273 a001 39088169/12752043*2537720636^(8/15) 3178110000006273 a001 39088169/12752043*45537549124^(8/17) 3178110000006273 a001 39088169/12752043*14662949395604^(8/21) 3178110000006273 a001 39088169/12752043*(1/2+1/2*5^(1/2))^24 3178110000006273 a001 5702887/87403803*23725150497407^(1/2) 3178110000006273 a001 39088169/12752043*192900153618^(4/9) 3178110000006273 a001 39088169/12752043*73681302247^(6/13) 3178110000006273 a001 5702887/87403803*73681302247^(8/13) 3178110000006273 a001 39088169/12752043*10749957122^(1/2) 3178110000006273 a001 5702887/87403803*10749957122^(2/3) 3178110000006273 a001 39088169/12752043*4106118243^(12/23) 3178110000006273 a001 5702887/87403803*4106118243^(16/23) 3178110000006273 a001 39088169/12752043*1568397607^(6/11) 3178110000006273 a001 5702887/87403803*1568397607^(8/11) 3178110000006273 a001 222915410843903/701408733 3178110000006273 a001 39088169/12752043*599074578^(4/7) 3178110000006273 a001 5702887/87403803*599074578^(16/21) 3178110000006273 a001 39088169/12752043*228826127^(3/5) 3178110000006273 a001 5702887/87403803*228826127^(4/5) 3178110000006273 a001 53316291173/33385282*7881196^(1/3) 3178110000006273 a001 5702887/599074578*141422324^(12/13) 3178110000006273 a001 39088169/12752043*87403803^(12/19) 3178110000006273 a001 233802911/4250681*141422324^(6/13) 3178110000006273 a001 5702887/87403803*87403803^(16/19) 3178110000006273 a001 165580141/12752043*141422324^(7/13) 3178110000006273 a001 2971215073/12752043*141422324^(5/13) 3178110000006273 a001 5702887/228826127*45537549124^(2/3) 3178110000006273 a001 34111385/4250681*312119004989^(2/5) 3178110000006273 a001 34111385/4250681*(1/2+1/2*5^(1/2))^22 3178110000006273 a001 34111385/4250681*10749957122^(11/24) 3178110000006273 a001 5702887/228826127*10749957122^(17/24) 3178110000006273 a001 34111385/4250681*4106118243^(11/23) 3178110000006273 a001 5702887/228826127*4106118243^(17/23) 3178110000006273 a001 583600122205485/1836311903 3178110000006273 a001 34111385/4250681*1568397607^(1/2) 3178110000006273 a001 5702887/228826127*1568397607^(17/22) 3178110000006273 a001 34111385/4250681*599074578^(11/21) 3178110000006273 a001 5702887/228826127*599074578^(17/21) 3178110000006273 a001 7778742049/12752043*141422324^(1/3) 3178110000006273 a001 12586269025/12752043*141422324^(4/13) 3178110000006273 a001 53316291173/12752043*141422324^(3/13) 3178110000006273 a001 34111385/4250681*228826127^(11/20) 3178110000006273 a001 75283811239/4250681*141422324^(2/13) 3178110000006273 a001 956722026041/12752043*141422324^(1/13) 3178110000006273 a001 5702887/599074578*2537720636^(4/5) 3178110000006273 a001 5702887/228826127*228826127^(17/20) 3178110000006273 a001 267914296/12752043*2537720636^(4/9) 3178110000006273 a001 5702887/599074578*45537549124^(12/17) 3178110000006273 a001 267914296/12752043*(1/2+1/2*5^(1/2))^20 3178110000006273 a001 267914296/12752043*23725150497407^(5/16) 3178110000006273 a001 267914296/12752043*505019158607^(5/14) 3178110000006273 a001 5702887/599074578*505019158607^(9/14) 3178110000006273 a001 5702887/599074578*192900153618^(2/3) 3178110000006273 a001 267914296/12752043*73681302247^(5/13) 3178110000006273 a001 5702887/599074578*73681302247^(9/13) 3178110000006273 a001 267914296/12752043*28143753123^(2/5) 3178110000006273 a001 267914296/12752043*10749957122^(5/12) 3178110000006273 a001 5702887/599074578*10749957122^(3/4) 3178110000006273 a001 190985619471569/600940872 3178110000006273 a001 267914296/12752043*4106118243^(10/23) 3178110000006273 a001 5702887/599074578*4106118243^(18/23) 3178110000006273 a001 267914296/12752043*1568397607^(5/11) 3178110000006273 a001 5702887/599074578*1568397607^(9/11) 3178110000006273 a001 267914296/12752043*599074578^(10/21) 3178110000006273 a001 233802911/4250681*2537720636^(2/5) 3178110000006273 a001 233802911/4250681*45537549124^(6/17) 3178110000006273 a001 5702887/1568397607*817138163596^(2/3) 3178110000006273 a001 233802911/4250681*14662949395604^(2/7) 3178110000006273 a001 233802911/4250681*(1/2+1/2*5^(1/2))^18 3178110000006273 a001 233802911/4250681*192900153618^(1/3) 3178110000006273 a001 4000054745112171/12586269025 3178110000006273 a001 233802911/4250681*10749957122^(3/8) 3178110000006273 a001 5702887/1568397607*10749957122^(19/24) 3178110000006273 a001 5702887/599074578*599074578^(6/7) 3178110000006273 a001 233802911/4250681*4106118243^(9/23) 3178110000006273 a001 5702887/1568397607*4106118243^(19/23) 3178110000006273 a001 233802911/4250681*1568397607^(9/22) 3178110000006273 a001 5702887/4106118243*2537720636^(8/9) 3178110000006273 a001 5702887/10749957122*2537720636^(14/15) 3178110000006273 a001 5702887/4106118243*312119004989^(8/11) 3178110000006273 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^16 3178110000006273 a001 1836311903/12752043*23725150497407^(1/4) 3178110000006273 a001 5702887/4106118243*23725150497407^(5/8) 3178110000006273 a001 1836311903/12752043*73681302247^(4/13) 3178110000006273 a001 5702887/4106118243*73681302247^(10/13) 3178110000006273 a001 10472279279563961/32951280099 3178110000006273 a001 5702887/4106118243*28143753123^(4/5) 3178110000006273 a001 1836311903/12752043*10749957122^(1/3) 3178110000006273 a001 5702887/1568397607*1568397607^(19/22) 3178110000006273 a001 5702887/4106118243*10749957122^(5/6) 3178110000006273 a001 12586269025/12752043*2537720636^(4/15) 3178110000006273 a001 1836311903/12752043*4106118243^(8/23) 3178110000006273 a001 10983760033/4250681*2537720636^(2/9) 3178110000006273 a001 53316291173/12752043*2537720636^(1/5) 3178110000006273 a001 2971215073/12752043*2537720636^(1/3) 3178110000006273 a001 75283811239/4250681*2537720636^(2/15) 3178110000006273 a001 365435296162/12752043*2537720636^(1/9) 3178110000006273 a001 5702887/10749957122*17393796001^(6/7) 3178110000006273 a001 956722026041/12752043*2537720636^(1/15) 3178110000006273 a001 1602508992/4250681*17393796001^(2/7) 3178110000006273 a001 5702887/10749957122*45537549124^(14/17) 3178110000006273 a001 1602508992/4250681*14662949395604^(2/9) 3178110000006273 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^14 3178110000006273 a001 1602508992/4250681*505019158607^(1/4) 3178110000006273 a001 5702887/10749957122*192900153618^(7/9) 3178110000006273 a001 3427097886697464/10783446409 3178110000006273 a001 5702887/4106118243*4106118243^(20/23) 3178110000006273 a001 1602508992/4250681*10749957122^(7/24) 3178110000006273 a001 12586269025/12752043*45537549124^(4/17) 3178110000006273 a001 5702887/28143753123*312119004989^(4/5) 3178110000006273 a001 12586269025/12752043*817138163596^(4/19) 3178110000006273 a001 12586269025/12752043*14662949395604^(4/21) 3178110000006273 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^12 3178110000006273 a001 12586269025/12752043*192900153618^(2/9) 3178110000006273 a001 12586269025/12752043*73681302247^(3/13) 3178110000006273 a001 5702887/28143753123*73681302247^(11/13) 3178110000006273 a001 5702887/10749957122*10749957122^(7/8) 3178110000006273 a001 5702887/192900153618*45537549124^(16/17) 3178110000006273 a001 139583862445/12752043*17393796001^(1/7) 3178110000006273 a001 10983760033/4250681*312119004989^(2/11) 3178110000006273 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^10 3178110000006273 a001 187917426909945813/591286729879 3178110000006273 a001 75283811239/4250681*45537549124^(2/17) 3178110000006273 a001 5702887/192900153618*14662949395604^(16/21) 3178110000006273 a001 86267571272/12752043*23725150497407^(1/8) 3178110000006273 a001 61496776341082783/193501094490 3178110000006273 a001 53316291173/12752043*45537549124^(3/17) 3178110000006273 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^6 3178110000006273 a001 1288005205276040979/4052739537881 3178110000006273 a001 3372041405099460673/10610209857723 3178110000006273 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^2 3178110000006273 a001 1042018099911709847/3278735159921 3178110000006273 a001 365435296162/12752043*(1/2+1/2*5^(1/2))^5 3178110000006273 a001 5702887/312119004989*14662949395604^(7/9) 3178110000006273 a001 139583862445/12752043*14662949395604^(1/9) 3178110000006273 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^7 3178110000006273 a001 5702887/312119004989*505019158607^(7/8) 3178110000006273 a001 5702887/817138163596*192900153618^(17/18) 3178110000006273 a001 1597/12752044*45537549124^(15/17) 3178110000006273 a001 10983760033/4250681*28143753123^(1/5) 3178110000006273 a001 53316291173/12752043*817138163596^(3/19) 3178110000006273 a001 304056783818716451/956722026041 3178110000006273 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^9 3178110000006273 a001 53316291173/12752043*192900153618^(1/6) 3178110000006273 a001 365435296162/12752043*28143753123^(1/10) 3178110000006273 a001 5702887/192900153618*73681302247^(12/13) 3178110000006273 a001 516002918640/4250681*10749957122^(1/24) 3178110000006273 a001 1597/12752044*312119004989^(9/11) 3178110000006273 a001 20365011074/12752043*312119004989^(1/5) 3178110000006273 a001 58069678454385319/182717648081 3178110000006273 a001 1597/12752044*14662949395604^(5/7) 3178110000006273 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^11 3178110000006273 a001 1597/12752044*192900153618^(5/6) 3178110000006273 a001 956722026041/12752043*10749957122^(1/16) 3178110000006273 a001 591286729879/12752043*10749957122^(1/12) 3178110000006273 a001 12586269025/12752043*10749957122^(1/4) 3178110000006273 a001 75283811239/4250681*10749957122^(1/8) 3178110000006273 a001 86267571272/12752043*10749957122^(1/6) 3178110000006273 a001 10983760033/4250681*10749957122^(5/24) 3178110000006273 a001 53316291173/12752043*10749957122^(3/16) 3178110000006273 a001 516002918640/4250681*4106118243^(1/23) 3178110000006273 a001 44361286907595463/139583862445 3178110000006273 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^13 3178110000006273 a001 7778742049/12752043*73681302247^(1/4) 3178110000006273 a001 591286729879/12752043*4106118243^(2/23) 3178110000006273 a001 5702887/28143753123*10749957122^(11/12) 3178110000006273 a001 75283811239/4250681*4106118243^(3/23) 3178110000006273 a001 5702887/73681302247*10749957122^(23/24) 3178110000006273 a001 1597/12752044*10749957122^(15/16) 3178110000006273 a001 1602508992/4250681*4106118243^(7/23) 3178110000006273 a001 86267571272/12752043*4106118243^(4/23) 3178110000006273 a001 10983760033/4250681*4106118243^(5/23) 3178110000006273 a001 12586269025/12752043*4106118243^(6/23) 3178110000006273 a001 516002918640/4250681*1568397607^(1/22) 3178110000006273 a001 5702887/2537720636*2537720636^(13/15) 3178110000006273 a001 2971215073/12752043*45537549124^(5/17) 3178110000006273 a001 16944503814015751/53316291173 3178110000006273 a001 2971215073/12752043*312119004989^(3/11) 3178110000006273 a001 2971215073/12752043*14662949395604^(5/21) 3178110000006273 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^15 3178110000006273 a001 2971215073/12752043*192900153618^(5/18) 3178110000006273 a001 2971215073/12752043*28143753123^(3/10) 3178110000006273 a001 2971215073/12752043*10749957122^(5/16) 3178110000006273 a001 591286729879/12752043*1568397607^(1/11) 3178110000006273 a001 5702887/10749957122*4106118243^(21/23) 3178110000006273 a001 75283811239/4250681*1568397607^(3/22) 3178110000006273 a001 5702887/28143753123*4106118243^(22/23) 3178110000006273 a001 86267571272/12752043*1568397607^(2/11) 3178110000006273 a001 1836311903/12752043*1568397607^(4/11) 3178110000006273 a001 10983760033/4250681*1568397607^(5/22) 3178110000006273 a001 20365011074/12752043*1568397607^(1/4) 3178110000006273 a001 12586269025/12752043*1568397607^(3/11) 3178110000006273 a001 1602508992/4250681*1568397607^(7/22) 3178110000006273 a001 516002918640/4250681*599074578^(1/21) 3178110000006273 a001 2026369610035/6376021 3178110000006273 a001 5702887/2537720636*45537549124^(13/17) 3178110000006273 a001 1134903170/12752043*45537549124^(1/3) 3178110000006273 a001 5702887/2537720636*14662949395604^(13/21) 3178110000006273 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^17 3178110000006273 a001 5702887/2537720636*192900153618^(13/18) 3178110000006273 a001 5702887/2537720636*73681302247^(3/4) 3178110000006273 a001 5702887/2537720636*10749957122^(13/16) 3178110000006273 a001 956722026041/12752043*599074578^(1/14) 3178110000006273 a001 591286729879/12752043*599074578^(2/21) 3178110000006273 a001 5702887/4106118243*1568397607^(10/11) 3178110000006273 a001 5702887/10749957122*1568397607^(21/22) 3178110000006273 a001 75283811239/4250681*599074578^(1/7) 3178110000006273 a001 139583862445/12752043*599074578^(1/6) 3178110000006273 a001 86267571272/12752043*599074578^(4/21) 3178110000006273 a001 53316291173/12752043*599074578^(3/14) 3178110000006273 a001 10983760033/4250681*599074578^(5/21) 3178110000006273 a001 233802911/4250681*599074578^(3/7) 3178110000006273 a001 12586269025/12752043*599074578^(2/7) 3178110000006273 a001 1602508992/4250681*599074578^(1/3) 3178110000006273 a001 516002918640/4250681*228826127^(1/20) 3178110000006273 a001 1836311903/12752043*599074578^(8/21) 3178110000006273 a001 2971215073/12752043*599074578^(5/14) 3178110000006273 a001 2472169789339619/7778742049 3178110000006273 a001 433494437/12752043*817138163596^(1/3) 3178110000006273 a001 433494437/12752043*(1/2+1/2*5^(1/2))^19 3178110000006273 a001 591286729879/12752043*228826127^(1/10) 3178110000006273 a001 5702887/1568397607*599074578^(19/21) 3178110000006273 a001 365435296162/12752043*228826127^(1/8) 3178110000006273 a001 5702887/4106118243*599074578^(20/21) 3178110000006273 a001 5702887/2537720636*599074578^(13/14) 3178110000006273 a001 75283811239/4250681*228826127^(3/20) 3178110000006273 a001 86267571272/12752043*228826127^(1/5) 3178110000006273 a001 10983760033/4250681*228826127^(1/4) 3178110000006273 a001 12586269025/12752043*228826127^(3/10) 3178110000006273 a001 1602508992/4250681*228826127^(7/20) 3178110000006273 a001 267914296/12752043*228826127^(1/2) 3178110000006273 a001 516002918640/4250681*87403803^(1/19) 3178110000006273 a001 5702887/370248451*2537720636^(7/9) 3178110000006273 a001 2971215073/12752043*228826127^(3/8) 3178110000006273 a001 165580141/12752043*2537720636^(7/15) 3178110000006273 a001 944284833567067/2971215073 3178110000006273 a001 5702887/370248451*17393796001^(5/7) 3178110000006273 a001 165580141/12752043*17393796001^(3/7) 3178110000006273 a001 165580141/12752043*45537549124^(7/17) 3178110000006273 a001 5702887/370248451*312119004989^(7/11) 3178110000006273 a001 5702887/370248451*14662949395604^(5/9) 3178110000006273 a001 165580141/12752043*14662949395604^(1/3) 3178110000006273 a001 165580141/12752043*(1/2+1/2*5^(1/2))^21 3178110000006273 a001 165580141/12752043*192900153618^(7/18) 3178110000006273 a001 5702887/370248451*28143753123^(7/10) 3178110000006273 a001 165580141/12752043*10749957122^(7/16) 3178110000006273 a001 1836311903/12752043*228826127^(2/5) 3178110000006273 a001 5702887/141422324*141422324^(11/13) 3178110000006273 a001 233802911/4250681*228826127^(9/20) 3178110000006273 a001 165580141/12752043*599074578^(1/2) 3178110000006273 a001 5702887/370248451*599074578^(5/6) 3178110000006273 a001 591286729879/12752043*87403803^(2/19) 3178110000006273 a001 5702887/599074578*228826127^(9/10) 3178110000006273 a001 5702887/1568397607*228826127^(19/20) 3178110000006273 a001 75283811239/4250681*87403803^(3/19) 3178110000006273 a001 5702887/370248451*228826127^(7/8) 3178110000006273 a001 86267571272/12752043*87403803^(4/19) 3178110000006273 a001 10983760033/4250681*87403803^(5/19) 3178110000006273 a001 12586269025/12752043*87403803^(6/19) 3178110000006273 a001 1602508992/4250681*87403803^(7/19) 3178110000006273 a001 180342355680791/567451585 3178110000006273 a001 516002918640/4250681*33385282^(1/18) 3178110000006273 a001 5702887/141422324*2537720636^(11/15) 3178110000006273 a001 5702887/141422324*45537549124^(11/17) 3178110000006273 a001 5702887/141422324*312119004989^(3/5) 3178110000006273 a001 5702887/141422324*14662949395604^(11/21) 3178110000006273 a001 63245986/12752043*(1/2+1/2*5^(1/2))^23 3178110000006273 a001 5702887/141422324*192900153618^(11/18) 3178110000006273 a001 5702887/141422324*10749957122^(11/16) 3178110000006273 a001 63245986/12752043*4106118243^(1/2) 3178110000006273 a001 5702887/141422324*1568397607^(3/4) 3178110000006273 a001 5702887/141422324*599074578^(11/14) 3178110000006273 a001 1836311903/12752043*87403803^(8/19) 3178110000006273 a001 34111385/4250681*87403803^(11/19) 3178110000006273 a001 233802911/4250681*87403803^(9/19) 3178110000006273 a001 267914296/12752043*87403803^(10/19) 3178110000006273 a001 433494437/12752043*87403803^(1/2) 3178110000006273 a001 956722026041/12752043*33385282^(1/12) 3178110000006273 a001 5702887/228826127*87403803^(17/19) 3178110000006273 a001 591286729879/12752043*33385282^(1/9) 3178110000006273 a001 5702887/599074578*87403803^(18/19) 3178110000006273 a001 43133785636/930249*710647^(1/7) 3178110000006273 a001 75283811239/4250681*33385282^(1/6) 3178110000006274 a001 86267571272/87403803*7881196^(4/11) 3178110000006274 a001 86267571272/12752043*33385282^(2/9) 3178110000006274 a001 53316291173/12752043*33385282^(1/4) 3178110000006274 a001 10983760033/4250681*33385282^(5/18) 3178110000006274 a001 225851433717/228826127*7881196^(4/11) 3178110000006274 a001 591286729879/599074578*7881196^(4/11) 3178110000006274 a001 1548008755920/1568397607*7881196^(4/11) 3178110000006274 a001 4052739537881/4106118243*7881196^(4/11) 3178110000006274 a001 4807525989/4870846*7881196^(4/11) 3178110000006274 a001 6557470319842/6643838879*7881196^(4/11) 3178110000006274 a001 2504730781961/2537720636*7881196^(4/11) 3178110000006274 a001 956722026041/969323029*7881196^(4/11) 3178110000006274 a001 12586269025/12752043*33385282^(1/3) 3178110000006274 a001 365435296162/370248451*7881196^(4/11) 3178110000006274 a001 137769300517679/433494437 3178110000006274 a001 24157817/12752043*2537720636^(5/9) 3178110000006274 a001 24157817/12752043*312119004989^(5/11) 3178110000006274 a001 24157817/12752043*(1/2+1/2*5^(1/2))^25 3178110000006274 a001 5702887/54018521*9062201101803^(1/2) 3178110000006274 a001 24157817/12752043*3461452808002^(5/12) 3178110000006274 a001 24157817/12752043*28143753123^(1/2) 3178110000006274 a001 139583862445/141422324*7881196^(4/11) 3178110000006274 a001 1602508992/4250681*33385282^(7/18) 3178110000006274 a001 24157817/12752043*228826127^(5/8) 3178110000006274 a001 516002918640/4250681*12752043^(1/17) 3178110000006274 a001 2971215073/12752043*33385282^(5/12) 3178110000006274 a001 1836311903/12752043*33385282^(4/9) 3178110000006274 a001 233802911/4250681*33385282^(1/2) 3178110000006274 a001 39088169/12752043*33385282^(2/3) 3178110000006275 a001 267914296/12752043*33385282^(5/9) 3178110000006275 a001 34111385/4250681*33385282^(11/18) 3178110000006275 a001 165580141/12752043*33385282^(7/12) 3178110000006275 a001 53316291173/54018521*7881196^(4/11) 3178110000006275 a001 139583862445/87403803*7881196^(1/3) 3178110000006275 a001 5702887/87403803*33385282^(8/9) 3178110000006275 a001 591286729879/12752043*12752043^(2/17) 3178110000006275 a001 365435296162/228826127*7881196^(1/3) 3178110000006275 a001 956722026041/599074578*7881196^(1/3) 3178110000006275 a001 2504730781961/1568397607*7881196^(1/3) 3178110000006275 a001 6557470319842/4106118243*7881196^(1/3) 3178110000006275 a001 10610209857723/6643838879*7881196^(1/3) 3178110000006275 a001 4052739537881/2537720636*7881196^(1/3) 3178110000006275 a001 1548008755920/969323029*7881196^(1/3) 3178110000006276 a001 591286729879/370248451*7881196^(1/3) 3178110000006276 a001 5702887/228826127*33385282^(17/18) 3178110000006276 a001 225851433717/141422324*7881196^(1/3) 3178110000006276 a001 139583862445/33385282*7881196^(3/11) 3178110000006276 a001 5702887/141422324*33385282^(11/12) 3178110000006276 a001 75283811239/4250681*12752043^(3/17) 3178110000006277 a001 86267571272/54018521*7881196^(1/3) 3178110000006277 a001 4807526976/20633239*7881196^(5/11) 3178110000006278 a001 86267571272/12752043*12752043^(4/17) 3178110000006278 a001 365435296162/87403803*7881196^(3/11) 3178110000006279 a001 956722026041/228826127*7881196^(3/11) 3178110000006279 a001 2504730781961/599074578*7881196^(3/11) 3178110000006279 a001 6557470319842/1568397607*7881196^(3/11) 3178110000006279 a001 10610209857723/2537720636*7881196^(3/11) 3178110000006279 a001 4052739537881/969323029*7881196^(3/11) 3178110000006279 a001 1548008755920/370248451*7881196^(3/11) 3178110000006279 a001 10983760033/4250681*12752043^(5/17) 3178110000006279 a001 591286729879/141422324*7881196^(3/11) 3178110000006280 a001 225851433717/54018521*7881196^(3/11) 3178110000006280 a001 12586269025/12752043*12752043^(6/17) 3178110000006280 a001 9227465/12752043*141422324^(9/13) 3178110000006280 a001 591286729879/33385282*7881196^(2/11) 3178110000006280 a001 52623190191455/165580141 3178110000006280 a001 9227465/12752043*2537720636^(3/5) 3178110000006280 a001 9227465/12752043*45537549124^(9/17) 3178110000006280 a001 9227465/12752043*14662949395604^(3/7) 3178110000006280 a001 5702887/20633239*(1/2+1/2*5^(1/2))^29 3178110000006280 a001 9227465/12752043*(1/2+1/2*5^(1/2))^27 3178110000006280 a001 5702887/20633239*1322157322203^(1/2) 3178110000006280 a001 9227465/12752043*192900153618^(1/2) 3178110000006280 a001 9227465/12752043*10749957122^(9/16) 3178110000006280 a001 9227465/12752043*599074578^(9/14) 3178110000006281 a001 7465176/16692641*20633239^(4/5) 3178110000006281 a001 225851433717/4870847*1860498^(2/15) 3178110000006281 a001 1602508992/4250681*12752043^(7/17) 3178110000006281 a001 516002918640/4250681*4870847^(1/16) 3178110000006281 a001 20365011074/20633239*7881196^(4/11) 3178110000006282 a001 1836311903/12752043*12752043^(8/17) 3178110000006282 a001 5702887/7881196*7881196^(9/11) 3178110000006283 a001 9227465/12752043*33385282^(3/4) 3178110000006283 a001 1134903170/12752043*12752043^(1/2) 3178110000006283 a001 516002918640/29134601*7881196^(2/11) 3178110000006283 a001 4976784/29134601*20633239^(6/7) 3178110000006283 a001 32951280099/20633239*7881196^(1/3) 3178110000006283 a001 4052739537881/228826127*7881196^(2/11) 3178110000006283 a001 3536736619241/199691526*7881196^(2/11) 3178110000006283 a001 6557470319842/370248451*7881196^(2/11) 3178110000006283 a001 233802911/4250681*12752043^(9/17) 3178110000006283 a001 2504730781961/141422324*7881196^(2/11) 3178110000006284 a001 956722026041/54018521*7881196^(2/11) 3178110000006284 a001 267914296/12752043*12752043^(10/17) 3178110000006285 a001 31622993/16692641*20633239^(5/7) 3178110000006285 a001 2504730781961/33385282*7881196^(1/11) 3178110000006285 a001 2/9227465*(1/2+1/2*5^(1/2))^63 3178110000006285 a001 4976784/4250681*12752043^(13/17) 3178110000006285 a001 433494437/33385282*20633239^(3/5) 3178110000006285 a001 701408733/33385282*20633239^(4/7) 3178110000006286 a001 34111385/4250681*12752043^(11/17) 3178110000006286 a001 39088169/228826127*20633239^(6/7) 3178110000006286 a001 39088169/87403803*20633239^(4/5) 3178110000006286 a001 86267571272/20633239*7881196^(3/11) 3178110000006286 a001 34111385/199691526*20633239^(6/7) 3178110000006286 a001 267914296/1568397607*20633239^(6/7) 3178110000006286 a001 233802911/1368706081*20633239^(6/7) 3178110000006286 a001 1836311903/10749957122*20633239^(6/7) 3178110000006286 a001 1602508992/9381251041*20633239^(6/7) 3178110000006286 a001 12586269025/73681302247*20633239^(6/7) 3178110000006286 a001 10983760033/64300051206*20633239^(6/7) 3178110000006286 a001 86267571272/505019158607*20633239^(6/7) 3178110000006286 a001 75283811239/440719107401*20633239^(6/7) 3178110000006286 a001 2504730781961/14662949395604*20633239^(6/7) 3178110000006286 a001 139583862445/817138163596*20633239^(6/7) 3178110000006286 a001 53316291173/312119004989*20633239^(6/7) 3178110000006286 a001 20365011074/119218851371*20633239^(6/7) 3178110000006286 a001 7778742049/45537549124*20633239^(6/7) 3178110000006286 a001 2971215073/17393796001*20633239^(6/7) 3178110000006286 a001 1134903170/6643838879*20633239^(6/7) 3178110000006286 a001 433494437/2537720636*20633239^(6/7) 3178110000006286 a001 165580141/969323029*20633239^(6/7) 3178110000006286 a001 63245986/370248451*20633239^(6/7) 3178110000006286 a001 39088169/12752043*12752043^(12/17) 3178110000006286 a001 102334155/228826127*20633239^(4/5) 3178110000006286 a001 7778742049/33385282*20633239^(3/7) 3178110000006287 a001 133957148/299537289*20633239^(4/5) 3178110000006287 a001 701408733/1568397607*20633239^(4/5) 3178110000006287 a001 1836311903/4106118243*20633239^(4/5) 3178110000006287 a001 2403763488/5374978561*20633239^(4/5) 3178110000006287 a001 12586269025/28143753123*20633239^(4/5) 3178110000006287 a001 32951280099/73681302247*20633239^(4/5) 3178110000006287 a001 43133785636/96450076809*20633239^(4/5) 3178110000006287 a001 225851433717/505019158607*20633239^(4/5) 3178110000006287 a001 10610209857723/23725150497407*20633239^(4/5) 3178110000006287 a001 182717648081/408569081798*20633239^(4/5) 3178110000006287 a001 139583862445/312119004989*20633239^(4/5) 3178110000006287 a001 53316291173/119218851371*20633239^(4/5) 3178110000006287 a001 10182505537/22768774562*20633239^(4/5) 3178110000006287 a001 7778742049/17393796001*20633239^(4/5) 3178110000006287 a001 2971215073/6643838879*20633239^(4/5) 3178110000006287 a001 567451585/1268860318*20633239^(4/5) 3178110000006287 a001 433494437/969323029*20633239^(4/5) 3178110000006287 a001 165580141/370248451*20633239^(4/5) 3178110000006287 a001 12586269025/33385282*20633239^(2/5) 3178110000006287 a001 165580141/87403803*20633239^(5/7) 3178110000006287 a001 7465176/16692641*17393796001^(4/7) 3178110000006287 a001 7465176/16692641*14662949395604^(4/9) 3178110000006287 a001 7465176/16692641*(1/2+1/2*5^(1/2))^28 3178110000006287 a001 7465176/16692641*505019158607^(1/2) 3178110000006287 a001 7465176/16692641*73681302247^(7/13) 3178110000006287 a001 7465176/16692641*10749957122^(7/12) 3178110000006287 a001 7465176/16692641*4106118243^(14/23) 3178110000006287 a001 7465176/16692641*1568397607^(7/11) 3178110000006287 a001 74305136947968/233802911 3178110000006287 a001 7465176/16692641*599074578^(2/3) 3178110000006287 a001 7465176/16692641*228826127^(7/10) 3178110000006287 a001 31622993/70711162*20633239^(4/5) 3178110000006287 a001 7465176/16692641*87403803^(14/19) 3178110000006287 a001 433494437/228826127*20633239^(5/7) 3178110000006287 a001 567451585/299537289*20633239^(5/7) 3178110000006287 a001 2971215073/1568397607*20633239^(5/7) 3178110000006287 a001 7778742049/4106118243*20633239^(5/7) 3178110000006287 a001 10182505537/5374978561*20633239^(5/7) 3178110000006287 a001 53316291173/28143753123*20633239^(5/7) 3178110000006287 a001 139583862445/73681302247*20633239^(5/7) 3178110000006287 a001 182717648081/96450076809*20633239^(5/7) 3178110000006287 a001 956722026041/505019158607*20633239^(5/7) 3178110000006287 a001 10610209857723/5600748293801*20633239^(5/7) 3178110000006287 a001 591286729879/312119004989*20633239^(5/7) 3178110000006287 a001 225851433717/119218851371*20633239^(5/7) 3178110000006287 a001 21566892818/11384387281*20633239^(5/7) 3178110000006287 a001 32951280099/17393796001*20633239^(5/7) 3178110000006287 a001 12586269025/6643838879*20633239^(5/7) 3178110000006287 a001 1201881744/634430159*20633239^(5/7) 3178110000006287 a001 1836311903/969323029*20633239^(5/7) 3178110000006287 a001 701408733/370248451*20633239^(5/7) 3178110000006287 a001 66978574/35355581*20633239^(5/7) 3178110000006287 a001 5702887/33385282*12752043^(15/17) 3178110000006287 a001 24157817/141422324*20633239^(6/7) 3178110000006287 a001 6557470319842/87403803*7881196^(1/11) 3178110000006288 a001 43133785636/16692641*20633239^(2/7) 3178110000006288 a001 1134903170/87403803*20633239^(3/5) 3178110000006288 a001 1836311903/87403803*20633239^(4/7) 3178110000006288 a001 2971215073/228826127*20633239^(3/5) 3178110000006288 a001 10610209857723/141422324*7881196^(1/11) 3178110000006288 a001 7778742049/599074578*20633239^(3/5) 3178110000006288 a001 20365011074/1568397607*20633239^(3/5) 3178110000006288 a001 53316291173/4106118243*20633239^(3/5) 3178110000006288 a001 139583862445/10749957122*20633239^(3/5) 3178110000006288 a001 365435296162/28143753123*20633239^(3/5) 3178110000006288 a001 956722026041/73681302247*20633239^(3/5) 3178110000006288 a001 2504730781961/192900153618*20633239^(3/5) 3178110000006288 a001 10610209857723/817138163596*20633239^(3/5) 3178110000006288 a001 4052739537881/312119004989*20633239^(3/5) 3178110000006288 a001 1548008755920/119218851371*20633239^(3/5) 3178110000006288 a001 591286729879/45537549124*20633239^(3/5) 3178110000006288 a001 7787980473/599786069*20633239^(3/5) 3178110000006288 a001 86267571272/6643838879*20633239^(3/5) 3178110000006288 a001 32951280099/2537720636*20633239^(3/5) 3178110000006288 a001 12586269025/969323029*20633239^(3/5) 3178110000006288 a001 4807526976/370248451*20633239^(3/5) 3178110000006288 a001 182717648081/16692641*20633239^(1/5) 3178110000006288 a001 102287808/4868641*20633239^(4/7) 3178110000006288 a001 1836311903/141422324*20633239^(3/5) 3178110000006288 a001 102334155/54018521*20633239^(5/7) 3178110000006288 a001 12586269025/599074578*20633239^(4/7) 3178110000006288 a001 32951280099/1568397607*20633239^(4/7) 3178110000006288 a001 86267571272/4106118243*20633239^(4/7) 3178110000006288 a001 225851433717/10749957122*20633239^(4/7) 3178110000006288 a001 591286729879/28143753123*20633239^(4/7) 3178110000006288 a001 1548008755920/73681302247*20633239^(4/7) 3178110000006288 a001 4052739537881/192900153618*20633239^(4/7) 3178110000006288 a001 225749145909/10745088481*20633239^(4/7) 3178110000006288 a001 6557470319842/312119004989*20633239^(4/7) 3178110000006288 a001 2504730781961/119218851371*20633239^(4/7) 3178110000006288 a001 956722026041/45537549124*20633239^(4/7) 3178110000006288 a001 365435296162/17393796001*20633239^(4/7) 3178110000006288 a001 139583862445/6643838879*20633239^(4/7) 3178110000006288 a001 53316291173/2537720636*20633239^(4/7) 3178110000006288 a001 20365011074/969323029*20633239^(4/7) 3178110000006288 a001 7778742049/370248451*20633239^(4/7) 3178110000006288 a001 2971215073/141422324*20633239^(4/7) 3178110000006289 a001 956722026041/33385282*20633239^(1/7) 3178110000006289 a001 24157817/54018521*20633239^(4/5) 3178110000006289 a001 20365011074/87403803*20633239^(3/7) 3178110000006289 a001 4052739537881/54018521*7881196^(1/11) 3178110000006289 a001 7465176/16692641*33385282^(7/9) 3178110000006289 a001 10983760033/29134601*20633239^(2/5) 3178110000006289 a001 701408733/54018521*20633239^(3/5) 3178110000006289 a001 4976784/29134601*141422324^(10/13) 3178110000006289 a001 39088169/33385282*141422324^(2/3) 3178110000006289 a001 4976784/29134601*2537720636^(2/3) 3178110000006289 a001 4976784/29134601*45537549124^(10/17) 3178110000006289 a001 4976784/29134601*312119004989^(6/11) 3178110000006289 a001 4976784/29134601*14662949395604^(10/21) 3178110000006289 a001 39088169/33385282*(1/2+1/2*5^(1/2))^26 3178110000006289 a001 4976784/29134601*192900153618^(5/9) 3178110000006289 a001 39088169/33385282*73681302247^(1/2) 3178110000006289 a001 4976784/29134601*28143753123^(3/5) 3178110000006289 a001 39088169/33385282*10749957122^(13/24) 3178110000006289 a001 4976784/29134601*10749957122^(5/8) 3178110000006289 a001 39088169/33385282*4106118243^(13/23) 3178110000006289 a001 4976784/29134601*4106118243^(15/23) 3178110000006289 a001 583600122205488/1836311903 3178110000006289 a001 39088169/33385282*1568397607^(13/22) 3178110000006289 a001 4976784/29134601*1568397607^(15/22) 3178110000006289 a001 39088169/33385282*599074578^(13/21) 3178110000006289 a001 4976784/29134601*599074578^(5/7) 3178110000006289 a001 53316291173/228826127*20633239^(3/7) 3178110000006289 a001 39088169/33385282*228826127^(13/20) 3178110000006289 a001 4976784/29134601*228826127^(3/4) 3178110000006289 a001 139583862445/599074578*20633239^(3/7) 3178110000006289 a001 365435296162/1568397607*20633239^(3/7) 3178110000006289 a001 956722026041/4106118243*20633239^(3/7) 3178110000006289 a001 2504730781961/10749957122*20633239^(3/7) 3178110000006289 a001 6557470319842/28143753123*20633239^(3/7) 3178110000006289 a001 10610209857723/45537549124*20633239^(3/7) 3178110000006289 a001 4052739537881/17393796001*20633239^(3/7) 3178110000006289 a001 1548008755920/6643838879*20633239^(3/7) 3178110000006289 a001 591286729879/2537720636*20633239^(3/7) 3178110000006289 a001 225851433717/969323029*20633239^(3/7) 3178110000006289 a001 86267571272/370248451*20633239^(3/7) 3178110000006289 a001 1134903170/54018521*20633239^(4/7) 3178110000006290 a001 86267571272/228826127*20633239^(2/5) 3178110000006290 a001 63246219/271444*20633239^(3/7) 3178110000006290 a001 14619165/4769326*141422324^(8/13) 3178110000006290 a001 14930352/1568397607*141422324^(12/13) 3178110000006290 a001 267913919/710646*20633239^(2/5) 3178110000006290 a001 591286729879/1568397607*20633239^(2/5) 3178110000006290 a001 516002918640/1368706081*20633239^(2/5) 3178110000006290 a001 4052739537881/10749957122*20633239^(2/5) 3178110000006290 a001 3536736619241/9381251041*20633239^(2/5) 3178110000006290 a001 6557470319842/17393796001*20633239^(2/5) 3178110000006290 a001 2504730781961/6643838879*20633239^(2/5) 3178110000006290 a001 956722026041/2537720636*20633239^(2/5) 3178110000006290 a001 39088169/33385282*87403803^(13/19) 3178110000006290 a001 365435296162/969323029*20633239^(2/5) 3178110000006290 a001 139583862445/370248451*20633239^(2/5) 3178110000006290 a001 14930352/370248451*141422324^(11/13) 3178110000006290 a001 4976784/29134601*87403803^(15/19) 3178110000006290 a001 433494437/33385282*141422324^(7/13) 3178110000006290 a001 1836311903/33385282*141422324^(6/13) 3178110000006290 a001 7778742049/33385282*141422324^(5/13) 3178110000006290 a001 14619165/4769326*2537720636^(8/15) 3178110000006290 a001 14619165/4769326*45537549124^(8/17) 3178110000006290 a001 14619165/4769326*14662949395604^(8/21) 3178110000006290 a001 14619165/4769326*(1/2+1/2*5^(1/2))^24 3178110000006290 a001 14930352/228826127*23725150497407^(1/2) 3178110000006290 a001 14930352/228826127*505019158607^(4/7) 3178110000006290 a001 14619165/4769326*192900153618^(4/9) 3178110000006290 a001 14619165/4769326*73681302247^(6/13) 3178110000006290 a001 14930352/228826127*73681302247^(8/13) 3178110000006290 a001 14619165/4769326*10749957122^(1/2) 3178110000006290 a001 14930352/228826127*10749957122^(2/3) 3178110000006290 a001 1515758884695/4769372 3178110000006290 a001 14619165/4769326*4106118243^(12/23) 3178110000006290 a001 14930352/228826127*4106118243^(16/23) 3178110000006290 a001 14619165/4769326*1568397607^(6/11) 3178110000006290 a001 14930352/228826127*1568397607^(8/11) 3178110000006290 a001 14619165/4769326*599074578^(4/7) 3178110000006290 a001 14930352/228826127*599074578^(16/21) 3178110000006290 a001 10182505537/16692641*141422324^(1/3) 3178110000006290 a001 32951280099/33385282*141422324^(4/13) 3178110000006290 a001 139583862445/33385282*141422324^(3/13) 3178110000006290 a001 591286729879/33385282*141422324^(2/13) 3178110000006290 a001 14619165/4769326*228826127^(3/5) 3178110000006290 a001 2504730781961/33385282*141422324^(1/13) 3178110000006290 a001 14930352/228826127*228826127^(4/5) 3178110000006290 a001 829464/33281921*45537549124^(2/3) 3178110000006290 a001 133957148/16692641*312119004989^(2/5) 3178110000006290 a001 133957148/16692641*(1/2+1/2*5^(1/2))^22 3178110000006290 a001 4000054745112192/12586269025 3178110000006290 a001 133957148/16692641*10749957122^(11/24) 3178110000006290 a001 829464/33281921*10749957122^(17/24) 3178110000006290 a001 133957148/16692641*4106118243^(11/23) 3178110000006290 a001 829464/33281921*4106118243^(17/23) 3178110000006290 a001 133957148/16692641*1568397607^(1/2) 3178110000006290 a001 829464/33281921*1568397607^(17/22) 3178110000006290 a001 133957148/16692641*599074578^(11/21) 3178110000006290 a001 14930352/1568397607*2537720636^(4/5) 3178110000006290 a001 829464/33281921*599074578^(17/21) 3178110000006290 a001 701408733/33385282*2537720636^(4/9) 3178110000006290 a001 14930352/1568397607*45537549124^(12/17) 3178110000006290 a001 14930352/1568397607*14662949395604^(4/7) 3178110000006290 a001 701408733/33385282*(1/2+1/2*5^(1/2))^20 3178110000006290 a001 701408733/33385282*505019158607^(5/14) 3178110000006290 a001 14930352/1568397607*505019158607^(9/14) 3178110000006290 a001 14930352/1568397607*192900153618^(2/3) 3178110000006290 a001 701408733/33385282*73681302247^(5/13) 3178110000006290 a001 14930352/1568397607*73681302247^(9/13) 3178110000006290 a001 3490759759854672/10983760033 3178110000006290 a001 701408733/33385282*28143753123^(2/5) 3178110000006290 a001 701408733/33385282*10749957122^(5/12) 3178110000006290 a001 14930352/1568397607*10749957122^(3/4) 3178110000006290 a001 701408733/33385282*4106118243^(10/23) 3178110000006290 a001 14930352/1568397607*4106118243^(18/23) 3178110000006290 a001 701408733/33385282*1568397607^(5/11) 3178110000006290 a001 7465176/5374978561*2537720636^(8/9) 3178110000006290 a001 4976784/9381251041*2537720636^(14/15) 3178110000006290 a001 1836311903/33385282*2537720636^(2/5) 3178110000006290 a001 14930352/6643838879*2537720636^(13/15) 3178110000006290 a001 14930352/1568397607*1568397607^(9/11) 3178110000006290 a001 1836311903/33385282*45537549124^(6/17) 3178110000006290 a001 4976784/1368706081*817138163596^(2/3) 3178110000006290 a001 1836311903/33385282*14662949395604^(2/7) 3178110000006290 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^18 3178110000006290 a001 1836311903/33385282*192900153618^(1/3) 3178110000006290 a001 10610210175534/33385283 3178110000006290 a001 1836311903/33385282*10749957122^(3/8) 3178110000006290 a001 4976784/1368706081*10749957122^(19/24) 3178110000006290 a001 7778742049/33385282*2537720636^(1/3) 3178110000006290 a001 32951280099/33385282*2537720636^(4/15) 3178110000006290 a001 1836311903/33385282*4106118243^(9/23) 3178110000006290 a001 43133785636/16692641*2537720636^(2/9) 3178110000006290 a001 139583862445/33385282*2537720636^(1/5) 3178110000006290 a001 591286729879/33385282*2537720636^(2/15) 3178110000006290 a001 956722026041/33385282*2537720636^(1/9) 3178110000006290 a001 2504730781961/33385282*2537720636^(1/15) 3178110000006290 a001 4976784/1368706081*4106118243^(19/23) 3178110000006290 a001 7465176/5374978561*312119004989^(8/11) 3178110000006290 a001 14930208/103681*(1/2+1/2*5^(1/2))^16 3178110000006290 a001 14930208/103681*23725150497407^(1/4) 3178110000006290 a001 7465176/5374978561*23725150497407^(5/8) 3178110000006290 a001 14930208/103681*73681302247^(4/13) 3178110000006290 a001 7465176/5374978561*73681302247^(10/13) 3178110000006290 a001 7465176/5374978561*28143753123^(4/5) 3178110000006290 a001 14930208/103681*10749957122^(1/3) 3178110000006290 a001 4976784/9381251041*17393796001^(6/7) 3178110000006290 a001 12586269025/33385282*17393796001^(2/7) 3178110000006290 a001 4976784/9381251041*45537549124^(14/17) 3178110000006290 a001 7465176/5374978561*10749957122^(5/6) 3178110000006290 a001 12586269025/33385282*14662949395604^(2/9) 3178110000006290 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^14 3178110000006290 a001 4976784/9381251041*505019158607^(3/4) 3178110000006290 a001 4976784/9381251041*192900153618^(7/9) 3178110000006290 a001 182717648081/16692641*17393796001^(1/7) 3178110000006290 a001 14930352/505019158607*45537549124^(16/17) 3178110000006290 a001 14930352/119218851371*45537549124^(15/17) 3178110000006290 a001 32951280099/33385282*45537549124^(4/17) 3178110000006290 a001 14930352/73681302247*312119004989^(4/5) 3178110000006290 a001 32951280099/33385282*817138163596^(4/19) 3178110000006290 a001 32951280099/33385282*14662949395604^(4/21) 3178110000006290 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^12 3178110000006290 a001 14930352/73681302247*23725150497407^(11/16) 3178110000006290 a001 32951280099/33385282*73681302247^(3/13) 3178110000006290 a001 139583862445/33385282*45537549124^(3/17) 3178110000006290 a001 591286729879/33385282*45537549124^(2/17) 3178110000006290 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^10 3178110000006290 a001 1288005205276047744/4052739537881 3178110000006290 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^8 3178110000006290 a001 160573400242832304/505248088463 3178110000006290 a001 14930352/2139295485799*817138163596^(17/19) 3178110000006290 a001 4976784/440719107401*3461452808002^(5/6) 3178110000006290 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^4 3178110000006290 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^3 3178110000006290 a001 14930352/2139295485799*14662949395604^(17/21) 3178110000006290 a001 3732588/204284540899*505019158607^(7/8) 3178110000006290 a001 139583862445/33385282*14662949395604^(1/7) 3178110000006290 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^9 3178110000006290 a001 139583862445/33385282*192900153618^(1/6) 3178110000006290 a001 14930352/505019158607*192900153618^(8/9) 3178110000006290 a001 14930352/2139295485799*192900153618^(17/18) 3178110000006290 a001 14930352/119218851371*312119004989^(9/11) 3178110000006290 a001 53316291173/33385282*312119004989^(1/5) 3178110000006290 a001 14930352/119218851371*14662949395604^(5/7) 3178110000006290 a001 14930352/119218851371*192900153618^(5/6) 3178110000006290 a001 956722026041/33385282*28143753123^(1/10) 3178110000006290 a001 14930352/505019158607*73681302247^(12/13) 3178110000006290 a001 43133785636/16692641*28143753123^(1/5) 3178110000006290 a001 4052739537881/33385282*10749957122^(1/24) 3178110000006290 a001 304056783818718048/956722026041 3178110000006290 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^13 3178110000006290 a001 10182505537/16692641*73681302247^(1/4) 3178110000006290 a001 2504730781961/33385282*10749957122^(1/16) 3178110000006290 a001 774004377960/16692641*10749957122^(1/12) 3178110000006290 a001 591286729879/33385282*10749957122^(1/8) 3178110000006290 a001 14930352/119218851371*28143753123^(9/10) 3178110000006290 a001 12586269025/33385282*10749957122^(7/24) 3178110000006290 a001 32264490531/4769326*10749957122^(1/6) 3178110000006290 a001 139583862445/33385282*10749957122^(3/16) 3178110000006290 a001 43133785636/16692641*10749957122^(5/24) 3178110000006290 a001 32951280099/33385282*10749957122^(1/4) 3178110000006290 a001 4052739537881/33385282*4106118243^(1/23) 3178110000006290 a001 7778742049/33385282*45537549124^(5/17) 3178110000006290 a001 7778742049/33385282*312119004989^(3/11) 3178110000006290 a001 58069678454385624/182717648081 3178110000006290 a001 7778742049/33385282*14662949395604^(5/21) 3178110000006290 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^15 3178110000006290 a001 7778742049/33385282*192900153618^(5/18) 3178110000006290 a001 7778742049/33385282*28143753123^(3/10) 3178110000006290 a001 774004377960/16692641*4106118243^(2/23) 3178110000006290 a001 7778742049/33385282*10749957122^(5/16) 3178110000006290 a001 4976784/9381251041*10749957122^(7/8) 3178110000006290 a001 591286729879/33385282*4106118243^(3/23) 3178110000006290 a001 14930352/73681302247*10749957122^(11/12) 3178110000006290 a001 14930352/119218851371*10749957122^(15/16) 3178110000006290 a001 2584/33385281*10749957122^(23/24) 3178110000006290 a001 32264490531/4769326*4106118243^(4/23) 3178110000006290 a001 14930208/103681*4106118243^(8/23) 3178110000006290 a001 43133785636/16692641*4106118243^(5/23) 3178110000006290 a001 32951280099/33385282*4106118243^(6/23) 3178110000006290 a001 12586269025/33385282*4106118243^(7/23) 3178110000006290 a001 4052739537881/33385282*1568397607^(1/22) 3178110000006290 a001 14930352/6643838879*45537549124^(13/17) 3178110000006290 a001 2971215073/33385282*45537549124^(1/3) 3178110000006290 a001 44361286907595696/139583862445 3178110000006290 a001 14930352/6643838879*14662949395604^(13/21) 3178110000006290 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^17 3178110000006290 a001 14930352/6643838879*192900153618^(13/18) 3178110000006290 a001 14930352/6643838879*73681302247^(3/4) 3178110000006290 a001 14930352/6643838879*10749957122^(13/16) 3178110000006290 a001 774004377960/16692641*1568397607^(1/11) 3178110000006290 a001 7465176/5374978561*4106118243^(20/23) 3178110000006290 a001 4976784/9381251041*4106118243^(21/23) 3178110000006290 a001 591286729879/33385282*1568397607^(3/22) 3178110000006290 a001 14930352/73681302247*4106118243^(22/23) 3178110000006290 a001 32264490531/4769326*1568397607^(2/11) 3178110000006290 a001 43133785636/16692641*1568397607^(5/22) 3178110000006290 a001 53316291173/33385282*1568397607^(1/4) 3178110000006290 a001 1836311903/33385282*1568397607^(9/22) 3178110000006290 a001 32951280099/33385282*1568397607^(3/11) 3178110000006290 a001 12586269025/33385282*1568397607^(7/22) 3178110000006290 a001 4052739537881/33385282*599074578^(1/21) 3178110000006290 a001 14930208/103681*1568397607^(4/11) 3178110000006290 a001 16944503814015840/53316291173 3178110000006290 a001 567451585/16692641*817138163596^(1/3) 3178110000006290 a001 567451585/16692641*(1/2+1/2*5^(1/2))^19 3178110000006290 a001 2504730781961/33385282*599074578^(1/14) 3178110000006290 a001 774004377960/16692641*599074578^(2/21) 3178110000006290 a001 4976784/1368706081*1568397607^(19/22) 3178110000006290 a001 7465176/5374978561*1568397607^(10/11) 3178110000006290 a001 4976784/9381251041*1568397607^(21/22) 3178110000006290 a001 591286729879/33385282*599074578^(1/7) 3178110000006290 a001 182717648081/16692641*599074578^(1/6) 3178110000006290 a001 32264490531/4769326*599074578^(4/21) 3178110000006290 a001 139583862445/33385282*599074578^(3/14) 3178110000006290 a001 43133785636/16692641*599074578^(5/21) 3178110000006290 a001 32951280099/33385282*599074578^(2/7) 3178110000006290 a001 701408733/33385282*599074578^(10/21) 3178110000006290 a001 12586269025/33385282*599074578^(1/3) 3178110000006290 a001 14930352/969323029*2537720636^(7/9) 3178110000006290 a001 4052739537881/33385282*228826127^(1/20) 3178110000006290 a001 433494437/33385282*2537720636^(7/15) 3178110000006290 a001 7778742049/33385282*599074578^(5/14) 3178110000006290 a001 14930208/103681*599074578^(8/21) 3178110000006290 a001 14930352/969323029*17393796001^(5/7) 3178110000006290 a001 433494437/33385282*17393796001^(3/7) 3178110000006290 a001 3236112267225912/10182505537 3178110000006290 a001 433494437/33385282*45537549124^(7/17) 3178110000006290 a001 14930352/969323029*312119004989^(7/11) 3178110000006290 a001 14930352/969323029*14662949395604^(5/9) 3178110000006290 a001 433494437/33385282*(1/2+1/2*5^(1/2))^21 3178110000006290 a001 14930352/969323029*505019158607^(5/8) 3178110000006290 a001 433494437/33385282*192900153618^(7/18) 3178110000006290 a001 14930352/969323029*28143753123^(7/10) 3178110000006290 a001 433494437/33385282*10749957122^(7/16) 3178110000006290 a001 1836311903/33385282*599074578^(3/7) 3178110000006290 a001 774004377960/16692641*228826127^(1/10) 3178110000006290 a001 14930352/1568397607*599074578^(6/7) 3178110000006290 a001 956722026041/33385282*228826127^(1/8) 3178110000006290 a001 433494437/33385282*599074578^(1/2) 3178110000006290 a001 4976784/1368706081*599074578^(19/21) 3178110000006290 a001 14930352/6643838879*599074578^(13/14) 3178110000006290 a001 7465176/5374978561*599074578^(20/21) 3178110000006290 a001 591286729879/33385282*228826127^(3/20) 3178110000006290 a001 14930352/969323029*599074578^(5/6) 3178110000006290 a001 32264490531/4769326*228826127^(1/5) 3178110000006290 a001 43133785636/16692641*228826127^(1/4) 3178110000006290 a001 32951280099/33385282*228826127^(3/10) 3178110000006290 a001 12586269025/33385282*228826127^(7/20) 3178110000006290 a001 4052739537881/33385282*87403803^(1/19) 3178110000006290 a001 7778742049/33385282*228826127^(3/8) 3178110000006290 a001 14930352/370248451*2537720636^(11/15) 3178110000006290 a001 2472169789339632/7778742049 3178110000006290 a001 14930352/370248451*45537549124^(11/17) 3178110000006290 a001 14930352/370248451*312119004989^(3/5) 3178110000006290 a001 14930352/370248451*14662949395604^(11/21) 3178110000006290 a001 165580141/33385282*(1/2+1/2*5^(1/2))^23 3178110000006290 a001 14930352/370248451*192900153618^(11/18) 3178110000006290 a001 14930352/370248451*10749957122^(11/16) 3178110000006290 a001 165580141/33385282*4106118243^(1/2) 3178110000006290 a001 14930352/370248451*1568397607^(3/4) 3178110000006290 a001 14930208/103681*228826127^(2/5) 3178110000006290 a001 53316291173/141422324*20633239^(2/5) 3178110000006290 a001 133957148/16692641*228826127^(11/20) 3178110000006290 a001 1836311903/33385282*228826127^(9/20) 3178110000006290 a001 701408733/33385282*228826127^(1/2) 3178110000006290 a001 14930352/370248451*599074578^(11/14) 3178110000006290 a001 829464/33281921*228826127^(17/20) 3178110000006290 a001 774004377960/16692641*87403803^(2/19) 3178110000006290 a001 591286729879/12752043*4870847^(1/8) 3178110000006290 a001 14930352/1568397607*228826127^(9/10) 3178110000006290 a001 14930352/969323029*228826127^(7/8) 3178110000006290 a001 4976784/1368706081*228826127^(19/20) 3178110000006290 a001 591286729879/33385282*87403803^(3/19) 3178110000006290 a001 32264490531/4769326*87403803^(4/19) 3178110000006290 a001 43133785636/16692641*87403803^(5/19) 3178110000006290 a001 32951280099/33385282*87403803^(6/19) 3178110000006290 a001 12586269025/33385282*87403803^(7/19) 3178110000006290 a001 4052739537881/33385282*33385282^(1/18) 3178110000006290 a001 31622993/16692641*2537720636^(5/9) 3178110000006290 a001 944284833567072/2971215073 3178110000006290 a001 31622993/16692641*312119004989^(5/11) 3178110000006290 a001 31622993/16692641*(1/2+1/2*5^(1/2))^25 3178110000006290 a001 3732588/35355581*9062201101803^(1/2) 3178110000006290 a001 31622993/16692641*3461452808002^(5/12) 3178110000006290 a001 31622993/16692641*28143753123^(1/2) 3178110000006290 a001 14930208/103681*87403803^(8/19) 3178110000006290 a001 31622993/16692641*228826127^(5/8) 3178110000006290 a001 1836311903/33385282*87403803^(9/19) 3178110000006290 a001 14619165/4769326*87403803^(12/19) 3178110000006290 a001 567451585/16692641*87403803^(1/2) 3178110000006290 a001 701408733/33385282*87403803^(10/19) 3178110000006290 a001 133957148/16692641*87403803^(11/19) 3178110000006290 a001 2504730781961/33385282*33385282^(1/12) 3178110000006290 a001 14930352/228826127*87403803^(16/19) 3178110000006290 a001 75283811239/29134601*20633239^(2/7) 3178110000006290 a001 774004377960/16692641*33385282^(1/9) 3178110000006290 a001 829464/33281921*87403803^(17/19) 3178110000006290 a001 14930352/1568397607*87403803^(18/19) 3178110000006290 a001 591286729879/33385282*33385282^(1/6) 3178110000006290 a001 32264490531/4769326*33385282^(2/9) 3178110000006290 a001 591286729879/228826127*20633239^(2/7) 3178110000006290 a001 86000486440/33281921*20633239^(2/7) 3178110000006290 a001 139583862445/33385282*33385282^(1/4) 3178110000006290 a001 4052739537881/1568397607*20633239^(2/7) 3178110000006290 a001 3536736619241/1368706081*20633239^(2/7) 3178110000006290 a001 3278735159921/1268860318*20633239^(2/7) 3178110000006290 a001 2504730781961/969323029*20633239^(2/7) 3178110000006290 a001 12586269025/54018521*20633239^(3/7) 3178110000006290 a001 956722026041/370248451*20633239^(2/7) 3178110000006290 a001 43133785636/16692641*33385282^(5/18) 3178110000006291 a001 182717648081/70711162*20633239^(2/7) 3178110000006291 a001 956722026041/87403803*20633239^(1/5) 3178110000006291 a001 32951280099/33385282*33385282^(1/3) 3178110000006291 a001 20365011074/54018521*20633239^(2/5) 3178110000006291 a001 24157817/33385282*141422324^(9/13) 3178110000006291 a001 365435296162/20633239*7881196^(2/11) 3178110000006291 a001 10608373863576/33379505 3178110000006291 a001 24157817/33385282*2537720636^(3/5) 3178110000006291 a001 24157817/33385282*45537549124^(9/17) 3178110000006291 a001 24157817/33385282*14662949395604^(3/7) 3178110000006291 a001 24157817/33385282*(1/2+1/2*5^(1/2))^27 3178110000006291 a001 14930352/54018521*1322157322203^(1/2) 3178110000006291 a001 24157817/33385282*192900153618^(1/2) 3178110000006291 a001 24157817/33385282*10749957122^(9/16) 3178110000006291 a001 24157817/33385282*599074578^(9/14) 3178110000006291 a001 12586269025/33385282*33385282^(7/18) 3178110000006291 a001 4052739537881/33385282*12752043^(1/17) 3178110000006291 a001 7778742049/33385282*33385282^(5/12) 3178110000006291 a001 14930208/103681*33385282^(4/9) 3178110000006291 a001 5702887/87403803*12752043^(16/17) 3178110000006291 a001 2504730781961/228826127*20633239^(1/5) 3178110000006291 a001 3278735159921/299537289*20633239^(1/5) 3178110000006291 a001 10610209857723/969323029*20633239^(1/5) 3178110000006291 a001 2504730781961/87403803*20633239^(1/7) 3178110000006291 a001 4052739537881/370248451*20633239^(1/5) 3178110000006291 a001 1836311903/33385282*33385282^(1/2) 3178110000006291 a001 387002188980/35355581*20633239^(1/5) 3178110000006291 a001 701408733/33385282*33385282^(5/9) 3178110000006291 a001 39088169/33385282*33385282^(13/18) 3178110000006291 a001 433494437/33385282*33385282^(7/12) 3178110000006291 a001 6557470319842/228826127*20633239^(1/7) 3178110000006291 a001 133957148/16692641*33385282^(11/18) 3178110000006292 a001 139583862445/54018521*20633239^(2/7) 3178110000006292 a001 10610209857723/370248451*20633239^(1/7) 3178110000006292 a001 14619165/4769326*33385282^(2/3) 3178110000006292 a001 4052739537881/141422324*20633239^(1/7) 3178110000006292 a001 4976784/29134601*33385282^(5/6) 3178110000006292 a001 39088169/87403803*17393796001^(4/7) 3178110000006292 a001 39088169/87403803*14662949395604^(4/9) 3178110000006292 a001 39088169/87403803*73681302247^(7/13) 3178110000006292 a001 39088169/87403803*10749957122^(7/12) 3178110000006292 a001 1527884955772561/4807526976 3178110000006292 a001 39088169/87403803*4106118243^(14/23) 3178110000006292 a001 39088169/87403803*1568397607^(7/11) 3178110000006292 a001 39088169/87403803*599074578^(2/3) 3178110000006292 a001 39088169/87403803*228826127^(7/10) 3178110000006292 a001 39088169/228826127*141422324^(10/13) 3178110000006292 a001 34111385/29134601*141422324^(2/3) 3178110000006292 a001 39088169/4106118243*141422324^(12/13) 3178110000006292 a001 774004377960/16692641*12752043^(2/17) 3178110000006292 a001 39088169/969323029*141422324^(11/13) 3178110000006292 a001 39088169/87403803*87403803^(14/19) 3178110000006292 a001 267914296/87403803*141422324^(8/13) 3178110000006292 a001 1134903170/87403803*141422324^(7/13) 3178110000006292 a001 1602508992/29134601*141422324^(6/13) 3178110000006292 a001 20365011074/87403803*141422324^(5/13) 3178110000006292 a001 39088169/228826127*2537720636^(2/3) 3178110000006292 a001 39088169/228826127*45537549124^(10/17) 3178110000006292 a001 39088169/228826127*312119004989^(6/11) 3178110000006292 a001 39088169/228826127*14662949395604^(10/21) 3178110000006292 a001 39088169/228826127*192900153618^(5/9) 3178110000006292 a001 34111385/29134601*73681302247^(1/2) 3178110000006292 a001 39088169/228826127*28143753123^(3/5) 3178110000006292 a001 72728268092949/228841255 3178110000006292 a001 34111385/29134601*10749957122^(13/24) 3178110000006292 a001 39088169/228826127*10749957122^(5/8) 3178110000006292 a001 34111385/29134601*4106118243^(13/23) 3178110000006292 a001 39088169/228826127*4106118243^(15/23) 3178110000006292 a001 34111385/29134601*1568397607^(13/22) 3178110000006292 a001 39088169/228826127*1568397607^(15/22) 3178110000006292 a001 34111385/29134601*599074578^(13/21) 3178110000006292 a001 39088169/228826127*599074578^(5/7) 3178110000006292 a001 53316291173/87403803*141422324^(1/3) 3178110000006292 a001 86267571272/87403803*141422324^(4/13) 3178110000006292 a001 365435296162/87403803*141422324^(3/13) 3178110000006292 a001 516002918640/29134601*141422324^(2/13) 3178110000006292 a001 34111385/29134601*228826127^(13/20) 3178110000006292 a001 39088169/228826127*228826127^(3/4) 3178110000006292 a001 6557470319842/87403803*141422324^(1/13) 3178110000006292 a001 267914296/87403803*2537720636^(8/15) 3178110000006292 a001 267914296/87403803*45537549124^(8/17) 3178110000006292 a001 267914296/87403803*14662949395604^(8/21) 3178110000006292 a001 39088169/599074578*23725150497407^(1/2) 3178110000006292 a001 267914296/87403803*192900153618^(4/9) 3178110000006292 a001 267914296/87403803*73681302247^(6/13) 3178110000006292 a001 39088169/599074578*73681302247^(8/13) 3178110000006292 a001 10472279279564024/32951280099 3178110000006292 a001 267914296/87403803*10749957122^(1/2) 3178110000006292 a001 39088169/599074578*10749957122^(2/3) 3178110000006292 a001 267914296/87403803*4106118243^(12/23) 3178110000006292 a001 39088169/599074578*4106118243^(16/23) 3178110000006292 a001 267914296/87403803*1568397607^(6/11) 3178110000006292 a001 39088169/599074578*1568397607^(8/11) 3178110000006292 a001 267914296/87403803*599074578^(4/7) 3178110000006292 a001 39088169/599074578*599074578^(16/21) 3178110000006292 a001 39088169/1568397607*45537549124^(2/3) 3178110000006292 a001 233802911/29134601*312119004989^(2/5) 3178110000006292 a001 27416783093579877/86267571272 3178110000006292 a001 233802911/29134601*10749957122^(11/24) 3178110000006292 a001 39088169/1568397607*10749957122^(17/24) 3178110000006292 a001 233802911/29134601*4106118243^(11/23) 3178110000006292 a001 39088169/1568397607*4106118243^(17/23) 3178110000006292 a001 233802911/29134601*1568397607^(1/2) 3178110000006292 a001 39088169/4106118243*2537720636^(4/5) 3178110000006292 a001 39088169/73681302247*2537720636^(14/15) 3178110000006292 a001 39088169/28143753123*2537720636^(8/9) 3178110000006292 a001 39088169/17393796001*2537720636^(13/15) 3178110000006292 a001 1836311903/87403803*2537720636^(4/9) 3178110000006292 a001 39088169/1568397607*1568397607^(17/22) 3178110000006292 a001 1602508992/29134601*2537720636^(2/5) 3178110000006292 a001 39088169/4106118243*45537549124^(12/17) 3178110000006292 a001 39088169/4106118243*14662949395604^(4/7) 3178110000006292 a001 1836311903/87403803*23725150497407^(5/16) 3178110000006292 a001 1836311903/87403803*505019158607^(5/14) 3178110000006292 a001 71778070001175607/225851433717 3178110000006292 a001 39088169/4106118243*192900153618^(2/3) 3178110000006292 a001 1836311903/87403803*73681302247^(5/13) 3178110000006292 a001 39088169/4106118243*73681302247^(9/13) 3178110000006292 a001 1836311903/87403803*28143753123^(2/5) 3178110000006292 a001 1836311903/87403803*10749957122^(5/12) 3178110000006292 a001 39088169/4106118243*10749957122^(3/4) 3178110000006292 a001 20365011074/87403803*2537720636^(1/3) 3178110000006292 a001 86267571272/87403803*2537720636^(4/15) 3178110000006292 a001 75283811239/29134601*2537720636^(2/9) 3178110000006292 a001 1836311903/87403803*4106118243^(10/23) 3178110000006292 a001 365435296162/87403803*2537720636^(1/5) 3178110000006292 a001 516002918640/29134601*2537720636^(2/15) 3178110000006292 a001 2504730781961/87403803*2537720636^(1/9) 3178110000006292 a001 39088169/4106118243*4106118243^(18/23) 3178110000006292 a001 6557470319842/87403803*2537720636^(1/15) 3178110000006292 a001 1602508992/29134601*45537549124^(6/17) 3178110000006292 a001 1602508992/29134601*14662949395604^(2/7) 3178110000006292 a001 1602508992/29134601*192900153618^(1/3) 3178110000006292 a001 1602508992/29134601*10749957122^(3/8) 3178110000006292 a001 39088169/73681302247*17393796001^(6/7) 3178110000006292 a001 39088169/10749957122*10749957122^(19/24) 3178110000006292 a001 39088169/28143753123*312119004989^(8/11) 3178110000006292 a001 12586269025/87403803*23725150497407^(1/4) 3178110000006292 a001 39088169/28143753123*23725150497407^(5/8) 3178110000006292 a001 12586269025/87403803*73681302247^(4/13) 3178110000006292 a001 10983760033/29134601*17393796001^(2/7) 3178110000006292 a001 39088169/28143753123*73681302247^(10/13) 3178110000006292 a001 39088169/73681302247*45537549124^(14/17) 3178110000006292 a001 956722026041/87403803*17393796001^(1/7) 3178110000006292 a001 39088169/1322157322203*45537549124^(16/17) 3178110000006292 a001 39088169/312119004989*45537549124^(15/17) 3178110000006292 a001 39088169/28143753123*28143753123^(4/5) 3178110000006292 a001 39088169/73681302247*817138163596^(14/19) 3178110000006292 a001 10983760033/29134601*14662949395604^(2/9) 3178110000006292 a001 39088169/73681302247*505019158607^(3/4) 3178110000006292 a001 39088169/73681302247*192900153618^(7/9) 3178110000006292 a001 86267571272/87403803*45537549124^(4/17) 3178110000006292 a001 365435296162/87403803*45537549124^(3/17) 3178110000006292 a001 516002918640/29134601*45537549124^(2/17) 3178110000006292 a001 39088169/192900153618*312119004989^(4/5) 3178110000006292 a001 6557470319842/87403803*45537549124^(1/17) 3178110000006292 a001 39088169/192900153618*23725150497407^(11/16) 3178110000006292 a001 3372041405099480968/10610209857723 3178110000006292 a001 39088169/3461452808002*312119004989^(10/11) 3178110000006292 a001 75283811239/29134601*312119004989^(2/11) 3178110000006292 a001 2504730781961/87403803*312119004989^(1/11) 3178110000006292 a001 365435296162/87403803*14662949395604^(1/7) 3178110000006292 a001 365435296162/87403803*192900153618^(1/6) 3178110000006292 a001 139583862445/87403803*312119004989^(1/5) 3178110000006292 a001 4052739537881/87403803*73681302247^(1/13) 3178110000006292 a001 39088169/1322157322203*192900153618^(8/9) 3178110000006292 a001 39088169/5600748293801*192900153618^(17/18) 3178110000006292 a001 591286729879/87403803*73681302247^(2/13) 3178110000006292 a001 39088169/312119004989*192900153618^(5/6) 3178110000006292 a001 2084036199823432237/6557470319842 3178110000006292 a001 53316291173/87403803*73681302247^(1/4) 3178110000006292 a001 2504730781961/87403803*28143753123^(1/10) 3178110000006292 a001 39088169/192900153618*73681302247^(11/13) 3178110000006292 a001 39088169/1322157322203*73681302247^(12/13) 3178110000006292 a001 75283811239/29134601*28143753123^(1/5) 3178110000006292 a001 20365011074/87403803*45537549124^(5/17) 3178110000006292 a001 3536736619241/29134601*10749957122^(1/24) 3178110000006292 a001 20365011074/87403803*312119004989^(3/11) 3178110000006292 a001 20365011074/87403803*14662949395604^(5/21) 3178110000006292 a001 20365011074/87403803*192900153618^(5/18) 3178110000006292 a001 6557470319842/87403803*10749957122^(1/16) 3178110000006292 a001 4052739537881/87403803*10749957122^(1/12) 3178110000006292 a001 20365011074/87403803*28143753123^(3/10) 3178110000006292 a001 516002918640/29134601*10749957122^(1/8) 3178110000006292 a001 39088169/312119004989*28143753123^(9/10) 3178110000006292 a001 591286729879/87403803*10749957122^(1/6) 3178110000006292 a001 12586269025/87403803*10749957122^(1/3) 3178110000006292 a001 365435296162/87403803*10749957122^(3/16) 3178110000006292 a001 75283811239/29134601*10749957122^(5/24) 3178110000006292 a001 86267571272/87403803*10749957122^(1/4) 3178110000006292 a001 10983760033/29134601*10749957122^(7/24) 3178110000006292 a001 3536736619241/29134601*4106118243^(1/23) 3178110000006292 a001 39088169/17393796001*45537549124^(13/17) 3178110000006292 a001 7778742049/87403803*45537549124^(1/3) 3178110000006292 a001 20365011074/87403803*10749957122^(5/16) 3178110000006292 a001 304056783818718281/956722026041 3178110000006292 a001 39088169/17393796001*14662949395604^(13/21) 3178110000006292 a001 39088169/17393796001*192900153618^(13/18) 3178110000006292 a001 39088169/17393796001*73681302247^(3/4) 3178110000006292 a001 4052739537881/87403803*4106118243^(2/23) 3178110000006292 a001 39088169/28143753123*10749957122^(5/6) 3178110000006292 a001 39088169/73681302247*10749957122^(7/8) 3178110000006292 a001 516002918640/29134601*4106118243^(3/23) 3178110000006292 a001 39088169/192900153618*10749957122^(11/12) 3178110000006292 a001 39088169/312119004989*10749957122^(15/16) 3178110000006292 a001 39088169/505019158607*10749957122^(23/24) 3178110000006292 a001 591286729879/87403803*4106118243^(4/23) 3178110000006292 a001 39088169/17393796001*10749957122^(13/16) 3178110000006292 a001 75283811239/29134601*4106118243^(5/23) 3178110000006292 a001 1602508992/29134601*4106118243^(9/23) 3178110000006292 a001 86267571272/87403803*4106118243^(6/23) 3178110000006292 a001 10983760033/29134601*4106118243^(7/23) 3178110000006292 a001 3536736619241/29134601*1568397607^(1/22) 3178110000006292 a001 12586269025/87403803*4106118243^(8/23) 3178110000006292 a001 27777889717477/87403802 3178110000006292 a001 39088169/2537720636*2537720636^(7/9) 3178110000006292 a001 4052739537881/87403803*1568397607^(1/11) 3178110000006292 a001 39088169/10749957122*4106118243^(19/23) 3178110000006292 a001 39088169/28143753123*4106118243^(20/23) 3178110000006292 a001 39088169/73681302247*4106118243^(21/23) 3178110000006292 a001 516002918640/29134601*1568397607^(3/22) 3178110000006292 a001 39088169/192900153618*4106118243^(22/23) 3178110000006292 a001 591286729879/87403803*1568397607^(2/11) 3178110000006292 a001 1134903170/87403803*2537720636^(7/15) 3178110000006292 a001 75283811239/29134601*1568397607^(5/22) 3178110000006292 a001 139583862445/87403803*1568397607^(1/4) 3178110000006292 a001 86267571272/87403803*1568397607^(3/11) 3178110000006292 a001 1836311903/87403803*1568397607^(5/11) 3178110000006292 a001 10983760033/29134601*1568397607^(7/22) 3178110000006292 a001 3536736619241/29134601*599074578^(1/21) 3178110000006292 a001 12586269025/87403803*1568397607^(4/11) 3178110000006292 a001 39088169/2537720636*17393796001^(5/7) 3178110000006292 a001 1134903170/87403803*17393796001^(3/7) 3178110000006292 a001 1134903170/87403803*45537549124^(7/17) 3178110000006292 a001 8872257381519146/27916772489 3178110000006292 a001 39088169/2537720636*312119004989^(7/11) 3178110000006292 a001 1134903170/87403803*14662949395604^(1/3) 3178110000006292 a001 39088169/2537720636*505019158607^(5/8) 3178110000006292 a001 1134903170/87403803*192900153618^(7/18) 3178110000006292 a001 39088169/2537720636*28143753123^(7/10) 3178110000006292 a001 1602508992/29134601*1568397607^(9/22) 3178110000006292 a001 1134903170/87403803*10749957122^(7/16) 3178110000006292 a001 6557470319842/87403803*599074578^(1/14) 3178110000006292 a001 4052739537881/87403803*599074578^(2/21) 3178110000006292 a001 39088169/4106118243*1568397607^(9/11) 3178110000006292 a001 39088169/10749957122*1568397607^(19/22) 3178110000006292 a001 39088169/28143753123*1568397607^(10/11) 3178110000006292 a001 39088169/73681302247*1568397607^(21/22) 3178110000006292 a001 516002918640/29134601*599074578^(1/7) 3178110000006292 a001 956722026041/87403803*599074578^(1/6) 3178110000006292 a001 591286729879/87403803*599074578^(4/21) 3178110000006292 a001 365435296162/87403803*599074578^(3/14) 3178110000006292 a001 75283811239/29134601*599074578^(5/21) 3178110000006292 a001 86267571272/87403803*599074578^(2/7) 3178110000006292 a001 10983760033/29134601*599074578^(1/3) 3178110000006292 a001 39088169/969323029*2537720636^(11/15) 3178110000006292 a001 3536736619241/29134601*228826127^(1/20) 3178110000006292 a001 20365011074/87403803*599074578^(5/14) 3178110000006292 a001 233802911/29134601*599074578^(11/21) 3178110000006292 a001 12586269025/87403803*599074578^(8/21) 3178110000006292 a001 39088169/969323029*45537549124^(11/17) 3178110000006292 a001 16944503814015853/53316291173 3178110000006292 a001 39088169/969323029*312119004989^(3/5) 3178110000006292 a001 39088169/969323029*14662949395604^(11/21) 3178110000006292 a001 39088169/969323029*192900153618^(11/18) 3178110000006292 a001 39088169/969323029*10749957122^(11/16) 3178110000006292 a001 433494437/87403803*4106118243^(1/2) 3178110000006292 a001 1602508992/29134601*599074578^(3/7) 3178110000006292 a001 1836311903/87403803*599074578^(10/21) 3178110000006292 a001 39088169/969323029*1568397607^(3/4) 3178110000006292 a001 1134903170/87403803*599074578^(1/2) 3178110000006292 a001 39088169/1568397607*599074578^(17/21) 3178110000006292 a001 4052739537881/87403803*228826127^(1/10) 3178110000006292 a001 39088169/4106118243*599074578^(6/7) 3178110000006292 a001 2504730781961/87403803*228826127^(1/8) 3178110000006292 a001 39088169/2537720636*599074578^(5/6) 3178110000006292 a001 39088169/10749957122*599074578^(19/21) 3178110000006292 a001 39088169/17393796001*599074578^(13/14) 3178110000006292 a001 39088169/28143753123*599074578^(20/21) 3178110000006292 a001 516002918640/29134601*228826127^(3/20) 3178110000006292 a001 39088169/969323029*599074578^(11/14) 3178110000006292 a001 591286729879/54018521*20633239^(1/5) 3178110000006292 a001 591286729879/87403803*228826127^(1/5) 3178110000006292 a001 75283811239/29134601*228826127^(1/4) 3178110000006292 a001 86267571272/87403803*228826127^(3/10) 3178110000006292 a001 10983760033/29134601*228826127^(7/20) 3178110000006292 a001 3536736619241/29134601*87403803^(1/19) 3178110000006292 a001 20365011074/87403803*228826127^(3/8) 3178110000006292 a001 165580141/87403803*2537720636^(5/9) 3178110000006292 a001 6472224534451829/20365011074 3178110000006292 a001 165580141/87403803*312119004989^(5/11) 3178110000006292 a001 39088169/370248451*9062201101803^(1/2) 3178110000006292 a001 165580141/87403803*3461452808002^(5/12) 3178110000006292 a001 165580141/87403803*28143753123^(1/2) 3178110000006292 a001 12586269025/87403803*228826127^(2/5) 3178110000006292 a001 1602508992/29134601*228826127^(9/20) 3178110000006292 a001 267914296/87403803*228826127^(3/5) 3178110000006292 a001 1836311903/87403803*228826127^(1/2) 3178110000006292 a001 233802911/29134601*228826127^(11/20) 3178110000006292 a001 14930352/228826127*33385282^(8/9) 3178110000006292 a001 39088169/599074578*228826127^(4/5) 3178110000006292 a001 4052739537881/87403803*87403803^(2/19) 3178110000006292 a001 63245986/87403803*141422324^(9/13) 3178110000006292 a001 39088169/1568397607*228826127^(17/20) 3178110000006292 a001 39088169/2537720636*228826127^(7/8) 3178110000006292 a001 39088169/4106118243*228826127^(9/10) 3178110000006292 a001 39088169/10749957122*228826127^(19/20) 3178110000006292 a001 165580141/87403803*228826127^(5/8) 3178110000006292 a001 516002918640/29134601*87403803^(3/19) 3178110000006292 a001 591286729879/87403803*87403803^(4/19) 3178110000006292 a001 75283811239/29134601*87403803^(5/19) 3178110000006292 a001 86267571272/87403803*87403803^(6/19) 3178110000006292 a001 10983760033/29134601*87403803^(7/19) 3178110000006292 a001 3536736619241/29134601*33385282^(1/18) 3178110000006292 a001 63245986/87403803*2537720636^(3/5) 3178110000006292 a001 2472169789339634/7778742049 3178110000006292 a001 63245986/87403803*45537549124^(9/17) 3178110000006292 a001 63245986/87403803*14662949395604^(3/7) 3178110000006292 a001 39088169/141422324*1322157322203^(1/2) 3178110000006292 a001 63245986/87403803*192900153618^(1/2) 3178110000006292 a001 63245986/87403803*10749957122^(9/16) 3178110000006292 a001 63245986/87403803*599074578^(9/14) 3178110000006292 a001 12586269025/87403803*87403803^(8/19) 3178110000006292 a001 1602508992/29134601*87403803^(9/19) 3178110000006292 a001 14930352/370248451*33385282^(11/12) 3178110000006292 a001 2971215073/87403803*87403803^(1/2) 3178110000006292 a001 102334155/10749957122*141422324^(12/13) 3178110000006292 a001 1836311903/87403803*87403803^(10/19) 3178110000006292 a001 9303105/230701876*141422324^(11/13) 3178110000006292 a001 34111385/29134601*87403803^(13/19) 3178110000006292 a001 34111385/199691526*141422324^(10/13) 3178110000006292 a001 6557470319842/87403803*33385282^(1/12) 3178110000006292 a001 233802911/29134601*87403803^(11/19) 3178110000006292 a001 267914296/228826127*141422324^(2/3) 3178110000006292 a001 829464/33281921*33385282^(17/18) 3178110000006292 a001 267914296/87403803*87403803^(12/19) 3178110000006292 a001 701408733/228826127*141422324^(8/13) 3178110000006292 a001 267914296/28143753123*141422324^(12/13) 3178110000006292 a001 39088169/228826127*87403803^(15/19) 3178110000006292 a001 701408733/73681302247*141422324^(12/13) 3178110000006292 a001 165580141/228826127*141422324^(9/13) 3178110000006292 a001 1836311903/192900153618*141422324^(12/13) 3178110000006292 a001 102287808/10745088481*141422324^(12/13) 3178110000006292 a001 12586269025/1322157322203*141422324^(12/13) 3178110000006292 a001 32951280099/3461452808002*141422324^(12/13) 3178110000006292 a001 86267571272/9062201101803*141422324^(12/13) 3178110000006292 a001 225851433717/23725150497407*141422324^(12/13) 3178110000006292 a001 139583862445/14662949395604*141422324^(12/13) 3178110000006292 a001 53316291173/5600748293801*141422324^(12/13) 3178110000006292 a001 20365011074/2139295485799*141422324^(12/13) 3178110000006292 a001 7778742049/817138163596*141422324^(12/13) 3178110000006292 a001 2971215073/312119004989*141422324^(12/13) 3178110000006292 a001 2971215073/228826127*141422324^(7/13) 3178110000006292 a001 1134903170/119218851371*141422324^(12/13) 3178110000006292 a001 433494437/45537549124*141422324^(12/13) 3178110000006292 a001 267914296/6643838879*141422324^(11/13) 3178110000006292 a001 701408733/17393796001*141422324^(11/13) 3178110000006292 a001 1836311903/45537549124*141422324^(11/13) 3178110000006292 a001 4807526976/119218851371*141422324^(11/13) 3178110000006292 a001 1144206275/28374454999*141422324^(11/13) 3178110000006292 a001 32951280099/817138163596*141422324^(11/13) 3178110000006292 a001 86267571272/2139295485799*141422324^(11/13) 3178110000006292 a001 225851433717/5600748293801*141422324^(11/13) 3178110000006292 a001 365435296162/9062201101803*141422324^(11/13) 3178110000006292 a001 139583862445/3461452808002*141422324^(11/13) 3178110000006292 a001 53316291173/1322157322203*141422324^(11/13) 3178110000006292 a001 20365011074/505019158607*141422324^(11/13) 3178110000006292 a001 7778742049/192900153618*141422324^(11/13) 3178110000006292 a001 2971215073/73681302247*141422324^(11/13) 3178110000006292 a001 12586269025/228826127*141422324^(6/13) 3178110000006292 a001 1134903170/28143753123*141422324^(11/13) 3178110000006292 a001 267914296/1568397607*141422324^(10/13) 3178110000006292 a001 433494437/10749957122*141422324^(11/13) 3178110000006292 a001 233802911/1368706081*141422324^(10/13) 3178110000006292 a001 165580141/17393796001*141422324^(12/13) 3178110000006292 a001 1836311903/10749957122*141422324^(10/13) 3178110000006292 a001 1602508992/9381251041*141422324^(10/13) 3178110000006292 a001 12586269025/73681302247*141422324^(10/13) 3178110000006292 a001 10983760033/64300051206*141422324^(10/13) 3178110000006292 a001 86267571272/505019158607*141422324^(10/13) 3178110000006292 a001 75283811239/440719107401*141422324^(10/13) 3178110000006292 a001 2504730781961/14662949395604*141422324^(10/13) 3178110000006292 a001 139583862445/817138163596*141422324^(10/13) 3178110000006292 a001 53316291173/312119004989*141422324^(10/13) 3178110000006292 a001 20365011074/119218851371*141422324^(10/13) 3178110000006292 a001 7778742049/45537549124*141422324^(10/13) 3178110000006292 a001 2971215073/17393796001*141422324^(10/13) 3178110000006292 a001 53316291173/228826127*141422324^(5/13) 3178110000006292 a001 1134903170/6643838879*141422324^(10/13) 3178110000006292 a001 102334155/228826127*17393796001^(4/7) 3178110000006292 a001 102334155/228826127*14662949395604^(4/9) 3178110000006292 a001 102334155/228826127*73681302247^(7/13) 3178110000006292 a001 3490759759854675/10983760033 3178110000006292 a001 102334155/228826127*10749957122^(7/12) 3178110000006292 a001 102334155/228826127*4106118243^(14/23) 3178110000006292 a001 102334155/228826127*1568397607^(7/11) 3178110000006292 a001 433494437/2537720636*141422324^(10/13) 3178110000006292 a001 233802911/199691526*141422324^(2/3) 3178110000006292 a001 102334155/228826127*599074578^(2/3) 3178110000006292 a001 433494437/599074578*141422324^(9/13) 3178110000006292 a001 139583862445/228826127*141422324^(1/3) 3178110000006292 a001 165580141/4106118243*141422324^(11/13) 3178110000006292 a001 1134903170/1568397607*141422324^(9/13) 3178110000006292 a001 2971215073/4106118243*141422324^(9/13) 3178110000006292 a001 7778742049/10749957122*141422324^(9/13) 3178110000006292 a001 20365011074/28143753123*141422324^(9/13) 3178110000006292 a001 53316291173/73681302247*141422324^(9/13) 3178110000006292 a001 139583862445/192900153618*141422324^(9/13) 3178110000006292 a001 10610209857723/14662949395604*141422324^(9/13) 3178110000006292 a001 591286729879/817138163596*141422324^(9/13) 3178110000006292 a001 225851433717/312119004989*141422324^(9/13) 3178110000006292 a001 86267571272/119218851371*141422324^(9/13) 3178110000006292 a001 32951280099/45537549124*141422324^(9/13) 3178110000006292 a001 12586269025/17393796001*141422324^(9/13) 3178110000006292 a001 4807526976/6643838879*141422324^(9/13) 3178110000006292 a001 1836311903/2537720636*141422324^(9/13) 3178110000006292 a001 225851433717/228826127*141422324^(4/13) 3178110000006292 a001 701408733/969323029*141422324^(9/13) 3178110000006292 a001 1836311903/1568397607*141422324^(2/3) 3178110000006292 a001 1836311903/599074578*141422324^(8/13) 3178110000006292 a001 1602508992/1368706081*141422324^(2/3) 3178110000006292 a001 12586269025/10749957122*141422324^(2/3) 3178110000006292 a001 10983760033/9381251041*141422324^(2/3) 3178110000006292 a001 86267571272/73681302247*141422324^(2/3) 3178110000006292 a001 75283811239/64300051206*141422324^(2/3) 3178110000006292 a001 2504730781961/2139295485799*141422324^(2/3) 3178110000006292 a001 365435296162/312119004989*141422324^(2/3) 3178110000006292 a001 139583862445/119218851371*141422324^(2/3) 3178110000006292 a001 53316291173/45537549124*141422324^(2/3) 3178110000006292 a001 20365011074/17393796001*141422324^(2/3) 3178110000006292 a001 7778742049/6643838879*141422324^(2/3) 3178110000006292 a001 2971215073/2537720636*141422324^(2/3) 3178110000006292 a001 1134903170/969323029*141422324^(2/3) 3178110000006292 a001 4052739537881/87403803*33385282^(1/9) 3178110000006292 a001 686789568/224056801*141422324^(8/13) 3178110000006292 a001 12586269025/4106118243*141422324^(8/13) 3178110000006292 a001 32951280099/10749957122*141422324^(8/13) 3178110000006292 a001 86267571272/28143753123*141422324^(8/13) 3178110000006292 a001 32264490531/10525900321*141422324^(8/13) 3178110000006292 a001 591286729879/192900153618*141422324^(8/13) 3178110000006292 a001 1548008755920/505019158607*141422324^(8/13) 3178110000006292 a001 1515744265389/494493258286*141422324^(8/13) 3178110000006292 a001 2504730781961/817138163596*141422324^(8/13) 3178110000006292 a001 956722026041/312119004989*141422324^(8/13) 3178110000006292 a001 365435296162/119218851371*141422324^(8/13) 3178110000006292 a001 139583862445/45537549124*141422324^(8/13) 3178110000006292 a001 53316291173/17393796001*141422324^(8/13) 3178110000006292 a001 20365011074/6643838879*141422324^(8/13) 3178110000006292 a001 956722026041/228826127*141422324^(3/13) 3178110000006292 a001 7778742049/2537720636*141422324^(8/13) 3178110000006292 a001 267914296/370248451*141422324^(9/13) 3178110000006292 a001 165580141/969323029*141422324^(10/13) 3178110000006292 a001 7778742049/599074578*141422324^(7/13) 3178110000006292 a001 2971215073/969323029*141422324^(8/13) 3178110000006292 a001 20365011074/1568397607*141422324^(7/13) 3178110000006292 a001 53316291173/4106118243*141422324^(7/13) 3178110000006292 a001 139583862445/10749957122*141422324^(7/13) 3178110000006292 a001 365435296162/28143753123*141422324^(7/13) 3178110000006292 a001 956722026041/73681302247*141422324^(7/13) 3178110000006292 a001 2504730781961/192900153618*141422324^(7/13) 3178110000006292 a001 10610209857723/817138163596*141422324^(7/13) 3178110000006292 a001 4052739537881/312119004989*141422324^(7/13) 3178110000006292 a001 1548008755920/119218851371*141422324^(7/13) 3178110000006292 a001 591286729879/45537549124*141422324^(7/13) 3178110000006292 a001 7787980473/599786069*141422324^(7/13) 3178110000006292 a001 86267571272/6643838879*141422324^(7/13) 3178110000006292 a001 4052739537881/228826127*141422324^(2/13) 3178110000006292 a001 32951280099/2537720636*141422324^(7/13) 3178110000006292 a001 10983760033/199691526*141422324^(6/13) 3178110000006292 a001 12586269025/969323029*141422324^(7/13) 3178110000006292 a001 433494437/370248451*141422324^(2/3) 3178110000006292 a001 102334155/228826127*228826127^(7/10) 3178110000006292 a001 86267571272/1568397607*141422324^(6/13) 3178110000006292 a001 39088169/599074578*87403803^(16/19) 3178110000006292 a001 1134903170/370248451*141422324^(8/13) 3178110000006292 a001 75283811239/1368706081*141422324^(6/13) 3178110000006292 a001 591286729879/10749957122*141422324^(6/13) 3178110000006292 a001 12585437040/228811001*141422324^(6/13) 3178110000006292 a001 4052739537881/73681302247*141422324^(6/13) 3178110000006292 a001 3536736619241/64300051206*141422324^(6/13) 3178110000006292 a001 6557470319842/119218851371*141422324^(6/13) 3178110000006292 a001 2504730781961/45537549124*141422324^(6/13) 3178110000006292 a001 956722026041/17393796001*141422324^(6/13) 3178110000006292 a001 365435296162/6643838879*141422324^(6/13) 3178110000006292 a001 139583862445/2537720636*141422324^(6/13) 3178110000006292 a001 139583862445/599074578*141422324^(5/13) 3178110000006292 a001 53316291173/969323029*141422324^(6/13) 3178110000006292 a001 34111385/199691526*2537720636^(2/3) 3178110000006292 a001 34111385/199691526*45537549124^(10/17) 3178110000006292 a001 34111385/199691526*312119004989^(6/11) 3178110000006292 a001 34111385/199691526*14662949395604^(10/21) 3178110000006292 a001 34111385/199691526*192900153618^(5/9) 3178110000006292 a001 3427097886697485/10783446409 3178110000006292 a001 267914296/228826127*73681302247^(1/2) 3178110000006292 a001 34111385/199691526*28143753123^(3/5) 3178110000006292 a001 267914296/228826127*10749957122^(13/24) 3178110000006292 a001 34111385/199691526*10749957122^(5/8) 3178110000006292 a001 267914296/228826127*4106118243^(13/23) 3178110000006292 a001 34111385/199691526*4106118243^(15/23) 3178110000006292 a001 267914296/228826127*1568397607^(13/22) 3178110000006292 a001 34111385/199691526*1568397607^(15/22) 3178110000006292 a001 267914296/228826127*599074578^(13/21) 3178110000006292 a001 34111385/199691526*599074578^(5/7) 3178110000006292 a001 365435296162/1568397607*141422324^(5/13) 3178110000006292 a001 4807526976/370248451*141422324^(7/13) 3178110000006292 a001 701408733/228826127*2537720636^(8/15) 3178110000006292 a001 701408733/228826127*45537549124^(8/17) 3178110000006292 a001 701408733/228826127*14662949395604^(8/21) 3178110000006292 a001 14619165/224056801*23725150497407^(1/2) 3178110000006292 a001 14619165/224056801*505019158607^(4/7) 3178110000006292 a001 701408733/228826127*192900153618^(4/9) 3178110000006292 a001 701408733/228826127*73681302247^(6/13) 3178110000006292 a001 14619165/224056801*73681302247^(8/13) 3178110000006292 a001 701408733/228826127*10749957122^(1/2) 3178110000006292 a001 14619165/224056801*10749957122^(2/3) 3178110000006292 a001 701408733/228826127*4106118243^(12/23) 3178110000006292 a001 14619165/224056801*4106118243^(16/23) 3178110000006292 a001 182717648081/299537289*141422324^(1/3) 3178110000006292 a001 956722026041/4106118243*141422324^(5/13) 3178110000006292 a001 701408733/228826127*1568397607^(6/11) 3178110000006292 a001 34111385/64300051206*2537720636^(14/15) 3178110000006292 a001 2504730781961/10749957122*141422324^(5/13) 3178110000006292 a001 14619165/10525900321*2537720636^(8/9) 3178110000006292 a001 102334155/45537549124*2537720636^(13/15) 3178110000006292 a001 6557470319842/28143753123*141422324^(5/13) 3178110000006292 a001 102334155/10749957122*2537720636^(4/5) 3178110000006292 a001 10610209857723/45537549124*141422324^(5/13) 3178110000006292 a001 4052739537881/17393796001*141422324^(5/13) 3178110000006292 a001 14619165/224056801*1568397607^(8/11) 3178110000006292 a001 1548008755920/6643838879*141422324^(5/13) 3178110000006292 a001 102334155/6643838879*2537720636^(7/9) 3178110000006292 a001 102287808/4868641*2537720636^(4/9) 3178110000006292 a001 12586269025/228826127*2537720636^(2/5) 3178110000006292 a001 34111385/1368706081*45537549124^(2/3) 3178110000006292 a001 1836311903/228826127*312119004989^(2/5) 3178110000006292 a001 187917426909946965/591286729879 3178110000006292 a001 1836311903/228826127*10749957122^(11/24) 3178110000006292 a001 34111385/1368706081*10749957122^(17/24) 3178110000006292 a001 53316291173/228826127*2537720636^(1/3) 3178110000006292 a001 2971215073/228826127*2537720636^(7/15) 3178110000006292 a001 225851433717/228826127*2537720636^(4/15) 3178110000006292 a001 591286729879/228826127*2537720636^(2/9) 3178110000006292 a001 956722026041/228826127*2537720636^(1/5) 3178110000006292 a001 1836311903/228826127*4106118243^(11/23) 3178110000006292 a001 4052739537881/228826127*2537720636^(2/15) 3178110000006292 a001 6557470319842/228826127*2537720636^(1/9) 3178110000006292 a001 34111385/1368706081*4106118243^(17/23) 3178110000006292 a001 102334155/10749957122*45537549124^(12/17) 3178110000006292 a001 102334155/10749957122*14662949395604^(4/7) 3178110000006292 a001 102287808/4868641*23725150497407^(5/16) 3178110000006292 a001 102287808/4868641*505019158607^(5/14) 3178110000006292 a001 102334155/10749957122*192900153618^(2/3) 3178110000006292 a001 102287808/4868641*73681302247^(5/13) 3178110000006292 a001 102334155/10749957122*73681302247^(9/13) 3178110000006292 a001 102287808/4868641*28143753123^(2/5) 3178110000006292 a001 102287808/4868641*10749957122^(5/12) 3178110000006292 a001 34111385/64300051206*17393796001^(6/7) 3178110000006292 a001 102334155/10749957122*10749957122^(3/4) 3178110000006292 a001 12586269025/228826127*45537549124^(6/17) 3178110000006292 a001 831985/228811001*817138163596^(2/3) 3178110000006292 a001 12586269025/228826127*14662949395604^(2/7) 3178110000006292 a001 12586269025/228826127*192900153618^(1/3) 3178110000006292 a001 86267571272/228826127*17393796001^(2/7) 3178110000006292 a001 2504730781961/228826127*17393796001^(1/7) 3178110000006292 a001 6765/228826126*45537549124^(16/17) 3178110000006292 a001 34111385/64300051206*45537549124^(14/17) 3178110000006292 a001 102334155/817138163596*45537549124^(15/17) 3178110000006292 a001 14619165/10525900321*312119004989^(8/11) 3178110000006292 a001 32951280099/228826127*23725150497407^(1/4) 3178110000006292 a001 14619165/10525900321*23725150497407^(5/8) 3178110000006292 a001 32951280099/228826127*73681302247^(4/13) 3178110000006292 a001 225851433717/228826127*45537549124^(4/17) 3178110000006292 a001 956722026041/228826127*45537549124^(3/17) 3178110000006292 a001 53316291173/228826127*45537549124^(5/17) 3178110000006292 a001 4052739537881/228826127*45537549124^(2/17) 3178110000006292 a001 14619165/10525900321*73681302247^(10/13) 3178110000006292 a001 34111385/64300051206*817138163596^(14/19) 3178110000006292 a001 34111385/64300051206*14662949395604^(2/3) 3178110000006292 a001 34111385/64300051206*505019158607^(3/4) 3178110000006292 a001 102334155/505019158607*312119004989^(4/5) 3178110000006292 a001 34111385/3020733700601*312119004989^(10/11) 3178110000006292 a001 102334155/817138163596*312119004989^(9/11) 3178110000006292 a001 102334155/505019158607*23725150497407^(11/16) 3178110000006292 a001 102334155/14662949395604*817138163596^(17/19) 3178110000006292 a006 5^(1/2)*Fibonacci(68)/Lucas(40)/sqrt(5) 3178110000006292 a001 102334155/5600748293801*505019158607^(7/8) 3178110000006292 a001 225749145909/4868641*73681302247^(1/13) 3178110000006292 a001 6765/228826126*192900153618^(8/9) 3178110000006292 a001 102334155/14662949395604*192900153618^(17/18) 3178110000006292 a001 1548008755920/228826127*73681302247^(2/13) 3178110000006292 a001 225851433717/228826127*73681302247^(3/13) 3178110000006292 a001 139583862445/228826127*73681302247^(1/4) 3178110000006292 a001 53316291173/228826127*312119004989^(3/11) 3178110000006292 a001 53316291173/228826127*14662949395604^(5/21) 3178110000006292 a001 53316291173/228826127*192900153618^(5/18) 3178110000006292 a001 102334155/45537549124*45537549124^(13/17) 3178110000006292 a001 6557470319842/228826127*28143753123^(1/10) 3178110000006292 a001 102334155/505019158607*73681302247^(11/13) 3178110000006292 a001 6765/228826126*73681302247^(12/13) 3178110000006292 a001 591286729879/228826127*28143753123^(1/5) 3178110000006292 a001 20365011074/228826127*45537549124^(1/3) 3178110000006292 a001 53316291173/228826127*28143753123^(3/10) 3178110000006292 a001 1042018099911716235/3278735159921 3178110000006292 a001 102334155/45537549124*14662949395604^(13/21) 3178110000006292 a001 102334155/45537549124*192900153618^(13/18) 3178110000006292 a001 102334155/45537549124*73681302247^(3/4) 3178110000006292 a001 225749145909/4868641*10749957122^(1/12) 3178110000006292 a001 14619165/10525900321*28143753123^(4/5) 3178110000006292 a001 4052739537881/228826127*10749957122^(1/8) 3178110000006292 a001 102334155/817138163596*28143753123^(9/10) 3178110000006292 a001 1548008755920/228826127*10749957122^(1/6) 3178110000006292 a001 956722026041/228826127*10749957122^(3/16) 3178110000006292 a001 591286729879/228826127*10749957122^(5/24) 3178110000006292 a001 12586269025/228826127*10749957122^(3/8) 3178110000006292 a001 225851433717/228826127*10749957122^(1/4) 3178110000006292 a001 86267571272/228826127*10749957122^(7/24) 3178110000006292 a001 32951280099/228826127*10749957122^(1/3) 3178110000006292 a001 53316291173/228826127*10749957122^(5/16) 3178110000006292 a001 7778742049/228826127*817138163596^(1/3) 3178110000006292 a001 796030994547383595/2504730781961 3178110000006292 a001 225749145909/4868641*4106118243^(2/23) 3178110000006292 a001 831985/228811001*10749957122^(19/24) 3178110000006292 a001 14619165/10525900321*10749957122^(5/6) 3178110000006292 a001 102334155/45537549124*10749957122^(13/16) 3178110000006292 a001 34111385/64300051206*10749957122^(7/8) 3178110000006292 a001 4052739537881/228826127*4106118243^(3/23) 3178110000006292 a001 102334155/505019158607*10749957122^(11/12) 3178110000006292 a001 102334155/817138163596*10749957122^(15/16) 3178110000006292 a001 34111385/440719107401*10749957122^(23/24) 3178110000006292 a001 1548008755920/228826127*4106118243^(4/23) 3178110000006292 a001 591286729879/228826127*4106118243^(5/23) 3178110000006292 a001 225851433717/228826127*4106118243^(6/23) 3178110000006292 a001 102287808/4868641*4106118243^(10/23) 3178110000006292 a001 86267571272/228826127*4106118243^(7/23) 3178110000006292 a001 102334155/6643838879*17393796001^(5/7) 3178110000006292 a001 32951280099/228826127*4106118243^(8/23) 3178110000006292 a001 2971215073/228826127*17393796001^(3/7) 3178110000006292 a001 12586269025/228826127*4106118243^(9/23) 3178110000006292 a001 2971215073/228826127*45537549124^(7/17) 3178110000006292 a001 102334155/6643838879*312119004989^(7/11) 3178110000006292 a001 102334155/6643838879*14662949395604^(5/9) 3178110000006292 a001 2971215073/228826127*14662949395604^(1/3) 3178110000006292 a001 102334155/6643838879*505019158607^(5/8) 3178110000006292 a001 2971215073/228826127*192900153618^(7/18) 3178110000006292 a001 591286729879/2537720636*141422324^(5/13) 3178110000006292 a001 102334155/6643838879*28143753123^(7/10) 3178110000006292 a001 2971215073/228826127*10749957122^(7/16) 3178110000006292 a001 225749145909/4868641*1568397607^(1/11) 3178110000006292 a001 102334155/10749957122*4106118243^(18/23) 3178110000006292 a001 9303105/230701876*2537720636^(11/15) 3178110000006292 a001 831985/228811001*4106118243^(19/23) 3178110000006292 a001 14619165/10525900321*4106118243^(20/23) 3178110000006292 a001 34111385/64300051206*4106118243^(21/23) 3178110000006292 a001 4052739537881/228826127*1568397607^(3/22) 3178110000006292 a001 102334155/505019158607*4106118243^(22/23) 3178110000006292 a001 1548008755920/228826127*1568397607^(2/11) 3178110000006292 a001 591286729879/228826127*1568397607^(5/22) 3178110000006292 a001 365435296162/228826127*1568397607^(1/4) 3178110000006292 a001 225851433717/228826127*1568397607^(3/11) 3178110000006292 a001 86267571272/228826127*1568397607^(7/22) 3178110000006292 a001 1836311903/228826127*1568397607^(1/2) 3178110000006292 a001 32951280099/228826127*1568397607^(4/11) 3178110000006292 a001 9303105/230701876*45537549124^(11/17) 3178110000006292 a001 9303105/230701876*312119004989^(3/5) 3178110000006292 a001 58069678454385675/182717648081 3178110000006292 a001 9303105/230701876*14662949395604^(11/21) 3178110000006292 a001 9303105/230701876*192900153618^(11/18) 3178110000006292 a001 9303105/230701876*10749957122^(11/16) 3178110000006292 a001 12586269025/228826127*1568397607^(9/22) 3178110000006292 a001 102287808/4868641*1568397607^(5/11) 3178110000006292 a001 1134903170/228826127*4106118243^(1/2) 3178110000006292 a001 34111385/1368706081*1568397607^(17/22) 3178110000006292 a001 225749145909/4868641*599074578^(2/21) 3178110000006292 a001 102334155/10749957122*1568397607^(9/11) 3178110000006292 a001 831985/228811001*1568397607^(19/22) 3178110000006292 a001 14619165/10525900321*1568397607^(10/11) 3178110000006292 a001 34111385/64300051206*1568397607^(21/22) 3178110000006292 a001 4052739537881/228826127*599074578^(1/7) 3178110000006292 a001 9303105/230701876*1568397607^(3/4) 3178110000006292 a001 2504730781961/228826127*599074578^(1/6) 3178110000006292 a001 1548008755920/228826127*599074578^(4/21) 3178110000006292 a001 956722026041/228826127*599074578^(3/14) 3178110000006292 a001 591286729879/228826127*599074578^(5/21) 3178110000006292 a001 225851433717/228826127*599074578^(2/7) 3178110000006292 a001 591286729879/599074578*141422324^(4/13) 3178110000006292 a001 86267571272/228826127*599074578^(1/3) 3178110000006292 a001 225851433717/969323029*141422324^(5/13) 3178110000006292 a001 433494437/228826127*2537720636^(5/9) 3178110000006292 a001 53316291173/228826127*599074578^(5/14) 3178110000006292 a001 32951280099/228826127*599074578^(8/21) 3178110000006292 a001 8872257381519147/27916772489 3178110000006292 a001 433494437/228826127*312119004989^(5/11) 3178110000006292 a001 102334155/969323029*9062201101803^(1/2) 3178110000006292 a001 433494437/228826127*3461452808002^(5/12) 3178110000006292 a001 433494437/228826127*28143753123^(1/2) 3178110000006292 a001 701408733/228826127*599074578^(4/7) 3178110000006292 a001 12586269025/228826127*599074578^(3/7) 3178110000006292 a001 102287808/4868641*599074578^(10/21) 3178110000006292 a001 1836311903/228826127*599074578^(11/21) 3178110000006292 a001 2971215073/228826127*599074578^(1/2) 3178110000006292 a001 14619165/224056801*599074578^(16/21) 3178110000006292 a001 225749145909/4868641*228826127^(1/10) 3178110000006292 a001 956722026041/1568397607*141422324^(1/3) 3178110000006292 a001 34111385/1368706081*599074578^(17/21) 3178110000006292 a001 9303105/230701876*599074578^(11/14) 3178110000006292 a001 102334155/6643838879*599074578^(5/6) 3178110000006292 a001 2504730781961/4106118243*141422324^(1/3) 3178110000006292 a001 102334155/10749957122*599074578^(6/7) 3178110000006292 a001 6557470319842/228826127*228826127^(1/8) 3178110000006292 a001 3278735159921/5374978561*141422324^(1/3) 3178110000006292 a001 10610209857723/17393796001*141422324^(1/3) 3178110000006292 a001 4052739537881/6643838879*141422324^(1/3) 3178110000006292 a001 831985/228811001*599074578^(19/21) 3178110000006292 a001 1134903780/1860499*141422324^(1/3) 3178110000006292 a001 102334155/45537549124*599074578^(13/14) 3178110000006292 a001 14619165/10525900321*599074578^(20/21) 3178110000006292 a001 4052739537881/228826127*228826127^(3/20) 3178110000006292 a001 1548008755920/1568397607*141422324^(4/13) 3178110000006292 a001 20365011074/370248451*141422324^(6/13) 3178110000006292 a001 591286729879/969323029*141422324^(1/3) 3178110000006292 a001 4052739537881/4106118243*141422324^(4/13) 3178110000006292 a001 4807525989/4870846*141422324^(4/13) 3178110000006292 a001 6557470319842/6643838879*141422324^(4/13) 3178110000006292 a001 1548008755920/228826127*228826127^(1/5) 3178110000006292 a001 2504730781961/2537720636*141422324^(4/13) 3178110000006293 a001 2504730781961/599074578*141422324^(3/13) 3178110000006293 a001 591286729879/228826127*228826127^(1/4) 3178110000006293 a001 956722026041/969323029*141422324^(4/13) 3178110000006293 a001 39088169/1568397607*87403803^(17/19) 3178110000006293 a001 225851433717/228826127*228826127^(3/10) 3178110000006293 a001 86267571272/228826127*228826127^(7/20) 3178110000006293 a001 6557470319842/1568397607*141422324^(3/13) 3178110000006293 a001 53316291173/228826127*228826127^(3/8) 3178110000006293 a001 86267571272/370248451*141422324^(5/13) 3178110000006293 a001 165580141/228826127*2537720636^(3/5) 3178110000006293 a001 165580141/228826127*45537549124^(9/17) 3178110000006293 a001 16944503814015855/53316291173 3178110000006293 a001 165580141/228826127*817138163596^(9/19) 3178110000006293 a001 102334155/370248451*1322157322203^(1/2) 3178110000006293 a001 165580141/228826127*192900153618^(1/2) 3178110000006293 a001 165580141/228826127*10749957122^(9/16) 3178110000006293 a001 32951280099/228826127*228826127^(2/5) 3178110000006293 a001 10610209857723/2537720636*141422324^(3/13) 3178110000006293 a001 12586269025/228826127*228826127^(9/20) 3178110000006293 a001 3536736619241/199691526*141422324^(2/13) 3178110000006293 a001 4052739537881/969323029*141422324^(3/13) 3178110000006293 a001 165580141/228826127*599074578^(9/14) 3178110000006293 a001 102287808/4868641*228826127^(1/2) 3178110000006293 a001 267914296/228826127*228826127^(13/20) 3178110000006293 a001 225851433717/370248451*141422324^(1/3) 3178110000006293 a001 1836311903/228826127*228826127^(11/20) 3178110000006293 a001 365435296162/370248451*141422324^(4/13) 3178110000006293 a001 701408733/228826127*228826127^(3/5) 3178110000006293 a001 34111385/199691526*228826127^(3/4) 3178110000006293 a001 39088169/4106118243*87403803^(18/19) 3178110000006293 a001 433494437/228826127*228826127^(5/8) 3178110000006293 a001 133957148/299537289*17393796001^(4/7) 3178110000006293 a001 133957148/299537289*14662949395604^(4/9) 3178110000006293 a001 133957148/299537289*505019158607^(1/2) 3178110000006293 a001 133957148/299537289*73681302247^(7/13) 3178110000006293 a001 133957148/299537289*10749957122^(7/12) 3178110000006293 a001 133957148/299537289*4106118243^(14/23) 3178110000006293 a001 225749145909/4868641*87403803^(2/19) 3178110000006293 a001 133957148/299537289*1568397607^(7/11) 3178110000006293 a001 1548008755920/370248451*141422324^(3/13) 3178110000006293 a001 14619165/224056801*228826127^(4/5) 3178110000006293 a001 133957148/299537289*599074578^(2/3) 3178110000006293 a001 102334155/141422324*141422324^(9/13) 3178110000006293 a001 267914296/1568397607*2537720636^(2/3) 3178110000006293 a001 267914296/1568397607*45537549124^(10/17) 3178110000006293 a001 267914296/1568397607*312119004989^(6/11) 3178110000006293 a001 267914296/1568397607*14662949395604^(10/21) 3178110000006293 a001 187917426909946968/591286729879 3178110000006293 a001 267914296/1568397607*192900153618^(5/9) 3178110000006293 a001 233802911/199691526*73681302247^(1/2) 3178110000006293 a001 267914296/1568397607*28143753123^(3/5) 3178110000006293 a001 233802911/199691526*10749957122^(13/24) 3178110000006293 a001 267914296/1568397607*10749957122^(5/8) 3178110000006293 a001 233802911/199691526*4106118243^(13/23) 3178110000006293 a001 267914296/1568397607*4106118243^(15/23) 3178110000006293 a001 233802911/199691526*1568397607^(13/22) 3178110000006293 a001 267914296/505019158607*2537720636^(14/15) 3178110000006293 a001 1836311903/599074578*2537720636^(8/15) 3178110000006293 a001 133957148/96450076809*2537720636^(8/9) 3178110000006293 a001 34111385/1368706081*228826127^(17/20) 3178110000006293 a001 267914296/119218851371*2537720636^(13/15) 3178110000006293 a001 267914296/1568397607*1568397607^(15/22) 3178110000006293 a001 267914296/28143753123*2537720636^(4/5) 3178110000006293 a001 9238424/599786069*2537720636^(7/9) 3178110000006293 a001 267914296/6643838879*2537720636^(11/15) 3178110000006293 a001 12586269025/599074578*2537720636^(4/9) 3178110000006293 a001 7778742049/599074578*2537720636^(7/15) 3178110000006293 a001 10983760033/199691526*2537720636^(2/5) 3178110000006293 a001 1836311903/599074578*45537549124^(8/17) 3178110000006293 a001 1836311903/599074578*14662949395604^(8/21) 3178110000006293 a001 267914296/4106118243*23725150497407^(1/2) 3178110000006293 a001 1836311903/599074578*192900153618^(4/9) 3178110000006293 a001 1836311903/599074578*73681302247^(6/13) 3178110000006293 a001 267914296/4106118243*73681302247^(8/13) 3178110000006293 a001 1836311903/599074578*10749957122^(1/2) 3178110000006293 a001 267914296/4106118243*10749957122^(2/3) 3178110000006293 a001 139583862445/599074578*2537720636^(1/3) 3178110000006293 a001 591286729879/599074578*2537720636^(4/15) 3178110000006293 a001 86000486440/33281921*2537720636^(2/9) 3178110000006293 a001 2504730781961/599074578*2537720636^(1/5) 3178110000006293 a001 1836311903/599074578*4106118243^(12/23) 3178110000006293 a001 3536736619241/199691526*2537720636^(2/15) 3178110000006293 a001 267914296/4106118243*4106118243^(16/23) 3178110000006293 a001 133957148/5374978561*45537549124^(2/3) 3178110000006293 a001 267084832/33281921*312119004989^(2/5) 3178110000006293 a001 1288005205276048896/4052739537881 3178110000006293 a001 267084832/33281921*10749957122^(11/24) 3178110000006293 a001 267914296/505019158607*17393796001^(6/7) 3178110000006293 a001 133957148/5374978561*10749957122^(17/24) 3178110000006293 a001 267914296/28143753123*45537549124^(12/17) 3178110000006293 a001 12586269025/599074578*23725150497407^(5/16) 3178110000006293 a001 12586269025/599074578*505019158607^(5/14) 3178110000006293 a001 267914296/28143753123*192900153618^(2/3) 3178110000006293 a001 12586269025/599074578*73681302247^(5/13) 3178110000006293 a001 267914296/28143753123*73681302247^(9/13) 3178110000006293 a001 267913919/710646*17393796001^(2/7) 3178110000006293 a001 12586269025/599074578*28143753123^(2/5) 3178110000006293 a001 3278735159921/299537289*17393796001^(1/7) 3178110000006293 a001 267914296/9062201101803*45537549124^(16/17) 3178110000006293 a001 267914296/2139295485799*45537549124^(15/17) 3178110000006293 a001 267914296/505019158607*45537549124^(14/17) 3178110000006293 a001 10983760033/199691526*45537549124^(6/17) 3178110000006293 a001 267914296/119218851371*45537549124^(13/17) 3178110000006293 a001 10983760033/199691526*14662949395604^(2/7) 3178110000006293 a001 10983760033/199691526*192900153618^(1/3) 3178110000006293 a001 139583862445/599074578*45537549124^(5/17) 3178110000006293 a001 591286729879/599074578*45537549124^(4/17) 3178110000006293 a001 53316291173/599074578*45537549124^(1/3) 3178110000006293 a001 2504730781961/599074578*45537549124^(3/17) 3178110000006293 a001 3536736619241/199691526*45537549124^(2/17) 3178110000006293 a001 133957148/96450076809*312119004989^(8/11) 3178110000006293 a001 133957148/96450076809*23725150497407^(5/8) 3178110000006293 a001 267914296/23725150497407*312119004989^(10/11) 3178110000006293 a001 267914296/1322157322203*312119004989^(4/5) 3178110000006293 a001 267913919/710646*14662949395604^(2/9) 3178110000006293 a001 10946/599074579*14662949395604^(7/9) 3178110000006293 a001 10946/599074579*505019158607^(7/8) 3178110000006293 a001 139583862445/599074578*312119004989^(3/11) 3178110000006293 a001 139583862445/599074578*14662949395604^(5/21) 3178110000006293 a001 139583862445/599074578*192900153618^(5/18) 3178110000006293 a001 267914296/2139295485799*192900153618^(5/6) 3178110000006293 a001 4052739537881/599074578*73681302247^(2/13) 3178110000006293 a001 43133785636/299537289*73681302247^(4/13) 3178110000006293 a001 591286729879/599074578*73681302247^(3/13) 3178110000006293 a001 182717648081/299537289*73681302247^(1/4) 3178110000006293 a001 267914296/119218851371*14662949395604^(13/21) 3178110000006293 a001 267914296/119218851371*192900153618^(13/18) 3178110000006293 a001 133957148/96450076809*73681302247^(10/13) 3178110000006293 a001 267914296/1322157322203*73681302247^(11/13) 3178110000006293 a001 267914296/9062201101803*73681302247^(12/13) 3178110000006293 a001 267914296/119218851371*73681302247^(3/4) 3178110000006293 a001 86000486440/33281921*28143753123^(1/5) 3178110000006293 a001 139583862445/599074578*28143753123^(3/10) 3178110000006293 a001 10182505537/299537289*817138163596^(1/3) 3178110000006293 a001 9238424/599786069*17393796001^(5/7) 3178110000006293 a001 133957148/96450076809*28143753123^(4/5) 3178110000006293 a001 3536736619241/199691526*10749957122^(1/8) 3178110000006293 a001 267914296/2139295485799*28143753123^(9/10) 3178110000006293 a001 4052739537881/599074578*10749957122^(1/6) 3178110000006293 a001 2504730781961/599074578*10749957122^(3/16) 3178110000006293 a001 86000486440/33281921*10749957122^(5/24) 3178110000006293 a001 7778742049/599074578*17393796001^(3/7) 3178110000006293 a001 591286729879/599074578*10749957122^(1/4) 3178110000006293 a001 12586269025/599074578*10749957122^(5/12) 3178110000006293 a001 267913919/710646*10749957122^(7/24) 3178110000006293 a001 139583862445/599074578*10749957122^(5/16) 3178110000006293 a001 43133785636/299537289*10749957122^(1/3) 3178110000006293 a001 10983760033/199691526*10749957122^(3/8) 3178110000006293 a001 7778742049/599074578*45537549124^(7/17) 3178110000006293 a001 9238424/599786069*312119004989^(7/11) 3178110000006293 a001 190392490391324/599074577 3178110000006293 a001 9238424/599786069*14662949395604^(5/9) 3178110000006293 a001 7778742049/599074578*192900153618^(7/18) 3178110000006293 a001 9238424/599786069*28143753123^(7/10) 3178110000006293 a001 267914296/28143753123*10749957122^(3/4) 3178110000006293 a001 267914296/73681302247*10749957122^(19/24) 3178110000006293 a001 7778742049/599074578*10749957122^(7/16) 3178110000006293 a001 267914296/119218851371*10749957122^(13/16) 3178110000006293 a001 133957148/96450076809*10749957122^(5/6) 3178110000006293 a001 267914296/505019158607*10749957122^(7/8) 3178110000006293 a001 3536736619241/199691526*4106118243^(3/23) 3178110000006293 a001 267914296/1322157322203*10749957122^(11/12) 3178110000006293 a001 267914296/2139295485799*10749957122^(15/16) 3178110000006293 a001 133957148/1730726404001*10749957122^(23/24) 3178110000006293 a001 4052739537881/599074578*4106118243^(4/23) 3178110000006293 a001 86000486440/33281921*4106118243^(5/23) 3178110000006293 a001 591286729879/599074578*4106118243^(6/23) 3178110000006293 a001 267913919/710646*4106118243^(7/23) 3178110000006293 a001 267084832/33281921*4106118243^(11/23) 3178110000006293 a001 43133785636/299537289*4106118243^(8/23) 3178110000006293 a001 267914296/6643838879*45537549124^(11/17) 3178110000006293 a001 267914296/6643838879*312119004989^(3/5) 3178110000006293 a001 267914296/6643838879*14662949395604^(11/21) 3178110000006293 a001 267914296/6643838879*192900153618^(11/18) 3178110000006293 a001 10983760033/199691526*4106118243^(9/23) 3178110000006293 a001 12586269025/599074578*4106118243^(10/23) 3178110000006293 a001 267914296/6643838879*10749957122^(11/16) 3178110000006293 a001 133957148/5374978561*4106118243^(17/23) 3178110000006293 a001 267914296/28143753123*4106118243^(18/23) 3178110000006293 a001 267914296/73681302247*4106118243^(19/23) 3178110000006293 a001 133957148/96450076809*4106118243^(20/23) 3178110000006293 a001 2971215073/599074578*4106118243^(1/2) 3178110000006293 a001 267914296/505019158607*4106118243^(21/23) 3178110000006293 a001 3536736619241/199691526*1568397607^(3/22) 3178110000006293 a001 267914296/1322157322203*4106118243^(22/23) 3178110000006293 a001 567451585/299537289*2537720636^(5/9) 3178110000006293 a001 4052739537881/599074578*1568397607^(2/11) 3178110000006293 a001 86000486440/33281921*1568397607^(5/22) 3178110000006293 a001 956722026041/599074578*1568397607^(1/4) 3178110000006293 a001 591286729879/599074578*1568397607^(3/11) 3178110000006293 a001 267913919/710646*1568397607^(7/22) 3178110000006293 a001 43133785636/299537289*1568397607^(4/11) 3178110000006293 a001 567451585/299537289*312119004989^(5/11) 3178110000006293 a001 304056783818718320/956722026041 3178110000006293 a001 567451585/299537289*3461452808002^(5/12) 3178110000006293 a001 567451585/299537289*28143753123^(1/2) 3178110000006293 a001 1836311903/599074578*1568397607^(6/11) 3178110000006293 a001 10983760033/199691526*1568397607^(9/22) 3178110000006293 a001 12586269025/599074578*1568397607^(5/11) 3178110000006293 a001 267084832/33281921*1568397607^(1/2) 3178110000006293 a001 267914296/4106118243*1568397607^(8/11) 3178110000006293 a001 133957148/5374978561*1568397607^(17/22) 3178110000006293 a001 267914296/6643838879*1568397607^(3/4) 3178110000006293 a001 267914296/28143753123*1568397607^(9/11) 3178110000006293 a001 267914296/73681302247*1568397607^(19/22) 3178110000006293 a001 133957148/96450076809*1568397607^(10/11) 3178110000006293 a001 267914296/505019158607*1568397607^(21/22) 3178110000006293 a001 3536736619241/199691526*599074578^(1/7) 3178110000006293 a001 102334155/6643838879*228826127^(7/8) 3178110000006293 a001 3278735159921/299537289*599074578^(1/6) 3178110000006293 a001 4052739537881/599074578*599074578^(4/21) 3178110000006293 a001 2504730781961/599074578*599074578^(3/14) 3178110000006293 a001 86000486440/33281921*599074578^(5/21) 3178110000006293 a001 591286729879/599074578*599074578^(2/7) 3178110000006293 a001 102334155/10749957122*228826127^(9/10) 3178110000006293 a001 267913919/710646*599074578^(1/3) 3178110000006293 a001 433494437/599074578*2537720636^(3/5) 3178110000006293 a001 139583862445/599074578*599074578^(5/14) 3178110000006293 a001 43133785636/299537289*599074578^(8/21) 3178110000006293 a001 433494437/599074578*45537549124^(9/17) 3178110000006293 a001 433494437/599074578*817138163596^(9/19) 3178110000006293 a001 267914296/969323029*1322157322203^(1/2) 3178110000006293 a001 433494437/599074578*192900153618^(1/2) 3178110000006293 a001 433494437/599074578*10749957122^(9/16) 3178110000006293 a001 10983760033/199691526*599074578^(3/7) 3178110000006293 a001 233802911/199691526*599074578^(13/21) 3178110000006293 a001 12586269025/599074578*599074578^(10/21) 3178110000006293 a001 7778742049/599074578*599074578^(1/2) 3178110000006293 a001 267084832/33281921*599074578^(11/21) 3178110000006293 a001 1836311903/599074578*599074578^(4/7) 3178110000006293 a001 267914296/1568397607*599074578^(5/7) 3178110000006293 a001 831985/228811001*228826127^(19/20) 3178110000006293 a001 701408733/1568397607*17393796001^(4/7) 3178110000006293 a001 701408733/1568397607*14662949395604^(4/9) 3178110000006293 a001 54663801192073921/172000972880 3178110000006293 a001 701408733/1568397607*73681302247^(7/13) 3178110000006293 a001 701408733/1568397607*10749957122^(7/12) 3178110000006293 a001 701408733/1568397607*4106118243^(14/23) 3178110000006293 a001 267914296/4106118243*599074578^(16/21) 3178110000006293 a001 267914296/6643838879*599074578^(11/14) 3178110000006293 a001 233802911/1368706081*2537720636^(2/3) 3178110000006293 a001 701408733/1568397607*1568397607^(7/11) 3178110000006293 a001 233802911/440719107401*2537720636^(14/15) 3178110000006293 a001 701408733/505019158607*2537720636^(8/9) 3178110000006293 a001 3524667/1568437211*2537720636^(13/15) 3178110000006293 a001 133957148/5374978561*599074578^(17/21) 3178110000006293 a001 701408733/73681302247*2537720636^(4/5) 3178110000006293 a001 701408733/45537549124*2537720636^(7/9) 3178110000006293 a001 701408733/17393796001*2537720636^(11/15) 3178110000006293 a001 686789568/224056801*2537720636^(8/15) 3178110000006293 a001 20365011074/1568397607*2537720636^(7/15) 3178110000006293 a001 32951280099/1568397607*2537720636^(4/9) 3178110000006293 a001 2971215073/1568397607*2537720636^(5/9) 3178110000006293 a001 86267571272/1568397607*2537720636^(2/5) 3178110000006293 a001 233802911/1368706081*45537549124^(10/17) 3178110000006293 a001 233802911/1368706081*312119004989^(6/11) 3178110000006293 a001 1288005205276048899/4052739537881 3178110000006293 a001 233802911/1368706081*192900153618^(5/9) 3178110000006293 a001 1836311903/1568397607*73681302247^(1/2) 3178110000006293 a001 233802911/1368706081*28143753123^(3/5) 3178110000006293 a001 1836311903/1568397607*10749957122^(13/24) 3178110000006293 a001 9238424/599786069*599074578^(5/6) 3178110000006293 a001 233802911/1368706081*10749957122^(5/8) 3178110000006293 a001 365435296162/1568397607*2537720636^(1/3) 3178110000006293 a001 1548008755920/1568397607*2537720636^(4/15) 3178110000006293 a001 4052739537881/1568397607*2537720636^(2/9) 3178110000006293 a001 6557470319842/1568397607*2537720636^(1/5) 3178110000006293 a001 1836311903/1568397607*4106118243^(13/23) 3178110000006293 a001 233802911/1368706081*4106118243^(15/23) 3178110000006293 a001 686789568/224056801*45537549124^(8/17) 3178110000006293 a001 686789568/224056801*14662949395604^(8/21) 3178110000006293 a001 3416455324315584/10749959329 3178110000006293 a001 701408733/10749957122*505019158607^(4/7) 3178110000006293 a001 686789568/224056801*192900153618^(4/9) 3178110000006293 a001 686789568/224056801*73681302247^(6/13) 3178110000006293 a001 701408733/10749957122*73681302247^(8/13) 3178110000006293 a001 686789568/224056801*10749957122^(1/2) 3178110000006293 a001 701408733/10749957122*10749957122^(2/3) 3178110000006293 a001 233802911/440719107401*17393796001^(6/7) 3178110000006293 a001 701408733/45537549124*17393796001^(5/7) 3178110000006293 a001 233802911/9381251041*45537549124^(2/3) 3178110000006293 a001 12586269025/1568397607*312119004989^(2/5) 3178110000006293 a001 591286729879/1568397607*17393796001^(2/7) 3178110000006293 a001 20365011074/1568397607*17393796001^(3/7) 3178110000006293 a001 701408733/73681302247*45537549124^(12/17) 3178110000006293 a001 701408733/23725150497407*45537549124^(16/17) 3178110000006293 a001 701408733/5600748293801*45537549124^(15/17) 3178110000006293 a001 233802911/440719107401*45537549124^(14/17) 3178110000006293 a001 3524667/1568437211*45537549124^(13/17) 3178110000006293 a001 86267571272/1568397607*45537549124^(6/17) 3178110000006293 a001 701408733/73681302247*14662949395604^(4/7) 3178110000006293 a001 32951280099/1568397607*23725150497407^(5/16) 3178110000006293 a001 32951280099/1568397607*505019158607^(5/14) 3178110000006293 a001 701408733/73681302247*192900153618^(2/3) 3178110000006293 a001 139583862445/1568397607*45537549124^(1/3) 3178110000006293 a001 365435296162/1568397607*45537549124^(5/17) 3178110000006293 a001 1548008755920/1568397607*45537549124^(4/17) 3178110000006293 a001 32951280099/1568397607*73681302247^(5/13) 3178110000006293 a001 6557470319842/1568397607*45537549124^(3/17) 3178110000006293 a001 701408733/73681302247*73681302247^(9/13) 3178110000006293 a001 233802911/64300051206*817138163596^(2/3) 3178110000006293 a001 86267571272/1568397607*192900153618^(1/3) 3178110000006293 a001 701408733/505019158607*312119004989^(8/11) 3178110000006293 a001 701408733/5600748293801*312119004989^(9/11) 3178110000006293 a001 701408733/3461452808002*312119004989^(4/5) 3178110000006293 a001 2504730781961/1568397607*312119004989^(1/5) 3178110000006293 a001 1515744265389/224056801*23725150497407^(1/8) 3178110000006293 a006 5^(1/2)*Fibonacci(72)/Lucas(44)/sqrt(5) 3178110000006293 a001 1515744265389/224056801*505019158607^(1/7) 3178110000006293 a001 1548008755920/1568397607*192900153618^(2/9) 3178110000006293 a001 365435296162/1568397607*192900153618^(5/18) 3178110000006293 a001 3524667/1568437211*14662949395604^(13/21) 3178110000006293 a001 233802911/440719107401*192900153618^(7/9) 3178110000006293 a001 701408733/5600748293801*192900153618^(5/6) 3178110000006293 a001 1515744265389/224056801*73681302247^(2/13) 3178110000006293 a001 1548008755920/1568397607*73681302247^(3/13) 3178110000006293 a001 956722026041/1568397607*73681302247^(1/4) 3178110000006293 a001 32264490531/224056801*73681302247^(4/13) 3178110000006293 a001 53316291173/1568397607*817138163596^(1/3) 3178110000006293 a001 701408733/505019158607*73681302247^(10/13) 3178110000006293 a001 3524667/1568437211*73681302247^(3/4) 3178110000006293 a001 701408733/3461452808002*73681302247^(11/13) 3178110000006293 a001 701408733/23725150497407*73681302247^(12/13) 3178110000006293 a001 4052739537881/1568397607*28143753123^(1/5) 3178110000006293 a001 20365011074/1568397607*45537549124^(7/17) 3178110000006293 a001 32951280099/1568397607*28143753123^(2/5) 3178110000006293 a001 365435296162/1568397607*28143753123^(3/10) 3178110000006293 a001 701408733/45537549124*312119004989^(7/11) 3178110000006293 a001 701408733/45537549124*14662949395604^(5/9) 3178110000006293 a001 20365011074/1568397607*14662949395604^(1/3) 3178110000006293 a001 20365011074/1568397607*192900153618^(7/18) 3178110000006293 a001 701408733/505019158607*28143753123^(4/5) 3178110000006293 a001 701408733/5600748293801*28143753123^(9/10) 3178110000006293 a001 701408733/45537549124*28143753123^(7/10) 3178110000006293 a001 1515744265389/224056801*10749957122^(1/6) 3178110000006293 a001 6557470319842/1568397607*10749957122^(3/16) 3178110000006293 a001 4052739537881/1568397607*10749957122^(5/24) 3178110000006293 a001 1548008755920/1568397607*10749957122^(1/4) 3178110000006293 a001 591286729879/1568397607*10749957122^(7/24) 3178110000006293 a001 12586269025/1568397607*10749957122^(11/24) 3178110000006293 a001 365435296162/1568397607*10749957122^(5/16) 3178110000006293 a001 32264490531/224056801*10749957122^(1/3) 3178110000006293 a001 701408733/17393796001*45537549124^(11/17) 3178110000006293 a001 86267571272/1568397607*10749957122^(3/8) 3178110000006293 a001 701408733/17393796001*312119004989^(3/5) 3178110000006293 a001 701408733/17393796001*14662949395604^(11/21) 3178110000006293 a001 701408733/17393796001*192900153618^(11/18) 3178110000006293 a001 32951280099/1568397607*10749957122^(5/12) 3178110000006293 a001 20365011074/1568397607*10749957122^(7/16) 3178110000006293 a001 233802911/9381251041*10749957122^(17/24) 3178110000006293 a001 701408733/73681302247*10749957122^(3/4) 3178110000006293 a001 233802911/64300051206*10749957122^(19/24) 3178110000006293 a001 3524667/1568437211*10749957122^(13/16) 3178110000006293 a001 701408733/505019158607*10749957122^(5/6) 3178110000006293 a001 267914296/28143753123*599074578^(6/7) 3178110000006293 a001 233802911/440719107401*10749957122^(7/8) 3178110000006293 a001 701408733/3461452808002*10749957122^(11/12) 3178110000006293 a001 701408733/5600748293801*10749957122^(15/16) 3178110000006293 a001 233802911/3020733700601*10749957122^(23/24) 3178110000006293 a001 6557470319842/370248451*141422324^(2/13) 3178110000006293 a001 701408733/17393796001*10749957122^(11/16) 3178110000006293 a001 1515744265389/224056801*4106118243^(4/23) 3178110000006293 a001 4052739537881/1568397607*4106118243^(5/23) 3178110000006293 a001 1548008755920/1568397607*4106118243^(6/23) 3178110000006293 a001 591286729879/1568397607*4106118243^(7/23) 3178110000006293 a001 32264490531/224056801*4106118243^(8/23) 3178110000006293 a001 686789568/224056801*4106118243^(12/23) 3178110000006293 a001 2971215073/1568397607*312119004989^(5/11) 3178110000006293 a001 2084036199823432509/6557470319842 3178110000006293 a001 2971215073/1568397607*3461452808002^(5/12) 3178110000006293 a001 86267571272/1568397607*4106118243^(9/23) 3178110000006293 a001 2971215073/1568397607*28143753123^(1/2) 3178110000006293 a001 32951280099/1568397607*4106118243^(10/23) 3178110000006293 a001 12586269025/1568397607*4106118243^(11/23) 3178110000006293 a001 701408733/10749957122*4106118243^(16/23) 3178110000006293 a001 7778742049/1568397607*4106118243^(1/2) 3178110000006293 a001 233802911/9381251041*4106118243^(17/23) 3178110000006293 a001 701408733/73681302247*4106118243^(18/23) 3178110000006293 a001 233802911/64300051206*4106118243^(19/23) 3178110000006293 a001 701408733/505019158607*4106118243^(20/23) 3178110000006293 a001 233802911/440719107401*4106118243^(21/23) 3178110000006293 a001 701408733/3461452808002*4106118243^(22/23) 3178110000006293 a001 1134903170/1568397607*2537720636^(3/5) 3178110000006293 a001 1515744265389/224056801*1568397607^(2/11) 3178110000006293 a001 4052739537881/1568397607*1568397607^(5/22) 3178110000006293 a001 2504730781961/1568397607*1568397607^(1/4) 3178110000006293 a001 1548008755920/1568397607*1568397607^(3/11) 3178110000006293 a001 591286729879/1568397607*1568397607^(7/22) 3178110000006293 a001 267914296/73681302247*599074578^(19/21) 3178110000006293 a001 32264490531/224056801*1568397607^(4/11) 3178110000006293 a001 1134903170/1568397607*45537549124^(9/17) 3178110000006293 a001 1134903170/1568397607*817138163596^(9/19) 3178110000006293 a001 1134903170/1568397607*14662949395604^(3/7) 3178110000006293 a001 1134903170/1568397607*192900153618^(1/2) 3178110000006293 a001 1134903170/1568397607*10749957122^(9/16) 3178110000006293 a001 86267571272/1568397607*1568397607^(9/22) 3178110000006293 a001 1836311903/1568397607*1568397607^(13/22) 3178110000006293 a001 32951280099/1568397607*1568397607^(5/11) 3178110000006293 a001 12586269025/1568397607*1568397607^(1/2) 3178110000006293 a001 1836311903/3461452808002*2537720636^(14/15) 3178110000006293 a001 267914296/119218851371*599074578^(13/14) 3178110000006293 a001 1836311903/1322157322203*2537720636^(8/9) 3178110000006293 a001 1836311903/817138163596*2537720636^(13/15) 3178110000006293 a001 686789568/224056801*1568397607^(6/11) 3178110000006293 a001 233802911/1368706081*1568397607^(15/22) 3178110000006293 a001 1836311903/192900153618*2537720636^(4/5) 3178110000006293 a001 1836311903/119218851371*2537720636^(7/9) 3178110000006293 a001 1836311903/45537549124*2537720636^(11/15) 3178110000006293 a001 1836311903/10749957122*2537720636^(2/3) 3178110000006293 a001 1602508992/3020733700601*2537720636^(14/15) 3178110000006293 a001 14930208/10749853441*2537720636^(8/9) 3178110000006293 a001 12586269025/23725150497407*2537720636^(14/15) 3178110000006293 a001 12586269025/4106118243*2537720636^(8/15) 3178110000006293 a001 4807526976/2139295485799*2537720636^(13/15) 3178110000006293 a001 7778742049/4106118243*2537720636^(5/9) 3178110000006293 a001 7778742049/14662949395604*2537720636^(14/15) 3178110000006293 a001 12586269025/9062201101803*2537720636^(8/9) 3178110000006293 a001 32951280099/23725150497407*2537720636^(8/9) 3178110000006293 a001 10182505537/7331474697802*2537720636^(8/9) 3178110000006293 a001 12586269025/5600748293801*2537720636^(13/15) 3178110000006293 a001 32951280099/14662949395604*2537720636^(13/15) 3178110000006293 a001 7778742049/5600748293801*2537720636^(8/9) 3178110000006293 a001 53316291173/23725150497407*2537720636^(13/15) 3178110000006293 a001 20365011074/9062201101803*2537720636^(13/15) 3178110000006293 a001 102287808/10745088481*2537720636^(4/5) 3178110000006293 a001 133957148/96450076809*599074578^(20/21) 3178110000006293 a001 53316291173/4106118243*2537720636^(7/15) 3178110000006293 a001 7778742049/3461452808002*2537720636^(13/15) 3178110000006293 a001 2971215073/4106118243*2537720636^(3/5) 3178110000006293 a001 4807526976/312119004989*2537720636^(7/9) 3178110000006293 a001 86267571272/4106118243*2537720636^(4/9) 3178110000006293 a001 12586269025/1322157322203*2537720636^(4/5) 3178110000006293 a001 32951280099/3461452808002*2537720636^(4/5) 3178110000006293 a001 86267571272/9062201101803*2537720636^(4/5) 3178110000006293 a001 225851433717/23725150497407*2537720636^(4/5) 3178110000006293 a001 139583862445/14662949395604*2537720636^(4/5) 3178110000006293 a001 53316291173/5600748293801*2537720636^(4/5) 3178110000006293 a001 20365011074/2139295485799*2537720636^(4/5) 3178110000006293 a001 4807526976/119218851371*2537720636^(11/15) 3178110000006293 a001 2971215073/5600748293801*2537720636^(14/15) 3178110000006293 a001 12586269025/817138163596*2537720636^(7/9) 3178110000006293 a001 75283811239/1368706081*2537720636^(2/5) 3178110000006293 a001 32951280099/2139295485799*2537720636^(7/9) 3178110000006293 a001 7778742049/817138163596*2537720636^(4/5) 3178110000006293 a001 86267571272/5600748293801*2537720636^(7/9) 3178110000006293 a001 7787980473/505618944676*2537720636^(7/9) 3178110000006293 a001 365435296162/23725150497407*2537720636^(7/9) 3178110000006293 a001 139583862445/9062201101803*2537720636^(7/9) 3178110000006293 a001 53316291173/3461452808002*2537720636^(7/9) 3178110000006293 a001 1836311903/4106118243*17393796001^(4/7) 3178110000006293 a001 20365011074/1322157322203*2537720636^(7/9) 3178110000006293 a001 701408733/10749957122*1568397607^(8/11) 3178110000006293 a001 1836311903/4106118243*14662949395604^(4/9) 3178110000006293 a001 1836311903/4106118243*505019158607^(1/2) 3178110000006293 a001 1836311903/4106118243*73681302247^(7/13) 3178110000006293 a001 7778742049/505019158607*2537720636^(7/9) 3178110000006293 a001 2971215073/2139295485799*2537720636^(8/9) 3178110000006293 a001 1144206275/28374454999*2537720636^(11/15) 3178110000006293 a001 32951280099/817138163596*2537720636^(11/15) 3178110000006293 a001 86267571272/2139295485799*2537720636^(11/15) 3178110000006293 a001 225851433717/5600748293801*2537720636^(11/15) 3178110000006293 a001 591286729879/14662949395604*2537720636^(11/15) 3178110000006293 a001 365435296162/9062201101803*2537720636^(11/15) 3178110000006293 a001 139583862445/3461452808002*2537720636^(11/15) 3178110000006293 a001 53316291173/1322157322203*2537720636^(11/15) 3178110000006293 a001 1836311903/4106118243*10749957122^(7/12) 3178110000006293 a001 1602508992/9381251041*2537720636^(2/3) 3178110000006293 a001 20365011074/505019158607*2537720636^(11/15) 3178110000006293 a001 2971215073/1322157322203*2537720636^(13/15) 3178110000006293 a001 956722026041/4106118243*2537720636^(1/3) 3178110000006293 a001 7778742049/192900153618*2537720636^(11/15) 3178110000006293 a001 12586269025/73681302247*2537720636^(2/3) 3178110000006293 a001 10983760033/64300051206*2537720636^(2/3) 3178110000006293 a001 86267571272/505019158607*2537720636^(2/3) 3178110000006293 a001 75283811239/440719107401*2537720636^(2/3) 3178110000006293 a001 2504730781961/14662949395604*2537720636^(2/3) 3178110000006293 a001 139583862445/817138163596*2537720636^(2/3) 3178110000006293 a001 53316291173/312119004989*2537720636^(2/3) 3178110000006293 a001 20365011074/119218851371*2537720636^(2/3) 3178110000006293 a001 2971215073/312119004989*2537720636^(4/5) 3178110000006293 a001 4052739537881/4106118243*2537720636^(4/15) 3178110000006293 a001 7778742049/45537549124*2537720636^(2/3) 3178110000006293 a001 7778742049/10749957122*2537720636^(3/5) 3178110000006293 a001 701408733/17393796001*1568397607^(3/4) 3178110000006293 a001 2971215073/192900153618*2537720636^(7/9) 3178110000006293 a001 10182505537/5374978561*2537720636^(5/9) 3178110000006293 a001 20365011074/28143753123*2537720636^(3/5) 3178110000006293 a001 3536736619241/1368706081*2537720636^(2/9) 3178110000006293 a001 233802911/9381251041*1568397607^(17/22) 3178110000006293 a001 53316291173/73681302247*2537720636^(3/5) 3178110000006293 a001 139583862445/192900153618*2537720636^(3/5) 3178110000006293 a001 10610209857723/14662949395604*2537720636^(3/5) 3178110000006293 a001 591286729879/817138163596*2537720636^(3/5) 3178110000006293 a001 225851433717/312119004989*2537720636^(3/5) 3178110000006293 a001 86267571272/119218851371*2537720636^(3/5) 3178110000006293 a001 32951280099/45537549124*2537720636^(3/5) 3178110000006293 a001 32951280099/10749957122*2537720636^(8/15) 3178110000006293 a001 2971215073/73681302247*2537720636^(11/15) 3178110000006293 a001 12586269025/17393796001*2537720636^(3/5) 3178110000006293 a001 53316291173/28143753123*2537720636^(5/9) 3178110000006293 a001 139583862445/73681302247*2537720636^(5/9) 3178110000006293 a001 182717648081/96450076809*2537720636^(5/9) 3178110000006293 a001 956722026041/505019158607*2537720636^(5/9) 3178110000006293 a001 10610209857723/5600748293801*2537720636^(5/9) 3178110000006293 a001 591286729879/312119004989*2537720636^(5/9) 3178110000006293 a001 225851433717/119218851371*2537720636^(5/9) 3178110000006293 a001 21566892818/11384387281*2537720636^(5/9) 3178110000006293 a001 86267571272/28143753123*2537720636^(8/15) 3178110000006293 a001 32951280099/17393796001*2537720636^(5/9) 3178110000006293 a001 32264490531/10525900321*2537720636^(8/15) 3178110000006293 a001 591286729879/192900153618*2537720636^(8/15) 3178110000006293 a001 1548008755920/505019158607*2537720636^(8/15) 3178110000006293 a001 1515744265389/494493258286*2537720636^(8/15) 3178110000006293 a001 2504730781961/817138163596*2537720636^(8/15) 3178110000006293 a001 956722026041/312119004989*2537720636^(8/15) 3178110000006293 a001 365435296162/119218851371*2537720636^(8/15) 3178110000006293 a001 1836311903/4106118243*4106118243^(14/23) 3178110000006293 a001 139583862445/45537549124*2537720636^(8/15) 3178110000006293 a001 139583862445/10749957122*2537720636^(7/15) 3178110000006293 a001 53316291173/17393796001*2537720636^(8/15) 3178110000006293 a001 4807526976/6643838879*2537720636^(3/5) 3178110000006293 a001 225851433717/10749957122*2537720636^(4/9) 3178110000006293 a001 2971215073/17393796001*2537720636^(2/3) 3178110000006293 a001 701408733/73681302247*1568397607^(9/11) 3178110000006293 a001 365435296162/28143753123*2537720636^(7/15) 3178110000006293 a001 956722026041/73681302247*2537720636^(7/15) 3178110000006293 a001 2504730781961/192900153618*2537720636^(7/15) 3178110000006293 a001 10610209857723/817138163596*2537720636^(7/15) 3178110000006293 a001 4052739537881/312119004989*2537720636^(7/15) 3178110000006293 a001 1548008755920/119218851371*2537720636^(7/15) 3178110000006293 a001 591286729879/45537549124*2537720636^(7/15) 3178110000006293 a001 591286729879/10749957122*2537720636^(2/5) 3178110000006293 a001 591286729879/28143753123*2537720636^(4/9) 3178110000006293 a001 1548008755920/73681302247*2537720636^(4/9) 3178110000006293 a001 7787980473/599786069*2537720636^(7/15) 3178110000006293 a001 4052739537881/192900153618*2537720636^(4/9) 3178110000006293 a001 225749145909/10745088481*2537720636^(4/9) 3178110000006293 a001 6557470319842/312119004989*2537720636^(4/9) 3178110000006293 a001 2504730781961/119218851371*2537720636^(4/9) 3178110000006293 a001 956722026041/45537549124*2537720636^(4/9) 3178110000006293 a001 1836311903/10749957122*45537549124^(10/17) 3178110000006293 a001 1836311903/10749957122*312119004989^(6/11) 3178110000006293 a001 1836311903/10749957122*14662949395604^(10/21) 3178110000006293 a001 1836311903/10749957122*192900153618^(5/9) 3178110000006293 a001 1602508992/1368706081*73681302247^(1/2) 3178110000006293 a001 1836311903/10749957122*28143753123^(3/5) 3178110000006293 a001 365435296162/17393796001*2537720636^(4/9) 3178110000006293 a001 12586269025/6643838879*2537720636^(5/9) 3178110000006293 a001 12585437040/228811001*2537720636^(2/5) 3178110000006293 a001 1602508992/1368706081*10749957122^(13/24) 3178110000006293 a001 1836311903/10749957122*10749957122^(5/8) 3178110000006293 a001 4052739537881/73681302247*2537720636^(2/5) 3178110000006293 a001 1836311903/3461452808002*17393796001^(6/7) 3178110000006293 a001 3536736619241/64300051206*2537720636^(2/5) 3178110000006293 a001 6557470319842/119218851371*2537720636^(2/5) 3178110000006293 a001 2504730781961/45537549124*2537720636^(2/5) 3178110000006293 a001 1836311903/119218851371*17393796001^(5/7) 3178110000006293 a001 12586269025/4106118243*45537549124^(8/17) 3178110000006293 a001 53316291173/4106118243*17393796001^(3/7) 3178110000006293 a001 12586269025/4106118243*14662949395604^(8/21) 3178110000006293 a001 1836311903/28143753123*23725150497407^(1/2) 3178110000006293 a001 1836311903/28143753123*505019158607^(4/7) 3178110000006293 a001 12586269025/4106118243*192900153618^(4/9) 3178110000006293 a001 12586269025/4106118243*73681302247^(6/13) 3178110000006293 a001 1836311903/28143753123*73681302247^(8/13) 3178110000006293 a001 2504730781961/10749957122*2537720636^(1/3) 3178110000006293 a001 516002918640/1368706081*17393796001^(2/7) 3178110000006293 a001 1836311903/73681302247*45537549124^(2/3) 3178110000006293 a001 1836311903/14662949395604*45537549124^(15/17) 3178110000006293 a001 1836311903/3461452808002*45537549124^(14/17) 3178110000006293 a001 1836311903/192900153618*45537549124^(12/17) 3178110000006293 a001 1836311903/817138163596*45537549124^(13/17) 3178110000006293 a001 10983760033/1368706081*312119004989^(2/5) 3178110000006293 a001 75283811239/1368706081*45537549124^(6/17) 3178110000006293 a001 365435296162/4106118243*45537549124^(1/3) 3178110000006293 a001 956722026041/4106118243*45537549124^(5/17) 3178110000006293 a001 53316291173/4106118243*45537549124^(7/17) 3178110000006293 a001 4052739537881/4106118243*45537549124^(4/17) 3178110000006293 a001 1836311903/192900153618*14662949395604^(4/7) 3178110000006293 a001 86267571272/4106118243*505019158607^(5/14) 3178110000006293 a001 1836311903/192900153618*505019158607^(9/14) 3178110000006293 a001 1836311903/14662949395604*312119004989^(9/11) 3178110000006293 a001 1836311903/9062201101803*312119004989^(4/5) 3178110000006293 a001 1836311903/1322157322203*312119004989^(8/11) 3178110000006293 a001 1836311903/1322157322203*23725150497407^(5/8) 3178110000006293 a001 1836311903/3461452808002*14662949395604^(2/3) 3178110000006293 a006 5^(1/2)*Fibonacci(74)/Lucas(46)/sqrt(5) 3178110000006293 a001 4052739537881/4106118243*192900153618^(2/9) 3178110000006293 a001 956722026041/4106118243*192900153618^(5/18) 3178110000006293 a001 139583862445/4106118243*817138163596^(1/3) 3178110000006293 a001 1836311903/14662949395604*192900153618^(5/6) 3178110000006293 a001 4052739537881/4106118243*73681302247^(3/13) 3178110000006293 a001 2504730781961/4106118243*73681302247^(1/4) 3178110000006293 a001 591286729879/4106118243*73681302247^(4/13) 3178110000006293 a001 1836311903/119218851371*312119004989^(7/11) 3178110000006293 a001 1836311903/119218851371*14662949395604^(5/9) 3178110000006293 a001 53316291173/4106118243*14662949395604^(1/3) 3178110000006293 a001 1836311903/119218851371*505019158607^(5/8) 3178110000006293 a001 53316291173/4106118243*192900153618^(7/18) 3178110000006293 a001 1836311903/192900153618*73681302247^(9/13) 3178110000006293 a001 1836311903/817138163596*73681302247^(3/4) 3178110000006293 a001 1836311903/1322157322203*73681302247^(10/13) 3178110000006293 a001 1836311903/9062201101803*73681302247^(11/13) 3178110000006293 a001 1836311903/45537549124*45537549124^(11/17) 3178110000006293 a001 3536736619241/1368706081*28143753123^(1/5) 3178110000006293 a001 956722026041/4106118243*28143753123^(3/10) 3178110000006293 a001 1836311903/45537549124*312119004989^(3/5) 3178110000006293 a001 1836311903/45537549124*817138163596^(11/19) 3178110000006293 a001 1836311903/45537549124*14662949395604^(11/21) 3178110000006293 a001 1836311903/45537549124*192900153618^(11/18) 3178110000006293 a001 956722026041/17393796001*2537720636^(2/5) 3178110000006293 a001 1836311903/119218851371*28143753123^(7/10) 3178110000006293 a001 1836311903/1322157322203*28143753123^(4/5) 3178110000006293 a001 1836311903/14662949395604*28143753123^(9/10) 3178110000006293 a001 3536736619241/1368706081*10749957122^(5/24) 3178110000006293 a001 4052739537881/4106118243*10749957122^(1/4) 3178110000006293 a001 516002918640/1368706081*10749957122^(7/24) 3178110000006293 a001 956722026041/4106118243*10749957122^(5/16) 3178110000006293 a001 591286729879/4106118243*10749957122^(1/3) 3178110000006293 a001 12586269025/4106118243*10749957122^(1/2) 3178110000006293 a001 75283811239/1368706081*10749957122^(3/8) 3178110000006293 a001 7778742049/4106118243*312119004989^(5/11) 3178110000006293 a001 1836311903/17393796001*9062201101803^(1/2) 3178110000006293 a001 7778742049/4106118243*3461452808002^(5/12) 3178110000006293 a001 86267571272/4106118243*10749957122^(5/12) 3178110000006293 a001 10983760033/1368706081*10749957122^(11/24) 3178110000006293 a001 233802911/64300051206*1568397607^(19/22) 3178110000006293 a001 53316291173/4106118243*10749957122^(7/16) 3178110000006293 a001 7778742049/4106118243*28143753123^(1/2) 3178110000006293 a001 1836311903/28143753123*10749957122^(2/3) 3178110000006293 a001 1836311903/73681302247*10749957122^(17/24) 3178110000006293 a001 6557470319842/28143753123*2537720636^(1/3) 3178110000006293 a001 1836311903/45537549124*10749957122^(11/16) 3178110000006293 a001 1836311903/192900153618*10749957122^(3/4) 3178110000006293 a001 1836311903/505019158607*10749957122^(19/24) 3178110000006293 a001 1836311903/817138163596*10749957122^(13/16) 3178110000006293 a001 1836311903/1322157322203*10749957122^(5/6) 3178110000006293 a001 1836311903/3461452808002*10749957122^(7/8) 3178110000006293 a001 1836311903/9062201101803*10749957122^(11/12) 3178110000006293 a001 10610209857723/45537549124*2537720636^(1/3) 3178110000006293 a001 1836311903/14662949395604*10749957122^(15/16) 3178110000006293 a001 1836311903/23725150497407*10749957122^(23/24) 3178110000006293 a001 4807525989/4870846*2537720636^(4/15) 3178110000006293 a001 86267571272/6643838879*2537720636^(7/15) 3178110000006293 a001 4052739537881/17393796001*2537720636^(1/3) 3178110000006293 a001 3536736619241/1368706081*4106118243^(5/23) 3178110000006293 a001 139583862445/6643838879*2537720636^(4/9) 3178110000006293 a001 4052739537881/4106118243*4106118243^(6/23) 3178110000006293 a001 516002918640/1368706081*4106118243^(7/23) 3178110000006293 a001 365435296162/6643838879*2537720636^(2/5) 3178110000006293 a001 591286729879/4106118243*4106118243^(8/23) 3178110000006293 a001 701408733/505019158607*1568397607^(10/11) 3178110000006293 a001 2971215073/4106118243*45537549124^(9/17) 3178110000006293 a001 2971215073/4106118243*817138163596^(9/19) 3178110000006293 a001 1836311903/6643838879*1322157322203^(1/2) 3178110000006293 a001 2971215073/4106118243*192900153618^(1/2) 3178110000006293 a001 75283811239/1368706081*4106118243^(9/23) 3178110000006293 a001 1602508992/1368706081*4106118243^(13/23) 3178110000006293 a001 86267571272/4106118243*4106118243^(10/23) 3178110000006293 a001 2971215073/4106118243*10749957122^(9/16) 3178110000006293 a001 10983760033/1368706081*4106118243^(11/23) 3178110000006293 a001 12586269025/4106118243*4106118243^(12/23) 3178110000006293 a001 1836311903/10749957122*4106118243^(15/23) 3178110000006293 a001 20365011074/4106118243*4106118243^(1/2) 3178110000006293 a001 1548008755920/6643838879*2537720636^(1/3) 3178110000006293 a001 1836311903/28143753123*4106118243^(16/23) 3178110000006293 a001 2403763488/5374978561*17393796001^(4/7) 3178110000006293 a001 6557470319842/6643838879*2537720636^(4/15) 3178110000006293 a001 233802911/440719107401*1568397607^(21/22) 3178110000006293 a001 2403763488/5374978561*14662949395604^(4/9) 3178110000006293 a001 2403763488/5374978561*73681302247^(7/13) 3178110000006293 a001 1836311903/73681302247*4106118243^(17/23) 3178110000006293 a001 1836311903/192900153618*4106118243^(18/23) 3178110000006293 a001 2403763488/5374978561*10749957122^(7/12) 3178110000006293 a001 1602508992/3020733700601*17393796001^(6/7) 3178110000006293 a001 4807526976/312119004989*17393796001^(5/7) 3178110000006293 a001 1836311903/505019158607*4106118243^(19/23) 3178110000006293 a001 1602508992/9381251041*45537549124^(10/17) 3178110000006293 a001 139583862445/10749957122*17393796001^(3/7) 3178110000006293 a001 1602508992/9381251041*312119004989^(6/11) 3178110000006293 a001 1602508992/9381251041*14662949395604^(10/21) 3178110000006293 a001 1602508992/9381251041*192900153618^(5/9) 3178110000006293 a001 12586269025/10749957122*73681302247^(1/2) 3178110000006293 a001 4052739537881/10749957122*17393796001^(2/7) 3178110000006293 a001 1602508992/9381251041*28143753123^(3/5) 3178110000006293 a001 32951280099/10749957122*45537549124^(8/17) 3178110000006293 a001 1602508992/3020733700601*45537549124^(14/17) 3178110000006293 a001 4807526976/2139295485799*45537549124^(13/17) 3178110000006293 a001 267084832/10716675201*45537549124^(2/3) 3178110000006293 a001 102287808/10745088481*45537549124^(12/17) 3178110000006293 a001 4807526976/119218851371*45537549124^(11/17) 3178110000006293 a001 139583862445/10749957122*45537549124^(7/17) 3178110000006293 a001 686789568/10525900321*23725150497407^(1/2) 3178110000006293 a001 686789568/10525900321*505019158607^(4/7) 3178110000006293 a001 32951280099/10749957122*192900153618^(4/9) 3178110000006293 a001 591286729879/10749957122*45537549124^(6/17) 3178110000006293 a001 956722026041/10749957122*45537549124^(1/3) 3178110000006293 a001 2504730781961/10749957122*45537549124^(5/17) 3178110000006293 a001 4807525989/4870846*45537549124^(4/17) 3178110000006293 a001 32951280099/10749957122*73681302247^(6/13) 3178110000006293 a001 686789568/10525900321*73681302247^(8/13) 3178110000006293 a001 43133785636/5374978561*312119004989^(2/5) 3178110000006293 a001 4807526976/23725150497407*312119004989^(4/5) 3178110000006293 a001 14930208/10749853441*312119004989^(8/11) 3178110000006293 a001 102287808/10745088481*14662949395604^(4/7) 3178110000006293 a001 102287808/10745088481*505019158607^(9/14) 3178110000006293 a001 1602508992/3020733700601*14662949395604^(2/3) 3178110000006293 a006 5^(1/2)*Fibonacci(76)/Lucas(48)/sqrt(5) 3178110000006293 a001 1602508992/3020733700601*505019158607^(3/4) 3178110000006293 a001 2504730781961/10749957122*192900153618^(5/18) 3178110000006293 a001 4807526976/312119004989*14662949395604^(5/9) 3178110000006293 a001 102287808/10745088481*192900153618^(2/3) 3178110000006293 a001 139583862445/10749957122*192900153618^(7/18) 3178110000006293 a001 1602508992/3020733700601*192900153618^(7/9) 3178110000006293 a001 4807525989/4870846*73681302247^(3/13) 3178110000006293 a001 3278735159921/5374978561*73681302247^(1/4) 3178110000006293 a001 774004377960/5374978561*73681302247^(4/13) 3178110000006293 a001 225851433717/10749957122*73681302247^(5/13) 3178110000006293 a001 4807526976/119218851371*817138163596^(11/19) 3178110000006293 a001 4807526976/119218851371*14662949395604^(11/21) 3178110000006293 a001 4807526976/119218851371*192900153618^(11/18) 3178110000006293 a001 102287808/10745088481*73681302247^(9/13) 3178110000006293 a001 14930208/10749853441*73681302247^(10/13) 3178110000006293 a001 4807526976/23725150497407*73681302247^(11/13) 3178110000006293 a001 2504730781961/10749957122*28143753123^(3/10) 3178110000006293 a001 10182505537/5374978561*312119004989^(5/11) 3178110000006293 a001 10182505537/5374978561*3461452808002^(5/12) 3178110000006293 a001 225851433717/10749957122*28143753123^(2/5) 3178110000006293 a001 4807526976/312119004989*28143753123^(7/10) 3178110000006293 a001 1836311903/1322157322203*4106118243^(20/23) 3178110000006293 a001 14930208/10749853441*28143753123^(4/5) 3178110000006293 a001 10182505537/5374978561*28143753123^(1/2) 3178110000006293 a001 4807525989/4870846*10749957122^(1/4) 3178110000006293 a001 4052739537881/10749957122*10749957122^(7/24) 3178110000006293 a001 2504730781961/10749957122*10749957122^(5/16) 3178110000006293 a001 774004377960/5374978561*10749957122^(1/3) 3178110000006293 a001 7778742049/10749957122*45537549124^(9/17) 3178110000006293 a001 591286729879/10749957122*10749957122^(3/8) 3178110000006293 a001 7778742049/10749957122*14662949395604^(3/7) 3178110000006293 a001 4807526976/17393796001*1322157322203^(1/2) 3178110000006293 a001 7778742049/10749957122*192900153618^(1/2) 3178110000006293 a001 12586269025/10749957122*10749957122^(13/24) 3178110000006293 a001 1836311903/3461452808002*4106118243^(21/23) 3178110000006293 a001 225851433717/10749957122*10749957122^(5/12) 3178110000006293 a001 139583862445/10749957122*10749957122^(7/16) 3178110000006293 a001 43133785636/5374978561*10749957122^(11/24) 3178110000006293 a001 32951280099/10749957122*10749957122^(1/2) 3178110000006293 a001 1602508992/9381251041*10749957122^(5/8) 3178110000006293 a001 12586269025/28143753123*17393796001^(4/7) 3178110000006293 a001 12586269025/23725150497407*17393796001^(6/7) 3178110000006293 a001 12586269025/817138163596*17393796001^(5/7) 3178110000006293 a001 686789568/10525900321*10749957122^(2/3) 3178110000006293 a001 365435296162/28143753123*17393796001^(3/7) 3178110000006293 a001 4807526976/119218851371*10749957122^(11/16) 3178110000006293 a001 1836311903/9062201101803*4106118243^(22/23) 3178110000006293 a001 267084832/10716675201*10749957122^(17/24) 3178110000006293 a001 12586269025/28143753123*14662949395604^(4/9) 3178110000006293 a001 12586269025/28143753123*73681302247^(7/13) 3178110000006293 a001 86267571272/5600748293801*17393796001^(5/7) 3178110000006293 a001 7787980473/505618944676*17393796001^(5/7) 3178110000006293 a001 365435296162/23725150497407*17393796001^(5/7) 3178110000006293 a001 139583862445/9062201101803*17393796001^(5/7) 3178110000006293 a001 53316291173/3461452808002*17393796001^(5/7) 3178110000006293 a001 32951280099/73681302247*17393796001^(4/7) 3178110000006293 a001 3536736619241/9381251041*17393796001^(2/7) 3178110000006293 a001 102287808/10745088481*10749957122^(3/4) 3178110000006293 a001 43133785636/96450076809*17393796001^(4/7) 3178110000006293 a001 225851433717/505019158607*17393796001^(4/7) 3178110000006293 a001 591286729879/1322157322203*17393796001^(4/7) 3178110000006293 a001 182717648081/408569081798*17393796001^(4/7) 3178110000006293 a001 20365011074/1322157322203*17393796001^(5/7) 3178110000006293 a001 139583862445/312119004989*17393796001^(4/7) 3178110000006293 a001 1602508992/440719107401*10749957122^(19/24) 3178110000006293 a001 53316291173/119218851371*17393796001^(4/7) 3178110000006293 a001 12586269025/73681302247*45537549124^(10/17) 3178110000006293 a001 12586269025/23725150497407*45537549124^(14/17) 3178110000006293 a001 12586269025/5600748293801*45537549124^(13/17) 3178110000006293 a001 4807526976/2139295485799*10749957122^(13/16) 3178110000006293 a001 12586269025/1322157322203*45537549124^(12/17) 3178110000006293 a001 12586269025/505019158607*45537549124^(2/3) 3178110000006293 a001 1144206275/28374454999*45537549124^(11/17) 3178110000006293 a001 86267571272/28143753123*45537549124^(8/17) 3178110000006293 a001 365435296162/28143753123*45537549124^(7/17) 3178110000006293 a001 12586269025/73681302247*312119004989^(6/11) 3178110000006293 a001 12586269025/73681302247*14662949395604^(10/21) 3178110000006293 a001 2504730781961/192900153618*17393796001^(3/7) 3178110000006293 a001 14930208/10749853441*10749957122^(5/6) 3178110000006293 a001 12585437040/228811001*45537549124^(6/17) 3178110000006293 a001 2504730781961/28143753123*45537549124^(1/3) 3178110000006293 a001 10610209857723/817138163596*17393796001^(3/7) 3178110000006293 a001 4052739537881/312119004989*17393796001^(3/7) 3178110000006293 a001 6557470319842/28143753123*45537549124^(5/17) 3178110000006293 a001 10983760033/9381251041*73681302247^(1/2) 3178110000006293 a001 1548008755920/119218851371*17393796001^(3/7) 3178110000006293 a001 86267571272/28143753123*14662949395604^(8/21) 3178110000006293 a001 12586269025/192900153618*23725150497407^(1/2) 3178110000006293 a001 12586269025/192900153618*505019158607^(4/7) 3178110000006293 a001 12586269025/9062201101803*312119004989^(8/11) 3178110000006293 a001 12586269025/817138163596*312119004989^(7/11) 3178110000006293 a001 12586269025/1322157322203*14662949395604^(4/7) 3178110000006293 a001 12585437040/228811001*14662949395604^(2/7) 3178110000006293 a006 5^(1/2)*Fibonacci(78)/Lucas(50)/sqrt(5) 3178110000006293 a001 1144206275/28374454999*312119004989^(3/5) 3178110000006293 a001 12585437040/228811001*192900153618^(1/3) 3178110000006293 a001 1144206275/28374454999*14662949395604^(11/21) 3178110000006293 a001 12586269025/1322157322203*192900153618^(2/3) 3178110000006293 a001 12586269025/23725150497407*192900153618^(7/9) 3178110000006293 a001 1144206275/28374454999*192900153618^(11/18) 3178110000006293 a001 4052739537881/28143753123*73681302247^(4/13) 3178110000006293 a001 53316291173/28143753123*312119004989^(5/11) 3178110000006293 a001 12586269025/119218851371*9062201101803^(1/2) 3178110000006293 a001 53316291173/28143753123*3461452808002^(5/12) 3178110000006293 a001 12586269025/192900153618*73681302247^(8/13) 3178110000006293 a001 12586269025/1322157322203*73681302247^(9/13) 3178110000006293 a001 12586269025/5600748293801*73681302247^(3/4) 3178110000006293 a001 12586269025/9062201101803*73681302247^(10/13) 3178110000006293 a001 1602508992/3020733700601*10749957122^(7/8) 3178110000006293 a001 20365011074/28143753123*45537549124^(9/17) 3178110000006293 a001 591286729879/45537549124*17393796001^(3/7) 3178110000006293 a001 10182505537/22768774562*17393796001^(4/7) 3178110000006293 a001 6557470319842/28143753123*28143753123^(3/10) 3178110000006293 a001 20365011074/28143753123*14662949395604^(3/7) 3178110000006293 a001 12586269025/45537549124*1322157322203^(1/2) 3178110000006293 a001 20365011074/28143753123*192900153618^(1/2) 3178110000006293 a001 591286729879/28143753123*28143753123^(2/5) 3178110000006293 a001 4807526976/23725150497407*10749957122^(11/12) 3178110000006293 a001 12586269025/73681302247*28143753123^(3/5) 3178110000006293 a001 53316291173/28143753123*28143753123^(1/2) 3178110000006293 a001 32951280099/14662949395604*45537549124^(13/17) 3178110000006293 a001 32951280099/3461452808002*45537549124^(12/17) 3178110000006293 a001 10983760033/440719107401*45537549124^(2/3) 3178110000006293 a001 10983760033/64300051206*45537549124^(10/17) 3178110000006293 a001 7778742049/10749957122*10749957122^(9/16) 3178110000006293 a001 32264490531/10525900321*45537549124^(8/17) 3178110000006293 a001 956722026041/73681302247*45537549124^(7/17) 3178110000006293 a001 12586269025/817138163596*28143753123^(7/10) 3178110000006293 a001 53316291173/73681302247*45537549124^(9/17) 3178110000006293 a001 32951280099/73681302247*14662949395604^(4/9) 3178110000006293 a001 86267571272/9062201101803*45537549124^(12/17) 3178110000006293 a001 4052739537881/73681302247*45537549124^(6/17) 3178110000006293 a001 43133785636/1730726404001*45537549124^(2/3) 3178110000006293 a001 6557470319842/73681302247*45537549124^(1/3) 3178110000006293 a001 86267571272/2139295485799*45537549124^(11/17) 3178110000006293 a001 75283811239/3020733700601*45537549124^(2/3) 3178110000006293 a001 182717648081/7331474697802*45537549124^(2/3) 3178110000006293 a001 225851433717/5600748293801*45537549124^(11/17) 3178110000006293 a001 139583862445/5600748293801*45537549124^(2/3) 3178110000006293 a001 139583862445/3461452808002*45537549124^(11/17) 3178110000006293 a001 53316291173/23725150497407*45537549124^(13/17) 3178110000006293 a001 75283811239/440719107401*45537549124^(10/17) 3178110000006293 a001 139583862445/192900153618*45537549124^(9/17) 3178110000006293 a001 139583862445/817138163596*45537549124^(10/17) 3178110000006293 a001 591286729879/817138163596*45537549124^(9/17) 3178110000006293 a001 12586269025/9062201101803*28143753123^(4/5) 3178110000006293 a001 225851433717/312119004989*45537549124^(9/17) 3178110000006293 a001 53316291173/1322157322203*45537549124^(11/17) 3178110000006293 a001 1548008755920/505019158607*45537549124^(8/17) 3178110000006293 a001 1515744265389/494493258286*45537549124^(8/17) 3178110000006293 a001 2504730781961/192900153618*45537549124^(7/17) 3178110000006293 a001 10983760033/64300051206*312119004989^(6/11) 3178110000006293 a001 10983760033/64300051206*14662949395604^(10/21) 3178110000006293 a001 3536736619241/64300051206*45537549124^(6/17) 3178110000006293 a001 10610209857723/817138163596*45537549124^(7/17) 3178110000006293 a001 10983760033/64300051206*192900153618^(5/9) 3178110000006293 a001 32264490531/10525900321*14662949395604^(8/21) 3178110000006293 a001 10983760033/3020733700601*817138163596^(2/3) 3178110000006293 a001 1515744265389/10525900321*23725150497407^(1/4) 3178110000006293 a001 139583862445/73681302247*312119004989^(5/11) 3178110000006293 a001 32264490531/10525900321*192900153618^(4/9) 3178110000006293 a001 139583862445/73681302247*3461452808002^(5/12) 3178110000006293 a001 365435296162/119218851371*45537549124^(8/17) 3178110000006293 a001 1548008755920/119218851371*45537549124^(7/17) 3178110000006293 a001 1515744265389/10525900321*73681302247^(4/13) 3178110000006293 a001 86267571272/73681302247*73681302247^(1/2) 3178110000006293 a001 53316291173/73681302247*14662949395604^(3/7) 3178110000006293 a001 32951280099/119218851371*1322157322203^(1/2) 3178110000006293 a001 1548008755920/73681302247*73681302247^(5/13) 3178110000006293 a001 32264490531/10525900321*73681302247^(6/13) 3178110000006293 a001 53316291173/73681302247*192900153618^(1/2) 3178110000006293 a001 10610209857723/119218851371*45537549124^(1/3) 3178110000006293 a001 32951280099/505019158607*73681302247^(8/13) 3178110000006293 a001 32951280099/3461452808002*73681302247^(9/13) 3178110000006293 a001 43133785636/96450076809*14662949395604^(4/9) 3178110000006293 a001 43133785636/96450076809*505019158607^(1/2) 3178110000006293 a001 32951280099/14662949395604*73681302247^(3/4) 3178110000006293 a001 32951280099/23725150497407*73681302247^(10/13) 3178110000006293 a001 86267571272/505019158607*312119004989^(6/11) 3178110000006293 a001 182717648081/96450076809*312119004989^(5/11) 3178110000006293 a006 5^(1/2)*Fibonacci(82)/Lucas(54)/sqrt(5) 3178110000006293 a001 21566892818/204284540899*9062201101803^(1/2) 3178110000006293 a001 182717648081/96450076809*3461452808002^(5/12) 3178110000006293 a001 139583862445/192900153618*817138163596^(9/19) 3178110000006293 a001 139583862445/192900153618*14662949395604^(3/7) 3178110000006293 a001 2504730781961/192900153618*192900153618^(7/18) 3178110000006293 a001 225851433717/505019158607*14662949395604^(4/9) 3178110000006293 a006 5^(1/2)*Fibonacci(86)/Lucas(58)/sqrt(5) 3178110000006293 a006 5^(1/2)*Fibonacci(90)/Lucas(62)/sqrt(5) 3178110000006293 a006 5^(1/2)*Fibonacci(89)/Lucas(61)/sqrt(5) 3178110000006293 a006 5^(1/2)*Fibonacci(87)/Lucas(59)/sqrt(5) 3178110000006293 a001 139583862445/3461452808002*312119004989^(3/5) 3178110000006293 a001 10610209857723/312119004989*817138163596^(1/3) 3178110000006293 a001 139583862445/2139295485799*505019158607^(4/7) 3178110000006293 a001 225851433717/312119004989*192900153618^(1/2) 3178110000006293 a001 139583862445/312119004989*14662949395604^(4/9) 3178110000006293 a001 139583862445/14662949395604*192900153618^(2/3) 3178110000006293 a001 32951280099/45537549124*45537549124^(9/17) 3178110000006293 a001 4052739537881/192900153618*73681302247^(5/13) 3178110000006293 a001 43133785636/96450076809*73681302247^(7/13) 3178110000006293 a001 591286729879/192900153618*73681302247^(6/13) 3178110000006293 a001 225851433717/119218851371*312119004989^(5/11) 3178110000006293 a001 53316291173/3461452808002*312119004989^(7/11) 3178110000006293 a001 225749145909/10745088481*73681302247^(5/13) 3178110000006293 a001 2504730781961/119218851371*505019158607^(5/14) 3178110000006293 a001 1548008755920/119218851371*192900153618^(7/18) 3178110000006293 a001 1515744265389/494493258286*73681302247^(6/13) 3178110000006293 a001 225851433717/505019158607*73681302247^(7/13) 3178110000006293 a001 2504730781961/2139295485799*73681302247^(1/2) 3178110000006293 a001 53316291173/312119004989*192900153618^(5/9) 3178110000006293 a001 591286729879/1322157322203*73681302247^(7/13) 3178110000006293 a001 365435296162/312119004989*73681302247^(1/2) 3178110000006293 a001 32264490531/494493258286*73681302247^(8/13) 3178110000006293 a001 365435296162/5600748293801*73681302247^(8/13) 3178110000006293 a001 139583862445/312119004989*73681302247^(7/13) 3178110000006293 a001 225851433717/23725150497407*73681302247^(9/13) 3178110000006293 a001 139583862445/2139295485799*73681302247^(8/13) 3178110000006293 a001 139583862445/14662949395604*73681302247^(9/13) 3178110000006293 a001 20365011074/2139295485799*45537549124^(12/17) 3178110000006293 a001 365435296162/119218851371*73681302247^(6/13) 3178110000006293 a001 10182505537/408569081798*45537549124^(2/3) 3178110000006293 a001 20365011074/505019158607*45537549124^(11/17) 3178110000006293 a001 139583862445/119218851371*73681302247^(1/2) 3178110000006293 a001 53316291173/817138163596*73681302247^(8/13) 3178110000006293 a001 53316291173/5600748293801*73681302247^(9/13) 3178110000006293 a001 53316291173/23725150497407*73681302247^(3/4) 3178110000006293 a001 53316291173/119218851371*73681302247^(7/13) 3178110000006293 a001 139583862445/45537549124*45537549124^(8/17) 3178110000006293 a001 591286729879/45537549124*45537549124^(7/17) 3178110000006293 a001 32951280099/45537549124*817138163596^(9/19) 3178110000006293 a001 32951280099/45537549124*14662949395604^(3/7) 3178110000006293 a001 20365011074/73681302247*1322157322203^(1/2) 3178110000006293 a001 2504730781961/45537549124*45537549124^(6/17) 3178110000006293 a001 1548008755920/73681302247*28143753123^(2/5) 3178110000006293 a001 10610209857723/45537549124*45537549124^(5/17) 3178110000006293 a001 21566892818/11384387281*312119004989^(5/11) 3178110000006293 a001 10182505537/96450076809*9062201101803^(1/2) 3178110000006293 a001 21566892818/11384387281*3461452808002^(5/12) 3178110000006293 a001 139583862445/73681302247*28143753123^(1/2) 3178110000006293 a001 10182505537/7331474697802*312119004989^(8/11) 3178110000006293 a001 10610209857723/45537549124*312119004989^(3/11) 3178110000006293 a001 182717648081/22768774562*312119004989^(2/5) 3178110000006293 a006 5^(1/2)*Fibonacci(79)/Lucas(51)/sqrt(5) 3178110000006293 a001 10182505537/7331474697802*23725150497407^(5/8) 3178110000006293 a001 20365011074/1322157322203*505019158607^(5/8) 3178110000006293 a001 10610209857723/45537549124*192900153618^(5/18) 3178110000006293 a001 20365011074/312119004989*23725150497407^(1/2) 3178110000006293 a001 20365011074/505019158607*192900153618^(11/18) 3178110000006293 a001 20365011074/2139295485799*192900153618^(2/3) 3178110000006293 a001 20365011074/9062201101803*192900153618^(13/18) 3178110000006293 a001 139583862445/45537549124*192900153618^(4/9) 3178110000006293 a001 6557470319842/312119004989*28143753123^(2/5) 3178110000006293 a001 3278735159921/22768774562*73681302247^(4/13) 3178110000006293 a001 10983760033/64300051206*28143753123^(3/5) 3178110000006293 a001 20365011074/119218851371*312119004989^(6/11) 3178110000006293 a001 956722026041/45537549124*73681302247^(5/13) 3178110000006293 a001 20365011074/119218851371*192900153618^(5/9) 3178110000006293 a001 2504730781961/119218851371*28143753123^(2/5) 3178110000006293 a001 139583862445/45537549124*73681302247^(6/13) 3178110000006293 a001 20365011074/312119004989*73681302247^(8/13) 3178110000006293 a001 182717648081/96450076809*28143753123^(1/2) 3178110000006293 a001 20365011074/2139295485799*73681302247^(9/13) 3178110000006293 a001 10182505537/7331474697802*73681302247^(10/13) 3178110000006293 a001 956722026041/505019158607*28143753123^(1/2) 3178110000006293 a001 10610209857723/5600748293801*28143753123^(1/2) 3178110000006293 a001 591286729879/312119004989*28143753123^(1/2) 3178110000006293 a001 53316291173/45537549124*73681302247^(1/2) 3178110000006293 a001 225851433717/119218851371*28143753123^(1/2) 3178110000006293 a001 86267571272/505019158607*28143753123^(3/5) 3178110000006293 a001 75283811239/440719107401*28143753123^(3/5) 3178110000006293 a001 2504730781961/14662949395604*28143753123^(3/5) 3178110000006293 a001 139583862445/817138163596*28143753123^(3/5) 3178110000006293 a001 32951280099/23725150497407*28143753123^(4/5) 3178110000006293 a001 53316291173/312119004989*28143753123^(3/5) 3178110000006293 a001 10610209857723/45537549124*28143753123^(3/10) 3178110000006293 a001 7787980473/505618944676*28143753123^(7/10) 3178110000006293 a001 365435296162/23725150497407*28143753123^(7/10) 3178110000006293 a001 139583862445/9062201101803*28143753123^(7/10) 3178110000006293 a001 7778742049/505019158607*17393796001^(5/7) 3178110000006293 a001 53316291173/3461452808002*28143753123^(7/10) 3178110000006293 a001 10182505537/22768774562*14662949395604^(4/9) 3178110000006293 a001 956722026041/45537549124*28143753123^(2/5) 3178110000006293 a001 10182505537/22768774562*73681302247^(7/13) 3178110000006293 a001 21566892818/11384387281*28143753123^(1/2) 3178110000006293 a001 3536736619241/9381251041*10749957122^(7/24) 3178110000006293 a001 20365011074/119218851371*28143753123^(3/5) 3178110000006293 a001 20365011074/1322157322203*28143753123^(7/10) 3178110000006293 a001 6557470319842/28143753123*10749957122^(5/16) 3178110000006293 a001 10182505537/7331474697802*28143753123^(4/5) 3178110000006293 a001 4052739537881/28143753123*10749957122^(1/3) 3178110000006293 a001 12586269025/17393796001*45537549124^(9/17) 3178110000006293 a001 7787980473/599786069*17393796001^(3/7) 3178110000006293 a001 12585437040/228811001*10749957122^(3/8) 3178110000006293 a001 12586269025/17393796001*817138163596^(9/19) 3178110000006293 a001 12586269025/17393796001*14662949395604^(3/7) 3178110000006293 a001 12586269025/17393796001*192900153618^(1/2) 3178110000006293 a001 591286729879/28143753123*10749957122^(5/12) 3178110000006293 a001 6557470319842/17393796001*17393796001^(2/7) 3178110000006293 a001 12586269025/28143753123*10749957122^(7/12) 3178110000006293 a001 1515744265389/10525900321*10749957122^(1/3) 3178110000006293 a001 1836311903/2537720636*2537720636^(3/5) 3178110000006293 a001 7778742049/14662949395604*45537549124^(14/17) 3178110000006293 a001 7778742049/3461452808002*45537549124^(13/17) 3178110000006293 a001 7778742049/192900153618*45537549124^(11/17) 3178110000006293 a001 7778742049/312119004989*45537549124^(2/3) 3178110000006293 a001 86267571272/28143753123*10749957122^(1/2) 3178110000006293 a001 4052739537881/73681302247*10749957122^(3/8) 3178110000006293 a001 7787980473/599786069*45537549124^(7/17) 3178110000006293 a001 32951280099/17393796001*312119004989^(5/11) 3178110000006293 a001 7778742049/73681302247*9062201101803^(1/2) 3178110000006293 a001 32951280099/17393796001*3461452808002^(5/12) 3178110000006293 a001 956722026041/17393796001*45537549124^(6/17) 3178110000006293 a001 1548008755920/17393796001*45537549124^(1/3) 3178110000006293 a001 53316291173/17393796001*45537549124^(8/17) 3178110000006293 a001 4052739537881/17393796001*45537549124^(5/17) 3178110000006293 a001 10610209857723/45537549124*10749957122^(5/16) 3178110000006293 a001 3536736619241/64300051206*10749957122^(3/8) 3178110000006293 a001 10983760033/9381251041*10749957122^(13/24) 3178110000006293 a001 7778742049/192900153618*312119004989^(3/5) 3178110000006293 a001 7778742049/192900153618*14662949395604^(11/21) 3178110000006293 a001 7778742049/505019158607*312119004989^(7/11) 3178110000006293 a001 4052739537881/17393796001*312119004989^(3/11) 3178110000006293 a006 5^(1/2)*Fibonacci(77)/Lucas(49)/sqrt(5) 3178110000006293 a001 2504730781961/17393796001*23725150497407^(1/4) 3178110000006293 a001 7778742049/14662949395604*505019158607^(3/4) 3178110000006293 a001 139583862445/17393796001*312119004989^(2/5) 3178110000006293 a001 6557470319842/119218851371*10749957122^(3/8) 3178110000006293 a001 7778742049/3461452808002*192900153618^(13/18) 3178110000006293 a001 7778742049/14662949395604*192900153618^(7/9) 3178110000006293 a001 10610209857723/17393796001*73681302247^(1/4) 3178110000006293 a001 2504730781961/17393796001*73681302247^(4/13) 3178110000006293 a001 3278735159921/22768774562*10749957122^(1/3) 3178110000006293 a001 53316291173/17393796001*14662949395604^(8/21) 3178110000006293 a001 7778742049/119218851371*23725150497407^(1/2) 3178110000006293 a001 365435296162/17393796001*73681302247^(5/13) 3178110000006293 a001 53316291173/17393796001*192900153618^(4/9) 3178110000006293 a001 1548008755920/73681302247*10749957122^(5/12) 3178110000006293 a001 7778742049/817138163596*73681302247^(9/13) 3178110000006293 a001 7778742049/3461452808002*73681302247^(3/4) 3178110000006293 a001 7778742049/5600748293801*73681302247^(10/13) 3178110000006293 a001 53316291173/17393796001*73681302247^(6/13) 3178110000006293 a001 7778742049/119218851371*73681302247^(8/13) 3178110000006293 a001 7778742049/45537549124*45537549124^(10/17) 3178110000006293 a001 4052739537881/192900153618*10749957122^(5/12) 3178110000006293 a001 225749145909/10745088481*10749957122^(5/12) 3178110000006293 a001 6557470319842/312119004989*10749957122^(5/12) 3178110000006293 a001 2504730781961/119218851371*10749957122^(5/12) 3178110000006293 a001 4052739537881/17393796001*28143753123^(3/10) 3178110000006293 a001 2504730781961/45537549124*10749957122^(3/8) 3178110000006293 a001 32951280099/17393796001*28143753123^(1/2) 3178110000006293 a001 2504730781961/192900153618*10749957122^(7/16) 3178110000006293 a001 591286729879/73681302247*10749957122^(11/24) 3178110000006293 a001 7778742049/45537549124*312119004989^(6/11) 3178110000006293 a001 10610209857723/817138163596*10749957122^(7/16) 3178110000006293 a001 4052739537881/312119004989*10749957122^(7/16) 3178110000006293 a001 7778742049/45537549124*192900153618^(5/9) 3178110000006293 a001 365435296162/17393796001*28143753123^(2/5) 3178110000006293 a001 1548008755920/119218851371*10749957122^(7/16) 3178110000006293 a001 20365011074/17393796001*73681302247^(1/2) 3178110000006293 a001 86000486440/10716675201*10749957122^(11/24) 3178110000006293 a001 12586269025/73681302247*10749957122^(5/8) 3178110000006293 a001 4052739537881/505019158607*10749957122^(11/24) 3178110000006293 a001 3278735159921/408569081798*10749957122^(11/24) 3178110000006293 a001 2504730781961/312119004989*10749957122^(11/24) 3178110000006293 a001 956722026041/119218851371*10749957122^(11/24) 3178110000006293 a001 20365011074/28143753123*10749957122^(9/16) 3178110000006293 a001 956722026041/45537549124*10749957122^(5/12) 3178110000006293 a001 32264490531/10525900321*10749957122^(1/2) 3178110000006293 a001 7778742049/505019158607*28143753123^(7/10) 3178110000006293 a001 591286729879/45537549124*10749957122^(7/16) 3178110000006293 a001 591286729879/192900153618*10749957122^(1/2) 3178110000006293 a001 7778742049/5600748293801*28143753123^(4/5) 3178110000006293 a001 1548008755920/505019158607*10749957122^(1/2) 3178110000006293 a001 1515744265389/494493258286*10749957122^(1/2) 3178110000006293 a001 2504730781961/817138163596*10749957122^(1/2) 3178110000006293 a001 956722026041/312119004989*10749957122^(1/2) 3178110000006293 a001 365435296162/119218851371*10749957122^(1/2) 3178110000006293 a001 182717648081/22768774562*10749957122^(11/24) 3178110000006293 a001 86267571272/73681302247*10749957122^(13/24) 3178110000006293 a001 12586269025/192900153618*10749957122^(2/3) 3178110000006293 a001 7778742049/45537549124*28143753123^(3/5) 3178110000006293 a001 75283811239/64300051206*10749957122^(13/24) 3178110000006293 a001 32951280099/73681302247*10749957122^(7/12) 3178110000006293 a001 1144206275/28374454999*10749957122^(11/16) 3178110000006293 a001 365435296162/312119004989*10749957122^(13/24) 3178110000006293 a001 7778742049/17393796001*17393796001^(4/7) 3178110000006293 a001 53316291173/73681302247*10749957122^(9/16) 3178110000006293 a001 139583862445/119218851371*10749957122^(13/24) 3178110000006293 a001 139583862445/45537549124*10749957122^(1/2) 3178110000006293 a001 139583862445/192900153618*10749957122^(9/16) 3178110000006293 a001 12586269025/505019158607*10749957122^(17/24) 3178110000006293 a001 225851433717/312119004989*10749957122^(9/16) 3178110000006293 a001 86267571272/119218851371*10749957122^(9/16) 3178110000006293 a001 43133785636/96450076809*10749957122^(7/12) 3178110000006293 a001 225851433717/505019158607*10749957122^(7/12) 3178110000006293 a001 182717648081/408569081798*10749957122^(7/12) 3178110000006293 a001 139583862445/312119004989*10749957122^(7/12) 3178110000006293 a001 32951280099/45537549124*10749957122^(9/16) 3178110000006293 a001 53316291173/119218851371*10749957122^(7/12) 3178110000006293 a001 10983760033/64300051206*10749957122^(5/8) 3178110000006293 a001 12586269025/1322157322203*10749957122^(3/4) 3178110000006293 a001 53316291173/45537549124*10749957122^(13/24) 3178110000006293 a001 86267571272/505019158607*10749957122^(5/8) 3178110000006293 a001 75283811239/440719107401*10749957122^(5/8) 3178110000006293 a001 2504730781961/14662949395604*10749957122^(5/8) 3178110000006293 a001 139583862445/817138163596*10749957122^(5/8) 3178110000006293 a001 53316291173/312119004989*10749957122^(5/8) 3178110000006293 a001 32951280099/505019158607*10749957122^(2/3) 3178110000006293 a001 12586269025/3461452808002*10749957122^(19/24) 3178110000006293 a001 86267571272/1322157322203*10749957122^(2/3) 3178110000006293 a001 32264490531/494493258286*10749957122^(2/3) 3178110000006293 a001 12586269025/5600748293801*10749957122^(13/16) 3178110000006293 a001 1548008755920/23725150497407*10749957122^(2/3) 3178110000006293 a001 365435296162/5600748293801*10749957122^(2/3) 3178110000006293 a001 139583862445/2139295485799*10749957122^(2/3) 3178110000006293 a001 6557470319842/17393796001*10749957122^(7/24) 3178110000006293 a001 53316291173/817138163596*10749957122^(2/3) 3178110000006293 a001 86267571272/2139295485799*10749957122^(11/16) 3178110000006293 a001 10983760033/440719107401*10749957122^(17/24) 3178110000006293 a001 225851433717/5600748293801*10749957122^(11/16) 3178110000006293 a001 12586269025/9062201101803*10749957122^(5/6) 3178110000006293 a001 139583862445/3461452808002*10749957122^(11/16) 3178110000006293 a001 10182505537/22768774562*10749957122^(7/12) 3178110000006293 a001 53316291173/1322157322203*10749957122^(11/16) 3178110000006293 a001 43133785636/1730726404001*10749957122^(17/24) 3178110000006293 a001 75283811239/3020733700601*10749957122^(17/24) 3178110000006293 a001 182717648081/7331474697802*10749957122^(17/24) 3178110000006293 a001 139583862445/5600748293801*10749957122^(17/24) 3178110000006293 a001 2504730781961/17393796001*10749957122^(1/3) 3178110000006293 a001 53316291173/2139295485799*10749957122^(17/24) 3178110000006293 a001 20365011074/312119004989*10749957122^(2/3) 3178110000006293 a001 32951280099/3461452808002*10749957122^(3/4) 3178110000006293 a001 12586269025/23725150497407*10749957122^(7/8) 3178110000006293 a001 20365011074/505019158607*10749957122^(11/16) 3178110000006293 a001 86267571272/9062201101803*10749957122^(3/4) 3178110000006293 a001 225851433717/23725150497407*10749957122^(3/4) 3178110000006293 a001 139583862445/14662949395604*10749957122^(3/4) 3178110000006293 a001 956722026041/17393796001*10749957122^(3/8) 3178110000006293 a001 53316291173/5600748293801*10749957122^(3/4) 3178110000006293 a001 7778742049/17393796001*14662949395604^(4/9) 3178110000006293 a001 10182505537/408569081798*10749957122^(17/24) 3178110000006293 a001 10983760033/3020733700601*10749957122^(19/24) 3178110000006293 a001 7778742049/17393796001*73681302247^(7/13) 3178110000006293 a001 4807525989/4870846*4106118243^(6/23) 3178110000006293 a001 86267571272/23725150497407*10749957122^(19/24) 3178110000006293 a001 32951280099/14662949395604*10749957122^(13/16) 3178110000006293 a001 12586269025/17393796001*10749957122^(9/16) 3178110000006293 a001 365435296162/17393796001*10749957122^(5/12) 3178110000006293 a001 53316291173/14662949395604*10749957122^(19/24) 3178110000006293 a001 20365011074/2139295485799*10749957122^(3/4) 3178110000006293 a001 32951280099/23725150497407*10749957122^(5/6) 3178110000006293 a001 7787980473/599786069*10749957122^(7/16) 3178110000006293 a001 53316291173/23725150497407*10749957122^(13/16) 3178110000006293 a001 139583862445/17393796001*10749957122^(11/24) 3178110000006293 a001 20365011074/5600748293801*10749957122^(19/24) 3178110000006293 a001 20365011074/9062201101803*10749957122^(13/16) 3178110000006293 a001 10182505537/7331474697802*10749957122^(5/6) 3178110000006293 a001 53316291173/17393796001*10749957122^(1/2) 3178110000006293 a001 20365011074/17393796001*10749957122^(13/24) 3178110000006293 a001 7778742049/119218851371*10749957122^(2/3) 3178110000006293 a001 7778742049/45537549124*10749957122^(5/8) 3178110000006293 a001 7778742049/192900153618*10749957122^(11/16) 3178110000006293 a001 4052739537881/10749957122*4106118243^(7/23) 3178110000006293 a001 7778742049/312119004989*10749957122^(17/24) 3178110000006293 a001 7778742049/817138163596*10749957122^(3/4) 3178110000006293 a001 7778742049/2139295485799*10749957122^(19/24) 3178110000006293 a001 7778742049/3461452808002*10749957122^(13/16) 3178110000006293 a001 1134903170/2139295485799*2537720636^(14/15) 3178110000006293 a001 7778742049/5600748293801*10749957122^(5/6) 3178110000006293 a001 7778742049/14662949395604*10749957122^(7/8) 3178110000006293 a001 7778742049/17393796001*10749957122^(7/12) 3178110000006293 a001 774004377960/5374978561*4106118243^(8/23) 3178110000006293 a001 4807526976/6643838879*45537549124^(9/17) 3178110000006293 a001 4807526976/6643838879*817138163596^(9/19) 3178110000006293 a001 4807526976/6643838879*14662949395604^(3/7) 3178110000006293 a001 2971215073/10749957122*1322157322203^(1/2) 3178110000006293 a001 4807526976/6643838879*192900153618^(1/2) 3178110000006293 a001 591286729879/10749957122*4106118243^(9/23) 3178110000006293 a001 3536736619241/9381251041*4106118243^(7/23) 3178110000006293 a001 225851433717/10749957122*4106118243^(10/23) 3178110000006293 a001 567451585/408569081798*2537720636^(8/9) 3178110000006293 a001 2403763488/5374978561*4106118243^(14/23) 3178110000006293 a001 4807526976/6643838879*10749957122^(9/16) 3178110000006293 a001 4052739537881/28143753123*4106118243^(8/23) 3178110000006293 a001 43133785636/5374978561*4106118243^(11/23) 3178110000006293 a001 2971215073/5600748293801*17393796001^(6/7) 3178110000006293 a001 2971215073/192900153618*17393796001^(5/7) 3178110000006293 a001 1515744265389/10525900321*4106118243^(8/23) 3178110000006293 a001 1134903170/505019158607*2537720636^(13/15) 3178110000006293 a001 53316291173/10749957122*4106118243^(1/2) 3178110000006293 a001 3278735159921/22768774562*4106118243^(8/23) 3178110000006293 a001 86267571272/6643838879*17393796001^(3/7) 3178110000006293 a001 6557470319842/17393796001*4106118243^(7/23) 3178110000006293 a001 12586269025/6643838879*312119004989^(5/11) 3178110000006293 a001 12586269025/6643838879*3461452808002^(5/12) 3178110000006293 a001 2504730781961/6643838879*17393796001^(2/7) 3178110000006293 a001 12585437040/228811001*4106118243^(9/23) 3178110000006293 a001 12586269025/6643838879*28143753123^(1/2) 3178110000006293 a001 32951280099/10749957122*4106118243^(12/23) 3178110000006293 a001 2971215073/73681302247*45537549124^(11/17) 3178110000006293 a001 2971215073/23725150497407*45537549124^(15/17) 3178110000006293 a001 2971215073/5600748293801*45537549124^(14/17) 3178110000006293 a001 2971215073/1322157322203*45537549124^(13/17) 3178110000006293 a001 2971215073/312119004989*45537549124^(12/17) 3178110000006293 a001 2971215073/119218851371*45537549124^(2/3) 3178110000006293 a001 86267571272/6643838879*45537549124^(7/17) 3178110000006293 a001 2971215073/73681302247*312119004989^(3/5) 3178110000006293 a001 2971215073/73681302247*817138163596^(11/19) 3178110000006293 a001 2971215073/73681302247*14662949395604^(11/21) 3178110000006293 a001 365435296162/6643838879*45537549124^(6/17) 3178110000006293 a001 2971215073/73681302247*192900153618^(11/18) 3178110000006293 a001 591286729879/6643838879*45537549124^(1/3) 3178110000006293 a001 1548008755920/6643838879*45537549124^(5/17) 3178110000006293 a001 6557470319842/6643838879*45537549124^(4/17) 3178110000006293 a001 2971215073/192900153618*312119004989^(7/11) 3178110000006293 a001 2971215073/192900153618*14662949395604^(5/9) 3178110000006293 a001 2971215073/192900153618*505019158607^(5/8) 3178110000006293 a001 86267571272/6643838879*192900153618^(7/18) 3178110000006293 a001 2971215073/23725150497407*312119004989^(9/11) 3178110000006293 a001 225851433717/6643838879*817138163596^(1/3) 3178110000006293 a001 1548008755920/6643838879*312119004989^(3/11) 3178110000006293 a001 10610209857723/6643838879*312119004989^(1/5) 3178110000006293 a006 5^(1/2)*Fibonacci(75)/Lucas(47)/sqrt(5) 3178110000006293 a001 1548008755920/6643838879*192900153618^(5/18) 3178110000006293 a001 139583862445/6643838879*23725150497407^(5/16) 3178110000006293 a001 139583862445/6643838879*505019158607^(5/14) 3178110000006293 a001 2971215073/312119004989*505019158607^(9/14) 3178110000006293 a001 2971215073/5600748293801*192900153618^(7/9) 3178110000006293 a001 2971215073/23725150497407*192900153618^(5/6) 3178110000006293 a001 2971215073/312119004989*192900153618^(2/3) 3178110000006293 a001 6557470319842/6643838879*73681302247^(3/13) 3178110000006293 a001 4052739537881/6643838879*73681302247^(1/4) 3178110000006293 a001 956722026041/6643838879*73681302247^(4/13) 3178110000006293 a001 53316291173/6643838879*312119004989^(2/5) 3178110000006293 a001 139583862445/6643838879*73681302247^(5/13) 3178110000006293 a001 2971215073/1322157322203*73681302247^(3/4) 3178110000006293 a001 2971215073/312119004989*73681302247^(9/13) 3178110000006293 a001 2971215073/2139295485799*73681302247^(10/13) 3178110000006293 a001 2971215073/14662949395604*73681302247^(11/13) 3178110000006293 a001 20365011074/6643838879*45537549124^(8/17) 3178110000006293 a001 4052739537881/73681302247*4106118243^(9/23) 3178110000006293 a001 1548008755920/6643838879*28143753123^(3/10) 3178110000006293 a001 20365011074/6643838879*14662949395604^(8/21) 3178110000006293 a001 2971215073/45537549124*23725150497407^(1/2) 3178110000006293 a001 2971215073/45537549124*505019158607^(4/7) 3178110000006293 a001 20365011074/6643838879*192900153618^(4/9) 3178110000006293 a001 139583862445/6643838879*28143753123^(2/5) 3178110000006293 a001 3536736619241/64300051206*4106118243^(9/23) 3178110000006293 a001 20365011074/6643838879*73681302247^(6/13) 3178110000006293 a001 2971215073/45537549124*73681302247^(8/13) 3178110000006293 a001 6557470319842/119218851371*4106118243^(9/23) 3178110000006293 a001 2971215073/192900153618*28143753123^(7/10) 3178110000006293 a001 12586269025/10749957122*4106118243^(13/23) 3178110000006293 a001 2971215073/2139295485799*28143753123^(4/5) 3178110000006293 a001 2504730781961/45537549124*4106118243^(9/23) 3178110000006293 a001 2971215073/23725150497407*28143753123^(9/10) 3178110000006293 a001 2504730781961/17393796001*4106118243^(8/23) 3178110000006293 a001 591286729879/28143753123*4106118243^(10/23) 3178110000006293 a001 6557470319842/6643838879*10749957122^(1/4) 3178110000006293 a001 2504730781961/6643838879*10749957122^(7/24) 3178110000006293 a001 1548008755920/6643838879*10749957122^(5/16) 3178110000006293 a001 956722026041/6643838879*10749957122^(1/3) 3178110000006293 a001 1548008755920/73681302247*4106118243^(10/23) 3178110000006293 a001 2971215073/17393796001*45537549124^(10/17) 3178110000006293 a001 4052739537881/192900153618*4106118243^(10/23) 3178110000006293 a001 225749145909/10745088481*4106118243^(10/23) 3178110000006293 a001 6557470319842/312119004989*4106118243^(10/23) 3178110000006293 a001 2504730781961/119218851371*4106118243^(10/23) 3178110000006293 a001 365435296162/6643838879*10749957122^(3/8) 3178110000006293 a001 2971215073/17393796001*312119004989^(6/11) 3178110000006293 a001 2971215073/17393796001*14662949395604^(10/21) 3178110000006293 a001 2971215073/17393796001*192900153618^(5/9) 3178110000006293 a001 7778742049/6643838879*73681302247^(1/2) 3178110000006293 a001 956722026041/45537549124*4106118243^(10/23) 3178110000006293 a001 139583862445/6643838879*10749957122^(5/12) 3178110000006293 a001 86267571272/6643838879*10749957122^(7/16) 3178110000006293 a001 956722026041/17393796001*4106118243^(9/23) 3178110000006293 a001 53316291173/6643838879*10749957122^(11/24) 3178110000006293 a001 2971215073/17393796001*28143753123^(3/5) 3178110000006293 a001 75283811239/9381251041*4106118243^(11/23) 3178110000006293 a001 20365011074/6643838879*10749957122^(1/2) 3178110000006293 a001 591286729879/73681302247*4106118243^(11/23) 3178110000006293 a001 86000486440/10716675201*4106118243^(11/23) 3178110000006293 a001 4052739537881/505019158607*4106118243^(11/23) 3178110000006293 a001 3278735159921/408569081798*4106118243^(11/23) 3178110000006293 a001 2504730781961/312119004989*4106118243^(11/23) 3178110000006293 a001 139583862445/28143753123*4106118243^(1/2) 3178110000006293 a001 2971215073/73681302247*10749957122^(11/16) 3178110000006293 a001 956722026041/119218851371*4106118243^(11/23) 3178110000006293 a001 1602508992/9381251041*4106118243^(15/23) 3178110000006293 a001 182717648081/22768774562*4106118243^(11/23) 3178110000006293 a001 2971215073/119218851371*10749957122^(17/24) 3178110000006293 a001 2971215073/45537549124*10749957122^(2/3) 3178110000006293 a001 365435296162/17393796001*4106118243^(10/23) 3178110000006293 a001 2971215073/312119004989*10749957122^(3/4) 3178110000006293 a001 365435296162/73681302247*4106118243^(1/2) 3178110000006293 a001 2971215073/817138163596*10749957122^(19/24) 3178110000006293 a001 956722026041/192900153618*4106118243^(1/2) 3178110000006293 a001 2504730781961/505019158607*4106118243^(1/2) 3178110000006293 a001 86267571272/28143753123*4106118243^(12/23) 3178110000006293 a001 10610209857723/2139295485799*4106118243^(1/2) 3178110000006293 a001 140728068720/28374454999*4106118243^(1/2) 3178110000006293 a001 2971215073/1322157322203*10749957122^(13/16) 3178110000006293 a001 591286729879/119218851371*4106118243^(1/2) 3178110000006293 a001 2971215073/2139295485799*10749957122^(5/6) 3178110000006293 a001 225851433717/45537549124*4106118243^(1/2) 3178110000006293 a001 2971215073/5600748293801*10749957122^(7/8) 3178110000006293 a001 2971215073/14662949395604*10749957122^(11/12) 3178110000006293 a001 7778742049/6643838879*10749957122^(13/24) 3178110000006293 a001 32264490531/10525900321*4106118243^(12/23) 3178110000006293 a001 2971215073/23725150497407*10749957122^(15/16) 3178110000006293 a001 591286729879/192900153618*4106118243^(12/23) 3178110000006293 a001 1548008755920/505019158607*4106118243^(12/23) 3178110000006293 a001 1515744265389/494493258286*4106118243^(12/23) 3178110000006293 a001 2504730781961/817138163596*4106118243^(12/23) 3178110000006293 a001 956722026041/312119004989*4106118243^(12/23) 3178110000006293 a001 365435296162/119218851371*4106118243^(12/23) 3178110000006293 a001 1134903170/119218851371*2537720636^(4/5) 3178110000006293 a001 2971215073/17393796001*10749957122^(5/8) 3178110000006293 a001 139583862445/45537549124*4106118243^(12/23) 3178110000006293 a001 139583862445/17393796001*4106118243^(11/23) 3178110000006293 a001 10983760033/9381251041*4106118243^(13/23) 3178110000006293 a001 686789568/10525900321*4106118243^(16/23) 3178110000006293 a001 86267571272/17393796001*4106118243^(1/2) 3178110000006293 a001 3536736619241/1368706081*1568397607^(5/22) 3178110000006293 a001 86267571272/73681302247*4106118243^(13/23) 3178110000006293 a001 75283811239/64300051206*4106118243^(13/23) 3178110000006293 a001 2504730781961/2139295485799*4106118243^(13/23) 3178110000006293 a001 365435296162/312119004989*4106118243^(13/23) 3178110000006293 a001 12586269025/28143753123*4106118243^(14/23) 3178110000006293 a001 139583862445/119218851371*4106118243^(13/23) 3178110000006293 a001 53316291173/45537549124*4106118243^(13/23) 3178110000006293 a001 53316291173/17393796001*4106118243^(12/23) 3178110000006293 a001 1134903170/73681302247*2537720636^(7/9) 3178110000006293 a001 267084832/10716675201*4106118243^(17/23) 3178110000006293 a001 32951280099/73681302247*4106118243^(14/23) 3178110000006293 a001 43133785636/96450076809*4106118243^(14/23) 3178110000006293 a001 225851433717/505019158607*4106118243^(14/23) 3178110000006293 a001 591286729879/1322157322203*4106118243^(14/23) 3178110000006293 a001 182717648081/408569081798*4106118243^(14/23) 3178110000006293 a001 139583862445/312119004989*4106118243^(14/23) 3178110000006293 a001 53316291173/119218851371*4106118243^(14/23) 3178110000006293 a001 10182505537/22768774562*4106118243^(14/23) 3178110000006293 a001 12586269025/73681302247*4106118243^(15/23) 3178110000006293 a001 20365011074/17393796001*4106118243^(13/23) 3178110000006293 a001 102287808/10745088481*4106118243^(18/23) 3178110000006293 a001 6557470319842/6643838879*4106118243^(6/23) 3178110000006293 a001 10983760033/64300051206*4106118243^(15/23) 3178110000006293 a001 86267571272/505019158607*4106118243^(15/23) 3178110000006293 a001 75283811239/440719107401*4106118243^(15/23) 3178110000006293 a001 139583862445/817138163596*4106118243^(15/23) 3178110000006293 a001 53316291173/312119004989*4106118243^(15/23) 3178110000006293 a001 20365011074/119218851371*4106118243^(15/23) 3178110000006293 a001 12586269025/192900153618*4106118243^(16/23) 3178110000006293 a001 1134903170/28143753123*2537720636^(11/15) 3178110000006293 a001 1602508992/440719107401*4106118243^(19/23) 3178110000006293 a001 2504730781961/6643838879*4106118243^(7/23) 3178110000006293 a001 32951280099/505019158607*4106118243^(16/23) 3178110000006293 a001 86267571272/1322157322203*4106118243^(16/23) 3178110000006293 a001 32264490531/494493258286*4106118243^(16/23) 3178110000006293 a001 365435296162/5600748293801*4106118243^(16/23) 3178110000006293 a001 139583862445/2139295485799*4106118243^(16/23) 3178110000006293 a001 53316291173/817138163596*4106118243^(16/23) 3178110000006293 a001 20365011074/312119004989*4106118243^(16/23) 3178110000006293 a001 6557470319842/4106118243*1568397607^(1/4) 3178110000006293 a001 7778742049/45537549124*4106118243^(15/23) 3178110000006293 a001 12586269025/505019158607*4106118243^(17/23) 3178110000006293 a001 7778742049/17393796001*4106118243^(14/23) 3178110000006293 a001 14930208/10749853441*4106118243^(20/23) 3178110000006293 a001 956722026041/6643838879*4106118243^(8/23) 3178110000006293 a001 2971215073/6643838879*17393796001^(4/7) 3178110000006293 a001 10983760033/440719107401*4106118243^(17/23) 3178110000006293 a001 43133785636/1730726404001*4106118243^(17/23) 3178110000006293 a001 75283811239/3020733700601*4106118243^(17/23) 3178110000006293 a001 182717648081/7331474697802*4106118243^(17/23) 3178110000006293 a001 139583862445/5600748293801*4106118243^(17/23) 3178110000006293 a001 53316291173/2139295485799*4106118243^(17/23) 3178110000006293 a001 10182505537/408569081798*4106118243^(17/23) 3178110000006293 a001 7778742049/119218851371*4106118243^(16/23) 3178110000006293 a001 12586269025/1322157322203*4106118243^(18/23) 3178110000006293 a001 2971215073/6643838879*14662949395604^(4/9) 3178110000006293 a001 2971215073/6643838879*505019158607^(1/2) 3178110000006293 a001 2971215073/6643838879*73681302247^(7/13) 3178110000006293 a001 1602508992/3020733700601*4106118243^(21/23) 3178110000006293 a001 365435296162/6643838879*4106118243^(9/23) 3178110000006293 a001 32951280099/3461452808002*4106118243^(18/23) 3178110000006293 a001 86267571272/9062201101803*4106118243^(18/23) 3178110000006293 a001 225851433717/23725150497407*4106118243^(18/23) 3178110000006293 a001 139583862445/14662949395604*4106118243^(18/23) 3178110000006293 a001 53316291173/5600748293801*4106118243^(18/23) 3178110000006293 a001 20365011074/2139295485799*4106118243^(18/23) 3178110000006293 a001 7778742049/312119004989*4106118243^(17/23) 3178110000006293 a001 12586269025/3461452808002*4106118243^(19/23) 3178110000006293 a001 4807526976/23725150497407*4106118243^(22/23) 3178110000006293 a001 139583862445/6643838879*4106118243^(10/23) 3178110000006293 a001 10983760033/3020733700601*4106118243^(19/23) 3178110000006293 a001 86267571272/23725150497407*4106118243^(19/23) 3178110000006293 a001 53316291173/14662949395604*4106118243^(19/23) 3178110000006293 a001 20365011074/5600748293801*4106118243^(19/23) 3178110000006293 a001 7778742049/817138163596*4106118243^(18/23) 3178110000006293 a001 12586269025/9062201101803*4106118243^(20/23) 3178110000006293 a001 2971215073/6643838879*10749957122^(7/12) 3178110000006293 a001 53316291173/6643838879*4106118243^(11/23) 3178110000006293 a001 32951280099/23725150497407*4106118243^(20/23) 3178110000006293 a001 4052739537881/4106118243*1568397607^(3/11) 3178110000006293 a001 10182505537/7331474697802*4106118243^(20/23) 3178110000006293 a001 32951280099/6643838879*4106118243^(1/2) 3178110000006293 a001 7778742049/2139295485799*4106118243^(19/23) 3178110000006293 a001 12586269025/23725150497407*4106118243^(21/23) 3178110000006293 a001 20365011074/6643838879*4106118243^(12/23) 3178110000006293 a001 7778742049/5600748293801*4106118243^(20/23) 3178110000006293 a001 7778742049/14662949395604*4106118243^(21/23) 3178110000006293 a001 7778742049/6643838879*4106118243^(13/23) 3178110000006293 a001 1201881744/634430159*2537720636^(5/9) 3178110000006293 a001 2971215073/45537549124*4106118243^(16/23) 3178110000006293 a001 2971215073/17393796001*4106118243^(15/23) 3178110000006293 a001 2971215073/119218851371*4106118243^(17/23) 3178110000006293 a001 2971215073/312119004989*4106118243^(18/23) 3178110000006293 a001 433494437/599074578*599074578^(9/14) 3178110000006293 a001 516002918640/1368706081*1568397607^(7/22) 3178110000006293 a001 2971215073/817138163596*4106118243^(19/23) 3178110000006293 a001 2971215073/2139295485799*4106118243^(20/23) 3178110000006293 a001 1134903170/6643838879*2537720636^(2/3) 3178110000006293 a001 7778742049/2537720636*2537720636^(8/15) 3178110000006293 a001 2971215073/5600748293801*4106118243^(21/23) 3178110000006293 a001 3536736619241/199691526*228826127^(3/20) 3178110000006293 a001 2971215073/14662949395604*4106118243^(22/23) 3178110000006293 a001 2971215073/6643838879*4106118243^(14/23) 3178110000006293 a001 32951280099/2537720636*2537720636^(7/15) 3178110000006293 a001 53316291173/2537720636*2537720636^(4/9) 3178110000006293 a001 591286729879/4106118243*1568397607^(4/11) 3178110000006293 a001 139583862445/2537720636*2537720636^(2/5) 3178110000006293 a001 1836311903/2537720636*45537549124^(9/17) 3178110000006293 a001 1836311903/2537720636*817138163596^(9/19) 3178110000006293 a001 1134903170/4106118243*1322157322203^(1/2) 3178110000006293 a001 1836311903/2537720636*192900153618^(1/2) 3178110000006293 a001 1836311903/2537720636*10749957122^(9/16) 3178110000006293 a001 4807525989/4870846*1568397607^(3/11) 3178110000006293 a001 591286729879/2537720636*2537720636^(1/3) 3178110000006293 a001 75283811239/1368706081*1568397607^(9/22) 3178110000006293 a001 2504730781961/2537720636*2537720636^(4/15) 3178110000006293 a001 4052739537881/10749957122*1568397607^(7/22) 3178110000006293 a001 3278735159921/1268860318*2537720636^(2/9) 3178110000006293 a001 1515744265389/224056801*599074578^(4/21) 3178110000006293 a001 10610209857723/2537720636*2537720636^(1/5) 3178110000006293 a001 10610209857723/6643838879*1568397607^(1/4) 3178110000006293 a001 86267571272/4106118243*1568397607^(5/11) 3178110000006293 a001 3536736619241/9381251041*1568397607^(7/22) 3178110000006293 a001 6557470319842/17393796001*1568397607^(7/22) 3178110000006293 a001 6557470319842/6643838879*1568397607^(3/11) 3178110000006293 a001 774004377960/5374978561*1568397607^(4/11) 3178110000006293 a001 1836311903/4106118243*1568397607^(7/11) 3178110000006293 a001 10983760033/1368706081*1568397607^(1/2) 3178110000006293 a001 4052739537881/28143753123*1568397607^(4/11) 3178110000006293 a001 1201881744/634430159*312119004989^(5/11) 3178110000006293 a001 1201881744/634430159*3461452808002^(5/12) 3178110000006293 a001 1201881744/634430159*28143753123^(1/2) 3178110000006293 a001 1515744265389/10525900321*1568397607^(4/11) 3178110000006293 a001 3278735159921/22768774562*1568397607^(4/11) 3178110000006293 a001 2504730781961/17393796001*1568397607^(4/11) 3178110000006293 a001 2504730781961/6643838879*1568397607^(7/22) 3178110000006293 a001 1134903170/2139295485799*17393796001^(6/7) 3178110000006293 a001 1134903170/73681302247*17393796001^(5/7) 3178110000006293 a001 32951280099/2537720636*17393796001^(3/7) 3178110000006293 a001 1134903170/28143753123*45537549124^(11/17) 3178110000006293 a001 1134903170/28143753123*312119004989^(3/5) 3178110000006293 a001 1134903170/28143753123*14662949395604^(11/21) 3178110000006293 a001 1134903170/28143753123*192900153618^(11/18) 3178110000006293 a001 956722026041/2537720636*17393796001^(2/7) 3178110000006293 a001 1134903170/9062201101803*45537549124^(15/17) 3178110000006293 a001 1134903170/2139295485799*45537549124^(14/17) 3178110000006293 a001 32951280099/2537720636*45537549124^(7/17) 3178110000006293 a001 1134903170/505019158607*45537549124^(13/17) 3178110000006293 a001 1134903170/119218851371*45537549124^(12/17) 3178110000006293 a001 1134903170/73681302247*312119004989^(7/11) 3178110000006293 a001 1134903170/73681302247*14662949395604^(5/9) 3178110000006293 a001 32951280099/2537720636*14662949395604^(1/3) 3178110000006293 a001 1134903170/73681302247*505019158607^(5/8) 3178110000006293 a001 225851433717/2537720636*45537549124^(1/3) 3178110000006293 a001 139583862445/2537720636*45537549124^(6/17) 3178110000006293 a001 591286729879/2537720636*45537549124^(5/17) 3178110000006293 a001 2504730781961/2537720636*45537549124^(4/17) 3178110000006293 a001 10610209857723/2537720636*45537549124^(3/17) 3178110000006293 a001 1135099622/33391061*817138163596^(1/3) 3178110000006293 a001 1134903170/9062201101803*312119004989^(9/11) 3178110000006293 a001 1134903170/5600748293801*312119004989^(4/5) 3178110000006293 a001 1134903170/505019158607*14662949395604^(13/21) 3178110000006293 a001 10610209857723/2537720636*817138163596^(3/19) 3178110000006293 a001 1134903170/9062201101803*14662949395604^(5/7) 3178110000006293 a001 10610209857723/2537720636*14662949395604^(1/7) 3178110000006293 a006 5^(1/2)*Fibonacci(73)/Lucas(45)/sqrt(5) 3178110000006293 a001 10610209857723/2537720636*192900153618^(1/6) 3178110000006293 a001 1134903170/312119004989*817138163596^(2/3) 3178110000006293 a001 1134903170/505019158607*192900153618^(13/18) 3178110000006293 a001 1134903170/2139295485799*192900153618^(7/9) 3178110000006293 a001 1134903170/9062201101803*192900153618^(5/6) 3178110000006293 a001 2504730781961/2537720636*73681302247^(3/13) 3178110000006293 a001 1134903780/1860499*73681302247^(1/4) 3178110000006293 a001 182717648081/1268860318*73681302247^(4/13) 3178110000006293 a001 1134903170/119218851371*14662949395604^(4/7) 3178110000006293 a001 53316291173/2537720636*505019158607^(5/14) 3178110000006293 a001 1134903170/119218851371*505019158607^(9/14) 3178110000006293 a001 1134903170/119218851371*192900153618^(2/3) 3178110000006293 a001 1134903170/505019158607*73681302247^(3/4) 3178110000006293 a001 53316291173/2537720636*73681302247^(5/13) 3178110000006293 a001 567451585/408569081798*73681302247^(10/13) 3178110000006293 a001 1134903170/5600748293801*73681302247^(11/13) 3178110000006293 a001 567451585/22768774562*45537549124^(2/3) 3178110000006293 a001 1134903170/119218851371*73681302247^(9/13) 3178110000006293 a001 3278735159921/1268860318*28143753123^(1/5) 3178110000006293 a001 591286729879/2537720636*28143753123^(3/10) 3178110000006293 a001 10182505537/1268860318*312119004989^(2/5) 3178110000006293 a001 53316291173/2537720636*28143753123^(2/5) 3178110000006293 a001 1134903170/73681302247*28143753123^(7/10) 3178110000006293 a001 567451585/408569081798*28143753123^(4/5) 3178110000006293 a001 1134903170/9062201101803*28143753123^(9/10) 3178110000006293 a001 10610209857723/2537720636*10749957122^(3/16) 3178110000006293 a001 3278735159921/1268860318*10749957122^(5/24) 3178110000006293 a001 2504730781961/2537720636*10749957122^(1/4) 3178110000006293 a001 591286729879/10749957122*1568397607^(9/22) 3178110000006293 a001 956722026041/2537720636*10749957122^(7/24) 3178110000006293 a001 591286729879/2537720636*10749957122^(5/16) 3178110000006293 a001 182717648081/1268860318*10749957122^(1/3) 3178110000006293 a001 7778742049/2537720636*45537549124^(8/17) 3178110000006293 a001 139583862445/2537720636*10749957122^(3/8) 3178110000006293 a001 7778742049/2537720636*14662949395604^(8/21) 3178110000006293 a001 1134903170/17393796001*23725150497407^(1/2) 3178110000006293 a001 1134903170/17393796001*505019158607^(4/7) 3178110000006293 a001 7778742049/2537720636*192900153618^(4/9) 3178110000006293 a001 7778742049/2537720636*73681302247^(6/13) 3178110000006293 a001 1134903170/17393796001*73681302247^(8/13) 3178110000006293 a001 32951280099/2537720636*10749957122^(7/16) 3178110000006293 a001 53316291173/2537720636*10749957122^(5/12) 3178110000006293 a001 10182505537/1268860318*10749957122^(11/24) 3178110000006293 a001 1134903170/28143753123*10749957122^(11/16) 3178110000006293 a001 12586269025/4106118243*1568397607^(6/11) 3178110000006293 a001 1134903170/119218851371*10749957122^(3/4) 3178110000006293 a001 567451585/22768774562*10749957122^(17/24) 3178110000006293 a001 1134903170/312119004989*10749957122^(19/24) 3178110000006293 a001 1134903170/505019158607*10749957122^(13/16) 3178110000006293 a001 567451585/408569081798*10749957122^(5/6) 3178110000006293 a001 1134903170/2139295485799*10749957122^(7/8) 3178110000006293 a001 7778742049/2537720636*10749957122^(1/2) 3178110000006293 a001 1134903170/5600748293801*10749957122^(11/12) 3178110000006293 a001 1134903170/9062201101803*10749957122^(15/16) 3178110000006293 a001 567451585/7331474697802*10749957122^(23/24) 3178110000006293 a001 1134903170/17393796001*10749957122^(2/3) 3178110000006293 a001 12585437040/228811001*1568397607^(9/22) 3178110000006293 a001 4052739537881/73681302247*1568397607^(9/22) 3178110000006293 a001 3536736619241/64300051206*1568397607^(9/22) 3178110000006293 a001 6557470319842/119218851371*1568397607^(9/22) 3178110000006293 a001 2504730781961/45537549124*1568397607^(9/22) 3178110000006293 a001 3278735159921/1268860318*4106118243^(5/23) 3178110000006293 a001 956722026041/17393796001*1568397607^(9/22) 3178110000006293 a001 956722026041/6643838879*1568397607^(4/11) 3178110000006293 a001 2504730781961/2537720636*4106118243^(6/23) 3178110000006293 a001 1602508992/1368706081*1568397607^(13/22) 3178110000006293 a001 956722026041/2537720636*4106118243^(7/23) 3178110000006293 a001 182717648081/1268860318*4106118243^(8/23) 3178110000006293 a001 225851433717/10749957122*1568397607^(5/11) 3178110000006293 a001 1134903170/6643838879*45537549124^(10/17) 3178110000006293 a001 1134903170/6643838879*312119004989^(6/11) 3178110000006293 a001 1134903170/6643838879*14662949395604^(10/21) 3178110000006293 a001 1134903170/6643838879*192900153618^(5/9) 3178110000006293 a001 2971215073/2537720636*73681302247^(1/2) 3178110000006293 a001 139583862445/2537720636*4106118243^(9/23) 3178110000006293 a001 1134903170/6643838879*28143753123^(3/5) 3178110000006293 a001 53316291173/2537720636*4106118243^(10/23) 3178110000006293 a001 2971215073/2537720636*10749957122^(13/24) 3178110000006293 a001 1134903170/6643838879*10749957122^(5/8) 3178110000006293 a001 591286729879/28143753123*1568397607^(5/11) 3178110000006293 a001 1144206275/230701876*4106118243^(1/2) 3178110000006293 a001 10182505537/1268860318*4106118243^(11/23) 3178110000006293 a001 1548008755920/73681302247*1568397607^(5/11) 3178110000006293 a001 4052739537881/192900153618*1568397607^(5/11) 3178110000006293 a001 225749145909/10745088481*1568397607^(5/11) 3178110000006293 a001 6557470319842/312119004989*1568397607^(5/11) 3178110000006293 a001 2504730781961/119218851371*1568397607^(5/11) 3178110000006293 a001 956722026041/45537549124*1568397607^(5/11) 3178110000006293 a001 365435296162/17393796001*1568397607^(5/11) 3178110000006293 a001 365435296162/6643838879*1568397607^(9/22) 3178110000006293 a001 7778742049/2537720636*4106118243^(12/23) 3178110000006293 a001 6557470319842/1568397607*599074578^(3/14) 3178110000006293 a001 43133785636/5374978561*1568397607^(1/2) 3178110000006293 a001 567451585/22768774562*4106118243^(17/23) 3178110000006293 a001 1134903170/17393796001*4106118243^(16/23) 3178110000006293 a001 1134903170/119218851371*4106118243^(18/23) 3178110000006293 a001 75283811239/9381251041*1568397607^(1/2) 3178110000006293 a001 591286729879/73681302247*1568397607^(1/2) 3178110000006293 a001 86000486440/10716675201*1568397607^(1/2) 3178110000006293 a001 4052739537881/505019158607*1568397607^(1/2) 3178110000006293 a001 3278735159921/408569081798*1568397607^(1/2) 3178110000006293 a001 2504730781961/312119004989*1568397607^(1/2) 3178110000006293 a001 956722026041/119218851371*1568397607^(1/2) 3178110000006293 a001 182717648081/22768774562*1568397607^(1/2) 3178110000006293 a001 1134903170/312119004989*4106118243^(19/23) 3178110000006293 a001 139583862445/17393796001*1568397607^(1/2) 3178110000006293 a001 567451585/408569081798*4106118243^(20/23) 3178110000006293 a001 139583862445/6643838879*1568397607^(5/11) 3178110000006293 a001 1836311903/10749957122*1568397607^(15/22) 3178110000006293 a001 1134903170/2139295485799*4106118243^(21/23) 3178110000006293 a001 2971215073/2537720636*4106118243^(13/23) 3178110000006293 a001 1134903170/5600748293801*4106118243^(22/23) 3178110000006293 a001 32951280099/10749957122*1568397607^(6/11) 3178110000006293 a001 1134903170/6643838879*4106118243^(15/23) 3178110000006293 a001 86267571272/28143753123*1568397607^(6/11) 3178110000006293 a001 32264490531/10525900321*1568397607^(6/11) 3178110000006293 a001 591286729879/192900153618*1568397607^(6/11) 3178110000006293 a001 1548008755920/505019158607*1568397607^(6/11) 3178110000006293 a001 1515744265389/494493258286*1568397607^(6/11) 3178110000006293 a001 2504730781961/817138163596*1568397607^(6/11) 3178110000006293 a001 956722026041/312119004989*1568397607^(6/11) 3178110000006293 a001 365435296162/119218851371*1568397607^(6/11) 3178110000006293 a001 139583862445/45537549124*1568397607^(6/11) 3178110000006293 a001 53316291173/17393796001*1568397607^(6/11) 3178110000006293 a001 53316291173/6643838879*1568397607^(1/2) 3178110000006293 a001 12586269025/10749957122*1568397607^(13/22) 3178110000006293 a001 1836311903/28143753123*1568397607^(8/11) 3178110000006293 a001 10983760033/9381251041*1568397607^(13/22) 3178110000006293 a001 86267571272/73681302247*1568397607^(13/22) 3178110000006293 a001 75283811239/64300051206*1568397607^(13/22) 3178110000006293 a001 2504730781961/2139295485799*1568397607^(13/22) 3178110000006293 a001 365435296162/312119004989*1568397607^(13/22) 3178110000006293 a001 139583862445/119218851371*1568397607^(13/22) 3178110000006293 a001 53316291173/45537549124*1568397607^(13/22) 3178110000006293 a001 2403763488/5374978561*1568397607^(7/11) 3178110000006293 a001 20365011074/17393796001*1568397607^(13/22) 3178110000006293 a001 20365011074/6643838879*1568397607^(6/11) 3178110000006293 a001 1836311903/45537549124*1568397607^(3/4) 3178110000006293 a001 3278735159921/1268860318*1568397607^(5/22) 3178110000006293 a001 1836311903/73681302247*1568397607^(17/22) 3178110000006293 a001 12586269025/28143753123*1568397607^(7/11) 3178110000006293 a001 4052739537881/1568397607*599074578^(5/21) 3178110000006293 a001 4052739537881/2537720636*1568397607^(1/4) 3178110000006293 a001 32951280099/73681302247*1568397607^(7/11) 3178110000006293 a001 43133785636/96450076809*1568397607^(7/11) 3178110000006293 a001 225851433717/505019158607*1568397607^(7/11) 3178110000006293 a001 182717648081/408569081798*1568397607^(7/11) 3178110000006293 a001 139583862445/312119004989*1568397607^(7/11) 3178110000006293 a001 53316291173/119218851371*1568397607^(7/11) 3178110000006293 a001 10182505537/22768774562*1568397607^(7/11) 3178110000006293 a001 7778742049/17393796001*1568397607^(7/11) 3178110000006293 a001 2504730781961/2537720636*1568397607^(3/11) 3178110000006293 a001 7778742049/6643838879*1568397607^(13/22) 3178110000006293 a001 1602508992/9381251041*1568397607^(15/22) 3178110000006293 a001 1836311903/192900153618*1568397607^(9/11) 3178110000006293 a001 12586269025/73681302247*1568397607^(15/22) 3178110000006293 a001 10983760033/64300051206*1568397607^(15/22) 3178110000006293 a001 86267571272/505019158607*1568397607^(15/22) 3178110000006293 a001 75283811239/440719107401*1568397607^(15/22) 3178110000006293 a001 139583862445/817138163596*1568397607^(15/22) 3178110000006293 a001 53316291173/312119004989*1568397607^(15/22) 3178110000006293 a001 20365011074/119218851371*1568397607^(15/22) 3178110000006293 a001 7778742049/45537549124*1568397607^(15/22) 3178110000006293 a001 956722026041/2537720636*1568397607^(7/22) 3178110000006293 a001 686789568/10525900321*1568397607^(8/11) 3178110000006293 a001 1836311903/505019158607*1568397607^(19/22) 3178110000006293 a001 12586269025/192900153618*1568397607^(8/11) 3178110000006293 a001 32951280099/505019158607*1568397607^(8/11) 3178110000006293 a001 86267571272/1322157322203*1568397607^(8/11) 3178110000006293 a001 32264490531/494493258286*1568397607^(8/11) 3178110000006293 a001 1548008755920/23725150497407*1568397607^(8/11) 3178110000006293 a001 365435296162/5600748293801*1568397607^(8/11) 3178110000006293 a001 139583862445/2139295485799*1568397607^(8/11) 3178110000006293 a001 53316291173/817138163596*1568397607^(8/11) 3178110000006293 a001 20365011074/312119004989*1568397607^(8/11) 3178110000006293 a001 4807526976/119218851371*1568397607^(3/4) 3178110000006293 a001 7778742049/119218851371*1568397607^(8/11) 3178110000006293 a001 182717648081/1268860318*1568397607^(4/11) 3178110000006293 a001 2971215073/17393796001*1568397607^(15/22) 3178110000006293 a001 1144206275/28374454999*1568397607^(3/4) 3178110000006293 a001 2971215073/6643838879*1568397607^(7/11) 3178110000006293 a001 32951280099/817138163596*1568397607^(3/4) 3178110000006293 a001 86267571272/2139295485799*1568397607^(3/4) 3178110000006293 a001 225851433717/5600748293801*1568397607^(3/4) 3178110000006293 a001 365435296162/9062201101803*1568397607^(3/4) 3178110000006293 a001 139583862445/3461452808002*1568397607^(3/4) 3178110000006293 a001 53316291173/1322157322203*1568397607^(3/4) 3178110000006293 a001 20365011074/505019158607*1568397607^(3/4) 3178110000006293 a001 267084832/10716675201*1568397607^(17/22) 3178110000006293 a001 7778742049/192900153618*1568397607^(3/4) 3178110000006293 a001 567451585/1268860318*17393796001^(4/7) 3178110000006293 a001 1836311903/1322157322203*1568397607^(10/11) 3178110000006293 a001 567451585/1268860318*14662949395604^(4/9) 3178110000006293 a001 1288005205276048900/4052739537881 3178110000006293 a001 567451585/1268860318*73681302247^(7/13) 3178110000006293 a001 12586269025/505019158607*1568397607^(17/22) 3178110000006293 a001 10983760033/440719107401*1568397607^(17/22) 3178110000006293 a001 43133785636/1730726404001*1568397607^(17/22) 3178110000006293 a001 75283811239/3020733700601*1568397607^(17/22) 3178110000006293 a001 182717648081/7331474697802*1568397607^(17/22) 3178110000006293 a001 139583862445/5600748293801*1568397607^(17/22) 3178110000006293 a001 53316291173/2139295485799*1568397607^(17/22) 3178110000006293 a001 10182505537/408569081798*1568397607^(17/22) 3178110000006293 a001 567451585/1268860318*10749957122^(7/12) 3178110000006293 a001 7778742049/312119004989*1568397607^(17/22) 3178110000006293 a001 2971215073/45537549124*1568397607^(8/11) 3178110000006293 a001 139583862445/2537720636*1568397607^(9/22) 3178110000006293 a001 102287808/10745088481*1568397607^(9/11) 3178110000006293 a001 2971215073/73681302247*1568397607^(3/4) 3178110000006293 a001 1836311903/3461452808002*1568397607^(21/22) 3178110000006293 a001 12586269025/1322157322203*1568397607^(9/11) 3178110000006293 a001 32951280099/3461452808002*1568397607^(9/11) 3178110000006293 a001 86267571272/9062201101803*1568397607^(9/11) 3178110000006293 a001 225851433717/23725150497407*1568397607^(9/11) 3178110000006293 a001 139583862445/14662949395604*1568397607^(9/11) 3178110000006293 a001 53316291173/5600748293801*1568397607^(9/11) 3178110000006293 a001 20365011074/2139295485799*1568397607^(9/11) 3178110000006293 a001 7778742049/817138163596*1568397607^(9/11) 3178110000006293 a001 2971215073/119218851371*1568397607^(17/22) 3178110000006293 a001 53316291173/2537720636*1568397607^(5/11) 3178110000006293 a001 1602508992/440719107401*1568397607^(19/22) 3178110000006293 a001 567451585/1268860318*4106118243^(14/23) 3178110000006293 a001 12586269025/3461452808002*1568397607^(19/22) 3178110000006293 a001 10983760033/3020733700601*1568397607^(19/22) 3178110000006293 a001 86267571272/23725150497407*1568397607^(19/22) 3178110000006293 a001 53316291173/14662949395604*1568397607^(19/22) 3178110000006293 a001 20365011074/5600748293801*1568397607^(19/22) 3178110000006293 a001 7778742049/2139295485799*1568397607^(19/22) 3178110000006293 a001 2971215073/312119004989*1568397607^(9/11) 3178110000006293 a001 10182505537/1268860318*1568397607^(1/2) 3178110000006293 a001 14930208/10749853441*1568397607^(10/11) 3178110000006293 a001 12586269025/9062201101803*1568397607^(10/11) 3178110000006293 a001 32951280099/23725150497407*1568397607^(10/11) 3178110000006293 a001 10182505537/7331474697802*1568397607^(10/11) 3178110000006293 a001 7778742049/5600748293801*1568397607^(10/11) 3178110000006293 a001 2971215073/817138163596*1568397607^(19/22) 3178110000006293 a001 1602508992/3020733700601*1568397607^(21/22) 3178110000006293 a001 7778742049/2537720636*1568397607^(6/11) 3178110000006293 a001 12586269025/23725150497407*1568397607^(21/22) 3178110000006293 a001 1548008755920/1568397607*599074578^(2/7) 3178110000006293 a001 7778742049/14662949395604*1568397607^(21/22) 3178110000006293 a001 2971215073/2139295485799*1568397607^(10/11) 3178110000006293 a001 2971215073/5600748293801*1568397607^(21/22) 3178110000006293 a001 2971215073/2537720636*1568397607^(13/22) 3178110000006293 a001 1134903170/17393796001*1568397607^(8/11) 3178110000006293 a001 1134903170/6643838879*1568397607^(15/22) 3178110000006293 a001 1134903170/28143753123*1568397607^(3/4) 3178110000006293 a001 567451585/22768774562*1568397607^(17/22) 3178110000006293 a001 1134903170/119218851371*1568397607^(9/11) 3178110000006293 a001 1134903170/312119004989*1568397607^(19/22) 3178110000006293 a001 591286729879/1568397607*599074578^(1/3) 3178110000006293 a001 567451585/408569081798*1568397607^(10/11) 3178110000006293 a001 1134903170/2139295485799*1568397607^(21/22) 3178110000006293 a001 701408733/969323029*2537720636^(3/5) 3178110000006293 a001 567451585/1268860318*1568397607^(7/11) 3178110000006293 a001 365435296162/1568397607*599074578^(5/14) 3178110000006293 a001 3536736619241/1368706081*599074578^(5/21) 3178110000006293 a001 32264490531/224056801*599074578^(8/21) 3178110000006293 a001 701408733/969323029*45537549124^(9/17) 3178110000006293 a001 304056783818718321/956722026041 3178110000006293 a001 433494437/1568397607*1322157322203^(1/2) 3178110000006293 a001 701408733/969323029*192900153618^(1/2) 3178110000006293 a001 701408733/969323029*10749957122^(9/16) 3178110000006293 a001 4052739537881/4106118243*599074578^(2/7) 3178110000006293 a001 10610209857723/2537720636*599074578^(3/14) 3178110000006293 a001 4807525989/4870846*599074578^(2/7) 3178110000006293 a001 86267571272/1568397607*599074578^(3/7) 3178110000006293 a001 3278735159921/1268860318*599074578^(5/21) 3178110000006293 a001 6557470319842/6643838879*599074578^(2/7) 3178110000006293 a001 516002918640/1368706081*599074578^(1/3) 3178110000006293 a001 1836311903/969323029*2537720636^(5/9) 3178110000006293 a001 433494437/817138163596*2537720636^(14/15) 3178110000006293 a001 32951280099/1568397607*599074578^(10/21) 3178110000006293 a001 4052739537881/10749957122*599074578^(1/3) 3178110000006293 a001 433494437/312119004989*2537720636^(8/9) 3178110000006293 a001 3536736619241/9381251041*599074578^(1/3) 3178110000006293 a001 433494437/192900153618*2537720636^(13/15) 3178110000006293 a001 6557470319842/17393796001*599074578^(1/3) 3178110000006293 a001 956722026041/4106118243*599074578^(5/14) 3178110000006293 a001 433494437/45537549124*2537720636^(4/5) 3178110000006293 a001 433494437/10749957122*2537720636^(11/15) 3178110000006293 a001 433494437/28143753123*2537720636^(7/9) 3178110000006293 a001 2504730781961/2537720636*599074578^(2/7) 3178110000006293 a001 2504730781961/6643838879*599074578^(1/3) 3178110000006293 a001 2504730781961/10749957122*599074578^(5/14) 3178110000006293 a001 20365011074/1568397607*599074578^(1/2) 3178110000006293 a001 12586269025/969323029*2537720636^(7/15) 3178110000006293 a001 6557470319842/28143753123*599074578^(5/14) 3178110000006293 a001 10610209857723/45537549124*599074578^(5/14) 3178110000006293 a001 20365011074/969323029*2537720636^(4/9) 3178110000006293 a001 4052739537881/17393796001*599074578^(5/14) 3178110000006293 a001 591286729879/4106118243*599074578^(8/21) 3178110000006293 a001 53316291173/969323029*2537720636^(2/5) 3178110000006293 a001 2971215073/969323029*2537720636^(8/15) 3178110000006293 a001 1836311903/969323029*312119004989^(5/11) 3178110000006293 a001 433494437/4106118243*9062201101803^(1/2) 3178110000006293 a001 1836311903/969323029*3461452808002^(5/12) 3178110000006293 a001 1836311903/969323029*28143753123^(1/2) 3178110000006293 a001 225851433717/969323029*2537720636^(1/3) 3178110000006293 a001 1548008755920/6643838879*599074578^(5/14) 3178110000006293 a001 956722026041/969323029*2537720636^(4/15) 3178110000006293 a001 2504730781961/969323029*2537720636^(2/9) 3178110000006293 a001 4052739537881/599074578*228826127^(1/5) 3178110000006293 a001 4052739537881/969323029*2537720636^(1/5) 3178110000006293 a001 701408733/1568397607*599074578^(2/3) 3178110000006293 a001 12586269025/1568397607*599074578^(11/21) 3178110000006293 a001 774004377960/5374978561*599074578^(8/21) 3178110000006293 a001 433494437/10749957122*45537549124^(11/17) 3178110000006293 a001 433494437/10749957122*312119004989^(3/5) 3178110000006293 a001 1042018099911716256/3278735159921 3178110000006293 a001 433494437/10749957122*192900153618^(11/18) 3178110000006293 a001 4052739537881/28143753123*599074578^(8/21) 3178110000006293 a001 433494437/28143753123*17393796001^(5/7) 3178110000006293 a001 1515744265389/10525900321*599074578^(8/21) 3178110000006293 a001 433494437/817138163596*17393796001^(6/7) 3178110000006293 a001 433494437/10749957122*10749957122^(11/16) 3178110000006293 a001 12586269025/969323029*17393796001^(3/7) 3178110000006293 a001 3278735159921/22768774562*599074578^(8/21) 3178110000006293 a001 12586269025/969323029*45537549124^(7/17) 3178110000006293 a001 433494437/28143753123*312119004989^(7/11) 3178110000006293 a001 433494437/28143753123*14662949395604^(5/9) 3178110000006293 a001 12586269025/969323029*14662949395604^(1/3) 3178110000006293 a001 12586269025/969323029*192900153618^(7/18) 3178110000006293 a001 365435296162/969323029*17393796001^(2/7) 3178110000006293 a001 10610209857723/969323029*17393796001^(1/7) 3178110000006293 a001 433494437/14662949395604*45537549124^(16/17) 3178110000006293 a001 433494437/3461452808002*45537549124^(15/17) 3178110000006293 a001 433494437/192900153618*45537549124^(13/17) 3178110000006293 a001 433494437/817138163596*45537549124^(14/17) 3178110000006293 a001 433494437/28143753123*28143753123^(7/10) 3178110000006293 a001 86267571272/969323029*45537549124^(1/3) 3178110000006293 a001 32951280099/969323029*817138163596^(1/3) 3178110000006293 a001 225851433717/969323029*45537549124^(5/17) 3178110000006293 a001 956722026041/969323029*45537549124^(4/17) 3178110000006293 a001 53316291173/969323029*45537549124^(6/17) 3178110000006293 a001 4052739537881/969323029*45537549124^(3/17) 3178110000006293 a001 433494437/192900153618*14662949395604^(13/21) 3178110000006293 a001 225851433717/969323029*312119004989^(3/11) 3178110000006293 a001 225851433717/969323029*14662949395604^(5/21) 3178110000006293 a001 10610209857723/969323029*14662949395604^(1/9) 3178110000006293 a006 5^(1/2)*Fibonacci(71)/Lucas(43)/sqrt(5) 3178110000006293 a001 365435296162/969323029*505019158607^(1/4) 3178110000006293 a001 433494437/23725150497407*505019158607^(7/8) 3178110000006293 a001 225851433717/969323029*192900153618^(5/18) 3178110000006293 a001 139583862445/969323029*23725150497407^(1/4) 3178110000006293 a001 433494437/14662949395604*192900153618^(8/9) 3178110000006293 a001 6557470319842/969323029*73681302247^(2/13) 3178110000006293 a001 956722026041/969323029*73681302247^(3/13) 3178110000006293 a001 591286729879/969323029*73681302247^(1/4) 3178110000006293 a001 139583862445/969323029*73681302247^(4/13) 3178110000006293 a001 433494437/119218851371*817138163596^(2/3) 3178110000006293 a001 53316291173/969323029*192900153618^(1/3) 3178110000006293 a001 433494437/192900153618*73681302247^(3/4) 3178110000006293 a001 433494437/45537549124*45537549124^(12/17) 3178110000006293 a001 433494437/312119004989*73681302247^(10/13) 3178110000006293 a001 433494437/2139295485799*73681302247^(11/13) 3178110000006293 a001 433494437/14662949395604*73681302247^(12/13) 3178110000006293 a001 2504730781961/969323029*28143753123^(1/5) 3178110000006293 a001 225851433717/969323029*28143753123^(3/10) 3178110000006293 a001 20365011074/969323029*23725150497407^(5/16) 3178110000006293 a001 20365011074/969323029*505019158607^(5/14) 3178110000006293 a001 433494437/45537549124*505019158607^(9/14) 3178110000006293 a001 433494437/45537549124*192900153618^(2/3) 3178110000006293 a001 20365011074/969323029*73681302247^(5/13) 3178110000006293 a001 433494437/45537549124*73681302247^(9/13) 3178110000006293 a001 20365011074/969323029*28143753123^(2/5) 3178110000006293 a001 433494437/312119004989*28143753123^(4/5) 3178110000006293 a001 433494437/3461452808002*28143753123^(9/10) 3178110000006293 a001 6557470319842/969323029*10749957122^(1/6) 3178110000006293 a001 4052739537881/969323029*10749957122^(3/16) 3178110000006293 a001 2504730781961/969323029*10749957122^(5/24) 3178110000006293 a001 956722026041/969323029*10749957122^(1/4) 3178110000006293 a001 12586269025/969323029*10749957122^(7/16) 3178110000006293 a001 225851433717/969323029*10749957122^(5/16) 3178110000006293 a001 139583862445/969323029*10749957122^(1/3) 3178110000006293 a001 433494437/17393796001*45537549124^(2/3) 3178110000006293 a001 7778742049/969323029*312119004989^(2/5) 3178110000006293 a001 3372041405099481413/10610209857723 3178110000006293 a001 53316291173/969323029*10749957122^(3/8) 3178110000006293 a001 20365011074/969323029*10749957122^(5/12) 3178110000006293 a001 433494437/119218851371*10749957122^(19/24) 3178110000006293 a001 433494437/45537549124*10749957122^(3/4) 3178110000006293 a001 433494437/192900153618*10749957122^(13/16) 3178110000006293 a001 433494437/312119004989*10749957122^(5/6) 3178110000006293 a001 7778742049/969323029*10749957122^(11/24) 3178110000006293 a001 433494437/817138163596*10749957122^(7/8) 3178110000006293 a001 433494437/2139295485799*10749957122^(11/12) 3178110000006293 a001 433494437/3461452808002*10749957122^(15/16) 3178110000006293 a001 433494437/5600748293801*10749957122^(23/24) 3178110000006293 a001 433494437/17393796001*10749957122^(17/24) 3178110000006293 a001 6557470319842/969323029*4106118243^(4/23) 3178110000006293 a001 2504730781961/969323029*4106118243^(5/23) 3178110000006293 a001 956722026041/969323029*4106118243^(6/23) 3178110000006293 a001 365435296162/969323029*4106118243^(7/23) 3178110000006293 a001 956722026041/2537720636*599074578^(1/3) 3178110000006293 a001 956722026041/6643838879*599074578^(8/21) 3178110000006293 a001 139583862445/969323029*4106118243^(8/23) 3178110000006293 a001 4807526976/969323029*4106118243^(1/2) 3178110000006293 a001 2971215073/969323029*45537549124^(8/17) 3178110000006293 a001 433494437/6643838879*23725150497407^(1/2) 3178110000006293 a001 1288005205276048901/4052739537881 3178110000006293 a001 2971215073/969323029*192900153618^(4/9) 3178110000006293 a001 2971215073/969323029*73681302247^(6/13) 3178110000006293 a001 433494437/6643838879*73681302247^(8/13) 3178110000006293 a001 53316291173/969323029*4106118243^(9/23) 3178110000006293 a001 20365011074/969323029*4106118243^(10/23) 3178110000006293 a001 2971215073/969323029*10749957122^(1/2) 3178110000006293 a001 433494437/6643838879*10749957122^(2/3) 3178110000006293 a001 7778742049/969323029*4106118243^(11/23) 3178110000006293 a001 433494437/45537549124*4106118243^(18/23) 3178110000006293 a001 433494437/17393796001*4106118243^(17/23) 3178110000006293 a001 433494437/119218851371*4106118243^(19/23) 3178110000006293 a001 433494437/312119004989*4106118243^(20/23) 3178110000006293 a001 433494437/2537720636*2537720636^(2/3) 3178110000006293 a001 2971215073/969323029*4106118243^(12/23) 3178110000006293 a001 433494437/817138163596*4106118243^(21/23) 3178110000006293 a001 433494437/2139295485799*4106118243^(22/23) 3178110000006293 a001 433494437/6643838879*4106118243^(16/23) 3178110000006293 a001 75283811239/1368706081*599074578^(3/7) 3178110000006293 a001 6557470319842/969323029*1568397607^(2/11) 3178110000006293 a001 591286729879/2537720636*599074578^(5/14) 3178110000006293 a001 2504730781961/969323029*1568397607^(5/22) 3178110000006293 a001 1548008755920/969323029*1568397607^(1/4) 3178110000006293 a001 956722026041/969323029*1568397607^(3/11) 3178110000006293 a001 686789568/224056801*599074578^(4/7) 3178110000006293 a001 591286729879/10749957122*599074578^(3/7) 3178110000006293 a001 12585437040/228811001*599074578^(3/7) 3178110000006293 a001 365435296162/969323029*1568397607^(7/22) 3178110000006293 a001 4052739537881/73681302247*599074578^(3/7) 3178110000006293 a001 3536736619241/64300051206*599074578^(3/7) 3178110000006293 a001 6557470319842/119218851371*599074578^(3/7) 3178110000006293 a001 2504730781961/45537549124*599074578^(3/7) 3178110000006293 a001 956722026041/17393796001*599074578^(3/7) 3178110000006293 a001 139583862445/969323029*1568397607^(4/11) 3178110000006293 a001 182717648081/1268860318*599074578^(8/21) 3178110000006293 a001 365435296162/6643838879*599074578^(3/7) 3178110000006293 a001 433494437/2537720636*45537549124^(10/17) 3178110000006293 a001 433494437/2537720636*312119004989^(6/11) 3178110000006293 a001 433494437/2537720636*14662949395604^(10/21) 3178110000006293 a001 433494437/2537720636*192900153618^(5/9) 3178110000006293 a001 1134903170/969323029*73681302247^(1/2) 3178110000006293 a001 433494437/2537720636*28143753123^(3/5) 3178110000006293 a001 1134903170/969323029*10749957122^(13/24) 3178110000006293 a001 433494437/2537720636*10749957122^(5/8) 3178110000006293 a001 53316291173/969323029*1568397607^(9/22) 3178110000006293 a001 20365011074/969323029*1568397607^(5/11) 3178110000006293 a001 1134903170/969323029*4106118243^(13/23) 3178110000006293 a001 433494437/2537720636*4106118243^(15/23) 3178110000006293 a001 1836311903/1568397607*599074578^(13/21) 3178110000006293 a001 86267571272/4106118243*599074578^(10/21) 3178110000006293 a001 7778742049/969323029*1568397607^(1/2) 3178110000006293 a001 2971215073/969323029*1568397607^(6/11) 3178110000006293 a001 225851433717/10749957122*599074578^(10/21) 3178110000006293 a001 591286729879/28143753123*599074578^(10/21) 3178110000006293 a001 1548008755920/73681302247*599074578^(10/21) 3178110000006293 a001 4052739537881/192900153618*599074578^(10/21) 3178110000006293 a001 225749145909/10745088481*599074578^(10/21) 3178110000006293 a001 6557470319842/312119004989*599074578^(10/21) 3178110000006293 a001 2504730781961/119218851371*599074578^(10/21) 3178110000006293 a001 956722026041/45537549124*599074578^(10/21) 3178110000006293 a001 365435296162/17393796001*599074578^(10/21) 3178110000006293 a001 53316291173/4106118243*599074578^(1/2) 3178110000006293 a001 139583862445/2537720636*599074578^(3/7) 3178110000006293 a001 139583862445/6643838879*599074578^(10/21) 3178110000006293 a001 433494437/10749957122*1568397607^(3/4) 3178110000006293 a001 433494437/17393796001*1568397607^(17/22) 3178110000006293 a001 433494437/6643838879*1568397607^(8/11) 3178110000006293 a001 139583862445/10749957122*599074578^(1/2) 3178110000006293 a001 365435296162/28143753123*599074578^(1/2) 3178110000006293 a001 956722026041/73681302247*599074578^(1/2) 3178110000006293 a001 2504730781961/192900153618*599074578^(1/2) 3178110000006293 a001 10610209857723/817138163596*599074578^(1/2) 3178110000006293 a001 4052739537881/312119004989*599074578^(1/2) 3178110000006293 a001 1548008755920/119218851371*599074578^(1/2) 3178110000006293 a001 591286729879/45537549124*599074578^(1/2) 3178110000006293 a001 7787980473/599786069*599074578^(1/2) 3178110000006293 a001 433494437/45537549124*1568397607^(9/11) 3178110000006293 a001 10983760033/1368706081*599074578^(11/21) 3178110000006293 a001 433494437/119218851371*1568397607^(19/22) 3178110000006293 a001 86267571272/6643838879*599074578^(1/2) 3178110000006293 a001 433494437/312119004989*1568397607^(10/11) 3178110000006293 a001 43133785636/5374978561*599074578^(11/21) 3178110000006293 a001 433494437/817138163596*1568397607^(21/22) 3178110000006293 a001 75283811239/9381251041*599074578^(11/21) 3178110000006293 a001 591286729879/73681302247*599074578^(11/21) 3178110000006293 a001 86000486440/10716675201*599074578^(11/21) 3178110000006293 a001 4052739537881/505019158607*599074578^(11/21) 3178110000006293 a001 3278735159921/408569081798*599074578^(11/21) 3178110000006293 a001 2504730781961/312119004989*599074578^(11/21) 3178110000006293 a001 956722026041/119218851371*599074578^(11/21) 3178110000006293 a001 1134903170/969323029*1568397607^(13/22) 3178110000006293 a001 182717648081/22768774562*599074578^(11/21) 3178110000006293 a001 139583862445/17393796001*599074578^(11/21) 3178110000006293 a001 53316291173/2537720636*599074578^(10/21) 3178110000006293 a001 53316291173/6643838879*599074578^(11/21) 3178110000006293 a001 433494437/2537720636*1568397607^(15/22) 3178110000006293 a001 233802911/1368706081*599074578^(5/7) 3178110000006293 a001 10610209857723/969323029*599074578^(1/6) 3178110000006293 a001 12586269025/4106118243*599074578^(4/7) 3178110000006293 a001 1134903170/1568397607*599074578^(9/14) 3178110000006293 a001 32951280099/2537720636*599074578^(1/2) 3178110000006293 a001 4052739537881/228826127*87403803^(3/19) 3178110000006293 a001 32951280099/10749957122*599074578^(4/7) 3178110000006293 a001 86267571272/28143753123*599074578^(4/7) 3178110000006293 a001 32264490531/10525900321*599074578^(4/7) 3178110000006293 a001 591286729879/192900153618*599074578^(4/7) 3178110000006293 a001 1548008755920/505019158607*599074578^(4/7) 3178110000006293 a001 1515744265389/494493258286*599074578^(4/7) 3178110000006293 a001 2504730781961/817138163596*599074578^(4/7) 3178110000006293 a001 956722026041/312119004989*599074578^(4/7) 3178110000006293 a001 365435296162/119218851371*599074578^(4/7) 3178110000006293 a001 139583862445/45537549124*599074578^(4/7) 3178110000006293 a001 6557470319842/969323029*599074578^(4/21) 3178110000006293 a001 53316291173/17393796001*599074578^(4/7) 3178110000006293 a001 10182505537/1268860318*599074578^(11/21) 3178110000006293 a001 20365011074/6643838879*599074578^(4/7) 3178110000006293 a001 1602508992/1368706081*599074578^(13/21) 3178110000006293 a001 4052739537881/969323029*599074578^(3/14) 3178110000006293 a001 701408733/10749957122*599074578^(16/21) 3178110000006293 a001 12586269025/10749957122*599074578^(13/21) 3178110000006293 a001 10983760033/9381251041*599074578^(13/21) 3178110000006293 a001 86267571272/73681302247*599074578^(13/21) 3178110000006293 a001 75283811239/64300051206*599074578^(13/21) 3178110000006293 a001 2504730781961/2139295485799*599074578^(13/21) 3178110000006293 a001 365435296162/312119004989*599074578^(13/21) 3178110000006293 a001 139583862445/119218851371*599074578^(13/21) 3178110000006293 a001 53316291173/45537549124*599074578^(13/21) 3178110000006293 a001 2504730781961/969323029*599074578^(5/21) 3178110000006293 a001 20365011074/17393796001*599074578^(13/21) 3178110000006293 a001 1836311903/4106118243*599074578^(2/3) 3178110000006293 a001 7778742049/2537720636*599074578^(4/7) 3178110000006293 a001 7778742049/6643838879*599074578^(13/21) 3178110000006293 a001 2971215073/4106118243*599074578^(9/14) 3178110000006293 a001 7778742049/10749957122*599074578^(9/14) 3178110000006293 a001 701408733/17393796001*599074578^(11/14) 3178110000006293 a001 20365011074/28143753123*599074578^(9/14) 3178110000006293 a001 53316291173/73681302247*599074578^(9/14) 3178110000006293 a001 139583862445/192900153618*599074578^(9/14) 3178110000006293 a001 10610209857723/14662949395604*599074578^(9/14) 3178110000006293 a001 225851433717/312119004989*599074578^(9/14) 3178110000006293 a001 86267571272/119218851371*599074578^(9/14) 3178110000006293 a001 32951280099/45537549124*599074578^(9/14) 3178110000006293 a001 12586269025/17393796001*599074578^(9/14) 3178110000006293 a001 4807526976/6643838879*599074578^(9/14) 3178110000006293 a001 2403763488/5374978561*599074578^(2/3) 3178110000006293 a001 233802911/9381251041*599074578^(17/21) 3178110000006293 a001 12586269025/28143753123*599074578^(2/3) 3178110000006293 a001 32951280099/73681302247*599074578^(2/3) 3178110000006293 a001 43133785636/96450076809*599074578^(2/3) 3178110000006293 a001 225851433717/505019158607*599074578^(2/3) 3178110000006293 a001 591286729879/1322157322203*599074578^(2/3) 3178110000006293 a001 10610209857723/23725150497407*599074578^(2/3) 3178110000006293 a001 182717648081/408569081798*599074578^(2/3) 3178110000006293 a001 139583862445/312119004989*599074578^(2/3) 3178110000006293 a001 53316291173/119218851371*599074578^(2/3) 3178110000006293 a001 10182505537/22768774562*599074578^(2/3) 3178110000006293 a001 956722026041/969323029*599074578^(2/7) 3178110000006293 a001 7778742049/17393796001*599074578^(2/3) 3178110000006293 a001 1836311903/2537720636*599074578^(9/14) 3178110000006293 a001 2971215073/2537720636*599074578^(13/21) 3178110000006293 a001 2971215073/6643838879*599074578^(2/3) 3178110000006293 a001 701408733/45537549124*599074578^(5/6) 3178110000006293 a001 1836311903/10749957122*599074578^(5/7) 3178110000006293 a001 1602508992/9381251041*599074578^(5/7) 3178110000006293 a001 701408733/73681302247*599074578^(6/7) 3178110000006293 a001 86000486440/33281921*228826127^(1/4) 3178110000006293 a001 12586269025/73681302247*599074578^(5/7) 3178110000006293 a001 10983760033/64300051206*599074578^(5/7) 3178110000006293 a001 86267571272/505019158607*599074578^(5/7) 3178110000006293 a001 75283811239/440719107401*599074578^(5/7) 3178110000006293 a001 2504730781961/14662949395604*599074578^(5/7) 3178110000006293 a001 139583862445/817138163596*599074578^(5/7) 3178110000006293 a001 53316291173/312119004989*599074578^(5/7) 3178110000006293 a001 20365011074/119218851371*599074578^(5/7) 3178110000006293 a001 365435296162/969323029*599074578^(1/3) 3178110000006293 a001 7778742049/45537549124*599074578^(5/7) 3178110000006293 a001 2971215073/17393796001*599074578^(5/7) 3178110000006293 a001 225851433717/969323029*599074578^(5/14) 3178110000006293 a001 1836311903/28143753123*599074578^(16/21) 3178110000006293 a001 686789568/10525900321*599074578^(16/21) 3178110000006293 a001 233802911/64300051206*599074578^(19/21) 3178110000006293 a001 12586269025/192900153618*599074578^(16/21) 3178110000006293 a001 32951280099/505019158607*599074578^(16/21) 3178110000006293 a001 86267571272/1322157322203*599074578^(16/21) 3178110000006293 a001 32264490531/494493258286*599074578^(16/21) 3178110000006293 a001 591286729879/9062201101803*599074578^(16/21) 3178110000006293 a001 1548008755920/23725150497407*599074578^(16/21) 3178110000006293 a001 139583862445/2139295485799*599074578^(16/21) 3178110000006293 a001 53316291173/817138163596*599074578^(16/21) 3178110000006293 a001 20365011074/312119004989*599074578^(16/21) 3178110000006293 a001 139583862445/969323029*599074578^(8/21) 3178110000006293 a001 7778742049/119218851371*599074578^(16/21) 3178110000006293 a001 433494437/969323029*17393796001^(4/7) 3178110000006293 a001 187917426909946969/591286729879 3178110000006293 a001 433494437/969323029*73681302247^(7/13) 3178110000006293 a001 1836311903/45537549124*599074578^(11/14) 3178110000006293 a001 433494437/969323029*10749957122^(7/12) 3178110000006293 a001 2971215073/45537549124*599074578^(16/21) 3178110000006293 a001 433494437/969323029*4106118243^(14/23) 3178110000006293 a001 567451585/1268860318*599074578^(2/3) 3178110000006293 a001 1134903170/6643838879*599074578^(5/7) 3178110000006293 a001 4807526976/119218851371*599074578^(11/14) 3178110000006293 a001 3524667/1568437211*599074578^(13/14) 3178110000006293 a001 1144206275/28374454999*599074578^(11/14) 3178110000006293 a001 32951280099/817138163596*599074578^(11/14) 3178110000006293 a001 86267571272/2139295485799*599074578^(11/14) 3178110000006293 a001 225851433717/5600748293801*599074578^(11/14) 3178110000006293 a001 591286729879/14662949395604*599074578^(11/14) 3178110000006293 a001 365435296162/9062201101803*599074578^(11/14) 3178110000006293 a001 139583862445/3461452808002*599074578^(11/14) 3178110000006293 a001 53316291173/1322157322203*599074578^(11/14) 3178110000006293 a001 20365011074/505019158607*599074578^(11/14) 3178110000006293 a001 7778742049/192900153618*599074578^(11/14) 3178110000006293 a001 1836311903/73681302247*599074578^(17/21) 3178110000006293 a001 2971215073/73681302247*599074578^(11/14) 3178110000006293 a001 267084832/10716675201*599074578^(17/21) 3178110000006293 a001 701408733/505019158607*599074578^(20/21) 3178110000006293 a001 12586269025/505019158607*599074578^(17/21) 3178110000006293 a001 10983760033/440719107401*599074578^(17/21) 3178110000006293 a001 43133785636/1730726404001*599074578^(17/21) 3178110000006293 a001 75283811239/3020733700601*599074578^(17/21) 3178110000006293 a001 182717648081/7331474697802*599074578^(17/21) 3178110000006293 a001 139583862445/5600748293801*599074578^(17/21) 3178110000006293 a001 53316291173/2139295485799*599074578^(17/21) 3178110000006293 a001 10182505537/408569081798*599074578^(17/21) 3178110000006293 a001 53316291173/969323029*599074578^(3/7) 3178110000006293 a001 7778742049/312119004989*599074578^(17/21) 3178110000006293 a001 1836311903/119218851371*599074578^(5/6) 3178110000006293 a001 2971215073/119218851371*599074578^(17/21) 3178110000006293 a001 1134903170/17393796001*599074578^(16/21) 3178110000006293 a001 4807526976/312119004989*599074578^(5/6) 3178110000006293 a001 12586269025/817138163596*599074578^(5/6) 3178110000006293 a001 32951280099/2139295485799*599074578^(5/6) 3178110000006293 a001 86267571272/5600748293801*599074578^(5/6) 3178110000006293 a001 7787980473/505618944676*599074578^(5/6) 3178110000006293 a001 365435296162/23725150497407*599074578^(5/6) 3178110000006293 a001 139583862445/9062201101803*599074578^(5/6) 3178110000006293 a001 53316291173/3461452808002*599074578^(5/6) 3178110000006293 a001 20365011074/1322157322203*599074578^(5/6) 3178110000006293 a001 7778742049/505019158607*599074578^(5/6) 3178110000006293 a001 1836311903/192900153618*599074578^(6/7) 3178110000006293 a001 1134903170/28143753123*599074578^(11/14) 3178110000006293 a001 2971215073/192900153618*599074578^(5/6) 3178110000006293 a001 102287808/10745088481*599074578^(6/7) 3178110000006293 a001 12586269025/1322157322203*599074578^(6/7) 3178110000006293 a001 433494437/969323029*1568397607^(7/11) 3178110000006293 a001 32951280099/3461452808002*599074578^(6/7) 3178110000006293 a001 86267571272/9062201101803*599074578^(6/7) 3178110000006293 a001 225851433717/23725150497407*599074578^(6/7) 3178110000006293 a001 139583862445/14662949395604*599074578^(6/7) 3178110000006293 a001 53316291173/5600748293801*599074578^(6/7) 3178110000006293 a001 20365011074/2139295485799*599074578^(6/7) 3178110000006293 a001 20365011074/969323029*599074578^(10/21) 3178110000006293 a001 7778742049/817138163596*599074578^(6/7) 3178110000006293 a001 2971215073/312119004989*599074578^(6/7) 3178110000006293 a001 567451585/22768774562*599074578^(17/21) 3178110000006293 a001 701408733/969323029*599074578^(9/14) 3178110000006293 a001 12586269025/969323029*599074578^(1/2) 3178110000006293 a001 1836311903/505019158607*599074578^(19/21) 3178110000006293 a001 1134903170/73681302247*599074578^(5/6) 3178110000006293 a001 1602508992/440719107401*599074578^(19/21) 3178110000006293 a001 12586269025/3461452808002*599074578^(19/21) 3178110000006293 a001 10983760033/3020733700601*599074578^(19/21) 3178110000006293 a001 86267571272/23725150497407*599074578^(19/21) 3178110000006293 a001 53316291173/14662949395604*599074578^(19/21) 3178110000006293 a001 20365011074/5600748293801*599074578^(19/21) 3178110000006293 a001 7778742049/2139295485799*599074578^(19/21) 3178110000006293 a001 7778742049/969323029*599074578^(11/21) 3178110000006293 a001 1836311903/817138163596*599074578^(13/14) 3178110000006293 a001 2971215073/817138163596*599074578^(19/21) 3178110000006293 a001 1134903170/119218851371*599074578^(6/7) 3178110000006293 a001 4807526976/2139295485799*599074578^(13/14) 3178110000006293 a001 12586269025/5600748293801*599074578^(13/14) 3178110000006293 a001 32951280099/14662949395604*599074578^(13/14) 3178110000006293 a001 53316291173/23725150497407*599074578^(13/14) 3178110000006293 a001 20365011074/9062201101803*599074578^(13/14) 3178110000006293 a001 7778742049/3461452808002*599074578^(13/14) 3178110000006293 a001 1836311903/1322157322203*599074578^(20/21) 3178110000006293 a001 2971215073/1322157322203*599074578^(13/14) 3178110000006293 a001 14930208/10749853441*599074578^(20/21) 3178110000006293 a001 12586269025/9062201101803*599074578^(20/21) 3178110000006293 a001 32951280099/23725150497407*599074578^(20/21) 3178110000006293 a001 10182505537/7331474697802*599074578^(20/21) 3178110000006293 a001 7778742049/5600748293801*599074578^(20/21) 3178110000006293 a001 1134903170/312119004989*599074578^(19/21) 3178110000006293 a001 2971215073/2139295485799*599074578^(20/21) 3178110000006293 a001 2971215073/969323029*599074578^(4/7) 3178110000006293 a001 1134903170/505019158607*599074578^(13/14) 3178110000006293 a001 567451585/408569081798*599074578^(20/21) 3178110000006293 a001 591286729879/599074578*228826127^(3/10) 3178110000006293 a001 1134903170/969323029*599074578^(13/21) 3178110000006293 a001 433494437/2537720636*599074578^(5/7) 3178110000006293 a001 433494437/6643838879*599074578^(16/21) 3178110000006293 a001 433494437/10749957122*599074578^(11/14) 3178110000006293 a001 433494437/17393796001*599074578^(17/21) 3178110000006293 a001 433494437/28143753123*599074578^(5/6) 3178110000006293 a001 1515744265389/224056801*228826127^(1/5) 3178110000006293 a001 433494437/45537549124*599074578^(6/7) 3178110000006293 a001 433494437/119218851371*599074578^(19/21) 3178110000006293 a001 433494437/192900153618*599074578^(13/14) 3178110000006293 a001 433494437/312119004989*599074578^(20/21) 3178110000006293 a001 63245986/6643838879*141422324^(12/13) 3178110000006293 a001 267913919/710646*228826127^(7/20) 3178110000006293 a001 433494437/969323029*599074578^(2/3) 3178110000006293 a001 4052739537881/1568397607*228826127^(1/4) 3178110000006293 a001 139583862445/599074578*228826127^(3/8) 3178110000006293 a001 267914296/370248451*2537720636^(3/5) 3178110000006293 a001 267914296/370248451*45537549124^(9/17) 3178110000006293 a001 44361286907595736/139583862445 3178110000006293 a001 267914296/370248451*817138163596^(9/19) 3178110000006293 a001 267914296/370248451*14662949395604^(3/7) 3178110000006293 a001 165580141/599074578*1322157322203^(1/2) 3178110000006293 a001 267914296/370248451*192900153618^(1/2) 3178110000006293 a001 267914296/370248451*10749957122^(9/16) 3178110000006293 a001 3536736619241/1368706081*228826127^(1/4) 3178110000006293 a001 43133785636/299537289*228826127^(2/5) 3178110000006293 a001 6557470319842/969323029*228826127^(1/5) 3178110000006293 a001 3278735159921/1268860318*228826127^(1/4) 3178110000006293 a001 1548008755920/1568397607*228826127^(3/10) 3178110000006293 a001 4052739537881/4106118243*228826127^(3/10) 3178110000006293 a001 4807525989/4870846*228826127^(3/10) 3178110000006293 a001 6557470319842/6643838879*228826127^(3/10) 3178110000006293 a001 10983760033/199691526*228826127^(9/20) 3178110000006293 a001 2504730781961/969323029*228826127^(1/4) 3178110000006293 a001 2504730781961/2537720636*228826127^(3/10) 3178110000006293 a001 591286729879/1568397607*228826127^(7/20) 3178110000006293 a001 267914296/370248451*599074578^(9/14) 3178110000006293 a001 516002918640/1368706081*228826127^(7/20) 3178110000006293 a001 4052739537881/10749957122*228826127^(7/20) 3178110000006293 a001 3536736619241/9381251041*228826127^(7/20) 3178110000006293 a001 6557470319842/17393796001*228826127^(7/20) 3178110000006293 a001 2504730781961/6643838879*228826127^(7/20) 3178110000006293 a001 365435296162/1568397607*228826127^(3/8) 3178110000006293 a001 12586269025/599074578*228826127^(1/2) 3178110000006293 a001 956722026041/969323029*228826127^(3/10) 3178110000006293 a001 701408733/370248451*2537720636^(5/9) 3178110000006293 a001 956722026041/2537720636*228826127^(7/20) 3178110000006293 a001 701408733/370248451*312119004989^(5/11) 3178110000006293 a001 116139356908771353/365435296162 3178110000006293 a001 165580141/1568397607*9062201101803^(1/2) 3178110000006293 a001 701408733/370248451*28143753123^(1/2) 3178110000006293 a001 956722026041/4106118243*228826127^(3/8) 3178110000006293 a001 165580141/4106118243*2537720636^(11/15) 3178110000006293 a001 1548008755920/54018521*20633239^(1/7) 3178110000006293 a001 165580141/312119004989*2537720636^(14/15) 3178110000006293 a001 2504730781961/10749957122*228826127^(3/8) 3178110000006293 a001 165580141/119218851371*2537720636^(8/9) 3178110000006293 a001 165580141/73681302247*2537720636^(13/15) 3178110000006293 a001 6557470319842/28143753123*228826127^(3/8) 3178110000006293 a001 10610209857723/45537549124*228826127^(3/8) 3178110000006293 a001 4052739537881/17393796001*228826127^(3/8) 3178110000006293 a001 165580141/10749957122*2537720636^(7/9) 3178110000006293 a001 165580141/17393796001*2537720636^(4/5) 3178110000006293 a001 1548008755920/6643838879*228826127^(3/8) 3178110000006293 a001 4807526976/370248451*2537720636^(7/15) 3178110000006293 a001 7778742049/370248451*2537720636^(4/9) 3178110000006293 a001 32264490531/224056801*228826127^(2/5) 3178110000006293 a001 20365011074/370248451*2537720636^(2/5) 3178110000006293 a001 165580141/4106118243*45537549124^(11/17) 3178110000006293 a001 165580141/4106118243*312119004989^(3/5) 3178110000006293 a001 165580141/4106118243*14662949395604^(11/21) 3178110000006293 a001 165580141/4106118243*192900153618^(11/18) 3178110000006293 a001 165580141/4106118243*10749957122^(11/16) 3178110000006293 a001 86267571272/370248451*2537720636^(1/3) 3178110000006293 a001 365435296162/370248451*2537720636^(4/15) 3178110000006293 a001 956722026041/370248451*2537720636^(2/9) 3178110000006293 a001 1548008755920/370248451*2537720636^(1/5) 3178110000006293 a001 1836311903/370248451*4106118243^(1/2) 3178110000006293 a001 6557470319842/370248451*2537720636^(2/15) 3178110000006293 a001 10610209857723/370248451*2537720636^(1/9) 3178110000006293 a001 165580141/10749957122*17393796001^(5/7) 3178110000006293 a001 4807526976/370248451*17393796001^(3/7) 3178110000006293 a001 63245986/1568397607*141422324^(11/13) 3178110000006293 a001 4807526976/370248451*45537549124^(7/17) 3178110000006293 a001 165580141/10749957122*312119004989^(7/11) 3178110000006293 a001 165580141/10749957122*14662949395604^(5/9) 3178110000006293 a001 4807526976/370248451*14662949395604^(1/3) 3178110000006293 a001 165580141/10749957122*505019158607^(5/8) 3178110000006293 a001 4807526976/370248451*192900153618^(7/18) 3178110000006293 a001 165580141/10749957122*28143753123^(7/10) 3178110000006293 a001 4807526976/370248451*10749957122^(7/16) 3178110000006293 a001 165580141/312119004989*17393796001^(6/7) 3178110000006293 a001 12586269025/370248451*817138163596^(1/3) 3178110000006293 a001 2084036199823432525/6557470319842 3178110000006293 a001 139583862445/370248451*17393796001^(2/7) 3178110000006293 a001 165580141/73681302247*45537549124^(13/17) 3178110000006293 a001 4052739537881/370248451*17393796001^(1/7) 3178110000006293 a001 165580141/5600748293801*45537549124^(16/17) 3178110000006293 a001 165580141/1322157322203*45537549124^(15/17) 3178110000006293 a001 165580141/312119004989*45537549124^(14/17) 3178110000006293 a001 32951280099/370248451*45537549124^(1/3) 3178110000006293 a001 165580141/73681302247*14662949395604^(13/21) 3178110000006293 a001 86267571272/370248451*45537549124^(5/17) 3178110000006293 a001 165580141/73681302247*192900153618^(13/18) 3178110000006293 a001 365435296162/370248451*45537549124^(4/17) 3178110000006293 a001 1548008755920/370248451*45537549124^(3/17) 3178110000006293 a001 6557470319842/370248451*45537549124^(2/17) 3178110000006293 a001 165580141/73681302247*73681302247^(3/4) 3178110000006293 a001 86267571272/370248451*312119004989^(3/11) 3178110000006293 a001 86267571272/370248451*14662949395604^(5/21) 3178110000006293 a001 86267571272/370248451*192900153618^(5/18) 3178110000006293 a001 165580141/14662949395604*312119004989^(10/11) 3178110000006293 a001 165580141/1322157322203*312119004989^(9/11) 3178110000006293 a001 165580141/817138163596*312119004989^(4/5) 3178110000006293 a001 10610209857723/370248451*312119004989^(1/11) 3178110000006293 a001 165580141/1322157322203*14662949395604^(5/7) 3178110000006293 a006 5^(1/2)*Fibonacci(69)/Lucas(41)/sqrt(5) 3178110000006293 a001 1548008755920/370248451*192900153618^(1/6) 3178110000006293 a001 139583862445/370248451*14662949395604^(2/9) 3178110000006293 a001 139583862445/370248451*505019158607^(1/4) 3178110000006293 a001 165580141/1322157322203*192900153618^(5/6) 3178110000006293 a001 165580141/5600748293801*192900153618^(8/9) 3178110000006293 a001 165580141/23725150497407*192900153618^(17/18) 3178110000006293 a001 165580141/312119004989*192900153618^(7/9) 3178110000006293 a001 225851433717/370248451*73681302247^(1/4) 3178110000006293 a001 165580141/119218851371*312119004989^(8/11) 3178110000006293 a001 165580141/119218851371*23725150497407^(5/8) 3178110000006293 a001 10610209857723/370248451*28143753123^(1/10) 3178110000006293 a001 165580141/817138163596*73681302247^(11/13) 3178110000006293 a001 165580141/5600748293801*73681302247^(12/13) 3178110000006293 a001 165580141/119218851371*73681302247^(10/13) 3178110000006293 a001 956722026041/370248451*28143753123^(1/5) 3178110000006293 a001 20365011074/370248451*45537549124^(6/17) 3178110000006293 a001 86267571272/370248451*28143753123^(3/10) 3178110000006293 a001 165580141/45537549124*817138163596^(2/3) 3178110000006293 a001 3372041405099481434/10610209857723 3178110000006293 a001 20365011074/370248451*192900153618^(1/3) 3178110000006293 a001 165580141/119218851371*28143753123^(4/5) 3178110000006293 a001 6557470319842/370248451*10749957122^(1/8) 3178110000006293 a001 165580141/1322157322203*28143753123^(9/10) 3178110000006293 a001 2504730781961/370248451*10749957122^(1/6) 3178110000006293 a001 1548008755920/370248451*10749957122^(3/16) 3178110000006293 a001 956722026041/370248451*10749957122^(5/24) 3178110000006293 a001 365435296162/370248451*10749957122^(1/4) 3178110000006293 a001 139583862445/370248451*10749957122^(7/24) 3178110000006293 a001 86267571272/370248451*10749957122^(5/16) 3178110000006293 a001 53316291173/370248451*10749957122^(1/3) 3178110000006293 a001 165580141/17393796001*45537549124^(12/17) 3178110000006293 a001 165580141/17393796001*14662949395604^(4/7) 3178110000006293 a001 7778742049/370248451*23725150497407^(5/16) 3178110000006293 a001 1288005205276048909/4052739537881 3178110000006293 a001 7778742049/370248451*505019158607^(5/14) 3178110000006293 a001 165580141/17393796001*192900153618^(2/3) 3178110000006293 a001 7778742049/370248451*73681302247^(5/13) 3178110000006293 a001 165580141/17393796001*73681302247^(9/13) 3178110000006293 a001 20365011074/370248451*10749957122^(3/8) 3178110000006293 a001 7778742049/370248451*28143753123^(2/5) 3178110000006293 a001 165580141/73681302247*10749957122^(13/16) 3178110000006293 a001 7778742049/370248451*10749957122^(5/12) 3178110000006293 a001 165580141/119218851371*10749957122^(5/6) 3178110000006293 a001 165580141/45537549124*10749957122^(19/24) 3178110000006293 a001 165580141/312119004989*10749957122^(7/8) 3178110000006293 a001 6557470319842/370248451*4106118243^(3/23) 3178110000006293 a001 165580141/817138163596*10749957122^(11/12) 3178110000006293 a001 165580141/1322157322203*10749957122^(15/16) 3178110000006293 a001 165580141/2139295485799*10749957122^(23/24) 3178110000006293 a001 165580141/17393796001*10749957122^(3/4) 3178110000006293 a001 2504730781961/370248451*4106118243^(4/23) 3178110000006293 a001 956722026041/370248451*4106118243^(5/23) 3178110000006293 a001 365435296162/370248451*4106118243^(6/23) 3178110000006293 a001 139583862445/370248451*4106118243^(7/23) 3178110000006293 a001 53316291173/370248451*4106118243^(8/23) 3178110000006293 a001 591286729879/2537720636*228826127^(3/8) 3178110000006293 a001 165580141/6643838879*45537549124^(2/3) 3178110000006293 a001 2971215073/370248451*312119004989^(2/5) 3178110000006293 a001 491974210728665293/1548008755920 3178110000006293 a001 20365011074/370248451*4106118243^(9/23) 3178110000006293 a001 2971215073/370248451*10749957122^(11/24) 3178110000006293 a001 165580141/6643838879*10749957122^(17/24) 3178110000006293 a001 7778742049/370248451*4106118243^(10/23) 3178110000006293 a001 165580141/45537549124*4106118243^(19/23) 3178110000006293 a001 165580141/17393796001*4106118243^(18/23) 3178110000006293 a001 2971215073/370248451*4106118243^(11/23) 3178110000006293 a001 165580141/119218851371*4106118243^(20/23) 3178110000006293 a001 165580141/312119004989*4106118243^(21/23) 3178110000006293 a001 6557470319842/370248451*1568397607^(3/22) 3178110000006293 a001 165580141/817138163596*4106118243^(22/23) 3178110000006293 a001 165580141/6643838879*4106118243^(17/23) 3178110000006293 a001 1134903170/370248451*2537720636^(8/15) 3178110000006293 a001 2504730781961/370248451*1568397607^(2/11) 3178110000006293 a001 956722026041/370248451*1568397607^(5/22) 3178110000006293 a001 591286729879/370248451*1568397607^(1/4) 3178110000006293 a001 365435296162/370248451*1568397607^(3/11) 3178110000006293 a001 139583862445/370248451*1568397607^(7/22) 3178110000006293 a001 53316291173/370248451*1568397607^(4/11) 3178110000006293 a001 1134903170/370248451*45537549124^(8/17) 3178110000006293 a001 1134903170/370248451*14662949395604^(8/21) 3178110000006293 a001 165580141/2537720636*23725150497407^(1/2) 3178110000006293 a001 1134903170/370248451*192900153618^(4/9) 3178110000006293 a001 1134903170/370248451*73681302247^(6/13) 3178110000006293 a001 165580141/2537720636*73681302247^(8/13) 3178110000006293 a001 1134903170/370248451*10749957122^(1/2) 3178110000006293 a001 165580141/2537720636*10749957122^(2/3) 3178110000006293 a001 20365011074/370248451*1568397607^(9/22) 3178110000006293 a001 1134903170/370248451*4106118243^(12/23) 3178110000006293 a001 7778742049/370248451*1568397607^(5/11) 3178110000006293 a001 165580141/2537720636*4106118243^(16/23) 3178110000006293 a001 2971215073/370248451*1568397607^(1/2) 3178110000006293 a001 165580141/4106118243*1568397607^(3/4) 3178110000006293 a001 591286729879/4106118243*228826127^(2/5) 3178110000006293 a001 774004377960/5374978561*228826127^(2/5) 3178110000006293 a001 165580141/17393796001*1568397607^(9/11) 3178110000006293 a001 165580141/6643838879*1568397607^(17/22) 3178110000006293 a001 4052739537881/28143753123*228826127^(2/5) 3178110000006293 a001 1515744265389/10525900321*228826127^(2/5) 3178110000006293 a001 3278735159921/22768774562*228826127^(2/5) 3178110000006293 a001 2504730781961/17393796001*228826127^(2/5) 3178110000006293 a001 165580141/45537549124*1568397607^(19/22) 3178110000006293 a001 956722026041/6643838879*228826127^(2/5) 3178110000006293 a001 165580141/119218851371*1568397607^(10/11) 3178110000006293 a001 1134903170/370248451*1568397607^(6/11) 3178110000006293 a001 165580141/312119004989*1568397607^(21/22) 3178110000006293 a001 6557470319842/370248451*599074578^(1/7) 3178110000006293 a001 267084832/33281921*228826127^(11/20) 3178110000006293 a001 165580141/2537720636*1568397607^(8/11) 3178110000006293 a001 365435296162/969323029*228826127^(7/20) 3178110000006293 a001 4052739537881/370248451*599074578^(1/6) 3178110000006293 a001 182717648081/1268860318*228826127^(2/5) 3178110000006293 a001 133957148/299537289*228826127^(7/10) 3178110000006293 a001 2504730781961/370248451*599074578^(4/21) 3178110000006293 a001 1548008755920/370248451*599074578^(3/14) 3178110000006293 a001 956722026041/370248451*599074578^(5/21) 3178110000006293 a001 365435296162/370248451*599074578^(2/7) 3178110000006293 a001 86267571272/1568397607*228826127^(9/20) 3178110000006293 a001 139583862445/370248451*599074578^(1/3) 3178110000006293 a001 225851433717/969323029*228826127^(3/8) 3178110000006293 a001 165580141/969323029*2537720636^(2/3) 3178110000006293 a001 86267571272/370248451*599074578^(5/14) 3178110000006293 a001 53316291173/370248451*599074578^(8/21) 3178110000006293 a001 165580141/969323029*45537549124^(10/17) 3178110000006293 a001 165580141/969323029*312119004989^(6/11) 3178110000006293 a001 165580141/969323029*14662949395604^(10/21) 3178110000006293 a001 71778070001175617/225851433717 3178110000006293 a001 165580141/969323029*192900153618^(5/9) 3178110000006293 a001 433494437/370248451*73681302247^(1/2) 3178110000006293 a001 165580141/969323029*28143753123^(3/5) 3178110000006293 a001 433494437/370248451*10749957122^(13/24) 3178110000006293 a001 165580141/969323029*10749957122^(5/8) 3178110000006293 a001 433494437/370248451*4106118243^(13/23) 3178110000006293 a001 165580141/969323029*4106118243^(15/23) 3178110000006293 a001 1548008755920/228826127*87403803^(4/19) 3178110000006293 a001 20365011074/370248451*599074578^(3/7) 3178110000006293 a001 75283811239/1368706081*228826127^(9/20) 3178110000006293 a001 591286729879/10749957122*228826127^(9/20) 3178110000006293 a001 12585437040/228811001*228826127^(9/20) 3178110000006293 a001 4052739537881/73681302247*228826127^(9/20) 3178110000006293 a001 3536736619241/64300051206*228826127^(9/20) 3178110000006293 a001 6557470319842/119218851371*228826127^(9/20) 3178110000006293 a001 2504730781961/45537549124*228826127^(9/20) 3178110000006293 a001 956722026041/17393796001*228826127^(9/20) 3178110000006293 a001 433494437/370248451*1568397607^(13/22) 3178110000006293 a001 1836311903/599074578*228826127^(3/5) 3178110000006293 a001 365435296162/6643838879*228826127^(9/20) 3178110000006293 a001 7778742049/370248451*599074578^(10/21) 3178110000006293 a001 165580141/969323029*1568397607^(15/22) 3178110000006293 a001 4807526976/370248451*599074578^(1/2) 3178110000006293 a001 139583862445/969323029*228826127^(2/5) 3178110000006293 a001 139583862445/2537720636*228826127^(9/20) 3178110000006293 a001 2971215073/370248451*599074578^(11/21) 3178110000006293 a001 1134903170/370248451*599074578^(4/7) 3178110000006293 a001 32951280099/1568397607*228826127^(1/2) 3178110000006293 a001 233802911/199691526*228826127^(13/20) 3178110000006293 a001 567451585/299537289*228826127^(5/8) 3178110000006293 a001 165580141/4106118243*599074578^(11/14) 3178110000006293 a001 86267571272/4106118243*228826127^(1/2) 3178110000006293 a001 225851433717/10749957122*228826127^(1/2) 3178110000006293 a001 591286729879/28143753123*228826127^(1/2) 3178110000006293 a001 1548008755920/73681302247*228826127^(1/2) 3178110000006293 a001 4052739537881/192900153618*228826127^(1/2) 3178110000006293 a001 225749145909/10745088481*228826127^(1/2) 3178110000006293 a001 6557470319842/312119004989*228826127^(1/2) 3178110000006293 a001 2504730781961/119218851371*228826127^(1/2) 3178110000006293 a001 956722026041/45537549124*228826127^(1/2) 3178110000006293 a001 365435296162/17393796001*228826127^(1/2) 3178110000006293 a001 139583862445/6643838879*228826127^(1/2) 3178110000006293 a001 165580141/2537720636*599074578^(16/21) 3178110000006293 a001 165580141/6643838879*599074578^(17/21) 3178110000006293 a001 165580141/10749957122*599074578^(5/6) 3178110000006293 a001 53316291173/969323029*228826127^(9/20) 3178110000006293 a001 10610209857723/370248451*228826127^(1/8) 3178110000006293 a001 165580141/17393796001*599074578^(6/7) 3178110000006293 a001 53316291173/2537720636*228826127^(1/2) 3178110000006293 a001 165580141/45537549124*599074578^(19/21) 3178110000006293 a001 165580141/73681302247*599074578^(13/14) 3178110000006293 a001 165580141/119218851371*599074578^(20/21) 3178110000006293 a001 433494437/370248451*599074578^(13/21) 3178110000006293 a001 12586269025/1568397607*228826127^(11/20) 3178110000006293 a001 6557470319842/370248451*228826127^(3/20) 3178110000006293 a001 165580141/969323029*599074578^(5/7) 3178110000006293 a001 10983760033/1368706081*228826127^(11/20) 3178110000006293 a001 43133785636/5374978561*228826127^(11/20) 3178110000006293 a001 75283811239/9381251041*228826127^(11/20) 3178110000006293 a001 591286729879/73681302247*228826127^(11/20) 3178110000006293 a001 86000486440/10716675201*228826127^(11/20) 3178110000006293 a001 4052739537881/505019158607*228826127^(11/20) 3178110000006293 a001 3536736619241/440719107401*228826127^(11/20) 3178110000006293 a001 3278735159921/408569081798*228826127^(11/20) 3178110000006293 a001 2504730781961/312119004989*228826127^(11/20) 3178110000006293 a001 956722026041/119218851371*228826127^(11/20) 3178110000006293 a001 182717648081/22768774562*228826127^(11/20) 3178110000006293 a001 139583862445/17393796001*228826127^(11/20) 3178110000006293 a001 53316291173/6643838879*228826127^(11/20) 3178110000006293 a001 20365011074/969323029*228826127^(1/2) 3178110000006293 a001 10182505537/1268860318*228826127^(11/20) 3178110000006293 a001 686789568/224056801*228826127^(3/5) 3178110000006293 a001 2504730781961/370248451*228826127^(1/5) 3178110000006293 a001 267914296/1568397607*228826127^(3/4) 3178110000006293 a001 12586269025/4106118243*228826127^(3/5) 3178110000006293 a001 32951280099/10749957122*228826127^(3/5) 3178110000006293 a001 86267571272/28143753123*228826127^(3/5) 3178110000006293 a001 32264490531/10525900321*228826127^(3/5) 3178110000006293 a001 591286729879/192900153618*228826127^(3/5) 3178110000006293 a001 1548008755920/505019158607*228826127^(3/5) 3178110000006293 a001 1515744265389/494493258286*228826127^(3/5) 3178110000006293 a001 2504730781961/817138163596*228826127^(3/5) 3178110000006293 a001 956722026041/312119004989*228826127^(3/5) 3178110000006293 a001 365435296162/119218851371*228826127^(3/5) 3178110000006293 a001 139583862445/45537549124*228826127^(3/5) 3178110000006293 a001 53316291173/17393796001*228826127^(3/5) 3178110000006293 a001 20365011074/6643838879*228826127^(3/5) 3178110000006293 a001 2971215073/1568397607*228826127^(5/8) 3178110000006293 a001 7778742049/969323029*228826127^(11/20) 3178110000006293 a001 7778742049/2537720636*228826127^(3/5) 3178110000006293 a001 7778742049/4106118243*228826127^(5/8) 3178110000006293 a001 10182505537/5374978561*228826127^(5/8) 3178110000006293 a001 53316291173/28143753123*228826127^(5/8) 3178110000006293 a001 139583862445/73681302247*228826127^(5/8) 3178110000006293 a001 182717648081/96450076809*228826127^(5/8) 3178110000006293 a001 956722026041/505019158607*228826127^(5/8) 3178110000006293 a001 10610209857723/5600748293801*228826127^(5/8) 3178110000006293 a001 591286729879/312119004989*228826127^(5/8) 3178110000006293 a001 225851433717/119218851371*228826127^(5/8) 3178110000006293 a001 21566892818/11384387281*228826127^(5/8) 3178110000006293 a001 32951280099/17393796001*228826127^(5/8) 3178110000006293 a001 1836311903/1568397607*228826127^(13/20) 3178110000006293 a001 12586269025/6643838879*228826127^(5/8) 3178110000006293 a001 956722026041/370248451*228826127^(1/4) 3178110000006293 a001 1201881744/634430159*228826127^(5/8) 3178110000006293 a001 1602508992/1368706081*228826127^(13/20) 3178110000006293 a001 12586269025/10749957122*228826127^(13/20) 3178110000006293 a001 10983760033/9381251041*228826127^(13/20) 3178110000006293 a001 86267571272/73681302247*228826127^(13/20) 3178110000006293 a001 75283811239/64300051206*228826127^(13/20) 3178110000006293 a001 2504730781961/2139295485799*228826127^(13/20) 3178110000006293 a001 365435296162/312119004989*228826127^(13/20) 3178110000006293 a001 139583862445/119218851371*228826127^(13/20) 3178110000006293 a001 53316291173/45537549124*228826127^(13/20) 3178110000006293 a001 20365011074/17393796001*228826127^(13/20) 3178110000006293 a001 267914296/4106118243*228826127^(4/5) 3178110000006293 a001 7778742049/6643838879*228826127^(13/20) 3178110000006293 a001 2971215073/969323029*228826127^(3/5) 3178110000006293 a001 701408733/1568397607*228826127^(7/10) 3178110000006293 a001 2971215073/2537720636*228826127^(13/20) 3178110000006293 a001 1836311903/969323029*228826127^(5/8) 3178110000006293 a001 365435296162/370248451*228826127^(3/10) 3178110000006293 a001 1836311903/4106118243*228826127^(7/10) 3178110000006293 a001 2403763488/5374978561*228826127^(7/10) 3178110000006293 a001 12586269025/28143753123*228826127^(7/10) 3178110000006293 a001 32951280099/73681302247*228826127^(7/10) 3178110000006293 a001 43133785636/96450076809*228826127^(7/10) 3178110000006293 a001 225851433717/505019158607*228826127^(7/10) 3178110000006293 a001 591286729879/1322157322203*228826127^(7/10) 3178110000006293 a001 10610209857723/23725150497407*228826127^(7/10) 3178110000006293 a001 182717648081/408569081798*228826127^(7/10) 3178110000006293 a001 139583862445/312119004989*228826127^(7/10) 3178110000006293 a001 53316291173/119218851371*228826127^(7/10) 3178110000006293 a001 10182505537/22768774562*228826127^(7/10) 3178110000006293 a001 7778742049/17393796001*228826127^(7/10) 3178110000006293 a001 2971215073/6643838879*228826127^(7/10) 3178110000006293 a001 133957148/5374978561*228826127^(17/20) 3178110000006293 a001 1134903170/969323029*228826127^(13/20) 3178110000006293 a001 567451585/1268860318*228826127^(7/10) 3178110000006293 a001 233802911/1368706081*228826127^(3/4) 3178110000006293 a001 9238424/599786069*228826127^(7/8) 3178110000006293 a001 139583862445/370248451*228826127^(7/20) 3178110000006293 a001 1836311903/10749957122*228826127^(3/4) 3178110000006293 a001 1602508992/9381251041*228826127^(3/4) 3178110000006293 a001 12586269025/73681302247*228826127^(3/4) 3178110000006293 a001 10983760033/64300051206*228826127^(3/4) 3178110000006293 a001 86267571272/505019158607*228826127^(3/4) 3178110000006293 a001 75283811239/440719107401*228826127^(3/4) 3178110000006293 a001 2504730781961/14662949395604*228826127^(3/4) 3178110000006293 a001 139583862445/817138163596*228826127^(3/4) 3178110000006293 a001 53316291173/312119004989*228826127^(3/4) 3178110000006293 a001 20365011074/119218851371*228826127^(3/4) 3178110000006293 a001 7778742049/45537549124*228826127^(3/4) 3178110000006293 a001 2971215073/17393796001*228826127^(3/4) 3178110000006293 a001 267914296/28143753123*228826127^(9/10) 3178110000006293 a001 86267571272/370248451*228826127^(3/8) 3178110000006293 a001 1134903170/6643838879*228826127^(3/4) 3178110000006293 a001 165580141/370248451*17393796001^(4/7) 3178110000006293 a001 165580141/370248451*14662949395604^(4/9) 3178110000006293 a001 27416783093579881/86267571272 3178110000006293 a001 165580141/370248451*73681302247^(7/13) 3178110000006293 a001 165580141/370248451*10749957122^(7/12) 3178110000006293 a001 165580141/370248451*4106118243^(14/23) 3178110000006293 a001 165580141/370248451*1568397607^(7/11) 3178110000006293 a001 701408733/10749957122*228826127^(4/5) 3178110000006293 a001 53316291173/370248451*228826127^(2/5) 3178110000006293 a001 1836311903/28143753123*228826127^(4/5) 3178110000006293 a001 686789568/10525900321*228826127^(4/5) 3178110000006293 a001 12586269025/192900153618*228826127^(4/5) 3178110000006293 a001 32951280099/505019158607*228826127^(4/5) 3178110000006293 a001 86267571272/1322157322203*228826127^(4/5) 3178110000006293 a001 32264490531/494493258286*228826127^(4/5) 3178110000006293 a001 591286729879/9062201101803*228826127^(4/5) 3178110000006293 a001 1548008755920/23725150497407*228826127^(4/5) 3178110000006293 a001 139583862445/2139295485799*228826127^(4/5) 3178110000006293 a001 53316291173/817138163596*228826127^(4/5) 3178110000006293 a001 20365011074/312119004989*228826127^(4/5) 3178110000006293 a001 7778742049/119218851371*228826127^(4/5) 3178110000006293 a001 2971215073/45537549124*228826127^(4/5) 3178110000006293 a001 591286729879/228826127*87403803^(5/19) 3178110000006293 a001 267914296/73681302247*228826127^(19/20) 3178110000006293 a001 1134903170/17393796001*228826127^(4/5) 3178110000006293 a001 433494437/969323029*228826127^(7/10) 3178110000006293 a001 433494437/2537720636*228826127^(3/4) 3178110000006293 a001 233802911/9381251041*228826127^(17/20) 3178110000006293 a001 20365011074/370248451*228826127^(9/20) 3178110000006293 a001 1836311903/73681302247*228826127^(17/20) 3178110000006293 a001 267084832/10716675201*228826127^(17/20) 3178110000006293 a001 12586269025/505019158607*228826127^(17/20) 3178110000006293 a001 10983760033/440719107401*228826127^(17/20) 3178110000006293 a001 43133785636/1730726404001*228826127^(17/20) 3178110000006293 a001 75283811239/3020733700601*228826127^(17/20) 3178110000006293 a001 182717648081/7331474697802*228826127^(17/20) 3178110000006293 a001 139583862445/5600748293801*228826127^(17/20) 3178110000006293 a001 53316291173/2139295485799*228826127^(17/20) 3178110000006293 a001 10182505537/408569081798*228826127^(17/20) 3178110000006293 a001 7778742049/312119004989*228826127^(17/20) 3178110000006293 a001 2971215073/119218851371*228826127^(17/20) 3178110000006293 a001 701408733/45537549124*228826127^(7/8) 3178110000006293 a001 433494437/6643838879*228826127^(4/5) 3178110000006293 a001 567451585/22768774562*228826127^(17/20) 3178110000006293 a001 165580141/370248451*599074578^(2/3) 3178110000006293 a001 1836311903/119218851371*228826127^(7/8) 3178110000006293 a001 4807526976/312119004989*228826127^(7/8) 3178110000006293 a001 12586269025/817138163596*228826127^(7/8) 3178110000006293 a001 32951280099/2139295485799*228826127^(7/8) 3178110000006293 a001 86267571272/5600748293801*228826127^(7/8) 3178110000006293 a001 7787980473/505618944676*228826127^(7/8) 3178110000006293 a001 365435296162/23725150497407*228826127^(7/8) 3178110000006293 a001 139583862445/9062201101803*228826127^(7/8) 3178110000006293 a001 53316291173/3461452808002*228826127^(7/8) 3178110000006293 a001 20365011074/1322157322203*228826127^(7/8) 3178110000006293 a001 7778742049/505019158607*228826127^(7/8) 3178110000006293 a001 2971215073/192900153618*228826127^(7/8) 3178110000006293 a001 701408733/73681302247*228826127^(9/10) 3178110000006293 a001 7778742049/370248451*228826127^(1/2) 3178110000006293 a001 1134903170/73681302247*228826127^(7/8) 3178110000006293 a001 1836311903/192900153618*228826127^(9/10) 3178110000006293 a001 102287808/10745088481*228826127^(9/10) 3178110000006293 a001 12586269025/1322157322203*228826127^(9/10) 3178110000006293 a001 32951280099/3461452808002*228826127^(9/10) 3178110000006293 a001 86267571272/9062201101803*228826127^(9/10) 3178110000006293 a001 225851433717/23725150497407*228826127^(9/10) 3178110000006293 a001 139583862445/14662949395604*228826127^(9/10) 3178110000006293 a001 53316291173/5600748293801*228826127^(9/10) 3178110000006293 a001 20365011074/2139295485799*228826127^(9/10) 3178110000006293 a001 7778742049/817138163596*228826127^(9/10) 3178110000006293 a001 2971215073/312119004989*228826127^(9/10) 3178110000006293 a001 433494437/17393796001*228826127^(17/20) 3178110000006293 a001 1134903170/119218851371*228826127^(9/10) 3178110000006293 a001 233802911/64300051206*228826127^(19/20) 3178110000006293 a001 433494437/28143753123*228826127^(7/8) 3178110000006293 a001 2971215073/370248451*228826127^(11/20) 3178110000006293 a001 3536736619241/199691526*87403803^(3/19) 3178110000006293 a001 1836311903/505019158607*228826127^(19/20) 3178110000006293 a001 1602508992/440719107401*228826127^(19/20) 3178110000006293 a001 12586269025/3461452808002*228826127^(19/20) 3178110000006293 a001 10983760033/3020733700601*228826127^(19/20) 3178110000006293 a001 86267571272/23725150497407*228826127^(19/20) 3178110000006293 a001 53316291173/14662949395604*228826127^(19/20) 3178110000006293 a001 20365011074/5600748293801*228826127^(19/20) 3178110000006293 a001 7778742049/2139295485799*228826127^(19/20) 3178110000006293 a001 2971215073/817138163596*228826127^(19/20) 3178110000006293 a001 433494437/45537549124*228826127^(9/10) 3178110000006293 a001 1134903170/312119004989*228826127^(19/20) 3178110000006293 a001 516002918640/29134601*33385282^(1/6) 3178110000006293 a001 701408733/370248451*228826127^(5/8) 3178110000006293 a001 63245986/370248451*141422324^(10/13) 3178110000006293 a001 1134903170/370248451*228826127^(3/5) 3178110000006293 a001 433494437/119218851371*228826127^(19/20) 3178110000006293 a001 433494437/141422324*141422324^(8/13) 3178110000006293 a001 433494437/370248451*228826127^(13/20) 3178110000006293 a001 225851433717/228826127*87403803^(6/19) 3178110000006293 a001 165580141/969323029*228826127^(3/4) 3178110000006293 a001 165580141/2537720636*228826127^(4/5) 3178110000006293 a001 1836311903/141422324*141422324^(7/13) 3178110000006293 a001 165580141/6643838879*228826127^(17/20) 3178110000006293 a001 165580141/141422324*141422324^(2/3) 3178110000006293 a001 165580141/10749957122*228826127^(7/8) 3178110000006293 a001 165580141/17393796001*228826127^(9/10) 3178110000006293 a001 4052739537881/599074578*87403803^(4/19) 3178110000006293 a001 165580141/45537549124*228826127^(19/20) 3178110000006293 a001 7778742049/141422324*141422324^(6/13) 3178110000006293 a001 1515744265389/224056801*87403803^(4/19) 3178110000006293 a001 165580141/370248451*228826127^(7/10) 3178110000006293 a001 6557470319842/370248451*87403803^(3/19) 3178110000006293 a001 6557470319842/969323029*87403803^(4/19) 3178110000006293 a001 86267571272/228826127*87403803^(7/19) 3178110000006293 a001 63246219/271444*141422324^(5/13) 3178110000006293 a001 102334155/141422324*2537720636^(3/5) 3178110000006293 a001 3236112267225915/10182505537 3178110000006293 a001 102334155/141422324*45537549124^(9/17) 3178110000006293 a001 102334155/141422324*817138163596^(9/19) 3178110000006293 a001 102334155/141422324*14662949395604^(3/7) 3178110000006293 a001 102334155/141422324*192900153618^(1/2) 3178110000006293 a001 102334155/141422324*10749957122^(9/16) 3178110000006293 a001 86000486440/33281921*87403803^(5/19) 3178110000006293 a001 102334155/141422324*599074578^(9/14) 3178110000006293 a001 21566892818/35355581*141422324^(1/3) 3178110000006293 a001 4052739537881/1568397607*87403803^(5/19) 3178110000006293 a001 3536736619241/1368706081*87403803^(5/19) 3178110000006293 a001 3278735159921/1268860318*87403803^(5/19) 3178110000006293 a001 139583862445/141422324*141422324^(4/13) 3178110000006293 a001 2504730781961/370248451*87403803^(4/19) 3178110000006293 a001 2504730781961/969323029*87403803^(5/19) 3178110000006293 a001 32951280099/228826127*87403803^(8/19) 3178110000006293 a001 591286729879/141422324*141422324^(3/13) 3178110000006293 a001 591286729879/599074578*87403803^(6/19) 3178110000006293 a001 1548008755920/1568397607*87403803^(6/19) 3178110000006293 a001 4052739537881/4106118243*87403803^(6/19) 3178110000006293 a001 4807525989/4870846*87403803^(6/19) 3178110000006293 a001 6557470319842/6643838879*87403803^(6/19) 3178110000006293 a001 2504730781961/2537720636*87403803^(6/19) 3178110000006293 a001 956722026041/370248451*87403803^(5/19) 3178110000006293 a001 2504730781961/141422324*141422324^(2/13) 3178110000006293 a001 956722026041/969323029*87403803^(6/19) 3178110000006293 a001 12586269025/228826127*87403803^(9/19) 3178110000006293 a001 267913919/710646*87403803^(7/19) 3178110000006293 a001 10610209857723/141422324*141422324^(1/13) 3178110000006293 a001 7778742049/228826127*87403803^(1/2) 3178110000006293 a001 66978574/35355581*2537720636^(5/9) 3178110000006293 a001 16944503814015856/53316291173 3178110000006293 a001 66978574/35355581*312119004989^(5/11) 3178110000006293 a001 31622993/299537289*9062201101803^(1/2) 3178110000006293 a001 66978574/35355581*28143753123^(1/2) 3178110000006293 a001 591286729879/1568397607*87403803^(7/19) 3178110000006293 a001 516002918640/1368706081*87403803^(7/19) 3178110000006293 a001 4052739537881/10749957122*87403803^(7/19) 3178110000006293 a001 3536736619241/9381251041*87403803^(7/19) 3178110000006293 a001 6557470319842/17393796001*87403803^(7/19) 3178110000006293 a001 2504730781961/6643838879*87403803^(7/19) 3178110000006293 a001 956722026041/2537720636*87403803^(7/19) 3178110000006293 a001 365435296162/370248451*87403803^(6/19) 3178110000006293 a001 365435296162/969323029*87403803^(7/19) 3178110000006293 a001 63245986/1568397607*2537720636^(11/15) 3178110000006293 a001 63245986/1568397607*45537549124^(11/17) 3178110000006293 a001 498441425928042/1568358005 3178110000006293 a001 63245986/1568397607*312119004989^(3/5) 3178110000006293 a001 63245986/1568397607*817138163596^(11/19) 3178110000006293 a001 63245986/1568397607*14662949395604^(11/21) 3178110000006293 a001 63245986/1568397607*192900153618^(11/18) 3178110000006293 a001 63245986/1568397607*10749957122^(11/16) 3178110000006293 a001 701408733/141422324*4106118243^(1/2) 3178110000006293 a001 102287808/4868641*87403803^(10/19) 3178110000006293 a001 63245986/4106118243*2537720636^(7/9) 3178110000006293 a001 63245986/119218851371*2537720636^(14/15) 3178110000006293 a001 31622993/22768774562*2537720636^(8/9) 3178110000006293 a001 63245986/28143753123*2537720636^(13/15) 3178110000006293 a001 1836311903/141422324*2537720636^(7/15) 3178110000006293 a001 63245986/1568397607*1568397607^(3/4) 3178110000006293 a001 63245986/6643838879*2537720636^(4/5) 3178110000006293 a001 63245986/4106118243*17393796001^(5/7) 3178110000006293 a001 1836311903/141422324*17393796001^(3/7) 3178110000006293 a001 1836311903/141422324*45537549124^(7/17) 3178110000006293 a001 63245986/4106118243*312119004989^(7/11) 3178110000006293 a001 1836311903/141422324*14662949395604^(1/3) 3178110000006293 a001 63245986/4106118243*505019158607^(5/8) 3178110000006293 a001 1836311903/141422324*192900153618^(7/18) 3178110000006293 a001 7778742049/141422324*2537720636^(2/5) 3178110000006293 a001 63245986/4106118243*28143753123^(7/10) 3178110000006293 a001 1836311903/141422324*10749957122^(7/16) 3178110000006293 a001 63246219/271444*2537720636^(1/3) 3178110000006293 a001 2971215073/141422324*2537720636^(4/9) 3178110000006293 a001 139583862445/141422324*2537720636^(4/15) 3178110000006293 a001 182717648081/70711162*2537720636^(2/9) 3178110000006293 a001 591286729879/141422324*2537720636^(1/5) 3178110000006293 a001 2504730781961/141422324*2537720636^(2/15) 3178110000006293 a001 4052739537881/141422324*2537720636^(1/9) 3178110000006293 a001 10610209857723/141422324*2537720636^(1/15) 3178110000006293 a001 1201881744/35355581*817138163596^(1/3) 3178110000006293 a001 63245986/119218851371*17393796001^(6/7) 3178110000006293 a001 63245986/28143753123*45537549124^(13/17) 3178110000006293 a001 12586269025/141422324*45537549124^(1/3) 3178110000006293 a001 796030994547383650/2504730781961 3178110000006293 a001 63245986/28143753123*14662949395604^(13/21) 3178110000006293 a001 63245986/28143753123*192900153618^(13/18) 3178110000006293 a001 63245986/28143753123*73681302247^(3/4) 3178110000006293 a001 53316291173/141422324*17393796001^(2/7) 3178110000006293 a001 387002188980/35355581*17393796001^(1/7) 3178110000006293 a001 63245986/2139295485799*45537549124^(16/17) 3178110000006293 a001 63245986/505019158607*45537549124^(15/17) 3178110000006293 a001 63245986/119218851371*45537549124^(14/17) 3178110000006293 a001 63246219/271444*45537549124^(5/17) 3178110000006293 a001 63246219/271444*312119004989^(3/11) 3178110000006293 a001 1042018099911716307/3278735159921 3178110000006293 a001 63246219/271444*14662949395604^(5/21) 3178110000006293 a001 63246219/271444*192900153618^(5/18) 3178110000006293 a001 139583862445/141422324*45537549124^(4/17) 3178110000006293 a001 591286729879/141422324*45537549124^(3/17) 3178110000006293 a001 2504730781961/141422324*45537549124^(2/17) 3178110000006293 a001 10610209857723/141422324*45537549124^(1/17) 3178110000006293 a001 63245986/505019158607*312119004989^(9/11) 3178110000006293 a001 63245986/5600748293801*312119004989^(10/11) 3178110000006293 a001 225851433717/141422324*312119004989^(1/5) 3178110000006293 a001 63245986/505019158607*14662949395604^(5/7) 3178110000006293 a001 10610209857723/141422324*14662949395604^(1/21) 3178110000006293 a001 10610209857723/141422324*192900153618^(1/18) 3178110000006293 a001 591286729879/141422324*192900153618^(1/6) 3178110000006293 a001 139583862445/141422324*817138163596^(4/19) 3178110000006293 a001 139583862445/141422324*14662949395604^(4/21) 3178110000006293 a001 139583862445/141422324*192900153618^(2/9) 3178110000006293 a001 63245986/505019158607*192900153618^(5/6) 3178110000006293 a001 21566892818/35355581*73681302247^(1/4) 3178110000006293 a001 63245986/2139295485799*192900153618^(8/9) 3178110000006293 a001 63245986/9062201101803*192900153618^(17/18) 3178110000006293 a001 956722026041/141422324*73681302247^(2/13) 3178110000006293 a001 139583862445/141422324*73681302247^(3/13) 3178110000006293 a001 53316291173/141422324*14662949395604^(2/9) 3178110000006293 a001 3372041405099481578/10610209857723 3178110000006293 a001 63245986/119218851371*505019158607^(3/4) 3178110000006293 a001 63245986/119218851371*192900153618^(7/9) 3178110000006293 a001 4052739537881/141422324*28143753123^(1/10) 3178110000006293 a001 63245986/312119004989*73681302247^(11/13) 3178110000006293 a001 63245986/2139295485799*73681302247^(12/13) 3178110000006293 a001 63246219/271444*28143753123^(3/10) 3178110000006293 a001 182717648081/70711162*28143753123^(1/5) 3178110000006293 a001 31622993/22768774562*312119004989^(8/11) 3178110000006293 a001 10182505537/70711162*23725150497407^(1/4) 3178110000006293 a001 1288005205276048964/4052739537881 3178110000006293 a001 10182505537/70711162*73681302247^(4/13) 3178110000006293 a001 31622993/22768774562*73681302247^(10/13) 3178110000006293 a001 3278735159921/70711162*10749957122^(1/12) 3178110000006293 a001 2504730781961/141422324*10749957122^(1/8) 3178110000006293 a001 63245986/505019158607*28143753123^(9/10) 3178110000006293 a001 956722026041/141422324*10749957122^(1/6) 3178110000006293 a001 31622993/22768774562*28143753123^(4/5) 3178110000006293 a001 591286729879/141422324*10749957122^(3/16) 3178110000006293 a001 182717648081/70711162*10749957122^(5/24) 3178110000006293 a001 139583862445/141422324*10749957122^(1/4) 3178110000006293 a001 63246219/271444*10749957122^(5/16) 3178110000006293 a001 53316291173/141422324*10749957122^(7/24) 3178110000006293 a001 7778742049/141422324*45537549124^(6/17) 3178110000006293 a001 245987105364332657/774004377960 3178110000006293 a001 7778742049/141422324*192900153618^(1/3) 3178110000006293 a001 10182505537/70711162*10749957122^(1/3) 3178110000006293 a001 3278735159921/70711162*4106118243^(2/23) 3178110000006293 a001 63245986/28143753123*10749957122^(13/16) 3178110000006293 a001 7778742049/141422324*10749957122^(3/8) 3178110000006293 a001 63245986/119218851371*10749957122^(7/8) 3178110000006293 a001 31622993/22768774562*10749957122^(5/6) 3178110000006293 a001 2504730781961/141422324*4106118243^(3/23) 3178110000006293 a001 63245986/312119004989*10749957122^(11/12) 3178110000006293 a001 63245986/505019158607*10749957122^(15/16) 3178110000006293 a001 31622993/408569081798*10749957122^(23/24) 3178110000006293 a001 63245986/17393796001*10749957122^(19/24) 3178110000006293 a001 956722026041/141422324*4106118243^(4/23) 3178110000006293 a001 182717648081/70711162*4106118243^(5/23) 3178110000006293 a001 139583862445/141422324*4106118243^(6/23) 3178110000006293 a001 53316291173/141422324*4106118243^(7/23) 3178110000006293 a001 10182505537/70711162*4106118243^(8/23) 3178110000006293 a001 63245986/6643838879*45537549124^(12/17) 3178110000006293 a001 2971215073/141422324*23725150497407^(5/16) 3178110000006293 a001 187917426909946978/591286729879 3178110000006293 a001 2971215073/141422324*505019158607^(5/14) 3178110000006293 a001 63245986/6643838879*192900153618^(2/3) 3178110000006293 a001 2971215073/141422324*73681302247^(5/13) 3178110000006293 a001 63245986/6643838879*73681302247^(9/13) 3178110000006293 a001 2971215073/141422324*28143753123^(2/5) 3178110000006293 a001 2971215073/141422324*10749957122^(5/12) 3178110000006293 a001 7778742049/141422324*4106118243^(9/23) 3178110000006293 a001 63245986/6643838879*10749957122^(3/4) 3178110000006293 a001 3278735159921/70711162*1568397607^(1/11) 3178110000006293 a001 2971215073/141422324*4106118243^(10/23) 3178110000006293 a001 31622993/22768774562*4106118243^(20/23) 3178110000006293 a001 63245986/17393796001*4106118243^(19/23) 3178110000006293 a001 63245986/119218851371*4106118243^(21/23) 3178110000006293 a001 2504730781961/141422324*1568397607^(3/22) 3178110000006293 a001 63245986/312119004989*4106118243^(22/23) 3178110000006293 a001 63245986/6643838879*4106118243^(18/23) 3178110000006293 a001 956722026041/141422324*1568397607^(2/11) 3178110000006293 a001 182717648081/70711162*1568397607^(5/22) 3178110000006293 a001 225851433717/141422324*1568397607^(1/4) 3178110000006293 a001 139583862445/141422324*1568397607^(3/11) 3178110000006293 a001 53316291173/141422324*1568397607^(7/22) 3178110000006293 a001 10182505537/70711162*1568397607^(4/11) 3178110000006293 a001 31622993/1268860318*45537549124^(2/3) 3178110000006293 a001 567451585/70711162*312119004989^(2/5) 3178110000006293 a001 71778070001175620/225851433717 3178110000006293 a001 567451585/70711162*10749957122^(11/24) 3178110000006293 a001 31622993/1268860318*10749957122^(17/24) 3178110000006293 a001 7778742049/141422324*1568397607^(9/22) 3178110000006293 a001 567451585/70711162*4106118243^(11/23) 3178110000006293 a001 10610209857723/141422324*599074578^(1/14) 3178110000006293 a001 31622993/1268860318*4106118243^(17/23) 3178110000006293 a001 2971215073/141422324*1568397607^(5/11) 3178110000006293 a001 3278735159921/70711162*599074578^(2/21) 3178110000006293 a001 63245986/17393796001*1568397607^(19/22) 3178110000006293 a001 63245986/6643838879*1568397607^(9/11) 3178110000006293 a001 567451585/70711162*1568397607^(1/2) 3178110000006293 a001 31622993/22768774562*1568397607^(10/11) 3178110000006293 a001 63245986/119218851371*1568397607^(21/22) 3178110000006293 a001 2504730781961/141422324*599074578^(1/7) 3178110000006293 a001 387002188980/35355581*599074578^(1/6) 3178110000006293 a001 31622993/1268860318*1568397607^(17/22) 3178110000006293 a001 956722026041/141422324*599074578^(4/21) 3178110000006293 a001 591286729879/141422324*599074578^(3/14) 3178110000006293 a001 182717648081/70711162*599074578^(5/21) 3178110000006293 a001 139583862445/141422324*599074578^(2/7) 3178110000006293 a001 53316291173/141422324*599074578^(1/3) 3178110000006293 a001 433494437/141422324*2537720636^(8/15) 3178110000006293 a001 63246219/271444*599074578^(5/14) 3178110000006293 a001 10182505537/70711162*599074578^(8/21) 3178110000006293 a001 433494437/141422324*45537549124^(8/17) 3178110000006293 a001 433494437/141422324*14662949395604^(8/21) 3178110000006293 a001 63245986/969323029*23725150497407^(1/2) 3178110000006293 a001 63245986/969323029*505019158607^(4/7) 3178110000006293 a001 433494437/141422324*192900153618^(4/9) 3178110000006293 a001 13708391546789941/43133785636 3178110000006293 a001 433494437/141422324*73681302247^(6/13) 3178110000006293 a001 63245986/969323029*73681302247^(8/13) 3178110000006293 a001 433494437/141422324*10749957122^(1/2) 3178110000006293 a001 63245986/969323029*10749957122^(2/3) 3178110000006293 a001 433494437/141422324*4106118243^(12/23) 3178110000006293 a001 63245986/969323029*4106118243^(16/23) 3178110000006293 a001 7778742049/141422324*599074578^(3/7) 3178110000006293 a001 433494437/141422324*1568397607^(6/11) 3178110000006293 a001 1836311903/141422324*599074578^(1/2) 3178110000006293 a001 2971215073/141422324*599074578^(10/21) 3178110000006293 a001 63245986/969323029*1568397607^(8/11) 3178110000006293 a001 567451585/70711162*599074578^(11/21) 3178110000006293 a001 63245986/1568397607*599074578^(11/14) 3178110000006293 a001 3278735159921/70711162*228826127^(1/10) 3178110000006293 a001 63245986/4106118243*599074578^(5/6) 3178110000006293 a001 43133785636/299537289*87403803^(8/19) 3178110000006293 a001 4052739537881/141422324*228826127^(1/8) 3178110000006293 a001 31622993/1268860318*599074578^(17/21) 3178110000006293 a001 63245986/6643838879*599074578^(6/7) 3178110000006293 a001 63245986/17393796001*599074578^(19/21) 3178110000006293 a001 63245986/28143753123*599074578^(13/14) 3178110000006293 a001 31622993/22768774562*599074578^(20/21) 3178110000006293 a001 433494437/141422324*599074578^(4/7) 3178110000006293 a001 2504730781961/141422324*228826127^(3/20) 3178110000006293 a001 63245986/969323029*599074578^(16/21) 3178110000006293 a001 956722026041/141422324*228826127^(1/5) 3178110000006293 a001 32264490531/224056801*87403803^(8/19) 3178110000006293 a001 182717648081/70711162*228826127^(1/4) 3178110000006293 a001 591286729879/4106118243*87403803^(8/19) 3178110000006293 a001 774004377960/5374978561*87403803^(8/19) 3178110000006293 a001 4052739537881/28143753123*87403803^(8/19) 3178110000006293 a001 1515744265389/10525900321*87403803^(8/19) 3178110000006293 a001 3278735159921/22768774562*87403803^(8/19) 3178110000006293 a001 2504730781961/17393796001*87403803^(8/19) 3178110000006293 a001 956722026041/6643838879*87403803^(8/19) 3178110000006293 a001 182717648081/1268860318*87403803^(8/19) 3178110000006293 a001 139583862445/370248451*87403803^(7/19) 3178110000006293 a001 139583862445/141422324*228826127^(3/10) 3178110000006293 a001 139583862445/969323029*87403803^(8/19) 3178110000006293 a001 1836311903/228826127*87403803^(11/19) 3178110000006293 a001 53316291173/141422324*228826127^(7/20) 3178110000006293 a001 63246219/271444*228826127^(3/8) 3178110000006293 a001 63245986/370248451*2537720636^(2/3) 3178110000006293 a001 63245986/370248451*45537549124^(10/17) 3178110000006293 a001 63245986/370248451*312119004989^(6/11) 3178110000006293 a001 63245986/370248451*14662949395604^(10/21) 3178110000006293 a001 63245986/370248451*192900153618^(5/9) 3178110000006293 a001 165580141/141422324*73681302247^(1/2) 3178110000006293 a001 44945404633322/141421803 3178110000006293 a001 63245986/370248451*28143753123^(3/5) 3178110000006293 a001 165580141/141422324*10749957122^(13/24) 3178110000006293 a001 63245986/370248451*10749957122^(5/8) 3178110000006293 a001 165580141/141422324*4106118243^(13/23) 3178110000006293 a001 63245986/370248451*4106118243^(15/23) 3178110000006293 a001 165580141/141422324*1568397607^(13/22) 3178110000006293 a001 63245986/370248451*1568397607^(15/22) 3178110000006293 a001 10182505537/70711162*228826127^(2/5) 3178110000006293 a001 102334155/228826127*87403803^(14/19) 3178110000006293 a001 7778742049/141422324*228826127^(9/20) 3178110000006293 a001 165580141/141422324*599074578^(13/21) 3178110000006293 a001 66978574/35355581*228826127^(5/8) 3178110000006293 a001 10983760033/199691526*87403803^(9/19) 3178110000006293 a001 63245986/370248451*599074578^(5/7) 3178110000006293 a001 2971215073/141422324*228826127^(1/2) 3178110000006293 a001 567451585/70711162*228826127^(11/20) 3178110000006293 a001 86267571272/1568397607*87403803^(9/19) 3178110000006293 a001 75283811239/1368706081*87403803^(9/19) 3178110000006293 a001 591286729879/10749957122*87403803^(9/19) 3178110000006293 a001 12585437040/228811001*87403803^(9/19) 3178110000006293 a001 4052739537881/73681302247*87403803^(9/19) 3178110000006293 a001 3536736619241/64300051206*87403803^(9/19) 3178110000006293 a001 6557470319842/119218851371*87403803^(9/19) 3178110000006293 a001 2504730781961/45537549124*87403803^(9/19) 3178110000006293 a001 956722026041/17393796001*87403803^(9/19) 3178110000006293 a001 365435296162/6643838879*87403803^(9/19) 3178110000006293 a001 139583862445/2537720636*87403803^(9/19) 3178110000006293 a001 53316291173/370248451*87403803^(8/19) 3178110000006293 a001 433494437/141422324*228826127^(3/5) 3178110000006293 a001 10182505537/299537289*87403803^(1/2) 3178110000006293 a001 53316291173/969323029*87403803^(9/19) 3178110000006293 a001 701408733/228826127*87403803^(12/19) 3178110000006293 a001 3278735159921/70711162*87403803^(2/19) 3178110000006293 a001 53316291173/1568397607*87403803^(1/2) 3178110000006293 a001 139583862445/4106118243*87403803^(1/2) 3178110000006293 a001 182717648081/5374978561*87403803^(1/2) 3178110000006293 a001 956722026041/28143753123*87403803^(1/2) 3178110000006293 a001 2504730781961/73681302247*87403803^(1/2) 3178110000006293 a001 3278735159921/96450076809*87403803^(1/2) 3178110000006293 a001 10610209857723/312119004989*87403803^(1/2) 3178110000006293 a001 4052739537881/119218851371*87403803^(1/2) 3178110000006293 a001 387002188980/11384387281*87403803^(1/2) 3178110000006293 a001 591286729879/17393796001*87403803^(1/2) 3178110000006293 a001 225851433717/6643838879*87403803^(1/2) 3178110000006293 a001 1135099622/33391061*87403803^(1/2) 3178110000006293 a001 12586269025/599074578*87403803^(10/19) 3178110000006293 a001 63245986/969323029*228826127^(4/5) 3178110000006293 a001 31622993/1268860318*228826127^(17/20) 3178110000006293 a001 32951280099/969323029*87403803^(1/2) 3178110000006293 a001 63245986/4106118243*228826127^(7/8) 3178110000006293 a001 63245986/6643838879*228826127^(9/10) 3178110000006293 a001 267914296/228826127*87403803^(13/19) 3178110000006293 a001 63245986/17393796001*228826127^(19/20) 3178110000006293 a001 591286729879/87403803*33385282^(2/9) 3178110000006293 a001 32951280099/1568397607*87403803^(10/19) 3178110000006293 a001 86267571272/4106118243*87403803^(10/19) 3178110000006293 a001 225851433717/10749957122*87403803^(10/19) 3178110000006293 a001 591286729879/28143753123*87403803^(10/19) 3178110000006293 a001 1548008755920/73681302247*87403803^(10/19) 3178110000006293 a001 4052739537881/192900153618*87403803^(10/19) 3178110000006293 a001 225749145909/10745088481*87403803^(10/19) 3178110000006293 a001 6557470319842/312119004989*87403803^(10/19) 3178110000006293 a001 2504730781961/119218851371*87403803^(10/19) 3178110000006293 a001 956722026041/45537549124*87403803^(10/19) 3178110000006293 a001 365435296162/17393796001*87403803^(10/19) 3178110000006293 a001 139583862445/6643838879*87403803^(10/19) 3178110000006293 a001 53316291173/2537720636*87403803^(10/19) 3178110000006293 a001 20365011074/370248451*87403803^(9/19) 3178110000006293 a001 165580141/141422324*228826127^(13/20) 3178110000006293 a001 20365011074/969323029*87403803^(10/19) 3178110000006293 a001 2504730781961/141422324*87403803^(3/19) 3178110000006293 a001 63245986/370248451*228826127^(3/4) 3178110000006293 a001 12586269025/370248451*87403803^(1/2) 3178110000006293 a001 267084832/33281921*87403803^(11/19) 3178110000006293 a001 12586269025/1568397607*87403803^(11/19) 3178110000006293 a001 10983760033/1368706081*87403803^(11/19) 3178110000006293 a001 43133785636/5374978561*87403803^(11/19) 3178110000006293 a001 75283811239/9381251041*87403803^(11/19) 3178110000006293 a001 591286729879/73681302247*87403803^(11/19) 3178110000006293 a001 86000486440/10716675201*87403803^(11/19) 3178110000006293 a001 4052739537881/505019158607*87403803^(11/19) 3178110000006293 a001 3278735159921/408569081798*87403803^(11/19) 3178110000006293 a001 2504730781961/312119004989*87403803^(11/19) 3178110000006293 a001 956722026041/119218851371*87403803^(11/19) 3178110000006293 a001 182717648081/22768774562*87403803^(11/19) 3178110000006293 a001 139583862445/17393796001*87403803^(11/19) 3178110000006293 a001 53316291173/6643838879*87403803^(11/19) 3178110000006293 a001 10182505537/1268860318*87403803^(11/19) 3178110000006293 a001 7778742049/370248451*87403803^(10/19) 3178110000006293 a001 7778742049/969323029*87403803^(11/19) 3178110000006293 a001 956722026041/141422324*87403803^(4/19) 3178110000006293 a001 1836311903/599074578*87403803^(12/19) 3178110000006293 a001 225749145909/4868641*33385282^(1/9) 3178110000006293 a001 34111385/199691526*87403803^(15/19) 3178110000006293 a001 686789568/224056801*87403803^(12/19) 3178110000006293 a001 12586269025/4106118243*87403803^(12/19) 3178110000006293 a001 32951280099/10749957122*87403803^(12/19) 3178110000006293 a001 86267571272/28143753123*87403803^(12/19) 3178110000006293 a001 32264490531/10525900321*87403803^(12/19) 3178110000006293 a001 591286729879/192900153618*87403803^(12/19) 3178110000006293 a001 1548008755920/505019158607*87403803^(12/19) 3178110000006293 a001 1515744265389/494493258286*87403803^(12/19) 3178110000006293 a001 2504730781961/817138163596*87403803^(12/19) 3178110000006293 a001 956722026041/312119004989*87403803^(12/19) 3178110000006293 a001 365435296162/119218851371*87403803^(12/19) 3178110000006293 a001 139583862445/45537549124*87403803^(12/19) 3178110000006293 a001 53316291173/17393796001*87403803^(12/19) 3178110000006293 a001 20365011074/6643838879*87403803^(12/19) 3178110000006293 a001 7778742049/2537720636*87403803^(12/19) 3178110000006293 a001 2971215073/370248451*87403803^(11/19) 3178110000006293 a001 2971215073/969323029*87403803^(12/19) 3178110000006293 a001 182717648081/70711162*87403803^(5/19) 3178110000006293 a001 233802911/199691526*87403803^(13/19) 3178110000006293 a001 1836311903/1568397607*87403803^(13/19) 3178110000006293 a001 1602508992/1368706081*87403803^(13/19) 3178110000006293 a001 12586269025/10749957122*87403803^(13/19) 3178110000006293 a001 10983760033/9381251041*87403803^(13/19) 3178110000006293 a001 86267571272/73681302247*87403803^(13/19) 3178110000006293 a001 75283811239/64300051206*87403803^(13/19) 3178110000006293 a001 2504730781961/2139295485799*87403803^(13/19) 3178110000006293 a001 365435296162/312119004989*87403803^(13/19) 3178110000006293 a001 139583862445/119218851371*87403803^(13/19) 3178110000006293 a001 53316291173/45537549124*87403803^(13/19) 3178110000006293 a001 20365011074/17393796001*87403803^(13/19) 3178110000006293 a001 7778742049/6643838879*87403803^(13/19) 3178110000006293 a001 2971215073/2537720636*87403803^(13/19) 3178110000006293 a001 1134903170/370248451*87403803^(12/19) 3178110000006293 a001 14619165/224056801*87403803^(16/19) 3178110000006293 a001 1134903170/969323029*87403803^(13/19) 3178110000006293 a001 133957148/299537289*87403803^(14/19) 3178110000006293 a001 139583862445/141422324*87403803^(6/19) 3178110000006293 a001 365435296162/87403803*33385282^(1/4) 3178110000006293 a001 701408733/1568397607*87403803^(14/19) 3178110000006293 a001 1836311903/4106118243*87403803^(14/19) 3178110000006293 a001 2403763488/5374978561*87403803^(14/19) 3178110000006293 a001 12586269025/28143753123*87403803^(14/19) 3178110000006293 a001 32951280099/73681302247*87403803^(14/19) 3178110000006293 a001 43133785636/96450076809*87403803^(14/19) 3178110000006293 a001 225851433717/505019158607*87403803^(14/19) 3178110000006293 a001 591286729879/1322157322203*87403803^(14/19) 3178110000006293 a001 10610209857723/23725150497407*87403803^(14/19) 3178110000006293 a001 182717648081/408569081798*87403803^(14/19) 3178110000006293 a001 139583862445/312119004989*87403803^(14/19) 3178110000006293 a001 53316291173/119218851371*87403803^(14/19) 3178110000006293 a001 10182505537/22768774562*87403803^(14/19) 3178110000006293 a001 7778742049/17393796001*87403803^(14/19) 3178110000006293 a001 2971215073/6643838879*87403803^(14/19) 3178110000006293 a001 567451585/1268860318*87403803^(14/19) 3178110000006293 a001 433494437/370248451*87403803^(13/19) 3178110000006293 a001 34111385/1368706081*87403803^(17/19) 3178110000006293 a001 53316291173/141422324*87403803^(7/19) 3178110000006293 a001 433494437/969323029*87403803^(14/19) 3178110000006293 a001 31622993/70711162*17393796001^(4/7) 3178110000006293 a001 31622993/70711162*14662949395604^(4/9) 3178110000006293 a001 31622993/70711162*73681302247^(7/13) 3178110000006293 a001 4000054745112196/12586269025 3178110000006293 a001 31622993/70711162*10749957122^(7/12) 3178110000006293 a001 31622993/70711162*4106118243^(14/23) 3178110000006293 a001 267914296/1568397607*87403803^(15/19) 3178110000006293 a001 31622993/70711162*1568397607^(7/11) 3178110000006293 a001 31622993/70711162*599074578^(2/3) 3178110000006293 a001 233802911/1368706081*87403803^(15/19) 3178110000006293 a001 1836311903/10749957122*87403803^(15/19) 3178110000006293 a001 1602508992/9381251041*87403803^(15/19) 3178110000006293 a001 12586269025/73681302247*87403803^(15/19) 3178110000006293 a001 10983760033/64300051206*87403803^(15/19) 3178110000006293 a001 86267571272/505019158607*87403803^(15/19) 3178110000006293 a001 75283811239/440719107401*87403803^(15/19) 3178110000006293 a001 2504730781961/14662949395604*87403803^(15/19) 3178110000006293 a001 139583862445/817138163596*87403803^(15/19) 3178110000006293 a001 53316291173/312119004989*87403803^(15/19) 3178110000006293 a001 20365011074/119218851371*87403803^(15/19) 3178110000006293 a001 7778742049/45537549124*87403803^(15/19) 3178110000006293 a001 2971215073/17393796001*87403803^(15/19) 3178110000006293 a001 1134903170/6643838879*87403803^(15/19) 3178110000006293 a001 433494437/2537720636*87403803^(15/19) 3178110000006293 a001 102334155/10749957122*87403803^(18/19) 3178110000006293 a001 10182505537/70711162*87403803^(8/19) 3178110000006293 a001 267914296/4106118243*87403803^(16/19) 3178110000006293 a001 701408733/10749957122*87403803^(16/19) 3178110000006293 a001 1836311903/28143753123*87403803^(16/19) 3178110000006293 a001 686789568/10525900321*87403803^(16/19) 3178110000006293 a001 12586269025/192900153618*87403803^(16/19) 3178110000006293 a001 32951280099/505019158607*87403803^(16/19) 3178110000006293 a001 86267571272/1322157322203*87403803^(16/19) 3178110000006293 a001 32264490531/494493258286*87403803^(16/19) 3178110000006293 a001 591286729879/9062201101803*87403803^(16/19) 3178110000006293 a001 1548008755920/23725150497407*87403803^(16/19) 3178110000006293 a001 139583862445/2139295485799*87403803^(16/19) 3178110000006293 a001 53316291173/817138163596*87403803^(16/19) 3178110000006293 a001 20365011074/312119004989*87403803^(16/19) 3178110000006293 a001 7778742049/119218851371*87403803^(16/19) 3178110000006293 a001 2971215073/45537549124*87403803^(16/19) 3178110000006293 a001 1134903170/17393796001*87403803^(16/19) 3178110000006293 a001 165580141/370248451*87403803^(14/19) 3178110000006293 a001 433494437/6643838879*87403803^(16/19) 3178110000006293 a001 165580141/969323029*87403803^(15/19) 3178110000006293 a001 7778742049/141422324*87403803^(9/19) 3178110000006293 a001 31622993/70711162*228826127^(7/10) 3178110000006293 a001 133957148/5374978561*87403803^(17/19) 3178110000006293 a001 1201881744/35355581*87403803^(1/2) 3178110000006293 a001 233802911/9381251041*87403803^(17/19) 3178110000006293 a001 1836311903/73681302247*87403803^(17/19) 3178110000006293 a001 267084832/10716675201*87403803^(17/19) 3178110000006293 a001 12586269025/505019158607*87403803^(17/19) 3178110000006293 a001 10983760033/440719107401*87403803^(17/19) 3178110000006293 a001 43133785636/1730726404001*87403803^(17/19) 3178110000006293 a001 75283811239/3020733700601*87403803^(17/19) 3178110000006293 a001 182717648081/7331474697802*87403803^(17/19) 3178110000006293 a001 139583862445/5600748293801*87403803^(17/19) 3178110000006293 a001 53316291173/2139295485799*87403803^(17/19) 3178110000006293 a001 10182505537/408569081798*87403803^(17/19) 3178110000006293 a001 7778742049/312119004989*87403803^(17/19) 3178110000006293 a001 2971215073/119218851371*87403803^(17/19) 3178110000006293 a001 567451585/22768774562*87403803^(17/19) 3178110000006293 a001 165580141/2537720636*87403803^(16/19) 3178110000006293 a001 433494437/17393796001*87403803^(17/19) 3178110000006293 a001 75283811239/29134601*33385282^(5/18) 3178110000006293 a001 24157817/33385282*33385282^(3/4) 3178110000006293 a001 2971215073/141422324*87403803^(10/19) 3178110000006293 a001 267914296/28143753123*87403803^(18/19) 3178110000006293 a001 701408733/73681302247*87403803^(18/19) 3178110000006293 a001 1836311903/192900153618*87403803^(18/19) 3178110000006293 a001 102287808/10745088481*87403803^(18/19) 3178110000006293 a001 12586269025/1322157322203*87403803^(18/19) 3178110000006293 a001 32951280099/3461452808002*87403803^(18/19) 3178110000006293 a001 86267571272/9062201101803*87403803^(18/19) 3178110000006293 a001 225851433717/23725150497407*87403803^(18/19) 3178110000006293 a001 139583862445/14662949395604*87403803^(18/19) 3178110000006293 a001 53316291173/5600748293801*87403803^(18/19) 3178110000006293 a001 20365011074/2139295485799*87403803^(18/19) 3178110000006293 a001 7778742049/817138163596*87403803^(18/19) 3178110000006293 a001 2971215073/312119004989*87403803^(18/19) 3178110000006293 a001 1134903170/119218851371*87403803^(18/19) 3178110000006293 a001 165580141/6643838879*87403803^(17/19) 3178110000006293 a001 10610209857723/141422324*33385282^(1/12) 3178110000006293 a001 433494437/45537549124*87403803^(18/19) 3178110000006293 a001 567451585/70711162*87403803^(11/19) 3178110000006293 a001 4052739537881/228826127*33385282^(1/6) 3178110000006293 a001 165580141/17393796001*87403803^(18/19) 3178110000006293 a001 433494437/141422324*87403803^(12/19) 3178110000006293 a001 3536736619241/199691526*33385282^(1/6) 3178110000006293 a001 165580141/141422324*87403803^(13/19) 3178110000006293 a001 3278735159921/70711162*33385282^(1/9) 3178110000006293 a001 6557470319842/370248451*33385282^(1/6) 3178110000006293 a001 63245986/370248451*87403803^(15/19) 3178110000006293 a001 63245986/969323029*87403803^(16/19) 3178110000006293 a001 31622993/1268860318*87403803^(17/19) 3178110000006293 a001 86267571272/87403803*33385282^(1/3) 3178110000006293 a001 63245986/6643838879*87403803^(18/19) 3178110000006293 a001 39088169/54018521*141422324^(9/13) 3178110000006293 a001 1548008755920/228826127*33385282^(2/9) 3178110000006293 a001 591286729879/33385282*12752043^(3/17) 3178110000006293 a001 31622993/70711162*87403803^(14/19) 3178110000006293 a001 4052739537881/599074578*33385282^(2/9) 3178110000006293 a001 1515744265389/224056801*33385282^(2/9) 3178110000006293 a001 2504730781961/141422324*33385282^(1/6) 3178110000006293 a001 6557470319842/969323029*33385282^(2/9) 3178110000006293 a001 956722026041/228826127*33385282^(1/4) 3178110000006293 a001 2504730781961/370248451*33385282^(2/9) 3178110000006293 a001 39088169/54018521*2537720636^(3/5) 3178110000006293 a001 944284833567073/2971215073 3178110000006293 a001 39088169/54018521*45537549124^(9/17) 3178110000006293 a001 39088169/54018521*817138163596^(9/19) 3178110000006293 a001 39088169/54018521*14662949395604^(3/7) 3178110000006293 a001 24157817/87403803*1322157322203^(1/2) 3178110000006293 a001 39088169/54018521*192900153618^(1/2) 3178110000006293 a001 39088169/54018521*10749957122^(9/16) 3178110000006293 a001 39088169/54018521*599074578^(9/14) 3178110000006293 a001 10983760033/29134601*33385282^(7/18) 3178110000006293 a001 2504730781961/599074578*33385282^(1/4) 3178110000006293 a001 6557470319842/1568397607*33385282^(1/4) 3178110000006293 a001 10610209857723/2537720636*33385282^(1/4) 3178110000006293 a001 4052739537881/969323029*33385282^(1/4) 3178110000006293 a001 591286729879/228826127*33385282^(5/18) 3178110000006293 a001 3536736619241/29134601*12752043^(1/17) 3178110000006293 a001 1548008755920/370248451*33385282^(1/4) 3178110000006293 a001 20365011074/87403803*33385282^(5/12) 3178110000006293 a001 86000486440/33281921*33385282^(5/18) 3178110000006293 a001 4052739537881/1568397607*33385282^(5/18) 3178110000006293 a001 3536736619241/1368706081*33385282^(5/18) 3178110000006293 a001 956722026041/141422324*33385282^(2/9) 3178110000006293 a001 3278735159921/1268860318*33385282^(5/18) 3178110000006293 a001 2504730781961/969323029*33385282^(5/18) 3178110000006293 a001 956722026041/370248451*33385282^(5/18) 3178110000006293 a001 12586269025/87403803*33385282^(4/9) 3178110000006293 a001 591286729879/141422324*33385282^(1/4) 3178110000006293 a001 225851433717/228826127*33385282^(1/3) 3178110000006293 a001 591286729879/599074578*33385282^(1/3) 3178110000006293 a001 24157817/2537720636*141422324^(12/13) 3178110000006293 a001 24157817/599074578*141422324^(11/13) 3178110000006293 a001 1548008755920/1568397607*33385282^(1/3) 3178110000006293 a001 4052739537881/4106118243*33385282^(1/3) 3178110000006293 a001 4807525989/4870846*33385282^(1/3) 3178110000006293 a001 6557470319842/6643838879*33385282^(1/3) 3178110000006293 a001 182717648081/70711162*33385282^(5/18) 3178110000006293 a001 2504730781961/2537720636*33385282^(1/3) 3178110000006294 a001 956722026041/969323029*33385282^(1/3) 3178110000006294 a001 365435296162/370248451*33385282^(1/3) 3178110000006294 a001 701408733/54018521*141422324^(7/13) 3178110000006294 a001 1602508992/29134601*33385282^(1/2) 3178110000006294 a001 165580141/54018521*141422324^(8/13) 3178110000006294 a001 2971215073/54018521*141422324^(6/13) 3178110000006294 a001 12586269025/54018521*141422324^(5/13) 3178110000006294 a001 102334155/54018521*2537720636^(5/9) 3178110000006294 a001 2472169789339635/7778742049 3178110000006294 a001 102334155/54018521*312119004989^(5/11) 3178110000006294 a001 24157817/228826127*9062201101803^(1/2) 3178110000006294 a001 102334155/54018521*3461452808002^(5/12) 3178110000006294 a001 102334155/54018521*28143753123^(1/2) 3178110000006294 a001 32951280099/54018521*141422324^(1/3) 3178110000006294 a001 53316291173/54018521*141422324^(4/13) 3178110000006294 a001 86267571272/228826127*33385282^(7/18) 3178110000006294 a001 225851433717/54018521*141422324^(3/13) 3178110000006294 a001 956722026041/54018521*141422324^(2/13) 3178110000006294 a001 102334155/54018521*228826127^(5/8) 3178110000006294 a001 4052739537881/54018521*141422324^(1/13) 3178110000006294 a001 24157817/599074578*2537720636^(11/15) 3178110000006294 a001 3236112267225916/10182505537 3178110000006294 a001 24157817/599074578*45537549124^(11/17) 3178110000006294 a001 24157817/599074578*312119004989^(3/5) 3178110000006294 a001 24157817/599074578*817138163596^(11/19) 3178110000006294 a001 24157817/599074578*14662949395604^(11/21) 3178110000006294 a001 24157817/599074578*192900153618^(11/18) 3178110000006294 a001 24157817/599074578*10749957122^(11/16) 3178110000006294 a001 267914296/54018521*4106118243^(1/2) 3178110000006294 a001 24157817/599074578*1568397607^(3/4) 3178110000006294 a001 24157817/599074578*599074578^(11/14) 3178110000006294 a001 24157817/1568397607*2537720636^(7/9) 3178110000006294 a001 701408733/54018521*2537720636^(7/15) 3178110000006294 a001 24157817/1568397607*17393796001^(5/7) 3178110000006294 a001 701408733/54018521*17393796001^(3/7) 3178110000006294 a001 701408733/54018521*45537549124^(7/17) 3178110000006294 a001 16944503814015861/53316291173 3178110000006294 a001 24157817/1568397607*312119004989^(7/11) 3178110000006294 a001 24157817/1568397607*14662949395604^(5/9) 3178110000006294 a001 24157817/1568397607*505019158607^(5/8) 3178110000006294 a001 701408733/54018521*192900153618^(7/18) 3178110000006294 a001 24157817/1568397607*28143753123^(7/10) 3178110000006294 a001 701408733/54018521*10749957122^(7/16) 3178110000006294 a001 24157817/45537549124*2537720636^(14/15) 3178110000006294 a001 24157817/10749957122*2537720636^(13/15) 3178110000006294 a001 24157817/17393796001*2537720636^(8/9) 3178110000006294 a001 44361286907595751/139583862445 3178110000006294 a001 1836311903/54018521*817138163596^(1/3) 3178110000006294 a001 12586269025/54018521*2537720636^(1/3) 3178110000006294 a001 53316291173/54018521*2537720636^(4/15) 3178110000006294 a001 2971215073/54018521*2537720636^(2/5) 3178110000006294 a001 139583862445/54018521*2537720636^(2/9) 3178110000006294 a001 225851433717/54018521*2537720636^(1/5) 3178110000006294 a001 956722026041/54018521*2537720636^(2/15) 3178110000006294 a001 1548008755920/54018521*2537720636^(1/9) 3178110000006294 a001 4052739537881/54018521*2537720636^(1/15) 3178110000006294 a001 24157817/10749957122*45537549124^(13/17) 3178110000006294 a001 4807526976/54018521*45537549124^(1/3) 3178110000006294 a001 24157817/10749957122*14662949395604^(13/21) 3178110000006294 a001 24157817/10749957122*192900153618^(13/18) 3178110000006294 a001 24157817/10749957122*73681302247^(3/4) 3178110000006294 a001 24157817/45537549124*17393796001^(6/7) 3178110000006294 a001 24157817/10749957122*10749957122^(13/16) 3178110000006294 a001 12586269025/54018521*45537549124^(5/17) 3178110000006294 a001 12586269025/54018521*312119004989^(3/11) 3178110000006294 a001 304056783818718425/956722026041 3178110000006294 a001 12586269025/54018521*14662949395604^(5/21) 3178110000006294 a001 12586269025/54018521*192900153618^(5/18) 3178110000006294 a001 12586269025/54018521*28143753123^(3/10) 3178110000006294 a001 591286729879/54018521*17393796001^(1/7) 3178110000006294 a001 20365011074/54018521*17393796001^(2/7) 3178110000006294 a001 24157817/192900153618*45537549124^(15/17) 3178110000006294 a001 24157817/817138163596*45537549124^(16/17) 3178110000006294 a001 796030994547383883/2504730781961 3178110000006294 a001 32951280099/54018521*73681302247^(1/4) 3178110000006294 a001 225851433717/54018521*45537549124^(3/17) 3178110000006294 a001 956722026041/54018521*45537549124^(2/17) 3178110000006294 a001 53316291173/54018521*45537549124^(4/17) 3178110000006294 a001 24157817/192900153618*312119004989^(9/11) 3178110000006294 a001 4052739537881/54018521*45537549124^(1/17) 3178110000006294 a001 61295182347748036/192866774113 3178110000006294 a001 24157817/192900153618*14662949395604^(5/7) 3178110000006294 a001 24157817/2139295485799*312119004989^(10/11) 3178110000006294 a001 24157817/192900153618*192900153618^(5/6) 3178110000006294 a001 1548008755920/54018521*312119004989^(1/11) 3178110000006294 a001 24157817/2139295485799*3461452808002^(5/6) 3178110000006294 a001 225851433717/54018521*192900153618^(1/6) 3178110000006294 a001 24157817/817138163596*14662949395604^(16/21) 3178110000006294 a001 139583862445/54018521*312119004989^(2/11) 3178110000006294 a001 3372041405099482565/10610209857723 3178110000006294 a001 2504730781961/54018521*73681302247^(1/13) 3178110000006294 a001 24157817/3461452808002*192900153618^(17/18) 3178110000006294 a001 365435296162/54018521*73681302247^(2/13) 3178110000006294 a001 24157817/119218851371*312119004989^(4/5) 3178110000006294 a001 53316291173/54018521*817138163596^(4/19) 3178110000006294 a001 1288005205276049341/4052739537881 3178110000006294 a001 53316291173/54018521*192900153618^(2/9) 3178110000006294 a001 24157817/45537549124*45537549124^(14/17) 3178110000006294 a001 53316291173/54018521*73681302247^(3/13) 3178110000006294 a001 1548008755920/54018521*28143753123^(1/10) 3178110000006294 a001 24157817/817138163596*73681302247^(12/13) 3178110000006294 a001 24157817/119218851371*73681302247^(11/13) 3178110000006294 a001 139583862445/54018521*28143753123^(1/5) 3178110000006294 a001 6557470319842/54018521*10749957122^(1/24) 3178110000006294 a001 24157817/45537549124*817138163596^(14/19) 3178110000006294 a001 20365011074/54018521*14662949395604^(2/9) 3178110000006294 a001 24157817/45537549124*505019158607^(3/4) 3178110000006294 a001 24157817/45537549124*192900153618^(7/9) 3178110000006294 a001 4052739537881/54018521*10749957122^(1/16) 3178110000006294 a001 2504730781961/54018521*10749957122^(1/12) 3178110000006294 a001 956722026041/54018521*10749957122^(1/8) 3178110000006294 a001 24157817/192900153618*28143753123^(9/10) 3178110000006294 a001 12586269025/54018521*10749957122^(5/16) 3178110000006294 a001 365435296162/54018521*10749957122^(1/6) 3178110000006294 a001 225851433717/54018521*10749957122^(3/16) 3178110000006294 a001 139583862445/54018521*10749957122^(5/24) 3178110000006294 a001 53316291173/54018521*10749957122^(1/4) 3178110000006294 a001 6557470319842/54018521*4106118243^(1/23) 3178110000006294 a001 20365011074/54018521*10749957122^(7/24) 3178110000006294 a001 24157817/17393796001*312119004989^(8/11) 3178110000006294 a001 187917426909947033/591286729879 3178110000006294 a001 7778742049/54018521*73681302247^(4/13) 3178110000006294 a001 24157817/17393796001*73681302247^(10/13) 3178110000006294 a001 24157817/17393796001*28143753123^(4/5) 3178110000006294 a001 2504730781961/54018521*4106118243^(2/23) 3178110000006294 a001 7778742049/54018521*10749957122^(1/3) 3178110000006294 a001 956722026041/54018521*4106118243^(3/23) 3178110000006294 a001 24157817/119218851371*10749957122^(11/12) 3178110000006294 a001 24157817/45537549124*10749957122^(7/8) 3178110000006294 a001 24157817/192900153618*10749957122^(15/16) 3178110000006294 a001 24157817/312119004989*10749957122^(23/24) 3178110000006294 a001 365435296162/54018521*4106118243^(4/23) 3178110000006294 a001 24157817/17393796001*10749957122^(5/6) 3178110000006294 a001 139583862445/54018521*4106118243^(5/23) 3178110000006294 a001 53316291173/54018521*4106118243^(6/23) 3178110000006294 a001 6557470319842/54018521*1568397607^(1/22) 3178110000006294 a001 20365011074/54018521*4106118243^(7/23) 3178110000006294 a001 2971215073/54018521*45537549124^(6/17) 3178110000006294 a001 24157817/6643838879*817138163596^(2/3) 3178110000006294 a001 71778070001175641/225851433717 3178110000006294 a001 2971215073/54018521*192900153618^(1/3) 3178110000006294 a001 7778742049/54018521*4106118243^(8/23) 3178110000006294 a001 2971215073/54018521*10749957122^(3/8) 3178110000006294 a001 24157817/6643838879*10749957122^(19/24) 3178110000006294 a001 24157817/2537720636*2537720636^(4/5) 3178110000006294 a001 2504730781961/54018521*1568397607^(1/11) 3178110000006294 a001 2971215073/54018521*4106118243^(9/23) 3178110000006294 a001 24157817/45537549124*4106118243^(21/23) 3178110000006294 a001 24157817/17393796001*4106118243^(20/23) 3178110000006294 a001 956722026041/54018521*1568397607^(3/22) 3178110000006294 a001 24157817/119218851371*4106118243^(22/23) 3178110000006294 a001 24157817/6643838879*4106118243^(19/23) 3178110000006294 a001 365435296162/54018521*1568397607^(2/11) 3178110000006294 a001 1134903170/54018521*2537720636^(4/9) 3178110000006294 a001 139583862445/54018521*1568397607^(5/22) 3178110000006294 a001 86267571272/54018521*1568397607^(1/4) 3178110000006294 a001 53316291173/54018521*1568397607^(3/11) 3178110000006294 a001 20365011074/54018521*1568397607^(7/22) 3178110000006294 a001 6557470319842/54018521*599074578^(1/21) 3178110000006294 a001 7778742049/54018521*1568397607^(4/11) 3178110000006294 a001 24157817/2537720636*45537549124^(12/17) 3178110000006294 a001 24157817/2537720636*14662949395604^(4/7) 3178110000006294 a001 1134903170/54018521*23725150497407^(5/16) 3178110000006294 a001 1134903170/54018521*505019158607^(5/14) 3178110000006294 a001 24157817/2537720636*192900153618^(2/3) 3178110000006294 a001 806375973340585/2537281508 3178110000006294 a001 1134903170/54018521*73681302247^(5/13) 3178110000006294 a001 24157817/2537720636*73681302247^(9/13) 3178110000006294 a001 1134903170/54018521*28143753123^(2/5) 3178110000006294 a001 1134903170/54018521*10749957122^(5/12) 3178110000006294 a001 24157817/2537720636*10749957122^(3/4) 3178110000006294 a001 1134903170/54018521*4106118243^(10/23) 3178110000006294 a001 2971215073/54018521*1568397607^(9/22) 3178110000006294 a001 4052739537881/54018521*599074578^(1/14) 3178110000006294 a001 24157817/2537720636*4106118243^(18/23) 3178110000006294 a001 2504730781961/54018521*599074578^(2/21) 3178110000006294 a001 1134903170/54018521*1568397607^(5/11) 3178110000006294 a001 24157817/17393796001*1568397607^(10/11) 3178110000006294 a001 24157817/6643838879*1568397607^(19/22) 3178110000006294 a001 24157817/45537549124*1568397607^(21/22) 3178110000006294 a001 956722026041/54018521*599074578^(1/7) 3178110000006294 a001 591286729879/54018521*599074578^(1/6) 3178110000006294 a001 24157817/2537720636*1568397607^(9/11) 3178110000006294 a001 365435296162/54018521*599074578^(4/21) 3178110000006294 a001 225851433717/54018521*599074578^(3/14) 3178110000006294 a001 139583862445/54018521*599074578^(5/21) 3178110000006294 a001 53316291173/54018521*599074578^(2/7) 3178110000006294 a001 20365011074/54018521*599074578^(1/3) 3178110000006294 a001 6557470319842/54018521*228826127^(1/20) 3178110000006294 a001 701408733/54018521*599074578^(1/2) 3178110000006294 a001 12586269025/54018521*599074578^(5/14) 3178110000006294 a001 24157817/969323029*45537549124^(2/3) 3178110000006294 a001 433494437/54018521*312119004989^(2/5) 3178110000006294 a001 10472279279564029/32951280099 3178110000006294 a001 7778742049/54018521*599074578^(8/21) 3178110000006294 a001 433494437/54018521*10749957122^(11/24) 3178110000006294 a001 24157817/969323029*10749957122^(17/24) 3178110000006294 a001 433494437/54018521*4106118243^(11/23) 3178110000006294 a001 24157817/969323029*4106118243^(17/23) 3178110000006294 a001 2971215073/54018521*599074578^(3/7) 3178110000006294 a001 433494437/54018521*1568397607^(1/2) 3178110000006294 a001 24157817/969323029*1568397607^(17/22) 3178110000006294 a001 1134903170/54018521*599074578^(10/21) 3178110000006294 a001 2504730781961/54018521*228826127^(1/10) 3178110000006294 a001 24157817/1568397607*599074578^(5/6) 3178110000006294 a001 1548008755920/54018521*228826127^(1/8) 3178110000006294 a001 433494437/54018521*599074578^(11/21) 3178110000006294 a001 24157817/2537720636*599074578^(6/7) 3178110000006294 a001 24157817/6643838879*599074578^(19/21) 3178110000006294 a001 24157817/10749957122*599074578^(13/14) 3178110000006294 a001 24157817/17393796001*599074578^(20/21) 3178110000006294 a001 956722026041/54018521*228826127^(3/20) 3178110000006294 a001 24157817/969323029*599074578^(17/21) 3178110000006294 a001 267913919/710646*33385282^(7/18) 3178110000006294 a001 365435296162/54018521*228826127^(1/5) 3178110000006294 a001 139583862445/54018521*228826127^(1/4) 3178110000006294 a001 53316291173/54018521*228826127^(3/10) 3178110000006294 a001 591286729879/1568397607*33385282^(7/18) 3178110000006294 a001 516002918640/1368706081*33385282^(7/18) 3178110000006294 a001 4052739537881/10749957122*33385282^(7/18) 3178110000006294 a001 3536736619241/9381251041*33385282^(7/18) 3178110000006294 a001 6557470319842/17393796001*33385282^(7/18) 3178110000006294 a001 2504730781961/6643838879*33385282^(7/18) 3178110000006294 a001 139583862445/141422324*33385282^(1/3) 3178110000006294 a001 956722026041/2537720636*33385282^(7/18) 3178110000006294 a001 20365011074/54018521*228826127^(7/20) 3178110000006294 a001 6557470319842/54018521*87403803^(1/19) 3178110000006294 a001 12586269025/54018521*228826127^(3/8) 3178110000006294 a001 165580141/54018521*2537720636^(8/15) 3178110000006294 a001 365435296162/969323029*33385282^(7/18) 3178110000006294 a001 165580141/54018521*45537549124^(8/17) 3178110000006294 a001 165580141/54018521*14662949395604^(8/21) 3178110000006294 a001 24157817/370248451*23725150497407^(1/2) 3178110000006294 a001 24157817/370248451*505019158607^(4/7) 3178110000006294 a001 165580141/54018521*192900153618^(4/9) 3178110000006294 a001 165580141/54018521*73681302247^(6/13) 3178110000006294 a001 24157817/370248451*73681302247^(8/13) 3178110000006294 a001 4000054745112197/12586269025 3178110000006294 a001 165580141/54018521*10749957122^(1/2) 3178110000006294 a001 24157817/370248451*10749957122^(2/3) 3178110000006294 a001 165580141/54018521*4106118243^(12/23) 3178110000006294 a001 24157817/370248451*4106118243^(16/23) 3178110000006294 a001 165580141/54018521*1568397607^(6/11) 3178110000006294 a001 24157817/370248451*1568397607^(8/11) 3178110000006294 a001 7778742049/54018521*228826127^(2/5) 3178110000006294 a001 2971215073/54018521*228826127^(9/20) 3178110000006294 a001 165580141/54018521*599074578^(4/7) 3178110000006294 a001 24157817/370248451*599074578^(16/21) 3178110000006294 a001 1134903170/54018521*228826127^(1/2) 3178110000006294 a001 24157817/141422324*141422324^(10/13) 3178110000006294 a001 433494437/54018521*228826127^(11/20) 3178110000006294 a001 53316291173/228826127*33385282^(5/12) 3178110000006294 a001 139583862445/370248451*33385282^(7/18) 3178110000006294 a001 2504730781961/54018521*87403803^(2/19) 3178110000006294 a001 24157817/1568397607*228826127^(7/8) 3178110000006294 a001 63245986/54018521*141422324^(2/3) 3178110000006294 a001 24157817/969323029*228826127^(17/20) 3178110000006294 a001 24157817/2537720636*228826127^(9/10) 3178110000006294 a001 24157817/6643838879*228826127^(19/20) 3178110000006294 a001 165580141/54018521*228826127^(3/5) 3178110000006294 a001 956722026041/54018521*87403803^(3/19) 3178110000006294 a001 24157817/370248451*228826127^(4/5) 3178110000006294 a001 1836311903/87403803*33385282^(5/9) 3178110000006294 a001 365435296162/54018521*87403803^(4/19) 3178110000006294 a001 139583862445/599074578*33385282^(5/12) 3178110000006294 a001 365435296162/1568397607*33385282^(5/12) 3178110000006294 a001 956722026041/4106118243*33385282^(5/12) 3178110000006294 a001 2504730781961/10749957122*33385282^(5/12) 3178110000006294 a001 6557470319842/28143753123*33385282^(5/12) 3178110000006294 a001 10610209857723/45537549124*33385282^(5/12) 3178110000006294 a001 4052739537881/17393796001*33385282^(5/12) 3178110000006294 a001 1548008755920/6643838879*33385282^(5/12) 3178110000006294 a001 591286729879/2537720636*33385282^(5/12) 3178110000006294 a001 225851433717/969323029*33385282^(5/12) 3178110000006294 a001 139583862445/54018521*87403803^(5/19) 3178110000006294 a001 32951280099/228826127*33385282^(4/9) 3178110000006294 a001 86267571272/370248451*33385282^(5/12) 3178110000006294 a001 53316291173/54018521*87403803^(6/19) 3178110000006294 a001 20365011074/54018521*87403803^(7/19) 3178110000006294 a001 6557470319842/54018521*33385282^(1/18) 3178110000006294 a001 24157817/141422324*2537720636^(2/3) 3178110000006294 a001 1134903170/87403803*33385282^(7/12) 3178110000006294 a001 24157817/141422324*45537549124^(10/17) 3178110000006294 a001 24157817/141422324*312119004989^(6/11) 3178110000006294 a001 24157817/141422324*14662949395604^(10/21) 3178110000006294 a001 24157817/141422324*192900153618^(5/9) 3178110000006294 a001 63245986/54018521*73681302247^(1/2) 3178110000006294 a001 24157817/141422324*28143753123^(3/5) 3178110000006294 a001 63245986/54018521*10749957122^(13/24) 3178110000006294 a001 24157817/141422324*10749957122^(5/8) 3178110000006294 a001 763942477886281/2403763488 3178110000006294 a001 63245986/54018521*4106118243^(13/23) 3178110000006294 a001 24157817/141422324*4106118243^(15/23) 3178110000006294 a001 63245986/54018521*1568397607^(13/22) 3178110000006294 a001 24157817/141422324*1568397607^(15/22) 3178110000006294 a001 63245986/54018521*599074578^(13/21) 3178110000006294 a001 24157817/141422324*599074578^(5/7) 3178110000006294 a001 43133785636/299537289*33385282^(4/9) 3178110000006294 a001 7778742049/54018521*87403803^(8/19) 3178110000006294 a001 32264490531/224056801*33385282^(4/9) 3178110000006294 a001 591286729879/4106118243*33385282^(4/9) 3178110000006294 a001 774004377960/5374978561*33385282^(4/9) 3178110000006294 a001 4052739537881/28143753123*33385282^(4/9) 3178110000006294 a001 1515744265389/10525900321*33385282^(4/9) 3178110000006294 a001 3278735159921/22768774562*33385282^(4/9) 3178110000006294 a001 2504730781961/17393796001*33385282^(4/9) 3178110000006294 a001 956722026041/6643838879*33385282^(4/9) 3178110000006294 a001 53316291173/141422324*33385282^(7/18) 3178110000006294 a001 182717648081/1268860318*33385282^(4/9) 3178110000006294 a001 139583862445/969323029*33385282^(4/9) 3178110000006294 a001 2971215073/54018521*87403803^(9/19) 3178110000006294 a001 63245986/54018521*228826127^(13/20) 3178110000006294 a001 53316291173/370248451*33385282^(4/9) 3178110000006294 a001 24157817/141422324*228826127^(3/4) 3178110000006294 a001 1836311903/54018521*87403803^(1/2) 3178110000006294 a001 1134903170/54018521*87403803^(10/19) 3178110000006294 a001 233802911/29134601*33385282^(11/18) 3178110000006294 a001 4052739537881/54018521*33385282^(1/12) 3178110000006294 a001 433494437/54018521*87403803^(11/19) 3178110000006294 a001 63246219/271444*33385282^(5/12) 3178110000006294 a001 12586269025/228826127*33385282^(1/2) 3178110000006294 a001 165580141/54018521*87403803^(12/19) 3178110000006294 a001 39088169/87403803*33385282^(7/9) 3178110000006294 a001 2504730781961/54018521*33385282^(1/9) 3178110000006294 a001 10983760033/199691526*33385282^(1/2) 3178110000006294 a001 86267571272/1568397607*33385282^(1/2) 3178110000006294 a001 75283811239/1368706081*33385282^(1/2) 3178110000006294 a001 591286729879/10749957122*33385282^(1/2) 3178110000006294 a001 12585437040/228811001*33385282^(1/2) 3178110000006294 a001 4052739537881/73681302247*33385282^(1/2) 3178110000006294 a001 3536736619241/64300051206*33385282^(1/2) 3178110000006294 a001 6557470319842/119218851371*33385282^(1/2) 3178110000006294 a001 2504730781961/45537549124*33385282^(1/2) 3178110000006294 a001 956722026041/17393796001*33385282^(1/2) 3178110000006294 a001 365435296162/6643838879*33385282^(1/2) 3178110000006294 a001 10182505537/70711162*33385282^(4/9) 3178110000006294 a001 139583862445/2537720636*33385282^(1/2) 3178110000006294 a001 53316291173/969323029*33385282^(1/2) 3178110000006294 a001 20365011074/370248451*33385282^(1/2) 3178110000006294 a001 24157817/370248451*87403803^(16/19) 3178110000006294 a001 24157817/969323029*87403803^(17/19) 3178110000006294 a001 267914296/87403803*33385282^(2/3) 3178110000006294 a001 24157817/2537720636*87403803^(18/19) 3178110000006294 a001 102287808/4868641*33385282^(5/9) 3178110000006294 a001 63245986/54018521*87403803^(13/19) 3178110000006294 a001 956722026041/54018521*33385282^(1/6) 3178110000006294 a001 12586269025/599074578*33385282^(5/9) 3178110000006294 a001 24157817/141422324*87403803^(15/19) 3178110000006294 a001 34111385/29134601*33385282^(13/18) 3178110000006294 a001 32951280099/1568397607*33385282^(5/9) 3178110000006294 a001 86267571272/4106118243*33385282^(5/9) 3178110000006294 a001 225851433717/10749957122*33385282^(5/9) 3178110000006294 a001 591286729879/28143753123*33385282^(5/9) 3178110000006294 a001 1548008755920/73681302247*33385282^(5/9) 3178110000006294 a001 4052739537881/192900153618*33385282^(5/9) 3178110000006294 a001 225749145909/10745088481*33385282^(5/9) 3178110000006294 a001 6557470319842/312119004989*33385282^(5/9) 3178110000006294 a001 2504730781961/119218851371*33385282^(5/9) 3178110000006294 a001 956722026041/45537549124*33385282^(5/9) 3178110000006294 a001 365435296162/17393796001*33385282^(5/9) 3178110000006294 a001 139583862445/6643838879*33385282^(5/9) 3178110000006294 a001 53316291173/2537720636*33385282^(5/9) 3178110000006294 a001 7778742049/141422324*33385282^(1/2) 3178110000006294 a001 20365011074/969323029*33385282^(5/9) 3178110000006294 a001 2971215073/228826127*33385282^(7/12) 3178110000006294 a001 7778742049/370248451*33385282^(5/9) 3178110000006294 a001 7778742049/599074578*33385282^(7/12) 3178110000006294 a001 20365011074/1568397607*33385282^(7/12) 3178110000006294 a001 53316291173/4106118243*33385282^(7/12) 3178110000006294 a001 139583862445/10749957122*33385282^(7/12) 3178110000006294 a001 365435296162/28143753123*33385282^(7/12) 3178110000006294 a001 956722026041/73681302247*33385282^(7/12) 3178110000006294 a001 2504730781961/192900153618*33385282^(7/12) 3178110000006294 a001 10610209857723/817138163596*33385282^(7/12) 3178110000006294 a001 4052739537881/312119004989*33385282^(7/12) 3178110000006294 a001 1548008755920/119218851371*33385282^(7/12) 3178110000006294 a001 591286729879/45537549124*33385282^(7/12) 3178110000006294 a001 7787980473/599786069*33385282^(7/12) 3178110000006294 a001 86267571272/6643838879*33385282^(7/12) 3178110000006294 a001 32951280099/2537720636*33385282^(7/12) 3178110000006294 a001 12586269025/969323029*33385282^(7/12) 3178110000006294 a001 1836311903/228826127*33385282^(11/18) 3178110000006294 a001 4807526976/370248451*33385282^(7/12) 3178110000006294 a001 39088169/20633239*20633239^(5/7) 3178110000006294 a001 365435296162/54018521*33385282^(2/9) 3178110000006294 a001 267084832/33281921*33385282^(11/18) 3178110000006294 a001 12586269025/1568397607*33385282^(11/18) 3178110000006294 a001 10983760033/1368706081*33385282^(11/18) 3178110000006294 a001 43133785636/5374978561*33385282^(11/18) 3178110000006294 a001 75283811239/9381251041*33385282^(11/18) 3178110000006294 a001 591286729879/73681302247*33385282^(11/18) 3178110000006294 a001 86000486440/10716675201*33385282^(11/18) 3178110000006294 a001 4052739537881/505019158607*33385282^(11/18) 3178110000006294 a001 3536736619241/440719107401*33385282^(11/18) 3178110000006294 a001 3278735159921/408569081798*33385282^(11/18) 3178110000006294 a001 2504730781961/312119004989*33385282^(11/18) 3178110000006294 a001 956722026041/119218851371*33385282^(11/18) 3178110000006294 a001 182717648081/22768774562*33385282^(11/18) 3178110000006294 a001 139583862445/17393796001*33385282^(11/18) 3178110000006294 a001 53316291173/6643838879*33385282^(11/18) 3178110000006294 a001 10182505537/1268860318*33385282^(11/18) 3178110000006294 a001 2971215073/141422324*33385282^(5/9) 3178110000006294 a001 7778742049/969323029*33385282^(11/18) 3178110000006294 a001 32264490531/4769326*12752043^(4/17) 3178110000006294 a001 2971215073/370248451*33385282^(11/18) 3178110000006294 a001 225851433717/54018521*33385282^(1/4) 3178110000006294 a001 1836311903/141422324*33385282^(7/12) 3178110000006294 a001 701408733/228826127*33385282^(2/3) 3178110000006294 a001 139583862445/54018521*33385282^(5/18) 3178110000006294 a001 63245986/87403803*33385282^(3/4) 3178110000006294 a001 4052739537881/87403803*12752043^(2/17) 3178110000006294 a001 1836311903/599074578*33385282^(2/3) 3178110000006294 a001 39088169/228826127*33385282^(5/6) 3178110000006294 a001 686789568/224056801*33385282^(2/3) 3178110000006294 a001 12586269025/4106118243*33385282^(2/3) 3178110000006294 a001 32951280099/10749957122*33385282^(2/3) 3178110000006294 a001 86267571272/28143753123*33385282^(2/3) 3178110000006294 a001 32264490531/10525900321*33385282^(2/3) 3178110000006294 a001 591286729879/192900153618*33385282^(2/3) 3178110000006294 a001 1548008755920/505019158607*33385282^(2/3) 3178110000006294 a001 1515744265389/494493258286*33385282^(2/3) 3178110000006294 a001 2504730781961/817138163596*33385282^(2/3) 3178110000006294 a001 956722026041/312119004989*33385282^(2/3) 3178110000006294 a001 365435296162/119218851371*33385282^(2/3) 3178110000006294 a001 139583862445/45537549124*33385282^(2/3) 3178110000006294 a001 53316291173/17393796001*33385282^(2/3) 3178110000006294 a001 20365011074/6643838879*33385282^(2/3) 3178110000006294 a001 7778742049/2537720636*33385282^(2/3) 3178110000006294 a001 567451585/70711162*33385282^(11/18) 3178110000006294 a001 2971215073/969323029*33385282^(2/3) 3178110000006294 a001 1134903170/370248451*33385282^(2/3) 3178110000006295 a001 267914296/228826127*33385282^(13/18) 3178110000006295 a001 53316291173/54018521*33385282^(1/3) 3178110000006295 a001 233802911/199691526*33385282^(13/18) 3178110000006295 a001 1836311903/1568397607*33385282^(13/18) 3178110000006295 a001 1602508992/1368706081*33385282^(13/18) 3178110000006295 a001 12586269025/10749957122*33385282^(13/18) 3178110000006295 a001 10983760033/9381251041*33385282^(13/18) 3178110000006295 a001 86267571272/73681302247*33385282^(13/18) 3178110000006295 a001 75283811239/64300051206*33385282^(13/18) 3178110000006295 a001 2504730781961/2139295485799*33385282^(13/18) 3178110000006295 a001 365435296162/312119004989*33385282^(13/18) 3178110000006295 a001 139583862445/119218851371*33385282^(13/18) 3178110000006295 a001 53316291173/45537549124*33385282^(13/18) 3178110000006295 a001 20365011074/17393796001*33385282^(13/18) 3178110000006295 a001 7778742049/6643838879*33385282^(13/18) 3178110000006295 a001 2971215073/2537720636*33385282^(13/18) 3178110000006295 a001 433494437/141422324*33385282^(2/3) 3178110000006295 a001 1134903170/969323029*33385282^(13/18) 3178110000006295 a001 433494437/370248451*33385282^(13/18) 3178110000006295 a001 102334155/228826127*33385282^(7/9) 3178110000006295 a001 165580141/228826127*33385282^(3/4) 3178110000006295 a001 39088169/599074578*33385282^(8/9) 3178110000006295 a001 433494437/599074578*33385282^(3/4) 3178110000006295 a001 1134903170/1568397607*33385282^(3/4) 3178110000006295 a001 2971215073/4106118243*33385282^(3/4) 3178110000006295 a001 7778742049/10749957122*33385282^(3/4) 3178110000006295 a001 20365011074/28143753123*33385282^(3/4) 3178110000006295 a001 53316291173/73681302247*33385282^(3/4) 3178110000006295 a001 139583862445/192900153618*33385282^(3/4) 3178110000006295 a001 365435296162/505019158607*33385282^(3/4) 3178110000006295 a001 10610209857723/14662949395604*33385282^(3/4) 3178110000006295 a001 225851433717/312119004989*33385282^(3/4) 3178110000006295 a001 86267571272/119218851371*33385282^(3/4) 3178110000006295 a001 32951280099/45537549124*33385282^(3/4) 3178110000006295 a001 12586269025/17393796001*33385282^(3/4) 3178110000006295 a001 4807526976/6643838879*33385282^(3/4) 3178110000006295 a001 1836311903/2537720636*33385282^(3/4) 3178110000006295 a001 701408733/969323029*33385282^(3/4) 3178110000006295 a001 267914296/370248451*33385282^(3/4) 3178110000006295 a001 9227465/54018521*20633239^(6/7) 3178110000006295 a001 24157817/54018521*17393796001^(4/7) 3178110000006295 a001 24157817/54018521*14662949395604^(4/9) 3178110000006295 a001 24157817/54018521*73681302247^(7/13) 3178110000006295 a001 24157817/54018521*10749957122^(7/12) 3178110000006295 a001 24157817/54018521*4106118243^(14/23) 3178110000006295 a001 583600122205489/1836311903 3178110000006295 a001 24157817/54018521*1568397607^(7/11) 3178110000006295 a001 24157817/54018521*599074578^(2/3) 3178110000006295 a001 20365011074/54018521*33385282^(7/18) 3178110000006295 a001 133957148/299537289*33385282^(7/9) 3178110000006295 a001 39088169/969323029*33385282^(11/12) 3178110000006295 a001 701408733/1568397607*33385282^(7/9) 3178110000006295 a001 1836311903/4106118243*33385282^(7/9) 3178110000006295 a001 2403763488/5374978561*33385282^(7/9) 3178110000006295 a001 12586269025/28143753123*33385282^(7/9) 3178110000006295 a001 32951280099/73681302247*33385282^(7/9) 3178110000006295 a001 43133785636/96450076809*33385282^(7/9) 3178110000006295 a001 225851433717/505019158607*33385282^(7/9) 3178110000006295 a001 591286729879/1322157322203*33385282^(7/9) 3178110000006295 a001 10610209857723/23725150497407*33385282^(7/9) 3178110000006295 a001 139583862445/312119004989*33385282^(7/9) 3178110000006295 a001 53316291173/119218851371*33385282^(7/9) 3178110000006295 a001 10182505537/22768774562*33385282^(7/9) 3178110000006295 a001 7778742049/17393796001*33385282^(7/9) 3178110000006295 a001 2971215073/6643838879*33385282^(7/9) 3178110000006295 a001 567451585/1268860318*33385282^(7/9) 3178110000006295 a001 24157817/54018521*228826127^(7/10) 3178110000006295 a001 433494437/969323029*33385282^(7/9) 3178110000006295 a001 102334155/141422324*33385282^(3/4) 3178110000006295 a001 225749145909/4868641*12752043^(2/17) 3178110000006295 a001 6557470319842/54018521*12752043^(1/17) 3178110000006295 a001 165580141/141422324*33385282^(13/18) 3178110000006295 a001 165580141/370248451*33385282^(7/9) 3178110000006295 a001 39088169/1568397607*33385282^(17/18) 3178110000006295 a001 12586269025/54018521*33385282^(5/12) 3178110000006295 a001 34111385/199691526*33385282^(5/6) 3178110000006295 a001 7778742049/54018521*33385282^(4/9) 3178110000006295 a001 267914296/1568397607*33385282^(5/6) 3178110000006295 a001 233802911/1368706081*33385282^(5/6) 3178110000006295 a001 1836311903/10749957122*33385282^(5/6) 3178110000006295 a001 1602508992/9381251041*33385282^(5/6) 3178110000006295 a001 12586269025/73681302247*33385282^(5/6) 3178110000006295 a001 10983760033/64300051206*33385282^(5/6) 3178110000006295 a001 86267571272/505019158607*33385282^(5/6) 3178110000006295 a001 75283811239/440719107401*33385282^(5/6) 3178110000006295 a001 2504730781961/14662949395604*33385282^(5/6) 3178110000006295 a001 139583862445/817138163596*33385282^(5/6) 3178110000006295 a001 53316291173/312119004989*33385282^(5/6) 3178110000006295 a001 20365011074/119218851371*33385282^(5/6) 3178110000006295 a001 7778742049/45537549124*33385282^(5/6) 3178110000006295 a001 2971215073/17393796001*33385282^(5/6) 3178110000006295 a001 1134903170/6643838879*33385282^(5/6) 3178110000006295 a001 433494437/2537720636*33385282^(5/6) 3178110000006295 a001 165580141/969323029*33385282^(5/6) 3178110000006295 a001 3278735159921/70711162*12752043^(2/17) 3178110000006295 a001 14619165/224056801*33385282^(8/9) 3178110000006295 a001 24157817/54018521*87403803^(14/19) 3178110000006295 a001 2971215073/54018521*33385282^(1/2) 3178110000006295 a001 267914296/4106118243*33385282^(8/9) 3178110000006295 a001 701408733/10749957122*33385282^(8/9) 3178110000006295 a001 1836311903/28143753123*33385282^(8/9) 3178110000006295 a001 686789568/10525900321*33385282^(8/9) 3178110000006295 a001 12586269025/192900153618*33385282^(8/9) 3178110000006295 a001 32951280099/505019158607*33385282^(8/9) 3178110000006295 a001 86267571272/1322157322203*33385282^(8/9) 3178110000006295 a001 32264490531/494493258286*33385282^(8/9) 3178110000006295 a001 591286729879/9062201101803*33385282^(8/9) 3178110000006295 a001 1548008755920/23725150497407*33385282^(8/9) 3178110000006295 a001 139583862445/2139295485799*33385282^(8/9) 3178110000006295 a001 53316291173/817138163596*33385282^(8/9) 3178110000006295 a001 20365011074/312119004989*33385282^(8/9) 3178110000006295 a001 7778742049/119218851371*33385282^(8/9) 3178110000006295 a001 2971215073/45537549124*33385282^(8/9) 3178110000006295 a001 1134903170/17393796001*33385282^(8/9) 3178110000006295 a001 31622993/70711162*33385282^(7/9) 3178110000006295 a001 433494437/6643838879*33385282^(8/9) 3178110000006295 a001 9303105/230701876*33385282^(11/12) 3178110000006295 a001 63245986/370248451*33385282^(5/6) 3178110000006295 a001 165580141/2537720636*33385282^(8/9) 3178110000006295 a001 267914296/6643838879*33385282^(11/12) 3178110000006295 a001 701408733/17393796001*33385282^(11/12) 3178110000006295 a001 1836311903/45537549124*33385282^(11/12) 3178110000006295 a001 4807526976/119218851371*33385282^(11/12) 3178110000006295 a001 1144206275/28374454999*33385282^(11/12) 3178110000006295 a001 32951280099/817138163596*33385282^(11/12) 3178110000006295 a001 86267571272/2139295485799*33385282^(11/12) 3178110000006295 a001 225851433717/5600748293801*33385282^(11/12) 3178110000006295 a001 591286729879/14662949395604*33385282^(11/12) 3178110000006295 a001 365435296162/9062201101803*33385282^(11/12) 3178110000006295 a001 139583862445/3461452808002*33385282^(11/12) 3178110000006295 a001 53316291173/1322157322203*33385282^(11/12) 3178110000006295 a001 20365011074/505019158607*33385282^(11/12) 3178110000006295 a001 7778742049/192900153618*33385282^(11/12) 3178110000006295 a001 2971215073/73681302247*33385282^(11/12) 3178110000006295 a001 1134903170/28143753123*33385282^(11/12) 3178110000006295 a001 433494437/10749957122*33385282^(11/12) 3178110000006295 a001 34111385/1368706081*33385282^(17/18) 3178110000006295 a001 165580141/4106118243*33385282^(11/12) 3178110000006295 a001 1134903170/54018521*33385282^(5/9) 3178110000006295 a001 133957148/5374978561*33385282^(17/18) 3178110000006295 a001 233802911/9381251041*33385282^(17/18) 3178110000006295 a001 1836311903/73681302247*33385282^(17/18) 3178110000006295 a001 267084832/10716675201*33385282^(17/18) 3178110000006295 a001 12586269025/505019158607*33385282^(17/18) 3178110000006295 a001 10983760033/440719107401*33385282^(17/18) 3178110000006295 a001 43133785636/1730726404001*33385282^(17/18) 3178110000006295 a001 75283811239/3020733700601*33385282^(17/18) 3178110000006295 a001 182717648081/7331474697802*33385282^(17/18) 3178110000006295 a001 139583862445/5600748293801*33385282^(17/18) 3178110000006295 a001 53316291173/2139295485799*33385282^(17/18) 3178110000006295 a001 10182505537/408569081798*33385282^(17/18) 3178110000006295 a001 7778742049/312119004989*33385282^(17/18) 3178110000006295 a001 2971215073/119218851371*33385282^(17/18) 3178110000006295 a001 567451585/22768774562*33385282^(17/18) 3178110000006295 a001 433494437/17393796001*33385282^(17/18) 3178110000006295 a001 63245986/969323029*33385282^(8/9) 3178110000006295 a001 165580141/6643838879*33385282^(17/18) 3178110000006295 a001 701408733/54018521*33385282^(7/12) 3178110000006295 a001 63245986/1568397607*33385282^(11/12) 3178110000006295 a001 39088169/54018521*33385282^(3/4) 3178110000006295 a001 140728068720/1875749*7881196^(1/11) 3178110000006295 a001 433494437/54018521*33385282^(11/18) 3178110000006295 a001 1/7465176*(1/2+1/2*5^(1/2))^64 3178110000006295 a001 31622993/1268860318*33385282^(17/18) 3178110000006295 a001 43133785636/16692641*12752043^(5/17) 3178110000006296 a001 9238424/711491*20633239^(3/5) 3178110000006296 a001 165580141/54018521*33385282^(2/3) 3178110000006296 a001 516002918640/29134601*12752043^(3/17) 3178110000006296 a001 433494437/20633239*20633239^(4/7) 3178110000006296 a001 63245986/54018521*33385282^(13/18) 3178110000006296 a001 4052739537881/228826127*12752043^(3/17) 3178110000006296 a001 2504730781961/54018521*12752043^(2/17) 3178110000006296 a001 3536736619241/199691526*12752043^(3/17) 3178110000006296 a001 6557470319842/370248451*12752043^(3/17) 3178110000006296 a001 2504730781961/141422324*12752043^(3/17) 3178110000006296 a001 24157817/141422324*33385282^(5/6) 3178110000006296 a001 24157817/370248451*33385282^(8/9) 3178110000006296 a001 24157817/599074578*33385282^(11/12) 3178110000006296 a001 24157817/969323029*33385282^(17/18) 3178110000006297 a001 32951280099/33385282*12752043^(6/17) 3178110000006297 a001 591286729879/87403803*12752043^(4/17) 3178110000006297 a001 4807526976/20633239*20633239^(3/7) 3178110000006297 a001 24157817/54018521*33385282^(7/9) 3178110000006297 a001 7778742049/20633239*20633239^(2/5) 3178110000006297 a001 14930352/20633239*141422324^(9/13) 3178110000006297 a001 1548008755920/228826127*12752043^(4/17) 3178110000006297 a001 956722026041/54018521*12752043^(3/17) 3178110000006297 a001 4052739537881/599074578*12752043^(4/17) 3178110000006297 a001 1515744265389/224056801*12752043^(4/17) 3178110000006297 a001 6557470319842/969323029*12752043^(4/17) 3178110000006297 a001 137769300517680/433494437 3178110000006297 a001 14930352/20633239*2537720636^(3/5) 3178110000006297 a001 14930352/20633239*45537549124^(9/17) 3178110000006297 a001 14930352/20633239*817138163596^(9/19) 3178110000006297 a001 14930352/20633239*14662949395604^(3/7) 3178110000006297 a001 9227465/33385282*(1/2+1/2*5^(1/2))^29 3178110000006297 a001 14930352/20633239*(1/2+1/2*5^(1/2))^27 3178110000006297 a001 14930352/20633239*192900153618^(1/2) 3178110000006297 a001 14930352/20633239*10749957122^(9/16) 3178110000006297 a001 14930352/20633239*599074578^(9/14) 3178110000006297 a001 2504730781961/370248451*12752043^(4/17) 3178110000006297 a001 956722026041/141422324*12752043^(4/17) 3178110000006298 a001 12586269025/33385282*12752043^(7/17) 3178110000006298 a001 75283811239/29134601*12752043^(5/17) 3178110000006298 a001 53316291173/20633239*20633239^(2/7) 3178110000006298 a001 4052739537881/33385282*4870847^(1/16) 3178110000006298 a001 75283811239/4250681*4870847^(3/16) 3178110000006298 a001 591286729879/228826127*12752043^(5/17) 3178110000006298 a001 365435296162/54018521*12752043^(4/17) 3178110000006298 a001 86000486440/33281921*12752043^(5/17) 3178110000006298 a001 4052739537881/1568397607*12752043^(5/17) 3178110000006298 a001 3536736619241/1368706081*12752043^(5/17) 3178110000006298 a001 3278735159921/1268860318*12752043^(5/17) 3178110000006298 a001 2504730781961/969323029*12752043^(5/17) 3178110000006298 a001 956722026041/370248451*12752043^(5/17) 3178110000006298 a001 182717648081/70711162*12752043^(5/17) 3178110000006299 a001 7787980473/711491*20633239^(1/5) 3178110000006299 a001 14930208/103681*12752043^(8/17) 3178110000006299 a001 591286729879/20633239*20633239^(1/7) 3178110000006299 a001 86267571272/87403803*12752043^(6/17) 3178110000006299 a001 14930352/20633239*33385282^(3/4) 3178110000006299 a001 225851433717/228826127*12752043^(6/17) 3178110000006299 a001 139583862445/54018521*12752043^(5/17) 3178110000006299 a001 591286729879/599074578*12752043^(6/17) 3178110000006299 a001 1548008755920/1568397607*12752043^(6/17) 3178110000006299 a001 4052739537881/4106118243*12752043^(6/17) 3178110000006299 a001 4807525989/4870846*12752043^(6/17) 3178110000006299 a001 6557470319842/6643838879*12752043^(6/17) 3178110000006299 a001 2504730781961/2537720636*12752043^(6/17) 3178110000006299 a001 956722026041/969323029*12752043^(6/17) 3178110000006299 a001 2971215073/33385282*12752043^(1/2) 3178110000006299 a001 365435296162/370248451*12752043^(6/17) 3178110000006300 a001 72136942272317/226980634 3178110000006300 a001 39088169/20633239*2537720636^(5/9) 3178110000006300 a001 39088169/20633239*312119004989^(5/11) 3178110000006300 a001 39088169/20633239*(1/2+1/2*5^(1/2))^25 3178110000006300 a001 9227465/87403803*9062201101803^(1/2) 3178110000006300 a001 39088169/20633239*3461452808002^(5/12) 3178110000006300 a001 39088169/20633239*28143753123^(1/2) 3178110000006300 a001 139583862445/141422324*12752043^(6/17) 3178110000006300 a001 39088169/20633239*228826127^(5/8) 3178110000006300 a001 9227465/228826127*141422324^(11/13) 3178110000006300 a001 9227465/969323029*141422324^(12/13) 3178110000006300 a001 9238424/711491*141422324^(7/13) 3178110000006300 a001 1134903170/20633239*141422324^(6/13) 3178110000006300 a001 4807526976/20633239*141422324^(5/13) 3178110000006300 a001 9227465/228826127*2537720636^(11/15) 3178110000006300 a001 944284833567075/2971215073 3178110000006300 a001 9227465/228826127*45537549124^(11/17) 3178110000006300 a001 9227465/228826127*312119004989^(3/5) 3178110000006300 a001 9227465/228826127*14662949395604^(11/21) 3178110000006300 a001 9303105/1875749*(1/2+1/2*5^(1/2))^23 3178110000006300 a001 9227465/228826127*192900153618^(11/18) 3178110000006300 a001 9227465/228826127*10749957122^(11/16) 3178110000006300 a001 9303105/1875749*4106118243^(1/2) 3178110000006300 a001 9227465/228826127*1568397607^(3/4) 3178110000006300 a001 9227465/228826127*599074578^(11/14) 3178110000006300 a001 1144206275/1875749*141422324^(1/3) 3178110000006300 a001 20365011074/20633239*141422324^(4/13) 3178110000006300 a001 86267571272/20633239*141422324^(3/13) 3178110000006300 a001 365435296162/20633239*141422324^(2/13) 3178110000006300 a001 140728068720/1875749*141422324^(1/13) 3178110000006300 a001 9227465/599074578*2537720636^(7/9) 3178110000006300 a001 9238424/711491*2537720636^(7/15) 3178110000006300 a001 190166906872280/598364773 3178110000006300 a001 9227465/599074578*17393796001^(5/7) 3178110000006300 a001 9238424/711491*17393796001^(3/7) 3178110000006300 a001 9238424/711491*45537549124^(7/17) 3178110000006300 a001 9227465/599074578*312119004989^(7/11) 3178110000006300 a001 9227465/599074578*14662949395604^(5/9) 3178110000006300 a001 9238424/711491*(1/2+1/2*5^(1/2))^21 3178110000006300 a001 9227465/599074578*505019158607^(5/8) 3178110000006300 a001 9238424/711491*192900153618^(7/18) 3178110000006300 a001 9227465/599074578*28143753123^(7/10) 3178110000006300 a001 9238424/711491*10749957122^(7/16) 3178110000006300 a001 9238424/711491*599074578^(1/2) 3178110000006300 a001 9227465/599074578*599074578^(5/6) 3178110000006300 a001 6472224534451845/20365011074 3178110000006300 a001 701408733/20633239*817138163596^(1/3) 3178110000006300 a001 701408733/20633239*(1/2+1/2*5^(1/2))^19 3178110000006300 a001 9227465/4106118243*2537720636^(13/15) 3178110000006300 a001 9227465/17393796001*2537720636^(14/15) 3178110000006300 a001 9227465/6643838879*2537720636^(8/9) 3178110000006300 a001 4807526976/20633239*2537720636^(1/3) 3178110000006300 a001 9227465/4106118243*45537549124^(13/17) 3178110000006300 a001 1836311903/20633239*45537549124^(1/3) 3178110000006300 a001 16944503814015895/53316291173 3178110000006300 a001 9227465/4106118243*14662949395604^(13/21) 3178110000006300 a001 9227465/4106118243*192900153618^(13/18) 3178110000006300 a001 9227465/4106118243*73681302247^(3/4) 3178110000006300 a001 9227465/4106118243*10749957122^(13/16) 3178110000006300 a001 20365011074/20633239*2537720636^(4/15) 3178110000006300 a001 53316291173/20633239*2537720636^(2/9) 3178110000006300 a001 86267571272/20633239*2537720636^(1/5) 3178110000006300 a001 365435296162/20633239*2537720636^(2/15) 3178110000006300 a001 591286729879/20633239*2537720636^(1/9) 3178110000006300 a001 140728068720/1875749*2537720636^(1/15) 3178110000006300 a001 4807526976/20633239*45537549124^(5/17) 3178110000006300 a001 8872257381519168/27916772489 3178110000006300 a001 4807526976/20633239*312119004989^(3/11) 3178110000006300 a001 4807526976/20633239*14662949395604^(5/21) 3178110000006300 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^15 3178110000006300 a001 4807526976/20633239*192900153618^(5/18) 3178110000006300 a001 4807526976/20633239*28143753123^(3/10) 3178110000006300 a001 4807526976/20633239*10749957122^(5/16) 3178110000006300 a001 116139356908771625/365435296162 3178110000006300 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^13 3178110000006300 a001 1144206275/1875749*73681302247^(1/4) 3178110000006300 a001 9227465/73681302247*45537549124^(15/17) 3178110000006300 a001 7787980473/711491*17393796001^(1/7) 3178110000006300 a001 9227465/312119004989*45537549124^(16/17) 3178110000006300 a001 9227465/73681302247*312119004989^(9/11) 3178110000006300 a001 304056783818719035/956722026041 3178110000006300 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^11 3178110000006300 a001 9227465/73681302247*192900153618^(5/6) 3178110000006300 a001 86267571272/20633239*45537549124^(3/17) 3178110000006300 a001 365435296162/20633239*45537549124^(2/17) 3178110000006300 a001 140728068720/1875749*45537549124^(1/17) 3178110000006300 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^9 3178110000006300 a001 9227465/817138163596*312119004989^(10/11) 3178110000006300 a001 160310476909495185/504420793834 3178110000006300 a001 7787980473/711491*(1/2+1/2*5^(1/2))^7 3178110000006300 a001 591286729879/20633239*(1/2+1/2*5^(1/2))^5 3178110000006300 a001 140728068720/1875749*14662949395604^(1/21) 3178110000006300 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^3 3178110000006300 a006 5^(1/2)*Fibonacci(63)/Lucas(35)/sqrt(5) 3178110000006300 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^2 3178110000006300 a001 956722026041/20633239*(1/2+1/2*5^(1/2))^4 3178110000006300 a001 3372041405099489330/10610209857723 3178110000006300 a001 9227465/2139295485799*505019158607^(13/14) 3178110000006300 a001 9227465/312119004989*14662949395604^(16/21) 3178110000006300 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^8 3178110000006300 a001 1288005205276051925/4052739537881 3178110000006300 a001 139583862445/20633239*505019158607^(1/7) 3178110000006300 a001 9227465/1322157322203*192900153618^(17/18) 3178110000006300 a001 9227465/312119004989*192900153618^(8/9) 3178110000006300 a001 139583862445/20633239*73681302247^(2/13) 3178110000006300 a001 53316291173/20633239*312119004989^(2/11) 3178110000006300 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^10 3178110000006300 a001 98394842145733289/309601751184 3178110000006300 a001 591286729879/20633239*28143753123^(1/10) 3178110000006300 a001 9227465/312119004989*73681302247^(12/13) 3178110000006300 a001 53316291173/20633239*28143753123^(1/5) 3178110000006300 a001 2504730781961/20633239*10749957122^(1/24) 3178110000006300 a001 20365011074/20633239*45537549124^(4/17) 3178110000006300 a001 9227465/17393796001*17393796001^(6/7) 3178110000006300 a001 20365011074/20633239*817138163596^(4/19) 3178110000006300 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^12 3178110000006300 a001 187917426909947410/591286729879 3178110000006300 a001 20365011074/20633239*192900153618^(2/9) 3178110000006300 a001 20365011074/20633239*73681302247^(3/13) 3178110000006300 a001 140728068720/1875749*10749957122^(1/16) 3178110000006300 a001 9227465/45537549124*73681302247^(11/13) 3178110000006300 a001 956722026041/20633239*10749957122^(1/12) 3178110000006300 a001 9227465/73681302247*28143753123^(9/10) 3178110000006300 a001 365435296162/20633239*10749957122^(1/8) 3178110000006300 a001 139583862445/20633239*10749957122^(1/6) 3178110000006300 a001 86267571272/20633239*10749957122^(3/16) 3178110000006300 a001 53316291173/20633239*10749957122^(5/24) 3178110000006300 a001 7778742049/20633239*17393796001^(2/7) 3178110000006300 a001 2504730781961/20633239*4106118243^(1/23) 3178110000006300 a001 20365011074/20633239*10749957122^(1/4) 3178110000006300 a001 9227465/17393796001*45537549124^(14/17) 3178110000006300 a001 7778742049/20633239*14662949395604^(2/9) 3178110000006300 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^14 3178110000006300 a001 7778742049/20633239*505019158607^(1/4) 3178110000006300 a001 5521390000090445/17373187209 3178110000006300 a001 9227465/17393796001*192900153618^(7/9) 3178110000006300 a001 956722026041/20633239*4106118243^(2/23) 3178110000006300 a001 7778742049/20633239*10749957122^(7/24) 3178110000006300 a001 365435296162/20633239*4106118243^(3/23) 3178110000006300 a001 9227465/73681302247*10749957122^(15/16) 3178110000006300 a001 9227465/119218851371*10749957122^(23/24) 3178110000006300 a001 9227465/45537549124*10749957122^(11/12) 3178110000006300 a001 139583862445/20633239*4106118243^(4/23) 3178110000006300 a001 9227465/17393796001*10749957122^(7/8) 3178110000006300 a001 53316291173/20633239*4106118243^(5/23) 3178110000006300 a001 20365011074/20633239*4106118243^(6/23) 3178110000006300 a001 2504730781961/20633239*1568397607^(1/22) 3178110000006300 a001 7778742049/20633239*4106118243^(7/23) 3178110000006300 a001 9227465/6643838879*312119004989^(8/11) 3178110000006300 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^16 3178110000006300 a001 2971215073/20633239*23725150497407^(1/4) 3178110000006300 a001 9227465/6643838879*23725150497407^(5/8) 3178110000006300 a001 27416783093579945/86267571272 3178110000006300 a001 2971215073/20633239*73681302247^(4/13) 3178110000006300 a001 9227465/6643838879*73681302247^(10/13) 3178110000006300 a001 9227465/6643838879*28143753123^(4/5) 3178110000006300 a001 2971215073/20633239*10749957122^(1/3) 3178110000006300 a001 9227465/6643838879*10749957122^(5/6) 3178110000006300 a001 956722026041/20633239*1568397607^(1/11) 3178110000006300 a001 2971215073/20633239*4106118243^(8/23) 3178110000006300 a001 365435296162/20633239*1568397607^(3/22) 3178110000006300 a001 9227465/45537549124*4106118243^(22/23) 3178110000006300 a001 9227465/17393796001*4106118243^(21/23) 3178110000006300 a001 139583862445/20633239*1568397607^(2/11) 3178110000006300 a001 9227465/6643838879*4106118243^(20/23) 3178110000006300 a001 53316291173/20633239*1568397607^(5/22) 3178110000006300 a001 1134903170/20633239*2537720636^(2/5) 3178110000006300 a001 32951280099/20633239*1568397607^(1/4) 3178110000006300 a001 20365011074/20633239*1568397607^(3/11) 3178110000006300 a001 7778742049/20633239*1568397607^(7/22) 3178110000006300 a001 2504730781961/20633239*599074578^(1/21) 3178110000006300 a001 1134903170/20633239*45537549124^(6/17) 3178110000006300 a001 1134903170/20633239*14662949395604^(2/7) 3178110000006300 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^18 3178110000006300 a001 1134903170/20633239*192900153618^(1/3) 3178110000006300 a001 10472279279564050/32951280099 3178110000006300 a001 1134903170/20633239*10749957122^(3/8) 3178110000006300 a001 9227465/2537720636*10749957122^(19/24) 3178110000006300 a001 2971215073/20633239*1568397607^(4/11) 3178110000006300 a001 1134903170/20633239*4106118243^(9/23) 3178110000006300 a001 140728068720/1875749*599074578^(1/14) 3178110000006300 a001 9227465/2537720636*4106118243^(19/23) 3178110000006300 a001 956722026041/20633239*599074578^(2/21) 3178110000006300 a001 1134903170/20633239*1568397607^(9/22) 3178110000006300 a001 9227465/17393796001*1568397607^(21/22) 3178110000006300 a001 9227465/6643838879*1568397607^(10/11) 3178110000006300 a001 365435296162/20633239*599074578^(1/7) 3178110000006300 a001 7787980473/711491*599074578^(1/6) 3178110000006300 a001 9227465/2537720636*1568397607^(19/22) 3178110000006300 a001 139583862445/20633239*599074578^(4/21) 3178110000006300 a001 86267571272/20633239*599074578^(3/14) 3178110000006300 a001 53316291173/20633239*599074578^(5/21) 3178110000006300 a001 20365011074/20633239*599074578^(2/7) 3178110000006300 a001 7778742049/20633239*599074578^(1/3) 3178110000006300 a001 9227465/969323029*2537720636^(4/5) 3178110000006300 a001 2504730781961/20633239*228826127^(1/20) 3178110000006300 a001 4807526976/20633239*599074578^(5/14) 3178110000006300 a001 433494437/20633239*2537720636^(4/9) 3178110000006300 a001 9227465/969323029*45537549124^(12/17) 3178110000006300 a001 433494437/20633239*(1/2+1/2*5^(1/2))^20 3178110000006300 a001 433494437/20633239*23725150497407^(5/16) 3178110000006300 a001 433494437/20633239*505019158607^(5/14) 3178110000006300 a001 9227465/969323029*505019158607^(9/14) 3178110000006300 a001 9227465/969323029*192900153618^(2/3) 3178110000006300 a001 433494437/20633239*73681302247^(5/13) 3178110000006300 a001 9227465/969323029*73681302247^(9/13) 3178110000006300 a001 433494437/20633239*28143753123^(2/5) 3178110000006300 a001 800010949022441/2517253805 3178110000006300 a001 433494437/20633239*10749957122^(5/12) 3178110000006300 a001 9227465/969323029*10749957122^(3/4) 3178110000006300 a001 2971215073/20633239*599074578^(8/21) 3178110000006300 a001 433494437/20633239*4106118243^(10/23) 3178110000006300 a001 9227465/969323029*4106118243^(18/23) 3178110000006300 a001 433494437/20633239*1568397607^(5/11) 3178110000006300 a001 1134903170/20633239*599074578^(3/7) 3178110000006300 a001 9227465/969323029*1568397607^(9/11) 3178110000006300 a001 956722026041/20633239*228826127^(1/10) 3178110000006300 a001 591286729879/20633239*228826127^(1/8) 3178110000006300 a001 433494437/20633239*599074578^(10/21) 3178110000006300 a001 9227465/4106118243*599074578^(13/14) 3178110000006300 a001 9227465/2537720636*599074578^(19/21) 3178110000006300 a001 9227465/6643838879*599074578^(20/21) 3178110000006300 a001 365435296162/20633239*228826127^(3/20) 3178110000006300 a001 9227465/969323029*599074578^(6/7) 3178110000006300 a001 139583862445/20633239*228826127^(1/5) 3178110000006300 a001 53316291173/20633239*228826127^(1/4) 3178110000006300 a001 20365011074/20633239*228826127^(3/10) 3178110000006300 a001 7778742049/20633239*228826127^(7/20) 3178110000006300 a001 2504730781961/20633239*87403803^(1/19) 3178110000006300 a001 4807526976/20633239*228826127^(3/8) 3178110000006300 a001 9227465/370248451*45537549124^(2/3) 3178110000006300 a001 165580141/20633239*312119004989^(2/5) 3178110000006300 a001 165580141/20633239*(1/2+1/2*5^(1/2))^22 3178110000006300 a001 165580141/20633239*10749957122^(11/24) 3178110000006300 a001 9227465/370248451*10749957122^(17/24) 3178110000006300 a001 1527884955772565/4807526976 3178110000006300 a001 165580141/20633239*4106118243^(11/23) 3178110000006300 a001 9227465/370248451*4106118243^(17/23) 3178110000006300 a001 165580141/20633239*1568397607^(1/2) 3178110000006300 a001 9227465/370248451*1568397607^(17/22) 3178110000006300 a001 2971215073/20633239*228826127^(2/5) 3178110000006300 a001 1134903170/20633239*228826127^(9/20) 3178110000006300 a001 165580141/20633239*599074578^(11/21) 3178110000006300 a001 1836311903/33385282*12752043^(9/17) 3178110000006300 a001 9227465/370248451*599074578^(17/21) 3178110000006300 a001 433494437/20633239*228826127^(1/2) 3178110000006300 a001 956722026041/20633239*87403803^(2/19) 3178110000006300 a001 9227465/599074578*228826127^(7/8) 3178110000006300 a001 165580141/20633239*228826127^(11/20) 3178110000006300 a001 9227465/969323029*228826127^(9/10) 3178110000006300 a001 9227465/2537720636*228826127^(19/20) 3178110000006300 a001 63245986/20633239*141422324^(8/13) 3178110000006300 a001 365435296162/20633239*87403803^(3/19) 3178110000006300 a001 9227465/370248451*228826127^(17/20) 3178110000006300 a001 139583862445/20633239*87403803^(4/19) 3178110000006300 a001 53316291173/20633239*87403803^(5/19) 3178110000006300 a001 20365011074/20633239*87403803^(6/19) 3178110000006300 a001 7778742049/20633239*87403803^(7/19) 3178110000006300 a001 2504730781961/20633239*33385282^(1/18) 3178110000006300 a001 63245986/20633239*2537720636^(8/15) 3178110000006300 a001 63245986/20633239*45537549124^(8/17) 3178110000006300 a001 63245986/20633239*14662949395604^(8/21) 3178110000006300 a001 63245986/20633239*(1/2+1/2*5^(1/2))^24 3178110000006300 a001 9227465/141422324*23725150497407^(1/2) 3178110000006300 a001 9227465/141422324*505019158607^(4/7) 3178110000006300 a001 63245986/20633239*192900153618^(4/9) 3178110000006300 a001 63245986/20633239*73681302247^(6/13) 3178110000006300 a001 9227465/141422324*73681302247^(8/13) 3178110000006300 a001 63245986/20633239*10749957122^(1/2) 3178110000006300 a001 9227465/141422324*10749957122^(2/3) 3178110000006300 a001 63245986/20633239*4106118243^(12/23) 3178110000006300 a001 9227465/141422324*4106118243^(16/23) 3178110000006300 a001 583600122205490/1836311903 3178110000006300 a001 63245986/20633239*1568397607^(6/11) 3178110000006300 a001 9227465/141422324*1568397607^(8/11) 3178110000006300 a001 63245986/20633239*599074578^(4/7) 3178110000006300 a001 9227465/141422324*599074578^(16/21) 3178110000006300 a001 10983760033/29134601*12752043^(7/17) 3178110000006300 a001 2971215073/20633239*87403803^(8/19) 3178110000006300 a001 63245986/20633239*228826127^(3/5) 3178110000006300 a001 1134903170/20633239*87403803^(9/19) 3178110000006300 a001 701408733/20633239*87403803^(1/2) 3178110000006300 a001 9227465/141422324*228826127^(4/5) 3178110000006300 a001 433494437/20633239*87403803^(10/19) 3178110000006300 a001 140728068720/1875749*33385282^(1/12) 3178110000006300 a001 165580141/20633239*87403803^(11/19) 3178110000006300 a001 956722026041/20633239*33385282^(1/9) 3178110000006300 a001 9227465/370248451*87403803^(17/19) 3178110000006300 a001 9227465/969323029*87403803^(18/19) 3178110000006300 a001 63245986/20633239*87403803^(12/19) 3178110000006300 a001 365435296162/20633239*33385282^(1/6) 3178110000006301 a001 3536736619241/29134601*4870847^(1/16) 3178110000006301 a001 9227465/141422324*87403803^(16/19) 3178110000006301 a001 86267571272/228826127*12752043^(7/17) 3178110000006301 a001 53316291173/54018521*12752043^(6/17) 3178110000006301 a001 267913919/710646*12752043^(7/17) 3178110000006301 a001 591286729879/1568397607*12752043^(7/17) 3178110000006301 a001 516002918640/1368706081*12752043^(7/17) 3178110000006301 a001 4052739537881/10749957122*12752043^(7/17) 3178110000006301 a001 3536736619241/9381251041*12752043^(7/17) 3178110000006301 a001 6557470319842/17393796001*12752043^(7/17) 3178110000006301 a001 2504730781961/6643838879*12752043^(7/17) 3178110000006301 a001 956722026041/2537720636*12752043^(7/17) 3178110000006301 a001 365435296162/969323029*12752043^(7/17) 3178110000006301 a001 139583862445/370248451*12752043^(7/17) 3178110000006301 a001 139583862445/20633239*33385282^(2/9) 3178110000006301 a001 86267571272/20633239*33385282^(1/4) 3178110000006301 a001 53316291173/141422324*12752043^(7/17) 3178110000006301 a001 53316291173/20633239*33385282^(5/18) 3178110000006301 a001 20365011074/20633239*33385282^(1/3) 3178110000006301 a001 9227465/54018521*141422324^(10/13) 3178110000006301 a001 24157817/20633239*141422324^(2/3) 3178110000006301 a001 9227465/54018521*2537720636^(2/3) 3178110000006301 a001 9227465/54018521*45537549124^(10/17) 3178110000006301 a001 9227465/54018521*312119004989^(6/11) 3178110000006301 a001 9227465/54018521*14662949395604^(10/21) 3178110000006301 a001 24157817/20633239*(1/2+1/2*5^(1/2))^26 3178110000006301 a001 9227465/54018521*192900153618^(5/9) 3178110000006301 a001 24157817/20633239*73681302247^(1/2) 3178110000006301 a001 9227465/54018521*28143753123^(3/5) 3178110000006301 a001 24157817/20633239*10749957122^(13/24) 3178110000006301 a001 9227465/54018521*10749957122^(5/8) 3178110000006301 a001 24157817/20633239*4106118243^(13/23) 3178110000006301 a001 9227465/54018521*4106118243^(15/23) 3178110000006301 a001 24157817/20633239*1568397607^(13/22) 3178110000006301 a001 9227465/54018521*1568397607^(15/22) 3178110000006301 a001 222915410843905/701408733 3178110000006301 a001 24157817/20633239*599074578^(13/21) 3178110000006301 a001 9227465/54018521*599074578^(5/7) 3178110000006301 a001 7778742049/20633239*33385282^(7/18) 3178110000006301 a001 24157817/20633239*228826127^(13/20) 3178110000006301 a001 9227465/54018521*228826127^(3/4) 3178110000006301 a001 2504730781961/20633239*12752043^(1/17) 3178110000006301 a001 701408733/33385282*12752043^(10/17) 3178110000006301 a001 4807526976/20633239*33385282^(5/12) 3178110000006301 a001 2971215073/20633239*33385282^(4/9) 3178110000006301 a001 12586269025/87403803*12752043^(8/17) 3178110000006301 a001 24157817/20633239*87403803^(13/19) 3178110000006301 a001 9227465/54018521*87403803^(15/19) 3178110000006301 a001 1134903170/20633239*33385282^(1/2) 3178110000006302 a001 9227465/20633239*20633239^(4/5) 3178110000006302 a001 433494437/20633239*33385282^(5/9) 3178110000006302 a001 9238424/711491*33385282^(7/12) 3178110000006302 a001 32951280099/228826127*12752043^(8/17) 3178110000006302 a001 20365011074/54018521*12752043^(7/17) 3178110000006302 a001 43133785636/299537289*12752043^(8/17) 3178110000006302 a001 32264490531/224056801*12752043^(8/17) 3178110000006302 a001 591286729879/4106118243*12752043^(8/17) 3178110000006302 a001 774004377960/5374978561*12752043^(8/17) 3178110000006302 a001 4052739537881/28143753123*12752043^(8/17) 3178110000006302 a001 1515744265389/10525900321*12752043^(8/17) 3178110000006302 a001 3278735159921/22768774562*12752043^(8/17) 3178110000006302 a001 2504730781961/17393796001*12752043^(8/17) 3178110000006302 a001 956722026041/6643838879*12752043^(8/17) 3178110000006302 a001 182717648081/1268860318*12752043^(8/17) 3178110000006302 a001 139583862445/969323029*12752043^(8/17) 3178110000006302 a001 53316291173/370248451*12752043^(8/17) 3178110000006302 a001 165580141/20633239*33385282^(11/18) 3178110000006302 a001 7778742049/87403803*12752043^(1/2) 3178110000006302 a001 10182505537/70711162*12752043^(8/17) 3178110000006302 a001 6557470319842/54018521*4870847^(1/16) 3178110000006302 a001 63245986/20633239*33385282^(2/3) 3178110000006302 a001 20365011074/228826127*12752043^(1/2) 3178110000006302 a001 53316291173/599074578*12752043^(1/2) 3178110000006302 a001 956722026041/20633239*12752043^(2/17) 3178110000006302 a001 139583862445/1568397607*12752043^(1/2) 3178110000006302 a001 365435296162/4106118243*12752043^(1/2) 3178110000006302 a001 956722026041/10749957122*12752043^(1/2) 3178110000006302 a001 2504730781961/28143753123*12752043^(1/2) 3178110000006302 a001 6557470319842/73681302247*12752043^(1/2) 3178110000006302 a001 10610209857723/119218851371*12752043^(1/2) 3178110000006302 a001 4052739537881/45537549124*12752043^(1/2) 3178110000006302 a001 1548008755920/17393796001*12752043^(1/2) 3178110000006302 a001 591286729879/6643838879*12752043^(1/2) 3178110000006302 a001 225851433717/2537720636*12752043^(1/2) 3178110000006302 a001 86267571272/969323029*12752043^(1/2) 3178110000006302 a001 133957148/16692641*12752043^(11/17) 3178110000006302 a001 32951280099/370248451*12752043^(1/2) 3178110000006302 a001 1602508992/29134601*12752043^(9/17) 3178110000006302 a001 12586269025/141422324*12752043^(1/2) 3178110000006303 a001 9227465/228826127*33385282^(11/12) 3178110000006303 a001 9227465/141422324*33385282^(8/9) 3178110000006303 a001 9227465/370248451*33385282^(17/18) 3178110000006303 a001 12586269025/228826127*12752043^(9/17) 3178110000006303 a001 7778742049/54018521*12752043^(8/17) 3178110000006303 a001 10983760033/199691526*12752043^(9/17) 3178110000006303 a001 86267571272/1568397607*12752043^(9/17) 3178110000006303 a001 75283811239/1368706081*12752043^(9/17) 3178110000006303 a001 591286729879/10749957122*12752043^(9/17) 3178110000006303 a001 12585437040/228811001*12752043^(9/17) 3178110000006303 a001 4052739537881/73681302247*12752043^(9/17) 3178110000006303 a001 3536736619241/64300051206*12752043^(9/17) 3178110000006303 a001 6557470319842/119218851371*12752043^(9/17) 3178110000006303 a001 2504730781961/45537549124*12752043^(9/17) 3178110000006303 a001 956722026041/17393796001*12752043^(9/17) 3178110000006303 a001 365435296162/6643838879*12752043^(9/17) 3178110000006303 a001 139583862445/2537720636*12752043^(9/17) 3178110000006303 a001 53316291173/969323029*12752043^(9/17) 3178110000006303 a001 20365011074/370248451*12752043^(9/17) 3178110000006303 a001 7465176/16692641*12752043^(14/17) 3178110000006303 a001 7778742049/141422324*12752043^(9/17) 3178110000006303 a001 24157817/20633239*33385282^(13/18) 3178110000006303 a001 4807526976/54018521*12752043^(1/2) 3178110000006303 a001 14619165/4769326*12752043^(12/17) 3178110000006303 a001 365435296162/20633239*12752043^(3/17) 3178110000006303 a001 9227465/54018521*33385282^(5/6) 3178110000006304 a001 1836311903/87403803*12752043^(10/17) 3178110000006304 a001 102287808/4868641*12752043^(10/17) 3178110000006304 a001 2971215073/54018521*12752043^(9/17) 3178110000006304 a001 12586269025/599074578*12752043^(10/17) 3178110000006304 a001 32951280099/1568397607*12752043^(10/17) 3178110000006304 a001 86267571272/4106118243*12752043^(10/17) 3178110000006304 a001 225851433717/10749957122*12752043^(10/17) 3178110000006304 a001 591286729879/28143753123*12752043^(10/17) 3178110000006304 a001 1548008755920/73681302247*12752043^(10/17) 3178110000006304 a001 4052739537881/192900153618*12752043^(10/17) 3178110000006304 a001 225749145909/10745088481*12752043^(10/17) 3178110000006304 a001 6557470319842/312119004989*12752043^(10/17) 3178110000006304 a001 2504730781961/119218851371*12752043^(10/17) 3178110000006304 a001 956722026041/45537549124*12752043^(10/17) 3178110000006304 a001 365435296162/17393796001*12752043^(10/17) 3178110000006304 a001 139583862445/6643838879*12752043^(10/17) 3178110000006304 a001 53316291173/2537720636*12752043^(10/17) 3178110000006304 a001 20365011074/969323029*12752043^(10/17) 3178110000006304 a001 7778742049/370248451*12752043^(10/17) 3178110000006304 a001 2971215073/141422324*12752043^(10/17) 3178110000006304 a001 39088169/33385282*12752043^(13/17) 3178110000006305 a001 139583862445/20633239*12752043^(4/17) 3178110000006305 a001 3524578/20633239*7881196^(10/11) 3178110000006305 a001 233802911/29134601*12752043^(11/17) 3178110000006305 a001 1836311903/228826127*12752043^(11/17) 3178110000006305 a001 1134903170/54018521*12752043^(10/17) 3178110000006305 a001 267084832/33281921*12752043^(11/17) 3178110000006305 a001 12586269025/1568397607*12752043^(11/17) 3178110000006305 a001 10983760033/1368706081*12752043^(11/17) 3178110000006305 a001 43133785636/5374978561*12752043^(11/17) 3178110000006305 a001 75283811239/9381251041*12752043^(11/17) 3178110000006305 a001 591286729879/73681302247*12752043^(11/17) 3178110000006305 a001 86000486440/10716675201*12752043^(11/17) 3178110000006305 a001 4052739537881/505019158607*12752043^(11/17) 3178110000006305 a001 3278735159921/408569081798*12752043^(11/17) 3178110000006305 a001 2504730781961/312119004989*12752043^(11/17) 3178110000006305 a001 956722026041/119218851371*12752043^(11/17) 3178110000006305 a001 182717648081/22768774562*12752043^(11/17) 3178110000006305 a001 139583862445/17393796001*12752043^(11/17) 3178110000006305 a001 53316291173/6643838879*12752043^(11/17) 3178110000006305 a001 10182505537/1268860318*12752043^(11/17) 3178110000006305 a001 7778742049/969323029*12752043^(11/17) 3178110000006305 a001 2971215073/370248451*12752043^(11/17) 3178110000006305 a001 567451585/70711162*12752043^(11/17) 3178110000006306 a001 53316291173/20633239*12752043^(5/17) 3178110000006306 a001 267914296/87403803*12752043^(12/17) 3178110000006306 a001 701408733/228826127*12752043^(12/17) 3178110000006306 a001 433494437/54018521*12752043^(11/17) 3178110000006306 a001 1836311903/599074578*12752043^(12/17) 3178110000006306 a001 686789568/224056801*12752043^(12/17) 3178110000006306 a001 12586269025/4106118243*12752043^(12/17) 3178110000006306 a001 32951280099/10749957122*12752043^(12/17) 3178110000006306 a001 86267571272/28143753123*12752043^(12/17) 3178110000006306 a001 32264490531/10525900321*12752043^(12/17) 3178110000006306 a001 591286729879/192900153618*12752043^(12/17) 3178110000006306 a001 1548008755920/505019158607*12752043^(12/17) 3178110000006306 a001 1515744265389/494493258286*12752043^(12/17) 3178110000006306 a001 2504730781961/817138163596*12752043^(12/17) 3178110000006306 a001 956722026041/312119004989*12752043^(12/17) 3178110000006306 a001 365435296162/119218851371*12752043^(12/17) 3178110000006306 a001 139583862445/45537549124*12752043^(12/17) 3178110000006306 a001 53316291173/17393796001*12752043^(12/17) 3178110000006306 a001 20365011074/6643838879*12752043^(12/17) 3178110000006306 a001 7778742049/2537720636*12752043^(12/17) 3178110000006306 a001 2971215073/969323029*12752043^(12/17) 3178110000006306 a001 1134903170/370248451*12752043^(12/17) 3178110000006306 a001 774004377960/16692641*4870847^(1/8) 3178110000006306 a001 86267571272/12752043*4870847^(1/4) 3178110000006307 a001 433494437/141422324*12752043^(12/17) 3178110000006307 a001 4976784/29134601*12752043^(15/17) 3178110000006307 a001 20365011074/20633239*12752043^(6/17) 3178110000006307 a001 34111385/29134601*12752043^(13/17) 3178110000006307 a001 267914296/228826127*12752043^(13/17) 3178110000006307 a001 165580141/54018521*12752043^(12/17) 3178110000006307 a001 9227465/20633239*17393796001^(4/7) 3178110000006307 a001 9227465/20633239*14662949395604^(4/9) 3178110000006307 a001 9227465/20633239*(1/2+1/2*5^(1/2))^28 3178110000006307 a001 9227465/20633239*73681302247^(7/13) 3178110000006307 a001 9227465/20633239*10749957122^(7/12) 3178110000006307 a001 9227465/20633239*4106118243^(14/23) 3178110000006307 a001 9227465/20633239*1568397607^(7/11) 3178110000006307 a001 233802911/199691526*12752043^(13/17) 3178110000006307 a001 9227465/20633239*599074578^(2/3) 3178110000006307 a001 6549700794325/20608792 3178110000006307 a001 1836311903/1568397607*12752043^(13/17) 3178110000006307 a001 1602508992/1368706081*12752043^(13/17) 3178110000006307 a001 12586269025/10749957122*12752043^(13/17) 3178110000006307 a001 10983760033/9381251041*12752043^(13/17) 3178110000006307 a001 86267571272/73681302247*12752043^(13/17) 3178110000006307 a001 75283811239/64300051206*12752043^(13/17) 3178110000006307 a001 2504730781961/2139295485799*12752043^(13/17) 3178110000006307 a001 365435296162/312119004989*12752043^(13/17) 3178110000006307 a001 139583862445/119218851371*12752043^(13/17) 3178110000006307 a001 53316291173/45537549124*12752043^(13/17) 3178110000006307 a001 20365011074/17393796001*12752043^(13/17) 3178110000006307 a001 7778742049/6643838879*12752043^(13/17) 3178110000006307 a001 2971215073/2537720636*12752043^(13/17) 3178110000006307 a001 1134903170/969323029*12752043^(13/17) 3178110000006308 a001 433494437/370248451*12752043^(13/17) 3178110000006308 a001 9227465/20633239*228826127^(7/10) 3178110000006308 a001 24157817/7881196*7881196^(8/11) 3178110000006308 a001 165580141/141422324*12752043^(13/17) 3178110000006308 a001 9227465/20633239*87403803^(14/19) 3178110000006308 a001 39088169/87403803*12752043^(14/17) 3178110000006308 a001 14930352/228826127*12752043^(16/17) 3178110000006308 a001 7778742049/20633239*12752043^(7/17) 3178110000006308 a001 2504730781961/20633239*4870847^(1/16) 3178110000006309 a001 102334155/228826127*12752043^(14/17) 3178110000006309 a001 133957148/299537289*12752043^(14/17) 3178110000006309 a001 701408733/1568397607*12752043^(14/17) 3178110000006309 a001 1836311903/4106118243*12752043^(14/17) 3178110000006309 a001 2403763488/5374978561*12752043^(14/17) 3178110000006309 a001 12586269025/28143753123*12752043^(14/17) 3178110000006309 a001 32951280099/73681302247*12752043^(14/17) 3178110000006309 a001 43133785636/96450076809*12752043^(14/17) 3178110000006309 a001 225851433717/505019158607*12752043^(14/17) 3178110000006309 a001 591286729879/1322157322203*12752043^(14/17) 3178110000006309 a001 10610209857723/23725150497407*12752043^(14/17) 3178110000006309 a001 139583862445/312119004989*12752043^(14/17) 3178110000006309 a001 53316291173/119218851371*12752043^(14/17) 3178110000006309 a001 10182505537/22768774562*12752043^(14/17) 3178110000006309 a001 7778742049/17393796001*12752043^(14/17) 3178110000006309 a001 2971215073/6643838879*12752043^(14/17) 3178110000006309 a001 567451585/1268860318*12752043^(14/17) 3178110000006309 a001 433494437/969323029*12752043^(14/17) 3178110000006309 a001 165580141/370248451*12752043^(14/17) 3178110000006309 a001 63245986/54018521*12752043^(13/17) 3178110000006309 a001 4052739537881/87403803*4870847^(1/8) 3178110000006309 a001 31622993/70711162*12752043^(14/17) 3178110000006309 a001 2971215073/20633239*12752043^(8/17) 3178110000006309 a001 225749145909/4868641*4870847^(1/8) 3178110000006309 a001 39088169/228826127*12752043^(15/17) 3178110000006309 a001 3278735159921/70711162*4870847^(1/8) 3178110000006310 a001 9227465/20633239*33385282^(7/9) 3178110000006310 a001 34111385/199691526*12752043^(15/17) 3178110000006310 a001 31622993/3940598*7881196^(2/3) 3178110000006310 a001 267914296/1568397607*12752043^(15/17) 3178110000006310 a001 1836311903/20633239*12752043^(1/2) 3178110000006310 a001 233802911/1368706081*12752043^(15/17) 3178110000006310 a001 1836311903/10749957122*12752043^(15/17) 3178110000006310 a001 1602508992/9381251041*12752043^(15/17) 3178110000006310 a001 12586269025/73681302247*12752043^(15/17) 3178110000006310 a001 10983760033/64300051206*12752043^(15/17) 3178110000006310 a001 86267571272/505019158607*12752043^(15/17) 3178110000006310 a001 75283811239/440719107401*12752043^(15/17) 3178110000006310 a001 2504730781961/14662949395604*12752043^(15/17) 3178110000006310 a001 139583862445/817138163596*12752043^(15/17) 3178110000006310 a001 53316291173/312119004989*12752043^(15/17) 3178110000006310 a001 20365011074/119218851371*12752043^(15/17) 3178110000006310 a001 7778742049/45537549124*12752043^(15/17) 3178110000006310 a001 2971215073/17393796001*12752043^(15/17) 3178110000006310 a001 1134903170/6643838879*12752043^(15/17) 3178110000006310 a001 433494437/2537720636*12752043^(15/17) 3178110000006310 a001 165580141/969323029*12752043^(15/17) 3178110000006310 a001 63245986/370248451*12752043^(15/17) 3178110000006310 a001 1134903170/20633239*12752043^(9/17) 3178110000006310 a001 2504730781961/54018521*4870847^(1/8) 3178110000006311 a001 39088169/599074578*12752043^(16/17) 3178110000006311 a001 24157817/54018521*12752043^(14/17) 3178110000006311 a001 14619165/224056801*12752043^(16/17) 3178110000006311 a001 267914296/4106118243*12752043^(16/17) 3178110000006311 a001 701408733/10749957122*12752043^(16/17) 3178110000006311 a001 1836311903/28143753123*12752043^(16/17) 3178110000006311 a001 686789568/10525900321*12752043^(16/17) 3178110000006311 a001 12586269025/192900153618*12752043^(16/17) 3178110000006311 a001 32951280099/505019158607*12752043^(16/17) 3178110000006311 a001 86267571272/1322157322203*12752043^(16/17) 3178110000006311 a001 32264490531/494493258286*12752043^(16/17) 3178110000006311 a001 591286729879/9062201101803*12752043^(16/17) 3178110000006311 a001 1548008755920/23725150497407*12752043^(16/17) 3178110000006311 a001 139583862445/2139295485799*12752043^(16/17) 3178110000006311 a001 53316291173/817138163596*12752043^(16/17) 3178110000006311 a001 20365011074/312119004989*12752043^(16/17) 3178110000006311 a001 7778742049/119218851371*12752043^(16/17) 3178110000006311 a001 2971215073/45537549124*12752043^(16/17) 3178110000006311 a001 1134903170/17393796001*12752043^(16/17) 3178110000006311 a001 433494437/6643838879*12752043^(16/17) 3178110000006311 a001 165580141/2537720636*12752043^(16/17) 3178110000006311 a001 24157817/141422324*12752043^(15/17) 3178110000006311 a001 102334155/7881196*7881196^(7/11) 3178110000006311 a001 63245986/969323029*12752043^(16/17) 3178110000006312 a001 433494437/20633239*12752043^(10/17) 3178110000006312 a001 139583862445/4870847*1860498^(1/6) 3178110000006312 a001 24157817/370248451*12752043^(16/17) 3178110000006312 a001 2/5702887*(1/2+1/2*5^(1/2))^62 3178110000006313 a001 165580141/20633239*12752043^(11/17) 3178110000006314 a001 63245986/20633239*12752043^(12/17) 3178110000006315 a001 591286729879/33385282*4870847^(3/16) 3178110000006315 a001 10983760033/4250681*4870847^(5/16) 3178110000006316 a001 433494437/7881196*7881196^(6/11) 3178110000006316 a001 24157817/20633239*12752043^(13/17) 3178110000006317 a001 956722026041/20633239*4870847^(1/8) 3178110000006317 a001 516002918640/29134601*4870847^(3/16) 3178110000006318 a001 4052739537881/228826127*4870847^(3/16) 3178110000006318 a001 3536736619241/199691526*4870847^(3/16) 3178110000006318 a001 6557470319842/370248451*4870847^(3/16) 3178110000006318 a001 2504730781961/141422324*4870847^(3/16) 3178110000006318 a001 9227465/54018521*12752043^(15/17) 3178110000006319 a001 9227465/141422324*12752043^(16/17) 3178110000006319 a001 956722026041/54018521*4870847^(3/16) 3178110000006320 a001 1836311903/7881196*7881196^(5/11) 3178110000006323 a001 32264490531/4769326*4870847^(1/4) 3178110000006323 a001 12586269025/12752043*4870847^(3/8) 3178110000006324 a001 9227465/20633239*12752043^(14/17) 3178110000006324 a001 10050135028343/31622993 3178110000006324 a001 5702887/7881196*141422324^(9/13) 3178110000006324 a001 5702887/7881196*2537720636^(3/5) 3178110000006324 a001 5702887/7881196*45537549124^(9/17) 3178110000006324 a001 5702887/7881196*817138163596^(9/19) 3178110000006324 a001 5702887/7881196*14662949395604^(3/7) 3178110000006324 a001 3524578/12752043*(1/2+1/2*5^(1/2))^29 3178110000006324 a001 5702887/7881196*(1/2+1/2*5^(1/2))^27 3178110000006324 a001 3524578/12752043*1322157322203^(1/2) 3178110000006324 a001 5702887/7881196*192900153618^(1/2) 3178110000006324 a001 5702887/7881196*10749957122^(9/16) 3178110000006324 a001 5702887/7881196*599074578^(9/14) 3178110000006325 a001 7778742049/7881196*7881196^(4/11) 3178110000006325 a001 365435296162/20633239*4870847^(3/16) 3178110000006326 a001 591286729879/87403803*4870847^(1/4) 3178110000006326 a001 1548008755920/228826127*4870847^(1/4) 3178110000006326 a001 4052739537881/599074578*4870847^(1/4) 3178110000006326 a001 1515744265389/224056801*4870847^(1/4) 3178110000006326 a001 6557470319842/969323029*4870847^(1/4) 3178110000006326 a001 2504730781961/370248451*4870847^(1/4) 3178110000006326 a001 956722026041/141422324*4870847^(1/4) 3178110000006326 a001 5702887/7881196*33385282^(3/4) 3178110000006327 a001 12586269025/7881196*7881196^(1/3) 3178110000006327 a001 365435296162/54018521*4870847^(1/4) 3178110000006330 a001 32951280099/7881196*7881196^(3/11) 3178110000006332 a001 43133785636/16692641*4870847^(5/16) 3178110000006332 a001 1602508992/4250681*4870847^(7/16) 3178110000006334 a001 139583862445/20633239*4870847^(1/4) 3178110000006334 a001 75283811239/29134601*4870847^(5/16) 3178110000006334 a001 516002918640/4250681*1860498^(1/15) 3178110000006334 a001 591286729879/228826127*4870847^(5/16) 3178110000006334 a001 86000486440/33281921*4870847^(5/16) 3178110000006334 a001 4052739537881/1568397607*4870847^(5/16) 3178110000006334 a001 3536736619241/1368706081*4870847^(5/16) 3178110000006334 a001 3278735159921/1268860318*4870847^(5/16) 3178110000006334 a001 139583862445/7881196*7881196^(2/11) 3178110000006334 a001 2504730781961/969323029*4870847^(5/16) 3178110000006334 a001 956722026041/370248451*4870847^(5/16) 3178110000006335 a001 182717648081/70711162*4870847^(5/16) 3178110000006335 a001 139583862445/54018521*4870847^(5/16) 3178110000006336 a001 3732588/1970299*20633239^(5/7) 3178110000006339 a001 591286729879/7881196*7881196^(1/11) 3178110000006339 a001 102334155/7881196*20633239^(3/5) 3178110000006339 a001 165580141/7881196*20633239^(4/7) 3178110000006340 a001 32951280099/33385282*4870847^(3/8) 3178110000006340 a001 1836311903/12752043*4870847^(1/2) 3178110000006341 a001 1836311903/7881196*20633239^(3/7) 3178110000006341 a001 2971215073/7881196*20633239^(2/5) 3178110000006341 a001 52623190191456/165580141 3178110000006341 a001 3732588/1970299*2537720636^(5/9) 3178110000006341 a001 3732588/1970299*312119004989^(5/11) 3178110000006341 a001 1762289/16692641*(1/2+1/2*5^(1/2))^31 3178110000006341 a001 3732588/1970299*(1/2+1/2*5^(1/2))^25 3178110000006341 a001 1762289/16692641*9062201101803^(1/2) 3178110000006341 a001 3732588/1970299*3461452808002^(5/12) 3178110000006341 a001 3732588/1970299*28143753123^(1/2) 3178110000006341 a001 3732588/1970299*228826127^(5/8) 3178110000006342 a001 10182505537/3940598*20633239^(2/7) 3178110000006342 a001 53316291173/20633239*4870847^(5/16) 3178110000006342 a001 86267571272/4870847*1860498^(1/5) 3178110000006342 a001 21566892818/1970299*20633239^(1/5) 3178110000006342 a001 86267571272/87403803*4870847^(3/8) 3178110000006343 a001 225851433717/7881196*20633239^(1/7) 3178110000006343 a001 225851433717/228826127*4870847^(3/8) 3178110000006343 a001 591286729879/599074578*4870847^(3/8) 3178110000006343 a001 1548008755920/1568397607*4870847^(3/8) 3178110000006343 a001 4052739537881/4106118243*4870847^(3/8) 3178110000006343 a001 4807525989/4870846*4870847^(3/8) 3178110000006343 a001 6557470319842/6643838879*4870847^(3/8) 3178110000006343 a001 2504730781961/2537720636*4870847^(3/8) 3178110000006343 a001 956722026041/969323029*4870847^(3/8) 3178110000006343 a001 365435296162/370248451*4870847^(3/8) 3178110000006343 a001 139583862445/141422324*4870847^(3/8) 3178110000006343 a001 3524578/87403803*141422324^(11/13) 3178110000006343 a001 137769300517682/433494437 3178110000006343 a001 3524578/87403803*2537720636^(11/15) 3178110000006343 a001 3524578/87403803*45537549124^(11/17) 3178110000006343 a001 3524578/87403803*312119004989^(3/5) 3178110000006343 a001 3524578/87403803*14662949395604^(11/21) 3178110000006343 a001 39088169/7881196*(1/2+1/2*5^(1/2))^23 3178110000006343 a001 3524578/87403803*192900153618^(11/18) 3178110000006343 a001 3524578/87403803*10749957122^(11/16) 3178110000006343 a001 39088169/7881196*4106118243^(1/2) 3178110000006343 a001 3524578/87403803*1568397607^(3/4) 3178110000006343 a001 3524578/87403803*599074578^(11/14) 3178110000006344 a001 102334155/7881196*141422324^(7/13) 3178110000006344 a001 3524578/370248451*141422324^(12/13) 3178110000006344 a001 433494437/7881196*141422324^(6/13) 3178110000006344 a001 1836311903/7881196*141422324^(5/13) 3178110000006344 a001 36068471136159/113490317 3178110000006344 a001 3524578/228826127*2537720636^(7/9) 3178110000006344 a001 102334155/7881196*2537720636^(7/15) 3178110000006344 a001 3524578/228826127*17393796001^(5/7) 3178110000006344 a001 102334155/7881196*17393796001^(3/7) 3178110000006344 a001 102334155/7881196*45537549124^(7/17) 3178110000006344 a001 3524578/228826127*312119004989^(7/11) 3178110000006344 a001 102334155/7881196*14662949395604^(1/3) 3178110000006344 a001 102334155/7881196*(1/2+1/2*5^(1/2))^21 3178110000006344 a001 3524578/228826127*505019158607^(5/8) 3178110000006344 a001 102334155/7881196*192900153618^(7/18) 3178110000006344 a001 3524578/228826127*28143753123^(7/10) 3178110000006344 a001 102334155/7881196*10749957122^(7/16) 3178110000006344 a001 102334155/7881196*599074578^(1/2) 3178110000006344 a001 3524578/228826127*599074578^(5/6) 3178110000006344 a001 1201881744/1970299*141422324^(1/3) 3178110000006344 a001 7778742049/7881196*141422324^(4/13) 3178110000006344 a001 32951280099/7881196*141422324^(3/13) 3178110000006344 a001 139583862445/7881196*141422324^(2/13) 3178110000006344 a001 591286729879/7881196*141422324^(1/13) 3178110000006344 a001 944284833567088/2971215073 3178110000006344 a001 66978574/1970299*817138163596^(1/3) 3178110000006344 a001 66978574/1970299*(1/2+1/2*5^(1/2))^19 3178110000006344 a001 3524578/228826127*228826127^(7/8) 3178110000006344 a001 3524578/1568397607*2537720636^(13/15) 3178110000006344 a001 2472169789339674/7778742049 3178110000006344 a001 3524578/1568397607*45537549124^(13/17) 3178110000006344 a001 3524667/39604*45537549124^(1/3) 3178110000006344 a001 3524578/1568397607*14662949395604^(13/21) 3178110000006344 a001 3524667/39604*(1/2+1/2*5^(1/2))^17 3178110000006344 a001 3524578/1568397607*192900153618^(13/18) 3178110000006344 a001 3524578/1568397607*73681302247^(3/4) 3178110000006344 a001 3524578/1568397607*10749957122^(13/16) 3178110000006344 a001 3524578/6643838879*2537720636^(14/15) 3178110000006344 a001 1836311903/7881196*2537720636^(1/3) 3178110000006344 a001 3236112267225967/10182505537 3178110000006344 a001 1836311903/7881196*45537549124^(5/17) 3178110000006344 a001 1836311903/7881196*312119004989^(3/11) 3178110000006344 a001 1836311903/7881196*14662949395604^(5/21) 3178110000006344 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^15 3178110000006344 a001 1836311903/7881196*192900153618^(5/18) 3178110000006344 a001 1836311903/7881196*28143753123^(3/10) 3178110000006344 a001 1836311903/7881196*10749957122^(5/16) 3178110000006344 a001 7778742049/7881196*2537720636^(4/15) 3178110000006344 a001 10182505537/3940598*2537720636^(2/9) 3178110000006344 a001 32951280099/7881196*2537720636^(1/5) 3178110000006344 a001 139583862445/7881196*2537720636^(2/15) 3178110000006344 a001 225851433717/7881196*2537720636^(1/9) 3178110000006344 a001 591286729879/7881196*2537720636^(1/15) 3178110000006344 a001 16944503814016128/53316291173 3178110000006344 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^13 3178110000006344 a001 1201881744/1970299*73681302247^(1/4) 3178110000006344 a001 3524578/28143753123*45537549124^(15/17) 3178110000006344 a001 99688285185610/313671601 3178110000006344 a001 3524578/28143753123*312119004989^(9/11) 3178110000006344 a001 12586269025/7881196*312119004989^(1/5) 3178110000006344 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^11 3178110000006344 a001 3524578/28143753123*192900153618^(5/6) 3178110000006344 a001 21566892818/1970299*17393796001^(1/7) 3178110000006344 a001 3524578/119218851371*45537549124^(16/17) 3178110000006344 a001 32951280099/7881196*45537549124^(3/17) 3178110000006344 a001 58069678454386611/182717648081 3178110000006344 a001 32951280099/7881196*14662949395604^(1/7) 3178110000006344 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^9 3178110000006344 a001 32951280099/7881196*192900153618^(1/6) 3178110000006344 a001 3524578/28143753123*28143753123^(9/10) 3178110000006344 a001 139583862445/7881196*45537549124^(2/17) 3178110000006344 a001 1762289/96450076809*14662949395604^(7/9) 3178110000006344 a001 21566892818/1970299*14662949395604^(1/9) 3178110000006344 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^7 3178110000006344 a001 1762289/96450076809*505019158607^(7/8) 3178110000006344 a001 225851433717/7881196*312119004989^(1/11) 3178110000006344 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^5 3178110000006344 a001 1042018099911733031/3278735159921 3178110000006344 a001 591286729879/7881196*(1/2+1/2*5^(1/2))^3 3178110000006344 a006 5^(1/2)*Fibonacci(61)/Lucas(33)/sqrt(5) 3178110000006344 a001 1288005205276069636/4052739537881 3178110000006344 a001 1762289/408569081798*505019158607^(13/14) 3178110000006344 a001 139583862445/7881196*14662949395604^(2/21) 3178110000006344 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^6 3178110000006344 a001 49197421072867321/154800875592 3178110000006344 a001 182717648081/3940598*73681302247^(1/13) 3178110000006344 a001 3524578/505019158607*192900153618^(17/18) 3178110000006344 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^8 3178110000006344 a001 187917426909949994/591286729879 3178110000006344 a001 3524578/119218851371*192900153618^(8/9) 3178110000006344 a001 53316291173/7881196*73681302247^(2/13) 3178110000006344 a001 225851433717/7881196*28143753123^(1/10) 3178110000006344 a001 3524578/119218851371*73681302247^(12/13) 3178110000006344 a001 956722026041/7881196*10749957122^(1/24) 3178110000006344 a001 10182505537/3940598*312119004989^(2/11) 3178110000006344 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^10 3178110000006344 a001 71778070001176772/225851433717 3178110000006344 a001 591286729879/7881196*10749957122^(1/16) 3178110000006344 a001 182717648081/3940598*10749957122^(1/12) 3178110000006344 a001 10182505537/3940598*28143753123^(1/5) 3178110000006344 a001 139583862445/7881196*10749957122^(1/8) 3178110000006344 a001 32951280099/7881196*10749957122^(3/16) 3178110000006344 a001 53316291173/7881196*10749957122^(1/6) 3178110000006344 a001 10182505537/3940598*10749957122^(5/24) 3178110000006344 a001 956722026041/7881196*4106118243^(1/23) 3178110000006344 a001 7778742049/7881196*45537549124^(4/17) 3178110000006344 a001 3524578/17393796001*312119004989^(4/5) 3178110000006344 a001 7778742049/7881196*817138163596^(4/19) 3178110000006344 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^12 3178110000006344 a001 3524578/17393796001*23725150497407^(11/16) 3178110000006344 a001 7778742049/7881196*192900153618^(2/9) 3178110000006344 a001 13708391546790161/43133785636 3178110000006344 a001 7778742049/7881196*73681302247^(3/13) 3178110000006344 a001 3524578/17393796001*73681302247^(11/13) 3178110000006344 a001 182717648081/3940598*4106118243^(2/23) 3178110000006344 a001 7778742049/7881196*10749957122^(1/4) 3178110000006344 a001 3524578/28143753123*10749957122^(15/16) 3178110000006344 a001 139583862445/7881196*4106118243^(3/23) 3178110000006344 a001 1762289/22768774562*10749957122^(23/24) 3178110000006344 a001 53316291173/7881196*4106118243^(4/23) 3178110000006344 a001 3524578/17393796001*10749957122^(11/12) 3178110000006344 a001 10182505537/3940598*4106118243^(5/23) 3178110000006344 a001 1762289/1268860318*2537720636^(8/9) 3178110000006344 a001 956722026041/7881196*1568397607^(1/22) 3178110000006344 a001 7778742049/7881196*4106118243^(6/23) 3178110000006344 a001 3524578/6643838879*17393796001^(6/7) 3178110000006344 a001 2971215073/7881196*17393796001^(2/7) 3178110000006344 a001 3524578/6643838879*45537549124^(14/17) 3178110000006344 a001 3524578/6643838879*14662949395604^(2/3) 3178110000006344 a001 2971215073/7881196*14662949395604^(2/9) 3178110000006344 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^14 3178110000006344 a001 3524578/6643838879*505019158607^(3/4) 3178110000006344 a001 3524578/6643838879*192900153618^(7/9) 3178110000006344 a001 10472279279564194/32951280099 3178110000006344 a001 2971215073/7881196*10749957122^(7/24) 3178110000006344 a001 3524578/6643838879*10749957122^(7/8) 3178110000006344 a001 182717648081/3940598*1568397607^(1/11) 3178110000006344 a001 2971215073/7881196*4106118243^(7/23) 3178110000006344 a001 139583862445/7881196*1568397607^(3/22) 3178110000006344 a001 3524578/17393796001*4106118243^(22/23) 3178110000006344 a001 53316291173/7881196*1568397607^(2/11) 3178110000006344 a001 3524578/6643838879*4106118243^(21/23) 3178110000006344 a001 10182505537/3940598*1568397607^(5/22) 3178110000006344 a001 12586269025/7881196*1568397607^(1/4) 3178110000006344 a001 7778742049/7881196*1568397607^(3/11) 3178110000006344 a001 956722026041/7881196*599074578^(1/21) 3178110000006344 a001 2971215073/7881196*1568397607^(7/22) 3178110000006344 a001 1762289/1268860318*312119004989^(8/11) 3178110000006344 a001 567451585/3940598*(1/2+1/2*5^(1/2))^16 3178110000006344 a001 1762289/1268860318*23725150497407^(5/8) 3178110000006344 a001 567451585/3940598*73681302247^(4/13) 3178110000006344 a001 1762289/1268860318*73681302247^(10/13) 3178110000006344 a001 1762289/1268860318*28143753123^(4/5) 3178110000006344 a001 800010949022452/2517253805 3178110000006344 a001 567451585/3940598*10749957122^(1/3) 3178110000006344 a001 1762289/1268860318*10749957122^(5/6) 3178110000006344 a001 567451585/3940598*4106118243^(8/23) 3178110000006344 a001 591286729879/7881196*599074578^(1/14) 3178110000006344 a001 1762289/1268860318*4106118243^(20/23) 3178110000006344 a001 182717648081/3940598*599074578^(2/21) 3178110000006344 a001 567451585/3940598*1568397607^(4/11) 3178110000006344 a001 139583862445/7881196*599074578^(1/7) 3178110000006344 a001 3524578/6643838879*1568397607^(21/22) 3178110000006344 a001 21566892818/1970299*599074578^(1/6) 3178110000006344 a001 1762289/1268860318*1568397607^(10/11) 3178110000006344 a001 53316291173/7881196*599074578^(4/21) 3178110000006344 a001 32951280099/7881196*599074578^(3/14) 3178110000006344 a001 10182505537/3940598*599074578^(5/21) 3178110000006344 a001 7778742049/7881196*599074578^(2/7) 3178110000006344 a001 1836311903/7881196*599074578^(5/14) 3178110000006344 a001 2971215073/7881196*599074578^(1/3) 3178110000006344 a001 956722026041/7881196*228826127^(1/20) 3178110000006344 a001 433494437/7881196*2537720636^(2/5) 3178110000006344 a001 433494437/7881196*45537549124^(6/17) 3178110000006344 a001 3524578/969323029*817138163596^(2/3) 3178110000006344 a001 433494437/7881196*14662949395604^(2/7) 3178110000006344 a001 433494437/7881196*(1/2+1/2*5^(1/2))^18 3178110000006344 a001 433494437/7881196*192900153618^(1/3) 3178110000006344 a001 433494437/7881196*10749957122^(3/8) 3178110000006344 a001 3524578/969323029*10749957122^(19/24) 3178110000006344 a001 763942477886293/2403763488 3178110000006344 a001 433494437/7881196*4106118243^(9/23) 3178110000006344 a001 3524578/969323029*4106118243^(19/23) 3178110000006344 a001 567451585/3940598*599074578^(8/21) 3178110000006344 a001 433494437/7881196*1568397607^(9/22) 3178110000006344 a001 3524578/969323029*1568397607^(19/22) 3178110000006344 a001 182717648081/3940598*228826127^(1/10) 3178110000006344 a001 3524578/1568397607*599074578^(13/14) 3178110000006344 a001 433494437/7881196*599074578^(3/7) 3178110000006344 a001 225851433717/7881196*228826127^(1/8) 3178110000006344 a001 1762289/1268860318*599074578^(20/21) 3178110000006344 a001 139583862445/7881196*228826127^(3/20) 3178110000006344 a001 3524578/969323029*599074578^(19/21) 3178110000006344 a001 53316291173/7881196*228826127^(1/5) 3178110000006344 a001 10182505537/3940598*228826127^(1/4) 3178110000006344 a001 7778742049/7881196*228826127^(3/10) 3178110000006344 a001 2971215073/7881196*228826127^(7/20) 3178110000006344 a001 956722026041/7881196*87403803^(1/19) 3178110000006344 a001 1836311903/7881196*228826127^(3/8) 3178110000006344 a001 3524578/370248451*2537720636^(4/5) 3178110000006344 a001 165580141/7881196*2537720636^(4/9) 3178110000006344 a001 3524578/370248451*45537549124^(12/17) 3178110000006344 a001 3524578/370248451*14662949395604^(4/7) 3178110000006344 a001 165580141/7881196*(1/2+1/2*5^(1/2))^20 3178110000006344 a001 165580141/7881196*23725150497407^(5/16) 3178110000006344 a001 165580141/7881196*505019158607^(5/14) 3178110000006344 a001 3524578/370248451*192900153618^(2/3) 3178110000006344 a001 165580141/7881196*73681302247^(5/13) 3178110000006344 a001 3524578/370248451*73681302247^(9/13) 3178110000006344 a001 165580141/7881196*28143753123^(2/5) 3178110000006344 a001 165580141/7881196*10749957122^(5/12) 3178110000006344 a001 3524578/370248451*10749957122^(3/4) 3178110000006344 a001 165580141/7881196*4106118243^(10/23) 3178110000006344 a001 3524578/370248451*4106118243^(18/23) 3178110000006344 a001 583600122205498/1836311903 3178110000006344 a001 165580141/7881196*1568397607^(5/11) 3178110000006344 a001 3524578/370248451*1568397607^(9/11) 3178110000006344 a001 567451585/3940598*228826127^(2/5) 3178110000006344 a001 165580141/7881196*599074578^(10/21) 3178110000006344 a001 433494437/7881196*228826127^(9/20) 3178110000006344 a001 3524578/370248451*599074578^(6/7) 3178110000006344 a001 182717648081/3940598*87403803^(2/19) 3178110000006344 a001 165580141/7881196*228826127^(1/2) 3178110000006344 a001 3524578/969323029*228826127^(19/20) 3178110000006344 a001 139583862445/7881196*87403803^(3/19) 3178110000006344 a001 3524578/370248451*228826127^(9/10) 3178110000006344 a001 53316291173/7881196*87403803^(4/19) 3178110000006344 a001 10182505537/3940598*87403803^(5/19) 3178110000006344 a001 7778742049/7881196*87403803^(6/19) 3178110000006344 a001 2971215073/7881196*87403803^(7/19) 3178110000006344 a001 53316291173/54018521*4870847^(3/8) 3178110000006344 a001 956722026041/7881196*33385282^(1/18) 3178110000006344 a001 1762289/70711162*45537549124^(2/3) 3178110000006344 a001 31622993/3940598*312119004989^(2/5) 3178110000006344 a001 31622993/3940598*(1/2+1/2*5^(1/2))^22 3178110000006344 a001 31622993/3940598*10749957122^(11/24) 3178110000006344 a001 1762289/70711162*10749957122^(17/24) 3178110000006344 a001 31622993/3940598*4106118243^(11/23) 3178110000006344 a001 1762289/70711162*4106118243^(17/23) 3178110000006344 a001 31622993/3940598*1568397607^(1/2) 3178110000006344 a001 1762289/70711162*1568397607^(17/22) 3178110000006344 a001 2504667537572/7880997 3178110000006344 a001 31622993/3940598*599074578^(11/21) 3178110000006344 a001 1762289/70711162*599074578^(17/21) 3178110000006344 a001 567451585/3940598*87403803^(8/19) 3178110000006344 a001 31622993/3940598*228826127^(11/20) 3178110000006344 a001 66978574/1970299*87403803^(1/2) 3178110000006344 a001 433494437/7881196*87403803^(9/19) 3178110000006344 a001 1762289/70711162*228826127^(17/20) 3178110000006344 a001 591286729879/7881196*33385282^(1/12) 3178110000006344 a001 165580141/7881196*87403803^(10/19) 3178110000006344 a001 182717648081/3940598*33385282^(1/9) 3178110000006344 a001 31622993/3940598*87403803^(11/19) 3178110000006344 a001 3524578/370248451*87403803^(18/19) 3178110000006344 a001 139583862445/7881196*33385282^(1/6) 3178110000006344 a001 1762289/70711162*87403803^(17/19) 3178110000006344 a001 53316291173/7881196*33385282^(2/9) 3178110000006344 a001 32951280099/7881196*33385282^(1/4) 3178110000006345 a001 10182505537/3940598*33385282^(5/18) 3178110000006345 a001 7778742049/7881196*33385282^(1/3) 3178110000006345 a001 24157817/7881196*141422324^(8/13) 3178110000006345 a001 3524578/20633239*20633239^(6/7) 3178110000006345 a001 24157817/7881196*2537720636^(8/15) 3178110000006345 a001 24157817/7881196*45537549124^(8/17) 3178110000006345 a001 24157817/7881196*14662949395604^(8/21) 3178110000006345 a001 24157817/7881196*(1/2+1/2*5^(1/2))^24 3178110000006345 a001 3524578/54018521*23725150497407^(1/2) 3178110000006345 a001 3524578/54018521*505019158607^(4/7) 3178110000006345 a001 24157817/7881196*192900153618^(4/9) 3178110000006345 a001 24157817/7881196*73681302247^(6/13) 3178110000006345 a001 3524578/54018521*73681302247^(8/13) 3178110000006345 a001 24157817/7881196*10749957122^(1/2) 3178110000006345 a001 3524578/54018521*10749957122^(2/3) 3178110000006345 a001 24157817/7881196*4106118243^(12/23) 3178110000006345 a001 3524578/54018521*4106118243^(16/23) 3178110000006345 a001 24157817/7881196*1568397607^(6/11) 3178110000006345 a001 3524578/54018521*1568397607^(8/11) 3178110000006345 a001 24157817/7881196*599074578^(4/7) 3178110000006345 a001 3524578/54018521*599074578^(16/21) 3178110000006345 a001 42573055163113/133957148 3178110000006345 a001 2971215073/7881196*33385282^(7/18) 3178110000006345 a001 24157817/7881196*228826127^(3/5) 3178110000006345 a001 3524578/54018521*228826127^(4/5) 3178110000006345 a001 956722026041/7881196*12752043^(1/17) 3178110000006345 a001 1836311903/7881196*33385282^(5/12) 3178110000006345 a001 567451585/3940598*33385282^(4/9) 3178110000006345 a001 24157817/7881196*87403803^(12/19) 3178110000006345 a001 433494437/7881196*33385282^(1/2) 3178110000006345 a001 3524578/54018521*87403803^(16/19) 3178110000006345 a001 102334155/7881196*33385282^(7/12) 3178110000006345 a001 165580141/7881196*33385282^(5/9) 3178110000006346 a001 31622993/3940598*33385282^(11/18) 3178110000006346 a001 3524578/87403803*33385282^(11/12) 3178110000006346 a001 182717648081/3940598*12752043^(2/17) 3178110000006347 a001 1762289/70711162*33385282^(17/18) 3178110000006347 a001 24157817/7881196*33385282^(2/3) 3178110000006347 a001 139583862445/7881196*12752043^(3/17) 3178110000006347 a001 3524578/54018521*33385282^(8/9) 3178110000006348 a001 12586269025/33385282*4870847^(7/16) 3178110000006348 a001 53316291173/7881196*12752043^(4/17) 3178110000006348 a001 233802911/4250681*4870847^(9/16) 3178110000006349 a001 10182505537/3940598*12752043^(5/17) 3178110000006350 a001 20365011074/20633239*4870847^(3/8) 3178110000006351 a001 7778742049/7881196*12752043^(6/17) 3178110000006351 a001 10983760033/29134601*4870847^(7/16) 3178110000006351 a001 4052739537881/33385282*1860498^(1/15) 3178110000006351 a001 3524578/20633239*141422324^(10/13) 3178110000006351 a001 9227465/7881196*141422324^(2/3) 3178110000006351 a001 86267571272/228826127*4870847^(7/16) 3178110000006351 a001 267913919/710646*4870847^(7/16) 3178110000006351 a001 591286729879/1568397607*4870847^(7/16) 3178110000006351 a001 516002918640/1368706081*4870847^(7/16) 3178110000006351 a001 4052739537881/10749957122*4870847^(7/16) 3178110000006351 a001 3536736619241/9381251041*4870847^(7/16) 3178110000006351 a001 6557470319842/17393796001*4870847^(7/16) 3178110000006351 a001 2504730781961/6643838879*4870847^(7/16) 3178110000006351 a001 956722026041/2537720636*4870847^(7/16) 3178110000006351 a001 365435296162/969323029*4870847^(7/16) 3178110000006351 a001 139583862445/370248451*4870847^(7/16) 3178110000006351 a001 3524578/20633239*2537720636^(2/3) 3178110000006351 a001 3524578/20633239*45537549124^(10/17) 3178110000006351 a001 3524578/20633239*312119004989^(6/11) 3178110000006351 a001 3524578/20633239*14662949395604^(10/21) 3178110000006351 a001 3524578/20633239*(1/2+1/2*5^(1/2))^30 3178110000006351 a001 9227465/7881196*(1/2+1/2*5^(1/2))^26 3178110000006351 a001 3524578/20633239*192900153618^(5/9) 3178110000006351 a001 9227465/7881196*73681302247^(1/2) 3178110000006351 a001 3524578/20633239*28143753123^(3/5) 3178110000006351 a001 9227465/7881196*10749957122^(13/24) 3178110000006351 a001 3524578/20633239*10749957122^(5/8) 3178110000006351 a001 9227465/7881196*4106118243^(13/23) 3178110000006351 a001 3524578/20633239*4106118243^(15/23) 3178110000006351 a001 9227465/7881196*1568397607^(13/22) 3178110000006351 a001 3524578/20633239*1568397607^(15/22) 3178110000006351 a001 9227465/7881196*599074578^(13/21) 3178110000006351 a001 3524578/20633239*599074578^(5/7) 3178110000006351 a001 9227465/7881196*228826127^(13/20) 3178110000006351 a001 3524578/20633239*228826127^(3/4) 3178110000006351 a001 6504584026954/20466831 3178110000006351 a001 53316291173/141422324*4870847^(7/16) 3178110000006351 a001 9227465/7881196*87403803^(13/19) 3178110000006352 a001 3524578/20633239*87403803^(15/19) 3178110000006352 a001 2971215073/7881196*12752043^(7/17) 3178110000006352 a001 956722026041/7881196*4870847^(1/16) 3178110000006352 a001 20365011074/54018521*4870847^(7/16) 3178110000006353 a001 567451585/3940598*12752043^(8/17) 3178110000006353 a001 9227465/7881196*33385282^(13/18) 3178110000006353 a001 3536736619241/29134601*1860498^(1/15) 3178110000006353 a001 3524667/39604*12752043^(1/2) 3178110000006354 a001 3524578/20633239*33385282^(5/6) 3178110000006354 a001 433494437/7881196*12752043^(9/17) 3178110000006355 a001 6557470319842/54018521*1860498^(1/15) 3178110000006355 a001 165580141/7881196*12752043^(10/17) 3178110000006357 a001 31622993/3940598*12752043^(11/17) 3178110000006357 a001 14930208/103681*4870847^(1/2) 3178110000006357 a001 267914296/12752043*4870847^(5/8) 3178110000006359 a001 24157817/7881196*12752043^(12/17) 3178110000006359 a001 7778742049/20633239*4870847^(7/16) 3178110000006359 a001 12586269025/87403803*4870847^(1/2) 3178110000006359 a001 32951280099/228826127*4870847^(1/2) 3178110000006360 a001 43133785636/299537289*4870847^(1/2) 3178110000006360 a001 32264490531/224056801*4870847^(1/2) 3178110000006360 a001 591286729879/4106118243*4870847^(1/2) 3178110000006360 a001 774004377960/5374978561*4870847^(1/2) 3178110000006360 a001 4052739537881/28143753123*4870847^(1/2) 3178110000006360 a001 1515744265389/10525900321*4870847^(1/2) 3178110000006360 a001 3278735159921/22768774562*4870847^(1/2) 3178110000006360 a001 2504730781961/17393796001*4870847^(1/2) 3178110000006360 a001 956722026041/6643838879*4870847^(1/2) 3178110000006360 a001 182717648081/1268860318*4870847^(1/2) 3178110000006360 a001 139583862445/969323029*4870847^(1/2) 3178110000006360 a001 53316291173/370248451*4870847^(1/2) 3178110000006360 a001 10182505537/70711162*4870847^(1/2) 3178110000006360 a001 182717648081/3940598*4870847^(1/8) 3178110000006361 a001 7778742049/54018521*4870847^(1/2) 3178110000006361 a001 2504730781961/20633239*1860498^(1/15) 3178110000006363 a001 3524578/54018521*12752043^(16/17) 3178110000006365 a001 956722026041/12752043*1860498^(1/10) 3178110000006365 a001 34111385/4250681*4870847^(11/16) 3178110000006365 a001 1836311903/33385282*4870847^(9/16) 3178110000006366 a001 9227465/7881196*12752043^(13/17) 3178110000006367 a001 2971215073/20633239*4870847^(1/2) 3178110000006367 a001 1602508992/29134601*4870847^(9/16) 3178110000006368 a001 12586269025/228826127*4870847^(9/16) 3178110000006368 a001 10983760033/199691526*4870847^(9/16) 3178110000006368 a001 86267571272/1568397607*4870847^(9/16) 3178110000006368 a001 75283811239/1368706081*4870847^(9/16) 3178110000006368 a001 591286729879/10749957122*4870847^(9/16) 3178110000006368 a001 12585437040/228811001*4870847^(9/16) 3178110000006368 a001 4052739537881/73681302247*4870847^(9/16) 3178110000006368 a001 3536736619241/64300051206*4870847^(9/16) 3178110000006368 a001 6557470319842/119218851371*4870847^(9/16) 3178110000006368 a001 2504730781961/45537549124*4870847^(9/16) 3178110000006368 a001 956722026041/17393796001*4870847^(9/16) 3178110000006368 a001 365435296162/6643838879*4870847^(9/16) 3178110000006368 a001 139583862445/2537720636*4870847^(9/16) 3178110000006368 a001 53316291173/969323029*4870847^(9/16) 3178110000006368 a001 20365011074/370248451*4870847^(9/16) 3178110000006368 a001 7778742049/141422324*4870847^(9/16) 3178110000006368 a001 3524578/20633239*12752043^(15/17) 3178110000006369 a001 139583862445/7881196*4870847^(3/16) 3178110000006369 a001 2971215073/54018521*4870847^(9/16) 3178110000006371 a001 5702887/12752043*4870847^(7/8) 3178110000006373 a001 39088169/12752043*4870847^(3/4) 3178110000006373 a001 701408733/33385282*4870847^(5/8) 3178110000006375 a001 1134903170/20633239*4870847^(9/16) 3178110000006376 a001 1836311903/87403803*4870847^(5/8) 3178110000006376 a001 102287808/4868641*4870847^(5/8) 3178110000006376 a001 12586269025/599074578*4870847^(5/8) 3178110000006376 a001 32951280099/1568397607*4870847^(5/8) 3178110000006376 a001 86267571272/4106118243*4870847^(5/8) 3178110000006376 a001 225851433717/10749957122*4870847^(5/8) 3178110000006376 a001 591286729879/28143753123*4870847^(5/8) 3178110000006376 a001 1548008755920/73681302247*4870847^(5/8) 3178110000006376 a001 4052739537881/192900153618*4870847^(5/8) 3178110000006376 a001 225749145909/10745088481*4870847^(5/8) 3178110000006376 a001 6557470319842/312119004989*4870847^(5/8) 3178110000006376 a001 2504730781961/119218851371*4870847^(5/8) 3178110000006376 a001 956722026041/45537549124*4870847^(5/8) 3178110000006376 a001 365435296162/17393796001*4870847^(5/8) 3178110000006376 a001 139583862445/6643838879*4870847^(5/8) 3178110000006376 a001 53316291173/2537720636*4870847^(5/8) 3178110000006376 a001 20365011074/969323029*4870847^(5/8) 3178110000006376 a001 7778742049/370248451*4870847^(5/8) 3178110000006376 a001 2971215073/141422324*4870847^(5/8) 3178110000006377 a001 53316291173/7881196*4870847^(1/4) 3178110000006377 a001 1134903170/54018521*4870847^(5/8) 3178110000006379 a001 4976784/4250681*4870847^(13/16) 3178110000006382 a001 2504730781961/33385282*1860498^(1/10) 3178110000006382 a001 133957148/16692641*4870847^(11/16) 3178110000006384 a001 433494437/20633239*4870847^(5/8) 3178110000006384 a001 6557470319842/87403803*1860498^(1/10) 3178110000006384 a001 233802911/29134601*4870847^(11/16) 3178110000006385 a001 10610209857723/141422324*1860498^(1/10) 3178110000006385 a001 1836311903/228826127*4870847^(11/16) 3178110000006385 a001 267084832/33281921*4870847^(11/16) 3178110000006385 a001 12586269025/1568397607*4870847^(11/16) 3178110000006385 a001 10983760033/1368706081*4870847^(11/16) 3178110000006385 a001 43133785636/5374978561*4870847^(11/16) 3178110000006385 a001 75283811239/9381251041*4870847^(11/16) 3178110000006385 a001 591286729879/73681302247*4870847^(11/16) 3178110000006385 a001 86000486440/10716675201*4870847^(11/16) 3178110000006385 a001 4052739537881/505019158607*4870847^(11/16) 3178110000006385 a001 3536736619241/440719107401*4870847^(11/16) 3178110000006385 a001 3278735159921/408569081798*4870847^(11/16) 3178110000006385 a001 2504730781961/312119004989*4870847^(11/16) 3178110000006385 a001 956722026041/119218851371*4870847^(11/16) 3178110000006385 a001 182717648081/22768774562*4870847^(11/16) 3178110000006385 a001 139583862445/17393796001*4870847^(11/16) 3178110000006385 a001 53316291173/6643838879*4870847^(11/16) 3178110000006385 a001 10182505537/1268860318*4870847^(11/16) 3178110000006385 a001 7778742049/969323029*4870847^(11/16) 3178110000006385 a001 2971215073/370248451*4870847^(11/16) 3178110000006385 a001 567451585/70711162*4870847^(11/16) 3178110000006385 a001 4052739537881/54018521*1860498^(1/10) 3178110000006386 a001 10182505537/3940598*4870847^(5/16) 3178110000006386 a001 433494437/54018521*4870847^(11/16) 3178110000006389 a001 1762289/3940598*20633239^(4/5) 3178110000006390 a001 14619165/4769326*4870847^(3/4) 3178110000006392 a001 140728068720/1875749*1860498^(1/10) 3178110000006392 a001 165580141/20633239*4870847^(11/16) 3178110000006393 a001 267914296/87403803*4870847^(3/4) 3178110000006393 a001 701408733/228826127*4870847^(3/4) 3178110000006393 a001 1836311903/599074578*4870847^(3/4) 3178110000006393 a001 686789568/224056801*4870847^(3/4) 3178110000006393 a001 12586269025/4106118243*4870847^(3/4) 3178110000006393 a001 32951280099/10749957122*4870847^(3/4) 3178110000006393 a001 86267571272/28143753123*4870847^(3/4) 3178110000006393 a001 32264490531/10525900321*4870847^(3/4) 3178110000006393 a001 591286729879/192900153618*4870847^(3/4) 3178110000006393 a001 1548008755920/505019158607*4870847^(3/4) 3178110000006393 a001 1515744265389/494493258286*4870847^(3/4) 3178110000006393 a001 2504730781961/817138163596*4870847^(3/4) 3178110000006393 a001 956722026041/312119004989*4870847^(3/4) 3178110000006393 a001 365435296162/119218851371*4870847^(3/4) 3178110000006393 a001 139583862445/45537549124*4870847^(3/4) 3178110000006393 a001 53316291173/17393796001*4870847^(3/4) 3178110000006393 a001 20365011074/6643838879*4870847^(3/4) 3178110000006393 a001 7778742049/2537720636*4870847^(3/4) 3178110000006393 a001 2971215073/969323029*4870847^(3/4) 3178110000006393 a001 1134903170/370248451*4870847^(3/4) 3178110000006393 a001 433494437/141422324*4870847^(3/4) 3178110000006394 a001 7778742049/7881196*4870847^(3/8) 3178110000006394 a001 165580141/54018521*4870847^(3/4) 3178110000006395 a001 1762289/3940598*17393796001^(4/7) 3178110000006395 a001 1762289/3940598*14662949395604^(4/9) 3178110000006395 a001 1762289/3940598*(1/2+1/2*5^(1/2))^28 3178110000006395 a001 1762289/3940598*73681302247^(7/13) 3178110000006395 a001 1762289/3940598*10749957122^(7/12) 3178110000006395 a001 1762289/3940598*4106118243^(14/23) 3178110000006395 a001 1762289/3940598*1568397607^(7/11) 3178110000006395 a001 1762289/3940598*599074578^(2/3) 3178110000006395 a001 1762289/3940598*228826127^(7/10) 3178110000006395 a001 1762289/3940598*87403803^(14/19) 3178110000006395 a001 12422650078084/39088169 3178110000006395 a001 591286729879/12752043*1860498^(2/15) 3178110000006396 a001 5702887/33385282*4870847^(15/16) 3178110000006397 a001 1762289/3940598*33385282^(7/9) 3178110000006398 a001 39088169/33385282*4870847^(13/16) 3178110000006401 a001 63245986/20633239*4870847^(3/4) 3178110000006401 a001 34111385/29134601*4870847^(13/16) 3178110000006401 a001 267914296/228826127*4870847^(13/16) 3178110000006401 a001 233802911/199691526*4870847^(13/16) 3178110000006401 a001 1836311903/1568397607*4870847^(13/16) 3178110000006401 a001 1602508992/1368706081*4870847^(13/16) 3178110000006401 a001 12586269025/10749957122*4870847^(13/16) 3178110000006401 a001 10983760033/9381251041*4870847^(13/16) 3178110000006401 a001 86267571272/73681302247*4870847^(13/16) 3178110000006401 a001 75283811239/64300051206*4870847^(13/16) 3178110000006401 a001 2504730781961/2139295485799*4870847^(13/16) 3178110000006401 a001 365435296162/312119004989*4870847^(13/16) 3178110000006401 a001 139583862445/119218851371*4870847^(13/16) 3178110000006401 a001 53316291173/45537549124*4870847^(13/16) 3178110000006401 a001 20365011074/17393796001*4870847^(13/16) 3178110000006401 a001 7778742049/6643838879*4870847^(13/16) 3178110000006401 a001 2971215073/2537720636*4870847^(13/16) 3178110000006401 a001 1134903170/969323029*4870847^(13/16) 3178110000006401 a001 433494437/370248451*4870847^(13/16) 3178110000006402 a001 165580141/141422324*4870847^(13/16) 3178110000006402 a001 2971215073/7881196*4870847^(7/16) 3178110000006403 a001 63245986/54018521*4870847^(13/16) 3178110000006403 a001 32951280099/4870847*1860498^(4/15) 3178110000006404 a001 7465176/16692641*4870847^(7/8) 3178110000006405 a001 956722026041/7881196*1860498^(1/15) 3178110000006409 a001 39088169/87403803*4870847^(7/8) 3178110000006410 a001 102334155/228826127*4870847^(7/8) 3178110000006410 a001 133957148/299537289*4870847^(7/8) 3178110000006410 a001 701408733/1568397607*4870847^(7/8) 3178110000006410 a001 1836311903/4106118243*4870847^(7/8) 3178110000006410 a001 2403763488/5374978561*4870847^(7/8) 3178110000006410 a001 12586269025/28143753123*4870847^(7/8) 3178110000006410 a001 32951280099/73681302247*4870847^(7/8) 3178110000006410 a001 43133785636/96450076809*4870847^(7/8) 3178110000006410 a001 225851433717/505019158607*4870847^(7/8) 3178110000006410 a001 10610209857723/23725150497407*4870847^(7/8) 3178110000006410 a001 182717648081/408569081798*4870847^(7/8) 3178110000006410 a001 139583862445/312119004989*4870847^(7/8) 3178110000006410 a001 53316291173/119218851371*4870847^(7/8) 3178110000006410 a001 10182505537/22768774562*4870847^(7/8) 3178110000006410 a001 7778742049/17393796001*4870847^(7/8) 3178110000006410 a001 2971215073/6643838879*4870847^(7/8) 3178110000006410 a001 567451585/1268860318*4870847^(7/8) 3178110000006410 a001 433494437/969323029*4870847^(7/8) 3178110000006410 a001 165580141/370248451*4870847^(7/8) 3178110000006410 a001 24157817/20633239*4870847^(13/16) 3178110000006410 a001 31622993/70711162*4870847^(7/8) 3178110000006411 a001 567451585/3940598*4870847^(1/2) 3178110000006411 a001 1762289/3940598*12752043^(14/17) 3178110000006412 a001 24157817/54018521*4870847^(7/8) 3178110000006412 a001 774004377960/16692641*1860498^(2/15) 3178110000006415 a001 4052739537881/87403803*1860498^(2/15) 3178110000006415 a001 4976784/29134601*4870847^(15/16) 3178110000006415 a001 225749145909/4868641*1860498^(2/15) 3178110000006415 a001 3278735159921/70711162*1860498^(2/15) 3178110000006416 a001 2504730781961/54018521*1860498^(2/15) 3178110000006418 a001 39088169/228826127*4870847^(15/16) 3178110000006418 a001 34111385/199691526*4870847^(15/16) 3178110000006418 a001 267914296/1568397607*4870847^(15/16) 3178110000006418 a001 233802911/1368706081*4870847^(15/16) 3178110000006418 a001 1836311903/10749957122*4870847^(15/16) 3178110000006418 a001 1602508992/9381251041*4870847^(15/16) 3178110000006418 a001 12586269025/73681302247*4870847^(15/16) 3178110000006418 a001 10983760033/64300051206*4870847^(15/16) 3178110000006418 a001 86267571272/505019158607*4870847^(15/16) 3178110000006418 a001 75283811239/440719107401*4870847^(15/16) 3178110000006418 a001 2504730781961/14662949395604*4870847^(15/16) 3178110000006418 a001 139583862445/817138163596*4870847^(15/16) 3178110000006418 a001 53316291173/312119004989*4870847^(15/16) 3178110000006418 a001 20365011074/119218851371*4870847^(15/16) 3178110000006418 a001 7778742049/45537549124*4870847^(15/16) 3178110000006418 a001 2971215073/17393796001*4870847^(15/16) 3178110000006418 a001 1134903170/6643838879*4870847^(15/16) 3178110000006418 a001 433494437/2537720636*4870847^(15/16) 3178110000006418 a001 165580141/969323029*4870847^(15/16) 3178110000006418 a001 63245986/370248451*4870847^(15/16) 3178110000006419 a001 433494437/7881196*4870847^(9/16) 3178110000006419 a001 24157817/141422324*4870847^(15/16) 3178110000006422 a001 956722026041/20633239*1860498^(2/15) 3178110000006425 a001 9227465/20633239*4870847^(7/8) 3178110000006426 a001 365435296162/12752043*1860498^(1/6) 3178110000006427 a001 2/2178309*(1/2+1/2*5^(1/2))^60 3178110000006427 a001 9227465/54018521*4870847^(15/16) 3178110000006427 a001 165580141/7881196*4870847^(5/8) 3178110000006434 a001 20365011074/4870847*1860498^(3/10) 3178110000006436 a001 591286729879/7881196*1860498^(1/10) 3178110000006436 a001 31622993/3940598*4870847^(11/16) 3178110000006443 a001 956722026041/33385282*1860498^(1/6) 3178110000006445 a001 2504730781961/87403803*1860498^(1/6) 3178110000006445 a001 24157817/7881196*4870847^(3/4) 3178110000006446 a001 6557470319842/228826127*1860498^(1/6) 3178110000006446 a001 10610209857723/370248451*1860498^(1/6) 3178110000006446 a001 4052739537881/141422324*1860498^(1/6) 3178110000006447 a001 1548008755920/54018521*1860498^(1/6) 3178110000006453 a001 591286729879/20633239*1860498^(1/6) 3178110000006457 a001 75283811239/4250681*1860498^(1/5) 3178110000006460 a001 9227465/7881196*4870847^(13/16) 3178110000006465 a001 12586269025/4870847*1860498^(1/3) 3178110000006466 a001 182717648081/3940598*1860498^(2/15) 3178110000006467 a001 2178309/3010349*7881196^(9/11) 3178110000006473 a001 591286729879/33385282*1860498^(1/5) 3178110000006476 a001 516002918640/29134601*1860498^(1/5) 3178110000006476 a001 4052739537881/228826127*1860498^(1/5) 3178110000006476 a001 3536736619241/199691526*1860498^(1/5) 3178110000006476 a001 6557470319842/370248451*1860498^(1/5) 3178110000006476 a001 2504730781961/141422324*1860498^(1/5) 3178110000006477 a001 3524578/20633239*4870847^(15/16) 3178110000006477 a001 956722026041/54018521*1860498^(1/5) 3178110000006484 a001 365435296162/20633239*1860498^(1/5) 3178110000006497 a001 225851433717/7881196*1860498^(1/6) 3178110000006502 a001 2932589879121/9227465 3178110000006509 a001 2178309/3010349*141422324^(9/13) 3178110000006509 a001 2178309/3010349*2537720636^(3/5) 3178110000006509 a001 2178309/3010349*45537549124^(9/17) 3178110000006509 a001 2178309/3010349*817138163596^(9/19) 3178110000006509 a001 1346269/4870847*(1/2+1/2*5^(1/2))^29 3178110000006509 a001 2178309/3010349*14662949395604^(3/7) 3178110000006509 a001 1346269/4870847*1322157322203^(1/2) 3178110000006509 a001 2178309/3010349*192900153618^(1/2) 3178110000006509 a001 2178309/3010349*10749957122^(9/16) 3178110000006509 a001 2178309/3010349*599074578^(9/14) 3178110000006511 a001 2178309/3010349*33385282^(3/4) 3178110000006512 a001 1762289/3940598*4870847^(7/8) 3178110000006518 a001 86267571272/12752043*1860498^(4/15) 3178110000006526 a001 4807526976/4870847*1860498^(2/5) 3178110000006527 a001 139583862445/7881196*1860498^(1/5) 3178110000006535 a001 32264490531/4769326*1860498^(4/15) 3178110000006537 a001 591286729879/87403803*1860498^(4/15) 3178110000006537 a001 1548008755920/228826127*1860498^(4/15) 3178110000006537 a001 4052739537881/599074578*1860498^(4/15) 3178110000006537 a001 1515744265389/224056801*1860498^(4/15) 3178110000006537 a001 6557470319842/969323029*1860498^(4/15) 3178110000006537 a001 2504730781961/370248451*1860498^(4/15) 3178110000006538 a001 956722026041/141422324*1860498^(4/15) 3178110000006538 a001 365435296162/54018521*1860498^(4/15) 3178110000006545 a001 139583862445/20633239*1860498^(4/15) 3178110000006548 a001 53316291173/12752043*1860498^(3/10) 3178110000006551 a001 1346269/1860498*1860498^(9/10) 3178110000006565 a001 139583862445/33385282*1860498^(3/10) 3178110000006568 a001 365435296162/87403803*1860498^(3/10) 3178110000006568 a001 956722026041/228826127*1860498^(3/10) 3178110000006568 a001 2504730781961/599074578*1860498^(3/10) 3178110000006568 a001 6557470319842/1568397607*1860498^(3/10) 3178110000006568 a001 10610209857723/2537720636*1860498^(3/10) 3178110000006568 a001 4052739537881/969323029*1860498^(3/10) 3178110000006568 a001 1548008755920/370248451*1860498^(3/10) 3178110000006568 a001 591286729879/141422324*1860498^(3/10) 3178110000006569 a001 225851433717/54018521*1860498^(3/10) 3178110000006575 a001 86267571272/20633239*1860498^(3/10) 3178110000006579 a001 10983760033/4250681*1860498^(1/3) 3178110000006587 a001 1836311903/4870847*1860498^(7/15) 3178110000006589 a001 53316291173/7881196*1860498^(4/15) 3178110000006596 a001 43133785636/16692641*1860498^(1/3) 3178110000006598 a001 75283811239/29134601*1860498^(1/3) 3178110000006599 a001 591286729879/228826127*1860498^(1/3) 3178110000006599 a001 86000486440/33281921*1860498^(1/3) 3178110000006599 a001 4052739537881/1568397607*1860498^(1/3) 3178110000006599 a001 3536736619241/1368706081*1860498^(1/3) 3178110000006599 a001 3278735159921/1268860318*1860498^(1/3) 3178110000006599 a001 2504730781961/969323029*1860498^(1/3) 3178110000006599 a001 956722026041/370248451*1860498^(1/3) 3178110000006599 a001 182717648081/70711162*1860498^(1/3) 3178110000006600 a001 139583862445/54018521*1860498^(1/3) 3178110000006606 a001 53316291173/20633239*1860498^(1/3) 3178110000006608 a001 591286729879/4870847*710647^(1/14) 3178110000006610 a001 24157817/3010349*7881196^(2/3) 3178110000006610 a001 39088169/3010349*7881196^(7/11) 3178110000006614 a001 9227465/3010349*7881196^(8/11) 3178110000006615 a001 165580141/3010349*7881196^(6/11) 3178110000006618 a001 1134903170/4870847*1860498^(1/2) 3178110000006618 a001 5702887/3010349*20633239^(5/7) 3178110000006619 a001 32951280099/7881196*1860498^(3/10) 3178110000006620 a001 701408733/3010349*7881196^(5/11) 3178110000006623 a001 7677619978603/24157817 3178110000006624 a001 5702887/3010349*2537720636^(5/9) 3178110000006624 a001 5702887/3010349*312119004989^(5/11) 3178110000006624 a001 1346269/12752043*(1/2+1/2*5^(1/2))^31 3178110000006624 a001 1346269/12752043*9062201101803^(1/2) 3178110000006624 a001 5702887/3010349*(1/2+1/2*5^(1/2))^25 3178110000006624 a001 5702887/3010349*3461452808002^(5/12) 3178110000006624 a001 5702887/3010349*28143753123^(1/2) 3178110000006624 a001 5702887/3010349*228826127^(5/8) 3178110000006625 a001 2971215073/3010349*7881196^(4/11) 3178110000006626 a001 4807526976/3010349*7881196^(1/3) 3178110000006629 a001 12586269025/3010349*7881196^(3/11) 3178110000006634 a001 53316291173/3010349*7881196^(2/11) 3178110000006635 a001 32951280099/710647*271443^(2/13) 3178110000006638 a001 39088169/3010349*20633239^(3/5) 3178110000006639 a001 225851433717/3010349*7881196^(1/11) 3178110000006639 a001 63245986/3010349*20633239^(4/7) 3178110000006640 a001 701408733/3010349*20633239^(3/7) 3178110000006640 a001 10050135028344/31622993 3178110000006640 a001 12586269025/12752043*1860498^(2/5) 3178110000006640 a001 1346269/33385282*141422324^(11/13) 3178110000006640 a001 1134903170/3010349*20633239^(2/5) 3178110000006640 a001 1346269/33385282*2537720636^(11/15) 3178110000006640 a001 1346269/33385282*45537549124^(11/17) 3178110000006640 a001 1346269/33385282*312119004989^(3/5) 3178110000006640 a001 1346269/33385282*817138163596^(11/19) 3178110000006640 a001 1346269/33385282*14662949395604^(11/21) 3178110000006640 a001 1346269/33385282*(1/2+1/2*5^(1/2))^33 3178110000006640 a001 14930352/3010349*(1/2+1/2*5^(1/2))^23 3178110000006640 a001 1346269/33385282*192900153618^(11/18) 3178110000006640 a001 1346269/33385282*10749957122^(11/16) 3178110000006640 a001 14930352/3010349*4106118243^(1/2) 3178110000006640 a001 1346269/33385282*1568397607^(3/4) 3178110000006640 a001 1346269/33385282*599074578^(11/14) 3178110000006641 a001 7778742049/3010349*20633239^(2/7) 3178110000006642 a001 32951280099/3010349*20633239^(1/5) 3178110000006642 a001 86267571272/3010349*20633239^(1/7) 3178110000006643 a001 39088169/3010349*141422324^(7/13) 3178110000006643 a001 52623190191461/165580141 3178110000006643 a001 1346269/87403803*2537720636^(7/9) 3178110000006643 a001 39088169/3010349*2537720636^(7/15) 3178110000006643 a001 1346269/87403803*17393796001^(5/7) 3178110000006643 a001 39088169/3010349*17393796001^(3/7) 3178110000006643 a001 39088169/3010349*45537549124^(7/17) 3178110000006643 a001 1346269/87403803*312119004989^(7/11) 3178110000006643 a001 1346269/87403803*14662949395604^(5/9) 3178110000006643 a001 39088169/3010349*14662949395604^(1/3) 3178110000006643 a001 39088169/3010349*(1/2+1/2*5^(1/2))^21 3178110000006643 a001 1346269/87403803*505019158607^(5/8) 3178110000006643 a001 39088169/3010349*192900153618^(7/18) 3178110000006643 a001 1346269/87403803*28143753123^(7/10) 3178110000006643 a001 39088169/3010349*10749957122^(7/16) 3178110000006643 a001 39088169/3010349*599074578^(1/2) 3178110000006643 a001 1346269/87403803*599074578^(5/6) 3178110000006643 a001 1346269/87403803*228826127^(7/8) 3178110000006643 a001 1346269/33385282*33385282^(11/12) 3178110000006643 a001 137769300517695/433494437 3178110000006643 a001 701408733/3010349*141422324^(5/13) 3178110000006643 a001 102334155/3010349*817138163596^(1/3) 3178110000006643 a001 102334155/3010349*(1/2+1/2*5^(1/2))^19 3178110000006643 a001 1836311903/3010349*141422324^(1/3) 3178110000006643 a001 165580141/3010349*141422324^(6/13) 3178110000006643 a001 2971215073/3010349*141422324^(4/13) 3178110000006643 a001 12586269025/3010349*141422324^(3/13) 3178110000006643 a001 53316291173/3010349*141422324^(2/13) 3178110000006643 a001 225851433717/3010349*141422324^(1/13) 3178110000006643 a001 180342355680812/567451585 3178110000006643 a001 1346269/599074578*2537720636^(13/15) 3178110000006643 a001 1346269/599074578*45537549124^(13/17) 3178110000006643 a001 267914296/3010349*45537549124^(1/3) 3178110000006643 a001 1346269/599074578*14662949395604^(13/21) 3178110000006643 a001 267914296/3010349*(1/2+1/2*5^(1/2))^17 3178110000006643 a001 1346269/599074578*192900153618^(13/18) 3178110000006643 a001 1346269/599074578*73681302247^(3/4) 3178110000006643 a001 1346269/599074578*10749957122^(13/16) 3178110000006643 a001 701408733/3010349*2537720636^(1/3) 3178110000006643 a001 944284833567177/2971215073 3178110000006643 a001 701408733/3010349*45537549124^(5/17) 3178110000006643 a001 701408733/3010349*312119004989^(3/11) 3178110000006643 a001 701408733/3010349*14662949395604^(5/21) 3178110000006643 a001 701408733/3010349*(1/2+1/2*5^(1/2))^15 3178110000006643 a001 701408733/3010349*192900153618^(5/18) 3178110000006643 a001 701408733/3010349*28143753123^(3/10) 3178110000006643 a001 701408733/3010349*10749957122^(5/16) 3178110000006643 a001 1346269/599074578*599074578^(13/14) 3178110000006643 a001 2472169789339907/7778742049 3178110000006643 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^13 3178110000006643 a001 1836311903/3010349*73681302247^(1/4) 3178110000006643 a001 12586269025/3010349*2537720636^(1/5) 3178110000006643 a001 7778742049/3010349*2537720636^(2/9) 3178110000006643 a001 53316291173/3010349*2537720636^(2/15) 3178110000006643 a001 2971215073/3010349*2537720636^(4/15) 3178110000006643 a001 86267571272/3010349*2537720636^(1/9) 3178110000006643 a001 225851433717/3010349*2537720636^(1/15) 3178110000006643 a001 3236112267226272/10182505537 3178110000006643 a001 1346269/10749957122*45537549124^(15/17) 3178110000006643 a001 1346269/10749957122*312119004989^(9/11) 3178110000006643 a001 4807526976/3010349*312119004989^(1/5) 3178110000006643 a001 1346269/10749957122*14662949395604^(5/7) 3178110000006643 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^11 3178110000006643 a001 1346269/10749957122*192900153618^(5/6) 3178110000006643 a001 1346269/10749957122*28143753123^(9/10) 3178110000006643 a001 12586269025/3010349*45537549124^(3/17) 3178110000006643 a001 16944503814017725/53316291173 3178110000006643 a001 12586269025/3010349*817138163596^(3/19) 3178110000006643 a001 12586269025/3010349*14662949395604^(1/7) 3178110000006643 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^9 3178110000006643 a001 12586269025/3010349*192900153618^(1/6) 3178110000006643 a001 32951280099/3010349*17393796001^(1/7) 3178110000006643 a001 1346269/10749957122*10749957122^(15/16) 3178110000006643 a001 44361286907600631/139583862445 3178110000006643 a001 1346269/73681302247*14662949395604^(7/9) 3178110000006643 a001 32951280099/3010349*14662949395604^(1/9) 3178110000006643 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^7 3178110000006643 a001 1346269/73681302247*505019158607^(7/8) 3178110000006643 a001 225851433717/3010349*45537549124^(1/17) 3178110000006643 a001 1346269/192900153618*817138163596^(17/19) 3178110000006643 a001 1346269/192900153618*14662949395604^(17/21) 3178110000006643 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^5 3178110000006643 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^3 3178110000006643 a001 1346269/1322157322203*3461452808002^(11/12) 3178110000006643 a001 1042018099911831240/3278735159921 3178110000006643 a006 5^(1/2)*Fibonacci(59)/Lucas(31)/sqrt(5) 3178110000006643 a001 1346269/817138163596*14662949395604^(6/7) 3178110000006643 a001 365435296162/3010349*(1/2+1/2*5^(1/2))^2 3178110000006643 a001 1346269/312119004989*23725150497407^(13/16) 3178110000006643 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^4 3178110000006643 a001 53316291173/3010349*45537549124^(2/17) 3178110000006643 a001 1346269/312119004989*505019158607^(13/14) 3178110000006643 a001 139583862445/3010349*73681302247^(1/13) 3178110000006643 a001 1346269/45537549124*45537549124^(16/17) 3178110000006643 a001 1346269/119218851371*312119004989^(10/11) 3178110000006643 a001 53316291173/3010349*14662949395604^(2/21) 3178110000006643 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^6 3178110000006643 a001 1346269/119218851371*3461452808002^(5/6) 3178110000006643 a001 86267571272/3010349*28143753123^(1/10) 3178110000006643 a001 12586269025/3010349*10749957122^(3/16) 3178110000006643 a001 365435296162/3010349*10749957122^(1/24) 3178110000006643 a001 1346269/45537549124*14662949395604^(16/21) 3178110000006643 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^8 3178110000006643 a001 20365011074/3010349*505019158607^(1/7) 3178110000006643 a001 1346269/45537549124*192900153618^(8/9) 3178110000006643 a001 13708391546791453/43133785636 3178110000006643 a001 225851433717/3010349*10749957122^(1/16) 3178110000006643 a001 1346269/45537549124*73681302247^(12/13) 3178110000006643 a001 139583862445/3010349*10749957122^(1/12) 3178110000006643 a001 53316291173/3010349*10749957122^(1/8) 3178110000006643 a001 20365011074/3010349*10749957122^(1/6) 3178110000006643 a001 365435296162/3010349*4106118243^(1/23) 3178110000006643 a001 7778742049/3010349*312119004989^(2/11) 3178110000006643 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^10 3178110000006643 a001 10472279279565181/32951280099 3178110000006643 a001 7778742049/3010349*28143753123^(1/5) 3178110000006643 a001 7778742049/3010349*10749957122^(5/24) 3178110000006643 a001 139583862445/3010349*4106118243^(2/23) 3178110000006643 a001 53316291173/3010349*4106118243^(3/23) 3178110000006643 a001 1346269/2537720636*2537720636^(14/15) 3178110000006643 a001 20365011074/3010349*4106118243^(4/23) 3178110000006643 a001 1346269/17393796001*10749957122^(23/24) 3178110000006643 a001 7778742049/3010349*4106118243^(5/23) 3178110000006643 a001 365435296162/3010349*1568397607^(1/22) 3178110000006643 a001 2971215073/3010349*45537549124^(4/17) 3178110000006643 a001 1346269/6643838879*312119004989^(4/5) 3178110000006643 a001 2971215073/3010349*817138163596^(4/19) 3178110000006643 a001 1346269/6643838879*23725150497407^(11/16) 3178110000006643 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^12 3178110000006643 a001 2971215073/3010349*192900153618^(2/9) 3178110000006643 a001 2971215073/3010349*73681302247^(3/13) 3178110000006643 a001 1346269/6643838879*73681302247^(11/13) 3178110000006643 a001 4000054745112637/12586269025 3178110000006643 a001 2971215073/3010349*10749957122^(1/4) 3178110000006643 a001 1346269/6643838879*10749957122^(11/12) 3178110000006643 a001 139583862445/3010349*1568397607^(1/11) 3178110000006643 a001 2971215073/3010349*4106118243^(6/23) 3178110000006643 a001 53316291173/3010349*1568397607^(3/22) 3178110000006643 a001 20365011074/3010349*1568397607^(2/11) 3178110000006643 a001 1346269/6643838879*4106118243^(22/23) 3178110000006643 a001 4807526976/3010349*1568397607^(1/4) 3178110000006643 a001 7778742049/3010349*1568397607^(5/22) 3178110000006643 a001 365435296162/3010349*599074578^(1/21) 3178110000006643 a001 2971215073/3010349*1568397607^(3/11) 3178110000006643 a001 1346269/2537720636*17393796001^(6/7) 3178110000006643 a001 1134903170/3010349*17393796001^(2/7) 3178110000006643 a001 1346269/2537720636*45537549124^(14/17) 3178110000006643 a001 1134903170/3010349*14662949395604^(2/9) 3178110000006643 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^14 3178110000006643 a001 1134903170/3010349*505019158607^(1/4) 3178110000006643 a001 1346269/2537720636*192900153618^(7/9) 3178110000006643 a001 1134903170/3010349*10749957122^(7/24) 3178110000006643 a001 1346269/2537720636*10749957122^(7/8) 3178110000006643 a001 763942477886365/2403763488 3178110000006643 a001 1134903170/3010349*4106118243^(7/23) 3178110000006643 a001 225851433717/3010349*599074578^(1/14) 3178110000006643 a001 1346269/2537720636*4106118243^(21/23) 3178110000006643 a001 139583862445/3010349*599074578^(2/21) 3178110000006643 a001 1134903170/3010349*1568397607^(7/22) 3178110000006643 a001 53316291173/3010349*599074578^(1/7) 3178110000006643 a001 32951280099/3010349*599074578^(1/6) 3178110000006643 a001 20365011074/3010349*599074578^(4/21) 3178110000006643 a001 1346269/2537720636*1568397607^(21/22) 3178110000006643 a001 701408733/3010349*599074578^(5/14) 3178110000006643 a001 12586269025/3010349*599074578^(3/14) 3178110000006643 a001 7778742049/3010349*599074578^(5/21) 3178110000006643 a001 2971215073/3010349*599074578^(2/7) 3178110000006643 a001 1346269/969323029*2537720636^(8/9) 3178110000006643 a001 365435296162/3010349*228826127^(1/20) 3178110000006643 a001 1346269/969323029*312119004989^(8/11) 3178110000006643 a001 1346269/969323029*23725150497407^(5/8) 3178110000006643 a001 433494437/3010349*(1/2+1/2*5^(1/2))^16 3178110000006643 a001 433494437/3010349*23725150497407^(1/4) 3178110000006643 a001 433494437/3010349*73681302247^(4/13) 3178110000006643 a001 1346269/969323029*73681302247^(10/13) 3178110000006643 a001 1346269/969323029*28143753123^(4/5) 3178110000006643 a001 433494437/3010349*10749957122^(1/3) 3178110000006643 a001 1346269/969323029*10749957122^(5/6) 3178110000006643 a001 1134903170/3010349*599074578^(1/3) 3178110000006643 a001 433494437/3010349*4106118243^(8/23) 3178110000006643 a001 1346269/969323029*4106118243^(20/23) 3178110000006643 a001 583600122205553/1836311903 3178110000006643 a001 433494437/3010349*1568397607^(4/11) 3178110000006643 a001 1346269/969323029*1568397607^(10/11) 3178110000006643 a001 139583862445/3010349*228826127^(1/10) 3178110000006643 a001 433494437/3010349*599074578^(8/21) 3178110000006643 a001 86267571272/3010349*228826127^(1/8) 3178110000006643 a001 53316291173/3010349*228826127^(3/20) 3178110000006643 a001 1346269/969323029*599074578^(20/21) 3178110000006643 a001 20365011074/3010349*228826127^(1/5) 3178110000006643 a001 1346269/141422324*141422324^(12/13) 3178110000006643 a001 7778742049/3010349*228826127^(1/4) 3178110000006643 a001 2971215073/3010349*228826127^(3/10) 3178110000006643 a001 701408733/3010349*228826127^(3/8) 3178110000006643 a001 1134903170/3010349*228826127^(7/20) 3178110000006643 a001 365435296162/3010349*87403803^(1/19) 3178110000006643 a001 165580141/3010349*2537720636^(2/5) 3178110000006643 a001 165580141/3010349*45537549124^(6/17) 3178110000006643 a001 1346269/370248451*817138163596^(2/3) 3178110000006643 a001 165580141/3010349*(1/2+1/2*5^(1/2))^18 3178110000006643 a001 165580141/3010349*192900153618^(1/3) 3178110000006643 a001 165580141/3010349*10749957122^(3/8) 3178110000006643 a001 1346269/370248451*10749957122^(19/24) 3178110000006643 a001 165580141/3010349*4106118243^(9/23) 3178110000006643 a001 1346269/370248451*4106118243^(19/23) 3178110000006643 a001 165580141/3010349*1568397607^(9/22) 3178110000006643 a001 1346269/370248451*1568397607^(19/22) 3178110000006643 a001 222915410843929/701408733 3178110000006643 a001 165580141/3010349*599074578^(3/7) 3178110000006643 a001 433494437/3010349*228826127^(2/5) 3178110000006643 a001 1346269/370248451*599074578^(19/21) 3178110000006643 a001 139583862445/3010349*87403803^(2/19) 3178110000006643 a001 165580141/3010349*228826127^(9/20) 3178110000006643 a001 53316291173/3010349*87403803^(3/19) 3178110000006643 a001 1346269/370248451*228826127^(19/20) 3178110000006643 a001 20365011074/3010349*87403803^(4/19) 3178110000006643 a001 7778742049/3010349*87403803^(5/19) 3178110000006643 a001 2971215073/3010349*87403803^(6/19) 3178110000006643 a001 102334155/3010349*87403803^(1/2) 3178110000006643 a001 1134903170/3010349*87403803^(7/19) 3178110000006643 a001 365435296162/3010349*33385282^(1/18) 3178110000006643 a001 1346269/141422324*2537720636^(4/5) 3178110000006643 a001 63245986/3010349*2537720636^(4/9) 3178110000006643 a001 1346269/141422324*45537549124^(12/17) 3178110000006643 a001 1346269/141422324*14662949395604^(4/7) 3178110000006643 a001 63245986/3010349*(1/2+1/2*5^(1/2))^20 3178110000006643 a001 63245986/3010349*505019158607^(5/14) 3178110000006643 a001 1346269/141422324*505019158607^(9/14) 3178110000006643 a001 1346269/141422324*192900153618^(2/3) 3178110000006643 a001 63245986/3010349*73681302247^(5/13) 3178110000006643 a001 1346269/141422324*73681302247^(9/13) 3178110000006643 a001 63245986/3010349*28143753123^(2/5) 3178110000006643 a001 63245986/3010349*10749957122^(5/12) 3178110000006643 a001 1346269/141422324*10749957122^(3/4) 3178110000006643 a001 63245986/3010349*4106118243^(10/23) 3178110000006643 a001 1346269/141422324*4106118243^(18/23) 3178110000006643 a001 63245986/3010349*1568397607^(5/11) 3178110000006643 a001 1346269/141422324*1568397607^(9/11) 3178110000006643 a001 63245986/3010349*599074578^(10/21) 3178110000006643 a001 1346269/141422324*599074578^(6/7) 3178110000006643 a001 42573055163117/133957148 3178110000006643 a001 433494437/3010349*87403803^(8/19) 3178110000006643 a001 63245986/3010349*228826127^(1/2) 3178110000006643 a001 1346269/141422324*228826127^(9/10) 3178110000006643 a001 165580141/3010349*87403803^(9/19) 3178110000006643 a001 225851433717/3010349*33385282^(1/12) 3178110000006644 a001 139583862445/3010349*33385282^(1/9) 3178110000006644 a001 63245986/3010349*87403803^(10/19) 3178110000006644 a001 53316291173/3010349*33385282^(1/6) 3178110000006644 a001 1346269/141422324*87403803^(18/19) 3178110000006644 a001 20365011074/3010349*33385282^(2/9) 3178110000006644 a001 12586269025/3010349*33385282^(1/4) 3178110000006644 a001 7778742049/3010349*33385282^(5/18) 3178110000006644 a001 2971215073/3010349*33385282^(1/3) 3178110000006644 a001 1346269/54018521*45537549124^(2/3) 3178110000006644 a001 24157817/3010349*312119004989^(2/5) 3178110000006644 a001 24157817/3010349*(1/2+1/2*5^(1/2))^22 3178110000006644 a001 24157817/3010349*10749957122^(11/24) 3178110000006644 a001 1346269/54018521*10749957122^(17/24) 3178110000006644 a001 24157817/3010349*4106118243^(11/23) 3178110000006644 a001 1346269/54018521*4106118243^(17/23) 3178110000006644 a001 24157817/3010349*1568397607^(1/2) 3178110000006644 a001 1346269/54018521*1568397607^(17/22) 3178110000006644 a001 24157817/3010349*599074578^(11/21) 3178110000006644 a001 1346269/54018521*599074578^(17/21) 3178110000006644 a001 1134903170/3010349*33385282^(7/18) 3178110000006644 a001 24157817/3010349*228826127^(11/20) 3178110000006644 a001 1346269/54018521*228826127^(17/20) 3178110000006644 a001 365435296162/3010349*12752043^(1/17) 3178110000006644 a001 32522920134773/102334155 3178110000006644 a001 701408733/3010349*33385282^(5/12) 3178110000006644 a001 39088169/3010349*33385282^(7/12) 3178110000006645 a001 433494437/3010349*33385282^(4/9) 3178110000006645 a001 24157817/3010349*87403803^(11/19) 3178110000006645 a001 165580141/3010349*33385282^(1/2) 3178110000006645 a001 1346269/54018521*87403803^(17/19) 3178110000006645 a001 63245986/3010349*33385282^(5/9) 3178110000006646 a001 139583862445/3010349*12752043^(2/17) 3178110000006646 a001 24157817/3010349*33385282^(11/18) 3178110000006647 a001 53316291173/3010349*12752043^(3/17) 3178110000006647 a001 1346269/54018521*33385282^(17/18) 3178110000006648 a001 20365011074/3010349*12752043^(4/17) 3178110000006648 a001 1346269/7881196*7881196^(10/11) 3178110000006648 a001 701408733/4870847*1860498^(8/15) 3178110000006649 a001 7778742049/3010349*12752043^(5/17) 3178110000006650 a001 10182505537/3940598*1860498^(1/3) 3178110000006650 a001 2971215073/3010349*12752043^(6/17) 3178110000006651 a001 9227465/3010349*141422324^(8/13) 3178110000006651 a001 9227465/3010349*2537720636^(8/15) 3178110000006651 a001 9227465/3010349*45537549124^(8/17) 3178110000006651 a001 1346269/20633239*(1/2+1/2*5^(1/2))^32 3178110000006651 a001 1346269/20633239*23725150497407^(1/2) 3178110000006651 a001 9227465/3010349*14662949395604^(8/21) 3178110000006651 a001 9227465/3010349*(1/2+1/2*5^(1/2))^24 3178110000006651 a001 1346269/20633239*505019158607^(4/7) 3178110000006651 a001 9227465/3010349*192900153618^(4/9) 3178110000006651 a001 9227465/3010349*73681302247^(6/13) 3178110000006651 a001 1346269/20633239*73681302247^(8/13) 3178110000006651 a001 9227465/3010349*10749957122^(1/2) 3178110000006651 a001 1346269/20633239*10749957122^(2/3) 3178110000006651 a001 9227465/3010349*4106118243^(12/23) 3178110000006651 a001 1346269/20633239*4106118243^(16/23) 3178110000006651 a001 9227465/3010349*1568397607^(6/11) 3178110000006651 a001 1346269/20633239*1568397607^(8/11) 3178110000006651 a001 9227465/3010349*599074578^(4/7) 3178110000006651 a001 1346269/20633239*599074578^(16/21) 3178110000006651 a001 9227465/3010349*228826127^(3/5) 3178110000006651 a001 1346269/20633239*228826127^(4/5) 3178110000006651 a001 9227465/3010349*87403803^(12/19) 3178110000006651 a001 1346269/20633239*87403803^(16/19) 3178110000006651 a001 12422650078085/39088169 3178110000006651 a001 1134903170/3010349*12752043^(7/17) 3178110000006652 a001 365435296162/3010349*4870847^(1/16) 3178110000006652 a001 433494437/3010349*12752043^(8/17) 3178110000006653 a001 9227465/3010349*33385282^(2/3) 3178110000006653 a001 267914296/3010349*12752043^(1/2) 3178110000006653 a001 1346269/20633239*33385282^(8/9) 3178110000006654 a001 165580141/3010349*12752043^(9/17) 3178110000006655 a001 63245986/3010349*12752043^(10/17) 3178110000006657 a001 32951280099/33385282*1860498^(2/5) 3178110000006657 a001 24157817/3010349*12752043^(11/17) 3178110000006659 a001 86267571272/87403803*1860498^(2/5) 3178110000006660 a001 225851433717/228826127*1860498^(2/5) 3178110000006660 a001 591286729879/599074578*1860498^(2/5) 3178110000006660 a001 1548008755920/1568397607*1860498^(2/5) 3178110000006660 a001 4052739537881/4106118243*1860498^(2/5) 3178110000006660 a001 4807525989/4870846*1860498^(2/5) 3178110000006660 a001 6557470319842/6643838879*1860498^(2/5) 3178110000006660 a001 2504730781961/2537720636*1860498^(2/5) 3178110000006660 a001 956722026041/969323029*1860498^(2/5) 3178110000006660 a001 365435296162/370248451*1860498^(2/5) 3178110000006660 a001 139583862445/141422324*1860498^(2/5) 3178110000006660 a001 139583862445/3010349*4870847^(1/8) 3178110000006661 a001 53316291173/54018521*1860498^(2/5) 3178110000006665 a001 9227465/3010349*12752043^(12/17) 3178110000006667 a001 20365011074/20633239*1860498^(2/5) 3178110000006668 a001 53316291173/3010349*4870847^(3/16) 3178110000006669 a001 1346269/20633239*12752043^(16/17) 3178110000006677 a001 20365011074/3010349*4870847^(1/4) 3178110000006685 a001 7778742049/3010349*4870847^(5/16) 3178110000006688 a001 1346269/7881196*20633239^(6/7) 3178110000006693 a001 2971215073/3010349*4870847^(3/8) 3178110000006694 a001 1346269/7881196*141422324^(10/13) 3178110000006694 a001 3524578/3010349*141422324^(2/3) 3178110000006694 a001 1346269/7881196*2537720636^(2/3) 3178110000006694 a001 1346269/7881196*45537549124^(10/17) 3178110000006694 a001 1346269/7881196*312119004989^(6/11) 3178110000006694 a001 1346269/7881196*14662949395604^(10/21) 3178110000006694 a001 1346269/7881196*(1/2+1/2*5^(1/2))^30 3178110000006694 a001 3524578/3010349*(1/2+1/2*5^(1/2))^26 3178110000006694 a001 1346269/7881196*192900153618^(5/9) 3178110000006694 a001 3524578/3010349*73681302247^(1/2) 3178110000006694 a001 1346269/7881196*28143753123^(3/5) 3178110000006694 a001 3524578/3010349*10749957122^(13/24) 3178110000006694 a001 1346269/7881196*10749957122^(5/8) 3178110000006694 a001 3524578/3010349*4106118243^(13/23) 3178110000006694 a001 1346269/7881196*4106118243^(15/23) 3178110000006694 a001 3524578/3010349*1568397607^(13/22) 3178110000006694 a001 1346269/7881196*1568397607^(15/22) 3178110000006694 a001 3524578/3010349*599074578^(13/21) 3178110000006694 a001 1346269/7881196*599074578^(5/7) 3178110000006694 a001 3524578/3010349*228826127^(13/20) 3178110000006694 a001 1346269/7881196*228826127^(3/4) 3178110000006695 a001 3524578/3010349*87403803^(13/19) 3178110000006695 a001 1346269/7881196*87403803^(15/19) 3178110000006696 a001 3524578/3010349*33385282^(13/18) 3178110000006697 a001 1346269/7881196*33385282^(5/6) 3178110000006697 a001 2372515049741/7465176 3178110000006701 a001 1602508992/4250681*1860498^(7/15) 3178110000006702 a001 1134903170/3010349*4870847^(7/16) 3178110000006704 a001 365435296162/3010349*1860498^(1/15) 3178110000006709 a001 3524578/3010349*12752043^(13/17) 3178110000006709 a001 267914296/4870847*1860498^(3/5) 3178110000006710 a001 433494437/3010349*4870847^(1/2) 3178110000006711 a001 7778742049/7881196*1860498^(2/5) 3178110000006712 a001 1346269/7881196*12752043^(15/17) 3178110000006718 a001 12586269025/33385282*1860498^(7/15) 3178110000006719 a001 165580141/3010349*4870847^(9/16) 3178110000006721 a001 10983760033/29134601*1860498^(7/15) 3178110000006721 a001 86267571272/228826127*1860498^(7/15) 3178110000006721 a001 267913919/710646*1860498^(7/15) 3178110000006721 a001 591286729879/1568397607*1860498^(7/15) 3178110000006721 a001 516002918640/1368706081*1860498^(7/15) 3178110000006721 a001 4052739537881/10749957122*1860498^(7/15) 3178110000006721 a001 3536736619241/9381251041*1860498^(7/15) 3178110000006721 a001 6557470319842/17393796001*1860498^(7/15) 3178110000006721 a001 2504730781961/6643838879*1860498^(7/15) 3178110000006721 a001 956722026041/2537720636*1860498^(7/15) 3178110000006721 a001 365435296162/969323029*1860498^(7/15) 3178110000006721 a001 139583862445/370248451*1860498^(7/15) 3178110000006721 a001 53316291173/141422324*1860498^(7/15) 3178110000006722 a001 20365011074/54018521*1860498^(7/15) 3178110000006723 a001 516002918640/4250681*710647^(1/14) 3178110000006723 a001 10983760033/620166*710647^(3/14) 3178110000006727 a001 63245986/3010349*4870847^(5/8) 3178110000006728 a001 7778742049/20633239*1860498^(7/15) 3178110000006732 a001 2971215073/12752043*1860498^(1/2) 3178110000006735 a001 225851433717/3010349*1860498^(1/10) 3178110000006736 a001 24157817/3010349*4870847^(11/16) 3178110000006739 a001 4052739537881/33385282*710647^(1/14) 3178110000006742 a001 3536736619241/29134601*710647^(1/14) 3178110000006743 a001 6557470319842/54018521*710647^(1/14) 3178110000006749 a001 7778742049/33385282*1860498^(1/2) 3178110000006750 a001 2504730781961/20633239*710647^(1/14) 3178110000006751 a001 9227465/3010349*4870847^(3/4) 3178110000006751 a001 20365011074/87403803*1860498^(1/2) 3178110000006752 a001 53316291173/228826127*1860498^(1/2) 3178110000006752 a001 139583862445/599074578*1860498^(1/2) 3178110000006752 a001 365435296162/1568397607*1860498^(1/2) 3178110000006752 a001 956722026041/4106118243*1860498^(1/2) 3178110000006752 a001 2504730781961/10749957122*1860498^(1/2) 3178110000006752 a001 6557470319842/28143753123*1860498^(1/2) 3178110000006752 a001 10610209857723/45537549124*1860498^(1/2) 3178110000006752 a001 4052739537881/17393796001*1860498^(1/2) 3178110000006752 a001 1548008755920/6643838879*1860498^(1/2) 3178110000006752 a001 591286729879/2537720636*1860498^(1/2) 3178110000006752 a001 225851433717/969323029*1860498^(1/2) 3178110000006752 a001 86267571272/370248451*1860498^(1/2) 3178110000006752 a001 63246219/271444*1860498^(1/2) 3178110000006753 a001 12586269025/54018521*1860498^(1/2) 3178110000006759 a001 4807526976/20633239*1860498^(1/2) 3178110000006763 a001 1836311903/12752043*1860498^(8/15) 3178110000006766 a001 139583862445/3010349*1860498^(2/15) 3178110000006771 a001 102334155/4870847*1860498^(2/3) 3178110000006772 a001 2971215073/7881196*1860498^(7/15) 3178110000006779 a001 14930208/103681*1860498^(8/15) 3178110000006782 a001 12586269025/87403803*1860498^(8/15) 3178110000006782 a001 32951280099/228826127*1860498^(8/15) 3178110000006782 a001 43133785636/299537289*1860498^(8/15) 3178110000006782 a001 32264490531/224056801*1860498^(8/15) 3178110000006782 a001 591286729879/4106118243*1860498^(8/15) 3178110000006782 a001 774004377960/5374978561*1860498^(8/15) 3178110000006782 a001 4052739537881/28143753123*1860498^(8/15) 3178110000006782 a001 1515744265389/10525900321*1860498^(8/15) 3178110000006782 a001 3278735159921/22768774562*1860498^(8/15) 3178110000006782 a001 2504730781961/17393796001*1860498^(8/15) 3178110000006782 a001 956722026041/6643838879*1860498^(8/15) 3178110000006782 a001 182717648081/1268860318*1860498^(8/15) 3178110000006782 a001 139583862445/969323029*1860498^(8/15) 3178110000006782 a001 53316291173/370248451*1860498^(8/15) 3178110000006782 a001 10182505537/70711162*1860498^(8/15) 3178110000006783 a001 7778742049/54018521*1860498^(8/15) 3178110000006790 a001 2971215073/20633239*1860498^(8/15) 3178110000006793 a001 956722026041/7881196*710647^(1/14) 3178110000006796 a001 86267571272/3010349*1860498^(1/6) 3178110000006801 a001 63245986/4870847*1860498^(7/10) 3178110000006803 a001 1836311903/7881196*1860498^(1/2) 3178110000006803 a001 3524578/3010349*4870847^(13/16) 3178110000006820 a001 1346269/7881196*4870847^(15/16) 3178110000006824 a001 233802911/4250681*1860498^(3/5) 3178110000006827 a001 53316291173/3010349*1860498^(1/5) 3178110000006831 a001 39088169/4870847*1860498^(11/15) 3178110000006833 a001 567451585/3940598*1860498^(8/15) 3178110000006841 a001 1836311903/33385282*1860498^(3/5) 3178110000006843 a001 1602508992/29134601*1860498^(3/5) 3178110000006843 a001 12586269025/228826127*1860498^(3/5) 3178110000006843 a001 10983760033/199691526*1860498^(3/5) 3178110000006843 a001 86267571272/1568397607*1860498^(3/5) 3178110000006843 a001 75283811239/1368706081*1860498^(3/5) 3178110000006843 a001 591286729879/10749957122*1860498^(3/5) 3178110000006843 a001 12585437040/228811001*1860498^(3/5) 3178110000006843 a001 4052739537881/73681302247*1860498^(3/5) 3178110000006843 a001 3536736619241/64300051206*1860498^(3/5) 3178110000006843 a001 6557470319842/119218851371*1860498^(3/5) 3178110000006843 a001 2504730781961/45537549124*1860498^(3/5) 3178110000006843 a001 956722026041/17393796001*1860498^(3/5) 3178110000006843 a001 365435296162/6643838879*1860498^(3/5) 3178110000006843 a001 139583862445/2537720636*1860498^(3/5) 3178110000006843 a001 53316291173/969323029*1860498^(3/5) 3178110000006843 a001 20365011074/370248451*1860498^(3/5) 3178110000006844 a001 7778742049/141422324*1860498^(3/5) 3178110000006845 a001 2971215073/54018521*1860498^(3/5) 3178110000006851 a001 1134903170/20633239*1860498^(3/5) 3178110000006866 a001 86267571272/1149851*439204^(1/9) 3178110000006882 a001 2178309/4870847*1860498^(14/15) 3178110000006885 a001 267914296/12752043*1860498^(2/3) 3178110000006888 a001 20365011074/3010349*1860498^(4/15) 3178110000006890 a001 14930352/4870847*1860498^(4/5) 3178110000006895 a001 433494437/7881196*1860498^(3/5) 3178110000006902 a001 701408733/33385282*1860498^(2/3) 3178110000006904 a001 1836311903/87403803*1860498^(2/3) 3178110000006905 a001 102287808/4868641*1860498^(2/3) 3178110000006905 a001 12586269025/599074578*1860498^(2/3) 3178110000006905 a001 32951280099/1568397607*1860498^(2/3) 3178110000006905 a001 86267571272/4106118243*1860498^(2/3) 3178110000006905 a001 225851433717/10749957122*1860498^(2/3) 3178110000006905 a001 591286729879/28143753123*1860498^(2/3) 3178110000006905 a001 1548008755920/73681302247*1860498^(2/3) 3178110000006905 a001 4052739537881/192900153618*1860498^(2/3) 3178110000006905 a001 225749145909/10745088481*1860498^(2/3) 3178110000006905 a001 6557470319842/312119004989*1860498^(2/3) 3178110000006905 a001 2504730781961/119218851371*1860498^(2/3) 3178110000006905 a001 956722026041/45537549124*1860498^(2/3) 3178110000006905 a001 365435296162/17393796001*1860498^(2/3) 3178110000006905 a001 139583862445/6643838879*1860498^(2/3) 3178110000006905 a001 53316291173/2537720636*1860498^(2/3) 3178110000006905 a001 20365011074/969323029*1860498^(2/3) 3178110000006905 a001 7778742049/370248451*1860498^(2/3) 3178110000006905 a001 2971215073/141422324*1860498^(2/3) 3178110000006906 a001 1134903170/54018521*1860498^(2/3) 3178110000006912 a001 433494437/20633239*1860498^(2/3) 3178110000006916 a001 165580141/12752043*1860498^(7/10) 3178110000006919 a001 12586269025/3010349*1860498^(3/10) 3178110000006931 a001 9227465/4870847*1860498^(5/6) 3178110000006932 a001 433494437/33385282*1860498^(7/10) 3178110000006935 a001 5702887/4870847*1860498^(13/15) 3178110000006935 a001 1134903170/87403803*1860498^(7/10) 3178110000006935 a001 2971215073/228826127*1860498^(7/10) 3178110000006935 a001 7778742049/599074578*1860498^(7/10) 3178110000006935 a001 20365011074/1568397607*1860498^(7/10) 3178110000006935 a001 53316291173/4106118243*1860498^(7/10) 3178110000006935 a001 139583862445/10749957122*1860498^(7/10) 3178110000006935 a001 365435296162/28143753123*1860498^(7/10) 3178110000006935 a001 956722026041/73681302247*1860498^(7/10) 3178110000006935 a001 2504730781961/192900153618*1860498^(7/10) 3178110000006935 a001 10610209857723/817138163596*1860498^(7/10) 3178110000006935 a001 4052739537881/312119004989*1860498^(7/10) 3178110000006935 a001 1548008755920/119218851371*1860498^(7/10) 3178110000006935 a001 591286729879/45537549124*1860498^(7/10) 3178110000006935 a001 7787980473/599786069*1860498^(7/10) 3178110000006935 a001 86267571272/6643838879*1860498^(7/10) 3178110000006935 a001 32951280099/2537720636*1860498^(7/10) 3178110000006935 a001 12586269025/969323029*1860498^(7/10) 3178110000006935 a001 4807526976/370248451*1860498^(7/10) 3178110000006935 a001 1836311903/141422324*1860498^(7/10) 3178110000006936 a001 701408733/54018521*1860498^(7/10) 3178110000006943 a001 9238424/711491*1860498^(7/10) 3178110000006946 a001 34111385/4250681*1860498^(11/15) 3178110000006948 a001 10182505537/930249*710647^(1/4) 3178110000006949 a001 7778742049/3010349*1860498^(1/3) 3178110000006956 a001 165580141/7881196*1860498^(2/3) 3178110000006963 a001 133957148/16692641*1860498^(11/15) 3178110000006965 a001 233802911/29134601*1860498^(11/15) 3178110000006966 a001 1836311903/228826127*1860498^(11/15) 3178110000006966 a001 267084832/33281921*1860498^(11/15) 3178110000006966 a001 12586269025/1568397607*1860498^(11/15) 3178110000006966 a001 10983760033/1368706081*1860498^(11/15) 3178110000006966 a001 43133785636/5374978561*1860498^(11/15) 3178110000006966 a001 75283811239/9381251041*1860498^(11/15) 3178110000006966 a001 591286729879/73681302247*1860498^(11/15) 3178110000006966 a001 86000486440/10716675201*1860498^(11/15) 3178110000006966 a001 4052739537881/505019158607*1860498^(11/15) 3178110000006966 a001 3536736619241/440719107401*1860498^(11/15) 3178110000006966 a001 3278735159921/408569081798*1860498^(11/15) 3178110000006966 a001 2504730781961/312119004989*1860498^(11/15) 3178110000006966 a001 956722026041/119218851371*1860498^(11/15) 3178110000006966 a001 182717648081/22768774562*1860498^(11/15) 3178110000006966 a001 139583862445/17393796001*1860498^(11/15) 3178110000006966 a001 53316291173/6643838879*1860498^(11/15) 3178110000006966 a001 10182505537/1268860318*1860498^(11/15) 3178110000006966 a001 7778742049/969323029*1860498^(11/15) 3178110000006966 a001 2971215073/370248451*1860498^(11/15) 3178110000006966 a001 567451585/70711162*1860498^(11/15) 3178110000006967 a001 433494437/54018521*1860498^(11/15) 3178110000006973 a001 165580141/20633239*1860498^(11/15) 3178110000006986 a001 102334155/7881196*1860498^(7/10) 3178110000006988 a001 1346269/3010349*20633239^(4/5) 3178110000006994 a001 1346269/3010349*17393796001^(4/7) 3178110000006994 a001 1346269/3010349*14662949395604^(4/9) 3178110000006994 a001 1346269/3010349*(1/2+1/2*5^(1/2))^28 3178110000006994 a001 1346269/3010349*73681302247^(7/13) 3178110000006994 a001 1346269/3010349*10749957122^(7/12) 3178110000006994 a001 1346269/3010349*4106118243^(14/23) 3178110000006994 a001 1346269/3010349*1568397607^(7/11) 3178110000006994 a001 1346269/3010349*599074578^(2/3) 3178110000006994 a001 1346269/3010349*228826127^(7/10) 3178110000006994 a001 1346269/3010349*87403803^(14/19) 3178110000006996 a001 1346269/3010349*33385282^(7/9) 3178110000007007 a001 39088169/12752043*1860498^(4/5) 3178110000007010 a001 1346269/3010349*12752043^(14/17) 3178110000007011 a001 2971215073/3010349*1860498^(2/5) 3178110000007013 a001 1812440220361/5702887 3178110000007017 a001 31622993/3940598*1860498^(11/15) 3178110000007024 a001 14619165/4769326*1860498^(4/5) 3178110000007027 a001 267914296/87403803*1860498^(4/5) 3178110000007027 a001 701408733/228826127*1860498^(4/5) 3178110000007027 a001 1836311903/599074578*1860498^(4/5) 3178110000007027 a001 686789568/224056801*1860498^(4/5) 3178110000007027 a001 12586269025/4106118243*1860498^(4/5) 3178110000007027 a001 32951280099/10749957122*1860498^(4/5) 3178110000007027 a001 86267571272/28143753123*1860498^(4/5) 3178110000007027 a001 32264490531/10525900321*1860498^(4/5) 3178110000007027 a001 591286729879/192900153618*1860498^(4/5) 3178110000007027 a001 1548008755920/505019158607*1860498^(4/5) 3178110000007027 a001 1515744265389/494493258286*1860498^(4/5) 3178110000007027 a001 2504730781961/817138163596*1860498^(4/5) 3178110000007027 a001 956722026041/312119004989*1860498^(4/5) 3178110000007027 a001 365435296162/119218851371*1860498^(4/5) 3178110000007027 a001 139583862445/45537549124*1860498^(4/5) 3178110000007027 a001 53316291173/17393796001*1860498^(4/5) 3178110000007027 a001 20365011074/6643838879*1860498^(4/5) 3178110000007027 a001 7778742049/2537720636*1860498^(4/5) 3178110000007027 a001 2971215073/969323029*1860498^(4/5) 3178110000007027 a001 1134903170/370248451*1860498^(4/5) 3178110000007027 a001 433494437/141422324*1860498^(4/5) 3178110000007028 a001 165580141/54018521*1860498^(4/5) 3178110000007035 a001 63245986/20633239*1860498^(4/5) 3178110000007036 a001 3524578/4870847*1860498^(9/10) 3178110000007039 a001 24157817/12752043*1860498^(5/6) 3178110000007055 a001 31622993/16692641*1860498^(5/6) 3178110000007057 a001 165580141/87403803*1860498^(5/6) 3178110000007058 a001 225851433717/4870847*710647^(1/7) 3178110000007058 a001 433494437/228826127*1860498^(5/6) 3178110000007058 a001 567451585/299537289*1860498^(5/6) 3178110000007058 a001 2971215073/1568397607*1860498^(5/6) 3178110000007058 a001 7778742049/4106118243*1860498^(5/6) 3178110000007058 a001 10182505537/5374978561*1860498^(5/6) 3178110000007058 a001 53316291173/28143753123*1860498^(5/6) 3178110000007058 a001 139583862445/73681302247*1860498^(5/6) 3178110000007058 a001 182717648081/96450076809*1860498^(5/6) 3178110000007058 a001 956722026041/505019158607*1860498^(5/6) 3178110000007058 a001 10610209857723/5600748293801*1860498^(5/6) 3178110000007058 a001 591286729879/312119004989*1860498^(5/6) 3178110000007058 a001 225851433717/119218851371*1860498^(5/6) 3178110000007058 a001 21566892818/11384387281*1860498^(5/6) 3178110000007058 a001 32951280099/17393796001*1860498^(5/6) 3178110000007058 a001 12586269025/6643838879*1860498^(5/6) 3178110000007058 a001 1201881744/634430159*1860498^(5/6) 3178110000007058 a001 1836311903/969323029*1860498^(5/6) 3178110000007058 a001 701408733/370248451*1860498^(5/6) 3178110000007058 a001 66978574/35355581*1860498^(5/6) 3178110000007059 a001 102334155/54018521*1860498^(5/6) 3178110000007065 a001 39088169/20633239*1860498^(5/6) 3178110000007066 a001 4976784/4250681*1860498^(13/15) 3178110000007072 a001 1134903170/3010349*1860498^(7/15) 3178110000007079 a001 24157817/7881196*1860498^(4/5) 3178110000007085 a001 39088169/33385282*1860498^(13/15) 3178110000007088 a001 34111385/29134601*1860498^(13/15) 3178110000007088 a001 267914296/228826127*1860498^(13/15) 3178110000007088 a001 233802911/199691526*1860498^(13/15) 3178110000007088 a001 1836311903/1568397607*1860498^(13/15) 3178110000007088 a001 1602508992/1368706081*1860498^(13/15) 3178110000007088 a001 12586269025/10749957122*1860498^(13/15) 3178110000007088 a001 10983760033/9381251041*1860498^(13/15) 3178110000007088 a001 86267571272/73681302247*1860498^(13/15) 3178110000007088 a001 75283811239/64300051206*1860498^(13/15) 3178110000007088 a001 2504730781961/2139295485799*1860498^(13/15) 3178110000007088 a001 365435296162/312119004989*1860498^(13/15) 3178110000007088 a001 139583862445/119218851371*1860498^(13/15) 3178110000007088 a001 53316291173/45537549124*1860498^(13/15) 3178110000007088 a001 20365011074/17393796001*1860498^(13/15) 3178110000007088 a001 7778742049/6643838879*1860498^(13/15) 3178110000007088 a001 2971215073/2537720636*1860498^(13/15) 3178110000007088 a001 1134903170/969323029*1860498^(13/15) 3178110000007088 a001 433494437/370248451*1860498^(13/15) 3178110000007088 a001 165580141/141422324*1860498^(13/15) 3178110000007090 a001 63245986/54018521*1860498^(13/15) 3178110000007093 a001 365435296162/3010349*710647^(1/14) 3178110000007097 a001 24157817/20633239*1860498^(13/15) 3178110000007102 a001 701408733/3010349*1860498^(1/2) 3178110000007106 a001 3732588/1970299*1860498^(5/6) 3178110000007107 a001 9227465/12752043*1860498^(9/10) 3178110000007110 a001 5702887/12752043*1860498^(14/15) 3178110000007111 a001 1346269/3010349*4870847^(7/8) 3178110000007117 a001 24157817/33385282*1860498^(9/10) 3178110000007119 a001 63245986/87403803*1860498^(9/10) 3178110000007119 a001 165580141/228826127*1860498^(9/10) 3178110000007119 a001 433494437/599074578*1860498^(9/10) 3178110000007119 a001 1134903170/1568397607*1860498^(9/10) 3178110000007119 a001 2971215073/4106118243*1860498^(9/10) 3178110000007119 a001 7778742049/10749957122*1860498^(9/10) 3178110000007119 a001 20365011074/28143753123*1860498^(9/10) 3178110000007119 a001 53316291173/73681302247*1860498^(9/10) 3178110000007119 a001 139583862445/192900153618*1860498^(9/10) 3178110000007119 a001 365435296162/505019158607*1860498^(9/10) 3178110000007119 a001 10610209857723/14662949395604*1860498^(9/10) 3178110000007119 a001 225851433717/312119004989*1860498^(9/10) 3178110000007119 a001 86267571272/119218851371*1860498^(9/10) 3178110000007119 a001 32951280099/45537549124*1860498^(9/10) 3178110000007119 a001 12586269025/17393796001*1860498^(9/10) 3178110000007119 a001 4807526976/6643838879*1860498^(9/10) 3178110000007119 a001 1836311903/2537720636*1860498^(9/10) 3178110000007119 a001 701408733/969323029*1860498^(9/10) 3178110000007119 a001 267914296/370248451*1860498^(9/10) 3178110000007119 a001 102334155/141422324*1860498^(9/10) 3178110000007120 a001 39088169/54018521*1860498^(9/10) 3178110000007123 a001 14930352/20633239*1860498^(9/10) 3178110000007133 a001 433494437/3010349*1860498^(8/15) 3178110000007144 a001 7465176/16692641*1860498^(14/15) 3178110000007147 a001 9227465/7881196*1860498^(13/15) 3178110000007149 a001 39088169/87403803*1860498^(14/15) 3178110000007149 a001 102334155/228826127*1860498^(14/15) 3178110000007149 a001 133957148/299537289*1860498^(14/15) 3178110000007149 a001 701408733/1568397607*1860498^(14/15) 3178110000007149 a001 1836311903/4106118243*1860498^(14/15) 3178110000007149 a001 2403763488/5374978561*1860498^(14/15) 3178110000007149 a001 12586269025/28143753123*1860498^(14/15) 3178110000007149 a001 32951280099/73681302247*1860498^(14/15) 3178110000007149 a001 43133785636/96450076809*1860498^(14/15) 3178110000007149 a001 225851433717/505019158607*1860498^(14/15) 3178110000007149 a001 591286729879/1322157322203*1860498^(14/15) 3178110000007149 a001 10610209857723/23725150497407*1860498^(14/15) 3178110000007149 a001 182717648081/408569081798*1860498^(14/15) 3178110000007149 a001 139583862445/312119004989*1860498^(14/15) 3178110000007149 a001 53316291173/119218851371*1860498^(14/15) 3178110000007149 a001 10182505537/22768774562*1860498^(14/15) 3178110000007149 a001 7778742049/17393796001*1860498^(14/15) 3178110000007149 a001 2971215073/6643838879*1860498^(14/15) 3178110000007149 a001 567451585/1268860318*1860498^(14/15) 3178110000007149 a001 433494437/969323029*1860498^(14/15) 3178110000007150 a001 165580141/370248451*1860498^(14/15) 3178110000007150 a001 31622993/70711162*1860498^(14/15) 3178110000007150 a001 5702887/7881196*1860498^(9/10) 3178110000007152 a001 24157817/54018521*1860498^(14/15) 3178110000007164 a001 9227465/20633239*1860498^(14/15) 3178110000007172 a001 591286729879/12752043*710647^(1/7) 3178110000007172 a001 12586269025/1860498*710647^(2/7) 3178110000007189 a001 774004377960/16692641*710647^(1/7) 3178110000007191 a001 4052739537881/87403803*710647^(1/7) 3178110000007191 a001 225749145909/4868641*710647^(1/7) 3178110000007192 a001 3278735159921/70711162*710647^(1/7) 3178110000007193 a001 2504730781961/54018521*710647^(1/7) 3178110000007194 a001 165580141/3010349*1860498^(3/5) 3178110000007199 a001 956722026041/20633239*710647^(1/7) 3178110000007211 a001 1/416020*(1/2+1/2*5^(1/2))^58 3178110000007243 a001 182717648081/3940598*710647^(1/7) 3178110000007252 a001 1762289/3940598*1860498^(14/15) 3178110000007256 a001 63245986/3010349*1860498^(2/3) 3178110000007286 a001 39088169/3010349*1860498^(7/10) 3178110000007318 a001 24157817/3010349*1860498^(11/15) 3178110000007336 a001 2178309/3010349*1860498^(9/10) 3178110000007385 a001 9227465/3010349*1860498^(4/5) 3178110000007389 a001 5702887/3010349*1860498^(5/6) 3178110000007427 a001 427859097160/1346269 3178110000007490 a001 3524578/3010349*1860498^(13/15) 3178110000007507 a001 86267571272/4870847*710647^(3/14) 3178110000007542 a001 139583862445/3010349*710647^(1/7) 3178110000007622 a001 75283811239/4250681*710647^(3/14) 3178110000007622 a001 267084832/103361*710647^(5/14) 3178110000007638 a001 591286729879/33385282*710647^(3/14) 3178110000007641 a001 516002918640/29134601*710647^(3/14) 3178110000007641 a001 4052739537881/228826127*710647^(3/14) 3178110000007641 a001 3536736619241/199691526*710647^(3/14) 3178110000007641 a001 6557470319842/370248451*710647^(3/14) 3178110000007641 a001 2504730781961/141422324*710647^(3/14) 3178110000007642 a001 956722026041/54018521*710647^(3/14) 3178110000007649 a001 365435296162/20633239*710647^(3/14) 3178110000007692 a001 139583862445/7881196*710647^(3/14) 3178110000007732 a001 53316291173/4870847*710647^(1/4) 3178110000007736 a001 832040/1149851*7881196^(9/11) 3178110000007778 a001 832040/1149851*141422324^(9/13) 3178110000007778 a001 832040/1149851*2537720636^(3/5) 3178110000007778 a001 832040/1149851*45537549124^(9/17) 3178110000007778 a001 832040/1149851*817138163596^(9/19) 3178110000007778 a001 514229/1860498*(1/2+1/2*5^(1/2))^29 3178110000007778 a001 514229/1860498*1322157322203^(1/2) 3178110000007778 a001 832040/1149851*(1/2+1/2*5^(1/2))^27 3178110000007778 a001 832040/1149851*192900153618^(1/2) 3178110000007778 a001 832040/1149851*10749957122^(9/16) 3178110000007778 a001 832040/1149851*599074578^(9/14) 3178110000007780 a001 832040/1149851*33385282^(3/4) 3178110000007846 a001 139583862445/12752043*710647^(1/4) 3178110000007851 a001 1346269/3010349*1860498^(14/15) 3178110000007863 a001 182717648081/16692641*710647^(1/4) 3178110000007865 a001 956722026041/87403803*710647^(1/4) 3178110000007866 a001 2504730781961/228826127*710647^(1/4) 3178110000007866 a001 3278735159921/299537289*710647^(1/4) 3178110000007866 a001 10610209857723/969323029*710647^(1/4) 3178110000007866 a001 4052739537881/370248451*710647^(1/4) 3178110000007866 a001 387002188980/35355581*710647^(1/4) 3178110000007867 a001 591286729879/54018521*710647^(1/4) 3178110000007873 a001 7787980473/711491*710647^(1/4) 3178110000007917 a001 21566892818/1970299*710647^(1/4) 3178110000007957 a001 32951280099/4870847*710647^(2/7) 3178110000007992 a001 53316291173/3010349*710647^(3/14) 3178110000008071 a001 86267571272/12752043*710647^(2/7) 3178110000008071 a001 1836311903/1860498*710647^(3/7) 3178110000008088 a001 32264490531/4769326*710647^(2/7) 3178110000008090 a001 591286729879/87403803*710647^(2/7) 3178110000008091 a001 1548008755920/228826127*710647^(2/7) 3178110000008091 a001 4052739537881/599074578*710647^(2/7) 3178110000008091 a001 1515744265389/224056801*710647^(2/7) 3178110000008091 a001 6557470319842/969323029*710647^(2/7) 3178110000008091 a001 2504730781961/370248451*710647^(2/7) 3178110000008091 a001 956722026041/141422324*710647^(2/7) 3178110000008092 a001 365435296162/54018521*710647^(2/7) 3178110000008098 a001 139583862445/20633239*710647^(2/7) 3178110000008142 a001 53316291173/7881196*710647^(2/7) 3178110000008217 a001 32951280099/3010349*710647^(1/4) 3178110000008406 a001 12586269025/4870847*710647^(5/14) 3178110000008441 a001 20365011074/3010349*710647^(2/7) 3178110000008474 a001 1346269/439204*439204^(8/9) 3178110000008511 a001 1120149658761/3524578 3178110000008521 a001 10983760033/4250681*710647^(5/14) 3178110000008521 a001 233802911/620166*710647^(1/2) 3178110000008537 a001 43133785636/16692641*710647^(5/14) 3178110000008540 a001 75283811239/29134601*710647^(5/14) 3178110000008540 a001 591286729879/228826127*710647^(5/14) 3178110000008540 a001 86000486440/33281921*710647^(5/14) 3178110000008540 a001 4052739537881/1568397607*710647^(5/14) 3178110000008540 a001 3536736619241/1368706081*710647^(5/14) 3178110000008540 a001 3278735159921/1268860318*710647^(5/14) 3178110000008540 a001 2504730781961/969323029*710647^(5/14) 3178110000008540 a001 956722026041/370248451*710647^(5/14) 3178110000008540 a001 182717648081/70711162*710647^(5/14) 3178110000008541 a001 139583862445/54018521*710647^(5/14) 3178110000008548 a001 53316291173/20633239*710647^(5/14) 3178110000008557 a001 2178309/1149851*20633239^(5/7) 3178110000008562 a001 2178309/1149851*2537720636^(5/9) 3178110000008562 a001 2178309/1149851*312119004989^(5/11) 3178110000008562 a001 514229/4870847*(1/2+1/2*5^(1/2))^31 3178110000008562 a001 514229/4870847*9062201101803^(1/2) 3178110000008562 a001 2178309/1149851*(1/2+1/2*5^(1/2))^25 3178110000008562 a001 2178309/1149851*3461452808002^(5/12) 3178110000008562 a001 2178309/1149851*28143753123^(1/2) 3178110000008562 a001 2178309/1149851*228826127^(5/8) 3178110000008591 a001 10182505537/3940598*710647^(5/14) 3178110000008604 a001 832040/1149851*1860498^(9/10) 3178110000008661 a001 14930352/1149851*7881196^(7/11) 3178110000008669 a001 63245986/1149851*7881196^(6/11) 3178110000008669 a001 2932589879123/9227465 3178110000008670 a001 9227465/1149851*7881196^(2/3) 3178110000008673 a001 267914296/1149851*7881196^(5/11) 3178110000008677 a001 514229/12752043*141422324^(11/13) 3178110000008677 a001 514229/12752043*2537720636^(11/15) 3178110000008677 a001 514229/12752043*45537549124^(11/17) 3178110000008677 a001 514229/12752043*312119004989^(3/5) 3178110000008677 a001 514229/12752043*817138163596^(11/19) 3178110000008677 a001 514229/12752043*14662949395604^(11/21) 3178110000008677 a001 514229/12752043*(1/2+1/2*5^(1/2))^33 3178110000008677 a001 5702887/1149851*(1/2+1/2*5^(1/2))^23 3178110000008677 a001 514229/12752043*192900153618^(11/18) 3178110000008677 a001 514229/12752043*10749957122^(11/16) 3178110000008677 a001 5702887/1149851*4106118243^(1/2) 3178110000008677 a001 514229/12752043*1568397607^(3/4) 3178110000008677 a001 514229/12752043*599074578^(11/14) 3178110000008678 a001 1134903170/1149851*7881196^(4/11) 3178110000008679 a001 1836311903/1149851*7881196^(1/3) 3178110000008679 a001 514229/12752043*33385282^(11/12) 3178110000008682 a001 4807526976/1149851*7881196^(3/11) 3178110000008687 a001 20365011074/1149851*7881196^(2/11) 3178110000008689 a001 14930352/1149851*20633239^(3/5) 3178110000008692 a001 86267571272/1149851*7881196^(1/11) 3178110000008692 a001 7677619978608/24157817 3178110000008692 a001 75283811239/620166*271443^(1/13) 3178110000008693 a001 267914296/1149851*20633239^(3/7) 3178110000008693 a001 24157817/1149851*20633239^(4/7) 3178110000008693 a001 433494437/1149851*20633239^(2/5) 3178110000008693 a001 14930352/1149851*141422324^(7/13) 3178110000008693 a001 514229/33385282*2537720636^(7/9) 3178110000008693 a001 14930352/1149851*2537720636^(7/15) 3178110000008693 a001 514229/33385282*17393796001^(5/7) 3178110000008693 a001 14930352/1149851*17393796001^(3/7) 3178110000008693 a001 14930352/1149851*45537549124^(7/17) 3178110000008693 a001 514229/33385282*312119004989^(7/11) 3178110000008693 a001 514229/33385282*14662949395604^(5/9) 3178110000008693 a001 514229/33385282*(1/2+1/2*5^(1/2))^35 3178110000008693 a001 14930352/1149851*14662949395604^(1/3) 3178110000008693 a001 14930352/1149851*(1/2+1/2*5^(1/2))^21 3178110000008693 a001 514229/33385282*505019158607^(5/8) 3178110000008693 a001 14930352/1149851*192900153618^(7/18) 3178110000008693 a001 514229/33385282*28143753123^(7/10) 3178110000008693 a001 14930352/1149851*10749957122^(7/16) 3178110000008693 a001 14930352/1149851*599074578^(1/2) 3178110000008693 a001 514229/33385282*599074578^(5/6) 3178110000008693 a001 514229/33385282*228826127^(7/8) 3178110000008694 a001 2971215073/1149851*20633239^(2/7) 3178110000008695 a001 12586269025/1149851*20633239^(1/5) 3178110000008695 a001 14930352/1149851*33385282^(7/12) 3178110000008695 a001 32951280099/1149851*20633239^(1/7) 3178110000008696 a001 20100270056701/63245986 3178110000008696 a001 39088169/1149851*817138163596^(1/3) 3178110000008696 a001 39088169/1149851*(1/2+1/2*5^(1/2))^19 3178110000008696 a001 39088169/1149851*87403803^(1/2) 3178110000008696 a001 52623190191495/165580141 3178110000008696 a001 267914296/1149851*141422324^(5/13) 3178110000008696 a001 514229/228826127*2537720636^(13/15) 3178110000008696 a001 514229/228826127*45537549124^(13/17) 3178110000008696 a001 102334155/1149851*45537549124^(1/3) 3178110000008696 a001 514229/228826127*14662949395604^(13/21) 3178110000008696 a001 102334155/1149851*(1/2+1/2*5^(1/2))^17 3178110000008696 a001 514229/228826127*192900153618^(13/18) 3178110000008696 a001 514229/228826127*73681302247^(3/4) 3178110000008696 a001 514229/228826127*10749957122^(13/16) 3178110000008696 a001 701408733/1149851*141422324^(1/3) 3178110000008696 a001 514229/228826127*599074578^(13/14) 3178110000008696 a001 1134903170/1149851*141422324^(4/13) 3178110000008696 a001 4807526976/1149851*141422324^(3/13) 3178110000008696 a001 20365011074/1149851*141422324^(2/13) 3178110000008696 a001 137769300517784/433494437 3178110000008696 a001 86267571272/1149851*141422324^(1/13) 3178110000008696 a001 267914296/1149851*2537720636^(1/3) 3178110000008696 a001 267914296/1149851*45537549124^(5/17) 3178110000008696 a001 267914296/1149851*312119004989^(3/11) 3178110000008696 a001 267914296/1149851*14662949395604^(5/21) 3178110000008696 a001 267914296/1149851*(1/2+1/2*5^(1/2))^15 3178110000008696 a001 267914296/1149851*192900153618^(5/18) 3178110000008696 a001 267914296/1149851*28143753123^(3/10) 3178110000008696 a001 267914296/1149851*10749957122^(5/16) 3178110000008696 a001 267914296/1149851*599074578^(5/14) 3178110000008696 a001 360684711361857/1134903170 3178110000008696 a001 701408733/1149851*(1/2+1/2*5^(1/2))^13 3178110000008696 a001 701408733/1149851*73681302247^(1/4) 3178110000008696 a001 944284833567787/2971215073 3178110000008696 a001 514229/4106118243*45537549124^(15/17) 3178110000008696 a001 514229/4106118243*312119004989^(9/11) 3178110000008696 a001 1836311903/1149851*312119004989^(1/5) 3178110000008696 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^11 3178110000008696 a001 514229/4106118243*192900153618^(5/6) 3178110000008696 a001 514229/4106118243*28143753123^(9/10) 3178110000008696 a001 514229/4106118243*10749957122^(15/16) 3178110000008696 a001 4807526976/1149851*2537720636^(1/5) 3178110000008696 a001 20365011074/1149851*2537720636^(2/15) 3178110000008696 a001 32951280099/1149851*2537720636^(1/9) 3178110000008696 a001 2472169789341504/7778742049 3178110000008696 a001 2971215073/1149851*2537720636^(2/9) 3178110000008696 a001 86267571272/1149851*2537720636^(1/15) 3178110000008696 a001 4807526976/1149851*45537549124^(3/17) 3178110000008696 a001 4807526976/1149851*14662949395604^(1/7) 3178110000008696 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^9 3178110000008696 a001 4807526976/1149851*192900153618^(1/6) 3178110000008696 a001 4807526976/1149851*10749957122^(3/16) 3178110000008696 a001 6472224534456725/20365011074 3178110000008696 a001 12586269025/1149851*17393796001^(1/7) 3178110000008696 a001 514229/28143753123*14662949395604^(7/9) 3178110000008696 a001 12586269025/1149851*14662949395604^(1/9) 3178110000008696 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^7 3178110000008696 a001 514229/28143753123*505019158607^(7/8) 3178110000008696 a001 16944503814028671/53316291173 3178110000008696 a001 32951280099/1149851*312119004989^(1/11) 3178110000008696 a001 514229/73681302247*14662949395604^(17/21) 3178110000008696 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^5 3178110000008696 a001 514229/73681302247*192900153618^(17/18) 3178110000008696 a001 32951280099/1149851*28143753123^(1/10) 3178110000008696 a001 86267571272/1149851*45537549124^(1/17) 3178110000008696 a001 44361286907629288/139583862445 3178110000008696 a001 86267571272/1149851*14662949395604^(1/21) 3178110000008696 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^3 3178110000008696 a001 86267571272/1149851*192900153618^(1/18) 3178110000008696 a001 116139356908859193/365435296162 3178110000008696 a001 1288005205277023069/4052739537881 3178110000008696 a001 365435296162/1149851 3178110000008696 a001 514229/312119004989*14662949395604^(6/7) 3178110000008696 a001 514229/119218851371*23725150497407^(13/16) 3178110000008696 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^4 3178110000008696 a001 514229/119218851371*505019158607^(13/14) 3178110000008696 a001 53316291173/1149851*73681302247^(1/13) 3178110000008696 a001 27416783093600617/86267571272 3178110000008696 a001 139583862445/1149851*10749957122^(1/24) 3178110000008696 a001 20365011074/1149851*45537549124^(2/17) 3178110000008696 a001 514229/45537549124*312119004989^(10/11) 3178110000008696 a001 20365011074/1149851*14662949395604^(2/21) 3178110000008696 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^6 3178110000008696 a001 86267571272/1149851*10749957122^(1/16) 3178110000008696 a001 10472279279571946/32951280099 3178110000008696 a001 53316291173/1149851*10749957122^(1/12) 3178110000008696 a001 20365011074/1149851*10749957122^(1/8) 3178110000008696 a001 139583862445/1149851*4106118243^(1/23) 3178110000008696 a001 514229/17393796001*45537549124^(16/17) 3178110000008696 a001 514229/17393796001*14662949395604^(16/21) 3178110000008696 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^8 3178110000008696 a001 514229/17393796001*192900153618^(8/9) 3178110000008696 a001 7778742049/1149851*73681302247^(2/13) 3178110000008696 a001 514229/17393796001*73681302247^(12/13) 3178110000008696 a001 4000054745115221/12586269025 3178110000008696 a001 7778742049/1149851*10749957122^(1/6) 3178110000008696 a001 53316291173/1149851*4106118243^(2/23) 3178110000008696 a001 20365011074/1149851*4106118243^(3/23) 3178110000008696 a001 7778742049/1149851*4106118243^(4/23) 3178110000008696 a001 139583862445/1149851*1568397607^(1/22) 3178110000008696 a001 2971215073/1149851*312119004989^(2/11) 3178110000008696 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^10 3178110000008696 a001 2971215073/1149851*28143753123^(1/5) 3178110000008696 a001 2971215073/1149851*10749957122^(5/24) 3178110000008696 a001 514229/6643838879*10749957122^(23/24) 3178110000008696 a001 1527884955773717/4807526976 3178110000008696 a001 2971215073/1149851*4106118243^(5/23) 3178110000008696 a001 53316291173/1149851*1568397607^(1/11) 3178110000008696 a001 1836311903/1149851*1568397607^(1/4) 3178110000008696 a001 20365011074/1149851*1568397607^(3/22) 3178110000008696 a001 7778742049/1149851*1568397607^(2/11) 3178110000008696 a001 1134903170/1149851*2537720636^(4/15) 3178110000008696 a001 2971215073/1149851*1568397607^(5/22) 3178110000008696 a001 139583862445/1149851*599074578^(1/21) 3178110000008696 a001 1134903170/1149851*45537549124^(4/17) 3178110000008696 a001 514229/2537720636*312119004989^(4/5) 3178110000008696 a001 1134903170/1149851*817138163596^(4/19) 3178110000008696 a001 1134903170/1149851*14662949395604^(4/21) 3178110000008696 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^12 3178110000008696 a001 1134903170/1149851*192900153618^(2/9) 3178110000008696 a001 1134903170/1149851*73681302247^(3/13) 3178110000008696 a001 514229/2537720636*73681302247^(11/13) 3178110000008696 a001 1134903170/1149851*10749957122^(1/4) 3178110000008696 a001 514229/2537720636*10749957122^(11/12) 3178110000008696 a001 1134903170/1149851*4106118243^(6/23) 3178110000008696 a001 86267571272/1149851*599074578^(1/14) 3178110000008696 a001 514229/2537720636*4106118243^(22/23) 3178110000008696 a001 583600122205930/1836311903 3178110000008696 a001 53316291173/1149851*599074578^(2/21) 3178110000008696 a001 1134903170/1149851*1568397607^(3/11) 3178110000008696 a001 20365011074/1149851*599074578^(1/7) 3178110000008696 a001 12586269025/1149851*599074578^(1/6) 3178110000008696 a001 7778742049/1149851*599074578^(4/21) 3178110000008696 a001 4807526976/1149851*599074578^(3/14) 3178110000008696 a001 2971215073/1149851*599074578^(5/21) 3178110000008696 a001 514229/969323029*2537720636^(14/15) 3178110000008696 a001 1134903170/1149851*599074578^(2/7) 3178110000008696 a001 139583862445/1149851*228826127^(1/20) 3178110000008696 a001 514229/969323029*17393796001^(6/7) 3178110000008696 a001 433494437/1149851*17393796001^(2/7) 3178110000008696 a001 514229/969323029*45537549124^(14/17) 3178110000008696 a001 514229/969323029*817138163596^(14/19) 3178110000008696 a001 433494437/1149851*14662949395604^(2/9) 3178110000008696 a001 433494437/1149851*(1/2+1/2*5^(1/2))^14 3178110000008696 a001 433494437/1149851*505019158607^(1/4) 3178110000008696 a001 514229/969323029*192900153618^(7/9) 3178110000008696 a001 433494437/1149851*10749957122^(7/24) 3178110000008696 a001 514229/969323029*10749957122^(7/8) 3178110000008696 a001 433494437/1149851*4106118243^(7/23) 3178110000008696 a001 514229/969323029*4106118243^(21/23) 3178110000008696 a001 433494437/1149851*1568397607^(7/22) 3178110000008696 a001 514229/969323029*1568397607^(21/22) 3178110000008696 a001 222915410844073/701408733 3178110000008696 a001 53316291173/1149851*228826127^(1/10) 3178110000008696 a001 433494437/1149851*599074578^(1/3) 3178110000008696 a001 32951280099/1149851*228826127^(1/8) 3178110000008696 a001 20365011074/1149851*228826127^(3/20) 3178110000008696 a001 7778742049/1149851*228826127^(1/5) 3178110000008696 a001 267914296/1149851*228826127^(3/8) 3178110000008696 a001 2971215073/1149851*228826127^(1/4) 3178110000008696 a001 1134903170/1149851*228826127^(3/10) 3178110000008696 a001 139583862445/1149851*87403803^(1/19) 3178110000008696 a001 514229/370248451*2537720636^(8/9) 3178110000008696 a001 514229/370248451*312119004989^(8/11) 3178110000008696 a001 514229/370248451*23725150497407^(5/8) 3178110000008696 a001 165580141/1149851*(1/2+1/2*5^(1/2))^16 3178110000008696 a001 165580141/1149851*23725150497407^(1/4) 3178110000008696 a001 165580141/1149851*73681302247^(4/13) 3178110000008696 a001 514229/370248451*73681302247^(10/13) 3178110000008696 a001 514229/370248451*28143753123^(4/5) 3178110000008696 a001 165580141/1149851*10749957122^(1/3) 3178110000008696 a001 514229/370248451*10749957122^(5/6) 3178110000008696 a001 165580141/1149851*4106118243^(8/23) 3178110000008696 a001 514229/370248451*4106118243^(20/23) 3178110000008696 a001 165580141/1149851*1568397607^(4/11) 3178110000008696 a001 514229/370248451*1568397607^(10/11) 3178110000008696 a001 433494437/1149851*228826127^(7/20) 3178110000008696 a001 165580141/1149851*599074578^(8/21) 3178110000008696 a001 514229/370248451*599074578^(20/21) 3178110000008696 a001 85146110326289/267914296 3178110000008696 a001 53316291173/1149851*87403803^(2/19) 3178110000008696 a001 165580141/1149851*228826127^(2/5) 3178110000008696 a001 20365011074/1149851*87403803^(3/19) 3178110000008696 a001 63245986/1149851*141422324^(6/13) 3178110000008696 a001 7778742049/1149851*87403803^(4/19) 3178110000008696 a001 2971215073/1149851*87403803^(5/19) 3178110000008696 a001 1134903170/1149851*87403803^(6/19) 3178110000008696 a001 433494437/1149851*87403803^(7/19) 3178110000008696 a001 139583862445/1149851*33385282^(1/18) 3178110000008696 a001 63245986/1149851*2537720636^(2/5) 3178110000008696 a001 63245986/1149851*45537549124^(6/17) 3178110000008696 a001 514229/141422324*817138163596^(2/3) 3178110000008696 a001 63245986/1149851*14662949395604^(2/7) 3178110000008696 a001 63245986/1149851*(1/2+1/2*5^(1/2))^18 3178110000008696 a001 63245986/1149851*192900153618^(1/3) 3178110000008696 a001 63245986/1149851*10749957122^(3/8) 3178110000008696 a001 514229/141422324*10749957122^(19/24) 3178110000008696 a001 63245986/1149851*4106118243^(9/23) 3178110000008696 a001 514229/141422324*4106118243^(19/23) 3178110000008696 a001 63245986/1149851*1568397607^(9/22) 3178110000008696 a001 514229/141422324*1568397607^(19/22) 3178110000008696 a001 63245986/1149851*599074578^(3/7) 3178110000008696 a001 514229/141422324*599074578^(19/21) 3178110000008696 a001 63245986/1149851*228826127^(9/20) 3178110000008696 a001 165580141/1149851*87403803^(8/19) 3178110000008696 a001 514229/141422324*228826127^(19/20) 3178110000008696 a001 32522920134794/102334155 3178110000008697 a001 86267571272/1149851*33385282^(1/12) 3178110000008697 a001 53316291173/1149851*33385282^(1/9) 3178110000008697 a001 63245986/1149851*87403803^(9/19) 3178110000008697 a001 20365011074/1149851*33385282^(1/6) 3178110000008697 a001 7778742049/1149851*33385282^(2/9) 3178110000008697 a001 4807526976/1149851*33385282^(1/4) 3178110000008697 a001 2971215073/1149851*33385282^(5/18) 3178110000008697 a001 514229/54018521*141422324^(12/13) 3178110000008697 a001 1134903170/1149851*33385282^(1/3) 3178110000008697 a001 514229/54018521*2537720636^(4/5) 3178110000008697 a001 24157817/1149851*2537720636^(4/9) 3178110000008697 a001 514229/54018521*45537549124^(12/17) 3178110000008697 a001 514229/54018521*14662949395604^(4/7) 3178110000008697 a001 24157817/1149851*(1/2+1/2*5^(1/2))^20 3178110000008697 a001 24157817/1149851*23725150497407^(5/16) 3178110000008697 a001 24157817/1149851*505019158607^(5/14) 3178110000008697 a001 514229/54018521*192900153618^(2/3) 3178110000008697 a001 24157817/1149851*73681302247^(5/13) 3178110000008697 a001 514229/54018521*73681302247^(9/13) 3178110000008697 a001 24157817/1149851*28143753123^(2/5) 3178110000008697 a001 24157817/1149851*10749957122^(5/12) 3178110000008697 a001 514229/54018521*10749957122^(3/4) 3178110000008697 a001 24157817/1149851*4106118243^(10/23) 3178110000008697 a001 514229/54018521*4106118243^(18/23) 3178110000008697 a001 24157817/1149851*1568397607^(5/11) 3178110000008697 a001 514229/54018521*1568397607^(9/11) 3178110000008697 a001 24157817/1149851*599074578^(10/21) 3178110000008697 a001 514229/54018521*599074578^(6/7) 3178110000008697 a001 433494437/1149851*33385282^(7/18) 3178110000008697 a001 24157817/1149851*228826127^(1/2) 3178110000008697 a001 514229/54018521*228826127^(9/10) 3178110000008697 a001 139583862445/1149851*12752043^(1/17) 3178110000008697 a001 267914296/1149851*33385282^(5/12) 3178110000008698 a001 165580141/1149851*33385282^(4/9) 3178110000008698 a001 24157817/1149851*87403803^(10/19) 3178110000008698 a001 514229/54018521*87403803^(18/19) 3178110000008698 a001 12422650078093/39088169 3178110000008698 a001 63245986/1149851*33385282^(1/2) 3178110000008699 a001 53316291173/1149851*12752043^(2/17) 3178110000008699 a001 24157817/1149851*33385282^(5/9) 3178110000008700 a001 20365011074/1149851*12752043^(3/17) 3178110000008701 a001 7778742049/1149851*12752043^(4/17) 3178110000008702 a001 2971215073/1149851*12752043^(5/17) 3178110000008703 a001 1134903170/1149851*12752043^(6/17) 3178110000008704 a001 514229/20633239*45537549124^(2/3) 3178110000008704 a001 9227465/1149851*312119004989^(2/5) 3178110000008704 a001 514229/20633239*(1/2+1/2*5^(1/2))^34 3178110000008704 a001 9227465/1149851*(1/2+1/2*5^(1/2))^22 3178110000008704 a001 9227465/1149851*10749957122^(11/24) 3178110000008704 a001 514229/20633239*10749957122^(17/24) 3178110000008704 a001 9227465/1149851*4106118243^(11/23) 3178110000008704 a001 514229/20633239*4106118243^(17/23) 3178110000008704 a001 9227465/1149851*1568397607^(1/2) 3178110000008704 a001 514229/20633239*1568397607^(17/22) 3178110000008704 a001 9227465/1149851*599074578^(11/21) 3178110000008704 a001 514229/20633239*599074578^(17/21) 3178110000008704 a001 9227465/1149851*228826127^(11/20) 3178110000008704 a001 514229/20633239*228826127^(17/20) 3178110000008704 a001 9227465/1149851*87403803^(11/19) 3178110000008704 a001 514229/20633239*87403803^(17/19) 3178110000008704 a001 433494437/1149851*12752043^(7/17) 3178110000008705 a001 139583862445/1149851*4870847^(1/16) 3178110000008705 a001 9227465/1149851*33385282^(11/18) 3178110000008705 a001 165580141/1149851*12752043^(8/17) 3178110000008706 a001 102334155/1149851*12752043^(1/2) 3178110000008706 a001 514229/20633239*33385282^(17/18) 3178110000008707 a001 4745030099485/14930352 3178110000008707 a001 63245986/1149851*12752043^(9/17) 3178110000008709 a001 24157817/1149851*12752043^(10/17) 3178110000008710 a001 3524578/1149851*7881196^(8/11) 3178110000008713 a001 53316291173/1149851*4870847^(1/8) 3178110000008716 a001 9227465/1149851*12752043^(11/17) 3178110000008721 a001 20365011074/1149851*4870847^(3/16) 3178110000008730 a001 7778742049/1149851*4870847^(1/4) 3178110000008738 a001 2971215073/1149851*4870847^(5/16) 3178110000008747 a001 1134903170/1149851*4870847^(3/8) 3178110000008747 a001 3524578/1149851*141422324^(8/13) 3178110000008747 a001 3524578/1149851*2537720636^(8/15) 3178110000008747 a001 3524578/1149851*45537549124^(8/17) 3178110000008747 a001 514229/7881196*(1/2+1/2*5^(1/2))^32 3178110000008747 a001 514229/7881196*23725150497407^(1/2) 3178110000008747 a001 3524578/1149851*14662949395604^(8/21) 3178110000008747 a001 3524578/1149851*(1/2+1/2*5^(1/2))^24 3178110000008747 a001 514229/7881196*505019158607^(4/7) 3178110000008747 a001 3524578/1149851*192900153618^(4/9) 3178110000008747 a001 3524578/1149851*73681302247^(6/13) 3178110000008747 a001 514229/7881196*73681302247^(8/13) 3178110000008747 a001 3524578/1149851*10749957122^(1/2) 3178110000008747 a001 514229/7881196*10749957122^(2/3) 3178110000008747 a001 3524578/1149851*4106118243^(12/23) 3178110000008747 a001 514229/7881196*4106118243^(16/23) 3178110000008747 a001 3524578/1149851*1568397607^(6/11) 3178110000008747 a001 514229/7881196*1568397607^(8/11) 3178110000008747 a001 3524578/1149851*599074578^(4/7) 3178110000008747 a001 514229/7881196*599074578^(16/21) 3178110000008747 a001 3524578/1149851*228826127^(3/5) 3178110000008747 a001 514229/7881196*228826127^(4/5) 3178110000008748 a001 3524578/1149851*87403803^(12/19) 3178110000008748 a001 514229/7881196*87403803^(16/19) 3178110000008749 a001 3524578/1149851*33385282^(2/3) 3178110000008750 a001 514229/7881196*33385282^(8/9) 3178110000008755 a001 433494437/1149851*4870847^(7/16) 3178110000008757 a001 139583862445/1149851*1860498^(1/15) 3178110000008761 a001 3524578/1149851*12752043^(12/17) 3178110000008763 a001 165580141/1149851*4870847^(1/2) 3178110000008766 a001 514229/7881196*12752043^(16/17) 3178110000008767 a001 1812440220362/5702887 3178110000008772 a001 63245986/1149851*4870847^(9/16) 3178110000008781 a001 24157817/1149851*4870847^(5/8) 3178110000008788 a001 86267571272/1149851*1860498^(1/10) 3178110000008796 a001 9227465/1149851*4870847^(11/16) 3178110000008819 a001 53316291173/1149851*1860498^(2/15) 3178110000008848 a001 3524578/1149851*4870847^(3/4) 3178110000008849 a001 32951280099/1149851*1860498^(1/6) 3178110000008856 a001 4807526976/4870847*710647^(3/7) 3178110000008880 a001 20365011074/1149851*1860498^(1/5) 3178110000008891 a001 7778742049/3010349*710647^(5/14) 3178110000008941 a001 7778742049/1149851*1860498^(4/15) 3178110000008970 a001 12586269025/12752043*710647^(3/7) 3178110000008970 a001 133957148/930249*710647^(4/7) 3178110000008972 a001 4807526976/1149851*1860498^(3/10) 3178110000008987 a001 32951280099/33385282*710647^(3/7) 3178110000008989 a001 86267571272/87403803*710647^(3/7) 3178110000008990 a001 225851433717/228826127*710647^(3/7) 3178110000008990 a001 591286729879/599074578*710647^(3/7) 3178110000008990 a001 1548008755920/1568397607*710647^(3/7) 3178110000008990 a001 4052739537881/4106118243*710647^(3/7) 3178110000008990 a001 4807525989/4870846*710647^(3/7) 3178110000008990 a001 6557470319842/6643838879*710647^(3/7) 3178110000008990 a001 2504730781961/2537720636*710647^(3/7) 3178110000008990 a001 956722026041/969323029*710647^(3/7) 3178110000008990 a001 365435296162/370248451*710647^(3/7) 3178110000008990 a001 139583862445/141422324*710647^(3/7) 3178110000008991 a001 53316291173/54018521*710647^(3/7) 3178110000008997 a001 20365011074/20633239*710647^(3/7) 3178110000009000 a001 514229/3010349*7881196^(10/11) 3178110000009002 a001 2971215073/1149851*1860498^(1/3) 3178110000009041 a001 514229/3010349*20633239^(6/7) 3178110000009041 a001 7778742049/7881196*710647^(3/7) 3178110000009047 a001 514229/3010349*141422324^(10/13) 3178110000009047 a001 1346269/1149851*141422324^(2/3) 3178110000009047 a001 514229/3010349*2537720636^(2/3) 3178110000009047 a001 514229/3010349*45537549124^(10/17) 3178110000009047 a001 514229/3010349*312119004989^(6/11) 3178110000009047 a001 514229/3010349*14662949395604^(10/21) 3178110000009047 a001 514229/3010349*(1/2+1/2*5^(1/2))^30 3178110000009047 a001 1346269/1149851*(1/2+1/2*5^(1/2))^26 3178110000009047 a001 514229/3010349*192900153618^(5/9) 3178110000009047 a001 1346269/1149851*73681302247^(1/2) 3178110000009047 a001 514229/3010349*28143753123^(3/5) 3178110000009047 a001 1346269/1149851*10749957122^(13/24) 3178110000009047 a001 514229/3010349*10749957122^(5/8) 3178110000009047 a001 1346269/1149851*4106118243^(13/23) 3178110000009047 a001 514229/3010349*4106118243^(15/23) 3178110000009047 a001 1346269/1149851*1568397607^(13/22) 3178110000009047 a001 514229/3010349*1568397607^(15/22) 3178110000009047 a001 1346269/1149851*599074578^(13/21) 3178110000009047 a001 514229/3010349*599074578^(5/7) 3178110000009047 a001 1346269/1149851*228826127^(13/20) 3178110000009047 a001 514229/3010349*228826127^(3/4) 3178110000009047 a001 1346269/1149851*87403803^(13/19) 3178110000009047 a001 514229/3010349*87403803^(15/19) 3178110000009049 a001 1346269/1149851*33385282^(13/18) 3178110000009049 a001 514229/3010349*33385282^(5/6) 3178110000009062 a001 1346269/1149851*12752043^(13/17) 3178110000009064 a001 1134903170/1149851*1860498^(2/5) 3178110000009064 a001 514229/3010349*12752043^(15/17) 3178110000009125 a001 433494437/1149851*1860498^(7/15) 3178110000009146 a001 139583862445/1149851*710647^(1/14) 3178110000009155 a001 267914296/1149851*1860498^(1/2) 3178110000009156 a001 1346269/1149851*4870847^(13/16) 3178110000009173 a001 514229/3010349*4870847^(15/16) 3178110000009181 a001 692290561601/2178309 3178110000009186 a001 165580141/1149851*1860498^(8/15) 3178110000009247 a001 63245986/1149851*1860498^(3/5) 3178110000009305 a001 1836311903/4870847*710647^(1/2) 3178110000009309 a001 24157817/1149851*1860498^(2/3) 3178110000009327 a001 2178309/1149851*1860498^(5/6) 3178110000009336 a001 14930352/1149851*1860498^(7/10) 3178110000009340 a001 2971215073/3010349*710647^(3/7) 3178110000009377 a001 9227465/1149851*1860498^(11/15) 3178110000009420 a001 1602508992/4250681*710647^(1/2) 3178110000009420 a001 831985/15126*710647^(9/14) 3178110000009436 a001 12586269025/33385282*710647^(1/2) 3178110000009439 a001 10983760033/29134601*710647^(1/2) 3178110000009439 a001 86267571272/228826127*710647^(1/2) 3178110000009439 a001 267913919/710646*710647^(1/2) 3178110000009439 a001 591286729879/1568397607*710647^(1/2) 3178110000009439 a001 516002918640/1368706081*710647^(1/2) 3178110000009439 a001 4052739537881/10749957122*710647^(1/2) 3178110000009439 a001 3536736619241/9381251041*710647^(1/2) 3178110000009439 a001 6557470319842/17393796001*710647^(1/2) 3178110000009439 a001 2504730781961/6643838879*710647^(1/2) 3178110000009439 a001 956722026041/2537720636*710647^(1/2) 3178110000009439 a001 365435296162/969323029*710647^(1/2) 3178110000009439 a001 139583862445/370248451*710647^(1/2) 3178110000009439 a001 53316291173/141422324*710647^(1/2) 3178110000009440 a001 20365011074/54018521*710647^(1/2) 3178110000009447 a001 7778742049/20633239*710647^(1/2) 3178110000009477 a001 591286729879/4870847*271443^(1/13) 3178110000009482 a001 3524578/1149851*1860498^(4/5) 3178110000009490 a001 2971215073/7881196*710647^(1/2) 3178110000009591 a001 516002918640/4250681*271443^(1/13) 3178110000009595 a001 53316291173/1149851*710647^(1/7) 3178110000009608 a001 4052739537881/33385282*271443^(1/13) 3178110000009610 a001 3536736619241/29134601*271443^(1/13) 3178110000009612 a001 6557470319842/54018521*271443^(1/13) 3178110000009618 a001 2504730781961/20633239*271443^(1/13) 3178110000009662 a001 956722026041/7881196*271443^(1/13) 3178110000009755 a001 701408733/4870847*710647^(4/7) 3178110000009790 a001 1134903170/3010349*710647^(1/2) 3178110000009843 a001 1346269/1149851*1860498^(13/15) 3178110000009869 a001 39088169/1860498*710647^(5/7) 3178110000009869 a001 1836311903/12752043*710647^(4/7) 3178110000009886 a001 14930208/103681*710647^(4/7) 3178110000009888 a001 12586269025/87403803*710647^(4/7) 3178110000009889 a001 32951280099/228826127*710647^(4/7) 3178110000009889 a001 43133785636/299537289*710647^(4/7) 3178110000009889 a001 32264490531/224056801*710647^(4/7) 3178110000009889 a001 591286729879/4106118243*710647^(4/7) 3178110000009889 a001 774004377960/5374978561*710647^(4/7) 3178110000009889 a001 4052739537881/28143753123*710647^(4/7) 3178110000009889 a001 1515744265389/10525900321*710647^(4/7) 3178110000009889 a001 3278735159921/22768774562*710647^(4/7) 3178110000009889 a001 2504730781961/17393796001*710647^(4/7) 3178110000009889 a001 956722026041/6643838879*710647^(4/7) 3178110000009889 a001 182717648081/1268860318*710647^(4/7) 3178110000009889 a001 139583862445/969323029*710647^(4/7) 3178110000009889 a001 53316291173/370248451*710647^(4/7) 3178110000009889 a001 10182505537/70711162*710647^(4/7) 3178110000009890 a001 7778742049/54018521*710647^(4/7) 3178110000009896 a001 2971215073/20633239*710647^(4/7) 3178110000009934 a001 5702887/439204*439204^(7/9) 3178110000009940 a001 567451585/3940598*710647^(4/7) 3178110000009953 a001 12586269025/710647*271443^(3/13) 3178110000009961 a001 365435296162/3010349*271443^(1/13) 3178110000010045 a001 20365011074/1149851*710647^(3/14) 3178110000010095 a001 24157817/1860498*710647^(3/4) 3178110000010204 a001 267914296/4870847*710647^(9/14) 3178110000010239 a001 433494437/3010349*710647^(4/7) 3178110000010270 a001 12586269025/1149851*710647^(1/4) 3178110000010316 a001 829464/103361*710647^(11/14) 3178110000010319 a001 233802911/4250681*710647^(9/14) 3178110000010335 a001 1836311903/33385282*710647^(9/14) 3178110000010338 a001 1602508992/29134601*710647^(9/14) 3178110000010338 a001 12586269025/228826127*710647^(9/14) 3178110000010338 a001 10983760033/199691526*710647^(9/14) 3178110000010338 a001 86267571272/1568397607*710647^(9/14) 3178110000010338 a001 75283811239/1368706081*710647^(9/14) 3178110000010338 a001 591286729879/10749957122*710647^(9/14) 3178110000010338 a001 12585437040/228811001*710647^(9/14) 3178110000010338 a001 4052739537881/73681302247*710647^(9/14) 3178110000010338 a001 3536736619241/64300051206*710647^(9/14) 3178110000010338 a001 6557470319842/119218851371*710647^(9/14) 3178110000010338 a001 2504730781961/45537549124*710647^(9/14) 3178110000010338 a001 956722026041/17393796001*710647^(9/14) 3178110000010338 a001 365435296162/6643838879*710647^(9/14) 3178110000010338 a001 139583862445/2537720636*710647^(9/14) 3178110000010338 a001 53316291173/969323029*710647^(9/14) 3178110000010338 a001 20365011074/370248451*710647^(9/14) 3178110000010338 a001 7778742049/141422324*710647^(9/14) 3178110000010339 a001 2971215073/54018521*710647^(9/14) 3178110000010346 a001 1134903170/20633239*710647^(9/14) 3178110000010389 a001 433494437/7881196*710647^(9/14) 3178110000010494 a001 7778742049/1149851*710647^(2/7) 3178110000010654 a001 102334155/4870847*710647^(5/7) 3178110000010689 a001 165580141/3010349*710647^(9/14) 3178110000010749 a001 5702887/1860498*710647^(6/7) 3178110000010749 a001 2178309-832040*5^(1/2) 3178110000010768 a001 267914296/12752043*710647^(5/7) 3178110000010785 a001 701408733/33385282*710647^(5/7) 3178110000010787 a001 1836311903/87403803*710647^(5/7) 3178110000010788 a001 102287808/4868641*710647^(5/7) 3178110000010788 a001 12586269025/599074578*710647^(5/7) 3178110000010788 a001 32951280099/1568397607*710647^(5/7) 3178110000010788 a001 86267571272/4106118243*710647^(5/7) 3178110000010788 a001 225851433717/10749957122*710647^(5/7) 3178110000010788 a001 591286729879/28143753123*710647^(5/7) 3178110000010788 a001 1548008755920/73681302247*710647^(5/7) 3178110000010788 a001 4052739537881/192900153618*710647^(5/7) 3178110000010788 a001 225749145909/10745088481*710647^(5/7) 3178110000010788 a001 6557470319842/312119004989*710647^(5/7) 3178110000010788 a001 2504730781961/119218851371*710647^(5/7) 3178110000010788 a001 956722026041/45537549124*710647^(5/7) 3178110000010788 a001 365435296162/17393796001*710647^(5/7) 3178110000010788 a001 139583862445/6643838879*710647^(5/7) 3178110000010788 a001 53316291173/2537720636*710647^(5/7) 3178110000010788 a001 20365011074/969323029*710647^(5/7) 3178110000010788 a001 7778742049/370248451*710647^(5/7) 3178110000010788 a001 2971215073/141422324*710647^(5/7) 3178110000010789 a001 1134903170/54018521*710647^(5/7) 3178110000010795 a001 433494437/20633239*710647^(5/7) 3178110000010839 a001 165580141/7881196*710647^(5/7) 3178110000010879 a001 63245986/4870847*710647^(3/4) 3178110000010944 a001 2971215073/1149851*710647^(5/14) 3178110000010993 a001 165580141/12752043*710647^(3/4) 3178110000011009 a001 433494437/33385282*710647^(3/4) 3178110000011012 a001 1134903170/87403803*710647^(3/4) 3178110000011012 a001 2971215073/228826127*710647^(3/4) 3178110000011012 a001 7778742049/599074578*710647^(3/4) 3178110000011012 a001 20365011074/1568397607*710647^(3/4) 3178110000011012 a001 53316291173/4106118243*710647^(3/4) 3178110000011012 a001 139583862445/10749957122*710647^(3/4) 3178110000011012 a001 365435296162/28143753123*710647^(3/4) 3178110000011012 a001 956722026041/73681302247*710647^(3/4) 3178110000011012 a001 2504730781961/192900153618*710647^(3/4) 3178110000011012 a001 10610209857723/817138163596*710647^(3/4) 3178110000011012 a001 4052739537881/312119004989*710647^(3/4) 3178110000011012 a001 1548008755920/119218851371*710647^(3/4) 3178110000011012 a001 591286729879/45537549124*710647^(3/4) 3178110000011012 a001 7787980473/599786069*710647^(3/4) 3178110000011012 a001 86267571272/6643838879*710647^(3/4) 3178110000011012 a001 32951280099/2537720636*710647^(3/4) 3178110000011012 a001 12586269025/969323029*710647^(3/4) 3178110000011012 a001 4807526976/370248451*710647^(3/4) 3178110000011012 a001 1836311903/141422324*710647^(3/4) 3178110000011013 a001 701408733/54018521*710647^(3/4) 3178110000011020 a001 9238424/711491*710647^(3/4) 3178110000011063 a001 102334155/7881196*710647^(3/4) 3178110000011084 a001 726103/620166*710647^(13/14) 3178110000011094 a001 514229/1149851*20633239^(4/5) 3178110000011100 a001 514229/1149851*17393796001^(4/7) 3178110000011100 a001 514229/1149851*14662949395604^(4/9) 3178110000011100 a001 514229/1149851*(1/2+1/2*5^(1/2))^28 3178110000011100 a001 514229/1149851*505019158607^(1/2) 3178110000011100 a001 514229/1149851*73681302247^(7/13) 3178110000011100 a001 514229/1149851*10749957122^(7/12) 3178110000011100 a001 514229/1149851*4106118243^(14/23) 3178110000011100 a001 514229/1149851*1568397607^(7/11) 3178110000011100 a001 514229/1149851*599074578^(2/3) 3178110000011100 a001 514229/1149851*228826127^(7/10) 3178110000011100 a001 514229/1149851*87403803^(14/19) 3178110000011102 a001 514229/1149851*33385282^(7/9) 3178110000011103 a001 39088169/4870847*710647^(11/14) 3178110000011116 a001 514229/1149851*12752043^(14/17) 3178110000011138 a001 63245986/3010349*710647^(5/7) 3178110000011217 a001 514229/1149851*4870847^(7/8) 3178110000011217 a001 34111385/4250681*710647^(11/14) 3178110000011234 a001 133957148/16692641*710647^(11/14) 3178110000011237 a001 233802911/29134601*710647^(11/14) 3178110000011237 a001 1836311903/228826127*710647^(11/14) 3178110000011237 a001 267084832/33281921*710647^(11/14) 3178110000011237 a001 12586269025/1568397607*710647^(11/14) 3178110000011237 a001 10983760033/1368706081*710647^(11/14) 3178110000011237 a001 43133785636/5374978561*710647^(11/14) 3178110000011237 a001 75283811239/9381251041*710647^(11/14) 3178110000011237 a001 591286729879/73681302247*710647^(11/14) 3178110000011237 a001 86000486440/10716675201*710647^(11/14) 3178110000011237 a001 4052739537881/505019158607*710647^(11/14) 3178110000011237 a001 3536736619241/440719107401*710647^(11/14) 3178110000011237 a001 3278735159921/408569081798*710647^(11/14) 3178110000011237 a001 2504730781961/312119004989*710647^(11/14) 3178110000011237 a001 956722026041/119218851371*710647^(11/14) 3178110000011237 a001 182717648081/22768774562*710647^(11/14) 3178110000011237 a001 139583862445/17393796001*710647^(11/14) 3178110000011237 a001 53316291173/6643838879*710647^(11/14) 3178110000011237 a001 10182505537/1268860318*710647^(11/14) 3178110000011237 a001 7778742049/969323029*710647^(11/14) 3178110000011237 a001 2971215073/370248451*710647^(11/14) 3178110000011237 a001 567451585/70711162*710647^(11/14) 3178110000011238 a001 433494437/54018521*710647^(11/14) 3178110000011245 a001 165580141/20633239*710647^(11/14) 3178110000011288 a001 31622993/3940598*710647^(11/14) 3178110000011363 a001 39088169/3010349*710647^(3/4) 3178110000011393 a001 1134903170/1149851*710647^(3/7) 3178110000011550 a001 14930352/4870847*710647^(6/7) 3178110000011589 a001 24157817/3010349*710647^(11/14) 3178110000011667 a001 39088169/12752043*710647^(6/7) 3178110000011684 a001 14619165/4769326*710647^(6/7) 3178110000011686 a001 267914296/87403803*710647^(6/7) 3178110000011687 a001 701408733/228826127*710647^(6/7) 3178110000011687 a001 1836311903/599074578*710647^(6/7) 3178110000011687 a001 686789568/224056801*710647^(6/7) 3178110000011687 a001 12586269025/4106118243*710647^(6/7) 3178110000011687 a001 32951280099/10749957122*710647^(6/7) 3178110000011687 a001 86267571272/28143753123*710647^(6/7) 3178110000011687 a001 32264490531/10525900321*710647^(6/7) 3178110000011687 a001 591286729879/192900153618*710647^(6/7) 3178110000011687 a001 1548008755920/505019158607*710647^(6/7) 3178110000011687 a001 1515744265389/494493258286*710647^(6/7) 3178110000011687 a001 2504730781961/817138163596*710647^(6/7) 3178110000011687 a001 956722026041/312119004989*710647^(6/7) 3178110000011687 a001 365435296162/119218851371*710647^(6/7) 3178110000011687 a001 139583862445/45537549124*710647^(6/7) 3178110000011687 a001 53316291173/17393796001*710647^(6/7) 3178110000011687 a001 20365011074/6643838879*710647^(6/7) 3178110000011687 a001 7778742049/2537720636*710647^(6/7) 3178110000011687 a001 2971215073/969323029*710647^(6/7) 3178110000011687 a001 1134903170/370248451*710647^(6/7) 3178110000011687 a001 433494437/141422324*710647^(6/7) 3178110000011688 a001 165580141/54018521*710647^(6/7) 3178110000011694 a001 63245986/20633239*710647^(6/7) 3178110000011739 a001 24157817/7881196*710647^(6/7) 3178110000011785 a001 24157817/439204*439204^(2/3) 3178110000011843 a001 433494437/1149851*710647^(1/2) 3178110000011957 a001 514229/1149851*1860498^(14/15) 3178110000011983 a001 5702887/4870847*710647^(13/14) 3178110000012010 a001 43133785636/930249*271443^(2/13) 3178110000012014 a001 139583862445/1149851*271443^(1/13) 3178110000012018 a001 264431464441/832040 3178110000012045 a001 9227465/3010349*710647^(6/7) 3178110000012114 a001 4976784/4250681*710647^(13/14) 3178110000012133 a001 39088169/33385282*710647^(13/14) 3178110000012136 a001 34111385/29134601*710647^(13/14) 3178110000012136 a001 267914296/228826127*710647^(13/14) 3178110000012136 a001 233802911/199691526*710647^(13/14) 3178110000012136 a001 1836311903/1568397607*710647^(13/14) 3178110000012136 a001 1602508992/1368706081*710647^(13/14) 3178110000012136 a001 12586269025/10749957122*710647^(13/14) 3178110000012136 a001 10983760033/9381251041*710647^(13/14) 3178110000012136 a001 86267571272/73681302247*710647^(13/14) 3178110000012136 a001 75283811239/64300051206*710647^(13/14) 3178110000012136 a001 2504730781961/2139295485799*710647^(13/14) 3178110000012136 a001 365435296162/312119004989*710647^(13/14) 3178110000012136 a001 139583862445/119218851371*710647^(13/14) 3178110000012136 a001 53316291173/45537549124*710647^(13/14) 3178110000012136 a001 20365011074/17393796001*710647^(13/14) 3178110000012136 a001 7778742049/6643838879*710647^(13/14) 3178110000012136 a001 2971215073/2537720636*710647^(13/14) 3178110000012136 a001 1134903170/969323029*710647^(13/14) 3178110000012136 a001 433494437/370248451*710647^(13/14) 3178110000012136 a001 165580141/141422324*710647^(13/14) 3178110000012137 a001 63245986/54018521*710647^(13/14) 3178110000012145 a001 24157817/20633239*710647^(13/14) 3178110000012195 a001 9227465/7881196*710647^(13/14) 3178110000012292 a001 165580141/1149851*710647^(4/7) 3178110000012318 a001 139583862445/710647*103682^(1/24) 3178110000012433 a001 12586269025/271443*103682^(1/6) 3178110000012538 a001 3524578/3010349*710647^(13/14) 3178110000012586 a001 2/317811*(1/2+1/2*5^(1/2))^56 3178110000012742 a001 63245986/1149851*710647^(9/14) 3178110000012794 a001 225851433717/4870847*271443^(2/13) 3178110000012909 a001 591286729879/12752043*271443^(2/13) 3178110000012926 a001 774004377960/16692641*271443^(2/13) 3178110000012928 a001 4052739537881/87403803*271443^(2/13) 3178110000012928 a001 225749145909/4868641*271443^(2/13) 3178110000012929 a001 3278735159921/70711162*271443^(2/13) 3178110000012930 a001 2504730781961/54018521*271443^(2/13) 3178110000012936 a001 956722026041/20633239*271443^(2/13) 3178110000012980 a001 182717648081/3940598*271443^(2/13) 3178110000013192 a001 24157817/1149851*710647^(5/7) 3178110000013271 a001 686789568/101521*271443^(4/13) 3178110000013279 a001 139583862445/3010349*271443^(2/13) 3178110000013413 a001 14930352/1149851*710647^(3/4) 3178110000013615 a001 102334155/439204*439204^(5/9) 3178110000013648 a001 9227465/1149851*710647^(11/14) 3178110000014071 a001 1346269/2-317811/2*5^(1/2) 3178110000014141 a001 3524578/1149851*710647^(6/7) 3178110000014891 a001 1346269/1149851*710647^(13/14) 3178110000015328 a001 10983760033/620166*271443^(3/13) 3178110000015332 a001 53316291173/1149851*271443^(2/13) 3178110000015446 a001 433494437/439204*439204^(4/9) 3178110000016112 a001 86267571272/4870847*271443^(3/13) 3178110000016227 a001 75283811239/4250681*271443^(3/13) 3178110000016244 a001 591286729879/33385282*271443^(3/13) 3178110000016246 a001 516002918640/29134601*271443^(3/13) 3178110000016246 a001 4052739537881/228826127*271443^(3/13) 3178110000016246 a001 3536736619241/199691526*271443^(3/13) 3178110000016246 a001 6557470319842/370248451*271443^(3/13) 3178110000016247 a001 2504730781961/141422324*271443^(3/13) 3178110000016247 a001 956722026041/54018521*271443^(3/13) 3178110000016254 a001 365435296162/20633239*271443^(3/13) 3178110000016298 a001 139583862445/7881196*271443^(3/13) 3178110000016433 a001 317811/439204*7881196^(9/11) 3178110000016475 a001 317811/439204*141422324^(9/13) 3178110000016475 a001 317811/439204*2537720636^(3/5) 3178110000016475 a001 317811/439204*45537549124^(9/17) 3178110000016475 a001 196418/710647*(1/2+1/2*5^(1/2))^29 3178110000016475 a001 196418/710647*1322157322203^(1/2) 3178110000016475 a001 317811/439204*817138163596^(9/19) 3178110000016475 a001 317811/439204*14662949395604^(3/7) 3178110000016475 a001 317811/439204*(1/2+1/2*5^(1/2))^27 3178110000016475 a001 317811/439204*192900153618^(1/2) 3178110000016475 a001 317811/439204*10749957122^(9/16) 3178110000016475 a001 317811/439204*599074578^(9/14) 3178110000016477 a001 317811/439204*33385282^(3/4) 3178110000016589 a001 1836311903/710647*271443^(5/13) 3178110000016597 a001 53316291173/3010349*271443^(3/13) 3178110000017276 a001 1836311903/439204*439204^(1/3) 3178110000017301 a001 317811/439204*1860498^(9/10) 3178110000017393 a001 -832040+514229*5^(1/2) 3178110000017693 a001 182717648081/930249*103682^(1/24) 3178110000018261 a001 75025*64079^(3/23) 3178110000018477 a001 956722026041/4870847*103682^(1/24) 3178110000018591 a001 2504730781961/12752043*103682^(1/24) 3178110000018608 a001 3278735159921/16692641*103682^(1/24) 3178110000018612 a001 10610209857723/54018521*103682^(1/24) 3178110000018618 a001 4052739537881/20633239*103682^(1/24) 3178110000018646 a001 12586269025/1860498*271443^(4/13) 3178110000018650 a001 20365011074/1149851*271443^(3/13) 3178110000018662 a001 387002188980/1970299*103682^(1/24) 3178110000018962 a001 591286729879/3010349*103682^(1/24) 3178110000019107 a001 7778742049/439204*439204^(2/9) 3178110000019430 a001 32951280099/4870847*271443^(4/13) 3178110000019446 a001 163427632720/514229 3178110000019446 a001 3206767/2-1149851/2*5^(1/2) 3178110000019545 a001 86267571272/12752043*271443^(4/13) 3178110000019561 a001 32264490531/4769326*271443^(4/13) 3178110000019564 a001 591286729879/87403803*271443^(4/13) 3178110000019564 a001 1548008755920/228826127*271443^(4/13) 3178110000019564 a001 4052739537881/599074578*271443^(4/13) 3178110000019564 a001 1515744265389/224056801*271443^(4/13) 3178110000019564 a001 6557470319842/969323029*271443^(4/13) 3178110000019564 a001 2504730781961/370248451*271443^(4/13) 3178110000019564 a001 956722026041/141422324*271443^(4/13) 3178110000019565 a001 365435296162/54018521*271443^(4/13) 3178110000019572 a001 139583862445/20633239*271443^(4/13) 3178110000019615 a001 53316291173/7881196*271443^(4/13) 3178110000019907 a001 701408733/710647*271443^(6/13) 3178110000019915 a001 20365011074/3010349*271443^(4/13) 3178110000020937 a001 32951280099/439204*439204^(1/9) 3178110000021015 a001 225851433717/1149851*103682^(1/24) 3178110000021566 a001 433494437/710647*271443^(1/2) 3178110000021844 a001 208010/109801*20633239^(5/7) 3178110000021850 a001 208010/109801*2537720636^(5/9) 3178110000021850 a001 98209/930249*(1/2+1/2*5^(1/2))^31 3178110000021850 a001 98209/930249*9062201101803^(1/2) 3178110000021850 a001 208010/109801*312119004989^(5/11) 3178110000021850 a001 208010/109801*(1/2+1/2*5^(1/2))^25 3178110000021850 a001 208010/109801*3461452808002^(5/12) 3178110000021850 a001 208010/109801*28143753123^(1/2) 3178110000021850 a001 208010/109801*228826127^(5/8) 3178110000021964 a001 267084832/103361*271443^(5/13) 3178110000021968 a001 7778742049/1149851*271443^(4/13) 3178110000022283 a001 427859097162/1346269 3178110000022425 a001 4807526976/64079*24476^(1/7) 3178110000022615 a001 208010/109801*1860498^(5/6) 3178110000022634 a001 196418/4870847*141422324^(11/13) 3178110000022634 a001 196418/4870847*2537720636^(11/15) 3178110000022634 a001 196418/4870847*45537549124^(11/17) 3178110000022634 a001 196418/4870847*312119004989^(3/5) 3178110000022634 a001 196418/4870847*14662949395604^(11/21) 3178110000022634 a001 196418/4870847*(1/2+1/2*5^(1/2))^33 3178110000022634 a001 196418/4870847*192900153618^(11/18) 3178110000022634 a001 2178309/439204*(1/2+1/2*5^(1/2))^23 3178110000022634 a001 196418/4870847*10749957122^(11/16) 3178110000022634 a001 2178309/439204*4106118243^(1/2) 3178110000022634 a001 196418/4870847*1568397607^(3/4) 3178110000022634 a001 196418/4870847*599074578^(11/14) 3178110000022637 a001 196418/4870847*33385282^(11/12) 3178110000022697 a001 560074829383/1762289 3178110000022716 a001 5702887/439204*7881196^(7/11) 3178110000022741 a001 24157817/439204*7881196^(6/11) 3178110000022744 a001 5702887/439204*20633239^(3/5) 3178110000022745 a001 102334155/439204*7881196^(5/11) 3178110000022748 a001 12586269025/4870847*271443^(5/13) 3178110000022748 a001 5702887/439204*141422324^(7/13) 3178110000022748 a001 196418/12752043*2537720636^(7/9) 3178110000022748 a001 5702887/439204*2537720636^(7/15) 3178110000022748 a001 196418/12752043*17393796001^(5/7) 3178110000022748 a001 5702887/439204*17393796001^(3/7) 3178110000022748 a001 5702887/439204*45537549124^(7/17) 3178110000022748 a001 196418/12752043*312119004989^(7/11) 3178110000022748 a001 196418/12752043*14662949395604^(5/9) 3178110000022748 a001 196418/12752043*(1/2+1/2*5^(1/2))^35 3178110000022748 a001 196418/12752043*505019158607^(5/8) 3178110000022748 a001 5702887/439204*14662949395604^(1/3) 3178110000022748 a001 5702887/439204*(1/2+1/2*5^(1/2))^21 3178110000022748 a001 5702887/439204*192900153618^(7/18) 3178110000022748 a001 196418/12752043*28143753123^(7/10) 3178110000022748 a001 5702887/439204*10749957122^(7/16) 3178110000022748 a001 5702887/439204*599074578^(1/2) 3178110000022748 a001 196418/12752043*599074578^(5/6) 3178110000022748 a001 196418/12752043*228826127^(7/8) 3178110000022749 a001 433494437/439204*7881196^(4/11) 3178110000022750 a001 5702887/439204*33385282^(7/12) 3178110000022751 a001 701408733/439204*7881196^(1/3) 3178110000022754 a001 1836311903/439204*7881196^(3/11) 3178110000022758 a001 2932589879136/9227465 3178110000022759 a001 7778742049/439204*7881196^(2/11) 3178110000022763 a001 32951280099/439204*7881196^(1/11) 3178110000022765 a001 102334155/439204*20633239^(3/7) 3178110000022765 a001 165580141/439204*20633239^(2/5) 3178110000022765 a001 98209/16692641*(1/2+1/2*5^(1/2))^37 3178110000022765 a001 196452/5779*817138163596^(1/3) 3178110000022765 a001 196452/5779*(1/2+1/2*5^(1/2))^19 3178110000022765 a001 196452/5779*87403803^(1/2) 3178110000022766 a001 567451585/219602*20633239^(2/7) 3178110000022766 a001 7677619978642/24157817 3178110000022766 a001 1201881744/109801*20633239^(1/5) 3178110000022767 a001 12586269025/439204*20633239^(1/7) 3178110000022768 a001 196418/87403803*2537720636^(13/15) 3178110000022768 a001 196418/87403803*45537549124^(13/17) 3178110000022768 a001 39088169/439204*45537549124^(1/3) 3178110000022768 a001 196418/87403803*14662949395604^(13/21) 3178110000022768 a001 196418/87403803*192900153618^(13/18) 3178110000022768 a001 39088169/439204*(1/2+1/2*5^(1/2))^17 3178110000022768 a001 196418/87403803*73681302247^(3/4) 3178110000022768 a001 196418/87403803*10749957122^(13/16) 3178110000022768 a001 196418/87403803*599074578^(13/14) 3178110000022768 a001 10050135028395/31622993 3178110000022768 a001 102334155/439204*141422324^(5/13) 3178110000022768 a001 66978574/109801*141422324^(1/3) 3178110000022768 a001 102334155/439204*2537720636^(1/3) 3178110000022768 a001 102334155/439204*45537549124^(5/17) 3178110000022768 a001 102334155/439204*312119004989^(3/11) 3178110000022768 a001 102334155/439204*14662949395604^(5/21) 3178110000022768 a001 102334155/439204*(1/2+1/2*5^(1/2))^15 3178110000022768 a001 102334155/439204*192900153618^(5/18) 3178110000022768 a001 102334155/439204*28143753123^(3/10) 3178110000022768 a001 102334155/439204*10749957122^(5/16) 3178110000022768 a001 102334155/439204*599074578^(5/14) 3178110000022768 a001 433494437/439204*141422324^(4/13) 3178110000022768 a001 102334155/439204*228826127^(3/8) 3178110000022768 a001 1836311903/439204*141422324^(3/13) 3178110000022768 a001 52623190191728/165580141 3178110000022768 a001 7778742049/439204*141422324^(2/13) 3178110000022768 a001 32951280099/439204*141422324^(1/13) 3178110000022768 a001 66978574/109801*(1/2+1/2*5^(1/2))^13 3178110000022768 a001 66978574/109801*73681302247^(1/4) 3178110000022768 a001 137769300518394/433494437 3178110000022768 a001 196418/1568397607*45537549124^(15/17) 3178110000022768 a001 196418/1568397607*312119004989^(9/11) 3178110000022768 a001 196418/1568397607*14662949395604^(5/7) 3178110000022768 a001 196418/1568397607*192900153618^(5/6) 3178110000022768 a001 701408733/439204*312119004989^(1/5) 3178110000022768 a001 701408733/439204*(1/2+1/2*5^(1/2))^11 3178110000022768 a001 196418/1568397607*28143753123^(9/10) 3178110000022768 a001 196418/1568397607*10749957122^(15/16) 3178110000022768 a001 701408733/439204*1568397607^(1/4) 3178110000022768 a001 10608373863631/33379505 3178110000022768 a001 1836311903/439204*2537720636^(1/5) 3178110000022768 a001 1836311903/439204*45537549124^(3/17) 3178110000022768 a001 1836311903/439204*817138163596^(3/19) 3178110000022768 a001 1836311903/439204*14662949395604^(1/7) 3178110000022768 a001 1836311903/439204*(1/2+1/2*5^(1/2))^9 3178110000022768 a001 1836311903/439204*192900153618^(1/6) 3178110000022768 a001 1836311903/439204*10749957122^(3/16) 3178110000022768 a001 944284833571968/2971215073 3178110000022768 a001 12586269025/439204*2537720636^(1/9) 3178110000022768 a001 7778742049/439204*2537720636^(2/15) 3178110000022768 a001 32951280099/439204*2537720636^(1/15) 3178110000022768 a001 1201881744/109801*17393796001^(1/7) 3178110000022768 a001 98209/5374978561*14662949395604^(7/9) 3178110000022768 a001 98209/5374978561*505019158607^(7/8) 3178110000022768 a001 1201881744/109801*14662949395604^(1/9) 3178110000022768 a001 1201881744/109801*(1/2+1/2*5^(1/2))^7 3178110000022768 a001 2472169789352450/7778742049 3178110000022768 a001 196418/28143753123*817138163596^(17/19) 3178110000022768 a001 12586269025/439204*312119004989^(1/11) 3178110000022768 a001 12586269025/439204*(1/2+1/2*5^(1/2))^5 3178110000022768 a001 12586269025/439204*28143753123^(1/10) 3178110000022768 a001 3236112267242691/10182505537 3178110000022768 a001 32951280099/439204*45537549124^(1/17) 3178110000022768 a001 32951280099/439204*14662949395604^(1/21) 3178110000022768 a001 32951280099/439204*(1/2+1/2*5^(1/2))^3 3178110000022768 a001 32951280099/439204*192900153618^(1/18) 3178110000022768 a001 16944503814103696/53316291173 3178110000022768 a001 98209/96450076809*3461452808002^(11/12) 3178110000022768 a001 44361286907825706/139583862445 3178110000022768 a001 196418/505019158607*14662949395604^(19/21) 3178110000022768 a001 304056783820294560/956722026041 3178110000022768 a001 1288005205282725956/4052739537881 3178110000022768 a001 71778070001547716/225851433717 3178110000022768 a001 196418/312119004989*14662949395604^(8/9) 3178110000022768 a001 139583862445/439204 3178110000022768 a001 196418/119218851371*14662949395604^(6/7) 3178110000022768 a001 53316291173/439204*(1/2+1/2*5^(1/2))^2 3178110000022768 a001 10472279279618314/32951280099 3178110000022768 a001 32951280099/439204*10749957122^(1/16) 3178110000022768 a001 53316291173/439204*10749957122^(1/24) 3178110000022768 a001 98209/22768774562*23725150497407^(13/16) 3178110000022768 a001 98209/22768774562*505019158607^(13/14) 3178110000022768 a001 10182505537/219602*(1/2+1/2*5^(1/2))^4 3178110000022768 a001 10182505537/219602*23725150497407^(1/16) 3178110000022768 a001 10182505537/219602*73681302247^(1/13) 3178110000022768 a001 10182505537/219602*10749957122^(1/12) 3178110000022768 a001 4000054745132932/12586269025 3178110000022768 a001 53316291173/439204*4106118243^(1/23) 3178110000022768 a001 7778742049/439204*45537549124^(2/17) 3178110000022768 a001 196418/17393796001*312119004989^(10/11) 3178110000022768 a001 196418/17393796001*3461452808002^(5/6) 3178110000022768 a001 7778742049/439204*14662949395604^(2/21) 3178110000022768 a001 7778742049/439204*(1/2+1/2*5^(1/2))^6 3178110000022768 a001 7778742049/439204*10749957122^(1/8) 3178110000022768 a001 10182505537/219602*4106118243^(2/23) 3178110000022768 a001 7778742049/439204*4106118243^(3/23) 3178110000022768 a001 763942477890241/2403763488 3178110000022768 a001 53316291173/439204*1568397607^(1/22) 3178110000022768 a001 196418/6643838879*45537549124^(16/17) 3178110000022768 a001 196418/6643838879*14662949395604^(16/21) 3178110000022768 a001 196418/6643838879*192900153618^(8/9) 3178110000022768 a001 2971215073/439204*(1/2+1/2*5^(1/2))^8 3178110000022768 a001 2971215073/439204*23725150497407^(1/8) 3178110000022768 a001 2971215073/439204*505019158607^(1/7) 3178110000022768 a001 2971215073/439204*73681302247^(2/13) 3178110000022768 a001 196418/6643838879*73681302247^(12/13) 3178110000022768 a001 2971215073/439204*10749957122^(1/6) 3178110000022768 a001 2971215073/439204*4106118243^(4/23) 3178110000022768 a001 10182505537/219602*1568397607^(1/11) 3178110000022768 a001 7778742049/439204*1568397607^(3/22) 3178110000022768 a001 583600122208514/1836311903 3178110000022768 a001 2971215073/439204*1568397607^(2/11) 3178110000022768 a001 567451585/219602*2537720636^(2/9) 3178110000022768 a001 53316291173/439204*599074578^(1/21) 3178110000022768 a001 567451585/219602*312119004989^(2/11) 3178110000022768 a001 567451585/219602*(1/2+1/2*5^(1/2))^10 3178110000022768 a001 567451585/219602*28143753123^(1/5) 3178110000022768 a001 567451585/219602*10749957122^(5/24) 3178110000022768 a001 98209/1268860318*10749957122^(23/24) 3178110000022768 a001 567451585/219602*4106118243^(5/23) 3178110000022768 a001 32951280099/439204*599074578^(1/14) 3178110000022768 a001 567451585/219602*1568397607^(5/22) 3178110000022768 a001 10182505537/219602*599074578^(2/21) 3178110000022768 a001 7778742049/439204*599074578^(1/7) 3178110000022768 a001 1201881744/109801*599074578^(1/6) 3178110000022768 a001 1836311903/439204*599074578^(3/14) 3178110000022768 a001 2971215073/439204*599074578^(4/21) 3178110000022768 a001 222915410845060/701408733 3178110000022768 a001 567451585/219602*599074578^(5/21) 3178110000022768 a001 53316291173/439204*228826127^(1/20) 3178110000022768 a001 433494437/439204*2537720636^(4/15) 3178110000022768 a001 433494437/439204*45537549124^(4/17) 3178110000022768 a001 196418/969323029*312119004989^(4/5) 3178110000022768 a001 196418/969323029*23725150497407^(11/16) 3178110000022768 a001 433494437/439204*817138163596^(4/19) 3178110000022768 a001 433494437/439204*14662949395604^(4/21) 3178110000022768 a001 433494437/439204*(1/2+1/2*5^(1/2))^12 3178110000022768 a001 433494437/439204*192900153618^(2/9) 3178110000022768 a001 433494437/439204*73681302247^(3/13) 3178110000022768 a001 196418/969323029*73681302247^(11/13) 3178110000022768 a001 433494437/439204*10749957122^(1/4) 3178110000022768 a001 196418/969323029*10749957122^(11/12) 3178110000022768 a001 433494437/439204*4106118243^(6/23) 3178110000022768 a001 196418/969323029*4106118243^(22/23) 3178110000022768 a001 433494437/439204*1568397607^(3/11) 3178110000022768 a001 433494437/439204*599074578^(2/7) 3178110000022768 a001 10182505537/219602*228826127^(1/10) 3178110000022768 a001 12586269025/439204*228826127^(1/8) 3178110000022768 a001 7778742049/439204*228826127^(3/20) 3178110000022768 a001 2971215073/439204*228826127^(1/5) 3178110000022768 a001 42573055163333/133957148 3178110000022768 a001 567451585/219602*228826127^(1/4) 3178110000022768 a001 433494437/439204*228826127^(3/10) 3178110000022768 a001 53316291173/439204*87403803^(1/19) 3178110000022768 a001 196418/370248451*2537720636^(14/15) 3178110000022768 a001 196418/370248451*17393796001^(6/7) 3178110000022768 a001 165580141/439204*17393796001^(2/7) 3178110000022768 a001 196418/370248451*45537549124^(14/17) 3178110000022768 a001 196418/370248451*14662949395604^(2/3) 3178110000022768 a001 196418/370248451*505019158607^(3/4) 3178110000022768 a001 196418/370248451*192900153618^(7/9) 3178110000022768 a001 165580141/439204*14662949395604^(2/9) 3178110000022768 a001 165580141/439204*(1/2+1/2*5^(1/2))^14 3178110000022768 a001 165580141/439204*10749957122^(7/24) 3178110000022768 a001 196418/370248451*10749957122^(7/8) 3178110000022768 a001 165580141/439204*4106118243^(7/23) 3178110000022768 a001 196418/370248451*4106118243^(21/23) 3178110000022768 a001 165580141/439204*1568397607^(7/22) 3178110000022768 a001 196418/370248451*1568397607^(21/22) 3178110000022768 a001 165580141/439204*599074578^(1/3) 3178110000022768 a001 10182505537/219602*87403803^(2/19) 3178110000022768 a001 165580141/439204*228826127^(7/20) 3178110000022768 a001 7778742049/439204*87403803^(3/19) 3178110000022768 a001 32522920134938/102334155 3178110000022768 a001 2971215073/439204*87403803^(4/19) 3178110000022768 a001 567451585/219602*87403803^(5/19) 3178110000022768 a001 433494437/439204*87403803^(6/19) 3178110000022768 a001 53316291173/439204*33385282^(1/18) 3178110000022768 a001 98209/70711162*2537720636^(8/9) 3178110000022768 a001 98209/70711162*312119004989^(8/11) 3178110000022768 a001 98209/70711162*23725150497407^(5/8) 3178110000022768 a001 31622993/219602*(1/2+1/2*5^(1/2))^16 3178110000022768 a001 31622993/219602*23725150497407^(1/4) 3178110000022768 a001 31622993/219602*73681302247^(4/13) 3178110000022768 a001 98209/70711162*73681302247^(10/13) 3178110000022768 a001 98209/70711162*28143753123^(4/5) 3178110000022768 a001 31622993/219602*10749957122^(1/3) 3178110000022768 a001 98209/70711162*10749957122^(5/6) 3178110000022768 a001 31622993/219602*4106118243^(8/23) 3178110000022768 a001 98209/70711162*4106118243^(20/23) 3178110000022768 a001 31622993/219602*1568397607^(4/11) 3178110000022768 a001 98209/70711162*1568397607^(10/11) 3178110000022768 a001 31622993/219602*599074578^(8/21) 3178110000022768 a001 98209/70711162*599074578^(20/21) 3178110000022768 a001 165580141/439204*87403803^(7/19) 3178110000022768 a001 31622993/219602*228826127^(2/5) 3178110000022768 a001 32951280099/439204*33385282^(1/12) 3178110000022768 a001 10182505537/219602*33385282^(1/9) 3178110000022768 a001 31622993/219602*87403803^(8/19) 3178110000022768 a001 7778742049/439204*33385282^(1/6) 3178110000022769 a001 12422650078148/39088169 3178110000022769 a001 2971215073/439204*33385282^(2/9) 3178110000022769 a001 1836311903/439204*33385282^(1/4) 3178110000022769 a001 567451585/219602*33385282^(5/18) 3178110000022769 a001 433494437/439204*33385282^(1/3) 3178110000022769 a001 24157817/439204*141422324^(6/13) 3178110000022769 a001 24157817/439204*2537720636^(2/5) 3178110000022769 a001 24157817/439204*45537549124^(6/17) 3178110000022769 a001 196418/54018521*817138163596^(2/3) 3178110000022769 a001 24157817/439204*14662949395604^(2/7) 3178110000022769 a001 24157817/439204*(1/2+1/2*5^(1/2))^18 3178110000022769 a001 24157817/439204*192900153618^(1/3) 3178110000022769 a001 24157817/439204*10749957122^(3/8) 3178110000022769 a001 196418/54018521*10749957122^(19/24) 3178110000022769 a001 24157817/439204*4106118243^(9/23) 3178110000022769 a001 196418/54018521*4106118243^(19/23) 3178110000022769 a001 24157817/439204*1568397607^(9/22) 3178110000022769 a001 196418/54018521*1568397607^(19/22) 3178110000022769 a001 24157817/439204*599074578^(3/7) 3178110000022769 a001 196418/54018521*599074578^(19/21) 3178110000022769 a001 24157817/439204*228826127^(9/20) 3178110000022769 a001 102334155/439204*33385282^(5/12) 3178110000022769 a001 165580141/439204*33385282^(7/18) 3178110000022769 a001 196418/54018521*228826127^(19/20) 3178110000022769 a001 53316291173/439204*12752043^(1/17) 3178110000022769 a001 24157817/439204*87403803^(9/19) 3178110000022769 a001 31622993/219602*33385282^(4/9) 3178110000022770 a001 10182505537/219602*12752043^(2/17) 3178110000022770 a001 24157817/439204*33385282^(1/2) 3178110000022771 a001 9227465/439204*20633239^(4/7) 3178110000022771 a001 7778742049/439204*12752043^(3/17) 3178110000022772 a001 139559708809/439128 3178110000022773 a001 2971215073/439204*12752043^(4/17) 3178110000022774 a001 567451585/219602*12752043^(5/17) 3178110000022775 a001 433494437/439204*12752043^(6/17) 3178110000022775 a001 196418/20633239*141422324^(12/13) 3178110000022775 a001 196418/20633239*2537720636^(4/5) 3178110000022775 a001 9227465/439204*2537720636^(4/9) 3178110000022775 a001 196418/20633239*45537549124^(12/17) 3178110000022775 a001 196418/20633239*14662949395604^(4/7) 3178110000022775 a001 196418/20633239*(1/2+1/2*5^(1/2))^36 3178110000022775 a001 196418/20633239*505019158607^(9/14) 3178110000022775 a001 196418/20633239*192900153618^(2/3) 3178110000022775 a001 9227465/439204*(1/2+1/2*5^(1/2))^20 3178110000022775 a001 9227465/439204*23725150497407^(5/16) 3178110000022775 a001 9227465/439204*505019158607^(5/14) 3178110000022775 a001 9227465/439204*73681302247^(5/13) 3178110000022775 a001 196418/20633239*73681302247^(9/13) 3178110000022775 a001 9227465/439204*28143753123^(2/5) 3178110000022775 a001 9227465/439204*10749957122^(5/12) 3178110000022775 a001 196418/20633239*10749957122^(3/4) 3178110000022775 a001 9227465/439204*4106118243^(10/23) 3178110000022775 a001 196418/20633239*4106118243^(18/23) 3178110000022775 a001 9227465/439204*1568397607^(5/11) 3178110000022775 a001 196418/20633239*1568397607^(9/11) 3178110000022775 a001 9227465/439204*599074578^(10/21) 3178110000022775 a001 196418/20633239*599074578^(6/7) 3178110000022775 a001 9227465/439204*228826127^(1/2) 3178110000022775 a001 196418/20633239*228826127^(9/10) 3178110000022776 a001 9227465/439204*87403803^(10/19) 3178110000022776 a001 196418/20633239*87403803^(18/19) 3178110000022776 a001 165580141/439204*12752043^(7/17) 3178110000022776 a001 53316291173/439204*4870847^(1/16) 3178110000022777 a001 9227465/439204*33385282^(5/9) 3178110000022777 a001 39088169/439204*12752043^(1/2) 3178110000022777 a001 31622993/219602*12752043^(8/17) 3178110000022779 a001 24157817/439204*12752043^(9/17) 3178110000022785 a001 10182505537/219602*4870847^(1/8) 3178110000022785 a001 1762289/219602*7881196^(2/3) 3178110000022787 a001 9227465/439204*12752043^(10/17) 3178110000022793 a001 7778742049/439204*4870847^(3/16) 3178110000022795 a001 1812440220370/5702887 3178110000022801 a001 2971215073/439204*4870847^(1/4) 3178110000022810 a001 567451585/219602*4870847^(5/16) 3178110000022818 a001 433494437/439204*4870847^(3/8) 3178110000022819 a001 98209/3940598*45537549124^(2/3) 3178110000022819 a001 98209/3940598*(1/2+1/2*5^(1/2))^34 3178110000022819 a001 1762289/219602*312119004989^(2/5) 3178110000022819 a001 1762289/219602*(1/2+1/2*5^(1/2))^22 3178110000022819 a001 1762289/219602*10749957122^(11/24) 3178110000022819 a001 98209/3940598*10749957122^(17/24) 3178110000022819 a001 1762289/219602*4106118243^(11/23) 3178110000022819 a001 98209/3940598*4106118243^(17/23) 3178110000022819 a001 1762289/219602*1568397607^(1/2) 3178110000022819 a001 98209/3940598*1568397607^(17/22) 3178110000022819 a001 1762289/219602*599074578^(11/21) 3178110000022819 a001 98209/3940598*599074578^(17/21) 3178110000022819 a001 1762289/219602*228826127^(11/20) 3178110000022819 a001 98209/3940598*228826127^(17/20) 3178110000022819 a001 1762289/219602*87403803^(11/19) 3178110000022820 a001 98209/3940598*87403803^(17/19) 3178110000022821 a001 1762289/219602*33385282^(11/18) 3178110000022822 a001 98209/3940598*33385282^(17/18) 3178110000022827 a001 165580141/439204*4870847^(7/16) 3178110000022829 a001 53316291173/439204*1860498^(1/15) 3178110000022832 a001 1762289/219602*12752043^(11/17) 3178110000022835 a001 31622993/219602*4870847^(1/2) 3178110000022844 a001 24157817/439204*4870847^(9/16) 3178110000022859 a001 9227465/439204*4870847^(5/8) 3178110000022860 a001 32951280099/439204*1860498^(1/10) 3178110000022863 a001 10983760033/4250681*271443^(5/13) 3178110000022879 a001 43133785636/16692641*271443^(5/13) 3178110000022882 a001 75283811239/29134601*271443^(5/13) 3178110000022882 a001 591286729879/228826127*271443^(5/13) 3178110000022882 a001 86000486440/33281921*271443^(5/13) 3178110000022882 a001 4052739537881/1568397607*271443^(5/13) 3178110000022882 a001 3536736619241/1368706081*271443^(5/13) 3178110000022882 a001 3278735159921/1268860318*271443^(5/13) 3178110000022882 a001 2504730781961/969323029*271443^(5/13) 3178110000022882 a001 956722026041/370248451*271443^(5/13) 3178110000022882 a001 182717648081/70711162*271443^(5/13) 3178110000022883 a001 139583862445/54018521*271443^(5/13) 3178110000022890 a001 53316291173/20633239*271443^(5/13) 3178110000022890 a001 10182505537/219602*1860498^(2/15) 3178110000022911 a001 1762289/219602*4870847^(11/16) 3178110000022921 a001 12586269025/439204*1860498^(1/6) 3178110000022933 a001 10182505537/3940598*271443^(5/13) 3178110000022952 a001 7778742049/439204*1860498^(1/5) 3178110000022953 a001 692290561604/2178309 3178110000023013 a001 2971215073/439204*1860498^(4/15) 3178110000023043 a001 1836311903/439204*1860498^(3/10) 3178110000023074 a001 567451585/219602*1860498^(1/3) 3178110000023081 a001 1346269/439204*7881196^(8/11) 3178110000023119 a001 1346269/439204*141422324^(8/13) 3178110000023119 a001 1346269/439204*2537720636^(8/15) 3178110000023119 a001 1346269/439204*45537549124^(8/17) 3178110000023119 a001 196418/3010349*(1/2+1/2*5^(1/2))^32 3178110000023119 a001 196418/3010349*23725150497407^(1/2) 3178110000023119 a001 196418/3010349*505019158607^(4/7) 3178110000023119 a001 1346269/439204*14662949395604^(8/21) 3178110000023119 a001 1346269/439204*(1/2+1/2*5^(1/2))^24 3178110000023119 a001 1346269/439204*192900153618^(4/9) 3178110000023119 a001 1346269/439204*73681302247^(6/13) 3178110000023119 a001 196418/3010349*73681302247^(8/13) 3178110000023119 a001 1346269/439204*10749957122^(1/2) 3178110000023119 a001 196418/3010349*10749957122^(2/3) 3178110000023119 a001 1346269/439204*4106118243^(12/23) 3178110000023119 a001 196418/3010349*4106118243^(16/23) 3178110000023119 a001 1346269/439204*1568397607^(6/11) 3178110000023119 a001 196418/3010349*1568397607^(8/11) 3178110000023119 a001 1346269/439204*599074578^(4/7) 3178110000023119 a001 196418/3010349*599074578^(16/21) 3178110000023119 a001 1346269/439204*228826127^(3/5) 3178110000023119 a001 196418/3010349*228826127^(4/5) 3178110000023119 a001 1346269/439204*87403803^(12/19) 3178110000023119 a001 196418/3010349*87403803^(16/19) 3178110000023121 a001 1346269/439204*33385282^(2/3) 3178110000023121 a001 196418/3010349*33385282^(8/9) 3178110000023132 a001 1346269/439204*12752043^(12/17) 3178110000023135 a001 433494437/439204*1860498^(2/5) 3178110000023137 a001 196418/3010349*12752043^(16/17) 3178110000023196 a001 165580141/439204*1860498^(7/15) 3178110000023217 a001 53316291173/439204*710647^(1/14) 3178110000023219 a001 1346269/439204*4870847^(3/4) 3178110000023225 a001 267914296/710647*271443^(7/13) 3178110000023227 a001 102334155/439204*1860498^(1/2) 3178110000023233 a001 7778742049/3010349*271443^(5/13) 3178110000023258 a001 31622993/219602*1860498^(8/15) 3178110000023320 a001 24157817/439204*1860498^(3/5) 3178110000023388 a001 9227465/439204*1860498^(2/3) 3178110000023391 a001 5702887/439204*1860498^(7/10) 3178110000023492 a001 1762289/219602*1860498^(11/15) 3178110000023667 a001 10182505537/219602*710647^(1/7) 3178110000023853 a001 1346269/439204*1860498^(4/5) 3178110000024037 a001 132215732221/416020 3178110000024116 a001 7778742049/439204*710647^(3/14) 3178110000024341 a001 1201881744/109801*710647^(1/4) 3178110000024566 a001 2971215073/439204*710647^(2/7) 3178110000024636 a001 86267571272/710647*103682^(1/12) 3178110000024751 a001 7778742049/271443*103682^(5/24) 3178110000025015 a001 567451585/219602*710647^(5/14) 3178110000025125 a001 196418/1149851*7881196^(10/11) 3178110000025165 a001 196418/1149851*20633239^(6/7) 3178110000025172 a001 196418/1149851*141422324^(10/13) 3178110000025172 a001 514229/439204*141422324^(2/3) 3178110000025172 a001 196418/1149851*2537720636^(2/3) 3178110000025172 a001 196418/1149851*45537549124^(10/17) 3178110000025172 a001 196418/1149851*312119004989^(6/11) 3178110000025172 a001 196418/1149851*14662949395604^(10/21) 3178110000025172 a001 196418/1149851*(1/2+1/2*5^(1/2))^30 3178110000025172 a001 196418/1149851*192900153618^(5/9) 3178110000025172 a001 514229/439204*(1/2+1/2*5^(1/2))^26 3178110000025172 a001 514229/439204*73681302247^(1/2) 3178110000025172 a001 196418/1149851*28143753123^(3/5) 3178110000025172 a001 514229/439204*10749957122^(13/24) 3178110000025172 a001 196418/1149851*10749957122^(5/8) 3178110000025172 a001 514229/439204*4106118243^(13/23) 3178110000025172 a001 196418/1149851*4106118243^(15/23) 3178110000025172 a001 514229/439204*1568397607^(13/22) 3178110000025172 a001 196418/1149851*1568397607^(15/22) 3178110000025172 a001 514229/439204*599074578^(13/21) 3178110000025172 a001 196418/1149851*599074578^(5/7) 3178110000025172 a001 514229/439204*228826127^(13/20) 3178110000025172 a001 196418/1149851*228826127^(3/4) 3178110000025172 a001 514229/439204*87403803^(13/19) 3178110000025172 a001 196418/1149851*87403803^(15/19) 3178110000025174 a001 514229/439204*33385282^(13/18) 3178110000025174 a001 196418/1149851*33385282^(5/6) 3178110000025187 a001 514229/439204*12752043^(13/17) 3178110000025189 a001 196418/1149851*12752043^(15/17) 3178110000025281 a001 514229/439204*4870847^(13/16) 3178110000025282 a001 1836311903/1860498*271443^(6/13) 3178110000025286 a001 2971215073/1149851*271443^(5/13) 3178110000025297 a001 196418/1149851*4870847^(15/16) 3178110000025465 a001 433494437/439204*710647^(3/7) 3178110000025915 a001 165580141/439204*710647^(1/2) 3178110000025967 a001 514229/439204*1860498^(13/15) 3178110000026066 a001 4807526976/4870847*271443^(6/13) 3178110000026086 a001 53316291173/439204*271443^(1/13) 3178110000026181 a001 12586269025/12752043*271443^(6/13) 3178110000026197 a001 32951280099/33385282*271443^(6/13) 3178110000026200 a001 86267571272/87403803*271443^(6/13) 3178110000026200 a001 225851433717/228826127*271443^(6/13) 3178110000026200 a001 591286729879/599074578*271443^(6/13) 3178110000026200 a001 1548008755920/1568397607*271443^(6/13) 3178110000026200 a001 4052739537881/4106118243*271443^(6/13) 3178110000026200 a001 4807525989/4870846*271443^(6/13) 3178110000026200 a001 6557470319842/6643838879*271443^(6/13) 3178110000026200 a001 2504730781961/2537720636*271443^(6/13) 3178110000026200 a001 956722026041/969323029*271443^(6/13) 3178110000026200 a001 365435296162/370248451*271443^(6/13) 3178110000026200 a001 139583862445/141422324*271443^(6/13) 3178110000026201 a001 53316291173/54018521*271443^(6/13) 3178110000026208 a001 20365011074/20633239*271443^(6/13) 3178110000026251 a001 7778742049/7881196*271443^(6/13) 3178110000026364 a001 31622993/219602*710647^(4/7) 3178110000026543 a001 14619165/101521*271443^(8/13) 3178110000026551 a001 2971215073/3010349*271443^(6/13) 3178110000026815 a001 24157817/439204*710647^(9/14) 3178110000026941 a001 567451585/930249*271443^(1/2) 3178110000027270 a001 9227465/439204*710647^(5/7) 3178110000027468 a001 5702887/439204*710647^(3/4) 3178110000027725 a001 2971215073/4870847*271443^(1/2) 3178110000027764 a001 1762289/219602*710647^(11/14) 3178110000027840 a001 7778742049/12752043*271443^(1/2) 3178110000027856 a001 10182505537/16692641*271443^(1/2) 3178110000027859 a001 53316291173/87403803*271443^(1/2) 3178110000027859 a001 139583862445/228826127*271443^(1/2) 3178110000027859 a001 182717648081/299537289*271443^(1/2) 3178110000027859 a001 956722026041/1568397607*271443^(1/2) 3178110000027859 a001 2504730781961/4106118243*271443^(1/2) 3178110000027859 a001 3278735159921/5374978561*271443^(1/2) 3178110000027859 a001 10610209857723/17393796001*271443^(1/2) 3178110000027859 a001 4052739537881/6643838879*271443^(1/2) 3178110000027859 a001 1134903780/1860499*271443^(1/2) 3178110000027859 a001 591286729879/969323029*271443^(1/2) 3178110000027859 a001 225851433717/370248451*271443^(1/2) 3178110000027859 a001 21566892818/35355581*271443^(1/2) 3178110000027860 a001 32951280099/54018521*271443^(1/2) 3178110000027867 a001 1144206275/1875749*271443^(1/2) 3178110000027910 a001 1201881744/1970299*271443^(1/2) 3178110000028210 a001 1836311903/3010349*271443^(1/2) 3178110000028513 a001 1346269/439204*710647^(6/7) 3178110000028600 a001 233802911/620166*271443^(7/13) 3178110000028604 a001 1134903170/1149851*271443^(6/13) 3178110000028929 a001 3524578/167761*167761^(4/5) 3178110000029384 a001 1836311903/4870847*271443^(7/13) 3178110000029404 a001 10182505537/219602*271443^(2/13) 3178110000029499 a001 1602508992/4250681*271443^(7/13) 3178110000029515 a001 12586269025/33385282*271443^(7/13) 3178110000029518 a001 10983760033/29134601*271443^(7/13) 3178110000029518 a001 86267571272/228826127*271443^(7/13) 3178110000029518 a001 267913919/710646*271443^(7/13) 3178110000029518 a001 591286729879/1568397607*271443^(7/13) 3178110000029518 a001 516002918640/1368706081*271443^(7/13) 3178110000029518 a001 4052739537881/10749957122*271443^(7/13) 3178110000029518 a001 3536736619241/9381251041*271443^(7/13) 3178110000029518 a001 6557470319842/17393796001*271443^(7/13) 3178110000029518 a001 2504730781961/6643838879*271443^(7/13) 3178110000029518 a001 956722026041/2537720636*271443^(7/13) 3178110000029518 a001 365435296162/969323029*271443^(7/13) 3178110000029518 a001 139583862445/370248451*271443^(7/13) 3178110000029518 a001 53316291173/141422324*271443^(7/13) 3178110000029519 a001 20365011074/54018521*271443^(7/13) 3178110000029526 a001 7778742049/20633239*271443^(7/13) 3178110000029569 a001 2971215073/7881196*271443^(7/13) 3178110000029861 a001 39088169/710647*271443^(9/13) 3178110000029869 a001 1134903170/3010349*271443^(7/13) 3178110000030011 a001 75283811239/620166*103682^(1/12) 3178110000030263 a001 701408733/1149851*271443^(1/2) 3178110000030795 a001 591286729879/4870847*103682^(1/12) 3178110000030910 a001 516002918640/4250681*103682^(1/12) 3178110000030926 a001 4052739537881/33385282*103682^(1/12) 3178110000030929 a001 3536736619241/29134601*103682^(1/12) 3178110000030930 a001 6557470319842/54018521*103682^(1/12) 3178110000030937 a001 2504730781961/20633239*103682^(1/12) 3178110000030980 a001 956722026041/7881196*103682^(1/12) 3178110000031015 a001 514229/439204*710647^(13/14) 3178110000031280 a001 365435296162/3010349*103682^(1/12) 3178110000031465 a001 -953433/2+710647/2*5^(1/2) 3178110000031465 a001 101003831722/317811 3178110000031918 a001 133957148/930249*271443^(8/13) 3178110000031922 a001 433494437/1149851*271443^(7/13) 3178110000032702 a001 701408733/4870847*271443^(8/13) 3178110000032722 a001 7778742049/439204*271443^(3/13) 3178110000032817 a001 1836311903/12752043*271443^(8/13) 3178110000032833 a001 14930208/103681*271443^(8/13) 3178110000032836 a001 12586269025/87403803*271443^(8/13) 3178110000032836 a001 32951280099/228826127*271443^(8/13) 3178110000032836 a001 43133785636/299537289*271443^(8/13) 3178110000032836 a001 32264490531/224056801*271443^(8/13) 3178110000032836 a001 591286729879/4106118243*271443^(8/13) 3178110000032836 a001 774004377960/5374978561*271443^(8/13) 3178110000032836 a001 4052739537881/28143753123*271443^(8/13) 3178110000032836 a001 1515744265389/10525900321*271443^(8/13) 3178110000032836 a001 3278735159921/22768774562*271443^(8/13) 3178110000032836 a001 2504730781961/17393796001*271443^(8/13) 3178110000032836 a001 956722026041/6643838879*271443^(8/13) 3178110000032836 a001 182717648081/1268860318*271443^(8/13) 3178110000032836 a001 139583862445/969323029*271443^(8/13) 3178110000032836 a001 53316291173/370248451*271443^(8/13) 3178110000032836 a001 10182505537/70711162*271443^(8/13) 3178110000032837 a001 7778742049/54018521*271443^(8/13) 3178110000032844 a001 2971215073/20633239*271443^(8/13) 3178110000032887 a001 567451585/3940598*271443^(8/13) 3178110000033176 a001 14930352/710647*271443^(10/13) 3178110000033187 a001 433494437/3010349*271443^(8/13) 3178110000033333 a001 139583862445/1149851*103682^(1/12) 3178110000035086 a001 196418*103682^(1/24) 3178110000035236 a001 831985/15126*271443^(9/13) 3178110000035240 a001 165580141/1149851*271443^(8/13) 3178110000036020 a001 267914296/4870847*271443^(9/13) 3178110000036040 a001 2971215073/439204*271443^(4/13) 3178110000036134 a001 233802911/4250681*271443^(9/13) 3178110000036151 a001 1836311903/33385282*271443^(9/13) 3178110000036154 a001 1602508992/29134601*271443^(9/13) 3178110000036154 a001 12586269025/228826127*271443^(9/13) 3178110000036154 a001 10983760033/199691526*271443^(9/13) 3178110000036154 a001 86267571272/1568397607*271443^(9/13) 3178110000036154 a001 75283811239/1368706081*271443^(9/13) 3178110000036154 a001 591286729879/10749957122*271443^(9/13) 3178110000036154 a001 12585437040/228811001*271443^(9/13) 3178110000036154 a001 4052739537881/73681302247*271443^(9/13) 3178110000036154 a001 3536736619241/64300051206*271443^(9/13) 3178110000036154 a001 6557470319842/119218851371*271443^(9/13) 3178110000036154 a001 2504730781961/45537549124*271443^(9/13) 3178110000036154 a001 956722026041/17393796001*271443^(9/13) 3178110000036154 a001 365435296162/6643838879*271443^(9/13) 3178110000036154 a001 139583862445/2537720636*271443^(9/13) 3178110000036154 a001 53316291173/969323029*271443^(9/13) 3178110000036154 a001 20365011074/370248451*271443^(9/13) 3178110000036154 a001 7778742049/141422324*271443^(9/13) 3178110000036155 a001 2971215073/54018521*271443^(9/13) 3178110000036161 a001 1134903170/20633239*271443^(9/13) 3178110000036205 a001 433494437/7881196*271443^(9/13) 3178110000036477 a001 5702887/710647*271443^(11/13) 3178110000036505 a001 165580141/3010349*271443^(9/13) 3178110000036840 a001 907065/2-121393/2*5^(1/2) 3178110000036954 a001 53316291173/710647*103682^(1/8) 3178110000037069 a001 1602508992/90481*103682^(1/4) 3178110000038553 a001 39088169/1860498*271443^(10/13) 3178110000038558 a001 63245986/1149851*271443^(9/13) 3178110000039237 a001 98209/219602*20633239^(4/5) 3178110000039243 a001 98209/219602*17393796001^(4/7) 3178110000039243 a001 98209/219602*14662949395604^(4/9) 3178110000039243 a001 98209/219602*(1/2+1/2*5^(1/2))^28 3178110000039243 a001 98209/219602*505019158607^(1/2) 3178110000039243 a001 98209/219602*73681302247^(7/13) 3178110000039243 a001 98209/219602*10749957122^(7/12) 3178110000039243 a001 98209/219602*4106118243^(14/23) 3178110000039243 a001 98209/219602*1568397607^(7/11) 3178110000039243 a001 98209/219602*599074578^(2/3) 3178110000039243 a001 98209/219602*228826127^(7/10) 3178110000039244 a001 98209/219602*87403803^(14/19) 3178110000039246 a001 98209/219602*33385282^(7/9) 3178110000039259 a001 98209/219602*12752043^(14/17) 3178110000039338 a001 102334155/4870847*271443^(10/13) 3178110000039358 a001 567451585/219602*271443^(5/13) 3178110000039361 a001 98209/219602*4870847^(7/8) 3178110000039452 a001 267914296/12752043*271443^(10/13) 3178110000039469 a001 701408733/33385282*271443^(10/13) 3178110000039472 a001 1836311903/87403803*271443^(10/13) 3178110000039472 a001 102287808/4868641*271443^(10/13) 3178110000039472 a001 12586269025/599074578*271443^(10/13) 3178110000039472 a001 32951280099/1568397607*271443^(10/13) 3178110000039472 a001 86267571272/4106118243*271443^(10/13) 3178110000039472 a001 225851433717/10749957122*271443^(10/13) 3178110000039472 a001 591286729879/28143753123*271443^(10/13) 3178110000039472 a001 1548008755920/73681302247*271443^(10/13) 3178110000039472 a001 4052739537881/192900153618*271443^(10/13) 3178110000039472 a001 225749145909/10745088481*271443^(10/13) 3178110000039472 a001 6557470319842/312119004989*271443^(10/13) 3178110000039472 a001 2504730781961/119218851371*271443^(10/13) 3178110000039472 a001 956722026041/45537549124*271443^(10/13) 3178110000039472 a001 365435296162/17393796001*271443^(10/13) 3178110000039472 a001 139583862445/6643838879*271443^(10/13) 3178110000039472 a001 53316291173/2537720636*271443^(10/13) 3178110000039472 a001 20365011074/969323029*271443^(10/13) 3178110000039472 a001 7778742049/370248451*271443^(10/13) 3178110000039472 a001 2971215073/141422324*271443^(10/13) 3178110000039473 a001 1134903170/54018521*271443^(10/13) 3178110000039479 a001 433494437/20633239*271443^(10/13) 3178110000039523 a001 165580141/7881196*271443^(10/13) 3178110000039681 a001 311187/101521*271443^(12/13) 3178110000039823 a001 63245986/3010349*271443^(10/13) 3178110000040100 a001 98209/219602*1860498^(14/15) 3178110000041869 a001 829464/103361*271443^(11/13) 3178110000041877 a001 24157817/1149851*271443^(10/13) 3178110000042329 a001 139583862445/1860498*103682^(1/8) 3178110000042348 a001 514229/64079*64079^(22/23) 3178110000042655 a001 39088169/4870847*271443^(11/13) 3178110000042676 a001 433494437/439204*271443^(6/13) 3178110000042770 a001 34111385/4250681*271443^(11/13) 3178110000042787 a001 133957148/16692641*271443^(11/13) 3178110000042789 a001 233802911/29134601*271443^(11/13) 3178110000042790 a001 1836311903/228826127*271443^(11/13) 3178110000042790 a001 267084832/33281921*271443^(11/13) 3178110000042790 a001 12586269025/1568397607*271443^(11/13) 3178110000042790 a001 10983760033/1368706081*271443^(11/13) 3178110000042790 a001 43133785636/5374978561*271443^(11/13) 3178110000042790 a001 75283811239/9381251041*271443^(11/13) 3178110000042790 a001 591286729879/73681302247*271443^(11/13) 3178110000042790 a001 86000486440/10716675201*271443^(11/13) 3178110000042790 a001 4052739537881/505019158607*271443^(11/13) 3178110000042790 a001 3278735159921/408569081798*271443^(11/13) 3178110000042790 a001 2504730781961/312119004989*271443^(11/13) 3178110000042790 a001 956722026041/119218851371*271443^(11/13) 3178110000042790 a001 182717648081/22768774562*271443^(11/13) 3178110000042790 a001 139583862445/17393796001*271443^(11/13) 3178110000042790 a001 53316291173/6643838879*271443^(11/13) 3178110000042790 a001 10182505537/1268860318*271443^(11/13) 3178110000042790 a001 7778742049/969323029*271443^(11/13) 3178110000042790 a001 2971215073/370248451*271443^(11/13) 3178110000042790 a001 567451585/70711162*271443^(11/13) 3178110000042791 a001 433494437/54018521*271443^(11/13) 3178110000042797 a001 165580141/20633239*271443^(11/13) 3178110000042841 a001 31622993/3940598*271443^(11/13) 3178110000043114 a001 365435296162/4870847*103682^(1/8) 3178110000043142 a001 24157817/3010349*271443^(11/13) 3178110000043228 a001 956722026041/12752043*103682^(1/8) 3178110000043245 a001 2504730781961/33385282*103682^(1/8) 3178110000043247 a001 6557470319842/87403803*103682^(1/8) 3178110000043248 a001 10610209857723/141422324*103682^(1/8) 3178110000043249 a001 4052739537881/54018521*103682^(1/8) 3178110000043255 a001 140728068720/1875749*103682^(1/8) 3178110000043299 a001 591286729879/7881196*103682^(1/8) 3178110000043598 a001 225851433717/3010349*103682^(1/8) 3178110000044335 a001 66978574/109801*271443^(1/2) 3178110000045170 a001 5702887/1860498*271443^(12/13) 3178110000045201 a001 9227465/1149851*271443^(11/13) 3178110000045536 a001 -121393+196418*5^(1/2) 3178110000045651 a001 86267571272/1149851*103682^(1/8) 3178110000045971 a001 14930352/4870847*271443^(12/13) 3178110000045994 a001 165580141/439204*271443^(7/13) 3178110000046088 a001 39088169/12752043*271443^(12/13) 3178110000046105 a001 14619165/4769326*271443^(12/13) 3178110000046107 a001 267914296/87403803*271443^(12/13) 3178110000046108 a001 701408733/228826127*271443^(12/13) 3178110000046108 a001 1836311903/599074578*271443^(12/13) 3178110000046108 a001 686789568/224056801*271443^(12/13) 3178110000046108 a001 12586269025/4106118243*271443^(12/13) 3178110000046108 a001 32951280099/10749957122*271443^(12/13) 3178110000046108 a001 86267571272/28143753123*271443^(12/13) 3178110000046108 a001 32264490531/10525900321*271443^(12/13) 3178110000046108 a001 591286729879/192900153618*271443^(12/13) 3178110000046108 a001 1548008755920/505019158607*271443^(12/13) 3178110000046108 a001 1515744265389/494493258286*271443^(12/13) 3178110000046108 a001 2504730781961/817138163596*271443^(12/13) 3178110000046108 a001 956722026041/312119004989*271443^(12/13) 3178110000046108 a001 365435296162/119218851371*271443^(12/13) 3178110000046108 a001 139583862445/45537549124*271443^(12/13) 3178110000046108 a001 53316291173/17393796001*271443^(12/13) 3178110000046108 a001 20365011074/6643838879*271443^(12/13) 3178110000046108 a001 7778742049/2537720636*271443^(12/13) 3178110000046108 a001 2971215073/969323029*271443^(12/13) 3178110000046108 a001 1134903170/370248451*271443^(12/13) 3178110000046108 a001 433494437/141422324*271443^(12/13) 3178110000046109 a001 165580141/54018521*271443^(12/13) 3178110000046115 a001 63245986/20633239*271443^(12/13) 3178110000046160 a001 24157817/7881196*271443^(12/13) 3178110000046466 a001 9227465/3010349*271443^(12/13) 3178110000047405 a001 53316291173/439204*103682^(1/12) 3178110000048563 a001 3524578/1149851*271443^(12/13) 3178110000049273 a001 32951280099/710647*103682^(1/6) 3178110000049312 a001 31622993/219602*271443^(8/13) 3178110000049387 a001 2971215073/271443*103682^(7/24) 3178110000049426 a001 2/121393*(1/2+1/2*5^(1/2))^54 3178110000049426 a001 192900153618/121393*8^(1/3) 3178110000051462 a001 39088169/167761*167761^(3/5) 3178110000051913 a001 20365011074/167761*64079^(2/23) 3178110000052630 a001 24157817/439204*271443^(9/13) 3178110000054648 a001 43133785636/930249*103682^(1/6) 3178110000055266 a001 53316291173/271443*39603^(1/22) 3178110000055432 a001 225851433717/4870847*103682^(1/6) 3178110000055546 a001 591286729879/12752043*103682^(1/6) 3178110000055563 a001 774004377960/16692641*103682^(1/6) 3178110000055565 a001 4052739537881/87403803*103682^(1/6) 3178110000055566 a001 225749145909/4868641*103682^(1/6) 3178110000055566 a001 3278735159921/70711162*103682^(1/6) 3178110000055567 a001 2504730781961/54018521*103682^(1/6) 3178110000055573 a001 956722026041/20633239*103682^(1/6) 3178110000055617 a001 182717648081/3940598*103682^(1/6) 3178110000055916 a001 139583862445/3010349*103682^(1/6) 3178110000055955 a001 9227465/439204*271443^(10/13) 3178110000057969 a001 53316291173/1149851*103682^(1/6) 3178110000059316 a001 1762289/219602*271443^(11/13) 3178110000059608 a001 467861/2+75025/2*5^(1/2) 3178110000059723 a001 32951280099/439204*103682^(1/8) 3178110000061591 a001 20365011074/710647*103682^(5/24) 3178110000061706 a001 1836311903/271443*103682^(1/3) 3178110000062934 a001 1346269/439204*271443^(12/13) 3178110000063264 a001 2971215073/39603*15127^(3/20) 3178110000066966 a001 53316291173/1860498*103682^(5/24) 3178110000067750 a001 139583862445/4870847*103682^(5/24) 3178110000067865 a001 365435296162/12752043*103682^(5/24) 3178110000067881 a001 956722026041/33385282*103682^(5/24) 3178110000067884 a001 2504730781961/87403803*103682^(5/24) 3178110000067884 a001 6557470319842/228826127*103682^(5/24) 3178110000067884 a001 10610209857723/370248451*103682^(5/24) 3178110000067884 a001 4052739537881/141422324*103682^(5/24) 3178110000067885 a001 1548008755920/54018521*103682^(5/24) 3178110000067892 a001 591286729879/20633239*103682^(5/24) 3178110000067935 a001 225851433717/7881196*103682^(5/24) 3178110000068235 a001 86267571272/3010349*103682^(5/24) 3178110000070288 a001 32951280099/1149851*103682^(5/24) 3178110000072041 a001 10182505537/219602*103682^(1/6) 3178110000072678 a001 832040/64079*64079^(21/23) 3178110000073909 a001 12586269025/710647*103682^(1/4) 3178110000074024 a001 1134903170/271443*103682^(3/8) 3178110000074047 a001 433494437/167761*167761^(2/5) 3178110000076042 a001 121393/167761*7881196^(9/11) 3178110000076083 a001 121393/167761*141422324^(9/13) 3178110000076084 a001 121393/167761*2537720636^(3/5) 3178110000076084 a001 75025/271443*(1/2+1/2*5^(1/2))^29 3178110000076084 a001 75025/271443*1322157322203^(1/2) 3178110000076084 a001 121393/167761*45537549124^(9/17) 3178110000076084 a001 121393/167761*817138163596^(9/19) 3178110000076084 a001 121393/167761*14662949395604^(3/7) 3178110000076084 a001 121393/167761*(1/2+1/2*5^(1/2))^27 3178110000076084 a001 121393/167761*192900153618^(1/2) 3178110000076084 a001 121393/167761*10749957122^(9/16) 3178110000076084 a001 121393/167761*599074578^(9/14) 3178110000076086 a001 121393/167761*33385282^(3/4) 3178110000076910 a001 121393/167761*1860498^(9/10) 3178110000079079 a001 46368*39603^(2/11) 3178110000079284 a001 10983760033/620166*103682^(1/4) 3178110000080068 a001 86267571272/4870847*103682^(1/4) 3178110000080183 a001 75283811239/4250681*103682^(1/4) 3178110000080200 a001 591286729879/33385282*103682^(1/4) 3178110000080202 a001 516002918640/29134601*103682^(1/4) 3178110000080202 a001 4052739537881/228826127*103682^(1/4) 3178110000080202 a001 3536736619241/199691526*103682^(1/4) 3178110000080202 a001 6557470319842/370248451*103682^(1/4) 3178110000080203 a001 2504730781961/141422324*103682^(1/4) 3178110000080203 a001 956722026041/54018521*103682^(1/4) 3178110000080210 a001 365435296162/20633239*103682^(1/4) 3178110000080254 a001 139583862445/7881196*103682^(1/4) 3178110000080553 a001 53316291173/3010349*103682^(1/4) 3178110000082377 a001 28657/2+271443/2*5^(1/2) 3178110000082377 a001 38580030724/121393 3178110000082606 a001 20365011074/1149851*103682^(1/4) 3178110000084359 a001 12586269025/439204*103682^(5/24) 3178110000085565 a001 32951280099/167761*64079^(1/23) 3178110000086228 a001 7778742049/710647*103682^(7/24) 3178110000086342 a001 233802911/90481*103682^(5/12) 3178110000091603 a001 10182505537/930249*103682^(7/24) 3178110000092106 a001 139583862445/710647*39603^(1/22) 3178110000092387 a001 53316291173/4870847*103682^(7/24) 3178110000092501 a001 139583862445/12752043*103682^(7/24) 3178110000092518 a001 182717648081/16692641*103682^(7/24) 3178110000092520 a001 956722026041/87403803*103682^(7/24) 3178110000092521 a001 2504730781961/228826127*103682^(7/24) 3178110000092521 a001 3278735159921/299537289*103682^(7/24) 3178110000092521 a001 10610209857723/969323029*103682^(7/24) 3178110000092521 a001 4052739537881/370248451*103682^(7/24) 3178110000092521 a001 387002188980/35355581*103682^(7/24) 3178110000092522 a001 591286729879/54018521*103682^(7/24) 3178110000092528 a001 7787980473/711491*103682^(7/24) 3178110000092572 a001 21566892818/1970299*103682^(7/24) 3178110000092871 a001 32951280099/3010349*103682^(7/24) 3178110000094924 a001 12586269025/1149851*103682^(7/24) 3178110000096632 a001 4807526976/167761*167761^(1/5) 3178110000096678 a001 7778742049/439204*103682^(1/4) 3178110000097481 a001 182717648081/930249*39603^(1/22) 3178110000098265 a001 956722026041/4870847*39603^(1/22) 3178110000098379 a001 2504730781961/12752043*39603^(1/22) 3178110000098396 a001 3278735159921/16692641*39603^(1/22) 3178110000098400 a001 10610209857723/54018521*39603^(1/22) 3178110000098406 a001 4052739537881/20633239*39603^(1/22) 3178110000098450 a001 387002188980/1970299*39603^(1/22) 3178110000098546 a001 686789568/101521*103682^(1/3) 3178110000098661 a001 433494437/271443*103682^(11/24) 3178110000098750 a001 591286729879/3010349*39603^(1/22) 3178110000100803 a001 225851433717/1149851*39603^(1/22) 3178110000101823 a001 31211900500/98209 3178110000103921 a001 12586269025/1860498*103682^(1/3) 3178110000104705 a001 32951280099/4870847*103682^(1/3) 3178110000104819 a001 86267571272/12752043*103682^(1/3) 3178110000104836 a001 32264490531/4769326*103682^(1/3) 3178110000104839 a001 591286729879/87403803*103682^(1/3) 3178110000104839 a001 1548008755920/228826127*103682^(1/3) 3178110000104839 a001 4052739537881/599074578*103682^(1/3) 3178110000104839 a001 1515744265389/224056801*103682^(1/3) 3178110000104839 a001 6557470319842/969323029*103682^(1/3) 3178110000104839 a001 2504730781961/370248451*103682^(1/3) 3178110000104839 a001 956722026041/141422324*103682^(1/3) 3178110000104840 a001 365435296162/54018521*103682^(1/3) 3178110000104846 a001 139583862445/20633239*103682^(1/3) 3178110000104890 a001 53316291173/7881196*103682^(1/3) 3178110000105190 a001 20365011074/3010349*103682^(1/3) 3178110000106269 a001 2178309/167761*439204^(7/9) 3178110000106976 a001 514229/167761*439204^(8/9) 3178110000107243 a001 7778742049/1149851*103682^(1/3) 3178110000107599 a001 1346269/64079*64079^(20/23) 3178110000108241 a001 9227465/167761*439204^(2/3) 3178110000108996 a001 1201881744/109801*103682^(7/24) 3178110000110063 a001 39088169/167761*439204^(5/9) 3178110000110864 a001 2971215073/710647*103682^(3/8) 3178110000110979 a001 267914296/271443*103682^(1/2) 3178110000111894 a001 165580141/167761*439204^(4/9) 3178110000112918 a001 317811/167761*20633239^(5/7) 3178110000112924 a001 317811/167761*2537720636^(5/9) 3178110000112924 a001 75025/710647*(1/2+1/2*5^(1/2))^31 3178110000112924 a001 75025/710647*9062201101803^(1/2) 3178110000112924 a001 317811/167761*312119004989^(5/11) 3178110000112924 a001 317811/167761*(1/2+1/2*5^(1/2))^25 3178110000112924 a001 317811/167761*3461452808002^(5/12) 3178110000112924 a001 317811/167761*28143753123^(1/2) 3178110000112924 a001 317811/167761*228826127^(5/8) 3178110000113689 a001 317811/167761*1860498^(5/6) 3178110000113725 a001 701408733/167761*439204^(1/3) 3178110000114874 a001 196418*39603^(1/22) 3178110000115556 a001 2971215073/167761*439204^(2/9) 3178110000116239 a001 7778742049/1860498*103682^(3/8) 3178110000116679 a001 163427632725/514229 3178110000117023 a001 20365011074/4870847*103682^(3/8) 3178110000117138 a001 53316291173/12752043*103682^(3/8) 3178110000117154 a001 139583862445/33385282*103682^(3/8) 3178110000117157 a001 365435296162/87403803*103682^(3/8) 3178110000117157 a001 956722026041/228826127*103682^(3/8) 3178110000117157 a001 2504730781961/599074578*103682^(3/8) 3178110000117157 a001 6557470319842/1568397607*103682^(3/8) 3178110000117157 a001 10610209857723/2537720636*103682^(3/8) 3178110000117157 a001 4052739537881/969323029*103682^(3/8) 3178110000117157 a001 1548008755920/370248451*103682^(3/8) 3178110000117157 a001 591286729879/141422324*103682^(3/8) 3178110000117158 a001 225851433717/54018521*103682^(3/8) 3178110000117165 a001 86267571272/20633239*103682^(3/8) 3178110000117208 a001 32951280099/7881196*103682^(3/8) 3178110000117386 a001 75025*439204^(1/9) 3178110000117508 a001 12586269025/3010349*103682^(3/8) 3178110000118298 a001 75025/1860498*141422324^(11/13) 3178110000118299 a001 75025/1860498*2537720636^(11/15) 3178110000118299 a001 75025/1860498*45537549124^(11/17) 3178110000118299 a001 75025/1860498*312119004989^(3/5) 3178110000118299 a001 75025/1860498*14662949395604^(11/21) 3178110000118299 a001 75025/1860498*(1/2+1/2*5^(1/2))^33 3178110000118299 a001 75025/1860498*192900153618^(11/18) 3178110000118299 a001 75640/15251*(1/2+1/2*5^(1/2))^23 3178110000118299 a001 75025/1860498*10749957122^(11/16) 3178110000118299 a001 75640/15251*4106118243^(1/2) 3178110000118299 a001 75025/1860498*1568397607^(3/4) 3178110000118299 a001 75025/1860498*599074578^(11/14) 3178110000118301 a001 75025/1860498*33385282^(11/12) 3178110000118846 a001 427859097175/1346269 3178110000119050 a001 2178309/167761*7881196^(7/11) 3178110000119078 a001 2178309/167761*20633239^(3/5) 3178110000119083 a001 2178309/167761*141422324^(7/13) 3178110000119083 a001 75025/4870847*2537720636^(7/9) 3178110000119083 a001 2178309/167761*2537720636^(7/15) 3178110000119083 a001 75025/4870847*17393796001^(5/7) 3178110000119083 a001 2178309/167761*17393796001^(3/7) 3178110000119083 a001 75025/4870847*312119004989^(7/11) 3178110000119083 a001 75025/4870847*14662949395604^(5/9) 3178110000119083 a001 75025/4870847*(1/2+1/2*5^(1/2))^35 3178110000119083 a001 75025/4870847*505019158607^(5/8) 3178110000119083 a001 75025/4870847*28143753123^(7/10) 3178110000119083 a001 2178309/167761*45537549124^(7/17) 3178110000119083 a001 2178309/167761*14662949395604^(1/3) 3178110000119083 a001 2178309/167761*(1/2+1/2*5^(1/2))^21 3178110000119083 a001 2178309/167761*192900153618^(7/18) 3178110000119083 a001 2178309/167761*10749957122^(7/16) 3178110000119083 a001 2178309/167761*599074578^(1/2) 3178110000119083 a001 75025/4870847*599074578^(5/6) 3178110000119083 a001 75025/4870847*228826127^(7/8) 3178110000119084 a001 2178309/167761*33385282^(7/12) 3178110000119163 a001 560074829400/1762289 3178110000119193 a001 39088169/167761*7881196^(5/11) 3178110000119196 a001 9227465/167761*7881196^(6/11) 3178110000119197 a001 75025/12752043*(1/2+1/2*5^(1/2))^37 3178110000119197 a001 5702887/167761*817138163596^(1/3) 3178110000119197 a001 5702887/167761*(1/2+1/2*5^(1/2))^19 3178110000119197 a001 5702887/167761*87403803^(1/2) 3178110000119198 a001 165580141/167761*7881196^(4/11) 3178110000119200 a001 267914296/167761*7881196^(1/3) 3178110000119203 a001 701408733/167761*7881196^(3/11) 3178110000119207 a001 2971215073/167761*7881196^(2/11) 3178110000119209 a001 586517975845/1845493 3178110000119212 a001 75025*7881196^(1/11) 3178110000119213 a001 39088169/167761*20633239^(3/7) 3178110000119214 a001 75025/33385282*2537720636^(13/15) 3178110000119214 a001 75025/33385282*45537549124^(13/17) 3178110000119214 a001 75025/33385282*14662949395604^(13/21) 3178110000119214 a001 75025/33385282*(1/2+1/2*5^(1/2))^39 3178110000119214 a001 75025/33385282*192900153618^(13/18) 3178110000119214 a001 75025/33385282*73681302247^(3/4) 3178110000119214 a001 14930352/167761*45537549124^(1/3) 3178110000119214 a001 14930352/167761*(1/2+1/2*5^(1/2))^17 3178110000119214 a001 75025/33385282*10749957122^(13/16) 3178110000119214 a001 75025/33385282*599074578^(13/14) 3178110000119214 a001 63245986/167761*20633239^(2/5) 3178110000119215 a001 433494437/167761*20633239^(2/7) 3178110000119215 a001 1836311903/167761*20633239^(1/5) 3178110000119216 a001 7677619978875/24157817 3178110000119216 a001 4807526976/167761*20633239^(1/7) 3178110000119216 a001 39088169/167761*141422324^(5/13) 3178110000119216 a001 39088169/167761*2537720636^(1/3) 3178110000119216 a001 39088169/167761*45537549124^(5/17) 3178110000119216 a001 39088169/167761*312119004989^(3/11) 3178110000119216 a001 39088169/167761*14662949395604^(5/21) 3178110000119216 a001 39088169/167761*(1/2+1/2*5^(1/2))^15 3178110000119216 a001 39088169/167761*192900153618^(5/18) 3178110000119216 a001 39088169/167761*28143753123^(3/10) 3178110000119216 a001 39088169/167761*10749957122^(5/16) 3178110000119216 a001 39088169/167761*599074578^(5/14) 3178110000119216 a001 39088169/167761*228826127^(3/8) 3178110000119217 a001 10050135028700/31622993 3178110000119217 a001 9303105/15251*141422324^(1/3) 3178110000119217 a001 9303105/15251*(1/2+1/2*5^(1/2))^13 3178110000119217 a001 9303105/15251*73681302247^(1/4) 3178110000119217 a001 701408733/167761*141422324^(3/13) 3178110000119217 a001 165580141/167761*141422324^(4/13) 3178110000119217 a001 52623190193325/165580141 3178110000119217 a001 2971215073/167761*141422324^(2/13) 3178110000119217 a001 75025*141422324^(1/13) 3178110000119217 a001 75025/599074578*45537549124^(15/17) 3178110000119217 a001 75025/599074578*312119004989^(9/11) 3178110000119217 a001 75025/599074578*14662949395604^(5/7) 3178110000119217 a001 75025/599074578*192900153618^(5/6) 3178110000119217 a001 75025/599074578*28143753123^(9/10) 3178110000119217 a001 267914296/167761*312119004989^(1/5) 3178110000119217 a001 267914296/167761*(1/2+1/2*5^(1/2))^11 3178110000119217 a001 75025/599074578*10749957122^(15/16) 3178110000119217 a001 267914296/167761*1568397607^(1/4) 3178110000119217 a001 137769300522575/433494437 3178110000119217 a001 701408733/167761*2537720636^(1/5) 3178110000119217 a001 701408733/167761*45537549124^(3/17) 3178110000119217 a001 701408733/167761*817138163596^(3/19) 3178110000119217 a001 701408733/167761*14662949395604^(1/7) 3178110000119217 a001 701408733/167761*(1/2+1/2*5^(1/2))^9 3178110000119217 a001 701408733/167761*192900153618^(1/6) 3178110000119217 a001 701408733/167761*10749957122^(3/16) 3178110000119217 a001 36068471137440/113490317 3178110000119217 a001 75025/4106118243*14662949395604^(7/9) 3178110000119217 a001 75025/4106118243*505019158607^(7/8) 3178110000119217 a001 1836311903/167761*17393796001^(1/7) 3178110000119217 a001 1836311903/167761*14662949395604^(1/9) 3178110000119217 a001 1836311903/167761*(1/2+1/2*5^(1/2))^7 3178110000119217 a001 4807526976/167761*2537720636^(1/9) 3178110000119217 a001 944284833600625/2971215073 3178110000119217 a001 75025*2537720636^(1/15) 3178110000119217 a001 75025/10749957122*14662949395604^(17/21) 3178110000119217 a001 75025/10749957122*192900153618^(17/18) 3178110000119217 a001 4807526976/167761*312119004989^(1/11) 3178110000119217 a001 4807526976/167761*(1/2+1/2*5^(1/2))^5 3178110000119217 a001 4807526976/167761*28143753123^(1/10) 3178110000119217 a001 2472169789427475/7778742049 3178110000119217 a001 3236112267340900/10182505537 3178110000119217 a001 75025/73681302247*3461452808002^(11/12) 3178110000119217 a001 16944503814617925/53316291173 3178110000119217 a001 75025/192900153618*14662949395604^(19/21) 3178110000119217 a001 8872257381834395/27916772489 3178110000119217 a001 187917426916624025/591286729879 3178110000119217 a001 75025*192900153618^(1/18) 3178110000119217 a001 71778070003726025/225851433717 3178110000119217 a001 13708391547277025/43133785636 3178110000119217 a001 75025/119218851371*14662949395604^(8/9) 3178110000119217 a001 10472279279936125/32951280099 3178110000119217 a001 75025/45537549124*14662949395604^(6/7) 3178110000119217 a001 75025*10749957122^(1/16) 3178110000119217 a001 32951280099/335522+32951280099/335522*5^(1/2) 3178110000119217 a001 53316291173/167761 3178110000119217 a001 20365011074/167761*(1/2+1/2*5^(1/2))^2 3178110000119217 a001 20365011074/167761*10749957122^(1/24) 3178110000119217 a001 2971215073/167761*2537720636^(2/15) 3178110000119217 a001 75025/17393796001*23725150497407^(13/16) 3178110000119217 a001 75025/17393796001*505019158607^(13/14) 3178110000119217 a001 20365011074/167761*4106118243^(1/23) 3178110000119217 a001 7778742049/167761*(1/2+1/2*5^(1/2))^4 3178110000119217 a001 7778742049/167761*23725150497407^(1/16) 3178110000119217 a001 7778742049/167761*73681302247^(1/13) 3178110000119217 a001 7778742049/167761*10749957122^(1/12) 3178110000119217 a001 763942477913425/2403763488 3178110000119217 a001 7778742049/167761*4106118243^(2/23) 3178110000119217 a001 20365011074/167761*1568397607^(1/22) 3178110000119217 a001 75025/6643838879*312119004989^(10/11) 3178110000119217 a001 75025/6643838879*3461452808002^(5/6) 3178110000119217 a001 2971215073/167761*45537549124^(2/17) 3178110000119217 a001 2971215073/167761*14662949395604^(2/21) 3178110000119217 a001 2971215073/167761*(1/2+1/2*5^(1/2))^6 3178110000119217 a001 2971215073/167761*10749957122^(1/8) 3178110000119217 a001 2971215073/167761*4106118243^(3/23) 3178110000119217 a001 7778742049/167761*1568397607^(1/11) 3178110000119217 a001 583600122226225/1836311903 3178110000119217 a001 2971215073/167761*1568397607^(3/22) 3178110000119217 a001 20365011074/167761*599074578^(1/21) 3178110000119217 a001 75025/2537720636*45537549124^(16/17) 3178110000119217 a001 75025/2537720636*14662949395604^(16/21) 3178110000119217 a001 75025/2537720636*192900153618^(8/9) 3178110000119217 a001 75025/2537720636*73681302247^(12/13) 3178110000119217 a001 1134903170/167761*(1/2+1/2*5^(1/2))^8 3178110000119217 a001 1134903170/167761*23725150497407^(1/8) 3178110000119217 a001 1134903170/167761*73681302247^(2/13) 3178110000119217 a001 1134903170/167761*10749957122^(1/6) 3178110000119217 a001 1134903170/167761*4106118243^(4/23) 3178110000119217 a001 701408733/167761*599074578^(3/14) 3178110000119217 a001 75025*599074578^(1/14) 3178110000119217 a001 1134903170/167761*1568397607^(2/11) 3178110000119217 a001 7778742049/167761*599074578^(2/21) 3178110000119217 a001 1836311903/167761*599074578^(1/6) 3178110000119217 a001 2971215073/167761*599074578^(1/7) 3178110000119217 a001 222915410851825/701408733 3178110000119217 a001 1134903170/167761*599074578^(4/21) 3178110000119217 a001 20365011074/167761*228826127^(1/20) 3178110000119217 a001 433494437/167761*2537720636^(2/9) 3178110000119217 a001 433494437/167761*312119004989^(2/11) 3178110000119217 a001 433494437/167761*(1/2+1/2*5^(1/2))^10 3178110000119217 a001 433494437/167761*28143753123^(1/5) 3178110000119217 a001 433494437/167761*10749957122^(5/24) 3178110000119217 a001 75025/969323029*10749957122^(23/24) 3178110000119217 a001 433494437/167761*4106118243^(5/23) 3178110000119217 a001 433494437/167761*1568397607^(5/22) 3178110000119217 a001 433494437/167761*599074578^(5/21) 3178110000119217 a001 7778742049/167761*228826127^(1/10) 3178110000119217 a001 4807526976/167761*228826127^(1/8) 3178110000119217 a001 2971215073/167761*228826127^(3/20) 3178110000119217 a001 42573055164625/133957148 3178110000119217 a001 1134903170/167761*228826127^(1/5) 3178110000119217 a001 433494437/167761*228826127^(1/4) 3178110000119217 a001 20365011074/167761*87403803^(1/19) 3178110000119217 a001 165580141/167761*2537720636^(4/15) 3178110000119217 a001 75025/370248451*312119004989^(4/5) 3178110000119217 a001 75025/370248451*23725150497407^(11/16) 3178110000119217 a001 75025/370248451*73681302247^(11/13) 3178110000119217 a001 165580141/167761*45537549124^(4/17) 3178110000119217 a001 165580141/167761*817138163596^(4/19) 3178110000119217 a001 165580141/167761*14662949395604^(4/21) 3178110000119217 a001 165580141/167761*(1/2+1/2*5^(1/2))^12 3178110000119217 a001 165580141/167761*192900153618^(2/9) 3178110000119217 a001 165580141/167761*73681302247^(3/13) 3178110000119217 a001 165580141/167761*10749957122^(1/4) 3178110000119217 a001 75025/370248451*10749957122^(11/12) 3178110000119217 a001 165580141/167761*4106118243^(6/23) 3178110000119217 a001 75025/370248451*4106118243^(22/23) 3178110000119217 a001 165580141/167761*1568397607^(3/11) 3178110000119217 a001 165580141/167761*599074578^(2/7) 3178110000119217 a001 165580141/167761*228826127^(3/10) 3178110000119217 a001 7778742049/167761*87403803^(2/19) 3178110000119217 a001 6504584027185/20466831 3178110000119217 a001 2971215073/167761*87403803^(3/19) 3178110000119217 a001 1134903170/167761*87403803^(4/19) 3178110000119217 a001 433494437/167761*87403803^(5/19) 3178110000119217 a001 165580141/167761*87403803^(6/19) 3178110000119217 a001 20365011074/167761*33385282^(1/18) 3178110000119217 a001 75025/141422324*2537720636^(14/15) 3178110000119217 a001 75025/141422324*17393796001^(6/7) 3178110000119217 a001 75025/141422324*45537549124^(14/17) 3178110000119217 a001 75025/141422324*817138163596^(14/19) 3178110000119217 a001 75025/141422324*14662949395604^(2/3) 3178110000119217 a001 75025/141422324*505019158607^(3/4) 3178110000119217 a001 75025/141422324*192900153618^(7/9) 3178110000119217 a001 63245986/167761*17393796001^(2/7) 3178110000119217 a001 63245986/167761*14662949395604^(2/9) 3178110000119217 a001 63245986/167761*(1/2+1/2*5^(1/2))^14 3178110000119217 a001 63245986/167761*505019158607^(1/4) 3178110000119217 a001 63245986/167761*10749957122^(7/24) 3178110000119217 a001 75025/141422324*10749957122^(7/8) 3178110000119217 a001 63245986/167761*4106118243^(7/23) 3178110000119217 a001 75025/141422324*4106118243^(21/23) 3178110000119217 a001 63245986/167761*1568397607^(7/22) 3178110000119217 a001 75025/141422324*1568397607^(21/22) 3178110000119217 a001 63245986/167761*599074578^(1/3) 3178110000119217 a001 63245986/167761*228826127^(7/20) 3178110000119217 a001 75025*33385282^(1/12) 3178110000119217 a001 63245986/167761*87403803^(7/19) 3178110000119217 a001 7778742049/167761*33385282^(1/9) 3178110000119217 a001 12422650078525/39088169 3178110000119217 a001 2971215073/167761*33385282^(1/6) 3178110000119217 a001 1134903170/167761*33385282^(2/9) 3178110000119217 a001 701408733/167761*33385282^(1/4) 3178110000119217 a001 39088169/167761*33385282^(5/12) 3178110000119218 a001 433494437/167761*33385282^(5/18) 3178110000119218 a001 165580141/167761*33385282^(1/3) 3178110000119218 a001 75025/54018521*2537720636^(8/9) 3178110000119218 a001 75025/54018521*312119004989^(8/11) 3178110000119218 a001 75025/54018521*23725150497407^(5/8) 3178110000119218 a001 75025/54018521*73681302247^(10/13) 3178110000119218 a001 75025/54018521*28143753123^(4/5) 3178110000119218 a001 24157817/167761*(1/2+1/2*5^(1/2))^16 3178110000119218 a001 24157817/167761*23725150497407^(1/4) 3178110000119218 a001 24157817/167761*73681302247^(4/13) 3178110000119218 a001 24157817/167761*10749957122^(1/3) 3178110000119218 a001 75025/54018521*10749957122^(5/6) 3178110000119218 a001 24157817/167761*4106118243^(8/23) 3178110000119218 a001 75025/54018521*4106118243^(20/23) 3178110000119218 a001 24157817/167761*1568397607^(4/11) 3178110000119218 a001 75025/54018521*1568397607^(10/11) 3178110000119218 a001 24157817/167761*599074578^(8/21) 3178110000119218 a001 75025/54018521*599074578^(20/21) 3178110000119218 a001 24157817/167761*228826127^(2/5) 3178110000119218 a001 20365011074/167761*12752043^(1/17) 3178110000119218 a001 24157817/167761*87403803^(8/19) 3178110000119218 a001 63245986/167761*33385282^(7/18) 3178110000119219 a001 7778742049/167761*12752043^(2/17) 3178110000119219 a001 24157817/167761*33385282^(4/9) 3178110000119220 a001 2372515049825/7465176 3178110000119220 a001 2971215073/167761*12752043^(3/17) 3178110000119221 a001 1134903170/167761*12752043^(4/17) 3178110000119222 a001 433494437/167761*12752043^(5/17) 3178110000119224 a001 14930352/167761*12752043^(1/2) 3178110000119224 a001 165580141/167761*12752043^(6/17) 3178110000119224 a001 9227465/167761*141422324^(6/13) 3178110000119224 a001 9227465/167761*2537720636^(2/5) 3178110000119224 a001 75025/20633239*817138163596^(2/3) 3178110000119224 a001 75025/20633239*(1/2+1/2*5^(1/2))^38 3178110000119224 a001 9227465/167761*45537549124^(6/17) 3178110000119224 a001 9227465/167761*14662949395604^(2/7) 3178110000119224 a001 9227465/167761*(1/2+1/2*5^(1/2))^18 3178110000119224 a001 9227465/167761*192900153618^(1/3) 3178110000119224 a001 9227465/167761*10749957122^(3/8) 3178110000119224 a001 75025/20633239*10749957122^(19/24) 3178110000119224 a001 9227465/167761*4106118243^(9/23) 3178110000119224 a001 75025/20633239*4106118243^(19/23) 3178110000119224 a001 9227465/167761*1568397607^(9/22) 3178110000119224 a001 75025/20633239*1568397607^(19/22) 3178110000119224 a001 9227465/167761*599074578^(3/7) 3178110000119224 a001 75025/20633239*599074578^(19/21) 3178110000119224 a001 9227465/167761*228826127^(9/20) 3178110000119224 a001 75025/20633239*228826127^(19/20) 3178110000119224 a001 9227465/167761*87403803^(9/19) 3178110000119225 a001 63245986/167761*12752043^(7/17) 3178110000119225 a001 20365011074/167761*4870847^(1/16) 3178110000119226 a001 9227465/167761*33385282^(1/2) 3178110000119227 a001 24157817/167761*12752043^(8/17) 3178110000119233 a001 7778742049/167761*4870847^(1/8) 3178110000119235 a001 9227465/167761*12752043^(9/17) 3178110000119237 a001 1812440220425/5702887 3178110000119242 a001 2971215073/167761*4870847^(3/16) 3178110000119250 a001 1134903170/167761*4870847^(1/4) 3178110000119259 a001 433494437/167761*4870847^(5/16) 3178110000119264 a001 3524578/167761*20633239^(4/7) 3178110000119267 a001 165580141/167761*4870847^(3/8) 3178110000119268 a001 75025/7881196*141422324^(12/13) 3178110000119268 a001 75025/7881196*2537720636^(4/5) 3178110000119268 a001 3524578/167761*2537720636^(4/9) 3178110000119268 a001 75025/7881196*45537549124^(12/17) 3178110000119268 a001 75025/7881196*14662949395604^(4/7) 3178110000119268 a001 75025/7881196*(1/2+1/2*5^(1/2))^36 3178110000119268 a001 75025/7881196*505019158607^(9/14) 3178110000119268 a001 75025/7881196*192900153618^(2/3) 3178110000119268 a001 75025/7881196*73681302247^(9/13) 3178110000119268 a001 3524578/167761*(1/2+1/2*5^(1/2))^20 3178110000119268 a001 3524578/167761*23725150497407^(5/16) 3178110000119268 a001 3524578/167761*505019158607^(5/14) 3178110000119268 a001 3524578/167761*73681302247^(5/13) 3178110000119268 a001 3524578/167761*28143753123^(2/5) 3178110000119268 a001 3524578/167761*10749957122^(5/12) 3178110000119268 a001 75025/7881196*10749957122^(3/4) 3178110000119268 a001 3524578/167761*4106118243^(10/23) 3178110000119268 a001 75025/7881196*4106118243^(18/23) 3178110000119268 a001 3524578/167761*1568397607^(5/11) 3178110000119268 a001 75025/7881196*1568397607^(9/11) 3178110000119268 a001 3524578/167761*599074578^(10/21) 3178110000119268 a001 75025/7881196*599074578^(6/7) 3178110000119268 a001 3524578/167761*228826127^(1/2) 3178110000119268 a001 75025/7881196*228826127^(9/10) 3178110000119268 a001 3524578/167761*87403803^(10/19) 3178110000119268 a001 75025/7881196*87403803^(18/19) 3178110000119269 a001 3524578/167761*33385282^(5/9) 3178110000119275 a001 63245986/167761*4870847^(7/16) 3178110000119278 a001 20365011074/167761*1860498^(1/15) 3178110000119279 a001 3524578/167761*12752043^(10/17) 3178110000119285 a001 24157817/167761*4870847^(1/2) 3178110000119300 a001 9227465/167761*4870847^(9/16) 3178110000119309 a001 75025*1860498^(1/10) 3178110000119339 a001 7778742049/167761*1860498^(2/15) 3178110000119352 a001 3524578/167761*4870847^(5/8) 3178110000119358 a001 692290561625/2178309 3178110000119370 a001 4807526976/167761*1860498^(1/6) 3178110000119400 a001 2971215073/167761*1860498^(1/5) 3178110000119462 a001 1134903170/167761*1860498^(4/15) 3178110000119492 a001 701408733/167761*1860498^(3/10) 3178110000119523 a001 433494437/167761*1860498^(1/3) 3178110000119533 a001 1346269/167761*7881196^(2/3) 3178110000119561 a001 4807526976/1149851*103682^(3/8) 3178110000119567 a001 75025/3010349*45537549124^(2/3) 3178110000119567 a001 75025/3010349*(1/2+1/2*5^(1/2))^34 3178110000119567 a001 1346269/167761*312119004989^(2/5) 3178110000119567 a001 1346269/167761*(1/2+1/2*5^(1/2))^22 3178110000119567 a001 1346269/167761*10749957122^(11/24) 3178110000119567 a001 75025/3010349*10749957122^(17/24) 3178110000119567 a001 1346269/167761*4106118243^(11/23) 3178110000119567 a001 75025/3010349*4106118243^(17/23) 3178110000119567 a001 1346269/167761*1568397607^(1/2) 3178110000119567 a001 75025/3010349*1568397607^(17/22) 3178110000119567 a001 1346269/167761*599074578^(11/21) 3178110000119567 a001 75025/3010349*599074578^(17/21) 3178110000119567 a001 1346269/167761*228826127^(11/20) 3178110000119567 a001 75025/3010349*228826127^(17/20) 3178110000119568 a001 1346269/167761*87403803^(11/19) 3178110000119568 a001 75025/3010349*87403803^(17/19) 3178110000119569 a001 1346269/167761*33385282^(11/18) 3178110000119570 a001 75025/3010349*33385282^(17/18) 3178110000119580 a001 1346269/167761*12752043^(11/17) 3178110000119584 a001 165580141/167761*1860498^(2/5) 3178110000119645 a001 63245986/167761*1860498^(7/15) 3178110000119660 a001 1346269/167761*4870847^(11/16) 3178110000119666 a001 20365011074/167761*710647^(1/14) 3178110000119675 a001 39088169/167761*1860498^(1/2) 3178110000119707 a001 24157817/167761*1860498^(8/15) 3178110000119725 a001 2178309/167761*1860498^(7/10) 3178110000119775 a001 9227465/167761*1860498^(3/5) 3178110000119880 a001 3524578/167761*1860498^(2/3) 3178110000120116 a001 7778742049/167761*710647^(1/7) 3178110000120186 a001 26443146445/83204 3178110000120241 a001 1346269/167761*1860498^(11/15) 3178110000120565 a001 2971215073/167761*710647^(3/14) 3178110000120790 a001 1836311903/167761*710647^(1/4) 3178110000121015 a001 1134903170/167761*710647^(2/7) 3178110000121314 a001 2971215073/439204*103682^(1/3) 3178110000121464 a001 433494437/167761*710647^(5/14) 3178110000121583 a001 514229/167761*7881196^(8/11) 3178110000121620 a001 514229/167761*141422324^(8/13) 3178110000121620 a001 514229/167761*2537720636^(8/15) 3178110000121620 a001 75025/1149851*(1/2+1/2*5^(1/2))^32 3178110000121620 a001 75025/1149851*23725150497407^(1/2) 3178110000121620 a001 75025/1149851*505019158607^(4/7) 3178110000121620 a001 75025/1149851*73681302247^(8/13) 3178110000121620 a001 514229/167761*45537549124^(8/17) 3178110000121620 a001 514229/167761*14662949395604^(8/21) 3178110000121620 a001 514229/167761*(1/2+1/2*5^(1/2))^24 3178110000121620 a001 514229/167761*192900153618^(4/9) 3178110000121620 a001 514229/167761*73681302247^(6/13) 3178110000121620 a001 514229/167761*10749957122^(1/2) 3178110000121620 a001 75025/1149851*10749957122^(2/3) 3178110000121620 a001 514229/167761*4106118243^(12/23) 3178110000121620 a001 75025/1149851*4106118243^(16/23) 3178110000121620 a001 514229/167761*1568397607^(6/11) 3178110000121620 a001 75025/1149851*1568397607^(8/11) 3178110000121620 a001 514229/167761*599074578^(4/7) 3178110000121620 a001 75025/1149851*599074578^(16/21) 3178110000121620 a001 514229/167761*228826127^(3/5) 3178110000121620 a001 75025/1149851*228826127^(4/5) 3178110000121621 a001 514229/167761*87403803^(12/19) 3178110000121621 a001 75025/1149851*87403803^(16/19) 3178110000121622 a001 514229/167761*33385282^(2/3) 3178110000121623 a001 75025/1149851*33385282^(8/9) 3178110000121634 a001 514229/167761*12752043^(12/17) 3178110000121639 a001 75025/1149851*12752043^(16/17) 3178110000121721 a001 514229/167761*4870847^(3/4) 3178110000121914 a001 165580141/167761*710647^(3/7) 3178110000122355 a001 514229/167761*1860498^(4/5) 3178110000122363 a001 63245986/167761*710647^(1/2) 3178110000122535 a001 20365011074/167761*271443^(1/13) 3178110000122814 a001 24157817/167761*710647^(4/7) 3178110000123183 a001 1836311903/710647*103682^(5/12) 3178110000123270 a001 9227465/167761*710647^(9/14) 3178110000123297 a001 165580141/271443*103682^(13/24) 3178110000123763 a001 3524578/167761*710647^(5/7) 3178110000123803 a001 2178309/167761*710647^(3/4) 3178110000124512 a001 1346269/167761*710647^(11/14) 3178110000125853 a001 7778742049/167761*271443^(2/13) 3178110000125860 a001 101003831725/317811 3178110000127014 a001 514229/167761*710647^(6/7) 3178110000128557 a001 267084832/103361*103682^(5/12) 3178110000129171 a001 2971215073/167761*271443^(3/13) 3178110000129342 a001 12586269025/4870847*103682^(5/12) 3178110000129456 a001 10983760033/4250681*103682^(5/12) 3178110000129473 a001 43133785636/16692641*103682^(5/12) 3178110000129475 a001 75283811239/29134601*103682^(5/12) 3178110000129476 a001 591286729879/228826127*103682^(5/12) 3178110000129476 a001 86000486440/33281921*103682^(5/12) 3178110000129476 a001 4052739537881/1568397607*103682^(5/12) 3178110000129476 a001 3536736619241/1368706081*103682^(5/12) 3178110000129476 a001 3278735159921/1268860318*103682^(5/12) 3178110000129476 a001 2504730781961/969323029*103682^(5/12) 3178110000129476 a001 956722026041/370248451*103682^(5/12) 3178110000129476 a001 182717648081/70711162*103682^(5/12) 3178110000129477 a001 139583862445/54018521*103682^(5/12) 3178110000129483 a001 53316291173/20633239*103682^(5/12) 3178110000129527 a001 10182505537/3940598*103682^(5/12) 3178110000129826 a001 7778742049/3010349*103682^(5/12) 3178110000131535 a001 32951280099/167761*103682^(1/24) 3178110000131879 a001 2971215073/1149851*103682^(5/12) 3178110000132488 a001 1134903170/167761*271443^(4/13) 3178110000133633 a001 1836311903/439204*103682^(3/8) 3178110000135501 a001 1134903170/710647*103682^(11/24) 3178110000135616 a001 34111385/90481*103682^(7/12) 3178110000135646 a001 75025/439204*7881196^(10/11) 3178110000135686 a001 75025/439204*20633239^(6/7) 3178110000135692 a001 75025/439204*141422324^(10/13) 3178110000135692 a001 196418/167761*141422324^(2/3) 3178110000135692 a001 75025/439204*2537720636^(2/3) 3178110000135692 a001 75025/439204*45537549124^(10/17) 3178110000135692 a001 75025/439204*312119004989^(6/11) 3178110000135692 a001 75025/439204*14662949395604^(10/21) 3178110000135692 a001 75025/439204*(1/2+1/2*5^(1/2))^30 3178110000135692 a001 75025/439204*192900153618^(5/9) 3178110000135692 a001 75025/439204*28143753123^(3/5) 3178110000135692 a001 196418/167761*(1/2+1/2*5^(1/2))^26 3178110000135692 a001 196418/167761*73681302247^(1/2) 3178110000135692 a001 75025/439204*10749957122^(5/8) 3178110000135692 a001 196418/167761*10749957122^(13/24) 3178110000135692 a001 196418/167761*4106118243^(13/23) 3178110000135692 a001 75025/439204*4106118243^(15/23) 3178110000135692 a001 196418/167761*1568397607^(13/22) 3178110000135692 a001 75025/439204*1568397607^(15/22) 3178110000135692 a001 196418/167761*599074578^(13/21) 3178110000135692 a001 75025/439204*599074578^(5/7) 3178110000135692 a001 196418/167761*228826127^(13/20) 3178110000135692 a001 75025/439204*228826127^(3/4) 3178110000135692 a001 196418/167761*87403803^(13/19) 3178110000135692 a001 75025/439204*87403803^(15/19) 3178110000135694 a001 196418/167761*33385282^(13/18) 3178110000135695 a001 75025/439204*33385282^(5/6) 3178110000135707 a001 196418/167761*12752043^(13/17) 3178110000135709 a001 75025/439204*12752043^(15/17) 3178110000135801 a001 196418/167761*4870847^(13/16) 3178110000135806 a001 433494437/167761*271443^(5/13) 3178110000135818 a001 75025/439204*4870847^(15/16) 3178110000136488 a001 196418/167761*1860498^(13/15) 3178110000139124 a001 165580141/167761*271443^(6/13) 3178110000140766 a001 2178309/64079*64079^(19/23) 3178110000140783 a001 9303105/15251*271443^(1/2) 3178110000140876 a001 2971215073/1860498*103682^(11/24) 3178110000141536 a001 196418/167761*710647^(13/14) 3178110000141660 a001 7778742049/4870847*103682^(11/24) 3178110000141774 a001 20365011074/12752043*103682^(11/24) 3178110000141791 a001 53316291173/33385282*103682^(11/24) 3178110000141793 a001 139583862445/87403803*103682^(11/24) 3178110000141794 a001 365435296162/228826127*103682^(11/24) 3178110000141794 a001 956722026041/599074578*103682^(11/24) 3178110000141794 a001 2504730781961/1568397607*103682^(11/24) 3178110000141794 a001 6557470319842/4106118243*103682^(11/24) 3178110000141794 a001 10610209857723/6643838879*103682^(11/24) 3178110000141794 a001 4052739537881/2537720636*103682^(11/24) 3178110000141794 a001 1548008755920/969323029*103682^(11/24) 3178110000141794 a001 591286729879/370248451*103682^(11/24) 3178110000141794 a001 225851433717/141422324*103682^(11/24) 3178110000141795 a001 86267571272/54018521*103682^(11/24) 3178110000141801 a001 32951280099/20633239*103682^(11/24) 3178110000141845 a001 12586269025/7881196*103682^(11/24) 3178110000142145 a001 4807526976/3010349*103682^(11/24) 3178110000142442 a001 63245986/167761*271443^(7/13) 3178110000143853 a001 20365011074/167761*103682^(1/12) 3178110000144198 a001 1836311903/1149851*103682^(11/24) 3178110000145761 a001 24157817/167761*271443^(8/13) 3178110000145951 a001 567451585/219602*103682^(5/12) 3178110000147372 a001 121393*39603^(1/11) 3178110000147819 a001 701408733/710647*103682^(1/2) 3178110000147934 a001 63245986/271443*103682^(5/8) 3178110000149086 a001 9227465/167761*271443^(9/13) 3178110000152447 a001 3524578/167761*271443^(10/13) 3178110000153194 a001 1836311903/1860498*103682^(1/2) 3178110000153978 a001 4807526976/4870847*103682^(1/2) 3178110000154093 a001 12586269025/12752043*103682^(1/2) 3178110000154109 a001 32951280099/33385282*103682^(1/2) 3178110000154112 a001 86267571272/87403803*103682^(1/2) 3178110000154112 a001 225851433717/228826127*103682^(1/2) 3178110000154112 a001 591286729879/599074578*103682^(1/2) 3178110000154112 a001 1548008755920/1568397607*103682^(1/2) 3178110000154112 a001 4052739537881/4106118243*103682^(1/2) 3178110000154112 a001 4807525989/4870846*103682^(1/2) 3178110000154112 a001 6557470319842/6643838879*103682^(1/2) 3178110000154112 a001 2504730781961/2537720636*103682^(1/2) 3178110000154112 a001 956722026041/969323029*103682^(1/2) 3178110000154112 a001 365435296162/370248451*103682^(1/2) 3178110000154112 a001 139583862445/141422324*103682^(1/2) 3178110000154113 a001 53316291173/54018521*103682^(1/2) 3178110000154120 a001 20365011074/20633239*103682^(1/2) 3178110000154163 a001 7778742049/7881196*103682^(1/2) 3178110000154463 a001 2971215073/3010349*103682^(1/2) 3178110000156065 a001 1346269/167761*271443^(11/13) 3178110000156172 a001 75025*103682^(1/8) 3178110000156516 a001 1134903170/1149851*103682^(1/2) 3178110000158269 a001 701408733/439204*103682^(11/24) 3178110000160137 a001 433494437/710647*103682^(13/24) 3178110000160252 a001 39088169/271443*103682^(2/3) 3178110000161436 a001 514229/167761*271443^(12/13) 3178110000164754 a001 38580030725/121393 3178110000165512 a001 567451585/930249*103682^(13/24) 3178110000166297 a001 2971215073/4870847*103682^(13/24) 3178110000166411 a001 7778742049/12752043*103682^(13/24) 3178110000166428 a001 10182505537/16692641*103682^(13/24) 3178110000166430 a001 53316291173/87403803*103682^(13/24) 3178110000166430 a001 139583862445/228826127*103682^(13/24) 3178110000166431 a001 182717648081/299537289*103682^(13/24) 3178110000166431 a001 956722026041/1568397607*103682^(13/24) 3178110000166431 a001 2504730781961/4106118243*103682^(13/24) 3178110000166431 a001 3278735159921/5374978561*103682^(13/24) 3178110000166431 a001 10610209857723/17393796001*103682^(13/24) 3178110000166431 a001 4052739537881/6643838879*103682^(13/24) 3178110000166431 a001 1134903780/1860499*103682^(13/24) 3178110000166431 a001 591286729879/969323029*103682^(13/24) 3178110000166431 a001 225851433717/370248451*103682^(13/24) 3178110000166431 a001 21566892818/35355581*103682^(13/24) 3178110000166432 a001 32951280099/54018521*103682^(13/24) 3178110000166438 a001 1144206275/1875749*103682^(13/24) 3178110000166482 a001 1201881744/1970299*103682^(13/24) 3178110000166781 a001 1836311903/3010349*103682^(13/24) 3178110000168490 a001 7778742049/167761*103682^(1/6) 3178110000168834 a001 701408733/1149851*103682^(13/24) 3178110000170588 a001 433494437/439204*103682^(1/2) 3178110000171186 a001 2971215073/103682*39603^(5/22) 3178110000172456 a001 267914296/710647*103682^(7/12) 3178110000172572 a001 24157817/271443*103682^(17/24) 3178110000174603 a001 3524578/64079*64079^(18/23) 3178110000177831 a001 233802911/620166*103682^(7/12) 3178110000178615 a001 1836311903/4870847*103682^(7/12) 3178110000178729 a001 1602508992/4250681*103682^(7/12) 3178110000178746 a001 12586269025/33385282*103682^(7/12) 3178110000178748 a001 10983760033/29134601*103682^(7/12) 3178110000178749 a001 86267571272/228826127*103682^(7/12) 3178110000178749 a001 267913919/710646*103682^(7/12) 3178110000178749 a001 591286729879/1568397607*103682^(7/12) 3178110000178749 a001 516002918640/1368706081*103682^(7/12) 3178110000178749 a001 4052739537881/10749957122*103682^(7/12) 3178110000178749 a001 3536736619241/9381251041*103682^(7/12) 3178110000178749 a001 6557470319842/17393796001*103682^(7/12) 3178110000178749 a001 2504730781961/6643838879*103682^(7/12) 3178110000178749 a001 956722026041/2537720636*103682^(7/12) 3178110000178749 a001 365435296162/969323029*103682^(7/12) 3178110000178749 a001 139583862445/370248451*103682^(7/12) 3178110000178749 a001 53316291173/141422324*103682^(7/12) 3178110000178750 a001 20365011074/54018521*103682^(7/12) 3178110000178756 a001 7778742049/20633239*103682^(7/12) 3178110000178800 a001 2971215073/7881196*103682^(7/12) 3178110000179100 a001 1134903170/3010349*103682^(7/12) 3178110000180808 a001 4807526976/167761*103682^(5/24) 3178110000181153 a001 433494437/1149851*103682^(7/12) 3178110000182906 a001 66978574/109801*103682^(13/24) 3178110000184212 a001 86267571272/710647*39603^(1/11) 3178110000184774 a001 165580141/710647*103682^(5/8) 3178110000184886 a001 4976784/90481*103682^(3/4) 3178110000189587 a001 75283811239/620166*39603^(1/11) 3178110000190149 a001 433494437/1860498*103682^(5/8) 3178110000190372 a001 591286729879/4870847*39603^(1/11) 3178110000190486 a001 516002918640/4250681*39603^(1/11) 3178110000190503 a001 4052739537881/33385282*39603^(1/11) 3178110000190505 a001 3536736619241/29134601*39603^(1/11) 3178110000190507 a001 6557470319842/54018521*39603^(1/11) 3178110000190513 a001 2504730781961/20633239*39603^(1/11) 3178110000190557 a001 956722026041/7881196*39603^(1/11) 3178110000190856 a001 365435296162/3010349*39603^(1/11) 3178110000190933 a001 1134903170/4870847*103682^(5/8) 3178110000191048 a001 2971215073/12752043*103682^(5/8) 3178110000191064 a001 7778742049/33385282*103682^(5/8) 3178110000191067 a001 20365011074/87403803*103682^(5/8) 3178110000191067 a001 53316291173/228826127*103682^(5/8) 3178110000191067 a001 139583862445/599074578*103682^(5/8) 3178110000191067 a001 365435296162/1568397607*103682^(5/8) 3178110000191067 a001 956722026041/4106118243*103682^(5/8) 3178110000191067 a001 2504730781961/10749957122*103682^(5/8) 3178110000191067 a001 6557470319842/28143753123*103682^(5/8) 3178110000191067 a001 10610209857723/45537549124*103682^(5/8) 3178110000191067 a001 4052739537881/17393796001*103682^(5/8) 3178110000191067 a001 1548008755920/6643838879*103682^(5/8) 3178110000191067 a001 591286729879/2537720636*103682^(5/8) 3178110000191067 a001 225851433717/969323029*103682^(5/8) 3178110000191067 a001 86267571272/370248451*103682^(5/8) 3178110000191067 a001 63246219/271444*103682^(5/8) 3178110000191068 a001 12586269025/54018521*103682^(5/8) 3178110000191075 a001 4807526976/20633239*103682^(5/8) 3178110000191118 a001 1836311903/7881196*103682^(5/8) 3178110000191418 a001 701408733/3010349*103682^(5/8) 3178110000192909 a001 139583862445/1149851*39603^(1/11) 3178110000193127 a001 2971215073/167761*103682^(1/4) 3178110000193471 a001 267914296/1149851*103682^(5/8) 3178110000195224 a001 165580141/439204*103682^(7/12) 3178110000197092 a001 14619165/101521*103682^(2/3) 3178110000197215 a001 9227465/271443*103682^(19/24) 3178110000202467 a001 133957148/930249*103682^(2/3) 3178110000203251 a001 701408733/4870847*103682^(2/3) 3178110000203366 a001 1836311903/12752043*103682^(2/3) 3178110000203383 a001 14930208/103681*103682^(2/3) 3178110000203385 a001 12586269025/87403803*103682^(2/3) 3178110000203385 a001 32951280099/228826127*103682^(2/3) 3178110000203385 a001 43133785636/299537289*103682^(2/3) 3178110000203385 a001 32264490531/224056801*103682^(2/3) 3178110000203385 a001 591286729879/4106118243*103682^(2/3) 3178110000203385 a001 774004377960/5374978561*103682^(2/3) 3178110000203385 a001 4052739537881/28143753123*103682^(2/3) 3178110000203385 a001 1515744265389/10525900321*103682^(2/3) 3178110000203385 a001 3278735159921/22768774562*103682^(2/3) 3178110000203385 a001 2504730781961/17393796001*103682^(2/3) 3178110000203385 a001 956722026041/6643838879*103682^(2/3) 3178110000203385 a001 182717648081/1268860318*103682^(2/3) 3178110000203385 a001 139583862445/969323029*103682^(2/3) 3178110000203385 a001 53316291173/370248451*103682^(2/3) 3178110000203386 a001 10182505537/70711162*103682^(2/3) 3178110000203387 a001 7778742049/54018521*103682^(2/3) 3178110000203393 a001 2971215073/20633239*103682^(2/3) 3178110000203437 a001 567451585/3940598*103682^(2/3) 3178110000203736 a001 433494437/3010349*103682^(2/3) 3178110000205445 a001 1836311903/167761*103682^(7/24) 3178110000205789 a001 165580141/1149851*103682^(2/3) 3178110000206981 a001 53316291173/439204*39603^(1/11) 3178110000207542 a001 102334155/439204*103682^(5/8) 3178110000208184 a001 5702887/64079*64079^(17/23) 3178110000209411 a001 63245986/710647*103682^(17/24) 3178110000209506 a001 5702887/271443*103682^(5/6) 3178110000211323 a001 32951280099/167761*39603^(1/22) 3178110000214786 a001 165580141/1860498*103682^(17/24) 3178110000215570 a001 433494437/4870847*103682^(17/24) 3178110000215665 a001 14736260449/46368 3178110000215684 a001 1134903170/12752043*103682^(17/24) 3178110000215701 a001 2971215073/33385282*103682^(17/24) 3178110000215703 a001 7778742049/87403803*103682^(17/24) 3178110000215704 a001 20365011074/228826127*103682^(17/24) 3178110000215704 a001 53316291173/599074578*103682^(17/24) 3178110000215704 a001 139583862445/1568397607*103682^(17/24) 3178110000215704 a001 365435296162/4106118243*103682^(17/24) 3178110000215704 a001 956722026041/10749957122*103682^(17/24) 3178110000215704 a001 2504730781961/28143753123*103682^(17/24) 3178110000215704 a001 6557470319842/73681302247*103682^(17/24) 3178110000215704 a001 10610209857723/119218851371*103682^(17/24) 3178110000215704 a001 4052739537881/45537549124*103682^(17/24) 3178110000215704 a001 1548008755920/17393796001*103682^(17/24) 3178110000215704 a001 591286729879/6643838879*103682^(17/24) 3178110000215704 a001 225851433717/2537720636*103682^(17/24) 3178110000215704 a001 86267571272/969323029*103682^(17/24) 3178110000215704 a001 32951280099/370248451*103682^(17/24) 3178110000215704 a001 12586269025/141422324*103682^(17/24) 3178110000215705 a001 4807526976/54018521*103682^(17/24) 3178110000215711 a001 1836311903/20633239*103682^(17/24) 3178110000215755 a001 3524667/39604*103682^(17/24) 3178110000216054 a001 267914296/3010349*103682^(17/24) 3178110000217763 a001 1134903170/167761*103682^(1/3) 3178110000218107 a001 102334155/1149851*103682^(17/24) 3178110000219861 a001 31622993/219602*103682^(2/3) 3178110000221729 a001 39088169/710647*103682^(3/4) 3178110000221895 a001 3524578/271443*103682^(7/8) 3178110000227104 a001 831985/15126*103682^(3/4) 3178110000227888 a001 267914296/4870847*103682^(3/4) 3178110000228002 a001 233802911/4250681*103682^(3/4) 3178110000228019 a001 1836311903/33385282*103682^(3/4) 3178110000228022 a001 1602508992/29134601*103682^(3/4) 3178110000228022 a001 12586269025/228826127*103682^(3/4) 3178110000228022 a001 10983760033/199691526*103682^(3/4) 3178110000228022 a001 86267571272/1568397607*103682^(3/4) 3178110000228022 a001 75283811239/1368706081*103682^(3/4) 3178110000228022 a001 591286729879/10749957122*103682^(3/4) 3178110000228022 a001 12585437040/228811001*103682^(3/4) 3178110000228022 a001 4052739537881/73681302247*103682^(3/4) 3178110000228022 a001 3536736619241/64300051206*103682^(3/4) 3178110000228022 a001 6557470319842/119218851371*103682^(3/4) 3178110000228022 a001 2504730781961/45537549124*103682^(3/4) 3178110000228022 a001 956722026041/17393796001*103682^(3/4) 3178110000228022 a001 365435296162/6643838879*103682^(3/4) 3178110000228022 a001 139583862445/2537720636*103682^(3/4) 3178110000228022 a001 53316291173/969323029*103682^(3/4) 3178110000228022 a001 20365011074/370248451*103682^(3/4) 3178110000228022 a001 7778742049/141422324*103682^(3/4) 3178110000228023 a001 2971215073/54018521*103682^(3/4) 3178110000228030 a001 1134903170/20633239*103682^(3/4) 3178110000228073 a001 433494437/7881196*103682^(3/4) 3178110000228373 a001 165580141/3010349*103682^(3/4) 3178110000230081 a001 701408733/167761*103682^(3/8) 3178110000230426 a001 63245986/1149851*103682^(3/4) 3178110000232135 a001 75025/167761*20633239^(4/5) 3178110000232141 a001 75025/167761*17393796001^(4/7) 3178110000232141 a001 75025/167761*14662949395604^(4/9) 3178110000232141 a001 75025/167761*(1/2+1/2*5^(1/2))^28 3178110000232141 a001 75025/167761*505019158607^(1/2) 3178110000232141 a001 75025/167761*73681302247^(7/13) 3178110000232141 a001 75025/167761*10749957122^(7/12) 3178110000232141 a001 75025/167761*4106118243^(14/23) 3178110000232141 a001 75025/167761*1568397607^(7/11) 3178110000232141 a001 75025/167761*599074578^(2/3) 3178110000232141 a001 75025/167761*228826127^(7/10) 3178110000232141 a001 75025/167761*87403803^(14/19) 3178110000232143 a001 75025/167761*33385282^(7/9) 3178110000232157 a001 75025/167761*12752043^(14/17) 3178110000232179 a001 39088169/439204*103682^(17/24) 3178110000232258 a001 75025/167761*4870847^(7/8) 3178110000232998 a001 75025/167761*1860498^(14/15) 3178110000234028 a001 726103/90481*103682^(11/12) 3178110000234048 a001 24157817/710647*103682^(19/24) 3178110000239422 a001 31622993/930249*103682^(19/24) 3178110000239479 a001 20365011074/271443*39603^(3/22) 3178110000240206 a001 165580141/4870847*103682^(19/24) 3178110000240321 a001 433494437/12752043*103682^(19/24) 3178110000240337 a001 567451585/16692641*103682^(19/24) 3178110000240340 a001 2971215073/87403803*103682^(19/24) 3178110000240340 a001 7778742049/228826127*103682^(19/24) 3178110000240340 a001 10182505537/299537289*103682^(19/24) 3178110000240340 a001 53316291173/1568397607*103682^(19/24) 3178110000240340 a001 139583862445/4106118243*103682^(19/24) 3178110000240340 a001 182717648081/5374978561*103682^(19/24) 3178110000240340 a001 956722026041/28143753123*103682^(19/24) 3178110000240340 a001 2504730781961/73681302247*103682^(19/24) 3178110000240340 a001 3278735159921/96450076809*103682^(19/24) 3178110000240340 a001 10610209857723/312119004989*103682^(19/24) 3178110000240340 a001 4052739537881/119218851371*103682^(19/24) 3178110000240340 a001 387002188980/11384387281*103682^(19/24) 3178110000240340 a001 591286729879/17393796001*103682^(19/24) 3178110000240340 a001 225851433717/6643838879*103682^(19/24) 3178110000240340 a001 1135099622/33391061*103682^(19/24) 3178110000240340 a001 32951280099/969323029*103682^(19/24) 3178110000240340 a001 12586269025/370248451*103682^(19/24) 3178110000240341 a001 1201881744/35355581*103682^(19/24) 3178110000240341 a001 1836311903/54018521*103682^(19/24) 3178110000240348 a001 701408733/20633239*103682^(19/24) 3178110000240391 a001 66978574/1970299*103682^(19/24) 3178110000240691 a001 102334155/3010349*103682^(19/24) 3178110000241863 a001 9227465/64079*64079^(16/23) 3178110000242400 a001 433494437/167761*103682^(5/12) 3178110000242744 a001 39088169/1149851*103682^(19/24) 3178110000244499 a001 24157817/439204*103682^(3/4) 3178110000246363 a001 14930352/710647*103682^(5/6) 3178110000246831 a001 1346269/271443*103682^(23/24) 3178110000251740 a001 39088169/1860498*103682^(5/6) 3178110000252525 a001 102334155/4870847*103682^(5/6) 3178110000252639 a001 267914296/12752043*103682^(5/6) 3178110000252656 a001 701408733/33385282*103682^(5/6) 3178110000252658 a001 1836311903/87403803*103682^(5/6) 3178110000252659 a001 102287808/4868641*103682^(5/6) 3178110000252659 a001 12586269025/599074578*103682^(5/6) 3178110000252659 a001 32951280099/1568397607*103682^(5/6) 3178110000252659 a001 86267571272/4106118243*103682^(5/6) 3178110000252659 a001 225851433717/10749957122*103682^(5/6) 3178110000252659 a001 591286729879/28143753123*103682^(5/6) 3178110000252659 a001 1548008755920/73681302247*103682^(5/6) 3178110000252659 a001 4052739537881/192900153618*103682^(5/6) 3178110000252659 a001 225749145909/10745088481*103682^(5/6) 3178110000252659 a001 6557470319842/312119004989*103682^(5/6) 3178110000252659 a001 2504730781961/119218851371*103682^(5/6) 3178110000252659 a001 956722026041/45537549124*103682^(5/6) 3178110000252659 a001 365435296162/17393796001*103682^(5/6) 3178110000252659 a001 139583862445/6643838879*103682^(5/6) 3178110000252659 a001 53316291173/2537720636*103682^(5/6) 3178110000252659 a001 20365011074/969323029*103682^(5/6) 3178110000252659 a001 7778742049/370248451*103682^(5/6) 3178110000252659 a001 2971215073/141422324*103682^(5/6) 3178110000252660 a001 1134903170/54018521*103682^(5/6) 3178110000252666 a001 433494437/20633239*103682^(5/6) 3178110000252710 a001 165580141/7881196*103682^(5/6) 3178110000253010 a001 63245986/3010349*103682^(5/6) 3178110000254718 a001 267914296/167761*103682^(11/24) 3178110000255063 a001 24157817/1149851*103682^(5/6) 3178110000256813 a001 196452/5779*103682^(19/24) 3178110000258691 a001 9227465/710647*103682^(7/8) 3178110000261317 a001 514229/24476*24476^(20/21) 3178110000263292 a001 1836311903/103682*39603^(3/11) 3178110000264060 a001 24157817/1860498*103682^(7/8) 3178110000264843 a001 63245986/4870847*103682^(7/8) 3178110000264957 a001 165580141/12752043*103682^(7/8) 3178110000264974 a001 433494437/33385282*103682^(7/8) 3178110000264977 a001 1134903170/87403803*103682^(7/8) 3178110000264977 a001 2971215073/228826127*103682^(7/8) 3178110000264977 a001 7778742049/599074578*103682^(7/8) 3178110000264977 a001 20365011074/1568397607*103682^(7/8) 3178110000264977 a001 53316291173/4106118243*103682^(7/8) 3178110000264977 a001 139583862445/10749957122*103682^(7/8) 3178110000264977 a001 365435296162/28143753123*103682^(7/8) 3178110000264977 a001 956722026041/73681302247*103682^(7/8) 3178110000264977 a001 2504730781961/192900153618*103682^(7/8) 3178110000264977 a001 10610209857723/817138163596*103682^(7/8) 3178110000264977 a001 4052739537881/312119004989*103682^(7/8) 3178110000264977 a001 1548008755920/119218851371*103682^(7/8) 3178110000264977 a001 591286729879/45537549124*103682^(7/8) 3178110000264977 a001 7787980473/599786069*103682^(7/8) 3178110000264977 a001 86267571272/6643838879*103682^(7/8) 3178110000264977 a001 32951280099/2537720636*103682^(7/8) 3178110000264977 a001 12586269025/969323029*103682^(7/8) 3178110000264977 a001 4807526976/370248451*103682^(7/8) 3178110000264977 a001 1836311903/141422324*103682^(7/8) 3178110000264978 a001 701408733/54018521*103682^(7/8) 3178110000264984 a001 9238424/711491*103682^(7/8) 3178110000265028 a001 102334155/7881196*103682^(7/8) 3178110000265327 a001 39088169/3010349*103682^(7/8) 3178110000267036 a001 165580141/167761*103682^(1/2) 3178110000267378 a001 14930352/1149851*103682^(7/8) 3178110000269142 a001 9227465/439204*103682^(5/6) 3178110000270983 a001 5702887/710647*103682^(11/12) 3178110000275045 a001 7778742049/64079*24476^(2/21) 3178110000275505 a001 14930352/64079*64079^(15/23) 3178110000276319 a001 53316291173/710647*39603^(3/22) 3178110000276374 a001 829464/103361*103682^(11/12) 3178110000277161 a001 39088169/4870847*103682^(11/12) 3178110000277276 a001 34111385/4250681*103682^(11/12) 3178110000277292 a001 133957148/16692641*103682^(11/12) 3178110000277295 a001 233802911/29134601*103682^(11/12) 3178110000277295 a001 1836311903/228826127*103682^(11/12) 3178110000277295 a001 267084832/33281921*103682^(11/12) 3178110000277295 a001 12586269025/1568397607*103682^(11/12) 3178110000277295 a001 10983760033/1368706081*103682^(11/12) 3178110000277295 a001 43133785636/5374978561*103682^(11/12) 3178110000277295 a001 75283811239/9381251041*103682^(11/12) 3178110000277295 a001 591286729879/73681302247*103682^(11/12) 3178110000277295 a001 86000486440/10716675201*103682^(11/12) 3178110000277295 a001 4052739537881/505019158607*103682^(11/12) 3178110000277295 a001 3536736619241/440719107401*103682^(11/12) 3178110000277295 a001 3278735159921/408569081798*103682^(11/12) 3178110000277295 a001 2504730781961/312119004989*103682^(11/12) 3178110000277295 a001 956722026041/119218851371*103682^(11/12) 3178110000277295 a001 182717648081/22768774562*103682^(11/12) 3178110000277295 a001 139583862445/17393796001*103682^(11/12) 3178110000277295 a001 53316291173/6643838879*103682^(11/12) 3178110000277295 a001 10182505537/1268860318*103682^(11/12) 3178110000277295 a001 7778742049/969323029*103682^(11/12) 3178110000277295 a001 2971215073/370248451*103682^(11/12) 3178110000277295 a001 567451585/70711162*103682^(11/12) 3178110000277296 a001 433494437/54018521*103682^(11/12) 3178110000277303 a001 165580141/20633239*103682^(11/12) 3178110000277347 a001 31622993/3940598*103682^(11/12) 3178110000277647 a001 24157817/3010349*103682^(11/12) 3178110000279355 a001 9303105/15251*103682^(13/24) 3178110000279706 a001 9227465/1149851*103682^(11/12) 3178110000281433 a001 5702887/439204*103682^(7/8) 3178110000281694 a001 139583862445/1860498*39603^(3/22) 3178110000282478 a001 365435296162/4870847*39603^(3/22) 3178110000282592 a001 956722026041/12752043*39603^(3/22) 3178110000282609 a001 2504730781961/33385282*39603^(3/22) 3178110000282612 a001 6557470319842/87403803*39603^(3/22) 3178110000282612 a001 10610209857723/141422324*39603^(3/22) 3178110000282613 a001 4052739537881/54018521*39603^(3/22) 3178110000282619 a001 140728068720/1875749*39603^(3/22) 3178110000282663 a001 591286729879/7881196*39603^(3/22) 3178110000282963 a001 225851433717/3010349*39603^(3/22) 3178110000283372 a001 3524578/710647*103682^(23/24) 3178110000285016 a001 86267571272/1149851*39603^(3/22) 3178110000288703 a001 9227465/1860498*103682^(23/24) 3178110000289481 a001 24157817/4870847*103682^(23/24) 3178110000289594 a001 63245986/12752043*103682^(23/24) 3178110000289611 a001 165580141/33385282*103682^(23/24) 3178110000289613 a001 433494437/87403803*103682^(23/24) 3178110000289614 a001 1134903170/228826127*103682^(23/24) 3178110000289614 a001 2971215073/599074578*103682^(23/24) 3178110000289614 a001 7778742049/1568397607*103682^(23/24) 3178110000289614 a001 20365011074/4106118243*103682^(23/24) 3178110000289614 a001 53316291173/10749957122*103682^(23/24) 3178110000289614 a001 139583862445/28143753123*103682^(23/24) 3178110000289614 a001 365435296162/73681302247*103682^(23/24) 3178110000289614 a001 956722026041/192900153618*103682^(23/24) 3178110000289614 a001 2504730781961/505019158607*103682^(23/24) 3178110000289614 a001 10610209857723/2139295485799*103682^(23/24) 3178110000289614 a001 4052739537881/817138163596*103682^(23/24) 3178110000289614 a001 140728068720/28374454999*103682^(23/24) 3178110000289614 a001 591286729879/119218851371*103682^(23/24) 3178110000289614 a001 225851433717/45537549124*103682^(23/24) 3178110000289614 a001 86267571272/17393796001*103682^(23/24) 3178110000289614 a001 32951280099/6643838879*103682^(23/24) 3178110000289614 a001 1144206275/230701876*103682^(23/24) 3178110000289614 a001 4807526976/969323029*103682^(23/24) 3178110000289614 a001 1836311903/370248451*103682^(23/24) 3178110000289614 a001 701408733/141422324*103682^(23/24) 3178110000289615 a001 267914296/54018521*103682^(23/24) 3178110000289621 a001 9303105/1875749*103682^(23/24) 3178110000289664 a001 39088169/7881196*103682^(23/24) 3178110000289961 a001 14930352/3010349*103682^(23/24) 3178110000291673 a001 63245986/167761*103682^(7/12) 3178110000291998 a001 5702887/1149851*103682^(23/24) 3178110000293822 a001 1762289/219602*103682^(11/12) 3178110000299087 a001 32951280099/439204*39603^(3/22) 3178110000301932 a001 1/23184*(1/2+1/2*5^(1/2))^52 3178110000303430 a001 20365011074/167761*39603^(1/11) 3178110000303991 a001 39088169/167761*103682^(5/8) 3178110000305955 a001 2178309/439204*103682^(23/24) 3178110000309161 a001 24157817/64079*64079^(14/23) 3178110000316311 a001 24157817/167761*103682^(2/3) 3178110000328625 a001 14930352/167761*103682^(17/24) 3178110000331585 a001 12586269025/271443*39603^(2/11) 3178110000340954 a001 9227465/167761*103682^(3/4) 3178110000342811 a001 39088169/64079*64079^(13/23) 3178110000353245 a001 5702887/167761*103682^(19/24) 3178110000355398 a001 567451585/51841*39603^(7/22) 3178110000365634 a001 3524578/167761*103682^(5/6) 3178110000368425 a001 32951280099/710647*39603^(2/11) 3178110000373800 a001 43133785636/930249*39603^(2/11) 3178110000374584 a001 225851433717/4870847*39603^(2/11) 3178110000374699 a001 591286729879/12752043*39603^(2/11) 3178110000374716 a001 774004377960/16692641*39603^(2/11) 3178110000374718 a001 4052739537881/87403803*39603^(2/11) 3178110000374718 a001 225749145909/4868641*39603^(2/11) 3178110000374719 a001 3278735159921/70711162*39603^(2/11) 3178110000374719 a001 2504730781961/54018521*39603^(2/11) 3178110000374726 a001 956722026041/20633239*39603^(2/11) 3178110000374770 a001 182717648081/3940598*39603^(2/11) 3178110000375069 a001 139583862445/3010349*39603^(2/11) 3178110000376464 a001 63245986/64079*64079^(12/23) 3178110000377122 a001 53316291173/1149851*39603^(2/11) 3178110000377767 a001 2178309/167761*103682^(7/8) 3178110000390570 a001 1346269/167761*103682^(11/12) 3178110000391194 a001 10182505537/219602*39603^(2/11) 3178110000395536 a001 75025*39603^(3/22) 3178110000401620 a001 75640/15251*103682^(23/24) 3178110000405091 a001 10182505537/51841*15127^(1/20) 3178110000410115 a001 102334155/64079*64079^(11/23) 3178110000423692 a001 7778742049/271443*39603^(5/22) 3178110000431331 a001 7368130225/23184 3178110000443767 a001 165580141/64079*64079^(10/23) 3178110000447505 a001 701408733/103682*39603^(4/11) 3178110000460532 a001 20365011074/710647*39603^(5/22) 3178110000465907 a001 53316291173/1860498*39603^(5/22) 3178110000466691 a001 139583862445/4870847*39603^(5/22) 3178110000466805 a001 365435296162/12752043*39603^(5/22) 3178110000466822 a001 956722026041/33385282*39603^(5/22) 3178110000466824 a001 2504730781961/87403803*39603^(5/22) 3178110000466825 a001 6557470319842/228826127*39603^(5/22) 3178110000466825 a001 10610209857723/370248451*39603^(5/22) 3178110000466825 a001 4052739537881/141422324*39603^(5/22) 3178110000466826 a001 1548008755920/54018521*39603^(5/22) 3178110000466832 a001 591286729879/20633239*39603^(5/22) 3178110000466876 a001 225851433717/7881196*39603^(5/22) 3178110000467176 a001 86267571272/3010349*39603^(5/22) 3178110000469229 a001 32951280099/1149851*39603^(5/22) 3178110000477419 a001 267914296/64079*64079^(9/23) 3178110000483300 a001 12586269025/439204*39603^(5/22) 3178110000484605 a001 46368/64079*7881196^(9/11) 3178110000484647 a001 46368/64079*141422324^(9/13) 3178110000484647 a001 46368/64079*2537720636^(3/5) 3178110000484647 a001 28657/103682*(1/2+1/2*5^(1/2))^29 3178110000484647 a001 28657/103682*1322157322203^(1/2) 3178110000484647 a001 46368/64079*45537549124^(9/17) 3178110000484647 a001 46368/64079*817138163596^(9/19) 3178110000484647 a001 46368/64079*14662949395604^(3/7) 3178110000484647 a001 46368/64079*(1/2+1/2*5^(1/2))^27 3178110000484647 a001 46368/64079*192900153618^(1/2) 3178110000484647 a001 46368/64079*10749957122^(9/16) 3178110000484647 a001 46368/64079*599074578^(9/14) 3178110000484649 a001 46368/64079*33385282^(3/4) 3178110000485473 a001 46368/64079*1860498^(9/10) 3178110000487643 a001 7778742049/167761*39603^(2/11) 3178110000510616 a001 208010/6119*24476^(19/21) 3178110000511071 a001 433494437/64079*64079^(8/23) 3178110000515798 a001 1602508992/90481*39603^(3/11) 3178110000527666 a001 12586269025/64079*24476^(1/21) 3178110000539611 a001 433494437/103682*39603^(9/22) 3178110000544723 a001 701408733/64079*64079^(7/23) 3178110000552638 a001 12586269025/710647*39603^(3/11) 3178110000558013 a001 10983760033/620166*39603^(3/11) 3178110000558797 a001 86267571272/4870847*39603^(3/11) 3178110000558912 a001 75283811239/4250681*39603^(3/11) 3178110000558928 a001 591286729879/33385282*39603^(3/11) 3178110000558931 a001 516002918640/29134601*39603^(3/11) 3178110000558931 a001 4052739537881/228826127*39603^(3/11) 3178110000558931 a001 3536736619241/199691526*39603^(3/11) 3178110000558931 a001 6557470319842/370248451*39603^(3/11) 3178110000558931 a001 2504730781961/141422324*39603^(3/11) 3178110000558932 a001 956722026041/54018521*39603^(3/11) 3178110000558939 a001 365435296162/20633239*39603^(3/11) 3178110000558982 a001 139583862445/7881196*39603^(3/11) 3178110000559282 a001 53316291173/3010349*39603^(3/11) 3178110000561335 a001 20365011074/1149851*39603^(3/11) 3178110000575407 a001 7778742049/439204*39603^(3/11) 3178110000578375 a001 1134903170/64079*64079^(6/23) 3178110000579749 a001 4807526976/167761*39603^(5/22) 3178110000607905 a001 2971215073/271443*39603^(7/22) 3178110000612027 a001 28657*64079^(5/23) 3178110000631718 a001 133957148/51841*39603^(5/11) 3178110000644745 a001 7778742049/710647*39603^(7/22) 3178110000645679 a001 2971215073/64079*64079^(4/23) 3178110000650120 a001 10182505537/930249*39603^(7/22) 3178110000650904 a001 53316291173/4870847*39603^(7/22) 3178110000651018 a001 139583862445/12752043*39603^(7/22) 3178110000651035 a001 182717648081/16692641*39603^(7/22) 3178110000651037 a001 956722026041/87403803*39603^(7/22) 3178110000651038 a001 2504730781961/228826127*39603^(7/22) 3178110000651038 a001 3278735159921/299537289*39603^(7/22) 3178110000651038 a001 10610209857723/969323029*39603^(7/22) 3178110000651038 a001 4052739537881/370248451*39603^(7/22) 3178110000651038 a001 387002188980/35355581*39603^(7/22) 3178110000651039 a001 591286729879/54018521*39603^(7/22) 3178110000651045 a001 7787980473/711491*39603^(7/22) 3178110000651089 a001 21566892818/1970299*39603^(7/22) 3178110000651388 a001 32951280099/3010349*39603^(7/22) 3178110000653441 a001 12586269025/1149851*39603^(7/22) 3178110000657597 a001 53316291173/271443*15127^(1/20) 3178110000666444 a001 4768754056/15005 3178110000667513 a001 1201881744/109801*39603^(7/22) 3178110000671855 a001 2971215073/167761*39603^(3/11) 3178110000679331 a001 4807526976/64079*64079^(3/23) 3178110000690298 a001 1346269/64079*167761^(4/5) 3178110000694437 a001 139583862445/710647*15127^(1/20) 3178110000699812 a001 182717648081/930249*15127^(1/20) 3178110000700011 a001 1836311903/271443*39603^(4/11) 3178110000700596 a001 956722026041/4870847*15127^(1/20) 3178110000700711 a001 2504730781961/12752043*15127^(1/20) 3178110000700727 a001 3278735159921/16692641*15127^(1/20) 3178110000700731 a001 10610209857723/54018521*15127^(1/20) 3178110000700738 a001 4052739537881/20633239*15127^(1/20) 3178110000700781 a001 387002188980/1970299*15127^(1/20) 3178110000701081 a001 591286729879/3010349*15127^(1/20) 3178110000703134 a001 225851433717/1149851*15127^(1/20) 3178110000712529 a001 14930352/64079*167761^(3/5) 3178110000712983 a001 7778742049/64079*64079^(2/23) 3178110000717206 a001 196418*15127^(1/20) 3178110000723824 a001 165580141/103682*39603^(1/2) 3178110000735117 a001 165580141/64079*167761^(2/5) 3178110000736851 a001 686789568/101521*39603^(4/11) 3178110000737148 a001 121393/64079*20633239^(5/7) 3178110000737153 a001 121393/64079*2537720636^(5/9) 3178110000737153 a001 28657/271443*(1/2+1/2*5^(1/2))^31 3178110000737153 a001 28657/271443*9062201101803^(1/2) 3178110000737153 a001 121393/64079*312119004989^(5/11) 3178110000737153 a001 121393/64079*(1/2+1/2*5^(1/2))^25 3178110000737153 a001 121393/64079*3461452808002^(5/12) 3178110000737153 a001 121393/64079*28143753123^(1/2) 3178110000737153 a001 121393/64079*228826127^(5/8) 3178110000737918 a001 121393/64079*1860498^(5/6) 3178110000742226 a001 12586269025/1860498*39603^(4/11) 3178110000743010 a001 32951280099/4870847*39603^(4/11) 3178110000743125 a001 86267571272/12752043*39603^(4/11) 3178110000743141 a001 32264490531/4769326*39603^(4/11) 3178110000743144 a001 591286729879/87403803*39603^(4/11) 3178110000743144 a001 1548008755920/228826127*39603^(4/11) 3178110000743144 a001 4052739537881/599074578*39603^(4/11) 3178110000743144 a001 1515744265389/224056801*39603^(4/11) 3178110000743144 a001 6557470319842/969323029*39603^(4/11) 3178110000743144 a001 2504730781961/370248451*39603^(4/11) 3178110000743144 a001 956722026041/141422324*39603^(4/11) 3178110000743145 a001 365435296162/54018521*39603^(4/11) 3178110000743152 a001 139583862445/20633239*39603^(4/11) 3178110000743195 a001 53316291173/7881196*39603^(4/11) 3178110000743495 a001 20365011074/3010349*39603^(4/11) 3178110000745548 a001 7778742049/1149851*39603^(4/11) 3178110000746634 a001 12586269025/64079*64079^(1/23) 3178110000757701 a001 1836311903/39603*15127^(1/5) 3178110000757701 a001 28657*167761^(1/5) 3178110000759620 a001 2971215073/439204*39603^(4/11) 3178110000763677 a001 62423801013/196418 3178110000763962 a001 1836311903/167761*39603^(7/22) 3178110000764505 a001 1346269/24476*24476^(6/7) 3178110000766554 a001 832040/64079*439204^(7/9) 3178110000769354 a001 3524578/64079*439204^(2/3) 3178110000771130 a001 14930352/64079*439204^(5/9) 3178110000772964 a001 63245986/64079*439204^(4/9) 3178110000773993 a001 28657/710647*141422324^(11/13) 3178110000773993 a001 28657/710647*2537720636^(11/15) 3178110000773993 a001 28657/710647*45537549124^(11/17) 3178110000773993 a001 28657/710647*312119004989^(3/5) 3178110000773993 a001 28657/710647*14662949395604^(11/21) 3178110000773993 a001 28657/710647*(1/2+1/2*5^(1/2))^33 3178110000773993 a001 28657/710647*192900153618^(11/18) 3178110000773993 a001 28657/710647*10749957122^(11/16) 3178110000773993 a001 317811/64079*(1/2+1/2*5^(1/2))^23 3178110000773993 a001 317811/64079*4106118243^(1/2) 3178110000773993 a001 28657/710647*1568397607^(3/4) 3178110000773993 a001 28657/710647*599074578^(11/14) 3178110000773996 a001 28657/710647*33385282^(11/12) 3178110000774795 a001 267914296/64079*439204^(1/3) 3178110000776625 a001 1134903170/64079*439204^(2/9) 3178110000777863 a001 163427632759/514229 3178110000778456 a001 4807526976/64079*439204^(1/9) 3178110000779336 a001 832040/64079*7881196^(7/11) 3178110000779364 a001 832040/64079*20633239^(3/5) 3178110000779368 a001 832040/64079*141422324^(7/13) 3178110000779368 a001 28657/1860498*2537720636^(7/9) 3178110000779368 a001 832040/64079*2537720636^(7/15) 3178110000779368 a001 28657/1860498*17393796001^(5/7) 3178110000779368 a001 28657/1860498*312119004989^(7/11) 3178110000779368 a001 28657/1860498*14662949395604^(5/9) 3178110000779368 a001 28657/1860498*(1/2+1/2*5^(1/2))^35 3178110000779368 a001 28657/1860498*505019158607^(5/8) 3178110000779368 a001 28657/1860498*28143753123^(7/10) 3178110000779368 a001 832040/64079*17393796001^(3/7) 3178110000779368 a001 832040/64079*45537549124^(7/17) 3178110000779368 a001 832040/64079*14662949395604^(1/3) 3178110000779368 a001 832040/64079*(1/2+1/2*5^(1/2))^21 3178110000779368 a001 832040/64079*192900153618^(7/18) 3178110000779368 a001 832040/64079*10749957122^(7/16) 3178110000779368 a001 832040/64079*599074578^(1/2) 3178110000779368 a001 28657/1860498*599074578^(5/6) 3178110000779368 a001 28657/1860498*228826127^(7/8) 3178110000779370 a001 832040/64079*33385282^(7/12) 3178110000779933 a001 427859097264/1346269 3178110000780011 a001 832040/64079*1860498^(7/10) 3178110000780152 a001 28657/4870847*(1/2+1/2*5^(1/2))^37 3178110000780152 a001 2178309/64079*817138163596^(1/3) 3178110000780152 a001 2178309/64079*(1/2+1/2*5^(1/2))^19 3178110000780153 a001 2178309/64079*87403803^(1/2) 3178110000780235 a001 1120149659033/3524578 3178110000780260 a001 14930352/64079*7881196^(5/11) 3178110000780267 a001 28657/12752043*2537720636^(13/15) 3178110000780267 a001 28657/12752043*45537549124^(13/17) 3178110000780267 a001 28657/12752043*14662949395604^(13/21) 3178110000780267 a001 28657/12752043*(1/2+1/2*5^(1/2))^39 3178110000780267 a001 28657/12752043*192900153618^(13/18) 3178110000780267 a001 28657/12752043*73681302247^(3/4) 3178110000780267 a001 28657/12752043*10749957122^(13/16) 3178110000780267 a001 5702887/64079*45537549124^(1/3) 3178110000780267 a001 5702887/64079*(1/2+1/2*5^(1/2))^17 3178110000780267 a001 28657/12752043*599074578^(13/14) 3178110000780268 a001 63245986/64079*7881196^(4/11) 3178110000780269 a001 102334155/64079*7881196^(1/3) 3178110000780272 a001 267914296/64079*7881196^(3/11) 3178110000780277 a001 5702887/64079*12752043^(1/2) 3178110000780277 a001 1134903170/64079*7881196^(2/11) 3178110000780279 a001 586517975967/1845493 3178110000780280 a001 14930352/64079*20633239^(3/7) 3178110000780282 a001 4807526976/64079*7881196^(1/11) 3178110000780283 a001 14930352/64079*141422324^(5/13) 3178110000780283 a001 28657/33385282*(1/2+1/2*5^(1/2))^41 3178110000780283 a001 14930352/64079*2537720636^(1/3) 3178110000780283 a001 14930352/64079*45537549124^(5/17) 3178110000780283 a001 14930352/64079*312119004989^(3/11) 3178110000780283 a001 14930352/64079*14662949395604^(5/21) 3178110000780283 a001 14930352/64079*(1/2+1/2*5^(1/2))^15 3178110000780283 a001 14930352/64079*192900153618^(5/18) 3178110000780283 a001 14930352/64079*28143753123^(3/10) 3178110000780283 a001 14930352/64079*10749957122^(5/16) 3178110000780283 a001 14930352/64079*599074578^(5/14) 3178110000780284 a001 14930352/64079*228826127^(3/8) 3178110000780284 a001 165580141/64079*20633239^(2/7) 3178110000780284 a001 24157817/64079*20633239^(2/5) 3178110000780285 a001 14930352/64079*33385282^(5/12) 3178110000780285 a001 701408733/64079*20633239^(1/5) 3178110000780285 a001 7677619980472/24157817 3178110000780285 a001 28657*20633239^(1/7) 3178110000780286 a001 39088169/64079*141422324^(1/3) 3178110000780286 a001 39088169/64079*(1/2+1/2*5^(1/2))^13 3178110000780286 a001 39088169/64079*73681302247^(1/4) 3178110000780286 a001 20100270061581/63245986 3178110000780286 a001 28657/228826127*45537549124^(15/17) 3178110000780286 a001 28657/228826127*312119004989^(9/11) 3178110000780286 a001 28657/228826127*14662949395604^(5/7) 3178110000780286 a001 28657/228826127*192900153618^(5/6) 3178110000780286 a001 28657/228826127*28143753123^(9/10) 3178110000780286 a001 28657/228826127*10749957122^(15/16) 3178110000780286 a001 102334155/64079*312119004989^(1/5) 3178110000780286 a001 102334155/64079*(1/2+1/2*5^(1/2))^11 3178110000780286 a001 102334155/64079*1568397607^(1/4) 3178110000780286 a001 267914296/64079*141422324^(3/13) 3178110000780286 a001 1134903170/64079*141422324^(2/13) 3178110000780286 a001 52623190204271/165580141 3178110000780286 a001 4807526976/64079*141422324^(1/13) 3178110000780286 a001 267914296/64079*2537720636^(1/5) 3178110000780286 a001 267914296/64079*45537549124^(3/17) 3178110000780286 a001 267914296/64079*14662949395604^(1/7) 3178110000780286 a001 267914296/64079*(1/2+1/2*5^(1/2))^9 3178110000780286 a001 267914296/64079*192900153618^(1/6) 3178110000780286 a001 267914296/64079*10749957122^(3/16) 3178110000780286 a001 267914296/64079*599074578^(3/14) 3178110000780286 a001 137769300551232/433494437 3178110000780286 a001 28657/1568397607*14662949395604^(7/9) 3178110000780286 a001 28657/1568397607*505019158607^(7/8) 3178110000780286 a001 701408733/64079*17393796001^(1/7) 3178110000780286 a001 701408733/64079*14662949395604^(1/9) 3178110000780286 a001 701408733/64079*(1/2+1/2*5^(1/2))^7 3178110000780286 a001 72136942289885/226980634 3178110000780286 a001 28657/4106118243*817138163596^(17/19) 3178110000780286 a001 28657/4106118243*14662949395604^(17/21) 3178110000780286 a001 28657/4106118243*192900153618^(17/18) 3178110000780286 a001 944284833797043/2971215073 3178110000780286 a001 28657*2537720636^(1/9) 3178110000780286 a001 2472169789941704/7778742049 3178110000780286 a001 28657/28143753123*3461452808002^(11/12) 3178110000780286 a001 6472224536028069/20365011074 3178110000780286 a001 28657/73681302247*14662949395604^(19/21) 3178110000780286 a001 16944503818142503/53316291173 3178110000780286 a001 8872257383679888/27916772489 3178110000780286 a001 116139356937055817/365435296162 3178110000780286 a001 28657*312119004989^(1/11) 3178110000780286 a001 71778070018656377/225851433717 3178110000780286 a001 28657/312119004989*14662949395604^(20/21) 3178110000780286 a001 27416783100256937/86267571272 3178110000780286 a001 28657*28143753123^(1/10) 3178110000780286 a001 10472279282114434/32951280099 3178110000780286 a001 28657/45537549124*14662949395604^(8/9) 3178110000780286 a001 800010949217273/2517253805 3178110000780286 a001 28657/17393796001*14662949395604^(6/7) 3178110000780286 a001 1527884956144661/4807526976 3178110000780286 a001 28657/6643838879*23725150497407^(13/16) 3178110000780286 a001 28657/6643838879*505019158607^(13/14) 3178110000780286 a001 4807526976/64079*2537720636^(1/15) 3178110000780286 a001 4807526976/64079*45537549124^(1/17) 3178110000780286 a001 4807526976/64079*14662949395604^(1/21) 3178110000780286 a001 4807526976/64079*(1/2+1/2*5^(1/2))^3 3178110000780286 a001 4807526976/64079*192900153618^(1/18) 3178110000780286 a001 4807526976/64079*10749957122^(1/16) 3178110000780286 a001 12586269025/128158+12586269025/128158*5^(1/2) 3178110000780286 a001 20365011074/64079 3178110000780286 a001 7778742049/64079*(1/2+1/2*5^(1/2))^2 3178110000780286 a001 7778742049/64079*10749957122^(1/24) 3178110000780286 a001 7778742049/64079*4106118243^(1/23) 3178110000780286 a001 7778742049/64079*1568397607^(1/22) 3178110000780286 a001 2971215073/64079*(1/2+1/2*5^(1/2))^4 3178110000780286 a001 2971215073/64079*23725150497407^(1/16) 3178110000780286 a001 2971215073/64079*73681302247^(1/13) 3178110000780286 a001 2971215073/64079*10749957122^(1/12) 3178110000780286 a001 2971215073/64079*4106118243^(2/23) 3178110000780286 a001 701408733/64079*599074578^(1/6) 3178110000780286 a001 2971215073/64079*1568397607^(1/11) 3178110000780286 a001 28657/2537720636*312119004989^(10/11) 3178110000780286 a001 28657/2537720636*3461452808002^(5/6) 3178110000780286 a001 1134903170/64079*2537720636^(2/15) 3178110000780286 a001 7778742049/64079*599074578^(1/21) 3178110000780286 a001 1134903170/64079*45537549124^(2/17) 3178110000780286 a001 1134903170/64079*14662949395604^(2/21) 3178110000780286 a001 1134903170/64079*(1/2+1/2*5^(1/2))^6 3178110000780286 a001 1134903170/64079*10749957122^(1/8) 3178110000780286 a001 1134903170/64079*4106118243^(3/23) 3178110000780286 a001 4807526976/64079*599074578^(1/14) 3178110000780286 a001 1134903170/64079*1568397607^(3/22) 3178110000780286 a001 2971215073/64079*599074578^(2/21) 3178110000780286 a001 222915410898193/701408733 3178110000780286 a001 1134903170/64079*599074578^(1/7) 3178110000780286 a001 7778742049/64079*228826127^(1/20) 3178110000780286 a001 28657/969323029*45537549124^(16/17) 3178110000780286 a001 28657/969323029*14662949395604^(16/21) 3178110000780286 a001 28657/969323029*192900153618^(8/9) 3178110000780286 a001 28657/969323029*73681302247^(12/13) 3178110000780286 a001 433494437/64079*(1/2+1/2*5^(1/2))^8 3178110000780286 a001 433494437/64079*23725150497407^(1/8) 3178110000780286 a001 433494437/64079*505019158607^(1/7) 3178110000780286 a001 433494437/64079*73681302247^(2/13) 3178110000780286 a001 433494437/64079*10749957122^(1/6) 3178110000780286 a001 433494437/64079*4106118243^(4/23) 3178110000780286 a001 433494437/64079*1568397607^(2/11) 3178110000780286 a001 433494437/64079*599074578^(4/21) 3178110000780286 a001 2971215073/64079*228826127^(1/10) 3178110000780286 a001 28657*228826127^(1/8) 3178110000780286 a001 85146110346961/267914296 3178110000780286 a001 1134903170/64079*228826127^(3/20) 3178110000780286 a001 433494437/64079*228826127^(1/5) 3178110000780286 a001 7778742049/64079*87403803^(1/19) 3178110000780286 a001 28657/370248451*10749957122^(23/24) 3178110000780286 a001 165580141/64079*2537720636^(2/9) 3178110000780286 a001 165580141/64079*312119004989^(2/11) 3178110000780286 a001 165580141/64079*(1/2+1/2*5^(1/2))^10 3178110000780286 a001 165580141/64079*28143753123^(1/5) 3178110000780286 a001 165580141/64079*10749957122^(5/24) 3178110000780286 a001 165580141/64079*4106118243^(5/23) 3178110000780286 a001 165580141/64079*1568397607^(5/22) 3178110000780286 a001 165580141/64079*599074578^(5/21) 3178110000780286 a001 165580141/64079*228826127^(1/4) 3178110000780286 a001 2971215073/64079*87403803^(2/19) 3178110000780286 a001 6504584028538/20466831 3178110000780286 a001 1134903170/64079*87403803^(3/19) 3178110000780286 a001 433494437/64079*87403803^(4/19) 3178110000780286 a001 63245986/64079*141422324^(4/13) 3178110000780286 a001 165580141/64079*87403803^(5/19) 3178110000780286 a001 7778742049/64079*33385282^(1/18) 3178110000780286 a001 28657/141422324*312119004989^(4/5) 3178110000780286 a001 28657/141422324*23725150497407^(11/16) 3178110000780286 a001 28657/141422324*73681302247^(11/13) 3178110000780286 a001 28657/141422324*10749957122^(11/12) 3178110000780286 a001 63245986/64079*2537720636^(4/15) 3178110000780286 a001 28657/141422324*4106118243^(22/23) 3178110000780286 a001 63245986/64079*45537549124^(4/17) 3178110000780286 a001 63245986/64079*817138163596^(4/19) 3178110000780286 a001 63245986/64079*14662949395604^(4/21) 3178110000780286 a001 63245986/64079*(1/2+1/2*5^(1/2))^12 3178110000780286 a001 63245986/64079*192900153618^(2/9) 3178110000780286 a001 63245986/64079*73681302247^(3/13) 3178110000780286 a001 63245986/64079*10749957122^(1/4) 3178110000780286 a001 63245986/64079*4106118243^(6/23) 3178110000780286 a001 63245986/64079*1568397607^(3/11) 3178110000780286 a001 63245986/64079*599074578^(2/7) 3178110000780287 a001 63245986/64079*228826127^(3/10) 3178110000780287 a001 4807526976/64079*33385282^(1/12) 3178110000780287 a001 63245986/64079*87403803^(6/19) 3178110000780287 a001 2971215073/64079*33385282^(1/9) 3178110000780287 a001 12422650081109/39088169 3178110000780287 a001 1134903170/64079*33385282^(1/6) 3178110000780287 a001 433494437/64079*33385282^(2/9) 3178110000780287 a001 267914296/64079*33385282^(1/4) 3178110000780287 a001 165580141/64079*33385282^(5/18) 3178110000780287 a001 28657/54018521*2537720636^(14/15) 3178110000780287 a001 28657/54018521*17393796001^(6/7) 3178110000780287 a001 28657/54018521*45537549124^(14/17) 3178110000780287 a001 28657/54018521*817138163596^(14/19) 3178110000780287 a001 28657/54018521*14662949395604^(2/3) 3178110000780287 a001 28657/54018521*505019158607^(3/4) 3178110000780287 a001 28657/54018521*192900153618^(7/9) 3178110000780287 a001 28657/54018521*10749957122^(7/8) 3178110000780287 a001 28657/54018521*4106118243^(21/23) 3178110000780287 a001 24157817/64079*17393796001^(2/7) 3178110000780287 a001 24157817/64079*14662949395604^(2/9) 3178110000780287 a001 24157817/64079*(1/2+1/2*5^(1/2))^14 3178110000780287 a001 24157817/64079*505019158607^(1/4) 3178110000780287 a001 24157817/64079*10749957122^(7/24) 3178110000780287 a001 24157817/64079*4106118243^(7/23) 3178110000780287 a001 24157817/64079*1568397607^(7/22) 3178110000780287 a001 28657/54018521*1568397607^(21/22) 3178110000780287 a001 24157817/64079*599074578^(1/3) 3178110000780287 a001 63245986/64079*33385282^(1/3) 3178110000780287 a001 24157817/64079*228826127^(7/20) 3178110000780287 a001 7778742049/64079*12752043^(1/17) 3178110000780288 a001 24157817/64079*87403803^(7/19) 3178110000780289 a001 24157817/64079*33385282^(7/18) 3178110000780289 a001 2971215073/64079*12752043^(2/17) 3178110000780289 a001 4745030100637/14930352 3178110000780290 a001 1134903170/64079*12752043^(3/17) 3178110000780291 a001 433494437/64079*12752043^(4/17) 3178110000780292 a001 165580141/64079*12752043^(5/17) 3178110000780293 a001 63245986/64079*12752043^(6/17) 3178110000780294 a001 28657/20633239*2537720636^(8/9) 3178110000780294 a001 28657/20633239*312119004989^(8/11) 3178110000780294 a001 28657/20633239*(1/2+1/2*5^(1/2))^40 3178110000780294 a001 28657/20633239*23725150497407^(5/8) 3178110000780294 a001 28657/20633239*73681302247^(10/13) 3178110000780294 a001 28657/20633239*28143753123^(4/5) 3178110000780294 a001 28657/20633239*10749957122^(5/6) 3178110000780294 a001 28657/20633239*4106118243^(20/23) 3178110000780294 a001 9227465/64079*(1/2+1/2*5^(1/2))^16 3178110000780294 a001 9227465/64079*23725150497407^(1/4) 3178110000780294 a001 9227465/64079*73681302247^(4/13) 3178110000780294 a001 9227465/64079*10749957122^(1/3) 3178110000780294 a001 9227465/64079*4106118243^(8/23) 3178110000780294 a001 9227465/64079*1568397607^(4/11) 3178110000780294 a001 28657/20633239*1568397607^(10/11) 3178110000780294 a001 9227465/64079*599074578^(8/21) 3178110000780294 a001 28657/20633239*599074578^(20/21) 3178110000780294 a001 9227465/64079*228826127^(2/5) 3178110000780294 a001 9227465/64079*87403803^(8/19) 3178110000780295 a001 7778742049/64079*4870847^(1/16) 3178110000780295 a001 9227465/64079*33385282^(4/9) 3178110000780295 a001 24157817/64079*12752043^(7/17) 3178110000780303 a001 9227465/64079*12752043^(8/17) 3178110000780303 a001 2971215073/64079*4870847^(1/8) 3178110000780306 a001 1812440220802/5702887 3178110000780310 a001 3524578/64079*7881196^(6/11) 3178110000780311 a001 1134903170/64079*4870847^(3/16) 3178110000780320 a001 433494437/64079*4870847^(1/4) 3178110000780328 a001 165580141/64079*4870847^(5/16) 3178110000780337 a001 63245986/64079*4870847^(3/8) 3178110000780337 a001 3524578/64079*141422324^(6/13) 3178110000780337 a001 3524578/64079*2537720636^(2/5) 3178110000780337 a001 28657/7881196*817138163596^(2/3) 3178110000780337 a001 28657/7881196*(1/2+1/2*5^(1/2))^38 3178110000780337 a001 28657/7881196*10749957122^(19/24) 3178110000780337 a001 28657/7881196*4106118243^(19/23) 3178110000780337 a001 3524578/64079*45537549124^(6/17) 3178110000780337 a001 3524578/64079*14662949395604^(2/7) 3178110000780337 a001 3524578/64079*(1/2+1/2*5^(1/2))^18 3178110000780337 a001 3524578/64079*192900153618^(1/3) 3178110000780337 a001 3524578/64079*10749957122^(3/8) 3178110000780337 a001 3524578/64079*4106118243^(9/23) 3178110000780338 a001 3524578/64079*1568397607^(9/22) 3178110000780338 a001 28657/7881196*1568397607^(19/22) 3178110000780338 a001 3524578/64079*599074578^(3/7) 3178110000780338 a001 28657/7881196*599074578^(19/21) 3178110000780338 a001 3524578/64079*228826127^(9/20) 3178110000780338 a001 28657/7881196*228826127^(19/20) 3178110000780338 a001 3524578/64079*87403803^(9/19) 3178110000780339 a001 3524578/64079*33385282^(1/2) 3178110000780346 a001 24157817/64079*4870847^(7/16) 3178110000780348 a001 7778742049/64079*1860498^(1/15) 3178110000780348 a001 3524578/64079*12752043^(9/17) 3178110000780361 a001 9227465/64079*4870847^(1/2) 3178110000780378 a001 4807526976/64079*1860498^(1/10) 3178110000780409 a001 2971215073/64079*1860498^(2/15) 3178110000780413 a001 3524578/64079*4870847^(9/16) 3178110000780421 a001 692290561769/2178309 3178110000780439 a001 28657*1860498^(1/6) 3178110000780470 a001 1134903170/64079*1860498^(1/5) 3178110000780531 a001 433494437/64079*1860498^(4/15) 3178110000780562 a001 267914296/64079*1860498^(3/10) 3178110000780592 a001 165580141/64079*1860498^(1/3) 3178110000780633 a001 1346269/64079*20633239^(4/7) 3178110000780637 a001 28657/3010349*141422324^(12/13) 3178110000780637 a001 28657/3010349*2537720636^(4/5) 3178110000780637 a001 1346269/64079*2537720636^(4/9) 3178110000780637 a001 28657/3010349*45537549124^(12/17) 3178110000780637 a001 28657/3010349*14662949395604^(4/7) 3178110000780637 a001 28657/3010349*(1/2+1/2*5^(1/2))^36 3178110000780637 a001 28657/3010349*505019158607^(9/14) 3178110000780637 a001 28657/3010349*192900153618^(2/3) 3178110000780637 a001 28657/3010349*73681302247^(9/13) 3178110000780637 a001 28657/3010349*10749957122^(3/4) 3178110000780637 a001 28657/3010349*4106118243^(18/23) 3178110000780637 a001 1346269/64079*(1/2+1/2*5^(1/2))^20 3178110000780637 a001 1346269/64079*23725150497407^(5/16) 3178110000780637 a001 1346269/64079*505019158607^(5/14) 3178110000780637 a001 1346269/64079*73681302247^(5/13) 3178110000780637 a001 1346269/64079*28143753123^(2/5) 3178110000780637 a001 1346269/64079*10749957122^(5/12) 3178110000780637 a001 1346269/64079*4106118243^(10/23) 3178110000780637 a001 1346269/64079*1568397607^(5/11) 3178110000780637 a001 28657/3010349*1568397607^(9/11) 3178110000780637 a001 1346269/64079*599074578^(10/21) 3178110000780637 a001 28657/3010349*599074578^(6/7) 3178110000780637 a001 1346269/64079*228826127^(1/2) 3178110000780637 a001 28657/3010349*228826127^(9/10) 3178110000780637 a001 1346269/64079*87403803^(10/19) 3178110000780637 a001 28657/3010349*87403803^(18/19) 3178110000780639 a001 1346269/64079*33385282^(5/9) 3178110000780649 a001 1346269/64079*12752043^(10/17) 3178110000780654 a001 63245986/64079*1860498^(2/5) 3178110000780716 a001 24157817/64079*1860498^(7/15) 3178110000780721 a001 1346269/64079*4870847^(5/8) 3178110000780736 a001 7778742049/64079*710647^(1/14) 3178110000780743 a001 14930352/64079*1860498^(1/2) 3178110000780783 a001 9227465/64079*1860498^(8/15) 3178110000780888 a001 3524578/64079*1860498^(3/5) 3178110000781185 a001 2971215073/64079*710647^(1/7) 3178110000781212 a001 52886292901/166408 3178110000781249 a001 1346269/64079*1860498^(2/3) 3178110000781635 a001 1134903170/64079*710647^(3/14) 3178110000781860 a001 701408733/64079*710647^(1/4) 3178110000782084 a001 433494437/64079*710647^(2/7) 3178110000782117 a001 196418/64079*439204^(8/9) 3178110000782534 a001 165580141/64079*710647^(5/14) 3178110000782656 a001 514229/64079*7881196^(2/3) 3178110000782690 a001 28657/1149851*45537549124^(2/3) 3178110000782690 a001 28657/1149851*(1/2+1/2*5^(1/2))^34 3178110000782690 a001 28657/1149851*10749957122^(17/24) 3178110000782690 a001 28657/1149851*4106118243^(17/23) 3178110000782690 a001 514229/64079*312119004989^(2/5) 3178110000782690 a001 514229/64079*(1/2+1/2*5^(1/2))^22 3178110000782690 a001 514229/64079*10749957122^(11/24) 3178110000782690 a001 514229/64079*4106118243^(11/23) 3178110000782690 a001 514229/64079*1568397607^(1/2) 3178110000782690 a001 28657/1149851*1568397607^(17/22) 3178110000782690 a001 514229/64079*599074578^(11/21) 3178110000782690 a001 28657/1149851*599074578^(17/21) 3178110000782690 a001 514229/64079*228826127^(11/20) 3178110000782690 a001 28657/1149851*228826127^(17/20) 3178110000782690 a001 514229/64079*87403803^(11/19) 3178110000782690 a001 28657/1149851*87403803^(17/19) 3178110000782692 a001 514229/64079*33385282^(11/18) 3178110000782693 a001 28657/1149851*33385282^(17/18) 3178110000782703 a001 514229/64079*12752043^(11/17) 3178110000782782 a001 514229/64079*4870847^(11/16) 3178110000782984 a001 63245986/64079*710647^(3/7) 3178110000783363 a001 514229/64079*1860498^(11/15) 3178110000783434 a001 24157817/64079*710647^(1/2) 3178110000783604 a001 7778742049/64079*271443^(1/13) 3178110000783890 a001 9227465/64079*710647^(4/7) 3178110000784088 a001 832040/64079*710647^(3/4) 3178110000784383 a001 3524578/64079*710647^(9/14) 3178110000785132 a001 1346269/64079*710647^(5/7) 3178110000786631 a001 101003831746/317811 3178110000786922 a001 2971215073/64079*271443^(2/13) 3178110000787635 a001 514229/64079*710647^(11/14) 3178110000790240 a001 1134903170/64079*271443^(3/13) 3178110000792117 a001 1134903170/271443*39603^(9/22) 3178110000792605 a001 12586269025/64079*103682^(1/24) 3178110000793558 a001 433494437/64079*271443^(4/13) 3178110000796725 a001 196418/64079*7881196^(8/11) 3178110000796762 a001 196418/64079*141422324^(8/13) 3178110000796762 a001 196418/64079*2537720636^(8/15) 3178110000796762 a001 28657/439204*(1/2+1/2*5^(1/2))^32 3178110000796762 a001 28657/439204*23725150497407^(1/2) 3178110000796762 a001 28657/439204*505019158607^(4/7) 3178110000796762 a001 28657/439204*73681302247^(8/13) 3178110000796762 a001 28657/439204*10749957122^(2/3) 3178110000796762 a001 28657/439204*4106118243^(16/23) 3178110000796762 a001 196418/64079*45537549124^(8/17) 3178110000796762 a001 196418/64079*14662949395604^(8/21) 3178110000796762 a001 196418/64079*(1/2+1/2*5^(1/2))^24 3178110000796762 a001 196418/64079*192900153618^(4/9) 3178110000796762 a001 196418/64079*73681302247^(6/13) 3178110000796762 a001 196418/64079*10749957122^(1/2) 3178110000796762 a001 196418/64079*4106118243^(12/23) 3178110000796762 a001 196418/64079*1568397607^(6/11) 3178110000796762 a001 28657/439204*1568397607^(8/11) 3178110000796762 a001 196418/64079*599074578^(4/7) 3178110000796762 a001 28657/439204*599074578^(16/21) 3178110000796762 a001 196418/64079*228826127^(3/5) 3178110000796762 a001 28657/439204*228826127^(4/5) 3178110000796762 a001 196418/64079*87403803^(12/19) 3178110000796762 a001 28657/439204*87403803^(16/19) 3178110000796764 a001 196418/64079*33385282^(2/3) 3178110000796764 a001 28657/439204*33385282^(8/9) 3178110000796776 a001 196418/64079*12752043^(12/17) 3178110000796780 a001 28657/439204*12752043^(16/17) 3178110000796862 a001 196418/64079*4870847^(3/4) 3178110000796876 a001 165580141/64079*271443^(5/13) 3178110000797496 a001 196418/64079*1860498^(4/5) 3178110000800194 a001 63245986/64079*271443^(6/13) 3178110000801853 a001 39088169/64079*271443^(1/2) 3178110000802156 a001 196418/64079*710647^(6/7) 3178110000803513 a001 24157817/64079*271443^(7/13) 3178110000804923 a001 7778742049/64079*103682^(1/12) 3178110000806837 a001 9227465/64079*271443^(8/13) 3178110000810199 a001 3524578/64079*271443^(9/13) 3178110000813654 a001 32951280099/167761*15127^(1/20) 3178110000813816 a001 1346269/64079*271443^(10/13) 3178110000815931 a001 102334155/103682*39603^(6/11) 3178110000817241 a001 4807526976/64079*103682^(1/8) 3178110000819187 a001 514229/64079*271443^(11/13) 3178110000823770 a001 38580030733/121393 3178110000828958 a001 2971215073/710647*39603^(9/22) 3178110000829560 a001 2971215073/64079*103682^(1/6) 3178110000834333 a001 7778742049/1860498*39603^(9/22) 3178110000835117 a001 20365011074/4870847*39603^(9/22) 3178110000835231 a001 53316291173/12752043*39603^(9/22) 3178110000835248 a001 139583862445/33385282*39603^(9/22) 3178110000835250 a001 365435296162/87403803*39603^(9/22) 3178110000835251 a001 956722026041/228826127*39603^(9/22) 3178110000835251 a001 2504730781961/599074578*39603^(9/22) 3178110000835251 a001 6557470319842/1568397607*39603^(9/22) 3178110000835251 a001 10610209857723/2537720636*39603^(9/22) 3178110000835251 a001 4052739537881/969323029*39603^(9/22) 3178110000835251 a001 1548008755920/370248451*39603^(9/22) 3178110000835251 a001 591286729879/141422324*39603^(9/22) 3178110000835252 a001 225851433717/54018521*39603^(9/22) 3178110000835258 a001 86267571272/20633239*39603^(9/22) 3178110000835302 a001 32951280099/7881196*39603^(9/22) 3178110000835601 a001 12586269025/3010349*39603^(9/22) 3178110000836577 a001 196418/64079*271443^(12/13) 3178110000837654 a001 4807526976/1149851*39603^(9/22) 3178110000841878 a001 28657*103682^(5/24) 3178110000851726 a001 1836311903/439204*39603^(9/22) 3178110000854196 a001 1134903170/64079*103682^(1/4) 3178110000856068 a001 1134903170/167761*39603^(4/11) 3178110000866514 a001 701408733/64079*103682^(7/24) 3178110000872393 a001 12586269025/64079*39603^(1/22) 3178110000878833 a001 433494437/64079*103682^(1/3) 3178110000884224 a001 233802911/90481*39603^(5/11) 3178110000891151 a001 267914296/64079*103682^(3/8) 3178110000893164 a001 28657/167761*7881196^(10/11) 3178110000893204 a001 28657/167761*20633239^(6/7) 3178110000893210 a001 28657/167761*141422324^(10/13) 3178110000893210 a001 75025/64079*141422324^(2/3) 3178110000893211 a001 28657/167761*2537720636^(2/3) 3178110000893211 a001 28657/167761*45537549124^(10/17) 3178110000893211 a001 28657/167761*312119004989^(6/11) 3178110000893211 a001 28657/167761*14662949395604^(10/21) 3178110000893211 a001 28657/167761*(1/2+1/2*5^(1/2))^30 3178110000893211 a001 28657/167761*192900153618^(5/9) 3178110000893211 a001 28657/167761*28143753123^(3/5) 3178110000893211 a001 28657/167761*10749957122^(5/8) 3178110000893211 a001 28657/167761*4106118243^(15/23) 3178110000893211 a001 75025/64079*(1/2+1/2*5^(1/2))^26 3178110000893211 a001 75025/64079*73681302247^(1/2) 3178110000893211 a001 75025/64079*10749957122^(13/24) 3178110000893211 a001 75025/64079*4106118243^(13/23) 3178110000893211 a001 28657/167761*1568397607^(15/22) 3178110000893211 a001 75025/64079*1568397607^(13/22) 3178110000893211 a001 75025/64079*599074578^(13/21) 3178110000893211 a001 28657/167761*599074578^(5/7) 3178110000893211 a001 75025/64079*228826127^(13/20) 3178110000893211 a001 28657/167761*228826127^(3/4) 3178110000893211 a001 75025/64079*87403803^(13/19) 3178110000893211 a001 28657/167761*87403803^(15/19) 3178110000893213 a001 75025/64079*33385282^(13/18) 3178110000893213 a001 28657/167761*33385282^(5/6) 3178110000893225 a001 75025/64079*12752043^(13/17) 3178110000893228 a001 28657/167761*12752043^(15/17) 3178110000893319 a001 75025/64079*4870847^(13/16) 3178110000893336 a001 28657/167761*4870847^(15/16) 3178110000894006 a001 75025/64079*1860498^(13/15) 3178110000899054 a001 75025/64079*710647^(13/14) 3178110000903469 a001 165580141/64079*103682^(5/12) 3178110000908037 a001 31622993/51841*39603^(13/22) 3178110000915788 a001 102334155/64079*103682^(11/24) 3178110000921064 a001 1836311903/710647*39603^(5/11) 3178110000926439 a001 267084832/103361*39603^(5/11) 3178110000927223 a001 12586269025/4870847*39603^(5/11) 3178110000927338 a001 10983760033/4250681*39603^(5/11) 3178110000927354 a001 43133785636/16692641*39603^(5/11) 3178110000927357 a001 75283811239/29134601*39603^(5/11) 3178110000927357 a001 591286729879/228826127*39603^(5/11) 3178110000927357 a001 86000486440/33281921*39603^(5/11) 3178110000927357 a001 4052739537881/1568397607*39603^(5/11) 3178110000927357 a001 3536736619241/1368706081*39603^(5/11) 3178110000927357 a001 3278735159921/1268860318*39603^(5/11) 3178110000927357 a001 2504730781961/969323029*39603^(5/11) 3178110000927357 a001 956722026041/370248451*39603^(5/11) 3178110000927357 a001 182717648081/70711162*39603^(5/11) 3178110000927358 a001 139583862445/54018521*39603^(5/11) 3178110000927365 a001 53316291173/20633239*39603^(5/11) 3178110000927408 a001 10182505537/3940598*39603^(5/11) 3178110000927708 a001 7778742049/3010349*39603^(5/11) 3178110000928106 a001 63245986/64079*103682^(1/2) 3178110000929761 a001 2971215073/1149851*39603^(5/11) 3178110000940424 a001 39088169/64079*103682^(13/24) 3178110000943833 a001 567451585/219602*39603^(5/11) 3178110000948175 a001 701408733/167761*39603^(9/22) 3178110000952744 a001 24157817/64079*103682^(7/12) 3178110000964499 a001 7778742049/64079*39603^(1/11) 3178110000965058 a001 14930352/64079*103682^(5/8) 3178110000976330 a001 433494437/271443*39603^(1/2) 3178110000977387 a001 9227465/64079*103682^(2/3) 3178110000989678 a001 5702887/64079*103682^(17/24) 3178110001000143 a001 39088169/103682*39603^(7/11) 3178110001002067 a001 3524578/64079*103682^(3/4) 3178110001013171 a001 1134903170/710647*39603^(1/2) 3178110001014200 a001 2178309/64079*103682^(19/24) 3178110001016641 a001 2178309/24476*24476^(17/21) 3178110001018545 a001 2971215073/1860498*39603^(1/2) 3178110001019330 a001 7778742049/4870847*39603^(1/2) 3178110001019444 a001 20365011074/12752043*39603^(1/2) 3178110001019461 a001 53316291173/33385282*39603^(1/2) 3178110001019463 a001 139583862445/87403803*39603^(1/2) 3178110001019464 a001 365435296162/228826127*39603^(1/2) 3178110001019464 a001 956722026041/599074578*39603^(1/2) 3178110001019464 a001 2504730781961/1568397607*39603^(1/2) 3178110001019464 a001 6557470319842/4106118243*39603^(1/2) 3178110001019464 a001 10610209857723/6643838879*39603^(1/2) 3178110001019464 a001 4052739537881/2537720636*39603^(1/2) 3178110001019464 a001 1548008755920/969323029*39603^(1/2) 3178110001019464 a001 591286729879/370248451*39603^(1/2) 3178110001019464 a001 225851433717/141422324*39603^(1/2) 3178110001019465 a001 86267571272/54018521*39603^(1/2) 3178110001019471 a001 32951280099/20633239*39603^(1/2) 3178110001019515 a001 12586269025/7881196*39603^(1/2) 3178110001019814 a001 4807526976/3010349*39603^(1/2) 3178110001021867 a001 1836311903/1149851*39603^(1/2) 3178110001026827 s002 sum(A251557[n]/((10^n-1)/n),n=1..infinity) 3178110001027003 a001 1346269/64079*103682^(5/6) 3178110001035939 a001 701408733/439204*39603^(1/2) 3178110001038053 a001 832040/64079*103682^(7/8) 3178110001040281 a001 433494437/167761*39603^(5/11) 3178110001053693 a001 514229/64079*103682^(11/12) 3178110001056606 a001 4807526976/64079*39603^(3/22) 3178110001057314 a001 317811/64079*103682^(23/24) 3178110001068437 a001 267914296/271443*39603^(6/11) 3178110001078329 a001 14736260453/46368 3178110001092251 a001 24157817/103682*39603^(15/22) 3178110001099529 a001 12586269025/103682*15127^(1/10) 3178110001105277 a001 701408733/710647*39603^(6/11) 3178110001110652 a001 1836311903/1860498*39603^(6/11) 3178110001111436 a001 4807526976/4870847*39603^(6/11) 3178110001111550 a001 12586269025/12752043*39603^(6/11) 3178110001111567 a001 32951280099/33385282*39603^(6/11) 3178110001111570 a001 86267571272/87403803*39603^(6/11) 3178110001111570 a001 225851433717/228826127*39603^(6/11) 3178110001111570 a001 591286729879/599074578*39603^(6/11) 3178110001111570 a001 1548008755920/1568397607*39603^(6/11) 3178110001111570 a001 4052739537881/4106118243*39603^(6/11) 3178110001111570 a001 4807525989/4870846*39603^(6/11) 3178110001111570 a001 6557470319842/6643838879*39603^(6/11) 3178110001111570 a001 2504730781961/2537720636*39603^(6/11) 3178110001111570 a001 956722026041/969323029*39603^(6/11) 3178110001111570 a001 365435296162/370248451*39603^(6/11) 3178110001111570 a001 139583862445/141422324*39603^(6/11) 3178110001111571 a001 53316291173/54018521*39603^(6/11) 3178110001111577 a001 20365011074/20633239*39603^(6/11) 3178110001111621 a001 7778742049/7881196*39603^(6/11) 3178110001111921 a001 2971215073/3010349*39603^(6/11) 3178110001113974 a001 1134903170/1149851*39603^(6/11) 3178110001128045 a001 433494437/439204*39603^(6/11) 3178110001132388 a001 267914296/167761*39603^(1/2) 3178110001148712 a001 2971215073/64079*39603^(2/11) 3178110001160543 a001 165580141/271443*39603^(13/22) 3178110001184354 a001 7465176/51841*39603^(8/11) 3178110001197383 a001 433494437/710647*39603^(13/22) 3178110001202758 a001 567451585/930249*39603^(13/22) 3178110001203543 a001 2971215073/4870847*39603^(13/22) 3178110001203657 a001 7778742049/12752043*39603^(13/22) 3178110001203674 a001 10182505537/16692641*39603^(13/22) 3178110001203676 a001 53316291173/87403803*39603^(13/22) 3178110001203676 a001 139583862445/228826127*39603^(13/22) 3178110001203676 a001 182717648081/299537289*39603^(13/22) 3178110001203676 a001 956722026041/1568397607*39603^(13/22) 3178110001203676 a001 2504730781961/4106118243*39603^(13/22) 3178110001203676 a001 3278735159921/5374978561*39603^(13/22) 3178110001203676 a001 10610209857723/17393796001*39603^(13/22) 3178110001203676 a001 4052739537881/6643838879*39603^(13/22) 3178110001203676 a001 1134903780/1860499*39603^(13/22) 3178110001203676 a001 591286729879/969323029*39603^(13/22) 3178110001203677 a001 225851433717/370248451*39603^(13/22) 3178110001203677 a001 21566892818/35355581*39603^(13/22) 3178110001203678 a001 32951280099/54018521*39603^(13/22) 3178110001203684 a001 1144206275/1875749*39603^(13/22) 3178110001203728 a001 1201881744/1970299*39603^(13/22) 3178110001204027 a001 1836311903/3010349*39603^(13/22) 3178110001206080 a001 701408733/1149851*39603^(13/22) 3178110001220152 a001 66978574/109801*39603^(13/22) 3178110001224494 a001 165580141/167761*39603^(6/11) 3178110001240819 a001 28657*39603^(5/22) 3178110001252650 a001 34111385/90481*39603^(7/11) 3178110001269447 a001 1762289/12238*24476^(16/21) 3178110001276470 a001 9227465/103682*39603^(17/22) 3178110001289490 a001 267914296/710647*39603^(7/11) 3178110001294865 a001 233802911/620166*39603^(7/11) 3178110001295649 a001 1836311903/4870847*39603^(7/11) 3178110001295763 a001 1602508992/4250681*39603^(7/11) 3178110001295780 a001 12586269025/33385282*39603^(7/11) 3178110001295783 a001 10983760033/29134601*39603^(7/11) 3178110001295783 a001 86267571272/228826127*39603^(7/11) 3178110001295783 a001 267913919/710646*39603^(7/11) 3178110001295783 a001 591286729879/1568397607*39603^(7/11) 3178110001295783 a001 516002918640/1368706081*39603^(7/11) 3178110001295783 a001 4052739537881/10749957122*39603^(7/11) 3178110001295783 a001 3536736619241/9381251041*39603^(7/11) 3178110001295783 a001 6557470319842/17393796001*39603^(7/11) 3178110001295783 a001 2504730781961/6643838879*39603^(7/11) 3178110001295783 a001 956722026041/2537720636*39603^(7/11) 3178110001295783 a001 365435296162/969323029*39603^(7/11) 3178110001295783 a001 139583862445/370248451*39603^(7/11) 3178110001295783 a001 53316291173/141422324*39603^(7/11) 3178110001295784 a001 20365011074/54018521*39603^(7/11) 3178110001295790 a001 7778742049/20633239*39603^(7/11) 3178110001295834 a001 2971215073/7881196*39603^(7/11) 3178110001296134 a001 1134903170/3010349*39603^(7/11) 3178110001298187 a001 433494437/1149851*39603^(7/11) 3178110001312258 a001 165580141/439204*39603^(7/11) 3178110001316601 a001 9303105/15251*39603^(13/22) 3178110001332925 a001 1134903170/64079*39603^(3/11) 3178110001344756 a001 63245986/271443*39603^(15/22) 3178110001352035 a001 121393*15127^(1/10) 3178110001368550 a001 5702887/103682*39603^(9/11) 3178110001381596 a001 165580141/710647*39603^(15/22) 3178110001386971 a001 433494437/1860498*39603^(15/22) 3178110001387755 a001 1134903170/4870847*39603^(15/22) 3178110001387870 a001 2971215073/12752043*39603^(15/22) 3178110001387887 a001 7778742049/33385282*39603^(15/22) 3178110001387889 a001 20365011074/87403803*39603^(15/22) 3178110001387889 a001 53316291173/228826127*39603^(15/22) 3178110001387889 a001 139583862445/599074578*39603^(15/22) 3178110001387889 a001 365435296162/1568397607*39603^(15/22) 3178110001387889 a001 956722026041/4106118243*39603^(15/22) 3178110001387889 a001 2504730781961/10749957122*39603^(15/22) 3178110001387889 a001 6557470319842/28143753123*39603^(15/22) 3178110001387889 a001 10610209857723/45537549124*39603^(15/22) 3178110001387889 a001 4052739537881/17393796001*39603^(15/22) 3178110001387889 a001 1548008755920/6643838879*39603^(15/22) 3178110001387889 a001 591286729879/2537720636*39603^(15/22) 3178110001387889 a001 225851433717/969323029*39603^(15/22) 3178110001387889 a001 86267571272/370248451*39603^(15/22) 3178110001387890 a001 63246219/271444*39603^(15/22) 3178110001387890 a001 12586269025/54018521*39603^(15/22) 3178110001387897 a001 4807526976/20633239*39603^(15/22) 3178110001387941 a001 1836311903/7881196*39603^(15/22) 3178110001388240 a001 701408733/3010349*39603^(15/22) 3178110001388875 a001 86267571272/710647*15127^(1/10) 3178110001390293 a001 267914296/1149851*39603^(15/22) 3178110001394250 a001 75283811239/620166*15127^(1/10) 3178110001395034 a001 591286729879/4870847*15127^(1/10) 3178110001395148 a001 516002918640/4250681*15127^(1/10) 3178110001395165 a001 4052739537881/33385282*15127^(1/10) 3178110001395168 a001 3536736619241/29134601*15127^(1/10) 3178110001395169 a001 6557470319842/54018521*15127^(1/10) 3178110001395176 a001 2504730781961/20633239*15127^(1/10) 3178110001395219 a001 956722026041/7881196*15127^(1/10) 3178110001395519 a001 365435296162/3010349*15127^(1/10) 3178110001397572 a001 139583862445/1149851*15127^(1/10) 3178110001404365 a001 102334155/439204*39603^(15/22) 3178110001408707 a001 63245986/167761*39603^(7/11) 3178110001411643 a001 53316291173/439204*15127^(1/10) 3178110001425032 a001 701408733/64079*39603^(7/22) 3178110001436862 a001 39088169/271443*39603^(8/11) 3178110001452139 a001 1134903170/39603*15127^(1/4) 3178110001460727 a001 1762289/51841*39603^(19/22) 3178110001473703 a001 14619165/101521*39603^(8/11) 3178110001474724 a001 12586269025/64079*15127^(1/20) 3178110001479078 a001 133957148/930249*39603^(8/11) 3178110001479862 a001 701408733/4870847*39603^(8/11) 3178110001479976 a001 1836311903/12752043*39603^(8/11) 3178110001479993 a001 14930208/103681*39603^(8/11) 3178110001479995 a001 12586269025/87403803*39603^(8/11) 3178110001479996 a001 32951280099/228826127*39603^(8/11) 3178110001479996 a001 43133785636/299537289*39603^(8/11) 3178110001479996 a001 32264490531/224056801*39603^(8/11) 3178110001479996 a001 591286729879/4106118243*39603^(8/11) 3178110001479996 a001 774004377960/5374978561*39603^(8/11) 3178110001479996 a001 4052739537881/28143753123*39603^(8/11) 3178110001479996 a001 1515744265389/10525900321*39603^(8/11) 3178110001479996 a001 3278735159921/22768774562*39603^(8/11) 3178110001479996 a001 2504730781961/17393796001*39603^(8/11) 3178110001479996 a001 956722026041/6643838879*39603^(8/11) 3178110001479996 a001 182717648081/1268860318*39603^(8/11) 3178110001479996 a001 139583862445/969323029*39603^(8/11) 3178110001479996 a001 53316291173/370248451*39603^(8/11) 3178110001479996 a001 10182505537/70711162*39603^(8/11) 3178110001479997 a001 7778742049/54018521*39603^(8/11) 3178110001480003 a001 2971215073/20633239*39603^(8/11) 3178110001480047 a001 567451585/3940598*39603^(8/11) 3178110001480347 a001 433494437/3010349*39603^(8/11) 3178110001482400 a001 165580141/1149851*39603^(8/11) 3178110001483827 a001 2971215073/24476*9349^(2/19) 3178110001496471 a001 31622993/219602*39603^(8/11) 3178110001500813 a001 39088169/167761*39603^(15/22) 3178110001508092 a001 20365011074/167761*15127^(1/10) 3178110001517138 a001 433494437/64079*39603^(4/11) 3178110001521997 a001 5702887/24476*24476^(5/7) 3178110001528970 a001 24157817/271443*39603^(17/22) 3178110001552648 a001 46347/2206*39603^(10/11) 3178110001554274 a001 28657/64079*20633239^(4/5) 3178110001554280 a001 28657/64079*17393796001^(4/7) 3178110001554280 a001 28657/64079*14662949395604^(4/9) 3178110001554280 a001 28657/64079*(1/2+1/2*5^(1/2))^28 3178110001554280 a001 28657/64079*505019158607^(1/2) 3178110001554280 a001 28657/64079*73681302247^(7/13) 3178110001554280 a001 28657/64079*10749957122^(7/12) 3178110001554280 a001 28657/64079*4106118243^(14/23) 3178110001554280 a001 28657/64079*1568397607^(7/11) 3178110001554280 a001 28657/64079*599074578^(2/3) 3178110001554280 a001 28657/64079*228826127^(7/10) 3178110001554280 a001 28657/64079*87403803^(14/19) 3178110001554282 a001 28657/64079*33385282^(7/9) 3178110001554296 a001 28657/64079*12752043^(14/17) 3178110001554397 a001 28657/64079*4870847^(7/8) 3178110001555137 a001 28657/64079*1860498^(14/15) 3178110001565809 a001 63245986/710647*39603^(17/22) 3178110001571184 a001 165580141/1860498*39603^(17/22) 3178110001571968 a001 433494437/4870847*39603^(17/22) 3178110001572083 a001 1134903170/12752043*39603^(17/22) 3178110001572099 a001 2971215073/33385282*39603^(17/22) 3178110001572102 a001 7778742049/87403803*39603^(17/22) 3178110001572102 a001 20365011074/228826127*39603^(17/22) 3178110001572102 a001 53316291173/599074578*39603^(17/22) 3178110001572102 a001 139583862445/1568397607*39603^(17/22) 3178110001572102 a001 365435296162/4106118243*39603^(17/22) 3178110001572102 a001 956722026041/10749957122*39603^(17/22) 3178110001572102 a001 2504730781961/28143753123*39603^(17/22) 3178110001572102 a001 6557470319842/73681302247*39603^(17/22) 3178110001572102 a001 10610209857723/119218851371*39603^(17/22) 3178110001572102 a001 4052739537881/45537549124*39603^(17/22) 3178110001572102 a001 1548008755920/17393796001*39603^(17/22) 3178110001572102 a001 591286729879/6643838879*39603^(17/22) 3178110001572102 a001 225851433717/2537720636*39603^(17/22) 3178110001572102 a001 86267571272/969323029*39603^(17/22) 3178110001572102 a001 32951280099/370248451*39603^(17/22) 3178110001572102 a001 12586269025/141422324*39603^(17/22) 3178110001572103 a001 4807526976/54018521*39603^(17/22) 3178110001572110 a001 1836311903/20633239*39603^(17/22) 3178110001572153 a001 3524667/39604*39603^(17/22) 3178110001572453 a001 267914296/3010349*39603^(17/22) 3178110001574506 a001 102334155/1149851*39603^(17/22) 3178110001588577 a001 39088169/439204*39603^(17/22) 3178110001592921 a001 24157817/167761*39603^(8/11) 3178110001609244 a001 267914296/64079*39603^(9/22) 3178110001621073 a001 4976784/90481*39603^(9/11) 3178110001645240 a001 1346269/103682*39603^(21/22) 3178110001657915 a001 39088169/710647*39603^(9/11) 3178110001663291 a001 831985/15126*39603^(9/11) 3178110001664075 a001 267914296/4870847*39603^(9/11) 3178110001664189 a001 233802911/4250681*39603^(9/11) 3178110001664206 a001 1836311903/33385282*39603^(9/11) 3178110001664208 a001 1602508992/29134601*39603^(9/11) 3178110001664209 a001 12586269025/228826127*39603^(9/11) 3178110001664209 a001 10983760033/199691526*39603^(9/11) 3178110001664209 a001 86267571272/1568397607*39603^(9/11) 3178110001664209 a001 75283811239/1368706081*39603^(9/11) 3178110001664209 a001 591286729879/10749957122*39603^(9/11) 3178110001664209 a001 12585437040/228811001*39603^(9/11) 3178110001664209 a001 4052739537881/73681302247*39603^(9/11) 3178110001664209 a001 3536736619241/64300051206*39603^(9/11) 3178110001664209 a001 6557470319842/119218851371*39603^(9/11) 3178110001664209 a001 2504730781961/45537549124*39603^(9/11) 3178110001664209 a001 956722026041/17393796001*39603^(9/11) 3178110001664209 a001 365435296162/6643838879*39603^(9/11) 3178110001664209 a001 139583862445/2537720636*39603^(9/11) 3178110001664209 a001 53316291173/969323029*39603^(9/11) 3178110001664209 a001 20365011074/370248451*39603^(9/11) 3178110001664209 a001 7778742049/141422324*39603^(9/11) 3178110001664210 a001 2971215073/54018521*39603^(9/11) 3178110001664216 a001 1134903170/20633239*39603^(9/11) 3178110001664260 a001 433494437/7881196*39603^(9/11) 3178110001664559 a001 165580141/3010349*39603^(9/11) 3178110001666613 a001 63245986/1149851*39603^(9/11) 3178110001680685 a001 24157817/439204*39603^(9/11) 3178110001685024 a001 14930352/167761*39603^(17/22) 3178110001693862 a001 5628750624/17711 3178110001701351 a001 165580141/64079*39603^(5/11) 3178110001713189 a001 9227465/271443*39603^(19/22) 3178110001750023 a001 24157817/710647*39603^(19/22) 3178110001755397 a001 31622993/930249*39603^(19/22) 3178110001756181 a001 165580141/4870847*39603^(19/22) 3178110001756296 a001 433494437/12752043*39603^(19/22) 3178110001756312 a001 567451585/16692641*39603^(19/22) 3178110001756315 a001 2971215073/87403803*39603^(19/22) 3178110001756315 a001 7778742049/228826127*39603^(19/22) 3178110001756315 a001 10182505537/299537289*39603^(19/22) 3178110001756315 a001 53316291173/1568397607*39603^(19/22) 3178110001756315 a001 139583862445/4106118243*39603^(19/22) 3178110001756315 a001 182717648081/5374978561*39603^(19/22) 3178110001756315 a001 956722026041/28143753123*39603^(19/22) 3178110001756315 a001 2504730781961/73681302247*39603^(19/22) 3178110001756315 a001 3278735159921/96450076809*39603^(19/22) 3178110001756315 a001 10610209857723/312119004989*39603^(19/22) 3178110001756315 a001 4052739537881/119218851371*39603^(19/22) 3178110001756315 a001 387002188980/11384387281*39603^(19/22) 3178110001756315 a001 591286729879/17393796001*39603^(19/22) 3178110001756315 a001 225851433717/6643838879*39603^(19/22) 3178110001756315 a001 1135099622/33391061*39603^(19/22) 3178110001756315 a001 32951280099/969323029*39603^(19/22) 3178110001756315 a001 12586269025/370248451*39603^(19/22) 3178110001756315 a001 1201881744/35355581*39603^(19/22) 3178110001756316 a001 1836311903/54018521*39603^(19/22) 3178110001756323 a001 701408733/20633239*39603^(19/22) 3178110001756366 a001 66978574/1970299*39603^(19/22) 3178110001756666 a001 102334155/3010349*39603^(19/22) 3178110001758719 a001 39088169/1149851*39603^(19/22) 3178110001772788 a001 196452/5779*39603^(19/22) 3178110001774644 a001 9227465/24476*24476^(2/3) 3178110001777140 a001 9227465/167761*39603^(9/11) 3178110001793457 a001 102334155/64079*39603^(1/2) 3178110001793966 a001 7778742049/103682*15127^(3/20) 3178110001805269 a001 5702887/271443*39603^(10/11) 3178110001842126 a001 14930352/710647*39603^(10/11) 3178110001847503 a001 39088169/1860498*39603^(10/11) 3178110001848288 a001 102334155/4870847*39603^(10/11) 3178110001848402 a001 267914296/12752043*39603^(10/11) 3178110001848419 a001 701408733/33385282*39603^(10/11) 3178110001848421 a001 1836311903/87403803*39603^(10/11) 3178110001848422 a001 102287808/4868641*39603^(10/11) 3178110001848422 a001 12586269025/599074578*39603^(10/11) 3178110001848422 a001 32951280099/1568397607*39603^(10/11) 3178110001848422 a001 86267571272/4106118243*39603^(10/11) 3178110001848422 a001 225851433717/10749957122*39603^(10/11) 3178110001848422 a001 591286729879/28143753123*39603^(10/11) 3178110001848422 a001 1548008755920/73681302247*39603^(10/11) 3178110001848422 a001 4052739537881/192900153618*39603^(10/11) 3178110001848422 a001 225749145909/10745088481*39603^(10/11) 3178110001848422 a001 6557470319842/312119004989*39603^(10/11) 3178110001848422 a001 2504730781961/119218851371*39603^(10/11) 3178110001848422 a001 956722026041/45537549124*39603^(10/11) 3178110001848422 a001 365435296162/17393796001*39603^(10/11) 3178110001848422 a001 139583862445/6643838879*39603^(10/11) 3178110001848422 a001 53316291173/2537720636*39603^(10/11) 3178110001848422 a001 20365011074/969323029*39603^(10/11) 3178110001848422 a001 7778742049/370248451*39603^(10/11) 3178110001848422 a001 2971215073/141422324*39603^(10/11) 3178110001848423 a001 1134903170/54018521*39603^(10/11) 3178110001848429 a001 433494437/20633239*39603^(10/11) 3178110001848473 a001 165580141/7881196*39603^(10/11) 3178110001848773 a001 63245986/3010349*39603^(10/11) 3178110001850826 a001 24157817/1149851*39603^(10/11) 3178110001864905 a001 9227465/439204*39603^(10/11) 3178110001869220 a001 5702887/167761*39603^(19/22) 3178110001885564 a001 63245986/64079*39603^(6/11) 3178110001897446 a001 3524578/271443*39603^(21/22) 3178110001922445 a001 514229/9349*9349^(18/19) 3178110001934243 a001 9227465/710647*39603^(21/22) 3178110001939611 a001 24157817/1860498*39603^(21/22) 3178110001940394 a001 63245986/4870847*39603^(21/22) 3178110001940509 a001 165580141/12752043*39603^(21/22) 3178110001940525 a001 433494437/33385282*39603^(21/22) 3178110001940528 a001 1134903170/87403803*39603^(21/22) 3178110001940528 a001 2971215073/228826127*39603^(21/22) 3178110001940528 a001 7778742049/599074578*39603^(21/22) 3178110001940528 a001 20365011074/1568397607*39603^(21/22) 3178110001940528 a001 53316291173/4106118243*39603^(21/22) 3178110001940528 a001 139583862445/10749957122*39603^(21/22) 3178110001940528 a001 365435296162/28143753123*39603^(21/22) 3178110001940528 a001 956722026041/73681302247*39603^(21/22) 3178110001940528 a001 2504730781961/192900153618*39603^(21/22) 3178110001940528 a001 10610209857723/817138163596*39603^(21/22) 3178110001940528 a001 4052739537881/312119004989*39603^(21/22) 3178110001940528 a001 1548008755920/119218851371*39603^(21/22) 3178110001940528 a001 591286729879/45537549124*39603^(21/22) 3178110001940528 a001 7787980473/599786069*39603^(21/22) 3178110001940528 a001 86267571272/6643838879*39603^(21/22) 3178110001940528 a001 32951280099/2537720636*39603^(21/22) 3178110001940528 a001 12586269025/969323029*39603^(21/22) 3178110001940528 a001 4807526976/370248451*39603^(21/22) 3178110001940528 a001 1836311903/141422324*39603^(21/22) 3178110001940529 a001 701408733/54018521*39603^(21/22) 3178110001940536 a001 9238424/711491*39603^(21/22) 3178110001940579 a001 102334155/7881196*39603^(21/22) 3178110001940878 a001 39088169/3010349*39603^(21/22) 3178110001942929 a001 14930352/1149851*39603^(21/22) 3178110001956984 a001 5702887/439204*39603^(21/22) 3178110001961397 a001 3524578/167761*39603^(10/11) 3178110001977670 a001 39088169/64079*39603^(13/22) 3178110001983361 a001 1134903170/15127*5778^(1/6) 3178110001989551 r009 Re(z^3+c),c=-29/50+30/59*I,n=41 3178110002027254 a001 3732588/6119*24476^(13/21) 3178110002032635 a001 2/17711*(1/2+1/2*5^(1/2))^50 3178110002046473 a001 20365011074/271443*15127^(3/20) 3178110002053318 a001 2178309/167761*39603^(21/22) 3178110002069778 a001 24157817/64079*39603^(7/11) 3178110002083313 a001 53316291173/710647*15127^(3/20) 3178110002088688 a001 139583862445/1860498*15127^(3/20) 3178110002089472 a001 365435296162/4870847*15127^(3/20) 3178110002089586 a001 956722026041/12752043*15127^(3/20) 3178110002089603 a001 2504730781961/33385282*15127^(3/20) 3178110002089605 a001 6557470319842/87403803*15127^(3/20) 3178110002089606 a001 10610209857723/141422324*15127^(3/20) 3178110002089607 a001 4052739537881/54018521*15127^(3/20) 3178110002089613 a001 140728068720/1875749*15127^(3/20) 3178110002089657 a001 591286729879/7881196*15127^(3/20) 3178110002089956 a001 225851433717/3010349*15127^(3/20) 3178110002092010 a001 86267571272/1149851*15127^(3/20) 3178110002106081 a001 32951280099/439204*15127^(3/20) 3178110002146577 a001 17711*15127^(3/10) 3178110002161880 a001 14930352/64079*39603^(15/22) 3178110002169162 a001 7778742049/64079*15127^(1/10) 3178110002202530 a001 75025*15127^(3/20) 3178110002253997 a001 9227465/64079*39603^(8/11) 3178110002258483 a001 5628750625/17711 3178110002279879 a001 24157817/24476*24476^(4/7) 3178110002346077 a001 5702887/64079*39603^(17/22) 3178110002438254 a001 3524578/64079*39603^(9/11) 3178110002488404 a001 46368*15127^(1/5) 3178110002530175 a001 2178309/64079*39603^(19/22) 3178110002532498 a001 39088169/24476*24476^(11/21) 3178110002622766 a001 1346269/64079*39603^(10/11) 3178110002713604 a001 832040/64079*39603^(21/22) 3178110002740910 a001 12586269025/271443*15127^(1/5) 3178110002777750 a001 32951280099/710647*15127^(1/5) 3178110002783125 a001 43133785636/930249*15127^(1/5) 3178110002783910 a001 225851433717/4870847*15127^(1/5) 3178110002784024 a001 591286729879/12752043*15127^(1/5) 3178110002784041 a001 774004377960/16692641*15127^(1/5) 3178110002784043 a001 4052739537881/87403803*15127^(1/5) 3178110002784043 a001 225749145909/4868641*15127^(1/5) 3178110002784044 a001 3278735159921/70711162*15127^(1/5) 3178110002784045 a001 2504730781961/54018521*15127^(1/5) 3178110002784051 a001 956722026041/20633239*15127^(1/5) 3178110002784095 a001 182717648081/3940598*15127^(1/5) 3178110002784394 a001 139583862445/3010349*15127^(1/5) 3178110002785119 a001 31622993/12238*24476^(10/21) 3178110002786447 a001 53316291173/1149851*15127^(1/5) 3178110002800519 a001 10182505537/219602*15127^(1/5) 3178110002823104 a001 5628750626/17711 3178110002841015 a001 433494437/39603*15127^(7/20) 3178110002863600 a001 4807526976/64079*15127^(3/20) 3178110002896968 a001 7778742049/167761*15127^(1/5) 3178110003037740 a001 102334155/24476*24476^(3/7) 3178110003182842 a001 2971215073/103682*15127^(1/4) 3178110003268558 a001 7778742049/39603*5778^(1/18) 3178110003284941 a001 17711/24476*7881196^(9/11) 3178110003284983 a001 17711/24476*141422324^(9/13) 3178110003284983 a001 10946/39603*(1/2+1/2*5^(1/2))^29 3178110003284983 a001 10946/39603*1322157322203^(1/2) 3178110003284983 a001 17711/24476*2537720636^(3/5) 3178110003284983 a001 17711/24476*45537549124^(9/17) 3178110003284983 a001 17711/24476*14662949395604^(3/7) 3178110003284983 a001 17711/24476*(1/2+1/2*5^(1/2))^27 3178110003284983 a001 17711/24476*192900153618^(1/2) 3178110003284983 a001 17711/24476*10749957122^(9/16) 3178110003284983 a001 17711/24476*599074578^(9/14) 3178110003284985 a001 17711/24476*33385282^(3/4) 3178110003285809 a001 17711/24476*1860498^(9/10) 3178110003290360 a001 165580141/24476*24476^(8/21) 3178110003397576 a001 1201881744/6119*9349^(1/19) 3178110003435348 a001 7778742049/271443*15127^(1/4) 3178110003472188 a001 20365011074/710647*15127^(1/4) 3178110003477563 a001 53316291173/1860498*15127^(1/4) 3178110003478347 a001 139583862445/4870847*15127^(1/4) 3178110003478462 a001 365435296162/12752043*15127^(1/4) 3178110003478478 a001 956722026041/33385282*15127^(1/4) 3178110003478481 a001 2504730781961/87403803*15127^(1/4) 3178110003478481 a001 6557470319842/228826127*15127^(1/4) 3178110003478481 a001 10610209857723/370248451*15127^(1/4) 3178110003478481 a001 4052739537881/141422324*15127^(1/4) 3178110003478482 a001 1548008755920/54018521*15127^(1/4) 3178110003478489 a001 591286729879/20633239*15127^(1/4) 3178110003478532 a001 225851433717/7881196*15127^(1/4) 3178110003478832 a001 86267571272/3010349*15127^(1/4) 3178110003480885 a001 32951280099/1149851*15127^(1/4) 3178110003494957 a001 12586269025/439204*15127^(1/4) 3178110003535452 a001 267914296/39603*15127^(2/5) 3178110003542981 a001 10946*24476^(1/3) 3178110003558037 a001 2971215073/64079*15127^(1/5) 3178110003591405 a001 4807526976/167761*15127^(1/4) 3178110003795601 a001 433494437/24476*24476^(2/7) 3178110003832873 a001 832040/9349*9349^(17/19) 3178110003877280 a001 1836311903/103682*15127^(3/10) 3178110004048222 a001 701408733/24476*24476^(5/21) 3178110004129786 a001 1602508992/90481*15127^(3/10) 3178110004166626 a001 12586269025/710647*15127^(3/10) 3178110004172001 a001 10983760033/620166*15127^(3/10) 3178110004172785 a001 86267571272/4870847*15127^(3/10) 3178110004172899 a001 75283811239/4250681*15127^(3/10) 3178110004172916 a001 591286729879/33385282*15127^(3/10) 3178110004172919 a001 516002918640/29134601*15127^(3/10) 3178110004172919 a001 4052739537881/228826127*15127^(3/10) 3178110004172919 a001 3536736619241/199691526*15127^(3/10) 3178110004172919 a001 6557470319842/370248451*15127^(3/10) 3178110004172919 a001 2504730781961/141422324*15127^(3/10) 3178110004172920 a001 956722026041/54018521*15127^(3/10) 3178110004172926 a001 365435296162/20633239*15127^(3/10) 3178110004172970 a001 139583862445/7881196*15127^(3/10) 3178110004173270 a001 53316291173/3010349*15127^(3/10) 3178110004175323 a001 20365011074/1149851*15127^(3/10) 3178110004189394 a001 7778742049/439204*15127^(3/10) 3178110004229890 a001 165580141/39603*15127^(9/20) 3178110004252475 a001 28657*15127^(1/4) 3178110004285843 a001 2971215073/167761*15127^(3/10) 3178110004300843 a001 567451585/12238*24476^(4/21) 3178110004536413 a001 9107509840/28657 3178110004553463 a001 1836311903/24476*24476^(1/7) 3178110004571717 a001 567451585/51841*15127^(7/20) 3178110004587458 a001 98209/12238*64079^(22/23) 3178110004598342 a001 10959/844*64079^(21/23) 3178110004640691 a001 514229/24476*64079^(20/23) 3178110004671021 a001 208010/6119*64079^(19/23) 3178110004705941 a001 1346269/24476*64079^(18/23) 3178110004739109 a001 2178309/24476*64079^(17/23) 3178110004772946 a001 1762289/12238*64079^(16/23) 3178110004806084 a001 2971215073/24476*24476^(2/21) 3178110004806527 a001 5702887/24476*64079^(15/23) 3178110004824224 a001 2971215073/271443*15127^(7/20) 3178110004840206 a001 9227465/24476*64079^(14/23) 3178110004861064 a001 7778742049/710647*15127^(7/20) 3178110004866439 a001 10182505537/930249*15127^(7/20) 3178110004867223 a001 53316291173/4870847*15127^(7/20) 3178110004867337 a001 139583862445/12752043*15127^(7/20) 3178110004867354 a001 182717648081/16692641*15127^(7/20) 3178110004867356 a001 956722026041/87403803*15127^(7/20) 3178110004867357 a001 2504730781961/228826127*15127^(7/20) 3178110004867357 a001 3278735159921/299537289*15127^(7/20) 3178110004867357 a001 10610209857723/969323029*15127^(7/20) 3178110004867357 a001 4052739537881/370248451*15127^(7/20) 3178110004867357 a001 387002188980/35355581*15127^(7/20) 3178110004867358 a001 591286729879/54018521*15127^(7/20) 3178110004867364 a001 7787980473/711491*15127^(7/20) 3178110004867408 a001 21566892818/1970299*15127^(7/20) 3178110004867707 a001 32951280099/3010349*15127^(7/20) 3178110004869760 a001 12586269025/1149851*15127^(7/20) 3178110004873847 a001 3732588/6119*64079^(13/23) 3178110004883832 a001 1201881744/109801*15127^(7/20) 3178110004907503 a001 24157817/24476*64079^(12/23) 3178110004924328 a001 34111385/13201*15127^(1/2) 3178110004941154 a001 39088169/24476*64079^(11/23) 3178110004946913 a001 1134903170/64079*15127^(3/10) 3178110004974806 a001 31622993/12238*64079^(10/23) 3178110004980281 a001 1836311903/167761*15127^(7/20) 3178110004999261 a001 10182505537/51841*5778^(1/18) 3178110005008458 a001 102334155/24476*64079^(9/23) 3178110005015680 a001 11592/6119*20633239^(5/7) 3178110005015686 a001 5473/51841*(1/2+1/2*5^(1/2))^31 3178110005015686 a001 5473/51841*9062201101803^(1/2) 3178110005015686 a001 11592/6119*2537720636^(5/9) 3178110005015686 a001 11592/6119*312119004989^(5/11) 3178110005015686 a001 11592/6119*(1/2+1/2*5^(1/2))^25 3178110005015686 a001 11592/6119*3461452808002^(5/12) 3178110005015686 a001 11592/6119*28143753123^(1/2) 3178110005015686 a001 11592/6119*228826127^(5/8) 3178110005016451 a001 11592/6119*1860498^(5/6) 3178110005042110 a001 165580141/24476*64079^(8/23) 3178110005058704 a001 1201881744/6119*24476^(1/21) 3178110005075762 a001 10946*64079^(7/23) 3178110005109413 a001 433494437/24476*64079^(6/23) 3178110005143065 a001 701408733/24476*64079^(5/23) 3178110005176717 a001 567451585/12238*64079^(4/23) 3178110005198267 a001 23843770314/75025 3178110005210369 a001 1836311903/24476*64079^(3/23) 3178110005223389 a001 514229/24476*167761^(4/5) 3178110005243551 a001 5702887/24476*167761^(3/5) 3178110005244021 a001 2971215073/24476*64079^(2/23) 3178110005251767 a001 53316291173/271443*5778^(1/18) 3178110005266155 a001 701408733/103682*15127^(2/5) 3178110005266155 a001 31622993/12238*167761^(2/5) 3178110005268192 a001 10946/271443*141422324^(11/13) 3178110005268192 a001 10946/271443*2537720636^(11/15) 3178110005268192 a001 10946/271443*45537549124^(11/17) 3178110005268192 a001 10946/271443*312119004989^(3/5) 3178110005268192 a001 10946/271443*817138163596^(11/19) 3178110005268192 a001 10946/271443*14662949395604^(11/21) 3178110005268192 a001 10946/271443*(1/2+1/2*5^(1/2))^33 3178110005268192 a001 10946/271443*192900153618^(11/18) 3178110005268192 a001 10946/271443*10749957122^(11/16) 3178110005268192 a001 10946/271443*1568397607^(3/4) 3178110005268192 a001 10946/271443*599074578^(11/14) 3178110005268192 a001 121393/24476*(1/2+1/2*5^(1/2))^23 3178110005268192 a001 121393/24476*4106118243^(1/2) 3178110005268194 a001 10946/271443*33385282^(11/12) 3178110005277673 a001 1201881744/6119*64079^(1/23) 3178110005288607 a001 139583862445/710647*5778^(1/18) 3178110005288740 a001 701408733/24476*167761^(1/5) 3178110005292218 a001 10959/844*439204^(7/9) 3178110005293982 a001 182717648081/930249*5778^(1/18) 3178110005294766 a001 956722026041/4870847*5778^(1/18) 3178110005294830 a001 31211900551/98209 3178110005294881 a001 2504730781961/12752043*5778^(1/18) 3178110005294898 a001 3278735159921/16692641*5778^(1/18) 3178110005294901 a001 10610209857723/54018521*5778^(1/18) 3178110005294908 a001 4052739537881/20633239*5778^(1/18) 3178110005294952 a001 387002188980/1970299*5778^(1/18) 3178110005295251 a001 591286729879/3010349*5778^(1/18) 3178110005297304 a001 225851433717/1149851*5778^(1/18) 3178110005300692 a001 1346269/24476*439204^(2/3) 3178110005302152 a001 5702887/24476*439204^(5/9) 3178110005304004 a001 24157817/24476*439204^(4/9) 3178110005304999 a001 10959/844*7881196^(7/11) 3178110005305027 a001 10959/844*20633239^(3/5) 3178110005305032 a001 10959/844*141422324^(7/13) 3178110005305032 a001 10946/710647*2537720636^(7/9) 3178110005305032 a001 10946/710647*17393796001^(5/7) 3178110005305032 a001 10946/710647*312119004989^(7/11) 3178110005305032 a001 10946/710647*14662949395604^(5/9) 3178110005305032 a001 10946/710647*(1/2+1/2*5^(1/2))^35 3178110005305032 a001 10946/710647*505019158607^(5/8) 3178110005305032 a001 10946/710647*28143753123^(7/10) 3178110005305032 a001 10946/710647*599074578^(5/6) 3178110005305032 a001 10959/844*2537720636^(7/15) 3178110005305032 a001 10959/844*17393796001^(3/7) 3178110005305032 a001 10959/844*45537549124^(7/17) 3178110005305032 a001 10959/844*14662949395604^(1/3) 3178110005305032 a001 10959/844*(1/2+1/2*5^(1/2))^21 3178110005305032 a001 10959/844*192900153618^(7/18) 3178110005305032 a001 10959/844*10749957122^(7/16) 3178110005305032 a001 10959/844*599074578^(1/2) 3178110005305032 a001 10946/710647*228826127^(7/8) 3178110005305033 a001 10959/844*33385282^(7/12) 3178110005305675 a001 10959/844*1860498^(7/10) 3178110005305833 a001 102334155/24476*439204^(1/3) 3178110005307664 a001 433494437/24476*439204^(2/9) 3178110005308918 a001 163427632992/514229 3178110005309494 a001 1836311903/24476*439204^(1/9) 3178110005309752 a001 10959/844*710647^(3/4) 3178110005310407 a001 5473/930249*(1/2+1/2*5^(1/2))^37 3178110005310407 a001 208010/6119*817138163596^(1/3) 3178110005310407 a001 208010/6119*(1/2+1/2*5^(1/2))^19 3178110005310407 a001 208010/6119*87403803^(1/2) 3178110005310974 a001 427859097874/1346269 3178110005311191 a001 10946/4870847*2537720636^(13/15) 3178110005311191 a001 10946/4870847*45537549124^(13/17) 3178110005311191 a001 10946/4870847*14662949395604^(13/21) 3178110005311191 a001 10946/4870847*(1/2+1/2*5^(1/2))^39 3178110005311191 a001 10946/4870847*192900153618^(13/18) 3178110005311191 a001 10946/4870847*73681302247^(3/4) 3178110005311191 a001 10946/4870847*10749957122^(13/16) 3178110005311191 a001 10946/4870847*599074578^(13/14) 3178110005311191 a001 2178309/24476*45537549124^(1/3) 3178110005311191 a001 2178309/24476*(1/2+1/2*5^(1/2))^17 3178110005311201 a001 2178309/24476*12752043^(1/2) 3178110005311274 a001 560074830315/1762289 3178110005311282 a001 5702887/24476*7881196^(5/11) 3178110005311302 a001 5702887/24476*20633239^(3/7) 3178110005311305 a001 5702887/24476*141422324^(5/13) 3178110005311305 a001 10946/12752043*(1/2+1/2*5^(1/2))^41 3178110005311305 a001 5702887/24476*2537720636^(1/3) 3178110005311305 a001 5702887/24476*45537549124^(5/17) 3178110005311305 a001 5702887/24476*312119004989^(3/11) 3178110005311305 a001 5702887/24476*14662949395604^(5/21) 3178110005311305 a001 5702887/24476*(1/2+1/2*5^(1/2))^15 3178110005311305 a001 5702887/24476*192900153618^(5/18) 3178110005311305 a001 5702887/24476*28143753123^(3/10) 3178110005311305 a001 5702887/24476*10749957122^(5/16) 3178110005311305 a001 5702887/24476*599074578^(5/14) 3178110005311305 a001 5702887/24476*228826127^(3/8) 3178110005311307 a001 5702887/24476*33385282^(5/12) 3178110005311307 a001 24157817/24476*7881196^(4/11) 3178110005311307 a001 39088169/24476*7881196^(1/3) 3178110005311311 a001 102334155/24476*7881196^(3/11) 3178110005311316 a001 433494437/24476*7881196^(2/11) 3178110005311317 a001 225583837232/709805 3178110005311320 a001 1836311903/24476*7881196^(1/11) 3178110005311322 a001 3732588/6119*141422324^(1/3) 3178110005311322 a001 5473/16692641*(1/2+1/2*5^(1/2))^43 3178110005311322 a001 3732588/6119*(1/2+1/2*5^(1/2))^13 3178110005311322 a001 3732588/6119*73681302247^(1/4) 3178110005311323 a001 31622993/12238*20633239^(2/7) 3178110005311323 a001 10946*20633239^(1/5) 3178110005311324 a001 7677619991418/24157817 3178110005311324 a001 701408733/24476*20633239^(1/7) 3178110005311324 a001 10946/87403803*45537549124^(15/17) 3178110005311324 a001 10946/87403803*312119004989^(9/11) 3178110005311324 a001 10946/87403803*14662949395604^(5/7) 3178110005311324 a001 10946/87403803*192900153618^(5/6) 3178110005311324 a001 10946/87403803*28143753123^(9/10) 3178110005311324 a001 10946/87403803*10749957122^(15/16) 3178110005311324 a001 39088169/24476*312119004989^(1/5) 3178110005311324 a001 39088169/24476*(1/2+1/2*5^(1/2))^11 3178110005311324 a001 39088169/24476*1568397607^(1/4) 3178110005311325 a001 10050135045119/31622993 3178110005311325 a001 102334155/24476*141422324^(3/13) 3178110005311325 a001 102334155/24476*2537720636^(1/5) 3178110005311325 a001 102334155/24476*45537549124^(3/17) 3178110005311325 a001 102334155/24476*817138163596^(3/19) 3178110005311325 a001 102334155/24476*14662949395604^(1/7) 3178110005311325 a001 102334155/24476*(1/2+1/2*5^(1/2))^9 3178110005311325 a001 102334155/24476*192900153618^(1/6) 3178110005311325 a001 102334155/24476*10749957122^(3/16) 3178110005311325 a001 102334155/24476*599074578^(3/14) 3178110005311325 a001 52623190279296/165580141 3178110005311325 a001 433494437/24476*141422324^(2/13) 3178110005311325 a001 5473/299537289*14662949395604^(7/9) 3178110005311325 a001 5473/299537289*505019158607^(7/8) 3178110005311325 a001 1836311903/24476*141422324^(1/13) 3178110005311325 a001 137769300747650/433494437 3178110005311325 a001 10946/1568397607*817138163596^(17/19) 3178110005311325 a001 10946/1568397607*14662949395604^(17/21) 3178110005311325 a001 10946/1568397607*192900153618^(17/18) 3178110005311325 a001 180342355981827/567451585 3178110005311325 a001 944284835143312/2971215073 3178110005311325 a001 5473/5374978561*3461452808002^(11/12) 3178110005311325 a001 190166907189714/598364773 3178110005311325 a001 10946/28143753123*14662949395604^(19/21) 3178110005311325 a001 3236112272627767/10182505537 3178110005311325 a001 10946*17393796001^(1/7) 3178110005311325 a001 16944503842300320/53316291173 3178110005311325 a001 44361286981645426/139583862445 3178110005311325 a001 10946*14662949395604^(1/9) 3178110005311325 a001 5521390009306964/17373187209 3178110005311325 a001 13708391569672553/43133785636 3178110005311325 a001 10946/119218851371*14662949395604^(20/21) 3178110005311325 a001 10472279297044786/32951280099 3178110005311325 a001 4000054751789252/12586269025 3178110005311325 a001 10946/17393796001*14662949395604^(8/9) 3178110005311325 a001 763942479161485/2403763488 3178110005311325 a001 10946/6643838879*14662949395604^(6/7) 3178110005311325 a001 583600123179658/1836311903 3178110005311325 a001 5473/1268860318*23725150497407^(13/16) 3178110005311325 a001 5473/1268860318*505019158607^(13/14) 3178110005311325 a001 222915411216004/701408733 3178110005311325 a001 10946*599074578^(1/6) 3178110005311325 a001 10946/969323029*312119004989^(10/11) 3178110005311325 a001 10946/969323029*3461452808002^(5/6) 3178110005311325 a001 701408733/24476*2537720636^(1/9) 3178110005311325 a001 701408733/24476*312119004989^(1/11) 3178110005311325 a001 701408733/24476*(1/2+1/2*5^(1/2))^5 3178110005311325 a001 701408733/24476*28143753123^(1/10) 3178110005311325 a001 1836311903/24476*2537720636^(1/15) 3178110005311325 a001 1836311903/24476*45537549124^(1/17) 3178110005311325 a001 1836311903/24476*14662949395604^(1/21) 3178110005311325 a001 1836311903/24476*(1/2+1/2*5^(1/2))^3 3178110005311325 a001 1836311903/24476*192900153618^(1/18) 3178110005311325 a001 1836311903/24476*10749957122^(1/16) 3178110005311325 a001 600940872/6119+600940872/6119*5^(1/2) 3178110005311325 a001 7778742049/24476 3178110005311325 a001 2971215073/24476*(1/2+1/2*5^(1/2))^2 3178110005311325 a001 2971215073/24476*10749957122^(1/24) 3178110005311325 a001 2971215073/24476*4106118243^(1/23) 3178110005311325 a001 2971215073/24476*1568397607^(1/22) 3178110005311325 a001 1836311903/24476*599074578^(1/14) 3178110005311325 a001 567451585/12238*(1/2+1/2*5^(1/2))^4 3178110005311325 a001 567451585/12238*23725150497407^(1/16) 3178110005311325 a001 567451585/12238*73681302247^(1/13) 3178110005311325 a001 2971215073/24476*599074578^(1/21) 3178110005311325 a001 567451585/12238*10749957122^(1/12) 3178110005311325 a001 567451585/12238*4106118243^(2/23) 3178110005311325 a001 567451585/12238*1568397607^(1/11) 3178110005311325 a001 567451585/12238*599074578^(2/21) 3178110005311325 a001 2971215073/24476*228826127^(1/20) 3178110005311325 a001 433494437/24476*2537720636^(2/15) 3178110005311325 a001 433494437/24476*45537549124^(2/17) 3178110005311325 a001 433494437/24476*14662949395604^(2/21) 3178110005311325 a001 433494437/24476*(1/2+1/2*5^(1/2))^6 3178110005311325 a001 433494437/24476*10749957122^(1/8) 3178110005311325 a001 433494437/24476*4106118243^(3/23) 3178110005311325 a001 433494437/24476*1568397607^(3/22) 3178110005311325 a001 433494437/24476*599074578^(1/7) 3178110005311325 a001 701408733/24476*228826127^(1/8) 3178110005311325 a001 567451585/12238*228826127^(1/10) 3178110005311325 a001 433494437/24476*228826127^(3/20) 3178110005311325 a001 10946/370248451*45537549124^(16/17) 3178110005311325 a001 10946/370248451*14662949395604^(16/21) 3178110005311325 a001 10946/370248451*192900153618^(8/9) 3178110005311325 a001 10946/370248451*73681302247^(12/13) 3178110005311325 a001 2971215073/24476*87403803^(1/19) 3178110005311325 a001 165580141/24476*(1/2+1/2*5^(1/2))^8 3178110005311325 a001 165580141/24476*23725150497407^(1/8) 3178110005311325 a001 165580141/24476*505019158607^(1/7) 3178110005311325 a001 165580141/24476*73681302247^(2/13) 3178110005311325 a001 165580141/24476*10749957122^(1/6) 3178110005311325 a001 165580141/24476*4106118243^(4/23) 3178110005311325 a001 165580141/24476*1568397607^(2/11) 3178110005311325 a001 165580141/24476*599074578^(4/21) 3178110005311325 a001 165580141/24476*228826127^(1/5) 3178110005311325 a001 567451585/12238*87403803^(2/19) 3178110005311325 a001 32522920189058/102334155 3178110005311325 a001 433494437/24476*87403803^(3/19) 3178110005311325 a001 165580141/24476*87403803^(4/19) 3178110005311325 a001 5473/70711162*10749957122^(23/24) 3178110005311325 a001 2971215073/24476*33385282^(1/18) 3178110005311325 a001 31622993/12238*2537720636^(2/9) 3178110005311325 a001 31622993/12238*312119004989^(2/11) 3178110005311325 a001 31622993/12238*(1/2+1/2*5^(1/2))^10 3178110005311325 a001 31622993/12238*28143753123^(1/5) 3178110005311325 a001 31622993/12238*10749957122^(5/24) 3178110005311325 a001 31622993/12238*4106118243^(5/23) 3178110005311325 a001 31622993/12238*1568397607^(5/22) 3178110005311325 a001 31622993/12238*599074578^(5/21) 3178110005311325 a001 31622993/12238*228826127^(1/4) 3178110005311325 a001 1836311903/24476*33385282^(1/12) 3178110005311325 a001 31622993/12238*87403803^(5/19) 3178110005311325 a001 567451585/12238*33385282^(1/9) 3178110005311325 a001 12422650098820/39088169 3178110005311325 a001 433494437/24476*33385282^(1/6) 3178110005311326 a001 102334155/24476*33385282^(1/4) 3178110005311326 a001 165580141/24476*33385282^(2/9) 3178110005311326 a001 31622993/12238*33385282^(5/18) 3178110005311326 a001 24157817/24476*141422324^(4/13) 3178110005311326 a001 10946/54018521*312119004989^(4/5) 3178110005311326 a001 10946/54018521*23725150497407^(11/16) 3178110005311326 a001 10946/54018521*73681302247^(11/13) 3178110005311326 a001 10946/54018521*10749957122^(11/12) 3178110005311326 a001 10946/54018521*4106118243^(22/23) 3178110005311326 a001 24157817/24476*2537720636^(4/15) 3178110005311326 a001 24157817/24476*45537549124^(4/17) 3178110005311326 a001 24157817/24476*817138163596^(4/19) 3178110005311326 a001 24157817/24476*14662949395604^(4/21) 3178110005311326 a001 24157817/24476*(1/2+1/2*5^(1/2))^12 3178110005311326 a001 24157817/24476*192900153618^(2/9) 3178110005311326 a001 24157817/24476*73681302247^(3/13) 3178110005311326 a001 24157817/24476*10749957122^(1/4) 3178110005311326 a001 24157817/24476*4106118243^(6/23) 3178110005311326 a001 24157817/24476*1568397607^(3/11) 3178110005311326 a001 24157817/24476*599074578^(2/7) 3178110005311326 a001 24157817/24476*228826127^(3/10) 3178110005311326 a001 2971215073/24476*12752043^(1/17) 3178110005311326 a001 24157817/24476*87403803^(6/19) 3178110005311327 a001 24157817/24476*33385282^(1/3) 3178110005311327 a001 567451585/12238*12752043^(2/17) 3178110005311328 a001 2372515053701/7465176 3178110005311328 a001 433494437/24476*12752043^(3/17) 3178110005311329 a001 9227465/24476*20633239^(2/5) 3178110005311330 a001 165580141/24476*12752043^(4/17) 3178110005311331 a001 31622993/12238*12752043^(5/17) 3178110005311332 a001 10946/20633239*2537720636^(14/15) 3178110005311332 a001 10946/20633239*17393796001^(6/7) 3178110005311332 a001 10946/20633239*45537549124^(14/17) 3178110005311332 a001 10946/20633239*817138163596^(14/19) 3178110005311332 a001 10946/20633239*14662949395604^(2/3) 3178110005311332 a001 10946/20633239*(1/2+1/2*5^(1/2))^42 3178110005311332 a001 10946/20633239*505019158607^(3/4) 3178110005311332 a001 10946/20633239*192900153618^(7/9) 3178110005311332 a001 10946/20633239*10749957122^(7/8) 3178110005311332 a001 10946/20633239*4106118243^(21/23) 3178110005311332 a001 10946/20633239*1568397607^(21/22) 3178110005311332 a001 9227465/24476*17393796001^(2/7) 3178110005311332 a001 9227465/24476*14662949395604^(2/9) 3178110005311332 a001 9227465/24476*(1/2+1/2*5^(1/2))^14 3178110005311332 a001 9227465/24476*505019158607^(1/4) 3178110005311332 a001 9227465/24476*10749957122^(7/24) 3178110005311332 a001 9227465/24476*4106118243^(7/23) 3178110005311332 a001 9227465/24476*1568397607^(7/22) 3178110005311332 a001 9227465/24476*599074578^(1/3) 3178110005311332 a001 9227465/24476*228826127^(7/20) 3178110005311332 a001 9227465/24476*87403803^(7/19) 3178110005311333 a001 24157817/24476*12752043^(6/17) 3178110005311333 a001 2971215073/24476*4870847^(1/16) 3178110005311333 a001 9227465/24476*33385282^(7/18) 3178110005311340 a001 9227465/24476*12752043^(7/17) 3178110005311342 a001 567451585/12238*4870847^(1/8) 3178110005311344 a001 1812440223386/5702887 3178110005311350 a001 433494437/24476*4870847^(3/16) 3178110005311358 a001 165580141/24476*4870847^(1/4) 3178110005311367 a001 31622993/12238*4870847^(5/16) 3178110005311376 a001 196418*5778^(1/18) 3178110005311376 a001 5473/3940598*2537720636^(8/9) 3178110005311376 a001 5473/3940598*312119004989^(8/11) 3178110005311376 a001 5473/3940598*(1/2+1/2*5^(1/2))^40 3178110005311376 a001 5473/3940598*23725150497407^(5/8) 3178110005311376 a001 5473/3940598*73681302247^(10/13) 3178110005311376 a001 5473/3940598*28143753123^(4/5) 3178110005311376 a001 5473/3940598*10749957122^(5/6) 3178110005311376 a001 5473/3940598*4106118243^(20/23) 3178110005311376 a001 5473/3940598*1568397607^(10/11) 3178110005311376 a001 5473/3940598*599074578^(20/21) 3178110005311376 a001 1762289/12238*(1/2+1/2*5^(1/2))^16 3178110005311376 a001 1762289/12238*23725150497407^(1/4) 3178110005311376 a001 1762289/12238*73681302247^(4/13) 3178110005311376 a001 1762289/12238*10749957122^(1/3) 3178110005311376 a001 1762289/12238*4106118243^(8/23) 3178110005311376 a001 1762289/12238*1568397607^(4/11) 3178110005311376 a001 1762289/12238*599074578^(8/21) 3178110005311376 a001 1762289/12238*228826127^(2/5) 3178110005311376 a001 24157817/24476*4870847^(3/8) 3178110005311376 a001 1762289/12238*87403803^(8/19) 3178110005311377 a001 1762289/12238*33385282^(4/9) 3178110005311385 a001 1762289/12238*12752043^(8/17) 3178110005311386 a001 2971215073/24476*1860498^(1/15) 3178110005311391 a001 9227465/24476*4870847^(7/16) 3178110005311417 a001 1836311903/24476*1860498^(1/10) 3178110005311443 a001 1762289/12238*4870847^(1/2) 3178110005311447 a001 567451585/12238*1860498^(2/15) 3178110005311459 a001 692290562756/2178309 3178110005311478 a001 701408733/24476*1860498^(1/6) 3178110005311509 a001 433494437/24476*1860498^(1/5) 3178110005311570 a001 165580141/24476*1860498^(4/15) 3178110005311600 a001 102334155/24476*1860498^(3/10) 3178110005311631 a001 31622993/12238*1860498^(1/3) 3178110005311648 a001 1346269/24476*7881196^(6/11) 3178110005311676 a001 1346269/24476*141422324^(6/13) 3178110005311676 a001 10946/3010349*817138163596^(2/3) 3178110005311676 a001 10946/3010349*(1/2+1/2*5^(1/2))^38 3178110005311676 a001 10946/3010349*10749957122^(19/24) 3178110005311676 a001 10946/3010349*4106118243^(19/23) 3178110005311676 a001 10946/3010349*1568397607^(19/22) 3178110005311676 a001 10946/3010349*599074578^(19/21) 3178110005311676 a001 1346269/24476*2537720636^(2/5) 3178110005311676 a001 1346269/24476*45537549124^(6/17) 3178110005311676 a001 1346269/24476*14662949395604^(2/7) 3178110005311676 a001 1346269/24476*(1/2+1/2*5^(1/2))^18 3178110005311676 a001 1346269/24476*192900153618^(1/3) 3178110005311676 a001 1346269/24476*10749957122^(3/8) 3178110005311676 a001 1346269/24476*4106118243^(9/23) 3178110005311676 a001 1346269/24476*1568397607^(9/22) 3178110005311676 a001 1346269/24476*599074578^(3/7) 3178110005311676 a001 1346269/24476*228826127^(9/20) 3178110005311676 a001 10946/3010349*228826127^(19/20) 3178110005311676 a001 1346269/24476*87403803^(9/19) 3178110005311677 a001 1346269/24476*33385282^(1/2) 3178110005311686 a001 1346269/24476*12752043^(9/17) 3178110005311693 a001 24157817/24476*1860498^(2/5) 3178110005311751 a001 1346269/24476*4870847^(9/16) 3178110005311761 a001 9227465/24476*1860498^(7/15) 3178110005311764 a001 5702887/24476*1860498^(1/2) 3178110005311774 a001 2971215073/24476*710647^(1/14) 3178110005311866 a001 1762289/12238*1860498^(8/15) 3178110005312224 a001 567451585/12238*710647^(1/7) 3178110005312226 a001 1346269/24476*1860498^(3/5) 3178110005312244 a001 132215732441/416020 3178110005312673 a001 433494437/24476*710647^(3/14) 3178110005312898 a001 10946*710647^(1/4) 3178110005313123 a001 165580141/24476*710647^(2/7) 3178110005313573 a001 31622993/12238*710647^(5/14) 3178110005313724 a001 514229/24476*20633239^(4/7) 3178110005313728 a001 10946/1149851*141422324^(12/13) 3178110005313729 a001 10946/1149851*2537720636^(4/5) 3178110005313729 a001 10946/1149851*45537549124^(12/17) 3178110005313729 a001 10946/1149851*14662949395604^(4/7) 3178110005313729 a001 10946/1149851*(1/2+1/2*5^(1/2))^36 3178110005313729 a001 10946/1149851*505019158607^(9/14) 3178110005313729 a001 10946/1149851*192900153618^(2/3) 3178110005313729 a001 10946/1149851*73681302247^(9/13) 3178110005313729 a001 10946/1149851*10749957122^(3/4) 3178110005313729 a001 10946/1149851*4106118243^(18/23) 3178110005313729 a001 10946/1149851*1568397607^(9/11) 3178110005313729 a001 10946/1149851*599074578^(6/7) 3178110005313729 a001 514229/24476*2537720636^(4/9) 3178110005313729 a001 514229/24476*(1/2+1/2*5^(1/2))^20 3178110005313729 a001 514229/24476*23725150497407^(5/16) 3178110005313729 a001 514229/24476*505019158607^(5/14) 3178110005313729 a001 514229/24476*73681302247^(5/13) 3178110005313729 a001 514229/24476*28143753123^(2/5) 3178110005313729 a001 514229/24476*10749957122^(5/12) 3178110005313729 a001 514229/24476*4106118243^(10/23) 3178110005313729 a001 514229/24476*1568397607^(5/11) 3178110005313729 a001 514229/24476*599074578^(10/21) 3178110005313729 a001 514229/24476*228826127^(1/2) 3178110005313729 a001 10946/1149851*228826127^(9/10) 3178110005313729 a001 514229/24476*87403803^(10/19) 3178110005313729 a001 10946/1149851*87403803^(18/19) 3178110005313730 a001 514229/24476*33385282^(5/9) 3178110005313740 a001 514229/24476*12752043^(10/17) 3178110005313812 a001 514229/24476*4870847^(5/8) 3178110005314023 a001 24157817/24476*710647^(3/7) 3178110005314341 a001 514229/24476*1860498^(2/3) 3178110005314479 a001 9227465/24476*710647^(1/2) 3178110005314643 a001 2971215073/24476*271443^(1/13) 3178110005314972 a001 1762289/12238*710647^(4/7) 3178110005315721 a001 1346269/24476*710647^(9/14) 3178110005317625 a001 7769525530/24447 3178110005317961 a001 567451585/12238*271443^(2/13) 3178110005318224 a001 514229/24476*710647^(5/7) 3178110005321279 a001 433494437/24476*271443^(3/13) 3178110005323643 a001 1201881744/6119*103682^(1/24) 3178110005324597 a001 165580141/24476*271443^(4/13) 3178110005327766 a001 98209/12238*7881196^(2/3) 3178110005327800 a001 5473/219602*45537549124^(2/3) 3178110005327800 a001 5473/219602*(1/2+1/2*5^(1/2))^34 3178110005327800 a001 5473/219602*10749957122^(17/24) 3178110005327800 a001 5473/219602*4106118243^(17/23) 3178110005327800 a001 5473/219602*1568397607^(17/22) 3178110005327800 a001 5473/219602*599074578^(17/21) 3178110005327800 a001 98209/12238*312119004989^(2/5) 3178110005327800 a001 98209/12238*(1/2+1/2*5^(1/2))^22 3178110005327800 a001 98209/12238*10749957122^(11/24) 3178110005327800 a001 98209/12238*4106118243^(11/23) 3178110005327800 a001 98209/12238*1568397607^(1/2) 3178110005327800 a001 98209/12238*599074578^(11/21) 3178110005327800 a001 98209/12238*228826127^(11/20) 3178110005327800 a001 5473/219602*228826127^(17/20) 3178110005327801 a001 98209/12238*87403803^(11/19) 3178110005327801 a001 5473/219602*87403803^(17/19) 3178110005327802 a001 98209/12238*33385282^(11/18) 3178110005327803 a001 5473/219602*33385282^(17/18) 3178110005327813 a001 98209/12238*12752043^(11/17) 3178110005327892 a001 98209/12238*4870847^(11/16) 3178110005327915 a001 31622993/12238*271443^(5/13) 3178110005328474 a001 98209/12238*1860498^(11/15) 3178110005331234 a001 24157817/24476*271443^(6/13) 3178110005332745 a001 98209/12238*710647^(11/14) 3178110005332889 a001 3732588/6119*271443^(1/2) 3178110005334558 a001 9227465/24476*271443^(7/13) 3178110005335961 a001 2971215073/24476*103682^(1/12) 3178110005337920 a001 1762289/12238*271443^(8/13) 3178110005341537 a001 1346269/24476*271443^(9/13) 3178110005346908 a001 514229/24476*271443^(10/13) 3178110005348280 a001 1836311903/24476*103682^(1/8) 3178110005354509 a001 38580030788/121393 3178110005360598 a001 567451585/12238*103682^(1/6) 3178110005364298 a001 98209/12238*271443^(11/13) 3178110005372916 a001 701408733/24476*103682^(5/24) 3178110005385235 a001 433494437/24476*103682^(1/4) 3178110005397553 a001 10946*103682^(7/24) 3178110005403431 a001 1201881744/6119*39603^(1/22) 3178110005407825 a001 32951280099/167761*5778^(1/18) 3178110005409604 a001 75025/24476*439204^(8/9) 3178110005409871 a001 165580141/24476*103682^(1/3) 3178110005422190 a001 102334155/24476*103682^(3/8) 3178110005424212 a001 75025/24476*7881196^(8/11) 3178110005424249 a001 75025/24476*141422324^(8/13) 3178110005424249 a001 10946/167761*(1/2+1/2*5^(1/2))^32 3178110005424249 a001 10946/167761*23725150497407^(1/2) 3178110005424249 a001 10946/167761*505019158607^(4/7) 3178110005424249 a001 10946/167761*73681302247^(8/13) 3178110005424249 a001 10946/167761*10749957122^(2/3) 3178110005424249 a001 10946/167761*4106118243^(16/23) 3178110005424249 a001 10946/167761*1568397607^(8/11) 3178110005424249 a001 10946/167761*599074578^(16/21) 3178110005424249 a001 75025/24476*2537720636^(8/15) 3178110005424249 a001 75025/24476*45537549124^(8/17) 3178110005424249 a001 75025/24476*14662949395604^(8/21) 3178110005424249 a001 75025/24476*(1/2+1/2*5^(1/2))^24 3178110005424249 a001 75025/24476*192900153618^(4/9) 3178110005424249 a001 75025/24476*73681302247^(6/13) 3178110005424249 a001 75025/24476*10749957122^(1/2) 3178110005424249 a001 75025/24476*4106118243^(12/23) 3178110005424249 a001 75025/24476*1568397607^(6/11) 3178110005424249 a001 75025/24476*599074578^(4/7) 3178110005424249 a001 75025/24476*228826127^(3/5) 3178110005424249 a001 10946/167761*228826127^(4/5) 3178110005424249 a001 75025/24476*87403803^(12/19) 3178110005424249 a001 10946/167761*87403803^(16/19) 3178110005424251 a001 75025/24476*33385282^(2/3) 3178110005424252 a001 10946/167761*33385282^(8/9) 3178110005424263 a001 75025/24476*12752043^(12/17) 3178110005424267 a001 10946/167761*12752043^(16/17) 3178110005424350 a001 75025/24476*4870847^(3/4) 3178110005424984 a001 75025/24476*1860498^(4/5) 3178110005429643 a001 75025/24476*710647^(6/7) 3178110005434508 a001 31622993/12238*103682^(5/12) 3178110005446826 a001 39088169/24476*103682^(11/24) 3178110005459146 a001 24157817/24476*103682^(1/2) 3178110005464064 a001 75025/24476*271443^(12/13) 3178110005471460 a001 3732588/6119*103682^(13/24) 3178110005483789 a001 9227465/24476*103682^(7/12) 3178110005495538 a001 2971215073/24476*39603^(1/11) 3178110005496080 a001 5702887/24476*103682^(5/8) 3178110005508469 a001 1762289/12238*103682^(2/3) 3178110005518661 a001 1836311903/271443*15127^(2/5) 3178110005520602 a001 2178309/24476*103682^(17/24) 3178110005533405 a001 1346269/24476*103682^(3/4) 3178110005544455 a001 208010/6119*103682^(19/24) 3178110005551513 a001 121393/24476*103682^(23/24) 3178110005555501 a001 686789568/101521*15127^(2/5) 3178110005560095 a001 514229/24476*103682^(5/6) 3178110005560876 a001 12586269025/1860498*15127^(2/5) 3178110005561661 a001 32951280099/4870847*15127^(2/5) 3178110005561775 a001 86267571272/12752043*15127^(2/5) 3178110005561792 a001 32264490531/4769326*15127^(2/5) 3178110005561794 a001 591286729879/87403803*15127^(2/5) 3178110005561794 a001 1548008755920/228826127*15127^(2/5) 3178110005561795 a001 4052739537881/599074578*15127^(2/5) 3178110005561795 a001 1515744265389/224056801*15127^(2/5) 3178110005561795 a001 6557470319842/969323029*15127^(2/5) 3178110005561795 a001 2504730781961/370248451*15127^(2/5) 3178110005561795 a001 956722026041/141422324*15127^(2/5) 3178110005561796 a001 365435296162/54018521*15127^(2/5) 3178110005561802 a001 139583862445/20633239*15127^(2/5) 3178110005561846 a001 53316291173/7881196*15127^(2/5) 3178110005562145 a001 20365011074/3010349*15127^(2/5) 3178110005563716 a001 10959/844*103682^(7/8) 3178110005564198 a001 7778742049/1149851*15127^(2/5) 3178110005578270 a001 2971215073/439204*15127^(2/5) 3178110005587644 a001 1836311903/24476*39603^(3/22) 3178110005598803 a001 98209/12238*103682^(11/12) 3178110005607315 a001 7368130237/23184 3178110005618766 a001 63245986/39603*15127^(11/20) 3178110005641351 a001 701408733/64079*15127^(7/20) 3178110005674719 a001 1134903170/167761*15127^(2/5) 3178110005679751 a001 567451585/12238*39603^(2/11) 3178110005747891 a001 1346269/9349*9349^(16/19) 3178110005771857 a001 701408733/24476*39603^(5/22) 3178110005863964 a001 433494437/24476*39603^(3/11) 3178110005956070 a001 10946*39603^(7/22) 3178110005960593 a001 433494437/103682*15127^(9/20) 3178110006005763 a001 1201881744/6119*15127^(1/20) 3178110006048177 a001 165580141/24476*39603^(4/11) 3178110006068894 a001 12586269025/64079*5778^(1/18) 3178110006085272 a001 10946/64079*7881196^(10/11) 3178110006085312 a001 10946/64079*20633239^(6/7) 3178110006085319 a001 10946/64079*141422324^(10/13) 3178110006085319 a001 28657/24476*141422324^(2/3) 3178110006085319 a001 10946/64079*2537720636^(2/3) 3178110006085319 a001 10946/64079*45537549124^(10/17) 3178110006085319 a001 10946/64079*312119004989^(6/11) 3178110006085319 a001 10946/64079*14662949395604^(10/21) 3178110006085319 a001 10946/64079*(1/2+1/2*5^(1/2))^30 3178110006085319 a001 10946/64079*192900153618^(5/9) 3178110006085319 a001 10946/64079*28143753123^(3/5) 3178110006085319 a001 10946/64079*10749957122^(5/8) 3178110006085319 a001 10946/64079*4106118243^(15/23) 3178110006085319 a001 10946/64079*1568397607^(15/22) 3178110006085319 a001 10946/64079*599074578^(5/7) 3178110006085319 a001 28657/24476*(1/2+1/2*5^(1/2))^26 3178110006085319 a001 28657/24476*73681302247^(1/2) 3178110006085319 a001 28657/24476*10749957122^(13/24) 3178110006085319 a001 28657/24476*4106118243^(13/23) 3178110006085319 a001 28657/24476*1568397607^(13/22) 3178110006085319 a001 28657/24476*599074578^(13/21) 3178110006085319 a001 10946/64079*228826127^(3/4) 3178110006085319 a001 28657/24476*228826127^(13/20) 3178110006085319 a001 28657/24476*87403803^(13/19) 3178110006085319 a001 10946/64079*87403803^(15/19) 3178110006085321 a001 28657/24476*33385282^(13/18) 3178110006085321 a001 10946/64079*33385282^(5/6) 3178110006085334 a001 28657/24476*12752043^(13/17) 3178110006085336 a001 10946/64079*12752043^(15/17) 3178110006085428 a001 28657/24476*4870847^(13/16) 3178110006085444 a001 10946/64079*4870847^(15/16) 3178110006086114 a001 28657/24476*1860498^(13/15) 3178110006091162 a001 28657/24476*710647^(13/14) 3178110006140283 a001 102334155/24476*39603^(9/22) 3178110006213099 a001 1134903170/271443*15127^(9/20) 3178110006232390 a001 31622993/12238*39603^(5/11) 3178110006249939 a001 2971215073/710647*15127^(9/20) 3178110006255314 a001 7778742049/1860498*15127^(9/20) 3178110006256098 a001 20365011074/4870847*15127^(9/20) 3178110006256213 a001 53316291173/12752043*15127^(9/20) 3178110006256229 a001 139583862445/33385282*15127^(9/20) 3178110006256232 a001 365435296162/87403803*15127^(9/20) 3178110006256232 a001 956722026041/228826127*15127^(9/20) 3178110006256232 a001 2504730781961/599074578*15127^(9/20) 3178110006256232 a001 6557470319842/1568397607*15127^(9/20) 3178110006256232 a001 10610209857723/2537720636*15127^(9/20) 3178110006256232 a001 4052739537881/969323029*15127^(9/20) 3178110006256232 a001 1548008755920/370248451*15127^(9/20) 3178110006256232 a001 591286729879/141422324*15127^(9/20) 3178110006256233 a001 225851433717/54018521*15127^(9/20) 3178110006256240 a001 86267571272/20633239*15127^(9/20) 3178110006256283 a001 32951280099/7881196*15127^(9/20) 3178110006256583 a001 12586269025/3010349*15127^(9/20) 3178110006258636 a001 4807526976/1149851*15127^(9/20) 3178110006272708 a001 1836311903/439204*15127^(9/20) 3178110006313203 a001 39088169/39603*15127^(3/5) 3178110006324495 a001 39088169/24476*39603^(1/2) 3178110006335788 a001 433494437/64079*15127^(2/5) 3178110006369156 a001 701408733/167761*15127^(9/20) 3178110006416603 a001 24157817/24476*39603^(6/11) 3178110006508706 a001 3732588/6119*39603^(13/22) 3178110006600823 a001 9227465/24476*39603^(7/11) 3178110006655031 a001 133957148/51841*15127^(1/2) 3178110006692902 a001 5702887/24476*39603^(15/22) 3178110006700200 a001 2971215073/24476*15127^(1/10) 3178110006785079 a001 1762289/12238*39603^(8/11) 3178110006877001 a001 2178309/24476*39603^(17/22) 3178110006907537 a001 233802911/90481*15127^(1/2) 3178110006944377 a001 1836311903/710647*15127^(1/2) 3178110006949752 a001 267084832/103361*15127^(1/2) 3178110006950536 a001 12586269025/4870847*15127^(1/2) 3178110006950650 a001 10983760033/4250681*15127^(1/2) 3178110006950667 a001 43133785636/16692641*15127^(1/2) 3178110006950670 a001 75283811239/29134601*15127^(1/2) 3178110006950670 a001 591286729879/228826127*15127^(1/2) 3178110006950670 a001 86000486440/33281921*15127^(1/2) 3178110006950670 a001 4052739537881/1568397607*15127^(1/2) 3178110006950670 a001 3536736619241/1368706081*15127^(1/2) 3178110006950670 a001 3278735159921/1268860318*15127^(1/2) 3178110006950670 a001 2504730781961/969323029*15127^(1/2) 3178110006950670 a001 956722026041/370248451*15127^(1/2) 3178110006950670 a001 182717648081/70711162*15127^(1/2) 3178110006950671 a001 139583862445/54018521*15127^(1/2) 3178110006950677 a001 53316291173/20633239*15127^(1/2) 3178110006950721 a001 10182505537/3940598*15127^(1/2) 3178110006951021 a001 7778742049/3010349*15127^(1/2) 3178110006953074 a001 2971215073/1149851*15127^(1/2) 3178110006967145 a001 567451585/219602*15127^(1/2) 3178110006969592 a001 1346269/24476*39603^(9/11) 3178110007007642 a001 24157817/39603*15127^(13/20) 3178110007030226 a001 267914296/64079*15127^(9/20) 3178110007047101 a001 1134903170/9349*3571^(2/17) 3178110007060429 a001 208010/6119*39603^(19/22) 3178110007063594 a001 433494437/167761*15127^(1/2) 3178110007155858 a001 514229/24476*39603^(10/11) 3178110007239267 a001 10959/844*39603^(21/22) 3178110007271969 a001 701408733/15127*5778^(2/9) 3178110007340071 a001 5628750634/17711 3178110007349468 a001 165580141/103682*15127^(11/20) 3178110007394638 a001 1836311903/24476*15127^(3/20) 3178110007601975 a001 433494437/271443*15127^(11/20) 3178110007638815 a001 1134903170/710647*15127^(11/20) 3178110007644190 a001 2971215073/1860498*15127^(11/20) 3178110007644974 a001 7778742049/4870847*15127^(11/20) 3178110007645088 a001 20365011074/12752043*15127^(11/20) 3178110007645105 a001 53316291173/33385282*15127^(11/20) 3178110007645107 a001 139583862445/87403803*15127^(11/20) 3178110007645108 a001 365435296162/228826127*15127^(11/20) 3178110007645108 a001 956722026041/599074578*15127^(11/20) 3178110007645108 a001 2504730781961/1568397607*15127^(11/20) 3178110007645108 a001 6557470319842/4106118243*15127^(11/20) 3178110007645108 a001 10610209857723/6643838879*15127^(11/20) 3178110007645108 a001 4052739537881/2537720636*15127^(11/20) 3178110007645108 a001 1548008755920/969323029*15127^(11/20) 3178110007645108 a001 591286729879/370248451*15127^(11/20) 3178110007645108 a001 225851433717/141422324*15127^(11/20) 3178110007645109 a001 86267571272/54018521*15127^(11/20) 3178110007645115 a001 32951280099/20633239*15127^(11/20) 3178110007645159 a001 12586269025/7881196*15127^(11/20) 3178110007645458 a001 4807526976/3010349*15127^(11/20) 3178110007647511 a001 1836311903/1149851*15127^(11/20) 3178110007661155 a001 2178309/9349*9349^(15/19) 3178110007661583 a001 701408733/439204*15127^(11/20) 3178110007702076 a001 4976784/13201*15127^(7/10) 3178110007724664 a001 165580141/64079*15127^(1/2) 3178110007758032 a001 267914296/167761*15127^(11/20) 3178110007968855 r005 Re(z^2+c),c=-39/86+6/11*I,n=26 3178110008043906 a001 102334155/103682*15127^(3/5) 3178110008089076 a001 567451585/12238*15127^(1/5) 3178110008296412 a001 267914296/271443*15127^(3/5) 3178110008333252 a001 701408733/710647*15127^(3/5) 3178110008338627 a001 1836311903/1860498*15127^(3/5) 3178110008339412 a001 4807526976/4870847*15127^(3/5) 3178110008339526 a001 12586269025/12752043*15127^(3/5) 3178110008339543 a001 32951280099/33385282*15127^(3/5) 3178110008339545 a001 86267571272/87403803*15127^(3/5) 3178110008339545 a001 225851433717/228826127*15127^(3/5) 3178110008339545 a001 591286729879/599074578*15127^(3/5) 3178110008339545 a001 1548008755920/1568397607*15127^(3/5) 3178110008339546 a001 4052739537881/4106118243*15127^(3/5) 3178110008339546 a001 4807525989/4870846*15127^(3/5) 3178110008339546 a001 6557470319842/6643838879*15127^(3/5) 3178110008339546 a001 2504730781961/2537720636*15127^(3/5) 3178110008339546 a001 956722026041/969323029*15127^(3/5) 3178110008339546 a001 365435296162/370248451*15127^(3/5) 3178110008339546 a001 139583862445/141422324*15127^(3/5) 3178110008339547 a001 53316291173/54018521*15127^(3/5) 3178110008339553 a001 20365011074/20633239*15127^(3/5) 3178110008339597 a001 7778742049/7881196*15127^(3/5) 3178110008339896 a001 2971215073/3010349*15127^(3/5) 3178110008341949 a001 1134903170/1149851*15127^(3/5) 3178110008356021 a001 433494437/439204*15127^(3/5) 3178110008396524 a001 9227465/39603*15127^(3/4) 3178110008419101 a001 102334155/64079*15127^(11/20) 3178110008452470 a001 165580141/167761*15127^(3/5) 3178110008557166 a001 1602508992/13201*5778^(1/9) 3178110008738344 a001 31622993/51841*15127^(13/20) 3178110008783514 a001 701408733/24476*15127^(1/4) 3178110008990850 a001 165580141/271443*15127^(13/20) 3178110009027690 a001 433494437/710647*15127^(13/20) 3178110009033065 a001 567451585/930249*15127^(13/20) 3178110009033849 a001 2971215073/4870847*15127^(13/20) 3178110009033964 a001 7778742049/12752043*15127^(13/20) 3178110009033980 a001 10182505537/16692641*15127^(13/20) 3178110009033983 a001 53316291173/87403803*15127^(13/20) 3178110009033983 a001 139583862445/228826127*15127^(13/20) 3178110009033983 a001 182717648081/299537289*15127^(13/20) 3178110009033983 a001 956722026041/1568397607*15127^(13/20) 3178110009033983 a001 2504730781961/4106118243*15127^(13/20) 3178110009033983 a001 3278735159921/5374978561*15127^(13/20) 3178110009033983 a001 10610209857723/17393796001*15127^(13/20) 3178110009033983 a001 4052739537881/6643838879*15127^(13/20) 3178110009033983 a001 1134903780/1860499*15127^(13/20) 3178110009033983 a001 591286729879/969323029*15127^(13/20) 3178110009033983 a001 225851433717/370248451*15127^(13/20) 3178110009033983 a001 21566892818/35355581*15127^(13/20) 3178110009033984 a001 32951280099/54018521*15127^(13/20) 3178110009033991 a001 1144206275/1875749*15127^(13/20) 3178110009034034 a001 1201881744/1970299*15127^(13/20) 3178110009034334 a001 1836311903/3010349*15127^(13/20) 3178110009036387 a001 701408733/1149851*15127^(13/20) 3178110009050459 a001 66978574/109801*15127^(13/20) 3178110009090935 a001 5702887/39603*15127^(4/5) 3178110009113539 a001 63245986/64079*15127^(3/5) 3178110009146907 a001 9303105/15251*15127^(13/20) 3178110009432781 a001 39088169/103682*15127^(7/10) 3178110009477951 a001 433494437/24476*15127^(3/10) 3178110009575089 a001 3524578/9349*9349^(14/19) 3178110009685288 a001 34111385/90481*15127^(7/10) 3178110009722128 a001 267914296/710647*15127^(7/10) 3178110009727503 a001 233802911/620166*15127^(7/10) 3178110009728287 a001 1836311903/4870847*15127^(7/10) 3178110009728401 a001 1602508992/4250681*15127^(7/10) 3178110009728418 a001 12586269025/33385282*15127^(7/10) 3178110009728421 a001 10983760033/29134601*15127^(7/10) 3178110009728421 a001 86267571272/228826127*15127^(7/10) 3178110009728421 a001 267913919/710646*15127^(7/10) 3178110009728421 a001 591286729879/1568397607*15127^(7/10) 3178110009728421 a001 516002918640/1368706081*15127^(7/10) 3178110009728421 a001 4052739537881/10749957122*15127^(7/10) 3178110009728421 a001 3536736619241/9381251041*15127^(7/10) 3178110009728421 a001 6557470319842/17393796001*15127^(7/10) 3178110009728421 a001 2504730781961/6643838879*15127^(7/10) 3178110009728421 a001 956722026041/2537720636*15127^(7/10) 3178110009728421 a001 365435296162/969323029*15127^(7/10) 3178110009728421 a001 139583862445/370248451*15127^(7/10) 3178110009728421 a001 53316291173/141422324*15127^(7/10) 3178110009728422 a001 20365011074/54018521*15127^(7/10) 3178110009728428 a001 7778742049/20633239*15127^(7/10) 3178110009728472 a001 2971215073/7881196*15127^(7/10) 3178110009728772 a001 1134903170/3010349*15127^(7/10) 3178110009730825 a001 433494437/1149851*15127^(7/10) 3178110009744896 a001 165580141/439204*15127^(7/10) 3178110009785443 a001 3524578/39603*15127^(17/20) 3178110009807977 a001 39088169/64079*15127^(13/20) 3178110009841345 a001 63245986/167761*15127^(7/10) 3178110010127221 a001 24157817/103682*15127^(3/4) 3178110010172389 a001 10946*15127^(7/20) 3178110010287869 a001 12586269025/103682*5778^(1/9) 3178110010379726 a001 63245986/271443*15127^(3/4) 3178110010416566 a001 165580141/710647*15127^(3/4) 3178110010421941 a001 433494437/1860498*15127^(3/4) 3178110010422725 a001 1134903170/4870847*15127^(3/4) 3178110010422839 a001 2971215073/12752043*15127^(3/4) 3178110010422856 a001 7778742049/33385282*15127^(3/4) 3178110010422858 a001 20365011074/87403803*15127^(3/4) 3178110010422859 a001 53316291173/228826127*15127^(3/4) 3178110010422859 a001 139583862445/599074578*15127^(3/4) 3178110010422859 a001 365435296162/1568397607*15127^(3/4) 3178110010422859 a001 956722026041/4106118243*15127^(3/4) 3178110010422859 a001 2504730781961/10749957122*15127^(3/4) 3178110010422859 a001 6557470319842/28143753123*15127^(3/4) 3178110010422859 a001 10610209857723/45537549124*15127^(3/4) 3178110010422859 a001 4052739537881/17393796001*15127^(3/4) 3178110010422859 a001 1548008755920/6643838879*15127^(3/4) 3178110010422859 a001 591286729879/2537720636*15127^(3/4) 3178110010422859 a001 225851433717/969323029*15127^(3/4) 3178110010422859 a001 86267571272/370248451*15127^(3/4) 3178110010422859 a001 63246219/271444*15127^(3/4) 3178110010422860 a001 12586269025/54018521*15127^(3/4) 3178110010422866 a001 4807526976/20633239*15127^(3/4) 3178110010422910 a001 1836311903/7881196*15127^(3/4) 3178110010423209 a001 701408733/3010349*15127^(3/4) 3178110010425262 a001 267914296/1149851*15127^(3/4) 3178110010439334 a001 102334155/439204*15127^(3/4) 3178110010479696 a001 726103/13201*15127^(9/10) 3178110010502416 a001 24157817/64079*15127^(7/10) 3178110010535782 a001 39088169/167761*15127^(3/4) 3178110010540375 a001 121393*5778^(1/9) 3178110010577215 a001 86267571272/710647*5778^(1/9) 3178110010582590 a001 75283811239/620166*5778^(1/9) 3178110010583374 a001 591286729879/4870847*5778^(1/9) 3178110010583489 a001 516002918640/4250681*5778^(1/9) 3178110010583505 a001 4052739537881/33385282*5778^(1/9) 3178110010583508 a001 3536736619241/29134601*5778^(1/9) 3178110010583509 a001 6557470319842/54018521*5778^(1/9) 3178110010583516 a001 2504730781961/20633239*5778^(1/9) 3178110010583559 a001 956722026041/7881196*5778^(1/9) 3178110010583859 a001 365435296162/3010349*5778^(1/9) 3178110010585912 a001 139583862445/1149851*5778^(1/9) 3178110010599933 a001 1201881744/6119*5778^(1/18) 3178110010599984 a001 53316291173/439204*5778^(1/9) 3178110010616351 a001 5473/12238*20633239^(4/5) 3178110010616357 a001 5473/12238*17393796001^(4/7) 3178110010616357 a001 5473/12238*14662949395604^(4/9) 3178110010616357 a001 5473/12238*(1/2+1/2*5^(1/2))^28 3178110010616357 a001 5473/12238*73681302247^(7/13) 3178110010616357 a001 5473/12238*10749957122^(7/12) 3178110010616357 a001 5473/12238*4106118243^(14/23) 3178110010616357 a001 5473/12238*1568397607^(7/11) 3178110010616357 a001 5473/12238*599074578^(2/3) 3178110010616357 a001 5473/12238*228826127^(7/10) 3178110010616358 a001 5473/12238*87403803^(14/19) 3178110010616359 a001 5473/12238*33385282^(7/9) 3178110010616373 a001 5473/12238*12752043^(14/17) 3178110010616474 a001 5473/12238*4870847^(7/8) 3178110010617214 a001 5473/12238*1860498^(14/15) 3178110010696432 a001 20365011074/167761*5778^(1/9) 3178110010821654 a001 7465176/51841*15127^(4/5) 3178110010866827 a001 165580141/24476*15127^(2/5) 3178110011074163 a001 39088169/271443*15127^(4/5) 3178110011111003 a001 14619165/101521*15127^(4/5) 3178110011116378 a001 133957148/930249*15127^(4/5) 3178110011117163 a001 701408733/4870847*15127^(4/5) 3178110011117277 a001 1836311903/12752043*15127^(4/5) 3178110011117294 a001 14930208/103681*15127^(4/5) 3178110011117296 a001 12586269025/87403803*15127^(4/5) 3178110011117296 a001 32951280099/228826127*15127^(4/5) 3178110011117296 a001 43133785636/299537289*15127^(4/5) 3178110011117296 a001 32264490531/224056801*15127^(4/5) 3178110011117296 a001 591286729879/4106118243*15127^(4/5) 3178110011117296 a001 774004377960/5374978561*15127^(4/5) 3178110011117296 a001 4052739537881/28143753123*15127^(4/5) 3178110011117296 a001 1515744265389/10525900321*15127^(4/5) 3178110011117296 a001 3278735159921/22768774562*15127^(4/5) 3178110011117296 a001 2504730781961/17393796001*15127^(4/5) 3178110011117296 a001 956722026041/6643838879*15127^(4/5) 3178110011117296 a001 182717648081/1268860318*15127^(4/5) 3178110011117296 a001 139583862445/969323029*15127^(4/5) 3178110011117297 a001 53316291173/370248451*15127^(4/5) 3178110011117297 a001 10182505537/70711162*15127^(4/5) 3178110011117298 a001 7778742049/54018521*15127^(4/5) 3178110011117304 a001 2971215073/20633239*15127^(4/5) 3178110011117348 a001 567451585/3940598*15127^(4/5) 3178110011117647 a001 433494437/3010349*15127^(4/5) 3178110011119700 a001 165580141/1149851*15127^(4/5) 3178110011133772 a001 31622993/219602*15127^(4/5) 3178110011174618 a001 1346269/39603*15127^(19/20) 3178110011196850 a001 14930352/64079*15127^(3/4) 3178110011230222 a001 24157817/167761*15127^(4/5) 3178110011357502 a001 7778742049/64079*5778^(1/9) 3178110011488768 a001 5702887/9349*9349^(13/19) 3178110011516102 a001 9227465/103682*15127^(17/20) 3178110011561265 a001 102334155/24476*15127^(9/20) 3178110011768602 a001 24157817/271443*15127^(17/20) 3178110011805441 a001 63245986/710647*15127^(17/20) 3178110011810816 a001 165580141/1860498*15127^(17/20) 3178110011811600 a001 433494437/4870847*15127^(17/20) 3178110011811715 a001 1134903170/12752043*15127^(17/20) 3178110011811731 a001 2971215073/33385282*15127^(17/20) 3178110011811734 a001 7778742049/87403803*15127^(17/20) 3178110011811734 a001 20365011074/228826127*15127^(17/20) 3178110011811734 a001 53316291173/599074578*15127^(17/20) 3178110011811734 a001 139583862445/1568397607*15127^(17/20) 3178110011811734 a001 365435296162/4106118243*15127^(17/20) 3178110011811734 a001 956722026041/10749957122*15127^(17/20) 3178110011811734 a001 2504730781961/28143753123*15127^(17/20) 3178110011811734 a001 6557470319842/73681302247*15127^(17/20) 3178110011811734 a001 10610209857723/119218851371*15127^(17/20) 3178110011811734 a001 4052739537881/45537549124*15127^(17/20) 3178110011811734 a001 1548008755920/17393796001*15127^(17/20) 3178110011811734 a001 591286729879/6643838879*15127^(17/20) 3178110011811734 a001 225851433717/2537720636*15127^(17/20) 3178110011811734 a001 86267571272/969323029*15127^(17/20) 3178110011811734 a001 32951280099/370248451*15127^(17/20) 3178110011811734 a001 12586269025/141422324*15127^(17/20) 3178110011811735 a001 4807526976/54018521*15127^(17/20) 3178110011811742 a001 1836311903/20633239*15127^(17/20) 3178110011811785 a001 3524667/39604*15127^(17/20) 3178110011812085 a001 267914296/3010349*15127^(17/20) 3178110011814138 a001 102334155/1149851*15127^(17/20) 3178110011825572 a001 2149991423/6765 3178110011828209 a001 39088169/439204*15127^(17/20) 3178110011891298 a001 9227465/64079*15127^(4/5) 3178110011924656 a001 14930352/167761*15127^(17/20) 3178110012210513 a001 5702887/103682*15127^(9/10) 3178110012255703 a001 31622993/12238*15127^(1/2) 3178110012463036 a001 4976784/90481*15127^(9/10) 3178110012499879 a001 39088169/710647*15127^(9/10) 3178110012505254 a001 831985/15126*15127^(9/10) 3178110012506038 a001 267914296/4870847*15127^(9/10) 3178110012506152 a001 233802911/4250681*15127^(9/10) 3178110012506169 a001 1836311903/33385282*15127^(9/10) 3178110012506172 a001 1602508992/29134601*15127^(9/10) 3178110012506172 a001 12586269025/228826127*15127^(9/10) 3178110012506172 a001 10983760033/199691526*15127^(9/10) 3178110012506172 a001 86267571272/1568397607*15127^(9/10) 3178110012506172 a001 75283811239/1368706081*15127^(9/10) 3178110012506172 a001 591286729879/10749957122*15127^(9/10) 3178110012506172 a001 12585437040/228811001*15127^(9/10) 3178110012506172 a001 4052739537881/73681302247*15127^(9/10) 3178110012506172 a001 3536736619241/64300051206*15127^(9/10) 3178110012506172 a001 6557470319842/119218851371*15127^(9/10) 3178110012506172 a001 2504730781961/45537549124*15127^(9/10) 3178110012506172 a001 956722026041/17393796001*15127^(9/10) 3178110012506172 a001 365435296162/6643838879*15127^(9/10) 3178110012506172 a001 139583862445/2537720636*15127^(9/10) 3178110012506172 a001 53316291173/969323029*15127^(9/10) 3178110012506172 a001 20365011074/370248451*15127^(9/10) 3178110012506172 a001 7778742049/141422324*15127^(9/10) 3178110012506173 a001 2971215073/54018521*15127^(9/10) 3178110012506179 a001 1134903170/20633239*15127^(9/10) 3178110012506223 a001 433494437/7881196*15127^(9/10) 3178110012506523 a001 165580141/3010349*15127^(9/10) 3178110012508576 a001 63245986/1149851*15127^(9/10) 3178110012522648 a001 24157817/439204*15127^(9/10) 3178110012531345 m001 ReciprocalFibonacci/(GAMMA(11/12)+ZetaQ(4)) 3178110012560577 a001 433494437/15127*5778^(5/18) 3178110012585708 a001 5702887/64079*15127^(17/20) 3178110012619104 a001 9227465/167761*15127^(9/10) 3178110012905022 a001 1762289/51841*15127^(19/20) 3178110012950140 a001 39088169/24476*15127^(11/20) 3178110013157484 a001 9227465/271443*15127^(19/20) 3178110013194318 a001 24157817/710647*15127^(19/20) 3178110013199692 a001 31622993/930249*15127^(19/20) 3178110013200476 a001 165580141/4870847*15127^(19/20) 3178110013200590 a001 433494437/12752043*15127^(19/20) 3178110013200607 a001 567451585/16692641*15127^(19/20) 3178110013200609 a001 2971215073/87403803*15127^(19/20) 3178110013200610 a001 7778742049/228826127*15127^(19/20) 3178110013200610 a001 10182505537/299537289*15127^(19/20) 3178110013200610 a001 53316291173/1568397607*15127^(19/20) 3178110013200610 a001 139583862445/4106118243*15127^(19/20) 3178110013200610 a001 182717648081/5374978561*15127^(19/20) 3178110013200610 a001 956722026041/28143753123*15127^(19/20) 3178110013200610 a001 2504730781961/73681302247*15127^(19/20) 3178110013200610 a001 3278735159921/96450076809*15127^(19/20) 3178110013200610 a001 10610209857723/312119004989*15127^(19/20) 3178110013200610 a001 4052739537881/119218851371*15127^(19/20) 3178110013200610 a001 387002188980/11384387281*15127^(19/20) 3178110013200610 a001 591286729879/17393796001*15127^(19/20) 3178110013200610 a001 225851433717/6643838879*15127^(19/20) 3178110013200610 a001 1135099622/33391061*15127^(19/20) 3178110013200610 a001 32951280099/969323029*15127^(19/20) 3178110013200610 a001 12586269025/370248451*15127^(19/20) 3178110013200610 a001 1201881744/35355581*15127^(19/20) 3178110013200611 a001 1836311903/54018521*15127^(19/20) 3178110013200617 a001 701408733/20633239*15127^(19/20) 3178110013200661 a001 66978574/1970299*15127^(19/20) 3178110013200960 a001 102334155/3010349*15127^(19/20) 3178110013203013 a001 39088169/1149851*15127^(19/20) 3178110013217082 a001 196452/5779*15127^(19/20) 3178110013280217 a001 3524578/64079*15127^(9/10) 3178110013303769 a001 716663808/2255 3178110013313514 a001 5702887/167761*15127^(19/20) 3178110013402544 a001 9227465/9349*9349^(12/19) 3178110013644579 a001 24157817/24476*15127^(3/5) 3178110013845774 a001 2971215073/39603*5778^(1/6) 3178110013895048 a001 2/6765*(1/2+1/2*5^(1/2))^48 3178110013974470 a001 2178309/64079*15127^(19/20) 3178110014339013 a001 3732588/6119*15127^(13/20) 3178110014402726 a007 Real Root Of 506*x^4+805*x^3-313*x^2-791*x+252 3178110014668908 a001 514229/3571*3571^(16/17) 3178110014781966 a001 429998285/1353 3178110015033461 a001 9227465/24476*15127^(7/10) 3178110015316282 a001 14930352/9349*9349^(11/19) 3178110015576477 a001 7778742049/103682*5778^(1/6) 3178110015625600 r005 Re(z^2+c),c=-7/18+15/53*I,n=31 3178110015727872 a001 5702887/24476*15127^(3/4) 3178110015828983 a001 20365011074/271443*5778^(1/6) 3178110015865823 a001 53316291173/710647*5778^(1/6) 3178110015871198 a001 139583862445/1860498*5778^(1/6) 3178110015871982 a001 365435296162/4870847*5778^(1/6) 3178110015872097 a001 956722026041/12752043*5778^(1/6) 3178110015872113 a001 2504730781961/33385282*5778^(1/6) 3178110015872116 a001 6557470319842/87403803*5778^(1/6) 3178110015872116 a001 10610209857723/141422324*5778^(1/6) 3178110015872117 a001 4052739537881/54018521*5778^(1/6) 3178110015872124 a001 140728068720/1875749*5778^(1/6) 3178110015872167 a001 591286729879/7881196*5778^(1/6) 3178110015872467 a001 225851433717/3010349*5778^(1/6) 3178110015874520 a001 86267571272/1149851*5778^(1/6) 3178110015888541 a001 2971215073/24476*5778^(1/9) 3178110015888592 a001 32951280099/439204*5778^(1/6) 3178110015985040 a001 75025*5778^(1/6) 3178110016422380 a001 1762289/12238*15127^(4/5) 3178110016646110 a001 4807526976/64079*5778^(1/6) 3178110017116633 a001 2178309/24476*15127^(17/20) 3178110017230035 a001 24157817/9349*9349^(10/19) 3178110017811555 a001 1346269/24476*15127^(9/10) 3178110017849185 a001 267914296/15127*5778^(1/3) 3178110018504724 a001 208010/6119*15127^(19/20) 3178110019134382 a001 1836311903/39603*5778^(2/9) 3178110019143783 a001 4181*9349^(9/19) 3178110019216555 a001 2149991428/6765 3178110020865085 a001 46368*5778^(2/9) 3178110021057533 a001 63245986/9349*9349^(8/19) 3178110021117591 a001 12586269025/271443*5778^(2/9) 3178110021154431 a001 32951280099/710647*5778^(2/9) 3178110021159806 a001 43133785636/930249*5778^(2/9) 3178110021160590 a001 225851433717/4870847*5778^(2/9) 3178110021160704 a001 591286729879/12752043*5778^(2/9) 3178110021160721 a001 774004377960/16692641*5778^(2/9) 3178110021160724 a001 4052739537881/87403803*5778^(2/9) 3178110021160724 a001 225749145909/4868641*5778^(2/9) 3178110021160724 a001 3278735159921/70711162*5778^(2/9) 3178110021160725 a001 2504730781961/54018521*5778^(2/9) 3178110021160731 a001 956722026041/20633239*5778^(2/9) 3178110021160775 a001 182717648081/3940598*5778^(2/9) 3178110021161075 a001 139583862445/3010349*5778^(2/9) 3178110021163128 a001 53316291173/1149851*5778^(2/9) 3178110021177148 a001 1836311903/24476*5778^(1/6) 3178110021177199 a001 10182505537/219602*5778^(2/9) 3178110021273648 a001 7778742049/167761*5778^(2/9) 3178110021469312 a001 433494437/3571*1364^(2/15) 3178110021707313 a001 1836311903/9349*3571^(1/17) 3178110021934718 a001 2971215073/64079*5778^(2/9) 3178110022478728 a001 6765/9349*7881196^(9/11) 3178110022478770 a001 4181/15127*(1/2+1/2*5^(1/2))^29 3178110022478770 a001 4181/15127*1322157322203^(1/2) 3178110022478770 a001 6765/9349*141422324^(9/13) 3178110022478770 a001 6765/9349*2537720636^(3/5) 3178110022478770 a001 6765/9349*45537549124^(9/17) 3178110022478770 a001 6765/9349*817138163596^(9/19) 3178110022478770 a001 6765/9349*14662949395604^(3/7) 3178110022478770 a001 6765/9349*(1/2+1/2*5^(1/2))^27 3178110022478770 a001 6765/9349*192900153618^(1/2) 3178110022478770 a001 6765/9349*10749957122^(9/16) 3178110022478770 a001 6765/9349*599074578^(9/14) 3178110022478772 a001 6765/9349*33385282^(3/4) 3178110022479597 a001 6765/9349*1860498^(9/10) 3178110022971282 a001 102334155/9349*9349^(7/19) 3178110023137793 a001 165580141/15127*5778^(7/18) 3178110024422990 a001 1134903170/39603*5778^(5/18) 3178110024885031 a001 165580141/9349*9349^(6/19) 3178110026153693 a001 2971215073/103682*5778^(5/18) 3178110026406199 a001 7778742049/271443*5778^(5/18) 3178110026443039 a001 20365011074/710647*5778^(5/18) 3178110026448414 a001 53316291173/1860498*5778^(5/18) 3178110026449198 a001 139583862445/4870847*5778^(5/18) 3178110026449312 a001 365435296162/12752043*5778^(5/18) 3178110026449329 a001 956722026041/33385282*5778^(5/18) 3178110026449331 a001 2504730781961/87403803*5778^(5/18) 3178110026449332 a001 6557470319842/228826127*5778^(5/18) 3178110026449332 a001 10610209857723/370248451*5778^(5/18) 3178110026449332 a001 4052739537881/141422324*5778^(5/18) 3178110026449333 a001 1548008755920/54018521*5778^(5/18) 3178110026449339 a001 591286729879/20633239*5778^(5/18) 3178110026449383 a001 225851433717/7881196*5778^(5/18) 3178110026449683 a001 86267571272/3010349*5778^(5/18) 3178110026451736 a001 32951280099/1149851*5778^(5/18) 3178110026465756 a001 567451585/12238*5778^(2/9) 3178110026465807 a001 12586269025/439204*5778^(5/18) 3178110026562256 a001 4807526976/167761*5778^(5/18) 3178110026798780 a001 267914296/9349*9349^(5/19) 3178110026897274 a001 2971215073/15127*2207^(1/16) 3178110026920075 a007 Real Root Of 829*x^4-94*x^3+734*x^2-791*x-337 3178110027150560 a001 433494437/5778*2207^(3/16) 3178110027223326 a001 28657*5778^(5/18) 3178110028426400 a001 6765*5778^(4/9) 3178110028712529 a001 433494437/9349*9349^(4/19) 3178110029325799 a001 832040/3571*3571^(15/17) 3178110029507628 r005 Re(z^2+c),c=-10/27+9/25*I,n=49 3178110029711598 a001 17711*5778^(1/3) 3178110030626278 a001 701408733/9349*9349^(3/19) 3178110031061575 a001 1739379620/5473 3178110031138418 r005 Im(z^2+c),c=27/110+13/63*I,n=22 3178110031331589 a001 196418/9349*24476^(20/21) 3178110031442300 a001 1836311903/103682*5778^(1/3) 3178110031561441 a001 317811/9349*24476^(19/21) 3178110031694807 a001 1602508992/90481*5778^(1/3) 3178110031731647 a001 12586269025/710647*5778^(1/3) 3178110031737022 a001 10983760033/620166*5778^(1/3) 3178110031737806 a001 86267571272/4870847*5778^(1/3) 3178110031737920 a001 75283811239/4250681*5778^(1/3) 3178110031737937 a001 591286729879/33385282*5778^(1/3) 3178110031737939 a001 516002918640/29134601*5778^(1/3) 3178110031737940 a001 4052739537881/228826127*5778^(1/3) 3178110031737940 a001 3536736619241/199691526*5778^(1/3) 3178110031737940 a001 6557470319842/370248451*5778^(1/3) 3178110031737940 a001 2504730781961/141422324*5778^(1/3) 3178110031737941 a001 956722026041/54018521*5778^(1/3) 3178110031737947 a001 365435296162/20633239*5778^(1/3) 3178110031737991 a001 139583862445/7881196*5778^(1/3) 3178110031738290 a001 53316291173/3010349*5778^(1/3) 3178110031740343 a001 20365011074/1149851*5778^(1/3) 3178110031754364 a001 701408733/24476*5778^(5/18) 3178110031754415 a001 7778742049/439204*5778^(1/3) 3178110031822759 a001 514229/9349*24476^(6/7) 3178110031850864 a001 2971215073/167761*5778^(1/3) 3178110032072057 a001 832040/9349*24476^(17/21) 3178110032325947 a001 1346269/9349*24476^(16/21) 3178110032511934 a001 1134903170/64079*5778^(1/3) 3178110032540027 a001 1134903170/9349*9349^(2/19) 3178110032578083 a001 2178309/9349*24476^(5/7) 3178110032830888 a001 3524578/9349*24476^(2/3) 3178110033083438 a001 5702887/9349*24476^(13/21) 3178110033336086 a001 9227465/9349*24476^(4/7) 3178110033588696 a001 14930352/9349*24476^(11/21) 3178110033715009 a001 63245986/15127*5778^(1/2) 3178110033841321 a001 24157817/9349*24476^(10/21) 3178110034093940 a001 4181*24476^(3/7) 3178110034341178 a001 17711/9349*20633239^(5/7) 3178110034341183 a001 4181/39603*(1/2+1/2*5^(1/2))^31 3178110034341183 a001 4181/39603*9062201101803^(1/2) 3178110034341183 a001 17711/9349*2537720636^(5/9) 3178110034341183 a001 17711/9349*312119004989^(5/11) 3178110034341183 a001 17711/9349*(1/2+1/2*5^(1/2))^25 3178110034341183 a001 17711/9349*3461452808002^(5/12) 3178110034341183 a001 17711/9349*28143753123^(1/2) 3178110034341183 a001 17711/9349*228826127^(5/8) 3178110034341948 a001 17711/9349*1860498^(5/6) 3178110034346561 a001 63245986/9349*24476^(8/21) 3178110034393823 r005 Im(z^2+c),c=4/21+15/59*I,n=9 3178110034453776 a001 1836311903/9349*9349^(1/19) 3178110034595366 a007 Real Root Of -310*x^4-918*x^3-166*x^2-939*x+850 3178110034599181 a001 102334155/9349*24476^(1/3) 3178110034851802 a001 165580141/9349*24476^(2/7) 3178110035000206 a001 433494437/39603*5778^(7/18) 3178110035104422 a001 267914296/9349*24476^(5/21) 3178110035357043 a001 433494437/9349*24476^(4/21) 3178110035593397 a001 9107509929/28657 3178110035609664 a001 701408733/9349*24476^(1/7) 3178110035617702 a001 121393/9349*64079^(21/23) 3178110035710963 a001 196418/9349*64079^(20/23) 3178110035721846 a001 317811/9349*64079^(19/23) 3178110035740108 a001 75025/9349*64079^(22/23) 3178110035764195 a001 514229/9349*64079^(18/23) 3178110035794525 a001 832040/9349*64079^(17/23) 3178110035829446 a001 1346269/9349*64079^(16/23) 3178110035862284 a001 1134903170/9349*24476^(2/21) 3178110035862613 a001 2178309/9349*64079^(15/23) 3178110035896450 a001 3524578/9349*64079^(14/23) 3178110035930031 a001 5702887/9349*64079^(13/23) 3178110035963710 a001 9227465/9349*64079^(12/23) 3178110035997352 a001 14930352/9349*64079^(11/23) 3178110036031007 a001 24157817/9349*64079^(10/23) 3178110036064658 a001 4181*64079^(9/23) 3178110036071886 a001 4181/103682*141422324^(11/13) 3178110036071886 a001 4181/103682*2537720636^(11/15) 3178110036071886 a001 4181/103682*45537549124^(11/17) 3178110036071886 a001 4181/103682*312119004989^(3/5) 3178110036071886 a001 4181/103682*14662949395604^(11/21) 3178110036071886 a001 4181/103682*(1/2+1/2*5^(1/2))^33 3178110036071886 a001 4181/103682*192900153618^(11/18) 3178110036071886 a001 4181/103682*10749957122^(11/16) 3178110036071886 a001 4181/103682*1568397607^(3/4) 3178110036071886 a001 4181/103682*599074578^(11/14) 3178110036071886 a001 46368/9349*(1/2+1/2*5^(1/2))^23 3178110036071886 a001 46368/9349*4106118243^(1/2) 3178110036071888 a001 4181/103682*33385282^(11/12) 3178110036098310 a001 63245986/9349*64079^(8/23) 3178110036114905 a001 1836311903/9349*24476^(1/21) 3178110036131962 a001 102334155/9349*64079^(7/23) 3178110036165614 a001 165580141/9349*64079^(6/23) 3178110036199266 a001 267914296/9349*64079^(5/23) 3178110036232918 a001 433494437/9349*64079^(4/23) 3178110036254581 a001 23843770547/75025 3178110036266570 a001 701408733/9349*64079^(3/23) 3178110036293662 a001 196418/9349*167761^(4/5) 3178110036299637 a001 2178309/9349*167761^(3/5) 3178110036300222 a001 1134903170/9349*64079^(2/23) 3178110036311578 a001 121393/9349*439204^(7/9) 3178110036322357 a001 24157817/9349*167761^(2/5) 3178110036324360 a001 121393/9349*7881196^(7/11) 3178110036324388 a001 121393/9349*20633239^(3/5) 3178110036324392 a001 4181/271443*2537720636^(7/9) 3178110036324392 a001 4181/271443*17393796001^(5/7) 3178110036324392 a001 4181/271443*312119004989^(7/11) 3178110036324392 a001 4181/271443*14662949395604^(5/9) 3178110036324392 a001 4181/271443*(1/2+1/2*5^(1/2))^35 3178110036324392 a001 4181/271443*505019158607^(5/8) 3178110036324392 a001 4181/271443*28143753123^(7/10) 3178110036324392 a001 4181/271443*599074578^(5/6) 3178110036324392 a001 4181/271443*228826127^(7/8) 3178110036324392 a001 121393/9349*141422324^(7/13) 3178110036324392 a001 121393/9349*2537720636^(7/15) 3178110036324392 a001 121393/9349*17393796001^(3/7) 3178110036324392 a001 121393/9349*45537549124^(7/17) 3178110036324392 a001 121393/9349*14662949395604^(1/3) 3178110036324392 a001 121393/9349*(1/2+1/2*5^(1/2))^21 3178110036324392 a001 121393/9349*192900153618^(7/18) 3178110036324392 a001 121393/9349*10749957122^(7/16) 3178110036324392 a001 121393/9349*599074578^(1/2) 3178110036324394 a001 121393/9349*33385282^(7/12) 3178110036325035 a001 121393/9349*1860498^(7/10) 3178110036329112 a001 121393/9349*710647^(3/4) 3178110036333874 a001 1836311903/9349*64079^(1/23) 3178110036344941 a001 267914296/9349*167761^(1/5) 3178110036351047 a001 1835994168/5777 3178110036355207 a001 46368/9349*103682^(23/24) 3178110036358238 a001 2178309/9349*439204^(5/9) 3178110036358946 a001 514229/9349*439204^(2/3) 3178110036360210 a001 9227465/9349*439204^(4/9) 3178110036361232 a001 4181/710647*(1/2+1/2*5^(1/2))^37 3178110036361232 a001 317811/9349*817138163596^(1/3) 3178110036361232 a001 317811/9349*(1/2+1/2*5^(1/2))^19 3178110036361233 a001 317811/9349*87403803^(1/2) 3178110036362033 a001 4181*439204^(1/3) 3178110036363864 a001 165580141/9349*439204^(2/9) 3178110036365121 a001 163427634589/514229 3178110036365695 a001 701408733/9349*439204^(1/9) 3178110036366607 a001 4181/1860498*2537720636^(13/15) 3178110036366607 a001 4181/1860498*45537549124^(13/17) 3178110036366607 a001 4181/1860498*14662949395604^(13/21) 3178110036366607 a001 4181/1860498*(1/2+1/2*5^(1/2))^39 3178110036366607 a001 4181/1860498*192900153618^(13/18) 3178110036366607 a001 4181/1860498*73681302247^(3/4) 3178110036366607 a001 4181/1860498*10749957122^(13/16) 3178110036366607 a001 4181/1860498*599074578^(13/14) 3178110036366607 a001 832040/9349*45537549124^(1/3) 3178110036366607 a001 832040/9349*(1/2+1/2*5^(1/2))^17 3178110036366617 a001 832040/9349*12752043^(1/2) 3178110036367174 a001 427859102055/1346269 3178110036367368 a001 2178309/9349*7881196^(5/11) 3178110036367388 a001 2178309/9349*20633239^(3/7) 3178110036367391 a001 4181/4870847*(1/2+1/2*5^(1/2))^41 3178110036367391 a001 2178309/9349*141422324^(5/13) 3178110036367391 a001 2178309/9349*2537720636^(1/3) 3178110036367391 a001 2178309/9349*45537549124^(5/17) 3178110036367391 a001 2178309/9349*312119004989^(3/11) 3178110036367391 a001 2178309/9349*14662949395604^(5/21) 3178110036367391 a001 2178309/9349*(1/2+1/2*5^(1/2))^15 3178110036367391 a001 2178309/9349*192900153618^(5/18) 3178110036367391 a001 2178309/9349*28143753123^(3/10) 3178110036367391 a001 2178309/9349*10749957122^(5/16) 3178110036367391 a001 2178309/9349*599074578^(5/14) 3178110036367392 a001 2178309/9349*228826127^(3/8) 3178110036367393 a001 2178309/9349*33385282^(5/12) 3178110036367474 a001 560074835788/1762289 3178110036367505 a001 4181/12752043*(1/2+1/2*5^(1/2))^43 3178110036367506 a001 14930352/9349*7881196^(1/3) 3178110036367506 a001 5702887/9349*141422324^(1/3) 3178110036367506 a001 5702887/9349*(1/2+1/2*5^(1/2))^13 3178110036367506 a001 5702887/9349*73681302247^(1/4) 3178110036367511 a001 4181*7881196^(3/11) 3178110036367514 a001 9227465/9349*7881196^(4/11) 3178110036367516 a001 165580141/9349*7881196^(2/11) 3178110036367518 a001 2932589912673/9227465 3178110036367521 a001 701408733/9349*7881196^(1/11) 3178110036367522 a001 4181/33385282*45537549124^(15/17) 3178110036367522 a001 4181/33385282*312119004989^(9/11) 3178110036367522 a001 4181/33385282*14662949395604^(5/7) 3178110036367522 a001 4181/33385282*(1/2+1/2*5^(1/2))^45 3178110036367522 a001 4181/33385282*192900153618^(5/6) 3178110036367522 a001 4181/33385282*28143753123^(9/10) 3178110036367522 a001 4181/33385282*10749957122^(15/16) 3178110036367523 a001 14930352/9349*312119004989^(1/5) 3178110036367523 a001 14930352/9349*(1/2+1/2*5^(1/2))^11 3178110036367523 a001 14930352/9349*1568397607^(1/4) 3178110036367524 a001 102334155/9349*20633239^(1/5) 3178110036367524 a001 7677620066443/24157817 3178110036367524 a001 267914296/9349*20633239^(1/7) 3178110036367524 a001 24157817/9349*20633239^(2/7) 3178110036367525 a001 10050135143328/31622993 3178110036367525 a001 4181/228826127*14662949395604^(7/9) 3178110036367525 a001 4181/228826127*505019158607^(7/8) 3178110036367525 a001 4181*141422324^(3/13) 3178110036367525 a001 52623190793525/165580141 3178110036367525 a001 4181/599074578*14662949395604^(17/21) 3178110036367525 a001 4181/599074578*192900153618^(17/18) 3178110036367525 a001 137769302093919/433494437 3178110036367525 a001 10608373984948/33379505 3178110036367525 a001 4181/4106118243*3461452808002^(11/12) 3178110036367525 a001 4181*2537720636^(1/5) 3178110036367525 a001 944284844370777/2971215073 3178110036367525 a001 4181/10749957122*14662949395604^(19/21) 3178110036367525 a001 2472169817624099/7778742049 3178110036367525 a001 3236112304250760/10182505537 3178110036367525 a001 4181*45537549124^(3/17) 3178110036367525 a001 16944504007880461/53316291173 3178110036367525 a001 44361287415139863/139583862445 3178110036367525 a001 4181*14662949395604^(1/7) 3178110036367525 a001 4181*192900153618^(1/6) 3178110036367525 a001 806375982566453/2537281508 3178110036367525 a001 10472279399378941/32951280099 3178110036367525 a001 4181/45537549124*14662949395604^(20/21) 3178110036367525 a001 4000054790877421/12586269025 3178110036367525 a001 4181*10749957122^(3/16) 3178110036367525 a001 763942486626661/2403763488 3178110036367525 a001 4181/6643838879*14662949395604^(8/9) 3178110036367525 a001 583600128882545/1836311903 3178110036367525 a001 4181/2537720636*14662949395604^(6/7) 3178110036367525 a001 222915413394313/701408733 3178110036367525 a001 4181*599074578^(3/14) 3178110036367525 a001 4181/969323029*23725150497407^(13/16) 3178110036367525 a001 4181/969323029*505019158607^(13/14) 3178110036367525 a001 42573055650197/133957148 3178110036367525 a001 4181/370248451*312119004989^(10/11) 3178110036367525 a001 4181/370248451*3461452808002^(5/6) 3178110036367525 a001 32522920506869/102334155 3178110036367525 a001 4181/141422324*45537549124^(16/17) 3178110036367525 a001 4181/141422324*14662949395604^(16/21) 3178110036367525 a001 4181/141422324*192900153618^(8/9) 3178110036367525 a001 4181/141422324*73681302247^(12/13) 3178110036367525 a001 102334155/9349*17393796001^(1/7) 3178110036367525 a001 102334155/9349*14662949395604^(1/9) 3178110036367525 a001 102334155/9349*(1/2+1/2*5^(1/2))^7 3178110036367525 a001 102334155/9349*599074578^(1/6) 3178110036367525 a001 701408733/9349*141422324^(1/13) 3178110036367525 a001 267914296/9349*2537720636^(1/9) 3178110036367525 a001 267914296/9349*312119004989^(1/11) 3178110036367525 a001 267914296/9349*(1/2+1/2*5^(1/2))^5 3178110036367525 a001 267914296/9349*28143753123^(1/10) 3178110036367525 a001 701408733/9349*2537720636^(1/15) 3178110036367525 a001 701408733/9349*45537549124^(1/17) 3178110036367525 a001 701408733/9349*14662949395604^(1/21) 3178110036367525 a001 701408733/9349*(1/2+1/2*5^(1/2))^3 3178110036367525 a001 701408733/9349*10749957122^(1/16) 3178110036367525 a001 267914296/9349*228826127^(1/8) 3178110036367525 a001 165580141/9349*141422324^(2/13) 3178110036367525 a001 701408733/9349*599074578^(1/14) 3178110036367525 a001 1836311903/18698+1836311903/18698*5^(1/2) 3178110036367525 a001 2971215073/9349 3178110036367525 a001 1134903170/9349*(1/2+1/2*5^(1/2))^2 3178110036367525 a001 1134903170/9349*10749957122^(1/24) 3178110036367525 a001 1134903170/9349*4106118243^(1/23) 3178110036367525 a001 1134903170/9349*1568397607^(1/22) 3178110036367525 a001 1134903170/9349*599074578^(1/21) 3178110036367525 a001 433494437/9349*(1/2+1/2*5^(1/2))^4 3178110036367525 a001 433494437/9349*23725150497407^(1/16) 3178110036367525 a001 433494437/9349*73681302247^(1/13) 3178110036367525 a001 433494437/9349*10749957122^(1/12) 3178110036367525 a001 433494437/9349*4106118243^(2/23) 3178110036367525 a001 433494437/9349*1568397607^(1/11) 3178110036367525 a001 1134903170/9349*228826127^(1/20) 3178110036367525 a001 433494437/9349*599074578^(2/21) 3178110036367525 a001 433494437/9349*228826127^(1/10) 3178110036367525 a001 1134903170/9349*87403803^(1/19) 3178110036367525 a001 165580141/9349*2537720636^(2/15) 3178110036367525 a001 165580141/9349*45537549124^(2/17) 3178110036367525 a001 165580141/9349*14662949395604^(2/21) 3178110036367525 a001 165580141/9349*(1/2+1/2*5^(1/2))^6 3178110036367525 a001 165580141/9349*10749957122^(1/8) 3178110036367525 a001 165580141/9349*4106118243^(3/23) 3178110036367525 a001 165580141/9349*1568397607^(3/22) 3178110036367525 a001 165580141/9349*599074578^(1/7) 3178110036367525 a001 165580141/9349*228826127^(3/20) 3178110036367525 a001 433494437/9349*87403803^(2/19) 3178110036367526 a001 165580141/9349*87403803^(3/19) 3178110036367526 a001 63245986/9349*(1/2+1/2*5^(1/2))^8 3178110036367526 a001 63245986/9349*23725150497407^(1/8) 3178110036367526 a001 63245986/9349*505019158607^(1/7) 3178110036367526 a001 63245986/9349*73681302247^(2/13) 3178110036367526 a001 1134903170/9349*33385282^(1/18) 3178110036367526 a001 63245986/9349*10749957122^(1/6) 3178110036367526 a001 63245986/9349*4106118243^(4/23) 3178110036367526 a001 63245986/9349*1568397607^(2/11) 3178110036367526 a001 63245986/9349*599074578^(4/21) 3178110036367526 a001 63245986/9349*228826127^(1/5) 3178110036367526 a001 701408733/9349*33385282^(1/12) 3178110036367526 a001 63245986/9349*87403803^(4/19) 3178110036367526 a001 4181*33385282^(1/4) 3178110036367526 a001 433494437/9349*33385282^(1/9) 3178110036367526 a001 165580141/9349*33385282^(1/6) 3178110036367526 a001 4181/54018521*10749957122^(23/24) 3178110036367526 a001 63245986/9349*33385282^(2/9) 3178110036367527 a001 24157817/9349*2537720636^(2/9) 3178110036367527 a001 24157817/9349*312119004989^(2/11) 3178110036367527 a001 24157817/9349*(1/2+1/2*5^(1/2))^10 3178110036367527 a001 24157817/9349*28143753123^(1/5) 3178110036367527 a001 24157817/9349*10749957122^(5/24) 3178110036367527 a001 24157817/9349*4106118243^(5/23) 3178110036367527 a001 24157817/9349*1568397607^(5/22) 3178110036367527 a001 24157817/9349*599074578^(5/21) 3178110036367527 a001 24157817/9349*228826127^(1/4) 3178110036367527 a001 1134903170/9349*12752043^(1/17) 3178110036367527 a001 24157817/9349*87403803^(5/19) 3178110036367527 a001 24157817/9349*33385282^(5/18) 3178110036367528 a001 433494437/9349*12752043^(2/17) 3178110036367528 a001 139559710405/439128 3178110036367529 a001 165580141/9349*12752043^(3/17) 3178110036367530 a001 63245986/9349*12752043^(4/17) 3178110036367532 a001 24157817/9349*12752043^(5/17) 3178110036367532 a001 4181/20633239*312119004989^(4/5) 3178110036367532 a001 4181/20633239*(1/2+1/2*5^(1/2))^44 3178110036367532 a001 4181/20633239*23725150497407^(11/16) 3178110036367532 a001 4181/20633239*73681302247^(11/13) 3178110036367532 a001 4181/20633239*10749957122^(11/12) 3178110036367532 a001 4181/20633239*4106118243^(22/23) 3178110036367533 a001 9227465/9349*141422324^(4/13) 3178110036367533 a001 9227465/9349*2537720636^(4/15) 3178110036367533 a001 9227465/9349*45537549124^(4/17) 3178110036367533 a001 9227465/9349*817138163596^(4/19) 3178110036367533 a001 9227465/9349*14662949395604^(4/21) 3178110036367533 a001 9227465/9349*(1/2+1/2*5^(1/2))^12 3178110036367533 a001 9227465/9349*192900153618^(2/9) 3178110036367533 a001 9227465/9349*73681302247^(3/13) 3178110036367533 a001 9227465/9349*10749957122^(1/4) 3178110036367533 a001 9227465/9349*4106118243^(6/23) 3178110036367533 a001 9227465/9349*1568397607^(3/11) 3178110036367533 a001 9227465/9349*599074578^(2/7) 3178110036367533 a001 9227465/9349*228826127^(3/10) 3178110036367533 a001 9227465/9349*87403803^(6/19) 3178110036367534 a001 1134903170/9349*4870847^(1/16) 3178110036367534 a001 9227465/9349*33385282^(1/3) 3178110036367540 a001 9227465/9349*12752043^(6/17) 3178110036367542 a001 433494437/9349*4870847^(1/8) 3178110036367545 a001 1812440241097/5702887 3178110036367551 a001 165580141/9349*4870847^(3/16) 3178110036367559 a001 63245986/9349*4870847^(1/4) 3178110036367568 a001 24157817/9349*4870847^(5/16) 3178110036367574 a001 3524578/9349*20633239^(2/5) 3178110036367576 a001 4181/7881196*2537720636^(14/15) 3178110036367576 a001 4181/7881196*17393796001^(6/7) 3178110036367576 a001 4181/7881196*45537549124^(14/17) 3178110036367576 a001 4181/7881196*817138163596^(14/19) 3178110036367576 a001 4181/7881196*14662949395604^(2/3) 3178110036367576 a001 4181/7881196*(1/2+1/2*5^(1/2))^42 3178110036367576 a001 4181/7881196*505019158607^(3/4) 3178110036367576 a001 4181/7881196*192900153618^(7/9) 3178110036367576 a001 4181/7881196*10749957122^(7/8) 3178110036367576 a001 4181/7881196*4106118243^(21/23) 3178110036367576 a001 4181/7881196*1568397607^(21/22) 3178110036367577 a001 3524578/9349*17393796001^(2/7) 3178110036367577 a001 3524578/9349*14662949395604^(2/9) 3178110036367577 a001 3524578/9349*(1/2+1/2*5^(1/2))^14 3178110036367577 a001 3524578/9349*10749957122^(7/24) 3178110036367577 a001 3524578/9349*4106118243^(7/23) 3178110036367577 a001 3524578/9349*1568397607^(7/22) 3178110036367577 a001 3524578/9349*599074578^(1/3) 3178110036367577 a001 3524578/9349*228826127^(7/20) 3178110036367577 a001 3524578/9349*87403803^(7/19) 3178110036367578 a001 3524578/9349*33385282^(7/18) 3178110036367583 a001 9227465/9349*4870847^(3/8) 3178110036367585 a001 3524578/9349*12752043^(7/17) 3178110036367587 a001 1134903170/9349*1860498^(1/15) 3178110036367617 a001 701408733/9349*1860498^(1/10) 3178110036367635 a001 3524578/9349*4870847^(7/16) 3178110036367648 a001 433494437/9349*1860498^(2/15) 3178110036367659 a001 692290569521/2178309 3178110036367678 a001 267914296/9349*1860498^(1/6) 3178110036367709 a001 165580141/9349*1860498^(1/5) 3178110036367770 a001 63245986/9349*1860498^(4/15) 3178110036367800 a001 4181*1860498^(3/10) 3178110036367833 a001 24157817/9349*1860498^(1/3) 3178110036367851 a001 2178309/9349*1860498^(1/2) 3178110036367876 a001 4181/3010349*2537720636^(8/9) 3178110036367876 a001 4181/3010349*312119004989^(8/11) 3178110036367876 a001 4181/3010349*(1/2+1/2*5^(1/2))^40 3178110036367876 a001 4181/3010349*23725150497407^(5/8) 3178110036367876 a001 4181/3010349*73681302247^(10/13) 3178110036367876 a001 4181/3010349*28143753123^(4/5) 3178110036367876 a001 4181/3010349*10749957122^(5/6) 3178110036367876 a001 4181/3010349*4106118243^(20/23) 3178110036367876 a001 4181/3010349*1568397607^(10/11) 3178110036367876 a001 4181/3010349*599074578^(20/21) 3178110036367876 a001 1346269/9349*(1/2+1/2*5^(1/2))^16 3178110036367876 a001 1346269/9349*23725150497407^(1/4) 3178110036367876 a001 1346269/9349*73681302247^(4/13) 3178110036367876 a001 1346269/9349*10749957122^(1/3) 3178110036367876 a001 1346269/9349*4106118243^(8/23) 3178110036367876 a001 1346269/9349*1568397607^(4/11) 3178110036367876 a001 1346269/9349*599074578^(8/21) 3178110036367876 a001 1346269/9349*228826127^(2/5) 3178110036367876 a001 1346269/9349*87403803^(8/19) 3178110036367877 a001 1346269/9349*33385282^(4/9) 3178110036367885 a001 1346269/9349*12752043^(8/17) 3178110036367900 a001 9227465/9349*1860498^(2/5) 3178110036367943 a001 1346269/9349*4870847^(1/2) 3178110036367975 a001 1134903170/9349*710647^(1/14) 3178110036368005 a001 3524578/9349*1860498^(7/15) 3178110036368366 a001 1346269/9349*1860498^(8/15) 3178110036368424 a001 433494437/9349*710647^(1/7) 3178110036368443 a001 132215733733/416020 3178110036368874 a001 165580141/9349*710647^(3/14) 3178110036369099 a001 102334155/9349*710647^(1/4) 3178110036369324 a001 63245986/9349*710647^(2/7) 3178110036369774 a001 24157817/9349*710647^(5/14) 3178110036369901 a001 514229/9349*7881196^(6/11) 3178110036369929 a001 4181/1149851*817138163596^(2/3) 3178110036369929 a001 4181/1149851*(1/2+1/2*5^(1/2))^38 3178110036369929 a001 4181/1149851*10749957122^(19/24) 3178110036369929 a001 4181/1149851*4106118243^(19/23) 3178110036369929 a001 4181/1149851*1568397607^(19/22) 3178110036369929 a001 4181/1149851*599074578^(19/21) 3178110036369929 a001 4181/1149851*228826127^(19/20) 3178110036369929 a001 514229/9349*141422324^(6/13) 3178110036369929 a001 514229/9349*2537720636^(2/5) 3178110036369929 a001 514229/9349*45537549124^(6/17) 3178110036369929 a001 514229/9349*14662949395604^(2/7) 3178110036369929 a001 514229/9349*(1/2+1/2*5^(1/2))^18 3178110036369929 a001 514229/9349*192900153618^(1/3) 3178110036369929 a001 514229/9349*10749957122^(3/8) 3178110036369929 a001 514229/9349*4106118243^(9/23) 3178110036369929 a001 514229/9349*1568397607^(9/22) 3178110036369929 a001 514229/9349*599074578^(3/7) 3178110036369929 a001 514229/9349*228826127^(9/20) 3178110036369929 a001 514229/9349*87403803^(9/19) 3178110036369931 a001 514229/9349*33385282^(1/2) 3178110036369940 a001 514229/9349*12752043^(9/17) 3178110036370005 a001 514229/9349*4870847^(9/16) 3178110036370230 a001 9227465/9349*710647^(3/7) 3178110036370480 a001 514229/9349*1860498^(3/5) 3178110036370723 a001 3524578/9349*710647^(1/2) 3178110036370843 a001 1134903170/9349*271443^(1/13) 3178110036371472 a001 1346269/9349*710647^(4/7) 3178110036373819 a001 101003832877/317811 3178110036373975 a001 514229/9349*710647^(9/14) 3178110036374161 a001 433494437/9349*271443^(2/13) 3178110036377479 a001 165580141/9349*271443^(3/13) 3178110036379844 a001 1836311903/9349*103682^(1/24) 3178110036380797 a001 63245986/9349*271443^(4/13) 3178110036383997 a001 196418/9349*20633239^(4/7) 3178110036384000 a001 4181/439204*141422324^(12/13) 3178110036384000 a001 4181/439204*2537720636^(4/5) 3178110036384000 a001 4181/439204*45537549124^(12/17) 3178110036384000 a001 4181/439204*14662949395604^(4/7) 3178110036384000 a001 4181/439204*(1/2+1/2*5^(1/2))^36 3178110036384000 a001 4181/439204*505019158607^(9/14) 3178110036384000 a001 4181/439204*192900153618^(2/3) 3178110036384000 a001 4181/439204*73681302247^(9/13) 3178110036384000 a001 4181/439204*10749957122^(3/4) 3178110036384000 a001 4181/439204*4106118243^(18/23) 3178110036384000 a001 4181/439204*1568397607^(9/11) 3178110036384000 a001 4181/439204*599074578^(6/7) 3178110036384000 a001 4181/439204*228826127^(9/10) 3178110036384001 a001 4181/439204*87403803^(18/19) 3178110036384001 a001 196418/9349*2537720636^(4/9) 3178110036384001 a001 196418/9349*(1/2+1/2*5^(1/2))^20 3178110036384001 a001 196418/9349*23725150497407^(5/16) 3178110036384001 a001 196418/9349*505019158607^(5/14) 3178110036384001 a001 196418/9349*73681302247^(5/13) 3178110036384001 a001 196418/9349*28143753123^(2/5) 3178110036384001 a001 196418/9349*10749957122^(5/12) 3178110036384001 a001 196418/9349*4106118243^(10/23) 3178110036384001 a001 196418/9349*1568397607^(5/11) 3178110036384001 a001 196418/9349*599074578^(10/21) 3178110036384001 a001 196418/9349*228826127^(1/2) 3178110036384001 a001 196418/9349*87403803^(10/19) 3178110036384002 a001 196418/9349*33385282^(5/9) 3178110036384012 a001 196418/9349*12752043^(10/17) 3178110036384085 a001 196418/9349*4870847^(5/8) 3178110036384116 a001 24157817/9349*271443^(5/13) 3178110036384613 a001 196418/9349*1860498^(2/3) 3178110036387441 a001 9227465/9349*271443^(6/13) 3178110036388496 a001 196418/9349*710647^(5/7) 3178110036389072 a001 5702887/9349*271443^(1/2) 3178110036390802 a001 3524578/9349*271443^(7/13) 3178110036392162 a001 1134903170/9349*103682^(1/12) 3178110036394420 a001 1346269/9349*271443^(8/13) 3178110036399791 a001 514229/9349*271443^(9/13) 3178110036404480 a001 701408733/9349*103682^(1/8) 3178110036410666 a001 38580031165/121393 3178110036416799 a001 433494437/9349*103682^(1/6) 3178110036417180 a001 196418/9349*271443^(10/13) 3178110036429117 a001 267914296/9349*103682^(5/24) 3178110036441435 a001 165580141/9349*103682^(1/4) 3178110036453754 a001 102334155/9349*103682^(7/24) 3178110036459632 a001 1836311903/9349*39603^(1/22) 3178110036466072 a001 63245986/9349*103682^(1/3) 3178110036478390 a001 4181*103682^(3/8) 3178110036480416 a001 75025/9349*7881196^(2/3) 3178110036480449 a001 4181/167761*45537549124^(2/3) 3178110036480449 a001 4181/167761*(1/2+1/2*5^(1/2))^34 3178110036480449 a001 4181/167761*10749957122^(17/24) 3178110036480449 a001 4181/167761*4106118243^(17/23) 3178110036480449 a001 4181/167761*1568397607^(17/22) 3178110036480449 a001 4181/167761*599074578^(17/21) 3178110036480449 a001 4181/167761*228826127^(17/20) 3178110036480450 a001 4181/167761*87403803^(17/19) 3178110036480450 a001 75025/9349*312119004989^(2/5) 3178110036480450 a001 75025/9349*(1/2+1/2*5^(1/2))^22 3178110036480450 a001 75025/9349*10749957122^(11/24) 3178110036480450 a001 75025/9349*4106118243^(11/23) 3178110036480450 a001 75025/9349*1568397607^(1/2) 3178110036480450 a001 75025/9349*599074578^(11/21) 3178110036480450 a001 75025/9349*228826127^(11/20) 3178110036480450 a001 75025/9349*87403803^(11/19) 3178110036480451 a001 75025/9349*33385282^(11/18) 3178110036480452 a001 4181/167761*33385282^(17/18) 3178110036480462 a001 75025/9349*12752043^(11/17) 3178110036480542 a001 75025/9349*4870847^(11/16) 3178110036481123 a001 75025/9349*1860498^(11/15) 3178110036485394 a001 75025/9349*710647^(11/14) 3178110036490710 a001 24157817/9349*103682^(5/12) 3178110036503024 a001 14930352/9349*103682^(11/24) 3178110036515353 a001 9227465/9349*103682^(1/2) 3178110036516947 a001 75025/9349*271443^(11/13) 3178110036527644 a001 5702887/9349*103682^(13/24) 3178110036540033 a001 3524578/9349*103682^(7/12) 3178110036551738 a001 1134903170/9349*39603^(1/11) 3178110036552166 a001 2178309/9349*103682^(5/8) 3178110036564969 a001 1346269/9349*103682^(2/3) 3178110036576018 a001 832040/9349*103682^(17/24) 3178110036583077 a001 121393/9349*103682^(7/8) 3178110036591659 a001 514229/9349*103682^(3/4) 3178110036595280 a001 317811/9349*103682^(19/24) 3178110036630367 a001 196418/9349*103682^(5/6) 3178110036643845 a001 701408733/9349*39603^(3/22) 3178110036663216 a001 7368130309/23184 3178110036730908 a001 567451585/51841*5778^(7/18) 3178110036735951 a001 433494437/9349*39603^(2/11) 3178110036751452 a001 75025/9349*103682^(11/12) 3178110036828058 a001 267914296/9349*39603^(5/22) 3178110036920164 a001 165580141/9349*39603^(3/11) 3178110036983414 a001 2971215073/271443*5778^(7/18) 3178110037012271 a001 102334155/9349*39603^(7/22) 3178110037020255 a001 7778742049/710647*5778^(7/18) 3178110037025629 a001 10182505537/930249*5778^(7/18) 3178110037026414 a001 53316291173/4870847*5778^(7/18) 3178110037026528 a001 139583862445/12752043*5778^(7/18) 3178110037026545 a001 182717648081/16692641*5778^(7/18) 3178110037026547 a001 956722026041/87403803*5778^(7/18) 3178110037026548 a001 2504730781961/228826127*5778^(7/18) 3178110037026548 a001 3278735159921/299537289*5778^(7/18) 3178110037026548 a001 10610209857723/969323029*5778^(7/18) 3178110037026548 a001 4052739537881/370248451*5778^(7/18) 3178110037026548 a001 387002188980/35355581*5778^(7/18) 3178110037026549 a001 591286729879/54018521*5778^(7/18) 3178110037026555 a001 7787980473/711491*5778^(7/18) 3178110037026599 a001 21566892818/1970299*5778^(7/18) 3178110037026898 a001 32951280099/3010349*5778^(7/18) 3178110037028951 a001 12586269025/1149851*5778^(7/18) 3178110037042972 a001 433494437/24476*5778^(1/3) 3178110037043023 a001 1201881744/109801*5778^(7/18) 3178110037061963 a001 1836311903/9349*15127^(1/20) 3178110037104377 a001 63245986/9349*39603^(4/11) 3178110037126874 a001 28657/9349*439204^(8/9) 3178110037139472 a001 1836311903/167761*5778^(7/18) 3178110037141482 a001 28657/9349*7881196^(8/11) 3178110037141519 a001 4181/64079*(1/2+1/2*5^(1/2))^32 3178110037141519 a001 4181/64079*23725150497407^(1/2) 3178110037141519 a001 4181/64079*505019158607^(4/7) 3178110037141519 a001 4181/64079*73681302247^(8/13) 3178110037141519 a001 4181/64079*10749957122^(2/3) 3178110037141519 a001 4181/64079*4106118243^(16/23) 3178110037141519 a001 4181/64079*1568397607^(8/11) 3178110037141519 a001 4181/64079*599074578^(16/21) 3178110037141519 a001 4181/64079*228826127^(4/5) 3178110037141519 a001 28657/9349*141422324^(8/13) 3178110037141519 a001 4181/64079*87403803^(16/19) 3178110037141519 a001 28657/9349*2537720636^(8/15) 3178110037141519 a001 28657/9349*45537549124^(8/17) 3178110037141519 a001 28657/9349*14662949395604^(8/21) 3178110037141519 a001 28657/9349*(1/2+1/2*5^(1/2))^24 3178110037141519 a001 28657/9349*192900153618^(4/9) 3178110037141519 a001 28657/9349*73681302247^(6/13) 3178110037141519 a001 28657/9349*10749957122^(1/2) 3178110037141519 a001 28657/9349*4106118243^(12/23) 3178110037141519 a001 28657/9349*1568397607^(6/11) 3178110037141519 a001 28657/9349*599074578^(4/7) 3178110037141519 a001 28657/9349*228826127^(3/5) 3178110037141519 a001 28657/9349*87403803^(12/19) 3178110037141521 a001 28657/9349*33385282^(2/3) 3178110037141521 a001 4181/64079*33385282^(8/9) 3178110037141533 a001 28657/9349*12752043^(12/17) 3178110037141537 a001 4181/64079*12752043^(16/17) 3178110037141620 a001 28657/9349*4870847^(3/4) 3178110037142254 a001 28657/9349*1860498^(4/5) 3178110037146913 a001 28657/9349*710647^(6/7) 3178110037181334 a001 28657/9349*271443^(12/13) 3178110037196483 a001 4181*39603^(9/22) 3178110037288591 a001 24157817/9349*39603^(5/11) 3178110037380694 a001 14930352/9349*39603^(1/2) 3178110037472810 a001 9227465/9349*39603^(6/11) 3178110037564890 a001 5702887/9349*39603^(13/22) 3178110037657067 a001 3524578/9349*39603^(7/11) 3178110037748988 a001 2178309/9349*39603^(15/22) 3178110037756401 a001 1134903170/9349*15127^(1/10) 3178110037778664 p001 sum(1/(389*n+349)/(5^n),n=0..infinity) 3178110037800541 a001 701408733/64079*5778^(7/18) 3178110037841579 a001 1346269/9349*39603^(8/11) 3178110037932417 a001 832040/9349*39603^(17/22) 3178110038027845 a001 514229/9349*39603^(9/11) 3178110038111255 a001 317811/9349*39603^(19/22) 3178110038226130 a001 196418/9349*39603^(10/11) 3178110038258628 a001 121393/9349*39603^(21/22) 3178110038394218 a001 5628750689/17711 3178110038450839 a001 701408733/9349*15127^(3/20) 3178110038462281 r002 23th iterates of z^2 + 3178110038759687 a001 7778742049/39603*2207^(1/16) 3178110039003616 a001 39088169/15127*5778^(5/9) 3178110039145276 a001 433494437/9349*15127^(1/5) 3178110039664835 l006 ln(6751/6969) 3178110039839714 a001 267914296/9349*15127^(1/4) 3178110040288813 a001 267914296/39603*5778^(4/9) 3178110040490389 a001 10182505537/51841*2207^(1/16) 3178110040534152 a001 165580141/9349*15127^(3/10) 3178110040742896 a001 53316291173/271443*2207^(1/16) 3178110040779736 a001 139583862445/710647*2207^(1/16) 3178110040785111 a001 182717648081/930249*2207^(1/16) 3178110040785895 a001 956722026041/4870847*2207^(1/16) 3178110040786009 a001 2504730781961/12752043*2207^(1/16) 3178110040786026 a001 3278735159921/16692641*2207^(1/16) 3178110040786030 a001 10610209857723/54018521*2207^(1/16) 3178110040786036 a001 4052739537881/20633239*2207^(1/16) 3178110040786080 a001 387002188980/1970299*2207^(1/16) 3178110040786379 a001 591286729879/3010349*2207^(1/16) 3178110040788433 a001 225851433717/1149851*2207^(1/16) 3178110040802504 a001 196418*2207^(1/16) 3178110040898953 a001 32951280099/167761*2207^(1/16) 3178110041228590 a001 102334155/9349*15127^(7/20) 3178110041560023 a001 12586269025/64079*2207^(1/16) 3178110041656133 a001 1836311903/9349*5778^(1/18) 3178110041672511 a001 4181/24476*7881196^(10/11) 3178110041672551 a001 4181/24476*20633239^(6/7) 3178110041672557 a001 4181/24476*141422324^(10/13) 3178110041672557 a001 4181/24476*2537720636^(2/3) 3178110041672557 a001 4181/24476*45537549124^(10/17) 3178110041672557 a001 4181/24476*312119004989^(6/11) 3178110041672557 a001 4181/24476*14662949395604^(10/21) 3178110041672557 a001 4181/24476*(1/2+1/2*5^(1/2))^30 3178110041672557 a001 4181/24476*192900153618^(5/9) 3178110041672557 a001 4181/24476*28143753123^(3/5) 3178110041672557 a001 4181/24476*10749957122^(5/8) 3178110041672557 a001 4181/24476*4106118243^(15/23) 3178110041672557 a001 4181/24476*1568397607^(15/22) 3178110041672557 a001 4181/24476*599074578^(5/7) 3178110041672557 a001 4181/24476*228826127^(3/4) 3178110041672558 a001 10946/9349*141422324^(2/3) 3178110041672558 a001 4181/24476*87403803^(15/19) 3178110041672558 a001 10946/9349*(1/2+1/2*5^(1/2))^26 3178110041672558 a001 10946/9349*73681302247^(1/2) 3178110041672558 a001 10946/9349*10749957122^(13/24) 3178110041672558 a001 10946/9349*4106118243^(13/23) 3178110041672558 a001 10946/9349*1568397607^(13/22) 3178110041672558 a001 10946/9349*599074578^(13/21) 3178110041672558 a001 10946/9349*228826127^(13/20) 3178110041672558 a001 10946/9349*87403803^(13/19) 3178110041672560 a001 4181/24476*33385282^(5/6) 3178110041672560 a001 10946/9349*33385282^(13/18) 3178110041672573 a001 10946/9349*12752043^(13/17) 3178110041672575 a001 4181/24476*12752043^(15/17) 3178110041672667 a001 10946/9349*4870847^(13/16) 3178110041672683 a001 4181/24476*4870847^(15/16) 3178110041673354 a001 10946/9349*1860498^(13/15) 3178110041678401 a001 10946/9349*710647^(13/14) 3178110041711546 m001 (LandauRamanujan+Otter)/(Psi(1,1/3)+ln(5)) 3178110041923028 a001 63245986/9349*15127^(2/5) 3178110042019516 a001 701408733/103682*5778^(4/9) 3178110042272022 a001 1836311903/271443*5778^(4/9) 3178110042308862 a001 686789568/101521*5778^(4/9) 3178110042314237 a001 12586269025/1860498*5778^(4/9) 3178110042315022 a001 32951280099/4870847*5778^(4/9) 3178110042315136 a001 86267571272/12752043*5778^(4/9) 3178110042315153 a001 32264490531/4769326*5778^(4/9) 3178110042315155 a001 591286729879/87403803*5778^(4/9) 3178110042315155 a001 1548008755920/228826127*5778^(4/9) 3178110042315156 a001 4052739537881/599074578*5778^(4/9) 3178110042315156 a001 1515744265389/224056801*5778^(4/9) 3178110042315156 a001 6557470319842/969323029*5778^(4/9) 3178110042315156 a001 2504730781961/370248451*5778^(4/9) 3178110042315156 a001 956722026041/141422324*5778^(4/9) 3178110042315157 a001 365435296162/54018521*5778^(4/9) 3178110042315163 a001 139583862445/20633239*5778^(4/9) 3178110042315207 a001 53316291173/7881196*5778^(4/9) 3178110042315506 a001 20365011074/3010349*5778^(4/9) 3178110042317559 a001 7778742049/1149851*5778^(4/9) 3178110042331580 a001 10946*5778^(7/18) 3178110042331631 a001 2971215073/439204*5778^(4/9) 3178110042428080 a001 1134903170/167761*5778^(4/9) 3178110042617465 a001 4181*15127^(9/20) 3178110043089149 a001 433494437/64079*5778^(4/9) 3178110043311904 a001 24157817/9349*15127^(1/2) 3178110043665505 m005 (9/8+1/4*5^(1/2))/(7/12*Zeta(3)-6) 3178110043987280 a001 1346269/3571*3571^(14/17) 3178110044006338 a001 14930352/9349*15127^(11/20) 3178110044292225 a001 24157817/15127*5778^(11/18) 3178110044700786 a001 9227465/9349*15127^(3/5) 3178110045395197 a001 5702887/9349*15127^(13/20) 3178110045577421 a001 165580141/39603*5778^(1/2) 3178110046089705 a001 3524578/9349*15127^(7/10) 3178110046091061 a001 1201881744/6119*2207^(1/16) 3178110046783958 a001 2178309/9349*15127^(3/4) 3178110046944741 a001 1134903170/9349*5778^(1/9) 3178110047308124 a001 433494437/103682*5778^(1/2) 3178110047478880 a001 1346269/9349*15127^(4/5) 3178110047560630 a001 1134903170/271443*5778^(1/2) 3178110047597470 a001 2971215073/710647*5778^(1/2) 3178110047602845 a001 7778742049/1860498*5778^(1/2) 3178110047603629 a001 20365011074/4870847*5778^(1/2) 3178110047603744 a001 53316291173/12752043*5778^(1/2) 3178110047603761 a001 139583862445/33385282*5778^(1/2) 3178110047603763 a001 365435296162/87403803*5778^(1/2) 3178110047603763 a001 956722026041/228826127*5778^(1/2) 3178110047603763 a001 2504730781961/599074578*5778^(1/2) 3178110047603763 a001 6557470319842/1568397607*5778^(1/2) 3178110047603763 a001 10610209857723/2537720636*5778^(1/2) 3178110047603763 a001 4052739537881/969323029*5778^(1/2) 3178110047603763 a001 1548008755920/370248451*5778^(1/2) 3178110047603764 a001 591286729879/141422324*5778^(1/2) 3178110047603765 a001 225851433717/54018521*5778^(1/2) 3178110047603771 a001 86267571272/20633239*5778^(1/2) 3178110047603815 a001 32951280099/7881196*5778^(1/2) 3178110047604114 a001 12586269025/3010349*5778^(1/2) 3178110047606167 a001 4807526976/1149851*5778^(1/2) 3178110047620188 a001 165580141/24476*5778^(4/9) 3178110047620239 a001 1836311903/439204*5778^(1/2) 3178110047716688 a001 701408733/167761*5778^(1/2) 3178110048172049 a001 832040/9349*15127^(17/20) 3178110048377757 a001 267914296/64079*5778^(1/2) 3178110048869809 a001 514229/9349*15127^(9/10) 3178110049555550 a001 317811/9349*15127^(19/20) 3178110049580829 a001 14930352/15127*5778^(2/3) 3178110050258684 a001 2149991449/6765 3178110050866029 a001 34111385/13201*5778^(5/9) 3178110052233349 a001 701408733/9349*5778^(1/6) 3178110052596732 a001 133957148/51841*5778^(5/9) 3178110052849238 a001 233802911/90481*5778^(5/9) 3178110052886078 a001 1836311903/710647*5778^(5/9) 3178110052891453 a001 267084832/103361*5778^(5/9) 3178110052892237 a001 12586269025/4870847*5778^(5/9) 3178110052892352 a001 10983760033/4250681*5778^(5/9) 3178110052892369 a001 43133785636/16692641*5778^(5/9) 3178110052892371 a001 75283811239/29134601*5778^(5/9) 3178110052892371 a001 591286729879/228826127*5778^(5/9) 3178110052892371 a001 86000486440/33281921*5778^(5/9) 3178110052892371 a001 4052739537881/1568397607*5778^(5/9) 3178110052892371 a001 3536736619241/1368706081*5778^(5/9) 3178110052892371 a001 3278735159921/1268860318*5778^(5/9) 3178110052892371 a001 2504730781961/969323029*5778^(5/9) 3178110052892371 a001 956722026041/370248451*5778^(5/9) 3178110052892372 a001 182717648081/70711162*5778^(5/9) 3178110052892372 a001 139583862445/54018521*5778^(5/9) 3178110052892379 a001 53316291173/20633239*5778^(5/9) 3178110052892423 a001 10182505537/3940598*5778^(5/9) 3178110052892722 a001 7778742049/3010349*5778^(5/9) 3178110052894775 a001 2971215073/1149851*5778^(5/9) 3178110052908796 a001 102334155/24476*5778^(1/2) 3178110052908847 a001 567451585/219602*5778^(5/9) 3178110053005296 a001 433494437/167761*5778^(5/9) 3178110053666365 a001 165580141/64079*5778^(5/9) 3178110054869447 a001 9227465/15127*5778^(13/18) 3178110056154637 a001 63245986/39603*5778^(11/18) 3178110057521957 a001 433494437/9349*5778^(2/9) 3178110057885340 a001 165580141/103682*5778^(11/18) 3178110058137846 a001 433494437/271443*5778^(11/18) 3178110058174686 a001 1134903170/710647*5778^(11/18) 3178110058180061 a001 2971215073/1860498*5778^(11/18) 3178110058180845 a001 7778742049/4870847*5778^(11/18) 3178110058180960 a001 20365011074/12752043*5778^(11/18) 3178110058180976 a001 53316291173/33385282*5778^(11/18) 3178110058180979 a001 139583862445/87403803*5778^(11/18) 3178110058180979 a001 365435296162/228826127*5778^(11/18) 3178110058180979 a001 956722026041/599074578*5778^(11/18) 3178110058180979 a001 2504730781961/1568397607*5778^(11/18) 3178110058180979 a001 6557470319842/4106118243*5778^(11/18) 3178110058180979 a001 10610209857723/6643838879*5778^(11/18) 3178110058180979 a001 4052739537881/2537720636*5778^(11/18) 3178110058180979 a001 1548008755920/969323029*5778^(11/18) 3178110058180979 a001 591286729879/370248451*5778^(11/18) 3178110058180979 a001 225851433717/141422324*5778^(11/18) 3178110058180980 a001 86267571272/54018521*5778^(11/18) 3178110058180987 a001 32951280099/20633239*5778^(11/18) 3178110058181030 a001 12586269025/7881196*5778^(11/18) 3178110058181330 a001 4807526976/3010349*5778^(11/18) 3178110058183383 a001 1836311903/1149851*5778^(11/18) 3178110058197404 a001 31622993/12238*5778^(5/9) 3178110058197455 a001 701408733/439204*5778^(11/18) 3178110058293903 a001 267914296/167761*5778^(11/18) 3178110058647007 a001 2178309/3571*3571^(13/17) 3178110058954973 a001 102334155/64079*5778^(11/18) 3178110060158028 a001 5702887/15127*5778^(7/9) 3178110060334925 a007 Real Root Of -332*x^4-874*x^3+240*x^2-928*x+441 3178110061443245 a001 39088169/39603*5778^(2/3) 3178110062810565 a001 267914296/9349*5778^(5/18) 3178110063173948 a001 102334155/103682*5778^(2/3) 3178110063426454 a001 267914296/271443*5778^(2/3) 3178110063463294 a001 701408733/710647*5778^(2/3) 3178110063468669 a001 1836311903/1860498*5778^(2/3) 3178110063469453 a001 4807526976/4870847*5778^(2/3) 3178110063469568 a001 12586269025/12752043*5778^(2/3) 3178110063469584 a001 32951280099/33385282*5778^(2/3) 3178110063469587 a001 86267571272/87403803*5778^(2/3) 3178110063469587 a001 225851433717/228826127*5778^(2/3) 3178110063469587 a001 591286729879/599074578*5778^(2/3) 3178110063469587 a001 1548008755920/1568397607*5778^(2/3) 3178110063469587 a001 4052739537881/4106118243*5778^(2/3) 3178110063469587 a001 4807525989/4870846*5778^(2/3) 3178110063469587 a001 6557470319842/6643838879*5778^(2/3) 3178110063469587 a001 2504730781961/2537720636*5778^(2/3) 3178110063469587 a001 956722026041/969323029*5778^(2/3) 3178110063469587 a001 365435296162/370248451*5778^(2/3) 3178110063469587 a001 139583862445/141422324*5778^(2/3) 3178110063469588 a001 53316291173/54018521*5778^(2/3) 3178110063469595 a001 20365011074/20633239*5778^(2/3) 3178110063469638 a001 7778742049/7881196*5778^(2/3) 3178110063469938 a001 2971215073/3010349*5778^(2/3) 3178110063471991 a001 1134903170/1149851*5778^(2/3) 3178110063486011 a001 39088169/24476*5778^(11/18) 3178110063486063 a001 433494437/439204*5778^(2/3) 3178110063582511 a001 165580141/167761*5778^(2/3) 3178110064243581 a001 63245986/64079*5778^(2/3) 3178110065446707 a001 3524578/15127*5778^(5/6) 3178110066731854 a001 24157817/39603*5778^(13/18) 3178110067677010 a001 1836311903/15127*2207^(1/8) 3178110067930296 a001 133957148/2889*2207^(1/4) 3178110068099173 a001 165580141/9349*5778^(1/3) 3178110068340890 a003 1/2-2*cos(1/8*Pi)+cos(11/27*Pi)+cos(7/30*Pi) 3178110068462556 a001 31622993/51841*5778^(13/18) 3178110068715062 a001 165580141/271443*5778^(13/18) 3178110068751902 a001 433494437/710647*5778^(13/18) 3178110068757277 a001 567451585/930249*5778^(13/18) 3178110068758061 a001 2971215073/4870847*5778^(13/18) 3178110068758176 a001 7778742049/12752043*5778^(13/18) 3178110068758192 a001 10182505537/16692641*5778^(13/18) 3178110068758195 a001 53316291173/87403803*5778^(13/18) 3178110068758195 a001 139583862445/228826127*5778^(13/18) 3178110068758195 a001 182717648081/299537289*5778^(13/18) 3178110068758195 a001 956722026041/1568397607*5778^(13/18) 3178110068758195 a001 2504730781961/4106118243*5778^(13/18) 3178110068758195 a001 3278735159921/5374978561*5778^(13/18) 3178110068758195 a001 10610209857723/17393796001*5778^(13/18) 3178110068758195 a001 4052739537881/6643838879*5778^(13/18) 3178110068758195 a001 1134903780/1860499*5778^(13/18) 3178110068758195 a001 591286729879/969323029*5778^(13/18) 3178110068758195 a001 225851433717/370248451*5778^(13/18) 3178110068758195 a001 21566892818/35355581*5778^(13/18) 3178110068758196 a001 32951280099/54018521*5778^(13/18) 3178110068758203 a001 1144206275/1875749*5778^(13/18) 3178110068758246 a001 1201881744/1970299*5778^(13/18) 3178110068758546 a001 1836311903/3010349*5778^(13/18) 3178110068760599 a001 701408733/1149851*5778^(13/18) 3178110068774621 a001 24157817/24476*5778^(2/3) 3178110068774671 a001 66978574/109801*5778^(13/18) 3178110068871119 a001 9303105/15251*5778^(13/18) 3178110069532189 a001 39088169/64079*5778^(13/18) 3178110070358287 m001 1/GAMMA(5/24)*BesselK(1,1)*exp(Zeta(1/2)) 3178110070735130 a001 311187/2161*5778^(8/9) 3178110070892392 l006 ln(6367/8749) 3178110071446258 m001 (Landau-MertensB1)/(Sarnak-TravellingSalesman) 3178110072020458 a001 4976784/13201*5778^(7/9) 3178110072728752 a001 4181/9349*20633239^(4/5) 3178110072728758 a001 4181/9349*17393796001^(4/7) 3178110072728758 a001 4181/9349*14662949395604^(4/9) 3178110072728758 a001 4181/9349*(1/2+1/2*5^(1/2))^28 3178110072728758 a001 4181/9349*73681302247^(7/13) 3178110072728758 a001 4181/9349*10749957122^(7/12) 3178110072728758 a001 4181/9349*4106118243^(14/23) 3178110072728758 a001 4181/9349*1568397607^(7/11) 3178110072728758 a001 4181/9349*599074578^(2/3) 3178110072728758 a001 4181/9349*228826127^(7/10) 3178110072728759 a001 4181/9349*87403803^(14/19) 3178110072728761 a001 4181/9349*33385282^(7/9) 3178110072728774 a001 4181/9349*12752043^(14/17) 3178110072728876 a001 4181/9349*4870847^(7/8) 3178110072729615 a001 4181/9349*1860498^(14/15) 3178110073307405 a001 3524578/3571*3571^(12/17) 3178110073387781 a001 102334155/9349*5778^(7/18) 3178110073751163 a001 39088169/103682*5778^(7/9) 3178110074003670 a001 34111385/90481*5778^(7/9) 3178110074040510 a001 267914296/710647*5778^(7/9) 3178110074045885 a001 233802911/620166*5778^(7/9) 3178110074046669 a001 1836311903/4870847*5778^(7/9) 3178110074046784 a001 1602508992/4250681*5778^(7/9) 3178110074046800 a001 12586269025/33385282*5778^(7/9) 3178110074046803 a001 10983760033/29134601*5778^(7/9) 3178110074046803 a001 86267571272/228826127*5778^(7/9) 3178110074046803 a001 267913919/710646*5778^(7/9) 3178110074046803 a001 591286729879/1568397607*5778^(7/9) 3178110074046803 a001 516002918640/1368706081*5778^(7/9) 3178110074046803 a001 4052739537881/10749957122*5778^(7/9) 3178110074046803 a001 3536736619241/9381251041*5778^(7/9) 3178110074046803 a001 6557470319842/17393796001*5778^(7/9) 3178110074046803 a001 2504730781961/6643838879*5778^(7/9) 3178110074046803 a001 956722026041/2537720636*5778^(7/9) 3178110074046803 a001 365435296162/969323029*5778^(7/9) 3178110074046803 a001 139583862445/370248451*5778^(7/9) 3178110074046803 a001 53316291173/141422324*5778^(7/9) 3178110074046804 a001 20365011074/54018521*5778^(7/9) 3178110074046811 a001 7778742049/20633239*5778^(7/9) 3178110074046854 a001 2971215073/7881196*5778^(7/9) 3178110074047154 a001 1134903170/3010349*5778^(7/9) 3178110074049207 a001 433494437/1149851*5778^(7/9) 3178110074063225 a001 3732588/6119*5778^(13/18) 3178110074063279 a001 165580141/439204*5778^(7/9) 3178110074159727 a001 63245986/167761*5778^(7/9) 3178110074820798 a001 24157817/64079*5778^(7/9) 3178110076024222 a001 1346269/15127*5778^(17/18) 3178110077147262 a001 1836311903/9349*2207^(1/16) 3178110077309076 a001 9227465/39603*5778^(5/6) 3178110078676389 a001 63245986/9349*5778^(4/9) 3178110079039773 a001 24157817/103682*5778^(5/6) 3178110079292278 a001 63245986/271443*5778^(5/6) 3178110079329118 a001 165580141/710647*5778^(5/6) 3178110079334493 a001 433494437/1860498*5778^(5/6) 3178110079335277 a001 1134903170/4870847*5778^(5/6) 3178110079335392 a001 2971215073/12752043*5778^(5/6) 3178110079335408 a001 7778742049/33385282*5778^(5/6) 3178110079335411 a001 20365011074/87403803*5778^(5/6) 3178110079335411 a001 53316291173/228826127*5778^(5/6) 3178110079335411 a001 139583862445/599074578*5778^(5/6) 3178110079335411 a001 365435296162/1568397607*5778^(5/6) 3178110079335411 a001 956722026041/4106118243*5778^(5/6) 3178110079335411 a001 2504730781961/10749957122*5778^(5/6) 3178110079335411 a001 6557470319842/28143753123*5778^(5/6) 3178110079335411 a001 10610209857723/45537549124*5778^(5/6) 3178110079335411 a001 4052739537881/17393796001*5778^(5/6) 3178110079335411 a001 1548008755920/6643838879*5778^(5/6) 3178110079335411 a001 591286729879/2537720636*5778^(5/6) 3178110079335411 a001 225851433717/969323029*5778^(5/6) 3178110079335411 a001 86267571272/370248451*5778^(5/6) 3178110079335411 a001 63246219/271444*5778^(5/6) 3178110079335412 a001 12586269025/54018521*5778^(5/6) 3178110079335419 a001 4807526976/20633239*5778^(5/6) 3178110079335462 a001 1836311903/7881196*5778^(5/6) 3178110079335762 a001 701408733/3010349*5778^(5/6) 3178110079337815 a001 267914296/1149851*5778^(5/6) 3178110079351843 a001 9227465/24476*5778^(7/9) 3178110079351886 a001 102334155/439204*5778^(5/6) 3178110079448335 a001 39088169/167761*5778^(5/6) 3178110079539423 a001 1602508992/13201*2207^(1/8) 3178110080109402 a001 14930352/64079*5778^(5/6) 3178110081269349 a001 821223645/2584 3178110081270126 a001 12586269025/103682*2207^(1/8) 3178110081522632 a001 121393*2207^(1/8) 3178110081559472 a001 86267571272/710647*2207^(1/8) 3178110081564847 a001 75283811239/620166*2207^(1/8) 3178110081565632 a001 591286729879/4870847*2207^(1/8) 3178110081565746 a001 516002918640/4250681*2207^(1/8) 3178110081565763 a001 4052739537881/33385282*2207^(1/8) 3178110081565765 a001 3536736619241/29134601*2207^(1/8) 3178110081565767 a001 6557470319842/54018521*2207^(1/8) 3178110081565773 a001 2504730781961/20633239*2207^(1/8) 3178110081565817 a001 956722026041/7881196*2207^(1/8) 3178110081566116 a001 365435296162/3010349*2207^(1/8) 3178110081568169 a001 139583862445/1149851*2207^(1/8) 3178110081582241 a001 53316291173/439204*2207^(1/8) 3178110081678690 a001 20365011074/167761*2207^(1/8) 3178110082339759 a001 7778742049/64079*2207^(1/8) 3178110082597657 a001 5702887/39603*5778^(8/9) 3178110083964996 a001 4181*5778^(1/2) 3178110084328377 a001 7465176/51841*5778^(8/9) 3178110084580885 a001 39088169/271443*5778^(8/9) 3178110084617726 a001 14619165/101521*5778^(8/9) 3178110084623101 a001 133957148/930249*5778^(8/9) 3178110084623885 a001 701408733/4870847*5778^(8/9) 3178110084624000 a001 1836311903/12752043*5778^(8/9) 3178110084624016 a001 14930208/103681*5778^(8/9) 3178110084624019 a001 12586269025/87403803*5778^(8/9) 3178110084624019 a001 32951280099/228826127*5778^(8/9) 3178110084624019 a001 43133785636/299537289*5778^(8/9) 3178110084624019 a001 32264490531/224056801*5778^(8/9) 3178110084624019 a001 591286729879/4106118243*5778^(8/9) 3178110084624019 a001 774004377960/5374978561*5778^(8/9) 3178110084624019 a001 4052739537881/28143753123*5778^(8/9) 3178110084624019 a001 1515744265389/10525900321*5778^(8/9) 3178110084624019 a001 3278735159921/22768774562*5778^(8/9) 3178110084624019 a001 2504730781961/17393796001*5778^(8/9) 3178110084624019 a001 956722026041/6643838879*5778^(8/9) 3178110084624019 a001 182717648081/1268860318*5778^(8/9) 3178110084624019 a001 139583862445/969323029*5778^(8/9) 3178110084624019 a001 53316291173/370248451*5778^(8/9) 3178110084624019 a001 10182505537/70711162*5778^(8/9) 3178110084624020 a001 7778742049/54018521*5778^(8/9) 3178110084624027 a001 2971215073/20633239*5778^(8/9) 3178110084624070 a001 567451585/3940598*5778^(8/9) 3178110084624370 a001 433494437/3010349*5778^(8/9) 3178110084626423 a001 165580141/1149851*5778^(8/9) 3178110084640424 a001 5702887/24476*5778^(5/6) 3178110084640495 a001 31622993/219602*5778^(8/9) 3178110084736944 a001 24157817/167761*5778^(8/9) 3178110085398020 a001 9227465/64079*5778^(8/9) 3178110086870798 a001 2971215073/24476*2207^(1/8) 3178110087886336 a001 3524578/39603*5778^(17/18) 3178110087967546 a001 1597*3571^(11/17) 3178110089253606 a001 24157817/9349*5778^(5/9) 3178110089616995 a001 9227465/103682*5778^(17/18) 3178110089869495 a001 24157817/271443*5778^(17/18) 3178110089906334 a001 63245986/710647*5778^(17/18) 3178110089911709 a001 165580141/1860498*5778^(17/18) 3178110089912493 a001 433494437/4870847*5778^(17/18) 3178110089912608 a001 1134903170/12752043*5778^(17/18) 3178110089912624 a001 2971215073/33385282*5778^(17/18) 3178110089912627 a001 7778742049/87403803*5778^(17/18) 3178110089912627 a001 20365011074/228826127*5778^(17/18) 3178110089912627 a001 53316291173/599074578*5778^(17/18) 3178110089912627 a001 139583862445/1568397607*5778^(17/18) 3178110089912627 a001 365435296162/4106118243*5778^(17/18) 3178110089912627 a001 956722026041/10749957122*5778^(17/18) 3178110089912627 a001 2504730781961/28143753123*5778^(17/18) 3178110089912627 a001 6557470319842/73681302247*5778^(17/18) 3178110089912627 a001 10610209857723/119218851371*5778^(17/18) 3178110089912627 a001 4052739537881/45537549124*5778^(17/18) 3178110089912627 a001 1548008755920/17393796001*5778^(17/18) 3178110089912627 a001 591286729879/6643838879*5778^(17/18) 3178110089912627 a001 225851433717/2537720636*5778^(17/18) 3178110089912627 a001 86267571272/969323029*5778^(17/18) 3178110089912627 a001 32951280099/370248451*5778^(17/18) 3178110089912627 a001 12586269025/141422324*5778^(17/18) 3178110089912628 a001 4807526976/54018521*5778^(17/18) 3178110089912635 a001 1836311903/20633239*5778^(17/18) 3178110089912678 a001 3524667/39604*5778^(17/18) 3178110089912978 a001 267914296/3010349*5778^(17/18) 3178110089915031 a001 102334155/1149851*5778^(17/18) 3178110089929102 a001 39088169/439204*5778^(17/18) 3178110089929103 a001 1762289/12238*5778^(8/9) 3178110090025548 a001 14930352/167761*5778^(17/18) 3178110090686601 a001 5702887/64079*5778^(17/18) 3178110092879256 a001 102652956/323 3178110093263033 r005 Im(z^2+c),c=1/13+25/42*I,n=20 3178110094542210 a001 14930352/9349*5778^(11/18) 3178110095201238 a001 1/1292*(1/2+1/2*5^(1/2))^46 3178110095217526 a001 2178309/24476*5778^(17/18) 3178110096749226 a001 821223649/2584 3178110099549856 m001 Riemann3rdZero*Kolakoski^2/ln(OneNinth)^2 3178110099830828 a001 9227465/9349*5778^(2/3) 3178110100117776 a007 Real Root Of 222*x^4+700*x^3+53*x^2+175*x-157 3178110100619195 a001 410611825/1292 3178110102627786 a001 9227465/3571*3571^(10/17) 3178110105119409 a001 5702887/9349*5778^(13/18) 3178110107000815 m001 (Niven+Tribonacci)/(Psi(1,1/3)+Shi(1)) 3178110108456747 a001 1134903170/15127*2207^(3/16) 3178110108710033 a001 165580141/5778*2207^(5/16) 3178110110408088 a001 3524578/9349*5778^(7/9) 3178110111062305 r009 Im(z^3+c),c=-7/86+9/26*I,n=8 3178110113888991 a001 514229/1364*1364^(14/15) 3178110115696511 a001 2178309/9349*5778^(5/6) 3178110116004053 r005 Re(z^2+c),c=1/26+23/34*I,n=3 3178110117287988 a001 14930352/3571*3571^(9/17) 3178110117926999 a001 1134903170/9349*2207^(1/8) 3178110120319161 a001 2971215073/39603*2207^(3/16) 3178110120985604 a001 1346269/9349*5778^(8/9) 3178110121364436 a007 Real Root Of 844*x^4-771*x^3+61*x^2-914*x-330 3178110122049863 a001 7778742049/103682*2207^(3/16) 3178110122302370 a001 20365011074/271443*2207^(3/16) 3178110122339210 a001 53316291173/710647*2207^(3/16) 3178110122344585 a001 139583862445/1860498*2207^(3/16) 3178110122345369 a001 365435296162/4870847*2207^(3/16) 3178110122345483 a001 956722026041/12752043*2207^(3/16) 3178110122345500 a001 2504730781961/33385282*2207^(3/16) 3178110122345502 a001 6557470319842/87403803*2207^(3/16) 3178110122345503 a001 10610209857723/141422324*2207^(3/16) 3178110122345504 a001 4052739537881/54018521*2207^(3/16) 3178110122345510 a001 140728068720/1875749*2207^(3/16) 3178110122345554 a001 591286729879/7881196*2207^(3/16) 3178110122345854 a001 225851433717/3010349*2207^(3/16) 3178110122347907 a001 86267571272/1149851*2207^(3/16) 3178110122361978 a001 32951280099/439204*2207^(3/16) 3178110122458427 a001 75025*2207^(3/16) 3178110123119497 a001 4807526976/64079*2207^(3/16) 3178110126272943 a001 832040/9349*5778^(17/18) 3178110127650535 a001 1836311903/24476*2207^(3/16) 3178110129163834 q001 935/2942 3178110131948205 a001 24157817/3571*3571^(8/17) 3178110135349607 a001 701408733/3571*1364^(1/15) 3178110146489634 m005 (1/2*3^(1/2)-5/11)/(4/5*3^(1/2)-1/11) 3178110146608416 a001 39088169/3571*3571^(7/17) 3178110149236485 a001 701408733/15127*2207^(1/4) 3178110149489771 a001 34111385/1926*2207^(3/8) 3178110154034915 a001 2584/3571*7881196^(9/11) 3178110154034940 a001 1597/5778*(1/2+1/2*5^(1/2))^29 3178110154034940 a001 1597/5778*1322157322203^(1/2) 3178110154034957 a001 2584/3571*141422324^(9/13) 3178110154034957 a001 2584/3571*2537720636^(3/5) 3178110154034957 a001 2584/3571*45537549124^(9/17) 3178110154034957 a001 2584/3571*14662949395604^(3/7) 3178110154034957 a001 2584/3571*(1/2+1/2*5^(1/2))^27 3178110154034957 a001 2584/3571*192900153618^(1/2) 3178110154034957 a001 2584/3571*10749957122^(9/16) 3178110154034957 a001 2584/3571*599074578^(9/14) 3178110154034959 a001 2584/3571*33385282^(3/4) 3178110154035783 a001 2584/3571*1860498^(9/10) 3178110158706737 a001 701408733/9349*2207^(3/16) 3178110161098898 a001 1836311903/39603*2207^(1/4) 3178110161268629 a001 63245986/3571*3571^(6/17) 3178110162368583 r008 a(0)=0,K{-n^6,65-11*n^3-35*n^2+12*n} 3178110162829601 a001 46368*2207^(1/4) 3178110163082107 a001 12586269025/271443*2207^(1/4) 3178110163118948 a001 32951280099/710647*2207^(1/4) 3178110163124322 a001 43133785636/930249*2207^(1/4) 3178110163125107 a001 225851433717/4870847*2207^(1/4) 3178110163125221 a001 591286729879/12752043*2207^(1/4) 3178110163125238 a001 774004377960/16692641*2207^(1/4) 3178110163125240 a001 4052739537881/87403803*2207^(1/4) 3178110163125241 a001 225749145909/4868641*2207^(1/4) 3178110163125241 a001 3278735159921/70711162*2207^(1/4) 3178110163125242 a001 2504730781961/54018521*2207^(1/4) 3178110163125248 a001 956722026041/20633239*2207^(1/4) 3178110163125292 a001 182717648081/3940598*2207^(1/4) 3178110163125591 a001 139583862445/3010349*2207^(1/4) 3178110163127644 a001 53316291173/1149851*2207^(1/4) 3178110163141716 a001 10182505537/219602*2207^(1/4) 3178110163238165 a001 7778742049/167761*2207^(1/4) 3178110163899234 a001 2971215073/64079*2207^(1/4) 3178110168430273 a001 567451585/12238*2207^(1/4) 3178110170336905 m001 (-Niven+ThueMorse)/(2^(1/3)+FransenRobinson) 3178110171337577 a001 4106118243*144^(7/17) 3178110173204185 a007 Real Root Of 473*x^4-912*x^3+382*x^2-743*x+222 3178110175928842 a001 102334155/3571*3571^(5/17) 3178110181236212 k007 concat of cont frac of 3178110187215672 a007 Real Root Of -406*x^4+994*x^3+95*x^2+238*x-113 3178110188108830 a007 Real Root Of -302*x^4-867*x^3+366*x^2+512*x+909 3178110188215084 m005 (1/3*2^(1/2)+1/7)/(10/11*5^(1/2)-1/10) 3178110190016223 a001 433494437/15127*2207^(5/16) 3178110190193338 m005 (1/3*Catalan-1/6)/(3/10*3^(1/2)-1/12) 3178110190269509 a001 31622993/2889*2207^(7/16) 3178110190589055 a001 165580141/3571*3571^(4/17) 3178110199486475 a001 433494437/9349*2207^(1/4) 3178110200189962 m001 (FeigenbaumDelta+Kac)/(MertensB1-Tetranacci) 3178110200573367 r005 Im(z^2+c),c=3/62+22/63*I,n=12 3178110201878637 a001 1134903170/39603*2207^(5/16) 3178110203609340 a001 2971215073/103682*2207^(5/16) 3178110203861846 a001 7778742049/271443*2207^(5/16) 3178110203898686 a001 20365011074/710647*2207^(5/16) 3178110203904061 a001 53316291173/1860498*2207^(5/16) 3178110203904845 a001 139583862445/4870847*2207^(5/16) 3178110203904959 a001 365435296162/12752043*2207^(5/16) 3178110203904976 a001 956722026041/33385282*2207^(5/16) 3178110203904979 a001 2504730781961/87403803*2207^(5/16) 3178110203904979 a001 6557470319842/228826127*2207^(5/16) 3178110203904979 a001 10610209857723/370248451*2207^(5/16) 3178110203904979 a001 4052739537881/141422324*2207^(5/16) 3178110203904980 a001 1548008755920/54018521*2207^(5/16) 3178110203904986 a001 591286729879/20633239*2207^(5/16) 3178110203905030 a001 225851433717/7881196*2207^(5/16) 3178110203905330 a001 86267571272/3010349*2207^(5/16) 3178110203907383 a001 32951280099/1149851*2207^(5/16) 3178110203921454 a001 12586269025/439204*2207^(5/16) 3178110204017903 a001 4807526976/167761*2207^(5/16) 3178110204678973 a001 28657*2207^(5/16) 3178110205249268 a001 267914296/3571*3571^(3/17) 3178110209210012 a001 701408733/24476*2207^(5/16) 3178110211257384 p004 log(17737/739) 3178110212867734 a001 1328767880/4181 3178110214798896 a001 196418/3571*9349^(18/19) 3178110216689877 a001 317811/3571*9349^(17/19) 3178110218013211 m005 (1/2*Catalan+8/9)/(2/11*2^(1/2)+1/6) 3178110218612323 a001 514229/3571*9349^(16/19) 3178110219909481 a001 433494437/3571*3571^(2/17) 3178110220522750 a001 832040/3571*9349^(15/19) 3178110222437769 a001 1346269/3571*9349^(14/19) 3178110224249417 a001 567451585/2889*843^(1/14) 3178110224351033 a001 2178309/3571*9349^(13/19) 3178110226264967 a001 3524578/3571*9349^(12/19) 3178110227618031 a007 Real Root Of 121*x^4+289*x^3-161*x^2+281*x-548 3178110227765968 a001 610*1364^(13/15) 3178110228178646 a001 1597*9349^(11/19) 3178110230092422 a001 9227465/3571*9349^(10/19) 3178110230795962 a001 267914296/15127*2207^(3/8) 3178110231049247 a001 39088169/5778*2207^(1/2) 3178110232006161 a001 14930352/3571*9349^(9/19) 3178110233919914 a001 24157817/3571*9349^(8/19) 3178110234569694 a001 701408733/3571*3571^(1/17) 3178110235341132 a001 1597/15127*(1/2+1/2*5^(1/2))^31 3178110235341132 a001 1597/15127*9062201101803^(1/2) 3178110235341146 a001 6765/3571*20633239^(5/7) 3178110235341151 a001 6765/3571*2537720636^(5/9) 3178110235341151 a001 6765/3571*312119004989^(5/11) 3178110235341151 a001 6765/3571*(1/2+1/2*5^(1/2))^25 3178110235341151 a001 6765/3571*3461452808002^(5/12) 3178110235341151 a001 6765/3571*28143753123^(1/2) 3178110235341151 a001 6765/3571*228826127^(5/8) 3178110235341916 a001 6765/3571*1860498^(5/6) 3178110235833662 a001 39088169/3571*9349^(7/19) 3178110237747412 a001 63245986/3571*9349^(6/19) 3178110237759690 m005 (1/2*gamma+1/4)/(-30/77+2/11*5^(1/2)) 3178110239661161 a001 102334155/3571*9349^(5/19) 3178110239865033 m001 Pi*(Psi(1,1/3)-LambertW(1)+sin(1/5*Pi)) 3178110240266214 a001 267914296/9349*2207^(5/16) 3178110241574910 a001 165580141/3571*9349^(4/19) 3178110242658376 a001 17711*2207^(3/8) 3178110243488659 a001 267914296/3571*9349^(3/19) 3178110243924721 a001 3478759473/10946 3178110244290419 a001 75025/3571*24476^(20/21) 3178110244386982 a001 121393/3571*24476^(19/21) 3178110244389078 a001 1836311903/103682*2207^(3/8) 3178110244641585 a001 1602508992/90481*2207^(3/8) 3178110244678425 a001 12586269025/710647*2207^(3/8) 3178110244683800 a001 10983760033/620166*2207^(3/8) 3178110244684584 a001 86267571272/4870847*2207^(3/8) 3178110244684698 a001 75283811239/4250681*2207^(3/8) 3178110244684715 a001 591286729879/33385282*2207^(3/8) 3178110244684717 a001 516002918640/29134601*2207^(3/8) 3178110244684718 a001 4052739537881/228826127*2207^(3/8) 3178110244684718 a001 3536736619241/199691526*2207^(3/8) 3178110244684718 a001 6557470319842/370248451*2207^(3/8) 3178110244684718 a001 2504730781961/141422324*2207^(3/8) 3178110244684719 a001 956722026041/54018521*2207^(3/8) 3178110244684725 a001 365435296162/20633239*2207^(3/8) 3178110244684769 a001 139583862445/7881196*2207^(3/8) 3178110244685068 a001 53316291173/3010349*2207^(3/8) 3178110244687122 a001 20365011074/1149851*2207^(3/8) 3178110244699212 a001 196418/3571*24476^(6/7) 3178110244701193 a001 7778742049/439204*2207^(3/8) 3178110244797642 a001 2971215073/167761*2207^(3/8) 3178110244864423 r005 Im(z^2+c),c=-1/40+23/59*I,n=17 3178110244929064 a001 317811/3571*24476^(17/21) 3178110245176387 m001 Riemann2ndZero^2*exp(ErdosBorwein)*(3^(1/3)) 3178110245190381 a001 514229/3571*24476^(16/21) 3178110245402409 a001 433494437/3571*9349^(2/19) 3178110245439680 a001 832040/3571*24476^(5/7) 3178110245458712 a001 1134903170/64079*2207^(3/8) 3178110245693569 a001 1346269/3571*24476^(2/3) 3178110245945705 a001 2178309/3571*24476^(13/21) 3178110246198511 a001 3524578/3571*24476^(4/7) 3178110246451061 a001 1597*24476^(11/21) 3178110246703708 a001 9227465/3571*24476^(10/21) 3178110246956319 a001 14930352/3571*24476^(3/7) 3178110247203545 a001 1597/39603*141422324^(11/13) 3178110247203545 a001 1597/39603*2537720636^(11/15) 3178110247203545 a001 1597/39603*45537549124^(11/17) 3178110247203545 a001 1597/39603*312119004989^(3/5) 3178110247203545 a001 1597/39603*14662949395604^(11/21) 3178110247203545 a001 1597/39603*(1/2+1/2*5^(1/2))^33 3178110247203545 a001 1597/39603*192900153618^(11/18) 3178110247203545 a001 1597/39603*10749957122^(11/16) 3178110247203545 a001 1597/39603*1568397607^(3/4) 3178110247203545 a001 1597/39603*599074578^(11/14) 3178110247203548 a001 1597/39603*33385282^(11/12) 3178110247203565 a001 17711/3571*(1/2+1/2*5^(1/2))^23 3178110247203565 a001 17711/3571*4106118243^(1/2) 3178110247208943 a001 24157817/3571*24476^(8/21) 3178110247316158 a001 701408733/3571*9349^(1/19) 3178110247461562 a001 39088169/3571*24476^(1/3) 3178110247486886 a001 17711/3571*103682^(23/24) 3178110247714184 a001 63245986/3571*24476^(2/7) 3178110247966804 a001 102334155/3571*24476^(5/21) 3178110248219425 a001 165580141/3571*24476^(4/21) 3178110248227578 a001 46368/3571*64079^(21/23) 3178110248455874 a001 9107510539/28657 3178110248472045 a001 267914296/3571*24476^(1/7) 3178110248547388 a001 121393/3571*64079^(19/23) 3178110248640648 a001 196418/3571*64079^(18/23) 3178110248651532 a001 317811/3571*64079^(17/23) 3178110248669793 a001 75025/3571*64079^(20/23) 3178110248693880 a001 514229/3571*64079^(16/23) 3178110248724210 a001 832040/3571*64079^(15/23) 3178110248724666 a001 433494437/3571*24476^(2/21) 3178110248759131 a001 1346269/3571*64079^(14/23) 3178110248792298 a001 2178309/3571*64079^(13/23) 3178110248826135 a001 3524578/3571*64079^(12/23) 3178110248859717 a001 1597*64079^(11/23) 3178110248893395 a001 9227465/3571*64079^(10/23) 3178110248921454 a001 46368/3571*439204^(7/9) 3178110248927037 a001 14930352/3571*64079^(9/23) 3178110248934235 a001 46368/3571*7881196^(7/11) 3178110248934248 a001 1597/103682*2537720636^(7/9) 3178110248934248 a001 1597/103682*17393796001^(5/7) 3178110248934248 a001 1597/103682*312119004989^(7/11) 3178110248934248 a001 1597/103682*14662949395604^(5/9) 3178110248934248 a001 1597/103682*(1/2+1/2*5^(1/2))^35 3178110248934248 a001 1597/103682*505019158607^(5/8) 3178110248934248 a001 1597/103682*28143753123^(7/10) 3178110248934248 a001 1597/103682*599074578^(5/6) 3178110248934248 a001 1597/103682*228826127^(7/8) 3178110248934263 a001 46368/3571*20633239^(3/5) 3178110248934268 a001 46368/3571*141422324^(7/13) 3178110248934268 a001 46368/3571*2537720636^(7/15) 3178110248934268 a001 46368/3571*17393796001^(3/7) 3178110248934268 a001 46368/3571*45537549124^(7/17) 3178110248934268 a001 46368/3571*14662949395604^(1/3) 3178110248934268 a001 46368/3571*(1/2+1/2*5^(1/2))^21 3178110248934268 a001 46368/3571*192900153618^(7/18) 3178110248934268 a001 46368/3571*10749957122^(7/16) 3178110248934268 a001 46368/3571*599074578^(1/2) 3178110248934269 a001 46368/3571*33385282^(7/12) 3178110248934910 a001 46368/3571*1860498^(7/10) 3178110248938988 a001 46368/3571*710647^(3/4) 3178110248960693 a001 24157817/3571*64079^(8/23) 3178110248977286 a001 701408733/3571*24476^(1/21) 3178110248994343 a001 39088169/3571*64079^(7/23) 3178110249027996 a001 63245986/3571*64079^(6/23) 3178110249061647 a001 102334155/3571*64079^(5/23) 3178110249095299 a001 165580141/3571*64079^(4/23) 3178110249116961 a001 23843772144/75025 3178110249128951 a001 267914296/3571*64079^(3/23) 3178110249161234 a001 832040/3571*167761^(3/5) 3178110249162603 a001 433494437/3571*64079^(2/23) 3178110249184745 a001 9227465/3571*167761^(2/5) 3178110249186754 a001 1597/271443*(1/2+1/2*5^(1/2))^37 3178110249186774 a001 121393/3571*817138163596^(1/3) 3178110249186774 a001 121393/3571*(1/2+1/2*5^(1/2))^19 3178110249186774 a001 121393/3571*87403803^(1/2) 3178110249192952 a001 46368/3571*103682^(7/8) 3178110249196255 a001 701408733/3571*64079^(1/23) 3178110249207322 a001 102334155/3571*167761^(1/5) 3178110249213412 a001 62423805893/196418 3178110249219836 a001 832040/3571*439204^(5/9) 3178110249222636 a001 3524578/3571*439204^(4/9) 3178110249223594 a001 1597/710647*2537720636^(13/15) 3178110249223594 a001 1597/710647*45537549124^(13/17) 3178110249223594 a001 1597/710647*14662949395604^(13/21) 3178110249223594 a001 1597/710647*(1/2+1/2*5^(1/2))^39 3178110249223594 a001 1597/710647*192900153618^(13/18) 3178110249223594 a001 1597/710647*73681302247^(3/4) 3178110249223594 a001 1597/710647*10749957122^(13/16) 3178110249223595 a001 1597/710647*599074578^(13/14) 3178110249223614 a001 317811/3571*45537549124^(1/3) 3178110249223614 a001 317811/3571*(1/2+1/2*5^(1/2))^17 3178110249223624 a001 317811/3571*12752043^(1/2) 3178110249224412 a001 14930352/3571*439204^(1/3) 3178110249226246 a001 63245986/3571*439204^(2/9) 3178110249227484 a001 163427645535/514229 3178110249228076 a001 267914296/3571*439204^(1/9) 3178110249228966 a001 832040/3571*7881196^(5/11) 3178110249228969 a001 1597/1860498*(1/2+1/2*5^(1/2))^41 3178110249228986 a001 832040/3571*20633239^(3/7) 3178110249228989 a001 832040/3571*141422324^(5/13) 3178110249228989 a001 832040/3571*2537720636^(1/3) 3178110249228989 a001 832040/3571*45537549124^(5/17) 3178110249228989 a001 832040/3571*312119004989^(3/11) 3178110249228989 a001 832040/3571*14662949395604^(5/21) 3178110249228989 a001 832040/3571*(1/2+1/2*5^(1/2))^15 3178110249228989 a001 832040/3571*192900153618^(5/18) 3178110249228989 a001 832040/3571*28143753123^(3/10) 3178110249228989 a001 832040/3571*10749957122^(5/16) 3178110249228989 a001 832040/3571*599074578^(5/14) 3178110249228989 a001 832040/3571*228826127^(3/8) 3178110249228990 a001 832040/3571*33385282^(5/12) 3178110249229448 a001 832040/3571*1860498^(1/2) 3178110249229537 a001 427859130712/1346269 3178110249229754 a001 1597/4870847*(1/2+1/2*5^(1/2))^43 3178110249229773 a001 2178309/3571*141422324^(1/3) 3178110249229773 a001 2178309/3571*(1/2+1/2*5^(1/2))^13 3178110249229773 a001 2178309/3571*73681302247^(1/4) 3178110249229836 a001 12585952209/39602 3178110249229868 a001 1597/12752043*45537549124^(15/17) 3178110249229868 a001 1597/12752043*312119004989^(9/11) 3178110249229868 a001 1597/12752043*14662949395604^(5/7) 3178110249229868 a001 1597/12752043*(1/2+1/2*5^(1/2))^45 3178110249229868 a001 1597/12752043*192900153618^(5/6) 3178110249229868 a001 1597/12752043*28143753123^(9/10) 3178110249229868 a001 1597/12752043*10749957122^(15/16) 3178110249229870 a001 1597*7881196^(1/3) 3178110249229880 a001 2932590109091/9227465 3178110249229885 a001 1597/33385282*(1/2+1/2*5^(1/2))^47 3178110249229886 a001 7677620580672/24157817 3178110249229887 a001 1597/87403803*14662949395604^(7/9) 3178110249229887 a001 1597/87403803*505019158607^(7/8) 3178110249229887 a001 20100271632925/63245986 3178110249229887 a001 1597/228826127*14662949395604^(17/21) 3178110249229887 a001 1597/228826127*192900153618^(17/18) 3178110249229888 a001 52623194318103/165580141 3178110249229888 a001 137769311321384/433494437 3178110249229888 a001 1597/1568397607*3461452808002^(11/12) 3178110249229888 a001 360684739646049/1134903170 3178110249229888 a001 1597/4106118243*14662949395604^(19/21) 3178110249229888 a001 944284907616763/2971215073 3178110249229888 a001 2472169983204240/7778742049 3178110249229888 a001 4052739537881/12752042 3178110249229888 a001 16944505142783631/53316291173 3178110249229888 a001 1597*312119004989^(1/5) 3178110249229888 a001 10472280100787674/32951280099 3178110249229888 a001 4000055058791717/12586269025 3178110249229888 a001 1597/17393796001*14662949395604^(20/21) 3178110249229888 a001 1527885075587477/4807526976 3178110249229888 a001 583600167970714/1836311903 3178110249229888 a001 1597*1568397607^(1/4) 3178110249229888 a001 1597/2537720636*14662949395604^(8/9) 3178110249229888 a001 2504667733985/7880997 3178110249229888 a001 1597/969323029*14662949395604^(6/7) 3178110249229888 a001 85146117003281/267914296 3178110249229888 a001 1597/370248451*23725150497407^(13/16) 3178110249229888 a001 1597/370248451*505019158607^(13/14) 3178110249229888 a001 32522922685178/102334155 3178110249229888 a001 1597/141422324*312119004989^(10/11) 3178110249229888 a001 1597/141422324*3461452808002^(5/6) 3178110249229888 a001 12422651052253/39088169 3178110249229889 a001 1597/54018521*45537549124^(16/17) 3178110249229889 a001 1597/54018521*14662949395604^(16/21) 3178110249229889 a001 1597/54018521*192900153618^(8/9) 3178110249229889 a001 1597/54018521*73681302247^(12/13) 3178110249229890 a001 14930352/3571*7881196^(3/11) 3178110249229890 a001 4745030471581/14930352 3178110249229895 a001 1597/20633239*(1/2+1/2*5^(1/2))^46 3178110249229895 a001 1597/20633239*10749957122^(23/24) 3178110249229898 a001 63245986/3571*7881196^(2/11) 3178110249229902 a001 267914296/3571*7881196^(1/11) 3178110249229904 a001 14930352/3571*141422324^(3/13) 3178110249229904 a001 14930352/3571*2537720636^(1/5) 3178110249229904 a001 14930352/3571*45537549124^(3/17) 3178110249229904 a001 14930352/3571*14662949395604^(1/7) 3178110249229904 a001 14930352/3571*(1/2+1/2*5^(1/2))^9 3178110249229904 a001 14930352/3571*192900153618^(1/6) 3178110249229904 a001 14930352/3571*10749957122^(3/16) 3178110249229904 a001 14930352/3571*599074578^(3/14) 3178110249229905 a001 14930352/3571*33385282^(1/4) 3178110249229905 a001 39088169/3571*20633239^(1/5) 3178110249229906 a001 102334155/3571*20633239^(1/7) 3178110249229907 a001 39088169/3571*17393796001^(1/7) 3178110249229907 a001 39088169/3571*14662949395604^(1/9) 3178110249229907 a001 39088169/3571*(1/2+1/2*5^(1/2))^7 3178110249229907 a001 39088169/3571*599074578^(1/6) 3178110249229907 a001 102334155/3571*2537720636^(1/9) 3178110249229907 a001 102334155/3571*312119004989^(1/11) 3178110249229907 a001 102334155/3571*(1/2+1/2*5^(1/2))^5 3178110249229907 a001 102334155/3571*28143753123^(1/10) 3178110249229907 a001 102334155/3571*228826127^(1/8) 3178110249229907 a001 267914296/3571*141422324^(1/13) 3178110249229907 a001 267914296/3571*2537720636^(1/15) 3178110249229907 a001 267914296/3571*45537549124^(1/17) 3178110249229907 a001 267914296/3571*14662949395604^(1/21) 3178110249229907 a001 267914296/3571*(1/2+1/2*5^(1/2))^3 3178110249229907 a001 267914296/3571*10749957122^(1/16) 3178110249229907 a001 267914296/3571*599074578^(1/14) 3178110249229907 a001 701408733/7142+701408733/7142*5^(1/2) 3178110249229907 a001 1134903170/3571 3178110249229907 a001 433494437/3571*(1/2+1/2*5^(1/2))^2 3178110249229907 a001 433494437/3571*10749957122^(1/24) 3178110249229907 a001 433494437/3571*4106118243^(1/23) 3178110249229907 a001 433494437/3571*1568397607^(1/22) 3178110249229907 a001 433494437/3571*599074578^(1/21) 3178110249229907 a001 433494437/3571*228826127^(1/20) 3178110249229907 a001 165580141/3571*(1/2+1/2*5^(1/2))^4 3178110249229907 a001 165580141/3571*23725150497407^(1/16) 3178110249229907 a001 165580141/3571*73681302247^(1/13) 3178110249229907 a001 165580141/3571*10749957122^(1/12) 3178110249229907 a001 165580141/3571*4106118243^(2/23) 3178110249229907 a001 165580141/3571*1568397607^(1/11) 3178110249229907 a001 165580141/3571*599074578^(2/21) 3178110249229907 a001 433494437/3571*87403803^(1/19) 3178110249229907 a001 165580141/3571*228826127^(1/10) 3178110249229907 a001 165580141/3571*87403803^(2/19) 3178110249229907 a001 63245986/3571*141422324^(2/13) 3178110249229907 a001 63245986/3571*2537720636^(2/15) 3178110249229907 a001 63245986/3571*45537549124^(2/17) 3178110249229907 a001 63245986/3571*14662949395604^(2/21) 3178110249229907 a001 63245986/3571*(1/2+1/2*5^(1/2))^6 3178110249229907 a001 63245986/3571*10749957122^(1/8) 3178110249229907 a001 63245986/3571*4106118243^(3/23) 3178110249229907 a001 63245986/3571*1568397607^(3/22) 3178110249229907 a001 63245986/3571*599074578^(1/7) 3178110249229907 a001 433494437/3571*33385282^(1/18) 3178110249229907 a001 63245986/3571*228826127^(3/20) 3178110249229907 a001 63245986/3571*87403803^(3/19) 3178110249229907 a001 267914296/3571*33385282^(1/12) 3178110249229907 a001 165580141/3571*33385282^(1/9) 3178110249229908 a001 63245986/3571*33385282^(1/6) 3178110249229908 a001 24157817/3571*(1/2+1/2*5^(1/2))^8 3178110249229908 a001 24157817/3571*23725150497407^(1/8) 3178110249229908 a001 24157817/3571*73681302247^(2/13) 3178110249229908 a001 24157817/3571*10749957122^(1/6) 3178110249229908 a001 24157817/3571*4106118243^(4/23) 3178110249229908 a001 24157817/3571*1568397607^(2/11) 3178110249229908 a001 24157817/3571*599074578^(4/21) 3178110249229908 a001 24157817/3571*228826127^(1/5) 3178110249229908 a001 433494437/3571*12752043^(1/17) 3178110249229908 a001 24157817/3571*87403803^(4/19) 3178110249229909 a001 24157817/3571*33385282^(2/9) 3178110249229909 a001 165580141/3571*12752043^(2/17) 3178110249229911 a001 63245986/3571*12752043^(3/17) 3178110249229912 a001 9227465/3571*20633239^(2/7) 3178110249229913 a001 24157817/3571*12752043^(4/17) 3178110249229915 a001 9227465/3571*2537720636^(2/9) 3178110249229915 a001 9227465/3571*312119004989^(2/11) 3178110249229915 a001 9227465/3571*(1/2+1/2*5^(1/2))^10 3178110249229915 a001 9227465/3571*28143753123^(1/5) 3178110249229915 a001 9227465/3571*10749957122^(5/24) 3178110249229915 a001 9227465/3571*4106118243^(5/23) 3178110249229915 a001 9227465/3571*1568397607^(5/22) 3178110249229915 a001 9227465/3571*599074578^(5/21) 3178110249229915 a001 9227465/3571*228826127^(1/4) 3178110249229915 a001 9227465/3571*87403803^(5/19) 3178110249229915 a001 9227465/3571*33385282^(5/18) 3178110249229915 a001 433494437/3571*4870847^(1/16) 3178110249229920 a001 9227465/3571*12752043^(5/17) 3178110249229924 a001 165580141/3571*4870847^(1/8) 3178110249229932 a001 63245986/3571*4870847^(3/16) 3178110249229939 a001 1597/7881196*312119004989^(4/5) 3178110249229939 a001 1597/7881196*(1/2+1/2*5^(1/2))^44 3178110249229939 a001 1597/7881196*23725150497407^(11/16) 3178110249229939 a001 1597/7881196*73681302247^(11/13) 3178110249229939 a001 1597/7881196*10749957122^(11/12) 3178110249229939 a001 1597/7881196*4106118243^(22/23) 3178110249229940 a001 3524578/3571*7881196^(4/11) 3178110249229942 a001 24157817/3571*4870847^(1/4) 3178110249229956 a001 9227465/3571*4870847^(5/16) 3178110249229958 a001 3524578/3571*141422324^(4/13) 3178110249229958 a001 3524578/3571*2537720636^(4/15) 3178110249229958 a001 3524578/3571*45537549124^(4/17) 3178110249229958 a001 3524578/3571*817138163596^(4/19) 3178110249229958 a001 3524578/3571*14662949395604^(4/21) 3178110249229958 a001 3524578/3571*(1/2+1/2*5^(1/2))^12 3178110249229958 a001 3524578/3571*192900153618^(2/9) 3178110249229958 a001 3524578/3571*73681302247^(3/13) 3178110249229958 a001 3524578/3571*10749957122^(1/4) 3178110249229958 a001 3524578/3571*4106118243^(6/23) 3178110249229958 a001 3524578/3571*1568397607^(3/11) 3178110249229958 a001 3524578/3571*599074578^(2/7) 3178110249229958 a001 3524578/3571*228826127^(3/10) 3178110249229958 a001 3524578/3571*87403803^(6/19) 3178110249229959 a001 3524578/3571*33385282^(1/3) 3178110249229965 a001 3524578/3571*12752043^(6/17) 3178110249229968 a001 433494437/3571*1860498^(1/15) 3178110249229999 a001 267914296/3571*1860498^(1/10) 3178110249230008 a001 3524578/3571*4870847^(3/8) 3178110249230022 a001 692290615889/2178309 3178110249230030 a001 165580141/3571*1860498^(2/15) 3178110249230060 a001 102334155/3571*1860498^(1/6) 3178110249230091 a001 63245986/3571*1860498^(1/5) 3178110249230153 a001 24157817/3571*1860498^(4/15) 3178110249230180 a001 14930352/3571*1860498^(3/10) 3178110249230221 a001 9227465/3571*1860498^(1/3) 3178110249230238 a001 1597/3010349*2537720636^(14/15) 3178110249230238 a001 1597/3010349*17393796001^(6/7) 3178110249230238 a001 1597/3010349*45537549124^(14/17) 3178110249230238 a001 1597/3010349*817138163596^(14/19) 3178110249230238 a001 1597/3010349*14662949395604^(2/3) 3178110249230238 a001 1597/3010349*(1/2+1/2*5^(1/2))^42 3178110249230238 a001 1597/3010349*505019158607^(3/4) 3178110249230238 a001 1597/3010349*192900153618^(7/9) 3178110249230238 a001 1597/3010349*10749957122^(7/8) 3178110249230238 a001 1597/3010349*4106118243^(21/23) 3178110249230238 a001 1597/3010349*1568397607^(21/22) 3178110249230255 a001 1346269/3571*20633239^(2/5) 3178110249230258 a001 1346269/3571*17393796001^(2/7) 3178110249230258 a001 1346269/3571*14662949395604^(2/9) 3178110249230258 a001 1346269/3571*(1/2+1/2*5^(1/2))^14 3178110249230258 a001 1346269/3571*505019158607^(1/4) 3178110249230258 a001 1346269/3571*10749957122^(7/24) 3178110249230258 a001 1346269/3571*4106118243^(7/23) 3178110249230258 a001 1346269/3571*1568397607^(7/22) 3178110249230258 a001 1346269/3571*599074578^(1/3) 3178110249230258 a001 1346269/3571*228826127^(7/20) 3178110249230258 a001 1346269/3571*87403803^(7/19) 3178110249230259 a001 1346269/3571*33385282^(7/18) 3178110249230266 a001 1346269/3571*12752043^(7/17) 3178110249230316 a001 1346269/3571*4870847^(7/16) 3178110249230326 a001 3524578/3571*1860498^(2/5) 3178110249230357 a001 433494437/3571*710647^(1/14) 3178110249230686 a001 1346269/3571*1860498^(7/15) 3178110249230806 a001 264431485177/832040 3178110249230806 a001 165580141/3571*710647^(1/7) 3178110249231256 a001 63245986/3571*710647^(3/14) 3178110249231480 a001 39088169/3571*710647^(1/4) 3178110249231706 a001 24157817/3571*710647^(2/7) 3178110249232162 a001 9227465/3571*710647^(5/14) 3178110249232291 a001 1597/1149851*2537720636^(8/9) 3178110249232291 a001 1597/1149851*312119004989^(8/11) 3178110249232291 a001 1597/1149851*(1/2+1/2*5^(1/2))^40 3178110249232291 a001 1597/1149851*23725150497407^(5/8) 3178110249232291 a001 1597/1149851*73681302247^(10/13) 3178110249232291 a001 1597/1149851*28143753123^(4/5) 3178110249232291 a001 1597/1149851*10749957122^(5/6) 3178110249232291 a001 1597/1149851*4106118243^(20/23) 3178110249232291 a001 1597/1149851*1568397607^(10/11) 3178110249232291 a001 1597/1149851*599074578^(20/21) 3178110249232311 a001 514229/3571*(1/2+1/2*5^(1/2))^16 3178110249232311 a001 514229/3571*23725150497407^(1/4) 3178110249232311 a001 514229/3571*73681302247^(4/13) 3178110249232311 a001 514229/3571*10749957122^(1/3) 3178110249232311 a001 514229/3571*4106118243^(8/23) 3178110249232311 a001 514229/3571*1568397607^(4/11) 3178110249232311 a001 514229/3571*599074578^(8/21) 3178110249232311 a001 514229/3571*228826127^(2/5) 3178110249232311 a001 514229/3571*87403803^(8/19) 3178110249232312 a001 514229/3571*33385282^(4/9) 3178110249232320 a001 514229/3571*12752043^(8/17) 3178110249232378 a001 514229/3571*4870847^(1/2) 3178110249232655 a001 3524578/3571*710647^(3/7) 3178110249232800 a001 514229/3571*1860498^(8/15) 3178110249233225 a001 433494437/3571*271443^(1/13) 3178110249233404 a001 1346269/3571*710647^(1/2) 3178110249235399 a001 196418/3571*439204^(2/3) 3178110249235907 a001 514229/3571*710647^(4/7) 3178110249236181 a001 101003839642/317811 3178110249236543 a001 165580141/3571*271443^(2/13) 3178110249239861 a001 63245986/3571*271443^(3/13) 3178110249242225 a001 701408733/3571*103682^(1/24) 3178110249243180 a001 24157817/3571*271443^(4/13) 3178110249246355 a001 196418/3571*7881196^(6/11) 3178110249246363 a001 1597/439204*817138163596^(2/3) 3178110249246363 a001 1597/439204*(1/2+1/2*5^(1/2))^38 3178110249246363 a001 1597/439204*10749957122^(19/24) 3178110249246363 a001 1597/439204*4106118243^(19/23) 3178110249246363 a001 1597/439204*1568397607^(19/22) 3178110249246363 a001 1597/439204*599074578^(19/21) 3178110249246363 a001 1597/439204*228826127^(19/20) 3178110249246382 a001 196418/3571*141422324^(6/13) 3178110249246383 a001 196418/3571*2537720636^(2/5) 3178110249246383 a001 196418/3571*45537549124^(6/17) 3178110249246383 a001 196418/3571*14662949395604^(2/7) 3178110249246383 a001 196418/3571*(1/2+1/2*5^(1/2))^18 3178110249246383 a001 196418/3571*192900153618^(1/3) 3178110249246383 a001 196418/3571*10749957122^(3/8) 3178110249246383 a001 196418/3571*4106118243^(9/23) 3178110249246383 a001 196418/3571*1568397607^(9/22) 3178110249246383 a001 196418/3571*599074578^(3/7) 3178110249246383 a001 196418/3571*228826127^(9/20) 3178110249246383 a001 196418/3571*87403803^(9/19) 3178110249246384 a001 196418/3571*33385282^(1/2) 3178110249246393 a001 196418/3571*12752043^(9/17) 3178110249246458 a001 196418/3571*4870847^(9/16) 3178110249246504 a001 9227465/3571*271443^(5/13) 3178110249246933 a001 196418/3571*1860498^(3/5) 3178110249249866 a001 3524578/3571*271443^(6/13) 3178110249250428 a001 196418/3571*710647^(9/14) 3178110249251340 a001 2178309/3571*271443^(1/2) 3178110249252492 a001 75025/3571*167761^(4/5) 3178110249253483 a001 1346269/3571*271443^(7/13) 3178110249254544 a001 433494437/3571*103682^(1/12) 3178110249258854 a001 514229/3571*271443^(8/13) 3178110249263559 a001 28657/3571*64079^(22/23) 3178110249266862 a001 267914296/3571*103682^(1/8) 3178110249273022 a001 38580033749/121393 3178110249276244 a001 196418/3571*271443^(9/13) 3178110249279180 a001 165580141/3571*103682^(1/6) 3178110249291499 a001 102334155/3571*103682^(5/24) 3178110249303817 a001 63245986/3571*103682^(1/4) 3178110249316135 a001 39088169/3571*103682^(7/24) 3178110249322014 a001 701408733/3571*39603^(1/22) 3178110249328455 a001 24157817/3571*103682^(1/3) 3178110249340769 a001 14930352/3571*103682^(3/8) 3178110249342812 a001 1597/167761*141422324^(12/13) 3178110249342812 a001 1597/167761*2537720636^(4/5) 3178110249342812 a001 1597/167761*45537549124^(12/17) 3178110249342812 a001 1597/167761*14662949395604^(4/7) 3178110249342812 a001 1597/167761*(1/2+1/2*5^(1/2))^36 3178110249342812 a001 1597/167761*505019158607^(9/14) 3178110249342812 a001 1597/167761*192900153618^(2/3) 3178110249342812 a001 1597/167761*73681302247^(9/13) 3178110249342812 a001 1597/167761*10749957122^(3/4) 3178110249342812 a001 1597/167761*4106118243^(18/23) 3178110249342812 a001 1597/167761*1568397607^(9/11) 3178110249342812 a001 1597/167761*599074578^(6/7) 3178110249342812 a001 1597/167761*228826127^(9/10) 3178110249342812 a001 1597/167761*87403803^(18/19) 3178110249342827 a001 75025/3571*20633239^(4/7) 3178110249342831 a001 75025/3571*2537720636^(4/9) 3178110249342831 a001 75025/3571*(1/2+1/2*5^(1/2))^20 3178110249342831 a001 75025/3571*23725150497407^(5/16) 3178110249342831 a001 75025/3571*505019158607^(5/14) 3178110249342831 a001 75025/3571*73681302247^(5/13) 3178110249342831 a001 75025/3571*28143753123^(2/5) 3178110249342831 a001 75025/3571*10749957122^(5/12) 3178110249342831 a001 75025/3571*4106118243^(10/23) 3178110249342831 a001 75025/3571*1568397607^(5/11) 3178110249342831 a001 75025/3571*599074578^(10/21) 3178110249342831 a001 75025/3571*228826127^(1/2) 3178110249342831 a001 75025/3571*87403803^(10/19) 3178110249342833 a001 75025/3571*33385282^(5/9) 3178110249342843 a001 75025/3571*12752043^(10/17) 3178110249342915 a001 75025/3571*4870847^(5/8) 3178110249343443 a001 75025/3571*1860498^(2/3) 3178110249347326 a001 75025/3571*710647^(5/7) 3178110249353098 a001 9227465/3571*103682^(5/12) 3178110249365389 a001 1597*103682^(11/24) 3178110249376011 a001 75025/3571*271443^(10/13) 3178110249377778 a001 3524578/3571*103682^(1/2) 3178110249389911 a001 2178309/3571*103682^(13/24) 3178110249402714 a001 1346269/3571*103682^(7/12) 3178110249413764 a001 832040/3571*103682^(5/8) 3178110249414120 a001 433494437/3571*39603^(1/11) 3178110249420822 a001 121393/3571*103682^(19/24) 3178110249429404 a001 514229/3571*103682^(2/3) 3178110249433025 a001 317811/3571*103682^(17/24) 3178110249468112 a001 196418/3571*103682^(3/4) 3178110249506226 a001 267914296/3571*39603^(3/22) 3178110249525534 a001 14736261605/46368 3178110249589197 a001 75025/3571*103682^(5/6) 3178110249598333 a001 165580141/3571*39603^(2/11) 3178110249690439 a001 102334155/3571*39603^(5/22) 3178110249782546 a001 63245986/3571*39603^(3/11) 3178110249874652 a001 39088169/3571*39603^(7/22) 3178110249924345 a001 701408733/3571*15127^(1/20) 3178110249966760 a001 24157817/3571*39603^(4/11) 3178110249989751 a001 433494437/24476*2207^(3/8) 3178110250003867 a001 28657/3571*7881196^(2/3) 3178110250003881 a001 1597/64079*45537549124^(2/3) 3178110250003881 a001 1597/64079*(1/2+1/2*5^(1/2))^34 3178110250003881 a001 1597/64079*10749957122^(17/24) 3178110250003881 a001 1597/64079*4106118243^(17/23) 3178110250003881 a001 1597/64079*1568397607^(17/22) 3178110250003881 a001 1597/64079*599074578^(17/21) 3178110250003881 a001 1597/64079*228826127^(17/20) 3178110250003882 a001 1597/64079*87403803^(17/19) 3178110250003884 a001 1597/64079*33385282^(17/18) 3178110250003901 a001 28657/3571*312119004989^(2/5) 3178110250003901 a001 28657/3571*(1/2+1/2*5^(1/2))^22 3178110250003901 a001 28657/3571*10749957122^(11/24) 3178110250003901 a001 28657/3571*4106118243^(11/23) 3178110250003901 a001 28657/3571*1568397607^(1/2) 3178110250003901 a001 28657/3571*599074578^(11/21) 3178110250003901 a001 28657/3571*228826127^(11/20) 3178110250003901 a001 28657/3571*87403803^(11/19) 3178110250003903 a001 28657/3571*33385282^(11/18) 3178110250003914 a001 28657/3571*12752043^(11/17) 3178110250003993 a001 28657/3571*4870847^(11/16) 3178110250004574 a001 28657/3571*1860498^(11/15) 3178110250008845 a001 28657/3571*710647^(11/14) 3178110250040398 a001 28657/3571*271443^(11/13) 3178110250058862 a001 14930352/3571*39603^(9/22) 3178110250150979 a001 9227465/3571*39603^(5/11) 3178110250243059 a001 1597*39603^(1/2) 3178110250274904 a001 28657/3571*103682^(11/12) 3178110250335236 a001 3524578/3571*39603^(6/11) 3178110250427157 a001 2178309/3571*39603^(13/22) 3178110250519748 a001 1346269/3571*39603^(7/11) 3178110250610586 a001 832040/3571*39603^(15/22) 3178110250618783 a001 433494437/3571*15127^(1/10) 3178110250706014 a001 514229/3571*39603^(8/11) 3178110250789424 a001 317811/3571*39603^(17/22) 3178110250868503 a001 46368/3571*39603^(21/22) 3178110250904299 a001 196418/3571*39603^(9/11) 3178110250936797 a001 121393/3571*39603^(19/22) 3178110251184961 a001 75025/3571*39603^(10/11) 3178110251256281 a001 63244394/199 3178110251313220 a001 267914296/3571*15127^(3/20) 3178110252007658 a001 165580141/3571*15127^(1/5) 3178110252702096 a001 102334155/3571*15127^(1/4) 3178110253396534 a001 63245986/3571*15127^(3/10) 3178110254090971 a001 39088169/3571*15127^(7/20) 3178110254518515 a001 701408733/3571*5778^(1/18) 3178110254520295 a001 10946/3571*439204^(8/9) 3178110254534903 a001 10946/3571*7881196^(8/11) 3178110254534920 a001 1597/24476*(1/2+1/2*5^(1/2))^32 3178110254534920 a001 1597/24476*23725150497407^(1/2) 3178110254534920 a001 1597/24476*73681302247^(8/13) 3178110254534920 a001 1597/24476*10749957122^(2/3) 3178110254534920 a001 1597/24476*4106118243^(16/23) 3178110254534920 a001 1597/24476*1568397607^(8/11) 3178110254534920 a001 1597/24476*599074578^(16/21) 3178110254534920 a001 1597/24476*228826127^(4/5) 3178110254534921 a001 1597/24476*87403803^(16/19) 3178110254534923 a001 1597/24476*33385282^(8/9) 3178110254534939 a001 1597/24476*12752043^(16/17) 3178110254534940 a001 10946/3571*141422324^(8/13) 3178110254534940 a001 10946/3571*2537720636^(8/15) 3178110254534940 a001 10946/3571*45537549124^(8/17) 3178110254534940 a001 10946/3571*14662949395604^(8/21) 3178110254534940 a001 10946/3571*(1/2+1/2*5^(1/2))^24 3178110254534940 a001 10946/3571*192900153618^(4/9) 3178110254534940 a001 10946/3571*73681302247^(6/13) 3178110254534940 a001 10946/3571*10749957122^(1/2) 3178110254534940 a001 10946/3571*4106118243^(12/23) 3178110254534940 a001 10946/3571*1568397607^(6/11) 3178110254534940 a001 10946/3571*599074578^(4/7) 3178110254534940 a001 10946/3571*228826127^(3/5) 3178110254534940 a001 10946/3571*87403803^(12/19) 3178110254534942 a001 10946/3571*33385282^(2/3) 3178110254534954 a001 10946/3571*12752043^(12/17) 3178110254535040 a001 10946/3571*4870847^(3/4) 3178110254535674 a001 10946/3571*1860498^(4/5) 3178110254540334 a001 10946/3571*710647^(6/7) 3178110254574755 a001 10946/3571*271443^(12/13) 3178110254785411 a001 24157817/3571*15127^(2/5) 3178110255479844 a001 14930352/3571*15127^(9/20) 3178110256174293 a001 9227465/3571*15127^(1/2) 3178110256801739 a001 1346269/322*18^(40/57) 3178110256868703 a001 1597*15127^(11/20) 3178110257563212 a001 3524578/3571*15127^(3/5) 3178110258257465 a001 2178309/3571*15127^(13/20) 3178110258952387 a001 1346269/3571*15127^(7/10) 3178110259098978 a003 sin(Pi*2/117)/cos(Pi*46/93) 3178110259442434 a001 1/322*(1/2*5^(1/2)+1/2)^14*3^(3/17) 3178110259645556 a001 832040/3571*15127^(3/4) 3178110259715834 m001 1/ln(BesselJ(0,1))^2/Artin^2/Pi 3178110259807124 a001 433494437/3571*5778^(1/9) 3178110260343316 a001 514229/3571*15127^(4/5) 3178110261029057 a001 317811/3571*15127^(17/20) 3178110261746263 a001 196418/3571*15127^(9/10) 3178110262381092 a001 121393/3571*15127^(19/20) 3178110263118994 a001 2149991593/6765 3178110265095732 a001 267914296/3571*5778^(1/6) 3178110270384340 a001 165580141/3571*5778^(2/9) 3178110271575701 a001 165580141/15127*2207^(7/16) 3178110271828988 a001 24157817/5778*2207^(9/16) 3178110274319934 r005 Re(z^2+c),c=-5/17+25/48*I,n=26 3178110275672948 a001 102334155/3571*5778^(5/18) 3178110280961557 a001 63245986/3571*5778^(1/3) 3178110281045954 a001 165580141/9349*2207^(3/8) 3178110281772585 r002 10th iterates of z^2 + 3178110282999788 m001 1/GAMMA(1/6)^2*exp(Rabbit)^2*cosh(1)^2 3178110283438115 a001 433494437/39603*2207^(7/16) 3178110285168818 a001 567451585/51841*2207^(7/16) 3178110285421324 a001 2971215073/271443*2207^(7/16) 3178110285458164 a001 7778742049/710647*2207^(7/16) 3178110285463539 a001 10182505537/930249*2207^(7/16) 3178110285464323 a001 53316291173/4870847*2207^(7/16) 3178110285464438 a001 139583862445/12752043*2207^(7/16) 3178110285464454 a001 182717648081/16692641*2207^(7/16) 3178110285464457 a001 956722026041/87403803*2207^(7/16) 3178110285464457 a001 2504730781961/228826127*2207^(7/16) 3178110285464457 a001 3278735159921/299537289*2207^(7/16) 3178110285464457 a001 10610209857723/969323029*2207^(7/16) 3178110285464457 a001 4052739537881/370248451*2207^(7/16) 3178110285464457 a001 387002188980/35355581*2207^(7/16) 3178110285464458 a001 591286729879/54018521*2207^(7/16) 3178110285464465 a001 7787980473/711491*2207^(7/16) 3178110285464508 a001 21566892818/1970299*2207^(7/16) 3178110285464808 a001 32951280099/3010349*2207^(7/16) 3178110285466861 a001 12586269025/1149851*2207^(7/16) 3178110285480933 a001 1201881744/109801*2207^(7/16) 3178110285577381 a001 1836311903/167761*2207^(7/16) 3178110285591077 a001 1597/9349*7881196^(10/11) 3178110285591117 a001 1597/9349*20633239^(6/7) 3178110285591123 a001 1597/9349*141422324^(10/13) 3178110285591123 a001 1597/9349*2537720636^(2/3) 3178110285591123 a001 1597/9349*45537549124^(10/17) 3178110285591123 a001 1597/9349*312119004989^(6/11) 3178110285591123 a001 1597/9349*14662949395604^(10/21) 3178110285591123 a001 1597/9349*(1/2+1/2*5^(1/2))^30 3178110285591123 a001 1597/9349*192900153618^(5/9) 3178110285591123 a001 1597/9349*28143753123^(3/5) 3178110285591123 a001 1597/9349*10749957122^(5/8) 3178110285591123 a001 1597/9349*4106118243^(15/23) 3178110285591123 a001 1597/9349*1568397607^(15/22) 3178110285591123 a001 1597/9349*599074578^(5/7) 3178110285591123 a001 1597/9349*228826127^(3/4) 3178110285591124 a001 1597/9349*87403803^(15/19) 3178110285591126 a001 1597/9349*33385282^(5/6) 3178110285591141 a001 1597/9349*12752043^(15/17) 3178110285591142 a001 4181/3571*141422324^(2/3) 3178110285591142 a001 4181/3571*(1/2+1/2*5^(1/2))^26 3178110285591142 a001 4181/3571*73681302247^(1/2) 3178110285591142 a001 4181/3571*10749957122^(13/24) 3178110285591142 a001 4181/3571*4106118243^(13/23) 3178110285591142 a001 4181/3571*1568397607^(13/22) 3178110285591142 a001 4181/3571*599074578^(13/21) 3178110285591142 a001 4181/3571*228826127^(13/20) 3178110285591143 a001 4181/3571*87403803^(13/19) 3178110285591144 a001 4181/3571*33385282^(13/18) 3178110285591157 a001 4181/3571*12752043^(13/17) 3178110285591249 a001 1597/9349*4870847^(15/16) 3178110285591251 a001 4181/3571*4870847^(13/16) 3178110285591938 a001 4181/3571*1860498^(13/15) 3178110285596986 a001 4181/3571*710647^(13/14) 3178110286238451 a001 701408733/64079*2207^(7/16) 3178110286250165 a001 39088169/3571*5778^(7/18) 3178110287788111 r005 Im(z^2+c),c=-5/8+61/231*I,n=5 3178110289155130 a007 Real Root Of 888*x^4-635*x^3-513*x^2-835*x-243 3178110290009647 a001 701408733/3571*2207^(1/16) 3178110290769490 a001 10946*2207^(7/16) 3178110291538774 a001 24157817/3571*5778^(4/9) 3178110296827379 a001 14930352/3571*5778^(1/2) 3178110299749563 m001 (BesselI(0,2)+LandauRamanujan)/(Paris+Thue) 3178110301006190 r005 Im(z^2+c),c=-17/98+29/63*I,n=42 3178110302115998 a001 9227465/3571*5778^(5/9) 3178110305555610 a001 2971215073/15127*843^(1/14) 3178110305844705 a001 165580141/2207*843^(3/14) 3178110307404579 a001 1597*5778^(11/18) 3178110312355441 a001 6765*2207^(1/2) 3178110312608724 a001 2584*2207^(5/8) 3178110312693258 a001 3524578/3571*5778^(2/3) 3178110317418024 a001 7778742049/39603*843^(1/14) 3178110317981681 a001 2178309/3571*5778^(13/18) 3178110319148727 a001 10182505537/51841*843^(1/14) 3178110319401233 a001 53316291173/271443*843^(1/14) 3178110319438073 a001 139583862445/710647*843^(1/14) 3178110319443448 a001 182717648081/930249*843^(1/14) 3178110319444232 a001 956722026041/4870847*843^(1/14) 3178110319444347 a001 2504730781961/12752043*843^(1/14) 3178110319444363 a001 3278735159921/16692641*843^(1/14) 3178110319444367 a001 10610209857723/54018521*843^(1/14) 3178110319444374 a001 4052739537881/20633239*843^(1/14) 3178110319444418 a001 387002188980/1970299*843^(1/14) 3178110319444717 a001 591286729879/3010349*843^(1/14) 3178110319446770 a001 225851433717/1149851*843^(1/14) 3178110319460842 a001 196418*843^(1/14) 3178110319557291 a001 32951280099/167761*843^(1/14) 3178110320218360 a001 12586269025/64079*843^(1/14) 3178110321512526 a009 1/11*(20*11^(1/4)-5^(2/3))^(1/2)*11^(3/4) 3178110321825693 a001 102334155/9349*2207^(7/16) 3178110323179132 r005 Re(z^2+c),c=7/90+7/34*I,n=5 3178110323270774 a001 1346269/3571*5778^(7/9) 3178110324217855 a001 267914296/39603*2207^(1/2) 3178110324749399 a001 1201881744/6119*843^(1/14) 3178110325948558 a001 701408733/103682*2207^(1/2) 3178110326201064 a001 1836311903/271443*2207^(1/2) 3178110326237904 a001 686789568/101521*2207^(1/2) 3178110326243279 a001 12586269025/1860498*2207^(1/2) 3178110326244063 a001 32951280099/4870847*2207^(1/2) 3178110326244178 a001 86267571272/12752043*2207^(1/2) 3178110326244194 a001 32264490531/4769326*2207^(1/2) 3178110326244197 a001 591286729879/87403803*2207^(1/2) 3178110326244197 a001 1548008755920/228826127*2207^(1/2) 3178110326244197 a001 4052739537881/599074578*2207^(1/2) 3178110326244197 a001 1515744265389/224056801*2207^(1/2) 3178110326244197 a001 6557470319842/969323029*2207^(1/2) 3178110326244197 a001 2504730781961/370248451*2207^(1/2) 3178110326244197 a001 956722026041/141422324*2207^(1/2) 3178110326244198 a001 365435296162/54018521*2207^(1/2) 3178110326244205 a001 139583862445/20633239*2207^(1/2) 3178110326244248 a001 53316291173/7881196*2207^(1/2) 3178110326244548 a001 20365011074/3010349*2207^(1/2) 3178110326246601 a001 7778742049/1149851*2207^(1/2) 3178110326260672 a001 2971215073/439204*2207^(1/2) 3178110326357121 a001 1134903170/167761*2207^(1/2) 3178110327018191 a001 433494437/64079*2207^(1/2) 3178110328558114 a001 832040/3571*5778^(5/6) 3178110330789386 a001 433494437/3571*2207^(1/8) 3178110331549230 a001 165580141/24476*2207^(1/2) 3178110333850044 a001 514229/3571*5778^(8/9) 3178110339129956 a001 317811/3571*5778^(17/18) 3178110341647540 a001 1346269/1364*1364^(4/5) 3178110344427244 a001 821223713/2584 3178110353135181 a001 63245986/15127*2207^(9/16) 3178110353247545 a005 (1/sin(93/223*Pi))^972 3178110353388474 a001 9227465/5778*2207^(11/16) 3178110355805603 a001 1836311903/9349*843^(1/14) 3178110357285401 r005 Im(z^2+c),c=-65/86+3/14*I,n=5 3178110361996123 m001 1/Rabbit/exp(Si(Pi))^2*Catalan 3178110362605434 a001 63245986/9349*2207^(1/2) 3178110364997595 a001 165580141/39603*2207^(9/16) 3178110366728298 a001 433494437/103682*2207^(9/16) 3178110366980804 a001 1134903170/271443*2207^(9/16) 3178110367017644 a001 2971215073/710647*2207^(9/16) 3178110367023019 a001 7778742049/1860498*2207^(9/16) 3178110367023804 a001 20365011074/4870847*2207^(9/16) 3178110367023918 a001 53316291173/12752043*2207^(9/16) 3178110367023935 a001 139583862445/33385282*2207^(9/16) 3178110367023937 a001 365435296162/87403803*2207^(9/16) 3178110367023937 a001 956722026041/228826127*2207^(9/16) 3178110367023937 a001 2504730781961/599074578*2207^(9/16) 3178110367023937 a001 6557470319842/1568397607*2207^(9/16) 3178110367023937 a001 10610209857723/2537720636*2207^(9/16) 3178110367023937 a001 4052739537881/969323029*2207^(9/16) 3178110367023937 a001 1548008755920/370248451*2207^(9/16) 3178110367023938 a001 591286729879/141422324*2207^(9/16) 3178110367023939 a001 225851433717/54018521*2207^(9/16) 3178110367023945 a001 86267571272/20633239*2207^(9/16) 3178110367023989 a001 32951280099/7881196*2207^(9/16) 3178110367024288 a001 12586269025/3010349*2207^(9/16) 3178110367026341 a001 4807526976/1149851*2207^(9/16) 3178110367040413 a001 1836311903/439204*2207^(9/16) 3178110367136862 a001 701408733/167761*2207^(9/16) 3178110367293932 a001 843/10946*89^(6/19) 3178110367797931 a001 267914296/64079*2207^(9/16) 3178110371259209 r002 31th iterates of z^2 + 3178110371569127 a001 267914296/3571*2207^(3/16) 3178110372328970 a001 102334155/24476*2207^(9/16) 3178110374567860 m005 (1/2*exp(1)-10/11)/(9/11*Catalan+2/3) 3178110379582327 m001 GAMMA(1/4)^GAMMA(11/12)/GAMMA(3/4) 3178110393914921 a001 39088169/15127*2207^(5/8) 3178110394030816 r005 Im(z^2+c),c=-139/94+10/51*I,n=3 3178110394168188 a001 5702887/5778*2207^(3/4) 3178110400203443 r005 Re(z^2+c),c=-31/94+19/46*I,n=12 3178110403385174 a001 4181*2207^(9/16) 3178110405777336 a001 34111385/13201*2207^(5/8) 3178110407277388 m001 (Lehmer+Otter)/(cos(1/5*Pi)+HardyLittlewoodC4) 3178110407508039 a001 133957148/51841*2207^(5/8) 3178110407760545 a001 233802911/90481*2207^(5/8) 3178110407797385 a001 1836311903/710647*2207^(5/8) 3178110407802760 a001 267084832/103361*2207^(5/8) 3178110407803544 a001 12586269025/4870847*2207^(5/8) 3178110407803659 a001 10983760033/4250681*2207^(5/8) 3178110407803676 a001 43133785636/16692641*2207^(5/8) 3178110407803678 a001 75283811239/29134601*2207^(5/8) 3178110407803678 a001 591286729879/228826127*2207^(5/8) 3178110407803678 a001 86000486440/33281921*2207^(5/8) 3178110407803678 a001 4052739537881/1568397607*2207^(5/8) 3178110407803678 a001 3536736619241/1368706081*2207^(5/8) 3178110407803678 a001 3278735159921/1268860318*2207^(5/8) 3178110407803678 a001 2504730781961/969323029*2207^(5/8) 3178110407803678 a001 956722026041/370248451*2207^(5/8) 3178110407803679 a001 182717648081/70711162*2207^(5/8) 3178110407803680 a001 139583862445/54018521*2207^(5/8) 3178110407803686 a001 53316291173/20633239*2207^(5/8) 3178110407803730 a001 10182505537/3940598*2207^(5/8) 3178110407804029 a001 7778742049/3010349*2207^(5/8) 3178110407806082 a001 2971215073/1149851*2207^(5/8) 3178110407820154 a001 567451585/219602*2207^(5/8) 3178110407916603 a001 433494437/167761*2207^(5/8) 3178110408577672 a001 165580141/64079*2207^(5/8) 3178110410737344 m001 Cahen-KomornikLoreti+MinimumGamma 3178110412348868 a001 165580141/3571*2207^(1/4) 3178110413108712 a001 31622993/12238*2207^(5/8) 3178110420409262 m001 (Cahen+MinimumGamma)/(Shi(1)+2*Pi/GAMMA(5/6)) 3178110434694664 a001 24157817/15127*2207^(11/16) 3178110434948000 a001 1762289/2889*2207^(13/16) 3178110444164917 a001 24157817/9349*2207^(5/8) 3178110446557078 a001 63245986/39603*2207^(11/16) 3178110448287781 a001 165580141/103682*2207^(11/16) 3178110448540287 a001 433494437/271443*2207^(11/16) 3178110448577127 a001 1134903170/710647*2207^(11/16) 3178110448582502 a001 2971215073/1860498*2207^(11/16) 3178110448583286 a001 7778742049/4870847*2207^(11/16) 3178110448583400 a001 20365011074/12752043*2207^(11/16) 3178110448583417 a001 53316291173/33385282*2207^(11/16) 3178110448583419 a001 139583862445/87403803*2207^(11/16) 3178110448583420 a001 365435296162/228826127*2207^(11/16) 3178110448583420 a001 956722026041/599074578*2207^(11/16) 3178110448583420 a001 2504730781961/1568397607*2207^(11/16) 3178110448583420 a001 6557470319842/4106118243*2207^(11/16) 3178110448583420 a001 10610209857723/6643838879*2207^(11/16) 3178110448583420 a001 4052739537881/2537720636*2207^(11/16) 3178110448583420 a001 1548008755920/969323029*2207^(11/16) 3178110448583420 a001 591286729879/370248451*2207^(11/16) 3178110448583420 a001 225851433717/141422324*2207^(11/16) 3178110448583421 a001 86267571272/54018521*2207^(11/16) 3178110448583427 a001 32951280099/20633239*2207^(11/16) 3178110448583471 a001 12586269025/7881196*2207^(11/16) 3178110448583771 a001 4807526976/3010349*2207^(11/16) 3178110448585824 a001 1836311903/1149851*2207^(11/16) 3178110448599895 a001 701408733/439204*2207^(11/16) 3178110448696344 a001 267914296/167761*2207^(11/16) 3178110449357414 a001 102334155/64079*2207^(11/16) 3178110450469349 m005 (1/3*Catalan+2/7)/(107/90+3/10*5^(1/2)) 3178110453128609 a001 102334155/3571*2207^(5/16) 3178110453888453 a001 39088169/24476*2207^(11/16) 3178110455527362 a001 2178309/1364*1364^(11/15) 3178110466975866 r005 Re(z^2+c),c=-21/58+16/41*I,n=30 3178110475474402 a001 14930352/15127*2207^(3/4) 3178110475727557 a001 726103/1926*2207^(7/8) 3178110484944655 a001 14930352/9349*2207^(11/16) 3178110487336819 a001 39088169/39603*2207^(3/4) 3178110489067522 a001 102334155/103682*2207^(3/4) 3178110489320029 a001 267914296/271443*2207^(3/4) 3178110489356869 a001 701408733/710647*2207^(3/4) 3178110489362244 a001 1836311903/1860498*2207^(3/4) 3178110489363028 a001 4807526976/4870847*2207^(3/4) 3178110489363142 a001 12586269025/12752043*2207^(3/4) 3178110489363159 a001 32951280099/33385282*2207^(3/4) 3178110489363161 a001 86267571272/87403803*2207^(3/4) 3178110489363162 a001 225851433717/228826127*2207^(3/4) 3178110489363162 a001 591286729879/599074578*2207^(3/4) 3178110489363162 a001 1548008755920/1568397607*2207^(3/4) 3178110489363162 a001 4052739537881/4106118243*2207^(3/4) 3178110489363162 a001 4807525989/4870846*2207^(3/4) 3178110489363162 a001 6557470319842/6643838879*2207^(3/4) 3178110489363162 a001 2504730781961/2537720636*2207^(3/4) 3178110489363162 a001 956722026041/969323029*2207^(3/4) 3178110489363162 a001 365435296162/370248451*2207^(3/4) 3178110489363162 a001 139583862445/141422324*2207^(3/4) 3178110489363163 a001 53316291173/54018521*2207^(3/4) 3178110489363169 a001 20365011074/20633239*2207^(3/4) 3178110489363213 a001 7778742049/7881196*2207^(3/4) 3178110489363513 a001 2971215073/3010349*2207^(3/4) 3178110489365566 a001 1134903170/1149851*2207^(3/4) 3178110489379637 a001 433494437/439204*2207^(3/4) 3178110489476086 a001 165580141/167761*2207^(3/4) 3178110490137156 a001 63245986/64079*2207^(3/4) 3178110490883811 a007 Real Root Of 339*x^4-230*x^3-852*x^2-782*x-24 3178110493908352 a001 63245986/3571*2207^(3/8) 3178110494668196 a001 24157817/24476*2207^(3/4) 3178110498453516 a001 1597/3571*20633239^(4/5) 3178110498453522 a001 1597/3571*17393796001^(4/7) 3178110498453522 a001 1597/3571*14662949395604^(4/9) 3178110498453522 a001 1597/3571*(1/2+1/2*5^(1/2))^28 3178110498453522 a001 1597/3571*505019158607^(1/2) 3178110498453522 a001 1597/3571*73681302247^(7/13) 3178110498453522 a001 1597/3571*10749957122^(7/12) 3178110498453522 a001 1597/3571*4106118243^(14/23) 3178110498453522 a001 1597/3571*1568397607^(7/11) 3178110498453522 a001 1597/3571*599074578^(2/3) 3178110498453522 a001 1597/3571*228826127^(7/10) 3178110498453522 a001 1597/3571*87403803^(14/19) 3178110498453524 a001 1597/3571*33385282^(7/9) 3178110498453538 a001 1597/3571*12752043^(14/17) 3178110498453639 a001 1597/3571*4870847^(7/8) 3178110498454379 a001 1597/3571*1860498^(14/15) 3178110500393121 a007 Real Root Of 273*x^4+773*x^3-514*x^2-916*x-757 3178110505824598 r009 Re(z^3+c),c=-29/50+30/59*I,n=35 3178110510075282 a003 sin(Pi*8/113)/cos(Pi*11/43) 3178110516254155 a001 9227465/15127*2207^(13/16) 3178110516507784 a001 1346269/5778*2207^(15/16) 3178110520685067 a001 2504730781961/3*123^(5/18) 3178110521312112 k007 concat of cont frac of 3178110525724408 a001 9227465/9349*2207^(3/4) 3178110528116563 a001 24157817/39603*2207^(13/16) 3178110529847265 a001 31622993/51841*2207^(13/16) 3178110530099771 a001 165580141/271443*2207^(13/16) 3178110530136611 a001 433494437/710647*2207^(13/16) 3178110530141986 a001 567451585/930249*2207^(13/16) 3178110530142770 a001 2971215073/4870847*2207^(13/16) 3178110530142885 a001 7778742049/12752043*2207^(13/16) 3178110530142902 a001 10182505537/16692641*2207^(13/16) 3178110530142904 a001 53316291173/87403803*2207^(13/16) 3178110530142904 a001 139583862445/228826127*2207^(13/16) 3178110530142904 a001 182717648081/299537289*2207^(13/16) 3178110530142904 a001 956722026041/1568397607*2207^(13/16) 3178110530142904 a001 2504730781961/4106118243*2207^(13/16) 3178110530142904 a001 3278735159921/5374978561*2207^(13/16) 3178110530142904 a001 10610209857723/17393796001*2207^(13/16) 3178110530142904 a001 4052739537881/6643838879*2207^(13/16) 3178110530142904 a001 1134903780/1860499*2207^(13/16) 3178110530142904 a001 591286729879/969323029*2207^(13/16) 3178110530142904 a001 225851433717/370248451*2207^(13/16) 3178110530142905 a001 21566892818/35355581*2207^(13/16) 3178110530142905 a001 32951280099/54018521*2207^(13/16) 3178110530142912 a001 1144206275/1875749*2207^(13/16) 3178110530142956 a001 1201881744/1970299*2207^(13/16) 3178110530143255 a001 1836311903/3010349*2207^(13/16) 3178110530145308 a001 701408733/1149851*2207^(13/16) 3178110530159380 a001 66978574/109801*2207^(13/16) 3178110530255829 a001 9303105/15251*2207^(13/16) 3178110530412032 m001 1/LambertW(1)/ln(Bloch)^2*Zeta(7)^2 3178110530916898 a001 39088169/64079*2207^(13/16) 3178110532490996 a001 47/2584*2584^(23/35) 3178110533135616 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)-Stephens)/Robbin 3178110534688094 a001 39088169/3571*2207^(7/16) 3178110535447935 a001 3732588/6119*2207^(13/16) 3178110542975407 r005 Re(z^2+c),c=-4/3+79/222*I,n=2 3178110543687513 a001 233802911/1926*843^(1/7) 3178110557033870 a001 5702887/15127*2207^(7/8) 3178110557244174 a001 313679512/987 3178110566504124 a001 5702887/9349*2207^(13/16) 3178110568668006 a001 701408733/3571*843^(1/14) 3178110568896302 a001 4976784/13201*2207^(7/8) 3178110569407859 a001 1762289/682*1364^(2/3) 3178110570627008 a001 39088169/103682*2207^(7/8) 3178110570879514 a001 34111385/90481*2207^(7/8) 3178110570916354 a001 267914296/710647*2207^(7/8) 3178110570921729 a001 233802911/620166*2207^(7/8) 3178110570922513 a001 1836311903/4870847*2207^(7/8) 3178110570922628 a001 1602508992/4250681*2207^(7/8) 3178110570922645 a001 12586269025/33385282*2207^(7/8) 3178110570922647 a001 10983760033/29134601*2207^(7/8) 3178110570922647 a001 86267571272/228826127*2207^(7/8) 3178110570922647 a001 267913919/710646*2207^(7/8) 3178110570922647 a001 591286729879/1568397607*2207^(7/8) 3178110570922647 a001 516002918640/1368706081*2207^(7/8) 3178110570922647 a001 4052739537881/10749957122*2207^(7/8) 3178110570922647 a001 3536736619241/9381251041*2207^(7/8) 3178110570922647 a001 6557470319842/17393796001*2207^(7/8) 3178110570922647 a001 2504730781961/6643838879*2207^(7/8) 3178110570922647 a001 956722026041/2537720636*2207^(7/8) 3178110570922647 a001 365435296162/969323029*2207^(7/8) 3178110570922647 a001 139583862445/370248451*2207^(7/8) 3178110570922648 a001 53316291173/141422324*2207^(7/8) 3178110570922648 a001 20365011074/54018521*2207^(7/8) 3178110570922655 a001 7778742049/20633239*2207^(7/8) 3178110570922699 a001 2971215073/7881196*2207^(7/8) 3178110570922998 a001 1134903170/3010349*2207^(7/8) 3178110570925051 a001 433494437/1149851*2207^(7/8) 3178110570939123 a001 165580141/439204*2207^(7/8) 3178110571035572 a001 63245986/167761*2207^(7/8) 3178110571696642 a001 24157817/64079*2207^(7/8) 3178110575467838 a001 24157817/3571*2207^(1/2) 3178110575745634 l006 ln(2264/3111) 3178110576227688 a001 9227465/24476*2207^(7/8) 3178110579465485 m005 (1/2*Zeta(3)+1/4)/(5/8*Pi+5/7) 3178110581802034 r005 Im(z^2+c),c=-57/62+1/38*I,n=9 3178110583212912 p001 sum((-1)^n/(505*n+301)/(8^n),n=0..infinity) 3178110592897384 l004 Pi/tanh(73/89*Pi) 3178110595130699 a007 Real Root Of 131*x^4+82*x^3-910*x^2+577*x+293 3178110597813685 a001 3524578/15127*2207^(15/16) 3178110601228906 a001 521/6765*2178309^(13/51) 3178110607283938 a001 3524578/9349*2207^(7/8) 3178110608703494 r005 Re(z^2+c),c=-11/62+28/45*I,n=23 3178110609633642 s002 sum(A241976[n]/(exp(2*pi*n)+1),n=1..infinity) 3178110609676056 a001 9227465/39603*2207^(15/16) 3178110611406753 a001 24157817/103682*2207^(15/16) 3178110611659258 a001 63245986/271443*2207^(15/16) 3178110611696098 a001 165580141/710647*2207^(15/16) 3178110611701473 a001 433494437/1860498*2207^(15/16) 3178110611702257 a001 1134903170/4870847*2207^(15/16) 3178110611702371 a001 2971215073/12752043*2207^(15/16) 3178110611702388 a001 7778742049/33385282*2207^(15/16) 3178110611702391 a001 20365011074/87403803*2207^(15/16) 3178110611702391 a001 53316291173/228826127*2207^(15/16) 3178110611702391 a001 139583862445/599074578*2207^(15/16) 3178110611702391 a001 365435296162/1568397607*2207^(15/16) 3178110611702391 a001 956722026041/4106118243*2207^(15/16) 3178110611702391 a001 2504730781961/10749957122*2207^(15/16) 3178110611702391 a001 6557470319842/28143753123*2207^(15/16) 3178110611702391 a001 10610209857723/45537549124*2207^(15/16) 3178110611702391 a001 4052739537881/17393796001*2207^(15/16) 3178110611702391 a001 1548008755920/6643838879*2207^(15/16) 3178110611702391 a001 591286729879/2537720636*2207^(15/16) 3178110611702391 a001 225851433717/969323029*2207^(15/16) 3178110611702391 a001 86267571272/370248451*2207^(15/16) 3178110611702391 a001 63246219/271444*2207^(15/16) 3178110611702392 a001 12586269025/54018521*2207^(15/16) 3178110611702398 a001 4807526976/20633239*2207^(15/16) 3178110611702442 a001 1836311903/7881196*2207^(15/16) 3178110611702742 a001 701408733/3010349*2207^(15/16) 3178110611704795 a001 267914296/1149851*2207^(15/16) 3178110611718866 a001 102334155/439204*2207^(15/16) 3178110611815315 a001 39088169/167761*2207^(15/16) 3178110612476382 a001 14930352/64079*2207^(15/16) 3178110613188922 m001 1/exp(sin(Pi/12))^2/Zeta(1,2)*sqrt(5)^2 3178110616247578 a001 14930352/3571*2207^(9/16) 3178110617007405 a001 5702887/24476*2207^(15/16) 3178110617689691 r009 Re(z^3+c),c=-29/50+30/59*I,n=29 3178110624993715 a001 1836311903/15127*843^(1/7) 3178110625282809 a001 102334155/2207*843^(2/7) 3178110633118819 a007 Real Root Of 255*x^4-900*x^3-180*x^2-653*x+252 3178110636594885 a001 34111385/281*322^(1/6) 3178110636856130 a001 1602508992/13201*843^(1/7) 3178110638586833 a001 12586269025/103682*843^(1/7) 3178110638839339 a001 121393*843^(1/7) 3178110638876179 a001 86267571272/710647*843^(1/7) 3178110638881554 a001 75283811239/620166*843^(1/7) 3178110638882338 a001 591286729879/4870847*843^(1/7) 3178110638882453 a001 516002918640/4250681*843^(1/7) 3178110638882469 a001 4052739537881/33385282*843^(1/7) 3178110638882472 a001 3536736619241/29134601*843^(1/7) 3178110638882473 a001 6557470319842/54018521*843^(1/7) 3178110638882480 a001 2504730781961/20633239*843^(1/7) 3178110638882523 a001 956722026041/7881196*843^(1/7) 3178110638882823 a001 365435296162/3010349*843^(1/7) 3178110638884876 a001 139583862445/1149851*843^(1/7) 3178110638898948 a001 53316291173/439204*843^(1/7) 3178110638995396 a001 20365011074/167761*843^(1/7) 3178110639656466 a001 7778742049/64079*843^(1/7) 3178110640077420 a001 4181/3*521^(46/53) 3178110644187506 a001 2971215073/24476*843^(1/7) 3178110648063497 a001 2178309/9349*2207^(15/16) 3178110648429584 a001 313679521/987 3178110651736534 r005 Re(z^2+c),c=-47/106+1/47*I,n=6 3178110652482269 a001 2/987*(1/2+1/2*5^(1/2))^44 3178110656372743 m005 (1/2*Catalan-1/7)/(1/7*gamma+10/11) 3178110657027332 a001 9227465/3571*2207^(5/8) 3178110658109348 m001 Rabbit*Kolakoski^2/exp(GAMMA(1/4))^2 3178110658561296 a001 313679522/987 3178110659034368 a009 1/23*(23*11^(1/3)+3^(3/4))^(1/2) 3178110666599472 a007 Real Root Of 781*x^4+103*x^3+622*x^2-697*x-289 3178110675243712 a001 1134903170/9349*843^(1/7) 3178110683288103 a001 5702887/1364*1364^(3/5) 3178110688956433 a001 313679525/987 3178110697807050 a001 1597*2207^(11/16) 3178110723130066 p003 LerchPhi(1/125,4,9/38) 3178110732525927 r008 a(0)=3,K{-n^6,12-63*n+37*n^2+9*n^3} 3178110738586866 a001 3524578/3571*2207^(3/4) 3178110751030652 a001 5/843*1364^(10/43) 3178110764624009 r009 Im(z^3+c),c=-29/62+3/16*I,n=34 3178110769398109 m001 exp(LandauRamanujan)^2/Champernowne/sinh(1) 3178110779366427 a001 2178309/3571*2207^(13/16) 3178110790322267 h005 exp(cos(Pi*5/58)/cos(Pi*11/59)) 3178110791778265 m001 Pi^2*Ei(1)/exp(sqrt(Pi)) 3178110797168449 a001 9227465/1364*1364^(8/15) 3178110805351519 r005 Im(z^2+c),c=-11/18+25/91*I,n=5 3178110807578056 a001 66978574/341*521^(1/13) 3178110814125182 r002 3th iterates of z^2 + 3178110816220296 m008 (3/4*Pi^3+4/5)/(3/4*Pi^2+1/6) 3178110818881659 r005 Re(z^2+c),c=-1/27+31/40*I,n=13 3178110820146657 a001 1346269/3571*2207^(7/8) 3178110827621953 m006 (4/5*Pi+5)/(exp(Pi)+1/2) 3178110843452403 a007 Real Root Of -35*x^4-80*x^3-11*x^2-150*x+637 3178110850759524 a007 Real Root Of 592*x^4-910*x^3-576*x^2-563*x-156 3178110857134484 r005 Re(z^2+c),c=-23/56+5/34*I,n=16 3178110857858734 r009 Re(z^3+c),c=-31/78+17/61*I,n=23 3178110860925135 a001 832040/3571*2207^(15/16) 3178110862967174 r005 Re(z^2+c),c=-23/66+13/32*I,n=17 3178110863125642 a001 433494437/5778*843^(3/14) 3178110865993447 m001 (gamma+FellerTornier)/(-Stephens+Thue) 3178110867211910 r009 Re(z^3+c),c=-25/64+23/58*I,n=4 3178110872126893 m001 (Zeta(1,-1)+BesselI(1,2))/(GAMMA(7/12)+Otter) 3178110881616890 m001 (5^(1/2))^Kolakoski/Gompertz 3178110883197882 m001 (FeigenbaumAlpha+Kac)/(Shi(1)+gamma(1)) 3178110888106137 a001 433494437/3571*843^(1/7) 3178110900641555 a001 514229/521*521^(12/13) 3178110901722391 a001 313679546/987 3178110907685262 m001 (FibonacciFactorial-Thue)/(ln(2)+arctan(1/2)) 3178110911048762 a001 3732588/341*1364^(7/15) 3178110918801721 m005 (1/2*2^(1/2)+1/11)/(6/7*Pi-2/11) 3178110921085347 a007 Real Root Of 267*x^4+811*x^3-100*x^2-160*x-704 3178110929620284 m005 (1/2*Catalan-1/9)/(7/10*Zeta(3)+1/4) 3178110939161179 r009 Im(z^3+c),c=-13/62+15/49*I,n=2 3178110941022139 r005 Im(z^2+c),c=-31/56+2/35*I,n=32 3178110944431851 a001 1134903170/15127*843^(3/14) 3178110944720946 a001 63245986/2207*843^(5/14) 3178110945384508 r005 Im(z^2+c),c=-8/27+23/45*I,n=50 3178110953646545 m001 GolombDickman/GAMMA(17/24)/GAMMA(7/12) 3178110953646545 m001 GolombDickman/GAMMA(7/12)/GAMMA(17/24) 3178110956294268 a001 2971215073/39603*843^(3/14) 3178110958024971 a001 7778742049/103682*843^(3/14) 3178110958277477 a001 20365011074/271443*843^(3/14) 3178110958314317 a001 53316291173/710647*843^(3/14) 3178110958319692 a001 139583862445/1860498*843^(3/14) 3178110958320476 a001 365435296162/4870847*843^(3/14) 3178110958320591 a001 956722026041/12752043*843^(3/14) 3178110958320607 a001 2504730781961/33385282*843^(3/14) 3178110958320610 a001 6557470319842/87403803*843^(3/14) 3178110958320610 a001 10610209857723/141422324*843^(3/14) 3178110958320611 a001 4052739537881/54018521*843^(3/14) 3178110958320618 a001 140728068720/1875749*843^(3/14) 3178110958320661 a001 591286729879/7881196*843^(3/14) 3178110958320961 a001 225851433717/3010349*843^(3/14) 3178110958323014 a001 86267571272/1149851*843^(3/14) 3178110958337086 a001 32951280099/439204*843^(3/14) 3178110958433534 a001 75025*843^(3/14) 3178110959094604 a001 4807526976/64079*843^(3/14) 3178110963625644 a001 1836311903/24476*843^(3/14) 3178110966468318 a003 cos(Pi*1/80)-cos(Pi*23/88) 3178110971838963 r005 Im(z^2+c),c=-19/66+36/59*I,n=25 3178110987574893 h001 (8/11*exp(1)+1/12)/(4/5*exp(2)+4/7) 3178110989113538 r009 Re(z^3+c),c=-15/31+9/22*I,n=58 3178110994681854 a001 701408733/9349*843^(3/14) 3178111006475502 r005 Re(z^2+c),c=-17/42+11/57*I,n=19 3178111019499982 r005 Re(z^2+c),c=-9/22+5/31*I,n=38 3178111019526320 m001 (3^(1/3)-exp(1))/(-GAMMA(23/24)+GolombDickman) 3178111021138518 l006 ln(7217/9917) 3178111023414890 q001 1208/3801 3178111024929094 a001 24157817/1364*1364^(2/5) 3178111034610861 r005 Re(z^2+c),c=-9/22+5/31*I,n=35 3178111043110914 k009 concat of cont frac of 3178111048421531 m002 (4*Cosh[Pi])/Pi^6+Pi*Tanh[Pi] 3178111055734166 a001 610/2207*(1/2+1/2*5^(1/2))^29 3178111055734166 a001 610/2207*1322157322203^(1/2) 3178111055734908 a001 987/1364*7881196^(9/11) 3178111055734950 a001 987/1364*141422324^(9/13) 3178111055734950 a001 987/1364*2537720636^(3/5) 3178111055734950 a001 987/1364*45537549124^(9/17) 3178111055734950 a001 987/1364*817138163596^(9/19) 3178111055734950 a001 987/1364*14662949395604^(3/7) 3178111055734950 a001 987/1364*(1/2+1/2*5^(1/2))^27 3178111055734950 a001 987/1364*192900153618^(1/2) 3178111055734950 a001 987/1364*10749957122^(9/16) 3178111055734950 a001 987/1364*599074578^(9/14) 3178111055734952 a001 987/1364*33385282^(3/4) 3178111055735776 a001 987/1364*1860498^(9/10) 3178111079055625 r002 10th iterates of z^2 + 3178111094106516 a007 Real Root Of 130*x^4+376*x^3+34*x^2+764*x+892 3178111097329991 r009 Re(z^3+c),c=-8/17+12/31*I,n=36 3178111098810328 r005 Re(z^2+c),c=-9/22+5/31*I,n=40 3178111102350839 r009 Im(z^3+c),c=-11/26+5/22*I,n=14 3178111103827347 r009 Re(z^3+c),c=-7/15+13/37*I,n=17 3178111103951122 k006 concat of cont frac of 3178111105849327 r005 Re(z^2+c),c=-9/22+7/44*I,n=14 3178111107827972 s002 sum(A209084[n]/(2^n-1),n=1..infinity) 3178111111139164 k008 concat of cont frac of 3178111112171921 k007 concat of cont frac of 3178111112618122 k006 concat of cont frac of 3178111113311131 k006 concat of cont frac of 3178111114211171 k006 concat of cont frac of 3178111115111231 k007 concat of cont frac of 3178111115912168 k008 concat of cont frac of 3178111116241426 k006 concat of cont frac of 3178111117221121 k007 concat of cont frac of 3178111118117708 r005 Im(z^2+c),c=-23/40+21/50*I,n=55 3178111118164689 a003 sin(Pi*7/39)*sin(Pi*15/74) 3178111118241141 k007 concat of cont frac of 3178111118688863 m005 (1/2*gamma-11/12)/(2/5*exp(1)+8/9) 3178111121119441 k006 concat of cont frac of 3178111121211281 k008 concat of cont frac of 3178111121224111 k008 concat of cont frac of 3178111121239143 k009 concat of cont frac of 3178111121334132 k008 concat of cont frac of 3178111121421212 k008 concat of cont frac of 3178111122141221 k006 concat of cont frac of 3178111123171161 k007 concat of cont frac of 3178111126131311 k007 concat of cont frac of 3178111127611121 k008 concat of cont frac of 3178111132046032 r005 Re(z^2+c),c=-23/70+25/32*I,n=7 3178111134929696 l004 sinh(223/80*Pi) 3178111138809424 a001 39088169/1364*1364^(1/3) 3178111141864710 p004 log(17449/727) 3178111148754485 a007 Real Root Of 266*x^4+15*x^3-287*x^2-545*x+199 3178111153426763 a007 Real Root Of 373*x^4+890*x^3-874*x^2+156*x-160 3178111154819956 r005 Re(z^2+c),c=-9/22+5/31*I,n=36 3178111157557079 a007 Real Root Of 325*x^4+662*x^3-937*x^2+985*x+689 3178111158126165 r005 Re(z^2+c),c=11/34+5/41*I,n=43 3178111161281711 k009 concat of cont frac of 3178111162215103 k007 concat of cont frac of 3178111182563802 a001 133957148/2889*843^(2/7) 3178111183271653 r005 Re(z^2+c),c=-9/22+5/31*I,n=42 3178111184332059 m001 GAMMA(1/3)/Artin^2*ln(GAMMA(1/4))^2 3178111188081237 a007 Real Root Of 856*x^4-184*x^3+744*x^2-464*x+14 3178111207544300 a001 267914296/3571*843^(3/14) 3178111211141036 a001 322/75025*832040^(6/19) 3178111211221511 k009 concat of cont frac of 3178111211253899 a001 322/1346269*7778742049^(6/19) 3178111213221211 k007 concat of cont frac of 3178111215125651 k007 concat of cont frac of 3178111216111436 k008 concat of cont frac of 3178111216929566 r005 Re(z^2+c),c=-10/27+9/25*I,n=51 3178111224243795 r005 Re(z^2+c),c=17/50+26/49*I,n=12 3178111224726133 l006 ln(4953/6806) 3178111229390140 r005 Re(z^2+c),c=-9/22+5/31*I,n=44 3178111232131448 k009 concat of cont frac of 3178111232224011 k006 concat of cont frac of 3178111232327475 m006 (Pi^2-1/6)/(1/6/Pi+3) 3178111235114218 k008 concat of cont frac of 3178111238268271 k009 concat of cont frac of 3178111243660140 r005 Re(z^2+c),c=-9/22+5/31*I,n=49 3178111244200355 r005 Re(z^2+c),c=-9/22+5/31*I,n=47 3178111244614002 r009 Im(z^3+c),c=-67/110+17/33*I,n=9 3178111244966793 r005 Re(z^2+c),c=-9/22+5/31*I,n=51 3178111245772642 a007 Real Root Of 345*x^4-431*x^3+870*x^2-790*x-26 3178111246026935 r005 Re(z^2+c),c=-9/22+5/31*I,n=53 3178111246498747 r005 Re(z^2+c),c=-9/22+5/31*I,n=46 3178111246544763 r005 Re(z^2+c),c=-9/22+5/31*I,n=55 3178111246648054 r005 Re(z^2+c),c=-9/22+5/31*I,n=58 3178111246653383 r005 Re(z^2+c),c=-9/22+5/31*I,n=60 3178111246672405 r005 Re(z^2+c),c=-9/22+5/31*I,n=62 3178111246685250 r005 Re(z^2+c),c=-9/22+5/31*I,n=64 3178111246704062 r005 Re(z^2+c),c=-9/22+5/31*I,n=63 3178111246714933 r005 Re(z^2+c),c=-9/22+5/31*I,n=57 3178111246720794 r005 Re(z^2+c),c=-9/22+5/31*I,n=61 3178111246725184 r005 Re(z^2+c),c=-9/22+5/31*I,n=56 3178111246737613 r005 Re(z^2+c),c=-9/22+5/31*I,n=59 3178111247039460 r005 Re(z^2+c),c=-9/22+5/31*I,n=54 3178111247816163 r005 Re(z^2+c),c=-9/22+5/31*I,n=52 3178111249105351 r005 Re(z^2+c),c=-9/22+5/31*I,n=50 3178111249303271 b008 3+3^(1/4)/E^2 3178111249944989 r005 Re(z^2+c),c=-9/22+5/31*I,n=48 3178111252606788 m005 (-7/12+1/6*5^(1/2))/(1/5*Pi+6) 3178111252689760 a001 31622993/682*1364^(4/15) 3178111252872056 r005 Re(z^2+c),c=-9/22+5/31*I,n=45 3178111263870020 a001 701408733/15127*843^(2/7) 3178111264159115 a001 39088169/2207*843^(3/7) 3178111267866147 m008 (3*Pi^3-2/5)/(3*Pi^4-4/5) 3178111275732438 a001 1836311903/39603*843^(2/7) 3178111277463141 a001 46368*843^(2/7) 3178111277715647 a001 12586269025/271443*843^(2/7) 3178111277752487 a001 32951280099/710647*843^(2/7) 3178111277757862 a001 43133785636/930249*843^(2/7) 3178111277758646 a001 225851433717/4870847*843^(2/7) 3178111277758761 a001 591286729879/12752043*843^(2/7) 3178111277758778 a001 774004377960/16692641*843^(2/7) 3178111277758780 a001 4052739537881/87403803*843^(2/7) 3178111277758780 a001 225749145909/4868641*843^(2/7) 3178111277758781 a001 3278735159921/70711162*843^(2/7) 3178111277758781 a001 2504730781961/54018521*843^(2/7) 3178111277758788 a001 956722026041/20633239*843^(2/7) 3178111277758832 a001 182717648081/3940598*843^(2/7) 3178111277759131 a001 139583862445/3010349*843^(2/7) 3178111277761184 a001 53316291173/1149851*843^(2/7) 3178111277775256 a001 10182505537/219602*843^(2/7) 3178111277871705 a001 7778742049/167761*843^(2/7) 3178111278532774 a001 2971215073/64079*843^(2/7) 3178111278636999 m001 (Ei(1,1)-exp(1))/(gamma(1)+Thue) 3178111280998021 m001 Niven*(Zeta(3)+Robbin) 3178111282061472 m001 GAMMA(1/6)*exp(DuboisRaymond)/GAMMA(5/12) 3178111282398276 r005 Re(z^2+c),c=-9/22+5/31*I,n=43 3178111283062920 m005 (11/28+1/4*5^(1/2))/(2*2^(1/2)+1/6) 3178111283063815 a001 567451585/12238*843^(2/7) 3178111292255845 l004 cosh(223/80*Pi) 3178111303221112 k006 concat of cont frac of 3178111311113711 k006 concat of cont frac of 3178111311151313 k006 concat of cont frac of 3178111311212214 k007 concat of cont frac of 3178111311632121 k007 concat of cont frac of 3178111312315212 k007 concat of cont frac of 3178111314120028 a001 433494437/9349*843^(2/7) 3178111314245923 r002 27th iterates of z^2 + 3178111332452115 k006 concat of cont frac of 3178111340123111 k006 concat of cont frac of 3178111348103521 r005 Re(z^2+c),c=-9/22+5/31*I,n=41 3178111358505074 b008 -5+(1+E+Pi)^3 3178111366570100 a001 9303105/124*1364^(1/5) 3178111367993332 r005 Re(z^2+c),c=35/118+5/48*I,n=30 3178111387085915 a007 Real Root Of -260*x^4+614*x^3+262*x^2+831*x+260 3178111401483928 m005 (1/2*Pi-2/11)/(18/77+1/11*5^(1/2)) 3178111412901104 m001 1/arctan(1/2)^2*exp(GAMMA(5/24))*sin(1) 3178111413578680 a007 Real Root Of -71*x^4+52*x^3+827*x^2-171*x+16 3178111413765804 m005 (1/2*5^(1/2)+7/12)/(1/5*2^(1/2)-9/11) 3178111421315111 k007 concat of cont frac of 3178111422517492 m002 -Pi^6/3+4/ProductLog[Pi]-ProductLog[Pi] 3178111428537811 m005 (1/2*3^(1/2)-10/11)/(5/12*Zeta(3)-7/11) 3178111442175782 r005 Re(z^2+c),c=-9/22+5/31*I,n=39 3178111454618309 m005 (1/3*3^(1/2)-3/4)/(5/9*gamma-3/8) 3178111457417180 r005 Re(z^2+c),c=-9/22+5/31*I,n=37 3178111458985597 a001 507544400/1597 3178111462529479 a007 Real Root Of 524*x^4+329*x^3+370*x^2-912*x-322 3178111464363346 m001 (Pi*2^(1/2)/GAMMA(3/4)+Zeta(5))/Porter 3178111465501796 r002 37i'th iterates of 2*x/(1-x^2) of 3178111472346917 r005 Im(z^2+c),c=-7/20+34/63*I,n=63 3178111473664108 a001 98209/682*3571^(16/17) 3178111480450443 a001 165580141/1364*1364^(2/15) 3178111488301559 a001 317811/1364*3571^(15/17) 3178111499323808 m001 (-Catalan+5)/GAMMA(17/24) 3178111500600361 r008 a(0)=3,K{-n^6,-27-37*n^3+20*n^2+38*n} 3178111502001995 a001 165580141/5778*843^(5/14) 3178111502077095 r002 29th iterates of z^2 + 3178111502970475 a001 514229/1364*3571^(14/17) 3178111507097861 r002 24th iterates of z^2 + 3178111511121212 k006 concat of cont frac of 3178111517627372 a001 610*3571^(13/17) 3178111518635765 r005 Im(z^2+c),c=43/110+7/19*I,n=31 3178111526982495 a001 165580141/3571*843^(2/7) 3178111532288860 a001 1346269/1364*3571^(12/17) 3178111546948594 a001 2178309/1364*3571^(11/17) 3178111561608998 a001 1762289/682*3571^(10/17) 3178111563339120 m002 -6/Pi^2+Pi^5+ProductLog[Pi]*Sinh[Pi] 3178111573014066 m001 2*Pi/GAMMA(5/6)*DuboisRaymond/Magata 3178111576269147 a001 5702887/1364*3571^(9/17) 3178111583308221 a001 433494437/15127*843^(5/14) 3178111583597317 a001 24157817/2207*843^(1/2) 3178111586377552 r009 Re(z^3+c),c=-61/106+27/43*I,n=3 3178111590929393 a001 9227465/1364*3571^(8/17) 3178111592511313 k007 concat of cont frac of 3178111594330791 a001 66978574/341*1364^(1/15) 3178111595170640 a001 1134903170/39603*843^(5/14) 3178111596901343 a001 2971215073/103682*843^(5/14) 3178111597153849 a001 7778742049/271443*843^(5/14) 3178111597190690 a001 20365011074/710647*843^(5/14) 3178111597196064 a001 53316291173/1860498*843^(5/14) 3178111597196849 a001 139583862445/4870847*843^(5/14) 3178111597196963 a001 365435296162/12752043*843^(5/14) 3178111597196980 a001 956722026041/33385282*843^(5/14) 3178111597196982 a001 2504730781961/87403803*843^(5/14) 3178111597196983 a001 6557470319842/228826127*843^(5/14) 3178111597196983 a001 10610209857723/370248451*843^(5/14) 3178111597196983 a001 4052739537881/141422324*843^(5/14) 3178111597196984 a001 1548008755920/54018521*843^(5/14) 3178111597196990 a001 591286729879/20633239*843^(5/14) 3178111597197034 a001 225851433717/7881196*843^(5/14) 3178111597197333 a001 86267571272/3010349*843^(5/14) 3178111597199386 a001 32951280099/1149851*843^(5/14) 3178111597213458 a001 12586269025/439204*843^(5/14) 3178111597309907 a001 4807526976/167761*843^(5/14) 3178111597970977 a001 28657*843^(5/14) 3178111602502018 a001 701408733/24476*843^(5/14) 3178111604570571 m001 LandauRamanujan^2/ArtinRank2*ln(MinimumGamma) 3178111605589603 a001 3732588/341*3571^(7/17) 3178111611151212 k006 concat of cont frac of 3178111611223113 k007 concat of cont frac of 3178111613015234 a001 305/2889*(1/2+1/2*5^(1/2))^31 3178111613015234 a001 305/2889*9062201101803^(1/2) 3178111613016144 a001 646/341*20633239^(5/7) 3178111613016150 a001 646/341*2537720636^(5/9) 3178111613016150 a001 646/341*312119004989^(5/11) 3178111613016150 a001 646/341*(1/2+1/2*5^(1/2))^25 3178111613016150 a001 646/341*3461452808002^(5/12) 3178111613016150 a001 646/341*28143753123^(1/2) 3178111613016150 a001 646/341*228826127^(5/8) 3178111613016915 a001 646/341*1860498^(5/6) 3178111615908800 m005 (3/4*Catalan-1/2)/(2*Pi-2/5) 3178111618003647 r009 Im(z^3+c),c=-3/110+22/63*I,n=5 3178111620249826 a001 24157817/1364*3571^(6/17) 3178111621121522 k006 concat of cont frac of 3178111624618383 a007 Real Root Of -179*x^4-685*x^3-311*x^2+293*x+345 3178111632252141 k006 concat of cont frac of 3178111632411112 k006 concat of cont frac of 3178111633558234 a001 267914296/9349*843^(5/14) 3178111634910044 a001 39088169/1364*3571^(5/17) 3178111637535253 m002 Pi^2-E^Pi/(3*ProductLog[Pi]^2) 3178111649570264 a001 31622993/682*3571^(4/17) 3178111652211513 k009 concat of cont frac of 3178111664230484 a001 9303105/124*3571^(3/17) 3178111664745240 m001 GAMMA(2/3)+exp(1/2)^Zeta(3) 3178111668983568 a007 Real Root Of 530*x^4+301*x^3+963*x^2+214*x-25 3178111671848839 a001 1328768490/4181 3178111673221717 m001 PlouffeB-arctan(1/2)^(ln(2)/ln(10)) 3178111673876566 a001 75025/1364*9349^(18/19) 3178111675634258 a001 121393/1364*9349^(17/19) 3178111677607617 a001 98209/682*9349^(16/19) 3178111678890704 a001 165580141/1364*3571^(2/17) 3178111679498599 a001 317811/1364*9349^(15/19) 3178111681421045 a001 514229/1364*9349^(14/19) 3178111683331474 a001 610*9349^(13/19) 3178111685246493 a001 1346269/1364*9349^(12/19) 3178111687159758 a001 2178309/1364*9349^(11/19) 3178111689073693 a001 1762289/682*9349^(10/19) 3178111690810443 r002 3th iterates of z^2 + 3178111690987373 a001 5702887/1364*9349^(9/19) 3178111692362524 b008 1+(31/3)^(1/3) 3178111692901150 a001 9227465/1364*9349^(8/19) 3178111693550923 a001 66978574/341*3571^(1/17) 3178111694321463 a001 610/15127*141422324^(11/13) 3178111694321463 a001 610/15127*2537720636^(11/15) 3178111694321463 a001 610/15127*45537549124^(11/17) 3178111694321463 a001 610/15127*312119004989^(3/5) 3178111694321463 a001 610/15127*14662949395604^(11/21) 3178111694321463 a001 610/15127*(1/2+1/2*5^(1/2))^33 3178111694321463 a001 610/15127*192900153618^(11/18) 3178111694321463 a001 610/15127*10749957122^(11/16) 3178111694321463 a001 610/15127*1568397607^(3/4) 3178111694321463 a001 610/15127*599074578^(11/14) 3178111694321465 a001 610/15127*33385282^(11/12) 3178111694322381 a001 615/124*(1/2+1/2*5^(1/2))^23 3178111694322381 a001 615/124*4106118243^(1/2) 3178111694605702 a001 615/124*103682^(23/24) 3178111694814890 a001 3732588/341*9349^(7/19) 3178111695592529 r002 6th iterates of z^2 + 3178111696728644 a001 24157817/1364*9349^(6/19) 3178111698642392 a001 39088169/1364*9349^(5/19) 3178111700130631 r008 a(0)=3,K{-n^6,5-42*n^3+51*n^2-20*n} 3178111700556143 a001 31622993/682*9349^(4/19) 3178111702469893 a001 9303105/124*9349^(3/19) 3178111702905170 a001 1739380535/5473 3178111703115710 a001 11592/341*24476^(19/21) 3178111703776894 a001 75025/1364*24476^(6/7) 3178111703873458 a001 121393/1364*24476^(17/21) 3178111703932723 a001 28657/1364*24476^(20/21) 3178111704185687 a001 98209/682*24476^(16/21) 3178111704383643 a001 165580141/1364*9349^(2/19) 3178111704415539 a001 317811/1364*24476^(5/7) 3178111704676857 a001 514229/1364*24476^(2/3) 3178111704926156 a001 610*24476^(13/21) 3178111705180045 a001 1346269/1364*24476^(4/7) 3178111705432181 a001 2178309/1364*24476^(11/21) 3178111705478110 a001 17711/1364*64079^(21/23) 3178111705684987 a001 1762289/682*24476^(10/21) 3178111705695520 m001 (cos(1/12*Pi)-Niven)/(Porter+Thue) 3178111705878721 a005 (1/cos(46/221*Pi))^304 3178111705937537 a001 5702887/1364*24476^(3/7) 3178111706171986 a001 17711/1364*439204^(7/9) 3178111706183882 a001 610/39603*2537720636^(7/9) 3178111706183882 a001 610/39603*17393796001^(5/7) 3178111706183882 a001 610/39603*312119004989^(7/11) 3178111706183882 a001 610/39603*14662949395604^(5/9) 3178111706183882 a001 610/39603*(1/2+1/2*5^(1/2))^35 3178111706183882 a001 610/39603*505019158607^(5/8) 3178111706183882 a001 610/39603*28143753123^(7/10) 3178111706183882 a001 610/39603*599074578^(5/6) 3178111706183882 a001 610/39603*228826127^(7/8) 3178111706184768 a001 17711/1364*7881196^(7/11) 3178111706184796 a001 17711/1364*20633239^(3/5) 3178111706184800 a001 17711/1364*141422324^(7/13) 3178111706184800 a001 17711/1364*2537720636^(7/15) 3178111706184800 a001 17711/1364*17393796001^(3/7) 3178111706184800 a001 17711/1364*45537549124^(7/17) 3178111706184800 a001 17711/1364*14662949395604^(1/3) 3178111706184800 a001 17711/1364*(1/2+1/2*5^(1/2))^21 3178111706184800 a001 17711/1364*192900153618^(7/18) 3178111706184800 a001 17711/1364*10749957122^(7/16) 3178111706184800 a001 17711/1364*599074578^(1/2) 3178111706184802 a001 17711/1364*33385282^(7/12) 3178111706185443 a001 17711/1364*1860498^(7/10) 3178111706189520 a001 17711/1364*710647^(3/4) 3178111706190185 a001 9227465/1364*24476^(8/21) 3178111706297393 a001 66978574/341*9349^(1/19) 3178111706442795 a001 3732588/341*24476^(1/3) 3178111706443485 a001 17711/1364*103682^(7/8) 3178111706695420 a001 24157817/1364*24476^(2/7) 3178111706948039 a001 39088169/1364*24476^(5/21) 3178111707200660 a001 31622993/682*24476^(4/21) 3178111707276117 a001 11592/341*64079^(19/23) 3178111707436228 a001 9107514720/28657 3178111707453281 a001 9303105/124*24476^(1/7) 3178111707595927 a001 121393/1364*64079^(17/23) 3178111707689188 a001 98209/682*64079^(16/23) 3178111707700071 a001 317811/1364*64079^(15/23) 3178111707705902 a001 165580141/1364*24476^(2/21) 3178111707718333 a001 75025/1364*64079^(18/23) 3178111707742420 a001 514229/1364*64079^(14/23) 3178111707772750 a001 610*64079^(13/23) 3178111707807671 a001 1346269/1364*64079^(12/23) 3178111707840838 a001 2178309/1364*64079^(11/23) 3178111707874675 a001 1762289/682*64079^(10/23) 3178111707908256 a001 5702887/1364*64079^(9/23) 3178111707914586 a001 305/51841*(1/2+1/2*5^(1/2))^37 3178111707915504 a001 11592/341*817138163596^(1/3) 3178111707915504 a001 11592/341*(1/2+1/2*5^(1/2))^19 3178111707915504 a001 11592/341*87403803^(1/2) 3178111707941935 a001 9227465/1364*64079^(8/23) 3178111707958522 a001 66978574/341*24476^(1/21) 3178111707975577 a001 3732588/341*64079^(7/23) 3178111708009233 a001 24157817/1364*64079^(6/23) 3178111708042883 a001 39088169/1364*64079^(5/23) 3178111708076536 a001 31622993/682*64079^(4/23) 3178111708097300 a001 4768756618/15005 3178111708110187 a001 9303105/124*64079^(3/23) 3178111708119037 a001 17711/1364*39603^(21/22) 3178111708137096 a001 317811/1364*167761^(3/5) 3178111708143839 a001 165580141/1364*64079^(2/23) 3178111708149552 a001 11592/341*103682^(19/24) 3178111708166025 a001 1762289/682*167761^(2/5) 3178111708167092 a001 610/271443*2537720636^(13/15) 3178111708167092 a001 610/271443*45537549124^(13/17) 3178111708167092 a001 610/271443*14662949395604^(13/21) 3178111708167092 a001 610/271443*(1/2+1/2*5^(1/2))^39 3178111708167092 a001 610/271443*192900153618^(13/18) 3178111708167092 a001 610/271443*73681302247^(3/4) 3178111708167092 a001 610/271443*10749957122^(13/16) 3178111708167092 a001 610/271443*599074578^(13/14) 3178111708168010 a001 121393/1364*45537549124^(1/3) 3178111708168010 a001 121393/1364*(1/2+1/2*5^(1/2))^17 3178111708168020 a001 121393/1364*12752043^(1/2) 3178111708177491 a001 66978574/341*64079^(1/23) 3178111708188558 a001 39088169/1364*167761^(1/5) 3178111708193750 a001 31211917275/98209 3178111708195697 a001 317811/1364*439204^(5/9) 3178111708203932 a001 610/710647*(1/2+1/2*5^(1/2))^41 3178111708204171 a001 1346269/1364*439204^(4/9) 3178111708204827 a001 317811/1364*7881196^(5/11) 3178111708204847 a001 317811/1364*20633239^(3/7) 3178111708204850 a001 317811/1364*141422324^(5/13) 3178111708204850 a001 317811/1364*2537720636^(1/3) 3178111708204850 a001 317811/1364*45537549124^(5/17) 3178111708204850 a001 317811/1364*312119004989^(3/11) 3178111708204850 a001 317811/1364*14662949395604^(5/21) 3178111708204850 a001 317811/1364*(1/2+1/2*5^(1/2))^15 3178111708204850 a001 317811/1364*192900153618^(5/18) 3178111708204850 a001 317811/1364*28143753123^(3/10) 3178111708204850 a001 317811/1364*10749957122^(5/16) 3178111708204850 a001 317811/1364*599074578^(5/14) 3178111708204850 a001 317811/1364*228826127^(3/8) 3178111708204851 a001 317811/1364*33385282^(5/12) 3178111708205309 a001 317811/1364*1860498^(1/2) 3178111708205632 a001 5702887/1364*439204^(1/3) 3178111708207483 a001 24157817/1364*439204^(2/9) 3178111708207821 a001 163427720560/514229 3178111708209307 a001 305/930249*(1/2+1/2*5^(1/2))^43 3178111708209313 a001 9303105/124*439204^(1/9) 3178111708209874 a001 427859327130/1346269 3178111708210091 a001 610/4870847*45537549124^(15/17) 3178111708210091 a001 610/4870847*312119004989^(9/11) 3178111708210091 a001 610/4870847*14662949395604^(5/7) 3178111708210091 a001 610/4870847*(1/2+1/2*5^(1/2))^45 3178111708210091 a001 610/4870847*192900153618^(5/6) 3178111708210091 a001 610/4870847*28143753123^(9/10) 3178111708210091 a001 610/4870847*10749957122^(15/16) 3178111708210174 a001 560075130415/1762289 3178111708210206 a001 610/12752043*(1/2+1/2*5^(1/2))^47 3178111708210218 a001 586518291072/1845493 3178111708210222 a001 305/16692641*14662949395604^(7/9) 3178111708210222 a001 305/16692641*(1/2+1/2*5^(1/2))^49 3178111708210222 a001 305/16692641*505019158607^(7/8) 3178111708210224 a001 7677624105250/24157817 3178111708210225 a001 610/87403803*14662949395604^(17/21) 3178111708210225 a001 610/87403803*192900153618^(17/18) 3178111708210225 a001 43133649915/135721 3178111708210225 a001 610*141422324^(1/3) 3178111708210225 a001 52623218475920/165580141 3178111708210225 a001 305/299537289*3461452808002^(11/12) 3178111708210225 a001 137769374567370/433494437 3178111708210225 a001 610/1568397607*14662949395604^(19/21) 3178111708210225 a001 591286729879/1860497 3178111708210225 a001 944285341111200/2971215073 3178111708210225 a001 2472171118107410/7778742049 3178111708210225 a001 3236114006605515/10182505537 3178111708210225 a001 610*73681302247^(1/4) 3178111708210225 a001 800011379020724/2517253805 3178111708210225 a001 763942888498105/2403763488 3178111708210225 a001 610/6643838879*14662949395604^(20/21) 3178111708210225 a001 583600435885010/1836311903 3178111708210225 a001 222915530658820/701408733 3178111708210225 a001 610/969323029*14662949395604^(8/9) 3178111708210225 a001 42573078045725/133957148 3178111708210225 a001 610/370248451*14662949395604^(6/7) 3178111708210225 a001 6504587523106/20466831 3178111708210225 a001 305/70711162*23725150497407^(13/16) 3178111708210225 a001 305/70711162*505019158607^(13/14) 3178111708210225 a001 12422656755140/39088169 3178111708210226 a001 610/54018521*312119004989^(10/11) 3178111708210226 a001 610/54018521*3461452808002^(5/6) 3178111708210228 a001 2372516324945/7465176 3178111708210233 a001 610/20633239*45537549124^(16/17) 3178111708210233 a001 610/20633239*14662949395604^(16/21) 3178111708210233 a001 610/20633239*(1/2+1/2*5^(1/2))^48 3178111708210233 a001 610/20633239*192900153618^(8/9) 3178111708210233 a001 610/20633239*73681302247^(12/13) 3178111708210245 a001 1812441194530/5702887 3178111708210276 a001 305/3940598*(1/2+1/2*5^(1/2))^46 3178111708210276 a001 305/3940598*10749957122^(23/24) 3178111708210359 a001 692290933700/2178309 3178111708210576 a001 610/3010349*312119004989^(4/5) 3178111708210576 a001 610/3010349*(1/2+1/2*5^(1/2))^44 3178111708210576 a001 610/3010349*23725150497407^(11/16) 3178111708210576 a001 610/3010349*73681302247^(11/13) 3178111708210576 a001 610/3010349*10749957122^(11/12) 3178111708210576 a001 610/3010349*4106118243^(22/23) 3178111708210992 a001 2178309/1364*7881196^(1/3) 3178111708211009 a001 2178309/1364*312119004989^(1/5) 3178111708211009 a001 2178309/1364*(1/2+1/2*5^(1/2))^11 3178111708211009 a001 2178309/1364*1568397607^(1/4) 3178111708211110 a001 5702887/1364*7881196^(3/11) 3178111708211124 a001 5702887/1364*141422324^(3/13) 3178111708211124 a001 5702887/1364*2537720636^(1/5) 3178111708211124 a001 5702887/1364*45537549124^(3/17) 3178111708211124 a001 5702887/1364*817138163596^(3/19) 3178111708211124 a001 5702887/1364*14662949395604^(1/7) 3178111708211124 a001 5702887/1364*(1/2+1/2*5^(1/2))^9 3178111708211124 a001 5702887/1364*192900153618^(1/6) 3178111708211124 a001 5702887/1364*10749957122^(3/16) 3178111708211124 a001 5702887/1364*599074578^(3/14) 3178111708211124 a001 5702887/1364*33385282^(1/4) 3178111708211135 a001 24157817/1364*7881196^(2/11) 3178111708211138 a001 9303105/124*7881196^(1/11) 3178111708211139 a001 3732588/341*20633239^(1/5) 3178111708211140 a001 3732588/341*17393796001^(1/7) 3178111708211140 a001 3732588/341*14662949395604^(1/9) 3178111708211140 a001 3732588/341*(1/2+1/2*5^(1/2))^7 3178111708211140 a001 3732588/341*599074578^(1/6) 3178111708211142 a001 39088169/1364*20633239^(1/7) 3178111708211143 a001 39088169/1364*2537720636^(1/9) 3178111708211143 a001 39088169/1364*312119004989^(1/11) 3178111708211143 a001 39088169/1364*(1/2+1/2*5^(1/2))^5 3178111708211143 a001 39088169/1364*28143753123^(1/10) 3178111708211143 a001 39088169/1364*228826127^(1/8) 3178111708211143 a001 9303105/124*141422324^(1/13) 3178111708211143 a001 9303105/124*2537720636^(1/15) 3178111708211143 a001 9303105/124*45537549124^(1/17) 3178111708211143 a001 9303105/124*14662949395604^(1/21) 3178111708211143 a001 9303105/124*(1/2+1/2*5^(1/2))^3 3178111708211143 a001 9303105/124*192900153618^(1/18) 3178111708211143 a001 9303105/124*10749957122^(1/16) 3178111708211143 a001 9303105/124*599074578^(1/14) 3178111708211143 a001 33489287/341+33489287/341*5^(1/2) 3178111708211143 a001 433494437/1364 3178111708211143 a001 165580141/1364*(1/2+1/2*5^(1/2))^2 3178111708211143 a001 165580141/1364*10749957122^(1/24) 3178111708211143 a001 165580141/1364*4106118243^(1/23) 3178111708211143 a001 165580141/1364*1568397607^(1/22) 3178111708211143 a001 165580141/1364*599074578^(1/21) 3178111708211143 a001 165580141/1364*228826127^(1/20) 3178111708211143 a001 165580141/1364*87403803^(1/19) 3178111708211143 a001 31622993/682*(1/2+1/2*5^(1/2))^4 3178111708211143 a001 31622993/682*23725150497407^(1/16) 3178111708211143 a001 31622993/682*73681302247^(1/13) 3178111708211143 a001 31622993/682*10749957122^(1/12) 3178111708211143 a001 31622993/682*4106118243^(2/23) 3178111708211143 a001 31622993/682*1568397607^(1/11) 3178111708211143 a001 31622993/682*599074578^(2/21) 3178111708211143 a001 31622993/682*228826127^(1/10) 3178111708211143 a001 9303105/124*33385282^(1/12) 3178111708211143 a001 165580141/1364*33385282^(1/18) 3178111708211143 a001 31622993/682*87403803^(2/19) 3178111708211144 a001 31622993/682*33385282^(1/9) 3178111708211144 a001 24157817/1364*141422324^(2/13) 3178111708211144 a001 24157817/1364*2537720636^(2/15) 3178111708211144 a001 24157817/1364*45537549124^(2/17) 3178111708211144 a001 24157817/1364*14662949395604^(2/21) 3178111708211144 a001 24157817/1364*(1/2+1/2*5^(1/2))^6 3178111708211144 a001 24157817/1364*10749957122^(1/8) 3178111708211144 a001 24157817/1364*4106118243^(3/23) 3178111708211144 a001 24157817/1364*1568397607^(3/22) 3178111708211144 a001 24157817/1364*599074578^(1/7) 3178111708211144 a001 24157817/1364*228826127^(3/20) 3178111708211144 a001 24157817/1364*87403803^(3/19) 3178111708211144 a001 165580141/1364*12752043^(1/17) 3178111708211145 a001 24157817/1364*33385282^(1/6) 3178111708211146 a001 31622993/682*12752043^(2/17) 3178111708211148 a001 24157817/1364*12752043^(3/17) 3178111708211151 a001 9227465/1364*(1/2+1/2*5^(1/2))^8 3178111708211151 a001 9227465/1364*23725150497407^(1/8) 3178111708211151 a001 9227465/1364*73681302247^(2/13) 3178111708211151 a001 9227465/1364*10749957122^(1/6) 3178111708211151 a001 9227465/1364*4106118243^(4/23) 3178111708211151 a001 9227465/1364*1568397607^(2/11) 3178111708211151 a001 9227465/1364*599074578^(4/21) 3178111708211151 a001 9227465/1364*228826127^(1/5) 3178111708211151 a001 9227465/1364*87403803^(4/19) 3178111708211151 a001 9227465/1364*33385282^(2/9) 3178111708211152 a001 165580141/1364*4870847^(1/16) 3178111708211155 a001 9227465/1364*12752043^(4/17) 3178111708211160 a001 31622993/682*4870847^(1/8) 3178111708211169 a001 24157817/1364*4870847^(3/16) 3178111708211184 a001 9227465/1364*4870847^(1/4) 3178111708211192 a001 1762289/682*20633239^(2/7) 3178111708211194 a001 1762289/682*2537720636^(2/9) 3178111708211194 a001 1762289/682*312119004989^(2/11) 3178111708211194 a001 1762289/682*(1/2+1/2*5^(1/2))^10 3178111708211194 a001 1762289/682*28143753123^(1/5) 3178111708211194 a001 1762289/682*10749957122^(5/24) 3178111708211194 a001 1762289/682*4106118243^(5/23) 3178111708211194 a001 1762289/682*1568397607^(5/22) 3178111708211194 a001 1762289/682*599074578^(5/21) 3178111708211194 a001 1762289/682*228826127^(1/4) 3178111708211194 a001 1762289/682*87403803^(5/19) 3178111708211195 a001 1762289/682*33385282^(5/18) 3178111708211200 a001 1762289/682*12752043^(5/17) 3178111708211204 a001 165580141/1364*1860498^(1/15) 3178111708211235 a001 9303105/124*1860498^(1/10) 3178111708211236 a001 1762289/682*4870847^(5/16) 3178111708211266 a001 31622993/682*1860498^(2/15) 3178111708211296 a001 39088169/1364*1860498^(1/6) 3178111708211328 a001 24157817/1364*1860498^(1/5) 3178111708211395 a001 9227465/1364*1860498^(4/15) 3178111708211399 a001 5702887/1364*1860498^(3/10) 3178111708211475 a001 1346269/1364*7881196^(4/11) 3178111708211494 a001 1346269/1364*141422324^(4/13) 3178111708211494 a001 1346269/1364*2537720636^(4/15) 3178111708211494 a001 1346269/1364*45537549124^(4/17) 3178111708211494 a001 1346269/1364*817138163596^(4/19) 3178111708211494 a001 1346269/1364*14662949395604^(4/21) 3178111708211494 a001 1346269/1364*(1/2+1/2*5^(1/2))^12 3178111708211494 a001 1346269/1364*192900153618^(2/9) 3178111708211494 a001 1346269/1364*73681302247^(3/13) 3178111708211494 a001 1346269/1364*10749957122^(1/4) 3178111708211494 a001 1346269/1364*4106118243^(6/23) 3178111708211494 a001 1346269/1364*1568397607^(3/11) 3178111708211494 a001 1346269/1364*599074578^(2/7) 3178111708211494 a001 1346269/1364*228826127^(3/10) 3178111708211494 a001 1346269/1364*87403803^(6/19) 3178111708211495 a001 1346269/1364*33385282^(1/3) 3178111708211500 a001 1762289/682*1860498^(1/3) 3178111708211501 a001 1346269/1364*12752043^(6/17) 3178111708211544 a001 1346269/1364*4870847^(3/8) 3178111708211593 a001 165580141/1364*710647^(1/14) 3178111708211861 a001 1346269/1364*1860498^(2/5) 3178111708212042 a001 31622993/682*710647^(1/7) 3178111708212493 a001 24157817/1364*710647^(3/14) 3178111708212629 a001 610/1149851*2537720636^(14/15) 3178111708212629 a001 610/1149851*17393796001^(6/7) 3178111708212629 a001 610/1149851*45537549124^(14/17) 3178111708212629 a001 610/1149851*817138163596^(14/19) 3178111708212629 a001 610/1149851*14662949395604^(2/3) 3178111708212629 a001 610/1149851*(1/2+1/2*5^(1/2))^42 3178111708212629 a001 610/1149851*505019158607^(3/4) 3178111708212629 a001 610/1149851*192900153618^(7/9) 3178111708212629 a001 610/1149851*10749957122^(7/8) 3178111708212629 a001 610/1149851*4106118243^(21/23) 3178111708212629 a001 610/1149851*1568397607^(21/22) 3178111708212714 a001 3732588/341*710647^(1/4) 3178111708212949 a001 9227465/1364*710647^(2/7) 3178111708213442 a001 1762289/682*710647^(5/14) 3178111708213544 a001 514229/1364*20633239^(2/5) 3178111708213547 a001 514229/1364*17393796001^(2/7) 3178111708213547 a001 514229/1364*14662949395604^(2/9) 3178111708213547 a001 514229/1364*(1/2+1/2*5^(1/2))^14 3178111708213547 a001 514229/1364*10749957122^(7/24) 3178111708213547 a001 514229/1364*4106118243^(7/23) 3178111708213547 a001 514229/1364*1568397607^(7/22) 3178111708213547 a001 514229/1364*599074578^(1/3) 3178111708213547 a001 514229/1364*228826127^(7/20) 3178111708213547 a001 514229/1364*87403803^(7/19) 3178111708213548 a001 514229/1364*33385282^(7/18) 3178111708213555 a001 514229/1364*12752043^(7/17) 3178111708213606 a001 514229/1364*4870847^(7/16) 3178111708213975 a001 514229/1364*1860498^(7/15) 3178111708214191 a001 1346269/1364*710647^(3/7) 3178111708214461 a001 165580141/1364*271443^(1/13) 3178111708216518 a001 101003886010/317811 3178111708216693 a001 514229/1364*710647^(1/2) 3178111708217779 a001 31622993/682*271443^(2/13) 3178111708221098 a001 24157817/1364*271443^(3/13) 3178111708223461 a001 66978574/341*103682^(1/24) 3178111708224422 a001 9227465/1364*271443^(4/13) 3178111708226700 a001 305/219602*2537720636^(8/9) 3178111708226700 a001 305/219602*312119004989^(8/11) 3178111708226700 a001 305/219602*(1/2+1/2*5^(1/2))^40 3178111708226700 a001 305/219602*23725150497407^(5/8) 3178111708226700 a001 305/219602*73681302247^(10/13) 3178111708226700 a001 305/219602*28143753123^(4/5) 3178111708226700 a001 305/219602*10749957122^(5/6) 3178111708226700 a001 305/219602*4106118243^(20/23) 3178111708226700 a001 305/219602*1568397607^(10/11) 3178111708226700 a001 305/219602*599074578^(20/21) 3178111708227619 a001 98209/682*(1/2+1/2*5^(1/2))^16 3178111708227619 a001 98209/682*23725150497407^(1/4) 3178111708227619 a001 98209/682*73681302247^(4/13) 3178111708227619 a001 98209/682*10749957122^(1/3) 3178111708227619 a001 98209/682*4106118243^(8/23) 3178111708227619 a001 98209/682*1568397607^(4/11) 3178111708227619 a001 98209/682*599074578^(8/21) 3178111708227619 a001 98209/682*228826127^(2/5) 3178111708227619 a001 98209/682*87403803^(8/19) 3178111708227620 a001 98209/682*33385282^(4/9) 3178111708227628 a001 98209/682*12752043^(8/17) 3178111708227686 a001 98209/682*4870847^(1/2) 3178111708227784 a001 1762289/682*271443^(5/13) 3178111708228108 a001 98209/682*1860498^(8/15) 3178111708231215 a001 98209/682*710647^(4/7) 3178111708231402 a001 1346269/1364*271443^(6/13) 3178111708231792 a001 610*271443^(1/2) 3178111708235780 a001 165580141/1364*103682^(1/12) 3178111708236773 a001 514229/1364*271443^(7/13) 3178111708248098 a001 9303105/124*103682^(1/8) 3178111708253358 a001 165579620/521 3178111708254162 a001 98209/682*271443^(8/13) 3178111708260417 a001 31622993/682*103682^(1/6) 3178111708272734 a001 39088169/1364*103682^(5/24) 3178111708285054 a001 24157817/1364*103682^(1/4) 3178111708297369 a001 3732588/341*103682^(7/24) 3178111708303250 a001 66978574/341*39603^(1/22) 3178111708309697 a001 9227465/1364*103682^(1/3) 3178111708312099 a001 28657/1364*64079^(20/23) 3178111708313084 a001 75025/1364*439204^(2/3) 3178111708321988 a001 5702887/1364*103682^(3/8) 3178111708323149 a001 610/167761*817138163596^(2/3) 3178111708323149 a001 610/167761*(1/2+1/2*5^(1/2))^38 3178111708323149 a001 610/167761*10749957122^(19/24) 3178111708323149 a001 610/167761*4106118243^(19/23) 3178111708323149 a001 610/167761*1568397607^(19/22) 3178111708323149 a001 610/167761*599074578^(19/21) 3178111708323149 a001 610/167761*228826127^(19/20) 3178111708324040 a001 75025/1364*7881196^(6/11) 3178111708324067 a001 75025/1364*141422324^(6/13) 3178111708324067 a001 75025/1364*2537720636^(2/5) 3178111708324067 a001 75025/1364*45537549124^(6/17) 3178111708324067 a001 75025/1364*14662949395604^(2/7) 3178111708324067 a001 75025/1364*(1/2+1/2*5^(1/2))^18 3178111708324067 a001 75025/1364*192900153618^(1/3) 3178111708324067 a001 75025/1364*10749957122^(3/8) 3178111708324067 a001 75025/1364*4106118243^(9/23) 3178111708324067 a001 75025/1364*1568397607^(9/22) 3178111708324067 a001 75025/1364*599074578^(3/7) 3178111708324067 a001 75025/1364*228826127^(9/20) 3178111708324068 a001 75025/1364*87403803^(9/19) 3178111708324069 a001 75025/1364*33385282^(1/2) 3178111708324078 a001 75025/1364*12752043^(9/17) 3178111708324143 a001 75025/1364*4870847^(9/16) 3178111708324618 a001 75025/1364*1860498^(3/5) 3178111708328113 a001 75025/1364*710647^(9/14) 3178111708334377 a001 1762289/682*103682^(5/12) 3178111708346511 a001 2178309/1364*103682^(11/24) 3178111708353929 a001 75025/1364*271443^(9/13) 3178111708359314 a001 1346269/1364*103682^(1/2) 3178111708370363 a001 610*103682^(13/24) 3178111708377421 a001 121393/1364*103682^(17/24) 3178111708386003 a001 514229/1364*103682^(7/12) 3178111708389625 a001 317811/1364*103682^(5/8) 3178111708395356 a001 165580141/1364*39603^(1/11) 3178111708424712 a001 98209/682*103682^(2/3) 3178111708487463 a001 9303105/124*39603^(3/22) 3178111708505866 a001 7368134185/23184 3178111708545797 a001 75025/1364*103682^(3/4) 3178111708579569 a001 31622993/682*39603^(2/11) 3178111708671675 a001 39088169/1364*39603^(5/22) 3178111708763783 a001 24157817/1364*39603^(3/11) 3178111708855886 a001 3732588/341*39603^(7/22) 3178111708894798 a001 28657/1364*167761^(4/5) 3178111708905581 a001 66978574/341*15127^(1/20) 3178111708948003 a001 9227465/1364*39603^(4/11) 3178111708984219 a001 610/64079*141422324^(12/13) 3178111708984219 a001 610/64079*2537720636^(4/5) 3178111708984219 a001 610/64079*45537549124^(12/17) 3178111708984219 a001 610/64079*14662949395604^(4/7) 3178111708984219 a001 610/64079*(1/2+1/2*5^(1/2))^36 3178111708984219 a001 610/64079*505019158607^(9/14) 3178111708984219 a001 610/64079*192900153618^(2/3) 3178111708984219 a001 610/64079*73681302247^(9/13) 3178111708984219 a001 610/64079*10749957122^(3/4) 3178111708984219 a001 610/64079*4106118243^(18/23) 3178111708984219 a001 610/64079*1568397607^(9/11) 3178111708984219 a001 610/64079*599074578^(6/7) 3178111708984219 a001 610/64079*228826127^(9/10) 3178111708984220 a001 610/64079*87403803^(18/19) 3178111708985133 a001 28657/1364*20633239^(4/7) 3178111708985137 a001 28657/1364*2537720636^(4/9) 3178111708985137 a001 28657/1364*(1/2+1/2*5^(1/2))^20 3178111708985137 a001 28657/1364*23725150497407^(5/16) 3178111708985137 a001 28657/1364*505019158607^(5/14) 3178111708985137 a001 28657/1364*73681302247^(5/13) 3178111708985137 a001 28657/1364*28143753123^(2/5) 3178111708985137 a001 28657/1364*10749957122^(5/12) 3178111708985137 a001 28657/1364*4106118243^(10/23) 3178111708985137 a001 28657/1364*1568397607^(5/11) 3178111708985137 a001 28657/1364*599074578^(10/21) 3178111708985137 a001 28657/1364*228826127^(1/2) 3178111708985138 a001 28657/1364*87403803^(10/19) 3178111708985139 a001 28657/1364*33385282^(5/9) 3178111708985149 a001 28657/1364*12752043^(10/17) 3178111708985221 a001 28657/1364*4870847^(5/8) 3178111708985749 a001 28657/1364*1860498^(2/3) 3178111708989632 a001 28657/1364*710647^(5/7) 3178111709018317 a001 28657/1364*271443^(10/13) 3178111709040082 a001 5702887/1364*39603^(9/22) 3178111709132259 a001 1762289/682*39603^(5/11) 3178111709224181 a001 2178309/1364*39603^(1/2) 3178111709231504 a001 28657/1364*103682^(5/6) 3178111709316772 a001 1346269/1364*39603^(6/11) 3178111709407610 a001 610*39603^(13/22) 3178111709503038 a001 514229/1364*39603^(7/11) 3178111709586448 a001 317811/1364*39603^(15/22) 3178111709600019 a001 165580141/1364*15127^(1/10) 3178111709665527 a001 11592/341*39603^(19/22) 3178111709701323 a001 98209/682*39603^(8/11) 3178111709733821 a001 121393/1364*39603^(17/22) 3178111709981985 a001 75025/1364*39603^(9/11) 3178111710236576 a001 5628753650/17711 3178111710294457 a001 9303105/124*15127^(3/20) 3178111710827268 a001 28657/1364*39603^(10/11) 3178111710988896 a001 31622993/682*15127^(1/5) 3178111711683333 a001 39088169/1364*15127^(1/4) 3178111711725111 k007 concat of cont frac of 3178111712377773 a001 24157817/1364*15127^(3/10) 3178111712775836 a001 5473/682*64079^(22/23) 3178111713072207 a001 3732588/341*15127^(7/20) 3178111713499754 a001 66978574/341*5778^(1/18) 3178111713515260 a001 305/12238*45537549124^(2/3) 3178111713515260 a001 305/12238*(1/2+1/2*5^(1/2))^34 3178111713515260 a001 305/12238*10749957122^(17/24) 3178111713515260 a001 305/12238*4106118243^(17/23) 3178111713515260 a001 305/12238*1568397607^(17/22) 3178111713515260 a001 305/12238*599074578^(17/21) 3178111713515260 a001 305/12238*228826127^(17/20) 3178111713515261 a001 305/12238*87403803^(17/19) 3178111713515263 a001 305/12238*33385282^(17/18) 3178111713516144 a001 5473/682*7881196^(2/3) 3178111713516178 a001 5473/682*312119004989^(2/5) 3178111713516178 a001 5473/682*(1/2+1/2*5^(1/2))^22 3178111713516178 a001 5473/682*10749957122^(11/24) 3178111713516178 a001 5473/682*4106118243^(11/23) 3178111713516178 a001 5473/682*1568397607^(1/2) 3178111713516178 a001 5473/682*599074578^(11/21) 3178111713516178 a001 5473/682*228826127^(11/20) 3178111713516179 a001 5473/682*87403803^(11/19) 3178111713516180 a001 5473/682*33385282^(11/18) 3178111713516191 a001 5473/682*12752043^(11/17) 3178111713516270 a001 5473/682*4870847^(11/16) 3178111713516852 a001 5473/682*1860498^(11/15) 3178111713521123 a001 5473/682*710647^(11/14) 3178111713552676 a001 5473/682*271443^(11/13) 3178111713766656 a001 9227465/1364*15127^(2/5) 3178111713787181 a001 5473/682*103682^(11/12) 3178111714412121 k006 concat of cont frac of 3178111714461067 a001 5702887/1364*15127^(9/20) 3178111715155576 a001 1762289/682*15127^(1/2) 3178111715213273 m005 (4*exp(1)-1)/(3/4*2^(1/2)-3/4) 3178111715849829 a001 2178309/1364*15127^(11/20) 3178111716544751 a001 1346269/1364*15127^(3/5) 3178111717237921 a001 610*15127^(13/20) 3178111717935681 a001 514229/1364*15127^(7/10) 3178111718621422 a001 317811/1364*15127^(3/4) 3178111718788365 a001 165580141/1364*5778^(1/9) 3178111718998220 r005 Re(z^2+c),c=-39/106+17/38*I,n=18 3178111719338629 a001 98209/682*15127^(4/5) 3178111719973458 a001 121393/1364*15127^(17/20) 3178111720823954 a001 75025/1364*15127^(9/10) 3178111721109828 a001 11592/341*15127^(19/20) 3178111722099039 a001 429998516/1353 3178111724076975 a001 9303105/124*5778^(1/6) 3178111724111412 k009 concat of cont frac of 3178111727869756 r009 Im(z^3+c),c=-63/110+16/35*I,n=12 3178111729365586 a001 31622993/682*5778^(2/9) 3178111732124121 k009 concat of cont frac of 3178111733869931 a007 Real Root Of -526*x^4-223*x^3-494*x^2+897*x+29 3178111734654196 a001 39088169/1364*5778^(5/18) 3178111734958571 m001 1/GAMMA(19/24)/Cahen^2/ln(sqrt(5))^2 3178111739942809 a001 24157817/1364*5778^(1/3) 3178111744557750 a001 4181/1364*439204^(8/9) 3178111744571477 a001 610/9349*(1/2+1/2*5^(1/2))^32 3178111744571477 a001 610/9349*23725150497407^(1/2) 3178111744571477 a001 610/9349*505019158607^(4/7) 3178111744571477 a001 610/9349*73681302247^(8/13) 3178111744571477 a001 610/9349*10749957122^(2/3) 3178111744571477 a001 610/9349*4106118243^(16/23) 3178111744571477 a001 610/9349*1568397607^(8/11) 3178111744571477 a001 610/9349*599074578^(16/21) 3178111744571478 a001 610/9349*228826127^(4/5) 3178111744571478 a001 610/9349*87403803^(16/19) 3178111744571480 a001 610/9349*33385282^(8/9) 3178111744571496 a001 610/9349*12752043^(16/17) 3178111744572358 a001 4181/1364*7881196^(8/11) 3178111744572395 a001 4181/1364*141422324^(8/13) 3178111744572395 a001 4181/1364*2537720636^(8/15) 3178111744572395 a001 4181/1364*45537549124^(8/17) 3178111744572395 a001 4181/1364*14662949395604^(8/21) 3178111744572395 a001 4181/1364*(1/2+1/2*5^(1/2))^24 3178111744572395 a001 4181/1364*192900153618^(4/9) 3178111744572395 a001 4181/1364*73681302247^(6/13) 3178111744572395 a001 4181/1364*10749957122^(1/2) 3178111744572395 a001 4181/1364*4106118243^(12/23) 3178111744572395 a001 4181/1364*1568397607^(6/11) 3178111744572395 a001 4181/1364*599074578^(4/7) 3178111744572395 a001 4181/1364*228826127^(3/5) 3178111744572395 a001 4181/1364*87403803^(12/19) 3178111744572397 a001 4181/1364*33385282^(2/3) 3178111744572409 a001 4181/1364*12752043^(12/17) 3178111744572496 a001 4181/1364*4870847^(3/4) 3178111744573130 a001 4181/1364*1860498^(4/5) 3178111744577789 a001 4181/1364*710647^(6/7) 3178111744612210 a001 4181/1364*271443^(12/13) 3178111745231415 a001 3732588/341*5778^(7/18) 3178111746181922 k008 concat of cont frac of 3178111748990901 a001 66978574/341*2207^(1/16) 3178111750520036 a001 9227465/1364*5778^(4/9) 3178111751211633 k008 concat of cont frac of 3178111751231115 k007 concat of cont frac of 3178111755808620 a001 5702887/1364*5778^(1/2) 3178111761097302 a001 1762289/682*5778^(5/9) 3178111761126224 r005 Im(z^2+c),c=-17/98+29/63*I,n=35 3178111766385727 a001 2178309/1364*5778^(11/18) 3178111771134374 l006 ln(2689/3695) 3178111771348415 m001 1/ln(TreeGrowth2nd)^2*FransenRobinson^2*exp(1) 3178111771674823 a001 1346269/1364*5778^(2/3) 3178111776962165 a001 610*5778^(13/18) 3178111778587244 m008 (2*Pi^5-4/5)/(2*Pi^6+1/2) 3178111779526532 p004 log(17257/719) 3178111782254097 a001 514229/1364*5778^(7/9) 3178111784363350 a003 cos(Pi*7/45)-cos(Pi*21/68) 3178111787191459 r005 Im(z^2+c),c=23/122+21/59*I,n=4 3178111787534011 a001 317811/1364*5778^(5/6) 3178111789770660 a001 165580141/1364*2207^(1/8) 3178111791204955 m009 (5/6*Psi(1,3/4)+3/4)/(3*Psi(1,2/3)-1/6) 3178111792845391 a001 98209/682*5778^(8/9) 3178111798074393 a001 121393/1364*5778^(17/18) 3178111801271346 a001 832040/521*521^(11/13) 3178111801303768 m001 Conway-exp(1)*exp(1/2) 3178111803405572 a001 410612045/1292 3178111806250115 m001 1/ln(gamma)^2/BesselK(0,1)^2/sin(Pi/5) 3178111807409201 r002 61i'th iterates of 2*x/(1-x^2) of 3178111814102161 k007 concat of cont frac of 3178111816438443 m001 (2^(1/2)+4)/(Zeta(5)+2/3) 3178111820222991 m001 HardyLittlewoodC5^((1+3^(1/2))^(1/2))-Magata 3178111821440220 a001 34111385/1926*843^(3/7) 3178111821480621 l003 KelvinBei(2,59/117) 3178111830550419 a001 9303105/124*2207^(3/16) 3178111831820430 b008 1-43*(6+Sqrt[2]) 3178111832111647 r005 Im(z^2+c),c=9/58+9/32*I,n=17 3178111836511595 k006 concat of cont frac of 3178111844047566 r005 Re(z^2+c),c=-39/94+5/49*I,n=20 3178111846393519 r005 Im(z^2+c),c=-31/38+7/38*I,n=57 3178111846420722 a001 102334155/3571*843^(5/14) 3178111849096265 m001 (ArtinRank2-BesselK(0,1))/(Trott+Thue) 3178111862956929 a009 1/3*(7-5^(1/4))*3^(1/2) 3178111871330179 a001 31622993/682*2207^(1/4) 3178111871883289 m001 (QuadraticClass-Trott2nd)/(gamma(3)+Khinchin) 3178111890030768 r005 Re(z^2+c),c=-149/118+1/46*I,n=38 3178111891152719 a007 Real Root Of 405*x^4-252*x^3-683*x^2-871*x-27 3178111896600402 a007 Real Root Of 141*x^4+157*x^3-863*x^2+495*x+945 3178111900546806 l006 ln(7711/7960) 3178111900652859 m001 GaussKuzminWirsing^2*Cahen^2/ln(sqrt(2))^2 3178111901891755 a001 433494437/2207*322^(1/12) 3178111901920112 r005 Im(z^2+c),c=-1/86+18/47*I,n=16 3178111902746454 a001 267914296/15127*843^(3/7) 3178111903035546 a001 14930352/2207*843^(4/7) 3178111903450657 r008 a(0)=3,K{-n^6,13-34*n+58*n^2-43*n^3} 3178111912109939 a001 39088169/1364*2207^(5/16) 3178111914608874 a001 17711*843^(3/7) 3178111916339577 a001 1836311903/103682*843^(3/7) 3178111916592084 a001 1602508992/90481*843^(3/7) 3178111916628924 a001 12586269025/710647*843^(3/7) 3178111916634299 a001 10983760033/620166*843^(3/7) 3178111916635083 a001 86267571272/4870847*843^(3/7) 3178111916635197 a001 75283811239/4250681*843^(3/7) 3178111916635214 a001 591286729879/33385282*843^(3/7) 3178111916635217 a001 516002918640/29134601*843^(3/7) 3178111916635217 a001 4052739537881/228826127*843^(3/7) 3178111916635217 a001 3536736619241/199691526*843^(3/7) 3178111916635217 a001 6557470319842/370248451*843^(3/7) 3178111916635217 a001 2504730781961/141422324*843^(3/7) 3178111916635218 a001 956722026041/54018521*843^(3/7) 3178111916635224 a001 365435296162/20633239*843^(3/7) 3178111916635268 a001 139583862445/7881196*843^(3/7) 3178111916635568 a001 53316291173/3010349*843^(3/7) 3178111916637621 a001 20365011074/1149851*843^(3/7) 3178111916651692 a001 7778742049/439204*843^(3/7) 3178111916748141 a001 2971215073/167761*843^(3/7) 3178111917409211 a001 1134903170/64079*843^(3/7) 3178111921940253 a001 433494437/24476*843^(3/7) 3178111922122862 a007 Real Root Of -57*x^4+47*x^3+769*x^2+143*x+11 3178111927761860 m001 (Conway-ln(2+3^(1/2)))/BesselK(0,1) 3178111929928452 r005 Re(z^2+c),c=-33/82+9/43*I,n=33 3178111931244836 r009 Re(z^3+c),c=-1/98+50/63*I,n=42 3178111952889701 a001 24157817/1364*2207^(3/8) 3178111952996472 a001 165580141/9349*843^(3/7) 3178111957433927 a001 610/3571*7881196^(10/11) 3178111957433967 a001 610/3571*20633239^(6/7) 3178111957433973 a001 610/3571*141422324^(10/13) 3178111957433974 a001 610/3571*2537720636^(2/3) 3178111957433974 a001 610/3571*45537549124^(10/17) 3178111957433974 a001 610/3571*312119004989^(6/11) 3178111957433974 a001 610/3571*14662949395604^(10/21) 3178111957433974 a001 610/3571*(1/2+1/2*5^(1/2))^30 3178111957433974 a001 610/3571*192900153618^(5/9) 3178111957433974 a001 610/3571*28143753123^(3/5) 3178111957433974 a001 610/3571*10749957122^(5/8) 3178111957433974 a001 610/3571*4106118243^(15/23) 3178111957433974 a001 610/3571*1568397607^(15/22) 3178111957433974 a001 610/3571*599074578^(5/7) 3178111957433974 a001 610/3571*228826127^(3/4) 3178111957433974 a001 610/3571*87403803^(15/19) 3178111957433976 a001 610/3571*33385282^(5/6) 3178111957433991 a001 610/3571*12752043^(15/17) 3178111957434099 a001 610/3571*4870847^(15/16) 3178111957434872 a001 1597/1364*141422324^(2/3) 3178111957434872 a001 1597/1364*(1/2+1/2*5^(1/2))^26 3178111957434872 a001 1597/1364*73681302247^(1/2) 3178111957434872 a001 1597/1364*10749957122^(13/24) 3178111957434872 a001 1597/1364*4106118243^(13/23) 3178111957434872 a001 1597/1364*1568397607^(13/22) 3178111957434872 a001 1597/1364*599074578^(13/21) 3178111957434872 a001 1597/1364*228826127^(13/20) 3178111957434872 a001 1597/1364*87403803^(13/19) 3178111957434874 a001 1597/1364*33385282^(13/18) 3178111957434887 a001 1597/1364*12752043^(13/17) 3178111957434981 a001 1597/1364*4870847^(13/16) 3178111957435668 a001 1597/1364*1860498^(13/15) 3178111957440716 a001 1597/1364*710647^(13/14) 3178111993669458 a001 3732588/341*2207^(7/16) 3178112019598566 m001 1/FransenRobinson^2/ErdosBorwein*ln(Zeta(9))^2 3178112020132615 m005 (1/2*Zeta(3)+2/5)/(5/7*gamma-8/11) 3178112027169426 m001 (BesselI(0,2)-gamma(1)*Weierstrass)/gamma(1) 3178112027649389 a001 66978574/341*843^(1/14) 3178112034449231 a001 9227465/1364*2207^(1/2) 3178112044892758 r005 Re(z^2+c),c=-43/114+1/10*I,n=3 3178112050331475 a007 Real Root Of -272*x^4-680*x^3+740*x^2+643*x+490 3178112057552167 m005 (1/2*3^(1/2)+7/12)/(1/6*exp(1)-10/11) 3178112059752454 m005 (1/2*Catalan-6)/(4/9*5^(1/2)+3/4) 3178112059978341 a001 2/317811*21^(25/47) 3178112062833801 r005 Re(z^2+c),c=-9/22+5/31*I,n=34 3178112075228966 a001 5702887/1364*2207^(9/16) 3178112100294082 r005 Im(z^2+c),c=-19/94+26/55*I,n=40 3178112101841112 k006 concat of cont frac of 3178112104110331 k006 concat of cont frac of 3178112107493759 r005 Re(z^2+c),c=-47/114+3/23*I,n=16 3178112110715181 k006 concat of cont frac of 3178112111032211 k006 concat of cont frac of 3178112111211111 k006 concat of cont frac of 3178112111331114 k007 concat of cont frac of 3178112112121111 k007 concat of cont frac of 3178112113611117 k008 concat of cont frac of 3178112114115110 k007 concat of cont frac of 3178112114700727 a007 Real Root Of -752*x^4+432*x^3-812*x^2+637*x+306 3178112116008799 a001 1762289/682*2207^(5/8) 3178112116131216 k006 concat of cont frac of 3178112116141142 k007 concat of cont frac of 3178112117252203 a008 Real Root of x^4-2*x^3-15*x^2+4*x-2 3178112121252291 k006 concat of cont frac of 3178112122803165 m001 5^(1/2)*BesselJ(0,1)+Porter 3178112124510211 k007 concat of cont frac of 3178112127708001 m001 (Pi+2^(1/2))/(3^(1/3)-ZetaQ(3)) 3178112130567459 r005 Re(z^2+c),c=-19/70+23/39*I,n=51 3178112135573998 r005 Re(z^2+c),c=-7/22+21/40*I,n=48 3178112137442393 r005 Im(z^2+c),c=-61/118+1/32*I,n=3 3178112140878477 a001 31622993/2889*843^(1/2) 3178112141749753 r005 Im(z^2+c),c=8/23+7/54*I,n=22 3178112151344271 a007 Real Root Of -299*x^4-863*x^3+244*x^2+65*x+543 3178112153415121 k006 concat of cont frac of 3178112156788378 a001 2178309/1364*2207^(11/16) 3178112162190932 m001 (3^(1/3)-GAMMA(23/24))/(GaussAGM+PlouffeB) 3178112165858982 a001 63245986/3571*843^(3/7) 3178112166450040 r005 Im(z^2+c),c=-5/34+20/43*I,n=8 3178112171111131 k006 concat of cont frac of 3178112181268375 r009 Im(z^3+c),c=-41/78+17/36*I,n=6 3178112184642446 r005 Im(z^2+c),c=-7/102+7/17*I,n=21 3178112193717896 m005 (1/2*Catalan+3/11)/(7/11*Pi+3/10) 3178112194107419 m002 -4/Pi-Pi^5-Cosh[Pi]+ProductLog[Pi] 3178112195402957 a007 Real Root Of 995*x^4+472*x^3+6*x^2-898*x-281 3178112197568626 a001 1346269/1364*2207^(3/4) 3178112212155822 k008 concat of cont frac of 3178112212717232 k007 concat of cont frac of 3178112213337111 k009 concat of cont frac of 3178112215449408 r005 Im(z^2+c),c=-21/86+21/40*I,n=19 3178112220367132 m003 19/6+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/512 3178112221612250 k007 concat of cont frac of 3178112221743994 a009 6^(3/4)*(10-5^(1/3)) 3178112222017922 a007 Real Root Of 93*x^4-513*x^3-709*x^2-352*x+199 3178112222184719 a001 165580141/15127*843^(1/2) 3178112222473821 a001 9227465/2207*843^(9/14) 3178112232212958 a001 15127/55*3^(5/38) 3178112234047140 a001 433494437/39603*843^(1/2) 3178112235777844 a001 567451585/51841*843^(1/2) 3178112236030350 a001 2971215073/271443*843^(1/2) 3178112236067190 a001 7778742049/710647*843^(1/2) 3178112236072565 a001 10182505537/930249*843^(1/2) 3178112236073349 a001 53316291173/4870847*843^(1/2) 3178112236073464 a001 139583862445/12752043*843^(1/2) 3178112236073481 a001 182717648081/16692641*843^(1/2) 3178112236073483 a001 956722026041/87403803*843^(1/2) 3178112236073483 a001 2504730781961/228826127*843^(1/2) 3178112236073483 a001 3278735159921/299537289*843^(1/2) 3178112236073483 a001 10610209857723/969323029*843^(1/2) 3178112236073483 a001 4052739537881/370248451*843^(1/2) 3178112236073484 a001 387002188980/35355581*843^(1/2) 3178112236073485 a001 591286729879/54018521*843^(1/2) 3178112236073491 a001 7787980473/711491*843^(1/2) 3178112236073535 a001 21566892818/1970299*843^(1/2) 3178112236073834 a001 32951280099/3010349*843^(1/2) 3178112236075887 a001 12586269025/1149851*843^(1/2) 3178112236089959 a001 1201881744/109801*843^(1/2) 3178112236186408 a001 1836311903/167761*843^(1/2) 3178112236847478 a001 701408733/64079*843^(1/2) 3178112237506920 l006 ln(5803/7974) 3178112238347122 a001 610*2207^(13/16) 3178112240357587 m001 (BesselI(0,2)+Khinchin)/(ln(3)+arctan(1/2)) 3178112241378519 a001 10946*843^(1/2) 3178112252068811 r002 29th iterates of z^2 + 3178112261121282 k006 concat of cont frac of 3178112261423841 k008 concat of cont frac of 3178112261906474 a003 cos(Pi*3/73)/sin(Pi*10/99) 3178112267919257 s001 sum(exp(-3*Pi/5)^n*A080566[n],n=1..infinity) 3178112268150654 m001 Pi^(1/2)+MasserGramainDelta^LambertW(1) 3178112272434742 a001 102334155/9349*843^(1/2) 3178112279130209 a001 514229/1364*2207^(7/8) 3178112281862751 r005 Im(z^2+c),c=-9/10+41/177*I,n=17 3178112284253486 m001 BesselI(0,1)/(Bloch^GAMMA(3/4)) 3178112287001707 m001 Catalan*Ei(1)+(3^(1/3)) 3178112287001707 m001 Catalan*Ei(1)+3^(1/3) 3178112288993468 r005 Re(z^2+c),c=3/14+17/42*I,n=23 3178112296317274 m001 exp(-1/2*Pi)^BesselJ(0,1)*Shi(1) 3178112310589814 a007 Real Root Of 675*x^4-633*x^3+474*x^2-220*x-145 3178112312390233 h001 (5/7*exp(2)+1/8)/(1/5*exp(2)+2/9) 3178112319901277 a001 317811/1364*2207^(15/16) 3178112320151212 k007 concat of cont frac of 3178112321155846 a007 Real Root Of -6*x^4-164*x^3+860*x^2+372*x-162 3178112329769603 r009 Im(z^3+c),c=-39/74+14/55*I,n=25 3178112331362537 r005 Re(z^2+c),c=-11/31+12/29*I,n=39 3178112340461516 m001 1/GAMMA(23/24)/exp(GAMMA(1/12))*LambertW(1)^2 3178112343411114 k006 concat of cont frac of 3178112347087666 a001 165580141/1364*843^(1/7) 3178112360688956 a001 313679690/987 3178112367213252 k008 concat of cont frac of 3178112388072750 b008 1/5+3*Log[Sin[1]] 3178112391128920 r005 Im(z^2+c),c=-9/8+56/165*I,n=3 3178112395928539 m001 GAMMA(2/3)*LaplaceLimit/ln(sin(Pi/5))^2 3178112396241563 a007 Real Root Of -253*x^4-498*x^3+881*x^2-310*x-59 3178112398228253 m001 1/BesselK(0,1)*exp(RenyiParking)^2*sqrt(3)^2 3178112399719488 r005 Re(z^2+c),c=-107/110+6/19*I,n=4 3178112402594077 m005 (1/2*5^(1/2)+7/9)/(47/180+3/20*5^(1/2)) 3178112404061895 a001 843/89*63245986^(17/24) 3178112405031083 m005 (1/2*Zeta(3)-4/7)/(3*Pi-1/9) 3178112407988692 a007 Real Root Of -308*x^4-831*x^3+179*x^2-625*x+952 3178112415883509 r005 Re(z^2+c),c=-17/50+22/45*I,n=29 3178112423131511 k007 concat of cont frac of 3178112442774330 m005 (4*gamma+3/4)/(3*Pi+1/5) 3178112444111284 a007 Real Root Of 359*x^4+958*x^3-431*x^2+776*x+947 3178112447067627 r009 Im(z^3+c),c=-4/31+16/47*I,n=7 3178112459172972 a001 567451585/2889*322^(1/12) 3178112460316765 a001 39088169/5778*843^(4/7) 3178112462945133 r005 Im(z^2+c),c=-13/31+26/49*I,n=50 3178112472643692 m001 1/cosh(1)^2*GAMMA(19/24)^2*ln(sqrt(3)) 3178112479926759 r005 Re(z^2+c),c=13/70+9/16*I,n=19 3178112482284983 m008 (2/5*Pi^6+5)/(2/5*Pi^5+1/6) 3178112483876824 a007 Real Root Of -315*x^4-691*x^3+597*x^2-991*x+775 3178112485297273 a001 39088169/3571*843^(1/2) 3178112489036590 m001 (Shi(1)+ZetaQ(2))/(2^(1/3)+5^(1/2)) 3178112490579883 a007 Real Root Of 206*x^4+568*x^3-625*x^2-898*x+676 3178112503557033 a008 Real Root of x^4-x^3-6*x^2-13*x+32 3178112507442057 a003 sin(Pi*4/81)/sin(Pi*16/99) 3178112514305935 m001 1/MadelungNaCl/ln(HardHexagonsEntropy)/cos(1) 3178112532170838 a007 Real Root Of -894*x^4-140*x^3+712*x^2+320*x-160 3178112540479222 a001 2971215073/15127*322^(1/12) 3178112541623016 a001 6765*843^(4/7) 3178112541912091 a001 5702887/2207*843^(5/7) 3178112542305744 a007 Real Root Of -344*x^4-827*x^3+667*x^2-732*x-516 3178112549333346 m001 Ei(1)^Rabbit/(Ei(1)^FeigenbaumAlpha) 3178112552341644 a001 7778742049/39603*322^(1/12) 3178112553485438 a001 267914296/39603*843^(4/7) 3178112554072348 a001 10182505537/51841*322^(1/12) 3178112554324854 a001 53316291173/271443*322^(1/12) 3178112554361695 a001 139583862445/710647*322^(1/12) 3178112554367070 a001 182717648081/930249*322^(1/12) 3178112554367854 a001 956722026041/4870847*322^(1/12) 3178112554367968 a001 2504730781961/12752043*322^(1/12) 3178112554367985 a001 3278735159921/16692641*322^(1/12) 3178112554367989 a001 10610209857723/54018521*322^(1/12) 3178112554367995 a001 4052739537881/20633239*322^(1/12) 3178112554368039 a001 387002188980/1970299*322^(1/12) 3178112554368338 a001 591286729879/3010349*322^(1/12) 3178112554370391 a001 225851433717/1149851*322^(1/12) 3178112554384463 a001 196418*322^(1/12) 3178112554401221 k008 concat of cont frac of 3178112554442160 r005 Im(z^2+c),c=-41/64+19/55*I,n=53 3178112554480912 a001 32951280099/167761*322^(1/12) 3178112554801080 a003 -3/2-cos(5/12*Pi)-cos(5/21*Pi)-cos(7/27*Pi) 3178112555141982 a001 12586269025/64079*322^(1/12) 3178112555216142 a001 701408733/103682*843^(4/7) 3178112555468649 a001 1836311903/271443*843^(4/7) 3178112555505489 a001 686789568/101521*843^(4/7) 3178112555510864 a001 12586269025/1860498*843^(4/7) 3178112555511648 a001 32951280099/4870847*843^(4/7) 3178112555511762 a001 86267571272/12752043*843^(4/7) 3178112555511779 a001 32264490531/4769326*843^(4/7) 3178112555511782 a001 591286729879/87403803*843^(4/7) 3178112555511782 a001 1548008755920/228826127*843^(4/7) 3178112555511782 a001 4052739537881/599074578*843^(4/7) 3178112555511782 a001 1515744265389/224056801*843^(4/7) 3178112555511782 a001 6557470319842/969323029*843^(4/7) 3178112555511782 a001 2504730781961/370248451*843^(4/7) 3178112555511782 a001 956722026041/141422324*843^(4/7) 3178112555511783 a001 365435296162/54018521*843^(4/7) 3178112555511789 a001 139583862445/20633239*843^(4/7) 3178112555511833 a001 53316291173/7881196*843^(4/7) 3178112555512133 a001 20365011074/3010349*843^(4/7) 3178112555514186 a001 7778742049/1149851*843^(4/7) 3178112555528257 a001 2971215073/439204*843^(4/7) 3178112555624706 a001 1134903170/167761*843^(4/7) 3178112556285776 a001 433494437/64079*843^(4/7) 3178112559673024 a001 1201881744/6119*322^(1/12) 3178112560816819 a001 165580141/24476*843^(4/7) 3178112570979878 r004 Re(z^2+c),c=-17/46+1/21*I,z(0)=-1,n=5 3178112590729250 a001 1836311903/9349*322^(1/12) 3178112591873044 a001 63245986/9349*843^(4/7) 3178112592636163 r005 Im(z^2+c),c=-7/102+7/17*I,n=28 3178112600043308 r009 Re(z^3+c),c=-27/56+19/44*I,n=52 3178112600566165 a007 Real Root Of 210*x^4+659*x^3+240*x^2+628*x-698 3178112620035173 a007 Real Root Of -259*x^4-631*x^3+353*x^2-758*x+193 3178112626703119 r005 Re(z^2+c),c=-11/31+21/52*I,n=22 3178112631589178 a005 (1/cos(30/239*Pi))^620 3178112633410413 m001 (Champernowne-Mills)/(Porter-Tribonacci) 3178112640228731 l006 ln(3114/4279) 3178112644611571 a007 Real Root Of 339*x^4+447*x^3+716*x^2-543*x-234 3178112652112572 m001 1/Sierpinski*ln(Lehmer)^2/gamma^2 3178112655283172 r005 Im(z^2+c),c=-59/102+3/50*I,n=26 3178112664109821 a007 Real Root Of -148*x^4-179*x^3+577*x^2-886*x+709 3178112666525976 a001 9303105/124*843^(3/14) 3178112671730887 m009 (16/3*Catalan+2/3*Pi^2+1/3)/(5/12*Pi^2-2/5) 3178112693552752 r009 Im(z^3+c),c=-15/31+34/57*I,n=9 3178112693837907 h001 (5/7*exp(2)+7/8)/(3/8*exp(1)+11/12) 3178112701905984 a001 1346269/521*521^(10/13) 3178112705845470 r005 Im(z^2+c),c=-13/44+29/60*I,n=14 3178112715826156 m005 (1/3*exp(1)-2/7)/(7/11*exp(1)+2/9) 3178112716835741 m004 3/Log[Sqrt[5]*Pi]+(25*Log[Sqrt[5]*Pi]^2)/Pi 3178112726871870 a007 Real Root Of 16*x^4+536*x^3+869*x^2-146*x+454 3178112743499405 m005 (1/2*Zeta(3)-1/5)/(5/6*2^(1/2)+1/12) 3178112744251056 r005 Im(z^2+c),c=1/114+13/35*I,n=15 3178112745619861 a007 Real Root Of -6*x^4-189*x^3+81*x^2+851*x-622 3178112754301137 m001 (gamma(1)+KhinchinHarmonic)/(3^(1/3)-Catalan) 3178112760523441 a007 Real Root Of 358*x^4+945*x^3-763*x^2-218*x+826 3178112763021398 a007 Real Root Of -887*x^4+250*x^3-769*x^2+943*x-221 3178112767809592 a008 Real Root of x^4-2*x^3-14*x^2-36*x+218 3178112767939518 r005 Re(z^2+c),c=-8/25+8/15*I,n=40 3178112771831376 a001 75640*199^(16/59) 3178112779755088 a001 24157817/5778*843^(9/14) 3178112780300477 r005 Re(z^2+c),c=23/62+9/31*I,n=19 3178112782351175 r005 Im(z^2+c),c=-23/94+26/53*I,n=54 3178112801663632 a007 Real Root Of 25*x^4-233*x^3+496*x^2-161*x-109 3178112803591803 a001 701408733/3571*322^(1/12) 3178112803945983 m001 GolombDickman/(GAMMA(11/12)-Thue) 3178112804735598 a001 24157817/3571*843^(4/7) 3178112807819631 p001 sum((-1)^n/(412*n+267)/(2^n),n=0..infinity) 3178112819534890 m005 (1/2*Catalan+3/11)/(1/12*gamma+2/11) 3178112829893565 r009 Re(z^3+c),c=-61/126+17/42*I,n=52 3178112853674362 m005 (2*2^(1/2)-5/6)/(-4/15+2/5*5^(1/2)) 3178112854929279 r005 Im(z^2+c),c=7/58+31/63*I,n=4 3178112861061345 a001 63245986/15127*843^(9/14) 3178112861350492 a001 3524578/2207*843^(11/14) 3178112869927599 r005 Im(z^2+c),c=-23/94+26/53*I,n=59 3178112869943792 a007 Real Root Of 81*x^4+159*x^3-333*x^2+96*x+509 3178112872923769 a001 165580141/39603*843^(9/14) 3178112874654473 a001 433494437/103682*843^(9/14) 3178112874906979 a001 1134903170/271443*843^(9/14) 3178112874943820 a001 2971215073/710647*843^(9/14) 3178112874949194 a001 7778742049/1860498*843^(9/14) 3178112874949979 a001 20365011074/4870847*843^(9/14) 3178112874950093 a001 53316291173/12752043*843^(9/14) 3178112874950110 a001 139583862445/33385282*843^(9/14) 3178112874950112 a001 365435296162/87403803*843^(9/14) 3178112874950113 a001 956722026041/228826127*843^(9/14) 3178112874950113 a001 2504730781961/599074578*843^(9/14) 3178112874950113 a001 6557470319842/1568397607*843^(9/14) 3178112874950113 a001 10610209857723/2537720636*843^(9/14) 3178112874950113 a001 4052739537881/969323029*843^(9/14) 3178112874950113 a001 1548008755920/370248451*843^(9/14) 3178112874950113 a001 591286729879/141422324*843^(9/14) 3178112874950114 a001 225851433717/54018521*843^(9/14) 3178112874950120 a001 86267571272/20633239*843^(9/14) 3178112874950164 a001 32951280099/7881196*843^(9/14) 3178112874950463 a001 12586269025/3010349*843^(9/14) 3178112874952516 a001 4807526976/1149851*843^(9/14) 3178112874966588 a001 1836311903/439204*843^(9/14) 3178112875063037 a001 701408733/167761*843^(9/14) 3178112875724107 a001 267914296/64079*843^(9/14) 3178112879503288 p004 log(13421/9767) 3178112880255150 a001 102334155/24476*843^(9/14) 3178112890292776 s002 sum(A133496[n]/(n!^2),n=1..infinity) 3178112905768328 a003 cos(Pi*1/96)-cos(Pi*29/111) 3178112911311378 a001 4181*843^(9/14) 3178112912618113 k009 concat of cont frac of 3178112916447950 r005 Re(z^2+c),c=23/102+2/53*I,n=7 3178112921083518 r005 Re(z^2+c),c=-41/122+8/17*I,n=63 3178112934178208 a007 Real Root Of -991*x^4+462*x^3-773*x^2+903*x+390 3178112938784426 m005 (exp(1)+4)/(5*gamma-5) 3178112943831471 m001 log(2+sqrt(3))*ln(ArtinRank2)*sin(Pi/12)^2 3178112946510795 h001 (5/7*exp(2)+1/5)/(1/8*exp(2)+4/5) 3178112953833760 r009 Im(z^3+c),c=-7/24+14/47*I,n=13 3178112954611377 r005 Re(z^2+c),c=33/118+9/53*I,n=3 3178112959579391 m001 GAMMA(2/3)^GAMMA(5/6)*GAMMA(2/3)^Khinchin 3178112959579391 m001 GAMMA(2/3)^Khinchin*GAMMA(2/3)^GAMMA(5/6) 3178112960346191 r005 Im(z^2+c),c=-3/14+11/23*I,n=31 3178112977800496 a005 (1/sin(68/193*Pi))^402 3178112981531354 m004 -3-100*Pi-(Sqrt[5]*Tan[Sqrt[5]*Pi])/Pi 3178112982748552 a003 cos(Pi*10/83)*cos(Pi*7/18) 3178112985964318 a001 31622993/682*843^(2/7) 3178112988386800 r005 Im(z^2+c),c=-4/13+23/39*I,n=57 3178112991498021 l006 ln(6653/9142) 3178112999887048 r004 Re(z^2+c),c=1/6+4/21*I,z(0)=I,n=7 3178113031618921 r005 Im(z^2+c),c=-4/19+29/61*I,n=26 3178113035035949 r005 Im(z^2+c),c=-39/98+11/21*I,n=8 3178113044846617 m001 (-GaussAGM+Tribonacci)/(BesselI(0,1)+Ei(1)) 3178113053667049 m005 (1/2*exp(1)+4/11)/(1/6*2^(1/2)-7/9) 3178113058475129 r005 Im(z^2+c),c=-25/102+27/55*I,n=44 3178113060482944 r005 Im(z^2+c),c=-51/70+16/57*I,n=30 3178113065976517 a007 Real Root Of -832*x^4-848*x^3-822*x^2+298*x+159 3178113073567784 a007 Real Root Of -454*x^4-620*x^3-697*x^2+717*x+283 3178113083247579 m001 FeigenbaumD*DuboisRaymond^2/exp(sqrt(3))^2 3178113085255551 m001 (-Kolakoski+OneNinth)/(GAMMA(7/12)-exp(Pi)) 3178113098243549 m001 1/Paris^2/ln(MinimumGamma)*GAMMA(19/24) 3178113099193437 a001 2584*843^(5/7) 3178113099910295 r005 Im(z^2+c),c=-37/122+22/43*I,n=41 3178113111467514 h001 (1/9*exp(2)+1/6)/(6/7*exp(1)+7/9) 3178113112166903 r005 Im(z^2+c),c=-1/62+32/43*I,n=39 3178113112391757 r002 13th iterates of z^2 + 3178113112745642 a007 Real Root Of -469*x^4+552*x^3+12*x^2+396*x-140 3178113114184342 m005 (1/2*Pi-1/8)/(3/8*Zeta(3)-5) 3178113118551111 k006 concat of cont frac of 3178113121261311 k009 concat of cont frac of 3178113123517419 k006 concat of cont frac of 3178113124173950 a001 14930352/3571*843^(9/14) 3178113128765914 r009 Re(z^3+c),c=-19/40+21/52*I,n=47 3178113131630278 m001 Riemann1stZero/TwinPrimes*ZetaR(2) 3178113132701026 a007 Real Root Of -536*x^4-341*x^3+640*x^2+616*x-244 3178113134725537 m001 Rabbit*exp(FeigenbaumDelta)/cosh(1)^2 3178113143131111 k009 concat of cont frac of 3178113146107010 a001 4181/4*76^(41/52) 3178113150304513 r005 Im(z^2+c),c=7/22+8/59*I,n=23 3178113153131221 k007 concat of cont frac of 3178113155232411 k008 concat of cont frac of 3178113155812972 m001 (Si(Pi)-exp(1/Pi))/(-GAMMA(7/12)+Trott2nd) 3178113168868754 a007 Real Root Of 900*x^4-543*x^3+403*x^2-364*x-183 3178113169379576 a007 Real Root Of -79*x^4-382*x^3-298*x^2+460*x+269 3178113177903267 a007 Real Root Of 932*x^4+896*x^3+981*x^2-526*x-247 3178113180499706 a001 39088169/15127*843^(5/7) 3178113180788668 a001 987*843^(6/7) 3178113190957092 a001 63245986/843*322^(1/4) 3178113192362131 a001 34111385/13201*843^(5/7) 3178113194092836 a001 133957148/51841*843^(5/7) 3178113194345342 a001 233802911/90481*843^(5/7) 3178113194382182 a001 1836311903/710647*843^(5/7) 3178113194387557 a001 267084832/103361*843^(5/7) 3178113194388341 a001 12586269025/4870847*843^(5/7) 3178113194388456 a001 10983760033/4250681*843^(5/7) 3178113194388473 a001 43133785636/16692641*843^(5/7) 3178113194388475 a001 75283811239/29134601*843^(5/7) 3178113194388475 a001 591286729879/228826127*843^(5/7) 3178113194388475 a001 86000486440/33281921*843^(5/7) 3178113194388475 a001 4052739537881/1568397607*843^(5/7) 3178113194388475 a001 3536736619241/1368706081*843^(5/7) 3178113194388475 a001 3278735159921/1268860318*843^(5/7) 3178113194388475 a001 2504730781961/969323029*843^(5/7) 3178113194388475 a001 956722026041/370248451*843^(5/7) 3178113194388476 a001 182717648081/70711162*843^(5/7) 3178113194388476 a001 139583862445/54018521*843^(5/7) 3178113194388483 a001 53316291173/20633239*843^(5/7) 3178113194388527 a001 10182505537/3940598*843^(5/7) 3178113194388826 a001 7778742049/3010349*843^(5/7) 3178113194390879 a001 2971215073/1149851*843^(5/7) 3178113194404951 a001 567451585/219602*843^(5/7) 3178113194501400 a001 433494437/167761*843^(5/7) 3178113195162470 a001 165580141/64079*843^(5/7) 3178113199693513 a001 31622993/12238*843^(5/7) 3178113208125307 a001 192900153618/55*55^(11/20) 3178113210600097 r009 Im(z^3+c),c=-31/54+26/57*I,n=48 3178113222281171 k007 concat of cont frac of 3178113222898246 m001 1/exp(Si(Pi))*FeigenbaumDelta^2/OneNinth 3178113230749746 a001 24157817/9349*843^(5/7) 3178113232954902 r005 Im(z^2+c),c=-29/90+26/57*I,n=3 3178113242089917 m001 (exp(Pi)-gamma(1))/(-Mills+Stephens) 3178113248939696 a007 Real Root Of 287*x^4+909*x^3+788*x^2-795*x-306 3178113255184693 r005 Im(z^2+c),c=-35/52+13/50*I,n=18 3178113257460527 g002 Psi(7/12)+Psi(2/7)-Psi(8/11)-Psi(4/5) 3178113258280869 r005 Im(z^2+c),c=10/27+15/28*I,n=4 3178113260657832 r005 Im(z^2+c),c=8/27+9/61*I,n=3 3178113264466170 a007 Real Root Of 233*x^4+484*x^3-659*x^2+660*x+520 3178113271131151 k007 concat of cont frac of 3178113283017351 m003 -E^(1/2+Sqrt[5]/2)+150*Tan[1/2+Sqrt[5]/2] 3178113289108654 r004 Re(z^2+c),c=-9/8+4/7*I,z(0)=-1,n=5 3178113292053041 a007 Real Root Of -110*x^4-490*x^3-256*x^2+429*x-558 3178113299860386 r002 10th iterates of z^2 + 3178113300583224 l006 ln(3539/4863) 3178113303444652 m001 Psi(2,1/3)/(Zeta(5)+ArtinRank2) 3178113305402691 a001 39088169/1364*843^(5/14) 3178113307985535 r005 Im(z^2+c),c=-35/118+22/43*I,n=64 3178113309542774 r009 Re(z^3+c),c=-29/50+30/59*I,n=26 3178113311657612 m004 -2+5*Sqrt[5]*Pi-(5*Pi)/(6*Log[Sqrt[5]*Pi]) 3178113326299695 m008 (3*Pi^5-1/6)/(3*Pi^6+4) 3178113327479655 m001 (gamma-ln(5))/(GAMMA(17/24)+ReciprocalLucas) 3178113332712725 m001 (Cahen-CopelandErdos)/(Mills-Riemann1stZero) 3178113349377850 l006 ln(8671/8951) 3178113352057174 a001 11/1597*13^(31/52) 3178113359783756 m001 (1+Riemann2ndZero)^Artin 3178113363091568 r002 31th iterates of z^2 + 3178113366404292 a007 Real Root Of 348*x^4+937*x^3-563*x^2+106*x+599 3178113376710969 m001 (gamma(2)-Mills)/(ThueMorse+ZetaQ(4)) 3178113409005506 a001 1364*514229^(13/17) 3178113411587639 b008 2-3*Pi*ArcSinh[18] 3178113416415988 a001 305/682*20633239^(4/5) 3178113416415994 a001 305/682*17393796001^(4/7) 3178113416415994 a001 305/682*14662949395604^(4/9) 3178113416415994 a001 305/682*(1/2+1/2*5^(1/2))^28 3178113416415994 a001 305/682*73681302247^(7/13) 3178113416415994 a001 305/682*10749957122^(7/12) 3178113416415994 a001 305/682*4106118243^(14/23) 3178113416415994 a001 305/682*1568397607^(7/11) 3178113416415994 a001 305/682*599074578^(2/3) 3178113416415994 a001 305/682*228826127^(7/10) 3178113416415994 a001 305/682*87403803^(14/19) 3178113416415996 a001 305/682*33385282^(7/9) 3178113416416010 a001 305/682*12752043^(14/17) 3178113416416111 a001 305/682*4870847^(7/8) 3178113416416851 a001 305/682*1860498^(14/15) 3178113418631833 a001 9227465/5778*843^(11/14) 3178113420300911 r005 Re(z^2+c),c=-7/10+17/254*I,n=6 3178113427599754 a007 Real Root Of -332*x^4-758*x^3+925*x^2-220*x-504 3178113435233405 a001 4181/322*7^(23/50) 3178113438248143 m001 MinimumGamma^2/exp(MertensB1)*GAMMA(11/24) 3178113443612348 a001 9227465/3571*843^(5/7) 3178113463266591 r005 Re(z^2+c),c=-11/32+13/29*I,n=52 3178113467800333 m005 (1/3*gamma-1/2)/(4/7*Catalan+4/9) 3178113476880884 r009 Im(z^3+c),c=-9/28+12/47*I,n=2 3178113479645326 r005 Re(z^2+c),c=33/122+5/59*I,n=25 3178113480277133 m002 -1-18/Pi^2+Pi 3178113480631708 r005 Re(z^2+c),c=-41/106+12/41*I,n=37 3178113493106814 a007 Real Root Of -354*x^4-990*x^3+421*x^2-140*x-362 3178113498446291 a007 Real Root Of -429*x^4-712*x^3-45*x^2+670*x+199 3178113498929759 r008 a(0)=3,K{-n^6,-9-21*n+51*n^2-23*n^3} 3178113499938101 a001 24157817/15127*843^(11/14) 3178113500227546 a001 1346269/2207*843^(13/14) 3178113501863742 m001 (BesselI(1,2)-exp(Pi))/(-Robbin+Totient) 3178113511394341 k006 concat of cont frac of 3178113511800526 a001 63245986/39603*843^(11/14) 3178113513531231 a001 165580141/103682*843^(11/14) 3178113513783737 a001 433494437/271443*843^(11/14) 3178113513820577 a001 1134903170/710647*843^(11/14) 3178113513825952 a001 2971215073/1860498*843^(11/14) 3178113513826736 a001 7778742049/4870847*843^(11/14) 3178113513826851 a001 20365011074/12752043*843^(11/14) 3178113513826867 a001 53316291173/33385282*843^(11/14) 3178113513826870 a001 139583862445/87403803*843^(11/14) 3178113513826870 a001 365435296162/228826127*843^(11/14) 3178113513826870 a001 956722026041/599074578*843^(11/14) 3178113513826870 a001 2504730781961/1568397607*843^(11/14) 3178113513826870 a001 6557470319842/4106118243*843^(11/14) 3178113513826870 a001 10610209857723/6643838879*843^(11/14) 3178113513826870 a001 4052739537881/2537720636*843^(11/14) 3178113513826870 a001 1548008755920/969323029*843^(11/14) 3178113513826870 a001 591286729879/370248451*843^(11/14) 3178113513826870 a001 225851433717/141422324*843^(11/14) 3178113513826871 a001 86267571272/54018521*843^(11/14) 3178113513826878 a001 32951280099/20633239*843^(11/14) 3178113513826921 a001 12586269025/7881196*843^(11/14) 3178113513827221 a001 4807526976/3010349*843^(11/14) 3178113513829274 a001 1836311903/1149851*843^(11/14) 3178113513843346 a001 701408733/439204*843^(11/14) 3178113513939795 a001 267914296/167761*843^(11/14) 3178113514600865 a001 102334155/64079*843^(11/14) 3178113515337985 r009 Re(z^3+c),c=-25/46+9/31*I,n=47 3178113519131908 a001 39088169/24476*843^(11/14) 3178113528377299 r002 11th iterates of z^2 + 3178113532922878 h001 (1/2*exp(1)+4/11)/(5/7*exp(2)+1/7) 3178113537931364 m001 -GAMMA(19/24)/(ln(2)+3) 3178113548082777 m005 (1/6*2^(1/2)+4)/(4/5*Catalan+3/5) 3178113550188141 a001 14930352/9349*843^(11/14) 3178113569636694 m009 (1/6*Pi^2+3/5)/(2/3*Psi(1,1/3)+1/3) 3178113580861989 a007 Real Root Of 152*x^4+602*x^3+635*x^2+540*x-880 3178113590512468 m002 4+(5*E^Pi)/4-Log[Pi] 3178113592871521 a007 Real Root Of -287*x^4-694*x^3+691*x^2+296*x+963 3178113597074234 r005 Im(z^2+c),c=-8/9+2/81*I,n=7 3178113599041009 a007 Real Root Of -205*x^4-440*x^3+673*x^2+39*x+116 3178113602539123 a001 2178309/521*521^(9/13) 3178113624841099 a001 24157817/1364*843^(3/7) 3178113630990380 a001 15127*34^(4/19) 3178113634277365 m005 (1/2*Zeta(3)+5)/(4/9*Catalan-7/12) 3178113634993685 m005 (1/2*2^(1/2)+8/11)/(1/12*Catalan+3/8) 3178113635182261 k006 concat of cont frac of 3178113636592272 b008 -5+E^(1/3)*(E+Pi) 3178113637032854 r009 Re(z^3+c),c=-43/82+18/49*I,n=63 3178113638929052 r009 Re(z^3+c),c=-37/86+23/57*I,n=5 3178113643773597 a007 Real Root Of -294*x^4-670*x^3+906*x^2+257*x+152 3178113648163006 m005 (1/2*3^(1/2)+1/8)/(exp(1)+2/5) 3178113656991626 m001 (ln(2)/ln(10)+Bloch)/(Lehmer+Tribonacci) 3178113710811127 a007 Real Root Of -269*x^4-509*x^3+934*x^2-489*x+116 3178113729285749 m001 (-MadelungNaCl+Paris)/(FellerTornier-sin(1)) 3178113738070223 a001 5702887/5778*843^(6/7) 3178113738882693 m001 (Riemann1stZero-Salem)/(Zeta(5)-exp(1/exp(1))) 3178113760293279 a005 (1/cos(7/169*Pi))^1221 3178113763050741 a001 1597*843^(11/14) 3178113766351272 m008 (1/4*Pi^6+1/5)/(3/4*Pi^2+1/6) 3178113783101065 m001 1/Lehmer^2*ln(ArtinRank2)*GAMMA(1/6)^2 3178113783849115 a007 Real Root Of -63*x^4-222*x^3-399*x^2-797*x+798 3178113789602683 a007 Real Root Of -470*x^4+307*x^3+503*x^2+249*x-135 3178113790576676 m003 1/2+Sqrt[5]/512-15*Tan[1/2+Sqrt[5]/2] 3178113792141102 k007 concat of cont frac of 3178113796554974 a001 2207/233*6765^(7/51) 3178113819337958 l006 ln(3964/5447) 3178113819376523 a001 14930352/15127*843^(6/7) 3178113819628647 a001 119814891/377 3178113819738209 m001 1/GAMMA(1/24)^2/Si(Pi)*exp(sin(Pi/5))^2 3178113822131122 k007 concat of cont frac of 3178113829009632 m001 arctan(1/2)+Landau-PisotVijayaraghavan 3178113831238952 a001 39088169/39603*843^(6/7) 3178113832969658 a001 102334155/103682*843^(6/7) 3178113833222164 a001 267914296/271443*843^(6/7) 3178113833259004 a001 701408733/710647*843^(6/7) 3178113833264379 a001 1836311903/1860498*843^(6/7) 3178113833265163 a001 4807526976/4870847*843^(6/7) 3178113833265278 a001 12586269025/12752043*843^(6/7) 3178113833265294 a001 32951280099/33385282*843^(6/7) 3178113833265297 a001 86267571272/87403803*843^(6/7) 3178113833265297 a001 225851433717/228826127*843^(6/7) 3178113833265297 a001 591286729879/599074578*843^(6/7) 3178113833265297 a001 1548008755920/1568397607*843^(6/7) 3178113833265297 a001 4052739537881/4106118243*843^(6/7) 3178113833265297 a001 4807525989/4870846*843^(6/7) 3178113833265297 a001 6557470319842/6643838879*843^(6/7) 3178113833265297 a001 2504730781961/2537720636*843^(6/7) 3178113833265297 a001 956722026041/969323029*843^(6/7) 3178113833265297 a001 365435296162/370248451*843^(6/7) 3178113833265297 a001 139583862445/141422324*843^(6/7) 3178113833265298 a001 53316291173/54018521*843^(6/7) 3178113833265305 a001 20365011074/20633239*843^(6/7) 3178113833265348 a001 7778742049/7881196*843^(6/7) 3178113833265648 a001 2971215073/3010349*843^(6/7) 3178113833267701 a001 1134903170/1149851*843^(6/7) 3178113833281773 a001 433494437/439204*843^(6/7) 3178113833378222 a001 165580141/167761*843^(6/7) 3178113834039292 a001 63245986/64079*843^(6/7) 3178113834596054 r005 Re(z^2+c),c=-37/106+22/51*I,n=40 3178113838570337 a001 24157817/24476*843^(6/7) 3178113869626581 a001 9227465/9349*843^(6/7) 3178113873474286 m001 1/RenyiParking*ln(CopelandErdos)^2/Zeta(1,2)^2 3178113896054128 r005 Re(z^2+c),c=-33/82+4/19*I,n=18 3178113944279533 a001 3732588/341*843^(1/2) 3178113945153011 r005 Im(z^2+c),c=-51/98+23/42*I,n=7 3178113950799246 m001 (Ei(1)-Artin)/(Conway-Grothendieck) 3178113969513480 m001 (CopelandErdos+Sierpinski)/(Totient-ZetaP(2)) 3178113971305405 r005 Im(z^2+c),c=-121/94+1/36*I,n=29 3178113986866780 m001 LandauRamanujan*sqrt(Pi)*GAMMA(1/24) 3178113990087926 r005 Re(z^2+c),c=47/126+9/25*I,n=24 3178113993818375 h001 (11/12*exp(1)+3/8)/(1/9*exp(1)+3/5) 3178113995273106 m001 exp(GAMMA(23/24))^2/Kolakoski/GAMMA(7/24) 3178114000410023 m001 Pi+ln(2)/ln(10)-Zeta(3)-Zeta(1,2) 3178114018570042 r009 Re(z^3+c),c=-14/27+13/45*I,n=8 3178114030308619 m001 LaplaceLimit/exp(MertensB1)^2*cos(Pi/5) 3178114033928302 m001 exp(sqrt(2))^(GAMMA(7/24)/(2^(1/3))) 3178114036355488 m001 (BesselI(0,1)+ln(5))/(-exp(1/Pi)+BesselI(0,2)) 3178114046074434 r002 5th iterates of z^2 + 3178114055821534 a001 7/4*(1/2*5^(1/2)+1/2)^18*4^(19/23) 3178114057508743 a001 1762289/2889*843^(13/14) 3178114065975387 r005 Im(z^2+c),c=-7/10+50/243*I,n=7 3178114070571941 r009 Im(z^3+c),c=-1/56+39/47*I,n=8 3178114082489264 a001 3524578/3571*843^(6/7) 3178114083289748 m001 Trott*exp(PrimesInBinary)*BesselJ(1,1)^2 3178114086146682 q001 273/859 3178114101065117 s001 sum(exp(-3*Pi/4)^n*A166842[n],n=1..infinity) 3178114111111195 k007 concat of cont frac of 3178114111311311 k007 concat of cont frac of 3178114111422222 k007 concat of cont frac of 3178114114939511 m001 (arctan(1/3)*Salem+ReciprocalFibonacci)/Salem 3178114118929353 a001 1/46347*514229^(9/44) 3178114129171114 k008 concat of cont frac of 3178114135463397 r005 Re(z^2+c),c=-13/25+3/43*I,n=4 3178114138814991 a001 9227465/15127*843^(13/14) 3178114144223265 m001 (3^(1/2)+Riemann3rdZero)/sin(1) 3178114144310910 r005 Im(z^2+c),c=-61/54+2/51*I,n=38 3178114150677413 a001 24157817/39603*843^(13/14) 3178114152408117 a001 31622993/51841*843^(13/14) 3178114152660623 a001 165580141/271443*843^(13/14) 3178114152697463 a001 433494437/710647*843^(13/14) 3178114152702838 a001 567451585/930249*843^(13/14) 3178114152703622 a001 2971215073/4870847*843^(13/14) 3178114152703737 a001 7778742049/12752043*843^(13/14) 3178114152703753 a001 10182505537/16692641*843^(13/14) 3178114152703756 a001 53316291173/87403803*843^(13/14) 3178114152703756 a001 139583862445/228826127*843^(13/14) 3178114152703756 a001 182717648081/299537289*843^(13/14) 3178114152703756 a001 956722026041/1568397607*843^(13/14) 3178114152703756 a001 2504730781961/4106118243*843^(13/14) 3178114152703756 a001 3278735159921/5374978561*843^(13/14) 3178114152703756 a001 10610209857723/17393796001*843^(13/14) 3178114152703756 a001 4052739537881/6643838879*843^(13/14) 3178114152703756 a001 1134903780/1860499*843^(13/14) 3178114152703756 a001 591286729879/969323029*843^(13/14) 3178114152703756 a001 225851433717/370248451*843^(13/14) 3178114152703757 a001 21566892818/35355581*843^(13/14) 3178114152703757 a001 32951280099/54018521*843^(13/14) 3178114152703764 a001 1144206275/1875749*843^(13/14) 3178114152703808 a001 1201881744/1970299*843^(13/14) 3178114152704107 a001 1836311903/3010349*843^(13/14) 3178114152706160 a001 701408733/1149851*843^(13/14) 3178114152720232 a001 66978574/109801*843^(13/14) 3178114152816681 a001 9303105/15251*843^(13/14) 3178114153477751 a001 39088169/64079*843^(13/14) 3178114154490479 a001 4/161*521^(38/49) 3178114157994914 r002 10th iterates of z^2 + 3178114158008793 a001 3732588/6119*843^(13/14) 3178114160785290 a005 (1/cos(20/151*Pi))^710 3178114165858476 r009 Re(z^3+c),c=-17/48+41/52*I,n=4 3178114185721871 r005 Im(z^2+c),c=-7/114+20/49*I,n=24 3178114186851211 r005 Re(z^2+c),c=-1/60+28/51*I,n=2 3178114189065017 a001 5702887/9349*843^(13/14) 3178114191120251 k006 concat of cont frac of 3178114210474065 r009 Im(z^3+c),c=-7/24+14/47*I,n=17 3178114211778969 m005 (-7/12+1/6*5^(1/2))/(5/6*gamma+2/11) 3178114237627527 l006 ln(4389/6031) 3178114243044502 r008 a(0)=3,K{-n^6,5-6*n^3+2*n^2-8*n} 3178114249205656 b008 Pi+FresnelS[1]/12 3178114253431209 a007 Real Root Of -335*x^4-252*x^3+950*x^2+716*x-312 3178114262574211 a001 66978574/341*322^(1/12) 3178114263718014 a001 9227465/1364*843^(4/7) 3178114274719419 a007 Real Root Of 359*x^4+938*x^3-803*x^2-315*x+595 3178114280190483 a007 Real Root Of 328*x^4+718*x^3+704*x^2-971*x-360 3178114282014806 m008 (Pi^6+1/3)/(1/5*Pi^2-5) 3178114289823837 m001 GAMMA(13/24)-exp(1)*Pi^(1/2) 3178114289823837 m001 exp(1)*sqrt(Pi)-GAMMA(13/24) 3178114295008124 m001 LaplaceLimit*ln(Si(Pi))/GAMMA(17/24) 3178114296943941 r009 Im(z^3+c),c=-43/118+10/37*I,n=5 3178114302433688 r002 14th iterates of z^2 + 3178114303406525 h001 (-exp(1)-5)/(-6*exp(6)-8) 3178114308102136 m001 (2*Pi/GAMMA(5/6)+Bloch)/(Conway+Gompertz) 3178114329659635 a001 15127/5*4181^(11/39) 3178114332552681 m001 exp(Riemann2ndZero)^2/Paris^2/sin(Pi/5) 3178114336356351 m002 1+3/Pi^4+2*ProductLog[Pi] 3178114345223011 m001 ZetaR(2)^(TwinPrimes/ln(3)) 3178114345842799 m001 BesselK(1,1)*ln(Porter)*GAMMA(19/24)^2 3178114348750098 h001 (-7*exp(7)+9)/(-6*exp(6)+8) 3178114374413907 a007 Real Root Of -283*x^4-791*x^3+485*x^2+145*x-958 3178114376657824 a001 119814912/377 3178114390469536 m001 (BesselI(0,1)-ln(gamma))/(-MadelungNaCl+Salem) 3178114395390183 m001 ln(FeigenbaumKappa)*Lehmer/LambertW(1) 3178114401927563 a001 2178309/3571*843^(13/14) 3178114412758784 a001 102334155/521*199^(1/11) 3178114413299147 r008 a(0)=0,K{-n^6,-44-18*n^3+10*n^2+70*n} 3178114444578010 r005 Im(z^2+c),c=1/22+13/37*I,n=26 3178114446872687 r005 Re(z^2+c),c=35/114+7/64*I,n=39 3178114456233421 a001 119814915/377 3178114456254979 a001 267914296/2207*322^(1/6) 3178114472148541 a001 2/377*(1/2+1/2*5^(1/2))^42 3178114485207197 a003 cos(Pi*3/107)-cos(Pi*31/118) 3178114489546382 m001 MasserGramainDelta/(Artin^BesselI(1,1)) 3178114495756102 m009 (1/12*Pi^2+3/4)/(5*Psi(1,1/3)-1) 3178114503173188 a001 3524578/521*521^(8/13) 3178114503734720 a007 Real Root Of 289*x^4+718*x^3-788*x^2-392*x+278 3178114509283819 a001 119814917/377 3178114509375361 l006 ln(9631/9942) 3178114514918098 a007 Real Root Of 48*x^4-333*x^3+356*x^2-303*x-10 3178114536410200 r005 Im(z^2+c),c=-35/66+31/64*I,n=33 3178114541628278 r002 25th iterates of z^2 + 3178114550427310 a001 3/233*5^(32/57) 3178114572873492 r005 Im(z^2+c),c=-7/82+36/59*I,n=18 3178114580085639 v002 sum(1/(5^n+(5*n^2+6*n+46)),n=1..infinity) 3178114582060387 l006 ln(4814/6615) 3178114583156489 a001 5702887/1364*843^(9/14) 3178114583986929 r005 Re(z^2+c),c=-10/27+19/51*I,n=18 3178114601725526 r005 Re(z^2+c),c=-37/106+20/51*I,n=14 3178114611153331 k006 concat of cont frac of 3178114617454287 m001 (Psi(1,1/3)+Magata)/(-Mills+QuadraticClass) 3178114621137944 r002 50th iterates of z^2 + 3178114628274658 r002 23th iterates of z^2 + 3178114633136540 m001 (polylog(4,1/2)-OneNinth)^GAMMA(17/24) 3178114634274850 r005 Re(z^2+c),c=-19/46+5/32*I,n=11 3178114637390318 a001 13/322*11^(37/43) 3178114640257662 r005 Re(z^2+c),c=-9/22+5/31*I,n=25 3178114643028610 a007 Real Root Of -507*x^4-96*x^3-960*x^2+884*x+380 3178114647302159 r005 Im(z^2+c),c=-15/62+20/41*I,n=29 3178114663391895 r002 18th iterates of z^2 + 3178114676647452 b008 Pi+Sin[Pi/86] 3178114681601683 m001 Ei(1)-gamma(3)+GAMMA(17/24) 3178114697483060 a007 Real Root Of -286*x^4+756*x^3-469*x^2-93*x+45 3178114699502582 r005 Im(z^2+c),c=25/106+11/51*I,n=25 3178114712356008 r005 Im(z^2+c),c=11/58+12/47*I,n=29 3178114713111311 k007 concat of cont frac of 3178114721485411 a001 119814925/377 3178114722194222 a007 Real Root Of 205*x^4+405*x^3-558*x^2+753*x+116 3178114723354806 r009 Re(z^3+c),c=-25/82+5/49*I,n=5 3178114731694245 m001 (2^(1/3)+Si(Pi))/(-Catalan+Ei(1)) 3178114731796331 k008 concat of cont frac of 3178114743388709 m001 HardyLittlewoodC4^Gompertz+FeigenbaumD 3178114744219336 r002 7th iterates of z^2 + 3178114753067463 r005 Re(z^2+c),c=-9/22+5/31*I,n=32 3178114762665189 m001 (Zeta(1,2)+CopelandErdos)/(Shi(1)-exp(Pi)) 3178114768388356 m001 gamma/GAMMA(19/24)*MasserGramain 3178114780275427 r009 Re(z^3+c),c=-15/32+7/18*I,n=50 3178114781953435 r005 Im(z^2+c),c=-4/5+11/79*I,n=36 3178114790041570 r005 Re(z^2+c),c=-9/40+22/41*I,n=7 3178114793364800 r002 3th iterates of z^2 + 3178114795392397 r005 Im(z^2+c),c=-23/34+11/47*I,n=9 3178114800849386 a007 Real Root Of 526*x^4-514*x^3+587*x^2-806*x+208 3178114805556103 a001 199/55*12586269025^(11/16) 3178114846411033 r005 Re(z^2+c),c=-39/94+4/45*I,n=10 3178114860031243 m001 (Gompertz-Sierpinski)/(Zeta(1/2)+GaussAGM) 3178114865565561 r009 Re(z^3+c),c=-35/86+22/63*I,n=4 3178114870610831 l006 ln(5239/7199) 3178114873333599 m001 (Catalan-ln(3))/(-ln(2^(1/2)+1)+Backhouse) 3178114888175350 a007 Real Root Of -944*x^4-51*x^3+565*x^2+932*x-342 3178114902595094 a001 1762289/682*843^(5/7) 3178114909331357 r005 Im(z^2+c),c=-7/78+19/45*I,n=21 3178114918187089 h001 (2/3*exp(1)+5/9)/(9/10*exp(2)+4/5) 3178114918548749 r002 4th iterates of z^2 + 3178114935368212 a007 Real Root Of -3*x^4-956*x^3-813*x^2+747*x-111 3178114953199081 a008 Real Root of x^4-x^3-34*x^2+87*x-3 3178114961426633 r005 Im(z^2+c),c=9/106+20/61*I,n=21 3178114977682615 g007 Psi(2,9/10)+Psi(2,8/9)+Psi(2,3/5)-Psi(2,2/11) 3178114983223580 m008 (2/5*Pi^4+2/5)/(4*Pi^3-1/6) 3178114985134826 m005 (1/2*Zeta(3)+1/7)/(4/7*Pi+6/11) 3178114989589112 m001 (-Mills+Tetranacci)/(Zeta(5)-sin(1)) 3178114989787208 r009 Re(z^3+c),c=-13/29+20/53*I,n=18 3178115004241183 m001 1/exp(cosh(1))*MadelungNaCl/sinh(1) 3178115013536643 a001 233802911/1926*322^(1/6) 3178115014856666 r005 Im(z^2+c),c=-21/32+11/50*I,n=10 3178115028433376 s001 sum(1/10^(n-1)*A232783[n]/n!^2,n=1..infinity) 3178115036604662 m001 exp(Paris)^2*Si(Pi)^2/GAMMA(1/4)^2 3178115049822210 a001 15456*24476^(57/58) 3178115052489212 m001 (1/2*sin(Pi/12)+ln(2))/sin(Pi/12) 3178115052661425 m001 Ei(1,1)^FeigenbaumB/(Ei(1,1)^ZetaP(4)) 3178115055457512 m005 (-23/5+2/5*5^(1/2))/(Catalan+1/4) 3178115059017075 a008 Real Root of (2+5*x-5*x^2-4*x^3-4*x^4-2*x^5) 3178115077974219 r005 Im(z^2+c),c=4/17+8/37*I,n=34 3178115082734013 r005 Re(z^2+c),c=31/86+4/27*I,n=29 3178115083311994 a007 Real Root Of 711*x^4-104*x^3+198*x^2-478*x+128 3178115094842959 a001 1836311903/15127*322^(1/6) 3178115106705391 a001 1602508992/13201*322^(1/6) 3178115108436096 a001 12586269025/103682*322^(1/6) 3178115108688603 a001 121393*322^(1/6) 3178115108725443 a001 86267571272/710647*322^(1/6) 3178115108730818 a001 75283811239/620166*322^(1/6) 3178115108731602 a001 591286729879/4870847*322^(1/6) 3178115108731716 a001 516002918640/4250681*322^(1/6) 3178115108731733 a001 4052739537881/33385282*322^(1/6) 3178115108731735 a001 3536736619241/29134601*322^(1/6) 3178115108731737 a001 6557470319842/54018521*322^(1/6) 3178115108731743 a001 2504730781961/20633239*322^(1/6) 3178115108731787 a001 956722026041/7881196*322^(1/6) 3178115108732087 a001 365435296162/3010349*322^(1/6) 3178115108734140 a001 139583862445/1149851*322^(1/6) 3178115108748211 a001 53316291173/439204*322^(1/6) 3178115108844660 a001 20365011074/167761*322^(1/6) 3178115109505731 a001 7778742049/64079*322^(1/6) 3178115110526473 m001 1/ln(Robbin)^2/LaplaceLimit*Ei(1)^2 3178115112123115 k006 concat of cont frac of 3178115114036777 a001 2971215073/24476*322^(1/6) 3178115114115187 k006 concat of cont frac of 3178115115858324 l006 ln(5664/7783) 3178115118139111 k008 concat of cont frac of 3178115119731684 m001 (LaplaceLimit-Paris)/(GAMMA(3/4)-ln(gamma)) 3178115123122112 k007 concat of cont frac of 3178115127818652 m001 (Stephens-TreeGrowth2nd)/(Ei(1)-Porter) 3178115142810385 m001 MasserGramain*(GAMMA(7/12)-Zeta(5)) 3178115145093027 a001 1134903170/9349*322^(1/6) 3178115145331010 m005 (1/2*Zeta(3)-9/11)/(7/9*2^(1/2)-5/12) 3178115147297918 m008 (1/4*Pi^4-2)/(2*Pi+3/4) 3178115149786155 m001 1/ln(GAMMA(1/12))*KhintchineLevy/GAMMA(7/12) 3178115154100989 a007 Real Root Of 253*x^4+638*x^3-545*x^2-354*x-951 3178115158738555 m001 Zeta(5)*FeigenbaumD/exp(sqrt(5))^2 3178115165207957 m005 (1/3*Pi-1/10)/(4/5*2^(1/2)-5/6) 3178115171114126 k007 concat of cont frac of 3178115176258395 b008 23+Sqrt[Pi]*ExpIntegralEi[2] 3178115186373837 a007 Real Root Of -248*x^4-548*x^3+394*x^2-921*x+803 3178115192294682 m001 1/ln(Tribonacci)/TreeGrowth2nd/GAMMA(19/24) 3178115200234717 a007 Real Root Of 454*x^4-132*x^3-772*x^2-832*x+342 3178115202362571 m001 (Ei(1)+Zeta(1,2))/(GAMMA(19/24)+Tribonacci) 3178115208462765 m005 (1/2*3^(1/2)-3/11)/(55/63+4/9*5^(1/2)) 3178115211433889 m001 Kolakoski*(ln(2+3^(1/2))+FeigenbaumD) 3178115217242234 r005 Im(z^2+c),c=4/17+8/37*I,n=35 3178115222033476 a001 2178309/1364*843^(11/14) 3178115222114615 k008 concat of cont frac of 3178115223433612 a007 Real Root Of -227*x^4-544*x^3+799*x^2+621*x-401 3178115243577458 a001 281*4181^(16/55) 3178115245630568 m001 (Psi(2,1/3)+BesselK(1,1))/(-Bloch+Cahen) 3178115246028104 a008 Real Root of x^4-7*x^2-13*x+10 3178115248575665 a007 Real Root Of -116*x^4-609*x^3-826*x^2-146*x+164 3178115256772782 r005 Re(z^2+c),c=49/118+13/54*I,n=6 3178115259964541 m001 1/Salem*FibonacciFactorial^2/ln(Zeta(9))^2 3178115297037620 m005 (5*Pi-2/3)/(4/5*Catalan+4) 3178115299142975 m001 (ZetaQ(2)-sin(1)*ZetaQ(4))/ZetaQ(4) 3178115307432410 r005 Im(z^2+c),c=-41/122+17/32*I,n=53 3178115313136730 m001 (Ei(1)-PlouffeB)/(Thue-ThueMorse) 3178115318857492 a007 Real Root Of -182*x^4-838*x^3-807*x^2+290*x+740 3178115326870245 l006 ln(6089/8367) 3178115331434331 k008 concat of cont frac of 3178115340908845 a007 Real Root Of 510*x^4-403*x^3+96*x^2-784*x-277 3178115342319419 m001 exp(MadelungNaCl)*FibonacciFactorial^2/exp(1) 3178115343550251 m001 (-GAMMA(3/4)+Stephens)/(sin(1)+Zeta(3)) 3178115357955751 a001 433494437/3571*322^(1/6) 3178115360813865 r005 Im(z^2+c),c=-3/17+23/50*I,n=21 3178115365394856 m001 ErdosBorwein^FeigenbaumB/FeigenbaumDelta 3178115374490501 p004 log(16249/677) 3178115376462154 r005 Re(z^2+c),c=-8/23+17/39*I,n=47 3178115395863422 b008 Sqrt[2]*JacobiNS[1/2,2] 3178115403807251 a001 5702887/521*521^(7/13) 3178115413801331 r005 Re(z^2+c),c=25/78+7/57*I,n=28 3178115419004144 r005 Re(z^2+c),c=-9/14+63/206*I,n=11 3178115423451540 r009 Im(z^3+c),c=-15/32+5/23*I,n=9 3178115431794350 p003 LerchPhi(1/100,3,349/238) 3178115434489459 m005 (1/2*Catalan+2)/(4/7*Catalan+1/4) 3178115437871063 m001 1/exp(1)^2*cos(Pi/12)/exp(sqrt(2)) 3178115438967061 m008 (1/4*Pi^4-1/4)/(1/4*Pi^5-2/3) 3178115452908199 a007 Real Root Of -752*x^4+336*x^3+943*x^2+238*x-174 3178115453091288 m001 1/cos(Pi/12)^2*TwinPrimes*ln(cos(Pi/5))^2 3178115457105032 a007 Real Root Of -38*x^4+15*x^3+211*x^2-511*x+603 3178115463340358 m001 MasserGramainDelta*(Sierpinski-sin(1)) 3178115463508606 a007 Real Root Of 265*x^4+262*x^3-292*x^2-411*x+149 3178115463926351 r005 Re(z^2+c),c=-3/8+13/38*I,n=28 3178115466909432 h001 (7/11*exp(2)+5/9)/(1/9*exp(2)+5/6) 3178115467434609 a001 5/15127*3571^(24/43) 3178115470785009 a007 Real Root Of -278*x^4-773*x^3+629*x^2+879*x-12 3178115483803668 r005 Im(z^2+c),c=-8/19+31/61*I,n=31 3178115495665447 a009 1/11*(14+9^(3/4))*11^(1/4) 3178115498330398 g007 Psi(2,8/11)+Psi(2,8/9)+Psi(2,2/3)-Psi(2,2/11) 3178115503124768 a007 Real Root Of 667*x^4-799*x^3-320*x^2-846*x-269 3178115510347601 l006 ln(6514/8951) 3178115524978071 a001 5/5778*64079^(14/43) 3178115525977665 a001 219602/305*34^(8/19) 3178115527667184 s001 sum(exp(-4*Pi/5)^n*A283096[n],n=1..infinity) 3178115531505675 h001 (1/11*exp(1)+7/11)/(8/9*exp(1)+4/11) 3178115537701723 m005 (1/2*Zeta(3)-7/11)/(5/8*5^(1/2)-2/7) 3178115537939312 m002 Pi^5+Log[Pi]/4+Sinh[Pi]*Tanh[Pi] 3178115538306126 r002 46i'th iterates of 2*x/(1-x^2) of 3178115541472559 a001 1346269/1364*843^(6/7) 3178115545276782 r002 43th iterates of z^2 + 3178115567780097 r005 Im(z^2+c),c=-2/3+73/224*I,n=55 3178115569039332 m001 (Khinchin-MasserGramain)/(GAMMA(17/24)-Cahen) 3178115584921165 a007 Real Root Of -130*x^4-180*x^3+895*x^2+250*x-761 3178115596412931 a001 5/39603*9349^(26/43) 3178115602799048 m002 Pi+12/(Pi^5*ProductLog[Pi]) 3178115607214702 m001 1/Riemann3rdZero^2*ln(Porter)^2/exp(1)^2 3178115609869344 p001 sum(1/(442*n+329)/(10^n),n=0..infinity) 3178115612100823 a008 Real Root of x^2-x-101322 3178115616800920 m005 (1/2*3^(1/2)+10/11)/(3/10*Catalan-5/6) 3178115622404265 a001 5/4870847*39603^(42/43) 3178115628397528 r005 Im(z^2+c),c=-115/118+1/33*I,n=3 3178115628950848 m001 (GAMMA(19/24)*Totient+Khinchin)/Totient 3178115629496389 a001 5/103682*15127^(29/43) 3178115671349705 l006 ln(6939/9535) 3178115672051643 r009 Re(z^3+c),c=-3/50+21/31*I,n=24 3178115685912812 r009 Im(z^3+c),c=-15/31+8/47*I,n=37 3178115697635975 m001 1/GlaisherKinkelin^2/ln(Si(Pi))^2/Rabbit^2 3178115702294116 a001 5/271443*5778^(37/43) 3178115708701070 a001 64079/233*1597^(1/51) 3178115712212112 k006 concat of cont frac of 3178115715926902 a007 Real Root Of 147*x^4+252*x^3-664*x^2-181*x-776 3178115716222639 m001 (Mills+ZetaP(3))/(GAMMA(5/6)-LaplaceLimit) 3178115725478653 r005 Re(z^2+c),c=-2/3+51/181*I,n=29 3178115730042020 s002 sum(A140633[n]/(n^3*pi^n+1),n=1..infinity) 3178115743623804 r005 Re(z^2+c),c=-31/86+15/37*I,n=23 3178115745321351 a001 39088169/843*322^(1/3) 3178115745645473 r005 Im(z^2+c),c=-11/16+9/112*I,n=51 3178115748236755 a001 7/20365011074*20365011074^(17/22) 3178115748238632 a001 7/5702887*514229^(17/22) 3178115760515227 a009 1/102*9^(2/3)*6^(1/3)*17^(1/2) 3178115778403123 h001 (6/11*exp(2)+4/9)/(3/11*exp(1)+2/3) 3178115782333763 a007 Real Root Of -670*x^4+858*x^3-388*x^2+58*x+92 3178115804822677 r005 Im(z^2+c),c=13/46+1/6*I,n=28 3178115809102933 a001 11/2504730781961*75025^(19/24) 3178115811810783 m001 (FeigenbaumD-Gompertz)/(GAMMA(2/3)-ArtinRank2) 3178115815997856 r002 44th iterates of z^2 + 3178115815997856 r002 44th iterates of z^2 + 3178115822165223 r005 Im(z^2+c),c=-2/13+14/31*I,n=31 3178115824456040 r009 Im(z^3+c),c=-10/21+5/28*I,n=51 3178115824928070 m001 (MadelungNaCl-ln(2)*ZetaQ(2))/ZetaQ(2) 3178115834454062 r005 Re(z^2+c),c=-9/23+11/63*I,n=6 3178115858668557 a007 Real Root Of 319*x^4+857*x^3-231*x^2+807*x-136 3178115860909921 a001 610*843^(13/14) 3178115895390379 a007 Real Root Of 374*x^4+972*x^3-985*x^2-873*x+221 3178115911832473 l005 ln(sec(409/48)) 3178115917921078 m001 1/cos(Pi/5)/ln(Magata)^2/sin(Pi/12) 3178115919939103 m001 (1+3^(1/2))^(1/2)-FeigenbaumDelta*MertensB2 3178115926798924 m001 (-Khinchin+ThueMorse)/(Pi^(1/2)-Shi(1)) 3178115979617605 h001 (1/4*exp(2)+3/11)/(9/11*exp(2)+5/8) 3178115993471708 m001 (exp(1)+Zeta(1,-1))/(Kolakoski+ZetaQ(3)) 3178115994351858 a009 1/12*(11-12^(1/3)*7^(1/4))*12^(2/3) 3178116009775922 m001 (ln(2)+gamma(3))/(BesselI(0,1)-exp(Pi)) 3178116015523173 r002 50th iterates of z^2 + 3178116018241144 r005 Im(z^2+c),c=-7/10+45/233*I,n=9 3178116031692140 b008 Erf[Sqrt[5]]/Pi 3178116038931376 a007 Real Root Of -302*x^4-810*x^3+550*x^2+471*x+750 3178116046563368 m005 (1/2*exp(1)+2/7)/(3/7*Catalan+1/8) 3178116047012548 b008 (7*(5+E))/17 3178116063021405 m005 (1/3*5^(1/2)-2/7)/(9/11*exp(1)-7/9) 3178116073920272 r005 Im(z^2+c),c=11/58+12/47*I,n=31 3178116073997025 r005 Im(z^2+c),c=-9/118+12/29*I,n=10 3178116083449259 r009 Im(z^3+c),c=-23/48+10/57*I,n=55 3178116097487136 s002 sum(A233590[n]/(2^n-1),n=1..infinity) 3178116106380058 m002 -5+E^Pi-Pi^3-Pi^5+ProductLog[Pi] 3178116113111846 k007 concat of cont frac of 3178116126161121 k007 concat of cont frac of 3178116126599468 a007 Real Root Of 579*x^4+985*x^3+727*x^2-712*x-274 3178116129043541 h001 (-5*exp(-1)-1)/(-4*exp(3)-9) 3178116131898631 r005 Im(z^2+c),c=-33/94+18/35*I,n=35 3178116133725043 m001 (3^(1/3)-LaplaceLimit)/(GAMMA(2/3)+ln(3)) 3178116134987524 m002 -3-Pi^2-Pi^5+Coth[Pi]*ProductLog[Pi] 3178116142642546 m005 (1/2*Pi-3/7)/(3/10*3^(1/2)-5/9) 3178116145521311 k008 concat of cont frac of 3178116158112113 k007 concat of cont frac of 3178116174012261 r009 Re(z^3+c),c=-55/122+21/58*I,n=47 3178116178294498 r005 Re(z^2+c),c=-17/30+45/107*I,n=17 3178116180371352 a001 119814980/377 3178116186814495 r009 Im(z^3+c),c=-14/29+6/35*I,n=59 3178116188062073 r009 Im(z^3+c),c=-31/78+10/41*I,n=21 3178116195508398 a001 4/317811*3^(43/51) 3178116202971042 a007 Real Root Of 572*x^4-721*x^3+213*x^2-674*x+210 3178116205289160 r005 Re(z^2+c),c=19/58+31/63*I,n=28 3178116214254950 r005 Im(z^2+c),c=-61/66+17/64*I,n=14 3178116216803340 r009 Im(z^3+c),c=-14/23+16/23*I,n=4 3178116226926753 m001 (2^(1/3)+Bloch)/(Landau+ZetaQ(4)) 3178116253735669 m001 1/exp(LambertW(1))^2*MertensB1^2*Zeta(3)^2 3178116260876354 m001 Pi/(Psi(1,1/3)-BesselI(0,1)+GAMMA(11/12)) 3178116265866414 r005 Im(z^2+c),c=1/22+13/37*I,n=29 3178116267475180 b008 ArcCosh[Pi]/57 3178116271911834 r009 Im(z^3+c),c=-23/58+10/51*I,n=3 3178116274342924 r005 Im(z^2+c),c=-5/28+15/29*I,n=11 3178116277831367 a007 Real Root Of 641*x^4-933*x^3-732*x^2-746*x-23 3178116295370059 m001 1/Zeta(1/2)^2*ln((3^(1/3)))/cos(1) 3178116298419453 r009 Re(z^3+c),c=-15/32+23/59*I,n=58 3178116300165689 r005 Im(z^2+c),c=-21/118+15/32*I,n=9 3178116304441668 a001 9227465/521*521^(6/13) 3178116312431152 k007 concat of cont frac of 3178116323883944 m001 GAMMA(13/24)^2/Ei(1)^2*ln(GAMMA(7/12)) 3178116326350070 m005 (1/2*Zeta(3)-1/3)/(3/7*3^(1/2)+1/10) 3178116336134877 a001 73681302247*144^(5/17) 3178116336963508 a007 Real Root Of 50*x^4+220*x^3+463*x^2+715*x-443 3178116339276101 r005 Im(z^2+c),c=-37/42+11/52*I,n=18 3178116341008542 a001 9349/34*89^(1/31) 3178116362217912 r005 Re(z^2+c),c=-25/54+10/37*I,n=7 3178116365769880 r005 Re(z^2+c),c=-17/42+9/46*I,n=18 3178116367883295 m001 ArtinRank2^2/Champernowne^2*ln(GAMMA(1/24))^2 3178116380470000 a007 Real Root Of 318*x^4-763*x^3-333*x^2-522*x-160 3178116380608029 m002 -1/5-Pi^5-Cosh[Pi] 3178116382128439 r005 Im(z^2+c),c=-7/10+5/247*I,n=21 3178116390566259 a007 Real Root Of -453*x^4+430*x^3+279*x^2+732*x-270 3178116400185904 m001 (Totient+ZetaQ(4))/(HardyLittlewoodC3-Shi(1)) 3178116405318675 m001 (KhinchinLevy-sin(1))/(-MadelungNaCl+Robbin) 3178116411110461 m005 (1/3*gamma-1/2)/(5/7*gamma+5/9) 3178116430177459 m008 (1/6*Pi^3+1)/(2*Pi^4-3/4) 3178116470677834 m001 Si(Pi)*BesselI(0,1)*FeigenbaumKappa 3178116490780320 m001 1/BesselK(1,1)*Magata/exp(gamma) 3178116498919435 m001 Si(Pi)^GAMMA(5/6)*Si(Pi)^RenyiParking 3178116498919435 m001 Si(Pi)^RenyiParking*Si(Pi)^GAMMA(5/6) 3178116515729329 m005 (1/2*Catalan-2/3)/(6/7*2^(1/2)-5/9) 3178116526037593 r005 Re(z^2+c),c=-79/106+6/29*I,n=4 3178116547572087 m001 (MinimumGamma-ZetaP(2)*ZetaQ(2))/ZetaP(2) 3178116556499029 a008 Real Root of x^4-x^3+7*x^2-x-208 3178116558011377 p001 sum(1/(409*n+348)/(5^n),n=0..infinity) 3178116563374715 m005 (1/2*5^(1/2)-1/7)/(5/8*Zeta(3)-4/9) 3178116567168288 a001 7/1597*86267571272^(4/9) 3178116571187338 a007 Real Root Of -822*x^4+505*x^3+921*x^2+699*x-323 3178116576400987 p003 LerchPhi(1/2,4,119/88) 3178116595693206 r009 Re(z^3+c),c=-49/102+15/37*I,n=56 3178116602651720 r005 Im(z^2+c),c=-37/27+2/27*I,n=12 3178116603850174 a008 Real Root of x^4-x^3-8*x^2+13*x-12 3178116605539211 m001 Porter*Paris^2/ln(cos(Pi/5))^2 3178116608283843 m001 Niven^BesselI(1,2)*Niven^Stephens 3178116613187393 m001 1/ln(FeigenbaumC)^2*CareFree*GAMMA(17/24)^2 3178116663717886 m001 1/cos(Pi/5)/Rabbit^2*exp(sin(Pi/12)) 3178116670212730 a007 Real Root Of -564*x^4-604*x^3+58*x^2+583*x-166 3178116670826371 a007 Real Root Of 18*x^4+585*x^3+385*x^2-851*x-566 3178116672288515 a007 Real Root Of 68*x^4-31*x^3+939*x^2-700*x-319 3178116674721698 m001 sin(1/12*Pi)*Thue+Otter 3178116676406601 r009 Re(z^3+c),c=-11/23+19/41*I,n=8 3178116700315567 m001 (arctan(1/3)+Gompertz)/(Lehmer-QuadraticClass) 3178116706398797 m001 BesselJ(0,1)*RenyiParking/exp(sin(Pi/5)) 3178116707260442 m005 (23/44+1/4*5^(1/2))/(9/11*Pi+5/6) 3178116712687336 m001 (BesselI(1,2)-Conway)/(Grothendieck-Khinchin) 3178116716837418 r005 Im(z^2+c),c=-41/122+17/31*I,n=40 3178116727175668 a007 Real Root Of -731*x^4+743*x^3-275*x^2+684*x-206 3178116763618579 r005 Re(z^2+c),c=-25/58+6/11*I,n=39 3178116770342835 a009 10^(1/2)/(9^(2/3)+10^(3/4)) 3178116787248011 m001 (Si(Pi)+sin(1/5*Pi))/(Zeta(1,2)+Niven) 3178116810055408 m002 -24/E^Pi+Pi+ProductLog[Pi] 3178116811087354 a001 7/10946*6557470319842^(4/9) 3178116816939332 a001 165580141/1364*322^(1/6) 3178116817755735 h001 (-4*exp(-3)-9)/(-5*exp(2)+8) 3178116820983398 r009 Im(z^3+c),c=-13/118+17/49*I,n=2 3178116828530704 a007 Real Root Of -23*x^4-710*x^3+685*x^2+614*x+678 3178116834722450 h001 (4/11*exp(1)+9/11)/(3/4*exp(2)+1/7) 3178116849212744 m001 exp(GAMMA(1/6))^2/KhintchineLevy^2*cos(Pi/5)^2 3178116858278437 r005 Re(z^2+c),c=-67/86+1/39*I,n=62 3178116859303022 a007 Real Root Of -262*x^4-755*x^3+421*x^2+523*x-97 3178116864105528 r005 Im(z^2+c),c=-19/94+26/55*I,n=52 3178116867824806 r009 Re(z^3+c),c=-33/70+19/49*I,n=36 3178116875940945 a007 Real Root Of 205*x^4-291*x^3+488*x^2-970*x-369 3178116878454398 m001 (GlaisherKinkelin-Landau)/(Bloch-CareFree) 3178116880678204 r005 Re(z^2+c),c=-23/34+35/107*I,n=11 3178116890418461 r005 Re(z^2+c),c=-49/122+3/14*I,n=19 3178116900507215 r005 Im(z^2+c),c=11/58+12/47*I,n=35 3178116920780952 m001 (HeathBrownMoroz+MertensB3)/(Pi+GAMMA(11/12)) 3178116937795506 m005 (1/3*Zeta(3)-1/4)/(3/11*exp(1)+4) 3178116948463360 a007 Real Root Of -311*x^4-767*x^3+438*x^2-729*x+366 3178116959816221 a001 1/144*4181^(36/49) 3178116971648714 a007 Real Root Of -174*x^4-711*x^3-626*x^2-431*x-119 3178116976012106 s002 sum(A088251[n]/(64^n),n=1..infinity) 3178116984974497 a001 1149851/1597*34^(8/19) 3178116989379447 m001 (HardyLittlewoodC5+ZetaP(4))/(Chi(1)+ln(2)) 3178116990090855 m001 (-Artin+Trott2nd)/(Psi(1,1/3)+cos(1/5*Pi)) 3178116996909070 a007 Real Root Of 758*x^4-746*x^3+68*x^2-688*x+228 3178116999832220 r005 Re(z^2+c),c=-15/52+25/44*I,n=62 3178117010620255 a001 165580141/2207*322^(1/4) 3178117016425721 r005 Re(z^2+c),c=-43/58+1/60*I,n=10 3178117024771331 a007 Real Root Of 138*x^4+180*x^3+641*x^2-518*x-225 3178117026413699 m001 (ln(2)-Zeta(1/2))/(Gompertz+StolarskyHarborth) 3178117044289760 a007 Real Root Of 927*x^4-349*x^3-63*x^2-909*x+297 3178117047398290 m001 (MertensB3+ZetaQ(3))/(2^(1/3)-Chi(1)) 3178117048346055 q001 1249/3930 3178117054429166 r009 Im(z^3+c),c=-6/23+17/55*I,n=10 3178117055460981 p004 log(15817/659) 3178117067771452 m001 (3^(1/2))^Si(Pi)+ThueMorse 3178117067771452 m001 sqrt(3)^Si(Pi)+ThueMorse 3178117069478563 m005 (1/3*Catalan-1/4)/(2/3*5^(1/2)+1/4) 3178117069792197 a001 103682/55*377^(10/21) 3178117071804940 m001 (1+gamma)/(BesselI(0,2)+FeigenbaumD) 3178117108262484 a001 9/4*225851433717^(13/24) 3178117111111337 k009 concat of cont frac of 3178117130370364 m001 (BesselI(0,1)*FeigenbaumC+Niven)/BesselI(0,1) 3178117137054072 m005 (1/2*3^(1/2)-1/4)/(9/11*exp(1)-2/7) 3178117137508736 r002 13th iterates of z^2 + 3178117140750158 m001 Bloch^ReciprocalLucas-Magata 3178117159547444 m005 (1/2*Zeta(3)+1/9)/(2/3*exp(1)+3/7) 3178117159636844 r005 Im(z^2+c),c=3/44+3/5*I,n=37 3178117160939235 a001 8/3571*11^(7/48) 3178117165456213 r009 Re(z^3+c),c=-33/74+19/54*I,n=24 3178117182811943 r005 Im(z^2+c),c=-17/56+18/35*I,n=54 3178117182944436 p001 sum((-1)^n/(610*n+313)/(64^n),n=0..infinity) 3178117191996120 m001 (-GAMMA(1/12)+1)/(GaussKuzminWirsing+3) 3178117197839378 a001 3010349/4181*34^(8/19) 3178117205076303 a001 14930352/521*521^(5/13) 3178117206079472 a007 Real Root Of 380*x^4+135*x^3+419*x^2-653*x+157 3178117210249075 m005 (1/2*Zeta(3)+8/11)/(5/8*Zeta(3)-1/3) 3178117210533529 r005 Re(z^2+c),c=-31/118+22/39*I,n=32 3178117211314571 k008 concat of cont frac of 3178117218142419 m001 (ln(2^(1/2)+1)+polylog(4,1/2))/(Pi+2^(1/3)) 3178117223572341 m001 (-GAMMA(7/12)+Cahen)/(5^(1/2)-ln(gamma)) 3178117226198715 m005 (1/3*gamma-2/11)/(3*Catalan+7/12) 3178117228895948 a001 3940598/5473*34^(8/19) 3178117229358373 r005 Re(z^2+c),c=-59/82+5/43*I,n=27 3178117233427041 a001 20633239/28657*34^(8/19) 3178117234043341 s002 sum(A077627[n]/(exp(n)-1),n=1..infinity) 3178117234088118 a001 54018521/75025*34^(8/19) 3178117234184568 a001 70711162/98209*34^(8/19) 3178117234198640 a001 370248451/514229*34^(8/19) 3178117234200693 a001 969323029/1346269*34^(8/19) 3178117234200992 a001 1268860318/1762289*34^(8/19) 3178117234201036 a001 6643838879/9227465*34^(8/19) 3178117234201043 a001 17393796001/24157817*34^(8/19) 3178117234201043 a001 22768774562/31622993*34^(8/19) 3178117234201044 a001 119218851371/165580141*34^(8/19) 3178117234201044 a001 312119004989/433494437*34^(8/19) 3178117234201044 a001 408569081798/567451585*34^(8/19) 3178117234201044 a001 2139295485799/2971215073*34^(8/19) 3178117234201044 a001 5600748293801/7778742049*34^(8/19) 3178117234201044 a001 7331474697802/10182505537*34^(8/19) 3178117234201044 a001 23725150497407/32951280099*34^(8/19) 3178117234201044 a001 9062201101803/12586269025*34^(8/19) 3178117234201044 a001 10749853441/14930208*34^(8/19) 3178117234201044 a001 1322157322203/1836311903*34^(8/19) 3178117234201044 a001 505019158607/701408733*34^(8/19) 3178117234201044 a001 96450076809/133957148*34^(8/19) 3178117234201044 a001 10525900321/14619165*34^(8/19) 3178117234201044 a001 28143753123/39088169*34^(8/19) 3178117234201046 a001 5374978561/7465176*34^(8/19) 3178117234201063 a001 4106118243/5702887*34^(8/19) 3178117234201178 a001 224056801/311187*34^(8/19) 3178117234201962 a001 299537289/416020*34^(8/19) 3178117234207337 a001 228826127/317811*34^(8/19) 3178117234244177 a001 87403803/121393*34^(8/19) 3178117234496686 a001 103681/144*34^(8/19) 3178117236064088 a001 233/843*(1/2+1/2*5^(1/2))^29 3178117236064088 a001 233/843*1322157322203^(1/2) 3178117236100886 a001 377/521*7881196^(9/11) 3178117236100928 a001 377/521*141422324^(9/13) 3178117236100928 a001 377/521*2537720636^(3/5) 3178117236100928 a001 377/521*45537549124^(9/17) 3178117236100928 a001 377/521*817138163596^(9/19) 3178117236100928 a001 377/521*14662949395604^(3/7) 3178117236100928 a001 377/521*(1/2+1/2*5^(1/2))^27 3178117236100928 a001 377/521*192900153618^(1/2) 3178117236100928 a001 377/521*10749957122^(9/16) 3178117236100928 a001 377/521*599074578^(9/14) 3178117236100930 a001 377/521*33385282^(3/4) 3178117236101754 a001 377/521*1860498^(9/10) 3178117236227410 a001 12752043/17711*34^(8/19) 3178117243835879 r005 Im(z^2+c),c=-1/122+8/21*I,n=26 3178117247993869 a007 Real Root Of -216*x^4+597*x^3-459*x^2+863*x+342 3178117248089964 a001 4870847/6765*34^(8/19) 3178117249328379 a001 18/121393*5^(9/19) 3178117252584329 m001 GAMMA(2/3)^Grothendieck+MinimumGamma 3178117263967691 r005 Re(z^2+c),c=37/118+27/53*I,n=53 3178117268728978 r009 Im(z^3+c),c=-7/24+14/47*I,n=20 3178117277287688 m002 -Pi^5-Cosh[Pi]+Log[Pi]^(-1)-ProductLog[Pi] 3178117288697538 m001 Riemann3rdZero*Bloch/ln(Tribonacci)^2 3178117292564418 m001 1/cosh(1)^2*ln(FeigenbaumD)^2*log(1+sqrt(2))^2 3178117295493141 a001 514229/199*199^(10/11) 3178117301569061 a007 Real Root Of 198*x^4+527*x^3-89*x^2+746*x-13 3178117304428583 m001 GAMMA(1/24)*ln(Riemann2ndZero)^2*Zeta(1/2) 3178117329397124 a001 930249/1292*34^(8/19) 3178117343586928 m009 (1/4*Psi(1,3/4)-6)/(1/3*Psi(1,2/3)+2/3) 3178117347244122 m005 (1/2*gamma+3/5)/(Catalan-7/11) 3178117369566416 r009 Im(z^3+c),c=-7/24+14/47*I,n=21 3178117371933256 a001 7/144*10610209857723^(3/5) 3178117417782392 m001 (Shi(1)+sin(1/12*Pi))/(ThueMorse+ZetaQ(4)) 3178117427873945 m001 Chi(1)*GAMMA(2/3)/FeigenbaumMu 3178117444671371 a001 199/55*987^(37/57) 3178117448398950 r005 Im(z^2+c),c=-17/98+29/63*I,n=44 3178117452083473 r009 Im(z^3+c),c=-7/24+14/47*I,n=24 3178117453112994 a007 Real Root Of -863*x^4+950*x^3-790*x^2+792*x+26 3178117455008260 m001 sin(1/5*Pi)^ErdosBorwein/Totient 3178117458900015 m001 FibonacciFactorial^ln(gamma)-Stephens 3178117462013006 r005 Im(z^2+c),c=1/86+21/31*I,n=9 3178117466457186 r009 Im(z^3+c),c=-7/24+14/47*I,n=27 3178117467910010 r009 Im(z^3+c),c=-7/24+14/47*I,n=30 3178117467910276 r009 Im(z^3+c),c=-7/24+14/47*I,n=28 3178117467936686 r009 Im(z^3+c),c=-7/24+14/47*I,n=31 3178117467983721 r009 Im(z^3+c),c=-7/24+14/47*I,n=34 3178117467990994 r009 Im(z^3+c),c=-7/24+14/47*I,n=37 3178117467991624 r009 Im(z^3+c),c=-7/24+14/47*I,n=38 3178117467991675 r009 Im(z^3+c),c=-7/24+14/47*I,n=40 3178117467991676 r009 Im(z^3+c),c=-7/24+14/47*I,n=41 3178117467991702 r009 Im(z^3+c),c=-7/24+14/47*I,n=44 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=47 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=48 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=51 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=50 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=54 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=57 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=58 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=61 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=60 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=64 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=63 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=62 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=59 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=55 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=56 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=53 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=52 3178117467991706 r009 Im(z^3+c),c=-7/24+14/47*I,n=49 3178117467991707 r009 Im(z^3+c),c=-7/24+14/47*I,n=45 3178117467991707 r009 Im(z^3+c),c=-7/24+14/47*I,n=46 3178117467991709 r009 Im(z^3+c),c=-7/24+14/47*I,n=43 3178117467991722 r009 Im(z^3+c),c=-7/24+14/47*I,n=42 3178117467991884 r009 Im(z^3+c),c=-7/24+14/47*I,n=39 3178117467992994 r009 Im(z^3+c),c=-7/24+14/47*I,n=36 3178117467993329 r009 Im(z^3+c),c=-7/24+14/47*I,n=35 3178117467994467 r009 Im(z^3+c),c=-7/24+14/47*I,n=33 3178117468024830 r009 Im(z^3+c),c=-7/24+14/47*I,n=32 3178117468348702 r009 Im(z^3+c),c=-7/24+14/47*I,n=29 3178117469706852 r009 Im(z^3+c),c=-7/24+14/47*I,n=23 3178117470327372 r009 Im(z^3+c),c=-7/24+14/47*I,n=26 3178117471697663 a007 Real Root Of -160*x^4+767*x^3+86*x^2+473*x-182 3178117472049087 r009 Im(z^3+c),c=-7/24+14/47*I,n=25 3178117472400917 r005 Re(z^2+c),c=-39/38+3/46*I,n=4 3178117475755696 m001 sin(1)^Magata/MadelungNaCl 3178117476747984 h001 (-9*exp(2/3)-7)/(-exp(1)-5) 3178117479308682 r009 Im(z^3+c),c=-7/24+14/47*I,n=18 3178117486878821 r009 Re(z^3+c),c=-47/102+23/61*I,n=47 3178117487898795 r005 Re(z^2+c),c=-39/110+27/64*I,n=15 3178117487908908 r005 Re(z^2+c),c=13/34+23/64*I,n=14 3178117492278341 r005 Im(z^2+c),c=11/58+12/47*I,n=34 3178117507207986 m001 1/cos(1)/exp(FeigenbaumC)/cos(Pi/12)^2 3178117520688974 m001 Rabbit^2/exp(FeigenbaumB)^2/sqrt(3)^2 3178117530347294 r005 Re(z^2+c),c=-31/22+87/92*I,n=2 3178117538818652 r009 Im(z^3+c),c=-7/24+14/47*I,n=22 3178117546856832 r005 Im(z^2+c),c=-145/98+2/63*I,n=6 3178117547129097 r005 Re(z^2+c),c=-73/114+26/63*I,n=49 3178117567902368 a001 433494437/5778*322^(1/4) 3178117627273560 r002 14th iterates of z^2 + 3178117627334541 a007 Real Root Of 82*x^4+51*x^3-107*x^2-902*x+295 3178117639822288 s002 sum(A045464[n]/(exp(pi*n)+1),n=1..infinity) 3178117640135663 r005 Re(z^2+c),c=-27/82+12/29*I,n=12 3178117649208749 a001 1134903170/15127*322^(1/4) 3178117661071190 a001 2971215073/39603*322^(1/4) 3178117662801897 a001 7778742049/103682*322^(1/4) 3178117663054404 a001 20365011074/271443*322^(1/4) 3178117663091244 a001 53316291173/710647*322^(1/4) 3178117663096619 a001 139583862445/1860498*322^(1/4) 3178117663097403 a001 365435296162/4870847*322^(1/4) 3178117663097518 a001 956722026041/12752043*322^(1/4) 3178117663097534 a001 2504730781961/33385282*322^(1/4) 3178117663097537 a001 6557470319842/87403803*322^(1/4) 3178117663097537 a001 10610209857723/141422324*322^(1/4) 3178117663097538 a001 4052739537881/54018521*322^(1/4) 3178117663097545 a001 140728068720/1875749*322^(1/4) 3178117663097588 a001 591286729879/7881196*322^(1/4) 3178117663097888 a001 225851433717/3010349*322^(1/4) 3178117663099941 a001 86267571272/1149851*322^(1/4) 3178117663114013 a001 32951280099/439204*322^(1/4) 3178117663210462 a001 75025*322^(1/4) 3178117663871533 a001 4807526976/64079*322^(1/4) 3178117666885632 m001 FeigenbaumAlpha^(exp(1)*arctan(1/2)) 3178117668402582 a001 1836311903/24476*322^(1/4) 3178117671293875 a007 Real Root Of -309*x^4+760*x^3+277*x^2+723*x-279 3178117673971631 m001 Riemann2ndZero^2*exp(Niven)^2/BesselK(0,1) 3178117675043030 a001 64079*514229^(11/17) 3178117682092475 a007 Real Root Of -666*x^4+623*x^3-292*x^2+405*x+185 3178117687824233 h001 (1/5*exp(1)+3/11)/(7/9*exp(1)+5/11) 3178117698119248 m001 1/ln(LaplaceLimit)^2*Kolakoski^2/GAMMA(19/24) 3178117699458858 a001 701408733/9349*322^(1/4) 3178117710905521 s002 sum(A076667[n]/(n^2*10^n+1),n=1..infinity) 3178117711811598 m001 FeigenbaumDelta^(BesselK(0,1)*Grothendieck) 3178117712221111 k006 concat of cont frac of 3178117731337637 m001 (arctan(1/3)+GAMMA(23/24))/(Pi+ln(3)) 3178117739103378 a007 Real Root Of -444*x^4+653*x^3+215*x^2+31*x-48 3178117741310721 a007 Real Root Of -224*x^4-553*x^3+328*x^2-779*x-688 3178117746067826 r009 Re(z^3+c),c=-3/94+1/24*I,n=2 3178117749727904 r005 Im(z^2+c),c=11/40+3/17*I,n=21 3178117752516030 a003 cos(Pi*11/94)*cos(Pi*44/113) 3178117758512763 m002 -6-Pi^5*Csch[Pi]+Pi^5*Log[Pi] 3178117763009133 a001 7/121393*55^(23/54) 3178117763160790 m001 cos(Pi/5)*GAMMA(1/3)^2/ln(sin(Pi/12))^2 3178117766506325 r002 9th iterates of z^2 + 3178117770137398 r005 Re(z^2+c),c=-4/13+20/37*I,n=56 3178117785004031 r005 Re(z^2+c),c=-21/62+19/41*I,n=45 3178117786500633 m001 (cos(1/12*Pi)-gamma(2))/(ln(5)-Zeta(1/2)) 3178117796764671 m001 Riemann1stZero*ln(GolombDickman)^2/Pi^2 3178117802514961 r008 a(0)=0,K{-n^6,11-30*n+59*n^2-8*n^3} 3178117803234741 r005 Im(z^2+c),c=1/50+15/41*I,n=17 3178117814253577 r005 Re(z^2+c),c=-63/82+5/39*I,n=8 3178117815735198 m001 (Ei(1,1)+ArtinRank2)/(Chi(1)-cos(1/5*Pi)) 3178117832996433 r002 33th iterates of z^2 + 3178117837312474 r005 Im(z^2+c),c=11/58+12/47*I,n=36 3178117841324278 r005 Re(z^2+c),c=-33/82+28/51*I,n=57 3178117848801989 a001 21/47*11^(9/11) 3178117850073952 a001 2207/89*514229^(1/53) 3178117850748670 m001 LambertW(1)/(Zeta(5)+RenyiParking) 3178117875061218 m001 Grothendieck*Magata^Bloch 3178117876050443 r009 Re(z^3+c),c=-7/62+34/45*I,n=13 3178117876913057 q001 976/3071 3178117885343201 m001 Bloch/FibonacciFactorial^2/exp(GAMMA(1/12)) 3178117886684798 a001 101521/141*34^(8/19) 3178117892491515 m001 1/OneNinth/LandauRamanujan*exp(GAMMA(1/6)) 3178117892525283 m001 1/exp(OneNinth)^2/Salem*arctan(1/2) 3178117894538023 r005 Im(z^2+c),c=11/58+12/47*I,n=40 3178117903241460 m004 -2+Log[Sqrt[5]*Pi]+15*Pi*Sin[Sqrt[5]*Pi] 3178117905016289 a007 Real Root Of 293*x^4-546*x^3-453*x^2-951*x-277 3178117905492214 m001 Zeta(1,-1)*(Khinchin-LandauRamanujan) 3178117906847698 r002 5th iterates of z^2 + 3178117908244460 m001 gamma(3)^(arctan(1/2)/FeigenbaumAlpha) 3178117912321753 a001 267914296/3571*322^(1/4) 3178117917306165 a001 5/5778*843^(23/43) 3178117938271929 r005 Re(z^2+c),c=-8/19+1/33*I,n=10 3178117943268434 m009 (1/2*Psi(1,2/3)+2/3)/(3/5*Psi(1,3/4)-5/6) 3178117951112421 k006 concat of cont frac of 3178117951283143 r005 Re(z^2+c),c=-23/60+19/30*I,n=9 3178117956241673 r005 Im(z^2+c),c=11/58+12/47*I,n=39 3178117960767756 m009 (5/6*Psi(1,3/4)-4/5)/(2/5*Pi^2+1/5) 3178117966646804 a007 Real Root Of 222*x^4+918*x^3+906*x^2+904*x+542 3178117967539177 m001 ln(Khintchine)*Bloch^2*Zeta(3)^2 3178117971696580 s002 sum(A226538[n]/(n^2*exp(n)+1),n=1..infinity) 3178117977205672 r009 Re(z^3+c),c=-1/18+38/61*I,n=46 3178117979235482 m001 BesselK(1,1)-ln(2^(1/2)+1)^LaplaceLimit 3178117981788683 m001 (-BesselI(0,2)+1/2)/(-BesselJ(1,1)+1) 3178117982846156 r009 Im(z^3+c),c=-47/122+21/38*I,n=3 3178117994351519 p004 log(14897/14431) 3178118006633582 m004 1000/Pi-Cos[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3178118019248104 r005 Im(z^2+c),c=-47/82+17/43*I,n=24 3178118022844799 r005 Im(z^2+c),c=11/58+12/47*I,n=41 3178118023677884 r005 Im(z^2+c),c=11/58+12/47*I,n=45 3178118029043284 a001 682/98209*28657^(19/51) 3178118029667860 r005 Im(z^2+c),c=11/58+12/47*I,n=44 3178118029813941 m002 4/5+Pi^5*ProductLog[Pi]-Sinh[Pi] 3178118038443712 m001 (2^(1/3)-Chi(1))/(-Kolakoski+Robbin) 3178118040370774 r005 Im(z^2+c),c=11/58+12/47*I,n=50 3178118040879897 r005 Im(z^2+c),c=11/58+12/47*I,n=49 3178118041126935 r005 Im(z^2+c),c=11/58+12/47*I,n=46 3178118042517493 r005 Im(z^2+c),c=11/58+12/47*I,n=55 3178118042548094 r005 Im(z^2+c),c=11/58+12/47*I,n=54 3178118042728348 r005 Im(z^2+c),c=11/58+12/47*I,n=51 3178118042791415 r005 Im(z^2+c),c=11/58+12/47*I,n=59 3178118042792111 r005 Im(z^2+c),c=11/58+12/47*I,n=60 3178118042826348 r005 Im(z^2+c),c=11/58+12/47*I,n=64 3178118042834104 r005 Im(z^2+c),c=11/58+12/47*I,n=56 3178118042834388 r005 Im(z^2+c),c=11/58+12/47*I,n=61 3178118042838408 r005 Im(z^2+c),c=11/58+12/47*I,n=63 3178118042850706 r005 Im(z^2+c),c=11/58+12/47*I,n=62 3178118042886299 r005 Im(z^2+c),c=11/58+12/47*I,n=58 3178118042972163 r005 Im(z^2+c),c=11/58+12/47*I,n=57 3178118043290488 r005 Im(z^2+c),c=11/58+12/47*I,n=53 3178118043880887 r005 Im(z^2+c),c=11/58+12/47*I,n=52 3178118046657845 r005 Im(z^2+c),c=11/58+12/47*I,n=48 3178118050640750 r005 Im(z^2+c),c=11/58+12/47*I,n=47 3178118055335229 m009 (3*Psi(1,2/3)-2/5)/(1/8*Pi^2-4) 3178118055488967 r005 Re(z^2+c),c=-51/122+1/59*I,n=13 3178118067695471 r009 Im(z^3+c),c=-10/21+5/28*I,n=63 3178118074405849 r005 Im(z^2+c),c=11/58+12/47*I,n=43 3178118084517283 r005 Im(z^2+c),c=-97/94+1/4*I,n=54 3178118086871778 m001 (Backhouse+QuadraticClass)/(Zeta(5)-Pi^(1/2)) 3178118095807940 m001 (GAMMA(1/3)*GAMMA(7/24)+sin(Pi/12))/GAMMA(1/3) 3178118096867494 r009 Im(z^3+c),c=-21/44+11/62*I,n=63 3178118100618902 r005 Im(z^2+c),c=11/58+12/47*I,n=42 3178118102300759 m005 (1/2*2^(1/2)-1/12)/(11/12*3^(1/2)+3/8) 3178118105711207 a001 24157817/521*521^(4/13) 3178118111488727 m001 Pi+(exp(Pi)+2^(1/3))*GAMMA(19/24) 3178118116673938 a005 (1/cos(3/143*Pi))^532 3178118117510128 m001 Riemann3rdZero^2/ln(PrimesInBinary)/sqrt(5) 3178118124221543 k008 concat of cont frac of 3178118126018449 r009 Im(z^3+c),c=-23/110+44/59*I,n=7 3178118126169349 b008 Cosh[2^E^(-1/7)] 3178118139038102 l006 ln(425/584) 3178118144727896 m001 (GAMMA(2/3)+ln(2))/(arctan(1/3)-cos(1/12*Pi)) 3178118158041740 m001 (-GAMMA(5/6)+1/3)/FeigenbaumAlpha 3178118158041740 m001 (1/3-GAMMA(5/6))/FeigenbaumAlpha 3178118163228533 a001 9349/8*5^(23/37) 3178118164735244 r005 Re(z^2+c),c=23/110+33/61*I,n=34 3178118167106307 r005 Re(z^2+c),c=-43/106+11/57*I,n=14 3178118168078672 l005 ln(sec(542/77)) 3178118173453813 r005 Re(z^2+c),c=-13/22+3/38*I,n=4 3178118174528432 r009 Im(z^3+c),c=-7/24+14/47*I,n=19 3178118185585066 h001 (-2*exp(5)-8)/(-5*exp(1)+4) 3178118188781511 r002 7th iterates of z^2 + 3178118194000832 r005 Im(z^2+c),c=19/66+9/58*I,n=19 3178118212467632 r005 Im(z^2+c),c=1/3+1/47*I,n=7 3178118218314121 k006 concat of cont frac of 3178118257718366 r005 Im(z^2+c),c=-51/118+27/47*I,n=13 3178118264360710 r009 Im(z^3+c),c=-19/40+4/23*I,n=23 3178118299687666 a001 24157817/843*322^(5/12) 3178118299740320 m001 (3^(1/3)-Shi(1))/(BesselI(1,1)+MasserGramain) 3178118300897080 r005 Im(z^2+c),c=11/58+12/47*I,n=38 3178118305985268 a007 Real Root Of 171*x^4+738*x^3+732*x^2+290*x-227 3178118313609473 a007 Real Root Of -399*x^4-993*x^3+933*x^2+106*x-257 3178118315833008 m001 (Pi*ln(2)/ln(10)-GAMMA(2/3))/GAMMA(17/24) 3178118317126211 k007 concat of cont frac of 3178118322856121 m005 (1/2*gamma-2/3)/(67/77+1/7*5^(1/2)) 3178118345270558 a007 Real Root Of -902*x^4+5*x^3-669*x^2+683*x+294 3178118345357665 a007 Real Root Of 267*x^4+458*x^3+63*x^2-304*x-91 3178118360210945 m003 30+Sqrt[5]/8+(3*Csc[1/2+Sqrt[5]/2])/2 3178118375789363 r005 Im(z^2+c),c=3/23+32/61*I,n=4 3178118377615878 m005 (1/2*exp(1)+1/8)/(1/4*3^(1/2)-9/10) 3178118396896746 a007 Real Root Of -297*x^4-969*x^3-302*x^2-537*x+538 3178118403342290 a001 2139295485799/34*2504730781961^(18/23) 3178118420959838 a007 Real Root Of -799*x^4+69*x^3+84*x^2+744*x-239 3178118425667419 r005 Im(z^2+c),c=-35/118+23/45*I,n=55 3178118427421251 k007 concat of cont frac of 3178118427940613 a007 Real Root Of 171*x^4+30*x^3-82*x^2-612*x-187 3178118436618516 r005 Im(z^2+c),c=-9/94+11/26*I,n=14 3178118438228561 m008 (1/2*Pi^5-1/4)/(5*Pi^6-1/3) 3178118464467765 m001 FibonacciFactorial^GAMMA(13/24)/TreeGrowth2nd 3178118467694715 r005 Im(z^2+c),c=11/58+12/47*I,n=37 3178118477487428 m001 (FeigenbaumAlpha+Mills)/(Sarnak+Weierstrass) 3178118483736714 r009 Re(z^3+c),c=-35/122+1/41*I,n=6 3178118500478702 r009 Re(z^3+c),c=-1/17+37/54*I,n=48 3178118512131613 k007 concat of cont frac of 3178118520452616 a007 Real Root Of -175*x^4-204*x^3+828*x^2-683*x+771 3178118521011882 a001 341/36*102334155^(4/21) 3178118533682277 m009 (3/4*Psi(1,3/4)+4)/(3/5*Psi(1,3/4)+1/3) 3178118538467086 m005 (-13/30+1/6*5^(1/2))/(7/9*2^(1/2)-10/11) 3178118545314653 m003 23/8+Sqrt[5]/8-Cos[1/2+Sqrt[5]/2]/2 3178118547574146 m001 ln(KhintchineLevy)^2/Kolakoski/OneNinth^2 3178118562104991 r005 Im(z^2+c),c=17/58+9/59*I,n=10 3178118568646475 s001 sum(1/10^(n-1)*A119175[n]/n!^2,n=1..infinity) 3178118575847209 r005 Re(z^2+c),c=-31/46+13/29*I,n=12 3178118585303120 a005 (1/cos(55/222*Pi))^78 3178118602200941 r009 Re(z^3+c),c=-59/126+30/61*I,n=52 3178118604305415 r005 Im(z^2+c),c=-7/31+29/60*I,n=33 3178118613843076 r005 Im(z^2+c),c=-107/102+1/28*I,n=3 3178118621433809 s003 concatenated sequence A069380 3178118623702399 r005 Re(z^2+c),c=-2/3+53/161*I,n=29 3178118654028400 r005 Re(z^2+c),c=-31/78+1/46*I,n=5 3178118666970532 a007 Real Root Of -164*x^4-194*x^3+972*x^2-101*x+365 3178118669606497 a007 Real Root Of 615*x^4-649*x^3-516*x^2-602*x+258 3178118682531833 r009 Im(z^3+c),c=-41/114+4/15*I,n=12 3178118691939263 a007 Real Root Of 257*x^4-788*x^3-690*x^2-990*x+407 3178118698263740 m001 Porter/(Ei(1,1)+Pi*csc(5/24*Pi)/GAMMA(19/24)) 3178118715217848 a001 521/5*102334155^(17/21) 3178118718933024 a005 (1/sin(85/211*Pi))^511 3178118719145628 m001 (-GolombDickman+2)/(-LambertW(1)+1) 3178118768091604 m001 (Ei(1)*GAMMA(17/24)+exp(1/2))/GAMMA(17/24) 3178118776544190 r009 Re(z^3+c),c=-14/27+9/50*I,n=5 3178118779095963 r005 Re(z^2+c),c=-37/122+27/50*I,n=39 3178118782013161 m001 1/Catalan/exp(Robbin)/sqrt(Pi) 3178118792860629 p001 sum((-1)^n/(215*n+31)/(8^n),n=0..infinity) 3178118797911992 m001 1/exp(Zeta(3))/GAMMA(7/24)^2*Zeta(9)^2 3178118811362422 a007 Real Root Of -995*x^4+294*x^3-537*x^2-97*x+43 3178118821440148 a003 cos(Pi*19/72)-sin(Pi*19/41) 3178118838197124 a007 Real Root Of -35*x^4+610*x^3-784*x^2+748*x-23 3178118854318947 r002 4th iterates of z^2 + 3178118865489314 r008 a(0)=3,K{-n^6,-39-24*n^3-25*n^2+82*n} 3178118877526974 m001 (Zeta(5)*KomornikLoreti+3^(1/3))/Zeta(5) 3178118886929347 s002 sum(A195802[n]/(n*exp(pi*n)-1),n=1..infinity) 3178118893847450 r009 Im(z^3+c),c=-59/126+8/43*I,n=28 3178118895543268 a001 10749957122/89*46368^(7/23) 3178118895633246 a001 370248451/89*2971215073^(7/23) 3178118903473054 a001 322/28657*8^(1/2) 3178118904542690 a001 1/72*(1/2*5^(1/2)+1/2)*4^(1/4) 3178118908381193 m001 1/Lehmer^2/ln(LandauRamanujan)/gamma^2 3178118942050766 r005 Re(z^2+c),c=-43/31+49/53*I,n=2 3178118943874701 m001 (Sarnak-Tetranacci)/(FeigenbaumB+Otter) 3178118966060759 a007 Real Root Of 296*x^4+838*x^3-80*x^2+648*x-430 3178118967353614 m002 Pi^4/E^Pi+Pi^5*Csch[Pi]+ProductLog[Pi] 3178118971484290 r005 Im(z^2+c),c=-9/19+27/52*I,n=4 3178118981563076 a007 Real Root Of -315*x^4-993*x^3-31*x^2-294*x-361 3178118987604457 a007 Real Root Of 16*x^4-647*x^3+185*x^2-319*x-141 3178118989280006 m001 StolarskyHarborth/(FeigenbaumAlpha+ZetaQ(2)) 3178118989939676 r009 Im(z^3+c),c=-31/94+35/47*I,n=15 3178118992451841 r002 11th iterates of z^2 + 3178119006346361 a001 39088169/521*521^(3/13) 3178119008411521 m005 (1/2*Catalan-10/11)/(6*5^(1/2)+7/9) 3178119019529819 m001 ReciprocalFibonacci^(Niven/KomornikLoreti) 3178119023472529 m003 -11/2+(5*Sqrt[5])/8+Tanh[1/2+Sqrt[5]/2] 3178119026476566 m001 (-RenyiParking+ZetaQ(3))/(gamma+MadelungNaCl) 3178119030091125 s001 sum(exp(-2*Pi/3)^n*A188953[n],n=1..infinity) 3178119030677954 m002 -2-Pi^2-Pi^5+ProductLog[Pi]-Tanh[Pi] 3178119035688013 m001 GAMMA(7/24)^2*OneNinth*exp(LambertW(1))^2 3178119036826579 m001 (HeathBrownMoroz-Otter)/(Artin-Conway) 3178119038773240 a007 Real Root Of 110*x^4+113*x^3-500*x^2+918*x+373 3178119043804916 a007 Real Root Of 721*x^4-601*x^3+455*x^2-898*x-358 3178119047349783 r005 Im(z^2+c),c=-2/31+1/28*I,n=4 3178119061491026 m001 (-Salem+TreeGrowth2nd)/(1+ln(2+3^(1/2))) 3178119071368132 a003 cos(Pi*1/44)-cos(Pi*27/103) 3178119098650271 r008 a(0)=3,K{-n^6,35-36*n^3+48*n^2-53*n} 3178119110872869 a005 (1/sin(20/51*Pi))^964 3178119111213216 k007 concat of cont frac of 3178119111400854 a008 Real Root of (1+3*x+2*x^3+3*x^4+4*x^5) 3178119122843113 k007 concat of cont frac of 3178119130086315 r005 Re(z^2+c),c=-41/110+1/40*I,n=3 3178119130097438 a007 Real Root Of 882*x^4-132*x^3+356*x^2-200*x+6 3178119152354004 m003 1/2+(769*Sqrt[5])/1024+Sin[1/2+Sqrt[5]/2] 3178119168150867 b008 -71/2+EulerGamma+Pi 3178119169289243 m001 ReciprocalLucas*(gamma(2)-ln(5)) 3178119199187625 r009 Im(z^3+c),c=-5/48+11/32*I,n=8 3178119201482702 r005 Re(z^2+c),c=-11/34+27/52*I,n=43 3178119207358824 a007 Real Root Of -201*x^4-488*x^3+291*x^2-385*x+678 3178119217223641 a007 Real Root Of -548*x^4-535*x^3-911*x^2+942*x-29 3178119221617992 a007 Real Root Of -158*x^4-726*x^3-457*x^2+859*x+160 3178119240012966 r005 Im(z^2+c),c=-13/40+31/60*I,n=41 3178119240908486 r005 Im(z^2+c),c=-79/82+16/57*I,n=9 3178119250687554 r005 Im(z^2+c),c=-14/19+5/31*I,n=28 3178119255644964 m002 -Log[Pi]+(Pi^9*Log[Pi])/ProductLog[Pi] 3178119270877403 a007 Real Root Of -358*x^4-887*x^3+971*x^2+566*x+41 3178119275893866 a007 Real Root Of 340*x^4+909*x^3-724*x^2-587*x-60 3178119276017556 a007 Real Root Of -325*x^4-676*x^3+763*x^2-958*x+705 3178119276695955 a007 Real Root Of -195*x^4-734*x^3-216*x^2+333*x-428 3178119277873478 r002 41th iterates of z^2 + 3178119283752782 p003 LerchPhi(1/100,4,9/38) 3178119292513309 a007 Real Root Of 750*x^4+540*x^3-994*x^2-993*x+391 3178119302331711 a001 521/6765*13^(21/38) 3178119306030666 m005 (1/3*Zeta(3)+2/9)/(7/8*3^(1/2)+4/9) 3178119311132610 m001 (Gompertz-ZetaQ(4))/(GAMMA(19/24)+ArtinRank2) 3178119316639017 s002 sum(A206241[n]/(exp(n)-1),n=1..infinity) 3178119321321440 m005 (1/3*gamma-1/4)/(6*Pi-8/11) 3178119328040098 a007 Real Root Of 420*x^4+997*x^3-920*x^2+693*x+651 3178119334992629 m002 5+Pi^5+Cosh[Pi]/2+Tanh[Pi] 3178119349005424 q001 703/2212 3178119371306507 a001 9303105/124*322^(1/4) 3178119379310361 r002 48th iterates of z^2 + 3178119398233542 a001 17711/7*3^(11/53) 3178119437789402 m001 1/ln(GAMMA(1/6))*FransenRobinson^2/Zeta(3)^2 3178119440202680 r005 Im(z^2+c),c=-1/122+8/21*I,n=30 3178119449335318 m005 (3*Catalan-1/6)/(2/3*exp(1)-1) 3178119465464033 r005 Im(z^2+c),c=7/60+4/13*I,n=22 3178119474399128 r005 Im(z^2+c),c=7/82+19/58*I,n=21 3178119480265905 m001 (Psi(1,1/3)-ln(2))/(Grothendieck+Salem) 3178119482258764 m001 (exp(1)+cos(1/5*Pi))/(-KhinchinLevy+ZetaP(4)) 3178119487530210 a007 Real Root Of -750*x^4+317*x^3+467*x^2+646*x-255 3178119488042163 a001 3571/514229*28657^(19/51) 3178119501279184 m005 (1/3*5^(1/2)-1/2)/(2/7*Zeta(3)+3/7) 3178119510657983 r005 Re(z^2+c),c=37/86+6/11*I,n=2 3178119512879234 m005 (1/3*Pi+2/3)/(1/8*Pi+5) 3178119514542740 m001 (Pi-Kac)/(LandauRamanujan+Trott2nd) 3178119522840012 a007 Real Root Of -213*x^4-362*x^3+991*x^2-304*x-866 3178119535697820 a008 Real Root of x^4-x^3-21*x^2-27*x+228 3178119535957383 k002 Champernowne real with 25*n^2-61*n+39 3178119543312568 r005 Im(z^2+c),c=7/106+19/56*I,n=16 3178119546989692 g001 Psi(7/8,51/94) 3178119557997733 m001 Trott2nd/(GAMMA(19/24)-2^(1/3)) 3178119564987585 a001 102334155/2207*322^(1/3) 3178119592541098 a007 Real Root Of 163*x^4+570*x^3+354*x^2+356*x-776 3178119593919662 m001 (FeigenbaumDelta+Niven*TreeGrowth2nd)/Niven 3178119595980672 m001 (Mills+Tribonacci)/(FeigenbaumC-sin(1)) 3178119613030173 m001 (ln(2)/ln(10))^GAMMA(3/4)*Conway^GAMMA(3/4) 3178119614321785 a007 Real Root Of -207*x^4-899*x^3-921*x^2-596*x-332 3178119614500004 m001 Otter*(MasserGramainDelta-RenyiParking) 3178119627242683 m005 (1/2*2^(1/2)-3/8)/(4/5*Zeta(3)+1/12) 3178119636358385 k003 Champernowne real with 1/6*n^3+24*n^2-355/6*n+38 3178119652848817 a001 64079/3*3^(17/47) 3178119656310986 h001 (1/12*exp(2)+5/6)/(5/9*exp(2)+5/11) 3178119690916938 r005 Re(z^2+c),c=-7/19+23/51*I,n=18 3178119699511505 m001 (cos(1)-exp(1/Pi))/(FeigenbaumC+Kolakoski) 3178119700907231 a001 9349/1346269*28657^(19/51) 3178119707060134 a007 Real Root Of -16*x^4-477*x^3+985*x^2-515*x-125 3178119723901925 m001 (Backhouse-cos(1))/(Niven+Salem) 3178119733409074 a008 Real Root of x^4+20*x^2-41*x+11 3178119734627170 m001 (1/3)^BesselK(0,1)*(1/3)^exp(1) 3178119736759387 k003 Champernowne real with 1/3*n^3+23*n^2-172/3*n+37 3178119744740078 m003 -1/2+(5*Sqrt[5])/32+15*Sec[1/2+Sqrt[5]/2] 3178119747132623 r009 Re(z^3+c),c=-33/70+29/61*I,n=38 3178119751157857 a001 2161/311187*28657^(19/51) 3178119774505487 r005 Im(z^2+c),c=-4/23+29/63*I,n=30 3178119792668883 m001 1/FeigenbaumD*ln(Conway)*LambertW(1)^2 3178119801273413 a007 Real Root Of 25*x^4-126*x^3+57*x^2-154*x-59 3178119801385841 r005 Im(z^2+c),c=31/106+9/59*I,n=25 3178119825133367 a007 Real Root Of -82*x^4+687*x^3-118*x^2+191*x-70 3178119825414974 r005 Re(z^2+c),c=-43/114+19/56*I,n=20 3178119828500568 l003 AiryAi(13/90) 3178119832465077 a001 2889/416020*28657^(19/51) 3178119835015596 m001 (-KhinchinHarmonic+Riemann3rdZero)/(1-3^(1/2)) 3178119837160389 k003 Champernowne real with 1/2*n^3+22*n^2-111/2*n+36 3178119837681123 a001 41/329*225851433717^(10/21) 3178119859205728 r005 Im(z^2+c),c=7/114+13/38*I,n=18 3178119884634990 r002 14th iterates of z^2 + 3178119888912652 m001 (Otter-Sarnak)/(ln(2)-HardHexagonsEntropy) 3178119892400046 r005 Im(z^2+c),c=-43/64+11/51*I,n=15 3178119893262064 r005 Re(z^2+c),c=-35/82+11/37*I,n=3 3178119893958087 b008 1/4+PolyLog[2,1/15] 3178119895209012 r005 Re(z^2+c),c=-33/82+9/43*I,n=31 3178119896882413 r005 Im(z^2+c),c=25/102+6/29*I,n=23 3178119898474199 m001 (sin(1)+Weierstrass)/(1-2^(1/2)) 3178119906981772 a001 63245986/521*521^(2/13) 3178119937561391 k003 Champernowne real with 2/3*n^3+21*n^2-161/3*n+35 3178119945258616 r002 16th iterates of z^2 + 3178119961502548 a007 Real Root Of 103*x^4+7*x^3-721*x^2+684*x-827 3178119984301648 r005 Im(z^2+c),c=-10/11+8/33*I,n=44 3178119987675629 a001 47*121393^(8/49) 3178120000022768 a001 98210+98209*5^(1/2) 3178120007442253 r009 Im(z^3+c),c=-9/31+15/49*I,n=4 3178120012805836 m001 GlaisherKinkelin/Cahen*ln(log(1+sqrt(2)))^2 3178120013733384 m001 (GaussAGM-Mills)/(PisotVijayaraghavan-Salem) 3178120014569397 p003 LerchPhi(1/32,2,391/219) 3178120017358133 r005 Im(z^2+c),c=-3/86+9/23*I,n=11 3178120019189251 r002 50th iterates of z^2 + 3178120037962393 k003 Champernowne real with 5/6*n^3+20*n^2-311/6*n+34 3178120038815671 r005 Im(z^2+c),c=1/15+20/59*I,n=19 3178120039042705 m005 (1/2*3^(1/2)-1/8)/(3*gamma+3/5) 3178120044105934 m001 (1/2)^(ln(Pi)*exp(1/exp(1))) 3178120070184062 a001 1597/3*18^(34/55) 3178120070563866 m001 GAMMA(11/24)^2*exp(Porter)^2*GAMMA(5/12)^2 3178120071349792 m001 Riemann3rdZero*MertensB1^2/exp(sin(1))^2 3178120077297615 s001 sum(1/10^(n-1)*A038913[n]/n!^2,n=1..infinity) 3178120077297615 s001 sum(1/10^(n-1)*A141178[n]/n!^2,n=1..infinity) 3178120083293263 m001 (FeigenbaumDelta+2/3)/(-GAMMA(1/3)+1) 3178120092626580 b008 Pi+SinIntegral[Pi/86] 3178120095447973 r005 Re(z^2+c),c=-13/60+39/56*I,n=12 3178120099624390 m005 (2/5*Pi-5/6)/(2*Catalan-1/2) 3178120108076650 m008 (1/2*Pi^6+4)/(5*Pi^5-5) 3178120113940261 a001 196418/521*1364^(14/15) 3178120122270146 a001 133957148/2889*322^(1/3) 3178120123421302 r005 Re(z^2+c),c=-9/25+29/53*I,n=40 3178120132948304 a007 Real Root Of 259*x^4+970*x^3+475*x^2+63*x+117 3178120134195555 r005 Im(z^2+c),c=11/58+12/47*I,n=33 3178120136537462 a007 Real Root Of -163*x^4-631*x^3-77*x^2+789*x-341 3178120138363395 k003 Champernowne real with n^3+19*n^2-50*n+33 3178120138658820 r005 Re(z^2+c),c=-9/22+5/31*I,n=30 3178120141294484 r005 Re(z^2+c),c=15/38+6/31*I,n=51 3178120158462687 r009 Re(z^3+c),c=-71/122+26/51*I,n=20 3178120164162340 a007 Real Root Of -304*x^4-489*x^3-888*x^2+629*x+277 3178120169736990 r005 Im(z^2+c),c=19/82+9/41*I,n=26 3178120173397300 m001 exp(Trott)^2/Si(Pi)^2/Zeta(1,2) 3178120175374222 m001 (GaussAGM+OneNinth)/(ln(5)+FeigenbaumKappa) 3178120177643135 r005 Im(z^2+c),c=-25/62+27/50*I,n=39 3178120179491034 r005 Re(z^2+c),c=-29/94+32/51*I,n=14 3178120190731996 h001 (3/10*exp(1)+5/8)/(7/12*exp(2)+2/9) 3178120196760576 m001 1/exp(Salem)/CareFree/GAMMA(19/24)^2 3178120199785934 a001 9349/144*4181^(4/21) 3178120200259924 r005 Re(z^2+c),c=7/64+9/23*I,n=2 3178120202570044 s001 sum(1/10^(n-1)*A106966[n]/n!^2,n=1..infinity) 3178120203576592 a001 701408733/15127*322^(1/3) 3178120205521217 r005 Re(z^2+c),c=-25/46+23/36*I,n=18 3178120215439043 a001 1836311903/39603*322^(1/3) 3178120217169751 a001 46368*322^(1/3) 3178120217422258 a001 12586269025/271443*322^(1/3) 3178120217459098 a001 32951280099/710647*322^(1/3) 3178120217464473 a001 43133785636/930249*322^(1/3) 3178120217465257 a001 225851433717/4870847*322^(1/3) 3178120217465372 a001 591286729879/12752043*322^(1/3) 3178120217465389 a001 774004377960/16692641*322^(1/3) 3178120217465391 a001 4052739537881/87403803*322^(1/3) 3178120217465391 a001 225749145909/4868641*322^(1/3) 3178120217465392 a001 3278735159921/70711162*322^(1/3) 3178120217465392 a001 2504730781961/54018521*322^(1/3) 3178120217465399 a001 956722026041/20633239*322^(1/3) 3178120217465443 a001 182717648081/3940598*322^(1/3) 3178120217465742 a001 139583862445/3010349*322^(1/3) 3178120217467795 a001 53316291173/1149851*322^(1/3) 3178120217481867 a001 10182505537/219602*322^(1/3) 3178120217578316 a001 7778742049/167761*322^(1/3) 3178120218239388 a001 2971215073/64079*322^(1/3) 3178120222770441 a001 567451585/12238*322^(1/3) 3178120227798150 a001 317811/521*1364^(13/15) 3178120234423571 a001 3010349*514229^(9/17) 3178120236448998 a001 39603*1836311903^(9/17) 3178120238764397 k003 Champernowne real with 7/6*n^3+18*n^2-289/6*n+32 3178120245027662 h001 (1/8*exp(2)+11/12)/(8/11*exp(2)+5/12) 3178120249262048 b008 10*Pi+Csch[Sqrt[3]] 3178120249262048 b008 Pi+Csch[Sqrt[3]]/10 3178120251761811 r005 Re(z^2+c),c=-31/86+16/41*I,n=24 3178120253044819 m005 (1/3*2^(1/2)-1/6)/(1/5*Zeta(3)-1/4) 3178120253826741 a001 433494437/9349*322^(1/3) 3178120260296701 m001 (3^(1/2)+ln(Pi))/(-gamma(1)+FeigenbaumB) 3178120264787901 r005 Re(z^2+c),c=-33/82+9/43*I,n=29 3178120284772486 m002 Pi+Pi^5-Cosh[Pi]/4+Sinh[Pi] 3178120289736986 a007 Real Root Of 20*x^4+661*x^3+805*x^2-74*x-859 3178120290880912 a007 Real Root Of 153*x^4+404*x^3-25*x^2+858*x+339 3178120298397243 r002 7th iterates of z^2 + 3178120302687198 m001 (Shi(1)-Zeta(3))/(-StolarskyHarborth+ZetaP(4)) 3178120308205030 a007 Real Root Of -334*x^4-679*x^3+816*x^2-978*x+928 3178120313131312 k008 concat of cont frac of 3178120318678751 m001 (Shi(1)-ln(2))/(-BesselK(1,1)+MadelungNaCl) 3178120329513047 r005 Re(z^2+c),c=-11/12+35/124*I,n=32 3178120331387436 m001 1/ln(Kolakoski)/GlaisherKinkelin*Zeta(1,2) 3178120334839201 m001 exp(LandauRamanujan)^2/ArtinRank2/(3^(1/3))^2 3178120339165399 k003 Champernowne real with 4/3*n^3+17*n^2-139/3*n+31 3178120341687508 a001 514229/521*1364^(4/5) 3178120344250908 m001 (AlladiGrinstead-GolombDickman*Thue)/Thue 3178120359782382 r008 a(0)=3,K{-n^6,3-29*n^3+11*n^2+9*n} 3178120389753060 a001 2207/317811*28657^(19/51) 3178120394058145 a007 Real Root Of 152*x^4+173*x^3-978*x^2+243*x+697 3178120401103521 r009 Re(z^3+c),c=-35/86+26/37*I,n=28 3178120414218198 r005 Im(z^2+c),c=-11/14+19/115*I,n=9 3178120418512462 r005 Im(z^2+c),c=-3/23+15/34*I,n=24 3178120429569332 r005 Im(z^2+c),c=31/102+4/29*I,n=55 3178120432869148 r009 Re(z^3+c),c=-5/11+11/21*I,n=48 3178120439566310 k003 Champernowne real with 3/2*n^3+16*n^2-89/2*n+30 3178120440186293 m001 (Zeta(1,2)+Paris)/(2^(1/2)+GAMMA(3/4)) 3178120450462491 r005 Re(z^2+c),c=-41/94+11/34*I,n=7 3178120453777960 a007 Real Root Of -124*x^4-242*x^3+383*x^2-284*x+111 3178120453906625 m005 (1/2*3^(1/2)+4/11)/(1/7*Catalan-4) 3178120455564852 a001 832040/521*1364^(11/15) 3178120458295366 a007 Real Root Of 461*x^4-833*x^3+193*x^2-812*x-309 3178120466689807 a001 165580141/3571*322^(1/3) 3178120504075442 a007 Real Root Of -197*x^4-586*x^3-147*x^2-902*x-95 3178120504427277 a007 Real Root Of 110*x^4+67*x^3-594*x^2+818*x-472 3178120504837815 m001 (Sarnak+TwinPrimes)/(ln(2)-ArtinRank2) 3178120512934354 r005 Re(z^2+c),c=-121/122+17/64*I,n=56 3178120539967310 k003 Champernowne real with 5/3*n^3+15*n^2-128/3*n+29 3178120555533389 l006 ln(7086/9737) 3178120559073481 a007 Real Root Of -691*x^4-419*x^3+495*x^2+977*x-340 3178120560886389 r009 Im(z^3+c),c=-5/58+48/59*I,n=34 3178120564218934 m001 (-GAMMA(11/12)+1/3)/(Pi^(1/2)+1/2) 3178120569446790 a001 1346269/521*1364^(2/3) 3178120571908963 l005 ln(sec(226/101)) 3178120575294562 m001 exp(Ei(1))/ArtinRank2*gamma^2 3178120576399051 m001 ZetaP(3)^Totient+Pi*csc(7/24*Pi)/GAMMA(17/24) 3178120578257753 a007 Real Root Of 546*x^4-731*x^3+330*x^2-702*x+22 3178120583179551 a007 Real Root Of 308*x^4+745*x^3-747*x^2+292*x+966 3178120585916867 r005 Im(z^2+c),c=-79/122+29/63*I,n=20 3178120588062512 r005 Im(z^2+c),c=1/22+13/37*I,n=32 3178120589405185 a001 1364/17711*2178309^(13/51) 3178120593172888 m001 1/GolombDickman*ErdosBorwein^2*ln(arctan(1/2)) 3178120597698170 a007 Real Root Of -153*x^4-660*x^3-462*x^2+550*x+837 3178120605991287 m002 Pi^2*Log[Pi]^2+Pi^5*Tanh[Pi] 3178120617110799 q001 1133/3565 3178120624715086 a008 Real Root of x^3-x^2-22 3178120629910634 a007 Real Root Of 317*x^4+801*x^3-522*x^2+596*x+539 3178120640368310 k003 Champernowne real with 11/6*n^3+14*n^2-245/6*n+28 3178120647405667 r005 Im(z^2+c),c=-33/82+33/59*I,n=8 3178120653441577 m001 FeigenbaumMu^exp(1)-ZetaQ(3) 3178120656878477 m001 (GaussAGM-Trott)/(Pi+ln(gamma)) 3178120667292232 a001 2584/3*24476^(31/53) 3178120672683167 m001 sin(1/12*Pi)/(Riemann2ndZero^exp(1/exp(1))) 3178120675844604 a001 89/7*199^(9/52) 3178120683326979 a001 2178309/521*1364^(3/5) 3178120692720356 r005 Re(z^2+c),c=-25/66+18/55*I,n=37 3178120709529714 r009 Im(z^3+c),c=-29/60+7/41*I,n=42 3178120709715999 l006 ln(6661/9153) 3178120710950245 r002 4th iterates of z^2 + 3178120711313038 r005 Re(z^2+c),c=37/110+5/34*I,n=31 3178120733359152 a001 832040/3*1364^(1/53) 3178120740769310 k003 Champernowne real with 2*n^3+13*n^2-39*n+27 3178120746783462 a001 514229/3*3571^(4/53) 3178120752898495 r009 Re(z^3+c),c=-23/62+4/17*I,n=14 3178120757525459 m001 (-Ei(1,1)+Conway)/(exp(1)+ln(2)) 3178120759390580 r005 Im(z^2+c),c=1/22+13/37*I,n=33 3178120762177139 r002 26th iterates of z^2 + 3178120769372116 a001 75025/3*15127^(14/53) 3178120769716422 a003 -2^(1/2)-1/2*3^(1/2)-cos(7/15*Pi)-cos(5/24*Pi) 3178120779908377 r005 Re(z^2+c),c=-41/60+7/47*I,n=4 3178120785158421 a001 7/47*(1/2*5^(1/2)+1/2)^15*47^(5/7) 3178120789544903 a007 Real Root Of 393*x^4+21*x^3+457*x^2-518*x+16 3178120797207842 a001 3524578/521*1364^(8/15) 3178120797528750 m001 (Cahen-Landau)/(Pi-gamma(2)) 3178120800316577 h001 (1/11*exp(1)+3/4)/(2/5*exp(2)+2/11) 3178120807617437 a001 102334155/521*521^(1/13) 3178120816529998 r005 Im(z^2+c),c=7/106+18/53*I,n=15 3178120825823045 s001 sum(1/10^(n-1)*A118622[n]/n^n,n=1..infinity) 3178120841170310 k003 Champernowne real with 13/6*n^3+12*n^2-223/6*n+26 3178120854056028 a001 4976784/281*322^(1/2) 3178120862317740 m002 Log[Pi]/Pi+(3*ProductLog[Pi])/Log[Pi] 3178120884914516 l006 ln(6236/8569) 3178120887503839 r005 Re(z^2+c),c=29/126+1/24*I,n=4 3178120903711781 m006 (1/2/Pi+4/5)/(5/6*Pi+2/5) 3178120905572934 r005 Im(z^2+c),c=-25/114+12/25*I,n=49 3178120908038654 a007 Real Root Of 387*x^4-222*x^3+389*x^2-496*x-208 3178120908325043 m001 (5^(1/2)-TreeGrowth2nd)/BesselI(1,1) 3178120911088453 a001 5702887/521*1364^(7/15) 3178120924024867 a007 Real Root Of -202*x^4-490*x^3+505*x^2+124*x+172 3178120940923071 r002 12th iterates of z^2 + 3178120940931638 m001 (-ArtinRank2+MertensB2)/(sin(1)+Ei(1,1)) 3178120941149160 m005 (1/2*Catalan+7/11)/(5/6*3^(1/2)+2) 3178120941571311 k003 Champernowne real with 7/3*n^3+11*n^2-106/3*n+25 3178120956414180 r005 Im(z^2+c),c=-49/82+9/43*I,n=4 3178120958958402 a001 34/3*76^(5/21) 3178120969002821 r009 Re(z^3+c),c=-31/66+17/46*I,n=16 3178120971704402 r009 Re(z^3+c),c=-11/28+13/48*I,n=15 3178120994251025 r005 Re(z^2+c),c=-35/122+29/52*I,n=34 3178120998425031 h001 (4/5*exp(2)+3/11)/(1/6*exp(2)+5/7) 3178121007991295 m001 Ei(1,1)*(LambertW(1)+QuadraticClass) 3178121015647159 r005 Im(z^2+c),c=-25/102+24/49*I,n=31 3178121016038346 a001 1597/3*39603^(32/53) 3178121024969165 a001 9227465/521*1364^(2/5) 3178121025977648 r005 Im(z^2+c),c=-9/14+11/177*I,n=38 3178121041972311 k003 Champernowne real with 5/2*n^3+10*n^2-67/2*n+24 3178121042418457 r005 Im(z^2+c),c=19/64+8/43*I,n=6 3178121052131273 a009 5^(1/4)-11^(1/3)-6^(1/2) 3178121053469467 r005 Im(z^2+c),c=-17/98+7/15*I,n=17 3178121054542665 r005 Im(z^2+c),c=-37/66+21/62*I,n=5 3178121055732113 a001 233/2207*(1/2+1/2*5^(1/2))^31 3178121055732113 a001 233/2207*9062201101803^(1/2) 3178121055775107 a001 987/521*20633239^(5/7) 3178121055775112 a001 987/521*2537720636^(5/9) 3178121055775112 a001 987/521*312119004989^(5/11) 3178121055775112 a001 987/521*(1/2+1/2*5^(1/2))^25 3178121055775112 a001 987/521*3461452808002^(5/12) 3178121055775112 a001 987/521*28143753123^(1/2) 3178121055775112 a001 987/521*228826127^(5/8) 3178121055775877 a001 987/521*1860498^(5/6) 3178121058084772 m001 (-MasserGramainDelta+Thue)/(2^(1/3)+Pi^(1/2)) 3178121061407897 p001 sum(1/(317*n+177)/n/(64^n),n=1..infinity) 3178121064253501 a005 (1/cos(21/209*Pi))^659 3178121085740072 l006 ln(5811/7985) 3178121085760599 a007 Real Root Of 32*x^4+77*x^3+200*x^2+943*x+184 3178121101923121 k007 concat of cont frac of 3178121106299139 m001 ln(Pi)*BesselI(1,2)*KhinchinHarmonic 3178121106714059 r005 Re(z^2+c),c=-41/122+8/17*I,n=60 3178121107315211 k006 concat of cont frac of 3178121110347313 r005 Re(z^2+c),c=-10/27+9/25*I,n=44 3178121111352122 k008 concat of cont frac of 3178121111714431 k009 concat of cont frac of 3178121116101111 k008 concat of cont frac of 3178121127201293 r009 Im(z^3+c),c=-17/58+11/36*I,n=4 3178121131371131 k006 concat of cont frac of 3178121131450385 r005 Im(z^2+c),c=-17/30+5/87*I,n=39 3178121131941341 k006 concat of cont frac of 3178121136857436 m008 (5*Pi^4-1)/(5*Pi^5-3/4) 3178121138849845 a001 14930352/521*1364^(1/3) 3178121141115121 k007 concat of cont frac of 3178121141442021 r008 a(0)=3,K{-n^6,-2+5*n^3-6*n^2-6*n} 3178121142373311 k003 Champernowne real with 8/3*n^3+9*n^2-95/3*n+23 3178121144422911 r005 Im(z^2+c),c=11/58+12/47*I,n=32 3178121151163446 a007 Real Root Of -251*x^4+716*x^3+160*x^2+596*x-226 3178121151866432 a007 Real Root Of 777*x^4+281*x^3+562*x^2-709*x-281 3178121153562789 s001 sum(1/10^(n-1)*A251216[n]/n!^2,n=1..infinity) 3178121154466043 b008 Pi*(1+ArcCot[86]) 3178121156818534 r005 Im(z^2+c),c=-19/110+23/50*I,n=46 3178121158638389 r005 Re(z^2+c),c=-5/18+27/43*I,n=61 3178121161813141 k006 concat of cont frac of 3178121161947752 r005 Im(z^2+c),c=1/22+13/37*I,n=36 3178121162455367 m001 (Catalan-LambertW(1))/(-Ei(1,1)+ln(2+3^(1/2))) 3178121167330574 a001 47/55*10946^(7/11) 3178121172146082 r009 Im(z^3+c),c=-13/94+20/59*I,n=10 3178121172311233 k007 concat of cont frac of 3178121181112711 k007 concat of cont frac of 3178121181211241 k007 concat of cont frac of 3178121181845825 a007 Real Root Of 97*x^4+491*x^3+620*x^2+100*x-79 3178121192112632 a001 196452*29^(1/7) 3178121192558339 m005 (11/2+3/2*5^(1/2))/(1/3*2^(1/2)-3/4) 3178121199531497 a007 Real Root Of -262*x^4-752*x^3+308*x^2+390*x+718 3178121200693875 m001 LaplaceLimit+Riemann2ndZero^GAMMA(5/6) 3178121205921658 m001 (ln(2)+ErdosBorwein)/Sarnak 3178121211922213 k009 concat of cont frac of 3178121213577266 m001 (Champernowne-LandauRamanujan)/(Mills+Rabbit) 3178121214181453 a007 Real Root Of -x^4+259*x^3+724*x^2-260*x+277 3178121216432657 a007 Real Root Of -239*x^4-520*x^3+690*x^2-337*x-350 3178121221112931 k007 concat of cont frac of 3178121222569719 m001 1/ln(Bloch)*FransenRobinson/Salem 3178121223609886 a007 Real Root Of 372*x^4+934*x^3-774*x^2+295*x+786 3178121231141106 k008 concat of cont frac of 3178121242774311 k003 Champernowne real with 17/6*n^3+8*n^2-179/6*n+22 3178121244212639 m001 ln(gamma)^MasserGramain*ZetaQ(3)^MasserGramain 3178121252111911 k007 concat of cont frac of 3178121252730543 a001 24157817/521*1364^(4/15) 3178121255254891 a005 (1/cos(16/189*Pi))^1898 3178121258382163 m008 (3*Pi^5-4/5)/(3*Pi^6+2) 3178121261141431 k007 concat of cont frac of 3178121276722195 m001 exp(Porter)^2/MertensB1*Riemann2ndZero^2 3178121280910128 a001 (5^(1/4)+1)^(1039/55) 3178121282130028 b008 -31+BesselY[1,1] 3178121294832566 m005 (1/2*gamma-3/11)/(1/4*Pi-2/7) 3178121313959784 a005 (1/cos(41/166*Pi))^140 3178121317569707 r005 Re(z^2+c),c=-7/18+9/31*I,n=17 3178121318259221 l006 ln(5386/7401) 3178121318469812 a001 64079/233*6557470319842^(16/17) 3178121319243809 a001 141422324/233*1836311903^(16/17) 3178121319246071 a001 312119004989/233*514229^(16/17) 3178121321115225 k006 concat of cont frac of 3178121329969772 r009 Re(z^3+c),c=-55/118+22/57*I,n=42 3178121333783814 r002 12th iterates of z^2 + 3178121338945042 a001 29/832040*987^(36/55) 3178121339236878 g002 Psi(1/12)+Psi(1/9)+Psi(1/7)+Psi(2/5) 3178121339505575 m001 BesselK(0,1)/MadelungNaCl^2/ln(cosh(1)) 3178121343175311 k003 Champernowne real with 3*n^3+7*n^2-28*n+21 3178121349486796 r005 Re(z^2+c),c=-8/9+21/85*I,n=16 3178121351536842 r005 Im(z^2+c),c=1/22+13/37*I,n=40 3178121365348764 a001 39088169/322*123^(1/5) 3178121366611239 a001 39088169/521*1364^(1/5) 3178121370147654 r005 Im(z^2+c),c=1/22+13/37*I,n=37 3178121377218613 r005 Im(z^2+c),c=1/22+13/37*I,n=39 3178121380821872 r009 Re(z^3+c),c=-21/82+59/64*I,n=3 3178121381571811 r005 Im(z^2+c),c=1/22+13/37*I,n=43 3178121383993939 r005 Re(z^2+c),c=-41/102+7/33*I,n=24 3178121386192956 r005 Im(z^2+c),c=1/22+13/37*I,n=44 3178121387989153 r005 Im(z^2+c),c=1/22+13/37*I,n=47 3178121389609946 r005 Im(z^2+c),c=1/22+13/37*I,n=51 3178121389663260 r005 Im(z^2+c),c=1/22+13/37*I,n=50 3178121389800793 r005 Im(z^2+c),c=1/22+13/37*I,n=54 3178121389861328 r005 Im(z^2+c),c=1/22+13/37*I,n=55 3178121389863644 r005 Im(z^2+c),c=1/22+13/37*I,n=58 3178121389875901 r005 Im(z^2+c),c=1/22+13/37*I,n=61 3178121389876700 r005 Im(z^2+c),c=1/22+13/37*I,n=62 3178121389877958 r005 Im(z^2+c),c=1/22+13/37*I,n=57 3178121389878842 r005 Im(z^2+c),c=1/22+13/37*I,n=64 3178121389879835 r005 Im(z^2+c),c=1/22+13/37*I,n=63 3178121389881737 r005 Im(z^2+c),c=1/22+13/37*I,n=59 3178121389883861 r005 Im(z^2+c),c=1/22+13/37*I,n=60 3178121389914261 r005 Im(z^2+c),c=1/22+13/37*I,n=56 3178121389959071 r005 Im(z^2+c),c=1/22+13/37*I,n=53 3178121390012309 r005 Im(z^2+c),c=1/22+13/37*I,n=48 3178121390024416 r005 Im(z^2+c),c=1/22+13/37*I,n=52 3178121390516428 r005 Im(z^2+c),c=1/22+13/37*I,n=46 3178121390634506 r005 Im(z^2+c),c=1/22+13/37*I,n=49 3178121394104823 r005 Im(z^2+c),c=1/22+13/37*I,n=45 3178121402978799 r005 Im(z^2+c),c=1/22+13/37*I,n=42 3178121403226704 r005 Im(z^2+c),c=1/22+13/37*I,n=41 3178121411132411 k007 concat of cont frac of 3178121421714370 a003 cos(Pi*14/83)-sin(Pi*20/109) 3178121431116111 k009 concat of cont frac of 3178121436365651 r005 Re(z^2+c),c=-11/34+16/33*I,n=25 3178121439358971 r009 Re(z^3+c),c=-33/74+16/45*I,n=26 3178121443203646 a007 Real Root Of -180*x^4-511*x^3+362*x^2+793*x+824 3178121443576312 k003 Champernowne real with 19/6*n^3+6*n^2-157/6*n+20 3178121445475950 a001 305/161*199^(30/31) 3178121455231485 m001 BesselJ(1,1)/TwinPrimes*exp(GAMMA(11/24))^2 3178121458985597 a001 507545997/1597 3178121459980416 b008 3+ArcSec[Pi]/7 3178121473802035 a001 75025/521*3571^(16/17) 3178121476506423 a003 sin(Pi*1/66)*sin(Pi*1/47) 3178121478139413 m008 (5*Pi^2-2/3)/(1/2*Pi^5+1/6) 3178121480491942 a001 63245986/521*1364^(2/15) 3178121488306242 a001 233*3571^(15/17) 3178121488669447 r005 Im(z^2+c),c=1/22+13/37*I,n=38 3178121495048844 a005 (1/cos(15/208*Pi))^1201 3178121502016735 m001 (exp(-1/2*Pi)-StronglyCareFree)/KomornikLoreti 3178121503026116 a001 196418/521*3571^(14/17) 3178121513611345 k007 concat of cont frac of 3178121513659075 m001 -ln(Pi)/(BesselK(1,1)+3) 3178121517663612 a001 317811/521*3571^(13/17) 3178121527736029 m001 Zeta(3)^GAMMA(2/3)+Ei(1) 3178121532332574 a001 514229/521*3571^(12/17) 3178121535362942 r009 Re(z^3+c),c=-25/54+20/53*I,n=33 3178121543977312 k003 Champernowne real with 10/3*n^3+5*n^2-73/3*n+19 3178121546989518 a001 832040/521*3571^(11/17) 3178121549848298 l004 Ci(283/118) 3178121549867374 h001 (-5*exp(2)-6)/(-exp(1/2)+3) 3178121549875886 m003 5/2+(3*Sqrt[5])/8-Log[1/2+Sqrt[5]/2]/3 3178121550617673 r009 Re(z^3+c),c=-19/56+5/28*I,n=12 3178121553283697 r005 Im(z^2+c),c=1/22+13/37*I,n=35 3178121555250985 s001 sum(exp(-2*Pi)^n*A241976[n],n=1..infinity) 3178121556494816 a001 1597/3*2207^(44/53) 3178121558946947 m001 1/(3^(1/3))*CareFree*ln(GAMMA(23/24))^2 3178121560381437 m005 (5*gamma-1/5)/(5/6*2^(1/2)-1/3) 3178121561651052 a001 1346269/521*3571^(10/17) 3178121569156534 a007 Real Root Of 16*x^4-486*x^3-47*x^2-377*x+140 3178121573917251 r005 Im(z^2+c),c=-11/56+41/60*I,n=14 3178121576160500 r005 Im(z^2+c),c=-41/90+3/56*I,n=20 3178121576310833 a001 2178309/521*3571^(9/17) 3178121580811056 r009 Im(z^3+c),c=-7/24+14/47*I,n=16 3178121590617363 l006 ln(4961/6817) 3178121590971283 a001 3524578/521*3571^(8/17) 3178121594372648 a001 102334155/521*1364^(1/15) 3178121594545419 a007 Real Root Of -251*x^4-494*x^3+720*x^2-628*x+481 3178121603038870 r005 Im(z^2+c),c=9/62+15/52*I,n=18 3178121604883656 r005 Im(z^2+c),c=-13/54+28/57*I,n=27 3178121605631478 a001 5702887/521*3571^(7/17) 3178121613014935 a001 233/5778*141422324^(11/13) 3178121613014935 a001 233/5778*2537720636^(11/15) 3178121613014935 a001 233/5778*45537549124^(11/17) 3178121613014935 a001 233/5778*312119004989^(3/5) 3178121613014935 a001 233/5778*817138163596^(11/19) 3178121613014935 a001 233/5778*14662949395604^(11/21) 3178121613014935 a001 233/5778*(1/2+1/2*5^(1/2))^33 3178121613014935 a001 233/5778*192900153618^(11/18) 3178121613014935 a001 233/5778*10749957122^(11/16) 3178121613014935 a001 233/5778*1568397607^(3/4) 3178121613014935 a001 233/5778*599074578^(11/14) 3178121613014937 a001 233/5778*33385282^(11/12) 3178121613058065 a001 2584/521*(1/2+1/2*5^(1/2))^23 3178121613058065 a001 2584/521*4106118243^(1/2) 3178121613341387 a001 2584/521*103682^(23/24) 3178121620291771 a001 9227465/521*3571^(6/17) 3178121620832584 a007 Real Root Of -560*x^4+126*x^3+647*x^2+860*x-337 3178121634952026 a001 14930352/521*3571^(5/17) 3178121644378312 k003 Champernowne real with 7/2*n^3+4*n^2-45/2*n+18 3178121644429150 r005 Im(z^2+c),c=-1/74+13/34*I,n=12 3178121645219676 h001 (4/5*exp(1)+1/12)/(9/10*exp(2)+5/11) 3178121647886834 a007 Real Root Of 277*x^4+856*x^3+64*x^2+487*x+120 3178121649612296 a001 24157817/521*3571^(4/17) 3178121664272560 a001 39088169/521*3571^(3/17) 3178121671848839 a001 1328772671/4181 3178121674579745 a001 28657/521*9349^(18/19) 3178121675423864 a001 46368/521*9349^(17/19) 3178121677746185 a001 75025/521*9349^(16/19) 3178121678932827 a001 63245986/521*3571^(2/17) 3178121679503883 a001 233*9349^(15/19) 3178121680979822 a003 cos(Pi*8/109)/sin(Pi*11/111) 3178121681477248 a001 196418/521*9349^(14/19) 3178121683151493 k006 concat of cont frac of 3178121683368236 a001 317811/521*9349^(13/19) 3178121685290689 a001 514229/521*9349^(12/19) 3178121687201123 a001 832040/521*9349^(11/19) 3178121689116148 a001 1346269/521*9349^(10/19) 3178121691029419 a001 2178309/521*9349^(9/19) 3178121692943360 a001 3524578/521*9349^(8/19) 3178121693593092 a001 102334155/521*3571^(1/17) 3178121693657860 a001 6765/521*64079^(21/23) 3178121694321419 a001 233/15127*2537720636^(7/9) 3178121694321419 a001 233/15127*17393796001^(5/7) 3178121694321419 a001 233/15127*312119004989^(7/11) 3178121694321419 a001 233/15127*14662949395604^(5/9) 3178121694321419 a001 233/15127*(1/2+1/2*5^(1/2))^35 3178121694321419 a001 233/15127*505019158607^(5/8) 3178121694321419 a001 233/15127*28143753123^(7/10) 3178121694321419 a001 233/15127*599074578^(5/6) 3178121694321419 a001 233/15127*228826127^(7/8) 3178121694351738 a001 6765/521*439204^(7/9) 3178121694364520 a001 6765/521*7881196^(7/11) 3178121694364548 a001 6765/521*20633239^(3/5) 3178121694364552 a001 6765/521*141422324^(7/13) 3178121694364552 a001 6765/521*2537720636^(7/15) 3178121694364552 a001 6765/521*17393796001^(3/7) 3178121694364552 a001 6765/521*45537549124^(7/17) 3178121694364552 a001 6765/521*14662949395604^(1/3) 3178121694364552 a001 6765/521*(1/2+1/2*5^(1/2))^21 3178121694364552 a001 6765/521*192900153618^(7/18) 3178121694364552 a001 6765/521*10749957122^(7/16) 3178121694364552 a001 6765/521*599074578^(1/2) 3178121694364554 a001 6765/521*33385282^(7/12) 3178121694365195 a001 6765/521*1860498^(7/10) 3178121694369272 a001 6765/521*710647^(3/4) 3178121694623238 a001 6765/521*103682^(7/8) 3178121694857046 a001 5702887/521*9349^(7/19) 3178121696127972 m001 Zeta(1/2)^Chi(1)*exp(Pi) 3178121696298795 a001 6765/521*39603^(21/22) 3178121696770829 a001 9227465/521*9349^(6/19) 3178121697917027 m001 (2*Pi/GAMMA(5/6)+Salem)/(2^(1/2)-Zeta(3)) 3178121698684575 a001 14930352/521*9349^(5/19) 3178121699005936 m001 (FeigenbaumMu+Niven)/(AlladiGrinstead-Cahen) 3178121700598335 a001 24157817/521*9349^(4/19) 3178121701427200 a001 17711/521*24476^(19/21) 3178121701716206 r005 Im(z^2+c),c=1/22+13/37*I,n=28 3178121702512090 a001 39088169/521*9349^(3/19) 3178121702905170 a001 1739386008/5473 3178121703663152 a001 46368/521*24476^(17/21) 3178121704324339 a001 75025/521*24476^(16/21) 3178121704350150 a007 Real Root Of -59*x^4+638*x^3+549*x^2+599*x+156 3178121704420902 a001 233*24476^(5/7) 3178121704425846 a001 63245986/521*9349^(2/19) 3178121704480168 a001 28657/521*24476^(6/7) 3178121704733133 a001 196418/521*24476^(2/3) 3178121704962986 a001 317811/521*24476^(13/21) 3178121705192342 m001 (-KomornikLoreti+ZetaQ(3))/(Chi(1)-Psi(2,1/3)) 3178121705224304 a001 514229/521*24476^(4/7) 3178121705473604 a001 832040/521*24476^(11/21) 3178121705587620 a001 17711/521*64079^(19/23) 3178121705727494 a001 1346269/521*24476^(10/21) 3178121705979631 a001 2178309/521*24476^(3/7) 3178121706183876 a001 233/39603*(1/2+1/2*5^(1/2))^37 3178121706227009 a001 17711/521*817138163596^(1/3) 3178121706227009 a001 17711/521*(1/2+1/2*5^(1/2))^19 3178121706227009 a001 17711/521*87403803^(1/2) 3178121706232437 a001 3524578/521*24476^(8/21) 3178121706339602 a001 102334155/521*9349^(1/19) 3178121706396605 a001 271443/377*34^(8/19) 3178121706461058 a001 17711/521*103682^(19/24) 3178121706484988 a001 5702887/521*24476^(1/3) 3178121706502370 a007 Real Root Of -948*x^4+964*x^3+871*x^2+918*x-401 3178121706737637 a001 9227465/521*24476^(2/7) 3178121706990248 a001 14930352/521*24476^(5/21) 3178121707242873 a001 24157817/521*24476^(4/21) 3178121707385634 a001 46368/521*64079^(17/23) 3178121707436228 a001 9107543377/28657 3178121707495493 a001 39088169/521*24476^(1/7) 3178121707705445 a001 233*64079^(15/23) 3178121707748116 a001 63245986/521*24476^(2/21) 3178121707798705 a001 196418/521*64079^(14/23) 3178121707809589 a001 317811/521*64079^(13/23) 3178121707827851 a001 75025/521*64079^(16/23) 3178121707851938 a001 514229/521*64079^(12/23) 3178121707882268 a001 832040/521*64079^(11/23) 3178121707914585 a001 233/103682*2537720636^(13/15) 3178121707914585 a001 233/103682*45537549124^(13/17) 3178121707914585 a001 233/103682*14662949395604^(13/21) 3178121707914585 a001 233/103682*(1/2+1/2*5^(1/2))^39 3178121707914585 a001 233/103682*192900153618^(13/18) 3178121707914585 a001 233/103682*73681302247^(3/4) 3178121707914585 a001 233/103682*10749957122^(13/16) 3178121707914585 a001 233/103682*599074578^(13/14) 3178121707917189 a001 1346269/521*64079^(10/23) 3178121707950356 a001 2178309/521*64079^(9/23) 3178121707957718 a001 46368/521*45537549124^(1/3) 3178121707957718 a001 46368/521*(1/2+1/2*5^(1/2))^17 3178121707957728 a001 46368/521*12752043^(1/2) 3178121707977038 a001 17711/521*39603^(19/22) 3178121707984193 a001 3524578/521*64079^(8/23) 3178121708000737 a001 102334155/521*24476^(1/21) 3178121708017775 a001 5702887/521*64079^(7/23) 3178121708051454 a001 9227465/521*64079^(6/23) 3178121708085095 a001 14930352/521*64079^(5/23) 3178121708097300 a001 4768771623/15005 3178121708118751 a001 24157817/521*64079^(4/23) 3178121708142470 a001 233*167761^(3/5) 3178121708152402 a001 39088169/521*64079^(3/23) 3178121708167092 a001 233/271443*(1/2+1/2*5^(1/2))^41 3178121708167130 a001 46368/521*103682^(17/24) 3178121708186055 a001 63245986/521*64079^(2/23) 3178121708193750 a001 31212015484/98209 3178121708201072 a001 233*439204^(5/9) 3178121708203932 a001 233/710647*(1/2+1/2*5^(1/2))^43 3178121708207821 a001 163428234789/514229 3178121708208539 a001 1346269/521*167761^(2/5) 3178121708209307 a001 233/1860498*45537549124^(15/17) 3178121708209307 a001 233/1860498*312119004989^(9/11) 3178121708209307 a001 233/1860498*14662949395604^(5/7) 3178121708209307 a001 233/1860498*(1/2+1/2*5^(1/2))^45 3178121708209307 a001 233/1860498*192900153618^(5/6) 3178121708209307 a001 233/1860498*28143753123^(9/10) 3178121708209307 a001 233/1860498*10749957122^(15/16) 3178121708209874 a001 427860673399/1346269 3178121708210091 a001 233/4870847*(1/2+1/2*5^(1/2))^47 3178121708210174 a001 560076892704/1762289 3178121708210202 a001 233*7881196^(5/11) 3178121708210206 a001 233/12752043*14662949395604^(7/9) 3178121708210206 a001 233/12752043*(1/2+1/2*5^(1/2))^49 3178121708210206 a001 233/12752043*505019158607^(7/8) 3178121708210218 a001 586520136565/1845493 3178121708210222 a001 233*20633239^(3/7) 3178121708210222 a001 233/33385282*14662949395604^(17/21) 3178121708210222 a001 233/33385282*(1/2+1/2*5^(1/2))^51 3178121708210222 a001 233/33385282*192900153618^(17/18) 3178121708210224 a001 7677648263067/24157817 3178121708210225 a001 43133785636/135721 3178121708210225 a001 233*141422324^(5/13) 3178121708210225 a001 233/228826127*3461452808002^(11/12) 3178121708210225 a001 52623384056061/165580141 3178121708210225 a001 233/599074578*14662949395604^(19/21) 3178121708210225 a001 137769808061807/433494437 3178121708210225 a001 591288590376/1860497 3178121708210225 a001 233*2537720636^(1/3) 3178121708210225 a001 944288312326273/2971215073 3178121708210225 a001 2472178896849459/7778742049 3178121708210225 a001 233*45537549124^(5/17) 3178121708210225 a001 233*312119004989^(3/11) 3178121708210225 a001 233*14662949395604^(5/21) 3178121708210225 a001 233*192900153618^(5/18) 3178121708210225 a001 233*28143753123^(3/10) 3178121708210225 a001 233*10749957122^(5/16) 3178121708210225 a001 763945292261593/2403763488 3178121708210225 a001 583602272196913/1836311903 3178121708210225 a001 233/2537720636*14662949395604^(20/21) 3178121708210225 a001 222916232067553/701408733 3178121708210225 a001 233*599074578^(5/14) 3178121708210225 a001 42573212002873/133957148 3178121708210225 a001 233*228826127^(3/8) 3178121708210225 a001 233/370248451*14662949395604^(8/9) 3178121708210225 a001 6504607989937/20466831 3178121708210225 a001 233/141422324*14662949395604^(6/7) 3178121708210225 a001 12422695843309/39088169 3178121708210226 a001 233/54018521*23725150497407^(13/16) 3178121708210226 a001 233/54018521*505019158607^(13/14) 3178121708210226 a001 233*33385282^(5/12) 3178121708210228 a001 2372523790121/7465176 3178121708210233 a001 233/20633239*312119004989^(10/11) 3178121708210233 a001 233/20633239*(1/2+1/2*5^(1/2))^50 3178121708210233 a001 233/20633239*3461452808002^(5/6) 3178121708210245 a001 1812446897417/5702887 3178121708210276 a001 233/7881196*45537549124^(16/17) 3178121708210276 a001 233/7881196*14662949395604^(16/21) 3178121708210276 a001 233/7881196*(1/2+1/2*5^(1/2))^48 3178121708210276 a001 233/7881196*192900153618^(8/9) 3178121708210276 a001 233/7881196*73681302247^(12/13) 3178121708210359 a001 692293112009/2178309 3178121708210576 a001 233/3010349*(1/2+1/2*5^(1/2))^46 3178121708210576 a001 233/3010349*10749957122^(23/24) 3178121708210684 a001 233*1860498^(1/2) 3178121708211143 a001 433495801/1364 3178121708212629 a001 233/1149851*312119004989^(4/5) 3178121708212629 a001 233/1149851*(1/2+1/2*5^(1/2))^44 3178121708212629 a001 233/1149851*23725150497407^(11/16) 3178121708212629 a001 233/1149851*73681302247^(11/13) 3178121708212629 a001 233/1149851*10749957122^(11/12) 3178121708212629 a001 233/1149851*4106118243^(22/23) 3178121708216518 a001 101004203821/317811 3178121708219706 a001 102334155/521*64079^(1/23) 3178121708226701 a001 233/439204*2537720636^(14/15) 3178121708226701 a001 233/439204*17393796001^(6/7) 3178121708226701 a001 233/439204*45537549124^(14/17) 3178121708226701 a001 233/439204*14662949395604^(2/3) 3178121708226701 a001 233/439204*(1/2+1/2*5^(1/2))^42 3178121708226701 a001 233/439204*505019158607^(3/4) 3178121708226701 a001 233/439204*192900153618^(7/9) 3178121708226701 a001 233/439204*10749957122^(7/8) 3178121708226701 a001 233/439204*4106118243^(21/23) 3178121708226701 a001 233/439204*1568397607^(21/22) 3178121708230771 a001 14930352/521*167761^(1/5) 3178121708247065 a001 317811/521*141422324^(1/3) 3178121708247065 a001 317811/521*(1/2+1/2*5^(1/2))^13 3178121708247065 a001 317811/521*73681302247^(1/4) 3178121708247733 a001 2178309/521*439204^(1/3) 3178121708248440 a001 514229/521*439204^(4/9) 3178121708249705 a001 9227465/521*439204^(2/9) 3178121708251527 a001 39088169/521*439204^(1/9) 3178121708252423 a001 832040/521*7881196^(1/3) 3178121708252440 a001 832040/521*312119004989^(1/5) 3178121708252440 a001 832040/521*(1/2+1/2*5^(1/2))^11 3178121708252440 a001 832040/521*1568397607^(1/4) 3178121708253210 a001 2178309/521*7881196^(3/11) 3178121708253224 a001 2178309/521*141422324^(3/13) 3178121708253224 a001 2178309/521*2537720636^(1/5) 3178121708253224 a001 2178309/521*45537549124^(3/17) 3178121708253224 a001 2178309/521*14662949395604^(1/7) 3178121708253224 a001 2178309/521*(1/2+1/2*5^(1/2))^9 3178121708253224 a001 2178309/521*192900153618^(1/6) 3178121708253224 a001 2178309/521*10749957122^(3/16) 3178121708253224 a001 2178309/521*599074578^(3/14) 3178121708253225 a001 2178309/521*33385282^(1/4) 3178121708253337 a001 5702887/521*20633239^(1/5) 3178121708253339 a001 5702887/521*17393796001^(1/7) 3178121708253339 a001 5702887/521*14662949395604^(1/9) 3178121708253339 a001 5702887/521*(1/2+1/2*5^(1/2))^7 3178121708253339 a001 5702887/521*599074578^(1/6) 3178121708253353 a001 39088169/521*7881196^(1/11) 3178121708253354 a001 14930352/521*20633239^(1/7) 3178121708253356 a001 14930352/521*2537720636^(1/9) 3178121708253356 a001 14930352/521*312119004989^(1/11) 3178121708253356 a001 14930352/521*(1/2+1/2*5^(1/2))^5 3178121708253356 a001 14930352/521*28143753123^(1/10) 3178121708253356 a001 14930352/521*228826127^(1/8) 3178121708253357 a001 9227465/521*7881196^(2/11) 3178121708253358 a001 39088169/521*141422324^(1/13) 3178121708253358 a001 39088169/521*2537720636^(1/15) 3178121708253358 a001 39088169/521*45537549124^(1/17) 3178121708253358 a001 39088169/521*14662949395604^(1/21) 3178121708253358 a001 39088169/521*(1/2+1/2*5^(1/2))^3 3178121708253358 a001 39088169/521*192900153618^(1/18) 3178121708253358 a001 39088169/521*10749957122^(1/16) 3178121708253358 a001 39088169/521*599074578^(1/14) 3178121708253358 a001 39088169/521*33385282^(1/12) 3178121708253358 a001 102334155/1042+102334155/1042*5^(1/2) 3178121708253358 a001 165580141/521 3178121708253359 a001 63245986/521*(1/2+1/2*5^(1/2))^2 3178121708253359 a001 63245986/521*10749957122^(1/24) 3178121708253359 a001 63245986/521*4106118243^(1/23) 3178121708253359 a001 63245986/521*1568397607^(1/22) 3178121708253359 a001 63245986/521*599074578^(1/21) 3178121708253359 a001 63245986/521*228826127^(1/20) 3178121708253359 a001 63245986/521*87403803^(1/19) 3178121708253359 a001 63245986/521*33385282^(1/18) 3178121708253359 a001 24157817/521*(1/2+1/2*5^(1/2))^4 3178121708253359 a001 24157817/521*23725150497407^(1/16) 3178121708253359 a001 24157817/521*73681302247^(1/13) 3178121708253359 a001 24157817/521*10749957122^(1/12) 3178121708253359 a001 24157817/521*4106118243^(2/23) 3178121708253359 a001 24157817/521*1568397607^(1/11) 3178121708253359 a001 24157817/521*599074578^(2/21) 3178121708253359 a001 24157817/521*228826127^(1/10) 3178121708253360 a001 24157817/521*87403803^(2/19) 3178121708253360 a001 63245986/521*12752043^(1/17) 3178121708253360 a001 24157817/521*33385282^(1/9) 3178121708253362 a001 24157817/521*12752043^(2/17) 3178121708253366 a001 9227465/521*141422324^(2/13) 3178121708253366 a001 9227465/521*2537720636^(2/15) 3178121708253366 a001 9227465/521*45537549124^(2/17) 3178121708253366 a001 9227465/521*14662949395604^(2/21) 3178121708253366 a001 9227465/521*(1/2+1/2*5^(1/2))^6 3178121708253366 a001 9227465/521*10749957122^(1/8) 3178121708253366 a001 9227465/521*4106118243^(3/23) 3178121708253366 a001 9227465/521*1568397607^(3/22) 3178121708253366 a001 9227465/521*599074578^(1/7) 3178121708253366 a001 9227465/521*228826127^(3/20) 3178121708253366 a001 9227465/521*87403803^(3/19) 3178121708253366 a001 9227465/521*33385282^(1/6) 3178121708253367 a001 63245986/521*4870847^(1/16) 3178121708253369 a001 9227465/521*12752043^(3/17) 3178121708253376 a001 24157817/521*4870847^(1/8) 3178121708253391 a001 9227465/521*4870847^(3/16) 3178121708253410 a001 3524578/521*(1/2+1/2*5^(1/2))^8 3178121708253410 a001 3524578/521*23725150497407^(1/8) 3178121708253410 a001 3524578/521*505019158607^(1/7) 3178121708253410 a001 3524578/521*73681302247^(2/13) 3178121708253410 a001 3524578/521*10749957122^(1/6) 3178121708253410 a001 3524578/521*4106118243^(4/23) 3178121708253410 a001 3524578/521*1568397607^(2/11) 3178121708253410 a001 3524578/521*599074578^(4/21) 3178121708253410 a001 3524578/521*228826127^(1/5) 3178121708253410 a001 3524578/521*87403803^(4/19) 3178121708253410 a001 3524578/521*33385282^(2/9) 3178121708253414 a001 3524578/521*12752043^(4/17) 3178121708253420 a001 63245986/521*1860498^(1/15) 3178121708253443 a001 3524578/521*4870847^(1/4) 3178121708253450 a001 39088169/521*1860498^(1/10) 3178121708253482 a001 24157817/521*1860498^(2/15) 3178121708253500 a001 2178309/521*1860498^(3/10) 3178121708253509 a001 14930352/521*1860498^(1/6) 3178121708253549 a001 9227465/521*1860498^(1/5) 3178121708253654 a001 3524578/521*1860498^(4/15) 3178121708253707 a001 1346269/521*20633239^(2/7) 3178121708253709 a001 1346269/521*2537720636^(2/9) 3178121708253709 a001 1346269/521*312119004989^(2/11) 3178121708253709 a001 1346269/521*(1/2+1/2*5^(1/2))^10 3178121708253709 a001 1346269/521*28143753123^(1/5) 3178121708253709 a001 1346269/521*10749957122^(5/24) 3178121708253709 a001 1346269/521*4106118243^(5/23) 3178121708253709 a001 1346269/521*1568397607^(5/22) 3178121708253709 a001 1346269/521*599074578^(5/21) 3178121708253709 a001 1346269/521*228826127^(1/4) 3178121708253709 a001 1346269/521*87403803^(5/19) 3178121708253710 a001 1346269/521*33385282^(5/18) 3178121708253715 a001 1346269/521*12752043^(5/17) 3178121708253751 a001 1346269/521*4870847^(5/16) 3178121708253808 a001 63245986/521*710647^(1/14) 3178121708254015 a001 1346269/521*1860498^(1/3) 3178121708254259 a001 24157817/521*710647^(1/7) 3178121708254714 a001 9227465/521*710647^(3/14) 3178121708254912 a001 5702887/521*710647^(1/4) 3178121708255208 a001 3524578/521*710647^(2/7) 3178121708255744 a001 514229/521*7881196^(4/11) 3178121708255762 a001 514229/521*141422324^(4/13) 3178121708255762 a001 514229/521*2537720636^(4/15) 3178121708255762 a001 514229/521*45537549124^(4/17) 3178121708255762 a001 514229/521*817138163596^(4/19) 3178121708255762 a001 514229/521*14662949395604^(4/21) 3178121708255762 a001 514229/521*(1/2+1/2*5^(1/2))^12 3178121708255762 a001 514229/521*192900153618^(2/9) 3178121708255762 a001 514229/521*73681302247^(3/13) 3178121708255762 a001 514229/521*10749957122^(1/4) 3178121708255762 a001 514229/521*4106118243^(6/23) 3178121708255762 a001 514229/521*1568397607^(3/11) 3178121708255762 a001 514229/521*599074578^(2/7) 3178121708255762 a001 514229/521*228826127^(3/10) 3178121708255762 a001 514229/521*87403803^(6/19) 3178121708255763 a001 514229/521*33385282^(1/3) 3178121708255769 a001 514229/521*12752043^(6/17) 3178121708255812 a001 514229/521*4870847^(3/8) 3178121708255957 a001 1346269/521*710647^(5/14) 3178121708256129 a001 514229/521*1860498^(2/5) 3178121708256677 a001 63245986/521*271443^(1/13) 3178121708258459 a001 514229/521*710647^(3/7) 3178121708259995 a001 24157817/521*271443^(2/13) 3178121708263320 a001 9227465/521*271443^(3/13) 3178121708265677 a001 102334155/521*103682^(1/24) 3178121708266681 a001 3524578/521*271443^(4/13) 3178121708268632 a001 317811/521*271443^(1/2) 3178121708269831 a001 196418/521*20633239^(2/5) 3178121708269834 a001 196418/521*17393796001^(2/7) 3178121708269834 a001 196418/521*14662949395604^(2/9) 3178121708269834 a001 196418/521*(1/2+1/2*5^(1/2))^14 3178121708269834 a001 196418/521*505019158607^(1/4) 3178121708269834 a001 196418/521*10749957122^(7/24) 3178121708269834 a001 196418/521*4106118243^(7/23) 3178121708269834 a001 196418/521*1568397607^(7/22) 3178121708269834 a001 196418/521*599074578^(1/3) 3178121708269834 a001 196418/521*228826127^(7/20) 3178121708269834 a001 196418/521*87403803^(7/19) 3178121708269835 a001 196418/521*33385282^(7/18) 3178121708269842 a001 196418/521*12752043^(7/17) 3178121708269892 a001 196418/521*4870847^(7/16) 3178121708270262 a001 196418/521*1860498^(7/15) 3178121708270299 a001 1346269/521*271443^(5/13) 3178121708272980 a001 196418/521*710647^(1/2) 3178121708275670 a001 514229/521*271443^(6/13) 3178121708277995 a001 63245986/521*103682^(1/12) 3178121708290313 a001 39088169/521*103682^(1/8) 3178121708293060 a001 196418/521*271443^(7/13) 3178121708302633 a001 24157817/521*103682^(1/6) 3178121708314947 a001 14930352/521*103682^(5/24) 3178121708323150 a001 233/167761*2537720636^(8/9) 3178121708323150 a001 233/167761*312119004989^(8/11) 3178121708323150 a001 233/167761*(1/2+1/2*5^(1/2))^40 3178121708323150 a001 233/167761*23725150497407^(5/8) 3178121708323150 a001 233/167761*73681302247^(10/13) 3178121708323150 a001 233/167761*28143753123^(4/5) 3178121708323150 a001 233/167761*10749957122^(5/6) 3178121708323150 a001 233/167761*4106118243^(20/23) 3178121708323150 a001 233/167761*1568397607^(10/11) 3178121708323150 a001 233/167761*599074578^(20/21) 3178121708327276 a001 9227465/521*103682^(1/4) 3178121708339567 a001 5702887/521*103682^(7/24) 3178121708345465 a001 102334155/521*39603^(1/22) 3178121708351956 a001 3524578/521*103682^(1/3) 3178121708364090 a001 2178309/521*103682^(3/8) 3178121708366283 a001 75025/521*(1/2+1/2*5^(1/2))^16 3178121708366283 a001 75025/521*23725150497407^(1/4) 3178121708366283 a001 75025/521*73681302247^(4/13) 3178121708366283 a001 75025/521*10749957122^(1/3) 3178121708366283 a001 75025/521*4106118243^(8/23) 3178121708366283 a001 75025/521*1568397607^(4/11) 3178121708366283 a001 75025/521*599074578^(8/21) 3178121708366283 a001 75025/521*228826127^(2/5) 3178121708366283 a001 75025/521*87403803^(8/19) 3178121708366284 a001 75025/521*33385282^(4/9) 3178121708366292 a001 75025/521*12752043^(8/17) 3178121708366350 a001 75025/521*4870847^(1/2) 3178121708366773 a001 75025/521*1860498^(8/15) 3178121708369879 a001 75025/521*710647^(4/7) 3178121708376893 a001 1346269/521*103682^(5/12) 3178121708387942 a001 832040/521*103682^(11/24) 3178121708392827 a001 75025/521*271443^(8/13) 3178121708395000 a001 233*103682^(5/8) 3178121708403582 a001 514229/521*103682^(1/2) 3178121708407204 a001 317811/521*103682^(13/24) 3178121708421619 a001 28657/521*64079^(18/23) 3178121708437572 a001 63245986/521*39603^(1/11) 3178121708442291 a001 196418/521*103682^(7/12) 3178121708505866 a001 7368157369/23184 3178121708505980 a001 10946/521*24476^(20/21) 3178121708529678 a001 39088169/521*39603^(3/22) 3178121708563377 a001 75025/521*103682^(2/3) 3178121708621787 a001 24157817/521*39603^(2/11) 3178121708713890 a001 14930352/521*39603^(5/22) 3178121708806007 a001 9227465/521*39603^(3/11) 3178121708898086 a001 5702887/521*39603^(7/22) 3178121708947799 a001 102334155/521*15127^(1/20) 3178121708984222 a001 233/64079*817138163596^(2/3) 3178121708984222 a001 233/64079*(1/2+1/2*5^(1/2))^38 3178121708984222 a001 233/64079*10749957122^(19/24) 3178121708984222 a001 233/64079*4106118243^(19/23) 3178121708984222 a001 233/64079*1568397607^(19/22) 3178121708984222 a001 233/64079*599074578^(19/21) 3178121708984222 a001 233/64079*228826127^(19/20) 3178121708990264 a001 3524578/521*39603^(4/11) 3178121709016371 a001 28657/521*439204^(2/3) 3178121709027327 a001 28657/521*7881196^(6/11) 3178121709027355 a001 28657/521*141422324^(6/13) 3178121709027355 a001 28657/521*2537720636^(2/5) 3178121709027355 a001 28657/521*45537549124^(6/17) 3178121709027355 a001 28657/521*14662949395604^(2/7) 3178121709027355 a001 28657/521*(1/2+1/2*5^(1/2))^18 3178121709027355 a001 28657/521*192900153618^(1/3) 3178121709027355 a001 28657/521*10749957122^(3/8) 3178121709027355 a001 28657/521*4106118243^(9/23) 3178121709027355 a001 28657/521*1568397607^(9/22) 3178121709027355 a001 28657/521*599074578^(3/7) 3178121709027355 a001 28657/521*228826127^(9/20) 3178121709027355 a001 28657/521*87403803^(9/19) 3178121709027356 a001 28657/521*33385282^(1/2) 3178121709027365 a001 28657/521*12752043^(9/17) 3178121709027430 a001 28657/521*4870847^(9/16) 3178121709027906 a001 28657/521*1860498^(3/5) 3178121709031401 a001 28657/521*710647^(9/14) 3178121709057217 a001 28657/521*271443^(9/13) 3178121709082186 a001 2178309/521*39603^(9/22) 3178121709174777 a001 1346269/521*39603^(5/11) 3178121709249085 a001 28657/521*103682^(3/4) 3178121709265615 a001 832040/521*39603^(1/2) 3178121709361044 a001 514229/521*39603^(6/11) 3178121709444454 a001 317811/521*39603^(13/22) 3178121709523534 a001 46368/521*39603^(17/22) 3178121709559329 a001 196418/521*39603^(7/11) 3178121709591827 a001 233*39603^(15/22) 3178121709642239 a001 63245986/521*15127^(1/10) 3178121709839992 a001 75025/521*39603^(8/11) 3178121710236576 a001 5628771361/17711 3178121710336679 a001 39088169/521*15127^(3/20) 3178121710685277 a001 28657/521*39603^(9/11) 3178121711031121 a001 24157817/521*15127^(1/5) 3178121711725557 a001 14930352/521*15127^(1/4) 3178121712420008 a001 9227465/521*15127^(3/10) 3178121712885370 a001 10946/521*64079^(20/23) 3178121713114421 a001 5702887/521*15127^(7/20) 3178121713468071 a001 10946/521*167761^(4/5) 3178121713515277 a001 233/24476*141422324^(12/13) 3178121713515277 a001 233/24476*2537720636^(4/5) 3178121713515277 a001 233/24476*45537549124^(12/17) 3178121713515277 a001 233/24476*14662949395604^(4/7) 3178121713515277 a001 233/24476*(1/2+1/2*5^(1/2))^36 3178121713515277 a001 233/24476*505019158607^(9/14) 3178121713515277 a001 233/24476*192900153618^(2/3) 3178121713515277 a001 233/24476*73681302247^(9/13) 3178121713515277 a001 233/24476*10749957122^(3/4) 3178121713515277 a001 233/24476*4106118243^(18/23) 3178121713515277 a001 233/24476*1568397607^(9/11) 3178121713515277 a001 233/24476*599074578^(6/7) 3178121713515277 a001 233/24476*228826127^(9/10) 3178121713515277 a001 233/24476*87403803^(18/19) 3178121713541986 a001 102334155/521*5778^(1/18) 3178121713558406 a001 10946/521*20633239^(4/7) 3178121713558410 a001 10946/521*2537720636^(4/9) 3178121713558410 a001 10946/521*(1/2+1/2*5^(1/2))^20 3178121713558410 a001 10946/521*23725150497407^(5/16) 3178121713558410 a001 10946/521*505019158607^(5/14) 3178121713558410 a001 10946/521*73681302247^(5/13) 3178121713558410 a001 10946/521*28143753123^(2/5) 3178121713558410 a001 10946/521*10749957122^(5/12) 3178121713558410 a001 10946/521*4106118243^(10/23) 3178121713558410 a001 10946/521*1568397607^(5/11) 3178121713558410 a001 10946/521*599074578^(10/21) 3178121713558410 a001 10946/521*228826127^(1/2) 3178121713558410 a001 10946/521*87403803^(10/19) 3178121713558412 a001 10946/521*33385282^(5/9) 3178121713558422 a001 10946/521*12752043^(10/17) 3178121713558494 a001 10946/521*4870847^(5/8) 3178121713559022 a001 10946/521*1860498^(2/3) 3178121713562905 a001 10946/521*710647^(5/7) 3178121713591590 a001 10946/521*271443^(10/13) 3178121713804777 a001 10946/521*103682^(5/6) 3178121713808932 a001 3524578/521*15127^(2/5) 3178121714503187 a001 2178309/521*15127^(9/20) 3178121715198112 a001 1346269/521*15127^(1/2) 3178121715400546 a001 10946/521*39603^(10/11) 3178121715891284 a001 832040/521*15127^(11/20) 3178121716589046 a001 514229/521*15127^(3/5) 3178121717274789 a001 317811/521*15127^(13/20) 3178121717991998 a001 196418/521*15127^(7/10) 3178121718626830 a001 233*15127^(3/4) 3178121718830613 a001 63245986/521*5778^(1/9) 3178121719421375 a001 17711/521*15127^(19/20) 3178121719477328 a001 75025/521*15127^(4/5) 3178121719763203 a001 46368/521*15127^(17/20) 3178121721527281 a001 28657/521*15127^(9/10) 3178121722099039 a001 429999869/1353 3178121724119240 a001 39088169/521*5778^(1/6) 3178121727964745 r005 Re(z^2+c),c=-69/122+17/48*I,n=14 3178121729407869 a001 24157817/521*5778^(2/9) 3178121734696492 a001 14930352/521*5778^(5/18) 3178121739985130 a001 9227465/521*5778^(1/3) 3178121743874380 a001 4181/521*64079^(22/23) 3178121744571592 a001 233/9349*45537549124^(2/3) 3178121744571592 a001 233/9349*(1/2+1/2*5^(1/2))^34 3178121744571592 a001 233/9349*10749957122^(17/24) 3178121744571592 a001 233/9349*4106118243^(17/23) 3178121744571592 a001 233/9349*1568397607^(17/22) 3178121744571592 a001 233/9349*599074578^(17/21) 3178121744571592 a001 233/9349*228826127^(17/20) 3178121744571592 a001 233/9349*87403803^(17/19) 3178121744571595 a001 233/9349*33385282^(17/18) 3178121744614691 a001 4181/521*7881196^(2/3) 3178121744614725 a001 4181/521*312119004989^(2/5) 3178121744614725 a001 4181/521*(1/2+1/2*5^(1/2))^22 3178121744614725 a001 4181/521*10749957122^(11/24) 3178121744614725 a001 4181/521*4106118243^(11/23) 3178121744614725 a001 4181/521*1568397607^(1/2) 3178121744614725 a001 4181/521*599074578^(11/21) 3178121744614725 a001 4181/521*228826127^(11/20) 3178121744614725 a001 4181/521*87403803^(11/19) 3178121744614727 a001 4181/521*33385282^(11/18) 3178121744614737 a001 4181/521*12752043^(11/17) 3178121744614817 a001 4181/521*4870847^(11/16) 3178121744615398 a001 4181/521*1860498^(11/15) 3178121744619669 a001 4181/521*710647^(11/14) 3178121744651222 a001 4181/521*271443^(11/13) 3178121744779312 k003 Champernowne real with 11/3*n^3+3*n^2-62/3*n+17 3178121744885729 a001 4181/521*103682^(11/12) 3178121745273730 a001 5702887/521*5778^(7/18) 3178121749033245 a001 102334155/521*2207^(1/16) 3178121750213407 m005 (4/5*Pi-5/6)/(1/3*2^(1/2)-1) 3178121750562428 a001 3524578/521*5778^(4/9) 3178121754961959 r002 5th iterates of z^2 + 3178121755850871 a001 2178309/521*5778^(1/2) 3178121761139983 a001 1346269/521*5778^(5/9) 3178121766427341 a001 832040/521*5778^(11/18) 3178121771719291 a001 514229/521*5778^(2/3) 3178121776999221 a001 317811/521*5778^(13/18) 3178121777811855 m001 1/ln(BesselK(0,1))^2*OneNinth/GAMMA(5/12)^2 3178121777948349 m001 1/GAMMA(11/24)*exp(TwinPrimes)^2*GAMMA(13/24) 3178121782310617 a001 196418/521*5778^(7/9) 3178121783294583 m001 (3^(1/2)-gamma)/(GAMMA(2/3)+BesselI(0,2)) 3178121787539636 a001 233*5778^(5/6) 3178121788161139 r009 Re(z^3+c),c=-14/31+19/56*I,n=14 3178121788308418 r005 Re(z^2+c),c=-13/36+20/51*I,n=32 3178121789813132 a001 63245986/521*2207^(1/8) 3178121792984321 a001 75025/521*5778^(8/9) 3178121797864384 a001 46368/521*5778^(17/18) 3178121799761735 p004 log(14713/613) 3178121800253174 b008 3+Sqrt[2]*ProductLog[1/7] 3178121803405572 a001 410613337/1292 3178121814112661 k007 concat of cont frac of 3178121815510382 r005 Im(z^2+c),c=-13/86+26/41*I,n=53 3178121819624377 a005 (1/cos(3/197*Pi))^1010 3178121823907790 a007 Real Root Of -265*x^4-874*x^3+164*x^2+832*x-33 3178121830593019 a001 39088169/521*2207^(3/16) 3178121836531135 r005 Im(z^2+c),c=-39/34+23/93*I,n=38 3178121840486161 m001 KhintchineLevy^2*ln(Cahen)^2*Magata^2 3178121845180312 k003 Champernowne real with 23/6*n^3+2*n^2-113/6*n+16 3178121853187970 a007 Real Root Of -657*x^4+132*x^3-322*x^2-99*x+12 3178121855367779 a007 Real Root Of -59*x^4+984*x^3+433*x^2+841*x-342 3178121855829133 r005 Im(z^2+c),c=1/22+13/37*I,n=34 3178121865443166 r005 Im(z^2+c),c=-113/98+13/53*I,n=32 3178121871372908 a001 24157817/521*2207^(1/4) 3178121878758711 r009 Im(z^3+c),c=-47/86+7/22*I,n=31 3178121893633041 a007 Real Root Of -443*x^4-609*x^3+361*x^2+820*x-273 3178121895093365 r009 Im(z^3+c),c=-15/34+11/52*I,n=28 3178121896605849 r005 Im(z^2+c),c=-11/90+7/16*I,n=17 3178121905477382 m001 Robbin/LaplaceLimit/Pi 3178121912152793 a001 14930352/521*2207^(5/16) 3178121914012625 l006 ln(4536/6233) 3178121914728666 r005 Re(z^2+c),c=29/86+15/26*I,n=9 3178121920937775 a007 Real Root Of -853*x^4+269*x^3+416*x^2+987*x+289 3178121925675734 a001 31622993/682*322^(1/3) 3178121928059645 s002 sum(A154285[n]/(n^2*2^n+1),n=1..infinity) 3178121941896587 m005 (1/3*Zeta(3)+1/10)/(6*exp(1)-5/9) 3178121943383844 a007 Real Root Of -221*x^4-278*x^3+310*x^2+667*x+174 3178121945581313 k003 Champernowne real with 4*n^3+n^2-17*n+15 3178121952932693 a001 9227465/521*2207^(3/8) 3178121954188139 b008 -1/4+E^ArcSinh[16] 3178121954858536 r005 Re(z^2+c),c=-2/23+34/39*I,n=12 3178121957415361 m001 (GAMMA(7/24)+2)/(-GAMMA(11/24)+1/3) 3178121957434758 a001 233/3571*(1/2+1/2*5^(1/2))^32 3178121957434758 a001 233/3571*23725150497407^(1/2) 3178121957434758 a001 233/3571*505019158607^(4/7) 3178121957434758 a001 233/3571*73681302247^(8/13) 3178121957434758 a001 233/3571*10749957122^(2/3) 3178121957434758 a001 233/3571*4106118243^(16/23) 3178121957434758 a001 233/3571*1568397607^(8/11) 3178121957434758 a001 233/3571*599074578^(16/21) 3178121957434758 a001 233/3571*228826127^(4/5) 3178121957434758 a001 233/3571*87403803^(16/19) 3178121957434760 a001 233/3571*33385282^(8/9) 3178121957434776 a001 233/3571*12752043^(16/17) 3178121957463227 a001 1597/521*439204^(8/9) 3178121957477834 a001 1597/521*7881196^(8/11) 3178121957477871 a001 1597/521*141422324^(8/13) 3178121957477872 a001 1597/521*2537720636^(8/15) 3178121957477872 a001 1597/521*45537549124^(8/17) 3178121957477872 a001 1597/521*14662949395604^(8/21) 3178121957477872 a001 1597/521*(1/2+1/2*5^(1/2))^24 3178121957477872 a001 1597/521*192900153618^(4/9) 3178121957477872 a001 1597/521*73681302247^(6/13) 3178121957477872 a001 1597/521*10749957122^(1/2) 3178121957477872 a001 1597/521*4106118243^(12/23) 3178121957477872 a001 1597/521*1568397607^(6/11) 3178121957477872 a001 1597/521*599074578^(4/7) 3178121957477872 a001 1597/521*228826127^(3/5) 3178121957477872 a001 1597/521*87403803^(12/19) 3178121957477873 a001 1597/521*33385282^(2/3) 3178121957477885 a001 1597/521*12752043^(12/17) 3178121957477972 a001 1597/521*4870847^(3/4) 3178121957478606 a001 1597/521*1860498^(4/5) 3178121957483266 a001 1597/521*710647^(6/7) 3178121957517687 a001 1597/521*271443^(12/13) 3178121960553957 a001 4/2178309*34^(7/45) 3178121966985596 r009 Re(z^3+c),c=-17/36+25/63*I,n=35 3178121977578608 b008 Pi*(1+ArcCsch[86]) 3178121980839215 a007 Real Root Of -702*x^4+188*x^3-672*x^2+563*x+260 3178121991389855 r005 Im(z^2+c),c=-9/38+37/63*I,n=28 3178121993712555 a001 5702887/521*2207^(7/16) 3178121999012210 m001 (sin(1/5*Pi)-ln(5))/(MadelungNaCl+Porter) 3178122002794435 r005 Re(z^2+c),c=-11/27+8/45*I,n=16 3178122016033562 r005 Im(z^2+c),c=-15/26+6/103*I,n=32 3178122027166901 a007 Real Root Of 291*x^4+658*x^3-882*x^2-214*x-337 3178122027692609 a001 102334155/521*843^(1/14) 3178122028391621 r005 Im(z^2+c),c=4/29+5/17*I,n=13 3178122034492516 a001 3524578/521*2207^(1/2) 3178122035173080 m001 1/ln(FransenRobinson)*Artin^2*GAMMA(1/24) 3178122045982313 k003 Champernowne real with 25/6*n^3-91/6*n+14 3178122046660459 a001 3571/46368*2178309^(13/51) 3178122050776988 m001 Porter*(FeigenbaumAlpha-FeigenbaumDelta) 3178122057547083 r005 Re(z^2+c),c=21/118+2/7*I,n=4 3178122066770691 r009 Re(z^3+c),c=-3/7+20/61*I,n=20 3178122074382213 r005 Im(z^2+c),c=-4/29+31/51*I,n=15 3178122075272221 a001 2178309/521*2207^(9/16) 3178122100665677 a007 Real Root Of 28*x^4+905*x^3+498*x^2+540*x-295 3178122108720927 m006 (1/3/Pi+5)/(3*exp(2*Pi)+1/6) 3178122112611111 k009 concat of cont frac of 3178122116052597 a001 1346269/521*2207^(5/8) 3178122119356968 a001 63245986/2207*322^(5/12) 3178122121122211 k009 concat of cont frac of 3178122132712131 k007 concat of cont frac of 3178122133983264 r005 Im(z^2+c),c=-69/106+2/7*I,n=13 3178122146383313 k003 Champernowne real with 13/3*n^3-n^2-40/3*n+13 3178122148476813 m001 exp(Zeta(7))/GAMMA(7/12)*sqrt(Pi) 3178122150700144 m001 (Lehmer+ZetaP(3))/(GaussKuzminWirsing-exp(1)) 3178122152992464 a001 29/196418*34^(47/54) 3178122156831220 a001 832040/521*2207^(11/16) 3178122159306966 s002 sum(A114865[n]/(n^3*2^n-1),n=1..infinity) 3178122185087263 h001 (7/10*exp(2)+3/10)/(3/5*exp(1)+1/11) 3178122188112947 a001 341/36*4807526976^(6/23) 3178122188660668 m005 (5/12+1/6*5^(1/2))/(10/11*3^(1/2)+10/11) 3178122189579200 a007 Real Root Of 238*x^4+602*x^3-718*x^2-556*x+529 3178122190404039 r005 Im(z^2+c),c=-15/52+26/51*I,n=43 3178122197614434 a001 514229/521*2207^(3/4) 3178122198481497 r009 Re(z^3+c),c=-33/86+10/39*I,n=20 3178122208212396 b008 LogGamma[5+E^(-10)] 3178122208766908 m001 (LandauRamanujan2nd-Rabbit)/(Pi+ln(2^(1/2)+1)) 3178122208880000 r005 Re(z^2+c),c=-33/98+39/61*I,n=37 3178122209593951 m001 1/GAMMA(23/24)*LaplaceLimit/ln(GAMMA(3/4)) 3178122209978929 r005 Re(z^2+c),c=-3/56+21/31*I,n=4 3178122211121312 k008 concat of cont frac of 3178122214419411 k006 concat of cont frac of 3178122230306204 g006 Psi(1,5/12)+Psi(1,2/11)-Psi(1,7/9)-Psi(1,5/9) 3178122231566053 m004 2+2/(5*ProductLog[Sqrt[5]*Pi])+Tan[Sqrt[5]*Pi] 3178122233711112 k006 concat of cont frac of 3178122234102805 r005 Im(z^2+c),c=-1/20+21/52*I,n=12 3178122238385630 a001 317811/521*2207^(13/16) 3178122246784313 k003 Champernowne real with 9/2*n^3-2*n^2-23/2*n+12 3178122251758772 r005 Im(z^2+c),c=-29/78+26/51*I,n=32 3178122259271138 a001 9349/121393*2178309^(13/51) 3178122266344684 a007 Real Root Of 659*x^4-454*x^3+638*x^2-520*x-251 3178122268719191 m001 (ln(5)+Zeta(1/2))/(Kolakoski-RenyiParking) 3178122273324674 r005 Im(z^2+c),c=35/122+7/39*I,n=6 3178122275583735 m001 (AlladiGrinstead+Kac)/(5^(1/2)+BesselI(0,2)) 3178122279188292 a001 196418/521*2207^(7/8) 3178122281842052 m001 (5^(1/2))^(Si(Pi)*StronglyCareFree) 3178122282560230 r009 Re(z^3+c),c=-1/25+10/31*I,n=5 3178122282685898 m001 1/Catalan^2/GaussAGM(1,1/sqrt(2))/exp(Ei(1))^2 3178122290290618 a001 844/10959*2178309^(13/51) 3178122290700701 r005 Im(z^2+c),c=-19/14+5/228*I,n=30 3178122297613324 a001 39603/514229*2178309^(13/51) 3178122300613913 r005 Re(z^2+c),c=-7/20+26/61*I,n=15 3178122304273836 l006 ln(4111/5649) 3178122305986819 h001 (6/7*exp(2)+1/9)/(7/10*exp(1)+1/8) 3178122308030861 r009 Im(z^3+c),c=-25/66+3/13*I,n=2 3178122309461711 a001 15127/196418*2178309^(13/51) 3178122311222126 k006 concat of cont frac of 3178122319186442 r005 Im(z^2+c),c=9/98+19/59*I,n=5 3178122319908577 a001 233*2207^(15/16) 3178122332399455 m005 (1/2*Catalan-1/6)/(6/7*5^(1/2)-1) 3178122333955090 b008 8/219+Pi 3178122341735702 m001 FeigenbaumC/LandauRamanujan^2/exp(GAMMA(1/12)) 3178122341910735 r005 Im(z^2+c),c=1/22+13/37*I,n=30 3178122346518226 a007 Real Root Of 280*x^4+763*x^3-450*x^2-362*x-678 3178122346911378 a007 Real Root Of 20*x^4+606*x^3-962*x^2-626*x+809 3178122347131892 a001 63245986/521*843^(1/7) 3178122347185313 k003 Champernowne real with 14/3*n^3-3*n^2-29/3*n+11 3178122351280606 r009 Im(z^3+c),c=-25/44+11/35*I,n=51 3178122360196289 m001 (-Conway+FeigenbaumKappa)/(Ei(1,1)-Si(Pi)) 3178122360688956 a001 313680677/987 3178122367224598 m008 (3/5*Pi^3-1/6)/(2*Pi^3-4) 3178122373500283 h001 (6/7*exp(1)+6/7)/(1/9*exp(2)+2/11) 3178122374056350 a007 Real Root Of -476*x^4+461*x^3-779*x^2+666*x+310 3178122383297906 p001 sum(1/(417*n+319)/(32^n),n=0..infinity) 3178122390671764 a001 5778/75025*2178309^(13/51) 3178122391860222 r005 Re(z^2+c),c=-2/3+55/169*I,n=11 3178122414211424 k008 concat of cont frac of 3178122414473795 r005 Im(z^2+c),c=-35/106+19/35*I,n=40 3178122438411442 r005 Re(z^2+c),c=33/118+31/50*I,n=12 3178122440482920 r009 Re(z^3+c),c=-17/56+7/57*I,n=2 3178122446105126 m001 (Mills-ZetaQ(4))/(CopelandErdos-MasserGramain) 3178122447586314 k003 Champernowne real with 29/6*n^3-4*n^2-47/6*n+10 3178122453306827 a001 75025/3*843^(20/53) 3178122470761464 r005 Re(z^2+c),c=7/26+1/12*I,n=22 3178122476318843 m001 (MertensB2+Trott)/(sin(1/5*Pi)-sin(1/12*Pi)) 3178122480027407 a007 Real Root Of 243*x^4+413*x^3-869*x^2+645*x-706 3178122491848282 a007 Real Root Of 523*x^4-630*x^3-502*x^2-618*x+262 3178122495431814 r005 Re(z^2+c),c=-10/27+9/25*I,n=46 3178122500944136 a001 1322157322203*144^(3/17) 3178122501970729 r002 14th iterates of z^2 + 3178122511133664 k007 concat of cont frac of 3178122512560391 a007 Real Root Of -373*x^4+727*x^3-112*x^2+758*x-24 3178122521151437 m008 (1/5*Pi^5+1)/(2*Pi^2-1/6) 3178122532627594 r005 Re(z^2+c),c=-5/12+1/13*I,n=19 3178122542627880 b008 1/5+ArcSinh[49/5] 3178122545856571 m001 (-Stephens+Thue)/(KhinchinLevy-Psi(1,1/3)) 3178122547987314 k003 Champernowne real with 5*n^3-5*n^2-6*n+9 3178122554626382 a001 610/3*5778^(45/53) 3178122561840614 r005 Im(z^2+c),c=-57/94+23/58*I,n=29 3178122581363644 a007 Real Root Of -205*x^4-513*x^3+166*x^2-762*x+348 3178122584063681 r005 Im(z^2+c),c=-45/64+11/54*I,n=12 3178122596969281 r005 Re(z^2+c),c=-9/22+5/31*I,n=26 3178122604130576 r005 Re(z^2+c),c=-11/34+32/61*I,n=38 3178122631881652 m005 (1/3*Pi-2/9)/(9/10*5^(1/2)+7/12) 3178122642125072 a003 cos(Pi*24/119)*cos(Pi*23/62) 3178122647837702 s002 sum(A207504[n]/(pi^n),n=1..infinity) 3178122648388314 k003 Champernowne real with 31/6*n^3-6*n^2-25/6*n+8 3178122650359545 m001 GAMMA(11/24)^2*GAMMA(1/4)^2*ln(sqrt(5))^2 3178122651026907 m005 (1/2*Pi+7/8)/(-115/132+1/22*5^(1/2)) 3178122666571206 a001 39088169/521*843^(3/14) 3178122667198701 r009 Re(z^3+c),c=-41/102+37/64*I,n=28 3178122669241006 r009 Re(z^3+c),c=-17/86+53/55*I,n=64 3178122674771213 r005 Im(z^2+c),c=3/16+9/35*I,n=14 3178122676639977 a001 165580141/5778*322^(5/12) 3178122681749433 r005 Re(z^2+c),c=-7/18+15/53*I,n=21 3178122682924895 a001 47/2584*1346269^(15/41) 3178122687844493 m001 (CareFree-ZetaQ(4))/(ln(5)+BesselK(1,1)) 3178122690317812 q001 43/1353 3178122690317812 r002 2th iterates of z^2 + 3178122690317812 r005 Im(z^2+c),c=-21/22+43/123*I,n=2 3178122712580545 r005 Im(z^2+c),c=-5/17+24/47*I,n=62 3178122715172450 m001 ln(Zeta(5))^2*Riemann3rdZero^2/sin(Pi/12) 3178122719740820 a007 Real Root Of 206*x^4+642*x^3+228*x^2+934*x+258 3178122719748305 r005 Im(z^2+c),c=15/52+7/44*I,n=36 3178122726175429 m001 1/ln(GAMMA(1/12))/Trott*sin(1) 3178122729332147 m001 (5^(1/2)-BesselJ(1,1))/(-Stephens+Trott) 3178122733674873 r002 56th iterates of z^2 + 3178122744156489 m002 Pi^3+(18*Tanh[Pi])/E^Pi 3178122748789314 k003 Champernowne real with 16/3*n^3-7*n^2-7/3*n+7 3178122749833035 r005 Re(z^2+c),c=-79/82+1/14*I,n=16 3178122757399735 r005 Im(z^2+c),c=3/10+7/52*I,n=11 3178122757946488 a001 433494437/15127*322^(5/12) 3178122758682100 a007 Real Root Of -223*x^4+54*x^3-849*x^2+632*x-2 3178122769517171 a007 Real Root Of 528*x^4-826*x^3-55*x^2-989*x+341 3178122769808949 a001 1134903170/39603*322^(5/12) 3178122771539658 a001 2971215073/103682*322^(5/12) 3178122771792165 a001 7778742049/271443*322^(5/12) 3178122771829006 a001 20365011074/710647*322^(5/12) 3178122771834381 a001 53316291173/1860498*322^(5/12) 3178122771835165 a001 139583862445/4870847*322^(5/12) 3178122771835279 a001 365435296162/12752043*322^(5/12) 3178122771835296 a001 956722026041/33385282*322^(5/12) 3178122771835298 a001 2504730781961/87403803*322^(5/12) 3178122771835299 a001 6557470319842/228826127*322^(5/12) 3178122771835299 a001 10610209857723/370248451*322^(5/12) 3178122771835299 a001 4052739537881/141422324*322^(5/12) 3178122771835300 a001 1548008755920/54018521*322^(5/12) 3178122771835306 a001 591286729879/20633239*322^(5/12) 3178122771835350 a001 225851433717/7881196*322^(5/12) 3178122771835649 a001 86267571272/3010349*322^(5/12) 3178122771837702 a001 32951280099/1149851*322^(5/12) 3178122771851774 a001 12586269025/439204*322^(5/12) 3178122771948223 a001 4807526976/167761*322^(5/12) 3178122772609296 a001 28657*322^(5/12) 3178122775809039 a007 Real Root Of 911*x^4-428*x^3+944*x^2-540*x-290 3178122777140352 a001 701408733/24476*322^(5/12) 3178122778808937 m002 1+(6*Log[Pi]*Tanh[Pi])/Pi 3178122784530151 l006 ln(3686/5065) 3178122792918963 a001 167761*6557470319842^(7/17) 3178122793032022 a001 4870847*1836311903^(7/17) 3178122793032877 a001 141422324*514229^(7/17) 3178122808196678 a001 267914296/9349*322^(5/12) 3178122844621504 m001 GAMMA(1/24)^2*ln(HardHexagonsEntropy)/gamma 3178122849190314 k003 Champernowne real with 11/2*n^3-8*n^2-1/2*n+6 3178122851236195 m001 (ErdosBorwein-Gompertz)/(Totient+Tribonacci) 3178122864940986 r005 Re(z^2+c),c=-13/30+4/61*I,n=6 3178122884771747 a005 (1/cos(7/152*Pi))^1864 3178122885913509 m001 BesselI(1,1)/(Thue-Zeta(5)) 3178122900777293 m001 (Si(Pi)+Cahen)/(Champernowne+Robbin) 3178122909017908 p001 sum((-1)^n/(291*n+31)/(6^n),n=0..infinity) 3178122912135134 k009 concat of cont frac of 3178122915495137 r009 Im(z^3+c),c=-55/118+2/9*I,n=9 3178122921363480 r005 Re(z^2+c),c=-77/82+7/43*I,n=46 3178122941285678 m001 (FeigenbaumDelta-Landau)/(GAMMA(3/4)-gamma(1)) 3178122941449646 r005 Im(z^2+c),c=13/64+11/45*I,n=22 3178122942177040 a007 Real Root Of 29*x^4+918*x^3-132*x^2-513*x-326 3178122947293748 a001 2207/28657*2178309^(13/51) 3178122949591315 k003 Champernowne real with 17/3*n^3-9*n^2+4/3*n+5 3178122976475531 a007 Real Root Of 120*x^4+288*x^3-5*x^2+993*x+209 3178122985063157 m001 Grothendieck^Otter*Stephens 3178122986010555 a001 24157817/521*843^(2/7) 3178122987812021 a007 Real Root Of -310*x^4+883*x^3-113*x^2+973*x-323 3178122999330717 r002 5th iterates of z^2 + 3178123008267159 m001 (Ei(1)+HardyLittlewoodC3)/(Kolakoski+ZetaQ(4)) 3178123011117250 r009 Re(z^3+c),c=-9/26+9/47*I,n=12 3178123021059915 a001 102334155/3571*322^(5/12) 3178123021471526 a007 Real Root Of 787*x^4+408*x^3-147*x^2-843*x-248 3178123026019160 p004 log(33703/24527) 3178123043840335 a003 cos(Pi*32/81)*sin(Pi*18/41) 3178123049992315 k003 Champernowne real with 35/6*n^3-10*n^2+19/6*n+4 3178123068729609 l006 ln(6947/9546) 3178123070333891 r002 23th iterates of z^2 + 3178123075437371 a007 Real Root Of -83*x^4-476*x^3-902*x^2-979*x-813 3178123077090809 s002 sum(A261567[n]/(n*exp(n)-1),n=1..infinity) 3178123082265180 r005 Im(z^2+c),c=19/60+5/49*I,n=4 3178123095803482 m001 sinh(1)^gamma(2)/Pi 3178123101901715 r005 Re(z^2+c),c=7/86+23/64*I,n=25 3178123114665980 m009 (4/5*Psi(1,3/4)+1/2)/(3/4*Psi(1,1/3)+2/5) 3178123119227112 k007 concat of cont frac of 3178123123671883 r005 Re(z^2+c),c=17/98+17/35*I,n=23 3178123130151771 k007 concat of cont frac of 3178123141964211 k008 concat of cont frac of 3178123142877437 a001 682/17*987^(26/41) 3178123143161011 k006 concat of cont frac of 3178123150393315 k003 Champernowne real with 6*n^3-11*n^2+5*n+3 3178123151483111 k007 concat of cont frac of 3178123181352819 m001 GAMMA(5/6)/(ZetaQ(3)^CareFree) 3178123186757036 a007 Real Root Of 113*x^4+260*x^3-234*x^2+368*x+351 3178123196058700 r005 Im(z^2+c),c=-5/21+20/41*I,n=48 3178123197733448 m001 (-Thue+ZetaQ(4))/(3^(1/2)+cos(1/12*Pi)) 3178123199782300 m001 1/Sierpinski/ln(Kolakoski)^3 3178123208971769 a007 Real Root Of 22*x^4+685*x^3-471*x^2-629*x+328 3178123215069869 a001 4/161*9349^(26/49) 3178123226403225 m001 OrthogonalArrays/(3^(1/2)+Khinchin) 3178123231368693 m001 (ArtinRank2+Bloch)/(Otter+Sarnak) 3178123238628443 p001 sum((-1)^n/(407*n+304)/(12^n),n=0..infinity) 3178123239278340 a001 2889/305*6765^(7/51) 3178123241832397 h001 (-3*exp(1)+5)/(-4*exp(3/2)+8) 3178123243046922 m002 Pi^3/3-Sinh[Pi]^2/Pi^2 3178123247382094 a007 Real Root Of -56*x^4-126*x^3+391*x^2+948*x+732 3178123249394180 h001 (-exp(-2)+8)/(-8*exp(1)-3) 3178123250794315 k003 Champernowne real with 37/6*n^3-12*n^2+41/6*n+2 3178123252776908 r002 10th iterates of z^2 + 3178123259033680 a007 Real Root Of 970*x^4-297*x^3-22*x^2-808*x-274 3178123272076679 r002 3th iterates of z^2 + 3178123274777845 a007 Real Root Of -81*x^4+577*x^3+993*x^2+966*x-425 3178123278399671 a007 Real Root Of 567*x^4+595*x^3+917*x^2-213*x-147 3178123283031367 a001 47/28657*591286729879^(13/21) 3178123295945230 r005 Im(z^2+c),c=-23/18+5/199*I,n=57 3178123300121632 r005 Im(z^2+c),c=15/64+9/35*I,n=6 3178123301780512 r005 Im(z^2+c),c=7/46+17/60*I,n=15 3178123305449930 a001 14930352/521*843^(5/14) 3178123312453941 m005 (1/3*3^(1/2)-1/12)/(2/7*exp(1)+7/9) 3178123315650322 r005 Im(z^2+c),c=41/122+2/19*I,n=59 3178123316198292 r005 Im(z^2+c),c=1/22+13/37*I,n=31 3178123316276844 m001 (gamma(2)+Kolakoski)/(LandauRamanujan+Niven) 3178123316504463 r005 Im(z^2+c),c=-129/106+2/27*I,n=12 3178123328176362 r005 Re(z^2+c),c=-7/48+17/28*I,n=23 3178123349105143 r005 Im(z^2+c),c=-19/94+7/15*I,n=18 3178123351195315 k003 Champernowne real with 19/3*n^3-13*n^2+26/3*n+1 3178123369313472 a007 Real Root Of 200*x^4+309*x^3-833*x^2+652*x+1 3178123375066096 m001 (BesselI(0,1)-Zeta(3))/(Tribonacci+ZetaP(3)) 3178123376356859 r005 Im(z^2+c),c=-5/56+13/29*I,n=9 3178123379346815 r005 Re(z^2+c),c=-93/70+1/38*I,n=16 3178123384356328 m001 (FransenRobinson+Thue)/(Psi(1,1/3)+3^(1/3)) 3178123389968238 l006 ln(3261/4481) 3178123390177248 a007 Real Root Of -658*x^4-341*x^3-676*x^2+862*x+338 3178123391800667 m001 (BesselJ(1,1)-Shi(1))/(Porter+Weierstrass) 3178123393057011 r005 Im(z^2+c),c=-31/94+31/58*I,n=40 3178123393987281 m001 1/exp(sin(Pi/5))*cos(Pi/5)/sqrt(2) 3178123402286802 a007 Real Root Of -155*x^4-350*x^3+774*x^2+707*x-993 3178123403022383 r002 25th iterates of z^2 + 3178123408426457 a001 9227465/843*322^(7/12) 3178123413720387 m005 (1/2*3^(1/2)+7/8)/(-5/72+1/18*5^(1/2)) 3178123416421322 a001 233/1364*7881196^(10/11) 3178123416421362 a001 233/1364*20633239^(6/7) 3178123416421369 a001 233/1364*141422324^(10/13) 3178123416421369 a001 233/1364*2537720636^(2/3) 3178123416421369 a001 233/1364*45537549124^(10/17) 3178123416421369 a001 233/1364*312119004989^(6/11) 3178123416421369 a001 233/1364*14662949395604^(10/21) 3178123416421369 a001 233/1364*(1/2+1/2*5^(1/2))^30 3178123416421369 a001 233/1364*192900153618^(5/9) 3178123416421369 a001 233/1364*28143753123^(3/5) 3178123416421369 a001 233/1364*10749957122^(5/8) 3178123416421369 a001 233/1364*4106118243^(15/23) 3178123416421369 a001 233/1364*1568397607^(15/22) 3178123416421369 a001 233/1364*599074578^(5/7) 3178123416421369 a001 233/1364*228826127^(3/4) 3178123416421369 a001 233/1364*87403803^(15/19) 3178123416421371 a001 233/1364*33385282^(5/6) 3178123416421386 a001 233/1364*12752043^(15/17) 3178123416421494 a001 233/1364*4870847^(15/16) 3178123416463584 a001 610/521*141422324^(2/3) 3178123416463584 a001 610/521*(1/2+1/2*5^(1/2))^26 3178123416463584 a001 610/521*73681302247^(1/2) 3178123416463584 a001 610/521*10749957122^(13/24) 3178123416463584 a001 610/521*4106118243^(13/23) 3178123416463584 a001 610/521*1568397607^(13/22) 3178123416463584 a001 610/521*599074578^(13/21) 3178123416463584 a001 610/521*228826127^(13/20) 3178123416463584 a001 610/521*87403803^(13/19) 3178123416463586 a001 610/521*33385282^(13/18) 3178123416463599 a001 610/521*12752043^(13/17) 3178123416463693 a001 610/521*4870847^(13/16) 3178123416464380 a001 610/521*1860498^(13/15) 3178123416469428 a001 610/521*710647^(13/14) 3178123432439092 a007 Real Root Of 311*x^4+702*x^3-734*x^2+515*x-143 3178123434616960 h001 (-4*exp(1)+7)/(-3*exp(1/3)-8) 3178123451596316 k003 Champernowne real with 13/2*n^3-14*n^2+21/2*n 3178123461124295 r005 Im(z^2+c),c=-5/54+14/31*I,n=9 3178123496007276 a001 9349/21*987^(13/21) 3178123499006399 r009 Im(z^3+c),c=-17/78+19/59*I,n=9 3178123504216340 h001 (-2*exp(8)-6)/(-2*exp(2)-4) 3178123526512139 k009 concat of cont frac of 3178123535399198 a001 521/75025*832040^(37/47) 3178123537011023 m001 Pi*(Psi(1,1/3)-GAMMA(2/3)+exp(1/Pi)) 3178123544930501 m001 (Rabbit+Sierpinski)/(gamma(3)+MertensB2) 3178123549222091 a001 7/3*832040^(9/17) 3178123551997316 k003 Champernowne real with 20/3*n^3-15*n^2+37/3*n-1 3178123552333580 a007 Real Root Of 30*x^4-308*x^3+581*x^2+219*x+262 3178123554544564 m001 (MertensB2+Otter)/(Gompertz-Si(Pi)) 3178123567120167 m001 (KhinchinLevy-Lehmer)/(GAMMA(3/4)+Cahen) 3178123587514431 m005 (1/2*gamma+4/9)/(-39/14+3/14*5^(1/2)) 3178123590973061 r009 Re(z^3+c),c=-25/54+8/21*I,n=34 3178123623970681 b008 Pi*(1+ArcCsc[86]) 3178123624889351 a001 9227465/521*843^(3/7) 3178123630691742 r005 Re(z^2+c),c=9/29+27/53*I,n=57 3178123636863657 m001 (Rabbit-TwinPrimes)/(ln(gamma)+BesselI(1,1)) 3178123652147291 m002 -6/Pi+Pi^3+Pi^3*Csch[Pi] 3178123652398316 k003 Champernowne real with 41/6*n^3-16*n^2+85/6*n-2 3178123657128766 a007 Real Root Of 66*x^4-151*x^3-906*x^2+766*x+5 3178123659008189 p003 LerchPhi(1/25,1,34/107) 3178123662713467 m008 (3*Pi^4+1/5)/(1/5*Pi^3+3) 3178123670379182 r002 21th iterates of z^2 + 3178123671240959 a001 843/55*9227465^(10/21) 3178123676754645 m001 MasserGramainDelta^polylog(4,1/2)-MertensB3 3178123691610445 r005 Re(z^2+c),c=8/25+16/45*I,n=28 3178123699915690 m001 (Si(Pi)+GlaisherKinkelin)/(3^(1/2)-exp(1)) 3178123711111481 k006 concat of cont frac of 3178123726766841 m001 Zeta(5)/exp(KhintchineLevy)*Zeta(9)^2 3178123745450284 p001 sum(1/(407*n+327)/(12^n),n=0..infinity) 3178123749871484 r005 Im(z^2+c),c=-7/23+32/63*I,n=33 3178123752799316 k003 Champernowne real with 7*n^3-17*n^2+16*n-3 3178123755991640 l006 ln(6097/8378) 3178123791593995 m001 ln(TwinPrimes)^2/Bloch/GAMMA(1/12) 3178123796988467 m001 1/ln(Khintchine)^2*ErdosBorwein^2/FeigenbaumB 3178123800282063 m001 (-GAMMA(11/12)+MasserGramain)/(1-GAMMA(5/6)) 3178123813890825 m001 GAMMA(2/3)*MasserGramainDelta+Rabbit 3178123845691588 r009 Re(z^3+c),c=-51/118+1/3*I,n=31 3178123850014139 m008 (1/4*Pi^3-1/4)/(3/5*Pi^3+5) 3178123853110031 k003 Champernowne real with 43/6*n^3-18*n^2+107/6*n-4 3178123857128839 m001 1/exp(Zeta(1,2))*GAMMA(11/24)^2/sqrt(3)^2 3178123864354424 m002 Pi^5+Cosh[Pi]+Coth[Pi]/5 3178123870934893 r005 Re(z^2+c),c=-8/21+7/22*I,n=33 3178123877853913 a001 20633239/233*6557470319842^(14/17) 3178123877853921 a001 17393796001/233*1836311903^(14/17) 3178123877855900 a001 14662949395604/233*514229^(14/17) 3178123888643659 m001 1/ln(BesselK(1,1))^2*FeigenbaumD^2/Zeta(1,2)^2 3178123891048751 a001 6119/36*75025^(6/23) 3178123896225524 m009 (6*Catalan+3/4*Pi^2+2/3)/(1/2*Pi^2-2/3) 3178123898130073 r009 Re(z^3+c),c=-7/16+17/50*I,n=20 3178123901408164 m001 GolombDickman/(ln(gamma)^exp(1)) 3178123901408164 m001 GolombDickman/(log(gamma)^exp(1)) 3178123909595510 m002 Pi^3+(ProductLog[Pi]*Sinh[Pi])/16 3178123916024669 r005 Re(z^2+c),c=-19/46+23/49*I,n=18 3178123917837751 a007 Real Root Of -286*x^4-961*x^3+116*x^2+992*x+310 3178123926662391 m001 GAMMA(1/6)/CopelandErdos^2*exp(gamma)^2 3178123933598172 m005 (1/2*Zeta(3)-1/7)/(3/5*5^(1/2)+1/10) 3178123937562369 m001 Psi(1,1/3)^(Ei(1,1)*BesselI(0,2)) 3178123939866390 r001 19i'th iterates of 2*x^2-1 of 3178123944328767 a001 5702887/521*843^(1/2) 3178123948986321 r005 Re(z^2+c),c=-45/106+1/11*I,n=6 3178123949829328 r005 Re(z^2+c),c=-43/94+9/34*I,n=7 3178123951000841 m001 Catalan^2*ln(Sierpinski)^2/cosh(1)^2 3178123953510131 k003 Champernowne real with 22/3*n^3-19*n^2+59/3*n-5 3178123956051125 a007 Real Root Of -186*x^4-179*x^3+152*x^2+932*x+277 3178123971897601 r005 Re(z^2+c),c=-29/98+33/58*I,n=61 3178123988160240 r005 Re(z^2+c),c=-19/46+17/31*I,n=54 3178124005930122 m001 (3^(1/2))^Gompertz/((3^(1/2))^FeigenbaumD) 3178124006460054 r005 Im(z^2+c),c=-69/52+15/38*I,n=3 3178124021825487 r005 Im(z^2+c),c=-13/50+25/48*I,n=14 3178124028180060 a007 Real Root Of -368*x^4-877*x^3+622*x^2-772*x+655 3178124031415826 b008 ArcTanh[4*SinIntegral[1/4]] 3178124036752983 r005 Im(z^2+c),c=3/10+6/53*I,n=4 3178124047009520 r005 Im(z^2+c),c=1/15+23/57*I,n=4 3178124053910231 k003 Champernowne real with 15/2*n^3-20*n^2+43/2*n-6 3178124064679408 m005 (1/2*Zeta(3)-5)/(5*exp(1)+1/4) 3178124068753113 a007 Real Root Of 761*x^4+869*x^3+951*x^2-532*x-245 3178124076163303 m001 (Stephens+ThueMorse)/(MertensB2-Sarnak) 3178124077348902 m001 (PlouffeB-Stephens)/(exp(1/Pi)+Grothendieck) 3178124079340629 a007 Real Root Of -360*x^4-824*x^3+824*x^2-485*x+412 3178124084960998 a007 Real Root Of -729*x^4-42*x^3+788*x^2+977*x+237 3178124085835063 m005 (1/2*2^(1/2)+2/7)/(-19/36+1/4*5^(1/2)) 3178124097239353 a007 Real Root Of -384*x^4-988*x^3+849*x^2+478*x+404 3178124105473057 m001 GaussAGM*PlouffeB-TravellingSalesman 3178124106562419 r005 Re(z^2+c),c=-35/106+25/52*I,n=31 3178124107613745 g001 abs(GAMMA(-3/5+I*203/60)) 3178124111807286 a007 Real Root Of 136*x^4+273*x^3-485*x^2+289*x+706 3178124113404255 r002 17th iterates of z^2 + 3178124113510185 a007 Real Root Of 25*x^4+801*x^3+233*x^2+894*x+729 3178124128442717 a008 Real Root of x^5-2*x^4-16*x^3+10*x^2+30*x+9 3178124154111341 k006 concat of cont frac of 3178124154310331 k003 Champernowne real with 23/3*n^3-21*n^2+70/3*n-7 3178124164195669 a007 Real Root Of -222*x^4-844*x^3-444*x^2+22*x+110 3178124176866911 l006 ln(2836/3897) 3178124177535686 p001 sum((-1)^n/(543*n+304)/(10^n),n=0..infinity) 3178124183402433 p001 sum(1/(403*n+270)/n/(5^n),n=1..infinity) 3178124189273966 m001 Cahen/GaussAGM(1,1/sqrt(2))^2/exp(Zeta(5)) 3178124192259975 r005 Im(z^2+c),c=-8/25+25/48*I,n=47 3178124206827227 m001 (Artin-HardyLittlewoodC3)/(Kolakoski+Trott2nd) 3178124209461716 a001 843/121393*28657^(19/51) 3178124214506145 m001 1/GolombDickman/FransenRobinson^2/ln(Ei(1)) 3178124218731328 r005 Re(z^2+c),c=-27/106+29/50*I,n=41 3178124221252264 k008 concat of cont frac of 3178124254710431 k003 Champernowne real with 47/6*n^3-22*n^2+151/6*n-8 3178124262624464 a001 102334155/521*322^(1/12) 3178124263768314 a001 3524578/521*843^(4/7) 3178124268918842 s002 sum(A094221[n]/((2^n-1)/n),n=1..infinity) 3178124283171244 s003 concatenated sequence A271059 3178124288801471 r005 Re(z^2+c),c=-65/98+15/53*I,n=29 3178124290511706 m001 (Catalan-Trott)^(Pi*csc(1/12*Pi)/GAMMA(11/12)) 3178124302632036 m001 1/ln(Ei(1))/FeigenbaumKappa^2/GAMMA(1/3) 3178124303753267 m001 1/GAMMA(11/24)*Sierpinski^2*ln(GAMMA(2/3))^2 3178124314185412 m002 -6+2*Pi+ProductLog[Pi]/Pi^3 3178124316131991 r009 Im(z^3+c),c=-35/78+2/9*I,n=6 3178124316132146 m005 (1/2*gamma+1/5)/(1/5*Pi+10/11) 3178124317844983 r005 Re(z^2+c),c=-17/14+111/146*I,n=2 3178124319595413 m001 ln(GAMMA(17/24))^2/MadelungNaCl^2*cosh(1) 3178124334580217 q001 1/314651 3178124337646417 m001 Lehmer/(HardyLittlewoodC5-Gompertz) 3178124340896674 m001 (1-cos(1))/(-BesselI(1,1)+Rabbit) 3178124347916759 r005 Im(z^2+c),c=-7/16+1/19*I,n=19 3178124348575696 m001 (Rabbit+ZetaP(4))/(exp(Pi)+ErdosBorwein) 3178124355110531 k003 Champernowne real with 8*n^3-23*n^2+27*n-9 3178124366420294 r005 Re(z^2+c),c=-9/10+24/61*I,n=4 3178124369957629 r005 Im(z^2+c),c=-11/98+3/7*I,n=13 3178124370267370 h001 (-3*exp(2/3)+3)/(-3*exp(1/2)-4) 3178124388188469 r005 Re(z^2+c),c=-5/17+33/56*I,n=38 3178124391206278 r005 Im(z^2+c),c=-6/11+3/53*I,n=31 3178124400257136 b008 ArcCosh[10*ProductLog[4]] 3178124407833195 r009 Im(z^3+c),c=-9/74+13/38*I,n=5 3178124414457793 r005 Im(z^2+c),c=19/94+13/53*I,n=17 3178124417806249 a007 Real Root Of -72*x^4+41*x^3+756*x^2-312*x+34 3178124425282410 a003 cos(Pi*6/103)*sin(Pi*11/105) 3178124447250199 b008 Pi*(1+ArcCoth[86]) 3178124455510631 k003 Champernowne real with 49/6*n^3-24*n^2+173/6*n-10 3178124470094917 r009 Im(z^3+c),c=-17/58+17/57*I,n=7 3178124480047014 a001 39088169/1364*322^(5/12) 3178124485333704 m001 Ei(1)*(Zeta(3)+Weierstrass) 3178124486042041 a001 5/4*521^(15/29) 3178124486490862 m005 (1/3*3^(1/2)+1/9)/(8/9*exp(1)-1/4) 3178124489956914 m001 GAMMA(5/6)*exp(Magata)*cos(Pi/12)^2 3178124502930356 m005 (1/3*Zeta(3)+1/9)/(7/12*Pi-2/9) 3178124505017800 m001 Kolakoski-StolarskyHarborth^ln(gamma) 3178124512724825 a003 cos(Pi*20/79)*cos(Pi*7/20) 3178124550670457 h001 (2/7*exp(1)+9/11)/(5/8*exp(2)+2/5) 3178124555910731 k003 Champernowne real with 25/3*n^3-25*n^2+92/3*n-11 3178124559728634 r005 Re(z^2+c),c=11/34+2/15*I,n=25 3178124563532590 m005 (-11/36+1/4*5^(1/2))/(1/7*Catalan+2/3) 3178124567275673 r005 Im(z^2+c),c=-141/118+2/45*I,n=34 3178124569641821 m001 (FeigenbaumDelta+Salem)/Tribonacci 3178124574607860 m001 (ln(5)-Zeta(1,2))/(RenyiParking+ZetaQ(2)) 3178124581505097 a001 1/7*(1/2*5^(1/2)+1/2)^14*4^(7/10) 3178124583207636 a001 2178309/521*843^(9/14) 3178124590991011 a001 832040/199*199^(9/11) 3178124605671836 r005 Im(z^2+c),c=-13/90+17/38*I,n=31 3178124606021896 p003 LerchPhi(1/32,3,304/207) 3178124614131341 k007 concat of cont frac of 3178124616958080 a001 15127/1597*6765^(7/51) 3178124617044066 r009 Im(z^3+c),c=-23/52+4/19*I,n=34 3178124620892817 r005 Re(z^2+c),c=-29/74+9/52*I,n=6 3178124644096911 m001 ArtinRank2*exp(Artin)^2/arctan(1/2) 3178124648451525 r005 Im(z^2+c),c=5/27+15/59*I,n=4 3178124654697774 r005 Im(z^2+c),c=-27/118+3/5*I,n=20 3178124654972357 g001 Re(GAMMA(3/4+I*37/30)) 3178124655812446 r005 Re(z^2+c),c=-13/46+21/55*I,n=4 3178124656023566 m005 (1/2*5^(1/2)+4/5)/(4/11*Catalan-3/11) 3178124656310831 k003 Champernowne real with 17/2*n^3-26*n^2+65/2*n-12 3178124665058931 b008 1/3+77*Sqrt[17] 3178124665922829 l006 ln(5247/7210) 3178124666582801 r005 Im(z^2+c),c=-5/29+17/37*I,n=27 3178124673728404 a001 39088169/2207*322^(1/2) 3178124693368978 m001 1/Trott*Cahen*exp(Pi)^2 3178124702589339 a007 Real Root Of 989*x^4-711*x^3+918*x^2+2*x-125 3178124713374333 a007 Real Root Of 144*x^4-414*x^3-280*x^2-522*x+206 3178124741990078 m005 (23/28+1/4*5^(1/2))/(gamma-1/7) 3178124743664597 a003 cos(Pi*23/108)-sin(Pi*31/102) 3178124746616145 m008 (2*Pi^5+3)/(1/4*Pi^4-5) 3178124756710931 k003 Champernowne real with 26/3*n^3-27*n^2+103/3*n-13 3178124759154818 r009 Im(z^3+c),c=-71/102+3/23*I,n=2 3178124764683682 a007 Real Root Of -676*x^4+927*x^3-771*x^2+77*x+139 3178124771286494 r005 Im(z^2+c),c=-13/54+22/45*I,n=48 3178124775841198 a009 5^(1/3)*(20-2^(1/2)) 3178124777291650 m001 (cos(1)+gamma(3))/(HeathBrownMoroz+Niven) 3178124786247606 r005 Re(z^2+c),c=13/58+2/61*I,n=10 3178124789193968 m001 (-PrimesInBinary+Sarnak)/(Artin-Psi(1,1/3)) 3178124793209120 m005 (1/2*gamma+6/11)/(4/5*Pi+1/9) 3178124797115575 h001 (3/5*exp(1)+7/12)/(10/11*exp(2)+1/4) 3178124800528123 r005 Re(z^2+c),c=37/110+17/44*I,n=36 3178124806281059 m005 (21/4+1/4*5^(1/2))/(6*Pi-4/7) 3178124817958951 a001 39603/4181*6765^(7/51) 3178124825017045 r002 2th iterates of z^2 + 3178124832499941 m001 (Zeta(5)-cos(1))/(-GAMMA(5/6)+GAMMA(17/24)) 3178124840112807 r005 Im(z^2+c),c=11/58+15/59*I,n=13 3178124841109835 m002 -E^Pi-Pi^2+Log[Pi]*ProductLog[Pi] 3178124851986821 a003 cos(Pi*11/67)*cos(Pi*8/21) 3178124852838006 a007 Real Root Of -114*x^4-399*x^3-328*x^2-893*x-703 3178124854745136 a003 cos(Pi*1/114)-sin(Pi*16/67) 3178124857111031 k003 Champernowne real with 53/6*n^3-28*n^2+217/6*n-14 3178124862053630 r002 10th iterates of z^2 + 3178124866063693 a001 24476/13*610^(4/49) 3178124879132281 r005 Im(z^2+c),c=-139/106+17/54*I,n=4 3178124883626832 m001 (Salem+Sarnak)/(CareFree-LandauRamanujan) 3178124888140630 a007 Real Root Of -99*x^4-175*x^3+563*x^2+456*x+245 3178124893562237 r009 Re(z^3+c),c=-43/114+14/57*I,n=19 3178124897866259 a007 Real Root Of 511*x^4+782*x^3+159*x^2-706*x+178 3178124902647660 a001 1346269/521*843^(5/7) 3178124904762501 r005 Re(z^2+c),c=-5/7+7/36*I,n=60 3178124911933385 a007 Real Root Of -516*x^4-165*x^3+119*x^2+996*x-318 3178124927099504 r005 Im(z^2+c),c=-27/94+16/37*I,n=6 3178124942184334 a001 6119/646*6765^(7/51) 3178124957511131 k003 Champernowne real with 9*n^3-29*n^2+38*n-15 3178124975789754 b008 E+InverseGudermannian[4/9] 3178124976282966 m005 (1/2*2^(1/2)-7/8)/(1/7*Zeta(3)-7/10) 3178124986810606 l006 ln(960/991) 3178125007072738 a003 cos(Pi*9/79)-sin(Pi*24/113) 3178125010304766 s002 sum(A284693[n]/((10^n+1)/n),n=1..infinity) 3178125016244865 a008 Real Root of x^4-x^3-11*x^2-60*x-18 3178125023745092 a007 Real Root Of 126*x^4+522*x^3+421*x^2+24*x-274 3178125033975115 a007 Real Root Of -211*x^4-634*x^3+4*x^2-129*x+724 3178125039047703 m001 gamma(1)+TreeGrowth2nd^ln(Pi) 3178125041132555 m001 AlladiGrinstead*ThueMorse^GAMMA(11/12) 3178125047684588 a001 3571/89*75025^(22/37) 3178125057911231 k003 Champernowne real with 55/6*n^3-30*n^2+239/6*n-16 3178125099931517 m001 (GAMMA(3/4)-ln(Pi))/(ReciprocalLucas+Stephens) 3178125116331808 r005 Im(z^2+c),c=-13/90+17/38*I,n=27 3178125118638925 a001 29/121393*1597^(20/57) 3178125136961171 m001 (GAMMA(17/24)-Rabbit)/(Ei(1,1)+BesselI(1,2)) 3178125142632966 m001 (-MasserGramain+Otter)/(BesselJ(0,1)-Chi(1)) 3178125144330184 m005 (1/2*Pi+3)/(11/12*gamma+10/11) 3178125150705805 m009 (1/2*Pi^2-3/4)/(4*Psi(1,3/4)+3) 3178125153268669 m001 BesselI(0,2)^(FeigenbaumKappa/cos(1/12*Pi)) 3178125155512050 r005 Im(z^2+c),c=9/40+11/34*I,n=5 3178125158311331 k003 Champernowne real with 28/3*n^3-31*n^2+125/3*n-17 3178125204810367 m001 FeigenbaumKappa/Riemann1stZero/ln(sqrt(3))^2 3178125222085963 a001 832040/521*843^(11/14) 3178125223561605 a007 Real Root Of -14*x^4-420*x^3+767*x^2-829*x-544 3178125231011860 a001 34111385/1926*322^(1/2) 3178125233764297 m001 Zeta(3)*KhinchinHarmonic/TwinPrimes 3178125241187248 l006 ln(2411/3313) 3178125241187248 p004 log(3313/2411) 3178125242859215 a001 11/377*13^(27/29) 3178125248671834 r009 Im(z^3+c),c=-8/17+2/19*I,n=10 3178125253101997 r005 Im(z^2+c),c=-41/74+1/25*I,n=11 3178125257791737 r005 Im(z^2+c),c=4/17+8/37*I,n=40 3178125258711431 k003 Champernowne real with 19/2*n^3-32*n^2+87/2*n-18 3178125261351369 a007 Real Root Of -274*x^4-549*x^3+679*x^2-999*x+297 3178125264455723 m001 1/Tribonacci^2/Porter^2*exp(Pi) 3178125267534910 a009 15*(5^(2/3)+6^(1/4))^(1/2) 3178125295386650 r005 Im(z^2+c),c=3/74+17/48*I,n=29 3178125310680896 m005 (1/6*exp(1)+3/4)/(1/4*Pi+3) 3178125312318437 a001 267914296/15127*322^(1/2) 3178125321922111 k006 concat of cont frac of 3178125324180907 a001 17711*322^(1/2) 3178125325911618 a001 1836311903/103682*322^(1/2) 3178125326164126 a001 1602508992/90481*322^(1/2) 3178125326200966 a001 12586269025/710647*322^(1/2) 3178125326206341 a001 10983760033/620166*322^(1/2) 3178125326207125 a001 86267571272/4870847*322^(1/2) 3178125326207240 a001 75283811239/4250681*322^(1/2) 3178125326207256 a001 591286729879/33385282*322^(1/2) 3178125326207259 a001 516002918640/29134601*322^(1/2) 3178125326207259 a001 4052739537881/228826127*322^(1/2) 3178125326207259 a001 3536736619241/199691526*322^(1/2) 3178125326207259 a001 6557470319842/370248451*322^(1/2) 3178125326207259 a001 2504730781961/141422324*322^(1/2) 3178125326207260 a001 956722026041/54018521*322^(1/2) 3178125326207267 a001 365435296162/20633239*322^(1/2) 3178125326207310 a001 139583862445/7881196*322^(1/2) 3178125326207610 a001 53316291173/3010349*322^(1/2) 3178125326209663 a001 20365011074/1149851*322^(1/2) 3178125326223735 a001 7778742049/439204*322^(1/2) 3178125326320184 a001 2971215073/167761*322^(1/2) 3178125326883684 m005 (1/2*Zeta(3)-1/7)/(2/5*Catalan-2/9) 3178125326981257 a001 1134903170/64079*322^(1/2) 3178125331512317 a001 433494437/24476*322^(1/2) 3178125332157737 a007 Real Root Of -206*x^4-566*x^3+467*x^2+768*x+571 3178125335224996 m005 (1/2*exp(1)+1/11)/(5/6*Zeta(3)-6/11) 3178125343729111 r005 Im(z^2+c),c=-5/6+53/254*I,n=36 3178125345610047 r005 Im(z^2+c),c=5/24+34/55*I,n=7 3178125345899262 r009 Im(z^3+c),c=-57/122+10/59*I,n=13 3178125349256531 m001 (Lehmer+Weierstrass)/(Cahen-HardyLittlewoodC4) 3178125351643185 a001 54018521*6557470319842^(5/17) 3178125351643186 a001 599074578*1836311903^(5/17) 3178125351643893 a001 6643838879*514229^(5/17) 3178125356158508 m001 1/exp(MertensB1)^2/ErdosBorwein/Magata^2 3178125358038411 r009 Re(z^3+c),c=-29/62+35/44*I,n=2 3178125359111531 k003 Champernowne real with 29/3*n^3-33*n^2+136/3*n-19 3178125362568667 a001 165580141/9349*322^(1/2) 3178125365364639 p004 log(27103/27017) 3178125393163568 r005 Im(z^2+c),c=-22/23+7/30*I,n=6 3178125399159796 m001 1/GAMMA(1/6)^2*ln(TreeGrowth2nd)^2*Zeta(1/2) 3178125416472950 r005 Re(z^2+c),c=-37/110+23/49*I,n=54 3178125420751956 a007 Real Root Of -742*x^4+342*x^3+207*x^2+195*x+6 3178125424513995 r005 Re(z^2+c),c=-45/118+13/41*I,n=27 3178125429768574 s002 sum(A002578[n]/(n^3*exp(n)+1),n=1..infinity) 3178125430864654 a008 Real Root of x^2-x-100687 3178125431111213 m004 -12+50/Pi-Cos[Sqrt[5]*Pi] 3178125432981047 a001 2/12752043*3^(9/14) 3178125442666935 a008 Real Root of x^4+11*x^2-40*x-86 3178125443209055 a001 64079/2*144^(37/40) 3178125451542699 a007 Real Root Of 146*x^4+569*x^3+254*x^2-364*x-352 3178125452123800 r009 Im(z^3+c),c=-11/94+22/27*I,n=60 3178125456192503 m001 GAMMA(1/3)^2/Sierpinski*ln(Pi) 3178125459511632 k003 Champernowne real with 59/6*n^3-34*n^2+283/6*n-20 3178125468411617 a001 9349/987*6765^(7/51) 3178125476221525 r002 16th iterates of z^2 + 3178125479453366 r002 7th iterates of z^2 + 3178125509821139 s002 sum(A180842[n]/(n^2*2^n-1),n=1..infinity) 3178125513777080 m001 1/Sierpinski*FeigenbaumB*ln(FeigenbaumD) 3178125515936671 a001 521/2*28657^(22/47) 3178125530737084 p004 log(28649/20849) 3178125541528889 a001 514229/521*843^(6/7) 3178125552494356 a003 sin(Pi*1/97)*sin(Pi*25/57) 3178125559911732 k003 Champernowne real with 10*n^3-35*n^2+49*n-21 3178125560356721 m001 Thue^CareFree+BesselI(0,2) 3178125567712037 a007 Real Root Of 118*x^4+300*x^3-407*x^2-487*x+155 3178125569217556 a007 Real Root Of -40*x^4+100*x^3+452*x^2-794*x+202 3178125572664872 m005 (1/2*gamma+7/8)/(5/9*Catalan-7/8) 3178125575432076 a001 63245986/3571*322^(1/2) 3178125576813566 s002 sum(A284693[n]/((10^n-1)/n),n=1..infinity) 3178125586869279 a001 1/4*24476^(29/41) 3178125641439042 a007 Real Root Of -174*x^4+658*x^3-203*x^2+806*x-255 3178125643687759 a001 1/41*64079^(11/25) 3178125644960440 a001 1/41*39603^(23/50) 3178125659266290 m001 CareFree^ZetaP(2)/Khinchin 3178125660311832 k003 Champernowne real with 61/6*n^3-36*n^2+305/6*n-22 3178125667431279 a007 Real Root Of 867*x^4-307*x^3+227*x^2-470*x-191 3178125670269326 r005 Im(z^2+c),c=-3/23+10/23*I,n=13 3178125680211090 h001 (1/7*exp(2)+1/5)/(4/9*exp(2)+2/3) 3178125683577882 r005 Re(z^2+c),c=-43/106+19/58*I,n=10 3178125684549799 l006 ln(6808/9355) 3178125693915342 m001 (MertensB3+MinimumGamma)/(Conway-Psi(1,1/3)) 3178125694625149 a001 1/3*(1/2*5^(1/2)+1/2)^16*76^(20/23) 3178125706487738 b008 E^(-1/6)+Sqrt[2*E] 3178125707594840 a009 6^(1/2)/(2^(1/3)+12^(3/4)) 3178125712583933 m001 (Si(Pi)+GAMMA(5/6))/(-Khinchin+MadelungNaCl) 3178125712841129 k008 concat of cont frac of 3178125714690236 r005 Im(z^2+c),c=-51/38+1/30*I,n=8 3178125715498852 m001 (Ei(1,1)+CopelandErdos)^Backhouse 3178125717076060 m001 exp(Zeta(9))/Khintchine^2*sin(1) 3178125725957009 m001 1/GAMMA(1/3)^2*ln(Conway)^2/GAMMA(7/24) 3178125731578440 r002 46th iterates of z^2 + 3178125751536308 m001 (ReciprocalLucas-Totient)/(ln(5)-FeigenbaumMu) 3178125760711932 k003 Champernowne real with 31/3*n^3-37*n^2+158/3*n-23 3178125769945824 r005 Re(z^2+c),c=-1/36+4/53*I,n=4 3178125774016862 r002 58th iterates of z^2 + 3178125775729921 m001 1/Trott*Tribonacci/ln((2^(1/3)))^2 3178125777185451 r005 Im(z^2+c),c=4/17+8/37*I,n=36 3178125778235609 a001 199/10946*514229^(26/35) 3178125782252815 a007 Real Root Of -217*x^4-586*x^3+257*x^2-59*x+544 3178125791781617 a007 Real Root Of 268*x^4+903*x^3+481*x^2+970*x-130 3178125804498398 m001 (Zeta(3)+FibonacciFactorial)/LandauRamanujan 3178125804910102 a001 46/3*34^(49/57) 3178125811719918 r002 40th iterates of z^2 + 3178125814114113 k007 concat of cont frac of 3178125840574273 s002 sum(A196443[n]/(n^3*pi^n-1),n=1..infinity) 3178125860959828 a001 317811/521*843^(13/14) 3178125861112032 k003 Champernowne real with 21/2*n^3-38*n^2+109/2*n-24 3178125863611118 a007 Real Root Of 194*x^4+416*x^3-747*x^2-225*x+392 3178125882753672 m001 (CopelandErdos-Shi(1))/Sierpinski 3178125892651789 a007 Real Root Of 79*x^4-42*x^3-749*x^2+744*x+522 3178125894499366 r005 Im(z^2+c),c=-1/90+2/5*I,n=6 3178125905142500 m005 (1/3*Catalan+2/3)/(5/7*exp(1)-5) 3178125906121909 a001 17/930249*11^(3/13) 3178125908817843 a007 Real Root Of 125*x^4+244*x^3-345*x^2+546*x+300 3178125911982635 m001 (2*Pi/GAMMA(5/6)+Tribonacci)/(2^(1/2)+Catalan) 3178125918787188 m001 Cahen^ln(5)*MasserGramain 3178125927658071 l006 ln(4397/6042) 3178125939205210 m001 2^(1/3)+sin(1)*BesselI(0,2) 3178125939205210 m001 sin(1)*BesselI(0,2)+(2^(1/3)) 3178125961512132 k003 Champernowne real with 32/3*n^3-39*n^2+169/3*n-25 3178125961830418 r009 Re(z^3+c),c=-23/54+19/60*I,n=14 3178125962798902 a001 5702887/843*322^(2/3) 3178125982697443 m001 KomornikLoreti*(Bloch+Mills) 3178125987380934 m008 (3/4*Pi^2+5)/(4*Pi^4+3/5) 3178125996624558 a007 Real Root Of 177*x^4+531*x^3-219*x^2-241*x+434 3178125996703213 p004 log(32939/23971) 3178125997396560 p001 sum(1/(508*n+41)/n/(6^n),n=1..infinity) 3178126000984100 m001 (Kac+Lehmer)/(GAMMA(23/24)+FransenRobinson) 3178126001886264 r005 Im(z^2+c),c=4/17+8/37*I,n=41 3178126008584940 s002 sum(A071176[n]/(n*pi^n-1),n=1..infinity) 3178126017502522 r009 Re(z^3+c),c=-53/114+22/61*I,n=14 3178126018468231 g007 Psi(2,11/12)+Psi(2,2/7)+Psi(2,1/5)-Psi(2,4/9) 3178126030263354 r005 Re(z^2+c),c=-11/36+34/63*I,n=53 3178126049746847 m001 (Ei(1,1)+BesselI(1,1))/(GAMMA(5/6)+Totient) 3178126051371430 a005 (1/sin(86/221*Pi))^279 3178126052562297 r005 Im(z^2+c),c=3/17+11/41*I,n=9 3178126060013987 r005 Im(z^2+c),c=13/38+5/47*I,n=40 3178126061912232 k003 Champernowne real with 65/6*n^3-40*n^2+349/6*n-26 3178126066580228 r009 Re(z^3+c),c=-23/48+11/27*I,n=53 3178126077235934 b008 33*Cos[2+Sqrt[2]] 3178126077697425 r009 Re(z^3+c),c=-17/36+9/23*I,n=39 3178126077832093 r005 Im(z^2+c),c=-11/14+22/159*I,n=36 3178126091865585 m001 arctan(1/3)^Zeta(1,-1)*arctan(1/3)^Salem 3178126099951385 r005 Im(z^2+c),c=-27/118+31/64*I,n=36 3178126109991355 m001 BesselI(0,2)*Riemann1stZero-BesselJ(1,1) 3178126122799221 r009 Re(z^3+c),c=-14/23+7/11*I,n=4 3178126123406483 m009 (1/4*Psi(1,1/3)+5)/(5/2*Pi^2-1) 3178126136505727 r005 Re(z^2+c),c=-35/94+14/39*I,n=18 3178126146353307 b008 PolyGamma[0,49/2] 3178126153049983 m005 (1/2*exp(1)-3/8)/(4/5*Pi+7/12) 3178126155227724 r002 3th iterates of z^2 + 3178126159875308 m001 (gamma+Riemann2ndZero)/(-Totient+TwinPrimes) 3178126162312332 k003 Champernowne real with 11*n^3-41*n^2+60*n-27 3178126163903826 m005 (1/3*gamma-1/3)/(2/5*2^(1/2)-5) 3178126168912268 m002 (Pi^6*Coth[Pi])/3-Sinh[Pi]/3 3178126169895118 m002 Pi+Pi^5+(E^Pi*Cosh[Pi])/Pi^3 3178126172234863 a007 Real Root Of 586*x^4+395*x^3-384*x^2-527*x-122 3178126175225276 k002 Champernowne real with 1/2*n^2+91/2*n-15 3178126180339887 a001 635623/2+1/2*5^(1/2) 3178126180351071 k007 concat of cont frac of 3178126180371352 a001 119815357/377 3178126181515014 r005 Im(z^2+c),c=-9/44+26/45*I,n=6 3178126181700134 m002 -(Pi^2*Cosh[Pi])+Pi^6*Sech[Pi]*Tanh[Pi] 3178126184085032 r005 Im(z^2+c),c=-29/82+17/32*I,n=53 3178126184867118 r005 Im(z^2+c),c=11/40+11/63*I,n=24 3178126186871270 a003 cos(Pi*16/85)-cos(Pi*24/73) 3178126186953242 l006 ln(6383/8771) 3178126213611997 m001 (arctan(1/2)-Conway)/(LandauRamanujan-Magata) 3178126219614726 m005 (1/2*gamma-8/11)/(6/11*Pi-1/3) 3178126227732649 s002 sum(A123377[n]/((2^n-1)/n),n=1..infinity) 3178126229481571 r009 Re(z^3+c),c=-29/64+15/41*I,n=42 3178126232239820 r005 Im(z^2+c),c=-83/90+12/49*I,n=45 3178126238799458 a001 1/305*610^(17/48) 3178126262712432 k003 Champernowne real with 67/6*n^3-42*n^2+371/6*n-28 3178126266601093 r005 Re(z^2+c),c=-1+18/73*I,n=32 3178126282009192 m001 Zeta(1,-1)/(FellerTornier^gamma) 3178126288769646 r005 Im(z^2+c),c=-17/106+5/11*I,n=43 3178126292747930 r005 Im(z^2+c),c=-131/98+2/31*I,n=3 3178126296582788 a007 Real Root Of -68*x^4+766*x^3-629*x^2+976*x+399 3178126299130763 r009 Re(z^3+c),c=-13/40+13/63*I,n=2 3178126299561949 a007 Real Root Of -363*x^4-927*x^3+409*x^2-959*x+97 3178126301202558 a008 Real Root of x^4-x^3+12*x^2-40*x-64 3178126319726356 r005 Im(z^2+c),c=-57/110+21/41*I,n=63 3178126322155742 a001 7/610*610^(29/56) 3178126323614923 r009 Im(z^3+c),c=-4/15+23/33*I,n=7 3178126324603735 a007 Real Root Of -333*x^4-860*x^3+333*x^2-722*x+708 3178126328301669 a001 (1+2^(1/2))^(247/21) 3178126330227532 m001 (AlladiGrinstead-Bloch)/(MertensB2+Trott2nd) 3178126341958141 m001 GAMMA(3/4)^2*ln(OneNinth)*GAMMA(7/24)^2 3178126348033230 r009 Re(z^3+c),c=-55/118+13/37*I,n=17 3178126351130704 b008 3+(2*Tan[4])/13 3178126358759508 m005 (5*Pi+3/4)/(5/6*2^(1/2)+4) 3178126361778979 r005 Im(z^2+c),c=-7/106+20/31*I,n=55 3178126362814070 m002 (Pi^9*Log[Pi])/ProductLog[Pi]-ProductLog[Pi] 3178126363112532 k003 Champernowne real with 34/3*n^3-43*n^2+191/3*n-29 3178126387856608 r005 Re(z^2+c),c=21/64+7/44*I,n=17 3178126391515532 r005 Re(z^2+c),c=-17/50+17/37*I,n=45 3178126401076750 m001 GAMMA(5/12)/exp(Catalan)^2*cos(Pi/12)^2 3178126412613221 r005 Im(z^2+c),c=-7/10+49/209*I,n=18 3178126417299761 r009 Re(z^3+c),c=-21/50+28/37*I,n=4 3178126418696014 m001 (ZetaP(2)-ZetaP(4))/(Bloch+Rabbit) 3178126436466093 a001 2139295485799/233*1836311903^(12/17) 3178126436466093 a001 6643838879/233*6557470319842^(12/17) 3178126451493907 r009 Im(z^3+c),c=-10/21+5/28*I,n=61 3178126455392451 m002 -Pi^5-Cosh[Pi]/ProductLog[Pi]-Tanh[Pi] 3178126457785266 s002 sum(A202634[n]/((pi^n-1)/n),n=1..infinity) 3178126458962663 m005 (1/2*5^(1/2)-10/11)/(11/12*Zeta(3)-4/9) 3178126463512632 k003 Champernowne real with 23/2*n^3-44*n^2+131/2*n-30 3178126472599419 r005 Re(z^2+c),c=-9/22+5/31*I,n=28 3178126494717187 m001 (LambertW(1)*CareFree+Tribonacci)/CareFree 3178126496024921 a007 Real Root Of 125*x^4+151*x^3-929*x^2-253*x+674 3178126496154921 r005 Re(z^2+c),c=-13/14+35/201*I,n=18 3178126503774771 r009 Im(z^3+c),c=-35/78+8/39*I,n=28 3178126505267149 p004 log(19687/14327) 3178126509352928 a001 1/89*3^(53/56) 3178126536741594 a001 165580141/843*123^(1/10) 3178126543079118 r005 Im(z^2+c),c=-13/58+21/43*I,n=22 3178126544857546 h001 (1/6*exp(2)+5/6)/(7/9*exp(2)+3/4) 3178126559870596 a001 29/46368*2584^(6/29) 3178126563912732 k003 Champernowne real with 35/3*n^3-45*n^2+202/3*n-31 3178126572310048 r005 Re(z^2+c),c=-51/122+1/58*I,n=13 3178126577841362 r009 Re(z^3+c),c=-31/70+16/47*I,n=17 3178126580664940 a001 6119/2*17711^(52/55) 3178126592092990 a002 10^(6/5)+10^(7/2) 3178126602879361 r005 Im(z^2+c),c=-17/74+31/64*I,n=31 3178126604157653 a003 cos(Pi*1/52)/sin(Pi*6/59) 3178126604476133 m001 Chi(1)/polylog(4,1/2)*ReciprocalLucas 3178126604878517 a003 cos(Pi*7/82)-sin(Pi*13/34) 3178126614200924 a007 Real Root Of 279*x^4+899*x^3-209*x^2-488*x+955 3178126638357709 r005 Re(z^2+c),c=-12/29+7/62*I,n=16 3178126639676454 a003 sin(Pi*18/109)-sin(Pi*36/119) 3178126645438204 a007 Real Root Of 520*x^4-854*x^3-863*x^2-748*x+347 3178126648735421 m001 (GAMMA(11/12)+Rabbit)/(gamma(2)+BesselI(1,1)) 3178126662252034 m001 (GAMMA(19/24)+Trott2nd)/(3^(1/2)-GAMMA(2/3)) 3178126664312832 k003 Champernowne real with 71/6*n^3-46*n^2+415/6*n-32 3178126672938271 r009 Re(z^3+c),c=-11/56+53/56*I,n=14 3178126689074976 a007 Real Root Of -155*x^4-144*x^3+904*x^2-807*x-505 3178126690676152 r005 Im(z^2+c),c=-9/110+23/55*I,n=27 3178126691932864 q001 587/1847 3178126694367051 a003 sin(Pi*10/91)-sin(Pi*18/79) 3178126712821328 a009 1/6*(17+11^(2/3)*6^(1/4))^(1/2)*6^(3/4) 3178126714481283 m001 (Stephens+ZetaP(3))/(GAMMA(3/4)-MinimumGamma) 3178126726376434 r005 Im(z^2+c),c=-31/106+37/62*I,n=3 3178126733290730 m008 (2/5*Pi^3-4)/(5/6*Pi^3+3/5) 3178126734627549 r005 Im(z^2+c),c=-1/122+8/21*I,n=33 3178126735674264 a007 Real Root Of -609*x^4-137*x^3-576*x^2+107*x+94 3178126735879811 m001 (GAMMA(11/12)+TwinPrimes)/(ln(gamma)-gamma(2)) 3178126736680250 m004 (5*Pi)/3+36*Cos[Sqrt[5]*Pi] 3178126739846205 a007 Real Root Of -267*x^4-702*x^3+509*x^2+435*x+946 3178126747543817 r002 20th iterates of z^2 + 3178126754299255 r005 Im(z^2+c),c=19/78+31/53*I,n=18 3178126756743052 r009 Re(z^3+c),c=-1/60+15/26*I,n=4 3178126757187360 m001 1/exp(BesselJ(1,1))/RenyiParking^2/GAMMA(1/4) 3178126758496273 a001 39603/5*75025^(17/23) 3178126759764734 r009 Re(z^3+c),c=-39/106+40/49*I,n=2 3178126761032205 l006 ln(1986/2729) 3178126762437574 a001 843/10946*2178309^(13/51) 3178126764712932 k003 Champernowne real with 12*n^3-47*n^2+71*n-33 3178126769644894 a001 11/5702887*3^(5/11) 3178126816997623 a001 63245986/521*322^(1/6) 3178126823600157 r005 Re(z^2+c),c=-7/22+12/23*I,n=33 3178126828017349 r005 Im(z^2+c),c=-61/54+2/51*I,n=37 3178126831811536 a001 11/4181*17711^(37/51) 3178126833590460 r005 Re(z^2+c),c=-35/114+16/31*I,n=31 3178126842667227 m001 Lehmer*(cos(Pi/12)+GAMMA(5/24)) 3178126846181748 m001 (Kolakoski-Robbin)/(exp(-1/2*Pi)-Kac) 3178126851663428 m001 LaplaceLimit^HardyLittlewoodC3-ZetaP(2) 3178126856541243 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)+Salem^GAMMA(2/3) 3178126871606606 p001 sum((-1)^n/(570*n+31)/(3^n),n=0..infinity) 3178126872025449 r005 Re(z^2+c),c=-17/46+5/21*I,n=6 3178126879127804 m005 (1/2*5^(1/2)-9/11)/(3/8*Catalan+3/5) 3178126880353386 g001 GAMMA(4/9,61/69) 3178126882512966 a007 Real Root Of 125*x^4+346*x^3-59*x^2+268*x-198 3178126888527916 m001 (5^(1/2)-exp(1/exp(1)))/(Conway+KhinchinLevy) 3178126888853190 m001 MasserGramain/(GAMMA(7/12)-3^(1/2)) 3178126889651714 r005 Re(z^2+c),c=-19/56+28/61*I,n=35 3178126911316803 a007 Real Root Of 177*x^4+109*x^3+637*x^2-839*x+197 3178126912188305 r009 Re(z^3+c),c=-47/114+36/61*I,n=27 3178126925281512 m005 (1/3*gamma+2/11)/(1/2*gamma+8/9) 3178126931352652 r005 Im(z^2+c),c=-11/34+25/48*I,n=52 3178126936228386 r009 Re(z^3+c),c=-7/122+21/32*I,n=63 3178126957807994 m001 1/GAMMA(1/24)*FeigenbaumAlpha*ln(sin(1))^2 3178126959684269 r005 Im(z^2+c),c=-5/6+43/199*I,n=6 3178126971035407 p004 log(23977/17449) 3178126996007152 m005 (1/3*5^(1/2)-1/10)/(7/10*3^(1/2)+9/11) 3178127004038627 r005 Im(z^2+c),c=27/94+13/47*I,n=6 3178127012369743 r005 Re(z^2+c),c=11/38+17/28*I,n=16 3178127017420213 r005 Re(z^2+c),c=-23/86+21/38*I,n=15 3178127017925719 a007 Real Root Of 11*x^4+332*x^3-548*x^2+325*x-942 3178127020872335 r005 Im(z^2+c),c=4/17+8/37*I,n=46 3178127034420348 a001 24157817/1364*322^(1/2) 3178127042633616 r009 Im(z^3+c),c=-9/50+18/53*I,n=3 3178127044101207 r005 Re(z^2+c),c=-15/98+25/43*I,n=14 3178127049616617 r005 Im(z^2+c),c=-17/110+19/21*I,n=11 3178127056847200 r002 37th iterates of z^2 + 3178127059825013 a001 1/39603*(1/2*5^(1/2)+1/2)*76^(9/19) 3178127062625363 a001 1/64079*(1/2*5^(1/2)+1/2)^2*76^(9/19) 3178127063525018 s001 sum(1/10^(n-1)*A191027[n]/n!^2,n=1..infinity) 3178127063525176 s001 sum(1/10^(n-1)*A139599[n]/n!^2,n=1..infinity) 3178127063525176 s001 sum(1/10^(n-1)*A141161[n]/n!^2,n=1..infinity) 3178127067156426 a001 1/24476*76^(9/19) 3178127086331879 r005 Im(z^2+c),c=3/74+17/48*I,n=28 3178127088697372 a007 Real Root Of -86*x^4+922*x^3-833*x^2-68*x+93 3178127106149921 a001 843*5^(47/57) 3178127106156382 m001 Ei(1)/FeigenbaumKappa/TreeGrowth2nd 3178127110234500 m001 (Zeta(3)+ln(Pi))/(BesselI(1,1)-Conway) 3178127112777816 a007 Real Root Of -984*x^4+344*x^3+478*x^2+770*x-294 3178127116486623 r005 Re(z^2+c),c=19/74+2/27*I,n=15 3178127118268403 r005 Re(z^2+c),c=-11/14+62/249*I,n=4 3178127120042382 r002 6th iterates of z^2 + 3178127126003659 m001 TreeGrowth2nd^MasserGramain*cos(1) 3178127137410733 g007 Psi(2,5/12)+Psi(2,9/11)+Psi(2,7/9)-Psi(2,8/11) 3178127161525596 m004 -2-100*Pi-Cos[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 3178127161902262 r009 Im(z^3+c),c=-7/24+14/47*I,n=15 3178127168424045 m001 Lehmer*(2^(1/3)-Sarnak) 3178127169979303 m002 5/3+Pi^5+Cosh[Pi]/Log[Pi] 3178127175058070 r005 Im(z^2+c),c=4/17+8/37*I,n=45 3178127178231286 k002 Champernowne real with n^2+44*n-14 3178127186547950 m002 -6+6*Log[Pi]+Sinh[Pi]/5 3178127187649393 a007 Real Root Of 202*x^4+508*x^3-636*x^2-612*x+178 3178127194345910 m001 (-MadelungNaCl+Porter)/(BesselK(0,1)-Conway) 3178127199926817 a007 Real Root Of -116*x^4-234*x^3+457*x^2+276*x+584 3178127200153802 r005 Im(z^2+c),c=4/17+8/37*I,n=47 3178127211006183 s002 sum(A289591[n]/(n^2*exp(n)+1),n=1..infinity) 3178127221859882 a007 Real Root Of 262*x^4+942*x^3+518*x^2+390*x-483 3178127223640866 r005 Re(z^2+c),c=4/29+22/37*I,n=26 3178127228101894 a001 24157817/2207*322^(7/12) 3178127229553466 r005 Im(z^2+c),c=-11/14+30/221*I,n=58 3178127229637271 a007 Real Root Of 161*x^4+160*x^3-838*x^2+718*x-543 3178127232042016 r005 Re(z^2+c),c=-19/28+30/61*I,n=5 3178127238302963 r005 Re(z^2+c),c=-19/60+28/51*I,n=49 3178127242363952 m001 ZetaQ(2)*(Lehmer-gamma(3)) 3178127257171128 a007 Real Root Of 596*x^4-718*x^3+968*x^2-595*x-316 3178127259038857 m005 (3/4*Catalan+2/5)/(1/2*Catalan-4/5) 3178127260212513 a003 cos(Pi*8/39)*cos(Pi*27/73) 3178127262123299 m001 (gamma+3^(1/3))/(-gamma(2)+Kac) 3178127262939006 r005 Re(z^2+c),c=11/34+3/5*I,n=7 3178127271521847 m001 (ln(2)+exp(-1/2*Pi))/(GAMMA(7/12)+Mills) 3178127278277303 r002 26th iterates of z^2 + 3178127279929446 r005 Im(z^2+c),c=4/17+8/37*I,n=52 3178127280922382 m001 (Lehmer+Trott2nd)/(FeigenbaumDelta-exp(1)) 3178127282942065 r005 Im(z^2+c),c=4/17+8/37*I,n=51 3178127292519316 a007 Real Root Of 155*x^4-480*x^3-266*x^2-824*x-252 3178127294429233 r005 Re(z^2+c),c=1/14+41/64*I,n=13 3178127309265862 r005 Im(z^2+c),c=17/42+8/41*I,n=28 3178127310893188 m001 HardyLittlewoodC3^CopelandErdos+BesselI(0,2) 3178127311169423 r005 Im(z^2+c),c=4/17+8/37*I,n=53 3178127311636762 r005 Im(z^2+c),c=4/17+8/37*I,n=57 3178127312756018 a007 Real Root Of -843*x^4+360*x^3+725*x^2+790*x+198 3178127313495808 r005 Im(z^2+c),c=4/17+8/37*I,n=58 3178127315406643 r005 Im(z^2+c),c=4/17+8/37*I,n=39 3178127316825484 r005 Im(z^2+c),c=4/17+8/37*I,n=63 3178127317329946 r005 Im(z^2+c),c=4/17+8/37*I,n=64 3178127317372147 r005 Im(z^2+c),c=4/17+8/37*I,n=62 3178127318104440 r005 Im(z^2+c),c=4/17+8/37*I,n=59 3178127318392940 r005 Im(z^2+c),c=4/17+8/37*I,n=56 3178127319059131 r005 Im(z^2+c),c=4/17+8/37*I,n=61 3178127320109891 r005 Im(z^2+c),c=4/17+8/37*I,n=60 3178127324863697 m001 1/TreeGrowth2nd/exp(Paris)*cosh(1) 3178127324951071 h001 (1/10*exp(2)+5/6)/(6/11*exp(2)+11/12) 3178127326770984 r005 Re(z^2+c),c=55/118+29/35*I,n=2 3178127330598510 r005 Im(z^2+c),c=4/17+8/37*I,n=55 3178127332667671 r005 Im(z^2+c),c=4/17+8/37*I,n=54 3178127343382715 h001 (7/11*exp(2)+1/5)/(1/3*exp(1)+7/11) 3178127348460339 r005 Im(z^2+c),c=4/17+8/37*I,n=50 3178127355761014 a007 Real Root Of -301*x^4-777*x^3+831*x^2+818*x-28 3178127381818309 m001 1/exp(FeigenbaumC)/ArtinRank2*Salem^2 3178127383234856 m008 (3/5*Pi^5+2/3)/(3/5*Pi^6+3) 3178127384970150 a007 Real Root Of -272*x^4-710*x^3+400*x^2-358*x-220 3178127390929000 m001 (Si(Pi)-exp(Pi))/(-gamma(2)+TwinPrimes) 3178127392827647 r005 Im(z^2+c),c=4/17+8/37*I,n=48 3178127405664345 a001 1/3*75025^(11/18) 3178127419920620 a002 15^(11/12)+6^(5/3) 3178127423303268 l006 ln(5533/7603) 3178127424410727 m001 (exp(1/Pi)-BesselK(1,1))/(Lehmer+Tribonacci) 3178127425259054 r005 Im(z^2+c),c=4/17+8/37*I,n=49 3178127426228248 r009 Im(z^3+c),c=-43/122+10/37*I,n=19 3178127430225175 m001 (GAMMA(2/3)-exp(1/Pi))/(gamma(1)+Sarnak) 3178127435513151 k009 concat of cont frac of 3178127443037335 a003 cos(Pi*12/113)*cos(Pi*34/87) 3178127458329635 s002 sum(A176396[n]/(pi^n-1),n=1..infinity) 3178127460217502 r009 Re(z^3+c),c=-41/114+11/51*I,n=18 3178127466581256 r009 Re(z^3+c),c=-9/31+34/49*I,n=53 3178127513088075 m001 1/ln(MertensB1)*ErdosBorwein^2*GAMMA(17/24)^2 3178127514784527 m001 (ln(3)+Ei(1,1))/(Khinchin+MinimumGamma) 3178127519208053 r005 Im(z^2+c),c=4/17+8/37*I,n=42 3178127522576331 a007 Real Root Of 268*x^4+768*x^3-95*x^2+233*x-988 3178127523052801 m001 1/Cahen^2/Backhouse^2*exp(GAMMA(23/24)) 3178127528160554 m005 (1/2*5^(1/2)+2)/(3/7*2^(1/2)+3/8) 3178127530100074 m005 (1/2*5^(1/2)+1/9)/(1/6*3^(1/2)-1/4) 3178127542859463 a003 cos(Pi*23/79)*cos(Pi*14/43) 3178127555319294 m001 1/FeigenbaumC/Cahen*exp(TwinPrimes)^2 3178127556744476 a007 Real Root Of -286*x^4-644*x^3+800*x^2-87*x+148 3178127557897958 m006 (4/5*exp(2*Pi)+1/4)/(1/4*exp(2*Pi)+1) 3178127564170869 b008 Erfi[1/Sqrt[2]]/3 3178127565033620 r005 Im(z^2+c),c=-23/102+32/41*I,n=29 3178127573663331 r009 Re(z^3+c),c=-63/122+24/61*I,n=61 3178127574402079 a007 Real Root Of 367*x^4+956*x^3-554*x^2+474*x+349 3178127582873933 r005 Im(z^2+c),c=37/126+1/49*I,n=43 3178127594812736 r005 Im(z^2+c),c=-9/14+4/99*I,n=25 3178127606942439 m001 (Zeta(1,2)+polylog(4,1/2))/(1+arctan(1/3)) 3178127607745628 r005 Im(z^2+c),c=-23/70+3/62*I,n=17 3178127618397495 m008 (3*Pi^4+3/4)/(3*Pi^3-5/6) 3178127621424365 m004 -4-100*Pi+Sin[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 3178127628975163 m001 (LambertW(1)+Bloch)/(Mills+ReciprocalLucas) 3178127653981946 m001 Psi(1,1/3)^Porter/(Psi(1,1/3)^ReciprocalLucas) 3178127656100307 m001 GAMMA(23/24)*(Bloch-FeigenbaumMu) 3178127663699900 s002 sum(A043011[n]/(n*exp(n)+1),n=1..infinity) 3178127664833925 r005 Im(z^2+c),c=11/42+5/27*I,n=9 3178127669377265 a009 1/24*2^(2/3)+1/24*11^(3/4) 3178127688922670 m009 (1/5*Psi(1,1/3)-2/3)/(2/5*Psi(1,2/3)-4/5) 3178127707967545 r005 Re(z^2+c),c=-25/98+31/55*I,n=19 3178127717801693 r005 Re(z^2+c),c=-51/122+1/23*I,n=15 3178127718530996 m005 (1/2*Zeta(3)+5/12)/(-4/9+1/18*5^(1/2)) 3178127723959043 r005 Im(z^2+c),c=4/17+8/37*I,n=44 3178127748316528 a001 233/4870847*18^(19/29) 3178127760405948 m005 (1/3*Pi-1/3)/(5/11*Pi+9/11) 3178127761762477 r005 Re(z^2+c),c=-21/16+93/109*I,n=2 3178127766119937 r009 Im(z^3+c),c=-3/50+41/50*I,n=4 3178127785385797 a001 31622993/2889*322^(7/12) 3178127790295401 m001 Cahen+FeigenbaumD-ZetaR(2) 3178127792984219 r009 Im(z^3+c),c=-25/52+11/63*I,n=36 3178127794115297 l006 ln(3547/4874) 3178127800445647 m001 (BesselK(1,1)-cos(1))/(Tetranacci+Trott) 3178127802669221 m001 (Zeta(3)-ln(2)/ln(10))/(GAMMA(7/12)+Mills) 3178127804711804 a007 Real Root Of 557*x^4-804*x^3-131*x^2-704*x-242 3178127820859528 r005 Re(z^2+c),c=-9/46+29/34*I,n=3 3178127822379405 a007 Real Root Of -62*x^4+99*x^3-79*x^2+416*x+144 3178127835898395 p004 log(13513/563) 3178127836645432 r005 Im(z^2+c),c=-43/82+25/54*I,n=54 3178127837648720 r005 Im(z^2+c),c=-27/31+3/14*I,n=7 3178127858983093 m005 (1/3*gamma+2/3)/(3/4*Catalan-5/12) 3178127859681704 a001 1/72*514229^(10/17) 3178127860727981 r005 Im(z^2+c),c=-1/122+8/21*I,n=34 3178127866692439 a001 165580141/15127*322^(7/12) 3178127878554919 a001 433494437/39603*322^(7/12) 3178127880285631 a001 567451585/51841*322^(7/12) 3178127880538139 a001 2971215073/271443*322^(7/12) 3178127880574979 a001 7778742049/710647*322^(7/12) 3178127880580354 a001 10182505537/930249*322^(7/12) 3178127880581138 a001 53316291173/4870847*322^(7/12) 3178127880581253 a001 139583862445/12752043*322^(7/12) 3178127880581270 a001 182717648081/16692641*322^(7/12) 3178127880581272 a001 956722026041/87403803*322^(7/12) 3178127880581272 a001 2504730781961/228826127*322^(7/12) 3178127880581272 a001 3278735159921/299537289*322^(7/12) 3178127880581272 a001 10610209857723/969323029*322^(7/12) 3178127880581272 a001 4052739537881/370248451*322^(7/12) 3178127880581273 a001 387002188980/35355581*322^(7/12) 3178127880581274 a001 591286729879/54018521*322^(7/12) 3178127880581280 a001 7787980473/711491*322^(7/12) 3178127880581324 a001 21566892818/1970299*322^(7/12) 3178127880581623 a001 32951280099/3010349*322^(7/12) 3178127880583676 a001 12586269025/1149851*322^(7/12) 3178127880597748 a001 1201881744/109801*322^(7/12) 3178127880694197 a001 1836311903/167761*322^(7/12) 3178127881355271 a001 701408733/64079*322^(7/12) 3178127885886335 a001 10946*322^(7/12) 3178127886267614 m001 FeigenbaumD*KomornikLoreti*LaplaceLimit 3178127910256545 a001 73681302247*1836311903^(3/17) 3178127910256545 a001 17393796001*6557470319842^(3/17) 3178127910256969 a001 312119004989*514229^(3/17) 3178127916942710 a001 102334155/9349*322^(7/12) 3178127932169755 a007 Real Root Of -672*x^4+857*x^3+775*x^2+189*x-159 3178127943097255 r005 Re(z^2+c),c=-29/66+5/22*I,n=7 3178127987719810 a007 Real Root Of x^4+50*x^3+585*x^2+197*x+215 3178127988744255 m001 FransenRobinson*(Totient-exp(-1/2*Pi)) 3178127990580971 r009 Im(z^3+c),c=-5/122+44/53*I,n=36 3178128007441641 a001 1/48*14930352^(7/23) 3178128043642023 m001 ln(FeigenbaumKappa)^2*Bloch^2*cosh(1) 3178128052419945 m001 1/GAMMA(17/24)^2/exp(Porter)^2*Pi^2 3178128056010291 r002 3th iterates of z^2 + 3178128064937782 m001 LandauRamanujan^2*ErdosBorwein*ln(Zeta(3))^2 3178128065389412 r009 Im(z^3+c),c=-55/114+11/64*I,n=55 3178128068862322 a007 Real Root Of -117*x^4-184*x^3+394*x^2-456*x+601 3178128072046939 r009 Re(z^3+c),c=-23/90+40/43*I,n=7 3178128072430963 a007 Real Root Of 360*x^4+892*x^3-945*x^2-688*x-735 3178128076381790 m001 1/ln(LaplaceLimit)^2/Si(Pi)/Zeta(9)^2 3178128076803598 a001 29/17711*17711^(4/59) 3178128088523749 r005 Im(z^2+c),c=-4/21+29/62*I,n=39 3178128091182879 m001 (-OneNinth+ZetaQ(3))/(2^(1/3)+Si(Pi)) 3178128098812625 m001 3*Zeta(5)^BesselI(1,2) 3178128102402279 r002 8th iterates of z^2 + 3178128112636788 r005 Im(z^2+c),c=4/17+8/37*I,n=43 3178128115241225 k007 concat of cont frac of 3178128116516464 a007 Real Root Of -82*x^4+8*x^3+586*x^2-834*x+53 3178128119658695 r005 Re(z^2+c),c=11/40+3/34*I,n=25 3178128126588450 m001 FellerTornier^Lehmer/ln(5) 3178128129806289 a001 39088169/3571*322^(7/12) 3178128142103109 m001 sin(1/12*Pi)^(RenyiParking/QuadraticClass) 3178128143396163 r009 Im(z^3+c),c=-23/78+3/10*I,n=3 3178128146140827 m001 (ln(3)-Kac)/(ReciprocalLucas-Weierstrass) 3178128159720653 r002 15th iterates of z^2 + 3178128161244388 m001 1/Zeta(1,2)^2/Rabbit/exp(cos(Pi/5))^2 3178128172809784 m001 (-BesselI(0,1)+Niven)/(sin(1)+cos(1)) 3178128176869711 m001 MadelungNaCl+Mills^Totient 3178128177716795 s002 sum(A175202[n]/(64^n),n=1..infinity) 3178128181237296 k002 Champernowne real with 3/2*n^2+85/2*n-13 3178128185813169 b008 2+(Sqrt[2]*E^Catalan)/3 3178128189176050 m005 (1/3*gamma-3/8)/(1/3*5^(1/2)+5) 3178128195779915 l006 ln(5108/7019) 3178128206276165 r005 Im(z^2+c),c=-1/122+8/21*I,n=37 3178128213957286 m001 ArtinRank2^arctan(1/2)*ArtinRank2^exp(1) 3178128218122140 k007 concat of cont frac of 3178128222701988 m001 (Pi+sin(1/5*Pi))/(arctan(1/2)+Rabbit) 3178128239047991 b008 -1/6+SphericalBesselJ[2,2] 3178128250296424 a007 Real Root Of -295*x^4-766*x^3+224*x^2-956*x+206 3178128255013539 m001 GaussKuzminWirsing/(RenyiParking+exp(-1/2*Pi)) 3178128255013539 m001 GaussKuzminWirsing/(exp(-1/2*Pi)+RenyiParking) 3178128271239409 a001 47/233*3^(12/29) 3178128274759069 r009 Re(z^3+c),c=-11/24+3/8*I,n=31 3178128291003679 r009 Im(z^3+c),c=-55/106+14/41*I,n=8 3178128303172501 r005 Im(z^2+c),c=-11/70+29/64*I,n=35 3178128304181468 r005 Im(z^2+c),c=-9/28+24/47*I,n=33 3178128316710138 m001 (Salem-ZetaP(3))/(Pi-gamma(2)) 3178128316753369 p004 log(16183/11777) 3178128327772215 r005 Re(z^2+c),c=-15/38+16/63*I,n=24 3178128329224085 a007 Real Root Of -180*x^4-555*x^3+55*x^2-91*x-297 3178128329377373 r009 Im(z^3+c),c=-59/126+10/53*I,n=19 3178128329838075 a007 Real Root Of -492*x^4-913*x^3-942*x^2-138*x+27 3178128362996793 a007 Real Root Of -238*x^4-469*x^3+917*x^2-137*x-472 3178128363703163 a005 (1/sin(25/159*Pi))^54 3178128364859745 h001 (-7*exp(4)-5)/(-3*exp(6)-8) 3178128373875724 m005 (1/2*exp(1)-3)/(1/6*Catalan+4/11) 3178128392019104 r005 Im(z^2+c),c=-109/98+11/46*I,n=32 3178128393096656 m005 (1/3*Catalan+2/11)/(10/11*5^(1/2)-1/2) 3178128399050919 m002 2/Pi^2+Pi^3+Log[Pi]/2 3178128400208720 r004 Im(z^2+c),c=-23/38+1/17*I,z(0)=-1,n=62 3178128402430031 a001 199/4181*4181^(39/50) 3178128406781659 m001 (GAMMA(19/24)-PisotVijayaraghavan)/(Pi+ln(5)) 3178128407721422 a007 Real Root Of 358*x^4+895*x^3-518*x^2+511*x-937 3178128409410798 l006 ln(6669/9164) 3178128410357288 m001 ln((2^(1/3)))*DuboisRaymond/sqrt(2) 3178128418389859 h001 (5/11*exp(1)+1/3)/(4/7*exp(2)+5/7) 3178128425931932 r005 Im(z^2+c),c=-10/27+19/42*I,n=4 3178128427747946 m001 GAMMA(5/6)^2/FeigenbaumC/exp(cosh(1))^2 3178128435374532 m001 ln(GAMMA(1/3))*Khintchine^2/sqrt(5) 3178128438671218 r009 Re(z^3+c),c=-23/118+26/27*I,n=60 3178128438726074 r009 Im(z^3+c),c=-6/13+11/62*I,n=13 3178128440330874 r005 Re(z^2+c),c=-9/26+15/34*I,n=42 3178128441146076 a003 sin(Pi*2/111)*sin(Pi*15/79) 3178128449393074 r005 Im(z^2+c),c=-11/13+7/38*I,n=8 3178128453195392 m001 FeigenbaumMu-HardyLittlewoodC4^Kolakoski 3178128472567663 m002 Pi^3-E^Pi/(Pi^4*ProductLog[Pi])+Tanh[Pi] 3178128476994257 m001 1/GAMMA(1/3)/ArtinRank2^2/exp(log(1+sqrt(2))) 3178128484269724 r002 60th iterates of z^2 + 3178128486053819 r005 Im(z^2+c),c=-23/106+23/48*I,n=39 3178128488447043 a007 Real Root Of -259*x^4-617*x^3+839*x^2+355*x-729 3178128488703911 r009 Re(z^3+c),c=-13/32+17/58*I,n=17 3178128498537223 r005 Im(z^2+c),c=-53/64+7/37*I,n=27 3178128502790293 m002 Pi*Coth[Pi]+(Csch[Pi]*Log[Pi])/4 3178128514311711 k008 concat of cont frac of 3178128517173498 a001 3524578/843*322^(3/4) 3178128534699339 m006 (1/6*exp(2*Pi)-3)/(1/4*ln(Pi)-3) 3178128535836983 m005 (1/2*Pi+3/7)/(7/10*3^(1/2)-7/12) 3178128538072287 m001 StronglyCareFree/(ErdosBorwein+GaussAGM) 3178128540145125 a007 Real Root Of -93*x^4+759*x^3-797*x^2+482*x+259 3178128541426653 r005 Im(z^2+c),c=-1/122+8/21*I,n=40 3178128544660815 r009 Re(z^3+c),c=-15/46+7/46*I,n=9 3178128545699573 a003 cos(Pi*26/115)*cos(Pi*25/69) 3178128558339096 r005 Im(z^2+c),c=-9/10+43/187*I,n=59 3178128564118948 g005 GAMMA(9/11)/GAMMA(5/9)/GAMMA(4/9)/GAMMA(5/6) 3178128573720602 s001 sum(1/10^(n-1)*A101366[n]/n^n,n=1..infinity) 3178128576635441 m001 (Landau-Thue)/(Zeta(5)+Zeta(1,2)) 3178128590107165 m001 (GAMMA(5/12)+1/3)/(OneNinth+2/3) 3178128590258491 r005 Im(z^2+c),c=-1/122+8/21*I,n=36 3178128595749251 r009 Re(z^3+c),c=-43/114+14/57*I,n=24 3178128599445205 a007 Real Root Of -221*x^4-611*x^3+171*x^2-588*x-663 3178128623955693 a009 1/4*(2-3^(2/3))*4^(1/3) 3178128624268616 a007 Real Root Of -249*x^4-579*x^3+905*x^2+501*x-732 3178128630714595 r009 Im(z^3+c),c=-21/62+1/60*I,n=7 3178128652886626 a009 12^(3/4)-2^(1/4)-3^(2/3) 3178128658312884 m005 (1/2*2^(1/2)-5/6)/(9/10*gamma-11/12) 3178128665765352 a001 23725150497407*144^(1/17) 3178128667437065 r005 Im(z^2+c),c=-1/122+8/21*I,n=43 3178128669478450 r005 Re(z^2+c),c=-19/56+29/63*I,n=41 3178128677210186 m001 Salem^2*KhintchineHarmonic^2/exp(Sierpinski) 3178128679794468 r005 Im(z^2+c),c=-1/122+8/21*I,n=44 3178128682622577 m001 1/exp(arctan(1/2))*GAMMA(11/24)^2/exp(1)^2 3178128688114380 m006 (4/5*exp(2*Pi)-1/6)/(5/6/Pi-2/5) 3178128688380576 r005 Im(z^2+c),c=-1/122+8/21*I,n=47 3178128690789375 r005 Re(z^2+c),c=17/52+5/36*I,n=19 3178128694601573 r005 Im(z^2+c),c=-1/122+8/21*I,n=50 3178128696751087 r005 Im(z^2+c),c=-1/122+8/21*I,n=53 3178128696840984 r005 Im(z^2+c),c=-1/122+8/21*I,n=54 3178128696913061 r005 Im(z^2+c),c=-1/122+8/21*I,n=46 3178128697032032 r005 Im(z^2+c),c=-1/122+8/21*I,n=57 3178128697121350 r005 Im(z^2+c),c=-1/122+8/21*I,n=51 3178128697145500 r005 Im(z^2+c),c=-1/122+8/21*I,n=60 3178128697181129 r005 Im(z^2+c),c=-1/122+8/21*I,n=64 3178128697181701 r005 Im(z^2+c),c=-1/122+8/21*I,n=63 3178128697183196 r005 Im(z^2+c),c=-1/122+8/21*I,n=61 3178128697208456 r005 Im(z^2+c),c=-1/122+8/21*I,n=62 3178128697209940 r005 Im(z^2+c),c=-1/122+8/21*I,n=56 3178128697236231 r005 Im(z^2+c),c=-1/122+8/21*I,n=59 3178128697239941 r005 Im(z^2+c),c=-1/122+8/21*I,n=58 3178128697519348 r005 Im(z^2+c),c=-1/122+8/21*I,n=55 3178128698361234 r005 Im(z^2+c),c=-1/122+8/21*I,n=52 3178128699654878 r005 Im(z^2+c),c=-1/122+8/21*I,n=49 3178128700809153 r005 Im(z^2+c),c=-1/122+8/21*I,n=48 3178128703843564 m001 1/ln(TreeGrowth2nd)*MertensB1/Zeta(9) 3178128705252302 r005 Im(z^2+c),c=-1/122+8/21*I,n=41 3178128717293028 r005 Im(z^2+c),c=-1/122+8/21*I,n=45 3178128722491718 r005 Im(z^2+c),c=-2/25+18/41*I,n=9 3178128726570749 a007 Real Root Of -327*x^4-392*x^3-586*x^2+938*x-223 3178128732308430 r005 Re(z^2+c),c=-13/66+12/19*I,n=62 3178128754215933 r005 Im(z^2+c),c=31/106+18/41*I,n=34 3178128754922607 b008 LogBarnesG[1/26+EulerGamma] 3178128762444872 r005 Im(z^2+c),c=3/74+17/48*I,n=32 3178128763061951 r005 Im(z^2+c),c=-1/122+8/21*I,n=42 3178128768536731 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^MertensB1+Niven 3178128770573918 r005 Im(z^2+c),c=-23/94+26/53*I,n=53 3178128771071166 a008 Real Root of x^4-x^3-45*x^2+9*x+356 3178128773653071 r005 Re(z^2+c),c=-41/98+1/41*I,n=15 3178128780324519 m001 (FeigenbaumDelta+GaussAGM)/(2^(1/3)+Bloch) 3178128785398496 r005 Re(z^2+c),c=-5/6+59/194*I,n=4 3178128806075966 m001 1/ln(Zeta(3))^2*FeigenbaumC*sin(Pi/5) 3178128818555613 r005 Im(z^2+c),c=-1/122+8/21*I,n=39 3178128821046254 r005 Im(z^2+c),c=5/78+37/58*I,n=6 3178128826747884 a001 9349/144*75025^(16/29) 3178128827736650 s002 sum(A165834[n]/(2^n-1),n=1..infinity) 3178128828782784 m002 -1+2*Pi+Pi^5*Csch[Pi] 3178128836307935 m008 (5*Pi^5-4/5)/(5*Pi^6+5) 3178128842230975 m002 Pi^5+Cosh[Pi]+5/(E^Pi*ProductLog[Pi]) 3178128843061698 m005 (1/6*Catalan+4)/(4*Pi+1/2) 3178128851037582 a001 4/17711*1597^(19/53) 3178128859729074 r009 Re(z^3+c),c=-3/86+29/40*I,n=31 3178128868962218 m003 1/4+(3*Sqrt[5])/32+3*Cot[1/2+Sqrt[5]/2] 3178128877411623 m001 (GaussKuzminWirsing+Paris)/(Robbin-Tetranacci) 3178128880001535 r009 Re(z^3+c),c=-11/32+34/57*I,n=6 3178128881975032 b008 Erf[(-5+Pi)^(-2)] 3178128887992166 r005 Re(z^2+c),c=-7/22+22/43*I,n=17 3178128888164694 r009 Re(z^3+c),c=-37/98+38/63*I,n=22 3178128899595003 r005 Re(z^2+c),c=-21/74+14/29*I,n=5 3178128911355705 h001 (1/9*exp(1)+1/8)/(1/5*exp(1)+4/5) 3178128917276116 m005 (1/2*gamma+3)/(101/264+7/24*5^(1/2)) 3178128927882574 r005 Im(z^2+c),c=3/70+6/17*I,n=18 3178128933968629 m002 -6+Pi^3/5+Pi^5+Cosh[Pi] 3178128938513401 a001 3571/21*2504730781961^(10/11) 3178128938845213 m001 (-Zeta(1,-1)+QuadraticClass)/(Si(Pi)+3^(1/3)) 3178128939667583 r005 Im(z^2+c),c=-1/122+8/21*I,n=38 3178128945886122 m005 (-3/20+1/4*5^(1/2))/(3/4*Catalan+3/5) 3178128961969908 m001 (ln(5)-LandauRamanujan)/(Magata-RenyiParking) 3178128979321352 a003 cos(Pi*45/113)/sin(Pi*43/95) 3178128979967444 r005 Re(z^2+c),c=-12/29+33/53*I,n=6 3178128995080325 a001 2139295485799/233*6557470319842^(10/17) 3178128996149951 r005 Im(z^2+c),c=-33/62+19/34*I,n=29 3178129002913704 m005 (1/2*Pi+4/7)/(1/3*gamma-1/8) 3178129004367434 r009 Re(z^3+c),c=-12/25+17/31*I,n=15 3178129004698846 q001 744/2341 3178129017347865 r009 Im(z^3+c),c=-10/29+17/62*I,n=19 3178129026639603 m001 ln(5)^GAMMA(23/24)*ln(5)^OrthogonalArrays 3178129029174482 v003 sum((11*n^2-11*n+18)/n^n,n=1..infinity) 3178129035352258 a007 Real Root Of -294*x^4+540*x^3+769*x^2+447*x-15 3178129047983254 r005 Im(z^2+c),c=5/42+15/49*I,n=23 3178129057161220 m005 (1/2*gamma+3/11)/(4/11*exp(1)+7/9) 3178129063820148 r009 Re(z^3+c),c=-19/66+1/30*I,n=16 3178129063893238 r009 Re(z^3+c),c=-19/66+1/30*I,n=17 3178129064351690 r009 Re(z^3+c),c=-19/66+1/30*I,n=18 3178129064616258 r009 Re(z^3+c),c=-19/66+1/30*I,n=19 3178129064728978 r009 Re(z^3+c),c=-19/66+1/30*I,n=20 3178129064770355 r009 Re(z^3+c),c=-19/66+1/30*I,n=21 3178129064784046 r009 Re(z^3+c),c=-19/66+1/30*I,n=22 3178129064788185 r009 Re(z^3+c),c=-19/66+1/30*I,n=23 3178129064789322 r009 Re(z^3+c),c=-19/66+1/30*I,n=24 3178129064789599 r009 Re(z^3+c),c=-19/66+1/30*I,n=25 3178129064789653 r009 Re(z^3+c),c=-19/66+1/30*I,n=26 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=38 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=37 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=39 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=40 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=41 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=42 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=43 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=44 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=45 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=46 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=47 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=59 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=58 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=60 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=61 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=62 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=63 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=64 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=57 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=56 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=55 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=54 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=53 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=52 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=51 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=50 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=49 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=48 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=36 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=35 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=34 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=33 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=32 3178129064789654 r009 Re(z^3+c),c=-19/66+1/30*I,n=31 3178129064789655 r009 Re(z^3+c),c=-19/66+1/30*I,n=30 3178129064789656 r009 Re(z^3+c),c=-19/66+1/30*I,n=29 3178129064789657 r009 Re(z^3+c),c=-19/66+1/30*I,n=28 3178129064789659 r009 Re(z^3+c),c=-19/66+1/30*I,n=27 3178129068144840 r009 Re(z^3+c),c=-19/66+1/30*I,n=15 3178129071504374 p003 LerchPhi(1/1024,2,55/31) 3178129075232039 a001 3571/377*6765^(7/51) 3178129078691409 a007 Real Root Of -195*x^4-545*x^3+332*x^2+13*x-913 3178129080540480 r005 Re(z^2+c),c=-57/62+3/13*I,n=26 3178129087883322 m001 1/Bloch/Cahen/ln(Riemann3rdZero)^2 3178129090922869 m001 (Lehmer-Porter)/(BesselI(0,2)+Bloch) 3178129092396852 a007 Real Root Of -540*x^4-898*x^3-426*x^2+325*x+123 3178129092754526 r005 Re(z^2+c),c=19/58+4/33*I,n=48 3178129095594087 r009 Re(z^3+c),c=-19/66+1/30*I,n=14 3178129107723168 a007 Real Root Of 32*x^4-158*x^3-751*x^2+225*x-36 3178129108466852 l006 ln(1561/2145) 3178129108717872 p003 LerchPhi(1/6,5,185/233) 3178129116336986 a001 5/124*18^(5/7) 3178129118922221 a007 Real Root Of 795*x^4-646*x^3-107*x^2-930*x+319 3178129129262911 r009 Re(z^3+c),c=-29/78+10/43*I,n=8 3178129129860182 a001 39088169/199*76^(1/9) 3178129131049959 m006 (5*ln(Pi)+1/6)/(5/6*exp(Pi)-3/4) 3178129137999074 r005 Re(z^2+c),c=17/42+25/59*I,n=3 3178129152717765 m001 (Shi(1)-MinimumGamma)^BesselI(0,1) 3178129164649149 a001 47/34*17711^(4/47) 3178129171211181 k008 concat of cont frac of 3178129174158288 m001 1/FeigenbaumB/LandauRamanujan/ln(GAMMA(13/24)) 3178129176636521 a008 Real Root of x^4-40*x^2+302 3178129184243306 k002 Champernowne real with 2*n^2+41*n-12 3178129184816356 a003 cos(Pi*31/78)/sin(Pi*35/74) 3178129187722025 a001 439204/21*12586269025^(10/11) 3178129187732780 a001 6643838879/21*317811^(10/11) 3178129187738500 a001 54018521/21*63245986^(10/11) 3178129208210961 a007 Real Root Of -291*x^4+856*x^3+807*x^2+302*x-202 3178129208330770 r005 Im(z^2+c),c=-2/3+57/178*I,n=35 3178129212073135 a001 1292/9*3^(34/47) 3178129219933874 r009 Re(z^3+c),c=-19/66+1/30*I,n=13 3178129220052448 r009 Re(z^3+c),c=-3/46+40/57*I,n=35 3178129226574802 r005 Re(z^2+c),c=-41/106+12/41*I,n=32 3178129234982507 h001 (10/11*exp(2)+5/11)/(2/3*exp(1)+4/9) 3178129237278170 m001 ln(Robbin)/GolombDickman^2*sqrt(3)^2 3178129269831576 m001 1/exp(Paris)^2*LaplaceLimit^2*log(1+sqrt(2)) 3178129276453682 a009 10^(2/3)-5^(1/4)-4^(3/4) 3178129290535336 a001 1364/17711*13^(21/38) 3178129300215900 a001 8/167761*18^(21/32) 3178129303359434 r002 3th iterates of z^2 + 3178129306208348 r005 Im(z^2+c),c=-11/31+10/19*I,n=46 3178129318922296 r009 Re(z^3+c),c=-10/21+2/5*I,n=45 3178129327691998 r002 43th iterates of z^2 + 3178129328771717 r005 Im(z^2+c),c=-9/29+14/27*I,n=43 3178129336141757 m005 (1/2*Pi-7/8)/(10/11*Pi-2/3) 3178129347319675 a001 161*233^(29/53) 3178129358690055 r005 Re(z^2+c),c=-8/23+17/39*I,n=42 3178129359479808 r002 12th iterates of z^2 + 3178129359484853 r005 Re(z^2+c),c=-19/14+96/235*I,n=2 3178129361787409 r009 Im(z^3+c),c=-10/19+9/50*I,n=54 3178129366745994 h001 (-2*exp(1/2)-2)/(-8*exp(3)-6) 3178129368903206 r009 Re(z^3+c),c=-29/74+9/23*I,n=4 3178129370440544 m005 (1/2*exp(1)+7/9)/(1/8*3^(1/2)-8/9) 3178129371372834 a001 39088169/521*322^(1/4) 3178129387329542 r002 11th iterates of z^2 + 3178129398194923 m001 ((2^(1/3))+TwinPrimes)^sqrt(Pi) 3178129398194923 m001 (2^(1/3)+TwinPrimes)^(Pi^(1/2)) 3178129404983049 a007 Real Root Of 430*x^4-539*x^3-299*x^2-955*x-295 3178129407116217 r002 48th iterates of z^2 + 3178129414306773 a001 817138163596/21*1597^(10/11) 3178129418231143 r005 Re(z^2+c),c=-47/114+7/53*I,n=23 3178129432176239 r002 38th iterates of z^2 + 3178129438497292 b008 ArcSinh[Pi*(2+EulerGamma*Pi)] 3178129447221912 m001 1/Salem/FransenRobinson^2*ln(GAMMA(1/6))^2 3178129449575214 a007 Real Root Of -345*x^4-893*x^3+343*x^2-980*x-48 3178129471998931 r005 Im(z^2+c),c=-7/18+11/21*I,n=50 3178129472152628 b008 41-7*ArcCosh[2] 3178129489366116 r005 Re(z^2+c),c=-41/122+25/53*I,n=39 3178129511136734 r005 Im(z^2+c),c=-35/58+3/47*I,n=26 3178129519045310 a007 Real Root Of -13*x^4+621*x^3-302*x^2-178*x-6 3178129525238826 m001 BesselI(0,1)*(GAMMA(13/24)+GAMMA(1/24)) 3178129527646936 a007 Real Root Of 753*x^4-125*x^3+752*x^2-901*x-374 3178129534313229 m001 1/CareFree^2/exp(Artin)^2*gamma^2 3178129537589729 s001 sum(1/10^(n-1)*A139495[n]/n^n,n=1..infinity) 3178129558500743 a007 Real Root Of -202*x^4-429*x^3+575*x^2-444*x-382 3178129561928834 r009 Re(z^3+c),c=-27/56+25/57*I,n=55 3178129581496394 r005 Im(z^2+c),c=-83/90+12/49*I,n=15 3178129586470963 m001 GaussKuzminWirsing/(ln(2+3^(1/2))^Zeta(1,-1)) 3178129587336970 m001 (GAMMA(11/12)+ZetaP(4))/(Pi+BesselK(0,1)) 3178129588795731 a001 3732588/341*322^(7/12) 3178129626261215 m005 (1/3*3^(1/2)-3/4)/(5/9*Catalan-5/11) 3178129631881174 a007 Real Root Of -225*x^4-617*x^3+554*x^2+765*x-16 3178129633599825 r005 Im(z^2+c),c=25/78+5/44*I,n=49 3178129638050969 a007 Real Root Of -195*x^4-344*x^3+722*x^2-195*x+939 3178129640900822 a001 9/305*55^(1/54) 3178129649870233 m001 (Pi+GolombDickman)/(OneNinth+Trott) 3178129652724156 s002 sum(A209535[n]/(n^3*exp(n)+1),n=1..infinity) 3178129653945682 g007 Psi(2,4/7)+Psi(2,3/4)-Psi(2,5/11)-Psi(2,3/7) 3178129660168784 m001 (Zeta(1,2)-FeigenbaumC)/(Kolakoski+ZetaP(4)) 3178129666837188 m001 StolarskyHarborth/(Salem-GAMMA(19/24)) 3178129668254671 r005 Re(z^2+c),c=3/58+30/47*I,n=23 3178129669497745 m001 (2^(1/2)-BesselI(0,2))/(-Artin+MasserGramain) 3178129674789601 m001 Ei(1)*ln(Robbin)^2/Zeta(7)^2 3178129677076758 r005 Im(z^2+c),c=1/44+18/47*I,n=7 3178129678084194 m005 (-3/8+1/4*5^(1/2))/(4/11*gamma-6) 3178129700565114 m001 StolarskyHarborth^(FransenRobinson/GAMMA(3/4)) 3178129701298646 r009 Re(z^3+c),c=-19/66+1/30*I,n=12 3178129703039979 m001 (Landau-MertensB3)/(Riemann3rdZero-ZetaP(3)) 3178129703778079 a007 Real Root Of -199*x^4-741*x^3-477*x^2-204*x+685 3178129705015419 a001 521/196418*2178309^(17/35) 3178129714721054 m002 5/Pi^2+Pi^3+ProductLog[Pi]/4 3178129714896762 m001 GAMMA(5/6)*FransenRobinson+ZetaQ(3) 3178129732317389 a007 Real Root Of -100*x^4+634*x^3-788*x^2+642*x+305 3178129736411859 r005 Re(z^2+c),c=-89/114+1/64*I,n=38 3178129738262502 b008 35*Pi*Log[18] 3178129741711268 h001 (10/11*exp(2)+5/8)/(8/11*exp(1)+1/3) 3178129742075428 m001 2^(1/3)*MasserGramainDelta+QuadraticClass 3178129760448557 r005 Re(z^2+c),c=-41/106+12/41*I,n=35 3178129762189768 r005 Im(z^2+c),c=3/74+17/48*I,n=33 3178129776302467 a001 5/4*1364^(13/29) 3178129782477432 a001 14930352/2207*322^(2/3) 3178129793387872 r005 Re(z^2+c),c=23/70+24/61*I,n=42 3178129798092539 m001 ln(GAMMA(13/24))/FeigenbaumDelta*sqrt(3)^2 3178129802836042 r009 Re(z^3+c),c=-3/8+14/53*I,n=5 3178129804743706 r005 Re(z^2+c),c=-5/12+14/23*I,n=20 3178129816445558 r005 Im(z^2+c),c=3/74+17/48*I,n=36 3178129831874361 m008 (2*Pi^5+2/5)/(3/5*Pi^3+2/3) 3178129843145525 r002 47th iterates of z^2 + 3178129852243357 a007 Real Root Of -919*x^4+966*x^3+513*x^2+681*x+205 3178129855341175 a007 Real Root Of 29*x^4-93*x^3-507*x^2+247*x-38 3178129857302549 r005 Im(z^2+c),c=-1/122+8/21*I,n=31 3178129899784594 r005 Im(z^2+c),c=13/48+9/50*I,n=34 3178129899919364 r005 Im(z^2+c),c=-1/122+8/21*I,n=35 3178129905869234 r005 Im(z^2+c),c=7/23+3/22*I,n=34 3178129909636207 l006 ln(5819/7996) 3178129909747750 r005 Im(z^2+c),c=-17/82+23/39*I,n=6 3178129921441683 r009 Re(z^3+c),c=-41/114+11/51*I,n=21 3178129936826295 a007 Real Root Of -147*x^4-85*x^3+873*x^2-975*x+352 3178129942339409 a003 sin(Pi*5/43)*sin(Pi*37/106) 3178129952541898 r005 Im(z^2+c),c=9/52+3/10*I,n=4 3178129969953586 a007 Real Root Of -70*x^4+632*x^3+449*x^2+580*x+18 3178130000022768 a001 98211+98209*5^(1/2) 3178130006098908 r005 Re(z^2+c),c=-7/22+19/36*I,n=51 3178130008348105 a007 Real Root Of 241*x^4-998*x^3+86*x^2-938*x+319 3178130017100618 r005 Re(z^2+c),c=5/122+13/45*I,n=15 3178130023317521 r005 Im(z^2+c),c=3/74+17/48*I,n=39 3178130043306516 r005 Im(z^2+c),c=3/74+17/48*I,n=40 3178130045473344 m001 ErdosBorwein^GAMMA(13/24)*Zeta(1/2) 3178130048465089 r005 Im(z^2+c),c=3/74+17/48*I,n=26 3178130056323656 m001 (Kac+Sarnak)/(Zeta(1,-1)+exp(-1/2*Pi)) 3178130058350647 r005 Im(z^2+c),c=3/74+17/48*I,n=35 3178130058566423 r005 Im(z^2+c),c=3/74+17/48*I,n=43 3178130068910342 r005 Im(z^2+c),c=3/74+17/48*I,n=47 3178130069330332 r005 Im(z^2+c),c=3/74+17/48*I,n=46 3178130070146903 r005 Im(z^2+c),c=3/74+17/48*I,n=50 3178130070567601 r005 Im(z^2+c),c=3/74+17/48*I,n=54 3178130070567726 r005 Im(z^2+c),c=3/74+17/48*I,n=51 3178130070643943 r005 Im(z^2+c),c=3/74+17/48*I,n=57 3178130070648818 r005 Im(z^2+c),c=3/74+17/48*I,n=53 3178130070653684 r005 Im(z^2+c),c=3/74+17/48*I,n=58 3178130070658599 r005 Im(z^2+c),c=3/74+17/48*I,n=61 3178130070662665 r005 Im(z^2+c),c=3/74+17/48*I,n=64 3178130070663623 r005 Im(z^2+c),c=3/74+17/48*I,n=62 3178130070664892 r005 Im(z^2+c),c=3/74+17/48*I,n=60 3178130070665098 r005 Im(z^2+c),c=3/74+17/48*I,n=63 3178130070673485 r005 Im(z^2+c),c=3/74+17/48*I,n=59 3178130070691145 r005 Im(z^2+c),c=3/74+17/48*I,n=55 3178130070696758 r005 Im(z^2+c),c=3/74+17/48*I,n=56 3178130070900468 r005 Im(z^2+c),c=3/74+17/48*I,n=52 3178130071152881 r005 Im(z^2+c),c=3/74+17/48*I,n=44 3178130071175458 r005 Im(z^2+c),c=3/74+17/48*I,n=49 3178130071620230 r005 Im(z^2+c),c=3/74+17/48*I,n=48 3178130075596873 r005 Im(z^2+c),c=3/74+17/48*I,n=45 3178130075714015 a001 377/11*15127^(56/59) 3178130075833347 r008 a(0)=3,K{-n^6,-13+61*n-39*n^2-15*n^3} 3178130076124230 r005 Im(z^2+c),c=3/74+17/48*I,n=42 3178130083757337 a001 13/15127*4^(50/53) 3178130088413623 r005 Im(z^2+c),c=3/106+13/36*I,n=21 3178130093342839 m005 (1/3*Pi-1/3)/(9/11*5^(1/2)+5/12) 3178130096669881 r005 Im(z^2+c),c=3/74+17/48*I,n=41 3178130109352573 b008 InverseGudermannian[Pi/33]/3 3178130116505084 b008 3*ArcCoth[39/4]^2 3178130125768231 r005 Re(z^2+c),c=-6/19+11/21*I,n=60 3178130133957268 r005 Im(z^2+c),c=3/74+17/48*I,n=37 3178130139418231 m001 (ln(3)+exp(sqrt(2)))/GAMMA(13/24) 3178130141654438 r005 Re(z^2+c),c=-35/118+34/61*I,n=59 3178130150708114 r005 Re(z^2+c),c=-19/54+10/23*I,n=23 3178130162218643 r005 Im(z^2+c),c=3/74+17/48*I,n=38 3178130187249316 k002 Champernowne real with 5/2*n^2+79/2*n-11 3178130201885211 r005 Re(z^2+c),c=-1/40+25/39*I,n=62 3178130203348113 l006 ln(4258/5851) 3178130206950033 r009 Im(z^3+c),c=-19/50+16/63*I,n=10 3178130209003047 r005 Re(z^2+c),c=-33/86+19/62*I,n=31 3178130209609631 r002 18th iterates of z^2 + 3178130216254396 a007 Real Root Of 16*x^4+498*x^3-323*x^2+329*x-382 3178130218321064 r005 Re(z^2+c),c=-5/23+7/13*I,n=8 3178130225334017 r009 Re(z^3+c),c=-21/52+10/37*I,n=7 3178130227923104 m001 FeigenbaumKappa*Robbin^2*exp(Pi)^2 3178130231161935 r005 Im(z^2+c),c=-17/36+2/37*I,n=31 3178130247125577 r005 Re(z^2+c),c=-13/32+11/60*I,n=28 3178130250064468 v002 sum(1/(5^n+(16*n^2-15*n+51)),n=1..infinity) 3178130293018788 r005 Re(z^2+c),c=-23/22+37/106*I,n=7 3178130297217992 r005 Re(z^2+c),c=7/58+5/12*I,n=52 3178130298074424 m008 (5*Pi^2-2/5)/(1/6*Pi^4-5/6) 3178130298210577 r005 Im(z^2+c),c=13/90+13/45*I,n=23 3178130321842114 r009 Im(z^3+c),c=-5/24+17/23*I,n=7 3178130339544169 m001 (Si(Pi)-Grothendieck)/Ei(1,1) 3178130339761787 a001 39088169/5778*322^(2/3) 3178130340039095 m005 (1/2*5^(1/2)-5/6)/(1/2*5^(1/2)-2/9) 3178130342404615 a005 (1/sin(97/211*Pi))^144 3178130342644601 r005 Re(z^2+c),c=-35/114+28/53*I,n=37 3178130344439266 a003 sin(Pi*5/53)/cos(Pi*4/31) 3178130348458625 r009 Im(z^3+c),c=-31/122+14/45*I,n=8 3178130354535083 r005 Re(z^2+c),c=-71/98+2/61*I,n=8 3178130356420797 a001 433494437/2207*123^(1/10) 3178130362053142 m001 (Zeta(1/2)+exp(1/Pi))/(FeigenbaumD+ZetaQ(3)) 3178130363654499 a007 Real Root Of 163*x^4+391*x^3-520*x^2-524*x-491 3178130365586675 r002 9th iterates of z^2 + 3178130370336800 r005 Re(z^2+c),c=-33/86+15/49*I,n=28 3178130377612727 a007 Real Root Of 9*x^4-8*x^3-232*x^2-305*x+199 3178130379958004 m001 ZetaQ(4)*(BesselK(1,1)+PisotVijayaraghavan) 3178130397656925 r005 Re(z^2+c),c=-21/106+27/46*I,n=25 3178130414110161 k008 concat of cont frac of 3178130414854975 m001 MertensB3^(3^(1/3))*MertensB3^Sierpinski 3178130418295668 a001 1/72*1836311903^(8/17) 3178130421068495 a001 6765*322^(2/3) 3178130423316658 r005 Im(z^2+c),c=-123/110+16/59*I,n=34 3178130432930984 a001 267914296/39603*322^(2/3) 3178130434661698 a001 701408733/103682*322^(2/3) 3178130434914205 a001 1836311903/271443*322^(2/3) 3178130434951046 a001 686789568/101521*322^(2/3) 3178130434956421 a001 12586269025/1860498*322^(2/3) 3178130434957205 a001 32951280099/4870847*322^(2/3) 3178130434957319 a001 86267571272/12752043*322^(2/3) 3178130434957336 a001 32264490531/4769326*322^(2/3) 3178130434957338 a001 591286729879/87403803*322^(2/3) 3178130434957339 a001 1548008755920/228826127*322^(2/3) 3178130434957339 a001 4052739537881/599074578*322^(2/3) 3178130434957339 a001 1515744265389/224056801*322^(2/3) 3178130434957339 a001 6557470319842/969323029*322^(2/3) 3178130434957339 a001 2504730781961/370248451*322^(2/3) 3178130434957339 a001 956722026041/141422324*322^(2/3) 3178130434957340 a001 365435296162/54018521*322^(2/3) 3178130434957346 a001 139583862445/20633239*322^(2/3) 3178130434957390 a001 53316291173/7881196*322^(2/3) 3178130434957690 a001 20365011074/3010349*322^(2/3) 3178130434959743 a001 7778742049/1149851*322^(2/3) 3178130434973814 a001 2971215073/439204*322^(2/3) 3178130435070264 a001 1134903170/167761*322^(2/3) 3178130435731338 a001 433494437/64079*322^(2/3) 3178130438590694 r004 Re(z^2+c),c=7/16-3/8*I,z(0)=exp(7/12*I*Pi),n=3 3178130440262405 a001 165580141/24476*322^(2/3) 3178130446538476 r005 Re(z^2+c),c=2/7+6/55*I,n=12 3178130449086363 l006 ln(6955/9557) 3178130451046668 r009 Im(z^3+c),c=-47/114+29/60*I,n=3 3178130452933412 a001 1860498/5*4181^(17/21) 3178130458064052 m001 (polylog(4,1/2)-GAMMA(11/12))/(Artin-Landau) 3178130468871963 a001 9062201101803*1836311903^(1/17) 3178130468871963 a001 5600748293801*6557470319842^(1/17) 3178130468872105 a001 14662949395604*514229^(1/17) 3178130471318806 a001 63245986/9349*322^(2/3) 3178130482582648 r005 Re(z^2+c),c=-37/110+21/41*I,n=29 3178130511463844 q001 901/2835 3178130511463844 r002 2th iterates of z^2 + 3178130518400987 r005 Im(z^2+c),c=-23/102+14/29*I,n=31 3178130550071478 r004 Re(z^2+c),c=-37/30+3/22*I,z(0)=-1,n=21 3178130550458116 a007 Real Root Of 539*x^4+61*x^3+675*x^2-841*x-339 3178130553834211 a007 Real Root Of 81*x^4+237*x^3-107*x^2-202*x-217 3178130560448256 a001 2/2178309*610^(21/38) 3178130571762120 r009 Im(z^3+c),c=-17/30+39/55*I,n=5 3178130573491959 m001 1/GAMMA(1/4)^2*ln(Cahen)/GAMMA(11/12) 3178130584072661 a001 55/3571*521^(15/31) 3178130585541094 r005 Re(z^2+c),c=-41/106+32/61*I,n=6 3178130607156801 r005 Re(z^2+c),c=37/106+7/44*I,n=38 3178130617243139 m005 (1/2*Catalan+4/7)/(6/7*exp(1)+10/11) 3178130635698191 b008 -5+EllipticE[-5/7] 3178130637869518 m001 (BesselK(0,1)-ln(2))/(DuboisRaymond+Robbin) 3178130656553576 m001 sin(Pi/5)^2/ln(FeigenbaumKappa)^2/sinh(1) 3178130665638002 p003 LerchPhi(1/100,4,173/73) 3178130665869498 m001 Khintchine/ArtinRank2/ln(GAMMA(5/6)) 3178130666776838 a007 Real Root Of -244*x^4-675*x^3+10*x^2-898*x+270 3178130684182557 a001 24157817/3571*322^(2/3) 3178130686897982 r005 Im(z^2+c),c=3/74+17/48*I,n=34 3178130701067710 m001 (1-OneNinth)/FransenRobinson 3178130702917451 m001 (Magata+RenyiParking)/(ln(2+3^(1/2))+gamma(2)) 3178130711045956 a007 Real Root Of -638*x^4+418*x^3+252*x^2+52*x+11 3178130713749642 r005 Re(z^2+c),c=31/126+17/36*I,n=56 3178130744264279 r008 a(0)=3,K{-n^6,-4-5*n^2+3*n} 3178130747794600 a001 3571/46368*13^(21/38) 3178130759153360 a003 sin(Pi*1/75)-sin(Pi*13/111) 3178130783240509 m008 (3/5*Pi^4+4)/(1/5*Pi^4+1/6) 3178130793481579 m001 Catalan^LandauRamanujan-exp(sqrt(2)) 3178130826876219 m004 -4-Log[Sqrt[5]*Pi]+(750*Sec[Sqrt[5]*Pi])/Pi 3178130829837749 a007 Real Root Of 321*x^4-108*x^3+767*x^2-207*x-150 3178130832704758 r002 8th iterates of z^2 + 3178130837055751 l006 ln(2697/3706) 3178130839595163 m001 Psi(1,1/3)^FeigenbaumAlpha/GAMMA(23/24) 3178130842211858 a007 Real Root Of 106*x^4+104*x^3-613*x^2+573*x+537 3178130842305255 h001 (4/7*exp(1)+1/10)/(7/11*exp(2)+1/2) 3178130854659964 m001 (BesselI(0,2)-sin(1))/(-Champernowne+Stephens) 3178130855690428 m001 (3^(1/2)+gamma(2))/(-HeathBrownMoroz+Landau) 3178130889414739 r009 Im(z^3+c),c=-21/46+12/59*I,n=9 3178130891186352 m005 (1/2*Pi+7/11)/(-3/11+1/11*5^(1/2)) 3178130907489915 h001 (7/10*exp(2)+3/4)/(4/11*exp(1)+7/8) 3178130908461261 m001 (1+GolombDickman)/(Paris+ThueMorse) 3178130913705250 a001 567451585/2889*123^(1/10) 3178130918332254 m003 7/2+(257*Sqrt[5])/4096-Tanh[1/2+Sqrt[5]/2]/2 3178130919110265 r005 Im(z^2+c),c=-5/13+23/41*I,n=33 3178130922424014 r005 Im(z^2+c),c=-5/4+116/253*I,n=3 3178130924024611 a007 Real Root Of 283*x^4+801*x^3-329*x^2+164 3178130928055271 b008 Pi+InverseGudermannian[Pi/86] 3178130952751531 a001 76/21*1597^(34/37) 3178130960405861 a001 9349/121393*13^(21/38) 3178130965841392 r005 Re(z^2+c),c=-35/102+9/20*I,n=60 3178130976123228 m008 (1/4*Pi^4+1/4)/(4/5*Pi^6+5) 3178130979460681 r005 Re(z^2+c),c=11/54+31/60*I,n=50 3178130980654480 r005 Re(z^2+c),c=-39/106+16/49*I,n=11 3178130986730889 m001 Zeta(3)*ln(Lehmer)^2*cos(Pi/12) 3178130987283534 m001 (Pi-exp(Pi))*gamma(2)*GAMMA(13/24) 3178130987668970 b008 45/(-3+Pi) 3178130991425426 a001 844/10959*13^(21/38) 3178130993568940 r009 Re(z^3+c),c=-31/66+18/47*I,n=27 3178130995011972 a001 2971215073/15127*123^(1/10) 3178130995951119 a001 64079/832040*13^(21/38) 3178130998748152 a001 39603/514229*13^(21/38) 3178131006874464 a001 7778742049/39603*123^(1/10) 3178131008605178 a001 10182505537/51841*123^(1/10) 3178131008857686 a001 53316291173/271443*123^(1/10) 3178131008894526 a001 139583862445/710647*123^(1/10) 3178131008899901 a001 182717648081/930249*123^(1/10) 3178131008900685 a001 956722026041/4870847*123^(1/10) 3178131008900799 a001 2504730781961/12752043*123^(1/10) 3178131008900816 a001 3278735159921/16692641*123^(1/10) 3178131008900820 a001 10610209857723/54018521*123^(1/10) 3178131008900826 a001 4052739537881/20633239*123^(1/10) 3178131008900870 a001 387002188980/1970299*123^(1/10) 3178131008901170 a001 591286729879/3010349*123^(1/10) 3178131008903223 a001 225851433717/1149851*123^(1/10) 3178131008917295 a001 196418*123^(1/10) 3178131009013744 a001 32951280099/167761*123^(1/10) 3178131009674818 a001 12586269025/64079*123^(1/10) 3178131010596571 a001 15127/196418*13^(21/38) 3178131011543542 r009 Im(z^3+c),c=-53/118+10/49*I,n=22 3178131014205886 a001 1201881744/6119*123^(1/10) 3178131021728911 m001 ln(Trott)*Cahen/Catalan 3178131021743551 m001 exp(Porter)*Kolakoski/Trott 3178131026334147 r008 a(0)=3,K{-n^6,41-23*n^3+12*n^2-36*n} 3178131030427082 r005 Im(z^2+c),c=-25/86+27/53*I,n=54 3178131030859392 m001 Bloch*ln(gamma)^TwinPrimes 3178131032084404 r009 Re(z^3+c),c=-33/86+13/61*I,n=4 3178131040275003 m005 (1/2*2^(1/2)+2/11)/(2/3*3^(1/2)-7/8) 3178131040364365 m001 (exp(Pi)+sin(1/5*Pi))/(-Pi^(1/2)+GAMMA(23/24)) 3178131043833641 m008 (4*Pi^3-2/5)/(1/3*Pi^2+3/5) 3178131045119851 a008 Real Root of x^4-x^3-36*x^2-87*x-47 3178131045262292 a001 1836311903/9349*123^(1/10) 3178131070637668 a001 1/1353*(1/2*5^(1/2)+1/2)^19*11^(7/11) 3178131071549891 a001 726103/281*322^(5/6) 3178131073587844 r005 Im(z^2+c),c=-16/19+13/63*I,n=35 3178131087412814 a001 208010/19*11^(4/9) 3178131091806846 a001 5778/75025*13^(21/38) 3178131092921478 r009 Re(z^3+c),c=-21/44+25/62*I,n=48 3178131094020791 m001 TreeGrowth2nd/CareFree^2/exp(GAMMA(23/24)) 3178131110115211 k008 concat of cont frac of 3178131111136896 k008 concat of cont frac of 3178131111400806 m001 (Gompertz+Trott2nd)/(FeigenbaumAlpha-cos(1)) 3178131112492381 k007 concat of cont frac of 3178131114111222 k007 concat of cont frac of 3178131117218813 a001 3/17711*610^(16/35) 3178131120816123 r009 Im(z^3+c),c=-5/11+8/39*I,n=15 3178131121353252 k007 concat of cont frac of 3178131121692232 k007 concat of cont frac of 3178131126088246 r009 Im(z^3+c),c=-31/64+7/61*I,n=9 3178131129923348 s002 sum(A192839[n]/((2*n)!),n=1..infinity) 3178131131267887 r002 12th iterates of z^2 + 3178131141119935 m005 (1/2*gamma-5/6)/(11/12*exp(1)-7/9) 3178131142563299 a007 Real Root Of 917*x^4+105*x^3-794*x^2-911*x+357 3178131147844301 p001 sum(1/(533*n+331)/(8^n),n=0..infinity) 3178131152251113 k008 concat of cont frac of 3178131165281846 m001 1/FeigenbaumC^2/exp(Paris)*Salem 3178131187806956 m001 ZetaQ(2)^LaplaceLimit*ZetaQ(2)^polylog(4,1/2) 3178131190255326 k002 Champernowne real with 3*n^2+38*n-10 3178131191141112 k006 concat of cont frac of 3178131191257329 k004 Champernowne real with floor(Pi*(n^2+12*n-3)) 3178131192317813 k006 concat of cont frac of 3178131196562162 m001 (Trott+ZetaP(3))/(gamma(3)+LandauRamanujan2nd) 3178131199785592 a007 Real Root Of -933*x^4+879*x^3-77*x^2+527*x+213 3178131207138087 h001 (3/11*exp(1)+1/11)/(7/11*exp(1)+8/9) 3178131209419443 a007 Real Root Of -22*x^4-713*x^3-456*x^2-569*x-848 3178131211411182 k008 concat of cont frac of 3178131212461225 k007 concat of cont frac of 3178131213141272 k007 concat of cont frac of 3178131217985844 m005 (1/2*Pi-1/9)/(4/9*Catalan-5) 3178131219513501 r005 Re(z^2+c),c=-71/52+20/47*I,n=2 3178131219571603 r009 Re(z^3+c),c=-41/114+11/51*I,n=22 3178131220687800 r005 Re(z^2+c),c=-29/46+13/28*I,n=7 3178131223261511 k006 concat of cont frac of 3178131227700491 r005 Im(z^2+c),c=27/86+5/39*I,n=32 3178131234462440 m001 (-FellerTornier+ZetaQ(3))/(Ei(1,1)-Psi(1,1/3)) 3178131238400144 r005 Im(z^2+c),c=-4/27+22/49*I,n=24 3178131242194874 a007 Real Root Of 261*x^4-904*x^3+663*x^2-772*x-344 3178131243880928 m001 ln(GAMMA(17/24))^2*MertensB1^2*exp(1)^2 3178131250275809 l006 ln(6530/8973) 3178131253258174 r005 Im(z^2+c),c=37/118+7/57*I,n=60 3178131255255139 a001 199/18*(1/2*5^(1/2)+1/2)^13*18^(13/22) 3178131257584802 a007 Real Root Of 36*x^4-593*x^3-234*x^2-84*x+69 3178131258126081 a001 701408733/3571*123^(1/10) 3178131273443721 k006 concat of cont frac of 3178131274599377 r005 Re(z^2+c),c=-37/102+26/63*I,n=15 3178131278099276 m001 (Psi(1,1/3)+exp(1/exp(1)))/(-Artin+Trott) 3178131279131588 a007 Real Root Of -924*x^4-408*x^3+580*x^2+777*x-283 3178131282103288 a007 Real Root Of -199*x^4+172*x^3-398*x^2+929*x+343 3178131295733677 b008 Csch[Erfc[1]/5] 3178131312121513 k006 concat of cont frac of 3178131315211182 k007 concat of cont frac of 3178131317392813 a007 Real Root Of -939*x^4-800*x^3-946*x^2+974*x+389 3178131319161125 a001 167761/610*6557470319842^(16/17) 3178131319274050 a001 370248451/610*1836311903^(16/17) 3178131319276312 a001 408569081798/305*514229^(16/17) 3178131319942675 a008 Real Root of x^2-x-101323 3178131320134905 r005 Im(z^2+c),c=-67/118+17/41*I,n=36 3178131323261511 k009 concat of cont frac of 3178131326934176 m005 (1/3*Catalan+1/6)/(6/7*Catalan+7/10) 3178131331729474 p001 sum(1/(367*n+186)/n/(6^n),n=1..infinity) 3178131336972959 m001 (BesselK(1,1)-arctan(1/3))/QuadraticClass 3178131339289674 p001 sum((-1)^n/(344*n+303)/(12^n),n=0..infinity) 3178131361724571 m001 (Zeta(1,2)+LaplaceLimit)/(2^(1/2)+ln(gamma)) 3178131366838319 r009 Re(z^3+c),c=-41/114+11/51*I,n=16 3178131375385768 m005 (1/2*Pi-5/6)/(1/4*exp(1)-3) 3178131376561142 r009 Re(z^3+c),c=-19/66+1/30*I,n=11 3178131377953636 a007 Real Root Of 87*x^4+214*x^3-158*x^2-777*x-225 3178131384114340 r005 Im(z^2+c),c=4/17+8/37*I,n=38 3178131392352194 r009 Im(z^3+c),c=-2/21+10/29*I,n=7 3178131393990723 r005 Re(z^2+c),c=-23/56+5/34*I,n=23 3178131394501902 m001 Sierpinski/Rabbit^2/ln(sinh(1)) 3178131395742952 m001 1/ln(OneNinth)^2*ArtinRank2^2/GAMMA(7/24) 3178131397946276 r005 Im(z^2+c),c=-9/46+29/57*I,n=14 3178131401219192 r009 Re(z^3+c),c=-17/40+10/31*I,n=20 3178131403171413 k008 concat of cont frac of 3178131408316500 h001 (5/12*exp(2)+7/8)/(3/10*exp(1)+3/7) 3178131411022125 a007 Real Root Of 472*x^4+368*x^3-293*x^2-771*x+258 3178131412472346 r002 13th iterates of z^2 + 3178131413123116 k006 concat of cont frac of 3178131421563034 r005 Im(z^2+c),c=-11/25+5/47*I,n=4 3178131453142276 a007 Real Root Of -281*x^4-533*x^3+992*x^2-552*x-216 3178131479755751 a001 55/843*3571^(6/31) 3178131487127804 r009 Im(z^3+c),c=-17/50+13/47*I,n=17 3178131492142178 k006 concat of cont frac of 3178131500133722 m001 FeigenbaumKappa/((ln(2)/ln(10))^Rabbit) 3178131507372734 m001 (arctan(1/2)+gamma(3))/(Artin-Tribonacci) 3178131511311111 k009 concat of cont frac of 3178131511742411 k008 concat of cont frac of 3178131513560653 m001 ln(Porter)^2*Khintchine^2*sqrt(3)^2 3178131525003502 r002 10th iterates of z^2 + 3178131527754805 r005 Im(z^2+c),c=3/74+17/48*I,n=31 3178131528206830 m001 Khinchin/Porter/Stephens 3178131541028342 l006 ln(3833/5267) 3178131564979512 m001 sin(1)+KomornikLoreti^MinimumGamma 3178131571042355 q001 1058/3329 3178131577772987 a007 Real Root Of -754*x^4+118*x^3-905*x^2+506*x+17 3178131583018469 r005 Re(z^2+c),c=-39/98+2/55*I,n=5 3178131587461836 r005 Im(z^2+c),c=-41/106+26/49*I,n=55 3178131598823127 m001 (Otter+Weierstrass)/(Kac-Niven) 3178131599862963 a008 Real Root of (2+4*x-6*x^2+3*x^3-x^4+5*x^5) 3178131617101343 r005 Im(z^2+c),c=-25/22+3/76*I,n=17 3178131620668863 r009 Im(z^3+c),c=-10/21+5/28*I,n=56 3178131629241097 r005 Im(z^2+c),c=-9/10+7/33*I,n=8 3178131637489296 r005 Re(z^2+c),c=-17/44+5/17*I,n=20 3178131644403391 r005 Im(z^2+c),c=-19/60+27/52*I,n=55 3178131646854282 m005 (1/2*gamma-2)/(2/9*3^(1/2)+5) 3178131648430354 a001 2207/28657*13^(21/38) 3178131650205895 m001 (Magata+MertensB2)/(ln(2)+CareFree) 3178131650772545 m009 (20/3*Catalan+5/6*Pi^2+4/5)/(1/4*Psi(1,1/3)-3) 3178131655352061 m002 -(Pi^2*Coth[Pi])+Pi*Cosh[Pi]*Log[Pi] 3178131657981291 r005 Im(z^2+c),c=-7/29+23/47*I,n=44 3178131659435838 m001 ln(Zeta(3))^2*Paris^2/Zeta(5) 3178131668149097 m001 Sierpinski/DuboisRaymond^2/exp(BesselJ(0,1)) 3178131680136160 m001 ln(ArtinRank2)^2/Cahen^2/Paris 3178131703366619 m001 ln(GAMMA(5/12))^2*FeigenbaumB*sin(Pi/12)^2 3178131704276054 a007 Real Root Of -788*x^4+352*x^3-71*x^2-96*x-4 3178131707829832 m005 (1/2*Pi+1/7)/(2/3*2^(1/2)-8/9) 3178131708649454 m005 (1/3*5^(1/2)+1/4)/(4/5*2^(1/2)-9/11) 3178131727547646 r005 Re(z^2+c),c=-21/62+25/54*I,n=57 3178131744646337 m001 OneNinth^FeigenbaumC/(OneNinth^ln(2+3^(1/2))) 3178131756096785 r009 Re(z^3+c),c=-11/23+11/24*I,n=48 3178131763141474 a007 Real Root Of -240*x^4-623*x^3+325*x^2-317*x+196 3178131767673635 a007 Real Root Of -285*x^4-680*x^3+467*x^2-614*x+579 3178131769612449 m005 (1/2*Catalan+1/7)/(7/8*3^(1/2)+3/8) 3178131771973742 m001 HeathBrownMoroz*(GAMMA(3/4)+KhinchinLevy) 3178131775355908 r005 Re(z^2+c),c=33/106+26/51*I,n=53 3178131780602134 r005 Im(z^2+c),c=2/11+14/55*I,n=8 3178131781111711 k007 concat of cont frac of 3178131781672417 a007 Real Root Of 265*x^4+539*x^3-747*x^2+831*x+453 3178131784701428 m005 (1/2*3^(1/2)-4/5)/(5/6*Catalan-5/9) 3178131788514403 m001 Tribonacci/Niven*exp(cos(1))^2 3178131796500273 r005 Re(z^2+c),c=-4/17+18/29*I,n=28 3178131818274203 a001 1/2204*(1/2*5^(1/2)+1/2)^6*76^(11/13) 3178131821242813 k006 concat of cont frac of 3178131830558247 a003 sin(Pi*11/97)*sin(Pi*27/74) 3178131830603223 r009 Re(z^3+c),c=-17/36+15/38*I,n=60 3178131835742416 r009 Im(z^3+c),c=-33/70+9/49*I,n=39 3178131835758433 r005 Re(z^2+c),c=-13/44+17/37*I,n=10 3178131838088159 a007 Real Root Of 136*x^4-720*x^3+269*x^2-709*x-277 3178131841788641 a001 144/4870847*76^(17/31) 3178131859629155 m001 1/Zeta(7)^2/GlaisherKinkelin^2/ln(cosh(1))^2 3178131862698525 r005 Re(z^2+c),c=17/54+8/47*I,n=9 3178131864327168 r005 Im(z^2+c),c=-75/122+5/18*I,n=3 3178131880597008 r002 27th iterates of z^2 + 3178131886510219 a001 1346269/199*199^(8/11) 3178131890175428 m001 (2^(1/3))/RenyiParking^2*exp(GAMMA(1/4))^2 3178131901289760 a005 (1/sin(21/127*Pi))^97 3178131908045356 r009 Im(z^3+c),c=-8/21+15/59*I,n=18 3178131914549465 g001 Psi(1,58/89) 3178131914549465 l003 Psi(1,58/89) 3178131923119902 a007 Real Root Of 247*x^4+889*x^3+96*x^2-847*x-323 3178131923120106 l006 ln(4969/6828) 3178131925750100 a001 24157817/521*322^(1/3) 3178131931383457 m001 1/log(1+sqrt(2))^2*ln(Champernowne)^2/sqrt(Pi) 3178131931850169 r005 Re(z^2+c),c=-13/22+19/69*I,n=7 3178131935324123 k008 concat of cont frac of 3178131950662706 r005 Im(z^2+c),c=-27/86+31/59*I,n=34 3178131960927944 r005 Im(z^2+c),c=-43/106+14/27*I,n=47 3178132007472141 m001 cos(1/5*Pi)^RenyiParking/Khinchin 3178132007472141 m001 cos(Pi/5)^RenyiParking/Khinchin 3178132008329875 r005 Re(z^2+c),c=-27/118+17/32*I,n=13 3178132037961529 a007 Real Root Of 395*x^4-635*x^3-210*x^2-917*x+329 3178132044455365 a001 76/591286729879*13^(6/17) 3178132054165589 b008 25*Sqrt[SinIntegral[22]] 3178132065923241 m005 (-1/66+1/6*5^(1/2))/(7/12*2^(1/2)+3/10) 3178132079322775 m001 exp(Salem)^2/KhintchineHarmonic/Ei(1) 3178132081927670 s002 sum(A130690[n]/(n^2*exp(n)+1),n=1..infinity) 3178132082680917 m001 (polylog(4,1/2)-Otter)/(ln(2)+Zeta(1/2)) 3178132085684221 m001 exp(FeigenbaumD)/Lehmer/log(1+sqrt(2))^2 3178132104744495 r005 Im(z^2+c),c=-19/110+23/50*I,n=49 3178132108064901 m001 (Bloch+FeigenbaumAlpha)/(MertensB2-Paris) 3178132110432287 r005 Im(z^2+c),c=31/102+4/29*I,n=62 3178132111120213 k007 concat of cont frac of 3178132111123121 k007 concat of cont frac of 3178132113183206 r005 Im(z^2+c),c=-75/64+16/61*I,n=8 3178132118120212 r002 6th iterates of z^2 + 3178132125548509 a001 144/7*2207^(16/45) 3178132137093406 r002 22th iterates of z^2 + 3178132143173181 a001 9227465/1364*322^(2/3) 3178132145886739 a009 1/9*(6^(1/3)+4^(3/4)*9^(3/4))*9^(1/4) 3178132153862301 r005 Im(z^2+c),c=33/122+11/61*I,n=25 3178132163014895 l006 ln(6105/8389) 3178132164588358 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)/(Porter-Thue) 3178132178332184 a007 Real Root Of 388*x^4+963*x^3-759*x^2+54*x-833 3178132193261336 k002 Champernowne real with 7/2*n^2+73/2*n-9 3178132195676367 r005 Im(z^2+c),c=7/40+4/15*I,n=23 3178132222648481 r005 Im(z^2+c),c=-19/23+13/61*I,n=5 3178132227826830 r005 Re(z^2+c),c=-4/11+18/31*I,n=59 3178132237583057 r009 Re(z^3+c),c=-41/114+11/51*I,n=26 3178132262085600 a001 47/4052739537881*63245986^(5/16) 3178132262119070 r005 Re(z^2+c),c=-13/18+12/41*I,n=43 3178132262327475 a001 47/365435296162*28657^(5/16) 3178132266328053 a007 Real Root Of 238*x^4+551*x^3-520*x^2+371*x-162 3178132269756020 r009 Re(z^3+c),c=-41/114+11/51*I,n=25 3178132286206135 a007 Real Root Of -146*x^4+581*x^3-64*x^2+784*x+25 3178132294909770 a007 Real Root Of 998*x^4+878*x^3+265*x^2-715*x-236 3178132295877235 a007 Real Root Of 368*x^4+923*x^3-950*x^2-825*x-941 3178132298493749 r005 Re(z^2+c),c=15/38+22/63*I,n=59 3178132305980497 m001 (3^(1/2))^ln(gamma)-Shi(1) 3178132309497024 r009 Im(z^3+c),c=-35/66+4/25*I,n=57 3178132316056134 a007 Real Root Of 328*x^4+973*x^3-303*x^2-330*x-217 3178132318083897 m001 1/cos(Pi/5)*Salem^2/exp(sin(1))^2 3178132319060780 r005 Im(z^2+c),c=37/122+1/28*I,n=59 3178132327638176 l006 ln(7241/9950) 3178132331499933 r005 Re(z^2+c),c=-17/31+27/44*I,n=25 3178132331933696 m001 Zeta(7)^2*exp((3^(1/3)))*exp(1)^2 3178132336067093 m001 (BesselJ(1,1)-MinimumGamma)/(Pi-gamma(1)) 3178132336855037 a001 9227465/2207*322^(3/4) 3178132341601656 r005 Im(z^2+c),c=-1/122+8/21*I,n=32 3178132347771531 r005 Im(z^2+c),c=-4/7+13/112*I,n=10 3178132356787862 q001 1215/3823 3178132356978114 r009 Re(z^3+c),c=-41/114+11/51*I,n=30 3178132360054835 a003 cos(Pi*23/118)/cos(Pi*30/61) 3178132360679774 a001 317811+5^(1/2) 3178132365446878 r009 Re(z^3+c),c=-41/114+11/51*I,n=31 3178132367069544 r009 Re(z^3+c),c=-41/114+11/51*I,n=34 3178132367326359 r009 Re(z^3+c),c=-41/114+11/51*I,n=35 3178132367675578 r009 Re(z^3+c),c=-41/114+11/51*I,n=39 3178132367696431 r009 Re(z^3+c),c=-41/114+11/51*I,n=38 3178132367712538 r009 Re(z^3+c),c=-41/114+11/51*I,n=43 3178132367714690 r009 Re(z^3+c),c=-41/114+11/51*I,n=44 3178132367715431 r009 Re(z^3+c),c=-41/114+11/51*I,n=47 3178132367715461 r009 Re(z^3+c),c=-41/114+11/51*I,n=40 3178132367715467 r009 Re(z^3+c),c=-41/114+11/51*I,n=48 3178132367715582 r009 Re(z^3+c),c=-41/114+11/51*I,n=52 3178132367715592 r009 Re(z^3+c),c=-41/114+11/51*I,n=51 3178132367715593 r009 Re(z^3+c),c=-41/114+11/51*I,n=53 3178132367715593 r009 Re(z^3+c),c=-41/114+11/51*I,n=56 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=57 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=61 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=60 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=64 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=62 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=63 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=59 3178132367715594 r009 Re(z^3+c),c=-41/114+11/51*I,n=58 3178132367715595 r009 Re(z^3+c),c=-41/114+11/51*I,n=55 3178132367715598 r009 Re(z^3+c),c=-41/114+11/51*I,n=54 3178132367715623 r009 Re(z^3+c),c=-41/114+11/51*I,n=49 3178132367715635 r009 Re(z^3+c),c=-41/114+11/51*I,n=50 3178132367715959 r009 Re(z^3+c),c=-41/114+11/51*I,n=46 3178132367716344 r009 Re(z^3+c),c=-41/114+11/51*I,n=45 3178132367717246 r009 Re(z^3+c),c=-41/114+11/51*I,n=42 3178132367727057 r009 Re(z^3+c),c=-41/114+11/51*I,n=41 3178132367845657 r009 Re(z^3+c),c=-41/114+11/51*I,n=37 3178132367846181 r009 Re(z^3+c),c=-41/114+11/51*I,n=36 3178132368755241 r009 Re(z^3+c),c=-41/114+11/51*I,n=33 3178132370355414 r009 Re(z^3+c),c=-41/114+11/51*I,n=29 3178132370477174 r009 Re(z^3+c),c=-41/114+11/51*I,n=32 3178132374622544 m001 (Kac+ZetaQ(2))/(Conway+GaussAGM) 3178132377507216 r009 Re(z^3+c),c=-41/114+11/51*I,n=27 3178132394862123 m001 (Totient+Weierstrass)/(arctan(1/2)-MertensB2) 3178132398979448 r002 47th iterates of z^2 + 3178132406432563 r009 Re(z^3+c),c=-41/114+11/51*I,n=28 3178132407902228 r005 Im(z^2+c),c=3/74+17/48*I,n=30 3178132426339584 r005 Im(z^2+c),c=-25/22+30/119*I,n=12 3178132429264300 s002 sum(A256696[n]/(exp(n)),n=1..infinity) 3178132431462398 r005 Re(z^2+c),c=-9/25+23/58*I,n=39 3178132448513638 m005 (1/2*gamma+3/8)/(8/11*exp(1)+1/9) 3178132455965513 a001 55/322*123^(4/31) 3178132458177764 r005 Im(z^2+c),c=4/17+8/37*I,n=37 3178132464317813 k006 concat of cont frac of 3178132496763854 h001 (2/9*exp(1)+3/8)/(2/5*exp(2)+1/8) 3178132500944668 s002 sum(A241976[n]/(exp(2*pi*n)-1),n=1..infinity) 3178132516123662 k006 concat of cont frac of 3178132518012004 m001 1/ln(LaplaceLimit)*DuboisRaymond^2*sin(Pi/5)^2 3178132520907032 r005 Re(z^2+c),c=-17/48+17/30*I,n=51 3178132532477346 m001 (Pi-Pi*2^(1/2)/GAMMA(3/4))/(Ei(1,1)+Conway) 3178132548941005 r009 Im(z^3+c),c=-33/122+11/36*I,n=8 3178132566352998 a007 Real Root Of 267*x^4+836*x^3-99*x^2+97*x+905 3178132569270430 m008 (1/4*Pi+5)/(3/5*Pi^3-2/5) 3178132569996222 m001 1/exp(Zeta(1,2))^2*PrimesInBinary*sinh(1) 3178132571117243 a007 Real Root Of -792*x^4-791*x^3-95*x^2+770*x+237 3178132574380380 b008 BarnesG[-1+Sqrt[5]*Pi] 3178132599617172 m005 (1/2*5^(1/2)-6/11)/(3/5*Pi-1/12) 3178132625653928 m005 (1/3*3^(1/2)+3/8)/(1/6*Zeta(3)-1/2) 3178132628859608 a007 Real Root Of 274*x^4+781*x^3-564*x^2-998*x-358 3178132638461201 r005 Im(z^2+c),c=19/78+5/24*I,n=29 3178132647428784 m001 (3^(1/2)-Zeta(5))/(exp(-1/2*Pi)+Trott) 3178132663317915 m005 (1/3*Zeta(3)+1/12)/(2/3*Pi-4/7) 3178132678718897 m001 1/Salem^2/ln(DuboisRaymond)*FeigenbaumD^2 3178132681258417 m005 (1/2*exp(1)-6/11)/(8/11*exp(1)+7/12) 3178132684031818 r009 Im(z^3+c),c=-17/32+13/34*I,n=18 3178132687121403 a007 Real Root Of 124*x^4+241*x^3+967*x^2-915*x-382 3178132690229833 m001 GAMMA(1/12)^(BesselJ(0,1)/cos(1)) 3178132692451611 r005 Re(z^2+c),c=-17/22+1/50*I,n=20 3178132699184247 m009 (2/3*Psi(1,3/4)-6)/(1/4*Psi(1,3/4)-1/2) 3178132712000868 m001 1/GAMMA(1/6)*ln(TwinPrimes)^2*GAMMA(23/24) 3178132715783927 h001 (5/11*exp(1)+3/5)/(2/11*exp(1)+1/12) 3178132715918001 m001 (Ei(1)-KomornikLoreti)/(Porter+Tetranacci) 3178132717116962 a001 66978574/341*123^(1/10) 3178132745200290 p001 sum((-1)^n/(33*n+17)/n/(6^n),,n=0..infinity) 3178132746955944 m001 (Pi*2^(1/2)/GAMMA(3/4))^Kolakoski/ZetaQ(3) 3178132748688429 a001 1346269/11*521^(9/59) 3178132754694115 r005 Im(z^2+c),c=-17/98+29/63*I,n=41 3178132761979114 m005 (1/2*Zeta(3)-7/10)/(2*2^(1/2)+2/7) 3178132773198731 r009 Re(z^3+c),c=-41/114+11/51*I,n=24 3178132773535944 a007 Real Root Of 172*x^4+586*x^3+318*x^2+620*x+22 3178132776641419 r009 Re(z^3+c),c=-7/118+43/61*I,n=50 3178132778247585 a001 439204/1597*6557470319842^(16/17) 3178132778264060 a001 969323029/1597*1836311903^(16/17) 3178132778266323 a001 2139295485799/1597*514229^(16/17) 3178132792557659 b008 LogGamma[1/3]/Pi^3 3178132792557659 m001 1/Pi^2*ln(GAMMA(1/3))/sqrt(Pi)^2 3178132815212698 r005 Re(z^2+c),c=-33/86+19/62*I,n=32 3178132815605462 r009 Re(z^3+c),c=-53/114+20/57*I,n=13 3178132829786161 m005 (1/2*5^(1/2)+7/12)/(1/4*2^(1/2)-8/9) 3178132840841887 r005 Re(z^2+c),c=-9/44+5/8*I,n=56 3178132842922835 a007 Real Root Of -29*x^4-907*x^3+470*x^2+109*x-710 3178132854548856 r005 Re(z^2+c),c=-11/54+33/52*I,n=12 3178132854651705 m001 (FeigenbaumAlpha+ZetaQ(4))/(2^(1/3)-Bloch) 3178132855523119 l003 Fresnelf(73/89) 3178132856858443 m001 (Pi+ln(3))/(GAMMA(7/12)-DuboisRaymond) 3178132872068828 m005 (1/2*5^(1/2)+5/9)/(7/12*5^(1/2)-7/9) 3178132878114084 r005 Im(z^2+c),c=-11/14+41/207*I,n=8 3178132894139831 a001 24157817/5778*322^(3/4) 3178132908024496 r009 Re(z^3+c),c=-41/114+11/51*I,n=23 3178132911313111 k009 concat of cont frac of 3178132916246820 r009 Im(z^3+c),c=-23/58+11/45*I,n=16 3178132929532517 r005 Re(z^2+c),c=19/74+3/43*I,n=2 3178132936753884 a007 Real Root Of -913*x^4-691*x^3+160*x^2+664*x+182 3178132950819748 r005 Im(z^2+c),c=-4/21+29/62*I,n=42 3178132952638278 a007 Real Root Of -97*x^4-123*x^3+369*x^2-873*x-554 3178132958759033 m005 (1/3*exp(1)-1/11)/(3*gamma+5/6) 3178132962453464 m005 (1/3*gamma+4)/(5*exp(1)-2/5) 3178132967682415 r005 Im(z^2+c),c=-11/94+10/23*I,n=17 3178132973679800 r005 Im(z^2+c),c=-11/10+55/222*I,n=14 3178132975446603 a001 63245986/15127*322^(3/4) 3178132978657541 a001 4181/11*1364^(55/59) 3178132987309102 a001 165580141/39603*322^(3/4) 3178132989039817 a001 433494437/103682*322^(3/4) 3178132989292325 a001 1134903170/271443*322^(3/4) 3178132989329165 a001 2971215073/710647*322^(3/4) 3178132989334540 a001 7778742049/1860498*322^(3/4) 3178132989335324 a001 20365011074/4870847*322^(3/4) 3178132989335439 a001 53316291173/12752043*322^(3/4) 3178132989335455 a001 139583862445/33385282*322^(3/4) 3178132989335458 a001 365435296162/87403803*322^(3/4) 3178132989335458 a001 956722026041/228826127*322^(3/4) 3178132989335458 a001 2504730781961/599074578*322^(3/4) 3178132989335458 a001 6557470319842/1568397607*322^(3/4) 3178132989335458 a001 10610209857723/2537720636*322^(3/4) 3178132989335458 a001 4052739537881/969323029*322^(3/4) 3178132989335458 a001 1548008755920/370248451*322^(3/4) 3178132989335459 a001 591286729879/141422324*322^(3/4) 3178132989335459 a001 225851433717/54018521*322^(3/4) 3178132989335466 a001 86267571272/20633239*322^(3/4) 3178132989335510 a001 32951280099/7881196*322^(3/4) 3178132989335809 a001 12586269025/3010349*322^(3/4) 3178132989337862 a001 4807526976/1149851*322^(3/4) 3178132989351934 a001 1836311903/439204*322^(3/4) 3178132989448383 a001 701408733/167761*322^(3/4) 3178132990109458 a001 267914296/64079*322^(3/4) 3178132991125542 a001 1149851/4181*6557470319842^(16/17) 3178132991127946 a001 2537720636/4181*1836311903^(16/17) 3178132991130208 a001 5600748293801/4181*514229^(16/17) 3178132994640529 a001 102334155/24476*322^(3/4) 3178133012456420 m001 GAMMA(5/6)^Niven*Sierpinski 3178133022184020 a001 3010349/10946*6557470319842^(16/17) 3178133022184371 a001 6643838879/10946*1836311903^(16/17) 3178133022186633 a001 7331474697802/5473*514229^(16/17) 3178133025696954 a001 4181*322^(3/4) 3178133026715391 a001 7881196/28657*6557470319842^(16/17) 3178133026715442 a001 17393796001/28657*1836311903^(16/17) 3178133027376509 a001 20633239/75025*6557470319842^(16/17) 3178133027376517 a001 45537549124/75025*1836311903^(16/17) 3178133027472965 a001 54018521/196418*6557470319842^(16/17) 3178133027472966 a001 119218851371/196418*1836311903^(16/17) 3178133027487038 a001 141422324/514229*6557470319842^(16/17) 3178133027487038 a001 312119004989/514229*1836311903^(16/17) 3178133027489091 a001 370248451/1346269*6557470319842^(16/17) 3178133027489091 a001 817138163596/1346269*1836311903^(16/17) 3178133027489390 a001 969323029/3524578*6557470319842^(16/17) 3178133027489390 a001 2139295485799/3524578*1836311903^(16/17) 3178133027489434 a001 2537720636/9227465*6557470319842^(16/17) 3178133027489434 a001 5600748293801/9227465*1836311903^(16/17) 3178133027489440 a001 14662949395604/24157817*1836311903^(16/17) 3178133027489440 a001 6643838879/24157817*6557470319842^(16/17) 3178133027489441 a001 17393796001/63245986*6557470319842^(16/17) 3178133027489442 a001 45537549124/165580141*6557470319842^(16/17) 3178133027489442 a001 119218851371/433494437*6557470319842^(16/17) 3178133027489442 a001 312119004989/1134903170*6557470319842^(16/17) 3178133027489442 a001 817138163596/2971215073*6557470319842^(16/17) 3178133027489442 a001 2139295485799/7778742049*6557470319842^(16/17) 3178133027489442 a001 440719107401/1602508992*6557470319842^(16/17) 3178133027489442 a001 505019158607/1836311903*6557470319842^(16/17) 3178133027489442 a001 64300051206/233802911*6557470319842^(16/17) 3178133027489442 a001 73681302247/267914296*6557470319842^(16/17) 3178133027489442 a001 228811001/831985*6557470319842^(16/17) 3178133027489442 a001 23725150497407/39088169*1836311903^(16/17) 3178133027489442 a001 10749957122/39088169*6557470319842^(16/17) 3178133027489444 a001 3020733700601/4976784*1836311903^(16/17) 3178133027489444 a001 1368706081/4976784*6557470319842^(16/17) 3178133027489461 a001 3461452808002/5702887*1836311903^(16/17) 3178133027489461 a001 1568397607/5702887*6557470319842^(16/17) 3178133027489576 a001 440719107401/726103*1836311903^(16/17) 3178133027489576 a001 199691526/726103*6557470319842^(16/17) 3178133027490360 a001 505019158607/832040*1836311903^(16/17) 3178133027490360 a001 228826127/832040*6557470319842^(16/17) 3178133027495735 a001 64300051206/105937*1836311903^(16/17) 3178133027495735 a001 29134601/105937*6557470319842^(16/17) 3178133027532575 a001 73681302247/121393*1836311903^(16/17) 3178133027532578 a001 33385282/121393*6557470319842^(16/17) 3178133027785083 a001 9381251041/15456*1836311903^(16/17) 3178133027785103 a001 4250681/15456*6557470319842^(16/17) 3178133029515798 a001 10749957122/17711*1836311903^(16/17) 3178133029515932 a001 4870847/17711*6557470319842^(16/17) 3178133029518061 a001 23725150497407/17711*514229^(16/17) 3178133033833225 r005 Im(z^2+c),c=-9/13+2/27*I,n=63 3178133041378297 a001 1368706081/2255*1836311903^(16/17) 3178133041379215 a001 15126/55*6557470319842^(16/17) 3178133041380560 a001 3020733700601/2255*514229^(16/17) 3178133041576052 l003 KelvinHei(2,5/56) 3178133053711360 r002 25th iterates of z^2 + 3178133088612438 a007 Real Root Of 988*x^4+604*x^3+375*x^2-516*x+16 3178133104126095 a001 29/34*13^(20/39) 3178133106431966 a007 Real Root Of -21*x^4-694*x^3-836*x^2+286*x-133 3178133122685077 a001 1568397607/2584*1836311903^(16/17) 3178133122687339 a001 1730726404001/1292*514229^(16/17) 3178133122691370 a001 710647/2584*6557470319842^(16/17) 3178133132455846 m001 GAMMA(5/24)/MinimumGamma^2/ln(sqrt(5))^2 3178133143126121 k006 concat of cont frac of 3178133143655274 a007 Real Root Of -261*x^4-941*x^3-227*x^2+217*x-597 3178133146131819 k007 concat of cont frac of 3178133146837264 m001 StolarskyHarborth^MasserGramain*ln(5) 3178133149804228 h001 (1/8*exp(1)+7/11)/(9/10*exp(1)+5/8) 3178133157959277 m006 (1/6*exp(Pi)+2/3)/(2/5*Pi+1/6) 3178133162108246 m008 (1/5*Pi^5+1/2)/(2*Pi^4-2/3) 3178133163743731 a001 29/13*2^(24/47) 3178133169815991 r009 Im(z^3+c),c=-7/15+9/40*I,n=9 3178133173149294 a007 Real Root Of -321*x^4+167*x^3+371*x^2+530*x-208 3178133196267346 k002 Champernowne real with 4*n^2+35*n-8 3178133211231231 k007 concat of cont frac of 3178133211811186 r005 Im(z^2+c),c=-7/40+17/37*I,n=21 3178133212343354 l006 ln(1136/1561) 3178133213130451 m005 (7/8+1/4*5^(1/2))/(1/4*Catalan+2/9) 3178133216026399 a001 311187*15127^(47/49) 3178133221922311 k008 concat of cont frac of 3178133224027650 m001 ((2^(1/3))-OneNinth)/GAMMA(1/4) 3178133224027650 m001 1/2*(2^(1/3)-OneNinth)/Pi*2^(1/2)*GAMMA(3/4) 3178133235388752 a007 Real Root Of 708*x^4-96*x^3-358*x^2-667*x+244 3178133235839807 m001 exp(Catalan)/Robbin*sin(1) 3178133237148231 m001 KhinchinLevy*Weierstrass-ln(2^(1/2)+1) 3178133238560873 a001 14930352/3571*322^(3/4) 3178133255149948 m001 (Stephens+Trott2nd)/(Bloch-Robbin) 3178133263542849 h001 (-6*exp(1)-3)/(-11*exp(4)-7) 3178133265794224 m001 (-FeigenbaumB+Gompertz)/(Zeta(1,-1)-gamma) 3178133274092353 m009 (1/3*Psi(1,2/3)+6)/(2/3*Psi(1,2/3)+1/6) 3178133280815054 m001 (Cahen-KhinchinLevy)/(Otter+Riemann1stZero) 3178133291290005 r009 Re(z^3+c),c=-43/114+14/57*I,n=28 3178133298320187 r002 15th iterates of z^2 + 3178133306214302 m001 1/GAMMA(1/6)^2*FeigenbaumC^2/exp(GAMMA(3/4)) 3178133321095642 s002 sum(A097967[n]/(n^3*pi^n+1),n=1..infinity) 3178133323550680 r005 Re(z^2+c),c=-17/54+17/32*I,n=48 3178133329967091 r005 Im(z^2+c),c=-6/25+3/5*I,n=31 3178133330990155 a007 Real Root Of -908*x^4+889*x^3-586*x^2+837*x+363 3178133342130254 m005 (1/2*Zeta(3)-3)/(4/11*3^(1/2)+1/8) 3178133349477624 m001 1/exp(TwinPrimes)^2*PrimesInBinary^2/Zeta(3)^2 3178133356021571 b008 Pi+Sech[3]/E 3178133367883458 m001 (Artin+Paris)/(2^(1/2)-gamma(1)) 3178133379148740 r005 Re(z^2+c),c=9/29+3/32*I,n=10 3178133382413398 r008 a(0)=3,K{-n^6,13+20*n-23*n^2-16*n^3} 3178133383856917 a007 Real Root Of 28*x^4+900*x^3+296*x^2-810*x+227 3178133387392217 s002 sum(A097967[n]/(n^3*pi^n-1),n=1..infinity) 3178133387692089 r005 Re(z^2+c),c=-23/56+9/61*I,n=22 3178133399919003 m001 exp(GAMMA(13/24))/CopelandErdos^2/cos(1)^2 3178133412720082 m001 MadelungNaCl+GAMMA(5/6)^Otter 3178133416500418 a001 233/521*20633239^(4/5) 3178133416500424 a001 233/521*17393796001^(4/7) 3178133416500424 a001 233/521*14662949395604^(4/9) 3178133416500424 a001 233/521*(1/2+1/2*5^(1/2))^28 3178133416500424 a001 233/521*505019158607^(1/2) 3178133416500424 a001 233/521*73681302247^(7/13) 3178133416500424 a001 233/521*10749957122^(7/12) 3178133416500424 a001 233/521*4106118243^(14/23) 3178133416500424 a001 233/521*1568397607^(7/11) 3178133416500424 a001 233/521*599074578^(2/3) 3178133416500424 a001 233/521*228826127^(7/10) 3178133416500425 a001 233/521*87403803^(14/19) 3178133416500426 a001 233/521*33385282^(7/9) 3178133416500440 a001 233/521*12752043^(14/17) 3178133416500541 a001 233/521*4870847^(7/8) 3178133416501281 a001 233/521*1860498^(14/15) 3178133417142375 m002 30-Log[Pi]+Pi/ProductLog[Pi] 3178133422168680 s002 sum(A106501[n]/((pi^n-1)/n),n=1..infinity) 3178133422435831 m001 Sarnak/(MadelungNaCl+Riemann2ndZero) 3178133422985628 m001 (cos(1/12*Pi)-ErdosBorwein)/(Mills+Rabbit) 3178133425033076 q001 1/3146501 3178133426033915 s002 sum(A132216[n]/(10^n-1),n=1..infinity) 3178133433892924 m002 Pi^5+9*Log[Pi]^2 3178133438827433 a007 Real Root Of 964*x^4-568*x^3+229*x^2+202*x+13 3178133440258049 m005 (1/2*Catalan+1/12)/(2/7*Pi-8/11) 3178133455603871 r005 Im(z^2+c),c=4/25+5/18*I,n=20 3178133461331313 m001 (Khinchin-gamma)/(Robbin+ZetaQ(4)) 3178133482938181 m001 sin(1)*MertensB2/Trott2nd 3178133485746182 r002 4th iterates of z^2 + 3178133488297171 r005 Im(z^2+c),c=39/122+6/53*I,n=59 3178133495753285 p004 log(12553/523) 3178133502161784 p001 sum((-1)^n/(511*n+311)/(32^n),n=0..infinity) 3178133504852682 m001 GAMMA(1/4)^2*RenyiParking*exp(GAMMA(19/24)) 3178133512471211 a008 Real Root of x^4-18*x^2-156*x-416 3178133516103402 r002 11th iterates of z^2 + 3178133521623658 m001 Bloch^exp(Pi)*((1+3^(1/2))^(1/2))^exp(Pi) 3178133525295263 r002 52th iterates of z^2 + 3178133525595427 a007 Real Root Of -621*x^4+668*x^3-773*x^2+947*x-238 3178133535575077 a001 682/98209*832040^(37/47) 3178133550023877 r005 Re(z^2+c),c=-7/12+3/40*I,n=4 3178133553999397 m001 (Mills+MinimumGamma)/(2^(1/2)-Landau) 3178133558098687 m001 sin(1/12*Pi)^Psi(2,1/3)*sin(1/12*Pi)^Backhouse 3178133569127751 a007 Real Root Of -611*x^4+966*x^3-656*x^2+870*x+380 3178133573595528 r002 19th iterates of z^2 + 3178133573723091 r005 Im(z^2+c),c=1/22+13/37*I,n=27 3178133583607903 a007 Real Root Of 145*x^4+437*x^3+187*x^2+588*x-785 3178133604638824 m001 (FeigenbaumMu+Stephens)/(Psi(1,1/3)-exp(Pi)) 3178133609048818 r009 Re(z^3+c),c=-13/32+33/52*I,n=23 3178133615992090 r005 Im(z^2+c),c=6/19+5/47*I,n=30 3178133620889755 a007 Real Root Of -292*x^4-851*x^3+44*x^2-566*x+229 3178133623905626 m005 (1/2*2^(1/2)+4)/(3/7*2^(1/2)+7/8) 3178133625929006 a001 1346269/843*322^(11/12) 3178133633277276 b008 (23*E)/2+Sinh[1/2] 3178133637436401 r005 Im(z^2+c),c=-25/82+33/56*I,n=57 3178133639292872 a007 Real Root Of -673*x^4+988*x^3+453*x^2+762*x+235 3178133653067664 m009 (1/5*Psi(1,2/3)-5)/(3/2*Pi^2-1) 3178133654178398 a007 Real Root Of 367*x^4+993*x^3-469*x^2+131*x-412 3178133670306165 a007 Real Root Of -917*x^4+879*x^3-316*x^2+834*x-252 3178133671001411 r005 Im(z^2+c),c=-9/8+51/224*I,n=54 3178133679970146 a001 199691526/329*1836311903^(16/17) 3178133679972408 a001 440719107401/329*514229^(16/17) 3178133680013279 a001 90481/329*6557470319842^(16/17) 3178133683846862 b008 Pi+CosIntegral[(17*Pi)/8] 3178133685799784 r002 11th iterates of z^2 + 3178133685855910 r005 Im(z^2+c),c=-55/62+5/24*I,n=6 3178133714055577 a007 Real Root Of 180*x^4+150*x^3-978*x^2+883*x-864 3178133714717567 m001 (ln(Pi)-FellerTornier)/(Niven+QuadraticClass) 3178133725521220 a009 18*5^(3/4)-378 3178133728633549 m002 -1+(Pi^9*Log[Pi])/ProductLog[Pi] 3178133729292641 a007 Real Root Of 336*x^4+972*x^3-417*x^2-331*x+83 3178133736317813 k006 concat of cont frac of 3178133754025024 r002 13th iterates of z^2 + 3178133759667619 a007 Real Root Of -181*x^4-142*x^3-931*x^2+880*x+371 3178133762306309 r009 Re(z^3+c),c=-43/114+14/57*I,n=23 3178133768711134 r009 Re(z^3+c),c=-33/74+9/17*I,n=50 3178133773307678 r005 Re(z^2+c),c=-1+66/229*I,n=26 3178133795500690 r004 Re(z^2+c),c=-17/46+11/21*I,z(0)=I,n=3 3178133799429022 v003 sum((7/6*n^3+5/6*n+17)/(n!+1),n=1..infinity) 3178133812930069 a001 987/11*4^(52/57) 3178133814890009 m001 1/GAMMA(2/3)^2*exp(Catalan)^2*cos(Pi/12)^2 3178133829121330 a001 161/72*3^(8/25) 3178133838076685 r009 Re(z^3+c),c=-43/114+14/57*I,n=25 3178133851811558 a007 Real Root Of 323*x^4+715*x^3-996*x^2-31*x-39 3178133852385033 m001 (Si(Pi)-ZetaP(3))^(5^(1/2)) 3178133858656716 r005 Im(z^2+c),c=-45/94+18/37*I,n=43 3178133861042036 r009 Re(z^3+c),c=-43/114+14/57*I,n=32 3178133864860331 r005 Re(z^2+c),c=-35/102+9/19*I,n=18 3178133869423036 a007 Real Root Of -31*x^4+61*x^3+224*x^2-591*x+980 3178133877892212 a001 54018521/610*6557470319842^(14/17) 3178133877892213 a001 22768774562/305*1836311903^(14/17) 3178133877936060 b008 1/2+Sqrt[3]+SinIntegral[1] 3178133878173017 a008 Real Root of x^3-96*x-273 3178133881021745 r005 Im(z^2+c),c=-5/24+19/32*I,n=6 3178133883510293 r005 Re(z^2+c),c=4/13+1/9*I,n=37 3178133887011273 r009 Re(z^3+c),c=-43/114+14/57*I,n=29 3178133890870444 b008 E+E^E^(-1)/Pi 3178133890870444 m001 (Pi*exp(1)+exp(1/exp(1)))/Pi 3178133894033539 r009 Im(z^3+c),c=-25/56+17/50*I,n=4 3178133907043517 m001 BesselK(1,1)+Sierpinski-ZetaQ(3) 3178133909512675 r009 Re(z^3+c),c=-23/48+22/53*I,n=47 3178133915853027 m001 1/MadelungNaCl/exp(GolombDickman)*Zeta(5) 3178133917349703 r005 Re(z^2+c),c=1/3+17/49*I,n=6 3178133927616107 r009 Re(z^3+c),c=-43/114+14/57*I,n=33 3178133928000134 a001 21/11*2^(25/34) 3178133929441656 r009 Re(z^3+c),c=-43/114+14/57*I,n=36 3178133933896987 r005 Re(z^2+c),c=-157/118+13/64*I,n=4 3178133936734904 r009 Re(z^3+c),c=-43/114+14/57*I,n=37 3178133937563331 r009 Re(z^3+c),c=-43/114+14/57*I,n=40 3178133938342819 r009 Re(z^3+c),c=-43/114+14/57*I,n=41 3178133938516575 r009 Re(z^3+c),c=-43/114+14/57*I,n=44 3178133938597242 r009 Re(z^3+c),c=-43/114+14/57*I,n=45 3178133938627067 r009 Re(z^3+c),c=-43/114+14/57*I,n=48 3178133938635048 r009 Re(z^3+c),c=-43/114+14/57*I,n=49 3178133938639698 r009 Re(z^3+c),c=-43/114+14/57*I,n=52 3178133938640435 r009 Re(z^3+c),c=-43/114+14/57*I,n=53 3178133938641120 r009 Re(z^3+c),c=-43/114+14/57*I,n=56 3178133938641180 r009 Re(z^3+c),c=-43/114+14/57*I,n=57 3178133938641277 r009 Re(z^3+c),c=-43/114+14/57*I,n=60 3178133938641281 r009 Re(z^3+c),c=-43/114+14/57*I,n=61 3178133938641294 r009 Re(z^3+c),c=-43/114+14/57*I,n=64 3178133938641301 r009 Re(z^3+c),c=-43/114+14/57*I,n=63 3178133938641302 r009 Re(z^3+c),c=-43/114+14/57*I,n=62 3178133938641338 r009 Re(z^3+c),c=-43/114+14/57*I,n=59 3178133938641354 r009 Re(z^3+c),c=-43/114+14/57*I,n=58 3178133938641613 r009 Re(z^3+c),c=-43/114+14/57*I,n=55 3178133938641828 r009 Re(z^3+c),c=-43/114+14/57*I,n=54 3178133938643622 r009 Re(z^3+c),c=-43/114+14/57*I,n=51 3178133938646074 r009 Re(z^3+c),c=-43/114+14/57*I,n=50 3178133938657957 r009 Re(z^3+c),c=-43/114+14/57*I,n=47 3178133938683501 r009 Re(z^3+c),c=-43/114+14/57*I,n=46 3178133938756644 r009 Re(z^3+c),c=-43/114+14/57*I,n=43 3178133939008572 r009 Re(z^3+c),c=-43/114+14/57*I,n=42 3178133939402552 r009 Re(z^3+c),c=-43/114+14/57*I,n=39 3178133941795175 r009 Re(z^3+c),c=-43/114+14/57*I,n=38 3178133943302294 r009 Re(z^3+c),c=-43/114+14/57*I,n=35 3178133953390813 r005 Re(z^2+c),c=6/17+10/63*I,n=45 3178133959997274 m005 (1/3*2^(1/2)+2/7)/(4/5*gamma-7/10) 3178133963476668 r009 Re(z^3+c),c=-43/114+14/57*I,n=31 3178133965397774 r009 Re(z^3+c),c=-43/114+14/57*I,n=34 3178133979726467 b008 3^(1/95)*Pi 3178133997092985 a007 Real Root Of 322*x^4+731*x^3-635*x^2+826*x-346 3178134008081729 m001 (QuadraticClass+TwinPrimes)/(Ei(1)+Otter) 3178134017060305 m001 (-Trott2nd+ZetaP(4))/(3^(1/2)-MadelungNaCl) 3178134030261210 r009 Re(z^3+c),c=-43/114+14/57*I,n=27 3178134064215573 m001 (exp(sqrt(2))+sqrt(Pi))/Si(Pi) 3178134066707153 m005 (1/2*3^(1/2)+4/11)/(3/10*exp(1)-3/7) 3178134067835771 m001 (2^(1/2)-Si(Pi))/(arctan(1/3)+GAMMA(11/12)) 3178134073367552 m002 -4/Pi^3+5/Pi-Log[Pi] 3178134080423619 a007 Real Root Of -185*x^4-223*x^3+980*x^2-291*x+892 3178134084032634 m008 (Pi^4+3/5)/(5/6*Pi^3+5) 3178134091768477 m001 (2^(1/3)-GlaisherKinkelin)/(-Rabbit+ZetaQ(4)) 3178134101425927 m002 (Pi^9*Log[Pi])/ProductLog[Pi]-Tanh[Pi] 3178134104333196 m001 (Pi+ln(2^(1/2)+1))/(Zeta(1/2)+DuboisRaymond) 3178134106402085 b008 1/2+InverseGudermannian[14] 3178134131325563 r005 Re(z^2+c),c=2/13+17/32*I,n=3 3178134144073881 a001 18/139583862445*46368^(16/17) 3178134151187613 k007 concat of cont frac of 3178134154769981 m001 1/exp(FeigenbaumKappa)/Magata/cosh(1)^2 3178134160827709 m001 (-Cahen+HardyLittlewoodC4)/(gamma-sin(1/5*Pi)) 3178134163074390 r009 Re(z^3+c),c=-43/114+14/57*I,n=30 3178134165700990 m001 (FeigenbaumMu+PlouffeB)/(Porter-Totient) 3178134169765457 r008 a(0)=3,K{-n^6,-44-39*n^3+78*n^2-2*n} 3178134174517350 a007 Real Root Of -312*x^4-925*x^3+214*x^2-133*x-447 3178134193745081 a007 Real Root Of -360*x^4-815*x^3+834*x^2-839*x-525 3178134197859525 b008 31*Zeta[11/2] 3178134199273356 k002 Champernowne real with 9/2*n^2+67/2*n-7 3178134213949455 a007 Real Root Of 190*x^4+630*x^3+68*x^2+153*x+639 3178134214713809 l006 ln(6391/8782) 3178134215353584 a007 Real Root Of 280*x^4-379*x^3-347*x^2-603*x+236 3178134216634118 a003 cos(Pi*22/83)-sin(Pi*21/46) 3178134218331126 k006 concat of cont frac of 3178134219724886 r002 8th iterates of z^2 + 3178134219849803 a001 2584/11*3571^(52/59) 3178134231838333 r005 Im(z^2+c),c=-14/25+5/58*I,n=12 3178134273604474 r009 Re(z^3+c),c=-33/106+7/59*I,n=10 3178134277137915 r005 Im(z^2+c),c=5/126+13/33*I,n=4 3178134277822237 m001 ln(TreeGrowth2nd)/GaussKuzminWirsing*Trott^2 3178134277982353 m001 ThueMorse^Otter/(PisotVijayaraghavan^Otter) 3178134302036803 m001 (Otter+ZetaQ(2))/(FellerTornier+GolombDickman) 3178134310689134 m001 2/3/(Khinchin-sin(Pi/5)) 3178134313399360 m001 (exp(gamma)+GAMMA(11/24))^ln(1+sqrt(2)) 3178134314085772 r005 Re(z^2+c),c=-23/27+8/39*I,n=38 3178134314856411 r005 Im(z^2+c),c=-39/106+13/24*I,n=16 3178134319715258 r005 Im(z^2+c),c=-21/62+21/37*I,n=61 3178134322062023 m005 (1/3*3^(1/2)+1/5)/(3*gamma+5/7) 3178134326464472 m001 1/GAMMA(1/4)/ln(LandauRamanujan)*GAMMA(1/6)^2 3178134333138537 a007 Real Root Of 926*x^4+72*x^3+804*x^2-194*x-150 3178134337937996 m001 (Porter+Riemann2ndZero)/(gamma(1)+gamma(3)) 3178134349748274 r005 Im(z^2+c),c=-61/54+2/51*I,n=44 3178134350094010 s002 sum(A241865[n]/((pi^n-1)/n),n=1..infinity) 3178134365141236 k007 concat of cont frac of 3178134374923199 r005 Re(z^2+c),c=-7/22+29/55*I,n=33 3178134374982272 r005 Im(z^2+c),c=-1/122+8/21*I,n=29 3178134379320902 m001 (2^(1/3)-ln(3))/(-Artin+QuadraticClass) 3178134399817641 m001 (Chi(1)*ln(Pi)-GAMMA(3/4))/Chi(1) 3178134405379998 a007 Real Root Of 856*x^4+271*x^3-864*x^2-913*x+360 3178134406708034 a007 Real Root Of 355*x^4+754*x^3-919*x^2+825*x-109 3178134406755492 g005 GAMMA(7/12)*GAMMA(4/9)*GAMMA(2/3)/GAMMA(7/10) 3178134419085910 m001 FellerTornier*gamma^Trott2nd 3178134420851086 m001 1/Rabbit^2/exp(MadelungNaCl)^2/Ei(1) 3178134426170640 r005 Re(z^2+c),c=-13/16+24/59*I,n=2 3178134431401301 l006 ln(5255/7221) 3178134435086604 q001 1/31465 3178134448433845 r005 Im(z^2+c),c=23/86+9/49*I,n=30 3178134461837328 l006 ln(3146/3147) 3178134462728275 a007 Real Root Of 703*x^4+709*x^3-500*x^2-810*x+278 3178134468638088 m005 (-11/42+1/6*5^(1/2))/(7/8*2^(1/2)-8/9) 3178134473937035 m005 (1/2*Catalan-4)/(1/8*Catalan+1) 3178134480129413 a001 14930352/521*322^(5/12) 3178134489457995 m004 3/5-(5*Log[Sqrt[5]*Pi])/Pi-Sin[Sqrt[5]*Pi] 3178134493540979 h001 (-7*exp(5)-7)/(-3*exp(7)-1) 3178134507146861 m001 Pi-(1+3^(1/3))*GAMMA(17/24) 3178134514697916 h001 (-11*exp(4)+7)/(-9*exp(3)-6) 3178134515552394 m005 (1/2*Pi-7/9)/(3/4*5^(1/2)+9/11) 3178134516370662 a001 28657/11*9349^(31/59) 3178134518656956 m001 (Conway-StolarskyHarborth)/(Pi+CareFree) 3178134524251943 m001 ln(GAMMA(1/4))/Conway*LambertW(1)^2 3178134529324341 r002 19th iterates of z^2 + 3178134529998406 r005 Re(z^2+c),c=-37/114+23/44*I,n=40 3178134533436740 a001 317811/11*24476^(14/59) 3178134534975707 a001 75640*39603^(8/59) 3178134544812140 m005 (1/2*gamma-9/10)/(8/9*2^(1/2)+2/3) 3178134544864442 m005 (1/2*Catalan+10/11)/(3/11*gamma+3/11) 3178134546416659 a007 Real Root Of -24*x^4-745*x^3+540*x^2-787*x-577 3178134551833619 m001 exp(1/exp(1))/(MertensB1^sin(1/5*Pi)) 3178134553305675 r009 Re(z^3+c),c=-3/22+37/49*I,n=35 3178134562403227 r009 Im(z^3+c),c=-43/90+5/33*I,n=10 3178134571188800 r009 Re(z^3+c),c=-11/24+19/45*I,n=10 3178134588406599 m001 (sin(1/5*Pi)-Ei(1,1))/(KhinchinLevy-Trott2nd) 3178134590761004 a001 17711/11*5778^(36/59) 3178134591722493 a001 2/15127*4^(31/49) 3178134627862979 m001 KhinchinLevy/(Riemann1stZero^(5^(1/2))) 3178134655257866 m001 (Bloch+CopelandErdos)/(5^(1/2)+gamma(2)) 3178134656349914 a001 75640*2207^(11/59) 3178134667993618 m002 2+3*Pi^2+2*Sech[Pi] 3178134669071423 r002 20th iterates of z^2 + 3178134669493467 m001 (ln(2+3^(1/2))-DuboisRaymond)/(Otter+Stephens) 3178134676305611 a003 sin(Pi*35/103)/cos(Pi*37/90) 3178134680833165 m001 (Cahen+MertensB1)/(AlladiGrinstead-Chi(1)) 3178134682307206 r005 Re(z^2+c),c=-11/27+8/57*I,n=10 3178134689116201 p001 sum((-1)^n/(122*n+71)/n/(16^n),n=0..infinity) 3178134697552646 a001 5702887/1364*322^(3/4) 3178134699816740 a007 Real Root Of 16*x^4+514*x^3+165*x^2-306*x+121 3178134713290900 a007 Real Root Of -157*x^4-694*x^3-794*x^2-663*x-348 3178134721287686 m001 Riemann2ndZero/Pi*Weierstrass 3178134725162378 h001 (1/12*exp(1)+4/5)/(6/7*exp(1)+9/10) 3178134738671045 m001 (-GAMMA(23/24)+Conway)/(2^(1/2)-cos(1)) 3178134745588997 a007 Real Root Of 128*x^4+469*x^3+316*x^2+506*x+413 3178134756181629 a007 Real Root Of -290*x^4-822*x^3+431*x^2+467*x+330 3178134757456119 a007 Real Root Of 280*x^4+959*x^3+346*x^2+471*x+221 3178134759599597 m001 (-Paris+Trott2nd)/(Chi(1)+OrthogonalArrays) 3178134767611478 l006 ln(4119/5660) 3178134783389519 a001 1597/11*64079^(41/59) 3178134792936346 m001 1/Zeta(1/2)^2/FibonacciFactorial*ln(Zeta(7)) 3178134793092298 a007 Real Root Of -196*x^4-601*x^3+94*x^2+376*x+949 3178134797005166 r009 Im(z^3+c),c=-31/64+6/35*I,n=35 3178134806031092 m001 1/Conway*exp(Backhouse)*cos(Pi/12) 3178134818815349 m001 (exp(Pi)*GAMMA(7/24)+sqrt(5))/exp(Pi) 3178134818815349 m001 sqrt(5)*exp(-Pi)+GAMMA(7/24) 3178134833241559 m002 (5*Coth[Pi])/(16*Pi^2) 3178134834721150 r005 Re(z^2+c),c=-4/13+21/38*I,n=62 3178134842096239 m002 Pi^2+Pi^5+Tanh[Pi]+Tanh[Pi]/ProductLog[Pi] 3178134845620667 r005 Re(z^2+c),c=-43/30+38/69*I,n=2 3178134847557841 m004 (-25*Pi)/6+5*Sqrt[5]*Pi+5*Log[Sqrt[5]*Pi] 3178134850410090 m001 (ReciprocalLucas+Stephens)/(3^(1/3)-Cahen) 3178134854668243 r005 Im(z^2+c),c=-39/64+5/13*I,n=49 3178134861169655 r009 Re(z^3+c),c=-43/90+23/54*I,n=40 3178134862433319 r005 Im(z^2+c),c=11/58+12/47*I,n=28 3178134868133592 s002 sum(A136691[n]/(n*pi^n+1),n=1..infinity) 3178134870454532 m006 (3*exp(Pi)-3)/(2/5*Pi+5/6) 3178134889309225 a007 Real Root Of -775*x^4-484*x^3+889*x^2+581*x-251 3178134891234659 a001 5702887/2207*322^(5/6) 3178134899351280 p003 LerchPhi(1/5,5,475/237) 3178134908337582 m001 exp(sin(Pi/12))^2/GAMMA(11/24)^2/sqrt(2) 3178134908341594 r005 Re(z^2+c),c=-5/11+11/45*I,n=5 3178134927545889 h002 exp(13^(3/10)+3^(7/6)) 3178134927545889 h007 exp(13^(3/10)+3^(7/6)) 3178134931793679 m001 Pi*(Psi(1,1/3)-ln(2)/ln(10)+arctan(1/3)) 3178134937624243 a007 Real Root Of -138*x^4-203*x^3+463*x^2-976*x-216 3178134942801070 m005 (1/2*3^(1/2)-4)/(1/7*5^(1/2)+2/3) 3178134946012344 a003 cos(Pi*12/77)-sin(Pi*17/89) 3178134950238796 a001 1/76*(1/2*5^(1/2)+1/2)^4*521^(15/16) 3178134952621030 a007 Real Root Of -165*x^4+901*x^3-258*x^2+337*x+11 3178134965821698 m002 30+2/Pi+Log[Pi] 3178134994581075 a001 3571/514229*832040^(37/47) 3178134997519252 a001 1/38*15127^(1/51) 3178135002520324 m001 (polylog(4,1/2)+Paris)/(Shi(1)+ln(2^(1/2)+1)) 3178135005970929 g007 2*Psi(2,4/7)-Psi(2,2/11)-Psi(2,7/10) 3178135011166921 p001 sum(1/(371*n+335)/(8^n),n=0..infinity) 3178135012859627 r009 Im(z^3+c),c=-1/102+47/57*I,n=6 3178135016384279 l006 ln(7102/9759) 3178135018155642 m005 (-1/66+1/6*5^(1/2))/(1/10*5^(1/2)-1/9) 3178135023091465 a007 Real Root Of 39*x^4-284*x^3+274*x^2+490*x+813 3178135040352197 r009 Re(z^3+c),c=-47/114+7/23*I,n=6 3178135050068905 r005 Im(z^2+c),c=11/106+1/41*I,n=8 3178135064634574 m001 (MertensB1+Tetranacci)/(Magata-exp(1)) 3178135067732257 r002 33th iterates of z^2 + 3178135069009324 m003 1/32+Sqrt[5]/2-4*Coth[1/2+Sqrt[5]/2] 3178135078298927 a001 682*1597^(25/48) 3178135085591694 r002 14th iterates of z^2 + 3178135087333737 a007 Real Root Of -258*x^4-102*x^3+477*x^2+484*x+105 3178135088684368 a007 Real Root Of -540*x^4+503*x^3+938*x^2+540*x-277 3178135094613016 r002 26th iterates of z^2 + 3178135100743459 m008 (3*Pi^3+4)/(Pi^5-3/4) 3178135105669874 m002 -1+E^Pi+Pi^2-Log[Pi]/5 3178135113013211 k009 concat of cont frac of 3178135123878897 m001 Zeta(1/2)/ln(GAMMA(2/3))^2*sqrt(2)^2 3178135138740735 m002 -1+4*Pi+E^Pi/Log[Pi] 3178135139535366 a003 sin(Pi*26/87)-sin(Pi*19/60) 3178135139610281 m005 (1/2*2^(1/2)+8/11)/(4/5*Pi+2) 3178135140459258 h001 (-4*exp(3/2)-7)/(-3*exp(2/3)-2) 3178135143514104 m005 (1/3*Pi-3/5)/(1/2*2^(1/2)+7/10) 3178135145872222 a007 Real Root Of -161*x^4-323*x^3-457*x^2+930*x+333 3178135149792641 r005 Im(z^2+c),c=5/74+21/62*I,n=15 3178135151401831 a007 Real Root Of -410*x^4-774*x^3-380*x^2+841*x+285 3178135156500320 m002 5+E^Pi+Pi+Sinh[Pi]/E^Pi 3178135169233988 r009 Re(z^3+c),c=-41/114+11/51*I,n=20 3178135173971706 m001 cos(1/5*Pi)*GaussAGM+FeigenbaumAlpha 3178135174377823 m001 1/Tribonacci/exp(Niven)*LambertW(1)^2 3178135177761642 m001 (Shi(1)-Porter)^GAMMA(17/24) 3178135186668158 a001 12238*377^(28/51) 3178135187755224 r005 Re(z^2+c),c=-45/122+19/52*I,n=34 3178135202279366 k002 Champernowne real with 5*n^2+32*n-6 3178135206008400 s002 sum(A257663[n]/(n*pi^n-1),n=1..infinity) 3178135207447181 a001 9349/1346269*832040^(37/47) 3178135210809168 r009 Re(z^3+c),c=-12/29+18/59*I,n=20 3178135212039425 m001 (Bloch+FeigenbaumD)/(Kolakoski-KomornikLoreti) 3178135213299659 r002 3th iterates of z^2 + 3178135217732992 a003 cos(Pi*2/107)/cos(Pi*49/100) 3178135224557750 r005 Re(z^2+c),c=-10/13+4/47*I,n=60 3178135227730942 m001 (arctan(1/2)-Bloch)/(GaussAGM+Riemann3rdZero) 3178135232560486 m001 GAMMA(3/4)-GAMMA(5/6)+GAMMA(7/24) 3178135249927879 m002 Pi^5+Cosh[Pi]+(2*Tanh[Pi])/Pi^2 3178135254721096 r005 Im(z^2+c),c=-3/16+7/15*I,n=19 3178135257698053 a001 2161/311187*832040^(37/47) 3178135258618412 b008 Csch[FresnelS[2/11]] 3178135283413931 h001 (-exp(1/2)+4)/(-8*exp(-3)-7) 3178135292093453 r005 Im(z^2+c),c=7/74+19/59*I,n=16 3178135294752811 a007 Real Root Of -337*x^4-938*x^3-781*x^2+701*x+275 3178135297586130 r002 3th iterates of z^2 + 3178135298782205 p001 sum((-1)^n/(611*n+313)/(64^n),n=0..infinity) 3178135308838450 r005 Im(z^2+c),c=-19/94+26/55*I,n=49 3178135315994772 r005 Re(z^2+c),c=-31/58+7/15*I,n=3 3178135318288219 m001 (cos(1)-exp(Pi))/(HeathBrownMoroz+Rabbit) 3178135321684597 m001 (-GaussAGM+Riemann2ndZero)/(2^(1/3)-Ei(1)) 3178135322555971 a007 Real Root Of 475*x^4-186*x^3-364*x^2-755*x-214 3178135332874923 r002 7th iterates of z^2 + 3178135336883398 a001 141422324/1597*6557470319842^(14/17) 3178135336883398 a001 119218851371/1597*1836311903^(14/17) 3178135339005670 a001 2889/416020*832040^(37/47) 3178135355137303 a001 76/121393*55^(15/37) 3178135356677086 a007 Real Root Of 329*x^4+748*x^3-950*x^2-225*x-673 3178135359895890 l006 ln(2983/4099) 3178135365555726 a009 1/10*(17*10^(1/4)+5^(1/3))^(1/2)*10^(3/4) 3178135385674355 a001 6/7*832040^(23/53) 3178135398898826 r005 Im(z^2+c),c=-45/82+19/50*I,n=5 3178135408681435 m006 (1/4*Pi^2-5/6)/(Pi+2) 3178135408681435 m008 (1/4*Pi^2-5/6)/(Pi+2) 3178135428258569 a007 Real Root Of -194*x^4+609*x^3+713*x^2+360*x-204 3178135442829776 r005 Re(z^2+c),c=-19/50+10/31*I,n=25 3178135448519923 a001 2584*322^(5/6) 3178135450515903 a007 Real Root Of 104*x^4+57*x^3-699*x^2+551*x+31 3178135457436965 a007 Real Root Of 149*x^4+276*x^3-582*x^2+212*x+211 3178135460385716 a007 Real Root Of -256*x^4-314*x^3+333*x^2+340*x-129 3178135463584626 a001 843/10946*13^(21/38) 3178135466171846 m005 (1/2*Catalan-5/11)/(7/8*5^(1/2)-7/8) 3178135466653546 r005 Re(z^2+c),c=-37/110+7/15*I,n=38 3178135474254357 r002 26th iterates of z^2 + 3178135474283467 r005 Im(z^2+c),c=-27/122+22/45*I,n=16 3178135497947702 a007 Real Root Of 336*x^4+964*x^3-482*x^2-509*x-83 3178135503203803 r005 Im(z^2+c),c=-9/74+7/16*I,n=11 3178135506965403 m001 ln(Pi)^2/Cahen^2*Zeta(9)^2 3178135508818981 g001 Psi(4/9,19/65) 3178135509627712 a007 Real Root Of 195*x^4+603*x^3+48*x^2+225*x-307 3178135529826764 a001 39088169/15127*322^(5/6) 3178135532130728 l006 ln(9569/9878) 3178135533035193 a001 55/3571*1364^(13/31) 3178135541689272 a001 34111385/13201*322^(5/6) 3178135543419989 a001 133957148/51841*322^(5/6) 3178135543672497 a001 233802911/90481*322^(5/6) 3178135543709338 a001 1836311903/710647*322^(5/6) 3178135543714713 a001 267084832/103361*322^(5/6) 3178135543715497 a001 12586269025/4870847*322^(5/6) 3178135543715611 a001 10983760033/4250681*322^(5/6) 3178135543715628 a001 43133785636/16692641*322^(5/6) 3178135543715630 a001 75283811239/29134601*322^(5/6) 3178135543715631 a001 591286729879/228826127*322^(5/6) 3178135543715631 a001 86000486440/33281921*322^(5/6) 3178135543715631 a001 4052739537881/1568397607*322^(5/6) 3178135543715631 a001 3536736619241/1368706081*322^(5/6) 3178135543715631 a001 3278735159921/1268860318*322^(5/6) 3178135543715631 a001 2504730781961/969323029*322^(5/6) 3178135543715631 a001 956722026041/370248451*322^(5/6) 3178135543715631 a001 182717648081/70711162*322^(5/6) 3178135543715632 a001 139583862445/54018521*322^(5/6) 3178135543715638 a001 53316291173/20633239*322^(5/6) 3178135543715682 a001 10182505537/3940598*322^(5/6) 3178135543715982 a001 7778742049/3010349*322^(5/6) 3178135543718035 a001 2971215073/1149851*322^(5/6) 3178135543732106 a001 567451585/219602*322^(5/6) 3178135543828556 a001 433494437/167761*322^(5/6) 3178135544489631 a001 165580141/64079*322^(5/6) 3178135549020706 a001 31622993/12238*322^(5/6) 3178135549747455 a001 370248451/4181*6557470319842^(14/17) 3178135549747455 a001 312119004989/4181*1836311903^(14/17) 3178135550895950 r005 Re(z^2+c),c=-51/122+1/57*I,n=13 3178135551760382 p001 sum(1/(469*n+323)/(16^n),n=0..infinity) 3178135580077157 a001 24157817/9349*322^(5/6) 3178135580803905 a001 969323029/10946*6557470319842^(14/17) 3178135580803905 a001 408569081798/5473*1836311903^(14/17) 3178135581165519 r005 Im(z^2+c),c=-7/9+7/57*I,n=21 3178135585334980 a001 2537720636/28657*6557470319842^(14/17) 3178135585334980 a001 2139295485799/28657*1836311903^(14/17) 3178135585996055 a001 5600748293801/75025*1836311903^(14/17) 3178135585996055 a001 6643838879/75025*6557470319842^(14/17) 3178135586092504 a001 7331474697802/98209*1836311903^(14/17) 3178135586092504 a001 17393796001/196418*6557470319842^(14/17) 3178135586106576 a001 45537549124/514229*6557470319842^(14/17) 3178135586108629 a001 119218851371/1346269*6557470319842^(14/17) 3178135586108928 a001 312119004989/3524578*6557470319842^(14/17) 3178135586108972 a001 817138163596/9227465*6557470319842^(14/17) 3178135586108979 a001 2139295485799/24157817*6557470319842^(14/17) 3178135586108979 a001 5600748293801/63245986*6557470319842^(14/17) 3178135586108980 a001 14662949395604/165580141*6557470319842^(14/17) 3178135586108980 a001 23725150497407/267914296*6557470319842^(14/17) 3178135586108980 a001 3020733700601/34111385*6557470319842^(14/17) 3178135586108980 a001 3461452808002/39088169*6557470319842^(14/17) 3178135586108982 a001 440719107401/4976784*6557470319842^(14/17) 3178135586108999 a001 505019158607/5702887*6557470319842^(14/17) 3178135586109114 a001 64300051206/726103*6557470319842^(14/17) 3178135586109898 a001 73681302247/832040*6557470319842^(14/17) 3178135586115273 a001 23725150497407/317811*1836311903^(14/17) 3178135586115273 a001 9381251041/105937*6557470319842^(14/17) 3178135586152113 a001 9062201101803/121393*1836311903^(14/17) 3178135586152113 a001 10749957122/121393*6557470319842^(14/17) 3178135586404621 a001 10749853441/144*1836311903^(14/17) 3178135586404621 a001 1368706081/15456*6557470319842^(14/17) 3178135588135338 a001 1322157322203/17711*1836311903^(14/17) 3178135588135338 a001 1568397607/17711*6557470319842^(14/17) 3178135599997846 a001 505019158607/6765*1836311903^(14/17) 3178135599997846 a001 199691526/2255*6557470319842^(14/17) 3178135603456083 r005 Re(z^2+c),c=-43/34+1/55*I,n=38 3178135610719617 m001 exp(Rabbit)^2*FransenRobinson^2/GAMMA(23/24) 3178135613502420 m001 1/Conway/Artin^2/ln(sin(1)) 3178135615538230 r005 Re(z^2+c),c=-45/118+19/60*I,n=32 3178135620057490 a007 Real Root Of -377*x^4-858*x^3+731*x^2-830*x+898 3178135638852592 r009 Re(z^3+c),c=-55/94+29/62*I,n=21 3178135641986427 r009 Re(z^3+c),c=-35/86+29/51*I,n=23 3178135645020434 r001 13i'th iterates of 2*x^2-1 of 3178135647870592 r005 Im(z^2+c),c=1/106+39/61*I,n=62 3178135666429729 r002 3th iterates of z^2 + 3178135679050796 a007 Real Root Of 101*x^4+509*x^3+523*x^2-391*x-490 3178135681138370 m001 1/(2^(1/3))^2*ln(DuboisRaymond)*GAMMA(7/24) 3178135681304691 a001 96450076809/1292*1836311903^(14/17) 3178135681304691 a001 228826127/2584*6557470319842^(14/17) 3178135683754130 a007 Real Root Of -799*x^4-964*x^3+485*x^2+961*x-31 3178135685497326 m002 -(Sinh[Pi]/Pi^4)-Tanh[Pi]/5 3178135693439079 m001 (Ei(1,1)-ZetaQ(3))/LaplaceLimit 3178135698069137 m005 (-1/6+1/4*5^(1/2))/(5/11*Catalan+9/11) 3178135698449479 r005 Im(z^2+c),c=-39/70+2/35*I,n=55 3178135703434253 r005 Im(z^2+c),c=-27/110+27/55*I,n=58 3178135708908827 m001 ln(5)/(gamma(1)+Champernowne) 3178135716644812 m005 (1/2*5^(1/2)-1/6)/(7/11*gamma-2/3) 3178135730174129 v003 sum((9/2*n^2+13/2*n+10)/(n!+2),n=1..infinity) 3178135758583799 a007 Real Root Of 342*x^4+953*x^3-339*x^2+533*x+819 3178135759853579 r005 Re(z^2+c),c=-9/25+21/53*I,n=34 3178135760614940 r005 Re(z^2+c),c=-55/114+21/41*I,n=28 3178135763002991 r005 Im(z^2+c),c=4/17+8/37*I,n=33 3178135767752549 m005 (25/4+1/4*5^(1/2))/(5/9*2^(1/2)-4/7) 3178135772833394 r009 Re(z^3+c),c=-43/114+14/57*I,n=21 3178135773010277 s002 sum(A080715[n]/(n^3*exp(n)+1),n=1..infinity) 3178135773435413 r005 Re(z^2+c),c=-23/44+20/49*I,n=10 3178135786941787 r005 Im(z^2+c),c=-9/8+62/247*I,n=20 3178135790834673 a003 sin(Pi*39/103)/cos(Pi*43/106) 3178135792941256 a001 9227465/3571*322^(5/6) 3178135796678506 a007 Real Root Of 654*x^4-54*x^3-655*x^2-424*x-77 3178135800869339 r009 Re(z^3+c),c=-43/114+14/57*I,n=26 3178135804863232 m002 (6*Cosh[Pi])/E^Pi+2*Sech[Pi] 3178135813254103 a003 cos(Pi*1/22)-sin(Pi*19/81) 3178135836951281 m001 exp(-Pi)/(Psi(1,1/3)^GAMMA(5/6)) 3178135837335415 r008 a(0)=3,K{-n^6,45-34*n+2*n^2-19*n^3} 3178135862562743 a007 Real Root Of -369*x^4-13*x^3-663*x^2+729*x+302 3178135864165514 r005 Re(z^2+c),c=15/46+20/37*I,n=9 3178135864993065 l006 ln(4830/6637) 3178135869247270 a001 1/1292*121393^(49/54) 3178135896296372 a001 2207/317811*832040^(37/47) 3178135915306182 h001 (3/7*exp(2)+7/8)/(1/11*exp(2)+3/5) 3178135922447805 a007 Real Root Of 360*x^4+955*x^3-452*x^2+706*x+738 3178135931886959 m001 (3^(1/3))*PrimesInBinary*ln(sin(Pi/5)) 3178135934077686 m001 Pi/(BesselJ(0,1)^exp(-Pi)) 3178135938146974 r005 Im(z^2+c),c=-47/64+1/51*I,n=40 3178135946422773 r005 Re(z^2+c),c=-33/98+15/32*I,n=52 3178135949229959 m001 1/GAMMA(1/3)*MinimumGamma/ln(GAMMA(1/6)) 3178135959045585 m005 (1/3*5^(1/2)-1/4)/(65/112+7/16*5^(1/2)) 3178135961211110 k006 concat of cont frac of 3178135966206316 a007 Real Root Of 223*x^4+887*x^3+273*x^2-889*x+140 3178135976005339 r005 Re(z^2+c),c=-9/32+20/37*I,n=29 3178135989927932 r005 Im(z^2+c),c=-61/54+2/51*I,n=48 3178135995541006 a001 55/1149851*24476^(27/31) 3178135996352626 a003 sin(Pi*5/97)*sin(Pi*6/95) 3178135999509073 a001 55/1860498*64079^(26/31) 3178136000400684 m002 24/E^Pi+Log[Pi]+Tanh[Pi] 3178136002120011 a001 55/4870847*39603^(30/31) 3178136006114426 m001 1/exp(ArtinRank2)/Champernowne^2*Paris^2 3178136013050962 a007 Real Root Of 93*x^4-768*x^3-940*x^2-407*x+248 3178136026123386 m001 exp(sqrt(3))^2/LambertW(1)/sqrt(Pi) 3178136026577823 a001 2/17711*75025^(11/37) 3178136035403559 a001 55/15127*5778^(16/31) 3178136046285490 m001 1/Zeta(9)/GAMMA(5/24)^2*ln(cos(1)) 3178136063013308 m001 (exp(1)+gamma)/Zeta(5) 3178136063025440 m001 (ln(5)+GolombDickman)/(MasserGramain-Stephens) 3178136064294307 r005 Im(z^2+c),c=7/40+4/15*I,n=25 3178136065677176 a007 Real Root Of 341*x^4+429*x^3+799*x^2-499*x-229 3178136076584724 m001 (CopelandErdos+Paris)/(2^(1/3)-exp(-1/2*Pi)) 3178136080626218 r009 Re(z^3+c),c=-47/78+19/36*I,n=2 3178136084241967 r005 Re(z^2+c),c=-45/118+19/60*I,n=25 3178136090649022 l006 ln(6677/9175) 3178136092629050 m001 (Landau+OneNinth*Sierpinski)/Sierpinski 3178136096481513 m001 (Pi^(1/2)+Sarnak)/(arctan(1/2)+arctan(1/3)) 3178136107986763 r005 Im(z^2+c),c=1/32+17/45*I,n=7 3178136109676845 a001 682*10946^(19/46) 3178136122608019 r002 51th iterates of z^2 + 3178136124078068 r005 Im(z^2+c),c=-3/56+21/52*I,n=17 3178136126484343 a001 317811/11*843^(21/59) 3178136140783514 a007 Real Root Of 534*x^4-259*x^3+159*x^2-504*x-190 3178136145177199 r002 21th iterates of z^2 + 3178136146906636 r005 Im(z^2+c),c=27/118+21/64*I,n=5 3178136149415926 r002 5th iterates of z^2 + 3178136165634998 a001 18/165580141*987^(14/17) 3178136173983486 m001 (FeigenbaumMu-ZetaP(3))/(3^(1/3)-Artin) 3178136175367947 a007 Real Root Of -133*x^4-435*x^3+94*x^2+222*x-639 3178136177548647 r009 Re(z^3+c),c=-12/25+9/28*I,n=11 3178136178580688 r009 Re(z^3+c),c=-15/56+7/10*I,n=48 3178136182495560 a007 Real Root Of -589*x^4+734*x^3+154*x^2+538*x+185 3178136205285376 k002 Champernowne real with 11/2*n^2+61/2*n-5 3178136206977704 r005 Re(z^2+c),c=-17/52+19/40*I,n=25 3178136235823279 a007 Real Root Of -314*x^4-788*x^3+812*x^2+222*x-757 3178136238590209 a001 10525900321/141*1836311903^(14/17) 3178136238590209 a001 29134601/329*6557470319842^(14/17) 3178136268882016 a001 1/416020*514229^(13/35) 3178136269840626 r005 Im(z^2+c),c=-27/46+21/40*I,n=5 3178136278940376 m006 (1/2*exp(Pi)-1/4)/(3/4*Pi-2) 3178136282534654 a003 sin(Pi*43/117)/cos(Pi*46/113) 3178136284401812 m001 exp(MadelungNaCl)/FeigenbaumDelta*Sierpinski 3178136303749637 r009 Im(z^3+c),c=-9/94+49/60*I,n=40 3178136305492789 r005 Im(z^2+c),c=-5/86+18/47*I,n=4 3178136314818782 a007 Real Root Of 228*x^4+705*x^3-248*x^2-765*x-556 3178136316664939 r009 Re(z^3+c),c=-14/31+19/45*I,n=17 3178136324876941 m001 (-2*Pi/GAMMA(5/6)+Thue)/(Catalan+BesselI(1,1)) 3178136331338494 a007 Real Root Of -296*x^4-549*x^3+991*x^2-613*x+617 3178136356783006 r005 Im(z^2+c),c=-17/58+25/49*I,n=64 3178136365130306 a001 55/15127*2207^(18/31) 3178136376871645 r005 Re(z^2+c),c=-11/42+24/41*I,n=43 3178136384127039 r002 7th iterates of z^2 + 3178136389363782 r009 Im(z^3+c),c=-18/31+19/60*I,n=33 3178136391725718 m001 1/GAMMA(2/3)^2*Si(Pi)^2/exp(sqrt(Pi)) 3178136396704575 r009 Re(z^3+c),c=-31/86+11/51*I,n=5 3178136408026737 m005 (1/2*3^(1/2)+4)/(1/3*exp(1)+5/8) 3178136413427620 r009 Re(z^3+c),c=-3/14+37/52*I,n=5 3178136414764657 r005 Re(z^2+c),c=-3/4+51/241*I,n=4 3178136424742106 a007 Real Root Of 550*x^4-560*x^3+872*x^2-625*x+19 3178136433296213 b008 10/3+Zeta[-2/3] 3178136435113925 r005 Im(z^2+c),c=-17/106+5/11*I,n=46 3178136435569149 m005 (1/2*3^(1/2)-2/7)/(1/3*gamma-3/8) 3178136436512436 a001 5600748293801/610*1836311903^(12/17) 3178136436512436 a001 17393796001/610*6557470319842^(12/17) 3178136439747618 a001 1/843*(1/2*5^(1/2)+1/2)^16*3^(3/17) 3178136442709178 r005 Re(z^2+c),c=-15/29+23/49*I,n=20 3178136444772212 m001 1/GAMMA(1/12)^2/ln(Conway)*GAMMA(11/12)^2 3178136460449640 a007 Real Root Of 59*x^4+199*x^3+172*x^2+592*x+513 3178136465508211 m001 GAMMA(1/6)/Paris^2/exp(sin(Pi/5)) 3178136467028731 m001 (BesselK(1,1)+Otter)/(Psi(1,1/3)+ln(3)) 3178136473177899 r005 Re(z^2+c),c=-41/98+3/49*I,n=10 3178136486887760 p001 sum(1/(353*n+317)/(64^n),n=0..infinity) 3178136490740872 a007 Real Root Of 221*x^4+640*x^3+646*x+51 3178136491631287 b008 -32+Tanh[2/9] 3178136507710039 m001 ln(2)*ln(2)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 3178136509762452 a007 Real Root Of 158*x^4+289*x^3+720*x^2-283*x-155 3178136514588551 a007 Real Root Of 572*x^4-989*x^3+418*x^2-825*x-342 3178136516543546 a001 322/4181*89^(6/19) 3178136524762291 m001 1/Zeta(1,2)^2*exp(CareFree)*sinh(1)^2 3178136524774528 m005 (1/3*gamma+1/2)/(1/9*2^(1/2)-3/8) 3178136528755346 a001 11/89*24157817^(1/18) 3178136532445756 m001 (Zeta(3)+cos(1/5*Pi))/(GAMMA(3/4)-Lehmer) 3178136532822102 m001 GAMMA(5/6)^ln(5)+ReciprocalLucas 3178136536581861 r005 Im(z^2+c),c=-35/26+1/34*I,n=18 3178136544430074 a007 Real Root Of 23*x^4+742*x^3+374*x^2+716*x-977 3178136565131825 a007 Real Root Of 830*x^4-557*x^3+361*x^2-727*x+204 3178136583853852 a007 Real Root Of -275*x^4-864*x^3-41*x^2-122*x+347 3178136585629381 a007 Real Root Of x^4+319*x^3+377*x^2-11*x+91 3178136587111461 m005 (1/3*Pi-1/9)/(9/11*Pi+3/8) 3178136600826190 r005 Im(z^2+c),c=-25/38+25/57*I,n=36 3178136603392585 h001 (-3*exp(6)+2)/(-7*exp(4)+2) 3178136615302930 m001 (1+Pi*2^(1/2)/GAMMA(3/4))/(Gompertz+Thue) 3178136619067412 a007 Real Root Of -160*x^4-190*x^3+847*x^2-730*x-651 3178136619472233 r005 Re(z^2+c),c=-11/29+13/40*I,n=33 3178136623834687 a007 Real Root Of -254*x^4+209*x^3-444*x^2+490*x-115 3178136624157031 a003 sin(Pi*1/101)/cos(Pi*7/106) 3178136632399748 r005 Im(z^2+c),c=-61/54+2/51*I,n=43 3178136648598166 m001 (Gompertz-Kolakoski)/(GAMMA(3/4)-BesselK(1,1)) 3178136649909550 m001 (Conway+Kolakoski)/TwinPrimes 3178136658536491 r002 51th iterates of z^2 + 3178136663232648 p004 log(12073/503) 3178136663976564 m001 (Sierpinski+Totient)/(Backhouse-MertensB3) 3178136680750930 l006 ln(1847/2538) 3178136688520340 r002 15th iterates of z^2 + 3178136689275711 r005 Im(z^2+c),c=-87/64+1/57*I,n=56 3178136692598705 r005 Im(z^2+c),c=-19/110+23/50*I,n=52 3178136698693379 r005 Im(z^2+c),c=-17/30+5/87*I,n=52 3178136700246012 r009 Re(z^3+c),c=-19/66+1/30*I,n=10 3178136701947545 a007 Real Root Of -301*x^4+614*x^3-274*x^2+642*x-193 3178136702972612 a001 18/139583862445*3524578^(14/17) 3178136704090525 r005 Im(z^2+c),c=-19/110+23/50*I,n=51 3178136708052057 l006 ln(8609/8887) 3178136708052057 p004 log(8887/8609) 3178136708723103 m002 2-E^Pi/Pi^5+Pi^2+Pi^5 3178136715695589 m005 (1/2*gamma-7/9)/(5/12*5^(1/2)-7/9) 3178136716357241 s003 concatenated sequence A164305 3178136728012707 r005 Re(z^2+c),c=11/122+5/22*I,n=8 3178136733163429 m001 (TwinPrimes-ZetaQ(3))/(ln(3)-Conway) 3178136736431198 m001 (Tribonacci+ZetaP(3))/(gamma(2)+Cahen) 3178136753400483 m006 (1/2*exp(Pi)-1/4)/(2/3*exp(2*Pi)-4/5) 3178136766600484 m005 (1/3*Zeta(3)+1/7)/(2/3*3^(1/2)+5/9) 3178136804870812 r005 Re(z^2+c),c=-131/122+22/43*I,n=4 3178136818898285 r002 8th iterates of z^2 + 3178136823650325 m005 (1/3*Pi-3/5)/(2/5*3^(1/2)+5/7) 3178136830642734 a007 Real Root Of 295*x^4+967*x^3+300*x^2+695*x+124 3178136831459679 r002 43i'th iterates of 2*x/(1-x^2) of 3178136858722565 r005 Im(z^2+c),c=-15/56+1/2*I,n=61 3178136858972931 a008 Real Root of x^3-343*x-1058 3178136863570545 m001 arctan(1/2)^ArtinRank2*Landau 3178136875869728 a007 Real Root Of -509*x^4+680*x^3-248*x^2+563*x+231 3178136880370858 m006 (1/6/Pi+4/5)/(1/2*exp(2*Pi)+2/3) 3178136881533444 m001 1/OneNinth*exp(FeigenbaumKappa)^2/GAMMA(5/24) 3178136886168284 p004 log(26357/19181) 3178136887934399 a003 cos(Pi*3/71)*sin(Pi*8/77) 3178136890368986 r009 Im(z^3+c),c=-11/23+10/41*I,n=9 3178136904110710 m001 Zeta(1/2)/(FransenRobinson+KomornikLoreti) 3178136918218933 r008 a(0)=3,K{-n^6,46+24*n^3-61*n^2-16*n} 3178136946300684 m001 FeigenbaumC/LandauRamanujan*exp(Sierpinski) 3178136948568377 m006 (1/3/Pi+1/5)/(2/3*ln(Pi)+1/5) 3178136958378859 r009 Im(z^3+c),c=-7/34+13/40*I,n=7 3178136962083938 m001 1/FransenRobinson^2/Backhouse/exp(Zeta(7)) 3178136996697800 a007 Real Root Of -235*x^4-894*x^3-276*x^2+553*x-178 3178137000226397 a007 Real Root Of -135*x^4-313*x^3-202*x^2+262*x+95 3178137014511808 a007 Real Root Of 996*x^4-600*x^3+866*x^2+415*x+15 3178137019721958 a007 Real Root Of 514*x^4-810*x^3+316*x^2-677*x+204 3178137030649886 r005 Im(z^2+c),c=-13/22+7/120*I,n=59 3178137034510795 a001 9227465/521*322^(1/2) 3178137035707921 r005 Im(z^2+c),c=13/106+13/42*I,n=8 3178137035801373 b008 1/2+E^3*Tan[1] 3178137050880338 m001 (sin(1)-sin(1/12*Pi))/(gamma(3)+FeigenbaumC) 3178137061298497 a007 Real Root Of -437*x^4+24*x^3+970*x^2+534*x-264 3178137064364251 a007 Real Root Of -759*x^4-635*x^3+978*x^2+794*x-323 3178137072153652 r005 Re(z^2+c),c=-25/66+18/55*I,n=39 3178137097272594 r005 Im(z^2+c),c=3/11+8/45*I,n=29 3178137101740118 r008 a(0)=3,K{-n^6,-4-23*n+5*n^2+17*n^3} 3178137102321618 s002 sum(A280409[n]/(2^n+1),n=1..infinity) 3178137110163088 l006 ln(6283/6303) 3178137132613003 r009 Re(z^3+c),c=-35/114+8/57*I,n=2 3178137143714474 r005 Im(z^2+c),c=39/106+16/53*I,n=32 3178137149065603 h001 (-7*exp(6)+4)/(-4*exp(1)+2) 3178137151371833 m001 1/Robbin*exp(CopelandErdos)/BesselK(1,1) 3178137163652696 a007 Real Root Of -907*x^4+187*x^3-935*x^2+904*x+397 3178137165275725 m001 exp(1/Pi)/(cos(1/12*Pi)+ReciprocalFibonacci) 3178137179397418 r005 Re(z^2+c),c=-2/3+64/207*I,n=2 3178137185720326 m005 (1/2*2^(1/2)+1/4)/(4/11*exp(1)-4) 3178137195134043 h002 exp(12^(2/3)-18^(1/5)) 3178137195134043 h007 exp(12^(2/3)-18^(1/5)) 3178137202088712 m005 (1/42+1/6*5^(1/2))/(2^(1/2)-1/6) 3178137208291386 k002 Champernowne real with 6*n^2+29*n-4 3178137209902994 m001 (gamma+Bloch)/(MinimumGamma+Tribonacci) 3178137221401097 m001 AlladiGrinstead^(GAMMA(13/24)/Trott2nd) 3178137232559412 m001 (BesselK(0,1)+gamma(3))/(-Gompertz+Tetranacci) 3178137234723673 r002 52th iterates of z^2 + 3178137251693933 a007 Real Root Of 728*x^4-621*x^3-404*x^2-729*x+285 3178137251934262 a001 1762289/682*322^(5/6) 3178137257768569 r005 Im(z^2+c),c=-19/110+23/50*I,n=48 3178137269826690 r009 Re(z^3+c),c=-51/106+11/29*I,n=9 3178137274206993 r005 Re(z^2+c),c=-31/106+13/24*I,n=34 3178137278763542 r005 Im(z^2+c),c=-61/54+2/51*I,n=47 3178137285534898 a007 Real Root Of 176*x^4+378*x^3-451*x^2+136*x-834 3178137292598349 m001 1/Pi^2*ln(TreeGrowth2nd)^2/arctan(1/2)^2 3178137306034395 r005 Im(z^2+c),c=-19/110+23/50*I,n=54 3178137307631670 a001 41/15456*144^(2/55) 3178137310966892 l006 ln(6252/8591) 3178137318254186 r005 Re(z^2+c),c=-23/60+17/55*I,n=20 3178137324855304 m005 (1/2*2^(1/2)-5/12)/(3^(1/2)-9/11) 3178137329895768 r005 Re(z^2+c),c=23/118+11/29*I,n=41 3178137331051939 a007 Real Root Of -859*x^4+441*x^3-383*x^2+533*x+231 3178137338822399 r005 Re(z^2+c),c=-39/98+13/60*I,n=3 3178137344596188 m001 (2^(1/3)+CopelandErdos)/(-LaplaceLimit+Rabbit) 3178137345823209 r005 Im(z^2+c),c=-7/54+2/51*I,n=10 3178137347990523 m001 (ln(5)+GolombDickman)/(LandauRamanujan-Porter) 3178137353330850 m001 Kolakoski/Zeta(1,-1)*Robbin 3178137354761828 m001 (FeigenbaumB-cos(1))/(FellerTornier+Gompertz) 3178137357738802 m001 1/BesselK(0,1)^2*KhintchineLevy^2/exp(Catalan) 3178137360307902 a007 Real Root Of -734*x^4+895*x^3+44*x^2+259*x-108 3178137382865946 a007 Real Root Of -308*x^4+733*x^3-272*x^2+890*x+337 3178137389840870 m001 Pi-sin(1/5*Pi)+GolombDickman 3178137389840870 m001 Pi-sin(Pi/5)+GolombDickman 3178137394688532 r009 Re(z^3+c),c=-39/110+6/29*I,n=11 3178137398528711 r005 Re(z^2+c),c=23/54+14/41*I,n=52 3178137406861999 a007 Real Root Of 613*x^4-715*x^3-290*x^2-837*x+312 3178137407226562 r005 Im(z^2+c),c=2/25+31/64*I,n=3 3178137407832892 a007 Real Root Of 88*x^4+59*x^3+241*x^2-817*x-283 3178137408785954 m001 Backhouse*GaussAGM+ReciprocalLucas 3178137414635119 a007 Real Root Of 311*x^4+928*x^3-76*x^2+591*x+707 3178137439166812 p001 sum((-1)^n/(509*n+310)/(25^n),n=0..infinity) 3178137443604771 r009 Im(z^3+c),c=-41/86+12/55*I,n=6 3178137445616430 a001 3524578/2207*322^(11/12) 3178137447022883 r009 Im(z^3+c),c=-19/94+15/46*I,n=9 3178137454393573 m001 Riemann1stZero*ln(ErdosBorwein)^2 3178137457973821 m001 (2*Pi/GAMMA(5/6)-GAMMA(23/24))^LandauRamanujan 3178137457973821 m001 (GAMMA(1/6)-GAMMA(23/24))^LandauRamanujan 3178137461348010 h001 (-9*exp(1)-9)/(-9*exp(2/3)+7) 3178137465251039 q001 1/3146497 3178137467808147 r005 Im(z^2+c),c=-147/118+4/25*I,n=12 3178137482956138 r002 32i'th iterates of 2*x/(1-x^2) of 3178137487911300 m001 (CopelandErdos+Khinchin)/(Trott-ZetaQ(4)) 3178137492064989 a007 Real Root Of 208*x^4+603*x^3+120*x^2+896*x-228 3178137492998606 h001 (1/8*exp(1)+1/6)/(3/7*exp(1)+3/7) 3178137494485163 m005 (1/2*gamma-3/11)/(5/11*Catalan+1/12) 3178137499664093 a001 228826127/377*1836311903^(16/17) 3178137499666356 a001 505019158607/377*514229^(16/17) 3178137499936379 a007 Real Root Of -28*x^4-896*x^3-203*x^2-296*x-872 3178137499959735 a001 103682/377*6557470319842^(16/17) 3178137502729272 r009 Re(z^3+c),c=-3/50+43/60*I,n=61 3178137502837343 a001 2207/13*28657^(26/51) 3178137503614717 m001 (GAMMA(7/12)+Cahen)/(ln(2)+gamma(2)) 3178137505673971 g007 Psi(2,9/10)+Psi(2,5/9)+Psi(2,1/3)-Psi(2,3/8) 3178137505883108 r005 Im(z^2+c),c=-61/54+2/51*I,n=52 3178137507705028 m001 FeigenbaumAlpha^2*Conway/exp(Bloch)^2 3178137510820932 r005 Re(z^2+c),c=-41/106+27/58*I,n=18 3178137519584618 m001 (-GAMMA(23/24)+LandauRamanujan)/(Ei(1)-exp(1)) 3178137528831464 m002 -3+(Pi^3*Tanh[Pi])/5 3178137529517491 r005 Im(z^2+c),c=-3/13+23/39*I,n=22 3178137530652019 a007 Real Root Of -105*x^4-407*x^3-99*x^2+471*x+144 3178137532213154 m005 (1/2*2^(1/2)-4)/(6/11*2^(1/2)-7/8) 3178137536119224 k006 concat of cont frac of 3178137536947329 r005 Re(z^2+c),c=-19/70+29/48*I,n=51 3178137537220837 r002 5th iterates of z^2 + 3178137538361458 m005 (1/2*Zeta(3)+6/11)/(4/11*2^(1/2)-7/8) 3178137574737272 r005 Re(z^2+c),c=43/122+9/52*I,n=42 3178137575214073 l006 ln(4405/6053) 3178137591182740 r002 56th iterates of z^2 + 3178137591501659 m006 (4/5*exp(Pi)-4)/(2/5*Pi-4/5) 3178137605667199 r005 Im(z^2+c),c=-5/16+15/29*I,n=54 3178137608229308 m001 1/exp(GAMMA(3/4))^2/Niven^2/cos(Pi/12)^2 3178137612039923 a009 10^(3/4)/(11^(1/2)-12^(3/4))^(1/2) 3178137633107615 a001 38/17*317811^(1/36) 3178137645760084 r005 Re(z^2+c),c=41/126+4/31*I,n=20 3178137651821862 q001 157/494 3178137651821862 r005 Im(z^2+c),c=-3/4+157/247*I,n=2 3178137651909144 a007 Real Root Of 977*x^4-897*x^3-519*x^2-553*x+247 3178137662538651 m001 Zeta(3)*(BesselJ(1,1)-CareFree) 3178137674095018 a007 Real Root Of -24*x^4-764*x^3-65*x^2-791*x+486 3178137674423308 a007 Real Root Of 832*x^4-791*x^3+54*x^2-480*x+164 3178137682300884 m008 (2/5*Pi^4-1/6)/(2/5*Pi^5-1/3) 3178137693401940 a007 Real Root Of 228*x^4+842*x^3+511*x^2-746*x-264 3178137697321124 a007 Real Root Of -111*x^4-461*x^3-426*x^2-464*x-646 3178137700167305 a001 5/124*9349^(7/31) 3178137708483069 a007 Real Root Of -688*x^4+506*x^3+917*x^2+76*x-126 3178137709489808 r005 Re(z^2+c),c=-31/78+11/46*I,n=25 3178137717114562 s001 sum(1/10^(n-1)*A217383[n]/n!^2,n=1..infinity) 3178137718076770 m005 (1/2*exp(1)+4/5)/(7/12*5^(1/2)-5/8) 3178137760588745 r009 Re(z^3+c),c=-7/46+52/59*I,n=6 3178137781003055 h001 (2/5*exp(1)+3/10)/(4/7*exp(2)+1/7) 3178137787785835 r005 Im(z^2+c),c=7/23+7/51*I,n=44 3178137810122615 m001 2*sin(1)+2*RenyiParking 3178137811526558 r005 Im(z^2+c),c=-9/110+23/55*I,n=31 3178137812478662 l006 ln(6963/9568) 3178137815270444 s002 sum(A124092[n]/(exp(n)+1),n=1..infinity) 3178137817652425 a007 Real Root Of -384*x^4-71*x^3-91*x^2+32*x+21 3178137852311295 a005 (1/cos(4/225*Pi))^741 3178137854490115 m001 (exp(1)-sin(1/5*Pi))/(-exp(1/Pi)+CareFree) 3178137854964738 p001 sum((-1)^n/(362*n+309)/(25^n),n=0..infinity) 3178137864657598 a007 Real Root Of 299*x^4+917*x^3+118*x^2+565*x-464 3178137869245119 r005 Re(z^2+c),c=-43/106+3/16*I,n=24 3178137891485738 r005 Im(z^2+c),c=8/27+4/27*I,n=33 3178137895504795 a001 14662949395604/1597*1836311903^(12/17) 3178137895504795 a001 45537549124/1597*6557470319842^(12/17) 3178137916974353 m006 (4*exp(2*Pi)+4/5)/(3*exp(Pi)-2) 3178137931979745 r002 3th iterates of z^2 + 3178137938904548 r005 Im(z^2+c),c=-61/54+2/51*I,n=51 3178137940117229 a007 Real Root Of -9*x^4+168*x^3-219*x^2-414*x-947 3178137941787158 m005 (2*2^(1/2)+1/6)/(1/3*gamma+3/4) 3178137945535481 m008 (2/3*Pi^4-3)/(2*Pi^2-1/4) 3178137955685858 a001 1364/21*55^(21/53) 3178137958821133 r002 55th iterates of z^2 + 3178137967459945 m001 (-GaussKuzminWirsing+Mills)/(2^(1/3)+Ei(1)) 3178137970893588 m001 (Ei(1,1)+FeigenbaumB)/(2^(1/2)+Ei(1)) 3178137972301742 m005 (1/2*2^(1/2)+1)/(2/11*3^(1/2)+2/9) 3178137973165102 r005 Im(z^2+c),c=-19/110+23/50*I,n=57 3178137992018584 a007 Real Root Of 204*x^4+723*x^3+368*x^2+423*x+24 3178138000372447 m005 (1/2*2^(1/2)-3/10)/(2/9*5^(1/2)-5/8) 3178138002902083 a001 9227465/5778*322^(11/12) 3178138007772915 m005 (1/3*gamma-1/8)/(3/7*2^(1/2)-9/11) 3178138017526814 r004 Im(z^2+c),c=-33/26-11/17*I,z(0)=-1,n=3 3178138018242307 m001 (Ei(1,1)+gamma(1))/(ln(3)-ln(Pi)) 3178138018692460 m002 -4/Pi-Pi^3+Tanh[Pi]/2 3178138023427738 m001 sin(1/5*Pi)*GAMMA(7/12)+BesselI(0,2) 3178138023427738 m001 sin(Pi/5)*GAMMA(7/12)+BesselI(0,2) 3178138025968254 r005 Im(z^2+c),c=-9/31+16/31*I,n=29 3178138052242645 m005 (1/2*Zeta(3)+3)/(11/12*5^(1/2)-11/12) 3178138053306910 r009 Im(z^3+c),c=-43/122+10/37*I,n=20 3178138063462677 a007 Real Root Of -737*x^4-134*x^3+25*x^2+152*x+49 3178138068900879 a007 Real Root Of -603*x^4+568*x^3-846*x^2+913*x+400 3178138070141778 r005 Im(z^2+c),c=15/74+12/55*I,n=4 3178138073588033 r005 Re(z^2+c),c=13/74+26/63*I,n=64 3178138077033537 p004 log(27143/19753) 3178138084208980 a001 24157817/15127*322^(11/12) 3178138096071497 a001 63245986/39603*322^(11/12) 3178138097802215 a001 165580141/103682*322^(11/12) 3178138098054723 a001 433494437/271443*322^(11/12) 3178138098091563 a001 1134903170/710647*322^(11/12) 3178138098096938 a001 2971215073/1860498*322^(11/12) 3178138098097722 a001 7778742049/4870847*322^(11/12) 3178138098097837 a001 20365011074/12752043*322^(11/12) 3178138098097854 a001 53316291173/33385282*322^(11/12) 3178138098097856 a001 139583862445/87403803*322^(11/12) 3178138098097856 a001 365435296162/228826127*322^(11/12) 3178138098097856 a001 956722026041/599074578*322^(11/12) 3178138098097856 a001 2504730781961/1568397607*322^(11/12) 3178138098097856 a001 6557470319842/4106118243*322^(11/12) 3178138098097856 a001 10610209857723/6643838879*322^(11/12) 3178138098097856 a001 4052739537881/2537720636*322^(11/12) 3178138098097856 a001 1548008755920/969323029*322^(11/12) 3178138098097856 a001 591286729879/370248451*322^(11/12) 3178138098097857 a001 225851433717/141422324*322^(11/12) 3178138098097858 a001 86267571272/54018521*322^(11/12) 3178138098097864 a001 32951280099/20633239*322^(11/12) 3178138098097908 a001 12586269025/7881196*322^(11/12) 3178138098098207 a001 4807526976/3010349*322^(11/12) 3178138098100260 a001 1836311903/1149851*322^(11/12) 3178138098114332 a001 701408733/439204*322^(11/12) 3178138098210782 a001 267914296/167761*322^(11/12) 3178138098871857 a001 102334155/64079*322^(11/12) 3178138099134170 h003 exp(Pi*(1/15*(20-6^(1/3))^(1/2)*15^(1/2))) 3178138103402935 a001 39088169/24476*322^(11/12) 3178138105186624 r005 Im(z^2+c),c=-61/54+2/51*I,n=56 3178138108369024 a001 119218851371/4181*6557470319842^(12/17) 3178138134459408 a001 14930352/9349*322^(11/12) 3178138136143890 m001 (BesselK(0,1)+Rabbit*Sierpinski)/Rabbit 3178138139425498 a001 312119004989/10946*6557470319842^(12/17) 3178138143956577 a001 817138163596/28657*6557470319842^(12/17) 3178138144617652 a001 2139295485799/75025*6557470319842^(12/17) 3178138144714102 a001 5600748293801/196418*6557470319842^(12/17) 3178138144728174 a001 14662949395604/514229*6557470319842^(12/17) 3178138144731496 a001 23725150497407/832040*6557470319842^(12/17) 3178138144736871 a001 3020733700601/105937*6557470319842^(12/17) 3178138144773711 a001 3461452808002/121393*6557470319842^(12/17) 3178138145026220 a001 440719107401/15456*6557470319842^(12/17) 3178138146756938 a001 505019158607/17711*6557470319842^(12/17) 3178138150867219 r009 Im(z^3+c),c=-5/56+19/55*I,n=7 3178138158619456 a001 64300051206/2255*6557470319842^(12/17) 3178138162278268 r005 Im(z^2+c),c=1/32+23/64*I,n=19 3178138169355520 m001 (Backhouse+Magata)/(Si(Pi)-arctan(1/3)) 3178138177453529 s002 sum(A273226[n]/((pi^n+1)/n),n=1..infinity) 3178138179145147 l006 ln(7649/7896) 3178138180257701 r002 62th iterates of z^2 + 3178138185922981 m001 CareFree^Otter/(gamma(2)^Otter) 3178138195047178 s002 sum(A255508[n]/((exp(n)+1)/n),n=1..infinity) 3178138195347732 m001 (ln(2)-DuboisRaymond)/(Rabbit+Thue) 3178138198866436 m001 exp(Bloch)/FeigenbaumAlpha*CareFree^2 3178138205723878 r005 Im(z^2+c),c=-61/54+2/51*I,n=55 3178138210295392 k004 Champernowne real with floor(Pi*(2*n^2+9*n-1)) 3178138210757126 a009 2^(1/4)/(10^(1/3)+2^(2/3)) 3178138211297396 k002 Champernowne real with 13/2*n^2+55/2*n-3 3178138219935190 m001 2^(1/2)/(Ei(1,1)-FeigenbaumDelta) 3178138220388337 r005 Im(z^2+c),c=5/102+35/59*I,n=7 3178138221059772 l006 ln(2558/3515) 3178138223832280 b008 E+SinIntegral[(4*Pi)/27] 3178138234778411 a007 Real Root Of -907*x^4+470*x^3-643*x^2+534*x+259 3178138235172711 r005 Im(z^2+c),c=-7/54+2/51*I,n=11 3178138239926366 a001 23725150497407/2584*1836311903^(12/17) 3178138239926366 a001 73681302247/2584*6557470319842^(12/17) 3178138241264899 m001 (KhinchinLevy+Landau)/(Psi(2,1/3)+ln(2)) 3178138244037584 r002 61th iterates of z^2 + 3178138244995748 a007 Real Root Of 167*x^4-944*x^3+935*x^2-351*x-238 3178138255466050 r005 Im(z^2+c),c=-7/54+2/51*I,n=13 3178138266315875 s001 sum(exp(-Pi/2)^(n-1)*A177866[n],n=1..infinity) 3178138267394276 r005 Im(z^2+c),c=-61/54+2/51*I,n=60 3178138279214688 r005 Im(z^2+c),c=-61/54+2/51*I,n=59 3178138286911063 r005 Im(z^2+c),c=-7/54+2/51*I,n=15 3178138288288546 r004 Re(z^2+c),c=-3/10+2/7*I,z(0)=I,n=4 3178138290028162 r005 Im(z^2+c),c=-7/54+2/51*I,n=17 3178138290235535 r005 Im(z^2+c),c=-7/54+2/51*I,n=19 3178138290245791 r005 Im(z^2+c),c=-7/54+2/51*I,n=21 3178138290246107 r005 Im(z^2+c),c=-7/54+2/51*I,n=24 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=26 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=28 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=30 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=32 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=34 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=35 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=37 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=39 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=41 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=43 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=45 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=48 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=50 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=52 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=54 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=56 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=59 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=58 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=61 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=63 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=64 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=62 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=60 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=57 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=55 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=53 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=51 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=49 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=47 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=46 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=44 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=42 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=40 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=38 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=36 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=33 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=31 3178138290246110 r005 Im(z^2+c),c=-7/54+2/51*I,n=29 3178138290246111 r005 Im(z^2+c),c=-7/54+2/51*I,n=27 3178138290246112 r005 Im(z^2+c),c=-7/54+2/51*I,n=25 3178138290246115 r005 Im(z^2+c),c=-7/54+2/51*I,n=23 3178138290246142 r005 Im(z^2+c),c=-7/54+2/51*I,n=22 3178138290248122 r005 Im(z^2+c),c=-7/54+2/51*I,n=20 3178138290296090 r005 Im(z^2+c),c=-7/54+2/51*I,n=18 3178138291130839 r005 Im(z^2+c),c=-7/54+2/51*I,n=16 3178138291545020 r005 Im(z^2+c),c=-61/54+2/51*I,n=61 3178138292108865 r005 Im(z^2+c),c=-61/54+2/51*I,n=62 3178138292136455 r005 Im(z^2+c),c=-61/54+2/51*I,n=63 3178138293145480 r002 42th iterates of z^2 + 3178138294107246 r005 Im(z^2+c),c=-1/23+25/62*I,n=10 3178138295020633 r005 Im(z^2+c),c=-61/54+2/51*I,n=64 3178138296976284 a007 Real Root Of -244*x^4-659*x^3+92*x^2-777*x+340 3178138297647829 m001 Zeta(3)^2/(3^(1/3))*exp(gamma)^2 3178138300331196 r009 Re(z^3+c),c=-23/52+22/63*I,n=33 3178138301742950 r005 Im(z^2+c),c=-7/54+2/51*I,n=14 3178138304530963 r005 Im(z^2+c),c=-17/106+5/11*I,n=41 3178138307821507 r009 Re(z^3+c),c=-5/31+51/55*I,n=4 3178138315025060 r002 59th iterates of z^2 + 3178138324802196 r005 Im(z^2+c),c=-61/54+2/51*I,n=57 3178138330894250 r002 63th iterates of z^2 + 3178138336093358 r005 Im(z^2+c),c=-35/106+23/44*I,n=44 3178138341250187 m001 Paris*exp(Niven)*BesselJ(0,1)^2 3178138347323655 a001 1597*322^(11/12) 3178138350735647 m001 (-GAMMA(11/12)+GaussAGM)/(3^(1/2)-Zeta(5)) 3178138359118270 r002 60th iterates of z^2 + 3178138360140900 r002 57th iterates of z^2 + 3178138364651127 r005 Im(z^2+c),c=-61/54+2/51*I,n=58 3178138371504867 r005 Im(z^2+c),c=-7/54+2/51*I,n=12 3178138375685344 l005 231/41/(exp(231/82)+1) 3178138384096432 r002 64th iterates of z^2 + 3178138392714993 r005 Re(z^2+c),c=25/74+23/57*I,n=64 3178138412487247 a003 sin(Pi*28/97)/cos(Pi*29/69) 3178138421659128 r002 58th iterates of z^2 + 3178138432098658 r005 Im(z^2+c),c=-19/110+23/50*I,n=55 3178138444452712 r005 Im(z^2+c),c=-19/110+23/50*I,n=60 3178138447535382 m005 (19/42+1/6*5^(1/2))/(9/10*gamma-6/11) 3178138451474594 h001 (7/12*exp(1)+4/11)/(4/5*exp(2)+2/9) 3178138471174576 r005 Im(z^2+c),c=-61/54+2/51*I,n=53 3178138501832328 m001 exp(Rabbit)*GlaisherKinkelin^2/GAMMA(23/24)^2 3178138505212695 m005 (1/2*Catalan+5)/(1/4*2^(1/2)-2/11) 3178138514483640 m009 (4/5*Psi(1,1/3)+5)/(2/5*Pi^2+1/6) 3178138517564322 s002 sum(A112215[n]/((2^n-1)/n),n=1..infinity) 3178138551113380 r005 Im(z^2+c),c=-2/13+14/31*I,n=36 3178138556636092 h001 (1/7*exp(1)+1/2)/(8/11*exp(1)+9/11) 3178138567031156 a007 Real Root Of -251*x^4-868*x^3-171*x^2-50*x-688 3178138583187711 a001 21/11*18^(36/37) 3178138587939517 m005 (1/3*2^(1/2)-1/6)/(11/12*gamma-5/8) 3178138589329754 h001 (11/12*exp(2)+2/5)/(7/9*exp(1)+1/7) 3178138593371348 a007 Real Root Of 260*x^4+694*x^3-513*x^2-68*x+718 3178138595632613 m006 (1/6*Pi^2-1/5)/(4/5/Pi+1/5) 3178138596188286 m005 (1/2*Pi-3/4)/(1/10*Catalan+1/6) 3178138598963168 r005 Im(z^2+c),c=5/48+15/47*I,n=5 3178138605896108 a007 Real Root Of -101*x^4-218*x^3+116*x^2+388*x-127 3178138612829437 a003 cos(Pi*19/107)*cos(Pi*17/45) 3178138615795463 a007 Real Root Of -372*x^4-804*x^3+836*x^2-874*x+921 3178138628653453 m001 (Bloch*FransenRobinson+ZetaP(3))/Bloch 3178138635508946 p001 sum(1/(425*n+316)/(100^n),n=0..infinity) 3178138643309999 r005 Re(z^2+c),c=-33/118+16/27*I,n=52 3178138644820011 a007 Real Root Of 689*x^4-437*x^3+120*x^2-484*x-187 3178138679402282 r009 Re(z^3+c),c=-19/36+6/17*I,n=56 3178138689579556 a001 7*(1/2*5^(1/2)+1/2)^2*18^(4/21) 3178138690660391 r005 Im(z^2+c),c=-61/54+2/51*I,n=54 3178138701363927 m002 9+Pi^5+3/ProductLog[Pi] 3178138709295596 l006 ln(5827/8007) 3178138712713427 a001 1/439204*18^(3/26) 3178138714504908 m001 Paris/ln(CareFree)*GAMMA(5/6) 3178138715625673 r005 Im(z^2+c),c=-37/118+15/26*I,n=51 3178138718658348 m001 Conway/ln(gamma)*Totient 3178138723299809 r002 51th iterates of z^2 + 3178138724040779 r005 Im(z^2+c),c=-19/110+23/50*I,n=63 3178138737007782 m005 (1/3*gamma-1/9)/(9/10*5^(1/2)+6/11) 3178138740838707 m001 1/ln(gamma)*Zeta(7)*sqrt(3) 3178138747605836 r009 Re(z^3+c),c=-11/25+14/43*I,n=6 3178138750725277 a003 cos(Pi*27/101)-sin(Pi*45/101) 3178138767308746 m001 BesselI(0,2)*Riemann1stZero-TreeGrowth2nd 3178138770239481 m001 cos(1)^(1/3*Khinchin*3^(2/3)) 3178138770239481 m001 cos(1)^(Khinchin/(3^(1/3))) 3178138770891906 g007 Psi(2,7/9)+Psi(2,3/7)+Psi(2,5/6)-Psi(2,8/9) 3178138771901233 a007 Real Root Of -854*x^4+430*x^3-397*x^2+684*x+280 3178138778001697 r005 Im(z^2+c),c=-5/24+29/61*I,n=30 3178138788082483 m001 GAMMA(7/24)^2*exp(PrimesInBinary)^2*Zeta(1/2) 3178138797212332 a001 3020733700601/329*1836311903^(12/17) 3178138797212332 a001 9381251041/329*6557470319842^(12/17) 3178138804450948 b008 ArcCsc[Sqrt[5]+Tanh[2]] 3178138812859849 a003 cos(Pi*23/79)-sin(Pi*14/37) 3178138822135373 a007 Real Root Of 296*x^4-972*x^3-936*x^2-221*x+8 3178138823925373 m005 (1/2*gamma+2/11)/(4/7*gamma-2/11) 3178138831148917 r005 Im(z^2+c),c=-5/21+29/60*I,n=23 3178138857896466 m001 Riemann1stZero*exp(LaplaceLimit)*OneNinth^2 3178138861179445 a001 123/3524578*39088169^(11/12) 3178138861179496 a001 123/139583862445*4052739537881^(11/12) 3178138861179496 a001 41/233802911*12586269025^(11/12) 3178138863166317 a001 123/17711*121393^(11/12) 3178138871596286 m005 (1/2*5^(1/2)-7/8)/(7/11*Catalan+2/11) 3178138879741704 a005 (1/cos(48/175*Pi))^51 3178138884064313 a007 Real Root Of 318*x^4-591*x^3+792*x^2-701*x-325 3178138897720482 a007 Real Root Of 252*x^4+865*x^3+882*x^2-938*x-362 3178138899998428 m006 (1/2*exp(Pi)-4)/(5/6*Pi-5) 3178138903044758 a001 2/89*13^(5/37) 3178138915223888 m001 (LaplaceLimit+Porter)/(ln(5)-BesselI(0,2)) 3178138915275519 r005 Im(z^2+c),c=-61/54+2/51*I,n=49 3178138918013927 a001 199/6557470319842*433494437^(13/14) 3178138918016159 a001 199/12586269025*514229^(13/14) 3178138918563184 m001 LandauRamanujan/(Porter-Zeta(1,2)) 3178138930056201 m003 2/Log[1/2+Sqrt[5]/2]-Sinh[1/2+Sqrt[5]/2]^2/6 3178138931672866 m001 1/Pi^2*GolombDickman^2*ln(sqrt(5)) 3178138933680173 a007 Real Root Of -106*x^4-302*x^3+197*x^2+483*x+665 3178138935972127 m001 1/Paris^2/exp(GolombDickman)/sqrt(3) 3178138942618870 m001 1/Zeta(7)/ln(MertensB1)^2/log(2+sqrt(3))^2 3178138949902646 r005 Re(z^2+c),c=-35/102+23/51*I,n=37 3178138972292105 r005 Im(z^2+c),c=-11/16+1/109*I,n=64 3178138985134327 m001 (Ei(1)+exp(-1/2*Pi))/Robbin 3178138988156776 a007 Real Root Of -13*x^4+350*x^3-614*x^2-900*x-847 3178138989006926 a007 Real Root Of 276*x^4+883*x^3+177*x^2+250*x-806 3178138995134718 a001 5600748293801/610*6557470319842^(10/17) 3178138995276733 r005 Im(z^2+c),c=-19/110+23/50*I,n=58 3178138999924142 m001 (ln(gamma)+3^(1/3))/(Champernowne+Khinchin) 3178139001961849 a007 Real Root Of 294*x^4+953*x^3-115*x^2-626*x-230 3178139002458676 a007 Real Root Of -171*x^4+462*x^3+500*x^2+983*x-376 3178139004757011 m008 (5*Pi^4-3/5)/(5*Pi^5+1/2) 3178139027104378 m002 Pi^5+Cosh[Pi]+(E^Pi*Sech[Pi])/Pi^2 3178139042270225 a007 Real Root Of 150*x^4+237*x^3-842*x^2+9*x+838 3178139043511835 m006 (Pi+4/5)/(3/4*Pi^2+5) 3178139043511835 m008 (Pi+4/5)/(3/4*Pi^2+5) 3178139044787990 r009 Im(z^3+c),c=-59/122+32/57*I,n=12 3178139047039269 m001 1/GAMMA(1/4)/Tribonacci*ln(cos(Pi/5)) 3178139049632903 a007 Real Root Of -218*x^4-501*x^3+523*x^2-216*x+189 3178139058641143 b008 Pi+Tan[Pi/86] 3178139060134198 m001 exp(Trott)^2*Porter^2*Zeta(3)^2 3178139067907909 m001 exp(gamma)^2/GAMMA(1/4)^2*log(2+sqrt(3)) 3178139083174593 r005 Im(z^2+c),c=-10/27+22/41*I,n=46 3178139086839490 m007 (-2/3*gamma-4/3*ln(2)+3/5)/(-2/5*gamma-2) 3178139091341231 l006 ln(3269/4492) 3178139095809902 m005 (1/42+1/6*5^(1/2))/(4*Pi-1/11) 3178139097942165 m001 (2^(1/3)+ln(Pi))/(-MertensB3+Stephens) 3178139104466052 m001 ln(RenyiParking)/Artin^2/cos(Pi/5)^2 3178139110578152 m001 (Pi+Gompertz)/(MasserGramainDelta-Niven) 3178139111082236 m005 (1/2*gamma+3/4)/(1/9*Catalan-3/7) 3178139111125871 k007 concat of cont frac of 3178139111696630 r005 Im(z^2+c),c=-19/110+23/50*I,n=64 3178139114249586 r005 Im(z^2+c),c=-81/74+13/49*I,n=4 3178139119335999 r009 Re(z^3+c),c=-3/58+11/20*I,n=16 3178139121560627 r005 Im(z^2+c),c=-19/110+23/50*I,n=61 3178139124468028 r009 Re(z^3+c),c=-1/17+36/53*I,n=27 3178139128151995 a008 Real Root of (1+x-6*x^2+x^3-4*x^4+x^5) 3178139156767601 a007 Real Root Of 722*x^4+45*x^3+671*x^2-904*x-361 3178139163577035 r005 Re(z^2+c),c=-29/90+30/59*I,n=62 3178139174212834 p004 log(36913/26863) 3178139182044420 a001 2178309/199*199^(7/11) 3178139191139450 m002 -Pi^6/3+(Pi^2*ProductLog[Pi])/4 3178139200044368 m001 Ei(1)^2*MinimumGamma^2/exp(log(1+sqrt(2))) 3178139214303406 k002 Champernowne real with 7*n^2+26*n-2 3178139223246787 r002 53th iterates of z^2 + 3178139223411959 m001 1/Zeta(1,2)*exp(GAMMA(11/12))*Zeta(5) 3178139226437762 r005 Im(z^2+c),c=-61/54+2/51*I,n=41 3178139231557223 r005 Im(z^2+c),c=-19/110+23/50*I,n=62 3178139254294051 m001 (1-ln(5))/(GlaisherKinkelin+HardyLittlewoodC3) 3178139261590624 a001 18/433494437*317811^(12/17) 3178139261595067 a001 18/139583862445*1134903170^(12/17) 3178139269883314 a001 3/4*(1/2*5^(1/2)+1/2)^7*4^(3/11) 3178139275850679 r005 Re(z^2+c),c=-25/52+3/11*I,n=5 3178139278231335 a007 Real Root Of -222*x^4-419*x^3+514*x^2-981*x+889 3178139291603488 r005 Re(z^2+c),c=-23/26+19/93*I,n=46 3178139298338697 m001 (-ZetaP(4)+ZetaQ(3))/(2^(1/2)+Sarnak) 3178139310654680 m001 1/ln(BesselJ(1,1))^2*MadelungNaCl*GAMMA(3/4) 3178139312570806 m001 exp(1)^2*exp(Khintchine)^2*sqrt(2)^2 3178139312866237 a007 Real Root Of 123*x^4+53*x^3-781*x^2+835*x-305 3178139314593272 r005 Im(z^2+c),c=-21/26+13/57*I,n=6 3178139323551649 m001 3/2*GolombDickman-3/2*ThueMorse 3178139325432986 r005 Im(z^2+c),c=-28/23+2/25*I,n=4 3178139325880575 r009 Re(z^3+c),c=-7/122+21/32*I,n=61 3178139353026116 r009 Re(z^3+c),c=-7/15+17/44*I,n=62 3178139369650519 m001 Pi*Psi(1,1/3)*(1+gamma(3)) 3178139377207610 m005 (1/3*5^(1/2)-1/2)/(3/8*gamma+5/9) 3178139384525180 p004 log(11689/487) 3178139387009650 a003 cos(Pi*2/99)-cos(Pi*11/42) 3178139398442879 l006 ln(7249/9961) 3178139401327038 m005 (2/5*2^(1/2)+3)/(1/2*gamma+5/6) 3178139411011844 h001 (-6*exp(-3)+7)/(-exp(3)-1) 3178139418269525 a008 Real Root of x^4-2*x^3-4*x^2-109*x+349 3178139439445407 a007 Real Root Of -214*x^4+184*x^3-770*x^2+743*x+322 3178139439551190 m001 (3^(1/3))^Catalan/BesselJ(1,1) 3178139441222329 a001 141422324/5*832040^(13/19) 3178139441266091 a001 271443/5*7778742049^(13/19) 3178139448872196 h001 (1/5*exp(1)+6/11)/(4/9*exp(2)+1/7) 3178139466018923 r005 Im(z^2+c),c=-7/31+29/62*I,n=15 3178139474631623 m001 (Psi(2,1/3)+gamma)/(HardyLittlewoodC5+Mills) 3178139493777225 r005 Im(z^2+c),c=-2/3+6/25*I,n=5 3178139505945706 m001 (BesselJ(0,1)+Rabbit)/(-Trott+Weierstrass) 3178139512941778 r005 Im(z^2+c),c=23/110+10/27*I,n=4 3178139513983040 m001 1/GAMMA(1/12)/ln(BesselJ(1,1))*sqrt(3)^2 3178139531139476 r008 a(0)=4,K{-n^6,36+48*n-59*n^2-24*n^3} 3178139554863230 m001 1/BesselJ(0,1)^2*Trott*exp(cos(1)) 3178139559585763 a007 Real Root Of 899*x^4-263*x^3-693*x^2-319*x-49 3178139573147607 a007 Real Root Of 635*x^4+928*x^3+128*x^2-319*x-91 3178139576195643 r009 Im(z^3+c),c=-47/122+13/23*I,n=3 3178139581157553 r005 Im(z^2+c),c=-2/23+41/45*I,n=6 3178139584508261 a001 10946/843*7^(23/50) 3178139588894191 a001 5702887/521*322^(7/12) 3178139604723060 a001 55/39603*843^(25/31) 3178139617206664 m001 (Artin+Weierstrass)/(GAMMA(2/3)+ln(2+3^(1/2))) 3178139618188267 a007 Real Root Of -264*x^4-899*x^3-261*x^2-315*x-290 3178139623598508 r005 Re(z^2+c),c=-31/94+20/41*I,n=62 3178139627730868 a007 Real Root Of 223*x^4+613*x^3-344*x^2-397*x-860 3178139629294943 r005 Im(z^2+c),c=-19/110+23/50*I,n=59 3178139629343704 r009 Re(z^3+c),c=-29/64+8/23*I,n=17 3178139631377786 m001 FibonacciFactorial^exp(Pi)*FransenRobinson 3178139631828477 a007 Real Root Of -265*x^4-488*x^3+734*x^2-952*x+931 3178139633237555 a003 sin(Pi*10/109)/sin(Pi*37/105) 3178139644490170 m005 (1/2*3^(1/2)-5/11)/(7/9*5^(1/2)-4/9) 3178139650682893 l006 ln(3980/5469) 3178139664282741 r005 Im(z^2+c),c=-7/20+25/46*I,n=58 3178139671631756 a007 Real Root Of 587*x^4-720*x^3-381*x^2-168*x+109 3178139678513660 m001 GAMMA(1/4)^2/GAMMA(1/24)^2/exp(Zeta(7))^2 3178139681193335 r005 Im(z^2+c),c=-95/86+7/30*I,n=33 3178139697554802 r005 Im(z^2+c),c=-61/54+2/51*I,n=50 3178139700449433 m001 Rabbit^2*exp(Conway)^2/arctan(1/2)^2 3178139705128334 a001 1364/514229*2178309^(17/35) 3178139716023664 a001 843/121393*832040^(37/47) 3178139723665990 r005 Im(z^2+c),c=-9/14+2/33*I,n=49 3178139734389679 b008 -1/2+ArcCosh[14*Sqrt[2]] 3178139734751764 r005 Im(z^2+c),c=-61/54+2/51*I,n=45 3178139739383307 m009 (2*Psi(1,3/4)-1/4)/(1/2*Psi(1,3/4)+1/4) 3178139750950996 m001 (GAMMA(3/4)+BesselJ(1,1))/(Psi(2,1/3)+exp(1)) 3178139752707139 a007 Real Root Of 119*x^4-17*x^3-18*x^2-160*x+52 3178139760627444 p004 log(22853/16631) 3178139783743738 r009 Im(z^3+c),c=-21/50+18/59*I,n=4 3178139786045112 r005 Re(z^2+c),c=-16/27+11/29*I,n=28 3178139791078919 r005 Im(z^2+c),c=-13/23+13/30*I,n=32 3178139798296841 m005 (1/2*Zeta(3)+3/10)/(2/7*gamma-3) 3178139801980184 r005 Re(z^2+c),c=29/82+7/44*I,n=45 3178139806317676 a001 2178309/1364*322^(11/12) 3178139809241522 r005 Re(z^2+c),c=6/19+5/41*I,n=26 3178139810828651 m001 1/GAMMA(11/24)^2*KhintchineLevy 3178139821736104 r009 Im(z^3+c),c=-13/94+20/59*I,n=13 3178139823248022 r005 Im(z^2+c),c=-17/78+17/35*I,n=16 3178139828547081 m003 61/2+(9*Sqrt[5])/16-Cos[1/2+Sqrt[5]/2]/2 3178139835448418 m007 (-gamma-3*ln(2)-1/2*Pi-3/5)/(-2/3*gamma+2/5) 3178139839479432 m001 (GAMMA(23/24)-Trott2nd)/Pi 3178139843396055 a001 5/15127*322^(34/43) 3178139851438972 m001 FeigenbaumB^2/Bloch/exp(BesselJ(0,1))^2 3178139856134170 s002 sum(A153363[n]/(pi^n+1),n=1..infinity) 3178139860373705 m001 1/(2^(1/3))^2/LandauRamanujan^2*exp(cos(1))^2 3178139869156501 r005 Im(z^2+c),c=-17/16+31/114*I,n=16 3178139872195573 b008 E*(E^(3/5)+Pi^2) 3178139875829676 r005 Im(z^2+c),c=31/106+2/13*I,n=44 3178139882240342 m001 1/exp(Zeta(1,2))^2*PisotVijayaraghavan/exp(1) 3178139884353922 m001 (Conway-Shi(1))/(LandauRamanujan+Trott) 3178139887654640 m001 (BesselI(0,2)-LambertW(1))/(-Lehmer+ZetaQ(2)) 3178139888265163 a001 1364/5*2^(13/59) 3178139905278704 r009 Re(z^3+c),c=-19/46+17/56*I,n=24 3178139911838928 m001 1/exp(GlaisherKinkelin)*Conway*Zeta(1,2)^2 3178139929929030 m005 (1/3*gamma+2/9)/(1/3*3^(1/2)+8/11) 3178139933720061 r005 Im(z^2+c),c=-25/52+3/55*I,n=22 3178139933745772 m001 (BesselJ(0,1)-sin(1/5*Pi))/(Zeta(1,-1)+Sarnak) 3178139943205599 r009 Im(z^3+c),c=-10/23+13/60*I,n=25 3178139947910797 a007 Real Root Of -817*x^4-66*x^3+116*x^2+741*x+230 3178139969746585 m006 (4*exp(2*Pi)+2/3)/(1/2/Pi-5/6) 3178139986220232 m002 -3*Pi^5+Pi^6-Sinh[Pi] 3178139994875650 a007 Real Root Of 372*x^4-945*x^3-212*x^2-698*x-22 3178140000022768 a001 98212+98209*5^(1/2) 3178140004804748 a001 123/2584*8^(21/23) 3178140008187724 m001 ln(5)^ln(Pi)*ln(5)^GAMMA(17/24) 3178140040469251 l006 ln(4691/6446) 3178140056018158 r005 Re(z^2+c),c=41/86+26/51*I,n=3 3178140058287232 a001 28143753123/377*1836311903^(14/17) 3178140058287235 a001 33385282/377*6557470319842^(14/17) 3178140058289211 a001 23725150497407/377*514229^(14/17) 3178140064681075 s002 sum(A055745[n]/(n^3*exp(n)+1),n=1..infinity) 3178140067575214 m001 (gamma(1)-ln(2)/ln(10))/(Bloch+CareFree) 3178140069906041 m001 ln(Riemann1stZero)^2*MertensB1/gamma 3178140072498445 l006 ln(6689/6905) 3178140088389898 a001 38/17*956722026041^(5/19) 3178140090026876 r005 Im(z^2+c),c=-13/14+56/221*I,n=35 3178140093606100 r005 Re(z^2+c),c=-31/86+16/39*I,n=11 3178140136293923 r005 Im(z^2+c),c=-1/36+25/64*I,n=15 3178140161378480 b008 E^Haversine[E]+EulerGamma 3178140169380217 r009 Im(z^3+c),c=-7/50+21/62*I,n=10 3178140170213859 m001 exp(Pi)/Bloch/cosh(1) 3178140170213859 m001 exp(Pi)/cosh(1)/Bloch 3178140178536523 m006 (1/Pi-1)/(1/6*Pi^2+1/2) 3178140182279363 r009 Im(z^3+c),c=-3/38+5/6*I,n=6 3178140217309416 k002 Champernowne real with 15/2*n^2+49/2*n-1 3178140218371032 r005 Im(z^2+c),c=31/110+3/11*I,n=6 3178140225894386 a007 Real Root Of -851*x^4+15*x^3+68*x^2+580*x-183 3178140234361222 r005 Re(z^2+c),c=-11/29+13/40*I,n=31 3178140244755349 r005 Im(z^2+c),c=7/106+3/5*I,n=34 3178140248621819 r002 56th iterates of z^2 + 3178140259438724 a001 1/2207*(1/2*5^(1/2)+1/2)^18*3^(3/17) 3178140260466578 r005 Re(z^2+c),c=-15/46+13/29*I,n=10 3178140263376825 m005 (1/2*exp(1)+5/11)/(5/9*gamma+1/4) 3178140269124999 r005 Re(z^2+c),c=-8/23+27/62*I,n=43 3178140270665270 m001 (sin(1/5*Pi)+DuboisRaymond)^FeigenbaumDelta 3178140280459756 r002 3th iterates of z^2 + 3178140288283129 r009 Im(z^3+c),c=-23/52+4/19*I,n=35 3178140294054172 m008 (3/5*Pi^3-1/4)/(3/5*Pi^6+2/3) 3178140303675188 r005 Im(z^2+c),c=-23/94+26/53*I,n=56 3178140312759648 r002 54th iterates of z^2 + 3178140327649860 l006 ln(5402/7423) 3178140332324751 p003 LerchPhi(1/6,2,122/215) 3178140338385208 m001 BesselJ(0,1)^2/ln(Champernowne)^2/BesselK(0,1) 3178140345220586 m005 (1/2*Zeta(3)+3/8)/(5*2^(1/2)-4) 3178140351817808 m001 Thue-ln(3)^(3^(1/2)) 3178140372001832 r002 45th iterates of z^2 + 3178140372884904 r005 Re(z^2+c),c=-1/19+26/41*I,n=55 3178140383291009 m005 (1/2*Pi+7/12)/(1/10*Pi+4/11) 3178140389244176 m001 (2^(1/2)-5^(1/2))/(Shi(1)+GAMMA(7/12)) 3178140406921247 r005 Re(z^2+c),c=31/102+3/28*I,n=6 3178140408982741 r005 Im(z^2+c),c=5/36+11/37*I,n=9 3178140442156565 a003 cos(Pi*15/73)*cos(Pi*44/119) 3178140450105371 a007 Real Root Of 231*x^4-844*x^3+343*x^2-629*x-264 3178140454128252 a001 14662949395604/1597*6557470319842^(10/17) 3178140463915030 r002 4th iterates of z^2 + 3178140469145753 r009 Im(z^3+c),c=-13/94+20/59*I,n=15 3178140470395996 a007 Real Root Of -253*x^4-792*x^3+422*x^2+915*x-967 3178140471674932 r005 Im(z^2+c),c=-53/64+11/61*I,n=9 3178140500259948 m002 Pi-Log[Pi]/Pi^6+Sinh[Pi]/Pi^5 3178140504217695 a001 199/24157817*610^(13/14) 3178140504332341 m005 (1/2+1/4*5^(1/2))/(5/9*Zeta(3)-4) 3178140508222217 r005 Im(z^2+c),c=11/58+12/47*I,n=27 3178140514498551 m001 1/Zeta(9)/exp(Rabbit)^2*log(2+sqrt(3)) 3178140520416001 r002 2th iterates of z^2 + 3178140521573562 a007 Real Root Of 329*x^4+848*x^3-529*x^2+136*x-568 3178140522814929 r005 Im(z^2+c),c=-13/118+15/32*I,n=9 3178140536279359 r005 Im(z^2+c),c=-19/110+23/50*I,n=56 3178140539640393 m001 (Zeta(3)-ln(2))/(MertensB1+Totient) 3178140544031317 r009 Im(z^3+c),c=-13/94+20/59*I,n=18 3178140547118205 r009 Im(z^3+c),c=-13/94+20/59*I,n=20 3178140547412683 r009 Im(z^3+c),c=-13/94+20/59*I,n=23 3178140547427143 r009 Im(z^3+c),c=-13/94+20/59*I,n=25 3178140547428271 r009 Im(z^3+c),c=-13/94+20/59*I,n=28 3178140547428338 r009 Im(z^3+c),c=-13/94+20/59*I,n=30 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=33 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=31 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=35 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=36 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=38 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=40 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=41 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=43 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=45 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=46 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=48 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=51 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=50 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=53 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=56 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=58 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=55 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=61 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=63 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=64 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=60 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=62 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=59 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=57 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=54 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=52 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=49 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=47 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=44 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=42 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=39 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=37 3178140547428342 r009 Im(z^3+c),c=-13/94+20/59*I,n=34 3178140547428343 r009 Im(z^3+c),c=-13/94+20/59*I,n=32 3178140547428355 r009 Im(z^3+c),c=-13/94+20/59*I,n=26 3178140547428366 r009 Im(z^3+c),c=-13/94+20/59*I,n=29 3178140547428472 r009 Im(z^3+c),c=-13/94+20/59*I,n=27 3178140547433893 r009 Im(z^3+c),c=-13/94+20/59*I,n=24 3178140547447280 r009 Im(z^3+c),c=-13/94+20/59*I,n=21 3178140547453477 r009 Im(z^3+c),c=-13/94+20/59*I,n=22 3178140548026795 l006 ln(6113/8400) 3178140548725500 r009 Im(z^3+c),c=-13/94+20/59*I,n=19 3178140549733682 r004 Im(z^2+c),c=7/46+2/7*I,z(0)=exp(7/8*I*Pi),n=14 3178140552064819 r009 Im(z^3+c),c=-13/94+20/59*I,n=17 3178140555387378 r009 Im(z^3+c),c=-13/94+20/59*I,n=16 3178140560796367 r002 48th iterates of z^2 + 3178140591601535 r005 Im(z^2+c),c=-113/114+19/62*I,n=21 3178140595162212 r005 Re(z^2+c),c=-5/12+4/33*I,n=7 3178140623062233 m005 (1/2*3^(1/2)-1/3)/(10/11*Zeta(3)+7/12) 3178140631163773 r005 Im(z^2+c),c=-61/54+2/51*I,n=39 3178140636112186 m001 1/ln(PrimesInBinary)^2/Magata*Catalan^2 3178140640194828 m001 2^(1/3)*ZetaP(4)+Pi*csc(7/24*Pi)/GAMMA(17/24) 3178140649991797 r009 Re(z^3+c),c=-51/110+27/59*I,n=26 3178140652777777 a001 1/72*(1/2+1/2*5^(1/2))^40 3178140660455617 r002 45th iterates of z^2 + 3178140662827788 r002 19th iterates of z^2 + 3178140673770806 r005 Im(z^2+c),c=19/74+8/41*I,n=27 3178140677460083 a007 Real Root Of 121*x^4+203*x^3-436*x^2+400*x-153 3178140683429695 a007 Real Root Of 725*x^4-274*x^3+863*x^2-238*x-179 3178140713859495 m001 (Conway-gamma)/(FellerTornier+ReciprocalLucas) 3178140714990406 r002 41i'th iterates of 2*x/(1-x^2) of 3178140722481101 l006 ln(6824/9377) 3178140727276231 m001 1/OneNinth^2/ln(Artin)*BesselK(1,1)^2 3178140729337002 r005 Im(z^2+c),c=-97/106+5/19*I,n=33 3178140741224237 r005 Im(z^2+c),c=-21/62+19/40*I,n=11 3178140749126871 b008 (3*ArcTan[Catalan])/7 3178140755128547 a007 Real Root Of 888*x^4-66*x^3-571*x^2-505*x-114 3178140766157281 a007 Real Root Of -291*x^4-717*x^3+484*x^2-349*x+674 3178140776753739 m006 (3/5/Pi-5)/(2/3*ln(Pi)+3/4) 3178140778369620 m001 (-Kolakoski+Lehmer)/(2^(1/3)-Ei(1)) 3178140790788888 m001 (exp(1)+GAMMA(2/3))/(GAMMA(19/24)+OneNinth) 3178140790792471 m002 -Pi^2-Pi^5-Sinh[Pi]/6 3178140798550100 a001 23725150497407/2584*6557470319842^(10/17) 3178140804736747 a001 1/3*987^(39/59) 3178140811938444 a007 Real Root Of -135*x^4-198*x^3+608*x^2-459*x-183 3178140813342824 p004 log(11497/479) 3178140816724913 a001 1/5778*(1/2*5^(1/2)+1/2)^20*3^(3/17) 3178140846925809 r009 Im(z^3+c),c=-13/94+20/59*I,n=14 3178140856700020 r005 Im(z^2+c),c=-61/54+2/51*I,n=42 3178140864901017 r002 3th iterates of z^2 + 3178140866140946 r002 8th iterates of z^2 + 3178140867566322 m001 (exp(Pi)+3^(1/2))/(-gamma(1)+Rabbit) 3178140872218332 a007 Real Root Of 615*x^4-509*x^3+867*x^2-790*x-26 3178140872294425 r005 Re(z^2+c),c=-23/78+31/55*I,n=62 3178140882652639 r005 Im(z^2+c),c=-17/74+31/64*I,n=54 3178140884881474 m001 DuboisRaymond/(arctan(1/2)+ZetaR(2)) 3178140886144258 m002 -Pi^(-4)+Pi/4+Pi^3 3178140898031888 a001 1/15127*(1/2*5^(1/2)+1/2)^22*3^(3/17) 3178140909894417 a001 1/39603*(1/2*5^(1/2)+1/2)^24*3^(3/17) 3178140910449468 m001 BesselJ(0,1)-Sierpinski^exp(1/exp(1)) 3178140911920778 a001 (1/2*5^(1/2)+1/2)^2*3^(3/17) 3178140912694780 a001 1/64079*(1/2*5^(1/2)+1/2)^25*3^(3/17) 3178140916107981 r005 Re(z^2+c),c=-43/114+11/19*I,n=55 3178140917225862 a001 1/24476*(1/2*5^(1/2)+1/2)^23*3^(3/17) 3178140919578162 m001 gamma/((3^(1/3))+Artin) 3178140919578162 m001 gamma/(3^(1/3)+Artin) 3178140931298088 r002 13th iterates of z^2 + 3178140935526055 h001 (-11*exp(2)+2)/(-5*exp(2)+12) 3178140943870117 r005 Im(z^2+c),c=13/48+9/50*I,n=32 3178140948282365 a001 1/9349*(1/2*5^(1/2)+1/2)^21*3^(3/17) 3178140962296920 m001 (Zeta(1/2)+FeigenbaumMu)^exp(Pi) 3178140968617090 a007 Real Root Of -31*x^4-972*x^3+417*x^2-102*x+59 3178140975094846 r009 Im(z^3+c),c=-51/122+7/12*I,n=25 3178140977388044 m006 (4/Pi-1/4)/(3/5*exp(2*Pi)+2/3) 3178140980937319 r005 Im(z^2+c),c=13/36+11/51*I,n=31 3178140982506274 m001 (GaussAGM-Porter)/(ln(2)-FeigenbaumD) 3178140987749601 a007 Real Root Of -203*x^4-65*x^3-654*x^2+733*x+299 3178140988750786 a003 cos(Pi*4/43)-sin(Pi*29/77) 3178141013442437 a007 Real Root Of -999*x^4+748*x^3+445*x^2-15*x-54 3178141033489346 m005 (1/3*2^(1/2)+2/11)/(5/7*3^(1/2)+9/11) 3178141036162030 r009 Re(z^3+c),c=-57/106+20/39*I,n=12 3178141053229853 r005 Im(z^2+c),c=-113/106+13/54*I,n=24 3178141083879761 m001 RenyiParking^FeigenbaumDelta/cos(1/5*Pi) 3178141083879761 m001 RenyiParking^FeigenbaumDelta/cos(Pi/5) 3178141096690086 v002 sum(1/(2^n*(3/2*n^2+59/2*n-11)),n=1..infinity) 3178141113710111 k006 concat of cont frac of 3178141114110222 k007 concat of cont frac of 3178141116130151 k007 concat of cont frac of 3178141126784507 a007 Real Root Of 300*x^4+885*x^3-167*x^2+24*x-434 3178141132254505 a007 Real Root Of -984*x^4+226*x^3+889*x^2+151*x-135 3178141142357179 m001 (Paris+PolyaRandomWalk3D)/(Conway-Khinchin) 3178141151107111 k007 concat of cont frac of 3178141153978278 m001 (cos(1/5*Pi)+LaplaceLimit)/(Trott+ZetaP(2)) 3178141161146817 a001 1/3571*(1/2*5^(1/2)+1/2)^19*3^(3/17) 3178141164125145 a001 3571/1346269*2178309^(17/35) 3178141174562065 r009 Im(z^3+c),c=-7/58+14/41*I,n=6 3178141188160400 a008 Real Root of x^2-x-100688 3178141189025030 r002 10th iterates of z^2 + 3178141190318666 m002 6*Pi+Pi^3/E^Pi+Cosh[Pi] 3178141196251198 r009 Im(z^3+c),c=-10/29+17/62*I,n=23 3178141199355940 a007 Real Root Of 159*x^4-248*x^3+816*x^2-258*x-174 3178141202376696 a001 12238*17711^(4/41) 3178141205607796 m005 (1/2*Pi+2/11)/(-117/20+3/20*5^(1/2)) 3178141211113916 k006 concat of cont frac of 3178141219314424 k004 Champernowne real with floor(Pi*(5/2*n^2+15/2*n)) 3178141220315426 k002 Champernowne real with 8*n^2+23*n 3178141229752725 m002 -6-(Pi^3*Sinh[Pi])/Log[Pi]+Tanh[Pi] 3178141241414151 k009 concat of cont frac of 3178141244940585 r009 Re(z^3+c),c=-47/70+11/23*I,n=49 3178141251296857 h001 (-3*exp(2)+7)/(-7*exp(2)+4) 3178141261700759 m001 Magata*QuadraticClass+ZetaP(3) 3178141274782388 r008 a(0)=4,K{-n^6,51+4*n^3-14*n^2-41*n} 3178141275044405 m001 (cos(1/12*Pi)+gamma(2))/(Conway+Niven) 3178141288490571 s002 sum(A116646[n]/((exp(n)-1)/n),n=1..infinity) 3178141302197869 m001 (GAMMA(11/12)-Kolakoski)^exp(Pi) 3178141312561326 r005 Im(z^2+c),c=1/36+19/50*I,n=7 3178141317428161 s002 sum(A207123[n]/(2^n+1),n=1..infinity) 3178141320651728 p001 sum((-1)^n/(350*n+31)/(5^n),n=0..infinity) 3178141324597036 a007 Real Root Of -266*x^4-828*x^3+348*x^2+965*x+110 3178141324612842 m001 FeigenbaumAlpha*(KhinchinHarmonic-PlouffeB) 3178141328497723 r005 Im(z^2+c),c=-41/122+34/63*I,n=15 3178141337802037 a007 Real Root Of -65*x^4+61*x^3-921*x^2+278*x+184 3178141341227388 r009 Im(z^3+c),c=-13/94+20/59*I,n=12 3178141344571141 m005 (1/2*5^(1/2)+7/8)/(5*2^(1/2)-4/5) 3178141352164088 r005 Re(z^2+c),c=-41/118+16/31*I,n=29 3178141355836515 a001 3020733700601/329*6557470319842^(10/17) 3178141356755895 r005 Re(z^2+c),c=-5/14+16/31*I,n=29 3178141370217286 b008 ArcSinh[4*(2+Tanh[3])] 3178141371661644 m005 (1/2*Catalan-8/11)/(10/11*3^(1/2)-8/11) 3178141384172108 r005 Im(z^2+c),c=11/36+5/37*I,n=43 3178141403284178 r005 Im(z^2+c),c=-8/15+9/16*I,n=34 3178141413065828 m001 ln(abs(-GAMMA(5/6)+FeigenbaumAlpha)) 3178141421198527 k007 concat of cont frac of 3178141423746150 a001 11/13*46368^(50/51) 3178141426440258 m001 (-MertensB3+Totient)/(1+BesselI(0,1)) 3178141428704172 r005 Re(z^2+c),c=-39/94+4/37*I,n=15 3178141451810920 m001 TreeGrowth2nd*ln(Magata)^2/(3^(1/3))^2 3178141486752466 a007 Real Root Of -311*x^4-700*x^3+752*x^2-367*x+496 3178141498805939 a009 1/11*(1-5^(3/4)*11^(3/4))*11^(1/4) 3178141502220529 b008 7+34*(6+Pi) 3178141505381687 m001 Zeta(1/2)*(1+Salem) 3178141508547572 a001 1926/726103*2178309^(17/35) 3178141513255996 r005 Re(z^2+c),c=25/114+1/55*I,n=32 3178141520564702 r005 Re(z^2+c),c=25/114+1/55*I,n=33 3178141526023395 a007 Real Root Of 16*x^4-341*x^3+848*x^2+72*x+520 3178141534554187 m001 arctan(1/3)^(2^(1/2)*TravellingSalesman) 3178141539531268 r005 Re(z^2+c),c=-13/22+7/13*I,n=3 3178141556519657 r005 Re(z^2+c),c=25/114+1/55*I,n=34 3178141559196177 r002 8th iterates of z^2 + 3178141577663797 r005 Re(z^2+c),c=25/114+1/55*I,n=31 3178141590755872 m001 (arctan(1/3)-GAMMA(17/24))/(FellerTornier-Kac) 3178141594269166 r002 3th iterates of z^2 + 3178141594938426 a007 Real Root Of 146*x^4+143*x^3-804*x^2+830*x+454 3178141596773572 r002 10th iterates of z^2 + 3178141598092430 a007 Real Root Of 160*x^4+360*x^3-786*x^2-752*x+782 3178141599201940 r005 Re(z^2+c),c=25/114+1/55*I,n=35 3178141612417012 a007 Real Root Of -202*x^4-743*x^3-12*x^2+755*x-722 3178141623516294 r005 Im(z^2+c),c=-61/54+2/51*I,n=46 3178141638577330 r005 Re(z^2+c),c=25/114+1/55*I,n=36 3178141643771606 m001 (GAMMA(1/6)+2)/(exp(Pi)+2/3) 3178141654200959 h001 (7/11*exp(2)+1/11)/(4/9*exp(1)+3/10) 3178141670963813 r005 Re(z^2+c),c=25/114+1/55*I,n=37 3178141695834600 r005 Re(z^2+c),c=25/114+1/55*I,n=38 3178141702218674 m001 (-exp(1/Pi)+Mills)/(ln(2)/ln(10)+Si(Pi)) 3178141702609421 m005 (1/2*Zeta(3)-1/4)/(33/40+1/8*5^(1/2)) 3178141714044299 r005 Re(z^2+c),c=25/114+1/55*I,n=39 3178141726897415 r005 Re(z^2+c),c=25/114+1/55*I,n=40 3178141735232597 m001 (Porter-PrimesInBinary)/(Lehmer-MertensB1) 3178141735698518 r005 Re(z^2+c),c=25/114+1/55*I,n=41 3178141741566006 r005 Re(z^2+c),c=25/114+1/55*I,n=42 3178141745381582 r005 Re(z^2+c),c=25/114+1/55*I,n=43 3178141747580546 a007 Real Root Of 694*x^4-614*x^3-933*x^2-507*x+268 3178141747803118 r005 Re(z^2+c),c=25/114+1/55*I,n=44 3178141749301928 r005 Re(z^2+c),c=25/114+1/55*I,n=45 3178141750204825 r005 Re(z^2+c),c=25/114+1/55*I,n=46 3178141750732157 r005 Re(z^2+c),c=25/114+1/55*I,n=47 3178141751028748 r005 Re(z^2+c),c=25/114+1/55*I,n=48 3178141751187484 r005 Re(z^2+c),c=25/114+1/55*I,n=49 3178141751266494 r005 Re(z^2+c),c=25/114+1/55*I,n=50 3178141751281169 r005 Re(z^2+c),c=25/114+1/55*I,n=64 3178141751281528 r005 Re(z^2+c),c=25/114+1/55*I,n=63 3178141751282093 r005 Re(z^2+c),c=25/114+1/55*I,n=62 3178141751282956 r005 Re(z^2+c),c=25/114+1/55*I,n=61 3178141751284246 r005 Re(z^2+c),c=25/114+1/55*I,n=60 3178141751286121 r005 Re(z^2+c),c=25/114+1/55*I,n=59 3178141751288761 r005 Re(z^2+c),c=25/114+1/55*I,n=58 3178141751292341 r005 Re(z^2+c),c=25/114+1/55*I,n=57 3178141751296958 r005 Re(z^2+c),c=25/114+1/55*I,n=56 3178141751301223 r005 Re(z^2+c),c=25/114+1/55*I,n=51 3178141751302484 r005 Re(z^2+c),c=25/114+1/55*I,n=55 3178141751308305 r005 Re(z^2+c),c=25/114+1/55*I,n=54 3178141751312663 r005 Re(z^2+c),c=25/114+1/55*I,n=52 3178141751312830 r005 Re(z^2+c),c=25/114+1/55*I,n=53 3178141772447532 m001 log(2+sqrt(3))*exp(Catalan)^2/sin(Pi/12) 3178141778566372 m005 (1/2*5^(1/2)-5/8)/(4/11*exp(1)-5/6) 3178141793101583 r005 Re(z^2+c),c=25/114+1/55*I,n=30 3178141805582021 m005 (1/2*2^(1/2)-8/11)/(4/7*Catalan+1/9) 3178141808016169 m001 (-Gompertz+OneNinth)/(2^(1/2)+Champernowne) 3178141815926143 m005 (1/2*5^(1/2)-3/4)/(3/11*exp(1)+5/12) 3178141819664354 r009 Re(z^3+c),c=-27/58+22/61*I,n=14 3178141820219623 a001 18/165580141*39088169^(10/17) 3178141820219624 a001 9/10182505537*139583862445^(10/17) 3178141823339911 a001 18/1346269*10946^(10/17) 3178141828366620 m005 (1/2*3^(1/2)-6)/(2/9*Pi-5/7) 3178141829276451 m001 1/ln(cos(1))^2*FransenRobinson^2/cos(Pi/5)^2 3178141838268830 r005 Im(z^2+c),c=-17/106+5/11*I,n=49 3178141841960734 r005 Im(z^2+c),c=-1/30+53/59*I,n=6 3178141843418326 r009 Im(z^3+c),c=-10/29+17/62*I,n=22 3178141856677866 m001 (MasserGramain+ZetaQ(4))/(3^(1/3)+Gompertz) 3178141864321074 m001 (BesselK(0,1)*Trott2nd+Thue)/Trott2nd 3178141878088207 r002 15th iterates of z^2 + 3178141883853966 a005 (1/sin(115/237*Pi))^1074 3178141906106830 m005 (1/2*3^(1/2)+1)/(1/11*2^(1/2)-6) 3178141914029685 m002 E^Pi+E^Pi/Pi^4+Pi^4*Sech[Pi] 3178141923015338 m005 (5/6*2^(1/2)-4/5)/(-7/4+1/4*5^(1/2)) 3178141938176319 r005 Im(z^2+c),c=31/98+3/56*I,n=59 3178141960751891 a007 Real Root Of -258*x^4+514*x^3+73*x^2+951*x+314 3178141968365840 r005 Re(z^2+c),c=-1+74/229*I,n=8 3178141968675866 h001 (1/11*exp(1)+3/5)/(1/4*exp(2)+9/11) 3178141970578314 m001 3^(1/2)*gamma(2)-ln(2)/ln(10) 3178141987936963 r005 Im(z^2+c),c=-9/98+11/26*I,n=24 3178141993746429 m005 (1/3*exp(1)+1/2)/(3/10*2^(1/2)+4) 3178141994609004 m001 (Shi(1)-arctan(1/3))/(-sin(1/12*Pi)+Trott2nd) 3178142003194069 s002 sum(A182358[n]/((exp(n)+1)/n),n=1..infinity) 3178142005848086 a007 Real Root Of 723*x^4-671*x^3-474*x^2-110*x+97 3178142006144343 a007 Real Root Of -349*x^4-941*x^3+545*x^2-15*x-154 3178142021589710 m001 ((1+3^(1/2))^(1/2)-MertensB2)/DuboisRaymond 3178142051441056 a007 Real Root Of 550*x^4+12*x^3-163*x^2-159*x+61 3178142055952603 r005 Im(z^2+c),c=17/64+11/63*I,n=11 3178142057182532 a009 1/3*(11^(1/3)-24*3^(3/4))^(1/2)*3^(1/4) 3178142063881779 a007 Real Root Of 193*x^4+397*x^3-908*x^2-995*x-937 3178142065834764 a001 2207/832040*2178309^(17/35) 3178142066354254 r009 Im(z^3+c),c=-10/29+17/62*I,n=20 3178142095421650 m004 25+4*ProductLog[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 3178142096657436 a007 Real Root Of 80*x^4-314*x^3+512*x^2-920*x-355 3178142097807504 m001 1/exp(1)*MinimumGamma/exp(sqrt(2))^2 3178142101443437 r009 Re(z^3+c),c=-11/46+57/62*I,n=16 3178142105396423 r005 Re(z^2+c),c=19/58+33/61*I,n=53 3178142113444281 m009 (3/10*Pi^2-1/2)/(4/5*Psi(1,1/3)-1/3) 3178142120686820 r005 Im(z^2+c),c=-2/9+24/49*I,n=16 3178142121574616 m005 (17/4+1/4*5^(1/2))/(2/9*exp(1)+10/11) 3178142142481642 r005 Re(z^2+c),c=-2/7+11/19*I,n=56 3178142143279739 a001 3524578/521*322^(2/3) 3178142146120141 k006 concat of cont frac of 3178142166029645 r005 Im(z^2+c),c=-29/78+29/64*I,n=4 3178142170017982 r009 Im(z^3+c),c=-10/29+17/62*I,n=26 3178142171111315 k007 concat of cont frac of 3178142191310075 m001 (AlladiGrinstead-ZetaP(3))/(Pi-ln(Pi)) 3178142192821201 b008 E^(2*Sqrt[E])*Sinh[1] 3178142197011869 h001 (1/5*exp(1)+5/9)/(5/11*exp(2)+1/10) 3178142199171230 r005 Im(z^2+c),c=-17/98+29/63*I,n=38 3178142202399512 r009 Im(z^3+c),c=-43/122+10/37*I,n=23 3178142207159189 m005 (1/2*gamma-1)/(5/6*5^(1/2)+3/8) 3178142217969608 r009 Im(z^3+c),c=-10/29+17/62*I,n=27 3178142222395418 l006 ln(711/977) 3178142223321436 k002 Champernowne real with 17/2*n^2+43/2*n+1 3178142234454550 a005 (1/cos(27/212*Pi))^126 3178142237627831 m005 (1/2*3^(1/2)+2)/(1/4*exp(1)+2/9) 3178142249235205 a007 Real Root Of 355*x^4+782*x^3-945*x^2+739*x+779 3178142258809921 a007 Real Root Of -345*x^4+337*x^3-475*x^2+364*x+178 3178142260226451 r005 Im(z^2+c),c=-19/110+23/50*I,n=45 3178142261112414 k007 concat of cont frac of 3178142261902889 r009 Im(z^3+c),c=-27/58+11/58*I,n=34 3178142267636629 r009 Re(z^3+c),c=-41/114+11/51*I,n=19 3178142271768433 r009 Im(z^3+c),c=-10/29+17/62*I,n=30 3178142275921920 m005 (1/2*2^(1/2)-5/7)/(9/10*3^(1/2)+7/10) 3178142283839584 r009 Im(z^3+c),c=-10/29+17/62*I,n=31 3178142284858242 r009 Im(z^3+c),c=-10/29+17/62*I,n=34 3178142285326267 r009 Re(z^3+c),c=-25/126+35/37*I,n=26 3178142286102073 r009 Im(z^3+c),c=-10/29+17/62*I,n=38 3178142286109623 r009 Im(z^3+c),c=-10/29+17/62*I,n=37 3178142286185553 r009 Im(z^3+c),c=-10/29+17/62*I,n=41 3178142286195059 r009 Im(z^3+c),c=-10/29+17/62*I,n=42 3178142286198552 r009 Im(z^3+c),c=-10/29+17/62*I,n=45 3178142286199972 r009 Im(z^3+c),c=-10/29+17/62*I,n=49 3178142286200055 r009 Im(z^3+c),c=-10/29+17/62*I,n=48 3178142286200055 r009 Im(z^3+c),c=-10/29+17/62*I,n=46 3178142286200088 r009 Im(z^3+c),c=-10/29+17/62*I,n=52 3178142286200093 r009 Im(z^3+c),c=-10/29+17/62*I,n=53 3178142286200099 r009 Im(z^3+c),c=-10/29+17/62*I,n=56 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=57 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=60 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=64 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=63 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=61 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=59 3178142286200101 r009 Im(z^3+c),c=-10/29+17/62*I,n=62 3178142286200102 r009 Im(z^3+c),c=-10/29+17/62*I,n=58 3178142286200103 r009 Im(z^3+c),c=-10/29+17/62*I,n=55 3178142286200106 r009 Im(z^3+c),c=-10/29+17/62*I,n=54 3178142286200131 r009 Im(z^3+c),c=-10/29+17/62*I,n=50 3178142286200135 r009 Im(z^3+c),c=-10/29+17/62*I,n=51 3178142286200561 r009 Im(z^3+c),c=-10/29+17/62*I,n=47 3178142286200942 r009 Im(z^3+c),c=-10/29+17/62*I,n=44 3178142286205016 r009 Im(z^3+c),c=-10/29+17/62*I,n=43 3178142286223743 r009 Im(z^3+c),c=-10/29+17/62*I,n=40 3178142286239306 r009 Im(z^3+c),c=-10/29+17/62*I,n=39 3178142286304455 r009 Im(z^3+c),c=-10/29+17/62*I,n=33 3178142286343324 r009 Im(z^3+c),c=-10/29+17/62*I,n=35 3178142286574688 r009 Im(z^3+c),c=-10/29+17/62*I,n=36 3178142288907025 r005 Im(z^2+c),c=-103/90+1/25*I,n=25 3178142290734014 r009 Im(z^3+c),c=-10/29+17/62*I,n=32 3178142293183513 m001 (2^(1/3))/exp(KhintchineHarmonic)*Zeta(3)^2 3178142299085979 r005 Re(z^2+c),c=25/114+1/55*I,n=29 3178142300636943 r009 Im(z^3+c),c=-10/29+17/62*I,n=29 3178142305319473 m001 (Catalan-Chi(1))/(MadelungNaCl+Rabbit) 3178142320061173 h001 (4/5*exp(2)+2/7)/(5/11*exp(1)+5/7) 3178142329076224 r009 Im(z^3+c),c=-10/29+17/62*I,n=28 3178142330626034 r005 Re(z^2+c),c=-37/102+19/54*I,n=11 3178142338670932 m002 Pi^5+(Log[Pi]*ProductLog[Pi])/5+Sinh[Pi] 3178142352228213 r009 Re(z^3+c),c=-31/98+7/53*I,n=4 3178142354152911 r009 Im(z^3+c),c=-25/56+11/49*I,n=9 3178142360679774 a001 317812+5^(1/2) 3178142361983943 r009 Re(z^3+c),c=-1/64+25/31*I,n=12 3178142365454754 m001 (Pi+2^(1/3))/(MinimumGamma-ZetaP(4)) 3178142372068089 a007 Real Root Of -272*x^4-864*x^3-96*x^2-574*x-840 3178142374318423 a001 24157817/322*123^(3/10) 3178142383301861 a007 Real Root Of 438*x^4-44*x^3-556*x^2-157*x+103 3178142395468266 r005 Re(z^2+c),c=-12/29+5/43*I,n=19 3178142398661722 r005 Im(z^2+c),c=-13/31+16/31*I,n=42 3178142422229378 a007 Real Root Of 527*x^4+109*x^3+984*x^2+262*x-18 3178142424144465 m005 (1/2*Pi+6/7)/(10/11*Catalan-10/11) 3178142441404296 r005 Im(z^2+c),c=7/40+4/15*I,n=29 3178142456424081 r005 Im(z^2+c),c=-19/110+23/50*I,n=53 3178142462767068 a007 Real Root Of 104*x^4+81*x^3-678*x^2+426*x+192 3178142466687319 a007 Real Root Of -330*x^4-716*x^3+975*x^2-313*x-160 3178142487047335 a001 76*(1/2*5^(1/2)+1/2)^6*7^(10/23) 3178142487137406 r009 Re(z^3+c),c=-69/118+31/61*I,n=5 3178142496287161 m001 (ln(gamma)+cos(1/12*Pi))/(Lehmer-Sarnak) 3178142507697444 r002 3th iterates of z^2 + 3178142510040727 m001 (Cahen+2/3)/(-sin(Pi/5)+1) 3178142511611505 m001 1/Conway^2/exp(Cahen)/Paris^2 3178142517532381 a007 Real Root Of -822*x^4+666*x^3-838*x^2+864*x+389 3178142518180396 s002 sum(A065920[n]/((10^n+1)/n),n=1..infinity) 3178142518232050 s002 sum(A065920[n]/((10^n-1)/n),n=1..infinity) 3178142524112113 k006 concat of cont frac of 3178142535938925 m001 Stephens/ln(3)/ZetaQ(4) 3178142539582644 r005 Im(z^2+c),c=-23/54+22/51*I,n=8 3178142540088953 a007 Real Root Of 211*x^4+518*x^3-328*x^2+574*x+239 3178142557095367 r009 Im(z^3+c),c=-10/29+17/62*I,n=24 3178142559488944 m001 (-BesselI(1,2)+Sarnak)/(exp(1)-gamma(2)) 3178142564742895 r005 Im(z^2+c),c=17/48+13/48*I,n=16 3178142570446494 r009 Im(z^3+c),c=-10/29+17/62*I,n=25 3178142570852063 a005 (1/cos(11/186*Pi))^1393 3178142582897664 r005 Im(z^2+c),c=-7/48+13/29*I,n=26 3178142588564611 a007 Real Root Of -667*x^4+261*x^3+636*x^2+976*x-376 3178142600384472 l006 ln(5729/5914) 3178142610847315 m001 BesselJ(0,1)+exp(1/2)+LandauRamanujan 3178142612104876 q001 1297/4081 3178142616912430 a001 3461452808002/377*1836311903^(12/17) 3178142616912430 a001 10749957122/377*6557470319842^(12/17) 3178142617262672 a007 Real Root Of -287*x^4-557*x^3-992*x^2+441*x+15 3178142617397226 r005 Re(z^2+c),c=-71/60+12/59*I,n=4 3178142620142244 a001 1/1364*(1/2*5^(1/2)+1/2)^17*3^(3/17) 3178142622468151 a007 Real Root Of -182*x^4-590*x^3+48*x^2+508*x+758 3178142627962256 r005 Im(z^2+c),c=-25/118+21/43*I,n=6 3178142629225146 r005 Re(z^2+c),c=-5/32+16/27*I,n=17 3178142630230364 r005 Re(z^2+c),c=-19/48+7/30*I,n=13 3178142637747068 m001 Sierpinski/MadelungNaCl^2*exp(GAMMA(1/4)) 3178142643781837 a007 Real Root Of 26*x^4+837*x^3+331*x^2-243*x+881 3178142646478876 r005 Re(z^2+c),c=-19/58+27/55*I,n=44 3178142648462035 r005 Im(z^2+c),c=-61/54+2/51*I,n=40 3178142666467685 m001 Champernowne^2*ErdosBorwein*ln(ArtinRank2)^2 3178142674892398 a009 24*(3^(2/3)-6^(3/4))^(1/2) 3178142690719422 m001 (FeigenbaumD+TreeGrowth2nd)/(Zeta(3)-Ei(1,1)) 3178142697244176 m005 (1/2*3^(1/2)-1/6)/(2/11*exp(1)-5/7) 3178142697585996 a001 9/305*17711^(56/59) 3178142699526008 m005 (1/2*gamma-2/11)/(7/9*Pi+11/12) 3178142716258061 r002 26th iterates of z^2 + 3178142717225282 a001 102334155/521*123^(1/10) 3178142726539512 m006 (2*Pi-1/5)/(exp(Pi)-4) 3178142760687734 a007 Real Root Of -234*x^4-602*x^3+543*x^2+75*x-698 3178142760832772 r005 Re(z^2+c),c=-27/74+19/50*I,n=40 3178142766567315 m008 (3/4*Pi^5-1/6)/(3/4*Pi^6+3/5) 3178142770882903 r002 49th iterates of z^2 + 3178142772187418 m001 (Ei(1,1)+MinimumGamma)/(Niven-Salem) 3178142788706790 r005 Re(z^2+c),c=-37/110+19/40*I,n=37 3178142792564599 m001 ln(sqrt(2))^2/sin(Pi/12)^2*sqrt(Pi) 3178142794834260 r005 Im(z^2+c),c=-7/46+19/42*I,n=20 3178142804280876 m002 -2/Pi^2-Pi^5-Cosh[Pi] 3178142815272507 r005 Im(z^2+c),c=1/22+13/37*I,n=19 3178142855258971 m001 (Catalan+ln(3))/(Zeta(1,2)+GaussKuzminWirsing) 3178142864759828 r009 Re(z^3+c),c=-17/32+19/55*I,n=29 3178142869809891 m001 (GAMMA(5/6)-MertensB1)/(GAMMA(2/3)+exp(1/Pi)) 3178142874319802 r009 Re(z^3+c),c=-21/40+10/33*I,n=30 3178142889700174 m005 (1/2*Pi-3/8)/(7/8*2^(1/2)-5) 3178142893222321 m001 GlaisherKinkelin/exp(1/Pi)*Magata 3178142893944490 s002 sum(A048792[n]/((2^n-1)/n),n=1..infinity) 3178142906231219 m001 1/exp(Zeta(7))/LaplaceLimit/sqrt(3) 3178142906443144 r002 7th iterates of z^2 + 3178142909611912 m002 -9/Pi+3*Sinh[Pi] 3178142926980632 a007 Real Root Of -363*x^4-87*x^3-486*x^2+988*x+364 3178142938994622 m001 (sin(1)+LaplaceLimit)/(-Weierstrass+ZetaQ(4)) 3178142944329213 m005 (1/3*2^(1/2)+3/5)/(10/11*exp(1)+9/10) 3178142954916038 r005 Im(z^2+c),c=6/25+12/53*I,n=5 3178142973637858 m001 exp(1)^BesselI(0,2)/HardyLittlewoodC4 3178142982697923 m001 ln(arctan(1/2))*GAMMA(19/24)^2/gamma^2 3178142983569386 r005 Re(z^2+c),c=-19/58+16/33*I,n=31 3178142987179108 h001 (3/7*exp(1)+1/10)/(1/2*exp(2)+2/7) 3178142989501231 a007 Real Root Of 168*x^4+756*x^3+838*x^2+250*x-541 3178143008814657 m001 exp(Zeta(7))*FeigenbaumAlpha^2/cos(1) 3178143011131111 k006 concat of cont frac of 3178143013997712 a007 Real Root Of -905*x^4+727*x^3+143*x^2+379*x-149 3178143026528986 p004 log(34981/25457) 3178143035616191 r002 37th iterates of z^2 + 3178143059873794 r005 Im(z^2+c),c=-4/7+50/119*I,n=48 3178143070917227 r005 Im(z^2+c),c=-37/64+22/59*I,n=8 3178143085170601 a007 Real Root Of -934*x^4-797*x^3-772*x^2+403*x+190 3178143102588395 r009 Re(z^3+c),c=-12/29+16/53*I,n=14 3178143119691459 r002 43th iterates of z^2 + 3178143119691459 r002 43th iterates of z^2 + 3178143120498058 m002 -36/Pi^4+Pi^3+Log[Pi] 3178143126445009 a007 Real Root Of -203*x^4-499*x^3+573*x^2+172*x-549 3178143131814111 k007 concat of cont frac of 3178143154842904 r005 Re(z^2+c),c=-9/122+47/56*I,n=13 3178143156120969 r005 Im(z^2+c),c=3/74+17/48*I,n=27 3178143157022917 r002 40i'th iterates of 2*x/(1-x^2) of 3178143172001373 m002 Pi^3-Cosh[Pi]/Pi^3+Coth[Pi]*Log[Pi] 3178143175769667 r009 Im(z^3+c),c=-13/94+20/59*I,n=11 3178143181311168 m001 (ln(Pi)-BesselJ(1,1))/(Bloch+KhinchinHarmonic) 3178143204863780 a007 Real Root Of 334*x^4+878*x^3-737*x^2-385*x+330 3178143226327446 k002 Champernowne real with 9*n^2+20*n+2 3178143236077337 a001 1/38*123^(2/51) 3178143239490037 r009 Re(z^3+c),c=-1/18+38/61*I,n=44 3178143279951228 r005 Re(z^2+c),c=-29/70+3/26*I,n=15 3178143282311114 a007 Real Root Of 370*x^4+843*x^3-873*x^2+427*x-512 3178143283896372 m001 (Shi(1)-Zeta(1,2)*Bloch)/Bloch 3178143294471046 r005 Im(z^2+c),c=-7/30+27/56*I,n=23 3178143295232785 q001 114/3587 3178143306565722 a001 76/89*2971215073^(19/21) 3178143322553509 a007 Real Root Of 89*x^4+2*x^3-972*x^2-118*x+427 3178143332457296 r005 Re(z^2+c),c=25/114+1/55*I,n=28 3178143339062671 r005 Im(z^2+c),c=-41/118+29/55*I,n=59 3178143340541029 a007 Real Root Of 282*x^4+634*x^3-834*x^2+220*x+705 3178143357568969 r005 Im(z^2+c),c=-55/38+17/63*I,n=3 3178143359848020 r009 Re(z^3+c),c=-23/52+7/20*I,n=26 3178143364699453 r005 Im(z^2+c),c=-17/66+21/47*I,n=6 3178143377769098 p003 LerchPhi(1/64,4,9/38) 3178143396175260 r005 Re(z^2+c),c=-23/70+29/60*I,n=31 3178143399672060 a001 28657/2207*7^(23/50) 3178143406326701 r005 Re(z^2+c),c=19/126+25/58*I,n=15 3178143409113794 a009 1/11*(10^(1/4)-14)^(1/2) 3178143421547817 a007 Real Root Of -542*x^4-845*x^3-733*x^2+622*x-19 3178143431572160 m001 Cahen/Pi^(1/2)*ZetaQ(3) 3178143443238757 a007 Real Root Of -420*x^4-997*x^3+883*x^2-458*x+470 3178143457149963 m005 (7/18+1/6*5^(1/2))/(4/9*Pi+1) 3178143460634017 r005 Im(z^2+c),c=-1/52+37/50*I,n=9 3178143463376196 h001 (1/10*exp(1)+1/11)/(3/11*exp(1)+2/5) 3178143466137272 m009 (Psi(1,2/3)-1/3)/(3*Psi(1,2/3)-3/5) 3178143472298425 b008 -9/2+Pi*Sinh[Pi] 3178143472298425 m002 -9/2+Pi*Sinh[Pi] 3178143475455722 m009 (Psi(1,1/3)+6)/(5*Psi(1,1/3)+1/6) 3178143479865864 r005 Re(z^2+c),c=23/62+6/23*I,n=11 3178143490286681 m001 FeigenbaumB^2/exp(FeigenbaumAlpha)^2/Zeta(1/2) 3178143492328851 r009 Im(z^3+c),c=-33/56+8/15*I,n=21 3178143493864566 a007 Real Root Of -263*x^4-591*x^3+933*x^2+218*x-871 3178143494520858 r005 Im(z^2+c),c=-27/74+3/53*I,n=6 3178143502416472 m001 (ln(gamma)+1/2)/(GAMMA(3/4)+1/3) 3178143528557349 r005 Re(z^2+c),c=-35/106+18/37*I,n=57 3178143529644771 r005 Re(z^2+c),c=-17/50+17/37*I,n=50 3178143538654490 r005 Im(z^2+c),c=-37/90+3/58*I,n=24 3178143542423052 m001 (Pi+gamma(2))/(GAMMA(7/12)-Landau) 3178143557154929 m001 1/GAMMA(17/24)*exp(BesselK(1,1))^2*GAMMA(3/4) 3178143560873490 a007 Real Root Of 165*x^4+802*x^3+983*x^2+137*x-582 3178143562146734 m005 (1/2*exp(1)+5/9)/(5/8*5^(1/2)-2) 3178143568508628 r005 Im(z^2+c),c=-13/36+26/49*I,n=61 3178143601499374 m001 (Paris+ZetaP(2))/(3^(1/2)+HeathBrownMoroz) 3178143603842481 a005 (1/sin(106/219*Pi))^917 3178143606653325 r005 Re(z^2+c),c=5/29+22/39*I,n=7 3178143625580307 m001 (2^(1/2)-exp(1))/(-GolombDickman+MertensB2) 3178143640097117 r005 Im(z^2+c),c=-13/19+3/10*I,n=51 3178143642612606 m001 GaussKuzminWirsing^ErdosBorwein/arctan(1/2) 3178143644627365 m001 (gamma(2)-Lehmer)/(Zeta(3)+ln(2)) 3178143652896860 r005 Im(z^2+c),c=-31/46+1/17*I,n=64 3178143659614963 m002 Pi^2+Pi^5+ProductLog[Pi]+Pi^2*Sech[Pi] 3178143661491395 m004 -3-100*Pi-ProductLog[Sqrt[5]*Pi]^(-1) 3178143668273049 m005 (1/3*3^(1/2)+1/10)/(1/10*Zeta(3)-1/3) 3178143684794462 m001 Zeta(1/2)*gamma(2)+GaussKuzminWirsing 3178143687885212 r005 Im(z^2+c),c=-25/26+23/89*I,n=33 3178143704876143 r002 22th iterates of z^2 + 3178143719649427 a007 Real Root Of 39*x^4-372*x^3+540*x^2+547*x+770 3178143728044160 r009 Re(z^3+c),c=-43/98+15/28*I,n=41 3178143746665893 r005 Im(z^2+c),c=-59/114+21/55*I,n=8 3178143753496952 l006 ln(6685/9186) 3178143763777039 r005 Re(z^2+c),c=-31/78+11/46*I,n=29 3178143775625019 r005 Re(z^2+c),c=-23/50+21/62*I,n=7 3178143782726043 r005 Re(z^2+c),c=-23/98+25/52*I,n=5 3178143785781521 r005 Im(z^2+c),c=-37/98+19/41*I,n=9 3178143786000527 r002 10th iterates of z^2 + 3178143786480393 r005 Re(z^2+c),c=-8/27+5/8*I,n=56 3178143793617482 r005 Re(z^2+c),c=-47/90+2/29*I,n=4 3178143800740304 r002 3th iterates of z^2 + 3178143802876268 m001 (BesselJ(1,1)+Cahen)/(Khinchin+Sarnak) 3178143806776623 a001 2255*29^(11/14) 3178143807634702 a007 Real Root Of 132*x^4+196*x^3-989*x^2-979*x-297 3178143811547740 a007 Real Root Of 229*x^4-645*x^3-837*x^2-741*x-174 3178143813206869 r005 Im(z^2+c),c=-3/16+25/38*I,n=12 3178143819099412 p004 log(11113/463) 3178143828089282 r009 Im(z^3+c),c=-45/98+1/22*I,n=55 3178143843029615 a007 Real Root Of 110*x^4-667*x^3-517*x^2-235*x-45 3178143850727752 r005 Re(z^2+c),c=9/86+20/51*I,n=18 3178143856083304 r009 Re(z^3+c),c=-23/52+17/49*I,n=24 3178143859519527 a003 cos(Pi*30/101)-sin(Pi*37/101) 3178143869359873 m001 Riemann1stZero/exp(Backhouse)/Zeta(5) 3178143874504090 m001 GAMMA(1/12)^2*Robbin/ln(log(2+sqrt(3))) 3178143877066658 a007 Real Root Of -290*x^4-626*x^3+572*x^2-991*x+564 3178143877087015 a007 Real Root Of -159*x^4-195*x^3+749*x^2-895*x-448 3178143901564655 r009 Im(z^3+c),c=-41/86+8/45*I,n=42 3178143901819998 m006 (2*ln(Pi)-2/3)/(1/3/Pi+5) 3178143906676884 a007 Real Root Of -230*x^4-960*x^3-715*x^2-151*x-610 3178143906987094 r009 Re(z^3+c),c=-25/52+17/42*I,n=55 3178143908261711 m001 1/Tribonacci^2/exp(MinimumGamma)^2*sqrt(2)^2 3178143908395802 r009 Im(z^3+c),c=-43/122+10/37*I,n=24 3178143910201533 r009 Im(z^3+c),c=-43/122+10/37*I,n=27 3178143918412571 m001 (1-3^(1/3))/(-Ei(1,1)+Riemann1stZero) 3178143935722110 l006 ln(5974/8209) 3178143938000954 s002 sum(A172086[n]/(pi^n+1),n=1..infinity) 3178143941472336 r002 3th iterates of z^2 + 3178143947633183 r009 Im(z^3+c),c=-73/126+20/63*I,n=12 3178143948264037 r009 Im(z^3+c),c=-3/7+11/46*I,n=4 3178143952950619 a007 Real Root Of 301*x^4+861*x^3-540*x^2-459*x+926 3178143956297723 a001 75025/5778*7^(23/50) 3178143976194673 r009 Re(z^3+c),c=-43/110+17/43*I,n=4 3178143976684739 p003 LerchPhi(1/6,1,51/155) 3178143991808636 a007 Real Root Of -318*x^4-815*x^3+808*x^2+453*x-441 3178143992695164 a007 Real Root Of 209*x^4-493*x^3-334*x^2-852*x-255 3178143996026654 r009 Re(z^3+c),c=-23/54+11/34*I,n=13 3178144016709962 m001 TravellingSalesman^FeigenbaumC*sin(1/5*Pi) 3178144037508330 a001 196418/15127*7^(23/50) 3178144049356798 a001 514229/39603*7^(23/50) 3178144051085466 a001 1346269/103682*7^(23/50) 3178144051493549 a001 2178309/167761*7^(23/50) 3178144052153842 a001 832040/64079*7^(23/50) 3178144056679554 a001 10959/844*7^(23/50) 3178144059055817 m002 -6-Pi^5-6*Log[Pi]+ProductLog[Pi] 3178144065477589 m005 (1/2*3^(1/2)-1/5)/(5/9*gamma-1/9) 3178144068491928 r005 Im(z^2+c),c=-11/36+23/45*I,n=31 3178144077866018 r009 Im(z^3+c),c=-43/122+10/37*I,n=31 3178144077875412 r005 Re(z^2+c),c=-19/98+33/53*I,n=39 3178144081001505 r009 Im(z^3+c),c=-43/122+10/37*I,n=30 3178144086936533 r009 Im(z^3+c),c=-43/122+10/37*I,n=26 3178144087699246 a001 121393/9349*7^(23/50) 3178144091044899 r009 Im(z^3+c),c=-43/122+10/37*I,n=34 3178144091231702 a005 (1/sin(59/133*Pi))^1241 3178144092057307 r009 Im(z^3+c),c=-43/122+10/37*I,n=35 3178144092850129 r009 Im(z^3+c),c=-43/122+10/37*I,n=38 3178144093054492 r009 Im(z^3+c),c=-43/122+10/37*I,n=39 3178144093076562 r009 Im(z^3+c),c=-43/122+10/37*I,n=42 3178144093100150 r009 Im(z^3+c),c=-43/122+10/37*I,n=46 3178144093101356 r009 Im(z^3+c),c=-43/122+10/37*I,n=45 3178144093102198 r009 Im(z^3+c),c=-43/122+10/37*I,n=49 3178144093102269 r009 Im(z^3+c),c=-43/122+10/37*I,n=50 3178144093102407 r009 Im(z^3+c),c=-43/122+10/37*I,n=53 3178144093102431 r009 Im(z^3+c),c=-43/122+10/37*I,n=54 3178144093102437 r009 Im(z^3+c),c=-43/122+10/37*I,n=57 3178144093102440 r009 Im(z^3+c),c=-43/122+10/37*I,n=61 3178144093102440 r009 Im(z^3+c),c=-43/122+10/37*I,n=58 3178144093102440 r009 Im(z^3+c),c=-43/122+10/37*I,n=60 3178144093102440 r009 Im(z^3+c),c=-43/122+10/37*I,n=64 3178144093102440 r009 Im(z^3+c),c=-43/122+10/37*I,n=62 3178144093102440 r009 Im(z^3+c),c=-43/122+10/37*I,n=63 3178144093102441 r009 Im(z^3+c),c=-43/122+10/37*I,n=59 3178144093102442 r009 Im(z^3+c),c=-43/122+10/37*I,n=56 3178144093102451 r009 Im(z^3+c),c=-43/122+10/37*I,n=55 3178144093102483 r009 Im(z^3+c),c=-43/122+10/37*I,n=52 3178144093102533 r009 Im(z^3+c),c=-43/122+10/37*I,n=51 3178144093103013 r009 Im(z^3+c),c=-43/122+10/37*I,n=47 3178144093103082 r009 Im(z^3+c),c=-43/122+10/37*I,n=48 3178144093103295 r009 Im(z^3+c),c=-43/122+10/37*I,n=43 3178144093108502 r009 Im(z^3+c),c=-43/122+10/37*I,n=41 3178144093110282 r009 Im(z^3+c),c=-43/122+10/37*I,n=44 3178144093184799 r009 Im(z^3+c),c=-43/122+10/37*I,n=40 3178144093345176 r009 Im(z^3+c),c=-43/122+10/37*I,n=37 3178144093842630 r009 Im(z^3+c),c=-43/122+10/37*I,n=36 3178144097216110 r009 Im(z^3+c),c=-43/122+10/37*I,n=33 3178144098408562 r009 Im(z^3+c),c=-43/122+10/37*I,n=32 3178144099077615 r005 Re(z^2+c),c=-29/106+32/59*I,n=24 3178144101744021 a003 cos(1/5*Pi)+3^(1/2)+cos(1/8*Pi)-cos(11/27*Pi) 3178144112528568 a008 Real Root of x^2-101006 3178144114165706 r009 Im(z^3+c),c=-43/122+10/37*I,n=28 3178144120466562 m001 (Backhouse+Cahen)/(sin(1/5*Pi)-gamma(1)) 3178144120492670 r005 Im(z^2+c),c=37/110+7/62*I,n=42 3178144126365559 a007 Real Root Of -67*x^4+174*x^3+949*x^2+911*x+28 3178144128912847 r009 Im(z^3+c),c=-35/86+22/45*I,n=3 3178144135279709 r005 Re(z^2+c),c=-10/23+7/51*I,n=4 3178144143396136 b008 ProductLog[LogIntegral[Pi]^(-1)] 3178144143781708 a007 Real Root Of 684*x^4-77*x^3-411*x^2-941*x-267 3178144146952856 r009 Im(z^3+c),c=-43/122+10/37*I,n=29 3178144148389684 r005 Re(z^2+c),c=37/118+5/44*I,n=34 3178144153485623 m005 (3*Pi+1/5)/(2*2^(1/2)+1/5) 3178144153888739 a001 1/29*123^(6/13) 3178144163190672 a005 (1/sin(44/133*Pi))^256 3178144167182334 l006 ln(5263/7232) 3178144169630204 a003 cos(Pi*27/100)*cos(Pi*16/47) 3178144186770386 r005 Re(z^2+c),c=-17/26+10/43*I,n=13 3178144193249586 r005 Re(z^2+c),c=-12/29+3/31*I,n=10 3178144196572906 q001 983/3093 3178144204769333 r009 Im(z^3+c),c=-29/60+7/41*I,n=37 3178144210198181 r009 Re(z^3+c),c=-33/86+15/46*I,n=2 3178144216459448 m001 Lehmer/(DuboisRaymond^GAMMA(23/24)) 3178144216674788 a007 Real Root Of -113*x^4-253*x^3+589*x^2+524*x-877 3178144223485129 m001 (Lehmer+MertensB3)/(BesselI(1,1)-Kac) 3178144229333455 k004 Champernowne real with floor(Pi*(3*n^2+6*n+1)) 3178144229333456 k002 Champernowne real with 19/2*n^2+37/2*n+3 3178144252906803 a007 Real Root Of -221*x^4+535*x^3-784*x^2-175*x+43 3178144258275118 m001 PrimesInBinary*Backhouse^2*exp(GAMMA(17/24)) 3178144258997622 m001 1/LaplaceLimit^2/Conway/ln(gamma) 3178144271323129 a007 Real Root Of 155*x^4+497*x^3+611*x^2-559*x-225 3178144289516841 r005 Re(z^2+c),c=-31/78+10/41*I,n=10 3178144300311400 a001 46368/3571*7^(23/50) 3178144315589066 r005 Re(z^2+c),c=13/40+7/59*I,n=37 3178144317319410 m001 (Lehmer-ZetaP(4))/(exp(-1/2*Pi)-FeigenbaumC) 3178144326918799 r005 Im(z^2+c),c=-15/14+53/191*I,n=13 3178144336960664 r009 Re(z^3+c),c=-7/122+21/32*I,n=53 3178144339782594 m001 (5^(1/2)-GAMMA(5/6))/(-Bloch+Champernowne) 3178144341329377 m001 (DuboisRaymond-exp(Pi))/(-Sarnak+ZetaQ(4)) 3178144349752551 l005 ln(sec(179/80)) 3178144351592455 m001 (-CareFree+Mills)/(BesselJ(0,1)+GAMMA(5/6)) 3178144357914959 a007 Real Root Of 290*x^4+937*x^3-202*x^2-801*x-13 3178144360342309 b008 ProductLog[23*Sqrt[11]] 3178144370828167 r005 Im(z^2+c),c=27/86+6/49*I,n=63 3178144378845888 a001 18/1346269*14930352^(8/17) 3178144378846240 a001 9/31622993*53316291173^(8/17) 3178144386444982 p004 log(25997/18919) 3178144395183591 a001 18/28657*4181^(8/17) 3178144396019894 r005 Re(z^2+c),c=-19/46+3/22*I,n=13 3178144398997141 m001 FeigenbaumD*(Landau-Robbin) 3178144403192148 r005 Re(z^2+c),c=-31/74+1/25*I,n=12 3178144406903351 r005 Im(z^2+c),c=7/40+4/15*I,n=28 3178144409671563 r009 Im(z^3+c),c=-43/122+10/41*I,n=3 3178144416044089 m005 (1/3*exp(1)+1/7)/(1/4*Zeta(3)+3) 3178144416601669 m001 (PrimesInBinary+ZetaP(2))/(ln(2)-cos(1/12*Pi)) 3178144451416475 h001 (2/3*exp(2)+5/8)/(3/8*exp(1)+8/11) 3178144459292967 a001 199/8*89^(21/37) 3178144462101298 a007 Real Root Of -821*x^4+584*x^3-496*x^2+852*x+348 3178144463339998 a007 Real Root Of 16*x^4-116*x^3-652*x^2-581*x-617 3178144468353331 m001 1/Tribonacci*exp(Conway)*(2^(1/3))^2 3178144470948446 l006 ln(4552/6255) 3178144471850571 m006 (2/3*Pi+3/4)/(1/6*exp(2*Pi)+1/4) 3178144481003144 s001 sum(1/10^(n-1)*A016081[n]/n!^2,n=1..infinity) 3178144483242606 a001 10946/3*322^(41/53) 3178144483302199 r005 Im(z^2+c),c=-1/122+8/21*I,n=28 3178144496014981 m001 (Khinchin-Tribonacci)/(ln(3)-FeigenbaumB) 3178144502979508 m001 (2^(1/3)+Ei(1))/((1+3^(1/2))^(1/2)-TwinPrimes) 3178144517651428 m002 -Pi/3-Pi^3+Pi*Csch[Pi] 3178144523441556 m002 25+E^Pi/4+Tanh[Pi] 3178144534132671 m001 ln(Porter)^2*GaussKuzminWirsing^2*GAMMA(1/24) 3178144538337879 r005 Im(z^2+c),c=-17/106+5/11*I,n=52 3178144538873874 a001 1/76*(1/2*5^(1/2)+1/2)^4*1364^(13/16) 3178144539012448 r009 Im(z^3+c),c=-5/94+39/47*I,n=14 3178144549887957 r008 a(0)=3,K{-n^6,-30+23*n^3-26*n^2+28*n} 3178144558556015 r005 Im(z^2+c),c=-21/26+1/52*I,n=16 3178144562319596 p004 log(24043/17497) 3178144567001454 r002 14th iterates of z^2 + 3178144570494042 m001 (Conway+PrimesInBinary)/(Psi(2,1/3)+Shi(1)) 3178144578385186 a009 1/10*(10^(2/3)*2^(1/4)-5^(3/4))^(1/2)*10^(1/3) 3178144590579337 m005 (1/3*Pi-1/12)/(10/11*5^(1/2)+1) 3178144603828858 r005 Im(z^2+c),c=-12/17+3/61*I,n=6 3178144617342277 m005 (1/2*5^(1/2)-3/5)/(3/7*Catalan-5/9) 3178144623723031 m005 (5/6*exp(1)+1/5)/(13/6+5/2*5^(1/2)) 3178144628579622 m001 (2^(1/3))/ln(Champernowne)/Ei(1) 3178144630823968 m005 (1/3*5^(1/2)-1/5)/(14/15+7/20*5^(1/2)) 3178144631768949 r005 Re(z^2+c),c=29/118+3/43*I,n=7 3178144637771449 a001 610/7*199^(11/45) 3178144644283030 a007 Real Root Of 256*x^4-727*x^3-183*x^2-524*x-174 3178144662983066 a005 (1/cos(3/145*Pi))^547 3178144667978749 a007 Real Root Of -313*x^4-840*x^3+727*x^2+742*x-17 3178144674668960 r005 Im(z^2+c),c=29/98+35/57*I,n=16 3178144679526859 r005 Im(z^2+c),c=-53/58+11/46*I,n=15 3178144687822027 r009 Im(z^3+c),c=-39/86+3/59*I,n=15 3178144691221627 m001 FeigenbaumD^2*Niven^2/ln(GAMMA(11/24)) 3178144691958622 r009 Im(z^3+c),c=-43/122+10/37*I,n=25 3178144694295232 r005 Re(z^2+c),c=2/19+19/33*I,n=43 3178144697285145 a001 161/4*1346269^(26/55) 3178144697667084 a001 2178309/521*322^(3/4) 3178144713224194 m002 -Pi/4-Pi^3+Tanh[Pi]/Pi^4 3178144713480385 m001 (Chi(1)-Magata)^GAMMA(3/4) 3178144716290636 a007 Real Root Of 967*x^4+663*x^3-774*x^2-453*x+191 3178144719816068 r005 Im(z^2+c),c=-127/118+2/55*I,n=22 3178144726456361 r005 Im(z^2+c),c=-2/9+13/27*I,n=31 3178144733749332 m001 GAMMA(2/3)-MertensB2-ZetaQ(4) 3178144737072642 a007 Real Root Of 50*x^4+72*x^3-216*x^2+197*x+18 3178144744195834 m005 (1/2*exp(1)+7/11)/(1/11*exp(1)-7/8) 3178144750312943 m001 (Zeta(1/2)-2*Pi/GAMMA(5/6))/(MertensB2+Salem) 3178144757515695 r009 Im(z^3+c),c=-13/27+10/59*I,n=29 3178144758284037 a001 7/514229*610^(28/57) 3178144775180419 r009 Re(z^3+c),c=-27/58+5/13*I,n=54 3178144782716269 r005 Re(z^2+c),c=-29/98+12/25*I,n=12 3178144787110010 r005 Re(z^2+c),c=-39/106+19/51*I,n=23 3178144811330550 m001 (Sarnak-ThueMorse)/(ln(gamma)+GAMMA(7/12)) 3178144821297239 a003 sin(Pi*2/51)/cos(Pi*34/91) 3178144823072396 a007 Real Root Of 282*x^4-22*x^3+121*x^2-954*x-319 3178144827831171 m008 (5/6*Pi^5-1/3)/(5/6*Pi^6+1/5) 3178144836471557 r005 Im(z^2+c),c=-7/22+13/25*I,n=59 3178144843626867 m001 ln(GAMMA(11/24))^2*Lehmer/cos(Pi/5) 3178144846223197 r004 Re(z^2+c),c=1/3+3/23*I,z(0)=exp(5/8*I*Pi),n=45 3178144859404664 r005 Im(z^2+c),c=-99/118+9/53*I,n=10 3178144872529607 m001 (exp(1)+ln(5))/(Zeta(1/2)+Paris) 3178144878702648 r005 Im(z^2+c),c=13/90+13/45*I,n=26 3178144882672417 a003 sin(Pi*11/113)/sin(Pi*21/53) 3178144887173645 l006 ln(3841/5278) 3178144894418923 m005 (1/2*exp(1)+5/6)/(9/11*3^(1/2)-8/11) 3178144897934283 r005 Re(z^2+c),c=-25/94+14/25*I,n=32 3178144899587966 r005 Re(z^2+c),c=-13/10+4/93*I,n=4 3178144915944938 m001 (BesselI(1,2)+Sierpinski)^cos(1/5*Pi) 3178144917241423 m001 (Niven+Robbin)/(GAMMA(17/24)-cos(1)) 3178144920398333 m001 MinimumGamma^2*Conway^2*exp(sqrt(5))^2 3178144922050905 m001 (Bloch+CopelandErdos*Salem)/CopelandErdos 3178144927814706 r009 Re(z^3+c),c=-29/64+17/47*I,n=24 3178144927843188 a007 Real Root Of -411*x^4-969*x^3+835*x^2-820*x-215 3178144936117366 m001 Zeta(3)*HardyLittlewoodC5+Khinchin 3178144938777041 m005 (1/3*Pi+4/5)/(2/3*exp(1)+4) 3178144957206939 m001 (Kolakoski-Riemann3rdZero)/(ln(gamma)+Kac) 3178144963956553 a001 11*(1/2*5^(1/2)+1/2)^24*29^(7/23) 3178144981863185 a007 Real Root Of 247*x^4+905*x^3+597*x^2+724*x+123 3178144993655534 r005 Re(z^2+c),c=-25/62+9/44*I,n=23 3178145021197749 m008 (2/5*Pi^5-1/6)/(4*Pi^6+3/4) 3178145024547404 r009 Re(z^3+c),c=-11/126+41/56*I,n=46 3178145025408296 r005 Re(z^2+c),c=-51/122+1/56*I,n=13 3178145034078036 a003 cos(Pi*21/92)*cos(Pi*30/83) 3178145037476858 m008 (3*Pi^4-2/3)/(3*Pi^5-2/3) 3178145041490666 r009 Im(z^3+c),c=-3/14+7/8*I,n=48 3178145050233331 a007 Real Root Of 246*x^4+477*x^3-915*x^2+405*x+744 3178145051573323 m001 1/GAMMA(1/6)*GaussKuzminWirsing/exp(cos(1)) 3178145069865283 g001 Psi(4/7,6/71) 3178145086350489 a007 Real Root Of 40*x^4+91*x^3-216*x^2-135*x+593 3178145087235996 r005 Re(z^2+c),c=-23/30+41/110*I,n=2 3178145087405743 a001 29/13*701408733^(16/23) 3178145093062281 a001 199/377*34^(28/55) 3178145094114713 r005 Re(z^2+c),c=-25/34+7/109*I,n=8 3178145097408475 m001 ZetaP(2)/(Grothendieck-GAMMA(13/24)) 3178145106397768 m005 (1/2*Catalan-5)/(5*exp(1)+7/10) 3178145107740315 r005 Im(z^2+c),c=-1/14+19/46*I,n=23 3178145112413202 a001 312119004989*13^(19/21) 3178145119103601 m005 (1/2*5^(1/2)-6/11)/(exp(1)-11/12) 3178145121688202 a001 7/2*4807526976^(8/13) 3178145149943371 r009 Im(z^3+c),c=-10/21+5/28*I,n=58 3178145158964929 l006 ln(6971/9579) 3178145162357174 r002 5th iterates of z^2 + 3178145162896829 r009 Re(z^3+c),c=-31/60+17/59*I,n=8 3178145164210656 m001 1/Riemann3rdZero^2/exp(Cahen)^2*FeigenbaumD^2 3178145165270067 m001 Zeta(3)^2/ln(Riemann2ndZero)*sin(Pi/12)^2 3178145172589866 r002 31th iterates of z^2 + 3178145172651194 r005 Re(z^2+c),c=-11/31+17/41*I,n=33 3178145175539688 a001 3461452808002/377*6557470319842^(10/17) 3178145178035838 r004 Re(z^2+c),c=-4/11-5/13*I,z(0)=-1,n=41 3178145180424661 r005 Im(z^2+c),c=-27/38+3/17*I,n=13 3178145186794329 m001 (exp(-1/2*Pi)-LaplaceLimit)/(MertensB3+Paris) 3178145187327544 r005 Re(z^2+c),c=-7/13+3/46*I,n=4 3178145229567042 r005 Re(z^2+c),c=-33/86+19/62*I,n=36 3178145229913153 a007 Real Root Of 178*x^4+693*x^3+670*x^2+776*x-215 3178145231562628 a007 Real Root Of 91*x^4+105*x^3+120*x^2-961*x+289 3178145232339466 k002 Champernowne real with 10*n^2+17*n+4 3178145242016685 r002 5th iterates of z^2 + 3178145246302515 m001 Bloch*ErdosBorwein^2/ln(Porter) 3178145255258515 r005 Im(z^2+c),c=-19/54+20/37*I,n=60 3178145258930203 a007 Real Root Of 567*x^4-641*x^3-74*x^2-726*x+253 3178145267174247 m005 (1/2*Zeta(3)+1/6)/(7/8*3^(1/2)+9/10) 3178145275999086 a007 Real Root Of 237*x^4+402*x^3-993*x^2+133*x-822 3178145278967374 a007 Real Root Of -506*x^4+35*x^3-915*x^2+67*x+120 3178145280864160 a001 1/1926*11^(34/45) 3178145283492098 r005 Re(z^2+c),c=25/114+1/55*I,n=27 3178145287539280 m009 (Psi(1,1/3)-1/4)/(3/4*Psi(1,2/3)+4/5) 3178145295102590 r009 Re(z^3+c),c=-5/11+13/36*I,n=16 3178145295834823 a007 Real Root Of -123*x^4-387*x^3+9*x^2+232*x+772 3178145296978667 r005 Re(z^2+c),c=25/106+1/20*I,n=16 3178145299565097 m005 (1/2*gamma+1/3)/(2*Catalan+1/8) 3178145304978829 r005 Im(z^2+c),c=-29/46+2/51*I,n=21 3178145305757925 r002 30th iterates of z^2 + 3178145310189861 r005 Re(z^2+c),c=19/102+43/58*I,n=5 3178145316119778 m005 (1/3*Zeta(3)-1/11)/(1/7*3^(1/2)+8/11) 3178145320398419 a007 Real Root Of -300*x^4-796*x^3+241*x^2-948*x-393 3178145340310697 m001 KomornikLoreti/(gamma(1)+HardyLittlewoodC3) 3178145342204189 r002 56th iterates of z^2 + 3178145342412652 r009 Im(z^3+c),c=-43/122+10/37*I,n=22 3178145344835114 h001 (2/7*exp(1)+5/8)/(7/12*exp(2)+1/10) 3178145351533889 r008 a(0)=3,K{-n^6,-8+7*n^3+n^2-4*n} 3178145361336126 m005 (1/2*2^(1/2)-4/11)/(91/198+5/18*5^(1/2)) 3178145362368618 a007 Real Root Of -224*x^4-814*x^3-166*x^2+655*x+481 3178145365161909 m002 (2*Pi^4)/(E^(2*Pi)*Log[Pi]) 3178145374991024 m001 1/2*FeigenbaumB/Si(Pi)*2^(1/2) 3178145379953013 a007 Real Root Of 231*x^4+624*x^3-566*x^2-881*x-619 3178145382591475 m008 (4/5*Pi^5+1/5)/(4/5*Pi^4-5/6) 3178145390444912 m005 (1/2*Catalan-5)/(6*5^(1/2)+7/8) 3178145408853828 m001 (Lehmer-ZetaP(2))/(ln(5)+FransenRobinson) 3178145435266509 r005 Re(z^2+c),c=-29/70+6/55*I,n=18 3178145440554059 q001 826/2599 3178145441664602 a007 Real Root Of 658*x^4-718*x^3-998*x^2-9*x+120 3178145457753322 a007 Real Root Of -663*x^4+953*x^3+345*x^2+892*x+286 3178145463121337 m005 (1/2*2^(1/2)-7/12)/(1/7*exp(1)-7/9) 3178145463592460 m001 (GAMMA(3/4)-gamma)/(ReciprocalLucas+ZetaP(4)) 3178145473547272 m001 (-Kac+Stephens)/(Psi(1,1/3)+2*Pi/GAMMA(5/6)) 3178145476184021 r009 Re(z^3+c),c=-6/13+20/53*I,n=40 3178145486344630 r005 Re(z^2+c),c=-29/86+23/50*I,n=14 3178145490573514 m009 (16/5*Catalan+2/5*Pi^2-1/4)/(2*Psi(1,1/3)+2/3) 3178145492495374 l006 ln(3130/4301) 3178145507516840 a007 Real Root Of 219*x^4+515*x^3+814*x^2+91*x-39 3178145526116240 m001 (1+GAMMA(11/12))/(DuboisRaymond+ZetaP(2)) 3178145528761531 m001 (exp(1)+cos(1))/(Zeta(1,2)+ReciprocalLucas) 3178145535962604 a007 Real Root Of -8*x^4+235*x^3-329*x^2-828*x-773 3178145548775421 a007 Real Root Of 528*x^4+868*x^3-104*x^2-973*x+31 3178145570894128 s002 sum(A198099[n]/(n^3*2^n-1),n=1..infinity) 3178145584873305 a009 4+2^(1/2)-5^(1/2) 3178145584873305 b008 4+Sqrt[2]-Sqrt[5] 3178145620435642 a007 Real Root Of 201*x^4+353*x^3-860*x^2+456*x+961 3178145630841892 a007 Real Root Of -212*x^4-597*x^3+186*x^2-110*x+236 3178145635793478 r005 Re(z^2+c),c=19/70+5/58*I,n=7 3178145645021267 m005 (1/2*3^(1/2)-5/6)/(1/264+11/24*5^(1/2)) 3178145647751932 r005 Re(z^2+c),c=-79/102+14/37*I,n=2 3178145651844072 m005 (1/3*gamma+1/6)/(7/11*exp(1)-3/5) 3178145654051145 r005 Re(z^2+c),c=-25/74+27/58*I,n=53 3178145656141120 a007 Real Root Of 201*x^4+439*x^3-564*x^2-60*x-908 3178145661172784 m001 (-CareFree+FibonacciFactorial)/(1+Cahen) 3178145661214418 m006 (2/3*Pi^2+1)/(3/5*Pi+1/2) 3178145661214418 m008 (2/3*Pi^2+1)/(3/5*Pi+1/2) 3178145666369195 r009 Im(z^3+c),c=-63/122+11/64*I,n=49 3178145674368437 r005 Im(z^2+c),c=1/54+34/53*I,n=23 3178145676724821 h003 exp(Pi*(1/13*(21-12^(2/3))^(1/2)*13^(1/2))) 3178145690257310 a007 Real Root Of 2*x^4+32*x^3-986*x^2+551*x+224 3178145693853748 m001 (Niven+Robbin)/(3^(1/3)-ArtinRank2) 3178145704182495 m001 (Si(Pi)-cos(1/5*Pi))/(3^(1/3)+Tribonacci) 3178145705531223 m003 1/12+Sqrt[5]/32-15*Sec[1/2+Sqrt[5]/2] 3178145712826306 a007 Real Root Of 67*x^4-37*x^3-822*x^2+76*x+521 3178145718041068 m001 (Pi-GlaisherKinkelin)/(MertensB3-RenyiParking) 3178145724167516 p003 LerchPhi(1/8,6,281/232) 3178145734484031 m001 Psi(1,1/3)^(ln(Pi)/BesselJ(0,1)) 3178145734620456 a007 Real Root Of 245*x^4+633*x^3-250*x^2+501*x-558 3178145737688061 m006 (4/5*Pi^2-1/6)/(3/5/Pi-1/6) 3178145744375823 a007 Real Root Of 192*x^4+507*x^3-636*x^2-887*x+292 3178145744707811 a007 Real Root Of -151*x^4+733*x^3+662*x^2+721*x-318 3178145757577546 a001 17711/1364*7^(23/50) 3178145767901193 r005 Im(z^2+c),c=-23/58+11/21*I,n=47 3178145792005132 r002 8th iterates of z^2 + 3178145796992774 p004 log(31477/22907) 3178145802703485 m001 exp(FeigenbaumD)^2/Conway*TreeGrowth2nd^2 3178145812746444 m001 (Psi(1,1/3)+FellerTornier)/(Khinchin+Lehmer) 3178145812759099 a003 cos(Pi*26/111)-cos(Pi*35/97) 3178145813412957 r005 Re(z^2+c),c=17/70+27/62*I,n=56 3178145818165016 r009 Im(z^3+c),c=-15/29+3/29*I,n=9 3178145818462493 m001 (-GAMMA(3/4)+Backhouse)/(BesselI(0,1)-cos(1)) 3178145819573042 r005 Im(z^2+c),c=-17/106+5/11*I,n=55 3178145824489695 m005 (1/2*Pi+5/6)/(4*3^(1/2)+7/11) 3178145834060081 r005 Im(z^2+c),c=-139/118+13/55*I,n=16 3178145840374577 m001 (Pi+Zeta(5)*ZetaR(2))/Zeta(5) 3178145851562918 r005 Im(z^2+c),c=-11/48+16/33*I,n=33 3178145856071725 r005 Im(z^2+c),c=-41/46+5/22*I,n=16 3178145856348638 m001 (Magata+StolarskyHarborth)/(Bloch+Kac) 3178145861264671 m001 (Mills+Rabbit)/(exp(1)+Pi*2^(1/2)/GAMMA(3/4)) 3178145861420567 r002 2th iterates of z^2 + 3178145862236015 a007 Real Root Of 262*x^4+725*x^3-61*x^2+973*x+252 3178145871900920 a007 Real Root Of -62*x^4+120*x^3+918*x^2-523*x-757 3178145879969328 s002 sum(A090881[n]/(pi^n+1),n=1..infinity) 3178145880075375 a001 1/76*(1/2*5^(1/2)+1/2)^13*3571^(3/16) 3178145884497076 r005 Re(z^2+c),c=-9/23+16/59*I,n=27 3178145885538006 a001 1/377*2178309^(17/35) 3178145886186953 a007 Real Root Of 14*x^4+460*x^3+469*x^2-311*x-172 3178145892719357 m001 BesselI(1,2)*Magata/Niven 3178145894119293 a001 2/591286729879*610^(17/24) 3178145897477688 r005 Re(z^2+c),c=-49/118+4/41*I,n=22 3178145899563978 m001 (GAMMA(19/24)-FellerTornier)/(Pi-arctan(1/2)) 3178145911497111 l006 ln(5549/7625) 3178145917743912 m001 (Otter-Paris)/(3^(1/3)-Landau) 3178145922715987 a001 1/76*24476^(37/48) 3178145923227719 r005 Im(z^2+c),c=-5/4+2/153*I,n=32 3178145923984105 a007 Real Root Of 884*x^4-691*x^3-697*x^2-423*x+218 3178145924484351 a001 1/76*(1/2*5^(1/2)+1/2)^7*24476^(7/16) 3178145924532726 a001 1/76*(1/2*5^(1/2)+1/2)^15*9349^(1/16) 3178145926563453 a001 1/76*(1/2*5^(1/2)+1/2)^9*64079^(5/16) 3178145926805328 a001 1/76*54018521^(7/16) 3178145927337455 a001 1/4870004*(1/2*5^(1/2)+1/2)^32*64079^(5/16) 3178145928102020 r005 Re(z^2+c),c=-29/74+4/15*I,n=20 3178145929789443 a001 1/1860176*(1/2*5^(1/2)+1/2)^28*24476^(7/16) 3178145933468752 a007 Real Root Of 370*x^4+938*x^3-439*x^2+798*x-667 3178145936760174 a001 14662949395604/13*987^(9/11) 3178145966750172 r005 Im(z^2+c),c=-9/62+35/64*I,n=9 3178145975943400 r005 Im(z^2+c),c=-15/14+43/162*I,n=9 3178145992711527 m001 Backhouse^exp(gamma)+GAMMA(3/4) 3178145998360085 m005 (1/2*Zeta(3)-1/12)/(3/4*Pi-8/11) 3178146001133572 m005 (1/2*Zeta(3)+3/11)/(7/12*Pi+11/12) 3178146013271563 m001 (Niven+Tribonacci)/(Bloch+Cahen) 3178146014481104 a001 199/21*2178309^(34/39) 3178146020046494 a007 Real Root Of 989*x^4-756*x^3+742*x^2-707*x-334 3178146027085313 r002 2th iterates of z^2 + 3178146027085822 r005 Im(z^2+c),c=-28/27+1/4*I,n=12 3178146040307029 m005 (1/2*Zeta(3)-5/12)/(3/8*gamma+4/11) 3178146062211879 m005 (1/2*5^(1/2)-6)/(5/11*Zeta(3)-7/10) 3178146070408512 m001 (BesselJ(0,1)-Si(Pi))/(arctan(1/2)+Otter) 3178146080217615 m001 (cos(1)+Zeta(5))/(BesselI(0,2)+FeigenbaumD) 3178146088305218 m001 (-LaplaceLimit+ZetaP(4))/(Khinchin-sin(1)) 3178146089772047 m001 (FeigenbaumC-Psi(2,1/3))/(Totient+ZetaP(2)) 3178146108828480 a007 Real Root Of 109*x^4+247*x^3-370*x^2-902*x+315 3178146111252529 a001 123/2*956722026041^(8/11) 3178146111741353 k007 concat of cont frac of 3178146112381120 m001 (ln(2+3^(1/2))-Artin)/(Magata-TreeGrowth2nd) 3178146120281335 a005 (1/sin(74/159*Pi))^1363 3178146127254430 r005 Im(z^2+c),c=-73/118+1/35*I,n=3 3178146129301803 a001 1/271396*(1/2*5^(1/2)+1/2)^30*3571^(3/16) 3178146131489315 a001 39603/34*196418^(37/57) 3178146145997624 l006 ln(4769/4923) 3178146147606167 a007 Real Root Of -306*x^4-186*x^3-154*x^2+561*x+191 3178146149963822 r005 Re(z^2+c),c=-23/94+34/45*I,n=54 3178146152409127 h001 (4/9*exp(2)+2/5)/(1/9*exp(1)+6/7) 3178146152562170 m001 (GAMMA(5/6)-Pi^(1/2))/(Khinchin-TwinPrimes) 3178146162328369 r005 Re(z^2+c),c=41/114+9/55*I,n=38 3178146166876456 a001 1597/843*199^(30/31) 3178146184922629 a009 5^(3/4)/(5^(2/3)-6^(1/3))^(1/2) 3178146202167482 r009 Im(z^3+c),c=-10/29+17/62*I,n=21 3178146215475968 m002 -3*Cosh[Pi]+(6*Sinh[Pi])/E^Pi 3178146218205720 m001 FeigenbaumDelta/(sin(1/5*Pi)+ln(2^(1/2)+1)) 3178146218205720 m001 FeigenbaumDelta/(sin(Pi/5)+ln(1+sqrt(2))) 3178146227005978 r005 Im(z^2+c),c=-19/110+23/50*I,n=50 3178146235345476 k002 Champernowne real with 21/2*n^2+31/2*n+5 3178146239999439 m005 (1/3*2^(1/2)-1/10)/(5/7*5^(1/2)-3/7) 3178146247097289 a001 1/103664*(1/2*5^(1/2)+1/2)^19*1364^(13/16) 3178146256099396 a007 Real Root Of -712*x^4-740*x^3-17*x^2+616*x+181 3178146258503401 r002 2th iterates of z^2 + 3178146258503401 r005 Im(z^2+c),c=1/7+7/12*I,n=3 3178146268132855 a008 Real Root of (-5+5*x+5*x^2-6*x^3+x^4+x^5) 3178146272950988 a007 Real Root Of -252*x^4-842*x^3-79*x^2+172*x+25 3178146278886313 a001 3/610*53316291173^(13/24) 3178146295147789 m005 (1/2*2^(1/2)-8/11)/(5/7*gamma+2/9) 3178146319795392 a007 Real Root Of -427*x^4+974*x^3-396*x^2+83*x+102 3178146322025448 a007 Real Root Of 307*x^4+888*x^3-402*x^2-345*x+149 3178146322433898 m001 (Catalan-ln(Pi))/(Champernowne+Gompertz) 3178146339274212 p001 sum(1/(273*n+136)/n/(8^n),n=1..infinity) 3178146352956922 a007 Real Root Of 238*x^4+579*x^3-523*x^2+270*x+446 3178146360061708 r009 Re(z^3+c),c=-51/106+23/50*I,n=63 3178146363955135 a007 Real Root Of 236*x^4+101*x^3-358*x^2-881*x-243 3178146367737943 r005 Re(z^2+c),c=-13/31+3/58*I,n=10 3178146368430620 r005 Im(z^2+c),c=-9/58+24/53*I,n=15 3178146394459339 m001 (Rabbit+ZetaQ(2))/(ArtinRank2+Niven) 3178146399703775 r005 Im(z^2+c),c=-17/106+5/11*I,n=58 3178146426273179 a003 cos(Pi*26/89)*cos(Pi*38/117) 3178146429041298 m001 (Sarnak+ZetaQ(4))/(ln(2)/ln(10)+gamma(1)) 3178146433202317 a007 Real Root Of -583*x^4+440*x^3+986*x^2+608*x-301 3178146452048612 m005 (1/2*5^(1/2)+2/11)/(5/12*Pi-9/10) 3178146453653115 l006 ln(2419/3324) 3178146462907184 r005 Im(z^2+c),c=-43/118+27/50*I,n=62 3178146467692334 a007 Real Root Of 967*x^4-367*x^3+600*x^2-682*x-299 3178146470593706 a001 439204/13*1548008755920^(9/11) 3178146470610181 a001 2537720636/13*39088169^(9/11) 3178146470610184 a001 33385282/13*7778742049^(9/11) 3178146470623662 a001 192900153618/13*196418^(9/11) 3178146477596039 a001 3524578/199*199^(6/11) 3178146488717938 m001 (3^(1/3)-Chi(1))/(BesselJ(1,1)+MinimumGamma) 3178146489275685 a007 Real Root Of 257*x^4+868*x^3-240*x^2-995*x+906 3178146504862963 r009 Re(z^3+c),c=-1/26+17/61*I,n=4 3178146518935347 m001 (Pi^(1/2)-Conway)/(Tetranacci-ZetaP(2)) 3178146529604970 r005 Re(z^2+c),c=7/82+15/41*I,n=20 3178146542712122 m001 (-Khinchin+Trott2nd)/(3^(1/2)-Psi(1,1/3)) 3178146546112096 r005 Re(z^2+c),c=-33/82+13/62*I,n=23 3178146549368881 h001 (-exp(1/3)+7)/(-7*exp(2/3)-4) 3178146554728513 a005 (1/cos(20/203*Pi))^544 3178146575769971 r005 Im(z^2+c),c=-9/13+2/39*I,n=8 3178146576597810 m001 (exp(Pi)+Shi(1))/(LaplaceLimit+Paris) 3178146589980754 m008 (1/3*Pi^6+5)/(1/3*Pi^5+2/5) 3178146595591090 m002 Pi^5+Cosh[Pi]+(E^Pi*Csch[Pi])/Pi^2 3178146611660754 r005 Re(z^2+c),c=-11/36+7/13*I,n=50 3178146611795387 m005 (1/2*Catalan-4/5)/(4/7*gamma-2/9) 3178146617736534 a005 (1/sin(106/217*Pi))^1765 3178146618445020 a007 Real Root Of -892*x^4+188*x^3-848*x^2+910*x+390 3178146624348105 m001 Catalan+KomornikLoreti+Weierstrass 3178146640876418 h001 (3/4*exp(2)+1/5)/(4/11*exp(1)+9/11) 3178146650385746 r005 Im(z^2+c),c=-17/106+5/11*I,n=61 3178146658577779 a001 1/39596*(1/2*5^(1/2)+1/2)^17*521^(15/16) 3178146660417018 r005 Re(z^2+c),c=-37/106+21/47*I,n=26 3178146663733750 r005 Im(z^2+c),c=-1/34+20/51*I,n=19 3178146666400496 r005 Im(z^2+c),c=-73/118+19/53*I,n=17 3178146674882398 m001 (ln(gamma)+BesselI(1,1))/(FeigenbaumC-Totient) 3178146675713875 r005 Im(z^2+c),c=29/78+4/55*I,n=4 3178146681743123 g005 GAMMA(2/11)^2*GAMMA(1/11)/GAMMA(1/9) 3178146685263970 a001 9/5473*14930352^(14/19) 3178146686013690 m001 exp(-1/2*Pi)^Catalan*Totient 3178146686540182 r005 Re(z^2+c),c=7/58+5/12*I,n=40 3178146690569058 a001 18/9227465*139583862445^(14/19) 3178146693094179 r005 Re(z^2+c),c=-29/86+24/53*I,n=14 3178146706520599 l004 Chi(589/105) 3178146717797730 a007 Real Root Of 311*x^4-899*x^3+366*x^2-841*x+256 3178146720028140 a001 5/167761*18^(1/45) 3178146722561055 a007 Real Root Of -331*x^4-922*x^3+470*x^2+366*x+588 3178146725428218 b008 2*Pi+Erfi[Khinchin] 3178146726440169 m001 (GolombDickman+Trott2nd)/(Ei(1,1)+FeigenbaumC) 3178146731101661 m005 (-1/3+1/6*5^(1/2))/(8/11*gamma+9/11) 3178146743960407 r005 Im(z^2+c),c=31/118+5/26*I,n=14 3178146747072674 r005 Im(z^2+c),c=-7/54+2/51*I,n=9 3178146750064275 m005 (1/3*3^(1/2)+3/4)/(-73/126+5/18*5^(1/2)) 3178146752229756 a001 89/5600748293801*4^(1/2) 3178146753292089 r005 Im(z^2+c),c=-17/106+5/11*I,n=64 3178146754747127 r005 Re(z^2+c),c=19/52+5/17*I,n=48 3178146769500407 m001 (ArtinRank2+Porter)/(ln(Pi)-arctan(1/2)) 3178146770056497 m006 (5/Pi+3/5)/(4/5*Pi^2-1) 3178146772507922 r005 Im(z^2+c),c=-17/106+5/11*I,n=63 3178146782717460 r005 Im(z^2+c),c=-17/106+5/11*I,n=60 3178146790316438 m005 (4*Catalan+2/5)/(8/15+1/3*5^(1/2)) 3178146793109421 r005 Im(z^2+c),c=7/60+4/13*I,n=23 3178146803005865 m001 exp(RenyiParking)*Niven^2/GAMMA(11/24) 3178146804023477 p003 LerchPhi(1/256,3,107/73) 3178146811677095 r005 Im(z^2+c),c=-41/118+32/61*I,n=51 3178146828128044 a003 cos(Pi*13/103)-cos(Pi*22/75) 3178146838620483 m001 1/FibonacciFactorial^2/ln(Cahen)^2/Zeta(5)^2 3178146857108581 a007 Real Root Of 2*x^4+633*x^3-835*x^2+210*x+799 3178146863078223 m009 (1/2*Pi^2-1/5)/(6*Catalan+3/4*Pi^2+2) 3178146871504425 r009 Im(z^3+c),c=-19/48+12/49*I,n=19 3178146877656321 r005 Im(z^2+c),c=-17/106+5/11*I,n=57 3178146886744181 r005 Im(z^2+c),c=-19/110+23/50*I,n=35 3178146892020937 m001 1/GAMMA(17/24)*ln(Paris)/LambertW(1) 3178146896897715 m001 HardHexagonsEntropy*(Zeta(1,2)+Rabbit) 3178146898412979 a008 Real Root of x^4-2*x^3+5*x^2+88*x-368 3178146900457167 m001 (polylog(4,1/2)+5)/(-5^(1/2)+1/2) 3178146901119077 a001 18/4181*196418^(6/17) 3178146913235076 l006 ln(6546/8995) 3178146922534789 r002 8i'th iterates of 2*x/(1-x^2) of 3178146922851129 r009 Im(z^3+c),c=-11/102+48/59*I,n=40 3178146928324203 a007 Real Root Of -241*x^4-979*x^3-761*x^2-482*x-685 3178146937331328 m001 1/TreeGrowth2nd^2/ln(Artin)/sqrt(1+sqrt(3)) 3178146937361992 a001 18/75025*701408733^(6/17) 3178146937474566 a001 18/1346269*2504730781961^(6/17) 3178146955265089 a001 5/271443*123^(29/49) 3178146957501930 r002 8th iterates of z^2 + 3178146962187599 m002 -3/4+Pi^5+Sinh[Pi]+Tanh[Pi] 3178146962726372 r009 Im(z^3+c),c=-35/114+7/24*I,n=10 3178146966841788 r005 Im(z^2+c),c=-17/106+5/11*I,n=62 3178146966967349 r002 4th iterates of z^2 + 3178146966967349 r002 4th iterates of z^2 + 3178146973320350 m001 ln((2^(1/3)))*Champernowne*GAMMA(11/12)^2 3178146981693260 a003 sin(Pi*43/115)/cos(Pi*13/32) 3178146987599058 r005 Im(z^2+c),c=-17/106+5/11*I,n=44 3178146995300436 m001 (Niven+Tetranacci)/(arctan(1/2)-ErdosBorwein) 3178146995832509 p003 LerchPhi(1/2,2,53/26) 3178147024764445 r009 Re(z^3+c),c=-14/29+23/39*I,n=44 3178147033273008 b008 JacobiDC[2,Log[Pi]] 3178147035188003 m001 1/GAMMA(23/24)/exp(Lehmer)^2/Zeta(1,2) 3178147039918889 a001 199/18*(1/2*5^(1/2)+1/2)^27*18^(13/20) 3178147061126218 k007 concat of cont frac of 3178147067794189 r005 Re(z^2+c),c=-29/82+24/59*I,n=22 3178147079348614 a005 (1/cos(11/192*Pi))^71 3178147083042149 a007 Real Root Of 951*x^4-297*x^3-56*x^2-961*x-319 3178147085134704 r005 Re(z^2+c),c=-89/98+16/59*I,n=42 3178147085157956 a007 Real Root Of 744*x^4+256*x^3-145*x^2-760*x-24 3178147098885483 r009 Im(z^3+c),c=-1/54+13/16*I,n=4 3178147104426786 r005 Re(z^2+c),c=-27/82+28/57*I,n=48 3178147106258915 m005 (1/2*exp(1)+6)/(7/8*3^(1/2)+4/5) 3178147126609492 r005 Im(z^2+c),c=-17/106+5/11*I,n=59 3178147128296671 m001 GAMMA(1/4)^2/ln(TwinPrimes)*Zeta(9)^2 3178147135649517 m005 (1/3*exp(1)+2/9)/(1/10*3^(1/2)+2/11) 3178147141659143 r005 Re(z^2+c),c=-22/31+17/48*I,n=37 3178147144631132 m009 (5/6*Psi(1,3/4)+5)/(3/4*Psi(1,3/4)+1/3) 3178147147604375 m005 (1/2*gamma+2/7)/(7/9*Pi-7/11) 3178147181744698 m001 BesselI(0,1)*ln(3)+KomornikLoreti 3178147182614461 l006 ln(4127/5671) 3178147188037454 r005 Im(z^2+c),c=-57/118+3/55*I,n=24 3178147191482181 r005 Im(z^2+c),c=-91/90+11/36*I,n=11 3178147203149718 r005 Im(z^2+c),c=-12/31+3/59*I,n=16 3178147208599723 a003 cos(Pi*10/97)-sin(Pi*17/39) 3178147210992226 m001 (-gamma(2)+Grothendieck)/(2^(1/3)-Psi(2,1/3)) 3178147212766981 m005 (1/2*exp(1)-5/6)/(1/3*5^(1/2)+10/11) 3178147213345922 r005 Im(z^2+c),c=-22/19+13/53*I,n=32 3178147215453585 r005 Im(z^2+c),c=13/90+13/45*I,n=27 3178147237929361 m005 (-1/2+1/6*5^(1/2))/(3*Zeta(3)+2/5) 3178147238046924 r005 Im(z^2+c),c=-17/106+5/11*I,n=54 3178147238351486 k002 Champernowne real with 11*n^2+14*n+6 3178147252057151 a001 1346269/521*322^(5/6) 3178147268408551 q001 669/2105 3178147276764315 a007 Real Root Of 640*x^4-348*x^3+314*x^2-392*x-174 3178147295269346 r009 Re(z^3+c),c=-8/17+20/51*I,n=60 3178147297377220 a003 sin(Pi*3/38)/cos(Pi*23/105) 3178147299421575 a003 cos(Pi*4/61)-sin(Pi*20/87) 3178147300000000 r002 3th iterates of z^2 + 3178147306144540 p001 sum(1/(37*n+35)/(5^n),n=0..infinity) 3178147321125769 a007 Real Root Of -151*x^4-308*x^3+704*x^2+301*x-636 3178147323020432 r005 Im(z^2+c),c=1/94+21/37*I,n=6 3178147324594957 r005 Im(z^2+c),c=3/74+17/48*I,n=24 3178147348896294 m001 (Paris-ZetaQ(3))/(ln(gamma)+FeigenbaumB) 3178147349807919 r005 Re(z^2+c),c=-1/4+13/25*I,n=4 3178147360324913 a007 Real Root Of -13*x^4-399*x^3+435*x^2-454*x+721 3178147392762594 m001 (Rabbit+ZetaP(3))/(KhinchinHarmonic-Porter) 3178147413313543 r009 Re(z^3+c),c=-8/17+7/17*I,n=30 3178147413467490 r005 Im(z^2+c),c=-17/106+5/11*I,n=56 3178147417127499 a007 Real Root Of -105*x^4-150*x^3+492*x^2-436*x-458 3178147449944239 a001 48/90481*7^(23/25) 3178147460310247 h001 (4/11*exp(1)+1/3)/(4/9*exp(2)+7/8) 3178147461723200 a003 sin(Pi*1/36)*sin(Pi*12/101) 3178147471159276 r005 Re(z^2+c),c=-13/38+24/53*I,n=51 3178147484817959 l006 ln(5835/8018) 3178147495438897 m001 GlaisherKinkelin^FeigenbaumAlpha*Niven 3178147495586357 r002 14th iterates of z^2 + 3178147507921576 m001 Riemann3rdZero^exp(-1/2*Pi)+GAMMA(3/4) 3178147508500299 r009 Re(z^3+c),c=-47/86+19/24*I,n=2 3178147529477624 b008 Gamma[Sqrt[5]/3,1] 3178147537570617 r005 Re(z^2+c),c=-19/54+19/45*I,n=35 3178147545745436 a001 34111385/281*123^(1/5) 3178147547225958 m005 (13/42+1/6*5^(1/2))/(2/5*3^(1/2)-5/7) 3178147550660485 a003 cos(Pi*16/97)-cos(Pi*11/35) 3178147552965680 m001 (ln(5)+MadelungNaCl)/(QuadraticClass+ZetaP(3)) 3178147562618375 a007 Real Root Of 553*x^4+812*x^3+523*x^2-971*x-341 3178147569856857 r005 Im(z^2+c),c=1/34+21/58*I,n=11 3178147569986303 a007 Real Root Of -402*x^4-930*x^3+911*x^2-310*x+972 3178147571214584 r009 Re(z^3+c),c=-27/82+10/63*I,n=15 3178147599847136 r005 Re(z^2+c),c=-7/24+21/38*I,n=16 3178147601362822 p003 LerchPhi(1/12,3,314/213) 3178147605726759 m001 1/ln(Sierpinski)*Magata/GAMMA(5/6) 3178147609381777 m001 Backhouse^GAMMA(3/4)*Backhouse^Si(Pi) 3178147609381777 m001 Backhouse^Si(Pi)*Backhouse^GAMMA(3/4) 3178147621520505 a007 Real Root Of 16*x^4+536*x^3+891*x^2+532*x-389 3178147622110178 a007 Real Root Of 133*x^4+717*x^3+925*x^2-177*x-458 3178147622399126 r002 55th iterates of z^2 + 3178147633563491 r002 36th iterates of z^2 + 3178147645358215 m005 (1/2*Catalan-1/10)/(2/9*Catalan-1/11) 3178147646466971 m001 (cos(1)+ln(gamma))/(FransenRobinson+Paris) 3178147657953027 m005 (1/2*3^(1/2)+3)/(7/10*Zeta(3)+3/8) 3178147659969252 b008 17+Pi*CoshIntegral[7] 3178147666883517 r005 Re(z^2+c),c=-79/114+21/62*I,n=20 3178147668724351 a007 Real Root Of 360*x^4+899*x^3-439*x^2+965*x-368 3178147669836259 r005 Re(z^2+c),c=-19/58+12/23*I,n=13 3178147677849460 h001 (-9*exp(2)-1)/(-4*exp(4)+6) 3178147690426988 m001 (BesselI(1,2)-cos(1))/(-Artin+CareFree) 3178147696984858 r005 Im(z^2+c),c=19/90+32/59*I,n=12 3178147712183402 a007 Real Root Of -835*x^4-682*x^3+932*x^2+863*x-338 3178147712376527 r005 Re(z^2+c),c=-77/118+7/57*I,n=4 3178147719237540 r005 Re(z^2+c),c=-23/70+17/33*I,n=29 3178147721847229 a001 76/5*1597^(1/10) 3178147729266424 r005 Im(z^2+c),c=11/42+3/16*I,n=16 3178147731737374 a007 Real Root Of -359*x^4-969*x^3+670*x^2+474*x+259 3178147733799988 m001 (FeigenbaumD-ln(2+3^(1/2))*Khinchin)/Khinchin 3178147746935746 m001 (ln(3)+3^(1/3))/(ln(2+3^(1/2))-polylog(4,1/2)) 3178147753082162 a007 Real Root Of 800*x^4+598*x^3+60*x^2-689*x-214 3178147757838402 a007 Real Root Of 19*x^4-118*x^3-811*x^2-731*x+142 3178147770228850 r005 Re(z^2+c),c=-23/16+3/125*I,n=6 3178147787881411 a001 9/305*433494437^(4/17) 3178147788746420 r005 Re(z^2+c),c=-13/31+7/50*I,n=7 3178147798192482 m001 gamma(3)^exp(1/exp(1))/ThueMorse 3178147806274541 m008 (4*Pi^6+4/5)/(4*Pi^3-3) 3178147816792049 r005 Im(z^2+c),c=-127/106+1/23*I,n=37 3178147822518014 b008 (-2+E)^10+Pi 3178147826186144 a007 Real Root Of -565*x^4+709*x^3-532*x^2-284*x-8 3178147828625314 a001 1/439204*3^(17/56) 3178147828845525 r005 Re(z^2+c),c=-31/114+29/51*I,n=43 3178147833428810 r009 Im(z^3+c),c=-11/52+10/31*I,n=4 3178147833464916 a007 Real Root Of -243*x^4-637*x^3+262*x^2-823*x-919 3178147837240040 r005 Re(z^2+c),c=-12/31+19/58*I,n=12 3178147841528316 r004 Re(z^2+c),c=-3/8+5/17*I,z(0)=-1,n=13 3178147844756722 a007 Real Root Of 218*x^4+381*x^3-809*x^2+488*x-288 3178147853179970 r005 Im(z^2+c),c=-37/34+19/65*I,n=11 3178147865345073 m001 (BesselJ(0,1)+1/2)/(-BesselK(1,1)+1) 3178147871841303 r005 Im(z^2+c),c=-17/106+5/11*I,n=53 3178147872728102 m001 (Mills+Sierpinski)/(LaplaceLimit-cos(1)) 3178147873335874 r005 Im(z^2+c),c=-9/62+1/25*I,n=7 3178147873863758 b008 ArcCsch[6*SinIntegral[Pi/6]] 3178147887337945 a001 51841/72*34^(8/19) 3178147915402951 a001 3/8*196418^(26/47) 3178147922225256 m001 (HeathBrownMoroz-Landau)/Niven 3178147924232267 m008 (Pi^5-2/3)/(Pi^6-3/5) 3178147931700958 r009 Im(z^3+c),c=-11/20+13/45*I,n=53 3178147934589193 a007 Real Root Of 172*x^4+345*x^3-662*x^2-116*x-155 3178147943974804 r005 Im(z^2+c),c=-75/56+5/54*I,n=8 3178147950479065 r005 Re(z^2+c),c=-17/42+25/42*I,n=5 3178147951078522 m001 1/exp(Porter)^2/CareFree*BesselK(0,1) 3178147957528110 h001 (3/4*exp(1)+1/10)/(4/5*exp(2)+9/11) 3178147982937815 m005 (1/2*Zeta(3)-1/7)/(5/7*exp(1)-1/2) 3178147986899427 m001 (GAMMA(7/12)-KhinchinLevy)/OneNinth 3178147997725546 a007 Real Root Of -259*x^4-683*x^3+761*x^2+847*x-496 3178147998490833 a009 1/19*(19*11^(1/4)+12^(1/4))^(1/2) 3178148004293490 m001 (Zeta(3)+ln(gamma))/(gamma(2)-Trott) 3178148019097965 a007 Real Root Of 276*x^4+509*x^3-997*x^2+816*x+845 3178148028546681 m005 (25/4+1/4*5^(1/2))/(4/9*3^(1/2)-5/9) 3178148031860936 a008 Real Root of x^4-2*x^3-16*x^2-19*x-65 3178148040653187 r002 3th iterates of z^2 + 3178148057176861 r005 Im(z^2+c),c=-29/40+10/53*I,n=24 3178148072551906 r005 Im(z^2+c),c=9/70+17/57*I,n=11 3178148076360860 r005 Im(z^2+c),c=-31/102+25/49*I,n=30 3178148077166516 m002 24/Pi^4+Pi^5+Sinh[Pi] 3178148093061499 a007 Real Root Of -282*x^4-552*x^3+945*x^2-614*x-446 3178148099842111 r005 Im(z^2+c),c=-5/31+28/59*I,n=9 3178148100065882 r005 Re(z^2+c),c=-43/114+1/3*I,n=28 3178148131983373 m001 exp(exp(1))^2*GlaisherKinkelin^2*sin(1) 3178148138693206 a007 Real Root Of 348*x^4+992*x^3-631*x^2-966*x-356 3178148138880783 m005 (1/2*exp(1)+2/5)/(5/6*2^(1/2)-5/8) 3178148144253768 b008 Gamma[2,8*Pi] 3178148145204688 r005 Im(z^2+c),c=-47/66+17/63*I,n=12 3178148155353936 s001 sum(exp(-Pi/2)^n*A234162[n],n=1..infinity) 3178148171882221 k006 concat of cont frac of 3178148177640970 r005 Im(z^2+c),c=-27/110+27/55*I,n=60 3178148182005857 a007 Real Root Of 309*x^4+847*x^3-662*x^2-558*x+578 3178148203096234 p003 LerchPhi(1/100,5,321/161) 3178148215025083 l006 ln(1708/2347) 3178148236557305 r002 50th iterates of z^2 + 3178148241357496 k002 Champernowne real with 23/2*n^2+25/2*n+7 3178148268567212 r009 Re(z^3+c),c=-3/62+23/47*I,n=21 3178148295738798 m001 1/ln(cos(Pi/12))*Zeta(1,2)*sinh(1) 3178148326657397 m001 Zeta(1,2)^2*Tribonacci^2/exp(sqrt(5)) 3178148328365345 a001 322*1836311903^(11/17) 3178148331307123 r005 Im(z^2+c),c=-17/106+5/11*I,n=51 3178148335775466 a007 Real Root Of -537*x^4+142*x^3-600*x^2+879*x+350 3178148344495901 a007 Real Root Of -460*x^4+105*x^3+264*x^2+713*x+208 3178148389744253 a007 Real Root Of -13*x^4-423*x^3-286*x^2+867*x+533 3178148394633578 b008 Sqrt[3*Pi]*ArcCot[3]^2 3178148395871957 b008 3*Sqrt[ArcCot[ArcCsch[2]]] 3178148396861171 h001 (-7*exp(4)-4)/(-6*exp(3)-1) 3178148402672263 r009 Im(z^3+c),c=-45/106+4/23*I,n=4 3178148415240031 a007 Real Root Of 178*x^4+403*x^3-733*x^2-991*x-969 3178148423039617 r005 Re(z^2+c),c=-7/13+13/31*I,n=19 3178148447158447 r009 Re(z^3+c),c=-3/62+23/47*I,n=23 3178148449906129 r005 Im(z^2+c),c=-17/106+5/11*I,n=50 3178148450043958 a008 Real Root of x^4+4*x^2-8*x-117 3178148452426210 m001 Khinchin^Landau/ZetaQ(2) 3178148496309921 a007 Real Root Of -495*x^4+528*x^3-326*x^2+765*x-24 3178148505072026 m001 (GAMMA(2/3)-AlladiGrinstead)/(Niven+ZetaQ(3)) 3178148507539099 r002 64th iterates of z^2 + 3178148508122660 m001 exp(GAMMA(13/24))/Catalan^2/GAMMA(5/24)^2 3178148514010814 l006 ln(8578/8855) 3178148523759690 b008 31+Pi*Log[Glaisher] 3178148527712193 a007 Real Root Of -249*x^4-765*x^3-143*x^2-817*x-306 3178148533409613 m001 Paris^2*ln(GolombDickman)/(3^(1/3)) 3178148546824542 q001 1181/3716 3178148555275101 r005 Im(z^2+c),c=-63/110+3/52*I,n=59 3178148577783043 m001 1/Robbin^2/Si(Pi)*ln(BesselK(1,1))^2 3178148585276213 m001 Zeta(7)^2/ln(Trott)*sqrt(2) 3178148597445634 r008 a(0)=4,K{-n^6,-24-12*n+54*n^2-23*n^3} 3178148598998224 r005 Re(z^2+c),c=-17/50+23/63*I,n=9 3178148602821473 a007 Real Root Of 371*x^4+963*x^3-940*x^2-745*x+190 3178148603445734 m001 1/Paris*exp(FeigenbaumDelta)^2/GAMMA(1/4) 3178148638325868 r005 Re(z^2+c),c=-27/82+24/49*I,n=61 3178148646162204 m009 (3/5*Psi(1,3/4)-1/2)/(2/5*Psi(1,2/3)+2) 3178148650339634 a007 Real Root Of 290*x^4-545*x^3+567*x^2-240*x-154 3178148651214477 m006 (4*Pi^2+3/5)/(2/3*Pi-5/6) 3178148651214477 m008 (4*Pi^2+3/5)/(2/3*Pi-5/6) 3178148688152216 r005 Im(z^2+c),c=-17/36+25/53*I,n=28 3178148704051813 m008 (2*Pi^4-1/4)/(2*Pi^5+1/6) 3178148705358888 a007 Real Root Of -768*x^4-661*x^3-806*x^2+447*x+15 3178148706390517 r005 Im(z^2+c),c=-17/106+5/11*I,n=47 3178148712940141 m005 (1/2*3^(1/2)-3)/(2/9*Catalan-7/8) 3178148719676293 a007 Real Root Of 112*x^4+478*x^3+314*x^2-518*x-900 3178148725862076 a007 Real Root Of 369*x^4+970*x^3-874*x^2-566*x+521 3178148735069212 m001 (ln(Pi)-CopelandErdos)/(Khinchin+ZetaP(3)) 3178148740008001 r005 Im(z^2+c),c=-53/78+17/46*I,n=9 3178148745165931 m001 sin(1)*Sierpinski^2*exp(sqrt(3)) 3178148751732876 a003 cos(Pi*1/70)-sin(Pi*26/109) 3178148757303467 m001 (KhinchinLevy+Thue)/(GAMMA(5/6)-Pi^(1/2)) 3178148757909303 m008 (5*Pi^3-2/5)/(5*Pi^4-1/2) 3178148758071442 m009 (5/6*Psi(1,2/3)+1/5)/(5/6*Psi(1,1/3)+1/4) 3178148764764499 a003 cos(Pi*27/107)*cos(Pi*41/117) 3178148778545526 r005 Re(z^2+c),c=25/114+1/55*I,n=26 3178148792709569 r005 Re(z^2+c),c=-1/5+37/62*I,n=10 3178148824549145 a007 Real Root Of -347*x^4-939*x^3-841*x^2+688*x+277 3178148826321177 r005 Im(z^2+c),c=-19/78+25/51*I,n=47 3178148828353974 m005 (1/2*gamma+1/5)/(4/11*gamma-4/11) 3178148828786159 r005 Re(z^2+c),c=-33/23+3/56*I,n=4 3178148833188299 m005 (4/5*2^(1/2)+2)/(3/5*2^(1/2)-3/4) 3178148837142883 m001 1/FeigenbaumKappa*Porter/exp(GAMMA(3/4)) 3178148838464334 r009 Re(z^3+c),c=-17/42+9/31*I,n=22 3178148857206433 r005 Re(z^2+c),c=-9/22+7/48*I,n=12 3178148860851511 a007 Real Root Of -544*x^4-914*x^3-155*x^2+872*x+269 3178148863841488 a007 Real Root Of -960*x^4+256*x^3+425*x^2+710*x-267 3178148872567171 m001 FeigenbaumD*ln(PrimesInBinary)^2*GAMMA(7/12) 3178148873648857 m001 GaussKuzminWirsing*ln(FransenRobinson)/Paris 3178148873713165 m001 (TwinPrimes+ZetaP(3))/(2^(1/3)+Riemann3rdZero) 3178148887338638 m005 (1/2*gamma+8/11)/(9/10*exp(1)+3/4) 3178148902528985 r009 Im(z^3+c),c=-10/29+17/62*I,n=18 3178148911113674 l006 ln(6121/8411) 3178148913442795 s002 sum(A193434[n]/(exp(pi*n)+1),n=1..infinity) 3178148914461294 m009 (1/3*Psi(1,3/4)-6)/(1/3*Psi(1,2/3)+3/5) 3178148932738879 r005 Re(z^2+c),c=-35/122+28/51*I,n=37 3178148937661958 r009 Re(z^3+c),c=-31/118+40/51*I,n=4 3178148950047591 r005 Im(z^2+c),c=-19/22+20/91*I,n=5 3178148951452657 a001 5/29*7^(11/35) 3178148954913251 m001 ln(5)+GAMMA(5/6)+TreeGrowth2nd 3178148956786857 m001 (Ei(1)+CopelandErdos)/(Robbin+ZetaQ(3)) 3178148957685945 r009 Im(z^3+c),c=-19/40+3/41*I,n=39 3178148960945306 m001 gamma(3)+BesselK(0,1)^MertensB3 3178148969394255 m001 (FeigenbaumB-Salem)/(Artin-Backhouse) 3178148987867882 m001 Riemann2ndZero^2*Rabbit/ln(FeigenbaumD) 3178149031956096 m004 -2+125*Pi-(150*ProductLog[Sqrt[5]*Pi])/Pi 3178149046208770 m001 1/Niven/FeigenbaumB^2*exp(GAMMA(1/4)) 3178149062088737 r009 Re(z^3+c),c=-31/66+23/57*I,n=34 3178149076980935 m001 ln(Zeta(3))^2*GAMMA(1/4)*sin(Pi/12) 3178149079779402 m001 cos(Pi/12)^2/OneNinth/exp(sqrt(1+sqrt(3)))^2 3178149098287764 r005 Re(z^2+c),c=-25/52+3/32*I,n=4 3178149101257985 r005 Im(z^2+c),c=-25/106+24/53*I,n=9 3178149103988970 m001 (Shi(1)-Zeta(1,-1))/(BesselJ(1,1)+Magata) 3178149116777398 m001 exp(GAMMA(11/24))^2*MertensB1^2/GAMMA(23/24) 3178149118734168 a007 Real Root Of -883*x^4-147*x^3+995*x^2+910*x+193 3178149119709356 m005 (2/5*Pi+3)/(29/30+1/6*5^(1/2)) 3178149124138317 a007 Real Root Of 314*x^4+968*x^3-90*x^2-129*x-462 3178149127207961 a007 Real Root Of -212*x^4-732*x^3-97*x^2-8*x-915 3178149135055549 m001 PisotVijayaraghavan/ln(Bloch)^2/exp(1)^2 3178149149353327 r002 19th iterates of z^2 + 3178149177706247 m001 (-MertensB1+MertensB2)/(exp(Pi)+KhinchinLevy) 3178149180526603 l006 ln(4413/6064) 3178149186319579 a007 Real Root Of -292*x^4-542*x^3+929*x^2-849*x+310 3178149196410947 m006 (4*Pi^2-3/5)/(4*Pi-1/3) 3178149196410947 m008 (4*Pi^2-3/5)/(4*Pi-1/3) 3178149207771794 m001 cos(1/5*Pi)+exp(1/exp(1))*GAMMA(13/24) 3178149207771794 m001 cos(Pi/5)+exp(1/exp(1))*GAMMA(13/24) 3178149208950833 r005 Im(z^2+c),c=-95/106+1/41*I,n=24 3178149211229182 r009 Re(z^3+c),c=-15/34+17/49*I,n=28 3178149211652630 r005 Im(z^2+c),c=-21/74+3/64*I,n=8 3178149217332313 m001 1/OneNinth^2*exp(ArtinRank2)*GAMMA(2/3)^2 3178149218640889 m001 (Thue-ThueMorse)/(cos(1/5*Pi)+Gompertz) 3178149227366586 r009 Re(z^3+c),c=-43/114+14/57*I,n=22 3178149230536344 a007 Real Root Of 95*x^4-18*x^3-913*x^2+416*x+274 3178149233650134 a007 Real Root Of -297*x^4-950*x^3-35*x^2+84*x+425 3178149233763894 m001 1/Riemann1stZero^2*Porter/ln((2^(1/3))) 3178149244363506 k002 Champernowne real with 12*n^2+11*n+8 3178149246345291 m003 (3*E^(-1/2-Sqrt[5]/2))/5-Cosh[1/2+Sqrt[5]/2]/6 3178149246513358 m001 (exp(Pi)*ZetaP(4)+LaplaceLimit)/ZetaP(4) 3178149255561768 m001 TwinPrimes^2/Riemann1stZero^2*exp(GAMMA(1/3)) 3178149257675504 a001 1/48*34^(17/22) 3178149262075751 m001 (exp(1)+Ei(1))/(Zeta(1/2)+ZetaQ(3)) 3178149273556759 m001 (Zeta(1,-1)+MadelungNaCl)/(GAMMA(2/3)-Si(Pi)) 3178149303702749 a001 47/13*13^(50/59) 3178149304871671 b008 ArcCsch[Erfi[2]/6] 3178149309694251 m001 (-sin(1)+ZetaP(3))/(2^(1/3)+Chi(1)) 3178149313483601 m001 (ZetaP(2)+ZetaQ(3))/(arctan(1/3)+GAMMA(5/6)) 3178149314262111 a007 Real Root Of -264*x^4-833*x^3-97*x^2-120*x+792 3178149326650173 r005 Im(z^2+c),c=-29/94+13/25*I,n=34 3178149328046533 m001 BesselK(1,1)/(FeigenbaumAlpha-GAMMA(5/24)) 3178149337852879 r002 50th iterates of z^2 + 3178149363656253 r002 20th iterates of z^2 + 3178149374884630 r005 Im(z^2+c),c=-8/11+7/37*I,n=41 3178149390468706 m001 Thue^ZetaP(3)*ZetaQ(4)^ZetaP(3) 3178149391778691 r005 Re(z^2+c),c=-29/86+22/47*I,n=31 3178149396566737 a007 Real Root Of 144*x^4+590*x^3+305*x^2-549*x-577 3178149397894843 a007 Real Root Of 588*x^4-670*x^3+449*x^2-676*x+185 3178149405088647 m008 (5/6*Pi^2-3/4)/(1/4*Pi^4-5/6) 3178149412203549 l006 ln(7118/9781) 3178149413173333 r005 Im(z^2+c),c=-83/90+8/33*I,n=54 3178149413317566 m001 (Cahen+Paris)/(exp(Pi)+exp(-1/2*Pi)) 3178149415369362 r009 Re(z^3+c),c=-13/25+13/27*I,n=45 3178149424214145 m001 ReciprocalLucas/(HardyLittlewoodC5^cos(1)) 3178149433249392 m005 (1/8+1/4*5^(1/2))/(5/11*exp(1)+11/12) 3178149436179021 b008 9*LogGamma[1/7]^2 3178149441879958 m001 (sin(1/12*Pi)+gamma(3))/(MasserGramain-Porter) 3178149441988195 m001 GAMMA(2/3)^2*exp(BesselK(0,1))/Zeta(1,2)^2 3178149444498188 a007 Real Root Of 450*x^4+366*x^3+869*x^2-813*x-339 3178149459743970 a001 18/4181*1548008755920^(4/17) 3178149460376116 m001 Si(Pi)+(Pi*csc(5/12*Pi)/GAMMA(7/12))^Artin 3178149460376116 m001 Si(Pi)+GAMMA(5/12)^Artin 3178149491182122 r005 Im(z^2+c),c=-35/54+29/61*I,n=8 3178149500397330 m005 (1/2*Zeta(3)-2/11)/(5/12*Zeta(3)+9/11) 3178149516719871 r009 Im(z^3+c),c=-39/74+5/22*I,n=35 3178149518073025 r005 Im(z^2+c),c=7/40+4/15*I,n=33 3178149523603290 m005 (1/2*exp(1)-7/12)/(6/7*exp(1)+1/9) 3178149536446442 m001 (Psi(2,1/3)+5^(1/2))/(Ei(1,1)+exp(1/exp(1))) 3178149536547431 a007 Real Root Of 355*x^4+967*x^3-302*x^2+397*x-864 3178149537124063 r005 Im(z^2+c),c=-109/82+1/44*I,n=46 3178149546604187 r002 21th iterates of z^2 + 3178149551636665 m001 (Rabbit+Sierpinski)/(Artin+LaplaceLimit) 3178149559775760 r009 Re(z^3+c),c=-27/58+15/38*I,n=31 3178149579014264 m001 (Landau-MadelungNaCl)/(Ei(1,1)+FeigenbaumMu) 3178149586365425 m001 (exp(1/Pi)+Conway)/(GolombDickman-Porter) 3178149587819917 a007 Real Root Of 842*x^4+326*x^3-503*x^2-622*x-145 3178149601943904 r005 Im(z^2+c),c=-7/24+8/17*I,n=12 3178149602024709 a007 Real Root Of 630*x^4-198*x^3-64*x^2-622*x-204 3178149611543231 m001 (ln(2)-sin(1))/(sin(1/12*Pi)+exp(-1/2*Pi)) 3178149619651700 r005 Re(z^2+c),c=-5/9-43/80*I,n=10 3178149627124758 r009 Im(z^3+c),c=-49/94+10/61*I,n=12 3178149638516969 r005 Im(z^2+c),c=-2/3+41/116*I,n=34 3178149641628985 r009 Re(z^3+c),c=-35/118+5/63*I,n=4 3178149644250345 m006 (1/4/Pi-5/6)/(1/5*Pi-3) 3178149665712979 r005 Re(z^2+c),c=-33/98+15/32*I,n=53 3178149674789856 r005 Im(z^2+c),c=-47/118+17/36*I,n=9 3178149688367389 a001 4/28657*34^(7/30) 3178149688756738 r009 Re(z^3+c),c=-47/106+20/57*I,n=33 3178149695494341 r005 Im(z^2+c),c=-13/9+32/113*I,n=3 3178149717796543 m005 (1/2*3^(1/2)+5/6)/(1/2*5^(1/2)-7/12) 3178149735987668 r005 Im(z^2+c),c=11/46+10/47*I,n=19 3178149740232134 m005 (1/2*Zeta(3)-5/8)/(5/7*Catalan+1/10) 3178149753563417 a001 64079/21*2178309^(19/24) 3178149764653711 r009 Re(z^3+c),c=-3/62+23/47*I,n=20 3178149773714228 a001 4181/2207*199^(30/31) 3178149790166702 l006 ln(2705/3717) 3178149790352750 r002 22th iterates of z^2 + 3178149803002594 a001 3/24476*199^(9/50) 3178149806447518 a001 832040/521*322^(11/12) 3178149814553765 m001 (-GAMMA(19/24)+Porter)/(3^(1/2)-cos(1/5*Pi)) 3178149824072426 r009 Re(z^3+c),c=-3/62+23/47*I,n=25 3178149825640963 a007 Real Root Of 283*x^4+624*x^3-978*x^2-147*x+570 3178149825918122 r005 Im(z^2+c),c=7/40+4/15*I,n=34 3178149826606550 s002 sum(A261550[n]/(exp(2*pi*n)+1),n=1..infinity) 3178149833422675 r009 Im(z^3+c),c=-19/40+11/62*I,n=28 3178149834558046 r009 Im(z^3+c),c=-43/122+10/37*I,n=21 3178149843256528 m002 -Pi^5-Cosh[Pi]-ProductLog[Pi]+Tanh[Pi]/Log[Pi] 3178149850911216 a007 Real Root Of 9*x^4+290*x^3+142*x^2+505*x-49 3178149865494321 h001 (-9*exp(2)+10)/(-2*exp(2)-3) 3178149866382749 m005 (1/2*3^(1/2)-2/3)/(9/10*2^(1/2)+5) 3178149873044137 r005 Re(z^2+c),c=-15/106+28/51*I,n=8 3178149884672263 r005 Im(z^2+c),c=13/36+17/53*I,n=6 3178149888856207 a001 55/29*7^(13/49) 3178149898448158 r002 18th iterates of z^2 + 3178149900091238 m001 BesselI(0,2)/(BesselI(1,1)-GlaisherKinkelin) 3178149907467671 a001 8/843*2207^(37/49) 3178149915374116 r004 Re(z^2+c),c=-17/46+5/13*I,z(0)=-1,n=28 3178149919703670 r009 Re(z^3+c),c=-27/82+10/63*I,n=16 3178149934602757 r005 Im(z^2+c),c=-17/14+8/177*I,n=49 3178149939380388 m001 (Porter-Totient)/(GAMMA(11/12)-Backhouse) 3178149951837041 r005 Im(z^2+c),c=-8/27+21/41*I,n=45 3178149953855477 m001 (Zeta(1,2)+polylog(4,1/2))/(MertensB3-Trott) 3178149954759538 r005 Re(z^2+c),c=-25/74+27/58*I,n=63 3178149968645470 r009 Re(z^3+c),c=-1/17+20/29*I,n=46 3178149983174507 a007 Real Root Of 726*x^4+63*x^3+91*x^2-703*x-238 3178149994924186 a008 Real Root of (1+6*x-x^2+4*x^3+5*x^4-2*x^5) 3178150004326899 a007 Real Root Of 680*x^4+871*x^3+518*x^2-814*x-290 3178150010381333 r002 22th iterates of z^2 + 3178150030708810 r002 13th iterates of z^2 + 3178150037635502 r005 Im(z^2+c),c=-25/38+4/61*I,n=20 3178150040906676 a008 Real Root of x^4-x^3+3*x^2-63*x+100 3178150044501965 b008 (47*E^3)/3+Pi 3178150047258932 p004 log(28759/20929) 3178150053342843 m001 exp(GAMMA(1/24))*MadelungNaCl*sinh(1) 3178150055138248 m001 1/BesselK(1,1)*ln(CopelandErdos)^2*Catalan 3178150056940800 m005 (1/2*2^(1/2)+7/9)/(3/11*Zeta(3)-5) 3178150057725277 m001 (MertensB3+ThueMorse)/(ln(gamma)+ln(3)) 3178150065461872 r004 Re(z^2+c),c=-19/46+1/8*I,z(0)=-1,n=21 3178150072283730 r005 Im(z^2+c),c=-9/14+55/164*I,n=28 3178150074195944 a007 Real Root Of 738*x^4+857*x^3+250*x^2-984*x-318 3178150084016104 m001 (3^(1/2)+Robbin)^PisotVijayaraghavan 3178150108118347 m001 (ArtinRank2+MertensB1)/(ln(3)-GAMMA(5/6)) 3178150114128978 a001 1/39606*(1/2*5^(1/2)+1/2)^4*322^(2/19) 3178150141148104 m001 1/Khintchine*Bloch*exp(Lehmer) 3178150157263297 m006 (1/4*ln(Pi)+1/6)/(5/Pi-1/6) 3178150168503285 r005 Im(z^2+c),c=27/122+7/30*I,n=11 3178150176119021 a008 Real Root of x^4-x^3-9*x^2-10*x-75 3178150176394684 r005 Im(z^2+c),c=-61/102+25/51*I,n=11 3178150179174536 a007 Real Root Of 28*x^4+863*x^3-855*x^2-11*x+305 3178150183987281 r005 Im(z^2+c),c=-45/82+22/51*I,n=17 3178150199222369 m001 (Backhouse-Totient)/(Pi+polylog(4,1/2)) 3178150207701157 r005 Im(z^2+c),c=-23/66+37/60*I,n=45 3178150210073307 l006 ln(6407/8804) 3178150210476432 m001 (FeigenbaumDelta+Trott)/(ln(3)+Artin) 3178150217256362 q001 512/1611 3178150217256362 r005 Im(z^2+c),c=-17/18+64/179*I,n=2 3178150228147202 a007 Real Root Of 143*x^4+284*x^3-610*x^2-499*x-897 3178150247369516 k002 Champernowne real with 25/2*n^2+19/2*n+9 3178150248370518 k004 Champernowne real with floor(Pi*(4*n^2+3*n+3)) 3178150253189362 r005 Re(z^2+c),c=-13/38+3/5*I,n=17 3178150275503084 r009 Im(z^3+c),c=-31/78+10/41*I,n=12 3178150275563211 m005 (1/2*gamma+1/7)/(3/5*Zeta(3)+7/11) 3178150278251669 h003 exp(Pi*(12^(10/3)-12^(2/3))) 3178150278251669 h008 exp(Pi*(12^(10/3)-12^(2/3))) 3178150280593083 b008 Log[SinIntegral[1/24]] 3178150296002207 r009 Re(z^3+c),c=-19/48+8/29*I,n=12 3178150299945492 a001 5473/2889*199^(30/31) 3178150316545614 r005 Im(z^2+c),c=-3/5+17/40*I,n=20 3178150334686812 m001 GAMMA(11/12)^2*Robbin/exp(sin(1)) 3178150338500143 m001 1/sinh(1)^2*exp(FeigenbaumD)*sqrt(3)^2 3178150338535646 m001 (GaussKuzminWirsing+Trott2nd)^Zeta(5) 3178150339003490 a007 Real Root Of 197*x^4+659*x^3-68*x^2-736*x-596 3178150341524944 a007 Real Root Of 63*x^4+39*x^3-433*x^2-51*x-964 3178150352382003 r005 Im(z^2+c),c=1/6+3/11*I,n=16 3178150358772746 m001 (Tribonacci+ZetaQ(4))/(ln(gamma)+GAMMA(5/6)) 3178150359963758 a001 47/8*9227465^(2/19) 3178150362495715 a007 Real Root Of 354*x^4+896*x^3-750*x^2-175*x-334 3178150364566400 a007 Real Root Of 777*x^4+510*x^3+834*x^2-855*x-28 3178150364817362 r005 Re(z^2+c),c=3/11+4/41*I,n=6 3178150376721614 a001 28657/15127*199^(30/31) 3178150378961630 m001 Catalan^2*Kolakoski*exp(GAMMA(11/24))^2 3178150386901304 m002 Pi^5+Cosh[Pi]+(2*Coth[Pi])/Pi^2 3178150387923099 a001 75025/39603*199^(30/31) 3178150389557374 a001 98209/51841*199^(30/31) 3178150389795811 a001 514229/271443*199^(30/31) 3178150389830599 a001 1346269/710647*199^(30/31) 3178150389838811 a001 2178309/1149851*199^(30/31) 3178150389852099 a001 208010/109801*199^(30/31) 3178150389943174 a001 317811/167761*199^(30/31) 3178150390134325 a001 1/144*28657^(19/51) 3178150390567411 a001 121393/64079*199^(30/31) 3178150392239933 r009 Im(z^3+c),c=-1/6+38/45*I,n=6 3178150394845998 a001 11592/6119*199^(30/31) 3178150418478256 r002 46th iterates of z^2 + 3178150423233121 a003 cos(Pi*13/86)-sin(Pi*41/110) 3178150424171869 a001 17711/9349*199^(30/31) 3178150440872219 r009 Im(z^3+c),c=-9/86+11/32*I,n=7 3178150445645383 m001 (2^(1/2)-sin(1))/(BesselJ(0,1)+Zeta(5)) 3178150446155785 a007 Real Root Of -634*x^4+456*x^3-429*x^2+823*x+326 3178150448951353 m001 (Stephens-Totient)/(FibonacciFactorial-Porter) 3178150453895703 a007 Real Root Of 151*x^4+338*x^3+307*x^2-769*x+201 3178150461294845 r005 Re(z^2+c),c=-21/62+25/54*I,n=53 3178150486416741 r005 Im(z^2+c),c=-37/94+20/43*I,n=4 3178150490351305 r005 Im(z^2+c),c=-11/122+44/51*I,n=15 3178150492337546 r005 Re(z^2+c),c=5/19+4/51*I,n=29 3178150496309516 m001 (CareFree+Otter)/(StronglyCareFree-Tetranacci) 3178150497536372 m001 Zeta(7)*Salem/exp(log(2+sqrt(3))) 3178150506348893 m001 (Pi+sin(1/5*Pi))/(gamma(2)-OneNinth) 3178150510397138 r005 Im(z^2+c),c=7/40+4/15*I,n=38 3178150516741720 a007 Real Root Of -872*x^4+160*x^3-325*x^2+485*x+201 3178150516893222 l006 ln(3702/5087) 3178150521845191 a007 Real Root Of -83*x^4+687*x^3+636*x^2+351*x-197 3178150527086986 a001 9/1292*956722026041^(7/18) 3178150538859478 r009 Re(z^3+c),c=-3/62+23/47*I,n=27 3178150539183418 m001 exp(1)*GAMMA(5/12)*ln(gamma) 3178150539183418 m001 exp(1)*ln(gamma)*Pi*csc(5/12*Pi)/GAMMA(7/12) 3178150539183418 m001 exp(1)*log(gamma)*GAMMA(5/12) 3178150556617988 r005 Im(z^2+c),c=-11/10+9/239*I,n=15 3178150568534798 m005 (1/2*Zeta(3)-9/11)/(1/11*Catalan+3/5) 3178150609838077 r005 Im(z^2+c),c=7/40+4/15*I,n=39 3178150624197017 r009 Re(z^3+c),c=-12/25+19/46*I,n=53 3178150625174391 a001 6765/3571*199^(30/31) 3178150627393720 m001 (Kolakoski+MertensB1)/(OneNinth-TreeGrowth2nd) 3178150627765314 m001 Salem*(HardHexagonsEntropy+Mills) 3178150660818647 m005 (7/6+1/4*5^(1/2))/(1/10*Pi-6/7) 3178150662805353 r005 Im(z^2+c),c=7/40+4/15*I,n=43 3178150675734903 r005 Re(z^2+c),c=-25/78+29/61*I,n=17 3178150676592493 m001 (exp(1/Pi)+FeigenbaumD)/(3^(1/3)+Zeta(1,-1)) 3178150679771092 r005 Im(z^2+c),c=7/40+4/15*I,n=42 3178150681079695 r005 Im(z^2+c),c=7/40+4/15*I,n=44 3178150683168196 r005 Im(z^2+c),c=7/40+4/15*I,n=48 3178150683811694 r005 Im(z^2+c),c=7/40+4/15*I,n=47 3178150685495920 r005 Im(z^2+c),c=7/40+4/15*I,n=52 3178150685597601 r005 Im(z^2+c),c=7/40+4/15*I,n=53 3178150685822666 r005 Im(z^2+c),c=7/40+4/15*I,n=57 3178150685855428 r005 Im(z^2+c),c=7/40+4/15*I,n=58 3178150685872832 r005 Im(z^2+c),c=7/40+4/15*I,n=62 3178150685878406 r005 Im(z^2+c),c=7/40+4/15*I,n=61 3178150685878849 r005 Im(z^2+c),c=7/40+4/15*I,n=63 3178150685883182 r005 Im(z^2+c),c=7/40+4/15*I,n=64 3178150685895325 r005 Im(z^2+c),c=7/40+4/15*I,n=56 3178150685896575 r005 Im(z^2+c),c=7/40+4/15*I,n=60 3178150685896828 r005 Im(z^2+c),c=7/40+4/15*I,n=49 3178150685897211 r005 Im(z^2+c),c=7/40+4/15*I,n=59 3178150685954700 r005 Im(z^2+c),c=7/40+4/15*I,n=54 3178150686025925 r005 Im(z^2+c),c=7/40+4/15*I,n=55 3178150686250398 r005 Im(z^2+c),c=7/40+4/15*I,n=51 3178150687051764 r005 Im(z^2+c),c=7/40+4/15*I,n=50 3178150690640204 r005 Im(z^2+c),c=7/40+4/15*I,n=46 3178150692991957 m001 Riemann1stZero*(Landau+Niven) 3178150694255776 r005 Im(z^2+c),c=7/40+4/15*I,n=45 3178150705028444 r005 Im(z^2+c),c=-17/31+10/19*I,n=25 3178150708583752 r009 Re(z^3+c),c=-27/58+5/13*I,n=62 3178150731373376 r005 Im(z^2+c),c=7/40+4/15*I,n=37 3178150731686699 r005 Im(z^2+c),c=7/40+4/15*I,n=30 3178150731982473 m005 (1/2*exp(1)+6/7)/(2/3*gamma-5/11) 3178150734978641 r005 Im(z^2+c),c=7/40+4/15*I,n=41 3178150736849203 r005 Im(z^2+c),c=7/40+4/15*I,n=40 3178150745844767 m001 (FeigenbaumD+Grothendieck)/(Mills+Paris) 3178150747512552 a007 Real Root Of -105*x^4-331*x^3-275*x^2-845*x+179 3178150757283622 a001 1568397607/89*21^(19/20) 3178150759163824 r009 Re(z^3+c),c=-7/34+49/52*I,n=50 3178150767057898 r002 23i'th iterates of 2*x/(1-x^2) of 3178150769151232 m001 (Zeta(1/2)+exp(1/exp(1)))/(GAMMA(7/12)+Magata) 3178150791650071 h001 (3/4*exp(2)+5/7)/(2/11*exp(2)+5/8) 3178150799547491 a007 Real Root Of 327*x^4+853*x^3-418*x^2+724*x+544 3178150804476296 a007 Real Root Of 312*x^4+813*x^3-715*x^2-714*x-780 3178150811217760 r009 Re(z^3+c),c=-3/62+23/47*I,n=29 3178150815680214 r009 Re(z^3+c),c=-41/110+5/21*I,n=11 3178150834015922 r009 Im(z^3+c),c=-5/126+15/43*I,n=5 3178150835439792 m001 Pi+2^(1/3)-GAMMA(3/4)+gamma(3) 3178150843576492 a008 Real Root of x^3-x^2+60*x-19 3178150856253228 b008 ArcCsc[E*(11+EulerGamma)] 3178150868636621 a007 Real Root Of 117*x^4-11*x^3+617*x^2-507*x-225 3178150879655822 r005 Re(z^2+c),c=-13/42+22/41*I,n=55 3178150881901565 m001 (BesselJ(1,1)+ZetaQ(3))/(2^(1/2)-gamma(3)) 3178150900381735 r009 Re(z^3+c),c=-3/62+23/47*I,n=31 3178150900485272 m008 (3*Pi^4-1/5)/(3*Pi^5+4/5) 3178150907616789 r005 Im(z^2+c),c=7/110+17/50*I,n=13 3178150908564222 m001 (ln(5)+exp(1/Pi))/(LandauRamanujan+ZetaP(3)) 3178150911151145 r005 Im(z^2+c),c=7/40+4/15*I,n=35 3178150912194449 r005 Re(z^2+c),c=-39/110+17/41*I,n=50 3178150926236552 m001 (LambertW(1)+Salem)/(-Stephens+Trott2nd) 3178150926624197 r009 Re(z^3+c),c=-3/62+23/47*I,n=33 3178150927457522 r002 6th iterates of z^2 + 3178150933655724 r009 Re(z^3+c),c=-3/62+23/47*I,n=35 3178150935236512 l006 ln(4699/6457) 3178150935359050 r009 Re(z^3+c),c=-3/62+23/47*I,n=37 3178150935719823 r009 Re(z^3+c),c=-3/62+23/47*I,n=39 3178150935773462 r009 Re(z^3+c),c=-3/62+23/47*I,n=42 3178150935774793 r009 Re(z^3+c),c=-3/62+23/47*I,n=44 3178150935777020 r009 Re(z^3+c),c=-3/62+23/47*I,n=46 3178150935778096 r009 Re(z^3+c),c=-3/62+23/47*I,n=48 3178150935778494 r009 Re(z^3+c),c=-3/62+23/47*I,n=50 3178150935778622 r009 Re(z^3+c),c=-3/62+23/47*I,n=52 3178150935778659 r009 Re(z^3+c),c=-3/62+23/47*I,n=54 3178150935778669 r009 Re(z^3+c),c=-3/62+23/47*I,n=56 3178150935778671 r009 Re(z^3+c),c=-3/62+23/47*I,n=58 3178150935778672 r009 Re(z^3+c),c=-3/62+23/47*I,n=60 3178150935778672 r009 Re(z^3+c),c=-3/62+23/47*I,n=63 3178150935778672 r009 Re(z^3+c),c=-3/62+23/47*I,n=62 3178150935778672 r009 Re(z^3+c),c=-3/62+23/47*I,n=64 3178150935778672 r009 Re(z^3+c),c=-3/62+23/47*I,n=61 3178150935778672 r009 Re(z^3+c),c=-3/62+23/47*I,n=59 3178150935778673 r009 Re(z^3+c),c=-3/62+23/47*I,n=57 3178150935778678 r009 Re(z^3+c),c=-3/62+23/47*I,n=55 3178150935778697 r009 Re(z^3+c),c=-3/62+23/47*I,n=53 3178150935778767 r009 Re(z^3+c),c=-3/62+23/47*I,n=51 3178150935778996 r009 Re(z^3+c),c=-3/62+23/47*I,n=49 3178150935779665 r009 Re(z^3+c),c=-3/62+23/47*I,n=47 3178150935779788 r009 Re(z^3+c),c=-3/62+23/47*I,n=41 3178150935781291 r009 Re(z^3+c),c=-3/62+23/47*I,n=45 3178150935783785 r009 Re(z^3+c),c=-3/62+23/47*I,n=43 3178150935793273 r009 Re(z^3+c),c=-3/62+23/47*I,n=40 3178150935946964 r009 Re(z^3+c),c=-3/62+23/47*I,n=38 3178150936747196 r009 Re(z^3+c),c=-3/62+23/47*I,n=36 3178150940256243 r009 Re(z^3+c),c=-3/62+23/47*I,n=34 3178150954000394 r009 Re(z^3+c),c=-3/62+23/47*I,n=32 3178150954347080 a007 Real Root Of -612*x^4+406*x^3+875*x^2+814*x+25 3178150958921508 r005 Im(z^2+c),c=-15/98+24/53*I,n=20 3178150982116639 m001 (Lehmer+MertensB1)/(gamma(3)+Khinchin) 3178150983559824 a007 Real Root Of -276*x^4+342*x^3+323*x^2+462*x+128 3178150991075396 b008 Coth[FresnelS[2/11]] 3178151002437084 a007 Real Root Of -13*x^4+200*x^3+434*x^2-847*x+671 3178151002957838 r009 Re(z^3+c),c=-3/62+23/47*I,n=30 3178151013183688 m003 -1+3*E^(-1/2-Sqrt[5]/2)-3*Tanh[1/2+Sqrt[5]/2] 3178151028751221 r005 Re(z^2+c),c=-103/82+13/38*I,n=12 3178151048223265 r005 Im(z^2+c),c=-37/114+37/64*I,n=45 3178151059961772 m005 (1/2*Zeta(3)+1/7)/(5*gamma-6/11) 3178151061640206 m001 (GaussAGM-TravellingSalesman)^cos(1) 3178151063480025 m001 Tribonacci^2/FeigenbaumKappa^2*ln(sin(1)) 3178151067572138 m001 Ei(1)^(3^(1/2))*Ei(1)^ZetaP(4) 3178151079823155 m001 AlladiGrinstead+FeigenbaumKappa*MadelungNaCl 3178151080153326 r005 Re(z^2+c),c=-109/102+17/40*I,n=4 3178151093979701 r009 Re(z^3+c),c=-8/23+11/56*I,n=7 3178151094650031 r005 Im(z^2+c),c=-33/28+9/49*I,n=58 3178151095363993 r005 Re(z^2+c),c=2/23+4/11*I,n=11 3178151096887478 m001 DuboisRaymond^Thue-gamma(1) 3178151117061465 r005 Im(z^2+c),c=-4/31+12/25*I,n=9 3178151124911741 r005 Re(z^2+c),c=-55/122+7/58*I,n=4 3178151126170403 m005 (1/2*Zeta(3)+1/10)/(5/11*Pi+7/9) 3178151127730057 p004 log(22111/16091) 3178151128110172 r005 Im(z^2+c),c=7/40+4/15*I,n=36 3178151150914159 r005 Re(z^2+c),c=3/22+7/23*I,n=19 3178151160821735 r005 Re(z^2+c),c=19/56+11/46*I,n=7 3178151161152314 r009 Re(z^3+c),c=-3/62+23/47*I,n=28 3178151173111312 k008 concat of cont frac of 3178151176386734 a007 Real Root Of 160*x^4+678*x^3+455*x^2-327*x-194 3178151186315870 r005 Re(z^2+c),c=-13/31+1/32*I,n=12 3178151192246760 r009 Re(z^3+c),c=-33/74+11/31*I,n=36 3178151207130264 l006 ln(5696/7827) 3178151212761156 m005 (3/5*2^(1/2)-1/2)/(5/6*Catalan+1/3) 3178151218454269 m001 GAMMA(17/24)+Tribonacci+ZetaQ(2) 3178151222111311 k009 concat of cont frac of 3178151237215427 m005 (1/2*5^(1/2)-6)/(49/45+1/5*5^(1/2)) 3178151244653097 r005 Im(z^2+c),c=1/22+13/37*I,n=24 3178151245040222 r005 Re(z^2+c),c=-15/44+21/46*I,n=64 3178151245051649 m001 (2^(1/3)+Champernowne*ThueMorse)/ThueMorse 3178151250375526 k002 Champernowne real with 13*n^2+8*n+10 3178151254367681 a001 11/317811*433494437^(5/22) 3178151254793089 a001 11/28657*10946^(5/22) 3178151287934848 b008 17+Pi*SinhIntegral[7] 3178151293699596 r005 Im(z^2+c),c=-17/106+5/11*I,n=48 3178151303587741 g007 Psi(2,7/12)+Psi(2,4/7)-Psi(2,8/11)-Psi(2,2/11) 3178151307945988 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)*Conway^ln(Pi) 3178151316409435 r002 46th iterates of z^2 + 3178151316409435 r002 46th iterates of z^2 + 3178151320211552 h001 (-7*exp(3)-3)/(-exp(3/2)+9) 3178151332653728 a007 Real Root Of 353*x^4+91*x^3-937*x^2-969*x-214 3178151335032839 r002 29th iterates of z^2 + 3178151350674279 m001 ln(Catalan)^2*GlaisherKinkelin*LambertW(1)^2 3178151357732701 r005 Im(z^2+c),c=-35/118+21/37*I,n=30 3178151359324160 m001 PrimesInBinary*(HardyLittlewoodC5-Salem) 3178151363151858 m001 (polylog(4,1/2)-GAMMA(13/24))/(Otter+Stephens) 3178151365449890 a001 267914296/2207*123^(1/5) 3178151372565133 a007 Real Root Of -517*x^4-350*x^3-754*x^2+292*x+163 3178151381949074 r005 Im(z^2+c),c=-29/34+26/123*I,n=9 3178151389985880 h001 (2/11*exp(1)+1/4)/(3/10*exp(2)+1/8) 3178151393699624 m001 BesselK(0,1)-Cahen-Otter 3178151396804396 r009 Re(z^3+c),c=-10/17+21/32*I,n=2 3178151398020553 l006 ln(6693/9197) 3178151401637060 m001 (CopelandErdos-GaussAGM)^(5^(1/2)) 3178151414949319 m001 LandauRamanujan^(3^(1/3)*Otter) 3178151416146938 a005 (1/cos(2/83*Pi))^1206 3178151417281111 k009 concat of cont frac of 3178151417709597 a007 Real Root Of -215*x^4-617*x^3+249*x^2+391*x+856 3178151426516804 a001 2/987*610^(4/57) 3178151439978953 r005 Im(z^2+c),c=-5/44+25/53*I,n=9 3178151452065311 r005 Im(z^2+c),c=-2/9+28/59*I,n=6 3178151452646605 a007 Real Root Of 78*x^4-815*x^3-675*x^2-250*x+173 3178151458572544 r002 25th iterates of z^2 + 3178151477322423 m001 GAMMA(11/12)*GAMMA(23/24)/Magata 3178151478845312 l006 ln(3809/3932) 3178151494964466 a007 Real Root Of -314*x^4-843*x^3+676*x^2+821*x+755 3178151497555606 m001 cos(Pi/12)^BesselK(1,1)/GAMMA(7/24) 3178151498276002 r005 Re(z^2+c),c=-35/46+3/55*I,n=12 3178151510971393 m001 Magata/((2^(1/3))^(ln(2)/ln(10))) 3178151516998966 a007 Real Root Of 152*x^4+427*x^3-211*x^2-118*x-44 3178151519393406 m001 (Ei(1)+GAMMA(13/24))/(Pi^(1/2)-TwinPrimes) 3178151520388294 a007 Real Root Of -209*x^4-12*x^3-350*x^2-101*x+5 3178151521413111 k006 concat of cont frac of 3178151528049784 a001 3461452808002/13*701408733^(8/23) 3178151534922093 a007 Real Root Of -158*x^4-755*x^3-795*x^2-242*x-856 3178151536924989 r002 14th iterates of z^2 + 3178151538621639 m008 (5*Pi^5+4/5)/(1/2*Pi^6+1) 3178151552084335 m002 -Pi^3-Pi^4/E^Pi+3*Log[Pi] 3178151552467966 a007 Real Root Of -645*x^4+885*x^3-251*x^2+804*x-252 3178151554423792 r005 Im(z^2+c),c=-5/14+6/13*I,n=11 3178151562505648 a007 Real Root Of 868*x^4+159*x^3+896*x^2+177*x-38 3178151566005806 m001 (1-Mills)/(-OrthogonalArrays+TreeGrowth2nd) 3178151606094804 q001 1/3146483 3178151608805553 m003 -23/6+Cosh[1/2+Sqrt[5]/2]/4 3178151613168194 r009 Re(z^3+c),c=-3/62+23/47*I,n=26 3178151614685674 r005 Re(z^2+c),c=-21/62+21/46*I,n=28 3178151620400526 r005 Im(z^2+c),c=-13/14+47/184*I,n=13 3178151620786526 h001 (1/8*exp(1)+1/12)/(2/9*exp(1)+8/11) 3178151630840572 a001 8/2207*1364^(46/49) 3178151632262675 r005 Re(z^2+c),c=-27/86+31/60*I,n=36 3178151634491765 m001 (LambertW(1)+gamma(3))/(Grothendieck+ZetaQ(3)) 3178151636564659 a003 cos(Pi*21/118)-cos(Pi*29/90) 3178151641263635 m005 (1/2*Pi-4/5)/(3/4*Catalan-4/9) 3178151641415102 r009 Im(z^3+c),c=-51/122+3/13*I,n=13 3178151642741109 m001 (Ei(1,1)-Si(Pi)*Zeta(1,-1))/Zeta(1,-1) 3178151658271156 m001 ArtinRank2*ReciprocalFibonacci+GaussAGM 3178151661311149 k006 concat of cont frac of 3178151665280820 a007 Real Root Of 204*x^4+837*x^3+875*x^2+718*x-500 3178151665771635 m005 (1/2*Catalan+5/7)/(-37/70+1/14*5^(1/2)) 3178151667064730 r005 Im(z^2+c),c=-3/13+16/33*I,n=42 3178151674149666 m009 (1/3*Pi^2+1)/(6*Catalan+3/4*Pi^2+3/5) 3178151674709044 m005 (1/2*5^(1/2)+2/9)/(1/66+2/11*5^(1/2)) 3178151677171100 m001 (LandauRamanujan-GAMMA(11/12))^Zeta(1,2) 3178151689050873 a007 Real Root Of 281*x^4+865*x^3+26*x^2+659*x+931 3178151728147491 a007 Real Root Of 27*x^4-170*x^3-953*x^2-629*x-585 3178151728239669 h001 (-7*exp(2/3)+5)/(-3*exp(2)-5) 3178151743897882 m005 (1/2*3^(1/2)-11/12)/(103/132+4/11*5^(1/2)) 3178151755151191 m001 exp(Porter)/KhintchineLevy/GAMMA(1/12) 3178151758273535 r009 Re(z^3+c),c=-27/62+7/32*I,n=4 3178151782617365 a007 Real Root Of -322*x^4-702*x^3+894*x^2-97*x+978 3178151793339174 r005 Im(z^2+c),c=5/66+9/19*I,n=3 3178151805260202 r005 Re(z^2+c),c=-1/32+29/37*I,n=51 3178151810645812 a003 sin(Pi*5/79)/sin(Pi*19/89) 3178151811827383 r005 Im(z^2+c),c=7/40+4/15*I,n=32 3178151821330552 m001 Gompertz*(FeigenbaumDelta+TwinPrimes) 3178151822589624 m001 (Trott2nd+ZetaP(2))/(cos(1/12*Pi)+Landau) 3178151823605724 m001 (MertensB1-Shi(1))/(Riemann3rdZero+Trott2nd) 3178151843913405 m001 GAMMA(7/24)^2*ln(Si(Pi))^2*log(1+sqrt(2)) 3178151852810001 s002 sum(A139576[n]/((10^n+1)/n),n=1..infinity) 3178151859422130 m001 (BesselJ(1,1)+TwinPrimes*ZetaP(3))/ZetaP(3) 3178151859647255 m005 (1/2*gamma-4/11)/(5/8*gamma+2) 3178151877333116 r005 Re(z^2+c),c=-35/82+1/55*I,n=8 3178151889282320 a007 Real Root Of 281*x^4+871*x^3-24*x^2+139*x-24 3178151901785086 m001 (5^(1/2)+Shi(1))/(-LaplaceLimit+Robbin) 3178151903762902 r009 Re(z^3+c),c=-21/62+11/62*I,n=14 3178151915712631 k007 concat of cont frac of 3178151922738027 a001 233802911/1926*123^(1/5) 3178151925515804 r005 Im(z^2+c),c=19/122+9/32*I,n=13 3178151935067414 m005 (1/2*2^(1/2)-1/3)/(1/7*Pi+8/11) 3178151940681022 m001 (polylog(4,1/2)+2)/(-exp(-1/2*Pi)+1) 3178151946266049 r005 Im(z^2+c),c=-5/19+34/59*I,n=25 3178151952029281 r005 Im(z^2+c),c=-19/66+31/61*I,n=45 3178151959936742 m001 BesselJ(1,1)^ln(3)-Sarnak 3178151960959442 r005 Re(z^2+c),c=8/25+20/39*I,n=21 3178151962254809 a005 (1/cos(9/155*Pi))^1583 3178151964968328 m001 ln(3)*Zeta(1,-1)+ReciprocalFibonacci 3178151971579909 r005 Im(z^2+c),c=-11/31+2/47*I,n=5 3178152000632693 a003 sin(Pi*1/108)/cos(Pi*7/53) 3178152002866898 a001 646/341*199^(30/31) 3178152004045286 a001 1836311903/15127*123^(1/5) 3178152012396478 r005 Re(z^2+c),c=-1/3+11/23*I,n=60 3178152015907856 a001 1602508992/13201*123^(1/5) 3178152017638581 a001 12586269025/103682*123^(1/5) 3178152017891091 a001 121393*123^(1/5) 3178152017927932 a001 86267571272/710647*123^(1/5) 3178152017933307 a001 75283811239/620166*123^(1/5) 3178152017934091 a001 591286729879/4870847*123^(1/5) 3178152017934205 a001 516002918640/4250681*123^(1/5) 3178152017934222 a001 4052739537881/33385282*123^(1/5) 3178152017934224 a001 3536736619241/29134601*123^(1/5) 3178152017934226 a001 6557470319842/54018521*123^(1/5) 3178152017934232 a001 2504730781961/20633239*123^(1/5) 3178152017934276 a001 956722026041/7881196*123^(1/5) 3178152017934575 a001 365435296162/3010349*123^(1/5) 3178152017936628 a001 139583862445/1149851*123^(1/5) 3178152017950700 a001 53316291173/439204*123^(1/5) 3178152018047150 a001 20365011074/167761*123^(1/5) 3178152018708229 a001 7778742049/64079*123^(1/5) 3178152019155482 m001 (Backhouse+OneNinth)/(ln(3)-BesselI(1,2)) 3178152023239327 a001 2971215073/24476*123^(1/5) 3178152030141032 h001 (8/11*exp(2)+2/7)/(1/8*exp(2)+6/7) 3178152042741874 r002 62th iterates of z^2 + 3178152045267951 m001 1/OneNinth/exp(MertensB1)^2*gamma 3178152046888285 m001 (Zeta(3)*sin(1/12*Pi)-ln(2))/Zeta(3) 3178152046888285 m001 (Zeta(3)*sin(Pi/12)-ln(2))/Zeta(3) 3178152054295938 a001 1134903170/9349*123^(1/5) 3178152061935361 a007 Real Root Of -249*x^4-845*x^3-146*x^2+136*x+185 3178152066666667 m001 StronglyCareFree^GlaisherKinkelin*BesselJ(1,1) 3178152066727659 m005 (1/2*2^(1/2)-5)/(4/7*Pi-4/9) 3178152070696793 a007 Real Root Of 798*x^4+215*x^3-943*x^2-966*x-213 3178152073700388 m001 (ln(Pi)+GolombDickman)/GAMMA(1/6) 3178152073700388 m001 1/2*(ln(Pi)+GolombDickman)/Pi*GAMMA(5/6) 3178152078949277 r009 Re(z^3+c),c=-27/82+10/63*I,n=20 3178152086893704 r009 Re(z^3+c),c=-27/82+10/63*I,n=21 3178152089954023 a001 3571/34*10946^(5/42) 3178152092906726 r002 64th iterates of z^2 + 3178152095574176 m001 (3^(1/2)-BesselJ(0,1))/(-cos(1/12*Pi)+Robbin) 3178152100714146 r005 Im(z^2+c),c=-21/34+48/127*I,n=58 3178152101523606 r009 Re(z^3+c),c=-19/66+1/30*I,n=9 3178152103976010 a005 (1/sin(101/232*Pi))^1275 3178152109549803 m001 (BesselK(1,1)-Landau)/(PlouffeB-TwinPrimes) 3178152110540282 h001 (7/8*exp(2)+1/5)/(1/4*exp(2)+1/4) 3178152122182419 k006 concat of cont frac of 3178152124186713 r009 Re(z^3+c),c=-27/82+10/63*I,n=22 3178152127707757 r009 Re(z^3+c),c=-27/82+10/63*I,n=26 3178152128102253 r009 Re(z^3+c),c=-27/82+10/63*I,n=25 3178152128216288 r009 Re(z^3+c),c=-27/82+10/63*I,n=27 3178152128376916 r009 Re(z^3+c),c=-27/82+10/63*I,n=31 3178152128382451 r009 Re(z^3+c),c=-27/82+10/63*I,n=32 3178152128386448 r009 Re(z^3+c),c=-27/82+10/63*I,n=36 3178152128386481 r009 Re(z^3+c),c=-27/82+10/63*I,n=37 3178152128386556 r009 Re(z^3+c),c=-27/82+10/63*I,n=38 3178152128386560 r009 Re(z^3+c),c=-27/82+10/63*I,n=42 3178152128386560 r009 Re(z^3+c),c=-27/82+10/63*I,n=41 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=43 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=47 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=48 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=52 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=53 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=54 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=58 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=57 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=59 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=63 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=64 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=62 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=61 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=60 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=56 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=55 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=51 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=49 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=50 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=46 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=45 3178152128386561 r009 Re(z^3+c),c=-27/82+10/63*I,n=44 3178152128386567 r009 Re(z^3+c),c=-27/82+10/63*I,n=40 3178152128386575 r009 Re(z^3+c),c=-27/82+10/63*I,n=39 3178152128386783 r009 Re(z^3+c),c=-27/82+10/63*I,n=35 3178152128387064 r009 Re(z^3+c),c=-27/82+10/63*I,n=33 3178152128387524 r009 Re(z^3+c),c=-27/82+10/63*I,n=34 3178152128391253 r009 Re(z^3+c),c=-27/82+10/63*I,n=30 3178152128444409 r009 Re(z^3+c),c=-27/82+10/63*I,n=29 3178152128461493 r009 Re(z^3+c),c=-27/82+10/63*I,n=28 3178152129557307 a008 Real Root of x^4-2*x^2-x-85 3178152131404434 r009 Re(z^3+c),c=-27/82+10/63*I,n=24 3178152135027728 r009 Re(z^3+c),c=-27/82+10/63*I,n=23 3178152139345351 a005 (1/cos(13/160*Pi))^874 3178152144998187 v002 sum(1/(5^n+(15*n^2-8*n+44)),n=1..infinity) 3178152157797958 r005 Re(z^2+c),c=-41/98+1/28*I,n=18 3178152160299583 r005 Re(z^2+c),c=-43/34+2/123*I,n=50 3178152160925739 r002 19th iterates of z^2 + 3178152162718037 m001 (StronglyCareFree+ZetaQ(2))/(OneNinth-exp(1)) 3178152185912257 m001 (-MertensB2+MinimumGamma)/(exp(1)-exp(1/Pi)) 3178152185994271 r005 Im(z^2+c),c=19/106+13/59*I,n=3 3178152202062610 a001 47/8*46368^(13/35) 3178152206722763 r005 Re(z^2+c),c=-7/6+73/181*I,n=2 3178152208361184 m001 GAMMA(11/12)^2/ln(Backhouse)/cos(Pi/12)^2 3178152211978995 r005 Im(z^2+c),c=39/122+7/61*I,n=50 3178152220223343 m001 1/GAMMA(11/24)*PrimesInBinary*ln(GAMMA(5/24)) 3178152222748233 m001 (Niven+ZetaP(4))/(Zeta(1,2)-FeigenbaumDelta) 3178152227915810 r005 Im(z^2+c),c=31/82+19/59*I,n=21 3178152231210216 k006 concat of cont frac of 3178152242287212 a007 Real Root Of 274*x^4+798*x^3-86*x^2+386*x-242 3178152242480745 m005 (1/2*5^(1/2)-3)/(1/5*2^(1/2)-7/8) 3178152250093947 a007 Real Root Of -342*x^4-836*x^3+714*x^2-271*x-18 3178152253381536 k002 Champernowne real with 27/2*n^2+13/2*n+11 3178152257905491 r009 Re(z^3+c),c=-27/82+10/63*I,n=19 3178152267161134 a001 433494437/3571*123^(1/5) 3178152277165052 m001 (Zeta(5)-Rabbit)^GAMMA(23/24) 3178152277364570 r005 Re(z^2+c),c=-29/86+10/21*I,n=32 3178152277730905 r009 Re(z^3+c),c=-27/82+10/63*I,n=17 3178152280007670 m008 (4/5*Pi^3-3/4)/(3/4*Pi^2+1/6) 3178152293782191 r005 Im(z^2+c),c=5/48+6/19*I,n=22 3178152300766689 m001 sin(1/5*Pi)/(sin(1/12*Pi)+BesselI(1,2)) 3178152300766689 m001 sin(Pi/5)/(sin(Pi/12)+BesselI(1,2)) 3178152305927339 r005 Re(z^2+c),c=-5/4+69/211*I,n=9 3178152306337015 r005 Re(z^2+c),c=-29/90+28/55*I,n=64 3178152307904878 m001 GAMMA(5/12)^2*DuboisRaymond^2/exp(Zeta(1/2))^2 3178152313511221 k008 concat of cont frac of 3178152318815515 a007 Real Root Of -336*x^4-21*x^3+56*x^2+272*x-88 3178152321792744 a005 (1/sin(86/207*Pi))^613 3178152357329700 m001 (Chi(1)+Zeta(3))/(BesselI(1,1)+ZetaP(4)) 3178152367434237 r005 Re(z^2+c),c=-33/58+21/44*I,n=43 3178152403725146 r002 18th iterates of z^2 + 3178152413184311 k007 concat of cont frac of 3178152432162681 k006 concat of cont frac of 3178152434174891 m001 (Bloch-FeigenbaumB)/(arctan(1/3)-Backhouse) 3178152455685005 m001 (cos(1/12*Pi)+MinimumGamma)/(Salem-ThueMorse) 3178152460722349 a007 Real Root Of -44*x^4+220*x^3+979*x^2-751*x-724 3178152484696395 m001 (PlouffeB+Riemann1stZero)/(Zeta(5)-gamma) 3178152488463308 b008 ProductLog[2*(35+Pi)] 3178152488603322 l006 ln(997/1370) 3178152492668621 q001 867/2728 3178152492668621 r002 2th iterates of z^2 + 3178152494917406 r002 14th iterates of z^2 + 3178152502826381 a007 Real Root Of 334*x^4+794*x^3-661*x^2+481*x-382 3178152503791847 m001 BesselI(0,1)^HardyLittlewoodC4*Otter 3178152523415170 m001 Pi+Psi(1,1/3)/LambertW(1)*gamma(3) 3178152528262843 a007 Real Root Of -50*x^4-10*x^3+556*x^2+521*x+820 3178152534266290 r005 Re(z^2+c),c=-5/16+34/61*I,n=44 3178152536753372 m005 (1/2*Pi-1/6)/(1/5*Catalan-5/8) 3178152548001449 r002 2th iterates of z^2 + 3178152554140130 r005 Re(z^2+c),c=-10/27+11/36*I,n=9 3178152577515730 r009 Re(z^3+c),c=-53/114+17/50*I,n=14 3178152578608730 a007 Real Root Of 219*x^4+825*x^3+275*x^2-645*x-687 3178152584616962 m001 (BesselK(0,1)-Zeta(5))/(Paris+Tribonacci) 3178152589127238 m001 (CopelandErdos-Paris)/(GAMMA(5/6)-ArtinRank2) 3178152596766894 m001 (AlladiGrinstead-Catalan)/(-Magata+ZetaQ(2)) 3178152605684731 r009 Re(z^3+c),c=-27/82+10/63*I,n=18 3178152617640510 a001 2178309/521*18^(40/57) 3178152620281725 a001 1/521*(1/2*5^(1/2)+1/2)^15*3^(3/17) 3178152621820013 a007 Real Root Of -485*x^4+98*x^3-728*x^2+470*x+231 3178152626754547 a007 Real Root Of -84*x^4+82*x^3+805*x^2-877*x+284 3178152631422423 l003 KelvinHei(2,9/101) 3178152643526876 m001 Zeta(1/2)^Grothendieck+OrthogonalArrays 3178152647954745 m006 (4/5*Pi+3)/(5/6/Pi-2) 3178152661263112 m005 (1/2*2^(1/2)+2/7)/(7/8*Pi+3/8) 3178152666555720 r009 Re(z^3+c),c=-3/62+23/47*I,n=24 3178152680759025 a007 Real Root Of -227*x^4-764*x^3-71*x^2+6*x-630 3178152688338058 r009 Re(z^3+c),c=-37/94+39/56*I,n=19 3178152698735403 m001 (LaplaceLimit+ZetaQ(2))/(arctan(1/2)-exp(1)) 3178152707584342 r005 Im(z^2+c),c=17/52+5/63*I,n=41 3178152719282639 m001 (Magata+Riemann1stZero)/(Psi(2,1/3)+gamma(1)) 3178152725078923 a007 Real Root Of 195*x^4+327*x^3-610*x^2+853*x-525 3178152733803916 a001 305/2*7^(20/53) 3178152767129378 m001 1/ln(sinh(1))/TwinPrimes^2*sqrt(5) 3178152775848419 m001 Pi*Psi(1,1/3)/(1-gamma(3)) 3178152776043096 r005 Im(z^2+c),c=-133/106+1/36*I,n=5 3178152797328000 r005 Re(z^2+c),c=-13/14+21/109*I,n=36 3178152809829147 m001 BesselI(0,2)/(Lehmer^HardyLittlewoodC3) 3178152826230845 r009 Im(z^3+c),c=-63/106+15/47*I,n=17 3178152835943186 a007 Real Root Of -561*x^4+489*x^3+842*x^2+431*x-232 3178152841293924 a007 Real Root Of -221*x^4+675*x^3-388*x^2+981*x-292 3178152843134385 r005 Im(z^2+c),c=-5/38+27/61*I,n=18 3178152845687786 r009 Re(z^3+c),c=-7/122+21/32*I,n=59 3178152851730718 a001 123/89*4807526976^(19/22) 3178152870983285 s001 sum(1/10^(n-1)*A064623[n]/n^n,n=1..infinity) 3178152872150998 r002 45th iterates of z^2 + 3178152879245021 m005 (1/5*exp(1)+2/3)/(Pi+2/3) 3178152899294638 h001 (5/8*exp(1)+8/11)/(10/11*exp(2)+11/12) 3178152911015540 r005 Re(z^2+c),c=-41/90+32/59*I,n=63 3178152911822086 a001 322/4181*2178309^(13/51) 3178152917361218 a007 Real Root Of 128*x^4+523*x^3+262*x^2-206*x+429 3178152920729715 m001 (ln(2)-arctan(1/3))/(Lehmer+Stephens) 3178152921597637 m001 MadelungNaCl/ln(Khintchine)/GAMMA(1/6) 3178152936878797 m009 (8/3*Catalan+1/3*Pi^2-4)/(4/5*Psi(1,2/3)+3) 3178152942987216 a007 Real Root Of 302*x^4+666*x^3-665*x^2+772*x-261 3178152962966562 r002 18th iterates of z^2 + 3178152964522515 m001 (Mills-ZetaP(2))/(gamma(3)+Khinchin) 3178152992496590 a007 Real Root Of 94*x^4+285*x^3-269*x^2-824*x-343 3178152992500660 a007 Real Root Of 489*x^4-932*x^3+856*x^2-883*x-402 3178153000565673 r005 Im(z^2+c),c=-19/110+23/50*I,n=47 3178153009662193 r005 Im(z^2+c),c=-8/31+21/43*I,n=23 3178153011804933 m001 (MertensB2+Paris)/(1-Cahen) 3178153031776527 l006 ln(420/10081) 3178153044850736 r005 Im(z^2+c),c=-17/78+19/29*I,n=47 3178153045455012 r005 Re(z^2+c),c=13/62+19/48*I,n=36 3178153054103906 r005 Im(z^2+c),c=19/64+7/48*I,n=26 3178153056742963 m001 (gamma(3)+RenyiParking)/(Ei(1)+arctan(1/2)) 3178153067619918 a007 Real Root Of -248*x^4-726*x^3+13*x^2-768*x-576 3178153072200990 a007 Real Root Of -208*x^4-788*x^3-461*x^2-361*x-566 3178153091837785 a007 Real Root Of 588*x^4+455*x^3-179*x^2-729*x-205 3178153097226199 r005 Re(z^2+c),c=-15/26+29/101*I,n=9 3178153103674563 a007 Real Root Of -386*x^4-959*x^3+707*x^2-323*x+428 3178153104320376 r009 Im(z^3+c),c=-47/106+5/24*I,n=16 3178153116354471 m005 (1/2*Pi+1/4)/(19/8+3/2*5^(1/2)) 3178153117513919 m005 (1/2*Pi+1/10)/(2/11*2^(1/2)+5) 3178153121961699 m001 (ln(Pi)+sin(1/12*Pi))/(FeigenbaumC+Sierpinski) 3178153124764946 m001 (-CareFree+MertensB2)/(LambertW(1)+Bloch) 3178153129810696 r009 Re(z^3+c),c=-47/98+7/26*I,n=3 3178153132201818 p003 LerchPhi(1/1024,6,519/199) 3178153141859885 r002 35th iterates of z^2 + 3178153148076215 m002 Pi+Pi^5+(Pi^2*Coth[Pi])/Log[Pi] 3178153149652645 r005 Re(z^2+c),c=-43/102+9/50*I,n=5 3178153153926137 a007 Real Root Of -228*x^4+769*x^3-161*x^2+887*x-288 3178153155306980 r005 Re(z^2+c),c=-41/56+7/60*I,n=6 3178153167663114 r005 Re(z^2+c),c=-7/6+40/173*I,n=54 3178153179740474 r005 Im(z^2+c),c=37/122+7/50*I,n=25 3178153180900667 r009 Re(z^3+c),c=-33/70+28/57*I,n=61 3178153185134456 r005 Im(z^2+c),c=-11/31+31/57*I,n=45 3178153202314965 a007 Real Root Of 308*x^4-413*x^3-80*x^2-163*x+70 3178153207569897 m001 (Artin+Magata)/(sin(1/5*Pi)+BesselK(1,1)) 3178153214225120 k008 concat of cont frac of 3178153216517705 m005 (1/2*exp(1)+7/9)/(3/11*3^(1/2)+1/5) 3178153221121241 k007 concat of cont frac of 3178153225364930 r005 Im(z^2+c),c=1/30+19/56*I,n=5 3178153228037541 r005 Re(z^2+c),c=19/102+23/59*I,n=13 3178153234008552 a001 8/2207*64079^(30/49) 3178153240363839 m005 (1/3*gamma-1/11)/(3/8*exp(1)-7/10) 3178153241780410 r002 3th iterates of z^2 + 3178153243185123 s002 sum(A225072[n]/(n*exp(n)-1),n=1..infinity) 3178153244383530 m001 BesselI(0,2)-Zeta(1,2)^ln(1+sqrt(2)) 3178153244383530 m001 BesselI(0,2)-Zeta(1,2)^ln(2^(1/2)+1) 3178153255285349 a003 cos(Pi*11/114)/sin(Pi*10/103) 3178153256387546 k002 Champernowne real with 14*n^2+5*n+12 3178153263081130 m001 (QuadraticClass-ln(Pi)*ZetaP(2))/ln(Pi) 3178153266777877 r002 18th iterates of z^2 + 3178153268522342 l006 ln(419/10057) 3178153282208483 r005 Re(z^2+c),c=-51/122+8/61*I,n=7 3178153284599073 r005 Re(z^2+c),c=13/58+1/30*I,n=9 3178153289206961 m001 1/cos(Pi/12)/exp(Zeta(7))*sin(1) 3178153298385027 a007 Real Root Of 145*x^4+464*x^3+309*x^2+805*x-461 3178153305941446 s002 sum(A234457[n]/(pi^n+1),n=1..infinity) 3178153311300799 r002 6th iterates of z^2 + 3178153315872587 m001 ln(FeigenbaumC)/Magata^2/GAMMA(13/24) 3178153327318478 m001 1/2/(cos(Pi/5)+LandauRamanujan) 3178153338645304 m001 (Chi(1)+gamma(1))/(FeigenbaumC+Stephens) 3178153371785883 a001 1/4*17711^(57/59) 3178153374574236 m001 (Salem-Thue)/(BesselI(1,2)-Lehmer) 3178153375540415 p001 sum((-1)^n/(612*n+313)/(64^n),n=0..infinity) 3178153387948062 r005 Im(z^2+c),c=-25/86+30/59*I,n=42 3178153394956506 r009 Re(z^3+c),c=-17/42+17/56*I,n=9 3178153398777870 a007 Real Root Of 856*x^4-820*x^3-186*x^2-949*x-30 3178153404785839 a007 Real Root Of -18*x^4-573*x^3-23*x^2+181*x-947 3178153409106152 r005 Im(z^2+c),c=-9/118+2/55*I,n=6 3178153414592582 r005 Im(z^2+c),c=-75/62+1/18*I,n=34 3178153416443830 m005 (1/5*Catalan+3/5)/(3/5*exp(1)+5/6) 3178153416471420 m009 (2/5*Psi(1,2/3)-1/5)/(1/6*Psi(1,2/3)-5/6) 3178153436838684 r005 Im(z^2+c),c=-5/42+22/51*I,n=5 3178153440140560 m009 (3/4*Psi(1,2/3)-2/3)/(2*Catalan+1/4*Pi^2+5/6) 3178153446033810 q001 1222/3845 3178153464608468 s002 sum(A272970[n]/(n^3*exp(n)-1),n=1..infinity) 3178153480352479 m008 (2/5*Pi^4-1/2)/(4*Pi^3-3) 3178153488653559 l002 exp(polylog(2,99/118)) 3178153489516260 r002 7th iterates of z^2 + 3178153493320419 l006 ln(7265/9983) 3178153496503423 a001 10610209857723/2*2537720636^(14/15) 3178153496503423 a001 1836311903/2*14662949395604^(20/21) 3178153496503423 a001 10610209857723/2*17393796001^(6/7) 3178153496503423 a001 12586269025/2*14662949395604^(8/9) 3178153496503423 a001 591286729879/2*45537549124^(16/17) 3178153496503423 a001 2504730781961/2*45537549124^(15/17) 3178153496503423 a001 10610209857723/2*45537549124^(14/17) 3178153496503423 a001 32951280099/2*14662949395604^(6/7) 3178153496503423 a001 43133785636*23725150497407^(13/16) 3178153496503423 a001 43133785636*505019158607^(13/14) 3178153496503423 a001 225851433717/2*312119004989^(10/11) 3178153496503423 a001 2504730781961/2*312119004989^(9/11) 3178153496503423 a001 225851433717/2*3461452808002^(5/6) 3178153496503423 a001 10610209857723/2*14662949395604^(2/3) 3178153496503423 a001 10610209857723/2*505019158607^(3/4) 3178153496503423 a001 182717648081*505019158607^(7/8) 3178153496503423 a001 139583862445/2*817138163596^(17/19) 3178153496503423 a001 139583862445/2*14662949395604^(17/21) 3178153496503423 a001 10610209857723/2*192900153618^(7/9) 3178153496503423 a001 591286729879/2*192900153618^(8/9) 3178153496503423 a001 139583862445/2*192900153618^(17/18) 3178153496503423 a001 4052739537881/2*73681302247^(11/13) 3178153496503423 a001 591286729879/2*73681302247^(12/13) 3178153496503423 a001 10182505537*3461452808002^(11/12) 3178153496503423 a001 2504730781961/2*28143753123^(9/10) 3178153496503423 a001 7778742049/2*14662949395604^(19/21) 3178153496503423 a001 10610209857723/2*10749957122^(7/8) 3178153496503423 a001 4052739537881/2*10749957122^(11/12) 3178153496503423 a001 2504730781961/2*10749957122^(15/16) 3178153496503423 a001 774004377960*10749957122^(23/24) 3178153496503423 a001 10610209857723/2*4106118243^(21/23) 3178153496503423 a001 4052739537881/2*4106118243^(22/23) 3178153496503423 a001 10610209857723/2*1568397607^(21/22) 3178153506400856 l006 ln(418/10033) 3178153513004087 a001 1/18*(1/2*5^(1/2)+1/2)^25*47^(11/12) 3178153531113246 r002 38th iterates of z^2 + 3178153532436439 m002 -1+Pi^2+Pi^5+Pi/ProductLog[Pi] 3178153535872928 m005 (1/2*gamma-7/9)/(7/9*5^(1/2)-1/5) 3178153540216506 m001 (FeigenbaumC+Otter)/(cos(1)+cos(1/12*Pi)) 3178153544778902 m001 1/Catalan*ln(Sierpinski)^2/GAMMA(1/6)^2 3178153545160506 a001 41/7*2178309^(19/21) 3178153548324267 r005 Re(z^2+c),c=-17/54+19/37*I,n=39 3178153552313485 m001 (BesselK(0,1)+gamma(3))^MertensB3 3178153566014446 m001 (ln(Pi)-exp(1/Pi))/(FeigenbaumD-Magata) 3178153594640568 m001 (Otter-QuadraticClass)/(Stephens+ZetaP(4)) 3178153599070816 r005 Im(z^2+c),c=-67/126+23/52*I,n=18 3178153624548919 m006 (5/6*ln(Pi)-1/2)/(1/5*Pi+4/5) 3178153627729682 p003 LerchPhi(1/8,6,361/138) 3178153645485392 h001 (4/5*exp(1)+1/4)/(1/4*exp(1)+1/12) 3178153653132621 l006 ln(6268/8613) 3178153654043774 a007 Real Root Of 33*x^4-122*x^3-616*x^2+433*x+315 3178153659277598 r005 Re(z^2+c),c=2/9+23/56*I,n=47 3178153659845822 m002 -6/5-Pi^5-Cosh[Pi]+Tanh[Pi] 3178153668993022 a007 Real Root Of 443*x^4+166*x^3+838*x^2-886*x-29 3178153694965736 s002 sum(A054734[n]/(n*exp(n)-1),n=1..infinity) 3178153715669143 a007 Real Root Of -645*x^4+383*x^3-49*x^2+762*x+266 3178153716106732 m001 (exp(1)+Salem)/GAMMA(3/4) 3178153718333702 p004 log(24469/17807) 3178153721899927 p001 sum(1/(497*n+328)/(10^n),n=0..infinity) 3178153723155843 a003 sin(Pi*16/101)*sin(Pi*16/69) 3178153726161660 a001 165580141/1364*123^(1/5) 3178153730042317 a003 sin(Pi*1/109)/sin(Pi*30/83) 3178153743684088 a007 Real Root Of 489*x^4-393*x^3+949*x^2+357*x 3178153745420217 l006 ln(417/10009) 3178153745562713 m001 (gamma*ln(Pi)+GAMMA(19/24))/gamma 3178153762307303 a007 Real Root Of -38*x^4-95*x^3+311*x^2+977*x+791 3178153765351517 m001 (2^(1/3))/PisotVijayaraghavan^2*exp(Ei(1))^2 3178153769760550 r005 Re(z^2+c),c=-35/114+17/32*I,n=28 3178153772033575 a007 Real Root Of 324*x^4+994*x^3-234*x^2-145*x+756 3178153773164148 a001 5702887/199*199^(5/11) 3178153775265145 r009 Im(z^3+c),c=-15/118+15/44*I,n=2 3178153791173153 m001 (-Chi(1)+LandauRamanujan)/(2^(1/3)+Shi(1)) 3178153791902600 a007 Real Root Of -871*x^4+573*x^3+918*x^2+509*x-264 3178153796980345 a001 341/36*6765^(7/51) 3178153800121560 a001 3/141422324*123^(9/16) 3178153809257683 m001 BesselJ(1,1)/LaplaceLimit^2*exp(gamma)^2 3178153809619460 r002 42i'th iterates of 2*x/(1-x^2) of 3178153815035533 r002 14th iterates of z^2 + 3178153822909719 r005 Im(z^2+c),c=-19/94+26/55*I,n=44 3178153857731093 a007 Real Root Of -320*x^4-690*x^3+916*x^2-473*x-258 3178153864138252 m001 (ln(2)-KhinchinLevy)/(Mills-MinimumGamma) 3178153873401191 l006 ln(5271/7243) 3178153892288747 g007 Psi(2,2/11)+Psi(2,7/10)+14*Zeta(3)-Psi(2,5/7) 3178153892908961 a007 Real Root Of -462*x^4-700*x^3-323*x^2+507*x+176 3178153893353285 r009 Im(z^3+c),c=-39/110+16/59*I,n=8 3178153893777031 r002 3th iterates of z^2 + 3178153898017466 r005 Im(z^2+c),c=-7/10+11/227*I,n=20 3178153900117489 b008 5+7*Cos[15] 3178153906675291 b008 ProductLog[1/20]/15 3178153909888978 a007 Real Root Of -272*x^4-894*x^3-161*x^2-162*x+163 3178153912809284 h001 (5/8*exp(2)+1/4)/(2/5*exp(1)+4/9) 3178153916126279 a007 Real Root Of 970*x^4-33*x^3-297*x^2-943*x+3 3178153919364010 m001 (GAMMA(11/12)+ArtinRank2)/(ln(gamma)-gamma(3)) 3178153927222133 k007 concat of cont frac of 3178153971201292 m001 Zeta(5)^2*exp(GAMMA(5/6))^3 3178153985588652 l006 ln(416/9985) 3178153990074589 s002 sum(A033836[n]/(64^n-1),n=1..infinity) 3178153993816828 m001 1/GAMMA(5/12)^2/exp(GAMMA(1/6))^2/Zeta(7)^2 3178154006409199 a001 199/121393*17711^(7/13) 3178154007457140 a001 199/3524578*9227465^(7/13) 3178154007457188 a001 199/2971215073*2504730781961^(7/13) 3178154007457188 a001 199/102334155*4807526976^(7/13) 3178154009776754 r005 Im(z^2+c),c=-21/52+32/59*I,n=39 3178154013926744 a007 Real Root Of -72*x^4-20*x^3+768*x^2+144*x-596 3178154020169333 r005 Im(z^2+c),c=-13/17+11/41*I,n=6 3178154027258480 a007 Real Root Of -838*x^4+971*x^3-191*x^2+773*x-249 3178154027393554 a007 Real Root Of -847*x^4+646*x^3+381*x^2+831*x+255 3178154027665548 m001 GAMMA(1/3)^2*GolombDickman/exp(GAMMA(1/4))^2 3178154036874244 r009 Re(z^3+c),c=-3/62+23/47*I,n=22 3178154038743028 m001 (FellerTornier+Kac)/(BesselI(0,2)+CareFree) 3178154041227619 m001 1/(2^(1/3))^2*FeigenbaumDelta^2*exp(Pi) 3178154042949849 r002 5th iterates of z^2 + 3178154049686625 m001 exp(arctan(1/2))/Zeta(1/2)*cos(1)^2 3178154050553274 m001 (Salem-Trott2nd)/(exp(-1/2*Pi)+Magata) 3178154050557728 a007 Real Root Of 68*x^4-715*x^3-928*x^2-601*x+307 3178154073619244 r005 Im(z^2+c),c=-5/4+58/189*I,n=5 3178154097575231 r002 44th iterates of z^2 + 3178154110750561 m009 (2*Psi(1,3/4)-5)/(1/4*Psi(1,3/4)+2) 3178154112211231 k008 concat of cont frac of 3178154119211077 m001 BesselK(1,1)^(LaplaceLimit*Magata) 3178154122546812 a007 Real Root Of -191*x^4-870*x^3-520*x^2+867*x-434 3178154129342034 r002 4th iterates of z^2 + 3178154134544678 a001 13201/7*21^(6/35) 3178154160085930 s002 sum(A271374[n]/(n^2*10^n+1),n=1..infinity) 3178154165105905 m003 -15*Sec[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/6 3178154169293852 a007 Real Root Of -255*x^4-885*x^3-102*x^2+368*x-194 3178154171340038 r005 Im(z^2+c),c=1/98+13/35*I,n=11 3178154172111102 k007 concat of cont frac of 3178154176204444 r005 Re(z^2+c),c=-25/66+16/49*I,n=26 3178154196434265 l006 ln(4274/5873) 3178154198890977 r009 Im(z^3+c),c=-57/110+9/52*I,n=59 3178154203831121 m006 (3/4*Pi^2-3/5)/(2/5*exp(2*Pi)-1/6) 3178154213099620 r009 Re(z^3+c),c=-13/30+15/31*I,n=13 3178154217971489 a001 1/2207*(1/2*5^(1/2)+1/2)*47^(8/21) 3178154218744563 r005 Re(z^2+c),c=-49/118+3/29*I,n=15 3178154221401490 h001 (4/9*exp(2)+10/11)/(3/8*exp(1)+3/10) 3178154224784390 m001 LaplaceLimit*CareFree/ln(Porter)^2 3178154226914467 l006 ln(415/9961) 3178154227808406 r005 Im(z^2+c),c=-27/110+27/55*I,n=63 3178154227996834 m005 (1/2*Pi-2)/(3/8*3^(1/2)-2) 3178154229045449 m005 (1/2*exp(1)-10/11)/(6/7*gamma-7/11) 3178154232080259 a007 Real Root Of -194*x^4-390*x^3-754*x^2+448*x+208 3178154241361116 m001 ((1+3^(1/2))^(1/2)*Bloch-BesselI(0,2))/Bloch 3178154245140439 r005 Im(z^2+c),c=7/40+4/15*I,n=31 3178154249228129 r005 Re(z^2+c),c=-41/106+7/24*I,n=23 3178154257415604 r005 Re(z^2+c),c=-49/118+1/10*I,n=17 3178154259393556 k002 Champernowne real with 29/2*n^2+7/2*n+13 3178154261015638 m001 GAMMA(11/12)^arctan(1/2)/FellerTornier 3178154270589785 r005 Re(z^2+c),c=-19/66+23/42*I,n=37 3178154283643145 a007 Real Root Of -220*x^4+881*x^3-113*x^2+212*x-82 3178154310890484 a007 Real Root Of -104*x^4-118*x^3+410*x^2-742*x+323 3178154311573039 r005 Re(z^2+c),c=-1/66+27/44*I,n=18 3178154313463224 m001 (GAMMA(11/12)-Niven)/(3^(1/3)+BesselK(1,1)) 3178154323703016 r005 Im(z^2+c),c=-7/31+14/29*I,n=53 3178154350971032 r002 7th iterates of z^2 + 3178154353117747 r009 Re(z^3+c),c=-51/86+5/22*I,n=19 3178154354839914 a007 Real Root Of -397*x^4-993*x^3+942*x^2+344*x+205 3178154359023321 b008 ArcSinh[2/3+8*Sqrt[2]] 3178154362477540 m001 (-MasserGramain+MinimumGamma)/(Magata-sin(1)) 3178154364632874 r005 Im(z^2+c),c=-1/21+47/53*I,n=10 3178154366013389 m001 (exp(1/2)+2)/(-Si(Pi)+3) 3178154367133942 r005 Im(z^2+c),c=-21/34+5/83*I,n=36 3178154371111785 m005 (1/2*Catalan+9/11)/(3/4*Zeta(3)-1/2) 3178154384211550 r005 Re(z^2+c),c=-33/94+17/44*I,n=14 3178154384360440 a009 1/5*(12*5^(1/4)+10^(2/3))^(1/2)*5^(3/4) 3178154398189382 s002 sum(A172386[n]/(n*10^n+1),n=1..infinity) 3178154407520573 m001 (Lehmer-Porter)/(ln(Pi)+ErdosBorwein) 3178154415350369 b008 -10+E^(2+EulerGamma^(-1)) 3178154428117587 r009 Im(z^3+c),c=-8/23+36/55*I,n=15 3178154437470317 a001 7/28657*28657^(1/4) 3178154437937982 a001 7/75025*1346269^(1/4) 3178154438034345 a001 7/196418*63245986^(1/4) 3178154438048417 a001 7/514229*2971215073^(1/4) 3178154438050470 a001 7/1346269*139583862445^(1/4) 3178154438050769 a001 7/3524578*6557470319842^(1/4) 3178154438050954 a001 1/311187*956722026041^(1/4) 3178154438051738 a001 7/832040*20365011074^(1/4) 3178154438057113 a001 7/317811*433494437^(1/4) 3178154438093956 a001 7/121393*9227465^(1/4) 3178154438350583 a001 1/6624*196418^(1/4) 3178154449167626 a001 7/17711*4181^(1/4) 3178154464964078 r008 a(0)=0,K{-n^6,-9+10*n^3+66*n^2-98*n} 3178154469406048 l006 ln(414/9937) 3178154480671184 m001 1/RenyiParking^2/ln(Bloch)^2*Zeta(9) 3178154493146742 a007 Real Root Of 190*x^4+497*x^3-323*x^2-188*x-765 3178154494114108 a007 Real Root Of 824*x^4-760*x^3+375*x^2-495*x-228 3178154498211492 a007 Real Root Of -17*x^4-557*x^3-537*x^2-164*x+658 3178154519559142 a007 Real Root Of 167*x^4+482*x^3-86*x^2+451*x+737 3178154522748270 m001 (5^(1/2)-gamma(3))/(-Artin+GaussKuzminWirsing) 3178154522796964 b008 1/6+Pi*ProductLog[5/2] 3178154545444902 m001 (Si(Pi)+Ei(1))/(GAMMA(11/12)+Champernowne) 3178154545474563 m001 TreeGrowth2nd*TwinPrimes+Trott2nd 3178154555009678 r005 Im(z^2+c),c=13/90+13/45*I,n=31 3178154555873858 r005 Re(z^2+c),c=-33/98+23/49*I,n=40 3178154570461839 a001 34/199*76^(27/40) 3178154589815238 m001 1/Riemann3rdZero*CareFree^2*ln(GAMMA(19/24)) 3178154590500213 r005 Re(z^2+c),c=-5/9+17/36*I,n=39 3178154597637638 m005 (1/2*2^(1/2)+5/12)/(4/5*2^(1/2)-7/9) 3178154597785529 s001 sum(exp(-2*Pi/5)^n*A280127[n],n=1..infinity) 3178154597785529 s002 sum(A280127[n]/(exp(2/5*pi*n)),n=1..infinity) 3178154598458440 r005 Re(z^2+c),c=-37/90+1/8*I,n=6 3178154612596354 m001 (arctan(1/3)+PrimesInBinary)/(2^(1/3)+Shi(1)) 3178154625095439 a003 sin(Pi*19/61)/cos(Pi*47/113) 3178154632234712 a003 cos(Pi*30/109)*cos(Pi*30/89) 3178154644279456 r005 Im(z^2+c),c=4/17+8/37*I,n=31 3178154669781864 r005 Re(z^2+c),c=-41/98+2/57*I,n=20 3178154693421589 a007 Real Root Of -746*x^4-273*x^3-281*x^2+380*x+148 3178154697311073 b008 Sech[3/2+ArcCsch[Pi]] 3178154713071864 l006 ln(413/9913) 3178154714198503 h001 (1/11*exp(1)+1/5)/(1/4*exp(1)+8/11) 3178154716027570 l006 ln(3277/4503) 3178154719547158 m001 FellerTornier/((3^(1/2))^Trott2nd) 3178154721359549 a001 317811+2*5^(1/2) 3178154730497534 a007 Real Root Of -184*x^4-284*x^3+864*x^2-31*x+830 3178154730668106 m005 (1/2*exp(1)-1/5)/(16/5+1/5*5^(1/2)) 3178154746812434 r009 Im(z^3+c),c=-5/48+21/61*I,n=5 3178154751816747 a001 7/89*317811^(36/43) 3178154758950847 r005 Im(z^2+c),c=-23/98+29/60*I,n=21 3178154759884333 m001 Sierpinski^sin(1)*GAMMA(7/12)^sin(1) 3178154762610114 m001 FeigenbaumB^2/exp(FransenRobinson)^2*(2^(1/3)) 3178154765737943 m001 MadelungNaCl*(OrthogonalArrays+PrimesInBinary) 3178154775260125 a001 1/5778*(1/2*5^(1/2)+1/2)^3*47^(8/21) 3178154779644229 a007 Real Root Of 590*x^4+269*x^3+199*x^2-826*x-280 3178154781882464 m001 1/LambertW(1)^2*ln(Backhouse)^2/sinh(1)^2 3178154784043645 a007 Real Root Of -228*x^4-3*x^3+194*x^2+720*x-246 3178154797702317 r005 Re(z^2+c),c=-43/106+3/16*I,n=21 3178154798283362 r005 Re(z^2+c),c=25/114+1/55*I,n=25 3178154812660149 r005 Im(z^2+c),c=-27/26+4/117*I,n=7 3178154812782664 a001 2207/13*17711^(23/43) 3178154834886788 r009 Im(z^3+c),c=-27/56+11/64*I,n=27 3178154844009119 m008 (4/5*Pi^5-2/5)/(1/4*Pi^5+2/5) 3178154845703311 m001 (Riemann2ndZero-Sarnak)/(Pi-FeigenbaumAlpha) 3178154846060830 r005 Re(z^2+c),c=29/86+3/22*I,n=31 3178154856567458 a001 1/15127*(1/2*5^(1/2)+1/2)^5*47^(8/21) 3178154859602230 m001 (GAMMA(13/24)+OrthogonalArrays)/(Paris+Thue) 3178154859802581 a001 7/10946*610^(1/4) 3178154865897556 r005 Im(z^2+c),c=-3/58+13/32*I,n=10 3178154868430038 a001 1/39603*(1/2*5^(1/2)+1/2)^7*47^(8/21) 3178154871230414 a001 1/64079*(1/2*5^(1/2)+1/2)^8*47^(8/21) 3178154875761516 a001 1/24476*(1/2*5^(1/2)+1/2)^6*47^(8/21) 3178154882197221 m001 LandauRamanujan2nd^sin(1)*BesselJ(1,1)^sin(1) 3178154906818155 a001 1/9349*(1/2*5^(1/2)+1/2)^4*47^(8/21) 3178154925502651 m001 Catalan^CopelandErdos-Robbin 3178154929686107 a007 Real Root Of 246*x^4+939*x^3+453*x^2-123*x+79 3178154931468699 m001 exp(1)*HardyLittlewoodC3/Landau 3178154934446457 h001 (1/6*exp(1)+7/10)/(3/8*exp(2)+6/7) 3178154940978585 r005 Im(z^2+c),c=-15/56+26/51*I,n=27 3178154951617633 m001 1/Bloch^2/Backhouse^2*exp(GAMMA(2/3))^2 3178154957920464 l006 ln(412/9889) 3178154976714845 m001 ln(PrimesInBinary)*Paris/sqrt(1+sqrt(3))^2 3178154976771074 m001 (RenyiParking+exp(1/exp(1)))^Zeta(1/2) 3178154976771074 m001 (exp(1/exp(1))+RenyiParking)^Zeta(1/2) 3178154979645839 r005 Im(z^2+c),c=-57/98+12/29*I,n=23 3178154980031797 r005 Re(z^2+c),c=-35/94+6/13*I,n=18 3178154981628064 a007 Real Root Of 83*x^4-537*x^3+719*x^2-819*x-351 3178154983503883 r005 Im(z^2+c),c=-9/28+12/23*I,n=23 3178154993634473 r005 Im(z^2+c),c=3/52+21/61*I,n=22 3178154996717233 m005 (1/2*3^(1/2)+3/5)/(3*3^(1/2)-7/12) 3178155006016764 m005 (1/2*5^(1/2)-4/5)/(1/10*Catalan+10/11) 3178155006858710 r002 2th iterates of z^2 + 3178155007510763 m001 (arctan(1/3)+MertensB1)/(ZetaP(3)+ZetaQ(3)) 3178155010325163 m005 (1/3*Pi+3/4)/(3/10*exp(1)-1/4) 3178155012902144 r005 Re(z^2+c),c=-49/78+13/40*I,n=25 3178155033242244 r005 Re(z^2+c),c=-51/122+1/55*I,n=13 3178155041593496 r005 Re(z^2+c),c=-113/90+1/41*I,n=56 3178155046745387 r002 50th iterates of z^2 + 3178155053310889 a008 Real Root of x^4-x^3-22*x^2+69*x-67 3178155059817194 r009 Im(z^3+c),c=-29/54+13/63*I,n=51 3178155066201882 m005 (1/2*Zeta(3)-1/12)/(5/9*3^(1/2)+2/3) 3178155070095268 m001 PlouffeB-exp(Pi)^ThueMorse 3178155077084468 a001 11/75025*6765^(5/57) 3178155088277666 a001 4/161*3^(13/58) 3178155091626153 m001 (GAMMA(11/12)-sin(1))/(LaplaceLimit+Trott) 3178155093284526 r002 4th iterates of z^2 + 3178155099148980 m001 (GaussKuzminWirsing+1/2)/(GAMMA(7/12)+1) 3178155107035847 r005 Im(z^2+c),c=11/42+8/57*I,n=5 3178155107817285 r004 Im(z^2+c),c=-29/22+6/23*I,z(0)=-1,n=7 3178155115657169 l006 ln(5557/7636) 3178155116681366 r005 Im(z^2+c),c=-7/66+27/44*I,n=21 3178155119683542 a001 1/3571*(1/2*5^(1/2)+1/2)^2*47^(8/21) 3178155127278350 m001 (FeigenbaumC+Lehmer)/(Cahen-LambertW(1)) 3178155131872089 r009 Im(z^3+c),c=-57/122+10/57*I,n=14 3178155142205433 r002 3th iterates of z^2 + 3178155150953817 m001 ArtinRank2^Paris/GaussKuzminWirsing 3178155181203059 a007 Real Root Of 295*x^4+706*x^3-651*x^2+341*x+226 3178155184738021 a001 514229/322*18^(5/21) 3178155189331877 r005 Im(z^2+c),c=-13/40+11/21*I,n=61 3178155195442456 h001 (2/11*exp(2)+9/10)/(11/12*exp(2)+2/7) 3178155197942150 m001 (FeigenbaumB+Niven)/(GAMMA(13/24)-sin(1)) 3178155198950722 m001 Ei(1,1)/(sin(1/5*Pi)^ArtinRank2) 3178155203960481 l006 ln(411/9865) 3178155205630710 a007 Real Root Of 317*x^4+94*x^3-72*x^2-281*x+9 3178155216302343 m005 (1/2*3^(1/2)+4)/(4*gamma-7/9) 3178155218087122 r002 19th iterates of z^2 + 3178155228290937 m001 (PrimesInBinary-Robbin)/(gamma(1)-CareFree) 3178155239409419 a003 sin(Pi*1/11)/cos(Pi*17/111) 3178155244786716 a009 1/5*(10^(1/2)-24*5^(1/2))^(1/2)*5^(1/2) 3178155253395167 r005 Im(z^2+c),c=-7/29+29/56*I,n=16 3178155261321520 a008 Real Root of (-4+2*x+x^2-3*x^3+4*x^4-x^5) 3178155262399566 k002 Champernowne real with 15*n^2+2*n+14 3178155264991524 m001 2^(1/3)/(FeigenbaumD^HardHexagonsEntropy) 3178155266465737 m003 1+(3073*Sqrt[5])/4096+Csc[1/2+Sqrt[5]/2]/2 3178155279452852 a007 Real Root Of -139*x^4-103*x^3+856*x^2-767*x-209 3178155285175215 a003 sin(Pi*7/76)/cos(Pi*9/62) 3178155289967421 m001 Pi/(1-Ei(1,1)+exp(-1/2*Pi)) 3178155298663496 l006 ln(6658/6873) 3178155314313572 r004 Re(z^2+c),c=-5/26+13/22*I,z(0)=I,n=21 3178155342011073 m001 MasserGramainDelta/(FeigenbaumB-sin(1/12*Pi)) 3178155347531500 m009 (1/6*Psi(1,1/3)-6)/(3/5*Psi(1,3/4)-1/6) 3178155351046928 a007 Real Root Of -986*x^4+505*x^3-704*x^2+862*x-209 3178155360343031 p001 sum(1/(395*n+342)/(6^n),n=0..infinity) 3178155373692430 r005 Re(z^2+c),c=-49/90+17/41*I,n=17 3178155380052293 m001 (exp(-1/2*Pi)+MertensB1)/(Sarnak-Stephens) 3178155389508140 m001 1/exp((2^(1/3)))^2*GolombDickman^2/Pi^2 3178155412786822 r001 30i'th iterates of 2*x^2-1 of 3178155422249236 m001 (GAMMA(3/4)+ErdosBorwein)/(Porter-Stephens) 3178155424841734 r005 Re(z^2+c),c=5/36+31/49*I,n=10 3178155434816176 r005 Re(z^2+c),c=-11/31+12/29*I,n=44 3178155436409382 a003 sin(Pi*11/111)/sin(Pi*41/99) 3178155438422038 r005 Im(z^2+c),c=-101/102+17/62*I,n=6 3178155439396044 r009 Im(z^3+c),c=-4/31+16/47*I,n=10 3178155446362929 r005 Im(z^2+c),c=-2/17+24/55*I,n=18 3178155449042759 a007 Real Root Of -285*x^4-985*x^3-180*x^2+85*x-455 3178155451200632 l006 ln(410/9841) 3178155456403938 m001 (exp(Pi)+ln(3))/(BesselJ(1,1)+FellerTornier) 3178155473413264 r009 Re(z^3+c),c=-51/106+24/59*I,n=58 3178155489622338 m006 (3/4*exp(2*Pi)+1/2)/(5/6/Pi+1) 3178155491785012 r009 Im(z^3+c),c=-31/106+1/46*I,n=6 3178155498399067 m001 ZetaP(4)/Grothendieck/GAMMA(2/3) 3178155500867568 s002 sum(A059400[n]/(exp(n)-1),n=1..infinity) 3178155504419764 m005 (1/2*Zeta(3)+1/4)/(4/5*5^(1/2)+8/9) 3178155523660537 r005 Re(z^2+c),c=-19/50+14/43*I,n=20 3178155540787434 m005 (1/3*Zeta(3)-3/8)/(1/5*Catalan+5/8) 3178155541697184 p004 log(29567/21517) 3178155543066006 r009 Re(z^3+c),c=-23/86+46/53*I,n=2 3178155554239992 m001 1/Riemann3rdZero^2/ln(Paris)^2/Zeta(1,2) 3178155560662554 r009 Re(z^3+c),c=-7/24+3/53*I,n=5 3178155562970802 m001 (FibonacciFactorial+MertensB3)/(Thue-ZetaQ(2)) 3178155571721795 r005 Re(z^2+c),c=-43/122+25/58*I,n=26 3178155572145796 r005 Im(z^2+c),c=-36/31+5/21*I,n=50 3178155584834783 a007 Real Root Of 297*x^4+681*x^3-874*x^2+5*x+404 3178155597602896 r005 Im(z^2+c),c=-33/86+25/52*I,n=16 3178155599468267 a007 Real Root Of -55*x^4+32*x^3+527*x^2-536*x-388 3178155612321562 r005 Im(z^2+c),c=3/22+13/50*I,n=3 3178155633110588 r005 Re(z^2+c),c=-13/18+38/111*I,n=2 3178155639406904 l004 cosh(465/112) 3178155647869602 a001 2/165580141*46368^(7/23) 3178155647959580 a001 1/2403763488*2971215073^(7/23) 3178155663572552 r005 Re(z^2+c),c=-57/74+1/44*I,n=18 3178155668275032 r005 Im(z^2+c),c=-11/38+25/46*I,n=10 3178155690037052 l006 ln(2280/3133) 3178155693344654 r005 Im(z^2+c),c=-5/29+23/50*I,n=28 3178155699649719 l006 ln(409/9817) 3178155699649719 p004 log(9817/409) 3178155722017498 r009 Re(z^3+c),c=-27/82+10/63*I,n=14 3178155731760017 m001 Pi/(Psi(1,1/3)+3^(1/3)-(1+3^(1/2))^(1/2)) 3178155732165033 r005 Re(z^2+c),c=-17/50+31/61*I,n=27 3178155742909724 m001 (2^(1/2)-Zeta(5))/(Salem+Trott) 3178155745864315 a001 6765/521*7^(23/50) 3178155748667270 m001 (Shi(1)+BesselJ(0,1))/(gamma(1)+MasserGramain) 3178155753545009 a007 Real Root Of -200*x^4-442*x^3+325*x^2-708*x+683 3178155763664354 r005 Re(z^2+c),c=-5/52+36/55*I,n=39 3178155766884284 b008 InverseErf[1/8]/35 3178155774395702 q001 355/1117 3178155794716372 r005 Im(z^2+c),c=13/58+9/40*I,n=14 3178155797059224 m001 Pi+1+cos(1/5*Pi)-Pi^(1/2) 3178155798175891 h001 (3/11*exp(2)+1/7)/(8/9*exp(2)+2/9) 3178155808118583 r009 Re(z^3+c),c=-25/62+15/52*I,n=16 3178155812946585 r009 Im(z^3+c),c=-10/21+8/45*I,n=32 3178155814879868 m001 (exp(Pi)+HeathBrownMoroz)/gamma(1) 3178155815021310 l006 ln(8482/8509) 3178155815161833 b008 EllipticPi[5/3,-1/14] 3178155822734858 r005 Re(z^2+c),c=-85/74+11/45*I,n=36 3178155826251274 a007 Real Root Of -569*x^4+114*x^3-693*x^2+850*x-198 3178155828733424 m001 1/3*(Psi(2,1/3)+3^(1/2)*exp(-Pi))*3^(1/2) 3178155833313288 r009 Im(z^3+c),c=-15/46+13/46*I,n=5 3178155844254701 r009 Im(z^3+c),c=-35/86+14/59*I,n=16 3178155847664646 r005 Im(z^2+c),c=-7/30+17/35*I,n=31 3178155858523657 a007 Real Root Of -257*x^4-560*x^3+684*x^2-249*x+543 3178155860280017 r005 Im(z^2+c),c=41/126+6/43*I,n=23 3178155871426565 a007 Real Root Of 234*x^4+661*x^3-219*x^2+294*x+492 3178155892526764 m001 (Shi(1)-arctan(1/3))/(Tribonacci+Weierstrass) 3178155902026793 a005 (1/cos(3/182*Pi))^862 3178155906683720 m001 Zeta(3)*ln(Magata)/arctan(1/2) 3178155911708284 m001 1/exp(DuboisRaymond)^2*Artin^2*FeigenbaumC^2 3178155917016004 m001 (GAMMA(1/24)-Zeta(5)*GAMMA(1/6))/GAMMA(1/6) 3178155929636929 a007 Real Root Of 106*x^4+211*x^3-32*x^2+931*x-759 3178155947746681 m008 (5/6*Pi^4-5)/(1/4*Pi^6-2/3) 3178155949316632 l006 ln(408/9793) 3178155960208322 r005 Im(z^2+c),c=15/52+7/44*I,n=35 3178155964052483 r005 Im(z^2+c),c=13/90+13/45*I,n=30 3178155973765757 a001 1/167732*(1/2*5^(1/2)+1/2)^10*2207^(4/21) 3178155984403160 r005 Re(z^2+c),c=-11/56+24/49*I,n=5 3178155989553449 m001 (OneNinth+TreeGrowth2nd)/(ln(3)+GolombDickman) 3178155991609394 a001 14662949395604/5*317811^(11/15) 3178155991614009 a001 370248451/5*591286729879^(11/15) 3178155991614009 a001 73681302247/5*433494437^(11/15) 3178156028069977 m004 (-125*Pi)/2+Log[Sqrt[5]*Pi]+6*Sinh[Sqrt[5]*Pi] 3178156029308800 r009 Re(z^3+c),c=-11/64+37/41*I,n=6 3178156030919970 a001 1/322*(1/2*5^(1/2)+1/2)^17*3^(23/24) 3178156034157131 r009 Re(z^3+c),c=-51/106+18/43*I,n=47 3178156055139440 a001 312119004989/2*6557470319842^(15/17) 3178156057480743 m001 (-GAMMA(19/24)+Tribonacci)/(Shi(1)+Zeta(5)) 3178156058369946 r002 59th iterates of z^2 + 3178156065470694 a007 Real Root Of -204*x^4-434*x^3+453*x^2-652*x+233 3178156094083537 r002 36i'th iterates of 2*x/(1-x^2) of 3178156111201734 r005 Im(z^2+c),c=-109/114+13/51*I,n=60 3178156115611416 k008 concat of cont frac of 3178156127189531 m001 (Rabbit-Stephens)/(Weierstrass-ZetaQ(2)) 3178156137121223 k008 concat of cont frac of 3178156143334131 g007 Psi(2,1/10)+Psi(2,1/9)-Psi(2,3/11)-Psi(2,2/9) 3178156144352314 m001 Pi*2^(1/2)/GAMMA(3/4)*gamma(1)-ZetaQ(2) 3178156161876246 a007 Real Root Of 248*x^4+819*x^3+489*x^2+982*x-829 3178156168489698 r005 Im(z^2+c),c=13/90+13/45*I,n=35 3178156168667383 r005 Re(z^2+c),c=-97/82+7/40*I,n=58 3178156176416399 a007 Real Root Of -337*x^4-965*x^3+198*x^2-180*x+832 3178156192468858 m007 (-4*gamma-12*ln(2)+2*Pi+1/3)/(-4/5*gamma-4/5) 3178156193111962 r002 38th iterates of z^2 + 3178156195099778 a001 521/225851433717*3^(7/24) 3178156200210347 l006 ln(407/9769) 3178156227995499 a007 Real Root Of -677*x^4+708*x^3+889*x^2+813*x-364 3178156233810479 r005 Re(z^2+c),c=-43/118+3/8*I,n=17 3178156236302469 l006 ln(5843/8029) 3178156239955046 m005 (1/2*gamma-3)/(4/9*3^(1/2)+1/12) 3178156245606689 m001 (MertensB3+Otter)/(cos(1)+cos(1/5*Pi)) 3178156252344221 r005 Im(z^2+c),c=-19/98+40/59*I,n=35 3178156260716773 r005 Im(z^2+c),c=-33/31+14/39*I,n=8 3178156261508963 v003 sum((n^3+5/2*n^2+1/2*n+16)/n^n,n=1..infinity) 3178156263000984 r005 Im(z^2+c),c=-13/32+17/29*I,n=8 3178156265405576 k002 Champernowne real with 31/2*n^2+1/2*n+15 3178156269941911 m001 (GAMMA(17/24)-Bloch)/(Riemann3rdZero+Stephens) 3178156285434844 r009 Re(z^3+c),c=-16/27+13/56*I,n=15 3178156292317105 h001 (2/3*exp(1)+1/5)/(9/11*exp(2)+2/7) 3178156292778107 m001 (GAMMA(23/24)-FeigenbaumMu)/(Kac+ZetaP(3)) 3178156296172807 r005 Im(z^2+c),c=13/90+13/45*I,n=32 3178156299503871 m009 (1/3*Psi(1,2/3)+5)/(2/3*Psi(1,3/4)+1/5) 3178156301001250 r002 5th iterates of z^2 + 3178156308482970 m006 (2/5*Pi^2+1/3)/(1/4*exp(2*Pi)+5/6) 3178156309130813 m008 (5*Pi^5+1/6)/(1/2*Pi^6+4/5) 3178156309915746 m002 -3-Pi^2-Pi^5+ProductLog[Pi] 3178156311241776 a007 Real Root Of -957*x^4-503*x^3-432*x^2+811*x+295 3178156311329622 r005 Im(z^2+c),c=13/90+13/45*I,n=36 3178156316112583 m005 (1/2*gamma+9/10)/(5/11*gamma-7/11) 3178156317327979 r005 Im(z^2+c),c=-10/27+29/54*I,n=50 3178156319244654 r009 Im(z^3+c),c=-14/31+9/41*I,n=10 3178156325951176 m001 GAMMA(1/6)^ln(2+sqrt(3))/(GAMMA(1/6)^Cahen) 3178156330706346 r009 Im(z^3+c),c=-39/82+19/39*I,n=6 3178156333192053 r002 46th iterates of z^2 + 3178156338035040 h001 (1/9*exp(2)+3/5)/(1/11*exp(1)+1/5) 3178156342695650 m001 ln(FeigenbaumKappa)/Paris^2*Zeta(7)^2 3178156346288144 m001 1/LambertW(1)^2/Ei(1)^2/exp(Zeta(9)) 3178156350282991 a007 Real Root Of 208*x^4+460*x^3-829*x^2-456*x+470 3178156358799079 m004 -4-25*Pi+25*Pi*Csc[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 3178156368443723 h005 exp(cos(Pi*2/25)/cos(Pi*27/56)) 3178156373227305 a001 29/13*89^(29/49) 3178156383831080 r005 Re(z^2+c),c=-29/78+11/31*I,n=35 3178156393858702 m001 Robbin*Rabbit^2/exp(sinh(1))^2 3178156407236570 r002 13th iterates of z^2 + 3178156409150441 r005 Im(z^2+c),c=13/90+13/45*I,n=40 3178156412306538 r005 Im(z^2+c),c=-13/38+3/56*I,n=6 3178156416967634 m005 (1/2*5^(1/2)-3/10)/(5/8*exp(1)+7/8) 3178156417235495 r005 Re(z^2+c),c=-11/31+26/63*I,n=30 3178156418554087 r005 Im(z^2+c),c=13/90+13/45*I,n=39 3178156427487718 m005 (1/2*Catalan-7/11)/(1/8*3^(1/2)-7/9) 3178156430122536 m001 (3^(1/2)+GAMMA(2/3))/(Zeta(1,2)+MertensB2) 3178156436733054 r005 Im(z^2+c),c=13/90+13/45*I,n=44 3178156441007253 r005 Im(z^2+c),c=13/90+13/45*I,n=45 3178156441807018 r005 Im(z^2+c),c=13/90+13/45*I,n=48 3178156441957890 r005 Im(z^2+c),c=13/90+13/45*I,n=49 3178156442382997 r005 Im(z^2+c),c=13/90+13/45*I,n=53 3178156442463305 r005 Im(z^2+c),c=13/90+13/45*I,n=52 3178156442477295 r005 Im(z^2+c),c=13/90+13/45*I,n=57 3178156442485783 r005 Im(z^2+c),c=13/90+13/45*I,n=54 3178156442485898 r005 Im(z^2+c),c=13/90+13/45*I,n=58 3178156442491514 r005 Im(z^2+c),c=13/90+13/45*I,n=62 3178156442492020 r005 Im(z^2+c),c=13/90+13/45*I,n=61 3178156442493697 r005 Im(z^2+c),c=13/90+13/45*I,n=63 3178156442494303 r005 Im(z^2+c),c=13/90+13/45*I,n=64 3178156442497538 r005 Im(z^2+c),c=13/90+13/45*I,n=60 3178156442498746 r005 Im(z^2+c),c=13/90+13/45*I,n=59 3178156442504659 r005 Im(z^2+c),c=13/90+13/45*I,n=56 3178156442537605 r005 Im(z^2+c),c=13/90+13/45*I,n=55 3178156442678993 r005 Im(z^2+c),c=13/90+13/45*I,n=50 3178156442748053 r005 Im(z^2+c),c=13/90+13/45*I,n=51 3178156443489337 r005 Im(z^2+c),c=13/90+13/45*I,n=47 3178156443554820 r005 Im(z^2+c),c=13/90+13/45*I,n=43 3178156444597997 r005 Im(z^2+c),c=13/90+13/45*I,n=46 3178156446294341 r005 Im(z^2+c),c=13/90+13/45*I,n=41 3178156447877107 m001 1/BesselJ(0,1)*Champernowne/ln(BesselK(1,1)) 3178156447976752 r005 Im(z^2+c),c=31/126+7/34*I,n=20 3178156448481507 m002 (Pi^4*Csch[Pi]*Sech[Pi])/(2*Log[Pi]) 3178156452339928 l006 ln(406/9745) 3178156456933054 r005 Im(z^2+c),c=13/90+13/45*I,n=42 3178156457972093 m005 (1/3*5^(1/2)-1/2)/(1/10*gamma+5/7) 3178156458358275 r009 Im(z^3+c),c=-51/122+10/33*I,n=4 3178156463794794 r005 Im(z^2+c),c=-11/50+25/52*I,n=30 3178156474164976 m001 Paris^(Pi*2^(1/2)/GAMMA(3/4))/(Paris^ZetaR(2)) 3178156483834094 r005 Re(z^2+c),c=-7/10+63/248*I,n=24 3178156494142382 r009 Im(z^3+c),c=-10/21+5/28*I,n=62 3178156494661728 m001 (ln(Pi)-CareFree)/(Robbin+Sarnak) 3178156500038239 a001 1/3009828*(1/2*5^(1/2)+1/2)^18*39603^(1/21) 3178156502336691 a001 1/4870004*(1/2*5^(1/2)+1/2)^8*64079^(11/21) 3178156503124415 r005 Im(z^2+c),c=-127/118+2/55*I,n=21 3178156504109193 a007 Real Root Of -519*x^4+201*x^3-621*x^2+546*x+248 3178156505904621 m001 (cos(1/5*Pi)-CopelandErdos)/(Landau-Sarnak) 3178156509976511 r005 Re(z^2+c),c=-11/32+13/29*I,n=49 3178156512792813 r005 Im(z^2+c),c=13/90+13/45*I,n=38 3178156512913873 a007 Real Root Of -211*x^4-379*x^3+685*x^2-469*x+951 3178156513166398 m001 (Pi-2^(1/3))/(HardyLittlewoodC3-Stephens) 3178156517085939 m001 HardyLittlewoodC4^HeathBrownMoroz/Pi 3178156517624541 b008 3+E^(1/15)/6 3178156521014756 a001 1/710524*(1/2*5^(1/2)+1/2)^7*9349^(10/21) 3178156525026528 r009 Re(z^3+c),c=-7/118+38/55*I,n=64 3178156526582179 r005 Re(z^2+c),c=-19/54+15/46*I,n=6 3178156531591913 r005 Im(z^2+c),c=13/90+13/45*I,n=37 3178156543359599 m001 Catalan+Si(Pi)^PisotVijayaraghavan 3178156545984069 m001 (CopelandErdos-Gompertz)/(GAMMA(2/3)-Ei(1,1)) 3178156558251229 r005 Re(z^2+c),c=-25/66+18/55*I,n=42 3178156569163180 r005 Im(z^2+c),c=-19/16+1/31*I,n=18 3178156572453727 m001 (Trott2nd-ZetaQ(3))/(BesselK(1,1)-Landau) 3178156578685377 a001 1/1364*47^(8/21) 3178156585863259 l006 ln(3563/4896) 3178156587380991 r005 Im(z^2+c),c=-37/122+28/59*I,n=12 3178156593542722 a001 1/4870847*2^(29/46) 3178156603275462 m001 1/BesselK(0,1)*Khintchine^2/exp(Zeta(1/2))^2 3178156614230422 m002 -6-Pi^5-Cosh[Pi]/2 3178156617600960 m001 (GAMMA(19/24)+HardHexagonsEntropy)^GAMMA(3/4) 3178156626379442 r005 Re(z^2+c),c=-15/56+21/44*I,n=10 3178156627527617 m005 (31/28+1/4*5^(1/2))/(1/9*exp(1)+2/9) 3178156627788296 a007 Real Root Of -319*x^4-725*x^3+831*x^2-170*x+338 3178156637269567 a003 cos(Pi*25/67)-cos(Pi*32/67) 3178156637704841 a007 Real Root Of -245*x^4-971*x^3-499*x^2+323*x-108 3178156639639728 r005 Im(z^2+c),c=13/90+13/45*I,n=34 3178156642655713 b008 Pi+ExpIntegralE[3,1]/3 3178156642655713 b008 Pi-ExpIntegralEi[-1]/6 3178156664749291 m001 cosh(1)/ln(GAMMA(1/3))^2*sqrt(2)^2 3178156669271425 r005 Re(z^2+c),c=-25/66+18/55*I,n=44 3178156675014973 b008 30+ArcCsch[ArcCoth[3]] 3178156691855552 a001 1/271396*(1/2*5^(1/2)+1/2)^10*3571^(5/21) 3178156696902317 m001 (MertensB3-TwinPrimes)/(Pi-GAMMA(23/24)) 3178156705714529 l006 ln(405/9721) 3178156706955536 r005 Im(z^2+c),c=7/36+13/36*I,n=4 3178156721853369 r009 Im(z^3+c),c=-27/50+22/47*I,n=6 3178156727838458 r005 Im(z^2+c),c=-39/34+12/43*I,n=38 3178156737401441 r005 Im(z^2+c),c=-13/36+24/43*I,n=36 3178156742267598 m001 (GAMMA(7/12)-FeigenbaumC)/(ln(2)+sin(1/12*Pi)) 3178156754614047 a007 Real Root Of 217*x^4+644*x^3-521*x^2-902*x+930 3178156781927657 r005 Im(z^2+c),c=-6/25+25/31*I,n=17 3178156782097949 m001 exp(ArtinRank2)/Champernowne^2/PrimesInBinary 3178156783592775 r005 Re(z^2+c),c=-77/106+9/61*I,n=17 3178156801073620 a005 (1/cos(15/236*Pi))^746 3178156806703675 m005 (1/2*exp(1)-1/8)/(1/9*2^(1/2)-6/11) 3178156807712404 r009 Im(z^3+c),c=-9/94+11/14*I,n=25 3178156828283601 a005 (1/sin(31/68*Pi))^120 3178156829081826 l006 ln(9507/9814) 3178156830663712 a007 Real Root Of -47*x^4+982*x^3-916*x^2+442*x+265 3178156834270671 p003 LerchPhi(1/16,1,31/97) 3178156834355986 m001 Artin-Gompertz-Otter 3178156888490687 r005 Im(z^2+c),c=-11/60+20/43*I,n=22 3178156894393353 r005 Re(z^2+c),c=-11/29+14/43*I,n=25 3178156911250098 m001 (1+ln(2^(1/2)+1))/(-cos(1/12*Pi)+Artin) 3178156941695824 r002 11th iterates of z^2 + 3178156945377899 a008 Real Root of x^2-x-100689 3178156946597520 a007 Real Root Of -838*x^4-125*x^3-302*x^2+812*x-215 3178156954449663 a007 Real Root Of -640*x^4-168*x^3+944*x^2+672*x-297 3178156959611440 a007 Real Root Of -x^4-37*x^3-183*x^2-523*x+701 3178156960343396 l006 ln(404/9697) 3178156971268309 r005 Im(z^2+c),c=-19/94+26/55*I,n=46 3178156991718324 m001 KhintchineLevy^2/exp(Lehmer)^2/GAMMA(2/3) 3178156998728533 a003 sin(Pi*44/117)-sin(Pi*13/32) 3178157001920255 m001 (CopelandErdos-RenyiParking)/(ln(3)+Zeta(1,2)) 3178157006399069 a001 1730726404001/17*956722026041^(7/24) 3178157007341513 l006 ln(4846/6659) 3178157009862170 m005 (1/2*3^(1/2)-9/11)/(6/11*5^(1/2)+2/7) 3178157010106785 r005 Im(z^2+c),c=5/19+25/52*I,n=33 3178157049548099 m001 1/GAMMA(23/24)/exp(GAMMA(1/3))^2/Zeta(3)^2 3178157049770006 r005 Re(z^2+c),c=-25/62+11/54*I,n=19 3178157052127474 a007 Real Root Of 404*x^4+982*x^3-763*x^2+629*x+12 3178157064525187 r005 Im(z^2+c),c=-67/110+12/31*I,n=56 3178157071545102 a007 Real Root Of 290*x^4+807*x^3-568*x^2-529*x+375 3178157076359782 m001 (Gompertz+ZetaP(3))/(Zeta(1/2)-cos(1/12*Pi)) 3178157076573290 m001 (Pi+GAMMA(7/12))/(CopelandErdos-Niven) 3178157082040231 m001 (PlouffeB+Tribonacci)/(GAMMA(2/3)-Kac) 3178157084263231 r005 Re(z^2+c),c=-71/114+31/64*I,n=12 3178157085858734 r005 Re(z^2+c),c=-5/16+17/32*I,n=63 3178157109238266 r005 Im(z^2+c),c=-17/14+31/162*I,n=8 3178157113731817 m001 (QuadraticClass-ZetaP(2))^FeigenbaumKappa 3178157115117142 k007 concat of cont frac of 3178157125276308 m001 GAMMA(19/24)-exp(1)+FibonacciFactorial 3178157133941611 a007 Real Root Of 301*x^4+961*x^3+124*x^2+483*x+423 3178157136553725 m001 GAMMA(13/24)*FransenRobinson*exp(cos(Pi/12))^2 3178157147159722 m001 (LandauRamanujan2nd-Sarnak)/(Pi+ln(2+3^(1/2))) 3178157167486699 r005 Re(z^2+c),c=-41/34+4/27*I,n=28 3178157174222952 m005 (1/2*Catalan-6/11)/(5/6*5^(1/2)+8/9) 3178157175875712 a007 Real Root Of -296*x^4-756*x^3+469*x^2-62*x+996 3178157192404284 r009 Im(z^3+c),c=-21/44+11/62*I,n=62 3178157194088642 r005 Im(z^2+c),c=13/90+13/45*I,n=33 3178157206391938 m001 1/GAMMA(1/3)/ln(BesselJ(0,1))^2/GAMMA(13/24) 3178157216235864 l006 ln(403/9673) 3178157221140102 k006 concat of cont frac of 3178157221268386 a001 521*(1/2*5^(1/2)+1/2)^31*3^(9/14) 3178157252361413 l006 ln(6129/8422) 3178157252767873 r005 Re(z^2+c),c=-4/5+29/73*I,n=2 3178157257547476 m001 1/sin(Pi/12)^2*ln(GAMMA(1/4))*sqrt(1+sqrt(3)) 3178157265214629 a001 76/121393*55^(49/50) 3178157267408581 k004 Champernowne real with floor(Pi*(5*n^2+5)) 3178157268411586 k002 Champernowne real with 16*n^2-n+16 3178157271429725 m005 (1/2*3^(1/2)+5/8)/(1/7*Catalan-3/5) 3178157273138502 m001 1/Zeta(5)^2/ln(KhintchineLevy)^2 3178157276662540 r009 Re(z^3+c),c=-37/82+4/19*I,n=4 3178157291191972 m001 (Pi+1)/(-arctan(1/2)+1/3) 3178157291492720 m001 (HardyLittlewoodC4-Rabbit)/(Robbin-Tetranacci) 3178157302761752 a007 Real Root Of -111*x^4+769*x^3+733*x^2+747*x-335 3178157304860777 m006 (Pi^2-2/3)/(4/5*Pi^2-5) 3178157304860777 m008 (Pi^2-2/3)/(4/5*Pi^2-5) 3178157305206980 m001 Riemann2ndZero*(LandauRamanujan+RenyiParking) 3178157305896084 r005 Im(z^2+c),c=-9/44+9/19*I,n=38 3178157317298697 a007 Real Root Of 196*x^4+848*x^3+445*x^2-666*x+614 3178157336253738 m001 1/exp(GAMMA(11/12))^2/TwinPrimes/gamma 3178157344476073 a007 Real Root Of -278*x^4-881*x^3+221*x^2+691*x+45 3178157350899551 r005 Re(z^2+c),c=-11/27+10/57*I,n=20 3178157374423291 a007 Real Root Of 481*x^4-887*x^3-991*x^2-899*x-219 3178157375151265 m001 (Landau-Salem)/(ln(gamma)-3^(1/3)) 3178157398299676 r009 Im(z^3+c),c=-45/94+3/16*I,n=20 3178157409081045 m002 -5+Pi*Cosh[Pi]+Log[Pi]/Pi 3178157411992335 r009 Im(z^3+c),c=-43/90+2/11*I,n=25 3178157416935247 m001 1/Paris/FeigenbaumDelta^2/exp(FeigenbaumD) 3178157417213212 m002 -3-Pi^3+3*ProductLog[Pi]-Tanh[Pi] 3178157419615861 h001 (1/10*exp(2)+7/11)/(5/9*exp(2)+2/9) 3178157419983993 r005 Im(z^2+c),c=-25/62+29/42*I,n=5 3178157421513123 k007 concat of cont frac of 3178157427057975 r005 Re(z^2+c),c=-15/26+8/111*I,n=4 3178157429087678 r005 Re(z^2+c),c=-37/118+29/56*I,n=36 3178157432295737 m001 Totient*ZetaQ(3)^GaussKuzminWirsing 3178157436388031 m001 BesselI(1,2)-FeigenbaumAlpha^CareFree 3178157444692930 a007 Real Root Of -728*x^4+458*x^3-801*x^2+883*x-207 3178157449787311 r009 Im(z^3+c),c=-41/74+8/41*I,n=33 3178157451939476 m001 (polylog(4,1/2)-Grothendieck)/(Pi+Chi(1)) 3178157462468746 r002 15th iterates of z^2 + 3178157463779362 m003 1/2+Sqrt[5]/256-15*Tan[1/2+Sqrt[5]/2] 3178157464630198 m001 (Pi^(1/2)-Si(Pi))/(-Riemann3rdZero+ZetaQ(4)) 3178157473401362 l006 ln(402/9649) 3178157494860067 m001 1/ln(GAMMA(1/6))^2/OneNinth*Zeta(7) 3178157518166715 m001 1/Zeta(7)^2*ln(CopelandErdos)*sqrt(5) 3178157525267066 a003 sin(Pi*23/63)/cos(Pi*11/27) 3178157527533720 r005 Re(z^2+c),c=-19/62+24/43*I,n=43 3178157543580508 h001 (5/11*exp(1)+5/12)/(2/3*exp(2)+3/11) 3178157548991554 m001 Artin^HardyLittlewoodC5*PlouffeB 3178157550346546 r005 Re(z^2+c),c=-15/28+4/61*I,n=4 3178157554945863 r002 40th iterates of z^2 + 3178157579727748 a007 Real Root Of 414*x^4+901*x^3-957*x^2+943*x-651 3178157586554226 m006 (1/5*Pi-3)/(1/4/Pi+2/3) 3178157602028491 m001 (BesselI(0,1)-gamma(1))/(FellerTornier+Paris) 3178157606191898 a001 10946/7*47^(7/38) 3178157610983767 m003 -24/5+Cosh[1/2+Sqrt[5]/2]-Sin[1/2+Sqrt[5]/2] 3178157625907326 r009 Im(z^3+c),c=-5/82+8/23*I,n=9 3178157627624790 r009 Re(z^3+c),c=-31/78+17/61*I,n=26 3178157631964042 m001 ArtinRank2^2*Artin^2/exp(FeigenbaumD)^2 3178157636730578 r005 Im(z^2+c),c=1/114+16/43*I,n=11 3178157636894328 m005 (1/2*3^(1/2)+8/9)/(7/12*gamma-8/9) 3178157644838315 a007 Real Root Of 331*x^4+945*x^3-549*x^2-670*x-18 3178157654611451 m002 Pi^5+(5*Log[Pi])/E^Pi+Sinh[Pi] 3178157655157979 r005 Im(z^2+c),c=-7/54+26/59*I,n=35 3178157659055601 r005 Im(z^2+c),c=-1/66+5/13*I,n=25 3178157666390446 r005 Re(z^2+c),c=17/60+4/43*I,n=16 3178157667595042 h001 (-5*exp(1/2)-9)/(-3*exp(3)+6) 3178157691497966 m005 (1/2*exp(1)+1/3)/(1/11*2^(1/2)-2/11) 3178157715029386 m001 (Zeta(3)-cos(1/5*Pi))/(Ei(1,1)-Backhouse) 3178157716562605 a007 Real Root Of 385*x^4-353*x^3-38*x^2-779*x-259 3178157726407242 m001 CareFree/Champernowne*ln(KhintchineHarmonic) 3178157728369385 m001 (gamma(3)-FeigenbaumB)/(Kolakoski-Magata) 3178157731849415 l006 ln(401/9625) 3178157747260239 a001 21*18^(47/50) 3178157748802943 m001 cos(1)-exp(1/exp(1))^FeigenbaumMu 3178157750120148 p003 LerchPhi(1/8,3,349/236) 3178157756449676 a007 Real Root Of -287*x^4-935*x^3+93*x^2+811*x+904 3178157757304884 a007 Real Root Of -555*x^4+514*x^3+975*x^2+128*x-150 3178157757748455 r009 Im(z^3+c),c=-23/110+12/37*I,n=12 3178157764682691 r009 Im(z^3+c),c=-27/62+13/60*I,n=19 3178157765238634 m001 1/Riemann1stZero/Lehmer/exp(Robbin)^2 3178157772898669 a003 cos(Pi*18/67)-sin(Pi*11/25) 3178157776461508 r009 Re(z^3+c),c=-21/50+11/35*I,n=22 3178157776508007 r005 Re(z^2+c),c=-29/94+27/49*I,n=62 3178157777646261 m001 (ln(3)-3^(1/3))/(ln(2+3^(1/2))-CopelandErdos) 3178157791173606 m001 (FeigenbaumC-FellerTornier)/(Magata+Totient) 3178157819901966 r009 Im(z^3+c),c=-3/22+19/56*I,n=9 3178157826531224 a007 Real Root Of -118*x^4-7*x^3+989*x^2-452*x+388 3178157830443237 r009 Im(z^3+c),c=-47/86+17/57*I,n=35 3178157843692140 r005 Re(z^2+c),c=-33/86+19/62*I,n=39 3178157844517265 m001 exp(1)^cos(1)+MinimumGamma 3178157849564416 a007 Real Root Of 432*x^4-348*x^3+254*x^2-144*x-87 3178157852317829 r005 Re(z^2+c),c=-9/25+12/37*I,n=9 3178157860127660 m005 (1/2*3^(1/2)-1/8)/(1/12*Zeta(3)-1/3) 3178157865295893 m001 ArtinRank2*FeigenbaumAlpha/ln(sqrt(3)) 3178157894219615 r002 26th iterates of z^2 + 3178157895475224 m001 Landau^GolombDickman/(Magata^GolombDickman) 3178157910245085 r004 Im(z^2+c),c=-21/22+3/10*I,z(0)=-1,n=5 3178157916729773 r009 Im(z^3+c),c=-9/56+19/58*I,n=2 3178157932475089 m001 Kolakoski*FeigenbaumDelta^2*ln(FeigenbaumB) 3178157935470117 a001 1/29*(1/2*5^(1/2)+1/2)^4*47^(1/13) 3178157937643816 g002 Psi(4/9)-Psi(6/11)-Psi(4/11)-Psi(6/7) 3178157940040023 p001 sum(1/(469*n+326)/(12^n),n=0..infinity) 3178157952006957 r005 Re(z^2+c),c=-13/32+3/16*I,n=14 3178157956457569 m001 (Psi(2,1/3)+Backhouse)/(-KomornikLoreti+Paris) 3178157958086473 r009 Re(z^3+c),c=-3/8+15/62*I,n=20 3178157965823713 m001 2^(1/2)*(Pi+1)-2/3*Pi*3^(1/2)/GAMMA(2/3) 3178157973241043 m002 Pi^4/(E^Pi*Log[Pi])-Sinh[Pi]/E^Pi 3178157977325698 r009 Re(z^3+c),c=-35/74+23/58*I,n=57 3178157991589641 l006 ln(400/9601) 3178157991619825 a007 Real Root Of 926*x^4-906*x^3+324*x^2-704*x-295 3178157996758048 m001 LandauRamanujan2nd/(FeigenbaumKappa+PlouffeB) 3178157997099674 m001 exp(GAMMA(5/6))*GAMMA(23/24)*Zeta(9) 3178158002462474 a007 Real Root Of 898*x^4-718*x^3+408*x^2-779*x-321 3178158013237380 r002 26th iterates of z^2 + 3178158017110362 r005 Re(z^2+c),c=-17/46+11/31*I,n=19 3178158027176648 q001 1263/3974 3178158033725020 m001 (sin(1)+ln(Pi))/(-ThueMorse+Weierstrass) 3178158040592952 r009 Re(z^3+c),c=-13/27+11/27*I,n=48 3178158042743769 m001 (Backhouse+FeigenbaumD)/(Si(Pi)+ln(gamma)) 3178158043757780 h001 (8/9*exp(2)+1/6)/(6/11*exp(1)+7/11) 3178158060902392 a001 610/47*521^(51/58) 3178158072665882 a001 13201/48*1597^(1/51) 3178158075764618 a007 Real Root Of 453*x^4+188*x^3+988*x^2-661*x-22 3178158081611083 h001 (7/10*exp(1)+5/11)/(10/11*exp(2)+7/10) 3178158091271144 r009 Im(z^3+c),c=-6/31+21/64*I,n=11 3178158125782486 r009 Im(z^3+c),c=-57/122+7/32*I,n=9 3178158125873779 m001 FellerTornier*HeathBrownMoroz*RenyiParking 3178158126204021 r005 Im(z^2+c),c=-4/21+29/62*I,n=45 3178158127770102 m001 3^(1/2)+ln(2+3^(1/2))^Totient 3178158131021822 m001 1/GAMMA(13/24)*ln(GAMMA(1/4))^2*Pi 3178158136844954 h001 (2/3*exp(1)+1/9)/(1/10*exp(1)+1/3) 3178158136844954 m005 (4*exp(1)+2/3)/(3/5*exp(1)+2) 3178158149363755 a001 3/1346269*2^(21/41) 3178158172224095 a007 Real Root Of 33*x^4+114*x^3-65*x^2-810*x+260 3178158175288629 m001 (GAMMA(17/24)-Paris)/(Zeta(1,-1)-exp(-1/2*Pi)) 3178158176367337 r009 Im(z^3+c),c=-7/50+21/62*I,n=13 3178158177822337 l006 ln(1283/1763) 3178158182648229 m001 BesselJZeros(0,1)/(LandauRamanujan^Zeta(5)) 3178158186400946 r009 Re(z^3+c),c=-3/64+29/63*I,n=15 3178158186416521 s002 sum(A249801[n]/((2^n-1)/n),n=1..infinity) 3178158196543457 r005 Im(z^2+c),c=11/32+5/31*I,n=22 3178158221549738 m001 (Niven-ZetaP(3))/(gamma(2)-Bloch) 3178158224564597 m001 (PolyaRandomWalk3D+Totient)/(1-GAMMA(7/12)) 3178158227229376 r005 Im(z^2+c),c=-19/58+13/24*I,n=40 3178158232941437 p001 sum(1/(92*n+33)/(6^n),n=0..infinity) 3178158234987198 r009 Re(z^3+c),c=-6/13+14/37*I,n=53 3178158245459001 a007 Real Root Of 454*x^4-33*x^3+862*x^2+37*x-81 3178158252631755 l006 ln(399/9577) 3178158255907385 m005 (1/3*3^(1/2)-1/7)/(2/3*Pi-8/11) 3178158259228138 a007 Real Root Of 620*x^4-619*x^3-959*x^2-787*x+26 3178158261578663 g001 Psi(3/7,20/67) 3178158270840689 a003 sin(Pi*1/100)/sin(Pi*51/113) 3178158271417596 k002 Champernowne real with 33/2*n^2-5/2*n+17 3178158281418106 m001 (exp(Pi)+ln(5))/(ArtinRank2+StolarskyHarborth) 3178158287373695 m005 (1/2*Catalan-4/11)/(-13/24+3/8*5^(1/2)) 3178158305144663 r005 Re(z^2+c),c=-33/98+15/32*I,n=58 3178158308562889 r005 Im(z^2+c),c=-1/86+18/47*I,n=17 3178158313085488 s002 sum(A078014[n]/(exp(n)),n=1..infinity) 3178158323368756 h001 (1/2*exp(1)+10/11)/(11/12*exp(2)+4/11) 3178158326578318 r005 Im(z^2+c),c=-10/31+23/44*I,n=39 3178158334776551 m001 (3^(1/3)-BesselI(1,1))/(Sierpinski+ZetaP(3)) 3178158335809796 a007 Real Root Of 152*x^4+741*x^3+797*x^2-92*x-63 3178158339792577 m005 (1/2*exp(1)+1/2)/(1/8*Zeta(3)-6) 3178158341091432 a008 Real Root of x^4-x^3-24*x^2+14*x+128 3178158350013080 m001 1/ln(Porter)^2*MadelungNaCl^2*GAMMA(7/12) 3178158367714243 r005 Im(z^2+c),c=-23/106+16/33*I,n=16 3178158389579575 m005 (1/2*Catalan-3)/(1/8*3^(1/2)+7/12) 3178158400824887 m002 2+Pi^5+Pi^2*Tanh[Pi]^2 3178158407726513 m001 (Psi(2,1/3)-exp(-Pi))^Sierpinski 3178158408524322 a007 Real Root Of -417*x^4+682*x^3+929*x^2+675*x-326 3178158409607469 m001 GAMMA(11/24)/LandauRamanujan/exp(Zeta(5))^2 3178158411890137 m005 (23/28+1/4*5^(1/2))/(2/7*Zeta(3)+1/11) 3178158422874328 m006 (3/4*exp(2*Pi)-5/6)/(2/3*Pi-5/6) 3178158423812184 m001 (Lehmer+Tribonacci)/BesselJ(0,1) 3178158426266851 r005 Im(z^2+c),c=1/19+17/49*I,n=10 3178158437795314 m001 (Khinchin+Thue)/(Psi(1,1/3)+Shi(1)) 3178158437927874 a007 Real Root Of 23*x^4-922*x^3+652*x^2-763*x+206 3178158443010036 m001 Psi(1,1/3)^Trott/FellerTornier 3178158453849826 m001 (Tetranacci-ZetaP(3))/(gamma(1)+GolombDickman) 3178158457050175 r002 34th iterates of z^2 + 3178158480850541 a007 Real Root Of 771*x^4-600*x^3+120*x^2-553*x-215 3178158483279855 m005 (1/2*Zeta(3)-1/4)/(4/5*Zeta(3)+1/7) 3178158486440383 r005 Re(z^2+c),c=-31/60+11/25*I,n=22 3178158486473231 r005 Im(z^2+c),c=-17/70+24/49*I,n=51 3178158492251146 r009 Re(z^3+c),c=-15/31+5/39*I,n=5 3178158495924313 r009 Re(z^3+c),c=-29/64+23/63*I,n=37 3178158498429083 a007 Real Root Of -19*x^4-594*x^3+327*x^2+457*x+436 3178158504976189 a001 1364/3*2584^(20/37) 3178158514985570 l006 ln(398/9553) 3178158519428295 m002 Pi^5+Pi^2*Log[Pi]+Tanh[Pi]/2 3178158536451154 s001 sum(1/10^(n-1)*A287301[n]/n!^2,n=1..infinity) 3178158541019662 a001 635625/2+3/2*5^(1/2) 3178158550316239 r009 Re(z^3+c),c=-37/110+9/38*I,n=2 3178158551842033 a007 Real Root Of -154*x^4+619*x^3+69*x^2+984*x-338 3178158557338249 r009 Re(z^3+c),c=-19/66+1/30*I,n=5 3178158558685760 m001 (-LambertW(1)+Conway)/(2^(1/3)+Shi(1)) 3178158569426567 r009 Im(z^3+c),c=-11/24+28/53*I,n=35 3178158583871044 m001 (Riemann1stZero+Sarnak)/(Artin-sin(1)) 3178158591723191 m005 (1/2*2^(1/2)+5/7)/(3/11*3^(1/2)+4) 3178158592864275 r005 Re(z^2+c),c=-41/102+2/11*I,n=10 3178158593668558 b008 Pi+Cos[1/2]/24 3178158594726882 m001 FeigenbaumDelta^exp(1/Pi)+GAMMA(1/24) 3178158597630678 a007 Real Root Of -121*x^4-299*x^3-82*x^2-880*x+778 3178158600824298 m001 (PlouffeB-ZetaQ(3))/(Zeta(1,-1)-Conway) 3178158604325135 a001 1/6624*75025^(47/53) 3178158605801099 b008 -1/9*Pi+ArcSinh[17] 3178158607457749 r009 Re(z^3+c),c=-39/82+13/33*I,n=39 3178158636465179 a005 (1/sin(43/147*Pi))^276 3178158650813976 a003 cos(Pi*2/69)/sin(Pi*7/69) 3178158652079275 h001 (11/12*exp(1)+1/2)/(3/11*exp(1)+1/5) 3178158655085217 a001 2/109801*11^(13/56) 3178158656259527 m001 (5^(1/2)-cos(1))/(gamma(2)+Landau) 3178158677864782 p001 sum(1/(315*n+179)/n/(64^n),n=1..infinity) 3178158696666899 m004 -3*E^(Sqrt[5]*Pi)+(125*Pi)/2-Log[Sqrt[5]*Pi] 3178158698469856 m001 (Zeta(3)+Zeta(1/2))/(exp(1/Pi)-Backhouse) 3178158708216006 a007 Real Root Of 330*x^4+460*x^3-271*x^2-745*x-198 3178158714619396 m001 (Kolakoski-Robbin)/(Pi+Zeta(5)) 3178158749998795 r005 Im(z^2+c),c=-17/106+5/11*I,n=45 3178158770613972 a001 11/9227465*987^(10/21) 3178158778660997 l006 ln(397/9529) 3178158778749492 a007 Real Root Of -320*x^4-717*x^3+915*x^2-307*x-587 3178158798895446 m001 1/GAMMA(1/12)*ln((3^(1/3)))/Zeta(9) 3178158800900000 a007 Real Root Of 189*x^4+637*x^3-62*x^2-603*x-124 3178158812137607 r005 Im(z^2+c),c=1/74+17/46*I,n=13 3178158820009970 r009 Re(z^3+c),c=-25/44+31/55*I,n=3 3178158833931804 a001 1/29*(1/2*5^(1/2)+1/2)^9*18^(1/15) 3178158834177449 a007 Real Root Of 972*x^4+731*x^3-687*x^2-645*x+241 3178158854578247 r005 Im(z^2+c),c=1/34+13/36*I,n=14 3178158856260260 r009 Im(z^3+c),c=-59/126+2/41*I,n=30 3178158856437633 m001 (Shi(1)+cos(1/5*Pi))/(ThueMorse+ZetaP(3)) 3178158857195669 a001 3/167761*521^(23/50) 3178158865480294 a007 Real Root Of -851*x^4+556*x^3+297*x^2+335*x+103 3178158866920222 a007 Real Root Of 613*x^4-791*x^3-83*x^2-184*x+86 3178158867861762 r005 Re(z^2+c),c=-35/62+11/26*I,n=14 3178158880302586 r005 Re(z^2+c),c=-37/122+14/25*I,n=20 3178158883352268 a007 Real Root Of -622*x^4-856*x^3-836*x^2+471*x+213 3178158885071726 r005 Re(z^2+c),c=-31/118+13/27*I,n=10 3178158891182717 m004 5/2+3/E^(Sqrt[5]*Pi)+Sin[Sqrt[5]*Pi] 3178158891228199 m005 (1/36+1/4*5^(1/2))/(6/11*exp(1)+4/11) 3178158905187176 r009 Im(z^3+c),c=-7/50+21/62*I,n=15 3178158907945397 q001 908/2857 3178158924091113 m004 -4-125*Pi+75*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 3178158929800860 m001 (Psi(1,1/3)+GAMMA(5/6))/(Otter+Stephens) 3178158939302544 p003 LerchPhi(1/64,5,337/169) 3178158941710431 m005 (1/3*Zeta(3)+1/4)/(3/11*Catalan-5/11) 3178158955583890 r005 Im(z^2+c),c=-13/10+14/249*I,n=7 3178158955887296 r005 Im(z^2+c),c=-11/16+2/91*I,n=17 3178158966861010 r005 Re(z^2+c),c=-59/102+4/55*I,n=4 3178158974464011 r009 Im(z^3+c),c=-7/50+21/62*I,n=18 3178158977997636 r009 Im(z^3+c),c=-7/50+21/62*I,n=20 3178158978251508 r009 Im(z^3+c),c=-7/50+21/62*I,n=23 3178158978263440 r009 Im(z^3+c),c=-7/50+21/62*I,n=21 3178158978268179 r009 Im(z^3+c),c=-7/50+21/62*I,n=25 3178158978268998 r009 Im(z^3+c),c=-7/50+21/62*I,n=26 3178158978269045 r009 Im(z^3+c),c=-7/50+21/62*I,n=28 3178158978269122 r009 Im(z^3+c),c=-7/50+21/62*I,n=30 3178158978269124 r009 Im(z^3+c),c=-7/50+21/62*I,n=31 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=33 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=35 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=36 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=38 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=41 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=40 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=43 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=46 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=48 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=51 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=53 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=56 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=58 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=61 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=63 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=64 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=62 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=59 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=60 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=57 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=55 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=54 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=52 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=50 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=49 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=45 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=47 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=44 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=42 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=39 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=37 3178158978269125 r009 Im(z^3+c),c=-7/50+21/62*I,n=34 3178158978269126 r009 Im(z^3+c),c=-7/50+21/62*I,n=32 3178158978269147 r009 Im(z^3+c),c=-7/50+21/62*I,n=29 3178158978269301 r009 Im(z^3+c),c=-7/50+21/62*I,n=27 3178158978274655 r009 Im(z^3+c),c=-7/50+21/62*I,n=24 3178158978303238 r009 Im(z^3+c),c=-7/50+21/62*I,n=22 3178158979589240 r009 Im(z^3+c),c=-7/50+21/62*I,n=19 3178158982177407 r009 Im(z^3+c),c=-7/50+21/62*I,n=16 3178158984539506 r009 Im(z^3+c),c=-7/50+21/62*I,n=17 3178158986877439 r009 Im(z^3+c),c=-11/56+20/61*I,n=6 3178158989333781 a008 Real Root of (2+7*x-7*x^3) 3178158999752497 a007 Real Root Of 991*x^4-128*x^3+646*x^2+206*x-14 3178159022014417 h001 (5/8*exp(2)+7/12)/(4/7*exp(1)+1/12) 3178159024285478 l006 ln(6701/9208) 3178159028840517 s002 sum(A272489[n]/(pi^n-1),n=1..infinity) 3178159038975648 a001 6/726103*2178309^(34/47) 3178159043668048 l006 ln(396/9505) 3178159044545787 a001 47/89*121393^(7/20) 3178159049391798 m005 (1/2*Pi-2/3)/(8/9*exp(1)+3/7) 3178159051805162 m001 (MertensB3+Tetranacci)/(ln(3)+gamma(1)) 3178159067677444 m001 Champernowne*Sierpinski-HeathBrownMoroz 3178159080695439 m001 (gamma(2)+BesselJ(1,1))/GAMMA(2/3) 3178159081321577 a001 11/139583862445*591286729879^(10/21) 3178159081321577 a001 11/1134903170*24157817^(10/21) 3178159118958298 r009 Re(z^3+c),c=-43/122+39/58*I,n=15 3178159127743927 a007 Real Root Of -152*x^4+456*x^3-939*x^2+840*x+378 3178159129891891 a003 sin(Pi*5/57)/cos(Pi*14/81) 3178159160225907 r005 Im(z^2+c),c=-11/70+16/35*I,n=12 3178159164508555 a003 cos(Pi*1/16)*cos(Pi*47/119) 3178159186944531 a007 Real Root Of 68*x^4-279*x^3+625*x^2-888*x-355 3178159197379137 m001 (ln(Pi)+Zeta(1/2))/(polylog(4,1/2)+PlouffeB) 3178159207534826 r002 50th iterates of z^2 + 3178159208667830 a007 Real Root Of 434*x^4-943*x^3-946*x^2-90*x+150 3178159217371950 a007 Real Root Of 286*x^4+736*x^3-837*x^2-916*x-9 3178159218337605 m005 (1/2*gamma-1/9)/(5/12*3^(1/2)-8/11) 3178159218670049 a007 Real Root Of -126*x^4-280*x^3+567*x^2+306*x-888 3178159218738799 r005 Im(z^2+c),c=19/110+34/57*I,n=20 3178159221831617 s002 sum(A023681[n]/((10^n+1)/n),n=1..infinity) 3178159224730689 l006 ln(5418/7445) 3178159226915402 m001 (arctan(1/2)-GAMMA(23/24))/(Lehmer+Salem) 3178159237791014 m006 (2/5*Pi^2+1/5)/(3/5*exp(Pi)-5/6) 3178159240321402 r005 Re(z^2+c),c=-77/74+3/5*I,n=2 3178159251961613 a007 Real Root Of 862*x^4+413*x^3-173*x^2-352*x-11 3178159262419212 m004 (5*E^(Sqrt[5]*Pi))/Pi+25*Pi+Sinh[Sqrt[5]*Pi]^2 3178159264040406 m001 (2^(1/3))/PrimesInBinary/exp(GAMMA(5/6))^2 3178159265343473 m001 ln(Trott)/FeigenbaumAlpha^2*BesselJ(1,1) 3178159266541352 r009 Re(z^3+c),c=-4/11+13/56*I,n=6 3178159274423606 k002 Champernowne real with 17*n^2-4*n+18 3178159276827541 a009 1/7*(23+12^(1/3)*7^(1/4))^(1/2)*7^(3/4) 3178159281785124 r005 Im(z^2+c),c=-17/48+13/25*I,n=38 3178159284309521 m001 1/ln(Magata)^2/HardHexagonsEntropy^2/Zeta(5)^2 3178159286104840 r009 Im(z^3+c),c=-7/50+21/62*I,n=14 3178159288422869 a007 Real Root Of -127*x^4-47*x^3+804*x^2-782*x+842 3178159289588855 m001 Zeta(5)/(gamma+Khinchin) 3178159294119986 r009 Re(z^3+c),c=-15/28+25/51*I,n=23 3178159300144201 b008 Pi+3*Erfc[Sqrt[Pi]] 3178159308749181 m001 (Pi-ln(2))/(LaplaceLimit+OneNinth) 3178159310016837 l006 ln(395/9481) 3178159319178418 a007 Real Root Of -285*x^4-627*x^3+662*x^2-564*x+470 3178159323004077 a001 5/192900153618*2^(5/17) 3178159324108227 r005 Re(z^2+c),c=-9/8+49/198*I,n=64 3178159333867402 r005 Re(z^2+c),c=23/78+6/59*I,n=42 3178159335136113 r005 Re(z^2+c),c=27/94+28/61*I,n=35 3178159337120858 m006 (Pi^2+2)/(5/6/Pi-4) 3178159350487560 a001 39603/233*55^(19/26) 3178159354003777 a007 Real Root Of 823*x^4-618*x^3+826*x^2-774*x+174 3178159357190360 a007 Real Root Of 8*x^4-315*x^3+939*x^2-604*x-297 3178159357291385 m009 (16/3*Catalan+2/3*Pi^2+5/6)/(Pi^2-6) 3178159367221714 a007 Real Root Of -380*x^4+655*x^3+675*x^2+279*x-174 3178159369563406 a003 cos(Pi*16/93)/cos(Pi*19/46) 3178159377466272 a007 Real Root Of -58*x^4+127*x^3+861*x^2-357*x+163 3178159380382177 m004 -1-E^(Sqrt[5]*Pi)/3+25*Pi*Cos[Sqrt[5]*Pi] 3178159383139526 r005 Im(z^2+c),c=17/74+11/50*I,n=14 3178159403096064 h001 (5/8*exp(2)+3/11)/(1/10*exp(2)+4/5) 3178159406529626 r005 Im(z^2+c),c=-105/94+11/43*I,n=26 3178159406545327 m001 ln(KhintchineLevy)^2*Si(Pi)/Niven 3178159408108974 r009 Re(z^3+c),c=-11/25+19/55*I,n=45 3178159414553099 a007 Real Root Of 706*x^4+309*x^3-89*x^2-507*x+153 3178159422648356 a007 Real Root Of 462*x^4+955*x^3+977*x^2-284*x-163 3178159431617918 m001 LambertW(1)*(Trott-ln(gamma)) 3178159434790231 a007 Real Root Of -306*x^4-794*x^3+748*x^2+868*x+934 3178159438399463 m004 750/Pi+25*Pi+Cos[Sqrt[5]*Pi]^2 3178159452009727 m001 1/exp(LandauRamanujan)/CareFree/(3^(1/3))^2 3178159465302174 m001 (-Cahen+MertensB3)/(Backhouse-exp(Pi)) 3178159467626358 r005 Re(z^2+c),c=-13/32+7/30*I,n=9 3178159483006394 m005 (1/2*Pi-7/12)/(1/3*5^(1/2)-5/7) 3178159483514694 r009 Im(z^3+c),c=-14/29+9/52*I,n=35 3178159502806385 r005 Im(z^2+c),c=-51/118+25/44*I,n=17 3178159507489120 m005 (1/3*Zeta(3)-1/8)/(3/8*Zeta(3)+5/12) 3178159510595283 m001 (Ei(1)+GaussAGM)/(RenyiParking-Robbin) 3178159520270351 m005 (2/3*Catalan-3/4)/(2/3*gamma+4) 3178159521852157 m005 (1/2*Catalan-4)/(7/12*gamma+7/9) 3178159529470074 m005 (1/3*Zeta(3)-2/11)/(1/12*5^(1/2)-7/8) 3178159530720558 r005 Im(z^2+c),c=13/90+13/45*I,n=28 3178159536357525 r005 Im(z^2+c),c=-71/110+1/16*I,n=38 3178159548837382 r009 Re(z^3+c),c=-37/78+26/55*I,n=17 3178159549563415 l006 ln(4135/5682) 3178159550925352 r005 Im(z^2+c),c=-23/18+11/245*I,n=43 3178159557474292 m001 (exp(1/Pi)+OneNinth)/(Zeta(1,-1)-ln(2)/ln(10)) 3178159572123711 r002 41th iterates of z^2 + 3178159577717578 l006 ln(394/9457) 3178159582712057 r005 Re(z^2+c),c=-2/3+83/241*I,n=54 3178159584115662 m008 (1/5*Pi^5-1/3)/(1/5*Pi^6-3/4) 3178159584677622 a007 Real Root Of 174*x^4+417*x^3-720*x^2-930*x-49 3178159596275695 a001 89/322*(1/2+1/2*5^(1/2))^29 3178159596275695 a001 89/322*1322157322203^(1/2) 3178159598006383 a001 144/199*7881196^(9/11) 3178159598006425 a001 144/199*141422324^(9/13) 3178159598006425 a001 144/199*2537720636^(3/5) 3178159598006425 a001 144/199*45537549124^(9/17) 3178159598006425 a001 144/199*817138163596^(9/19) 3178159598006425 a001 144/199*14662949395604^(3/7) 3178159598006425 a001 144/199*(1/2+1/2*5^(1/2))^27 3178159598006425 a001 144/199*192900153618^(1/2) 3178159598006425 a001 144/199*10749957122^(9/16) 3178159598006425 a001 144/199*599074578^(9/14) 3178159598006427 a001 144/199*33385282^(3/4) 3178159598007251 a001 144/199*1860498^(9/10) 3178159601003087 m001 (2^(1/3)+sin(1/5*Pi)*MertensB2)/sin(1/5*Pi) 3178159603701443 r008 a(0)=3,K{-n^6,-7-2*n^3+n^2+7*n} 3178159612436890 h001 (-7*exp(7)-7)/(-6*exp(6)+3) 3178159617999219 h005 exp(cos(Pi*13/45)+cos(Pi*7/22)) 3178159626459592 b008 6+27*Sinh[Pi] 3178159626459592 m002 6+27*Sinh[Pi] 3178159645513894 r009 Im(z^3+c),c=-9/26+13/44*I,n=4 3178159656806952 p003 LerchPhi(1/2,5,176/87) 3178159659987602 m008 (5*Pi^4+5/6)/(5*Pi^5+5) 3178159663904984 m001 GAMMA(19/24)^2/Conway^2/ln(GAMMA(23/24)) 3178159668967697 a007 Real Root Of -179*x^4-549*x^3+22*x^2+133*x+839 3178159672947010 m005 (1/2*2^(1/2)-7/8)/(3/10*Zeta(3)-8/9) 3178159680988374 b008 Pi+ArcCsc[11/2]/5 3178159685429981 a007 Real Root Of -29*x^4-915*x^3+222*x^2+320*x-66 3178159686868340 m001 (Zeta(5)-PisotVijayaraghavan)/(Pi-5^(1/2)) 3178159692036042 r005 Re(z^2+c),c=-17/48+17/41*I,n=30 3178159717387521 a001 55/15127*322^(24/31) 3178159726958559 r005 Im(z^2+c),c=3/23+17/57*I,n=15 3178159744885623 h001 (7/11*exp(2)+4/9)/(3/8*exp(1)+3/5) 3178159747131184 m001 (MertensB3+ZetaP(3))/(ln(3)-GolombDickman) 3178159748322596 r009 Re(z^3+c),c=-11/23+19/47*I,n=53 3178159776654785 a001 1364/233*8^(48/59) 3178159777424336 m005 (1/2*Pi+1/4)/(1/12*3^(1/2)+3/7) 3178159782858057 m001 Rabbit/FibonacciFactorial^2*ln(BesselJ(1,1))^2 3178159801451730 l006 ln(6987/9601) 3178159834414898 m001 (ln(2)/ln(10)-ln(5))/(Magata+Rabbit) 3178159843701243 m001 Lehmer^2*GolombDickman^2*exp(Zeta(1/2)) 3178159846780591 l006 ln(393/9433) 3178159867180800 m005 (1/2*gamma-7/9)/(7/10*exp(1)-4/11) 3178159868673931 g007 2*Psi(2,3/10)+Psi(2,1/10)+Psi(2,1/8) 3178159868903447 m005 (5*Catalan+2/3)/(5*Pi+4/5) 3178159871964877 a003 cos(Pi*23/88)*cos(Pi*49/101) 3178159885374056 a001 11/1597*514229^(5/43) 3178159885598704 a007 Real Root Of 557*x^4-557*x^3-36*x^2-919*x-312 3178159887256878 r005 Im(z^2+c),c=33/94+17/64*I,n=22 3178159890532864 m001 (DuboisRaymond+FeigenbaumMu)/(Landau-Robbin) 3178159890616006 a003 cos(Pi*7/72)/cos(Pi*27/67) 3178159901809791 m005 (1/3*Pi-3/5)/(4/9*Catalan+1) 3178159935283659 r005 Re(z^2+c),c=1/60+15/64*I,n=6 3178159939311752 m001 GAMMA(3/4)^2/GAMMA(19/24)/ln(Zeta(9))^2 3178159949909036 r005 Im(z^2+c),c=-9/17+33/59*I,n=39 3178159954362031 m001 GAMMA(2/3)^Zeta(3)/(polylog(4,1/2)^Zeta(3)) 3178159956063457 r009 Im(z^3+c),c=-39/98+17/29*I,n=11 3178159979235240 r009 Im(z^3+c),c=-59/114+11/54*I,n=24 3178159980771187 r002 7th iterates of z^2 + 3178159981620102 m001 BesselK(1,1)^(BesselI(1,2)/CareFree) 3178159995572185 r005 Re(z^2+c),c=3/70+39/59*I,n=29 3178160000022768 a001 98214+98209*5^(1/2) 3178160003927473 a001 1/46347*28657^(2/53) 3178160015628000 r009 Re(z^3+c),c=-53/118+31/59*I,n=19 3178160015657561 a007 Real Root Of 313*x^4+774*x^3-944*x^2-798*x-88 3178160020953176 a007 Real Root Of 770*x^4-352*x^3-760*x^2-572*x+262 3178160030180924 h001 (-9*exp(-2)-8)/(-2*exp(-3)+3) 3178160036640918 p003 LerchPhi(1/32,6,368/141) 3178160040115554 m001 ln(Tribonacci)^2*Backhouse*sin(Pi/5) 3178160040788035 r009 Im(z^3+c),c=-7/50+21/62*I,n=12 3178160057122383 r005 Re(z^2+c),c=-37/62+19/48*I,n=49 3178160070963009 a007 Real Root Of 79*x^4-98*x^3-955*x^2+380*x-352 3178160077233571 a007 Real Root Of 371*x^4+998*x^3-755*x^2-508*x+198 3178160079116077 m005 (1/2*2^(1/2)-5/9)/(6*Catalan-8/11) 3178160080755226 m005 (1/2*3^(1/2)-5/9)/(11/12*Zeta(3)-1/8) 3178160087220625 m001 (-Rabbit+RenyiParking)/(LaplaceLimit-Si(Pi)) 3178160099448227 r005 Re(z^2+c),c=19/58+1/13*I,n=45 3178160115704235 a001 521/24157817*3^(6/17) 3178160117216303 l006 ln(392/9409) 3178160128827262 m001 ln(2)^(3^(1/2))*ln(2)^HardHexagonsEntropy 3178160131706260 m001 1/exp(FeigenbaumKappa)^2*Bloch/Pi^2 3178160141640240 m005 (1/2*2^(1/2)-7/10)/(7/10*exp(1)+1/3) 3178160143721622 r005 Im(z^2+c),c=-4/29+4/9*I,n=34 3178160154483755 a007 Real Root Of -523*x^4+234*x^3+799*x^2+916*x-374 3178160156442942 m001 (BesselK(0,1)-Salem)/(Pi-BesselJ(0,1)) 3178160166654449 l006 ln(2852/3919) 3178160178453214 a007 Real Root Of -27*x^4-832*x^3+827*x^2-95*x-390 3178160178637608 r009 Im(z^3+c),c=-7/15+9/41*I,n=9 3178160182135401 r005 Re(z^2+c),c=-13/38+29/64*I,n=55 3178160186470326 r005 Im(z^2+c),c=-61/114+22/49*I,n=39 3178160194439112 m001 arctan(1/3)-ZetaQ(2)^Ei(1) 3178160194945637 b008 E+(2*Sech[Catalan])/3 3178160197429755 m001 exp(FeigenbaumD)*MinimumGamma^2*Zeta(7)^2 3178160222887064 r005 Im(z^2+c),c=-15/58+26/51*I,n=22 3178160228832679 r005 Im(z^2+c),c=-31/110+29/57*I,n=29 3178160229741062 m001 Rabbit+ReciprocalLucas^Totient 3178160263395976 a008 Real Root of x^4-x^3-x^2+x-63 3178160264967276 m001 (ln(Pi)-Ei(1))/(GAMMA(7/12)+FeigenbaumB) 3178160268516610 r005 Im(z^2+c),c=-9/14+20/147*I,n=8 3178160274005442 a007 Real Root Of 16*x^4+493*x^3-487*x^2+176*x-259 3178160277429616 k002 Champernowne real with 35/2*n^2-11/2*n+19 3178160287048368 r005 Im(z^2+c),c=-19/110+23/50*I,n=42 3178160290128569 r005 Re(z^2+c),c=2/15+19/53*I,n=40 3178160297240318 h001 (1/3*exp(2)+9/11)/(1/12*exp(2)+5/12) 3178160299234529 a003 cos(Pi*17/92)/cos(Pi*49/118) 3178160332652163 m001 1/Sierpinski/Lehmer^2/ln(sqrt(2)) 3178160336548563 r005 Im(z^2+c),c=-9/14+73/184*I,n=16 3178160339503238 r005 Re(z^2+c),c=-17/18+31/229*I,n=10 3178160369273047 r005 Im(z^2+c),c=5/106+28/45*I,n=36 3178160372209850 r009 Re(z^3+c),c=-7/23+8/63*I,n=2 3178160376771798 a007 Real Root Of -997*x^4-601*x^3-948*x^2+986*x+400 3178160376879082 m001 (Chi(1)*BesselI(0,1)-Kolakoski)/Chi(1) 3178160379500911 m001 LandauRamanujan2nd/sin(1/12*Pi)*Riemann1stZero 3178160389035243 l006 ln(391/9385) 3178160400932509 a007 Real Root Of 680*x^4-350*x^3-966*x^2-765*x+345 3178160404764986 m001 (Gompertz+Trott2nd)/(sin(1/5*Pi)+exp(1/Pi)) 3178160405608673 l006 ln(2849/2941) 3178160412020320 r005 Im(z^2+c),c=-5/9-32/73*I,n=53 3178160413190441 m001 BesselJ(0,1)^2*(3^(1/3))/exp(GAMMA(13/24))^2 3178160419044816 m001 ln(cos(1))^2/Champernowne/cos(Pi/12) 3178160420165605 r009 Re(z^3+c),c=-49/106+2/5*I,n=15 3178160428421381 r002 38th iterates of z^2 + 3178160448196458 m001 (Artin+CopelandErdos)/(Zeta(5)+ln(2^(1/2)+1)) 3178160448305627 m002 6/Pi+Pi*Csch[Pi]+Tanh[Pi] 3178160455367152 m001 GAMMA(11/24)*MertensB1*ln(GAMMA(17/24))^2 3178160461067588 a001 1/6*(1/2*5^(1/2)+1/2)^12*18^(8/13) 3178160476123969 r005 Im(z^2+c),c=-7/6+56/215*I,n=8 3178160478592384 r005 Im(z^2+c),c=1/126+11/18*I,n=19 3178160484383411 m005 (1/2*2^(1/2)-1)/(5*3^(1/2)+5/9) 3178160490381033 a005 (1/sin(44/181*Pi))^153 3178160492452497 r005 Re(z^2+c),c=-1/32+41/57*I,n=27 3178160493827160 r002 2th iterates of z^2 + 3178160507389959 m001 (gamma(3)+AlladiGrinstead)/(GAMMA(2/3)-ln(5)) 3178160517496096 l006 ln(7273/9994) 3178160523002119 g005 GAMMA(8/11)*GAMMA(1/9)*GAMMA(2/7)/GAMMA(10/11) 3178160541765647 r005 Re(z^2+c),c=-12/31+10/59*I,n=3 3178160544134228 m001 (gamma(1)+Cahen)/(Gompertz-StronglyCareFree) 3178160550425302 r005 Im(z^2+c),c=-25/114+12/25*I,n=34 3178160576311998 a007 Real Root Of -812*x^4+350*x^3+525*x^2+815*x-315 3178160586426651 m001 BesselK(0,1)+BesselJ(1,1)-Landau 3178160592884677 b008 ArcCsc[7^Sqrt[Pi]] 3178160598339771 r005 Im(z^2+c),c=-15/46+9/20*I,n=3 3178160604417146 a007 Real Root Of 590*x^4-456*x^3+664*x^2-992*x-403 3178160619762220 m001 ln(ArtinRank2)/GaussKuzminWirsing*GAMMA(1/3) 3178160621532593 m001 FeigenbaumB*exp(1)^Totient 3178160622013223 r002 10th iterates of z^2 + 3178160627941859 m001 1/exp(GAMMA(1/4))^2*Bloch*GAMMA(7/24)^2 3178160630278124 a007 Real Root Of -555*x^4-973*x^3-467*x^2+640*x+225 3178160630397340 a007 Real Root Of 193*x^4+272*x^3-952*x^2+231*x-609 3178160662248052 l006 ln(390/9361) 3178160667037530 h001 (9/10*exp(1)+3/8)/(2/7*exp(1)+1/9) 3178160672670701 m002 -3+Pi^3*Log[Pi]-Pi^5*Log[Pi] 3178160700918314 m001 (ArtinRank2-Conway)/(Porter+TreeGrowth2nd) 3178160701574415 a003 sin(Pi*10/111)/cos(Pi*16/101) 3178160705115087 r009 Im(z^3+c),c=-13/23+9/29*I,n=5 3178160715641732 m001 (ln(3)+BesselI(1,2))/(Khinchin-Tribonacci) 3178160738245249 a003 cos(Pi*5/19)-sin(Pi*52/111) 3178160739712337 r005 Re(z^2+c),c=-8/25+16/31*I,n=59 3178160743549271 m001 Si(Pi)^2/exp(Bloch)^2*cosh(1)^2 3178160743825060 l006 ln(4421/6075) 3178160770047339 a007 Real Root Of -122*x^4-103*x^3+566*x^2-811*x+846 3178160775891880 m005 (2/3+1/4*5^(1/2))/(7/9*2^(1/2)-5/7) 3178160781786690 r009 Im(z^3+c),c=-15/32+10/37*I,n=5 3178160791226449 r005 Im(z^2+c),c=29/94+8/61*I,n=54 3178160795401208 a007 Real Root Of -135*x^4-380*x^3+290*x^2+716*x+921 3178160802041522 m006 (3/5*ln(Pi)-4)/(3*Pi+1) 3178160809073151 r005 Im(z^2+c),c=13/90+13/45*I,n=29 3178160831147186 m005 (1/2*5^(1/2)-4/5)/(1/3*Zeta(3)+3/5) 3178160831698991 r009 Re(z^3+c),c=-47/126+15/64*I,n=8 3178160834485018 a007 Real Root Of -671*x^4+809*x^3-666*x^2+113*x+136 3178160840665512 m001 cos(1/5*Pi)^(KhinchinLevy/Ei(1,1)) 3178160846431994 m001 (Ei(1)-gamma(1))/(2*Pi/GAMMA(5/6)+Kac) 3178160848876755 a007 Real Root Of 731*x^4-897*x^3-976*x^2-403*x+248 3178160860281049 r005 Im(z^2+c),c=-17/28+1/17*I,n=41 3178160864770211 m005 (1/2*Zeta(3)-1/7)/(1/11*2^(1/2)-3/11) 3178160866864941 m001 (-sin(1/5*Pi)+Backhouse)/(1+3^(1/2)) 3178160874244623 p004 log(34687/25243) 3178160877602525 m001 MinimumGamma/Cahen/TravellingSalesman 3178160881428628 m001 (exp(Pi)+Bloch)/(Robbin+StolarskyHarborth) 3178160885090135 h001 (-exp(2/3)+9)/(-8*exp(1/2)-9) 3178160911463004 m001 (-Landau+TwinPrimes)/(5^(1/2)+3^(1/3)) 3178160919540229 q001 553/1740 3178160919540229 r002 2th iterates of z^2 + 3178160923906417 m001 1/Khintchine*Backhouse^2*ln(Zeta(9))^2 3178160926315377 a007 Real Root Of 790*x^4-972*x^3-257*x^2-651*x+256 3178160931776961 a001 11/4181*377^(21/50) 3178160936023826 r005 Im(z^2+c),c=-9/40+5/8*I,n=40 3178160936865479 l006 ln(389/9337) 3178160936865479 p004 log(9337/389) 3178160949621442 r005 Im(z^2+c),c=-81/118+7/60*I,n=16 3178160962097052 r005 Im(z^2+c),c=-1/11+19/45*I,n=16 3178160962312890 a001 1/39596*(1/2*5^(1/2)+1/2)^2*521^(13/21) 3178160977593591 m001 (Ei(1)+PlouffeB)/(RenyiParking-ZetaQ(4)) 3178160992398713 m001 DuboisRaymond*(Grothendieck-ZetaR(2)) 3178160995978432 r005 Re(z^2+c),c=-19/98+29/33*I,n=7 3178161013553217 r009 Im(z^3+c),c=-7/50+21/62*I,n=11 3178161018094156 r005 Re(z^2+c),c=41/118+22/59*I,n=25 3178161018631489 l006 ln(5990/8231) 3178161031443456 m005 (-1/6+1/4*5^(1/2))/(1/9*5^(1/2)-1/8) 3178161031853116 k006 concat of cont frac of 3178161039933665 r005 Im(z^2+c),c=-7/12+36/119*I,n=5 3178161053347091 a007 Real Root Of 190*x^4+324*x^3-914*x^2-221*x-454 3178161053958265 a007 Real Root Of 10*x^4-135*x^3-351*x^2+750*x+575 3178161057821809 r002 5th iterates of z^2 + 3178161065424742 a007 Real Root Of -295*x^4-844*x^3+104*x^2-729*x-364 3178161068749103 a001 9227465/199*199^(4/11) 3178161069280298 r009 Re(z^3+c),c=-11/30+26/43*I,n=14 3178161093284941 m001 1/GAMMA(5/24)^2*ln(Trott)^2/gamma^2 3178161103151151 k007 concat of cont frac of 3178161103284422 k007 concat of cont frac of 3178161108931376 a007 Real Root Of -794*x^4+534*x^3+171*x^2+858*x-299 3178161112124101 k006 concat of cont frac of 3178161120116279 k009 concat of cont frac of 3178161143114312 k009 concat of cont frac of 3178161162748872 a001 233/11*2^(24/41) 3178161171470219 m005 (1/2*gamma-1/4)/(1/8*exp(1)+7/8) 3178161173870233 r005 Im(z^2+c),c=-11/36+31/61*I,n=23 3178161176114335 r002 5th iterates of z^2 + 3178161180453918 m001 Chi(1)*Khinchin-Pi*csc(11/24*Pi)/GAMMA(13/24) 3178161184194480 r005 Im(z^2+c),c=1/3+3/29*I,n=52 3178161190316049 m001 FeigenbaumDelta^(5^(1/2))+PrimesInBinary 3178161191935445 m002 -34+Log[Pi]+ProductLog[Pi] 3178161197990218 a007 Real Root Of 832*x^4+125*x^3+305*x^2-765*x+24 3178161212213317 k009 concat of cont frac of 3178161212898384 l006 ln(388/9313) 3178161214606274 a007 Real Root Of 372*x^4+875*x^3-730*x^2+991*x+659 3178161223561861 r005 Re(z^2+c),c=-43/122+9/16*I,n=56 3178161225561584 a007 Real Root Of 23*x^4-20*x^3-48*x^2+936*x+471 3178161234375830 m001 (Psi(1,1/3)-cos(1/5*Pi))/(-Ei(1,1)+gamma(1)) 3178161266879856 m001 (Salem-ThueMorse)/(FibonacciFactorial-Porter) 3178161273512901 r009 Im(z^3+c),c=-5/114+15/43*I,n=9 3178161280435626 k002 Champernowne real with 18*n^2-7*n+20 3178161287484547 a007 Real Root Of 650*x^4-509*x^3-946*x^2-962*x+411 3178161289284136 a007 Real Root Of 85*x^4+192*x^3-116*x^2+684*x+837 3178161292016857 r005 Re(z^2+c),c=-11/56+7/11*I,n=62 3178161301164095 r005 Im(z^2+c),c=-35/122+28/55*I,n=43 3178161302983319 m005 (1/3*5^(1/2)+2/3)/(3/11*3^(1/2)-11/12) 3178161305120533 h001 (5/11*exp(2)+6/7)/(5/11*exp(1)+1/11) 3178161313959725 m005 (1/3*5^(1/2)-1/11)/(Zeta(3)+6/7) 3178161325719111 r009 Re(z^3+c),c=-3/7+21/64*I,n=22 3178161353762600 r005 Re(z^2+c),c=-6/19+22/43*I,n=36 3178161353919707 r005 Im(z^2+c),c=-11/18+47/126*I,n=35 3178161360649433 m005 (1/2*2^(1/2)+1/11)/(3/4*gamma-2/11) 3178161365263820 m004 (-125*Pi)/2+6*Cosh[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 3178161370286187 r005 Re(z^2+c),c=-39/110+17/41*I,n=47 3178161414621249 r005 Im(z^2+c),c=-17/98+29/63*I,n=39 3178161428614022 r005 Im(z^2+c),c=-21/34+42/125*I,n=10 3178161431213341 m001 ZetaQ(2)/HeathBrownMoroz/GAMMA(17/24) 3178161432459843 m001 (-Mills+MinimumGamma)/(5^(1/2)-MadelungNaCl) 3178161434666226 r005 Re(z^2+c),c=-10/31+1/2*I,n=39 3178161445745866 a001 987/521*199^(30/31) 3178161448332544 r005 Im(z^2+c),c=1/24+16/45*I,n=11 3178161455195358 r005 Re(z^2+c),c=-7/25+25/46*I,n=16 3178161455991740 a007 Real Root Of 344*x^4+881*x^3-514*x^2+640*x+411 3178161490357739 l006 ln(387/9289) 3178161494594250 m001 (Psi(1,1/3)-ln(3))/(exp(1/Pi)+Backhouse) 3178161512679592 m001 (BesselK(0,1)+ln(2))/(Magata+Paris) 3178161513076461 m001 (MertensB1-Trott)/(polylog(4,1/2)-Gompertz) 3178161515623092 m001 ln(sinh(1))^2/FeigenbaumKappa*sqrt(1+sqrt(3)) 3178161535098192 m001 (3^(1/3))*(BesselI(0,1)-Zeta(1,2)) 3178161535098192 m001 3^(1/3)*(BesselI(0,1)-Zeta(1,2)) 3178161544611312 r005 Im(z^2+c),c=-73/126+1/8*I,n=10 3178161551639013 a009 1/4*(24*4^(2/3)+7^(2/3))^(1/2)*4^(1/3) 3178161556639516 m005 (1/3*gamma-1/7)/(1+1/4*5^(1/2)) 3178161561290000 m001 (-FeigenbaumDelta+Paris)/(BesselI(0,2)-sin(1)) 3178161575505047 m001 FeigenbaumAlpha^TravellingSalesman*ZetaQ(4) 3178161581487018 r008 a(0)=3,K{-n^6,3-4*n^2-5*n} 3178161582854420 m001 (GAMMA(7/12)+ReciprocalLucas)/ln(3) 3178161584071075 r009 Re(z^3+c),c=-73/118+23/43*I,n=21 3178161595713498 a007 Real Root Of 300*x^4+999*x^3+336*x^2+817*x+665 3178161600559109 a007 Real Root Of -740*x^4+164*x^3-114*x^2+279*x+113 3178161600920914 m001 (-Zeta(1,-1)+cos(1/12*Pi))/(exp(1)+sin(1)) 3178161601529734 m002 -4+(E^Pi*Pi)/3+Sinh[Pi] 3178161613040730 a001 322/4181*13^(21/38) 3178161614050263 a003 sin(Pi*38/111)/cos(Pi*23/56) 3178161622079707 r005 Re(z^2+c),c=-31/86+11/28*I,n=27 3178161624761872 a007 Real Root Of 16*x^4-610*x^3+498*x^2-204*x+6 3178161637663592 r009 Im(z^3+c),c=-17/42+11/46*I,n=17 3178161661576642 m001 1/exp(FeigenbaumB)/Artin*sqrt(1+sqrt(3))^2 3178161667216451 a007 Real Root Of 536*x^4+962*x^3+681*x^2-703*x-23 3178161668092485 a007 Real Root Of -298*x^4-893*x^3+377*x^2+654*x+7 3178161679458105 a007 Real Root Of 251*x^4+834*x^3+736*x^2-975*x-360 3178161690314465 a009 10^(2/3)-20*11^(1/4) 3178161708029399 h001 (3/4*exp(1)+3/11)/(10/11*exp(2)+5/9) 3178161709503334 b008 Pi+ArcCot[82/3] 3178161717202927 m001 (2^(1/3)+Ei(1))/(-Kolakoski+KomornikLoreti) 3178161730104586 a007 Real Root Of 860*x^4-666*x^3-627*x^2-633*x-168 3178161747720642 m001 Pi*Shi(1)^exp(-1/2*Pi) 3178161765898625 a007 Real Root Of -20*x^4-653*x^3-573*x^2-660*x+264 3178161769254629 l006 ln(386/9265) 3178161771591063 a001 7/8*46368^(43/44) 3178161772221187 s001 sum(exp(-Pi)^n*A275642[n],n=1..infinity) 3178161772221187 s002 sum(A275642[n]/(exp(pi*n)),n=1..infinity) 3178161792958551 l006 ln(1569/2156) 3178161796216867 m001 (Otter-ReciprocalFibonacci)/(Thue+ThueMorse) 3178161801274938 m005 (1/2*Catalan+3/4)/(7/10*Pi-6) 3178161813034696 r005 Re(z^2+c),c=-33/86+19/62*I,n=41 3178161816318432 m007 (-1/5*gamma-2/5*ln(2)-1/2)/(-4*gamma-1/2) 3178161818470576 m001 (ln(Pi)+Ei(1,1))/(ErdosBorwein+Khinchin) 3178161827165639 r005 Re(z^2+c),c=-13/34+7/15*I,n=10 3178161828769967 m001 GAMMA(19/24)^gamma(2)/Pi 3178161828883202 r009 Re(z^3+c),c=-7/114+29/60*I,n=4 3178161849384594 r005 Im(z^2+c),c=31/98+32/53*I,n=4 3178161849749915 r005 Im(z^2+c),c=-21/86+29/59*I,n=33 3178161852699022 r009 Im(z^3+c),c=-47/86+8/27*I,n=5 3178161854844547 m008 (3/5*Pi^4-2/3)/(5/6*Pi-4/5) 3178161857165459 m001 (Ei(1,1)-Si(Pi))/(-cos(1/12*Pi)+ZetaP(2)) 3178161873828565 r005 Re(z^2+c),c=-7/12+53/122*I,n=43 3178161889242796 r005 Re(z^2+c),c=-55/114+22/59*I,n=7 3178161890819370 a001 141*9349^(4/45) 3178161896231990 r005 Re(z^2+c),c=-10/27+9/25*I,n=41 3178161907057082 m001 (LambertW(1)+FellerTornier)/(MertensB3+Porter) 3178161909035993 m001 (-Bloch+Cahen)/(Psi(2,1/3)+ln(Pi)) 3178161915005110 a009 1/23*(7^(3/4)-9^(2/3))^(1/2)*23^(1/2) 3178161930232713 a007 Real Root Of -253*x^4-628*x^3+867*x^2+668*x-982 3178161934586340 m001 GAMMA(1/6)^2/exp(Trott)*Zeta(5) 3178161945154256 a007 Real Root Of 88*x^4-798*x^3-936*x^2-468*x+268 3178161950326767 m001 (QuadraticClass+Trott)/FransenRobinson 3178161963838810 a003 cos(Pi*32/93)-cos(Pi*37/82) 3178161975829719 a001 7/3*317811^(1/41) 3178161981529213 m006 (3/4*ln(Pi)-2)/(5/Pi+2) 3178161987292284 m001 (-KhinchinHarmonic+Lehmer)/(3^(1/2)+Ei(1)) 3178161988366314 a003 cos(Pi*5/76)/cos(Pi*25/51) 3178161989777817 r005 Im(z^2+c),c=-55/86+2/59*I,n=19 3178162001668628 r005 Re(z^2+c),c=-37/94+31/57*I,n=6 3178162014899569 r009 Re(z^3+c),c=-15/32+24/53*I,n=32 3178162020666407 m001 (PolyaRandomWalk3D-Tetranacci)/(Pi+Si(Pi)) 3178162033745678 r005 Im(z^2+c),c=-35/66+23/43*I,n=42 3178162037566540 m001 BesselK(0,1)^2*exp(FeigenbaumD)*GAMMA(3/4) 3178162049600256 l006 ln(385/9241) 3178162064626294 s002 sum(A231533[n]/(exp(n)+1),n=1..infinity) 3178162077623183 m008 (4*Pi^5+3/4)/(2/5*Pi^6+5/6) 3178162085335992 m001 (Robbin+ZetaQ(3))/(Zeta(1/2)+FeigenbaumMu) 3178162115254302 r005 Re(z^2+c),c=-25/66+18/55*I,n=49 3178162139102829 r002 2th iterates of z^2 + 3178162146274511 m002 15+5*Pi+ProductLog[Pi] 3178162159863931 r005 Re(z^2+c),c=-49/58+17/57*I,n=6 3178162163095522 r005 Im(z^2+c),c=4/17+8/37*I,n=32 3178162195321743 m005 (1/2*gamma-1/7)/(4*Zeta(3)-2/9) 3178162196862899 r005 Im(z^2+c),c=-15/98+21/44*I,n=9 3178162197377794 r005 Im(z^2+c),c=15/56+7/26*I,n=5 3178162199512452 a007 Real Root Of 321*x^4+625*x^3-986*x^2+679*x-569 3178162204215958 r005 Re(z^2+c),c=-2/5+5/23*I,n=15 3178162208209312 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^ZetaQ(2)-Sarnak 3178162216708743 r002 63th iterates of z^2 + 3178162216709322 r005 Re(z^2+c),c=-9/26+5/11*I,n=24 3178162218005791 a001 161*2^(52/53) 3178162233099465 m001 (Zeta(1,2)-HeathBrownMoroz)/(Otter-ZetaQ(4)) 3178162243899143 r005 Re(z^2+c),c=-3/8+10/29*I,n=22 3178162246054990 a007 Real Root Of -204*x^4-722*x^3-374*x^2-512*x-214 3178162257910434 m005 (1/3*Zeta(3)+1/12)/(7/11*5^(1/2)+1/10) 3178162258172071 a007 Real Root Of -776*x^4+894*x^3+79*x^2+715*x-256 3178162262796702 m002 Pi*ProductLog[Pi]*Sech[Pi]+Sinh[Pi]/4 3178162266545768 m001 BesselK(0,1)^(Pi^(1/2)*RenyiParking) 3178162266545768 m001 BesselK(0,1)^(RenyiParking*sqrt(Pi)) 3178162276143004 h001 (-4*exp(4)-9)/(-3*exp(1)+1) 3178162277408594 g005 GAMMA(11/12)*GAMMA(2/11)/GAMMA(2/9)^2 3178162283441636 k002 Champernowne real with 37/2*n^2-17/2*n+21 3178162284101960 m001 GAMMA(23/24)+(3^(1/2))^HardHexagonsEntropy 3178162287773078 h002 exp(13^(2/5)-19^(1/6)) 3178162287773078 h007 exp(13^(2/5)-19^(1/6)) 3178162296356019 r009 Im(z^3+c),c=-51/118+11/45*I,n=4 3178162296503823 r002 5th iterates of z^2 + 3178162296892838 m001 (-FeigenbaumDelta+Kac)/(CareFree-gamma) 3178162318978715 a005 (1/cos(2/163*Pi))^1556 3178162320738377 m001 Riemann1stZero^3*ln(GAMMA(7/24)) 3178162321935111 k009 concat of cont frac of 3178162331320789 a007 Real Root Of -974*x^4+926*x^3-426*x^2+775*x+329 3178162331405937 l006 ln(384/9217) 3178162342108932 p004 log(36251/35117) 3178162344743281 m001 MadelungNaCl*(Artin+exp(1/exp(1))) 3178162344743281 m001 MadelungNaCl*(exp(1/exp(1))+Artin) 3178162349010378 a007 Real Root Of 42*x^4-47*x^3+158*x^2-960*x-323 3178162364911869 a003 sin(Pi*18/77)-sin(Pi*41/91) 3178162373009488 r005 Im(z^2+c),c=31/94+10/27*I,n=38 3178162378729139 m001 (ln(3)+Ei(1))/(2^(1/3)-GAMMA(2/3)) 3178162379269356 r005 Re(z^2+c),c=-45/118+28/59*I,n=11 3178162392664325 m001 Tribonacci^2/FeigenbaumAlpha^2*exp(sqrt(Pi)) 3178162394692908 m001 (Artin-Shi(1))/(FeigenbaumKappa+Kolakoski) 3178162395093355 m001 Pi*exp(Pi)*BesselK(0,1)+GAMMA(19/24) 3178162410673530 m005 (3/4*gamma-3/5)/(1/3*gamma+1/3) 3178162410673530 m007 (-3/4*gamma+3/5)/(-1/3*gamma-1/3) 3178162411550755 m008 (3/4*Pi^5-1/4)/(3/4*Pi^6+1/3) 3178162411613289 m001 KomornikLoreti-Pi*2^(1/2)/GAMMA(3/4)-Totient 3178162419282815 a005 (1/cos(7/151*Pi))^325 3178162423512344 m001 (Magata+Riemann2ndZero)/(sin(1)+gamma(1)) 3178162428379758 r005 Im(z^2+c),c=-115/126+10/39*I,n=23 3178162437224617 r009 Re(z^3+c),c=-1/62+11/13*I,n=10 3178162456167909 r005 Re(z^2+c),c=-1/12+31/53*I,n=8 3178162456228876 r005 Im(z^2+c),c=7/26+35/57*I,n=13 3178162463716136 m001 exp(GAMMA(1/4))^2/TreeGrowth2nd/Zeta(7) 3178162467587954 a007 Real Root Of -839*x^4+564*x^3+563*x^2+567*x+150 3178162467957073 a005 (1/cos(52/237*Pi))^40 3178162477287102 m001 (OneNinth+ZetaR(2))^sin(1) 3178162487407015 r002 12th iterates of z^2 + 3178162491198456 l001 Pi*coth(41/50*Pi) 3178162491198456 l004 Pi/tanh(41/50*Pi) 3178162499717164 r005 Re(z^2+c),c=-31/54+5/8*I,n=11 3178162499788597 l006 ln(6562/9017) 3178162506434363 a001 12238/17*13^(11/19) 3178162515096452 m004 -25+125*Pi+5*Sinh[Sqrt[5]*Pi] 3178162518648049 m008 (1/2*Pi^5-1/4)/(5*Pi^6-2/5) 3178162539379917 a007 Real Root Of 172*x^4+510*x^3+40*x^2+423*x-236 3178162542466809 r002 3th iterates of z^2 + 3178162557905775 p003 LerchPhi(1/1024,1,62/197) 3178162559601188 m001 Niven^MasserGramainDelta/FeigenbaumB 3178162561295129 m001 LambertW(1)*(Catalan-Psi(2,1/3)) 3178162570246896 a001 133957148/9*29^(10/11) 3178162573994128 r005 Im(z^2+c),c=-9/110+23/55*I,n=34 3178162579470055 r005 Re(z^2+c),c=-31/22+2/75*I,n=39 3178162582103739 a007 Real Root Of -130*x^4-42*x^3+860*x^2-939*x+244 3178162585744433 m008 (1/2*Pi^3+5)/(1/5*Pi^3+1/4) 3178162587689002 a001 17711/11*322^(54/59) 3178162587906305 m001 (BesselK(0,1)-Gompertz)/(Weierstrass+ZetaP(4)) 3178162614683108 l006 ln(383/9193) 3178162628828429 a001 34/39603*18^(24/53) 3178162631962906 m005 (1/2*3^(1/2)+5/12)/(1/3*2^(1/2)-7/8) 3178162641561115 r005 Re(z^2+c),c=-25/66+18/55*I,n=46 3178162658177487 m009 (1/5*Psi(1,1/3)+5)/(Psi(1,3/4)-1/3) 3178162662488977 m009 (1/5*Pi^2-2/3)/(4*Psi(1,1/3)+3/4) 3178162664299071 m002 6/5+Pi^5+Pi^2*ProductLog[Pi] 3178162687171346 a001 11/2584*4181^(15/29) 3178162693820550 r005 Im(z^2+c),c=-39/32+1/61*I,n=28 3178162698291874 m008 (Pi+3/4)/(4*Pi^5+2/5) 3178162701084290 a009 1/17*(17*12^(1/4)-6^(1/2))^(1/2) 3178162710139885 a007 Real Root Of -24*x^4-780*x^3-571*x^2-720*x+404 3178162712316116 m001 exp(TwinPrimes)^2/Conway^2*(3^(1/3)) 3178162713522352 m002 5/Pi^3+Pi^5+Cosh[Pi]*Coth[Pi] 3178162721902815 l006 ln(4993/6861) 3178162723240483 a007 Real Root Of -113*x^4+37*x^3+804*x^2+918*x-373 3178162724912517 m001 (MertensB3+Niven)/(FransenRobinson-Si(Pi)) 3178162726617756 r005 Im(z^2+c),c=-33/58+3/7*I,n=43 3178162735393840 a008 Real Root of x^2-x-101325 3178162738267755 m009 (4/5*Psi(1,1/3)-3/5)/(1/5*Psi(1,1/3)+1/3) 3178162760016339 r009 Re(z^3+c),c=-15/82+8/9*I,n=34 3178162760031542 r009 Im(z^3+c),c=-55/122+13/64*I,n=30 3178162772563119 r009 Im(z^3+c),c=-12/25+9/59*I,n=10 3178162802246952 m005 (1/3*Catalan+2/11)/(4/5*Catalan+4/5) 3178162804480929 m001 (BesselK(0,1)-Magata*Tribonacci)/Tribonacci 3178162805629441 a007 Real Root Of -190*x^4-295*x^3+870*x^2-292*x+199 3178162832958281 a007 Real Root Of 838*x^4-802*x^3+791*x^2-943*x+237 3178162834395841 a003 cos(Pi*14/81)-sin(Pi*19/105) 3178162844556761 a001 18/89*21^(19/21) 3178162851317784 m001 (Riemann1stZero+ZetaQ(4))/(Pi+Mills) 3178162857675203 r005 Im(z^2+c),c=17/50+4/41*I,n=58 3178162859975681 r005 Re(z^2+c),c=3/52+23/38*I,n=23 3178162872279189 r005 Re(z^2+c),c=-25/62+13/62*I,n=12 3178162884745200 r009 Re(z^3+c),c=-14/29+13/32*I,n=55 3178162892518600 a003 sin(Pi*13/63)-sin(Pi*25/67) 3178162899443325 l006 ln(382/9169) 3178162903206414 m001 (GAMMA(13/24)+4)/(-GAMMA(3/4)+3) 3178162905807029 m005 (1/2*Zeta(3)+10/11)/(1/9*5^(1/2)-5) 3178162924065356 a007 Real Root Of 818*x^4+68*x^3+667*x^2+30*x-64 3178162935254632 a007 Real Root Of 282*x^4-712*x^3+405*x^2-628*x-2 3178162938709662 r005 Re(z^2+c),c=-31/110+11/19*I,n=49 3178162939427753 a007 Real Root Of -690*x^4-833*x^3-595*x^2+219*x+110 3178162944649914 r005 Re(z^2+c),c=-41/102+8/39*I,n=13 3178162951620247 m001 BesselJ(1,1)^2*Cahen*ln(GAMMA(23/24)) 3178162953262659 m005 (1/3*Pi-1/5)/(7/9*Pi+2/9) 3178162963646161 m005 (1/3*Pi+2/3)/(4/9*5^(1/2)-5/11) 3178162967344073 a007 Real Root Of -31*x^4-2*x^3+154*x^2-236*x+793 3178162967363713 m009 (1/8*Pi^2-3/5)/(2*Pi^2+1/5) 3178162976699953 r002 3th iterates of z^2 + 3178162985693426 r009 Im(z^3+c),c=-21/44+11/62*I,n=58 3178162989113801 r005 Re(z^2+c),c=-2/3+14/45*I,n=16 3178162994671822 a007 Real Root Of 245*x^4+626*x^3-562*x^2-546*x-959 3178163001250766 r005 Re(z^2+c),c=-25/66+18/55*I,n=47 3178163007140587 a007 Real Root Of -767*x^4-865*x^3-351*x^2+527*x+183 3178163007407318 a007 Real Root Of -389*x^4+656*x^3-582*x^2+773*x-24 3178163009653826 r005 Re(z^2+c),c=3/52+35/53*I,n=51 3178163011370557 a007 Real Root Of 299*x^4+858*x^3-514*x^2-425*x+879 3178163041262842 r005 Im(z^2+c),c=-17/82+28/59*I,n=32 3178163041406881 m001 Riemann1stZero/Porter/ln(GAMMA(2/3)) 3178163051097803 r005 Im(z^2+c),c=-9/14+8/133*I,n=45 3178163059081251 m001 BesselJ(1,1)^ln(gamma)/(BesselJ(1,1)^Thue) 3178163063383798 m005 (3/4*Pi-1)/(4/5*Catalan-5) 3178163081558414 m001 (FeigenbaumMu+Landau)/(Zeta(1,-1)-GAMMA(5/6)) 3178163082180133 m001 ln(5)*(2^(1/3)+TravellingSalesman) 3178163087770692 m001 ln(Riemann1stZero)^2/Si(Pi)*Catalan^2 3178163094180919 a007 Real Root Of 20*x^4+642*x^3+204*x^2+38*x-443 3178163096915863 r005 Im(z^2+c),c=-42/31+1/45*I,n=18 3178163135470406 m005 (1/2*exp(1)+3/5)/(1/9*Zeta(3)-3/4) 3178163147578472 l006 ln(3424/4705) 3178163185698265 l006 ln(381/9145) 3178163186280005 m001 (Sarnak+Stephens)/(Kac-MertensB2) 3178163191176640 r005 Im(z^2+c),c=37/122+4/29*I,n=34 3178163204608358 r009 Re(z^3+c),c=-21/34+28/53*I,n=6 3178163207320458 m001 1/GAMMA(5/6)^2/GAMMA(1/12)^2*exp(Pi)^2 3178163217615733 a001 89/1149851*47^(55/57) 3178163247210505 r005 Re(z^2+c),c=-25/66+18/55*I,n=51 3178163260180947 m001 GAMMA(17/24)^BesselI(1,1)/GAMMA(1/4) 3178163268284486 m001 (3^(1/2)+BesselJ(0,1))/(-Kolakoski+ZetaQ(3)) 3178163273620339 m001 (cos(1/12*Pi)+MinimumGamma)/(Stephens-Totient) 3178163277204387 r005 Im(z^2+c),c=-109/110+15/53*I,n=26 3178163285446644 k004 Champernowne real with floor(Pi*(6*n^2-3*n+7)) 3178163286447646 k002 Champernowne real with 19*n^2-10*n+22 3178163289086407 a007 Real Root Of -327*x^4-941*x^3+180*x^2-551*x-415 3178163289220784 m005 (1/2*Catalan+9/10)/(2/9*gamma-5/9) 3178163294817106 r005 Re(z^2+c),c=-7/48+37/60*I,n=29 3178163296002995 a001 311187/46*29^(17/37) 3178163308962326 m001 (5^(1/2)-Gompertz)/(-Lehmer+ZetaP(4)) 3178163318804572 r005 Re(z^2+c),c=-25/78+23/45*I,n=50 3178163321333530 m001 (Kolakoski+MertensB1)/(3^(1/2)+BesselI(1,2)) 3178163321484359 k006 concat of cont frac of 3178163328411000 r005 Re(z^2+c),c=-25/62+25/47*I,n=34 3178163343024976 m001 (ln(gamma)+BesselI(1,2))/(FeigenbaumD+Lehmer) 3178163351671603 q001 751/2363 3178163351852059 m008 (1/6*Pi^4+5/6)/(1/2*Pi^4+5) 3178163360372683 m001 1/exp(OneNinth)/KhintchineLevy/cosh(1)^2 3178163366427681 m001 GAMMA(5/12)*ln(MinimumGamma)^2*Zeta(5) 3178163376245123 r005 Im(z^2+c),c=-33/106+27/52*I,n=42 3178163383426956 a001 7465176/161*123^(2/5) 3178163411506940 m001 BesselK(0,1)^ReciprocalLucas/Stephens 3178163414804967 r002 32th iterates of z^2 + 3178163415770081 m001 ArtinRank2/(Grothendieck+ThueMorse) 3178163434210325 m001 Thue/(Otter-Khinchin) 3178163440359374 a003 -2*cos(7/15*Pi)-2*cos(1/21*Pi)-cos(1/24*Pi) 3178163456790908 r005 Re(z^2+c),c=-25/66+18/55*I,n=54 3178163467007428 r009 Re(z^3+c),c=-10/29+10/39*I,n=2 3178163473459726 l006 ln(380/9121) 3178163487808086 m008 (1/6*Pi^5-1/3)/(1/6*Pi^6-4/5) 3178163488460380 r005 Im(z^2+c),c=-97/122+4/27*I,n=12 3178163511826560 r002 45th iterates of z^2 + 3178163511826560 r002 45th iterates of z^2 + 3178163528703340 m001 GAMMA(2/3)^Cahen*MertensB1 3178163550192314 l006 ln(5279/7254) 3178163558824274 m001 Riemann2ndZero^2*Champernowne^2/ln(cos(Pi/5)) 3178163577157228 m001 CareFree*Bloch/exp(GAMMA(19/24))^2 3178163579483414 m001 (GAMMA(3/4)-TravellingSalesman)/ErdosBorwein 3178163580246913 r005 Re(z^2+c),c=-11/36+13/40*I,n=2 3178163594981845 r005 Re(z^2+c),c=-19/60+15/28*I,n=40 3178163601676524 b008 Pi+ArcTanh[EulerGamma]/18 3178163608899502 m001 sin(Pi/5)/exp(Rabbit)^2*sqrt(5) 3178163626167561 a005 (1/sin(58/129*Pi))^1739 3178163627093031 r005 Re(z^2+c),c=-25/66+18/55*I,n=56 3178163629330260 a007 Real Root Of -284*x^4-690*x^3+750*x^2+240*x+12 3178163640310242 m001 (MertensB1+Robbin)/(Ei(1,1)+Khinchin) 3178163642880020 r005 Re(z^2+c),c=-29/44+5/39*I,n=4 3178163657935222 a007 Real Root Of 36*x^4-50*x^3-480*x^2+127*x-26 3178163667520839 m001 ln(GAMMA(5/24))*DuboisRaymond^2*LambertW(1) 3178163675776029 r009 Im(z^3+c),c=-9/22+13/58*I,n=7 3178163680455294 a003 cos(Pi*1/65)-cos(Pi*17/65) 3178163680483026 a001 29134601/48*1836311903^(16/17) 3178163680485288 a001 10716675201/8*514229^(16/17) 3178163682509402 a001 13201/48*6557470319842^(16/17) 3178163699958404 m003 33/8+Sqrt[5]/4-3*Cosh[1/2+Sqrt[5]/2] 3178163700959856 m001 1/TwinPrimes^2*exp(CareFree)/Zeta(1/2) 3178163704000895 a003 sin(Pi*10/97)*sin(Pi*44/91) 3178163712413935 r005 Im(z^2+c),c=-19/110+23/50*I,n=44 3178163718576555 m005 (1/6*gamma-4)/(1/5*Pi+3/5) 3178163726336086 a001 63245986/521*123^(1/5) 3178163734630244 m002 -1-Pi^5-Cosh[Pi]/ProductLog[Pi] 3178163737661898 a007 Real Root Of -426*x^4-246*x^3+210*x^2+535*x-179 3178163743428893 l006 ln(7134/9803) 3178163744320635 r002 3th iterates of z^2 + 3178163744560657 a001 281*987^(1/56) 3178163751905898 r005 Re(z^2+c),c=-25/66+18/55*I,n=59 3178163755512041 r005 Re(z^2+c),c=-39/98+5/18*I,n=10 3178163759273792 r005 Re(z^2+c),c=-19/46+7/60*I,n=14 3178163762739635 l006 ln(379/9097) 3178163764185992 r005 Re(z^2+c),c=-25/66+18/55*I,n=61 3178163775953295 r005 Re(z^2+c),c=-43/114+17/45*I,n=15 3178163777221068 a007 Real Root Of -475*x^4-837*x^3-50*x^2+660*x+21 3178163783686516 a007 Real Root Of -763*x^4-871*x^3-481*x^2+993*x+344 3178163785105802 r009 Im(z^3+c),c=-1/20+53/64*I,n=32 3178163786546133 a007 Real Root Of 904*x^4+760*x^3-457*x^2-980*x+324 3178163792246796 b008 Sin[Sech[1+Pi]] 3178163795153552 r005 Im(z^2+c),c=-21/50+1/29*I,n=3 3178163808623485 r005 Re(z^2+c),c=-25/66+18/55*I,n=64 3178163812586851 r005 Re(z^2+c),c=-25/66+18/55*I,n=63 3178163822934206 m001 Salem*ln(Porter)^2*Tribonacci 3178163825601030 m001 (Kolakoski-Niven)/(CareFree-FeigenbaumMu) 3178163827798455 r005 Re(z^2+c),c=9/52+22/47*I,n=23 3178163839648925 r005 Re(z^2+c),c=-25/66+18/55*I,n=58 3178163845599521 r005 Re(z^2+c),c=-25/66+18/55*I,n=62 3178163862003836 m001 (Psi(2,1/3)-Zeta(1,-1))/(-GaussAGM+Robbin) 3178163863612534 r005 Re(z^2+c),c=-25/66+18/55*I,n=52 3178163876375098 a007 Real Root Of -183*x^4-556*x^3-57*x^2-711*x-862 3178163885152186 r005 Re(z^2+c),c=-25/66+18/55*I,n=57 3178163886285146 a007 Real Root Of -308*x^4-960*x^3-169*x^2-443*x+905 3178163889122250 r005 Re(z^2+c),c=-25/66+18/55*I,n=60 3178163897696264 r009 Im(z^3+c),c=-23/70+11/39*I,n=13 3178163900382502 b008 Gudermannian[Sech[1+Pi]] 3178163903089963 r009 Re(z^3+c),c=-19/44+25/47*I,n=24 3178163912174767 r005 Im(z^2+c),c=-7/54+26/59*I,n=33 3178163916307642 r005 Im(z^2+c),c=-11/38+25/51*I,n=20 3178163921047414 a007 Real Root Of -443*x^4+972*x^3+414*x^2+488*x+149 3178163924849718 r002 2th iterates of z^2 + 3178163939024544 b008 7-33*Sinh[1] 3178163940071612 a007 Real Root Of 965*x^4-475*x^3+555*x^2-418*x-214 3178163941020459 r005 Re(z^2+c),c=-17/44+35/64*I,n=47 3178163947671949 m001 (Bloch+PrimesInBinary)/(Si(Pi)-Zeta(1,2)) 3178163948124572 s002 sum(A256029[n]/(n^2*10^n+1),n=1..infinity) 3178163953271610 m005 (1/2*gamma+3/4)/(3^(1/2)-5) 3178164001529089 r009 Re(z^3+c),c=-61/126+21/47*I,n=52 3178164008450620 b008 ArcCsch[Cosh[1+Pi]] 3178164022017548 r009 Re(z^3+c),c=-7/122+21/32*I,n=57 3178164025877966 r001 34i'th iterates of 2*x^2-1 of 3178164029674779 a005 (1/sin(97/235*Pi))^878 3178164048771954 a007 Real Root Of 540*x^4+131*x^3-358*x^2-890*x-248 3178164049497312 a001 521/89*13^(31/47) 3178164051659585 m001 (GAMMA(7/12)-Shi(1))/(GolombDickman+Thue) 3178164053550041 l006 ln(378/9073) 3178164057136015 v003 sum((5/2*n^2+7/2*n+15)/(n!+1),n=1..infinity) 3178164074678941 a007 Real Root Of 195*x^4-813*x^3+202*x^2-848*x-318 3178164078005634 r005 Re(z^2+c),c=-45/118+19/60*I,n=34 3178164079508507 r005 Im(z^2+c),c=-17/28+22/51*I,n=62 3178164080678048 r009 Re(z^3+c),c=-31/66+25/64*I,n=17 3178164081350676 r005 Re(z^2+c),c=-25/66+18/55*I,n=53 3178164081495159 m001 1/ln(BesselJ(0,1))/Paris*Catalan^2 3178164091131353 r009 Re(z^3+c),c=-1/17+43/63*I,n=53 3178164093847100 r009 Im(z^3+c),c=-19/46+3/13*I,n=11 3178164121000134 m001 ln(2)/ln(10)/(Zeta(1,2)^sin(1)) 3178164127930405 r005 Re(z^2+c),c=-25/66+18/55*I,n=55 3178164128422722 r005 Im(z^2+c),c=-9/19+13/28*I,n=16 3178164135134796 p003 LerchPhi(1/10,5,209/166) 3178164140404023 h001 (2/7*exp(2)+1/12)/(6/7*exp(2)+4/7) 3178164149349367 r002 34th iterates of z^2 + 3178164163621348 m001 Zeta(1,2)^2/ln(FibonacciFactorial)*exp(1)^2 3178164165237332 k007 concat of cont frac of 3178164168172746 m005 (1/3*5^(1/2)+2/3)/(4/7*3^(1/2)-6/11) 3178164171041075 r002 30th iterates of z^2 + 3178164172965521 m006 (2*Pi^2+1/3)/(1/3*ln(Pi)+1/4) 3178164173227626 r002 54th iterates of z^2 + 3178164193956439 m001 log(1+sqrt(2))/ErdosBorwein/ln(sin(1)) 3178164197922566 g006 Psi(1,11/12)+Psi(1,4/9)+Psi(1,1/5)-Psi(1,7/9) 3178164202099107 r004 Re(z^2+c),c=7/22+8/15*I,z(0)=exp(5/8*I*Pi),n=6 3178164206660604 b008 Sech[3*(-2+E^(1/3))] 3178164219399100 m001 (Porter-Thue)/(Zeta(1,-1)-MadelungNaCl) 3178164219842566 a003 cos(Pi*2/65)-cos(Pi*5/58) 3178164227698329 a001 3/439204*9349^(21/50) 3178164234943707 m001 1/2*Pi/(1-ln(2)/ln(10))*2^(1/2) 3178164240954361 a001 3/439204*24476^(19/50) 3178164242865516 a001 3/167761*64079^(13/50) 3178164249306071 m001 Pi/(Zeta(1/2)+Bloch) 3178164253115995 a001 47/17711*832040^(31/45) 3178164267558407 p001 sum(1/(511*n+338)/(6^n),n=0..infinity) 3178164267799957 r005 Im(z^2+c),c=7/23+7/51*I,n=51 3178164274397044 r005 Im(z^2+c),c=-9/50+25/54*I,n=30 3178164282585032 m001 (ln(3)+Zeta(1,2))/(Backhouse-ReciprocalLucas) 3178164289453656 k002 Champernowne real with 39/2*n^2-23/2*n+23 3178164292112740 r002 25th iterates of z^2 + 3178164293345799 l006 ln(1855/2549) 3178164307678304 a003 cos(Pi*39/115)-cos(Pi*21/47) 3178164308983034 a007 Real Root Of -250*x^4-548*x^3+747*x^2-304*x-597 3178164310760464 r009 Re(z^3+c),c=-19/60+7/39*I,n=2 3178164317312398 m005 (1/2*Pi+5/11)/(1/6*5^(1/2)+6) 3178164330845331 b008 83*ArcSinh[23] 3178164336122076 a001 2/5*196418^(14/39) 3178164340127371 a005 (1/cos(11/199*Pi))^836 3178164343270300 r002 3th iterates of z^2 + 3178164345903122 l006 ln(377/9049) 3178164351508407 m005 (13/42+1/6*5^(1/2))/(7/8*2^(1/2)+10/11) 3178164375576113 a007 Real Root Of 241*x^4-746*x^3-47*x^2-896*x+311 3178164377649304 h001 (3/5*exp(2)+9/10)/(1/9*exp(2)+6/7) 3178164385120197 m001 GAMMA(19/24)^2*ln(Paris)/Zeta(9)^2 3178164413619676 r005 Im(z^2+c),c=-15/98+18/23*I,n=45 3178164420567107 r005 Im(z^2+c),c=3/56+17/49*I,n=15 3178164422604512 m001 ln(GAMMA(2/3))^2/GAMMA(13/24)^2/Zeta(5)^2 3178164425293319 m005 (1/3*3^(1/2)+3/4)/(3/10*Catalan+1/7) 3178164436016760 g002 Psi(2/11)+Psi(5/7)-Psi(4/11)-Psi(4/5) 3178164451961703 m005 (1/2*exp(1)+7/8)/(139/22+7/22*5^(1/2)) 3178164456602382 r009 Re(z^3+c),c=-6/17+8/39*I,n=3 3178164460463228 r005 Re(z^2+c),c=-21/52+17/53*I,n=10 3178164461526107 a007 Real Root Of 231*x^4+505*x^3-700*x^2-46*x-432 3178164470632671 r005 Im(z^2+c),c=13/64+11/45*I,n=26 3178164472646427 m001 (GaussKuzminWirsing-Mills)/(Bloch+FeigenbaumD) 3178164472766183 a007 Real Root Of -380*x^4-960*x^3+455*x^2-785*x+861 3178164482732149 r005 Im(z^2+c),c=-41/94+20/57*I,n=3 3178164488366403 a007 Real Root Of 829*x^4-8*x^3-119*x^2-375*x+123 3178164490381876 a007 Real Root Of -291*x^4+386*x^3+801*x^2+279*x-179 3178164491212613 r002 52th iterates of z^2 + 3178164495894358 m001 (Pi*GAMMA(7/24)+GaussKuzminWirsing)/Pi 3178164498360292 r005 Re(z^2+c),c=-25/66+18/55*I,n=41 3178164510045866 a001 1/203*(1/2*5^(1/2)+1/2)^12*7^(5/14) 3178164521837077 r005 Im(z^2+c),c=7/78+10/31*I,n=3 3178164529782622 r002 32th iterates of z^2 + 3178164532192391 a007 Real Root Of -136*x^4+839*x^3-472*x^2+765*x-221 3178164541507969 a001 199/433494437*46368^(14/23) 3178164541687926 a001 199/365435296162*2971215073^(14/23) 3178164542461197 m005 (1/2*5^(1/2)-4/7)/(6/11*gamma-1/7) 3178164546822362 a009 234+13*12^(3/4) 3178164564644481 m001 1/ln(log(2+sqrt(3)))^2*Magata/sqrt(2) 3178164575460403 r005 Im(z^2+c),c=-17/58+17/28*I,n=3 3178164577922759 m001 Paris^Shi(1)/exp(1) 3178164583140165 m006 (4*Pi-5)/(exp(Pi)+2/3) 3178164622431464 m005 (1/3*Catalan+3/5)/(5/6*exp(1)+7/12) 3178164627407957 m001 Zeta(1/2)^TravellingSalesman/ThueMorse 3178164629607377 r005 Im(z^2+c),c=23/126+6/23*I,n=22 3178164635169558 m008 (3/5*Pi^2+5/6)/(3/4*Pi^3-2) 3178164639811187 l006 ln(376/9025) 3178164645032803 r005 Im(z^2+c),c=19/62+7/52*I,n=40 3178164648953698 a001 9*165580141^(1/15) 3178164651371025 m005 (1/2*3^(1/2)+6/7)/(11/12*gamma-7/12) 3178164654854075 a007 Real Root Of -178*x^4-768*x^3-784*x^2-540*x-291 3178164667140780 m001 (-Tribonacci+ZetaQ(2))/(Psi(2,1/3)-Shi(1)) 3178164672969249 h001 (-4*exp(3/2)-6)/(-4*exp(-1)+9) 3178164675192294 a007 Real Root Of -26*x^4-814*x^3+421*x^2+960*x+854 3178164676458761 r002 16th iterates of z^2 + 3178164690169101 r005 Im(z^2+c),c=-27/110+27/55*I,n=50 3178164695723905 r005 Im(z^2+c),c=3/74+17/48*I,n=17 3178164700324762 h005 exp(cos(Pi*1/30)+cos(Pi*13/29)) 3178164703083143 r005 Im(z^2+c),c=-17/40+31/56*I,n=58 3178164715516136 m001 (Pi-3^(1/3))/(Ei(1,1)-2*Pi/GAMMA(5/6)) 3178164719062429 m001 (Chi(1)-Robbin)^TwinPrimes 3178164719110668 a007 Real Root Of -216*x^4-64*x^3+632*x^2+961*x-365 3178164725082327 r002 16th iterates of z^2 + 3178164728145431 a007 Real Root Of -193*x^4-399*x^3+959*x^2+777*x-335 3178164729622747 r002 25th iterates of z^2 + 3178164738350730 r009 Im(z^3+c),c=-39/86+6/13*I,n=3 3178164741366916 r002 9th iterates of z^2 + 3178164768921634 q001 949/2986 3178164794979313 m002 Pi^5+Cosh[Pi]+(Log[Pi]*ProductLog[Pi])/6 3178164822930653 m001 1/TwinPrimes/KhintchineHarmonic*ln((3^(1/3))) 3178164824285996 m008 (1/5*Pi^5+4)/(3/5*Pi+1/6) 3178164830779214 m006 (1/3*exp(2*Pi)-5/6)/(3/5/Pi-3/4) 3178164832772948 r009 Re(z^3+c),c=-53/122+9/22*I,n=5 3178164841116070 r005 Re(z^2+c),c=25/114+1/55*I,n=24 3178164849350203 m008 (1/5*Pi^6+2)/(2*Pi^5-3/4) 3178164859703136 h001 (9/11*exp(2)+1/9)/(2/3*exp(1)+1/8) 3178164871890502 m008 (3*Pi^4-2/5)/(3*Pi^5+1/6) 3178164887227147 l006 ln(7587/7832) 3178164906881996 m005 (-7/36+1/4*5^(1/2))/(1/11*exp(1)+9/10) 3178164908914453 m001 (HardyLittlewoodC3*Totient+Magata)/Totient 3178164910335395 m001 (Porter-ThueMorse)/(ln(gamma)+ln(2^(1/2)+1)) 3178164935286674 l006 ln(375/9001) 3178164937087009 r005 Im(z^2+c),c=-17/74+31/64*I,n=45 3178164940677211 a009 17*2^(2/3)+23^(1/2) 3178164944801626 a007 Real Root Of 317*x^4+905*x^3-285*x^2-157*x-910 3178164953796203 r009 Re(z^3+c),c=-3/62+23/47*I,n=19 3178164960369392 r005 Im(z^2+c),c=7/114+13/38*I,n=19 3178164963847759 l006 ln(5851/8040) 3178164974270442 a007 Real Root Of 24*x^4+774*x^3+345*x^2-385*x+126 3178164978800995 m005 (1/2*3^(1/2)-4/9)/(5/11*exp(1)+1/11) 3178164982618511 r002 6th iterates of z^2 + 3178164984029425 m001 1/exp(Zeta(1,2))*Tribonacci^2/exp(1) 3178165002168632 r009 Im(z^3+c),c=-9/38+19/60*I,n=10 3178165018616553 a008 Real Root of x^4-x^3+40*x-7 3178165020633480 a007 Real Root Of 135*x^4-883*x^3+736*x^2-799*x-358 3178165022110013 r005 Re(z^2+c),c=-25/66+18/55*I,n=50 3178165025213239 r005 Im(z^2+c),c=-1/56+7/9*I,n=35 3178165034681047 g004 Re(GAMMA(-63/20+I*(-1))) 3178165041269288 r005 Im(z^2+c),c=-11/12+29/119*I,n=4 3178165048987329 r005 Im(z^2+c),c=-11/38+29/60*I,n=17 3178165050995895 r005 Im(z^2+c),c=-19/94+26/55*I,n=43 3178165051237563 a007 Real Root Of -238*x^4-718*x^3-115*x^2-513*x+764 3178165055462267 a007 Real Root Of 338*x^4+776*x^3-963*x^2+19*x+214 3178165057030942 m002 Pi^5+6*Coth[Pi]+Sinh[Pi]/2 3178165075754750 r005 Re(z^2+c),c=-13/32+11/60*I,n=26 3178165077368092 a007 Real Root Of -418*x^4+905*x^3-655*x^2-313*x 3178165096046523 a007 Real Root Of -172*x^4+690*x^3-50*x^2+749*x+267 3178165109530279 r005 Im(z^2+c),c=-15/86+29/63*I,n=27 3178165112249033 m001 ArtinRank2-arctan(1/2)^(2^(1/3)) 3178165135688986 r005 Re(z^2+c),c=-39/94+4/39*I,n=26 3178165136184874 r005 Re(z^2+c),c=-9/22+7/43*I,n=18 3178165143827677 r008 a(0)=3,K{-n^6,44-36*n-22*n^2+7*n^3} 3178165149341797 r002 39th iterates of z^2 + 3178165150227825 m001 (gamma(1)-Pi^(1/2))/(GAMMA(17/24)-CareFree) 3178165161486065 r005 Im(z^2+c),c=7/40+4/15*I,n=27 3178165162660183 a007 Real Root Of 238*x^4+897*x^3+464*x^2+58*x+11 3178165164911152 r002 2th iterates of z^2 + 3178165173088998 m001 (HardyLittlewoodC5-Thue)/Riemann1stZero 3178165180957271 r005 Im(z^2+c),c=-67/114+3/53*I,n=29 3178165183438157 m001 exp(CareFree)/FeigenbaumDelta^2/cos(1)^2 3178165200303491 m005 (1/2*3^(1/2)-10/11)/(1/8*Catalan-1/4) 3178165215883709 r005 Re(z^2+c),c=-51/122+2/37*I,n=12 3178165232342156 l006 ln(374/8977) 3178165242012552 r005 Im(z^2+c),c=-15/22+2/33*I,n=12 3178165265210576 a001 121393/29*76^(22/47) 3178165275104284 l006 ln(3996/5491) 3178165292459666 k002 Champernowne real with 20*n^2-13*n+24 3178165300521388 a001 3*(1/2*5^(1/2)+1/2)^30*76^(14/15) 3178165318554505 r005 Im(z^2+c),c=-8/23+15/28*I,n=60 3178165322780479 m001 1/exp(CareFree)^2*Conway^2*BesselJ(0,1) 3178165326970943 r005 Im(z^2+c),c=-9/118+2/55*I,n=7 3178165330991827 a007 Real Root Of -85*x^4+844*x^3-727*x^2+455*x+246 3178165363469127 a009 1/17*(5^(3/4)-7^(1/4))^(1/2)*17^(1/2) 3178165370270175 a001 6643838879/34*591286729879^(20/21) 3178165391125166 m001 (exp(-1/2*Pi)+BesselK(1,1))/(Magata-Thue) 3178165393125795 a007 Real Root Of -251*x^4-660*x^3+264*x^2-648*x-305 3178165400718194 m001 (GAMMA(2/3)-Pi^(1/2))/(Lehmer+Sarnak) 3178165405522488 a007 Real Root Of 881*x^4-323*x^3+17*x^2-945*x+300 3178165423789166 r005 Im(z^2+c),c=-25/78+26/45*I,n=18 3178165430081963 a007 Real Root Of -477*x^4+413*x^3-585*x^2+959*x+382 3178165431596203 r005 Re(z^2+c),c=19/118+13/30*I,n=15 3178165431715176 r005 Im(z^2+c),c=-27/50+23/41*I,n=29 3178165435803628 r002 14th iterates of z^2 + 3178165435910129 r002 12th iterates of z^2 + 3178165440600925 r005 Re(z^2+c),c=-3/19+19/35*I,n=8 3178165441091870 a007 Real Root Of 309*x^4+964*x^3-442*x^2-999*x+710 3178165447826787 r004 Im(z^2+c),c=-7/16+1/19*I,z(0)=-1,n=21 3178165463812122 a007 Real Root Of -767*x^4+348*x^3-901*x^2+852*x+28 3178165464406616 a007 Real Root Of 64*x^4-132*x^3-776*x^2+611*x-987 3178165469581584 r005 Re(z^2+c),c=8/25+5/41*I,n=35 3178165483135533 m001 (ln(2)/ln(10))^Conway*CopelandErdos^Conway 3178165491413606 m001 (Pi+arctan(1/3))/(ArtinRank2-KomornikLoreti) 3178165498305230 m001 (3^(1/2)-ln(3))/(-Zeta(1,2)+GAMMA(11/12)) 3178165498773525 h001 (2/9*exp(1)+2/3)/(4/9*exp(2)+5/7) 3178165499347655 m001 1/ln(OneNinth)*GolombDickman/log(1+sqrt(2)) 3178165517855912 a007 Real Root Of 506*x^4-977*x^3+981*x^2-931*x+223 3178165519333196 r005 Re(z^2+c),c=-25/66+18/55*I,n=48 3178165530990340 l006 ln(373/8953) 3178165553724817 r005 Re(z^2+c),c=-29/102+13/23*I,n=27 3178165562408522 r009 Re(z^3+c),c=-11/25+19/55*I,n=42 3178165565196963 a008 Real Root of x^4-48*x^2-27*x+297 3178165571855445 l006 ln(6137/8433) 3178165581446743 m001 (ln(gamma)+OneNinth)/(Porter-ZetaP(4)) 3178165587688017 a007 Real Root Of 57*x^4+30*x^3-354*x^2+380*x-69 3178165608687270 a001 47/2584*377^(47/54) 3178165615402465 r005 Re(z^2+c),c=-51/122+1/54*I,n=13 3178165625265128 r009 Re(z^3+c),c=-7/122+21/32*I,n=55 3178165632673835 m001 (GAMMA(23/24)-Magata)/(RenyiParking+ZetaQ(4)) 3178165636500606 r005 Re(z^2+c),c=3/62+10/33*I,n=23 3178165636550035 m002 Pi^5+Sinh[Pi]+Tanh[Pi]^2/4 3178165641743707 r005 Re(z^2+c),c=-15/44+21/46*I,n=61 3178165643608857 m001 1/ln(Niven)/ErdosBorwein^2*Robbin^2 3178165655491696 a008 Real Root of x^4-9*x^2-28*x-8 3178165660690886 m008 (2/5*Pi^5-1)/(5/6*Pi-3) 3178165667980113 p003 LerchPhi(1/125,2,382/215) 3178165670875663 a007 Real Root Of -180*x^4-555*x^3+221*x^2+692*x+515 3178165675138994 m008 (3/4*Pi^3+1/4)/(4/5*Pi^2-1/2) 3178165678667271 m001 (Pi-ln(2)/ln(10))/cos(1)/Zeta(1,-1) 3178165684358032 a007 Real Root Of -410*x^4+863*x^3-386*x^2+742*x+24 3178165686931609 a001 165580141/4*47^(9/17) 3178165688044690 r009 Im(z^3+c),c=-31/64+7/41*I,n=22 3178165688990118 m001 gamma/Conway^2*exp(sqrt(5)) 3178165689260828 r005 Im(z^2+c),c=-35/64+25/58*I,n=34 3178165691764057 m001 1/exp(MertensB1)/CopelandErdos*Paris^2 3178165692833830 r009 Re(z^3+c),c=-55/122+21/58*I,n=38 3178165696868938 q001 1147/3609 3178165706181852 m005 (3/28+1/4*5^(1/2))/(1/4*Zeta(3)-1/11) 3178165714237079 a007 Real Root Of 187*x^4+303*x^3-754*x^2+813*x+848 3178165720990366 m001 (2^(1/2)-gamma(1))/(-gamma(2)+FeigenbaumDelta) 3178165738663893 a001 433494437/11*18^(13/18) 3178165746045720 a001 47/75025*514229^(9/19) 3178165746157527 a001 47/5702887*4807526976^(9/19) 3178165772359845 a001 2/341*7^(33/38) 3178165774374871 m001 OneNinth^2*ln(Tribonacci)^2/GAMMA(2/3) 3178165781434670 h001 (5/6*exp(2)+3/11)/(1/5*exp(2)+6/11) 3178165786260509 m001 (-Rabbit+ZetaQ(4))/(Catalan-ln(2)) 3178165793846737 m001 (Mills+Niven)/(GaussAGM-Grothendieck) 3178165818670950 m005 (1/2*5^(1/2)+4)/(7/12*Pi-2/9) 3178165825905850 m001 (Pi-Catalan)/(Lehmer+OneNinth) 3178165826905272 a007 Real Root Of -76*x^4-85*x^3+362*x^2-212*x+695 3178165830701576 r002 31th iterates of z^2 + 3178165831244069 l006 ln(372/8929) 3178165832633207 a007 Real Root Of -335*x^4-823*x^3+668*x^2-80*x+757 3178165850987362 a007 Real Root Of 285*x^4+559*x^3-948*x^2+784*x+935 3178165851869977 m003 2+(3*Sqrt[5])/4-Sin[1/2+Sqrt[5]/2]^2/2 3178165881915668 r009 Re(z^3+c),c=-25/78+32/47*I,n=16 3178165891809329 h001 (4/7*exp(1)+1/5)/(8/11*exp(2)+1/7) 3178165896824014 a001 1/144*832040^(37/47) 3178165911499048 m001 Zeta(7)/ln(Magata)/sin(Pi/12) 3178165914768872 r005 Im(z^2+c),c=-19/78+17/36*I,n=15 3178165938751122 r009 Re(z^3+c),c=-13/58+18/25*I,n=28 3178165954249619 a001 843/89*144^(41/58) 3178165955174413 m005 (1/2*Pi+5/6)/(1/8*exp(1)+5/12) 3178165965814751 m001 (BesselK(0,1)-Zeta(1/2))/(-cos(1/12*Pi)+Artin) 3178165972710099 a007 Real Root Of 281*x^4+46*x^3+636*x^2-234*x-140 3178165976616401 a007 Real Root Of -248*x^4-732*x^3+283*x^2+162*x-540 3178165978890555 r005 Im(z^2+c),c=-67/82+1/60*I,n=40 3178166006592558 a001 2889*832040^(10/29) 3178166006817683 r005 Re(z^2+c),c=3/23+19/29*I,n=4 3178166017510541 m005 (4*Pi+2/5)/(5*Catalan-1/2) 3178166029025798 a007 Real Root Of 16*x^4+525*x^3+519*x^2-151*x+442 3178166032697642 a009 1/6*(21+14^(1/2))^(1/2)*6^(3/4) 3178166034102596 r002 42th iterates of z^2 + 3178166034810541 a001 10946/47*1364^(21/58) 3178166058396289 r005 Re(z^2+c),c=17/48+21/38*I,n=19 3178166067831361 s002 sum(A192070[n]/(n^2*10^n+1),n=1..infinity) 3178166070942912 r005 Re(z^2+c),c=-43/102+1/49*I,n=10 3178166073448020 r005 Im(z^2+c),c=-95/106+1/41*I,n=23 3178166079922419 a003 sin(Pi*12/113)*sin(Pi*30/71) 3178166081244692 m001 GAMMA(7/24)^2*Tribonacci/ln(gamma) 3178166083238227 p003 LerchPhi(1/125,4,109/46) 3178166087345950 a005 (1/sin(32/231*Pi))^20 3178166095695047 m001 Rabbit^2*CopelandErdos*ln(BesselJ(0,1)) 3178166113067831 a007 Real Root Of -292*x^4-843*x^3-394*x^2+800*x-25 3178166121845249 b008 30+SinIntegral[(4*Pi)/5] 3178166123804603 r005 Im(z^2+c),c=11/86+18/59*I,n=8 3178166125717000 l006 ln(2141/2942) 3178166129337880 m001 (GAMMA(2/3)+ln(2))/(Pi^(1/2)+FeigenbaumDelta) 3178166129565485 r005 Im(z^2+c),c=-9/28+14/27*I,n=44 3178166133116326 l006 ln(371/8905) 3178166134058137 r009 Re(z^3+c),c=-15/74+53/61*I,n=16 3178166138863569 a003 sin(Pi*3/70)*sin(Pi*7/92) 3178166147686295 m005 (25/24+3/8*5^(1/2))/(Catalan+5) 3178166148138500 m001 FransenRobinson*Mills^arctan(1/2) 3178166154090208 a003 cos(Pi*24/115)-sin(Pi*29/94) 3178166163194070 m001 (ln(2+3^(1/2))+gamma(3))/(FeigenbaumD+Porter) 3178166195281972 a001 1364/591286729879*3^(7/24) 3178166198824973 a007 Real Root Of -200*x^4-469*x^3-487*x^2+978*x+347 3178166214762877 a007 Real Root Of -200*x^4-576*x^3+262*x^2+34*x-624 3178166217050172 r009 Im(z^3+c),c=-15/38+14/57*I,n=19 3178166234201056 a007 Real Root Of -302*x^4-811*x^3+491*x^2+59*x+5 3178166237668434 m001 (BesselI(0,1)+Magata)/(MinimumGamma+ZetaQ(3)) 3178166239127241 a001 5374978561/72*1836311903^(14/17) 3178166239127261 a001 4250681/48*6557470319842^(14/17) 3178166239129221 a001 3020733700601/48*514229^(14/17) 3178166242719442 r002 16th iterates of z^2 + 3178166244636327 m001 1/GAMMA(1/3)*CareFree^2/exp(log(1+sqrt(2)))^2 3178166249828746 r009 Re(z^3+c),c=-1/90+49/61*I,n=54 3178166265415479 r009 Im(z^3+c),c=-5/114+15/43*I,n=7 3178166270555212 m001 (Sarnak+Trott2nd)/(Lehmer-Otter) 3178166273750613 m003 -11/2+Sqrt[5]/4-Tan[1/2+Sqrt[5]/2]/12 3178166285312177 r005 Re(z^2+c),c=-3/8+13/38*I,n=31 3178166287131716 r005 Re(z^2+c),c=17/56+3/28*I,n=43 3178166295465676 k002 Champernowne real with 41/2*n^2-29/2*n+25 3178166302082618 m001 (BesselI(0,1)-GAMMA(13/24))/(Bloch+CareFree) 3178166338059285 r005 Im(z^2+c),c=-37/110+27/53*I,n=27 3178166347421844 a003 sin(Pi*2/19)*sin(Pi*43/99) 3178166353404743 r002 51th iterates of z^2 + 3178166361491104 m001 (3^(1/2)-ln(5))/(Ei(1)+ReciprocalLucas) 3178166380215516 a007 Real Root Of -523*x^4-665*x^3+464*x^2+953*x+240 3178166380334451 r009 Im(z^3+c),c=-31/74+2/9*I,n=8 3178166381991183 m005 (1/2*Catalan+3)/(8/11*exp(1)-8/9) 3178166402814382 m008 (1/2*Pi^3+1/6)/(1/2*Pi^4+3/5) 3178166413224167 a001 17393796001/5*591286729879^(11/13) 3178166413224167 a001 3461452808002/5*1134903170^(11/13) 3178166426360373 m001 1/arctan(1/2)^2/ln(Riemann3rdZero)^2*sin(1)^2 3178166432747126 a001 199/75025*2^(6/23) 3178166436620233 l006 ln(370/8881) 3178166442215244 a007 Real Root Of -886*x^4+364*x^3+845*x^2+365*x-204 3178166443305613 m001 (gamma(1)+Rabbit)/(Tetranacci+ZetaP(4)) 3178166456572165 a007 Real Root Of 674*x^4-194*x^3-665*x^2-318*x-47 3178166463971804 m001 (ln(2^(1/2)+1)+OneNinth)/(Sarnak-ThueMorse) 3178166465371538 r005 Im(z^2+c),c=5/122+21/59*I,n=11 3178166466593662 a007 Real Root Of -704*x^4+163*x^3-546*x^2+552*x+243 3178166468683934 r009 Im(z^3+c),c=-59/110+1/28*I,n=4 3178166469159425 a007 Real Root Of -969*x^4-109*x^3-733*x^2+543*x+253 3178166474029957 m003 5/2+(3*Sqrt[5])/4-Sin[1/2+Sqrt[5]/2] 3178166476022798 m001 1/GAMMA(3/4)/MinimumGamma^2/ln(cos(Pi/12))^2 3178166478880235 m001 1/Backhouse^2*ln(BesselJ(1,1))^2 3178166507919879 r009 Re(z^3+c),c=-35/122+1/51*I,n=4 3178166514881706 r005 Im(z^2+c),c=-21/62+28/51*I,n=50 3178166522195372 m001 (PolyaRandomWalk3D+Rabbit)/(Artin-CareFree) 3178166524339751 r009 Re(z^3+c),c=-1/20+16/29*I,n=11 3178166531882376 a003 sin(Pi*9/97)/sin(Pi*32/89) 3178166537217239 m005 (-7/12+1/6*5^(1/2))/(4*3^(1/2)-3/10) 3178166545091686 m001 1/exp(Trott)^2/FeigenbaumDelta^2*sin(1)^2 3178166553076714 m001 1/FeigenbaumKappa^2*exp(Bloch)^2/BesselJ(1,1) 3178166573221166 r005 Re(z^2+c),c=15/106+17/46*I,n=32 3178166594789455 r005 Im(z^2+c),c=-27/122+23/48*I,n=26 3178166620190711 a003 sin(Pi*20/119)-sin(Pi*31/101) 3178166624569433 a007 Real Root Of -226*x^4+481*x^3-469*x^2+844*x-234 3178166632357062 l006 ln(6709/9219) 3178166636168488 r005 Re(z^2+c),c=-4/13+6/11*I,n=63 3178166640140919 m001 (PlouffeB+ZetaP(4))/(gamma(2)+MadelungNaCl) 3178166651937288 a001 10946/47*24476^(15/58) 3178166654435919 m001 (GAMMA(7/12)*Kolakoski-Porter)/Kolakoski 3178166663864414 m005 (1/3*3^(1/2)-1/9)/(9/10*5^(1/2)-6/11) 3178166667227270 h001 (9/11*exp(2)+1/12)/(3/8*exp(1)+10/11) 3178166668100135 r009 Im(z^3+c),c=-11/94+33/41*I,n=28 3178166683035548 r005 Im(z^2+c),c=-107/86+23/62*I,n=8 3178166693129143 r005 Re(z^2+c),c=21/62+5/47*I,n=49 3178166701803878 m001 (ln(2)+Kac)/(MadelungNaCl-MertensB3) 3178166706873790 r005 Re(z^2+c),c=-31/78+13/56*I,n=15 3178166709043125 r005 Im(z^2+c),c=-3/106+25/63*I,n=10 3178166715104134 r002 9th iterates of z^2 + 3178166720539520 r002 34th iterates of z^2 + 3178166722195551 m001 GAMMA(5/12)^Zeta(1,2)+Khinchin 3178166724727562 a007 Real Root Of 164*x^4+691*x^3+642*x^2+412*x+275 3178166728907633 a007 Real Root Of 400*x^4+966*x^3-659*x^2+832*x-499 3178166734885435 m002 -36*Pi^4+Pi^5*ProductLog[Pi] 3178166737719726 r005 Im(z^2+c),c=-17/50+19/36*I,n=40 3178166738447650 m001 gamma(2)^exp(1/Pi)*gamma(2)^FeigenbaumKappa 3178166741769055 l006 ln(369/8857) 3178166745531581 r005 Re(z^2+c),c=37/118+5/44*I,n=53 3178166745709439 p001 sum((-1)^n/(543*n+310)/(24^n),n=0..infinity) 3178166761799480 m009 (3/4*Psi(1,3/4)+1/5)/(2*Psi(1,2/3)+1/2) 3178166766629475 m003 -17/10+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/32 3178166775122090 m001 1/Zeta(7)^2/GAMMA(3/4)/ln(sqrt(1+sqrt(3)))^2 3178166802765453 r005 Im(z^2+c),c=-127/118+2/55*I,n=28 3178166804216465 m005 (1/2*Catalan+7/11)/(6/11*Zeta(3)-1) 3178166806603632 m001 1/OneNinth*GolombDickman^2*ln(Catalan) 3178166820623059 r005 Im(z^2+c),c=2/11+11/42*I,n=15 3178166827046546 r009 Re(z^3+c),c=-55/122+21/58*I,n=51 3178166832537650 r005 Re(z^2+c),c=33/98+7/58*I,n=32 3178166838908918 m005 (1/2*Catalan+3/8)/(1/9*3^(1/2)-5/11) 3178166839645229 r005 Im(z^2+c),c=-57/82+4/19*I,n=30 3178166847224828 r009 Re(z^3+c),c=-59/126+19/56*I,n=6 3178166852358433 m005 (1/3*exp(1)-1/12)/(3*gamma+6/7) 3178166855815826 a007 Real Root Of 37*x^4-47*x^3-210*x^2+918*x-245 3178166859466720 r009 Re(z^3+c),c=-23/40+32/53*I,n=39 3178166861167966 r005 Im(z^2+c),c=-17/14+1/201*I,n=47 3178166862701660 a007 Real Root Of -134*x^4-720*x^3-789*x^2+289*x-554 3178166869816855 l006 ln(4568/6277) 3178166877129249 r009 Im(z^3+c),c=-23/94+11/35*I,n=12 3178166884237559 a007 Real Root Of 681*x^4+175*x^3+520*x^2-875*x+213 3178166886613026 r002 38th iterates of z^2 + 3178166887632316 m002 2+4/E^Pi+3*Pi^2 3178166899253478 s002 sum(A247997[n]/(exp(pi*n)+1),n=1..infinity) 3178166907552099 a007 Real Root Of -26*x^4-802*x^3+798*x^2+777*x-519 3178166907656343 r005 Re(z^2+c),c=-19/56+25/54*I,n=39 3178166908426754 m001 Riemann3rdZero^(HardyLittlewoodC3/ZetaQ(2)) 3178166921721129 m002 2/(3*Pi^6)+Tanh[Pi]/Pi 3178166931221781 a007 Real Root Of 444*x^4+540*x^3+600*x^2-73*x-71 3178166934235417 m001 (Khinchin-Kolakoski)/(MertensB3-Tetranacci) 3178166939149920 b008 3*E^(3/52) 3178166939516447 r005 Im(z^2+c),c=-37/110+28/57*I,n=12 3178166946885492 m001 2^(1/2)+GAMMA(5/6)+HardyLittlewoodC3 3178166958474743 r005 Im(z^2+c),c=-39/70+2/35*I,n=57 3178166962757987 m004 -25+125*Pi+5*Cosh[Sqrt[5]*Pi] 3178166967758405 r009 Re(z^3+c),c=-8/17+9/23*I,n=49 3178166975865498 m005 (-1/24+1/8*5^(1/2))/(-11/60+5/12*5^(1/2)) 3178166985083216 r005 Im(z^2+c),c=-127/118+2/55*I,n=26 3178166987147158 r005 Im(z^2+c),c=-9/118+2/55*I,n=9 3178167008549041 m001 ln(FeigenbaumDelta/DuboisRaymond) 3178167016430198 r002 33th iterates of z^2 + 3178167018632195 m001 (Khinchin+Stephens)/(arctan(1/3)+CareFree) 3178167019417290 p001 sum(1/(359*n+316)/n/(5^n),n=1..infinity) 3178167023961819 m002 30+Pi/4+Tanh[Pi] 3178167025726137 r005 Im(z^2+c),c=-127/118+2/55*I,n=27 3178167048576201 l006 ln(368/8833) 3178167049095542 l003 Psi(2,37/41) 3178167051119283 m008 (3*Pi^5+1/6)/(3*Pi^6+5) 3178167053651162 r002 37th iterates of z^2 + 3178167053748897 r005 Im(z^2+c),c=-127/118+2/55*I,n=25 3178167059323733 m002 -5+Pi^2+Log[Pi]-Pi^2/ProductLog[Pi] 3178167064318941 r005 Im(z^2+c),c=19/56+4/25*I,n=21 3178167069178279 m001 BesselJ(0,1)^2*exp(FeigenbaumC)/GAMMA(1/12) 3178167076453050 m004 -(Sqrt[5]*Pi)+(17*Sinh[Sqrt[5]*Pi])/3 3178167077381448 a007 Real Root Of 450*x^4-492*x^3+413*x^2-651*x-269 3178167078972801 r005 Im(z^2+c),c=-127/118+2/55*I,n=32 3178167089152188 m005 (1/3*Zeta(3)-3/4)/(13/22+5/22*5^(1/2)) 3178167097567779 l006 ln(6995/9612) 3178167098797755 m001 sin(1/12*Pi)^(sin(1/5*Pi)/Paris) 3178167111241221 k007 concat of cont frac of 3178167140129818 r009 Re(z^3+c),c=-5/14+4/19*I,n=9 3178167140633100 r002 7th iterates of z^2 + 3178167141299091 r005 Im(z^2+c),c=-127/118+2/55*I,n=31 3178167143885102 a007 Real Root Of x^4-150*x^3-540*x^2-197*x-89 3178167156612888 r002 42th iterates of z^2 + 3178167159052722 r009 Re(z^3+c),c=-31/66+7/18*I,n=27 3178167168262602 a007 Real Root Of 339*x^4+24*x^3-831*x^2-819*x+340 3178167172052459 m001 (Niven-Robbin)/(GAMMA(23/24)-ArtinRank2) 3178167176778365 r002 41th iterates of z^2 + 3178167180223559 r005 Im(z^2+c),c=-115/94+2/37*I,n=41 3178167181582006 r005 Re(z^2+c),c=-23/70+24/43*I,n=51 3178167183208797 r005 Im(z^2+c),c=-127/118+2/55*I,n=36 3178167188761999 m001 (Cahen-MinimumGamma)/(BesselJ(1,1)-ArtinRank2) 3178167188945242 r005 Im(z^2+c),c=-9/118+2/55*I,n=11 3178167189264279 r005 Im(z^2+c),c=-127/118+2/55*I,n=35 3178167190574532 m001 Grothendieck/ln(2)/cos(1/5*Pi) 3178167193282341 r002 46th iterates of z^2 + 3178167194003192 r002 45th iterates of z^2 + 3178167194550254 r002 48th iterates of z^2 + 3178167194562705 r005 Im(z^2+c),c=-127/118+2/55*I,n=42 3178167194593811 r002 52th iterates of z^2 + 3178167194597710 r005 Im(z^2+c),c=-127/118+2/55*I,n=40 3178167194655410 r005 Im(z^2+c),c=-127/118+2/55*I,n=39 3178167194667806 r005 Im(z^2+c),c=-127/118+2/55*I,n=41 3178167194676635 r002 47th iterates of z^2 + 3178167194676672 r002 51th iterates of z^2 + 3178167194680179 r005 Im(z^2+c),c=-9/118+2/55*I,n=13 3178167194688708 r005 Im(z^2+c),c=-127/118+2/55*I,n=46 3178167194719854 r005 Im(z^2+c),c=-127/118+2/55*I,n=45 3178167194727114 r002 56th iterates of z^2 + 3178167194737383 r002 55th iterates of z^2 + 3178167194740601 r005 Im(z^2+c),c=-127/118+2/55*I,n=50 3178167194743709 r005 Im(z^2+c),c=-127/118+2/55*I,n=49 3178167194745719 r002 60th iterates of z^2 + 3178167194746102 r005 Im(z^2+c),c=-9/118+2/55*I,n=16 3178167194746115 r002 59th iterates of z^2 + 3178167194746421 r005 Im(z^2+c),c=-127/118+2/55*I,n=54 3178167194746432 r005 Im(z^2+c),c=-127/118+2/55*I,n=56 3178167194746440 r002 62th iterates of z^2 + 3178167194746462 r005 Im(z^2+c),c=-127/118+2/55*I,n=53 3178167194746481 r005 Im(z^2+c),c=-127/118+2/55*I,n=55 3178167194746489 r005 Im(z^2+c),c=-127/118+2/55*I,n=60 3178167194746492 r002 61th iterates of z^2 + 3178167194746503 r005 Im(z^2+c),c=-9/118+2/55*I,n=18 3178167194746504 r005 Im(z^2+c),c=-127/118+2/55*I,n=59 3178167194746515 r005 Im(z^2+c),c=-127/118+2/55*I,n=64 3178167194746516 r005 Im(z^2+c),c=-127/118+2/55*I,n=63 3178167194746517 r005 Im(z^2+c),c=-9/118+2/55*I,n=20 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=23 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=25 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=27 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=29 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=30 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=32 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=34 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=36 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=37 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=39 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=41 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=43 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=46 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=48 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=50 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=52 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=53 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=54 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=55 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=56 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=57 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=58 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=59 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=60 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=61 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=62 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=63 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=64 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=51 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=49 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=47 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=45 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=44 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=42 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=40 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=38 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=35 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=33 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=31 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=28 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=26 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=24 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=22 3178167194746518 r005 Im(z^2+c),c=-9/118+2/55*I,n=21 3178167194746520 r005 Im(z^2+c),c=-9/118+2/55*I,n=19 3178167194746522 r005 Im(z^2+c),c=-127/118+2/55*I,n=61 3178167194746528 r005 Im(z^2+c),c=-127/118+2/55*I,n=62 3178167194746546 r005 Im(z^2+c),c=-127/118+2/55*I,n=57 3178167194746579 r002 63th iterates of z^2 + 3178167194746581 r005 Im(z^2+c),c=-127/118+2/55*I,n=58 3178167194746604 r005 Im(z^2+c),c=-9/118+2/55*I,n=17 3178167194746656 r002 64th iterates of z^2 + 3178167194747135 r005 Im(z^2+c),c=-127/118+2/55*I,n=51 3178167194747535 r005 Im(z^2+c),c=-9/118+2/55*I,n=14 3178167194747784 r005 Im(z^2+c),c=-127/118+2/55*I,n=52 3178167194747871 r005 Im(z^2+c),c=-9/118+2/55*I,n=15 3178167194748887 r002 57th iterates of z^2 + 3178167194751459 r002 58th iterates of z^2 + 3178167194756112 r005 Im(z^2+c),c=-127/118+2/55*I,n=47 3178167194767037 r005 Im(z^2+c),c=-127/118+2/55*I,n=48 3178167194774565 r002 53th iterates of z^2 + 3178167194804952 r005 Im(z^2+c),c=-127/118+2/55*I,n=43 3178167194806908 r002 54th iterates of z^2 + 3178167194874071 r002 49th iterates of z^2 + 3178167194875673 r005 Im(z^2+c),c=-127/118+2/55*I,n=44 3178167195033530 r002 50th iterates of z^2 + 3178167195476063 r005 Im(z^2+c),c=-9/118+2/55*I,n=12 3178167195922198 r005 Im(z^2+c),c=-127/118+2/55*I,n=37 3178167197150447 r005 Im(z^2+c),c=-127/118+2/55*I,n=38 3178167199328678 r002 43th iterates of z^2 + 3178167201695852 h001 (5/12*exp(1)+4/9)/(5/9*exp(2)+6/7) 3178167204285381 r002 44th iterates of z^2 + 3178167207370274 v002 sum(1/(5^n+(3*n^2-4*n+65)),n=1..infinity) 3178167207737938 m001 (-CopelandErdos+Khinchin)/(2^(1/2)-Cahen) 3178167213737531 r005 Im(z^2+c),c=-127/118+2/55*I,n=33 3178167221453810 a001 1364*(1/2*5^(1/2)+1/2)^29*3^(9/14) 3178167224262818 b008 Pi*JacobiDS[1/10,-3] 3178167232739819 r005 Im(z^2+c),c=-9/118+2/55*I,n=10 3178167235330297 r005 Im(z^2+c),c=-127/118+2/55*I,n=34 3178167235888570 r005 Re(z^2+c),c=19/86+1/42*I,n=13 3178167250609685 r002 39th iterates of z^2 + 3178167257135076 h001 (4/9*exp(2)+1/5)/(1/4*exp(1)+5/12) 3178167264015972 r005 Re(z^2+c),c=37/102+7/39*I,n=30 3178167286654080 r009 Im(z^3+c),c=-49/110+11/53*I,n=22 3178167292450320 r009 Re(z^3+c),c=-29/62+19/49*I,n=47 3178167298471686 k002 Champernowne real with 21*n^2-16*n+26 3178167304955729 a007 Real Root Of 313*x^4+967*x^3-440*x^2-853*x+842 3178167305864881 r005 Im(z^2+c),c=25/122+11/42*I,n=6 3178167312210111 k006 concat of cont frac of 3178167313984291 r005 Im(z^2+c),c=-127/118+2/55*I,n=29 3178167314930937 r002 40th iterates of z^2 + 3178167345949305 a007 Real Root Of -206*x^4-631*x^3+196*x^2+364*x-62 3178167349738496 a008 Real Root of x^3-x^2-174*x+531 3178167356075187 a007 Real Root Of -234*x^4-944*x^3-750*x^2-473*x-358 3178167357055225 l006 ln(367/8809) 3178167357677573 a007 Real Root Of -104*x^4-168*x^3+216*x^2-919*x+115 3178167368454059 r005 Re(z^2+c),c=19/62+6/55*I,n=64 3178167379280966 a007 Real Root Of -13*x^4+199*x^3+812*x^2+366*x+676 3178167381482312 r002 4th iterates of z^2 + 3178167385710669 m005 (1/2*5^(1/2)-1/8)/(5/8*2^(1/2)-4/7) 3178167386819510 r005 Re(z^2+c),c=-31/52+5/61*I,n=4 3178167406221628 a001 1/439204*76^(14/23) 3178167409841984 a007 Real Root Of 235*x^4-944*x^3-261*x^2-430*x-143 3178167425626880 m001 (Ei(1)+Zeta(1/2))/(exp(1/exp(1))-ZetaP(4)) 3178167432673322 r005 Im(z^2+c),c=-27/62+6/13*I,n=16 3178167441200200 a007 Real Root Of -619*x^4+348*x^3+12*x^2+877*x+295 3178167457221512 a003 sin(Pi*5/54)/sin(Pi*24/67) 3178167457669646 r005 Im(z^2+c),c=7/25+10/59*I,n=29 3178167457872045 r005 Im(z^2+c),c=-127/118+2/55*I,n=30 3178167457996660 r005 Im(z^2+c),c=-7/52+25/39*I,n=33 3178167459369855 r002 35th iterates of z^2 + 3178167486102154 m001 (Rabbit+ZetaQ(4))/(GaussAGM+OrthogonalArrays) 3178167489202541 r005 Re(z^2+c),c=-10/27+9/25*I,n=39 3178167499398690 m001 (-GAMMA(23/24)+1/3)/(-GAMMA(1/3)+1/2) 3178167511895470 m001 Pi*(1+Ei(1)/exp(-1/2*Pi)) 3178167526231227 l006 ln(2427/3335) 3178167526585456 r004 Re(z^2+c),c=-17/42+4/21*I,z(0)=-1,n=16 3178167533616362 r005 Im(z^2+c),c=-7/32+21/46*I,n=9 3178167534889422 r005 Re(z^2+c),c=-33/86+19/62*I,n=46 3178167561602391 a001 13/47*45537549124^(8/21) 3178167561602402 a001 13/47*12752043^(4/7) 3178167561841723 a001 13/47*103682^(17/21) 3178167568800587 b008 Pi+BesselJ[2,1]/Pi 3178167575094569 a001 13/47*15127^(34/35) 3178167580084272 m001 (GAMMA(2/3)-3^(1/3))/(ln(2+3^(1/2))+Backhouse) 3178167582062641 l006 ln(4738/4891) 3178167610683602 m005 (1/3*Pi+1/3)/(1/2*2^(1/2)-3/11) 3178167614731143 m001 (Ei(1)-exp(-1/2*Pi))/(Gompertz-Landau) 3178167624128948 r005 Re(z^2+c),c=-12/31+9/31*I,n=23 3178167631992350 a007 Real Root Of 272*x^4+697*x^3-540*x^2+182*x+657 3178167632219250 m002 -4-Log[Pi]+(Pi^2*Tanh[Pi])/5 3178167636179816 r005 Im(z^2+c),c=-1/27+19/48*I,n=17 3178167647063788 r002 48th iterates of z^2 + 3178167647063788 r002 48th iterates of z^2 + 3178167650058484 s002 sum(A254486[n]/((10^n+1)/n),n=1..infinity) 3178167654288892 a001 3571/1548008755920*3^(7/24) 3178167663364256 m001 Conway-FeigenbaumAlpha+QuadraticClass 3178167666334155 b008 1/8+Sqrt[3]*ArcCosh[3] 3178167667219831 l006 ln(366/8785) 3178167670174120 m001 1/GAMMA(1/24)*exp(Bloch)/arctan(1/2)^2 3178167672812274 m001 ln(GAMMA(5/12))*TwinPrimes^2*cos(Pi/12) 3178167677267204 a007 Real Root Of 575*x^4-136*x^3-304*x^2-937*x+327 3178167681889044 a001 13/505019158607*18^(20/23) 3178167696247093 m001 exp(Zeta(1,2))^2/ArtinRank2^2*Zeta(7) 3178167699834118 r009 Im(z^3+c),c=-35/102+11/40*I,n=13 3178167703523862 r009 Re(z^3+c),c=-3/23+41/50*I,n=46 3178167709414297 a007 Real Root Of 184*x^4+838*x^3+740*x^2-147*x+187 3178167719739494 m003 1/2+(3*Sqrt[5])/4+Csc[1/2+Sqrt[5]/2] 3178167724859102 r005 Re(z^2+c),c=-7/19+10/27*I,n=23 3178167726642441 r009 Re(z^3+c),c=-9/20+13/36*I,n=36 3178167730847478 m001 (LandauRamanujan2nd-exp(Pi))/Rabbit 3178167738363746 a007 Real Root Of -227*x^4-853*x^3-427*x^2-72*x-139 3178167751764588 m001 (Zeta(1,2)-BesselI(1,1))/(Pi^(1/2)+Otter) 3178167767213194 q001 1/3146467 3178167767879583 h001 (1/4*exp(2)+5/11)/(6/7*exp(2)+10/11) 3178167768341142 p001 sum(1/(543*n+325)/(12^n),n=0..infinity) 3178167771471407 a007 Real Root Of 236*x^4-687*x^3+229*x^2-876*x-326 3178167788522371 r002 36th iterates of z^2 + 3178167798412455 r005 Im(z^2+c),c=-131/114+13/48*I,n=32 3178167821833533 m002 Pi^5+Pi^2*Log[Pi]+Sinh[Pi]/E^Pi 3178167832924382 m006 (5/Pi+2/3)/(2*ln(Pi)-3) 3178167861275701 r005 Re(z^2+c),c=-41/98+2/61*I,n=17 3178167865120185 r005 Re(z^2+c),c=-2/5+11/49*I,n=25 3178167865739152 a007 Real Root Of -162*x^4-551*x^3+159*x^2+601*x-856 3178167867155133 a001 9349/4052739537881*3^(7/24) 3178167867531120 a007 Real Root Of -338*x^4-853*x^3+870*x^2+758*x+723 3178167868215694 r009 Re(z^3+c),c=-9/20+16/31*I,n=39 3178167871818009 m005 (1/3*Pi-1/12)/(-13/60+1/12*5^(1/2)) 3178167872527573 p003 LerchPhi(1/512,4,469/198) 3178167872758255 a007 Real Root Of -10*x^4-342*x^3-796*x^2-888*x-529 3178167881941098 a007 Real Root Of 109*x^4+258*x^3-559*x^2-785*x+313 3178167886898185 a007 Real Root Of -163*x^4-675*x^3-456*x^2+150*x+44 3178167888782142 a007 Real Root Of 291*x^4+898*x^3-x^2+571*x+963 3178167898211899 a001 24476/10610209857723*3^(7/24) 3178167906560639 r009 Im(z^3+c),c=-5/27+13/41*I,n=2 3178167915381784 r005 Re(z^2+c),c=-25/66+18/55*I,n=45 3178167917406036 a001 15127/6557470319842*3^(7/24) 3178167927344246 r002 7th iterates of z^2 + 3178167969280743 m005 (1/2*2^(1/2)-9/10)/(1/6*Pi+1/12) 3178167979083872 l006 ln(365/8761) 3178167986352099 p003 LerchPhi(1/125,2,55/98) 3178167996467291 r009 Re(z^3+c),c=-17/44+18/43*I,n=4 3178167998713704 a001 5778/2504730781961*3^(7/24) 3178167999363519 a007 Real Root Of 383*x^4-533*x^3-875*x^2-231*x+175 3178168006203734 r005 Re(z^2+c),c=-33/86+19/62*I,n=44 3178168018885433 r005 Im(z^2+c),c=-59/110+31/50*I,n=9 3178168034769850 r009 Im(z^3+c),c=-23/110+12/37*I,n=14 3178168038036911 p002 log(10^(7/5)-3^(1/10)) 3178168075537870 r005 Im(z^2+c),c=-9/118+2/55*I,n=8 3178168087746260 r009 Im(z^3+c),c=-23/110+12/37*I,n=15 3178168103904909 q001 3/94394 3178168109597114 l006 ln(5140/7063) 3178168132500388 m001 Niven*Kolakoski^2/ln(Zeta(3))^2 3178168133128410 m005 (1/3*5^(1/2)+1/12)/(3/7*Catalan-3) 3178168142820471 r005 Im(z^2+c),c=-7/13+3/40*I,n=12 3178168148725989 a003 sin(Pi*14/69)-sin(Pi*26/71) 3178168169883637 m001 (Robbin-ZetaP(3))/(Pi-ln(5)) 3178168184125341 m001 1/FeigenbaumD/ln(GlaisherKinkelin)^2/Ei(1) 3178168186328375 r005 Re(z^2+c),c=-39/106+19/48*I,n=18 3178168187677353 p004 log(24917/18133) 3178168188654094 a001 610/47*3571^(39/58) 3178168199434317 m001 sin(1/5*Pi)+cos(1/12*Pi)*Zeta(1,2) 3178168199434317 m001 sin(Pi/5)+cos(Pi/12)*Zeta(1,2) 3178168199935037 a008 Real Root of x^4-x^3-21*x^2-28*x-11 3178168204226324 s002 sum(A054153[n]/(n^2*exp(n)+1),n=1..infinity) 3178168215189561 r005 Re(z^2+c),c=9/28+14/29*I,n=20 3178168222770665 r005 Re(z^2+c),c=-5/58+17/20*I,n=15 3178168225625843 m005 (35/44+1/4*5^(1/2))/(1/12*Pi+4) 3178168225696832 m005 (1/2*Pi+7/11)/(6/11*3^(1/2)+6) 3178168233225574 m005 (-7/12+1/6*5^(1/2))/(-21/88+3/22*5^(1/2)) 3178168235309158 a003 cos(Pi*32/113)-sin(Pi*44/111) 3178168246019195 r009 Im(z^3+c),c=-5/52+47/58*I,n=52 3178168259065147 m009 (2*Psi(1,1/3)+3/5)/(Psi(1,3/4)+4) 3178168285201046 s001 sum(exp(-2*Pi/5)^n*A238394[n],n=1..infinity) 3178168285201046 s002 sum(A238394[n]/(exp(2/5*pi*n)),n=1..infinity) 3178168285439657 a007 Real Root Of -739*x^4-280*x^3-613*x^2+288*x+152 3178168290968517 m001 (DuboisRaymond-GaussAGM)/(Tribonacci+ZetaP(3)) 3178168292058250 r009 Im(z^3+c),c=-11/24+13/61*I,n=9 3178168292661353 l006 ln(364/8737) 3178168294293344 m001 (GlaisherKinkelin+ZetaQ(4))/(3^(1/2)-Pi^(1/2)) 3178168301477696 k002 Champernowne real with 43/2*n^2-35/2*n+27 3178168318836218 a007 Real Root Of 604*x^4+987*x^3+174*x^2-519*x-157 3178168323265555 a005 (1/cos(14/179*Pi))^1246 3178168326137583 a007 Real Root Of -66*x^4+102*x^3+763*x^2-697*x+86 3178168332581848 r005 Im(z^2+c),c=-27/110+27/55*I,n=57 3178168340139574 a007 Real Root Of -938*x^4+719*x^3-270*x^2+531*x-155 3178168350661343 h001 (1/2*exp(1)+2/11)/(6/11*exp(2)+9/11) 3178168364350768 a001 14930352/199*199^(3/11) 3178168370370514 r005 Re(z^2+c),c=19/62+2/23*I,n=17 3178168371531754 m005 (1/2*gamma+6)/(37/30+1/3*5^(1/2)) 3178168376103468 m001 sinh(1)/exp(GAMMA(1/6))/sqrt(2) 3178168386455134 a003 sin(Pi*18/119)*sin(Pi*11/45) 3178168391721175 a007 Real Root Of -918*x^4-45*x^3+318*x^2+600*x-212 3178168395688585 r008 a(0)=3,K{-n^6,-12+7*n-26*n^2+26*n^3} 3178168397573573 r005 Im(z^2+c),c=1/22+13/37*I,n=23 3178168401473181 a007 Real Root Of -183*x^4-389*x^3+645*x^2+73*x-100 3178168402777777 r002 2th iterates of z^2 + 3178168402777777 r005 Re(z^2+c),c=-9/8+65/96*I,n=2 3178168425460973 m001 BesselK(0,1)*ln(FeigenbaumKappa)^2/GAMMA(3/4) 3178168428036503 m003 12*Cosh[1/2+Sqrt[5]/2]+Sin[1/2+Sqrt[5]/2]/3 3178168476448660 r005 Im(z^2+c),c=-45/122+11/21*I,n=37 3178168478449846 m001 BesselI(0,1)-gamma(1)+Tribonacci 3178168490208447 m001 PrimesInBinary^2*exp(KhintchineLevy)/sqrt(Pi) 3178168495831104 r009 Im(z^3+c),c=-23/110+12/37*I,n=17 3178168498629029 a001 89/39603*2^(1/2) 3178168510505717 a003 sin(Pi*29/83)/cos(Pi*34/83) 3178168532018391 a001 1/3*(1/2*5^(1/2)+1/2)^4*4^(5/21) 3178168536511157 h001 (1/12*exp(2)+1/7)/(7/9*exp(1)+3/11) 3178168537434370 r009 Im(z^3+c),c=-23/110+12/37*I,n=18 3178168541453539 m001 (Rabbit+Riemann1stZero)/(1-Porter) 3178168548900098 r009 Im(z^3+c),c=-23/110+12/37*I,n=20 3178168549021044 m001 LandauRamanujan2nd-arctan(1/2)^(3^(1/2)) 3178168550248954 r005 Im(z^2+c),c=-95/106+1/39*I,n=8 3178168553178377 r009 Im(z^3+c),c=-23/110+12/37*I,n=23 3178168553236192 r009 Im(z^3+c),c=-23/110+12/37*I,n=21 3178168553472658 r009 Im(z^3+c),c=-23/110+12/37*I,n=26 3178168553490900 r009 Im(z^3+c),c=-23/110+12/37*I,n=29 3178168553491939 r009 Im(z^3+c),c=-23/110+12/37*I,n=32 3178168553491993 r009 Im(z^3+c),c=-23/110+12/37*I,n=35 3178168553491995 r009 Im(z^3+c),c=-23/110+12/37*I,n=34 3178168553491995 r009 Im(z^3+c),c=-23/110+12/37*I,n=37 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=38 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=40 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=41 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=43 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=46 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=44 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=49 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=52 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=55 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=58 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=57 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=60 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=61 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=63 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=64 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=62 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=59 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=54 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=56 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=53 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=51 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=50 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=48 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=47 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=45 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=42 3178168553491996 r009 Im(z^3+c),c=-23/110+12/37*I,n=39 3178168553491997 r009 Im(z^3+c),c=-23/110+12/37*I,n=36 3178168553492016 r009 Im(z^3+c),c=-23/110+12/37*I,n=33 3178168553492028 r009 Im(z^3+c),c=-23/110+12/37*I,n=31 3178168553492284 r009 Im(z^3+c),c=-23/110+12/37*I,n=30 3178168553493349 r009 Im(z^3+c),c=-23/110+12/37*I,n=28 3178168553495347 r009 Im(z^3+c),c=-23/110+12/37*I,n=27 3178168553515424 r009 Im(z^3+c),c=-23/110+12/37*I,n=24 3178168553527708 r009 Im(z^3+c),c=-23/110+12/37*I,n=25 3178168554281357 r009 Im(z^3+c),c=-23/110+12/37*I,n=22 3178168554888159 a001 63245986/843*123^(3/10) 3178168556004758 a001 2207/956722026041*3^(7/24) 3178168569120074 r009 Im(z^3+c),c=-23/110+12/37*I,n=19 3178168574101468 m001 (FeigenbaumAlpha+OneNinth)/(arctan(1/2)-Bloch) 3178168607966436 l006 ln(363/8713) 3178168609334152 r009 Re(z^3+c),c=-1/7+19/23*I,n=18 3178168613512210 h001 (1/9*exp(1)+1/10)/(3/7*exp(1)+1/10) 3178168613748368 r005 Im(z^2+c),c=-8/25+12/23*I,n=56 3178168631465500 l006 ln(2713/3728) 3178168641367455 m001 (Pi-exp(Pi))/(FeigenbaumB-MinimumGamma) 3178168642687272 m001 (Catalan-exp(1/Pi))/(-MertensB1+Niven) 3178168652365752 m001 FeigenbaumAlpha/(gamma(3)+ZetaP(4)) 3178168657686272 r005 Im(z^2+c),c=-33/28+1/24*I,n=56 3178168669429148 r005 Re(z^2+c),c=-31/94+23/41*I,n=17 3178168674526879 r005 Im(z^2+c),c=7/106+22/63*I,n=7 3178168676466324 a001 29/987*5^(2/41) 3178168676848385 a001 11/514229*1597^(15/41) 3178168680461200 a001 3571*(1/2*5^(1/2)+1/2)^27*3^(9/14) 3178168690421898 m009 (5/6*Psi(1,3/4)-3)/(2/5*Psi(1,2/3)-4) 3178168699997699 m001 (-Artin+3)/(-GAMMA(19/24)+2) 3178168704151233 r005 Im(z^2+c),c=-33/34+30/119*I,n=21 3178168704490666 m001 1/ln(Paris)*MertensB1^2*OneNinth 3178168738142748 r005 Re(z^2+c),c=-33/86+19/62*I,n=43 3178168742508621 r005 Re(z^2+c),c=-33/86+19/62*I,n=48 3178168759569845 r005 Im(z^2+c),c=-41/94+3/56*I,n=14 3178168761227418 s002 sum(A018656[n]/(n^3*pi^n+1),n=1..infinity) 3178168768549582 r005 Im(z^2+c),c=41/106+7/22*I,n=21 3178168774886640 r005 Im(z^2+c),c=-13/32+10/27*I,n=3 3178168775593290 r005 Re(z^2+c),c=-23/66+13/27*I,n=19 3178168790027716 h001 (-6*exp(3/2)-8)/(-5*exp(1/3)-4) 3178168797773517 a001 440719107401/48*1836311903^(12/17) 3178168797773517 a001 1368706081/48*6557470319842^(12/17) 3178168803208597 a007 Real Root Of 301*x^4+733*x^3-987*x^2-800*x+248 3178168809625884 a001 2207/34*21^(12/23) 3178168830173176 r005 Re(z^2+c),c=-31/78+13/54*I,n=19 3178168835259781 r005 Re(z^2+c),c=-39/94+4/39*I,n=24 3178168837051583 r009 Im(z^3+c),c=-23/110+12/37*I,n=16 3178168841845339 r005 Im(z^2+c),c=9/29+5/39*I,n=64 3178168850270453 r005 Re(z^2+c),c=3/40+22/51*I,n=5 3178168862984846 a007 Real Root Of 753*x^4-374*x^3+415*x^2-168*x-115 3178168868684961 m005 (1/2*gamma+1/11)/(4*Pi-5/8) 3178168893327510 a001 9349*(1/2*5^(1/2)+1/2)^25*3^(9/14) 3178168897144597 r005 Re(z^2+c),c=-39/94+4/39*I,n=28 3178168912304177 r009 Re(z^3+c),c=-11/26+8/25*I,n=13 3178168916492978 a007 Real Root Of 810*x^4+26*x^3-532*x^2-750*x+283 3178168919824755 r009 Re(z^3+c),c=-55/122+21/58*I,n=48 3178168920064977 m001 1/Lehmer*ln(GolombDickman)/Riemann3rdZero 3178168921463561 r005 Re(z^2+c),c=-17/14+71/223*I,n=10 3178168924384286 a001 24476*(1/2*5^(1/2)+1/2)^23*3^(9/14) 3178168925013434 l006 ln(362/8689) 3178168925042448 p003 LerchPhi(1/3,6,289/162) 3178168928342594 r002 12th iterates of z^2 + 3178168928915408 a001 64079*(1/2*5^(1/2)+1/2)^21*3^(9/14) 3178168929689416 a001 1568397607*3^(9/14) 3178168931715796 a001 39603*(1/2*5^(1/2)+1/2)^22*3^(9/14) 3178168934869305 r002 12th iterates of z^2 + 3178168936521443 m005 (1/2*gamma+5/9)/(4/5*Pi+1/7) 3178168940295014 r009 Re(z^3+c),c=-33/86+10/39*I,n=23 3178168941861106 m001 ln(Pi)^(Pi^(1/2))*Riemann3rdZero 3178168943578429 a001 15127*(1/2*5^(1/2)+1/2)^24*3^(9/14) 3178168946701506 m005 (1/2*Zeta(3)-3/5)/(1/6*Pi-1/5) 3178168959033322 m002 Pi+E^Pi*ProductLog[Pi]^3 3178168963606632 r005 Re(z^2+c),c=-33/82+9/43*I,n=26 3178168963752659 r005 Re(z^2+c),c=-33/86+19/62*I,n=51 3178168973049717 m001 (sin(1/12*Pi)+Tribonacci)/TwinPrimes 3178168976319769 r002 41th iterates of z^2 + 3178168989363352 a007 Real Root Of 668*x^4-297*x^3+937*x^2-730*x-343 3178168994717896 m001 1/ln((2^(1/3)))/CareFree/GAMMA(5/24)^2 3178168998374818 m005 (5+2*5^(1/2))/(4/5*2^(1/2)-5/6) 3178169007554022 a007 Real Root Of -305*x^4-779*x^3+554*x^2-334*x-547 3178169009123052 r005 Im(z^2+c),c=-33/52+36/53*I,n=7 3178169022938729 r009 Im(z^3+c),c=-23/110+12/37*I,n=11 3178169024886124 a001 5778*(1/2*5^(1/2)+1/2)^26*3^(9/14) 3178169028503225 m005 (1/2*5^(1/2)+7/8)/(1/12*Zeta(3)-8/11) 3178169034264019 r009 Re(z^3+c),c=-23/60+11/43*I,n=18 3178169043024920 a008 Real Root of x^4-x^3-3*x^2-54*x+132 3178169043045769 m001 GAMMA(2/3)+FeigenbaumD-Thue 3178169044155713 a007 Real Root Of 761*x^4+301*x^3+791*x^2-494*x-235 3178169044693569 a007 Real Root Of -336*x^4-780*x^3+704*x^2-427*x+773 3178169051352132 r005 Im(z^2+c),c=-23/94+19/35*I,n=19 3178169060898218 m001 (cos(1)-exp(-Pi))^GAMMA(13/24) 3178169063630084 m001 exp(Pi)^Stephens*arctan(1/3)^Stephens 3178169064012507 r005 Im(z^2+c),c=7/20+19/60*I,n=6 3178169065250305 s002 sum(A053242[n]/(64^n),n=1..infinity) 3178169075207863 m004 -125*Pi+900*E^(Sqrt[5]*Pi)*Pi 3178169082870152 r009 Re(z^3+c),c=-21/50+16/51*I,n=17 3178169089878892 m002 -3/Pi^4+3*ProductLog[Pi]*Tanh[Pi] 3178169091920630 m005 (9/4+1/4*5^(1/2))/(1/4*Zeta(3)+7/12) 3178169092287450 r005 Re(z^2+c),c=11/86+6/11*I,n=3 3178169101073933 l006 ln(5712/7849) 3178169101471009 r005 Re(z^2+c),c=-33/86+19/62*I,n=53 3178169101914852 m008 (3*Pi^3-1/4)/(3*Pi^4-1/3) 3178169116764502 m001 Weierstrass/(AlladiGrinstead+Riemann1stZero) 3178169120676689 a003 cos(Pi*8/103)/sin(Pi*8/81) 3178169123768664 m001 Pi*2^(1/2)/GAMMA(3/4)/DuboisRaymond*Niven 3178169124373866 m001 (FeigenbaumD-Khinchin)/(Salem-ZetaP(2)) 3178169139807231 a007 Real Root Of -884*x^4-534*x^3-887*x^2+417*x+214 3178169140020445 m001 gamma(1)^LambertW(1)/(ln(gamma)^LambertW(1)) 3178169146715753 r002 46th iterates of z^2 + 3178169155540085 b008 E*(-12+ArcCot[Pi]) 3178169157994768 r009 Re(z^3+c),c=-17/50+4/23*I,n=5 3178169166528742 r005 Im(z^2+c),c=7/50+12/41*I,n=13 3178169177671404 m001 CopelandErdos^2/Conway/ln((3^(1/3)))^2 3178169186077636 r005 Re(z^2+c),c=13/74+25/51*I,n=54 3178169189408374 p004 log(19819/14423) 3178169191516948 m005 (-1/66+1/6*5^(1/2))/(6*3^(1/2)+6/7) 3178169193769509 p003 LerchPhi(1/3,2,285/148) 3178169202396447 r009 Re(z^3+c),c=-12/31+11/42*I,n=19 3178169203891224 r002 26th iterates of z^2 + 3178169213677671 s002 sum(A005567[n]/((2^n-1)/n),n=1..infinity) 3178169217274530 m003 (13*E^(1/2+Sqrt[5]/2))/2-Sin[1/2+Sqrt[5]/2] 3178169222585407 a007 Real Root Of 315*x^4+731*x^3-662*x^2+560*x-205 3178169224769398 a005 (1/sin(41/149*Pi))^240 3178169229636513 b008 Pi^6*Sqrt[ExpIntegralEi[Pi]] 3178169236330518 r005 Re(z^2+c),c=-4/11+17/36*I,n=21 3178169240670991 r005 Re(z^2+c),c=-33/86+19/62*I,n=58 3178169243816825 l006 ln(361/8665) 3178169244955409 r005 Re(z^2+c),c=-33/86+19/62*I,n=56 3178169252461538 m001 (MertensB3+TwinPrimes)/(ZetaP(2)+ZetaP(3)) 3178169262419212 m004 (5*E^(Sqrt[5]*Pi))/Pi+25*Pi+Cosh[Sqrt[5]*Pi]^2 3178169273985720 s002 sum(A221282[n]/(exp(2*pi*n)+1),n=1..infinity) 3178169274200829 m001 ln(Magata)^2*DuboisRaymond^2*RenyiParking^2 3178169274660036 r005 Re(z^2+c),c=-33/86+19/62*I,n=60 3178169274700527 r005 Im(z^2+c),c=-19/110+8/17*I,n=9 3178169275127903 p003 LerchPhi(1/25,5,431/216) 3178169275505154 m001 ln(Salem)*Conway*GAMMA(3/4)^2 3178169277559674 r005 Re(z^2+c),c=-33/86+19/62*I,n=63 3178169277815020 m001 HardyLittlewoodC4*Riemann2ndZero^Trott 3178169284623509 r005 Re(z^2+c),c=-33/86+19/62*I,n=55 3178169285811711 r005 Re(z^2+c),c=-33/86+19/62*I,n=61 3178169289128817 r005 Re(z^2+c),c=7/30+2/43*I,n=15 3178169293850136 r005 Re(z^2+c),c=-33/86+19/62*I,n=62 3178169293892733 r005 Re(z^2+c),c=-33/86+19/62*I,n=64 3178169296027297 r005 Re(z^2+c),c=7/34+10/23*I,n=20 3178169299269327 r005 Re(z^2+c),c=-61/98+16/43*I,n=44 3178169304483706 k002 Champernowne real with 22*n^2-19*n+28 3178169304483706 k004 Champernowne real with floor(Pi*(7*n^2-6*n+9)) 3178169308174880 m001 (MertensB3+ZetaP(2))/(Psi(2,1/3)-Zeta(5)) 3178169308606977 m001 BesselI(0,1)/(5^(1/2)+MadelungNaCl) 3178169308606977 m001 BesselI(0,1)/(sqrt(5)+MadelungNaCl) 3178169315463418 r005 Re(z^2+c),c=-33/86+19/62*I,n=59 3178169329614161 h001 (1/11*exp(2)+7/10)/(6/11*exp(2)+2/7) 3178169336679337 r005 Re(z^2+c),c=-33/86+19/62*I,n=49 3178169340364874 r005 Re(z^2+c),c=-33/86+19/62*I,n=57 3178169343900666 a003 2^(1/2)+2*cos(1/27*Pi)-cos(3/7*Pi) 3178169350359591 r005 Re(z^2+c),c=-39/110+2/5*I,n=19 3178169354983486 a007 Real Root Of -159*x^4-681*x^3-749*x^2-399*x+658 3178169367136806 a001 2/167761*29^(39/40) 3178169367241049 r005 Re(z^2+c),c=-33/86+19/62*I,n=54 3178169373008218 r005 Re(z^2+c),c=-31/78+11/46*I,n=24 3178169390978158 r009 Re(z^3+c),c=-49/94+23/59*I,n=58 3178169395618467 h001 (2/7*exp(1)+5/6)/(7/11*exp(2)+4/11) 3178169410863490 m001 (Tetranacci-ThueMorse)/(ln(gamma)-gamma(1)) 3178169415861301 m001 (Champernowne-Psi(1,1/3))/(Khinchin+ZetaP(2)) 3178169417159196 m008 (5*Pi^4-1/2)/(5*Pi^5+4/5) 3178169427477126 r005 Im(z^2+c),c=-127/118+2/55*I,n=23 3178169432557172 r005 Re(z^2+c),c=-33/86+18/59*I,n=23 3178169432707204 m001 GAMMA(2/3)^2*ln(KhintchineLevy)/Pi^2 3178169467430032 h001 (3/7*exp(2)+8/9)/(3/7*exp(1)+1/9) 3178169471076775 r002 4th iterates of z^2 + 3178169477908680 m001 1/FeigenbaumB*ln(DuboisRaymond)^2*Pi^2 3178169484658457 m001 (ln(2)/ln(10))^RenyiParking/GlaisherKinkelin 3178169485519479 m001 gamma/(sin(1/12*Pi)^FeigenbaumDelta) 3178169485519479 m001 gamma/(sin(Pi/12)^FeigenbaumDelta) 3178169499851869 r009 Im(z^3+c),c=-43/122+10/37*I,n=18 3178169504921048 a007 Real Root Of 769*x^4+129*x^3+830*x^2+137*x-44 3178169508142190 a008 Real Root of (2+4*x-5*x^2+6*x^3-4*x^4-3*x^5) 3178169518910870 r005 Re(z^2+c),c=-33/86+19/62*I,n=50 3178169525898082 l006 ln(2999/4121) 3178169531293238 h001 (10/11*exp(2)+1/3)/(2/11*exp(2)+7/8) 3178169549446344 r005 Re(z^2+c),c=-39/64+25/29*I,n=3 3178169558155807 r002 45th iterates of z^2 + 3178169560031463 p001 sum((-1)^n/(529*n+284)/(3^n),n=0..infinity) 3178169560358284 r005 Im(z^2+c),c=-6/29+28/59*I,n=35 3178169562183350 a003 -1+cos(4/9*Pi)-2*cos(1/27*Pi)-cos(8/21*Pi) 3178169562672677 m001 FeigenbaumC+((1+3^(1/2))^(1/2))^Lehmer 3178169563796286 m002 Pi^2+Pi^5+ProductLog[Pi]^(-1)+Tanh[Pi] 3178169564391243 l006 ln(360/8641) 3178169565142098 r002 10th iterates of z^2 + 3178169566193392 a007 Real Root Of 954*x^4-765*x^3+836*x^2-391*x-243 3178169566386815 r002 3th iterates of z^2 + 3178169570292327 r005 Re(z^2+c),c=-33/86+19/62*I,n=52 3178169577058966 m002 20/Pi^4+Pi^5+Cosh[Pi] 3178169578691166 m001 exp(Pi)*ln(2+3^(1/2))+Mills 3178169582177357 a001 2207*(1/2*5^(1/2)+1/2)^28*3^(9/14) 3178169594861532 r005 Re(z^2+c),c=-7/10+16/239*I,n=6 3178169596794587 m004 (-17*E^(Sqrt[5]*Pi))/6+Sqrt[5]*Pi 3178169600610871 m001 1/exp(1)^2*Riemann2ndZero^2*ln(sin(Pi/5)) 3178169606665180 a007 Real Root Of 891*x^4-606*x^3+734*x^2-753*x-342 3178169620014084 r009 Re(z^3+c),c=-29/60+29/63*I,n=39 3178169625241278 a003 sin(Pi*3/58)/cos(Pi*33/100) 3178169635227107 m001 (Pi-ln(2^(1/2)+1))/(Champernowne-GaussAGM) 3178169638121786 m001 (Pi*2^(1/2)/GAMMA(3/4))^ln(gamma)+Khinchin 3178169638121786 m001 GAMMA(1/4)^log(gamma)+Khinchin 3178169642359182 b008 -4+ArcCosh[19/14] 3178169652892561 r005 Im(z^2+c),c=23/110+33/50*I,n=3 3178169653553309 b008 1/2+(-2+Pi)^26 3178169657465727 a007 Real Root Of 334*x^4-252*x^3+982*x^2-881*x-29 3178169671356557 r009 Re(z^3+c),c=-23/50+14/41*I,n=14 3178169674660261 m009 (1/5*Psi(1,1/3)-1/2)/(1/2*Psi(1,1/3)-5) 3178169676053144 l003 BesselK(3,33/113) 3178169699064579 r009 Im(z^3+c),c=-16/31+7/59*I,n=6 3178169721054024 m005 (1/2*2^(1/2)-7/8)/(2/9*gamma+2/5) 3178169724916136 a003 cos(Pi*5/57)*sin(Pi*3/28) 3178169728527959 r005 Re(z^2+c),c=-47/114+7/53*I,n=19 3178169742429399 m005 (1/2*3^(1/2)-1/12)/(11/12*3^(1/2)+7/8) 3178169743900607 m001 1/ln(LambertW(1))^2/Riemann1stZero*Zeta(3)^2 3178169744615934 r005 Im(z^2+c),c=-17/78+32/45*I,n=36 3178169782159214 a009 7*6^(3/4)+11^(2/3) 3178169783229139 m001 1/ln(cos(Pi/5))*LandauRamanujan*log(1+sqrt(2)) 3178169804201211 r005 Re(z^2+c),c=-39/122+15/29*I,n=54 3178169804895295 r002 36th iterates of z^2 + 3178169821205704 r005 Re(z^2+c),c=-35/102+9/20*I,n=62 3178169833446105 r005 Re(z^2+c),c=7/94+21/44*I,n=8 3178169847737936 r005 Re(z^2+c),c=-39/34+18/59*I,n=16 3178169862837124 b008 Pi+ArcCsch[82/3] 3178169876139729 a007 Real Root Of -246*x^4-33*x^3-687*x^2+441*x+211 3178169886751487 l006 ln(359/8617) 3178169893105039 r005 Re(z^2+c),c=-13/62+14/17*I,n=15 3178169900790092 r005 Re(z^2+c),c=-21/58+23/59*I,n=35 3178169912052672 l006 ln(6284/8635) 3178169924093246 m002 5+Pi^5+5*Log[Pi]+ProductLog[Pi] 3178169924628399 p001 sum((-1)^n/(326*n+275)/(3^n),n=0..infinity) 3178169943491512 r005 Re(z^2+c),c=-31/66+21/46*I,n=8 3178169955134481 r005 Im(z^2+c),c=-25/106+25/51*I,n=25 3178169963480943 m001 (Landau-Paris)^(2^(1/2)) 3178169964249586 r005 Re(z^2+c),c=-5/12+1/14*I,n=14 3178169985265478 m001 (ReciprocalLucas-exp(1))/(-ThueMorse+ZetaP(3)) 3178169986275344 r005 Re(z^2+c),c=-1/31+40/53*I,n=34 3178169986672046 m009 (1/5*Psi(1,3/4)-5/6)/(1/12*Pi^2+1/5) 3178170015457932 r005 Re(z^2+c),c=-9/7+14/41*I,n=5 3178170017183129 a007 Real Root Of -358*x^4-804*x^3+774*x^2-955*x-138 3178170022099900 s001 sum(exp(-2*Pi)^n*A120904[n],n=1..infinity) 3178170024568569 m005 (1/20+1/4*5^(1/2))/(8/9*exp(1)-1/2) 3178170027494119 r002 4th iterates of z^2 + 3178170045083301 r005 Re(z^2+c),c=39/110+18/31*I,n=24 3178170064486041 m001 (GAMMA(3/4)-Ei(1))/(FeigenbaumD-Stephens) 3178170073551920 m001 ln(cos(1)+Pi*csc(1/24*Pi)/GAMMA(23/24)) 3178170097064898 r009 Im(z^3+c),c=-3/22+19/56*I,n=7 3178170105232405 r005 Im(z^2+c),c=-2/9+13/27*I,n=27 3178170110045061 a007 Real Root Of 26*x^4+834*x^3+275*x^2+972*x-472 3178170115898767 a001 682/31622993*3^(6/17) 3178170135136500 r005 Im(z^2+c),c=-39/40+9/35*I,n=19 3178170144462279 q001 198/623 3178170144462279 r002 1i'th iterates of 2*x/(1-x^2) of 3178170144462279 r002 2th iterates of z^2 + 3178170144462279 r005 Im(z^2+c),c=-19/14+33/178*I,n=2 3178170160317752 a007 Real Root Of 19*x^4+625*x^3+689*x^2+553*x+514 3178170164048974 r009 Im(z^3+c),c=-43/90+10/57*I,n=33 3178170164129801 r009 Re(z^3+c),c=-6/31+31/34*I,n=30 3178170168640689 a007 Real Root Of -291*x^4-947*x^3+13*x^2-48*x-995 3178170170304120 r005 Im(z^2+c),c=-15/38+25/61*I,n=6 3178170180050939 m001 Tribonacci*exp(MinimumGamma)^2/OneNinth 3178170180057200 r009 Im(z^3+c),c=-43/102+11/42*I,n=5 3178170181113639 m001 ln(3)+GAMMA(17/24)+Kolakoski 3178170210912522 l006 ln(358/8593) 3178170211743264 r005 Re(z^2+c),c=-12/29+4/37*I,n=14 3178170220435530 m001 Ei(1)*Tribonacci-HardyLittlewoodC4 3178170226454499 m006 (1/2*Pi-1/5)/(3/5*ln(Pi)-5) 3178170232453626 m001 Sarnak/(Pi*csc(1/24*Pi)/GAMMA(23/24)-ln(2)) 3178170232510004 a008 Real Root of x^3+88*x-28 3178170233636763 a007 Real Root Of -746*x^4+811*x^3-43*x^2+220*x-84 3178170237509163 a007 Real Root Of -224*x^4+219*x^3+572*x^2+980*x+263 3178170239363545 r005 Re(z^2+c),c=-13/22+11/26*I,n=31 3178170239524938 r009 Re(z^3+c),c=-25/54+24/47*I,n=30 3178170264587701 l006 ln(3285/4514) 3178170272639902 a005 (1/cos(3/208*Pi))^1126 3178170284619586 r005 Im(z^2+c),c=-15/46+9/16*I,n=45 3178170307489716 k002 Champernowne real with 45/2*n^2-41/2*n+29 3178170310959863 a003 sin(Pi*1/99)/cos(Pi*1/54) 3178170312233846 m005 (1/2*Pi+8/11)/(5/12*Zeta(3)+2/9) 3178170327437262 r009 Re(z^3+c),c=-51/106+19/47*I,n=43 3178170327529201 m009 (6*Psi(1,1/3)+1/2)/(6*Psi(1,2/3)+5/6) 3178170330713057 m001 (Psi(1,1/3)+ln(2))/(Porter+Tetranacci) 3178170347074619 r005 Im(z^2+c),c=35/122+8/51*I,n=19 3178170347407983 m001 (BesselJ(1,1)+Pi^(1/2))^Backhouse 3178170347407983 m001 (BesselJ(1,1)+sqrt(Pi))^Backhouse 3178170351993917 m005 (1/2*Catalan-1/12)/(1/3*exp(1)+3/11) 3178170358809053 a003 sin(Pi*16/63)-sin(Pi*25/93) 3178170375231382 r005 Im(z^2+c),c=-47/42+8/31*I,n=38 3178170382628130 a007 Real Root Of 81*x^4+62*x^3-319*x^2+733*x-722 3178170390514615 m005 (1/3*2^(1/2)-1/8)/(7/10*2^(1/2)+1/10) 3178170391747307 a001 (2+2^(1/2))^(558/35) 3178170395640333 m001 GAMMA(5/12)/ln(GAMMA(13/24))*exp(1)^2 3178170402660428 r009 Re(z^3+c),c=-21/62+11/62*I,n=15 3178170404448638 r005 Im(z^2+c),c=-53/44+8/41*I,n=17 3178170413802187 a001 29/21*6765^(37/60) 3178170424946409 m006 (1/3/Pi-1/6)/(2/3*Pi-4) 3178170426203961 m001 1/5*5^(1/2)*(CopelandErdos+Weierstrass) 3178170438666507 r005 Re(z^2+c),c=-9/14+67/208*I,n=36 3178170439188130 r005 Re(z^2+c),c=1/38+9/35*I,n=7 3178170442043052 m001 (3^(1/3)-2*Pi/GAMMA(5/6))/(Mills-ZetaQ(3)) 3178170444163395 a007 Real Root Of 163*x^4-657*x^3-78*x^2-342*x+136 3178170445379333 a007 Real Root Of -849*x^4+367*x^3-917*x^2-189*x+53 3178170464595906 r005 Re(z^2+c),c=-33/86+19/62*I,n=47 3178170465885921 a007 Real Root Of 437*x^4+852*x^3+555*x^2-956*x-337 3178170472213635 m001 1/GAMMA(1/3)/ln(Backhouse)^2*Zeta(3) 3178170476790345 m001 Zeta(5)*(TwinPrimes+BesselJZeros(0,1)) 3178170488997407 m001 (1-Shi(1))/(MadelungNaCl+ZetaQ(2)) 3178170492514231 m001 AlladiGrinstead-FransenRobinson^Totient 3178170494922857 m001 1/sin(Pi/12)/ln(PrimesInBinary)/sinh(1)^2 3178170505553305 m001 1/Pi*(2^(1/3))^2/exp(arctan(1/2)) 3178170509523386 r005 Im(z^2+c),c=-17/114+23/51*I,n=15 3178170520871511 r005 Re(z^2+c),c=-35/46+1/58*I,n=14 3178170529558614 m005 (1/3*Catalan-1/3)/(4/5*2^(1/2)-1/4) 3178170536889479 l006 ln(357/8569) 3178170539808440 a007 Real Root Of 369*x^4+826*x^3-889*x^2+705*x+89 3178170541535981 r002 61th iterates of z^2 + 3178170544559682 m001 exp((3^(1/3)))^2/DuboisRaymond*sin(Pi/5)^2 3178170551635664 a007 Real Root Of 755*x^4+153*x^3+554*x^2-435*x-197 3178170565936551 r005 Re(z^2+c),c=-7/17+18/55*I,n=7 3178170574251538 h001 (6/11*exp(2)+7/8)/(2/11*exp(2)+1/5) 3178170578131327 m005 (1/2*2^(1/2)-9/11)/(7/8*gamma-4) 3178170587710520 l006 ln(6856/9421) 3178170609380412 r005 Re(z^2+c),c=5/36+7/15*I,n=20 3178170609738794 p001 sum((-1)^n/(351*n+301)/(10^n),n=0..infinity) 3178170621275298 m001 FransenRobinson/(HardyLittlewoodC4+Stephens) 3178170629704040 m005 (1/2*exp(1)+1)/(7/11*5^(1/2)+6) 3178170629926915 m005 (1/2*exp(1)+3)/(6/11*exp(1)-1/9) 3178170650218033 m001 (Mills+Trott*ThueMorse)/ThueMorse 3178170652661591 a007 Real Root Of 290*x^4+950*x^3+357*x^2+957*x+345 3178170654561328 r009 Re(z^3+c),c=-43/114+14/57*I,n=17 3178170656740162 r002 27th iterates of z^2 + 3178170659611295 m005 (1/2*Catalan-2/3)/(2/11*exp(1)-3/7) 3178170665783582 r005 Re(z^2+c),c=-25/54+6/55*I,n=4 3178170667277113 l006 ln(6627/6841) 3178170677473071 a007 Real Root Of -300*x^4-943*x^3+315*x^2+832*x-202 3178170678462085 a007 Real Root Of -736*x^4+944*x^3+781*x^2+x-102 3178170679950321 r005 Im(z^2+c),c=9/98+11/34*I,n=18 3178170689565145 a007 Real Root Of 791*x^4-912*x^3-718*x^2-756*x+334 3178170690193284 m005 (1/2*3^(1/2)-4)/(4*5^(1/2)+11/12) 3178170690649382 a007 Real Root Of -625*x^4+695*x^3-960*x^2+923*x+419 3178170691113123 r005 Re(z^2+c),c=-11/122+29/46*I,n=48 3178170693561073 m004 1+5*Pi+(5*Sqrt[5]*Pi)/ProductLog[Sqrt[5]*Pi]^2 3178170698083761 m005 (1/2*2^(1/2)+7/9)/(2*5^(1/2)+1/5) 3178170720599117 m001 (Grothendieck+PrimesInBinary)/(Ei(1,1)+Bloch) 3178170726122150 r002 16th iterates of z^2 + 3178170730361937 r005 Re(z^2+c),c=-23/62+14/39*I,n=22 3178170736145675 a007 Real Root Of 199*x^4+690*x^3+478*x^2+628*x-985 3178170755855820 m009 (6*Psi(1,3/4)-6)/(3*Pi^2-1/2) 3178170756415729 l005 ln(sec(622/73)) 3178170767348871 b008 Pi+(3*ArcCot[41])/2 3178170775206743 r005 Im(z^2+c),c=-6/25+22/45*I,n=38 3178170788135864 r005 Im(z^2+c),c=-9/25+9/16*I,n=44 3178170790616348 r005 Im(z^2+c),c=13/58+12/53*I,n=28 3178170803364227 a007 Real Root Of -303*x^4-902*x^3+59*x^2-723*x-936 3178170805014689 m001 ln(KhintchineLevy)^2/FeigenbaumAlpha*exp(1) 3178170806898889 r009 Im(z^3+c),c=-14/27+8/51*I,n=40 3178170812991208 m001 HeathBrownMoroz/Zeta(5)*Riemann3rdZero 3178170814983436 m001 GAMMA(19/24)*ln(Riemann2ndZero)^2*cos(1)^2 3178170818314736 r005 Im(z^2+c),c=-61/54+2/51*I,n=35 3178170823885109 r005 Im(z^2+c),c=-17/42+13/35*I,n=3 3178170827174612 r002 3i'th iterates of 2*x/(1-x^2) of 3178170831386869 s002 sum(A128938[n]/(exp(n)-1),n=1..infinity) 3178170838557884 a007 Real Root Of 41*x^4+10*x^3-434*x^2+69*x+741 3178170857531259 m001 Sarnak^ZetaP(2)/exp(1) 3178170864697660 l006 ln(356/8545) 3178170882040897 r005 Re(z^2+c),c=29/110+27/46*I,n=5 3178170884954549 l006 ln(3571/4907) 3178170902743610 m001 Magata/ln(GlaisherKinkelin)^2*gamma 3178170906720407 r005 Im(z^2+c),c=-6/17+15/28*I,n=24 3178170907805500 m001 (-GAMMA(17/24)+Porter)/(2^(1/2)-sin(1)) 3178170908293266 m005 (1/3*gamma+1/10)/(7/12*gamma+7/12) 3178170916378474 m005 (1/2*exp(1)+1/8)/(3/11*5^(1/2)-1/7) 3178170918700510 a007 Real Root Of 193*x^4-765*x^3+850*x^2+319*x-11 3178170920076865 m001 GAMMA(7/12)^RenyiParking*exp(Pi) 3178170920076865 m001 exp(Pi)*GAMMA(7/12)^RenyiParking 3178170936842037 m001 exp((3^(1/3)))*PisotVijayaraghavan*LambertW(1) 3178170937387078 m001 (Kolakoski-StronglyCareFree)/(Pi+exp(1)) 3178170949528001 r005 Im(z^2+c),c=-35/118+22/43*I,n=62 3178170949575855 r005 Im(z^2+c),c=-15/56+1/2*I,n=58 3178170950756407 r005 Re(z^2+c),c=-13/38+26/49*I,n=29 3178170952200141 m001 Grothendieck/FeigenbaumB*ZetaR(2) 3178170962673428 r002 3th iterates of z^2 + 3178170971170978 a007 Real Root Of 957*x^4-843*x^3+7*x^2-464*x-185 3178170973573081 a007 Real Root Of -688*x^4-347*x^3-987*x^2+703*x+319 3178170991512976 m001 Pi*ln(2)/ln(10)-Zeta(1/2)*GAMMA(7/12) 3178171000282250 r005 Im(z^2+c),c=-43/102+33/62*I,n=50 3178171002078187 a007 Real Root Of -171*x^4-213*x^3+812*x^2-970*x-676 3178171033015808 m008 (5*Pi^5-1/4)/(1/2*Pi^6+2/3) 3178171038301018 a007 Real Root Of 933*x^4-539*x^3-837*x^2-150*x+140 3178171041487097 m005 (1/3*3^(1/2)-1/8)/(2/5*Pi+1/6) 3178171045085362 r004 Re(z^2+c),c=3/38-5/16*I,z(0)=exp(3/8*I*Pi),n=2 3178171045585046 h001 (7/11*exp(1)+2/7)/(3/4*exp(2)+4/5) 3178171045705243 a005 (1/cos(12/221*Pi))^1339 3178171057231906 m001 (3^(1/2)+ln(2+3^(1/2)))/(CopelandErdos+Sarnak) 3178171060714188 r009 Re(z^3+c),c=-61/114+13/47*I,n=23 3178171090198461 a007 Real Root Of -204*x^4-677*x^3-401*x^2-761*x+712 3178171093542908 r009 Im(z^3+c),c=-5/114+15/43*I,n=11 3178171106141396 p004 log(25321/18427) 3178171121036891 a001 514229/76*76^(8/9) 3178171126024029 r005 Im(z^2+c),c=2/19+34/41*I,n=3 3178171135859356 a005 (1/sin(58/123*Pi))^289 3178171139053330 r005 Re(z^2+c),c=37/118+26/51*I,n=53 3178171143434003 a007 Real Root Of -344*x^4-770*x^3+769*x^2-807*x+46 3178171147630618 a007 Real Root Of -274*x^4-666*x^3+800*x^2+205*x-854 3178171149391983 r005 Re(z^2+c),c=-7/94+49/61*I,n=3 3178171156054109 a005 (1/cos(26/167*Pi))^397 3178171169482403 r009 Im(z^3+c),c=-5/11+7/40*I,n=9 3178171172878311 r009 Im(z^3+c),c=-27/64+13/57*I,n=14 3178171175242893 r005 Re(z^2+c),c=4/29+15/49*I,n=16 3178171175961233 a007 Real Root Of 728*x^4-664*x^3+915*x^2-827*x-384 3178171178346743 a007 Real Root Of -322*x^4-821*x^3+588*x^2-153*x+71 3178171181932699 r009 Im(z^3+c),c=-23/94+11/35*I,n=13 3178171184817815 r005 Re(z^2+c),c=-41/98+3/61*I,n=12 3178171194352540 l006 ln(355/8521) 3178171196812712 m001 polylog(4,1/2)^Si(Pi)*OneNinth 3178171203239932 m001 (-ln(5)+Weierstrass)/(2^(1/2)-Shi(1)) 3178171207643710 r009 Re(z^3+c),c=-3/50+12/17*I,n=54 3178171208769961 a007 Real Root Of -328*x^4-698*x^3+892*x^2-709*x-206 3178171211111112 k007 concat of cont frac of 3178171212240968 a007 Real Root Of 293*x^4+707*x^3-486*x^2+906*x+591 3178171212680209 r005 Re(z^2+c),c=-33/86+19/62*I,n=45 3178171213101573 a007 Real Root Of -282*x^4-706*x^3+394*x^2-856*x-593 3178171223822586 r005 Im(z^2+c),c=-1/36+9/23*I,n=19 3178171224118669 r002 46th iterates of z^2 + 3178171228681692 b008 E+7*Cosh[9/2] 3178171229071013 m001 1/sin(Pi/12)/OneNinth^2/exp(sinh(1))^2 3178171229400459 m006 (2/3/Pi+3/4)/(3*Pi^2+2/3) 3178171234908165 m001 (-BesselJ(1,1)+Kolakoski)/(Psi(1,1/3)+Shi(1)) 3178171235814597 a001 3571/610*8^(48/59) 3178171252332954 m001 Chi(1)+polylog(4,1/2)+MasserGramainDelta 3178171279684548 r005 Re(z^2+c),c=-7/18+10/31*I,n=12 3178171283390554 a007 Real Root Of 916*x^4-767*x^3-892*x^2-282*x+195 3178171285375340 r009 Im(z^3+c),c=-31/56+3/10*I,n=33 3178171301304906 a008 Real Root of x^4-2*x^3-28*x^2+245 3178171310495726 k002 Champernowne real with 23*n^2-22*n+30 3178171322850784 m001 1/ln(TreeGrowth2nd)*Niven^2/GAMMA(11/12)^2 3178171327602785 r005 Im(z^2+c),c=-61/106+1/23*I,n=15 3178171338261916 r005 Re(z^2+c),c=-21/58+9/20*I,n=6 3178171350848390 m001 1/MertensB1*exp(DuboisRaymond)/MinimumGamma 3178171356421853 a001 440719107401/48*6557470319842^(10/17) 3178171356582752 b008 Csch[Pi+Coth[4]] 3178171371243820 h001 (3/4*exp(1)+4/5)/(1/12*exp(1)+2/3) 3178171375907719 r005 Im(z^2+c),c=9/46+1/61*I,n=5 3178171376343983 a008 Real Root of x^4+18*x^2-44*x-144 3178171381337060 a001 21/29*5600748293801^(2/7) 3178171391241210 m005 (1/2*Catalan-2/3)/(7/10*2^(1/2)-1/3) 3178171392677889 a007 Real Root Of -697*x^4+239*x^3-779*x^2+911*x+383 3178171398882079 r005 Re(z^2+c),c=13/54+26/61*I,n=58 3178171402145200 m001 (Kolakoski+Niven)/(LambertW(1)+Ei(1,1)) 3178171413319854 l006 ln(3857/5300) 3178171413345325 p001 sum((-1)^n/(613*n+313)/(64^n),n=0..infinity) 3178171440756250 r005 Re(z^2+c),c=7/19+6/17*I,n=59 3178171450872334 m001 (Kac-ZetaP(3))/(arctan(1/2)-arctan(1/3)) 3178171454946912 m002 3+(3*E^Pi)/(4*Pi^4) 3178171458012476 m001 (MertensB3+Mills)/(Backhouse-Kac) 3178171475910142 a007 Real Root Of 267*x^4+634*x^3-365*x^2+788*x-697 3178171486803583 m009 (3/2*Pi^2+1)/(5*Psi(1,1/3)-3/4) 3178171495981206 m001 1/Kolakoski^2/ln(ArtinRank2)/Salem^2 3178171509727418 p004 log(26893/19571) 3178171513420736 a007 Real Root Of -500*x^4+974*x^3+586*x^2+613*x+172 3178171525145477 r005 Im(z^2+c),c=-21/82+10/21*I,n=15 3178171525869766 l006 ln(354/8497) 3178171531433707 r002 12th iterates of z^2 + 3178171539335868 a007 Real Root Of 350*x^4+954*x^3-578*x^2+8*x+780 3178171555406922 m001 (MertensB2+Porter)/(DuboisRaymond+Lehmer) 3178171556397303 a007 Real Root Of -150*x^4-121*x^3+822*x^2-739*x+768 3178171556726975 a003 sin(Pi*1/76)*sin(Pi*31/111) 3178171563867315 r009 Im(z^3+c),c=-17/86+19/58*I,n=6 3178171564425064 m001 GAMMA(13/24)-ln(2)/ln(10)+Tribonacci 3178171569377711 b008 -1+6^E^(2/3) 3178171574907486 a001 3571/165580141*3^(6/17) 3178171575621657 s002 sum(A104442[n]/(n^2*pi^n+1),n=1..infinity) 3178171586047308 a007 Real Root Of -680*x^4-132*x^3-763*x^2+951*x-214 3178171590958250 r009 Re(z^3+c),c=-7/44+55/64*I,n=24 3178171592599611 a009 23*(19^(1/2)-6^(1/2))^(1/2) 3178171601153746 m005 (1/2*Zeta(3)+2/7)/(4/11*gamma-3) 3178171614785331 m005 (1/3*Catalan-1/4)/(-38/77+1/7*5^(1/2)) 3178171618530349 a003 cos(Pi*14/57)-cos(Pi*41/111) 3178171618729435 r005 Re(z^2+c),c=-41/98+1/29*I,n=19 3178171619007413 r005 Re(z^2+c),c=-23/58+1/3*I,n=7 3178171627821600 s001 sum(exp(-4*Pi/5)^n*A257973[n],n=1..infinity) 3178171637112939 b008 Gamma[1/14+Pi^2] 3178171639403367 r005 Im(z^2+c),c=-39/70+21/46*I,n=5 3178171649188572 r005 Im(z^2+c),c=-5/8+68/191*I,n=37 3178171652557946 r005 Re(z^2+c),c=-11/16+10/33*I,n=51 3178171657370522 r005 Im(z^2+c),c=-47/78+25/56*I,n=53 3178171668722355 m001 1/GAMMA(11/24)*ln(LaplaceLimit)/sin(Pi/12)^2 3178171672543504 r009 Im(z^3+c),c=-35/74+5/62*I,n=4 3178171684012271 r005 Re(z^2+c),c=-41/102+7/33*I,n=20 3178171688310689 m001 cos(Pi/5)/Niven^2/exp(sqrt(5))^2 3178171689218207 r009 Re(z^3+c),c=-41/110+29/52*I,n=6 3178171689650934 a007 Real Root Of 238*x^4+571*x^3-414*x^2+708*x+480 3178171705135851 r002 36th iterates of z^2 + 3178171721812892 l003 hypergeom([1,2,3/2],[4/3,5/3],55/97) 3178171724590655 b008 Pi+BesselJ[0,21] 3178171735328720 r005 Im(z^2+c),c=8/25+7/64*I,n=32 3178171740675359 m001 Gompertz/(GAMMA(5/6)+RenyiParking) 3178171741956675 r005 Re(z^2+c),c=-39/94+5/43*I,n=13 3178171746045585 r005 Im(z^2+c),c=-127/118+2/55*I,n=24 3178171766220296 r005 Im(z^2+c),c=-11/42+13/20*I,n=20 3178171787773989 a001 9349/433494437*3^(6/17) 3178171793237843 m005 (1/2*3^(1/2)-10/11)/(6/7*2^(1/2)+1/7) 3178171794580855 m001 (2^(1/3))^Zeta(5)*Riemann3rdZero 3178171817154095 b008 -69/2+E 3178171818830794 a001 12238/567451585*3^(6/17) 3178171819847952 p001 sum(1/(352*n+317)/(64^n),n=0..infinity) 3178171823361920 a001 64079/2971215073*3^(6/17) 3178171824023003 a001 167761/7778742049*3^(6/17) 3178171824119454 a001 219602/10182505537*3^(6/17) 3178171824133525 a001 1149851/53316291173*3^(6/17) 3178171824135579 a001 3010349/139583862445*3^(6/17) 3178171824135878 a001 3940598/182717648081*3^(6/17) 3178171824135922 a001 20633239/956722026041*3^(6/17) 3178171824135928 a001 54018521/2504730781961*3^(6/17) 3178171824135929 a001 70711162/3278735159921*3^(6/17) 3178171824135929 a001 4868641/225749145909*3^(6/17) 3178171824135930 a001 87403803/4052739537881*3^(6/17) 3178171824135932 a001 16692641/774004377960*3^(6/17) 3178171824135949 a001 12752043/591286729879*3^(6/17) 3178171824136063 a001 4870847/225851433717*3^(6/17) 3178171824136847 a001 930249/43133785636*3^(6/17) 3178171824142222 a001 710647/32951280099*3^(6/17) 3178171824179063 a001 271443/12586269025*3^(6/17) 3178171824431574 a001 1/46368*3^(6/17) 3178171826162311 a001 39603/1836311903*3^(6/17) 3178171829922716 p001 sum(1/(590*n+341)/(5^n),n=0..infinity) 3178171838024954 a001 15127/701408733*3^(6/17) 3178171838899633 m001 (-Mills+Rabbit)/(BesselK(0,1)+Backhouse) 3178171842126044 r005 Im(z^2+c),c=7/40+13/49*I,n=12 3178171843086057 a009 1/11*5^(1/2)+1/11*2^(1/3) 3178171857224738 m001 GAMMA(5/24)*ln(BesselK(0,1))^2*cos(Pi/12) 3178171859265167 l006 ln(353/8473) 3178171864823046 m008 (5*Pi^4-5/6)/(5*Pi^5-1/4) 3178171868736800 l006 ln(4143/5693) 3178171877718487 s002 sum(A033702[n]/(exp(2*pi*n)+1),n=1..infinity) 3178171894762142 r005 Re(z^2+c),c=6/25+1/18*I,n=21 3178171906391938 r005 Im(z^2+c),c=15/56+5/29*I,n=10 3178171911816542 a007 Real Root Of -409*x^4+576*x^3-965*x^2+947*x-3 3178171916436861 r005 Im(z^2+c),c=-19/66+31/61*I,n=56 3178171917622894 m005 (1/3*Catalan+2/7)/(8/11*3^(1/2)+3/5) 3178171919332724 a001 2889/133957148*3^(6/17) 3178171928783464 r002 56th iterates of z^2 + 3178171936159260 m001 (FellerTornier+Thue)/(1+exp(1)) 3178171945575510 r005 Re(z^2+c),c=-7/9+1/35*I,n=64 3178171951294519 r005 Re(z^2+c),c=-39/94+4/39*I,n=23 3178171969662830 m001 (sin(1/5*Pi)-gamma(1))/(Bloch+ErdosBorwein) 3178171979548296 r002 5th iterates of z^2 + 3178171984242905 m002 E^Pi/(3*Pi^3)+Pi^5+Sinh[Pi] 3178171985144359 r005 Re(z^2+c),c=-37/114+23/47*I,n=31 3178172009837552 r005 Im(z^2+c),c=11/106+1/41*I,n=9 3178172022620352 r005 Re(z^2+c),c=-9/25+15/37*I,n=11 3178172039491298 a007 Real Root Of 244*x^4-545*x^3+177*x^2-872*x-315 3178172049669091 a005 (1/cos(8/221*Pi))^1955 3178172049993075 a005 (1/cos(2/87*Pi))^443 3178172051225473 r005 Im(z^2+c),c=17/60+7/43*I,n=19 3178172052282115 a005 (1/cos(10/109*Pi))^1722 3178172066173509 a001 322/121393*2178309^(17/35) 3178172069419237 a007 Real Root Of 322*x^4+727*x^3-768*x^2+700*x+468 3178172073886911 m001 (Magata+MasserGramain)/(gamma(2)+GAMMA(17/24)) 3178172076528447 a007 Real Root Of 156*x^4-261*x^3-352*x^2-688*x+261 3178172079685158 m001 (Backhouse-Robbin)/(Tribonacci+TwinPrimes) 3178172104281750 m001 (2^(1/3))/exp(FeigenbaumDelta)*GAMMA(13/24)^2 3178172113021112 k007 concat of cont frac of 3178172114929633 a003 cos(Pi*1/60)-cos(Pi*6/73) 3178172117136124 m004 -(Sqrt[5]*Pi)+(17*Cosh[Sqrt[5]*Pi])/3 3178172117154939 m001 (Si(Pi)+Stephens)^Conway 3178172121334032 m002 1+Pi^2+Pi^5+Tanh[Pi]/ProductLog[Pi] 3178172139760167 m005 (1/3*exp(1)+2/11)/(3/7*3^(1/2)-2/5) 3178172145800864 m001 ln(Pi)^2*(2^(1/3))^2/cos(Pi/5)^2 3178172151361271 k007 concat of cont frac of 3178172169169918 r009 Re(z^3+c),c=-25/64+15/56*I,n=17 3178172171111741 k008 concat of cont frac of 3178172194554747 l006 ln(352/8449) 3178172203298079 m001 GAMMA(3/4)/OneNinth^2/exp(Zeta(3)) 3178172217759963 a007 Real Root Of 185*x^4+803*x^3+536*x^2-186*x+898 3178172220021317 r005 Re(z^2+c),c=-59/94+3/10*I,n=18 3178172226195003 m001 1/GAMMA(1/12)*FibonacciFactorial*ln(sin(1))^2 3178172234200584 m005 (1/2*2^(1/2)+6/11)/(2/5*gamma-5/8) 3178172236535799 p003 LerchPhi(1/64,3,333/227) 3178172237243644 m001 HardyLittlewoodC5/(Cahen+MasserGramain) 3178172240658880 m001 (3^(1/3)+gamma(2))/(Zeta(1,2)-FeigenbaumMu) 3178172252989521 a001 1/77*(1/2*5^(1/2)+1/2)^14*11^(4/9) 3178172265337181 l006 ln(4429/6086) 3178172272652426 r005 Re(z^2+c),c=-31/44+7/46*I,n=21 3178172279069103 r002 11th iterates of z^2 + 3178172280161965 a007 Real Root Of 100*x^4+57*x^3-871*x^2-219*x-271 3178172299868365 m001 Zeta(1,-1)*(LambertW(1)+GAMMA(2/3)) 3178172313501736 k002 Champernowne real with 47/2*n^2-47/2*n+31 3178172320509124 r002 3th iterates of z^2 + 3178172333351313 k008 concat of cont frac of 3178172335439906 a007 Real Root Of 753*x^4-358*x^3+570*x^2-435*x-215 3178172345106474 m008 (1/2*Pi^6+1/4)/(4/5*Pi-1) 3178172362077444 m001 (LambertW(1)-Shi(1))/(Kolakoski+RenyiParking) 3178172373910327 m001 (-GAMMA(11/12)+MasserGramainDelta)/(2^(1/2)+1) 3178172374617862 a001 165580141/2207*123^(3/10) 3178172375734463 a001 843/365435296162*3^(7/24) 3178172383780850 l006 ln(8516/8791) 3178172402059518 h001 (2/11*exp(1)+3/11)/(5/8*exp(1)+5/7) 3178172402467807 a001 4/17711*2584^(1/23) 3178172403806408 a001 4/28657*165580141^(1/23) 3178172404876063 a001 1/11592*10610209857723^(1/23) 3178172413148678 a007 Real Root Of 40*x^4-301*x^3-157*x^2-624*x+20 3178172427369333 r005 Im(z^2+c),c=-9/110+23/55*I,n=30 3178172433946573 r009 Re(z^3+c),c=-53/118+14/39*I,n=31 3178172451581939 r009 Re(z^3+c),c=-47/98+23/57*I,n=59 3178172460313277 m009 (2/5*Pi^2+2/3)/(5*Psi(1,2/3)-4/5) 3178172467693096 r005 Re(z^2+c),c=-47/114+2/25*I,n=7 3178172470164983 r005 Re(z^2+c),c=-39/94+4/39*I,n=30 3178172475674012 r009 Im(z^3+c),c=-6/31+21/64*I,n=12 3178172476624464 a001 2207/102334155*3^(6/17) 3178172485072008 r009 Im(z^3+c),c=-29/56+31/50*I,n=6 3178172489592025 r002 49th iterates of z^2 + 3178172512962008 m001 (Pi-BesselI(0,2))/(DuboisRaymond+ZetaP(4)) 3178172518271175 s002 sum(A003805[n]/((exp(n)+1)*n),n=1..infinity) 3178172524081301 m001 (GaussKuzminWirsing-exp(Pi))/(Rabbit+ZetaQ(3)) 3178172531754696 l006 ln(351/8425) 3178172533500145 p003 LerchPhi(1/512,6,23/19) 3178172539184430 r005 Im(z^2+c),c=-9/110+23/55*I,n=37 3178172543361882 m005 (7/10+1/10*5^(1/2))/(1/3*exp(1)+2) 3178172547487205 s002 sum(A235966[n]/(n^2*pi^n+1),n=1..infinity) 3178172548642674 m001 (Thue+ZetaQ(4))/(BesselI(0,1)+3^(1/3)) 3178172550587505 m001 (FeigenbaumMu+LandauRamanujan2nd)/Mills 3178172558254365 s002 sum(A000797[n]/(exp(2*pi*n)+1),n=1..infinity) 3178172558572299 r005 Im(z^2+c),c=-3/13+16/33*I,n=50 3178172585578111 r005 Im(z^2+c),c=5/21+9/44*I,n=9 3178172587639908 m009 (3/4*Psi(1,3/4)+3/4)/(3*Psi(1,2/3)-5/6) 3178172595365524 m005 (1/2*3^(1/2)+2/5)/(9/11*Zeta(3)+3) 3178172598477774 p001 sum(1/(432*n+119)/n/(6^n),n=1..infinity) 3178172598954808 b008 3+(5+Sqrt[2])/36 3178172601060305 m002 Pi^3+Pi^4/5+Pi^5/Log[Pi] 3178172607158499 r009 Re(z^3+c),c=-57/118+13/29*I,n=61 3178172613823993 l006 ln(4715/6479) 3178172625702186 a003 cos(Pi*1/67)/cos(Pi*45/113) 3178172632649126 m001 GaussKuzminWirsing+Otter-StolarskyHarborth 3178172635780038 s002 sum(A157651[n]/(n^3*pi^n-1),n=1..infinity) 3178172638610834 h001 (1/3*exp(1)+4/5)/(5/8*exp(2)+3/4) 3178172647054888 a003 cos(Pi*18/89)*cos(Pi*33/89) 3178172662566215 r005 Re(z^2+c),c=-25/66+18/55*I,n=43 3178172666399617 m001 ErdosBorwein*(ReciprocalFibonacci-exp(Pi)) 3178172666632104 m001 Tribonacci^2*ln(FeigenbaumD)^2/Zeta(5) 3178172674551914 m005 (4/5*2^(1/2)+1/2)/(5/6*Catalan-1/4) 3178172678940310 r005 Re(z^2+c),c=-95/74+17/56*I,n=7 3178172686459253 b008 BarnesG[10+E/2] 3178172702517151 a008 Real Root of x^2-x-100690 3178172709995592 a007 Real Root Of 226*x^4+495*x^3-792*x^2-14*x+788 3178172716326308 r005 Re(z^2+c),c=29/82+10/21*I,n=7 3178172748730370 r009 Im(z^3+c),c=-6/31+21/64*I,n=14 3178172749450009 m001 (MasserGramain-gamma(2))^exp(1) 3178172755536798 m005 (1/2*3^(1/2)-6/11)/(2/5*gamma+7/9) 3178172762391964 s002 sum(A265487[n]/((exp(n)-1)/n),n=1..infinity) 3178172766609052 m002 2/3+Pi^3+ProductLog[Pi]/Pi^2 3178172769549526 r009 Re(z^3+c),c=-31/66+9/23*I,n=58 3178172775484187 p001 sum((-1)^n/(453*n+307)/(16^n),n=0..infinity) 3178172779229316 m001 (Kolakoski-Tribonacci)/(BesselK(1,1)+Khinchin) 3178172784843001 a007 Real Root Of 14*x^4+416*x^3-893*x^2+841*x-439 3178172785397043 h001 (5/8*exp(1)+3/5)/(9/10*exp(2)+7/12) 3178172796424368 m005 (1/2*Zeta(3)-11/12)/(1/3*Zeta(3)-1/2) 3178172796978148 a007 Real Root Of 291*x^4+595*x^3-861*x^2+292*x-964 3178172800071219 r005 Re(z^2+c),c=-53/114+31/60*I,n=40 3178172801318026 m006 (3/4*exp(Pi)+2)/(3/5/Pi-4/5) 3178172807173781 r002 47th iterates of z^2 + 3178172807173781 r002 47th iterates of z^2 + 3178172815143911 m001 (arctan(1/3)+ZetaP(3))/(ln(3)+arctan(1/2)) 3178172816144471 s002 sum(A135887[n]/(n^2*exp(n)+1),n=1..infinity) 3178172816558021 s002 sum(A135887[n]/(n^2*exp(n)-1),n=1..infinity) 3178172819460115 r009 Im(z^3+c),c=-5/114+15/43*I,n=13 3178172822234595 a007 Real Root Of 971*x^4-22*x^3+305*x^2-779*x-289 3178172833494280 m002 -2*Pi+(E^Pi*Pi^2)/6 3178172835070061 r005 Im(z^2+c),c=-7/114+20/49*I,n=21 3178172848254053 r002 10th iterates of z^2 + 3178172866105545 a005 (1/cos(17/129*Pi))^587 3178172870881387 l006 ln(350/8401) 3178172881313872 a007 Real Root Of -194*x^4-559*x^3-7*x^2-812*x-662 3178172888099293 m001 Sarnak*ZetaP(2)^Zeta(5) 3178172888390463 m001 Chi(1)^ZetaQ(3)/Pi 3178172889612109 m002 6+E^Pi*Pi^4+3*Pi^5 3178172907689510 a001 9349/1597*8^(48/59) 3178172910098931 m001 (FellerTornier+OrthogonalArrays)/Landau 3178172918521520 r005 Re(z^2+c),c=-33/86+19/62*I,n=42 3178172920457574 r005 Im(z^2+c),c=-15/62+19/39*I,n=21 3178172921945034 r005 Im(z^2+c),c=-9/40+5/8*I,n=23 3178172922451876 l006 ln(5001/6872) 3178172926260182 m009 (5/6*Psi(1,3/4)+2)/(32/5*Catalan+4/5*Pi^2-4/5) 3178172927711558 a007 Real Root Of 951*x^4+314*x^3-936*x^2-715*x+302 3178172928767679 r005 Re(z^2+c),c=-47/118+15/64*I,n=28 3178172931909683 a001 433494437/5778*123^(3/10) 3178172945457246 a007 Real Root Of 314*x^4+931*x^3-177*x^2-150*x-838 3178172946384898 a007 Real Root Of -776*x^4-425*x^3-993*x^2+80*x+120 3178172948657934 a008 Real Root of x^4-x^3-310*x^2-711*x+5321 3178172957346008 r005 Re(z^2+c),c=-31/78+9/34*I,n=10 3178172960494674 m005 (1/2*Pi+2/7)/(7/10*Zeta(3)+5) 3178172978499366 r005 Re(z^2+c),c=-33/94+17/38*I,n=10 3178172991572249 r005 Re(z^2+c),c=-47/114+8/59*I,n=15 3178173011055619 m001 (Sarnak+Trott2nd)/(cos(1)+MasserGramainDelta) 3178173013217480 a001 1134903170/15127*123^(3/10) 3178173013274645 r005 Im(z^2+c),c=-17/110+10/23*I,n=10 3178173019034815 m004 -1/2+150*Pi*Sin[Sqrt[5]*Pi] 3178173021278892 a008 Real Root of (5+13*x-14*x^2-17*x^3) 3178173025080128 a001 2971215073/39603*123^(3/10) 3178173026810865 a001 7778742049/103682*123^(3/10) 3178173026947486 m004 -150*Pi*Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/2 3178173027063377 a001 20365011074/271443*123^(3/10) 3178173027100217 a001 53316291173/710647*123^(3/10) 3178173027105592 a001 139583862445/1860498*123^(3/10) 3178173027106377 a001 365435296162/4870847*123^(3/10) 3178173027106491 a001 956722026041/12752043*123^(3/10) 3178173027106508 a001 2504730781961/33385282*123^(3/10) 3178173027106510 a001 6557470319842/87403803*123^(3/10) 3178173027106511 a001 10610209857723/141422324*123^(3/10) 3178173027106512 a001 4052739537881/54018521*123^(3/10) 3178173027106518 a001 140728068720/1875749*123^(3/10) 3178173027106562 a001 591286729879/7881196*123^(3/10) 3178173027106861 a001 225851433717/3010349*123^(3/10) 3178173027108914 a001 86267571272/1149851*123^(3/10) 3178173027122986 a001 32951280099/439204*123^(3/10) 3178173027219437 a001 75025*123^(3/10) 3178173027880520 a001 4807526976/64079*123^(3/10) 3178173028506500 r009 Im(z^3+c),c=-5/114+15/43*I,n=15 3178173031105910 m001 (5^(1/2)+ln(2+3^(1/2)))/(-GAMMA(5/6)+Trott) 3178173032411648 a001 1836311903/24476*123^(3/10) 3178173043477593 a003 sin(Pi*18/91)-sin(Pi*36/101) 3178173049096499 r009 Im(z^3+c),c=-5/114+15/43*I,n=17 3178173050780187 r009 Im(z^3+c),c=-5/114+15/43*I,n=19 3178173050887044 r009 Im(z^3+c),c=-5/114+15/43*I,n=21 3178173050889761 r009 Im(z^3+c),c=-5/114+15/43*I,n=22 3178173050889803 r009 Im(z^3+c),c=-5/114+15/43*I,n=24 3178173050890009 r009 Im(z^3+c),c=-5/114+15/43*I,n=26 3178173050890043 r009 Im(z^3+c),c=-5/114+15/43*I,n=28 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=30 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=32 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=34 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=36 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=37 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=39 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=41 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=43 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=45 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=47 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=49 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=51 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=52 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=54 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=56 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=58 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=60 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=62 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=64 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=63 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=61 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=59 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=57 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=55 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=53 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=50 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=48 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=46 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=44 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=42 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=40 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=38 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=35 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=33 3178173050890048 r009 Im(z^3+c),c=-5/114+15/43*I,n=31 3178173050890050 r009 Im(z^3+c),c=-5/114+15/43*I,n=29 3178173050890062 r009 Im(z^3+c),c=-5/114+15/43*I,n=27 3178173050890152 r009 Im(z^3+c),c=-5/114+15/43*I,n=25 3178173050890502 r009 Im(z^3+c),c=-5/114+15/43*I,n=23 3178173050912276 r009 Im(z^3+c),c=-5/114+15/43*I,n=20 3178173051354425 r009 Im(z^3+c),c=-5/114+15/43*I,n=18 3178173057154541 m001 (ZetaP(3)-ZetaQ(3))/(OneNinth+PrimesInBinary) 3178173057390525 r009 Im(z^3+c),c=-5/114+15/43*I,n=16 3178173057909747 r009 Im(z^3+c),c=-37/90+11/37*I,n=4 3178173061806579 a007 Real Root Of 303*x^4+729*x^3-688*x^2-78*x-810 3178173063468465 a001 701408733/9349*123^(3/10) 3178173080024156 a007 Real Root Of 810*x^4-207*x^3-770*x^2-805*x+332 3178173112050078 m005 (1/2*Zeta(3)+1/4)/(2/3*Pi+7/12) 3178173121115181 k006 concat of cont frac of 3178173121182315 k007 concat of cont frac of 3178173122449635 m001 (GAMMA(19/24)+FeigenbaumD)/(Kac-Tribonacci) 3178173124507703 r009 Im(z^3+c),c=-5/114+15/43*I,n=14 3178173128278861 r002 60th iterates of z^2 + 3178173151612901 a001 24476/4181*8^(48/59) 3178173165258899 m001 (-GaussKuzminWirsing+ZetaP(2))/(Artin-sin(1)) 3178173174604967 m001 (exp(1)-ln(gamma))/(Stephens+ZetaP(2)) 3178173175357662 r005 Re(z^2+c),c=-37/66+1/15*I,n=4 3178173175694939 b008 9*(34+Coth[1]) 3178173177693489 m001 1/GAMMA(11/12)*Kolakoski^2/ln(cosh(1))^2 3178173178547167 a001 682/17*196418^(9/53) 3178173178753062 a007 Real Root Of 218*x^4-89*x^3+467*x^2-317*x-153 3178173184975896 m001 HardyLittlewoodC5/(Si(Pi)-Pi) 3178173187200847 a001 64079/10946*8^(48/59) 3178173194671156 r002 56th iterates of z^2 + 3178173197689330 l006 ln(5287/7265) 3178173209195407 a001 13201/2255*8^(48/59) 3178173211951382 l006 ln(349/8377) 3178173211951382 p004 log(8377/349) 3178173214754337 r005 Im(z^2+c),c=4/25+9/38*I,n=3 3178173215170910 r005 Im(z^2+c),c=-103/102+13/42*I,n=12 3178173220674363 a007 Real Root Of -198*x^4-517*x^3+368*x^2+150*x+364 3178173229963282 m006 (3/Pi-4/5)/(5*Pi^2-3/5) 3178173253244438 r009 Im(z^3+c),c=-13/44+18/59*I,n=4 3178173276335068 a001 267914296/3571*123^(3/10) 3178173278641986 r005 Im(z^2+c),c=-5/19+17/35*I,n=17 3178173282325313 a001 38/5473*121393^(18/25) 3178173288363164 r009 Im(z^3+c),c=-23/110+12/37*I,n=13 3178173301300572 m001 (-HardyLittlewoodC4+MertensB1)/(1-ln(Pi)) 3178173302365863 a001 15127/2584*8^(48/59) 3178173310670290 r005 Im(z^2+c),c=-4/17+18/37*I,n=40 3178173313203769 a007 Real Root Of 542*x^4-544*x^3+404*x^2-846*x+240 3178173316507746 k002 Champernowne real with 24*n^2-25*n+32 3178173317305697 m005 (1/3*Zeta(3)+2/9)/(6*Pi+3/4) 3178173318721560 m001 (Zeta(5)-ln(2^(1/2)+1))/(Landau-ZetaQ(2)) 3178173319468411 b008 30+Pi*ProductLog[1] 3178173355243039 r005 Im(z^2+c),c=-17/52+13/24*I,n=40 3178173357155448 m001 1/GAMMA(1/12)^2/ln(FeigenbaumDelta)^2/Zeta(9) 3178173361539168 m001 1/Rabbit*exp(KhintchineLevy)^2*Riemann2ndZero 3178173374822355 m001 ln(Salem)^2/CopelandErdos^2*sin(Pi/12)^2 3178173377188326 m005 (1/2*exp(1)-2/5)/(1/8*Pi-1/11) 3178173377398376 r005 Re(z^2+c),c=-7/10+29/177*I,n=4 3178173393804535 m006 (3*Pi+1/2)/(2*ln(Pi)+5/6) 3178173395167219 a007 Real Root Of 10*x^4+339*x^3+648*x^2-784*x+559 3178173401908295 a001 843*(1/2*5^(1/2)+1/2)^30*3^(9/14) 3178173405483744 p003 LerchPhi(1/32,3,130/191) 3178173411156702 r005 Im(z^2+c),c=-77/94+1/58*I,n=25 3178173414456151 r009 Re(z^3+c),c=-49/102+26/53*I,n=62 3178173441624181 a007 Real Root Of -223*x^4-676*x^3+430*x^2+946*x-286 3178173444677034 l006 ln(5573/7658) 3178173465106828 m001 (1-Shi(1))/(GAMMA(3/4)+Stephens) 3178173465516044 g005 GAMMA(2/11)*GAMMA(9/10)/GAMMA(7/9)/GAMMA(5/8) 3178173466858402 m001 MertensB2-gamma(3)-TravellingSalesman 3178173474071805 s001 sum(1/10^(n-1)*A278653[n]/n!,n=1..infinity) 3178173493939480 r005 Im(z^2+c),c=-25/78+29/53*I,n=11 3178173494330929 m001 (Weierstrass+ZetaP(3))/(gamma+Porter) 3178173496654947 r005 Re(z^2+c),c=-3/5+23/90*I,n=9 3178173497285589 r009 Im(z^3+c),c=-71/126+2/5*I,n=8 3178173503968293 r005 Im(z^2+c),c=-2/3+7/102*I,n=22 3178173512557708 m001 (MertensB3+PlouffeB)/(Pi^(1/2)-Psi(2,1/3)) 3178173522025988 b008 LogGamma[6*E^E] 3178173531040346 h003 exp(Pi*(7^(5/12)-2^(1/5))) 3178173531040346 h008 exp(Pi*(7^(5/12)-2^(1/5))) 3178173538943982 m008 (4*Pi^5-2)/(4*Pi^6-1/3) 3178173548545719 r005 Im(z^2+c),c=-43/122+32/61*I,n=20 3178173552025009 r005 Re(z^2+c),c=31/90+25/62*I,n=11 3178173554981431 l006 ln(348/8353) 3178173591156441 r005 Re(z^2+c),c=-17/56+31/58*I,n=42 3178173596384897 r005 Im(z^2+c),c=-59/98+16/47*I,n=10 3178173597483134 a007 Real Root Of -161*x^4-379*x^3+500*x^2+426*x+563 3178173599462033 a007 Real Root Of -308*x^4-700*x^3+645*x^2-727*x+127 3178173603379312 a007 Real Root Of 110*x^4+203*x^3-680*x^2-513*x+532 3178173620657091 r009 Re(z^3+c),c=-1/8+30/37*I,n=22 3178173630881980 a001 377/710647*7^(23/25) 3178173633118815 a007 Real Root Of -27*x^4-864*x^3-190*x^2-70*x+509 3178173639149732 a007 Real Root Of 321*x^4-611*x^3-939*x^2-991*x-243 3178173642950851 m005 (4/5*gamma-4/5)/(2/5*gamma+5/6) 3178173642950851 m007 (-4/5*gamma+4/5)/(-2/5*gamma-5/6) 3178173646390394 r005 Im(z^2+c),c=-17/56+18/35*I,n=50 3178173667551921 l006 ln(5859/8051) 3178173674545339 r005 Re(z^2+c),c=-23/66+11/21*I,n=32 3178173675729672 a007 Real Root Of 192*x^4+502*x^3-195*x^2+225*x-789 3178173694107322 m002 -Pi^2-Log[Pi]^(-1)+Pi^5*ProductLog[Pi] 3178173699534869 r009 Re(z^3+c),c=-1/58+49/54*I,n=14 3178173700622373 m005 (1/2*Zeta(3)+3/8)/(-5/9+1/9*5^(1/2)) 3178173708672125 m005 (1/2*Pi+9/10)/(5/8*gamma+5/12) 3178173709208063 a001 1/90481*76^(10/41) 3178173716023845 r005 Im(z^2+c),c=13/90+13/45*I,n=25 3178173733806732 m001 (polylog(4,1/2)+Artin)/(MadelungNaCl-Porter) 3178173738912501 r009 Re(z^3+c),c=-31/78+17/61*I,n=27 3178173743806921 r009 Im(z^3+c),c=-5/114+15/43*I,n=12 3178173755971445 m001 (FeigenbaumB+ZetaP(3))/(Si(Pi)+ln(2+3^(1/2))) 3178173761980214 m005 (1/3*3^(1/2)-1/5)/(4/5*Catalan+5/11) 3178173764381580 m001 (Pi+QuadraticClass)/(Robbin-Tetranacci) 3178173773958364 m001 ln(5)^HardyLittlewoodC5*MertensB1 3178173780962626 m001 (-arctan(1/3)+TreeGrowth2nd)/(1+exp(1)) 3178173804595714 a003 sin(Pi*15/104)*sin(Pi*15/58) 3178173808836369 m008 (5*Pi-1/4)/(5*Pi^4-2/3) 3178173824713034 r009 Im(z^3+c),c=-6/31+21/64*I,n=17 3178173825767265 h001 (3/10*exp(1)+1/11)/(8/11*exp(1)+7/8) 3178173827674965 q001 1/3146461 3178173834617406 m001 Magata-Trott2nd^HardyLittlewoodC5 3178173869680760 l006 ln(6145/8444) 3178173876770702 m001 1/exp(RenyiParking)^2*Champernowne^2/Zeta(5)^2 3178173881647657 r005 Re(z^2+c),c=13/44+5/49*I,n=43 3178173884196729 r009 Im(z^3+c),c=-6/31+21/64*I,n=20 3178173885106684 r005 Re(z^2+c),c=-33/94+26/61*I,n=39 3178173886699403 r009 Im(z^3+c),c=-6/31+21/64*I,n=22 3178173886785657 r009 Im(z^3+c),c=-6/31+21/64*I,n=23 3178173886848001 r009 Im(z^3+c),c=-6/31+21/64*I,n=25 3178173886864113 r009 Im(z^3+c),c=-6/31+21/64*I,n=28 3178173886865020 r009 Im(z^3+c),c=-6/31+21/64*I,n=26 3178173886865190 r009 Im(z^3+c),c=-6/31+21/64*I,n=31 3178173886865246 r009 Im(z^3+c),c=-6/31+21/64*I,n=34 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=33 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=36 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=37 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=39 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=42 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=45 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=48 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=47 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=50 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=51 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=53 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=56 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=59 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=61 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=62 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=64 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=63 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=60 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=58 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=57 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=55 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=54 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=52 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=49 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=46 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=44 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=43 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=40 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=41 3178173886865248 r009 Im(z^3+c),c=-6/31+21/64*I,n=38 3178173886865249 r009 Im(z^3+c),c=-6/31+21/64*I,n=35 3178173886865266 r009 Im(z^3+c),c=-6/31+21/64*I,n=32 3178173886865316 r009 Im(z^3+c),c=-6/31+21/64*I,n=30 3178173886865437 r009 Im(z^3+c),c=-6/31+21/64*I,n=29 3178173886867737 r009 Im(z^3+c),c=-6/31+21/64*I,n=27 3178173886925469 r009 Im(z^3+c),c=-6/31+21/64*I,n=24 3178173887006797 m001 MasserGramainDelta+Ei(1)^PlouffeB 3178173887223880 a007 Real Root Of -208*x^4-515*x^3+641*x^2+661*x+315 3178173887674255 r009 Im(z^3+c),c=-6/31+21/64*I,n=19 3178173888004795 r009 Im(z^3+c),c=-6/31+21/64*I,n=21 3178173899988481 l006 ln(347/8329) 3178173899988481 p004 log(8329/347) 3178173903108506 m001 Paris^2*Cahen*ln(BesselK(1,1)) 3178173903443180 r009 Im(z^3+c),c=-6/31+21/64*I,n=18 3178173917299186 r005 Im(z^2+c),c=-39/34+22/89*I,n=14 3178173918754387 r005 Im(z^2+c),c=-15/74+28/59*I,n=25 3178173919516068 r002 5th iterates of z^2 + 3178173921758157 m001 1/GAMMA(2/3)^2*Robbin^2/exp(Zeta(7))^2 3178173922648705 r009 Re(z^3+c),c=-23/38+17/32*I,n=44 3178173928445775 m006 (3/4*exp(2*Pi)-1/6)/(2/3*ln(Pi)+1/2) 3178173937011488 m001 1/Paris*MadelungNaCl^2/ln(FeigenbaumD)^2 3178173940965799 a001 1926/329*8^(48/59) 3178173942188792 r005 Re(z^2+c),c=-11/74+26/31*I,n=33 3178173953196571 s001 sum(exp(-Pi/2)^n*A193085[n],n=1..infinity) 3178173956439106 a001 8/271443*47^(21/34) 3178173968434760 h001 (-6*exp(4)-1)/(-7*exp(5)+5) 3178173977427225 m001 (-exp(-1/2*Pi)+Zeta(1,2))/(Chi(1)-sin(1)) 3178173977859552 r009 Im(z^3+c),c=-6/31+21/64*I,n=16 3178173978845101 r009 Re(z^3+c),c=-21/40+6/37*I,n=20 3178173980616416 r005 Im(z^2+c),c=15/62+13/62*I,n=21 3178173981518071 m005 (1/3*2^(1/2)-1/6)/(9/10*3^(1/2)-3/5) 3178174008936243 m001 1/cos(Pi/12)/Champernowne^2*exp(cosh(1)) 3178174010943547 a007 Real Root Of -149*x^4-258*x^3+553*x^2-330*x+285 3178174023237832 a007 Real Root Of 685*x^4-818*x^3-387*x^2-990*x+373 3178174026703057 r009 Re(z^3+c),c=-3/8+15/62*I,n=15 3178174027975279 r009 Im(z^3+c),c=-6/31+21/64*I,n=15 3178174037222096 g005 GAMMA(7/11)/GAMMA(8/9)/GAMMA(4/9)/GAMMA(3/7) 3178174053831412 l006 ln(6431/8837) 3178174073322023 m002 -6*E^(2*Pi)+3*Cosh[Pi] 3178174073577321 a007 Real Root Of 131*x^4+251*x^3-648*x^2-104*x+907 3178174081521228 r005 Im(z^2+c),c=-5/13+29/57*I,n=29 3178174083595845 r002 10th iterates of z^2 + 3178174111453192 a001 7/24157817*2^(2/15) 3178174114962006 a001 11/34*514229^(15/43) 3178174120272920 a001 4/5*832040^(18/41) 3178174134402925 h001 (8/9*exp(2)+9/11)/(9/11*exp(1)+1/10) 3178174146008470 r005 Re(z^2+c),c=-33/86+19/62*I,n=37 3178174152886395 r009 Re(z^3+c),c=-1/20+21/38*I,n=11 3178174154613473 m001 (gamma(1)+Zeta(1,2))/(Totient+Tribonacci) 3178174158656110 m001 BesselJ(0,1)^2*ln((2^(1/3)))^2*Zeta(7)^2 3178174161274949 a009 3+1/21*14^(1/2) 3178174161274949 b008 3+Sqrt[2/7]/3 3178174167063114 m005 (1/2*Catalan-5)/(9/10*5^(1/2)-7/12) 3178174183048758 r005 Re(z^2+c),c=-7/17+7/51*I,n=23 3178174189493386 m005 (1/2*Pi-8/11)/(2*Zeta(3)+1/4) 3178174190755054 m006 (1/3*Pi^2-3/5)/(1/3*exp(Pi)+3/4) 3178174193340679 r005 Re(z^2+c),c=19/52+6/29*I,n=28 3178174195384382 m001 ln(2)^GolombDickman/FeigenbaumAlpha 3178174197041677 m003 59/2+Sqrt[5]/8+2*Csc[1/2+Sqrt[5]/2] 3178174198969477 r005 Im(z^2+c),c=-83/114+27/50*I,n=4 3178174200000001 s004 Continued Fraction of A252356 3178174200000001 s004 Continued fraction of A252356 3178174209821115 m004 35*Sqrt[5]*Pi+25*Pi*Tan[Sqrt[5]*Pi] 3178174211043133 k006 concat of cont frac of 3178174222300333 l006 ln(6717/9230) 3178174232262700 r005 Re(z^2+c),c=-7/16+2/39*I,n=6 3178174242501361 m006 (5*exp(2*Pi)-1/2)/(2/5*exp(Pi)-5/6) 3178174246989670 l006 ln(346/8305) 3178174261101316 m001 (LambertW(1)-Psi(2,1/3))/(Salem+Stephens) 3178174267185384 s003 concatenated sequence A252356 3178174282453933 m001 (Pi^(1/2)+Rabbit)/(BesselK(0,1)-Zeta(3)) 3178174295319369 q001 1229/3867 3178174302623110 a007 Real Root Of 686*x^4+370*x^3+83*x^2-907*x+261 3178174307016155 r009 Re(z^3+c),c=-5/17+2/45*I,n=2 3178174312151023 k008 concat of cont frac of 3178174316978692 m005 (1/2*3^(1/2)+7/11)/(9/10*2^(1/2)-6) 3178174319513756 k002 Champernowne real with 49/2*n^2-53/2*n+33 3178174333403064 a007 Real Root Of -810*x^4-745*x^3-487*x^2+980*x+345 3178174333665091 r005 Re(z^2+c),c=-11/24+14/27*I,n=30 3178174335251450 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(2+3^(1/2)))^Sarnak 3178174336612316 h001 (-2*exp(2)-9)/(-exp(3/2)-3) 3178174341100740 m001 (-Bloch+Cahen)/(Shi(1)-polylog(4,1/2)) 3178174351941184 m001 1/Rabbit*Bloch^2/ln(FeigenbaumD) 3178174377008831 l006 ln(7003/9623) 3178174377211035 r009 Re(z^3+c),c=-9/56+7/8*I,n=14 3178174390009144 r005 Re(z^2+c),c=-31/40+3/61*I,n=36 3178174393072690 b008 Pi+(3*ArcCsch[41])/2 3178174401431947 r005 Re(z^2+c),c=-43/110+17/26*I,n=3 3178174403570498 a007 Real Root Of -159*x^4-444*x^3+476*x^2+753*x-446 3178174419010246 r005 Re(z^2+c),c=-39/50+1/59*I,n=34 3178174439472789 a007 Real Root Of -279*x^4+460*x^3-406*x^2+212*x+126 3178174455248871 b008 5*Sqrt[2]*LogGamma[E] 3178174488610852 r005 Im(z^2+c),c=-5/46+25/58*I,n=27 3178174490749867 m001 HeathBrownMoroz/(FeigenbaumMu+Stephens) 3178174505056779 a007 Real Root Of -933*x^4+250*x^3-949*x^2+477*x+265 3178174507177808 a001 6/726103*75025^(3/25) 3178174511506240 h001 (-9*exp(2)-3)/(-3*exp(1/3)+2) 3178174514336308 a001 7/6765*89^(1/4) 3178174519576668 l006 ln(7289/10016) 3178174527096916 m002 -3-Pi^5-Cosh[Pi]+3/ProductLog[Pi] 3178174529241884 r005 Re(z^2+c),c=-5/19+35/62*I,n=8 3178174535367208 a001 1597/7*2^(11/23) 3178174536403391 m001 (Kolakoski+Tetranacci)/(Catalan-Pi^(1/2)) 3178174543359247 a003 sin(Pi*7/71)/sin(Pi*38/93) 3178174545078291 m001 (Artin+Bloch)/(Si(Pi)+AlladiGrinstead) 3178174580108326 m001 (BesselI(0,1)-arctan(1/2))/(-Ei(1,1)+Bloch) 3178174582233469 r005 Re(z^2+c),c=-39/94+4/39*I,n=32 3178174586903932 r009 Re(z^3+c),c=-9/29+9/58*I,n=2 3178174593052022 b008 9+55*(-1+Sqrt[2]) 3178174596002340 l006 ln(345/8281) 3178174607508744 m005 (1/2*5^(1/2)-6/11)/(2/5*exp(1)+5/7) 3178174621323203 a007 Real Root Of -282*x^4-820*x^3+259*x^2-205*x-820 3178174651386266 a003 cos(Pi*43/107)/sin(Pi*21/52) 3178174652887331 a008 Real Root of x^3-x^2-1218*x-5598 3178174653145434 m008 (5*Pi^4+1/5)/(5*Pi^5+3) 3178174661801776 m001 CareFree^2/ln(Artin)/(2^(1/3))^2 3178174680845282 m001 (Zeta(5)-cos(1/12*Pi))/(BesselI(1,2)+Cahen) 3178174686621736 v002 sum(1/(2^n*(12*n^2-35*n+49)),n=1..infinity) 3178174698735547 r002 7th iterates of z^2 + 3178174710649095 m001 CopelandErdos+FeigenbaumB*Paris 3178174721359549 a001 317813+2*5^(1/2) 3178174722414801 r009 Im(z^3+c),c=-14/29+6/35*I,n=57 3178174735345238 a001 9303105/124*123^(3/10) 3178174739280104 r005 Im(z^2+c),c=-7/18+3/59*I,n=24 3178174742274501 r009 Re(z^3+c),c=-7/40+43/47*I,n=12 3178174743838200 r005 Im(z^2+c),c=-37/114+19/35*I,n=40 3178174749870390 r002 50th iterates of z^2 + 3178174749870390 r002 50th iterates of z^2 + 3178174752687329 m003 -3+6*Sin[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/5 3178174753367915 a007 Real Root Of 900*x^4-267*x^3-7*x^2-3*x-18 3178174766028207 r005 Re(z^2+c),c=-27/70+10/51*I,n=4 3178174771797313 r005 Im(z^2+c),c=-65/122+23/41*I,n=64 3178174776306143 m001 1/BesselJ(0,1)*OneNinth/exp(Ei(1))^2 3178174778927561 a003 cos(Pi*33/103)-cos(Pi*34/79) 3178174781965801 r005 Im(z^2+c),c=-9/38+31/64*I,n=26 3178174784945096 r005 Re(z^2+c),c=-29/78+10/33*I,n=9 3178174810827872 r009 Re(z^3+c),c=-13/21+7/13*I,n=2 3178174817393260 b008 Pi+ArcCosh[2]/36 3178174830018684 r009 Im(z^3+c),c=-4/31+16/47*I,n=12 3178174830494560 m001 1/Salem^2/exp(CopelandErdos)*GAMMA(1/6) 3178174836704384 a007 Real Root Of -183*x^4-159*x^3-659*x^2+773*x+309 3178174837807861 r005 Im(z^2+c),c=-3/16+23/49*I,n=20 3178174848068007 m001 (MertensB3-Sarnak)/(Tribonacci+ZetaP(4)) 3178174875465409 a007 Real Root Of 419*x^4+57*x^3-970*x^2-400*x+219 3178174897511294 a007 Real Root Of -25*x^4-763*x^3+979*x^2-748*x-21 3178174898632447 b008 3+Sinh[Sqrt[Pi]/10] 3178174906746483 a003 sin(Pi*13/116)*sin(Pi*25/67) 3178174909655614 m005 (1/2*5^(1/2)-1)/(6/11*2^(1/2)-2/5) 3178174921615943 m002 -Pi^5-Sinh[Pi]-Tanh[Pi]/4 3178174929131735 m008 (4/5*Pi^4-1/5)/(4/5*Pi^5-1/4) 3178174929584120 a007 Real Root Of 317*x^4+957*x^3-346*x^2-737*x-468 3178174929903564 m001 1/Robbin^2*exp(LandauRamanujan)/cosh(1) 3178174937766374 r005 Re(z^2+c),c=-11/28+7/27*I,n=15 3178174940706352 r005 Im(z^2+c),c=-20/31+13/29*I,n=11 3178174940974548 r009 Re(z^3+c),c=-29/62+11/29*I,n=27 3178174942129629 r002 3th iterates of z^2 + 3178174946252567 r005 Im(z^2+c),c=-15/86+19/41*I,n=20 3178174947044030 l006 ln(344/8257) 3178174953077354 m001 Catalan/ln(MinimumGamma)*log(2+sqrt(3)) 3178174960905610 r005 Im(z^2+c),c=-9/16+24/67*I,n=10 3178174963882352 a007 Real Root Of 909*x^4+152*x^3-181*x^2-308*x-84 3178174983245536 m005 (1/3*2^(1/2)-1/11)/(1/5*5^(1/2)+3/4) 3178174984617784 m001 1/3*(2^(1/2)-3^(1/3)*LaplaceLimit)*3^(2/3) 3178175003099417 r009 Im(z^3+c),c=-1/28+23/63*I,n=2 3178175007944776 a007 Real Root Of 30*x^4+972*x^3+591*x^2+62*x+427 3178175008888198 r005 Re(z^2+c),c=-41/102+2/23*I,n=5 3178175013442606 r005 Im(z^2+c),c=-7/102+7/17*I,n=31 3178175015628289 a005 (1/cos(9/227*Pi))^1629 3178175020377144 m001 (Cahen-GAMMA(3/4))/FeigenbaumC 3178175021275066 r009 Im(z^3+c),c=-4/31+16/47*I,n=13 3178175055999599 m001 (FransenRobinson+Otter)^TwinPrimes 3178175065537877 a007 Real Root Of -18*x^4-574*x^3-54*x^2+251*x+613 3178175083289205 m001 1/ln(GAMMA(1/6))*Magata^2/GAMMA(5/12) 3178175092120840 p004 log(11981/8719) 3178175092478421 q001 1031/3244 3178175098643129 m001 BesselI(1,1)*(gamma(1)+HardyLittlewoodC3) 3178175111750370 r005 Re(z^2+c),c=-5/14+13/32*I,n=51 3178175121212792 h001 (-10*exp(1)+8)/(-11*exp(4)-3) 3178175124182458 r005 Im(z^2+c),c=-53/98+21/38*I,n=64 3178175125569914 r002 10th iterates of z^2 + 3178175128414830 r005 Re(z^2+c),c=17/66+5/64*I,n=2 3178175136772377 m001 (Salem+ZetaQ(4))/(BesselI(1,1)-DuboisRaymond) 3178175136833383 r005 Re(z^2+c),c=-41/98+1/40*I,n=15 3178175145780546 r009 Re(z^3+c),c=-9/20+19/53*I,n=23 3178175151725048 r005 Re(z^2+c),c=-25/66+18/55*I,n=40 3178175154858039 a007 Real Root Of 483*x^4-631*x^3+778*x^2-737*x-338 3178175156134780 h001 (5/8*exp(1)+2/5)/(7/9*exp(2)+6/7) 3178175157102023 s002 sum(A171168[n]/(exp(2*pi*n)+1),n=1..infinity) 3178175157102023 v004 sum((7+10*n)/(exp(2*Pi*n)+1),n=1..infinity) 3178175160882463 m001 (GAMMA(5/6)+Khinchin)/(MertensB1-MinimumGamma) 3178175160957178 m001 1/Riemann2ndZero/ln(MertensB1)^2*Zeta(3) 3178175161718449 r002 32th iterates of z^2 + 3178175182602425 a007 Real Root Of 70*x^4+240*x^3+293*x^2+813*x+187 3178175186552622 b008 2/3-9*E^Glaisher 3178175201642278 m005 (1/2*exp(1)+2)/(1/10*5^(1/2)+5/6) 3178175201991224 a008 Real Root of x^4-x^3-6*x^2+31*x+25 3178175205934579 m001 FransenRobinson-Zeta(1,2)-LambertW(1) 3178175206935412 b008 E^(23/4)+Sinh[2] 3178175209059156 m009 (4/5*Psi(1,1/3)-3)/(1/3*Psi(1,3/4)+3/4) 3178175210886050 r002 45th iterates of z^2 + 3178175211622210 k007 concat of cont frac of 3178175217623168 m001 BesselK(1,1)/(GAMMA(3/4)^Pi) 3178175222855955 r009 Im(z^3+c),c=-4/31+16/47*I,n=15 3178175231805502 a007 Real Root Of 75*x^4-8*x^3-530*x^2+552*x-801 3178175236242049 m001 ln(2)/(GAMMA(1/24)-sqrt(1+sqrt(3))) 3178175245970780 m005 (1/2*exp(1)+1/5)/(5/6*Catalan-3/11) 3178175258184357 r005 Re(z^2+c),c=31/106+21/43*I,n=9 3178175272483126 a007 Real Root Of 201*x^4+569*x^3-486*x^2-594*x+780 3178175274567598 r005 Im(z^2+c),c=-1/58+9/22*I,n=6 3178175284155334 a007 Real Root Of -823*x^4-739*x^3-552*x^2+930*x+336 3178175293137054 a003 cos(Pi*6/79)/sin(Pi*9/91) 3178175294207850 r005 Im(z^2+c),c=5/26+23/64*I,n=4 3178175295678702 m001 ln(Riemann3rdZero)/PisotVijayaraghavan^2/gamma 3178175300132486 l006 ln(343/8233) 3178175301983949 r009 Im(z^3+c),c=-4/31+16/47*I,n=17 3178175303918959 r009 Im(z^3+c),c=-4/31+16/47*I,n=18 3178175304460755 r009 Im(z^3+c),c=-4/31+16/47*I,n=20 3178175304780469 r009 Im(z^3+c),c=-4/31+16/47*I,n=22 3178175304793017 r009 Im(z^3+c),c=-4/31+16/47*I,n=23 3178175304794055 r009 Im(z^3+c),c=-4/31+16/47*I,n=25 3178175304795334 r009 Im(z^3+c),c=-4/31+16/47*I,n=27 3178175304795403 r009 Im(z^3+c),c=-4/31+16/47*I,n=30 3178175304795404 r009 Im(z^3+c),c=-4/31+16/47*I,n=28 3178175304795408 r009 Im(z^3+c),c=-4/31+16/47*I,n=32 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=35 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=37 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=40 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=42 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=45 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=47 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=50 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=52 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=55 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=57 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=60 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=62 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=64 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=63 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=61 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=59 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=58 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=56 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=54 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=53 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=51 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=49 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=48 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=46 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=44 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=43 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=41 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=38 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=39 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=33 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=36 3178175304795409 r009 Im(z^3+c),c=-4/31+16/47*I,n=34 3178175304795411 r009 Im(z^3+c),c=-4/31+16/47*I,n=31 3178175304795420 r009 Im(z^3+c),c=-4/31+16/47*I,n=29 3178175304795820 r009 Im(z^3+c),c=-4/31+16/47*I,n=26 3178175304798371 r009 Im(z^3+c),c=-4/31+16/47*I,n=24 3178175304890642 r009 Im(z^3+c),c=-4/31+16/47*I,n=21 3178175305585782 r009 Im(z^3+c),c=-4/31+16/47*I,n=19 3178175308192896 r002 5th iterates of z^2 + 3178175308658186 r005 Im(z^2+c),c=-15/82+17/36*I,n=17 3178175311612517 m001 gamma^FeigenbaumD-Magata 3178175318832492 a007 Real Root Of -78*x^4-208*x^3+147*x^2+45*x-61 3178175322519766 k002 Champernowne real with 25*n^2-28*n+34 3178175323521769 k004 Champernowne real with floor(Pi*(8*n^2-9*n+11)) 3178175324354211 m001 1/Catalan^2/MinimumGamma/ln(GAMMA(19/24))^2 3178175326563599 r009 Im(z^3+c),c=-4/31+16/47*I,n=16 3178175339758292 r008 a(0)=3,K{-n^6,67+3*n^3-53*n^2-23*n} 3178175343228075 r005 Re(z^2+c),c=-27/40+19/53*I,n=56 3178175348769017 m008 (4*Pi^6+5/6)/(4*Pi^3-3) 3178175354569523 m001 Salem^2/KhintchineLevy^2*exp(GAMMA(19/24)) 3178175379148604 r002 33th iterates of z^2 + 3178175381763357 m001 (RenyiParking+ThueMorse)/(arctan(1/2)-Paris) 3178175401376037 a007 Real Root Of 841*x^4+222*x^3+330*x^2-287*x-126 3178175402459120 m001 FeigenbaumKappa/exp(Champernowne)^2/gamma^2 3178175417502254 m001 FeigenbaumDelta^TwinPrimes+ThueMorse 3178175417502254 m001 ThueMorse+FeigenbaumDelta^TwinPrimes 3178175456210868 p001 sum(1/(423*n+316)/(100^n),n=0..infinity) 3178175461030299 m005 (2*exp(1)-1/4)/(2*Catalan-1/5) 3178175463544727 m005 (1/2*exp(1)+1/4)/(9/10*Catalan-7/8) 3178175466182899 a007 Real Root Of -918*x^4-765*x^3-672*x^2+259*x+135 3178175466662252 m001 CareFree-MertensB2^MasserGramain 3178175493032777 m001 1/BesselK(1,1)/MinimumGamma^2*ln(Ei(1))^2 3178175493306017 m001 Si(Pi)/(Pi+Khinchin) 3178175512298238 r009 Im(z^3+c),c=-4/31+16/47*I,n=14 3178175518618618 m002 Pi^2+Pi^5+Pi^2*Csch[Pi]+ProductLog[Pi] 3178175524844508 a007 Real Root Of 136*x^4-32*x^3+308*x^2-829*x+232 3178175528301076 a001 64079/377*55^(19/26) 3178175534133813 a001 28657/29*11^(19/39) 3178175540006280 m001 (exp(gamma)+1/3)/(sqrt(1+sqrt(3))+5) 3178175540081199 m001 (Sierpinski+Totient)/(FeigenbaumC-Gompertz) 3178175544415385 m002 6*Log[Pi]*ProductLog[Pi]-Sinh[Pi]+Tanh[Pi] 3178175547453367 r005 Im(z^2+c),c=-39/122+13/25*I,n=62 3178175551090579 m001 (GAMMA(5/6)+Gompertz)/(Psi(2,1/3)+sin(1)) 3178175557430659 m005 (13/42+1/6*5^(1/2))/(5/9*exp(1)+7/11) 3178175561159602 a003 sin(Pi*11/107)/sin(Pi*29/60) 3178175562949647 r005 Im(z^2+c),c=5/48+6/19*I,n=19 3178175571175231 r005 Im(z^2+c),c=-15/16+19/73*I,n=3 3178175573563309 p003 LerchPhi(1/32,4,439/185) 3178175588179021 s002 sum(A200790[n]/(n^3*10^n+1),n=1..infinity) 3178175592920597 r005 Re(z^2+c),c=-39/94+4/39*I,n=34 3178175594804855 m001 (Ei(1)-gamma(3))/(Grothendieck-KhinchinLevy) 3178175600025951 m001 (Bloch-Trott2nd)/(Pi^(1/2)-Artin) 3178175605576336 m001 1/Riemann1stZero*ln(ErdosBorwein)/GAMMA(11/12) 3178175619951607 h001 (7/11*exp(2)+2/11)/(1/4*exp(1)+6/7) 3178175627470093 m001 ZetaP(4)^GaussKuzminWirsing*ln(2) 3178175655285661 l006 ln(342/8209) 3178175659969195 a001 24157817/199*199^(2/11) 3178175665678060 r009 Re(z^3+c),c=-33/86+10/39*I,n=24 3178175671476468 a001 521/1134903170*20365011074^(21/22) 3178175671774408 a001 521/46368*514229^(21/22) 3178175677630573 m001 (LaplaceLimit+Salem)/(2^(1/3)-Zeta(3)) 3178175697290888 r005 Re(z^2+c),c=13/106+23/35*I,n=20 3178175697752302 a007 Real Root Of -921*x^4+861*x^3-208*x^2+626*x+257 3178175703914391 m001 (Zeta(1,2)+BesselI(1,1))/(Lehmer-Rabbit) 3178175710026250 m001 (-ln(5)+Rabbit)/(3^(1/2)+ln(3)) 3178175712162613 m005 (1/2*Catalan+9/10)/(3*Zeta(3)+2/3) 3178175712473480 m001 1/FeigenbaumB*exp(ArtinRank2)*log(2+sqrt(3)) 3178175713809252 a007 Real Root Of 7*x^4-206*x^3-664*x^2+445*x+794 3178175714469310 r005 Im(z^2+c),c=-19/98+37/61*I,n=26 3178175717513212 r002 25th iterates of z^2 + 3178175725080965 m008 (2/5*Pi^2+1)/(1/6*Pi^4-2/3) 3178175726601859 a007 Real Root Of -221*x^4-467*x^3+965*x^2+725*x+113 3178175743065085 a007 Real Root Of 474*x^4-571*x^3+80*x^2-886*x+287 3178175744403371 a003 cos(Pi*42/109)*cos(Pi*41/87) 3178175747657995 r005 Im(z^2+c),c=-7/31+13/27*I,n=29 3178175752857651 r005 Im(z^2+c),c=-7/122+20/49*I,n=10 3178175755059550 m001 FeigenbaumMu-gamma^Niven 3178175766615208 a007 Real Root Of 943*x^4-768*x^3+27*x^2-881*x-317 3178175767233264 b008 1/4+E*(1/2+EulerGamma) 3178175771981398 m001 Champernowne^GAMMA(2/3)/Si(Pi) 3178175786310021 m001 1/cosh(1)/Zeta(1,2)^2/exp(sin(1)) 3178175792693557 r002 42th iterates of z^2 + 3178175814936484 r005 Re(z^2+c),c=-45/98+4/15*I,n=7 3178175816287690 a007 Real Root Of -835*x^4+530*x^3-937*x^2+613*x+315 3178175822223228 r005 Im(z^2+c),c=25/122+9/37*I,n=15 3178175828770991 r002 21th iterates of z^2 + 3178175839736913 m001 (TreeGrowth2nd+TwinPrimes)/(Si(Pi)+ln(5)) 3178175839779930 m001 cos(Pi/5)/(GAMMA(1/24)^GAMMA(23/24)) 3178175840372994 a003 sin(Pi*20/103)/cos(Pi*23/52) 3178175844041196 r005 Re(z^2+c),c=-99/94+16/63*I,n=26 3178175847834025 q001 1/3146459 3178175874376441 r005 Re(z^2+c),c=15/46+21/50*I,n=22 3178175896396430 r009 Re(z^3+c),c=-3/52+23/33*I,n=40 3178175896950979 m005 (27/28+1/4*5^(1/2))/(8/9*2^(1/2)-7/9) 3178175904414173 a007 Real Root Of 873*x^4-598*x^3-347*x^2-559*x+223 3178175913539621 m008 (4/5*Pi^3+1/5)/(4/5*Pi^4+3/4) 3178175919241048 a007 Real Root Of -250*x^4-540*x^3+800*x^2+209*x+755 3178175933986162 h001 (5/12*exp(1)+2/5)/(4/7*exp(2)+3/5) 3178175933986162 h001 (5/8*exp(1)+3/5)/(6/7*exp(2)+9/10) 3178175951682785 a007 Real Root Of 255*x^4+778*x^3+85*x^2+605*x+23 3178175979895294 m001 (Shi(1)-ln(2)/ln(10))/(-Bloch+Rabbit) 3178175990466539 a001 13/1149851*11^(25/58) 3178175991040115 r005 Re(z^2+c),c=-47/102+1/9*I,n=4 3178175994503394 r005 Re(z^2+c),c=7/86+31/50*I,n=48 3178175994600700 r005 Re(z^2+c),c=-31/24+1/52*I,n=56 3178176001471740 m004 Sqrt[5]*Pi+60*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 3178176005684531 r005 Re(z^2+c),c=-39/94+4/39*I,n=36 3178176011215052 a005 (1/cos(8/237*Pi))^614 3178176012521718 l006 ln(341/8185) 3178176025400338 r005 Im(z^2+c),c=-11/8+8/187*I,n=46 3178176041677241 r002 29th iterates of z^2 + 3178176041778276 m001 (-Mills+TwinPrimes)/(FransenRobinson-exp(Pi)) 3178176046639752 p004 log(22441/21739) 3178176047634344 r009 Re(z^3+c),c=-9/110+39/53*I,n=33 3178176054423982 a003 sin(Pi*1/25)/cos(Pi*23/62) 3178176062045928 m001 (ErdosBorwein-Khinchin)/(Zeta(5)-ArtinRank2) 3178176093807596 a007 Real Root Of -812*x^4+510*x^3-155*x^2+235*x+115 3178176100340396 r005 Im(z^2+c),c=-7/10+9/175*I,n=53 3178176112496615 m005 (-5/42+1/6*5^(1/2))/(4/5*2^(1/2)-1/3) 3178176115111124 k007 concat of cont frac of 3178176122601809 r005 Re(z^2+c),c=-41/74+25/59*I,n=31 3178176124440469 r005 Re(z^2+c),c=15/118+29/44*I,n=4 3178176127990078 r005 Im(z^2+c),c=7/40+4/15*I,n=26 3178176129190449 a007 Real Root Of 338*x^4+913*x^3-654*x^2-490*x-127 3178176131077286 m001 (ln(2+3^(1/2))-Trott2nd)/(Pi+Catalan) 3178176144574773 r009 Re(z^3+c),c=-31/74+20/61*I,n=9 3178176147151256 m002 -5/(Pi^5*Log[Pi])+Tanh[Pi]/3 3178176148158539 r005 Re(z^2+c),c=-39/94+4/39*I,n=38 3178176153293853 r005 Re(z^2+c),c=-75/98+5/22*I,n=4 3178176156615049 m001 (Backhouse-LandauRamanujan)/(Porter+Rabbit) 3178176164155724 m001 (exp(Pi)+ln(Pi))/(-ArtinRank2+MinimumGamma) 3178176170277354 r005 Re(z^2+c),c=-39/94+4/39*I,n=41 3178176171445060 r005 Re(z^2+c),c=-39/94+4/39*I,n=43 3178176175159975 r005 Re(z^2+c),c=-39/94+4/39*I,n=45 3178176177839259 r005 Re(z^2+c),c=-39/94+4/39*I,n=47 3178176179265449 r005 Re(z^2+c),c=-39/94+4/39*I,n=49 3178176179900953 r005 Re(z^2+c),c=-39/94+4/39*I,n=51 3178176180143198 r005 Re(z^2+c),c=-39/94+4/39*I,n=53 3178176180217578 r005 Re(z^2+c),c=-39/94+4/39*I,n=58 3178176180219352 r005 Re(z^2+c),c=-39/94+4/39*I,n=55 3178176180220458 r005 Re(z^2+c),c=-39/94+4/39*I,n=60 3178176180222512 r005 Re(z^2+c),c=-39/94+4/39*I,n=56 3178176180223564 r005 Re(z^2+c),c=-39/94+4/39*I,n=62 3178176180225469 r005 Re(z^2+c),c=-39/94+4/39*I,n=64 3178176180229257 r005 Re(z^2+c),c=-39/94+4/39*I,n=63 3178176180231781 r005 Re(z^2+c),c=-39/94+4/39*I,n=61 3178176180235175 r005 Re(z^2+c),c=-39/94+4/39*I,n=59 3178176180235811 r005 Re(z^2+c),c=-39/94+4/39*I,n=57 3178176180260605 r005 Re(z^2+c),c=-39/94+4/39*I,n=54 3178176180400495 r005 Re(z^2+c),c=-39/94+4/39*I,n=52 3178176180800886 r005 Re(z^2+c),c=-39/94+4/39*I,n=50 3178176181771696 r005 Re(z^2+c),c=-39/94+4/39*I,n=48 3178176183778230 r005 Re(z^2+c),c=-39/94+4/39*I,n=46 3178176186076521 r005 Re(z^2+c),c=-39/94+4/39*I,n=40 3178176186214273 r005 Re(z^2+c),c=-39/94+4/39*I,n=39 3178176187112420 r005 Re(z^2+c),c=-39/94+4/39*I,n=44 3178176190420191 r005 Re(z^2+c),c=-39/94+4/39*I,n=42 3178176196537123 r009 Im(z^3+c),c=-53/126+3/14*I,n=7 3178176199901593 a001 18*4181^(3/44) 3178176200885079 m001 ZetaQ(3)^Catalan/(FeigenbaumDelta^Catalan) 3178176205934548 b008 Pi+3*ArcCot[82] 3178176206495897 r005 Re(z^2+c),c=-33/86+19/62*I,n=38 3178176219140455 m001 ln(Zeta(9))*GAMMA(13/24)*cos(Pi/12) 3178176231418308 r005 Im(z^2+c),c=-17/42+32/53*I,n=41 3178176234655961 r009 Im(z^3+c),c=-23/52+4/19*I,n=31 3178176247822619 b008 Pi+ArcCsch[2*E]/5 3178176260367028 m001 (cos(1/5*Pi)-Zeta(1/2))/(Kac-Totient) 3178176263084553 r005 Re(z^2+c),c=-39/94+4/39*I,n=37 3178176268599771 q001 833/2621 3178176271333354 m005 (1/2*Catalan+1/3)/(5/9*exp(1)-4) 3178176274131117 a009 22+14^(1/2)+11^(3/4) 3178176285288952 r005 Im(z^2+c),c=-13/42+25/52*I,n=3 3178176296358882 a001 843/39088169*3^(6/17) 3178176300049504 g007 Psi(2,2/11)-Psi(2,7/10)-Psi(2,5/7)-Psi(2,5/6) 3178176300423217 r009 Im(z^3+c),c=-73/114+7/22*I,n=31 3178176314948643 r009 Re(z^3+c),c=-11/18+31/58*I,n=51 3178176320433330 m001 2^(1/2)+(2/3*Pi*3^(1/2)/GAMMA(2/3))^Stephens 3178176325525776 k002 Champernowne real with 51/2*n^2-59/2*n+35 3178176326050877 m005 (1/2*5^(1/2)+5/12)/(7/11*Catalan-1/10) 3178176338369849 a007 Real Root Of -984*x^4+968*x^3+952*x^2+749*x+183 3178176348943576 r005 Im(z^2+c),c=23/78+5/33*I,n=10 3178176351481301 r002 26th iterates of z^2 + 3178176362650509 m001 GolombDickman/exp(GlaisherKinkelin)^2*Robbin 3178176368885783 a007 Real Root Of 363*x^4-43*x^3+473*x^2-724*x+180 3178176371859035 l006 ln(340/8161) 3178176373942638 a007 Real Root Of -28*x^4+33*x^3+236*x^2-737*x-810 3178176374681085 r005 Im(z^2+c),c=-9/110+23/55*I,n=40 3178176393441346 r005 Re(z^2+c),c=-3/10+33/61*I,n=42 3178176409061186 r005 Re(z^2+c),c=-5/8+62/231*I,n=11 3178176431873281 a007 Real Root Of -349*x^4-993*x^3+116*x^2-511*x+934 3178176434192997 a007 Real Root Of -771*x^4-198*x^3+539*x^2+981*x-352 3178176444252139 r005 Im(z^2+c),c=31/94+6/61*I,n=62 3178176460655993 m001 (Zeta(1,2)-Landau)/(MinimumGamma-Tetranacci) 3178176461536880 r005 Im(z^2+c),c=7/66+17/54*I,n=13 3178176466908714 v004 sum((9+n^2+7*n)/(exp(2*Pi*n)+1),n=1..infinity) 3178176472591796 a001 521/196418*6557470319842^(17/24) 3178176486981260 r005 Im(z^2+c),c=-17/106+5/11*I,n=42 3178176497093760 a007 Real Root Of -975*x^4-671*x^3-232*x^2+312*x+111 3178176499380985 m001 (Pi+GAMMA(2/3))/(Riemann1stZero+Trott) 3178176507366733 a001 47/32951280099*21^(5/19) 3178176511447044 r005 Re(z^2+c),c=-39/94+4/39*I,n=35 3178176511614637 r009 Re(z^3+c),c=-29/64+15/41*I,n=36 3178176514857996 a007 Real Root Of 68*x^4+251*x^3+174*x^2+335*x+427 3178176518800203 m001 exp(Lehmer)^2/Si(Pi)^2*gamma^2 3178176521198023 a007 Real Root Of 721*x^4-892*x^3+526*x^2-783*x+217 3178176521728837 h003 exp(Pi*(16-6^(2/3)*7^(1/4))) 3178176530216289 m001 FeigenbaumD*Zeta(5)^FeigenbaumDelta 3178176532421506 b008 E^(4/5)+4*E^2 3178176554129943 r005 Re(z^2+c),c=-59/98+15/59*I,n=9 3178176561129550 a001 7/17711*1597^(39/43) 3178176562320861 r005 Im(z^2+c),c=13/90+13/45*I,n=21 3178176564892336 m001 ln(GAMMA(1/24))/Cahen/cosh(1) 3178176598964907 p003 LerchPhi(1/3,2,11/196) 3178176601753763 m001 Rabbit/FeigenbaumD/FeigenbaumB 3178176609016467 m001 1/Paris^2/FibonacciFactorial/ln(Salem)^2 3178176619074126 a007 Real Root Of 19*x^4+605*x^3+62*x^2+826*x+430 3178176630686712 m001 (cos(1/5*Pi)+FeigenbaumC)/(Mills-PlouffeB) 3178176630821886 p004 log(25343/18443) 3178176633448277 a007 Real Root Of 376*x^4-302*x^3+242*x^2-873*x-28 3178176634071251 m001 1/TreeGrowth2nd^2*Conway/ln(cos(Pi/5)) 3178176636482282 m001 (-gamma(2)+Riemann2ndZero)/(Zeta(3)-cos(1)) 3178176650741876 m001 ln(Paris)/Backhouse*Riemann1stZero^2 3178176653447632 r002 16th iterates of z^2 + 3178176665162433 m001 (-gamma(1)+ZetaQ(2))/(exp(1)+BesselI(0,1)) 3178176672274759 m001 (Riemann3rdZero+ZetaQ(3))/(1-KomornikLoreti) 3178176681593619 r005 Im(z^2+c),c=-145/118+5/52*I,n=25 3178176682570934 m005 (1/2*Pi+2)/(4/9*Pi-3/11) 3178176697410492 a007 Real Root Of -68*x^4-137*x^3-67*x^2-873*x+442 3178176701007002 a007 Real Root Of 191*x^4+974*x^3+949*x^2-678*x+40 3178176705386709 m001 (Thue+ZetaQ(2))/(ArtinRank2-FeigenbaumMu) 3178176714725878 r005 Re(z^2+c),c=-35/82+25/51*I,n=23 3178176715153797 r005 Re(z^2+c),c=-8/21+27/47*I,n=26 3178176727957779 m001 exp(Bloch)*Cahen*GAMMA(7/24) 3178176729715146 r009 Im(z^3+c),c=-6/31+21/64*I,n=13 3178176733316207 l006 ln(339/8137) 3178176752684750 m001 3^(1/2)+Ei(1,1)+FibonacciFactorial 3178176757139078 a007 Real Root Of 672*x^4-417*x^3-394*x^2-974*x-290 3178176769015935 r002 54th iterates of z^2 + 3178176791146287 m001 ln(OneNinth)^2/FibonacciFactorial/GAMMA(5/6)^2 3178176802391024 m002 E^Pi/12+Pi^2+Pi^5 3178176816348157 r002 49th iterates of z^2 + 3178176816348157 r002 49th iterates of z^2 + 3178176816931331 r005 Re(z^2+c),c=-51/122+1/53*I,n=13 3178176846274873 m001 1/Magata^2*Khintchine/exp(Riemann3rdZero) 3178176846458880 a007 Real Root Of 143*x^4+567*x^3+279*x^2-191*x+187 3178176850607529 a001 1/5473*21^(2/11) 3178176855056779 p004 log(34141/33073) 3178176866692251 r005 Re(z^2+c),c=-81/74+37/57*I,n=2 3178176897240495 m001 1/exp(Zeta(5))^2*GAMMA(5/12)/sin(1) 3178176899730695 r005 Im(z^2+c),c=-7/31+14/29*I,n=55 3178176906340049 r005 Im(z^2+c),c=29/90+1/16*I,n=35 3178176915397213 m001 (Paris-Robbin)/(Ei(1)-Champernowne) 3178176918312757 m001 (gamma+Ei(1,1))/(Riemann3rdZero+ZetaQ(2)) 3178176926231004 a007 Real Root Of -101*x^4+365*x^3+393*x^2+927*x-345 3178176932242650 g007 Psi(2,1/12)+14*Zeta(3)-Psi(2,4/7)-Psi(2,1/5) 3178176950167122 m001 (2*Pi/GAMMA(5/6)-Trott)^ReciprocalFibonacci 3178176953482558 r009 Im(z^3+c),c=-29/62+12/55*I,n=9 3178176954266541 m001 (-polylog(4,1/2)+Lehmer)/(BesselI(0,1)+ln(3)) 3178176956257658 l003 KelvinHei(2,4/45) 3178176958255010 m001 Grothendieck/(StronglyCareFree^BesselI(0,2)) 3178176964740962 a007 Real Root Of -217*x^4+19*x^3+888*x^2+500*x-247 3178176972120534 r005 Re(z^2+c),c=-5/8+61/153*I,n=26 3178176976630008 r005 Im(z^2+c),c=-19/110+23/50*I,n=41 3178176989501399 r002 8th iterates of z^2 + 3178176989830034 a007 Real Root Of -31*x^4-992*x^3-236*x^2-652*x+482 3178176994731858 a001 1/726103*144^(12/19) 3178177009458591 m001 (GAMMA(17/24)+GolombDickman)/(3^(1/3)-sin(1)) 3178177011033380 m008 (4/5*Pi^5-1/6)/(4/5*Pi^6+2/3) 3178177011220217 a001 7/9227465*46368^(2/15) 3178177011259643 a001 7/24157817*63245986^(2/15) 3178177011259643 a001 7/63245986*86267571272^(2/15) 3178177022854516 m001 1/exp(GAMMA(1/12))/MinimumGamma^2*sin(Pi/12)^2 3178177041645524 r004 Im(z^2+c),c=-1/18+7/23*I,z(0)=I,n=6 3178177050955470 h001 (1/2*exp(2)+2/5)/(1/7*exp(1)+9/10) 3178177055730060 r005 Re(z^2+c),c=-47/118+15/53*I,n=10 3178177082039324 a001 317811+3*5^(1/2) 3178177089535154 a007 Real Root Of -631*x^4+65*x^3-511*x^2+9*x+63 3178177090481235 m001 gamma(1)*Magata^Zeta(3) 3178177096912046 l006 ln(338/8113) 3178177112668773 b008 Pi+3*ArcCsch[82] 3178177123494684 m005 (1/2*gamma-3/5)/(4/11*5^(1/2)+1/6) 3178177125140895 a001 2207/233*63245986^(17/24) 3178177126026611 m005 (1/2*exp(1)-5/6)/(2*gamma+1/2) 3178177129220147 m001 (BesselJ(0,1)+MertensB3)/(-Robbin+ZetaQ(4)) 3178177145042088 m001 1/exp(Zeta(3))^2/GAMMA(1/12)^2/arctan(1/2)^2 3178177151550405 r005 Im(z^2+c),c=-17/90+9/14*I,n=38 3178177159047192 m002 1/2+Pi^5+Pi^2*Log[Pi] 3178177162334503 r009 Re(z^3+c),c=-37/78+36/61*I,n=3 3178177163134778 a008 Real Root of x^4-x^3+8*x^2-49*x+5 3178177168955774 a007 Real Root Of 242*x^4+732*x^3+253*x^2+921*x-820 3178177169851422 r005 Re(z^2+c),c=-39/94+4/39*I,n=33 3178177172086331 r009 Re(z^3+c),c=-31/78+17/61*I,n=30 3178177172783914 r005 Im(z^2+c),c=25/106+11/51*I,n=27 3178177220344872 m001 (ln(5)-ln(2^(1/2)+1))/(Landau+MadelungNaCl) 3178177221906477 m001 (MertensB2-Salem)/(sin(1/12*Pi)-CareFree) 3178177222903257 a007 Real Root Of 507*x^4+388*x^3-610*x^2-837*x+310 3178177223338783 m001 (ln(3)+HeathBrownMoroz)/(Magata+ZetaQ(2)) 3178177228982337 r005 Re(z^2+c),c=-8/19+31/52*I,n=45 3178177243420322 a005 (1/sin(68/161*Pi))^1188 3178177254597817 m006 (2/3*exp(2*Pi)+3/4)/(2/5*exp(Pi)+2) 3178177260626667 m001 1/Zeta(1/2)/exp(BesselK(0,1))/sqrt(2) 3178177265818544 m005 (-5/44+1/4*5^(1/2))/(2/3*Zeta(3)+3/5) 3178177281129646 r002 7th iterates of z^2 + 3178177287290850 r005 Re(z^2+c),c=31/106+13/53*I,n=2 3178177303318329 r005 Re(z^2+c),c=-47/122+16/53*I,n=19 3178177307037614 r009 Re(z^3+c),c=-43/106+2/9*I,n=4 3178177328531786 k002 Champernowne real with 26*n^2-31*n+36 3178177333145763 m001 (Zeta(3)+ln(Pi))/(Robbin+ZetaP(4)) 3178177338703351 a007 Real Root Of 225*x^4+583*x^3-428*x^2+63*x+283 3178177371009049 r002 6th iterates of z^2 + 3178177371485025 r005 Re(z^2+c),c=-29/86+9/19*I,n=34 3178177373106602 a007 Real Root Of -244*x^4-717*x^3+36*x^2-497*x-66 3178177377619055 r005 Re(z^2+c),c=-31/94+14/45*I,n=2 3178177408976231 m001 1/exp(GAMMA(7/12))/Riemann2ndZero*GAMMA(7/24) 3178177410367132 m009 (2*Psi(1,1/3)+2/5)/(32*Catalan+4*Pi^2-4) 3178177417230099 m005 (1/2*3^(1/2)-6)/(2/7*3^(1/2)-1/3) 3178177418090125 r009 Im(z^3+c),c=-55/122+12/59*I,n=23 3178177418423336 a007 Real Root Of -402*x^4-963*x^3+940*x^2-199*x-27 3178177444653242 a007 Real Root Of 119*x^4+608*x^3+950*x^2+981*x+899 3178177446083206 a007 Real Root Of -592*x^4+961*x^3-346*x^2+743*x-226 3178177450629318 a001 329/620166*7^(23/25) 3178177461892530 b008 3*2^ArcCsch[12] 3178177462665590 l006 ln(337/8089) 3178177462665590 p004 log(8089/337) 3178177470925848 h001 (3/4*exp(1)+2/5)/(11/12*exp(2)+9/10) 3178177483260482 r005 Im(z^2+c),c=-14/19+5/23*I,n=5 3178177487276660 m001 Pi*KhinchinLevy+ln(gamma) 3178177489584810 m001 GAMMA(7/24)^2/exp(RenyiParking)^2/sin(Pi/12)^2 3178177493561513 a007 Real Root Of -883*x^4-571*x^3+292*x^2+506*x+122 3178177495118237 b008 7*Pi*ProductLog[4]^2 3178177498588931 m001 (Rabbit-Stephens)/(Ei(1,1)-MertensB1) 3178177513548899 m001 (FeigenbaumMu+Robbin)/(gamma(2)-Champernowne) 3178177521710625 a007 Real Root Of -347*x^4-955*x^3+699*x^2+757*x+91 3178177522562529 m001 (Magata+Porter)/(ln(5)-Backhouse) 3178177528595814 a009 1/6*(24*6^(1/2)+6^(1/3))^(1/2)*6^(1/2) 3178177530126627 a001 1/1860621*(1/2*5^(1/2)+1/2)^8*15127^(5/19) 3178177539187494 a001 1/4871169*(1/2*5^(1/2)+1/2)^6*39603^(8/19) 3178177540890250 a001 1/7881717*(1/2*5^(1/2)+1/2)^9*64079^(6/19) 3178177542315191 a001 1/3010548*(1/2*5^(1/2)+1/2)*24476^(12/19) 3178177552653570 a007 Real Root Of 267*x^4+699*x^3-338*x^2+671*x+745 3178177557517895 m001 sin(Pi/5)^GAMMA(5/24)+GAMMA(7/24) 3178177568289797 a007 Real Root Of 200*x^4+594*x^3-48*x^2+268*x 3178177575355776 a001 521/317811*233^(31/57) 3178177583957486 r005 Re(z^2+c),c=-7/18+17/61*I,n=16 3178177588722841 r002 19th iterates of z^2 + 3178177589265282 a007 Real Root Of -658*x^4+640*x^3+189*x^2+462*x+155 3178177601056951 s002 sum(A088483[n]/((10^n-1)/n),n=1..infinity) 3178177606495693 a007 Real Root Of -116*x^4+363*x^3-543*x^2+835*x-221 3178177620974176 m001 ZetaP(4)/(FibonacciFactorial+KhinchinLevy) 3178177624146485 a003 sin(Pi*12/61)-sin(Pi*28/79) 3178177637144336 m001 (-Pi^(1/2)+Thue)/(3^(1/2)-exp(1/exp(1))) 3178177639249096 m005 (1/2*5^(1/2)-6/11)/(5/12*Catalan-4/11) 3178177639297970 a007 Real Root Of 851*x^4+592*x^3+164*x^2-918*x-298 3178177651698881 s002 sum(A285038[n]/(n*pi^n+1),n=1..infinity) 3178177655802849 r002 31th iterates of z^2 + 3178177674352121 r002 32i'th iterates of 2*x/(1-x^2) of 3178177677279313 r002 52th iterates of z^2 + 3178177677279313 r002 52th iterates of z^2 + 3178177682654353 a001 7881196/233*610^(17/24) 3178177686873954 a007 Real Root Of 759*x^4-820*x^3+522*x^2-932*x-383 3178177688525071 m001 GAMMA(5/24)/exp(DuboisRaymond)^2/Zeta(1,2) 3178177697768395 a001 1/439233*(1/2*5^(1/2)+1/2)^4*3571^(7/19) 3178177698655108 m001 OneNinth/MasserGramainDelta*ZetaQ(2) 3178177741738475 m001 Psi(2,1/3)^Artin/(FeigenbaumAlpha^Artin) 3178177751942102 r009 Re(z^3+c),c=-7/24+1/18*I,n=10 3178177763479113 m001 Ei(1,1)-Gompertz^Zeta(3) 3178177778808127 a007 Real Root Of -210*x^4-398*x^3+593*x^2-921*x-268 3178177794756106 m001 (Ei(1)-3^(1/3))/(FellerTornier-MadelungNaCl) 3178177795393409 r005 Im(z^2+c),c=-9/110+23/55*I,n=43 3178177795800435 r002 3th iterates of z^2 + 3178177797088537 m001 (3^(1/2)+Zeta(3))/(MertensB1+Robbin) 3178177803642754 a007 Real Root Of 695*x^4-523*x^3+629*x^2+360*x+27 3178177806286878 l005 ln(tanh(71/51*Pi)) 3178177821451227 a007 Real Root Of 2*x^4+637*x^3+436*x^2+751*x+497 3178177830596105 l006 ln(336/8065) 3178177858637795 m001 Conway/(Bloch^KhinchinLevy) 3178177870897104 m001 (2^(1/2)+ln(gamma))/(ln(2^(1/2)+1)+Tribonacci) 3178177871745715 m001 (-Mills+PlouffeB)/(sin(1)+Pi^(1/2)) 3178177878470575 h001 (7/10*exp(1)+1/7)/(1/5*exp(1)+1/10) 3178177878470630 r002 3th iterates of z^2 + 3178177899522566 a003 1/2-2*cos(1/15*Pi)-cos(1/21*Pi)-cos(5/21*Pi) 3178177913270400 a007 Real Root Of 266*x^4+987*x^3+357*x^2-72*x+711 3178177919786543 m001 sin(1/12*Pi)^Mills*ErdosBorwein^Mills 3178177957946005 a005 (1/sin(110/229*Pi))^1814 3178177961703839 m009 (4*Psi(1,2/3)+1/4)/(1/2*Pi^2-1) 3178177975274479 m002 2+Pi^4/E^(2*Pi)+Tanh[Pi] 3178177989453557 m001 BesselJ(1,1)^ErdosBorwein/sin(1) 3178177990101308 a007 Real Root Of -69*x^4+127*x^3+303*x^2+651*x-21 3178177990326937 r005 Im(z^2+c),c=-9/31+31/61*I,n=47 3178178007922945 a001 2584/4870847*7^(23/25) 3178178010494086 l006 ln(286/393) 3178178019278567 a007 Real Root Of -187*x^4-331*x^3+909*x^2+233*x+12 3178178019443451 b008 3/82+Pi 3178178030118984 m001 (Pi+exp(-1/2*Pi))/(GAMMA(11/12)-ZetaQ(4)) 3178178031929029 r005 Im(z^2+c),c=11/118+10/31*I,n=13 3178178048443897 r005 Re(z^2+c),c=-13/118+31/34*I,n=24 3178178050950314 m006 (3/5*exp(2*Pi)-2)/(4/5/Pi+3/4) 3178178051587132 r005 Im(z^2+c),c=-51/62+8/47*I,n=26 3178178066383963 b008 Sinh[2+Pi+Coth[1]] 3178178072982128 r005 Re(z^2+c),c=-39/94+1/28*I,n=9 3178178079232097 m005 (-17/28+1/4*5^(1/2))/(4/11*2^(1/2)+1) 3178178087159055 m001 1/(3^(1/3))*exp(PrimesInBinary)^2*sqrt(2)^2 3178178093537092 s001 sum(exp(-2*Pi)^n*A106791[n],n=1..infinity) 3178178098154797 r005 Re(z^2+c),c=-15/38+13/51*I,n=21 3178178107751897 m001 (-Artin+1/2)/(cos(Pi/12)+3) 3178178124595311 a007 Real Root Of -967*x^4-232*x^3+987*x^2+798*x-336 3178178133965747 a007 Real Root Of -200*x^4-648*x^3+220*x^2+646*x-566 3178178154113819 r005 Im(z^2+c),c=27/70+7/22*I,n=26 3178178155317730 m001 (3^(1/2)-Psi(1,1/3))/(Pi^(1/2)+Thue) 3178178162788938 r009 Im(z^3+c),c=-5/114+15/43*I,n=10 3178178166792213 r005 Re(z^2+c),c=21/74+5/53*I,n=40 3178178168926148 r005 Re(z^2+c),c=-23/52+32/63*I,n=33 3178178178178178 q001 127/3996 3178178180328624 a007 Real Root Of 335*x^4+897*x^3-419*x^2+634*x+864 3178178182717629 a001 45537549124/21*144^(1/13) 3178178184578217 r005 Im(z^2+c),c=-27/118+23/35*I,n=19 3178178187755620 m001 (3^(1/3)+2*Pi/GAMMA(5/6))/(Artin+FeigenbaumC) 3178178189372984 r005 Re(z^2+c),c=-7/22+27/52*I,n=41 3178178195462673 a007 Real Root Of -223*x^4-656*x^3-931*x^2+575*x+258 3178178196476051 r005 Re(z^2+c),c=-33/94+14/41*I,n=9 3178178200723082 l006 ln(335/8041) 3178178210976400 b008 -32+1/Sqrt[21] 3178178215202704 a007 Real Root Of 148*x^4+442*x^3+252*x^2+781*x-974 3178178219543638 a007 Real Root Of -226*x^4+772*x^3-949*x^2-25*x+115 3178178220489457 m001 Stephens^(Psi(2,1/3)*GAMMA(19/24)) 3178178222175191 a007 Real Root Of 893*x^4+728*x^3+289*x^2-812*x-273 3178178223612338 m005 (-17/44+1/4*5^(1/2))/(5/9*gamma-3/8) 3178178242958877 m001 BesselK(1,1)*CareFree^MasserGramainDelta 3178178255881575 m001 Landau/(MertensB1^ln(2+3^(1/2))) 3178178265685109 r005 Im(z^2+c),c=-15/22+11/43*I,n=20 3178178280439105 m001 (Zeta(5)-ln(5))/(MadelungNaCl+ZetaQ(2)) 3178178281795330 a007 Real Root Of -794*x^4+792*x^3-499*x^2+554*x+260 3178178289630114 l005 sec(889/118) 3178178293504689 s002 sum(A093529[n]/(n*pi^n-1),n=1..infinity) 3178178299745989 g007 Psi(2,2/5)+Psi(2,1/5)-Psi(2,1/12)-Psi(2,5/6) 3178178303197682 r005 Im(z^2+c),c=-9/110+23/55*I,n=46 3178178306246463 a007 Real Root Of 405*x^4+959*x^3-978*x^2+489*x+898 3178178310145733 a007 Real Root Of -749*x^4+581*x^3+179*x^2+959*x+313 3178178318000900 a001 2207/377*8^(48/59) 3178178321592005 a007 Real Root Of -249*x^4-344*x^3-682*x^2+433*x+198 3178178330712618 a001 233/47*9349^(41/58) 3178178331537796 k002 Champernowne real with 53/2*n^2-65/2*n+37 3178178334502956 h001 (3/4*exp(1)+1/7)/(11/12*exp(2)+1/11) 3178178348581440 b008 Pi+Sin[1]/23 3178178352349347 a001 1597/3010349*7^(23/25) 3178178360933139 r009 Im(z^3+c),c=-29/60+3/26*I,n=22 3178178362314908 m005 (1/3*Pi+2/11)/(2/7*Catalan+1/8) 3178178362993152 a007 Real Root Of -26*x^4-839*x^3-400*x^2+112*x+741 3178178366184187 r005 Re(z^2+c),c=-83/110+8/37*I,n=4 3178178372584357 r005 Im(z^2+c),c=7/94+16/49*I,n=5 3178178375447691 s001 sum(exp(-4*Pi/5)^n*A197043[n],n=1..infinity) 3178178382611627 a003 cos(Pi*17/60)-sin(Pi*40/101) 3178178399240946 a007 Real Root Of -205*x^4+871*x^3+890*x^2+608*x-309 3178178401826994 r009 Re(z^3+c),c=-39/86+23/61*I,n=21 3178178405628293 l006 ln(1889/1950) 3178178406756873 m005 (-1/20+1/4*5^(1/2))/(7/9*Zeta(3)+2/3) 3178178413380330 a007 Real Root Of -194*x^4-600*x^3+191*x^2+356*x-266 3178178417845141 r002 3th iterates of z^2 + 3178178423448519 r009 Im(z^3+c),c=-15/56+19/60*I,n=3 3178178443003156 a008 Real Root of x^2-x-101326 3178178454627163 r002 51th iterates of z^2 + 3178178454627163 r002 51th iterates of z^2 + 3178178458932370 g006 Psi(1,1/8)+Psi(1,6/7)-Psi(1,2/11)-Psi(1,5/9) 3178178467505180 r005 Re(z^2+c),c=-61/78+7/57*I,n=12 3178178478336296 r005 Im(z^2+c),c=-9/110+23/55*I,n=49 3178178485647207 m003 3*Sin[1/2+Sqrt[5]/2]^2+Tanh[1/2+Sqrt[5]/2]/5 3178178494488472 m001 1/Ei(1)^2*exp(Artin)^2*cos(1) 3178178504746334 m001 (-GlaisherKinkelin+Robbin)/(2^(1/3)+ln(2)) 3178178516514706 a007 Real Root Of -155*x^4-243*x^3+715*x^2-147*x+324 3178178520426063 r005 Re(z^2+c),c=-15/14+110/223*I,n=4 3178178536463832 r005 Im(z^2+c),c=-9/110+23/55*I,n=52 3178178540772532 a001 74051560/233 3178178541978466 r005 Im(z^2+c),c=11/106+1/41*I,n=10 3178178547327537 r009 Re(z^3+c),c=-12/23+7/58*I,n=22 3178178551899747 m005 (1/6*exp(1)-5)/(1/6*Pi-2/3) 3178178554450477 r005 Im(z^2+c),c=-9/110+23/55*I,n=50 3178178554886638 r005 Im(z^2+c),c=-9/110+23/55*I,n=53 3178178554912151 r005 Im(z^2+c),c=-9/110+23/55*I,n=55 3178178558124855 r005 Im(z^2+c),c=-9/110+23/55*I,n=56 3178178560344123 r005 Im(z^2+c),c=-9/110+23/55*I,n=59 3178178560442168 r005 Im(z^2+c),c=-9/110+23/55*I,n=58 3178178561489312 r005 Im(z^2+c),c=-9/110+23/55*I,n=62 3178178561968902 r005 Im(z^2+c),c=-9/110+23/55*I,n=61 3178178562334567 r005 Im(z^2+c),c=-9/110+23/55*I,n=64 3178178563127825 r005 Im(z^2+c),c=-9/110+23/55*I,n=63 3178178564620208 r005 Im(z^2+c),c=-9/110+23/55*I,n=60 3178178566916148 m001 (arctan(1/2)-GAMMA(17/24))/(FeigenbaumD-Paris) 3178178568807639 r005 Im(z^2+c),c=-9/110+23/55*I,n=57 3178178570916060 m001 (1/2*Pi*2^(2/3)+BesselI(1,2))/GAMMA(17/24) 3178178573066251 l006 ln(334/8017) 3178178575622383 m001 LandauRamanujan^2*FransenRobinson*exp(Robbin) 3178178577383991 r005 Im(z^2+c),c=-9/110+23/55*I,n=47 3178178580146300 r005 Im(z^2+c),c=-9/110+23/55*I,n=54 3178178582690956 m001 (-Mills+TwinPrimes)/(gamma+Backhouse) 3178178594509112 r009 Re(z^3+c),c=-43/98+27/50*I,n=13 3178178595154641 a007 Real Root Of 313*x^4+900*x^3-476*x^2-666*x-351 3178178599717131 m005 (1/2*3^(1/2)+6)/(11/12*Catalan-3) 3178178608583113 a007 Real Root Of 58*x^4-828*x^3+886*x^2-580*x-301 3178178609703901 r005 Im(z^2+c),c=-9/110+23/55*I,n=51 3178178622309877 r002 5th iterates of z^2 + 3178178624072078 p001 sum((-1)^n/(512*n+311)/(32^n),n=0..infinity) 3178178628533987 r005 Re(z^2+c),c=9/118+13/37*I,n=20 3178178635440507 m001 (-LandauRamanujan2nd+Lehmer)/(exp(1)+Cahen) 3178178640430543 a007 Real Root Of 115*x^4+429*x^3+439*x^2+996*x+770 3178178647990247 r009 Re(z^3+c),c=-7/24+1/18*I,n=11 3178178651914264 r005 Re(z^2+c),c=-17/46+26/57*I,n=18 3178178662254976 r005 Re(z^2+c),c=-39/94+4/39*I,n=31 3178178668012434 r002 42th iterates of z^2 + 3178178668647783 r005 Re(z^2+c),c=-6/17+5/12*I,n=24 3178178672991517 r005 Re(z^2+c),c=-25/62+9/44*I,n=21 3178178674775069 a007 Real Root Of -678*x^4+670*x^3-840*x^2+125*x+153 3178178680656279 m001 BesselJ(1,1)^FeigenbaumC+Otter 3178178683446747 r005 Im(z^2+c),c=-9/110+23/55*I,n=48 3178178695612466 r005 Im(z^2+c),c=-7/38+22/35*I,n=46 3178178705931366 m003 Sqrt[5]/32+(41*ProductLog[1/2+Sqrt[5]/2])/10 3178178706830134 r005 Im(z^2+c),c=-9/110+23/55*I,n=44 3178178709506938 m008 (2/3*Pi^5-1/6)/(2/3*Pi^4-4/5) 3178178715626741 m001 (exp(1)+Chi(1))/(-AlladiGrinstead+ArtinRank2) 3178178719007603 h001 (-2*exp(6)+7)/(-3*exp(2)-3) 3178178749202538 r009 Im(z^3+c),c=-5/54+19/55*I,n=5 3178178749896811 r005 Im(z^2+c),c=-45/118+29/51*I,n=50 3178178750844177 m001 1/GAMMA(7/24)^2/exp(MadelungNaCl)/gamma 3178178755816803 r009 Re(z^3+c),c=-7/122+21/32*I,n=50 3178178757260969 a007 Real Root Of 124*x^4+381*x^3-137*x^2-373*x-222 3178178779822570 r005 Im(z^2+c),c=43/126+1/58*I,n=7 3178178788224475 r005 Re(z^2+c),c=-45/122+15/41*I,n=35 3178178789388247 a008 Real Root of (3+6*x-14*x^2-10*x^3) 3178178801259008 h005 exp(cos(Pi*5/47)/cos(Pi*9/46)) 3178178804600702 r005 Im(z^2+c),c=-73/62+2/51*I,n=17 3178178816138668 r002 54th iterates of z^2 + 3178178816138668 r002 54th iterates of z^2 + 3178178826384256 a001 341/2*21^(9/44) 3178178826700816 m001 Pi*ln(2)/ln(10)/(Chi(1)-cos(1)) 3178178831149808 m001 (gamma(3)+Zeta(1,2))/(GAMMA(13/24)+Conway) 3178178844604528 r009 Re(z^3+c),c=-17/44+13/49*I,n=9 3178178857500682 r005 Im(z^2+c),c=-9/110+23/55*I,n=45 3178178866413858 r005 Re(z^2+c),c=7/58+5/12*I,n=49 3178178873432777 r005 Im(z^2+c),c=-15/118+26/59*I,n=18 3178178874303848 m005 (1/2*Catalan+1/10)/(3/7*Catalan-3/8) 3178178874489155 m001 (arctan(1/2)-Mills)/(TreeGrowth2nd-ZetaP(3)) 3178178926339508 b008 Pi+3*ArcCsc[82] 3178178947645575 l006 ln(333/7993) 3178178952575334 m001 (Zeta(1/2)+Sarnak)/(cos(1/5*Pi)-gamma) 3178178953803657 a007 Real Root Of 214*x^4+427*x^3-869*x^2-368*x-518 3178178959377413 a001 47*(1/2*5^(1/2)+1/2)^26*18^(6/19) 3178178969066424 r005 Re(z^2+c),c=-11/14+16/115*I,n=52 3178178970458036 r005 Re(z^2+c),c=41/122+8/61*I,n=55 3178178976817130 m001 (LambertW(1)-Psi(2,1/3))/(Totient+ThueMorse) 3178178984699943 r005 Im(z^2+c),c=-8/23+3/61*I,n=17 3178178998424588 m001 1/GAMMA(5/24)^2/GAMMA(17/24)/ln(GAMMA(7/24))^2 3178179005585240 m001 1/(2^(1/3))^2/FeigenbaumD^2/ln(log(2+sqrt(3))) 3178179025720480 m001 1/Lehmer*CareFree^2*ln(MinimumGamma) 3178179037604771 m001 1/Robbin/ln(Champernowne)*TreeGrowth2nd 3178179057587425 m001 1/ln(2^(1/2)+1)/FeigenbaumMu 3178179064847702 r002 14th iterates of z^2 + 3178179070782503 h001 (3/7*exp(2)+1/7)/(3/11*exp(1)+3/10) 3178179071921430 m001 (Artin+Landau)/(LandauRamanujan-PlouffeB) 3178179079756673 a007 Real Root Of -339*x^4-730*x^3+820*x^2-975*x-229 3178179085667001 m001 (Gompertz-ZetaP(4))/(Zeta(1,2)-ArtinRank2) 3178179085754049 r002 53th iterates of z^2 + 3178179085754049 r002 53th iterates of z^2 + 3178179086736584 r005 Re(z^2+c),c=-39/106+21/61*I,n=14 3178179102480100 r009 Im(z^3+c),c=-21/50+3/13*I,n=6 3178179102498507 a001 17/16692641*199^(13/20) 3178179119939775 r005 Re(z^2+c),c=-5/16+37/62*I,n=20 3178179129411073 p004 log(31249/22741) 3178179144134242 m001 (Zeta(3)+GAMMA(5/6))/(Kac+OneNinth) 3178179152019112 r002 3i'th iterates of 2*x/(1-x^2) of 3178179157482459 r009 Re(z^3+c),c=-13/30+17/44*I,n=11 3178179158468815 a007 Real Root Of 262*x^4+828*x^3-76*x^2-434*x-762 3178179172221450 m009 (Pi^2+3/5)/(3/10*Pi^2+1/3) 3178179177745764 m001 Niven^2/ArtinRank2^2/exp(Porter)^2 3178179217526327 m001 (MertensB2+Rabbit)/(Sarnak-ZetaP(3)) 3178179228934721 r005 Im(z^2+c),c=13/94+5/16*I,n=5 3178179229341051 r002 56th iterates of z^2 + 3178179229341051 r002 56th iterates of z^2 + 3178179234378749 m005 (1/2*2^(1/2)-2/11)/(7/10*exp(1)-1/4) 3178179236702152 m001 HardyLittlewoodC4/(ln(2^(1/2)+1)^MertensB1) 3178179237195399 r005 Im(z^2+c),c=-9/110+23/55*I,n=42 3178179238825325 r005 Im(z^2+c),c=-9/110+23/55*I,n=41 3178179241137471 r005 Re(z^2+c),c=-5/12+5/58*I,n=13 3178179254710933 m001 (2^(1/3)-Chi(1))/(-LambertW(1)+Ei(1)) 3178179274312920 m001 1/exp(Salem)^2*Backhouse/TwinPrimes^2 3178179276153391 r005 Re(z^2+c),c=21/74+5/53*I,n=41 3178179278136473 m005 (1/2*gamma-7/10)/(2/5*5^(1/2)+2/5) 3178179280202122 r005 Re(z^2+c),c=-41/102+10/47*I,n=23 3178179287814713 r005 Im(z^2+c),c=-75/86+7/33*I,n=34 3178179299868194 r002 28th iterates of z^2 + 3178179311834165 r002 55th iterates of z^2 + 3178179311834165 r002 55th iterates of z^2 + 3178179322320044 r005 Re(z^2+c),c=11/36+1/24*I,n=35 3178179324481259 l006 ln(332/7969) 3178179328737247 r005 Re(z^2+c),c=-11/32+13/23*I,n=56 3178179328870545 r005 Im(z^2+c),c=3/11+8/45*I,n=31 3178179334246744 m005 (1/2*Catalan+2/9)/(5/6*exp(1)-1/8) 3178179334543806 k002 Champernowne real with 27*n^2-34*n+38 3178179338043411 r005 Im(z^2+c),c=-29/106+29/60*I,n=15 3178179347391621 r009 Re(z^3+c),c=-11/28+31/52*I,n=12 3178179358964908 h005 exp(cos(Pi*5/49)/cos(Pi*6/31)) 3178179365307917 r002 58th iterates of z^2 + 3178179365307917 r002 58th iterates of z^2 + 3178179370168257 m001 BesselI(0,2)+FellerTornier+Stephens 3178179372720704 m001 (sin(1/5*Pi)+polylog(4,1/2))/(Pi^(1/2)+Niven) 3178179384770904 r002 57th iterates of z^2 + 3178179384770904 r002 57th iterates of z^2 + 3178179387823542 r005 Im(z^2+c),c=-7/25+27/62*I,n=6 3178179400268466 h001 (5/9*exp(1)+2/5)/(8/11*exp(2)+7/11) 3178179402271911 r005 Im(z^2+c),c=-95/106+1/41*I,n=56 3178179402274125 r005 Im(z^2+c),c=-95/106+1/41*I,n=54 3178179402299367 r005 Im(z^2+c),c=-95/106+1/41*I,n=53 3178179402301153 r005 Im(z^2+c),c=-95/106+1/41*I,n=58 3178179402304399 r005 Im(z^2+c),c=-95/106+1/41*I,n=55 3178179402323535 r005 Im(z^2+c),c=-95/106+1/41*I,n=57 3178179402325833 r005 Im(z^2+c),c=-95/106+1/41*I,n=60 3178179402338506 r005 Im(z^2+c),c=-95/106+1/41*I,n=59 3178179402341004 r005 Im(z^2+c),c=-95/106+1/41*I,n=62 3178179402347456 r005 Im(z^2+c),c=-95/106+1/41*I,n=61 3178179402349112 r005 Im(z^2+c),c=-95/106+1/41*I,n=64 3178179402352165 r005 Im(z^2+c),c=-95/106+1/41*I,n=63 3178179402356214 r005 Im(z^2+c),c=11/106+1/41*I,n=23 3178179402356215 r005 Im(z^2+c),c=11/106+1/41*I,n=24 3178179402356217 r005 Im(z^2+c),c=11/106+1/41*I,n=25 3178179402356217 r005 Im(z^2+c),c=11/106+1/41*I,n=26 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=27 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=28 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=29 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=30 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=31 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=32 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=33 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=34 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=47 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=48 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=49 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=50 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=51 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=52 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=53 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=54 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=55 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=56 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=57 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=64 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=63 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=62 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=58 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=61 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=60 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=59 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=46 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=45 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=44 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=43 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=42 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=41 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=40 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=39 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=38 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=37 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=36 3178179402356218 r005 Im(z^2+c),c=11/106+1/41*I,n=35 3178179402356242 r005 Im(z^2+c),c=11/106+1/41*I,n=22 3178179402356471 r005 Im(z^2+c),c=11/106+1/41*I,n=21 3178179402357820 r005 Im(z^2+c),c=11/106+1/41*I,n=20 3178179402364675 r005 Im(z^2+c),c=11/106+1/41*I,n=19 3178179402381641 r005 Im(z^2+c),c=-95/106+1/41*I,n=51 3178179402396336 r005 Im(z^2+c),c=11/106+1/41*I,n=18 3178179402445067 r005 Im(z^2+c),c=-95/106+1/41*I,n=52 3178179402531742 r005 Im(z^2+c),c=11/106+1/41*I,n=17 3178179402784971 r005 Im(z^2+c),c=-95/106+1/41*I,n=49 3178179403057008 r002 60th iterates of z^2 + 3178179403057008 r002 60th iterates of z^2 + 3178179403070567 r005 Im(z^2+c),c=11/106+1/41*I,n=16 3178179403213399 r005 Im(z^2+c),c=-95/106+1/41*I,n=50 3178179404174062 r005 Im(z^2+c),c=-95/106+1/41*I,n=47 3178179404215941 r002 59th iterates of z^2 + 3178179404215941 r002 59th iterates of z^2 + 3178179405052775 r005 Im(z^2+c),c=11/106+1/41*I,n=15 3178179405781410 r005 Im(z^2+c),c=-95/106+1/41*I,n=48 3178179405954261 r002 63th iterates of z^2 + 3178179405954261 r002 63th iterates of z^2 + 3178179407097526 r002 61th iterates of z^2 + 3178179407097526 r002 61th iterates of z^2 + 3178179408298313 r005 Im(z^2+c),c=-95/106+1/41*I,n=45 3178179408304090 r002 64th iterates of z^2 + 3178179408304090 r002 64th iterates of z^2 + 3178179409674182 r002 62th iterates of z^2 + 3178179409674182 r002 62th iterates of z^2 + 3178179411644672 r005 Im(z^2+c),c=11/106+1/41*I,n=14 3178179413281081 r005 Im(z^2+c),c=-95/106+1/41*I,n=46 3178179419489597 r005 Im(z^2+c),c=-95/106+1/41*I,n=43 3178179430292020 r005 Im(z^2+c),c=11/106+1/41*I,n=13 3178179431884457 r005 Im(z^2+c),c=11/106+1/41*I,n=11 3178179433400439 r005 Im(z^2+c),c=-95/106+1/41*I,n=44 3178179437993814 a007 Real Root Of 270*x^4+732*x^3-654*x^2-716*x+282 3178179439253802 m005 (1/2*Pi+5/11)/(4*3^(1/2)-5/9) 3178179440262391 m001 exp(PrimesInBinary)^2*Conway^2/GAMMA(3/4) 3178179443425460 a001 196418/199*521^(12/13) 3178179447905529 r005 Im(z^2+c),c=-95/106+1/41*I,n=41 3178179460768519 m001 (Si(Pi)+BesselK(0,1))/(-Zeta(5)+arctan(1/3)) 3178179465356378 m005 (1/2*3^(1/2)+7/10)/(5/11*Catalan-10/11) 3178179466104862 r005 Im(z^2+c),c=11/106+1/41*I,n=12 3178179484017084 r005 Im(z^2+c),c=-95/106+1/41*I,n=42 3178179488867074 m001 (BesselI(1,2)+Bloch)/(Paris-RenyiParking) 3178179494190482 r005 Re(z^2+c),c=-35/62+22/51*I,n=50 3178179498266827 m001 1/exp(Sierpinski)^2/Riemann2ndZero*Trott^2 3178179498977100 r002 23th iterates of z^2 + 3178179510573902 a003 sin(Pi*2/65)/sin(Pi*11/112) 3178179511949142 a001 2/710647*47^(17/27) 3178179514378609 a007 Real Root Of -949*x^4-918*x^3-634*x^2+317*x+145 3178179516100455 r005 Im(z^2+c),c=-95/106+1/41*I,n=39 3178179518676814 r002 36th iterates of z^2 + 3178179523158900 r005 Im(z^2+c),c=-107/126+13/64*I,n=9 3178179525638693 m005 (1/2*gamma-3/5)/(77/90+1/18*5^(1/2)) 3178179528377947 m005 (1/2*2^(1/2)-1/8)/(9/10*3^(1/2)+3/11) 3178179529961151 a007 Real Root Of -497*x^4-207*x^3-934*x^2-15*x+88 3178179545089528 a003 sin(Pi*1/109)-sin(Pi*8/71) 3178179564446253 a003 sin(Pi*13/113)*sin(Pi*16/45) 3178179572818562 m002 Pi^5+Sinh[Pi]+Sinh[Pi]/(2*E^Pi) 3178179576327667 m001 GlaisherKinkelin/Ei(1,1)/Tribonacci 3178179581233226 r005 Im(z^2+c),c=-8/9+18/71*I,n=3 3178179589960500 m001 (FeigenbaumKappa+GaussAGM)/(Robbin+Trott2nd) 3178179604475960 r005 Im(z^2+c),c=-95/106+1/41*I,n=40 3178179613145127 p004 log(21817/15877) 3178179618096400 r005 Re(z^2+c),c=-9/10+46/223*I,n=30 3178179619184805 r005 Re(z^2+c),c=-1/82+8/13*I,n=25 3178179624633970 a007 Real Root Of -64*x^4-168*x^3-27*x^2-355*x+281 3178179624821022 m006 (5/6*exp(Pi)-4)/(3/5/Pi-5) 3178179635115181 r005 Im(z^2+c),c=-29/106+17/33*I,n=27 3178179642755983 m009 (1/8*Pi^2-2/5)/(1/3*Pi^2-2/3) 3178179650888612 m001 (3^(1/2)-ln(Pi))/(-MertensB1+ZetaP(4)) 3178179652838625 a007 Real Root Of -136*x^4-297*x^3+434*x^2+14*x+2 3178179655694749 b008 Pi+Log[Khinchin]/27 3178179662021938 q001 1072/3373 3178179667862542 m005 (1/2*2^(1/2)+1/12)/(5/7*exp(1)+6/11) 3178179671190645 r005 Im(z^2+c),c=-95/106+1/41*I,n=37 3178179680549331 m001 (sin(1/5*Pi)-ln(5))/(sin(1/12*Pi)+Otter) 3178179692653153 a007 Real Root Of -187*x^4-390*x^3+586*x^2+84*x+907 3178179692715831 p001 sum(1/(257*n+11)/n/(12^n),n=1..infinity) 3178179696844233 m001 (BesselI(0,2)-gamma(1)*PlouffeB)/gamma(1) 3178179703593753 l006 ln(331/7945) 3178179707444241 a001 55/47*11^(5/12) 3178179721140142 r005 Im(z^2+c),c=-7/31+14/29*I,n=58 3178179725162402 a007 Real Root Of -66*x^4+380*x^3-393*x^2+655*x-180 3178179725530391 a007 Real Root Of -338*x^4-735*x^3+888*x^2-406*x+630 3178179733849261 s001 sum(1/10^(n-1)*A105762[n]/n!^2,n=1..infinity) 3178179743628067 b008 3+1/(5*2^(1/6)) 3178179749669025 r009 Im(z^3+c),c=-11/30+25/39*I,n=5 3178179754069154 r005 Re(z^2+c),c=-19/86+11/20*I,n=16 3178179755002143 a001 47/144*225851433717^(19/24) 3178179766943334 r002 35th iterates of z^2 + 3178179768596984 r005 Re(z^2+c),c=9/26+19/58*I,n=49 3178179788809859 a001 5/322*4^(31/60) 3178179802480557 m001 2^(1/2)*KhinchinHarmonic+Rabbit 3178179804751044 r009 Im(z^3+c),c=-33/52+13/41*I,n=26 3178179807419868 a007 Real Root Of -306*x^4-800*x^3+228*x^2-743*x+874 3178179807992548 a007 Real Root Of 918*x^4-810*x^3+890*x^2-232*x-199 3178179811363002 a001 610/1149851*7^(23/25) 3178179813736227 r005 Re(z^2+c),c=29/94+9/59*I,n=10 3178179814385589 r009 Im(z^3+c),c=-23/94+11/35*I,n=16 3178179814435469 r002 8th iterates of z^2 + 3178179819654600 r005 Im(z^2+c),c=-27/110+27/55*I,n=61 3178179826436666 m001 (Ei(1)+BesselI(1,1))/(KhinchinLevy-ThueMorse) 3178179829116438 r009 Im(z^3+c),c=-33/62+9/31*I,n=5 3178179830275966 r005 Re(z^2+c),c=41/118+21/50*I,n=37 3178179833276031 b008 Pi+3*ArcCoth[82] 3178179843943213 s002 sum(A278125[n]/(2^n-1),n=1..infinity) 3178179855279218 r009 Re(z^3+c),c=-15/64+37/40*I,n=42 3178179860287161 a003 cos(Pi*36/91)*sin(Pi*43/96) 3178179860483371 a007 Real Root Of 69*x^4+189*x^3+54*x^2+185*x-930 3178179876099288 r005 Im(z^2+c),c=-95/106+1/41*I,n=38 3178179880563644 h001 (-8*exp(3)-12)/(-6*exp(2)-10) 3178179881095348 a007 Real Root Of 732*x^4+365*x^3-718*x^2-430*x+190 3178179883117072 m001 (2^(1/2)-exp(Pi))/(OneNinth+Stephens) 3178179890670496 r005 Re(z^2+c),c=-21/94+29/36*I,n=6 3178179909541502 m001 (sin(1)+2*Pi/GAMMA(5/6))/(Mills+Rabbit) 3178179918062982 r005 Re(z^2+c),c=-43/118+13/34*I,n=30 3178179924302714 r005 Re(z^2+c),c=-17/56+41/63*I,n=11 3178179939450561 r009 Im(z^3+c),c=-23/94+11/35*I,n=15 3178179962348673 r005 Im(z^2+c),c=-9/110+23/55*I,n=39 3178179978026559 m001 (Sierpinski-arctan(1/2)*Rabbit)/Rabbit 3178179989544183 r002 6th iterates of z^2 + 3178179989560370 m001 1/Riemann2ndZero^3/ln(Zeta(3))^2 3178179993159561 r005 Re(z^2+c),c=-12/29+4/31*I,n=13 3178180002693004 r005 Re(z^2+c),c=-25/74+25/49*I,n=29 3178180004260198 r005 Im(z^2+c),c=-95/106+1/41*I,n=35 3178180009695741 r005 Re(z^2+c),c=-13/38+29/64*I,n=49 3178180029922168 m002 1/3+36/Log[Pi] 3178180041665949 r005 Re(z^2+c),c=-3/4+87/241*I,n=2 3178180051763524 p004 log(32159/31153) 3178180056658719 a007 Real Root Of 273*x^4+841*x^3-92*x^2+17*x+128 3178180061989226 r002 54th iterates of z^2 + 3178180065870209 r005 Re(z^2+c),c=-33/86+19/62*I,n=40 3178180071410203 m005 (1/2*Pi-5/6)/(9/11*Pi-1/4) 3178180077404549 r005 Im(z^2+c),c=29/82+7/16*I,n=10 3178180079406730 p001 sum((-1)^n/(298*n+9)/n/(10^n),n=1..infinity) 3178180080371412 r005 Im(z^2+c),c=7/22+7/61*I,n=52 3178180085003753 l006 ln(330/7921) 3178180087088315 a003 sin(Pi*10/81)*sin(Pi*27/85) 3178180089454906 r002 7th iterates of z^2 + 3178180090938067 s002 sum(A101435[n]/((2^n+1)/n),n=1..infinity) 3178180092909043 a007 Real Root Of 156*x^4+814*x^3+936*x^2-436*x-625 3178180112040800 m001 (-Kolakoski+ZetaQ(3))/(gamma+Ei(1)) 3178180112599185 a007 Real Root Of -552*x^4+892*x^3+7*x^2+165*x+86 3178180113204965 a007 Real Root Of -269*x^4+903*x^3-35*x^2+948*x-324 3178180113299610 a007 Real Root Of 384*x^4+970*x^3-698*x^2+206*x-334 3178180125620194 a008 Real Root of x^3-x^2+116*x+37 3178180128217602 m001 OneNinth*ln(HardHexagonsEntropy)/GAMMA(5/6) 3178180134480856 r002 9th iterates of z^2 + 3178180142025258 a007 Real Root Of 206*x^4+582*x^3+32*x^2+613*x-709 3178180154123135 a007 Real Root Of 48*x^4-954*x^3+805*x^2-891*x+232 3178180159254775 l005 ln(sec(441/109)) 3178180163463462 a007 Real Root Of -180*x^4-635*x^3+112*x^2+687*x-968 3178180164564757 a001 123/591286729879*1597^(15/22) 3178180169418078 r009 Im(z^3+c),c=-53/110+9/52*I,n=41 3178180169465299 a007 Real Root Of 188*x^4-395*x^3+966*x^2-849*x-382 3178180171007065 r009 Re(z^3+c),c=-7/24+1/18*I,n=12 3178180172023540 r005 Re(z^2+c),c=-33/94+3/10*I,n=2 3178180176695069 a007 Real Root Of 100*x^4-459*x^3-517*x^2-593*x-152 3178180180093242 m005 (1/2*Zeta(3)-4/5)/(-67/168+11/24*5^(1/2)) 3178180186980032 r009 Im(z^3+c),c=-45/106+8/35*I,n=4 3178180203645869 r009 Im(z^3+c),c=-4/31+16/47*I,n=11 3178180218321791 r005 Im(z^2+c),c=-69/56+11/61*I,n=10 3178180221246664 m008 (5/6*Pi^5-1/2)/(5/6*Pi^6-1/3) 3178180233203781 r005 Im(z^2+c),c=-1/118+8/21*I,n=18 3178180238242395 a003 cos(Pi*19/48)*sin(Pi*52/115) 3178180256925383 m001 (Cahen-DuboisRaymond)/(Riemann1stZero-Trott) 3178180264041770 a005 (1/cos(19/195*Pi))^1282 3178180265350613 r005 Im(z^2+c),c=-4/11+28/53*I,n=51 3178180269419553 a007 Real Root Of -252*x^4+715*x^3+327*x^2+757*x-294 3178180270265930 r005 Im(z^2+c),c=-22/23+11/42*I,n=11 3178180275572932 m001 1/Riemann1stZero^2*Conway^2/ln(BesselJ(0,1)) 3178180284001439 r005 Re(z^2+c),c=-17/94+35/62*I,n=11 3178180298232842 r005 Im(z^2+c),c=-89/110+7/43*I,n=13 3178180315630629 r009 Re(z^3+c),c=-43/90+19/47*I,n=64 3178180329508988 a007 Real Root Of 73*x^4+109*x^3-205*x^2+287*x-966 3178180337549816 k002 Champernowne real with 55/2*n^2-71/2*n+39 3178180344055228 a001 317811/199*521^(11/13) 3178180361736990 m001 (Zeta(5)+Ei(1))/(exp(1/Pi)-ZetaP(2)) 3178180367738315 a005 (1/sin(68/157*Pi))^52 3178180380152155 r005 Re(z^2+c),c=-23/60+10/51*I,n=6 3178180380637774 r009 Re(z^3+c),c=-41/90+16/41*I,n=21 3178180407444414 m005 (1/2*gamma+5/8)/(4/5*exp(1)+7/10) 3178180410708212 h001 (6/11*exp(2)+1/3)/(2/5*exp(1)+2/7) 3178180421986867 r005 Im(z^2+c),c=27/74+12/37*I,n=16 3178180434214080 r005 Im(z^2+c),c=-4/21+29/62*I,n=48 3178180451987063 m001 (-MertensB2+ZetaQ(2))/(3^(1/2)+GAMMA(2/3)) 3178180453807409 r005 Im(z^2+c),c=-95/106+1/41*I,n=36 3178180457554537 m006 (1/2*Pi-5)/(1/5*exp(2*Pi)+4/5) 3178180458632858 g005 GAMMA(9/10)*GAMMA(3/4)/GAMMA(4/9)/GAMMA(3/7) 3178180468732209 l006 ln(329/7897) 3178180476513657 r005 Im(z^2+c),c=5/78+16/47*I,n=16 3178180481311533 m001 (Trott2nd+ZetaP(2))/(Khinchin-Salem) 3178180508743955 r009 Re(z^3+c),c=-45/106+17/43*I,n=5 3178180522622981 g001 abs(GAMMA(-97/60+I*83/30)) 3178180524155650 h001 (7/9*exp(1)+1/7)/(7/8*exp(2)+7/11) 3178180529834427 r009 Im(z^3+c),c=-23/94+11/35*I,n=19 3178180534115583 m001 GAMMA(1/3)*ln(BesselK(1,1))*GAMMA(7/12)^2 3178180535507871 r009 Im(z^3+c),c=-21/86+11/35*I,n=8 3178180538314739 r005 Im(z^2+c),c=-27/110+27/55*I,n=39 3178180539236454 m005 (1/2*Pi+7/10)/(1/8*Catalan+3/5) 3178180540663217 a001 17393796001/21*39088169^(1/13) 3178180540663217 a001 6643838879/21*10610209857723^(1/13) 3178180540663217 a001 10749957122/21*20365011074^(1/13) 3178180540671904 a001 9381251041/7*75025^(1/13) 3178180556452625 m001 exp(1)+Cahen*TravellingSalesman 3178180556734964 a007 Real Root Of -121*x^4+616*x^3+9*x^2+651*x+227 3178180569600120 r009 Im(z^3+c),c=-23/94+11/35*I,n=18 3178180570597762 r009 Im(z^3+c),c=-11/64+46/61*I,n=35 3178180572628204 a007 Real Root Of 294*x^4+891*x^3+26*x^2+395*x-400 3178180572735689 r009 Im(z^3+c),c=-29/66+11/52*I,n=13 3178180581597373 r005 Im(z^2+c),c=-5/8+9/151*I,n=45 3178180587057797 r009 Im(z^3+c),c=-23/94+11/35*I,n=22 3178180591506674 r009 Im(z^3+c),c=-23/94+11/35*I,n=25 3178180591844363 r009 Im(z^3+c),c=-23/94+11/35*I,n=28 3178180591869456 r009 Im(z^3+c),c=-23/94+11/35*I,n=31 3178180591871284 r009 Im(z^3+c),c=-23/94+11/35*I,n=34 3178180591871415 r009 Im(z^3+c),c=-23/94+11/35*I,n=37 3178180591871424 r009 Im(z^3+c),c=-23/94+11/35*I,n=40 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=43 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=46 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=44 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=47 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=49 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=50 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=52 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=53 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=55 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=56 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=58 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=59 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=62 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=61 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=64 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=63 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=60 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=57 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=54 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=51 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=48 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=45 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=41 3178180591871425 r009 Im(z^3+c),c=-23/94+11/35*I,n=42 3178180591871426 r009 Im(z^3+c),c=-23/94+11/35*I,n=38 3178180591871426 r009 Im(z^3+c),c=-23/94+11/35*I,n=39 3178180591871441 r009 Im(z^3+c),c=-23/94+11/35*I,n=36 3178180591871447 r009 Im(z^3+c),c=-23/94+11/35*I,n=35 3178180591871606 r009 Im(z^3+c),c=-23/94+11/35*I,n=33 3178180591871838 r009 Im(z^3+c),c=-23/94+11/35*I,n=32 3178180591873388 r009 Im(z^3+c),c=-23/94+11/35*I,n=30 3178180591878499 r009 Im(z^3+c),c=-23/94+11/35*I,n=29 3178180591890327 r009 Im(z^3+c),c=-23/94+11/35*I,n=27 3178180591986568 r009 Im(z^3+c),c=-23/94+11/35*I,n=26 3178180592011377 r009 Im(z^3+c),c=-23/94+11/35*I,n=24 3178180592054404 r009 Im(z^3+c),c=-23/94+11/35*I,n=21 3178180593677754 r009 Im(z^3+c),c=-23/94+11/35*I,n=23 3178180602323273 m001 (GAMMA(2/3)+3^(1/3))/(QuadraticClass-ZetaQ(4)) 3178180602906220 a007 Real Root Of 728*x^4-257*x^3-600*x^2-950*x-257 3178180604044188 r009 Re(z^3+c),c=-8/21+32/53*I,n=17 3178180614636357 p003 LerchPhi(1/10,4,207/155) 3178180619395839 r009 Im(z^3+c),c=-23/94+11/35*I,n=20 3178180626376256 a007 Real Root Of 197*x^4+950*x^3+972*x^2-162*x+65 3178180650009275 r005 Im(z^2+c),c=-9/26+15/32*I,n=11 3178180658139103 b008 ArcCot[E+Tanh[1/3]] 3178180662046842 r009 Re(z^3+c),c=-1/58+41/54*I,n=56 3178180672060192 r005 Im(z^2+c),c=-95/106+1/41*I,n=33 3178180672359121 a001 34/521*7^(48/59) 3178180674962035 a001 1/141*1346269^(28/47) 3178180685251967 r009 Im(z^3+c),c=-5/46+11/32*I,n=5 3178180707654504 m005 (1/3*gamma+3/4)/(5/6*exp(1)+7/10) 3178180728372720 r009 Im(z^3+c),c=-8/17+2/11*I,n=22 3178180740627644 m001 1/Zeta(1/2)^2*exp(GAMMA(19/24))^2/cosh(1) 3178180744315354 p001 sum((-1)^n/(505*n+297)/(6^n),n=0..infinity) 3178180747284310 s002 sum(A201993[n]/(n^3*exp(n)+1),n=1..infinity) 3178180757477501 m001 ZetaP(2)^(Pi^(1/2))-gamma(1) 3178180758870659 r002 14th iterates of z^2 + 3178180761804915 a007 Real Root Of 293*x^4+931*x^3+115*x^2+209*x-504 3178180765368549 r005 Im(z^2+c),c=-137/118+15/61*I,n=62 3178180773595186 a007 Real Root Of -113*x^4-173*x^3+276*x^2-710*x+931 3178180786173435 a007 Real Root Of -146*x^4-371*x^3+337*x^2+73*x-186 3178180810534766 a009 (5+21^(1/2))*11^(1/2) 3178180819063943 r005 Re(z^2+c),c=-45/58+4/49*I,n=22 3178180825905079 m005 (1/2*5^(1/2)-4/9)/(3/5*5^(1/2)+7/9) 3178180826474498 r005 Re(z^2+c),c=3/40+21/40*I,n=11 3178180842913082 v002 sum(1/(5^n+(30*n^2-40*n+57)),n=1..infinity) 3178180847603481 r005 Re(z^2+c),c=-19/122+39/55*I,n=27 3178180854800323 l006 ln(328/7873) 3178180872050475 r005 Re(z^2+c),c=-29/74+11/41*I,n=27 3178180883527363 r005 Im(z^2+c),c=-9/110+23/55*I,n=33 3178180906453023 a007 Real Root Of -527*x^4+83*x^3-403*x^2+306*x+146 3178180925163625 r009 Im(z^3+c),c=-13/86+41/48*I,n=4 3178180942640443 m005 (1/2*2^(1/2)-1/2)/(2/7*exp(1)-1/8) 3178180944232594 r009 Re(z^3+c),c=-7/24+1/18*I,n=13 3178180958249211 r005 Im(z^2+c),c=9/70+16/55*I,n=6 3178180966596288 s002 sum(A270630[n]/(n^3*pi^n+1),n=1..infinity) 3178180976751952 m001 (1-GAMMA(3/4))/(-ln(2^(1/2)+1)+BesselI(1,2)) 3178180977424264 r005 Im(z^2+c),c=-9/110+23/55*I,n=36 3178180985711623 m002 -2-Pi^3+Log[Pi]*ProductLog[Pi]*Tanh[Pi] 3178180997022794 a003 cos(Pi*17/104)-sin(Pi*19/53) 3178181001162269 r009 Im(z^3+c),c=-23/94+11/35*I,n=17 3178181002299427 h002 exp(13^(4/7)+6^(1/5)) 3178181002299427 h007 exp(13^(4/7)+6^(1/5)) 3178181036874750 a001 1/15124*(1/2*5^(1/2)+1/2)^21*199^(9/16) 3178181045850281 r005 Re(z^2+c),c=11/64+8/19*I,n=59 3178181052974817 r005 Im(z^2+c),c=-19/30+43/122*I,n=52 3178181068121554 r009 Im(z^3+c),c=-27/106+14/45*I,n=9 3178181091234487 m001 (BesselI(0,2)+Artin)/(TwinPrimes+ZetaP(3)) 3178181098148125 m001 1/exp(Lehmer)/Artin*arctan(1/2)^2 3178181107101660 r005 Re(z^2+c),c=23/122+10/17*I,n=27 3178181110636652 m001 (gamma(2)-ln(2)/ln(10)*gamma)/gamma 3178181111206357 a007 Real Root Of -237*x^4-585*x^3+290*x^2-720*x+183 3178181111212111 k007 concat of cont frac of 3178181121740143 r005 Re(z^2+c),c=-7/18+15/53*I,n=36 3178181128851215 m001 BesselK(0,1)/(Salem^(3^(1/2))) 3178181139465586 r005 Re(z^2+c),c=25/114+1/55*I,n=23 3178181142221425 k009 concat of cont frac of 3178181144663096 a007 Real Root Of -288*x^4-756*x^3+475*x^2-233*x-424 3178181149904874 r005 Im(z^2+c),c=-9/110+23/55*I,n=38 3178181151211231 k008 concat of cont frac of 3178181151712122 k007 concat of cont frac of 3178181161812292 a007 Real Root Of -19*x^4-613*x^3-318*x^2-859*x+312 3178181162573173 m005 (1/12+1/6*5^(1/2))/(5/6*5^(1/2)-3/7) 3178181169352110 r005 Re(z^2+c),c=-5/14+13/32*I,n=48 3178181169839157 m001 exp(Si(Pi))*Conway^2/Magata 3178181170053989 a007 Real Root Of -161*x^4+307*x^3-764*x^2+838*x+355 3178181172189809 r005 Re(z^2+c),c=-47/118+15/64*I,n=26 3178181182513225 k006 concat of cont frac of 3178181199105508 r009 Im(z^3+c),c=-33/58+15/64*I,n=28 3178181219927762 h001 (7/8*exp(2)+5/8)/(3/5*exp(1)+3/5) 3178181226223616 r009 Re(z^3+c),c=-7/24+1/18*I,n=14 3178181227112142 k006 concat of cont frac of 3178181236351182 r005 Im(z^2+c),c=-9/16+17/36*I,n=17 3178181243229560 l006 ln(327/7849) 3178181244716718 a001 514229/199*521^(10/13) 3178181271757224 r009 Re(z^3+c),c=-23/52+7/20*I,n=25 3178181272894434 m001 DuboisRaymond+exp(-1/2*Pi)^MertensB3 3178181293978412 m001 1/GAMMA(7/24)*GAMMA(5/6)^2*ln(arctan(1/2)) 3178181298930100 r005 Im(z^2+c),c=-31/94+29/55*I,n=47 3178181304582532 m002 -1-Pi^2/6+Pi^6/3 3178181305893751 r009 Im(z^3+c),c=-25/86+10/33*I,n=3 3178181306518128 r009 Re(z^3+c),c=-7/24+1/18*I,n=15 3178181321754174 r009 Re(z^3+c),c=-7/24+1/18*I,n=23 3178181321754700 r009 Re(z^3+c),c=-7/24+1/18*I,n=24 3178181321755349 r009 Re(z^3+c),c=-7/24+1/18*I,n=25 3178181321755663 r009 Re(z^3+c),c=-7/24+1/18*I,n=26 3178181321755774 r009 Re(z^3+c),c=-7/24+1/18*I,n=27 3178181321755805 r009 Re(z^3+c),c=-7/24+1/18*I,n=28 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=36 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=37 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=38 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=39 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=40 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=41 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=49 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=50 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=51 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=52 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=53 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=54 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=62 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=63 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=64 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=61 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=60 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=59 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=58 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=57 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=56 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=55 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=48 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=47 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=46 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=45 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=44 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=42 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=43 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=35 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=34 3178181321755810 r009 Re(z^3+c),c=-7/24+1/18*I,n=33 3178181321755811 r009 Re(z^3+c),c=-7/24+1/18*I,n=32 3178181321755811 r009 Re(z^3+c),c=-7/24+1/18*I,n=31 3178181321755811 r009 Re(z^3+c),c=-7/24+1/18*I,n=29 3178181321755811 r009 Re(z^3+c),c=-7/24+1/18*I,n=30 3178181321757549 r009 Re(z^3+c),c=-7/24+1/18*I,n=22 3178181321781165 r009 Re(z^3+c),c=-7/24+1/18*I,n=21 3178181321878274 r009 Re(z^3+c),c=-7/24+1/18*I,n=20 3178181322183528 r009 Re(z^3+c),c=-7/24+1/18*I,n=19 3178181322922106 r009 Re(z^3+c),c=-7/24+1/18*I,n=18 3178181322981359 r009 Re(z^3+c),c=-7/24+1/18*I,n=16 3178181324030103 r009 Re(z^3+c),c=-7/24+1/18*I,n=17 3178181326786014 m001 (Artin+Mills)/(1-GAMMA(7/12)) 3178181328425421 h005 exp(sin(Pi*5/27)+sin(Pi*11/53)) 3178181331119986 g005 1/Pi/csc(1/10*Pi)*GAMMA(9/10)/GAMMA(3/11) 3178181335535593 r005 Im(z^2+c),c=-81/118+3/38*I,n=49 3178181335649599 r009 Re(z^3+c),c=-31/78+17/61*I,n=34 3178181336220907 m005 (9/4+3/2*5^(1/2))/(5/6*Catalan+1) 3178181339214909 s002 sum(A256540[n]/(pi^n),n=1..infinity) 3178181340555826 k002 Champernowne real with 28*n^2-37*n+40 3178181345348634 r005 Im(z^2+c),c=-89/106+1/52*I,n=28 3178181365411234 a001 1346269/843*18^(5/21) 3178181367927465 a007 Real Root Of 213*x^4+755*x^3+362*x^2+174*x-598 3178181383434179 a007 Real Root Of 314*x^4-711*x^3-141*x^2-287*x-103 3178181394818829 a001 39603/13*5^(1/38) 3178181399718594 m001 1/ln(GAMMA(5/12))^2/GAMMA(1/6)*Zeta(7) 3178181400609131 r009 Re(z^3+c),c=-21/62+11/62*I,n=19 3178181404372735 r005 Im(z^2+c),c=-17/82+19/40*I,n=42 3178181438431177 m001 (gamma(1)-HeathBrownMoroz)/(Pi-cos(1/5*Pi)) 3178181452734293 a007 Real Root Of -642*x^4+780*x^3+707*x^2+982*x-402 3178181456613156 m005 (1/2*3^(1/2)+1/9)/(-9/22+1/22*5^(1/2)) 3178181469241891 b008 -3+ExpIntegralEi[-1/2]/Pi 3178181469499186 r005 Re(z^2+c),c=-37/66+18/41*I,n=26 3178181472297605 m005 (2*Pi-1/4)/(3*gamma+1/6) 3178181476827382 m001 ln(Magata)/Artin^2*GAMMA(1/4) 3178181497583052 l006 ln(7297/10027) 3178181502800420 r005 Im(z^2+c),c=-3/11+18/35*I,n=27 3178181503412287 r005 Re(z^2+c),c=-39/94+4/39*I,n=29 3178181517210749 a005 (1/sin(76/191*Pi))^418 3178181524546778 m005 (1/2*exp(1)-5/8)/(11/12*exp(1)-2/11) 3178181533733100 a007 Real Root Of -886*x^4+808*x^3-917*x^2+533*x+297 3178181537279349 r005 Im(z^2+c),c=19/102+15/58*I,n=9 3178181548712532 m008 (1/3*Pi^2-3/4)/(5/6*Pi^6-2) 3178181557953063 m006 (3/4*exp(Pi)+1/6)/(4/5*Pi+3) 3178181562816202 m001 (-ThueMorse+3)/(Pi+5) 3178181586173806 r008 a(0)=3,K{-n^6,-36+39*n+34*n^2-43*n^3} 3178181597695433 r005 Im(z^2+c),c=-95/106+1/41*I,n=34 3178181609305085 a007 Real Root Of -667*x^4-479*x^3-33*x^2+844*x+263 3178181613595074 b008 Pi*(1/21+Tanh[2]) 3178181618796176 a009 2^(3/4)*(5^(1/3)+12^(1/4))^(1/2) 3178181634041646 l006 ln(326/7825) 3178181634660929 r005 Im(z^2+c),c=-29/90+13/25*I,n=54 3178181639831984 l006 ln(7011/9634) 3178181641557649 m005 (1/2*Pi-7/9)/(4/7*Pi+7/10) 3178181647756275 b008 Pi+(3*ArcCsc[41])/2 3178181650403298 m001 GAMMA(2/3)*Pi*csc(1/24*Pi)/GAMMA(23/24)+Trott 3178181654857490 r005 Im(z^2+c),c=-145/106+1/16*I,n=5 3178181660899314 p001 sum(1/(416*n+319)/(32^n),n=0..infinity) 3178181664564133 h005 exp(cos(Pi*5/41)/cos(Pi*11/54)) 3178181666048522 r002 5th iterates of z^2 + 3178181674375989 a007 Real Root Of 276*x^4+648*x^3-709*x^2-204*x-844 3178181674746980 h001 (4/9*exp(1)+4/5)/(7/9*exp(2)+4/7) 3178181675837461 r009 Im(z^3+c),c=-7/50+24/29*I,n=42 3178181692135580 m005 (1/2*3^(1/2)-3/10)/(3/8*Pi-1) 3178181703048048 a007 Real Root Of -250*x^4-940*x^3-489*x^2+68*x+486 3178181706097001 r009 Re(z^3+c),c=-31/78+17/61*I,n=31 3178181706507191 m001 1/Catalan^2*DuboisRaymond^2*exp(GAMMA(5/12))^2 3178181708245490 a007 Real Root Of 311*x^4+751*x^3-550*x^2+775*x+397 3178181708869002 m002 -6-16/E^Pi+Pi^2 3178181712919612 k008 concat of cont frac of 3178181713755302 h001 (5/8*exp(1)+2/7)/(4/5*exp(2)+1/3) 3178181726452006 a007 Real Root Of 735*x^4+46*x^3-21*x^2-853*x-275 3178181747676226 h005 exp(cos(Pi*10/59)+cos(Pi*17/42)) 3178181753302486 a007 Real Root Of 84*x^4-440*x^3-914*x^2-816*x-182 3178181754554073 a007 Real Root Of 192*x^4+831*x^3+800*x^2+246*x-211 3178181754576999 a007 Real Root Of -261*x^4-623*x^3+518*x^2-657*x-691 3178181758563822 r005 Re(z^2+c),c=-25/66+18/55*I,n=35 3178181769372491 h005 exp(cos(Pi*3/19)+cos(Pi*23/56)) 3178181794060521 m005 (2/5*exp(1)-1/6)/(1/5*exp(1)-5/6) 3178181794180005 l006 ln(6725/9241) 3178181796498614 a007 Real Root Of -80*x^4+83*x^3+865*x^2-659*x-5 3178181800709152 m001 OneNinth/(ReciprocalFibonacci+Trott2nd) 3178181812242030 r009 Re(z^3+c),c=-33/86+10/39*I,n=27 3178181820425876 r009 Re(z^3+c),c=-27/82+10/63*I,n=13 3178181823571361 r005 Re(z^2+c),c=-41/110+19/54*I,n=27 3178181835339881 r005 Re(z^2+c),c=-25/86+22/53*I,n=7 3178181843524470 m001 GAMMA(23/24)^Salem/(exp(1)^Salem) 3178181849938026 v002 sum(1/(3^n+(20*n^2-3*n+46)),n=1..infinity) 3178181860623102 r009 Im(z^3+c),c=-51/110+4/21*I,n=27 3178181863285683 p003 LerchPhi(1/25,4,406/171) 3178181871089152 r005 Im(z^2+c),c=-4/15+11/20*I,n=14 3178181872383947 a007 Real Root Of 152*x^4+547*x^3+438*x^2+591*x-494 3178181882077676 m001 (RenyiParking+TwinPrimes)/(CareFree-MertensB1) 3178181882441578 r002 14th iterates of z^2 + 3178181885576014 r009 Re(z^3+c),c=-21/62+11/62*I,n=20 3178181885996455 m006 (2*ln(Pi)+3/5)/(1/2/Pi+3/4) 3178181888612331 m001 (Lehmer+MertensB3)/(CopelandErdos-sin(1)) 3178181889355359 r005 Im(z^2+c),c=-95/106+1/41*I,n=31 3178181890208005 a001 4/377*34^(14/45) 3178181893954851 m005 (1/2*gamma+1/6)/(4/7*Catalan+10/11) 3178181909393862 m001 2*BesselK(0,1)*Pi/GAMMA(5/6)+GaussAGM 3178181934201463 m005 (1/3*gamma-1/4)/(2/5*Pi+5/9) 3178181938425952 m001 Riemann3rdZero*exp(FeigenbaumDelta)/Catalan^2 3178181938773173 r005 Re(z^2+c),c=-89/114+1/50*I,n=62 3178181949350660 r005 Im(z^2+c),c=-9/17+15/34*I,n=32 3178181962239325 l006 ln(6439/8848) 3178181963793159 r009 Re(z^3+c),c=-25/54+3/8*I,n=30 3178181970616119 m001 (GAMMA(13/24)+Totient)/Zeta(1,2) 3178181973895540 r009 Re(z^3+c),c=-49/106+11/29*I,n=50 3178181985268182 a007 Real Root Of -23*x^4+98*x^3+826*x^2+997*x+318 3178181989943748 a003 sin(Pi*1/111)-sin(Pi*9/80) 3178182004556715 m001 1/ln(GAMMA(5/6))*Cahen^2/Zeta(5)^2 3178182005876610 r009 Re(z^3+c),c=-29/82+41/57*I,n=6 3178182023907032 r005 Re(z^2+c),c=-11/34+28/53*I,n=43 3178182025960181 m002 -Pi^5/(5*E^Pi)+Pi^6/3 3178182027258575 l006 ln(325/7801) 3178182048128794 a007 Real Root Of -823*x^4-391*x^3+215*x^2+737*x-235 3178182049026489 a007 Real Root Of -80*x^4-301*x^3-249*x^2-620*x-956 3178182049718330 r005 Im(z^2+c),c=-25/122+28/45*I,n=5 3178182054296141 r005 Im(z^2+c),c=-13/18+6/115*I,n=4 3178182057332070 r005 Re(z^2+c),c=-49/118+3/58*I,n=9 3178182075158392 r008 a(0)=0,K{-n^6,40+2*n^3-40*n^2+28*n} 3178182095505457 m001 1/ln(LandauRamanujan)*CopelandErdos*GAMMA(1/4) 3178182099039797 r005 Re(z^2+c),c=-7/18+15/53*I,n=33 3178182103617194 m005 (1/2*Zeta(3)-5/6)/(2/9*2^(1/2)+5/12) 3178182104439526 m001 (GAMMA(19/24)+Gompertz)/(sin(1/5*Pi)-ln(Pi)) 3178182105640119 a007 Real Root Of 602*x^4-842*x^3+333*x^2-847*x-336 3178182109696884 r009 Re(z^3+c),c=-21/62+11/62*I,n=24 3178182112232568 a001 124/5*9227465^(11/15) 3178182122095806 r009 Re(z^3+c),c=-21/62+11/62*I,n=25 3178182126544019 r009 Re(z^3+c),c=-21/62+11/62*I,n=29 3178182126854727 r009 Re(z^3+c),c=-21/62+11/62*I,n=30 3178182126877636 r009 Re(z^3+c),c=-21/62+11/62*I,n=28 3178182126939955 r009 Re(z^3+c),c=-21/62+11/62*I,n=34 3178182126945757 r009 Re(z^3+c),c=-21/62+11/62*I,n=33 3178182126947613 r009 Re(z^3+c),c=-21/62+11/62*I,n=35 3178182126949165 r009 Re(z^3+c),c=-21/62+11/62*I,n=39 3178182126949254 r009 Re(z^3+c),c=-21/62+11/62*I,n=38 3178182126949351 r009 Re(z^3+c),c=-21/62+11/62*I,n=40 3178182126949377 r009 Re(z^3+c),c=-21/62+11/62*I,n=44 3178182126949378 r009 Re(z^3+c),c=-21/62+11/62*I,n=43 3178182126949381 r009 Re(z^3+c),c=-21/62+11/62*I,n=45 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=49 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=48 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=50 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=53 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=54 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=58 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=59 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=55 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=63 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=64 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=60 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=62 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=61 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=57 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=56 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=52 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=51 3178182126949382 r009 Re(z^3+c),c=-21/62+11/62*I,n=47 3178182126949383 r009 Re(z^3+c),c=-21/62+11/62*I,n=46 3178182126949400 r009 Re(z^3+c),c=-21/62+11/62*I,n=42 3178182126949421 r009 Re(z^3+c),c=-21/62+11/62*I,n=41 3178182126950208 r009 Re(z^3+c),c=-21/62+11/62*I,n=37 3178182126950980 r009 Re(z^3+c),c=-21/62+11/62*I,n=36 3178182126987621 r009 Re(z^3+c),c=-21/62+11/62*I,n=32 3178182127013038 r009 Re(z^3+c),c=-21/62+11/62*I,n=31 3178182127634248 r009 Re(z^3+c),c=-21/62+11/62*I,n=23 3178182128697637 r009 Re(z^3+c),c=-21/62+11/62*I,n=27 3178182129433774 r009 Re(z^3+c),c=-21/62+11/62*I,n=26 3178182132314685 m001 (gamma(1)+HardyLittlewoodC4)/(Robbin+ZetaP(4)) 3178182138876533 r009 Re(z^3+c),c=-31/78+17/61*I,n=38 3178182145366444 a001 832040/199*521^(9/13) 3178182145921903 l006 ln(6153/8455) 3178182156186198 a007 Real Root Of 196*x^4+595*x^3-226*x^2-597*x-511 3178182171087992 m001 FeigenbaumD/MasserGramain/Mills 3178182172057627 r009 Re(z^3+c),c=-33/86+15/64*I,n=3 3178182174953175 m002 2+Pi^2+Pi^5-Log[Pi]+ProductLog[Pi] 3178182186424673 r005 Im(z^2+c),c=-10/9+15/61*I,n=14 3178182186977196 a007 Real Root Of -739*x^4-326*x^3-594*x^2+327*x+161 3178182187478250 r009 Im(z^3+c),c=-1/21+31/40*I,n=40 3178182191280288 s002 sum(A012593[n]/((exp(n)+1)/n),n=1..infinity) 3178182201737202 a003 -1-cos(3/10*Pi)-cos(1/27*Pi)-cos(8/27*Pi) 3178182202080234 s002 sum(A012593[n]/((exp(n)-1)/n),n=1..infinity) 3178182205973475 r009 Re(z^3+c),c=-21/62+11/62*I,n=22 3178182211602206 a001 1/843*(1/2*5^(1/2)+1/2)^19*3^(23/24) 3178182221311325 k007 concat of cont frac of 3178182221449254 r009 Re(z^3+c),c=-21/62+11/62*I,n=21 3178182227644732 a007 Real Root Of -907*x^4-418*x^3+134*x^2+872*x-268 3178182231638843 m008 (2/3*Pi^5+3/5)/(3/4*Pi-3) 3178182233268732 a007 Real Root Of 241*x^4+794*x^3-84*x^2-495*x+176 3178182233890933 r009 Re(z^3+c),c=-31/78+17/61*I,n=37 3178182245161148 m001 (Shi(1)+ln(2)*(1+3^(1/2))^(1/2))/ln(2) 3178182250681673 m005 (1/2*gamma+3/4)/(4/9*gamma-7/12) 3178182253775708 r009 Re(z^3+c),c=-9/22+11/37*I,n=23 3178182262410594 b008 39-5*ArcSinh[2] 3178182266663217 a007 Real Root Of -968*x^4-362*x^3+327*x^2+745*x+202 3178182278089316 a001 9349/3*34^(27/41) 3178182279933796 r009 Re(z^3+c),c=-31/78+17/61*I,n=41 3178182280589973 r009 Re(z^3+c),c=-31/78+17/61*I,n=42 3178182299847984 r009 Re(z^3+c),c=-31/78+17/61*I,n=45 3178182303279572 r009 Re(z^3+c),c=-31/78+17/61*I,n=46 3178182305288061 r009 Re(z^3+c),c=-31/78+17/61*I,n=49 3178182306470694 r009 Re(z^3+c),c=-31/78+17/61*I,n=50 3178182306526982 r009 Re(z^3+c),c=-31/78+17/61*I,n=53 3178182306778647 r009 Re(z^3+c),c=-31/78+17/61*I,n=57 3178182306825063 r009 Re(z^3+c),c=-31/78+17/61*I,n=56 3178182306825259 r009 Re(z^3+c),c=-31/78+17/61*I,n=61 3178182306826556 r009 Re(z^3+c),c=-31/78+17/61*I,n=54 3178182306828222 r009 Re(z^3+c),c=-31/78+17/61*I,n=60 3178182306832620 r009 Re(z^3+c),c=-31/78+17/61*I,n=64 3178182306838101 r009 Re(z^3+c),c=-31/78+17/61*I,n=62 3178182306838124 r009 Re(z^3+c),c=-31/78+17/61*I,n=63 3178182306843975 r009 Re(z^3+c),c=-31/78+17/61*I,n=58 3178182306857525 r009 Re(z^3+c),c=-31/78+17/61*I,n=59 3178182306922695 r009 Re(z^3+c),c=-31/78+17/61*I,n=52 3178182306967036 r009 Re(z^3+c),c=-31/78+17/61*I,n=55 3178182307532345 r009 Re(z^3+c),c=-31/78+17/61*I,n=51 3178182308033791 r009 Re(z^3+c),c=-31/78+17/61*I,n=48 3178182310172561 r009 Re(z^3+c),c=-31/78+17/61*I,n=47 3178182316713750 r009 Re(z^3+c),c=-31/78+17/61*I,n=44 3178182320561049 a008 Real Root of x^5-2*x^4-16*x^3+19*x^2+68*x-23 3178182320905157 r009 Re(z^3+c),c=-31/78+17/61*I,n=43 3178182323604324 r009 Re(z^3+c),c=-21/62+11/62*I,n=18 3178182325980260 m001 (GAMMA(3/4)-FellerTornier)/(Pi-ln(2)/ln(10)) 3178182335015830 s001 sum(exp(-2*Pi/5)^n*A100989[n],n=1..infinity) 3178182335015830 s002 sum(A100989[n]/(exp(2/5*pi*n)),n=1..infinity) 3178182342559832 k004 Champernowne real with floor(Pi*(9*n^2-12*n+13)) 3178182343561836 k002 Champernowne real with 57/2*n^2-77/2*n+41 3178182345186027 r009 Re(z^3+c),c=-31/78+17/61*I,n=33 3178182347512512 l006 ln(5867/8062) 3178182348711131 m001 gamma(2)^FellerTornier*Otter^FellerTornier 3178182354376556 r009 Re(z^3+c),c=-31/78+17/61*I,n=39 3178182355987626 m001 Kolakoski/MertensB1/exp(GAMMA(5/6))^2 3178182358142441 a007 Real Root Of -29*x^4-913*x^3+252*x^2-745*x+201 3178182365837256 m001 (Zeta(3)+cos(1/5*Pi))/(sin(1/12*Pi)+Artin) 3178182367325799 m001 Trott^2/RenyiParking/ln(GAMMA(13/24)) 3178182374181792 r009 Re(z^3+c),c=-31/78+17/61*I,n=40 3178182374182998 m001 (Bloch+PolyaRandomWalk3D)/(Zeta(3)+GAMMA(2/3)) 3178182384601580 r009 Re(z^3+c),c=-31/78+17/61*I,n=35 3178182390755640 r005 Re(z^2+c),c=-7/15+8/23*I,n=7 3178182399482859 m005 (1/2*gamma+11/12)/(2/11*2^(1/2)-7/11) 3178182408981357 a007 Real Root Of -280*x^4-685*x^3+903*x^2+615*x-589 3178182422902613 l006 ln(324/7777) 3178182424321672 m001 exp(Riemann3rdZero)^2*Lehmer^2/BesselJ(0,1)^2 3178182424916589 m001 (-Mills+ZetaQ(2))/(2^(1/2)-exp(1/Pi)) 3178182426149137 m001 Pi*2^(1/2)/GAMMA(3/4)-cos(1)^Mills 3178182432878514 r005 Im(z^2+c),c=-17/58+24/47*I,n=45 3178182448838015 r005 Re(z^2+c),c=-17/30+25/93*I,n=2 3178182460721816 r005 Re(z^2+c),c=-37/106+19/44*I,n=45 3178182470071164 a001 3*1597^(8/25) 3178182470485351 m004 5+125*Pi*Cos[Sqrt[5]*Pi]+5*Pi*Csc[Sqrt[5]*Pi] 3178182504161091 m002 Pi*Csch[Pi]+Log[Pi]/25 3178182511448055 a007 Real Root Of -462*x^4-747*x^3-981*x^2+762*x+322 3178182518997913 m005 (3/44+1/4*5^(1/2))/(5/11*Pi+6/11) 3178182523812768 m001 (ln(5)+Zeta(1,2))/(Conway-PisotVijayaraghavan) 3178182530240567 m002 4+Pi+Pi^5+5/ProductLog[Pi] 3178182532349105 a007 Real Root Of 661*x^4+613*x^3-325*x^2-864*x+281 3178182538017928 a007 Real Root Of 265*x^4+988*x^3+688*x^2+676*x-121 3178182539330823 m001 (1-Zeta(3))/(LandauRamanujan2nd+ZetaQ(2)) 3178182545867099 a007 Real Root Of 574*x^4+567*x^3-545*x^2-601*x+222 3178182562217479 m001 (Landau-Salem)/(Champernowne-FellerTornier) 3178182569764256 l006 ln(5581/7669) 3178182569764256 p004 log(7669/5581) 3178182582242475 a007 Real Root Of -29*x^4-896*x^3+826*x^2+301*x-602 3178182587480222 p004 log(12659/12263) 3178182604234932 s002 sum(A073591[n]/(n^3*pi^n+1),n=1..infinity) 3178182611405272 p003 LerchPhi(1/25,3,241/164) 3178182622078453 m001 MadelungNaCl*ZetaR(2)-gamma 3178182629941910 a001 47/7*(1/2*5^(1/2)+1/2)^2*7^(7/23) 3178182638419601 m001 1/Paris/FransenRobinson*ln(PrimesInBinary) 3178182657964223 m005 (1/2*3^(1/2)+6/11)/(9/10*3^(1/2)-6) 3178182677247617 r005 Im(z^2+c),c=-6/17+21/41*I,n=25 3178182682270917 r002 15th iterates of z^2 + 3178182684995276 a001 11*(1/2*5^(1/2)+1/2)^4*11^(3/5) 3178182692578530 r005 Re(z^2+c),c=-107/94+9/38*I,n=10 3178182707913788 a007 Real Root Of -443*x^4+542*x^3-215*x^2+698*x-213 3178182714214630 m002 Pi^2+ProductLog[Pi]/2-Sinh[Pi]/Log[Pi] 3178182715377959 r009 Re(z^3+c),c=-31/78+17/61*I,n=36 3178182730374365 a007 Real Root Of 2*x^4+78*x^3+474*x^2+478*x-148 3178182735297957 a007 Real Root Of -358*x^4-990*x^3+419*x^2+61*x+706 3178182740837421 r005 Im(z^2+c),c=-11/32+30/53*I,n=48 3178182753864781 a001 7/2*514229^(12/35) 3178182781201128 r004 Im(z^2+c),c=-1/22+2/5*I,z(0)=I,n=22 3178182789378855 m001 (Cahen+Trott2nd)/(ln(Pi)+cos(1/12*Pi)) 3178182790987146 r009 Re(z^3+c),c=-29/54+19/24*I,n=2 3178182799987288 r005 Im(z^2+c),c=-3/4+14/125*I,n=26 3178182816025060 l006 ln(5295/7276) 3178182820996302 l006 ln(323/7753) 3178182835627400 a007 Real Root Of 786*x^4+792*x^3+946*x^2-783*x-327 3178182840698340 m004 216*Csc[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 3178182851165670 r005 Im(z^2+c),c=-83/114+7/44*I,n=51 3178182851781824 a007 Real Root Of 324*x^4-514*x^3-486*x^2-534*x+232 3178182852878398 a007 Real Root Of -862*x^4-903*x^3+876*x^2+926*x-345 3178182862793655 r005 Im(z^2+c),c=-19/110+23/50*I,n=38 3178182863679016 r009 Re(z^3+c),c=-33/86+10/39*I,n=28 3178182871367040 a007 Real Root Of -429*x^4+559*x^3-477*x^2+634*x+272 3178182874388207 a007 Real Root Of -392*x^4-239*x^3+487*x^2+678*x-253 3178182882589108 a003 sin(Pi*3/62)*sin(Pi*7/104) 3178182892382074 a007 Real Root Of -393*x^4-450*x^3+40*x^2+983*x-298 3178182898549546 m001 1/GAMMA(11/12)/RenyiParking*ln(GAMMA(17/24)) 3178182899145884 r005 Re(z^2+c),c=-25/78+22/43*I,n=60 3178182923479117 r009 Im(z^3+c),c=-23/48+10/57*I,n=51 3178182926508754 a001 47/21*610^(17/22) 3178182926575565 r005 Re(z^2+c),c=-21/58+26/55*I,n=18 3178182932387475 m001 (-ln(3)+OneNinth)/(Si(Pi)+BesselI(0,1)) 3178182935570594 r005 Re(z^2+c),c=-19/60+27/53*I,n=36 3178182939860953 a007 Real Root Of -215*x^4-833*x^3-436*x^2+401*x+873 3178182948283033 a007 Real Root Of -216*x^4-384*x^3+768*x^2-921*x-974 3178182955604363 a001 39088169/199*199^(1/11) 3178182965175982 a007 Real Root Of 247*x^4+765*x^3+204*x^2+606*x-777 3178182986476912 m005 (1/2*3^(1/2)+2/7)/(7/8*Pi+7/8) 3178182990335969 a001 11/514229*317811^(1/32) 3178182994353446 a001 38/17*5702887^(7/15) 3178183005483845 r005 Re(z^2+c),c=4/11+17/59*I,n=22 3178183012400682 m001 exp(BesselJ(0,1))^2*Porter/Zeta(1/2)^2 3178183015117367 m001 (-Conway+Otter)/(BesselJ(0,1)-GAMMA(17/24)) 3178183033540748 r005 Re(z^2+c),c=-41/118+24/55*I,n=38 3178183046021016 a001 1346269/199*521^(8/13) 3178183050232928 r005 Re(z^2+c),c=-31/24+1/52*I,n=60 3178183051217374 r009 Re(z^3+c),c=-5/28+38/51*I,n=29 3178183055850650 m001 (Pi+ReciprocalLucas*Sierpinski)/Sierpinski 3178183057910606 m001 1/Salem^2*exp(GlaisherKinkelin)^2*Tribonacci^2 3178183060146794 r009 Re(z^3+c),c=-37/78+19/48*I,n=42 3178183069317384 m004 100/Pi-Cos[Sqrt[5]*Pi]/15 3178183090407473 l006 ln(5009/6883) 3178183090407473 p004 log(6883/5009) 3178183091864991 a007 Real Root Of 779*x^4-580*x^3+185*x^2+177*x+11 3178183094316665 r002 36th iterates of z^2 + 3178183095790627 m006 (1/4*ln(Pi)-3/4)/(2/3*exp(Pi)-5/6) 3178183103425324 k006 concat of cont frac of 3178183113545258 m001 (gamma*ZetaP(2)+Salem)/ZetaP(2) 3178183119683592 r005 Im(z^2+c),c=-25/98+13/29*I,n=6 3178183131421112 k007 concat of cont frac of 3178183132381404 r009 Re(z^3+c),c=-21/46+19/52*I,n=14 3178183145208563 r005 Im(z^2+c),c=-7/54+26/59*I,n=38 3178183146648129 m001 (1+3^(1/2))^(1/2)-BesselI(1,2)^MinimumGamma 3178183152659035 a001 13/843*24476^(29/55) 3178183180957494 r005 Im(z^2+c),c=-125/114+7/30*I,n=54 3178183182581137 m001 1/GAMMA(17/24)^2/Si(Pi)^2*exp(sin(Pi/5)) 3178183191778369 s001 sum(exp(-Pi/3)^n*A085459[n],n=1..infinity) 3178183193573690 r009 Im(z^3+c),c=-5/82+8/23*I,n=11 3178183209138716 p004 log(33629/24473) 3178183217558701 r005 Re(z^2+c),c=-55/114+17/43*I,n=3 3178183217781390 m001 1/GAMMA(2/3)*ln((3^(1/3)))*sinh(1) 3178183221562462 l006 ln(322/7729) 3178183231148646 m001 1/MertensB1^2*ln(GlaisherKinkelin)^2*Lehmer^2 3178183238945309 r005 Re(z^2+c),c=-9/29+9/16*I,n=43 3178183240789725 r009 Im(z^3+c),c=-1/13+43/55*I,n=2 3178183250202315 m005 (-49/10+1/10*5^(1/2))/(1/3*2^(1/2)+1) 3178183284309121 m005 (1/3*gamma+2/7)/(11/12*3^(1/2)-1/12) 3178183290382354 m001 (Riemann3rdZero+ZetaP(3))/(gamma(3)-Kolakoski) 3178183300326322 r002 7th iterates of z^2 + 3178183339908398 a007 Real Root Of 189*x^4-913*x^3-673*x^2-990*x+410 3178183343614521 r009 Re(z^3+c),c=-27/50+19/52*I,n=27 3178183346392520 m002 -3/2+Pi^6/3-Log[Pi] 3178183346567846 k002 Champernowne real with 29*n^2-40*n+42 3178183356566527 a001 123/1597*6765^(9/56) 3178183359012184 h005 exp(sin(Pi*7/31)/cos(Pi*13/42)) 3178183376799487 m001 1/GAMMA(19/24)*KhintchineHarmonic/exp(cosh(1)) 3178183383821461 m001 (exp(1/Pi)+Porter)/(3^(1/2)-Chi(1)) 3178183395365577 m001 (ln(Pi)-sin(1))/(-ln(2^(1/2)+1)+gamma(1)) 3178183398020185 l006 ln(4723/6490) 3178183398431896 h001 (-2*exp(1)-9)/(-3*exp(5)-9) 3178183406798566 m001 exp(Porter)^2*FransenRobinson*BesselK(1,1) 3178183413838195 r009 Im(z^3+c),c=-13/31+13/57*I,n=16 3178183416626335 r008 a(0)=3,K{-n^6,-4+29*n^3-31*n^2+n} 3178183427798979 a001 11/2584*317811^(16/47) 3178183434340867 r005 Im(z^2+c),c=-9/34+25/61*I,n=4 3178183437774114 r005 Im(z^2+c),c=11/58+7/33*I,n=3 3178183440047161 m001 gamma^exp(gamma)/(ln(3)^exp(gamma)) 3178183443258076 m005 (1/2*2^(1/2)+1/9)/(2/11*Catalan+1/11) 3178183458631621 h001 (8/11*exp(2)+7/9)/(5/11*exp(1)+7/10) 3178183460372839 r005 Re(z^2+c),c=-23/56+3/23*I,n=12 3178183461026265 m001 Pi/(ln(2)/ln(10)-exp(gamma))-GAMMA(11/12) 3178183479412836 r005 Re(z^2+c),c=-1/31+29/46*I,n=8 3178183486847671 m001 FeigenbaumD^2*ln(ArtinRank2)*GAMMA(3/4) 3178183487817273 r005 Re(z^2+c),c=-13/38+21/47*I,n=30 3178183493843444 v003 sum((2*n^3-6*n^2+12*n+14)/n^n,n=1..infinity) 3178183503710428 r005 Im(z^2+c),c=-13/122+27/44*I,n=21 3178183507719370 m001 arctan(1/2)+BesselJZeros(0,1)*GAMMA(5/6) 3178183510036435 r005 Im(z^2+c),c=21/82+7/46*I,n=5 3178183513778946 a003 sin(Pi*4/51)/sin(Pi*22/79) 3178183547244471 m001 1/GAMMA(5/12)/ln(Lehmer)^2/cos(1) 3178183555440275 a003 -1/2+2*cos(7/15*Pi)-cos(3/8*Pi)+cos(1/24*Pi) 3178183556608570 b008 1+Cosh[Sqrt[2]] 3178183569951118 m005 (1/2*Pi-3/4)/(7/12*Pi+3/4) 3178183593257100 m005 (23/30+1/6*5^(1/2))/(3/7*gamma+1/9) 3178183602556222 a007 Real Root Of 298*x^4+702*x^3-809*x^2+144*x+761 3178183610202207 a008 Real Root of x^5-2*x^4-9*x^3+17*x^2-3 3178183624624200 l006 ln(321/7705) 3178183638466375 r005 Im(z^2+c),c=-18/31+11/30*I,n=12 3178183639024257 a007 Real Root Of 298*x^4+643*x^3-844*x^2+579*x+603 3178183643299193 r005 Im(z^2+c),c=-95/106+1/41*I,n=32 3178183653908047 a003 cos(Pi*16/77)-cos(Pi*40/117) 3178183662359389 m005 (1/2*2^(1/2)+5/12)/(1/5*3^(1/2)-7/10) 3178183667746374 r009 Re(z^3+c),c=-33/86+10/39*I,n=31 3178183681965528 m001 (3^(1/2)+cos(1/12*Pi))/(Artin+Weierstrass) 3178183699874982 r005 Re(z^2+c),c=-25/62+10/49*I,n=24 3178183710763183 r005 Re(z^2+c),c=-27/74+25/61*I,n=15 3178183716305263 a007 Real Root Of 865*x^4+134*x^3-507*x^2-607*x+231 3178183716691772 r002 30th iterates of z^2 + 3178183717160497 a007 Real Root Of 598*x^4-575*x^3+214*x^2-484*x-200 3178183718495036 m001 (gamma(3)-Kolakoski)/(Riemann3rdZero-ZetaP(4)) 3178183718906064 m001 (MadelungNaCl-Robbin)/(ln(gamma)+exp(-1/2*Pi)) 3178183733735057 m002 -(E^Pi/Pi^3)+Pi^5+Sinh[Pi]+Tanh[Pi] 3178183745289066 l006 ln(4437/6097) 3178183748870343 m001 (Catalan+Ei(1))/(-FeigenbaumMu+Khinchin) 3178183750198199 r005 Im(z^2+c),c=13/82+5/18*I,n=12 3178183756596906 r009 Re(z^3+c),c=-19/42+23/63*I,n=35 3178183756819725 m005 (1/2*Catalan+3/8)/(3^(1/2)+8/9) 3178183759975106 r009 Re(z^3+c),c=-14/29+21/43*I,n=38 3178183761111734 m001 (BesselI(0,2)*Paris-ReciprocalFibonacci)/Paris 3178183764892521 m001 (2^(1/3)-5^(1/2))/(Ei(1)+Salem) 3178183774636253 r005 Im(z^2+c),c=-95/106+1/41*I,n=29 3178183807843364 m001 (arctan(1/2)-Bloch)/(FeigenbaumD-Paris) 3178183808082549 m001 (FeigenbaumB+Totient)/(ln(2)+gamma(2)) 3178183810333984 a001 271443/55*6765^(11/15) 3178183826539480 p003 LerchPhi(1/2,2,128/219) 3178183830091174 r009 Re(z^3+c),c=-33/86+10/39*I,n=32 3178183830707521 r005 Im(z^2+c),c=33/122+11/26*I,n=13 3178183848441000 h001 (5/8*exp(2)+6/7)/(1/2*exp(1)+4/11) 3178183881903586 r005 Re(z^2+c),c=-47/86+24/37*I,n=7 3178183884051178 m002 Cosh[Pi]/6+ProductLog[Pi]+2*Sech[Pi] 3178183891591070 r009 Re(z^3+c),c=-53/114+11/29*I,n=33 3178183894917190 q001 1113/3502 3178183902003250 m001 (Landau+Magata)/(Niven-Riemann1stZero) 3178183904944051 a007 Real Root Of 199*x^4-905*x^3+875*x^2-30*x-129 3178183916941193 m001 (Chi(1)-sin(1))/(-gamma(2)+ZetaQ(4)) 3178183919663064 m001 exp(Robbin)^2*Riemann3rdZero*Tribonacci^2 3178183925484399 r002 6th iterates of z^2 + 3178183927523920 r005 Re(z^2+c),c=-41/98+2/57*I,n=25 3178183931194666 m001 5^(1/2)+GAMMA(5/6)*GaussAGM 3178183934650514 r009 Re(z^3+c),c=-33/86+10/39*I,n=35 3178183940378570 r005 Im(z^2+c),c=-25/54+2/39*I,n=13 3178183946674090 a001 2178309/199*521^(7/13) 3178183959407183 m005 (1/2*Pi+1/10)/(8/9*2^(1/2)+4) 3178183959462858 r009 Re(z^3+c),c=-33/86+10/39*I,n=36 3178183963449919 r009 Im(z^3+c),c=-37/64+11/35*I,n=13 3178183969348479 p001 sum((-1)^n/(333*n+310)/(32^n),n=0..infinity) 3178183972966213 r009 Re(z^3+c),c=-33/86+10/39*I,n=39 3178183976726329 r009 Re(z^3+c),c=-33/86+10/39*I,n=40 3178183978456211 r009 Re(z^3+c),c=-33/86+10/39*I,n=43 3178183979021922 r009 Re(z^3+c),c=-33/86+10/39*I,n=44 3178183979241415 r009 Re(z^3+c),c=-33/86+10/39*I,n=47 3178183979325997 r009 Re(z^3+c),c=-33/86+10/39*I,n=48 3178183979353524 r009 Re(z^3+c),c=-33/86+10/39*I,n=51 3178183979366102 r009 Re(z^3+c),c=-33/86+10/39*I,n=52 3178183979369505 r009 Re(z^3+c),c=-33/86+10/39*I,n=55 3178183979371366 r009 Re(z^3+c),c=-33/86+10/39*I,n=56 3178183979371779 r009 Re(z^3+c),c=-33/86+10/39*I,n=59 3178183979372053 r009 Re(z^3+c),c=-33/86+10/39*I,n=60 3178183979372102 r009 Re(z^3+c),c=-33/86+10/39*I,n=63 3178183979372142 r009 Re(z^3+c),c=-33/86+10/39*I,n=64 3178183979372192 r009 Re(z^3+c),c=-33/86+10/39*I,n=62 3178183979372297 r009 Re(z^3+c),c=-33/86+10/39*I,n=61 3178183979372440 r009 Re(z^3+c),c=-33/86+10/39*I,n=58 3178183979373155 r009 Re(z^3+c),c=-33/86+10/39*I,n=57 3178183979374343 r009 Re(z^3+c),c=-33/86+10/39*I,n=54 3178183979379185 r009 Re(z^3+c),c=-33/86+10/39*I,n=53 3178183979388882 r009 Re(z^3+c),c=-33/86+10/39*I,n=50 3178183979421520 r009 Re(z^3+c),c=-33/86+10/39*I,n=49 3178183979499375 r009 Re(z^3+c),c=-33/86+10/39*I,n=46 3178183979718279 r009 Re(z^3+c),c=-33/86+10/39*I,n=45 3178183980335284 r009 Re(z^3+c),c=-33/86+10/39*I,n=42 3178183981794976 r009 Re(z^3+c),c=-33/86+10/39*I,n=41 3178183983112618 a007 Real Root Of -253*x^4-643*x^3+510*x^2+249*x+811 3178183986633406 r009 Re(z^3+c),c=-33/86+10/39*I,n=38 3178183992797325 m001 BesselK(0,1)-RenyiParking+ZetaQ(3) 3178183996301892 r009 Re(z^3+c),c=-33/86+10/39*I,n=37 3178184019649801 m005 (53/10+3/10*5^(1/2))/(17/15+1/3*5^(1/2)) 3178184023641489 a007 Real Root Of -28*x^4-877*x^3+422*x^2+383*x-235 3178184029051278 a007 Real Root Of -240*x^4-775*x^3-95*x^2-10*x+535 3178184030204909 l006 ln(320/7681) 3178184033912053 r009 Re(z^3+c),c=-33/86+10/39*I,n=34 3178184050816479 r005 Re(z^2+c),c=-13/36+11/28*I,n=42 3178184051079919 r005 Im(z^2+c),c=-5/22+29/60*I,n=46 3178184052405810 r005 Im(z^2+c),c=-5/21+20/41*I,n=45 3178184052764840 a007 Real Root Of 11*x^4+357*x^3+229*x^2-192*x+138 3178184052825795 r005 Re(z^2+c),c=25/78+12/25*I,n=10 3178184054099561 r005 Im(z^2+c),c=-95/106+1/41*I,n=25 3178184057701723 r005 Re(z^2+c),c=-13/32+11/60*I,n=24 3178184060379062 m001 Zeta(3)/ln(Si(Pi))^2*Zeta(9)^2 3178184066692656 m006 (2/5*exp(Pi)-3/4)/(5*exp(2*Pi)-1) 3178184068146091 r005 Im(z^2+c),c=-15/62+23/47*I,n=45 3178184069217221 a007 Real Root Of 841*x^4-210*x^3+864*x^2-382*x-224 3178184073041685 r005 Im(z^2+c),c=37/90+12/55*I,n=42 3178184097453317 r009 Re(z^3+c),c=-33/86+10/39*I,n=33 3178184098405366 h001 (-3*exp(7)+4)/(-7*exp(5)+5) 3178184108434730 a007 Real Root Of 283*x^4+750*x^3-499*x^2-367*x-923 3178184112032325 m005 (2/3*Catalan+2/5)/(4/5*Pi+2/3) 3178184114912016 r002 3th iterates of z^2 + 3178184121439952 m001 (GAMMA(7/12)+Niven)/(GAMMA(3/4)-exp(-1/2*Pi)) 3178184126244123 m001 ln(FeigenbaumC)^2/FeigenbaumB/Salem^2 3178184128012687 a007 Real Root Of 272*x^4+841*x^3-232*x^2-528*x-88 3178184136403189 a001 1364/21*13^(13/21) 3178184140410931 l006 ln(4151/5704) 3178184141440830 r005 Im(z^2+c),c=-35/106+33/58*I,n=19 3178184145027627 m001 FeigenbaumD/(ln(5)-BesselJ(0,1)) 3178184155480358 a007 Real Root Of 10*x^4+350*x^3+995*x^2-865*x+579 3178184156167666 a007 Real Root Of 911*x^4-266*x^3-681*x^2-755*x-189 3178184156901922 m002 -E^Pi+Pi-Cosh[Pi]-Log[Pi]/6 3178184177985199 m001 (sin(1/5*Pi)+GaussAGM)/(Trott2nd-Weierstrass) 3178184191740411 a003 cos(Pi*31/113)*cos(Pi*26/77) 3178184193418859 m001 Porter/exp(LandauRamanujan)/arctan(1/2)^2 3178184220116618 r009 Re(z^3+c),c=-11/28+19/56*I,n=2 3178184232136802 a007 Real Root Of 43*x^4-273*x^3+67*x^2-659*x+211 3178184241425392 m002 -1/4-Pi^5-Sinh[Pi] 3178184248207946 a008 Real Root of x^4-2*x^3+18*x^2+62*x-151 3178184263085528 m001 (-GAMMA(19/24)+Riemann2ndZero)/(1+Zeta(1,2)) 3178184270021729 m001 (Pi-1)/(ln(3)-Pi^(1/2)) 3178184277052064 a005 (1/cos(40/221*Pi))^74 3178184289003804 m005 (1/2*Zeta(3)+1/9)/(2/3*5^(1/2)+3/4) 3178184290473376 a007 Real Root Of -258*x^4-906*x^3-510*x^2-728*x+76 3178184293703719 r005 Re(z^2+c),c=9/44+25/62*I,n=22 3178184293824222 a007 Real Root Of 594*x^4-905*x^3+545*x^2-698*x-312 3178184297572351 m001 GAMMA(11/12)*ln(Backhouse)^2*Zeta(1/2)^2 3178184302660555 r005 Re(z^2+c),c=-12/31+16/55*I,n=25 3178184306633052 a003 cos(Pi*29/73)/sin(Pi*12/25) 3178184317196680 m005 (3/4*Catalan-2)/(4/5*2^(1/2)+3) 3178184319698320 a005 (1/cos(41/217*Pi))^178 3178184320084491 a007 Real Root Of -177*x^4-235*x^3-515*x^2+899*x+332 3178184327318926 a007 Real Root Of -314*x^4-934*x^3+143*x^2-407*x-685 3178184335415341 m005 (1/3*Pi-1/8)/(3/4*Pi+6/11) 3178184340712971 a003 cos(Pi*7/85)-cos(Pi*30/109) 3178184349573856 k002 Champernowne real with 59/2*n^2-83/2*n+43 3178184353766049 m001 (CareFree+Conway)/(FeigenbaumKappa-Sarnak) 3178184355020614 m001 FeigenbaumD^HardyLittlewoodC3+Mills 3178184356484500 r005 Re(z^2+c),c=-7/20+22/57*I,n=12 3178184368232629 b008 -3+E+Pi^(-1)+Pi 3178184370421551 h005 exp(cos(Pi*1/6)+cos(Pi*13/32)) 3178184375336415 a007 Real Root Of -177*x^4-470*x^3+425*x^2+158*x-820 3178184382353339 m001 (2^(1/3)-cos(1))/(GAMMA(13/24)+GolombDickman) 3178184387637855 r009 Re(z^3+c),c=-33/86+10/39*I,n=30 3178184389663502 r005 Re(z^2+c),c=-11/32+19/42*I,n=31 3178184390175584 s002 sum(A097656[n]/(n^3*pi^n+1),n=1..infinity) 3178184390599878 m001 (Artin-Shi(1))/(ErdosBorwein+Landau) 3178184392674384 a001 9227465/322*123^(1/2) 3178184399652329 m001 GAMMA(19/24)/Zeta(5)*FransenRobinson 3178184402262474 m001 (Zeta(3)-CareFree)/(Paris+Porter) 3178184434260576 r009 Im(z^3+c),c=-7/74+43/53*I,n=52 3178184435758221 a001 5/843*123^(15/43) 3178184438328278 l006 ln(319/7657) 3178184442168126 r005 Re(z^2+c),c=1/32+31/43*I,n=3 3178184447814088 m006 (3/5*Pi+1/3)/(2/3*Pi^2+2/5) 3178184447814088 m008 (3/5*Pi+1/3)/(2/3*Pi^2+2/5) 3178184449476228 l006 ln(8485/8759) 3178184454747663 a005 (1/cos(64/155*Pi))^22 3178184459078225 a001 41/329*12586269025^(11/15) 3178184460165384 b008 -1+E+EllipticK[-1/3] 3178184468761409 r002 52th iterates of z^2 + 3178184469297475 r009 Re(z^3+c),c=-27/82+10/63*I,n=12 3178184470834500 m005 (1/3*5^(1/2)-2/5)/(4/5*Zeta(3)+1/8) 3178184485882183 m001 (MertensB3*Niven+ReciprocalLucas)/MertensB3 3178184491984585 h001 (10/11*exp(2)+7/9)/(5/7*exp(1)+5/12) 3178184492453806 r005 Re(z^2+c),c=-17/50+13/22*I,n=17 3178184495457031 p001 sum(1/(314*n+9)/n/(10^n),n=1..infinity) 3178184499384057 r005 Im(z^2+c),c=-21/62+22/37*I,n=19 3178184510900696 a003 cos(Pi*29/88)-cos(Pi*32/73) 3178184514297696 m001 Si(Pi)*(GaussAGM+QuadraticClass) 3178184520255611 m001 (BesselK(0,1)-Catalan)/(-Zeta(1,-1)+gamma(2)) 3178184539244893 m001 CareFree^Champernowne/(CareFree^exp(Pi)) 3178184539391050 m002 -Pi^5-Cosh[Pi]-Log[Pi]+ProductLog[Pi]/Log[Pi] 3178184546407441 m001 ArtinRank2*FibonacciFactorial^2*exp(Niven)^2 3178184556303562 r005 Re(z^2+c),c=-41/98+1/24*I,n=14 3178184564988314 r009 Re(z^3+c),c=-31/78+17/61*I,n=32 3178184573224594 r005 Re(z^2+c),c=35/114+4/37*I,n=34 3178184574548495 r009 Im(z^3+c),c=-9/38+19/60*I,n=12 3178184593858509 r005 Im(z^2+c),c=-9/46+26/55*I,n=20 3178184594008768 l006 ln(3865/5311) 3178184600412170 r005 Re(z^2+c),c=-7/10+30/83*I,n=13 3178184609417887 m006 (1/4*exp(Pi)-2)/(3/5/Pi+1) 3178184609430191 m005 (1/2*gamma-2)/(2/3*gamma+5) 3178184609430191 m007 (-1/2*gamma+2)/(-2/3*gamma-5) 3178184613629609 m001 1/ln(TwinPrimes)/Si(Pi)^2*GAMMA(5/12)^2 3178184617310040 m001 BesselJ(1,1)^(Stephens/ThueMorse) 3178184620233292 h001 (7/11*exp(2)+3/4)/(3/10*exp(1)+9/10) 3178184621297375 m005 (1/2*Zeta(3)-8/9)/(3/28+5/14*5^(1/2)) 3178184624041334 r005 Im(z^2+c),c=-5/78+39/61*I,n=49 3178184627541755 m001 (Champernowne+Landau)/(2^(1/3)+Chi(1)) 3178184640443501 m001 GAMMA(1/12)^2*exp(Artin)^2/Zeta(1,2)^2 3178184640559674 r005 Re(z^2+c),c=-12/31+31/59*I,n=6 3178184650241324 r009 Im(z^3+c),c=-10/29+17/62*I,n=17 3178184653242062 r005 Im(z^2+c),c=-29/110+37/48*I,n=13 3178184662019994 r005 Im(z^2+c),c=23/70+5/57*I,n=57 3178184665875886 a005 (1/cos(6/127*Pi))^1146 3178184679913834 r005 Im(z^2+c),c=25/78+4/31*I,n=25 3178184684985374 r002 18th iterates of z^2 + 3178184689117050 r005 Re(z^2+c),c=-31/86+21/50*I,n=16 3178184696991362 r002 64th iterates of z^2 + 3178184721708886 m001 (MadelungNaCl+Niven)/(Zeta(1/2)+Artin) 3178184726598883 r009 Re(z^3+c),c=-39/106+13/54*I,n=6 3178184728143434 s002 sum(A211932[n]/(pi^n+1),n=1..infinity) 3178184735585770 a001 39088169/521*123^(3/10) 3178184753077978 r009 Re(z^3+c),c=-11/25+19/55*I,n=48 3178184753184393 m005 (1/3*gamma-2/5)/(1/6*2^(1/2)-8/9) 3178184769403119 m001 Sarnak/(exp(1/Pi)^Sierpinski) 3178184770665468 m001 Riemann2ndZero*ln(Champernowne)^2*sin(Pi/5)^2 3178184773047032 r005 Re(z^2+c),c=-1/25+37/59*I,n=43 3178184782224636 r002 8th iterates of z^2 + 3178184786920855 r005 Im(z^2+c),c=-95/106+1/41*I,n=26 3178184793506648 s002 sum(A030445[n]/(n^2*2^n-1),n=1..infinity) 3178184794592495 m001 cos(1)^(exp(1/exp(1))/StronglyCareFree) 3178184801369179 r009 Re(z^3+c),c=-33/86+10/39*I,n=29 3178184811813167 r005 Re(z^2+c),c=-9/14+30/101*I,n=2 3178184813438587 r005 Re(z^2+c),c=-69/122+28/59*I,n=7 3178184819366858 a007 Real Root Of 710*x^4-188*x^3-808*x^2-993*x+396 3178184820935463 m005 (3/4*exp(1)-2)/(1/10+1/2*5^(1/2)) 3178184827781293 m001 (Artin+Khinchin)/(ln(2+3^(1/2))-BesselI(0,2)) 3178184847328089 a001 3524578/199*521^(6/13) 3178184848765979 m003 -13/5+Sqrt[5]/16+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/2 3178184849018293 l006 ln(318/7633) 3178184853988592 r005 Re(z^2+c),c=-23/18+14/191*I,n=16 3178184857080336 r005 Re(z^2+c),c=-4/11+9/19*I,n=18 3178184861340650 a007 Real Root Of 840*x^4-820*x^3-808*x^2-389*x+223 3178184862249961 a008 Real Root of x^4-2*x^3+16*x^2+20*x-263 3178184863230840 r005 Im(z^2+c),c=-25/78+29/57*I,n=30 3178184864677119 a007 Real Root Of 175*x^4+545*x^3-200*x^2-798*x-875 3178184871479228 r009 Re(z^3+c),c=-31/78+17/61*I,n=29 3178184873762523 a007 Real Root Of 187*x^4-960*x^3-196*x^2-948*x+350 3178184877210489 a003 cos(Pi*23/78)-cos(Pi*47/115) 3178184892932553 a007 Real Root Of 124*x^4+184*x^3+608*x^2-372*x-175 3178184894080918 r009 Im(z^3+c),c=-5/11+7/34*I,n=14 3178184902900132 a007 Real Root Of -517*x^4+265*x^3+369*x^2+763*x-283 3178184909887377 m001 PisotVijayaraghavan*(GAMMA(3/4)+GAMMA(19/24)) 3178184911778278 a005 (1/sin(76/211*Pi))^381 3178184928829971 a003 sin(Pi*13/89)*sin(Pi*27/106) 3178184930449408 m001 Si(Pi)^Mills/(LandauRamanujan^Mills) 3178184935365594 m001 cos(1)/Tribonacci^2/ln(sqrt(1+sqrt(3))) 3178184938581576 q001 2/62929 3178184943144167 r005 Re(z^2+c),c=-25/78+17/33*I,n=56 3178184951057754 r009 Re(z^3+c),c=-67/110+27/55*I,n=51 3178184952954764 r009 Re(z^3+c),c=-3/8+15/62*I,n=17 3178184958105128 a007 Real Root Of -415*x^4+322*x^3+431*x^2+879*x-329 3178184958241892 m005 (1/3*gamma+1/5)/(9/10*5^(1/2)-7/9) 3178184965675552 m001 (Ei(1)+gamma(3))/(GolombDickman-Trott2nd) 3178184985630526 r005 Re(z^2+c),c=-9/23+7/26*I,n=16 3178184990883801 m001 (2^(1/3)*cosh(1)-Ei(1))/cosh(1) 3178185007991151 r005 Re(z^2+c),c=1/70+3/13*I,n=11 3178185011219332 r005 Re(z^2+c),c=-41/98+2/57*I,n=27 3178185011592148 m001 (cos(1/5*Pi)-ln(3))/(Champernowne-MertensB2) 3178185034949167 h001 (4/11*exp(1)+3/11)/(1/10*exp(1)+1/8) 3178185037119034 a007 Real Root Of -355*x^4-968*x^3+509*x^2-80*x-251 3178185039855377 p004 log(34819/25339) 3178185082417859 r005 Im(z^2+c),c=-1/50+7/18*I,n=13 3178185085913658 l005 ln(sec(132/59)) 3178185094923008 h001 (1/4*exp(1)+4/5)/(6/11*exp(2)+5/8) 3178185102353634 a001 710647/3*832040^(4/21) 3178185102643162 a001 103682/3*20365011074^(4/21) 3178185107796730 r005 Re(z^2+c),c=29/86+19/61*I,n=10 3178185112579559 r009 Re(z^3+c),c=-7/122+27/41*I,n=38 3178185120101120 l006 ln(3579/4918) 3178185133400100 a003 sin(Pi*6/97)/cos(Pi*26/89) 3178185137877565 a001 228826127/21*34^(22/23) 3178185140282654 a007 Real Root Of -538*x^4+936*x^3+598*x^2+771*x-330 3178185144166947 r005 Re(z^2+c),c=5/19+4/51*I,n=33 3178185154641093 a001 55/29*47^(41/56) 3178185173018527 m001 (LandauRamanujan2nd+Paris)/(Chi(1)+Conway) 3178185185156034 a001 3524578/2207*18^(5/21) 3178185186000500 a007 Real Root Of -221*x^4-660*x^3+38*x^2-26*x+894 3178185202200158 p004 log(34033/24767) 3178185202601526 a007 Real Root Of 213*x^4+670*x^3-301*x^2-663*x+710 3178185207235377 m001 exp(LaplaceLimit)^2*Kolakoski^2/RenyiParking 3178185213213232 m001 (ln(2)/ln(10)+LaplaceLimit)/(Otter+ZetaP(4)) 3178185213617378 a007 Real Root Of -919*x^4+959*x^3-929*x^2-752*x-105 3178185217586834 a003 sin(Pi*23/79)/cos(Pi*31/63) 3178185219758128 m004 -5+(25*Pi)/4+5*Pi*Cot[Sqrt[5]*Pi] 3178185224832055 r005 Re(z^2+c),c=-1/66+30/41*I,n=15 3178185233565227 r004 Im(z^2+c),c=3/20+2/7*I,z(0)=exp(7/8*I*Pi),n=18 3178185235573145 p004 log(24197/17609) 3178185237423601 q001 676/2127 3178185243442992 b008 CosIntegral[2*Csch[2+Pi]] 3178185247929948 a005 (1/cos(7/232*Pi))^257 3178185262299242 l006 ln(317/7609) 3178185270737492 a007 Real Root Of -656*x^4-272*x^3+423*x^2+742*x-24 3178185270806597 m001 (3^(1/3))^2*ln(Magata)^2*Zeta(7)^2 3178185276716867 b008 Pi+(3*ArcCoth[41])/2 3178185282983689 r005 Im(z^2+c),c=-7/40+31/38*I,n=18 3178185286210605 r005 Im(z^2+c),c=-17/62+23/45*I,n=22 3178185292952286 m001 (-2^(1/2)+2/3)/(-Khinchin+1/3) 3178185303272942 m005 (1/2*5^(1/2)+3/10)/(4/5*gamma+4) 3178185316305893 m001 MinimumGamma/Champernowne^2/ln(sqrt(3))^2 3178185316583114 h001 (1/11*exp(1)+9/11)/(1/3*exp(2)+8/9) 3178185332238974 r005 Im(z^2+c),c=2/7+7/43*I,n=20 3178185334849050 a007 Real Root Of -434*x^4+873*x^3+754*x^2+556*x+133 3178185346793251 m004 -3+25*Pi-15*Sqrt[5]*Pi-Log[Sqrt[5]*Pi] 3178185349915113 m001 (Robbin+ZetaP(2))/(GAMMA(3/4)+BesselI(0,2)) 3178185351304868 a007 Real Root Of -597*x^4-956*x^3-427*x^2+994*x-236 3178185352579866 k002 Champernowne real with 30*n^2-43*n+44 3178185362444998 r005 Re(z^2+c),c=-3/70+44/61*I,n=10 3178185363747381 r005 Re(z^2+c),c=-24/19+8/23*I,n=5 3178185371869089 m005 (1/2*Pi+4/7)/(1/7*exp(1)+2/7) 3178185375022509 r002 5th iterates of z^2 + 3178185397765030 m005 (1/2*exp(1)+3)/(1/8*5^(1/2)-5/12) 3178185400658529 g006 Psi(1,5/7)+Psi(1,2/3)-Psi(1,2/11)-Psi(1,4/9) 3178185408479248 h001 (3/11*exp(1)+1/10)/(1/4*exp(2)+4/5) 3178185415989778 l006 ln(6872/9443) 3178185420156671 r005 Re(z^2+c),c=-41/98+2/57*I,n=22 3178185421023170 r005 Im(z^2+c),c=15/56+12/61*I,n=8 3178185423881234 m001 1/GAMMA(5/12)*Riemann2ndZero*ln(LambertW(1))^2 3178185442820629 r002 3th iterates of z^2 + 3178185450662516 r005 Re(z^2+c),c=7/26+1/12*I,n=30 3178185455906041 m005 (1/2*2^(1/2)-7/9)/(1/9*Pi-4/7) 3178185458923961 r002 12th iterates of z^2 + 3178185459254225 r005 Re(z^2+c),c=-19/46+5/49*I,n=10 3178185466882345 m003 2+Sqrt[5]/2+Log[1/2+Sqrt[5]/2]/8 3178185477027709 r005 Im(z^2+c),c=-33/40+8/51*I,n=12 3178185498559177 r009 Im(z^3+c),c=-17/58+11/37*I,n=12 3178185515340822 r009 Re(z^3+c),c=-3/106+46/51*I,n=3 3178185525141608 m001 (GAMMA(5/6)-Otter)/(gamma(2)-BesselI(1,1)) 3178185537048983 m001 (StolarskyHarborth+Trott)/(5^(1/2)+Robbin) 3178185538107509 r005 Re(z^2+c),c=-41/98+2/57*I,n=23 3178185546069834 m005 (1/2*gamma+2/9)/(1/8*Pi-2) 3178185554529973 r009 Im(z^3+c),c=-12/29+11/42*I,n=5 3178185556015620 r005 Re(z^2+c),c=-39/94+4/39*I,n=27 3178185561439867 m001 (MertensB1+ZetaP(3))/(cos(1)+FeigenbaumB) 3178185561742014 m001 (-Artin+Sarnak)/(sin(1)+sin(1/12*Pi)) 3178185577616830 s002 sum(A006848[n]/((10^n+1)/n),n=1..infinity) 3178185580671438 r002 30th iterates of z^2 + 3178185583677572 r009 Re(z^3+c),c=-37/70+22/45*I,n=29 3178185585290347 m001 (MinimumGamma+RenyiParking)/(3^(1/2)-Zeta(5)) 3178185586485243 a007 Real Root Of 23*x^4+733*x^3+41*x^2-719*x+496 3178185592699056 a005 (1/cos(3/100*Pi))^1813 3178185601002229 r009 Re(z^3+c),c=-21/62+11/62*I,n=16 3178185622609895 r005 Im(z^2+c),c=-33/86+18/35*I,n=37 3178185625410158 m001 (Pi^(1/2)+GAMMA(19/24))/(MertensB2-OneNinth) 3178185629012929 a009 5^(1/2)+21^(1/2)*12^(3/4) 3178185633862744 r005 Im(z^2+c),c=-3/13+17/35*I,n=28 3178185661183310 r009 Re(z^3+c),c=-21/62+11/62*I,n=17 3178185662536959 a007 Real Root Of 39*x^4+66*x^3-104*x^2-343*x+117 3178185671719946 a001 1364/2971215073*20365011074^(21/22) 3178185671765375 a001 1364/121393*514229^(21/22) 3178185678195720 l006 ln(316/7585) 3178185687744259 r005 Im(z^2+c),c=-95/106+1/41*I,n=27 3178185690975453 a003 sin(Pi*1/31)-sin(Pi*15/109) 3178185691320060 a007 Real Root Of 14*x^4+425*x^3-631*x^2+95*x+69 3178185696123504 r005 Re(z^2+c),c=-11/31+12/29*I,n=43 3178185701036550 r005 Im(z^2+c),c=-49/94+4/51*I,n=10 3178185737576622 l006 ln(3293/4525) 3178185742450057 a001 9227465/5778*18^(5/21) 3178185747982088 a001 5702887/199*521^(5/13) 3178185764085274 s001 sum(exp(-Pi/2)^(n-1)*A189033[n],n=1..infinity) 3178185776987302 a001 89/843*(1/2+1/2*5^(1/2))^31 3178185776987302 a001 89/843*9062201101803^(1/2) 3178185779007393 a001 377/199*20633239^(5/7) 3178185779007399 a001 377/199*2537720636^(5/9) 3178185779007399 a001 377/199*312119004989^(5/11) 3178185779007399 a001 377/199*(1/2+1/2*5^(1/2))^25 3178185779007399 a001 377/199*3461452808002^(5/12) 3178185779007399 a001 377/199*28143753123^(1/2) 3178185779007399 a001 377/199*228826127^(5/8) 3178185779008164 a001 377/199*1860498^(5/6) 3178185782054480 m001 (exp(1)-ln(gamma))/(-Otter+Tetranacci) 3178185782308412 a007 Real Root Of -634*x^4+229*x^3-564*x^2+545*x+244 3178185792464753 r005 Im(z^2+c),c=-23/122+7/15*I,n=30 3178185813155442 r009 Im(z^3+c),c=-5/82+8/23*I,n=13 3178185818756511 m001 ln(GAMMA(23/24))*Artin*gamma^2 3178185819699533 r005 Im(z^2+c),c=-147/118+11/51*I,n=7 3178185820695697 m001 Ei(1)*FransenRobinson^2*exp(GAMMA(7/12))^2 3178185823758176 a001 24157817/15127*18^(5/21) 3178185830869305 r005 Re(z^2+c),c=-7/10+49/235*I,n=43 3178185833716227 a001 5778/233*514229^(1/53) 3178185834854875 m001 gamma(1)*(Chi(1)-QuadraticClass) 3178185835620871 a001 63245986/39603*18^(5/21) 3178185835823283 a003 cos(Pi*43/105)+cos(Pi*41/84) 3178185837351615 a001 165580141/103682*18^(5/21) 3178185837604127 a001 433494437/271443*18^(5/21) 3178185837640968 a001 1134903170/710647*18^(5/21) 3178185837646343 a001 2971215073/1860498*18^(5/21) 3178185837647127 a001 7778742049/4870847*18^(5/21) 3178185837647242 a001 20365011074/12752043*18^(5/21) 3178185837647258 a001 53316291173/33385282*18^(5/21) 3178185837647261 a001 139583862445/87403803*18^(5/21) 3178185837647261 a001 365435296162/228826127*18^(5/21) 3178185837647261 a001 956722026041/599074578*18^(5/21) 3178185837647261 a001 2504730781961/1568397607*18^(5/21) 3178185837647261 a001 6557470319842/4106118243*18^(5/21) 3178185837647261 a001 10610209857723/6643838879*18^(5/21) 3178185837647261 a001 4052739537881/2537720636*18^(5/21) 3178185837647261 a001 1548008755920/969323029*18^(5/21) 3178185837647261 a001 591286729879/370248451*18^(5/21) 3178185837647261 a001 225851433717/141422324*18^(5/21) 3178185837647262 a001 86267571272/54018521*18^(5/21) 3178185837647269 a001 32951280099/20633239*18^(5/21) 3178185837647312 a001 12586269025/7881196*18^(5/21) 3178185837647612 a001 4807526976/3010349*18^(5/21) 3178185837649665 a001 1836311903/1149851*18^(5/21) 3178185837663737 a001 701408733/439204*18^(5/21) 3178185837760188 a001 267914296/167761*18^(5/21) 3178185838421273 a001 102334155/64079*18^(5/21) 3178185842156097 m001 Zeta(1/2)*ln(FeigenbaumDelta)/sin(1)^2 3178185842952420 a001 39088169/24476*18^(5/21) 3178185844136851 r005 Im(z^2+c),c=-67/66+14/51*I,n=59 3178185845305897 a007 Real Root Of 696*x^4+44*x^3-250*x^2-907*x+305 3178185850235691 m001 (Pi-gamma)/(GAMMA(3/4)-ln(Pi)) 3178185854663056 a007 Real Root Of 317*x^4+605*x^3+782*x^2-954*x-366 3178185861809186 r008 a(0)=3,K{-n^6,-28-37*n^3+20*n^2+39*n} 3178185869429490 a007 Real Root Of 295*x^4+257*x^3-646*x^2-713*x-22 3178185874009359 a001 14930352/9349*18^(5/21) 3178185900291968 r009 Re(z^3+c),c=-9/31+2/41*I,n=12 3178185928235608 r002 33th iterates of z^2 + 3178185930201166 m006 (5/6*exp(Pi)-3)/(5*ln(Pi)-3/5) 3178185932520069 a007 Real Root Of 50*x^4-454*x^3+794*x^2+264*x+614 3178185941868837 r002 30th iterates of z^2 + 3178185948901231 r005 Re(z^2+c),c=-17/106+11/16*I,n=36 3178185958539645 r009 Re(z^3+c),c=-9/31+2/41*I,n=11 3178185964407712 m001 GAMMA(5/24)*CopelandErdos^2/ln(arctan(1/2)) 3178185987540954 m005 1/4*5^(1/2)/(7/12*5^(1/2)+5/11) 3178185994880837 r005 Re(z^2+c),c=-7/16+22/59*I,n=10 3178185996719543 r009 Im(z^3+c),c=-5/82+8/23*I,n=15 3178185999819726 r009 Im(z^3+c),c=-5/82+8/23*I,n=16 3178186000399535 r009 Im(z^3+c),c=-5/82+8/23*I,n=18 3178186000846375 r009 Im(z^3+c),c=-5/82+8/23*I,n=20 3178186000912437 r009 Im(z^3+c),c=-5/82+8/23*I,n=22 3178186000918885 r009 Im(z^3+c),c=-5/82+8/23*I,n=24 3178186000919308 r009 Im(z^3+c),c=-5/82+8/23*I,n=26 3178186000919309 r009 Im(z^3+c),c=-5/82+8/23*I,n=27 3178186000919312 r009 Im(z^3+c),c=-5/82+8/23*I,n=29 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=31 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=33 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=35 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=38 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=40 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=42 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=44 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=46 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=49 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=51 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=53 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=55 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=57 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=60 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=62 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=64 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=63 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=61 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=59 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=58 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=56 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=54 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=52 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=50 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=48 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=47 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=45 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=43 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=37 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=41 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=39 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=36 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=34 3178186000919313 r009 Im(z^3+c),c=-5/82+8/23*I,n=32 3178186000919314 r009 Im(z^3+c),c=-5/82+8/23*I,n=30 3178186000919316 r009 Im(z^3+c),c=-5/82+8/23*I,n=28 3178186000919391 r009 Im(z^3+c),c=-5/82+8/23*I,n=25 3178186000921148 r009 Im(z^3+c),c=-5/82+8/23*I,n=23 3178186000942706 r009 Im(z^3+c),c=-5/82+8/23*I,n=21 3178186001126385 r009 Im(z^3+c),c=-5/82+8/23*I,n=19 3178186001973827 r009 Im(z^3+c),c=-5/82+8/23*I,n=17 3178186004196389 r005 Im(z^2+c),c=-25/44+13/34*I,n=17 3178186031348323 a001 1/2207*(1/2*5^(1/2)+1/2)^21*3^(23/24) 3178186038363342 r009 Im(z^3+c),c=-5/82+8/23*I,n=14 3178186039524568 r005 Re(z^2+c),c=6/29+22/53*I,n=4 3178186042238470 a007 Real Root Of -297*x^4-977*x^3-169*x^2-12*x+607 3178186047152812 r009 Im(z^3+c),c=-29/60+7/41*I,n=58 3178186050643514 r005 Im(z^2+c),c=-43/110+13/24*I,n=47 3178186081945522 a007 Real Root Of 767*x^4+943*x^3+493*x^2-839*x-294 3178186086876803 a001 1597*18^(5/21) 3178186088361497 l006 ln(6300/8657) 3178186094070913 m005 (1/2*exp(1)-4/7)/(7/8*exp(1)+1/10) 3178186096732636 l006 ln(315/7561) 3178186100035104 m002 -Pi/2+Pi^6/3-ProductLog[Pi] 3178186104607741 m001 Pi/Psi(1,1/3)+gamma/Zeta(1,-1) 3178186108035101 m001 CareFree-ln(5)*HardyLittlewoodC3 3178186108852453 m001 (Chi(1)-Si(Pi))/(-ln(2+3^(1/2))+GAMMA(17/24)) 3178186131492393 a007 Real Root Of 195*x^4+255*x^3-976*x^2+431*x-481 3178186136434368 r005 Im(z^2+c),c=-4/21+29/62*I,n=43 3178186141223792 r002 15th iterates of z^2 + 3178186148238085 r005 Re(z^2+c),c=-41/98+2/57*I,n=29 3178186151786652 m001 Lehmer/exp(GaussAGM(1,1/sqrt(2)))^2*cos(1)^2 3178186157585829 a007 Real Root Of 873*x^4-811*x^3+756*x^2-213*x-179 3178186164840737 m008 (5/6*Pi^4-3/5)/(1/4*Pi^4+1) 3178186169598814 r009 Im(z^3+c),c=-11/26+7/31*I,n=21 3178186172486768 a007 Real Root Of -43*x^4+959*x^3-819*x^2+491*x+270 3178186180347712 l006 ln(6596/6809) 3178186185881478 b008 Pi+ArcCsc[82/3] 3178186188391522 r009 Re(z^3+c),c=-9/31+2/41*I,n=13 3178186210245872 m001 (Catalan-OneNinth)/(-Otter+ThueMorse) 3178186211392918 r005 Re(z^2+c),c=-21/62+13/29*I,n=25 3178186228925006 r005 Re(z^2+c),c=9/46+25/61*I,n=14 3178186237162318 r005 Re(z^2+c),c=2/7+5/52*I,n=24 3178186238760815 a007 Real Root Of 729*x^4+122*x^3+484*x^2+124*x-13 3178186240119186 m005 (3/5*Pi-1/4)/(1/4*gamma+5) 3178186245509374 r002 20th iterates of z^2 + 3178186248116959 m001 Sarnak^LambertW(1)*Sarnak^Psi(1,1/3) 3178186252136335 r009 Im(z^3+c),c=-59/114+3/16*I,n=38 3178186253101710 r009 Im(z^3+c),c=-27/74+14/53*I,n=9 3178186255687775 m001 (2^(1/3)-ln(2)/ln(10))/(3^(1/2)+GAMMA(17/24)) 3178186272563992 a007 Real Root Of 284*x^4+635*x^3-840*x^2+264*x+733 3178186296707275 b008 Pi+3*FresnelS[2/7] 3178186307355038 m005 (-1/8+1/4*5^(1/2))/(7/9*gamma+11/12) 3178186312337228 b008 BesselJ[0,2+7*E] 3178186313237800 m001 (Tribonacci+ZetaP(2))/(exp(1/exp(1))-Sarnak) 3178186315610567 a001 4/55*63245986^(7/15) 3178186318780962 a007 Real Root Of 351*x^4+925*x^3-711*x^2-403*x-216 3178186320249578 r005 Im(z^2+c),c=9/40+7/31*I,n=18 3178186328067691 r005 Re(z^2+c),c=-27/62+11/41*I,n=2 3178186328870200 r005 Im(z^2+c),c=-69/98+1/50*I,n=27 3178186339202866 b008 ArcSech[-1/4+EulerGamma^2] 3178186340133783 m002 -3/Pi^5+Pi+ProductLog[Pi]/E^Pi 3178186348722593 r005 Im(z^2+c),c=-43/114+19/39*I,n=16 3178186355585876 k002 Champernowne real with 61/2*n^2-89/2*n+45 3178186360515791 r009 Re(z^3+c),c=-9/31+2/41*I,n=14 3178186360898531 m005 (1/2*5^(1/2)-1/11)/(3/8*Catalan-2/3) 3178186411208920 m001 ln(GAMMA(2/3))^2*Si(Pi)^2*Zeta(7) 3178186412328535 a009 19^(1/2)/(10^(1/4)-7^(2/3))^(1/2) 3178186423137377 r002 3th iterates of z^2 + 3178186427009882 a008 Real Root of x^4-2*x^3-8*x^2+8*x-60 3178186428044267 a007 Real Root Of -320*x^4-769*x^3+680*x^2-603*x-823 3178186428065838 m005 (1/2*gamma+1/8)/(3/5*3^(1/2)-10/11) 3178186428664928 a007 Real Root Of 201*x^4+502*x^3-373*x^2-59*x-812 3178186429576133 m001 (MertensB2-Niven)/(Riemann2ndZero+ZetaP(4)) 3178186430796742 r009 Re(z^3+c),c=-9/31+2/41*I,n=15 3178186448343602 r005 Im(z^2+c),c=23/70+11/36*I,n=6 3178186450022664 a007 Real Root Of 382*x^4-762*x^3-150*x^2-970*x+344 3178186454000027 r009 Re(z^3+c),c=-9/31+2/41*I,n=16 3178186454253982 a007 Real Root Of -373*x^4+348*x^3+104*x^2+311*x-10 3178186460304181 r009 Re(z^3+c),c=-9/31+2/41*I,n=17 3178186461570004 r009 Re(z^3+c),c=-9/31+2/41*I,n=26 3178186461570016 r009 Re(z^3+c),c=-9/31+2/41*I,n=27 3178186461570029 r009 Re(z^3+c),c=-9/31+2/41*I,n=28 3178186461570036 r009 Re(z^3+c),c=-9/31+2/41*I,n=29 3178186461570038 r009 Re(z^3+c),c=-9/31+2/41*I,n=30 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=31 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=32 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=41 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=42 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=40 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=43 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=44 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=45 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=46 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=47 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=55 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=56 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=57 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=58 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=59 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=60 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=61 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=64 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=62 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=63 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=54 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=53 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=52 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=51 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=50 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=49 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=48 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=39 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=38 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=37 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=36 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=35 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=34 3178186461570039 r009 Re(z^3+c),c=-9/31+2/41*I,n=33 3178186461570071 r009 Re(z^3+c),c=-9/31+2/41*I,n=25 3178186461570572 r009 Re(z^3+c),c=-9/31+2/41*I,n=24 3178186461572769 r009 Re(z^3+c),c=-9/31+2/41*I,n=23 3178186461580379 r009 Re(z^3+c),c=-9/31+2/41*I,n=22 3178186461602151 r009 Re(z^3+c),c=-9/31+2/41*I,n=21 3178186461602757 r009 Re(z^3+c),c=-9/31+2/41*I,n=18 3178186461651282 r009 Re(z^3+c),c=-9/31+2/41*I,n=20 3178186461716542 r009 Re(z^3+c),c=-9/31+2/41*I,n=19 3178186464576413 m005 (1/2*gamma-1/10)/(2/7*Zeta(3)+1/4) 3178186467885559 r005 Im(z^2+c),c=-45/58+8/39*I,n=8 3178186472510000 l006 ln(3007/4132) 3178186472851866 a001 1364/514229*6557470319842^(17/24) 3178186476836996 r005 Im(z^2+c),c=7/44+25/46*I,n=22 3178186480683540 a003 sin(Pi*7/61)*sin(Pi*5/14) 3178186486748294 a007 Real Root Of 231*x^4+453*x^3-796*x^2+217*x-296 3178186496260850 m002 Pi^5+Cosh[Pi]/E^Pi+Pi^2*Log[Pi] 3178186506586013 m001 Weierstrass*(Gompertz-gamma(1)) 3178186509607611 m005 (1/2*5^(1/2)-8/11)/(9/11*5^(1/2)-3/5) 3178186517935216 l006 ln(314/7537) 3178186526317311 r005 Im(z^2+c),c=-17/50+25/53*I,n=14 3178186526382564 m001 (-GAMMA(17/24)+Lehmer)/(GAMMA(2/3)-exp(Pi)) 3178186542997820 a007 Real Root Of 191*x^4+460*x^3-615*x^2-179*x+923 3178186547269797 m005 (1/3*5^(1/2)-1/4)/(5/7*Zeta(3)+7/10) 3178186548335739 r009 Im(z^3+c),c=-23/94+11/35*I,n=14 3178186551374655 r005 Re(z^2+c),c=-2/7+19/34*I,n=43 3178186560672512 m005 (5*Catalan-1/3)/(4*Catalan-5) 3178186568052422 a001 2889/305*63245986^(17/24) 3178186568232405 a007 Real Root Of -818*x^4+634*x^3+798*x^2+684*x-310 3178186570088231 m001 ZetaQ(3)^Zeta(1/2)*Pi 3178186580753057 m001 cos(Pi/5)^2*PrimesInBinary^2*ln(sin(Pi/5))^2 3178186583184776 m005 (1/2*5^(1/2)+4)/(7/12*3^(1/2)+3/5) 3178186587326518 m001 CareFree/exp(Conway)/BesselK(1,1) 3178186588642538 a001 1/5778*(1/2*5^(1/2)+1/2)^23*3^(23/24) 3178186591269336 m001 BesselJ(1,1)^2*exp(Sierpinski)^2*cos(Pi/12)^2 3178186610886636 m001 1/ln(sin(1))^2*Riemann1stZero*sin(Pi/12)^2 3178186616231985 m005 (1/2*2^(1/2)-7/8)/(27/14+3/2*5^(1/2)) 3178186634882251 a007 Real Root Of -869*x^4+641*x^3-183*x^2+554*x+224 3178186646550025 r009 Re(z^3+c),c=-17/50+45/62*I,n=46 3178186648636439 a001 9227465/199*521^(4/13) 3178186654251092 m001 (1-sin(1/5*Pi))/(-LandauRamanujan2nd+ZetaP(2)) 3178186658936975 p001 sum(1/(167*n+32)/(10^n),n=0..infinity) 3178186666402020 r005 Im(z^2+c),c=-77/64+2/37*I,n=15 3178186668871172 r002 22th iterates of z^2 + 3178186669937323 a007 Real Root Of -834*x^4+212*x^3-160*x^2+310*x+130 3178186669950685 a001 1/15127*(1/2*5^(1/2)+1/2)^25*3^(23/24) 3178186672769270 m006 (2*exp(2*Pi)+3/5)/(1/5*Pi-4) 3178186681813384 a001 1/39603*(1/2*5^(1/2)+1/2)^27*3^(23/24) 3178186683839775 a001 (1/2*5^(1/2)+1/2)^5*3^(23/24) 3178186684613787 a001 1/64079*(1/2*5^(1/2)+1/2)^28*3^(23/24) 3178186689144935 a001 1/24476*(1/2*5^(1/2)+1/2)^26*3^(23/24) 3178186692162656 r005 Im(z^2+c),c=-95/106+1/41*I,n=30 3178186712549799 a007 Real Root Of 49*x^4+85*x^3-75*x^2+354*x-388 3178186720201885 a001 1/9349*(1/2*5^(1/2)+1/2)^24*3^(23/24) 3178186735584146 s002 sum(A261987[n]/((2^n+1)/n),n=1..infinity) 3178186738178540 a007 Real Root Of 694*x^4+596*x^3+74*x^2-858*x+239 3178186738790078 m001 (Trott2nd+ZetaQ(3))/(ArtinRank2+TreeGrowth2nd) 3178186771552655 r009 Im(z^3+c),c=-5/82+8/23*I,n=12 3178186778155742 h001 (7/9*exp(2)+2/7)/(1/6*exp(2)+2/3) 3178186787679444 m001 1/3*cos(Pi/12)^exp(1/Pi) 3178186790697103 m001 1/2*(1/3)^ThueMorse 3178186798477553 m001 (-LaplaceLimit+ZetaQ(2))/(1+Catalan) 3178186801662248 r005 Im(z^2+c),c=25/74+7/51*I,n=22 3178186806731489 r005 Re(z^2+c),c=-37/122+25/44*I,n=16 3178186837990193 m001 (Tetranacci+ZetaQ(3))/(Khinchin+Magata) 3178186853502433 m001 (cos(1/5*Pi)-sin(1))/(Zeta(1,-1)+KhinchinLevy) 3178186856452141 r005 Re(z^2+c),c=-13/36+24/61*I,n=30 3178186863276814 a007 Real Root Of -18*x^4-576*x^3-114*x^2+330*x-408 3178186870441125 q001 915/2879 3178186872236961 r009 Re(z^3+c),c=-43/90+12/31*I,n=33 3178186878631213 r002 5th iterates of z^2 + 3178186884317917 r005 Re(z^2+c),c=-41/98+2/57*I,n=31 3178186891728062 r009 Re(z^3+c),c=-21/44+21/52*I,n=60 3178186895019686 l006 ln(5728/7871) 3178186899360423 r001 2i'th iterates of 2*x^2-1 of 3178186908695675 p002 log(15^(10/9)+3^(6/5)) 3178186933069403 a001 1/3571*(1/2*5^(1/2)+1/2)^22*3^(23/24) 3178186935182769 r005 Re(z^2+c),c=-37/82+12/47*I,n=7 3178186939483082 m001 1/Rabbit*ln(Conway)/sinh(1) 3178186941829007 l006 ln(313/7513) 3178186954902019 a007 Real Root Of 90*x^4+261*x^3-256*x^2-629*x-217 3178186955947747 r005 Im(z^2+c),c=-15/29+25/51*I,n=59 3178186968906304 a007 Real Root Of -318*x^4-79*x^3+564*x^2+899*x+28 3178186974146588 m005 (1/2*5^(1/2)+6/11)/(5/7*gamma+1/9) 3178186980093556 m001 (cos(1)+FeigenbaumMu)/(GlaisherKinkelin+Trott) 3178186996718229 m005 (1/3*Pi-3/5)/(9/11*2^(1/2)+1/4) 3178187026032275 r009 Re(z^3+c),c=-33/86+10/39*I,n=26 3178187029330508 r009 Im(z^3+c),c=-11/114+48/59*I,n=60 3178187037487423 r005 Im(z^2+c),c=-2/29+26/63*I,n=13 3178187044073006 m001 1/GAMMA(5/12)*ln(Paris)*cos(1)^2 3178187045674641 a007 Real Root Of 599*x^4-587*x^3+881*x^2-758*x-25 3178187071573188 r005 Im(z^2+c),c=-21/40+24/43*I,n=19 3178187073807055 m001 (GAMMA(11/12)+Trott2nd)/(1-cos(1/12*Pi)) 3178187075072781 a007 Real Root Of -428*x^4-995*x^3+932*x^2-914*x-593 3178187075623652 m005 (1/2*gamma+4/5)/(11/12*Pi+6/11) 3178187076804987 a007 Real Root Of 285*x^4+674*x^3-908*x^2-487*x+183 3178187078159136 m001 exp(1)^2*ln(Riemann2ndZero)/sin(1)^2 3178187080831019 m001 Pi*(1-Zeta(3)*gamma(2)) 3178187084265553 a005 (1/cos(34/193*Pi))^292 3178187087653006 m001 (StronglyCareFree-exp(1/Pi))^(5^(1/2)) 3178187089209767 s002 sum(A134799[n]/(n^3*pi^n+1),n=1..infinity) 3178187090283091 r005 Im(z^2+c),c=-5/23+11/23*I,n=29 3178187105489419 r009 Re(z^3+c),c=-3/110+43/63*I,n=9 3178187106935473 m001 (gamma(1)-FeigenbaumB)/(OneNinth-Otter) 3178187119830831 r005 Im(z^2+c),c=-81/110+7/60*I,n=19 3178187130735806 a001 3571/7778742049*20365011074^(21/22) 3178187130744394 a001 3571/317811*514229^(21/22) 3178187131589964 r005 Im(z^2+c),c=-23/86+18/37*I,n=20 3178187139536978 s002 sum(A075899[n]/(n^3*pi^n+1),n=1..infinity) 3178187140474311 m001 (sin(1/5*Pi)+exp(-1/2*Pi))/(Otter-ZetaP(2)) 3178187142300858 a007 Real Root Of -720*x^4+71*x^3-481*x^2+830*x+322 3178187145937572 r009 Re(z^3+c),c=-11/26+16/33*I,n=10 3178187160536026 a005 (1/sin(87/199*Pi))^59 3178187161233548 m001 2*Pi/GAMMA(5/6)-GAMMA(11/12)-MertensB3 3178187166049823 m001 (FeigenbaumKappa+Salem)/(gamma+Ei(1,1)) 3178187168620884 m009 (5/2*Pi^2+1/5)/(4/5*Psi(1,1/3)-1/4) 3178187179795305 r005 Re(z^2+c),c=23/122+13/22*I,n=19 3178187184683783 r005 Im(z^2+c),c=-5/8+125/188*I,n=4 3178187197477546 a005 (1/sin(80/179*Pi))^1237 3178187201302986 r009 Re(z^3+c),c=-43/122+13/64*I,n=11 3178187206719789 a007 Real Root Of 662*x^4+27*x^3+317*x^2-746*x-275 3178187211298889 r005 Re(z^2+c),c=-37/110+27/56*I,n=32 3178187220035592 r005 Im(z^2+c),c=-23/50+26/53*I,n=33 3178187222831527 r005 Re(z^2+c),c=-39/106+21/38*I,n=42 3178187284051374 a003 cos(Pi*2/97)*cos(Pi*25/63) 3178187289104781 r005 Re(z^2+c),c=-41/98+2/57*I,n=33 3178187293460736 r005 Re(z^2+c),c=-39/94+4/39*I,n=25 3178187293636144 a007 Real Root Of 73*x^4-23*x^3-420*x^2+999*x-769 3178187322855414 a001 4/591286729879*121393^(13/18) 3178187334094326 r005 Re(z^2+c),c=-13/40+17/31*I,n=46 3178187335196691 r005 Im(z^2+c),c=-37/44+7/41*I,n=10 3178187343603352 a001 9349/20365011074*20365011074^(21/22) 3178187343606564 a001 9349/832040*514229^(21/22) 3178187345007566 a007 Real Root Of 823*x^4-527*x^3-911*x^2-486*x+255 3178187354255091 r005 Im(z^2+c),c=-6/23+23/40*I,n=25 3178187356763769 m006 (4*exp(2*Pi)+5/6)/(3*exp(Pi)-2) 3178187358591886 k002 Champernowne real with 31*n^2-46*n+46 3178187361938674 l006 ln(2721/3739) 3178187366298542 r005 Im(z^2+c),c=-7/58+15/17*I,n=21 3178187366378164 a007 Real Root Of -235*x^4-611*x^3+560*x^2+211*x-624 3178187368439884 l006 ln(312/7489) 3178187369351802 r005 Im(z^2+c),c=-7/24+21/38*I,n=21 3178187374660308 a001 24476/53316291173*20365011074^(21/22) 3178187374662736 a001 24476/2178309*514229^(21/22) 3178187377422583 r005 Im(z^2+c),c=-2/3+79/241*I,n=55 3178187379191457 a001 64079/139583862445*20365011074^(21/22) 3178187379193771 a001 64079/5702887*514229^(21/22) 3178187379852542 a001 167761/365435296162*20365011074^(21/22) 3178187379854840 a001 167761/14930352*514229^(21/22) 3178187379948994 a001 439204/956722026041*20365011074^(21/22) 3178187379951288 a001 439204/39088169*514229^(21/22) 3178187379956952 r002 55th iterates of z^2 + 3178187379963066 a001 1149851/2504730781961*20365011074^(21/22) 3178187379965119 a001 3010349/6557470319842*20365011074^(21/22) 3178187379965360 a001 1149851/102334155*514229^(21/22) 3178187379965603 a001 1/2178309*20365011074^(21/22) 3178187379966388 a001 1860498/4052739537881*20365011074^(21/22) 3178187379967413 a001 3010349/267914296*514229^(21/22) 3178187379967713 a001 39604/3524667*514229^(21/22) 3178187379967756 a001 20633239/1836311903*514229^(21/22) 3178187379967763 a001 54018521/4807526976*514229^(21/22) 3178187379967764 a001 141422324/12586269025*514229^(21/22) 3178187379967764 a001 370248451/32951280099*514229^(21/22) 3178187379967764 a001 969323029/86267571272*514229^(21/22) 3178187379967764 a001 2537720636/225851433717*514229^(21/22) 3178187379967764 a001 6643838879/591286729879*514229^(21/22) 3178187379967764 a001 17393796001/1548008755920*514229^(21/22) 3178187379967764 a001 45537549124/4052739537881*514229^(21/22) 3178187379967764 a001 119218851371/10610209857723*514229^(21/22) 3178187379967764 a001 73681302247/6557470319842*514229^(21/22) 3178187379967764 a001 28143753123/2504730781961*514229^(21/22) 3178187379967764 a001 10749957122/956722026041*514229^(21/22) 3178187379967764 a001 4106118243/365435296162*514229^(21/22) 3178187379967764 a001 1568397607/139583862445*514229^(21/22) 3178187379967764 a001 599074578/53316291173*514229^(21/22) 3178187379967764 a001 228826127/20365011074*514229^(21/22) 3178187379967764 a001 87403803/7778742049*514229^(21/22) 3178187379967767 a001 33385282/2971215073*514229^(21/22) 3178187379967783 a001 12752043/1134903170*514229^(21/22) 3178187379967898 a001 4870847/433494437*514229^(21/22) 3178187379968682 a001 1860498/165580141*514229^(21/22) 3178187379971763 a001 710647/1548008755920*20365011074^(21/22) 3178187379974057 a001 710647/63245986*514229^(21/22) 3178187380008604 a001 271443/591286729879*20365011074^(21/22) 3178187380010897 a001 271443/24157817*514229^(21/22) 3178187380261116 a001 103682/225851433717*20365011074^(21/22) 3178187380263403 a001 103682/9227465*514229^(21/22) 3178187381540480 r005 Im(z^2+c),c=21/82+9/46*I,n=21 3178187381991861 a001 39603/86267571272*20365011074^(21/22) 3178187381994104 a001 39603/3524578*514229^(21/22) 3178187393854562 a001 15127/32951280099*20365011074^(21/22) 3178187393856506 a001 15127/1346269*514229^(21/22) 3178187397166695 a007 Real Root Of 195*x^4+353*x^3-809*x^2+256*x+422 3178187399228641 m005 (1/2*Catalan-2/9)/(-47/120+5/24*5^(1/2)) 3178187404356465 a007 Real Root Of -322*x^4-930*x^3+393*x^2+567*x+830 3178187413051586 m001 exp(GAMMA(2/3))^2/GAMMA(11/12)*sqrt(5) 3178187418256967 r005 Im(z^2+c),c=-18/29+3/50*I,n=38 3178187418387754 r005 Re(z^2+c),c=-37/90+4/29*I,n=14 3178187428421977 a001 13/9349*3571^(52/55) 3178187428708852 r009 Re(z^3+c),c=-45/94+29/63*I,n=54 3178187436502271 a001 28143753123/233*46368^(7/23) 3178187436592251 a001 969323029/233*2971215073^(7/23) 3178187452520626 g001 abs(Psi(-107/24+I*5/2)) 3178187453338480 m001 (-Cahen+ThueMorse)/(BesselJ(0,1)-Chi(1)) 3178187466054285 m001 (ZetaP(4)-ZetaQ(4))/(arctan(1/3)-FeigenbaumD) 3178187475162620 a001 5778/514229*514229^(21/22) 3178187475162730 a001 5778/12586269025*20365011074^(21/22) 3178187479619290 a001 1/89*46368^(3/31) 3178187481387346 m006 (3/4*ln(Pi)-4)/(3/5*exp(Pi)-4) 3178187482368485 r005 Im(z^2+c),c=39/122+5/44*I,n=58 3178187482447671 m001 (-Gompertz+KomornikLoreti)/(Si(Pi)+Ei(1)) 3178187484342159 p001 sum((-1)^n/(453*n+50)/n/(6^n),n=1..infinity) 3178187491049137 r005 Im(z^2+c),c=-9/110+23/55*I,n=35 3178187493452425 r005 Re(z^2+c),c=-41/98+2/57*I,n=35 3178187509978410 a001 1/567451585*21^(19/20) 3178187532393509 m001 exp(MinimumGamma)*FeigenbaumAlpha^2*Salem 3178187542502569 r009 Re(z^3+c),c=-7/24+1/18*I,n=9 3178187545892740 a001 2178309/1364*18^(5/21) 3178187546111274 a007 Real Root Of 59*x^4+23*x^3-278*x^2+787*x+28 3178187549291008 a001 14930352/199*521^(3/13) 3178187550935022 r005 Im(z^2+c),c=-7/31+14/29*I,n=61 3178187551451432 a001 55/322*2^(43/48) 3178187565077472 a007 Real Root Of -868*x^4+966*x^3-742*x^2+869*x+391 3178187572954343 a003 sin(Pi*5/72)/cos(Pi*17/65) 3178187575599870 a001 1/610*233^(31/57) 3178187578628425 m001 (exp(Pi)+gamma)/(-Backhouse+Rabbit) 3178187585700824 m001 (Chi(1)+Zeta(5))/(-GAMMA(2/3)+LandauRamanujan) 3178187591144699 r005 Re(z^2+c),c=-41/98+2/57*I,n=37 3178187593453486 m001 (Lehmer-ZetaQ(4))/(Cahen-FeigenbaumAlpha) 3178187604163400 m003 Cos[1/2+Sqrt[5]/2]/3+(3*Sec[1/2+Sqrt[5]/2])/2 3178187611240449 m005 (1/3*Catalan-1/11)/(4*3^(1/2)-2/11) 3178187620888775 m001 5^(1/2)*FeigenbaumB+ln(2+3^(1/2)) 3178187625936191 s002 sum(A189114[n]/(n^2*2^n+1),n=1..infinity) 3178187627793706 a001 13/64079*64079^(48/55) 3178187636064005 r005 Re(z^2+c),c=-41/98+2/57*I,n=39 3178187638616083 r005 Re(z^2+c),c=-47/102+11/41*I,n=7 3178187640778023 m001 polylog(4,1/2)*Ei(1,1)^Tribonacci 3178187651765070 a007 Real Root Of -9*x^4+163*x^3-397*x^2+37*x-422 3178187656103230 r005 Re(z^2+c),c=-41/98+2/57*I,n=41 3178187659118207 r009 Re(z^3+c),c=-1/38+12/17*I,n=15 3178187660355677 r005 Im(z^2+c),c=-79/78+9/32*I,n=27 3178187661573485 m005 (37/36+1/4*5^(1/2))/(1/8*gamma-4/7) 3178187664227353 m001 FeigenbaumDelta/(MertensB3^Totient) 3178187664822764 r005 Re(z^2+c),c=-41/98+2/57*I,n=43 3178187668535492 r005 Re(z^2+c),c=-41/98+2/57*I,n=45 3178187670085555 r005 Re(z^2+c),c=-41/98+2/57*I,n=47 3178187670720790 r005 Re(z^2+c),c=-41/98+2/57*I,n=49 3178187670976417 r005 Re(z^2+c),c=-41/98+2/57*I,n=51 3178187671077394 r005 Re(z^2+c),c=-41/98+2/57*I,n=53 3178187671116509 r005 Re(z^2+c),c=-41/98+2/57*I,n=55 3178187671131337 r005 Re(z^2+c),c=-41/98+2/57*I,n=57 3178187671136822 r005 Re(z^2+c),c=-41/98+2/57*I,n=59 3178187671138791 r005 Re(z^2+c),c=-41/98+2/57*I,n=61 3178187671139471 r005 Re(z^2+c),c=-41/98+2/57*I,n=63 3178187671139943 r005 Re(z^2+c),c=-41/98+2/57*I,n=64 3178187671140335 r005 Re(z^2+c),c=-41/98+2/57*I,n=62 3178187671141499 r005 Re(z^2+c),c=-41/98+2/57*I,n=60 3178187671144799 r005 Re(z^2+c),c=-41/98+2/57*I,n=58 3178187671153847 r005 Re(z^2+c),c=-41/98+2/57*I,n=56 3178187671178000 r005 Re(z^2+c),c=-41/98+2/57*I,n=54 3178187671241006 r005 Re(z^2+c),c=-41/98+2/57*I,n=52 3178187671402049 r005 Re(z^2+c),c=-41/98+2/57*I,n=50 3178187671805938 r005 Re(z^2+c),c=-41/98+2/57*I,n=48 3178187672800505 r005 Re(z^2+c),c=-41/98+2/57*I,n=46 3178187675205153 r005 Re(z^2+c),c=-41/98+2/57*I,n=44 3178187677225409 m005 (1/3*3^(1/2)-1/5)/(2/5*exp(1)+1/10) 3178187680909487 r005 Re(z^2+c),c=-41/98+2/57*I,n=42 3178187682861987 a001 20633239/610*610^(17/24) 3178187683464603 m001 ReciprocalLucas^cos(1/12*Pi)+2^(1/3) 3178187687190838 a007 Real Root Of -266*x^4-603*x^3+734*x^2-104*x+37 3178187688744236 m001 (Psi(1,1/3)-exp(Pi))/(ArtinRank2+Magata) 3178187692220628 r004 Im(z^2+c),c=-1/38+7/18*I,z(0)=I,n=16 3178187694166232 r005 Re(z^2+c),c=-41/98+2/57*I,n=40 3178187695203226 r005 Re(z^2+c),c=9/86+14/55*I,n=15 3178187700764919 m001 GAMMA(23/24)/exp(Artin)^2*cos(Pi/5)^2 3178187701261675 a007 Real Root Of 15*x^4-64*x^3-345*x^2+203*x+545 3178187702655644 m001 (-Mills+Stephens)/(Chi(1)-Zeta(1/2)) 3178187723619781 r009 Re(z^3+c),c=-1/78+49/64*I,n=25 3178187724270563 r005 Re(z^2+c),c=-41/98+2/57*I,n=38 3178187728737083 m001 1/GAMMA(1/24)/ln((3^(1/3)))^2 3178187728919057 r009 Re(z^3+c),c=-33/58+11/29*I,n=3 3178187757109392 r005 Re(z^2+c),c=-23/74+13/24*I,n=52 3178187759027649 r005 Re(z^2+c),c=-47/114+7/33*I,n=9 3178187770857369 r005 Im(z^2+c),c=-7/94+17/41*I,n=28 3178187772360196 p004 log(17909/13033) 3178187776723059 r005 Re(z^2+c),c=37/102+8/29*I,n=50 3178187781715201 m001 1/FeigenbaumD^2/Paris^2/ln(cos(Pi/5))^2 3178187790261970 a007 Real Root Of -341*x^4-962*x^3+500*x^2+643*x+902 3178187790794513 r005 Re(z^2+c),c=-41/98+2/57*I,n=36 3178187797794056 l006 ln(311/7465) 3178187809115350 r005 Im(z^2+c),c=-11/12+19/79*I,n=35 3178187811664466 h001 (-3*exp(4)-11)/(-10*exp(4)-4) 3178187820244269 r005 Re(z^2+c),c=-7/6+49/230*I,n=4 3178187827044891 q001 1154/3631 3178187834982313 r005 Im(z^2+c),c=-17/74+31/64*I,n=51 3178187835888106 s002 sum(A123757[n]/(n^2*exp(n)+1),n=1..infinity) 3178187839843511 m001 (OneNinth-Trott)/(FeigenbaumAlpha+Landau) 3178187840929137 a007 Real Root Of -265*x^4-544*x^3+648*x^2-989*x-115 3178187855398282 r005 Im(z^2+c),c=-17/110+37/59*I,n=15 3178187858359939 m001 1/Niven/ln(GlaisherKinkelin)^2*FeigenbaumC^2 3178187872081569 r009 Im(z^3+c),c=-5/22+51/56*I,n=6 3178187878203855 r005 Im(z^2+c),c=19/78+5/24*I,n=31 3178187880657028 l006 ln(5156/7085) 3178187885316622 r005 Re(z^2+c),c=-9/74+37/61*I,n=20 3178187896556443 m008 (2/5*Pi^3-4)/(3/4*Pi-5) 3178187916130833 m001 (cos(1)-sin(1/12*Pi))/(-MinimumGamma+Stephens) 3178187926641586 r005 Im(z^2+c),c=-11/102+7/15*I,n=9 3178187931870148 a001 3571/1346269*6557470319842^(17/24) 3178187932881818 r005 Re(z^2+c),c=-41/98+2/57*I,n=34 3178187933417891 r005 Re(z^2+c),c=-3/14+34/57*I,n=28 3178187936717209 a001 843*21^(17/39) 3178187937832839 m005 (1/2*2^(1/2)-4/11)/(3/7*gamma+5/6) 3178187942282925 r002 30th iterates of z^2 + 3178187943994647 r002 18th iterates of z^2 + 3178187945759614 a001 15127/1597*63245986^(17/24) 3178187951351857 a001 13/3571*5778^(43/55) 3178187955092514 g007 2*Psi(2,5/9)-Psi(13/10)-Psi(2,3/4) 3178187960838981 b008 Pi+ArcCot[8*(2+Sqrt[2])] 3178187963186937 m001 1/2*(ln(2)/ln(10)+ZetaR(2))*2^(1/2) 3178187970309782 p004 log(37277/1553) 3178187971389848 r002 8th iterates of z^2 + 3178187982371687 r005 Re(z^2+c),c=-13/102+5/11*I,n=2 3178187985681498 m001 1/ln(Zeta(9))^2/GAMMA(2/3)/gamma 3178188032443017 a001 2207/196418*514229^(21/22) 3178188032457198 a001 2207/4807526976*20365011074^(21/22) 3178188035130565 m001 (Psi(1,1/3)-Zeta(5))/(-ln(2^(1/2)+1)+Gompertz) 3178188039468665 m001 gamma(3)^(LandauRamanujan2nd/Pi) 3178188054412023 a008 Real Root of (-5+x+3*x^2+5*x^3-5*x^4-2*x^5) 3178188059489169 a007 Real Root Of 308*x^4+946*x^3-94*x^2-5*x-122 3178188060243583 a001 18/28657*4181^(7/36) 3178188060506117 a001 141/46*521^(23/31) 3178188066729299 m001 (FellerTornier-Niven)/(Zeta(5)-BesselK(1,1)) 3178188070657433 a007 Real Root Of 167*x^4+365*x^3-637*x^2-191*x+506 3178188071249074 r009 Re(z^3+c),c=-3/8+15/62*I,n=21 3178188079007379 m005 (1/2+1/6*5^(1/2))/(3/11*2^(1/2)-1/9) 3178188079651089 m003 19/6+Sqrt[5]/(256*ProductLog[1/2+Sqrt[5]/2]) 3178188083631225 r009 Re(z^3+c),c=-3/8+15/62*I,n=24 3178188086464707 r008 a(0)=1,K{-n^6,1-5*n^3+2*n} 3178188088974196 a007 Real Root Of -215*x^4-433*x^3+810*x^2-134*x-572 3178188105080419 r002 21th iterates of z^2 + 3178188109096064 m002 -Cosh[Pi]-Pi^5*Coth[Pi]+ProductLog[Pi]/Log[Pi] 3178188112761639 r005 Im(z^2+c),c=-25/27+1/36*I,n=6 3178188122127023 m005 (1/3*3^(1/2)+2/3)/(1/4*Zeta(3)+1/11) 3178188125380508 m005 (1/2*2^(1/2)-5/12)/(4/5*5^(1/2)-7/8) 3178188127093308 r009 Im(z^3+c),c=-59/98+30/47*I,n=19 3178188131813236 a001 3571/5*10946^(28/31) 3178188142178497 m001 (Psi(1,1/3)+2^(1/2))/(Grothendieck+Tribonacci) 3178188144738046 a001 9349/3524578*6557470319842^(17/24) 3178188145542062 a007 Real Root Of -171*x^4-311*x^3+669*x^2-395*x-550 3178188146764490 a001 39603/4181*63245986^(17/24) 3178188151495551 g005 GAMMA(4/9)*GAMMA(5/7)/GAMMA(5/11)/GAMMA(2/9) 3178188169200147 r005 Re(z^2+c),c=-19/52+22/59*I,n=17 3178188175795054 a001 24476/9227465*6557470319842^(17/24) 3178188176090708 a001 51841/5473*63245986^(17/24) 3178188180326210 a001 64079/24157817*6557470319842^(17/24) 3178188180369346 a001 271443/28657*63245986^(17/24) 3178188180987297 a001 167761/63245986*6557470319842^(17/24) 3178188180993591 a001 710647/75025*63245986^(17/24) 3178188181083749 a001 439204/165580141*6557470319842^(17/24) 3178188181084667 a001 930249/98209*63245986^(17/24) 3178188181097821 a001 1149851/433494437*6557470319842^(17/24) 3178188181097955 a001 4870847/514229*63245986^(17/24) 3178188181099874 a001 3010349/1134903170*6557470319842^(17/24) 3178188181099893 a001 12752043/1346269*63245986^(17/24) 3178188181100173 a001 7881196/2971215073*6557470319842^(17/24) 3178188181100176 a001 16692641/1762289*63245986^(17/24) 3178188181100217 a001 20633239/7778742049*6557470319842^(17/24) 3178188181100217 a001 87403803/9227465*63245986^(17/24) 3178188181100223 a001 54018521/20365011074*6557470319842^(17/24) 3178188181100223 a001 228826127/24157817*63245986^(17/24) 3178188181100224 a001 141422324/53316291173*6557470319842^(17/24) 3178188181100224 a001 299537289/31622993*63245986^(17/24) 3178188181100224 a001 370248451/139583862445*6557470319842^(17/24) 3178188181100224 a001 969323029/365435296162*6557470319842^(17/24) 3178188181100224 a001 2537720636/956722026041*6557470319842^(17/24) 3178188181100224 a001 6643838879/2504730781961*6557470319842^(17/24) 3178188181100224 a001 9381251041/3536736619241*6557470319842^(17/24) 3178188181100224 a001 1368706081/516002918640*6557470319842^(17/24) 3178188181100224 a001 1568397607/591286729879*6557470319842^(17/24) 3178188181100224 a001 710646/267913919*6557470319842^(17/24) 3178188181100224 a001 228826127/86267571272*6557470319842^(17/24) 3178188181100224 a001 1568397607/165580141*63245986^(17/24) 3178188181100224 a001 4106118243/433494437*63245986^(17/24) 3178188181100224 a001 5374978561/567451585*63245986^(17/24) 3178188181100224 a001 28143753123/2971215073*63245986^(17/24) 3178188181100224 a001 73681302247/7778742049*63245986^(17/24) 3178188181100224 a001 96450076809/10182505537*63245986^(17/24) 3178188181100224 a001 505019158607/53316291173*63245986^(17/24) 3178188181100224 a001 1322157322203/139583862445*63245986^(17/24) 3178188181100224 a001 1730726404001/182717648081*63245986^(17/24) 3178188181100224 a001 2139295485799/225851433717*63245986^(17/24) 3178188181100224 a001 204284540899/21566892818*63245986^(17/24) 3178188181100224 a001 312119004989/32951280099*63245986^(17/24) 3178188181100224 a001 119218851371/12586269025*63245986^(17/24) 3178188181100224 a001 11384387281/1201881744*63245986^(17/24) 3178188181100224 a001 17393796001/1836311903*63245986^(17/24) 3178188181100224 a001 6643838879/701408733*63245986^(17/24) 3178188181100225 a001 634430159/66978574*63245986^(17/24) 3178188181100225 a001 969323029/102334155*63245986^(17/24) 3178188181100225 a001 29134601/10983760033*6557470319842^(17/24) 3178188181100225 a001 370248451/39088169*63245986^(17/24) 3178188181100227 a001 35355581/3732588*63245986^(17/24) 3178188181100227 a001 33385282/12586269025*6557470319842^(17/24) 3178188181100243 a001 54018521/5702887*63245986^(17/24) 3178188181100244 a001 4250681/1602508992*6557470319842^(17/24) 3178188181100351 a001 20633239/2178309*63245986^(17/24) 3178188181100358 a001 4870847/1836311903*6557470319842^(17/24) 3178188181101091 a001 1970299/208010*63245986^(17/24) 3178188181101143 a001 620166/233802911*6557470319842^(17/24) 3178188181106167 a001 3010349/317811*63245986^(17/24) 3178188181106518 a001 710647/267914296*6557470319842^(17/24) 3178188181140955 a001 1149851/121393*63245986^(17/24) 3178188181143359 a001 90481/34111385*6557470319842^(17/24) 3178188181379395 a001 109801/11592*63245986^(17/24) 3178188181395871 a001 103682/39088169*6557470319842^(17/24) 3178188183013689 a001 167761/17711*63245986^(17/24) 3178188183126619 a001 13201/4976784*6557470319842^(17/24) 3178188187407199 m001 (-Landau+Riemann1stZero)/(BesselI(0,2)-Si(Pi)) 3178188191505193 b008 -6+Sqrt[2]*Erfc[-2] 3178188194215308 a001 64079/6765*63245986^(17/24) 3178188194989341 a001 15127/5702887*6557470319842^(17/24) 3178188201897977 m005 (1/2*Zeta(3)+4)/(1/3*Zeta(3)-6/11) 3178188204900479 m005 (1/2*exp(1)-6/7)/(9/11*5^(1/2)-1/4) 3178188206442151 m001 (-cos(1/12*Pi)+ZetaQ(3))/(cos(1)-sin(1)) 3178188213709666 r005 Im(z^2+c),c=-5/11+17/32*I,n=28 3178188216752419 r005 Re(z^2+c),c=-73/106+18/61*I,n=39 3178188222859131 r005 Re(z^2+c),c=-41/98+2/57*I,n=32 3178188229918069 l006 ln(310/7441) 3178188232247168 m005 (1/2*2^(1/2)-1/3)/(4/5*gamma+5/7) 3178188242484959 r005 Re(z^2+c),c=23/86+5/61*I,n=32 3178188246903541 a007 Real Root Of 564*x^4-969*x^3-851*x^2-858*x+384 3178188247753672 m001 (FeigenbaumB-PlouffeB)/(Salem-ZetaQ(2)) 3178188253611478 a007 Real Root Of -789*x^4-172*x^3+749*x^2+607*x-255 3178188262568480 a007 Real Root Of 149*x^4+57*x^3-410*x^2-512*x-121 3178188266121322 m005 (1/3*2^(1/2)-1/2)/(10/11*gamma+3/8) 3178188270992349 a001 6119/646*63245986^(17/24) 3178188274919059 a005 (1/sin(9/233*Pi))^6 3178188276297643 a001 1926/726103*6557470319842^(17/24) 3178188276760363 m001 1/cos(Pi/12)/ln(GAMMA(7/24))*sin(Pi/5)^2 3178188280373030 r005 Re(z^2+c),c=-3/19+37/55*I,n=36 3178188280389023 r005 Re(z^2+c),c=-21/52+1/5*I,n=24 3178188280848276 a007 Real Root Of -32*x^4+469*x^3-60*x^2+845*x+290 3178188285249916 m005 (1/2*Zeta(3)-2/7)/(1/5*exp(1)-4/9) 3178188286997404 m005 (1/2*2^(1/2)+3/4)/(-37/90+7/18*5^(1/2)) 3178188316677612 p004 log(37181/1549) 3178188326260120 r005 Im(z^2+c),c=3/11+8/41*I,n=8 3178188330184082 r005 Im(z^2+c),c=-7/6+8/195*I,n=40 3178188333027379 m001 (-BesselI(1,2)+1)/(-Pi+5) 3178188335997854 r005 Re(z^2+c),c=-27/58+9/26*I,n=7 3178188336791843 a007 Real Root Of 543*x^4-577*x^3-559*x^2-480*x+222 3178188344410095 m006 (5/6/Pi-3/4)/(3/4*ln(Pi)+2/3) 3178188348653194 m005 (1/3*Pi-1/6)/(7/10*Pi+4/7) 3178188358750062 m005 (1/2*Pi-7/9)/(3/8*3^(1/2)-2/5) 3178188361596895 k004 Champernowne real with floor(Pi*(10*n^2-15*n+15)) 3178188361597896 k002 Champernowne real with 63/2*n^2-95/2*n+47 3178188362682185 r005 Im(z^2+c),c=5/19+29/60*I,n=32 3178188363144758 a007 Real Root Of 115*x^4-244*x^3+656*x^2-971*x+249 3178188363375895 a009 4/(14-2^(1/2)) 3178188363375895 m005 (1/5*2^(1/2)-1/5)/(3/4*2^(1/2)-4/5) 3178188366549889 r009 Im(z^3+c),c=-11/29+8/31*I,n=8 3178188375180145 m001 gamma/BesselK(1,1)/ln(sqrt(3))^2 3178188376834879 m001 1/ln(GAMMA(1/4))/CopelandErdos^2/GAMMA(5/24) 3178188384953699 s002 sum(A073419[n]/(exp(n)-1),n=1..infinity) 3178188391650411 m001 (BesselJ(0,1)-FeigenbaumD)/(Lehmer+Trott) 3178188392085842 a001 1/1364*(1/2*5^(1/2)+1/2)^20*3^(23/24) 3178188398040648 m005 (1/3*5^(1/2)+2/11)/(1/11*Catalan-3/8) 3178188402280393 m001 FellerTornier/(Zeta(5)^PrimesInBinary) 3178188403459489 m005 (1/2*3^(1/2)-3/8)/(1/5*Pi+11/12) 3178188409543766 r009 Re(z^3+c),c=-12/29+19/62*I,n=16 3178188415430149 r005 Re(z^2+c),c=-31/86+17/43*I,n=36 3178188438073642 r004 Im(z^2+c),c=-53/42-5/8*I,z(0)=-1,n=3 3178188442242557 r009 Im(z^3+c),c=-3/56+15/43*I,n=4 3178188445533400 a007 Real Root Of -470*x^4+882*x^3-283*x^2+318*x-96 3178188446388963 a007 Real Root Of -333*x^4-662*x^3+326*x^2+770*x-253 3178188449945847 a001 24157817/199*521^(2/13) 3178188453362673 m001 (Psi(1,1/3)+ln(2)/ln(10))/(-Zeta(5)+Rabbit) 3178188459578157 a008 Real Root of x^2-x-100691 3178188460300791 l006 ln(2435/3346) 3178188466398324 m008 (2/3*Pi^6+3)/(1/5*Pi^2-4) 3178188472727626 m001 1/GAMMA(7/12)^2/LandauRamanujan^2*ln(cosh(1)) 3178188482213756 r002 53th iterates of z^2 + 3178188489832130 r005 Im(z^2+c),c=31/102+4/29*I,n=59 3178188540983606 a001 193869501/610 3178188544536679 m001 (exp(1)+GaussAGM)/(-Porter+Sierpinski) 3178188585722590 m001 1/BesselK(1,1)^2*Niven^2/ln(sqrt(1+sqrt(3)))^2 3178188593458850 r005 Re(z^2+c),c=-5/12+4/51*I,n=17 3178188604360527 m001 Grothendieck/(TreeGrowth2nd^CareFree) 3178188606175227 a007 Real Root Of 916*x^4+440*x^3-310*x^2-441*x+148 3178188616900591 g004 Im(GAMMA(-31/30+I*61/60)) 3178188619084362 m001 (Cahen-sin(1))/(-CareFree+StolarskyHarborth) 3178188622531720 r009 Im(z^3+c),c=-37/58+20/63*I,n=41 3178188627175550 r009 Re(z^3+c),c=-29/56+20/53*I,n=62 3178188630245337 s002 sum(A189114[n]/(n^2*2^n-1),n=1..infinity) 3178188634152013 r009 Re(z^3+c),c=-3/106+21/32*I,n=3 3178188637931984 a008 Real Root of x^4-24*x^2-92*x-152 3178188638631427 p004 log(23029/16759) 3178188643838388 r005 Im(z^2+c),c=-29/70+23/38*I,n=63 3178188645362975 r005 Re(z^2+c),c=-109/82+4/49*I,n=20 3178188650538700 r009 Re(z^3+c),c=-61/114+29/59*I,n=8 3178188657005250 a001 75025/199*1364^(14/15) 3178188664838812 l006 ln(309/7417) 3178188667441594 g007 Psi(2,1/12)-Psi(2,5/11)-Psi(2,5/7)-Psi(2,1/5) 3178188681244986 r005 Im(z^2+c),c=9/32+16/59*I,n=5 3178188687397797 r005 Re(z^2+c),c=-51/122+1/52*I,n=13 3178188692402544 r005 Im(z^2+c),c=-6/23+24/47*I,n=22 3178188693246147 a001 1/45537549124*2^(8/15) 3178188700615019 m005 (1/2*exp(1)+4/7)/(3/7*Catalan-1) 3178188701191513 a007 Real Root Of -236*x^4-366*x^3+939*x^2-838*x+181 3178188722304329 a007 Real Root Of -93*x^4+658*x^3+431*x^2+980*x+290 3178188744879908 m001 exp(-1/2*Pi)+BesselI(1,1)*DuboisRaymond 3178188750019623 m001 (cos(1/12*Pi)+Khinchin)/(Salem-Trott2nd) 3178188753609356 r005 Re(z^2+c),c=35/102+3/23*I,n=31 3178188758204492 r005 Im(z^2+c),c=4/25+5/18*I,n=21 3178188759251774 m001 (Paris-exp(Pi))/(-StolarskyHarborth+ZetaQ(3)) 3178188770732302 a001 121393/199*1364^(13/15) 3178188776275633 r005 Re(z^2+c),c=-41/98+2/57*I,n=30 3178188783912771 r005 Im(z^2+c),c=-39/70+2/35*I,n=59 3178188788540863 r005 Im(z^2+c),c=-39/86+15/44*I,n=3 3178188794188375 a007 Real Root Of -112*x^4-272*x^3+227*x^2-58*x+218 3178188797230117 a001 9349/987*63245986^(17/24) 3178188805229661 r005 Re(z^2+c),c=-1+41/213*I,n=62 3178188805434413 a007 Real Root Of 275*x^4+793*x^3-494*x^2-822*x-223 3178188830090148 r005 Re(z^2+c),c=-29/86+31/51*I,n=52 3178188833057370 m005 (1/2*2^(1/2)+7/9)/(1/11*5^(1/2)-1/4) 3178188833593036 a001 2207/832040*6557470319842^(17/24) 3178188838313981 a007 Real Root Of -152*x^4-136*x^3+858*x^2-975*x-623 3178188840553770 m001 1/exp(GAMMA(1/3))/Riemann1stZero*cos(Pi/5)^2 3178188846386109 m005 (1/3*2^(1/2)-1/2)/(5/11*Zeta(3)-7/11) 3178188860057742 m005 (1/2*exp(1)+2/3)/(2*Pi+1/11) 3178188869469000 r002 13th iterates of z^2 + 3178188871981233 r005 Re(z^2+c),c=5/54+15/19*I,n=4 3178188873696482 r005 Re(z^2+c),c=-31/86+23/57*I,n=16 3178188876403319 m009 (3/5*Psi(1,3/4)-2/3)/(3/8*Pi^2-1) 3178188879726372 m001 (Zeta(1,-1)+GAMMA(5/6))/(Conway-ErdosBorwein) 3178188879842164 a007 Real Root Of 13*x^4+441*x^3+904*x^2+605*x-304 3178188884675030 a001 196418/199*1364^(4/5) 3178188886094079 l006 ln(7019/9645) 3178188892189181 r005 Im(z^2+c),c=33/122+11/61*I,n=31 3178188893032562 a007 Real Root Of 371*x^4+821*x^3-937*x^2+374*x-843 3178188903470472 a007 Real Root Of 61*x^4+45*x^3-342*x^2+340*x-244 3178188908765852 r005 Re(z^2+c),c=-109/94+19/62*I,n=8 3178188910032221 m002 Pi^5+Cosh[Pi]/(2*E^Pi)+Sinh[Pi] 3178188914764016 a007 Real Root Of -934*x^4+921*x^3+720*x^2+350*x-204 3178188920550422 a009 1/12*(3^(2/3)+9^(3/4))*12^(2/3) 3178188931854530 m001 (OneNinth-ZetaQ(4))/(GAMMA(13/24)-Mills) 3178188939117355 a003 sin(Pi*7/38)*sin(Pi*15/76) 3178188949996737 m005 (1/2*Catalan-8/9)/(2/5*Zeta(3)+7/8) 3178188969760068 m001 (BesselI(1,2)-FeigenbaumMu)/(MertensB3-Rabbit) 3178188972470654 m001 (Pi+3^(1/3))/(polylog(4,1/2)-Robbin) 3178188973410094 r002 8th iterates of z^2 + 3178188983298105 r005 Re(z^2+c),c=-29/82+20/47*I,n=26 3178188998535382 a001 317811/199*1364^(11/15) 3178189007027740 m001 MinimumGamma*(GaussAGM+Totient) 3178189029184975 m001 ln(FeigenbaumC)^2*DuboisRaymond^2/TwinPrimes^2 3178189034615820 a001 3571/2178309*233^(31/57) 3178189035655830 r002 4th iterates of z^2 + 3178189043892785 r002 36th iterates of z^2 + 3178189043946194 s002 sum(A049234[n]/(n^2*2^n-1),n=1..infinity) 3178189050105442 a007 Real Root Of 216*x^4+714*x^3+47*x^2+20*x+472 3178189072734553 r009 Im(z^3+c),c=-35/78+4/27*I,n=3 3178189092553683 r002 30th iterates of z^2 + 3178189102583525 l006 ln(308/7393) 3178189109588895 m001 (Psi(1,1/3)-ln(2+3^(1/2)))/(Khinchin+ZetaP(4)) 3178189110565988 r005 Im(z^2+c),c=-7/10+11/250*I,n=12 3178189112273535 l006 ln(4584/6299) 3178189112427205 a001 514229/199*1364^(2/3) 3178189112469029 m001 (GAMMA(13/24)-GAMMA(7/12))/(Landau+Otter) 3178189112826643 r009 Im(z^3+c),c=-61/126+6/37*I,n=23 3178189120912072 a007 Real Root Of 30*x^4+972*x^3+593*x^2+92*x-773 3178189122395940 r005 Re(z^2+c),c=-7/9+5/119*I,n=32 3178189130532389 r005 Re(z^2+c),c=15/52+5/51*I,n=30 3178189132240751 a007 Real Root Of 315*x^4+707*x^3-888*x^2-97*x-781 3178189141877878 a001 54018521/1597*610^(17/24) 3178189144938913 r005 Re(z^2+c),c=-9/19+8/29*I,n=7 3178189149544108 r009 Re(z^3+c),c=-9/31+2/41*I,n=10 3178189153454077 r005 Re(z^2+c),c=-39/98+13/55*I,n=26 3178189154282301 p003 LerchPhi(1/5,2,297/160) 3178189156393893 r008 a(0)=3,K{-n^6,-35+22*n+42*n^2-22*n^3} 3178189159471515 a007 Real Root Of 31*x^4-66*x^3-503*x^2-169*x-738 3178189164804443 m001 (-Paris+QuadraticClass)/(Conway-Shi(1)) 3178189172349456 m001 LambertW(1)*exp(1/2)-exp(sqrt(2)) 3178189175165252 r002 27th iterates of z^2 + 3178189180295042 a007 Real Root Of 572*x^4-477*x^3+312*x^2-451*x-196 3178189184001564 a007 Real Root Of 209*x^4+612*x^3+117*x^2+757*x-453 3178189192447439 a001 1926*6765^(11/19) 3178189199551499 m003 -2+5*Coth[1/2+Sqrt[5]/2]-Tanh[1/2+Sqrt[5]/2]/4 3178189204547338 m001 exp(Robbin)*FransenRobinson^2*(3^(1/3))^2 3178189209346505 m001 5^(1/2)/(FeigenbaumDelta^BesselI(0,1)) 3178189209346505 m001 sqrt(5)/(FeigenbaumDelta^BesselI(0,1)) 3178189218671696 r005 Re(z^2+c),c=-27/74+19/50*I,n=43 3178189226307012 a001 832040/199*1364^(3/5) 3178189245478640 m001 1/Trott^2/Backhouse^2/ln(log(1+sqrt(2))) 3178189249626371 m005 (1/2*exp(1)+1/5)/(3/10*gamma-2/9) 3178189252553960 p004 log(15551/11317) 3178189262077735 r005 Im(z^2+c),c=-7/31+19/43*I,n=7 3178189263876001 h001 (5/11*exp(2)+1/5)/(1/6*exp(1)+2/3) 3178189271701798 r002 20th iterates of z^2 + 3178189272208311 m001 cos(1)+FeigenbaumAlpha^Shi(1) 3178189272249340 r009 Re(z^3+c),c=-49/118+17/54*I,n=12 3178189292679695 m001 (2^(1/3)+Chi(1))/(-Robbin+ZetaQ(4)) 3178189296044339 a001 199/2178309*55^(14/45) 3178189296167095 r009 Re(z^3+c),c=-1/17+28/41*I,n=61 3178189299946274 r005 Im(z^2+c),c=17/66+7/36*I,n=25 3178189300476070 l006 ln(4707/4859) 3178189303031771 a003 sin(Pi*24/85)/cos(Pi*43/102) 3178189314560694 m001 (ln(5)-BesselJ(1,1))/(Otter+Sarnak) 3178189336990638 a007 Real Root Of -842*x^4+582*x^3+453*x^2+549*x+156 3178189338719514 m001 (Paris-Sierpinski)/(sin(1/5*Pi)+DuboisRaymond) 3178189340191415 a001 1346269/199*1364^(8/15) 3178189344384586 r009 Re(z^3+c),c=-23/52+5/16*I,n=4 3178189348060489 l006 ln(6733/9252) 3178189350600935 a001 39088169/199*521^(1/13) 3178189354745540 a001 141422324/4181*610^(17/24) 3178189359156037 m001 Pi*(2^(1/3)-BesselJ(1,1)/Pi^(1/2)) 3178189360606802 r005 Re(z^2+c),c=-19/62+33/64*I,n=21 3178189360674419 a007 Real Root Of -770*x^4+108*x^3-65*x^2+626*x-188 3178189362524274 r005 Im(z^2+c),c=-95/106+1/41*I,n=28 3178189364603906 k002 Champernowne real with 32*n^2-49*n+48 3178189365738155 m001 (exp(1/2)*exp(-Pi)-exp(1/exp(1)))/exp(-Pi) 3178189365738155 m001 exp(1/2)-exp(Pi)*exp(1/exp(1)) 3178189369867588 m001 (-ln(5)+ZetaP(2))/(Shi(1)-ln(2)) 3178189385802515 a001 370248451/10946*610^(17/24) 3178189390333667 a001 969323029/28657*610^(17/24) 3178189390994753 a001 2537720636/75025*610^(17/24) 3178189391091205 a001 6643838879/196418*610^(17/24) 3178189391105277 a001 17393796001/514229*610^(17/24) 3178189391107330 a001 45537549124/1346269*610^(17/24) 3178189391107629 a001 119218851371/3524578*610^(17/24) 3178189391107673 a001 312119004989/9227465*610^(17/24) 3178189391107679 a001 817138163596/24157817*610^(17/24) 3178189391107680 a001 2139295485799/63245986*610^(17/24) 3178189391107680 a001 5600748293801/165580141*610^(17/24) 3178189391107680 a001 14662949395604/433494437*610^(17/24) 3178189391107680 a001 23725150497407/701408733*610^(17/24) 3178189391107680 a001 9062201101803/267914296*610^(17/24) 3178189391107680 a001 228826126/6765*610^(17/24) 3178189391107681 a001 1322157322203/39088169*610^(17/24) 3178189391107683 a001 505019158607/14930352*610^(17/24) 3178189391107700 a001 192900153618/5702887*610^(17/24) 3178189391107814 a001 10525900321/311187*610^(17/24) 3178189391108599 a001 28143753123/832040*610^(17/24) 3178189391113974 a001 10749957122/317811*610^(17/24) 3178189391150815 a001 4106118243/121393*610^(17/24) 3178189391403327 a001 224056801/6624*610^(17/24) 3178189391460945 m001 Zeta(1,2)*(CareFree+Khinchin) 3178189393134073 a001 599074578/17711*610^(17/24) 3178189394272092 m008 (Pi^6-2/3)/(3/4*Pi+2/3) 3178189404996782 a001 228826127/6765*610^(17/24) 3178189410092895 m005 (1/3*2^(1/2)+3/5)/(4/11*Zeta(3)-1/10) 3178189412322649 p001 sum((-1)^n/(614*n+313)/(64^n),n=0..infinity) 3178189415576817 m008 (3/4*Pi^3-1/3)/(3/4*Pi^6+1/6) 3178189419567717 a007 Real Root Of -979*x^4-697*x^3-652*x^2+546*x+227 3178189420825523 r002 3th iterates of z^2 + 3178189422974159 r005 Im(z^2+c),c=-23/110+28/61*I,n=9 3178189434715530 m005 (1/3*gamma+3/7)/(3*gamma+2/9) 3178189439664075 m001 GlaisherKinkelin-cos(1/12*Pi)+HeathBrownMoroz 3178189442455141 m001 (Khinchin*Totient+TwinPrimes)/Totient 3178189442483690 r009 Im(z^3+c),c=-35/86+4/17*I,n=11 3178189449682498 m001 (1+BesselI(1,2))/(2*Pi/GAMMA(5/6)+Sierpinski) 3178189454074068 a001 2178309/199*1364^(7/15) 3178189458376493 a007 Real Root Of 283*x^4+664*x^3-545*x^2+420*x-718 3178189470511759 r005 Re(z^2+c),c=-63/110+15/38*I,n=21 3178189479120795 m003 5+Sqrt[5]/8-(5*E^(1/2+Sqrt[5]/2))/12 3178189486305004 a001 87403803/2584*610^(17/24) 3178189490973995 r005 Re(z^2+c),c=-10/21+29/43*I,n=8 3178189503877668 g007 Psi(2,2/11)+Psi(2,1/11)+Psi(2,2/9)-Psi(2,6/7) 3178189531667759 m001 (Zeta(1,2)-GAMMA(5/6))/(Gompertz+ZetaQ(2)) 3178189532795014 m001 Niven*(BesselJ(0,1)+ln(3)) 3178189543179802 l006 ln(307/7369) 3178189543179802 p004 log(7369/307) 3178189546659634 r008 a(0)=3,K{-n^6,1-5*n^3-3*n^2} 3178189551258369 m005 (1/2*Pi-2/7)/(7/8*5^(1/2)-6) 3178189556522234 m001 1/GAMMA(5/6)/exp(KhintchineLevy)*sinh(1) 3178189564169762 a001 39088169/843*123^(2/5) 3178189567957395 a001 3524578/199*1364^(2/5) 3178189573545166 r002 5th iterates of z^2 + 3178189577222200 b008 ArcCsch[9+Pi^E] 3178189577404796 r005 Im(z^2+c),c=-1/9+15/17*I,n=39 3178189578224559 r005 Re(z^2+c),c=-13/90+29/51*I,n=11 3178189585807553 a001 18/1836311903*144^(7/10) 3178189586801570 m001 QuadraticClass^Porter/MertensB1 3178189590557452 r005 Re(z^2+c),c=33/98+6/55*I,n=33 3178189592195057 r005 Re(z^2+c),c=-29/86+22/47*I,n=45 3178189593749970 m001 (FeigenbaumDelta-Porter)/(ln(5)-BesselK(1,1)) 3178189596737703 a001 89/2207*141422324^(11/13) 3178189596737704 a001 89/2207*2537720636^(11/15) 3178189596737704 a001 89/2207*45537549124^(11/17) 3178189596737704 a001 89/2207*312119004989^(3/5) 3178189596737704 a001 89/2207*14662949395604^(11/21) 3178189596737704 a001 89/2207*(1/2+1/2*5^(1/2))^33 3178189596737704 a001 89/2207*192900153618^(11/18) 3178189596737704 a001 89/2207*10749957122^(11/16) 3178189596737704 a001 89/2207*1568397607^(3/4) 3178189596737704 a001 89/2207*599074578^(11/14) 3178189596737706 a001 89/2207*33385282^(11/12) 3178189598763962 a001 987/199*(1/2+1/2*5^(1/2))^23 3178189598763962 a001 987/199*4106118243^(1/2) 3178189599047291 a001 987/199*103682^(23/24) 3178189601300036 r005 Re(z^2+c),c=-23/70+29/59*I,n=64 3178189601985817 a007 Real Root Of -486*x^4+866*x^3-628*x^2+657*x+305 3178189617422866 b008 4/3+3*Erfi[1/2] 3178189619333989 m005 (1/2*Pi+5/11)/(1/10*exp(1)-10/11) 3178189630920937 m001 (GaussAGM+Tribonacci)/(ln(2)/ln(10)+cos(1)) 3178189645807769 r005 Re(z^2+c),c=-151/114+1/40*I,n=8 3178189658923626 m005 (1/2*Zeta(3)+1/5)/(1/3*gamma-4/9) 3178189667121871 m001 ln(GAMMA(17/24))^2*GAMMA(11/24)^2/exp(1)^2 3178189674837677 m002 -2/Pi^2-Pi+Tanh[Pi]/6 3178189680028368 r005 Im(z^2+c),c=9/44+9/37*I,n=24 3178189681840470 a001 5702887/199*1364^(1/3) 3178189686448759 s001 sum(exp(-3*Pi)^n*A252604[n],n=1..infinity) 3178189689833789 r009 Re(z^3+c),c=-33/86+10/39*I,n=25 3178189693007604 r005 Im(z^2+c),c=-73/98+9/43*I,n=64 3178189718301368 r005 Re(z^2+c),c=-41/98+2/57*I,n=28 3178189731140874 m001 PrimesInBinary^OrthogonalArrays-sin(1/12*Pi) 3178189736893893 m001 (Cahen+HardyLittlewoodC4)/(2^(1/3)+3^(1/2)) 3178189748762696 r005 Re(z^2+c),c=-7/18+15/53*I,n=38 3178189770788409 m002 E^Pi/2+Pi^5+Log[Pi]/5 3178189770882315 r009 Im(z^3+c),c=-3/16+21/62*I,n=3 3178189779376453 r005 Re(z^2+c),c=-25/66+18/55*I,n=36 3178189781032936 r009 Im(z^3+c),c=-43/122+10/37*I,n=17 3178189783987695 m005 (1/2*Zeta(3)+5)/(5/12*3^(1/2)-6/11) 3178189795723647 a001 9227465/199*1364^(4/15) 3178189795978361 r008 a(0)=3,K{-n^6,20-39*n-13*n^2+27*n^3} 3178189798111287 a001 7/4181*21^(4/19) 3178189807180799 b008 -2/17+Log[27] 3178189811591362 a001 233/439204*7^(23/25) 3178189817436985 a007 Real Root Of 805*x^4-611*x^3+957*x^2-483*x-278 3178189825004727 a007 Real Root Of -281*x^4-849*x^3+444*x^2+954*x-38 3178189827853138 m002 3+5/E^Pi-Cosh[Pi]/Pi^5 3178189834390494 m001 (MertensB1+ZetaP(2))/(5^(1/2)-gamma(2)) 3178189841345661 m004 75/Pi+(5*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi])/3 3178189849500384 m001 (Psi(2,1/3)-ln(Pi))/(gamma(2)+Trott2nd) 3178189851014122 l006 ln(2149/2953) 3178189855887483 a007 Real Root Of 485*x^4-247*x^3-97*x^2-220*x-73 3178189873226278 m001 (2^(1/2)+gamma(1))/(-Conway+QuadraticClass) 3178189876164056 m001 exp(GAMMA(7/24))^2*Magata^2/log(2+sqrt(3))^2 3178189877584824 m002 6+E^Pi+Pi^2/6+Tanh[Pi] 3178189882462280 r005 Im(z^2+c),c=-10/9+32/125*I,n=26 3178189897728722 p004 log(36749/1531) 3178189908153907 m001 (sin(1/5*Pi)*BesselJ(1,1)+ln(5))/sin(1/5*Pi) 3178189908153907 m001 (sin(Pi/5)*BesselJ(1,1)+ln(5))/sin(Pi/5) 3178189909606791 a001 14930352/199*1364^(1/5) 3178189913061520 m005 (1/2*3^(1/2)+5/12)/(15/22+3/2*5^(1/2)) 3178189914260294 b008 ArcCsch[1+ProductLog[17]] 3178189915778285 h001 (7/9*exp(2)+9/11)/(5/9*exp(1)+5/9) 3178189923437423 m001 (RenyiParking-ZetaQ(4))/(Pi-Kolakoski) 3178189925143155 a005 (1/cos(4/119*Pi))^207 3178189931155114 a007 Real Root Of -301*x^4-968*x^3-141*x^2-19*x+999 3178189936337267 a001 2207/1346269*233^(31/57) 3178189941665982 m001 HardHexagonsEntropy*(5^(1/2)-Riemann3rdZero) 3178189944764430 r009 Im(z^3+c),c=-9/16+23/50*I,n=36 3178189986655596 l006 ln(306/7345) 3178190000022768 a001 98217+98209*5^(1/2) 3178190007993393 m009 (2*Psi(1,2/3)+2/5)/(2*Pi^2+4/5) 3178190017460987 a001 28657/199*3571^(16/17) 3178190020278992 m001 (Zeta(3)*Tribonacci+ln(5))/Zeta(3) 3178190023489953 a001 24157817/199*1364^(2/15) 3178190031051908 a001 46368/199*3571^(15/17) 3178190033067608 r005 Im(z^2+c),c=-7/31+14/29*I,n=56 3178190039615056 a005 (1/cos(1/91*Pi))^1940 3178190039779281 h001 (-2*exp(8)+4)/(-8*exp(1)+3) 3178190043599959 a001 4769326/141*610^(17/24) 3178190046121063 a001 75025/199*3571^(14/17) 3178190055945801 g004 Im(GAMMA(-27/10+I*281/60)) 3178190057112493 r005 Im(z^2+c),c=-115/98+17/59*I,n=15 3178190060625583 a001 121393/199*3571^(13/17) 3178190075345775 a001 196418/199*3571^(12/17) 3178190082644628 r005 Re(z^2+c),c=-18/25+15/44*I,n=2 3178190089983587 a001 317811/199*3571^(11/17) 3178190097789887 r005 Re(z^2+c),c=-11/29+11/53*I,n=6 3178190104652866 a001 514229/199*3571^(10/17) 3178190117228813 a007 Real Root Of 31*x^4-82*x^3-17*x^2-217*x+73 3178190119310125 a001 832040/199*3571^(9/17) 3178190119587001 m001 1/ln(GAMMA(11/24))/BesselK(0,1)*log(1+sqrt(2)) 3178190120579086 m005 (1/2*Zeta(3)-3)/(3/4*Zeta(3)-10/11) 3178190120924104 a007 Real Root Of 209*x^4+707*x^3+38*x^2-577*x-845 3178190128976272 a009 1/84*2^(3/4)*4^(1/3) 3178190133971976 a001 1346269/199*3571^(8/17) 3178190137373114 a001 39088169/199*1364^(1/15) 3178190138261837 a007 Real Root Of -346*x^4-942*x^3+485*x^2-57*x-19 3178190144721233 a007 Real Root Of -843*x^4+570*x^3-467*x^2+821*x+335 3178190148632073 a001 2178309/199*3571^(7/17) 3178190154032544 a001 89/5778*2537720636^(7/9) 3178190154032544 a001 89/5778*17393796001^(5/7) 3178190154032544 a001 89/5778*312119004989^(7/11) 3178190154032544 a001 89/5778*14662949395604^(5/9) 3178190154032544 a001 89/5778*(1/2+1/2*5^(1/2))^35 3178190154032544 a001 89/5778*505019158607^(5/8) 3178190154032544 a001 89/5778*28143753123^(7/10) 3178190154032544 a001 89/5778*599074578^(5/6) 3178190154032544 a001 89/5778*228826127^(7/8) 3178190155352227 a001 2584/199*64079^(21/23) 3178190156046120 a001 2584/199*439204^(7/9) 3178190156058902 a001 2584/199*7881196^(7/11) 3178190156058930 a001 2584/199*20633239^(3/5) 3178190156058934 a001 2584/199*141422324^(7/13) 3178190156058934 a001 2584/199*2537720636^(7/15) 3178190156058934 a001 2584/199*17393796001^(3/7) 3178190156058934 a001 2584/199*45537549124^(7/17) 3178190156058934 a001 2584/199*14662949395604^(1/3) 3178190156058934 a001 2584/199*(1/2+1/2*5^(1/2))^21 3178190156058934 a001 2584/199*192900153618^(7/18) 3178190156058934 a001 2584/199*10749957122^(7/16) 3178190156058934 a001 2584/199*599074578^(1/2) 3178190156058936 a001 2584/199*33385282^(7/12) 3178190156059577 a001 2584/199*1860498^(7/10) 3178190156063654 a001 2584/199*710647^(3/4) 3178190156317625 a001 2584/199*103682^(7/8) 3178190157993219 a001 2584/199*39603^(21/22) 3178190162582831 h003 exp(Pi*(4^(2/3)*(19^(1/2)-23^(1/2)))) 3178190163292840 a001 3524578/199*3571^(6/17) 3178190177932384 m001 Trott^2/Conway*exp((2^(1/3))) 3178190177953351 a001 5702887/199*3571^(5/17) 3178190188659333 a007 Real Root Of -21*x^4-676*x^3-288*x^2-496*x-300 3178190189104937 a007 Real Root Of -526*x^4+696*x^3+681*x^2+790*x+210 3178190192613960 a001 9227465/199*3571^(4/17) 3178190192990852 r005 Re(z^2+c),c=-49/118+7/53*I,n=11 3178190202005914 m005 (1/2*3^(1/2)+7/9)/(2*5^(1/2)+7/10) 3178190207274531 a001 14930352/199*3571^(3/17) 3178190212867734 a001 1328801328/4181 3178190216695332 a001 89*9349^(17/19) 3178190220617289 r008 a(0)=0,K{-n^6,-31-32*n^3+52*n^2-21*n} 3178190221409536 a001 28657/199*9349^(16/19) 3178190221935118 a001 24157817/199*3571^(2/17) 3178190222113094 a001 10946/199*9349^(18/19) 3178190222253673 a001 46368/199*9349^(15/19) 3178190224576044 a001 75025/199*9349^(14/19) 3178190226333780 a001 121393/199*9349^(13/19) 3178190228307188 a001 196418/199*9349^(12/19) 3178190230198216 a001 317811/199*9349^(11/19) 3178190232120710 a001 514229/199*9349^(10/19) 3178190232567263 a001 6765/199*24476^(19/21) 3178190234031186 a001 832040/199*9349^(9/19) 3178190235340782 a001 89/15127*(1/2+1/2*5^(1/2))^37 3178190235946252 a001 1346269/199*9349^(8/19) 3178190236595698 a001 39088169/199*3571^(1/17) 3178190236727773 a001 6765/199*64079^(19/23) 3178190237367175 a001 6765/199*817138163596^(1/3) 3178190237367175 a001 6765/199*(1/2+1/2*5^(1/2))^19 3178190237367175 a001 6765/199*87403803^(1/2) 3178190237601229 a001 6765/199*103682^(19/24) 3178190237859565 a001 2178309/199*9349^(7/19) 3178190239117242 a001 6765/199*39603^(19/22) 3178190239773547 a001 3524578/199*9349^(6/19) 3178190241687274 a001 5702887/199*9349^(5/19) 3178190242726907 m001 Paris*exp(MinimumGamma)^2*sqrt(3) 3178190243601099 a001 9227465/199*9349^(4/19) 3178190243924721 a001 3478847041/10946 3178190244935229 a001 89*24476^(17/21) 3178190245514886 a001 14930352/199*9349^(3/19) 3178190246715661 r002 50th iterates of z^2 + 3178190247171229 a001 46368/199*24476^(5/7) 3178190247203494 a001 89/39603*2537720636^(13/15) 3178190247203494 a001 89/39603*45537549124^(13/17) 3178190247203494 a001 89/39603*14662949395604^(13/21) 3178190247203494 a001 89/39603*(1/2+1/2*5^(1/2))^39 3178190247203494 a001 89/39603*192900153618^(13/18) 3178190247203494 a001 89/39603*73681302247^(3/4) 3178190247203494 a001 89/39603*10749957122^(13/16) 3178190247203494 a001 89/39603*599074578^(13/14) 3178190247428687 a001 24157817/199*9349^(2/19) 3178190247832430 a001 75025/199*24476^(2/3) 3178190247928996 a001 121393/199*24476^(13/21) 3178190247988263 a001 28657/199*24476^(16/21) 3178190248048459 a007 Real Root Of 571*x^4+423*x^3+187*x^2-793*x+25 3178190248241233 a001 196418/199*24476^(4/7) 3178190248455874 a001 9107739795/28657 3178190248471091 a001 317811/199*24476^(11/21) 3178190248657791 a001 89*64079^(17/23) 3178190248732415 a001 514229/199*24476^(10/21) 3178190248934241 a001 89/103682*(1/2+1/2*5^(1/2))^41 3178190248981720 a001 832040/199*24476^(3/7) 3178190249085816 r005 Im(z^2+c),c=-7/54+26/59*I,n=36 3178190249116961 a001 23844372344/75025 3178190249186753 a001 89/271443*(1/2+1/2*5^(1/2))^43 3178190249213412 a001 62425377237/196418 3178190249223594 a001 89/710647*45537549124^(15/17) 3178190249223594 a001 89/710647*312119004989^(9/11) 3178190249223594 a001 89/710647*14662949395604^(5/7) 3178190249223594 a001 89/710647*(1/2+1/2*5^(1/2))^45 3178190249223594 a001 89/710647*192900153618^(5/6) 3178190249223594 a001 89/710647*28143753123^(9/10) 3178190249223594 a001 89/710647*10749957122^(15/16) 3178190249227484 a001 163431759367/514229 3178190249228969 a001 89/1860498*(1/2+1/2*5^(1/2))^47 3178190249229537 a001 427869900864/1346269 3178190249229754 a001 89/4870847*14662949395604^(7/9) 3178190249229754 a001 89/4870847*(1/2+1/2*5^(1/2))^49 3178190249229754 a001 89/4870847*505019158607^(7/8) 3178190249229836 a001 12586269025/39602 3178190249229868 a001 89/12752043*817138163596^(17/19) 3178190249229868 a001 89/12752043*14662949395604^(17/21) 3178190249229868 a001 89/12752043*(1/2+1/2*5^(1/2))^51 3178190249229868 a001 89/12752043*192900153618^(17/18) 3178190249229880 a001 2932663928811/9227465 3178190249229885 a001 89/33385282*(1/2+1/2*5^(1/2))^53 3178190249229886 a001 7677813843208/24157817 3178190249229887 a001 89/87403803*3461452808002^(11/12) 3178190249229887 a001 20100777600813/63245986 3178190249229887 a001 89/228826127*14662949395604^(19/21) 3178190249229888 a001 52624518959231/165580141 3178190249229888 a001 137772779276880/433494437 3178190249229888 a001 360693818871409/1134903170 3178190249229888 a001 944308677337347/2971215073 3178190249229888 a001 89*45537549124^(1/3) 3178190249229888 a001 583614858465938/1836311903 3178190249229888 a001 2504730781961/7880997 3178190249229888 a001 89/969323029*14662949395604^(20/21) 3178190249229888 a001 85148260317649/267914296 3178190249229888 a001 32523741358418/102334155 3178190249229888 a001 89/141422324*14662949395604^(8/9) 3178190249229888 a001 12422963757605/39088169 3178190249229889 a001 89/54018521*14662949395604^(6/7) 3178190249229890 a001 4745149914397/14930352 3178190249229895 a001 89/20633239*(1/2+1/2*5^(1/2))^52 3178190249229895 a001 89/20633239*23725150497407^(13/16) 3178190249229895 a001 89/20633239*505019158607^(13/14) 3178190249229897 a001 89*12752043^(1/2) 3178190249229907 a001 1134931738/3571 3178190249229939 a001 89/7881196*312119004989^(10/11) 3178190249229939 a001 89/7881196*(1/2+1/2*5^(1/2))^50 3178190249229939 a001 89/7881196*3461452808002^(5/6) 3178190249230022 a001 692308042361/2178309 3178190249230238 a001 89/3010349*45537549124^(16/17) 3178190249230238 a001 89/3010349*14662949395604^(16/21) 3178190249230238 a001 89/3010349*(1/2+1/2*5^(1/2))^48 3178190249230238 a001 89/3010349*192900153618^(8/9) 3178190249230238 a001 89/3010349*73681302247^(12/13) 3178190249230806 a001 264438141497/832040 3178190249232291 a001 89/1149851*(1/2+1/2*5^(1/2))^46 3178190249232291 a001 89/1149851*10749957122^(23/24) 3178190249235616 a001 1346269/199*24476^(8/21) 3178190249236181 a001 101006382130/317811 3178190249246363 a001 89/439204*312119004989^(4/5) 3178190249246363 a001 89/439204*(1/2+1/2*5^(1/2))^44 3178190249246363 a001 89/439204*23725150497407^(11/16) 3178190249246363 a001 89/439204*73681302247^(11/13) 3178190249246363 a001 89/439204*10749957122^(11/12) 3178190249246363 a001 89/439204*4106118243^(22/23) 3178190249273022 a001 38581004893/121393 3178190249342483 a001 39088169/199*9349^(1/19) 3178190249342815 a001 89/167761*2537720636^(14/15) 3178190249342815 a001 89/167761*17393796001^(6/7) 3178190249342815 a001 89/167761*45537549124^(14/17) 3178190249342815 a001 89/167761*817138163596^(14/19) 3178190249342815 a001 89/167761*14662949395604^(2/3) 3178190249342815 a001 89/167761*(1/2+1/2*5^(1/2))^42 3178190249342815 a001 89/167761*505019158607^(3/4) 3178190249342815 a001 89/167761*192900153618^(7/9) 3178190249342815 a001 89/167761*10749957122^(7/8) 3178190249342815 a001 89/167761*4106118243^(21/23) 3178190249342815 a001 89/167761*1568397607^(21/22) 3178190249439304 a001 89*103682^(17/24) 3178190249487758 a001 2178309/199*24476^(1/3) 3178190249525534 a001 14736632549/46368 3178190249740570 a001 3524578/199*24476^(2/7) 3178190249993126 a001 5702887/199*24476^(5/21) 3178190250003901 a001 89/64079*2537720636^(8/9) 3178190250003901 a001 89/64079*312119004989^(8/11) 3178190250003901 a001 89/64079*(1/2+1/2*5^(1/2))^40 3178190250003901 a001 89/64079*23725150497407^(5/8) 3178190250003901 a001 89/64079*73681302247^(10/13) 3178190250003901 a001 89/64079*28143753123^(4/5) 3178190250003901 a001 89/64079*10749957122^(5/6) 3178190250003901 a001 89/64079*4106118243^(20/23) 3178190250003901 a001 89/64079*1568397607^(10/11) 3178190250003901 a001 89/64079*599074578^(20/21) 3178190250245780 a001 9227465/199*24476^(4/21) 3178190250455843 a001 46368/199*64079^(15/23) 3178190250498397 a001 14930352/199*24476^(1/7) 3178190250561825 a001 6765/199*15127^(19/20) 3178190250751028 a001 24157817/199*24476^(2/21) 3178190250775661 a001 121393/199*64079^(13/23) 3178190250795737 a001 89*39603^(17/22) 3178190250868924 a001 196418/199*64079^(12/23) 3178190250879807 a001 317811/199*64079^(11/23) 3178190250892878 a001 46368/199*167761^(3/5) 3178190250898069 a001 75025/199*64079^(14/23) 3178190250922157 a001 514229/199*64079^(10/23) 3178190250951481 a001 46368/199*439204^(5/9) 3178190250952488 a001 832040/199*64079^(9/23) 3178190250960611 a001 46368/199*7881196^(5/11) 3178190250960631 a001 46368/199*20633239^(3/7) 3178190250960634 a001 46368/199*141422324^(5/13) 3178190250960634 a001 46368/199*2537720636^(1/3) 3178190250960634 a001 46368/199*45537549124^(5/17) 3178190250960634 a001 46368/199*312119004989^(3/11) 3178190250960634 a001 46368/199*14662949395604^(5/21) 3178190250960634 a001 46368/199*(1/2+1/2*5^(1/2))^15 3178190250960634 a001 46368/199*192900153618^(5/18) 3178190250960634 a001 46368/199*28143753123^(3/10) 3178190250960634 a001 46368/199*10749957122^(5/16) 3178190250960634 a001 46368/199*599074578^(5/14) 3178190250960634 a001 46368/199*228826127^(3/8) 3178190250960635 a001 46368/199*33385282^(5/12) 3178190250961093 a001 46368/199*1860498^(1/2) 3178190250987409 a001 1346269/199*64079^(8/23) 3178190251003653 a001 39088169/199*24476^(1/21) 3178190251020578 a001 2178309/199*64079^(7/23) 3178190251054415 a001 3524578/199*64079^(6/23) 3178190251087997 a001 5702887/199*64079^(5/23) 3178190251121677 a001 9227465/199*64079^(4/23) 3178190251145413 a001 46368/199*103682^(5/8) 3178190251155320 a001 14930352/199*64079^(3/23) 3178190251188976 a001 24157817/199*64079^(2/23) 3178190251213146 a001 121393/199*141422324^(1/3) 3178190251213146 a001 121393/199*(1/2+1/2*5^(1/2))^13 3178190251213146 a001 121393/199*73681302247^(1/4) 3178190251213514 a001 514229/199*167761^(2/5) 3178190251222628 a001 39088169/199*64079^(1/23) 3178190251233676 a001 5702887/199*167761^(1/5) 3178190251234714 a001 121393/199*271443^(1/2) 3178190251249871 a001 832040/199*439204^(1/3) 3178190251249970 a001 317811/199*7881196^(1/3) 3178190251249988 a001 317811/199*312119004989^(1/5) 3178190251249988 a001 317811/199*(1/2+1/2*5^(1/2))^11 3178190251249988 a001 317811/199*1568397607^(1/4) 3178190251252671 a001 3524578/199*439204^(2/9) 3178190251254447 a001 14930352/199*439204^(1/9) 3178190251255349 a001 832040/199*7881196^(3/11) 3178190251255363 a001 832040/199*141422324^(3/13) 3178190251255363 a001 832040/199*2537720636^(1/5) 3178190251255363 a001 832040/199*45537549124^(3/17) 3178190251255363 a001 832040/199*817138163596^(3/19) 3178190251255363 a001 832040/199*14662949395604^(1/7) 3178190251255363 a001 832040/199*(1/2+1/2*5^(1/2))^9 3178190251255363 a001 832040/199*192900153618^(1/6) 3178190251255363 a001 832040/199*10749957122^(3/16) 3178190251255363 a001 832040/199*599074578^(3/14) 3178190251255363 a001 832040/199*33385282^(1/4) 3178190251255638 a001 832040/199*1860498^(3/10) 3178190251256145 a001 2178309/199*20633239^(1/5) 3178190251256147 a001 2178309/199*17393796001^(1/7) 3178190251256147 a001 2178309/199*14662949395604^(1/9) 3178190251256147 a001 2178309/199*(1/2+1/2*5^(1/2))^7 3178190251256147 a001 2178309/199*599074578^(1/6) 3178190251256260 a001 5702887/199*20633239^(1/7) 3178190251256261 a001 5702887/199*2537720636^(1/9) 3178190251256261 a001 5702887/199*312119004989^(1/11) 3178190251256261 a001 5702887/199*(1/2+1/2*5^(1/2))^5 3178190251256261 a001 5702887/199*28143753123^(1/10) 3178190251256261 a001 5702887/199*228826127^(1/8) 3178190251256273 a001 14930352/199*7881196^(1/11) 3178190251256278 a001 14930352/199*141422324^(1/13) 3178190251256278 a001 14930352/199*2537720636^(1/15) 3178190251256278 a001 14930352/199*45537549124^(1/17) 3178190251256278 a001 14930352/199*14662949395604^(1/21) 3178190251256278 a001 14930352/199*(1/2+1/2*5^(1/2))^3 3178190251256278 a001 14930352/199*192900153618^(1/18) 3178190251256278 a001 14930352/199*10749957122^(1/16) 3178190251256278 a001 14930352/199*599074578^(1/14) 3178190251256278 a001 14930352/199*33385282^(1/12) 3178190251256280 a001 39088169/398+39088169/398*5^(1/2) 3178190251256281 a006 5^(1/2)*Fibonacci(39)/Lucas(11)/sqrt(5) 3178190251256282 a001 24157817/199*(1/2+1/2*5^(1/2))^2 3178190251256282 a001 24157817/199*10749957122^(1/24) 3178190251256282 a001 24157817/199*4106118243^(1/23) 3178190251256282 a001 24157817/199*1568397607^(1/22) 3178190251256282 a001 24157817/199*599074578^(1/21) 3178190251256282 a001 24157817/199*228826127^(1/20) 3178190251256282 a001 24157817/199*87403803^(1/19) 3178190251256282 a001 24157817/199*33385282^(1/18) 3178190251256283 a001 24157817/199*12752043^(1/17) 3178190251256288 a001 9227465/199*(1/2+1/2*5^(1/2))^4 3178190251256288 a001 9227465/199*23725150497407^(1/16) 3178190251256288 a001 9227465/199*73681302247^(1/13) 3178190251256288 a001 9227465/199*10749957122^(1/12) 3178190251256288 a001 9227465/199*4106118243^(2/23) 3178190251256288 a001 9227465/199*1568397607^(1/11) 3178190251256288 a001 9227465/199*599074578^(2/21) 3178190251256288 a001 9227465/199*228826127^(1/10) 3178190251256288 a001 9227465/199*87403803^(2/19) 3178190251256289 a001 9227465/199*33385282^(1/9) 3178190251256290 a001 24157817/199*4870847^(1/16) 3178190251256291 a001 9227465/199*12752043^(2/17) 3178190251256305 a001 9227465/199*4870847^(1/8) 3178190251256323 a001 3524578/199*7881196^(2/11) 3178190251256332 a001 3524578/199*141422324^(2/13) 3178190251256332 a001 3524578/199*2537720636^(2/15) 3178190251256332 a001 3524578/199*45537549124^(2/17) 3178190251256332 a001 3524578/199*14662949395604^(2/21) 3178190251256332 a001 3524578/199*(1/2+1/2*5^(1/2))^6 3178190251256332 a001 3524578/199*10749957122^(1/8) 3178190251256332 a001 3524578/199*4106118243^(3/23) 3178190251256332 a001 3524578/199*1568397607^(3/22) 3178190251256332 a001 3524578/199*599074578^(1/7) 3178190251256332 a001 3524578/199*228826127^(3/20) 3178190251256332 a001 3524578/199*87403803^(3/19) 3178190251256332 a001 3524578/199*33385282^(1/6) 3178190251256335 a001 3524578/199*12752043^(3/17) 3178190251256343 a001 24157817/199*1860498^(1/15) 3178190251256357 a001 3524578/199*4870847^(3/16) 3178190251256370 a001 14930352/199*1860498^(1/10) 3178190251256411 a001 9227465/199*1860498^(2/15) 3178190251256414 a001 5702887/199*1860498^(1/6) 3178190251256516 a001 3524578/199*1860498^(1/5) 3178190251256631 a001 1346269/199*(1/2+1/2*5^(1/2))^8 3178190251256631 a001 1346269/199*23725150497407^(1/8) 3178190251256631 a001 1346269/199*73681302247^(2/13) 3178190251256631 a001 1346269/199*10749957122^(1/6) 3178190251256631 a001 1346269/199*4106118243^(4/23) 3178190251256631 a001 1346269/199*1568397607^(2/11) 3178190251256631 a001 1346269/199*599074578^(4/21) 3178190251256631 a001 1346269/199*228826127^(1/5) 3178190251256632 a001 1346269/199*87403803^(4/19) 3178190251256632 a001 1346269/199*33385282^(2/9) 3178190251256636 a001 1346269/199*12752043^(4/17) 3178190251256665 a001 1346269/199*4870847^(1/4) 3178190251256731 a001 24157817/199*710647^(1/14) 3178190251256876 a001 1346269/199*1860498^(4/15) 3178190251257187 a001 9227465/199*710647^(1/7) 3178190251257680 a001 3524578/199*710647^(3/14) 3178190251257720 a001 2178309/199*710647^(1/4) 3178190251258430 a001 1346269/199*710647^(2/7) 3178190251258682 a001 514229/199*20633239^(2/7) 3178190251258685 a001 514229/199*2537720636^(2/9) 3178190251258685 a001 514229/199*312119004989^(2/11) 3178190251258685 a001 514229/199*(1/2+1/2*5^(1/2))^10 3178190251258685 a001 514229/199*28143753123^(1/5) 3178190251258685 a001 514229/199*10749957122^(5/24) 3178190251258685 a001 514229/199*4106118243^(5/23) 3178190251258685 a001 514229/199*1568397607^(5/22) 3178190251258685 a001 514229/199*599074578^(5/21) 3178190251258685 a001 514229/199*228826127^(1/4) 3178190251258685 a001 514229/199*87403803^(5/19) 3178190251258685 a001 514229/199*33385282^(5/18) 3178190251258690 a001 514229/199*12752043^(5/17) 3178190251258726 a001 514229/199*4870847^(5/16) 3178190251258991 a001 514229/199*1860498^(1/3) 3178190251259600 a001 24157817/199*271443^(1/13) 3178190251260932 a001 514229/199*710647^(5/14) 3178190251262924 a001 9227465/199*271443^(2/13) 3178190251265434 a001 196418/199*439204^(4/9) 3178190251266286 a001 3524578/199*271443^(3/13) 3178190251268599 a001 39088169/199*103682^(1/24) 3178190251269904 a001 1346269/199*271443^(4/13) 3178190251272738 a001 196418/199*7881196^(4/11) 3178190251272757 a001 196418/199*141422324^(4/13) 3178190251272757 a001 196418/199*2537720636^(4/15) 3178190251272757 a001 196418/199*45537549124^(4/17) 3178190251272757 a001 196418/199*817138163596^(4/19) 3178190251272757 a001 196418/199*14662949395604^(4/21) 3178190251272757 a001 196418/199*(1/2+1/2*5^(1/2))^12 3178190251272757 a001 196418/199*192900153618^(2/9) 3178190251272757 a001 196418/199*73681302247^(3/13) 3178190251272757 a001 196418/199*10749957122^(1/4) 3178190251272757 a001 196418/199*4106118243^(6/23) 3178190251272757 a001 196418/199*1568397607^(3/11) 3178190251272757 a001 196418/199*599074578^(2/7) 3178190251272757 a001 196418/199*228826127^(3/10) 3178190251272757 a001 196418/199*87403803^(6/19) 3178190251272758 a001 196418/199*33385282^(1/3) 3178190251272763 a001 196418/199*12752043^(6/17) 3178190251272807 a001 196418/199*4870847^(3/8) 3178190251273124 a001 196418/199*1860498^(2/5) 3178190251275275 a001 514229/199*271443^(5/13) 3178190251275454 a001 196418/199*710647^(3/7) 3178190251280919 a001 24157817/199*103682^(1/12) 3178190251292665 a001 196418/199*271443^(6/13) 3178190251293234 a001 14930352/199*103682^(1/8) 3178190251305563 a001 9227465/199*103682^(1/6) 3178190251317854 a001 5702887/199*103682^(5/24) 3178190251330244 a001 3524578/199*103682^(1/4) 3178190251342377 a001 2178309/199*103682^(7/24) 3178190251348389 a001 39088169/199*39603^(1/22) 3178190251355180 a001 1346269/199*103682^(1/3) 3178190251366230 a001 832040/199*103682^(3/8) 3178190251369205 a001 75025/199*20633239^(2/5) 3178190251369208 a001 75025/199*17393796001^(2/7) 3178190251369208 a001 75025/199*14662949395604^(2/9) 3178190251369208 a001 75025/199*(1/2+1/2*5^(1/2))^14 3178190251369208 a001 75025/199*505019158607^(1/4) 3178190251369208 a001 75025/199*10749957122^(7/24) 3178190251369208 a001 75025/199*4106118243^(7/23) 3178190251369208 a001 75025/199*1568397607^(7/22) 3178190251369208 a001 75025/199*599074578^(1/3) 3178190251369208 a001 75025/199*228826127^(7/20) 3178190251369208 a001 75025/199*87403803^(7/19) 3178190251369209 a001 75025/199*33385282^(7/18) 3178190251369216 a001 75025/199*12752043^(7/17) 3178190251369266 a001 75025/199*4870847^(7/16) 3178190251369636 a001 75025/199*1860498^(7/15) 3178190251372354 a001 75025/199*710647^(1/2) 3178190251373288 a001 121393/199*103682^(13/24) 3178190251381871 a001 514229/199*103682^(5/12) 3178190251385492 a001 317811/199*103682^(11/24) 3178190251392434 a001 75025/199*271443^(7/13) 3178190251420580 a001 196418/199*103682^(1/2) 3178190251440499 a001 24157817/199*39603^(1/11) 3178190251491850 a001 28657/199*64079^(16/23) 3178190251532604 a001 14930352/199*39603^(3/22) 3178190251541668 a001 75025/199*103682^(7/12) 3178190251624723 a001 9227465/199*39603^(2/11) 3178190251716805 a001 5702887/199*39603^(5/22) 3178190251808985 a001 3524578/199*39603^(3/11) 3178190251900908 a001 2178309/199*39603^(7/22) 3178190251950736 a001 39088169/199*15127^(1/20) 3178190251993502 a001 1346269/199*39603^(4/11) 3178190252014162 a001 10946/199*24476^(6/7) 3178190252030294 a001 28657/199*(1/2+1/2*5^(1/2))^16 3178190252030294 a001 28657/199*23725150497407^(1/4) 3178190252030294 a001 28657/199*73681302247^(4/13) 3178190252030294 a001 28657/199*10749957122^(1/3) 3178190252030294 a001 28657/199*4106118243^(8/23) 3178190252030294 a001 28657/199*1568397607^(4/11) 3178190252030294 a001 28657/199*599074578^(8/21) 3178190252030294 a001 28657/199*228826127^(2/5) 3178190252030294 a001 28657/199*87403803^(8/19) 3178190252030295 a001 28657/199*33385282^(4/9) 3178190252030303 a001 28657/199*12752043^(8/17) 3178190252030361 a001 28657/199*4870847^(1/2) 3178190252030784 a001 28657/199*1860498^(8/15) 3178190252033890 a001 28657/199*710647^(4/7) 3178190252056838 a001 28657/199*271443^(8/13) 3178190252084342 a001 832040/199*39603^(9/22) 3178190252179772 a001 514229/199*39603^(5/11) 3178190252227392 a001 28657/199*103682^(2/3) 3178190252263184 a001 317811/199*39603^(1/2) 3178190252342266 a001 46368/199*39603^(15/22) 3178190252378062 a001 196418/199*39603^(6/11) 3178190252410561 a001 121393/199*39603^(13/22) 3178190252645192 a001 24157817/199*15127^(1/10) 3178190252658731 a001 75025/199*39603^(7/11) 3178190253090887 r005 Re(z^2+c),c=-7/15+17/39*I,n=15 3178190253339644 a001 14930352/199*15127^(3/20) 3178190253504035 a001 28657/199*39603^(8/11) 3178190254034109 a001 9227465/199*15127^(1/5) 3178190254535054 a001 89/24476*817138163596^(2/3) 3178190254535054 a001 89/24476*(1/2+1/2*5^(1/2))^38 3178190254535054 a001 89/24476*10749957122^(19/24) 3178190254535054 a001 89/24476*4106118243^(19/23) 3178190254535054 a001 89/24476*1568397607^(19/22) 3178190254535054 a001 89/24476*599074578^(19/21) 3178190254535054 a001 89/24476*228826127^(19/20) 3178190254728538 a001 5702887/199*15127^(1/4) 3178190254735509 r005 Im(z^2+c),c=-15/14+47/184*I,n=21 3178190255423064 a001 3524578/199*15127^(3/10) 3178190255955697 a001 10946/199*64079^(18/23) 3178190256117334 a001 2178309/199*15127^(7/20) 3178190256545022 a001 39088169/199*5778^(1/18) 3178190256550463 a001 10946/199*439204^(2/3) 3178190256561419 a001 10946/199*7881196^(6/11) 3178190256561447 a001 10946/199*141422324^(6/13) 3178190256561447 a001 10946/199*2537720636^(2/5) 3178190256561447 a001 10946/199*45537549124^(6/17) 3178190256561447 a001 10946/199*14662949395604^(2/7) 3178190256561447 a001 10946/199*(1/2+1/2*5^(1/2))^18 3178190256561447 a001 10946/199*192900153618^(1/3) 3178190256561447 a001 10946/199*10749957122^(3/8) 3178190256561447 a001 10946/199*4106118243^(9/23) 3178190256561447 a001 10946/199*1568397607^(9/22) 3178190256561447 a001 10946/199*599074578^(3/7) 3178190256561447 a001 10946/199*228826127^(9/20) 3178190256561447 a001 10946/199*87403803^(9/19) 3178190256561448 a001 10946/199*33385282^(1/2) 3178190256561457 a001 10946/199*12752043^(9/17) 3178190256561522 a001 10946/199*4870847^(9/16) 3178190256561998 a001 10946/199*1860498^(3/5) 3178190256565493 a001 10946/199*710647^(9/14) 3178190256591309 a001 10946/199*271443^(9/13) 3178190256783182 a001 10946/199*103682^(3/4) 3178190256812274 a001 1346269/199*15127^(2/5) 3178190257505460 a001 832040/199*15127^(9/20) 3178190258203237 a001 514229/199*15127^(1/2) 3178190258219405 a001 10946/199*39603^(9/11) 3178190258782161 s002 sum(A209765[n]/(n*pi^n+1),n=1..infinity) 3178190258888996 a001 317811/199*15127^(11/20) 3178190259606220 a001 196418/199*15127^(3/5) 3178190260241065 a001 121393/199*15127^(13/20) 3178190261035627 a001 89*15127^(17/20) 3178190261091582 a001 75025/199*15127^(7/10) 3178190261377463 a001 46368/199*15127^(3/4) 3178190261833765 a001 24157817/199*5778^(1/9) 3178190262447539 a005 (1/sin(69/163*Pi))^1218 3178190262810443 m001 (Zeta(1,2)-BesselK(1,1))/(PlouffeB+ZetaQ(3)) 3178190263118994 a001 2150045713/6765 3178190263141579 a001 28657/199*15127^(4/5) 3178190267122502 a001 14930352/199*5778^(1/6) 3178190267512663 r002 3th iterates of z^2 + 3178190269061642 a001 10946/199*15127^(9/10) 3178190271078738 m002 Pi^6/3-(Log[Pi]*Sinh[Pi])/5 3178190272411254 a001 9227465/199*5778^(2/9) 3178190272838002 r005 Im(z^2+c),c=-11/114+20/47*I,n=21 3178190276149234 m001 (2^(1/3)-GAMMA(13/24)*MertensB1)/MertensB1 3178190277699968 a001 5702887/199*5778^(5/18) 3178190282565892 a001 4181/199*24476^(20/21) 3178190282988780 a001 3524578/199*5778^(1/3) 3178190285592038 a001 89/9349*141422324^(12/13) 3178190285592039 a001 89/9349*2537720636^(4/5) 3178190285592039 a001 89/9349*45537549124^(12/17) 3178190285592039 a001 89/9349*14662949395604^(4/7) 3178190285592039 a001 89/9349*(1/2+1/2*5^(1/2))^36 3178190285592039 a001 89/9349*505019158607^(9/14) 3178190285592039 a001 89/9349*192900153618^(2/3) 3178190285592039 a001 89/9349*73681302247^(9/13) 3178190285592039 a001 89/9349*10749957122^(3/4) 3178190285592039 a001 89/9349*4106118243^(18/23) 3178190285592039 a001 89/9349*1568397607^(9/11) 3178190285592039 a001 89/9349*599074578^(6/7) 3178190285592039 a001 89/9349*228826127^(9/10) 3178190285592039 a001 89/9349*87403803^(18/19) 3178190286620041 a007 Real Root Of -288*x^4-692*x^3+690*x^2-216*x-487 3178190286945376 a001 4181/199*64079^(20/23) 3178190287528090 a001 4181/199*167761^(4/5) 3178190287618427 a001 4181/199*20633239^(4/7) 3178190287618431 a001 4181/199*2537720636^(4/9) 3178190287618431 a001 4181/199*(1/2+1/2*5^(1/2))^20 3178190287618431 a001 4181/199*23725150497407^(5/16) 3178190287618431 a001 4181/199*505019158607^(5/14) 3178190287618431 a001 4181/199*73681302247^(5/13) 3178190287618431 a001 4181/199*28143753123^(2/5) 3178190287618431 a001 4181/199*10749957122^(5/12) 3178190287618431 a001 4181/199*4106118243^(10/23) 3178190287618431 a001 4181/199*1568397607^(5/11) 3178190287618431 a001 4181/199*599074578^(10/21) 3178190287618431 a001 4181/199*228826127^(1/2) 3178190287618432 a001 4181/199*87403803^(10/19) 3178190287618433 a001 4181/199*33385282^(5/9) 3178190287618443 a001 4181/199*12752043^(10/17) 3178190287618515 a001 4181/199*4870847^(5/8) 3178190287619043 a001 4181/199*1860498^(2/3) 3178190287622927 a001 4181/199*710647^(5/7) 3178190287651612 a001 4181/199*271443^(10/13) 3178190287864804 a001 4181/199*103682^(5/6) 3178190288277337 a001 2178309/199*5778^(7/18) 3178190289460607 a001 4181/199*39603^(10/11) 3178190290490215 r005 Re(z^2+c),c=-23/70+30/61*I,n=58 3178190290989987 m001 (Rabbit+Trott)/(FransenRobinson-cos(1)) 3178190292037046 a001 39088169/199*2207^(1/16) 3178190293566563 a001 1346269/199*5778^(4/9) 3178190298854035 a001 832040/199*5778^(1/2) 3178190300351080 m001 (-ln(Pi)+Artin)/(3^(1/2)+ln(2)) 3178190302871533 m006 (3/5*Pi^2-1/4)/(4/5*exp(Pi)-2/3) 3178190304146099 a001 514229/199*5778^(5/9) 3178190307971994 h001 (1/2*exp(1)+8/9)/(11/12*exp(2)+3/10) 3178190309426143 a001 317811/199*5778^(11/18) 3178190310722260 r009 Re(z^3+c),c=-43/102+25/44*I,n=56 3178190314737654 a001 196418/199*5778^(2/3) 3178190319966785 a001 121393/199*5778^(13/18) 3178190320470495 m001 (polylog(4,1/2)-Conway)/(ln(3)+exp(1/Pi)) 3178190325411588 a001 75025/199*5778^(7/9) 3178190330291756 a001 46368/199*5778^(5/6) 3178190332503328 m002 -1+ProductLog[Pi]/Pi^2-Pi^3*Tanh[Pi] 3178190332817814 a001 24157817/199*2207^(1/8) 3178190336650157 a001 28657/199*5778^(8/9) 3178190339138492 a001 89*5778^(17/18) 3178190340472849 r009 Im(z^3+c),c=-13/118+12/35*I,n=6 3178190344427244 a001 821244385/2584 3178190367609916 k002 Champernowne real with 65/2*n^2-101/2*n+49 3178190373598577 a001 14930352/199*2207^(3/16) 3178190375402019 a007 Real Root Of 114*x^4+304*x^3-72*x^2+268*x-293 3178190393634000 a003 cos(Pi*8/77)/cos(Pi*44/109) 3178190400662983 l006 ln(6161/8466) 3178190402270616 m001 CopelandErdos^(Otter/ZetaR(2)) 3178190407503158 r005 Im(z^2+c),c=-5/23+23/48*I,n=43 3178190410743973 h001 (5/12*exp(1)+5/11)/(5/9*exp(2)+8/9) 3178190414379355 a001 9227465/199*2207^(1/4) 3178190425331602 s002 sum(A144784[n]/((exp(n)+1)*n),n=1..infinity) 3178190431918206 r002 3th iterates of z^2 + 3178190432989154 m009 (3/5*Psi(1,3/4)-2/3)/(4/5*Psi(1,2/3)+1/4) 3178190433039231 l006 ln(305/7321) 3178190439090091 r005 Re(z^2+c),c=-11/23+25/64*I,n=10 3178190455160096 a001 5702887/199*2207^(5/16) 3178190457784450 a007 Real Root Of 258*x^4+829*x^3+41*x^2-172*x-671 3178190465959169 s002 sum(A041800[n]/(64^n),n=1..infinity) 3178190471211865 r005 Im(z^2+c),c=-23/114+26/55*I,n=34 3178190472211360 r005 Im(z^2+c),c=-19/60+13/25*I,n=58 3178190484916439 r005 Im(z^2+c),c=8/25+4/35*I,n=43 3178190485396491 a007 Real Root Of 61*x^4+377*x^3+940*x^2-288*x-175 3178190489150445 r009 Re(z^3+c),c=-3/7+20/61*I,n=30 3178190495901358 r009 Im(z^3+c),c=-3/7+11/19*I,n=50 3178190495940936 a001 3524578/199*2207^(3/8) 3178190498459795 a001 89/3571*45537549124^(2/3) 3178190498459795 a001 89/3571*(1/2+1/2*5^(1/2))^34 3178190498459795 a001 89/3571*10749957122^(17/24) 3178190498459795 a001 89/3571*4106118243^(17/23) 3178190498459795 a001 89/3571*1568397607^(17/22) 3178190498459795 a001 89/3571*599074578^(17/21) 3178190498459795 a001 89/3571*228826127^(17/20) 3178190498459796 a001 89/3571*87403803^(17/19) 3178190498459798 a001 89/3571*33385282^(17/18) 3178190499745808 a001 1597/199*64079^(22/23) 3178190500486135 a001 1597/199*7881196^(2/3) 3178190500486169 a001 1597/199*312119004989^(2/5) 3178190500486169 a001 1597/199*(1/2+1/2*5^(1/2))^22 3178190500486169 a001 1597/199*10749957122^(11/24) 3178190500486169 a001 1597/199*4106118243^(11/23) 3178190500486169 a001 1597/199*1568397607^(1/2) 3178190500486169 a001 1597/199*599074578^(11/21) 3178190500486169 a001 1597/199*228826127^(11/20) 3178190500486169 a001 1597/199*87403803^(11/19) 3178190500486171 a001 1597/199*33385282^(11/18) 3178190500486182 a001 1597/199*12752043^(11/17) 3178190500486261 a001 1597/199*4870847^(11/16) 3178190500486842 a001 1597/199*1860498^(11/15) 3178190500491114 a001 1597/199*710647^(11/14) 3178190500522667 a001 1597/199*271443^(11/13) 3178190500757179 a001 1597/199*103682^(11/12) 3178190501096952 a007 Real Root Of -354*x^4+906*x^3+220*x^2+181*x+68 3178190510983836 a007 Real Root Of 882*x^4-821*x^3-461*x^2-674*x-203 3178190520956519 r009 Re(z^3+c),c=-9/20+24/55*I,n=14 3178190522839535 r004 Im(z^2+c),c=1/20+5/11*I,z(0)=I,n=4 3178190524506219 r005 Im(z^2+c),c=-2/15+27/61*I,n=23 3178190536721520 a001 2178309/199*2207^(7/16) 3178190544590652 r005 Im(z^2+c),c=-15/28+28/51*I,n=14 3178190550180097 q001 9/28318 3178190562657560 r005 Im(z^2+c),c=11/34+2/19*I,n=16 3178190562714665 m001 OneNinth*ln(Artin)/gamma^2 3178190565089163 h005 exp(cos(Pi*2/57)/cos(Pi*7/41)) 3178190570217999 a007 Real Root Of -323*x^4-942*x^3+502*x^2+697*x-141 3178190570702420 a001 39088169/199*843^(1/14) 3178190574117282 b008 LogGamma[ArcCsch[Sech[5]]] 3178190577502774 a001 1346269/199*2207^(1/2) 3178190583070623 m002 Pi^5+(6*Pi^2*Tanh[Pi])/5 3178190590505104 a003 sin(Pi*11/78)*sin(Pi*21/79) 3178190597114729 a003 cos(Pi*1/115)-sin(Pi*16/67) 3178190601799203 m001 (Si(Pi)-exp(Pi))/(-LaplaceLimit+MertensB3) 3178190609063721 m001 Conway^arctan(1/2)/(OneNinth^arctan(1/2)) 3178190609233034 m005 (1/3*gamma-2/5)/(4*2^(1/2)+7/8) 3178190614459836 m006 (2/5*exp(Pi)-3/5)/(5*ln(Pi)-3) 3178190618282275 a001 832040/199*2207^(9/16) 3178190659066368 a001 514229/199*2207^(5/8) 3178190673925236 m001 FeigenbaumAlpha^(3^(1/3))-gamma 3178190680408851 a007 Real Root Of 166*x^4+732*x^3+527*x^2-383*x+22 3178190691587133 r005 Im(z^2+c),c=-7/30+34/55*I,n=62 3178190695078574 l006 ln(4012/5513) 3178190699838442 a001 317811/199*2207^(11/16) 3178190714553717 m001 (Cahen+ReciprocalLucas)/(Ei(1)-Psi(1,1/3)) 3178190735716018 m001 (Sierpinski+Thue)/(FeigenbaumC-RenyiParking) 3178190740641983 a001 196418/199*2207^(3/4) 3178190778600961 a007 Real Root Of -570*x^4+308*x^3-964*x^2+585*x+299 3178190781363145 a001 121393/199*2207^(13/16) 3178190784408564 r005 Re(z^2+c),c=3/62+10/33*I,n=24 3178190787671465 r004 Re(z^2+c),c=-2/5+5/21*I,z(0)=-1,n=18 3178190804974419 h001 (1/12*exp(2)+1/4)/(9/11*exp(1)+1/2) 3178190811674232 m002 -Pi^2-Pi^5-Pi/ProductLog[Pi]+Tanh[Pi] 3178190813875404 a007 Real Root Of 848*x^4+397*x^3-625*x^2-888*x-215 3178190818445774 r005 Re(z^2+c),c=5/18+7/19*I,n=8 3178190822299979 a001 75025/199*2207^(7/8) 3178190826327173 m005 (1/2*gamma-10/11)/(10/11*2^(1/2)+2/3) 3178190829334920 m009 (4/5*Psi(1,3/4)+2)/(1/5*Psi(1,1/3)-3/4) 3178190834357660 m002 -3/5+Pi^5+ProductLog[Pi]*Sinh[Pi] 3178190837749888 m001 1/FeigenbaumD^2*ln(LandauRamanujan)/sinh(1) 3178190853385674 m005 (1/3*5^(1/2)-1/4)/(3/8*3^(1/2)+10/11) 3178190862672178 a001 46368/199*2207^(15/16) 3178190868482504 m001 (2^(1/2)-Si(Pi))/(-Zeta(3)+Totient) 3178190876011394 a007 Real Root Of -338*x^4-749*x^3+836*x^2-462*x+528 3178190882359398 l006 ln(304/7297) 3178190888034722 a008 Real Root of x^4-8*x^2-56*x-17 3178190889921040 r005 Im(z^2+c),c=-85/86+13/47*I,n=59 3178190890148594 a001 24157817/199*843^(1/7) 3178190893556920 a007 Real Root Of 367*x^4+951*x^3-925*x^2-497*x+849 3178190897413682 m001 (BesselK(1,1)+Thue)/(1-cos(1)) 3178190901699437 a001 635627/2+5/2*5^(1/2) 3178190901722391 a001 313687442/987 3178190902583175 m001 Zeta(7)*exp(FeigenbaumC)^2*cos(Pi/5) 3178190918937588 r002 26i'th iterates of 2*x/(1-x^2) of 3178190924021222 m001 (BesselI(0,1)-HeathBrownMoroz)/(Pi+Chi(1)) 3178190929191574 r009 Re(z^3+c),c=-3/8+7/29*I,n=12 3178190930696587 m005 (1/2*gamma-1/2)/(3/11*gamma-1/11) 3178190936580019 r009 Im(z^3+c),c=-11/27+13/55*I,n=8 3178190946394709 r005 Im(z^2+c),c=-143/106+1/47*I,n=24 3178190946550793 m001 (Magata-Mills)/(GAMMA(2/3)-ln(2)) 3178190949801629 a007 Real Root Of 651*x^4-695*x^3+191*x^2-553*x-224 3178190958711906 r005 Re(z^2+c),c=-41/98+2/57*I,n=26 3178190961405037 m001 (Psi(1,1/3)+5^(1/2))/(-ln(gamma)+Zeta(1,2)) 3178190995608203 m005 (1/3*2^(1/2)-1/3)/(6/11*Zeta(3)-5) 3178190997763259 m001 (FellerTornier+Robbin)/(Zeta(3)+Ei(1)) 3178191003632673 m002 -5-Pi^3+6*Pi^2*Log[Pi] 3178191003826557 l006 ln(5875/8073) 3178191006941474 r002 21th iterates of z^2 + 3178191007727140 a007 Real Root Of 971*x^4+83*x^3+298*x^2-194*x-99 3178191015829240 r005 Im(z^2+c),c=17/126+13/44*I,n=20 3178191017522012 a007 Real Root Of -845*x^4+246*x^3-800*x^2+21*x+104 3178191026619945 r009 Im(z^3+c),c=-11/23+3/17*I,n=50 3178191031941950 r005 Im(z^2+c),c=-37/114+19/42*I,n=3 3178191033205289 a007 Real Root Of -783*x^4+932*x^3-463*x^2+860*x+358 3178191049450755 a007 Real Root Of 202*x^4+699*x^3+178*x^2-309*x-950 3178191050554089 m001 exp(TwinPrimes)/Salem^2/BesselJ(1,1) 3178191057235696 m001 (AlladiGrinstead+Bloch)/(GolombDickman+Magata) 3178191061965400 s001 sum(exp(-2*Pi)^n*A041480[n],n=1..infinity) 3178191062763914 r005 Re(z^2+c),c=-8/23+17/39*I,n=52 3178191074510186 a003 sin(Pi*7/68)/sin(Pi*59/119) 3178191080353710 r005 Re(z^2+c),c=-17/12+81/85*I,n=2 3178191106065756 m001 ln(BesselK(1,1))*FeigenbaumD^2/GAMMA(1/12) 3178191107509458 r009 Re(z^3+c),c=-3/8+15/62*I,n=25 3178191111711911 k009 concat of cont frac of 3178191118623847 r005 Re(z^2+c),c=-1/34+26/41*I,n=43 3178191122245631 m001 (Psi(2,1/3)+Bloch)/(Landau+Salem) 3178191131247818 p001 sum(1/(352*n+351)/(5^n),n=0..infinity) 3178191131326007 a007 Real Root Of -268*x^4-638*x^3+807*x^2+260*x-463 3178191133882824 r005 Re(z^2+c),c=-7/10+22/67*I,n=2 3178191149652919 a007 Real Root Of 817*x^4+11*x^3-824*x^2-744*x+311 3178191150892452 g005 Pi*csc(1/8*Pi)/GAMMA(11/12)/GAMMA(4/11) 3178191160044498 r005 Re(z^2+c),c=-15/46+21/44*I,n=25 3178191161281583 r005 Re(z^2+c),c=-10/27+30/61*I,n=18 3178191175864809 r005 Re(z^2+c),c=-13/38+15/34*I,n=25 3178191176792252 m001 (Khinchin-Tribonacci)/(Zeta(3)-Zeta(1/2)) 3178191179203836 a001 76/28657*317811^(17/45) 3178191180957274 a007 Real Root Of 720*x^4-827*x^3-497*x^2-864*x+344 3178191196784746 a005 (1/sin(31/125*Pi))^62 3178191199754356 r005 Re(z^2+c),c=-9/14+64/209*I,n=27 3178191203730082 m001 1/Pi*DuboisRaymond^2/ln(cos(1))^2 3178191209594794 a001 14930352/199*843^(3/14) 3178191239675171 m001 cos(1)+FeigenbaumKappa+GlaisherKinkelin 3178191246409463 a007 Real Root Of 289*x^4+935*x^3+188*x^2+349*x-260 3178191247809806 m001 GAMMA(1/12)^(BesselI(0,1)*Artin) 3178191260262006 a007 Real Root Of 250*x^4+518*x^3-778*x^2+541*x+700 3178191270952580 a007 Real Root Of 340*x^4+980*x^3-306*x^2+130*x+275 3178191274707966 r005 Im(z^2+c),c=-17/98+25/54*I,n=20 3178191288097680 m001 (Niven-Thue)/(GAMMA(11/12)+ErdosBorwein) 3178191297146438 r005 Re(z^2+c),c=-41/98+2/57*I,n=24 3178191315176189 m001 Paris^2/Artin^2/exp(cosh(1))^2 3178191323029537 m001 (DuboisRaymond+Kolakoski)/(Sarnak-ThueMorse) 3178191323803591 m002 -Pi^5+Pi^2*Log[Pi]-2*Sinh[Pi] 3178191326976295 r005 Re(z^2+c),c=19/110+28/59*I,n=38 3178191334645171 l006 ln(303/7273) 3178191336194483 a009 11*11^(1/2)-11*13^(1/2) 3178191350318620 m001 LambertW(1)^PisotVijayaraghavan/ZetaR(2) 3178191358420523 m005 (1/2*gamma+8/9)/(1/3*Zeta(3)-4/11) 3178191370615926 k002 Champernowne real with 33*n^2-52*n+50 3178191375135989 m001 BesselK(0,1)^2*ln(FeigenbaumD)/GAMMA(1/24)^2 3178191375612216 p004 log(18313/13327) 3178191378890120 a007 Real Root Of 582*x^4+850*x^3-39*x^2-841*x+238 3178191383215323 m001 (Ei(1)+2*Pi/GAMMA(5/6))/(GolombDickman-Thue) 3178191403015653 a007 Real Root Of 110*x^4+279*x^3-173*x^2-56*x-697 3178191406033565 a001 1/2*233^(19/56) 3178191407433954 m001 Otter^KhinchinLevy-TreeGrowth2nd 3178191412474197 r005 Im(z^2+c),c=-22/31+15/58*I,n=3 3178191413115883 m001 1/2*Trott2nd/arctan(1/3)/Pi*3^(1/2)*GAMMA(2/3) 3178191418210263 r002 46th iterates of z^2 + 3178191431911504 m001 BesselK(0,1)/(Cahen-StronglyCareFree) 3178191454850917 m006 (3*exp(Pi)-4/5)/(1/2/Pi+2) 3178191463147468 a007 Real Root Of 89*x^4+213*x^3-116*x^2+314*x-73 3178191466414925 m001 (Zeta(5)+sin(1/12*Pi))/(Cahen-CopelandErdos) 3178191475298271 r009 Re(z^3+c),c=-3/8+15/62*I,n=28 3178191477333204 m001 (GAMMA(2/3)-ZetaQ(3))/(Pi-exp(1)) 3178191478532445 r005 Re(z^2+c),c=-5/12+2/21*I,n=9 3178191485486009 m001 (-Salem+Tribonacci)/(BesselI(0,2)-exp(Pi)) 3178191487056567 m005 (1/2*gamma-2/7)/(3/10*3^(1/2)-3/7) 3178191489361702 q001 239/752 3178191494029992 r005 Re(z^2+c),c=-39/98+13/55*I,n=28 3178191511919016 r005 Im(z^2+c),c=3/13+13/59*I,n=19 3178191516874830 r009 Re(z^3+c),c=-4/25+34/39*I,n=14 3178191523800233 r009 Re(z^3+c),c=-45/98+3/8*I,n=41 3178191523943691 m001 (-2*Pi/GAMMA(5/6)+ZetaP(2))/(Catalan+ln(2)) 3178191529041041 a001 9227465/199*843^(2/7) 3178191535270536 p001 sum((-1)^n/(404*n+191)/n/(5^n),n=1..infinity) 3178191561117801 r009 Im(z^3+c),c=-43/126+8/27*I,n=4 3178191571731222 k007 concat of cont frac of 3178191573059722 m005 (1/3*2^(1/2)-2/11)/(3/11*Zeta(3)+7/12) 3178191582526388 a001 76/15127*(1/2*5^(1/2)+1/2)^3*15127^(1/24) 3178191588895706 h001 (-7*exp(2)-7)/(-9*exp(3)-4) 3178191593979259 a001 76/39603*(1/2*5^(1/2)+1/2)^4*39603^(1/12) 3178191596481798 a001 76/64079*(1/2*5^(1/2)+1/2)^3*64079^(1/6) 3178191597158201 r005 Re(z^2+c),c=6/19+8/59*I,n=18 3178191598023805 m001 (cos(1/5*Pi)+sin(1/12*Pi))/ReciprocalFibonacci 3178191598464855 a007 Real Root Of -374*x^4-810*x^3+824*x^2-894*x+991 3178191613117231 m001 (Paris-TwinPrimes)/(Pi-exp(1/Pi)) 3178191626887456 r005 Re(z^2+c),c=19/106+22/61*I,n=28 3178191634442543 m001 exp(PisotVijayaraghavan)/Cahen/Tribonacci 3178191645696659 m001 (GAMMA(7/12)+MasserGramain)/(Thue-ZetaP(3)) 3178191646946978 m002 Pi^5+Cosh[Pi]+E^Pi/(Pi^4*Log[Pi]) 3178191649758960 m004 -5+5*Pi+(20*Sqrt[5]*Csc[Sqrt[5]*Pi])/Pi 3178191654217342 m005 (1/2*gamma+6/7)/(3*Catalan+6/7) 3178191668720197 l006 ln(1863/2560) 3178191669427544 m004 -8/3+5*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 3178191673134141 r005 Im(z^2+c),c=-13/36+1/20*I,n=12 3178191678858924 m001 (Gompertz*Niven-Weierstrass)/Niven 3178191685904827 a007 Real Root Of 180*x^4+512*x^3+626*x+61 3178191686555577 r009 Re(z^3+c),c=-19/66+1/30*I,n=8 3178191690034036 h001 (5/9*exp(2)+3/10)/(1/11*exp(2)+5/7) 3178191698628808 p004 log(36269/1511) 3178191709569576 m001 (Trott+TwinPrimes)/(Zeta(1,2)-GAMMA(19/24)) 3178191712676705 r009 Re(z^3+c),c=-73/106+49/61*I,n=2 3178191719076485 a007 Real Root Of 167*x^4+387*x^3-633*x^2-639*x-252 3178191727059525 m001 Backhouse^(Pi^(1/2)/Stephens) 3178191738705309 m001 GAMMA(19/24)^2*exp((3^(1/3)))/GAMMA(2/3)^2 3178191754574360 h001 (-6*exp(1)+1)/(-2*exp(3)-8) 3178191760766500 m001 Zeta(1/2)/GAMMA(7/12)*exp(Zeta(3)) 3178191763324230 r009 Re(z^3+c),c=-3/8+15/62*I,n=29 3178191777183620 r009 Im(z^3+c),c=-25/58+11/50*I,n=15 3178191789926008 l006 ln(302/7249) 3178191793206374 r005 Re(z^2+c),c=-35/102+9/20*I,n=63 3178191804520191 m001 1/FeigenbaumB^2/exp(Artin)^2/arctan(1/2)^2 3178191816207433 k007 concat of cont frac of 3178191819824741 m005 (1/2*2^(1/2)-1/2)/(2/11*Pi-7/11) 3178191845913727 r002 30th iterates of z^2 + 3178191847711064 r009 Re(z^3+c),c=-3/8+15/62*I,n=32 3178191848487282 a001 5702887/199*843^(5/14) 3178191852099678 a001 843/75025*514229^(21/22) 3178191852210311 a001 843/1836311903*20365011074^(21/22) 3178191860075452 m001 GAMMA(5/12)*exp(Artin)^2/sqrt(2) 3178191873041731 r009 Re(z^3+c),c=-3/8+15/62*I,n=33 3178191878285189 r005 Im(z^2+c),c=23/60+11/38*I,n=12 3178191883051286 r002 35th iterates of z^2 + 3178191887469351 r009 Re(z^3+c),c=-3/8+15/62*I,n=36 3178191889398406 r009 Re(z^3+c),c=-3/8+15/62*I,n=37 3178191889427319 m006 (2/Pi-3/4)/(2/3*exp(2*Pi)-1/4) 3178191891574309 r009 Re(z^3+c),c=-3/8+15/62*I,n=40 3178191891675297 r009 Re(z^3+c),c=-3/8+15/62*I,n=41 3178191891977592 r009 Re(z^3+c),c=-3/8+15/62*I,n=45 3178191891980459 r009 Re(z^3+c),c=-3/8+15/62*I,n=44 3178191892016304 r009 Re(z^3+c),c=-3/8+15/62*I,n=49 3178191892018328 r009 Re(z^3+c),c=-3/8+15/62*I,n=48 3178191892021116 r009 Re(z^3+c),c=-3/8+15/62*I,n=53 3178191892021543 r009 Re(z^3+c),c=-3/8+15/62*I,n=52 3178191892021699 r009 Re(z^3+c),c=-3/8+15/62*I,n=57 3178191892021768 r009 Re(z^3+c),c=-3/8+15/62*I,n=61 3178191892021770 r009 Re(z^3+c),c=-3/8+15/62*I,n=56 3178191892021776 r009 Re(z^3+c),c=-3/8+15/62*I,n=58 3178191892021776 r009 Re(z^3+c),c=-3/8+15/62*I,n=62 3178191892021778 r009 Re(z^3+c),c=-3/8+15/62*I,n=64 3178191892021779 r009 Re(z^3+c),c=-3/8+15/62*I,n=60 3178191892021780 r009 Re(z^3+c),c=-3/8+15/62*I,n=63 3178191892021804 r009 Re(z^3+c),c=-3/8+15/62*I,n=59 3178191892021828 r009 Re(z^3+c),c=-3/8+15/62*I,n=54 3178191892022005 r009 Re(z^3+c),c=-3/8+15/62*I,n=55 3178191892022711 r009 Re(z^3+c),c=-3/8+15/62*I,n=50 3178191892023685 r009 Re(z^3+c),c=-3/8+15/62*I,n=51 3178191892033914 r009 Re(z^3+c),c=-3/8+15/62*I,n=46 3178191892037381 r009 Re(z^3+c),c=-3/8+15/62*I,n=47 3178191892145995 r009 Re(z^3+c),c=-3/8+15/62*I,n=43 3178191892159048 r009 Re(z^3+c),c=-3/8+15/62*I,n=42 3178191892979843 r009 Re(z^3+c),c=-3/8+15/62*I,n=39 3178191893458193 r009 Re(z^3+c),c=-3/8+15/62*I,n=38 3178191894670099 a007 Real Root Of -358*x^4-879*x^3+989*x^2+712*x+581 3178191899124810 r009 Re(z^3+c),c=-3/8+15/62*I,n=35 3178191902166390 r009 Re(z^3+c),c=-47/102+20/53*I,n=51 3178191906292754 r009 Re(z^3+c),c=-3/8+15/62*I,n=34 3178191925641197 r005 Re(z^2+c),c=-7/18+15/53*I,n=34 3178191926556654 r005 Im(z^2+c),c=-87/110+9/53*I,n=17 3178191941937697 r009 Re(z^3+c),c=-3/8+15/62*I,n=31 3178191952104313 m002 -Pi+Pi^5+E^Pi*Log[Pi]-Sinh[Pi] 3178191957477871 a001 89/1364*(1/2+1/2*5^(1/2))^32 3178191957477871 a001 89/1364*23725150497407^(1/2) 3178191957477871 a001 89/1364*73681302247^(8/13) 3178191957477871 a001 89/1364*10749957122^(2/3) 3178191957477871 a001 89/1364*4106118243^(16/23) 3178191957477871 a001 89/1364*1568397607^(8/11) 3178191957477871 a001 89/1364*599074578^(16/21) 3178191957477871 a001 89/1364*228826127^(4/5) 3178191957477872 a001 89/1364*87403803^(16/19) 3178191957477874 a001 89/1364*33385282^(8/9) 3178191957477890 a001 89/1364*12752043^(16/17) 3178191959488702 a001 610/199*439204^(8/9) 3178191959503310 a001 610/199*7881196^(8/11) 3178191959503347 a001 610/199*141422324^(8/13) 3178191959503348 a001 610/199*2537720636^(8/15) 3178191959503348 a001 610/199*45537549124^(8/17) 3178191959503348 a001 610/199*14662949395604^(8/21) 3178191959503348 a001 610/199*(1/2+1/2*5^(1/2))^24 3178191959503348 a001 610/199*192900153618^(4/9) 3178191959503348 a001 610/199*73681302247^(6/13) 3178191959503348 a001 610/199*10749957122^(1/2) 3178191959503348 a001 610/199*4106118243^(12/23) 3178191959503348 a001 610/199*1568397607^(6/11) 3178191959503348 a001 610/199*599074578^(4/7) 3178191959503348 a001 610/199*228826127^(3/5) 3178191959503348 a001 610/199*87403803^(12/19) 3178191959503349 a001 610/199*33385282^(2/3) 3178191959503361 a001 610/199*12752043^(12/17) 3178191959503448 a001 610/199*4870847^(3/4) 3178191959504082 a001 610/199*1860498^(4/5) 3178191959508742 a001 610/199*710647^(6/7) 3178191959543164 a001 610/199*271443^(12/13) 3178191972940020 m001 1/BesselK(0,1)^2/BesselJ(0,1)^2/ln(GAMMA(2/3)) 3178191978887501 r005 Im(z^2+c),c=-4/19+12/25*I,n=22 3178191983462958 m005 (1/2*Pi-5)/(4*exp(1)-1/12) 3178191991780178 r005 Im(z^2+c),c=-5/24+29/61*I,n=45 3178191996443628 r005 Im(z^2+c),c=-43/118+25/47*I,n=64 3178192007022044 m001 GaussKuzminWirsing*(Zeta(5)-gamma(2)) 3178192007671271 m005 (1/2*exp(1)-2/5)/(9/10*exp(1)+4/7) 3178192013377423 r005 Re(z^2+c),c=-9/82+30/53*I,n=8 3178192023580294 a007 Real Root Of 193*x^4-800*x^3+140*x^2-932*x-338 3178192028435691 r009 Re(z^3+c),c=-3/8+15/62*I,n=30 3178192035408436 l006 ln(7525/7768) 3178192038649556 a007 Real Root Of 237*x^4+471*x^3-887*x^2+162*x+414 3178192042530110 m001 1/Tribonacci*Magata/exp(log(1+sqrt(2)))^2 3178192046070714 r005 Re(z^2+c),c=-3/4+27/191*I,n=6 3178192049619273 h005 exp(sin(Pi*3/16)+sin(Pi*8/39)) 3178192058999742 m001 Si(Pi)^Robbin/(FellerTornier^Robbin) 3178192060154597 a001 7/1134903170*6557470319842^(1/18) 3178192060154597 a001 7/701408733*1134903170^(1/18) 3178192060155513 a001 7/433494437*196418^(1/18) 3178192063910344 r002 56th iterates of z^2 + 3178192070711339 a007 Real Root Of 797*x^4+637*x^3+634*x^2-863*x-326 3178192074865113 m001 (ArtinRank2-Otter)/(ZetaQ(3)-ZetaQ(4)) 3178192075894275 r009 Im(z^3+c),c=-13/42+7/24*I,n=7 3178192076698986 a007 Real Root Of -700*x^4-963*x^3-992*x^2+930*x+372 3178192102161438 a007 Real Root Of 266*x^4+393*x^3+715*x^2-880*x-342 3178192114663698 r005 Im(z^2+c),c=13/90+13/45*I,n=24 3178192117218352 a007 Real Root Of 278*x^4-931*x^3+352*x^2-741*x+227 3178192130578927 r005 Im(z^2+c),c=-43/102+24/55*I,n=8 3178192138723940 a007 Real Root Of 301*x^4+876*x^3-242*x^2+220*x+555 3178192138746913 m008 (4/5*Pi^4+5/6)/(4/5*Pi^5+3) 3178192139559980 a007 Real Root Of 501*x^4+443*x^3-644*x^2-861*x+28 3178192141644428 a007 Real Root Of -3*x^4+702*x^3-101*x^2+866*x+308 3178192144305586 r005 Re(z^2+c),c=17/106+20/43*I,n=25 3178192157342699 a007 Real Root Of -61*x^4-31*x^3+625*x^2+132*x-665 3178192167933654 a001 3524578/199*843^(3/7) 3178192168627260 m001 (Pi^(1/2)-Trott2nd)/(ln(gamma)+ln(3)) 3178192171730622 r005 Re(z^2+c),c=11/32+17/40*I,n=25 3178192206741635 m001 (-Lehmer+Mills)/(5^(1/2)-gamma(2)) 3178192207656592 a007 Real Root Of -754*x^4+279*x^3-838*x^2+814*x+360 3178192210384693 m001 (3^(1/3)+Otter)/(Sarnak+TwinPrimes) 3178192213829029 l006 ln(7166/9847) 3178192215413879 r009 Re(z^3+c),c=-3/8+15/62*I,n=27 3178192215650847 r005 Re(z^2+c),c=-49/122+12/53*I,n=14 3178192217144137 k006 concat of cont frac of 3178192223702527 m001 exp(1)^GlaisherKinkelin*QuadraticClass 3178192234797109 r009 Re(z^3+c),c=-55/94+16/31*I,n=2 3178192248231757 l006 ln(301/7225) 3178192258733423 a007 Real Root Of -327*x^4-906*x^3+666*x^2+673*x-310 3178192260427831 m001 (Otter+Thue)/(BesselI(1,1)+HardyLittlewoodC3) 3178192261280491 r009 Re(z^3+c),c=-18/31+41/57*I,n=5 3178192275834467 m001 (-GAMMA(7/12)+Robbin)/(exp(1)-gamma(2)) 3178192293119879 b008 Sech[Pi+Coth[2+E]] 3178192296547666 a007 Real Root Of -291*x^4-540*x^3+968*x^2-562*x+791 3178192297830286 m006 (1/5*ln(Pi)+2/3)/(5/6*Pi+1/5) 3178192309727969 m004 (-125*Pi)/16+25*Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 3178192341076280 m001 exp(Tribonacci)^2*Bloch/sin(Pi/5) 3178192373621936 k002 Champernowne real with 67/2*n^2-107/2*n+51 3178192374621527 a005 (1/sin(59/127*Pi))^928 3178192378336017 a007 Real Root Of -59*x^4-115*x^3+159*x^2-274*x-149 3178192395633485 r002 25th iterates of z^2 + 3178192395633485 r002 25th iterates of z^2 + 3178192399688321 m001 Khinchin^exp(-1/2*Pi)*sin(1/12*Pi) 3178192399688321 m001 sin(Pi/12)*Khinchin^exp(-1/2*Pi) 3178192404122410 a001 3571/377*63245986^(17/24) 3178192405331521 l006 ln(5303/7287) 3178192409333740 r005 Re(z^2+c),c=-15/14+11/45*I,n=8 3178192417558128 r005 Im(z^2+c),c=-107/86+1/58*I,n=53 3178192418464800 a007 Real Root Of 562*x^4-959*x^3-330*x^2-893*x-287 3178192425820858 m001 FransenRobinson^2/ln(Backhouse)/TwinPrimes 3178192436571706 h001 (-7*exp(3)+1)/(-3*exp(5)+6) 3178192437302405 m001 1/Zeta(9)^2/HardHexagonsEntropy/exp(cos(Pi/5)) 3178192451694638 a007 Real Root Of -315*x^4-921*x^3+60*x^2-681*x-198 3178192456659045 r002 57th iterates of z^2 + 3178192469944501 m001 1/3*Robbin/Zeta(3)*3^(1/2) 3178192477645695 h001 (1/11*exp(2)+2/11)/(7/9*exp(1)+4/7) 3178192480652726 r005 Im(z^2+c),c=-13/56+26/37*I,n=49 3178192486976868 m001 Bloch^gamma(3)/Pi 3178192487379801 a001 2178309/199*843^(1/2) 3178192492475639 r009 Re(z^3+c),c=-37/82+19/53*I,n=16 3178192495264339 m001 1/(2^(1/3))/Kolakoski^2*exp(arctan(1/2))^2 3178192495867257 a007 Real Root Of 167*x^4+579*x^3+43*x^2-204*x+466 3178192496090866 m001 5^(1/2)*StolarskyHarborth-ReciprocalFibonacci 3178192508637079 m001 FeigenbaumAlpha+BesselJ(0,1)^Porter 3178192524873265 s001 sum(exp(-2*Pi/5)^n*A239571[n],n=1..infinity) 3178192524873265 s002 sum(A239571[n]/(exp(2/5*pi*n)),n=1..infinity) 3178192551801774 h001 (1/10*exp(2)+5/9)/(5/11*exp(2)+5/7) 3178192552945499 m001 BesselI(1,1)/FeigenbaumD/LaplaceLimit 3178192558562261 r002 4th iterates of z^2 + 3178192566701563 r005 Re(z^2+c),c=21/62+8/57*I,n=5 3178192567852450 h001 (1/4*exp(1)+2/7)/(11/12*exp(1)+6/11) 3178192603748948 m001 Lehmer^2/exp(GlaisherKinkelin)^2*Salem 3178192607395266 m001 1/Porter^2/exp(CareFree)*Salem^2 3178192609631076 a008 Real Root of (1+x-14*x^2+3*x^3) 3178192614357800 r002 13th iterates of z^2 + 3178192630520070 a007 Real Root Of 130*x^4+118*x^3-736*x^2+417*x-716 3178192638948326 r005 Re(z^2+c),c=5/29+25/52*I,n=64 3178192652014301 m001 (GAMMA(3/4)-CareFree)/(Trott-ZetaP(3)) 3178192653352487 a001 1/377*6557470319842^(17/24) 3178192655893698 m001 (exp(1/Pi)+gamma(2))/(Artin-FeigenbaumDelta) 3178192657244385 m001 ArtinRank2^HardyLittlewoodC3/FeigenbaumAlpha 3178192658585630 r005 Re(z^2+c),c=-25/74+22/49*I,n=22 3178192671890491 r005 Re(z^2+c),c=19/66+6/55*I,n=11 3178192701757525 r005 Re(z^2+c),c=-23/60+5/17*I,n=13 3178192702861444 a007 Real Root Of 180*x^4+648*x^3+165*x^2+7*x+793 3178192704340871 a001 29/3524578*12586269025^(15/23) 3178192709592665 l006 ln(300/7201) 3178192717462648 b008 9/8+ProductLog[16] 3178192719039839 r002 60th iterates of z^2 + 3178192728793525 m005 (1/2*gamma+3/8)/(7/10*Pi-1/9) 3178192744572181 r009 Re(z^3+c),c=-37/114+6/37*I,n=3 3178192753250534 m001 (Niven-Trott2nd)/(GAMMA(3/4)-ArtinRank2) 3178192754935420 m001 Riemann3rdZero/Rabbit*ln(Sierpinski)^2 3178192761343464 r005 Im(z^2+c),c=-3/28+32/61*I,n=9 3178192788836307 r009 Re(z^3+c),c=-45/118+9/19*I,n=4 3178192797928610 r005 Im(z^2+c),c=-63/118+14/37*I,n=8 3178192799549090 a001 29/2584*196418^(15/23) 3178192804257923 l006 ln(3440/4727) 3178192805682476 a001 39088169/199*322^(1/12) 3178192806826651 a001 1346269/199*843^(4/7) 3178192812571723 a001 7/6765*75025^(25/49) 3178192845165593 r005 Im(z^2+c),c=29/102+5/11*I,n=46 3178192857727168 r009 Re(z^3+c),c=-57/118+19/47*I,n=52 3178192880231325 m004 (25*Sqrt[5]*Pi)/12+5*Pi*Cot[Sqrt[5]*Pi] 3178192894130163 a007 Real Root Of -113*x^4-426*x^3+21*x^2+677*x-207 3178192901582356 l004 sinh(1051/112*Pi) 3178192901582356 l004 cosh(1051/112*Pi) 3178192905427650 a001 377/322*9349^(19/31) 3178192916980743 r005 Re(z^2+c),c=-21/32+15/43*I,n=53 3178192917508153 a007 Real Root Of -135*x^4+407*x^3-421*x^2+664*x+268 3178192921183402 m005 (1/2*gamma+1/9)/(3/7*3^(1/2)-2) 3178192929143489 a007 Real Root Of -747*x^4+617*x^3+724*x^2+622*x-283 3178192938546934 a007 Real Root Of -120*x^4-419*x^3-279*x^2-424*x+263 3178192942244241 r005 Re(z^2+c),c=-51/122+2/43*I,n=16 3178192942632892 a007 Real Root Of -579*x^4+954*x^3-685*x^2+638*x+21 3178192947679600 m001 1/cos(1)^2*LambertW(1)^2/ln(cos(Pi/12)) 3178192949519140 r005 Im(z^2+c),c=-7/110+11/27*I,n=14 3178192959208702 m001 1/exp(LaplaceLimit)^2*Kolakoski^2*Ei(1) 3178192971847324 r005 Im(z^2+c),c=-161/118+3/50*I,n=6 3178192974752274 r009 Im(z^3+c),c=-15/82+19/56*I,n=3 3178192979556668 r005 Im(z^2+c),c=-10/9+32/127*I,n=8 3178192981433581 b008 Sech[1/18]/Pi 3178192984376041 m005 (1/2*2^(1/2)+4/7)/(3*Zeta(3)+5/12) 3178192986045673 r005 Re(z^2+c),c=-5/9-38/79*I,n=22 3178192986150110 a007 Real Root Of -826*x^4-562*x^3-71*x^2+250*x+8 3178192996655427 m001 gamma(3)^(3^(1/2)/ZetaQ(2)) 3178193010633357 r005 Im(z^2+c),c=35/114+2/15*I,n=63 3178193023666801 r005 Im(z^2+c),c=11/122+37/62*I,n=45 3178193028421330 a007 Real Root Of -333*x^4+851*x^3-321*x^2+890*x+346 3178193032690020 m008 (5/6*Pi^4-3/4)/(4/5*Pi^3+1/2) 3178193045844248 r005 Im(z^2+c),c=-9/50+23/43*I,n=5 3178193057686092 m001 exp(Zeta(3))/GAMMA(11/12)*Zeta(7) 3178193060650636 a007 Real Root Of 339*x^4+868*x^3-621*x^2+162*x+65 3178193071127566 a007 Real Root Of 755*x^4+72*x^3-975*x^2-417*x+221 3178193099481093 m008 (1/6*Pi^3+4)/(3*Pi^6+2/5) 3178193102362299 a007 Real Root Of -306*x^4+859*x^3-755*x^2-110*x+72 3178193126271779 a001 832040/199*843^(9/14) 3178193148989754 r005 Im(z^2+c),c=-93/94+10/41*I,n=12 3178193156004740 r009 Re(z^3+c),c=-3/8+15/62*I,n=26 3178193156017457 a007 Real Root Of -3*x^4-955*x^3-488*x^2+667*x+443 3178193163759760 r005 Im(z^2+c),c=-1/5+25/53*I,n=30 3178193172545691 r005 Im(z^2+c),c=-15/22+41/127*I,n=42 3178193174039385 l006 ln(299/7177) 3178193179065663 m001 1/exp(GAMMA(1/4))^2/Porter^2/Zeta(5) 3178193183220378 p003 LerchPhi(1/256,5,305/153) 3178193190533361 m009 (20/3*Catalan+5/6*Pi^2+6)/(2/3*Psi(1,1/3)-1/3) 3178193195802924 m001 (MertensB3+Niven)/(Champernowne+FeigenbaumB) 3178193203638348 a007 Real Root Of 28*x^4+863*x^3-837*x^2+562*x-64 3178193225925577 l006 ln(5017/6894) 3178193253255184 m001 GAMMA(5/12)^2/ln(Salem)^2/cos(1) 3178193275017627 m005 (1/6*gamma-2)/(4*2^(1/2)+1/3) 3178193279258142 a007 Real Root Of -286*x^4-712*x^3+595*x^2-376*x-882 3178193280009587 m001 (3^(1/2))^Cahen*(3^(1/2))^MinimumGamma 3178193280446859 r005 Re(z^2+c),c=-1/3+11/23*I,n=56 3178193287756422 r005 Re(z^2+c),c=-31/86+21/58*I,n=14 3178193288293385 a007 Real Root Of -605*x^4-15*x^3+100*x^2+876*x+274 3178193292649152 r005 Im(z^2+c),c=-2/3+67/211*I,n=44 3178193301502296 m005 (1/2*2^(1/2)+4/11)/(3/5*exp(1)-5) 3178193305652292 m005 (3/4*exp(1)-1/5)/(1/4*Pi+5) 3178193320153205 r005 Im(z^2+c),c=-85/114+7/62*I,n=33 3178193330929990 m005 (1/3*gamma+3/5)/(3/4*exp(1)+5/11) 3178193338588037 m001 1/exp(GAMMA(1/3))^2*Conway/GAMMA(11/24) 3178193339832463 m001 arctan(1/3)*arctan(1/3)^Trott 3178193342958644 m005 (1/2*Zeta(3)+2/3)/(-75/16+5/16*5^(1/2)) 3178193344609303 m001 (2^(1/3))/ln(Paris)^2/exp(1)^2 3178193357978908 a007 Real Root Of -230*x^4-513*x^3+672*x^2-107*x-130 3178193360689044 p004 log(35837/1493) 3178193372301733 a007 Real Root Of 218*x^4+512*x^3-270*x^2+844*x-396 3178193376471063 m001 1/exp(1)/MinimumGamma*ln(log(1+sqrt(2))) 3178193376627946 k002 Champernowne real with 34*n^2-55*n+52 3178193382577399 r005 Re(z^2+c),c=23/78+5/49*I,n=28 3178193383924716 a001 102334155/2207*123^(2/5) 3178193400209179 m001 BesselK(1,1)*exp(Lehmer)*cos(1)^2 3178193409099251 m005 (1/2*Zeta(3)-2/3)/(4/9*exp(1)+6/7) 3178193416403863 m001 ln(2)*StolarskyHarborth+MertensB1 3178193424585320 a007 Real Root Of 652*x^4-550*x^3+833*x^2-738*x-343 3178193440086634 a007 Real Root Of -16*x^4+253*x^3+777*x^2-898*x-948 3178193445721530 a001 514229/199*843^(5/7) 3178193445903842 l006 ln(6594/9061) 3178193454429378 g004 Re(GAMMA(-5/6+I*133/30)) 3178193459711098 r005 Re(z^2+c),c=-63/94+8/41*I,n=13 3178193468667206 m005 (1/2*gamma+7/8)/(1/11*5^(1/2)-1/6) 3178193497270521 m001 FeigenbaumDelta^(Zeta(5)*Sarnak) 3178193501719040 r005 Im(z^2+c),c=-7/31+14/29*I,n=52 3178193507442950 m001 (5^(1/2)+GAMMA(7/12))/(GAMMA(19/24)+Trott) 3178193512204091 m005 (1/3*gamma-2/3)/(1/3*Catalan-5/11) 3178193539669787 a003 sin(Pi*7/59)*sin(Pi*26/77) 3178193540909672 s001 sum(exp(-2*Pi/5)^n*A117275[n],n=1..infinity) 3178193540909672 s002 sum(A117275[n]/(exp(2/5*pi*n)),n=1..infinity) 3178193543021840 r002 56th iterates of z^2 + 3178193545942660 r005 Im(z^2+c),c=13/64+8/33*I,n=7 3178193569537256 m005 (1/2*Catalan+3/10)/(exp(1)-1/3) 3178193576598415 r005 Im(z^2+c),c=-11/122+19/45*I,n=27 3178193580082521 m005 (1/2*2^(1/2)-2/7)/(5/9*3^(1/2)+4/11) 3178193582914541 a007 Real Root Of 416*x^4+265*x^3-693*x^2-907*x-214 3178193582979922 a007 Real Root Of -295*x^4+379*x^3-924*x^2+527*x+276 3178193589153539 m002 -4-Pi^2-Pi^5+ProductLog[Pi]+Tanh[Pi] 3178193596108385 m002 Pi^5+Coth[Pi]/4+Sinh[Pi] 3178193603715083 r008 a(0)=3,K{-n^6,34-36*n^3+48*n^2-52*n} 3178193616616860 h001 (7/8*exp(2)+1/2)/(5/7*exp(1)+1/4) 3178193623383778 m001 (Zeta(1,2)+MertensB3)/(Niven-Riemann1stZero) 3178193624773559 s002 sum(A111746[n]/(n*10^n+1),n=1..infinity) 3178193633354658 m005 (1/2*3^(1/2)-1/10)/(1/2*3^(1/2)-5/8) 3178193639447730 m001 FeigenbaumMu/(LandauRamanujan2nd-Niven) 3178193640267936 m005 (1/3*Pi-2/3)/(43/77+2/7*5^(1/2)) 3178193641602979 l006 ln(298/7153) 3178193641747864 r005 Im(z^2+c),c=-11/50+23/48*I,n=24 3178193686626848 m006 (3/4*Pi^2-4)/(2*exp(2*Pi)-1/2) 3178193694205943 r005 Re(z^2+c),c=-19/29+19/60*I,n=25 3178193698970261 r009 Re(z^3+c),c=-3/8+15/62*I,n=23 3178193711191742 r009 Re(z^3+c),c=-31/78+17/61*I,n=28 3178193711802073 m001 (-Lehmer+ZetaQ(3))/(2^(1/3)+gamma) 3178193726339087 m005 (1/2*Catalan+3)/(5*5^(1/2)-3/10) 3178193741390616 m001 (BesselJ(0,1)-cos(1))/(gamma(1)+gamma(3)) 3178193750192006 r005 Re(z^2+c),c=9/74+23/55*I,n=31 3178193756090615 a001 843/514229*233^(31/57) 3178193759066789 a007 Real Root Of -356*x^4-904*x^3+710*x^2+13*x+171 3178193765159294 a001 317811/199*843^(11/14) 3178193767207043 a007 Real Root Of -249*x^4-676*x^3+247*x^2-240*x+446 3178193769048211 r009 Re(z^3+c),c=-47/98+25/61*I,n=57 3178193773305261 r009 Im(z^3+c),c=-5/114+15/43*I,n=8 3178193784129155 m001 FeigenbaumKappa*Si(Pi)^2*exp(GAMMA(1/6))^2 3178193798629043 b008 Cosh[2+Pi+Coth[1]] 3178193801644249 a001 9349/233*75025^(22/37) 3178193803757672 m001 (PlouffeB-Robbin)/(ln(2)-OneNinth) 3178193819994989 r005 Im(z^2+c),c=17/58+9/59*I,n=33 3178193820890437 r005 Im(z^2+c),c=-9/32+28/53*I,n=10 3178193833934267 a007 Real Root Of -360*x^4-968*x^3+627*x^2-9*x-707 3178193839718968 r005 Im(z^2+c),c=-3/5+33/89*I,n=8 3178193852331898 r005 Im(z^2+c),c=17/56+7/53*I,n=19 3178193863361665 a001 12752043/377*610^(17/24) 3178193868033444 r002 38th iterates of z^2 + 3178193870778662 a007 Real Root Of -267*x^4-832*x^3-77*x^2-387*x+80 3178193887368377 r005 Im(z^2+c),c=-41/114+17/31*I,n=58 3178193906224314 m001 (Cahen-ln(Pi)*TreeGrowth2nd)/TreeGrowth2nd 3178193926377223 a001 11/2*1597^(11/20) 3178193941220221 a001 133957148/2889*123^(2/5) 3178193947218526 m001 5^(1/2)+DuboisRaymond+RenyiParking 3178193949820105 m001 (Riemann1stZero-Trott)/(Zeta(5)+Magata) 3178193962391666 r009 Re(z^3+c),c=-51/122+11/19*I,n=3 3178193998879629 r009 Re(z^3+c),c=-1/18+38/61*I,n=42 3178194000070387 r005 Im(z^2+c),c=-4/29+31/50*I,n=18 3178194006607803 p003 LerchPhi(1/16,2,408/227) 3178194008062367 m002 Pi^5+Cosh[Pi]+(6*ProductLog[Pi])/Pi^3 3178194022528556 a001 701408733/15127*123^(2/5) 3178194028577506 r009 Re(z^3+c),c=-41/98+13/43*I,n=11 3178194034391282 a001 1836311903/39603*123^(2/5) 3178194036122031 a001 46368*123^(2/5) 3178194036374543 a001 12586269025/271443*123^(2/5) 3178194036411384 a001 32951280099/710647*123^(2/5) 3178194036416760 a001 43133785636/930249*123^(2/5) 3178194036417544 a001 225851433717/4870847*123^(2/5) 3178194036417658 a001 591286729879/12752043*123^(2/5) 3178194036417675 a001 774004377960/16692641*123^(2/5) 3178194036417677 a001 4052739537881/87403803*123^(2/5) 3178194036417678 a001 225749145909/4868641*123^(2/5) 3178194036417678 a001 3278735159921/70711162*123^(2/5) 3178194036417679 a001 2504730781961/54018521*123^(2/5) 3178194036417685 a001 956722026041/20633239*123^(2/5) 3178194036417729 a001 182717648081/3940598*123^(2/5) 3178194036418028 a001 139583862445/3010349*123^(2/5) 3178194036420082 a001 53316291173/1149851*123^(2/5) 3178194036434154 a001 10182505537/219602*123^(2/5) 3178194036530605 a001 7778742049/167761*123^(2/5) 3178194037191692 a001 2971215073/64079*123^(2/5) 3178194037555436 m001 ln(Pi)*(5^(1/2)+cos(1)) 3178194037555436 m001 ln(Pi)*(sqrt(5)+cos(1)) 3178194041722850 a001 567451585/12238*123^(2/5) 3178194047319568 m001 exp(Conway)/Artin/GAMMA(1/6)^2 3178194052984941 r005 Im(z^2+c),c=-1/102+21/55*I,n=24 3178194057625657 m001 (Zeta(3)-gamma(1))/(GAMMA(11/12)+Otter) 3178194057768863 m001 (ln(Pi)+GolombDickman)/(Psi(2,1/3)-cos(1)) 3178194058796491 m001 ln(MertensB1)^3*log(2+sqrt(3)) 3178194065552915 a003 cos(Pi*4/33)-sin(Pi*25/61) 3178194070355665 r005 Im(z^2+c),c=-113/102+12/53*I,n=40 3178194072779872 a001 433494437/9349*123^(2/5) 3178194080020756 a008 Real Root of (10+9*x-7*x^2+x^3) 3178194084628556 a001 196418/199*843^(6/7) 3178194097422450 r005 Re(z^2+c),c=33/94+15/49*I,n=9 3178194098493610 r005 Re(z^2+c),c=-11/14+73/90*I,n=3 3178194104330190 h001 (-exp(1/3)+9)/(-4*exp(3/2)-6) 3178194104456916 m001 (Trott2nd+Thue)/(3^(1/2)+Shi(1)) 3178194104843083 v002 sum(1/(2^n*(28*n^2-22*n+12)),n=1..infinity) 3178194112314928 l006 ln(297/7129) 3178194115848169 m001 RenyiParking/exp(DuboisRaymond)/BesselJ(1,1)^2 3178194129250339 m001 ((1+3^(1/2))^(1/2)-CareFree)/(ln(5)+exp(1/Pi)) 3178194135013846 a007 Real Root Of -859*x^4-435*x^3+768*x^2+745*x+154 3178194138358859 r005 Re(z^2+c),c=-13/32+11/56*I,n=11 3178194139023734 m001 (Catalan-sin(1/5*Pi))/(-gamma(3)+MertensB2) 3178194142893297 m005 (1/2*Zeta(3)+1/12)/(4/7*exp(1)+3/5) 3178194145733206 l006 ln(1577/2167) 3178194150534962 a008 Real Root of x^2-x-101327 3178194154733400 a005 (1/cos(5/134*Pi))^1171 3178194158063809 a008 Real Root of x^4-x^3+3*x^2+38*x-221 3178194170319007 r002 8th iterates of z^2 + 3178194172356176 m002 Pi/4+Pi^2+Pi^5+Log[Pi] 3178194174517848 r002 3th iterates of z^2 + 3178194178823178 m001 Catalan^2/ln(KhintchineHarmonic)^2*sinh(1) 3178194188090119 r005 Re(z^2+c),c=-31/24+1/52*I,n=64 3178194198500113 r005 Re(z^2+c),c=6/23+25/59*I,n=46 3178194199567005 r002 3th iterates of z^2 + 3178194202666054 m001 (MertensB2+Sierpinski)/(ln(2)/ln(10)+Chi(1)) 3178194204875782 a003 cos(Pi*9/23)*sin(Pi*39/98) 3178194215699262 a007 Real Root Of 73*x^4+124*x^3-42*x^2+646*x-990 3178194217199309 m001 Sierpinski^2/exp(Salem)^2*sqrt(5)^2 3178194227835990 m001 (Pi^(1/2)-Mills)/(ln(Pi)+arctan(1/3)) 3178194244692975 r005 Im(z^2+c),c=-15/56+1/2*I,n=56 3178194249202274 g005 GAMMA(5/11)*GAMMA(4/7)^2/GAMMA(3/5) 3178194253741378 m005 (1/2*exp(1)-7/12)/(9/10*5^(1/2)+3/7) 3178194269251221 r005 Re(z^2+c),c=-9/16+71/108*I,n=28 3178194276785084 r005 Re(z^2+c),c=-15/44+21/46*I,n=59 3178194285647882 a001 165580141/3571*123^(2/5) 3178194287180708 r005 Re(z^2+c),c=-23/102+13/21*I,n=61 3178194288063691 m001 1/GAMMA(1/3)/ln(FransenRobinson)*Zeta(1,2)^2 3178194301488380 p004 log(35597/1483) 3178194303036533 m005 (1/2*5^(1/2)+4/9)/(7/12*2^(1/2)-1/3) 3178194318662153 m001 1/OneNinth*ln(Trott)/GAMMA(1/12)^2 3178194323832192 m005 (1/2*gamma-1/10)/(1/8*2^(1/2)+5/12) 3178194325857468 a001 521/28657*514229^(26/35) 3178194333558745 r005 Re(z^2+c),c=-29/106+34/57*I,n=62 3178194344612103 m001 (Khinchin+Thue)/(Bloch+Cahen) 3178194348830575 a001 47/165580141*39088169^(8/15) 3178194348830575 a001 47/7778742049*53316291173^(8/15) 3178194348876206 a001 73681302247/5*89^(13/19) 3178194349243331 a001 47/3524578*28657^(8/15) 3178194351354634 r005 Im(z^2+c),c=-7/31+14/29*I,n=64 3178194351500410 m001 BesselK(0,1)/Tribonacci^2/exp(Zeta(1,2)) 3178194355601440 b008 Pi+ArcCoth[82/3] 3178194356379785 r005 Im(z^2+c),c=-13/70+20/43*I,n=27 3178194363806462 r005 Im(z^2+c),c=-51/94+22/59*I,n=10 3178194365525712 a007 Real Root Of -498*x^4+138*x^3+303*x^2+617*x+175 3178194369013311 m001 (GaussAGM-gamma)/(HardyLittlewoodC3+ZetaP(3)) 3178194374718266 r005 Im(z^2+c),c=-25/31+1/63*I,n=32 3178194378506589 m001 (ln(2^(1/2)+1)+GAMMA(19/24))/(Bloch+ZetaP(3)) 3178194379633956 k002 Champernowne real with 69/2*n^2-113/2*n+53 3178194380634958 k004 Champernowne real with floor(Pi*(11*n^2-18*n+17)) 3178194382617779 a001 7/6765*13^(7/16) 3178194393724685 r005 Im(z^2+c),c=-73/78+12/41*I,n=12 3178194401431350 m005 (1/2*exp(1)+9/11)/(2/11*3^(1/2)-1) 3178194404015471 a001 121393/199*843^(13/14) 3178194423751878 m001 (-GaussKuzminWirsing+1)/(-cos(Pi/5)+3) 3178194434214036 m001 (-GAMMA(19/24)+ZetaP(2))/(Catalan+GAMMA(2/3)) 3178194442334056 r005 Im(z^2+c),c=-19/62+34/57*I,n=41 3178194447779791 r005 Im(z^2+c),c=5/16+5/46*I,n=21 3178194449733271 r005 Im(z^2+c),c=-7/54+26/59*I,n=41 3178194451194382 m001 Zeta(5)/Pi^(1/2)*Landau 3178194456555543 m001 BesselI(1,1)/(Bloch+Mills) 3178194457577526 m001 (Cahen+HardyLittlewoodC3)/(Pi+ln(2^(1/2)+1)) 3178194474089529 r005 Im(z^2+c),c=-119/118+5/18*I,n=11 3178194487207003 a007 Real Root Of -974*x^4+198*x^3-948*x^2-362*x-3 3178194493051514 r005 Re(z^2+c),c=7/22+16/31*I,n=37 3178194501211156 m001 KhinchinHarmonic^Zeta(1,2)+Sierpinski 3178194508191976 m001 FibonacciFactorial^Ei(1)+Niven 3178194514559874 a005 (1/cos(5/198*Pi))^1098 3178194515524546 r005 Im(z^2+c),c=-11/74+29/63*I,n=11 3178194526054750 r009 Re(z^3+c),c=-47/114+13/43*I,n=27 3178194542646975 m001 (gamma+MertensB1)/(MertensB3+Mills) 3178194548700593 a007 Real Root Of 332*x^4+848*x^3-806*x^2-471*x-6 3178194567754097 r005 Im(z^2+c),c=-3/17+28/61*I,n=18 3178194575664570 m001 GolombDickman*ln(Artin)/GAMMA(11/24) 3178194578086561 m001 (GaussAGM-Mills)/ZetaR(2) 3178194581427620 m002 3+Pi^5+(Pi^5*Sech[Pi])/3 3178194586207140 l006 ln(296/7105) 3178194607734356 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+Bloch+Trott2nd 3178194611123208 r009 Im(z^3+c),c=-14/29+9/55*I,n=23 3178194613444041 r005 Re(z^2+c),c=39/118+7/55*I,n=32 3178194620767652 m001 BesselI(0,1)^KhinchinHarmonic/Weierstrass 3178194624128835 r009 Re(z^3+c),c=-19/98+53/55*I,n=36 3178194653377846 h003 exp(Pi*(1/5*(12^(1/3)-5)^(1/2)*5^(3/4))) 3178194663031830 a007 Real Root Of 165*x^4+370*x^3-636*x^2-575*x-360 3178194671488865 a001 123/233*1346269^(37/60) 3178194671880942 r008 a(0)=3,K{-n^6,-25-26*n+46*n^2} 3178194692493570 a007 Real Root Of -603*x^4-576*x^3-858*x^2+150*x+122 3178194707323552 s001 sum(exp(-2*Pi/5)^n*A277579[n],n=1..infinity) 3178194707323552 s002 sum(A277579[n]/(exp(2/5*pi*n)),n=1..infinity) 3178194721485411 a001 119817941/377 3178194732787083 m005 (4/5*exp(1)+4)/(2/3*2^(1/2)+1) 3178194742448312 m001 exp(1/Pi)/(FeigenbaumAlpha+MasserGramainDelta) 3178194744647603 m001 (2^(1/3)+ln(gamma))/(ln(5)+Kac) 3178194747990621 m005 (1/2*exp(1)-1/3)/(-53/88+1/8*5^(1/2)) 3178194752286408 b008 -6+E+ArcCot[3]^2 3178194753178796 a001 6/34111385*55^(13/18) 3178194764207142 m005 (1/2*Pi-3)/(2/9*5^(1/2)+4) 3178194781422624 r005 Im(z^2+c),c=1/32+11/31*I,n=9 3178194795577967 m001 (-ln(2+3^(1/2))+Backhouse)/(2^(1/2)-Si(Pi)) 3178194796124388 r005 Im(z^2+c),c=3/17+17/64*I,n=19 3178194806592142 r005 Re(z^2+c),c=-27/22+12/91*I,n=12 3178194814033548 r002 15th iterates of z^2 + 3178194826287255 m001 GAMMA(13/24)^ln(2+3^(1/2))+2^(1/3) 3178194826287255 m001 GAMMA(13/24)^ln(2+sqrt(3))+(2^(1/3)) 3178194827601118 m009 (1/2*Psi(1,3/4)-1)/(3*Psi(1,2/3)-2/3) 3178194835138989 m004 4-Cos[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi]/8 3178194838056230 r009 Re(z^3+c),c=-7/114+31/45*I,n=31 3178194840204964 m002 -E^Pi/4+Pi+Pi^6/3 3178194855989968 m001 Pi^(1/2)*(FeigenbaumAlpha-Rabbit) 3178194864562096 a007 Real Root Of -338*x^4-829*x^3+589*x^2-500*x+334 3178194874779649 a007 Real Root Of 632*x^4+47*x^3-817*x^2-939*x+373 3178194881598193 r005 Im(z^2+c),c=-10/27+26/49*I,n=61 3178194883990748 g003 Im(GAMMA(-19/6+I*(-169/60))) 3178194889197173 r008 a(0)=3,K{-n^6,2-29*n^3+11*n^2+10*n} 3178194890956033 r009 Re(z^3+c),c=-11/24+14/41*I,n=14 3178194908716893 q001 1236/3889 3178194912035845 l006 ln(6022/8275) 3178194915031395 r005 Re(z^2+c),c=9/58+7/11*I,n=31 3178194916941851 r005 Im(z^2+c),c=-49/122+31/63*I,n=24 3178194919379832 a007 Real Root Of 878*x^4+13*x^3+623*x^2+335*x+35 3178194929178409 m005 (1/3*exp(1)-1/4)/(5/11*Pi+7/11) 3178194937851919 r005 Im(z^2+c),c=-43/38+2/51*I,n=18 3178194955211528 a001 3/28657*75025^(5/7) 3178194955904829 a001 3/3524578*63245986^(5/7) 3178194955904880 a001 3/433494437*53316291173^(5/7) 3178194955904880 a001 1/1602508992*1548008755920^(5/7) 3178194955904881 a001 3/39088169*1836311903^(5/7) 3178194955911078 a001 1/105937*2178309^(5/7) 3178194958907089 r005 Im(z^2+c),c=23/70+1/9*I,n=35 3178194964768324 p001 sum(1/(368*n+39)/n/(8^n),n=1..infinity) 3178194966254373 r005 Re(z^2+c),c=-35/102+17/33*I,n=27 3178194978780327 r008 a(0)=3,K{-n^6,-2+4*n^3+2*n^2-6*n} 3178194983104163 a001 3/2584*2584^(5/7) 3178194991479111 a001 7881196/55*2584^(11/16) 3178194997648823 m001 FeigenbaumKappa/Niven/Riemann3rdZero 3178194999115527 r005 Re(z^2+c),c=-7/29+29/48*I,n=64 3178195039659914 a008 Real Root of x^4-x^3+2*x^2-40*x+37 3178195050728648 a001 521/46368*3^(53/56) 3178195051926698 h001 (9/10*exp(2)+7/8)/(2/3*exp(1)+5/9) 3178195058953820 a001 39603/55*5702887^(11/16) 3178195060192013 a003 cos(Pi*31/118)-cos(Pi*44/115) 3178195063311954 l006 ln(295/7081) 3178195063766491 m005 (-19/4+1/4*5^(1/2))/(8/11*Zeta(3)+4/9) 3178195067870546 r005 Re(z^2+c),c=-9/22+11/49*I,n=9 3178195068182044 m001 (ln(gamma)+PlouffeB)^BesselJ(1,1) 3178195069069699 r005 Im(z^2+c),c=-4/21+29/62*I,n=51 3178195069855885 r005 Im(z^2+c),c=1/16+14/41*I,n=18 3178195070138658 m001 1/GAMMA(3/4)^2/GAMMA(1/24)^2*exp(cos(Pi/12)) 3178195072847900 m001 (HardyLittlewoodC3+Paris)/(5^(1/2)-gamma(1)) 3178195076355939 m001 (Sarnak-Shi(1))^Pi 3178195091627726 r009 Re(z^3+c),c=-45/98+22/59*I,n=24 3178195094715607 r005 Im(z^2+c),c=-11/102+30/47*I,n=48 3178195106990419 p001 sum(1/(332*n+321)/(25^n),n=0..infinity) 3178195112203785 m005 (1/2*exp(1)-1/2)/(1/12*gamma+2/9) 3178195127611875 a007 Real Root Of 61*x^4-562*x^3-525*x^2-738*x+305 3178195131478258 r009 Im(z^3+c),c=-33/70+11/51*I,n=9 3178195138353455 r005 Im(z^2+c),c=-115/126+5/19*I,n=23 3178195147628027 m001 exp(Ei(1))^2/Artin^2*Zeta(9)^2 3178195157124116 r002 63th iterates of z^2 + 3178195176371638 r005 Im(z^2+c),c=-63/110+3/52*I,n=61 3178195183905181 l006 ln(4445/6108) 3178195185525867 r005 Re(z^2+c),c=-3/8+18/55*I,n=14 3178195196888280 r005 Re(z^2+c),c=-18/29+29/57*I,n=7 3178195208783278 a001 199/165580141*5702887^(4/19) 3178195208783282 a001 199/1134903170*53316291173^(4/19) 3178195217048658 r005 Im(z^2+c),c=19/110+17/56*I,n=4 3178195233769349 m001 Pi^(1/2)+AlladiGrinstead+Gompertz 3178195243450277 p001 sum((-1)^(n+1)/(51*n+31)/(25^n),n=0..infinity) 3178195244230439 a007 Real Root Of -350*x^4+774*x^3+248*x^2+902*x-333 3178195252466145 r009 Re(z^3+c),c=-5/12+17/55*I,n=25 3178195276576903 m005 (11/20+1/4*5^(1/2))/(7/9*gamma-1/10) 3178195287750133 b008 Pi+Tanh[Sech[4]] 3178195290978570 r005 Re(z^2+c),c=-5/12+3/37*I,n=15 3178195292132055 b008 Pi+ArcCot[Cosh[4]] 3178195305034516 m001 1/Paris^2/ln(GaussAGM(1,1/sqrt(2)))^2/Salem 3178195313903099 r009 Re(z^3+c),c=-11/25+19/55*I,n=52 3178195322222499 r002 16th iterates of z^2 + 3178195324121746 r009 Im(z^3+c),c=-5/82+8/23*I,n=10 3178195330140753 r005 Re(z^2+c),c=-27/74+11/29*I,n=26 3178195341662124 m008 (1/4*Pi^5+2/3)/(4/5*Pi^5-2) 3178195354676084 a003 cos(Pi*26/99)*cos(Pi*10/29) 3178195360110727 a001 24157817/199*322^(1/6) 3178195366407099 r005 Im(z^2+c),c=-27/106+35/59*I,n=28 3178195372404596 r005 Im(z^2+c),c=-1/8+25/57*I,n=26 3178195382639966 k002 Champernowne real with 35*n^2-58*n+54 3178195386700388 a007 Real Root Of -277*x^4+741*x^3-732*x^2+272*x+187 3178195396361564 a003 sin(Pi*7/51)*sin(Pi*11/40) 3178195398111208 r005 Re(z^2+c),c=15/52+11/24*I,n=12 3178195398901608 s002 sum(A092440[n]/(n!^2),n=1..infinity) 3178195399584664 a007 Real Root Of 263*x^4+652*x^3-878*x^2-668*x+843 3178195399961155 r005 Re(z^2+c),c=-5/26+23/39*I,n=14 3178195400760005 a009 1/2*(16-3^(1/3)*2^(1/4))^(1/2)*2^(3/4) 3178195403484270 r005 Re(z^2+c),c=-75/106+2/25*I,n=6 3178195407780075 l006 ln(7313/10049) 3178195412886424 r005 Re(z^2+c),c=-39/98+14/59*I,n=21 3178195419184703 m005 (1/2*gamma+5/8)/(6/7*Pi+2/11) 3178195420561118 s002 sum(A134775[n]/(n!^3),n=1..infinity) 3178195422023845 b008 E+(7*Sech[E])/2 3178195425961402 r009 Re(z^3+c),c=-11/26+15/47*I,n=24 3178195426374313 r008 a(0)=0,K{-n^6,-37+24*n^3+10*n^2-28*n} 3178195429029932 r005 Re(z^2+c),c=-53/42+1/29*I,n=6 3178195439008726 m008 (4/5*Pi^5-1/4)/(4/5*Pi^6+2/5) 3178195448914395 r005 Im(z^2+c),c=-35/94+6/13*I,n=9 3178195458315282 m005 (1/15+1/6*5^(1/2))/(3/4*3^(1/2)+1/12) 3178195462690284 m001 MadelungNaCl-1/3-sqrt(3) 3178195477287731 m001 (1-Catalan)/(ln(5)+MertensB2) 3178195487611271 m001 (sin(1/5*Pi)+Zeta(1,-1))/(Totient-Trott) 3178195488077556 a007 Real Root Of 264*x^4+944*x^3+309*x^2+55*x+423 3178195502891230 a007 Real Root Of 232*x^4+725*x^3-160*x^2-589*x-652 3178195503673619 r005 Im(z^2+c),c=13/70+15/58*I,n=14 3178195509887869 m001 BesselI(1,1)-ln(2)/ln(10)-LandauRamanujan2nd 3178195518708348 r005 Im(z^2+c),c=-13/23+22/53*I,n=24 3178195523080259 m005 (1/2*gamma-1/10)/(4/35+3/14*5^(1/2)) 3178195535507472 m005 (1/2*Pi+4/7)/(3/4*3^(1/2)-5/8) 3178195538595727 r009 Im(z^3+c),c=-5/12+13/57*I,n=11 3178195543662148 l006 ln(294/7057) 3178195545724331 a007 Real Root Of 256*x^4+453*x^3-970*x^2+398*x-514 3178195552960154 r005 Re(z^2+c),c=-21/58+11/48*I,n=4 3178195558773394 a001 377/18*11^(4/23) 3178195561054880 s002 sum(A010284[n]/(n^2*2^n-1),n=1..infinity) 3178195561068193 m001 (Thue-TwinPrimes)/(ln(2)+2*Pi/GAMMA(5/6)) 3178195562412308 m001 (-exp(1/Pi)+MinimumGamma)/(1+3^(1/2)) 3178195566170611 m001 1/(2^(1/3))/OneNinth/exp(sin(1)) 3178195568414727 a001 199/24157817*610^(4/19) 3178195578443968 a007 Real Root Of -546*x^4-567*x^3+394*x^2+932*x-30 3178195583282807 r009 Re(z^3+c),c=-11/48+49/64*I,n=3 3178195592837786 m001 (2*Pi/GAMMA(5/6)+Robbin)/(Trott+ZetaQ(3)) 3178195596735516 r005 Im(z^2+c),c=23/86+17/42*I,n=9 3178195598428590 m001 1/5*(ZetaR(2)-Thue)*5^(1/2) 3178195624945901 m001 (Shi(1)+Conway)/(HardyLittlewoodC3+OneNinth) 3178195627126920 r002 4th iterates of z^2 + 3178195636129508 m001 (Kac+Paris)/(TreeGrowth2nd+Tribonacci) 3178195639549701 m001 Stephens*(3^(1/2)-KomornikLoreti) 3178195643309653 m001 (Otter+PrimesInBinary)/(Ei(1)-GaussAGM) 3178195643537576 a005 (1/sin(37/99*Pi))^755 3178195645183103 a007 Real Root Of 518*x^4+102*x^3+368*x^2-377*x-159 3178195650285767 a005 (1/cos(6/173*Pi))^1743 3178195659743276 a007 Real Root Of -310*x^4-664*x^3+968*x^2+101*x+856 3178195662761336 a003 cos(Pi*2/83)-cos(Pi*10/119) 3178195663264797 r002 46th iterates of z^2 + 3178195665609359 m001 GaussKuzminWirsing/exp(Bloch)^2*GAMMA(13/24)^2 3178195667528584 r005 Im(z^2+c),c=-61/54+4/15*I,n=14 3178195686409807 r005 Re(z^2+c),c=-7/18+15/53*I,n=43 3178195702832011 a007 Real Root Of 24*x^4-99*x^3-170*x^2-415*x+152 3178195703438833 m008 (1/5*Pi^6+1/3)/(1/5*Pi^5-3/5) 3178195713821013 m001 BesselK(1,1)^2*ln((3^(1/3)))^2/GAMMA(7/12) 3178195714871327 r009 Re(z^3+c),c=-10/23+21/38*I,n=52 3178195721088314 r005 Im(z^2+c),c=9/32+17/45*I,n=9 3178195723603817 m001 1/Kolakoski/ln(HardHexagonsEntropy)*sin(1) 3178195725595618 m001 (-gamma(2)+BesselJ(1,1))/(Chi(1)+gamma) 3178195728402932 q001 997/3137 3178195738277267 m001 1/cos(Pi/5)/MinimumGamma^2*ln(sqrt(3)) 3178195744667697 a001 31622993/682*123^(2/5) 3178195747035178 a007 Real Root Of 176*x^4+832*x^3+903*x^2+150*x+108 3178195751958422 m001 exp(BesselJ(1,1))*Magata^2/LambertW(1) 3178195752641083 a001 15127/610*514229^(1/53) 3178195754754927 l006 ln(2868/3941) 3178195783061135 a007 Real Root Of 219*x^4-678*x^3+173*x^2-288*x+9 3178195791656375 r005 Im(z^2+c),c=3/74+17/48*I,n=23 3178195797508463 m001 KhintchineLevy^2*Khintchine^2/exp(sqrt(3))^2 3178195798608083 r005 Re(z^2+c),c=-7/18+15/53*I,n=41 3178195808702217 r009 Re(z^3+c),c=-3/52+19/29*I,n=24 3178195809573556 m002 5-E^Pi/Pi+Pi+Pi^3 3178195817314847 r008 a(0)=2,K{-n^6,43+31*n^3-33*n^2-41*n} 3178195828911324 m005 (5*exp(1)-1/5)/(27/8+3/8*5^(1/2)) 3178195830260484 r009 Re(z^3+c),c=-59/110+11/35*I,n=64 3178195835831564 r005 Re(z^2+c),c=-47/118+4/17*I,n=21 3178195836632787 a007 Real Root Of -210*x^4-732*x^3-364*x^2-643*x-440 3178195837978446 s002 sum(A288854[n]/(n*2^n+1),n=1..infinity) 3178195839882465 m001 gamma^GaussKuzminWirsing*gamma^Grothendieck 3178195844255619 a007 Real Root Of 290*x^4+596*x^3-942*x^2+466*x+541 3178195848376557 p004 log(37243/27103) 3178195852531123 a001 322/55*610^(54/55) 3178195855540594 m001 (2^(1/2)-gamma)/(-ln(Pi)+ln(2^(1/2)+1)) 3178195871693712 a001 5/199*24476^(1/43) 3178195873187515 r005 Im(z^2+c),c=-17/24+7/23*I,n=17 3178195882507350 m005 (-5/42+1/6*5^(1/2))/(3/8*Catalan+5/11) 3178195886363751 m001 exp(1)^2*ln(FeigenbaumKappa)*sqrt(2) 3178195892639444 m001 ln(Porter)^2/CopelandErdos^2*Zeta(3) 3178195903861496 a007 Real Root Of 256*x^4+777*x^3+117*x^2+681*x-193 3178195908416700 a001 18/1346269*89^(12/17) 3178195909362627 h001 (5/8*exp(2)+7/11)/(4/7*exp(1)+1/10) 3178195910428721 m005 (1/2*Zeta(3)+2/11)/(7/8*Pi-2/7) 3178195911099757 r005 Im(z^2+c),c=8/27+37/63*I,n=45 3178195928580693 m001 (Chi(1)+BesselI(0,1))/(-ln(2^(1/2)+1)+Ei(1,1)) 3178195934111148 a003 sin(Pi*32/115)/cos(Pi*49/116) 3178195951235292 a007 Real Root Of 337*x^4+994*x^3-479*x^2-818*x-235 3178195953727081 r005 Re(z^2+c),c=-1/50+39/64*I,n=5 3178195964126121 s001 sum(exp(-Pi/3)^(n-1)*A216955[n],n=1..infinity) 3178195974634042 a007 Real Root Of -13*x^4-403*x^3+353*x^2+930*x-666 3178195977710411 r009 Re(z^3+c),c=-19/46+17/56*I,n=17 3178195992783127 a007 Real Root Of -255*x^4-697*x^3+575*x^2+720*x+122 3178195996707169 r009 Im(z^3+c),c=-1/28+22/63*I,n=8 3178196001228949 r009 Im(z^3+c),c=-51/110+10/51*I,n=14 3178196016213493 m001 (Khinchin+Salem)/(Grothendieck-LambertW(1)) 3178196017551980 m002 -E^Pi+4*Log[Pi]-Log[Pi]*Sinh[Pi] 3178196018997612 m001 (ln(Pi)-GaussKuzminWirsing)/(Zeta(5)+ln(5)) 3178196027290950 l006 ln(293/7033) 3178196056007421 m001 (FeigenbaumC+OneNinth)/(Ei(1)-GAMMA(17/24)) 3178196058616483 a007 Real Root Of 154*x^4+285*x^3-925*x^2-972*x-309 3178196060681971 m001 (3^(1/2)+cos(1))/(gamma(1)+HeathBrownMoroz) 3178196061064203 m001 (3^(1/2)+arctan(1/3))/(-Mills+TwinPrimes) 3178196061413011 r002 34th iterates of z^2 + 3178196074472945 r009 Im(z^3+c),c=-7/18+31/59*I,n=3 3178196079096220 m002 -Pi+Pi^6/3+Tanh[Pi]/2 3178196088646808 a007 Real Root Of -316*x^4+982*x^3-476*x^2+784*x+332 3178196099596474 a008 Real Root of x^5-2*x^4-10*x^3+21*x^2-x-8 3178196109280808 r005 Re(z^2+c),c=-31/78+11/46*I,n=27 3178196115851697 l006 ln(7027/9656) 3178196128054723 r005 Re(z^2+c),c=-23/58+14/59*I,n=15 3178196130285083 a007 Real Root Of -507*x^4+136*x^3+425*x^2+588*x-229 3178196131748076 b008 Pi+ArcCsch[8*(2+Sqrt[2])] 3178196140315420 m001 (BesselI(0,1)-Chi(1))/(-Riemann1stZero+Robbin) 3178196145345943 r005 Im(z^2+c),c=-25/86+28/55*I,n=60 3178196158051921 m001 (Chi(1)+gamma(3))/(-Zeta(1,2)+Niven) 3178196180094646 m001 CareFree^(2*sin(1/5*Pi)*Pi/GAMMA(5/6)) 3178196190677508 r005 Im(z^2+c),c=1/16+14/41*I,n=19 3178196198061276 m001 (Landau+MasserGramain)/(Shi(1)+Khinchin) 3178196205055178 a007 Real Root Of -334*x^4-935*x^3+587*x^2+739*x+481 3178196227406362 m001 Gompertz^(Pi^(1/2))*Kolakoski 3178196240268320 r009 Re(z^3+c),c=-45/98+23/61*I,n=32 3178196243993610 a001 38/98209*10946^(12/53) 3178196254727167 r005 Re(z^2+c),c=-6/19+19/36*I,n=62 3178196257144640 h001 (1/7*exp(2)+6/11)/(7/12*exp(2)+8/11) 3178196272027184 m004 -4+(450*Sqrt[5])/Pi+ProductLog[Sqrt[5]*Pi] 3178196275216036 r009 Re(z^3+c),c=-23/78+24/35*I,n=42 3178196278381996 a007 Real Root Of -308*x^4-807*x^3+795*x^2+877*x+275 3178196289465670 a001 89/1860498*18^(19/29) 3178196289588633 a001 15127/8*17711^(41/54) 3178196291501108 r009 Re(z^3+c),c=-53/118+14/39*I,n=34 3178196293073997 m001 FeigenbaumAlpha/FeigenbaumD*Magata 3178196295842330 a007 Real Root Of -236*x^4+188*x^3-615*x^2-200*x+7 3178196300138822 b008 35*Sqrt[2]*Cot[1] 3178196302033955 m001 (PolyaRandomWalk3D-Salem)/(3^(1/3)-Niven) 3178196316761461 a001 89/4*18^(23/25) 3178196318175158 a007 Real Root Of 177*x^4+659*x^3+507*x^2+396*x-766 3178196319064293 r002 4th iterates of z^2 + 3178196319862025 s002 sum(A041067[n]/((pi^n+1)/n),n=1..infinity) 3178196321992285 r005 Im(z^2+c),c=-45/86+11/19*I,n=60 3178196328964626 m001 (-GaussAGM+MertensB2)/(5^(1/2)-ErdosBorwein) 3178196333321533 r009 Re(z^3+c),c=-55/126+11/31*I,n=15 3178196335074898 m002 -3-Pi^2-Pi^5+ProductLog[Pi]*Tanh[Pi] 3178196354750578 a001 1/75283811239*12586269025^(12/19) 3178196354750800 a001 1/233802911*1346269^(12/19) 3178196358750820 m001 PisotVijayaraghavan*(CopelandErdos-PlouffeB) 3178196359124210 r005 Im(z^2+c),c=17/62+7/50*I,n=6 3178196364859993 l006 ln(4159/5715) 3178196382825846 r005 Im(z^2+c),c=27/82+22/57*I,n=55 3178196385645976 k002 Champernowne real with 71/2*n^2-119/2*n+55 3178196395637012 m005 (-17/44+1/4*5^(1/2))/(5/9*Catalan-5/11) 3178196395912659 a001 11/987*4181^(40/59) 3178196399982122 m001 (BesselK(0,1)*Zeta(1,2)-Sierpinski)/Zeta(1,2) 3178196401864602 r009 Im(z^3+c),c=-51/118+7/32*I,n=25 3178196411503433 a001 8/4870847*2^(20/21) 3178196412390247 a005 (1/cos(28/237*Pi))^147 3178196429613258 s002 sum(A041067[n]/((pi^n-1)/n),n=1..infinity) 3178196447616265 a001 9349/34*233^(22/49) 3178196449634444 s002 sum(A157452[n]/(10^n+1),n=1..infinity) 3178196451360372 r002 3th iterates of z^2 + 3178196463532371 m001 (MertensB1-Tribonacci)/(Pi+MasserGramainDelta) 3178196464230759 r008 a(0)=3,K{-n^6,-3-4*n^3+n^2-2*n} 3178196464415416 r005 Im(z^2+c),c=-7/102+7/17*I,n=34 3178196475725336 m008 (3/4*Pi^5-4)/(4/5*Pi^2-4/5) 3178196481664444 p001 sum(1/(313*n+181)/n/(64^n),n=1..infinity) 3178196485669749 m001 (Magata-PlouffeB)/(RenyiParking+ZetaP(3)) 3178196488315085 r005 Im(z^2+c),c=-73/62+1/24*I,n=41 3178196489037788 b008 3+ArcCsc[5/2+Pi] 3178196501086890 a003 cos(Pi*7/92)-sin(Pi*22/97) 3178196507070576 m001 Rabbit/(Chi(1)+HardHexagonsEntropy) 3178196509778474 m001 (ln(2)+StolarskyHarborth)/(exp(Pi)+GAMMA(3/4)) 3178196512077710 a007 Real Root Of 540*x^4-330*x^3-476*x^2-204*x+118 3178196512709216 m001 GAMMA(17/24)-Thue^Ei(1,1) 3178196514232043 l006 ln(292/7009) 3178196527328567 m002 Pi^3+(Cosh[Pi]*Coth[Pi])/15 3178196532602440 m008 (5/6*Pi^6-1/5)/(5/6*Pi^5-3) 3178196538208877 m005 (23/28+1/4*5^(1/2))/(3/8*Catalan+4) 3178196549401152 m005 (1/3*Catalan-1/9)/(1/7*3^(1/2)+4/11) 3178196552796380 m001 1/log(1+sqrt(2))^2/ArtinRank2^2*ln(sqrt(2))^2 3178196556510236 m001 (-CareFree+Trott)/(exp(Pi)-ln(2+3^(1/2))) 3178196575182410 a005 (1/sin(109/223*Pi))^1864 3178196576717666 s002 sum(A120760[n]/(n^2*exp(n)+1),n=1..infinity) 3178196586466512 m005 (1/3*Zeta(3)-3/4)/(2/3*gamma+5/7) 3178196603657610 l006 ln(2818/2909) 3178196613458737 a007 Real Root Of -356*x^4+686*x^3-836*x^2-230*x+37 3178196616064627 a007 Real Root Of 275*x^4+608*x^3-647*x^2+910*x+888 3178196631613413 r005 Im(z^2+c),c=19/52+19/62*I,n=63 3178196638824426 a007 Real Root Of 947*x^4-149*x^3-668*x^2-640*x+266 3178196642869791 m001 ZetaP(3)^BesselJ(1,1)/Zeta(1/2) 3178196663689351 m001 ZetaP(2)/(2^(1/2)+ZetaQ(3)) 3178196671325830 m001 (TwinPrimes-ZetaQ(4))/(GAMMA(7/12)+Landau) 3178196685920773 l006 ln(5450/7489) 3178196719313349 r009 Re(z^3+c),c=-19/106+20/27*I,n=58 3178196726235635 r002 10th iterates of z^2 + 3178196743804891 a007 Real Root Of 155*x^4+167*x^3-876*x^2+656*x+480 3178196746983406 r005 Re(z^2+c),c=-27/26+64/107*I,n=2 3178196747025459 a005 (1/cos(33/149*Pi))^74 3178196747154716 a001 141/46*64079^(13/31) 3178196747455944 m001 1/TreeGrowth2nd*Si(Pi)*ln(GAMMA(5/12)) 3178196763235198 a007 Real Root Of -349*x^4+945*x^3-81*x^2+220*x+112 3178196768445396 r005 Im(z^2+c),c=-19/60+35/59*I,n=30 3178196778283746 m001 1/ln(Bloch)^2*Champernowne^2*Salem 3178196778483290 m005 (1/2*exp(1)-1/4)/(5/9*exp(1)-5) 3178196783650760 r005 Im(z^2+c),c=-37/60+10/37*I,n=5 3178196784681633 r005 Im(z^2+c),c=-41/118+27/53*I,n=25 3178196797527729 b008 Pi*ProductLog[11/4]^2 3178196802151672 m008 (3/4*Pi^5+3/5)/(3/4*Pi^6+3) 3178196811152855 a007 Real Root Of 204*x^4+683*x^3+213*x^2+18*x-982 3178196815689001 a007 Real Root Of 125*x^4+218*x^3-226*x^2+844*x-790 3178196815826117 a007 Real Root Of -165*x^4-245*x^3+724*x^2-536*x-47 3178196825071920 r005 Re(z^2+c),c=11/70+23/50*I,n=34 3178196847852814 m002 59/5+Pi^5 3178196853836961 a005 (1/sin(90/223*Pi))^865 3178196858901811 a001 55/123*5778^(12/53) 3178196880598071 r009 Re(z^3+c),c=-45/98+3/8*I,n=52 3178196881005326 m001 Chi(1)^(2^(1/3))/(ZetaQ(2)^(2^(1/3))) 3178196884005886 l006 ln(6741/9263) 3178196901479578 r005 Re(z^2+c),c=-27/28+6/41*I,n=8 3178196940596897 r002 9th iterates of z^2 + 3178196943460835 r009 Re(z^3+c),c=-51/122+31/51*I,n=40 3178196948040529 m005 (1/2*2^(1/2)+8/9)/(3/8*gamma+2/7) 3178196956149167 r005 Re(z^2+c),c=-15/38+16/63*I,n=28 3178196966925351 r005 Re(z^2+c),c=-7/18+15/53*I,n=45 3178196968171124 m001 (cos(1/5*Pi)-Ei(1))/(FeigenbaumB+Sierpinski) 3178196976634378 a001 521/10946*4181^(39/50) 3178196978124225 h005 exp(cos(Pi*11/49)/cos(Pi*16/59)) 3178196981279791 m001 ln((3^(1/3)))^2/Bloch^2/Ei(1) 3178196985780174 p003 LerchPhi(1/16,3,131/89) 3178196994950005 b008 3*Sqrt[Sec[(3*Pi)/20]] 3178197003593151 r005 Im(z^2+c),c=-27/110+27/55*I,n=64 3178197004519569 l006 ln(291/6985) 3178197004635671 m003 1/2+Sqrt[5]/32-35*Tanh[1/2+Sqrt[5]/2] 3178197006606558 m001 (sin(1)+3^(1/3))/(Rabbit+ZetaQ(3)) 3178197027859602 r005 Re(z^2+c),c=-1/82+28/45*I,n=6 3178197032896955 m001 (Cahen+FeigenbaumD)/(BesselI(0,1)-Ei(1,1)) 3178197035791280 r005 Im(z^2+c),c=-1/102+21/55*I,n=27 3178197045484434 m001 (Cahen-MinimumGamma)/(Trott2nd-ZetaQ(4)) 3178197054707903 a007 Real Root Of 147*x^4-694*x^3+823*x^2+500*x+52 3178197064989517 q001 758/2385 3178197079603588 h005 exp(cos(Pi*9/49)/sin(Pi*8/31)) 3178197087197560 m001 (ln(2^(1/2)+1)-exp(1/Pi))/(Mills-MinimumGamma) 3178197099224392 r005 Im(z^2+c),c=-39/29+3/52*I,n=27 3178197104714295 r005 Im(z^2+c),c=1/23+6/17*I,n=14 3178197117860995 m001 (Pi+Pi^(1/2))/(MasserGramain-Robbin) 3178197121220043 a008 Real Root of x^4+15*x^2-76*x-12 3178197122258101 m001 GAMMA(17/24)*KomornikLoreti+QuadraticClass 3178197122289167 m005 (11/28+1/4*5^(1/2))/(1/9*gamma-4/11) 3178197124090812 m001 (QuadraticClass+TreeGrowth2nd)/(Zeta(3)+Otter) 3178197131736363 a007 Real Root Of 369*x^4-908*x^3-474*x^2-726*x+304 3178197136392616 r005 Im(z^2+c),c=-9/14+95/246*I,n=20 3178197143033385 r009 Re(z^3+c),c=-43/90+12/35*I,n=6 3178197151927947 r009 Re(z^3+c),c=-39/118+9/56*I,n=6 3178197158872414 m001 (-Artin+Landau)/(Psi(2,1/3)+Si(Pi)) 3178197160276158 a005 (1/sin(82/217*Pi))^656 3178197170042027 m001 1/Tribonacci/Cahen^2/ln(GAMMA(3/4))^2 3178197179373376 a007 Real Root Of -29*x^4-898*x^3+762*x^2+306*x+137 3178197194742337 m001 (3^(1/2)-Psi(2,1/3))/(KomornikLoreti+ZetaQ(4)) 3178197199797935 a001 39603/1597*514229^(1/53) 3178197201579319 p004 log(34877/1453) 3178197201752753 r005 Im(z^2+c),c=-4/5+17/114*I,n=13 3178197206317647 r002 55th iterates of z^2 + 3178197213369341 m005 (1/2*Zeta(3)-9/11)/(7/12*Pi+5) 3178197226747249 r005 Im(z^2+c),c=-13/27+25/47*I,n=39 3178197229009729 h001 (2/11*exp(1)+1/5)/(7/11*exp(1)+5/11) 3178197229678917 m001 (Psi(1,1/3)+Magata)/(-Trott2nd+ZetaP(2)) 3178197231974922 a008 Real Root of x^4-x^3+8*x^2+67*x-2 3178197236920233 m001 (Kolakoski-Tribonacci)/(Backhouse+FeigenbaumC) 3178197240923100 p001 sum((-1)^n/(405*n+302)/(10^n),n=0..infinity) 3178197241829629 r005 Re(z^2+c),c=3/62+10/33*I,n=27 3178197246331610 m006 (4/5*exp(2*Pi)-4/5)/(1/4*exp(2*Pi)+2/3) 3178197260928656 r005 Im(z^2+c),c=37/114+5/36*I,n=23 3178197263728463 r005 Re(z^2+c),c=-7/18+15/53*I,n=48 3178197266030271 m003 -5/3-Cos[1/2+Sqrt[5]/2]+4*Csch[1/2+Sqrt[5]/2] 3178197266568434 r005 Re(z^2+c),c=3/14+5/11*I,n=10 3178197276236801 a003 -1/2+2*cos(1/18*Pi)-cos(1/15*Pi)-cos(4/9*Pi) 3178197287767227 r005 Re(z^2+c),c=-47/114+7/53*I,n=21 3178197299516976 a001 8/321*24476^(29/31) 3178197303875204 m001 cos(1/5*Pi)+KomornikLoreti+LandauRamanujan2nd 3178197337718056 r005 Re(z^2+c),c=-6/17+32/61*I,n=14 3178197339489801 m001 ZetaP(2)^MertensB2*ZetaP(2)^HardyLittlewoodC5 3178197344750447 m005 (17/20+1/4*5^(1/2))/(4/9*Zeta(3)-1/11) 3178197351902444 r009 Re(z^3+c),c=-11/25+19/55*I,n=49 3178197355522623 a007 Real Root Of 191*x^4+424*x^3-773*x^2-859*x-798 3178197358667500 r005 Re(z^2+c),c=-7/18+15/53*I,n=50 3178197359051974 h001 (3/4*exp(2)+5/12)/(4/9*exp(1)+2/3) 3178197362822724 a007 Real Root Of 325*x^4-692*x^3+212*x^2-727*x-278 3178197369124525 s002 sum(A238587[n]/(exp(n)+1),n=1..infinity) 3178197375558365 a001 144*3571^(3/31) 3178197376339458 a007 Real Root Of -110*x^4-350*x^3+265*x^2+957*x+352 3178197380998352 m005 (1/2*3^(1/2)-5/12)/(5/7*Zeta(3)-1) 3178197388651986 k002 Champernowne real with 36*n^2-61*n+56 3178197394049834 r005 Im(z^2+c),c=-1/21+23/59*I,n=8 3178197395929411 g007 Psi(2,6/11)-Psi(2,2/11)-Psi(13/10)-Psi(2,5/8) 3178197400534053 a001 75025/322*15127^(1/31) 3178197401195570 r005 Re(z^2+c),c=-23/56+4/27*I,n=18 3178197406842517 r005 Re(z^2+c),c=-19/56+29/63*I,n=43 3178197413105896 a007 Real Root Of 279*x^4+611*x^3-937*x^2-69*x+394 3178197413138171 b008 3+76*Cot[2] 3178197425054857 a007 Real Root Of 62*x^4-827*x^3-690*x^2-461*x-104 3178197426880367 m001 (Landau+MertensB3)/(Gompertz-KhinchinLevy) 3178197429845380 a001 5473/161*5778^(8/31) 3178197432682637 r005 Im(z^2+c),c=-11/50+23/50*I,n=12 3178197432962897 a001 123/9227465*86267571272^(5/23) 3178197432963899 a001 123/832040*1346269^(5/23) 3178197436740552 a001 73681302247/610*46368^(7/23) 3178197436830532 a001 1268860318/305*2971215073^(7/23) 3178197459148829 m005 (1/3*2^(1/2)-3/4)/(5/9*2^(1/2)+1/11) 3178197460613840 r005 Re(z^2+c),c=-11/42+25/43*I,n=29 3178197479079529 a001 3/75025*1597^(35/59) 3178197489792973 a007 Real Root Of 793*x^4+496*x^3-507*x^2-421*x+161 3178197498188146 l006 ln(290/6961) 3178197508299737 r005 Re(z^2+c),c=-7/18+15/53*I,n=55 3178197514404979 r002 14th iterates of z^2 + 3178197515714494 r005 Re(z^2+c),c=-7/18+15/53*I,n=52 3178197520481591 r004 Im(z^2+c),c=-1/46-4/9*I,z(0)=I,n=10 3178197522301311 r005 Im(z^2+c),c=-9/52+31/60*I,n=5 3178197528076613 r005 Re(z^2+c),c=-7/18+15/53*I,n=57 3178197528746759 r005 Re(z^2+c),c=-7/18+15/53*I,n=53 3178197540204109 r005 Re(z^2+c),c=-7/18+15/53*I,n=60 3178197540270139 r005 Re(z^2+c),c=-7/18+15/53*I,n=62 3178197543109987 r005 Re(z^2+c),c=-7/18+15/53*I,n=64 3178197544930764 r005 Re(z^2+c),c=-7/18+15/53*I,n=59 3178197546172797 a001 832040/521*18^(5/21) 3178197546826103 r005 Re(z^2+c),c=-7/18+15/53*I,n=63 3178197548737973 r005 Im(z^2+c),c=-9/38+22/45*I,n=30 3178197549087160 r005 Re(z^2+c),c=-7/18+15/53*I,n=61 3178197550417900 r005 Re(z^2+c),c=-7/18+15/53*I,n=58 3178197553409216 m001 KomornikLoreti*(Thue-Zeta(5)) 3178197559411431 a007 Real Root Of -505*x^4+168*x^3+717*x^2+580*x-257 3178197563799939 m001 (ArtinRank2-ZetaQ(4))/(ln(gamma)-GAMMA(13/24)) 3178197571824098 r005 Re(z^2+c),c=-7/18+15/53*I,n=56 3178197578956092 r005 Re(z^2+c),c=-7/18+15/53*I,n=54 3178197591056701 a001 4/2889*123^(28/43) 3178197591467752 r009 Im(z^3+c),c=-31/78+10/41*I,n=22 3178197594711934 a001 5473/161*2207^(9/31) 3178197594913570 s002 sum(A211800[n]/(n*exp(pi*n)+1),n=1..infinity) 3178197604738249 a007 Real Root Of -741*x^4+999*x^3+809*x^2+768*x+202 3178197613272266 a007 Real Root Of 25*x^4-977*x^3-938*x^2-356*x+239 3178197617881349 r005 Re(z^2+c),c=-7/18+15/53*I,n=40 3178197627940611 a007 Real Root Of -352*x^4+76*x^3+913*x^2+821*x-352 3178197629937328 s001 sum(exp(-4*Pi)^(n-1)*A252356[n],n=1..infinity) 3178197630854401 m009 (2/3*Psi(1,3/4)+5)/(3/4*Psi(1,3/4)+1/5) 3178197639392658 r005 Re(z^2+c),c=-7/18+15/53*I,n=46 3178197639484517 m001 exp(1)*Shi(1)^FransenRobinson 3178197641838572 m001 HardyLittlewoodC3/(Riemann2ndZero-Zeta(5)) 3178197643200465 r005 Re(z^2+c),c=-7/18+15/53*I,n=51 3178197643742947 m005 (1/2*Zeta(3)+1/3)/(2/9*3^(1/2)-1/11) 3178197645584656 l005 ln(sec(835/98)) 3178197653899956 a003 sin(Pi*23/97)/cos(Pi*41/95) 3178197656925942 m001 ln(gamma)^Chi(1)+MasserGramain 3178197658332725 m005 (1/2*Zeta(3)-6/11)/(97/90+3/10*5^(1/2)) 3178197663498341 r005 Re(z^2+c),c=-43/106+11/59*I,n=13 3178197671247202 m005 (1/2*Pi+6/11)/(5/8*3^(1/2)-5/12) 3178197675282689 b008 Pi^(-1)-Log[33] 3178197676540965 r002 4th iterates of z^2 + 3178197685944466 r005 Im(z^2+c),c=31/98+4/57*I,n=25 3178197692527540 a001 48/41*29^(50/51) 3178197694601895 a007 Real Root Of -317*x^4-927*x^3+264*x^2-254*x-890 3178197701864255 a007 Real Root Of -140*x^4-507*x^3-290*x^2-366*x-226 3178197720228823 l006 ln(1291/1774) 3178197721239976 m001 (Niven-Riemann1stZero)/(GAMMA(3/4)+Khinchin) 3178197725749318 r005 Re(z^2+c),c=-7/18+15/53*I,n=47 3178197728890204 r005 Re(z^2+c),c=-57/118+21/53*I,n=3 3178197740569882 r005 Im(z^2+c),c=-17/58+26/51*I,n=50 3178197742061190 m002 Pi/4+Pi^2+Pi^5*Coth[Pi] 3178197743612745 m001 Zeta(3)^GAMMA(7/12)*(Pi^(1/2))^GAMMA(7/12) 3178197743612745 m001 Zeta(3)^GAMMA(7/12)*sqrt(Pi)^GAMMA(7/12) 3178197745843420 m006 (1/Pi+4)/(1/4*exp(2*Pi)+2) 3178197749694723 r005 Re(z^2+c),c=-17/42+12/37*I,n=10 3178197752213186 m001 CopelandErdos/ln(2^(1/2)+1)/sin(1) 3178197763341458 a007 Real Root Of -865*x^4-36*x^3-882*x^2+844*x+365 3178197768906634 m005 (1/2*3^(1/2)-2)/(3/11*Pi-1/2) 3178197774912176 r005 Im(z^2+c),c=21/50+14/37*I,n=10 3178197795076394 r009 Im(z^3+c),c=-23/42+9/53*I,n=17 3178197801253900 s002 sum(A240121[n]/((pi^n+1)/n),n=1..infinity) 3178197805852353 r005 Re(z^2+c),c=-7/18+15/53*I,n=49 3178197809699965 m001 MadelungNaCl^Khinchin*Rabbit 3178197811193058 r005 Re(z^2+c),c=-25/62+3/14*I,n=14 3178197834918255 m001 Riemann1stZero^(Magata*OrthogonalArrays) 3178197836683495 r005 Im(z^2+c),c=-125/98+1/53*I,n=8 3178197846767945 r005 Im(z^2+c),c=-23/82+15/31*I,n=17 3178197853129831 r005 Re(z^2+c),c=-49/118+5/51*I,n=21 3178197859099128 r002 3th iterates of z^2 + 3178197859992354 m002 -3+Pi/E^Pi+3*Sinh[Pi] 3178197864597994 a001 2/17*34^(43/46) 3178197875661816 r009 Re(z^3+c),c=-17/40+17/53*I,n=18 3178197879585835 a007 Real Root Of -85*x^4+5*x^3+648*x^2-671*x+155 3178197886734219 m001 (Pi+exp(1/Pi))/(GAMMA(7/12)-OneNinth) 3178197895281954 r005 Im(z^2+c),c=13/58+12/53*I,n=27 3178197895916155 a001 305/161*1364^(22/31) 3178197901007647 a001 123*(1/2*5^(1/2)+1/2)^19*4^(11/15) 3178197903841359 m005 (1/3*gamma+2/7)/(7/12*5^(1/2)+1/5) 3178197906001994 m001 (-LandauRamanujan+ZetaP(4))/(5^(1/2)+gamma(1)) 3178197908817767 a007 Real Root Of -245*x^4-833*x^3-385*x^2-406*x+854 3178197910243197 m001 Rabbit^2*ln(Conway)^2/GAMMA(11/12)^2 3178197914541025 a001 14930352/199*322^(1/4) 3178197919213876 m005 (-11/42+1/6*5^(1/2))/(63/20+3/20*5^(1/2)) 3178197921611048 m001 1/ln(GolombDickman)^2*DuboisRaymond*GAMMA(1/4) 3178197926921176 r009 Re(z^3+c),c=-21/62+11/62*I,n=13 3178197943463221 m005 (1/3*2^(1/2)-1/12)/(4/11*2^(1/2)-7/11) 3178197948203404 r005 Im(z^2+c),c=-36/31+2/49*I,n=45 3178197957618973 a007 Real Root Of -435*x^4+401*x^3+275*x^2+336*x-143 3178197958464165 a007 Real Root Of -812*x^4+553*x^3-946*x^2+942*x-29 3178197987137710 r002 20th iterates of z^2 + 3178197995272869 l006 ln(289/6937) 3178198012751153 m001 (-BesselI(0,1)+Ei(1,1))/(5^(1/2)+Shi(1)) 3178198014587628 r005 Re(z^2+c),c=-39/110+19/46*I,n=32 3178198020855145 r005 Re(z^2+c),c=11/50+1/48*I,n=14 3178198022946631 m005 (1/2*Catalan+3)/(5/8*gamma+8/11) 3178198030212982 m001 cos(1/12*Pi)/(ZetaR(2)^GolombDickman) 3178198032536058 a007 Real Root Of 261*x^4-872*x^3-872*x^2-5*x+115 3178198046377294 a007 Real Root Of -730*x^4+806*x^3-433*x^2+775*x-221 3178198049960106 r005 Im(z^2+c),c=-37/98+19/34*I,n=20 3178198071632772 m001 (arctan(1/2)-GAMMA(5/6))/(Khinchin-Lehmer) 3178198074130924 m001 GolombDickman^2*Bloch^2*ln((3^(1/3))) 3178198076820582 r009 Re(z^3+c),c=-27/52+20/41*I,n=56 3178198080906838 r005 Re(z^2+c),c=-53/46+9/41*I,n=40 3178198094190720 a001 24476/987*514229^(1/53) 3178198107941109 m001 (FransenRobinson+Salem)/(3^(1/2)-ErdosBorwein) 3178198108511697 q001 1277/4018 3178198116287753 m001 (sin(1/5*Pi)+Paris)/(Riemann2ndZero+Stephens) 3178198121512044 r009 Im(z^3+c),c=-23/56+16/33*I,n=3 3178198125413813 m001 (Cahen+StolarskyHarborth)/(Chi(1)+3^(1/3)) 3178198131924329 r005 Re(z^2+c),c=-8/19+3/46*I,n=8 3178198136022780 r005 Re(z^2+c),c=9/32+5/54*I,n=25 3178198149308715 m001 Riemann1stZero^(Totient/BesselJ(1,1)) 3178198163342541 a007 Real Root Of -95*x^4-52*x^3+719*x^2-246*x-21 3178198170664001 r005 Im(z^2+c),c=21/82+9/46*I,n=23 3178198190583977 r005 Im(z^2+c),c=-21/31+7/25*I,n=36 3178198204256530 m001 1/Rabbit*ArtinRank2/exp(GAMMA(5/6)) 3178198221576508 r009 Re(z^3+c),c=-39/94+19/62*I,n=27 3178198232696616 m005 (1/2*Zeta(3)-6/11)/(2*Catalan-1/12) 3178198246301087 m001 (5^(1/2)+1)/(Landau+Weierstrass) 3178198258363798 m001 1/FeigenbaumC^2*exp(FeigenbaumB)*arctan(1/2) 3178198264242445 m001 (arctan(1/2)+GaussAGM(1,1/sqrt(2)))/ThueMorse 3178198265280433 m001 (Zeta(3)-sin(1))/(-Gompertz+Rabbit) 3178198281546961 m001 (Psi(2,1/3)-ln(gamma))/(ln(5)+OneNinth) 3178198283368182 a009 1/3*(16+5^(1/4))^(1/2)*3^(3/4) 3178198288107330 r009 Im(z^3+c),c=-19/110+16/47*I,n=3 3178198299873255 m001 (5^(1/2)+ln(2))/(MertensB1+TwinPrimes) 3178198301947486 m001 (-ReciprocalLucas+Sierpinski)/(2^(1/2)+Landau) 3178198304592609 m001 (HeathBrownMoroz+Lehmer)/(GAMMA(3/4)+Cahen) 3178198305889896 a007 Real Root Of -147*x^4-630*x^3-572*x^2-484*x-987 3178198317494426 a001 2/1597*2178309^(41/59) 3178198318364145 a005 (1/sin(89/215*Pi))^218 3178198329710348 m005 (1/2*2^(1/2)-5)/(6*5^(1/2)+1/11) 3178198330075127 h002 exp(17^(5/12)+19^(12/5)) 3178198330075127 h007 exp(17^(5/12)+19^(12/5)) 3178198335149148 m005 (1/2*2^(1/2)+5/11)/(5/12*gamma+1/8) 3178198350606091 a003 cos(Pi*13/116)-sin(Pi*49/116) 3178198360471562 r005 Im(z^2+c),c=-59/106+7/38*I,n=4 3178198364374312 m005 (1/3*Catalan+1/6)/(5*Pi-6/7) 3178198365265778 r009 Im(z^3+c),c=-8/31+9/29*I,n=7 3178198366625755 m001 1/exp(1)/Riemann1stZero^2*ln(sin(1)) 3178198371127368 s002 sum(A090527[n]/(64^n),n=1..infinity) 3178198384592213 a007 Real Root Of 318*x^4+859*x^3-517*x^2+94*x+652 3178198385725811 r005 Im(z^2+c),c=-38/29+4/13*I,n=4 3178198391657996 k002 Champernowne real with 73/2*n^2-125/2*n+57 3178198392369346 a001 1/521*(1/2*5^(1/2)+1/2)^18*3^(23/24) 3178198413352073 a009 12^(1/4)*(20-5^(2/3)) 3178198414243477 m005 (1/3+1/4*5^(1/2))/(1/5*Pi-10/11) 3178198415551797 m001 1/BesselK(1,1)/ln(Artin)^2/cos(1) 3178198429295190 a007 Real Root Of -223*x^4-697*x^3-167*x^2-739*x-285 3178198444085818 r005 Im(z^2+c),c=-5/52+17/40*I,n=26 3178198454057937 m001 (KhinchinHarmonic-RenyiParking)/(Pi-gamma(3)) 3178198472334398 r005 Re(z^2+c),c=-47/106+5/39*I,n=4 3178198486105974 r002 8th iterates of z^2 + 3178198491625643 r009 Im(z^3+c),c=-19/82+7/22*I,n=7 3178198495809319 l006 ln(288/6913) 3178198506877963 a001 55/199*76^(1/31) 3178198522112983 p004 log(28979/21089) 3178198530891670 p004 log(18413/17837) 3178198536068755 r005 Im(z^2+c),c=-17/32+21/52*I,n=15 3178198540236829 a007 Real Root Of -435*x^4-408*x^3-461*x^2+724*x-166 3178198546289433 r005 Im(z^2+c),c=-6/19+12/23*I,n=48 3178198556551342 a001 322/139583862445*3^(7/24) 3178198559270643 m001 (exp(-1/2*Pi)+polylog(4,1/2))^FeigenbaumMu 3178198565538987 a007 Real Root Of 949*x^4+463*x^3+427*x^2-958*x+30 3178198568041582 r009 Re(z^3+c),c=-49/102+20/51*I,n=36 3178198572456825 r005 Im(z^2+c),c=-11/58+27/58*I,n=16 3178198574569190 m005 (3/5*Pi-5/6)/(4*gamma+1) 3178198581376564 m005 (1/2*exp(1)-5/6)/(5/9*Pi-1/11) 3178198586335334 a007 Real Root Of -857*x^4+872*x^3-44*x^2+718*x-243 3178198588470692 m005 (1/2*2^(1/2)+2)/(1/9*Catalan+3/4) 3178198608940322 a003 cos(Pi*13/55)*cos(Pi*29/81) 3178198618634057 r005 Im(z^2+c),c=-53/82+20/61*I,n=39 3178198621277928 m001 (OneNinth-Weierstrass)/(ln(gamma)+Niven) 3178198633987669 l006 ln(6169/8477) 3178198643813391 a005 (1/cos(13/224*Pi))^758 3178198648228412 r005 Im(z^2+c),c=-7/36+23/49*I,n=38 3178198657248855 m005 (1/2*gamma+2/7)/(7/8*exp(1)-4/7) 3178198660755215 m001 (-GAMMA(23/24)+Kac)/(Chi(1)+BesselK(0,1)) 3178198672515903 m005 (1/2*exp(1)+5/9)/(2/5*gamma-5/6) 3178198676283168 r005 Im(z^2+c),c=11/36+4/29*I,n=22 3178198677719663 a007 Real Root Of -120*x^4+660*x^3+879*x^2+693*x-329 3178198684225774 m001 (Zeta(1,2)-gamma)/((1+3^(1/2))^(1/2)-Salem) 3178198689151897 m001 (2^(1/2)+ln(Pi))/(ArtinRank2+OneNinth) 3178198695893193 r008 a(0)=3,K{-n^6,6+12*n-25*n^3+n^2} 3178198698608371 r009 Re(z^3+c),c=-3/8+15/62*I,n=19 3178198706587931 m005 (1/3*gamma-1/4)/(6/7*2^(1/2)+3/5) 3178198718302575 r005 Re(z^2+c),c=-35/102+9/20*I,n=54 3178198721623479 r005 Im(z^2+c),c=23/70+6/59*I,n=53 3178198722163363 r008 a(0)=0,K{-n^6,-24-46*n+45*n^2-4*n^3} 3178198723850682 m001 GlaisherKinkelin^2*Artin/exp(TwinPrimes) 3178198729240512 m001 ((1+3^(1/2))^(1/2)-Riemann2ndZero)/(1-ln(5)) 3178198732190359 r009 Re(z^3+c),c=-41/114+11/51*I,n=14 3178198736869197 a007 Real Root Of 64*x^4+295*x^3+313*x^2-61*x-415 3178198737691225 m001 (GlaisherKinkelin+Totient)/(gamma(1)+gamma(2)) 3178198738828347 m001 OrthogonalArrays/(BesselK(1,1)^ln(5)) 3178198743871583 a007 Real Root Of -908*x^4+595*x^3-64*x^2+851*x-27 3178198757820801 r005 Re(z^2+c),c=37/114+7/58*I,n=44 3178198763894741 r005 Re(z^2+c),c=-7/18+15/53*I,n=44 3178198768119934 m001 Magata^(polylog(4,1/2)*MasserGramainDelta) 3178198780948138 a007 Real Root Of -206*x^4-670*x^3-237*x^2-567*x+101 3178198787111695 r009 Im(z^3+c),c=-17/62+13/47*I,n=2 3178198800115360 r002 43th iterates of z^2 + 3178198805538475 r005 Re(z^2+c),c=-2/5+11/49*I,n=28 3178198820036682 m005 (-1/3+1/6*5^(1/2))/(1/9*Pi+8/9) 3178198823006735 r008 a(0)=0,K{-n^6,49-14*n-31*n^2+28*n^3} 3178198857389433 m001 Robbin/MasserGramainDelta*ZetaQ(3) 3178198864712339 r008 a(0)=3,K{-n^6,2+33*n^3-40*n^2} 3178198866419129 r008 a(0)=0,K{-n^6,61+26*n^3-19*n^2-36*n} 3178198867543765 m009 (2*Catalan+1/4*Pi^2+1)/(1/4*Pi^2-4/5) 3178198875820920 l006 ln(4878/6703) 3178198878346479 m001 (Zeta(1,2)+DuboisRaymond)/(PlouffeB-ZetaP(2)) 3178198880431109 r009 Im(z^3+c),c=-1/50+20/57*I,n=4 3178198885850617 r005 Im(z^2+c),c=-109/122+9/40*I,n=20 3178198890626155 a007 Real Root Of 883*x^4-622*x^3+925*x^2-5*x-124 3178198894658911 m001 GaussAGM(1,1/sqrt(2))/LambertW(1)*GAMMA(5/12) 3178198895760915 a001 192900153618/1597*46368^(7/23) 3178198895850895 a001 6643838879/1597*2971215073^(7/23) 3178198903216021 r005 Re(z^2+c),c=-6/17+19/47*I,n=6 3178198906292855 m005 (1/2*gamma-1/5)/(3*Zeta(3)-9/11) 3178198907214812 m005 (1/2*gamma+1/11)/(5/11*Catalan+7/9) 3178198908286969 r005 Im(z^2+c),c=-43/48+15/59*I,n=3 3178198908314728 s002 sum(A101134[n]/(n*pi^n+1),n=1..infinity) 3178198908320955 r005 Im(z^2+c),c=-2/31+36/59*I,n=15 3178198919038355 a007 Real Root Of 279*x^4+637*x^3-617*x^2+782*x+701 3178198927943696 a005 (1/sin(55/141*Pi))^19 3178198932074766 a009 1/2*(13*2^(1/2)+6^(1/3))^(1/2)*2^(1/2) 3178198938923685 r005 Im(z^2+c),c=-79/114+20/61*I,n=38 3178198940344993 m001 ln(2)/(BesselI(0,2)-Paris) 3178198940406803 p004 log(31741/23099) 3178198945380491 p003 LerchPhi(1/32,2,366/205) 3178198961333460 a007 Real Root Of 160*x^4+73*x^3-527*x^2-833*x+314 3178198999833574 l006 ln(287/6889) 3178199007718703 a007 Real Root Of -547*x^4+845*x^3+274*x^2+840*x+272 3178199014634613 a007 Real Root Of 590*x^4+549*x^3+649*x^2-491*x-210 3178199036921143 a007 Real Root Of -164*x^4+630*x^3-262*x^2+994*x-308 3178199041250894 m001 OrthogonalArrays/(MinimumGamma+Otter) 3178199043712576 r005 Re(z^2+c),c=-5/4+27/236*I,n=22 3178199052369990 m002 -5/Log[Pi]+Log[Pi]/Pi^2+ProductLog[Pi] 3178199060506390 r005 Re(z^2+c),c=7/58+5/12*I,n=48 3178199063782114 m009 (2/5*Psi(1,2/3)-5)/(5*Psi(1,3/4)-5/6) 3178199101240135 r009 Re(z^3+c),c=-23/56+13/43*I,n=13 3178199108629229 a001 505019158607/4181*46368^(7/23) 3178199108719209 a001 17393796001/4181*2971215073^(7/23) 3178199109204514 a001 305/161*39603^(15/31) 3178199111148803 r005 Im(z^2+c),c=-3/13+13/21*I,n=37 3178199114102690 r005 Im(z^2+c),c=-5/26+29/51*I,n=17 3178199121532328 m001 1/ln(Magata)^2*Champernowne/Sierpinski 3178199126151697 m001 gamma(3)/(polylog(4,1/2)^LaplaceLimit) 3178199130782899 r009 Re(z^3+c),c=-7/13+18/61*I,n=8 3178199138673585 r005 Re(z^2+c),c=-41/118+24/55*I,n=33 3178199139686300 a001 1322157322203/10946*46368^(7/23) 3178199139776280 a001 22768774562/5473*2971215073^(7/23) 3178199140991730 m005 (1/3*gamma+1/9)/(4/5*Catalan+2/9) 3178199144217465 a001 3461452808002/28657*46368^(7/23) 3178199144307445 a001 119218851371/28657*2971215073^(7/23) 3178199144878554 a001 9062201101803/75025*46368^(7/23) 3178199144968533 a001 312119004989/75025*2971215073^(7/23) 3178199144975005 a001 23725150497407/196418*46368^(7/23) 3178199145034615 a001 14662949395604/121393*46368^(7/23) 3178199145064985 a001 408569081798/98209*2971215073^(7/23) 3178199145079057 a001 2139295485799/514229*2971215073^(7/23) 3178199145081110 a001 5600748293801/1346269*2971215073^(7/23) 3178199145081410 a001 7331474697802/1762289*2971215073^(7/23) 3178199145081480 a001 23725150497407/5702887*2971215073^(7/23) 3178199145081595 a001 3020733700601/726103*2971215073^(7/23) 3178199145082379 a001 1730726404001/416020*2971215073^(7/23) 3178199145087754 a001 440719107401/105937*2971215073^(7/23) 3178199145124595 a001 505019158607/121393*2971215073^(7/23) 3178199145287129 a001 5600748293801/46368*46368^(7/23) 3178199145377108 a001 10716675201/2576*2971215073^(7/23) 3178199147017880 a001 2139295485799/17711*46368^(7/23) 3178199147107860 a001 73681302247/17711*2971215073^(7/23) 3178199158880626 a001 817138163596/6765*46368^(7/23) 3178199158970605 a001 228811001/55*2971215073^(7/23) 3178199167643484 r005 Im(z^2+c),c=15/38+18/61*I,n=10 3178199172004782 m005 (2/5*2^(1/2)+4)/(2*exp(1)-4) 3178199181124015 m001 Sierpinski^ErdosBorwein*Kolakoski^ErdosBorwein 3178199183294536 m001 (Rabbit-StronglyCareFree)/(Artin+Niven) 3178199187420469 a007 Real Root Of 747*x^4-799*x^3+383*x^2-513*x-235 3178199189624268 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+Stephens-ZetaP(4) 3178199200317860 m001 Riemann2ndZero^(3^(1/2)*GAMMA(7/12)) 3178199210022678 m001 1/ln(FeigenbaumB)^2*ErdosBorwein/GAMMA(3/4)^2 3178199214528846 m001 (FeigenbaumMu+Lehmer)/(Chi(1)+Bloch) 3178199221598450 a007 Real Root Of -83*x^4-30*x^3+519*x^2-819*x-340 3178199225406651 r005 Im(z^2+c),c=-7/54+26/59*I,n=39 3178199227832816 m002 2+3*Pi^2+2*Csch[Pi] 3178199239630968 a007 Real Root Of 632*x^4-710*x^3-310*x^2-687*x+266 3178199240189097 a001 312119004989/2584*46368^(7/23) 3178199240279076 a001 5374978561/1292*2971215073^(7/23) 3178199248079980 m001 (GAMMA(3/4)+GAMMA(23/24))/(ArtinRank2+Trott) 3178199255418764 m001 GAMMA(3/4)^2/(3^(1/3))/ln(sqrt(Pi))^2 3178199258218355 m001 (Artin+Porter)/(gamma+gamma(3)) 3178199271359807 a001 123*121393^(5/18) 3178199275398133 m001 (-Mills+Tetranacci)/(2^(1/2)+cos(1)) 3178199276709959 a009 1/5*(10^(1/4)-7^(3/4))^(1/2) 3178199284050515 m001 1/exp(cos(Pi/5))*cos(Pi/12)*exp(1)^2 3178199291730951 l006 ln(3587/4929) 3178199294753275 h001 (2/3*exp(2)+9/10)/(4/9*exp(1)+5/8) 3178199312547345 m005 (1/2*Pi+2/7)/(43/154+3/22*5^(1/2)) 3178199324103237 m005 (3/4*exp(1)+3)/(1/4*Pi+4/5) 3178199340226895 m001 Ei(1,1)^sin(1/12*Pi)+FeigenbaumAlpha 3178199364462317 a007 Real Root Of -292*x^4-832*x^3+491*x^2+413*x-564 3178199366317162 a007 Real Root Of 172*x^4-508*x^3-459*x^2-958*x-30 3178199391371267 h001 (4/9*exp(1)+1/3)/(3/5*exp(2)+5/12) 3178199392675451 m001 (Pi-exp(Pi))/(Ei(1,1)+HardyLittlewoodC5) 3178199394663100 k002 Champernowne real with 37*n^2-64*n+58 3178199415730361 r005 Im(z^2+c),c=-7/54+26/59*I,n=44 3178199425473006 h001 (11/12*exp(2)+5/8)/(3/10*exp(2)+1/9) 3178199430107930 m001 (PrimesInBinary+ZetaQ(2))/(BesselK(0,1)-Ei(1)) 3178199434772892 r009 Re(z^3+c),c=-1/17+28/41*I,n=57 3178199435617275 r002 21th iterates of z^2 + 3178199441713832 m006 (1/2*ln(Pi)-4)/(1/5*exp(2*Pi)+3/4) 3178199442719099 a001 317811+4*5^(1/2) 3178199448264472 m001 (DuboisRaymond+ThueMorse)/(1-cos(1/5*Pi)) 3178199450419830 a007 Real Root Of 30*x^4+936*x^3-535*x^2+613*x-627 3178199453467481 r005 Im(z^2+c),c=-127/110+6/23*I,n=8 3178199474675270 m005 (15/44+1/4*5^(1/2))/(7/8*5^(1/2)+7/8) 3178199480947143 h001 (-4*exp(2)-3)/(-5*exp(1/2)-2) 3178199481002715 m005 (1/2*3^(1/2)+1/2)/(9/11*2^(1/2)-8/11) 3178199482882830 m001 (gamma-ln(5))/(BesselJ(1,1)+FransenRobinson) 3178199502201341 m001 (Rabbit+Stephens)/(FeigenbaumMu+PlouffeB) 3178199505066234 m001 1/sin(1)*Bloch^2*ln(sqrt(2))^2 3178199507382218 l006 ln(286/6865) 3178199514277058 r005 Im(z^2+c),c=-3/4+65/242*I,n=10 3178199533017872 m001 (Trott-ZetaP(3))/(exp(-1/2*Pi)-Sarnak) 3178199534630159 s002 sum(A072650[n]/((2^n-1)/n),n=1..infinity) 3178199536272231 m001 (exp(1/exp(1))-GAMMA(7/12))/(Zeta(3)+3^(1/3)) 3178199540838374 m001 (Trott-Thue)/(3^(1/3)+FibonacciFactorial) 3178199562471933 m001 (ln(gamma)-ln(Pi))/(FeigenbaumDelta+Robbin) 3178199563669289 a007 Real Root Of -229*x^4-446*x^3+597*x^2-800*x+474 3178199564980351 a007 Real Root Of -709*x^4-307*x^3-73*x^2+822*x+266 3178199564990595 m001 1/Niven^2*KhintchineLevy^2/exp(BesselK(0,1)) 3178199565164118 m001 Zeta(1,-1)^GAMMA(23/24)+Weierstrass 3178199565260289 r009 Im(z^3+c),c=-55/102+5/11*I,n=3 3178199567238775 r005 Im(z^2+c),c=-35/46+23/62*I,n=4 3178199567448395 m005 (1/2*5^(1/2)-1)/(4/77+1/7*5^(1/2)) 3178199568422611 m001 (Paris+Robbin)/(Zeta(5)+FeigenbaumKappa) 3178199571396760 r009 Re(z^3+c),c=-59/122+24/59*I,n=55 3178199579369509 m001 (Zeta(3)-ln(2))/(KhinchinLevy+PrimesInBinary) 3178199580995158 a007 Real Root Of -8*x^4-95*x^3-672*x^2+601*x-120 3178199582733628 a001 322*(1/2*5^(1/2)+1/2)^32*3^(9/14) 3178199595873961 m001 Porter*(exp(-1/2*Pi)+ZetaQ(3)) 3178199609318129 p004 log(34301/1429) 3178199623188239 a007 Real Root Of -227*x^4-538*x^3+433*x^2-413*x+203 3178199632578077 q001 519/1633 3178199636590556 l006 ln(5883/8084) 3178199639631819 m001 (Ei(1)+LaplaceLimit)/(QuadraticClass-ZetaP(4)) 3178199641336185 r009 Im(z^3+c),c=-27/62+5/24*I,n=2 3178199642041419 a001 199/89*832040^(47/54) 3178199646210338 r009 Im(z^3+c),c=-69/122+31/49*I,n=33 3178199647430894 m006 (4/5/Pi-5/6)/(1/2*Pi+1/4) 3178199651375387 m001 (Si(Pi)-ln(3))/(CopelandErdos+HeathBrownMoroz) 3178199651614224 a007 Real Root Of 614*x^4-860*x^3-321*x^2-866*x+329 3178199660182010 m001 (-Khinchin+1/3)/(-2^(1/3)+2) 3178199660877176 a007 Real Root Of -15*x^4-508*x^3-976*x^2+589*x+715 3178199668754392 r005 Re(z^2+c),c=-15/22+1/54*I,n=6 3178199672511753 a007 Real Root Of 436*x^4-570*x^3+422*x^2-745*x+208 3178199679904200 a007 Real Root Of 330*x^4+842*x^3-353*x^2+788*x-569 3178199682577050 r002 29th iterates of z^2 + 3178199686151101 r005 Re(z^2+c),c=-37/66+23/33*I,n=3 3178199705735572 m001 (Magata-Mills)/(TravellingSalesman-ZetaQ(2)) 3178199709948290 a007 Real Root Of 531*x^4-344*x^3-810*x^2-974*x+397 3178199713026274 r005 Im(z^2+c),c=15/122+17/56*I,n=21 3178199713941363 m002 5/24+Pi^5+Cosh[Pi] 3178199717000589 r005 Im(z^2+c),c=-1/122+8/21*I,n=25 3178199724932439 r005 Re(z^2+c),c=-7/18+15/53*I,n=42 3178199727615970 a007 Real Root Of 364*x^4+883*x^3-746*x^2+508*x+358 3178199734179653 r005 Re(z^2+c),c=-19/46+5/41*I,n=16 3178199738442730 a007 Real Root Of 372*x^4+897*x^3-877*x^2+225*x+415 3178199744241723 a007 Real Root Of -807*x^4+87*x^3-269*x^2+820*x-228 3178199756033870 m001 (Landau-Salem)/(cos(1/12*Pi)+GAMMA(23/24)) 3178199759538683 m005 (1/2*exp(1)+2/11)/(3/5*2^(1/2)+4) 3178199761956455 m001 1/Si(Pi)*Conway^2*exp(sqrt(Pi))^2 3178199782073601 r005 Im(z^2+c),c=19/98+22/61*I,n=4 3178199787832929 p004 log(11239/8179) 3178199790655696 r002 35th iterates of z^2 + 3178199797485759 a001 119218851371/987*46368^(7/23) 3178199797575739 a001 1368706081/329*2971215073^(7/23) 3178199798463963 a001 521/18*(1/2*5^(1/2)+1/2)^11*18^(13/22) 3178199800152585 a007 Real Root Of 718*x^4+698*x^3-24*x^2-904*x+260 3178199801792049 r009 Re(z^3+c),c=-11/25+19/55*I,n=55 3178199808212709 r005 Im(z^2+c),c=-31/106+22/43*I,n=43 3178199813618522 p004 log(34253/1427) 3178199813631359 r005 Im(z^2+c),c=-19/86+25/52*I,n=42 3178199816184528 r002 25th iterates of z^2 + 3178199820276163 h001 (2/9*exp(1)+2/7)/(4/5*exp(1)+5/8) 3178199832371306 r005 Im(z^2+c),c=27/86+5/59*I,n=24 3178199834538132 m009 (3*Pi^2-2/3)/(1/6*Psi(1,2/3)+2/5) 3178199840885721 a007 Real Root Of -464*x^4-830*x^3-63*x^2+758*x-24 3178199846062489 a007 Real Root Of -329*x^4-580*x^3-908*x^2-379*x-44 3178199855254368 m001 1/BesselK(1,1)/Cahen^2/ln(log(1+sqrt(2))) 3178199870472070 m001 1/Catalan/exp(HardHexagonsEntropy)*sinh(1) 3178199874923301 m001 ln(Zeta(7))^2/Trott^2*cos(1) 3178199905546805 a005 (1/cos(11/135*Pi))^1008 3178199906992310 m009 (48*Catalan+6*Pi^2-2/5)/(1/4*Psi(1,2/3)-4) 3178199913543638 m001 (ln(Pi)+Ei(1,1))/(BesselJ(1,1)-Trott) 3178199914815034 g001 abs(GAMMA(-31/30+I*21/20)) 3178199919821849 m009 (5/6*Psi(1,2/3)+3/4)/(48*Catalan+6*Pi^2+3/4) 3178199923934748 g006 -Psi(1,4/11)-Psi(1,3/10)-Psi(1,3/5)-Psi(1,2/5) 3178199937378432 r005 Re(z^2+c),c=-9/25+11/27*I,n=23 3178199941330659 m001 (Psi(2,1/3)-ln(Pi))/(-gamma(3)+Pi^(1/2)) 3178199957354991 a007 Real Root Of -379*x^4-269*x^3-888*x^2+554*x+261 3178199964586149 a003 cos(Pi*21/59)-cos(Pi*29/79) 3178199970734772 m001 (Si(Pi)-BesselI(1,1)*Paris)/BesselI(1,1) 3178199981282796 r005 Re(z^2+c),c=-41/98+2/57*I,n=21 3178199990448052 m001 (gamma+Zeta(1/2))/(exp(1/Pi)+OrthogonalArrays) 3178199999118258 m001 1/Rabbit*GlaisherKinkelin*exp(Sierpinski)^2